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ABSTRACT 

 

Hashing Algorithms are of prime importance these days due to their 

implementation in applications requiring data authentication and data forgery 

detection and prevention. Without safeguards such as those offered by hash functions, 

data would be extremely vulnerable to attacks which can alter or make changes in it. 

‘Cube Testers’ Attack is a latest technique which is being utilized to test different 

cryptosystems, both ciphers and hashes for non-randomness behavior. The attack 

distinguishes a family of functions from random functions using some testable 

properties like Balanced-ness, Constant-ness, presence of Low Degree, Linear 

Variables and presence of Neutral Variables. As pseudorandom object has low 

correlation with a structured object so it gives distinguishers that help finding 

nonrandomness in the hashes. Implementation of Cube testers is possible with black 

box access that is it can be independent of internal structure. 

SHA-256 is the standard hash function recommended by NIST in 2002. It has 

been tested against different cryptanalytic techniques including collision, pseudo 

collision, preimage and second preimage attacks. It has been tested against Cube 

Testers for the first time. SHA-256 is tested against three properties using Cube 

Testers, Balance-ness, Impedance and Off By One. Reduced version of SHA-256 with 

25 steps out of 64 steps has shown non-random behavior against Balance Test. 

Complete 64 step SHA-256 is found vulnerable against Impedance Test. Off By One 

test could not find any weakness against SHA-256.   
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C h a p t e r  1  

 

1 Introduction 

1.1 Overview 

Communication systems in the contemporary world continue to grow and 

evolve. Integrity, confidentiality and authenticity have been big concerns in 

communications systems. Most unkeyed hash functions commonly found in practice 

were originally designed for the purpose of providing data integrity. 

A hash function is any function that can be used to map digital data of arbitrary 

size to digital data of fixed size, with slight differences in input data producing very 

big differences in output data. A hash function is considered practically impossible to 

invert, that is, to recreate the input data from its hash value alone. Hash function 

should also satisfy the simple uniform hashing assumption -- that the hash function 

should look random. If it is to look random, this means that any change to a key, even 

a small one, should change the bucket index in an apparently random way. If we 

imagine writing the bucket index as a binary number, a small change to the key 

should randomly flip the bits in the bucket index. This is called information diffusion. 

Cryptanalysis may be considered an integral part of design of a cryptographic 

algorithm. The process continues even after propositions and acceptance of the 

algorithms. A number of cryptanalytic techniques have emerged so far like 

differential, linear, impossible differential, integral attack and the related key attack. 

A new type of cryptanalytic technique named as cube attack has been proposed by Itai 

Dinur and Adi Shamir in 2009. One variant of cube attack is cube testers attack  

which combines the cube attack with efficient algebraic property testers, and can be 

used to mount distinguishers or to detect non-randomness in cryptographic primitives. 
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Both cube attacks and cube testers require black-box access and target primitives with 

secret and public variables. Meanwhile, they can be built on low-degree components. 

Nevertheless, cube testers don’t require a low degree function and pre-computation, it  

is just to satisfy some testable property with significantly higher (or lower) probability 

than a random function.  

Rather than recovering a secret key or otherwise attacking the primitive, cube 

tester attack probes the primitive’s internal polynomial structure and can be used to 

analyze the primitive’s statistical behavior.  

1.2 Need for Research 

Every cryptographic algorithm needs to be tested for the existing cryptanalytic 

techniques and the upcoming ones. Without testing, one is not sure whether the 

cryptosystem is secure or vulnerable to a particular attack. Cube testers attack is a 

new type of cryptanalytic technique and hash functions should be explored and tested 

against the cube testers attack. Cube testers attack was applied on MD6 by its authors 

in the paper in which Cube testers attack was proposed. SHA-256 is 256 bit output 

version of standard hash selected by NIST. 

1.3 Problem Statement 

There is a need to test the commonly used hash functions against the cube 

testers attack as it is a new emerging threat. SHA-256 has not yet been tested against 

Cube testers attack yet, despite being the standard Hash algorithm nominated by NIST. 

Some of the hash functions have been tested against property testing using cube 

testers attack. Cryptanalysis and attacks like differential cryptanalysis, linear 

cryptansalysis, algebraic cryptanalysis, integral attack and related key attack are in 
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common practice. The cube testers attack should also be included in the 

analysis/evaluation of the hash functions claiming to have “random” output. 

1.4 Objectives 

The objective of this research is to first, carry out a thorough study of the 

literature on cube testers attack and general property testing to understand the 

mechanics, and apply cube testers attack to find non random behavior in SHA-256. 

Then customized code of SHA-256 has been developed in C++ excluding the 

preprocessing phases in controlling input of hash function at bit level. Then code has 

been developed for  Cube Testers Attack and Property testing which includes Balance 

test, Impedance test and Off By One test in C++ which was then applied on SHA-256 

hash function. 

1.5 Research Methodology and Achieved Goals 

The research work has been divided into two main phases. In the first phase, 

detailed study and literature review has been carried out related to the cube testers 

attack. A strong theoretical concept has been built regarding the working of the cube 

testers attack and property testing. A detailed study of SHA-256 has also been done to 

understand its structure and then core function of SHA-256 was implemented in C++ 

in a customized fashion, excluding the pre-processing steps. In the second phase, the 

implementation of the cube testers attack on Core function of SHA-256 has been 

carried out. C++ has been used for the testing. Code for Balance-ness , Impedance and 

Off By One tests was developed and implemented on SHA-256 core function to check 

the hash algrorithm against these properties. 

The three tests (balance test, impedance test and Off By One test) applied on 

SHA-256. Balance Test succeeded in finding non-randomness over 25 steps of main 
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function of SHA-256 out of 64 steps. Impedance test found randomness with 

complete 64 steps of SHA-256. While Off By One test failed to find any non-

randomness as per the criteria defined in Chi Square test. 

1.6 Thesis Organization 

The thesis report has been divided into six chapters. Chapter 2 contains the 

literature view of this research in which all the related work found has been briefly 

discussed. The description of the cube testers attack and property testing is explained 

in Chapter 3 for the understanding of the concept of cube attack. In Chapter 4 

structure of SHA-256 is discussed in detail. Chapter 5 contains the implementation 

details of Cube Testers attack on SHA-256 and Property Testing results. The 

properties tested on SHA-256 are Balance test, Off By One test and Impedance test. 

Chapter 6 concludes the report and suggests the future work. 
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C h a p t e r  2  

 

2 Literature Review 

2.1 Introduction 

In this chapter those hash functions and ciphers are discussed which have 

already been attacked and tested by the Cube Testers attack. The implementations of 

cube testers attack developed so far have also been reviewed. Maximum work has 

been carried out on hash functions  MD6, CubeHash and Skein, finalists of the SHA-3 

competition[1][4], in literature. 

The chapter has been divided into four sections. Section 2.2 contains review of 

the hash functions that have been attacked by the cube testers attack. Section 2.3 

presents the details of attack against stream ciphers. Section 2.4 describes some of the 

testable statistic properties which have been tested using cube testers attack. 

2.2 Cube Testers Attack on Hash Functions 

Initial targets of the cube testers attack were to find an efficient way of finding 

statistical weaknesses in hash functions, which could lead to more serious attacks. In 

earlier papers of cube testers, MD6, Skein and CubeHash became the most popular 

target of the cube attack. Trivium a stream cipher has also been tested against the cube 

attack by Jean-Phillipe Aumasson [4]. 

2.2.1 MD6 

Jean-Phillippe Aumasson, Itai Dinur and Adi Shamir introduced the Cube 

Testers Attack in 2009 [1] [2]. They showed attack implementation on MD6, which 

appeared as a Round 1 contestant in SHA-3 competition. It could not proceed to 
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Round 2 because of its slow algorithm. It was asked to be reduced to 40 rounds from 

80 but 40 round MD6 was susceptible to differential cryptanalysis.  

The reduced versions of MD6 having 18 and 66 rounds have been attacked by 

the authors themselves. Cube testers detect imbalance over 18 rounds of MD6 in 2
17 

complexity. Cube testers when applied to a slightly modified version of the MD6 

compression function, they can distinguish 66 rounds from random in 2
24 

complexity. 

Different testable properties were tested against MD6, these results were found while 

testing the balance of superpolys of MD6.                                                                                                           

2.2.2 CubeHash 

Alan Kaminsky has applied the cube testers on hash function CubeHash, a 

candidate of SHA-3 competition [1]. The cube test program results were subjected to 

the balance test, independence test and off-by-one test. Randomness was found for 

Off-by-One test only.  

This test was applied using parallel computing. 40 dual core CPU’s, each with 

2.6 GHz clock and 8 GB main memory were used. The test took a total of 

3,606,910,695,720 (approx. 2
42 

) CubeHash evaluations. The evaluations took 1.25 * 

10
6
 seconds. 

2.2.3 Skein 

Alan Kaminsky has attacked Skein, a SHA-3 candidate in 2010 [1]. The output 

of Cube Test Program was tested for balanceness, impedance and off-by-one test. 

Author found randomness for Off-by-One test. 

Parallel computing setup was used for this test. 40 dual core CPU’s were used, 

each having 2.6 GHz clock speed and 8 GB main memory. A total of 

3,603,992,046,760 evaluations were performed. 
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2.3 Cube Testers Attack on Ciphers 

Stream ciphers as well as Block ciphers have been tested for randomness tests 

via cube testers. Generally ciphers can be represented with low degrees ANF as 

compared to hash functions. So it is possible to extract the ANF of ciphers with 

reduced rounds. Once ANF is found, more properties can be tested against them. 

2.3.1 Trivium 

Trivium was tested by Jean-Philippe Aumasson in the paper where cube testers 

were proposed. Trivium takes as input a 80-bit key and a 80-bit Initial Vector and 

produces a key stream after 1152 rounds of initialization. Each round corresponds to 

clocking three feedback shift registers, each one having a quadratic feedback 

polynomial.  

Using Cube Testers non-randomness was detected on 885 rounds of Trivium 

and verified attacks were experimented on reduced variants with up to 790 rounds. 

The best result on Trivium is a cube attack on a reduced version of 767 initialization 

rounds instead of 1152.                                                 

2.3.2 Bivium 

Another stream cipher Bivium has been attacked by Shunbo Li, Yan Wang and 

Jialong Peng using cube testers attacks in 2010 [5]. Bivium has a key length of 80 bits 

and Non Linear Feedback Shift Register operates on a 177 bits internal state. 56 

linearly independent equations have been found which include 40 single key bits and 

16 equations requiring a total of 19 additions mod 2. Proposed attack reduces time 

complexity from 2
39.12

 for Eibach and 2
27.5

 for Vielhaber to 2
26

. 
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2.3.3 Rabbit Stream Cipher 

Rabbit Stream Cipher is one of the finalists of eSTREAM project which uses 

128-bit secret key[8]. Analysis is based on chosen Initial Vector analysis on reduced 

N-S round of Rabbit though using multi cube tester.With 2
25

 complexity, using one 

iteration of next state function the keystream is completely distinguished from random. 

2.3.4 Grain 

Grain stream cipher was attacked using an efficient FPGA implementation [3]. 

The best result (a distinguisher on Grain-128 reduced to 237 rounds, out of 256) was 

achieved after a computation involving 2
54

 clockings of Grain-128, with a 256 * 32 

parallelization. 

For instance, running a 30-dimensional cube tester on Grain-128 takes 10 

seconds with FPGA machine, against about 45 minutes of bitsliced C implementation. 

2.4 Testable Properties 

In this section, efficiently testable properties will be discussed, which can be 

used to build cube testers. Let C be the size of CV, and S be the size of SV, the 

complexity is given as number of evaluations of tested function f. Each query of the 

tester to the superpoly requires 2
C
 queries to the target cryptographic function.  

2.4.1 Balance Test 

A random function is expected to contain as many zeroes as ones in its truth 

table. Superpolys that have a strongly unbalanced truth table can thus be distinguished 

from random polynomials, by testing whether it evaluates as often to one as to zero, 

either deterministically (by evaluating the superpoly of each possible input), or 

probabilistically (over some random subset of the SV). 
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2.4.2 Independence Test 

Under the null hypothesis, each pair of superpolys should behave like two 

independent fair coins. Therefore, over all the input samples, one-fourth the time the 

pair of outputs should be (0,0), and likewise for (0,1), (1,0) and (1,1) [1]. 

