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Abstract 

 
 Light weight block cipher is a new trend in cipher design that is aimed at 

providing a trade-off between security and efficiency for resource constrained special 

purpose applications like RFID-tags, sensor nodes and smart card.  Consequently, 

various cryptanalytic techniques are also taken into account to gauge very carefully 

the security of these light-weight ciphers. Algebraic cryptanalysis has been 

extensively applied to break many real world stream ciphers; however, exploitation of 

its potential against block ciphers is a grey area of research. In algebraic methods of 

block ciphers cryptanalysis, linear and nonlinear components; separately cipher and 

key scheduling, are modeled into systems of algebraic equations. These are then 

combined to determine the complex system of equations that completely describe the 

entire cipher.  Solution of such systems, where possible, gives the key or plaintext.  

 In this thesis, basic concept behind algebraic technique, light weight block 

ciphers and their algebraic cryptanalysis has been discussed. Due presence of 

nonlinear component i.e. S-box, in cipher design, resistivity of block ciphers against 

algebraic attacks lies in the S-box. This research also describes a step by step 

methodology to model any S-box in to system of linearly independent Multivariate 

Quadratic (MQ) equations. Initially, Proof of Concept (PoC) on a simpler 3x3 S-box 

has been implemented. Then targeted feistel structure based light weight block ciphers 

have been analyzed with respect to their resistivity against algebraic attacks. A simple 

algebraic representation of 32 round LBlock in terms of 2628 variables, 8928 

equations and 43,908 monomials,  33 rounds of SEA48,8 in terms of 3216 variables,  

10,560 equations in 34,320 monomials and SEA96,8 in terms of 6432 variables, 21,120 

equations and 68, 568 monomials have been given. Moreover, it has also been shown 

that XSL attack doesn’t pose any threat to either LBlock or SEA. In addition, 

feasibility about applicability of cube attack in combination with algebraic attack has 

also been undertaken.  

  A software tools has also been developed using Maple/C-sharp that can give 

algebraic representation of any lower order S-box. Developed tool can be utilized in 

S-box design as well as in algebraic cryptanalysis of other block ciphers.  
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C h a p t e r  1  

3 Introduction 

1.1 Overview   

In current era of “Information Age”, information exploitation for own’s 

advantages and its denial to the adversary is mission critical. Thus on one hand, 

securing the information and communication system with robust crypto systems 

is the prime objective. While on the other hand, main focus remains on testing 

crypto systems security with an aim to find vulnerabilities and/or improve the 

system design.  

Ciphers are the class of crypto systems that provides data confidentiality in 

transit. In the last decade, a recent concept of light weight block ciphers have 

emerged for provisioning requisite security coupled with desired efficiency for 

extremely resource constrained applications like Radio Frequency Identification 

(RFID) tag, Wireless Sensors Node (WSN) and smart card etc. Block ciphers are 

also broadly categorized into feistel structure based and Substitution Permutation 

Network (SPN).  Light weight block ciphers based on feistel structures are 

current generation ciphers that are aimed at providing higher level of security in 

comparison to stream ciphers for resource constraint applications, while 

consuming minimal resources. As a rule of thumb, all newly proposed ciphers 

are also critically analyzed against at least known cryptanalytic attacks for 

ascertaining the ciphers security and analyzing its structure for its effective and 

secure utilization in real time application.  

 Algebraic cryptanalysis is a technique that works by converting cipher 

system in to polynomial system of equations, then solving this system of 

equations to extract either key or plain text [1, 2, 3, 4, 5]. It takes advantage of 
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multivariate systems of equations in Algebraic Normal Form (ANF) that represent 

the targeted ciphers [6]. In algebraic methods of block ciphers cryptanalysis, 

linear and nonlinear components; separately encryption/decryption algorithm and 

key scheduling, are individually modeled into systems of equations. These 

equations are then combined to make a larger system of equations that completely 

describe the pertinent cipher. Since, block ciphers have nonlinear components; S-

boxes, in their inherent design. Therefore, security of block ciphers against 

algebraic attacks lies in nonlinear components.  Accordingly, modeling nonlinear 

components in terms of systems of equations dictates the cipher resistivity against 

algebraic attacks.   

 After the algebraic representation of block cipher has been obtained, the 

attacker then aims to solve the system of equations to determine unknown key 

(generally in a known plaintext settings, but quite often chosen plaintext is also 

used to reduce the time complexity of attack). The problem of solving large 

system of multivariate equations over a finite field is considered to be NP-Hard. 

Accordingly, this computational hardness peculiarity of solving large systems of 

multivariate equations forms the basis for security of most of the modern 

cryptographic systems against algebraic attacks. However, numerous algebraic 

techniques for solving  complex system of multivariate equations have been 

proposed like finding Groebner Bases, Linearization, XL, ElimLin algorithm, Mix 

Integer Programming, SAT solvers etc. to break mostly stream ciphers based 

cryptosystems efficiently [4, 7, 8, 9, 10].  Among various techniques available for 

efficient solution of multivariate equations, SAT solvers have emerged as one of 

the recent yet very powerful tool. Moreover, if the system of equations is solved 

then attacker finds the unknown key. However, if the equations are very complex 



3 

and can’t be solved still they depict the estimated cipher resistivity against 

algebraic attacks, as in case of AES [11, 12, 13].   

1.2 Need for Research  

 Due recent boost in use of ubiquitous devices like RFID tags, smart cards 

and WSN nodes, there is an ever growing need to undertake threadbare security 

analysis of basic security primitives employed with respect to each and every of 

cryptanalysis. Algebraic cryptanalysis has enjoyed tremendous success against 

stream ciphers; however, exploitation of its real potential against block ciphers is 

a grey area for research.  Although researchers have started analyzing block 

ciphers resistivity against algebraic attacks specifically after the emergence of 

algebraic representation of US NIST Advance Encryption Standard [13], however, 

lot of light weight block ciphers are yet to be algebraically analyzed.  Few among 

these are LBlock [14], SEA [15], HIGHT [16], mCrypton [18], CGEN [19], 

PRESENT [20], DES Variants [21], LED [22], EPCBC [23], PICCOLO [24], 

PUFFIN [25] etc. 

1.3 Problem Statement  

 There is a need to analyze cipher resistivity with respect to each and every 

cryptanalytic angel during the cipher’s life cycle, so that vulnerabilities in its 

design can be exposed and its robustness can be gauged. Presently, no open 

source tool is available to algebraically analyze the block ciphers. Since nonlinear 

components in block cipher determine the ciphers resistivity against algebraic 

attacks.  So there is a need to develop a software tool for algebraic representation 

and analysis of lower order S-boxes that are used in light weight ciphers.  Light 

weight block cipher LBlock [14], design and developed by Chinese Academies of 
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Science (CAS),  has been extensively analyzed against Cube, Linear, 

Differential, Boomerang, Related Key and Biclique cryptanalysis [26, 27, 28, 

29, 30]. However, its algebraic representation and analysis is yet to be reported. 

Scalable Encryption Algorithm (SEA), an ultra light weight cipher designed by 

Belgium National Research (BNR), for extremely resource constrained 

applications [31, 32, 33, 34]  has also been analyzed with respect to linear, 

differential, truncated differential  cryptanalysis and square attacks [15], however, 

its algebraic representation and analysis is yet to be reported.  

1.4  Objectives  

 Objective of this research is to undertake algebraic representation and 

analysis of feistel structure based light eight block ciphers; LBlock and SEA. This 

analysis has been undertaken after through literature review about applicability of 

algebraic cryptanalytic technique against block ciphers. A step by step 

methodology for algebraic representation of any S-box has been undertaken. 

Another objective is to develop a software tool that can give algebraic 

representation of any lower order S-boxes. Another academic objective assigned 

is to study about applicability of cube attack in comparison with algebraic attack 

on light weight structures.  

1.5 Research Methodology  

 In order to undertake this research, the entire work has been divided into 

three main phases. In the first phase, literature review has been undertaken to 

build the concepts about algebraic cryptanalysis with reference to light weight 

block ciphers. Various tools and techniques applicable to algebraic cryptanalysis 

of block cipher has been described. In the second phase, a detailed procedure to 

transform any block cipher into systems of multivariate equations using a 
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systematic approach has been delineated. A step by step methodology for 

transforming lower order S-boxes into system of equations has been proposed. 

Implementation of proposed methodology on a prototype 3x3 S-box has been 

undertaken and it has been demonstrated that it gives better results than 

previously published. A generic software tool using Maple and C-sharp has also 

been developed that can analyze any lower order S-box.  In the last phase, 

algebraic representation and analysis of LBlock and two version of SEA has been 

presented. Resistivity of both the ciphers against XSL attack has also been 

evaluated.  In the end, feasibility study about applicability of Cube attack in 

combination with algebraic attack has also been undertaken.  

1.6 Thesis Organization  

 This thesis report is organized into 7 chapters. Chapter 2 presents 

comprehensive literature review about the light weight block ciphers and 

algebraic cryptanalysis. It also discusses an overview of various computer algebra 

tools and techniques used for solution of complex system of equations. Chapter 3 

describes the research methodology adopted in this thesis. It also contains a step 

by step procedure for formulating system of equations that completely describes 

any S-box with the help of a toy example. Then the methodology for algebraic 

representation of any block cipher has been discussed. Chapter 4 and Chapter 5 

present results of algebraic representation against LBlock and SEA over GF(2) 

respectively. Resistivity of both the ciphers against XSL attack has also been 

determined.  Chapter 6 describes the feasibility study about applicability of Cube 

attack in comparison with classical algebraic attack on block ciphers. Chapter 7 

concludes the thesis. 
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C h a p t e r  2  

Light Weight Block Ciphers and Algebraic 

Cryptanalysis – Literature Review 

2.1 Introduction 

 Light weight block ciphers are current generation child of traditional block 

ciphers. In this chapter, basics of block ciphers, light weight block ciphers and 

their design rationale has been discussed. Algebraic cryptanalytic technique in 

case of light weight block ciphers has also been discussed in detail. 

 The chapter has been divided into four main sections. Section 2.2 contains 

an overview of basic block ciphers, design principles and requirements leading to 

the advent of light weight block ciphers. Section 2.3 presents the core concept and 

methodology of algebraic cryptanalysis in case of block ciphers. Section 2.4 

discusses most well known tools that are relevant for the solution of multivariate 

system equations as for as block ciphers cryptanalysis is concerned. Section 2.5 

concludes the chapter. 

2.2  Block Ciphers 

 Block ciphers are the class of cryptosystems that divides the plaintexts 

into chunk of blocks, and then use the encryption algorithm to generate cipher text.  

The core components of the block ciphers are substitution and permutations. 

Substitution generates confusion while permutation generates diffusions in the 

cipher. The substitution is the only nonlinear component and takes m bits as an 

input and gives n bits as an output. While permutation is the linear layer that 

usually permute the bits to diffuse the relationship of key into cipher text.  
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Moreover, block ciphers consist of may iterative rounds as per the specific cipher 

design criteria.  

2.2.1    Light Weight Block Ciphers 

 Since the beginning of 21
st
 century, use of resource constraints devices 

like RFID tag, smart card, wireless sensor nodes etc has gained a enormous boost 

mostly in security related special purpose applications. Almost all of us used such 

devices in our daily use. Since these application requires very efficient data 

exchange while consuming less resources but with an impregnable security. 

Therefore, a new trend of light weight cryptography has emerged in the recent 

past to meet the requirement of these special purpose applications in terms of 

security and efficiency. Nonetheless, stream ciphers had been employed in 

applications where resources and speed were the main concerns. However, since 

no comparison can be drawn between the level of security of a stream cipher and 

that of a block cipher, and traditional block ciphers like AES, Serpent etc can’t be 

deployed in these applications so pressing requirement was felt to design light 

weight block ciphers.  Light weight block ciphers have very efficient hardware 

implementation; consume very less resources while providing robust data 

confidentiality.  

 Light weight block ciphers are designed based on feistel as well as SPN 

structure. Both have their own pros and cons. However, feistel structure based 

ciphers schemes have always remained the prime attraction of cryptographic 

community due to certain advantage associated with them. These include smaller 

round function then SPN based ciphers, since only half of the block is processed 

in each round. Moreover, feistel schemes have inherent design feature to support a 

decryption function without any significant implementation cost.  Accordingly, 
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numerous light weight block ciphers have been proposed that are extremely 

efficient and suit these special purpose applications. These includes feistel based 

ciphers like LBlock [14], SEA [15], DES Variants [21], GOST [35, 36], 

KASUMI [37], MTSUI [37],   GFN based HIGHT [16],  and SPN based ciphers 

PRINT [17], mCrypton [18], CGEN [19], PRESENT [20], and 

KATAN/KTANTAN [38].  

2.2.2  Design Rationale of Light Weight Block Ciphers 

 Light weight block ciphers have few distinct peculiarities that not only 

separate them from traditional block ciphers but also drive the basic cipher design. 

Firstly, resource constrained applications operates on very small amount data, 

therefore, even relatively low throughput of light weight cipher is sufficient for 

targeted applications. Secondly, light weight ciphers are usually implemented in 

hardware environment for efficiency except in some cases a part of cipher is also 

implemented on 8 bit microcontroller. Thus efficient hardware implementation is 

another design rationale. Thirdly, light weight block cipher provides a tradeoff 

between security and performance, and it is assumed that moderate amount of 

security is sufficient. Lastly, it is well understood to the designer that the targeted 

application has very week computational ability, less memory and scanty power 

availability.  

2.3 Algebraic Cryptanalysis and Block Cipher  

 The foundation stone for algebraic cryptanalysis was laid by C.E.Shanon, 

who related the security of cryptographic systems to the difficulty/complexity of 

solving set of algebraic equations that completely describe the targeted cipher [3].  

Thus, in algebraic cryptanalysis, the cipher is modeled into set of multivariate 
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equations in ANF representation over a finite field usually GF (2) [39]. Generally, 

some crypto systems can be equivalently represented by multiple set of algebraic 

systems. The resultant systems of equations are quite often sparse, since practical 

implementation requires low Gate Equivalents (GE). Therefore, overall security 

of any crypto system can be gauged in terms of complexity in solving large 

system of multivariate equations. This problem of solving systems of multivariate 

equations is NP hard. However, several techniques for solution of complex 

system of equations have also been proposed [2, 3, 7, 40, 41, 42, 43]. Since its 

inception, algebraic cryptanalysis has been successfully applied against numerous 

stream ciphers. Despite enjoying tremendous success against stream ciphers based 

crypto systems, real potential of algebraic technique is yet to be exploited against 

block ciphers. However, the importance of this technique needs no emphasis since 

it is the only most effective attack against any crypto systems in real time scenario 

where only one or limited Known Plaintext (KP) is available with the attacker.  

Therefore, despite having nonlinear component in block cipher that swells the 

systems of equation as the number of rounds increases, recently, security 

evaluations of some block ciphers against algebraic attacks [4, 5, 35, 36, 37] has 

been published. 

