

Learn JavaScript

Chuck Easttom

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Easttom, Chuck.
Learn JavaScript / by Chuck Easttom.

p. cm.
Includes index.
ISBN 1-55622-856-2 (pbk.)
1. JavaScript (Computer program language). I. Title.
QA76.73.J39 E38 2001
005.2'762--dc21 2001046844

CIP

© 2002, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-856-2
10 9 8 7 6 5 4 3 2 1
0110

Product names mentioned are used for identification purposes only and may be trademarks of their respective
companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the
above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents Summary

Chapter 1 HTML Primer . 1

Chapter 2 JavaScript Primer . 13

Chapter 3 Alerts, Prompts, and User Feedback 33

Chapter 4 Image Effects . 43

Chapter 5 Background Effects . 59

Chapter 6 The Document Object Model . 75

Chapter 7 Working with Date and Time . 87

Chapter 8 Working with Cookies . 97

Chapter 9 Working with the Status Bar . 111

Chapter 10 Creating Dynamic Menus . 121

Chapter 11 Working with Forms . 135

Chapter 12 Strings in JavaScript . 149

Chapter 13 Math in JavaScript . 157

Chapter 14 Adding Plug-ins . 169

Chapter 15 Objects in JavaScript . 181

Chapter 16 Tips and Tricks . 187

Chapter 17 JavaScript Games . 197

Chapter 18 ActiveX and JavaScript . 209

Chapter 19 Programming and JavaScript . 217

Chapter 20 Antique Bookstore Project . 223

Appendix A Online Resources . 235

iii

Appendix B HTML Reference. 239

Appendix C JavaScript Reference . 243

Appendix D Common Errors . 249

Index . 251

iv � Contents Summary

Contents

Acknowledgments . xi
Introduction . xiii

Chapter 1 HTML Primer . 1

Images and Hyperlinks. 4
Colors and Backgrounds . 6
Tables . 7
Lists . 9
Marquee . 11
Summary . 11

Chapter 2 JavaScript Primer . 13

Essential Tools . 13
Choosing a Browser . 14

Basic JavaScript Structure. 14
The <SCRIPT> Tag. 14

Internal Scripts . 14
External Scripts . 15

Placing JavaScript Code . 15
JavaScript Conventions . 16

Using the Semicolon. 16
Case Sensitivity . 17
Comments . 17
Using Quotes . 17

Your First Script . 18
Fundamental JavaScript Concepts 20

Data Types and Variables in JavaScript. 20
JavaScript Operators. 22
JavaScript Statements . 23

Multiple Statements . 23
Nested Statements . 24

JavaScript Expressions . 24
JavaScript Function Declarations. 25

Calling Functions . 26
Dialog Boxes . 28

Alert Boxes. 28
Confirm Boxes . 28
Prompt Boxes . 29

v

if Statement . 30
Summary . 31

Chapter 3 Alerts, Prompts, and User Feedback 33

Alert Boxes . 33
Prompt Boxes . 35
Writing Back to the Web Page . 38
Antique Bookstore Project . 41
Summary . 42

Chapter 4 Image Effects . 43

The Image Object . 43
Rollover . 44
Slide Show . 46
Image Preview . 51
Banner Ads . 53
Image Pop-up . 54
Antique Bookstore Project . 56
Summary . 57

Chapter 5 Background Effects . 59

Document Object. 59
Changing the Background Color . 59
Changing the Background Image. 62
More Background Effects . 68
Antique Bookstore Project . 70
Summary . 73

Chapter 6 The Document Object Model . 75

The window Object Hierarchy . 75
document Object . 76
history Object . 76

The document Object. 77
The window Object . 80
The navigator Object . 83
Using the history Object . 84
Antique Bookstore Project . 85
Summary . 86

Chapter 7 Working with Date and Time . 87

Time of Day . 87
Day of Week . 89
Setting Timeout. 92
Antique Bookstore Project . 93
Summary . 95

Chapter 8 Working with Cookies . 97

Baking Your First Cookie . 97

vi � Contents

setCookie . 99
getCookie . 100
Calling the Functions . 101

Bake Another Cookie . 102
Antique Bookstore Project . 106
Summary . 109

Chapter 9 Working with the Status Bar . 111

Image Data . 111
T-Banners . 114
Antique Bookstore Project . 118
Summary . 119

Chapter 10 Creating Dynamic Menus . 121

Pop-Up Menus . 121
Drop-Down Menus . 124
Pull-Down Menus . 125
Expanding Menus . 129
Antique Bookstore Project . 132
Summary . 134

Chapter 11 Working with Forms . 135

Form Basics . 135
Text Fields and Buttons . 137
Options . 138
Radio Buttons . 140
Check Boxes . 141
Event Handlers in Form Elements 143

onSubmit . 143
onReset. 145

Synopsis of Form Elements . 146
Antique Bookstore Project . 147
Summary . 147

Chapter 12 Strings in JavaScript . 149

Creating Strings . 149
String Length . 149

String Methods . 151
charAt(). 151
indexOf() . 152
lastIndexOf() . 153
substring() . 153

Number-to-String Conversion. 154
Empty String Concatenation . 155

Antique Bookstore Project . 155
Summary . 155

Contents � vii

Chapter 13 Math in JavaScript . 157

Mathematical Operators . 157
The Math Object . 159

Constants . 159
E . 160
LN2 . 160
LN10 . 160
LOG2E . 160
LOG10E . 161
PI . 161
SQRT2 . 161

Math Methods. 161
Arithmetic Methods. 162

abs() . 162
ceil() . 162
floor() . 162
log() . 163
max(), min() . 163
pow() . 163
round(). 163
sqrt() . 164

Trigonometric Methods . 164
cos() . 164

Antique Bookstore Project . 166
Summary . 168

Chapter 14 Adding Plug-ins . 169

Putting a Plug-in into Your HTML 169
Using Plug-ins in JavaScript . 170
What Plug-ins are Already Installed? 174
LiveAudio . 175
Antique Bookstore Project . 179
Summary . 179

Chapter 15 Objects in JavaScript . 181

Properties . 181
Using Properties . 181

Methods . 182
Using Methods . 183

Object-Oriented Concepts . 183
Building Your Own Objects . 184

Constructor Functions . 185
Summary . 186

Chapter 16 Tips and Tricks . 187

Inline Frames . 187
Browser Detection. 189
System Information . 189

viii � Contents

Finding Mouse Location . 190
Password . 191
Browser Information . 191
Printing the Page . 192
Antique Bookstore Project . 192
View the Directory . 194
Summary . 195

Chapter 17 JavaScript Games . 197

Press the Button . 197
Roll the Dice . 200
Viva Las Vegas . 202
Summary . 207

Chapter 18 ActiveX and JavaScript . 209

Theoretical Background . 209
Using ActiveX for TCP/IP . 210
Ticking Clock . 212
Slider Text . 213
Summary . 215

Chapter 19 Programming and JavaScript . 217

General Concepts . 217
Arrays . 218
Summary . 221

Chapter 20 Antique Bookstore Project . 223

The Main Screen . 223
Inventory Pages . 227
Finishing the Pages . 232
Summary . 235

Appendix A Online Resources . 235

Appendix B HTML Reference. 239

Appendix C JavaScript Reference . 243

Appendix D Common Errors . 249

Index . 251

Contents � ix

Acknowledgments

Writing a book is a very difficult task, and it is never the work of a single per-

son. I would like to take the time to thank some of the people who were

indispensable in making this book happen:

Jim Hill and Wes Beckwith, the wonderful guys at Wordware Publishing who

labored through this with me. Without Jim and Wes, this book simply could not

have happened. Their ideas and input helped create this book. Not to mention

that Jim always paid for lunch!

A very special thanks to Norman Smith who did an outstanding technical

review of this book. Norm, you saved me from really embarrassing myself.

Your review work is simply top notch.

Finally, I need to thank my wife, Misty, and my son, AJ, who both tolerated me

spending hours secluded in my den working on this project. Without all of

these people, this book would never have happened.

xi

Introduction

Prerequisites

This book assumes you have absolutely no prior knowledge of JavaScript. A

basic working knowledge of HTML is preferred but not essential. The first

two chapters provide a basic introduction on HTML and JavaScript. The rest of

the book takes you step by step through the process of building an actual web

site using both HTML and JavaScript. However, the main emphasis of this

book is teaching you JavaScript. After Chapter 1, “HTML Primer,” all HTML

is simply shown to provide context for the JavaScript, and an explanation for

the HTML code is not usually given. However, only standard HTML tech-

niques are used and the code is presented in a very organized manner so that

anyone with a basic knowledge of HTML can easily follow along.

As each new concept is introduced, I will first explain the concept in a generic

context and then I will show how it applies specifically to the web site we are

building. In this way, you will get both the concept and the application.

How to Read This Book

Some computer programming books are meant for you to simply take what

you need from certain chapters. This book is intended for you to read from

start to finish. If you follow the examples provided, when you complete the

book you will have a completely functional web site with lots of HTML and

plenty of interesting JavaScripts.

Programming Style

As both an aid to the reader and to illustrate good programming practices, I

use a uniform style throughout this entire text and in all the sample code,

which you can download from www.wordware.com/javascript. I also have a

xiii

tendency to comment very heavily—some would say too much. This comes

from teaching and creating code samples for students. I hope you will find this

helpful:

for (var intcounter = 0; intcounter < 10; ++intcounter)

{

[JavaScript statements]

}// end of for loop

Some JavaScript scripters prefer to use a different style:

for (var num = 0; num < 10; ++num){

[JavaScript statements]

}

A lot of my style preferences are just that, preferences. It is hard to call one

style right and another wrong. However, I strongly suggest when you are writ-

ing code to consider the fact that other programmers will probably need to

read your code at some point. You don’t want them to have absolutely no idea

what you were thinking when you wrote your code. I try to write code in such

a way that even a novice programmer with no prior knowledge of the project at

hand could easily deduce the intended purpose of the code.

� NOTE: Many tags in HTML must be closed. The tag must be closed

with . However some tags, such as <TD> and <TR>, do not have

to be closed. Some HTML programmers prefer to close them anyway. I do

not. This is simply a style difference, but one you will see throughout this

book.

Special Features

Each chapter takes you step by step through several examples showing the

techniques that chapter focuses on. The end of each chapter has a section

called Antique Bookstore Project. As you read through the book, this section

will gradually build a complete web site for a fictitious antique bookstore. It is

my hope that this will give you a good feel for the process of developing a com-

mercial web site. All the code for the finished web site can be downloaded

from www.wordware.com/javascript.

xiv � Introduction

The Code

The code for this book can be downloaded from www.wordware.com/javascript.

All the chapter examples are there ready to run. Note that the numbered

examples in the text correspond to the examples in the code files. The com-

plete Antique Bookstore Project is also included. Finally, there is a folder full

of extra samples you can use in your own web sites. I strongly recommend you

browse the code and use the resources provided for you.

Introduction � xv

Chapter 1

HTML Primer

This chapter is provided to give you a basic working knowledge of HTML. For

those readers who lack this knowledge or feel that they may need a refresher,

this chapter is essential to following the rest of the book. Experienced HTML

programmers, however, should feel free to skip this chapter. JavaScript is a

scripting language that is embedded into HTML documents in order to add

significant functionality to those web pages. For this reason a working knowl-

edge of HTML is essential to understanding and using JavaScript. I will be

introducing some interesting HTML tags as we go through the book; however,

I feel that getting you up to speed with a basic knowledge is critical.

HTML, or Hypertext Markup Language, is a relatively simple markup lan-

guage that web browsers can use to display web pages. You can write HTML

code in any text editor. I personally use Windows Notepad. Just remember

when you save the file to save it as an .htm or .html file. The browser recog-

nizes files with the .htm and .html extensions and will look in them for valid

HTML code. HTML has had a long history and has gone through a number of

revisions. Each successive revision adds more functionality to HTML, and

with the current version (as of this writing) of HTML (Version 4.0), it is a very

powerful language that can take some time to learn. Fortunately, most work on

web pages can be done with just the essentials of HTML, and that is what this

chapter will teach you.

� NOTE: Many tags in HTML must be closed. For example, the tag must

be closed with . However, some tags, such as <TD> and <TR>, do

not have to be closed. Some HTML programmers prefer to close them

anyway. I do not. This is simply a style difference, but one you will see

throughout this book.

1

The first question is how do we get the web browser to know that our docu-

ment has HTML codes for it to read? HTML code is composed of tags that let

the browser know what is to be done with certain text. At the beginning of

your document you place the command <HTML> and at the end you put

</HTML>; the web browser will know that the codes in between are sup-

posed to be HTML.

<HTML>

put HTML code here

</HTML>

You have to admit that this is pretty simple. But this web page won’t do much

of anything at all. So let’s do the obligatory “Hello World” sample that every

programming book starts off with. It will show you how to do text and some

basic HTML.

Example 1-1

<HTML>

<HEAD>

<TITLE>My First HTML Page</TITLE>

</HEAD>

<BODY>

<P><CENTER>

Hello World

</CENTER>

</BODY>

</HTML>

Believe it or not this little snippet shows you most of what you need to know

about HTML. To begin with, note that everything is contained between the

<HTML> and </HTML> tags. These two commands define the beginning

and the end of the HTML document. The web browser will ignore any items

outside these commands. Next we have a section that is contained between

the <HEAD> and </HEAD> commands. This is the header portion of your

HTML document. The <TITLE> and </TITLE> commands contain the title

that will actually appear in the title bar of your browser. A lot more can be

done in the head section, but that will be addressed as we work our way

through this book.

Then we have the <BODY> and </BODY> commands. As you might have

guessed this is the body of your HTML document. This is where most of your

web page’s code is going to go. Now inside the body section we have some

text and some additional text that defines how the text will appear in the

2 � Chapter 1

browser. The <P> command defines the beginning and the end of a para-

graph. The and commands tell the browser to make whatever

text is between them bold. tells the browser how big

the text should be (there are a variety of methods for doing this, as we shall

see). The command ends the font section of the HTML code. If

you entered the HTML code correctly, then you should be able to view your

web page in any browser and see an image much like that in Figure 1-1.

By now I trust you have noticed a pattern. All the commands have an opening

command and a closing command. Well, this is true for all but a very few

HTML commands. Just remember this rule: You close the commands in oppo-

site order of how you opened them. Notice in Example 1-1 I opened the

commands before the text like this: <P><CENTER><FONT

SIZE="+2">, and then closed them like this: </CENTER>.

(<P> does not need to be closed.) This is important to remember. You can

think of this as “backing out” of your commands.

HTML Primer � 3

1

C
h
a
p
te

r

Figure 1-1

Images and Hyperlinks

What we have so far gives you a very simple web page that displays one

phrase in bold text. Admittedly, this is not very impressive, but if you under-

stand the concepts involved with using these HTML commands then you

conceptually understand HTML. Now let’s expand your knowledge of HTML.

Usually web pages contain more than simply a title and some text. Other items

you might put in a web page would include images and links to other web

pages. Placing an image on an HTML document is rather simple:

You simply provide the path to the image and the name of the image, including

its file extension (such as .gif, .bmp, .jpg, etc.). The other properties in this

command allow you to alter the placement and size of the image. You can alter

its width and height as well as its alignment.

You will also note that when you first place an image on an HTML page it has a

border around it. You can get rid of this by adding BORDER = 0 into the tag,

as in this example:

Putting a hyperlink to another web site or to an e-mail address is just as simple:

This link will connect to the URL (uniform resource locator) contained inside

the quotation marks. In order to use this methodology to create an e-mail link

simply use this:

You simply have to change the “http://” portion to “mailto:”. Notice that all

three of the preceding methods have one thing in common. They do not close

the command in the typical manner that other HTML commands are closed.

Now let’s examine the source code for a simple but complete HTML

document:

Example 1-2

<HTML>

<HEAD>

<TITLE>Test HTML Page</TITLE>

</HEAD>

<BODY BGCOLOR="blue">

<P>

4 � Chapter 1

<CENTER>My First Web Page </CENTER>

<P>I am learning HTML !. I <I>LOVE</I> HTML!

<P><CENTER></CENTER>

<P>

<P><CENTER>You can email me at</CENTER>

<P>

<CENTER>Email ME

</CENTER><

<P><CENTER>Or go to this publisher's Web Site </CENTER>

<P><CENTER>Wordware Publishing</CENTER>

</BODY>

</HTML>

First a few clarifications. You should note at the beginning a new command:

<BODY BGCOLOR="blue">

You can change the background color of your page using this command and any

standard color. You can also set a background image for your HTML document

with a similar command:

<BODY background="mypicture.gif">

The advjscript.jpg image is available in the code files in a folder named Chap-

ter 1. If you entered the code properly and used the image supplied, your web

page should look something like Figure 1-2.

HTML Primer � 5

1

C
h
a
p
te

r

Figure 1-2

Now I will be the first to admit that this sample web page is very trivial. But it

does contain the basics of HTML. With the material we have covered so far

you can display images, texts, links, e-mail links, background colors, and back-

ground images. Not too bad for just a few short pages.

Colors and Backgrounds

Let’s examine a few other simple items we can add to our HTML documents.

The first is altering text color. You can set the default text color for the entire

document and you can alter the color of specific text. You alter the default text

color for the entire document using a technique very similar to the one used to

alter the background color:

<BODY TEXT="blue">

This text simply tells the browser that unless otherwise specified, all text in

this document should be blue. In addition to changing the default color of all

text in a document you may wish to simply change the color of a specific sec-

tion of text. This is fairly easy to do as well. Instead of using the BODY TEXT

command we use the FONT command:

This is red text

This, like the other color commands, can be used with any standard color.

There are a wide variety of tags you can use to alter the appearance and

behavior of text and images. Just a few others for you to consider would be the

<BLINK> </BLINK> tag which, as the name implies, causes the text to

blink (this is only supported by Netscape and will not work in Internet

Explorer). Another example is <STRIKE> </STRIKE>, which causes the

text to appear with a line through it, a strike through. The tags we have cov-

ered so far are enough to allow you to accomplish what you need in HTML.

6 � Chapter 1

Tables

The next HTML command we are going to examine is the table. They are a

very good way to organize data on your web page. You can use tables with or

without a border. I will explain the various reasons to use one method or the

other.

First I will show you how to create a table with a border:

Example 1-3A

<TABLE BORDER=1>

<TR>

<TD>

<P>This

<P>Is a

<TR>

<TD>

<P>Table

<TD>

<P>With a border

</TABLE>

By now you should be able to recognize that the <TABLE> and </TABLE>

tags actually contain the table. Each <TR> tag designates another row in the

table. The <TD> tag creates a cell within that row (TD refers to table data).

Using those three tags you can create a table with any number of rows or col-

umns you wish. Notice that the first line of this code has the BORDER

property set to 1. This means the border has a width and is therefore visible.

In some instances you may not want the border to show. Tables can be used

simply to hold images and text in relative positions. In cases such as this you

may not wish to have a visible border. Below is an example of a table whose

borders will not show.

Example 1-3B

<P><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0>

<TR>

<TD>

<P>This

<TD>

<P>is a

<TR>

<TD>

HTML Primer � 7

1

C
h
a
p
te

r

<P>Table

<TD>

<P>With no borders or padding

</TABLE>

Notice that the BORDER, CELLPADDING, and CELLSPACING properties

are all set to 0. This causes the table itself to not be displayed. However, the

contents of the table will display. You should also notice that in both examples I

have placed text in each cell.

Figure 1-3 shows two tables, one with a border and one without.

Since the entire purpose of this book is to teach you JavaScript, the obvious

question on your mind should be “How do I insert scripts into HTML?” Well,

fortunately, that is not particularly difficult. The browser deals with script

code (including JavaScript) like it handles HTML code, scanning the source

from left to right and from top to bottom. JavaScript has “tags” of its own by

which it instructs the browser and determines the layout. However, JavaScript

is not read exactly like HTML. In HTML, the browser acts immediately

according to the elements it recognizes. Not all JavaScript code refers to

actions that take place while the page is loading. Some parts are just kept in

memory until they are called. For instance, if you write a function and do not

call it, the browser does not do anything with it. This part of the script stays in

8 � Chapter 1

Figure 1-3

memory and can be invoked later. But the real question you are likely wonder-

ing about before you proceed with the rest of this book and learning JavaScript

is, how do you put scripts into your HTML documents. Any script can be

placed in a document very easily by encasing the script inside of two

commands:

<SCRIPT LANGUAGE = "whateverscriptlanguageyouareusing">

and

</SCRIPT>

There is a variety of scripting languages available for the web including

VBScript (based on the Visual Basic programming language), CGI, and of

course, JavaScript. Below are two examples of JavaScripts inserted into

HTML code.

<SCRIPT LANGUAGE="JavaScript">

document.write("")

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">

function makeDialogBox()

{

alert("Wonderful!")

}

</SCRIPT>

Lists

It is common to present data in lists. With HTML you have access to a variety

of types of lists. The first we will discuss is the unordered list shown below.

 First Item

 Second Item

The and tags define the code that lies between them as being

part of an unordered list. The tags identify list items. An unordered list

item will simply appear as a bulleted item, as shown in the following figure.

HTML Primer � 9

1

C
h
a
p
te

r

An ordered list is not much different. The list item stays the same. But

the is going to change somewhat.

<OL type = I>

 First Item

 Second Item

The “type =” portion of the tag tells the browser what type of list this is. We

used a capital I in our example, which will give you capital roman numerals for

your list items.

10 � Chapter 1

Figure 1-4

Figure 1-5

The following table shows all the types of ordered lists and how they appear in

your browser.

Type = I I. First Item
II. Second Item

Type = i i. First Item
ii. Second Item

Type = 1 1. First Item
2. Second Item

Type = a a. First Item
b. Second Item

Type = A A. First Item
B. Second Item

See Example 1-4 in the code for a demonstration of lists.

Marquee

A very fascinating item you can add to your web page is the marquee. A scroll-

ing marquee takes a message or an image and scrolls it across the screen. The

basic format is this:

<MARQUEE LOOP = INFINITE> Hey this is really cool </MARQUEE>

In addition to text, you can also place an image in the marquee to scroll across

the screen:

<MARQUEE LOOP = INFINITE> </MARQUEE>

You can also change the direction the marquee moves in. The <DIREC-

TION> tag will tell the marquee which direction to scroll to, not from.

<MARQUEE LOOP = INFINITE DIRECTION = RIGHT>Hey this is a cool marquee </MARQUEE>

You can choose from the following directions: Left, Right, Up, and Down.

Marquees provide an interesting and relatively easy way to display eye-

catching information on your web page.

Summary

Let me stress that what I have just covered with you are simply the essentials

of writing HTML code. You can find a number of books that will go into HTML

in more depth than this.

HTML Primer � 11

1

C
h
a
p
te

r

There are also a variety of software packages that will do the HTML code for

you. You simply create a document just as you would in any word processor

and the software will create the underlying HTML code. Two very inexpen-

sive options that I recommend for basic HTML coding are Claris Works Home

Page (about $25) and Netscape Composer, which comes with Netscape Com-

municator and is absolutely free of charge.

12 � Chapter 1

Chapter 2

JavaScript Primer

This book will teach you JavaScript by walking you step by step through the

production of a complete web site. However, to get a jump start it is essential

that you first have a basic grasp of JavaScript. The goal of this chapter is to

introduce you to the basic concepts of JavaScript. Each of the successive chap-

ters discusses a particular facet of JavaScript with several examples. Just

before the summary of each of the following chapters is a section where we

use the material covered in that chapter for the web site we are building.

This chapter will take you into the technical details of JavaScript. It is possible

to read the later chapters and use them without reading this chapter. However,

at some point you will want to review this chapter. Its contents explain the

intricacies of how JavaScript works. Even if you skip this chapter, I recom-

mend you come back to it when you have read the first 10 chapters of the

book.

Essential Tools

HTML files are plain text files. Therefore, in order to add JavaScript to an

existing HTML document, you need a text editor. Notepad is an excellent

choice for a simple text editor, if for no other reason than it’s free with Win-

dows. Most operating systems including Windows, Macintosh, and Linux come

with a free text editor.

You can use various editors for your JavaScript as well as your HTML. How-

ever, many experienced web developers simply use a standard text editor that

usually comes free with their operating system. If you are using Windows, you

already have Notepad and WordPad on your PC; those are both fine for doing

HTML and JavaScript. The advantage of using standard text editors is that

they are free. The disadvantage is that they do not offer any debugging tools to

13

help you with the JavaScript. I personally prefer simply using Notepad for my

HTML and JavaScript development.

Choosing a Browser

Besides the basic programming tool, you need to be able to run your scripts

and view their output. It doesn’t really matter which browser you choose. The

latest versions of Netscape and Microsoft Internet Explorer both fully support

JavaScript. Compatibility should only be a serious problem with older versions

of browsers. Since both browsers are available as a free download, it is proba-

bly advisable that you download a copy of both so that you can test your scripts

in both.

Basic JavaScript Structure

In order to run client-side JavaScript, you must embed the code in the HTML

document. However, you cannot place JavaScript statements in the source

code in just any location. There are basically two methods to embed JavaScript

scripts in HTML:

� As statements and functions using the <SCRIPT> </SCRIPT> tags.

� As short statements resembling URLs.

The <SCRIPT> Tag

This tag defines in HTML that a script follows. You can declare a script that is

directly written in the HTML code, or in a separate file.

Internal Scripts

The <SCRIPT> tag is used to enclose JavaScript code in HTML documents.

This is the most common way to include simple JavaScripts and it is the

method we will use for most of this book. Here is the general syntax:

<SCRIPT LANGUAGE="JavaScript">

[JavaScript Statements...]

</SCRIPT>

The <SCRIPT LANGUAGE="JavaScript"> tag acts like all other HTML tags.

Notice that it must be followed by its closing counterpart, </SCRIPT>. Every

statement you put between the two tags will be interpreted as JavaScript code.

This is probably the most common method for inserting JavaScript into HTML

documents.

14 � Chapter 2

The LANGUAGE attribute is used to specify the scripting language. At pres-

ent, the <SCRIPT> tag supports various languages including JavaScript and

VBScript. JavaScript is the default scripting language, so the LANGUAGE def-

inition is not required. However, I recommend that you still use it for the sake

of clarity. When the browser comes across the precise name of the language, it

loads the built-in JavaScript interpreter and then interprets the script.

JavaScript is case sensitive, but HTML is not. It does not matter whether you

write <SCRIPT> or <script>, but try to be consistent. Be sure to write the

name of the language properly. Personally I use all capitals in my HTML; even

though it does not matter to the browser, it does to the person reading my

HTML code. You will find that many web developers follow this convention.

Remember that HTML and JavaScript are no different from any programming

language in that you should always strive to make sure your code is readable.

External Scripts

There is a SRC attribute for the <SCRIPT> tag, which enables the use of

external scripts. This means you can place your script in a separate file and

include it using the SRC attribute. External scripts are useful when you have

lengthy or complex scripts and you feel that including them directly in your

HTML code would make for difficult reading. I will be using external scripts

later in this book.

Placing JavaScript Code

When you want to place the script somewhere in the HTML document, you

need to choose an appropriate place to put it. Technically, you may place it any-

where between the <HTML> and </HTML> tags that enclose the whole

document. Actually, the two possibilities are the <HEAD>…</HEAD>

portion and the <BODY>…</BODY> portion. Because the <HEAD>…

</HEAD> portion is evaluated first, many developers choose to place their

JavaScript here. A single HTML document may contain any number of scripts.

You can place some of the scripts in the <HEAD>…</HEAD> portion, and

others in the <BODY>…</BODY> portion of the page. The choice of where

to place them should follow some logic based on when you wish the script to

execute. Script placed in the <HEAD> section will be executed as soon as

the web page is loaded. The following code demonstrates this:

JavaScript Primer � 15

2

C
h
a
p
te

r

<HTML>

<HEAD>

<TITLE>Using Multiple scripts</TITLE>

<SCRIPT LANGUAGE="JavaScript">

[JavaScript statements...]

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">

[JavaScript statements...]

</SCRIPT>

</HEAD>

<BODY>

<H1>This is another script</H1>

<SCRIPT LANGUAGE="JavaScript">

[JavaScript statements...]

</SCRIPT>

</BODY>

</HTML>

JavaScript Conventions

There are several conventions used to make JavaScript code more understand-

able. Some of these are discussed in this section.

Using the Semicolon

The JavaScript interpreter does not pay any attention to carriage return char-

acters in the source. It is possible to put numerous statements on the same

line, but you must separate them with a semicolon (;). You can also add a semi-

colon at the end of a statement that occupies its own line, but it is not

necessary. Take a look at the following statements:

document.write("Hello"); alert("Good bye")

document.write("Hello")

alert("Good bye")

document.write("Hello");

alert("Good bye");

All three sets are legal, and their results are identical. Let me stress that the

semicolons are not needed; I just mention them because programmers whose

background is C, C++, or Java will be used to ending their statements with a

semicolon. Although the semicolon is allowed, I personally never use it, since

its use is superfluous in JavaScript.

16 � Chapter 2

Case Sensitivity

It was mentioned previously in this chapter that JavaScript is a case-sensitive

language. This fact applies to all aspects of the language, including variable

names (identifiers), functions, and methods (discussed later). The statement

document.write(), for example, is legal, but document.Write() is not.

Comments

Comments are an important concept in all languages, including in JavaScript.

They help make programs simple and easy to understand. Comments are mes-

sages that can be put into programs at various points without affecting the

results. There are two different types of comments in JavaScript:

� Single-line comments are comments that do not exceed the length of one

line. These comments begin with a double slash (//).

� Multiple-line comments are comments that exceed the length of one line.

Therefore, they require a sign that specifies the beginning of the com-

ment, and another sign that specifies the end of the comment. The open-

ing part is /* and the closing part is */.

// single-line comment

/* line 1 of the multi line comment

line 2 of the multi line comment

line 3 of the multi line comment */

Both types of comments are identical to the comments in Java, C, and C++.

Comments are an essential part of any programming language. If you work in a

team environment, comments will allow others to clearly understand the

intentions of your code. I would also add that if you review your own code sev-

eral months after writing it, you are unlikely to remember exactly what you

where planning. Although some programmers will state that very well-written

code needs few or no comments, I strongly disagree with this. I personally

advocate a very liberal use of comments in your code. Even if you

“over-comment,” absolutely no harm is done.

Using Quotes

In JavaScript, you often use quotes to accomplish various goals, such as

delimiting strings. A common problem arises when using a pair of quotes

inside another pair of quotes. Since the interpreter must recognize each set of

quotes in order to pair them correctly, the creators of JavaScript made it possi-

ble to use two different types of quotes: double quotes (") and single quotes (').

If you need only one set of quotes, you can choose either of them as long as

JavaScript Primer � 17

2

C
h
a
p
te

r

you terminate the text with the same type of quote you used to open it. If you

use quotes improperly, you will get a JavaScript error: “unterminated string

literal.” You must make certain that you alternate quotes properly:

document.write("")

Your First Script

Now that you have read about the basic concepts behind JavaScript, I think it

is time to actually write a little JavaScript. You are probably quite bored with

all this background information and eager to see some action.

First of all, launch your text editor. Type Example 2-1 in the text editor and

save it under the name Hello.htm. Make sure the name ends with either the

.htm or .html extension, or your browser will not recognize this as an HTML

document. It is imperative, however, that as you type in this example you

make every attempt to fully understand what it is you are typing. Next, launch

the browser. Since the file is local, you do not need to be connected to the

Internet to view the results. Now, load the file from the browser’s menu.

That’s all there is to it. You can start enjoying JavaScript.

The following script is interpreted and executed immediately when you load

the page containing it.

Example 2-1

<HTML>

<HEAD>

<TITLE>Hello World.</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=”JavaScript”>

<!--hide code from old browsers

document.write(“<H1>Hello World.</H1>”)

// end code hiding

</SCRIPT>

</BODY>

</HTML>

If you entered the code properly you should see something in your browser

similar to Figure 2-1.

18 � Chapter 2

This example is OK, but I personally prefer using JavaScript alert boxes. So let

us rewrite Example 2-1 using an alert box:

Example 2-2

<HTML>

<HEAD>

<TITLE>Hello Again!</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=”JavaScript”>

<!--hide code from old browsers

alert(“Hello World”)

// end code hiding

</SCRIPT>

</BODY>

</HTML>

These two, very basic JavaScripts should give you a feel for the language, and

hopefully whet your appetite to learn more. However, before we can delve into

the exciting world of building dynamic web sites with JavaScript, we need to

cover the more mundane fundamentals of the language.

JavaScript Primer � 19

2

C
h
a
p
te

r

Figure 2-1

Fundamental JavaScript Concepts

JavaScript is composed of the same basic elements as all programming lan-

guages. It has variables, which hold data, it has expressions or statements, and

it has functions. Each of these building blocks are used to construct your

JavaScript.