2.4.3 Off-By-One Test 

Under the null hypothesis, over all the input samples, when one of the superpoly 

input bits is flipped from zero to one or one to zero, half the time the output bit should 

also also flip and half the time the output bit should not flip.  

2.4.4 Low Degree Test 

A random superpoly has degree atleast (S - 1) with high probability. 

Cryptographic functions that rely on a low-degree function, however, are likely to 

have superpolys of low degree. It closely relates to probabilistically checkable proofs 

and to error-correcting codes.  

2.4.5 Presence of Linear Variable  Test 

This is a particular case of the low degree test, for degree, d=1 and a single 

variable. Indeed, the ANF of a random function contains a given variable in at least 

one monomial of degree at least two with probability close to 1. 

2.4.6 Presence of Neutral Variable  Test 

Dually to the linearity test, one can test whether a SV is neutral in the superpoly, 

that is, whether it appears in at least one monomial. 

Linearity Test and Neutrality Test does not require the superpoly to have a low 

degree to be tested. 
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2.5 Attacks on SHA-256 

SHA-256 is the 256 bit output version of SHA-2, which is widely deployed in 

practical systems. The SHA-256 hash function has started getting attention recently 

by the crypanalysis community due to the various weaknesses found in its 

predecessors such as MD4, MD5, SHA-0 and SHA-1. 

Reduced Round SHA-256 was attacked by Somitra Kumar Sanadhty and Palash 

Sarkar. Collisions were found after 18 steps[25]. Differential paths for 19, 20, 21, 22 

and 23 rounds of steps of SHA-256 were also found.  

SHA-256 was attacked by Jian Guo and Krystian Matusiewicz in 2009 and 

results were represented in paper, titled “Preimages for Step-Reduced SHA-2” [24]. A 

preimage attack for 42 step-reduced SHA-256 with time complexity        and 

memory requirements of order    . Attack applied was a meet-in-the-middle 

preimage attack. 

A new cryptanalysis technique Biclique is tested against SHA-256 and SHA-

512 hash functions for finding preimages by D. Khovratovich, C. Rechberger  and A. 

Savelieva called Biclique Cryptanalysis. Results and observations are discussed in 

paper titled, “Bicliques for preimages: Attacks on skein-512 and SHA-3 family”. 

Preimages were found against reduced steps of SHA-256. A preimage is found 

against 43 step SHA-256 with complexity        and against 45 step SHA-256 

preimage is found with complexity       . 

A second order differential attack is carried out on SHA-256 by Mario 

Lamberger and Florian Mendel in 2011. Second-order differential attack is shown on 

the SHA-256 compression function reduced to 46 out of 64 steps. It is the best attack 

applied so far with a practical complexity.  

A summary of attacks performed of SHA-256 is given in table 2.1 
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Table 2-1Cryptanalytic Attacks on SHA-256 

Attack Method Attack Authors Year Rounds Complexity 

Deterministic Collision[25] S. Sanadhya and P. Sarkar 2008 24/64 2
28.5

 

Meet-in-the-middle Preimage[24] K. Aoki, J. Gao and Y. Sasaki 2009 42/64  2
251.7 

 

Meet-in-the-middle Preimage[26] Jian Guo, San Ling and 

Christian Rechberger 

2010 42/64 2
248.4

 

Differential Pseudo 

Collision[18] 

M. Lamberger and F. Mendel 2011 46/64 2
178

 

Biclique Preimage[22] D. Khovratovich,                   

C. Rechberger, and               

A. Savelieva 

2011 45/64 2
255.5

 

Pseudo 

Preimage[22] 

2011 52/64 2
255

 

2.6 Summary 

Cube testers attack doesn’t require the attack cryptosystem to have a low degree. 

A detailed review of the stream ciphers, block ciphers and hash functions in which 

non-randomness has been found using the cube testers attack is provided in the 

chapter. Testable properties are also discussed which can be tested with the help of 

Cube testers. The chapter also includes attacks launched against SHA-256 which are 

found in literature. 
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C h a p t e r  3  

 

3 Cube Testers Attack and Property Testing 

3.1 Introduction 

Generally a cryptosystem can be represented in the form of polynomials in 

GF(2) containing both the secret and the public variables. For hash functions and 

stream ciphers, the public variables refer to IV variables and for block ciphers it refers 

to the plaintext variables. The cube testers attack detects nonrandom behavior without 

recovering a secret key. Cube testers attack and its predecessors have been introduced 

in 2008 [4]. 

The Chapter 3 is divided into 6 sections. Section 3.2 contains the Cube Attack 

explanation. Section 3.3 discusses the theory of cube testers attack. Section 3.4 

describes the teminology of the cube testers attack. Section 3.5 explains the attack 

methodology of the cube attack. Section 3.6 intoduces  the concept of Property 

Testers and Section 3.7 discusses the Testable Properties one by one.  

3.2 Cube Attack 

Cube attacks are a powerful and generalize AIDA as a key-recovery attack. This 

exploits implicit low-degree equations in cryptographic algorithms. So it is tried to 

obtain linear equations in unknown key bits by combining outputs of the cipher for 

certain chosen Initial Vectors. 

Let                         be a multivariate polynomial of degree   with   

secret variables           and   public variables            over GF(2). Given an 

index set    {      }   , the function can be represented algebraically under the 

form  
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                                                                 (3.1) 

   

Where      is called the cube that the monomial contains all the       with         

      is a polynomial that has no variable in common with     , and no monomial in 

the polynomial   contains     . Summing   over the cube      for other variables fixed, 

we get the following theorem. 

Theorem 1.  

∑                       

 

 ∑          

 

                         

(3.2) 

To demonstrate these notions, let  

                                                                     ) 

    (3.3) 

be a polynomial of degree 3 in 5 variables, and let be an index subset of size 2. We 

can represent f as 

                                                                      ) 

(3.4) 

where  

                                                                                                                          (3.5) 

                                                                                                               (3.6) 

                  =                                                                       (3.7) 

3.2.1 Definition 3.1 

       is called the superpoly of   in  . A cube is called a maxterm if and 

only if its superpoly.       had degree 1 (i.e. is linear but not a constant). The 

polynomial   is called the master polynomial. 
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 To recover the secret variables, cube attacks have two phases: the preprocessing 

phase and online phase. 

3.2.2 Preprocessing Phase 

In the preprocessing phase, the attacker finds sufficiently many maxterms of 

the master polynomial. For each maxterm, the coefficients of the secret variables are 

found in the symbolic representation of the linear superpoly. The main challenge of 

the attacker in the preprocessing phase is to find enough maxterms with linearly 

independent superpolys. The attacker randomly chooses a subset   of public variables 

and uses efficient linearity tests to check whether its superpoly is linear. 

3.2.3 Online Phase 

During the online phase, the secret variables are fixed. The attacker evaluates 

each linear superpoly by summing over the values of the cryptosystem for every 

possible assignment to its maxterm. Once enough linear superpolys are found, the key 

can be recovered by simple linear algebra techniques. 

Cube attacks are provably successful when applied to random polynomials of 

degree   over   secret variables whenever the number   of public variables exceed 

         Their complexity is             bit operations, which is polynomial in 

   and amazingly low when    is small. 

 

3.3 Cube Testers Attack Theory 

Let    denotes the set of all function mapping{   }     {   }      For a 

given  , a random function is a random element of   ,  we have |  |        ). In 

the ANF of a random function, each monomial (and in particular, the highest degree 

monomial           ) appears with probability ½, hence a random function has 
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maximal degree of  with probability ½. Similarly, it has degree      or less with 

probability 
 

      
. Note that the explicit description of a random function can be 

directly expressed as a circuit with, in average,        gates (AND and XOR), or as a 

string of      bits where each bit is the coefficient of a monomial (encoding the truth 

table also requires     bits, but hides the algebraic structure). 

Informally, the distinguisher for a family          is a procedure that, given a 

function   randomly sampled from     {    }  efficiently determines which one of 

these two families was chosen as    . A family     is a pseudorandom if and only if 

there exists no efficient distinguisher for it. In practice, for example for hash functions, 

a family of function is defined by a k-bit parameter of the function. Randomly chosen 

and unknown to the adversary, and the function is considered broken (or, at least 

“nonrandom”) if there exists a distinguisher making significantly less than     queries 

to the function. Note that the distinguisher that runs in exponential time in the key 

may be considered as “efficient” in practice. 

The terminology difference between a distinguisher and the more general 

detection of pseudorandomness, is that the former denotes a distinguisher where the 

parameter of the family of functions is the cipher’s key, and thus cannot be modified 

by adversary through its queries; the latter considers part of the key as public input 

and assumes as secret an arbitrary subset of the input (including the input bits that are 

normally public, like IV bits). The detection of non randomness thus does not 

necessarily correspond to a realistic scenario. 
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3.3.1 Cube Variable  (CV) and Superpoly Variable (SV) Inputs 

Assume some polynomial        which can be shown in algebraic numeric 

form. Let         be a subterm of        which is the product of the variables 

known as cube inputs. Then factorizing   by    yields 

                                           (3.8) 

Where         is the cube input,       is the superpoly input of         and 

is the linear combination of all terms which do not contain cube inputs         . 

3.4 Terminology 

To distinguish        from   , cube testers partition the set of public 

variables into two complimentary subsets, called cube variables, CV and superpoly 

variables, SV. 

These notions are illustrated with the example where four variables   ,   ,    

and    are used.     and    are considered as cube inputs and    and    are 

considered as superpoly inputs.  

                                                                   (3.9) 

     is considered as cube and         is considered as a superpoly, because  

                                                                 (3.10) 

Superpoly Inputs Cube Inputs 

                          

Figure 3-1 Cube and Superpoly Examples 

Here the cube variables(CV) are    and    and the superpoly variables (SV) are 

   and   . Therefore by setting a value to    and   , for example      and     , 

one can compute         by summing function for all possibilities choices of 

    . Note that it is not required for all superpoly variables to actually appear in the 
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superpoly of the maxterm. For example if function then the superpoly of      is    

but the superpoly variables are both    and   . 

When the given function is a hash function, not all inputs should be considered 

as variables and not all Boolean components should be considered as outputs, for the 

sake of efficiency and keeping the consequent equations simple as possible. For 

example if f maps 1024 bits to 256 bits, one may choose 8 cube variable input and 8 

superpoly variable input and set a fixed value to the other outputs. These fixed inputs 

determine the coefficient of each monomial in the Algebraic Normal Form with cube 

variable and superpoly variable as variables. This is similar to the preprocessing phase 

of key recovery cube attacks where the attacker has access to all input variables. 

Finally for the sake of efficiency, attacker may only evaluate the superpolys for a 

subset of 256 Boolean components of the output. 

Cube Testers distinguish a family of functions from random functions by testing 

a property of the superpoly for a specific choice of cube variable and superpoly 

variable. This idea will be explained with the help of simple examples.  

Consider 

                                                                          (3.11) 

And suppose that we choose cube variables    and    and superpoly variables 

   and    and evaluate the super poly of     . 

                                                               (3.12) 

This  yields zero for any          {   } , that is the superpoly of      is zero, 

i.e none of the monomials     ,        ,         or          appears in  . In 

comparison, in a random function the superpoly of      is null with probability only 

    , which suggests that   was not chosen at random (indeed, it was chosen 

particularly sparse, for clarity). Generalizing the idea, one can deterministically test 
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whether the superpoly of a given maxterm is constant, and return “random function” 

if and only if the superpoly is not constant. 

Let           . A probabilistic test is presented that detects the presence of 

monomials of the form               (e.g.       ,           etc).  

A random value of (       )   {   }    is chosen. Then           is 

summed over all values of             to get  

           (3.13) 

Where p is a monomial such that  

                                                           (3.14) 

where the polynomial   contains no monomial with        as a factor in its 

algebraic normal form.  