2.3.1 Concept and Methodology of Algebraic Cryptanalysis 

Technique in Block Cipher  

 It is important to note that actual potential of algebraic technique against 

block ciphers cryptanalysis is not fully explored mainly due difficulty in dealing 

with systems of equations that swells manifold with each round of cipher. And 

this is due to the presences of the S-boxes; the only source of nonlinearity in 

many block ciphers, and equations describing them are the main hurdle in solving 
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[37]. However, if the equations system have some regular structure besides being 

sparse, its manipulation becomes relatively easier, as in case of Rijndael and 

Serpent [44].    

As a leading step not only to explore the uncharted waters but to advance 

the field of algebraic cryptanalysis against block ciphers, a UK based researcher 

published a cipher, namely Courtois Toy Cipher that was exclusively tailored to 

suit algebraic attacks [45, 46].  CTC had a simplified algebraic structure, random 

permutation of S-boxes, same key and block size and diffusion layer to achieve 

avalanche effect. Nicolas Courtois demonstrated to break the 255 bit block size, 

for 6 rounds in one hour on his note book PC through algebraic cryptanalysis [45, 

46].  However, detailed methodology about the attack was not published with fear 

that it might endanger the security of AES, since it has typical algebraic structure. 

‘‘In order to protect the United States government, the financial institutions, 

mobile phone operators, and hundreds of millions of other people that use AES, 

from criminals and terrorists, the exact description of the attack will for some time 

not be published. Public demonstrations of the effectiveness of the attack will be 

organized instead” [45]. Courtois also termed his attack as fast algebraic attack 

since it was based on adding additional intermediate state variables so that degree 

of equations should not increase with increase in round.  

 The core concept of algebraic cryptanalysis against block cipher revolves 

around two steps. These include, writing system of multivariate equations that 

describe the cipher, and finally solving these systems of equations to determine 

the key. Brief overview of these steps is described in ensuing paragraphs. 
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2.3.1.1 Writing Systems of Equations 

 The most tricky part is smartly modeling the cipher systems into systems 

of as simple equations as possible. The attacker starts with the nonlinear 

component i.e. S boxes, since these are the most pivotal as for as resistivity of 

block ciphers against algebraic attack is concerned.  Modeling S-box completely 

in terms of systems of equations through exhaustive search is not feasible even for 

small S-box. Aim is to find linearly independent quadratic multivariate equations 

encompassing input/output variables of S-box that completely describes the 

pertinent S-box. Where possible, it is desirable to have sparse and over defined 

systems of equations due their ease in solving at later stages of attacks.  

 Next step is to target linear layers of the cipher, since these consists of 

simple linear operations like XOR, permutation, bit shifting etc. Therefore, 

writing systems of equations for linear layer is quite simple and straight forward.  

Finally, equations obtained from linear and nonlinear components are combined 

to form a system of equations that completely define the cipher.   Moreover, in 

order to exploit systems of equation through algebraic attacks, it is important to 

make sure that degrees of equations don’t increase drastically, as the cipher 

rounds goes up. Accordingly, algebraic complexity reduction; a technique based 

on the cipher design in general and S-box design in particular such that by 

guessing certain number of bits and determining some other bits, results in overall 

complexity reduction of equations system was proposed in GOST cryptanalysis 

[35]. Another technique is based on use of intermediate state variables for 

obtaining sparse systems of equations [45] that can be employed so that degree of 

equations don’t swell with each round.   
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2.3.1.2  Solution of Multivariate Equations 

 After the block cipher’s representation in terms of system of equations has 

been obtained, the next step is to solve them. The problem of solving MQ system 

of equations is NP hard. However, its complexity drops substantially when 

systems becomes overdefined i.e. having more number of equations than variables. 

This is an active area of research, and several tools/techniques for solution of 

systems of equations has been proposed [2, 3, 7, 40, 41, 42, 43], that shall be 

discussed in Section 2.4. Moreover, SAT solvers have emerged as a most 

powerful tool in solving these equations efficiently, while converting ANF 

equations into CNF form. It is pertinent to mention that complex system of 

equations is not always solvable, nonetheless, it still can describe the resistivity of 

cipher against algebraic attack as in the case of many ciphers like AES [11, 13, 

44]. 

2.4   Techniques used for Solution of Multivariate Equations 

 Since the advent of algebraic method in cryptanalysis, various techniques 

has either exclusively been developed by the cryptographic community or few 

developed for other applications has been employed through improvisation. These 

includes Linearization and XL [7], XSL [44], DR [47], Zhuang-Zi [48], F4 [42], 

F5 [43], ElimLin [41], SAT solvers [40]. Some of the well reputed techniques or 

algorithm has been described in ensuing paragraphs: 

2.4.1 Groebner Bases 

 This method was originally proposed by Bruno Buchburger in the 

pursuance of his doctorial research thesis in 1965 and he named it upon his 

research supervisor. Besides its utility in solving algebraic equations, this method 

has lot of other applications including in coding theory and robotics optimisation 
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etc. Basically groebner basis G can be defined as a specific type of generating 

subset of an ideal I in a certain polynomial ring R.   The underlying approach in 

this method as for as solving systems of algebraic equations is that if we have 

equations f1 = 0, . . . , fn = 0 so we calculate its reduced Groebner basis G = {g1, 

. . . , gl} for the polynomial ideal I generated by hf1, . . . , fni. Thus solution of 

polynomial equations   g1 = 0, . . . , gl = 0 can be equated to solving f1 = 0, . . . , 

fn = 0. It is preferred to solve g1 = 0, . . . , gl = 0  than f1 = 0, . . . , fn = 0 due 

relative ease of solving. 

 Groebner basis is a broader approach, and on its underlying principle, 

various algorithm has been proposed like Buchberger F4 [42] and F5 [43] 

algorithms. However, the main drawback of these types of methods viz-a-viz 

block cipher cryptanalysis is during computational phase, the algorithms quite 

often crashes due low memory. This is only true for larger systems, but these 

methods are pretty faster than other methods when employed in case of smaller 

system of equations [49]. Groebner basis based F4 algorithm has been deployed 

in reduced round; up to 5, algebraic cryptanalysis of light weight block cipher 

PRINT [26].  

2.4.2  Linearization 

 Linearization is a simpler technique but yet very effective in case of 

solving large and complex systems of polynomial equations. The idea is that for 

any given system of polynomials, each monomial can be replaced with a new 

variable. For example, if we have two degree monomial, so it can be replaced 

with a single degree variable. Resultantly, linearised system of polynomial 

equations is obtained. Solution of these linearised systems is checked against non-

linearised original systems of equations. Overall efficacy of linearization 
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technique depends upon total number of linearly independent polynomials in the 

system. Ultimately, linearised system is then solved using any of the conventional 

algebra tools like Gaussian elimination etc.  In order to achieve best results using 

this technique, the systems of equations must be overdefined as well as consist of 

linearly independent polynomials; else there is always a fair chance to get 

spurious results.  Linearization technique can be very helpful specifically in case 

of block cipher’s algebraic analysis because of the obvious reasons of degree 

swelling phenomena with each cipher round. 

2.4.3  Relinearization 

 This techniques is an extension of linearization technique but is aimed at 

solution of an underdefined system of multivariate polynomial system. In such 

cases, we have more number of unknown variables but less number of equations. 

The core concept of relinearization technique is to add few extra non-linear 

equations after linearization, and then system is solved again by applying 

relinearization, until the system of equations is solved.  

2.4.4  XL Algorithm 

 The XL or extended linearization algorithm was introduced in [7]. The 

concept behind this method is to generate more systems of equation with higher 

degree from any given systems of equations by multiplying given systems of 

equation with monomials of degree that is suitably selected. As a result, we get 

more number of equations than the variables but with higher degree. The resultant 

systems of equations use linearization technique for reducing the degree of 

equations for subsequent solution. It was shown [51] that XL attack method 

doesn’t solves the problem in sub exponential time. Moreover, it also results in 

steep increase in memory requirement.  
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2.4.5  ElimLin  

 ElimLin stands for Eliminate Linear. So as the name indicate, this method 

searches for linear relations in the linear span of equations such that several 

variables are simply substituted by a linear expression. Consequently, new linear 

equations are obtained. This exercise of eliminating linear is repeated until no 

more linear equation are found, which means, no linear variables are found that 

can be eliminated.  During this process, variables that are in smaller number are 

eliminated first, while variables with more quantity are eliminated at the last. 

Thus sparsity of the systems is maintained. The main idea of this algorithm is that 

the resultant systems of equations should always remain in degree 2.  ElimLin 

algorithm has been used in algebraic cryptanalysis of reduced round DES [4].  

2.4.5  SAT Solvers 

 SAT-solvers that have been traditionally used in industry for real world 

problems like software and hardware verifications based problems etc. SAT 

solvers; quite often, abbreviated as Satisfaibility Problem, have emerged as a most 

important and powerful tool in solution of complex systems of equations. Since 

the year 2000, every year a SAT race competition is held in order to make 

improvements in this technique. Accordingly, various versions of SAT solvers 

have been introduced including MinSAT and CyptoMinSAT. The basic idea is 

that once the cipher has been modelled into corresponding system of equations, 

which is in ANF form, the attacker then converts it into CNF form of boolean 

expression for finding out the possible solutions [52].  

 CNF is basically combinations of ANDs of ORs. The literals i.e. variables, 

and their negates are expressed in corresponding clauses containing logical ORs. 

These OR clauses are then combined using logical ANDs. CNF expression 
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consists of four different distinct heuristic. These includes, number of variables, 

number of clauses, average number of symbols per clause and total number of 

symbols in the system of CNF expressions. These CNF expressions are then fed 

to SAT solvers to find out the requisite solution.  

 SAT solvers are intrinsically heuristic based algorithm designed for 

solving SAT problems. The basic idea is to guess some of the variables then run 

the solver to examine the output. If a contraction is found then add a new clause.  

For enhancing the efficiency and reducing the complexity of overall problem, pre-

processing of the systems of equations can give amazing results.  Two approaches 

can be used in SAT based cryptanalysis. Details of the same are delineated below: 

2.4.5.1    SAT Method 

 In this method, few X number of bits are guessed and solver is put to run. 

If assumption on X number of bits is correct, then SAT solver takes time T and 

gives the solution. Subsequently, solver operation can be aborted. The time 

complexity in this case is 2
X 

– T. This method is commonly termed as SAT 

method. 

2.4.5.2   UNSAT Method 

  Certain X number of bits can be guessed and SAT solver is put to the run 

mode. If assumption on X bits is incorrect; then there could be two possibilities. 

Firstly, the solver finds contradiction in time T with very large probability 1-P say 

90% or it can find the contradiction with a small probability P > 0. If it finds 

contraction with small probability, few other bits also guessed to find additional 

contradiction or solution. Ultimately, if P is very small, the complexity of 

additional steps will be less than 2
X 

.T that is the time solver took during initial 

phase while finding contraction. This method is known as UNSAT method.  
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 Nonetheless, in practical scenarios both SAT and UNSAT methods are 

employed and complexity of both the individual method is added towards the total 

complexity of the solver. SAT solvers are being used in algebraic cryptanalysis of 

block ciphers like DES [4], KEELOQ [5].  Moreover, it was shown in [49] that 

SAT solvers do solve complex system and they have very low memory 

consumption requirements. 

2.5 Conclusion  

 In this chapter, an overview, design rationale and basic philosophy behind 

the advent of light weight block ciphers have been discussed. After describing the 

literature review regarding light weight block ciphers, the basic concept of 

algebraic cryptanalytic technique has been discussed. Later on, the fundamental 

methodology regarding algebraic techniques in block ciphers cryptanalysis has 

been discussed in light of published literature. Various tools and techniques 

available for solution of complex system of equations with particular reference to 

algebraic cryptanalysis of block ciphers have been discussed. Among these, 

traditional groebner basis approach based algorithms like F4 and F5 and their 

applicability to block ciphers cryptanalysis has been described. ElimLin algo, 

which tries to keep the equations system in 2
nd

 degree, can be an interesting tool 

as for as block cipher cryptanalysis is concerned. Finally, an emerging and very 

powerful technique, namely SAT solvers used in algebraic cryptanalysis of block 

ciphers has also been discussed.  
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C h a p t e r  3  

4 Algebraic Representation and Analysis of Light 

Weight Block Ciphers   

3.1 Introduction 

 In this chapter, the methodology used in this thesis for formulating 

systems of equations and analysis of feistel structure based light weight block 

cipher has been discussed. Detailed framework for describing any block cipher 

into system of equations has been presented. A strong foundation, encompassing 

development of software tool, has been laid for usage in algebraic representation 

and analysis of targeted cipher in subsequent chapters.  

 Chapter 3 has been organized into 3 sections. Section 3.2 describes 

detailed methodology for producing algebraic representation of any block cipher. 

Initially, a step by step methodology for transforming any S-box into equivalent 

systems of linearly independent equations has been discussed that can completely 

describes pertinent S-box. Proposed methodology has been explained and 

implemented with the help of a prototype S-box. This lead to the development of 

a software tool that can analyze any lower order S-box. It has also been 

demonstrated that proposed methodology gives better results than previously 

reported. Section 3.3 contains another technique proposed for calculating 

estimated complexity of Linearization based i.e. eXtended Sparse Linearization 

(XSL) attack for block ciphers. XSL attack has also been discussed along with 

procedure to calculate its complexity. Section 3.4 concludes the chapter. 
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3.2   Modeling Light Weight Block Ciphers into Systems of 

Equations 

 Unlike stream ciphers, completely different methodology to transform block 

cipher into systems of equation has to be adopted. It is based on the broad outlines 

proposed by Cid et al. [13], Biruykov et al. [37] and Courtois et al. [44] for 

algebraic representation of AES and other ciphers based on feistel as well as SPN 

structure. Subsequent to the emergence of captioned methodology, algebraic 

representation and analysis of various block ciphers have been published 

including DES [4], AES [13], GHOST [35, 36, 53] and CTC [45, 46]. The 

concept is that instead of constructing extremely complex and large system of 

equations describing any cipher text bit relationship with plaintext and key bits, a 

simpler sparse polynomial systems of equations with lower degree can be 

obtained separately for linear and non-linear layers. They are then combined to 

form overall systems of equations. This methodology gives very large system of 

multivariate equations. Addition of intermediate state variables keeps the degree 

of equations systems lower at the cost of more variables. Moreover, encryptions 

of more number of data also don’t ease the problem, since its gives more number 

of equations with more variables. 

 Base on the idea presented in [13, 37] in order to describes block cipher 

into systems of equations, the attacker formulates separate systems of equations 

for main cipher and key scheduling; separately for linear components and 

nonlinear components. These are then combined to formulate overall systems of 

equations. So the attacker starts with the nonlinear components; S-boxes, since 

security of any block cipher in general and against algebraic cryptanalysis in 



20 

particular lies in the S-box. Therefore, formulating equation systems representing 

the S-box are the trickiest part that determines the overall complexity of attack.  

