

CUBE TESTERS ON HASH FUNCTIONS

By

Muhammad Owais ul Haq

A thesis submitted to the Faculty of Information Security Department,

National University of Sciences and Technology, Pakistan in partial

fulfillment for the requirements of MS in Information Security

JULY 2014

ABSTRACT

Hashing Algorithms are of prime importance these days due to their

implementation in applications requiring data authentication and data forgery

detection and prevention. Without safeguards such as those offered by hash functions,

data would be extremely vulnerable to attacks which can alter or make changes in it.

‘Cube Testers’ Attack is a latest technique which is being utilized to test different

cryptosystems, both ciphers and hashes for non-randomness behavior. The attack

distinguishes a family of functions from random functions using some testable

properties like Balanced-ness, Constant-ness, presence of Low Degree, Linear

Variables and presence of Neutral Variables. As pseudorandom object has low

correlation with a structured object so it gives distinguishers that help finding

nonrandomness in the hashes. Implementation of Cube testers is possible with black

box access that is it can be independent of internal structure.

SHA-256 is the standard hash function recommended by NIST in 2002. It has

been tested against different cryptanalytic techniques including collision, pseudo

collision, preimage and second preimage attacks. It has been tested against Cube

Testers for the first time. SHA-256 is tested against three properties using Cube

Testers, Balance-ness, Impedance and Off By One. Reduced version of SHA-256 with

25 steps out of 64 steps has shown non-random behavior against Balance Test.

Complete 64 step SHA-256 is found vulnerable against Impedance Test. Off By One

test could not find any weakness against SHA-256.

iii

DEDICATION

All praise and thanks to almighty Allah, the most Gracious and the most

Compassionate, Master of the Day of Judgment.

I dedicate my work to my family and my teachers who have been a constant source of

encouragement and guidance for me throughout my work.

iv

ACKNOWLEDGEMENT

First of all, I would like to thank to Almighty Allah Who has blessed me with

intellect and strength, Who increased my knowledge and made me able to

successfully go through this phase and complete my work.

The first and the foremost person who I would like to acknowledge is my

supervisor Dr. Mehreen Afzal. Despite of her busy calendar, she was always available

for discussions and queries. She continuously kept me in the right direction by giving

valuable suggestions. She used to ask for my progress time by time and after

understanding my advancements, gave me appreciated ideas and recommendations.

Without her constant support, help and encouragement, timely completion of my

research work would have been impossible.

I am also immensely thankful to my guidance committee members Dr. Adil

Masood Siddiqui, Lecturer Sharjeel Riaz and Lecturer Mian Waseem Iqbal for their

persistent support and inspiration.

 I would also like to thank J. P. Aumasson, the author of Cube Attack and Cube

Testers Attack who clarified my queries through e-mails. Thanks to Alan Kaminsky

who helped me in the understanding of the cube attack through emails.

 I am also thankful to my Head of Department Dr. Babar and his team for

administrative help and support.

 I am immeasurably thankful to my family members who took care of me

throughout my MS studies.

v

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Overview .. 1

1.2 Need for Research .. 2

1.3 Problem Statement ... 2

1.4 Objectives ... 3

1.5 Research Methodology and Achieved Goals ... 3

1.6 Thesis Organization .. 4

2 Literature Review ... 5

2.1 Introduction .. 5

2.2 Cube Testers Attack on Hash Functions .. 5

2.2.1 MD6 .. 5

2.2.2 CubeHash ... 6

2.2.3 Skein ... 6

2.3 Cube Testers Attack on Ciphers ... 7

2.3.1 Trivium ... 7

2.3.2 Bivium .. 7

2.3.3 Rabbit Stream Cipher ... 8

2.3.4 Grain ... 8

2.4 Testable Properties ... 8

2.4.1 Balance Test ... 8

2.4.2 Independence Test .. 9

2.4.3 Off-By-One Test ... 9

2.4.4 Low Degree Test .. 9

2.4.5 Presence of Linear Variable Test .. 9

2.4.6 Presence of Neutral Variable Test ... 9

2.5 Attacks on SHA-256 .. 10

vi

2.6 Summary .. 11

3 Cube Testers Attack and Property Testing ... 12

3.1 Introduction .. 12

3.2 Cube Attack .. 12

3.2.1 Definition 3.1 .. 13

3.2.2 Preprocessing Phase ... 14

3.2.3 Online Phase ... 14

3.3 Cube Testers Attack Theory ... 14

3.3.1 Cube Variable (CV) and Superpoly Variable (SV) Inputs 16

3.4 Terminology ... 16

3.5 Cube Testers Attack Methodology ... 18

3.6 Property Testers .. 21

3.6.1 Definition 3.2 .. 22

3.6.2 Concept of Property Testers ... 22

3.7 Testable Properties ... 22

3.7.1 Balance Test ... 23

3.7.2 Constantness ... 23

3.7.3 Low Degree .. 23

3.7.4 Presence of Linear Variables .. 24

3.7.5 Independence Test .. 24

3.7.6 Off-By-One Test ... 25

3.8 Summary .. 25

4 Structure of SHA-256 .. 26

4.1 Introduction .. 26

4.2 Hash Function ... 26

4.3 Classes of Hash Functions .. 27

4.4 Hash Function Properties ... 28

4.4.1 Preimage Resistance ... 28

4.4.2 Second Preimage Resistance .. 28

vii

4.4.3 Collision Resistance ... 28

4.5 Secure Hash Algorithm – 256 (SHA-256) ... 28

4.5.1 Padding and Parsing ... 29

4.5.2 SHA-256 Hash Computation.. 29

4.5.3 SHA-256 Constants .. 30

4.5.4 SHA-256 Functions .. 31

4.5.5 SHA-256 Computation Main Loop Steps .. 31

4.6 Summary .. 33

5 Cube Testers Attack on SHA-256 ... 35

5.1 Introduction .. 35

5.2 SHA-256 Customizations for Cryptographic Tests .. 35

5.3 Selection of Cube and Superpoly Input Bit .. 36

5.4 Input for Statistical Attack .. 36

5.4.1 Chi-Square Test .. 37

5.4.1.1 Why choose a significance level of 0.01? ...38

5.5 Cube Testers Attack Implementation ... 38

5.5.1 The Main Function ... 38

5.5.2 SHA-256 Function ... 39

5.5.2.1 Split Function ...39

5.5.3 Chi Square Function ... 40

5.5.4 Environment Used for Cube Testers Attack ... 40

5.6 Balance Test ... 40

5.6.1 Balance Test Methodology ... 41

5.6.2 Balance Attack Results ... 42

5.6.2.1 Results for SHA-256 with 17 Rounds ...45

5.6.2.2 Results for SHA-256 with 18 Rounds ...46

5.6.2.3 Results for SHA-256 with 20 Rounds ...46

5.6.2.4 Results for SHA-256 with 22 Rounds ...46

5.6.2.5 Results for SHA-256 with 23 Rounds ...46

viii

5.6.2.6 Results for SHA-256 with 24 Rounds ...46

5.6.2.7 Results for SHA-256 with 25 Rounds ...46

5.6.2.8 Results for SHA-256 with 26 and more Rounds ...47

5.7 Impedance Test ... 47

5.7.1 Impedance Test Methodology .. 48

5.7.2 Impedance Test Results .. 48

5.8 Off By One Test ... 51

5.8.1 Off By One Test Methodology ... 51

5.8.2 Off By One Test Results .. 52

5.9 Conclusion .. 55

6 Conclusion and Future Work .. 57

6.1 Introduction .. 57

6.2 Conclusion .. 57

6.3 Future Work ... 57

6.4 Summary .. 58

C++ Code for Balance Test on SHA-256 .. 60

BIBLIOGRAPHY ... 69

ix

LIST OF FIGURES

Figure No. Page No.

Figure 3-1 Cube and Superpoly Examples .. 16

Figure 3-2 Cube Test of one Output Bit of a Cryptographic Primitive 19

Figure 3-3 Cube Test of all Output Bits of a Cryptographic Primitive 20

Figure 5-1 Chi Square Distribution Table ... 38

file:///C:/OWAISULHAQ/Personals/Academics/MSIS-9/Thesis/Report%20Writing/Thesis%20Report-Owais.docx%23_Toc398739796

x

LIST OF TABLES

Table No. Page No.

Table 2-1Cryptanalytic Attacks on SHA-256 .. 11

Table 4-1Constants used in SHA-256 calculation ... 30

Table 5-1 Chi SquareValues of Balance Test with 17 Round SHA-256 to 23 Round

SHA-256 for all Input Bit Ranges ... 42

Table 5-2 Chi SquareValues of Balance Test with 24 Round SHA-256 to 30 Round

SHA-256 for all Input Bit Ranges ... 44

Table 5-3 Balance Test Results on SHA-256 .. 47

Table 5-4 Superpoly Bit Ranges used for Impedance Test and respective Chi Square

Values .. 49

Table 5-5 Weak Bit Ranges found by Impedance Test ... 50

Table 5-6 Chi SquareValues of Off By One Test with 17 Round SHA-256 to 23

Round SHA-256 for all Input Bit Ranges .. 52

Table 5-7 Chi SquareValues of Off By One Test with 24 Round SHA-256 to 30

Round SHA-256 for all Input Bit Ranges .. 54

xi

KEY TO ABBREVIATIONS

SHA Secure Hash Algorithm

PC Personal Computer

MAC Message Authentication Code

XOR Exclusive OR Operation

ANF Algebraic Normal Form

FPGA Field-Programmable Gate Array

CV Cube Vector

SV Superpoly Vector

MD Message Digest

C Size of Cube Input

S Size of Superpoly Input

Q Superpoly Input

E Estimated number of samples in a catagory

m Total number of samples

 block of Input message

ROTR Rotate Right

SHR Shift Right

1

C h a p t e r 1

1 Introduction

1.1 Overview

Communication systems in the contemporary world continue to grow and

evolve. Integrity, confidentiality and authenticity have been big concerns in

communications systems. Most unkeyed hash functions commonly found in practice

were originally designed for the purpose of providing data integrity.

A hash function is any function that can be used to map digital data of arbitrary

size to digital data of fixed size, with slight differences in input data producing very

big differences in output data. A hash function is considered practically impossible to

invert, that is, to recreate the input data from its hash value alone. Hash function

should also satisfy the simple uniform hashing assumption -- that the hash function

should look random. If it is to look random, this means that any change to a key, even

a small one, should change the bucket index in an apparently random way. If we

imagine writing the bucket index as a binary number, a small change to the key

should randomly flip the bits in the bucket index. This is called information diffusion.

Cryptanalysis may be considered an integral part of design of a cryptographic

algorithm. The process continues even after propositions and acceptance of the

algorithms. A number of cryptanalytic techniques have emerged so far like

differential, linear, impossible differential, integral attack and the related key attack.

A new type of cryptanalytic technique named as cube attack has been proposed by Itai

Dinur and Adi Shamir in 2009. One variant of cube attack is cube testers attack

which combines the cube attack with efficient algebraic property testers, and can be

used to mount distinguishers or to detect non-randomness in cryptographic primitives.

2

Both cube attacks and cube testers require black-box access and target primitives with

secret and public variables. Meanwhile, they can be built on low-degree components.

Nevertheless, cube testers don’t require a low degree function and pre-computation, it

is just to satisfy some testable property with significantly higher (or lower) probability

than a random function.

Rather than recovering a secret key or otherwise attacking the primitive, cube

tester attack probes the primitive’s internal polynomial structure and can be used to

analyze the primitive’s statistical behavior.

1.2 Need for Research

Every cryptographic algorithm needs to be tested for the existing cryptanalytic

techniques and the upcoming ones. Without testing, one is not sure whether the

cryptosystem is secure or vulnerable to a particular attack. Cube testers attack is a

new type of cryptanalytic technique and hash functions should be explored and tested

against the cube testers attack. Cube testers attack was applied on MD6 by its authors

in the paper in which Cube testers attack was proposed. SHA-256 is 256 bit output

version of standard hash selected by NIST.

1.3 Problem Statement

There is a need to test the commonly used hash functions against the cube

testers attack as it is a new emerging threat. SHA-256 has not yet been tested against

Cube testers attack yet, despite being the standard Hash algorithm nominated by NIST.

Some of the hash functions have been tested against property testing using cube

testers attack. Cryptanalysis and attacks like differential cryptanalysis, linear

cryptansalysis, algebraic cryptanalysis, integral attack and related key attack are in

3

common practice. The cube testers attack should also be included in the

analysis/evaluation of the hash functions claiming to have “random” output.

1.4 Objectives

The objective of this research is to first, carry out a thorough study of the

literature on cube testers attack and general property testing to understand the

mechanics, and apply cube testers attack to find non random behavior in SHA-256.

Then customized code of SHA-256 has been developed in C++ excluding the

preprocessing phases in controlling input of hash function at bit level. Then code has

been developed for Cube Testers Attack and Property testing which includes Balance

test, Impedance test and Off By One test in C++ which was then applied on SHA-256

hash function.

1.5 Research Methodology and Achieved Goals

The research work has been divided into two main phases. In the first phase,

detailed study and literature review has been carried out related to the cube testers

attack. A strong theoretical concept has been built regarding the working of the cube

testers attack and property testing. A detailed study of SHA-256 has also been done to

understand its structure and then core function of SHA-256 was implemented in C++

in a customized fashion, excluding the pre-processing steps. In the second phase, the

implementation of the cube testers attack on Core function of SHA-256 has been

carried out. C++ has been used for the testing. Code for Balance-ness , Impedance and

Off By One tests was developed and implemented on SHA-256 core function to check

the hash algrorithm against these properties.