The process is repeated N times, recording all the values of          . If   

were a random function, it would contain at least one monomial of the form 

           with high probability, hence for a large enough number of repetitions N, 

one would record at least one nonzero           with high probability. However if 

no monomial of the form            appears in the algebraic normal form, 

          always evaluates to zero. 

3.5 Cube Testers Attack Methodology 

Consider a cryptographic primitive, such as a hash function in this particular 

case, to be a Boolean function with multiple inputs bits and output bits. 
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Figure 3-2 Cube Test of one Output Bit of a Cryptographic Primitive 

 

Following the terminology shown in figure 3.1, some number   of the input bits 

are designated as a vector of cube inputs x               , and some number   of 

the input bits are designated as a vector of superpoly inputs y =             . All 

input bits other than the cube inputs and superpoly inputs are set to 0 as they are 

unused bits so they are zeroed to keep following equations to a low complexity. Then 

a particular output bit can be treated as a polynomial function of the cube inputs and 

superpolys inputs:  F(    .  

Function F can be expressed as 

                                   (3.15) 

In GF(2), multiplication is same as Boolean “and”, and addition is the same as 

Boolean “exclusive-or”. The first part of the right hand side of equation (3.15) 

consists of the terms in the polynomial that includes all the cube inputs plus one or 

more superpoly inputs. The cube inputs are factored out, leaving a polynomial in just 

the superpoly inputs. The second part of the right hand side of equation (3.15) consists 
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of the remaining terms in the polynomial  , which is another polynomial   in the 

cube and superpoly inputs. The polynomial   is called the superpoly of F with respect 

to the cube inputs  .  

The superpoly      can be calculated by the summation procedure, without 

even knowing the polynomial formula for  , as long as the overall Boolean function 

F can be evaluated.  

For summation procedure, first all unused inputs of   are set to be zero. This 

includes all public and secret inputs which are not part of superpoly input or cube 

input. This is required to reduce the overall degree and density of the underlying 

equations. Then all superpoly inputs are (which are included in  ) set to  . Then a 

loop is run for all possible cube inputs (i.e from all zeros to all ones). And each 

iteration’s resulting equation is adding to  , which is then shown as  

                                                                            (3.16) 

The value of Q is returned at completion of iterations.  

 

Figure 3-3 Cube Test of all Output Bits of a Cryptographic Primitive 
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In the summation of   over the      values of x, each term in   (as shown in 

equation 3.1) is added in an even number of times, since no term in   contains all of 

   through     Therefore, in GF(2) arithmetic, the terms in   sum up to 0. The terms 

in  , however are added in only once, when         . Therefore, the summation 

yields just  . 

The cube test is based on summation procedure. The null hypothesis is that the 

cryptographic primitive is a random polynomial. Therefore, for any particular choice 

of cube and superpoly inputs, the superpoly   is also a random polynomial. Evaluate 

  for some number of randomly chosen values for the superpoly inputs and apply a 

statistical test to the resulting series of superpoly output values. If the statistical test 

fails at a designated significance level, then the null hypothesis is disproved,   is not 

a random polynomial, and the cryptographic primitive exhibits nonrandom behavior. 

Testing one or more superpolys might reveal nonrandom behavior where testing the 

cryptographic primitive as a whole might not reveal nonrandom behavior. 

Calculating the superpoly   requires calculating the whole cryptographic 

primitive, which yields n output bits, not just one. Each output bit is a different 

polynomial function of the cube and superpoly inputs, as shown in figure 3.2. Thus, 

the cube test actually tests multiple superpolys for non randomness.  

 

3.6 Property Testers 

Cube testers combine an efficient property tester on the superpoly, which is 

viewed either as a polynomial or as a mapping with a statistical decision rule. This 

section gives a general definition of cube testers, starting with basic definitions.  
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3.6.1 Definition 3.2 

A family tester for a family of functions   takes as input a function   of same 

domain   and tests if f is close to  , with respect to a bound   on the distance 

The tester accepts if         , rejects with high probability if   and   are 

not  -close and behaves arbitrarily otherwise. Such a test captures the notion of 

property testing, when a property is defined by belonging to a family of functions  , a 

property tester is thus a family tester of a property  . 

3.6.2 Concept of Property Testers 

Cube testers detect non randomness by applying property testers to superpolys, 

informally, as soon as a superpoly has some “unexpected” property (that is anormally 

structured) it is identified as nonrandom. Given a testable property     , cube 

testers run a tester for   on the superpoly function  , and use a statistical decision rule 

to return either random or nonrandom. The decision rule depends on the probabilities 

| |

|  |
 and 

|     |

| |
 and on a margin of error chosen by the attacker. A family F will be 

differentiated from using the property  if  

 
| |

|  |
   

|     |

| |
 | 

|
| |

|  |
   

|     |

| |
| 

is non-negligible. That is, the tester will determine whether f is significantly closer to 

  than a random function. 

3.7 Testable Properties 

In this section some examples of testable properties will be discussed, which 

can be applied to superpoly, that can be used to build cube testers. Let C be the size of 
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Cube Variables and S be the size of Superpoly Variables, the complexity is given as 

the number of evaluations of the tested function  . Note that each query of the tester 

to the superpoly requires    queries to the target cryptographic function. The 

complexity of any property tester is thus, even in best case, exponential in the number 

of CV. 

3.7.1 Balance Test 

A cryptographic polynomial should be a random polynomial, it is expected to 

contain as many zeros as ones in its truth table. Superpolys that have a strongly 

unbalanced truth table can thus be distinguished from random polynomials, by testing 

whether it evaluates as often to one as to zero, either deterministically (by evaluating 

the superpoly for each possible input), or probabilistically (over some random subset 

of SV).  

A probabilistic version of the test makes      iterations, for random 

distinct values of      . Complexity is respectively    and     . 

 

3.7.2 Constantness 

A particular case of balance test considers the “constantness” property, i.e 

whether the superpoly defines a constant function, that is, it detects either that f has 

maximal degree strictly less than C (null superpoly), or that f has degree strictly 

greater than C (non-constant superpoly). This is equivalent to the maximal degree 

monomial test, used to detect non-randomness of a cryptographic primitive.  

3.7.3 Low Degree 

A random superpoly has degree atleast       with high probability. 

Cryptographic functions that rely on a low-degree function are likely to have 



24 

superpolys of low degree. Because it closely relates to probabilistically checkable 

proofs and to error-correcting codes, extensive research has been done on low-degree 

testing. The test by Aon et al. [28], for a given degree   queries the function at about 

     points and always accepts if the algebraic normal form of the function has 

degree at most  , otherwise it rejects with some bounded error probability. 

3.7.4 Presence of Linear Variables 

This is a particular case of low-degree test discussed in section 3.7.3, for degree 

    and a single variable. Indeed, the algebraic normal form of a random function 

contains a given variable in at least one monomial of degree atleast two with 

probability close to 1. One can thus test whether a given superpoly variable appears 

only linearly in the superpoly. One can test whether a given superpoly variable 

appears only linearly in the superpoly or not. 

Randomly (         ) is picked. Then both possible values of    are put in the 

function. If 

P(0,          )    P(1,          )                (3.17) 

Nonlinear is returned. And if  

P(0,          )   P(1,          )                 (3.18) 

Linear is returned. These conditions are repeated N times. This test answers correctly 

with probability about       and computes        time the function  .  

3.7.5 Independence Test 

Under the null hypothesis, each pair of superpoly should behave like two 

independent fair coins. Therefore, over all the input samples, one-fourth the time the 

pair of outputs should be (0,0), one-fourth the time the pair of outputs should be (0,1), 

one-fourth the time the pair of outputs should be (1,0) and one-fourth the time the pair 
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of outputs should be (1,1). The counts for the chi-square test of superpoly pair (     ) 

are    = observed number of       pairs in the series of   values for superpolys 

         ,    = observed number of (0,1) pairs,    = observed number of (1,0) pairs 

and    = observed number of (1,1) pairs and                    . 

3.7.6 Off-By-One Test 

Under the null hypothesis, over all the input samples, when one of the superpoly 

input bits is flipped from 0 to 1 or 1 to 0, half of the time the output bit should be 

flipped and half of the time the output bit should not be flipped. The counts for the 

chi-square test of output    and input    are    = observed number of times    did not 

flip when    flipped,    =  observed number of times    flipped when    flipped, and 

          .  

One subtlety in the off-by-one test is that the same occurrence must not be 

counted twice. For example, suppose two of the m superpoly input samples happen to 

be 101110 and 001110 (s = 6). Flipping the first bit in the first sample will cause the 

output bits to flip or not flip in the same way as flipping the first bit in the second 

sample. Thus, the outcomes from flipping the first bit for these two samples are not 

independent. In each such case, the number of samples will be reduced by 1. 

3.8 Summary 

In this chapter the description and methodology of the cube testers attack has 

been discussed. The complete process of the cube testers attack has been followed by 

taking an example of polynomial for better understanding. After the conceptual view, 

the actual procedure has been carried out by going through algorithms and theorems. 

At the end, concepts of property testers and examples of testable properties have been 

discussed.   
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C h a p t e r  4  

 

4 Structure of  SHA-256 

4.1 Introduction 

Hash functions are a building block for numerous cryptographic applications. In 

this chapter, a description of hash function with particular focus on Secure Hash 

Algorithm (256 bit version) has been given. Properties of good hash functions have 

also been discussed. Focus has been laid on structure of SHA-256 throughout this 

chapter. 

Section 4.2 gives a general introduction of hash functions. Section 4.3 contains 

the general classes of hash function. Section 4.4 discusses the general properties of 

good hash functions. Section 4.5 explains the structure of SHA-256 in detail.  

4.2 Hash Function 

A hash function is a cryptographic primitive that compresses an arbitrary length 

input into a fixed length output called message digest. It does this in such a way that 

output is effectively unique with regard to the input, and the process cannot be 

reversed to yield the input from the output.  In strict mathematical terms, hash 

function can be defined as  

  {    }   {    }       (4.1) 

where   is the fixed length of the hash function h in bits. 

 The output of   must be effectively unique. This means that a computation that 

produces and   and   such that      and           must take at least  
 

  hash 

operation, which is approximately the number of has operations in which an   and    

could be found using random search only. 
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Hash functions are also called one-way functions because it is easy to determine 

the hash from the message but mathematically infeasible to determine the message 

from the hash. This means that given a message digest   such that           

computing   from   should require work atleast equivalent to hash operations, which 

is the number of hash operations necessary to find   by exhaustive search. 

4.3 Classes of Hash Functions 

At the highest level, hash functions can be split into two classes. Keyed and 

Unkeyed hash functions. Keyed hash functions are also called Message 

Authentication Codes (MACs), allows message authentication by symmetric 

techniques. MAC algorithms take two functionally distinct inputs, a message and a 

secret key, and produce a fixed-size say ( -bit) output, with the design intent that it is 

infeasible in practice to produce the same output without knowledge of key. MACs 

can be used to provide data integrity and symmetric data origin authentication, as well 

as identification in symmetric-key schemes. 

An unkeyed hash function’s hash value corresponding to a particular message   

is computed in time    . The integrity of this hash value is protected in some manner. 

At a subsequent time    , the following test is carried out to determine whether the 

message has been altered, i.e whether a message    is the same as the original 

message. The hash value of    is computed and compared to the protected hash-value, 

if they are equal, one accepts that the inputs are also equal, and thus that the message 

has not been altered. The problem of preserving the integrity of a potentially large 

message is thus reduced to that of a fixed-size hash-value. 
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4.4 Hash Function Properties 

Three properties are discussed in this section, for an unkeyed function   with 

inputs   and    and outputs   and   . 

4.4.1 Preimage Resistance 

For any pre-specified output, it is computationally infeasible to fine any input 

which hashes to that output, i.e, to fine any preimage    such that           , when 

given any   for which a corresponding input is not known. 

4.4.2 Second Preimage Resistance 

For any pre-specified output, it is computationally infeasible to find any second 

input which has the same output as any specified input, i.e, given x to find a second 

preimage        such that             . 