3.2.1 Step by Step Methodology for describing any S-box into 

Systems of Equations 

 It was shown in [37, 44, 54] that any S-box can be described into 

equivalent systems of equations. However, the detailed methodology has not been 

published.  Doing exhaustive search even for small S-box over entire space of 

input/output is not practicable. In this section, a step by step methodology has 

been described that can be applied to any S-box for its algebraic representations 

involving linearly independent relations that holds good for all input/output of the 

pertinent S-box. The generated equations are usually both overdefined and sparse. 

The beauty of this technique is that relations involving any degree can be 

generated, however, since incase of iterative block cipher, there is fear of degree 

swell with each number of rounds, so generally it is desired to formulate and rely 

on second degree equations for the S-box. However, if the S-box is of higher I/O 

order and can’t be described completely using MQ systems, one can always 

derive the 3
rd

 degree and so on equations as in case of DES [4]. For ease of 

assimilation and description, let’s suppose simpler 3x3 S-box as in [54] with 

contents described in equivalent binary delineated in table 3.1. The proposed 

methodology for describing S-box into systems of equations used in this thesis 

has been presented in ensuing paragraph: 

3.2.1.1 Define Monomials Based On Equations Degree 

Required to be Obtained - Step 1  

 For ease of description, methodology for generation of quadratic systems 

of equations has been described. Accordingly, the monomial defined are "1"," 
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"x0", "x1", " x2", "x1", "y0", "y1", " y2", " x0 y0", " x0 y1", "x0 y2", "x1 y0", " x1 y1", " x1 y2", 

"x2 y0", "x2 y1", " x2 y2". Moreover, all possible combinations of yi yj   can also be 

defined for generating additional number of equations. Similarly if the aim is to 

generate 3
rd 

degree equations as well, so all possible combinations of monomials 

encompassing xixjyk and yiyjxk   can also be defined. But for easier assimilation and 

description and as a Proof of Concept (PoC) of the methodology, deliberately 

simpler monomials for captioned S-box have been defined.  

Table 3.1  Contents of a 3 x 3 S-box 

Input Output 

Decimal Binary Decimal Binary 

0 000 5 101 

1 001 3 011 

2 010 0 000 

3 011 4 100 

4 100 2 010 

5 101 7 111 

6 110 6 110 

7 111 1 001 

 

3.2.1.2 Matrix Generation – Step 2 

 Next step is to generate a matrix of the order M x 2
n   

; where M is total no 

of monomials and n is the input bits of the S –box.  In this case 16x8 matrix is 

generated, as appended in table 3.2. The constant term is denoted by all 1s, 

whereas, other respective I/O monomials are designated with corresponding bits. 

The order of bit can be fixed either way like for example for 6 it can be either 110 

or 011, depending upon the nomenclature followed for S-Box labeling (x0, x1, x2 
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or x2, x1, x0). Rests of the bits are simple bit by bit multiplication of the initial I/O 

variables values. 

1
st
  Input /output:  Input 0 means binary 000---->  output 5 means binary 101 

2
nd

 Input /output:  Input 1 means binary 001----> output 3 means binary  011 

And so on…….. 

8
th

  Input /output:  Input 7 means binary 111---->  output 1 means binary 001 

Table 3.2 Matrix Generation for 3 x 3 S-box 

Monomial 1
st 

I/O 

2
nd

 

I/O 

3
rd

 

I/O 

4
th

 

I/O 

5
th 

I/O 

6
th

 

I/O 

7
th

 

I/O 

8
th

 

I/O 

1 1 1 1 1 1 1 1 1 

x0 0 0 0 0 1 1 1 1 

x1 0 0 1 1 0 0 1 1 

x2 0 1 0 1 0 1 0 1 

y0 1 0 0 1 1 0 1 0 

y1 0 1 0 0 1 1 1 0 

y2 1 1 0 0 1 0 0 1 

x0 .y0 0 0 0 0 1 0 1 0 

x0 .y1 0 0 0 0 1 1 1 0 

x0 .y2 0 0 0 0 1 0 0 1 

x1 .y0 0 0 0 1 0 0 1 0 

x1.y1 0 0 0 0 0 0 1 0 

x1.y2 0 0 0 0 0 0 0 1 

x2 .y0 0 0 0 1 0 0 0 0 

x2.y1 0 1 0 0 0 1 0 0 

x2 .y2 0 1 0 0 0 0 0 1 

 

 Consequently, from above table, we get a 16x8 matrix, where each 

monomial designates an eight bit array (row of the matrix).  
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3.2.1.3      Gaussian Elimination of the Generated Matrix – Step 3 

 The matrix generated from above step is Gaussian eliminated mod 2. 

Resultantly, matrix in row echelon form is obtained, where few rows have non 

zero bits while all other have all zero bits. The number of all zero rows describes 

that how much equations will be generated for this specific S-box. From matrix in 

Table 3.3, there are 08 all zero rows, which indicates that in this case 08 equations 

of 2
nd

 degree shall be generated. Next steps are aimed at finding these equations. 

Table 3.3 3 x 3 S-box Matrix in Reduced Row Echelon Form 

 

3.2.1.4 XOR Mod 2 Monomials and Output Results – Step 4 

 In this step, all monomials are XORed modulo 2 in all possible 

combinations of 2 monomials, 3 monomials and so on till 6 monomials (because 

based on selected 3x3 S-box we have 7 basic monomials, 3 each for input and 

output and one constant). Consequently, corresponding 8 bit arrays are XORed bit 

by bit.  The aim is to output all those combinations whose XOR gives all zero. 

Thus, ℓ number of equations from 2 up till 7 terms are generated. In this case, 
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total 100 equations are generated; having XOR output all zero.  They are listed at 

Appendix A to this report. 

3.2.1.5      Generate Matrix from the Equations – Step 5 

 Next step is to generate a matrix from the equations formulated in the 

step-4. Where the monomial is present that means it has co-efficient 1, else zero. 

So output of this step is l x M matrix; where each element in row describes the co-

efficient of monomial in the particular equation, while one complete equation 

describes a row.  It is important to note that matrix can be written from equation 

in either lexicographical order or reverse-lexicographical order (1+x1+ x1x2 or 

x1x2+x1+1). It has been verified that both give valid results. In case of 3x3 S-box, 

a matrix of the order 100x16 is generated.  However, even for 4x4 S-box, order of 

the matrix becomes extremely dense; few hundred thousand rows.  

3.2.1.6    Gaussian Elimination Mode 2 of  l x M Matrix – Step 6 

 In this step, Gaussian elimination Mod 2 on l x M matrix is performed. 

This gives exactly the number of non-zero rows that are equal to the number of all 

zero rows obtained in the resultant matrix that was obtained as result of step 3. 

Each row of this resultant matrix gives the linearly independent equations that 

describe the S-box. In this case while formulating the matrix in lexicographical 

order, following equations are obtained. 

1+x0+x1+y2+x0y0 = 0 

x0+x0y1+x1y2 = 0 

x2+y1+x0y2+x1y0 =0 

y0+y2+x1y0 +x2y2 = 0 

y1+x0y0+x2y1 = 0 

x0y0+x0y1+x1y2+x2y1+x2y2 = 0 
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x0y1+x0y2+x1y0+x2y0+x2y1+x2y2 = 0 

x1y0+x1y1+x2y0 = 0 

3.2.1.7  Verification of Equations for all Input/Output of S-box – 

Step 7 

 Last but not the least, one must check that whether the equations generated 

through abovementioned process are valid for all input/output of the S-box. So a 

truth table is generated for verification. Conversely, f(x0, x1, x2, y0, y1, y2)mod2 

should equate to zero for all the values of I/O bits of pertinent S-box . In this case 

it can be easily verified that these equations are valid for all I/O of the 3 x 3 S-box. 

3.2.1.8 Some Findings Based on Analysis of Methodology for 

Formulating S-Box Equations  

 In this section, the analysis of above mentioned methodology has been 

outlined. As discussed earlier, the matrix in step 5 can be formulated by writing 

monomials coefficients either in lexicographical order or reverse-lexicographical 

order. While formulating the matrix in lexicographical order, the resultants 

equations are described in step 6, however, while formulating it in reverse 

lexicographical order, following equations are obtained: 

x2y2+y1+x0 = 0 

 

x2y1+x0y0+y1 = 0 

 

x2y0+x1y1+x1y0 = 0 

 

x1y2+x0y1+x0 = 0 

 

x1y1+x0y2+x0y1+x0y0+x0 = 0 

 

x1y0+y2+y1+y0+x0 = 0 

 

x0y2+y2+y0+x2+x0 = 0 

 

x0y0+y2+x1+x0+1 = 0 
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 Statistical analysis of the resultant equations in both the order is given in 

table 3.4 below. From statistical analysis of monomials in the S-box equations, it 

can be deduced that while formulating the matrix in step 5, reverse 

lexicographical order gives simpler and sparse systems of equations. This is due 

to the exploitation of property of Gaussian elimination because on the left side of 

reduced row echelon form of the matrix, all zeros are obtained. So it can be 

concluded that reverse lexicographical ordering is the preferred methodology for 

formulating simpler S-box equations. 

Table 3.4 Statistical Analysis of Monomials in S-Box Equations 

Statistical Analysis of Monomials 

- Lexicographical Order  

Statistical Analysis of Monomials – 

Reverse Lexicographical Order 

 

 

      

Monomials Count Percent 

x1y0 4 12.12% 

x0y0 3 9.09% 

x0y1 3 9.09% 

x2y2 3 9.09% 

x2y1 3 9.09% 

x1y2 2 6.06% 

y2 2 6.06% 

x0y2 2 6.06% 

x0 2 6.06% 

y1 2 6.06% 

x2y0 2 6.06% 

x2 1 3.03% 

x1y1 1 3.03% 

y0 1 3.03% 

x1 1 3.03% 

1 1 3.03% 

 

Monomials Count Percent 

x0 6 18.75% 

y2 3 9.38% 

x0y0 3 9.38% 

y1 3 9.38% 

x0y1 2 6.25% 

x0y2 2 6.25% 

x1y0 2 6.25% 

x1y1 2 6.25% 

y0 2 6.25% 

x2 1 3.13% 

x2y0 1 3.13% 

x2y1 1 3.13% 

x2y2 1 3.13% 

x1 1 3.13% 

1 1 3.13% 

x1y2 1 3.13% 
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SUMMARY 

 

Total Monomials 33 

Single Degree 

Monomials 

9 

2
nd 

Degree 

Monomials 

23 

Constants 1 
 

 

SUMMARY 

 

Total Monomials 32 

Single Degree 

Monomials 

16 

2
nd 

Degree 

Monomials 

15 

Constants 1 

 

 

  

 Moreover, in order to make algebraic attacks against any block cipher 

impracticable, it is imperative that at least few S-boxes in the cipher should not be 

described by small number of multivariate equations.  

3.2.1.9 Comparison of Results Obtained with Published 

Results   

 Comparison of the results obtained from abovementioned step by step 

methodology using reverse lexicographical ordering with the already published 

results for the same S-box in [54], is appended in table 3.5 below: 

Table 3.5 Comparison of Results for S-box Equation - Monomials 

Title Proposed Methodology  Previous Results 

No. of Equations 8 8 

No of Monomials 32 41 

1
st 

Degree Monomials 16 26 

2
nd

 Degree Monomials 15 11 

Constants 1 4 

  

 From above comparisons, it can be deduced that the proposed 

methodology gives simpler and sparse systems of equations that completely 
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describes the S-box. Moreover, if a cipher like SEA [15] uses 8 S-boxes per 

rounds; each for key scheduling and round function, so for 32 rounds, proposed 

methodology gives 32*16*9 = 4608 less monomials in the entire span of 

equations, which is considerable reduction in complexity. 

3.2.2  Equations systems for Linear Components  

 After the equations systems for nonlinear component in the cipher and key 

algorithm have been obtained, next step is to formulate equation systems for 

linear layers; separately for the cipher and key scheduling [13, 37]. Linear layer 

consists of diffusions layer as well key addition layer; prior or after the S-box 

layer and in-between two nonlinear layers. However, linear layers containing 

simple bit permutation and/or shift left/shift right function are not considered as 

separate equations, because they can be catered by simply re-ordering the 

variables/equations. Aim is to make the overall equation systems as sparse as 

possible while preserving the overdefindness.  

3.2.3  Obtaining Equations Systems for the Complete 

Cipher Scheme  

 Once the equation systems for linear and nonlinear components; 

separately for cipher and key scheduling part, with certain number of variables 

and terms have been obtained, they all can be combined to form an overall 

systems of equations that describes the cipher as shown in [13, 37]. Intermediate 

state variables are added at each round to make the equations systems sparse. 

Resultantly, equations systems comprising certain number of variables and terms 

(or monomials) can be obtained, which gives the theoretical complexity of 

algebraic attacks, as in case of AES [13].  
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3.3  Complexity of  XSL Attack 

 Shamir et al. in [7] showed that MQ problem is generally NP hard 

problem. However, drastic reduction in its complexity can be observed if it 

becomes overdefined. Based on same idea, a theoretical variant of algebraic 

attack known as eXtended Sparse Linearization (XSL) attack was proposed by 

Courtois et al. in [44]. It was proposed to exploit the sparsity and structure of the 

AES and Serpent equations system. XSL attack was primarily presented against 

ciphers that have pertinent structure encompassing key XOR, substitution layer 

followed by linear diffusion layer; however, it was shown in [12, 38, 44] that it 

can be applied to other block ciphers including feistel ciphers. 

 Since XSL is a variant of generic XL attack. So the basic difference 

between two is that in case of XL attack, each equation system is multiplied by all 

possible monomial of any degree D-2. Whereas, in case of XSL attack, more 

equations systems are generated by multiplying a suitably selected monomials. 

The monomial is chosen such that its product already appears in other equations. 

Thus, once its linearised, resultant systems becomes sparse. Courtois.et.al also 

gave a following generalized formula [44] that describes the estimated complexity 

of the work factor for XSL attack against block ciphers without taking into 

account the key scheduling: 

W.F   Γ
ω 

[(Block Size). (Number of Rounds)
 2
]

 ω ⌈ t/r⌉ 

Where 

Γ = (t/s) ⌈
t/r⌉ = Actual contribution of S-box towards complexity of XSL attack 

t = Number of monomials in S-box equations 

r = Number of equations describing S-box 

s = Input bits of S-box 
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ω = Constant describing Gaussian Elimination complexity and its value is 2.37 

 Though the performance of XSL attack against AES, as claimed in [44] 

has been debatable among the cryptographic community [12, 55] since the advent 

of this attack, however, its theoretical complexity against other ciphers like SPN 

based Serpent [XSL] or feistel based MIBS [56] has not been questioned in the 

published literature. Moreover, in [12], it was shown that even in its current form, 

the XSL method against AES is better than exhaustive search. Therefore, in order 

to analyze cipher resistivity against algebraic attacks the XSL formula gives the 

valid approximation of estimated complexity.  