The three tests (balance test, impedance test and Off By One test) applied on

SHA-256. Balance Test succeeded in finding non-randomness over 25 steps of main

4

function of SHA-256 out of 64 steps. Impedance test found randomness with

complete 64 steps of SHA-256. While Off By One test failed to find any non-

randomness as per the criteria defined in Chi Square test.

1.6 Thesis Organization

The thesis report has been divided into six chapters. Chapter 2 contains the

literature view of this research in which all the related work found has been briefly

discussed. The description of the cube testers attack and property testing is explained

in Chapter 3 for the understanding of the concept of cube attack. In Chapter 4

structure of SHA-256 is discussed in detail. Chapter 5 contains the implementation

details of Cube Testers attack on SHA-256 and Property Testing results. The

properties tested on SHA-256 are Balance test, Off By One test and Impedance test.

Chapter 6 concludes the report and suggests the future work.

5

C h a p t e r 2

2 Literature Review

2.1 Introduction

In this chapter those hash functions and ciphers are discussed which have

already been attacked and tested by the Cube Testers attack. The implementations of

cube testers attack developed so far have also been reviewed. Maximum work has

been carried out on hash functions MD6, CubeHash and Skein, finalists of the SHA-3

competition[1][4], in literature.

The chapter has been divided into four sections. Section 2.2 contains review of

the hash functions that have been attacked by the cube testers attack. Section 2.3

presents the details of attack against stream ciphers. Section 2.4 describes some of the

testable statistic properties which have been tested using cube testers attack.

2.2 Cube Testers Attack on Hash Functions

Initial targets of the cube testers attack were to find an efficient way of finding

statistical weaknesses in hash functions, which could lead to more serious attacks. In

earlier papers of cube testers, MD6, Skein and CubeHash became the most popular

target of the cube attack. Trivium a stream cipher has also been tested against the cube

attack by Jean-Phillipe Aumasson [4].

2.2.1 MD6

Jean-Phillippe Aumasson, Itai Dinur and Adi Shamir introduced the Cube

Testers Attack in 2009 [1] [2]. They showed attack implementation on MD6, which

appeared as a Round 1 contestant in SHA-3 competition. It could not proceed to

6

Round 2 because of its slow algorithm. It was asked to be reduced to 40 rounds from

80 but 40 round MD6 was susceptible to differential cryptanalysis.

The reduced versions of MD6 having 18 and 66 rounds have been attacked by

the authors themselves. Cube testers detect imbalance over 18 rounds of MD6 in 2
17

complexity. Cube testers when applied to a slightly modified version of the MD6

compression function, they can distinguish 66 rounds from random in 2
24

complexity.

Different testable properties were tested against MD6, these results were found while

testing the balance of superpolys of MD6.

2.2.2 CubeHash

Alan Kaminsky has applied the cube testers on hash function CubeHash, a

candidate of SHA-3 competition [1]. The cube test program results were subjected to

the balance test, independence test and off-by-one test. Randomness was found for

Off-by-One test only.

This test was applied using parallel computing. 40 dual core CPU’s, each with

2.6 GHz clock and 8 GB main memory were used. The test took a total of

3,606,910,695,720 (approx. 2
42

) CubeHash evaluations. The evaluations took 1.25 *

10
6
 seconds.

2.2.3 Skein

Alan Kaminsky has attacked Skein, a SHA-3 candidate in 2010 [1]. The output

of Cube Test Program was tested for balanceness, impedance and off-by-one test.

Author found randomness for Off-by-One test.

Parallel computing setup was used for this test. 40 dual core CPU’s were used,

each having 2.6 GHz clock speed and 8 GB main memory. A total of

3,603,992,046,760 evaluations were performed.

7

2.3 Cube Testers Attack on Ciphers

Stream ciphers as well as Block ciphers have been tested for randomness tests

via cube testers. Generally ciphers can be represented with low degrees ANF as

compared to hash functions. So it is possible to extract the ANF of ciphers with

reduced rounds. Once ANF is found, more properties can be tested against them.

2.3.1 Trivium

Trivium was tested by Jean-Philippe Aumasson in the paper where cube testers

were proposed. Trivium takes as input a 80-bit key and a 80-bit Initial Vector and

produces a key stream after 1152 rounds of initialization. Each round corresponds to

clocking three feedback shift registers, each one having a quadratic feedback

polynomial.

Using Cube Testers non-randomness was detected on 885 rounds of Trivium

and verified attacks were experimented on reduced variants with up to 790 rounds.

The best result on Trivium is a cube attack on a reduced version of 767 initialization

rounds instead of 1152.

2.3.2 Bivium

Another stream cipher Bivium has been attacked by Shunbo Li, Yan Wang and

Jialong Peng using cube testers attacks in 2010 [5]. Bivium has a key length of 80 bits

and Non Linear Feedback Shift Register operates on a 177 bits internal state. 56

linearly independent equations have been found which include 40 single key bits and

16 equations requiring a total of 19 additions mod 2. Proposed attack reduces time

complexity from 2
39.12

 for Eibach and 2
27.5

 for Vielhaber to 2
26

.

8

2.3.3 Rabbit Stream Cipher

Rabbit Stream Cipher is one of the finalists of eSTREAM project which uses

128-bit secret key[8]. Analysis is based on chosen Initial Vector analysis on reduced

N-S round of Rabbit though using multi cube tester.With 2
25

 complexity, using one

iteration of next state function the keystream is completely distinguished from random.

2.3.4 Grain

Grain stream cipher was attacked using an efficient FPGA implementation [3].

The best result (a distinguisher on Grain-128 reduced to 237 rounds, out of 256) was

achieved after a computation involving 2
54

 clockings of Grain-128, with a 256 * 32

parallelization.

For instance, running a 30-dimensional cube tester on Grain-128 takes 10

seconds with FPGA machine, against about 45 minutes of bitsliced C implementation.

2.4 Testable Properties

In this section, efficiently testable properties will be discussed, which can be

used to build cube testers. Let C be the size of CV, and S be the size of SV, the

complexity is given as number of evaluations of tested function f. Each query of the

tester to the superpoly requires 2
C
 queries to the target cryptographic function.

2.4.1 Balance Test

A random function is expected to contain as many zeroes as ones in its truth

table. Superpolys that have a strongly unbalanced truth table can thus be distinguished

from random polynomials, by testing whether it evaluates as often to one as to zero,

either deterministically (by evaluating the superpoly of each possible input), or

probabilistically (over some random subset of the SV).

9

2.4.2 Independence Test

Under the null hypothesis, each pair of superpolys should behave like two

independent fair coins. Therefore, over all the input samples, one-fourth the time the

pair of outputs should be (0,0), and likewise for (0,1), (1,0) and (1,1) [1].

2.4.3 Off-By-One Test

Under the null hypothesis, over all the input samples, when one of the superpoly

input bits is flipped from zero to one or one to zero, half the time the output bit should

also also flip and half the time the output bit should not flip.

2.4.4 Low Degree Test

A random superpoly has degree atleast (S - 1) with high probability.

Cryptographic functions that rely on a low-degree function, however, are likely to

have superpolys of low degree. It closely relates to probabilistically checkable proofs

and to error-correcting codes.

2.4.5 Presence of Linear Variable Test

This is a particular case of the low degree test, for degree, d=1 and a single

variable. Indeed, the ANF of a random function contains a given variable in at least

one monomial of degree at least two with probability close to 1.

2.4.6 Presence of Neutral Variable Test

Dually to the linearity test, one can test whether a SV is neutral in the superpoly,

that is, whether it appears in at least one monomial.

Linearity Test and Neutrality Test does not require the superpoly to have a low

degree to be tested.

10

2.5 Attacks on SHA-256

SHA-256 is the 256 bit output version of SHA-2, which is widely deployed in

practical systems. The SHA-256 hash function has started getting attention recently

by the crypanalysis community due to the various weaknesses found in its

predecessors such as MD4, MD5, SHA-0 and SHA-1.

Reduced Round SHA-256 was attacked by Somitra Kumar Sanadhty and Palash

Sarkar. Collisions were found after 18 steps[25]. Differential paths for 19, 20, 21, 22

and 23 rounds of steps of SHA-256 were also found.

SHA-256 was attacked by Jian Guo and Krystian Matusiewicz in 2009 and

results were represented in paper, titled “Preimages for Step-Reduced SHA-2” [24]. A

preimage attack for 42 step-reduced SHA-256 with time complexity and

memory requirements of order . Attack applied was a meet-in-the-middle

preimage attack.

A new cryptanalysis technique Biclique is tested against SHA-256 and SHA-

512 hash functions for finding preimages by D. Khovratovich, C. Rechberger and A.

Savelieva called Biclique Cryptanalysis. Results and observations are discussed in

paper titled, “Bicliques for preimages: Attacks on skein-512 and SHA-3 family”.

Preimages were found against reduced steps of SHA-256. A preimage is found

against 43 step SHA-256 with complexity and against 45 step SHA-256

preimage is found with complexity .

A second order differential attack is carried out on SHA-256 by Mario

Lamberger and Florian Mendel in 2011. Second-order differential attack is shown on

the SHA-256 compression function reduced to 46 out of 64 steps. It is the best attack

applied so far with a practical complexity.

A summary of attacks performed of SHA-256 is given in table 2.1

11

Table 2-1Cryptanalytic Attacks on SHA-256

Attack Method Attack Authors Year Rounds Complexity

Deterministic Collision[25] S. Sanadhya and P. Sarkar 2008 24/64 2
28.5

Meet-in-the-middle Preimage[24] K. Aoki, J. Gao and Y. Sasaki 2009 42/64 2
251.7

Meet-in-the-middle Preimage[26] Jian Guo, San Ling and

Christian Rechberger

2010 42/64 2
248.4

Differential Pseudo

Collision[18]

M. Lamberger and F. Mendel 2011 46/64 2
178

Biclique Preimage[22] D. Khovratovich,

C. Rechberger, and

A. Savelieva

2011 45/64 2
255.5

Pseudo

Preimage[22]

2011 52/64 2
255

2.6 Summary

Cube testers attack doesn’t require the attack cryptosystem to have a low degree.

A detailed review of the stream ciphers, block ciphers and hash functions in which

non-randomness has been found using the cube testers attack is provided in the

chapter. Testable properties are also discussed which can be tested with the help of

Cube testers. The chapter also includes attacks launched against SHA-256 which are

found in literature.

12

C h a p t e r 3

3 Cube Testers Attack and Property Testing

3.1 Introduction

Generally a cryptosystem can be represented in the form of polynomials in

GF(2) containing both the secret and the public variables. For hash functions and

stream ciphers, the public variables refer to IV variables and for block ciphers it refers

to the plaintext variables. The cube testers attack detects nonrandom behavior without

recovering a secret key. Cube testers attack and its predecessors have been introduced

in 2008 [4].

The Chapter 3 is divided into 6 sections. Section 3.2 contains the Cube Attack

explanation. Section 3.3 discusses the theory of cube testers attack. Section 3.4

describes the teminology of the cube testers attack. Section 3.5 explains the attack

methodology of the cube attack. Section 3.6 intoduces the concept of Property

Testers and Section 3.7 discusses the Testable Properties one by one.

3.2 Cube Attack

Cube attacks are a powerful and generalize AIDA as a key-recovery attack. This

exploits implicit low-degree equations in cryptographic algorithms. So it is tried to

obtain linear equations in unknown key bits by combining outputs of the cipher for

certain chosen Initial Vectors.

Let be a multivariate polynomial of degree with

secret variables and public variables over GF(2). Given an

index set { } , the function can be represented algebraically under the

form

13

 (3.1)

Where is called the cube that the monomial contains all the with

 is a polynomial that has no variable in common with , and no monomial in

the polynomial contains . Summing over the cube for other variables fixed,

we get the following theorem.

Theorem 1.

∑

 ∑

(3.2)

To demonstrate these notions, let

)

 (3.3)

be a polynomial of degree 3 in 5 variables, and let be an index subset of size 2. We

can represent f as

)

(3.4)

where

 (3.5)

 (3.6)

 = (3.7)

3.2.1 Definition 3.1

 is called the superpoly of in . A cube is called a maxterm if and

only if its superpoly. had degree 1 (i.e. is linear but not a constant). The

polynomial is called the master polynomial.

14

 To recover the secret variables, cube attacks have two phases: the preprocessing

phase and online phase.

3.2.2 Preprocessing Phase

In the preprocessing phase, the attacker finds sufficiently many maxterms of

the master polynomial. For each maxterm, the coefficients of the secret variables are

found in the symbolic representation of the linear superpoly. The main challenge of

the attacker in the preprocessing phase is to find enough maxterms with linearly

independent superpolys. The attacker randomly chooses a subset of public variables

and uses efficient linearity tests to check whether its superpoly is linear.

3.2.3 Online Phase

During the online phase, the secret variables are fixed. The attacker evaluates

each linear superpoly by summing over the values of the cryptosystem for every

possible assignment to its maxterm. Once enough linear superpolys are found, the key

can be recovered by simple linear algebra techniques.

Cube attacks are provably successful when applied to random polynomials of

degree over secret variables whenever the number of public variables exceed

 Their complexity is bit operations, which is polynomial in

 and amazingly low when is small.

3.3 Cube Testers Attack Theory

Let denotes the set of all function mapping{ } { } For a

given , a random function is a random element of , we have | |). In

the ANF of a random function, each monomial (and in particular, the highest degree

monomial) appears with probability ½, hence a random function has

15

maximal degree of with probability ½. Similarly, it has degree or less with

probability

. Note that the explicit description of a random function can be

directly expressed as a circuit with, in average, gates (AND and XOR), or as a

string of bits where each bit is the coefficient of a monomial (encoding the truth

table also requires bits, but hides the algebraic structure).

