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Preface

After a half-century from the birth of the laser, we now see lasers in a variety of
locations in academic institutions and industrial settings, as well as in everyday
life. The species of laser are diverse. The core of quantum-mechanical laser theory
was established in the 1960s by the Haken school and Scully. Semiclassical gas
laser theory was also established in the 1960s by Lamb. Subsequently, many
theoretical works on lasers have appeared for specific types of lasers or for specific
operation modes. So, laser science is now mature and seems to leave little to be
elucidated. Laser science has evolved into many branches of quantum-optical
science, including coherent interaction, nonlinear optics, optical communications,
quantume-optical information, quantum computation, laser-cooled atoms, and
Bose—Einstein condensation, as well as gravitational wave detection by laser in-
terferometer. Laser light is typical classical light, in that it closely simulates the
coherent state of light, while in recent years light with non-classical quality has
claimed more and more attention.

The role of laser theory is to clarify the character and quality of laser light and to
show how it arises. The Haken school considered the laser linewidth and the
amplitude distribution, while Scully considered the number distribution of laser
photons. Laser linewidth and photon number distribution are complementary
aspects of the same laser phenomenon viewed from wave phase or corpuscular
viewpoints. Analysis of a laser from these viewpoints is involved because of the
interaction of many atoms and the optical field as well as the pumping and
damping processes. Thus, a common recipe for treating the laser field is to assume
a single-mode field and reduce the number of degrees of freedom of the field to
one. Then one has a single time-dependent variable for the field or a photon
distribution for a single mode. The cost of reducing the number of degrees of
freedom for the field to one is to lose information regarding the spatial field dis-
tribution, especially the relation between the fields inside and outside the laser
cavity.

The theme of this book is to discuss how to deal with this defect of standard laser
theories. To fully incorporate the field degrees of freedom in a laser is to treat the
output coupling of the laser cavity rigorously. When the output coupling loss of
the cavity is incorporated, cavity mode quantization becomes a difficult task be-
cause of the associated losses. Usual field quantization, relying on the field ex-
pansion in terms of orthogonal modes, becomes impossible because decaying
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cavity modes are non-orthogonal. A direct approach to this problem is to set the
laser cavity in a much larger cavity that simulates the “universe.” Quantization is
accomplished using the normal modes of the larger cavity that includes the laser
cavity. The cost of this procedure is to have an infinite number of field modes
instead of the single mode in conventional theories.

The burden of the infinite number of field modes can be relaxed if we go to a
collective field variable expressing the total electric field. Then, the laser equation
of motion can be solved for the total electric field. Thermal or vacuum fluctuation
affecting the laser field is incorporated automatically in this procedure. Quantum
noise is introduced as the fluctuating force associated with the decay of the atomic
dipole. The resulting expressions for the laser linewidth both below and above
threshold have a common correction factor compared with the formula resulting
from the theory assuming a single mode. This factor, called the excess noise factor,
attracted the attention of many scientists, who discussed the origin of the
factor. Various approaches to derive the factor have been published. In particular,
Siegman proposed that the excess noise factor is the result of non-orthogonality or
bi-orthogonality of cavity modes. The non-orthogonality is, in turn, a consequence
of the open character of the laser cavity as compared to the closed structure of a
fictitious “single”-mode cavity.

Using the orthogonal modes of the “universe,” it can be shown that the relation
between the field inside and outside the cavity is not determined simply by the
transmission coefficient of the cavity mirror, because the thermal or vacuum field
exists everywhere. Outside the cavity, the total field is the sum of the transmitted
field and the ambient thermal or vacuum field.

In this book, we present a laser theory that takes into account the output cou-
pling of the cavity and uses the orthogonal modes of the “universe.” We analyze
the wave aspect of the laser field in both a semiclassical and quantum-mechanical
manner. In the quantum-mechanical analysis, we obtain the excess noise factor.
We also present a simplified method to avoid the use of the modes of the “uni-
verse” where again the excess noise factor is derived. We analyze the spontaneous
emission process in a cavity with output coupling to show that the respective
spontaneous emission process in a cavity is not enhanced by the excess noise
factor. In order to consider the physical origin of the excess noise factor, the
theories of the excess noise factor are surveyed. Also, to compare the method taken
in this book with other methods to treat output coupling, quantum theories on
cavity output coupling or the input-output relation are surveyed.

We begin in Chapter 1 with a classical analysis of one-dimensional optical
cavities with output coupling. Chapter 2 gives a quantum-mechanical analysis of
the same cavities embedded in a larger cavity. Chapter 3 describes the necessary
preliminaries for a quantum-mechanical laser analysis. This includes the Langevin
force for the field in the case of the single-mode approximation, and those for
atomic polarization and atomic inversion. As a reference for a full laser analysis
that incorporates cavity output coupling, a laser theory assuming a single mode,
which we call a quasimode, is presented in Chapter 4. Standard, conventional
results on laser operation, especially on laser linewidth, are derived. Chapter 5
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displays, for a laser with output coupling, the complete equations of motion for the
field modes, atomic polarizations, and atomic inversions. The atomic variables are
eliminated to obtain an equation for the total field. In Chapter 6 is shown the
contour integral method of solution for the field equation utilizing the poles in
the normalization constant in the field mode functions.

Chapter 7 gives semiclassical, linear gain analysis. Ignoring the Langevin forces
and the gain saturation effect, it solves the field equation of motion using the
Fourier expansion of the normalization constant of the field mode functions. The
space-time structure of the linear build-up of the field is clarified. Chapter 8, giving
a semiclassical, nonlinear gain analysis, improves Chapter 7 by incorporating the
saturation effect in atomic inversion, but still ignoring the Langevin forces. The
steady-state field distribution is determined. Chapter 9 improves Chapter 7 by
incorporating the Langevin forces, but ignoring the saturation effect. This
amounts to a quantum, linear gain analysis. The laser linewidth below threshold is
determined. Chapter 10 gives a quantum, nonlinear gain analysis. This includes
both the Langevin forces and the saturation effect, summarizing the results of the
previous three chapters. The expression for the linewidth is shown to have two
corrections compared to that in Chapter 4, one of which is the excess noise factor.
Chapter 11 presents a simplified method of laser analysis that combines the effects
of the Langevin forces and optical boundary conditions for traveling waves.
Chapter 12 summarizes the results obtained in Chapters 7-11 and discusses
various physical aspects of laser oscillation. The spontaneous emission process in
a cavity with output coupling is analyzed in Chapter 13. Chapter 14 surveys the-
ories of excess noise factor and finally Chapter 15 surveys quantum theories of
output coupling.

The book is structured so that the reader can begin with basic quantum-
mechanical knowledge and step up to rather complicated laser wave analyses.
Knowledge of preliminary quantum mechanics, some preliminary operator alge-
bra, simple contour integrals, Fourier transforms, and differential equations is
assumed. Knowledge of elementary laser theory is also assumed. Knowledge of
basic semiclassical laser analysis is preferable. Leaps in transforming one equation
into the next are avoided as often as possible. Wherever the description of a topic is
short and poor, the relevant literature is cited for the reader’s reference. Problems
are provided in Chapters 1-5.

Fully quantum-mechanical theories of excess noise or output coupling exist, but
most of them are in a sophisticated form. Unfortunately, to treat a realistic cavity is
involved, as we will see in this book. But theories to be compared easily with ex-
periments will be of particular importance in view of the developing field of non-
classical light. We hope some of the published papers cited in this book meet this
demand. There is no doubt that future papers will appear to improve the situation.

Kikuo Ujihara
Tokyo, August 2009
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1
A One-Dimensional Optical Cavity with Output
Coupling: Classical Analysis

In this chapter, a one-dimensional optical cavity with output coupling is con-
sidered. The optical cavity has transmission loss at one or both of the end surfaces.
The classical, natural cavity mode is defined, and decaying or growing mode
functions are derived using the cavity boundary conditions. A series of resonant
modes appears. But these modes are not orthogonal to each other and are not
suitable for quantum-mechanical analysis of the optical field inside or outside of
the cavity. Hypothetical boundaries are added at infinity in order to obtain
orthogonal wave mode functions that satisfy the cavity and infinity boundary
conditions. These new mode functions are suitable for field quantization, where
each mode is quantized separately and the electric field of an optical wave is made
up of contributions from each mode. Some results of quantization are described in
the next chapter. Chapter 3 deals with the usual quasimode model: a perfect cavity
with distributed internal loss or with a fictitious loss reservoir.

1.1
Boundary Conditions at Perfect Conductor and Dielectric Surfaces

In a source-free space, the electric field E and the magnetic field H described using
a vector potential A satisfy the following equations:

V?A(r) — clz (%) A(r) =0 (1.1)
E(r) = ng(r) (1.2)
H(r) = lV x A(r) (1.3)
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1 A One-Dimensional Optical Cavity with Output Coupling: Classical Analysis

where c is the velocity of light and u is the magnetic permeability of the medium.
We work in a Coulomb gauge where

divA(r) =0 (1.4)

In this chapter we consider one-dimensional, plane vector waves that are
polarized in the x-direction and propagated to the z-direction. Therefore we write

A(r) = A(z, b)x (1.5)

where x is the unit vector in the x-direction. At the surface of a perfect conductor
that is vertical to the z-axis, the tangential component of the electric vector
vanishes. The tangential component of the magnetic field should be proportional
to the surface current. In the absence of a forced current, this condition is
automatically satisfied: the magnetic field that is consistent with the electric field
induces the necessary surface current. At the interface between two dielectric
media, or at the interface between a dielectric medium and vacuum, the tangential
components of both the electric and magnetic fields must be continuous. Thus, at
the surface z, of a perfect conductor,

0
S AG D) =0 (1.6)

and at the interface z; of dielectrics 1 and 2,

0 0

&Al(zu t) = EAZ(ZLH t) (1.7)
0 0

&Al (z,1) Z:Zl— &AZ (z,1) . (1.8)

In Equation 1.8 we have dropped the magnetic permeability u; and p,, as-
suming that both of them are equal to that in vacuum, o, which is usually valid in
the optical region of the frequency spectrum.

1.2
Classical Cavity Analysis

1.2.1
One-Sided Cavity

Consider a one-sided cavity depicted in Figure 1.1. This cavity consists of a lossless
non-dispersive dielectric of dielectric constant &;, which is bounded by a perfect
conductor at z=— d and vacuum at z=0. The outer space 0 < z is a vacuum
of dielectric constant &y. Subscripts 1 and 0 will be used for the regions —d < z < 0
and 0 < z, respectively. The velocity of light in the regions 1 and 0 are ¢; and ¢,
respectively.



1.2 Classical Cavity Analysis

Z

Figure 1.1 The one-sided cavity model.

The natural oscillating field mode of the cavity, the cavity resonant mode, is
defined as the mode that has only an outgoing wave in the outer space 0 < z. For
reasons that will be described in Chapter 14, we also derive a mode that has only
an incoming wave outside. For simplicity, let us call these the outgoing mode and
incoming modes, respectively. Let the mode functions be

Az, t) = u(z)e ", -d<z<0
, (1.9)
= e HOr T koz) 0<z
where v is a constant. We define the wavenumber k by
ki=ow/c, i=0,1 (1.10)

The upper and lower signs in the second line in Equation 1.9 are for the out-
going mode and the incoming mode, respectively. Substituting Equation 1.9 into
Equation 1.1 via Equation 1.5 we obtain

2 d 2
—w—zu:(d—>u7 —-d<z<0
“a % (1.11)
k() = £7 0<z
Co
Thus we can set
u(z) = A1z 4 Be iz
(1.12)

v=_=C

where k; = wy, / ¢;. Putting this into Equation 1.6 for z= —d and into Equations 1.7
and 1.8 for z=0, we obtain

Ae—ikld + Beikld -0
A+B=C (1.13)
iki (A — B) = %ikoC

We then have

2ikd _ FRo—ki _Fo -6 (1.14)
ki F ko CoF+

3



4

1 A One-Dimensional Optical Cavity with Output Coupling: Classical Analysis

For the outgoing mode (upper sign) we have

Qpikd _ 01" 0 _ @ +a

1.15
Co —C1 Co —C1 ( )

Because we are assuming that both ¢; and ¢, are real and that the velocity of light
in the dielectric is smaller than that in vacuum (¢; < ¢p), k1 is a complex number
Kjou- We reserve ky for the real part of Ky,,;. Then we obtain

Klout,m = klm -

m+ 1), m=0,1,23,...

1
24 (1.16)

) —lln G+ o —lln 1
')_Zd c—c¢/) 24 r

There is an eigenmode every nt/d in the wavenumber. Note that the imaginary part
is independent of the mode number. The coefficient

klm =

I | (1.17)
co+ 1
is the amplitude reflectivity of the coupling surface, z=0, for the wave incident
from the left, that is, from inside the cavity. The corresponding eigenfrequency of
the mode is

Qm = Qkout,m = Wem — iyc

_a
Cmizd(

—C—lln fta —C—lln 1
7= %d w—o0a/) 24 \r

where we have defined the complex angular frequency Q,. In subsequent
chapters, a typical cavity eigenfrequency, with a certain large number m, will be
denoted as

1) 2m+ 1)m, m=0,1,2,3,. ..

(1.18a)

Q =w,— 1y, (1.18b)

The separation of the mode frequencies is Aw, = ¢;n/d.
Likewise, for the incoming mode (lower sign) we have

; €1 — ¢ Co—¢C
eZLkld _ 1 0 _ 0 1 (119)
co+ 1 co + C1
from which we obtain
Kiinm = Kigutm = kim + 1y (1.20a)

and

Qiinm = onmrm =wom+ 1y, =Q, (1.20b)



1.2 Classical Cavity Analysis

Going back to Equation 1.13 we now get the ratios of A, B, and C. Thus, except
for an undetermined constant factor, for the outgoing mode we have

A2, 1) = U (2)e M (1.21a)
sin{Q,(z+d)/a1}, -d<z<0
Umnlz) = {Sin{de/Cl}eiQm(z/%)v 0 < z (1211))

and for the incoming mode we have

Az, 1) = il (2)e W (1.22a)
R sin{Q (z+ d)/c1}, —d < z<0
UmlZ) = {sin{Q:‘nd/cl}eiQ:ﬁ(z/c"), 0<z (1.22b)

where the suffix m signifies the cavity mode. We note that the outgoing mode is
temporally decaying whereas the incoming mode is growing. Inside the cavity, the
field is a superposition of a pair of right-going and left-going waves with decaying
or growing amplitudes. We note that #,,(z) = u},(z), meaning that the complex
conjugate of the incoming mode function is the time-reversed outgoing mode
function.

We also note that different members of the outgoing mode are non-orthogonal
in the sense that

JO wh (2) uny (2)dz # 0, m # m' (1.23)
—d

Similarly, members of the incoming mode are mutually non-orthogonal. How-
ever, a member of the outgoing mode and a member of the incoming mode are
approximately orthogonal. That is, if normalized properly, it can be shown that

0
J Ut (2) Winm (2)82 22 O (1.24)
—d

The approximation here neglects the integrals of spatially rapidly oscillating
terms. This is justified when the cavity length d is much larger than the optical
wavelength 1, = 27m¢;/w, or when m > 1 in Equation 1.16. These relationships
among the outgoing and incoming mode functions will be discussed in Chapter 14
in relation to the quantum excess noise or the excess noise factor of a laser.

1.2.2
Symmetric Two-Sided Cavity

Consider a symmetrical, two-sided cavity depicted in Figure 1.2. This cavity con-
sists of a lossless non-dispersive dielectric of dielectric constant &;, which is

5
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€9, Co -

—d 0 d — Z

Figure 1.2 The symmetrical two-sided cavity model.

bounded by external vacuum at both z= —d and z=4d. Subscripts 1 and 0 will be

used for the internal region —d < z < d and external region d < z and z < —d,

respectively. The velocity of light in the regions 1 and 0 are ¢; and co, respectively.
Let the mode functions be

A(z,t) = u(z)e ", —d<z<d
= peH(@Fhz) d<z (1.25)
_ we—i(wtilcoz)7 7 < —d

where again the upper signs are for the outgoing mode and the lower ones are for
the incoming mode, and both v and w are constants. Following a similar procedure
as above, this time we get symmetric and antisymmetric mode functions for both
outgoing and incoming modes.

The symmetric outgoing mode function is (problem 1-1)

cos(Qz/c)e ¥, —d<z<d
A(z,t) = { cos(Qd/cy)e  Hi-(zd)/e} d<z (1.26)
cos(Qd/c))e”MiHErd/ol 2 < g
where
Q=Q, =w,—iy,
_a _
Oy = dmn, m=0,1,2,3,. .. (1.27)
*C—lln b+ o1 *C—lln 1
e =24 co—o¢c/) 24 \r
The antisymmetric outgoing mode function is
sin(Qz/c;)e ¥, —-d<z<d
A(z,t) = { sin(Qd/c;)e =z} d<z (1.28)

— sin(Qd/c) )e )/} z<—d
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where

Q=Q, =w,—iy,
%]

wmzﬁ(
—C—lln b+ —c—lln 1
LY c—o¢a/) 24 \r

The symmetric and antisymmetric incoming mode functions are given by
Equations 1.26 and 1.28, respectively, with Q,, replaced by Q). Note that the
antisymmetric mode functions for 0 < z, if shifted to the left by d (z - z+d),
coincide with the mode functions for the one-sided cavity in Equations 1.21a and
1.22a, as is expected from the mirror symmetry of the two-sided cavity. The rela-
tions 1.23 and 1.24 also hold in this cavity model.

2m+ 1)m, m=0,1,2,3,. .. (1.29)

13
Normal Mode Analysis: Orthogonal Modes

As we have seen in the previous section, the natural resonant modes (outgoing
mode) of the cavity, as well as the associated incoming modes, are non-orthogonal
and associated with time-decaying or growing factors. This feature is not suitable
for straightforward quantization. For straightforward quantization, we need ortho-
gonal, stationary modes describing the cavity. For this purpose, we introduce arti-
ficial boundaries at large distances so as to get such field modes.

1.3.1
One-Sided Cavity

1.3.1.1 Mode Functions of the “Universe”

For the one-sided cavity, we add a perfectly reflective boundary of a perfect conductor
at z=1L as in Figure 1.3. Then we have three boundaries: at z=—d and z=L the
boundary condition 1.6 applies, whereas at z=0 the conditions 1.7 and 1.8 apply.
The region —d < z < Lis our “universe,” within which the region —d < z < 0 s
the cavity and the region 0 < z < L is the outside space.

L — z

Figure 1.3 The one-sided cavity embedded in a large cavity.
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Here, again, subscripts 1 and 0 will be used for the regions —d < z < 0 and
0 < z < L, respectively. Assuming, again, the form of Equation 1.5 for the field,

we assume the following form of the field:
A(z,1) = Q1 U(2)

We try solutions of the form:
Ai(z,t) = Q) Ur(z,t), —-d<z<O0
Ao(z,t) = Q(t) Up(z,t), 0<z<1L

Then Equation 1.1 gives

(;)ZQU) +?Q(h) =0

and
(;Z)z Ui(2) + (k) Us (2) = 0
((%)2 Uo(2) + (ko)? Uo(2) = 0
where

ki=o/g=olau)?, i=0,1

Thus we assume the following spatial form:

U Ul(Z) = aleiklz +b167ik‘z, —-d<z<0
(2) = Uo(2) = age™o? + bye=oz, 0<z<lL

Applying the boundary conditions yields

ale—ikld 4 bleikld -0
a1 +by =ag+ by
a1k1 — b]kl = aoko — boko

aoetkoL + boeflkoL =0

(1.30)

(1.31a)

(1.31b)

(1.32a)

(1.32b)

(1.33)

(1.34)

(1.35a)
(1.35Db)

(1.35¢)

(1.35d)

For non-vanishing coefficients, we need the determinantal equation (problem 1-2)

tan(koL) = — (ko/k1) tan(k;d)

(1.36)
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or

d L
¢ tanw——l—cotanw—:() (1.37)
C1 Co

Under this condition, the function A can be determined except for a constant
factor as

Ai(z,t) =fsink; (z+ d) cos(wt+ ¢), —d<z<0
_  kicoskid .
Ag(z,t) —fmsmko(z—L)cos(wt—&—qﬁ) (1.38)

k
:f<k—1cosk1dsink0z+sinkldcoskoz) cos(wt+¢), 0<z<lL
0

where ¢ is an arbitrary phase and fis an arbitrary constant. Equation 1.37 has been
used in the last line.

1.3.1.2 Orthogonal Spatial Modes of the “Universe”

Now the allowed values of ko ; or w are determined by Equation 1.37. If we choose
alarge L, L >d, it can be seen that the solution is distributed rather uniformly with
approximate frequency, in ko, of /L, and that there is no degeneracy in ko and
thus in w. It can be shown that the space part of the jth mode functions in
Equation 1.38, that is,

sinkyj(z+d), —-d<z<0
U= ey (139)
k—cos kijdsinkoiz +sinkyjdcoskgz |, 0<z <L
0
form an orthogonal set in the sense that
L
Jg@u@q@nzq oy (1.40a)
—d

To show this relation, let us consider the integral

L'19 5}
I_L%$u@$q@&
1

5]
~ Ui(z) B U(2)
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k2. (© k. ("

:—jJ Ui(z)Uj(z)dz + —]J Ui(z)Uj(z)dz
Ho J-a Ho Jo

L

= wjz (Jod e Ui(z) Uj(z)dz + Jo e Ui(z) Uj(z)dz) (1.40D)

In the second line, the values at z=—d and z= L vanish because of the con-
dition on the perfect boundary, while the values at z=0 cancel because of the
continuity of both the function and its derivative. The Helmholtz equation 1.32a
and 1.32b was used on going from the third to the fourth line. Finally, Equation
1.33 was used to go to the fifth line. Because we can interchange Uj(z) and Uj(z) in
the first line, we also have

L
I= a),zJ &(z) Ui(z) Uj(z)dz (1.40c)
—d
Thus we have

0= (0f o} L 6(2) Ui(2) Uj(2)dz (1.40d)

Since the modes are non-degenerate, the integral must vanish, which proves
Equation 1.40a.

1.3.1.3 Normalization of the Mode Functions of the “Universe”
For later convenience, we normalize the mode function 1.39 as

Uj(z) = Njuj(2) (1.41a)
sin kyj(z + d), —d<z<0
ui(z) = ki 1.41b
4(2) (k—lj cos kyjd sin ko;z 4 sin kyjd cos kojz> , 0<z<L ( )
o

with the orthonormality property
L
J 6(2) Ui(2) Uj(2)dz = 6, (1.42a)
—d
where the Kronecker delta symbol

1, i=j
%=Y0 iz (1.42b)
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It will be left for the reader to derive the normalization constant (problem 1-3):

2
Nj=/- 2
e1{d + (cos kyjd/ cos ko;L)"L}

_ 2 (1.43)
e1{d + (1 — Ksin? kyd)L}

The condition 1.37 has been used in the second line. Note that K is a constant for
a given cavity. As will be discussed in Section 1.4, we will take the limit L — oo
and ignore the quantity d in Equation 1.43 in later applications of the one-sided
cavity model.

1.3.1.4 Expansion of the Field in Terms of Orthonormal Mode Functions

and the Field Hamiltonian

If the mode functions in Equation 1.41a form a complete set, which will be dis-
cussed in the last part of this section, a vector potential of any spatio-temporal
distribution in the entire space —d < z < L, which vanishes at both ends, may be
expanded in terms of these functions in the form

Alz,t) = Q) Ui(2) (1.44)
k

where Q(t) is the time-varying expansion coefficient. The corresponding electric
and magnetic fields are found from Equations 1.2 and 1.3. In the following, we
want to calculate the total Hamiltonian associated with the waves in Equations
1.39:

H= Jid [2 E(z,t)* + gH(z7 t)z] dz
. , ) (1.45)
= de E (atA(z7 t)) + Zi (8—A(z, t)) }dz
Writing
%Qk =P, (1.46)

we perform the integrations in Equation 1.45, which include, for the regions both
inside and outside the cavity, the squared electric and magnetic fields for every
member k and cross-terms of electric fields coming from different members k and
k', and similar cross-terms for the magnetic field. The integration is done in
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Appendix A. The resultant expression is very simple due to the orthogonality of the
mode functions:

H= %; (P2 +020?) (1.47)

1.3.2
Symmetric Two-Sided Cavity

1.3.2.1 Mode Functions of the “Universe”
For the symmetric two-sided cavity, we impose a periodic boundary condition
instead of perfect boundary conditions. Figure 1.4 depicts a two-sided cavity of a
lossless non-dispersive dielectric of dielectric constant ¢; extending from z = —d to
z=d. The exterior regions are vacuum with dielectric constant &, We assume a
periodicity with period L + 2d and set another dielectric from z=L+d to
z=L+3d. The region —d < z < L+d is one period of our “universe” within
which the region —d < z < d is the cavity. The “universe” may alternatively be
thought to exist in the symmetric region —L/2 —d < z < L/2 +d.

Here, again, subscripts 1 and 0 will be used for the regions —d < z < d and
d < z < L+d, respectively. Assuming again the form of Equation 1.5 for the
field, we assume a solution of the form

Alz.1) = Q1) Ui(2) (1.48)

Equation 1.1 then yields

(4) 0w =oia0) (1.49)

(di) Uz) = K U(2) (150

where k; = wj/c. A general solution of Equation 1.50 in the one period may be
written as

Ugj(z) = Aje™® + Bie ™7 (d <z < L + d) (1.51)

Uij(z) = Cjeiklfz + Dje_iklfz (-d<z<d (1.52)
meo [T e fImos

—d 0 d L+d L+3d —» Z

Figure 1.4 The two-sided cavity with the cyclic boundary condition.
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where
kO,lj = CUJ'/COJ (153)

Applying the continuity boundary conditions at z=d and the periodic boundary
conditions at z=—d and Z= L+d, one has

Uyj(d) = Ugi(d)
Uj(d) = U'gi(d)
(1.54)
Uyj(—d) = Uy(L +d)
U/lj(*d) = U/Oj(L + d)
The last two equations are obtained by combining the continuous conditions at

z=—d with the cyclic boundary conditions. With Equations 1.51 and 1.52, the
coefficients Aj;, B;, Cj, and D; must satisfy

Cielid + Dje ot = Ajghod 4 el
Cikyje"1? — Dikyje ™" = Ajkge@? — Bikgje™ "o (1.55)
C'je—lkljd + Djelkljd — Ajelkoj(L+d) + Bj@_lkw(L+d)

C—']‘kljefikljd _ Djkljeikljd — Ajkojeikgj(L+d) _ Bjkojeiikoj (L+d)

It is left to the reader to show that the determinantal equation for non-zero
values of the coefficients is

klj 2 . 2 kojL - klj 2 . kojL
( —k—oj> Sin <kljd—7) = (1 +k—0J) Sin (kljd+7> (156)

which reduces to two equations:

ko L

tan(kyjd) = f%tan (%) (a mode) (1.57a)
ko L

tan (kyd) = —i—:)tan(%) (b mode) (1.57b)

Thus we have two sets of eigenvalues of wavenumber k; or eigenfrequency w;.
We refer to the modes determined by Equation 1.57a as a4 modes and those
determined by Equation 1.57b as b modes. Graphical examination shows that the
a mode and b mode solutions appear alternately on the angular frequency axis.
Then we derive mode functions from Equations 1.55 and 1.57a and 1.57b as
(problem 1-4):
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stz (—d <z <d)
Ui(z) = o5 x sin(kyd) cos{koj(z — d) } d N .
+ E—OCOS(kljd) Sln{k()j(Z—d)} ( <z < + )
1
cos(kyjz) (—d<z<d)
UP(z) = B; x cos (kyjl) cos{koj(z — d) } .
J J 7%0sin(k1jl) Sin{koj(z - d)} (d<z<L+d)

1.3.2.2 Orthonormal Spatial Modes of the “Universe”

It can be shown that the two different members, each from either a mode or
b mode, are orthogonal in the sense of Equation 1.40a. They are normalized in
the sense of Equation 1.42a if the constants o; and B; are given by

2
= 1.59
% \/ e1{2d + (1— Ksin kyd)L} (1.59)

2
b= \/81{2d+ (1- Kcos? kyd)L) (1.59)

where K was defined in Equation 1.43. This can be derived by repeated use of the
determinantal equations 1.57a and 1.57b. As will be discussed in Section 1.4, we
will take the limit L — oo and ignore the quantity 2d in Equations 1.59a and 1.59b
in later applications of the two-sided cavity model.

1.3.2.3 Expansion of the Field in Terms of Orthonormal Mode Functions

and the Field Hamiltonian

If the mode functions in Equations 1.58a and 1.58b form a complete set, which
will be discussed in Section 1.6, a vector potential of any spatio-temporal dis-
tribution in the entire space —d < z < L+dor —L/2 —d < z < L/2+ d may
be expanded in terms of these functions in the same form as in Equation 1.44,

Az 1) =Y QO Ui(z) (1.60)
k

where Q(t) is the time-varying expansion coefficient. The total Hamiltonian
defined as in Equation 1.45, with the upper limit of integration replaced by L+ 4,
can be evaluated again defining the “momentum” P, associated with the
“amplitude” Qj as in Equation 1.46. Using Equations 1.2 and 1.3, we perform
the integrations as in Equation 1.45, which include, for the regions both inside and
outside the cavity, the squared electric and magnetic field for every member k from
both the @ mode and b mode functions, and cross-terms of electric fields coming
from different members k and k' and similar cross-terms for the magnetic field.



1.4 Discrete versus Continuous Mode Distribution

All the cross-terms vanish on integration due to the orthogonality of the mode
functions. The resultant expression is the same as Equation 1.47:

H= EZ(P,% + wlQ}) (1.61)

k

Note that the mode index k here includes both a mode and b mode functions.

1.4
Discrete versus Continuous Mode Distribution

The length L, expressing the extent of the outside region, was introduced for
mathematical convenience. As we have seen, this allowed us to obtain discrete,
orthogonal mode functions, which are stationary. We eventually normalized them.
Because the physical content of the outside region is the free space outside the
cavity, there is no reason to have a finite value of L. On the contrary, if L is finite
(comparable to d), various artifacts may arise due to reflections at the perfect
boundary at z=L in the case of one-sided cavity or at the neighboring cavity
surface in the case of the two-sided cavity. For this reason, we take the limit L — oo
in what follows.

In this limit, in the case of the one-sided cavity, the normalization constant
reduces to

2
N = 1.62
J \/81 L(1 — K sin” ky;d) (1.622)

and the normalized mode function is

Uz) = :
R elL(l—Ksinzk%jd)

sinkyj(z +d), —-d<z<0 (1.62b)

ki
<k—ljcos kijdsinkez + sinkyjdcos kojz>, 0<z<lL
0

The mode distribution in the frequency domain is determined by Equation 1.37.
For L — oo, the spacing Aw of the two eigenfrequencies is

Ao = (co/L)m (1.63)

which is infinitely small and the modes distribute continuously. The density of
modes (the number of modes per unit angular frequency) is

15
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p() = n—ﬁo (1.64)

We note that the maxima of the normalization constant N; occur at the cavity
resonant frequencies given by Equation 1.18a.
In the case of the two-sided cavity, the normalization constants become

2 (1.65a)
o= .
J gL(1-kK sin® kijd)

2
ﬂ] = \/81[,(1 — K cos? kljd) (165b)

It is easy to see from Equations 1.57a and 1.57b that the a mode and b mode
appear in pairs along the frequency axis and, in the limit L — oo, every pair is
degenerate. The separation of the pairs is now

Aw = (2¢0/L)n (1.66)
so that the density of modes is

pu(0) = py(0) = 2p() = o

~ra (1.67)

For both the one-sided and the two-sided cavities, the overall density of modes
becomes independent of the cavity size and is equal to L/7 cy.

In what follows we sometimes encounter the summation of some mode-
dependent quantity B, over modes of the “universe.” Such a summation is
converted to an integral as follows:

00

> B — [ By, p(p)day, (1.68a)
k JO
for the case of a one-sided cavity, and

S [ {80+ B o0 fdon
0
¢ (1.68D)

1> “
= EL (B, + Bb,)p(wy)day,

for the case of a two-sided cavity. Correspondingly, the Kronecker delta symbol
becomes a Dirac delta function by the rule

p(n) 3 — S(k —¥) (1.69)

because for a k-dependent variable f; we should have >°, fid = [dkf(k)d(k — k).
We note that the maxima of the a (b) mode occur at the cavity resonant frequencies
of the antisymmetric (symmetric) modes given by Equation 1.29 (Equation 1.27).
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1.5
Expansions of the Normalization Factor

The squared normalization constant for the one-sided cavity, Equation 1.62a,
divided by 2/(e;L) has two expansions that are frequently used in subsequent
sections and chapters (problems 1-6 and 1-7):

1 2¢ | & 1
1_Ksintkyd o —r)"cos 2nky;d
1— Ksin? kyjd 1 {ZlJr(So‘n( r)"cos 2nky; }

n=0
> Cch/d

m=—o0 "/g + (wj - a)z:m)2

(1.70a)

where the coefficient r was defined in Equation 1.17 and w;= ciky;. The
coefficients w,,, and 7. were defined in Equation 1.18a. The first expansion is a
Fourier series expansion and the second one in terms of cavity resonant modes
comes from the Mittag-Leffler theorem [1], which states a partial fraction
expansion based on the residue theory. Similar expansions exist for the normal-
ization constants for the two-sided cavity in Equations 1.65a and 1.65b [2]. The
expansion for Equation 1.65a is the same as in Equation 1.70a with we, — wg,:

1 200 [ 1
_— = —1)" cos 2nkq;d
1 — Ksin® ky;d 1 {Z 1+ 5o,n( ) Y }

n=0

- Co“/c/d

oo V2 + () — cu?m)2

! 20 )~ 1 .
1-Kcos’kyd o {Zlﬂ%,nm cosanljd}

n=0

(1.70b)

> coy./d

w2 + (o — ob,)’

where ?, = (2m + 1)(nc;/2d) and o?, = 2m(nc;/2d) (m is an integer); »®,
(wP,) is the resonant frequency of the antisymmetric (symmetric) mode function
defined in Equation 1.29 (Equation 1.27).

1.6
Completeness of the Modes of the “Universe”

Concerning the expansion of the field in terms of the mode functions of the
“universe,” it was mentioned above Equation 1.44 that the latter mode functions
must form a complete set. Completeness of a set of functions means the possi-
bility of expanding an arbitrary function, in a defined region of the variable(s), in
terms of them. The set of orthogonal functions in Equations 1.41a and 1.41b

17
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fulfills this property. Assume that an arbitrary function ¥(z) defined in the region
—d < z < Lis expanded as

z) =Y AUi(z) (1.71)
where A; is a constant. Multiplying both sides by &(z)Uj(z) and integrating,
we have

L
[ &(2) Uj(2)¥ dz—[ ZAS dz—ZAarA (1.72)
J-d

where we have used Equation 1.42a in the second equality. Substituting this result
in Equation 1.71 we have

() =3 J,d o) U(2 )P (2)d2 Ui(2)

(1.73)

= Jid {Z (2 Ui(2) Ui(z) }‘I’(z’)dz’

i

Because W(z) is arbitrary, the quantity in the curly bracket should be a delta
function:

> e(Z)Ui(Z) Ui(z) = 0(2 - 2) (1.74)
In integral form it reads

J 6(2) Us(2) Us(2)p(i)dor = 5(2 — 2) (1.75)
0
This is a necessary condition for completeness. Conversely, if Equation 1.75 holds,
we can use Equation 1.73 to find the expansion coefficient in the form of Equation
1.72. Thus Equation 1.75 is also sufficient for completeness.

Whether the mode functions in Equations 1.41a and 1.41b really fulfill this
condition is another problem. For example, for the case —d < z < 0 and
—d < 2z’ < 0, using Equation 1.62b, we need to show that

o L 2 1 . . / _ /
L dwncosl L1 Kein? kldsm ki(z+d)sink (2’ +d)=0(Z —z) (1.76)

The squared normalization constant N2 is expanded in terms of cos 2nkd, n=0,
1, 2, 3,..., as in Equation 1.70a. So, except for constant factors, the integrand
becomes a sum of integrals of the form

J cos{2nd + (z — 2') Yy dky

0

or
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EO cos{2nd £ (z+ 2 + 2d) }kidky
We apply the formula [3]
r cos 2k dk = 75(2) (1.77)

0

Noting that 6(z # 0) = 0, we find for the above combination of z and z’ that

© L 2 1
do—¢ ——————sink d)sink (2 +4d) = 6(z' —

L wncogllestinzkldsm izt d)sinh(z +d) =z —z) (1.78)
—d<z<0, —-d<Z <0

where we have discarded the term —d(z + 2’ + 2d) because it is meaningful only at
the perfect boundary, z =z’ = —d, where all the fields vanish physically. Other
combinations of the regions for z and 2z’ can be examined in the same way.
We have

5ol U(#) i) = | o) Ui Uil

k (1.79)

= (2 —2)

for -d <z < L, —d < 2/ < L, except z=2 = 0. The exception at z=2'=0
occurs because at z=0 the dielectric constant is unspecified. Also, the boundary
conditions demand that the fields should be continuous across this boundary, so
that a delta function at z=0 is prohibited. The completeness of the mode
functions in the case of two-sided cavities can similarly be examined.

