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ABSTRACT

The continuous evolution of malware threats demands more advanced detection

techniques, and artificial intelligence (AI) has emerged as a powerful tool in this area.

Traditional security methods often fall short in addressing the increasingly sophisticated

tactics used by cybercriminals. Integrating AI with network traffic analysis strengthens

cybersecurity by allowing for early detection of malicious activities, providing a more

effective defense against potential breaches.

Monitoring network traffic is a proven method for identifying suspicious behavior and

detecting compromised devices before they inflict serious damage. While some

malware is caught by firewalls and other conventional security measures, many threats

slip through due to advanced evasion techniques.

This project explores the use of ML-driven network traffic analysis to enhance the

detection of insider threats, emphasizing the need to establish baseline traffic patterns

to distinguish between normal and anomalous network behavior. By understanding what

typical activity looks like, deviations that could indicate malicious behavior are easier to

detect. Additionally, this project aims to develop a resource-efficient model for IoT

malware detection, ensuring the solution is both effective and lightweight for practical

use in constrained environments.
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Chapter 1

INTRODUCTION
1.1 Overview

The constant evolution of malware threats necessitates the use of advanced

detection techniques, with machine learning (ML) emerging as a highly effective

approach. This thesis investigates the use of ML-based network traffic analysis to

improve the detection of insider threats. By integrating ML models with network traffic

monitoring, cybersecurity can be enhanced through the early identification of malicious

activity.

A large proportion of malware is distributed via the Internet through Command and

Control (C&C) servers. Any devices that are compromised or there is a suspicious

activity in network, it can be detected through Network traffic analysis. An issue lies in

this process, as traditional firewalls are unable to catch or detect certain threats which

use sophisticated methods of invasion.

In this thesis, our focus is to make a light weight machine learning system for detecting

malware in IoT Network by analyzing the traffic. The main aim is to design a solution

that is suitable and efficient for IoT devices network as these devices already have less

resources and it is difficult for them to run heavy calculations. Our focus is to have a

system that is quick in identifying the malware and it is not heavy to be deployed on

resource constraint IoT devices in a network. In this way, such solution can be

implemented In a variety of environments like smart homes, industries, healthcare

facilities, and more.

1.2 Problem Statement
Timely detection of malwares and quick response to mitigate them is important to keep

the IoT Networks safe. Traditional security methods often are not capable to cope such

issues as IoT Network devices already have less computational capabilities and a

solution for diverse functionalities is required for dealing with threats. That’s why, our

focus is to develop an effective, light weight and quick malware detecting system which

works on the basis of network traffic analysis.
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1.3 Research Objectives
1. Make a lightweight malware detecting system based on machine learning that is

ideal for IoT devices that have limited computational resources.

2. Develop a malware detection system that is optimized for quick detection and

accuracy through hyperparameter tuning, so that malware or any suhc threats can

be timely identified in a network.

3. To test the built malware detection system through multiple performance metrics

so that it is checked for effectiveness and performance across large datasets and

scenarios.

1.4 Key Challenges

1. Limited Resource: The IoT devices networks have limited resources, due to

which heavy calculations cannot be done on them. Also, gathering and

management of extensive data is difficult in such networks due to limited IoT

resources.

2. Selection and Extraction of features: It is crucial to extract and work on those

features of IoT Network traffic data that are essential and contributing to effective

analysis, as higher amounts of data or dimensionality can be difficult to handle in

resource constraint environments.

3. Overfitting or under-fitting: When the resources are constraint, training of ML

models can be difficult, as it can cause underfitting or overfitting in calculations.
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Hence, it is crucial to ensure that the models should generalize to large or unseen

data adequately,when the resources are meant to be kept minimal as well.



4

Chapter 2

THEORETICAL FRAMEWORK

2.1 Information Security

Information security is a broad discipline that encompasses protection of crucial

information from threats, prevents unknown actors involvement or access to networks, a

range of strategies to protect sensitive data and more. Such goals and processes in

information security work on the basis of 3 pillars, that is confidentiality, integrity and

availability of data, regardless of the format of data.

Figure 1: Triad of information security

With time, the threats and cyber attacks on Networks have became more sophisticated

and advanced, for which the classical systems are not sufficient security and protection

wise. The involvement of AI and ML is crucial to ensure more dynamic, effective and

proactive approach in defence against malwares and advanced persistent threats. ML
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based solutions have proven to be significant in improving the detection and mitigation

of cyber threats through timely analysis of the Network traffic.

According to many studies, behavioral analysis through network traffic is important in

detection of potential cyber security breaches. For this purpose, normal traffic

behaviors’ patterns are established due to which any unusual or deviating behaviors are

easily identified which can be due to any malicious activities [1]. Such behavior

detecting systems not only enable timely detection of malwares or malicious activities,

but they also decrease the likeliness of false positives, which is a common problem in

classical systems (alarming the system on the basis of false flags).

Even though, much advancements have been made in the field of malware detection,

but challenges still persist due to the dynamic nature of threats and malware. There are

challenges of resource-limited environments,like IoT Networks, which are most

vulnerable to cyber attacks and need high security due to their crucial areas of

work.Efficient data preprocessing, critical features extraction and real time analysis are

some of the big challenges in such networks. These challenges can be resolved by ML

based solutions, which can ensure that even light resources can be made capable

enough with advance malware detection [2].

2.2 Overview of Machine Learning in Cybersecurity

Machine learning has proved to be the key technology in science, and it holds

the cyber security future as well, as it provides dynamic and efficient solutions for

detection and responses to advance persistent threats. Traditional systems are rule

based, due to which they are unable to cope with the latest malwares. On the other

hand, ML alorithms are able to handle large datasets to identify malicious behaviors and

patterns that may be regarding any security incidents. ML based systems can adapt to

advance threats, quick detection of malwares and mitigation of threats from diverse

networks like IoT.
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Many studies have highlighted the significance of ML in network security, e.g., how ML

techniques have enhanced the accuracy in detecting malwares across the networks [3].

How deep learning models can detect advance persistent threats, by uncovering their

complex attacking methods that traditional systems are unable to detect [4]. Through

these advancements, not only the overall scenario of cyber security strengthens, but a

more proactive approach is enabled through which crucial organizations like health care,

government sector offices, school systems, etc, are able to predict and respond to cyber

threats more efficiently.

2.3 Role of ML in Network Traffic Analysis

Network analysis is crucial in detection of malwares, as malwares spread very

fast through networks, especially when the networks comprise of large number of

devices in IoT. For this purpose, ML has significantly improved real time detection and

response to malwares and cyber attacks. Such techniques are valuable in large traffic

volumes, like IoT networks, where classical systems struggle with the fast and complex

nature of the data. Recent studies have shown that Deep learning techniques increase

the accuracy of malicious behavior detection in network traffic [5]. Another study shows

that ML models can be trained to identify even the subtle network intrusions, indicating

high levels of security as compared to classical systems [6]. These advancements show

that AI has the potential to change network security towards more resilient, adaptive

and intelligent solutions regarding prevention against cyber attacks.

2.4 IoT and Network Traffic

2.4.1 Introduction to IoT (Internet of Things)

In an IOT Network, several devices are interconnected which exchange data with

one another through internet. These devices are from different environments, e.g.,

house hold IoT items related to refrigerators, thermostats, or complex IoT sensors from

industries and health care units. Use of IoT has enabled real time monitoring, data

collection, and automation in many fields. This connectivity and real time monitoring

enables advance operational efficiency, which is helpful in decision making and making
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new models of business. But, on the same time, this growth and advancement in IoT

also comes with bundle of challenges, as the number of connected IoT devices

increases the potential attack surface for cyber attack.

2.4.2 IoT Network Architecture

IoT Network architecture is a framework that helps in communication and

exchange of data among interconnected devices, systems and sensors in an IoT

Network. The architecture comprises of many layers, including Perception, Network and

Application layers. The work of perception layer is to gather data from the environment

as it consists of sensors and devices which receive or collect data. After this,

transmission of data among devices is done through Network layer, which is done with

many communication protocols like WiFi, Bluetooth, cellular networks, Zigbee, etc. After

Network layer comes the application layer, where the data is processed and analyzed.

This information is then used for insights and useful services for the end users. This IoT

Network architecture consisting of multiple layers ensures that the data sharing is

efficient, the Network is scalable and there is interoperability among difference types of

IoT devices.

Figure 2: Layers of IoT Network architecture
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Many studies highlight the importance of secure frameworks regarding IoT Networks

due to the advancing and changing tech scenario in which the number of IoT devices is

growing with time. The Network architectures of such networks need to be carefully

designed in order to maintain secure and efficient environment for IoT devices [7][8].

2.4.3 Characteristics of IoT Network Traffic

The traffic of IoT Networks has peculiar characteristics, as the number of IoT

devices is large and there are different varieties of IoT devices which form a diverse IoT

ecosystem. The main feature of this ecosystem is the heterogeneity of data coming

from different types of devices (e.g., ranging from small and regular data transmissions

from sensors to periodic and large data inputs from devices like video cameras). Most of

the IoT devices are designed such that they consume minimal bandwidth and power,

which allows them to communicate and operate efficiently in longer periods. But, the

large number of interconnected devices causes issues like latency and congestion in

network.

Many studies highlight the importance of these issues to understand the importance of

these IoT network characteristics in order to improve the performance and security of

network. To resolve such issues, customized management strategies in a network are

required to handle the unique and large scale patterns effectively in IoT systems and

networks [9][10].

