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ABSTRACT 

 
Choice of model and estimation method plays a vital role in dealing extremes, 

especially when the interest is in the extreme upper quantiles. Pearson Type-3 (PE3) 

probability distribution is frequently used due to its proficiency in effectively 

accommodating asymmetrical and non-normal data distributions. The location (μ), 

shape (σ), and scale (γ) parameters of PE3 play a crucial role in determining and 

controlling skewness, spread, and position of the distribution respectively. The 

objective of this study is to assess and contrast the impacts of three parameter 

estimation methods L-moments (LM), Maximum Likelihood Estimation (MLE), and 

Maximum Product of Spacing (MPS) for the Pearson Type-3 (PE3) distribution. 

Therefore, empirical analyses are conducted using real world data with diverse 

degrees of skewness and moderate sample size to compare the estimated parameters 

of each method against the true parameters. The data being considered is the series of 

annual maximum rainfall, obtained from 16 different meteorological observatories in 

zone D and E of Pakistan. This study underscores the importance of selecting an 

appropriate estimation method tailored to the data's characteristics, highlighting that 

no single method excels in all scenarios. In conclusion, MPS method is particularly 

effective for datasets exhibiting severe skewness and kurtosis, allowing it to handle 

extreme distributions well. In contrast, the LM method performs effectively with 

datasets that show mild skewness and kurtosis. However, the MLE method struggles 

when applied to skewed datasets, making it less suitable for such distributions. These 

insights are crucial for improving the reliability of extreme event modeling and 

providing a stronger foundation for accurate method selection.  

Keywords: Climate Extremes; Annual Maximum Rainfall; Maximum Product of 

Spacings method; Pearson Type-3 Distribution; Root Mean Square Error; Bias.
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1. INTRODUCTION 

 

 
         Climate extremes are becoming more frequent and intense due to climate 

change. A climate extreme refers to an exceptionally uncommon and severe weather 

event that significantly deviates from the typical or anticipated conditions in a specific 

geographical area. It is characterized by its rarity and intensity, as it represents an 

extreme departure from the average weather patterns. Climate extremes can manifest 

as extreme temperatures (such as heatwaves or cold snaps), intense storms (such as 

hurricanes or blizzards), heavy rainfall leading to floods, prolonged droughts, or other 

extraordinary weather phenomena. These events are notable for their severity and 

often require special attention in terms of preparation, adaptation, and response 

strategies. 

1.1 Extreme Values 

           Extreme values frequently appear within datasets of extreme events during rare 

and intense climatic phenomena. These values typically manifest as outliers within 

datasets, demonstrating a pronounced departure from the statistical norms of a given 

variable. Moreover, extreme values frequently display asymmetry in their distribution, 

with longer tails towards the higher end of the scale, indicating a higher likelihood of 

extreme values exceeding a certain threshold. Furthermore, extreme events data often 

reveal dependencies and correlations between different variables, highlighting the 

interconnected nature of climatic systems and the potential for cascading impacts 

across multiple sectors. Identifying the characteristics of extreme values is crucial for 

assessing the risks associated with future extreme events. 

            Understanding and describing the patterns, trends, and characteristics of a 

single variable using statistical techniques like descriptive statistics and historical 

climate data is fundamental in climate research and decision-making processes. 

Through this analysis, researchers can discern central tendencies, variations, and 

distributions of the variable over time. These insights help detect long-term trends like 

gradual temperature increases or shifts in precipitation patterns, offering valuable 

understanding of climate evolution. Statistical techniques also uncover temporal and 

spatial patterns, revealing seasonal fluctuations, periodic oscillations, and spatial 

gradients. Additionally, characterizing statistical properties enhances predictive 

capabilities, facilitating accurate climate modeling and scenario projections. 
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1.2 Distribution Fitting 

Probabilistic distribution fitting, particularly the application of the Pearson 

Type-3 distribution, plays a pivotal role in analyzing extreme events due to its ability 

to effectively model skewed data. In the realm of extreme events analysis, where 

occurrences often exhibit skewed distributions with tails extending towards higher 

values, the flexibility of the Pearson Type-3 distribution becomes highly 

advantageous. The Pearson Type-3 distribution's versatility in accommodating 

different degrees of skewness and its applicability across various fields, including 

hydrology, climatology, and engineering, further underscore its significance. 

Moreover, the availability of robust parameter estimation techniques enhances its 

practical utility, enabling reliable analysis even with limited data. As extreme events 

continue to pose significant challenges exacerbated by climate change, leveraging 

appropriate probabilistic models like the Pearson Type-3 distribution remains 

essential for understanding, predicting, and mitigating associated risks. 

1.3 Estimation Methods 

Parameter estimation methods play a critical role in fitting probability 

distributions to empirical data, particularly in hydrology, climatology, and other fields 

dealing with extreme events. This thesis seeks to evaluate following three widely used 

parameter estimation methods across a spectrum of settings and varying data 

conditions: 

a) L-moments (LM),  

b) Maximum Likelihood Estimation (MLE) 

c) Maximum Product of Spacings (MPS) 

 

The selection of a method hinges on various factors including data 

characteristics, analysis objectives, computational complexity, sample size 

requirements, and robustness considerations. Each method offers unique advantages 

and drawbacks, highlighting the importance of thoughtful selection based on specific 

modeling needs in extreme event analysis 

1.4 Empirical Validation  

Empirical analysis serves as a cornerstone in validating and refining the 

suitability of chosen probability distribution alongwith estimation methods by 

leveraging historical data on variable of interest, such as precipitation, to evaluate its 
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fit and predictive capacity. This typically involves statistical techniques such as 

goodness-of-fit tests, where the observed precipitation data is compared to the 

modeled distribution to determine how well they align. Additionally, measures of 

predictive performance are employed to evaluate how well the model predicts 

precipitation levels for unseen data. 

Analyzing various data types, including historical records of extreme weather 

events, observational data from weather stations, and climate model projections, is 

essential for understanding the complex interplay between geography, rainfall 

patterns, and extreme events in Pakistan. Utilizing suitable estimation methodologies, 

such as statistical analysis and climate modeling simulations, facilitates the optimal 

selection of models tailored to forthcoming precipitation data. Moreover, this 

multidisciplinary approach allows for the identification of vulnerable areas, the 

prediction of future trends in extreme weather, and the development of targeted 

adaptation strategies to mitigate the impacts of climate change on Pakistan's 

environment and society. 

1.5 Climate of Pakistan 

Pakistan, nestled between latitudes 24° and 37° N and longitudes 61° and 77° E, 

boasts a varied topography, from the towering peaks of the Himalayas, Karakoram, 

and Hindu Kush ranges in the north to the vast plains and coastal areas in the south. 

The nation covers a vast geographical expanse, totaling 803,943 square kilometers in 

area. Subjected to a myriad of climate extremes, the region experiences significant 

variability in rainfall patterns due to its diverse geography, which exposes it to a wide 

range of climatic influences.  

The country's monsoon climate is the dominant factor influencing its rainfall 

patterns. The southwest monsoon, originating from the Arabian Sea, brings heavy 

rainfall to the southern and southeastern parts of the country during the summer 

months (July to September). Coastal areas, such as Karachi, receive substantial 

rainfall during this period, contributing to their annual precipitation totals. 

In contrast, the northern and western regions of Pakistan, including the 

mountainous areas such as the Himalayas, Karakoram, and Hindu Kush ranges, 

experience comparatively lower rainfall during the monsoon season. These regions 

often rely on winter precipitation, primarily in the form of snowfall, for their water 

supply. 
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1.6 Study Area 

The intricate tapestry of Pakistan's climatic diversity unfolds across its varied 

landscapes. The climatic zones of the country have been delineated based on their 

diversity, with a total of five distinct zones identified in reference to existing research 

[1]. From this literature, two specific zones denoted as D and E, along with their 

corresponding latitudinal extents, were chosen for analysis, as depicted in Figure In 

this study, stations were carefully selected considering factors such as their latitude, 

elevation above sea level, length of data record, and data reliability to ensure a 

comprehensive and reliable synthesis of information.  

In addition to the existing stations, several more were incorporated into the 

designated zones for comprehensive analysis. These additional stations were selected 

based on similar criteria. This augmentation allowed for a more robust representation 

of climatic conditions across the selected zones, facilitating a thorough examination of 

rainfall trends and patterns. 
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Figure 1.1: A map showing all zones including zone D and E  

  with selected stations for study area. 

 

1.6.1 Zone D 

This is the most arid and sweltering zone of Pakistan, characterized by 

scorching temperatures and scant rainfall, encompasses vast expanses of land 

predominantly in the southwestern regions of the country. Jacobabad, Nawabshah, 

and Sukkur, temperatures ascended to 50.2°C (122.4°F) in May 2018 and 50°C in 

June 2019 [2]. Due to the considerable distance from the sea, temperatures persist at 

elevated levels, with infrequent but occasionally intense rainfall events leading to 

flooding. Stations in this zone include Sibbi, Jacobabad, Bahawalpur, Khanpur, 

Multan, Bahawalnagar and Barkhan. 

1.6.2 Zone E 

Zone E is a sizable region featuring numerous stations and coastal cities situated 

in proximity to the Arabian Sea. The region's flat topography and extensive network 

of rivers, including the Indus, make it susceptible to inundation during heavy rainfall 

or when river levels rise significantly. The stations identified within this zone are 

Hyderabad, Karachi, Nawabshah, Jewani, Badin, Chor, Pasni, Panjgur and Nokkundi. 

1.7 Problem Identification 

With ongoing climate change, there is increasing evidence that certain types of 

extreme events are becoming more frequent, intense, or prolonged in many regions of 

the world. Extreme precipitation events are a matter of worldwide apprehension 

because they have the capacity to trigger significant flooding, landslides, and other 

catastrophic natural occurrences. These events have been linked to climate change and 

are a focus of research worldwide. In Pakistan, modeling extreme events is 

challenging due to insufficient availability of long-term, site-specific data, hindering 

an accurate representation of extreme precipitation behaviors. Extreme values often 

deviate from the norm or display asymmetrical behavior, necessitating specialized 

probabilistic modeling methods to precisely depict them. Therefore, probabilistic 

modeling, through appropriate estimation methods and assessments, is essential for 

understanding and preparing for extreme events, aiding in Trend Analysis, Risk 

Assessment and Climate Impact improvements in the country. 