Data Types and Variables in JavaScript

Variables are essentially named segments of memory set aside to hold data of

a certain type. These types are referred to as data types. When you create a

variable you are simply allocating a space in memory for the data type of the

variable you declare. It is important to use the proper data type to store your

information. For example, a number is a type of information that JavaScript

recognizes. Compared to most programming languages, JavaScript has a small

number of data types. There are only four different data types in JavaScript:

numbers, strings, Boolean, and null values. As opposed to other languages, a

variable data type is not declared explicitly but rather implicitly according to

its initial value assignment. Also unique to JavaScript is the lack of an explicit

distinction between integer and real-valued numbers.

JavaScript is a loosely typed language. The only keyword for declaring a

JavaScript variable is var. The actual data type used depends on the initial

value you assign to the variable. Consider the following examples:

var LastName = “Smith”

var AccountNumber = 1111

In the first example, the data type of LastName is string, simply because that

is the initial value assigned to that variable. In the second example, the data

type of AccountNumber is number.

This method of variable declaration is in stark contrast with strongly typed

languages such as C or Java. In strongly typed languages the variable must be

created of a specific type.

int myint:

boolean myboolean;

There are a few rules to observe when creating variables:

� The first character cannot be a digit.

� All other characters can be letters, underscores, or digits (0-9).

20 � Chapter 2

� An identifier cannot be one of the language’s reserved words. Reserved

words are basically the words that make up the JavaScript language.

� JavaScript is case sensitive (uppercase letters are distinct from lowercase

letters). For example, counter, Counter, and COUNTER are the names of

three different variables. Avoid using such similar identifiers in the same

script.

The following variable names are legal:

loopcounter

_employeename

123456789

account_number

Number16

but the following ones are illegal:

with // reserved word

^mystring // first character is illegal

411information // cannot start with a digit

04-825-6408 // first character is illegal

// "-" is an illegal character

important // * is not a legal character

The action of assigning an initial value to a variable is called initialization. You

give the variable a value using the assignment operator—the equal sign:

var variableName = initialValue

You only need to use the var keyword when you create the variable. When you

want to refer to the variable, you only use its name. Assign a value to a vari-

able (after it has been declared) in the following fashion:

variableName = anyValue

You use var only once per variable. A global variable can be created simply by

assigning it a value without the var keyword. Local variables inside functions,

on the other hand, must be declared with the var keyword. As in many other

programming languages, JavaScript allows you to declare numerous variables

in the same statement, using a comma to separate them:

var variableName1 = initialValue1, variableName2 = initialValue2, …

JavaScript Primer � 21

2

C
h
a
p
te

r

JavaScript Operators

Every programming language has operators. An operator is simply a symbol

that tells the compiler (or interpreter) to perform a certain action. The basic

arithmetic operators are common to most programming languages. These are

addition (+), subtraction (–), multiplication (*), and division (/). These should

be very familiar to most people. The order of precedence of operators follows

the standard mathematical rules of multiplication, division, addition, and sub-

traction. However, when your code has multiple operations in a single line it is

usually a good idea to use parentheses to clarify what you want to occur; 3 *

4/2 + 1 can be ambiguous, whereas 3 * ((4/2) + 1) is very clear.

C, C++, and Java programmers will already be familiar with the increment

and decrement operators, while other programmers may not be. The incre-

ment operator is done by placing two plus signs after a variable, such as this:

Var somenumber

Somenumber++

This line of code increments the value of somenumber by one. Had we

written:

somenumber –

it would have decreased the value by one.

It is very important that you realize that where you place the increment and

decrement operators is critical. If you place the increment operator after a

variable such as:

Var somenumber = 10

Var someothernumber

Someothernumber = somenumber++

The assignment operation will take place before the evaluation operation. In

other words, first someothernumber will be set equal to the value of

somenumber then the value of somenumber will be incremented. In our exam-

ple that means that someothernumber will equal 10 and somenumber will

equal 11. If you wish to rewrite the statement so that the increment takes

place first, just reposition the increment sign:

Someothernumber = ++somenumber

In this case, somenumber is incremented to 11 and then that value is assigned

to someothernumber.

22 � Chapter 2

You’ve already learned how to assign a value to a variable or to initialize it

using the equal assignment operator. As the following piece of code demon-

strates, you can also perform calculations when you assign a value:

/* 1 */ var answer

/* 2 */ answer = 4 * 2 + 9

/* 3 */ document.write(answer)

Line 1 includes the declaration of the variable answer. The second line shows

how the variable answer is assigned the result of a simple mathematical

expression. At this point, the variable holds a value of 17. Referring to the

variable answer is the same as referring to the number 17. For this reason, the

statement on line 3 prints the number 17.

� CAUTION: A common mistake is to use the equal sign for equality check. In

Visual Basic, for example, = is an equality test operator, because the

basic assignment operator of the language is :=. However, in JavaScript,

like in C++ and Java, = (the equal sign) is an assignment operator,

while == (two equal signs) is an equality test operator.

JavaScript Statements

Now that we have thoroughly examined data types, let’s look at statements.

A statement is simply a line of code that performs some specific task or action.

For example, all of the following are statements:

myAge = 32

for(x=1;x<10,x++)

myname= “Chuck”

Multiple Statements

The JavaScript interpreter accepts multiple statements on the same line. If

you choose to use this method, you must separate the statements with semi-

colons (;). Note that this is the only place in JavaScript where you are required

to use the semicolon, and, in my opinion, the only place you should use it. The

last statement of the line does not have to be followed by a semicolon. Such a

line looks like this:

statement1; statement2; statement3; ...

The browser interprets these statements as if they were on separate lines:

statement1

statement2

statement3

JavaScript Primer � 23

2

C
h
a
p
te

r

Although this is possible with JavaScript I certainly do not recommend it.

Placing multiple statements on a single line makes for very unreadable code.

Nested Statements

A command block is a unit of statements enclosed by curly braces. It is very

important to understand that a block should be used as a single statement. The

statements inside the block are called nested statements:

{

nested statement1

nested statement2

nested statement3

}

A loop that includes many statements is actually one statement with many

nested statements. This rule applies to functions, if-else statements, and other

language elements.

JavaScript Expressions

Now that you know how to create a variable, you need to know how to use it.

As mentioned earlier, variables hold values of different types. What does

“holding a value” mean? This term refers to expression evaluation. A variable

always evaluates to its value. When you perform an operation on a variable,

you are actually performing the operation on the current value associated with

the variable. Let’s assume you created a variable named firstNumber using the

following statement:

var firstNumber = 120 // declaration and initialization

At this point, if you refer to the variable firstNumber, its value, 120, is

returned. That is, firstNumber is evaluated to 120. The following statement

outlines an evaluation of firstNumber:

secondNumber = firstNumber * 6

The secondNumber variable now holds the value 720, because firstNumber

evaluates to 120. Bear in mind that no link between the memory locations of

the variables is established. Therefore, secondNumber now holds a value of

720, which does not change even if the value of firstNumber changes. A vari-

able can evaluate to a value of any type.

24 � Chapter 2

JavaScript Function Declarations

A function is simply a group of related statements that perform some common

goal and are grouped together under some common function name. Just like

variables, you must define a function before you can call it.

Functions are defined using the keyword function, followed by the name of the

function. The same rules that apply to naming variables apply to naming func-

tions. Since a function usually does something besides storing a value, it is

common to include a verb in its name. The most important thing to remember

about naming functions is that the name should provide some indication of

what the function does. The function’s parameters are written in brackets

after the name. Parameters are simply values that are passed into a function

for the function to process. The syntax of a function definition is:

function functionName([parameters])

{

[statements]

}

Parameters are local variables that are assigned values when the function is

called. At this point, you should always give a name to every parameter.

In a formal syntax specification, the square brackets “[” and “]” usually denote

optional elements. Since a function does not have to have parameters or state-

ments, they are both enclosed in such brackets. The curly braces enclosing

the function body can be placed anywhere, following the parameter section.

The following functions are valid:

function functionName([parameters]) {[statement1]; [statement2]; …}

function functionName([parameters])

{

[statement1]

[statement2]

}

The following example demonstrates a function declaration:

Example 2-3

<HTML>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- hide script contents from old browsers

function square(number)

JavaScript Primer � 25

2

C
h
a
p
te

r

{

document.write("The call passed ",number,// the function's parameter

" to the function.
",

number, // the function's parameter

" square is ",

number * number,

".
")

}

// *** add function call

// end hiding contents from old browsers -->

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

Example 2-3 does not print anything to the browser’s window, nor does it gen-

erate any other form of output. The reason is that the function is only defined

in the script but never called. When the browser locates a function, it loads its

statements into the memory, ready to be executed later.

Calling Functions

In order to execute the set of statements located in the function block, you

must call the function. The syntax of a function call is:

functionName([arguments])

By adding the statement square(5) to Example 2-2, at the specified place, we

call the function. The statements in the function are executed, and the follow-

ing message is output:

The call passed 5 to the function.

5 square is 25.

You can also call a function from within another function, as the following

example demonstrates:

Example 2-4

<HTML>

<HEAD>

<TITLE>Calling a function from within another function</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!-- hide script contents from old browsers

function makeBar()

{

var output = "<HR ALIGN='left' WIDTH=400>"

26 � Chapter 2

document.write(output)

}

function makeHeader(text, color, size)

{

var output = "<FONT COLOR='" + color + "' SIZE=" +

size + ">" + text + ""

document.write(output)

makeBar()

}

makeHeader("JavaScript Examples", "red", "+4")

// end hiding contents from old browsers -->

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

Example 2-4 summarizes many of the terms discussed in this chapter. It

includes two function definitions. In both functions, the output is assigned to a

variable (output) and then printed to the client window using the docu-

ment.write() method. Assigning strings to variables before printing them is

extremely useful when the string is long (you want to print a lot of data). You

can see the result of Example 2-3 in the following image.

JavaScript Primer � 27

2

C
h
a
p
te

r

Figure 2-2

Dialog Boxes

JavaScript provides the ability to create small windows called dialog boxes. You

can create small alert boxes, confirm boxes, and prompt boxes. These boxes

let you generate output and receive input from the user.

Alert Boxes

An alert box is the most simple dialog box. It enables you to display a short

message to the user in a separate window. Take a look at the following script

and its corresponding output:

alert("Click OK to continue...")

The generic form of this function is alert(message). The function alert() is actu-

ally a method of the window object. It is not necessary to specify that because

window is the default object. The same applies to all dialog boxes.

� NOTE: Netscape Communications Corp. implemented the “JavaScript

Alert:.” header for security reasons. It is used to distinguish JavaScript

dialog boxes from those created by the operating system, so that the user

knows what the source of the message is. JavaScript programmers

cannot trick the user into doing something he might not want to do. It

also disables the ability to scare the user into giving out personal

information.

You can also display messages using variables. For example:

var message = "Click OK to continue"

alert(message)

The alert box is often used to pause the execution of a script until the user

approves its continuation.

Confirm Boxes

Confirm boxes are different from alert boxes in that they evaluate to a value

based on a decision made by the user. Rather than a simple OK button, the

confirm box includes both OK and Cancel buttons.

Like the alert box, confirm is also a method of the window object. This method

returns a Boolean value, because there are two options. You can use confirma-

tion boxes to ask the user a yes-or-no question, or to confirm an action. Here

is an example and its output:

28 � Chapter 2

var reply = confirm("OK to continue?")

reply is assigned a true value if the user chooses OK, and false if the user

selects Cancel. The generic form of this function is confirm(message).

Prompt Boxes

The prompt() method displays a prompt dialog box with a message and an

input field. You can use these boxes to receive input from the user. It is similar

to the confirm box, except that it returns the value of the input field, rather

than true or false. Here is an example:

var name = prompt("Enter your name:", "anonymous")

The method returns a value of null if the user chooses Cancel. The prompt box

looks like the image shown in Figure 2-3.

The value of the field is always a string. If the user enters 16 in the form, the

string "16" is returned rather than the number 16. When you want to prompt

the user for a number, you must convert the input into a numeric value.

JavaScript features a built-in function that does this—parseInt(). You can use

the following statement to ask the user for a number:

var number = parseInt(prompt("Enter a number:", 0))

or

var number = prompt("Enter a number:", 0)

number = parseInt(number)

The generic form of this function is prompt(message[, inputDefault]).

You can see that this function works by using the typeof operator for testing:

var number = prompt("Enter a number:", 0)

alert(number, " is a ", typeof number) // "... is a string"

number = parseInt(number)

alert(number, " is a ", typeof number) // "... is a number"

The input must be of a numeric type, of course (e.g., 99).

JavaScript Primer � 29

2

C
h
a
p
te

r

Figure 2-3

if Statement

if (condition)

statement

The if statement lets you put decision making in your scripts. A script without

any decisions does the same procedure each time it is executed. Such linear

structures limit your scripts to simple algorithms. JavaScript enables decision

making using an if statement. if statements associate a single statement with a

true condition. That statement is only executed if the conditional expression is

true; otherwise it is not executed at all. The condition must evaluate to a

Boolean value: true or false. Numeric values are also acceptable as an alterna-

tive to a Boolean condition. 0 is equivalent to false, and all other values are

equivalent to true.

The if statement associates a single statement with a true condition. A state-

ment can be anything from a simple document.write() to a block of statements

using curly braces ({}). Some if statements require multiple statements, so

they use a block in the following form:

if (condition)

{

statement1

statement2

statement3

}

<HTML>

<HEAD>

<TITLE>A simple if statement</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

var age = parseInt(prompt("Please enter your age:", 15))

if (age > 30)

alert("Wow, you are old enough to remember Disco!")

// -->

</SCRIPT>

</HEAD>

<BODY>

JavaScript Example

</BODY>

</HTML>

30 � Chapter 2

This is a simple HTML document that includes a JavaScript script. And admit-

tedly it is nothing to get overly excited about. However, it does illustrate

exactly how to place JavaScript into an HTML document. Notice that its struc-

ture is the same as that of any other HTML document. The only new concept

is the <SCRIPT> tag. I put the script in the <BODY>…</BODY> portion

of the page, though you may put it anywhere between the <HTML> and

</HTML> tags. For now, think of document.write() as a way to print expres-

sions to the page. write() is actually a method of the document object. Objects,

methods, and properties are introduced in Chapter 6, “The Document Object

Model.” The write() method supports any HTML syntax. Be aware, also, that

all strings must be included in quotes.

Summary

This chapter showed you the basics of JavaScript. This, combined with the

HTML primer, should give you the foundational skills necessary to follow the

rest of this book. Make sure you are totally comfortable with the material in

these first two chapters before proceeding.

JavaScript Primer � 31

2

C
h
a
p
te

r

Chapter 3

Alerts, Prompts, and User
Feedback

Before you continue with this book, make sure that you are thoroughly familiar

with the material in Chapters 1 and 2. That material provides the fundamental

building blocks that I will use throughout the rest of the book to guide you

through building a complete web site. Without a basic grasp of HTML and the

fundamentals of JavaScript, it will be difficult for you to work through the rest

of this book.

For educational purposes I am going to walk you through the process of build-

ing a complete web site for a fictitious business. Since I happen to enjoy

antique book collecting, we are going to build a web site for an antique book-

store. However, the techniques are common to all businesses. Each chapter

will first discuss a particular technique or techniques and then give you some

examples using those techniques. Then the chapter will use one or more of

them demonstrated in our ficticious business web site we are building.

Alert Boxes

One of the simplest things to do with JavaScript is the alert box. An alert box

is simply a small message box that pops up and gives the user some informa-

tion. Let’s start by adding a simple greeting to visitors. This greeting will be

jazzed up as we go along, with more interesting features.

Consider the following example:

Example 3-1

<HTML>

<HEAD>

<TITLE>Alert Box</TITLE>

33

<SCRIPT LANGUAGE="JavaScript">

function alertMe(message)

{

alert(message)

}

alertMe("Welcome to my web page!")

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

This may seem like a rather trivial item to add to a web page, but you should

note two things. The first is that some simple pop-up boxes and dynamic con-

tent can easily differentiate your web site from others. The second thing you

should keep in mind is that this script shows you how to use alert boxes. An

alert box is a built-in JavaScript function that allows you to display messages

to the user. All you have to pass it is either a variable or a literal string value

you want to display. You will see, throughout this book, that this is a very use-

ful technique and will be used frequently.

If you entered the code correctly for Example 3-1 you should see this image:

34 � Chapter 3

Figure 3-1

Prompt Boxes

Now we are going to expand this script to use a prompt box, and to have differ-

ent action depending on the user’s response. A prompt box is very similar to

an alert box, only it allows the user to enter in data. The following script gives

you a basic idea of how a prompt box works.

Example 3-2

<HTML>

<HEAD>

<TITLE>Prompt Box</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

var name = prompt("Please Enter your name:", "John Doe")

alert("Hello " + name)

// -->

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

This script begins by using a prompt box to inquire as to the user’s name. The

value of the user’s input is placed into a variable called name using the assign-

ment operator = (remember that a single = assigns a value to a variable

whereas a == evaluates whether or not a variable is equal to a particular

value).

var name = prompt("Please Enter your name:", "John Doe")

Please note that we do provide the user with a default value, in case he or she

does not enter any value. Then we simply display a greeting to the web site

visitor using the name he or she just provided. The following figures show

these prompt boxes.

Alerts, Prompts, and User Feedback � 35

3

C
h
a
p
te

r

36 � Chapter 3

Figure 3-2

Figure 3-3

The next example demonstrates the use of a prompt box in conjunction with

an alert box and an if statement. This script asks the user what browser he or

she is using and responds accordingly.

The next thing we ask the user to do is to indicate whether or not he or she is

using a recent version of their browser. You should notice, by this point, that

all input boxes have OK and Cancel buttons. If the user clicks Cancel, the vari-

able that is assigned the value of the prompt will contain a null value. Also

notice that the only structural difference between the two prompt boxes is the

use of the word “prompt” prior to the parenthesis.

var name = prompt("Please Enter your name:", "John Doe")

var message = "Click OK if you are using Netscape 3.0 or above, or Internet

Explorer 4.0 or above"

If you place the word prompt before the opening parenthesis, JavaScript will

create a text field in the prompt box it displays, so that the user can enter data.

Without the prompt command, your prompt box will only allow the user to

choose between OK and Cancel.

The second question is to make sure the user has a recent version of their

browser. Older browsers do not support all of the JavaScript commands we

might use in the creation of our web site. After the user tells us whether or

not he or she has a recent version, we use an if statement to choose our next

course of action.

if (!confirm(message))

{

alert("Please download the latest version of Netscape or Internet Explorer.")

}

else

{

alert ("Hello " + name)

}

The following simple script illustrates for you the use of alert boxes and two

different types of prompt boxes, combined with an if-else code segment to cre-

ate a useful addition to our web site.

Example 3-3

<HTML>

<HEAD>

<TITLE>Prompt box 2</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

Alerts, Prompts, and User Feedback � 37

3

C
h
a
p
te

r

var name = prompt("Please Enter your name:", "John Doe")

var message = "Click OK if you are using Netscape 5.0 or above, or Internet

Explorer 5.0 or above"

if (!confirm(message))

{

alert("Please download the latest version of Netscape or Internet Explorer.")

}

else

{

alert ("Hello " + name)

}

// -->

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

Writing Back to the Web Page

Alert boxes and prompt boxes are fairly easy methods for providing some level

of user interaction. You can also use JavaScript to write information directly

back onto the web page. Essentially, an alert box is perfect if you wish to dis-

play something and then have it disappear as soon as the user acknowledges

it. However, if you want information to stay on the screen the entire time the

user is on your site, then you need to write that to the actual HTML

document.

If we replace the previous script with the following one we will be able to

retain the current user’s name on the page for as long as they are visiting the

site.

Example 3-4

<HTML>

<HEAD>

<TITLE>Writing to the web page</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

var name = prompt("Please Enter your name:", "John Doe")

var message = "Click OK if you are using Netscape 3.0 or above, or Internet

Explorer 4.0 or above"

if (!confirm(message))

{

38 � Chapter 3

alert("Please download the latest version of Netscape or Internet Explorer.")

}

else

{

document.write(name)

}

// -->

</SCRIPT>

</HEAD>

<BODY BGCOLOR= White>

</BODY>

</HTML>

Note that the only real difference is this segment:

else

{

document.write(name)

}

Instead of putting up an alert box, we write the user’s name onto the actual

web page. Notice the use of the document object. This object represents the

web page that is currently loaded into the browser. You can do a lot of interest-

ing things with this object, as you will see. Now writing a line to the HTML

page is moderately interesting. But what is more interesting is the fact that

you can use the document.write() method to actually write new HTML into

the document. Take a look at this example:

Example 3-5

<HTML>

<HEAD>

<TITLE>Writing to the web page</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var name = prompt("Please Enter M if you are male and F if you are female", "M")

if(name=='M')

{

document.write('')

document.write('<H1>Yo Dude!</H1>')

document.write('')

}

else

{

document.write('')

document.write('<H1>You go girl!</H1>')

document.write('')

Alerts, Prompts, and User Feedback � 39

3

C
h
a
p
te

r

}

</SCRIPT>

</HEAD>

</BODY>

</HTML>

If you entered the code properly you should see a series of images like these:

In this example we take the input of the user from a prompt box and then we

type actual HTML code into the existing web page. You can use the docu-

ment.write() method to type any valid HTML code. This allows you to alter

the actual HTML content of your page based on the user’s input. Now I want

you to take just a moment to consider this. You can easily customize your web

page based on a user’s input. Again, let me stress that you can write any valid

HTML code with this method. It may be a very simple technique, but in my

opinion it’s one of the coolest techniques.

40 � Chapter 3

Figure 3-4

Figure 3-5

Antique Bookstore Project

Now we need to find a way to incorporate this script into our ongoing antique

bookstore page. The following code provides the source for the antique book-

store page (at least the beginnings of it) and incorporates alerts and prompt

boxes.

main.htm

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!--

var name = prompt("Please Enter your name:", "John Doe")

var message = "Click OK if you are using Netscape 5.0 or above, or Internet

Explorer 5.0 or above"

if (!confirm(message))

{

alert("Please download the latest version of Netscape or Internet

Explorer.")

}

else

{

alert ("Hello " + name)

}

// -->

</SCRIPT>

</HEAD>

<BODY BGCOLOR= White>

<CENTER>

<P><TABLE BORDER=1 CELLSPACING=0 CELLPADDING=0>

<TR>

<TD>

<P>

<TD>

<P><CENTER>Ye Olde Book Shoppe</CENTER>

<TD>

<P>

</TABLE>

</CENTER>

<P>

</BODY>

</HTML>

Alerts, Prompts, and User Feedback � 41

3

C
h
a
p
te

r

Chapter 4

Image Effects

One of the most useful aspects of JavaScript is that it makes it quite easy for

you to work with images. You can do a number of fascinating things with

images in JavaScript. Some of the image techniques we will discuss in this

chapter are merely fascinating “eye candy” to add to your web site. Others

have a much more practical value.

The Image Object

JavaScript has a built-in object called Image. We will be using this object in

most of the scripts in this chapter. The Image object allows you to create

objects that represent images of any type you could place in an HTML page

(.JPG, .GIF, .BMP). To create an image object you simply create a variable as

the Image type, like this:

var myimage = new Image()

The Image object has some properties you will need to use. The most impor-

tant is the src property. This designates the actual image file you will use as a

source for your Image object. The syntax for using this property is:

imageName.src = "myimage.gif"

The Image object can only be used to work with images already placed into the

HTML page. You cannot add new images or completely delete images. You

can, however, replace images with other images. This technique is best illus-

trated in what is commonly called a rollover.

43

Rollover

The rollover is one of the most commonly used JavaScript imaging techniques.

The essential purpose of the rollover is quite simple. When you use an image

as an link, you can use the rollover method to cause that image to change

when your mouse moves over it.

Let’s assume your web page has an image on it that is used as a link to

another page. What we want to accomplish is to have that image change when

the user moves the mouse over the image. Below is an example of how to do

this:

if(document.images)

{

image1 = new Image

image2 = new Image

image1.src = "mysecondimage.gif"

image2.src = "myfirstimage.gif"

}

else

{

image1=""

image2= ""

}

</SCRIPT>

Below is the code you put in your HTML body wherever you wish the

link/rollover to appear.

Example 4-1

<A HREF ="nextpage.htm"

onMouseover = "document.pic.src =image1.src"

onMouseout = "document.pic.src =image2.src">

If you entered all the code properly you should observe something like this:

44 � Chapter 4

Let’s examine this code for a moment. What the JavaScript is doing is creating

variables that are instances of the Image object. Then we are setting the src

Image Effects � 45

4

C
h
a
p
te

r

Figure 4-1

Figure 4-2

property (the source) for those image objects, equal to some picture on your

hard drive. When the web page first loads, the link will initially display

“myfirstimage.gif”. The space where that image is located, we have named

“pic”. When the mouse moves over the image/link we change the image space

named pic, to contain the image in image1. When we move the mouse out of

the image, we change it back to the picture in image2. The document keyword

is a new keyword for you. It refers to the current HTML document that is

loaded in the browser. This keyword will become even more important in later

chapters.

Slide Show

JavaScript allows you to create a fascinating slide show. Basically a single

image is initially displayed and the user can scroll back and forth between dif-

ferent images. This is an outstanding feature to add to any e-commerce site. It

allows your web site visitors to view all of your products, without cluttering

the web page with dozens of images at one time. Let’s look at a sample of how

to do this:

Example 4-2

<HTML>

<HEAD>

<TITLE>Slideshow Sample</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

PicArray = new Array("pic1.jpg","pic2.jpg","pic3.jpg")

CurrentPic = 0

ImageCount = PicArray.length - 1

function MovePrevious()

{

if (document.images && CurrentPic > 0)

{

CurrentPic--

document.myPicture.src=PicArray[CurrentPic]

}

}

function MoveNext()

{

if (document.images && CurrentPic < ImageCount)

{

CurrentPic++

document.myPicture.src=PicArray[CurrentPic]

}

46 � Chapter 4

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="WHITE">

<CENTER>

<H1>My Slide Show</H1>

<< Move Previous

Move Next >>

</CENTER>

</BODY>

</HTML>

Let’s take a closer look at this script and see what is going on here. To begin

with, in our JavaScript we are defining some variables:

PicArray = new Array("pic1.jpg","pic2.jpg","pic3.jpg")

CurrentPic = 0

ImageCount = PicArray.length – 1

The first variable, PicArray, is simply an array of images. The second is a num-

ber indicating what element in the array we are currently looking at. All arrays

start with zero so we initialize CurrentPic to 0. ImageCount is simply a num-

ber telling us how many images we currently have.

The next thing we do in this particular script is to define two functions,

MovePrevious() and MoveNext(). The purpose of these functions is fairly

obvious, to move forward or backward through the slide show. In each of these

functions we have an if statement that simply asks two questions: Does this

web page/browser support the image object (if document.Images) and are we

already at the limit of our slide show (if you are at the beginning, you cannot

select Move Previous)? If both of these conditions are met, then execute the

function.

� NOTE: The symbol && denotes a logical AND, that is, both values must be

true for the operation to be true. The || is a logical OR, that is, only one

of the values must be true for the operation to be true.

The MovePrevious function simply uses the decrement operator (– –) to

reduce CurrentPic and then displays that particular image from the image

Image Effects � 47

4

C
h
a
p
te

r

array PicArray. The MoveNext function is identical except it uses the incre-

ment operator (++).

The code in the body of the HTML document is a standard HTML reference,

but rather than being a reference to another web page or an e-mail address, it

is a reference to a function in our JavaScript.

If you enter the code properly, you can view a series of images like the ones

shown here.

48 � Chapter 4

Figure 4-3

Image Effects � 49

4

C
h
a
p
te

r

Figure 4-4

Figure 4-5

A slide show is a very practical piece of JavaScript that you will be able to use

to enhance any site. However, it is ideally suited to presenting products for

sale.

In our first slide show example we used links to call the JavaScript functions.

You can also use buttons to create the same effect. All you need to do is

replace the <A HREF> link section with code to place buttons on the screen.

If you wish to do this, simply replace:

<< Move Previous

Move Next >>

with:

<FORM>

<INPUT TYPE="button" VALUE="<--" onClick="MovePrevious()">

<INPUT TYPE ="button" VALUE ="-->" onClick="MoveNext()">

</FORM>

If you do this properly, it will produce the image you see here.

In case the HTML <FORM> tag is new to you, let’s examine it. The

<FORM> and </FORM> tags simply denote that what lies between them

will be form elements. This is just like any of the other tags you have used

50 � Chapter 4

Figure 4-6

before. INPUT TYPE tells the browser what type of form element to place on

the web page. VALUE simply places a caption on the button you have created.

onClick= simply says that when the button is clicked to do whatever comes

after the equal sign. In our case it is a simple call to one of our JavaScript

functions.

You could also use the <A HREF> link method we originally used, and

instead of using words such as “move previous” you can use images. You sim-

ply replace the <A HREF> link section in the first slide show example with

this:

<IMG SRC ="left.gif"

<IMG SRC ="right.gif"

If you do this properly, it will generate an image like this:

Image Preview

Have you ever visited a web site that you felt was simply cluttered with too

many images? I certainly have. One way to combat this is the slide show we

just did. Another method is to initially display the images as small images, and

allow the user to select which one they wish to view in full size. Here is a

piece of code that will let you do just that.

Image Effects � 51

4

C
h
a
p
te

r
Figure 4-7

Example 4-3

<HTML>

<HEAD>

<TITLE> Image Preview

</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

if (document.images)

{

text1 = new Image

text2 = new Image

text3 = new Image

text4 = new Image

text1.src = "pic1.jpg"

text2.src = "pic2.jpg"

text3.src = "pic3.jpg"

text4.src = "email2.gif"

}

else

{

text1= ""

text2 = ""

text3 = ""

text4 = ""

document.textField = ""

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=white>

<TABLE>

<TD>

<TD>

</TABLE>

</BODY>

</HTML>

52 � Chapter 4

Let us examine this script and see what is happening. The first thing we see is

the creation of some Image objects. We have seen this in previous scripts so it

is really nothing new. In fact, the only thing really new about this script is that

when the images are placed on the web page they are a very small size. Then

when the mouseover event is fired, the image is displayed in full size to the

right.

Banner Ads

You have likely seen banner ads on web pages. It’s actually pretty simple to do

these in JavaScript. The following script takes three images and rotates

through them at a given interval.

Example 4-4

<HTML>

<HEAD>

<TITLE>Banner</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

ImageArray = new Array("banner1.gif","banner2.gif","banner3.gif")

CurrentImage = 0

ImageCount = ImageArray.length

function RotateBanner()

{

if (document.images)

{

CurrentImage++

if (CurrentImage ==ImageCount)

{

CurrentImage = 0

}

document.Banner.src=ImageArray[CurrentImage]

setTimeout("RotateBanner()", 5000)

}

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="WHITE" onLoad="RotateBanner()">

<CENTER>

</CENTER>

</BODY>

</HTML>

Image Effects � 53

4

C
h
a
p
te

r

If you examine this script closely you will see that it is using techniques we

have already seen but in a new way. So let’s take a look at what is new in this

script. To begin with, in the <BODY> tag you now see onLoad=RotateBan-

ner(). This simply says to start our script when the page is initially loaded

start our script. You will also notice this line in the script:

setTimeout("RotateBanner()", 5000)

This is using a built-in JavaScript function called Timeout. The number we

pass it is in milliseconds. So we are telling it to timeout every five seconds.

This causes it to load the next image every five seconds. You can play with the

timing a bit. However, be careful: If the time is too short, no one will be able to

actually read the banner ad.

Image Pop-up

Another interesting technique you can use is to have an image pop up in a new

window by itself when another image is clicked. Usually you will have a small

version of the image, and when the user clicks on it they get the full image in a

new window.

Example 4-5

<HTML>

<HEAD>

<TITLE>Example 04-05</TITLE>

<SCRIPT LANGUAGE="JavaScript" >

function newWindow(imagename)

{

imageWindow = window.open(imagename, "imageWindow", width=320,height=240)

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR="WHITE">

<H4>Double click on one of the following images to see the full size image</H4>

</BODY>

</HTML>

This code, if properly entered will produce an image like the following:

54 � Chapter 4

If you click on one of the images, it will pop up that image, full size, in a new

window, as shown here:

Image Effects � 55

4

C
h
a
p
te

r

Figure 4-8

Figure 4-9

Let’s take a look at this script and see what is happening. The actual script

portion is actually quite simple. The function consists of a single line of code

(it doesn’t get much simpler than that!):

function newWindow(imagename)

{

imageWindow = window.open(imagename, "imageWindow", "width=320,height=240)

}

Simply pass any image name to this function and it will launch a new window

showing that picture. The way we open the new window is to use the open

method of the window object. This method takes four required parameters and

several optional ones. The first parameter tells it what to open. In our example

it is an image, but you can open another HTML page as well. The second

parameter gives JavaScript a name to refer to this new window by. Notice that

this name matches the variable I chose. The next two parameters simply

determine the height and width of the window. There are many more optional

parameters, but they will be discussed in Chapter 6.