2.4.4 Common Security Challenges in IoT Networks

There are a numberof issues and challenges faced by IoT Networks due to the

complex working and large number of devices in them. One of the main issues is the

diverse nature of devices. Most of the devices lack standard security protocols and have

limited computational resources due to which they are vulnerable to cyber attacks and

difficult to protect as well. Such devices often work with outdated systems with known

vulnerabilities that can be easily exploited by attackers. On the other hand, the attack

surface is increased in IoT networks, due to large amount of interconnected devices,

ranging from houses to industrial environments. Due to this fact, overall security

management becomes the main concern due to the increased complexity through large
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attack surface. Main concerns include weak authentication methods, insufficient and

poor encryption practices and ineffective intrusion detection systems.

Research suggests that overcoming these IoT security challenges requires a multi-

layered strategy, integrating hardware improvements, stronger software security, and

comprehensive network management.[11][12]

2.5 Malware Detection

2.5.1 Definition and Types of Malware

Malware, short for malicious software, is created to infiltrate, damage, or disable

computers and networks, often without the user's awareness or consent. It includes

various harmful programs such as viruses, worms, Trojans, ransomware, spyware,

adware, and rootkits. Each type of malware operates differently: viruses attach to clean

files and spread by infecting others, while worms self-replicate to move independently

across networks. Research categorizes malware based on factors such as behavior,

method of propagation, and impact. A paper in the Journal of Cybersecurity highlights

the differences among these malware types, emphasizing the importance of

understanding their unique features for effective detection and prevention [13]. Another

study in IEEE Communications Surveys & Tutorials explores the evolution of malware,

drawing attention to emerging threats like fileless malware and advanced persistent

threats (APTs), which are designed to evade traditional detection methods and persist

within systems for long periods [14]. Such studies emphasize the need for advance and

ongoing research and development of dynamic security methods to cope with the ever-

changing landscape of malware and advance persistent threats.

2.5.2 Malware Attack Vectors in IoT

In an IoT Network, the malwares exploit the vulnerabilities of interconnected

devices to get into the network and then spread fast in the whole network. Most

common attack vectors in IoT devices are the insecure communication protocols,

insufficient authentication and outdated softwares which have known vulnerabilities.

Most of the time, IoT devices communicate through unencrypted channels which makes
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it easier for attackers to gain access to their data and temper it. On the other hand, a

large amount of IoT devices are used with default credentials or weak passwords, which

makes it easier for cyber-criminals to penetrate into the network by getting access to

device. Once an attackers gets hold of a device due to mentioned vulnerabilities, these

devices can be used to launch further attacks, e.g., DDoS attacks (Distributed Denial of

Service) [15][16].

In IoT environments, malware exploits vulnerabilities in interconnected devices to

penetrate networks and undermine security. Common attack vectors include insecure

communication protocols, inadequate authentication, and outdated software with known

weaknesses. Many IoT devices communicate over unencrypted channels, allowing

attackers to easily intercept and tamper with data. Additionally, a significant number of

devices are deployed with default credentials or weak passwords, creating easy access

points for cybercriminals. Once compromised, these devices can be leveraged to launch

further attacks, such as Distributed Denial of Service (DDoS) attacks, or to gain

unauthorized access to sensitive information. [15][16]

2.5.3 Classical vs. latest Malware Detection Techniques

With time, malware detection has advanced, by transforming from old signature

based detection methods to more complex behavior detection machine learning based

techniques. In traditional methods, malware detection is done through a database

comprising of known malware patterns and signatures or files scanning to search for

making matches of any malware behavior. These old school methods work effective

against known threats but are ineffective against latest attacks as attackers alter the

forms of malware to hide their activities to get into the network. Also, the classical

signature based detection methods need constant updates regarding malware database,

which can use heavy resources which is not suitable for resources constraint IoT

networks.

Latest malware detection techniques use machine learning to overcome these

limitations. Software behavior and characteristics are analyzed through these
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techniques for detection of malicious activities and threats. Machine learning is able to

identify malicious patterns, as it is trained on large datasets and is able to detect

previously unknown malwares due to this reason. ML based detection systems detect

and flag suspicious activities, like unauthorized access to system files, abnormal

behavior in network traffic, etc. Many studies have shown that ML based detection

systems enhance systems’ security by identifying complex patterns and adapt to latest

threats on this basis [17]. Along with this, they also improve accuracy with detection

rates as compared to traditional methods [18].

The malware detection methods have enhanced over the years, from classical signature

based to more resilient, behavior based ML systems.

2.6 Machine Learning Techniques

2.6.1 Overview of Machine Learning Algorithms

ML algorithms are crucial for automation, analysis and interpreting large datasets

as they facilitate to make predictive and intelligent models. The ML algorithms are

categorized into 3 types, i.e., Supervised learning, Unsupervised learning and

reinforcement learning.

In Supervised learning algorithms, labeled training data is used to train the model in

order to learn relationships between features and labels. Commonly used supervised

algorithms include Decision trees, KNN, SVM (Support vector machines), neural

Networks, and more. These models are commonly used for classification and

regression problems. Whereas, unsupervised learning algorithms don’t need labeled

data and they identify particular patterns in the data. That’s why they are ideal for

clustering and anomalies detection in datasets. Common unsupervised algorithms

include k-means clustering, PCA (Principal component Analysis), etc.

In Reinforcement learning, training agents focus on sequential decisions through

rewards to desirable actions and penalty against undesirable actions. These algorithms

are effective in such scenarios where the optimal solution is time based, i.e., it changes
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over time. Deep learning techniques like CNNs (Convolutional neural networks) and

RNNs (recurrent neural networks) have further shown great success in dealing with high

dimensional data sets and complicated patterns. These models are best suited for

image recognition and NLP (natural language processing) [21][22].

Figure 3: Different types of Machine learning algorithms

2.7 Network Traffic Analysis

2.7.1 Network Traffic Analysis importance and ways to capture
Network traffic

To stay resilient against malicious activities from cyber criminals, it is crucial to

analyze the network traffic, in order to detect the behavioral malicious activities that may
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arise cyber threats flags. Security specialist are able to detect unusual behaviors on the

basis of continuous network traffic. Unusual behaviors like irregular access,

unauthorized access, unexpected data transfers suggest that there might be an unusual

activity taking place in the network. The detection of such behaviors in timely manner

enables the cyber security specialists to give a swift response that reduces any potential

damages to network and devices. This way, network traffic analysis plays a crucial role

in strengthening defense systems in cybersecurity [19][20].

It is important to capture the network traffic in an effective manner through packet

sniffing, deep packet inspection, flow based monitoring, etc, to enable detection of

potential intrusions and abnormal activities timely. Such techniques of capturing network

traffic contribute to detailed insights about the travelling data packets in network. Many

studies emphasize these advance traffic capturing methods to make efficient and

accurate network security operations [21][22].

2.7.2 Selection and Extraction of features from Network Traffic

Selection and extraction of features is one of the most important step in network

traffic analysis, as it depends on the richness of features that how much they facilitate in

the detection of malware or unusual behavior in a network. Key features like flow

duration, type of protocol, pocket size, etc, are focused to train the ML models to detect

anomalies and malware more precisely. Selection of features in a proper way not only

enhances the performance of ML models, but also takes less computational resources

which leads to better analysis. Studies show that feature selection greatly impacts the

accuracy and rate of malware detection, that’s why this process is of high importance in

network traffic analysis [23][24].

2.8 Training and Testing of ML Models through Network Traffic Data

The ML models are first trained on a dataset, then the trained model is applied

on a raw data (testing data) to check its efficiency and accuracy.

In training phase of ML model, the model is provided labeled data of network traffic

which includes malicious and normal activities data. Through this data, the model is
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able to learn about the features and patterns of normal and malicious behavior and

distinguishes benign behavior from the unusual behaniors. For this purpose, high qaulity

and large datasets are required to ensure accuracy in training of the model, so that it is

able to generalize to new data efficiently. After training the model, it is applied on testing

data to check its efficiency through performance metrics like accuracy, precision, recall

and F1-score. This helps in idetifying issues like overfitting or underfitting by the model,

by which model can be fine tuned to enhance its abilites. Studies stres the importance

of thorough testing to make robust models which are capable of enhanced cyber threats

detection and mitigation[25][26].

2.9 Performance Metrics for ML Models

To measure the efficiency of ML models, performance metrics are used, as

accuracy and reliability is important in cyber security. Commonly used performance

metrics are accuracy, precision, recall and F1-score.

Among these metrics, accuracy tells about the correctness of model. Precision reflects

the true positive predictions made among all positive predictions. Recall/sensitivity tells

about the true positives identified correctly among all actual positives. F1 Score is used

for balancing the precision and recall, telling the situation when the dataset is

imbalanced.

Studies highlight the importance of using these metrics in evaluation of ML models, as

by using these metrics, false positives and false negatives can be reduced in detection

of malware or unusual behaviors. These metric provide detailed understanding and

evaluation of model performance, by which robust and effective Ml solution for network

security can be ensured. [27].