Exercises

1.1 For the symmetrical, two-sided cavity model, derive the resonant frequencies
for the outgoing modes. Also derive the resonant frequencies of the incoming
modes.

1-1. Set u(z) = Aexp(ik1z) + Bexp(—ik;z). Then the boundary conditions at z=d
and z= —d give, respectively,

A _ kit kO ~2ikyd A kiFk 2k

B k1:Fk0 ’ B kiEko
Therefore we have

2ikid 1 0 1 0
1% =4 or —
kl:Fk() kl:FkO

For ¢?%19 = 4 (k; 4 ko)/(k1 F ko) we have A= B and have symmetric modes. With
the upper signs, a symmetric outgoing mode is obtained; and with the lower signs,
an incoming symmetric mode is obtained. For e?¥1¢ = —(k; & ko)/ (k1 F ko) we
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have A= —B and have antisymmetric modes. With the upper signs, an antisym-
metric outgoing mode is obtained; and with the lower signs, an antisymmetric
incoming mode is obtained.

1.2 Derive the determinantal equation 1.37 and the mode function in Equation 1.38.
1-2. Delete b; and by from Equations 1.35b and 1.35c using Equations 1.35a and
1.35d and divide side by side to obtain Equation 1.36. Next express U; and U in
terms of a4 and ay. Determine ay/a, by the modified version of Equation 1.35c to
eliminate ao. Finally, set 2ia; exp(—ikid) = 1f exp(—i¢) to obtain Equation 1.38.

1.3 Derive the normalization constant in Equation 1.43 for the one-sided cavity
model.

1-3. Use the form in the first line of Equation 1.38 for 0 < z < L and use the
determinantal equation 1.37.

1.4 Derive the mode functions for the symmetrical two-sided cavity model given
in Equations 1.58a and 1.58b.
1-4. See the solution to 1-2.

1.5 Show the orthogonality of mode functions in Equations 1.58a and 1.58b for
the symmetric cavity under the cyclic boundary conditions following the example
in Equations 1.40b-1.40d. In the limit L — oo, an @ mode and a b mode can be
degenerate. Are they orthogonal?

1-5. An a mode is antisymmetric and a b mode is symmetric with respect to
the center of the cavity z=0. So, if we have the symmetric region
—L/2—-d < z < L/2+d as a cycle under the cyclic boundary condition, the a
mode and b mode are easily seen to be orthogonal even if they are degenerate.

1.6 Show that the Fourier series expansion in Equation 1.70a for the squared
normalization constant is valid.

1-6. Multiply both sides by the denominator on the left and compare the
coefficients of cos2nkid, n=0, 1, 2, 3,..., on both sides. Note that
K=1- (01/00)2 and r = (co — 1)/ (co + ¢1).

1.7 Show that the denominator in the squared normalization constant in Equation
1.70a vanishes at @; = @ F iy,. That is, these ; are simple poles.
1-7. Rewrite the sin” term as follows:

sin® kijd — (

kyd _ p—ikyd 27 Rilkin—in)d  p=2i(kin—in)d _
2i o —4

Rilkin—in)d _ —(1/r), e 2ilkm—iyd _ _

Therefore



sin? kyjd =
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2
A One-Dimensional Optical Cavity with Output Coupling:
Quantum Analysis

2.1
Quantization

Now we have a complete, orthonormal set of mode functions of the universe.
One method of quantization of the field, then, is to separately quantize the
respective field modes and then to add them up to form the total quantized
field. Thus we quantize the system represented by the Hamiltonian in Equation
1.47 or 1.61 by imposing the following commutation relations on the variables

Q) and Py
[0,,Q] =[P, 2] =0,  [Q; Pj] = ihd; (2.1)

where a hat symbol is attached to a quantum-mechanical operator, and the
commutator is defined for two operators as

[A,B] = AB—- BA (2.2)
Now Q) and Py are operators acting on the kth mode. Imposing the above
commutation relation is equivalent to imposing an uncertainty relation between the
variables. The uncertainty relation is one of the fundamental postulates of quantum
mechanics. The “position” and “momentum” operators (the field amplitude and
its time derivative operators) of the same mode do not commute with each other.
The variances of these two variables are related by an uncertainty relation. Although
the inter-mode spacing is infinitely small, the variables belonging to different
modes are assumed to be independent variables and to commute with each other.
The Hamiltonian becomes the Hamiltonian operator

i %Xk: (pg mggg) (23)

We define the annihilation and creation operators for the kth mode by

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
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24 | 2 A One-Dimensional Optical Cavity with Output Coupling: Quantum Analysis
by = (2ho) (0 + iPy) (24)
a, = (2ho) (0O — iPy) (2.5)
The inverse relation is
O = (h/200) " (@ + &) (2.6)

by = —i(hon/2)" (@, - ay) (2.7)

The commutation relation 2.1 can be rewritten in terms of the new operators as

[ai,aﬂ =5, [ai,aj} —o0, [aj,aj] —0 (2.8)
Substituting Equations 2.6 and 2.7 into Equation 2.3 and applying Equation 2.8,
we have

H=>Y"ho, (a-,:ak + %) =Y H, (2.9)
k k

The product &z&k is called the photon number operator of the mode k, and the
term j represents the zero-point energy of the mode.

2.2
Energy Eigenstates

The state |¥) of the free radiation field obeys the Schrédinger equation
ih§|‘}’> = H|¥) (2.10)
ot '
a solution of which is

%) = [T low) = [T exp(—iEent/h)lm) (211)
k k

Here the solution for mode k is
|pr) = exp(—iEat/h)|m) (2.12)

where |n;) and Ej , are the nth energy eigenstate and the corresponding energy of
the kth mode, respectively. The eigenstate satisfies the eigenvalue equation (see
Appendix B)

N 1
Hk|nk> = Ek_’n|nk) = (I’Lk + E) hwk\nk>, n,=20,1,2,3,... (2.13)

The integer number #ny, is the eigenvalue for the photon number operator didk,
and represents the photon number in the mode. The general solution to Equation



2.2 Energy Eigenstates

2.10 is a superposition of the pure states of Equation 2.11. The annihilation and
creation operators have the following effects when operated on the energy
eigenstate (see Appendix B):

&k|nk> :\/n_k|nk—1)7 nk:1,273,. ..

(2.14)
a|0;) =0
and
allm) = Vm + 1m +1),  m=0,1,2,3,... (2.15)
The non-vanishing matrix elements of these are therefore
O, = (M — ai|m) = /mi (2.16a)
and
0] i1 = (e 1] fm) = /m 41 (2.16b)

Going back to the definition of the electric field (Equation 1.2), the operator form
of the vector potential and the electric field are then given by

) = Z Q;Uj(z) Z (h/20y)"" (& + &) Uj(2) (2.17)
J J
and
—ZPJUJ Zl hai/2)' (a5 — a}) Uj(2) (2.18)
J J

Present-day detectors of the optical field cannot follow the very high frequency
of oscillation and detect only some time-averaged intensity as discussed by
Glauber [1]. In this case, the physically meaningful quantity is not the total oscillating
field but the product of so-called positive and negative frequency parts of the fields
defined, respectively, as

EN 1) = ) ihay/2) )4, (2) (2.192)
J

and

Zz heoj/2)"2 8} Uj(2) (2.19b)
J

with

E(z,t) = EP(2,t) + E7)(z,1) (2.19¢)

25
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23
Field Commutation Relation

Here we derive a commutation relation for the electric fields at two different space-
time points for the one-sided cavity. We arbitrarily choose one space point z, from
inside the cavity and another zp from outside. The corresponding time variables
are t4 and tp, respectively. In order to include the time variables in the commu-
tation relation, we go to the Heisenberg picture. According to the general rule to go
to the Heisenberg picture, we have
- eint/h i e—int/h

) ) (2.20)
&TkH _ eint/haiefint/h
where the subscript H indicates the operator in the Heisenberg picture. Taking the
non-vanishing matrix elements, we have

Okt = (M — 1|eint/hdke’in‘/h|nk> = /g e (2.21a)
a;H-nkJrl,nk = (m + 1|eint/hdk+e—int/h|nk> _ /(”k 1) ot (2.21b)

where we have used the fact that Hinm) = ho(m, +3)|m;) and (m|H = ho
(m +3) (n|. The commutator for the creation and annihilation operators is
unchanged:
[&km lei| _ [eint/h i e—int/h7 Gt/ afk e—int/h]
(2.22)
— (iFt/h [&k’ &H g iHkt/h _ iHt/h i/ q

Using Equation 1.62b we have
. , ha vz o
Ey(z,t) = tzk: [m] sinki(z + d) (e —af ), —d<z<0
(2.23)

h Y2k

iz {m} (k—lcoskldsinkozB + sinkldcosk023>
k 1 - 1 0
X (&ke_i(’)"’ - dk*'ei‘”k‘), 0<z<lL

Therefore, the commutator is

[EH(Zm ta), EH(ZBa tB)}
= ZiZLsink (za+4d)
B e L(1— Ksin’kyd) reA (2.24)

X (%cos kidsinkyzp + sinkidcos kozB) sin wy(tg — ta)
0



2.3 Field Commutation Relation

Using the series expansion (Equation 1.70a) and the density of modes (Equation
1.64) we have

[EH(ZA7 ta), En(zs, tB)}

- 2,’[00 hoy 2k,
0

TCoéq k()

> 1
—7)" cos 2nkid| sinkq(z4 +d
;01+50‘n( ) 1 ] 1(za+4d) (2.25)

(IZ— cos kid sinkgzg + sin k;d cos kozB) sin wy(tp — ta)dwy
0

Evaluating the products of the sinusoidal functions we obtain

. . ih k? AR
Bz ta)s Enzntn)| = 2 m/ 2,
=0

. zg  za  2nd
X |Ssin wy ———+C—+t3—tA
1

Co €
z z 2d  2nd
—sinwk<C—B+ Aj +—+t3 —tA> (2.26)
0 1

. zg za 2nd
—Smnwg|———+——tp+ta
Co C1 C1

2d  2nd
+smwk(z +ZA+ L—t3+tA>:|dwk
Co 1 C1

Now, we remember that the Dirac delta function is given by the integral [2]
K
(1) = (1/7) lim J cos wtdo (2.27)
—00 0
Differentiation with respect to t yields
K
&) = (=1/n) lim J wsin ot dw (2.28)
K—o0 Jqo
Therefore, we finally obtain

. . h o & "
[EH(ZAJA)aEH(ZBth)} :Ecoiclz(_r)

n=0
2nd 2d  2nd
x{—é’(Z—B—Z—A i+t3—tA>+5’(z—B Zat L+t3—tA)
c ¢ O o o g1 (2.29)
zp  za  2nd zg  za+2d  2nd
+5’(—B——A+——t3+tA> —5'<—B+L+——t3+t/s)},
Co c1 c1 Co 1 1

—d < zy <0, 0 < zp

27
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The resultant expression for the commutator consists of an infinite number of
terms. They have non-zero values when their arguments are zero. The electric
fields at these two space-time points cannot be determined independently. The
physical meanings of these terms are obvious. For example, the third term in the
sum gives the intensity and the time of arrival at zp of the disturbance when a
flash of light is emitted instantaneously at z, at time t,. The first of these terms
(n=0) is the disturbance transmitted directly from z, to zp. Subsequent terms
are those reflected at the output interface, at z=0, n times with »n round trips in
the cavity, before reaching zp. The coefficients of these terms are in powers of the
product of the reflection coefficients at z=0 and at z=-d, which are
r=(co—c1)/(co + ¢1) and -1, respectively. Solving for n for the third term, we
have

(- = (1 exp{ e =) - (2-2)] | (2.30)

Co ‘1

where v, is given in Equation 1.18. Note that the decay with time is similar to that
in the outgoing mode function in Equation 1.21. The three other terms in
Equation 2.29 correspond to respective different propagation sequences.

24
Thermal Radiation and the Fluctuation—Dissipation Theorem

An important theoretical issue concerning the output coupling of an optical cavity
is the treatment of the thermal radiation noise, although the physical magnitude of
the thermal noise in a laser is usually negligible compared with the so-called
quantum noise. When an optical cavity has a loss, statistical mechanics tell us that
there should be a noise associated with the loss, the so-called fluctuation—dis-
sipation theorem. When the cavity loss comes from the output coupling, where
does the noise come from? Is it thermal noise? The answer is “yes,” as will be
shown explicitly in Chapters 9 and 10. Especially, Chapter 10 will show that the
relevant thermal noise penetrates into the cavity from outside. Also, existing
theories related to this issue will be reviewed in Chapter 15. In this section, we
develop the noise theory using the cavity models with output coupling discussed
so far.

2.4.1
The Density Operator of the Thermal Radiation Field

For the ith mode of the “universe,” the thermal radiation field of the mode is
described by the density operator p; of the mode, where

f)i — (1 _ e*ﬁhw,) ZOO efmlﬁh(m'mi) <m1| (231)

m;=0



2.4 Thermal Radiation and the Fluctuation—Dissipation Theorem

Here, f = (kT)"! with k the Boltzmann constant and T the absolute tempera-
ture. The factor (1 — ¢ fMi)e=™fhoi = - is the probability that m; photons appear
in the mode at temperature T. The ensemble average of an operator O;(t) acting on
the ith mode is given by

(Oi(1) =Tr{p; Oi(1)} = Z (nil meilmtﬂmil@(t)\”i)

A (2.32)
=" P (mi| Oi (1) my)

Because the modes of the “universe” are mutually independent, the density
operator for the total field is the direct product of the respective density
operators:

p=11¢ (2.33)

We are assuming that the thermal radiation field described by Equation 2.33 is
prepared at t=0 and the field oscillates freely afterwards. Here we are working
in the Heisenberg picture, so that the density operator does not change with time,
but the field operators do change, in general, with time. The ensemble average of
operator O(t) is given by

(0(1) = Tr{p O(1)} (2.34)

The ensemble average of O;(t) under Equation 2.34 reduces to that in Equation
2.32 because a trace over mode j # i, for example, simply creates a factor

ijpmjzl.

242
The Correlation Function and the Power Spectrum

Now we want to discuss a theorem that connects system loss and the correlation
function of the associated noise and then derive the correlation function for our
model optical cavity. Assume that the thermal radiation field described by the
density operators in Equations 2.31 and 2.33 is prepared at t=0. The positive and
negative frequency parts of the electric field are now written as (see Equation 2.19a
and 2.19b)

ED(z,1) = > ihey /2)%4;(0) Uj(z)e (2.35a)

J

and

E (z0) = — . i(ho; /2)al (0) Uj(=)e (2.35b)

J
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The suffix T denotes the thermal field. Here the motion of the annihilation
operator for t > 0 is obtained from the Heisenberg equation

L a4 oa A A L1
Lhﬁaj = [aj,H} = [aj,Hj} = {oy,hwj(a}aj—&—z)}

= hoy (48] — 8]0y ) = hoy(@ya] — afa)a, (2.36)

where the commutation relation of Equation 2.8 has been used. Motion of the
creation operator can be obtained similarly. From the matrix elements in
Equations 2.21a and 2.21b we see that

<f5<;>(z, t)> - <f5<;>(z, t)> =0 (2.37)

The normally ordered correlation function or the coherence function of
second order is defined as the ensemble average of the product E(T_>(z’7t’)
E(T+) (z,1):

G2zt = (B (@ O E 1) (2.38)
In a normally ordered product, all the annihilation operators come to the right of

the creation operators. The anti-normally ordered correlation function is similarly
defined as

GalZ, ¥, 2,1) = <f5<;> @, ) B (2, t)> (2.39)
Calculating the average using Equation 2.34 we have

G(Z,t,z,t) Z hoi(n)y U, z)e ) (2.40)

and

(2, 2t) = Z hooj () +1) Uj(2) Uj(2)e ) (2.41)

Here we have used

(2.42a)
(a:(0)af(0)) = ((m) +1)o
where
(w) = (&l (©)(0)) = (¢ 1) (2.42b)

The constant f§ is defined below Equation 2.31.
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The correlation function in Equation 2.40 with t=1 can be rewritten by use of
Equation 1.64 as

o0 1
G2tz 1) = J P} o) Un () Uy (2)de (2.43)
0
We define the power spectrum I(2',z, w) of the thermal radiation field as the
integrand of this expression:

12, 2,0) = p(w)% hoo (1) Un(2') Us (2) H() (2.44)
e™dt = 2n8(x), it is

Here H (w) is the unit step function. Using the formula [~
easy to show that (problem 2-5)

1 (* ;
I(z’,zw):EJ G(Z,0,z,t)e“ dt (2.45)

—00

That s, the power spectrum is the Fourier transform of the correlation function. The
factor N? = (1 — Ksin’k, d)! incduded in U,(Z)U,(z) has simple poles at
® = Wgy, £ 1y, which appear in Equations 1.18 and 1.20, but here m also takes negative
integer values. Thus from the Mittag—Leffler theorem [3] in Equation 1.70 we have

- coye/d

. -1
(= Keinthod) "= D o o) (246

Substituting this into Equation 2.44 we have

1(Z,z,0) = ihw(nw) Ye U (2) vy (z) H(w) (2.47)

m=0 7'E81d “/g + (w - wcm)2

where u,(z) = sinki,(z+d), if —d < z < 0, as was defined in Equation 1.41.
Here we have omitted unphysical negative m values. We see that each cavity
resonant mode contributes a term with a Lorentzian profile of width 2vy..

243
The Response Function and the Fluctuation—Dissipation Theorem

Let us consider a classical current source at z=z, with sinusoidal time depen-
dence Jexp(—iwt)d(z — z¢) and coupled linearly to the field at t = 0. We define the
response function Y(z, zo, ) as the asymptotic ratio of the induced field at z to the
current as the time goes to infinity:

i A

Je Y (2,29, ) = thm<E( )(z, t)> (2.48)
— 00

where the thermal average is taken in order to extract systematic motions. Then,

if the current source has density S(z,w) in the space and angular frequency

domain, the electric field may be written as

31



32

2 A One-Dimensional Optical Cavity with Output Coupling: Quantum Analysis

E®) (z,1) = szof do Y(z, 20, 0)S (20, 0)e " + B (2, 1) (2.49)
In order to obtain an expression for the response function, we solve the equation
of motion of the field operator 4, in the presence of the driving current
Jexp(—iwt)d(z — zp). The interaction is [4]
A L ~
Hiyy = — J A(z,1) [{]exp(—iwt) + C.C.}(z — 29) | dz
—d
(2.50)

1/2 4
—3 () @+ a U e cc)

where we have used Equation 2.17 in the second line. Here we have written the
current in the form [ exp(—iwt) 4+ C.C. rather than in the form Re[ J exp(—iwt)], in
accordance with the definition of the positive electric field in the form of Equation
2.19c. We solve

' d . A R N . h 1/2 )
maak = [a, H + Hin] = honay — <27)k> Ui(zo)(Je ™ +C.C.) (2.51)

Solving for d; and substituting into Equation 2.19a we have
A(4) i 1— ei(w—wk)t it 1— e—i((u+wk)t . t)
E Z7 t — P U z U Z - e 1 - *el(l)
@0 =3 () v ien) (5 st ) ey

+ B (z,1)
where the initial values of the 4 constitute the thermal field given by Equation
2.35a. Since we are interested in the response to [ exp(—iwt)d(z — zp), we discard

the second term in parentheses. Thus, with ¢ — co as in the definition (Equation
2.48), the response function is obtained as

i
Y(z,zp,0) = fizk: Ui(2) Up(20) (@ — ) (2.53a)
where the zeta function [2] is

o) = g ~ ind(w) = —iL ¢ty (2.53b)

From Equations 2.53a and 2.53b we see that

ReY(z,zp,w) = — gz Uk(2) Ug(20)0(w — )
k

(2.54)

2 Pw Uw (Z) U(u(ZO)

Thus from Equations 2.44 and 2.45 we see that



2.4 Thermal Radiation and the Fluctuation—Dissipation Theorem

ho{m)ReY(z,2,0) = — nl(2,z,w) = —%J G(Z,0,z,t)édt  (2.55)

—00

This is a fluctuation—dissipation theorem connecting the response function and
the correlation function. Knowledge of either one is sufficient to know the other.
The term “dissipation” here is related to the radiation loss of the field energy
stored inside the cavity into the outside space through the coupling surface. The
reader can check the equality of the stored energy lost per second and the mag-
nitude of the pointing vector outside the cavity for a source-free field [5].

244
Derivation of the Langevin Noise for a Single Cavity Resonant Mode

Here we derive the Langevin noise force widely assumed in laser theories. We
assume that only a single cavity mode is involved and that other cavity modes are
spectrally distant from the one in question. Then the power spectrum in Equation
2.47 may be replaced by

ho(ne, ) Ve /
< u’ (2, (2)H(w),
7'(81d ”/g + (w —0)5)2 wc( ) Uc( ) ( )

I(z,7,0) =

(2.56)
1

o — o] < EAQ)E

The inequality describes the large departure of the cavity mode w, from other
modes; and Aw, = ncy/d is the cavity mode separation. Since the bandwidth
concerned is narrow compared with the cavity mode separation, that is,
2y, < Aw,, we have replaced u,(2')uy (2) by e, (2') e, (2). Here . is the resonant
frequency, which was defined in Equation 1.18Db. Also, we have replaced fiw(n,,) by
hwe(ny, ), which is valid if |o — w.| < kT /A holds. The real part of the response
function Y (z, zo, w) for the cavity is given by Equations 2.55 and 2.56 as

ReY(z,Z,w) =

Ty, () (D) H() (2.57)

S adp2 4 (0 - o)

where we have used the approximation hw(n,) = hw.(ne,, ). Because of the form of
the zeta function in Equations 2.53a and 2.53b, the imaginary part of the response
function is given by

1 o / Ua)’ Ua)’
ImY(z,20,w) =—=P md(ﬂ/
2 ) o —o

(2.58a)
P rc ReY(z, zp, ')

=— do’

T Jo w—o

where we have used Equation 2.54 in the second line. Thus, the imaginary part
becomes
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A e e] !
ImY (2, 20, ) — — [cbex(20)bo(2) PJ do (2.58b)

mad o - on{i+ @ -0’

The integral can be evaluated as follows. First, we replace the lower limit of
integration by — oo on the grounds that this does not affect the results because the
important region of the integrand is compressed around the frequency o or w,.
Next, we choose, for example, a contour along a large semicircle in the upper half-
plane of the frequency ' and examine the integral along the small circle around
the pole @' = w, + iy, in the upper half-plane and that along the small semicircle
above the pole o’ = . The integral along the large semicircle vanishes because the
integrand vanishes for large radius of the semicircle. Then the integral is equal to
the sum of integrals around the poles. We have

PJ'OO dwl
0 (-0 + (0 0.
1 1 1
= = (2.58¢c)
W — o, — 1), 21, P2+ (0 — )
® — o
=7 5
{17+ (@-00
Therefore we have
ImY(z,zp,0) ~— o (Z0)Uho (2) @ = (2.58d)

e1d 72+ (0 — wE)Z
Adding the real and imaginary parts in Equations 2.57 and 2.58d we have

oy = Ly
Y(z,Z,0) = end . —i(o — o) Uy, (2 ) they, (2) (2.59)

Then, inverse Fourier transforming Equation 2.55 using Equation 2.57 we have
the correlation function

hae(ng,)

81d ”’u)g (Z/)u(/); (Z)eih‘tit,‘_iw[(tit,) (260)

G(Z,t,z,t) =

where the contour integral in the lower (upper) half-plane of w has been
performed for t > (t<t) with the relevant pole at = o, — iy, (0 = @, + iy,).
Below, we use this function to describe the correlation of the so-called Langevin
noise.

When a current source distribution $(z, ®) exists, Equations 2.49 and 2.37 give



2.4 Thermal Radiation and the Fluctuation—Dissipation Theorem

O R R e e R

x H(w)S(zo, w)e

(2.61)

where we have used Equation 2.59 for the response function. Differentiation with
respect to time t changes the integrand by a factor —iw = —(y, + iw;) +
{7. — i(w — w,)}. Thus we have

%@(H(z’ t)> == 0t iwc)<j5(+>(2, t)>
0 (2.62)
B J ﬂz% Uo, (20) o, (2)3(20, 1)

where we have Fourier transformed the source density in the second term. If we
remove from this equation the ensemble averaging, then we may have the
Langevin force f (z,t) that drives the electric field, a fact expected from Equation
2.49 as a result of the presence of the thermal radiation field. Thus, in the absence
of the current source, we should have

%EM(Z, 1) = —(y, + i) ED (2, 8) + f (2, 1) (2.63)

where the Langevin noise operator f(z,t) has the mean
<f(z, t)> =0 (2.64)

Now, for simplicity, we truncate the rapid oscillation of the cavity field by writing

ED () = Bz e, flzt) = f(z e (2.65)

Thus we have

d = X X

SEV@n =B @y 4z (2.66)
At the same time, the sinusoidal oscillation in the correlation function in

Equation 2.60 drops out: we write

G2, t,z,t) = <}§~(T—)(Z/7t/)]:g(;)(z7 t)>

(2.67)
o hwc(”w» / —“/’c‘t_t/‘
i Uo, (2 ) v, (2)e€

Then, it follows that
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(e nfen) =(| () B @) (G+) @)
2.68
(20 (28 el

Let us consider

o |09 0.9 2| ]
x(t,t) = L,ﬁ, % + “(at'+at> + yc}e (2.692)

We see that x(t, t') always vanishes for t # t. Let us examine the region
t—e << t+e¢ with ¢>0. For ' < t —¢, we have (9/0t)exp{—y.(t—1t)} =
y.exp{—y.(t —t)}. In the limit ' — t — ¢, this becomes 7y, exp{—y,¢}. Similarly,
for  >t+ ¢ and for ' — t+ ¢, we have (9/0t) exp{—y.(t —t)} — —y,exp(—7.¢).
Thus, in the region t—e<t <t+¢, the derivative in terms of t and ¢,
(0/01)(0)0¢) exp{—y |t — |}, which is equal to —(8/8F)* exp{—y.|t — ¥|}, be-
comes 2y, exp(—7.¢)/(2¢). Therefore, this derivative yields a narrow square region
around ¢ =t on the t'-axis, the area of which tends to 2y, as ¢— 0 (see Figure 2.1).

The term (0/0¢) + (9/0¢t) makes at most 2y, x 2¢ — 0, and the term of y? yields
72 x 2¢ — 0. Therefore, we have

00 t—& 00 t+e
J x(t,t/)dt’zlirr&{J x(t,t/)dt’+J x(t,t’)dt’JrJ x(t,t’)dt’}

—c0 —00 t+e t—¢ (2.69b)
—0+0+ 2y,
Thus, we have x(t,t') — 2y.6(t — t'). Then Equation 2.68 becomes
z 2y h
('@ 0 ) = 2800y, )50 ) (2.70a)
€1
We can eliminate the tildes on the noise operators because of the delta correlated
nature:
(b)
(a) 2y eXpy.)
—>
| 2¢
Ye@Xpt-yee) —» 4
P tre
L . .
| | t » t
te
/ t-e  t+e
—YcexXp-VYet)
Figure 2.1 The function x(t,t'): (a) (8/0¢)x(t,t'); and

b) (9/0t)(0/ 0t )x(t,1).



2.4 Thermal Radiation and the Fluctuation—Dissipation Theorem
P P 2y.h
(i O ) = 280 (), )50 ) (2.70b)
71

So, we have a Markovian noise for the field mode w,. The set of Equations 2.63
or 2.66, 2.64, 2.70a and 2.70b gives the usual description of the thermal Langevin
force used in quasimode laser theory. The reader may show that the noise function
f (z,t) can be simulated by {(d/dt) + iQ.}Er(z,t) around a cavity resonant mode.
This is to be expected since Equation 2.63 should hold for the thermal field Er(z, t)
around the frequency w..

The Langevin force derived here is valid only for the case of narrower field band-
width than the cavity mode spacing. In Chapters 9 and 10 the thermal noise is treated
more rigorously, taking the cavity output coupling into account. For a Langevin
equation applicable to a cavity with two-side output coupling, see Equation 15.6a.

245
Excitation of the Cavity Resonant Mode by a Current Impulse

Looking back at Equation 2.61, if the driving current is an impulse of the form
Jo(t — t9)0(z — za), then the current density is

+00
S(z, ) = %J JO(t — t0)d(z — za)e™dt
oo (2.71)
— ijé(z _ )eiwto
27 A

Then, the induced electric field (the net field minus the thermal field) is

(B9 ) - J°d dz0 r doo (f Slid> mmzm(z)

1 .
x H(w) E]é(zo — z4)e )

(2.72)

where we have retrieved the w dependences of the functions u. The integration
over w can be done on the complex w-plane by noting that the pole is at
ow=0w,—iy, =Q; in the lower half-plane. If we expand the numerator in
exponential functions, we will have exponents with —iw[(t —1t) £ {(z+4d) £
(zm+ d)}/c1] (see Equation 1.41). For simplicity, we assume that we are
concerned with phenomena that are slow in a time scale of order
|(z+d) £ (zm +d)|/c1 < 2d/c1, that is, we examine the changes on a time scale
that is greater than the round-trip time in the cavity. Since this assumption expects
an optical spectrum that is narrower than ¢; /(2d), this is consistent with the choice
of only one cavity mode, which anticipates an optical spectrum that is narrower
than the cavity mode spacing Aw, = ¢;7/d. Then the contour of integration can be
determined by the sign of ¢ — #,. The result is
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R — L uo (za)uo (2 g e(t—to) t >t
(ED(z,1) = {0 R ' (2.73)
s t <ty

We see that the outgoing cavity mode function in Equation 1.21 is excited by the
current impulse and that the excited amplitude is proportional to the functional
value at the source point z,4. In subsequent chapters on laser analysis, we will see
this phenomenon induced by thermal noise and quantum noise that are delta
correlated in time. In a laser, the field decay constant is of course modified by the
presence of the amplifying atoms. However, the spatial form of the excited field is,
in the linear regime of amplification, the cavity outgoing mode even in the pre-
sence of the amplifying medium.

2.5
Extension to an Arbitrarily Stratified Cavity

2.5.1
Description of the Cavity Structure

Up to now we have treated two types of one-dimensional cavities both with a single
layer of dielectric: one is one-sided and the other is two-sided with respect to the
output coupling. Here we briefly discuss how to extend the cavity model so as to
allow an arbitrarily layered structure. We limit ourselves to the case where each
layer is made of a lossless non-dispersive dielectric. Also, we consider for sim-
plicity a one-sided cavity.

The cavity model is depicted in Figure 2.2, where the cavity has N layers. The nth
layer extends over the region —d, <z < —d, ; with geometrical length
ly = —dy_1 + dy. The leftmost boundary of the cavity at z= —dy =—D is in
contact with a perfect conductor, and the rightmost boundary is at z = —dy = 0.
The outside space is vacuum. In order to have a set of orthogonal functions of the
“universe,” we put an imaginary boundary of a perfect conductor at z=L. The
region 0 < z < L of vacuum will be called the zeroth region. The field is assumed
to have linear polarization in the x-direction. Let us write the vector potential of
frequency o in the nth region as

An(2,t) = un(z)e ", N>n>0 (2.74)
where
/
N n 1 0
—dy —Ont —On —Ony =0 0 L — z

Figure 2.2 The arbitrarily layered cavity model.
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Un(2) = e 4 B %= (2.75a)
By = o (2.75b)
with
k, =w/c, (2.76)

The coefficient «, = ) is an undetermined constant and ¢, is the velocity of
light in the nth region. We have assumed that the mode function u, (2) is real,
yielding a standing wave. The frequency w is also to be determined by the

boundary conditions. The function u, (z) satisfies

[(%)2+ ko)’

The electric field and the magnetic field read

un(z) =0, N>n>0 (2.77)

E,(2) = iw(a,e™* 4 B,e %) (2.78a)
and
toHy(2) = ikyot,e™? — ik, e % = (iw/cn)(ocneik“z — ,Bne’ik“z) (2.78b)

Applying the boundary conditions of Equations 1.7 and 1.8 on the right end
surfaces of the nth region we have

ane*ikndn—l + ﬁneikndn—l _ an_le*ikn—ldn—l + ﬁnileikn—ldn—l (2793_)

(1/cn) (ctne™ ™1 — B et} = (1/c,1) (oty_1e”Fr1tt — B, lbir)  (2.79D)

If we define the boundary values of the right- and left-traveling components of
the electric field as

X, = o€ ko (2.80a)
Y, = f,e (2.80b)
and if we note that a,e *®-1 = X, el and B, e*®1 = Y,e~*h it is easy to show

that the following relation holds:

X Y N 1 281
— >n > .
Y, ]n n Y, 1 5 Zn= ( )

e—iknln R, e—iky,lw
M, = ( ’ ) (2.82a)

R Bik" Ly eikn Ly
n bl

where
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Ry = (ca—1—cu)/(Cn-1+ Cn) (2.82b)

—-1_ Ch-1+Cn

=(1+R
Jo= (1 Ry =T

(2.82¢)

The parameter R, is the amplitude reflection coefficient for a wave incident from
the left to the boundary of the nth and (n — 1)th layers. Later we will use the relation
det(M,) =1—R? (2.83)

The field values at the ends of the region comprising the mth, (m + 1)th,. . .,
and the nth layers are related by

N M N>n>m>1 (2.84a)
= JnmMnm 5 Zn-=-m_= .84a
Yn ’ mel
where
Mum =My X My_1 X -+ X M1 X My, (2.84b)
]nﬁm :]n ><_]n—l Xoees ><.]erl X]m (284C)

The matrix elements of M, ,, are polynomials of exponential functions of iw
with real exponents and real coefficients. The elements have the symmetry

property

(Mam) 1= (M), (2.85a)

*

(Mnm) 1= (M) 5y (2.85b)

2.5.2
The Modes of the “Universe”

2.5.2.1 The Eigenmode Frequency

As described above, the cavity extends over the region —D < z < 0, while the
zeroth region, 0 < z < L, is the outside, vacuum region. The mode function of the
“universe” should satisfy all the relevant boundary conditions. The field values at
both ends of the zeroth region are related by the phase of the propagation as

Xo ZfikoL, 0 X 286
Yo \o, ekl ]\Y, (2.86)

where the suffix L denotes the location z= L. The boundary conditions that the
electric field vanishes at the perfect conductors, uo(L) = 0 and uy(—D) = 0, read,
respectively,

X, +Y, =0 (2.87)

and
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Xy+ Yy =0 (2.88)
Then we have

Yo = —Xoetol (2.89)

Thus Equation 2.84a for n= N and m=1 reads

R Y Xo 2.90
Xy = JNiMna Xyl (2.90)

Therefore, for a non-trivial solution to exist, we should have

sl _ (Mna)y + (MNa)y
(Mn1)y + (Mg (2.91)
_ eZiqb(w)

4

The eigenmode frequencies are those satisfying this equation. Here
¢(0) =arg{(My1)1; + Mya)y},  (0< ¢ <27) (2.92)

The second form in Equation 2.91 results from the symmetry properties,
Equations 2.85a and 2.85b. Equation 2.91 yields

koL = ¢p(w) + pn (2.93)

where p is an integer. Since the zeroth region simulates free space, L is assumed to
be very large. Since it may be argued that the phase angle ¢(w) as a function of @
varies much more slowly than koL = w(L/c), the eigenmode frequencies are non-
degenerate. In the limit of large L/c,, the separation between the neighboring
solutions for w is

Aw = ¢on/L (2.94)
The density of modes is thus

p=1/Aw=L/cyn (2.95)

2.5.2.2 The Mode Functions
The orthogonality of the mode functions can be proved, just as we did in Equations
1.40a-1.40d, by performing the integration:

- [Duio <%ui(2)) (%uj(z)) iz (2.96)

Note that we are assuming that the magnetic permeability is p, for all the layers.
Using the boundary conditions and the Helmholtz equation 2.77 we can show that

M
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L

I = w? J,D &(2)ui(2)uj(2) dz = a)j2 J s(2)ui(2)uj(2) dz (2.97)

-D

Therefore, we have the orthogonality relation

J._De(z)ui(z)uj(z) dz2=0, 4] (2.98)

For the jth mode we can show that

LDz;(z){uj(z)}zdz =2 Za,,|ajn|21n (2.99)

To show this formula, let us consider the integral in the nth region:
—dy1 5

Iy :I en{uj(z)} dz
—d,

dn
:J en{od ot 4 e 4 2, Lz (2.100)
—d,

2

. , enfs; ) .

n o ik ik n )

_ J Ztkjndn,l —e Ztkj,,d,,) + ’J (ZZLk},,dn,l _ eZLkﬁ.d ) + ZSnZX ﬁ]nl
2 k]n 721]6]”

Using the matrix relation 2.81 for the nth layer, we have

2
—2ikjudn1 _ —ikj(n—1)dn— (1) B
cszn 21] 1 (1+R ) (j(n 1) 1) 1+Rnﬁjn 1 1) 1)

(2.101)
pRetknd =(1 + Rn)72(Rnaj(nil)e—ikj(w,l)dn,l 4 ﬁj(nil)eikj(n,l)dyH)
Thus
sn(ajgne—zikjndn 1 ﬁZ 2k dy, )
Zlkjn
(2.102)

2
_ w(l-RY ! (ajz( 1)6—2ikj(n,1)dn,1 _ ﬁjz( 1)62i1cj(n,1>dn,1)
2ikjn(1 + Ry) i i

Now the factor ¢,(1 — R2)/4 2ikju(1 + R =¢, 1/21k (n-1), as can be shown
by use of Equation 2.82b and the fact that &, = &(co/cy )% Therefore the integral
in Equation 2.100 becomes

—dn1
I, :J sn{uj(z)}zdz
,dn

2 2ikindy 2 ,—2ikj,dy 2 2iki(n_1)dn-1 __ w2 —2iKj(— 1) dn—
ﬁjne ! 7“jne ! ﬁj(nfl)e Jnpfnt O(j(nfl)e Jn=nFn (2103)

=é&n . — én— )
Zlkjn ! Zlkj(n_l)

+ Zénac ﬁjnl
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Thus the first term of the integral I, cancels with the second term of I, , ;. For
the total integral (Equation 2.99) the remaining terms are

L
2
J e(z){uj(z)} dz
-D
2 2iknD _ o2 ,—2ikiD 2 ikol _ 2 ,—2ikylL
ﬁjNe’JN — e N ﬁjoelﬂ’ — e "0

2ik

=éN — & (2.104)

2ikjiy
N 2
+2 Z sn‘ajn‘ I
n=0

The first and second terms vanish because the electric field should vanish at the
surface of a perfect conductor (see Equation 2.78a). Thus using Equation 2.75b we
arrive at Equation 2.99.