1.8 Aims and Objectives 

 To analyse the performance of different estimation methods (L-moments and 

maximum product of spacing) for modelling climate extremes. 
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 To evaluate the fit and predictive power of the chosen distribution and estimation 

methods through empirical analysis of precipitation patterns in selected zones of 

Pakistan. 

1.9 Relevance to National Needs 

Probabilistic models are crucial for assessing and managing risks associated with 

climate extremes. By combining probabilistic projections of extreme events with 

vulnerability assessments of exposed systems (e.g., infrastructure, ecosystems, human 

populations), decision-makers can prioritize adaptation measures, allocate resources, 

and develop resilience strategies to minimize the impacts of extreme events within 

Pakistan. 

Climate change is expected to have significant impacts on the frequency, intensity, 

and duration of extreme events in Pakistan. The research's findings on behavior of 

extreme events and their application to native datasets have the potential to inform 

future research and practice in a range of fields including risk management, climate 

modeling and disaster preparedness. As such, the research can be considered a 

scientific contribution that advances our knowledge and understanding of extreme 

value estimation and its application to national problems. 

1.10 Thesis Organization 

The thesis comprises 5 chapters and a References section. Chapter 1 provides a 

comprehensive overview of the study's background, objectives, and flow. Chapter 2 

outlines existing research and identifies gaps. Chapter 3 details the methodology 

employed, including Probability distribution fitting, Empirical Analysis, Parameter 

Estimation methods selection, visual representation, and predictive analysis. Chapter 4 

presents the results of various estimation methods and forecasts future extreme events. 

Chapter 5 offers a brief conclusion and suggests potential future research directions. 

The References section lists all cited works along with their publication details. 
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2. Literature Review 

 

2.1 Existing Literature 

 

This paper provides insights into a wide range of applications, including the 

analysis of precipitation and streamflow extremes, as well as the assessment of 

economic damage linked to these extreme events [3].  

Topics that are addressed include: trends in hydrologic extremes and statistical 

downscaling of hydrologic extremes. The authors specifically focus on 

methodological developments involving maximum likelihood estimation in the 

presence of covariates, combined with approaches like block maxima or peaks over 

threshold. 

                  Two examples were considered:  

I. The maximum of daily precipitation amount for the month of January at Chico, 

CA, USA, for 78 years is modeled with the covariate being the mean sea level 

pressure. the fitted GEV appears reasonably satisfactory for this example. 

II. When applying maximum likelihood estimation to fit the GEV distribution to 

annual peak flow data from the Salt River near Roosevelt, AZ, USA, for the 

years 1924-1999, it resulted in a very poor fit for the highest observations. 

Instead, a Generalized Pareto distribution, also fitted using maximum likelihood, 

provided a more satisfactory fit compared to the GEV distribution. 

The central theme of this review revolves around the efficiency of MPS 

estimators, especially in cases where sample sizes are small, offering a more reliable 

alternative to MLE [4]. Simulations were conducted to assess the benefit of using the 

MPS method compared to MLE for GEV and GPD, across various sample sizes and 

parameter choices. 

In this study, the MPS method was also used to analyze four real datasets: The 

annual oldest ages at death in Sweden from 1905 to 1958. The wave dataset contains 

the yearly maximum heights, in feet. 

Then, in the wind data, the yearly maximum wind speed in miles per hour is 

considered. The last example is the flood data which consists of the yearly maximum 

flow discharge, in cubic meters. 

The results demonstrate that MLE exhibits instability at small sample sizes, 

which aligns with the simulation results, while the MPS method maintains its 
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effectiveness. 

The objective of this study was to evaluate widely-used methods for estimating 

the parameters of the GEV distribution [5]. This assessment involved both simulated 

data and actual wind measurements gathered from four buoys situated in the Atlantic 

and Pacific Ocean regions. 

The analysis suggests that methods like MPS, EP, ordinary entropy, and ML are 

generally better at estimating GEV distribution parameters, with lower bias and error. 

Surprisingly, lesser-known methods like MPS and EP also perform well in describing 

extreme wind speed quantiles in real data. 

This study evaluates three parameter estimation methods for the Pearson Type-3 

(PE3) distribution: L-moments (LM), maximum likelihood estimation (MLE), and 

maximum product of spacing (MPS) [6]. The assessment involves simulation 

experiments and empirical analyses considering different sample characteristics. The 

study also assessed these methods using real data from four sites in KPK, Pakistan, 

measured in Annual Maximum river discharge AMRD (cubic feet per second).  

The findings suggest that LM is best for small samples with low skewness and 

kurtosis, MPS works well for highly skewed and kurtotic data with moderate sample 

size, while MLE is suitable for very large sample sizes with low shape characteristics. 

These results offer valuable guidance for fitting the PE3 distribution, particularly for 

extreme values. 

The paper explores two primary approaches for (maximum flood discharge) 

MFD estimation: deterministic models that rely on extreme storm events and 

probabilistic frequency analysis [7]. In this study, the authors employ the method of 

moments and L-moments (LMO) to determine parameters for six different probability 

distributions. They further evaluate the adequacy of these distributions through 

goodness-of-fit tests. Moreover, the diagnostic test is utilized to select the most 

appropriate distribution for MFD estimation. 

The findings of the study underscore the superior performance of the Extreme 

Value Type-1 distribution, particularly when using L-moments, among the six 

distributions considered for estimating MFD. 

The study conducted regional flood frequency analysis (RFFA) to estimate peak 

discharges at the regional level over Kerala State, India, along with at-site flood 

frequency analysis [8]. The researchers used annual peak discharges from 43 gauging 

stations with data lengths ranging from 14 to 47 years. 

To identify the best-fit distribution for both at-site and regional analyses, five 
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distributions were considered: Generalized Extreme Value (GEV), Generalized Pareto 

Distribution (GPA), Generalized Logistic (GLO), Generalized Normal (LN3), and 

Pearson Type III (PE3). Chi-square test, ranking method using statistical indicators, 

and L-moment ratio diagram were employed for at-site analysis. 

The results showed that GPA was the best fit for 27 stations, GLO for 14, LN3 

for 1, and GEV for 2 stations. After discordancy and heterogeneity tests, five 

homogeneous regions were identified for RFFA. The best-fit distributions for each 

zone were used to derive flood growth curves incorporating catchment characteristics. 

Interestingly, the best-fit distribution for a gauging site in at-site analysis differed 

from the RFFA results. The RFFA growth curves provide flood magnitudes for 

various return periods, which can be used to estimate flood magnitude and frequency 

at ungauged sites in each region of Kerala State. 

This study aims to compare the probabilities of extreme still water levels 

estimated using the block maxima method and the peaks over threshold method [9]. 

The study uses a wide range of strategies to create extreme value datasets and 

considers different model setups. The focus is on testing the influence of detrending 

techniques, sample sizes, and record lengths on the estimates of extreme value 

statistics. 

The study finds that using different techniques can significantly bias the results 

from extreme value statistics. Therefore, it recommends using a 1-year moving 

average of high waters (or hourly records if available) to correct for seasonal and 

long-term sea level changes. Additionally, the study finds that the peaks over 

threshold method yields more reliable and stable estimates of probabilities of extreme 

still water levels than the block maxima method. The study also recommends using 

the 99.7th percentile water level as the threshold for the peaks over threshold method. 

This study describes methods to calculate extreme wind speeds, focusing on 

both classical statistical approaches and newer techniques designed for short data sets 

[10]. Traditional methods include the Generalized Extreme Value (GEV) distribution 

and the Generalized Pareto Distribution (GPD). The GEV is often used with annual 

maxima, fitting the highest wind speeds observed each year to predict extremes, while 

the GPD is applied in peak-over-threshold (POT) approaches, modeling exceedances 

over a set threshold. These classical methods rely on robust statistical foundations and 

techniques like maximum likelihood estimation for parameter calculation. Ensuring 

data independence and minimizing standard errors are crucial to enhancing the 

reliability of these methods. 
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In scenarios with short data sets, which are common in extreme wind speed 

studies, this study describes alternative techniques to address the limitations. 

Simulation modeling, such as Monte Carlo simulations, is used to extend limited data 

sets, thereby improving accuracy. Additionally, parametric methods based on the 

parent distribution, including Bayesian inference, offer effective solutions by 

estimating underlying distribution parameters and updating estimates with new data. 

These approaches are tailored for short-term data and help maintain prediction 

accuracy despite limited observations, meeting the needs of users requiring precise 

extreme wind speed calculations. 

The study elucidates the significance of L-moments as a powerful statistical tool 

for analyzing probability distributions and empirical data samples [11]. Through their 

definition as expectations of linear combinations of order statistics, L-moments offer a 

robust framework that encompasses various statistical procedures, including 

summarization, parameter estimation, and hypothesis testing. By leveraging 

established techniques like order statistics and Gini's mean difference statistic, L-

moments introduce innovative measures for skewness, kurtosis, and parameter 

estimation for multiple distributions. 

One notable advantage highlighted in the study is the robustness of L-moments 

to sampling variability, particularly their resilience against outliers in data. This 

robustness makes L-moments more reliable for making inferences from small sample 

sizes about underlying probability distributions. Furthermore, the study suggests that 

L-moments often yield more efficient parameter estimates compared to maximum 

likelihood estimates, further enhancing their practical utility in statistical analysis. 

In summary, the study underscores the versatility and efficiency of L-moments 

in statistical analysis, emphasizing their superiority over conventional moments in 

handling data variability and facilitating more accurate inferences from limited data 

samples. These findings establish L-moments as a valuable tool for researchers and 

practitioners across diverse fields, enabling more robust and reliable statistical 

analyses. 

This study employs the TL-moments approach to analyze annual maximum 

streamflow data from seven stations in Johor, Malaysia, aiming to identify the best-

fitting probability distributions [12]. TL-moments, with varying trimming values, are 

utilized to estimate parameters for selected distributions, specifically the Three-

parameter lognormal (LN3) and Pearson Type III (P3) distributions. The primary 

objective is to derive TL-moments (t 1,0), t 1 = 1,2,3,4 methods tailored for LN3 and 
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P3 distributions. Through Monte Carlo simulation and analysis of streamflow data, 

the performance of TL-moments (t 1,0), t 1 = 1,2,3,4 is compared against L-moments, 

with the absolute error serving as a metric to evaluate the influence of TL-moments 

methods on estimated probability distribution functions. 