Informally, the distinguisher for a family is a procedure that, given a

function randomly sampled from { } efficiently determines which one of

these two families was chosen as . A family is a pseudorandom if and only if

there exists no efficient distinguisher for it. In practice, for example for hash functions,

a family of function is defined by a k-bit parameter of the function. Randomly chosen

and unknown to the adversary, and the function is considered broken (or, at least

“nonrandom”) if there exists a distinguisher making significantly less than queries

to the function. Note that the distinguisher that runs in exponential time in the key

may be considered as “efficient” in practice.

The terminology difference between a distinguisher and the more general

detection of pseudorandomness, is that the former denotes a distinguisher where the

parameter of the family of functions is the cipher’s key, and thus cannot be modified

by adversary through its queries; the latter considers part of the key as public input

and assumes as secret an arbitrary subset of the input (including the input bits that are

normally public, like IV bits). The detection of non randomness thus does not

necessarily correspond to a realistic scenario.

16

3.3.1 Cube Variable (CV) and Superpoly Variable (SV) Inputs

Assume some polynomial which can be shown in algebraic numeric

form. Let be a subterm of which is the product of the variables

known as cube inputs. Then factorizing by yields

 (3.8)

Where is the cube input, is the superpoly input of and

is the linear combination of all terms which do not contain cube inputs .

3.4 Terminology

To distinguish from , cube testers partition the set of public

variables into two complimentary subsets, called cube variables, CV and superpoly

variables, SV.

These notions are illustrated with the example where four variables , ,

and are used. and are considered as cube inputs and and are

considered as superpoly inputs.

 (3.9)

 is considered as cube and is considered as a superpoly, because

 (3.10)

Superpoly Inputs Cube Inputs

Figure 3-1 Cube and Superpoly Examples

Here the cube variables(CV) are and and the superpoly variables (SV) are

 and . Therefore by setting a value to and , for example and ,

one can compute by summing function for all possibilities choices of

 . Note that it is not required for all superpoly variables to actually appear in the

17

superpoly of the maxterm. For example if function then the superpoly of is

but the superpoly variables are both and .

When the given function is a hash function, not all inputs should be considered

as variables and not all Boolean components should be considered as outputs, for the

sake of efficiency and keeping the consequent equations simple as possible. For

example if f maps 1024 bits to 256 bits, one may choose 8 cube variable input and 8

superpoly variable input and set a fixed value to the other outputs. These fixed inputs

determine the coefficient of each monomial in the Algebraic Normal Form with cube

variable and superpoly variable as variables. This is similar to the preprocessing phase

of key recovery cube attacks where the attacker has access to all input variables.

Finally for the sake of efficiency, attacker may only evaluate the superpolys for a

subset of 256 Boolean components of the output.

Cube Testers distinguish a family of functions from random functions by testing

a property of the superpoly for a specific choice of cube variable and superpoly

variable. This idea will be explained with the help of simple examples.

Consider

 (3.11)

And suppose that we choose cube variables and and superpoly variables

 and and evaluate the super poly of .

 (3.12)

This yields zero for any { } , that is the superpoly of is zero,

i.e none of the monomials , , or appears in . In

comparison, in a random function the superpoly of is null with probability only

 , which suggests that was not chosen at random (indeed, it was chosen

particularly sparse, for clarity). Generalizing the idea, one can deterministically test

18

whether the superpoly of a given maxterm is constant, and return “random function”

if and only if the superpoly is not constant.

Let . A probabilistic test is presented that detects the presence of

monomials of the form (e.g. , etc).

A random value of () { } is chosen. Then is

summed over all values of to get

 (3.13)

Where p is a monomial such that

 (3.14)

where the polynomial contains no monomial with as a factor in its

algebraic normal form.

The process is repeated N times, recording all the values of . If

were a random function, it would contain at least one monomial of the form

 with high probability, hence for a large enough number of repetitions N,

one would record at least one nonzero with high probability. However if

no monomial of the form appears in the algebraic normal form,

 always evaluates to zero.

3.5 Cube Testers Attack Methodology

Consider a cryptographic primitive, such as a hash function in this particular

case, to be a Boolean function with multiple inputs bits and output bits.

19

Figure 3-2 Cube Test of one Output Bit of a Cryptographic Primitive

Following the terminology shown in figure 3.1, some number of the input bits

are designated as a vector of cube inputs x , and some number of

the input bits are designated as a vector of superpoly inputs y = . All

input bits other than the cube inputs and superpoly inputs are set to 0 as they are

unused bits so they are zeroed to keep following equations to a low complexity. Then

a particular output bit can be treated as a polynomial function of the cube inputs and

superpolys inputs: F(.

Function F can be expressed as

 (3.15)

In GF(2), multiplication is same as Boolean “and”, and addition is the same as

Boolean “exclusive-or”. The first part of the right hand side of equation (3.15)

consists of the terms in the polynomial that includes all the cube inputs plus one or

more superpoly inputs. The cube inputs are factored out, leaving a polynomial in just

the superpoly inputs. The second part of the right hand side of equation (3.15) consists

20

of the remaining terms in the polynomial , which is another polynomial in the

cube and superpoly inputs. The polynomial is called the superpoly of F with respect

to the cube inputs .

The superpoly can be calculated by the summation procedure, without

even knowing the polynomial formula for , as long as the overall Boolean function

F can be evaluated.

For summation procedure, first all unused inputs of are set to be zero. This

includes all public and secret inputs which are not part of superpoly input or cube

input. This is required to reduce the overall degree and density of the underlying

equations. Then all superpoly inputs are (which are included in) set to . Then a

loop is run for all possible cube inputs (i.e from all zeros to all ones). And each

iteration’s resulting equation is adding to , which is then shown as

 (3.16)

The value of Q is returned at completion of iterations.

Figure 3-3 Cube Test of all Output Bits of a Cryptographic Primitive

21

In the summation of over the values of x, each term in (as shown in

equation 3.1) is added in an even number of times, since no term in contains all of

 through Therefore, in GF(2) arithmetic, the terms in sum up to 0. The terms

in , however are added in only once, when . Therefore, the summation

yields just .

The cube test is based on summation procedure. The null hypothesis is that the

cryptographic primitive is a random polynomial. Therefore, for any particular choice

of cube and superpoly inputs, the superpoly is also a random polynomial. Evaluate

 for some number of randomly chosen values for the superpoly inputs and apply a

statistical test to the resulting series of superpoly output values. If the statistical test

fails at a designated significance level, then the null hypothesis is disproved, is not

a random polynomial, and the cryptographic primitive exhibits nonrandom behavior.

Testing one or more superpolys might reveal nonrandom behavior where testing the

cryptographic primitive as a whole might not reveal nonrandom behavior.

Calculating the superpoly requires calculating the whole cryptographic

primitive, which yields n output bits, not just one. Each output bit is a different

polynomial function of the cube and superpoly inputs, as shown in figure 3.2. Thus,

the cube test actually tests multiple superpolys for non randomness.

3.6 Property Testers

Cube testers combine an efficient property tester on the superpoly, which is

viewed either as a polynomial or as a mapping with a statistical decision rule. This

section gives a general definition of cube testers, starting with basic definitions.

22

3.6.1 Definition 3.2

A family tester for a family of functions takes as input a function of same

domain and tests if f is close to , with respect to a bound on the distance

The tester accepts if , rejects with high probability if and are

not -close and behaves arbitrarily otherwise. Such a test captures the notion of

property testing, when a property is defined by belonging to a family of functions , a

property tester is thus a family tester of a property .

3.6.2 Concept of Property Testers

Cube testers detect non randomness by applying property testers to superpolys,

informally, as soon as a superpoly has some “unexpected” property (that is anormally

structured) it is identified as nonrandom. Given a testable property , cube

testers run a tester for on the superpoly function , and use a statistical decision rule

to return either random or nonrandom. The decision rule depends on the probabilities

| |

| |
 and

| |

| |
 and on a margin of error chosen by the attacker. A family F will be

differentiated from using the property if

| |

| |

| |

| |
 |

|
| |

| |

| |

| |
|

is non-negligible. That is, the tester will determine whether f is significantly closer to

 than a random function.

3.7 Testable Properties

In this section some examples of testable properties will be discussed, which

can be applied to superpoly, that can be used to build cube testers. Let C be the size of

23

Cube Variables and S be the size of Superpoly Variables, the complexity is given as

the number of evaluations of the tested function . Note that each query of the tester

to the superpoly requires queries to the target cryptographic function. The

complexity of any property tester is thus, even in best case, exponential in the number

of CV.

3.7.1 Balance Test

A cryptographic polynomial should be a random polynomial, it is expected to

contain as many zeros as ones in its truth table. Superpolys that have a strongly

unbalanced truth table can thus be distinguished from random polynomials, by testing

whether it evaluates as often to one as to zero, either deterministically (by evaluating

the superpoly for each possible input), or probabilistically (over some random subset

of SV).

A probabilistic version of the test makes iterations, for random

distinct values of . Complexity is respectively and .

3.7.2 Constantness

A particular case of balance test considers the “constantness” property, i.e

whether the superpoly defines a constant function, that is, it detects either that f has

maximal degree strictly less than C (null superpoly), or that f has degree strictly

greater than C (non-constant superpoly). This is equivalent to the maximal degree

monomial test, used to detect non-randomness of a cryptographic primitive.

3.7.3 Low Degree

A random superpoly has degree atleast with high probability.

Cryptographic functions that rely on a low-degree function are likely to have

24

superpolys of low degree. Because it closely relates to probabilistically checkable

proofs and to error-correcting codes, extensive research has been done on low-degree

testing. The test by Aon et al. [28], for a given degree queries the function at about

 points and always accepts if the algebraic normal form of the function has

degree at most , otherwise it rejects with some bounded error probability.

3.7.4 Presence of Linear Variables

This is a particular case of low-degree test discussed in section 3.7.3, for degree

 and a single variable. Indeed, the algebraic normal form of a random function

contains a given variable in at least one monomial of degree atleast two with

probability close to 1. One can thus test whether a given superpoly variable appears

only linearly in the superpoly. One can test whether a given superpoly variable

appears only linearly in the superpoly or not.

Randomly () is picked. Then both possible values of are put in the

function. If

P(0,) P(1,) (3.17)

Nonlinear is returned. And if

P(0,) P(1,) (3.18)

Linear is returned. These conditions are repeated N times. This test answers correctly

with probability about and computes time the function .

3.7.5 Independence Test

Under the null hypothesis, each pair of superpoly should behave like two

independent fair coins. Therefore, over all the input samples, one-fourth the time the

pair of outputs should be (0,0), one-fourth the time the pair of outputs should be (0,1),

one-fourth the time the pair of outputs should be (1,0) and one-fourth the time the pair

25

of outputs should be (1,1). The counts for the chi-square test of superpoly pair ()

are = observed number of pairs in the series of values for superpolys

 , = observed number of (0,1) pairs, = observed number of (1,0) pairs

and = observed number of (1,1) pairs and .

3.7.6 Off-By-One Test

Under the null hypothesis, over all the input samples, when one of the superpoly

input bits is flipped from 0 to 1 or 1 to 0, half of the time the output bit should be

flipped and half of the time the output bit should not be flipped. The counts for the

chi-square test of output and input are = observed number of times did not

flip when flipped, = observed number of times flipped when flipped, and

 .

One subtlety in the off-by-one test is that the same occurrence must not be

counted twice. For example, suppose two of the m superpoly input samples happen to

be 101110 and 001110 (s = 6). Flipping the first bit in the first sample will cause the

output bits to flip or not flip in the same way as flipping the first bit in the second

sample. Thus, the outcomes from flipping the first bit for these two samples are not

independent. In each such case, the number of samples will be reduced by 1.

3.8 Summary

In this chapter the description and methodology of the cube testers attack has

been discussed. The complete process of the cube testers attack has been followed by

taking an example of polynomial for better understanding. After the conceptual view,

the actual procedure has been carried out by going through algorithms and theorems.

At the end, concepts of property testers and examples of testable properties have been

discussed.

26

C h a p t e r 4

4 Structure of SHA-256

4.1 Introduction

Hash functions are a building block for numerous cryptographic applications. In

this chapter, a description of hash function with particular focus on Secure Hash

Algorithm (256 bit version) has been given. Properties of good hash functions have

also been discussed. Focus has been laid on structure of SHA-256 throughout this

chapter.

Section 4.2 gives a general introduction of hash functions. Section 4.3 contains

the general classes of hash function. Section 4.4 discusses the general properties of

good hash functions. Section 4.5 explains the structure of SHA-256 in detail.

4.2 Hash Function

A hash function is a cryptographic primitive that compresses an arbitrary length

input into a fixed length output called message digest. It does this in such a way that

output is effectively unique with regard to the input, and the process cannot be

reversed to yield the input from the output. In strict mathematical terms, hash

function can be defined as

 { } { } (4.1)

where is the fixed length of the hash function h in bits.

 The output of must be effectively unique. This means that a computation that

produces and and such that and must take at least

 hash

operation, which is approximately the number of has operations in which an and

could be found using random search only.

27

Hash functions are also called one-way functions because it is easy to determine

the hash from the message but mathematically infeasible to determine the message

from the hash. This means that given a message digest such that

computing from should require work atleast equivalent to hash operations, which

is the number of hash operations necessary to find by exhaustive search.

4.3 Classes of Hash Functions

At the highest level, hash functions can be split into two classes. Keyed and

Unkeyed hash functions. Keyed hash functions are also called Message

Authentication Codes (MACs), allows message authentication by symmetric

techniques. MAC algorithms take two functionally distinct inputs, a message and a

secret key, and produce a fixed-size say (-bit) output, with the design intent that it is

infeasible in practice to produce the same output without knowledge of key. MACs

can be used to provide data integrity and symmetric data origin authentication, as well

as identification in symmetric-key schemes.