The inverse of the square root of the quantity in Equation 2.99 gives the nor-
malization constant for the jth mode function. In the limit of large L we have

2 -1
N7 = (2e0]o0|’L) (2.105)

Thus a formal expression of the normalized mode function is

_ Mjneikf”z + C.C.

Uin(2) = Nuy,(z) = , N>n>0 2.106
J ( ) JY ( ) (280L)1/2|(Xj0| ( )
These satisfy the orthonormality relation
L
J £(2) Ui(2) Uj(z) dz = 0y (2.107)
-D

For a complete expression, we still need the expression for the ratio aj, /|| in
terms of the cavity parameters. We derive the expression as a product of ajo/|ojo]
and o, /0. Substituting Equations 2.80a and 2.80b into Equation 2.84a with m=1
we have

 ikid o
(“gec > = Ju1My (cﬂ(): ) N>n>0 (2.108)

Note that for a real standing wave mode we need ff=o* as in Equation 2.75b.
Now Equation 2.89 reads

Bio = ojp = —eroe” ot (2.109)
or

= bl (2.109D)

oL

O
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Thus, using Equation 2.91 we have for the phase factor of o

U i{(MN,l)zz + (MN,l)lz}l/z (2.110)
““JO, (Mna1)1 + (Mna)y

Next, from Equations 2.108 and 2.109a or 2.109b we have
ijnef"kf"d” = Ju1 ((Mn,1)nocjo - (Mn71)1zocjoez’4kf°L) (2.111)

Substituting Equation 2.91 we have

%jn _
ijO —]n,l
(2.112)
<(Mn<1)11{(MN4,1)22 + (Mya)ip} — (Mua)1p{(Mya)y + (M) } gikindn
(Mn1)3; + (Mn)sa
The numerator of the fraction can be shown to be equal to
{(Mn 1)z + (M) } det(Mag) (2113)
Thus using Equations 2.83, 2.82¢, and 2.84c we have
% _ In.l (MN,VH»l)ZZ + (MNJ’H»l)lZ ei}%d,,’ N 2 n Z 0 (2114)
%j0 T (Mya)y + (M),
where
n
Iy = H (1-R) (2.115)

i=1

Thus we have the ratio o, /|| from Equations 2.110 and 2.114. Using the result
and noting the symmetry property in Equation 2.85a and 2.85b, we have for the
mode function in Equation 2.106

—i In,l
(260L)" |[(Mna)1y + (M) |

Un (2) =

% |:{(MN«,n+1)22 + (MNA”ﬂLl)lz}eikjn(Zden) _ CC]7 (2116)

N>n>0
For N=1, in particular, if we use Equation 2.82a with the conventions

e—iklal7 re—ikld 17 0
M, = , ) ; My = )
' relid  gilad ' 0, 1 (2.117)

Ip1 =1, do=0
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we can show that Equation 2.116 reproduces the normalized mode function given
by Equation 1.62b. We have chosen the minus sign in Equation 2.116 so that the
formula fits with the function in Equation 1.62b.

Thus we have obtained the orthonormal mode functions of the “universe” for an
arbitrarily stratified one-sided cavity. Thus the quantization can be carried out as in
Section 2.1.

Exercises

2.1 Prove the commutation rules in Equation 2.8.
2-1. Substitute Equations 2.4 and 2.5 into Equation 2.8 and use Equation 2.1 or
substitute Equations 2.6 and 2.7 into Equation 2.1.

2.2 Derive the Hamiltonian in Equation 2.9.
2-2. Substitute Equations 2.6 and 2.7 into Equation 2.3 and use Equation 2.8.

2.3 Derive the expressions for the matrix elements in Equations 2.21a and 2.21b.
2-3. Note Equations 2.13 and use the relation e* = Y " | A"/n! for an operator A.

2.4 For the density operator in Equation 2.31 show that g;=1.
2-4.Trp; = Y, (milp|mi) = (1 — e Phonyyoo Jemmibhor — 1,

2.5 Prove the relation between the power spectrum and the correlation function
described in Equation 2.45. Use Equations 2.40 and 2.44.
2-5. From Equation 2.40

G(Z,0,z2,1) Z haoi(nj) Ui(2) Uj(z)e ™

Fourier transforming this quantity we have

o0

J G(,0,2,1)"dt = Z%hwj@j) Ui(2') Uj(2) J Sioe)gy
7

—00 —0Q

_ Z%hwj<nj> Uj(2') Ui(2) 2m8(c — o)
J

o0 1
= L dwjpwjz hoi(ni) Ui(2') Uj(2)2m6 (w; — )
1 /
= 2npw§ ho(n,) Uy, (2" ) Uy (z) H()
which on rearranging and using Equation 2.44 gives the required result.
2.6 Derive the equation of motion 2.51 for the annihilation operator a; under the

presence of a sinusoidal current source described in Equation 2.50.
2-6. Start with
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Ld. oo p
ih= o = [, H + Hin] = [y, H] + (&, Hin]

The first term is given by Equation 2.36. For the second term, use the commu-
tation rules in Equation 2.8.
2.7 Derive the form of the correlation function in Equation 2.60.
2-7. Equation 2.55 gives
00

1 -
nl(Z,z,0) = EJ G(Z,0,z,t )" df

—0o0

Inverse Fourier transforming both sides (without the factor 1/(2n)) we have

00 X 00 1 00 .y )
J nI(z/,z,w)e’“"tdw:J EJ G(Z,0,z,t)e” e " dt dw

—00 —o0 —00

The right-hand side yields nG(Z/, 0, z, t), and the left-hand side yields, by Equation
2.56,

< h ‘ ) ,
J w5<n05> Ve - uz} (zl)uwc (Z)Bim)tdw
o ad 2t (oo

where we have dropped H(w) considering the narrow region of importance given
by the Lorentzian function. For correlation between ¢ and t we may change the
time ¢ in the above integral to t—#'. The contour integral in the lower (upper) half-
plane of w is appropriate for t > ¢ (t < t/) with the relevant pole at w = w, — iy,
(o =, +1y,). For t > ¢, for example, the factor 1/(w — w, + iy,) yields an
integral —2mi, while the factor 1/(w — w; — ¥y.) gives 1/(—2iy,), and the expo-

nential becomes e~ (@) (=)

2.8 Derive the expectation value of the electric field in Equation 2.73 under the
presence of an impulsive driving force in Equation 2.71.

2-8. See the solution to 2-7. In this case the only pole is w = w, — 1y, in the lower
half-plane.
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3
A One-Dimensional Quasimode Laser: General Formulation

In Chapters 3 and 4 we consider, as an introduction to laser theory, a simplified
one-dimensional laser model, where the laser cavity is made of perfectly reflecting
mirrors, or perfect conductors, at z = —d and z = 0. The mirror transmission loss
is replaced by a fictitious decay mechanism expressed by a single decay constant.
This replacement simplifies the spatial aspect of laser analysis: the spatial
distribution of the laser field is always fixed to a cavity resonant mode of the
perfect cavity. Only the field amplitude changes with time. Therefore, the analysis
can be made mostly in the time domain. We will call this fictitious perfect cavity
mode a quasimode to distinguish it from the more natural, resonant modes of the
cavity with finite transmission loss. The introduction of atoms as the amplifying
medium and a description of the associated quantum noise sources are made in
Chapter 3. Chapter 4 includes the semiclassical and the quantum analysis of the
laser with the assumed perfect cavity with additional loss mechanism.

3.1
Cavity Resonant Modes

Here we consider one-dimensional plane vector waves that are polarized in the
x-direction and propagated to the z-direction as before. Consider the perfect cavity
depicted in Figure 3.1. The cavity consists of a lossless non-dispersive dielectric of
dielectric constant &;, which is bounded by perfect conductors at z= —dand atz=0.

The natural oscillating field mode of the cavity, the cavity resonant mode, is
defined as one that satisfies the perfect boundary condition of Equation 1.6 at
z=—d and at z=0. It is easy to show that the normalized mode function is
(problem 3-1)

Uilz) = \/.slzdsm%(erd) (3.1)

with

o, = 617”7 k=1,2.3,... (3.2)
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Figure 3.1 The perfect cavity.

The form of the function in Equation 3.1 has been chosen for easy comparison
with that in Equation 1.21b for the one-sided cavity. These resonant modes are
orthogonal to each other and make up a complete set for the region —d < z < 0.
Writing the vector potential again as in Equation 1.44,

Alz D) =Y Q1) Ui(2) (3:3)
k
and defining the time derivative of the mode amplitude as in Equation 1.46,

d
the total Hamiltonian of the field is now

0
_ &1 2 M 2
Hffj_d [ B0 + L (0] de

[ [ (G + £ (Laen) |

Here we have added a subscript f to indicate the optical field. This is easily
evaluated to obtain (problem 3-2)

(3.5)

Hy =237 (B + 0}Q)) (3.6)

k

The quantization procedure goes just as in Equations 2.1-2.19: we have the
creation and annihilation operators satisfying the commutation relations

[ai,&ﬂ =5, [ai,aj] =0, [aj,zﬂ =0 (3.7)

and the Hamiltonian

k k



3.3 The Atom—Field Interaction

3.2
The Atoms

We assume a two-level atom having upper laser level 2 with normalized wave-
function ¢,(r) and lower laser level 1 with wavefunction ¢;(r). We describe the
atoms in the second quantized form, where the electron field amplitude is an
operator [1,2]. The electronic wavefunction for the mth atom, now an operator, is

Von (1) = b1 by (1) + buzby (r) (3.9)

where Bmi is the annihilation operator for the ith level. The atomic Hamiltonian is
written as

Ho =" hvabl,baa (3.10)

where l;}Im is the creation operator for the ith level of the mth atom. The angular
frequency v,, is the transition frequency of the mth atom. The product l;;z by is
the number operator for level 2 of the mth atom. The Hamiltonian is evaluated
with the lower atomic level as the origin. The product Binzi)ml is the flipping
operator from level 1 to level 2, and BLI};M is that for the reverse. The atomic
operators obey the anticommutation relations

BmiBT + Blf Bmi = 5mm/5ii’a

m' m'i
Emigm’i/ + Bm’i’émi = 07 (3.11)
A bt
BB, + bl b =0

mi-m’ m'i’

33
The Atom-Field Interaction

When an atom is put in a field that is described by a vector potential, the atomic
energy changes by an amount [3]

VR

Hiy = ——A(r)-p (3.12)
m

. . . . . ~2 .

if we ignore a small quantity that is proportional to A". Here, ¢ is the electron

charge, m the electron mass, and p the electron momentum. Here we are

assuming that the vector potential has only an x-component and that only the x-

component of the electron momentum p, is effective. In the second quantized

form it reads

pe = Mr)pxw(r)dr = S piblhy
ij=1.2
’ (3.13)

pi = j Ol pedydr
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Because in an atom the electron momentum follows the Heisenberg equation

Py = mls m|[x, H,)/(ih) (3.14)

the (i,j) matrix element is

Py = Jq{);‘i)xgbjdr = qubf [, Ha) dyd/ (if) (3.15)

= m(Ej — E)xj/ (ih) = —imwjx;

where wj; = (E; — E;)/h. Thus, using Equation 2.17 for the vector potential, we
have

~ e R 4 , PUTN
Hin = =3~ (h/200)"" (@ + 8) Un(2) 3 (~imanyy)blby
¢ S (3.16)

=i (h/200)"* (@ + &) Up(2) > ojiexbl by
k

ij=1,2

Here, z is interpreted as the location of the atom, which contains an approxima-
tion, called the electric dipole approximation, valid only when the spatial spread of
the atom is much smaller than the optical wavelength.

Instead of the interaction described by Equation 3.12, some textbooks, for
example, that by Loudon [4], consider the electric dipole interaction of one atom,

Hin = —et - E(2) (3.17)
where e is the electron charge, t the effective displacement, and E(z) the electric
field at the position of the atom. This contains also the electric dipole approxima-

tion. Here we assume again that E has only an x-component. The inner product
makes only the x-component % in t effective. The quantized form of % is

3 :Jl/ﬁ(r)azl//(r)dr = 3 bl

ij=12

(3.18)
%= | o159,
For E we use Equation 2.18,
E(z,t) ==Y PUz) = Y i(hon/2)" (& — a}) Up(2) (3.19)
k k
Thus the interaction Hamiltonian of one atom is
Hip = — Y xblb > i(hoo /2)"* (@ — a]) Up(2) (3.20)
ij k

Here z is the location of the atom. Usually, an atom lacks a permanent electric
dipole and thus x;; =0 in Equations 3.16 and 3.20. Then, there occur four kinds of
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terms in these equations, with operators l:ﬂl:)zdj, B];i;zd}, i);l:)ldj, and l:;;l;ld;. The
physical content of the first kind of term is the annihilation of a photon with
downward atomic flip, which contravenes energy conservation. Similarly, the
fourth term means the creation of a photon with upward atomic transition, which
also is incompatible with energy conservation. The second and third terms,
respectively, imply the creation of one photon with downward atomic transition
and the annihilation of one photon with upward atomic transition, which are both
energy conserving. In this book we assume that the energy non-conserving terms
may be ignored. This approximation is called the rotating-wave approximation.

Thus, when there are a number of atoms, each labeled by m, the interaction
Hamiltonian is

S S £
- m m m m. .
Hip Zh(;ck by bma + 1 8Dy bt ) (3.21)
km
Kim = ivm(l/zhwk)l/2 Ui (zm)Pm,s Pm = €Xm12, vm =y (3.22a)

from Equation 3.16 and
Kim = i(wk/Zh)l/2 Uk(2m) pm, Pm = €Xm12 (3.22b)

from Equation 3.20. The difference between these two expressions for the atom-—
field coupling coefficient is negligibly small for phenomena in the optical
frequency region.

In Equation 3.21 the sequence of the operators in the products is written in a
mixed order. The order is normal if the photon annihilation operator is set to the
rightmost position and the creation operator to the leftmost position, and it is anti-
normal if the order is reversed. Any order is allowed as long as the product
sequence is not changed during the calculation [5].

34
Equations Governing the Atom-Field Interaction

We examine the motion of the field using the Hamiltonians obtained so far.
Because the cavity field modes are orthogonal, it is natural to assume single-mode
operation, as is usually done in laser theories. Now the total Hamiltonian,
including the optical field, the laser active atoms, and their interaction through
dipole interaction, is

H, = Hy + H, + Hi (3.23)
Here we assume that the field Hamiltonian is written, from Equation 3.8, as
Hy = ho, (&*a+1) (3.24)
2
dropping the mode suffix from the operators. The cavity resonance angular

frequency is written as w.. The atomic Hamiltonian is given by Equation 3.10.
The interaction Hamiltonian in Equation 3.21 is rewritten as

51



52

3 A One-Dimensional Quasimode Laser: General Formulation
Hiy =Y (k@' bl by + 15,8b],, bt ) (3.25)
m
with the coupling coefficient in Equation 3.22b,

Km = i(we/20) 2 Uy(20n) P (3.26)

Because we are most interested in the motion of the laser field, we first examine
the motion of the annihilation operator of the field in the Heisenberg picture
(problem 3-3):

%a - % la, B, = % (af, — F,a) = —ito,a izmj kn(Bl o) (3.27)
where we have used the commutators in Equation 2.8 with i =j. The first term is
the free motion originating from the field Hamiltonian, and the second term
stems from the interaction Hamiltonian. From this result we know that the
product }A)Inli)mz drives the optical field; thus l;inll;)mz is the quantum counterpart of
the classical atomic dipole. Thus we wish next to know the motion of the atomic
dipole operator Blﬂi)mz, which flips the atom from the upper level 2 to the lower
level 1. Again using the Heisenberg equation, we have (problem 3-4)

(d/dt) (bl bw2) (£) = =iV (Bl By ) () + i1, 6 (£)Gn () (3.28)
where we have used the anticommutators in Equation 3.11,

5L boss Bl ba] = bl bl s — B babl .
= bl (1= bl ,b2)bws — by (=D Bz by = B by

because i)mzl;mz =0 due to the second member in Equation 3.11, and

[Bhus b2, Bpabt] = by bablpbs — Bl b by b
= %1(1 - BLZBM)BM - i’inz(l - Binll;ml)l;ml (330)
= bl by — b by = —6
because Bmzl;ml = —Bmll;mz and ISLIBI”Z = _i’inzi’in- Here, the operator

Om = i):rnz Bmz — ELBM is the atomic inversion operator, which probes the popula-
tion difference between the upper and lower atomic levels. Note that an atom
operator commutes with a field operator at this first stage of calculation.

Now that a new operator appears in the equation, we further examine the
motion of the new operator 6, (problem 3-5):

(d/d8)ém(t) = 2i{rmaa! (£) (b1 Bin2) () — 16,83(8) (bl bt ) (8)} (3.31)

Here a new operator l;;z b1 appears. But this is just the Hermitian adjoint
of binl by So, Equations 3.27, 3.28, and 3.31 and their adjoints form a closed set of
equations. These equations describe the coherent interaction between the field and

the atoms, that is, there are no dissipation or random forces that tend to hinder
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coherent motions of the field and atoms. Now that the three coupled equations for
the three operators are derived, these operators are generally mutually mixed and
cannot be interchanged during the calculations, unlike at the first stage where we
interchanged the atom and field operators in the appropriate Heisenberg equa-
tions under the given interaction Hamiltonian.

By inspection of the details in the calculations in Equations 3.29 and 3.30, one
may notice that the general rule of reduction of a product of four atomic operators
is [1]

Bibniblibt = B, i (3.32)

This is a modified form of the commutation relations in Equation 3.11.

3.5
Laser Equation of Motion: Introducing the Langevin Forces

Up to now we have considered the interaction of the cavity field mode and the
atoms. In order to consider a laser, we need to take into account (i) the pumping
process to make population inversion in the atoms, (ii) the cavity loss, which has
up to now been ignored, and (iii) the effects of atomic environment on the atoms.
These three processes are random processes if seen microscopically and introduce
randomness in the motion of the field or the atoms: thus these are incoherent
processes. The pumping process induces a relaxation of the inversion to a certain
value depending on the strength of the pumping. The cavity loss causes the field
amplitude to damp or relax to zero. And the atomic environment, for example,
collisions or vacuum fluctuations, causes the atomic dipole oscillation to lose its
phase or to relax to zero amplitude.

3.5.1
The Field Decay

The difficult point here is that, if we introduce appropriate relaxation terms into the
equations obtained above, the quantum-mechanical consistency is ruined. For
example, if, in the equation for the field (Equation 3.27), we add a decay term such as

d—& = —iwa — .0 (3.33)
where we have assumed the absence of atoms, the solution to this equation and

the adjoint yield
[a,aT] = [a(0)e7 7 at(0)eT 7] = [a(0),al (0)]e 2" = ¢ 2 (3.34)

This means that, although the commutation relation (Equation 3.7) holds at t=0,
it is violated for ¢t > 0. Thus, consistent quantum-mechanical analysis becomes
impossible.

53



54 | 3 A One-Dimensional Quasimode Laser: General Formulation

For the remedy, it is known that, if we are to use the decay term, we must add, at
the same time, a fluctuating noise term, or the Langevin force term I f(t), which
makes the commutator revive on average. Thus we write

%a = —iwcd — 7.4+ [7(t) (3.35)

We assume that the ensemble average of the noise with respect to the damping
mechanism, the so-called damping reservoir, satisfies

(Fy(1) =0, (tjm) =o,

o - (3.36)
<r}(t)rf(f)> =Gt —t), <rf(t)r}(t')> = Cyo(t—t)

Here the angle bracket signifies the quantum-mechanical expectation value aver-
aged over the reservoir. Below, we will show that the diffusion coefficients satisfy

C=2p(ne), G =2p((ne) +1) (3.37)

where (n,) is the reservoir average of the number of thermal photons belonging to
the cavity mode. From Equation 3.35 we have

t
a(t) — J el =11 (¢ )dY + a(0)el i)t (3.38)
0

Thus, taking note that I'(t) and a(0) are mutually independent, we have

(3.39)

ULBH% AT (¢ ) L o) F (¢ )dtb
([a(0),al (0)]e ")

t t
_ ’ 1 (—iwe—y.) (t=t )+ (+iwc =) (t=t) /11 (¢ T (v =2yt
Jodt Jodt ¢ ([ 0).EH0)] ) e

We require that this reservoir average be equal to unity. Using Equation 3.36 we have

([a(e),a (1)) = (cz—cn%ﬂ n_q (3.40)

The last equality holds if
Cz - C1 = 2“/5 (3.41)
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Thus we can retain on average the commutation relation with the above condition
described by Equation 3.41. Now, in thermal equilibrium, we should have
(a'(t)a(t)) = (nc), where the thermal photon number of the cavity mode is given
by Equation 2.42b. Then, following the above calculation, we see that for t - o
the thermal photon number is (af(t)a(t)) = Cy/2y, (problem 3-6). Therefore we
obtain Equation 3.37: C; = 2y.(n;) and C, = 2y.({n;) + 1).

We have derived the Langevin force associated with the cavity damping
assuming the Markovian (delta-correlated) nature of the noise and requiring the
preservation of the field commutation relation. The argument does not depend on
the origin or nature of the decay constant y.. In a semiclassical analysis of a laser,
the loss is typically introduced through assumed finite conduction loss distributed
uniformly in the “perfect” cavity. In subsequent laser analyses in this and in the
next chapters, we assume the form of Equation 3.35 for the cavity loss without
arguing the precise origin of the decay constant.

The quantum-mechanical version of the conduction loss is to add a number of
absorbing atoms, loss atoms, in the cavity. The number of atoms is so large that
their absorbing power does not saturate, and these atoms constitute a reservoir.
Then the total cavity field plus loss atom system conserves energy. In this model of
the cavity, the cavity loss rate is determined by the atom-field coupling strength
and the spatial and spectral number density of the atoms. This reservoir model is
outlined in Appendix C.

Equations 3.35 and 3.36 are another form of the fluctuation—dissipation theorem
stated in Equation 2.55. To see this, we construct the correlation function
(a'(t)a(t)) using Equation 3.38. It is easy to show that (problem 3-7)

(@ (Da(t)) = (ng)e =0l (3.42)

and that its Fourier transform from the domain of ' — t to w is

[: (& (DA ) d(E — 1) = (ne) }2+(z+w)2 (3.43)

Comparing Equation 3.43 with Equation 2.55 together with Equation 2.56, the
similarity is obvious. If we had constructed the correlation function G(2/,t,z,t)
using the single-mode cases of Equations 2.18 and 2.19 together with Equation 3.1,
a more precise comparison might have been possible.

We note that the cavity field decaying in the form of Equation 3.35 has a
Lorentzian spectrum of full width at half-maximum (FWHM)2y,.. We will call this
width the cavity width.

3.5.2
Relaxation in Atomic Dipole and Atomic Inversion

For the motion of the dipole operator in Equation 3.28 and for the atomic inversion
in Equation 3.31, we respectively add a relaxation or damping term and the
associated Langevin force term as
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b= —iwci— 7,8 — 1Y kn(blybm) + T4(2) (3.44)

m

& =

(d/dt) (bl ma) (8) = =iV (bl B2 (8) = (Bl B2 (2)
ik B(8) G (1) + Do (1)

(3.45)

(/806 (1) = ~Tomp{m() = 00} + 2i{rcmd (1) (b1 b2 (1)
— 3, 8(0) (ba b ) (1)} + Fo (1)

where we have added the reformed equation for the field for later convenience.
The newly added terms represent incoherent motions of respective operators. The
damping constant v, for the atomic dipole comes from collision of other particles
with the atom and is ultimately determined by the spontaneous emission due to
the vacuum fluctuation of the field. For vacuum fluctuation as the cause of the
spontaneous emission, all the existing three-dimensional field modes should be
taken into account even though we are considering the motion of a single cavity
mode. Except in the case of a microcavity laser, where the cavity volume is nearly
the wavelength cubed, the three-dimensional field is, roughly, that of a free field.
The constant I',,,, is the relaxation constant of the population inversion and 69, is
the equilibrium atomic inversion under the pumping but in the absence of the
field. The latter constant is a measure of the strength of the pumping. We assume
that each atom has its own dipole reservoir and pumping reservoir.

Here we insert a brief note on the atomic bandwidth. The atomic dipole, in the
absence of the field described by Equation 3.45 without the third term, will have a
power spectrum similar in form to the one for the field described in Equation 3.43.
There will appear another Lorentzian profile with FWHM 2y,,,. We will call this the
atomic width or the natural width of the mth atom.

The discussion on the nature of the Langevin forces, or the noise terms, I",, and
r m||, are rather involved. To derive their characteristics, one also assumes the
respective Markovian nature of the forces and the conservation of quantum-
mechanical consistency described by Equation 3.32. For details, the reader is
referred to the book by Haken [1] for example. Here we cite the results. We write
the time rates of change of the incoherent part of the populations and dipoles in a
multi-level atom as

(m, )= Z wy (bb) zk: wi () + (1) (3.47a)

(3.46)

& (bb) =~ (Blhe) + T30 (3.47b)

where wy; is the transition rate from level k to level j due to pumping and
incoherent damping of atoms. Then the reservoir averages of the noise sources
and of the product of the Langevin noise terms are given as
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(Cym) =0, (fhw) =0 (3.48)

(C(OTu(t)) = Gyud(t - 1) (3.49)

with the diffusion coefficient

Gii,ﬁ = 5ij‘{zwki<i’££k> + Zwlk<gjgl>} — Wy<iinJl> — %,<Eji)]>
k k

Gy ji= Zwki<B£Bk> - Zwlk<bjbl> + (v + Vji)<i7:'rbi>: L#]
k k

where the angle bracket signifies the quantum-mechanical expectation value
averaged over the atomic reservoirs. The constants in Equation 3.46 concerning
the pumping process in a two-level atom are related to the transition rates, if we

note that <l;ﬁ91> + <i)£i)2> =1, as

0 _ Wmi2 — Wm21

1—‘mp = W12 + Wm21, 0, = w Tw (351)
ml12 m21

or

m

1 1
Wiz = Zrmp(1 +a°), Wyia1 = zr,,,p(1 -d°) (3.52)

There is an equation, known as the Einstein relation, connecting the diffusion
coefficient and the drift coefficients (the constants C; and C, in Equations 3.36
and the decay constant in Equation 3.35, for example), which, in the case of the
atoms, leads ultimately to Equation 3.50 — see, for example, the book by Sargent
et al. [6].

p Exercises

3.1 Show that the normalized mode functions for the cavity described in Figure
3.1 are given by Equations 3.1 and 3.2. Show that they are mutually orthogonal.
3-1. Assume a solution of the form that satisfies the vanishing boundary condition
at z=—d: U(z) = Csink(z + d). The vanishing boundary condition at z=0 yields
kd=kn, k=1, 2, 3,..., so that we have w, = ik = keyn/d, k=1, 2, 3,.... For
orthonormality, calculate LO ,&1Csin(kn/d)(z + d) sin(k'n/d)(z + d)dz, which is
€1C2d/2 for k =k and vanishes for k # k'. By the normalization condition in

Equation 1.42a, we have C = /2/(&1d).

3.2 Derive the Hamiltonian in Equation 3.6 from Equations 3.3-3.5.
3-2. We have
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0 2 2
&1 1s] 1 0
Hf = A —|=—A
e [ { (6t (2, t)> +2,u (82 (2, t)) ] dz
0 &1 : 1

= = P — !

|, 31T nue;) 5,0 eue

The first term yields, due to problem 3-1, 13", PZ. The second term reads

I dzlu{ZQkW } AT ILT [ cuvi@u e

2

zguZZQka/[flUk @)U,
0

—J slUk(z)U,'C’,(z)dz}
-d

= #ZZ@@

0 2
X J b U)K Up (2)dz = 3
—d

K H2
T ZﬁlﬂQk

where a prime on a function indicates differentiation with respect to z. On going
from the second to the third line, the Helmholtz equation for the U has been used.
Note that k?/(e1p) = kic? = w}.

3.3 Derive the equation of motion for the annihilation operator described in
Equation 3.27.

3-3. For the first term, see Equation 2.36. For the second term, use the commutator
in Equation 2.8.

3.4 Derive the equation of motion for the atomic dipole described in Equation
3.28.
3-4. See Equations 3.29 and 3.30.

3.5 Derive the equation of motion for the atomic inversion described in Equation
3.31.

3-5. We have [0,,, Hf] = 0.

That [o,, Hs] = 0 can be shown by repeated use of Equation 3.11. Then,

(B bz, bl buwa] = B! bab! By — b B! b
= b (=bl b2 bz — bl (1= b bys) by = —b! by
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(b1 bmt, By bwa] = Bl bt by — Bl buabl, b
= Binl(l - Z’Inli’ml)i’mZ - Binl(_i’%i’m)i’ml = i’Lﬂi’mZ

because l;mzl:)mz —0and b b 1 = 0. Thus [o4, i)inll;mz] = —Zbinli?mz- Similarly,

ml¥m
bl b, bl yb1] = bl bbby — bl bbb
[ m2Ym2s Py Wll] m2Ym2Py2Yml m2Ym1by2Ym2

= Binz(l - Binzi’mZ)l:’ml - Binz(*ginzi’ml)i’m = i’lnzgml

(bbbt babm] = Bl bma blyybot — Blybmr bl b
= i’i@l(_l;inzi’ml)i’ml - BLz(l - i’;li’ml)i’ml = _Bszml

and [0y, b} ,by1] = 2b! ,b,1. Note that the rule in Equation 3.32 yields these
results more quickly.

3.6 Using the Langevin equation (Equation 3.35), show that lim, ... (a'(t)a(t)) =

Cl/(zyc)'
3-6. Equation 3.35 leads to Equation 3.38. Thus, noting that I'(t) and a(0) are

mutually independent, we get

’
<&T(t)&(t)> = <{J e Fioe=7e) (=) A}(t’)dt’ +af (O)eﬂ(mt—yct}

0

t
% {J e(—iwc 70) (t— t’ ( )dt + ( ) —;wcl—yﬁt}>
0

b ¢
= <J ettt }( //)dt//J —ioc—70) (=) - ( )dt>

0 0
+ (a(0)a(0)e ")
_ r i Jt om0 (B ()
0 0 ! /
+ (a'(0)a(0))e

J dt//J ar e —iwe—y,)(t— t’)+(+iw5—y0)(t—t”)Clé(t//_t/)
0

+ (a'(0)a(0) e 2
=2yt )
ol S+ (@ (0)a(0))e

3.7 Derive the correlation function in Equation 3.42.
3-7. We have
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@waw) = ({ [ ey +a e}

0

% {Jt el—iwe=re) (F =) (t”’)dt'" + a(0)e (- iwc—;u)t’}>

Jdt" Odt”/e‘wc 7e)(t= t”)e(—irw—w)(t’—t”’)< }( T (f”)>

&T(O ( )> iwe— ,C)te(—iwc—y[)l’
_ J ar’ dt/l/e iwe—y,.)(t—t") (7i(/)£7y5)(’ ") C 5( ///)
0

+ <&f(0)&(0)>e<‘wc*7c)te(*iwc*7c)‘/
G J;’ " gioclt=t) g=re(bHt=20") sy
G f(; ar’ eiwc(tfﬂ)ef;xc(wt’fzﬂ’)7 <t

+ <dT(0)&(0)>e(iwc*"/c)te(*iwc*}’u)l’
Cpeiet= t’>w7 >

Cyeiwe(t=t) e’?’;(/*l)z ;:—:f-;(:<t’> . ot<t
+ <dT(0)&(0)>e(iwﬂ‘7’c)te( i)Y

If we note that C;/(2y.) = (n.) we obtain Equation 3.42 for t,t — oc.
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4
A One-Dimensional Quasimode Laser: Semiclassical and
Quantum Analysis

Now that we have a complete set of equations (Equations 3.44-3.46) with known
properties of the Langevin forces (Equations 3.37 and 3.50), we can in principle
analyze the laser in a quantum mechanically consistent manner. However, the
problem to be solved is rather hard because of the presence of random force terms.
So, before solving the complete equations, we first consider the ‘“‘average”
equations, leaving the Langevin force terms ignored. Such an approach is called
a semiclassical theory because the quantum-mechanical consistency is then not
fully preserved. After solving the average equations, we can introduce the random
forces to take fully into account the quantum effects. The semiclassical analysis
has two main steps. In the first step, we assume that the population inversion is
determined by the pumping process only and it is not affected by the presence of
the laser field. This is a linear gain analysis in that the amplification by the atoms
is linear with respect to the laser field amplitude. This theory applies to the sub-
threshold region of laser operation. In the second step, we allow for a nonlinear
behavior of the amplifying atoms. The amplifying capability of atoms then
decreases because of the consumption of inverted atoms by the presence of the
laser field because of the stimulated emission. This is called the saturation effect.
This nonlinear gain analysis yields the steady-state laser amplitude, which keeps
the inversion level or the field gain just balancing the field loss due to the cavity
loss. In this book we limit ourselves to a steady-state oscillation and do not
consider pulsed laser operation or temporal variation of the field intensity. The
quantum analysis is also divided into two main steps: the linear gain analysis and
the nonlinear gain analysis.