3.4  Conclusion 

 In this chapter, the adopted methodology for analysis of feistel structure 

based light weight block ciphers has been discussed. In the start, a step by step 

procedure for formulation of systems of equations for any S-box has been 

discussed with the help of an example.  Based on the proposed methodology, an 

interesting finding for generating sparse and simpler system of equations has been 

explored and demonstrated. Then through adopted methodology, an improvement 

in results as compared to the previously published results has been presented. 

Later on the overall methodology, used for describing complete block ciphers into 

system of equations has also been described. At the end, XSL attack and the 

procedure for calculating its complexity has been discussed. 
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C h a p t e r  4  

Algebraic Representation and Analysis of LBlock Cipher   

4.1 Introduction 

In this chapter, algebraic representation and analysis of feistel structure 

based light weight block cipher has been presented. The chapter has been divided 

into 5 sections. Section 4.2 present structure of LBlock. Section 4.3 contain 

results and analysis of algebraic equations derived over LBlock S-boxes. Section 

4.4 describes results of the algebraic representation of LBlock over complete 32 

rounds. Section 4.5 calculates and analyses the resistivity of LBlock against XSL 

attack. Section 4.6 concludes the chapter.  

4.2 LBlock Light Weight Block Cipher 

 LBlock is ultra light weight block cipher proposed in 2011[14].  Its design 

and development was sponsored by Chinese Academy of Science (CAS). The 

name LBlock emerged from LuBanlock and LightweightBlock cipher, shown in 

Figure 4.1 

 

Figure 4.1 Luban Lock 
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  LBlock has very efficient hardware implementation of 1320 Gate 

Equivalents (GE) on 0.18µm technology with a throughput of 200Kbps at 

100KHz. Additionally; its software implementation on 8 bit microcontroller has 

also been proposed. Thus, making it an attractive candidate for employment in 

extremely resource constraints applications. LBlock has been extensively 

analyzed against Cube, Linear, Differential, Boomerang, Related Key and 

Biclique cryptanalysis [26, 27, 28, 29, 30]. However, its algebraic representation 

and analysis is yet to be reported. General specifications of LBlock are 

summarized below: 

Table 4.1 General specifications of LBlock 

Block Size 64 Bit  

Key Size 80 Bit master key 

32 Bit round key 

Number of rounds 32 

Non-linear components 4x4 S-box 

Eight S-boxes operating in parallel in 

cipher algorithm 

Two S-boxes in key scheduling 

Linear components Bit wise XOR operation 

Bit shift left  and shift right operation 

4.2.1  Structure of LBlock Encryption / Decryption Algorithm 

 LBlock’s encryption algorithm consists of 32 round based on feistel 

structure. Each round takes 64 bit plaintext as an input and breaks it into two 

halves; 32 bit each. Thus, only 32 bit block size is processed in each round like 

typical feistel cipher. Encryption function of the algorithm is depicted below in 

Fig 4.2: 
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      Fig 4.2   Encryption Function of LBlock 

  In each round, right half of 64 bit input text is passed through 8 bit shift 

left function, while other half is passed through F-function. These both bit blocks 

are then XORed to generate the left 32 bits output of round. While the right 32 

bits input goes unprocessed to form the right half of the round’s output. Round 

function F is described in Fig 4.3 

 

 

Fig 4.3  F-Function of LBlock 
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 In round function, 32 bit text is XORed with 32 bit round key. Then 

resultant 32 bit is processed through eight, 4x4 bit S-boxes; thus generating 

confusion. The output of each S-box is permutated in the form of 4-bit word to 

generate diffusion effects. Contents of Sboxs used in LBlock are given in Table 

4.2. Like other feistel schemes, the decryption function is similar to encryption 

function but operates in reverse order. 

Table 4.2 Contents of LBlock S-boxes 

Input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

s0 14 9 15 0 13 4 10 11 1 2 8 3 7 6 12 5 

s1 4 11 14 9 15 13 0 10 7 12 5 6 2 8 1 3 

s2 1 14 7 12 15 13 0 6 11 5 9 3 2 4 8 10 

s3 7 6 8 11 0 15 3 14 9 10 12 13 5 2 4 1 

s4 14 5 15 0 7 2 12 13 1 8 4 9 11 10 6 3 

s5 2 13 11 12 15 14 0 9 7 10 6 3 1 8 4 5 

s6 11 9 4 14 0 15 10 13 6 12 5 7 3 8 1 2 

s7 13 10 15 0 14 4 9 11 2 1 8 3 7 5 12 6 

s8 8 7 14 5 15 13 0 6 11 12 9 10 2 4 1 3 

s9 11 5 15 0 7 2 9 13 4 8 1 12 14 10 3 6 

4.2.2  Key Scheduling  

 Like traditional light ciphers, key scheduling of LBlock has been designed 

in a stream ciphers way. For strengthening cipher’s resistivity against algebraic 

attacks, two 4x4 S-boxes have also been added in each round of the key 

scheduling part. Overview of the key scheduling is described in Fig 4.4. 

Master Key K = 80 bits   → 32 bit round key Ki (for i=1, 2, 3… 32) 

Obtain 32 leftmost bits from master key and proceed as follow: 
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k79 k78 k77 … … k50 k49 k48 k47 k46 k45 … … … … k2 k1 k0 

 

Shift <<<< 29 

k50 k49 k48 k47 k46 k45 k44 k43 … k21 k20 k19 k18 k17 … … k52 k51 

 

               ↓S9                      ↓ S8          ↓ XOR[i]2 

k79 k78 k77 k76 k75 k74 k73 k72 … k50 k49 k48 k47 k46 … … k52 k51 

 

Fig 4.4 Key Scheduling of LBlock 

4.3     Results of Algebraic Equations for S Boxes 

 Step by step methodology for transforming LBlocks Sboxs into systems of 

quadratic equations has been adapted using the developed tool. LBlock have  08, 

4x4 S-boxes in encryption/decryption algorithm and 02, 4x4 S-boxes in key 

schedule. So in this case 37 monomials encompassing all I/O variables and their 

products are considered for formulating overdefined systems of equations that 

completely describes LBlock S-boxes. These includes; "1", "x0", "x1",  "x2", 

"x3", "y0", "y1", "y2", "y3", "x0y0", "x0y1", "x0y2", "x0y3", "x1y0", "x1y1", 

"x1y2", "x1y3", "x2y0", "x2y1", "x2y2", "x2y3", "x3y0", "x3y1", "x3y2", "x3y3", 

"x0x1",  "x0x2", "x0x3", "x1x2", "x1x3", "x2x3", "y0y1", "y0y2", "y0y3", "y1y2", 

"y1y3", "y2y3". Then following the procedure as outlined in previous chapter, 21 

equations for each S-box have been obtained. Equations for S0 of LBlock are 

appended below, while equations systems for remaining 09 S-boxes are placed at 

Appendix B. 

 

y2y3 + y1y3 + x2y3 =0 

y1y3 + y1y2 + x2y1=0 

y1y2 + x3y1 + x2y1 + y1=0 

y0y3 + x3y0 + y0=0 
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y0y2 + x2y2 + x1y2 + x0y2=0 

y0y1 + x0x3 + x3y1 + x1y0=0 

x2x3 + x1x2 + x2y1=0 

x1x3 + x3y3 + x0y3 + x0y0=0 

x1x2 + x3y2 + x2y1=0 

x0x3 + x3y1 + x3y0 + x2y0 + x1y0 + x0y0 + y0=0 

x0x2 + x3y2 + x2y1 + x2y0 + x2=0 

x0x1 + x3y2 + x2y1 + x2y0 + x1y3 + x0y2 + x2 + x1=0 

x3y3 + x3y1 + x2y0 + x1y0 + x0y3 + y0 + x3=0 

x3y2 + x3y1 + x2y1 + x2y0 + x1y3 + x1y2 + x1y0 + x0y3 + y0 + x3=0 

x3y1 + y2 + y1 + x2=0 

x3y0 + x2y3 + x2y2 + x2y0 + x1y3 + x1y2 + x1y1 + x1y0 + x0y3 + x0y0 + y2 + 

y1 + x3=0 

x2y3 + x1y3 + x1y2 + x1y0 + x0y3 + x0y1 + y0 + x3=0 

x2y2 + x2y0 + x1y2 + x1y0 + x0y3 + x0y2 + x0y0=0 

x2y1 + x2y0 + x1y3 + x1y2 + x1y0 + x0y3 + y2 + y1 + x1 + x0=0 

x2y0 + x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y2 + y0 + x3=0 

x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y2 + y1 + y0 + x0 + 

1=0 

 Summary of all S-boxes equations derived over LBlock is appended below 

in table 4.3:  

   

Table 4.3 Summary of LBlock Sbox Equations - Degree of Monomials 

S-box in Encryption/Decryption Algorithm  

S-box No of 

Equations 

1
st
 Degree Monomials 2

nd
 Degree Monomials Constants 

S0 21 31 103 1 

S1 21 38 85 4 

S2 21 45 88 5 

S3 21 37 88 3 

S4 21 41 83 2 

S5 21 41 80 5 

S6 21 44 71 1 

S7 21 33 98 1 
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Total 168 310 696 22 

S-box in Key Scheduling  

S8 21 32 85 1 

S9 21 29 95 1 

Total 42 61 180 2 

 

 All equations have been duly verified for all I/O variable of pertinent S-

box using f(x0, x1, x2, x3, y0, y1, y2, y3) function  in Maple for all xi,j. Statistical 

analyses of individual S-box equations for all LBlock S-boxes are placed 

Appendix C. While statistical analysis of individual S-box equations with respect 

to I/O variables is placed at Table 4.4.  

Table 4.4 Statistical Analysis of S-box Equations – I/O Degree of Variables 

 

SBOX0 SBOX1 SBOX2 SBOX3 

 

Variable Count Percent 

y0 36 15.13% 

x1 32 13.45% 

x0 29 12.18% 

x2 29 12.18% 

y2 29 12.18% 

y1 28 11.76% 

y3 25 10.50% 

x3 19 7.98% 

1 1 0.42% 
 

 

Variable Count Percent 

x0 34 16.04% 

y1 31 14.62% 

x2 28 13.21% 

y0 25 11.79% 

y2 24 11.32% 

x1 20 9.43% 

x3 20 9.43% 

y3 17 8.02% 

1 4 1.89% 
 

 

Variable Count Percent 

x2 33 14.60% 

x0 31 13.72% 

y3 31 13.72% 

y1 28 12.39% 

x3 27 11.95% 

y0 26 11.50% 

y2 20 8.85% 

x1 15 6.64% 

1 5 2.21% 
 

 

Variable Count Percent 

y2 31 14.35% 

x0 28 12.96% 

x2 28 12.96% 

y0 28 12.96% 

x1 24 11.11% 

x3 24 11.11% 

y1 18 8.33% 

y3 18 8.33% 

1 3 1.39% 
 

SBOX4 SBOX5 SBOX6 SBOX7 

 

Variable Count Percent 

x0 34 16.27% 

y2 27 12.92% 

y1 26 12.44% 

x3 25 11.96% 

y0 24 11.48% 

x1 23 11.00% 

x2 19 9.09% 

y3 19 9.09% 

1 2 0.96% 
 

 

Variable Count Percent 

x0 29 14.08% 

y0 29 14.08% 

y2 29 14.08% 

x2 28 13.59% 

x3 21 10.19% 

y1 21 10.19% 

x1 17 8.25% 

y3 17 8.25% 

1 5 2.43% 
 

 

Variable Count Percent 

x0 29 15.51% 

y0 29 15.51% 

x3 25 13.37% 

y1 22 11.76% 

x2 21 11.23% 

y2 19 10.16% 

x1 15 8.02% 

y3 15 8.02% 

1 1 0.53% 
 

 

Variable Count Percent 

y1 36 14.88% 

x1 32 13.22% 

x0 31 12.81% 

y0 29 11.98% 

x2 28 11.57% 

y2 26 10.74% 

y3 25 10.33% 

x3 23 9.50% 

1 1 0.41% 
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SBOX8 SBOX9 

 

Variable Count Percent 

x0 35 17.07% 

y1 30 14.63% 

x2 27 13.17% 

y0 25 12.20% 

x1 21 10.24% 

y3 21 10.24% 

x3 18 8.78% 

y2 17 8.29% 

1 3 1.46% 
 

 

Variable Count Percent 

x2 30 13.64% 

x1 29 13.18% 

y1 29 13.18% 

y2 28 12.73% 

y0 26 11.82% 

y3 25 11.36% 

x0 24 10.91% 

x3 18 8.18% 

1 1 0.45% 
 

 

4.3.1 Some Findings on LBlock S-Box Equation 

 Each S-box of LBlock can be completely defined in terms of 21 MQ 

system of equations. Since each S-box has 4 I/O variables, so 21 equations in 

terms of 8 variables are obtained which is an overdefined system. To reduce the 

complexity of attack, one may choose simpler set of equations among these 21 

systems of equations. 

 Based on statistical analysis of individual S-box equations with respect to 

I/O variables as presented in table 4.4, it is evident that at least one input of S-box 

occurs with more number than others, so if these can be determined through CP or 

any other technique, then the complexity of the overall systems of equation over 

LBlock and associated algebraic attack can considerably reduce. 

4.4  Constructing Equations Systems over Complete LBlock  

As discussed in the previous chapter and based on [13, 37], equations 

systems over individual components; separately for cipher and key scheduling 

part, are combined to form the systems of equations that completely describe the 

ciphers. Complexity of the overall systems of equations that complexly describes 
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the 32 round LBlock over GF(2) is at table 4.5, while contribution of each 

individual component has been described in following subsections.  

4.4.1 Equations Systems over LBlock Encryption/Decryption 

Algorithm 

 These include variables, nonlinear equations, and linear equations over the 

encryption/decryption algorithm of LBlock. Variables for the encryption 

algorithm are chosen to be the input/output of the S-boxes in each round to make 

the system of equations sparse while keeping them in degree 2 despite increase in 

number of rounds.  Only nonlinear components in LBlock cipher algorithm are S-

boxes. LBlock uses 8 S-boxes, each having 4 bit I/O, therefore, 32*8*8=2048 

variables over complete 32 rounds of LBlock encryption/decryption algorithm are 

contributed by the substitution layer.   

 Moreover, 21 MQ systems completely define each LBlock S-box. So in 

totality, substitution layer in cipher algorithm contributes 8*8*32=5376 equations 

with 310*32=9920 1
st
 degree monomials, 699*32=22,368 2

nd
 degree monomials 

and 22*32=704 constant monomials. Similarly the each linear layer of key XOR 

prior substitution layer and plaintext XOR after substation layer contributes 32 

linear equations with 64 first degree monomials or constants. So they add 

2*32*32= 2048 equations with 2*2048=4096 1
st
 degree including constant 

monomials. Shift left function prior XOR and permutation layer after substitution 

don’t add any additional equations, since they are adjusted through simple re-

ordering.  

 Coming over the key scheduling part, only nonlinear component in 

LBlock key scheduling is substitution layer encompassing two 4 I/O bit S-boxes. 