An unkeyed hash function’s hash value corresponding to a particular message

is computed in time . The integrity of this hash value is protected in some manner.

At a subsequent time , the following test is carried out to determine whether the

message has been altered, i.e whether a message is the same as the original

message. The hash value of is computed and compared to the protected hash-value,

if they are equal, one accepts that the inputs are also equal, and thus that the message

has not been altered. The problem of preserving the integrity of a potentially large

message is thus reduced to that of a fixed-size hash-value.

28

4.4 Hash Function Properties

Three properties are discussed in this section, for an unkeyed function with

inputs and and outputs and .

4.4.1 Preimage Resistance

For any pre-specified output, it is computationally infeasible to fine any input

which hashes to that output, i.e, to fine any preimage such that , when

given any for which a corresponding input is not known.

4.4.2 Second Preimage Resistance

For any pre-specified output, it is computationally infeasible to find any second

input which has the same output as any specified input, i.e, given x to find a second

preimage such that .

4.4.3 Collision Resistance

It is computationally infeasible to find any two distinct inputs which hash

to the same output, i.e, such that . For collision resistance, there is free

choice of both inputs.

4.5 Secure Hash Algorithm – 256 (SHA-256)

SHA-256 is a 256-bit has and is supposed to provide 128 bits of security

against collision attacks. In SHA-256, the message to be hashed is first padded with

its length in such a way that the result is a multiple of 512 bits long and then parsed

into 512-bit message blocks .

The message blocks are then processed one at a time. Beginning with a fixed

initial value sequentially compute

29

 (4.2)

 where is the SHA-256 compression function and means word-wise mod

addition. is the hash of .

4.5.1 Padding and Parsing

Input message is to be padded to make its length a multiple of 512 bits.

Suppose the length of message , in bits is . Append the bit “ ” to the end of the

message, and then zero bits, where is the smallest non-negative solution to the

equation . To this, append the 64-bit block which is equal

to the number , length of message written in binary. So that length of actual given

input could be determined from the input. For example, the (8-bit ASCII) message

“abc” has length of 24 bits (as there are three characters, each of eight bits), so it is

padded with a one, then 448 – (24 + 1) = 423 zero bits, and then its length to become

the 512-bit padded message

01100001 01100010 01100011 1 00…0 0 0…011000

 a b c 423 bits 64 bits

Parse the message into N 512-bit blocks The first 32 bits of

message block are denoted

, the next 32 bits are

, and so on up to

. Big-

endian convention is used throughout, so within each 32-bit word, the left most bit is

stored in the most significant bit position.

4.5.2 SHA-256 Hash Computation

SHA-256 can be used to hash a message, M, having a length of bits, where

 . The algorithm uses a message schedule of sixty four 32-bit words,

30

eight working variablesof 32 bits each and a hash value of eight 32-bit words. The

final result of SHA-256 is a 256 –bit message digest.

The words of message schedule are labeled The eight

working variablesare labeled and . The words of the hash value are

labeled

, which will hold the initial value, replaced by each

successive intermediate hash value (after each message block is processed), and

ending with the final hash value, SHA-256 also uses two temporary words,

and

4.5.3 SHA-256 Constants

SHA-256 uses a sequence of sixty-four constant 32-bit words,

{ }

{ }

{ }

. These words represent the first thirty-two bits of the

fractional parts of the cube roots of the first sixty-four prime numbers. In hex, these

constant words are as follows.

Table 4-1Constants used in SHA-256 calculation

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1

923f82a4 ab1c5ed5 d807aa98 12835b01 243185be 550c7dc3

72be5d74 80deb1fe 9bdc06a7 c19bf174 e49b69c1 efbe4786

0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da

983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 c5a79147

06ca6351 14292967 27b70a85 2e1b2138 4d2c6dfc 53380d13

650a7354 766a0abb 81c2c92e 92722c85 a2bfe8a1 a81a664b

c24b8b70 c76c51a3 b192e819 d6990624 f40e3585 106aa070

19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a

5b9cca4f 682e6ff3 748fa2ee 78a5636f 84c87814 8cc70208

31

90befffa a4506ceb bef9a3f7 6c7178f2

4.5.4 SHA-256 Functions

SHA-256 uses six logical functions, where each function operates on 32-bit

words, which are represented as and . The result of each function is a new 32-bit

word.

 (4.3)

 (4.4)

∑
{ }
 (4.5)

∑
{ }
 (4.6)

{ }

 (4.7)

{ }

 (4.8)

4.5.5 SHA-256 Computation Main Loop Steps

The SHA-256 hash computation uses functions and constants discussed in

section 4.5.3 and 4.5.4. Addition is performed modulo After preprocessing is

completed, each message block, is processed in order using the

following steps.

First of all message schedule is calculated using the following equations.

 {

{ }

{ }

 (4.9)

{ }

 and
{ }

 are defined above in equations 4.7 and 4.8.

32

After preparation of message schedule, eight working variables

 and are initialized with the hash value:

Then a loop is run from 0 to 63 showing 64 steps of main loop used to calculate

the hash value. Following functions are calculated in the loop.

 ∑
{ }

{ }

 ∑
{ }

33

Then the intermediate hash value is found using the following

equations.

All these values are concatenated to get a result of 256 bits.

After these all steps hash for one input of 512 bits is found. Then these steps

are repeated for total number of blocks of input. And output for each block is XORed

with the last one. At the XOR calculation after the last block, last output is the final

hash value found for that particular input.

4.6 Summary

This chapter covers the structural details of the hash function SHA-256 on

which tests are to be carried out. Before testing the statistical properties, it was

important to analyze the structure of SHA-256 in detail. The hashing algorithm of

SHA-256 contains preprocessing steps, which includes padding and parsing of input

message into 512 bit length blocks. Then main loop containing 64 iterations is run on

34

each block. And output hash of each block is XORed in last output. Thus in the end, a

hash of 256 bits is generated.

35

C h a p t e r 5

5 Cube Testers Attack on SHA-256

5.1 Introduction

In this chapter, details of cube testers attack and Property Testing on SHA-256

are included. SHA-256 is the target hash function. In this research, the results

obtained on SHA-256 for Balanceness test, Off By One test and Impedance test have

been discussed.

In Section 5.2, Cube Testers Attack on SHA-256 has been specified. Section 5.3

contains the reason for selecting particular superpoly inputs and cube inputs, Section

5.4 includes the Setting up of cube input for Statistical analysis and description of Chi

Square test, Section 5.5 includes details of Cube Testers Attack Implementation as

implemented in C++, Section 5.6 contains Balance Test methodology and results,

Section 5.7 contains Impedance test methodology and results and in Section 5.8 Off

by One test methodology and results are discussed.

5.2 SHA-256 Customizations for Cryptographic Tests

Some customizations are done in SHA-256 for the sake of simplicity so it can

be tested for statistical properties easily. First of all, length of input taken for hash

functions was limited 512 bits (i.e one block of input). So that XORing of output of

more than one block doesn’t complicate the results.

Secondly pre-processing phases are removed, which include padding and

parsing. As padding amends non-zero bits (length of message in bits) at the end of the

block, and for all the statistical tests, input bits which are not part of cube or superpoly

input are supposed to be kept zero[1]. Parsing is used to break up a large input

36

message into 512 bit blocks. It is not required as input taken is of length of 512 bits

already (one block input).

5.3 Selection of Cube and Superpoly Input Bit

Cube testers are kind of black box tests. As per the authors of Cube Testers the

selection of "good" bits depends on the structure of the cipher, and significantly

affects the results. Finding the optimal bits is a difficult problem. The choice of

superpoly variables does depend often on an insight in the structure of the first few

rounds of an iterative construction. Otherwise this is still a lot a matter of trial and

error.

The structure of Hash functions in our case is often complex and selection of

weak input bits is not easy. So for the sake of completion, whole input of SHA-256,

i.e 512 bits were divided into 64 blocks, with each block of 8 bits. And all blocks

were taken as Superpoly input one by one. Random blocks of Cube inputs were

chosen while testing non-random behavior of Superpoly inputs. Different superpoly

inputs gave nonrandom behavior while testing non random properties with different

superpoly inputs.

In this way weak inputs of SHA-256 are also found out for different tests.

5.4 Input for Statistical Attack

Each run of Cube Tester on SHA-256 algorithm’s core functions samples a

group of superpoly and cube input of the target hash function, SHA-256. The input is

defined by choosing cube inputs and superpoly inputs at random, samples of

the superpoly input values are chosen at random and the superpolys are calculated,

yielding a series of samples for each superpoly bit range, where

 . These outputs are subjected to three statistical tests – balance test,

37

independence test and off by one test to attempt to disprove the null hypothesis that

the target hash function is a random polynomial.

5.4.1 Chi-Square Test

Each of the three statistical tests is a chi-square test. The chi-square test

categorizes the series of random values being tested into discrete bins and counts the

occurrences in each bin. The statistic is

 ∑

 (5.1)

Where b is the number of bins, is the observed count in the i-th bin, and is

the expected count in the i-th bin if the null hypothesis is true. Typically the values

are derived from the total of the counts in all the bins.

The statistic obeys a chi-square distribution with degrees of freedom.

When the values are determined as is – . The significance is the probability

that a statistic greater than or equal to would be observed by chance when the null

hypothesis is true. The significance is 1 minus the cumulative distribution function of

the chi-square distribution:

 (5.2)

As the observed counts deviate farther from the expected counts ,

increases and the significance decreases. If the significance falls below a certain

threshold , the statistical test fails (the null hypothesis is disproved at a significance

of), otherwise statistical test passes. Statistical tests of cryptographic pseudorandom

number generators typically use in the range 0.01 to 0.001. For tests applied in our

research work, chi square criterion of 0.01 is being used.

38

5.4.1.1 Why choose a significance level of 0.01?

When p is larger, say 0.02 or 0.05, the chi-square tests are more stringent,

smaller differences between the observed and expected values causes the significance

to fall below the threshold and the test to fail. But this means a “false failure”, where

the test fails even though the function really is random, is more likely. On the other

hand, when p is smaller, say 0.01, the chi-square tests are more lenient, larger

differences are required between the observed and expected counts to cause the

significance to fall below the threshold and the test to fail. A level of significance less

than 0.01 can cause “false pass” where the test passes even though the function really

is non-random. So value of p is taken 0.01 for these tests which is recommended for

cryptanalytic tests.

5.5 Cube Testers Attack Implementation

This portion includes the implementation details of the cube testers attack by

describing the functionalities of each function in the C++ code.

5.5.1 The Main Function

Two arrays of binary zeros named and are declared

in this main function. Then initial values of SHA-256 are declared in a variable

Figure 5-1 Chi Square Distribution Table

39

named . Then input is changed as per the value of constants and

 declared at the start of the program. These constants declared at the start,

define the position of superpoly input and cube input that is to be used in the program.

Then the input bits of are changed which are specified by and

 in the main function and resulting output is written in the file . This

is done so that input which is fed to SHA-256 function can be verified for correctness

later on if required.

Two loops in nested form are run to increase values of superpoly and cube input

by 1 each and forward the updated input to SHA-256 program for hash computation.

Each of these loops is run 256 times as number of cube input bits and superpoly

inputs bits are 8 each. Inside the inner loop SHA-256 function is called which

calculates the hash value and returns it to the main function.

The output from SHA-256 is also received back into the main function which is

then written in the output file using file writing feature of C++.

5.5.2 SHA-256 Function

 This function is used to calculate the hash of 512 bits input. The difference

between the function made for the tests and standard SHA-256 hash function is that

the pre-processing part is omitted. This SHA-256 function contains the following

functions.

5.5.2.1 Split Function

 This function divides the 512 bits input to 16 blocks of 32 bits each. Each block

is input to the function in one step of hash function main round. It takes first 16 steps

out of total 64 rounds of hash function to take in the whole 512 bit input. Then the

main round’s parts are implemented on the input blocks.

40

5.5.3 Chi Square Function

Values from the main function are fed to Chi Square function and it returns the

Chi Square Value as per the specifications set for the particular test, that is being

carried out. Estimated values for the output are already calculated. Actual values

which are returned after calculated after SHA-256 function are compared with

estimated values and extend of difference between expected and actual values defines

the Chi Square value.

5.5.4 Environment Used for Cube Testers Attack

The Cube Testers Attack is implemented using Microsoft Visual Studio 2010

Version 10.0.40219.1 SP1 Release on a HP Pavilion M6 Notebook PC with Intel(R)

Core(TM) i5-3210M CPU @ 2.50GHz processor. It has 8 GB RAM and Windows 7

as baseline operating system.

In MS Visual Studio, Release configuration instead of default Debug

configuration, so that the execution speed of the code increases.

5.6 Balance Test

Under the null hypothesis the hash function is a random function, each

superpoly should behave like a fair coin. Over all the input samples, half the time the

output should be zero and half the time the output should be one. The counts for the

chi-square test of superpoly are which is equal to observed number of zeros in

the series of m values for superpoly , is equal to observed number of ones. is

the estimated number of zeros and is the estimated number of ones.

 ⁄

41

5.6.1 Balance Test Methodology

Preprocessing rounds of SHA-256 have been removed as they add non-zero

bits in the last 64 bits of the input block. In cube tester attack, all unused bits of input,

which are not part of cube input or superpoly input should be zero. For balance test,

size of cube input and superpoly input is set to 8 bits each. So out of 512 input

bits, only 16 bits of input are manipulated for a single test run. Rest 496 bits are kept

zeros.

SHA-256 is run times for a single superpoly input. As with a single

superpoly input, iterations of cube input are used. Superpoly input size is also eight

bits, and each possible iteration of eight bits of superpoly input is used. So that makes

 iterations of superpoly input.