The study reveals that TL-moments with four trimmed smallest values from the 

conceptual sample (TL-moments [4, 0]) of LN3 distribution exhibit superior 

performance across most stations in Johor, Malaysia, for modeling annual maximum 

streamflow series. This finding suggests the efficacy of TL-moments in capturing the 

underlying characteristics of the data and selecting appropriate probability 

distributions. By offering a comparative analysis with L-moments and utilizing Monte 

Carlo simulation, the study provides valuable insights into the application of TL-

moments in hydrological analysis, highlighting their potential for improving the 

accuracy of probability distribution estimation in water resource management and 

related fields. 

This paper addresses the challenges associated with fitting the Pearson Type-3 

(P3) distribution to untransformed data, a task often hindered by traditional methods 

[13]. The study introduces an adaptive estimation procedure for the P3 family, 

leveraging fractional moments of exponentially transformed data and the mean of the 

original dataset. This approach offers simplicity in implementation, particularly 

advantageous for small sample sizes, and remains valid across the entire parameter 

space. The paper also provides explicit formulae for the variances and covariances of 

parameter estimators, as well as for the variance of the T-year event, enhancing the 

understanding and applicability of the proposed method. 

Furthermore, the study conducts a comparative analysis by pitting two variants 

of the new procedure against two versions of the method of moments and a version of 

the method of conditional moments through Monte Carlo simulation. Results from 

samples generated from P3 populations indicate that one variant of the new procedure 

outperforms others in estimating 100-year flood events, while the other variant excels 

in estimating median and 10-year low-flow events. Remarkably, the robust 

performance of these variants extends to samples generated from distributions other 

than P3, underscoring their versatility and reliability in various scenarios. 

Moreover, the paper introduces and investigates a modification of the procedure 

tailored for cases where a prior assumption of positive skewness is adopted, further 

demonstrating the adaptability and effectiveness of the proposed approach. Overall, 

this study contributes valuable insights into improving the estimation of extreme 
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hydrological events, offering a practical and robust solution for fitting the P3 

distribution to untransformed data in statistical hydrology. 

This study addresses the challenges encountered in curve-fitting methods due to 

discrepancies in accuracy and positions of experience points, particularly in 

hydrological sequence data with limited sample sizes [14]. Recognizing the need to 

assign varying importance to data points and mitigate sampling errors in parameter 

estimation, the study introduces a weighted approach within the optimum curve-fitting 

method. Through an analysis of existing weighted methods, the study focuses on the 

Fuzzy Weighted Optimum Curve-fitting Method (FWOCM), which overcomes 

limitations such as nominal length and membership degree function determination 

without relying on large samples. To enhance this method, a new membership degree 

function is derived, assuming the hydrologic sequence is sufficiently large. 

Additionally, the study employs Monte Carlo statistical tests to extend the nomograph 

across the entire frequency range, aiming to evaluate the effectiveness of the 

improved FWOCMs using both ideal and real data. 

By introducing enhancements such as the extension of the nomograph and the 

derivation of a new membership degree function, the study aims to mitigate the 

impact of shorter hydrologic sequences on curve-fitting accuracy. Through 

comparative analysis using selected benchmark methods and improved percentage 

methods, the study evaluates the performance of the enhanced FWOCMs, 

demonstrating promising results that suggest their suitability for engineering 

applications. This research contributes to the advancement of curve-fitting 

methodologies in hydrology by addressing inherent challenges and offering practical 

solutions to improve accuracy and reliability in curve-fitting procedures, particularly 

in scenarios with limited sample sizes and varying data point importance. 

This paper represents a significant advancement in the Bayesian Forecasting 

System (BFS) for hydrological forecasts by addressing the limitations of traditional 

distribution assumptions in the Hydrological Forecast Processor (HUP) [15]. 

Traditionally, HUP assumes runoff distributions follow Logweibull or Normal 

distributions, which may not be accurate across different regions. To improve 

accuracy, this study introduces Nonparametric Kernel Density Estimation, Pearson 

III, and Empirical distributions as prior distributions to mitigate parameter 

uncertainty. 

By comparing these five distributions using data from 52 floods in the ZheXi 

basin (2004-2014), the study demonstrates that while Logweibull and Empirical 
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Bayesian models show the best average performance, the new distributions also 

perform well regarding interval width and probability forecasting. These findings 

suggest that incorporating a broader range of distribution types can enhance the 

robustness of BFS, highlighting the need for further exploration of diverse 

distributions to improve hydrological forecast reliability. 

This paper illustrates the results of a regional frequency analysis of Annual 

Maximum Monthly Rainfall Totals (AMMRT) at seven sites in Sindh, Pakistan [16]. 

The analysis includes run tests, lag-1 correlation coefficients, and Mann-Whitney 

tests, all of which indicate that the data series are random, uncorrelated, and 

identically distributed. Discordancy measures show no discordant sites among the 

seven, and the L-moments based heterogeneity measure (H) confirms the region's 

homogeneity. 

The study identifies three suitable regional distributions—GNO, PE3, and 

GPA—based on L-moment ratio diagrams and Z DIST statistics. To estimate rainfall 

quantiles at ungauged sites, a linear regression model is developed using the mean 

AMMRT of gauged sites and their respective elevations. This model satisfies the 

assumptions of Classical Linear Regression Modeling (CLRM) as verified by formal 

tests. 

Consequently, the estimates from this study are useful for calculating rainfall 

quantiles for various return periods. These findings have practical applications in 

flood disaster prevention, agricultural water management, and the improvement 

projects for rehabilitating and modernizing major barrages of the Indus River in Sindh 

Province. 

This paper presents an analysis of the Upper Vistula River basin, dividing it into 

pooling groups with similar dimensionless frequency distributions of annual 

maximum river discharge [17]. Using cluster analysis and the Hosking and Wallis 

(HW) L-moment-based method, the study divides 52 mid-sized catchments into 

disjoint clusters based on morphometric, land use, and rainfall variables, testing the 

homogeneity within these clusters. The study identified three and four pooling groups 

alternatively. 

Two methods were employed to identify the regional distribution function: the 

HW method and the Kjeldsen and Prosdocimi method, which uses a bivariate 

extension of the HW measure. Flood quantile estimates were then calculated using the 

index flood method. The study compared ordinary least squares (OLS) and 

generalized least squares (GLS) regression techniques to relate the index flood to 
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catchment characteristics, finding that GLS improved predictive performance in the 

southern part of the Upper Vistula River basin. 

The study's results are recommended for estimating flood quantiles at ungauged 

sites, useful for flood risk mapping, and beneficial in engineering hydrology for 

designing flood protection structures. 

2.2 Research Gap 

Despite significant advancements in probabilistic modeling and hydrological 

forecasting notable gaps remain, particularly in the framework of Pakistan. While 

various studies have explored Bayesian forecasting systems and Regional frequency 

analysis in various contexts globally, there is a scarcity of comparative model 

analyses specifically tailored to Pakistan's diverse hydrological regimes. Existing 

studies often focus on specific regions or limited datasets, lacking comprehensive 

comparisons across different modeling approaches that could provide insights into the 

best practices for forecasting. 

There is a clear opportunity for valuable research contributions in addressing 

these gaps. The majority of existing studies tend to rely on more conventional 

distributions such as Logweibull or Normal distributions, potentially overlooking the 

benefits that Pearson Type-3 distribution might offer in capturing the characteristics 

of local rainfall and runoff patterns more accurately. Comparative analysis of 

parameter estimation methods for Pearson Type-3 distribution further elucidate the 

strengths and weaknesses of each approach in capturing the complexities of local 

hydrological processes. Additionally, investigating the applicability and advantages of 

this distribution in hydrological modeling could expand the toolkit available to 

researchers and practitioners in the region, thereby enhancing the accuracy and 

reliability of flood risk assessments and management strategies. 
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3. METHODOLOGY 

 

This chapter presents the methodological framework employed to analyze 

precipitation patterns in two major zones of Pakistan. The methodology integrates 

various statistical and empirical techniques to ensure a comprehensive examination of 

historical precipitation data. By outlining the data preliminary analyses, and 

sophisticated modeling approaches, this chapter aims to provide a clear and structured 

guide to understanding the complex dynamics of rainfall distribution and its 

implications for future flood risk assessments. 

3.1 Research Design 

The research design comprises a multi-step approach aimed at accurately 

modeling and analyzing precipitation data. Initially, historical precipitation data is 

gathered and curated from the Pakistan Meteorological Department (PMD). This data 

undergoes a preliminary screening to ensure quality and reliability. The analysis 

proceeds with fitting the Pearson Type-3 (PE-3) probability distribution to the data, 

followed by parameter estimation using various statistical methods. The performance 

and accuracy of these models are evaluated through a series of diagnostic tests, 

ensuring robust and reliable findings. 

 

Figure 3.1: Flow of Work                          
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3.2 Data under Consideration 

To describe characteristics of the data, demographics including age and city of 

residence of the study population are analyzed. Prevalence of psychosocial dysfunction, 

attention problems, internalizing problems, and externalizing problems according to the 

PSC are also determined using the scoring instructions of Massachusetts General 

Hospital. Measures of central tendency including mean and mode are calculated for age 

of the subjects, total score of the PSC, and scores of the three subscales of the PSC for 

each age group. 

3.3 Preliminary Analysis of Data 

       Extreme rainfall events are identified and analyzed to distinguish genuine 

extremes from potential errors. This involves checking for missing values, outliers, 

and ensuring consistency in formatting. This step ensures the dataset's integrity and 

the accuracy of subsequent analyses. 

The dataset comprises geographical coordinates (latitude and longitude) of 

meteorological stations where precipitation data were recorded. These coordinates are 

essential for spatial analysis and mapping the distribution of extreme rainfall events 

across the study area. 

3.3.1 Descriptive Analysis 

 Descriptive statistics provide concise summaries of datasets, helping to 

understand the overall characteristics, central tendency, and variability of the data. 

Measures such as minimum and maximum values, mean, standard deviation, 

skewness and kurtosis offer a snapshot of the dataset's distribution and spread. 

3.3.2 Exploratory Data Analysis 

  Exploratory Data Analysis (EDA) involves examining datasets to summarize 

their main characteristics, often using visual methods. When dealing with extremes, 

one of the primary tools for EDA is the time series plot. 