4.4.3 Collision Resistance 

It is computationally infeasible to find any two distinct inputs       which hash 

to the same output, i.e, such that             . For collision resistance, there is free 

choice of both inputs. 

4.5 Secure Hash Algorithm – 256 (SHA-256) 

SHA-256 is a 256-bit has and is supposed to provide 128 bits of security 

against collision attacks. In SHA-256, the message to be hashed is first padded with 

its length in such a way that the result is a multiple of 512 bits long and then parsed 

into 512-bit message blocks                       . 

The message blocks are then processed one at a time. Beginning with a fixed 

initial value        sequentially compute 
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                                 (4.2) 

 where   is the SHA-256 compression function and   means word-wise mod 

addition.      is the hash of  . 

4.5.1 Padding and Parsing 

Input message is to be padded to make its length a multiple of 512 bits. 

Suppose the length of message  , in bits is  . Append the bit  “ ” to the end of the 

message, and then   zero bits, where   is the smallest non-negative solution to the 

equation                     . To this, append the 64-bit block which is equal 

to the number  , length of message written in binary. So that length of actual given 

input could be determined from the input. For example, the (8-bit ASCII) message 

“abc” has length of 24 bits (as there are three characters, each of eight bits), so it is 

padded with a one, then 448 – (24 + 1) = 423 zero bits, and then its length to become 

the 512-bit padded message 

01100001     01100010     01100011     1     00…0 0      0…011000 

    a                       b                c                      423 bits  64 bits  

Parse the message into N 512-bit blocks                 The first 32 bits of 

message block   are denoted   
   

, the next 32 bits are   
   

, and so on up to    
   

. Big-

endian convention is used throughout, so within each 32-bit word, the left most bit is 

stored in the most significant bit position. 

4.5.2 SHA-256 Hash Computation 

SHA-256 can be used to hash a message, M, having a length of   bits, where 

         . The algorithm uses a message schedule of sixty four 32-bit words, 
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eight working variablesof 32 bits each and a hash value of eight 32-bit words. The 

final result of SHA-256 is a 256 –bit message digest. 

The words of message schedule are labeled               The eight 

working variablesare labeled               and   . The words of the hash value are 

labeled   
   

   
   

     
   

, which will hold the initial value,       replaced by each 

successive intermediate hash value (after each message block is processed),       and 

ending with the final hash value,       SHA-256 also uses two temporary words,    

and     

4.5.3 SHA-256 Constants 

SHA-256 uses a sequence of sixty-four constant 32-bit words, 

  
{   }

   
{   }

       
{   }

. These words represent the first thirty-two bits of the 

fractional parts of the cube roots of the first sixty-four prime numbers. In hex, these 

constant words are as follows. 

Table 4-1Constants used in SHA-256 calculation 

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 

923f82a4 ab1c5ed5 d807aa98 12835b01 243185be 550c7dc3 

72be5d74 80deb1fe 9bdc06a7 c19bf174 e49b69c1 efbe4786 

0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da 

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 c5a79147 

06ca6351 14292967 27b70a85 2e1b2138 4d2c6dfc 53380d13 

650a7354 766a0abb 81c2c92e 92722c85 a2bfe8a1 a81a664b 

c24b8b70 c76c51a3 b192e819 d6990624 f40e3585 106aa070 

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 

5b9cca4f 682e6ff3 748fa2ee 78a5636f 84c87814 8cc70208 



31 

90befffa a4506ceb bef9a3f7 6c7178f2   

 

 

4.5.4 SHA-256 Functions 

SHA-256 uses six logical functions, where each function operates on 32-bit 

words, which are represented as     and  . The result of each function is a new 32-bit 

word. 

                               (4.3) 

                                          (4.4) 

∑      
{   }
                                 (4.5) 

∑      
{   }
                                 (4.6) 

  
{   }

                                    (4.7) 

  
{   }

                                      (4.8) 

4.5.5 SHA-256 Computation Main Loop Steps 

The SHA-256 hash computation uses functions and constants discussed in 

section 4.5.3 and 4.5.4. Addition is performed modulo      After preprocessing is 

completed, each message block,                  is processed in order using the 

following steps. 

First of all message schedule    is calculated using the following equations. 

    {
  

   
                                                                                                  

  
{   }               

{   }                                        
 

            (4.9) 

  
{   }

 and   
{   }

 are defined above in equations 4.7 and 4.8. 
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After preparation of message schedule, eight working variables  

              and   are initialized with the         hash value: 

     
     

 

     
     

 

     
     

 

     
     

 

     
     

 

     
     

 

     
     

 

     
     

 

Then a loop is run from 0 to 63 showing 64 steps of main loop used to calculate 

the hash value. Following functions are calculated in the loop. 

      ∑    
{   }

 
               

{   }
     

    ∑    
{   }
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Then the     intermediate hash value      is found using the following 

equations. 

  
   

      
     

 

  
   

      
     

 

  
   

      
     

 

  
   

      
     

 

  
   

      
     

 

  
   

      
     

 

  
         

     
 

  
   

      
     

 

All these values are concatenated to get a result of 256 bits. 

  
   

     
   

     
   

     
   

      
   

      
   

     
   

     
   

 

After these all steps hash for one input of 512 bits is found. Then these steps 

are repeated for total number of blocks of input. And output for each block is XORed 

with the last one. At the XOR calculation after the last block, last output is the final 

hash value found for that particular input. 

4.6 Summary 

This chapter covers the structural details of the hash function SHA-256 on 

which tests are to be carried out. Before testing the statistical properties, it was 

important to analyze the structure of SHA-256 in detail. The hashing algorithm of 

SHA-256 contains preprocessing steps, which includes padding and parsing of input 

message into 512 bit length blocks. Then main loop containing 64 iterations is run on 
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each block. And output hash of each block is XORed in last output. Thus in the end, a 

hash of 256 bits is generated.  



35 

C h a p t e r  5  

 

5 Cube Testers Attack on SHA-256 

5.1 Introduction 

In this chapter, details of cube testers attack and Property Testing on SHA-256 

are included. SHA-256 is the target hash function. In this research, the results 

obtained on SHA-256 for Balanceness test, Off By One test and Impedance test have 

been discussed.  

In Section 5.2, Cube Testers Attack on SHA-256 has been specified. Section 5.3 

contains the reason for selecting particular superpoly inputs and cube inputs, Section 

5.4 includes the Setting up of cube input for Statistical analysis and description of Chi 

Square test, Section 5.5 includes details of Cube Testers Attack Implementation as 

implemented in C++, Section 5.6  contains Balance Test methodology and results, 

Section 5.7 contains Impedance test methodology and results and in Section 5.8 Off 

by One test methodology and results are discussed. 

5.2 SHA-256 Customizations for Cryptographic Tests 

Some customizations are done in SHA-256 for the sake of simplicity so it can 

be tested for statistical properties easily. First of all, length of input taken for hash 

functions was limited 512 bits (i.e one block of input). So that XORing of output of 

more than one block doesn’t complicate the results.  

Secondly pre-processing phases are removed, which include padding and 

parsing. As padding amends non-zero bits (length of message in bits) at the end of the 

block, and for all the statistical tests, input bits which are not part of cube or superpoly 

input are supposed to be kept zero[1]. Parsing is used to break up a large input 



36 

message into 512 bit blocks. It is not required as input taken is of length of 512 bits 

already (one block input). 

5.3 Selection of Cube and Superpoly Input Bit 

Cube testers are kind of black box tests. As per the authors of Cube Testers the 

selection of "good" bits depends on the structure of the cipher, and significantly 

affects the results. Finding the optimal bits is a difficult problem. The choice of 

superpoly variables does depend often on an insight in the structure of the first few 

rounds of an iterative construction. Otherwise this is still a lot a matter of trial and 

error.  

The structure of Hash functions in our case is often complex and selection of 

weak input bits is not easy. So for the sake of completion, whole input of SHA-256, 

i.e 512 bits were divided into 64 blocks, with each block of 8 bits. And all blocks 

were taken as Superpoly input one by one. Random blocks of Cube inputs were 

chosen while testing non-random behavior of Superpoly inputs. Different superpoly 

inputs gave nonrandom behavior while testing non random properties with different 

superpoly inputs. 

In this way weak inputs of SHA-256 are also found out for different tests. 

5.4 Input for Statistical  Attack 

Each run of Cube Tester on SHA-256 algorithm’s core functions samples a 

group of superpoly and cube input of the target hash function, SHA-256. The input is  

defined by choosing   cube inputs and   superpoly inputs at random,   samples of 

the superpoly input values are chosen at random and the superpolys are calculated, 

yielding a series of   samples for each superpoly bit range, where    

                . These outputs are subjected to three statistical tests – balance test, 
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independence test and off by one test to attempt to disprove the null hypothesis that 

the target hash function is a random polynomial. 

5.4.1 Chi-Square Test 

Each of the three statistical tests is a chi-square test. The chi-square test 

categorizes the series of random values being tested into discrete bins and counts the 

occurrences in each bin. The    statistic is  

     ∑
        

 

  

 
                                           (5.1) 

Where b is the number of bins,    is the observed count in the i-th bin, and    is 

the expected count in the i-th bin if the null hypothesis is true. Typically the    values 

are derived from the total of the counts in all the bins. 

The    statistic obeys a chi-square distribution with    degrees of freedom. 

When the    values are determined as    is   –   . The significance is the probability 

that a statistic greater than or equal to    would be observed by chance when the null 

hypothesis is true. The significance is 1 minus the cumulative distribution function of 

the chi-square distribution: 

                        
 

  
  

  

 
                                (5.2)  

As the observed counts    deviate farther from the expected counts   ,    

increases and the significance decreases. If the significance falls below a certain 

threshold  , the statistical test fails (the null hypothesis is disproved at a significance 

of  ), otherwise statistical test passes. Statistical tests of cryptographic pseudorandom 

number generators typically use   in the range 0.01 to 0.001. For tests applied in our 

research work, chi square criterion of 0.01 is being used. 
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5.4.1.1 Why choose a significance level of 0.01? 

When p is larger, say 0.02 or 0.05, the chi-square tests are more stringent, 

smaller differences between the observed and expected values causes the significance 

to fall below the threshold and the test to fail. But this means a “false failure”, where 

the test fails even though the function really is random, is more likely. On the other 

hand, when p is smaller, say 0.01, the chi-square tests are more lenient, larger 

differences are required between the observed and expected counts to cause the 

significance to fall below the threshold and the test to fail. A level of significance less 

than 0.01 can cause “false pass” where the test passes even though the function really 

is non-random. So value of p is taken 0.01  for these tests which is recommended for 

cryptanalytic tests. 

 

 

 

 

 

 

 

5.5 Cube Testers Attack Implementation 

This portion includes the implementation details of the cube testers attack by 

describing the functionalities of each function in the C++ code.  

5.5.1 The Main Function 

Two arrays of binary zeros named         and              are declared 

in this main function. Then initial values of SHA-256 are declared in a variable 

Figure 5-1 Chi Square Distribution Table 
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named       . Then input is changed as per the value of constants        and 

       declared at the start of the program. These constants declared at the start, 

define the position of superpoly input and cube input that is to be used in the program. 

Then the input bits of         are changed which are specified by        and 

       in the main function and resulting output is written in the file          . This 

is done so that input which is fed to SHA-256 function can be verified for correctness 

later on if required.  

Two loops in nested form are run to increase values of superpoly and cube input 

by 1 each and forward the updated input to SHA-256 program for hash computation. 

Each of these loops is run 256 times as number of cube input bits and superpoly 

inputs bits are 8 each. Inside the inner loop SHA-256 function is called which 

calculates the hash value and returns it to the main function. 

The output from SHA-256 is also received back into the main function which is 

then written in the output file using file writing feature of C++. 

5.5.2 SHA-256 Function 

 This function is used to calculate the hash of 512 bits input. The difference 

between the function made for the tests and standard SHA-256 hash function is that 

the pre-processing part is omitted. This SHA-256 function contains the following 

functions. 