As superpoly is 8 bits long, so total 64 superpolys are made from 512 bits input,

each superpoly is of eight bit size. And for each single superpoly, 7 cube inputs are

tried from random locations. So the total iterations of SHA-256 for a particular round

are which makes 29360128 () iterations for SHA-256 for

balance ness test of a particular round of SHA-256.

The rounds tested for unbalanceness are rounds 17 and up because in it takes

initial 16 rounds of SHA-256 to use whole input in the SHA-256 digest structure.

Each round uses 32 bits of input and mixes it with output of last round to find output

of next round. So any non-randomness found for less than 17 rounds is meaningless

as whole input is not used up till round 17. So total complexity for all rounds tested,

i.e round 17 to round 30 is , which makes 411041792+ (

) iterations of reduced round SHA-256.

Results of cube testers attack are fed to chi square test to test the variation is

just result of a chance or there is significant difference in actual and expected results.

42

Degree of freedom used for this test is 1 as there are only two possible results and

degree of freedom is one less than the number of possible results. Value of p is kept to

0.01 as recommended for cryptographic algorithms. The resulting value is 6.635 as

per the chi square table shown in Figure 5.1.

5.6.2 Balance Attack Results

Non-randomness is found from round 17 up till round 25 of SHA-256. Result

are given for all reduced round SHA-256’s. Balance test has been applied uptill 30

rounds.

All results are given in table 5.1 and table 5.2.Cube inputs from seven different

locations are tried with each of single superpoly, the chi square value mentioned in

observation table is the highest value among the chi square values with different cube

inputs. All 512 bits of input are divided into 64 blocks of 8 bits each. So for one round

of SHA-256, 64 chi square values are given in table 5.1 and table 5.2, each value is

highest among 7 values found for that particular bit range with specific number of

rounds of SHA-256. Values exceeding Chi Square threshold, i.e 6.635 are formatted

bold and underlined.

Table 5-1 Chi SquareValues of Balance Test with 17 Round SHA-256 to 23 Round SHA-256 for all Input Bit

Ranges

 Rounds

Bit Ranges

17 18 19 20 21 22 23

1 – 8 4.585 2.345 4.346 5.422 3.656 2.818 0.641

9 – 16 5.432 1.023 3.628 5.815 5.82 2.51 0.962

17 – 24 6.471 0.925 0.345 3.726 0.315 1.49 1.535

25 – 32 1.489 5.032 1.249 5.15 6.492 0.676 3.304

33 – 40 5.173 3.141 0.387 0.886 5.361 1.592 5.497

41 – 48 3.742 7.308 4.133 3.551 0.639 0.598 3.792

49 – 56 2.905 0.256 5.029 0.984 1.139 3.533 6.436

57 – 64 4.845 3.044 0.357 3.496 1.924 1.977 5.225

65 – 72 6.363 0.59 4.838 2.969 1.598 5.832 0.505

43

73 – 80 5.144 1.758 4.724 3.949 5.589 2.159 1.023

81 – 88 4.002 4.969 1.152 7.557 6.029 2.388 3.266

89 – 96 2.971 1.026 3.125 7.215 3.867 5.177 5.591

97 – 104 1.25 6.042 3.627 0.709 4.445 4.846 1.656

105 – 112 0.653 3.422 0.035 4.977 3.484 1.167 3.849

113 – 120 5.582 1.292 1.303 1.157 6.15 3.664 4.830
121 - 128 1.067 4.524 5.084 3.117 2.24 1.58 4.822

129 – 136 5.984 2.927 4.547 3.238 1.147 3.5 0.944

137 - 144 5.804 3.799 6.3 3.620 2.323 4.28 3.82

 145 – 152 6.327 0.568 3.688 5.744 0.046 4.839 4.089

153 – 160 0.475 0.458 4.125 2.297 2.046 1.673 5.991

161 – 168 1.622 3.379 0.634 1.424 4.036 3.914 4.224

169 – 176 1.916 5.545 3.026 2.756 3.36 5.377 3.747

177 – 184 6.053 4.420 2.189 0.384 2.481 8.594 1.139

185 – 192 4.671 3.946 3.647 1.298 4.173 2.619 3.938

193 – 200 4.722 2.84 3.795 2.015 1.675 6.086 0.296

201 – 208 4.627 0.704 1.928 5.522 5.458 0.599 5.182

209 – 216 5.674 0.854 4.609 5.780 2.956 5.247 0.323

217 – 224 0.685 5.804 4.141 3.174 0.631 1.700 1.514

225 – 232 3.628 5.116 2.624 6.221 3.223 1.017 1.616

233 – 240 2.338 0.357 5.286 6.424 3.745 7.052 5.478

241 – 248 0.928 2.88 5.681 2.439 4.967 1.587 1.357

249 – 256 4.728 0.495 0.465 5.82 0.744 0.543 6.177

257 – 264 1.164 1.081 0.625 2.754 0.503 4.296 5.545

265 – 272 4.457 1.82 2.589 4.387 2.410 3.233 2.107

273 - 280 4.208 1.474 1.171 3.922 4.929 1.419 1.210

281 – 288 4.034 4.554 5.346 4.545 5.540 0.380 5.411

289 – 296 4.673 1.987 1.785 3.165 0.933 6.135 6.929

297 – 304 0.588 0.039 1.636 1.583 0.129 2.109 0.587

305 – 312 2.05 0.470 2.661 0.511 1.490 5.285 2.632

313 – 320 0.676 4.733 5.855 2.377 2.070 4.785 0.717

321 – 328 2.612 4.070 2.198 1.986 4.571 2.976 2.777

329 – 336 5.556 3.561 2.464 0.298 4.411 2.252 3.483

337 – 344 6.138 5.194 2.824 4.93 3.91 2.852 2.961

345 – 352 6.813 5.902 3.382 3.122 0.468 4.09 7.237

353 – 360 2.662 4.928 4.208 1.632 0.542 6.052 2.042

361 – 368 4.398 5.731 1.245 0.550 5.594 0.529 0.179

369 – 376 1.377 2.434 0.484 5.092 2.314 6.089 6.013

377 – 384 3.663 0.953 4.876 4.424 0.680 3.438 4.851

385 – 392 1.542 0.352 1.255 4.772 3.287 3.54 2.287

393 – 400 4.724 1.511 4.055 4.293 5.241 5.324 6.382

401 – 408 0.879 5.067 1.382 1.007 3.581 2.822 1.896

409 - 416 3.571 0.246 5.36 4.859 2.610 3.67 4.337

417 – 424 0.493 4.073 1.888 3.6 0.219 5.722 2.742

425 – 432 4.084 0.543 1.144 2.902 5.035 2.655 4.058

433 – 440 4.932 3.912 3.925 0.921 3.724 0.693 4.996

441 – 448 6.208 1.334 4.991 3.329 5.304 3.504 0.858

449 – 456 1.63 6.13 2.148 5.238 3.705 0.246 0.016

44

457 – 464 6.72 3.36 5.101 5.788 1.066 3.404 6.243

465 – 472 6.941 4.16 3.752 4.524 2.573 3.296 3.384

473 – 480 6.786 4.007 3.180 4.755 2.695 3.703 3.974

481 – 488 7.064 7.84 0.773 5.704 2.919 5.44 1.979

489 – 496 8.116 7.1079 6.058 2.302 5.665 4.479 6.451

497 – 504 7.193 6.919 3.19 9.162 4.181 3.989 0.881

505 – 512 7.377 7.458 0.034 7.196 6.172 3.698 0.379

Table 5-2 Chi SquareValues of Balance Test with 24 Round SHA-256 to 30 Round SHA-256 for all Input Bit

Ranges

 Rounds

Bit Ranges

24 25 26 27 28 29 30

1 – 8 5.309 5.326 4.507 5.435 5.152 6.186 1.540

9 – 16 4.615 4.795 0.131 3.918 1.022 4.672 5.503

17 – 24 5.051 5.312 0.201 4.641 3.992 4.683 1.896

25 – 32 0.529 5.866 0.366 0.119 0.793 4.625 2.696

33 – 40 5.943 4.497 5.893 0.514 5.661 3.457 2.135

41 – 48 5.775 4.143 5.061 5.275 3.792 5.478 1.724

49 – 56 5.956 0.082 5.117 5.614 4.794 4.158 2.217

57 – 64 2.44 1.885 4.626 3.106 2.548 2.776 1.280

65 – 72 4.475 4.112 0.748 1.729 3.917 6.043 4.250

73 – 80 1.463 2.779 5.12 4.423 2.43 0.827 5.752

81 – 88 0.316 0.215 2.481 3.808 3.743 0.112 5.592

89 – 96 1.266 2.405 3.164 3.033 4.877 3.909 0.038

97 – 104 4.248 0.165 5.484 2.64 2.615 3.113 4.043

105 – 112 5.481 1.182 1.66 1.46 5.648 1.825 2.036

113 – 120 1.975 3.136 3.732 1.371 5.554 0.653 0.156

121 - 128 0.966 2.318 2.936 2.386 1.825 5.713 5.377

129 – 136 3.164 4.219 2.152 4.753 4.789 3.839 1.592

137 - 144 4.54 5.179 4.009 0.711 0.073 3.493 0.695

 145 – 152 2.308 3.067 0.698 1.023 1.423 1.851 5.748

153 – 160 0.645 0.085 4.787 1.169 0.831 1.809 5.434

161 – 168 2.972 2.766 3.993 6.306 2.806 0.594 3.292

169 – 176 5.95 2.414 6.383 2.966 0.317 1.733 1.878

177 – 184 3.459 3.947 3.164 4.158 1.624 2.671 6.162

185 – 192 2.895 2.03 5.301 0.172 0.486 6.036 1.867

193 – 200 4.559 3.655 5.184 6.282 0.384 0.927 5.287

201 – 208 3.817 2.651 6.204 3.973 6.487 5.48 4.047

209 – 216 3.562 3.324 4.245 3.164 1.297 1.832 3.09

217 – 224 3.715 3.238 0.751 2.057 6.249 0.921 1.604

225 – 232 6.497 3.192 2.309 1.949 5.274 0.941 6.046

233 – 240 0.458 4.01 2.263 5.904 4.208 3.615 2.792

45

241 – 248 4.81 3.468 6.196 6.363 0.678 0.373 1.009

249 – 256 4.841 3.7698 4.722 5.615 6.305 5.558 1.227

257 – 264 1.376 3.34 0.801 0.422 4.986 3.477 2.008

265 – 272 1.975 3.943 5.445 6.22 2.502 5.477 1.476

273 - 280 1.543 5.242 2.062 0.704 2.802 4.425 2.042

281 – 288 1.556 5.116 3.234 4.744 2.027 6.342 6.475

289 – 296 0.171 3.633 0.887 3.018 6.217 5.741 1.406

297 – 304 1.201 1.552 0.458 3.168 4.071 4.051 6.317

305 – 312 6.228 1.976 0.297 1.099 5.931 6.476 2.04

313 – 320 6.322 0.134 1.943 0.503 2.25 4.242 2.537

321 – 328 1.179 6.211 6.296 2.424 0.852 1.265 3.681

329 – 336 3.465 6.054 1.776 1.842 0.932 0.15 1.208

337 – 344 5.471 0.376 0.749 0.547 4.735 4.623 1.922

345 – 352 2.791 5.384 4.75 5.302 4.293 0.107 2.115

353 – 360 5.274 4.1 4.743 3.441 4.198 5.335 5.617

361 – 368 4.384 4.485 5.746 1.519 6.382 1.68 4.877

369 – 376 1.457 1.225 2.648 2.438 4.481 5.595 6.016

377 – 384 1.052 6.093 0.397 2.057 0.9527 2.663 2.443

385 – 392 0.506 4.150 2.458 3.312 2.322 5.793 1.094

393 – 400 1.126 0.968 1.565 0.225 3.33 6.311 4.193

401 – 408 4.964 5.894 4.992 1.168 3.753 6.047 1.939

409 - 416 4.158 5.683 4.374 6.405 3.904 4.185 4.224

417 – 424 7.526 2.748 3.275 0.914 6.156 4.334 3.087

425 – 432 4.867 7.834 5.577 3.733 6.289 5.138 2.721

433 – 440 5.14 0.923 1.966 1.464 1.967 1.904 4.267

441 – 448 0.304 4.578 5.217 6.28 5.727 2.036 1.684

449 – 456 5.556 4.717 1.543 3.318 3.737 4.708 2.823

457 – 464 6.215 5.944 2.096 3.436 1.048 2.645 4.33

465 – 472 5.528 6.203 5.294 1.065 0.190 0.761 0.511

473 – 480 4.853 2.741 5.531 4.960 1.129 4.528 5.696

481 – 488 1.92 3.523 2.885 1.491 1.741 2.449 5.212

489 – 496 3.332 1.726 2.199 1.319 6.125 6.075 1.943

497 – 504 4.228 6.914 4.593 1.131 6.042 2.607 5.172

505 – 512 5.967 7.170 5.799 0.376 1.664 1.802 2.679

5.6.2.1 Results for SHA-256 with 17 Rounds

17 round SHA-256 showed non-randomness for a number of superpoly inputs.

Output is non-random for superpoly input bits from 345 to 352 and 457 to 512. 17

round Hash function was mainly nonrandom when superpoly belongs to last part of

input. Reason is that last part of input is just used in last 3 to 4 rounds. So it doesn’t

get enough iteration to remove its randomness.

46

5.6.2.2 Results for SHA-256 with 18 Rounds

In 18 round SHA-256, non-randomness is found when superpoly is set to last

bit ranges, i.e 4 blocks of 8 bits each i.e bit number 481 to 512 bits. It is also

nonrandom for bit range 41 to 48.