4.1
Semiclassical Linear Gain Analysis

Here, we assume a steady state with constant population inversion, and set
m(t) = o4 in Equation 3.45. We consider the following equations, ignoring the
noise terms:
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%au) = i (t) = 7c(t) = i (Bl b2) (1) (4.1)

(/) (B ba) (£) = —ivin (Bl Bin2) (8) = 9 (Bl B2 (1) + i, 8 (o (4.2)

From Equation 3.19 we have the positive frequency part of the electric field for a
single mode in question:

ED)(z,1) = i(hw,/2)* U.(2)a(t) (4.3)

Thus multiplying both sides of Equation 4.1 by i(hw./ 2)?y,

we have

E<+>(z,t):,/%uc(z)e< i “J lwmfzxm( ,,,) (t)dt »

=+ EH)(z, 0)6(*iwc*7c)t

U.(z) and integrating

The second term comes from the initial field and vanishes for large t. So we will
ignore this term. Since x}, = —iv,(1/ Zhwc)l/ >U,(2zm)p!, according to Equation
3.22a, we replace «*,a(t) in Equation 4.2 by —{v,.p’, /(hw,) Y EC) (2, t). Integrating
Equation 4.2 (problem 4-1) and substituting the result into Equation 4.4, we have

22
BV =3 {W Ue(2) Us(21m)

m

(4.5)

£ v/
« J Sio3) (1) J i) () B (5 47
0 0

where we have ignored the term coming from the initial value of Blﬂl}mz, which
represents a switching-on effect. This form of equation, describing E*)(z, t) rather
than a(t), has been derived for later comparison with the situation where the field
inside the cavity is non-uniform because of the coupling loss at the cavity ends.
Anyway, this form expresses the contribution of the mth atom at z,, to the field
at (z,t) through the product of the mode functions at z and z,,, which we saw in the
expression of the response function in Equation 2.53a (see Equation 5.34 below).
We go back to a(t) by dividing Equation 4.5 by i(hw,/ 2)1/ U,(z) to obtain

t

i)=Y {'pmzvi"m U(am) Uil | 707700
- Zhwc 4 m c m

0

0

t/
XJ el =) ) (”)dt”dt}

It is not easy to go further if the atoms are of different nature. For simplicity, we
assume here equally pumped, homogeneously broadened atoms and set

Vm = Vo, Pm = Pa, Ym =7 Om =0 (47)
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Then we can write

£ t
at) = kZNaJ e<*"wr>'c><t*t’>J e (¢ de" dy (4.8)
0 0
with
2.2 0 2
12 _ |pal VOJJ N 2 _ |pal VON _ 2 4.
No o |, 4z, U (2) e Ne Zm: lkm|*0 (4.9)

where N is the density of atoms in the z-direction and we have set vo =, in the
second equality, which is usually highly accurate. Differentiating Equation 4.8
twice we have

a+ {i(w; +vo) + 7. +7}a — {¥*No — (ivg +7)(iw, +7,)}a=0  (4.10a)

Because the field is oscillating at a high frequency w, which is still to be
determined, we write a(t) = a(t)e~"* and rewrite Equation 4.10a as (problem 4-2)

G+ {i(wc +vo — 20) + 7, +7}a

(4.10b)
— [¥*No — {i(vo — @) + y}Hi(w — @) + 7 }]a= 0

Now that 4(t) is slowly varying, we ignore the second derivative. Then the
amplitude G(t) simply grows or decays exponentially depending on the coefficients
of the second and third terms. Since we are anticipating operation below thresh-
old, the amplitude should decay as

k?No — {i(vo — @) + 7H{i(we — @) +7c} |
i(w; +vo —20) + 7.+

@ ~exp (4.11)

The laser threshold conditions are obtained if we set the exponent to zero. Thus we
have the threshold oscillation frequency and the threshold atomic inversion as

_ 70+ 7%

Wi 4.12
S #12)
2 _ _ (wc — V0)2
k*Noy = 7. — (vo — o) (e — o) =74 1+ —5- (4.13a)
(7 +7¢)
or using Equation 4.9
2hery
o = e (1 4 §2) (4.13b)
|pal voN
where the squared relative detuning is
2
- M (4.13¢)

(7 +7.)°

Equation 4.12 shows the linear pulling effect between the cavity resonance and
the atomic resonance frequencies. The laser frequency tends to be pulled to the
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narrower resonance. The threshold inversion is smaller for larger atomic density
and larger electric dipole matrix element, and is larger for larger atomic width,
larger cavity loss, and larger detuning between the cavity and the atomic
resonances. We rewrite Equation 4.13a as

gNow =7, (4.13d)
where the coefficient

R b
7 (1404 2ehy(1406%)

(4.14)

is interpreted as the amplitude gain per unit density of inverted atoms per unit
time. This is equal to half the stimulated transition rate per atom per unit density
of photons.

4.2
Semiclassical Nonlinear Gain Analysis

Now we take the saturation of the atomic inversion due to stimulated emission
into account in the context of semiclassical analysis. We start with Equations 3.44
and 3.45, with the noise terms discarded, and obtain, as in Equation 4.5,

2
ol m| Vm
BV =% {p 2|h Ue(2) Ue(zm)
" (4.15)
t t
X J Z(iiwcih)(tit/) J 6<7ivm77m)(tjit”) E(+> (Zrm t”)o—m (t”)dt/,dt/
0 0

where we have a§sumed that w. ~ v,,. We want to find the time variation of the
field amplitude Et)(z,t), where

ED(z,t) = ED) (2, t)e ™ (4.16)

and the angular frequency  is the center frequency of oscillation to be
determined. Then we have

2
E<+)(z7 t) = Z |:pm2|hvm UC(Z) Uc(zm) X J 6<iw_iwc_yﬂ)(t_t,)
m 0

v o - 4.17
% J e(lmfwmf",'m)(t —t )O,m(tJ/)E(Jr) (Zm> t//)dt//dt/:| ( )
0

Here, again, we go to the homogeneously broadened case for simplicity:
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Vm =V0,  Pm = Pa Vi =7 (4.18)

Unlike in Equation 4.7 we do not assume a,, = ¢ here, since the atomic saturation
may differ for different atoms. Differentiating twice with respect to time, we have

(%)ZE“) (@) + {1+ o= )} + -+ 000 - o)) ) BV e

+{7e + i@e — o) Hy +i(vo — ) }ED (2,1) (4.19)

- P21 1 ) Uulem)om() B (2o t) = 0

We go to the steady state and have

B~ o G o)
Ipa[Pvo . (4.20)
X %7 U.(2) U (zm)omE'™ (zm)

Dividing both sides by

EM)(2) = i(hw./2)* U.(2)a (4.21)
we obtain the steady-state condition:

1 2y
e eSO e 22
Now Equation 3.46 for steady state without the noise term reads

Cp{0m — 0°} = 2i{nl (b) 1 ba) — 15,8(b) b ) } (4.23)
where we have written, according to Equation 4.16,

a(t) = ae ', bl buy(t) = bl buge (4.24)

Also, we have assumed a uniform pumping I',,, = I’ and 6%, = ¢°. Equation 4.2
for steady state then gives (problem 4-3)

i}, ao
bl by = —— 2" 4.25
miom2 7+ i(vo — ) (4.25)
Substituting Equation 4.25 into Equation 4.23 we have
2512
Ty{oy — 0% = —a Kl 181 0n (4.26)
72+ (vo — )

where we have set a'a = aal = |a|*, ignoring the operator aspect of the field

amplitude. This is permissible for a semiclassical analysis. This equation shows
the balance with respect to the atomic inversion. The left-hand side describes the
supply rate of inversion by pumping, while the right-hand side describes the net
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consumption rate of the inversion by stimulated emission and absorption. The
quantity 2yic,|?/{7% + (vo — w)z} which is nearly equal to twice 4 in Equation
4.14, is the stimulated transition probability per photon for the field at frequency w.
Thus we have

P

Om = — 5 (4.27)
L+ 4{[ylrem|™1al"]/[7? + (vo — @)}/ T

This equation represents the saturation of the atomic inversion, or of the atomic
gain, that is, decrease of inversion due to stimulated emission. Saturation becomes
appreciable when the rate of decrease of the inversion due to stimulated emission
is comparable to its rate of increase due to pumping. If the field amplitude & is
small, the inversion is equal to the unsaturated value ¢°. However, it decreases
with increasing field amplitude. Now, since we can write (see above Equation 4.5)

K = — P2 E0) (2,,) (4.28)

we rewrite Equation 4.27 as

m= - (4.29)
1+ [E®) (z) '/ B
where the saturation parameter
BP= 242+ (0 - ) (4.30)
sl — 4"/Pa Y 0 .

If we substitute Equation 4.29 into the steady-state condition Equation 4.22, we can in
principle determine the field amplitude |]:~" ()(2,,)| and the oscillation frequency w.
However, a difficulty arises because the summation over atoms m contains
sin?(z,, + d) in the denominator due to the form of the electric field E(*)(z,,)
given by Equations 4.3 and 3.1. Thus the inversion ¢, is locally depleted where the
mode amplitude is large. This is the so-called spatial hole in the laser gain. For
simplicity, we ignore the spatial holes and assume that we can replace
sin’(z, + d)by its space average 1 and write
ooz 10 - 2
B P= aJ B (2) [ dz (4.31)
—d
We replace |E(")(z,,)|? in Equation 4.29 by | E(Y)|* and the corresponding steady-
state inversion g, by o, which is independent of atom index m,

0'0

- (4.32)
T4 [ EP

We then substitute Equation 4.32 into Equation 4.22 and evaluate the summation
over m similarly to obtain
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= Y + YcVo

4.33

Y+ ( )

and
B = g Lo ! S
2he; .y — (@, — w)(vo — ©)
(4434)
2 | 1pal*voNG® 1
= | E| -1

2o {1+ (0 — 00/ + 7}

Note that the squared field amplitude obtained is the spatial average value. The
oscillation frequency in Equation 4.33 is the same as the threshold oscillation
frequency for the linear gain analysis in Equation 4.12. The saturation parameter
in Equation 4.30 reduces to

_ rphz’/
A

|E|* 1+ 6% (4.35)

where ¢ is given by Equation 4.13c. The threshold atomic inversion is obtained by
setting |E®)| = 0 in Equation 4.34 as

o _ Zhewyy,

¢ = 1+ 6% 4.36
h |pa|szN( ) (4.36)

which is the same as in Equation 4.13b for the linear gain analysis. Then, Equation
4.34 can be rewritten as

O‘O

0
_ _ o (4.37)
1+ |EG B

Comparison with Equation 4.32 shows that the steady-state atomic inversion is
the same as the threshold inversion:
_ 0
O = Oy, (4.38)

This is an example of the well-known fact that the gain of an oscillator above
threshold is clamped at the threshold value.

4.3
Quantum Linear Gain Analysis

We now return to the case of fixed atomic inversion, a linear gain regime, but
regain the noise terms. We use Equations 3.44 and 3.45 with the inversion
operator replaced by a constant 6,,(t) = oy
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4 o= i — i bl b r 439
Eﬂf*lwcﬂ*ha*lzm:’cm( mibm2) + Te(t) (4.39a)

(d/dt) (bl bm2) (£) = — v (Bl Byu) (8) — 7y (B, 1 B2 (1)
+ i a(t )am—i—r ®)

(4.39b)

We follow the procedure used above to go from Equations 4.1 and 4.2 to Equation
4.5. Multiplying both sides of Equation 4.39a by i(hw./ 2)1/ U, (2) and integrating,
we have

t
E<+)(z7 t) = \/@UC(Z)C(—iwC—TC)iJ glioctro)?
0
{Z Km( ) ) + lrf( )} ar + E(Jr) (27 0)8(71'(»57%”

We replace «*,a(t) in Equation 4.39b by —{vup?,/(hw.)}E) (z,n,t). Integrating
Equation 4.39b (problem 4-4) and substituting the result in Equation 4.40, we
obtain, noting that x,, = wm(l/Zhwc)l/2 U (zm)pm»

(4.40)

EP(zt)=>" ow[*viuom Ue(2) Uc(2m) It gl i) (0=F)
’ — 2hw, Jo

t/
XJ 6( Wi —7p) (£ —1") E (Zm,t”)dt”dt,:|

0

t
v i 2 V(f—t
Z |: mpm (Z )JO e(flwc*m)(t t) (4.41)

0

L/
XJ eI (”)dt”dt]

h b "
+1 CZOC U.(z) JO g(iwe=7.) (t—F )r‘f(t’)dt’

Here, we have again ignored the terms coming from the initial values 4(0) and
(i)ﬁnli)mz)(O). This form of integral equation for the field has been derived for
comparison with those in Chapter 9, where we take into account the output
coupling. Going again to the homogeneously broadened atoms and to the slowly
varying part of the field annihilation operator 4(t) as in Equation 4.10b, we obtain

a+ {i(wc +vo — 20) + 7, +7}a — [K*No — {i(vo — @) + 7}

x {i(oc — )+ 7:1a = Ty + {i((vo — ) + N} =Y kel (4.42)

where we have written I's(t) = Tr(t)e”" and ' () = T (t)e"". The factor k*No
was defined in Equation 4.9. We again ignore the second derivative of the slowly
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varying amplitude . Also, we ignore the term I’ ', assuming that the time variation
of I'y is slower than the dipole relaxation rate y. Then, we have

1
i(ws +vo —20) + 9.+ 7

a(t) = a(0)e" +

t (4.43)
X J o= [{i(vo — o)+ 7} Tp(t) = i) kmlm(t)| df
0 m
where
2 _ I _ MU _ N
, N7 = (il — ) + 3Hi(0. — 0) +3.) had
i(we +vo — 20) + 7y, +7
Going back to d(t) we have
d(t) _ d(o)e(so—iw)t + 1
(e +vo —2w) + 7. +7
(4.45)

t
X J glsoio)t=¥) [{i(vo — )+ 9} () - iZKmfm dat
0 m

We remember that the same exponential constant was obtained in Equation 4.11
for the semiclassical linear gain analysis. If the atomic inversion is below
threshold, the first term represents an exponential decay of the initial field value.
The second integral term shows the same exponential decay but incessantly
excited by the lasting noise terms. Since the exponent s, is the same as that in
Equation 4.11 for the semiclassical linear gain analysis, we obtain the same
threshold frequency and threshold population inversion as in Equations 4.12 and
4.13b by setting so=0:

_ 70+ 7V

Wiy (4.46
‘ Y+ 7 )
2
Ve (VO - wC) Zhwihﬁlyyc 2 Ve
o = 1+ = 1+0%) ="% 4.47
" kZN{ (7 +7.)° } Ipal* V3N ( ) Ny 47

In order to calculate the steady-state field spectrum, we calculate the correlation
function of the field using the correlation functions of the noise sources given in
Equations 3.36 and 3.49. It is well known that the power spectrum of a field is
given by the Fourier transform of the correlation function of the field. We ignore
the first term in Equation 4.45, which can be ignored in the steady state, that is, for
t - oo. Then we construct
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1
(@ +vo — 20)* + (7. +7)°

t
% <J (5o Hi) (") [{—i(vo —o)+7} FT ) + lZK ¢’ (4.48)
0
t/
(so—iw) (¢ —t") I// /// "
x| e Vo — )+ 7 F —1 Ko Loy dt
| {“0 o) +7} >> }

Note that the average sign here refers to the field reservoir as well as atomic
reservoirs in addition to the quantum-mechanical expectation value. Using Equations
3.36 and 3.48, assuming the independence of reservoirs for different atoms as well as
the independence of the field reservoir from the atomic reservoirs, we rewrite it as

1
(@c +vo — 200)* + (7, +7)°

{ s +iw)(t— t,1)8(507i(1))(t17t,/1){(VO _ U))2 + V2}< I //) ( ///)>dt//dt,/// (4 49)

eso-Hw )(t—t") (So iw) (¥ —t") |K | ]—‘| (" W ar'dt”
gl 2 b "

The correlation function for the field reservoir is given in Equations 3.36 and
3.37. That for the atomic reservoir is obtained from Equations 3.49 and 3.50 as

<fl‘n(t//)A /// > <F21 t rlz(tm)> _ G21,12(3(tﬁ i t///)

Garno = w12<%(1 - a)> o <%(1 " o—)> + 2y<%(1 " a)>

= %Fp(l - a°)<%(1 - a)> —~ %Fp(l - a°)<%(1 - a)> (450)

4 2y<%(1 + a)> —y(1+0)

for all m. The last equality holds since (¢) = ¢° = ¢ in this linear gain analysis.
Carrying out the integration we have

ainae — 200 =) +977}9e(ne) + 35, [km[*7(1 + 0)
(@ 0ae) (e + 70— 200+ (1, +7)°

o(So Tiw)t+ (so — i)t _ (s5+iw)(t—1) sy
SO+SS ) (451)

o(so Fi)t+ (s —iw)t _ (s, —iw)(¥ —1)

<t
o+ S5 ’
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Below threshold, the real part of the exponent s, is negative. Then the first terms
after the curly bracket vanish for long time ¢ and t' and can be ignored for the
steady state. In the steady state, the correlation function depends only on the time
difference t — . The summation over m of |ic,,|* can be written as K*N by Equation
4.9. So we have

2{(v0 — o) +7*}7e(ne) + ¥*Ny(1 + 0)

Al P —
al (14 D)a(t)) =
< ) (@c +v0 — 200)* + (7. +7)°
e(sa+iwo)f 0
— >
—(so—iw,)T
¢ <0

2|R€So| ’

where we have rewritten the central frequency w as w,. The explicit expression for
Re sy can be obtained from Equation 4.44 with w replaced by ,, the undetermined
center frequency of oscillation. For simplicity, we assume that this frequency is the
same as the threshold frequency, that is, we set ® — w, = wy,. Then we have

2(7 + ) [7.(1 + 6*) — k¥ No]
(747 + (2 —7.)°

200 +7)77.(1+ 8)[1 — o/oy)]
(0 +7)" + (0 =)

2|Re so| =

(4.53)

where the relative detuning § is given by

2
5 = (‘” V") (4.54)
Y+

In the second line in Equation 4.53 we have used Equation 4.47. Using Equation
4.53, we can rewrite Equation 4.52 as

(al(t + 1)a(t))
(55 +im,)T
_ 20— w0 +72re(nd) + R Ny(1+0) JOTT 720
2(0+7.)7:(1+ )1 —0/ou] e Gt 120 (4.55)

(s5-Fiwo)T
_{(ne) + No/(Now)} ebo i)t >0
(}'+7;)[1 _J/Jth] e*(sofiwo)‘r’ <0

Here N, = N(140)/2 is the density of atoms in the upper state. In order to obtain
the power spectrum, we Fourier transform the t-dependent part of Equation 4.55
to obtain (problem 4-5)
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+00 )
I(o) :J (&1t + 1)a(t) e de
0 . ) —+00 . )
x J e—(so—nuo)r—nurdT + J e(so+1w0)r—w)rd7: (456)
—00 0

—2Re sy

(0o — @ — Im s0)* + (Re sp)?

Thus the power spectrum is a Lorentzian with the full width at half-maximum
(FWHM) Aw given as

Aw = 2|Resp| (4.57)

where the right-hand side was given in Equation 4.53. This shows that the
linewidth decreases as the atomic inversion ¢ approaches the threshold value.
Schawlow and Townes [1] gave the laser linewidth in terms of measurable
quantities including the power output. We can obtain the stored energy W inside
the cavity in terms of the expectation value of the intensity, using Equation 4.52,

2% (14 ) (n) + K Ny(140) 1

/\"’ A
(#®ac) S =9+ 0+ 2Res|

(4.58)

Here, again, we have replaced o, by wy. By going back from a(t) to the electric
field E)(z, ) by multiplying by the factor i(hew,/ 2)1/ U.(2), composing the real
electric field operator by adding E(-)(z,t), and integrating the electromagnetic
energy in the cavity, and using Equation 3.1, we have

W = <J0d 81{E<+)(z, t) + EC)(z, t)}zdz>
- J:, a{ (B9 0EO(20) + (E7) (2 0EH (z.0)) iz

= J_d e1| Up(2) (hooe /2) { {a(H)a! (1)) + (@l (t)a(t)) }dz (4.59)

= erlhon/2) (@031 (9) + (6 (D)} =2

£1d2
= hwc{<dT(t)d(t)> %}

(The reason for the appearance of w, instead of w, the oscillation frequency, is that
we are neglecting the presence of the atoms in estimating the stored energy. The
difference is usually negligible.)

However, the zero-point energy cannot be measured directly and Glauber [2]
showed that the energy available for measurement is
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W = ho(a'(t)a(t)) (4.60)

which states that the expectation value of the photon number in the cavity is just
(a'(t)a(t)), as expected. The output power P is, by assumption, equal to 2y, W.
Thus we have

P =2y.W = 2y hor (6 (t)a(t))

~ 29%9.(1 + 0% (ne) + ENy(1 + 0) 2y hoo, (4.61)
o=+ 0+ 2Res|

So we have (see Equations 4.57 and 4.47)
2y.hoe 277y, (1 + 6)(ne) + K Ny(1 + o)
P 30 =70 + (e +2)°

4hewy? 22(1 4 8% N
_ 4hoo? /2( +2 ) 2{<n5>+ 2}
Po(ye49)"+0"(r =) Noy,

Aw = 2|Resp| =

(4.62a)

This is the standard form of the expression for the laser linewidth given by
Haken [3]. A similar result, without the second factor, was given by Sargent et al.
[4]. This is inversely proportional to the output power. The major contribution, the
term of N,, comes from the noise associated with the decay of the atomic polar-
ization, usually called quantum noise. The physical content is the spontaneous
emission events that occur at random in the atoms in the upper level 2. The
spontaneously emitted photons tend to destroy the phase of the oscillating laser
field, giving the finite linewidth. A smaller contribution comes from the thermal
noise, the term of (n.), associated with the damping of the field. Physically, this is
the thermal radiation field mixed into the oscillating field and amplified by the
atoms, also disturbing the continuity of the phase of the oscillating field. Note that
(n;), the average number of thermal photons in the cavity mode in question, is
much smaller than unity for optical frequencies at moderate temperature,
hw > kT, where k is the Boltzmann constant and T is the absolute temperature.
On the other hand, the coefficient N, /(Nay,), the incomplete inversion factor, is of
the order of unity or larger. This coefficient is sometimes called the spontaneous
emission factor. We see that the smaller the threshold population inversion as
compared to N,, the larger the laser linewidth. This is because the presence of the
lower-level atoms causes the number of upper-level atoms N, to increase to retain
the necessary gain. We also see that any detuning between the atomic and the
cavity resonances, appearing in the form of 3, increases the laser linewidth.

The famous Schawlow—Townes linewidth formula was given as [1]

4hay?

AwST = P

(4.62b)
We see that here the thermal noise is neglected, a complete inversion (N; = 0) is
assumed, zero detuning (6 = 0) is assumed, and also a large polarization decay
rate as compared to the cavity decay rate y >y, is assumed. Note that the
Schawlow-Townes linewidth Awgr applies for the linear gain regime.
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4.4
Quantum Nonlinear Gain Analysis

Now we take the saturation of the atomic inversion into account again in the
context of quantum-mechanical analysis. Here we assume a steady state of con-
stant amplitude and concentrate on the phase diffusion of the oscillating field. We
start with Equations 3.44 and 3.45, with the noise terms included, and obtain
Equation 4.41, but with ,, moved into the integral over ¢” in the form &,,(t"):

E<+)(Z, t) — Z |:|p2”;l|wvm Uc( )Uc(zm)

t ot
XJ e(*iwc*hxt*t’)J e O ) (2 6 (”)dt”dt]

0 0

Vm m
+ zZ[ P Us(2m) (4.63)
m
t t
X J 6(7&“5776)07”‘[ e(*i"m*"r'm)(f *) f‘ ( //)dt/ldt
0 0
h e .
T iy UC(Z)J el P ()
0

Going to homogeneously broadened and uniformly pumped atoms, where
Vi =V0, Pm="Pa» Ym =", Lmp=1T, and d% = ¢°, we require the time variation of
the field amplitude a(t) as in Equatlon 4.42:

a+ {ilw. +vo — 20) + 7y, + 7}a
B S 02— (i — ) i~ 0) 2.} |a
2hor, 2 ¢ ¢ (4.64)

= [y + {i(vo — ) + )] =i kT

We again discard the second time derivative of the slowly varying field ampli-
tude. For the moment we look for the “average” steady-state amplitude and
oscillation frequency, ignoring the noise terms and assuming constant (in time)
atomic inversions. What we then obtain is Equation 4.22 of the semiclassical
nonlinear gain analysis:

2
al V ]
|12)h|a) 3 Z om UL (zm) — {i(vo — w) +7Hi(w — ) + 9.} =0 (4.65)

Here o, is a classical quantity instead of an operator. Following the arguments
from Equations 4.22 to 4.38, we have the steady-state oscillation frequency, the
oscillation amplitude, and the atomic inversion as
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= Lji; 1 (4.66)
[
2 0
- N 1
B[ = | |2 ole 1 e

2hey m{l + (vo — 0)*/(y + %)2}

o _ M (vo— @)\ _ 2heryy (vo — )’
Os = 0y, = 75 1+ =51+ > (4.68)
k2N (V + yc) |pa‘ voN (V + 75)
where |E|” is given by Equation 4.35. We have set v = @, in the first fraction in

Equation 4.67, which is usually highly accurate.
We now return to Equation 4.64, with the noise terms being revived. The

coefficient before &, or the left-hand member of Equation 4.65, vanishes for this
steady state. Thus we have

{i(we +vo — 20) + 9, +7}a = Ty + {i(vo — @) + )¢}

— iz Kmf m
We ignore the first noise term, as in Equation 4.43. Now, since we are assuming a
stable amplitude, we decompose the field amplitude as a product of constant

amplitude and time-varying phase, where we assume both the amplitude and the
phase to be real:

(4.69)

a(t) = ae? (4.70)
Then we have

d oo _ il —0) + 3Ty —i% kil iy
ad)(t) - i(ws +vo — 2w) + 7, +y}a “7

In order to obtain the real phase, we add the Hermitian conjugate of the right-
hand member and divide by 2 to obtain

d = ,{i(vofw)er}l:ffiZmel:

- =— e 00 L H.C. 4.72
R4 Y P e s LA (4.72)

As in the previous section, we need the field correlation function for determi-
nation of the field spectrum and the laser linewidth. Because we have constant
amplitude, here we have

<aT E+ ARa()) = <a (t+ Aba(t))e it _ azeimAt<e—iq§(t+At)eiq‘)(t)> (4.73)

Now we assume that the small phase change can be expanded as
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<e—igb(t+At)eiq‘>(t)> _ <e"'A‘f’<‘)> — 11— (iA(1)) +%<{iA¢)(t)}2>
~ e—(1/2><{A¢(i)}2>

(4.74)

So if the last expression reduces to the form exp(—s|At|), s gives the half-width at
half-maximum (HWHM) of the laser line; or, { (A¢)* ) /|At] is the full width at half-
maximum (FWHM) (see Section 10.6 for the detail). Thus, what we want to cal-
culate now is the phase diffusion in a time At that is large compared to the delta-
correlated fluctuation times of the noise sources. For this purpose, we construct

Ap(t) = p(t+ At) — ¢ ()

:JHN _i{i(v(?—(x))+“/}Ff_i2mxmljme—iqb(t)+H.C, dar #73)
. 2{i(w¢ +vo — 20) + 7. +7}a
and
A {—i(vo—) 47} HE) +HE, i T () )
A 2\ _ J . ; f mom M Zeiel) L Hq.CL | dY
<{ o(1)} > < , 2{—i(wc+vo—2w)+y,+7}a !
(4.76)

e L H.C.

y me —i{i(vo —) +V}ff(f/) —i> KD (1)
2{i(we+vo—2m)+7,+7}a

dt,,>

In the first integral in Equation 4.76 we have interchanged the sequence of the
two mutually conjugate terms, so as to visualize the appearance in the double
integral of the normally ordered product such as r }(t’ )T (t"). Non-vanishing
anti-normally ordered products like I'r(# )F}(t” ) also appear from the product of
the Hermitian conjugate (H.C.) terms. The evaluation of the double integral goes
just as in Equations 4.48 and 4.49 using Equations 3.36, 3.49, and 4.50 for the
noise correlation functions. Equation 3.49 gives

<l*~m(t//)l%;(t///)> — <f12(t//)f21 (t///)> — G12,215(t” _ t///)

cun-mjira)-mln-ainll-n)
= %rp(l - o°)<%(1 + rr)> - %Fp(l + 6°)<%(1 - 6)> + 2v<%(1 - 0’)>

t

for all m. Thus we have (problem 4-6)

Ay 1
482 (y 497 + (vo + 0, — 20)*

({ag(1))
X {{(Vo — )" + 7" H2:(ne) + 2. ((ne) + 1)} (4.78)

+ Z Km|* (G112 + Giz.1)



4.4 Quantum Nonlinear Gain Analysis

Since by Equations 4.50 and 4.77 G112 + Gi221 = 2y, treating the summation
over m as in Equation 4.9, we have

LY 1
407 (7 +9,)" + (vo + 0 — 20)° (4.79)
< [{(r0 =)+ 12 (ne) 4+ 21e({ne) + 1)} + 29N

({ag(1))

We use Equation 4.66 for » and Equation 4.68 for k*N. Also, we apply Equation
4.61 for the stored energy W and the output power P:

P =2y,W = 2y,ho.a* (4.80)

Thus we have

2
<{A¢(t)} > _hoe 222148 ) L1N (481)
A Py + (=7 [ 2 2Noy, '
As stated below Equation 4.74, this gives the FWHM of the laser linewidth:
(14005 _2hog? (149

) =

N
n. 2 (4.82)
|At] P (p4+7.)" + (7 —9.)% {< g NJ

Here, N; — N; = No, = Noy, the steady-state population inversion. This is just half
the linewidth in Equation 4.62a for the laser in the linear gain regime. The reason
for the decreased linewidth is that, in the saturated region of the gain, the amplitude
fluctuation is suppressed due to the stabilizing effect by the nonlinear gain. There
remains only the phase diffusion, which still gives a finite linewidth. In the unsaturated
region, the amplitude fluctuation contributes the same amount to the linewidth.

The forms of noises (n;) versus N, /(N,; — Nj) in Equation 4.82 are the same as
in Equation 4.62a obtained for the linear gain analysis. In the case of Equation
4.62a, these forms appeared directly from the normally ordered correlation func-
tions in Equations 3.36 and 4.50. However, in the case of Equation 4.82, these
factors originally appeared in the forms of (n.) + } and N/(2Nay,), respectively, as
seen from Equation 4.81. These forms appeared because of the symmetrically
ordered correlation functions used for the evaluation of the real phase of the field.
In particular, the symmetric ordering appeared in Equation 4.76 because of the
Hermitian conjugate terms. So, in this case of nonlinear gain analysis the anti-
normally ordered correlation functions in Equations 3.36 and 4.77 were also taken
into account. It should be noted that different orderings of the noise operators lead
to the same form of the noise contributions.

In this chapter, we have obtained standard results for a laser, such as the
oscillation frequency, threshold conditions, output power, and laser linewidth,
assuming a completely lossless cavity and introducing a decay term for the laser
field. We call this laser theory the quasimode theory. In subsequent chapters we will
use many of the concepts introduced in this chapter, especially the concept of the
Langevin noise forces for the atomic polarization associated with the damping of
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the polarization oscillation. On the contrary, the concept of the Langevin noise
force associated with the cavity loss will be discarded in subsequent chapters,
wherein the cavity output coupling is rigorously treated on the basis of the mode
functions of the universe introduced in Chapter 1. We will call such a treatment
the continuous mode theory in contrast to the quasimode theory.

p Exercises

4.1 Integrate Equation 4.2.
4-1. We have

t
(%mm@:[AWWW“W%MW%W+AWWW%%mmm
0

4.2 Derive Equation 4.10b from Equation 4.10a.
4-2. We have

— {k*No — (ivo + 7)(i>c +7.)}a =0

4.3 Derive Equation 4.25 from Equation 4.2.

4-3, We have
(d/dt) (Bl b2) (£) = —ivm (bl b)) () — 7 (Bl B2 (8) + i85, 6(t) 0
a(t) =ae™, bl bua(t) = bl huoe ™"

{(d/dt)(b! 1 byy) — iwb! by }e ™ = (—ivyy — pu)b!  bae @ + ikt ae e,
(d/dt) = 0 — {—iw + (iV + V) }b} 1z = K80

For homogeneous atoms v, = vy, y,, =y and we have Equation 4.25.

4.4 Integrate Equation 4.39b.
4-4. We have
t

(bl 1 ba) (1) = J e D L a(Y) g + Do () bt
0

+ e (B by (0)

4.5 Derive the last line in Equation 4.56 from the second.
4-5. Noting that Re s <0 we have
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J 67(507Lwo)1'7um:d_[ + J e(so+tw0)rftw‘rd,c
-0

0
B 1-0 . 0—1
—{i(w —wo) + 50} —{i(w —wo) — 55}
B 1 . -1
" —Resy—i(w —wp +Imsy)  Resy — i(® — wy + Imsy)
—2Re s,

(o — » — Imsp)* + (Re'sp)?

4.6 Derive Equation 4.78 from Equation 4.76.
4-6. We have

ar

¢) L H.C.

t+At i(vo— Iy +i ki TH ()
<{A¢( < { 0 +/} ()+mem()l

2{—i( wc+v072w) vet+7}a

+H.C.

dt// >

.

t+At {l Vo— y}rf(t”)—lz me’r ( ) —igb(t”)
2i(wc+vo—20)+y.+7}a

Jt““ ([ el ot
422{( wc—i-vo—zw) +(+7)°}

{ LT )> () —ig(¥ )+_<]jf(g)f}(t")>e—i¢ﬁﬂ+4¢0”)}

+
dz{(wc+vo—2w) 0t}

X3l P { (FT, ()T ()47 (B (9T () 00060 }}
m

The correlation functions of the Langevin forces are delta-correlated as in
Equations 3.36 and 3.37 as well as in Equations 4.50 and 4.77. Thus we arrive at
Equation 4.78.
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5
A One-Dimensional Laser with Output Coupling: Derivation
of the Laser Equation of Motion

In this chapter, we derive the general form of the laser equation, taking into
account the coherent interaction between the atoms and the oscillating laser field,
and the incoherent processes, including pumping and damping of the atoms as
well as the decay of the atomic dipole oscillation. These incoherent processes are
associated with respective Langevin noise sources. The cavity loss, on the other
hand, is treated as a natural process of transmission loss without special Langevin
forces artificially introduced. Thus the decay of the laser field inside the cavity is
caused by the transmission of optical energy to the outside. However, this finite
transmission at the coupling surface allows the ambient thermal field to penetrate
into the laser cavity, which constitutes the noise source required by the fluctuation—
dissipation theorem. The mathematical tool to treat the above natural cavity decay
is the continuous multimode description of the field, that is, the modes of the
“universe,” introduced in Section 1.3. The natural, decaying cavity modes cannot
be used for direct quantization because of their non-orthogonality. (The use of such
natural modes for a quantum-mechanical description of the field inside and
outside the cavity has been tried by Dutra and Nienhuis [1] but without going into
the analysis of laser operation.) In this chapter, we derive the laser equation of
motion in a one-dimensional, one-sided optical cavity, taking into account the
output coupling at the output end of the cavity. This equation gives the basis of
the continuous mode theory of the laser. The equation will be solved in the following
five chapters, where we will find a new correction factor for the laser linewidth both
below and above threshold.