Antique Bookstore Project

Now we can add some of these interesting techniques to our antique book-

store project. This will add some interesting features. First we are going to

place a new web page in our project that uses the slide show to demo some

books. This page is in the Antique Bookstore Project folder in the code files

and is named books.htm. What I have done with that page is simply add in the

slide show script, only I have used buttons to display the images.

<HTML>

<HEAD>

<TITLE>Book Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

PicArray = new Array("book1.gif","book2.gif","book3.gif","book4.gif")

CurrentPic = 0

ImageCount = PicArray.length - 1

function MovePrevious()

{

if (document.images && CurrentPic > 0)

{

CurrentPic--

document.myPicture.src=PicArray[CurrentPic]

}

}

56 � Chapter 4

function MoveNext()

{

if (document.images && CurrentPic < ImageCount)

{

CurrentPic++

document.myPicture.src=PicArray[CurrentPic]

}

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR = white >

<P>

<CENTER>

<H2>This month's specials!</H2>

<IMG SRC="book1.gif" HEIGHT=300 WIDTH =300 NAME="myPicture" ALT="Our Book

Inventory">

<FORM>

<INPUT TYPE="button" VALUE="<--" onClick="MovePrevious()">

<INPUT TYPE ="button" VALUE ="-->" onClick="MoveNext()">

</FORM>

</CENTER>

</BODY>

</HTML>

We also need to add a banner ad to the main.htm web page. For that I used a

banner ad exactly like the one used earlier in this chapter. If you have been fol-

lowing along with all the examples, you should be starting to see a very

interesting web site take shape.

Summary

In this chapter you have learned how to use various image modification scripts

to create a variety of interesting visual effects. It is important that you actually

try each of these scripts before moving on. The principles you learn here will

be carried throughout the book. You will also find that the interesting visual

effects are the items most demanded by users.

Image Effects � 57

4

C
h
a
p
te

r

Chapter 5

Background Effects

Web page backgrounds can be somewhat dull. Even if you use an image as the

background, it still is static. With JavaScript you can perform a number of

interesting effects with the background. Each of these effects will add a great

deal of visual impact to your web site.

Document Object

You were introduced to the document object in the last chapter. Recall that the

document object represents the web page currently loaded into the browser.

Using this object we can make changes to that document. Two properties of

the document object that we will explore in this chapter are bgcolor and back-

ground. These properties are exactly like the tags in HTML. The bgcolor

property sets the background color of the web page, and the background prop-

erty sets an image as the background.

Changing the Background Color

The first script we will examine simply changes the background color to match

the color described in a link that the user passes their mouse over. Let’s look

at that script now:

Example 5-1

<HTML>

<HEAD>

<TITLE>Color Changer</TITLE>

</HEAD>

<BODY>

<CENTER>

Blue

Royal Blue

59

Green

Red

Magenta

Pink

Purple

Light Blue

Yellow

Brown

White

Black

Coral

Orange

</CENTER>

</BODY>

</HTML>

In this example we simply set up a standard link where the word displayed is

the name of the color we will use as the background color of the web page.

When the page first loads, it will look like Figure 5-1.

If you move your mouse over the word “black,” the image will then look like

Figure 5-2:

60 � Chapter 5

Figure 5-1

And then if you move it over the word “purple,” it will look like Figure 5-3:

Background Effects � 61

5

C
h
a
p
te

r

Figure 5-2

Figure 5-3

Now that you have seen this script in action, let’s examine what is happening

in the code itself. Each one of the separate links is constructed the same way.

Yellow

The <a href= portion should be familiar to you since it is a standard hypertext

reference, also known as a link. In this case, however, rather than linking to

another web page or to an e-mail address, this simply links to itself. So when a

mouse moves over the link we have established that the document object is

used to set the background color of the web page to the desired color. This

script is relatively straightforward but it’s also an excellent way to begin to see

the usefulness of the document object.

With this particular script or with variations thereof, you can change the color

of the web page document any time you wish. Some variations to consider

would be to change the background color based on the day of the week, time of

day, or any other criteria you might wish. The only caveat is that you should

ensure that the background color you use does not make it difficult to view the

text on your web site.

Changing the Background Image

Next I will show you how to use a technique very similar to the one used in

Example 5-1 to change the image used in the background of your web page,

rather than simply changing the color.

Example 5-2

<HTML>

<HEAD>

<TITLE>Example 05-02</TITLE>

<SCRIPT LANGUAGE="JavaScript">

if (navigator.appName == "Microsoft Internet Explorer")

{

image1 = new Image()

image2 = new Image()

image3 = new Image()

image4 = new Image()

image1.src = "back1.gif"

image2.src = "back2.gif"

image3.src = "back3.jpg"

image4.src = "back4.jpg"

}

62 � Chapter 5

function changepicture(imgname)

{

if (navigator.appName == "Microsoft Internet Explorer")

{

document.body.background = eval(imgname + ".src");

}

}

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

[Marble]

[Blue Marble]

[Slate]

[Dark Marble]

</CENTER>

</BODY>

</HTML>

If you enter this code as you see it (and use the images found in the code

files), you will get an image such as the one in Figure 5-4:

Background Effects � 63

5

C
h
a
p
te

r

Figure 5-4

Then moving your mouse over the Marble link will give you an image like the

one in Figure 5-5:

Moving the mouse over the Blue Marble link will show you an image such as

the one in Figure 5-6:

64 � Chapter 5

Figure 5-5

Let’s take a moment to review the actual code here and make sure that you

understand what is happening.

Note that the first line of the script finds out if the browser being used is

Internet Explorer. This particular script will not work quite the same in

Netscape. We will see in Chapter 6 that detecting the browser and working

with it is very important.

if (navigator.appName == "Microsoft Internet Explorer")

This also introduces you to the navigator object, which allows you to deter-

mine a lot about the browser the person visiting your web site is using. Now

assuming that it is Internet Explorer, we then proceed to create instances of

the image object and set them to particular images we wish to use for our

backgrounds. This code is virtually identical to the rollover code you saw in

Chapter 4.

Let’s look at another method for changing the background image. In the fol-

lowing example, when the user passes the mouse over a particular image that

image becomes the background image for the web page.

Background Effects � 65

5

C
h
a
p
te

r

Figure 5-6

Example 5-3

<HTML>

<HEAD>

<TITLE>Background Changer</TITLE>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

if (navigator.appName == "Microsoft Internet Explorer")

{

image1 = new Image()

image2 = new Image()

image3 = new Image()

image4 = new Image()

image1.src = "back1.gif"

image2.src="back2.gif"

image3.src = "back3.jpg"

image4.src = "back4.jpg"

}

function changepicture(imgname)

{

if (navigator.appName == "Microsoft Internet Explorer")

{

document.body.background = eval(imgname + ".src");

}

}

</SCRIPT>

</HEAD>

<BODY BACKGROUND="back1.gif">

</BODY>

</HTML>

This script works very much like Example 5-2, the only difference being that

rather than using text links to the image, it uses an actual picture. When the

user passes the mouse over the image, that image becomes the background

image for the page. If you write the code correctly, you will get something like

Figure 5-7:

66 � Chapter 5

Then when you move your mouse over one of the images you will get some-

thing like Figure 5-8:

Background Effects � 67

5

C
h
a
p
te

r

Figure 5-7

Figure 5-8

This example, much like the previous one (changing the background color) is

more important for the principle it demonstrates. It is possible for you to use a

different background image based on the date, time, or any other criteria you

wish to use. In Chapter 7, “Working with Data and Time” I will show you an

example of this.

More Background Effects

In addition to changing the background colors and images, you can use

JavaScript to make the background behave in interesting ways. One of the eas-

iest effects to implement is the scrolling background. The following example

shows a background that will scroll.

� NOTE: This works best with images that are uniform, such as rock textures,

stars, lava, etc.

Example 5-4

<HTML>

<HEAD>

<TITLE>Background Scroller</TITLE>

</HEAD>

<BODY>

<BODY BACKGROUND="back1.gif">

<SCRIPT LANGUAGE="JavaScript">

var bgOffset = 0

var bgObject = eval('document.body')

function scrollbackground(maxSize)

{

bgOffset = bgOffset + 1

if (bgOffset > maxSize)

bgOffset = 0

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

var scrtimer = window.setInterval("scrollbackground(50)",50)

</SCRIPT>

</BODY>

</HTML>

Now let’s examine this particular script and see how it works. The first part of

the script simply declares two variables:

68 � Chapter 5

var bgOffset = 0

var bgObject = eval('document.body')

The first variable, bgOffset, is simply an integer representing the number by

which to offset the background image’s position. The second variable,

bgObject, represents the body of the document (notice that again we are find-

ing uses for the document object).

Next we have the actual function that will do the scrolling of the background:

function scrollbackground(maxSize)

{

bgOffset++

if (bgOffset > maxSize)

bgOffset = 0

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

Some integer value is passed to this function as maxSize. The first statement

in the function simply increments bgOffset by 1. Then there is an if statement

that checks to see if bgOffset has exceeded maxSize. If so, then bgOffset is

reset to zero. We then simply set the background image position equal to the

offset. What this will cause the background image to do is to shift down repeat-

edly until maxSize is reached, and then go back to the starting position. The

larger the maxSize used, the less frequently the image will “pop” back up to

the top, thus providing the person viewing your web page with a more fluid

looking background.

Finally we come to the statement that calls the scrollBackground function:

var scrtimer = window.setInterval("scrollbackground(50)",50)

In this statement a variable is declared. That variable is set equal to the win-

dow object’s setInterval function. Remember that the window object refers to

the browser itself. Inside the setInterval function we call the scrollbackground

function and pass it a max value. What also happens here is that a number is

provided that indicates how frequently the shifting will occur. The lower this

second number is, the faster the image will scroll.

This is perhaps, in my view at least, the most interesting background effect in

this chapter. Provided it is used judiciously, it can add a dimension to your web

site not otherwise obtainable. The primary issue to consider is what image

you use. Remember that the image is not actually scrolling. We are simply cre-

ating the illusion of scrolling by shifting the image progressively further down,

Background Effects � 69

5

C
h
a
p
te

r

then bringing it back to the top. Because of this, an image with a homogenous

background will look like a scrolling background. Images such as stars, water,

clouds, stone textures, etc., work great for this.

Antique Bookstore Project

Now let’s add some of these techniques to our antique bookstore project and

see how that works. The first thing we are going to include is a scrolling back-

ground on the main page. So let’s look at the source code for that page (as it

stands so far).

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

ImageArray = new Array("banner1.gif","banner2.gif","banner3.gif")

CurrentImage = 0

ImageCount = ImageArray.length

function RotateBanner()

{

if (document.images)

{

CurrentImage++

if (CurrentImage ==ImageCount)

{

CurrentImage = 0

}

document.Banner.src=ImageArray[CurrentImage]

setTimeout("RotateBanner()",3000)

}

}

</SCRIPT>

</HEAD>

<BODY background="bod-bg.gif" onLoad="RotateBanner()">

<CENTER>

<P><TABLE BORDER=1>

<TR>

<TD>

<P>

<TD>

<P><CENTER>Ye Olde Book Shoppe</CENTER>

<TD>

70 � Chapter 5

</TABLE>

<P>

<P>

</CENTER>

<P>

</BODY>

</HTML>

We are going to add a second script to this page. This script goes in the body

immediately after the <BODY background=> tag:

<SCRIPT LANGUAGE="JavaScript">

var bgOffset = 0;

var bgObject = eval('document.body');

function scrollbackground(maxSize)

{

bgOffset = bgOffset + 1;

if (bgOffset > maxSize)

bgOffset = 0;

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

var scrtimer = window.setInterval("scrollbackground(50)",200);

</SCRIPT>

The background we are currently using is not particularly suited for scrolling

so we will change that to a marble background. This will give us the following

as our main.htm:

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

ImageArray = new Array("banner1.gif","banner2.gif","banner3.gif")

CurrentImage = 0

ImageCount = ImageArray.length

function RotateBanner()

{

if (document.images)

{

CurrentImage++

if (CurrentImage ==ImageCount)

{

CurrentImage = 0

}

document.Banner.src=ImageArray[CurrentImage]

Background Effects � 71

5

C
h
a
p
te

r

setTimeout("RotateBanner()",3000)

}

}

</SCRIPT>

</HEAD>

<BODY background="back1.gif" onLoad="RotateBanner()">

<SCRIPT LANGUAGE="JavaScript">

var bgOffset = 0;

var bgObject = eval('document.body');

function scrollbackground(maxSize)

{

bgOffset = bgOffset + 1;

if (bgOffset > maxSize)

bgOffset = 0;

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

var scrtimer = window.setInterval("scrollbackground(50)",50);

</SCRIPT>

<CENTER>

<P><TABLE BORDER=1>

<TR>

<TD>

<P>

<TD>

<P><CENTER>Ye Olde Book Shoppe</CENTER>

<TD>

</TABLE>

<P>

<P>

</CENTER>

<P>

</BODY>

</HTML>

This code, if entered properly, should produce the following image:

72 � Chapter 5

Summary

This chapter has introduced you to some simple ways that you can manipulate

the background color or image of a web page using JavaScript. Not only have

you learned a fairly easy way to “jazz up” your web site, hopefully you have

become more comfortable with JavaScript in general. One caution: Do not get

carried away with background manipulation. A background that is too busy can

be a distraction to site visitors.

Background Effects � 73

5

C
h
a
p
te

r

Figure 5-9

Chapter 6

The Document Object Model

With JavaScript you can perform lots of interaction with the browser. In fact,

one of the more interesting things you can do with JavaScript is to detect the

browser being used. You can then use the document objects to perform differ-

ent operations. Remember from your previous chapters that the document

object represents the web page that is currently loaded in the browser (i.e.,

the HTML document that the JavaScript is running in). The navigator object

represents the browser being used. The window object represents the specific

instance of the browser being used. You can easily have multiple instances of

the browser open, viewing different web pages. We will look at each of these

objects in detail in this chapter and explore ways to utilize them to enhance

your web page.

� NOTE: Objects often consist of other objects. The term nested objects is

usually used to characterize such child objects. The nested structure of an

object is also known as its hierarchy. The highest-level object is the one

that does not have any parent object. Browser objects are classic

examples for hierarchy usage, because they are deeply nested. The

browser object structure is fairly complex, so it is difficult to remember

each and every property at the bottom of the tree. However, I will

attempt to familiarize you with the basics of the browser object hierarchy.

The window Object Hierarchy

The window object is the top-level object of the hierarchy. It contains proper-

ties that apply to the entire window. For example, the status bar of the browser

is a property of this object. The window object has several properties we will

look at.

75

The first is the status property. The window.status property represents the

status bar at the bottom of your browser. You can use this property to display

messages to the user in the status bar. We will examine some creative ways to

use this a little later.

The window.alert, window.confirm, and window.prompt properties of the win-

dow object allow you to give messages to the user and receive feedback.

document Object

By far the most useful property of the window object is the document object. It

contains properties for the current page loaded in the window. With this object

you can make all kinds of alterations to a web page. Almost everything in the

page is a property of the document object, including links, images, forms and

their elements, anchors, and more.

The document object itself has properties you can utilize. The URL property

specifies the current URL of the web page. This is a read-only property. A

closely related property is the document.location property. You can use this

property to change to another location. That can be quite useful, and you will

see it in several scripts.

The referrer property is also closely related to the URL and location proper-

ties. It represents the web page that the user was at just prior to loading the

current page. This can be quite useful as we will see later on.

There are other properties that give you access to specific information about

the web page you are in. The title property allows you to change the title of

the document. The lastModified property allows you to see when this HTML

document was last modified.

history Object

The history object is also a property of the window object. It contains proper-

ties of the URLs the user has previously visited. This information is stored in

a history list, and is accessible through the browser’s menu. This object also

contains methods enabling you to send the user’s browser to a URL found in

the history list.

The length property simply tracks the length of the history. It tells you how

many items are listed in the history. The current property contains the value

of the page you are currently in. For navigation you will use the next and

76 � Chapter 6

previous properties, as they allow you to move forward and backward through

the history.

All of these objects are linked together into a well-defined hierarchy referred

to as the Document Object Model (DOM). Through creative use of the Docu-

ment Object Model, you can do some very interesting things in JavaScript. But

first you need to become acquainted with this model and what its elements do.

The document Object

As previously noted, the document object represents the web page that the

JavaScript is actually running in. Technically speaking, the document object is

a property of the window object. We have previously used it to ensure that the

web page will support the image object. In Chapter 4 we used if(docu-

ment.images) in our scripts to make sure that the web page would support the

image object. The document object has a variety of other fascinating methods.

However, perhaps the easiest, but most versatile, method is the write method.

The write method literally allows you to write to the web page directly. For

example, if you simply include this line of code:

Document.write(“Howdy”)

It will write the word “Howdy” to the web page. Now simply writing “Howdy”

on a web page is not particularly interesting. A much more interesting applica-

tion is to dynamically change the web page based on some criteria you choose.

The Document Object Model � 77

6

C
h
a
p
te

r

Figure 6-1

In the following example, we will ask the web page visitor to identify their

gender and alter the appearance of the web page based on their answer.

Example 6-1

<HTML>

<HEAD>

<TITLE>Gender Bender</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var gender = prompt("Enter M for Male and F for female","F")

if(gender=="M")

{

document.write('<BODY BGCOLOR = Blue>')

document.write('')

document.write('Yo Dude')

document.write('')

}

else

{

document.write('<BODY BGCOLOR = Pink>')

document.write('')

document.write('You go girl')

document.write('')

}

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

This script is really quite simple. It simply asks the user to enter their gender

and based on that information it proceeds to alter the properties of the HTML

document. You can really expand upon this to have different background

images, fonts, and even background music based on the information the user

provides you. With our example, if you entered everything correctly, you

should see a screen like the one shown here:

78 � Chapter 6

Figure 6-2

And then you will see one of the following screens, depending on how you

answer the prompt shown in Figure 6-2:

The Document Object Model � 79

6

C
h
a
p
te

r

Figure 6-3

Figure 6-4

The window Object

As I mentioned previously the window object represents the browser window

in which the script is running. This particular object has some really interest-

ing methods built in. We will explore some of them here.

One of the first things you can do with the window object is to open up other

windows. The openWindow method was briefly introduced in Chapter 4, and

we will examine it in more detail here. In the following example we open up a

window with a picture displayed in it.

Example 6-2

<HTML>

<HEAD>

<TITLE>Open a New Window</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function OpenWindow()

{

var NewWindow = window.open("advjscript.jpg", "NewWindow",

"width=350,height=400")

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=White>

Advanced Java Script

</BODY>

</HTML>

The meat of this script is the single line of code found inside the openWindow

function. The first parameter passed to this function is what you wish to open.

This can be another HTML document or an image. The second parameter

passed is the name of the variable that is going to represent this new window.

In our case that is NewWindow. The last parameter is the height and width of

the new window we are opening.

This script is fairly simple and easy to use. Even so, it can be very useful. For

example, if you have a list of products on your web site and you do not wish to

clutter the HTML document with all the details of every product, you can use

this script to allow the user to view a page with those details when they click

on the name of a product.

The only real problem with our example for launching a new window is that if

the item you are launching is larger than the size parameters you give it, there

aren’t any scroll bars to let you see the whole image. The next example is very

80 � Chapter 6

similar to the previous one, except that it adds something to the window.open

method call to include scroll bars.

Example 6-3

<HTML>

<HEAD>

<TITLE>Open a New Window</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function OpenWindow()

{

var NewWindow = window.open("example06-03b.htm", "NewWindow",

"width=350,height=200,scrollbars=yes")

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=White>

Advanced Java Script

</BODY>

</HTML>

Simply adding scrollbars=yes right after the dimension parameters will give

the new window you launch scroll bars! You can also add the line toolbar=yes

so that your new window will have your browser’s standard toolbar, if you

wish.

The next example combines the scroll bars, the toolbars, and a method for the

original window to close the window it launched.

Example 6-4

<HTML>

<HEAD>

<TITLE>Close Windows</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var childwindow = null

function opennewwindow()

{

childwindow = window.open("example06-03b.htm","childwindow",

"width=300,height=200,toolbar=yes,scrollbars=yes,")

}

function closenewwindow()

{

if (childwindow && !childwindow.closed)

{

childwindow.close()

}

The Document Object Model � 81

6

C
h
a
p
te

r

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=White>

<CENTER>

<H3>

View Advanced JavaScript

Close Advanced JavaScript

</H3>

</CENTER>

</BODY>

</HTML>

The only real difference in this script is the closenewwindow function. In that

function I simply use the name of the variable that represents the new window

that was launched, and call the closewindow() method. Although this differ-

ence is small it is significant. Allowing the user to close the child window from

the parent window that launched it is very important. If you entered the code

properly you will see something like this image:

82 � Chapter 6

Figure 6-5

The navigator Object

The navigator object represents the browser you are working with. From this

object you can find the type of browser that is being used and the version num-

ber. Most scripts will run fine in either Microsoft Internet Explorer or

Netscape Navigator. However, some scripts will not. It is a good idea, when

using such scripts, to determine the browser that is being used before

attempting to run a script.

The following example finds out what browser is being used and displays that

information to the screen using the document object’s write method.

Example 6-5

<HTML>

<HEAD>

<TITLE>Browser Detection</TITLE>

</HEAD>

<BODY BGCOLOR=White>

<SCRIPT LANGUAGE="JavaScript">

var browsername= navigator.appName

var browserversion = navigator.appVersion

if (browsername == "Microsoft Internet Explorer")

{

document.write("You are using MS Internet Explorer version " +

browserversion)

}

else

{

document.write("You are using Netscape Navigator version " +

browserversion)

}

</SCRIPT>

</BODY>

</HTML>

This rather simple example illustrates some of the practical things you can do

with the navigator object. If you entered the code properly you should see

something like this:

The Document Object Model � 83

6

C
h
a
p
te

r

Using the history Object

At the beginning of this chapter you were introduced to the history object.

Now I will show you some examples of this object in use.

Example 6-6

<HTML>

<HEAD>

<TITLE>Example 06-06.htm</TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

function goback()

{

history.back()

}

function goforward()

{

history.forward

}

</SCRIPT>

<BODY BGCOLOR=White>

84 � Chapter 6

Figure 6-6

<FORM>

<INPUT TYPE ="button" VALUE ="Back" onClick="javascript:goback()">

<INPUT TYPE ="button" VALUE ="Forward" onClick="javascript:

goforward()">

</FORM>

</BODY>

</HTML>

This rather simple example uses two JavaScript functions that each contain a

single line of code. Each function uses the history object to move forward or

backward in the document’s history. These functions are called from HTML

buttons on the body of the HTML document.

Antique Bookstore Project

With each chapter in this book, not only will your skills grow but our antique

bookstore project grows. So now let us take what we have learned in this

chapter and add it to the antique bookstore. In this case we are going to add

some pages describing some antique books. Since this is a fictitious bookstore,

I am going to simply make up information about books.

We are going to add a new page named inventory.htm. This page will contain

the latest additions to the bookstore’s inventory. We will have to, of course,

add a link on the tool.htm page. Also each book has a very simple page called

inventory1.htm, inventory2.htm, etc., to display each of the books. This page

simply has some text and a picture of the book. But now for the source code

for the new page.

<HTML>

<HEAD>

<TITLE>Book Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

var childwindow = null

function openbook1()

{

childwindow = window.open("inventory1.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook2()

{

childwindow = window.open("inventory2.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook3()

The Document Object Model � 85

6

C
h
a
p
te

r

{

childwindow = window.open("inventory3.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook4()

{

childwindow = window.open("inventory4.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

</SCRIPT

</HEAD>

<BODY background="back1.gif" >

<P>

<CENTER>

<H2> This month's newest additions!

</CENTER>

<P>

View Shakespeare

View Dickens

View Poe

View King James Bible

</H2>

</BODY>

</HTML>

What is most interesting about this web page is that we are using four differ-

ent functions to load four different web pages. Other than that, this is the same

basic launching of a new window that we saw earlier in our chapter, only

applied to our antique bookstore!

Summary

In this chapter you have been introduced to the document, window, and navi-

gator windows. Hopefully you are beginning to get a feel for some of the

fascinating features that JavaScript offers you through these built-in objects. I

would also hope that at this point you are getting comfortable with JavaScript

in general.

Some of the interesting things you have learned in this chapter include the

ability to open up new windows, detect what type of browser is being used,

and customize the actual HTML document based on any criteria you choose.

86 � Chapter 6

Chapter 7

Working with Date and Time

JavaScript makes it relatively easy to work with date and time data via its

built-in Date object. With this object you can determine the current time, day

of the week, and year. You can also change the time and date to any time or

date you wish. As we move through this chapter you will see some interesting

applications of the methods of this object.

Time of Day

Rather than starting off with some tedious details about the methods and prop-

erties of the Date object, let us start with an easy-to-use but interesting script.

In this script we determine the time of the day and give the visitor to our page

a greeting based on that time of day. Let me point out that the Date method

used here, getHours, returns the hours on a 24-hour clock. In other words, if

it’s 20 minutes after midnight, getHours will return a zero; if it’s 6 P.M.,

getHours will return an 18.

Example 7-1

<HTML>

<HEAD>

<TITLE>Example 07-01</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var mydate = new Date()

var mytime = mydate.getHours()

if (mytime<12)

alert("Good Morning")

else

{

if(mytime<17)

alert("Good Afternoon")

else

alert("Good Evening")

87

}

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

This script is rather simple but it does illustrate the essentials of using the

Date object. The first thing we do is create an instance of the Date object:

var mydate = new Date()

The next thing we do is create a variable to store the current time. Remember

that this is the number of hours since midnight:

var mytime = mydate.getHours()

Now we have a simple if statement that checks what hour it is and, based on

that time of day, gives an appropriate greeting. If you entered everything cor-

rectly, you should see something like the image here:

This script is fairly simple yet at the same time adds some interesting content

to your web site. A simple time of day greeting can give your web site a

88 � Chapter 7

Figure 7-1

personal touch and encourage more traffic (and web site traffic is the name of

the game!).

Day of Week

The next little script we will examine is one that gives a humorous greeting

based on the day of the week. This script uses the getDay method of the date

object. This method starts at zero for Sunday and then counts forward one by

one.

Example 7-2

<HTML>

<HEAD>

<TITLE>Example 07-02</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var mydate = new Date()

var myday = mydate.getDay()

if(myday==0)

alert(“Sunday! Nap time!”)

if (myday==1)

alert("Another Monday...Arghhh!")

if(myday==2)

alert("Tuesday...off to a slow week!")

if(myday==3)

alert("Wednesday...Halfway home!!!")

if (myday==4)

alert("just 1 more day! Hang in there!")

if (myday==5)

alert("Thank God Its Friday!!!")

if (myday==6)

alert("Saturday! Break out the BBQ!")

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

This script simply finds out what day it is and gives a humorous greeting

appropriate to the day of the week. This should illustrate to you the getDay

method, just as the previous example illustrates the use of the getHours

Working with Date and Time � 89

7

C
h
a
p
te

r

method. If you entered it correctly, you should see something like the follow-

ing image:

As you can probably guess, there are a number of methods for getting time and

date information from the Date object. These are getYear, getHour, getDay,

getTime, getMonth, getMinutes, and getSeconds. Each of these gives a partic-

ular output. The following table shows the output you can expect from each of

these.

Date Attribute Range

seconds 0-59

minutes 0-59

hours 0-23

day 0-6

date 1-31

month 0-11

year Note: In Netscape this is the years since 1900, while in Internet
Explorer it’s the actual year. So 2001 will show as 101 in
Netscape and as 2001 in Internet Explorer.

Now you can use these various methods to determine the current date, time,

year, or other information. You can also change the date and time represented.

90 � Chapter 7

Figure 7-2

Now the first question most beginners ask is not how, but why would you want

to. So let us look at an example where you might want to.

Example 7-3

<HTML>

<HEAD>

<TITLE>Example 07-03</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var year = prompt("What year where you born")

var month = prompt("What month where you born in")

var bday =prompt("What date where you born on")

var birthDay = new Date()

birthDay.setYear(year)

birthDay.setMonth(month)

birthDay.setDate(bday)

var day = birthDay.getDay()

if (day==0)

alert("You were born on Sunday")

if (day==1)

alert("You were born on Monday")

if (day==2)

alert("You were born on Tuesday")

if (day==3)

alert("You were born on Wednesday")

if (day==4)

alert("You were born on Thursday")

if (day==5)

alert("You were born on Friday")

if (day==6)

alert("You were born on Saturday")

if (day==0)

alert("You were born on Sunday")

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

Working with Date and Time � 91

7

C
h
a
p
te

r

Now take a close look at this script and let’s discuss what it’s doing. The first

three lines simply prompt the user to enter the year, month, and day they

were born. Note that these must be entered as numbers (i.e., September

should be 9, October 10). The next four lines are where we see the code we

are most interested in. Here we create a second Date object and set its year,

month, and day to equal the values the user input. We then simply do a

getDay() from this new Date object to find out what day of the week is

produced.

Setting Timeout

The setTimeout() method allows you to have some action occur after a given

period of time has passed. The time is evaluated in milliseconds (i.e., 5,000 is

5 seconds). This can be a very useful function. Let’s look at one example using

the setTimout() method.

Example 7-4

<HTML>

<HEAD>

<TITLE>Example 07-04</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function displayAlert()

{

alert("5 seconds have elapsed since the button was clicked.")

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

Click the button for a reminder in 5 seconds.

<P>

<INPUT TYPE="button" VALUE="5-second reminder"

NAME="remind_button"

onClick="timerID = setTimeout('displayAlert()',5000)">

</FORM>

</BODY>

</HTML>

When you click the button, the event handler’s script sets a timeout. The

timeout specifies that after 5,000 milliseconds, or 5 seconds, the function

displayAlert() is called. Therefore, 5 seconds after you click the button an alert

box is displayed.

92 � Chapter 7

This is not a particularly exciting script but it does show you the use of a time-

out. It is a relatively simple method to use, and is frequently used to simply

create a pause between complex operations.

Antique Bookstore Project

As with all the chapters in this book, once we have learned some new tech-

niques we are going to add them to our antique bookstore project. We will

simply add a day of week greeting to the main.htm page. But we are going to

give it a more practical twist. Rather than give a humorous greeting for the

day of the week, we will give the store hours for that day!

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var mydate = new Date()

var myday = mydate.getDay()

if(myday==0)

alert("Sunday- Sorry, we are closed today")

if (myday==1)

alert("Monday- Sorry, we are closed today")

if(myday==2)

alert("Tuesday- Our hours today are 10 a.m. to 6 p.m.")

if(myday==3)

alert("Wednesday- Our hours today are 10 a.m. to 6 p.m.")

if (myday==4)

alert("Thursday- Our hours today are 10 a.m. to 6 p.m.")

if (myday==5)

alert("Friday- Our hours today are 10 a.m. to 7 p.m.")

if (myday==6)

alert("Saturday- Our hours today are 10 a.m. to 4 p.m.")

</SCRIPT>

<SCRIPT LANGUAGE="JAVASCRIPT">

Working with Date and Time � 93

7

C
h
a
p
te

r

ImageArray = new Array("banner1.gif","banner2.gif","banner3.gif")

CurrentImage = 0

ImageCount = ImageArray.length

function RotateBanner()

{

if (document.images)

{

CurrentImage++

if (CurrentImage ==ImageCount)

{

CurrentImage = 0

}

document.Banner.src=ImageArray[CurrentImage]

setTimeout("RotateBanner()",3000)

}

}

</SCRIPT>

</HEAD>

<BODY background="back1.gif" onLoad="RotateBanner()">

<SCRIPT LANGUAGE="JavaScript">

var bgOffset = 0;

var bgObject = eval('document.body');

function scrollbackground(maxSize)

{

bgOffset = bgOffset + 1;

if (bgOffset > maxSize)

bgOffset = 0;

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

var scrtimer = window.setInterval("scrollbackground(50)",50);

</SCRIPT>

<CENTER>

<P><TABLE BORDER=1>

<TR>

<TD>

<P>

<TD>

<P><CENTER>Ye Olde Book Shoppe</CENTER>

<TD>

94 � Chapter 7

</TABLE>

<P>

<P>

</CENTER>

<P>

</BODY>

</HTML>

In my mind the most significant thing to notice about this web page is that we

now have three JavaScripts all running on the same page. This is interesting

because you will frequently want to run more than one script on a page.

Summary

In this chapter you have seen how to use the Date object to accomplish a vari-

ety of date and time related tasks. You should be comfortable getting the

current date, year, day, or time. You should also be comfortable setting the

time and date using the setTime and setDate functions. I believe that you will

find this particular information to be very practical for you while developing

web sites.