2.10 Challenges in Deploying ML Models in IoT Environments

There are several challenges regarding deployment of ML models based malware

detection systems in IoT Networks , due to the resources constraint and diverse nature

of IoT devices. Many IoT devices have limited computational capacities, processing
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powers and storage to deal with complex Ml algorithms. For this point, it is essential to

make light weight models with efficient algorithms that can easily function in such limited

resources, while still giving precise and quick threats detection. With dynamic and

heterogeneous characteristics of IoT environments, variations in network traffic cause

complexity in model training and then deployment of model in actual scenarios.

One of the crucial challenges is the security and integrity of ML models as well. The

attackers try to manipulate the input data, through which the model can be mislead and

false detection can be made. ML models should be robust against such adversarial

attacks as well, which needs continuous learning and model updates in IoT networks

without compromising the integrity of system [28][29]
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Chapter 3
LITERATURE REVIEW

3.1 Literature Review
A variety of research papers and books were reviewed in our research for the

foundational concepts and analysis of ongoing work in the domain of malware detection

based on ML through traffic analysis. This review played a vital role in understanding

the direction of our research work.

In a research work by Katherasala et al., malware detection through network traffic

analysis based on ML is suggested for which datasets of NetML and CICIDS 2017 are

used. They applied ML algorithms like Random forest and XGBoost, and their work led

to improvements in malware detection and classification as compared to previous

benchmarks. They evaluated the performance of different algorithms, so their research

work mainly tells about the crucial results of well labeled datasets that how they

increase the accuracy of Malware detection by ML in network security [30].

Another research by Khan et al., takes a featureless approach in malware detection in

which they used 1D-CNN architecture which is specially prepared for devices which

have limited resources and processing capabilities. Instead of feature engineering, their

model processes direct raw packet streams. It reduces the time and need for

preprocessing and resources. Faster calculations are enabled by bypassing the phase

of feature extraction. This work shows that how raw data can be used efficiently for

anomaly detection, which gives a practical solutions for resource constraint environment

[31].

The work done by Gayathri et al., involved CGAAN (Conditional Generative Adversarial

Network) to generate malicious samples that helped in addressing the problem of

under-represented data. This method was applied to a multiclass classification issue, in

which the accuracy of anomaly detection was enhanced by the CGAN. Their method

provided an innovative solution to the cases of skewed data distributions create

regarding insider threat detection. By adding the synthetic samples in the dataset, better

results were achieved in detection of malicious insider activities which are hard to detect.
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CGAN proved as a valuable tool for enhancing the reliability of ML models, especially

for cases with limited or scarce real world data [32].

Bakkhsh et al., in their work, proposed an intrusion detection system for the IoT Network

by using Deep neural Networks tehncique for real time data anomaly detection. They

used feed forward neural networks (FFNN), Long short term memory (LSTM) and

Random neural networks (RMMs) models for ther reaserch with dataset of CICIoT2022.

Their models showed accuracy of 96% with adjustment to IoT Network’s changing

dynamics [33].

In the work conducted by Nobakht et al., they introduced the DEMD-IoT model, through

deep ensemble method for detection of IoT malware in network traffic. The model used

3 1D-CNNs as base learners (convolutional Neural Networks) and then combined their

outputs with the help of Random forest algorithm used as a meta learner to increase the

accuracy. The mentioned model achieved high accuracy in classifying the traffic as

benign or malicious. To ensure effective learning, they tuned hyperpararmeters through

GridSearchCV algorithm. The use of 1D-CNNs minimized the preprocessing as they are

less intensive resource wise as compared to 2D-CNNs. The model showed higher

accuracy then the other deep learning approaches [34].

Likewise, another group of researchers Ghamry et al., developed and optimized

machine learning image based IoT malware detection method by using visual

representation, I.e., images., of the network traffic. They used an ACO-based feature

selection approach, to improve the classification results using SVM. The feature

selection process lowers the processing time and detection with essential features

makes the results more accurate. Futhermore, the PSO algorithm was used to find the

best values of the hyperparameters of the SVM classifier. An image based dataset was

used from different domains which enabled diverse datasets to be used for training the

data. The experiments revealed that the quadratic kernel function of SVM performed the

bast in detection of malware in netwrok traffic where the traffic was represented as

images [35].
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3.2 Literature Review Gaps
The literature review shows several research gaps in current IoT Network

malware detection based on ML, which includes the need of solutions that are scalable

and resources efficient. Many ML methods face challenges regarding scalability when

they are further applied to larger datasets or IoT environments with numerous Iot

devices. This challenge requires such ML models that are able to cope with the

growing complexity of IoT networks without decreasing accuracy in malware detection.

Also, many ML models are designed for specific types of IoT applications, which limits

their generalization in different use cases.

Another significant problem lies in the use of small and homogeneous datasets, as

there is limitation of resources. ML models should be trained on diverse type of datasets

so that they are able to handle heterogeneous IoT devices Network traffic data without

compromising their efficiency.

Insuffucuent exploratory data analysis (EDA), specially when dealing with datasets

which have imbalanced data or improper labels, can lead to wrong accuracy of model.

Hence, development of standardized ML methods which minimize the use of resources

with all the mentioned challenges are crucial to strengthen ML solution in malware

detection.
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Chapter 4
DATA AND METHODOLOGY

In this section, detailed overview of the dataset used in this thesis (CICIoT2023) is given,

alongwith important steps involved in the preprocessing of data. The performance

metrics used to evaluate the efficiency of models are also discussed. Furthermore, the

ML models used in this research are also discussed, I.e., KNN (K-nearest Neighbours),

DT (Decision tree), XGB (XGBoost) and CatBoost.

4.1 Analysis of the CICIoT2023 Dataset:

The dataset of CICIoT2023 used in this research as it is a real-time dataset

developed by Canadian Institute of Cybersecurity, to analyze IoT network traffic

behaviors, test the vulnerabilities and assess the performance of ML models for

different attack scenarios. This particular dataset was developed through simulation of a

smart home environment in which approximately 40 IoT devices were interlinked using

communication protocols, e.g., IEEE 802.11, ZigBee, Z-wave and Bluetooth.

The dataset's primary purpose is to capture both normal and abnormal network traffic,

encompassing attacks like DDoS, brute force, spoofing, reconnaissance, and web-

based malware. This dataset is publicly available as an open-source resource. [36]

4.1.1 Key Features:

 IoT Devices: The dataset features a range of IoT devices, including Philips Hue,

Eufy HomeBase, and Vera Plus smart hubs, which act as communication hubs for

other IoT devices within the simulated environment.

 Experimentation: Data was gathered through various scenarios, such as

power-on experiments (where individual devices were isolated), idle-time captures

(recording overnight traffic without user interaction), user interactions (capturing

network traffic generated by different device functionalities), and scenario-based

experiments that simulate typical smart home activities.
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4.1.2 Malware Types:

The dataset provides comprehensive details on various attack types, including:

 DDoS attacks: Examples include ACK Fragmentation, SYN Flood, ICMP Flood,

and HTTP Flood.

 Brute Force attacks: Includes dictionary-based brute force techniques.
 Spoofing attacks: Covers ARP and DNS spoofing.

 Reconnaissance attacks: Encompasses Ping Sweep, OS Scan, Port Scan, and

Vulnerability Scan.

 Web-based attacks: Such as SQL injection, Command injection, Backdoor

malware, and Browser hijacking.

 Mirai botnet attacks: Includes GREIP Flood, Greeth Flood, and UDPPlain attacks.

4.1.3 Features/Labels in the dataset:

The dataset contains 34 labels, detailed as follows:

 Backdoor Malware: Malicious software that creates hidden entry points for

attackers to remotely control a system.

 Benign Traffic: Normal network traffic with no malicious behavior or intent.
 Browser Hijacking: An attack in which malicious scripts control a browser,

redirecting the user to harmful websites.

 Command Injection: A vulnerability allowing attackers to execute arbitrary

commands on a host operating system through vulnerable applications.

 DDoS-ACK Fragmentation: This is a DDoS attack in which fragmented ACK

packets flood the target system

 DDoS-HTTP Flood: This DDoS attack floods the target system with HTTPS

requests which lead to overloading of server and denial of service.

 DDoS-ICMP Flood: It is a DDoS attack which floods the target with ICMP (ping)

requests, which causes congestion in network.
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 DDoS-ICMP Fragmentation: this attack consists of ICMP flooded messages in

which fragmented packets cause processing strain on the target.

 DDoS-PSHACK Flood: A flood attack using TCP packets with PSH and ACK flags,

aiming to exhaust server resources.

 DDoS-RSTFIN Flood: This DDoS uses TCP packets alongwith RST and FIN flags

and disrupts the ongoing connections.

 DDoS-SlowLoris: This DDoS attack keeps the connections open which exhausts

the resources of server without closing them.

 DDoS-SYN Flood: This DDoS attack floods a target with TCP SYN requests, which

overwhelms server resources.

 DDoS-SynonymousIP Flood: It is an IP spoofing attack based on DDoS, in which

packets with same IP address confuse the target and overwhelm it in result.

 DDoS-TCP Flood: This DDoS attack floods the target system with TCP packets,

exhausting the target in result

 DDoS-UDP Flood: In this DDoS attack, flooded UDP packets slow down the target

system.

 DDoS-UDP Fragmentation: In this type of DDoS attack, fragmented UDP packets

are flooded towards the target due to which it reassembles large amounts of data.

 Dictionary Brute Force: It is an attack which uses a predefined list of passwords

which are used to gain unauthorized access to data or system.