5.5.2.1 Split  Function 

 This function divides the 512 bits input to 16 blocks of 32 bits each. Each block 

is input to the function in one step of hash function main round. It takes first 16 steps 

out of total 64 rounds of hash function to take in the whole 512 bit input. Then the 

main round’s parts are implemented on the input blocks. 
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5.5.3 Chi Square Function 

Values from the main function are fed to Chi Square function and it returns the 

Chi Square Value as per the specifications set for the particular test, that is being 

carried out. Estimated values for the output are already calculated. Actual values 

which are returned after calculated after SHA-256 function are compared with 

estimated values and extend of difference between expected and actual values defines 

the Chi Square value.  

5.5.4 Environment Used for Cube Testers Attack 

The Cube Testers Attack is implemented using Microsoft Visual Studio 2010 

Version 10.0.40219.1 SP1 Release on a HP Pavilion M6 Notebook PC with Intel(R) 

Core(TM) i5-3210M CPU @ 2.50GHz processor. It has 8 GB RAM and Windows 7 

as baseline operating system. 

In MS Visual Studio, Release configuration instead of default Debug 

configuration, so that the execution speed of the code increases.  

5.6 Balance Test 

Under the null hypothesis the hash function is a random function, each 

superpoly should behave like a fair coin. Over all the input samples, half the time the 

output should be zero and half the time the output should be one. The counts for the 

chi-square test of superpoly    are    which is equal to observed number of zeros in 

the series of m values for superpoly   ,    is equal to observed number of ones.     is 

the estimated number of zeros and    is the estimated number of ones.  

        
 ⁄  
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5.6.1 Balance Test Methodology  

Preprocessing rounds of SHA-256 have been removed as they add non-zero 

bits in the last 64 bits of the input block. In cube tester attack, all unused bits of input, 

which are not part of cube input or superpoly input should be zero. For balance test, 

size of cube input     and superpoly input      is set to 8 bits each. So out of 512 input 

bits, only 16 bits of input are manipulated for a single test run. Rest 496 bits are kept 

zeros.  

SHA-256 is run    times for a single superpoly input. As with a single 

superpoly input,    iterations of cube input are used. Superpoly input size is also eight 

bits, and each possible iteration of eight bits of superpoly input is used. So that makes 

   iterations of superpoly input. 

As superpoly is 8 bits long, so total 64 superpolys are made from 512 bits input, 

each superpoly is of eight bit size. And for each single superpoly, 7 cube inputs are 

tried from random locations. So the total iterations of SHA-256 for a particular round 

are                which makes 29360128 (     ) iterations for SHA-256 for 

balance ness  test of a particular round of SHA-256.  

The rounds tested for unbalanceness are rounds 17 and up because in it takes 

initial 16 rounds of SHA-256 to use whole input in the SHA-256 digest structure. 

Each round uses 32 bits of input and mixes it with output of last round to find output 

of next round. So any non-randomness found for less than 17 rounds is meaningless 

as whole input is not used up till round 17. So total complexity for all rounds tested, 

i.e round 17 to round 30 is                , which makes 411041792+ (  

     ) iterations of reduced round SHA-256. 

Results of cube testers attack are fed to chi square test to test the variation is 

just result of a chance or there is significant difference in actual and expected results. 
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Degree of freedom used for this test is 1 as there are only two possible results and 

degree of freedom is one less than the number of possible results. Value of p is kept to 

0.01 as recommended for cryptographic algorithms. The resulting value is 6.635 as 

per the chi square table shown in Figure 5.1.  

5.6.2 Balance Attack Results 

Non-randomness is found from round 17 up till round 25 of SHA-256. Result 

are given for all reduced round SHA-256’s. Balance test has been applied uptill 30 

rounds. 

All results are given in table 5.1 and table 5.2.Cube  inputs from seven different 

locations are tried with each of single superpoly, the chi square value mentioned in 

observation table is the highest value among the chi square values with different cube 

inputs. All 512 bits of input are divided into 64 blocks of 8 bits each. So for one round 

of SHA-256, 64 chi square values are given in table 5.1 and table 5.2, each value is 

highest among 7 values found for that particular bit range with specific number of 

rounds of SHA-256. Values exceeding Chi Square threshold, i.e 6.635 are formatted 

bold and underlined. 

Table 5-1 Chi SquareValues of Balance Test with 17 Round SHA-256 to 23 Round SHA-256 for all Input Bit 

Ranges 

                 Rounds 

Bit Ranges 

17 18 19 20 21 22 23 

1 – 8 4.585 2.345 4.346 5.422 3.656 2.818 0.641 

9 – 16 5.432 1.023 3.628 5.815 5.82 2.51 0.962 

17 – 24 6.471 0.925 0.345 3.726 0.315 1.49 1.535 

25 – 32 1.489 5.032 1.249 5.15 6.492 0.676 3.304 

33 – 40 5.173 3.141 0.387 0.886 5.361 1.592 5.497 

41 – 48 3.742 7.308 4.133 3.551 0.639 0.598 3.792 

49 – 56 2.905 0.256 5.029 0.984 1.139 3.533 6.436 

57 – 64 4.845 3.044 0.357 3.496 1.924 1.977 5.225 

65 – 72 6.363 0.59 4.838 2.969 1.598 5.832 0.505 
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73 – 80 5.144 1.758 4.724 3.949 5.589 2.159 1.023 

81 – 88 4.002 4.969 1.152 7.557 6.029 2.388 3.266 

89 – 96 2.971 1.026 3.125 7.215 3.867 5.177 5.591 

97 – 104 1.25 6.042 3.627 0.709 4.445 4.846 1.656 

105 – 112 0.653 3.422 0.035 4.977 3.484 1.167 3.849 

113 – 120 5.582 1.292 1.303 1.157 6.15 3.664 4.830 
121 - 128 1.067 4.524 5.084 3.117 2.24 1.58 4.822 

129 – 136 5.984 2.927 4.547 3.238 1.147 3.5 0.944 

137 - 144 5.804 3.799 6.3 3.620 2.323 4.28 3.82 

 145 – 152 6.327 0.568 3.688 5.744 0.046 4.839 4.089 

153 – 160 0.475 0.458 4.125 2.297 2.046 1.673 5.991 

161 – 168 1.622 3.379 0.634 1.424 4.036 3.914 4.224 

169 – 176 1.916 5.545 3.026 2.756 3.36 5.377 3.747 

177 – 184 6.053 4.420 2.189 0.384 2.481 8.594 1.139 

185 – 192 4.671 3.946 3.647 1.298 4.173 2.619 3.938 

193 – 200 4.722 2.84 3.795 2.015 1.675 6.086 0.296 

201 – 208  4.627 0.704 1.928 5.522 5.458 0.599 5.182 

209 – 216 5.674 0.854 4.609 5.780 2.956 5.247 0.323 

217 – 224 0.685 5.804 4.141 3.174 0.631 1.700 1.514 

225 – 232 3.628 5.116 2.624 6.221 3.223 1.017 1.616 

233 – 240 2.338 0.357 5.286 6.424 3.745 7.052 5.478 

241 – 248 0.928 2.88 5.681 2.439 4.967 1.587 1.357 

249 – 256 4.728 0.495 0.465 5.82 0.744 0.543 6.177 

257 – 264 1.164 1.081 0.625 2.754 0.503 4.296 5.545 

265 – 272 4.457 1.82 2.589 4.387 2.410 3.233 2.107 

273 - 280 4.208 1.474 1.171 3.922 4.929 1.419 1.210 

281 – 288 4.034 4.554 5.346 4.545 5.540 0.380 5.411 

289 – 296 4.673 1.987 1.785 3.165 0.933 6.135 6.929 

297 – 304 0.588 0.039 1.636 1.583 0.129 2.109 0.587 

305 – 312 2.05 0.470 2.661 0.511 1.490 5.285 2.632 

313 – 320 0.676 4.733 5.855 2.377 2.070 4.785 0.717 

321 – 328 2.612 4.070 2.198 1.986 4.571 2.976 2.777 

329 – 336 5.556 3.561 2.464 0.298 4.411 2.252 3.483 

337 – 344 6.138 5.194 2.824 4.93 3.91 2.852 2.961 

345 – 352 6.813 5.902 3.382 3.122 0.468 4.09 7.237 

353 – 360 2.662 4.928 4.208 1.632 0.542 6.052 2.042 

361 – 368 4.398 5.731 1.245 0.550 5.594 0.529 0.179 

369 – 376 1.377 2.434 0.484 5.092 2.314 6.089 6.013 

377 – 384 3.663 0.953 4.876 4.424 0.680 3.438 4.851 

385 – 392 1.542 0.352 1.255 4.772 3.287 3.54 2.287 

393 – 400 4.724 1.511 4.055 4.293 5.241 5.324 6.382 

401 – 408 0.879 5.067 1.382 1.007 3.581 2.822 1.896 

409 - 416 3.571 0.246 5.36 4.859 2.610 3.67 4.337 

417 – 424 0.493 4.073 1.888 3.6 0.219 5.722 2.742 

425 – 432 4.084 0.543 1.144 2.902 5.035 2.655 4.058 

433 – 440 4.932 3.912 3.925 0.921 3.724 0.693 4.996 

441 – 448 6.208 1.334 4.991 3.329 5.304 3.504 0.858 

449 – 456 1.63 6.13 2.148 5.238 3.705 0.246 0.016 
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457 – 464 6.72 3.36 5.101 5.788 1.066 3.404 6.243 

465 – 472 6.941 4.16 3.752 4.524 2.573 3.296 3.384 

473 – 480 6.786 4.007 3.180 4.755 2.695 3.703 3.974 

481 – 488 7.064 7.84 0.773 5.704 2.919 5.44 1.979 

489 – 496 8.116 7.1079 6.058 2.302 5.665 4.479 6.451 

497 – 504 7.193 6.919 3.19 9.162 4.181 3.989 0.881 

505 – 512 7.377 7.458 0.034 7.196 6.172 3.698 0.379 

 

 

Table 5-2  Chi SquareValues of Balance Test with 24 Round SHA-256 to 30 Round SHA-256 for all Input Bit 

Ranges 

                 Rounds 

Bit Ranges 

24 25 26 27 28 29 30 

1 – 8 5.309 5.326 4.507 5.435 5.152 6.186 1.540 

9 – 16 4.615 4.795 0.131 3.918 1.022 4.672 5.503 

17 – 24 5.051 5.312 0.201 4.641 3.992 4.683 1.896 

25 – 32 0.529 5.866 0.366 0.119 0.793 4.625 2.696 

33 – 40 5.943 4.497 5.893 0.514 5.661 3.457 2.135 

41 – 48 5.775 4.143 5.061 5.275 3.792 5.478 1.724 

49 – 56 5.956 0.082 5.117 5.614 4.794 4.158 2.217 

57 – 64 2.44 1.885 4.626 3.106 2.548 2.776 1.280 

65 – 72 4.475 4.112 0.748 1.729 3.917 6.043 4.250 

73 – 80 1.463 2.779 5.12 4.423 2.43 0.827 5.752 

81 – 88 0.316 0.215 2.481 3.808 3.743 0.112 5.592 

89 – 96 1.266 2.405 3.164 3.033 4.877 3.909 0.038 

97 – 104 4.248 0.165 5.484 2.64 2.615 3.113 4.043 

105 – 112 5.481 1.182 1.66 1.46 5.648 1.825 2.036 

113 – 120 1.975 3.136 3.732 1.371 5.554 0.653 0.156 

121 - 128 0.966 2.318 2.936 2.386 1.825 5.713 5.377 

129 – 136 3.164 4.219 2.152 4.753 4.789 3.839 1.592 

137 - 144 4.54 5.179 4.009 0.711 0.073 3.493 0.695 

 145 – 152 2.308 3.067 0.698 1.023 1.423 1.851 5.748 

153 – 160 0.645 0.085 4.787 1.169 0.831 1.809 5.434 

161 – 168 2.972 2.766 3.993 6.306 2.806 0.594 3.292 

169 – 176 5.95 2.414 6.383 2.966 0.317 1.733 1.878 

177 – 184 3.459 3.947 3.164 4.158 1.624 2.671 6.162 

185 – 192 2.895 2.03 5.301 0.172 0.486 6.036 1.867 

193 – 200 4.559 3.655 5.184 6.282 0.384 0.927 5.287 

201 – 208  3.817 2.651 6.204 3.973 6.487 5.48 4.047 

209 – 216 3.562 3.324 4.245 3.164 1.297 1.832 3.09 

217 – 224 3.715 3.238 0.751 2.057 6.249 0.921 1.604 

225 – 232 6.497 3.192 2.309 1.949 5.274 0.941 6.046 

233 – 240 0.458 4.01 2.263 5.904 4.208 3.615 2.792 
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241 – 248 4.81 3.468 6.196 6.363 0.678 0.373 1.009 