Time series plots are graphical representations of data points in a time-ordered 

sequence. They are essential for understanding the temporal dynamics of the data and 

identifying patterns, trends, and anomalies. 
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3.4 Probability Distribution Fitting 

Probability distribution fitting is a fundamental tool in climate science for 

understanding and preparing for extreme weather events, such as heavy rainfall, 

heatwaves, and strong winds. These extremes often follow non-normal, skewed 

distributions, necessitating specialized approaches to accurately represent their 

behavior and impacts. By selecting appropriate distributions and estimation methods, 

statistical properties of these events can be better characterized, aiding in trend 

analysis and climate modeling. 

3.4.1 Pearson Type-3  

 

The Pearson Type-3 distribution, with its three parameters delineating shape, 

scale, and location, stands as a cornerstone in statistical modeling, bridging theoretical 

elegance with empirical application. Its versatility in accommodating skewed and 

heavy-tailed distributions makes it indispensable in disciplines where accurate 

representation of data variability is paramount. 

 

          Named after Karl Pearson 1895 [18], this distribution is part of the Pearson 

system of distributions. Pearson developed this system to model skewed distributions 

more effectively than the normal distribution, which assumes symmetry. The Pearson 

system classifies distributions based on their skewness and kurtosis, offering a family 

of curves that includes the normal, beta, and gamma distributions as special cases. 

 

           In the realm of statistical literature, the Type III distribution is regarded as a 

member of the gamma family, specifically the three-parameter gamma family (when 

μ≠0), where the shape parameter governs the skewness of the distribution. This 

association highlights its capability to describe a wide range of data distributions with 

differing skewness characteristics. When the location parameter of the PE3 

distribution is set to zero (i.e: μ=0), it corresponds to what is termed as the two-

parameter gamma distribution, as discussed by Johnson et al. (1995) [19]. Chow, V.T. 

(1954) applied the Pearson Type-3 distribution to flood frequency analysis, 

establishing its importance in hydrological studies [20]. Johnson, N.L., Kotz, S. 

(1970) provides an in-depth exploration of continuous univariate distributions, 

including the Pearson Type-3 distribution, detailing their properties, applications, and 

methods of parameter estimation [21]. Bobée, B. and Ashkar, F. (1991) discussed the 

gamma distribution and its applications in hydrology, equating it to the Pearson Type 
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III distribution [22]. 

 

           Pearson Type-3 distribution is characterized by three parameters: location 

(μ\mu), scale (σ\sigma), and shape (γ\gamma), which collectively define its central 

tendency, spread, and skewness. It can be expressed in terms of its probability density 

function (PDF) as: 

𝑓(𝑥;  𝛾, 𝜎, 𝜇) =  
1

𝜎𝜏(𝛾)
(

𝑥 − 𝜇

𝜎
)

𝛾−1

exp (− (
𝑥 − 𝜇

𝜎
)) ,        𝑥 ≥ 𝜇 

where:  

 

 x is the random variable representing the observation. 

 𝜇 is the location parameter, shifting the distribution along the x-axis. It can be 

any real number. 

 𝜎 is the scale parameter, determining the spread or variability of the 

distribution. It must be positive (𝜎 > 0). 

 𝛾 is the shape parameter, influencing the skewness of the distribution. 

 𝜏(𝛾) denotes the gamma function. 

 

3.4.2 Characteristics and Parameters 

 

1- Location Parameter (μ): The location parameter shifts the distribution along the 

x-axis. It represents the mean of the distribution and determines its position 

relative to the origin. 

2- Scale Parameter (σ): The scale parameter determines the spread or variability of 

the distribution. Larger values of σ indicate greater variability in the data. 

3- Shape Parameter (γ): This parameter dictates the skewness of the distribution. 

For γ > 0, the distribution is right-skewed (positively skewed), while γ < 0 

indicates left-skewed (negatively skewed) distributions. A special case occurs 

when γ = 0, where the distribution simplifies to a normal distribution. 

   Precipitation extremes often exhibit skewed distributions due to the rare 

occurrence of very high values. The Pearson Type-3 distribution is well-suited for 

modeling these extremes because of its flexibility in handling skewed data. It can 

accurately represent the tail behavior of precipitation events, which is critical for risk 

assessment and management in hydrology. 
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3.5 Parameter Estimation Methods 

3.5.1 L-Moments Method 

 

The L-moments method, pioneered by J.R.M. Hosking in the 1980s [23], 

represents an advancement beyond traditional moments by offering robust estimators 

for distribution parameters. Specifically designed to handle skewed and heavy-tailed 

distributions, L-moments mitigate the sensitivity to outliers and departures from 

normality that can affect conventional moments. L-Moments, analogous to moments 

of a distribution, leverage weighted averages from order statistics rather than relying 

solely on raw data moments. Their versatility and interpretability make them a 

valuable tool for modern statistical analysis and modeling. 

 First L-Moment (λ1):  

          The first L-moment represents the mean or the location parameter of the 

distribution. It is simply the average of data points. 

 

λ1 =
1

n
∑ Xi

n

i=1

  

 

 Second L-Moment (λ2) 

The second L-moment represents the dispersion or scale of the distribution. It is 

related to the spread of the data and is comparable to the standard deviation in 

traditional moments. 

𝜆2 =
1

2
(

1

𝑛
∑(𝑋𝑖 − �̅�)2

𝑛

𝑖=1

) 

 

 Third L-Moment (λ3) 

The third L-moment measures the skewness of the distribution. It captures the 

asymmetry in the data and indicates whether the distribution is skewed to the left or 

right. 

𝜆3 =
1

3
(

1

𝑛
∑(𝑋𝑖 − �̅�)3

𝑛

𝑖=1

) −
1

2
𝜆2  

 

 Fourth L-Moment (λ4) 

The fourth L-moment measures the kurtosis of the distribution. It provides 

information about the peakedness or flatness of the distribution compared to a normal 

(i) 

(ii) 

(iii) 
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distribution. 

𝜆4 =
1

4
(

1

𝑛
∑(𝑋𝑖 − �̅�)4

𝑛

𝑖=1

) − 𝜆3 

 

         For all (i), (ii), (iii) and (iv): 

 𝑋𝑖 are the observations. 

 �̅� is the sample mean.  

 𝑛 is the sample size. 

 

 L-moment Ratios: 

o L-skewness (τ₃): 

 

                                           τ₃ = 
𝜆3

𝜆4
 

o L-kurtosis (τ₄):             

                                       τ₄ = 
𝜆4

𝜆2
  

  Sample L-moments along with L-moment ratios are required to calculate 

location, scale and shape parameters for PE3. 

   In summary, while a distribution can be both skewed and heavy-tailed, L-

moments describe different aspects of its shape and behavior. Skewness relates to 

symmetry around the mean, while heavy-tailedness pertains to the behavior of the 

distribution's tails and the likelihood of extreme values. Moreover, L-moments are 

advantageous for Pearson Type-3 distribution due to their robustness against outliers 

and their ability to describe shape and tail behavior of skewed distributions. 

3.5.2 Maximum Likelihood Estimation Method 

 

  Maximum Likelihood Estimation (MLE) is a widely used statistical method for 

parameter estimation. It aims to find the parameters of a statistical model that 

maximize the likelihood function, which measures how likely the observed data are 

given the model parameters. The likelihood function represents the probability of 

observing the given sample data as a function of the distribution parameters. It has 

become a cornerstone of statistical inference due to its asymptotic properties and 

computational feasibility. 

The MLE method was developed by the British statistician Ronald A. Fisher in 

the early 20th century. Fisher introduced the concept of likelihood and the method of 

(iv) 
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maximum likelihood in a series of papers starting from 1912 and more formally in 

1922 [24]. This method has become one of the most widely used techniques for 

parameter estimation due to its desirable properties, such as consistency, efficiency, 

and asymptotic normality under certain conditions. 

For the Pearson Type-3 distribution: 

 

                 �̂�𝑀𝐿𝐸  , �̂�𝑀𝐿𝐸  , 𝛾𝑀𝐿𝐸 = arg 𝑚𝑎𝑥𝜇,𝜎,𝛾  [∏ 𝑓(𝑋𝑖
𝑛
𝑖=1 ; 𝛾, 𝜎, 𝜇)] 

 

       where:  

   𝑓(𝑋𝑖; 𝛾, 𝜎, 𝜇) is the probability density function (pdf) of PE-3 distribution. 

3.5.3 Maximum Product of Spacings Method 

 

 Introduced by Cheng and Amin and independently by Ranneby [25], the 

Maximum Product of Spacings (MPS) method has gained recognition as a robust 

technique for estimating shape parameter of extreme value distributions. MPS method 

involves maximizing the product of spacings between successive order statistics. This 

approach is based on the idea that the distribution's parameters can be estimated by 

ensuring that the gaps (spacings) between ordered data points match those expected 

under hypothesized distribution. 

MPS is advantageous in precipitation extremes due to its robustness against 

outliers and model misspecification. It is particularly useful when data quality is 

variable or when the distributional assumptions of traditional methods may not hold 

perfectly such as distributions that exhibit heavy tails or contain outliers. 

For the Pearson Type-3 distribution: 

                                    𝛾𝑀𝑃𝑆 = arg 𝑚𝑎𝑥𝛾 [∏ 𝑓(𝑋𝑖
𝑛
𝑖=1 ; 𝛾, 𝜎, 𝜇)]

1

𝑛 

 

where: 

  𝑓(𝑋𝑖; 𝛾, 𝜎, 𝜇) is the probability density function (pdf) of PE-3 distribution. 
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3.6  Assessment Analysis 

RMSE and bias play crucial roles in evaluating the accuracy, performance, and 

reliability of parameter estimation methods in statistical analysis. They provide 

quantitative insights into how well these methods perform in capturing the true 

characteristics of the data-generating process or underlying population parameters. 

These metrics together serve as diagnostic tools to identify potential shortcomings or 

strengths in estimation methods. 

3.6.1 Root Mean Square Error (RMSE) 

       RMSE measures the average magnitude of the differences between estimated 

values and true values. It provides a measure of the overall accuracy or precision of 

the estimation method.  

 

        RMSE is calculated as the square root of the average of the squared differences 

between the estimated and true values: 

                                         𝑅 = √
1

N
∑ (θ̂i − θ)

2N

i=1
                               (i) 

3.6.2 Bias 

 

Bias measures the systematic error in the estimation of a parameter. It indicates 

whether the estimation method tends to consistently overestimate or underestimate the 

true parameter value. 