 DNS Spoofing: This attack involves introduction of false DNS data into the

resolver’s cache, which redirects the traffic to malicious sites.

 DoS-HTTP Flood: This is DoS attack which floods the target with HTTP requests,

due to which legitimate access is blocked when target gets strained.

 DoS-SYN Flood: This DoS attack involves flooding of target with TCP SYN packets,

which consumes the resources of target system.

 DoS-TCP Flood: This DoS attack involves flooding of TCP packets which exhausts

the resources of target.

 DoS-UDP Flood: In this DoS attack, UDP packets are flooded towards target which

overwhelms the network resources.
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 Mirai-greeth Flood: .This is a variant of Mirai botnet which floods the targets with

GRE-encapsulated packets.

 Mirai-greip Flood: This is a Mirai botnet attack which uses GRIEP flood techniques

to generate traffic via infected IoT devices.

 Mirai-udpplain: It is a basic UDP based flood attack which is executed by the Mirai

botnet through infected IoT devices.

 MITM-ARP Spoofing: This Man in the middle attack uses spooefed ARP packets to

manipulate the communication between devices.

 Recon-Host Discovery: It is a reconnissance technique which uses to detect active
hosts in a network.

 Recon-OS Scan: This scan identifies identifies the operating system of target

system, which is often used to plan further attacks.

 Recon-Ping Sweep: THis reconnaissance attack uses ICMP echo requests (pings)

to detect live hosts on network.

 Recon-Port Scan: This attack scans the taregt system’s ports to identify open

services and possible vulnerabilites.

 SQL Injection: This attack includes injection of malicious SQL queries into a

database query to achieve unauthorized data access.

 Uploading Attack: .This is a web based attack in which malicious files are

uploaded to a server to get control of target system or execute harmful codes on

target.

 Vulnerability Scan: This scan identifies vulnerabilites in a system which are then

exploited by the attackers.

 XSS (Cross-Site Scripting): This attack involves injection of malicious scripts into

the trusted websites to steal users data.
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Below is an example table of the top labels and their counts:

S No Label Count

1 DDoS-SYN_Flood 780,000

2 DDoS-TCP_Flood 720,000

3 DDoS-HTTP_Flood 680,000

4 DDoS-UDP_Flood 620,000

5 Recon-PortScan 580,000

6 DDoS-PSHACK_Flood 530,000

7 DDoS-ICMP_Flood 500,000

8 DoS-UDP_Flood 450,000

Table 1: top labels and their counts

4.1.4. Dataset Specifications:

 The dataset CICIoT2023 has 169 CSV files, in which network tarffic data has been

gathered by using tools like Wireshark and DumpCap. These tools captured packet-

level data for both benign and attack scenarios. The dataset includes a wide variety

of features, such as flow_duration, header_length, protocol_type, and various flag

counts.

 The total number of rows across all CSV files is approximately 46 million, and the

machine learning models in this research were trained on the entire dataset. It

contains 97.6% attack data and only 2.4% benign data, reflecting a significant class

imbalance. This imbalance makes it difficult for machine learning models to classify

the data accurately. The dataset is heavily skewed toward malicious traffic, while

benign traffic accounts for just 2.4% of the total. This imbalance is primarily due to

the nature of attacks, such as DDoS and port scanning, which produce a large
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number of network flow connections in a short period, resulting in an over

representation of these attack types.

4.2 Specifications of hardware used in this research:
As it was the aim of this research to do machine learning based IoT malware

detection on Network that needs less resources to be able to work in resource

constraint environment of IoT devices. HP Omen was used for it with 16 GB RAM and 8

GB Graphic card. No cloud resources were used for the calculations.

4.3 Libraries and classifiers used in processing:

The libraries Pandas, NumPy, sklearn, Seaborn, and Matplotlib were utilized for

data processing. Decision Tree, KNN, XGBoost, and CatBoost models were individually

employed to train and evaluate their performance. These models were trained and

tested on the entire dataset, focusing on three different classifications to analyze and

compare their performance in relation to data scaling and feature usage.

1) Binary classification: “Attack” vs “Benign”

2)Multi-class classification (8 classes):

DDoS, DoS, Mirai, Recon, Spoofing, Benign, Web and Bruteforce

3)Multi-class classification (34 classes):

DDoS-RSTFINFlood, DDoS-PSHACK_Flood, DDoS-SYN_Flood, DDoS-

UDP_Flood, DDoS-TCP_Flood, DDoS-ICMP_Flood, DDoS-SynchronousIP_Flood,

DDoS-ACK_Fragmentation, DDoS-UDP_Fragmentation, DDoS-ICMP_Fragmentation,

DDoS-SlowLoris, DDoS-HTTP_Flood, DoS-UDP_Flood, DoS-SYN_Flood, DoS-

TCP_Flood, DoS-HTTP_Flood, Mirai-greeth_flood, Mirai-greip_flood, Mirai-udpplain,

Recon-PingSweep, Recon-OSScan, Recon-PortScan, VulnerabilityScan, Recon-

HostDiscovery, DNS_Spoofing, MITM-ArpSpoofing, BenignHijacking,

Backdoor_Malware, XSS, Uploading_Attack, SqlInjection, CommandInjection and

DictionaryBruteForce.
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4.4 Data Cleaning:
The data is cleaned from incomplete observations, e.g., missing values, bytes or

values which were replaced with zeros by using ‘fillna()’ function from the librray of

Pandas. After initial data cleaning, the cleared data was saved as a series of CSV files

for further processing.

4.5 Data Sampling

Dataset is split into two parts in data sampling, I.e., a training set and a test set. The

training set is utilized to train the ML model, which is usually 80% of the main dataset.

This set comprises of proper labels and features so that ML learns from them while

training. The trained model is then applied on test set (raw data) and predicts the labels

for underlying features. The test data generally comprises of 20% of the previous main

dataset. This testing helps in evaluation of model’s accuracy and it is ensured that the

model generalizes well to new or unseen data.

4.6 Data Transformation:
Scaling of data is an important step in preprocessing of data, specially when one

has to work with ML models that are sensitive to range and distribution of the input. One

of the common techniques of scaling is the StandardScaler from the sklearn library. It

transforms the data such that each data feature has a mean of 0 and a standard

deviation of 1. Through standardizing the data, it is ensured that features with different

scales do not affect the learning process of model disproportionally.

��������������(�� , �) =
�� − ����(�)

�����(�)

Where,

xi = Original data point

x = Feature value

Mean(x) = Feature value Mean

Stdev = Feature value standard deviation
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4.7 Data Encoding

Categorical data is converted into numerical data through label encoding in order for ML

algorithms to do effective processing on them. This method is usually applied when data

has categories that do not have an inherent order. In this type of encoding, each

category is given a unique integer, starting from 0 that increments for each subsequent

category.n

The formula for label encoding is conceptually simple:

Z = Encode(X)

Where,

Z = Encoded value (A numerical representation)

X = original categorical value

Encode = mapping of each category to a unique integer

In our resarch, the models were trained on the dataset for binary and multiclass

categories. To prepare the data for Bagging and Boosting algorithms, like XGBoost and

CatBoost, categorical variables needed to be converted into numeric representations.

This was achieved using scikit-learn’s LabelEncoder, which transformed categorical

labels into numeric values.

4.8 Performance metrics

Different performance metrics were used to evaluate the performance of all ML

Models used in this research which included Accuracy, Precision, Recall and F1 Score.

4.8.1 accuracy
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The performance metric of accuracy in classification measures that efficiently a

ML has predicted the correct labels of data. It is calculated by dividing the correct

predictions with the total number of predictions. This metric is a popular choice among

researchers to evaluate the performance of ML model due to its simplicity and easy

interpretation, especially in the cases of balanced class distributions.

Accuracy =
�� + ��

�� + �� + �� + ��

Where,

TP (true positive values) = Positive cases which are correctly predicted

TN (true negative values) = Negative cases which are correctly predicted

FP (False Positive values) = Positive cases that are incorrectly predicted

FN (False Negative values) = Negative cases that are incorrectly predicted

4.8.2 Precision

Precision is one of the main performance metrics used for classification,

specifically when the performance of a model has to be assessed during prediction of

positives. In this metric, accuracy of the model is evaluated through determination of

actually correct proportion of predicted positives. This metric is especially crucial in

scenarios where the false positives have considerable consequences, e.g., fraud

detection, medical diagnosis, etc. This question is answered by the precision metric that

how instances were truly positive out of the all the predicted positives? This metric is

important in such situations when it is crucial to minimize the false positives, to ensure

that the positive predictions are more accurately calculated.

Precision is mathematically represented as:

Precision =
��

�� + ��

Where:



29

TP (True positive values) = It is the number of positive cases which are correctly

predicted

FP (False positive values) = Thees are the number of incorrect predictions, i.e., when

the actual class was negative but the model predicted the value as positive.

4.8.3 Recall

Recall is also called sensitivity or true positive rate, which evaluates that how

efficiently a model has detected all relevant positive instances. It particularly measures

the actual positive cases which are detected correctly by the model. This metric is

important in such situations when false negatives are of great concern than false positive,

e.g., a medical diagnosis or fraud detection. The question is answered by recall that how

many instances are identified by the model correctly among all actual positive instances?

This metric is important in such scenarios when detecting maximum positives is the

priority, even with inclusion of a few false positives.