249 – 256 4.841 3.7698 4.722 5.615 6.305 5.558 1.227 

257 – 264 1.376 3.34 0.801 0.422 4.986 3.477 2.008 

265 – 272 1.975 3.943 5.445 6.22 2.502 5.477 1.476 

273 - 280 1.543 5.242 2.062 0.704 2.802 4.425 2.042 

281 – 288 1.556 5.116 3.234 4.744 2.027 6.342 6.475 

289 – 296 0.171 3.633 0.887 3.018 6.217 5.741 1.406 

297 – 304 1.201 1.552 0.458 3.168 4.071 4.051 6.317 

305 – 312 6.228 1.976 0.297 1.099 5.931 6.476 2.04 

313 – 320 6.322 0.134 1.943 0.503 2.25 4.242 2.537 

321 – 328 1.179 6.211 6.296 2.424 0.852 1.265 3.681 

329 – 336 3.465 6.054 1.776 1.842 0.932 0.15 1.208 

337 – 344 5.471 0.376 0.749 0.547 4.735 4.623 1.922 

345 – 352 2.791 5.384 4.75 5.302 4.293 0.107 2.115 

353 – 360 5.274 4.1 4.743 3.441 4.198 5.335 5.617 

361 – 368 4.384 4.485 5.746 1.519 6.382 1.68 4.877 

369 – 376 1.457 1.225 2.648 2.438 4.481 5.595 6.016 

377 – 384 1.052 6.093 0.397 2.057 0.9527 2.663 2.443 

385 – 392 0.506 4.150 2.458 3.312 2.322 5.793 1.094 

393 – 400 1.126 0.968 1.565 0.225 3.33 6.311 4.193 

401 – 408 4.964 5.894 4.992 1.168 3.753 6.047 1.939 

409 - 416 4.158 5.683 4.374 6.405 3.904 4.185 4.224 

417 – 424 7.526 2.748 3.275 0.914 6.156 4.334 3.087 

425 – 432 4.867 7.834 5.577 3.733 6.289 5.138 2.721 

433 – 440 5.14 0.923 1.966 1.464 1.967 1.904 4.267 

441 – 448 0.304 4.578 5.217 6.28 5.727 2.036 1.684 

449 – 456 5.556 4.717 1.543 3.318 3.737 4.708 2.823 

457 – 464 6.215 5.944 2.096 3.436 1.048 2.645 4.33 

465 – 472 5.528 6.203 5.294 1.065 0.190 0.761 0.511 

473 – 480 4.853 2.741 5.531 4.960 1.129 4.528 5.696 

481 – 488 1.92 3.523 2.885 1.491 1.741 2.449 5.212 

489 – 496 3.332 1.726 2.199 1.319 6.125 6.075 1.943 

497 – 504 4.228 6.914 4.593 1.131 6.042 2.607 5.172 

505 – 512 5.967 7.170 5.799 0.376 1.664 1.802 2.679 

 

5.6.2.1 Results for SHA-256 with 17 Rounds 

17 round SHA-256 showed non-randomness for a number of superpoly inputs. 

Output is non-random for superpoly input bits from 345 to 352 and 457 to 512. 17 

round Hash function was mainly nonrandom when superpoly belongs to last part of 

input. Reason is that last part of input is just used in last 3 to 4 rounds. So it doesn’t 

get enough iteration to remove its randomness. 
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5.6.2.2 Results for SHA-256 with 18 Rounds 

In 18 round SHA-256, non-randomness is found when superpoly is set to last 

bit ranges, i.e 4 blocks of 8 bits each i.e  bit number 481 to 512 bits. It is also 

nonrandom for bit range 41 to 48.   

5.6.2.3 Results for SHA-256 with 20 Rounds 

For 20 round SHA-256, nonrandomness is reduced to quiet an extent. And it is 

found non-random for superpoly input is from bit number 81 to bit number 88, bit 

number 89 to bit number 96 and last 2 pairs of bits, i.e bit number 497 to bit number 

512. 

5.6.2.4 Results for SHA-256 with 22 Rounds 

 For 22 round SHA-256, non-randomness is found only for super poly input bit 

ranges from 177 to 184 and from bit number 233 to bit number 240. Rest all Chi-

Square values are under the threshold Chi-Square value given in Chi Square table. 

5.6.2.5 Results for SHA-256 with 23 Rounds 

For 23 round SHA-256, non-randomness is found for bit ranges 289 to 296 and 

from 345 to 352.  

5.6.2.6 Results for SHA-256 with 24 Rounds 

For 24 round SHA-256, non-randomness is found for bit range 417 to 424. 

5.6.2.7 Results for SHA-256 with 25 Rounds 

For 25 round SHA-256, non-randomness is found for bit ranges 425 to 432 and 

from 497 to 504.  
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Table 5-3 Balance Test Results on SHA-256 

Number of Rounds Weak Superpoly Input Bits 

17  345-352,  457-512 

18 41-48,  481-512 

20 81-88,  89-96,  497-512 

22 177-184,  233-240 

23 289-296,  345-352 

24 417-424 

25 425-432,  497-504 

26 and more rounds No weak input found with 8-bit superpoly input 

 

 

5.6.2.8 Results for SHA-256 with 26 and more Rounds 

Chi Square Values for 26 and above steps are comfortably satisfy the null 

hypothesis of non-randomness.  

5.7  Impedance Test 

Under the null hypotheses, each pair of superpoly should behave like two 

independent fair coins. Therefore over all the input samples, one-fourth the time the 

pair of outputs should be (0,1) and similarly for (0,1), (1,0) and (1,1). The counts for 

the chi-square of super poly          are    = ovserved number of (0,0) pairs in the 

series of   values for superpolys    and   ,    =  observed number of (0,1) pairs,    

= observed number of (1,0) pairs and    =  observed number of (1,1) pairs and 

                  ⁄ .  
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5.7.1 Impedance Test Methodology 

Preprocessing rounds of SHA-256 have been removed as they add non-zero 

bits in the last 64 bits of the input block. In cube tester attack, all unused bits of input, 

which are not part of cube input or superpoly input should be zero.  

For impedance test, size of cube input     and superpoly input      is set to 8 bits 

each. So out of 512 input bits, only 16 bits of input are manipulated for a single test 

run. Rest 496 bits are kept zeros.  

SHA-256 is run      times for a single superpoly input. As with a single 

superpoly input,    iterations of one cube input are used and 7 different cube inputs 

are used with single superpoly. In the table below only the highest value of chi square 

is shown which is obtained using any one of cube inputs. 

As two superpolys are tested for a single impedance test, SHA-256 algorithm is 

run         times for each test of a superpoly. And for one superpoly input pair, 

65536 output bit pairs are checked. So for test total SHA-256 algorithm is run  

                    times. And total of 4194304 bit pairs are tested using chi 

square test for non-randomness.  

Degree of freedom used for this test is 3 as there are four possible output results 

and        and level of significance i.e value of   is kept to 0.01 which is 

strictest for cryptographic algorithms. The threshold resulting value is 11.345 as per 

the chi square table shown in Figure 5.1. 

5.7.2  Impedance Test Results 

Impedance test deducted non-randomness most of the  inputs on which it is 

applied. Number of rounds is not reduced either. Superpoly input and Cube Inputs are 

of 8 bits each during this test similar to Balance Test.  
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Randomness is only found when superpoly input bit range is from bit number 

225 to bit number 232, from bit number 241 to bit number 248 and from bit number 

265 to bit number 272. Rest all bit showed non-randomness failing to pass impedance 

test. 

Bit ranges giving random results are given below in table 5-5. 

 

Table 5-4 Superpoly Bit Ranges used for Impedance Test and respective Chi Square Values 

Bit Range of Superpolys Maximum Chi Square Value 

1 – 8 21.1048 

9 – 16 14.103 

17 – 24 16.0018 

25 – 32 14.4567 

33 – 40 21.1448 

41 – 48 16.4007 

49 – 56 15.2349 

57 – 64 18.2416 

65 – 72 15.7476 

73 – 80 13.4911 

81 – 88 14.9569 

89 – 96 15.0206 

97 – 104 20.7972 

105 – 112 12.5139 

113 – 120 14.3792 

121 - 128 20.2707 

129 – 136 15.5327 

137 - 144 13.7425 

 145 – 152 13.7013 

153 – 160 15.3298 

161 – 168 15.1259 

169 – 176 19.111 

177 – 184 19.7831 

185 – 192 16.6366 

193 – 200 14.2089 

201 – 208  17.8696 

209 – 216 20.4261 

217 – 224 19.1312 

225 – 232 10.9291 

233 – 240 19.6805 

241 – 248 9.3333 
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249 – 256 16.6262 

257 – 264 12.0787 

265 – 272 10.4713 

273 - 280 14.8073 

281 – 288 16.965 

289 – 296 18.8754 

297 – 304 11.3493 

305 – 312 14.2485 

313 – 320 14.7768 

321 – 328 19.9442 

329 – 336 15.9002 

337 – 344 13.5158 

345 – 352 19.6415 

353 – 360 13.0736 

361 – 368 16.1736 

369 – 376 15.2147 

377 – 384 12.4775 

385 – 392 14.3013 

393 – 400 12.675 

401 – 408 16.9726 

409 - 416 17.9666 

417 – 424 11.894 

425 – 432 18.6752 

433 – 440 19.766 

441 – 448 15.8215 

449 – 456 13.7868 

457 – 464 14.1442 

465 – 472 17.3581 

473 – 480 18.7198 

481 – 488 15.0384 

489 – 496 19.6326 

497 – 504 15.9176 

505 – 512 19.7059 

 

Table 5-5 Weak Bit Ranges found by Impedance Test 

Number of Rounds Less Weak Superpoly Input Bits 

256 225-232 

256 241-248 

256 265-272 
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5.8 Off By One Test 

Under the null hypothesis, over all the input samples, when one of the 

superpoly input bits is flipped from 0 to 1 or 1 to 0, half the time the output bit should 

also flip and half the time the output bit should not flip. The counts for the chi-square 

test of output    and input    are    = observed number of times    did not flip when 

   flipped,     = observed number of times    flipped when    flipped and        

   ⁄ . Applying the off by one test to one cube test program run yields 256.s pass fail 

results, one for each combination of a superpoly output and a superpoly input. This 

test is in concept similar to Avalanche Test. 

One subtlety in the off by one test is that the same occurance must not be 

counted twice. For example, suppose two of the m superpoly input samples happen to 

be 1101110 and 1001110 (s=7). Flipping the second bit in the first sample will cause 

the output bits to flip or not flip in the same way as flipping the second bit in the 

second sample.  Thus, the outcomes from flipping the first bit for these two samples 

are not independent. In each case, the number of samples will be reduced by 1. 

5.8.1  Off By One Test Methodology 

Preprocessing rounds of SHA-256 have been removed as they add non-zero 

bits in the last 64 bits of the input block. In cube tester attack, all unused bits of input, 

which are not part of cube input or superpoly input should be zero. For balance test, 

size of cube input     and superpoly input      is set to 8 bits each. So out of 512 input 

bits, only 16 bits of input are manipulated for a single test run. Rest 496 bits are kept 

zeros.  

Results of cube testers attack are fed to chi square test to test the variation is 

just result of a chance or there is significant difference in actual and expected results. 
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Degree of freedom used for this test is 1 as there are only two possible results. And 

value of p is kept to 0.01 as recommended for cryptographic algorithms. The resulting 

value is 6.635 as per the chi square table shown in Figure 5-1. 