          Bias is calculated as the difference between the expected value of the estimated 

parameter and its true value: 

 

                                         B =
1

N
∑ (θ̂i − θ)

N

i=1
                                   (ii) 

 

        For (i) and (ii): 

 �̂�𝒊 is the estimated parameter for the i-th sample, 

 𝜽 is the true (population) value of the parameter, 

 N is the number of samples. 
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3.7  Comparative Framework for Estimation Approaches (PT) 

A preference table (PT) is generated to determine the most suitable parameter 

estimation method based on tail behavior and skewness levels. This evaluation is 

crucial as it helps identify which method effectively captures the characteristics of the 

data distribution. The table highlights how skewness and kurtosis levels influence the 

RMSE (Root Mean Squared Error) and bias values of each estimation method. Lower 

RMSE values indicate greater precision in parameter estimation, while bias measures 

systematic errors in estimation. By comparing these metrics across different methods, 

one can discern which approach best aligns with the distributional properties of the 

data, ensuring more accurate and reliable statistical inference. 

3.8 Quantile Estimation  

. Estimating flood quantiles using the quantile function of the Pearson Type-3 

(PE3) distribution involves using statistical methods to fit the PE3 distribution to 

historical flood data. Once the distribution is fitted and its parameters (location, scale, 

and shape) are estimated, the quantile function of the PE3 distribution is utilized. This 

function allows for the direct calculation of flood quantiles corresponding to specific 

return period, such as 100-year event. These quantiles represent the flood magnitudes 

that have a given probability of being exceeded in any given year over the next 100 

years. The process relies on the assumption that the historical data adequately 

represents future flood behavior under similar climatic and environmental conditions, 

ensuring that the estimated quantiles provide meaningful insights for risk assessment 

and planning purposes in hydrological studies. 

3.9 Results Interpretation  

 The findings are analyzed at each level. The results from tables, calculated 

using Bias and RMSE, are interpreted to determine the most suitable parameter 

estimation method for each site and each parameter. Goodness-of-fit tests identify the 

best fitting method of parameter estimation. The estimated quantile results offer 

insights into potential future flood occurrences. 

 

 
 



24  

4. RESULTS AND DISCUSSIONS 

 

 
In this chapter, the results generated by projected methodology are detailed and 

analyzed in relation to comparable studies. The chapter also underscores the study's 

strengths and weaknesses, providing suggestions for future research directions.. 

4.1  Data Overview 

          Pakistan is divided into five distinct zones, labeled A through E, each representing 

distinct geographical and climatic characteristics. The study area comprises 16 

meteorological stations distributed across two main zones of Pakistan: Zone D and Zone 

E. All the concerned stations are located between Longitude 61.74573°E to 75.63372°E 

and Latitude 24.65572°N to 35.974986°N. 

           The dataset utilized in this study is Annual Maximum Rainfall Series (AMRS), 

which includes records of extreme rainfall events. This data has been meticulously 

gathered by the Pakistan Meteorological Department (PMD). The study covers a 

substantial time frame of 36 years, from 1980 to 2015, providing a robust dataset with 36 

annual observations. 

            Table 4.1 and 4.2 detailing the meteorological stations, along with their 

respective longitude and latitude coordinates, are provided to give context to the 

locations of these stations within the study area. This information is essential for 

understanding the spatial distribution and regional variations in extreme rainfall events 

across studied zones. 

Table 4.1: Geographical Coordinates of Seven Stations in Zone D 

 

 

 

 

 

 

 

 

 

 

 

Sr.no Stations Longitude Latitude 

1 MULTAN 71.492157° 30.181459° 

2 KHANPUR 70.6569° 28.64739° 

3 JACOBABAD 68.4376° 28.28187° 

4 SIBBI 67.87726° 29.54299° 

5 BAHAWALPUR 71.67068° 29.41806° 

6 BAHAWALNAGAR 73.25884° 29.99918° 

7 BARKHAN 69.6994° 29.98482° 



25  

Table 4.2: Geographical Coordinates of Nine Stations in Zone E 

 

Sr.no Stations Longitude Latitude 

1 JIWANI 61.74573° 25.04852° 

2 KARACHI 67.0056° 24.94621° 

3 NAWABSHAH 68.41003° 26.244221° 

4 HYDERABAD 68.3693°         25.3817° 

5 BADIN 68.83724° 24.65572° 

6 CHOR 69.7666° 25.51667° 

7 PASNI 63.4667° 25.2667° 

8 PANJGUR 64.2500° 26.6667° 

9 NOKKUNDI 62.75002° 28.8258° 

4.2  Data Analysis 

4.2.1 Descriptive Statistics  
 

The total number of observations for each station is 36, each value representing annual 

maximum rainfall in millimeters. Min represents the minimum annual rainfall value and max 

represents the maximum annual rainfall value for the observed data series. Mean represents 

average rainfall in 36 years. Standard deviation is indicating how consistent or variable the data 

is relative to its average. The positive Skewness ranging from 0.56 to 3.93 shows the shape and 

Kurtosis ranging from -0.35 to 31.52 with both leptokurtic and platykurtic behaviors indicate the 

spread of data values (table 4.3 and 4.4). 

The rainfall analysis across stations for zone D reveals diverse patterns: Multan has 

moderate rainfall with low extreme event likelihood (leptokurtic) and moderate right skewness, 

indicating a tendency towards more frequent lower rainfall values. Khanpur exhibits a high 

likelihood of extreme events (leptokurtic) and very high skewness, suggesting a significant 

presence of very high rainfall values. Jacobabad and Sibbi, with high extreme event likelihood 

(leptokurtic), show right skewness, reflecting a tendency towards more frequent high extremes. 

Bahawalpur, indicating frequent extremes (leptokurtic), also has high skewness, pointing to a 

notable presence of very high rainfall events. Bahawalnagar, with the highest average rainfall 

and variability, shows a high probability of extremes (leptokurtic) and significant right skewness, 

indicating a concentration of extreme high rainfall events. Barkhan, with moderate rainfall and 

variability exhibits right skewness, signifying a tendency towards more frequent extremes. 

Key Findings 

 

 Multan and Barkhan show moderate rainfall with consistent variability and fewer extreme 

events. 

 Khanpur, Sibbi, Bahawalpur, and Bahawalnagar exhibit high variability and a strong 
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tendency towards extreme events, with Khanpur having the highest extreme likelihood. 

 Jacobabad has lower average rainfall but a higher chance of extreme events compared to 

Multan and Barkhan 

Table 4.3: Descriptive statistics of stations in Zone D. 

Zone D 

 
Sr.no Site Name Min Max Mean Standard 

Deviation 

Skewness Kurtosis 

1 Multan 4.02 

 

23.49 

 

12.62 

 

3.78 

 

0.56 

 

1.38 

 

2 Khanpur 3.94 

 

31.52 

 

12.08 

 

5.59 

 

3.93 

 

31.52 

 

3 Jacobabad 2.10 

 

33.61 

 

10.04 

 

6.77 

 

1.72 

 

3.32 

 

4 Sibbi 1.93 

 

56.70 

 

13.59 

 

9.60 

 

2.86 

 

11.22 

 

5 Bahawalpur 5.70 

 

38.80 

 

13.79 

 

 

5.36 

 

3.05 

 

13.43 

 

6 Bahawalnagar 7.68 

 

57.20 

 

17.85 

 

10.66 

 

 

2.56 

 

6.96 

 

7 Barkhan 7.07 

 

28.12 

 

12.75 

 

4.476 

 

1.44 

 

2.64 

 

 

The rainfall analysis across stations for zone E reveals varied patterns: Jiwani has 

higher average rainfall with very high variability, right skewness (1.43), and leptokurtic 

distribution (kurtosis: 1.08), indicating extreme events. Karachi exhibits a high likelihood of 

extreme events (leptokurtic) with very high skewness (3.92). Nawabshah and Hyderabad, 

both with right skewness and leptokurtic distributions, suggest a higher probability of 

extremes. Badin shows frequent extreme events with high skewness (3.29) and high kurtosis 

(14.02). Chhor and Pasni also exhibit low to moderate skewness with leptokurtic 

distributions. Panjgur indicates a higher likelihood of extremes with significant right skewness 

(2.20) and leptokurtic distribution (kurtosis: 7.77). Nokkundi display fewer extremes with 

moderate to right skewness and platykurtic distribution. 

Key Findings 

 

 Karachi, Badin, Panjgur, and Hyderabad exhibit high skewness and high kurtosis, 

indicating a high likelihood of extreme rainfall events. 

 Nawabshah, Jiwani, and Pasni show moderate to high probability of extreme events with 

right-skewed distributions and varying levels of kurtosis mostly Leptokurtic. 

 Nokkundi has platykurtic distribution, suggesting fewer extreme events and a flatter 

distribution compared to all other locations. 
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Table 4.4: Descriptive statistics of stations in Zone E. 

Zone E 

 
Sr.no Site Name Min Max Mean Standard 

Deviation 

Skewness Kurtosis 

1 Jiwani 1.43 

 

45.79 

 

14.66 

 

11.61 

 

1.43 

 

1.08 

 

2 Karachi 0.88 

 

75.96 

 

12.24 

 

12.57 

 

3.92 

 

19.36 

 

3 Nawabshah 0.79 36.55 

 

11.05 

 

7.24 

 

1.32 

 

3.32 

 

4 Hyderabad 2.08 

 

51.12 

 

13.50 

 

10.44 

 

2.12 

 

4.98 

 

5 Badin 0.64 

 

67.26 

 

13.93 11.38 

 

 

3.29 

 

14.02 

6 Chhor 1.19 

 

27.72 

 

12.17 

 

5.66 

 

0.58 

 

1.02 

 

7 Pasni 1.28 

 

37.80 

 

14.32 

 

10.24 

 

1.16 

 

0.41 

 

8 Panjgur 0.78 

 

60.63 

 

13.92 

 

11.13 

 

2.20 

 

7.77 

 

9 Nokkundi 1.07 

 

33.48 

 

12.59 

 

8.80 

 

0.633 

 

-0.35 

 

 

4.2.2 Time Series Plots 
 

To comprehensively analyze extreme rainfall events, it is essential to visualize the 

temporal variations in rainfall across different monitoring stations. This section presents time 

series plots for all selected rainfall stations in zone D and E. These plots offer a detailed view 

of how rainfall patterns evolve over time, highlighting both seasonal and anomalous events.    