5.1
The Field

In Sections 5.1 to 5.3 we consider the coherent interaction between the atoms and
the field in an optical cavity having output coupling. As the model of the one-
dimensional laser cavity, we use the one-sided cavity model discussed in Section
1.3.1 (see Figure 1.3). The jth mode function of the “universe” is given by
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Ui(2) = Nuy(2) (5.1a)
sinkij(z + d), —d<z<0
R
(2) k—ljcos kijd sin kojz + sin kjd cos kojz, 0<z<L (5.1b)
of

The modes of the universe have the orthonormality and completeness properties

J;ds(z) Ui(2) Ui(2)dz = &, (5.2)

0 | (5.3)

=46(Z —2)
Equation 5.3 holds for —d<z<L, —d<z' <L, except z = 2’ = 0. The density of
modes is
L

TTCo

The normalization constant is

2
N, = 5.5
J \/alL(l — K sin® kyd) (5:3)

The factor in the denominator in the normalization constant has two kinds of
expansions (see Equation 1.70a):

with

m—%{;ﬁ(—r)”coswkud} (5.7)
where
r=(co—c1)/(co+c1) (5.8)
and
! S con/d

1-— I{Sil’l2 kljd Mm=—o0 “/g + ((UJ - wcm)z

S )
- 2d |y, + (@) — 0cm) Y, — i(@j — Om)

m=—o0

(5.9)




5.2 The Atoms

The field is assumed to be oriented in the x-direction and the vector potential is
expanded in terms of the mode functions as

2 = O U2) (5.10)
J

and the electric field operator as

= =D BU(2) = D ilho;/2)(a; — &) Uj(2) (5.11)
J J

where f’J =(d/ dt)Q. The positive and negative frequency parts of the electric field
are

EM)(z,1) = Z i(hew;/2)"6;U;(2) (5.12)
J
Zz hay/2)"%a] Uj(2) (5.13)
J

The annihilation and creation operators obey the commutation relations
[al, } =i, [a,, ] —0, [a},aﬂ -0 (5.14)

The field Hamiltonian is given by

. . o1
H= Z H = Zhwj (aja, + E) (5.15)
J J

5.2
The Atoms

For the model of laser atoms, we use the same model as was described in
Section 3.2. We assume two-level atoms having upper laser level 2 and lower
laser level 1. We describe the atoms in the second quantized form [2, 3]. The
Hamiltonian of the atoms, evaluated with respect to the lower atomic levels, is
written as

Hy =" hoobl,ybun (5.16)

Here bJr and b,,; are the creation and anmhllatlon operators, respectively, for the
ith level of the mth atom. The product b b m2 is the number operator for the level 2
of the mth atom. The angular frequency @y, is the transition frequency of the mth
atom between the two levels. The product b bmz is the flipping operator from
level 2 to level 1 associated with the emission of a photon. The product b bml is
the flipping operator for the reverse process. These two flipping operators are
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mutually Hermitian adjoints, and their classical counterparts are the positive
and negative frequency parts, respectively, of the oscillating dipole composed
of the two electronic states. The atomic operators obey the anticommutation
relations

BmiBL/if + Binfifémi = 5mm’5ii’7 Bmibm'i’ + Bm’i’Bmi = 07
PO I (5.17)
Bl bl + bl bl =0

The general rule for the reduction of the product of four operators is
BLii’Wy'Binki’ml = Binii)mléjk (5.18)

Note that any operator having either two successive annihilation or two successive
creation operators for the same atom and for the same state vanish by Equation
5.17.

5.3
The Atom-Field Interaction

The interaction between the field modes and the atoms is formally the same as in
Section 3.3 for the quasimode laser. The coherent part of the interaction is
described by the interaction Hamiltonian under the rotating-wave approximation
and the electric dipole approximation

Hint = Z h(ij&;i);rnlez -+ ij&jbjnzémﬂ (519)
jm

where the atom—field coupling coefficient, using Equation 3.22a, is
Kjm = 1 (1/210) > Uj(2)Pm (5.20)

Here p,, = exmz1 is the electric dipole matrix element of the mth atom and e is the
electron charge.
Under the total Hamiltonian

Ht:Hf+Ha+Hint

=3 o (i +3) +S bl b + S (sl b+ 5l ) 7Y
J m jm

the equations of motion for the mode amplitude a;, the dipole amplitude Biy,liimz,

and the atomic inversion &M:B;Zi;mri);li)m are derived by the Heisenberg
equation as (problem 5-1)

350 = i@y (1) ~ 15 bl ba) 9 (5.22)



5.4 Langevin Forces for the Atoms

(/) (b} bw2) () = =i (B b2 (8) 5D 163,85(8)m (1) (5.23)
J
(d/dt)3n(8) = 207y {1ind] (1) (Bluabn) (4) — 15,850 (Bluabm) (0} (5.24)

These three equations are the basis for the analysis of coherent interaction of
the field and the atoms. For the derivation of these equations, see Section 3.4. The
major difference from Section 3.4 is the appearance of the multitude of field
operators representing the continuous spectrum of the “universal” modes of the
field associated with the optical cavity having output coupling. We will call this
formalism the continuous mode theory.

5.4
Langevin Forces for the Atoms

As was discussed in Section 3.5.2, the laser atoms are in reality surrounded by
their respective environment. One factor is the pumping mechanism intentionally
added to create the population inversion that is necessary for optical field ampli-
fication. The pumping mechanism usually contains unavoidable pumping to the
lower laser level, not only to the upper level. Another factor is the environment:
collisions with other atoms, phonons, and so on cause relaxation of the laser level
populations. Especially, vacuum fluctuation causes the upper level population to
decrease through spontaneous emission. All these mechanisms yield resultant
pumping rates to upper and lower laser levels and a steady-state population
inversion in the absence of the laser field. These mechanisms also disturb the
atomic polarization and yield the decay rate of the atomic dipole oscillation. We
describe these effects in terms of the pumping and relaxation terms for the atomic
inversion, and in terms of the decay term for the atomic polarization. These
incoherent random processes inevitably accompany random forces for both the
atomic inversion and the atomic polarization, as was discussed in Section 3.5.2.
The field decay through the cavity loss, as was discussed in Section 3.5.1, does not
appear here because we are not assuming any phenomenological decay of the field
energy stored in the cavity. In this continuous mode theory, the transmission
at the cavity mirror is automatically incorporated in the “universal” mode func-
tions, which appear in the electric field operators in Equations 5.11-5.13. Thus
we have

%@(t) = —ijdi(1) = i) 1jm(bjyb2) (1) (5.25)

(@/dt) (bl buz) (£) = — iV (bl b2) (£) — 7 (b1 b2 ) (2)

1Y K5, 850 (t) + Dn(?) (5.26)
]
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(d/d8)5m(t) = ~Tp{Gm(H) = 00} + 20> {1imit] (1) (Bl b2 ()
j (5.27)

— 13,5 (8) (Bl b1 ) ()} + T (8)

These are the basic equations for the quantum-mechanical analysis of laser
operation in a cavity having output coupling. As stated above, we have now no decay
terms for the field modes, but have a multitude of field modes. The collection
of different field mode amplitudes eventually forms the total field amplitude of
interest. In contrast to the analysis of the quasimode laser in Chapter 4, where
we had only one field mode, the collection of field mode amplitudes that composes
the total field is of paramount importance, and the single mode amplitude as in
Equation 5.25 is important only as a step towards the calculation of the total field.

5.5
Laser Equation of Motion for a Laser with Output Coupling

In this book, we restrict ourselves to the steady-state operation of a laser with well-
stabilized amplitude, and we ignore the fluctuation of the atomic inversion. So, the
Langevin force term lA"m” will make no contribution within our treatment. On the
other hand, the dipolar noise term I';,, which is the cause of the quantum noise, will
be a major factor in determining the laser linewidth. The thermal noise will be
derived from the initial field, which is persistent and does not decay because we have
no decay term here, unlike in the quasimode laser analysis in Section 3.5.1. The
thermal noise is small quantitatively, but its appearance is an important theoretical
result.

As for the atomic dipoles, their collective motion is important, as it constitutes
the gain for the field amplitude. The atomic dipole is, in turn, driven by the atomic
inversion through interaction with the collective field amplitude.

In the quasimode laser analysis, it was assumed only that the atoms are dis-
tributed uniformly in the z-direction with a given density. Except for the neglect of
the spatial holes in the nonlinear gain analysis, no explicit discussion of the local
effects of the atoms was made. However, in this continuous mode analysis, the
local effects of the atomic dipoles become important, because the electric field
distribution will not be a mere sinusoidal function but will have a slowly varying
spatial envelope function in addition to the local sinusoidal variation. Through
this spatial variation of the field, the contributions of the atomic dipoles vary spa-
tially. It will be assumed that enough atoms exist so that, for every local envelope
field, there exist a sufficient number of atoms that constitute the local amplifying
medium.

In order to convert the single mode equation (Equation 5.25) into that of the total
field amplitude expressed in terms of the positive frequency part of the electric
field, we use Equation 5.12. For this purpose, we first integrate Equations 5.25 and
5.26 to obtain
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t
&(t) = a;(0)e " — ie—iwﬂj ety ij(b;lbmz) (t)dt (5.28)

0

() 9= () 010 i

it
% J e(i\‘m+",’m)t/ Z {K?m&i(t,) }&m(t,) dt, (5 29)
0 .

+ g (i)t J et T () dY

The first term in Equation 5.28 is persistent because we are not assuming
the presence of any decaying term for the field unlike in Equation 4.1 for the
quasimode laser. The first term in Equation 5.29 decays over a long time and is
unimportant in the steady state. We will ignore this term as we did in the
quasimode laser analysis. Multiplying both sides of Equation 5.28 by
i(hwj/Z)l/2 Uj(z) and summing over j we have

E<+)(Z7 t) — lz /@L]j(z)&j(o)efiwjt
J
. . t A
+> 4/ %Uj(z)e’mﬂ J €y iim (bi11 bmz> (t)dt
J m

0

(5.30)

Before we substitute Equation 5.29 into Equation 5.30 we replace the summa-
tion over i in Equation 5.29 by the total field amplitude. We have, using Equation
5.20,

S {5 (!)} = 37 (—)vm(1/250) 2 UGz i(4)
’ ’ (5.31)
= =3 (Bhvn /) i3/ 2) " Uz )¢

Since the spectral width of the effective optical field in the atom-field interaction
in a laser is much smaller than the central frequency w of the laser oscillation, the
wj in the first round brackets in the second line can safely be replaced by w. Then
we have by Equation 5.12

SNy _ P*Vm (+) /
Z{K,'mal(t)} = < ho )E (zm, t) (5.32)

Note that, if we had used the coupling coefficient in Equation 3.22b instead of
that in Equation 3.22a, the factor p},v,/hw would have been replaced by p;, /h.
Thus using Equation 5.32 in Equation 5.29, substituting the result into Equation
5.30, and using Equation 5.20 again, we have (problem 5-2)
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E(+)(Z7 t) = ﬁt(za t) + IA: (27 t)

‘pm| Vim J —iw;(t—t'
§ : 2 :U ij(t )
Zhw J 1

(5.33a)

tl
N J e*(i"m+ym)<t,7t”>ﬁ‘(+) (Zm7 t//)&m(tj/)dt//dt/:|
0

where

Fy(z,t) = iZ \/@Uj(z)aj(owwﬂ (5.33b)
J

. t t
Fiz) =Y fp 2| U@ Uan)e | g ")dt”dt} (533
m J

Equation 5.33a is the basic equation for the total (collective) electric field to be
solved for analysis of the laser having output coupling.

The meaning of the terms in Equation 5.33a may be given as follows. The first
term, or Equation 5.33b, expressing the thermal noise, is the initial electric field
(see Equation 5.12). The jth mode excites the jth mode function. The second term,
or Equation 5.33c, is the quantum noise term, made up of contributions from each
atom. The summand in the square brackets in Equation 5.33c can be rewritten in
the form proportional to

j 4> Y(2, 2, ) (2)e" " = nZU Uiz (zm)e ™ (5.34)
0

where

t
jzuj (zm) = J d eiwjt,jm(t,)
’ (5.35)
jm(t/) _ J 67<ivmﬁ"m>(t,7f,)fm(t//)df/
0
Here we have used Equation 2.53a for the response function and assumed the
absence of any pole in J,(z,,). Thus, regarding the second integral in Equation 5.33c
or in Equation 5.35 as an exciting current, we can express the field as a superposition
of frequency components excited by each frequency component of the current. The
third term in Equation 5.33a represents the field induced by stimulated emission
and absorption events that is similarly excited by the effective current

¢
J e—(ivm+~,:m)(t’—t”)E(+) (th tl/)a_m(tu)dt//
0

As stated earlier, the time variation of the atomic inversion will not be con-
sidered in this book. In the subsequent linear gain analysis, we assume a constant
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inversion value independent of the field amplitude. In saturated, nonlinear gain
analysis, on the other hand, we use an averaged steady-state value for the atomic
inversion, the averaging being carried out over the fluctuating forces: that is, we
use the steady-state value obtained with the fluctuating noise forces ignored. The
inversion will be constant in time but will be dependent on location.

Equation 5.33a is an integral equation with respect to the time variable. This
equation also contains integration over z,,, coming from the summation over the
atomic index m, as we have assumed a sufficiently dense and uniform distribution
of the atoms in the z-direction. This equation also includes a summation over the
field modes of a product of two mode functions and one complex, exponential
function. Because of the form of the normalization factor for the mode function,
which contains the mode index in a form given by Equation 5.5, some idea is
required in evaluating the summation. One needs to treat this normalization
factor accurately because the information concerning the structure of the optical
cavity is contained in this factor.

The Langevin noise forces appear in the discussion of the laser linewidth, and
their correlation functions will be needed. For the thermal noise described by
Equation 5.33b, the necessary correlation functions are

(af(0)a(0)) = (w)

. (5.36)
(a,(0)a(0)) = (m) +1
where
1
(mj) = kT _ 1 (5.37)

is the Planck distribution. Here k is the Boltzmann constant and T is the absolute
temperature. The angle bracket signifies the ensemble average of the quantum-
mechanical expectation value over the thermal field of temperature T. For the
quantum noise, we will need the correlation function of the Langevin noise force
as in Equations 4.50 and 4.77:

()T m(t")) = G b (¢ ")
e %Fp(l +GO)<%(1 - 0)> _%rp(l —a”) <%(1 + a)> (5.38)

+2y <%(1 + G)>

<l;M(tl/)fIn(tm)> =G nd(t" —t")

G12121 = %Fp(l *O’O)<%(1 +(7)> 7%1—‘1;(1 +0'0)<%(1 7J)> (539)

—|—2y<%(1—0)>

Here the angle bracket signifies ensemble average of the quantum-mechanical
expectation value over the atomic reservoirs. If the pumping and damping or the
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broadening of the atoms are non-uniform, the parameters in Equations 5.38 and
5.39 should have suffices, say m, indicating the individual atoms.

p Exercises

5.1 Derive the equations for the coherent interaction in Equations 5.22-5.24 from
the total Hamiltonian in Equation 5.21.
5-1. See Problems 3, 4, and 5 of Chapter 3.

5.2 Derive Equations 5.33a-5.33c
5-2. Using Equation 5.32 in Equation 5.29 and dropping the initial value term
we have

t

(Blabna) () = (vam> gttt [ e B )6 (0

hw 0
t

+ ¢~ m bt J et T () dt!
0

Substituting this equation and Equation 5.20 into Equation 5.30 we have

ED(2,t) = Fy(z,1)

h(D 1/2
+Z [hw; —ij gl Zwm(zh ) Uj(zm)pPm

< & —(ivm Ayt J e(l‘m+)m t]—‘ (//)dt at”

hw B v 1 \?
3 o[ e S () Ulenien

* v
y (pmvm)e_(,-vmﬂm)yj et 1) B (2,0 ) () dE Y

hw 0

Rearranging the sequences of the sums and the integrals yields Equations
5.33a-5.33c.
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6
A One-Dimensional Laser with Output Coupling:
Contour Integral Method

The main problem in solving the basic equation (Equation 5.33a) is the treatment of
the summation over the continuous mode index j, which also appears in the noise
terms in Equations 5.33b and 5.33c. In particular, the summand includes the mode
function, which has a j-dependent quantity in its denominator. There are two routes
to get around this difficulty, which are based on the expansions of the squared
normalization constant described in Equations 5.7 and 5.9: one is a Fourier series
expansion, and the other is a partial fraction expansion used in the theory of complex
variables. The former gives exact equations, with terms that are mathematically
tractable, but infinite in number. On the other hand, the latter gives poles of the
normalization constants, suggesting use of a contour integral, which is also exact as
long as we take all the poles into account. However, since each pole represents a cavity
resonant mode, it is sometimes appropriate to treat only one pole, rather than all the
poles. This method of taking into account only one pole is thus an approximation.

In this chapter we try the contour integral method based on the expansion in
Equation 5.9. We take into account only one cavity mode and see how far we can go by
this method, which, as stated above, involves an approximation.

6.1
Contour Integral Method: Semiclassical Linear Gain Analysis

Here we solve Equation 5.33a with the Langevin noise terms discarded and the
atomic inversion replaced by a constant gy,:

E(+) 1) = ‘pm' V omJ U 71{0 (t—t)
(27 ) Zm: Zha) Z !

(6.1)

,
« J gt =) 50 t”)dt”dt’]

0

We concentrate on the self-consistent equation for inside the cavity. Therefore,
we have —d < z < 0and —d < z,, < 0. We first evaluate the sum over the modes
of the “universe” j:
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e—iwj(t—t,

2 JOO sin kljz sin kljzm )da) (6 2)
g7 U7 )j )

Ui(2) Ui(z,,) e~ i) = 2 w;
e - s

where p(wj)=L/cn as given in Equation 5.4. Using the expansion in
Equation 5.9 and taking only one pole at w;=Q,=w, —iy., where w, is one
of the w.y,, we have

1 JOO sinkij(z + d) sin kyj(z, + d)

—iw;(t—t'
JZ IJJ(Z)[JJ(ZM) (4 l(JJ(t ) = 81%

0 Ve — o — o) (6.3)
> 67iwj(t7t/)dwj

If we expand the numerator in exponential functions, we will have exponents
with —iw;[(t —t') £ {(z+ d) £ (zm + d)}/c1]. For simplicity, we assume that we
are interested in phenomena that change slowly in a time of order |(z +d)=+
(zm + d)|/c1 < 2d/cy, that is, we concentrate on the changes on a time scale that
is greater than the round-trip time in the cavity. Since this assumption requires
an optical spectrum that is narrower than ¢;/(2d), this is consistent with the
choice of only one cavity mode, which in turn requires an optical spectrum that
is narrower than the cavity mode spacing Aw, = ¢;7/d. Then, we may decide on
the contour of integration by the fact that t > ¢. In this case, the contour of
integration may be taken in the lower half-plane of the variable w; wherein a
pole exists at w; =Q; = w. —iy.. See Figure 6.1 for the arrangement of the
poles and the contour of integration. Provided Aw.(t—t) > 1 and Aw; > v,
the contour simulates an infinitely large semicircle in the lower half-plane. Then
the result is

(it 2 . . it
Z Uj(z) Ui(zm) e 4) :81—dsm(ch/cl)sm(chm/cl)e (1) (6.4)
J

For later convenience, we define the “normalized” cavity resonant mode, which

is proportional to the spatial part of the outgoing mode in Equation 1.21b:

U (z) = Slidsin%fd) (6.5)

Therefore, we have

> U@ Uzn) e ) = U (2) U (z)e ) (6.6)
J

Then Equation 6.1 becomes

2(+) \Pm|2"§¢0’m ' —i(we—ip,) (1—)
EM)(z,0) = 3 0 |5 | We(@) U e(zm)e
@ 0

Y
> J e*(ivarym)(t’ft”) E(+) (Zym lﬂ)dt”dtj:|
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(@) (b)
Imow, Wem+Y Imuw;
l Iy
/ »
€ > Rew,»
. 4. .
We(m-1)-1Y Wem-ly We(m+n)-lY

Figure 6.1 (a) Arrangement of poles given by Equation 5.9.
(b) Contour of integration for a single pole.

This form suggests that we put

EM)(z,1) = i@ U (2)a(t) (6.8)

For simplicity, we go to the case of homogeneously broadened atoms and
homogeneous pumping: vy, = vo, Pm = Pa, ¥ =7, 0m = 0. Then we have

t t
a(t) = kZCSLNaJ e—i<wv—ivc><t-t’>J 05—\ (6.9)
0 0
where
|pa|*viNo (© , PARYIG
ki No = % y U P (Z) A2y ~ ﬁ (6.10)

In the last approximate equality, in the integration of #,%(z,,), we have dis-
carded (c1/4)sin(2Q.d/c1)/Qc ~ A;/(87) as compared to d/2, assuming that the
cavity length d is much larger than /., the intra-cavity resonant wavelength of
the cavity mode. Because the parameter ki, in Equation 6.10 is nearly equal to
the parameter k* in Equation 4.9, Equation 6.9 is essentially the same as Equ-
ation 4.8 for the semiclassical linear gain analysis for the quasimode laser.
Thus Equations 4.10 to 4.14 to obtain the threshold oscillation frequency and the
threshold atomic inversion for the quasimode laser apply also in this case of
semiclassical linear gain analysis of a laser with output coupling. We have

YR (6.11)
Ve
2heqy,
o = e (1 4 52) (6.12)
|pal “voN

The mode function excited here is a complex function in Equation 6.5 in the
form of the spatial part of the cavity resonant mode given in Equation 1.21b,
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94 | 6 A One-Dimensional Laser with Output Coupling: Contour Integral Method

compared to the real function given by Equation 3.1 in the quasimode analy-
sis. This new result may be regarded as an advantage over the quasimode analysis.
Thus the contour integral method is successful in this case.

6.2
Contour Integral Method: Semiclassical Nonlinear Gain Analysis

In this case, Equation 6.7 can be used under the condition that the atomic
inversion is made a function of the location of the atom, the location determining
the local field amplitude:

2.2 t
ED(z,t) = Z {W JO azlc(z)%c(Zm)e—l(wc—r,':)(t—t/)

m

(6.13)

"
> J e~ ((m 1) (F—") B(+) (Zm7 tﬂ)dt//dtj:|
0

If we go to the case of homogeneously broadened atoms v,, = v, pm = pa,
Ym = 7, this equation becomes

2.2 t
By =3 {p“' 0nlzn) [ 2 (e 0
Jo

m

(6.14)

t,
» J g o) EH) (7, t”)dt”dt’]
0

If we assume as in Equation 6.8 that

EO)(z,1) = i@ U (2)a(t) (6.15)

we will formally have

%

t
a(t) = |:k2CSNNGCSNJ g~ =) (=1) J
0 0

ei<vmi~»m><t’f”>a<f/)dt~dt/} (6.16)

where

2
|pal VoN
2hw

0
k2 Naocsy = J da(zm)%z(zm)dzm

(6.17)
N |Pa‘2"(2)N

0 0

g
= — U (2, dz
2hw Jd1+|E<+)(Zm)/ES‘2 m)GZm

[

Equation 4.29 has been used in the second line. Here we are regarding the field
amplitude as a classical value, and the saturation parameter is given by Equation

4.35. We have already assumed in Equation 6.15 that E(V)(z) o %,(z). However,
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there is no guarantee that the field distribution is still in the form of %.(z) when
the inversion distribution is in the form of o(z,) = O'O/ {1 + }E(” (zm)/ ES‘Z}.

Since %.(z) is proportional to the field mode amplitude of an empty cavity, it is
highly unlikely that the field distribution remains in the same form when there
exists non-uniform gain. Thus the assumption made in Equation 6.15 is invalid.
This point will be treated in Chapters 8 and 10, where the field distribution that is
consistent with the saturated inversion distribution will be rigorously considered.
Thus what we can get here is only the threshold condition, which is obtained by
setting E(*)(z,,) = 0, and going back to Equations 6.9 and 6.10, which will only
give the results obtained in the previous section on semiclassical linear gain
analysis. Another thing we can do is to forget about the field distribution by setting
U (z) = constant and assuming a uniform field distribution. But this is just what
was done in the quasimode analysis. Therefore, we cannot go further for new
results. Thus, the contour integral method is a failure in the case of the saturated,
nonlinear gain analysis.

6.3
Contour Integral Method: Quantum Linear Gain Analysis

We consider Equations 5.33a-5.33c with the assumption of a constant atomic
inversion. Thus we consider

o |*V2,0m
2hw

ED(z,t) = Fi(z,t) + Fo(z.t) +

(6.18)

t v
% J Z Uj(z)Uj(zm)e’"’)J("")J ¢ Omtm) =BG (7 ) d" dY
0 0
J
The last term can be modified by use of the contour integral just as in Section
6.1 in the form of Equation 6.7. The quantum noise term Fj(z,t) is treated in just
the same way, since also in this term we can set (see Equation 6.6)

Z Uj(2) Uj(zm) e = U (2)U (2 )e T (6.19)
J

t

j:q (Z, t) = Z lprgvm U (2) U (Zm) JO el—iwe=ve) (=)

(6.20)

"
% J 8(i\7m+7m)(t’l”)f—\(t//)dt//dt/]
0

For the thermal noise term we remember Equation 2.63, which is applicable to
the thermal noise described by Equation 2.35a, which is the same as F;(z,t) in
Equation 5.33b:
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%EW(Z, 1) = —(y, + i) B (2, 1) + f (2, 1) (6.21)

with Equation 2.70b

(@0t = 208 (2, 2956 1) (623)
Thus
(FI@ ) (2:8)) = yehor(n, ) U2 )(2)5(t ~ ¥) (6.24)

The F,(z,t) in Equation 5.33b can be expressed as

t
Fy(z,t) = Fy(z,0)e”Octiot 4 J e~ Ottt F (5 ) dy (6.25)

0
assuming the same z-dependences for both F,(z,t) and f (z,t). The first term on
the right-hand side can be ignored for the steady-state analysis. Substituting
Equation 6.20 and the second term of Equation 6.25 into Equation 6.18 we obtain

t

2.2
ED(z,t)= [Pm [V Om U(2)U (2 J ¢ H@e=ine)(t=¥)
(2= P ) |

t ,
X J ¢t =V B (7 ¢\ dt dY +Z@%C(z)%(zm)
0 m (6.26)

t ¥
XJ e<*iwr"fc><t*">J e~ Ot )y dy
0 0

t
0

We assume the spatial dependence of the field and the thermal noise in the

forms
EM)(z,1) = i@ U (2)a(t) (6.27)
HEE ﬁ U (2)3(1) (6.28)
with
(&' (gt)) = 27.(na )0t~ ¥) (6.29)

Equation 6.26 is then almost equivalent to Equation 4.41 for the quasimode
quantum linear gain analysis provided that the mode function U(z) is replaced
by %.(z), except for the thermal noise, and provided that the Langevin force
ff(t) is replaced by g(t). Note that the correlation function of g(t) is the same as
that for I';(t) described in Equation 3.36. Going to homogeneously broadened
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atoms and homogeneous pumping vy, = Vo, Pm = Pa> Ym = V> Om = 0, We mul-

tiply both sides of Equation 6.26 by #."(z), integrate with respect to z, and then
divide both sides by

J_d U (2)Ue(2) dz = (1/e1)[(1 - r*) /{2rIn(1/r)}]
The factor g(#') will then be multiplied by

0 0
J UL (2) Uc(2) dz/J U (2)Ue(2) dz = 24/7/(1 + 1) = h(r)
—d

—d

We obtain

t t
Z|Pa| Vo %z )J e—i(wc—iyc)(t—t’)J e—(ivo+y)(t’—t”)&(t//)dt//dt/
2hw 0

t
+ Z PaVo (—iwe—y,)(t=t)

(6.30)
XJ eI F (1) d
0

t
+h(r)[ ¢ —(pet+ioe) (t—t) g( )d

0

We go to the slowly varying amplitudes by writing a(t) = a(t)e ™, g(t) =
g(t)e ™, and T, (t) = T, (t)e ™. Then differentiating twice with respect to time
we have

a+ {ilw. +vo — 20) + 7, + y}a
— [kegiNo = {i(vo — ®) + y}Hi(we — ©) +7.}]a (6.31)
=h(n)[g+ {i(vo — @) + )8} =D kmclm

where

|Pa| VONJ |pa| VON‘7

kCQLNU = k¢ No = 2hwe

J U (2 Az =~ (6.32)
d

0]

and

1
Kmc = l”Zh PavoZl(Zm) (6.33)

The square of k¢ has the property that
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2.2 0
veN
§:|ch\2:7|1’“| 0 J U (z) Pz
—d

glioctre) Emtd) /e _ g—(ioctye) (zntd)/c |2

2 0
_ |pal"viN 2 J ‘ iz, (6.34)
2her &1d)_y 2i
nPRNA-P)/R0 L, B
2hwe;  In(1/r) L™y

where we note that y, = (¢;/2d)In(1/r) (see Equation 1.18). Here we have defined

aql—1r?
B. = 24 2 (6.35)
Because, as stated below Equation 6.10, the factor in Equation 6.32 is numeri-
cally the same as k*No in the quantum linear gain analysis of the quasimode laser
model in Equation 4.9, we are dealing with almost the same equation as in
Equation 4.42 despite the appearance of the resonant, outgoing mode function
. (z) instead of the perfect cavity mode function U,(z). Thus, the resulting time
dependence of the amplitude a(t) is the same as Equation 4.45 with ff(t) replaced
by h(r)g(t) and x,, replaced by Kpc:

1
(o +vo—20) 47y, +7

t
XJ e(soim)(tt’){{i(vo ) +y}h(r) —LZchF }

a(t) =a(0)el» ) +
(6.36)

0

Here the decay constant sy is the same as that in Equation 4.44 with the k?
replaced by k2 ¢or and is numerically the same as that in Equation 4.44:

_ kZCQLN —{i(vo — ©) + yHi(w: — ») + 7.}

Sy = 6.37
0 (wE+V0_2w) + Pyt ( )
We have the threshold conditions
YW¢ + YcVo
wy, = 12T VeVo 6.38
‘ Y+ (6.38)
2
e (vo — @) 2hweryy, 2
o = 1+ ~ (140%) (6.39)
kZCQLN{ (7 +7.)° } |pal* V3N

Using the properties of the Langevin forces described in Equations 4.50 and
6.29, we have the correlation function for the field amplitude for large ¢ as
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2{(\)0 - (00)2 +“/2}VC”L2(T’) <n6> +k%‘QLN(B,;/“/,;)V(1 +O_)
(wc + Vo — zwo)z + (Vc + y)z

(sg+iwo)T 6.40
€ 2|Resp| ? >0 ( )

(al(t + 1)a(t)) =

X
ef(sofi(ou)r

TResr 0 T<0

where Equation 6.34 has been used. Here ®, is the center frequency defined in
Equation 4.52. We have the laser linewidth (FWHM)

20y + 7). (1 4 6%) — k2 No
Ao = 2[Resy| = (0 + 7)) le( ) — k&g No] (6.41)

(V + VC)Z + 52()) - Vc)z

The linewidth is numerically the same as that in Equation 4.53. However, the
quantum noise part of the correlation function differs by the factor f5,/y, from that
in Equation 4.52. Also, the thermal noise part differs by h?(r).

A strange difference from the quasimode laser model arises when we try to
express the linewidth in terms of the power output P. The difference originates
from the field distribution %.(z) versus U,(z). In the quasimode model the stored
energy was calculated in Equation 4.59 as

W= de é1 UC(Z)|2(hwc/2){<d(t)dT(t)> + <dT (t)d(t)>}dz
2d

= o /2 (a0 () + (3l a0 2y (6.42)
~ o { @ 0a0) +3}
Here the mode function is %, (z). Thus we have
W= [ a2 {(a0a0) + al 0a) iz
— sy (hoo/2){ (a(0a' () + (8} (Da(®)} %;% (6.43)

_ hwc{@(t)a(t» +%}[yi

Assuming that 2y, is the correct damping factor also in this case, and discarding
the zero-point energy (3), we have

Be

P =2y W =2y ho (&' (t)a(t)) .

(6.44)

Using Equation 6.40 with = 0 we have
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Aw = 2|Re |
 29.hw, 2777(1 4 %)W (r) (ne) + Kz N(Be/7.)7(1+ 0) Be
P =71+ (e +7)° e (6.45)

4hewy? 2(1 + &2 N
= e yz( +2 ) z{hz(”)<”c>+—2 &}&
P+ 40 (r—70) Noy y. ) 7e

where use has been made of Equation 6.39 in the second line.

Thus, in this form of the linewidth, we have, as compared to the formula
Equation 4.62a for the quasimode model, a correction factor (f./y.)* for the
quantum noise. The correction factor is h2(r)(B,/7.) = 2{(1 — r)/(1 + 1)}/ In(1/r)
for the thermal noise. The ratio 8./y. = {(1 — r?)/(2r)}/In(1/r) is always larger
than unity and is large especially when the reflectivity r of the coupling surface is
small. Note that the correction factor originates essentially from the field dis-
tribution %.(z), which is non-uniform along the z-axis. In Chapters 9 and 10, we
will show that the correction factor (f,/y,)” appears for both the thermal and the
quantum noise. The reason why the thermal noise term here has a different
correction factor seems to be the absence of amplification associated with spatial
propagation for the thermal noise in this contour integral method. In Chapter 9 it
will be shown that both the spatial field distribution and the amplification with
propagation contribute to the factor (f./7,)%.

6.4
Contour Integral Method: Quantum Nonlinear Gain Analysis

In this case, Equation 6.26 can be used under the condition that the atomic
inversion is a function of the location of the atom through the local field
amplitude:

2.2
E<+)(z7 £ = Z || "vino (zm) %C(z)%(zm)J g i@e=iz)(1=1)

t,
% J e—(iw-%—r,,,)(t’—t”)é(-%—) (Zm, t//)dt//dt/

. t
PmVm —iwe—y, ) (t—t
+ 2 : p2 mJZlc(Z)W/C(Zm) JO 6( iwc—y) (=) (645)
m

t
% J e—(ivm+ym)(t'—t’/)f~m(t//)dt//dt/
0

i
+J e =) F (5 1) dy
with 0

(zm) = 0 / {1 + |E(zm)/Es|2} (6.46)
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where |E(z,,)|* is the reservoir average of E(-)(z,)E(*)(z,). As discussed in
Section 6.2 for the semiclassical analysis, using this equation, it is difficult to
obtain the correct field distribution because of the nonlinear dependence of the
inversion on the field amplitude. The addition of the noise terms further com-
plicates the problem. So, we refrain from going further with this contour integral
method. The correct treatment will be given in Chapter 10.
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7
A One-Dimensional Laser with Output Coupling: Semiclassical
Linear Gain Analysis

In Chapters 7 and 8 we solve the laser equation of motion (Equation 5.33a) ignoring
the Langevin noise forces F,(z,t) and 13,1(27 t) for the one-sided cavity model
described in Section 1.3.1. In Chapter 6, the spatial field distribution was inferred
from the results of contour integration with respect to the continuous mode
frequency. In contrast, the treatment in this chapter relies on the Fourier series
expansion of the normalization constant of the mode function. This allows one to
follow the variation of the field amplitude along the laser cavity axis and at the cavity
end surfaces. Moreover, an explicit expression for the output field is obtained using
the present continuous mode analysis, which takes the output coupling into
account exactly. Especially, one can obtain, in principle, the field distribution
even in the case of the saturated, nonlinear gain case, which we failed to obtain
by use of the contour integral method. As in the case of the quasimode laser, we
divide the analysis into two categories: linear gain analysis applicable to operation
below threshold, and nonlinear, saturated gain analysis applicable to operation above
threshold. In the former case, we take the atomic inversion 6,,(t) as a constant o,
that is determined by the pumping process only, ignoring the saturation effects of the
field on the inversion. In the nonlinear gain analysis, which is described in the next
chapter, we take 6, (t) as a scalar g,,,(t) that is dependent on the average field intensity
at the atomic location. The essence of the content of this chapter was published in [1]
(where the negative frequency part of the electric field was considered).

We here concentrate on the linear gain analysis. The equation to be solved reads,
from Equation 5.33a, for the entire region —d < z < L,

~ pm V O’m i (=t
By =Y { |2hw J Z Uiz ()
" (7.1)

y
y J g (vmt7,) (1 —t) D) (zt") dt”dt’]
0

Because this equation has no driving force for the electric field, we arbitrarily add
an initial field I(z)3(t), which is a delta function of time t. For later convenience,
we truncate the oscillation in the optical frequency from the electric field
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EP)(z,8) = ED) (2, 1) (7.2)

where w is the center frequency of oscillation to be determined. Then we have

EP(20) — 1(2)8(1)
| V2 i) (1)
Z [ 2hw ,[ Z Uiz (7.3)

m
t!
y J io=r) b= FH) t”)dt”dt}
0

where I(z)d(t) appears unchanged because of the delta function. The equation is a
self-consistency equation for inside the cavity —d < z < 0, where the atoms are
located. For the field outside the cavity, z > 0, we have only to carry out the
summation and the integration once E(*)(z,,,t) is known.

7.1
The Field Equation Inside the Cavity

In order to treat the sum } ; Uj(2) Uj Ji(zm)e ") we use the first expansion of the
squared normalization constant in Equation 1.70a:

1 ZC() o0 1 "
1 Ksin2kyd & - 2nkyd 7.4
1-— Ksinzkljd C1 {; 1+ 507’1 ( I’) COS Z1kKy; } ( )

Then from the sine functions of z and z,,, from the cosine function in the
expansion, and from the exponential function of the time difference, we have eight
types of infinite series of sums of exponential functions over the frequency w;:

Z Uj U] Zm 71(c)jfc))(t7t/)

1 ; /
=y — — —  sinky(z+d)sinkii(zm +4d (o)1)
;glL 1 — Ksin’ky;d iz + d)sin by ) (7.5)
G = 1 - ; ; i(0-o)(-1)
r n o en’,mwj + eflr{,nwj et wj— )(t—
ZLSICI;]-J"&OV;( ) ; pzj:( )
where the factors oy = ap = 1 and o3 = a4 = —1. The delay times are
2nd+z—z, 2nd —z+z,
Tin :T7 Ton = B
(7.6)
2nd+2d+z+z, 2nd —2d —z —z,
T3n —T Tap = .