In binary every odd number is one bit different than the immediate smaller 

even number.  In Off By One test, for    (=256) repetitions of superpoly , 128 

comparisons are to be made. Comparison will be made such that output of one even 

repetition is saved. Then output of immediate next odd input is taken and both outputs 

are XORed. It is an XORing of two pairs of 256 bits each. Output 256 bits should 

contain 128 zeros and 128 ones as per the null hypothesis.  

Total number of computations of SHA-256 done are     (=             ). 

Total number of comparisons done are     (=      ). Each comparison includes 

comparing 256 bits. 

5.8.2 Off By One Test Results 

 Off by one test is applied on SHA-256 with Superpoly input and Cube Inputs 

are of 8 bits each. This test failed to find any non randomness in the output using Chi 

Square’s lenient most level of significance which is 0.01 for cryptographic algorithms.  

Only a very few number of samples gave significance level of non-randomness 

under Chi Square limits. On basis of those results one can’t say that Off By One test 

found any nonrandomness in SHA-256.    

Table 5-6 Chi SquareValues of Off By One Test with 17 Round SHA-256 to 23 Round SHA-256 for all Input Bit 

Ranges 

                 Rounds 

Bit Ranges 

17 18 19 20 21 22 23 

1 – 8 8.048 8.597 8.280 11.297 6.924 9.740 11.102 

9 – 16 12.975 7.044 9.659 11.523 10.312 8.734 12.814 

17 – 24 11.336 13.153 13.132 7.348 6.904 10.311 12.759 
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25 – 32 9.090 11.962 9.846 9.725 11.883 7.5200 11.059 

33 – 40 10.187 9.158 11.275 12.006 10.723 7.2835 11.497 

41 – 48 8.990 11.091 9.954 10.178 8.616 12.332 11.799 

49 – 56 7.660 11.990 8.937 10.347 7.421 12.145 6.649 

57 – 64 12.392 10.835 11.836 13.182 10.169 6.650 9.79 

65 – 72 8.192 7.791 12.357 9.230 11.551 7.774 9.575 

73 – 80 10.545 12.242 13.224 6.829 6.950 8.415 9.372 

81 – 88 11.473 9.255 9.299 8.836 13.138 11.176 8.511 

89 – 96 9.844 8.082 10.525 13.008 7.882 8.328 10.938 

97 – 104 12.235 8.968 12.375 9.321 9.030 11.774 7.873 

105 – 112 12.957 10.478 12.192 11.700 10.020 12.974 9.782 

113 – 120 9.097 7.967 7.096 7.059 9.186 9.291 13.14 
121 - 128 9.562 8.996 11.272 7.840 8.749 6.652 10.787 

129 – 136 7.183 10.165 6.745 12.1205 11.780 7.864 12.463 

137 - 144 10.787 9.805 9.303 8.149 8.847 11.617 6.727 

 145 – 152 6.792 10.105 12.340 10.078 8.321 13.058 7.025 

153 – 160 12.967 8.771 8.316 7.594 7.054 8.68 11.135 

161 – 168 11.082 12.454 9.596 8.774 8.909 10.688 11.48 

169 – 176 12.327 10.554 8.139 9.820 10.756 8.885 12.101 

177 – 184 8.046 7.371 12.391 12.397 8.263 12.808 8.989 

185 – 192 7.464 11.090 8.748 12.037 7.060 8.447 7.606 

193 – 200 11.731 12.018 9.194 7.034 12.101 7.043 11.000 

201 – 208  8.420 12.419 11.961 8.794 10.125 8.294 12.229 

209 – 216 8.394 12.709 10.354 8.358 7.229 10.04 9.907 

217 – 224 12.658 10.696 7.731 10.264 6.929 8.417 8.831 

225 – 232 7.982 6.829 9.947 7.1173 11.784 11.779 11.52 

233 – 240 11.964 11.862 8.000 12.341 11.247 8.048 9.393 

241 – 248 10.466 9.218 6.672 8.787 9.220 11.25 8.204 

249 – 256 12.818 11.481 8.048 7.920 7.081 8.968 7.06 

257 – 264 7.507 9.551 7.761 7.127 12.613 7.281 10.688 

265 – 272 9.028 7.351 12.363 10.900 12.277 7.59 11.161 

273 - 280 12.204 8.231 11.211 11.813 6.638 9.13 9.503 

281 – 288 9.658 8.981 7.888 12.702 6.686 9.24 9.906 

289 – 296 8.617 7.995 7.607 7.556 11.640 8.105 8.421 

297 – 304 10.920 9.337 8.217 8.531 8.518 10.263 12.536 

305 – 312 10.732 6.959 10.596 11.861 11.058 8.552 8.04 

313 – 320 8.212 8.806 10.159 11.539 8.414 12.927 7.361 

321 – 328 10.284 10.195 9.676 7.606 11.432 11.265 7.17 

329 – 336 8.346 8.719 11.351 11.556 10.300 10.706 12.58 

337 – 344 8.019 10.941 11.178 8.048 7.072 12.15 10.595 

345 – 352 10.654 9.880 10.405 9.302 8.425 9.342 10.304 

353 – 360 11.614 9.243 6.658 9.305 11.120 7.397 10.021 

361 – 368 10.333 6.848 9.529 7.094 7.623 11.961 10.996 

369 – 376 7.728 11.199 9.526 9.642 12.734 9.636 7.777 

377 – 384 9.975 10.771 9.979 9.844 11.620 9.618 8.102 

385 – 392 11.73 11.593 11.395 8.876 7.932 12.361 9.37 

393 – 400 8.883 7.7632 9.726 12.996 9.518 7.809 13.06 

401 – 408 9.287 8.3745 10.767 13.197 8.757 11.714 13.113 
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409 - 416 11.924 7.784 11.555 9.225 9.313 8.824 8.084 

417 – 424 11.161 10.421 11.467 11.245 11.909 9.168 8.688 

425 – 432 12.219 9.343 12.651 11.936 10.689 8.509 8.311 

433 – 440 8.503 6.911 12.961 8.673 12.875 6.866 8.441 

441 – 448 10.774 9.917 10.448 7.983 12.44 6.950 11.104 

449 – 456 12.328 7.946 9.314 7.338 6.816 11.960 10.392 

457 – 464 7.498 6.870 9.311 10.387 6.740 12.274 11.038 

465 – 472 10.731 11.849 11.591 9.023 8.443 7.946 8.946 

473 – 480 7.037 12.829 11.825 12.783 11.145 12.626 12.988 

481 – 488 7.091 8.100 11.264 9.766 12.582 9.202 12.341 

489 – 496 9.119 12.509 11.447 8.715 10.092 7.297 8.637 

497 – 504 12.857 11.003 8.637 8.050 10.323 7.125 6.709 

505 – 512 12.600 9.982 7.639 7.763 6.821 9.906 12.158 

 

 

Table 5-7 Chi SquareValues of Off By One Test with 24 Round SHA-256 to 30 Round SHA-256 for all Input Bit 

Ranges 

                 Rounds 

Bit Ranges 

24 25 26 27 28 29 30 

1 – 8 7.066 9.96597 8.0791 9.993 11.271 8.438 12.498 

9 – 16 9.952 12.4588 9.281 10.818 6.645 6.823 9.166 

17 – 24 7.446 9.65393 7.249 7.547 8.022 10.396 9.780 

25 – 32 9.556 9.63064 8.759 12.428 6.697 7.225 12.416 

33 – 40 10.162 8.31425 7.615 11.335 10.129 12.766 12.315 

41 – 48 12.042 6.94623 8.784 7.564 7.695 8.446 8.424 

49 – 56 11.286 12.3019 11.622 8.892 9.211 13.193 11.490 

57 – 64 7.384 6.71944 8.625 12.139 11.740 7.153 8.743 

65 – 72 8.984 12.3306 10.338 12.374 10.444 6.849 12.598 

73 – 80 10.869 11.0827 9.155 9.479 9.103 8.005 12.427 

81 – 88 12.909 11.5835 11.331 11.179 11.102 12.965 7.275 

89 – 96 9.917 12.019 7.301 11.315 7.894 8.360 10.566 

97 – 104 7.173 11.6853 6.816 12.514 9.050 7.430 8.559 

105 – 112 7.809 12.6293 11.485 8.563 8.088 9.538 7.207 

113 – 120 7.667 11.3403 8.434 11.388 9.125 10.636 7.939 
121 - 128 9.472 9.78413 12.484 10.486 11.127 12.081 9.099 

129 – 136 9.768 9.879 8.644 12.501 7.664 8.730 12.069 

137 - 144 11.972 9.533 12.917 12.114 13.184 6.730 10.552 

 145 – 152 11.706 8.959 11.908 8.769 12.914 13.153 8.899 

153 – 160 9.623 10.939 12.616 11.521 9.571 10.238 7.766 

161 – 168 12.534 8.003 7.704 11.212 7.387 13.262 7.344 

169 – 176 13.255 13.043 10.290 6.765 8.494 7.431 10.069 

177 – 184 7.638 10.084 10.957 10.699 11.731 7.205 10.951 

185 – 192 9.904 9.783 11.344 7.508 8.353 8.728 10.496 
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193 – 200 12.229 12.712 9.597 6.950 11.045 9.254 6.776 

201 – 208  12.111 11.333 6.806 8.491 7.212 12.628 12.137 

209 – 216 11.976 9.175 12.242 12.892 10.459 9.876 6.934 

217 – 224 9.995 9.949 9.553 9.774 8.720 12.299 12.788 

225 – 232 11.428 8.917 12.109 6.803 10.353 10.199 12.240 

233 – 240 12.531 12.459 11.138 8.841 11.340 8.118 9.541 

241 – 248 7.450 10.779 6.890 12.233 8.629 8.175 6.674 

249 – 256 7.927 7.888 12.275 10.227 12.053 11.056 10.660 

257 – 264 8.178 6.869 8.501 11.067 11.189 9.908 8.959 

265 – 272 7.468 10.080 8.460 9.208 9.669 10.589 10.656 

273 - 280 10.788 10.422 8.478 7.645 10.625 7.437 9.989 

281 – 288 9.898 11.184 8.461 12.744 10.001 11.924 12.785 

289 – 296 10.497 11.253 12.547 9.461 7.625 8.401 9.563 

297 – 304 9.165 10.679 12.247 13.120 10.088 7.376 10.936 

305 – 312 12.410 10.002 7.932 7.451 12.514 7.164 6.775 

313 – 320 12.944 13.144 7.578 11.939 11.538 9.103 11.214 

321 – 328 12.878 8.679 12.611 9.228 11.061 8.459 10.039 

329 – 336 7.652 12.174 10.445 9.115 12.717 10.7586 9.788 

337 – 344 12.206 13.116 13.099 11.921 7.196 11.507 6.849 

345 – 352 11.263 7.616 7.992 13.141 8.450 9.856 8.774 

353 – 360 8.017 6.993 10.908 12.399 11.941 12.093 7.898 

361 – 368 9.393 12.910 7.766 13.238 12.793 12.981 6.662 

369 – 376 7.256 8.853 12.275 9.353 13.040 12.390 12.695 

377 – 384 7.318 11.913 7.680 11.827 9.678 9.657 12.109 

385 – 392 10.733 10.461 8.816 8.777 6.945 9.661 10.608 

393 – 400 12.812 7.299 10.86 11.296 12.810 9.786 13.073 

401 – 408 9.693 8.936 9.546 7.481 8.455 12.666 10.766 

409 - 416 12.168 9.301 11.823 13.027 12.83 13.129 8.820 

417 – 424 8.022 10.677 8.114 8.070 8.943 10.779 12.108 

425 – 432 12.961 7.289 12.164 9.262 6.774 11.347 7.767 

433 – 440 10.300 7.380 11.056 12.478 9.806 7.401 7.283 

441 – 448 9.536 11.130 8.501 8.876 10.18 8.079 10.194 

449 – 456 11.311 9.993 8.449 11.854 6.716 10.245 11.432 

457 – 464 11.487 12.720 11.600 12.054 8.954 9.313 11.081 

465 – 472 12.466 7.186 10.504 10.517 9.217 10.584 11.691 

473 – 480 7.379 10.754 13.022 8.230 10.126 8.962 12.093 

481 – 488 12.036 11.313 11.194 8.513 10.702 11.096 11.433 

489 – 496 11.383 9.600 12.465 12.999 10.378 11.308 6.644 

497 – 504 12.290 9.786 12.236 10.148 9.697 12.172 6.962 

505 – 512 12.137 9.404 12.734 9.881 12.333 10.723 8.576 

 

5.9 Conclusion 

The three tests (balance test, impedance test and Off By One test) applied on 

SHA-256 are discussed in this chapter. The theory, attack methodology and results are 
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included in this chapter. Statistical standard, Chi Square Test, which is used for 

deducting conclusion on the attacks is also discussed in this chapter. 