5.6.2.3 Results for SHA-256 with 20 Rounds

For 20 round SHA-256, nonrandomness is reduced to quiet an extent. And it is

found non-random for superpoly input is from bit number 81 to bit number 88, bit

number 89 to bit number 96 and last 2 pairs of bits, i.e bit number 497 to bit number

512.

5.6.2.4 Results for SHA-256 with 22 Rounds

 For 22 round SHA-256, non-randomness is found only for super poly input bit

ranges from 177 to 184 and from bit number 233 to bit number 240. Rest all Chi-

Square values are under the threshold Chi-Square value given in Chi Square table.

5.6.2.5 Results for SHA-256 with 23 Rounds

For 23 round SHA-256, non-randomness is found for bit ranges 289 to 296 and

from 345 to 352.

5.6.2.6 Results for SHA-256 with 24 Rounds

For 24 round SHA-256, non-randomness is found for bit range 417 to 424.

5.6.2.7 Results for SHA-256 with 25 Rounds

For 25 round SHA-256, non-randomness is found for bit ranges 425 to 432 and

from 497 to 504.

47

Table 5-3 Balance Test Results on SHA-256

Number of Rounds Weak Superpoly Input Bits

17 345-352, 457-512

18 41-48, 481-512

20 81-88, 89-96, 497-512

22 177-184, 233-240

23 289-296, 345-352

24 417-424

25 425-432, 497-504

26 and more rounds No weak input found with 8-bit superpoly input

5.6.2.8 Results for SHA-256 with 26 and more Rounds

Chi Square Values for 26 and above steps are comfortably satisfy the null

hypothesis of non-randomness.

5.7 Impedance Test

Under the null hypotheses, each pair of superpoly should behave like two

independent fair coins. Therefore over all the input samples, one-fourth the time the

pair of outputs should be (0,1) and similarly for (0,1), (1,0) and (1,1). The counts for

the chi-square of super poly are = ovserved number of (0,0) pairs in the

series of values for superpolys and , = observed number of (0,1) pairs,

= observed number of (1,0) pairs and = observed number of (1,1) pairs and

 ⁄ .

48

5.7.1 Impedance Test Methodology

Preprocessing rounds of SHA-256 have been removed as they add non-zero

bits in the last 64 bits of the input block. In cube tester attack, all unused bits of input,

which are not part of cube input or superpoly input should be zero.

For impedance test, size of cube input and superpoly input is set to 8 bits

each. So out of 512 input bits, only 16 bits of input are manipulated for a single test

run. Rest 496 bits are kept zeros.

SHA-256 is run times for a single superpoly input. As with a single

superpoly input, iterations of one cube input are used and 7 different cube inputs

are used with single superpoly. In the table below only the highest value of chi square

is shown which is obtained using any one of cube inputs.

As two superpolys are tested for a single impedance test, SHA-256 algorithm is

run times for each test of a superpoly. And for one superpoly input pair,

65536 output bit pairs are checked. So for test total SHA-256 algorithm is run

 times. And total of 4194304 bit pairs are tested using chi

square test for non-randomness.

Degree of freedom used for this test is 3 as there are four possible output results

and and level of significance i.e value of is kept to 0.01 which is

strictest for cryptographic algorithms. The threshold resulting value is 11.345 as per

the chi square table shown in Figure 5.1.

5.7.2 Impedance Test Results

Impedance test deducted non-randomness most of the inputs on which it is

applied. Number of rounds is not reduced either. Superpoly input and Cube Inputs are

of 8 bits each during this test similar to Balance Test.

49

Randomness is only found when superpoly input bit range is from bit number

225 to bit number 232, from bit number 241 to bit number 248 and from bit number

265 to bit number 272. Rest all bit showed non-randomness failing to pass impedance

test.

Bit ranges giving random results are given below in table 5-5.

Table 5-4 Superpoly Bit Ranges used for Impedance Test and respective Chi Square Values

Bit Range of Superpolys Maximum Chi Square Value

1 – 8 21.1048

9 – 16 14.103

17 – 24 16.0018

25 – 32 14.4567

33 – 40 21.1448

41 – 48 16.4007

49 – 56 15.2349

57 – 64 18.2416

65 – 72 15.7476

73 – 80 13.4911

81 – 88 14.9569

89 – 96 15.0206

97 – 104 20.7972

105 – 112 12.5139

113 – 120 14.3792

121 - 128 20.2707

129 – 136 15.5327

137 - 144 13.7425

 145 – 152 13.7013

153 – 160 15.3298

161 – 168 15.1259

169 – 176 19.111

177 – 184 19.7831

185 – 192 16.6366

193 – 200 14.2089

201 – 208 17.8696

209 – 216 20.4261

217 – 224 19.1312

225 – 232 10.9291

233 – 240 19.6805

241 – 248 9.3333

50

249 – 256 16.6262

257 – 264 12.0787

265 – 272 10.4713

273 - 280 14.8073

281 – 288 16.965

289 – 296 18.8754

297 – 304 11.3493

305 – 312 14.2485

313 – 320 14.7768

321 – 328 19.9442

329 – 336 15.9002

337 – 344 13.5158

345 – 352 19.6415

353 – 360 13.0736

361 – 368 16.1736

369 – 376 15.2147

377 – 384 12.4775

385 – 392 14.3013

393 – 400 12.675

401 – 408 16.9726

409 - 416 17.9666

417 – 424 11.894

425 – 432 18.6752

433 – 440 19.766

441 – 448 15.8215

449 – 456 13.7868

457 – 464 14.1442

465 – 472 17.3581

473 – 480 18.7198

481 – 488 15.0384

489 – 496 19.6326

497 – 504 15.9176

505 – 512 19.7059

Table 5-5 Weak Bit Ranges found by Impedance Test

Number of Rounds Less Weak Superpoly Input Bits

256 225-232

256 241-248

256 265-272

51

5.8 Off By One Test

Under the null hypothesis, over all the input samples, when one of the

superpoly input bits is flipped from 0 to 1 or 1 to 0, half the time the output bit should

also flip and half the time the output bit should not flip. The counts for the chi-square

test of output and input are = observed number of times did not flip when

 flipped, = observed number of times flipped when flipped and

 ⁄ . Applying the off by one test to one cube test program run yields 256.s pass fail

results, one for each combination of a superpoly output and a superpoly input. This

test is in concept similar to Avalanche Test.

One subtlety in the off by one test is that the same occurance must not be

counted twice. For example, suppose two of the m superpoly input samples happen to

be 1101110 and 1001110 (s=7). Flipping the second bit in the first sample will cause

the output bits to flip or not flip in the same way as flipping the second bit in the

second sample. Thus, the outcomes from flipping the first bit for these two samples

are not independent. In each case, the number of samples will be reduced by 1.

5.8.1 Off By One Test Methodology

Preprocessing rounds of SHA-256 have been removed as they add non-zero

bits in the last 64 bits of the input block. In cube tester attack, all unused bits of input,

which are not part of cube input or superpoly input should be zero. For balance test,

size of cube input and superpoly input is set to 8 bits each. So out of 512 input

bits, only 16 bits of input are manipulated for a single test run. Rest 496 bits are kept

zeros.

Results of cube testers attack are fed to chi square test to test the variation is

just result of a chance or there is significant difference in actual and expected results.

52

Degree of freedom used for this test is 1 as there are only two possible results. And

value of p is kept to 0.01 as recommended for cryptographic algorithms. The resulting

value is 6.635 as per the chi square table shown in Figure 5-1.

In binary every odd number is one bit different than the immediate smaller

even number. In Off By One test, for (=256) repetitions of superpoly , 128

comparisons are to be made. Comparison will be made such that output of one even

repetition is saved. Then output of immediate next odd input is taken and both outputs

are XORed. It is an XORing of two pairs of 256 bits each. Output 256 bits should

contain 128 zeros and 128 ones as per the null hypothesis.

Total number of computations of SHA-256 done are (=).

Total number of comparisons done are (=). Each comparison includes

comparing 256 bits.

5.8.2 Off By One Test Results

 Off by one test is applied on SHA-256 with Superpoly input and Cube Inputs

are of 8 bits each. This test failed to find any non randomness in the output using Chi

Square’s lenient most level of significance which is 0.01 for cryptographic algorithms.

Only a very few number of samples gave significance level of non-randomness

under Chi Square limits. On basis of those results one can’t say that Off By One test

found any nonrandomness in SHA-256.

Table 5-6 Chi SquareValues of Off By One Test with 17 Round SHA-256 to 23 Round SHA-256 for all Input Bit

Ranges

 Rounds

Bit Ranges

17 18 19 20 21 22 23

1 – 8 8.048 8.597 8.280 11.297 6.924 9.740 11.102

9 – 16 12.975 7.044 9.659 11.523 10.312 8.734 12.814

17 – 24 11.336 13.153 13.132 7.348 6.904 10.311 12.759

53

25 – 32 9.090 11.962 9.846 9.725 11.883 7.5200 11.059

33 – 40 10.187 9.158 11.275 12.006 10.723 7.2835 11.497

41 – 48 8.990 11.091 9.954 10.178 8.616 12.332 11.799

49 – 56 7.660 11.990 8.937 10.347 7.421 12.145 6.649

57 – 64 12.392 10.835 11.836 13.182 10.169 6.650 9.79

65 – 72 8.192 7.791 12.357 9.230 11.551 7.774 9.575

73 – 80 10.545 12.242 13.224 6.829 6.950 8.415 9.372

81 – 88 11.473 9.255 9.299 8.836 13.138 11.176 8.511

89 – 96 9.844 8.082 10.525 13.008 7.882 8.328 10.938

97 – 104 12.235 8.968 12.375 9.321 9.030 11.774 7.873

105 – 112 12.957 10.478 12.192 11.700 10.020 12.974 9.782

113 – 120 9.097 7.967 7.096 7.059 9.186 9.291 13.14
121 - 128 9.562 8.996 11.272 7.840 8.749 6.652 10.787

129 – 136 7.183 10.165 6.745 12.1205 11.780 7.864 12.463

137 - 144 10.787 9.805 9.303 8.149 8.847 11.617 6.727

 145 – 152 6.792 10.105 12.340 10.078 8.321 13.058 7.025

153 – 160 12.967 8.771 8.316 7.594 7.054 8.68 11.135

161 – 168 11.082 12.454 9.596 8.774 8.909 10.688 11.48

169 – 176 12.327 10.554 8.139 9.820 10.756 8.885 12.101

177 – 184 8.046 7.371 12.391 12.397 8.263 12.808 8.989

185 – 192 7.464 11.090 8.748 12.037 7.060 8.447 7.606

193 – 200 11.731 12.018 9.194 7.034 12.101 7.043 11.000

201 – 208 8.420 12.419 11.961 8.794 10.125 8.294 12.229

209 – 216 8.394 12.709 10.354 8.358 7.229 10.04 9.907

217 – 224 12.658 10.696 7.731 10.264 6.929 8.417 8.831

225 – 232 7.982 6.829 9.947 7.1173 11.784 11.779 11.52

233 – 240 11.964 11.862 8.000 12.341 11.247 8.048 9.393

241 – 248 10.466 9.218 6.672 8.787 9.220 11.25 8.204

249 – 256 12.818 11.481 8.048 7.920 7.081 8.968 7.06

257 – 264 7.507 9.551 7.761 7.127 12.613 7.281 10.688

265 – 272 9.028 7.351 12.363 10.900 12.277 7.59 11.161

273 - 280 12.204 8.231 11.211 11.813 6.638 9.13 9.503

281 – 288 9.658 8.981 7.888 12.702 6.686 9.24 9.906

289 – 296 8.617 7.995 7.607 7.556 11.640 8.105 8.421

297 – 304 10.920 9.337 8.217 8.531 8.518 10.263 12.536

305 – 312 10.732 6.959 10.596 11.861 11.058 8.552 8.04

313 – 320 8.212 8.806 10.159 11.539 8.414 12.927 7.361

321 – 328 10.284 10.195 9.676 7.606 11.432 11.265 7.17

329 – 336 8.346 8.719 11.351 11.556 10.300 10.706 12.58

337 – 344 8.019 10.941 11.178 8.048 7.072 12.15 10.595

345 – 352 10.654 9.880 10.405 9.302 8.425 9.342 10.304

353 – 360 11.614 9.243 6.658 9.305 11.120 7.397 10.021

361 – 368 10.333 6.848 9.529 7.094 7.623 11.961 10.996

369 – 376 7.728 11.199 9.526 9.642 12.734 9.636 7.777

377 – 384 9.975 10.771 9.979 9.844 11.620 9.618 8.102

385 – 392 11.73 11.593 11.395 8.876 7.932 12.361 9.37

393 – 400 8.883 7.7632 9.726 12.996 9.518 7.809 13.06

401 – 408 9.287 8.3745 10.767 13.197 8.757 11.714 13.113

54

409 - 416 11.924 7.784 11.555 9.225 9.313 8.824 8.084

417 – 424 11.161 10.421 11.467 11.245 11.909 9.168 8.688

425 – 432 12.219 9.343 12.651 11.936 10.689 8.509 8.311

433 – 440 8.503 6.911 12.961 8.673 12.875 6.866 8.441

441 – 448 10.774 9.917 10.448 7.983 12.44 6.950 11.104

449 – 456 12.328 7.946 9.314 7.338 6.816 11.960 10.392

457 – 464 7.498 6.870 9.311 10.387 6.740 12.274 11.038

465 – 472 10.731 11.849 11.591 9.023 8.443 7.946 8.946

473 – 480 7.037 12.829 11.825 12.783 11.145 12.626 12.988

481 – 488 7.091 8.100 11.264 9.766 12.582 9.202 12.341

489 – 496 9.119 12.509 11.447 8.715 10.092 7.297 8.637

497 – 504 12.857 11.003 8.637 8.050 10.323 7.125 6.709

505 – 512 12.600 9.982 7.639 7.763 6.821 9.906 12.158

Table 5-7 Chi SquareValues of Off By One Test with 24 Round SHA-256 to 30 Round SHA-256 for all Input Bit