Note that the delay times 7,, depend on the atomic location z,, but we have
omitted the suffix m for simplicity.
Let us consider the summation
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Son = Zexp [i{£1pm0j + (0] — w)(t— 1) }] (7.7)
J

We go to an integration using the density of modes in Equation 1.64 and setting
X=w; — w:
)j :

Son = <L> exp (it ) Joo exp{i(£1,n +t— )X }dX (7.8)

CoT -0

Since the frequency is very high in the optical region of the spectrum, the lower limit of
the integration may be replaced by — co. This approximation yields a delta function:

Spn = (i—L> exp(it,n®)d (£ pn +t — 1) (7.9)
0

Thus we have

S {U@Uame e - LSS L

J n=0
) (7.10)
x Y oy €S (—tpn +t—t) + e 0ty +t—t) )
p=1
Substitution of Equation 7.10 into Equation 7.3 yields
E7 z0)=1(z)501)
t—|z—2zm|/c1
+> Gu J
pn 0
exp | {=i(0n =) 1} 1) (v 1) =27
1
(4 t—(2d+z+zm) /1 (7~11)
xE (zm,t’)dt/—J
0
xexp {{—xvm—w)—m}(t—t')ﬂivﬁm)mfﬂ}
1
«E™ (zm,t’)dt’+Z(—r)”(Iln+IZn—I;n—Lm)}
n=1
where
t—Tpn B
L :J exp[{—i(vm — ©) = P }(E— ) + (Vs + 7)o B (o, V) A (7.12)
0
and
2,2
Gy — 1P| VnOm (7.13)

2hw81 C1
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Note that the absolute sign in the first integral in Equation 7.11 appears from the
n=0 terms in the expansion 7.10 on using the delta functions é(£t19 + ¢ — t') and
0(£t0 +t—t') because of the constraint that ¢ >t in the double integral in
Equation 7.3. The second integral in Equation 7.11 comes from the terms of 730 and
T40in Equation 7.10. The integer n,, is the maximum value of n for which t > 7,,,and
may differ for different 7,,. For simplicity, we have written the equations here as if all
the 7, have the same n,,. In the steady state, t - co, we can make n,, go to infinity.

7.2
Homogeneously Broadened Atoms and Uniform Atomic Inversion

We specialize to the case of homogeneously broadened atoms and uniform atomic
inversion by setting

Vm = Vo, Pm = Pa, Ym =7 Om =0 (714)

Using Equation 7.14 and differentiating Equation 7.11 with respect to time t, we
have

%{E(”(Z, £ — I(z)é(t)}
= {=i(vo — ) = H{E" @ 0~ 121001 }
" Z ¢ [exp (iw : :f”") B <Zm’ - : _Cle|) (7.15)

2d+z+zm>~(+)< 2d+z+zm>
AT ETENEH (4, T ET Em

—exp| i
p( :

+ ZM (—r)”{z o, exp (iwT ) B (Zm, t—Tpn) H

p=1

G

where

_IpePvio

1
2hweic (7.16)

The first term on the right-hand side represents damping of the field via the
damping of the atomic polarization. The other terms represent the net increase
in the field amplitude at location z at time t. Examination of the latter terms reveals
the following amplification processes in the cavity. The atoms emit, by the sti-
mulated process, increments of waves to the positive and negative directions that
are proportional to the instantaneous field intensity at the location of the respective
atoms. The increment of the field that is proportional to GE(z,,) is emitted to both
directions by the mth atom and transmitted without changing its amplitude but
with proper phase changes. At the boundaries, the increment is reflected with
changes in amplitude or phase. As a result, the instantaneous increase of the field



7.2 Homogeneously Broadened Atoms and Uniform Atomic Inversion

amplitude at a particular spatial point z is given by a sum of such increments that
have just reached the position z. Figure 7.1 shows the time charts for these
contributions by two representative atoms at z,, and z,,/. The four kinds of re-
tarded times are depicted. For example, the second term in Equation 7.15 gives,
except for the phase associated with the propagation, the increment of the field
emitted at the mth atom that is proportional to the field strength at z,, at the proper
retarded time and reached at z at time ¢ by direct propagation from z,, to z with the
distance of propagation |z — z,|. The retarded time is |z — zy,|/¢1. The third term,
coming from the 73y term, on the other hand, gives an increment emitted at z,,
and first propagated to the perfect conductor mirror at z=—d and then to the
location z. The net distance for this folded propagation is {z — (—d)}+
{zm — (—d)} = z+ 2 + 2d. The minus sign of this term represents the extra
phase change of 7 on reflection at the perfect conductor. The 74; term represents
another increment emitted at z,, and first propagated to the coupling surface at
z=0 and then to the location 2z The distance of propagation is
(0—2) + (0 — z,) = —2z — 2y, There is a doubly folded route for an increment to
reach to the position z from the initial position z,,. For example, the 7;; term with
z,, > z gives a route from z,, to the coupling surface, then to the perfect con-
ductor, and finally to the position z. The propagation distance for this route is
2d — (2 — 2z). For all the above routes, there are associated routes with integer
number of added round trips in the cavity. The members in the fourth term re-
present such routes with round trips. The factor (—r)" represents the phase change
and the reduction in amplitude at the end surfaces associated with n round trips
after emission by the mth atom. We see that even a single atom contributes many
times to the field increase at a particular location, with decreasing weight for in-
creasing retarded time.

1 t
t-T10 t-tog
t-Ta0 t-Ta
t-Ta1

t-t30
t-”521 _
1y t-T14

-T2
t-”531 -
t"l:42 t T42
t"ng t"E31

t-T12

Figure 7.1 The time charts showing the contributions of an
atom at z,, or z,, to the time derivative of the field amplitude
at z at time t. The contributions are composed of the field
values at the retarded times indicated.
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We note that the increments, once emitted, propagate with velocity de-
termined by the passive dielectric and are never amplified nor absorbed. They
undergo amplitude or phase change at the cavity boundaries. In another words,
the increments propagate as if in an empty cavity. However, they stimulate the
atoms as they pass them to emit new increments that are in phase with them
and proportional to the inducing increments in magnitude. The effects of sti-
mulated absorption by non-inverted atoms are also taken into account in
Equation 7.15 through the appearance of the atomic inversion ¢ in the gain
coefficient G for the increments. This coefficient describes the net effect of
stimulated emission and stimulated absorption. This picture of laser amplifi-
cation described by Equation 7.15 gives a clear space-time structure of the laser
action in the linear gain regime.

73
Solution of the Laser Equation of Motion

Equation 7.15 was derived for the field inside the cavity and for homogeneously
broadened atoms with uniform atomic inversion.

7.3.1
The Field Equation for Inside the Cavity

We assume that the field inside the cavity can be divided into two oppositely
traveling waves as

EH) (2. 1) = et (2. 1) expltio(z al+e(z
EM(z, t) = ¢ (2, t)exp{+io(z +d)/c1} + e (2, 1) (7.17)
x exp{—iw(z+d)/c1}

We also assume that the envelope functions e*(z, t) and e (z, t) are slowly
varying in the z-direction. They are also slowly varying with time. Substituting
Equation 7.17 into Equation 7.15 and comparing the coefficients of
exp{+iw(z + d)/c1} and exp{—iw(z+ d)/c1}, we have

(%ﬂ’) {e"(z 1) —v"(z 1)}

_ZG[ (z—zn)e (Zm7 t—1T10) — € (Zm, t— T30) (7.18)
+Z V' {e" (zm, t— T1n) — € (Zm, t—T3n)}

and
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<% + y') {e(z t)—v (2, )} =Y _ G|H(zn—2)e (zm, t— T20)

" (7.19)
+Z (")"{e (zm, t — Tan) — € (Zm, un)}}
n=1
Here H is the Heaviside unit step function, and
vt (z,t) = 07(2)8(1), v (2,t) = 07 (2)0(¢) (7.20)

where 07 (z) and 0 (z) are the components of the initial field I(z) varying as
exp{+iw(z+ d)/c1} and exp{—iw(z + d)/c1 }, respectively. The constants y’ and ¥
are respectively defined as

Y =y +iv — o) (7.21)

and

¥ = —rexp(2idw/c1) (7.22)

In deriving Equations 7.18 and 7.19 we have neglected those rapidly oscillating
terms with a factor exp(+2iwz/c;) or exp(—2iwz/c1). The two oppositely traveling
waves are coupled to each other.

732
Laplace-Transformed Equations

In order to solve the coupled equations involving space variable z and time variable ¢,
we Laplace-transform Laplace transform them with respect to time and concentrate
on the spatial region:

et (z, t) =L (z, s)

e (z,t) =L (z, s) (7.23)
U+(zv t) HVJF(Z» S) = 0+(Z)

v (2, 1) =V (z,5) =0 (2)

Since the Laplace transform of e*(z,, t — 1) is exp(—1s)L" (2, s), the summa-
tions over n in Equations 7.18 and 7.19 reduce to geometrical progressions, which
can be easily evaluated. Here we assume that the time ¢ is so large that the upper
limit of the summation can go to infinity. Also, we again assume enough density
of atoms Ndz,, for the summation over m to go to integration over z,,. Then we
have
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(s+7H{L"(z, 9) = V' (z,9)}

=GN Uid exp{—(z — zm)s/c1 } LT (zm, 5)dzm

- 1_;“5) J: exp{—(z + zm + 2d)s/c1 YL (21, 5)d2rm (7.242)
OS]l s s
and
(4 9HL (2 9) = V (2,9}
—GN “ exp{(2 — 2n)5/c1 L (2, )z
s P (7.24b)
T J,,,, exp{(z + zm + 2d)s/c1 L (2o, $)d2m
O] el zmsfe) e i
where
() = 1 exp(—2ds/ex) = —r expd (0 — 5)2dc1} (7.25)

The initial values e*(z,0) — v*(z,0) associated with the Laplace transform
vanish, as can be shown by setting t=0 in Equation 7.3 with the aid of Equation
7.17. Differentiation with respect to z and division by (s+ ') yields

4 T(z8) — VHz,8)) = =~ {L(z,5) — V(2,5 GNL™(z,5) a
F @)~ Vi) =~ {1 )~ VI @9} + T (726)
4 “(2,5) =V (2,5)} =~ {L (z,5) — V(2,5 _GNL (z9)
@IV @) = U@y~ v ) - s rae)
Rearranging the terms we have
P " B s GN N n
E{L (z,s) =V (z’s)}_{_c_1+(s+y’)}{]: (z,5) — V¥ (z,3)}
(7.27a)
+ oN VT (z,s)
s+7)
a s GN
AL (29 =V (z9)} =~ {L (9 -V (29}
dz {Cl (S‘H)} (7.27b)
_ﬂ\/*(z 5)
s+7) 7

Integrating these for [*(z,s) — V*(z,s) we have
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[ (2,5) - V*(z,5) = J,d exp H— % LGN }(z - zm)}

(s+7)
(sil\i’) V" )z (7.28a)
+ eXPH_%’L(si—I\;)}(H d)}

x {LY(—d,s) — VT (~d,s)}

_ a  (s+y)

GN
Xty (EmeSdan (7.28b)
+ exp H* - (sin}(z * d)}

x {L™(—d,s) — V (—d,s)}

where [*(—d,s) are undetermined constants. In order to determine these
constants, we first set z=—d and z=0 in Equations 7.24a and 7.24b to obtain
the boundary conditions at the two ends of the cavity. Then we set z=0 in
Equations 7.28a and 7.28b. Then we have four coupled equations for L*(—d, s) and
L*(0,s), which can be solved easily (see Appendix D for the details). We obtain

GN
s+

_Lod {r’0+ (zm) exp (Mls — C;i’f,m) — 0 (zm) exp(— Zwtdg 4 ii’_ﬁ) }dzm (7.29)

[E(—d, s) =0%(—d) £

a a

X
GNd / GNd __ 2ds
exp(— S+~/> —r exp(sﬂ, — ?>

When substituted into Equations 7.28a and 7.28b, the terms with the denomi-
nator in Equation 7.29 give the main pole, yielding slowly decaying terms as

compared with the first terms, which have a pole at s = —y = —y —i(vy — w),
leading to fast decays. Let us examine the pole mentioned above. Set
GNd , GNd  2ds
_ — — ) =0 .30
exp( S'H") rexp<s+y, 61) (7.30)
or with Equation 7.22 for ¥
2idw 2GNd  2ds
1+rexp<T) exp(ery/ —?> =0 (7.31)

Thus we have

11
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2 2 2
1—exp{lnr+ oo | GN(?—E—(Zm—i—l)ni}:O (7.32)
C1 s+ C1
or
1—exp| 2 tio+—<Na i
— X — —N —_— — J—
pcl Ve i@ s+y+i(vo—w) ST
(7.33)

. 2d [GNey — {s+7+i(vo— o) Hs+y. +ilwc—w)}| ] _
! ﬂ%q{ s +i(v0— ) }]_O

where m is an integer and we have used Equation 1.18a, writing w,,=,. Also,
Equation 7.21 has been used. This equation yields

S+ {7+, +ilvo + o —20) s+ 0y
{ (o } ) (7.34)
+ (v — w)(w — w;) — GNey — i{y(w — ) + p. (w0 — 1)} =0

As in the previous chapters, we discard s*, anticipating a slow decay. Writing the
pole satisfying Equations 7.30-7.34 as so, we have the main pole

Vet (o — o) (w— ) = GNey — i{y(w — o) +7.(w—10)}
7479+ i(vo+ o —20)

So — (735)

where

|pu|2V(2)NG 2
GN¢; =———=k*N .36
“a 2hweq ’ (7.36)

The factor k* was defined in Equation 4.9 for the quasimode analysis. Here we
have ignored the small difference between w and v,. Thus the denominator in
Equation 7.29 for s around the main pole s can be rewritten as

oo GNA\ _,_ (GNd 2ds
P s+ Xps-i—y’ 7]
Cex _GNd 2d/c
RN RO

(7.37)

{7+ 7.+ i(vo + o — 20)}(s — )

Here we briefly mention the cavity decay constant y, for the one-sided cavity.
This was defined in Equation 1.18a and the modified cavity model with a perfect
mirror at z=L is being used in this chapter. In Chapter 4 analyzing the quasi-
mode laser, we introduced the decay constant using the same symbol y, without
any concrete model for the cavity decay. Now comparing the form of Equation 7.35
for the one-sided cavity and the decay equation in Equation 4.11 for the quasimode
cavity, we see that the cavity decay constant y, in this chapter replaces the role of
that in Chapter 4.

Returning to the topic of the pole, for later use we derive from Equation 7.33 an
equation that is equivalent to Equation 7.34. Since the quantity in the curly bracket
in the first line is zero, we have
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ss, GN (o, — )+ 7y,

¢ S+ 1

(7.38)

where we have written s, instead of s.

733
The Field Inside the Cavity

Substituting Equation 7.29 into Equations 7.28a and 7.28b and inverse Laplace-
transforming for the main poles, we have

e (2,1) = exp H% + (S0G+Ny/)}(z + d)} Cexp(sot) (7.39)
e (2,0) = — exp HZ—? _ %} (z+ d)} Cexp(sot) (7.39D)

where the constant C is given by

(GNc;/2d) exp [GNd/(so + 7')]
Y+ 7. +i(vo + o — 20)

R R T

C1 C1

0 () exp)| {7, — i — 0} 22— 2 Vg
B )(GII)\IE:Zd)( b Cl}}d 740

S+ +i(ve + o — 20)

y Jod {e+(zm> exp {—{yc ~ o — @)

zm—&—d}

41

0 () exp [{vc i -0yt ﬂ }dzm

and where Equation 7.38 has been used for the coefficients of z,/c; in the
exponentials. Also, Equation 7.32 has been used to eliminate 7. Here, the driving
forces 07 (z) and 0~ (z) are the components of the initial field I(z) varying as
exp{+iw(z+d)/c1} and exp{—iw(z+ d)/c,}, respectively. Note that this right-
going (left-going) part of the initial field is projected onto the decreasing
(increasing) function of z,,. The latter functions are the left-going (right-going)
parts of the function adjoint to the cavity mode function, as will be discussed in
Chapter 14.

Remembering Equation 7.38 above and going back to Equation 7.2 via Equation
7.17, we have the main terms
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B (z,) = Clexp{(3, + i00) (z + d) /er}
— exp{— (3, +i00) (z + d) [1}] x exp{(so — i)t}
= 2iCsin{Q.(z + d)/c1 } exp{(so — iw)t} (7.41)

for inside the cavity, —d < z < 0. The cavity resonant mode in Equation 1.21b is
excited with the decay constant sq. The oscillating frequency @ may be determined
if we assume a near-threshold behavior as in Equation 4.12 for the quasimode
laser or as in Equation 6.11 for the contour integral method for the laser with
output coupling. At threshold, setting sy =0 in Equation 7.35, we have

_ 70+ 7%

7.42
Ve ( )

WDip

and
G Ney
{1+ (@c—w) [+

=y, (7.43)

or by Equation 7.16

—|pu‘2‘% No—th =7 (7443.)
2hwery(1 4 6%)

where ¢ was defined in Equation 4.13c as

2
3 = <‘“ - V°> (7.44b)
Ve

This can be written, using the amplitude gain per unit density of inverted atoms
per unit time, ¢, defined in Equation 4.14, as

gNoy, =7y, (7.44¢)

734
The Field Outside the Cavity

The power of the continuous mode expansion in terms of the modes of the
“universe” in laser analysis is that it allows for the exact expression for the field
outside the cavity. This expression is also required for the calculation of the output
power. Now that we know the expression for the field inside the cavity, under the
constraint of homogeneous broadening of the atoms and uniform pumping as
expressed by Equation 7.14, we can use Equation 7.1 to obtain the main part of the
field outside the cavity. Here, for Uj(z), we need to use the expression for the field
outside in the second line of Equation 1.41b and, for Uj(z,,), that for inside in the
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first line of Equation 1.41b. So, through a similar procedure to obtaining Equation
7.10, we have

Z { Uj(2) U(zm)e 0" }
j

2

el m <koj cos kyjdsin kojz + sin kyjd cos kojz )

J

) , 7.45
% sin k1j<zm + d)e—w)J(t—t) ( )
ZCQ e
5 t—1t
8161 Cl +Co nz:; { +T5n)
+0(t—1t —150) —0(t =t +16n)—0(t—t —T6n) }
where
z 2nd—z z 2nd+2d+z
Nt A (7.46)
Co C1 Co C1

The procedure to obtain the delta functions in Equation 7.45 is just like that
from Equations 7.4 to 7.10. Here the delay time ts,, expresses the time required for
a signal emitted at z,, inside the cavity to reach z outside the cavity after traveling
from z,, towards the positive z-direction followed by n round trips in the cavity and
then to z in the outer space. Similarly, ¢, is the time required for a signal that first
goes to the negative z-direction with subsequent n round trips and a single travel to z.
We have used the fact that kyj/koj = co/c1 to eliminate the k in favor of the ¢. Sub-
stitution of the last expression in Equation 7.45 into Equation 7.1 yields

2201 00

|pal J o
Zt Z 2hw £101 Cl"’CO Z {5t t+15n)+5(t 4 TSn)

n=

Y
_5(t_t/+_[6n) —5(15— tl _TGW)}J e—(ivo‘H’)(tj—t”) E(+) (Zm,t”)dt”dt,
0

|pa| Vo 2o = " Jtirsn —(ivo+7) (t—tsn—t") +) 4
- Hoty)i=tsn—t) | t")dt"
ZZh(j)EllCl C1 +C())Z( 7’) ¢ (ZW“ )

n=0 0

(7.47)

e ) 2(+)
_J e*(l\’o+,>l Ten—t") E ( t/l)dt//}

0

Substituting Equation 7.41 for E()(z,,), using Equation 7.16, and noting that
the transmission coefficient at the coupling surface for the wave incident from
inside is
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2(3()

T=1+r=—"- 7.48
r= e (7.48)

we have

t—Ts;,

¢ o Dlexp{ (7, + i) (zm + d) /c1}

ey =ceTY Y (—r)”{J

m  n=0 0

—exp{—(7. + i0¢)(zm + d) /1 }] exp{(so — iw)t" }dt"

" (7.49)
| e e 4 i) + /)
0
—exp{—(y; + i) (zm + d) /o1 }Hexp{(so — iw)¢"}dt"}
The integrations over " can easily be performed:
~(+) CGT
E ) =—F——
1) 7450 +i(vo — )
x Y [exp{ (e +iorc) (2 +d) /o1 } = exp{ = (7 + i) (2 + d) /1 }]
(7.50)

Mg =

x ) (=1)"exp{(so — i) (t—75n) } —exp{—(ivo+7)(t—75n)}

Il
o

n

—exp {(so — i) (t —Ten) } +exp{—(ivo +7) (t —Ten)}]

Also, the summations over n, which are simple geometrical progressions, can be
easily evaluated:

B CGT
Ty tso+i(vo — o)

x D lexp{(7 + i) (zm + d) /c1}— exp{— (1 + i) (zm + d)/c1}]

z,1)

" [exp{(so —io)(t—2z/co +zm/c1)}
1+ rexp{—(so — iw)(2d/c)}
B exp{—(ivo +7)(t — z/co + zm/c1)}
1+ rexp{(ivo +7)(2d/c1)}
_exp{(so — iw)[t — z/co — (2d + zm) /c1]}
1+ rexp{—(so — iw)(2d/c1)}
exp{—(ivo +7)[t — z/co — (2d + z)/c1]}
1+ rexp{(ivo +7)(2d/c1)}

(7.51)

+

The summations over m are evaluated by going to integrations with the density of
atoms N. There appear eight terms to be integrated. The result is
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7 (zh)
__ CGNaT {exp{(so—ia))(t—z/co)}exp{—(so—i(u)(d/cl)}
y+s0+i(vo—w) 1+rexp{—(so—iw)(2d/c1)}
" {Zsinh{(yc+ia)c+so—i(u)(d/cl)} B ZSinh{(yC—l—iwC—so—l—iw)(d/cl)}}
Ve t+iwe+so—iw Ve +iw; —so+iw (7.52)
_ exp{—(vo+y)(t—2/c0) exp{(ivo+7)(d/c1)}
1+rexp{(ivo+7)(2d/c1)}

" {ZSinh{(yC—Q—in—ivo—y)(d/cl)} B ZSinh{(yC+iwc+iv0+y)(d/cl)}H
Vetioe—ivo—7y Ve tiwe+ivo+y

Now the second term in the square bracket decays fast as exp (—yt) and may be
ignored. The second term in the first large curly bracket is small compared to the
first term because of the sum, as compared to the difference, of two high fre-
quencies in the denominator and may also be ignored. Thus we have

(2,1) = 2CGNe, T exp{—(so —iw)(d/c1)}
"y sy Fi(vo — o) 1+ rexp{—(so — iw)(2d/c)}

" sinh{(y, + iw; + so — iw)(d/c1)}
S0 + Ve + ,’(wc - (1))

(7.53)

exp{(so — iw)(t — z/co)}

This can be simplified as follows. First, let us remember the transformation of r
to —exp{lnr — (2m + 1)zmi} = — exp{(—y, — iw;)(2d/c1)} in Equation 7.32. By a
similar modification of r in the denominator of the second factor, we see that
1+ rexp{—(so—iw)(2d/c1)} =1—exp{—(y, +iw.+so —iw)(2d/c1)} (754

—exp{— (. +ic) (d/c1) = (s0— i) (d/cr) }2sinh{ (3 + e +50— i) (d/c1)}
Therefore we have

2 exp{—(so — iw)(d/c1)} sinh{(y, + iw; + so — iw)(d/c1)}
1+ rexp{—(so —iw)(2d/c1)}
= exp{ (7, + iwc)(d/c1)}
= exp{iQ:(d/c1)}

Next, the product of the first and the third factors in the denominator is easily seen
to be equal to GNc; from Equation 7.34. Therefore we have

E®(z, 1) = CTexp <iQC g) exp{(so i) <t - %) } (7.56)

This is the desired result for the field coupled out of the cavity to the region 0 < z.
The field outside has only an outgoing wave with proper wave velocity. The above
derivation procedure of this result is logical, because we have used solely the basic
equation (Equation 7.1) for the case of homogeneous broadening and uniform
pumping for the derivation of both the field inside the cavity and the field outside.

(7.55)

17
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There is, however, an ad hoc means to derive Equation 7.56. This is to use the
transmission coefficient T for the amplitude of the right-traveling wave inside the
cavity at the coupling surface z=0. The last quantity is, from Equation 7.41,

B0 = cepl+io)da)ep{s—io)}  (757)

right—going

So, if we multiply this amplitude by the transmission coefficient T and add the
correct translational shift with the velocity of light ¢, in the outside region, we
recover Equation 7.56. This second derivation is arbitrary, however, and not
necessarily logical. Although we have used the boundary condition at the coupling
surface, the transmission coefficient appeared as a consequence of the appropriate
use of the mode functions of the “universe,” but not from the boundary conditions
directly. Also, the fast-decaying component in Equation 7.52 may not be inferred
from the ad hoc method. In spite of this caution on the ad hoc method, it is well
known that many rules of optical wave phenomena prevail also in quantum
mechanics, and an ad hoc compromise of quantum mechanics and classical optics
is sometimes used in problems where this compromise gives a convenient method
of analysis. We will see examples of such a method in Chapter 11 concerning the
derivation of quantum excess noise.

Finally we rewrite Equation 7.56, using Equations 1.18a and 7.48, in the form

E®)(z, 1) = 2iCsin (QC %) exp{(so —iw) <t - i) } (7.58)

Co

which shows the form of the outer field in Equation 1.21b when the inner field is
Equation 7.41.
Reference

1 Ujihara, K. (1976) Jpn. J. Appl. Phys., 15,
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8

A One-Dimensional Laser with Output Coupling: Semiclassical
Nonlinear Gain Analysis

Here we take into account the gain saturation or saturation in the atomic
inversion but still ignore noise forces. The steady-state operation above threshold is
examined. The essence of the contents of this chapter was published in [1].

We use Equation 5.33a, discarding the noise terms:

E(+) 1) = ‘Pm' V J U —uu_v(t—t/)
=3 [P0 ,

(8.1)
t/
[ e B ()
Jo
We go to slowly varying amplitude by setting
EM)(z,t) = ED) (2, 1)t (8.2)
We obtain
|PM| Vi
S e
J
% ei((/)f(uj)(tft’)e—{i(x'm—(u)+}'m}t’ (83)
% [ e{i(vm7zu)+ym}t”(a.yn(t//)I~_J—;(+)(zm7 t”)dt’dt”
Jo
8.1

The Field Equation Inside the Cavity

For inside the cavity, —d < z < 0, the summation over j was calculated in
Equation 7.10:
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S Ui(2)Uy(zm) exp{ —ile; — o) (1)}
J

:iil ! (—r)"{exp(iwty,)5(t — ¢ —77;)

€101 41+ don
+ exp(—iwt})o(t — ¢ + 1) (8:4)
+ exp(iwty,)o(t — ' — 14,) + exp(—iwty,)d(t — ¢ + 13,)
— exp(iwt},)o(t — ' —1,) — exp(—iwt},)d(t — ¢ +75,)
—exp(iowt],)o(t — ¥ — 1)) — exp(—iowt],)o(t — ¢ + 1) }
where
m  Z—Zm+2nd m  Zm—2Z+2nd
Tin 20—17 Ton = 6417
(8.:5)
o 24 z+ 2y + 2nd o —(2d+z+4zm) +2nd
we m=
1 5]

(In equation 18.1 of Ref. [1], 8(+' — t — 1) and (¢’ — t+ 1) should be interchanged.)
Here the superscript m for the delay times 7}, indicates the dependence of the
delay times on z,, which we omitted in Equations 7.5 and 7.6. Substituting

Equation 8.4 into Equation 8.3 we have

t—(lz—zml|/c1)
E®(z,t)= Z gme C0n=0)1Emm )t | gilontin)le=zul /e J 1 Sm(#")dt”
m 0
) t—{(2d+2z+zm)/c1}
_ e(zw'm+>'m)(2d+z+zm)/cl J fm(t")dt” (8.6)
0
+> (—n"{h+hL-I— 14}}
n>1
where
fu(t) = e{"("’”"“)”m}‘&m(t)E“) (zm, t) (8.7)
and
Ip - e(ivm+7'm)f::ln J /mfm(t//)dt// (88)
0
va |PM‘2
L, =t 8.9
& 2hwecq (8.9)

Equation 8.6 has a similar structure to that of Equation 7.11. The difference is
that the atomic inversion &,,(t) appears next to the electric field E(*)(z,,, t) instead
of within the constant G,, as in Equation 7.13. Here a new constant g,, appears
instead of G,,. Note that the absolute sign in the first term in Equation 8.6 appears
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from the n =0 terms in the expansion in Equation 8.4 on using the delta functions
oty +t—1t') and o(£15y +t — t') because of the constraint that t > t' in the
double integral in Equation 8.3. In Equation 8.6 we have not explicitly shown
the upper limit of the summation over n, which is limited by the constraint that
the delay times 7}, should not exceed time t because of the delta functions.
However, for a sufficiently long time t, the contribution from the final term in the
sum becomes negligibly small, so that the upper limit can safely be taken to be

infinity.

8.2
Homogeneously Broadened Atoms and Uniform Pumping

We go to the case of homogeneously broadened atoms, that is,

‘%|Pa|2
Vim = Vo, Pm = Pa, Pm =7 gn =8 = m (8.10a)

and to uniform pumping and uniform unsaturated atomic inversion, that is,
=’ (8.10b)

The inversion of the mth atom is now dependent on the field strength at the atom,
which, in turn, is dependent on z. Differentiation of Equation 8.6 with respect to
time ¢ yields

(8/0H)E (z,1)

=—{i(vo—w) +y}ED(2,1)

iw|z—2zm|\ . |z2—2zm|\ = |z2—2zm|
N e e L

—exp (lw(2d+z+zm)) G (t72d+z+zm) ) (zm, t72d+z+zm>

1 %]

- (8.11)
+Z )" {exp (iwty,) 6m (t— 1) EW (zm,t—1)

We have explicitly written the upper limit co for the summation over » according
to the discussion given below Equation 8.9.
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8.3
The Steady State

We go to the steady state, where we can forget the time dependences of 6,,(t) and
E®)(z,,,t). Then the equation simplifies to

ED(z Z 6mE) (2 [exp{lw\z — Zm|/c1}
—exp{io(2d + z+ zy)/c1}
. (8.12)
+ Z {exp L(U‘Cln) + eXP(l(/)TZn)
n=1
— exp(iwty, ) — exp(ioty),) }}
where
/ g g
— > _ 35 8.13
S e (8.132)
Note that
Reg = 7 (8.13b)

91

that is, Re g’ is equal to the amplitude gain per unit density of inverted atoms per
unit length, where 4 was defined in Equation 4.14.

Now we consider the steady-state atomic inversion. Utilizing Equation 5.32 in
Equation 5.26, discarding the noise term, for a steady state we have

m2)ge = 7.71'%10;%/ ho E
i(vo— ) +7y

S

) (zm) (8.14)

where the suffix sve signifies the slowly varying envelope: (BIVLJ’M) we =
(bin1 by )€". Then using Equations 5.27 and 5.32 and again discarding the noise
term, we obtain

2,

hol*|EE)
I {a_m - 0_0} _ 747|V0pa/ w| ’ (Zm) Om (8.15)
! 7+ (o — )?
Thus the steady-state atomic inversion is
0
= g (8.16)

1+ |1;*<+>(zm)|2/\155|2
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where the saturation parameter

-1
42|pa|* 1
|E 2= ’VOLP“| . (8.17)
Iph*w? (vg — o) +7?2

On substitution of Equation 8.16 into Equation 8.12, regarding the summation
over m as an integration with respect to z,,, we have a nonlinear integral equation.
We solve this equation, again assuming the decomposition of the electric field into
two oppositely traveling waves. Beforehand we perform the summation over » in
Equation 8.12:

YIS A Tl
ECRED vy y AT {exp(’k'z 2l

—rexp(2ikd)

—exp{ik(2d+z+2zn)} + HTP(ZEIWJ)

[exp{ik(z—zm)} (8.18)
+exp{—ik(z—zu)} —exp{ik(2d+z+2z,)} —exp{—ik(2d+z+2zn)}] }

where
k=ow/c (8.19)

and we have written E(z,,) for E()(2,,) in the denominator for simplicity. Then
we set

ED)(2,t) = e" (2, t) exp{+ik(z + d)} + ¢ (2, t) exp{—ik(z + d)} (8.20)

Comparing the terms of exp{+iw(z+d)/c1} and exp{—iw(z+d)/c1}, and
discarding rapidly oscillating (spatially) terms in Equation 8.18, we have

/-0

et (2) = go et (2
@ = 2 e Er e

(8.21a)
3 Z g'a® {rexp(2ikd)e* (zp) + € (zim)}
w1+ {|E(ZM)|/‘ES|}2 1+ rexp(2ikd)
e (z2) = g/oo e (z
@ = 2 R
(8.21b)

go’rexp(2ikd)  {e*(zm) — e (zm)}
=1+ {|E(zm)|/|E|}> 1+ rexp(2ikd)

The squared amplitude in the denominator is
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|E(zm) = ED(2n) ED" (20) = [e" (zm)|"+le™ (2m)|” (8.22)

Here rapidly oscillating terms in z,, have been ignored. Equations 8.21a
and 8.21b are rewritten as

et (z) = r o%e" (2m)dzm

2
4 L[ (8.23a)
. JO —20__ rexp(ikd)e’ (zn) + ¢ (zn) | '
a1+ |Epys| 1+ rexp(2ikd) "
0 ,0,—
(2 :J e (zm)dzzm
z 1+ |Epys (6.23b)

J o r exp(2ikd) {e" (zm) — € (2m)}dzm

+ ;
a1+ }Em/s‘z 1+ rexp(2ikd)

GN _ Wp))  No°
=g N="-= [Pl : d (8.23¢)
y 2hweicy i(vo — o) +y

where G is given by Equation 7.16 with the understanding that the atomic
inversion ¢ in the linear gain analysis is the same as the unsaturated inversion ¢°
in the nonlinear gain analysis. The parameter o’ is the amplitude gain per unit
length, and G / 7' is the gain per atom. Note that o is related to 4, the amplitude
gain per unit density of inverted atoms per unit time, as

0

(8.23d)

1

In Equations 8.23a and 8.23b |Em/S’2 abbreviates {|E<+)(zm) |/|E| }2. It can
easily be shown that Equations 8.23a and 8.23b are equivalent to the following four

equations:
(d/dz)et (z) = — ¢ (2) (8.242)
1+ [Ezys
(d/dz)e (2) = — ¢ (2) (8.24b)
1+ [Exys
e (—d) = —e"(—d) (8.24¢)
¢ (0) = rexp(2ikd)e™ (0) (8.24d)

where }EZ/SIZ abbreviates {|E(+) (z){/|ES|}2 Note that Equations 8.24a and 8.24b
are coupled equations because both e (z) and ¢ (2) exist in the denominators as
described by Equation 8.22.
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8.4
Solution of the Coupled Nonlinear Equations

We can solve for e * () and e~ (z) by the unique structure of the coupled equations
as follows. Integrating Equations 8.24a and 8.24b we have

e (2) = e (—d) exp{I(z)} (8.25a)
e (z) = e (—d)exp{—I(2)} (8.25b)
2 %
= J,d m (8.25¢)
so that
" (2)e (z) = const = e' (—d)e (—d) = —{e" (—d)}’ (8.26)

We have used Equation 8.24c in the last equality. This equation is the key to
solving the nonlinear equations.