Recall is mathematically dealt as:

Recall =
��

�� + ��

Where:

TP (True positive values) = It is the number of positive cases which are correctly

predicted

FP (False positive values) = These are the incorrectly predicted values by the model as

negatives, where they are actually the positive cases

4.8.4 F1 score

F1 Score performance metric balances between precision and recall. It is of

greater importance in such situations where there is imbalanced class distributions or we

have to address both false positives and false negatives in our work. F1 score gives a

comprehensive overall measure of a model’s accuracy, as it combines recall and
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precision into a single value. It is ideal for the datasets in which one class greatly

outweighs the other.

�1 =
Precision x Recall

Precision + Recall

4.9 ML MODELS

4.9.1 K - NEAREST NEIGHBORS (KNN)

In K-nearest neighbors (KNN) ML algorithm, classification is done by examining

the k nearest neighbors of a data point and then label is assigned to that data point

which is the most common among those k nearest neighbors. KNN does not rely on

assumptions regarding the data distribution that is why it is a simple algorithm and

performs effectively with non-linear data as well.

4.9.1.1 MATHEMATICAL INTERPRETATION OF KNN:

Euclidean distance is the most commonly used method to measure distance in KNN.

�(�, �) =
�=1

�

(�� − �� )2�

Where,

d(p,q) = it is the distance between two points p and q

pi and qi = these are the feature values for two points

N = the total number of features

4.9.1.2 DIAGRAMATICAL INTERPRETATION OF KNN:

To understand KNN, an example has been discussed here, in which the green points

represent the test data which is classified on the basis of the majority labels of its

nearest neighbors (the red or blue colored data points)
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Figure 4: Diagrammatic interpretation of KNN

4.9.1.3. KEY BENEFITS OF KNN FOR MALWARE DETECTION IN IoT
NETWORKS:

KNN has following advantages due to which it is chosen for detecting malware in IoT

networks.

1. Adaptability to Network Traffic:

KNN has distance based approach in finding the label of a data point. That is

why it is effective in detecting the deviations from normal patterns indicating malware,

as IoT devices make distinct patterns of traffic. Studies show that KNN distinguishes the

benign and malicious traffic efficiently in IoT networks.

2. Efficient for Small and dynamic Datasets:

KNN is a lazy algorithm that is why it is ideal for IoT environemnt as data is produced

in continuous and small batches in IoT networks. The computations by KNN are made

only during the prediction phase, that is why it is suited well to cope with dynamically

generated data.

3. Proven Success in Research:

Studies have shown that when KNN is combined with optimization techniques, e.g.,

Firefly optimization, its malware detection performance is improved in IoT networks. As

a balance is made between simplicity and accuracy through this combination in

detection of malware and intrusions in the network.
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4.9.1.4. CRUCIAL HYPERPARAMETERS IN KNN:

 K - number of neighbors:

Selection of the righ k numbers is very important. A smaller K can make the

model more sensitive to noise, while a larger K may cause oversmoothing. In IoT

malware detection, adjusting K helps achieve a balance between sensitivity and

accuracy.

 Distance Metric:

Although Euclidean distance is commonly used, alternative metrics like

Manhattan or Minkowski distance might provide better results depending on the dataset.

 Weighting:

KNN can either assign equal importance to all neighbors or apply weights based

on their distance from the query point. This can be especially useful in malware

detection, where closer neighbors (potentially infected devices) may have a greater

influence on the prediction.[37]

4.9.1.5 Disadvantages of Decision Trees for IoT Network Malware
Detection:

K-Nearest Neighbors (KNN) has limitations for IoT malware detection, including

computational inefficiency in large-scale environments due to the need to calculate

distances for all data points. It is sensitive to the choice of distance metric and can

struggle with noisy or irrelevant features, common in IoT networks. Additionally, KNN

performs poorly with class imbalance, often leading to low detection rates for rare

malware instances.

4.9.2 DECISION TREE

A Decision Tree is a simple and widely-used machine learning algorithm that can

be applied to both classification and regression problems. The data is split based on

certain conditions, in which a tree is formed. Each node in the tree represents a
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decision for a feature, every branch shows an outcome and every leaf node depicts a

predicted value or label.The data is recursively partitioned into subsets which are

homogeneous as possible inline with the target variable.

4.9.2.1 MATHEMATICAL INTERPRETATION OF DECISION TREE:

Entropy or Gini impurity is the mostly used measure in decision trees for

calculation of the splits purity.

Entropy is mathematically represented as:

Entropy(S) =−
�=1

�

��� ���2(��)

Where,

pi = class i proportion in the subset S

C = total number of classes

Entropy is used by the decision tree to

Decision trees use measures like entropy to choose the optimum features for splitting,

as its target is to maximize the information gain at every node.

4.9.2.2 DIGRAMATICAL INTERPRETATION OF A DECISION TREE:

Figure 5: Diagramatical interpretation of Decision tree
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Above figure shows an example of a decision tree. Where it is predicting the

maximum possibility of survival based on different factors like gender, family size, age,

etc. The DT starts the process by looking whether the person is a male. If the answer is

no, then it predicts the likelihood of survival as ‘high’ and stops. Otherwise, it moves to

next node and recalculates the answers, if the person’s age is greater than the model

predicts that he doesn’t have higher chances to live. If the person is 9.5 years old or

younger then it continues to next node to calculate further data information and the

prediction process continues.

When detecting malware in IoT environments, the features like protocol type, packet

size etc are utilized by this algorithm to detect the malware or malicious behaviors in the

network.

4.9.2.3 Why Use Decision Trees for Malware Detection in IoT Networks:

1. Interpretability:

A clear decision making procedure is depicted by decision trees. Transparency is

important when malware detection is done in cyber security applications, and DT

lets the analysts trace out that how decisions have been made on the basis of

network data, I.e., how much a decision tree is effective in handling complex

intrusion detection related tasks in IoT networks due to their flexibility.

2. Dealing with High-Dimensional Data:

A huge amount of data is generated by IoT networks which is highly dimensional.

DT handle such datasets easily as they detect the most relevant features in the data.

Studies have shown the success rate of DT, as they analyze large IoT datasets by

taking key features for detection of malware.

3. Adaptation to Non-Linear Patterns:

Often, Non linear traffic patterns are involved in the malware detection in IoT

environment. DT are able to handle these non linear relationships by capturing them,

which makes DTs much effective in detecting abnormal behaviors in networks.
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When DTs are combined with gradient boosting techniques, it greatly enhances the

accuracy in malware detection [38].

4.9.2.4 Important Hyperparameters of Decision Trees for Malware
Detection in IoT Networks:

1. Maximum Depth:

The max depth parameter of DTs is related to the maximum depth of the tree.

When we limit the depth it helps to prevent overfitting in the model, which is important in

noisy traffic patterns in IoT networks.

2. Minimum Samples Split:

This parameter defines the minimum number of samples which is needed to split

a node. When this parameter is tuned, it helps the tree to avoid making splits on the

basis of small and noisy data subsets.

3.Gini vs. Entropy:

Gini impurity or entropy, either of these can be used by DTs to find the best splits.

Entropy leads to better splits when the model has to deal with highly complex datasets

generated by IoT networks.

4. Minimum Samples Leaf:

The minimum number of samples that are allowed in a leaf node, are controlled

by this parameter. It prevents the model from learning very specific patterns that may

lead to overfitting [39].

4.9.2.5 Disadvantages of Decision Trees for IoT Network Malware
Detection:

DTs are prone to overfitting if they are properly used or regularized, although they are

highly effective in detection of malware in IoT networks, specifically in noisy or
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imbalanced datasets. Overfitting happens when the model becomes too biased or

tailored to the training data which leads to poor performance when it is applied to

unseen data. This can be handled through limiting tree depth or pruning to cope with

this issue [41].

4.9.3 Extreme Gradient Boosting (XGB)

XGB is recognized for its efficiency in many tasks of classification and regression.

It consists of gradient boosting framework, in which multiple weak learners are gathered

sequentially which addresses the mistakes done by the previous models. In this iterative

process, loss function is minimized in each round and accuracy is increased. XGB is

scalable and efficient that is why it is suited for different sizes of datasets.

4.9.3.1 MATHEMATICAL INTERPRETATION OF XGB:

In the gradient boosting framework of XGB, loss function is minimized in every

round.

It is mathematically given as:

���(�) =
�=1

�

�(��� , �� �
(�−1) + �(��)

Where,

L = Loss function, e.g., mean squared error or log loss

�� = The function, which is a weak learner

Ω = The regularization term to control the complexity of the model

The aim of the objective function is to optimize the loss by adding regularization by

which overfitting is prevented.

4.9.3.2 Why Use XGB for Malware Detection in IoT Networks:

1. High Performance:
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XGB is known for its speed and efficiency especially when working with large

datasets. This quality makes it a good choice for IoT Network malware detection as

large dataset is produced due to numerous IoT devices connected in the network. XGB

performs better than many algorithms, due to its advanced feature selection and

classification techniques.

2. Effective with High-Dimensional Data:

The most relevant features are automatically selected by XGB during training

which makes a better choice for IoT based malware detection, as high dimensional data

is produced in IoT networks with various features.

3.Overfitting Prevention:
Mostly noisy data is produced in IoT Network traffic with imbalanced dataset,

which might lead to overfitting in ML models. XGB corrects this issue by using L1 and

L2 regularization techniques to manage model complexity, and minimizes the issue of

overfitting which makes it reliable for IoT malware detection [40].