By examining these visual representations, we can identify trends, detect outliers, and better 

understand the spatial and temporal distribution of extreme rainfall events. The following 

figures illustrate the rainfall data from each station, providing a basis for further statistical 

analysis and comparison. These graphs illustrate the presence of random variabilities within 

the data series at each site. 
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Zone D 

 

 

Figure 4.1: Time Series Plot of AMRS for the site Multan 

 

  

 Figure 4.2: Time Series Plot of AMRS for the site Khanpur 
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Figure 4.3: Time Series Plot of AMRS for the site Jacobabad 

 

 

Figure 4.4: Time Series Plot of AMRS for the site Sibbi 
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                                     Figure 4.5: Time Series Plot of AMRS for the site Bahawalpur 

 

 

  

 Figure 4.6: Time Series Plot of AMRS for the site Bahawalnagar 
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 Figure 4.7: Time Series Plot of AMRS for the site Barkhan 

 

 

Zone E 

 

 

  

                                                Figure 4.8: Time Series Plot of AMRS for the site Jiwani 
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Figure 4.9: Time Series Plot of AMRS for the site Karachi 

 

 

  

Figure 4.10: Time Series Plot of AMRS for the site Nawabshah 
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Figure 4.11: Time Series Plot of AMRS for the site Hyderabad 

 

 

  

 Figure 4.12: Time Series Plot of AMRS for the site Badin 
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Figure 4.13: Time Series Plot of AMRS for the site Chhor 

 

 

  

       Figure 4.14: Time Series Plot of AMRS for the site Pasni 
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Figure 4.15: Time Series Plot of AMRS for the site Panjgur 

 

  

Figure 4.16: Time Series Plot of AMRS for the site Nokkundi 

4.3   Model Fitting and Methodological Comparison  

          This detailed analysis highlights the differences in estimation methods across the 

stations providing insight into which method might yield the most accurate 

representation of the rainfall data. Table 4.5 and 4.6 (refer to Appendix A) displays the 

estimated parameters along with their RMSE and bias values. To determine these 

accuracy metrics, simulation experiments were performed. For each site, 1,000 random 

samples were drawn from the PE3 distribution, corresponding to the size of the observed 

data. The PE3 distribution was then fitted to each sample using LM, MLE, and MPS 

methods. The resulting RMSE and bias were computed from these simulated parameters. 
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Here's a summarized discussion of the key parameters (location, scale, shape) and the 

corresponding RMSE and Bias for each estimation method (LM, MLE, MPS) across 

different stations (with moderate sample size): 

Zone D 

Sibbi 

        For the location and scale parameters, the MLE method consistently yields lower 

RMSE values, suggesting better fit precision, while the LM method maintains a lower 

bias. The estimates for the shape parameter show that the MPS method produces the 

lowest RMSE and bias. 

Jacobabad  

        For the location parameters, the MLE method results in both lower RMSE and bias 

values. For the scale and shape parameters, LM method exhibits lower bias values, 

whereas the LME and MPS methods achieve lower RMSE. 

Bahawalpur 

         For location and shape parameters, LM and MPS are the most appropriate 

methods, respectively, as they show the lowest RMSE and bias values. For the scale 

parameter, LM method yields a significantly lower RMSE, while MLE method results in 

lower bias. 

Khanpur 

         For location and shape parameters, the MLE and MPS methods exhibit the lowest 

RMSE and bias values, respectively. For the scale parameter, MLE demonstrates the 

lowest RMSE, while LM shows the lowest bias. 

Multan 

         For the location and scale parameters, MLE exhibits lower RMSE values, whereas 

LM demonstrates lower bias values. Conversely, for the shape parameter, LM shows 

lower bias, while MLE has lower RMSE.  

Bahawalnagar 

         For the three parameters location, scale and shape, MLE significantly reveals low 

RMSE values, while LM presents low bias values.   

Barkhan 
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          For the location parameter, LM shows low RMSE, while MLE has low bias. For 

the scale parameter, LM unveils low values for both bias and RMSE. For the shape 

parameter, MPS shows low RMSE, whereas LM has low bias. Overall, LM is the most 

appropriate method for this station. 

Zone E 

Hyderabad 

           For the three parameters location, scale, and shape, MLE yields the lowest RMSE 

values, while LM produces the smallest Bias values, indicating that these are the most 

appropriate methods for this station. 

Karachi  

          For the three parameters, LM reveals the lowest Bias values. However, when 

considering location, scale, and shape parameters, LM, MPS, and MLE respectively 

result in the lowest RMSE values. 

Nawabshah 

          At this station, LM consistently produces the lowest RMSE and Bias values for all 

three parameters, except for the RMSE of the shape parameter, where MPS yields the 

lowest value. 

Jiwani 

          The estimates for the location parameter show that the LM method produces the 

lowest RMSE, while the MLE method shows slightly higher RMSE but lower bias, 

indicating a trade-off between accuracy and consistency. For the scale and shape 

parameters, the LM method consistently maintains lower Bias values, suggesting better 

fit precision, while the MPS and MLE methods produces lower RMSE values.  

Badin  

           For location, scale and shape parameters LM method produces lowest Bias values 

while MLE produces lower RMSE values with MPS revealing slightly low RMSE 

particularly for shape parameter.  

Chor 

          This station shows a similar pattern where the LM method has the lowest RMSE 

and bias for all three parameters. However, for the shape parameter, the MPS method 

provides slightly lower bias. 
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Pasni  

           MPS shows lower RMSE values across all three parameters, while LM displays 

lower Bias values. 

Panjgur 

          For the location, scale, and shape parameters, LM method produces significantly 

lower Bias and RMSE value, except for the shape parameter, MPS produces a slightly 

lower Bias value. 

Nokkundi 

          For the location parameter, the LM method produces the lowest RMSE, while the 

MLE method shows the lowest Bias. For the scale parameter, MLE achieves both the 

lowest RMSE and Bias values. For the shape parameter, MPS produces the lowest 

RMSE, and LM shows the lowest Bias. 

Overall Results 

            The above analysis for zone D shows that MLE is generally the best method for 

achieving lower RMSE, making it most suitable for stations like Sibbi (location and 

scale), Jacobabad (location), Khanpur (location and scale), Multan (location and scale), 

and Bahawalnagar (all parameters). LM is preferred for its lower bias, especially in 

Jacobabad (scale and shape), Bahawalpur (location), Khanpur (scale), and Barkhan 

(location and scale). MPS is particularly effective for the shape parameter in Sibbi, 

Bahawalpur, Khanpur, and Barkhan.  

             The results for zone E indicate that MLE generally provides the lowest RMSE 

values, making it most suitable for stations like Hyderabad (all parameters), Badin (all 

parameters), and Nokkundi (scale). LM is preferred for its lower bias, particularly in 

Hyderabad (all parameters), Karachi (all parameters), Nawabshah (all parameters), 

Jiwani (location, scale, and shape bias), Badin (all parameters), Chor (all parameters), 

Pasni (all parameters), Panjgur (all parameters), and Nokkundi (location and shape bias). 

MPS stands out for shape parameter accuracy, showing lower RMSE in Karachi, 

Nawabshah, Jiwani, Badin, Chor, Pasni, Panjgur, and Nokkundi.  

              Overall, MLE emerges as the most suitable method across most stations with 

moderate sample size for achieving lower RMSE, while LM is favored for bias 

reduction. MPS is particularly effective and ideal for the shape parameter estimation. 
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4.4   Preference Table  

          The preference table is designed to provide a clear overview of how different 

stations behave in terms of skewness and tail characteristics. For each station, it records 

the level of skewness and the behavior of the data's tails (whether they are heavy or 

light). Based on these characteristics, the table also identifies the most appropriate 

parameter estimation methods for each station, specifically when working with a 

moderate sample size and variations in shape parameter. This approach helps in selecting 

the best statistical methods tailored to the unique data distribution of each station, 

ensuring more accurate and reliable analysis. 

           The analysis of skewness and kurtosis for the stations in table 4.7 suggests that 

the most appropriate method for data fitting varies depending on the specific 

characteristics of the data distribution. For stations with very high skewness and 

leptokurtic distributions, the Maximum Product Spacing (MPS) method consistently 

emerges as the best fit, as seen in Khanpur. Conversely, stations with moderate skewness 

and leptokurtic distributions, like Multan, typically favor the Linear Moments (LM) 

method, while those with moderate skewness and platykurtic kurtosis, such as 

Nokkundi, also tend to favor LM. In cases of high skewness combined with leptokurtic 

distributions, the combination of MPS and LM is frequently preferred, as observed in 

Jacobabad and Nawabshah. Therefore, the choice of method is highly dependent on the 

nature of skewness and kurtosis in the data, with MPS being particularly effective for 

extreme conditions, while LM and Maximum Likelihood Estimation (MLE) methods are 

more suited for moderate conditions. 

Table 4.7: Tail behavior and shape-focused approach 

Sr 

no. 
Stations Skewness 

Interpretation 

of Skewness 
Kurtosis 

 

Interpretation 

of Kurtosis 

 

Preferred 

Method 

(Shape) 
RMSE Bias 

1 Multan 0.56 
Moderate  

Skewness 
1.38 Leptokurtic LM MLE 

2 Khanpur 3.93 
Very High 

Skewness 
31.52  Leptokurtic MPS MPS 

3 Jacobabad 1.72 
High 

Skewness 
3.32 Leptokurtic MPS LM 

4 Sibbi 2.86 
Very High 

Skewness 
11.22 Leptokurtic MPS MPS 

5 Bahawalpur 3.05 
Very High 

Skewness 
13.43 Leptokurtic MPS MPS 

6 Bahawalnagar 2.56 
Very High 

Skewness 
6.96 Leptokurtic MLE LM 
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7 Barkhan 1.44 
High 

Skewness 
2.64 Leptokurtic MPS LM 

8 Jiwani 1.43 
High 

Skewness 
1.08 Leptokurtic MLE LM 

9 Karachi 3.92 
Very High 

Skewness 
19.36 Leptokurtic MLE LM 

10 Nawabshah 1.32 
High 

Skewness 
3.32 Leptokurtic MPS LM 

11 Hyderabad 2.12 
Very High 

Skewness 
4.98 Leptokurtic MLE LM 

12 Badin 3.29 
Very High 

Skewness 
14.02 Leptokurtic MPS LM 

13 Chhor 0.58 
Moderate 

Skewness 
1.02 Leptokurtic LM MPS 

14 Pasni 1.16 
High 

Skewness 
0.41 Leptokurtic MPS LM 

15 Panjgur 2.20 
Very High 

Skewness 
7.77 Leptokurtic MPS LM 

16 Nokkundi 0.63 
Moderate 

Skewness 
-0.35 Platykurtic MPS LM 

 

4.5  Skewness and Kurtosis Levels 

        For interpreting the skewness and kurtosis values in Table 4.3, Table 4.4 and 

Table 4.7, the following thresholds have been applied.  