Working with Date and Time � 95

7

C
h
a
p
te

r

Chapter 8

Working with Cookies

First we need to define what a cookie is (aside from a delicious snack, prefera-

bly with chocolate chips!). A cookie is simply a little bit of plain text data that

your browser stores. This data concerns a particular web site. Your browser

stores these cookies as unencrypted text files in a location specified by the

browser. Once you learn to make cookies, you can have your web page store

information concerning a visitor to your site. Then when they return to your

site this information can be retrieved.

Baking Your First Cookie

Cookies are not complicated but the code is lengthy. The only way to do this is

to just jump right in. So I am going to show you the code for a cookie and then

walk you through it explaining it line by line.

Example 8-1

<HTML>

<HEAD>

<TITLE>Example 08-01</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function setCookie(name, value, expires, path, domain, secure)

{

var curCookie = name + "=" + escape(value) +

((expires) ? "; expires=" + expires.toGMTString() : "") +

((path) ? "; path=" + path : "") +((domain) ? "; domain=" + domain : "") +

((secure) ? "; secure" : "")

document.cookie = curCookie

}

function getCookie(name)

{

var prefix = name + "="

var cookieStartIndex = document.cookie.indexOf(prefix)

97

if (cookieStartIndex == -1)

return null

var cookieEndIndex = document.cookie.indexOf(";", cookieStartIndex+

prefix.length)

if (cookieEndIndex == -1)

cookieEndIndex = document.cookie.length

return unescape(document.cookie.substring(cookieStartIndex +prefix.length,

cookieEndIndex))

}

function deleteCookie(name, path, domain)

{

if (getCookie(name))

{

document.cookie = name + "=" +((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +"; expires=Thu,

01-Jan-70 00:00:01 GMT"

}

}

var expiredate = new Date()

expiredate.setTime(expiredate.getTime() + 31 * 24 * 60 * 60 * 1000)

var name = getCookie("name")

if (!name)

{

name = prompt("Please enter your name:", "John Doe")

setCookie("name", name, expiredate)

}

alert("Welcome back " + name)

</SCRIPT>

</HEAD>

<BODY BGCOLOR=White>

</BODY>

</HTML>

If you entered everything properly you should see something like this image:

98 � Chapter 8

Now if you are beginning to panic at the sheer size of this particular script,

please don’t. It only looks convoluted. I will walk you through the source code

line by line and together we will sort this out. Let us begin by looking at the

first function you see, setCookie.

setCookie

The syntax is:

function setCookie(name, value, expires, path, domain, secure)

First note that this function takes six parameters. Your code will only supply

the first three. The last three are determined by the browser. The first param-

eter is called name. It is simply the name of the cookie.

It’s a good idea to pick a name that is relevant to the type of data the cookie

holds. The next parameter is the value or content that cookie will hold. We

then have the expires parameter, which holds an expiration date for the

cookie. If you do not set an expiration date, the cookie will expire the next

time you reboot your PC. This is referred to as a pre-expired cookie.

Even though you don’t supply the final three parameters it’s a good idea to

understand what they are. The fourth parameter simply is the path to where

your browser stores cookies. The fifth parameter indicates what domain the

Working with Cookies � 99

8

C
h
a
p
te

r

Figure 8-1

cookies are associated with. A domain can have a maximum of 20 cookies.

Finally we have the secure parameter, which simply tells us if this is a secure

cookie or not.

Next the code simply creates a variable to contain the cookie information and

concatenates it all together. Finally we use the document object’s cookie prop-

erty to add this cookie to the user’s cookie list.

var curCookie = name + "=" + escape(value) +

((expires) ? "; expires=" + expires.toGMTString() : "") +

((path) ? "; path=" + path : "") +((domain) ? "; domain=" + domain : "") +

((secure) ? "; secure" : "")

// Actually placing the cookie

document.cookie = curCookie

What this function accomplishes is that it takes the values you pass it and the

values that the browser itself passes it, and it creates a cookie to store that

data.

getCookie

The next function we examine is the code for the getCookie function. This is

called to see if a valid cookie exists for this web page visitor. If it does, the

function will simply return a null value. At that point you can prompt the user

to enter the data, and then call setCookie(). However, if it does find a match,

you can then use that data.

The function begins with this line of code:

var prefix = name + "="var cookieStartIndex = document.cookie.indexOf(prefix)

This code segment is creating a variable named prefix. That variable is set to

equal the starting point, in the cookie file, of the cookie name that was passed

to this function. This function will use the document object’s cookie project to

see if it can find this cookie. If it can, then it will return the index, and the

cookie’s value can be read in. If not, it will return a null. In fact, the very next

line takes care of this:

if (cookieStartIndex == -1)

return null

If cookieStartIndex cannot be found, simply have the function return a null,

indicating that no cookie was found.

100 � Chapter 8

The next few lines try to find the ending point of this cookie. If one cannot be

found, it is assumed that this is the last cookie your browser has in its cookie

list and the end of this list is assumed to be the end of this cookie:

var cookieEndIndex = document.cookie.indexOf(";", cookieStartIndex+

prefix.length)

if (cookieEndIndex == -1)

cookieEndIndex = document.cookie.length

Now once the function has determined that the cookie exists and that it has a

start point as well as an ending point, then it’s time to simply return the con-

tents of that cookie. This is what the final line of the function accomplishes:

return unescape(document.cookie.substring(cookieStartIndex +prefix.length,

cookieEndIndex))

The third function, deleteCookie(), simply deletes a cookie if you pass it the

cookie name. In the previous example this function was not actually called, but

I thought I should show it to you in case you need it later.

Calling the Functions

Now how do we actually use these functions to get cookies and to create

them? Well, the last few lines of the script accomplish this, so let’s give them a

look. First, we have two lines of code that create a Date object and increment

its value:

var expiredate = new Date()

expiredate.setTime(now.getTime() + 31 * 24 * 60 * 60 * 1000)

This expiredate object will be used to set the expiration date of our cookie.

You can use the date functions to set this expiration date to any date you wish.

I just picked this particular date for illustration purposes.

Now that we have an expiration date (and that will only be used when we set a

new cookie, not when we get a cookie) we will now see if the cookie we want

already exists on the web page visitor’s machine.

var name = getCookie("name")

This code is really quite simple, but effective. We simply call the getCookie

function and find out what it returns for the name cookie. If it finds a valid

name, then we can simply use that name. If not, then we will get a null for a

return value, in which case we can simply prompt the user to enter their name

then use the setCookie function to create a cookie holding their name:

Working with Cookies � 101

8

C
h
a
p
te

r

if (!name)

{

name = prompt("Please enter your name:", "John Doe")

setCookie("name", name, expiredate)

}

alert("Welcome back " + name)

And that, in a nutshell, is how our cookie script works. It is really not that

complicated, it is simply long. So in order to make sure you do understand the

concepts, let’s examine another script that stores a somewhat different cookie.

Bake Another Cookie

This cookie works similar to the previous one, and I hope that by examining

both cookies you will get a good understanding of how cookies work. This

script asks the user what background color they would prefer when viewing

the web page, and saves that value in a cookie. Then anytime they visit the

web page, it uses the background color they selected.

Example 8-2

<HTML>

<HEAD>

<TITLE>Example08-02</TITLE>

<HEAD>

<SCRIPT LANGUAGE = "JavaScript">

var expiredate= new Date();

expiredate.setTime(expiredate.getTime() + (30*24*60*60*1000))

var backcolor = getCookie("bgcolor")

if (backcolor == null)

{

backcolor = prompt("What is your favorite background color?")

setCookie("bgcolor", backcolor, expiredate)

}

document.bgColor=backcolor

function setCookie(name, value, expires, path, domain, secure)

{

var curCookie = name + "=" + escape(value) +

((expires) ? "; expires=" + expires.toGMTString() : "") +

((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +

((secure) ? "; secure" : "")

document.cookie = curCookie

}

function getCookie(cookiename)

102 � Chapter 8

{

var prefix = cookiename + "="

var cookieStartIndex = document.cookie.indexOf(prefix)

if (cookieStartIndex == -1)

return null

var cookieEndIndex = document.cookie.indexOf(";", cookieStartIndex+

prefix.length)

if (cookieEndIndex == -1)

cookieEndIndex = document.cookie.length

return unescape(document.cookie.substring(cookieStartIndex

+prefix.length, cookieEndIndex))

}

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

If you entered the code properly, you should be able to see the following image

in your browser:

Working with Cookies � 103

8

C
h
a
p
te

r

Figure 8-2

Hopefully you notice several similarities between this script and the last one.

But let us go over this one together, just to make sure you understand every-

thing that is happening. The first difference is merely structural. In this script

I placed the call to the functions first, then the function definitions. This is the

opposite of the order used in the previous script. I did this on purpose to show

you that the order in which you do these actions really makes no difference.

Let’s take a look at the first few lines of code and see what they are doing:

var expiredate= new Date();

expiredate.setTime(expiredate.getTime() + (30*24*60*60*1000))

var backcolor = getCookie("bgcolor")

First, we create a date object called expiredate. As you might guess, this is

going to hold the expiration date for the cookie. We then set the expiration

date for some time beyond the current time. Next, we call the getCookie func-

tion to retrieve the contents of the cookie named bgcolor. Whatever is

returned is placed in the variable backcolor. If the cookie is found, then

backcolor should contain some color. If no matching cookie is found, then we

will get a null value in the variable backcolor.

Next we check to see if the value of backcolor is null. If so, we are going to

prompt the user to enter their preferred color and then create a cookie to save

that information. We will then set the background color of the current web

page to the color the user has selected:

if (backcolor == null)

{

backcolor = prompt("What is your favorite background color?")

setCookie("bgcolor", backcolor, expiredate)

}

document.bgColor=backcolor

We do not need to closely examine the setCookie and getCookie functions

because they are exactly identical to the ones used in the previous function.

This illustrates a very important point. The process of creating a cookie, or

retrieving one, is the same regardless of what you choose to name a cookie or

what value you place in the cookie. This means you can use these same cookie

scripts, with some minor alterations, to create cookies to save any data you

might wish to save.

104 � Chapter 8

� NOTE: The way a client’s browser communicates with the web server is via

HTTP (Hypertext Transfer Protocol). When a user requests a specific page,

the browser sends that request to the web server. This activity is all

transparent to the web page user. Among the items requested, an HTTP

request includes a header that defines the most important attributes,

such as the URL of the requested page. An HTTP request also includes

the cookies.

The server then returns an HTTP response. This response also has a

header that contains valuable information. The general structure of an

HTTP header is as follows:

Field-name: Information

When the server returns an HTTP object to the client, it may also transmit

some state information for the client to store as cookies. Since a cookie is

basically simple text, the server-side script does not have the ability to

abuse the client machine in any way. In addition to its textual value, a

cookie contains several attributes, such as the range of URLs for which the

cookie is valid. Any future HTTP requests from the client to one of the

URLs in the above range will transmit back to the server the current

cookie’s value on the client.

An HTTP cookie is introduced to the client in an HTTP request using the

following syntax:

Set-Cookie: NAME=VALUE; expires=DATE; path=pathName;

domain=DOMAIN_NAME; secure

The attributes are as follows:

name=value

This simply specifies the name of the cookie and the value to be stored in

the cookie. Technically, this is the only field that is required. All others are

purely optional.

expires=date

As you probably guessed, this attribute simply sets an expiration date for

the cookie. This field is optional. However, if no expiration date is set, a

cookie will expire the next time the client machine is rebooted. The date

string is formatted as follows:

Wdy, DD-Mon-YYYY HH:MM:SS

domain

The domain attribute makes sure that only hosts within the specified

domain can set a cookie for the domain. Domains must have at least two

Working with Cookies � 105

8

C
h
a
p
te

r

or three periods, to avoid collision between domains of the form .com,

.edu, etc. There are seven common top-level domains that require at least

two periods in their domain name: com, edu, net, org, gov, mil, and int.

All other domains require at least three periods in their domainName. An

example of a domain name would be www.wordware.com.

The default value of domain is the host name of the server which gener-

ated the cookie response.

path=pathName

Path specifies a subset of URLs in a domain for which a cookie is valid.

Basically once you have found an appropriate domain, you have to find

the individual web site within that domain that is relevant to this cookie.

secure

If a cookie is marked secure, it will only be transmitted across a secured

communication channel between the client and the host.

Antique Bookstore Project

As you might guess, we are going to add this script to our antique bookstore

project. We are going to use the first cookie script on the main.htm page of our

project. This way we can retain the name of customers who visit our site and

greet them when they return. As in each chapter, when we add something to a

page in our project, I show you the complete code, including the previous

code. This allows you to see the script in the context of the other HTML and

other scripts already on the web page.

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function setCookie(name, value, expires, path, domain, secure)

{

var curCookie = name + "=" + escape(value) +

((expires) ? "; expires=" + expires.toGMTString() : "") +

((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +

((secure) ? "; secure" : "")

document.cookie = curCookie

}

function getCookie(name)

{

var prefix = name + "="

106 � Chapter 8

var cookieStartIndex = document.cookie.indexOf(prefix)

if (cookieStartIndex == -1)

return null

var cookieEndIndex = document.cookie.indexOf(";", cookieStartIndex+

prefix.length)

if (cookieEndIndex == -1)

cookieEndIndex = document.cookie.length

return unescape(document.cookie.substring(cookieStartIndex

+prefix.length, cookieEndIndex))

}

function deleteCookie(name, path, domain)

{

if (getCookie(name))

{

document.cookie = name + "=" +((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +"; expires=Thu,

01-Jan-70 00:00:01 GMT"

}

}

var expiredate= new Date()

expiredate.setTime(expiredate.getTime() + 30 * 24 * 60 * 60 * 1000)

var name = getCookie("name")

if (!name)

{

name = prompt("Please enter your name:", "John Doe")

setCookie("name", name, expiredate)

}

alert("Welcome back " + name)

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">

var mydate = new Date()

var myday = mydate.getDay()

if(myday==0)

alert("Sunday- Sorry, we are closed today")

if (myday==1)

alert("Monday- Sorry, we are closed today")

Working with Cookies � 107

8

C
h
a
p
te

r

if(myday==2)

alert("Tuesday- Our hours today are 10 a.m. to 6 p.m.")

if(myday==3)

alert("Wednesday- Our hours today are 10 a.m. to 6 p.m.")

if (myday==4)

alert("Thursday- Our hours today are 10 a.m. to 6 p.m.")

if (myday==5)

alert("Friday- Our hours today are 10 a.m. to 7 p.m.")

if (myday==6)

alert("Saturday- Our hours today are 10 a.m. to 4 p.m.")

</SCRIPT>

<SCRIPT LANGUAGE="JAVASCRIPT">

ImageArray = new Array("banner1.gif","banner2.gif","banner3.gif")

CurrentImage = 0

ImageCount = ImageArray.length

function RotateBanner()

{

if (document.images)

{

CurrentImage++

if (CurrentImage ==ImageCount)

{

CurrentImage = 0

}

document.Banner.src=ImageArray[CurrentImage]

setTimeout("RotateBanner()",3000)

}

}

</SCRIPT>

</HEAD>

<BODY background="back1.gif" onLoad="RotateBanner()">

<SCRIPT LANGUAGE="JavaScript">

var bgOffset = 0;

var bgObject = eval('document.body');

function scrollbackground(maxSize)

{

bgOffset = bgOffset + 1;

if (bgOffset > maxSize)

108 � Chapter 8

bgOffset = 0;

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

var scrtimer = window.setInterval("scrollbackground(50)",50);

</SCRIPT>

<CENTER>

<P><TABLE BORDER=1>

<TR>

<TD>

<P>

<TD>

<P><CENTER>Ye Olde Book Shoppe</CENTER>

<TD>

</TABLE>

<P>

<P>

</CENTER>

<P>

</BODY>

</HTML>

I hope you notice that we are now running five separate scripts on the same

web page. Usually this would be discouraged, as it can make the web page

appear too “busy.” However, in this case it was done purposefully to illustrate

a point. You can easily have multiple scripts on a single page. You simply need

to place each script inside of its own <SCRIPT> </SCRIPT> tags.

Summary

In this chapter you were shown a very useful application of JavaScript: cook-

ies. Cookies are the most common way of retaining data about a web site

visitor so that the data can be retrieved the next time the person visits that

web site. This not only creates a more user-friendly web page, but it can save

the user the trouble of having to re-enter key data every single time he or she

visits the web site.

Working with Cookies � 109

8

C
h
a
p
te

r

Chapter 9

Working with the Status Bar

The status bar is found at the bottom of the browser’s window. Both Navigator

and Internet Explorer have a status bar. It usually displays the current status

of the document being loaded.

It can be useful for you to occasionally display information in the status bar.

Fortunately this is very easy in JavaScript. In this chapter you will see a vari-

ety of ways you can display information in the status bar. Simply accessing the

status property of the window object gives you access to the status bar.

Image Data

One very easy technique is to display information in the status bar when a per-

son passes the mouse over some image.

Example 9-1

<HTML>

<HEAD>

<TITLE>Example 09-01</TITLE>

</HEAD>

<BODY BGCOLOR=white>

<CENTER>

<A HREF="somepage.htm"

onMouseOver= " window.status='This is a link to some page'

return true" onMouseOut="window.status= ' '

return true">First Link |

<A HREF="someotherpage.htm"

onMouseOver="window.status='This is a link to some other page'

return true" onMouseOut="window.status='Please dont go '

return true">Second Link

111

</CENTER>

</BODY>

</HTML>

If you enter the code exactly as it appears above you should see the following

images in your browser. When the page first loads you will see this:

Then if you move your mouse over the first link, you will see a message in the

status bar.

112 � Chapter 9

Figure 9-1

If you move your mouse over the second link, you will see a message in the

status bar. With this link (unlike the first one) you will get another message

when you move off of the link.

Working with the Status Bar � 113

9

C
h
a
p
te

r

Figure 9-2

Figure 9-3

By closely examining the second link we can see clearly how this works. It

begins with a standard HTML reference <A HREF="somepage.htm". But

before we close the tag we have some other code.

The next line we see is onMouseOver=window.status='This is a link to some

page'. What this is saying is simply that when a mouse moves over this link

the text you see in the status bar of the browser should appear. An important

thing to remember is that in your text you cannot have any apostrophes. Since

the text itself is enclosed in apostrophes it will cause an error.

After this we have two choices for the onMouseOut event. We can simply

write window.status=''… as we did with the first link, or we can place some

other text in the status bar when the mouse moves off of the link.

This particular little trick is not hard to use at all, and it adds an important

dimension to your web site. Each of your links can now display more details in

the status bar. This can be very useful for visitors to your site.

T-Banners

The T-banner simulates a typewriter. It displays each message by typing it in,

one character at a time. It seems as if someone is typing the message at a cer-

tain speed, deleting it upon completion. First, take a look at the script:

Example 9-2

<HTML>

<HEAD>

<TITLE>Example 09-02</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var speed = 100 // this speed value actually works in reverse; lower the

// number to increase speed

var pause = 1000 // increase value to increase pause

// set initial values

var timerID = null

var bannerRunning = false

var offset = 0

var text = "How do you like this T-Banner"

function stopBanner()

{

114 � Chapter 9

// if banner is currently running

if (bannerRunning)

// stop the banner

clearTimeout(timerID)

bannerRunning = false

}

function startBanner()

{

stopBanner()

showBanner()

}

function showBanner()

{

if (offset < text.length)

{

var partialMessage = text.substring(0, offset + 1)

// display partial message in status bar

window.status = partialMessage

// increment index of last character to be displayed

offset++

// recursive call after specified time

timerID = setTimeout("showBanner()", speed)

// banner is running

bannerRunning = true

}

else

{

offset = 0

timerID = setTimeout("showBanner()", pause)

bannerRunning = true

}

}

// -->

</SCRIPT>

</HEAD>

<BODY onLoad="startBanner()">

</BODY>

</HTML>

Working with the Status Bar � 115

9

C
h
a
p
te

r

When you type in this script and run it in your browser, you should see some-

thing like the following:

This script is actually rather simple. In fact, it is its simplicity that makes it

work. The first portion of the script merely declares the variables that we will

need throughout the rest of the script.

var speed = 100 // this speed value actually works in reverse; lower the

// number to increase speed

var pause = 1000 // increase value to increase pause

// set initial values

var timerID = null

var bannerRunning = false

var offset = 0

var text = "How do you like this T-Banner"

The first variable simply tells us how fast to put the banner in the status bar.

The second tells us how much pause before running the banner again. The

third variable is a timer variable that we initialize to a null value. The

bannerRunning variable lets us track whether the banner is currently running

or not. The offset variable is really key to the whole operation, as you will see

shortly. The final variable is the text variable that simply contains whatever

text we wish to display.

116 � Chapter 9

Figure 9-4

The stopBanner function merely causes the banner to stop displaying. The

startBanner function ensures that the banner is not currently running (by call-

ing the aforementioned stopBanner function), then calls the showBanner

function. It is this last function with which we are concerned. It is here that

the real action takes place in this script.

if (offset < text.length)

{

var partialMessage = text.substring(0, offset + 1)

// display partial message in status bar

window.status = partialMessage

offset++

// recursive call after specified time

timerID = setTimeout("showBanner()", speed)

// banner is running

bannerRunning = true

}

Let us examine this segment of script and make sure that you understand

what it is doing. The offset variable, which you were introduced to previously,

tells us which character in the text variable we are currently at. So the first

thing we do is see if that value is still less than the length of the total text

value. If it is then we execute the remaining code. The secret of the script is in

just three lines:

var partialMessage = text.substring(0, offset + 1)

window.status = partialMessage

offset++

What happens here is we grab the segment of the text variable from zero to

the value of the offset + 1 and then we display that text in the status bar. On

the first pass we will simply display the first character, then the second charac-

ter, then the third, and so on. Although it appears that the characters are being

typed across the status bar, what is really happening is that the status bar’s

value is completely changing each time to reflect a longer segment of the text!

After this, the function just keeps calling itself until the entire text is dis-

played. You should note that the process of having a function call itself is

referred to as recursion. A function that does call itself is said to be a recursive

function.

Working with the Status Bar � 117

9

C
h
a
p
te

r

Antique Bookstore Project

As with all the chapters in this book, we now need to add some of what we

have learned to our ongoing antique bookstore project. We are actually going

to add two things. We will begin by using the first example I showed you to

add some informational content to our inventory page.

Inventory.htm

<HTML>

<HEAD>

<TITLE>Book Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

var childwindow = null

function openbook1()

{

childwindow = window.open("inventory1.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook2()

{

childwindow = window.open("inventory2.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook3()

{

childwindow = window.open("inventory3.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook4()

{

childwindow = window.open("inventory4.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

</SCRIPT

</HEAD>

<BODY background="back1.gif" >

<P>

<CENTER>

<H2> This month’s newest additions!

</CENTER>

<P>

<A HREF="javascript:openbook1()"

onMouseOver= " window.status='We have three copies of this book, all in fine

condition'

118 � Chapter 9

return true" onMouseOut="window.status= ' '

return true">View Shakespeare

<A HREF="javascript:openbook2()"

onMouseOver= " window.status='We just acquired this book last month'

return true" onMouseOut="window.status= ' '

return true">View Dickens

<A HREF="javascript:openbook3()"

onMouseOver= " window.status='This book is in fair condition'

return true" onMouseOut="window.status= ' '

return true">View Poe

<A HREF="javascript:openbook4()"

onMouseOver= " window.status='We have one copy in mint condition'

return true" onMouseOut="window.status= ' '

return true">View King James Bible

</H2>

</BODY>

</HTML>

Summary

In this chapter you have seen that it is really quite easy to manipulate the sta-

tus bar to display information. I have shown you a few direct examples to

illustrate this point. You will find that the minimal effort required in imple-

menting these techniques is well worth it. Your web site visitors will be able

to get additional information in the status bar without you having to add unnec-

essary clutter to your web page.

Working with the Status Bar � 119

9

C
h
a
p
te

r

Chapter 10

Creating Dynamic Menus

The visitors to your web site are probably used to desktop applications (run-

ning on their PC or Mac) that allow them to navigate the software via a wide

range of menus. I am sure that you have used drop-down menus, pop-up

menus, and other type of menus as well. Fortunately it is not particularly diffi-

cult to place such menus in your web page using JavaScript.

In order to create many of these menus we have to depend on a web technol-

ogy called cascading style sheets. Since this book is about JavaScript we don’t

go into depth on exactly how cascading style sheets work; we just use them in

conjunction with our standard HTML and JavaScript. It is entirely possible to

use these scripts with only a very cursory knowledge of style sheets.

Pop-Up Menus

The first menu type we will examine produces a simple pop-up menu when

the user moves the mouse over a particular segment of text. Let us look at a

sample and examine it to understand how it works.

Example 10-1

<HTML>

<HEAD>

<TITLE>ex10-01</TITLE>

<STYLE TYPE="text/css">

.popup {border-width:4; border-style: solid; border-color:blue;

position:absolute; background-color:yellow; visibility:hidden}

</STYLE>

<SCRIPT>

function setUp()

{

makepopup ("Item1" ,280, "This is the popup for item 1")

makepopup ("Item2",240, "Hey this is another popup.")

121

makepopup ("Item3",280, "Last, but not least, popup3.")

}

function makepopup (id, width, message)

{

var htmltext = '<STYLE

TYPE="text/css">#'+id+'{width:'+width+';}</STYLE>';

htmltext +='<DIV CLASS="popup" id="'+id+'">'+message+'</DIV>';

document.write(htmltext);

}

function show(id, event)

{

document.all[id].style.pixelLeft = (document.body.scrollLeft

+event.clientX) + 10;

document.all[id].style.pixelTop = (document.body.scrollTop +

event.clientY) + 10;

document.all[id].style.visibility="visible";

}

function hide(id)

{

document.all[id].style.visibility="hidden";

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=white>

<CENTER>

List of Items

<A HREF="" onMouseOver="show('Item1', event)"

onMouseOut="hide('Item1')">Item 1

<A HREF="" onMouseOver="show('Item2', event)"

onMouseOut="hide('Item2')">Item 2

<A HREF="" onMouseOver="show('Item3', event)"

onMouseOut="hide('Item3')">Item 3

<SCRIPT LANGUAGE="JavaScript">

setUp()

</SCRIPT>

122 � Chapter 10

</BODY>

</HTML>

This script may look a bit complicated but don’t worry, it’s not. The first new

item you may notice is the <STYLE> tag. This is used with cascading style

sheets (CSS) and we use it to create the little balloon. It is common to use

these cascading style sheets in conjunction with a scripting language such as

JavaScript. Essentially its parameters define the way in which the pop-up win-

dow will look. After that, the rest of the script is fairly standard JavaScript.

Let’s take a closer look

The first function you see, setUp, simply defines the parameters the pop-up

menu will have. This includes what text it will display and its width. This func-

tion in turn uses makepopup to create the pop-up window with the parameters

you put in setUp.

The function Show() actually displays the pop-up window. This function is

called when the mouse moves over the text in the body of your HTML. The

hide function simply hides the pop-up window and is called when the mouse

moves off of the text in the body of your HTML. Both of these functions utilize

elements of the cascading style sheet, particularly the visible property.

If you entered the code correctly, you should be able to use your browser to

view something similar to the following:

Creating Dynamic Menus � 123

10

C
h
a
p
te

r

Figure 10-1

Drop-Down Menus

The drop-down menu simply uses an HTML choice form element. This looks

like a drop-down or combo box in Microsoft Windows. You use this form ele-

ment to provide the user with a list of choices, then take their choice and pass

it to your JavaScript. Let’s look at an example.

Example 10-2

<HTML>

<HEAD>

<TITLE> Example 10-02</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function movetourl()

{

window.location=document.dropmenu.website.options[document.dropmenu.

website.selectedIndex].value

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="dropmenu">

<SELECT NAME="website">

<OPTION VALUE="">Choose your link

<OPTION VALUE="http://www.wordware.com">WordWare

<OPTION VALUE="http://www.amazon.com">Amazon Books

<OPTION VALUE="http://www.nortexsolutions.com">Nortex Solutions

</SELECT>

<INPUT TYPE="button" VALUE="Go" onClick="movetourl()">

</FORM>

</BODY>

</HTML>

If you enter all the code correctly, you should be able to see something like the

following illustration:

124 � Chapter 10

Let’s take a look at the code and see what is happening. The actual script itself

is amazingly simple. It is a single line of code:

window.location=document.dropmenu.website.options[document.dropmenu.website.

selectedIndex].value

It uses the window object’s location property to simply move the web page to

the URL specified in the menu. This is pretty straightforward and easy to fol-

low. The way we actually create the menu is using HTML form elements. In

this case we use the select element that creates a drop-down menu. When the

user has selected the web page they wish to go to, they click on the Go button

and from its onClick event we call our JavaScript. This particular menu is very

easy to implement, as you can see.

Pull-Down Menus

The next type of menu we will discuss is a pull-down menu. This menu works

like many applications in Microsoft Windows. With this menu example only

the top-level menu title appears on the screen. When your mouse moves over

that menu title, the rest of the menu drops down into view. This is a very

interesting effect. Let’s look at an example.

Creating Dynamic Menus � 125

10

C
h
a
p
te

r

Figure 10-2

Example 10-3

<HTML>

<HEAD>

<TITLE>Example 10-03</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var browser

if (document.getElementById)

{

browser = true

}

else

{

browser = false

}

function toggleMenu(currElem,nextPos)

{

menuObj = (browser) ? document.getElementById(currElem).style :

eval("document." + currElem)

if (toggleMenu.arguments.length == 1)

{

nextPos = (parseInt(menuObj.top) == -5) ? -90 : -5

}

menuObj.top = (browser) ? nextPos + "px" : nextPos

}

</SCRIPT>

<STYLE TYPE="TEXT/CSS">

.menu {position:absolute; font:12px arial, helvetica, sans-serif;

background-color:tan; layer-background-color:tan; top:-90px}

#fileMenu {left:10px; width:70px}

#searchMenu {left:85px; width:100px}

A {text-decoration:none; color:blue}

A:hover {background-color:blue; color:red}

</STYLE>

</HEAD>

<BODY BGCOLOR="white">

<DIV ID="fileMenu" CLASS="menu" onMouseover="toggleMenu('fileMenu',-5)"

onMouseout="toggleMenu('fileMenu',-90)">

Open

Back

Forward

Close<HR>

File

</DIV>

126 � Chapter 10

</BODY>

</HTML>

If you enter everything properly and then open up this web page in your

browser, you should see something like the following figures.

Creating Dynamic Menus � 127

10

C
h
a
p
te

r

Figure 10-3

Figure 10-4

Now let’s look at this example in more detail to ensure that you have a firm

understanding of exactly what is occurring here.

The first part of the JavaScript code may seem a bit strange:

var browser

if (document.getElementById)

{

browser = true

}

else

{

browser = false

}

What we are doing here is seeing if this browser will support the script we are

writing. Since we use the document’s element object, we see if this browser

will support that, by simply calling the getElementById function. If this works,

then the browser will support our script. You will notice that in many scripts in

this book, the first step is to make sure the browser will support the script.

This is simply a good practice to get into, to keep visitors to your web site

from getting error messages.

The menu does most of its action in the toggleMenu function, so let’s take a

close look at that.

function toggleMenu(currElem,nextPos)

{

menuObj = (browser) ? document.getElementById(currElem).style :

eval("document." + currElem)

if (toggleMenu.arguments.length == 1)

{

nextPos = (parseInt(menuObj.top) == -5) ? -90 : -5

}

menuObj.top = (browser) ? nextPos + "px" : nextPos

}

Don’t let the apparent complexity scare you; this is not as tough as it looks.

The real new item here is what is called a ternary operator. This is an operator

that has three elements. Most operators you have seen so far have one or two

operators (such as the unary increment operator, ++, and the binary math

operators, +, –, *, /, etc.). The ternary operator has three arguments. In the

form we use it here, it is essentially a condensed if-then statement. We will

look closely at the second ternary operator in this script segment since it is

shorter.

128 � Chapter 10

menuObj.top = (browser) ? nextPos + "px" : nextPos

What is happening here is we are saying that if the browser object is valid,

then menuObj.top should be set equal to nextPos + “px”, otherwise simply

set it to nextPos. You will see ternary operators used in many JavaScripts.

They are also frequently used in Java, C , and C++ programming.

What this function does, with the use of two ternary operators simply to

shorten if-else statements, is to set the position of the menu. That is, to cause

it to expand so you can view the full menu or to collapse so that you cannot.

To create the menu we again use cascading style sheets. For our purposes it is

not important to go into depth on the details of cascading style sheets. We can

occasionally use them without an in-depth knowledge of them. We then simply

use onMouseOver to display the menu and onMouseOut to make the menu

disappear.