4.9.3.3 Important Hyperparameters of XGB for Malware Detection in
IoT Networks:

1. Learning Rate:
This parameter (n) tells that how quickly the model adjusts with the new data.

Setting a lower learning learning rate might improve performance but it needs more

iterations. This parameter is fine tuned in IoT malware detection, as it helps in balancing

between training speed and the accuracy of model.

2. Maximum Depth:
This parameter tells that how deep a decision tree can grow. By increasing the

tree depth, intricate patterns can be captured, but it can also lead to overfitting. Hence,
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a proper tuning of this parameter can help in balancing between all essential

characteristics.

3. Subsample:
It specifies that how much fraction of the dataset has been used to train each

tree. When only a fraction of data is used at every iteration, it reduces overfitting and

generalization is increased.

4. Colsample_bytree:
The number of features used for training each tree is controlled by this parameter.

Adjustmkent of this parameter allows to focus on the main and crucial features while

decreasing the risk of overfitting.

5. Gamma:
Minimum loss reduction that is required for a split is set by this regularization

parameter. It avoids unnecessary splits and ensures that only significant splits are made,

which helps to filter out the noise in IoT Network traffic.

4.9.3.4 Disadvantages of XGB for IoT Network Malware Detection:

XGB is a good choice for malware detection in IoT network, but it has some limitations

as well:

1. High Resource Demands:

XGB calculations can be highly resource straining especially when working with

large datasets of IoT networks in which continuous datastreams are produced.

Substantial memory and processing power may be required for training the model,

which may not be practical in resource constraint devices of IoT network.

2. Complexity in optimization and Tuning:

Tuning and optimizing various hyperparameters in XGB can be challenging,

while making a right balance between performance and prevention of overfitting. It
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requires extensive experimentation which requires time which is an issue in dynamic

IoT network environments.

4.9.4 CatBoost

CatBoost is used to effectively process both categorical and numerical data. It

excels in dealing with datasets that have numerous categorical features, commonly

found in real world applications. CatBoost uses ordered boosting, which is a technique

that prevents overfitting through minimizing prediction bias during the process of training.

4.9.4.1 MATHEMATICAL INTERPRETATION OF CATBOOST:

CatBoost is based on gradient boosting framework and is represented mathematically

as:

���(�) =
�=1

�

�(��, ��� (� − 1) + ��(��)) + �(��)�

Where,

L = The loss function, e.g., cross-entropy or mean squared error

�� = The weak learner at the tth iteration

Ω = The regularization term which controls the complexity of model

4.9.4.2 Why Use CatBoost for Malware Detection in IoT Networks:

1. Dealing with Categorical Features:

The data generated by IoT networks often contains both numerical and

categorical data. CatBoost suits such datasets well, as it supports categorical data

efficiently, which makes it suitable for IoT networks. The need for extensive

preprocessing is eliminated through this feature, which gives a great advantage as

compared to other boosting algorithms.

2.Efficiency with Accuracy:
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CatBoost is an ideal pick for real time IoT network calculations as it helps in rapid

and accurate malware detection. It works well in dealing with high dimensional data in

IoT network by quick decision making.

3. Reduction of Overfitting:

Through ordered boosting, CatBoost reduces overfitting and has lower prediction

bias. This is valuable for scenarios where data can be noisy or imbalanced, so It is

ensured that the model generalizes effectively to dynamic, real world IoT networks well

4.9.4.3 Important Hyperparameters of CatBoost for Malware Detection
in IoT Networks:

1. Learning Rate:

The step size at each iteration is controlled by learning rate. Accuracy is

improved by small learning rate but it needs more iterations, but on the other hand, it

also helps in identifying subtle patterns of network traffic indicating malicious activities.

2.Depth:

The complexity of the model is set through the depth parameter. A balance

between avoidance of overfitting vs capturing the complex relationships is required

while fine tuning this parameter. This parameter helps balancing between generalization

and accuracy.

3. Iterations:

The number of boosting iterations is set by this parameter. More iterations lead to

higher accuracy, but it may cause overfitting as well. That is why, this parameter is

carefully adjusted, particularly in large scale IoT networks.

4. L2 Regularization:

L2 regularization is adjusted to control model complexity and prevention of

overfitting. This is handy in IoT traffic situations where there should be a fine balance

between detection of malware and avoidance of inheriting noise.
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4.9.4.4 Disadvantages of CatBoost for IoT Network Malware Detection:

1. Intensive Computational Resources:

Even when CatBoost is faster then other gradient boosting algorithms, it can still

be high resource strainer, particularly in large scale IoT networks, as large datasets

have numerous features which takes time and resources to process.

2. Hyperparameter Tuning:

Like other advanced machine learning algorithms, CatBoost has several

hyperparameters that need careful tuning. In rapidly changing loT environments, this

can be a challenge, especially when the data distribution changes over time, requiring

continuous monitoring and adjustments [40].
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Chapter 5
IMPLEMENTATION AND RESULTS

5.1 IMPLEMENTATION

Figure 6: Work flow of the proposed ML based IoT Network Malware Detection system
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The malware detection based on ML is implemented in following steps (as shown in Fig).

The steps 1 and 2 are already implemented before the preparation of dataset by the

Canadian Institute of Cybersecurity, as CICIoT2023 dataset has been used from their

repository of datasets.

5.1.1. Traffic Capture from IoT Network

The process starts by capturing network traffic from an IoT network. IoT devices,

such as smart home appliances, wearables, or industrial sensors, generate continuous

data that needs to be collected for analysis. In this case, tools like Wireshark are used

to capture raw packet data in the form of PCAP files (Packet Capture format). These

files contain detailed information about each packet exchanged between devices and

the network, representing both normal and malicious activities in the IoT environment.

5.1.2. Feature Extraction and Conversion (PCAP to CSV Files)

Once the traffic is captured, feature extraction is carried out using the

CICFlowMeter tool. The raw PCAP files are converted into a CSV format where the data

is more structured and easier to analyze. CICFlowMeter summarizes the packet data

into "flows," which capture important traffic metrics like packet size, flow duration, and

byte counts between different devices. These features are crucial for identifying

malware patterns in IoT traffic, as they help distinguish between normal and abnormal

behavior.

5.1.3. Data Splitting: Train (80%) - Test (20%)

Before proceeding with data processing, the dataset is split into training and

testing sets. Typically, 80% of the data is allocated for training the machine learning

models, while 20% is reserved for testing. This division is important to ensure that the

model can learn from a portion of the data and then be evaluated on unseen data,

simulating real-world scenarios where it will need to detect malware in previously

unseen network traffic.
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Figure 7: Splitting the dataset into training and testing sets

5.1.4. Defining X_Columns (Features) and Y_Column (Labels)

The features to be used and labels are defined into the X_Column (e.g., ‘flow_duration’,

‘Header_Length’, etc, which would be the input features for ML model) and y_column

(labels, e.g., malware type (DDoS, Mirai, etc) or benign traffic that the model will predict).

Figure 8: Defining features and labels columns

5.1.5. Data Processing: Cleaning, Scaling, and Transformation

Data processing involves multiple steps, including cleaning, scaling, and

transformation. Cleaning ensures that the dataset is free from any missing values,

duplicates, or inconsistencies that could skew the results. Scaling adjusts the range of

numerical values so that features are on a similar scale, which is crucial for models

sensitive to varying magnitudes. Transformation may also include encoding categorical

variables into numerical formats and normalizing the data for optimal performance in

machine learning algorithms.

Figure 9: Initializing an instance of Standard Scalar
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Figure 10: for each training CSV file, computation of mean and standard deviation for the features in

X_Column

Figure 11: Previously fitted Scalar being used to standardize the features (X_Columns)

5.1.6. Label Mapping

The labels are converted to numerical form as XGB and CatBoost work with numerical

categories.

Figure 12: Label encoding

First, the labels were categorized as “Attack” and “Benign” and models were trained and

tested on binary labels basis. Then these were encoded to 0 and 1, as some models

like XGB and CatBoost work with numerical labels.

Figure 13: Binary classification (‘Attack’ vs ‘Benign’)

Figure 14: Conversion of Attack and Benign labels to '0' and '1'
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Secondly, the models were trained on the basis of 8 classes of malware. Malwares

were categorized on the basis of their general nature, e.g., DDoS, web.

Figure 15: Multiclass catgorization (8 labels, general types of malware)

Figure 16: Converion of labels to numerical values

Thirdly, all malwares were categorized as individual numbers which makes 34 classes

of malware to be detected.

Figure 17: Multiclass catgorization (34 labels, types of malware)

The calculations were done on the basis of binary and multi-class classifications (8

classes and 34 classes) to check the strength of models in detection of malwares in IoT

Network.

5.1.7. Model Training, Evaluation, and Optimization
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In this step, machine learning models such as K-Nearest Neighbors (KNN),

Decision Trees, XGBoost, and CatBoost were trained on the training data (for binary

and multiclass categories separately). Each model brings distinct advantages—KNN is

well-suited for smaller datasets due to its simplicity and efficiency, while Decision Trees

offer high interpretability, making it easier to understand the decision-making process.

On the other hand, XGBoost and CatBoost, as advanced gradient boosting algorithms,

excel at processing large, complex datasets and are particularly effective at handling

imbalanced data, delivering good accuracy in such scenarios. Optimization of models is

done through hyperparameter tuning during training, which ensures that each model

performs the best while minimizing errors and issues like overfitting.