 

       Skewness [26]:  

 0 to ± 0.5:  Approximately symmetric 

 ± 0.5 to ± 1:  Moderately skewed 

 ± 1 to ± 2:  Highly skewed 

 ± 2:  Very highly skewed 

  

 

 

 

 

 

 

Kurtosis [27]: 

 Platykurtic (Kurtosis < 0):  

Flat, light tails. 

 Mesokurtic (Kurtosis ≈ 0): 

Normal distribution, moderate 

tails. 

 Leptokurtic (Kurtosis > 0):  

Sharp peak, heavy tails. 
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4.6  Quantile Estimation  

          The table 4.8 presents a comparison of three estimation methods LM (L-

moments), MLE (Maximum Likelihood Estimation), and MPS (Maximum Product of 

Spacings) across seven sites in Zone D for a 100-year return period. Quantile values 

show that the methods produce relatively consistent estimates, with some variability. In 

Zone D, LM emerges as the best method based on both Bias and RMSE, offering more 

accurate estimates for most stations. For example, in stations like Multan and Jacobabad, 

LM shows the smallest Bias, making it the most accurate method. Even when RMSE 

values are slightly higher than MLE or MPS in a few cases, the much lower Bias of LM 

ensures better reliability. LM also maintains relatively low RMSE values across the 

sites, with stations like Barkhan and Multan favoring LM in terms of both Bias and 

RMSE, highlighting its balanced performance. However, in stations like Sibbi and 

Bahawalnagar, while LM provides lower Bias, MLE shows lower RMSE, making it 

slightly better in terms of error reduction in these specific sites. 

          In table 4.9, the quantile estimates reflect a similar trend where the LM method 

generally produces lower bias compared to MLE and MPS. Based purely on RMSE, 

MLE outperforms LM in some stations, such as Badin and Hyderabad, where it exhibits 

slightly lower RMSE values. In these cases, MLE might be preferable for reducing 

errors, although it tends to have higher Bias compared to LM. This means that while 

MLE can reduce RMSE, the higher Bias suggests a trade-off in accuracy. In Nokkundi 

and Nawabshah clearly LM shows significant low Bias and RMSE. Overall, LM remains 

the best method across Zone E for both Bias and RMSE combined, but MLE offers 

advantages in reducing RMSE at selected stations. 

Table 4.8: Quantile estimation for return period 100 

 

Zone D 

  

Sr. no 

 

Site Name 

 

Method 

 

LM 

 

MLE 

 

MPS 

Return Period 

(years) 

 

100 

 

100 

 

100 

 

1- 

 

Multan 

 

Quantile 

 

23 

 

 

22 

 

 

23 

  

Bias 

 

0.02 

 

 

0.21 

 

 

0.83 

  

RMSE 

 

2.31 

 

 

2.39 

 

 

2.69 

  

2- 

 

Khanpur 

 

Quantile 

 

31 

 

28 

 

 

30 
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Bias 

 

0.12 

 

 

1.07 

 

 

1.72 

  

RMSE 

 

5.67 

 

 

4.61 

 

 

5.04 

  

3- 

 

Jacobabad 

 

Quantile 

 

36 

 

 

32 

 

 

34 

  

Bias 

 

0.04 

 

1.72 

 

 

3.08 

  

RMSE 

 

7.73 

 

 

6.32 

 

 

 

7.40 

  

4- 

 

Sibbi 

 

Quantile 

 

47 

 

 

39 

 

 

43 

  

Bias 

 

0.26 

 

 

 

1.75 

 

 

3.20 

 

 
 

RMSE 

 

10.13 

 

 

7.42 

 

 

8.72 

  

5- 

 

Bahawalpur 

 

Quantile 

 

30 

 

 

27 

 

 

29 

  

Bias 

 

0.09 

 

 

0.64 

 

 

1.34 

  

RMSE 

 

4.69 

 

 

3.79 

 

 

4.14 

 

6- 

 

Bahawalnagar 

 

Quantile 

 

60 

 

 

49 

 

 

 

52 

 

 
 

Bias 

 

0.72 

 

 

 

2.80 

 

 

4.20 

 

 
 

RMSE 

 

15.65 

 

9.07 

 

10.96 

  

7- 

 

Barkhan 

 

Quantile 

 

28 

 

 

28 

 

 

29 

  

Bias 

 

0.35 

 

 

1.31 

 

 

 

1.91 

 

 
 

RMSE 

 

4.56 

 

 

 

4.78 

 

 

 

4.84 

 

  

     Table 4.9: Quantile estimation for return period 100 

 

Zone E 

 Sr. no  

Site Name 

 

Method 

 

LM 

 

MLE 

 

MPS 

Return Period 

(years) 

 

100 

 

100 

 

100 

 

1- 

 

Jiwani 

 

Quantile 

 

59 

 

 

 

54 

 

 

 

56 

 

 
 

Bias 

 

0.39 

 

 

 

4.37 

 

 

4.89 

  

RMSE 

 

14.10 

 

 

 

12.46 

 

 

12.77 
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2- 

 

Karachi 

 

Quantile 

 

53 

 

 

54 

 

 

52 

  

Bias 

 

0.10 

 

 

2.79 

 

 

5.59 

 

 
 

RMSE 

 

12.79 

 

 

13.04 

 

 

12.79 

  

3- 

 

Nawabshah 

 

Quantile 

 

32 

 

 

34 

 

36 

  

Bias 

 

0.06 

 

 

 

1.42 

 

 

 

2.63 

 

 
 

RMSE 

 

4.89 

 

 

 

6.59 

 

 

7.37 

 

 
 

4- 

 

Hyderabad 

 

Quantile 

 

51 

 

 

47 

 

 

50 

  

Bias 

 

0.17 

 

 

 

 

2.98 

 

 

4.26 

  

RMSE 

 

11.20 

 

 

10.06 

 

 

10.92 

 

 
 

5- 

 

Badin 

 

Quantile 

 

49 

 

 

 

44 

 

 

 

48 

 

 
 

Bias 

 

0.40 

 

 

1.85 

 

 

3.47 

 

 
 

RMSE 

 

11.02 

 

 

 

8.52 

 

 

 

10.14 

  

6- 

 

Chhor 

 

Quantile 

 

27 

 

 

27 

 

 

29 

  

Bias 

 

0.25 

 

 

0.10 

 

 

1.42 

 

 
 

RMSE 

 

3.48 

 

 

 

3.74 

 

 

4.30 

  

7- 

 

Pasni 

 

Quantile 

 

52 

 

 

48 

 

 

50 

 

 
 

Bias 

 

0.24 

 

 

2.04 

 

 

4.25 

 

 
 

RMSE 

 

10.98 

 

 

9.56 

 

 

11.24 

 

 
 

8- 

 

Panjgur 

 

Quantile 

 

50 

 

 

50 

 

 

52 

  

Bias 

 

0.32 

 

 

3.08 

 

 

4.28 

  

RMSE 

 

10.42 

 

 

 

10.84 

 

 

11.46 

  

9- 

 

Nokkundi 

 

Quantile 

 

40 

 

 

51 

 

 

50 

  

Bias 

 

0.32 

 

 

3.20 

 

 

4.32 

 

 
 

RMSE 

 

6.68 

 

 

 

11.76 

 

 

11.59 
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5. CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 
5.1 Key Findings and Strengths 

 

The key findings from the analysis illuminate the nature of extreme rainfall 

events in Pakistan and guide the selection of statistical methods for accurate analysis. 

The data analysis reveals that these events are characterized by significant skewness 

and kurtosis, indicating a highly asymmetric rainfall distribution with heavy tails. This 

suggests that extreme rainfall events are frequent and exhibit considerable variability, 

complicating prediction and management efforts. The study also identifies a trend of 

increasing intensity in these events over time, which is crucial for understanding the 

potential impacts of climate change on future rainfall patterns in the region. 

In terms of statistical method selection, the study finds that the Maximum 

Likelihood Estimation (MLE) method emerges as the most suitable approach across 

most stations with a moderate sample size for achieving lower Root Mean Square 

Error (RMSE). This makes MLE the preferred method when the goal is to minimize 

overall prediction error. However, for bias reduction, the Linear Moments (LM) 

method is favored, offering better performance in reducing estimation bias. 

Additionally, the Maximum Product of Spacings method for the Shape parameter 

(MPS) proves particularly effective for accurately estimating the shape parameter in 

several locations. These findings are essential as they provide clear guidance on the 

best statistical method to use based on the sample size and shape characteristics of the 

data, thereby enhancing the accuracy and reliability of extreme rainfall analysis. 

The strength of this study lies in its detailed and methodical statistical analysis. 

By focusing on ungauged sites and using advanced measures like skewness and 

kurtosis, coupled with an evaluation of different estimation methods, the research 

offers a nuanced understanding of rainfall distribution that goes beyond simple 

averages. This approach allows for a more accurate assessment of the risks posed by 

extreme weather events, which is essential for effective disaster preparedness and 

response. Additionally, the study's findings contribute to the broader field of climate 

science by offering insights that could inform future modeling efforts and policy 

decisions aimed at mitigating the impacts of extreme weather. 
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5.2 Limitations and Future Recommendations 

 

However, the study is constrained by several limitations. The analysis was 

conducted on a fixed sample size of 36, with data drawn from only a few stations in 

Pakistan. This limited scope may restrict the generalizability of the findings to other 

regions within the country. Furthermore, the focus on ungauged sites means that the 

study may not fully capture the complete variability of rainfall across Pakistan, 

potentially overlooking important patterns present in gauged locations. Another 

limitation is the exclusive use of historical rainfall data, which may not be adequately 

available.  