We first look for the steady-state oscillation frequency. For this purpose we set
z=0 in Equations 8.25a and 8.25a to obtain

€7 (0) = e (—d) exp{I(0)} (8.27a)

e (0) = e (—d)exp{—1(0)} (8.27Db)

where [(0) may be written as

0 095/
0) = J &2 _ (8.28a)
~d1+ |Eyys
where
0 /
I= J dizz (8.28b)
~d 14 |Ey

Because we know the ratio of ¢* (0) and e™(0) from Equation 8.24d, and that for
¢* (—d) and e~ (—d) from Equation 8.24c, we have from Equations 8.27a and 8.27b

1
———— = —exp{2°I 2
r exp(2ikd) exp {21} (8:29)
As we saw in Equation 7.33, —rlexp(—2ikd) is equal to exp{(2d/ci)
(7¢ — iw + iw,)}. Therefore, noting that «° = GN/y' from Equation 8.23c and
that ) =y +i(vo — w) from Equation 8.13a, and comparing the phase and the
magnitude of both sides, we have
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2d 2GNI(vg —
2y — ) =~ 2GNI0 — @) (8.30)
2 7t (0 o)
ol 2GNIy
2dy2 + (vo — )
Thus eliminating GNI, we have
o = 1@t VeV (8.32)
Y+
Equation 8.31 gives the necessary gain
2 2
- 2d
GNZM—% (8.33)

21y ¢

We do not know the value of I as yet. But, at threshold, E()(z) = 0 and I=4d.
Therefore, we have the threshold population inversion

2¢1hary —w,)?
Ng§, = “127e {1 + (Vf) @) } (8.34)
v5lPal (7 +7¢)

where we have used Equations 7.16 and 8.32. This is the same as that in Equation
7.44a for the linear gain analysis

In order to solve for the field amplitude, we need to consider the absolute
squares of the amplitudes because of their appearance in the denominator in
Equation 8.25c. Thus multiplying Equation 8.24a by {e'(z)}" and its complex
conjugate by e (z) and adding, we have

o + o

(d/dz)|e" (z)*= Slet (2)]° (8.35a)

1+ By
Similarly, from Equation 8.24b we have

(o + o )
(d/dz)le (2)P= ﬁTE\) e (2)] (8.35b)
z/s

These equations were derived by Rigrod [2]. Using Equation 8.22 in Equation 8.35a
with z,, replaced by z, and eliminating e (z) by Equation 8.26, we have
1+ (et @ eonstle* ) IEF

et (2)]*= (® + o )dz 8.36
QP le"(z)]"= («" +a”) (8.36)

Integrating both sides we have

e (2)|°—|const|?|e* (z)| 2
o+ U e )

= +a)z4+C (8.37)

We determine the constant C by setting z = —d:
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+(_ 2 2| 4+ -2
C:h’l‘e+(fd)|2+|e ( d)‘ |C|0En|52t| ‘e ( d)|

+ (@ +a%)d (8.38)

Since in the second term on the right-hand side |const|*|e™(—d)| >= |e~(—d)|* by
Equation 8.26 and it is equal to |e*(—d)|* by Equation 8.24c, the second term
vanishes. Thus we have

Inle* (2)|/le* (~d) }+{ le" ()" ~[const/e* (2)| "} /|E.P

= (oco + oco*)(z—}— d)

(8.39)

Note that, if the constant or {e"(—d)}” is known, the z dependence of |e(z)|* is
known from this equation. In particular, the left-hand side is a monotonically
increasing function of |e*(z)|>. On the other hand, taking the logarithm of the
absolute square of Equation 8.25a, we have

z (oco + oco*)dz’

(8.40)
i 14| Byl

In{le" (2)|/¢" (=d)}' = I(z) + I'(2) = J

where we have used Equation 8.25c in the last equality. Comparing Equations 8.39
and 8.40 we have

—* |e" ()" ~le (2)/”

0
= + zZ+ d 8.41
o0 o0 | ;S‘z o ( ) ( )

I(z)

where we have replaced |const*|e*(z)|™® by |e (z)]* using Equation 8.26.
Substituting this into Equation 8.25a and setting z=0, we have

—a®_ |e"(0)"~|e"(0)[*
e"(0) = e (—d) exp{uo T P +o%d (8.42a)
Similarly, from Equation 8.25a we have
- - 2 [ ~le (OF
e (0) =e (—d) eXp{ocO o B —od (8.42b)

Taking the ratios of both sides of Equations 8.42a and 8.42b, because we know the
ratio of ¢ * (0) and e (0) from Equation 8.24d, and that for e " (—d) and e (—d) from
Equation 8.24c, we obtain

-1 —220 [e"(O)'1 =)
W = exp{ao T o ‘Eslz + 20°d (843)

As in Equation 8.29, comparing the phase and magnitude of both sides we have

- e
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2d _ @) fa- et :
o (0 —w) = @ o) { 5P d(o + o )} (8.45)

Noting that i(a® — a®)/(o® +a) = (vo — w)/y from Equation 8.23c, we have
again

o = 10 Ve

8.46
Ve ( )

and from Equation 8.44 we have the absolute square of the amplitude of the right-
traveling wave at the output surface:

2 2 2 0
|e+(0)|27 |E3| {V0|pa| No d Y —11’1(1/1’)}

T 112 g1c1hw (\;0 — w)2+)}2

(8.47)

E)* [v3|p,|*No® 1
_ B[} vlpd N ——In(1/7)

1—12 erctho  p(1+6%)

Setting ¢ (0) =0 and using Equation 8.46 we have Equation 8.34 again for the
threshold atomic inversion:

o _ 2e1thayy,

Y
ol = 14 8% =% (8.48)
= i )

_gN

Now integrating Equation 8.16 and dividing by d, we examine the average atomic
inversion for steady state:

1(° a (° dz OIn{|e* (0)|/|e* (=d)[}*
Gs==| Omdz, = J =— : 8.49
d,[—d d) a1+, 4 (00 4 o) (849)

where we have used Equations 8.40 in the last expression. Now comparing the
square of Equations 8.42a and 8.43 we have

ef(0) > -1
{e+(—d)} " rexp(2ikd) (8.50)
Thus
:((—031) :% (8.51)

Using this relation and the expression in Equation 8.23c for o® we have

_ 2hweq 9 y
Gee = (140 =_C 8.52a
s Vg)WZN//C( ) N (8.52a)

where
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5 = <°" - V°>2 (8.52b)

Ve

Thus, comparing it with Equation 8.48, we confirm that
Oss = U?h (853)

as is usual for an oscillator operating above threshold. But here what is equal to the
threshold inversion is the space average of the location-dependent inversion.

Now that |e*(0)* is known, we can determine the distribution of the field
amplitude as follows. First, we have Equations 8.25a and 8.25a for e * (z) and e (2),
which are determined by the integral in Equation 8.25c. The integral is known, in
principle, if we know |et (z)|* and |e(2)|%. The former |e*(z)|* is determined by
Equation 8.39 completely if we know |e*(—d)|”. But it is given by Equation 8.51 in
terms of |¢*(0)|*, which is given by Equation 8.47. The latter |e~ (z)|? is determined
by the relation in Equation 8.26. Thus we can, in principle, determine e¢* (z) and
e (z) completely, except for undetermined phases.

Here we briefly discuss how the field distribution in this nonlinear gain analysis
is related to that in the linear gain analysis. The present analysis goes to the linear
gain analysis in the limit of infinitely large saturation parameter E; — oo. That is
to say, in the limit E,;; — 0. In this limit, Equations 8.25a-8.25c show that
ei(z) = ¢*(—d) exp{+o°(z +d)}. But Equation 8.44 shows that, in this limit,
o =~ In(1/r)/(2d). Therefore, we have e*(z) ~ e*(—d) exp{=y.(z + d)/c1 }, which
is just the field distribution consistent with the cavity resonant field that appeared
in Equation 7.41 of the linear gain analysis.

8.5
The Field Outside the Cavity

Similarly to Equation 7.45, we calculate the summation over j in Equation 8.3 for
the field outside the cavity:

Z { U,(Z) Uj(zm)efi(wjfw) (tft')}
J

2 1

k1
—L m <koj cos kyjd sin kojz + sin kyjd cos kojz )

J
(8.54)

. . 7 200 >
x sin ky; d)e =) =
m U(zm +d)e 8161 o+ nZ:;

x {exp(iwtly)o(f — t+ 18, + exp(—iwtly)o(f —t —18)
— exp(iwtg,)o(t —t+10,) — exp(—iowty,)o(f —t—10,) }

where
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z zZn, 2nd w  Z  2d+z, 2nd
2o g, (855)
C1 C1

Co C1 C1 Co

m __
Tsn =

Substituting Equation 8.54 into Equation 8.3 and taking Equations 8.10a and 8.10b

into account, we have

. 2 o0
ED(z,t) = Z“’o\?zﬂ 1 Z
m n=|

2ho &0 (6 + o)

X {e"‘"w exp[ {i(vo — ) + 7y}t — T;:)}

5 (8.56)

XJoirs exp[{i(vo — @) + 7} 16w (1) EC) (2, ") dt”

[E——

_ dome, exp[ { (vo — ) +“,)}(t — ‘L'::)

< " expl{i(vo — @) + P} )6m(E)ED (2, 1) }

0

After differentiation with respect to time t, we go to the steady state. We have

- 2c0  Vipal® 1
E(+) _ 0 0lPa
(2) Zm: co+ a1 2e100how i(vo — ) + 7y
(8.57)

X Z r)"{exp (iwth)6mE) (2,) — exp ity 6‘mE<+)(zm)}
n=0

Performing the summation over n, changing the summation over m to an
integration, and using Equation 8.16 for the atomic inversion, we have

26 o

co +c1 1+ rexp(2ikd)

X JO {ex {iw(i—z—m)} 8.58
—d P Co (%] ( )
{, (z 2d+zm> H ED)(z,)dzp
—expio| —+ 3
@ a 1+ |Epys]

where the constant «° is defined by Equation 8.23c. Substituting Equation 8.20 for
E®)(z,,) in the integral and ignoring rapidly oscillating terms, we have

2¢o 1 . [z
EH) (5 .2
(z) = co +c1 1+ rexp(2ikd) exp{zw <co - cl> }
y Jo 2%t (zm)dzm Jo e (zm)dzm
-4 1+ |Ez/s|2 -4 14+ |Ez/s|2

Using Equations 8.23a and 7.48 we can rewrite this equation as

EH(z) =




References

EH(2) = Texp{iw (3 + Ci) }e+(0) (8.60)

b O
Thus we have for the field outside the cavity

E®)(z2,1) = T[e* (2) exp{ik(z + d)}]zzoexp{fiw <t - c%) } (8.61)

Outside the cavity, the field has only an outgoing wave and its amplitude is
independent of the distance from the coupling surface z= 0. Equation 8.61 clearly
shows that the field outside is that of the right-traveling wave inside the cavity at
the coupling surface transmitted to the outside with the proper amplitude trans-
mission coefficient and shifted in phase with the proper wavenumber w / cy. The
expression in Equation 8.60 or 8.61 may be obtained without the procedure
described in this subsection by an ad hoc means: multiplication of the right-going
wave at the surface by the transmission coefficient and addition of the proper
phase. However, as was discussed at the end of the last chapter, it this at best
arbitrary and not necessarily logical.
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9
A One-Dimensional Laser with Output Coupling:
Quantum Linear Gain Analysis

In Chapters 9 and 10 we solve the laser equation of motion (Equation 5.33a)
quantum mechanically for the one-sided cavity model described in Sections 1.3.1
and 1.4. As in the case of the quasimode laser, we divide the analysis into two
categories: linear gain analysis, applicable to operation below threshold; and
nonlinear gain analysis, applicable to above-threshold operation. In this chapter,
the atomic inversion is assumed to be constant, but it will be allowed to be field
dependent in the next chapter. In Chapter 7, the linear gain analysis was
performed semiclassically, with the atomic inversion assumed to have a fixed
value and the noise terms being ignored. There, instead of the noise terms, an
initial field distribution with temporal delta-function property was assumed. The
temporal decay of the field from the initial value was derived using the Laplace
transform method, which yielded a decay constant that represents the net effect of
the field gain associated with propagation along the gain medium and reflections
at the end surfaces. The explicit expression for the output field was also obtained
by virtue of the continuous mode expansion of the field. Here, we take into
account the noise terms for the atoms. However, the thermal noise is derived
automatically by the field expansion using the continuous modes of the “uni-
verse.” These noise terms act as incessant driving forces for the field. Thus,
because of the linear nature of the assumed equation, the field becomes a
superposition of the decaying components, each excited at the atoms or in the
cavity at random instants, all the decay constants being the same as that obtained
in Chapter 7. The spatial dependence of the excited field will be that of the cavity
resonant mode as in Chapter 7. An important quantum result is that the
expression for the linewidth of the output field has a correction factor compared
with the conventional formula obtained for the quasimode laser. This factor is
(B./v.)* = {1 —1*/(2r)}*/{In(1/r)}?, which is determined solely by the reflection
coefficient at the cavity end surface. Similar factors appeared in Chapter 6, where
the contour integral method was used. The nonlinear, saturated gain analysis
applicable to operation above threshold will be covered in the next chapter, where
correction factors for the linewidth will also be derived. The essence of the
contents of this chapter was published in [1].
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9.1
The Equation for the Quantum Linear Gain Analysis

Here we concentrate on the linear gain analysis. The equation to be solved reads,
from Equation 5.33, for the entire region -d < z < L,

E<+)(Z7 t) = ﬁt(z7 t) + j:l](z7 t)

y
% J e (i) V) EH) (7, t”)dt”dt/:|
0

where

Fy(z,t) = iZ \/@ Ui(2)a;(0)e " (9.2)
J

: t t
Fq(Z, t) _ Z |:lpw£\1m JO Z U](Z) U](zm) e—iwj(t—t’) Je—(ivmﬂ,m)(t/_tu)lgm(t//)dt//dt/:| (93)
J

m 0

Here we have taken the atomic inversion 6,,(t) as a constant g, that is determined
by the pumping process only. The strategy for solving the equation is to seek the
expression for the field in terms of the noise forces and to construct the correlation
function. The correlation functions of the noise forces will determine the corre-
lation function of the field. Then we will obtain the field power spectrum as the
Fourier transform of the field correlation function. From Equations 5.36, 5.38, and
5.39, the correlation functions to be used are

(al(0)aj(0) ) = (n))a (9.42)

(ai(0)af(0)) = ((m) +1)9 (9.4b)
and
(TL(OTw(t)) = Gy 120t — ) m

G2 = irmp(l + J(r)n)<i(1 - Um)> (9.5a)

_ %Fmp(l - an)<%(1 n am)> + 2ym<%(1 + om)>
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(Fn®F(0)) = G 210(t = )

L1 1
Ghom = Ermzv(l - G?ﬂ)<5(1 + O'm)> (9.5b)

- %rmpu + a‘,i,)<%(1 - om)> + va<1(1 - Gm)>

Here we have assumed that the different modes of the universe are not corre-
lated initially. We have also assumed that the reservoirs for the dipoles of different
atoms are also not correlated. In Equations 9.4a and 9.4b (n;) is the expectation
value of the number of thermal photons, that is, the Planck distribution, in the jth
“universal” mode. If the pumping and damping of the atoms are non-uniform,
the parameters in Equations 9.5a and 9.5b are different for different atoms. Thus
we have added the suffix m to indicate the individual atoms. In this chapter, the
saturated and unsaturated atomic inversion are the same constants, that is
om = 6°. Thus we have

(TLOTw () = (1 + 0m)Smmd(t — 1) (9.5¢)

<rm(t)fjn,(t’)> = (1 — G) O O(t — ¥ (9.5d)

We have removed the sign of the ensemble average because we are assuming here
that the atomic inversion is a constant. In order to utilize the calculations in
Chapter 7 as far as possible, we truncate the oscillation in the optical frequency
from the electric field and the noise, as in Chapter 7,

ED)(2,t) = ED)(z,t)e ™,  Fy(z,t) = Fy(z,t)e ",

) ~ , (9.6)
Fy(z,t) = Fy(z, t)e "

and obtain

EZ[WMLJ amJ 2:[] i{er—o)) (1=t
)

t/
y J GO =2} () E(+) (zmt")dtﬂdt’] (07)

(=}

+Fy(z,t)+ Fy(z,t)

This form of the equation is the same as Equation 7.3 except that the initial driving
force term in Equation 7.3 is replaced by the noise forces. Thus the analysis in
Sections 7.1-7.3 can be applied here with the proper replacement of the driving force
by the noise forces. Let us follow the procedure of the analysis in Sections 7.1-7.3.
We first evaluate the summation over j and find delta functions of time involving
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delay times that correspond to the possible routes for a light signal to go from
position z,, to position z:

> { U@ U e e}
J
11 .
=t 2 1500, 5()‘”(—0 (9.8)

4
X Y o, {0 (—tpn +t—t) + e 5 (tpy +t— 1)}
p=1

where the factors oy = a; =1 and 03 = a4 = —1. The delay times are
2nd+z — z, 2nd —z+ zy,
Tin == Ton = — a
' ! (9.9)
2nd+2d+z+zy, 2nd —2d —z—z,
Ty = Ty = ———
c1 1

After performing the integration using the delta functions, we obtain a temporal

integral equation containing a sum over the field values at each atom at various
retarded times:

- - t—|2—2m|/c1
E(+)(Z7t):Ft(Z7t)+Fq(Z,t)+ZGm J
m 0

exp| {i00m  0) = 1 b= )+ G+ ) 22 B )
t—(2d+z+2m) /01 ) ' 2d+Z+Z
- exp | {=i(0m — @) = 1)1 ) 4 (i 4 ) 2
~ M
X E(zm, t)dt + Y (=) (Iin + T — Iy — Lun) (9.10)
n=1

where

Ion = J;—w exp[{—i(vm — @) = 7 }(E =) + (iVm + 1) Tpn) E(zon, ) d (9.11a)

and

‘pm|2"3ﬂ0m
== m 7 11
Gm 2h(l)8101 (9 b)
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9.2
Homogeneously Broadened Atoms and Uniform Atomic Inversion

To go further, we have to assume homogeneously broadened atoms and homo-
geneous pumping:

Vm = Vo, Pm = Pa, Ym =7 Om =0 (912)

Then, differentiating with respect to time ¢, the integral equation is converted to a
simplified differential equation:

%{E(Jr)(z, t) — Fy(z,t) — I:"q(z, t)}

= {=i(n — o) = H{EV @) ~ Fzt) - Bz}
+ 36 fewp (0 222) £ (2,0 - 2222

1 (9.13)
— exp (iw—Zd tz Zm) EMH) (zm, t— 72d tz zM)
c1 1
nM 4 5
+ (_V)n{z p exp (ityn) E) (2, t = Tn) H
n=1 p=1
with
|pa|2"(2)6
= 9.14
2hwer ( )

Here we introduce the assumption that the field waves and the driving forces are
both divided into right- and left-going waves, respectively:

EW)(z,1) = & (z,1) exp{+ioo(z + d) /c:}

(9.15)
+ e (z,t) exp{—iw(z+d)/c1 }

and similarly for the noise force terms. Here we have stressed that the field
amplitudes are operators, in contrast to those in Chapter 7, where they were
classical variables. Then we get two coupled temporal differential equations for the
two traveling waves, which still contain various retarded times corresponding to
the number of round trips that the waves make until they arrive at location z after
having started from location z,, of the mth atom. The equations also contain
summations over the atoms:

(% + y’) {e7(z,t) — 0" (2,8)} = Z G|H(z — z)e" (zmyt — 110) — & (Zm,t — T30)
" (9.16a)

M

D () e (zmot— 1) — & (s b — T3)}

n=1
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(gt ){e (z,t) =0 (z,8)} = ZG 2)e” (zm,t — T20)
(9.16b)

+ Z (T‘/)n{é7 (IZm7 t— ‘L'Zn) — é+(2m, ‘E4n)}:|

n=1

where

itz ) =f @+ Sz, (@)= () +f (21 (9.17)

Here f *(2,t) are the right- and left-traveling parts, respectively, of the thermal
noise operator F,(z,t), varying as exp{=iw(z + d)/c; }, respectively, and f t(z,t)
are the right- and left-traveling parts of the quantum noise operator F (2, t) The
constants ' and r’, respectively, are defined as

Y =y+i(v— ) (9.18)
and
7 = —rexp(2idw/c1) (9.19)

9.3
Laplace-Transformed Equations

In order to solve the coupled equations 9.16a and 9.16b involving space variable z
and time variable t, we Laplace-transform the field and the noise operators as
follows and concentrate on the spatial region:

(9.20)

Proceeding as in Chapter 7, after performing the summation over n, with
ny — 00, the transformed equations become

(s+7 {L+ -V (z, s)}

=GN UZ exp{—(z — zn)s/c1 } L (2, 5)d2Zm
-d

0 . (9.21a)
- 1%#/(3) J,d exp{—(z+ zm + 2d)s/c1} L™ (2, 5)dzp,

I’”(S) 0 “+Z s
o) el sl s
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and

(s+7){L (2,9 = V (2,9}

=GN U exp{(z — zm)s/c1} L™ (zm, 5)d2zpm
P(s) [0 . (9.21b)
1) J_d exp{(z + zp + 2d)s/c1 YL (2, 5)dzm
7 ZNS)(S) de exp{(z — zm)s/cl}i’ (zm, 8)dzm

where

'(s) = ¥ exp(—2ds/c;) = —rexp{(iow — 5)2d/c; } (9.22)

The initial values accompanying the Laplace transforms of the time derivatives,
¢*(z,0) — % (z,0), vanish, as can be seen by inspection of Equations 9.7 and 9.15
and the definition of 9*(z, t). Differentiation with respect to z yields the following
coupled differential equations:

%{i*(z, s)— Vi(z,9)}

s GN . N GN . (9:23)
— {7a+m}{L (z,5) = V'(z,5)} + ) V¥ (z,s)
d s o
%{L (z,5) =V (2,9}
s GN \,._ o GN . _ 6-24)
- {a_(sﬂl)}{L @9~V @)~ os V(9
Integrating, we have the following formal solutions:
i*(z,s)f\Aﬁ(z,s):rdexpHfiJr(j_iI;],)}(zfz/)} (Sil;l/)‘?+(z’,s)dz’
N (9.25)
+ exp H—%—i— (Siljj,)}(z—&-d)] {f’(—d,s)— V+(—d,s)}
.l o z s GN ~] GN ._ | ,
L (z,5)—=V(z,s) = —Ldexp Ha—m—y,)}(z—z)} (S+V’)V (Z,s)dz 06

+exp [{if (si’;)}(zw)] (L7 (=d,5)=V(~d,5)}

139



140

9 A One-Dimensional Laser with Output Coupling: Quantum Linear Gain Analysis

These are formally equivalent to Equations 7.28a and 7.28b. The undetermined
factors L*(—d,s)— V*(—d,s) are obtained by using the results of Appendix D and
expressed in terms of V*(z,s) as

L*(—d,s) — V*(—d)
GN
s+ (9.27)
Lod {r’V*(z/,s) exp(zlc—:ds - ff}z) —V(2,s) exp( f*"’ s+ GNZ) }dz’
exp (7 Scff‘fl) 1’ exp (ff}’d Zc‘fs)
Equations 9.25 and 9.26 together with Equation 9.27 are the formal solutions in
the Laplace-transformed domain.

X

9.4
Laplace-Transformed Noise Forces

In order to evaluate Equations 9.25-9.27, we need the Laplace transforms of the
noise forces. From Equations 9.17 and 9.20 we have

VE(z,5) =V (z,5) + V;E(z, s)
Vi(z,5) =2 {1*(27 t)} (9.28)
VE(z.9) ::f{ f4(z, t)}

where the letter ¥ signifies the Laplace transform. From Equations 9.2 and 1.62b,
the thermal noise term reads

zt-tz\/% Yo

haw; 2 .
=iy /= inkyj(z +d)a;(0)e @
lzj: 2 \/sll(lKSin2 k%jd) sinky(z+4)%(0)e

(9.29)

Thus

1 how; , ,
+ _ - J +i(kyj—k)(z+d) 5 . —i(wj—m)t
z,t) ==+ E e a;i(0)e "™ 9.30
(z:2) - 2\/811,(1 — Ksink2.d) 5(0) (5:30)

and

— 4 haj
Z L(1 — Ksin* k2, i4) 9.31)
: .

:ti(k1j*k)(z+d) 0
e j( )s+1( —w)



9.4 Laplace-Transformed Noise Forces

For the quantum noise part, the noise force Fy(z, t) defined by Equations 9.3 and
9.6 reads

; |:lpmeJ Z U i(w—w;)(t—t)

v
XJ Gi0—1m) =, } (Ot | (//)dt//dt:|

0

(9.32)

It is easy to see that the right-hand side has the same structure as the second line
of Equation 9.7 except that the constant factor |p,|*V2,0,,/(2ho) is replaced by
ipmVm/2 and that the field amplitude E(*)(z,,, ") is replaced by the Langevin force
[,,(t"). Therefore, the evaluation of the 13,1(27 t) goes just the same as for the
second line of Equation 9.7. For homogeneous broadening and uniform pumping,
referring to Equations 9.8-9.10, we have

_ t—|z—2m|/c1 _ N
iz =Y h{jo exp {{—i(vo — o) =}t — 1) + (ivo + y)%} ()t

m

2d+z+ 2z,

t—(2d+2z+2m) /01
- J } L ()dt (9.33a)
0 a

exp [{ (v — ) — 7}~ £) + (ivo +7)

+ Z M(Iin + Ln — In — Lm)}
where
Iy = J; " exp[{=i(vo — @) — 7}t — ) + (ivo + ) 1pn] Fm(¥) dt' (9.33b)
and

— Dalo (9.33¢)
28161

As right-going waves, we choose those terms containing the factor exp(ivoz/c1),
and as left-going wave those containing exp(—ivoz/c1). Thus, using Equation 9.9,
we obtain

[zt explio(z + d) /er}

=hY e {H(z — Zm) exp{(ivo +7)(z — zm)/c1}

t—(z—2zm)/c1 24
XJ exp(y't) T (t)dt —exp{ o +7) +z+zm}
0 o

t—(2d+z+2zm) /01 00
X J exp(y't)(t)dt + Z {exp{ o + 7)T1n }
0 =
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t—Tin ~
X J exp(y't ) (t)dt — exp{(ivo + )30}
0

xf exp(y’t’)fm(t’)dt/}] (9.34a)

0

fi (z.t)exp{—iw(z +d)/c1}

hy e {H(zm ~ 2y exp{(ivo + )(zm — 2/}

t—(zm—2)/c1 ~
x J exp(y't ) () dt (9.34D)

0

00 t—Ton .
- {exp{ ot [ et

n=

—esp{lino + )| e

where H is the Heaviside unit step function and )’ was defined in Equation 9.18.
Now, combining the rules of the Laplace transform, we have

e i
FLe vt J exp(y't) T (¥)dt

0 (9.35a)
- L epfmlemmle el
where
Fuls) = 2{E0(0)} (9.35b)

Thus we have
V;(A s) exp{iw(z + d)/ci }

_ h;fj};} e 20y ep{ £l 29}

41
{ ) 2d+z+zm}
—exps (i —s) ———
%]
+ Z (—r)"{exp{—znd +CZ — Zm(iw — S)}
n=1 1

2nd+2d+z+zm/,
— exp . (iw —s)



9.4 Laplace-Transformed Noise Forces

e 20 xp{ E= 2205}

_ fM(S)
-ny

_ 1 (oo — )2d+z+zm
T P e ) T

. 7'(s) 5 exp{(z — z) (i — S)}] (9.36a)

1- T’//( C1

%]

and

V, (z,5) exp{—iw(z +d)/c1}

SO R LY

S+“/ C1

+ i(*r)”{ew{m(iw - s)}

n=1 a1

2nd —2d —z— 2y,
— e o (i =) (9.36b)

h ST e, ) e G2 )

s+ )
15/73)(5)“}){(1'@ —5) ch1— Z}
IRAC) {7(2d+z+zm)(iwfs)H

1—1r"(s) & o

Jr

where we have used Equation 9.18 and set ny — oo as we did in Equation 9.21a
and 9.21b.

Finally we have

v fm(S) Z—Zm . Zm+d
+ - - —_ J—
v, (Ls)—hzm;s_’_y, {H(z zm)exp{ s o iw o }
1 2d+z+42 d+z
- “ " 9.37a
e 037
L O f e mtd
XD<L— _
=P e o
- _ fm(s) Zm—2 ., Zm+d
Vq(z,S)—th:H_y, {H(zm—z)exp{—s o +iw - }
(s) Zn—2 . Zm+d
—s—" " 9.37b
Jr1_,,//(5)6)(13{ s o + 1w o } ( )
) 2zt L zetd
1—1"(s) P c1 1

where ’(s) was defined in Equation 9.22.
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9.5
The Field Inside the Cavity

Up to now, in this chapter, we have been considering the field inside the
cavity. Here, we inverse Laplace-transform Equations 9.25 and 9.26 using
Equation 9.27. The main pole, yielding a slowly decaying time function,
appears in the denominator in Equation 9.27, which was derived in Equations
7.35 and 7.37. Equation 9.27 contains the main pole in the form of Equation

7.37:
o GNAY _,_ (GNd _2ds
- —/ex -
Py vd PlsT Y a

GNd \ 2d/c;
=exp(— - ;
So+7V/ s+

(9.38)

{7+ 7¢ +i(vo + o — 20)}(s — o)

where s, is the solution of Equation 7.34 and to a good approximation is given by
Equation 7.35, which was

et (o — o)(w — o) = GNey — i{y(w — o) +7.(w — o)}
Y+ 7. +i(vo + o — 2m)

So =

By setting so=0, we have the threshold oscillation frequency and the threshold
atomic inversion in the forms of Equations 7.42 and 7.44a, which were,
respectively,

— 'V(UC + VCVO
Ve

WDip

and
2.2
v
el g, s
2hwery(1+ 67)

In order to obtain the Laplace transforms I (z,s) of é*(z,t) in concrete form,
the Laplace-transformed noise forces in Equations 9.31, 9.37a, and 9.37b should be
substituted into Equation 9.27 and further into Equations 9.25 and 9.26. For
simplicity, we rewrite Equation 9.38 as

GNd GNd  2ds
exp (— T y/) — 1 exp (m - ?> = M(so)(s — 50)

GNd > Zd/Cl
so+7') so+

(9.39)

M(so) = eXP(* {y+7. —i(vo + 0. — 20)}
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Then Equation 9.27 reads
GN 1

s+ 7" M(so)(s — so)

0 /I /
X J {r’ V(2 s) exp (Z ds AL > (9.40)
—d

a - s+

—V=(Z,s) exp(—z + ds—i— GNZ)}dz’

1 s+

I*(—d,s) - VE(—d) = +

Now, in Equations 9.25 and 9.26, the first integral terms, with a pole at s=-/,
will give a rapidly decaying field as compared to the second terms, with the pole at
s=so, which will yield slowly decaying fields. Thus these first terms will be
ignored. Also, the noise terms V*(z,s) on the left-hand sides of these equations
will simply give lasting noise fields, which are small compared to the amplified
terms of the main pole. These noise terms will also be ignored. Thus the main
contributions to the Laplace transforms L*(z, s) read

g e[l 4 S Yo a] SY

o (s+7) s+ 7' M(s0)(s — s0)

0 ’ /
X J {r’V+ (Z,s) exp (z ds GNZ) (9.41)
—d

a _s—l—v’

N ' +d GNzZ/
—V’(z’,s)exp{z + s+ z)}dz’
c s+

and

I (z,5) = —exp [{% - %}(Z + d)} sil\;’ M(So)(ls ~ %)

0 /o !
X J {r’ VT(2,s)exp <Z ds AL ) (9.42)
—d

c1 _s+y/

/ /
U (2,s) exp(—z +ds+ GNz)}dz,

%) s+

As can be seen from Equation 7.38, we have the following relation at the main
pole for a cavity resonant mode of angular frequency w.:

s+ €1 '
Thus, rewriting the first exponential functions, we obtain
R ] — GN 1
[*(z,5) = L exp|+ (oe =) +7, (z+d) / —
c1 s+ 79 M(so)(s — so)
0 _ o
X J {r' V*(Z,s) exp <—ds - Mz') (9.44)
—d C1 C1

VU (2,s) exp<_is+wzf) }dz’

c1 C1
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Here we note that the spatial functions excited by the noise are the right- and
left-going waves of the cavity mode in Equation 1.21b. We also note that, as stated
in Chapter 7, the right-traveling (left-traveling) noise is multiplied by a decreasing
(increasing) function of z. The latter functions are the left-going (right-going) part
of the adjoint mode function, which will be discussed in Chapter 14. This can be
seen more clearly if we use Equation 9.48 below and rewrite the integrand as

exp (- £ {itoc - 0) 470+ )
« {V*(z’,s) exp{ig(z’ + d)} exp{—iwcc#(z/ + d)}

v @ gen] Le v e e 0

1

The remaining task before inverse Laplace-transforming is to evaluate the
integral in Equation 9.44. We need to substitute the Laplace transforms of
the noise terms defined in Equation 9.28. We consider V;*(z,s) and V;ﬁ (z,5)
separately to obtain four integrals.