Balance Test succeeded in finding non-randomness over 25 rounds of main 

function of SHA-256 out of 64 rounds. Impedance test found randomness with 

complete 64 rounds of SHA-256. While Off By One test failed to find any non-

randomness as per the criteria defined in Chi Square test. 
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C h a p t e r  6  

 

6 Conclusion and Future Work 

6.1 Introduction 

In this chapter, the thesis has been concluded. Some possible enhancements of 

the work have been given in Section 6.3. 

6.2 Conclusion 

Cube Testers Attack is a relatively newer technique of cryptanalysis and its 

application on different new ciphers is important. A platform has been developed for 

the application of cube attack to any hash function.  

The three tests (balance test, impedance test and Off By One test) applied on 

SHA-256 are discussed in chapter 6. Balance Test succeeded in finding non-

randomness over 25 steps of main function of SHA-256 out of 64 steps. Impedance 

found randomness with complete 64 steps of SHA-256. While Off By One test failed 

to find any non-randomness as per the criteria defined in Chi Square test. 

6.3 Future Work 

Cube Testers can be used to check non random behavior in other hash functions 

especially light weight hash functions. This test is yet to be tested against Keccak, the 

SHA-3 standard hash function. Using same framework, properties other than those 

tested in this thesis can also be tested against SHA-256 and other advanced hashes. 
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Better results can be found against balanceness and Off by one test by 

increasing the size of cube input and superpoly input. For this better hardware 

resources are required. Parallel Computing can also help in this regard.  

This platform can be used to help testing ciphers, block and especially stream 

ciphers for non-randomness. And weaknesses found by Cube Testers can be used to 

predict result of advanced attacks like Dynamic Cube Attacks on ciphers. 

6.4 Summary 

In this chapter, the thesis has been concluded and future work is proposed 

which mainly focuses on increasing the sizes of superpoly and cube samples, testing 

other properties. Testing light weight ciphers and hashes against these properties. 
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Appendix-A 

C++ Code for Balance Test on SHA-256 

 

//Implementation of SHA 256 for BALANCE TEST 

 

#include <conio.h> 

#include<iostream> 

#include<vector> 

#include<fstream> 

#include<exception> 

#include<string> 

#include <sstream> 

#include <atlbase.h> 

#include <atlstr.h> 

#include <winbase.h> 

#include <math.h> 

 

//#define const1 50 

//#define const2 20 

#define const1 45 

#define const2 33 

using namespace std; 

 

typedef unsigned int uint; 

 

 

void BalanceTestWithChiSqr(char* Filename) 

{ 

 ifstream infile; 

 ofstream outfile; 

 char temp; 

 u_int counter1 = 0, counter0 = 0; 

 u_int expected_freq = 0; 

 double X0 = 0.00, X1 = 0.00; 

 double temp3 = 0.0, temp4 = 0.0; 

 

 expected_freq = 65536 / 2; 

 //open and read file 

 

 infile.open(Filename, ios::binary | ios::app); 

 

 //if file exists then proceed 

 if (!infile) 

 { 

  //error 

  cout << "\nError opening file for balance test\n"; 
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 } 

 else 

 { 

  while (infile.read(&temp, 1)) 

  { 

   if (temp == 0x31) 

   { 

    counter1++; 

   } 

   else if (temp == 0x30) 

   { 

    counter0++; 

   } 

  } 

 } 

 infile.close(); 

  if (counter0 < expected_freq) 

  temp3 = (counter0 - expected_freq)*(-1); 

 else 

  temp3 = (counter0 - expected_freq); 

 

 

 if (counter1 < expected_freq) 

  temp4 = (counter1 - expected_freq)*(-1); 

 else 

  temp4 = (counter1 - expected_freq); 

 

 

 X0 = 2 * (pow(temp3, 2) / expected_freq); 

 X1 = pow(temp4, 2) / expected_freq; 

 outfile.open("Balancetest.txt", ios::binary | ios::app); 

 if (!outfile) 

 {  

  cout << "\nError opening balancetest.txt file\n"; 

 } 

 else 

 { 

  outfile << X0 << endl; 

  outfile << X1 << endl; 

  outfile.close(); 

 } 

} 

string fromDecimal(uint n, int b) 

{ 

 string chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 

 string result=""; 

 while(n>0) 

 { 

  result=chars.at(n%b)+result; 

  n/=b; 
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 } 

 

 return result; 

} 

 

 uint K[]= 

 {   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 

0x59f111f1, 0x923f82a4, 0xab1c5ed5, 

   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 

0x9bdc06a7, 0xc19bf174, 

   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 

0x5cb0a9dc, 0x76f988da, 

   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 

0x06ca6351, 0x14292967, 

   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 

0x81c2c92e, 0x92722c85, 

   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 

0xf40e3585, 0x106aa070, 

   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 

0x5b9cca4f, 0x682e6ff3, 

   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 

0xbef9a3f7, 0xc67178f2}; 

    

    void makeblock(vector<uint>& ret, string p_msg) 

 { 

  uint cur=0; 

  int ind=0; 

  for(uint i=0; i<p_msg.size(); i++) 

  { 

   cur = (cur<<8) | (unsigned char)p_msg[i]; 

      

   if(i%4==3) 

   { 

    ret.at(ind++)=cur; 

    cur=0; 

   } 

  } 

 } 

    

class Block 

{ 

 public: 

 vector<uint> msg; 

  

 Block():msg(16, 0) { } 

 

    

 Block(string p_msg):msg(16, 0) 

 {  

  makeblock(msg, p_msg); 
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 } 

  

}; 

  

 

void split(vector<Block>& blks, string& msg) 

{ 

 for(uint i=0; i<msg.size(); i+=64) 

 { 

            

try 

{ 

   makeblock(blks[i/64].msg, msg.substr(i, 64)); 

      } 

      catch(...) 

       } 

} 

string mynum(uint x) 

{ 

 string ret; 

  for(uint i=0; i<4; i++) 

  ret+=char(0); 

   

  for(uint i=4; i>=1; i--) //big endian machine used 

  { 

          ret += ((char*)(&x))[i-1]; 

  } 

  return ret; 

} 

uint ch(uint x, uint y, uint z) 

{ 

 return (x&y) ^ (~x&z); 

} 

uint maj(uint x, uint y, uint z) 

{ 

 return (x&y) ^ (y&z) ^ (z&x); 

} 

uint fn0(uint x) 

{ 

 return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22); 

} 

 

uint fn1(uint x) 

{ 

 return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25); 

} 

 

uint sigma0(uint x) 

{ 

 return rotr(x, 7) ^ rotr(x, 18) ^ shr(x, 3); 
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} 

 

uint sigma1(uint x) 

{ 

 return rotr(x, 17) ^ rotr(x, 19) ^ shr(x, 10); 

} 

 

 

void sha256(string msg_arr,uint *H) 

{ 

 string msg; 

 

 msg=msg_arr; 

 

 uint num_blk = msg_arr.size()*8/512; 

 vector<Block> M(num_blk, Block()); 

 split(M, msg_arr); 

  

   

  for(uint i=0; i<1; i++) 

  {  

   vector<uint> W(64, 0); 

   for(uint t=0; t<16; t++) 

   { 

    W[t] = M[i].msg[t]; 

   } 

       

   for(uint t=16; t<64; t++) 

   { 

   W[t] = sigma1(W[t-2]) + W[t-7] + sigma0(W[t-15]) + W[t-16]; 

   } 

    

   uint work[8]; 

   for(uint i=0; i<8; i++) 

   work[i] = H[i]; 

   for(uint t=0; t<17; t++) 

   { 

    uint t1, t2; 

 t1 = work[7] + fn1(work[4]) + ch(work[4], work[5], work[6]) + K[t] + W[t]; 

    t2 = fn0(work[0]) + maj(work[0], work[1], work[2]); 

    work[7] = work[6]; 

    work[6] = work[5]; 

    work[5] = work[4]; 

    work[4] = work[3] + t1;  

    work[3] = work[2];  

    work[2] = work[1]; 

    work[1] = work[0]; 

    work[0] = t1 + t2; 

   } 

   for(uint i=0; i<8; i++) 
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   { 

   H[i] = work[i] + H[i]; 

            } 

  }  

} 

int main() 

{ string 

msg_arr="000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

00000000000"; 

 // 128 zeros 

 string msg; 

 uint H_Prev[8]={0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 

0x510e527f,   0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; 

 string 

temp_msg_arr="0000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000

0000000000000000"; 

 //128 zeros 

 char temp; 

 ofstream outfile; 

 ofstream outfile2; 

 ofstream outfile3;  //addition 

 ifstream infile;  //addition 

 char* FileName="input.txt"; 

 char* OutFileName="Output.txt"; 

 char* OutFileSHA2Name="SHA2Out.txt"; 

 outfile.open(OutFileName, ios::binary); 

 outfile.close(); 

 outfile3.open("Balancetest.txt", ios::binary); 

 outfile3.close(); 

 outfile.open(FileName, ios::binary); 

  { 

    char temparr[128]; 

    for(int i=0;i<128;i++) 

     temparr[i]=0x00;     

    for(int k=0;k<128;k++) 

    { 

     outfile.write(&temparr[k],1); 

    }     

 } 

  outfile.close();  

  infile.open(FileName, ios::binary); 

    { 

   int cnt=0,cnt_arr=0;   

   msg_arr[0]; 

   for(int i=0;cnt_arr<128;i=i+2) 

   {    

    if(cnt==0) 

    { 
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     infile.read(&temp,1); 

     msg_arr[cnt_arr]=temp<<4; 

     cnt=1; 

    } 

    if(cnt==1) 

    { 

     infile.read(&temp,1); 

     msg_arr[cnt_arr]=msg_arr[cnt_arr]|temp; 

     cnt_arr++; 

     cnt=0; 

    } 

 

   } 

    

  } 

  infile.close(); 

   msg=msg_arr; 

  

   for(int k=0;k<256;k++) 

   { 

    for(int l=0;l<256;l++) 

    { 

       

     uint H[]={0x6a09e667, 0xbb67ae85, 0x3c6ef372, 

0xa54ff53a, 0x510e527f,   0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; 

     sha256(msg,H); 

         for(int m=0;m<8;m++) 

     { 

      H_Prev[m]=H[m]^H_Prev[m]; 

     } 

     msg[const1]++; 

     

    } 

        

   outfile.open(OutFileName, ios::binary|ios::app); 

     if (!outfile) 

    { 

       //error 

    } 

    else 

    { 

     for(int k=0;k<8;k++) 

     { 

      uint tmp=0x00000000; 

      tmp=H_Prev[k]; 

      for(int cntr=0;cntr<32;cntr++) 

      { 

       char ch=0x00; 

 

       ch= (tmp & 0x80000000)>>31; 
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       ch=ch+'0x30'; 

        

       tmp=tmp<<1; 

       outfile<<ch; 

      } 

     } 

    } 

    outfile.close(); 

       for(int m=0;m<8;m++) 

    { 

     H_Prev[m]=0x00; 

    } 

      

    msg[const2]++; 

      } 

 

  BalanceTestWithChiSqr(OutFileName); 

  cout<<"Test Done"; 

  getch(); 

  return 0; 

} 
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