Variables in the key scheduling part are 80 bit input key and 8 variables per S-box, 
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so overall key scheduling adds 80+(8*2*32)=580 variables into LBlock equations 

system. Nonlinear equations are also generated by S-boxes, so they contribute 

21*2*32=1344 MQ equations, with 32*21=672 1
st
 degree monomials, 

180*32=5760 2
nd

 monomials and 32*2=64 constant terms. Linear part of cyclic 

shift left and right in the key scheduling don’t add any additional equations since 

they are adjusted through simple re-ordering of the bits, moreover, only linear 

layer that adds linear equations is XOR with round number. Therefore, it’s 

contribution towards overall system is 32*5=160 equations with 160*2=320 1
st
 

degree monomials.  

Table 4.5 Systems of Equations for LBlock over GF (2) 

 

 

 

 

Cipher 

Variables 2048 

Non-linear Layer Equations 5376 

1st Degree Monomials 9920 

2nd Degree Monomials 22,368 

Constants Terms 704 

Linear Layer Equations 2048 

1st degree Monomials 4068 

Constant Terms 32 

 

 

 

Key Scheduling 

Variables 580 

Non-linear Layer Equations 1344 

1st Degree Monomials 672 

2nd Degree Monomials 5760 

Constants Terms 64 

Linear Layer Equations 160 

1st degree Monomials 320 

 

 

MQ System for 

Complete LBlock 

Variables 2628 

Equations 8928 

Monomials (Terms) 43,908 

2nd Degree Monomials 28,128 

1st Degree Including Constants 15,780 
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4.5 Complexity of XSL Attack over LBlock  

 According to [44], estimated complexity of XSL attack can be calculated 

against any block cipher. Thus, in case of LBlock estimated Work Factor (W.F) 

for complexity of XSL attack with block size of 64 bit, key size 80 bit, no of 

rounds 32, no of equations per S-box 21 with 37 variables shall be as follows: 

Γ = (37/4) ⌈
37/21⌉  =  85.56   2

6 

W.F   (2
6
)
2.37 

[(64). (32)
 2
]

2.37 ⌈37/21⌉ 

       = 2 
14.22

[(2
6
). (2 

5
)
 2
]

2.37. 2 

           = 2 
14.22

[2
16

]
4.74 

       = 2 
90 

Which indicates that the complexity of XSL attack is much higher than the 

exhaustive search of 2
80 

operations. Based on this fact, it can be concluded that 

LBlock is pretty secure against XSL attack. 

4.6 Conclusion  

 In this chapter, each S-box of LBlock has been completely described in 

system comprising 21 MQ equations. Then, algebraic representation of complete 

32 rounds of LBlock in terms of 2628 variables, 8928 equations and 43,908 terms 

has been presented. Since the best known algebraic attack against block cipher is 

against 6 round DES [4] through solving systems involving 2900 variables, 3030 

equations in 4331 monomials, therefore, LBlock system is more complex than 

reduced round DES. Consequently, it can be concluded that practical algebraic 

attack against LBlock is infeasible. Moreover, even if XSL attack works as 

claimed [44], LBlock is adequately secure against it. 
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C h a p t e r  5  

Algebraic Representation and Analysis of Scalable 

Encryption Algorithm  

5.1 Introduction 

In this chapter, algebraic representation and analysis of feistel structure 

based light weight Scalable Encryption Algorithm (SEA) has been presented. The 

chapter has been organized into 5 sections. Section 5.2 presents structure of SEA. 

Section 5.3 contains results and analysis of equations derived over Substitution 

layer of SEA. Section 5.4 presents algebraic representation and analysis of two 

variants of SEA over GF (2). Section 5.5 calculates and analyses the resistivity of 

SEA against XSL attack. In the end, section 5.6 concludes the chapter.  

5.2 Scalable Encryption Algorithm for Resource Constrained 

Applications  

 Scalable Encryption Algorithm (SEA n, b) is a light weight block cipher 

based on feistel structure that was proposed in [15] for extremely resource 

constrained applications.  Its design was sponsored by National Scientific 

Research, Belgium.  Generally, the design of light weight ciphers are driven by 

the three basic factors; cost, security and performance.  However, this traditional 

approach has not been followed for designing SEA. Instead, the core focused was 

on the kind of targeted applications that have extremely limited processing 

resources and subsequently very low throughput requirements. The important 

feature of this design is that it has exclusively been designed for implementation 
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on those kind of processors that have very limited instructional set; i.e. XOR, OR 

and AND gates, bit/word rotation and modular addition etc. Another interesting 

feature of its design is that SEA has very flexible text, key as well as processor 

size. Therefore, all these parameter can be chosen to suit the requisite demand of 

application.  

 Although, it can be implemented on any platform with flexible processor 

size, but its implementation on 8-bit microcontroller makes SEA a very strong 

candidate and popular choice for tiny implementation with extremely low 

computational power coupled with low throughput requirements. Moreover, 

recently, its FPGA implementation [31, 32], performance improvement in terms 

of implementation [33], low energy implementation [34] for light weight 

embedded applications has also been published. SEA has been extensively 

analyzed by the designers with respect to linear and differential cryptanalysis, 

truncated differential and square attacks [15], however, its algebraic 

representation and analysis is yet to be undertaken. General Specifications of SEA 

are enlisted in Table 5.1: 

Table 5.1 General Specifications of SEA 

Plain Text, Block Size and  

Key Size (n) 

Flexible  

(The only limitation is that it has to be 

multiple of 6b ) 

Processor Size or Word Size (b) Processor size can be any, like 8 bit. 

Number of rounds (nr) Flexible but odd (3n/4 +2)*  ⌊nb+b/2⌋  

Structure Feistel 

Number of words per feistel 

branch (nb) 

 n / 2b  

Non-linear components 3x3 S-boxes operating in parallel; both 

in key scheduling and encryption 
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algorithm 

Linear components Bit wise XOR operation 

Bit rotation (r) 

Word rotation (R and R
-1

)  

Modular addition (mod 2
b
)
 

 

5.2.1  Structure of SEA Encryption/Decryption Algorithm 

 Design of SEA is based on feistel structure. Like any typical feistel 

structure based cipher, only half of the block size is processed in each round. 

Moreover, to facilitate economical and easy implementation, it uses simple 

mathematical operation of 3 bit substitution, operating in parallel on input data to 

provide confusion, word rotation R, inverse word rotation R
-1

, and bit rotation r to 

provide diffusion. Another operation used is mod 2
b
 addition of round key and 

half of input data block. This improves diffusion as well nonlinearity while 

safeguarding the cipher against different sorts of structural attacks [15]. The 

structure of encryption/decryption algorithm is described in Fig 5.1.
 

 

Fig 5.1 Encryption/Decryption Algorithm of SEA 

The contents of 3 x 3 Box used in SEA are also delineated in table 5.2.  
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Table 5.2 Contents of S-box in SEA 

Input Output 

0 0 

1 5 

2 6 

3 7 

4 4 

5 3 

6 1 

7 2 

 

5.2.2  Structure of SEA Key Scheduling Algorithm 

 Like the encryption/decryption algorithm, SEA follows similar feistel 

structure for the key scheduling part as well. Key scheduling uses, 3x3 S-boxes in 

parallel, word rotation R, bit rotation r and modular addition mod 2
b
 with Ci, 

Where Ci is an nb word vector having all zeros bits except Least Significant Word 

(LSW); whose values is updated as per the number of round. Overall structure of 

key scheduling algorithm is depicted below in fig 5.2: 

 

Fig 5.2 Key Scheduling Algorithm of SEA 
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5.3     Results of Algebraic Equations for S Box 

 SEA uses substation layer consisting of 3x3 S-box, operating in parallel 

with exact number of S-boxes depending upon the block size of data chosen. 

Since the S-box has 3 I/O variables, so using the developed tool, monomials 

encompassing I/O variables and their all possible combinations are used to 

generate overdefined systems of equations. Precisely, these are "1", "x0", "x1", 

"x2", "y0", "y1", "y2", "x0y0", "x0y1", "x0y2", "x1y0", "x1y1", "x1y2", "x2y0", 

"x2y1", "x2y2", "x0x1", "x0x2", "x1x2", "y0y1", "y0y2", "y1y2".  After following 

the step by step procedure, following 14 quadratic systems of equations for SEA 

S-box are obtained: 

y1y2+x1y2=0 

y0y2+x0y2=0 

y0y1+x0x2+x0x1=0 

x1x2+x0x2+x2y0=0 

x0x2+x2y1=0 

x0x1+x2y1+x2y0+x1y0=0 

x2y2+x1y0+x0y1+x2=0 

x2y1+x1y2+y1=0 

x2y0+x0y1+x2=0 

x1y2+x0y2+y1+x0=0 

x1y1+x1y0+x0y1+y1+y0+x0=0 

x1y0+x0y2+x0y1+x0y0+y0+x0=0 

x0y2+y1+y0+x1=0 

x0y1+x0y0+y2+y1+y0+x2+x0=0 

  

All these equations have been verified for all I/O of the SEA S-box.  Statistical 

analysis of SEA S-box equations With Respect To (WRT) individual monomials 

and I/O variable is appended below in table 5.3. 
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Table 5.3 Statistical Analysis of SEA S-box 

W.T.T Individual Monomial 

Monomials Count Percent 

y1 5 9.43% 

x0y1 5 9.43% 

x0 4 7.55% 

x0y2 4 7.55% 

y0 4 7.55% 

x1y0 4 7.55% 

x0x2 3 5.66% 

x2y1 3 5.66% 

x1y2 3 5.66% 

x2y0 3 5.66% 

x2 3 5.66% 

x0x1 2 3.77% 

x0y0 2 3.77% 

x1y1 1 1.89% 

x1x2 1 1.89% 

x2y2 1 1.89% 

x1 1 1.89% 

y0y1 1 1.89% 

y0y2 1 1.89% 

y1y2 1 1.89% 

y2 1 1.89% 

W.R.T  I/O Variables 

 

Summary of Monomials 

 

 

 

 

 

word count percent 

x0 19 21.59% 

y1 15 17.05% 

y0 14 15.91% 

x1 11 12.50% 

x2 11 12.50% 

y2 11 12.50% 

No of 

Equations 
14 

1
st
 Degree  18 

2
nd

 Degree 35 

 

5.3.1 Some Findings over SEA S-box Equations 

 14 systems of equations in 6 variables have been formulated for SEA S-

box, which is an overdefined system of equations. However, simpler and fewer 

systems of equations from the set of 14 equations can be chosen for SEA S-box to 

reduce the overall complexity of attack. Moreover, from statistical analysis of I/O 

variables it is evident that first input to the S-box comes in very higher number in 
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the resultant systems of equations, so if this first bit of each s-box can be 

determined through some means than the overall systems of equations can  

become very simplified and sparse, thus drastically reducing the attack 

complexity.  

5.4  Equations Systems over Complete Cipher  

 First equations systems over SEA48,8 for 33 rounds have been constructed. 

That means that it has a key, PT and CT 48 bit, eight 3x3 s-boxes in main cipher 

algorithm and key schedule. First the variables and equations over cipher 

algorithm are described.  In this case, variables are input/output of each S-boxes 

which means 6*8*33=1584. Each s-box has been completely described into 14 

systems of equations over 6 unknown. Therefore, contribution of substitution 

layer toward overall system of equations is 14*8*33=3696 equations, having 

18*8*33=4752 1st degree monomials and 35*8*33=9240 second degree 

monomials. The linear layer of word rotation, inverse word rotation and bit 

rotation doesn’t add any additional equations since they are described through 

simple re-ordering of bits and words. Therefore, contribution of linear layer 

addition mod 2
b  

prior the substitution layer and XOR after the substation layer 

gives 48*33=1584 linear equations in 1584*2=3168 linear terms.  

 In key scheduling, SEA48,8 also have 8 S-boxes each having 3x3 I/O 

variables. Thus contribution of SEA48,8 key scheduling algorithm in terms of 

variables is I/O of S-boxes plus the input key variables. These came out to be 

(6*8*33) + 48=1632. Again the nonlinear component in key scheduling are S-

boxes and their contribution to the systems of equations is 14*8*33=3696 in 

18*8*33=4752 1st degree and 35*8*33=9240 second degree monomials. Linear 

layer of bit rotation and word rotation don’t contribute to the overall system of 
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equations since they are adjusted by re-ordering the respective bits and words. 

The only nonlinear layer that contributes to the overall system of equations is 

XOR after and mod 2
b
 addition prior the substation layer. Their contribution is 

33*48=1548 equations in 3168 terms. Similarly, the equations systems for 

SEA96,8 over 33 rounds have also been constructed, summary of  the same is 

given below in table 5.4. 

Table 5.4 Systems of Equations for SEA over GF (2) 

        SEA Version    SEA 48,8            SEA 96,8 

 

 

 

 

Cipher 

Variables 1584 3168 

Non-linear Layer 

Equations 

3696 7392 

1
st
 Degree Monomials 4752 9504 

2
nd

 Degree Monomials 9240 18,480 

Linear Layer Equations 1584 3168 

1
st
 degree Monomials 3168 6336 

 

 

 

Key 

Scheduling 

Variables 1632 3264 

Non-linear Layer 

Equations 

3696 7392 

1
st
 Degree Monomials 4752 9504 

2
nd

 Degree Monomials 9240 18480 

Linear Layer Equations 1584 3168 

1
st
 degree Monomials 3168 6336 

 

 

MQ System 

for Complete 

SEA 

Variables 3216 6432 

Equations 10,560 21,120 

Monomials (Terms) 34,320 68,568 

2
nd 

Degree Monomials 18,480 36,960 

1
st 

Degree  Constants 15,840 31,608 
 

5.5 Complexity of XSL Attack over SEA  

 According to [44], estimated W.F. for complexity of XSL attack can be 

calculated against any block cipher. Thus, in case of SEA48,8 estimated W.F. for 
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complexity of XSL attack with block and key size of 48 bit, No. of rounds 33, No. 

of equations per S-box 14 with 22 initial variables shall be as follows: 

Γ = (22/3) ⌈
22/14⌉  =  53.88   2

6 

W.F   (2
6
)
2.37 

[(48). (33)
 2
]

2.37  ⌈ 22/14⌉ 

       = 2 
14.22

[(2
5
). (2 

5
)
 2
]

2.37. 2 

           = 2 
14.22

[2
15

]
4.74 

       = 2 
85.2 

 Which indicates that the complexity of XSL attack is much higher than the 

exhaustive search of 2
48 

operations. Similarly for SEA96,8, the estimated 

complexity of XSL attack comes out to be around 2
94.8   

, which is again not very 

less than the exhaustive search of than 2
96

 operations. So, it can be concluded that 

SEA withstand the resistivity against XSL attack. 
 