Ranges

 Rounds

Bit Ranges

24 25 26 27 28 29 30

1 – 8 7.066 9.96597 8.0791 9.993 11.271 8.438 12.498

9 – 16 9.952 12.4588 9.281 10.818 6.645 6.823 9.166

17 – 24 7.446 9.65393 7.249 7.547 8.022 10.396 9.780

25 – 32 9.556 9.63064 8.759 12.428 6.697 7.225 12.416

33 – 40 10.162 8.31425 7.615 11.335 10.129 12.766 12.315

41 – 48 12.042 6.94623 8.784 7.564 7.695 8.446 8.424

49 – 56 11.286 12.3019 11.622 8.892 9.211 13.193 11.490

57 – 64 7.384 6.71944 8.625 12.139 11.740 7.153 8.743

65 – 72 8.984 12.3306 10.338 12.374 10.444 6.849 12.598

73 – 80 10.869 11.0827 9.155 9.479 9.103 8.005 12.427

81 – 88 12.909 11.5835 11.331 11.179 11.102 12.965 7.275

89 – 96 9.917 12.019 7.301 11.315 7.894 8.360 10.566

97 – 104 7.173 11.6853 6.816 12.514 9.050 7.430 8.559

105 – 112 7.809 12.6293 11.485 8.563 8.088 9.538 7.207

113 – 120 7.667 11.3403 8.434 11.388 9.125 10.636 7.939
121 - 128 9.472 9.78413 12.484 10.486 11.127 12.081 9.099

129 – 136 9.768 9.879 8.644 12.501 7.664 8.730 12.069

137 - 144 11.972 9.533 12.917 12.114 13.184 6.730 10.552

 145 – 152 11.706 8.959 11.908 8.769 12.914 13.153 8.899

153 – 160 9.623 10.939 12.616 11.521 9.571 10.238 7.766

161 – 168 12.534 8.003 7.704 11.212 7.387 13.262 7.344

169 – 176 13.255 13.043 10.290 6.765 8.494 7.431 10.069

177 – 184 7.638 10.084 10.957 10.699 11.731 7.205 10.951

185 – 192 9.904 9.783 11.344 7.508 8.353 8.728 10.496

55

193 – 200 12.229 12.712 9.597 6.950 11.045 9.254 6.776

201 – 208 12.111 11.333 6.806 8.491 7.212 12.628 12.137

209 – 216 11.976 9.175 12.242 12.892 10.459 9.876 6.934

217 – 224 9.995 9.949 9.553 9.774 8.720 12.299 12.788

225 – 232 11.428 8.917 12.109 6.803 10.353 10.199 12.240

233 – 240 12.531 12.459 11.138 8.841 11.340 8.118 9.541

241 – 248 7.450 10.779 6.890 12.233 8.629 8.175 6.674

249 – 256 7.927 7.888 12.275 10.227 12.053 11.056 10.660

257 – 264 8.178 6.869 8.501 11.067 11.189 9.908 8.959

265 – 272 7.468 10.080 8.460 9.208 9.669 10.589 10.656

273 - 280 10.788 10.422 8.478 7.645 10.625 7.437 9.989

281 – 288 9.898 11.184 8.461 12.744 10.001 11.924 12.785

289 – 296 10.497 11.253 12.547 9.461 7.625 8.401 9.563

297 – 304 9.165 10.679 12.247 13.120 10.088 7.376 10.936

305 – 312 12.410 10.002 7.932 7.451 12.514 7.164 6.775

313 – 320 12.944 13.144 7.578 11.939 11.538 9.103 11.214

321 – 328 12.878 8.679 12.611 9.228 11.061 8.459 10.039

329 – 336 7.652 12.174 10.445 9.115 12.717 10.7586 9.788

337 – 344 12.206 13.116 13.099 11.921 7.196 11.507 6.849

345 – 352 11.263 7.616 7.992 13.141 8.450 9.856 8.774

353 – 360 8.017 6.993 10.908 12.399 11.941 12.093 7.898

361 – 368 9.393 12.910 7.766 13.238 12.793 12.981 6.662

369 – 376 7.256 8.853 12.275 9.353 13.040 12.390 12.695

377 – 384 7.318 11.913 7.680 11.827 9.678 9.657 12.109

385 – 392 10.733 10.461 8.816 8.777 6.945 9.661 10.608

393 – 400 12.812 7.299 10.86 11.296 12.810 9.786 13.073

401 – 408 9.693 8.936 9.546 7.481 8.455 12.666 10.766

409 - 416 12.168 9.301 11.823 13.027 12.83 13.129 8.820

417 – 424 8.022 10.677 8.114 8.070 8.943 10.779 12.108

425 – 432 12.961 7.289 12.164 9.262 6.774 11.347 7.767

433 – 440 10.300 7.380 11.056 12.478 9.806 7.401 7.283

441 – 448 9.536 11.130 8.501 8.876 10.18 8.079 10.194

449 – 456 11.311 9.993 8.449 11.854 6.716 10.245 11.432

457 – 464 11.487 12.720 11.600 12.054 8.954 9.313 11.081

465 – 472 12.466 7.186 10.504 10.517 9.217 10.584 11.691

473 – 480 7.379 10.754 13.022 8.230 10.126 8.962 12.093

481 – 488 12.036 11.313 11.194 8.513 10.702 11.096 11.433

489 – 496 11.383 9.600 12.465 12.999 10.378 11.308 6.644

497 – 504 12.290 9.786 12.236 10.148 9.697 12.172 6.962

505 – 512 12.137 9.404 12.734 9.881 12.333 10.723 8.576

5.9 Conclusion

The three tests (balance test, impedance test and Off By One test) applied on

SHA-256 are discussed in this chapter. The theory, attack methodology and results are

56

included in this chapter. Statistical standard, Chi Square Test, which is used for

deducting conclusion on the attacks is also discussed in this chapter.

Balance Test succeeded in finding non-randomness over 25 rounds of main

function of SHA-256 out of 64 rounds. Impedance test found randomness with

complete 64 rounds of SHA-256. While Off By One test failed to find any non-

randomness as per the criteria defined in Chi Square test.

57

C h a p t e r 6

6 Conclusion and Future Work

6.1 Introduction

In this chapter, the thesis has been concluded. Some possible enhancements of

the work have been given in Section 6.3.

6.2 Conclusion

Cube Testers Attack is a relatively newer technique of cryptanalysis and its

application on different new ciphers is important. A platform has been developed for

the application of cube attack to any hash function.

The three tests (balance test, impedance test and Off By One test) applied on

SHA-256 are discussed in chapter 6. Balance Test succeeded in finding non-

randomness over 25 steps of main function of SHA-256 out of 64 steps. Impedance

found randomness with complete 64 steps of SHA-256. While Off By One test failed

to find any non-randomness as per the criteria defined in Chi Square test.

6.3 Future Work

Cube Testers can be used to check non random behavior in other hash functions

especially light weight hash functions. This test is yet to be tested against Keccak, the

SHA-3 standard hash function. Using same framework, properties other than those

tested in this thesis can also be tested against SHA-256 and other advanced hashes.

58

Better results can be found against balanceness and Off by one test by

increasing the size of cube input and superpoly input. For this better hardware

resources are required. Parallel Computing can also help in this regard.

This platform can be used to help testing ciphers, block and especially stream

ciphers for non-randomness. And weaknesses found by Cube Testers can be used to

predict result of advanced attacks like Dynamic Cube Attacks on ciphers.

6.4 Summary

In this chapter, the thesis has been concluded and future work is proposed

which mainly focuses on increasing the sizes of superpoly and cube samples, testing

other properties. Testing light weight ciphers and hashes against these properties.

59

APPENDICES

60

Appendix-A

C++ Code for Balance Test on SHA-256

//Implementation of SHA 256 for BALANCE TEST

#include <conio.h>

#include<iostream>

#include<vector>

#include<fstream>

#include<exception>

#include<string>

#include <sstream>

#include <atlbase.h>

#include <atlstr.h>

#include <winbase.h>

#include <math.h>

//#define const1 50

//#define const2 20

#define const1 45

#define const2 33

using namespace std;

typedef unsigned int uint;

void BalanceTestWithChiSqr(char* Filename)

{

 ifstream infile;

 ofstream outfile;

 char temp;

 u_int counter1 = 0, counter0 = 0;

 u_int expected_freq = 0;

 double X0 = 0.00, X1 = 0.00;

 double temp3 = 0.0, temp4 = 0.0;

 expected_freq = 65536 / 2;

 //open and read file

 infile.open(Filename, ios::binary | ios::app);

 //if file exists then proceed

 if (!infile)

 {

 //error

 cout << "\nError opening file for balance test\n";

61

 }

 else

 {

 while (infile.read(&temp, 1))

 {

 if (temp == 0x31)

 {

 counter1++;

 }

 else if (temp == 0x30)

 {

 counter0++;

 }

 }

 }

 infile.close();

 if (counter0 < expected_freq)

 temp3 = (counter0 - expected_freq)*(-1);

 else

 temp3 = (counter0 - expected_freq);

 if (counter1 < expected_freq)

 temp4 = (counter1 - expected_freq)*(-1);

 else

 temp4 = (counter1 - expected_freq);

 X0 = 2 * (pow(temp3, 2) / expected_freq);

 X1 = pow(temp4, 2) / expected_freq;

 outfile.open("Balancetest.txt", ios::binary | ios::app);

 if (!outfile)

 {

 cout << "\nError opening balancetest.txt file\n";

 }

 else

 {

 outfile << X0 << endl;

 outfile << X1 << endl;

 outfile.close();

 }

}

string fromDecimal(uint n, int b)

{

 string chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 string result="";

 while(n>0)

 {

 result=chars.at(n%b)+result;

 n/=b;

62

 }

 return result;

}

 uint K[]=

 { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b,

0x59f111f1, 0x923f82a4, 0xab1c5ed5,

 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,

0x9bdc06a7, 0xc19bf174,

 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa,

0x5cb0a9dc, 0x76f988da,

 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,

0x06ca6351, 0x14292967,

 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb,

0x81c2c92e, 0x92722c85,

 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624,

0xf40e3585, 0x106aa070,

 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,

0x5b9cca4f, 0x682e6ff3,

 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb,

0xbef9a3f7, 0xc67178f2};

 void makeblock(vector<uint>& ret, string p_msg)

 {

 uint cur=0;

 int ind=0;

 for(uint i=0; i<p_msg.size(); i++)

 {

 cur = (cur<<8) | (unsigned char)p_msg[i];

 if(i%4==3)

 {

 ret.at(ind++)=cur;

 cur=0;

 }

 }

 }

class Block

{

 public:

 vector<uint> msg;

 Block():msg(16, 0) { }

 Block(string p_msg):msg(16, 0)

 {

 makeblock(msg, p_msg);

63

 }

};

void split(vector<Block>& blks, string& msg)

{

 for(uint i=0; i<msg.size(); i+=64)

 {

try

{

 makeblock(blks[i/64].msg, msg.substr(i, 64));

 }

 catch(...)

 }

}

string mynum(uint x)

{

 string ret;

 for(uint i=0; i<4; i++)

 ret+=char(0);

 for(uint i=4; i>=1; i--) //big endian machine used

 {

 ret += ((char*)(&x))[i-1];

 }

 return ret;

}

uint ch(uint x, uint y, uint z)

{

 return (x&y) ^ (~x&z);

}

uint maj(uint x, uint y, uint z)

{

 return (x&y) ^ (y&z) ^ (z&x);

}

uint fn0(uint x)

{

 return rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22);

}

uint fn1(uint x)

{

 return rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25);

}

uint sigma0(uint x)

{

 return rotr(x, 7) ^ rotr(x, 18) ^ shr(x, 3);

64

}

uint sigma1(uint x)

{

 return rotr(x, 17) ^ rotr(x, 19) ^ shr(x, 10);

}

void sha256(string msg_arr,uint *H)

{

 string msg;

 msg=msg_arr;

 uint num_blk = msg_arr.size()*8/512;

 vector<Block> M(num_blk, Block());

 split(M, msg_arr);

 for(uint i=0; i<1; i++)

 {

 vector<uint> W(64, 0);

 for(uint t=0; t<16; t++)

 {

 W[t] = M[i].msg[t];

 }

 for(uint t=16; t<64; t++)

 {

 W[t] = sigma1(W[t-2]) + W[t-7] + sigma0(W[t-15]) + W[t-16];

 }

 uint work[8];

 for(uint i=0; i<8; i++)

 work[i] = H[i];

 for(uint t=0; t<17; t++)

 {

 uint t1, t2;

 t1 = work[7] + fn1(work[4]) + ch(work[4], work[5], work[6]) + K[t] + W[t];

 t2 = fn0(work[0]) + maj(work[0], work[1], work[2]);

 work[7] = work[6];

 work[6] = work[5];

 work[5] = work[4];

 work[4] = work[3] + t1;

 work[3] = work[2];

 work[2] = work[1];

 work[1] = work[0];

 work[0] = t1 + t2;

 }

 for(uint i=0; i<8; i++)

65

 {

 H[i] = work[i] + H[i];

 }

 }

}

int main()

{ string

msg_arr="00

000

00000000000";

 // 128 zeros

 string msg;

 uint H_Prev[8]={0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,

0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};

 string

temp_msg_arr="000

000

0000000000000000";