Expanding Menus

Sometimes you have a lot of information to display, but displaying it all makes

for a very cluttered web page. By using an expanding menu you can group

information into topics, and then the user can click on a topic they are inter-

ested in and have the detailed information display for that topic. Let’s look at

an example:

Example 10-4

<HTML>

<HEAD>

<TITLE>Example 10-04</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

function toggleMenu(currMenu)

{

if (document.getElementById)

{

thisMenu = document.getElementById(currMenu).style

if (thisMenu.display == "block")

{

thisMenu.display = "none"

}

else

{

thisMenu.display = "block"

}

return false

Creating Dynamic Menus � 129

10

C
h
a
p
te

r

}

else

{

return true

}

}

</SCRIPT>

<STYLE TYPE="TEXT/CSS">

.menu {display:none; margin-left:20px}

</STYLE>

</HEAD>

<BODY BGCOLOR="WHITE">

<H3>

Internet

Books from WordWare

</H3>

Learn ASP in Three Days by Jose Ramalho

Search Engine Positioning by Fredrick Marckini

Learn ActiveX Scripting with MSIE by Nathan Wallace

<H3>

Game Design

books from WordWare

</H3>

Introduction to Computer Game Programming with Direct X 8.0 by Ian Parberry

Designing Arcade Computer Game Graphics by Ari Feldman

Real-Time Strategy Game Programming using Direct X by Mickey Kawick

<H3>

Database

Applications from WordWare

</H3>

Learn Microsoft SQL Server 7.0 by Jose Ramalho

Learn Oracle 8i by Jose Ramalho

</BODY>

</HTML>

Again we have a script that is not nearly as complicated as it looks at first

glance. Let’s look this script over and see what is happening.

The first thing we do is use the getElementByID function of the document

object to see if this script is even supported by the browser being used. As I

130 � Chapter 10

previously stated, it is good to get into the habit of checking to see if the

browser will support your script before attempting to execute the script. Once

we have confirmed that the script can be supported, we simply change the

menu style from its current position. If it is currently at “none,” then we dis-

play the block-style menu. If it is currently at “block” then we change it to

none. What this does is cause the menu to display the first time you click, and

then to disappear the second time you click.

Once again we use some cascading style sheet techniques to actually display

the menu. However the call to our JavaScript function is done from a link.

Since we don’t actually want this link to go anywhere but to our script, I set

<A HREF> to the page we are currently on.

Now if you typed in this example properly, you should be able to open it in

your browser and see something like the images shown here:

Creating Dynamic Menus � 131

10

C
h
a
p
te

r

Figure 10-5

I think you will find that this particular type of menu is well suited for tasks

such as displaying inventories. It allows you to initially display only categories

and then the visitor to your web site can expand any category that he or she

finds particularly interesting.

Antique Bookstore Project

As with all of the chapters in this book, we will now take the techniques we

have covered and incorporate them into our ongoing antique bookstore pro-

ject. If you choose to work through these project exercises at the end of each

chapter, then by the time you finish the book you will have built an entire web

site with many exciting features.

We are going to add a complete inventory page that uses the same menu style

we implemented in Example 10-4.

<HTML>

<HEAD>

<TITLE>Complete Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

function toggleMenu(currMenu)

132 � Chapter 10

Figure 10-6

{

if (document.getElementById)

{

thisMenu = document.getElementById(currMenu).style

if (thisMenu.display == "block")

{

thisMenu.display = "none"

}

else

{

thisMenu.display = "block"

}

return false

}

else

{

return true

}

}

</SCRIPT>

<STYLE TYPE="TEXT/CSS">

.menu {display:none; margin-left:20px}

</STYLE>

</HEAD>

<BODY BGCOLOR="WHITE">

<H3>

Books

from the 1800's

</H3>

1st Edition Charles Dickens' "Tale of Two Cities"

1st Edition Edgar Allen Poe's "The Tell-Tale Heart"

Signed Copy of Edgar Allen Poe's "The Cask of Amontillado"

<H3>

Books

from the 1700's

</H3>

Ben Franklin's memoirs

"How to Start a Revolution"

"Political Theory" by Thomas Paine

Creating Dynamic Menus � 133

10

C
h
a
p
te

r

<H3>

Books

for under $25

</H3>

A cowboy's diary (circa 1850's)

4th edition Charles Dickens' "A Tale of Two Cities"

3rd Edition Jules Verne's "20,000 Leagues Under the Sea"

<H3>

Our

finest items

</H3>

Signed copy of Shakespeare's "Hamlet"

Gutenberg's diary

Signed first edition Longfellow

1570 Hebrew Bible

</BODY>

</HTML>

Summary

This chapter introduced you to the process of adding menus to your web

pages. It gave you examples of four very different types of menus. The goal

was to show you how to integrate JavaScript with other web design technolo-

gies such as HTML forms and cascading style sheets to create dynamic menus

for your web site. You will find that, if you use menus on your web sites, navi-

gation is much easier for your web sites visitors, thus increasing their

satisfaction with your web page.

134 � Chapter 10

Chapter 11

Working with Forms

Throughout the past several chapters of this book you have worked with vari-

ous elements of HTML forms. I have included these elements without much

explanation. This chapter is devoted to explaining exactly how HTML forms

function.

Essentially, HTML standards allow you to create a variety of form elements

that make user input much easier. So far in this book you have already seen

the text field and the button used. In this chapter we will be examining the

concepts involved. We will also be looking at other form elements you can use

in HTML. It is a very common technique to call your JavaScript functions from

an HTML form event.

Form Basics

Since forms are a part of HTML they are defined by tags, like everything else

in HTML. The basic tag to define that you are going to use form elements is

the <FORM> tag.

<FORM>

</FORM>

All of the form elements you wish to use must go between these two tags.

Each form element you might wish to use is defined in a very similar way. You

define the element type (button, text field, etc.), its name (what to refer to it

as in your code), and its initial value. In some cases you also define other prop-

erties such as size. For example, if you wish to place a text field on your

HTML document so your users can enter data it works like this:

Example 11-1

<HTML>

<HEAD>

135

<TITLE>Example 11-01</TITLE>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE=text NAME="txttest" VALUE="Enter Text Here">

<FORM>

</BODY>

</HTML>

If you enter all the code correctly, you should be able to view the page in your

browser and see something similar to this:

As you can see in this example, inside the <FORM> and </FORM> tags we

define the form elements we wish to display. The first thing we define is what

type of form element it will be. In this example it is a text field. We then give it

a name. We can use that name later in either HTML or in our JavaScript to

refer to that form element. Finally, we put an initial value in the text field; this

is optional. As you can see, creating form elements is rather simple.

136 � Chapter 11

Figure 11-1

Text Fields and Buttons

Possibly the two most commonly used form elements are the text field (which

we saw in the previous example) and the button. The button is an excellent

form element to call your JavaScripts from. Let’s look at an example that does

just that.

Example 11-2

<HTML>

<HEAD>

<TITLE>Example 11-02</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

alert(txttest.value)

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<INPUT TYPE=text NAME="txttest" VALUE="Enter Text Here">

<INPUT TYPE=button NAME="Submit" VALUE="Submit" onclick="test()">

</CENTER>

</BODY>

</HTML>

This example shows a minor but important twist on the usage of form ele-

ments. Here we have a button, and when it is clicked (onClick event) we call a

JavaScript function. This function, in turn, references the value in the HTML

form’s text field. If you enter all the code properly you will be able to see

something very similar to the following figure:

Working with Forms � 137

11

C
h
a
p
te

r

Using buttons to trigger JavaScript functions is both quite common and very

useful. This technique allows you to call functions in response to user activity.

In our example, the JavaScript we call is quite simple, but it illustrates the

point quite well.

Options

An option in HTML is the same thing as a combo box in Visual Basic. It is a

drop-down box that displays a list of choices from which the user can select.

This can be quite useful if you wish the user to select from multiple items but

do not wish to clutter your screen. Consider the following example:

Example 11-3

<HTML>

<HEAD>

<TITLE> Example 11-03</TITLE>

<SCRIPT>

function moveon()

{

window.location=document.dropdown.selection.options[document.

dropdown.selection.selectedIndex].value

}

138 � Chapter 11

Figure 11-2

</SCRIPT>

<BODY BGCOLOR = "White">

<FORM NAME="dropdown">

<SELECT NAME="selection"

<OPTION VALUE="">Select an Option

<OPTION VALUE="this.html">this one

<OPTION VALUE="next.html">next one

<OPTION VALUE="after.html">one after

</SELECT>

<INPUT TYPE=button NAME="Submit" VALUE="Submit" onclick="moveon()">

</FORM>

</BODY>

</HTML>

This example simply allows the user to select which web page they would like

to navigate to. Once they have selected the page, they press the Submit button

and are taken to that page. The script is actually only one line. It simply uses

the window.location property to move to whatever web page the user selected.

If you enter the code properly, you should be able to see something like this:

Working with Forms � 139

11

C
h
a
p
te

r

Figure 11-3

Radio Buttons

Radio buttons are the small circles that you click to select a particular option.

You have seen these before in web pages and on desktop applications. Radio

buttons present a series of choices to the user, of which the user may select

only one. Look at this example:

Example 11-4

<HTML>

<HEAD>

<TITLE>Example 11-04</TITLE>

<SCRIPT LANGUAGE="JavaScript">

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="radio" NAME="radiobutton" onClick="radio_selection='A'">Add

<INPUT TYPE="radio" NAME="radiobutton" onClick="radio_selection='D'">Delete

<INPUT TYPE="radio" NAME="radiobutton" onClick="radio_selection='U'">Update

</FORM>

</HTML>

As you can see, we simply use INPUT TYPE="radio" to indicate that this is

going to be an input type, and the input will be done via a radio button. We

then give the radio buttons a name. Notice they all have the same name. Since

the user can only select one button, we are simply interested in setting the

value based on one button.

If you enter the code exactly as shown in the example, you will then be able to

see the following screen:

140 � Chapter 11

Check Boxes

Radio buttons present several choices but only allow you to select one. This is

very useful in many cases, such as if you are asking the user’s marital status:

married, single, or divorced. They can only be one at any given time. However,

with other types of information a person might be able to select more than one

choice. For example, if you ask a person to indicate which sports they watch

on TV (football, basketball, baseball, golf), they may want to choose more than

one. For this type of data, you should use a check box. A check box is similar

to an option box, but the person can select multiple options. The following

example illustrates this.

Example 11-5

<HTML>

<HEAD>

<TITLE>Example 11-05</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var allchecked = "false"

function check(field)

{

if (allchecked == "false")

{

Working with Forms � 141

11

C
h
a
p
te

r

Figure 11-4

for (i = 0; i < field.length; i++)

{

field[i].checked = true;

}

allchecked = "true"

return "Uncheck All"

}

else

{

for (i = 0; i < field.length; i++)

{

field[i].checked = false

}

allchecked = "false"

return "Check All"

}

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR = White>

<FORM NAME =myform>

JavaScript Websites you like!

<INPUT TYPE=checkbox name=list value="1">JavaScript Source

<INPUT TYPE=checkbox name=list value="2">JavaScript.Com

<INPUT TYPE=checkbox name=list value="3">JavaScript World

<INPUT TYPE=checkbox name=list value="4">HTML Goodies

<INPUT TYPE=button VALUE="Check All" onClick="this.value=check(this.form.list)">

</FORM>

</HTML>

In this example we use the <FORM> tag to indicate that form elements are

going to be used. We then use INPUT TYPE=checkbox. This lets the browser

know it should display a check box. If you enter all the code properly, you

should see something like the following screen.

142 � Chapter 11

The check box can be very useful in allowing the user to select multiple

options.

Event Handlers in Form Elements

There are a variety of event handlers that allow you to invoke specific

JavaScript code when the user performs a given action. We will examine a few

of the most common here.

onSubmit

The onSubmit event handler is an attribute of the <FORM> tag. It is called

when a form is submitted. A form can be submitted in several ways; the Sub-

mit button is only one of many. The submit event can occur immediately upon

clicking a submit button, pressing Enter, or several other methods. JavaScript

triggers this event prior to sending the data to the server. The event handler’s

script is executed before the form’s data is actually submitted to the server for

further processing.

Working with Forms � 143

11

C
h
a
p
te

r

Figure 11-5

The onSubmit event handler is commonly used to validate the content of a

form’s element. Client-side form validation is gaining popularity because the

user receives an immediate response regarding invalid entries. For example, if

you have a form with a text box in which the user is asked to type his or her

e-mail address, you can use a simple JavaScript script that will make sure

(upon submission) the user’s entry is a string containing an “at” sign (@),

which, of course, all valid e-mail address will have.

You can use the onSubmit event handler not just to validate the form’s ele-

ments but also to cancel its submission altogether. The form’s submission is

aborted when the event handler returns a false value, as in the following

example:

<FORM NAME="form1" onSubmit="return false">

Of course, this example is not very useful because it disables the form submis-

sion unconditionally. However, it does illustrate the point in question. Usually,

a function validates the form and returns a true or false value accordingly. You

can use the following code to cancel or proceed with the form submission,

depending on the value returned by the function:

<FORM NAME="form1" onSubmit="return checkData()">

The following example illustrates these concepts with a form containing a text

area box and a Submit button which e-mails you the contents of the text area

after prompting the user for confirmation:

Example 11-6

<SCRIPT LANGUAGE="JavaScript">

function continue()

{

return confirm("Click OK to mail this information")

}

</SCRIPT>

<FORM ACTION="mailto:chuckeasttom@yahoo.com" METHOD="post" ENCTYPE=

"text/plain" onSubmit="return continue()">

<INPUT TYPE =textfield NAME="txttest" Value = "Put Message Here">

<INPUT TYPE=button VALUE="Send Mail">

</FORM>

If you enter all the code correctly, you should be able to use your browser and

see the following image:

144 � Chapter 11

Some of the parameters used here you have seen before, but ENCTYPE may

be new to you. In order to receive the form’s content as a plain, unscrambled

e-mail, you need to assign a text/plain value to the ENCTYPE attribute.

onReset

Another event handler of the <FORM> tag is onReset. A reset event usually

occurs when the user clicks a Reset button. The onReset event handler

behaves very much like the onSubmit event handler.

The following example asks the user to confirm the resetting process before

executing it:

Example 11-7

<HTML>

<HEAD>

<TITLE>Example 11-07</TITLE>

</HEAD>

<BODY BGCOLOR = White>

<FORM ACTION="mailto:chuckeasttom@yahoo.com" METHOD="post" ENCTYPE="text/plain"

onReset="return confirm('Click OK to reset form to default status')">

<TEXTAREA NAME="input" COLS=40 ROWS=10></TEXTAREA>

<INPUT TYPE="reset" VALUE="reset it!">

Working with Forms � 145

11

C
h
a
p
te

r

Figure 11-6

</FORM>

</BODY>

</HTML>

In this example, if you press the Reset button, you are prompted to confirm

the action. Then all the text is reset to its default value, which happens to be

blank. If you enter all the code correctly, you should be able to use your

browser and see the following image:

Synopsis of Form Elements

The following table summarizes the major form elements available to you in

HTML.

HTML Element Value of Type Attribute

INPUT TYPE="button" "button"

INPUT TYPE="checkbox" "checkbox"

INPUT TYPE="file" "file"

INPUT TYPE="hidden" "hidden"

INPUT TYPE="password" "password"

INPUT TYPE="radio" "radio"

INPUT TYPE="reset" "reset"

INPUT TYPE="submit" "submit"

146 � Chapter 11

Figure 11-7

HTML Element Value of Type Attribute

INPUT TYPE="text" "text"

SELECT "select-one"

Antique Bookstore Project

This chapter is one of the rare ones where we do not add a new item to our

antique bookstore project. This is because we have already used form ele-

ments in previous chapters. This chapter’s goal was simply to clarify form

issues.

Summary

Throughout this book we have used form elements. Prior to this chapter you

have simply typed them in and may not have realized exactly what you were

doing. After studying this chapter you should have a good understanding of

how HTML forms work.

Working with Forms � 147

11

C
h
a
p
te

r

Chapter 12

Strings in JavaScript

Strings have many uses in your scripts. Strings hold text data, such as names,

addresses, etc. You can store string values in a standard variable. However, if

you create a string object to store your string data, you then can use the vari-

ous string object methods to manipulate that string. Essentially, strings are

simply an array of individual characters. The indexing of strings, like that of

arrays, is zero-based. The index of the first character of a string is 0, the index

of the second one is 1, that of the third one is 2, and so on.

Creating Strings

String is a built-in object. This means that it is handled a bit differently than

other variables. It is created like an object variable, rather than like a simple

variable. Here is an example:

var lastname = new String("Smith")

The general syntax is:

Var name = new String(string)

name is the name of the string object you are creating. You can give it any

name you wish, but I recommend a name that reflects the type of data it will

hold. string is any literal string, as in the example.

String Length

The String object combines many useful methods and one property, length.

This property reflects the length of its calling object. Here is an example:

Example 12-1

<HTML>

<HEAD>

149

<TITLE>Example 12-01</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function test()

{

var mystr =txttest.value

alert(mystr.length)

}

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<INPUT TYPE=text NAME="txttest" VALUE="Enter Text Here">

<INPUT TYPE=button NAME="Submit" VALUE="Submit" onclick="test()">

</CENTER>

</BODY>

</HTML>

If you enter the example properly, you can use your browser to view it and you

should see the following:

150 � Chapter 12

Figure 12-1

String Methods

As mentioned, the String object has many useful methods, one of which is the

toUpperCase() method. This changes all the text in the string to uppercase.

There are many practical applications for this method.

charAt()

The charAt() method returns the character whose index is equal to the argu-

ment of the method. The characters of a string are indexed from 0 to length–1.

The general syntax is:

mystring.charAt(index)

Here is an example:

Example 12-2

<HTML>

<HEAD>

<TITLE>Example 12-02</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function test()

{

var mystr =txttest.value

alert(mystr.charAt(1))

}

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<INPUT TYPE=text NAME="txttest" VALUE="Enter Text Here">

<INPUT TYPE=button NAME="Submit" VALUE="Submit" onclick="test()">

</CENTER>

</BODY>

</HTML>

If you entered the code properly, and then entered some text in the box you

should see something similar to the following figure:

Strings in JavaScript � 151

12

C
h
a
p
te

r

The following script segment prints the character “o,” because it is the second

character (index 1) in the string. You can also call this method with a literal

text as in the following example:

document.write("wordware".charAt(1))

You can print the characters of a string via a simple loop:

var mystring = "Wordware Publishing”

for (var i = 0; i < mystring.length; ++i)

{

document.write(mystring.charAt(i))

}

At first, a string literal is assigned to the variable mystring. The loop then iter-

ates length times. It starts at 0, and ends at mystring.length–1.

indexOf()

This method returns the index of the first occurrence of the specified

substring in the calling string object, starting the search at the beginning of

the string. An example will surely clear things up:

var mystring = "wordware"

document.write(str.indexOf("wo"))

152 � Chapter 12

Figure 12-2

This script’s output is the number 0. The first occurrence of the substring

“wo” in the calling string object is at the second character whose index is 0.

The search for the specified substring starts at index 0, the beginning of the

string.

lastIndexOf()

This method is identical to the indexOf method, except that it returns the

index of the last occurrence of the specified value, rather than the first occur-

rence. Its syntax is, obviously, the same:

stringName.lastIndexOf(searchValue, [fromIndex])

The following script prints the number 3:

var mystring = "a/b/c"

document.write(str.lastIndexOf("/"))

substring()

Strings are constructed of characters. The substring() method returns a set of

characters within its calling String object. Its general syntax is:

stringName.substring(indexA, indexB)

stringName is any string. indexA and indexB are both integers between 0 and

stringName.length – 1. indexA is the index of the first character in the

substring, whereas indexB is the index of the last character in the substring

plus 1. Consider the following example:

Example 12-3

<HTML>

<HEAD>

<TITLE>Example 12-03</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function test()

{

var begin = txtbegin.value

var end = txtend.value

var mystring =txttest.value

var seg = mystring.substring(begin,end)

alert(seg)

}

</SCRIPT>

Strings in JavaScript � 153

12

C
h
a
p
te

r

</HEAD>

<BODY>

<CENTER>

<INPUT TYPE=text NAME="txttest" VALUE="Enter Text Here">

<INPUT TYPE=text NAME="txtbegin" VALUE="0">

<INPUT TYPE=text NAME="txtend" VALUE="5">

<INPUT TYPE=button NAME="Submit" VALUE="Submit" onclick="test()">

</CENTER>

</BODY>

</HTML>

If you entered everything properly, you should see something like the follow-

ing in your browser:

Notice that the length of the substring is indexA – indexB.

Number-to-String Conversion

Occasionally, you need to convert a number to a string. For example, if you

want to compute the number of digits in a number, you can convert it to a

string and use the length property, which applies to strings only. In this section

we shall take a look at a few ways to convert a number to a string.

154 � Chapter 12

Figure 12-3

Empty String Concatenation

The easiest way to convert a number to a string is by concatenating an empty

string to the number. Here is an example:

var num = 2001

num = num + ""

You can also convert the number to a string and assign the numeric string to

another variable, or, even better, do both operations in one statement:

var num = 2001

var numericString = num + ""

Antique Bookstore Project

Most of the chapters in this book end by adding something to our ongoing

antique bookstore project. However, this chapter is more about some useful

techniques for string manipulation and is not easily suited to our ongoing pro-

ject. For this reason, this chapter will not be adding to our project. However,

don’t worry, the next chapter will add plenty!

Summary

While you can store string data in a standard variable, I hope you have seen

that the String object can be quite useful. You will find many practical situa-

tions where you will need to know a string’s length or other properties. You

may also need to periodically manipulate the contents of a string. With

JavaScript’s String object you can do that.

Strings in JavaScript � 155

12

C
h
a
p
te

r

Chapter 13

Math in JavaScript

We have been able to do a lot of interesting things without using any math.

However, at some point you will probably need to use math in your JavaScript.

This is especially true for business web sites.

Math in JavaScript is basically divided into two areas:

� Mathematical operators

� The built-in Math object

Mathematical Operators

You are probably familiar with most math operators. They were introduced to

you in Chapter 2. But just in case you need a bit of a refresher, the following

table should help you.

Operator Symbol Explanation Example

Addition + Adds the numbers on either
side together

Var mynum
Mynum = mynum + 1

Subtraction – Subtracts the number on
the right from the number
on the left

Var mynum = mynum – 1

Multiplication * Multiplies the numbers on
either side together

Var mynum = mynum * 5

Division / Divides the number on the
left side by the number on
the right side

Var mynumMynum =
mynum /4

Modulus % Provides you with the
remainder of a division
operation

Var answerAnswer =
9%4(answer will be 1)

Increment ++ Increments the number by
one

Var mynumMynum++

Decrement – – Decreases the number by
one

Var mynumMynum– –

157

Here is a piece of code that uses these operators in conjunction with form ele-

ments to create a simple calculator.

Example 13-1

<HTML>

<HEAD>

<TITLE>Example 13-01</TITLE>

</HEAD>

<BODY>

<CENTER>

<FORM NAME="calculator">

<TABLE BORDER=1 BGCOLOR = green>

<TR>

<TD>

<INPUT TYPE="text" NAME="Input" Size="16">

<TR>

<TD>

<INPUT TYPE="button" NAME="one" VALUE=" 1 "

OnClick="calculator.Input.value += '1'">

<INPUT TYPE="button" NAME="two" VALUE=" 2 "

OnCLick="calculator.Input.value += '2'">

<INPUT TYPE="button" NAME="three" VALUE=" 3 "

OnClick="calculator.Input.value += '3'">

<INPUT TYPE="button" NAME="plus" VALUE=" + "

OnClick="calculator.Input.value += ' + '">

<TR>

<TD>

<INPUT TYPE="button" NAME="four" VALUE=" 4 "

OnClick="calculator.Input.value += '4'">

<INPUT TYPE="button" NAME="five" VALUE=" 5 "

OnCLick="calculator.Input.value += '5'">

<INPUT TYPE="button" NAME="six" VALUE=" 6 "

OnClick="calculator.Input.value += '6'">

<INPUT TYPE="button" NAME="minus" VALUE=" - "

OnClick="calculator.Input.value += ' - '">

<TR>

<TD>

<INPUT TYPE="button" NAME="seven" VALUE=" 7 "

OnClick="calculator.Input.value += '7'">

<INPUT TYPE="button" NAME="eight" VALUE=" 8 "

OnCLick="calculator.Input.value += '8'">

<INPUT TYPE="button" NAME="nine" VALUE=" 9 "

OnClick="calculator.Input.value += '9'">

<INPUT TYPE="button" NAME="times" VALUE=" x "

OnClick="calculator.Input.value += ' * '">

158 � Chapter 13

<TR>

<TD>

<INPUT TYPE="button" NAME="clear" VALUE=" c "

OnClick="calculator.Input.value = ''">

<INPUT TYPE="button" NAME="zero" VALUE=" 0 "

OnClick="calculator.Input.value += '0'">

<INPUT TYPE="button" NAME="DoIt" VALUE=" = "

OnClick="calculator.Input.value =

eval(calculator.Input.value)">

<INPUT TYPE="button" NAME="div" VALUE=" / "

OnClick="calculator.Input.value += ' / '">

</TABLE>

</FORM>

</CENTER>

</BODY>

</HTML>

The Math Object

In the previous chapter you were introduced to the JavaScript String object. In

this chapter I will introduce you to the JavaScript Math object. This object has

a variety of mathematical functions that you may find quite useful in your

scripts.

To access elements of the Math object, you do not need to create an instance

of the Math object. For example, the PI constant is a property of the Math

object, and can be accessed via the following syntax:

var pi = Math.PI

Notice you did not have to establish a variable for the Math object itself.

Constants

There are a number of math constants built into the Math object. These con-

stants are simply mathematical constants that are frequently used. Some of

them, at least, should be familiar to you. If any are unfamiliar, then simply skip

them. If you don’t know what a particular mathematical constant is, chances

are you won’t need to use it in your scripts.

Math in JavaScript � 159

13

C
h
a
p
te

r

E

A very important constant in mathematics is Euler’s constant. Its approximate

value is 2.718281828459045. It is rounded off to 15 digits after the decimal

point.

In JavaScript you refer to it via a capital E; that is, Math.E. (In mathematics it

is usually referred to with a lowercase “e.”)

LN2

Another constant featured as a property of the Math object is the natural loga-

rithm of 2. Its approximate value is 0.6931471805599453.

JavaScript refers to this number as LN2. Because it is a property of the Math

object, you should specify them together, as in Math.LN2.

You can use the pow method to assure that the preceding equation is true:

document.write(Math.pow(Math.E, Math.LN2))

Because both Euler’s constant and the natural logarithm of 2 are approximate,

the output of this statement is also an approximate:

1.9999999999999998

LN10

The natural logarithm of 10 is also featured as a property of the static Math

object. Its value, as stored in its corresponding property, is

2.302585092994046.

In JavaScript this value is referred to as Math.LN10.

Here is a JavaScript statement to define the natural logarithm of 10:

document.write(Math.pow(Math.E, Math.LN10))

Since both Euler’s constant and the natural logarithm of 10 are approximate,

the output of this statement is also approximate:

10.000000000000002

LOG2E

Another important constant in the math arena is the base-2 logarithm of

Euler’s constant. Its approximate value is 1.4426950408889634. In math that

is:

2LOG2E = e

160 � Chapter 13

As you can see, you refer to this constant in JavaScript as Math.LOG2E. Here

is a simple statement to confirm the value:

document.write(Math.pow(2, Math.LOG2E) – Math.E)

This time the output is apparently exact:

0

LOG10E

The base-10 logarithm is also widely used in complex mathematical calcula-

tions. Its value in JavaScript is approximately 0.4342944819032518.

As you can see, the equation is built according to one of the basic logarithm

rules. In JavaScript, log base-10 of Euler’s constant is a property of the Math

object: Math.LOG10E.

Here is a simple script for confirmation:

document.write(Math.pow(10, Math.LOG10E) – Math.E)

Once again, the output is exact:

0

PI

Probably the most known value among all constants featured by JavaScript is

PI. PI is used in many equations involving calculations with circles. Its approx-

imate value is 3.14.

SQRT2

The square root of 2 is also a well-known constant. Its approximate value is

1.4142135623730951. You refer to it as Math.SQRT2. You can use the follow-

ing statement to ensure the value:

document.write(Math.pow(Math.SQRT2, 2))

As you could expect, the result is not an exact one:

2.0000000000000004

Math Methods

Constants are interesting, but for most business applications you won’t need

to use any of these mathematical constants. On the other hand, the methods of

the Math object will probably be very useful to you.

Math in JavaScript � 161

13

C
h
a
p
te

r

The methods of the Math object can be divided into two categories:

� Arithmetic methods

� Trigonometric methods

Arithmetic Methods

Let’s start by examining the arithmetic methods since they are used more

frequently.

abs()

You can calculate the absolute value of any number by using this method. The

absolute value of a number is its distance from zero.

For example, the absolute value of –5 is 5. The absolute value of 5 is also 5. In

JavaScript you can calculate the absolute value of a number via the method

Math.abs(). This method returns the absolute value of its argument.

ceil()

The Math.ceil() method accepts a single numeric argument and returns the

next integer greater than or equal to the argument (rounding up). Therefore,

the returned value is never less than the argument. Here are a few examples:

Math.ceil(16) == 16

Math.ceil(16.01) == 17

Math.ceil(–15.01) == –15

Now if you are wondering when you would ever use this function, don’t worry,

I have a practical example for you. Let’s say you need to fit a certain number

of people into a conference room where each table can only seat four people.

You can use the Math.ceil() method along with a function to calculate the mini-

mum number of tables:

function getNumLots(numpeople)

{

return Math.ceil(numpeople / 4)

}

Since you cannot use a part of a table, this method helps us find out how many

tables we need.

floor()

The Math.floor() method is virtually identical to the ceiling method except that

it returns the greatest integer less than or equal to the value passed to it.

Here are a few examples:

162 � Chapter 13

Math.floor(16) == 16

Math.floor(16.01) == 16

Math.floor(–15.01) == –16

log()

This method simply returns the natural logarithm of the argument passed to it.

max(), min()

Both of these methods accept two numeric arguments. max() returns the

greater of two numbers, whereas min() returns the lesser of the two. Here is a

function that prints the lesser of two numbers followed by the greater:

function printInOrder(num1, num2)

{

document.write(Math.min(num1, num2) + ", " + Math.max(num1, num2))

}

The following function call prints the string “–5, 1” to the document:

printInOrder(1, –5)

Here are a few true expressions to demonstrate the basic min() and max()

methods:

Math.max(1, 2) == 2

Math.min(2, Math.abs(–2)) == 2

Math.min(2, –2) == –2

pow()

Given two numeric arguments, this method returns the first one to the power

of the second. Here are a few true expressions demonstrating the method:

Math.pow(10, 2) == 100

Math.pow(5,3) == 125

round()

The Math.round() method rounds a number to the nearest integer. If the argu-

ment’s decimal part is equal to 0.5, the number is rounded upward. Here are a

few:

Math.round(3.7) == 4

Math.round(4.5) == 5

Math.round(16.1) == 16

Math.round(0) == 0

Math in JavaScript � 163

13

C
h
a
p
te

r

sqrt()

This method returns the square root of the argument. For example:

Math.sqrt(4) == 2

Math.sqrt(0) == 0

Math.sqrt(0.25) == 0.5

If the argument is a negative number, the method returns zero, which happens

to be the wrong answer. JavaScript is not able to return imaginary numbers

(which are the square roots of negative numbers).

Trigonometric Methods

Trigonometric methods are obviously those that deal with trigonometry. Now

if you don’t know anything about trigonometry, don’t worry about it. You can

be quite a successful JavaScript programmer without using trigonometry. All

angles in JavaScript are measured by radians rather than degrees because that

is the standard used in trigonometry.

cos()

Math.cos() takes just one argument, the angle of a triangle. It returns the

cosine of that value, which we know must be specified in radians. Here is an

example that prints out –1.

document.write(Math.cos(Math.PI))

The other trigonometric methods—sin, asin, acos, tan, atan—all work the

same way. Here is an example that computes each of the trigonometric func-

tions for a given angle:

Example 13-2

<HTML>

<HEAD>

<TITLE>Example 13-02</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function trig()

{

var temp

var angle

angle = txttest.value

temp = Math.sin(angle)

txtsin.value = temp

temp = Math.cos(angle)

164 � Chapter 13

txtcos.value = temp

temp = Math.tan(angle)

txttan.value = temp

temp = Math.asin(angle)

txtasin.value = temp

temp = Math.acos(angle)

txtacos.value = temp

temp = Math.atan(angle)

txtatan.value = temp

}

</SCRIPT>

</HEAD>

<BODY>

<TABLE BORDER = 1 BGCOLOR = GRAY >

<TR>

<TD>

Angle <INPUT TYPE=text NAME="txttest" VALUE="">

<INPUT TYPE=button NAME="Submit" VALUE="Compute"

onclick="trig()">

<TD>

<INPUT TYPE=text NAME="txtsin" VALUE=""> Sine

<INPUT TYPE=text NAME="txtcos" VALUE=""> Cosine

<INPUT TYPE=text NAME="txttan" VALUE=""> Tangent

<INPUT TYPE=text NAME="txtasin" VALUE=""> Arc sine

<INPUT TYPE=text NAME="txtacos" VALUE=""> Arc cosine

<INPUT TYPE=text NAME="txtatan" VALUE="">Arc tangent

</BODY>

</HTML>

If you enter in all the code properly, you should be able to open your browser

and see an image much like the following:

Math in JavaScript � 165

13

C
h
a
p
te

r

Antique Bookstore Project

As with most of the chapters in this book we are going to use some of the

techniques presented in our antique bookstore project. Obviously the trigo-

nometry functions and many of the constants are not going to be of particular

use for an antique bookstore. However, the basic math operators will be. We

will add a screen that allows users to compute sales tax and shipping costs for

books.