To overcome these limitations, future research should aim to expand the spatial 

and temporal scope of the analysis. Increasing the number of stations included in the 

study and extending the time span of the data would provide a more comprehensive 

picture of rainfall patterns across Pakistan. Additionally, integrating climate model 

projections could help predict how extreme rainfall events might change in frequency 

and intensity under different climate scenarios. Expanding the analysis to include 

gauged sites and regions with diverse climatic conditions would also enhance the 

robustness of the findings, making them more applicable to a wider range of settings. 

These steps would not only strengthen the current study but also contribute to a 

deeper understanding of extreme rainfall events on a global scale. 
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Appendix A 

 

Table 4.5: Estimated parameters alongwith their RMSE and bias 

Zone D 

 
 ESTIMATION METHODS LM MLE MPS 

Sr. no SITES PARAMETER LOCATION SCALE SHAPE LOCATION SCALE SHAPE LOCATION SCALE SHAPE 

 
1 SIBBI ESTIMATE 13.59 

 

9.04 2.16 

 

13.59 

 

8.05 

 

1.28 

 

14.01 

 

8.97 

 

1.30 

  RMSE 1.55 

 

2.31 

 

0.55 

 

1.27 

 

1.56 

 

0.42 

 

1.52 

 

1.73 

 

0.38 

 

 
 BIAS 2.0202 

 

0.0844 

 

0.0188 

 

0.0361 

 

0.2370 

 

0.1379 

 

0.3072 

 

0.6496 

 

0.0150 

 2 JACOBABAD ESTIMATE 10.04 

 

7.02 

 

 

2.10 

 

 

10.04 

 

6.42 

 

1.57 

 

10.36 

 

6.96 1.54 

  RMSE 1.23 

 

 

 

1.67 

 

 

 

0.53 

 

1.12 1.29 

 

 

0.34 

 

1.22 

 

1.40 

 

0.33 

  BIAS 0.0235 

 

0.0531 

 

0.0313 

 

0.0123 

 

0.2779 

 

0.1634 

 

0.3213 

 

0.6173 

 

0.0660 

3 BAHAWALPUR ESTIMATE 13.79 

 

4.73 

 

 

1.81 

 

 

13.79 

 

4.51 

 

0.93 

 

13.96 

 

5.05 0.96 

  RMSE 0.78 

 

 

1.01 

 

 

 

0.50 

 

0.78 

 

0.73 

 

 

0.47 

 

0.86 

 

0.84 

 

 

0.43 

 BIAS 0.0041 

 

0.0529 

 

0.0094 

 

 

0.0140 

 

0.0334 

 

0.0878 

 

 

0.1261 

 

0.3332 0.0008 

4 KHANPUR ESTIMATE 12.08 5.52 1.78 12.08 5.09 1.10 12.29 5.64 1.10 

 RMSE 0.96 1.20 0.51 

 

0.89 

 

0.95 

 

0.43 

 

0.96 0.98 

 

0.41 

 BIAS 0.0041 

 

0.0007 

 

0.0644 

 

0.0020 

 

0.1247 

 

0.1262 

 

 

0.2070 

 

0.4476 

 

0.0328 

 

 
5 MULTAN ESTIMATE 12.62 3.70 0.55 12.63 3.75 0.33 12.67 4.12 0.32 

 RMSE 0.67 

 

0.48 

 

0.46 

 

0.60 

 

0.47 

 

0.53 

 

0.71 0.53 0.49 

  BIAS 0.0097 

 

0.0188 0.0342 

 

0.0106 

 

0.0424 

 

0.0104 

 

 

0.0098 

 

0.2797 

 

0.0142 

 6 BAHAWALNAGAR ESTIMATE 17.85 

 

 

10.66 

 

 

2.86 

 

17.85 

 

 

8.92 

 

 

1.73 

 

 

18.38 

 

 

9.75 

 

1.73 

 

 
 RMSE 1.77 

 

3.24 

 

 

0.62 

 

 

1.54 

 

1.94 

 

0.31 

 

 

1.68 

 

2.18 0.32 

  BIAS 0.0702 

 

0.3076 

 

 

0.0228 

 

0.0831 

 

0.4512 

 

 

0.1844 

 

0.5094 

 

0.9852 

 

 

0.0855 

 

 
7 BARKHAN ESTIMATE 12.75 

 

 

4.58 

 

 

1.61 

 

 

12.76 

 

 

4.48 

 

1.50 

 

12.95 

 

4.80 

 

 

1.45 

 

 
 RMSE 0.74 0.88 

 

0.46 

 

 

0.77 1.00 0.36 

 

0.83 

 

0.96 

 

 

0.34 

 

 
 BIAS 0.0181 0.0497 

 

 

0.0133 

 

0.0002 

 

 

0.2450 

 

 

0.1844 

 

 

0.2042 

 

 

0.4479 

 

 

0.0815 

 



 

                       Table 4.6: Estimated parameters alongwith their RMSE and Bias 

Zone E 

 
 ESTIMATION METHODS LM MLE MPS 

Sr. no SITES PARAMETER LOCATION SCALE SHAPE LOCATION SCALE SHAPE LOCATION SCALE SHAPE 

1 HYDERABAD ESTIMATE 13.50 

 

10.19 2.11 

 

13.50 

 

 

9.72 

 

1.67 

 

14.01 

 

10.46 

 

1.63 

  RMSE 1.77 

 

2.43 

 

0.53 

 

1.71 

 

2.09 

 

0.31 

 

1.76 

 

2.17 

 

0.34 

 

 
 BIAS 0.0140 

 

0.0780 

 

0.0267 

 

0.0872 

 

 

0.5318 

 

0.1981 

 

0.4742 

 

 

0.9073 0.0639 

 2 KARACHI ESTIMATE 12.24 

 

10.74 2.34 

 

12.13 

 

11.59 

 

2.06 12.82 

 

11.14 1.76 

  RMSE 1.78 

 

 

2.74 

 

 

 

0.58 

 

2.04 

 

2.76 

 

 

0.26 

 

2.01 

 

 

2.50 

 

0.32 

  BIAS 0.0236 

 

0.1746 

 

0.0041 

 

 

0.0287 

 

0.4928 

 

0.1339 

 

 

0.5580 1.1174 

 

0.0862 

 

 
3 NAWABSHAH ESTIMATE 11.05 7.01 0.89 

 

11.05 

 

7.33 1.23 11.34 7.92 1.18 

 RMSE 1.11 

 

1.04 

 

0.45 

 

1.21 

 

1.40 

 

0.43 1.33 

 

1.44 

 

0.40 

 BIAS 0.0202 

 

0.0597 

 

0.0113 

 

0.0902 

 

0.1428 

 

0.13894 

 

 

0.3393 

 

0.6483 

 

0.0217 

 4 JIWANI ESTIMATE 14.66 

 

11.99 

 

 

2.16 

 

 

14.67 

 

11.50 

 

1.70 

 

15.13 

 

12.01 

 

1.62 

  RMSE 1.96 

 

 

2.76 

 

 

 

0.52 

 

1.98 

 

2.48 

 

 

0.30 

 

2.03 

 

2.46 

 

0.33 

  BIAS 0.0842 

 

0.1279 

 

0.0375 0.0080 

 

0.7320 

 

0.1908 

 

 

0.5289 

 

1.0987 

 

0.0739 

 

 
5 BADIN ESTIMATE 13.93 

 

 

 

9.78 

 

 

2.05 

 

 

13.93 

 

9.32 

 

 

1.27 

 

 

14.42 

 

 

10.42 

 

 

1.30 

   RMSE 1.59 

 

2.32 

 

 

0.53 

 

 

1.52 

 

 

1.74 

 

0.41 

 

1.73 

 

1.89 

 

0.39 

 

 

 

  BIAS 0.0010 

 

0.0933 

 

 

0.0310 

 

0.1415 

 

 

0.1954 

 

0.1339 

 

 

0.2835 

 

0.7713 

 

 

0.0401 

 6 CHOR ESTIMATE 12.1675 5.5838 0.4922 12.1675 5.5584 0.4396 12.26 6.14 0.44 

  RMSE 0.95 0.72 

 

 

0.47 

 

0.95 

 

0.74 

 

0.53 

 

1.00 

 

0.84 

 

0.49 

   BIAS 0.0166 

 

0.0266 

 

0.0190 

 

0.0589 

 

0.0324 

 

0.0438 

 

 

0.0852 

 

 

0.4746 

 

 

0.0135 

 

 
7 PASNI ESTIMATE 14.32 

 

10.75 

 

1.76 

 

14.32 

 

 

10.09 

 

1.49 

 

14.66 

 

10.70 

 

 

1.43 

   RMSE 1.86 

 

2.32 

 

0.50 

 

1.80 

 

2.19 

 

0.37 

 

1.79 

 

 

2.09 

 

0.36 

 

 
  BIAS 0.0211 

 

 

0.0092 

 

 

0.0498 

 

 

0.0723 

 

0.5097 

 

0.1876 

 

0.4312 

 

 

0.9670 

 

0.0708 

 

 
8 PANJGUR ESTIMATE 13.92 

 

10.69 

 

1.58 

 

13.92 

 

10.58 

 

1.56 

 

 

14.39 

 

11.35 

 

 

1.52 

 

 
  RMSE 1.77 

 

2.06 

 

0.48 

 

1.83 

 

 

2.31 

 

 

0.37 

 

1.99 

 

 

2.39 

 

0.34 

 

 
  BIAS 0.0319 

 

0.0028 

 

0.0593 

 

0.1244 

 

0.4808 

 

0.1821 

 

 

0.5090 

 

1.1071 

 

0.0737 

 9 NOKKUNDI ESTIMATE 12.59 

 

 

9.16 

 

0.94 

 

 

12.59 

 

 

10.89 

 

 

1.88 

 

12.95 

 

10.69 

 

1.66 

 

 
  RMSE 1.52 

 

1.39 

 

 

0.48 

 

1.89 

 

2.45 

 

 

2.45 1.80 

 

2.26 

 

 

0.31 

   BIAS 0.0721 

 

0.1426 

 

0.0037 

 

 

0.0182 

 

0.6799 

 

 

0.1773 

 

0.4180 

 

0.9578 

 

 

0.0873 

 

 



 

 