5.6 Conclusion  

 In this chapter, the equations systems for SEA S-box have been 

formulated. Then using individual linear and nonlinear component’s equations,  

algebraic representations of 33 rounds of SEA48,8 has been presented in terms of 

10, 560 equations in 3216 variables with 34,320 terms. Moreover, algebraic 

representation of SEA96,8 terms of 6432 variables, 21,120 equations and 68, 568 

monomials has also been presented. Since the best known attack against block 

cipher is on 6 round DES [4] through solving systems involving 2900 variables, 

3030 equations in 4331 monomials, therefore, both variant of SEA are adequately 

resistant algebraic attacks in feasible time. Moreover, if XSL attack works as 

claimed [44], SEA is adequately secure against it. 
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C h a p t e r  6  

5 AIDA/CUBE Attack and Algebraic Attack  

6.1 Introduction 

 Among various academic objectives targeted for this research work, one 

objective is to undertake feasibility study, in light of published literature, about 

the applicability of cube attack in comparison of algebraic attack on feistel 

structure based light weight block ciphers. Same has been described in this 

chapter. Chapter 6 has been divided into 3 sections. Section 6.2 contains basic 

concept of cube attack with reference to block ciphers. Section 6.3 presents 

feasibility about applicability of cube attack along with algebraic attack on light 

weight block ciphers in view of published literature.  Section 6.4 concludes the 

chapter. 

6.2  Cube Attack  

 Cube Attack is new type of cryptanalytic technique introduced in [57] by 

Adi Shamir and Dinur that treats cipher as a black box. Ciphers whose output bit 

(cipher text bits) can be represented in terms of key and input bits (plaintext /IV) 

with very low degree polynomial over GF(2) are extremely vulnerable against this 

cryptanalytic attack. This attack has two phases; namely, preprocessing and an 

online phase. Prior discussing the core concept behind cube attack, following 

definitions have been taken from [57, 58, 59].  

6.2.1 Definition 6.1 

Suppose some polynomial  (       ) and a set of indices   (     ) to 

any variables of  . Consider    be a subterm of   which is the product of the 

variables indexed by   . Thus, factorizing   by    gives following: 
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 (       )       ( )   (       )   (6.1) 

In equation 6.1,    ( ) is called superpoly of   in  , and   is called the linear 

combination of all terms which do not contain   . 

6.2.2 Definition 6.2 

 Term    is called maxterm with an associated superpoly   ( )  such 

that     (  ( ))   , therefore, the superpoly of   in   is a non-constant linear 

polynomial. 

 In light of abovementioned definitions, theoretical concept behind cube 

attack is explained with the help of prototype cipher example in this section. 

6.2.3 The Preprocessing Phase   

In order to describe basic concept of the cube attack, a prototype cipher is 

considered with a master polynomial   of degree   , having three private 

variables or key bits (        ) and three public variables or plaintext /IV bits 

(        ) in the ANF form. 

 (                 )                                     

                                                       

                      (6.2) 

Simply, re-arranging the variables in Equation 6.2, following equation can 

be obtained: 

 (                 )      (       )      (        )      (   

  )                                                 

              (6.3) 

Equation 6.1 can be re-interpreted as shown in Table 6.1. 
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Table 6.1 Master Polynomial   Expressed as Cube Equation 

       ( )   

(   )                           
            
          
           
      

(   )               

(   )            
 

If the master polynomial is evaluated over all possible values of   and    

i.e. cube index (1, 2), following derived polynomials are obtained: 

 (               )                                       

                    (6.4) 

 (               )                                       

          (6.5) 

 (               )                                       

                  (6.6) 

 (               )                                     

                                (6.7) 

Summing up above derived polynomials, a linear relation         ; in 

terms of the secret variables is obtained.   

Similarly, all possible values of   and    (cube index 1, 3), generates four 

derived polynomials [57, 58, 59]. Summation of these derived polynomials results 

in a linear relationship of secret variables i.e.            Furthermore, all 

possible values of   and    (cube index 2, 3), also gives four derived polynomials, 

and addition of these derived polynomials gives       as an output.  
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6.3 The Online Phase  

 Linear expression obtained from the pre-processing phase can be converted 

into set of linearly independent equations. Therefore, resultant systems of 

equations can be solved to determine the unknown key (        ). In order to 

find out the right hand side of equations obtained from pre-processing phase, 

cipher is run in online phase with the same process of formulating the equations 

i.e. same set of public variables and either 0/1 of the unknown key.  If master 

polynomial is tweaked with cube index(   ) while keeping     , the four 0/1 

values of the derived polynomials are obtained. Addition of these four values 

gives the right hand side of the respective equations. Similarly, the online process 

is repeated for the cube indexes (1, 3) and (2, 3). Consequently, following system 

of linear equations for unknown key bits is obtained: 

              (6.8) 

               (6.9) 

             (6.10) 

Now, it is very easy to solve above systems of equations to determine the 

unknown key bits. So in this case, recovered key bits are 1, 0 and 1.  

6.3    Combining Cube and Algebraic Attacks on Light Weight 

Block Ciphers 

 Both algebraic and cube attacks are based on entirely different concept. So 

applicability through simple amalgamation on any block cipher seems infeasible. 

Nonetheless, if both are independently applied on any block cipher, resultant 

complexity though is the addition of individual complexity, but can be much 

lower than the individual attack complexity as shown in [59] and explained in this 

section.  
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 The major drawback with the algebraic attack is that they are slower on a 

large number of rounds. While in case of cube attack, maxterm becomes of very 

large degree with the increase in number of rounds.  Thus finding a linear super 

polynomial becomes very difficult. Nonetheless, if fewer linear super polynomials 

are found, so in that case corresponding key bits can easily be recovered. This can 

help in reducing the complexity of standard algebraic attack.  Same concept has 

been applied against cryptanalysis of KATAN family of light weight block cipher 

in [58]. It was shown that using 3-bit condition on key bits for 71 round of 

KATAN32, complexity of cube attack alone is 2
29.58

. While the complexity of 

standard algebraic attack is 2 
66.60

.
 
However, if cube attacks find the 3 bit key, this 

reduces the complexity of algebraic attacks to 2
63.60

. Because in that case the 

number of key bits required to be guessed reduce from 35 to 32. However, this 

needs to tested against other ciphers as well, since no results about applicability of 

combining algebraic with cube attack on any other cipher has been published in 

the literature. 

6.4  Conclusion 

 In this chapter, theoretical concept of cube attack has been discussed. 

Later on in light of published literature, it has been described that though both 

attacks have different modus operandi, but still combinational approach can help 

in reducing the overall complexity. Although results of cube attack are not very 

encouraging against larger number of rounds for block cipher, still they can be 

helpful in recovering few key bits. This can reduce the complexity of standard 

algebraic attack since it entails guessing less number of bits; that has been 

determined through cube attack. Nonetheless, resultant complexity shall be the 

summation of individual complexities of both the attacks.    
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C h a p t e r 7  

Conclusion and Future Work 

7.1 Introduction 

 In this chapter, thesis has been concluded. Chapter has been organized 

into 4 sections. Section 7.2 presents an overview of research. Section 7.3 contains 

some achievements that have accrued as an outcome of this work. Section 7.4 

indicates some directions and recommendations for future work.  Section 7.5 

concludes the chapter. 

7.2 Overview of the Research  

 Since the advent of light weight block ciphers, many cryptanalytic 

techniques have been taken into account with an aim to analyze the cipher 

resistivity and improve their design. Since feistel structure based light weight 

block ciphers don’t have any particular algebraic structure, therefore, considerable 

research regarding their algebraic representation has not been undertaken in the 

past. This research has been focused on algebraic representation and analysis of 

feistel structure based light weight schemes, that don’t have any particular 

algebraic structure. In the beginning, a comprehensive literature review regarding 

light weight block cipher and algebraic cryptanalysis has been presented with 

special emphasis on methodological application of algebraic cryptanalytic 

technique against block ciphers.  Later on overview of various tools and 

techniques used in algebraic cryptanalysis with respect to block cipher have been 

elaborated. Then a step by step methodology for formulating system of equations 

for any S-box has been described and a software tool has been developed that can 
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formulate systems of equations for any lower order S-box. After formulating the 

system of equation describing individual components of cipher, algebraic 

representation and analysis of LBlock and two version of SEA has been given.  

7.3   Achievements 

 During this research work, a systematic methodology for formulating 

algebraic representation of any S-box has been described. Then based on it a 

software tool has been developed in C-sharp and Maple, that researchers can use 

for algebraic representation of any lower order S-box for not only cryptanalysis 

purposes of other block ciphers but also for S-box design . Coding has been done 

in a modular way to facilitate its extension for any higher order s-box very easily. 

We have shown the developed tools give simpler and sparse system then the 

previously published results. Using same tool, algebraic representation of 

complete LBlock in terms of 2628 variables, 8928 equations and 43,908 

monomials,  33 rounds of SEA48,8 in terms of 3216 variables,  10,560 equations in 

34,320 monomials and SEA 96,8 in terms of 6432 variables, 21,120 equations and 

68, 568 monomials have been given. It has been shown that all these ciphers are 

adequately secure as for practical algebraic attacks are concerned. Resistivity of 

LBlock and SEA against XSL attack has also been calculated with theoretical 

work factor more than the exhaustive search. 

7.4 Future Work  

 Using the developed system of equations for LBlock and SEA, practical 

attack against reduced round can be a good contribution. Based on statistical 

analysis of individual S-box equations for LBlock and SEA, we have shown that 

if one input of s-box can be guessed somehow, the resultant system of equations 
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can become very simple. This can be further exploited.  Moreover, using 

developed tool for algebraic representation of S-boxes, researcher can analyze any 

other block cipher resistivity, as well.  

7.5    Conclusion 

 In this chapter, overview of research methodology has been described. 

Then few achievements acquired through this work have been listed. The chapter 

has been concluded with few directions for future research work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

Appendix A 

Output Combination for 3x3 Sbox with XOR Sum Zero 

Two Combinations for which XOR is zero: 

------------------------------------------------------------ 

 

Three Combinations for which XOR is zero: 

------------------------------------------------------------ 

x2y0 + x1y1 + x1y0 

x2y1 + x0y0 + y1 

x1y2 + x0y1 + x0 

x2y2 + y1 + x0 

 

Four Combinations for which XOR is zero: 

------------------------------------------------------------ 

x1y2 + x1y1 + x0y2 + x0y0 

x2y2 + x1y2 + x0y1 + y1 

x2y2 + x1y0 + y2 + y0 

x2y1 + x2y0 + x1y2 + x2 

x1y0 + x0y2 + y1 + x2 

x2y2 + x2y1 + x0y0 + x0 

 

Five Combinations for which XOR is zero: 

------------------------------------------------------------ 

x2y2 + x2y1 + x1y1 + x0y2 + x0y1 

x2y0 + x1y2 + x1y0 + x0y2 + x0y0 

x2y2 + x2y1 + x1y2 + x0y1 + x0y0 

x2y1 + x1y2 + x1y1 + x0y2 + y1 

x2y2 + x2y0 + x1y1 + y2 + y0 

x2y1 + x1y2 + x1y1 + x1y0 + x2 

x2y1 + x1y0 + x0y2 + x0y0 + x2 

x2y2 + x2y0 + x0y1 + x0y0 + x2 

x2y0 + x1y1 + x0y2 + y1 + x2 
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x2y0 + x1y2 + x0y0 + y1 + x2 

x1y1 + x0y2 + x0y1 + x0y0 + x0 

x1y0 + y2 + y1 + y0 + x0 

x2y2 + x1y0 + x0y2 + x2 + x0 

x2y1 + x2y0 + x0y1 + x2 + x0 

x0y2 + y2 + y0 + x2 + x0 

x2y2 + x2y1 + y2 + x1 + 1 

x2y1 + x1y0 + y0 + x1 + 1 

x0y0 + y2 + x1 + x0 + 1 

 

Six Combinations for which XOR is zero: 

------------------------------------------------------------ 

x2y2 + x2y1 + x2y0 + x1y0 + x0y2 + x0y1 

x2y1 + x2y0 + x1y2 + x1y0 + x0y2 + y1 

x2y1 + x2y0 + x1y1 + x1y0 + x0y0 + y1 

x2y2 + x1y1 + x0y2 + x0y1 + x0y0 + y1 

x2y1 + x2y0 + x0y2 + x0y1 + y2 + y0 

x1y2 + x1y0 + x0y1 + y2 + y1 + y0 

x2y2 + x1y2 + x1y0 + x0y2 + x0y1 + x2 

x2y1 + x2y0 + x1y1 + x0y2 + x0y0 + x2 

x2y2 + x1y1 + x1y0 + x0y1 + x0y0 + x2 

x2y2 + x2y1 + x2y0 + x0y1 + y1 + x2 

x1y2 + x1y1 + x1y0 + x0y0 + y1 + x2 

x1y2 + x0y2 + x0y1 + y2 + y0 + x2 

x1y1 + x0y1 + x0y0 + y2 + y0 + x2 

x2y2 + x0y2 + y2 + y1 + y0 + x2 

x2y2 + x2y1 + x1y2 + x1y1 + x0y2 + x0 

x2y0 + x1y2 + x1y1 + x1y0 + x0y1 + x0 

x2y0 + x1y0 + x0y2 + x0y1 + x0y0 + x0 

x2y2 + x2y0 + x1y1 + x1y0 + y1 + x0 

x2y1 + x1y1 + x0y2 + x0y1 + y1 + x0 

x2y1 + x1y2 + x0y1 + x0y0 + y1 + x0 

x2y1 + x1y0 + x0y0 + y2 + y0 + x0 

x2y0 + x1y1 + y2 + y1 + y0 + x0 



61 

x2y2 + x2y0 + x1y1 + x0y2 + x2 + x0 

x2y1 + x1y1 + x1y0 + x0y1 + x2 + x0 

x2y2 + x2y0 + x1y2 + x0y0 + x2 + x0 

x2y0 + x0y1 + x0y0 + y1 + x2 + x0 

x1y1 + x0y2 + x0y1 + y2 + x1 + 1 

x1y2 + x0y1 + x0y0 + y2 + x1 + 1 

x2y2 + x0y0 + y2 + y1 + x1 + 1 

x2y1 + x2y0 + x1y1 + y0 + x1 + 1 

x1y0 + x0y0 + y1 + y0 + x1 + 1 

x1y2 + x1y1 + y0 + x2 + x1 + 1 

x0y2 + x0y0 + y0 + x2 + x1 + 1 

x2y1 + y2 + y1 + x1 + x0 + 1 

 

Seven Combinations for which XOR is zero: 