<HTML>

<HEAD>

<TITLE>Computer Costs</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

function total()

{

var shipping

var tax

var total

var numbooks = txtbooks.value

var price = txtprice.value

166 � Chapter 13

Figure 13-1

tax = price * .0875

shipping = numbooks * 1.5

total = eval(price) + eval(tax) + eval(shipping)

txttax.value = tax

txtship.value = shipping

txttotal.value = total

}

</SCRIPT

</HEAD>

<BODY background="back1.gif" >

<P>

<CENTER>

<TABLE BORDER = 1>

<TR>

<TD>

Number of books ordered <INPUT TYPE=text NAME="txtbooks"

VALUE="">

Total price of books ordered<INPUT TYPE = text NAME = "txtprice"

VALUE = "">

<INPUT TYPE=button NAME="Submit" VALUE="Compute"

onclick="total()">

<TR>

<TD>

<INPUT TYPE=text NAME="txttax" VALUE=""> Tax

<INPUT TYPE=text NAME="txtship" VALUE="">Shipping Costs

<INPUT TYPE=text NAME="txttotal" VALUE=""> Total

</TABLE>

</CENTER>

</BODY>

</HTML>

If you enter all the code correctly, you can use your browser to view the page

and see something like the following screen.

Math in JavaScript � 167

13

C
h
a
p
te

r

Summary

This chapter should have given you an overview of the various math functions

built into JavaScript. It is by no means a comprehensive coverage of math in

JavaScript. It should, however, give you all the mathematical tools you will

need to write some very powerful JavaScripts.

168 � Chapter 13

Figure 13-2

Chapter 14

Adding Plug-ins

This chapter ventures into a more advanced HTML topic, that of plug-ins.

Plug-ins are essentially objects you insert into your HTML document to pro-

vide some added functionality, usually multimedia. If you have ever been to a

site that required you to download some component to view the site, then you

have used plug-ins.

Strictly speaking, plug-ins are not JavaScript. However, JavaScript is about

creating high-quality web sites and I would be remiss in my duties if I did not

provide you with this introduction here. Considering the wide range of

JavaScript techniques you have already been shown, adding plug-ins will allow

you to create some truly spectacular web sites.

Putting a Plug-in into Your HTML

A plug-in is a piece of software that the browser calls to process data refer-

enced in an HTML document. In order to reference such data in an HTML tag,

you must use the <EMBED> tag. This tag’s general format is as follows:

<EMBED

SRC=source

NAME=appletName

HEIGHT=height

WIDTH=width>

[<PARAM NAME=parameterName VALUE=parameterValue>]

[…<PARAM>]

</EMBED>

SRC=source specifies the URL containing the source content to be inter-

preted by the plug-in. This may be some external URL, or could simply be a

part of your own web site where you store the plug-in for downloading.

169

NAME=appletName specifies the name of the embedded object in the docu-

ment. This name can be just about anything. It is simply the name you will use

to reference the plug-in from within your web page.

HEIGHT=height specifies the height of the applet in pixels within the browser

window.

WIDTH=width specifies the width of the applet in pixels within the browser

window.

<PARAM> defines a parameter for the embedded object.

NAME=parameterName specifies the name of the parameter.

VALUE=parameterValue specifies a value for the parameter (an argument).

We will refer to such <EMBED> definitions as plug-ins, although that is not

entirely correct.

Using Plug-ins in JavaScript

You can use the plug-ins in your JavaScript code by simply referencing the

name you give the plug-in when you embed it. In fact, that is what that name is

for. You can also embed plug-ins into an array called embeds, and then refer-

ence that element of the embeds array that has your plug-in.

document.embeds[0]="myVideo.avi"

You can also reference a plug-in object by its name. Take a look at the follow-

ing HTML definition:

<EMBED SRC="mymovie.avi" AUTOSTART=FALSE LOOP=FALSE HEIGHT=120 WIDTH=159

NAME="mymovie">

Now you can reference this plug-in’s properties and methods by simply calling

mymovie.method() (substitute the actual method name). You can also refer-

ence it by using the embeds array. For example, if your plug-in were the first

one embedded, you could reference it like this:

document.embeds[0]

Now for a little treat. In the Chapter 14 folder of the code files, I have included

an ActiveX component (plug-in) that I created. This plug-in allows you to send

TCP packets to any valid IP address or URL. I have a little sample code here

using it:

170 � Chapter 14

Example 14-1

<HTML>

<HEAD>

<script language ="JavaScript">

function send()

{

var ip

var port

var data

var result

ip =frmip.ipaddress.value

port =frmport.port.value

data =frmdata.data.value

TCPClient.remoteIP =ip

TCPClient.remotePort =port

TCPClient.Message =data

result =TCPClient.sendData()

alert(result)

}

</script>

<TITLE>Example 14-01</TITLE>

</HEAD>

<BODY BGCOLOR = White>

<OBJECT ID="TCPClient"

CLASSID="CLSID:26900070-7443-11D5-9A47-00409639327E"

CODEBASE="TCPClientControl.CAB#version=2,0,0,0">

</OBJECT>

<TABLE BORDER = 1>

<TR>

<TD>

<TABLE border=0 CellPadding = 0 CellSpacing = 0>

<TR>

<TD>

IP Address

<TD>

<FORM name ="frmip">

<INPUT TYPE="text" NAME ="ipaddress" VALUE="" SIZE=10>

</FORM>

Adding Plug-ins � 171

14

C
h
a
p
te

r

<TR>

<TD>

Port

<TD>

<FORM NAME ="frmport">

<INPUT TYPE="text" NAME = "port" VALUE="" SIZE=10>

</FORM>

<TR>

<TD>

 Data to send

<TD>

<FORM NAME ="frmdata">

<INPUT TYPE="text" NAME ="data" VALUE="" SIZE=10>

</FORM>

<TR>

<TD>

<CENTER>

<INPUT TYPE="button" VALUE="Submit" onClick="send()">

</CENTER>

</TABLE>

</CENTER>

</BODY>

</HTML>

If you enter the code properly, you will be able to view something like this:

172 � Chapter 14

Figure 14-1

This example illustrates using an ActiveX component as a plug-in. The first

portion to look at is in the very beginning of the body section of the HTML

document.

<OBJECT ID="TCPClient"

CLASSID="CLSID:26900070-7443-11D5-9A47-00409639327E"

CODEBASE="TCPClientControl.CAB#version=2,0,0,0">

</OBJECT>

All ActiveX plug-ins have three properties we are concerned with. The first is

the ID. This is simply the name you will use to refer to this plug-in. The sec-

ond is the classid. A classid is a unique identifier that is created when an

ActiveX component is first created. The last property we are concerned with

is the codebase property. If a plug-in with the matching classid cannot be found

on the client computer, then the location specified in the codebase property

will be accessed to install the ActiveX component.

After the ActiveX plug-in is embedded in this fashion we can access any of its

properties or methods by simply calling the ID we gave the plug-in followed by

a dot “.”, then the name of the property or method we wish to access. You see

this in the script portion of this example:

function send()

{

var ip

var port

var data

var result

ip =frmip.ipaddress.value

port =frmport.port.value

data =frmdata.data.value

TCPClient.remoteIP =ip

TCPClient.remotePort =port

TCPClient.Message =data

result =TCPClient.sendData()

alert(result)

}

Adding Plug-ins � 173

14

C
h
a
p
te

r

What Plug-ins are Already Installed?

You can use JavaScript to determine if a user has installed a particular plug-in.

You can then display embedded plug-in data if the plug-in is installed, or alter-

native content if it is not. The following example checks for Shockwave and

Quicktime plug-ins.

Example 14-2

<HTML>

<HEAD>

<TITLE> Example 14-02</TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

var quickplug = navigator.plugins["Quicktime"];

if (quickplug)

{

document.writeln("You already have Quicktime")

}

else

{

document.writeln("You don't have Quicktime
")

}

var shockplug = navigator.plugins["Shockwave"];

if (shockplug)

document.writeln("You already have Shockwave")

else

document.writeln("You don't have Shockwave")

</SCRIPT><BODY BGCOLOR = white>

</BODY>

</HTML>

If you enter the code properly, you will have the status of these plug-ins dis-

played on a web page. When run on my PC, the following output was

generated:

174 � Chapter 14

LiveAudio

LiveAudio is used to play a variety of sound files in many formats including

WAV, AIFF, AU, and MIDI formats. Audio controls appear according to the size

specified in the WIDTH and HEIGHT parameters in the <EMBED> tag. You

can create an audio console with any of the following views:

� console—This gives you a stereo style console with several controls you

can use.

� smallConsole—Consists of a Play, Stop, and volume control lever. The but-

tons in this view are smaller than those in a console.

� playButton—A button that starts the sound playing.

� pauseButton—A button that pauses (without unloading) the sound while it

is playing.

� stopButton—A button that ends the playing of sound and unloads it.

� volumeLever—A lever that adjusts the volume level for playback of the

sound (and adjusts the system’s volume level).

Adding Plug-ins � 175

14

C
h
a
p
te

r

Figure 14-2

Here is the general HTML syntax for a LiveAudio control:

<EMBED SRC=[URL] AUTOSTART=[TRUE|FALSE] LOOP=[TRUE|FALSE|INTEGER]

STARTTIME=[MINUTES:SECONDS] ENDTIME=[MINUTES:SECONDS] VOLUME=[0-100]

WIDTH=[#PIXELS] HEIGHT=[#PIXELS] ALIGN=[TOP|BOTTOM|CENTER|BASELINE

|LEFT|RIGHT|TEXTTOP|MIDDLE|ABSMIDDLE|ABSBOTTOM] CONTROLS=[CONSOLE

|SMALLCONSOLE|PLAYBUTTON|PAUSEBUTTON|STOPBUTTON|VOLUMELEVER] HIDDEN=[TRUE]

MASTERSOUND NAME=[UNIQUE NAME TO GROUP CONTROLS TOGETHER SO THAT THEY CONTROL

ONE SOUND]...>

The syntax may seem very complicated, but a close look shows that it does

not consist of many attributes. What’s misleading is that there are many differ-

ent values that can be given to each attribute. Here is a short description of

each attribute and the values it accepts:

SRC=[URL]—The URL of the source sound file. If the sound file is stored in

the same folder as the HTML document then you can just put the file name

with extension.

AUTOSTART=[TRUE|FALSE]—When set to TRUE, the sound will begin

playing automatically upon loading the HTML page. The default is FALSE.

LOOP=[TRUE|FALSE|INTEGER]—When set to TRUE, the sound will play

continuously until the Stop button is clicked on the console or the user goes to

another page. If an INTEGER value is used, the sound repeats the number of

times indicated.

STARTTIME=[MINUTES:SECONDS]—Use STARTTIME to specify where

the playback should begin. If you want to begin the sound at 30 seconds, you

would set the value to 00:30.

ENDTIME=[MINUTES:SECONDS]—Use ENDTIME to specify where in

the sound file you would like playback to end. If you want to stop the sound at

1.5 minutes, you would set the value to 01:30.

VOLUME=[0-100]—This is a percentage of max volume. The values 1 to 100

are accepted.

WIDTH=[#PIXELS]—Use WIDTH to change the width of the console or

console element. For CONSOLE and SMALLCONSOLE, the default is

WIDTH=144. For VOLUMELEVER, the default is WIDTH=74. For a button,

the default is WIDTH=37 (WIDTH=34 looks much better).

176 � Chapter 14

HEIGHT=[#PIXELS]—Use HEIGHT to change the height of the console.

For CONSOLE, the default is HEIGHT=60. For SMALLCONSOLE, the

default is HEIGHT=15. For VOLUMELEVER, the default is HEIGHT=20.

For a button, the default is HEIGHT=22.

ALIGN=[TOP|BOTTOM|CENTER|BASELINE|LEFT|RIGHT|

TEXTTOP|MIDDLE|ABSMIDDLE|ABSBOTTOM]—While RIGHT and

LEFT specify the position of the console with respect to the page, the other

options tell Netscape Navigator how you want to align text as it flows around

the consoles. It acts similarly to the ALIGN attribute of the tag. The

default value is BOTTOM.

CONTROLS=[CONSOLE|SMALLCONSOLE|PLAYBUTTON|PAUSEBUT

TON|STOPBUTTON|VOLUMELEVER]—Use this attribute to select the

control you want to place on your page. The default for this field is CONSOLE.

HIDDEN=[TRUE]—The value for this attribute should be TRUE, or it should

not be included in the <EMBED> tag. If it is specified as TRUE, no controls

will load and the sound will act as a background one.

MASTERSOUND—This value must be used when grouping sounds together

in a NAME group. It takes no value (it must merely be present in the

<EMBED> tag), but tells LiveAudio which file is a genuine sound file and

allows it to ignore any stub files. In order to associate several EMBEDs with

one sound file, all EMBEDs should have the same name (see the NAME

attribute). The SRC attribute of one of those EMBEDs should be the URL of

the actual sound file, whereas the other SRC attributes should specify the

URL of a stub file. A stub file is a text file containing a single space (that’s the

recommended content). Its name should consist of a sound extension (e.g.,

.mid, .wav, .aif). To create a page with four LiveAudio elements (Play, Pause,

Stop, and Volume) all controlling the same file, you need to create three sound

stubs and of course have one legitimate sound file (for a total of four

EMBEDs). Anytime you use the NAME attribute in a LiveAudio <EMBED>,

you must also use a MASTERSOUND attribute. LiveAudio will play no sound

when a NAME attribute exists without a corresponding MASTERSOUND

attribute, even if that is the only <EMBED> with that name on the page.

Since you do not want LiveAudio to attempt to play a stub file (it contains no

sound data), you should specify a NAME attribute with no MASTERSOUND

attribute. The <EMBED> reflecting the legitimate sound file, on the other

hand, should feature MASTERSOUND in order to play.

Adding Plug-ins � 177

14

C
h
a
p
te

r

NAME=[UNIQUE NAME]—This attribute sets a unique ID for a group of

EMBEDs (each with a distinct CONTROLS attribute), so they all act on the

same sound as it plays. The deficiency of EMBED’s syntax is that it takes only

one value for CONTROLS. For example, if a content creator wishes to have

one sound controlled by two embedded objects (a PLAYBUTTON and a

STOPBUTTON), he or she must use two separate EMBEDs and group them

by the NAME attribute. In this case, the MASTERSOUND tag is necessary to

flag LiveAudio and let it know which of the two <EMBED> tags actually has

the sound file you wish to control. LiveAudio ignores any EMBED(s) with no

MASTERSOUND tag.

If you want one VOLUMELEVER to control multiple NAMEs (or the system

volume), create an EMBED using VOLUMELEVER as the CONTROL. Then

set NAME to "_MASTERVOLUME".

The following example illustrates how to do this. To use this sample code,

simply substitute any valid .mid file where I have written “sample.mid.”

Example 14-3

<HTML>

<HEAD>

<TITLE>Example 14-03</TITLE>

</HEAD>

<BODY>

<TABLE BORDER=1><TR>

<TD BGCOLOR="black" ALIGN="center">

Sample Music

<EMBED SRC="sample.mid"

AUTOSTART=FALSE

LOOP=FALSE

CONTROLS=PLAYBUTTON

WIDTH=30

HEIGHT=20

MASTERSOUND

NAME="sample1">

<EMBED SRC="stub1.aif"

AUTOSTART=FALSE

LOOP=FALSE

CONTROLS=STOPBUTTON

WIDTH=34

HEIGHT=22

NAME="90210">

<EMBED SRC="stub2.aif"

AUTOSTART=FALSE

178 � Chapter 14

LOOP=FALSE

CONTROLS=PAUSEBUTTON

WIDTH=34

HEIGHT=22

NAME="sample1">

</TABLE>

</BODY>

</HTML>

Antique Bookstore Project

I am not going to add a plug-in to our antique bookstore project because I feel

it would simply clutter the web site. However, you should feel free to experi-

ment with the techniques presented in this chapter.

Summary

In this chapter I showed you the basics of how to add plug-ins to your HTML

pages. I think you will find that using plug-ins can add a dimension to your web

pages that you cannot attain otherwise.

Adding Plug-ins � 179

14

C
h
a
p
te

r

Chapter 15

Objects in JavaScript

Throughout this book I have been using the term “object.” By now you have

probably gleaned what this means from context. The purpose of this chapter is

to provide a little more depth to your understanding of the term.

An object is a programming abstraction that groups data with the code that

operates on it. All programs contain data of different types. An object simply

wraps all that up in a single place, called an object. We did talk about the String

object in Chapter 12 and the Math object in Chapter 13. Remember that each

held data, but also had methods you could call. A method is just a name for a

function that is inside an object.

Properties

All the objects you can see and touch have characteristics. This book, for

example, has width, weight, title, number of pages, etc. These attributes dis-

tinguish this book from all other books. These features are called properties or

fields in OO (object-oriented) terminology. An object’s property stores data

related to the object. Think of properties as adjectives or nouns that will fur-

ther describe the object.

JavaScript supports two different types of objects:

� Built-in objects, such as the String and Math objects

� User-defined objects, ones you create

Using Properties

An object’s properties hold its data. You can refer to properties using the fol-

lowing syntax:

object.propertyName

181

object is the name of the object that the property belongs to. For example, you

can assign an object to a variable and then refer to its properties using this

variable, followed by the property specification. propertyName is the name of

the property.

Another important concept is that a property belongs to an object, and only to

one object. Think about it this way. The height of this book is just that, the

height of this book, and not of some other book.

A dot separates each object from its property. A hierarchical object structure,

with objects and properties at different levels, uses the same syntax:

object1.object2Property1.object3Property2.property3

The following statements demonstrate referencing to elements of a hierarchi-

cal object structure:

var d = a.b.d

document.write(d) // prints 16

var e = a.b.e

document.write(e) // prints 42

var f = a.c.f

document.write(f) // prints true

var g = a.c.g

document.write(g) // prints king

var h = a.c.h

document.write(h) // prints 13

var i = a.c.i

document.write(i) // prints 10

As you can see, a variable may be named exactly like a property of an object.

This is possible because properties are not at the same scope as variables,

objects, and properties.

Methods

As you know, objects consist of both data (properties) and functions that han-

dle the data. These functions are called methods. Methods enable an object to

perform different actions, mostly on its own properties. Think of methods as

verbs associated with an object.

JavaScript’s implementation of objects is not as powerful as that of Java, so

some OO programming advantages that apply to Java do not apply to

JavaScript. But remember that you have already used JavaScript objects and

182 � Chapter 15

you will probably use more. So you should at least be familiar with the

terminology.

Using Methods

A method is called in the following fashion:

objectReference.methodName([arguments])

objectReference is the name of the object, or any other reference. methodName

is the name of the method, and arguments are the arguments that the method

accepts.

Because a method is a function, the name of the method is always followed by

a pair of parentheses. This rule applies also to methods that do not accept

arguments.

You probably find this syntax familiar. I have been using docu-

ment.write([expression]) to print HTML expressions to the page. write() is a

method belonging to the built-in document object.

When you create an instance of an object using the new operator, you are

really declaring a new data type according to the object’s definition and allocat-

ing the appropriate amount of memory for that data type. Once you have

created an instance of an object, you do not have to use the new keyword any-

more when referring to that instance.

Object-Oriented Concepts

Object-oriented programming is only partially supported in JavaScript. For full

support of object orientation you would have to use a programming language

such as C++ or Java. With that said, I thought you should at least be intro-

duced to the basic terminology of object orientation. You have already been

introduced to properties and functions. These two terms are probably the

most important. The next term to remember is instantiation.

JavaScript is based on a scaled-down object-oriented paradigm. This paradigm

is often called object based, as opposed to object oriented. In fully

object-oriented languages you write classes. A class is a template you create

for creating objects. Classes do not exist in JavaScript (all objects belong to

one “class” that is built into JavaScript). Packages are source files that have

one or more related classes. Since classes do not exist in JavaScript, neither

do packages.

Objects in JavaScript � 183

15

C
h
a
p
te

r

Many of the more advanced features of object orientation are not supported in

JavaScript. For instance, you won’t find inheritance (where one class inherits

the public methods and properties of another). This is primarily because there

are no classes.

There are four concepts that are integral to the entire process of

object-oriented programming. They are abstraction, encapsulation, inheri-

tance, and polymorphism.

Abstraction is basically the ability to think about concepts in an abstract way.

You can create a class for an employee without having to think about a specific

employee. It is abstract and can apply to any employee.

Encapsulation is really the heart of object-oriented programming. This is sim-

ply the act of taking the data and the functions that work on that data and

putting them together in a single class. Think back to our coverage of strings

and the string class. The string class has the data you need to work on (i.e.,

the particular string in question) as well as the various functions you might

use on that data, all wrapped into one class.

Inheritance is a process whereby one class inherits, or gets, the public proper-

ties and methods of another class. The classic example is to create a class

called “animal.” This class has properties such as weight, and methods such as

move and eat. All animals would share these same properties and methods.

When you wish to create a class for, say a monkey, you then have class monkey

inherit from class animal, and it will have the same methods and properties

that animal has. This is one way in which object-oriented programming sup-

ports code reuse.

Polymorphism literally means “many forms.” When you inherit the properties

and methods of a class, you need not leave them as you find them. You can

alter them in your own class. This will allow you to change the form those

methods and properties take.

Building Your Own Objects

Now for the big question, what about building your own objects? We have

already used some of JavaScript’s built-in objects, such as the String and Date

objects. Now you should be ready to learn something about building your own

new objects and using them.

184 � Chapter 15

Constructor Functions

All objects have constructor functions. A constructor function is simply a

function that defines the properties and methods of the object. It fires auto-

matically when an instance of the object is created. You can think of built-in

objects as objects whose constructor functions are predefined in JavaScript.

The this keyword is probably the most important word related to objects in

object-oriented programming. It refers to the current object, or instance. If I

am sitting in my den and I say “this chair is uncomfortable,” it is clear that I

am referring to the current room I am in, not some other room. The keyword

this is much the same. You can create many instances of an object. The this

keyword allows you to specify the current instance the code is running in.

Inside a constructor function it refers to the instance for which the function

was called. Take a look at the following function:

function student(name, age, avgGrade)

{

this.name = name

this.age = age

this.grade = avgGrade

}

This function accepts three arguments. It defines an object type of a student in

a class. The properties are name, age, and grade, and they are initialized by the

values passed on to the function. You can use the following statement to create

an instance of this object—a student in a class:

var student1 = new student("Sharon", 16, 85)

Now you can refer to these properties in the following fashion:

alert(student1.name + " is a cute " + student1.age + " - year old.)

It is also possible to add properties to an object once it has been created. Such

properties exist only in the specific instance to which they are assigned. The

following script segment demonstrates this:

function student(name, age, avgGrade)

{

this.name = name

this.age = age

this.grade = avgGrade

}

var student1 = new student("Sharon", 16, 85)

student1.sex = "female"

Objects in JavaScript � 185

15

C
h
a
p
te

r

var message = student1.name + " is a cute " + student1.age

message += " - year old "

message += (student1.sex == "female") ? "girl." : "boy."

alert(message)

Now that we have these concepts down, let me show them in action.

Based on the exact definition of the word this, some JavaScript tends to use

alternative structures for construction functions. Here is the preceding exam-

ple in a different form:

function student(name, age, avgGrade, sex)

{

obj = this

obj.name = name

obj.age = age

obj.grade = avgGrade

obj.description = (sex == "female") ? "girl" : "boy"

}

Summary

I freely admit that this topic may be quite difficult for beginning programmers.

Some of you may choose to skip it for now. It is included in this book merely to

get you started.

In this chapter I discussed the basics of object-oriented terminology and con-

cepts. I also discussed how those concepts are implemented in JavaScript, and

which ones are not. You can certainly write scripts without any knowledge of

object orientation, but hopefully this information will give you a deeper under-

standing of what is occurring in your scripts.

186 � Chapter 15

Chapter 16

Tips and Tricks

This chapter shows you a few interesting tips and tricks. Some of these are

JavaScript tricks, and some are HTML tricks. It is quite difficult to completely

separate HTML from JavaScript, since JavaScript runs inside of HTML docu-

ments. These tips and tricks are placed here because they either did not fit

into the topic content of one of the preceding chapters or seem a little bit

advanced for this book. In either case I hope that you find these scripts to be

useful for you.

Inline Frames

The latest versions of both Internet Explorer and Netscape support a new tag

called <IFRAME>. Let’s take a look at how this tag works in an actual web

page.

Example 16-1

<HTML>

<HEAD>

<TITLE>Example 16-01</TITLE>

</HEAD>

<BODY>

<IFRAME WIDTH = 400 HEIGHT = 250 SRC = "frame.htm" >

</IFRAME>

</BODY>

</HTML>

This literally displays one HTML document inside another. If you enter all the

code properly, or use the sample in the code files, you should be able to view

this in your browser and see something like this:

187

One of the cool effects you can create with the new <IFRAME> tag is that

you can make the inline frame transparent. Add ALLOWTRANSPARENCY=

"true" to the <IFRAME> element tag. Then add STYLE="background-

color:transparent" to the <BODY> tag of <fileName> that is being sourced

in the <IFRAME> tag (SRC=<fileName>).

The following code will implement this:

<IFRAME NAME="Frame1" SRC="somepage.htm"

ALLOWTRANSPARENCY="true" STYLE="position:absolute; top:25; left:50; z-index:3">

And the <BODY> tag of somepage.html is:

<BODY STYLE="background-color:transparent">

The latest versions of both Netscape and Internet Explorer also support inline

floating frames. Use the <IFRAME> tag to specify the NAME of the frame

and its source. Here is the <IFRAME> tag definition:

<IFRAME NAME="Frame1" SRC="somepage.htm">

</IFRAME>

188 � Chapter 16

Figure 16-1

Browser Detection

While it is true that browsers are available as free downloads, it is also true

that not everyone always downloads the latest to their machine. So it is possi-

ble that someone might be using an older browser when viewing your page,

and that might mean that their browser does not support all the JavaScript you

are using. For that reason, adding some browser detection might be in order.

Here is the code:

var IE4 = (document.all && !document.getElementById) ? true : false;

var IE5 = (document.all && document.getElementById) ? true : false;

var NET4 = (document.layers) ? true : false;

var NET6 = (document.getElementById && !document.all) ? true : false;

Now you can tell which browser is being used by checking each of the vari-

ables to see if it is true. Only one will show true, and that will be the browser

currently in use.

System Information

JavaScript can retrieve a significant amount of information about the drives in

your system, both disk drives as well as shared networks. A drive object is

created using the GetDrive() method of the FileSystemObject object. Here is

an example:

GetDrive(letterDrive);

The single parameter, letterDrive, is the given drive name. This method

returns the drive object. The following script would create a drive object for c:

<SCRIPT LANGUAGE="JavaScript">

var fso = new ActiveXObject("Scripting.FileSystemObject");

driveObj = fso.GetDrive("c");

</SCRIPT>

The drive object does not have any methods, but it does have some very use-

ful properties:

Property Description

AvailableSpace Returns the number of free bytes on the given drive

DriveLetter Returns the drive letter of a physical local drive or a shared
network

DriveType Returns the drive type

FileSystem Returns the file system type for the specified drive

Tips and Tricks � 189

16

C
h
a
p
te

r

Property Description

FreeSpace Returns the number of free bytes on the given drive

IsReady Returns the status of the drive

Path Returns the path of the given drive

RootFolder Returns the folder object of the root folder

SerialNumber Returns the unique serial number of the volume

ShareName Returns the shared name of a network drive

TotalSize Returns the total size, in bytes, of a specified drive

VolumeName Sets or returns the volume name of the specified drive

If you have experience with Windows programming you might notice that this

works a lot like the Windows FileSystemObject provided by scrun.dll (used

frequently by Visual Basic and Visual C++ developers).

Finding Mouse Location

Here is an interesting little piece of JavaScript code that will find out where

the exact x and y coordinates of the mouse click event are. For this sample I

display those coordinates but you could use this code to do particular actions

depending on the mouse position.

document.onclick = printEvent;

function printEvent(e)

{

if (navigator.appName == "Netscape")

{

mm_X = e.pageX;

m_Y = e.pageY;

}

else

{

m_X = event.clientX;

m_Y = event.clientY;

}

alert("The Mouse click was at x coordinate= " + m_X + " and y

coordinate = " + m_Y);

}

190 � Chapter 16

Password

Often you will want someone to enter in a username and password, and you

will then use your JavaScript to log them into the web site. It is very useful to

have the password masked. On most software, when you enter a password,

asterisks (*) are what actually appear on the screen. Fortunately, this is easy

to do by simply changing one simple tag in your HTML form code.

You may have used something like this to allow the user to enter a username

and password:

<FORM NAME ="frmname">

Username <INPUT TYPE="text" NAME = "name" VALUE="" SIZE=10>

Password <INPUT TYPE="text" NAME ="password" VALUE=""

SIZE=10>

</FORM>

Simply change the INPUT TYPE from “text” to “password” and it will give

you the desired effect.

<FORM NAME ="frmname">

Username <INPUT TYPE="text" NAME = "name" VALUE="" SIZE=10>

Password <INPUT TYPE="password" NAME ="password" VALUE=""

SIZE=10>

</FORM>

Browser Information

Sometimes it is useful to be able to detect things about a user’s browser. Some

of this was covered in previous chapters. However, here is a simple script that

will give you the user’s screen resolution, browser type, and version number.

Example 16-2

<HTML>

<HEAD>

<TITLE> Example 16-02</TITLE>

Tips and Tricks � 191

16

C
h
a
p
te

r

<SCRIPT LANGUAGE= "JavaScript">

var sheight = screen.height

var swidth = screen.width

var browsername = navigator.appname

var version =navigator.appVersion

alert("Your screen resolution is " + sheight + " X " + swidth)

alert("You are using " + browsername + " version " + version)

</SCRIPT>

</HEAD>

<BODY BGCOLOR=White>

</BODY>

</HTML>

Printing the Page

This little script will allow your users to click a single button and print the cur-

rent page. This can be quite useful and I recommend you use it frequently.

Example 16-3

<HTML>

<HEAD>

<TITLE>Example 16-03</TITLE>

</HEAD>

<BODY BGCOLOR=White>

<INPUT TYPE="submit" name="print" value="Print"onclick="window.print()">

</BODY>

</HTML>

Antique Bookstore Project

As with most of the chapters in this book, this chapter will add to our antique

bookstore project. In this case we are simply going to add a Print button to one

inventory screen (you could add a button to all of them if you so desired). We

will add it to the completeinventory.htm page.

<HTML>

<HEAD>

<TITLE>Complete Inventory</TITLE>

192 � Chapter 16

<SCRIPT LANGUAGE="JAVASCRIPT">

function toggleMenu(currMenu)

{

if (document.getElementById)

{

thisMenu = document.getElementById(currMenu).style

if (thisMenu.display == "block")

{

thisMenu.display = "none"

}

else

{

thisMenu.display = "block"

}

return false

}

else

{

return true

}

}

</SCRIPT>

<STYLE TYPE="TEXT/CSS">

.menu {display:none; margin-left:20px}

</STYLE>

</HEAD>

<BODY background="back1.gif">

<H3>

Books

from the 1800's

</H3>

1st Edition Charles Dickens' "Tale of Two Cities"

1st Edition Edgar Allen Poe's "The Tell-Tale Heart"

Signed Copy of Edgar Allen Poe's "The Cask of Amontillado"

<H3>

Books

from the 1700's

</H3>

Ben Franklin's memoirs

Tips and Tricks � 193

16

C
h
a
p
te

r

"How to Start a Revolution"

"Political Theory" by Thomas Paine

<H3>

Books

for under $25

</H3>

A cowboy's diary (circa 1850's)

4th edition Charles Dickens' "A Tale of Two Cities"

3rd Edition Jules Verne's "20,000 Leagues Under the Sea"

<H3>

Our

finest items

</H3>

Signed copy of Shakespeare's "Hamlet"

Gutenberg's diary

Signed first Edition Longfellow

1570 Hebrew Bible

<CENTER><input type="submit" name="print" value="Print"onclick="window.print()">

</CENTER>

</BODY>

</HTML>

View the Directory

This next script is rather short but very useful. It allows you to view the cur-

rent directory in your browser in a Windows Explorer format. You can then

browse the entire hard drive via your browser.