During training, models are optimized through hyperparameter tuning, ensuring that

each model is performing at its best while minimizing errors such as overfitting.

5.1.8. Testing and Results Analysis

Models were tested on the raw test set (20% of the main dataset, reserved for

testing purpose) to evaluate the performance of models. Performance metrics of

accuracy, precision, recall and F1 score were used to assess the performance of each

model. Testing is done to ensure that how well the models generalize to the unseen

data and are able to detect the malware in new data, through reduction of false

positives and negatives.

5.2 RESULTS ANALYSIS

5.2.1 Binary classification of IoT Network Malware done through KNN,
DT, XGB and CatBoost

Four ML models were used for binary classification of malware in IoT network, I.e.,

Decision tree (DT), K nearest neighbors (KNN), XGBoost (XGB) and CatBoost. The

models had to distinguish between two categories, I.e., Attack vs benign network traffic.

After the training and testing processes, each model was evaluated for its performance

with the help of confusion matrices. This matrix gives insights about the accuracy of
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model by depicting the correct and incorrect predictions, which allows for a comparison

of their malware detection abilities while minimizing the false negative and positives.

5.2.1.1 Confusion matrix for detection of malware through KNN

High misclassification rates are depicted in KNN’s performance as compared to

Decision tree, regarding malware detection. The True Positive rate is high at 99.33%,

correctly identifying attacks. However, KNN struggles with benign traffic, as it

misclassifies 12.99% of benign traffic as attacks (False Positives). This higher FP rate

might lead to more false alarms, which is problematic in an IoT network context where

the volume of benign traffic is significant. Additionally, KNN's True Negative rate

(87.01%) is lower compared to DT, meaning it is less effective in correctly identifying

benign traffic. The nature of KNN, which relies on distance metrics, could be less

effective in handling complex patterns in IoT traffic, contributing to these results.
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Figure 18: Confusion matrix of KNN binary classification of malware

5.2.1.2 Confusion matrix of detection of malware through DT
(Decision Tree)

The Decision Tree confusion matrix shows the highest overall accuracy among

the models, with an impressive 97.18% of all observations correctly identified as attacks

and 95.13% of benign traffic classified correctly. The True Positives (TP)—correctly

identifying attacks—stand at 99.52%, and True Negatives (TN)—correctly identifying

benign traffic—are at 95.13%. The False Positive (FP) and False Negative (FN) rates

are relatively low, with only 0.47% of benign traffic misclassified as attacks, and 0.11%

of attacks misclassified as benign. The Decision Tree’s ability to provide clear decision

paths likely contributes to its strong performance in distinguishing between benign and

malicious traffic in IoT networks, as the model captures distinct patterns well.
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Figure 19: Confusion matrix of DT binary classification of malware

5.2.1.3 Confusion matrix of detection of malware through XGB

XGBoost demonstrates robust performance, particularly in minimizing False Positives

and False Negatives. Its True Positive rate is very high at 99.76%, with a minimal False

Negative rate of 0.24%. This means XGBoost is excellent at identifying attacks.

However, it has a slightly higher False Positive rate than DT, with 6.74% of benign

traffic misclassified as attacks. While this is better than KNN, it still lags behind Decision

Tree in correctly identifying benign traffic. XGBoost’s gradient boosting mechanism

helps improve accuracy and reduce bias, but it may still be slightly less sensitive to

benign traffic patterns in this specific IoT dataset.
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Figure 20: Confusion matrix of XGB binary classification of malware

5.2.1.4 Confusion matrix of detection of malware through CatBoost

CatBoost also performs strongly, particularly in detecting attacks, with a True

Positive rate of 99.70%. Its False Positive rate is slightly higher at 7.25%, misclassifying

benign traffic as attacks more frequently than both DT and XGBoost. However, the

False Negative rate (0.30%) is on par with XGBoost, showing that CatBoost excels at

not missing attacks. CatBoost’s ability to handle categorical data efficiently makes it a

good candidate for IoT environments, but the slightly higher FP rate compared to DT

indicates that it is not as good at distinguishing between benign and attack traffic in this

specific context.
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Figure 21: Confusion matrix of CatBoost binary classification of malware

5.2.1.5 Comparison of Binary classification of IoT Network Malware
through KNN, DT, XGB and CatBoost via Confusion matrix

Based on the analysis, Decision Tree (DT) emerges as the best-performing

model in terms of overall classification accuracy for both attack and benign traffic. DT

has the minimal rates of False positive and false negatives, which makes it quite reliable

regarding detection of malware in Iot network traffic. DT is able to capture the malicious

patterns effectively and makes interpretable results which makes it the most suitable

model for this task. DT aslo has low false rate (FP) and strong ability of accuratelky

detecting (TP), making it ideal for IoT network malware detection as it gives minimal

unnecessary alarms. Even though, XGB and CatBoost alos gave good results, but ST

has more balanced approach across all matrix positions.

5.2.2 Binary classification efficiency through performance metrics

Four ML algorithms, i.e., KNN, DT, XGB and CatBost were used for binary

classification of malware in IoT networks. To evaluate the efficiency of these models,

they were evaluated on the basis of metrics like accuracy, precision, recall and F1-score.

Through these metrics, a comprehensive and thorough understanding of the

performance of these models was made that which model remained the best for binary

classification of malware in IoT network traffic.

Metric KNN DT XGB CatBoost

Accuracy 0.99 0.99 0.99 0.99

Recall 0.88 0.91 0.95 0.93

Precision 0.93 0.97 0.96 0.96

F1-Score 0.90 0.94 0.95 0.95

Table 2: Performance metrics of KNN, DT, XGB and CatBoost for binary classification
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5.2.2.1 Comparison of Binary classification of IoT Network Malware
through KNN, DT, XGB and CatBoost via performance metrics

The table depicts the performance metrics for each model. All four models achieved a

score of 0.99, indicating that they all have overall high predictive abilities. However,

accuracy alone doesn't provide a complete picture, especially in the context of

imbalanced data, which is common in malware detection scenarios.

Looking at recall, XGBoost performed the best with a score of 0.95, followed by

CatBoost (0.93), DT (0.91), and KNN (0.88). Recall measures how well the model

identifies all actual malicious traffic. A higher recall indicates that fewer malicious

samples were missed, which is critical in security applications. Thus, XGBoost is the

strongest in terms of capturing true malicious activity, while KNN is comparatively

weaker.

In terms of precision, DT slightly outperforms the others with a precision of 0.97,

meaning it has fewer false positives (instances where benign traffic was mistakenly

classified as an attack). CatBoost and XGBoost follow closely behind with a precision of

0.96, and KNN lags with a precision of 0.93. High precision is crucial in reducing the

number of false alarms, and DT excels in this aspect.

The F1-score, which balances both precision and recall, shows that XGBoost and

CatBoost are nearly tied at 0.95, making them the most balanced models overall. DT

follows with a score of 0.94, while KNN has the lowest F1-score at 0.90, indicating its

slightly inferior balance between precision and recall compared to the other models.

Although XGB and CatBoost have strong metric in binary classification, but the

confusion matrix showed that DT was better in performance compared to all other

models regarding fewer false positives and negatives. This makes DT the best suitable

choice for binary malware detection model, as it gives a balance between high precison

and recall, making it less prone to flase alarms and missing attacks. Hence, DT stood

out in terms of being a relaible ML model for binary malware detection in IoT network.
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5.2.3. Multiclass classification (8 general malware classes) efficiency
through performance metrics

Malware detectio based on multi-class (8 classes) was done for IoT network traffic with

the help of KNN, DT, XGB and CatBoost. The models’ performance was then assessed

through evaluation metrics of accuarcy, precision, recall and F1-score. These metrics

depict a well overall analysis about efficiency of ML models in detecting malicious

behavior from benign.

Metric KNN DT XGB CatBoost

Accuracy 0.95 0.99 0.99 0.99

Recall 0.76 0.91 0.81 0.69

Precision 0.63 0.83 0.71 0.67

F1-Score 0.65 0.86 0.73 0.68

Table 3: Performance metrics of KNN, DT, XGB and CatBoost for multiclass classification (8 classes)

5.2.3.1 Comparison of Multi-class classification (8 classes) of IoT
Network Malware through KNN, DT, XGB and CatBoost via
performance metrics

All models achieved high accuracy (DT= 0.99, XGB = 0.99, CatBoost = 0.99), except

KNN (0.95). This shows that these models are able to identify malware with high

correctness levels in large datasets. On the othe rhand, KNN is slightly lower, but still a

good choice for malware detection if we only talk about the accuracy level of models.

When looking at recall, Decision Tree (DT) outperforms the others with a value of 0.91,

indicating its ability to correctly identify most malware classes. XGBoost follows with a

recall of 0.81, while KNN shows a moderate recall of 0.76. CatBoost lags behind with a

recall of 0.69, meaning it misses a considerable number of actual malware instances.

Since recall is critical in malware detection for capturing true positives (i.e., correctly

identifying malware), DT stands out as the most reliable model in this context.
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In terms of precision, DT again leads with a score of 0.83, demonstrating its

effectiveness in minimizing false positives—instances where benign traffic is

misclassified as malware. XGBoost and CatBoost show precision values of 0.71 and

0.67, respectively, meaning they still perform well but have a higher likelihood of false

positives. KNN performs the weakest with a precision of 0.63, which could result in a

higher number of benign traffic instances being mistakenly flagged as malware.