------------------------------------------------------------ 

x2y2 + x2y0 + x1y2 + x1y1 + x1y0 + x0y1 + y1 

x2y2 + x2y0 + x1y0 + x0y2 + x0y1 + x0y0 + y1 

x2y1 + x1y1 + x1y0 + x0y2 + x0y1 + y2 + y0 

x2y2 + x2y0 + x1y2 + x0y2 + x0y0 + y2 + y0 

x2y1 + x1y2 + x1y0 + x0y1 + x0y0 + y2 + y0 

x2y0 + x1y2 + x1y1 + x0y1 + y2 + y1 + y0 

x2y2 + x2y1 + x1y0 + x0y0 + y2 + y1 + y0 

x2y0 + x0y2 + x0y1 + x0y0 + y2 + y1 + y0 

x2y2 + x2y0 + x1y2 + x1y1 + x0y2 + x0y1 + x2 

x2y2 + x2y1 + x1y1 + x1y0 + x0y1 + y1 + x2 

x2y2 + x2y1 + x1y2 + x1y1 + y2 + y0 + x2 

x2y2 + x2y1 + x0y2 + x0y0 + y2 + y0 + x2 

x2y0 + x1y0 + x0y1 + x0y0 + y2 + y0 + x2 

x2y1 + x1y1 + x0y1 + y2 + y1 + y0 + x2 

x2y2 + x2y1 + x2y0 + x1y2 + x1y0 + x0y2 + x0 

x2y2 + x2y1 + x2y0 + x1y1 + x1y0 + x0y0 + x0 

x2y1 + x2y0 + x1y0 + x0y2 + x0y1 + y1 + x0 

x2y2 + x1y2 + x1y1 + x0y2 + x0y0 + y1 + x0 

x2y1 + x2y0 + x1y2 + x0y2 + y2 + y0 + x0 
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x2y2 + x1y2 + x1y0 + x0y1 + y2 + y0 + x0 

x2y1 + x2y0 + x1y1 + x0y0 + y2 + y0 + x0 

x2y2 + x1y2 + x1y1 + x1y0 + x0y0 + x2 + x0 

x2y2 + x2y1 + x2y0 + x1y2 + y1 + x2 + x0 

x1y2 + x1y0 + x0y2 + x0y1 + y1 + x2 + x0 

x1y1 + x1y0 + x0y1 + x0y0 + y1 + x2 + x0 

x1y2 + x1y1 + x0y0 + y2 + y0 + x2 + x0 

x2y0 + x1y0 + x0y2 + x0y1 + y2 + x1 + 1 

x2y1 + x1y2 + x0y1 + y2 + y1 + x1 + 1 

x2y2 + x2y0 + x0y2 + x0y1 + y0 + x1 + 1 

x2y0 + x1y2 + x0y2 + y1 + y0 + x1 + 1 

x2y0 + x1y1 + x0y0 + y1 + y0 + x1 + 1 

x2y2 + x2y0 + x1y2 + y2 + x2 + x1 + 1 

x2y0 + x0y1 + y2 + y1 + x2 + x1 + 1 

x2y0 + x1y2 + x1y0 + y0 + x2 + x1 + 1 

x2y1 + x0y2 + y1 + y0 + x2 + x1 + 1 

x1y2 + x1y1 + x0y2 + y2 + x1 + x0 + 1 

x2y2 + x1y0 + x0y0 + y0 + x1 + x0 + 1 

x1y1 + x0y1 + y0 + x2 + x1 + x0 + 1 
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Appendix B 

LBlock S-BOX Equations 

Equations for LBlock S1 

y2y3 + x0x3 + x2y3 + x1y1 

y1y3 + x3y1 + y1 

y1y2 + x3y2 + x2y2 + x1y2 + x0y2 

y0y3 + x0x1 + x2y2 + x0y1 

y0y2 + x3y0 + x2y0 

y0y1 + x3y1 + x2y1 + x0y1 

x2x3 + x3y2 + x3 

x1x3 + x0x3 + x3y1 + x3 

x1x2 + x0x2 + x2y1 + x2 

x0x3 + x0x1 + x2y2 + x1y1 + x0y1 + y3 

x0x2 + x0x1 + x2y3 + x2y2 + x0y1 + x0y0 

x0x1 + x3y0 + x2y2 + x0y1 + y0 

x3y3 + x3y0 + x1y1 + x0y3 + y3 + y0 + x0 

x3y2 + x3y0 + x2y3 + x2y1 + x2y0 + x0y0 + y0 + x3 

x3y1 + x0y1 + y3 + y1 + x0 

x3y0 + y2 + y0 + x2 + 1 

x2y3 + x2y2 + x2y1 + x2y0 + x1y2 + x1y1 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + 

y2 + y1 + y0 + x2 + x0 + 1 

x2y2 + x2y1 + x1y0 + x0y0 + y3 + y2 + y1 + y0 + x2 + x0 + 1 

x2y1 + y0 + x3 + x0 

x2y0 + x1y3 + x1y2 + x1y1 + x0y3 + y1 + x3 

x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y2 + y1 + y0 + x1 + 1 
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Equations for LBlock S2 

y2y3 + x3y3 + y3 

y1y3 + x3y1 + x2y1 + x0y1 

y1y2 + x3y1 + y1 

y0y3 + x3y3 + x2y3 

y0y2 + x0x3 + x2y2 + x1y1 

y0y1 + x3y0 + x2y0 + x1y0 + x0y0 

x2x3 + x3y0 + x3 

x1x3 + x0x3 + x3y1 + x3 

x1x2 + x3y0 + x2y3 + x3 + x2 

x0x3 + x3y3 + x1y1 + y3 + y2 

x0x2 + x3y3 + x2y2 + x0y3 + y3 

x0x1 + x3y3 + x2y0 + x0y1 + y3 

x3y3 + x3y0 + x2y3 + x2y2 + x2y1 + x0y3 + y3 + x3 

x3y2 + x3y0 + x2y3 + x2y2 + x2y1 + x1y1 + x0y3 + x0y2 + y2 + x3 + x0 

x3y1 + x0y1 + y2 + y1 + x0 

x3y0 + x2y3 + x2y2 + x2y1 + x0y3 + y0 + x3 + x2 + 1 

x2y3 + x2y2 + x2y1 + x2y0 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + 

y2 + y1 + y0 + x2 + x0 + 1 

x2y2 + x2y1 + x2y0 + x1y2 + x0y3 + x0y1 + x0y0 + y3 + y2 + y0 + x3 + x2 + x0 

+ 1 

x2y1 + y3 + x3 + x0 

x2y0 + x1y3 + x0y3 + y2 + y1 + y0 + x3 + x2 + 1 

x1y3 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y1 + y0 + x1 + 1 
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Equations for LBlock S3 

y2y3 + x3y2 + x2y2 

y1y3 + x0x3 + x2y1 + x1y0 

y1y2 + x3y2 + y2 

y0y3 + x2y3 + x1y3 + x0y3 + y3 

y0y2 + y0y1 + x1x3 + x3y2 + x1y0 

y0y1 + x1x3 + x3y2 + x2y3 + x1y2 + x1y0 + x0y2 + y2 

x2x3 + x0x2 + x2y2 

x1x3 + x0x3 + x3y0 + x3 

x1x2 + x0x3 + x3y2 + x3y0 + x2y2 + x1y0 + x0y0 + x3 

x0x3 + x0x2 + x2y1 + x1y0 + x0y2 + x0 

x0x2 + x3y3 + x2y2 + x3 

x0x1 + x2y3 + x0y0 

x3y3 + x3y1 + x2y2 + x2y1 + x1y0 + x0y2 + x0y1 + x3 

x3y2 + y3 + y2 + x2 + 1 

x3y1 + x2y3 + x1y3 + x0y3 + x0y0 + y2 + x3 + x2 + 1 

x3y0 + x2y3 + x2y0 + x1y2 + x0y2 + x0y0 + y2 + y0 

x2y3 + x2y2 + x2y1 + x2y0 + x1y2 + y3 + y2 + y0 + x1 + x0 

x2y2 + x2y1 + x1y2 + x1y0 + x0y2 + x0y0 + y1 + x3 + x0 

x2y1 + x2y0 + x1y1 + x1y0 + x0y3 + y3 + y2 + y1 + y0 + x3 + x1 + x0 

x2y0 + y2 + y0 + x3 + x0 

x1y1 + x0y1 + x0y0 + y0 + x1 + 1 
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Equations for LBlock S4 

y2y3 + x3y2 + x2y2 

y1y3 + x0x3 + x2y1 + x1y0 

y1y2 + x3y2 + y2 

y0y3 + x2y3 + x1y3 + x0y3 + y3 

y0y2 + y0y1 + x1x3 + x3y2 + x1y0 

y0y1 + x0y0 + y1 + x0 

x2x3 + x0x2 + x2y2 

x1x3 + x0x3 + x3y0 + x3 

x1x2 + x0x3 + x3y2 + x3y0 + x2y2 + x1y0 + x0y0 + x3 

x0x3 + x3y2 + x1y0 + y2 + y1 

x0x2 + x3y3 + x2y2 + x3 

x0x1 + x2y3 + x0y0 

x3y3 + x3y2 + x2y2 + x2y1 + x0y2 + y2 + y1 + x3 + x0 

x3y2 + x3y1 + x1y0 + x0y1 + y2 + y1 + x0 

x3y1 + x1y0 + x0y1 + y3 + y1 + x2 + x0 + 1 

x3y0 + x2y3 + x1y2 + x0y2 + x0y0 + x3 + x0 

x2y3 + x1y3 + x1y0 + x0y3 + x0y1 + x0y0 + y3 + y2 + y1 + x3 + x0 

x2y2 + x2y1 + x1y3 + x1y2 + x1y0 + x0y3 + x0y1 + x0y0 + y2 + y1 + x1 + x0 

x2y1 + x1y3 + x1y1 + x1y0 + x0y2 + x0y1 + y3 + y2 + y1 + x3 

x2y0 + y2 + y0 + x3 + x0 

x1y1 + x0y1 + x0y0 + y0 + x1 + 1 
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Equations for LBlock S5 

y2y3 + x3y2 + y2 

y1y3 + x0x3 + x2y3 + x1y0 

y1y2 + x3y2 + x2y2 

y0y3 + x3y0 + y0 

y0y2 + x3y0 + x2y0 + x0y0 

y0y1 + x3y1 + x2y1 + x1y1 + x0y1 

x2x3 + x0x2 + x2y2 + x2y0 

x1x3 + x0x3 + x3y0 + x3 

x1x2 + x0x2 + x2y0 + x2 

x0x3 + x3y2 + x1y0 + y3 + y2 

x0x2 + x3y2 + x2y3 + x0y2 + y2 

x0x1 + x3y2 + x2y1 + x0y0 + y2 

x3y3 + x3y2 + x1y0 + x0y3 + y3 + y2 + x0 

x3y2 + y2 + y1 + x2 + 1 

x3y1 + x2y3 + x2y2 + x2y0 + x0y2 + y1 + x3 + x2 + 1 

x3y0 + x0y0 + y3 + y0 + x0 

x2y3 + x2y2 + x2y1 + x2y0 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + 

y2 + y1 + y0 + x2 + x0 + 1 

x2y2 + x1y3 + x1y1 + x1y0 + x0y3 + y0 + x3 

x2y1 + x2y0 + x1y2 + x0y2 + y3 + y2 + y1 + y0 + x2 + x0 + 1 

x2y0 + y2 + x3 + x0 

x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y2 + y1 + y0 + x1 + 1 
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Equations For LBlock S6 

y2y3 + x0x3 + x2y3 + x1y1 

y1y3 + x3y1 + y1 

y1y2 + x2y2 + x1y2 + x0y2 + y2 

y0y3 + x3y0 + y0 

y0y2 + x3y0 + x2y0 

y0y1 + x3y1 + x2y1 + x0y1 + y1 

x2x3 + x3y2 + x3 

x1x3 + x0x3 + x3y1 + x3 

x1x2 + x0x2 + x3y2 + x2y1 + x3 

x0x3 + x3y0 + x1y1 + y3 + y0 

x0x2 + x3y2 + x2y0 + x3 

x0x1 + x2y2 + x0y1 

x3y3 + x3y0 + x1y1 + x0y3 + y3 + y0 + x0 

x3y2 + x3y0 + x2y3 + x2y0 + x0y0 + y3 + y0 + x3 + x0 

x3y1 + x0y1 + y3 + y1 + x0 

x3y0 + y2 + y0 + x2 + 1 

x2y3 + x2y1 + x2y0 + x0y0 + y3 + y2 + y0 + x3 + x1 + x0 

x2y2 + x2y1 + x1y0 + x0y0 + y3 + y0 + x0 

x2y1 + y1 + y0 + x3 + x0 

x2y0 + x1y3 + x1y0 + x0y2 + x0y1 + x0y0 + y2 + x3 + x1 + x0 

x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y2 + y1 + y0 + x0 
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Equations for LBlock S7 

y2y3 + y0y3 + x2y3 

y1y3 + x3y1 + y1 

y1y2 + x2y2 + x1y2 + x0y2 

y0y3 + x3y0 + y0 

y0y2 + x2x3 + x1x2 + x3y0 + y0 

y0y1 + x0x3 + x3y0 + x1y1 

x2x3 + x1x2 + x2y0 

x1x3 + x3y3 + x0y3 + x0y1 

x1x2 + x3y2 + x2y0 

x0x3 + x3y1 + x3y0 + x2y1 + x1y1 + x0y1 + y1 

x0x2 + x3y2 + x2y1 + x2y0 + x2 

x0x1 + x3y2 + x2y1 + x2y0 + x1y3 + x0y2 + x2 + x1 

x3y3 + x3y0 + x2y1 + x1y1 + x0y3 + y1 + x3 

x3y2 + x3y0 + x2y1 + x2y0 + x1y3 + x1y2 + x1y1 + x0y3 + y1 + x3 

x3y1 + x3y0 + x2y3 + x2y2 + x2y1 + x1y3 + x1y2 + x1y1 + x1y0 + x0y3 + x0y1 

+ x3 + x2 

x3y0 + y2 + y0 + x2 

x2y3 + x1y3 + x1y2 + x1y1 + x0y3 + x0y0 + y1 + x3 

x2y2 + x2y1 + x1y2 + x1y1 + x0y3 + x0y2 + x0y1 

x2y1 + x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y2 + y1 + x3 

x2y0 + x1y3 + x1y0 + x0y2 + x0y1 + x0y0 + y3 + y1 + y0 + x3 + x1 + x0 

x1y2 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y2 + y1 + y0 + x0 + 1 
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Equations for LBlock S8 

y2y3 + x0x3 + x2y2 + x1y1 

y1y3 + x3y3 + x2y3 + x1y3 + x0y3 

y1y2 + x0y1 + y2 + x0 

y0y3 + x3y0 + x2y0 

y0y2 + x0x1 + x2y3 + x0y1 

y0y1 + x3y1 + x2y1 + x0y1 

x2x3 + x0x2 + x2y1 + x2y0 

x1x3 + x0x3 + x3y1 + x3 

x1x2 + x0x2 + x2y1 + x2 

x0x3 + x0x1 + x2y3 + x1y1 + x0y1 + y2 

x0x2 + x0x1 + x2y3 + x2y2 + x0y1 + x0y0 

x0x1 + x3y0 + x2y3 + x0y1 + y0 

x3y3 + x3y0 + x2y2 + x2y1 + x2y0 + x0y0 + y0 + x3 

x3y2 + x3y0 + x1y1 + x0y2 + y2 + y0 + x0 

x3y1 + x0y1 + y2 + y1 + x0 

x3y0 + y3 + y0 + x2 + 1 

x2y3 + x2y1 + x1y0 + x0y0 + y3 + y2 + y1 + y0 + x2 + x0 + 1 

x2y2 + x2y0 + x1y3 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 

x2y1 + y0 + x3 + x0 

x2y0 + x1y3 + x1y2 + x1y1 + x0y2 + y1 + x3 

x1y3 + x1y1 + x1y0 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y1 + y0 + x1 + 1 
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Equations for LBlock S9 

y2y3 + x0x3 + x3y3 + x1y2 

y1y3 + y0y3 + x2y3 

y1y2 + x2y1 + x1y1 + x0y1 

y0y3 + y0y1 + x2y0 

y0y2 + x3y2 + y2 

y0y1 + x3y3 + x2y0 + y3 

x2x3 + x1x2 + x2y3 

x1x3 + x3y0 + x0y2 + x0y0 

x1x2 + x3y1 + x2y3 

x0x3 + x3y3 + x3y2 + x2y2 + x1y2 + x0y2 + y2 

x0x2 + x3y1 + x2y3 + x2y2 + x2 

x0x1 + x3y1 + x2y3 + x2y2 + x1y0 + x0y1 + x2 + x1 

x3y3 + y3 + y1 + x2 

x3y2 + x3y1 + x2y3 + x2y1 + x2y0 + x1y3 + x0y2 + y2 + x2 

x3y1 + x3y0 + x2y3 + x1y1 + x1y0 

x3y0 + x2y2 + x1y2 + x0y0 + y3 + y2 + y1 + x3 + x2 

x2y3 + x2y2 + x1y2 + x1y1 + x1y0 + x0y0 + y3 + y1 + x1 + x0 

x2y2 + x2y1 + x1y2 + x1y1 + x0y2 + x0y1 + x0y0 

x2y1 + x2y0 + x1y3 + x1y2 + x1y1 + x1y0 + x0y0 + y1 + y0 

x2y0 + x1y2 + x1y1 + x1y0 + x0y3 + x0y0 + y2 + x3 

x1y3 + x1y2 + x1y1 + x0y3 + x0y2 + x0y1 + x0y0 + y3 + y2 + y1 + y0 + x0 + 1 
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Appendix C  