 //128 zeros

 char temp;

 ofstream outfile;

 ofstream outfile2;

 ofstream outfile3; //addition

 ifstream infile; //addition

 char* FileName="input.txt";

 char* OutFileName="Output.txt";

 char* OutFileSHA2Name="SHA2Out.txt";

 outfile.open(OutFileName, ios::binary);

 outfile.close();

 outfile3.open("Balancetest.txt", ios::binary);

 outfile3.close();

 outfile.open(FileName, ios::binary);

 {

 char temparr[128];

 for(int i=0;i<128;i++)

 temparr[i]=0x00;

 for(int k=0;k<128;k++)

 {

 outfile.write(&temparr[k],1);

 }

 }

 outfile.close();

 infile.open(FileName, ios::binary);

 {

 int cnt=0,cnt_arr=0;

 msg_arr[0];

 for(int i=0;cnt_arr<128;i=i+2)

 {

 if(cnt==0)

 {

66

 infile.read(&temp,1);

 msg_arr[cnt_arr]=temp<<4;

 cnt=1;

 }

 if(cnt==1)

 {

 infile.read(&temp,1);

 msg_arr[cnt_arr]=msg_arr[cnt_arr]|temp;

 cnt_arr++;

 cnt=0;

 }

 }

 }

 infile.close();

 msg=msg_arr;

 for(int k=0;k<256;k++)

 {

 for(int l=0;l<256;l++)

 {

 uint H[]={0x6a09e667, 0xbb67ae85, 0x3c6ef372,

0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};

 sha256(msg,H);

 for(int m=0;m<8;m++)

 {

 H_Prev[m]=H[m]^H_Prev[m];

 }

 msg[const1]++;

 }

 outfile.open(OutFileName, ios::binary|ios::app);

 if (!outfile)

 {

 //error

 }

 else

 {

 for(int k=0;k<8;k++)

 {

 uint tmp=0x00000000;

 tmp=H_Prev[k];

 for(int cntr=0;cntr<32;cntr++)

 {

 char ch=0x00;

 ch= (tmp & 0x80000000)>>31;

67

 ch=ch+'0x30';

 tmp=tmp<<1;

 outfile<<ch;

 }

 }

 }

 outfile.close();

 for(int m=0;m<8;m++)

 {

 H_Prev[m]=0x00;

 }

 msg[const2]++;

 }

 BalanceTestWithChiSqr(OutFileName);

 cout<<"Test Done";

 getch();

 return 0;

}

68

BIBLIOGRAPHY

69

BIBLIOGRAPHY

[1] A. Kaminsky, “Cube test analysis of the statistical behavior of cubehash and

skein,” 2010, ark@cs.rit.edu 14736 received 7 May 2010. [Online].

 Available: http://eprint.iacr.org/2010/262

[2] B. Zhu, G. Gong, X. Lai, and K. Chen, “Another view on cube attack, cube

tester, aida and higher order differential cryptanalysis.”

[3] J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir, “Efficient

fpga implementations of high-dimensional cube testers on the stream cipher

grain-128,” Cryptology ePrint Archive, Report 2009/218, 2009,

http://eprint.iacr.org/

[4] J.-P. Aumasson, I. Dinur, W. Meier, and A. Shamir, “Cube testers and key

recovery attacks on reduced-round md6 and trivium,” in Fast Software

Encryption, ser. Lecture Notes in Computer Science, O. Dunkelman, Ed.

Springer Berlin Heidelberg, 2009, vol. 5665, pp. 1–22.

[5] S. Li, Y. Wang, and J. Peng, “Cube testers on bivium,” in Communications

 and Intelligence Information Security (ICCIIS), 2010 International Conference

on, oct. 2010, pp. 121 –124.

[6] I. Dinur, T. Gneysu, C. Paar, A. Shamir, and R. Zimmermann, “An

experimentally verified attack on full grain-128 using dedicated reconfigurable

 hardware,” in Advances in Cryptology ASIACRYPT 2011, ser. Lecture Notes

in Computer Science, D. Lee and X. Wang, Eds. Springer Berlin Heidelberg,

2011, vol. 7073, pp. 327–343.

[7] J.-P. Aumasson, “Practical distinguisher for the compression function of blue

midnight wish,” 2010. [Online]. Available: http://131002.net/data

/papers/Aum10.pdf

[8] N. R. Darmian, “A distinguish attack on rabbit stream cipher based on

multiple cube tester.” IACR Cryptology ePrint Archive, vol. 2013, p. 780,

2013.

[9] F.-M. Quedenfeld and C. Wolf, “Algebraic properties of the cube attack,”

Cryptology ePrint Archive, Report 2013/800, 2013, http://eprint.iacr.org/.

[10] L. Joel, “Cube attacks on cryptographic hash functions,” 2009. [Online].

 Available: http://hdl.handle.net/1850/10821

[11] Nikova, “New developments in symmetric key cryptanalysis,” in D.SYM.6

ECRYPT II, 2010.

http://131002.net/data

70

[12] S. Rao, “Parallel cube testing on gpus,” 2010, RIT Computer Science M.S.

project, May 2010. [Online]. Available: http://www.cs.rit.edu/

ark/students/bwb1636/index.shtml

[13] J.-P. Aumasson, E. Ksper, L. Knudsen, K. Matusiewicz, R. degrd, T. Peyrin,

and M. Schlffer, “Distinguishers for the compression function and output

transformation of hamsi-256,” in Information Security and Privacy, ser.

Lecture Notes in Computer Science, R. Steinfeld and P. Hawkes, Eds.

Springer Berlin Heidelberg, 2010, vol. 6168, pp. 87–103.

[14] S. Nikova, “New developments in symmetric key cryptanalysis,” in D.SYM.9

ECRYPT II, 2011.

[15] I. Dinur and A. Shamir, “Breaking grain-128 with dynamic cube attacks,” in

Fast Software Encryption, ser. Lecture Notes in Computer Science, A. Joux,

Ed. Springer Berlin Heidelberg, 2011, vol. 6733, pp. 167–187.

[16] I. Dinur, P. Morawiecki, J. Pieprzyk, M. Srebrny, and M. Straus, “Practical

Complexity cube attacks on round-reduced keccak sponge function,”

Cryptology ePrint Archive, Report 2014/259, 2014, http://eprint.iacr.org/.

[17] J.-P. Aumasson, “On the pseudorandomness of shabal’s keyed permutation,”

Available online, 2009. [Online]. Available:

http://131002.net/data/papers/Aum09.pdf

[18] M. Lamberger and F. Mendel, “Higher-order differential attack on reduced

sha-256,” Cryptology ePrint Archive, Report 2011/037, 2011,

http://eprint.iacr.org/.

[19] M. Iwamoto, T. Peyrin, and Y. Sasaki, “Limited-birthday distinguishers for

hash functions,” in Advances in Cryptology - ASIACRYPT 2013, ser. Lecture

Notes in Computer Science, K. Sako and P. Sarkar, Eds. Springer Berlin

Heidelberg, 2013, vol. 8270, pp. 504–523.

[20] J.-P. Aumasson and D. Khovratovich, “First analysis of keccak,” Available

online, 2009. [Online]. Available: http://131002.net/data/papers/AK09.pdf

[21] E. Filiol, “A new statistical testing for symmetric ciphers and hash functions,”

in Information and Communications Security, ser. Lecture Notes in Computer

Science, R. Deng, F. Bao, J. Zhou, and S. Qing, Eds. Springer Berlin

Heidelberg, 2002, vol. 2513, pp. 342–353.

[22] D. Khovratovich, C. Rechberger, and A. Savelieva, “Bicliques for preimages:

Attacks on skein-512 and the sha-2 family,” in Fast Software Encryption, ser.

Lecture Notes in Computer Science, A. Canteaut, Ed. Springer Berlin

Heidelberg, 2012, vol. 7549, pp. 244–263.

[23] O. K. Ali Doanaksoy, Bar Ege and F. Sulak, “Cryptographic randomness

testing of block ciphers and hash functions,” Cryptology ePrint Archive,

Report 2010/564, 2010, http://eprint.iacr.org/.

http://131002.net/data/papers/Aum09.pdf
http://eprint.iacr.org/
http://131002.net/data/papers/AK09.pdf
http://eprint.iacr.org/

71

[24] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages for

step-reduced sha-2,” in Advances in Cryptology ASIACRYPT 2009, ser.

Lecture Notes in Computer Science, M. Matsui, Ed. Springer Berlin

Heidelberg, 2009, vol. 5912, pp. 578–597.

[25] S. Sanadhya and P. Sarkar, “Attacking reduced round sha-256,” in Applied

Cryptography and Network Security, ser. Lecture Notes in Computer Science,

S. Bellovin, R. Gennaro, A. Keromytis, and M. Yung, Eds. Springer Berlin

Heidelberg, 2008, vol. 5037, pp. 130–143.

[26] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang (2010).

"Advanced meet-in-the-middle preimage attacks: First results on full Tiger,

and improved results on MD4 and SHA-2". Advances in Cryptology -

ASIACRYPT 2010. Lecture Notes in Computer Science (Springer Berlin

Heidelberg) 6477: pp. 56–75.

[27] L. Yang, M. Wang, and S. Qiao, “Side channel cube attack on present,” in

Cryptology and Network Security, ser. Lecture Notes in Computer Science, J.

Garay, A. Miyaji, and A. Otsuka, Eds. Springer Berlin Heidelberg, 2009, vol.

5888, pp. 379–391.

	CUBE TESTERS ON HASH FUNCTIONS
	Muhammad Owais ul Haq
	Abstract
	Dedication
	Acknowledgement
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	1 Introduction
	1.1 Overview
	1.2 Need for Research
	1.3 Problem Statement
	1.4 Objectives
	1.5 Research Methodology and Achieved Goals
	1.6 Thesis Organization

	Chapter 2
	2 Literature Review
	2.1 Introduction
	2.2 Cube Testers Attack on Hash Functions
	2.2.1 MD6
	2.2.2 CubeHash
	2.2.3 Skein

	2.3 Cube Testers Attack on Ciphers
	2.3.1 Trivium
	2.3.2 Bivium
	2.3.3 Rabbit Stream Cipher
	2.3.4 Grain

	2.4 Testable Properties
	2.4.1 Balance Test
	2.4.2 Independence Test
	2.4.3 Off-By-One Test
	2.4.4 Low Degree Test
	2.4.5 Presence of Linear Variable Test
	2.4.6 Presence of Neutral Variable Test

	2.5 Attacks on SHA-256
	2.6 Summary

	Chapter 3
	3 Cube Testers Attack and Property Testing
	3.1 Introduction
	3.2 Cube Attack

	Theorem 1.
	3.2.1 Definition 3.1
	3.2.2 Preprocessing Phase
	3.2.3 Online Phase
	3.3 Cube Testers Attack Theory
	3.3.1 Cube Variable (CV) and Superpoly Variable (SV) Inputs

	3.4 Terminology
	3.5 Cube Testers Attack Methodology
	3.6 Property Testers
	3.6.1 Definition 3.2
	3.6.2 Concept of Property Testers

	3.7 Testable Properties
	3.7.1 Balance Test
	3.7.2 Constantness
	3.7.3 Low Degree
	3.7.4 Presence of Linear Variables
	3.7.5 Independence Test
	3.7.6 Off-By-One Test

	3.8 Summary

	Chapter 4
	4 Structure of SHA-256
	4.1 Introduction
	4.2 Hash Function
	4.3 Classes of Hash Functions
	4.4 Hash Function Properties
	4.4.1 Preimage Resistance
	4.4.2 Second Preimage Resistance
	4.4.3 Collision Resistance

	4.5 Secure Hash Algorithm – 256 (SHA-256)
	4.5.1 Padding and Parsing
	4.5.2 SHA-256 Hash Computation
	4.5.3 SHA-256 Constants
	4.5.4 SHA-256 Functions
	4.5.5 SHA-256 Computation Main Loop Steps

	4.6 Summary

	Chapter 5
	5 Cube Testers Attack on SHA-256
	5.1 Introduction
	5.2 SHA-256 Customizations for Cryptographic Tests
	5.3 Selection of Cube and Superpoly Input Bit
	5.4 Input for Statistical Attack
	5.4.1 Chi-Square Test
	5.4.1.1 Why choose a significance level of 0.01?

	5.5 Cube Testers Attack Implementation
	5.5.1 The Main Function
	5.5.2 SHA-256 Function
	5.5.2.1 Split Function

	5.5.3 Chi Square Function
	5.5.4 Environment Used for Cube Testers Attack

	5.6 Balance Test
	5.6.1 Balance Test Methodology
	5.6.2 Balance Attack Results
	5.6.2.1 Results for SHA-256 with 17 Rounds
	5.6.2.2 Results for SHA-256 with 18 Rounds
	5.6.2.3 Results for SHA-256 with 20 Rounds
	5.6.2.4 Results for SHA-256 with 22 Rounds
	5.6.2.5 Results for SHA-256 with 23 Rounds
	5.6.2.6 Results for SHA-256 with 24 Rounds
	5.6.2.7 Results for SHA-256 with 25 Rounds
	5.6.2.8 Results for SHA-256 with 26 and more Rounds

	5.7 Impedance Test
	5.7.1 Impedance Test Methodology
	5.7.2 Impedance Test Results

	5.8 Off By One Test
	5.8.1 Off By One Test Methodology
	5.8.2 Off By One Test Results

	5.9 Conclusion

	Chapter 6
	6 Conclusion and Future Work
	6.1 Introduction
	6.2 Conclusion
	6.3 Future Work
	6.4 Summary

	APPENDICES
	Appendix-A
	C++ Code for Balance Test on SHA-256
	BIBLIOGRAPHY
	BIBLIOGRAPHY