Example 16-4

<HTML>

<HEAD>

<TITLE>Example 16-04</TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

function getListing()

{

var url = location.href

194 � Chapter 16

var lastSlash = url.lastIndexOf("/")

location.href = url.substring(0, lastSlash + 1)

}

</SCRIPT>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE=" view directory listing " onClick="getListing()">

</FORM>

</BODY>

</HTML>

If you entered the code properly, you should be able to see something like this.

Summary

This chapter simply listed a few interesting tricks you can do in JavaScript. I

strongly suggest that you visit the web sites listed in Appendix A. These web

sites have hundreds of free scripts you can download, tutorials, and much

more. While most of this book has focused on teaching you specific techniques

you can use in JavaScript, this chapter’s purpose has been to introduce you to

a few techniques that did not seem to fit into the other chapters.

Tips and Tricks � 195

16

C
h
a
p
te

r

Figure 16-2

Chapter 17

JavaScript Games

They say that all work and no fun makes Jack a dull boy. Well, this chapter is

about fun! Here I am going to show you a few relatively simple games done all

in JavaScript. These games will use the techniques you have already learned,

but will use then in novel ways. I think you will find this to be a very exciting

chapter.

Press the Button

Let’s start with a rather simple example. In this game you simply place a but-

ton on the screen and ask the user to press it. However, when they try to

press it, you move it, and change its message.

Example 17-1

<HTML>

<HEAD>

<TITLE>Example 17-01</title>

<SCRIPT LANGUAGE="JavaScript">

init_msg="PRESS BUTTON NOW"

function new_msg()

{

var msg=new Array()

msg[0]="I said press the button"

msg[1]="Come on, press the button"

msg[2]="You can't even press a simple button?"

msg[3]="Use your mouse!"

msg[4]="Left-click your mouse on the button!"

var num1=parseInt(Math.random()*(width-150))

var num2=parseInt(Math.random()*(height-150))

var num3=parseInt(Math.random()*msg.length)

ActualObj.left=num1

ActualObj.top=num2

197

document.clickme.button.value=msg[num3]

}

function start()

{

if(document.all)

{

ActualObj=eval(document.all.floatLyr.style);

width=document.body.clientWidth

height=document.body.clientHeight

}

else if(document.layers)

{

ActualObj=eval(document.floatLyr.document)

width=innerWidth

height=innerHeight

}

document.clickme.button.value=init_msg

ActualObj.backgroundColor=document.bgColor

}

function caught()

{

alert("You caught me!")

}

</SCRIPT>

</HEAD>

<BODY onload="start()" bgcolor="white">

<CENTER>Please press the button</center>

<div onmouseover="new_msg()" id="floatLyr"

style="position:absolute;visibility:visible;top:40;left:40">

<FORM name="clickme">

<TABLE width="100" border="1" bordercolor=White cellspacing="0"

bgcolor=White>

<tr>

<td>

<INPUT name="button" onmouseover="new_msg()"

onmousedown="caught()" type="Button" onkeypress="caught()">

</TABLE>

</FORM>

</DIV>

</BODY>

</HTML>

198 � Chapter 17

If you entered the code properly you should now be able to see a screen that

looks like this:

When you try to move your mouse over the button it will move, like this:

JavaScript Games � 199

17

C
h
a
p
te

r

Figure 17-1

Figure 17-2

Roll the Dice

There are many games that require random dice rolls. Most board games uti-

lize six-sided dice, whereas many role-playing games utilize various multisided

dice. Whatever your needs, this script will generate random dice rolls for you,

with any type of dice you wish. You can also easily modify this to accommodate

more dice or more types of dice.

Example 17-2

<HTML>

<HEAD>

<SCRIPT LANGUAGE = "JavaScript">

var die = 6 // Default dice type

var dice = 1 // default number of dice

function rolldice(die, dice)

{

var roll = 0

for (I=0; I< dice; I++)

{

roll = roll + Math.round(Math.random() * die) % die + 1;

}

document.form.text.value = roll

}

</SCRIPT>

<BODY>

<CENTER>

<FORM name=form>

<TABLE border=1 bgcolor = gray>

<tr>

<td>What kind of dice do you want to roll?

<td>How many?

<tr>

<td>

<P><INPUT TYPE=radio name=sides onclick="die = 3">3 Sided

<P><INPUT TYPE=radio name=sides onclick="die = 4">4 Sided

<P><INPUT TYPE=radio name=sides onclick="die = 5">5 Sided

<P><INPUT TYPE=radio checked name=sides onclick="die =

6">6 Sided

<P><INPUT TYPE=radio name=sides onclick="die = 8">8 Sided

<td>

<P><INPUT TYPE=radio name=sides onclick="die = 10">10 Sided

<P><INPUT TYPE=radio name=sides onclick="die = 12">12 Sided

<P><INPUT TYPE=radio name=sides onclick="die = 20">20 Sided

<P><INPUT TYPE=radio name=sides onclick="die = 30">30 Sided

200 � Chapter 17

<P><INPUT TYPE=radio name=sides onclick="die =

100">100 Sided

<td>

<P><INPUT TYPE=radio name=number onclick="dice = 1">1

<P><INPUT TYPE=radio name=number onclick="dice = 2">2

<P><INPUT TYPE=radio name=number onclick="dice = 3">3

<P><INPUT TYPE=radio name=number onclick="dice = 4">4

<P><INPUT TYPE=radio name=number onclick="dice = 5">5

<td>

<P><INPUT TYPE=radio name=number onclick="dice = 6">6

<P><INPUT TYPE=radio name=number onclick="dice = 7">7

<P><INPUT TYPE=radio name=number onclick="dice = 8">8

<P><INPUT TYPE=radio name=number onclick="dice = 9">9

<P><INPUT TYPE=radio name=number onclick="dice = 10">10

<tr>

<td>

<INPUT TYPE=button value="Roll Dice" name=button

onclick="rolldice(die, dice)">

<INPUT TYPE=text size=10 name=text>

</TABLE>

</FORM>

</CENTER>

</BODY>

</HTML>

If you entered the code properly, you should be able to view something like the

following figure:

JavaScript Games � 201

17

C
h
a
p
te

r

Figure 17-3

Viva Las Vegas

This next example is a blackjack game that is fairly simple. The techniques are

all ones that you have used previously in this book. They are simply combined

in such a way as to give you a working blackjack game.

Example 17-3

<HTML>

<HEAD>

<TITLE> Example 17-03</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var gameOver

var cardCount

function Shuffle(max)

{

var num=Math.random()*max

return Math.round(num)+1

}

function getSuit()

{

suit = Shuffle(4)

if(suit == 1)

return "Spades"

if(suit == 2)

return "Clubs"

if(suit == 3)

return "Diamonds"

else

return "Hearts"

}

function cardName(card)

{

if(card == 1)

return "Ace"

if(card == 11)

return "Jack"

if(card == 12)

return "Queen"

202 � Chapter 17

if(card == 13)

return "King"

return "" + card

}

function cardValue(card,strWho)

{

if(card == 1)

{

if(strWho =="You" && document.display.you.value >10)

{

document.display.say2.value=document.display.say2.value+" Low"

return 1

}

else

return 11

}

if(card > 10)

return 10

return card

}

function PickACard(strWho)

{

card = Shuffle(12)

suit = getSuit()

if(strWho =="You")

document.display.say2.value=(cardName(card) + " of " + suit)

else

document.display.say1.value=(cardName(card) + " of " + suit)

return cardValue(card,strWho)

}

function NewHand(form)

{

if(gameOver !=0)

{

form.say1.value=("Hand in Play!")

form.say2.value=("")

return

JavaScript Games � 203

17

C
h
a
p
te

r

}

else

{

form.dealer.value = 0

form.you.value = 0

cardCount=0

form.dealer.value = eval(form.dealer.value) + PickACard("Dealer")

form.you.value = eval(form.you.value) + PickACard("You")

gameOver = -1

cardCount+=1

}

}

function Dealer(form)

{

if (gameOver ==0)

{

form.say1.value=("Please Deal the Cards")

form.say2.value=("")

return

}

if (cardCount <2)

{

form.say1.value=("There is a Minimum of 2 Cards")

form.say2.value=("Hit Again")

return

}

else

{

while(form.dealer.value < 17)

{

form.dealer.value = eval(form.dealer.value) + PickACard("Dealer")

}

}

}

function User(form)

{

if (gameOver ==0)

{

form.say1.value=("Please Deal the Cards")

form.say2.value=(" ")

return

}

204 � Chapter 17

else

{

cardCount+=1

form.say1.value="You Get...."

form.you.value = eval(form.you.value) + PickACard("You")

}

if(form.you.value > 21)

{

form.say1.value=("Sorry, you lose")

gameOver=0

form.numgames.value=(eval(form.numgames.value)) -1

}

}

function LookAtHands(form)

{

if (gameOver ==0 || form.you.value<10 || cardCount <2)

{

return

}

else

if(form.dealer.value > 21)

{

form.say1.value=("Dealer loses")

form.say2.value=("You Win")

gameOver=0

form.numgames.value=(eval(form.numgames.value))+1

}

else

if(form.you.value > form.dealer.value)

{

form.say1.value=("You Win")

form.say2.value=(" ")

gameOver=0

form.numgames.value=eval(form.numgames.value)+1

}

else

{

if(form.dealer.value == form.you.value)

{

form.say1.value=("Game Tied!")

form.say2.value=("Try Again!")

JavaScript Games � 205

17

C
h
a
p
te

r

gameOver=0

form.numgames.value=eval(form.numgames.value)-1

}

else

{

form.say1.value=("House Wins!")

form.say2.value=("Tough Luck!")

gameOver=0

form.numgames.value=eval(form.numgames.value)-1

}

}

}

function initialize()

{

gameOver=0

cardCount=0;

document.display.dealer.value=""

document.display.you.value=""

document.display.numgames.value="0"

document.display.say1.value=" Press the Deal button"

document.display.say2.value="To Start!"

}

</SCRIPT>

<BODY OnLoad="initialize()">

<CENTER>

<FORM NAME="display">

<TABLE BGCOLOR=GRAY border="1">

<TR>

<TD><CENTER>Score:</CENTER>

<TD><CENTER>Dealer</CENTER>

<TD><CENTER><INPUT TYPE=text name="dealer" size="2"></CENTER>

<TD><CENTER>Card(s): <INPUT TYPE=text name="say1"

value=""></CENTER>

<TR>

<TD><CENTER><INPUT TYPE=text name="numgames"value="0"></CENTER>

<TD><CENTER>Player</CENTER>

<TD><CENTER><INPUT TYPE=text name="you"></CENTER>

<TD><CENTER>Card(s): <INPUT TYPE=text name="say2"value="">

</CENTER>

206 � Chapter 17

<TR>

<TD><CENTER><INPUT TYPE=button value="Deal"

onClick="NewHand(this.form)"></CENTER>

<TD><CENTER><INPUT TYPE=button value="Stand"

onClick="Dealer(this.form);LookAtHands(this.form);">

<INPUT TYPE=button value=" Hit " onClick="User(this.form)">

</CENTER>

</TABLE>

</FORM>

</CENTER>

</BODY>

</HTML>

If you enter all the code properly, you should be able to see something like the

following figure.

Summary

This chapter was placed in this book simply to show you some fun things you

can do with JavaScript. As you are working to learn the technical nuances of

any programming or scripting language, it is important that you go beyond

simply memorizing syntax. With a little bit of imagination, you can take basic

techniques and produce truly creative results. Albert Einstein once said that

JavaScript Games � 207

17

C
h
a
p
te

r
Figure 17-4

“imagination is greater than knowledge.” Well, most of this book was con-

cerned with increasing your knowledge; hopefully, this chapter sparked your

imagination.

208 � Chapter 17

Chapter 18

ActiveX and JavaScript

JavaScript is probably the most widely used technology for enhancing web

pages. However, there are other popular technologies being used as well. In an

earlier chapter I introduced you to cascading style sheets. In this chapter I will

introduce you to ActiveX components. These can only be used in Microsoft

Internet Explorer.

Theoretical Background

Before we delve into the use of ActiveX components, let’s take a look at some

of the theory underlying them. A frequent problem in programming is allowing

two different components to communicate. One popular technology that makes

this possible is COM (Component Object Model). With COM, it does not mat-

ter what programming language a component is written in as long as it has an

interface that conforms to COM standards. The two most common program-

ming tools used to create COM components are Microsoft Visual C++ and

Microsoft Visual Basic.

ActiveX is a technology based on COM. All ActiveX components adhere to

COM interface specifications. The two most common implementations of

ActiveX components are ActiveX controls and ActiveX DLLs. ActiveX controls

are quite familiar to Visual Basic programmers. They are also commonly seen

on web sites. If you go to a web site that wishes to download a component to

your hard drive, chances are it’s an ActiveX control. These are commonly used

with playing multimedia. An ActiveX control usually has a visible interface.

ActiveX DLLs expose a number of functions that the host applications (or web

page) can use. However, ActiveX DLLs rarely have a user interface. ActiveX

controls are far more common in web pages than ActiveX DLLs.

209

Using ActiveX for TCP/IP

Let’s look at an actual example of using an ActiveX component in a web page

with Java Script. In the Chapter 18 folder in the code files you will find an

ActiveX control named TCPClientControl.ocx. This is a control I developed to

allow easy access to TCP/IP communication inside of web pages. It is very

simple to use, and you should feel free to use this control as you wish.

The first step in using an ActiveX control is simply inserting it in the web

page. This was covered briefly in Chapter 14, “Adding Plug-ins.” The code to

insert an ActiveX component into a web page is really rather simple:

<OBJECT ID="TCPClient"

CLASSID="CLSID:26900070-7443-11D5-9A47-00409639327E"

CODEBASE="TCPClientControl.CAB#version=2,0,0,0">

</OBJECT>

The <OBJECT> tag is an HTML tag identifying that an ActiveX component

is being inserted. OBJECT ID is simply the name you wish to use for this

component within your code. You can choose any name you wish. Once you

have chosen a name you can use that name to access the methods and proper-

ties of the ActiveX component. CLASSID is a unique number that each

ActiveX component has. It is generated when the ActiveX component is cre-

ated. CODEBASE identifies the URL from which the ActiveX component can

be downloaded if it is not already installed on the user’s computer. This is an

especially nice feature of ActiveX components: they are self-installing.

The method I have just explained to you is the same for all ActiveX compo-

nents. Now I will show you an actual example of an ActiveX control in use.

This example creates an ActiveX TCP/IP client that can send data to any

active TCP/IP server on the Internet.

Example 18-1

<HTML>

<HEAD>

<TITLE>Example 18-01</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function send()

{

var ip

var port

var message

210 � Chapter 18

ip = frmdestination.remoteip.value

port = frmdestination.remoteport.value

message = frmdestination.message.value

TCPClient.remoteIP = ip

TCPClient.remotePort =port

TCPClient.Message =message

TCPClient.sendData()

}

</SCRIPT>

</HEAD>

<BODY>

<P>

<CENTER>

<TABLE BORDER = 1 BGCOLOR = lightblue>

<TR>

<TD>

<FORM name ="frmdestination">

IP Address<INPUT TYPE="text" NAME ="remoteip" VALUE=""

SIZE=15>

Port Number<INPUT TYPE="text" NAME ="remoteport" VALUE=""

SIZE=15>

Message<INPUT TYPE="text" NAME ="message" VALUE=""

SIZE=25>

<INPUT TYPE ="button" VALUE ="Connect" onClick="send()">

</FORM>

</TABLE>

</CENTER>

<OBJECT ID="TCPClient"

CLASSID="CLSID:26900070-7443-11D5-9A47-00409639327E"

CODEBASE="TCPClientControl.CAB#version=2,0,0,0">

</OBJECT>

</BODY>

</HTML>

If you entered all the code properly you will be able to see the following:

ActiveX and JavaScript � 211

18

C
h
a
p
te

r

This example shows you an easy way to utilize ActiveX controls in your web

site. In this case the ActiveX control takes care of the TCP/IP communication

with some TCP/IP server.

Ticking Clock

This next little component offers a nice visual effect. It places a clock any-

where you wish on your web page. This is a rather easy method for inserting a

clock on your web page.

Example 18-2

<HTML>

<HEAD>

<TITLE>Example 18-02</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<OBJECT ID="Active_Clock"

CLASSID="CLSID:A119E782-3E4F-4EF8-A959-FA3FD028076E"

CODEBASE="ActiveClock.CAB#version=1,0,0,0">

</OBJECT>

212 � Chapter 18

Figure 18-1

</CENTER>

</BODY>

</HTML>

If you enter the code properly, you should be able to view this web page in

Internet Explorer and see the following image.

Slider Text

This ActiveX component is interesting for several reasons. First of all, I am

interested in it because I use it frequently to teach students how to create

their own ActiveX components. It is also interesting for us because with this

ActiveX component, I can show you how to manipulate an ActiveX compo-

nent’s properties via JavaScript. Most ActiveX components come with some

documentation telling you what properties and methods they have and what

they do.

Example 18-3

<HTML>

<HEAD>

<TITLE>Example 18-03</TITLE>

<SCRIPT LANGUAGE = "JavaScript">

function setslider()

ActiveX and JavaScript � 213

18

C
h
a
p
te

r

Figure 18-2

{

SliderText.Max = 50

SliderText.flagextreme =true

}

</SCRIPT>

</HEAD>

<BODY onLoad = "setslider()">

<CENTER>

<OBJECT ID="SliderText"

CLASSID="CLSID:1E0822BF-195D-11D5-9A46-00409639327E"

CODEBASE="slidertext1.CAB#version=1,0,0,0">

</OBJECT>

</CENTER>

</BODY>

</HTML>

If you entered all the code properly, you will be able to see this image:

214 � Chapter 18

Figure 18-3

Summary

This chapter is not meant to be an exhaustive treatment of the topic of

ActiveX. However, I hope that after reading this chapter you will realize that

ActiveX components are one more tool you have at your disposal for creating

truly stunning web sites. Often ActiveX is used in conjunction with VB Script;

however, now you should realize that it is really not very hard to use it with

JavaScript as well. I also hope you realize that taking advantage of existing

ActiveX components can allow you to greatly expand your web sites.

ActiveX and JavaScript � 215

18

C
h
a
p
te

r

Chapter 19

Programming and JavaScript

This book has focused on accomplishing specific goals using JavaScript. This

chapter is included to introduce you to some concepts that are common to pro-

gramming. Certainly a person simply using JavaScript for their own personal

web page should feel free to skip this chapter. However, a professional web

developer needs to understand what programming is, how it’s done, and how it

relates to JavaScript. This chapter also lays the groundwork for those of you

who wish to continue on to my Advanced JavaScript, Second Edition book (also

available from Wordware Publishing).

General Concepts

We have used variables throughout this book, but what exactly are they? A

variable is a place in memory set aside to hold data. The variable’s name

allows us to refer to that place in memory and to manipulate the data held

therein. Without variables you would have to refer to the actual hexadecimal

address in memory where data is stored. In many languages, data is stored in

variables of a specific type. Whole numbers are stored in integer data types,

decimals are stored in float data types, etc. In JavaScript the var keyword

allows you to declare a variable that will hold any type of data. This is very

convenient for you when you are writing scripts.

A statement is a line of code that performs some action. The following are

statements:

var mydate // the action performed is the declaration of a variable

var mynumber = x * 3 // The action performed is a mathematical operation.

When you group statements together into a logical grouping under some

name, you have a function. A function may or may not take any parameters,

and may or may not return some value. In other programming languages you

have to define the function in such a way as to have it return data of a specific

217

type. In JavaScript you have the freedom to return any type of data you wish,

or to return no data at all.

Now that we have defined variables, statements, and functions, we have

defined the foundations of all programming. Combining this with a knowledge

of operators (introduced to you in Chapter 13, “Math in JavaScript”) and you

have the basic building blocks of programming. The primary difference

between scripting languages, like JavaScript, and traditional programming lan-

guages, such as C and Java, is that scripting languages are much more flexible.

You can do things any way you please. However, this can frequently lead to

code that is very difficult to read and maintain.

Good coding practices are really quite simple. The first thing to keep in mind

is to make your code readable. You will notice that I space my code out. It is

quite possible to place more than one statement on a single line, but I avoid

that because it does not facilitate readable code. The next thing I highly rec-

ommend is the liberal use of comments. Comments can make your code more

understandable. Simply place a // and anything written after it will be ignored

by the browser. This way you can leave explanatory comments telling the

reader what you are doing in your code.

Arrays

Arrays are data structures, and are somewhat more complex than simple vari-

ables. When you have related data that you wish to group together, an array

provides a very good way to do that. An example would be a set of student

grades. If you want to process an individual item of an array you need to spec-

ify the array name and indicate which array element is being referenced.

Specific elements are indicated by an index or a subscript.

Arrays in JavaScript are simple built-in objects. You create an array just like an

instance of an object, because that is exactly what it is. The formal name of the

object is Array—notice the capitalized “A.” The general syntax is:

var arrayObjectName = new Array()

var arrayObjectName = new Array(arrayLength)

arrayObjectName is the name of a new object, an existing variable, or a prop-

erty of an existing object.

ArrayLength is the number of individual elements in the array.

218 � Chapter 19

In JavaScript you do not have to specify the actual size of the array, nor the

type of variables it will contain. This is because JavaScript will allow you to

expand the array if needed, and you can place in any type of data you wish.

Here are some arrays:

var day = new Array(31)

var month = new Array(12)

var year = new Array() // number of years "not known"

All elements of an array are initially null. This is important because such ele-

ments do not have any influence on your script. An element with a null value

actually does not exist. This is why it is common practice to give each element

of an array an initial value. As you might guess, this is referred to as

initializing an array.

From the moment an array is declared, it takes up the required storage area in

memory.

It also does not matter if you initialized its values or not. Theoretically, if you

created an array without specifying the number of elements, it would be as if

you created one with zero elements.

To use an array you must be able to refer to its elements. Arrays in JavaScript

are objects. Like all other objects, they have properties and methods:

arrayObjectName[subscript] // ar1[4]

The subscript follows the array name and is enclosed in square brackets. Sub-

scripts are simple integers that start at zero.

Here is a simple array:

var ar = new Array(5)

This array has five elements: ar[0], ar[1], ar[2], ar[3], ar[4].

After you create an array you can increase its length by specifying a value for

the highest subscript element. The following code creates an array of length

zero, then assigns a null value to element 99. This changes the length of the

array to 100.

accounts = new Array() // array of zero elements

accounts[99] = null // array of 100 elements

Note that the array does not take up any storage space, even after it is

extended.

Programming and JavaScript � 219

19

C
h
a
p
te

r

When referring to an element, the subscript can be either a literal (e.g., 3) or a

variable (e.g., num = 3).

An element of an array can be any valid value. It can be a string, a number, a

Boolean value, a null value, or even another object. For example, if you want to

create an array in which each element is a student object, you can use the fol-

lowing statements:

function student()

{ // constructor function

// properties not initialized to meaningful value

this.name = ""

this.age = ""

this.grade = ""

}

var size = 35 // num of students in class

var students = new Array(size) // array is defined

for (var i = 0; i < size; i++)

{

students[i] = new student()

}

students[0].name = "Mark"

students[32].grade = 88

At first, the desired size of the array—the number of students in the class—is

assigned to the variable size. An array of that size is then created. All ele-

ments of the array, from students[0] to students[34], are then defined using

the constructor function student(). In this example, all of the elements in the

array are of the same type. An array can also have elements of different types.

Here is an example:

function student()

{ // constructor function

// properties not initialized to meaningful value

this.name = ""

this.age = ""

this.grade = ""

}

function teacher(name, age)

{

this.name = name

this.age = age

}

var size = 35 // num of students in class

var students = new Array(size + 1) // array is defined

students[0] = new teacher("Kate", 45)

220 � Chapter 19

for (var i = 1; i < size + 1; i++)

{ // or i <= size

students[i] = new student()

}

alert(" is the teacher." + students[0].name)

In this script segment an array of size + 1 elements is defined, because the

first element, students[0], holds an instance of the teacher object.

The most important rule is that the subscript, or index, starts at zero.

Although it might seem quite awkward, use this element like all other ele-

ments of the array.

Summary

The purpose of this chapter was to introduce you to concepts common to all

types of programming. This knowledge is not necessary for the hobbyist but is

vital for the professional programmer (or the would-be professional). If you

wish to explore these concepts in more depth, as well as exploring JavaScript

in greater depth, may I humbly recommend my own Advanced JavaScript,

Second Edition from Wordware Publishing.

Programming and JavaScript � 221

19

C
h
a
p
te

r

Chapter 20

Antique Bookstore Project

Throughout most of this book we have gradually been building a real-world

web site for a fictitious antique bookstore. This chapter simply brings all the

source code into one convenient location. You can also find that same code in

the Antique Bookstore Project folder in the code files.

The Main Screen

First I will show you the main screen, which contains index.htm, main.htm,

banner.htm, and tool.htm. Main.htm has the frame code to hold the other

pages.

index.htm

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

</HEAD>

<FRAMESET rows="64,*">

<FRAME name="banner" scrolling="no" noresize target="contents"

src="banner.htm">

<FRAMESET cols="169,*">

<FRAME name="contents" target="main" src="tool.htm" scrolling="auto">

<FRAME name="display" src="main.htm" scrolling="auto" target="_self"

marginwidth="0" marginheight="16">

</FRAMESET>

<NOFRAMES>

<BODY>

<P>This page uses frames, but your browser doesn't support them.</P>

</BODY>

</NOFRAMES>

</FRAMESET>

223

</HTML>

main.htm

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function setCookie(name, value, expires, path, domain, secure)

{

var curCookie = name + "=" + escape(value) +

((expires) ? "; expires=" + expires.toGMTString() : "") +

((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +

((secure) ? "; secure" : "")

document.cookie = curCookie

}

function getCookie(name)

{

var prefix = name + "="

var cookieStartIndex = document.cookie.indexOf(prefix)

if (cookieStartIndex == -1)

return null

var cookieEndIndex = document.cookie.indexOf(";", cookieStartIndex+

prefix.length)

if (cookieEndIndex == -1)

cookieEndIndex = document.cookie.length

return unescape(document.cookie.substring(cookieStartIndex

+prefix.length, cookieEndIndex))

}

function deleteCookie(name, path, domain)

{

if (getCookie(name))

{

document.cookie = name + "=" +((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +"; expires=Thu,

01-Jan-70 00:00:01 GMT"

}

}

224 � Chapter 20

var expiredate= new Date()

expiredate.setTime(expiredate.getTime() + 30 * 24 * 60 * 60 * 1000)

var name = getCookie("name")

if (!name)

{

name = prompt("Please enter your name:", "John Doe")

setCookie("name", name, expiredate)

}

alert("Welcome back " + name)

</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">

var mydate = new Date()

var myday = mydate.getDay()

if(myday==0)

alert("Sunday- Sorry, we are closed today")

if (myday==1)

alert("Monday- Sorry, we are closed today")

if(myday==2)

alert("Tuesday- Our hours today are 10 a.m. to 6 p.m.")

if(myday==3)

alert("Wednesday- Our hours today are 10 a.m. to 6 p.m.")

if (myday==4)

alert("Thursday- Our hours today are 10 a.m. to 6 p.m.")

if (myday==5)

alert("Friday- Our hours today are 10 a.m. to 7 p.m.")

if (myday==6)

alert("Saturday- Our hours today are 10 a.m. to 4 p.m.")

</SCRIPT>

<SCRIPT LANGUAGE="JAVASCRIPT">

ImageArray = new Array("banner1.gif","banner2.gif","banner3.gif")

CurrentImage = 0

ImageCount = ImageArray.length

function RotateBanner()

{

if (document.images)

{

CurrentImage++

if (CurrentImage ==ImageCount)

{

CurrentImage = 0

Antique Bookstore Project � 225

20

C
h
a
p
te

r

}

document.Banner.src=ImageArray[CurrentImage]

setTimeout("RotateBanner()",3000)

}

}

</SCRIPT>

</HEAD>

<BODY background="back1.gif" onLoad="RotateBanner()">

<SCRIPT LANGUAGE="JavaScript">

var bgOffset = 0;

var bgObject = eval('document.body');

function scrollbackground(maxSize)

{

bgOffset = bgOffset + 1;

if (bgOffset > maxSize)

bgOffset = 0;

bgObject.style.backgroundPosition = "0 " + bgOffset;

}

var scrtimer = window.setInterval("scrollbackground(50)",50);

</SCRIPT>

<CENTER>

<P><TABLE BORDER=1>

<TR>

<TD>

<P>

<TD>

<P><CENTER>Ye Olde Book Shoppe</CENTER>

<TD>

</TABLE>

<P>

<P>

</CENTER>

<P>

</BODY>

226 � Chapter 20

</HTML>

tool.htm

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

</HEAD>

<BODY background="back1.gif">

<P>

See our books

Latest Additions

Complete

Inventory

Compute Costs

</BODY>

</HTML>

banner.htm

<HTML>

<HEAD>

<TITLE>Ye Olde Book Shoppe</TITLE>

</HEAD>

<BODY background="sample1.gif">

<CENTER>

<H1><I>Ye Olde Booke Shoppe</I> </H1>

</CENTER>

</BODY>

</HTML>

These pages you have just seen make up the primary portions of the web site.

This is what the user will see when they first visit the web site. Now let’s look

at the inventory pages.

Inventory Pages

inventory.htm

<HTML>

<HEAD>

<TITLE>Book Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

var childwindow = null

function openbook1()

Antique Bookstore Project � 227

20

C
h
a
p
te

r

{

childwindow = window.open("inventory1.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook2()

{

childwindow = window.open("inventory2.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook3()

{

childwindow = window.open("inventory3.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

function openbook4()

{

childwindow = window.open("inventory4.htm","childwindow",

"width=400,height=400,scrollbars=yes")

}

</SCRIPT

</HEAD>

<BODY background="back1.gif" >

<P>

<CENTER>

<H2> This month's newest additions!