 Statistical Analysis of Individual S-box equations –LBlock 

SBOX 0 SBOX1 SBOX2 SBOX3 

 

Monomial Count Percent 

x1y0 10 7.41% 

x2y0 9 6.67% 

x0y3 9 6.67% 

x2y1 8 5.93% 

x1y2 8 5.93% 

y0 7 5.19% 

x0y0 6 4.44% 

x3y1 6 4.44% 

x0y2 5 3.70% 

x1y3 5 3.70% 

y2 5 3.70% 

y1 5 3.70% 

x3 5 3.70% 

x3y2 4 2.96% 

x2y3 3 2.22% 

x2 3 2.22% 

x3y0 3 2.22% 

x0y1 3 2.22% 

x1y1 3 2.22% 

x2y2 3 2.22% 

x0x3 2 1.48% 

y3 2 1.48% 

x1 2 1.48% 

x1x2 2 1.48% 

y1y2 2 1.48% 

x0 2 1.48% 

x3y3 2 1.48% 

y1y3 2 1.48% 

y0y1 1 0.74% 

y0y2 1 0.74% 

y0y3 1 0.74% 

x2x3 1 0.74% 

x1x3 1 0.74% 

x0x2 1 0.74% 

x0x1 1 0.74% 

y2y3 1 0.74% 

1 1 0.74% 

 

 

 

Monomial Count Percent 

x0y1 8 6.30% 

y0 8 6.30% 

x2y2 7 5.51% 

y1 6 4.72% 

x1y1 6 4.72% 

x2y1 6 4.72% 

x3y0 5 3.94% 

x0y0 5 3.94% 

y3 5 3.94% 

x3 5 3.94% 

x0 5 3.94% 

y2 4 3.15% 

x2y3 4 3.15% 

1 4 3.15% 

x1y2 4 3.15% 

x0y3 4 3.15% 

x2 4 3.15% 

x3y1 4 3.15% 

x0x1 4 3.15% 

x2y0 4 3.15% 

x3y2 3 2.36% 

x0y2 3 2.36% 

x0x3 3 2.36% 

x1y0 2 1.57% 

x0x2 2 1.57% 

x2x3 1 0.79% 

x3y3 1 0.79% 

x1x3 1 0.79% 

x1y3 1 0.79% 

y0y2 1 0.79% 

y0y3 1 0.79% 

x1x2 1 0.79% 

y1y2 1 0.79% 

y1y3 1 0.79% 

x1 1 0.79% 

y2y3 1 0.79% 

y0y1 1 0.79% 
 

 

Monomial Count Percent 

y3 9 6.52% 

x3 9 6.52% 

x0y3 8 5.80% 

x2y2 7 5.07% 

x2y1 7 5.07% 

y2 6 4.35% 

x3y3 6 4.35% 

x0y1 6 4.35% 

x3y0 6 4.35% 

x2y3 6 4.35% 

y0 5 3.62% 

1 5 3.62% 

y1 5 3.62% 

x1y1 5 3.62% 

x0 5 3.62% 

x2 5 3.62% 

x2y0 5 3.62% 

x0y0 4 2.90% 

x3y1 4 2.90% 

x1y0 3 2.17% 

x0x3 3 2.17% 

x0y2 3 2.17% 

x1y3 2 1.45% 

y0y3 1 0.72% 

x1 1 0.72% 

x3y2 1 0.72% 

x2x3 1 0.72% 

x1x2 1 0.72% 

x1x3 1 0.72% 

y0y2 1 0.72% 

x1y2 1 0.72% 

x0x2 1 0.72% 

y1y2 1 0.72% 

y1y3 1 0.72% 

x0x1 1 0.72% 

y2y3 1 0.72% 

y0y1 1 0.72% 

 
 

Monomial Count Percent 

x3 8 6.25% 

y2 8 6.25% 

x1y0 8 6.25% 

x2y2 7 5.47% 

x0y0 6 4.69% 

x3y2 6 4.69% 

x2y3 6 4.69% 

x2y1 6 4.69% 

x0y2 5 3.91% 

x0 5 3.91% 

y0 5 3.91% 

x2y0 4 3.13% 

x0x3 4 3.13% 

y3 4 3.13% 

x1y2 4 3.13% 

1 3 2.34% 

x1x3 3 2.34% 

x1 3 2.34% 

x0y3 3 2.34% 

x3y0 3 2.34% 

x0x2 3 2.34% 

y1 2 1.56% 

x1y1 2 1.56% 

x1y3 2 1.56% 

x3y1 2 1.56% 

x0y1 2 1.56% 

x2 2 1.56% 

y0y1 2 1.56% 

x3y3 2 1.56% 

x1x2 1 0.78% 

y0y2 1 0.78% 

y0y3 1 0.78% 

x2x3 1 0.78% 

y1y2 1 0.78% 

y1y3 1 0.78% 

x0x1 1 0.78% 

y2y3 1 0.78% 
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SBOX 4 SBOX5 SBOX6 SBOX7 

 

Monomia
l 

Coun
t 

Percen
t 

x1y0 9 7.14% 

x3 8 6.35% 

x0 8 6.35% 

y2 8 6.35% 

y1 8 6.35% 

x0y0 7 5.56% 

x3y2 7 5.56% 

x0y1 6 4.76% 

x2y2 6 4.76% 

x1y3 4 3.17% 

x2y1 4 3.17% 

x2y3 4 3.17% 

x0x3 4 3.17% 

y3 4 3.17% 

x0y3 3 2.38% 

x0y2 3 2.38% 

x3y0 3 2.38% 

y0 2 1.59% 

x0x2 2 1.59% 

x1x3 2 1.59% 

1 2 1.59% 

x1y1 2 1.59% 

x1y2 2 1.59% 

x1 2 1.59% 

x3y1 2 1.59% 

y0y1 2 1.59% 

x3y3 2 1.59% 

x2x3 1 0.79% 

x2 1 0.79% 

y0y2 1 0.79% 

y0y3 1 0.79% 

x1x2 1 0.79% 

y1y2 1 0.79% 

y1y3 1 0.79% 

x0x1 1 0.79% 

y2y3 1 0.79% 

x2y0 1 0.79% 

 

 

 

Monomia
l 

Coun
t 

Percen
t 

y2 10 7.94% 

x2y0 7 5.56% 

x3y2 7 5.56% 

y0 6 4.76% 

x1y0 6 4.76% 

x0y0 5 3.97% 

y1 5 3.97% 

x0y2 5 3.97% 

x2y2 5 3.97% 

x0 5 3.97% 

x2 5 3.97% 

1 5 3.97% 

y3 5 3.97% 

x1y1 4 3.17% 

x2y1 4 3.17% 

x0y3 4 3.17% 

x2y3 4 3.17% 

x3 4 3.17% 

x3y0 4 3.17% 

x0x2 3 2.38% 

x0x3 3 2.38% 

x0y1 3 2.38% 

x1y2 2 1.59% 

x3y1 2 1.59% 

y0y3 1 0.79% 

x1 1 0.79% 

x3y3 1 0.79% 

x1x2 1 0.79% 

y0y1 1 0.79% 

y0y2 1 0.79% 

x2x3 1 0.79% 

x1y3 1 0.79% 

y1y2 1 0.79% 

y1y3 1 0.79% 

x0x1 1 0.79% 

y2y3 1 0.79% 

x1x3 1 0.79% 
 

 

Monomia
l 

Coun
t 

Percen
t 

y0 9 7.76% 

x3 8 6.90% 

x0 8 6.90% 

y3 6 5.17% 

x3y0 6 5.17% 

x0y0 5 4.31% 

x0y1 5 4.31% 

y2 5 4.31% 

y1 5 4.31% 

x2y1 5 4.31% 

x2y0 5 4.31% 

x3y1 4 3.45% 

x1y1 4 3.45% 

x3y2 4 3.45% 

x2y2 3 2.59% 

x2y3 3 2.59% 

x0y2 3 2.59% 

x1y0 3 2.59% 

x0x3 3 2.59% 

x1y2 2 1.72% 

x1 2 1.72% 

x0x2 2 1.72% 

x0y3 2 1.72% 

x1x2 1 0.86% 

x1x3 1 0.86% 

x1y3 1 0.86% 

x3y3 1 0.86% 

x2 1 0.86% 

y0y1 1 0.86% 

y0y2 1 0.86% 

y0y3 1 0.86% 

x2x3 1 0.86% 

y1y2 1 0.86% 

y1y3 1 0.86% 

x0x1 1 0.86% 

y2y3 1 0.86% 

1 1 0.86% 
 

 

Monomia
l 

Coun
t 

Percen
t 

x1y1 9 6.52% 

x2y1 8 5.80% 

x3y0 8 5.80% 

x0y3 8 5.80% 

y1 8 5.80% 

x0y1 7 5.07% 

x1y2 7 5.07% 

x3 6 4.35% 

x0y2 6 4.35% 

x2y0 6 4.35% 

x1y3 5 3.62% 

y0 5 3.62% 

x3y2 4 2.90% 

x2 4 2.90% 

x0y0 4 2.90% 

x1y0 4 2.90% 

y2 3 2.17% 

y3 3 2.17% 

x1x2 3 2.17% 

x3y1 3 2.17% 

x2y2 3 2.17% 

x2y3 3 2.17% 

x0 2 1.45% 

x1 2 1.45% 

x3y3 2 1.45% 

x0x3 2 1.45% 

x2x3 2 1.45% 

y0y3 2 1.45% 

y0y1 1 0.72% 

x1x3 1 0.72% 

1 1 0.72% 

x0x2 1 0.72% 

y1y2 1 0.72% 

y1y3 1 0.72% 

x0x1 1 0.72% 

y2y3 1 0.72% 

y0y2 1 0.72% 
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SBOX 8 SBOX9 

 

Monomial Count Percent 

x0y1 9 7.50% 

y0 7 5.83% 

x1y1 6 5.00% 

x2y3 6 5.00% 

x2y1 6 5.00% 

y2 5 4.17% 

x0 5 4.17% 

x2y0 5 4.17% 

x3y0 5 4.17% 

x1y3 4 3.33% 

x0x1 4 3.33% 

y1 4 3.33% 

x0y2 4 3.33% 

x2y2 4 3.33% 

x0y0 4 3.33% 

x3 4 3.33% 

x2 3 2.50% 

x0x2 3 2.50% 

x0x3 3 2.50% 

x1y0 3 2.50% 

x0y3 3 2.50% 

x3y1 3 2.50% 

1 3 2.50% 

y3 3 2.50% 

x3y3 2 1.67% 

x3y2 1 0.83% 

x2x3 1 0.83% 

x1x3 1 0.83% 

y0y1 1 0.83% 

y0y2 1 0.83% 

x1y2 1 0.83% 

x1x2 1 0.83% 

y1y2 1 0.83% 

y1y3 1 0.83% 

x1 1 0.83% 

y2y3 1 0.83% 

y0y3 1 0.83% 

 

 

 

 

Monomial Count Percent 

x2y3 8 6.40% 

x1y2 8 6.40% 

x0y0 7 5.60% 

x1y1 7 5.60% 

y2 6 4.80% 

x2y2 6 4.80% 

x2y0 5 4.00% 

x0y2 5 4.00% 

x3y1 5 4.00% 

x2 5 4.00% 

y3 5 4.00% 

y1 5 4.00% 

x1y0 5 4.00% 

x2y1 4 3.20% 

x0y1 4 3.20% 

x3y3 4 3.20% 

x3y2 3 2.40% 

x1y3 3 2.40% 

x3y0 3 2.40% 

x1 2 1.60% 

x0 2 1.60% 

y0y3 2 1.60% 

x0x3 2 1.60% 

x1x2 2 1.60% 

x0y3 2 1.60% 

y0 2 1.60% 

y0y1 2 1.60% 

x3 2 1.60% 

x1x3 1 0.80% 

y0y2 1 0.80% 

x2x3 1 0.80% 

x0x2 1 0.80% 

y1y2 1 0.80% 

y1y3 1 0.80% 

x0x1 1 0.80% 

y2y3 1 0.80% 

1 1 0.80% 
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6 Appendix D 

User Manual for Software Tool 

1.  Define monomials based on the I/O degree of the S-Box. 

2. Generate input array for defined monomials using Maple Code. 

3. Formulate matrix using generated arrays in Maple. Each row of the matrix 

corresponds to the each defined monomial. 

4. Gaussian Elimination Mod 2 of the generated matrix using Maple. 

Number of non zero rows determines the total equations that shall be generated to 

completely define the S-box. 

5. Convert decimal value for each row of the input array generated in step 1. 

6. Insert decimal values in C-sharp code’s ‘Main Page’. 

7. Run the C-sharp code. C-sharp code generates two files, Extended Matrix 

and XOR Combination Output.  

8.  Gaussian Eliminate Mod 2 the generated matrix using Maple. This shall 

output the final matrix that describes the equations. 

9.  Insert input rows of the matrix in C-sharp code, and run it. It displays the 

resultant equations that completely describe the pertinent S-Box.  

10. Incase of any query please email: nasirjadoon328@gmail.com. 

7  
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