F1-score highlights the dominant role of DT (as it balances precision and recall). It

concludes that DT gives a balanced approach between identification of true positives

and avoids false positives. XGB with a F1 score of 0.73, KNN of 0.65 and CatBoost of

0.68, all these models show low values, depicting that these models struggle to keep a

good balance between precision and recall (in multi-class classification of 8 classes)

In result, DT is the best perfroming model in mutli-class classification of malware, as it

has been shown by performance metrics as well. DT continuously performs well in all

metrics, particularly in recall and precsiion, indicating a low rate of missed malware

cases and fewer false positives. The other models show lower overall performance.

Based on the confusion matrix and the evaluation metrics, DT proves to be the most

reliable and effective model for malware detection in IoT networks.

5.2.4. Multiclass classification (34 general malware classes) efficiency
through performance metrics

A multiclass classification task involving 34 different malware classes was

performed using four machine learning algorithms: K-Nearest Neighbors (KNN),

Decision Tree (DT), XGBoost (XGB), and CatBoost. The models were evaluated using

key performance metrics, including accuracy, recall, precision, and F1-score, to assess

their effectiveness in identifying malware in an IoT network.

Metric KNN DT XGB CatBoost

Accuracy 0.93 0.99 0.99 0.99
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Table 4: Performance metrics of KNN, DT, XGB and CatBoost for multiclass classification (34 classes)

5.2.4.1 Comparison of Multi-class (34 classes) classification of IoT
Network Malware through KNN, DT, XGB and CatBoost via
performance metrics

In terms of accuracy, DT, XGBoost, and CatBoost all achieve a value of 0.99,

indicating excellent overall performance in classifying the malware types. KNN lags

behind slightly with an accuracy of 0.93, which, while still strong, shows that it struggles

more than the other models to correctly classify the malware classes.

Recall highlights the model's ability to correctly identify malware classes, with DT again

performing the best at 0.83, meaning it captures more true positives compared to the

others. XGB, CatBoosta nd KNN show low recall values of 0.76, 0.70 and 0.66

respectively. Thees low values suggest that these models are missing more actual

malware cases which is problematic in real world scenario.

Regarding precision, DT performs well as compared to other models with a score of

0.80. It means that it generated fewer false positives as compared to other models.

XGB, CatBoost and KNN have lower precision at 0.71,0.67, and 0.61 respectively.

Hence, thse models are more likely to misclassify the benign traffic as malicious one.

According to the results, DT clearly works the best than the other models, in every

metric, particularly the precision and recall. This concludes DT as the most efficient

model for multi-class classification of malware (8 classes) while minimizing false

positives and negatives.

5.2.5. Overall Comparison of IoT Network Malware Detection through
KNN, DT, XGB and CatBoost via performance metrics

Recall 0.66 0.83 0.76 0.70

Precision 0.61 0.80 0.71 0.67

F1-Score 0.62 0.81 0.72 0.68
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Table 5: Overall comparison of ML Models performance in malware binary and multiclass classification

Overall comparison of the performance of the malware classification by models shows

that DT consistently performs well regrading accuracy, precision, recall and F1-score,

against KNN, XGB and CatBoost. It minimizes both flase positive and negatives. Also,

in more complex mutliclass classification (34 classes), DT depicts remarkable balance

between precision and recall, which ensures that it not only captures intricate malware

patterns but also avoids generating too much false alarms. This makes DT an excellent

choice for IoT applications as it is a reliable malware detection model.

XGB also performs well in some classification tasks, especially in identifying high

number of true positives. However, it still underperforms as compared regarding

precision, leading to high number of false positives. The capacity of producing more

false alarms by XGB can be an issue in real world scenario where precision is crucial.

CatBoost also shows similar performance like XGB, but it struggles more in precision in

the multiclass classification, making it less reliable due to high number of false alarms.

KNN, on the other hand, performs the least as compared to other models, particularly in

multiclass classification when the complexity increases. It misses more malware cases

(false negatives) and classifies benign as malicious cases (false positives). KNN may

work effectively in simple scenarios, but it is not right for complex classification of

multiclasses, where detection of even subtle malware patterns is essential.

Metric Binary Classification Multiclass classification

(8 classes)

Multiclass classification

(34 classes)

KNN DT XGB CB KNN DT XGB CB KNN DT XGB CB

Accuracy 0.99 0.99 0.99 0.99 0.95 0.99 0.99 0.99 0.93 0.99 0.99 0.99

Recall 0.88 0.91 0.95 0.93 0.76 0.91 0.81 0.69 0.66 0.83 0.76 0.70

Precision 0.93 0.97 0.96 0.96 0.63 0.83 0.71 0.67 0.61 0.80 0.71 0.67

F1-Score 0.90 0.94 0.95 0.95 0.65 0.86 0.73 0.68 0.62 0.81 0.72 0.68



58

Overall, DT stands out as the most suitable, balanced and effective model among the 4

chosen models, which makes it the best pick for reliable malware detection in IoT

networks.

5.3 Key differences in our research & review of study questions

The first key issue related to building a light weight IoT network malware detection

system has been successfully addressed through Decision tree algorithm. This model

showed efficiency and reliability even when it has to be applied in resource constraint

environment of IoT networks. Decision tree models take less computational resources

as compared to XGB or CatBoost, that’s why they are an ideal solution for IoT networks

which have limited processing power and resources. The system was not deployed on a

cloud, rather calculations were done on the dataset via a local system.

The second research objective was about improving the speed and accuracy of the

model. Hyperparameter tuning on Decision tree model was done in order to achieve this

goal.By carefully adjusting the tree depth, splitting criteria, and minimum samples

needed for splits, the performance of model was optimized for quick malware detection

while keeping a balance of accuracy. This optimization and balance helped the system

to identify malicious activity quickly and accurately detect potential threats in the

network. Along with this, hyperparameter tuning also ensured that the model keeps

lightweight, which made it suitable for IoT environments without sacrificing performance.

The final aim of research focused on the validation of performance of models through

performance metrics, which included accuracy, precision, recall and F1-score. These

metrics evaluated the effectiveness and scalability of Decision tree model. The model

well performed in all metrics, depicting its ability to deal with large datasets, even by

maintaining high detection rates.

The consistent performance of Decision tree model across different classes

classification of malware showed that this model gives a all rounder solution for a light

weight model, robust, scalable and effective malware detection system in real world IoT

networks.

5.4. Future work
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In future work, it is better to test the ML models on a diverse variety of datasets from

different IoT networks in order to ensure the robustness and generalization of those

models. This will help in checking their performance across different attack types and

traffic patterns.

Secondly, deployment of models in live IoT environment is crucial to test their

performance in dynamic and unpredictable network traffic. This is important to check

the effectiveness of models in emerging malware scenario.

Also, incorporation of additional techniques like cross validation and multiple datasets

for training and testing can be used to prevent overfitting. Future researches should

deploy the detection systems on variety of IoT devices having varying computational

resources. This will ensure the reliability of model in diverse scenarios. Lastly,

incorporation of defenses against adversarial attacks, e.g., adversarial training or model

hardening techniques can help to improve the resilience of the detection system against

more complex malware that may try to bypass the security measures.
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Chapter 6
Conclusion

Our main goal in this thesis was to make a malware detection system based on

machine learning for IoT Networks. Iot networks are resources constraint with limited

processing powers and memory.Our focus was on developing a light weight malware

detection system which won’t strain the resources in an IoT environment. In this regard,

the efficiency of the model was also the key priority, as best performing model was to be

chosen for malware detection. For this purpose, we chose CiCIoT2023 dataset, which

contains large data and diverse network traffic range, It has both benign and malicious

activities detailed data which makes it well suited to train our ML models and test them

on raw testing data as well.

Initially, the dataset was divided into training and testing sets with a ratio of 80 - 20.

Training set (80%) was used to train the models and Testing set (20%) was kept aside

to evaluate the models’ efficiency on raw unseen data. After that, preprocessing steps

were performed on the dataset like feature scaling, to ensure that all features were

standardized. Most relevant features were used to identify malware from the dataset, to

reduce the computational burden on the models while keeping important information for

classification. The data was transformed as well through label encoding for better

classification by models which use numerical data for efficient calculations.

After preparation of data, 4 models (K nearest neighbors, Decision tree, XGBoost,

CatBoost) were trained on the training set on the basis of 3 type of classifications, i.e.,

binary classification, multi-class classification (8 classes) and multi-class classification

(34 classes). Hyperparameter tuning was also done to optimize each model, in order to

ensure that they performed efficiently, especially in resource constraint IoT

environments. The aim was to increase the calculations speed as well, to make the

models feasible for work in real time malware detection with limited resources.

The models’ performance was then evaluated through performance metrics of accuracy,

precision, recall, F1-score. Each model’s performance and ability to identify malware

was carefully analyzed while minimizing false negatives and positives. After extensive
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testing, Decision tree proved to be the best performing model. Even though other model

like XGB and catBoost worked well, but DT showed the best balance between accuracy

and computational efficiency in malware detection in every type of classification with

accuracy above 99%. Its light weight also made it a suitable choice for IoT networks,

where it can detect malware efficiently without exhausting the limited resources of

system.
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