</CENTER>

<P>

<A HREF="javascript:openbook1()"

onMouseOver= " window.status='We have three copies of this book, all

in fine condition'

return true" onMouseOut="window.status= ' '

return true">View Shakespeare

<A HREF="javascript:openbook2()"

onMouseOver= " window.status='We just acquired this book last month'

return true" onMouseOut="window.status= ' '

return true">View Dickens

<A HREF="javascript:openbook3()"

onMouseOver= " window.status='This book is in fair condition'

return true" onMouseOut="window.status= ' '

return true">View Poe

<A HREF="javascript:openbook4()"

onMouseOver= " window.status='We have one copy in mint condition'

return true" onMouseOut="window.status= ' '

228 � Chapter 20

return true">View King James Bible

</H2>

</BODY>

</HTML>

inventory1.htm

<HTML>

<HEAD>

<TITLE>Advanced JavaScript</TITLE>

</HEAD>

<BODY BACKGROUND ="bod-bg.gif">

<CENTER>

Signed copy of "Macbeth"

$2900

</CENTER>

</BODY>

</HTML>

inventory2.htm

<HTML>

<HEAD>

<TITLE>Advanced JavaScript</TITLE>

</HEAD>

<BODY BACKGROUND ="bod-bg.gif">

<CENTER>

Mint condition first edition "A Tale of Two Cities"

$1200

</CENTER>

</BODY>

</HTML>

inventory3.htm

<HTML>

<HEAD>

<TITLE>Advanced JavaScript</TITLE>

Antique Bookstore Project � 229

20

C
h
a
p
te

r

</HEAD>

<BODY BACKGROUND ="bod-bg.gif">

<CENTER>

Signed First Edition of "The Raven"

$1450

</CENTER>

</BODY>

</HTML>

inventory4.htm

<HTML>

<HEAD>

<TITLE>Advanced JavaScript</TITLE>

</HEAD>

<BODY BACKGROUND ="bod-bg.gif">

<CENTER>

The original King James Bible

$10450

</CENTER>

</BODY>

</HTML>

complete inventory.htm

<HTML>

<HEAD>

<TITLE>Complete Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT">

function toggleMenu(currMenu)

{

if (document.getElementById)

{

thisMenu = document.getElementById(currMenu).style

if (thisMenu.display == "block")

{

thisMenu.display = "none"

230 � Chapter 20

}

else

{

thisMenu.display = "block"

}

return false

}

else

{

return true

}

}

</SCRIPT>

<STYLE TYPE="TEXT/CSS">

.menu {display:none; margin-left:20px}

</STYLE>

</HEAD>

<BODY background="back1.gif">

<H3>

Books

from the 1800s

</H3>

1st Edition Charles Dickens' "A Tale of Two Cities"

1st Edition Edgar Allen Poe's "The Tell-Tale Heart"

Signed Copy of Edgar Allen Poe's "The Cask of Amontillado"

<H3>

Books

from the 1700's

</H3>

Ben Franklin’s memoirs

"How to Start a Revolution"

"Political Theory" by Thomas Paine

<H3>

Books

for under $25

</H3>

A Cowboy's diary (circa 1850's)

4th edition Charles Dickens' "A Tale of Two Cities"

Antique Bookstore Project � 231

20

C
h
a
p
te

r

3rd Edition Jules Verne's "20,000 Leagues Under the Sea"

<H3>

Our

finest items

</H3>

Signed copy of Shakespeare's "Hamlet"

Gutenberg's diary

Signed first Edition Longfellow

1570 Hebrew Bible

<CENTER><input type="submit" name="print" value="Print"onclick="window.print()">

</CENTER>

</BODY>

</HTML>

Finishing the Pages

Now for the final two pages. The books.htm page gives us the ability to flip

through the books that are currently being showcased. Compute.htm gives us

the ability to compute costs.

books.htm

<HTML>

<HEAD>

<TITLE>Book Inventory</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

PicArray = new Array("book1.gif","book2.gif","book3.gif","book4.gif")

CurrentPic = 0

ImageCount = PicArray.length - 1

function MovePrevious()

{

if (document.images && CurrentPic > 0)

{

CurrentPic--

document.myPicture.src=PicArray[CurrentPic]

}

}

function MoveNext()

{

232 � Chapter 20

if (document.images && CurrentPic < ImageCount)

{

CurrentPic++

document.myPicture.src=PicArray[CurrentPic]

}

}

</SCRIPT>

</HEAD>

<BODY background="back1.gif" >

<P>

<CENTER>

<H2>This month's specials!</H2>

<IMG SRC="book1.gif" HEIGHT=300 WIDTH =300 NAME="myPicture" ALT="Our

Book Inventory">

<FORM>

<INPUT TYPE="button" VALUE="<--" onClick="MovePrevious()">

<INPUT TYPE ="button" VALUE ="-->" onClick="MoveNext()">

</FORM>

</CENTER>

</BODY>

</HTML>

compute.htm

<HTML>

<HEAD>

<TITLE>Computer Costs</TITLE>

<SCRIPT LANGUAGE="JAVASCRIPT" >

function total()

{

var shipping

var tax

var total

var numbooks = txtbooks.value

var price = txtprice.value

tax = price * .0875

shipping = numbooks * 1.5

total = eval(price) + eval(tax) + eval(shipping)

txttax.value = tax

txtship.value = shipping

txttotal.value = total

}

Antique Bookstore Project � 233

20

C
h
a
p
te

r

</SCRIPT

</HEAD>

<BODY background="back1.gif" >

<P>

<CENTER>

<TABLE BORDER = 1>

<TR>

<TD>

Number of books ordered <INPUT TYPE=text NAME="txtbooks"

VALUE="">

Total price of books ordered<INPUT TYPE = text NAME = "txtprice"

VALUE = "">

<INPUT TYPE=button NAME="Submit" VALUE="Compute"

onclick="total()">

<TR>

<TD>

<INPUT TYPE=text NAME="txttax" VALUE=""> Tax

<INPUT TYPE=text NAME="txtship" VALUE="">Shipping Costs

<INPUT TYPE=text NAME="txttotal" VALUE=""> Total

</TABLE>

</CENTER>

</BODY>

</HTML>

Summary

The purpose of this chapter is bring together all of the work you have been

doing. Here in one place is the complete source code for the entire antique

bookstore project. All the required images are included in the code files. It is

my sincere wish that you have learned a lot while working your way through

this book.

234 � Chapter 20

Appendix A

Online Resources

Below I have compiled a list of what I consider to be the best JavaScript sites

on the web. You can consult these sites in order to get tutorials, source code,

and much more. I strongly recommend that you familiarize yourself with these

web sites.

JavaScript Web Sites

JavaScript.com is one of the premier JavaScript sites. It has hundreds of tutori-

als and samples. You’ll really want to use this one.

http://www.javascript.com/

Doc JavaScript is another excellent site you would do well to reference.

http://www.webreference.com/js/

A1 JavaScript is a site with some interesting source code you might wish to

review.

http://www.a1javascripts.com/

JavaScript Gate is a pretty solid site with lots of source code and tutorials.

http://javascriptgate.com/

JavaScript World is, as the name implies, a compilation of hundreds of tutorials

and source code.

http://webdeveloper.com/

JavaScript Games is a page with a number of games written in JavaScript. It’s a

good page to look at to see what you can do with JavaScript.

http://plaza.harmonix.ne.jp/~jimmeans/

235

HTML Web Sites

HTML Reference is a good site with a reference to HTML 4.0 as well as

JavaScript and other scripting languages.

http://www.geocities.com/pbb_webref/

The official HTML 4.0 Specification is an excellent resource to find out exactly

what is included in HTML 4.0.

http://www.w3.org/TR/REC-html40/

Organizational Web Sites

HTML Writers Guild is an association of HTML writers.

http://www.hwg.org/

International WebMasters Association is an association of web masters and

developers. They have a variety of interesting membership benefits.

http://www.irwa.org/

Image Collections

When you are creating web sites, you need access to lots of images. The fol-

lowing sites are my favorites:

The Animation Factory at http://www.animfactory.com has a wonderful collec-

tion of animated gifs.

Gifs That Don’t Suck at http://spitfire.cwv.net/~cdbailey/ is the place to find

odd animations. You have to check this site out!

Certification Web Sites

If you are looking to prove that you have learned JavaScript, BrainBench has a

JavaScript certification test you can take online:

http://www.brainbench.com

236 � Appendix A

Employment Web Sites

If you are seeking employment, there are a couple of web sites you should

check out:

Computer Jobs.com http://www.computerjobs.com

Jobs for Programmers http://www.prgjobs.com

Online Resources � 237

Appendix B

HTML Reference

This is not meant to be a comprehensive HTML reference. It is simply a refer-

ence for the essential HTML tags that you must know in order to construct

web pages.

Basic HTML Structure

<HTML> </HTML> Defines an HTML document.

<HEAD> </HEAD> Defines the header section.

<TITLE> </TITLE> Defines the title that appears in the browser.

<BODY> </BODY> Defines the body of the HTML document.

<SCRIPT LANGUAGE="JavaScript"> </SCRIPT> Defines a JavaScript.

Body Formatting Tags

<BODY BGCOLOR=blue> Sets the web page’s background color.

<BODY BACKGROUND="mypic.jpg"> Sets the background of the page to

an image.

<BODY BGCOLOR=white TEXT=black LINK=blue VLINK=red

ALINK=green> Sets the background color, text color, link color, visited link

color, and active link color for the web page.

Images

To insert an image in your page you merely need to add the following:

239

Links

Text that is a web page link:

 link to Wordware Publishing

An image that is a web page link:

 <IMG SRC="some pic-

ture.gif"

Text that is an e-mail link:

 email me!

An image that is an e-mail link:

<IMG SRC=

"somepic.gif">

Lists

Unordered list:

 Item one

Item two

Ordered list:

<OL TYPE= I>

Marquee

<MARQUEE BGCOLOR = yellow ALIGN Center LOOP=infinite>

This is a scrolling marquee.

</MARQUEE>

240 � Appendix B

Tables

<TABLE BORDER =1>

<TR>

<TD> Row one cell 1

<TD> Row one cell 2

<TR>

<TD> Row two cell 1

<TD> Row two cell 2

</TABLE>

You can also set the background color of the table, a single row, or even a sin-

gle cell:

<TABLE BORDER=1 BGCOLOR=Blue>

<TR BGCOLOR=yellow>

<TD BGCOLOR=green>

Text Formatting Tags

Italics <I> this is italics </I>

Bold this is bold

Underline <U> this is underlined</U>

Setting font this is Arial font

 this is a line break

<P> new paragraph

Form Tags

<FORM> </FORM> Defines an HTML form.

<INPUT TYPE=text NAME="txttest" VALUE="Enter Text Here"> This

defines a text field named txttest with an initial value of Enter Text Here.

<INPUT TYPE=button NAME="Submit" VALUE="OK" > This defines a

button named Submit that has a caption of OK.

HTML Reference � 241

Appendix C

JavaScript Reference

abs Returns the absolute (unsigned) value of its argument. Abs is a method of

Math.

document.write(Math.abs(–5));

document.write(Math.abs(5))

These examples both return 5.

acos Returns the arc cosine (0 to pi radians) of its argument. The argument

must be a number between –1 and 1. If the value is outside this range, a zero

is returned. Method of Math. Also see asin, atan, cos, sin, tan.

alert Displays a JavaScript Alert dialog box with an OK button and a

user-defined message. See also METHODS confirm and prompt.

alinkColor The color of a link after the mouse button is depressed—but before

it’s released—and expressed as a hexadecimal RGB triplet or string literal.

appCodeName Returns a read-only string with the code name of the browser.

appName Returns a read-only string with the name of the browser. See also

appCodeName, appVersion.

appVersion Returns a string with the version information of the browser.

document.write(navigator.appVersion)

returns

6.0 (Win95)

This specifies Navigator 6.0 running on Windows 95 with an international

release. See also appName, appCodeName.

243

asin Returns the arc sine (between –pi/2 and pi/2 radians) of a number

between –1 and 1. If the number is outside this range, a zero is returned.

Method of Math. See also acos, atan, cos, sin, tan.

atan Returns the arc tangent (between –pi/2 and pi/2 radians) of a number

between –1 and 1. If the number is outside this range, a zero is returned.

Method of Math. See also acos, asin, cos, sin, tan.

back Recalls the previous URL from the history list. This method is the same

as history.go(–1). Method of the history object. See also forward and go.

bgColor The document background color expressed as a hexadecimal number

or string literal. Property of document. See also alinkColor, fgColor,linkColor,

vlinkColor.

document.bgColor = "yellow"

blur Removes focus from the specified form element. For example, the follow-

ing line removes focus from feedback:

sometext.blur()

assuming that feedback is defined as:

<input type="text" name="sometext">

See also focus and select.

bold Formats a string object in bold text by encasing it with HTML tags.

Method of string. See also italics, strike.

ceil Returns the smallest integer greater than, or equal to, its argument.

Method of Math. See also floor.

Math.ceil(3.05)

returns a 4.

charAt Returns the character from a string at the specified index. The first

character is at position zero and the last at length –1. Method of string.

var userName = "Chuck Easttom"

document.write(userName.charAt(4)

returns a “K.”

See also indexOf and lastIndexOf.

244 � Appendix C

checked A Boolean value (true or false) indicating whether a check box or radio

button is selected. The value is updated immediately when an item is checked.

Property of checkbox and radio.

clear Clears the contents of a window, regardless of how the window was filled.

Method of document. See also close, open, write, writeln.

close Closes the current window. As with all window commands, the window

object is assumed.

window.close()

close()

both close the current window.

See also clear, open, write, writeln.

confirm Displays a JavaScript confirmation dialog box with a message and but-

tons for OK and Cancel. Confirm returns true if the user selects OK and false

for Cancel.

See also alert and prompt.

cookie String value of a small piece of information stored in a client-side file.

The value stored in the cookie is found using substring charAt, IndexOf, and

lastIndexOf.

cos Returns the cosine of the argument. The angle must be in radians. Method

of Math. See also acos, asin, atan, sin, tan.

fgColor The color of foreground text represented as a hexadecimal RGB triplet

or a string literal. This value cannot be changed after a document is loaded.

Property of document.

See also alinkColor, bgColor, linkColor, vlinkColor.

floor Returns the integer less than or equal to its argument. Method of Math.

Math.floor(5.78)

returns a 5.

See also ceil.

focus Navigates to a specific form element and gives it focus.

JavaScript Reference � 245

fontcolor Formats the string object to a specific color expressed as a hexadeci-

mal RGB triplet or a string literal, similar to using .

Method of string.

fontsize Formats the string object to a specific font size: one of the seven

defined sizes using an integer through the <fontsize=size> tag.

forward Loads the next document on the URL history list. This method is the

same as history.go(1). Method of history. See also back and go.

getDate Returns the day of the month as an integer between 1 and 31. Method

of Date. See also setDate.

getDay Returns the day of the week as an integer from zero (Sunday) to six

(Saturday). Method of Date.

getHours Returns the hour of the day in 24-hour format, from zero (midnight)

to 23 (11 PM). Method of Date. See also setHours.

getMinutes Returns the minutes with an integer from zero to 59. Method of

Date. See also setMinutes.

getMonth Returns the month of the year as an integer between 0 (January) and

11 (December). Method of Date. See also setMonth.

getSeconds Returns the seconds in an integer from 0 to 59. Method of Date.

See also setSeconds.

getYear Returns the year of the date object. Method of Date. See also setYear.

go Loads a document specified in the history list by its URL or relative to the

current position on the list. If the URL is incomplete, the closest match is

used. Method of history. See also back and forward.

indexOf Returns the location of a specific character or string, starting the

search from a specific location. The first character of the string is specified as

zero and the last is the string’s length–1. Method of string. See also charAt

and lastIndexof.

italics Formats a string object into italics by encasing it an HTML <I> tag.

Method of string. See also bold, strike.

lastIndexOf Returns the index of a character or string in a string object by

looking backward from the end of the string or a user-specified index. Method

of string. See also charAt and indexOf.

246 � Appendix C

linkColor The hyperlink color displayed in the document, expressed as a hexa-

decimal RGB triplet or as a string literal. It works like the link attribute in the

HTML <body> tag. Property of document. See also alinkColor, bgColor,

fgColor, vlinkColor.

open For a document, opens a stream to collect the output of write or writeln

methods. If a document already exists in the target window, then the open

method clears it.

pow Returns a base raised to an exponent. Method of Math.

prompt Displays a prompt dialog box that accepts user input. If an initial value

is not specified for inputDefault, the dialog box displays the value <unde-

fined>. Method of window. See also alert and confirm.

referrer Returns a read-only URL of the document that called the current docu-

ment. It can be used to keep track of how users are linked to a page.

document.write("You came here from a page at " + document.referrer)

round Returns the value of a floating-point argument rounded to the next high-

est integer if the decimal portion is greater than, or equal to, .5, or the next

lowest integer is less than .5. Method of Math.

setDate Sets the day of the month. Method of Date. See also getDate.

setHours Sets the hour for the current time. Method of Date. See also

getHours.

setMinutes Sets the minutes for the current time. Method of Date. See also

getMinutes.

setMonth Sets the month with an integer from 0 (January) to 11 (December).

Method of Date. See also getMonth.

setSeconds Sets the seconds for the current time. Method of Date. See also

getSeconds.

setTime Sets the value of a date object. Method of Date. See also getTime.

setYear Sets the year in the current date. See also getYear.

sin Returns the sine of an argument. The argument is the size of an angle

expressed in radians, and the returned value is from –1 to 1. Method of Math.

See also acos, asin, atan, cos, tan.

JavaScript Reference � 247

sqrt Returns the square root of a positive numeric expression. If the argu-

ment’s value is negative, the returned value is zero.

tan Returns the tangent of an argument. The argument is the size of an angle

expressed in radians. Method of Math. See also acos, asin, atan, cos, sin.

toLowerCase Converts all characters in a string to lowercase. Method of string.

See also toUpperCase.

toUpperCase Converts all characters in a string to uppercase. Method of string.

See also toLowerCase.

vlinkColor Returns or sets the color of visited links.

write Writes one or more lines to a document window, and can include HTML

tags and JavaScript expressions, including numeric, string, and logical values.

The write method does not add a new line (
 or /n) character to the end of

the output. Method of document.

writeln Writes one or more lines to a document window followed by a new line

character.

248 � Appendix C

Appendix D

Common Errors

Obviously there are a lot of possible errors you could get in your code. My

goal in this appendix is to illustrate for you those errors that I find to be the

most common. Hopefully if you will begin checking for these errors, your

debugging process will be much quicker.

Error Example Solution

Spelling Var myage

Myag = 33

Always double-check your spelling

Missing Brackets <SCRIPT LANGUAGE = “JavaScript”>
Function squarenum()
{

answer = num * num

</SCRIPT>

Note: If you don’t close the bracket,
the browser will try to read the rest
of the text as part of your function.

Always make sure that any bracket
you open, you also close.

Closing Tags
WordWare publishing

Note: Since I omitted the , the
browser will attempt to execute the
rest of the text as part of the hypertext
reference.

Many tags need to be closed. Make
sure you close all tags that require
closing.

249

Index

251

A

<A HREF> tag, 4, 50
abs() method, 162
abstraction, 184
ActiveX, 209

controls, 209
DLLs, 209
plug-ins, 173
using to add clock to web page, 212-213
using to add slider bar to web page, 213-214
using with TCP/IP, 210-212

ActiveX components, using as plug-ins, 171-173
alert boxes, 28

creating, 33-34
using, 19

alert() function, 28
arithmetic methods, 162-164
arithmetic operators, 22
Array object, 218
arrays, 218-221

creating, 218, 220
initializing, 219

assignment operator, 21, 23

B

 tags, 3
background color,

changing, 59-62
setting in HTML document, 5
using cookie to save, 102-104

background image,
changing, 62-68
setting in HTML document, 5

banner ad, 53
example, 53-54

<BLINK> </BLINK> tags, 6
<BODY background> tag, 5
<BODY> </BODY> tags, 2
<BODY BGCOLOR> tag, 5
<BODY TEXT> tag, 6
bookstore project files,

banner.htm, 227

books.htm, 56-57, 232-233
completeinventory.htm, 132-134, 192-194, 230-232
compute.htm, 166-167, 233-234
index.htm, 223-224
inventory.htm, 85-86, 118-119, 227-229
inventory1.htm, 229
inventory2.htm, 229
inventory3.htm, 229-230
inventory4.htm, 230
main.htm, 41, 71-72, 93-95, 106-109, 224-227
tool.htm, 227

BORDER property, 7-8
browser,

choosing, 14
detecting version of, 189
retrieving information about, 191-192

browser version, detecting, 83
built-in objects, 181
button, adding to form, 137-138

C

calculator, creating, 158-159
cascading style sheets, 121
case sensitivity, 17
ceil() method, 162
CELLPADDING property, 7-8
CELLSPACING property, 7-8
charAt() method, 151
check boxes, 141

adding to form, 141-143
child objects, 75
class, 183
client-side form validation, 144
clock, adding to web page with ActiveX, 212-213
closenewwindow function, 82
COM, 209
combo box, see options
comments, 17
Component Object Model, see COM
confirm boxes, 28-29
confirm() function, 29
constructor functions, 185-186

252 � Index

conversion of numbers to strings, 154-155
cookie, 97

creating, 97-99
pre-expired, 99
setting expiration date of, 101-102
using to save background color, 102-104

cookie property, 100
cookieEndIndex, 101
cookieStartIndex, 100
cos() method, 164
current property, 76

D

data types, 20-21
date, working with in JavaScript, 89-90
Date object, 87, 88

methods, 90
decision making, adding to scripts, 30-31
decrement operator, 22
deleteCookie() function, 101
dialog boxes, 28
directory, viewing, 194-195
document object, 59, 76-77
Document Object Model, see DOM
DOM, 77
drive object, 189

properties, 189-190
drop-down menu, 124

creating, 124-125

E

e-mail address, placing in HTML document, 4
<EMBED> </EMBED> tags, 169-170, 176-178
empty string concatenation, 155
encapsulation, 184
ENCTYPE attribute, 145
equality test operator, 23
errors, 249
Euler’s constant, 160
evaluation, 24
event handlers

onMouseOut, 114
onMouseOver, 114
onReset, 145-146
onSubmit, 143-144

examples,
adding button to form, 137
adding check boxes to form, 141-142
adding options to form, 138-139
adding radio buttons to form, 140
adding scroll bars to page, 81
adding scrolling background, 68
banner ads, 53
blackjack game, 202-207

calculating day of week, 89
calculating length of object, 149-150
calculating time, 87-88
calling function from within another function, 26-27
changing background color, 59-60
changing background image, 62-63, 66
changing the web page, 78
closing window, 81-82
computing trigonometric methods of an angle,

164-165
creating a calculator, 158-159
creating a cookie, 97-98
creating alert and prompt boxes, 37-38
creating alert boxes, 33-34
creating drop-down menus, 124
creating expanding menus, 129-130
creating pop-up menus, 121-123
creating prompt boxes, 35
creating pull-down menus, 126-127
creating table in HTML document, 7-8
declaring functions, 25-26
detecting browser version, 83
determining day of week, 91
determining which plug-ins are installed, 174
displaying information in status bar, 111-112
HTML document, 4-5
HTML “Hello World,” 2
JavaScript “Hello World,” 18
moving forward and backward, 84-85
opening a window containing a picture, 80
placing text field on form, 135-136
pop-up images, 54
Press the Button game, 197-198
previewing images, 51-52
printing page, 192
resetting form, 145-146
retrieving browser information, 191-192
returning index of string, 151
returning substrings, 153-154
rolling dice, 200-201
rollover effect, 44
setting timeout, 92
slide show effect, 46-47
submitting form, 144
using ActiveX component as plug-in, 171-172
using ActiveX to add clock to web page, 212-213
using ActiveX to add slider bar to web page,

213-214
using ActiveX with TCP/IP, 210-211
using alert boxes, 19
using cookie to save background color, 102-103
using inline frames, 187
using LiveAudio, 178-179

Index � 253

using T-banner in status bar, 114-115
viewing current directory, 194-195
writing to a web page, 38-40

expanding menus, 129
creating, 129-132

expiredate object, 101, 104
expressions, 24
external scripts, 15

F

fields, 181
floor() method, 162-163
 tag, 6
 tags, 3
<FORM> </FORM> tags, 50-51, 135-136
form elements, 146-147
forms, 135-136

adding button to, 137-138
adding check boxes to, 141-143
adding options to, 138-139
adding radio buttons to, 140-141
canceling submission of, 144
placing text field on, 135-136
resetting, 145-146
submitting, 143-145

frames, inline, 187-188
function declarations, 25
function keyword, 25
functions, 25, 217-218

calling, 26
constructor, 185-186
recursive, 117

G

games, creating in JavaScript, 197-207
getCookie() function, 100-101
GetDrive() method, 189
getElementById function, 128
global variables, 21

H

<HEAD> </HEAD> tags, 2
history object, 76-77

using, 84-85
.htm extension, 1
HTML, 1

code, 2, 8-9
files, 13
form elements, 146-147
resources, 236
tag reference, 239-241
tags, 2

HTML document,
adding marquee to, 11
adding plug-ins to, 169-170

changing text color in, 6
creating, 4-5
creating lists in, 9-10
embedding JavaScript scripts in, 14
formatting text in, 2-3, 6
placing e-mail address in, 4
placing hyperlink in, 4
placing image in, 4
placing JavaScript code in, 15-16
placing scripts in, 8-9
setting background color in, 5
setting background image for, 5

.html extension, 1
HTML forms, see forms
<HTML> </HTML> tags, 2
HTTP, 105

cookie syntax, 105-106
header, 105
request, 105

hyperlink, placing in HTML document, 4
Hypertext Markup Language, see HTML
Hypertext Transfer Protocol, see HTTP

I

if statement, 30
<IFRAME> </IFRAME> tags, 187-188
Image object, 43
images,

placing in HTML document, 4
popping up, 54-56
previewing on web page, 51-53

 tag, 4
increment operator, 22
indexOf() method, 152-153
inheritance, 184
initialization, 21
inline frames, 187-188
internal scripts, 14-15

J

JavaScript, 1, 8-9
arrays in, 218-221
conventions, 16-18
creating games in, 197-207
data types, 20-21
expressions, 24
function declarations, 25
operators, 22-23
references, 243-248
resources, 235
statements, 23-24
using plug-ins in, 170-173
variables, 20-21

JavaScript code, placing in HTML document, 15-16

254 � Index

JavaScript functions, using button to trigger, 137-138
JavaScript scripts, embedding in HTML document, 14

L

LANGUAGE attribute, 14-15
lastIndexOf() method, 153
lastModified property, 76
length, calculating, 149-150
length property, 76, 149
 tag, 9
lists,

creating in HTML document, 9-10
ordered, 10-11
unordered, 9

LiveAudio, 175
using, 178-179

local variables, 21
location property, 76, 125
log() method, 163
logarithms, 160-161
logical AND, 47
logical OR, 47
loosely typed, 20

M

makepopup function, 123
marquee, adding to HTML document, 11
Math object, 159

methods, 161-164
mathematical constants, 159-161
mathematical operators, 157
max() method, 163
menus, 121

drop-down, 124
expanding, 129
pop-up, 121
pull-down, 125

methods, 182
object, 182-183

min() method, 163
mouse location, finding, 190
MoveNext() function, 47-48
MovePrevious() function, 47-48

N

navigator object, 65, 83
nested objects, 75
nested statements, 24
new keyword, 183
next property, 76-77
numbers, converting to strings, 154-155

O

object hierarchy, 75
object methods, 182-183

using, 183

<OBJECT> </OBJECT> tags, 210
object-oriented programming, 183-184
object properties, 181

using, 181-182
objects, 75, 181

building, 184-186
calculating length of, 149-150

objects
document, 76-77
history, 76-77
navigator, 83
window, 75-76, 80

 tags, 10
onMouseOut event handler, 114
onMouseOver event handler, 114
onReset event handler, 145-146
onSubmit event handler, 143-144
openWindow method, 80
operator, ternary, 128
operators, 22

in JavaScript, 22-23
mathematical, 157

options, 138
adding to form, 138-139

ordered lists, 10-11

P

<P> tag, 3
packages, 183
parameters, 25
parseInt() function, 29
password, masking, 191
pi, 161
plug-ins, 169

adding to HTML document, 169-170
determining which are installed, 174-175
using ActiveX components as, 171-173
using in JavaScript, 170-173

polymorphism, 184
pop-up images, 54

example, 54-56
pop-up menu, 121

creating, 121-123
pow() method, 163
pre-expired cookie, 99
previous property, 76-77
printing, 192
programming concepts, 217-218
prompt boxes, 29

creating, 35-38
prompt() method, 29
properties, 181

object, 181
pull-down menus, 125

Index � 255

creating, 126-129

Q

quotes, using in JavaScript, 17-18

R

radio buttons, 140
adding to form, 140-141

recursion, 117
recursive function, 117
referrer property, 76
rollover effect, 44

example, 44-46
round() method, 163

S

<SCRIPT> </SCRIPT> tags, 9, 14-15
scripts,

external, 15
internal, 14-15
placing in HTML document, 8-9

scroll bars, adding, 81
scrolling background, adding, 68-70
semicolon, using in JavaScript, 16
setCookie() function, 99-100
setTimeout() method, 92
setUp function, 123
Show() function, 123
showBanner function, 117
slide show effect, 46

example, 46-50
slider bar, adding to web page with ActiveX, 213-214
sound files, playing with LiveAudio, 175-178
sqrt() method, 164
square root, 161
SRC attribute, 15
src property, 43
startBanner function, 117
statements, 23, 217

JavaScript, 23-24
status bar, 111

displaying information in, 111-114
status property, 76
stopBanner function, 117
<STRIKE> </STRIKE> tags, 6
String object, 149

methods, 151-154
strings, 149

converting numbers to, 154-155
returning index of, 151-152

strongly typed, 20
<STYLE> </STYLE> tags, 123
subscript, 219

substring() method, 153-154
substrings, returning, 153-154
system information, retrieving, 189-190

T

<TABLE> </TABLE> tags, 7
table, creating in HTML document, 7-8
tags, 2

closing, 1, 3
T-banner, 114

using, 114-117
TCP/IP, using with ActiveX, 210-212
<TD> tag, 7
ternary operator, 128
text, formatting in HTML document, 2-3, 6
text color, changing in HTML document, 6
text editor, choosing, 13-14
text field, placing on form, 135-136
this keyword, 185
time, working with in JavaScript, 87
timeout, setting, 92-93
title property, 76
<TITLE> </TITLE> tags, 2
toggleMenu function, 128
<TR> tag, 7
trigonometric methods, 164

computing for an angle, 164-166
typeof operator, 29

U

 tags, 9
uniform resource locator, see URL
unordered lists, 9
URL, 4
URL property, 76
user interaction, providing for, 38-40
user-defined objects, 181

V

validation, 144
var keyword, 20, 217
variables, 20, 217

global, 21
JavaScript, 20-21
local, 21
restrictions when creating, 20-21

W

web page, changing, 78 see also HTML document
window,

closing, 81-82
opening, 80

window object, 75-76, 80
write method, 77

	Learn JavaScript
	Contents Summary
	Contents
	Acknowledgments
	Introduction
	Prerequisites
	How to Read This Book
	Programming Style
	Special Features
	The Code

	Chapter 1
	HTML Primer
	Images and Hyperlinks
	Colors and Backgrounds
	Tables
	Lists
	Marquee
	Summary

	Chapter 2
	JavaScript Primer
	Essential Tools
	Basic JavaScript Structure
	Your First Script
	Fundamental JavaScript Concepts
	Dialog Boxes
	if Statement
	Summary

	Chapter 3
	Alerts, Prompts, and User Feedback
	Alert Boxes
	Prompt Boxes
	Writing Back to the Web Page
	Antique Bookstore Project

	Chapter 4
	Image Effects
	The Image Object
	Rollover
	Slide Show
	Image Preview
	Banner Ads
	Image Pop-up
	Antique Bookstore Project
	Summary

	Chapter 5
	Background Effects
	Document Object
	Changing the Background Color
	Changing the Background Image
	More Background Effects
	Antique Bookstore Project
	Summary

	Chapter 6
	The Document Object Model
	The window Object Hierarchy
	The document Object
	The window Object
	The navigator Object
	Using the history Object
	Antique Bookstore Project
	Summary

	Chapter 7
	Working with Date and Time
	Time of Day
	Day of Week
	Setting Timeout
	Antique Bookstore Project
	Summary

	Chapter 8
	Working with Cookies
	Baking Your First Cookie
	Bake Another Cookie
	Antique Bookstore Project
	Summary

	Chapter 9
	Working with the Status Bar
	Image Data
	T-Banners
	Antique Bookstore Project
	Summary

	Chapter 10
	Creating Dynamic Menus
	Pop-Up Menus
	Drop-Down Menus
	Pull-Down Menus
	Expanding Menus
	Antique Bookstore Project
	Summary

	Chapter 11
	Working with Forms
	Form Basics
	Text Fields and Buttons
	Options
	Radio Buttons
	Check Boxes
	Event Handlers in Form Elements
	Synopsis of Form Elements
	Antique Bookstore Project
	Summary

	Chapter 12
	Strings in JavaScript
	Creating Strings
	String Methods
	Number-to-String Conversion
	Antique Bookstore Project
	Summary

	Chapter 13
	Math in JavaScript
	Mathematical Operators
	The Math Object
	Math Methods
	Antique Bookstore Project
	Summary

	Chapter 14
	Adding Plug-ins
	Putting a Plug-in into Your HTML
	Using Plug-ins in JavaScript
	What Plug-ins are Already Installed?
	LiveAudio
	Antique Bookstore Project
	Summary

	Chapter 15
	Objects in JavaScript
	Properties
	Methods
	Object-Oriented Concepts
	Building Your Own Objects
	Summary

	Chapter 16
	Tips and Tricks
	Inline Frames
	Browser Detection
	System Information
	Finding Mouse Location
	Password
	Browser Information
	Printing the Page
	Antique Bookstore Project
	View the Directory
	Summary

	Chapter 17
	JavaScript Games
	Press the Button
	Roll the Dice
	Viva Las Vegas
	Summary

	Chapter 18
	ActiveX and JavaScript
	Theoretical Background
	Using ActiveX for TCP/IP
	Ticking Clock
	Slider Text
	Summary

	Chapter 19
	Programming and JavaScript
	General Concepts
	Arrays
	Summary

	Chapter 20
	Antique Bookstore Project
	The Main Screen
	Inventory Pages
	Finishing the Pages
	Summary

	Appendix A
	Online Resources
	JavaScript Web Sites
	HTML Web Sites
	Organizational Web Sites
	Image Collections
	Certification Web Sites
	Employment Web Sites

	Appendix B
	HTML Reference
	Basic HTML Structure
	Body Formatting Tags
	Images
	Links
	Lists
	Marquee
	Tables
	Text Formatting Tags
	Form Tags

	Appendix C
	JavaScript Reference

	Appendix D
	Common Errors

	Index
	End of Book