9.5.1
Thermal Noise

First we use Equation 9.31 for the thermal noise:

0 - | - !
he = | {rwzf,s) I
—d 1

C1

—Z Y (0)
& L(1 — Ksin? kzd) s+ i(wj — o)

0 : q
% J {r/ei((/)j—(/))(z’+d)/c1 exp <%d5 — wz’) }dZ/ (945)
—d 1

1

r —ds/clﬂ wj—w)d/c

_ j
Z glLl—Ksm kzd) (0) s+ i(wj — o)

1 = w00 }d/a
X .
{ilwj —we) =y} /e

and

72:} hwj (0) 1
-2\ aiL(1 - Ksin? 2d) I s ¥ ilo; — o)
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XJO { L[}J} 0] z+d)/clexp<_is+.(a)c_w)+7c /)}d/
d a a

1 e—ds/cl—i(u)j—(u)d/cl
= — 0 :
;2 e L(1— Ksm kzd) %(0) s+ i(w; — o) (9.46)
e{i wj—w; 7}rc}d/c1

. {—l< o)+ /e

Adding these two we have

ho; (0) e=d/a 1
a; ; ;
e1L(1—Ksin*k3d) 7 s+ i(wj— o) {i(wj— w;) =7, } /a1

L)+ L,(s) :Z%
J

% [r/ei(w_,'—w)d/cl % {1 —e {1 Wj— )~ }d/cl}

_ ¢ lwj—w)d/a {1 _ lilo—0)—r}d/a H (9.47)
. —ds o
Y L Y 1
2\ &1 L(1 - Ksin? 2d) 1 s il — o) {i(wj— 00 —7.}

» [r/{ei(wj—w)d/q _ elilo—o).}d/a } _ {e—i(wj—w)d/q _ g lilo—o)+i}d/a }]

The second and fourth terms cancel because, as seen from the comparison of
Equations 7.31 and 7.33,

2i 2
¥ = —rexp (C%d w) = exp [fg{i(wc — )+ "/c}:| (9.48)

Thus we have

hw; eo/a 1
h(s) + bs Ziv e1L(1 — K{sm kzd) (0 )s + i(w; — o) {i(w; — o) —7.}/a

~ {r/ei(wjfw)d/cl _ e*i(wjfw)d/c]]

e(iu)—s)d/cl

B —Z 1 hao; ;(0)

- L(1 — Ksin? Kd) s + i(w; — o) {i(w; — o) — 7. }/a (9.49)
% {reiwjd/cl 4 e—imjd/cl}

plio—s—)dfe

- 7 2\[e1L(1 — Ksin? k3d) s+ i(0j — o) {i(wj — o) — 7.}

Z 1 hao; 1;(0)
x 2 cosh{(y. — iwj)d/c1 }

where we have used the relation r = exp{—(2d/c1)y.} in the last line.
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9.5.2
Quantum Noise

Next we turn to the quantum noise part. The final result for the integral in Equation
9.44 concerning the quantum noise will be found in Equation 9.57. For V; (z,s),itis
more convenient to return the factor —{i(w, — ) + y.}2’/¢1 in Equation 9.44 to the
original form (so/c1)z’ — {GN/(so +7')}2’ in Equation 9.43. Now the Laplace
transforms of the right- and left-traveling quantum noise forces are found in
Equations 9.37a and 9.37b, respectively. For the right-traveling part we have

0 e —d GN
I(s) = Ld 'V (2,s)exp (?s—i—iz’ —:yg’) dz'

0 L(s) (2 —zm) . (zm+d)
:der,hzmj - {H(z’—zm)exp{—s P }
1 o _52d+z’+zm+iwd+zm
1—1"(s) P cl al
' (s) (Z—zm) . (zm+4d) —-d s, GN )\, ,
+1_r,/(s)exp{—s . — i o exp ZS+CIZ_S+VIZ dz
Co(s) (° sS(zmw—d) |, (zmw+d) GN
=7rhy 7 _ ) _ / /
Y Xm:s—i—y’ Lmexp{ o i o exp s—&—;/z dz

s+ L 1=r"(s) o o
O
= —r’h%%exp{ —Czlds — (lw—5s) chj d} {1 _ ¢~ GNaw/(s+1) }

" (s) —2ds . Zn+d GNd/(s+7)
_1—r”(s)6Xp{ . —(m)—s)T}{l—e }
For the left-traveling part of the quantum noise we have
o (. d 2 GNZ
Li(s) = — V(< ——s—= dz'
4(s) J_d{ q(z,s)exp( Cls cls+s+y’>} z

0 Ts) { tm—7 zm+d}
=—| h H(z, —2') exp< —s + i
| 1Ot~ e

9 ‘1

0 -
+J r,hZFm(s) {_ 1 exp{_52d+zm+d+iwd+zm}
—d -
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0 fm(s) r"(s) Zm—2 . zZm+d
‘Jd@sﬂ'{*l—w(s)e"p{‘s I }

a a
3 ' (s) o de—l—z/—i-zm_iwzm—&-d o —is—z—/s—i-GNZ, &
1—1"(s) P c 2 P e ¢ s+
= ~T(s) . Zm + d} (ch') )
=—| h — . d
J_d Em:s—i-“,” exp{(tw s) . exp - z
0 Lh(s) { '(s) { Zm + d}
—| hY —|+————~expq (lo—s
I, 2y e 097, 051,
r'(s) : Zm+d GNZ\
_mexp{—(zw—s) o H exp(s+y,)dz
_ fm(s) . Zn+d GNzy/(s+7) _ ,—GNd/(s+7')
_h; CN {—exp{(lw—s)T}{e —e }
r(s) : Zn +d —GNd/(s+7')
,1_r//(s)exp{(1wfs) o }{1*6 }
r'(s) . Zn +d N/ (54
_ g = 1— /(s+7")
+ T=r(s) exp{ (i —s) o }{ e }
Adding the right- and left-going parts we obtain
l:m(S) —2ds . Zm + d _GN. o
I I —— - — 1— Zm /(s1+7")
3(8) + Is(s) =—1 hzm: CN exp{ . (iw—s) o }{ e }
/ 1;m (S) 1 2d . d+2zm GNd/(s+y")
+rh¥ GN [1_r”(s)exp{—sa—l—(Lw—s)T}{l—e }
e - 2L 1 )]
: ! ' (9.52)
Lin(s) . Zm+d GNzy/(s+y') __ ,—GNd/(s+7')
+h§m:W {—exp{(uu—s)T}{e —e }
r"(s) . Zm+d —GNd/(s+7)
mexp{(twfs) o }{178 }
r'(s) . Zm+d —GNd/(s+7)
+1_r//(s)exp{f(m)—s)?}{l—e }
Here we note from Equation 7.37 that, for the main pole s=s,
r"(s) = r' exp(—2ds/c;) = exp (— iiﬁ?) (9.53)
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or

. 2dso 2GNd)
= exp 22— 9.54
r eXP< PR (9.54)

Then we find that the terms without the factors exp{£GNz,,/(s+7")} cancel
each other: the coefficient of exp{(iw —s)(zm +d)/c1} in the summation
hy Twm(s)/GN is

2dsy 2GNd\ 1 2d NG (o
L expd_s 28U (GNd(sty >}
+exp( 1 50+“/>1 ”(S)exp{ SCl}{ )

_ { GNzn/(s+7) _ efGNd/(ery’)}

1 exp( 2GNd> { 787%/(%,)}
1—r(s) +7 (9.55a)

= 1%#’(5) { ¢ 26N/ (557) _ o= GNa/(s+7/) _ g=2GNd(s+) () e—cNd/(s+y')}

. {BGsz/(er}") _ B*GNd/(SJrV’)}

_ (ONew/(s+7)

where we have set s=s, and used Equation 9.54 in the first line and Equation 9.53
in the second and the third lines. The coefficient of exp{—(iw — s)(zy, +d)/c1} is,

similarly,
}{1 ¢~ GNam/(s+7 )}
(

. 2dsy 2GNd
_exp [ 2%0 _ 2GNa
Pl so + 7'
2ds, 2GNd ' (s) —2ds GNd/(s+7")
+eXP(T sww){ —(s) P @ {1_6 }

MRAON {1— e}

1—1"(s) (9.55b)
_ 2GNd —GNzy /(s+7')
,—exp<—so+yl){1—e }
r(s) —2GNd/(s+y') _ ,—GNd/(s+') —GNd/(s+7')
*m{e - e —lte }
— efGN(szer)/(snLy’)
Therefore, we have a rather simple result:
Zm+d GNz,,
I(s) + I4(s) hz CN [—exp{(lw s) o }eXP{s+y’}
(9.56)

. exp{i(iw gt d} eXp{—GN(zm + 2d)}]

2] s+
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The modification and use of Equation 9.43 reveals that the coupling strength of

the quantum noise at the mth atom to the field is proportional to the amplitude of
the cavity resonant mode at the location of the atom, that is,

Tp(s) exnd — GNd\ [ exp{ (i — 5) Zm +d ox GN(zy +d)
GN P s+ P c1 P s+
) Zn + 4 —GN(zy + d)
+exp<—(iw — ) o exp P,
exp{ GNd ¢in h{ (1606_ S, %) (zm + d)} (9.57)
1 )

GNd} sin h{lwc bl z

953
The Total Field

Now we substitute the above results obtained in Equations 9.49 and 9.57 into the
integral in Equation 9.44. We also substitute Equation 9.39 for M(s,) into Equation 9.44
and use Equation 9.33c for h:

L*(z,5) = +exp {i{W}(Hdﬂ sil;l’ m

Cld (0)
{ Z_v L(1- Ksm kzd)s—i—l(ajy )

(iw—s—y,.)d/c1 —iw:)d
x,(a—Zcosh(w)
{l(wj—a)c) —yc} c1

) fm(s)ﬂ GNd\ . (w.—1y,
—Zlh; N &P (_Soﬂ/') s1n{ o (zm—i-d)H
B (w;—w)+7, 1 1
‘ie"PH e e e =y
Z— ho,  {ONG/@d)}a(0) 1
e1L(1-Ksin’k2d)  s+i(wj—o)  {ilwj—w) -7}
X exp (sffj’) elio=s7:)d/4) cog h{(y.—iw))d/c, }

paVO =1y,
Zgler sm{ o (z m—l—d)H

(9.58)
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By use of Equation 9.43 again, we can rewrite the product in the second line
from the bottom as

exp( GNd >e(iw—s—>’c)d/61 = eXp{M + Moo = @) 7 ci}e(i‘“_s_"“)”l/c1
so+ ' 1 o
= exp{l?—lc d}

where we have set s=s,. We finally obtain

(9.59)

1*(z,5) =+ exp [i{%}& + d)} I i(v01+ e —20)] (s _1 50)

x {_ZEJ”—W(GMHM]‘(O) L
— 2 \[e1L(1 - Ksin® k}d) s+ (0 — ) {i(oj - o) — 7.} (9.60)
X ex Lw—” cos. M
p{ C1 d} h( 1 )

e (*5) e

The inverse Laplace transform of a product of two functions of s is a convolution
of inverse transformed functions. Thus

1 1 1 ' —i(wj—w)t s (t—1)
% . = | et
s— 505+ i(wj — o) 0

t
— ot J B*WJJTB(SO*W)(FT)dT

1 - e
,55/*1{ Fm(s)} :J [(r) e de (9.61)
t
— eiu)tJ fm(_L.)eficure(s(riu))(tff)dr
. t A .
_ ew}tJ Fm(r) 8(307"1])071)6&

So, going back to Equation 9.15, we have for the field excited by the thermal
noise and quantum noise, respectively,

. [10)
eﬁwmul(z, t) exp { + o (z+4d) }

i + 7y 1
— texp|+ ¢ d
EXP{ { o }(H )} 0+ 70— ilvo + 0 — 20}
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1 ha (GNci/d)a;(0)
% [_ ;z\/le(l — K;in2 k3d) i(w; — o) J— Ve (9.62)

. t
X exp{% d} cosh{(y, — iwj)d/cy }ei‘“t Jo 6_"“’”6“0_"“’)“_1)(/17}

and
éammxaoap{isz+®}
4]
_ o+ 7, 1
=+exp {i{—cl }(z—f—d)} 47— i+ 0. —20)} (9.63)

— r . t . )
% |:}27;r; - Sin{ <wcc—11y5) (Zm + d) }dwt JO rm(f) 6(5071(0)(%‘:)(1,E

Thus going further back to Equation 9.6, we have the expression for the field
inside the cavity:

sinQ.(z+d)/a

EM(z,t) = .
( ) V+}'C+I(V0+u)5720))

; .
X Z Gia;(0) J e exp(so — i) (t — 1)]dt + lZOZa
j 0 ! (9.64)
t
X Z sin{Q;(zm +d)/c1} [ (1) exp|(so — iw)(t — 7)]dz |,
- Jo
—d<z<0
with
oot 1 "
7 e1L1 — K sin® ky;d
(9.65)

GN(c)* exp(iw.d/c1) cosh[(y, — iw;)d/ci]

T d () — ) — 72

We see that the cavity resonant mode is excited by thermal noise coming from the
initial fluctuation of every “universal” mode and by the quantum noise coming from
damping of every atomic polarization. The strength of the quantum noise at the mth
atom is proportional to the amplitude of the pertinent cavity resonant mode at the
location of the atom, as noted earlier. Before examining the correlation function of
the field inside the cavity, we look for the expression for the field outside the cavity.
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9.6
The Field Outside the Cavity

Now that we know the expression for the field inside the cavity, we can use
Equation 9.1 to derive the expression for the field outside the cavity, just as we did
in Chapter 7 for the semiclassical analysis. In this case, the “universal” mode
function Uj(z) is that for outside the cavity, as given by the last line of Equation
1.62b. The function Uj(z,,) is, of course, that for inside the cavity. If we use
Equation 7.45, the summation over j in Equation 9.1 reads

> { U Glane @)
J

1 kyj
—-ZiiglL 1._1(snllﬁﬂi<k coskydsinkz + 5 bycos by

) 9.66
X sin klj(zm + d)e i) (9.66)

i )" {6t — 1t + t54)

Cl +Co
+6(t—t —15,) —O(t =t +T6n)—0(t —t — T6n)}
where

z 2nd—z z 2nd+2d+z
Toy = — Ten = — 4 ———— " (9.67)
Co 1 Co a1

Substituting Equation 9.66 into Equation 9.1 we have

a\zv%a 1 2
2hw  e161 (c1+ o)

E(+)(Z,t) = ﬁt(zvt) +ﬁq(27t) +Z|p

x i (fr)”.[0 {0(t—t +150) +6(t— 1 — 50)

=0

3

,
—5(t—t’+16n)—5(t—t’—r(,n)}J e~ () —) B ()

0 (9.68)

2 ‘pa| Vo 2¢
= Fy(z,t) F t)
(Z + Z ZZhw&IlCl Cl +Co)

00 I—Tsp
XZ {J ’ e —(vo+7) (t—Tsn— E (Zm, ”)dt”

n=

t—Ten
ﬁ[ﬁfwmeJ@W@me}
0

We substitute Equation 9.64 for E(*)(z,,,#') and obtain the field outside the
cavity. As was the case for the field inside the cavity, the first and second terms in
Equation 9.68 represent the lasting small noise terms and will be ignored. (In the
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next chapter we will show that the net result of including these terms is the
appearance of an extra thermal noise term in the expression for the output field.)
Then, from the calculations in Chapter 7, we find that the substitution of the field
inside the cavity in Equation 7.41 results in the outside field in the form of
Equation 7.56. The net effect of the conversion was, except for the neglect of a
rapidly decaying term and of a small term (in Equation 7.52), to change from

EM)(z,1) = Clexp{(7. + iooc) (2 +d) /er}

—exp{—(y; +iwc)(z +d)/c1 }] exp{(so — iw)t} (9.69)
= 2iCsin Q. (z + d) exp{(so — iw)t}, —-d<z<0
to
. d z
EW)(z,t) = CTexp{ (7, + iwe) — p exps (so — iw) [t — =
ot D)

= CTexp{chi} exp{(so—iw)<t—i>}, 0<z
C1 Co

The effect is (i) to get the field value of the right-traveling wave at z=0, (ii) to
multiply by the transmission coefficient T, and (iii) to add the retarded time z/c.
Now, if we look back at Equation 9.64 for the field inside the cavity, in spite of the
seeming complexity of the expression, the equation is a linear superposition of the
form in Equation 9.69: the z dependence sin Q. (z + d)/¢; and the time depen-
dence exp{(sop — iw)t} are common to all the terms in the summation over j and
over m for a fixed value of the parameter 7. In other words, Equation 9.64 is a
superposition of terms of the form in Equation 9.69 summed over j and m and
integrated over t. Thus, applying the three conversion rules stated above to every
member of the summation and ingredients of the integration, we find

B (2,1) = (1/2i) e.xp(thd/cl)T
7+ e +i(vo + o — 20)

X

t .
Z Ca;(0) J e exp|(so — iw) (t — z/co — 7)]dv + ll;olc’ia
j . 1 (9.71)

XZ sin{Q;(z, +d)/c1} L () exp|(so — i) (t — z/co — 7)]d |,

0<z

This expression can, of course, be obtained by substituting Equation 9.64 into
Equation 9.68 and faithfully performing the integration and related evaluations.
But this is simply to repeat the calculations of Equations 7.47-7.56 on every
member of the above-mentioned summations and the ingredients of the
integration, including the approximations stated below Equation 7.52. A more
precise treatment of the thermal noise outside the cavity will be given in the next
chapter.
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9.7
The Field Correlation Function

Now we are in a position to derive the correlation functions of the field inside and
outside the cavity. We are assuming that the “universal” modes are initially
mutually independent and the Langevin forces for different atoms are also
mutually independent. Thus we will use the correlations (see Equations 9.4a

and 9.5¢)
(al(0)%(0)) = () = (e —1)"'5 (9.72)
(T () = (Dot 120 (F)) = 9(1 + 0)Smm (¢ — 1) (9.73)

The reader is referred to Equations 2.42 and 4.50 for these equations. Also, the
thermal and quantum noise forces are assumed to be mutually independent.
Therefore, we evaluate the correlation function separately for the thermal part and
for the quantum part.

First take the thermal part of the field Et(ﬂ (z,t) inside the cavity described by the
first term in Equation 9.64. Using Equation 9.72 we calculate

(B OE @)

1
oy Ay Filve + o — 20)

t,
’ <Z Gial(0) | e expl(s;+ i) (¢ — ]
J

sin{Q}(z +d)/c1} sin{Qc(z + d)/c1}

<Y Ckﬁk(O)J ¢ exp|(so — i) (¢ — f)}df> (9.74)
k 0

2

! sin{Q7 (2 + d)/cr } sin{Qu(z + d) /cr}

V+Vc+i(vo+wc_2w)

2 ‘ it . / / /
< S [6 (m) | e expl( + i) ¢~ )]
J

X L e exp|(so — iw)(t — 1)]dt

To go further we need the evaluation of the summation over the “universal” modesj:

2
2 i (71— ho [ GN(c)?
Ej : |Q| <nj>ewJ(T = gL ( d : )

|cosh{ (y, — iwj)d/cl}}z
1 — Ksin® kyjd

1

(@j — ) +72

> Z <nj> ei())j(f/*’t)
J
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We will shortly show that the quantity in the square bracket yields a constant
factor independent of the index j. Also, since (n;) is a very slowly varying function
of the frequency w;, while important contributions come from the region around
—, <j — <7y, it can be taken outside the summation sign. So, noting that the
density of modes is given by Equation 1.64, we calculate

1
exp1 iw; T,—T T —
2 el — N o
L dwj
_ _ . 9.76
J, aoption =) s 070

< L dx
- j—p{ (400l =)

where we have set x = w; — @,. Here we make the following approximation. That s,
since the important contribution to the integral comes from the region around
—y, <x%<7,, thelower limit of integration can safely be replaced by — co aslong as the
cavity half-width y, is much smaller than the resonance frequency .. Thus we have

1
g explio(t — 1)} —————
< L dx
= il j == 9.77
J_x o exp{i(x + wc) (7' — 1)} PR (9.77)

_ L . / T /
= rempliod 1)) Fexp{nl — )

The last line is obtained by contour integrations in the upper (lower) half region
of the complex x-plane for ¢/ — >0 (' — 1<0) with the pole at x = iy (—iy,).
Since we are concentrating on the slowly varying field amplitude corresponding to
a narrow laser linewidth, we make the further assumption that the difference v/ -t
of interest is much larger than the cavity decay time y,!. This assumption is valid
if the laser linewidth is much smaller than the cavity half-width y. Then the
exponential function in Equation 9.77 can be taken to be like a delta function. The
area below the exponential function is 2/y.. Therefore the exponential function is
regarded to be equal to (2/y.)d(7" — 7). Thus we have

JZexp{icuj(f’ — r)} e ! _ 2

— wc)z + 92  Coy?

o — 1) (9.78)

Next, using Equation 1.18 for y, and Equations 1.17 and 1.43 for K, we evaluate
!cos h{(y. — i) d/cl}’2

‘ Pe—iw; d/c1 te (,C*l()J)d/L']

4

_ th { (\/; + \}chesl kyd + <\/? - %) i kljd}
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_ 1+ 1 {1 <1r>2}sinzk-d}
T 4r B B 17‘” v
o (9.79)
= (1 — Ksin® kyjd)
Thus 5
|cos h{ (7, — iwj)d/c1 }| _ (1+r) (9.80)

1 — K sin? kyjd 4r
Summarizing Equations 9.75-9.80 we have

2
2 (e ho [GN(cy)?
> (Gl (e )=81—L<T1>

J

|cos h{ (3, — iwy)d/c }|7]  (9:81a)
1 — K sin? kyjd

<3 (mpenies 1
J

() — 0c)” + 72

= Dé(7' — 1)

with

(o) (9.81b)

2
D— 2ho (GN(c)*\ (1471)*
- &1 Co“/% d 4r
where (n,) is the thermal photon number per “universal” mode at the central
oscillation frequency w, which may be close to the threshold oscillation frequency
;, in Equation 7.42. The correlation function in Equation 9.74 then becomes

2
2 () ) 1
E t)E ) =
<t (27)t (27)> ‘y+,yc+l(v0+wc_2w)
. , ) v , (9.82)
x sin{Q!(Z' + d)/c1 } sin{Q.(z + d)/cl}DJ dr J dré(t' — 1)
0 0
x exp|(sy + iw) (¥ —1')] exp|(so — iw)(t — 7)]
The double integral is, as in Equation 4.51,
t t
J dr' [ drd(t' — 1) exp[(sy + iw) (¢ — 7')] exp[(so — iw)(t — 7)]
o Jo
Joexp (s + iw) (¥ — ) + (so — i) (t — 7)] dr, t<t
- ¢ P , ,
exp|(s; +iw)(# — 1) + (so — iw)(t — 1) | dr, >
fo P[(o )( )+ (s0 ) )} (9.83)
e(sawtiu))t’wt(sofiw)t _ e(sg«kim)(t’ft) ,
R . t<t
So + So
- e(sg+iw)t/+(sofiw)t _ e(s(]fi(u)(tft’) ,
.t

o + 5
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The first terms decay relatively fast and are unimportant after a long time. The
second terms decay according to the time difference. Thus the first terms will be
ignored. Then we have, noting that Re s5,<0,

ail A D

B, t+0E (1) =

(B 0B ) = oo

x sin{Q(Z +d)/c1 } sin{Qc(z + d) /c1}
(s5+im)T
M (9.84)
2|Re sp]

X
ef(sofiw)r

_— <0
2[Re so] ‘

Using Equation 7.35 for so, we have
2
(7 +7)" + (0 = 7o)
+(vo + 0 — 20){y(w — o) + 7.(w — ) }] (9.85)
20 +9){w.(1+ &) — GNai}
) )

2|Reso| = [(7 +7){77.(1 + 0°) — GNey }

In the third line, we have, for simplicity, neglected the quantity in the second
line, assuming that the oscillation frequency is close to the threshold frequency
given by Equation 7.42. Further, using Equation 9.81b for D and Equation 9.14 for
G, and referring to Equations 7.44 and 6.35 for gy, and f3,, respectively, we have the
constant part in Equation 9.84 as

D 1
(7 47 + (v + @, — 20)* 2[Re 50|
2
_ 2ho (GN(c)*\ (1+71)? (ne,) 1 (9.86)
= ,9160”/.% d 4r » 20y + 7). (1 +52) — GNal .

hayf. /7. ( a? ><nw>

B e1d(y +7.)(1 — /o) \Gmomo

where gy, is the threshold atomic inversion at zero detuning. In the last line, we
have used the relation Gy, Nc; = wc{l + 52} from Equation 7.43 and the fact that
G/Gy, =0/oy. The quantity f. was defined in Equation 6.35 and
c1/¢o = (1 —r)/(1+ r) by Equation 1.17. Note that the quantity in Equation 9.86
diverges as the atomic inversion ¢ approaches the threshold value. Thus we have

(7@, 1+ 0B ()

=sin{Q!(Z +d)/c1 } sin{Qc(z+d) /e }

heyBe /v ( a ) ()

X
e1d(y +7:)(1 — 0 /0wm) \momo

(9.87)

e(ss+iw)r’ >0

67(5071'(0)1’ <0
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Next we consider the correlation function of the quantum noise part E,g” (z,1)
for the field inside the cavity described by the second term in Equation 9.64. Using
Equation 9.73 we have

<E§*> (2. ¢)E) (2, t)>

_sin{Q} (2 +d) /a1 } sin{Qc(z + d) /a1 } <v0|pa>z
7+ 7 +i(vo + 0 — 20)|? e1d

f L
X <Z: sin{Q (zpw + d)/c1} L I, () exp|(sp + i) (¢ — ')]d7’

x Y sin{Q.(zm + d) /c1} L (1) exp[(so — iw)(t — ‘L’)]d’r> (9.88)

(volpal /e14)*
7+ 76 + i(vo + 0, — 20) [

=sin{Q}(z' + d)/c } sin{Qc(z + d) /c1}

t t
x Y |sin{Qc(zm + d) /e }P9(1 + O-)J dT’J drd(7 — 1)
m 0 0
x exp|(sy + iw) (f — 1')] exp[(so — iw)(t — 7)]
The double integral is the same as the one evaluated in Equation 9.83. Thus we have
(ED @ OED )

(volpal /214)*
[y + 7. +i(vo + o — 2(»)\2

=sin{Q}(Z +d)/c1} sin{Qc(z + d)/c1}

x Y 1sin{Qc(zm + d) /1 }*9(1 + o) (9.89)
m
(551 i) +(sp—io)t _ (s(’; Fi) (¢ —t)
: so+s(§e ’ b < t/
X

e(saﬂw)t’ﬁ»(sofiw)t76(S0,,'w>(l,[’)

/
so+sy ’ b>t

By the same reasoning as that used below Equation 9.83, we go to

<Eéi)(zl, t+ T)E1§+)(Z, t)>
= sin{Q}(Z +d)/c1 } sin{Qc(z + d)/c1}
(volpal /214)* y(1+ o)

[y + 76 + i(vo + @ — 20)|* 2|Reso|

e(s’éﬂw)r’ >0

(9.90)

ef(sofi(u)i" <0

X Z [sin{Q.(zy, + d)/Cl}z{
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Using Equation 9.85 again, and also using Equation 7.44, we have the constant
part in Equation 9.90 as

(volpal/e1d)* Y1+0) _ (wlpal/aid)y(1 +0)
4 7o i+ o~ 20)] 2Res] 20+ 7)n(1+5) -GN o
hoy(1+ o)

- e1d*(y + 9 ){1 — (6/awm)} Noy,

The summation over m in Equation 9.90 is evaluated by using Equation 1.18 and
going to the integration over z,,;:

> [sin{Qc(zm + d) /e }| = L N dz,,|sin{Qc(zp + d)/c1 }|*

_Nd(1-r)/(2r) (9.92)
2 In(1/r)

_ Ndp,

=5

Thus writing the population in the upper level as
N(1+0)/2=N, (9.93)

we have

<A§’>(z’, t+1)E7 (2, t)> = sin{Q(Z' +d)/a}

) B hwyN,

x sin{Q.(z+d)/c;} —<
{Qc(z+4d)/ 1}% e1d(y + 711 — (c/ay) I Noy, (9.94)
elsotio) >0

X ,
e—(softw)r7 <0

Adding Equations 9.87 and 9.94 we have the total correlation function for inside
the cavity:

<E<—)(z’, 1) B (2, t)> = sin{Q (2 + d)/c1 } sin{Q.(z + d) /1 }

hoyB. /7. {( a’ ) N, }
X Ny +
ed(y +7y.)(1 —0a/ow) | \omomo () Noy,

e(sa-%—iw)r’ >0 (995)
>< .
ef(s(;ftw)r7 <0
—d<z<0

Next we turn to the field correlation function for outside the cavity. Using
Equation 9.71 we have
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<E<*> (2, ¢)EW (2, t)>

_ ’ (1/2i) exp(iQd/a) T )'2 [Z ¢ G (a(0)(0))
ij

"y+yc+i(vo+w672co

ot ot o
% J d,L_/J dr el((u,‘r —wjT)

X exp[(sg + iw)(t’ -2 Jco =) + (so — iw)(t — z/co — r)] (9.96)
VoPa

ed

x f & K dr<fin,(f')fm(f)>

0

+

Z sin{Q} (zw + d)/c1} sin{Q.(zm + d) /1 }

x exp|(sy + iw) (! — 2/ /co — ') + (so — iw)(t — z/co — 1)],
0<2, 0<z
If we look back at Equation 9.74, the thermal noise part is obtained by replacing
the space functions sin{Q!(z' + d)/c; } sin{Q.(z + d)/c1} by |(1/2i) exp(iQcd/cy)
T|> = T%/(4r) and the time variables ¢ and t by ¢ — (2//c) and t— (z/c),

respectively. Similarly, the quantum noise part is obtained by the same replace-
ments. Thus if we write

Z—z=Az (9.97)
we have (see Equation 9.95)

<f3(’)(z + Az, t+1)EF)(z, t)>

_ T?heyB. /7. {< 2 ><n )4 N, }
4re1d(y +7.) (1 —6/om) \\omomo/ " ' Noy, (9.98)
e(sa+ia)){rf(Az/co)}’ T — (AZ/C()) >0
X
67(507iw){17(Az/co)}’ T — (AZ/CO)<O

9.8
The Laser Linewidth and the Correction Factor

Next, we turn to the laser linewidth below threshold. The correlation function in
Equation 9.95 for inside the cavity is in the same form as that for outside the cavity
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in Equation 9.98 for equal locations Az=0. Thus the power spectra, the Fourier
transform of the temporal part of these correlation functions, are both

+00 )
I(w) :J <E<—>(z, b4 1) B (2, t)>e_“‘"dr
0 +00
x J ef(sofiwo)zfiwtdr + J 6(56+iwo)1*iﬂndf (999)
—00 0

—2Re sy
(wo — @ — Imsp)? + (Res)”

where we have rewritten the central frequency w as w,. Thus the power spectrum
is a Lorentzian with the full width at half-maximum (FWHM) Aw given by

Aw = 2|Re 5|
_ 2("/ + Vc)[VVC(l + 52) - GNCl]
(7472 + 8% (7 —7.)? (9.100)

200+ 7171+ 8%)[1 — a/ou)]
(V + Vc)z + 52()) - Vc)z

In order to express the laser linewidth in terms of laser output power, we calculate
the power output utilizing the correlation function in Equation 9.98. Note that the
power output P per unit cross-sectional area is (see discussion on Equation 4.59)

p— c030<f52> - 2c030<1§<*>}2"<+>> (9.101)
Thus

P= 26080<]A5(’> (z,t)E)(z, t)>

COSOTZhwyﬁc/"/'c 62 NZ
= (ne) +
2reqd(y +79.)(1 —a /o) OthOth0 Noy,

Note that this is independent of time ¢ and of location z. Since T=1+r and
cogo(1 4 1)*/(rerd) = 4f,, we have

po honbi/y. {( o >(n(,,>+ NZ} (9.103)

(r+7)1—0/owm) OthOtho Noy,

(9.102)

Thus by Equation 9.100 the product PAw is

4hay? (1 + 2 N
PA® = h‘”yz ﬁc(j‘s ) 2{( g >(nw) +—2 } (9.104)
(470" + (7 —7.)" L \omoumo Nowy
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We have the following laser linewidth (FWHM) in angular frequency:

Ao = 4ok (140 {( o )(nw> 4 } (9.105)

P (y47)2+ 0% =) L\omomo Noy,

where oy, is the threshold atomic inversion at zero detuning. Except for the factor
before (n,,), this formula is (f./7,)* times the conventional formula obtained for
example by Haken [2] and reproduced in Equation 4.62a for two-level atoms.

Note that, below Equation 7.37, we discussed the validity of replacing the cavity
decay constant of the quasimode analysis by that of the present cavity model based
on the equivalence of the two in the decay equations for the field amplitude.
So, the cavity decay constant y. in the above factor (f,/y,)* can be replaced by that
of the present chapter. This correction factor was reported by Ujihara [1] for the
first time. This factor has since been called the noise enhancement factor, excess
noise factor, longitudinal Petermann factor, and so on. We shall call this factor the
longitudinal excess noise factor K;. Then we have

o () oy

which depends on only the reflection coefficient r and is a decreasing function of r.
It approaches unity as the reflection coefficient r goes to unity. The correction
becomes important when r is small. We will see in the next chapter that a similar
correction factor appears also in the nonlinear gain regime or in operation above
threshold.

We will now examine if the same output power as in Equation 9.103 can be
derived from the internal field correlation function in Equation 9.95. We have the
stored energy W per unit cross-sectional area as

0
W = J dz 2?1 (z,t)EH)(z, t)>
° 2ehyp,/y
dz [sin{Q;(z + d)/c ) e 9.107
= (]| e pingente + ) g 909)
) )
X Ne) +
{(‘Ttho'tho (o) Noy,
The integral was evaluated in Equation 9.92. Thus we have
: h 2 N
WSt afen  awsme) ™ o)
e e ‘ o ! (9.108)
P
2.

where P is given by Equation 9.103. Therefore, we see that the power output is 2y,
times the stored energy. This shows that 2y, is the correct power damping factor in
this linear gain regime. We will see in the next chapter that this is not the case in
the nonlinear gain regime.
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Finally, let us consider the mathematical origin of the correction factor (f,/7,)>
for the laser linewidth. The appearance of this factor is rather direct in the case of
the quantum noise and in the case of the evaluation of the laser output through the
stored energy in the cavity. Exactly this factor appears in Equation 9.108. The factor
(B./7.) came from Equation 9.95, which in turn came from the integral of the
absolute square of the cavity mode function in Equation 9.92. This contribution
stems from the quantum noise arising at the location of each atom. Another factor
(P./v.) originates from the integration of the stored energy in Equation 9.107. The
correction factor thus seems to come from the square of the integral of the
absolute square of the cavity mode function:

0 2 dp 2
(J dz [sin{Q.(z + d)/cl}|2) = (z/—c> (9.109)
—d Ye
Let us recall from Equation 4.45 that the field in the quasimode cavity in the

linear regime was

1
w4+ vo —20) + .+ 7

t
xje“o"wﬂ”’){{i(m— @)+ Tf) =13l }

&(t) — &(O)B(SQ—ir/J)t +

(9.110)

0

Multiplying by i(hoe/2)Y* U (z) = i(ho Jerd)? sin{(o¢/c1)(z + d)} (see Equa-
tions 3.1 and 2.19a) and using Equation 3.22b for k,,, we rewrite the quantum part as

. t
E<+)(z7 £ =- sin{(wi/c1)(z +d)} iPach glso—i0)(t=t)
i(w; +vo —20) + 7y, +7  ed )o

A (9.111)
x Y sin{(wp/c1)(zm + d) 0 (t) dY
We compare it with the quantum part in Equation 9.64:
1) _ sinQ(z+4d)/c wopa
EEn= P47 +Hivo+ o, —20w) ¢ Zsm{Q (zm+d)/a}
(9.112)

y Jt £ (2) exp|(so — i) (t— 7)) d
0

So, the major difference is that the quasimode function sin{(wy/c1)(z+4d)}

replaces the complex cavity mode function sinQ.(z+d)/c;. If we repeat the
square of the integral in Equation 9.109 with the quasimode function, we have

Ood dz [sin{o, (z + d) /c1}|2>2_ @2 (9.113)
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Thus

(Jf)d dz sin{Q.(z + d)/cl}\z)z _ (&)2: .
(Lod dZ|Sin{wc(z+d)/cl}\2)2 Ve

Therefore, we may conclude that the linewidth correction factor K; = (f,/7,)*
comes from the use of the proper cavity resonant mode function that reflects the
output coupling, at least for the quantum noise. The physical interpretation of the
correction factor, the excess noise factor, will be discussed and a more general
derivation of the factor will be given in Chapter 14. In particular, the general
derivation scheme will show that the quantity to be compared with that in
Equation 9.109 is the squared modulus of the integrated squared mode function
instead of that in Equation 9.113 due to the quasimode function (see Equation
14.46). This is related to the projection of the noise function onto the adjoint mode
function, as was mentioned below Equation 9.44.

(9.114)
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10
A One-Dimensional Laser with Output Coupling:
Quantum Nonlinear Gain Analysis

In this chapter, we solve the laser equation of motion (Equation 5.33a) quantum
mechanically for the one-sided cavity model described in Sections 1.3 and 1.4. We take
into account the gain saturation behavior in the atomic motion: the atomic inversion
is dependent on the field strength at the location of the atom. Because of the output
coupling, the field distribution is not uniform. So we need to find consistent
distributions of the atomic inversion and the field strength. Because of this nonlinear
nature of the problem, it is difficult to solve the time-varying behavior of the laser. We
concentrate on steady-state operation, assuming the presence of a time-independent
field amplitude that still depends on the location. The field phase is, however, allowed
to diffuse under the action of the noise forces. The steady-state, time-independent
field distribution in the presence of gain saturation was found in Chapter 8, ignoring
the noise. Thus, in this chapter, the main problem is to find the degree of phase
diffusion, which determines the laser linewidth. The resultant expression for the laser
linewidth will contain correction factors compared with the conventional formula
when expressed in terms of the inverse output power. One of the correction factors,
(Be/vo)% is the same as that in the quantum linear gain analysis in the previous
chapter. The other factor results in a non-power-reciprocal part in the linewidth
formula. The essence of the contents of this chapter was published in Ref. [1].

10.1
The Equation for the Quantum Nonlinear Gain Analysis

From Equation 5.33, for the entire region —d < z < L, the equation to be solved reads

EH—)(z? t) = ﬁt(z7 t) + ﬁq(za t)

>

lpm|*2, J‘ 3" Ui(2) Uj(zm) 10
m
2hoy Jo 5= (10.1)

t/
[ o B v (e
0

where
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A . ; R o
Fy(z,t) = lz —7 Uj(2)a;(0)e ™ (10.2)
J

and

: t t
Fy(z)=) {’p’g“” L > Ui(2) Uj(zm)e 1) L e )= P (¢ dede | (10.3)
m j o

Assuming a single-frequency oscillation, we truncate the sinusoidal motion at the
center angular frequency w. We write

ED(z,t) = ED)(z,t)e ™, Fi(z,t) = Fy(z,t)e ",

R B ) (10.4)
Fy(z,t) = Fy(z, t)e
Then, for — d < z < L, we have
PN | (-0 (t—t)
E " (z,1) Z{ T .OZ Uj(2) Uj(zm) €@
4 (10.5)

x J e O ED (2 6, ()t dY
0

+ Ft(zv t) + Fq(27 t)

We will first seek the differential equation for E(*)(z,t) with respect to time.
Next, we will Laplace-transform the differential equation. Then we will look for the
steady-state field distribution in the transformed domain. We will finally look for
the phase diffusion in the inverse transformed domain, that is, in the time do-
main. The correlation for the noise forces was discussed in the previous chapter.
These correlation characteristics determine the degree of phase diffusion.

The summation over j present on the right-hand side (RHS) was evaluated in
Equation 9.8 for inside the cavity:

Z { Uj(z) Uj(zm)e*i("b*wff)}
J

2 1 , /
- — ——— sinkyj(z+d) sinkyj(z, +d)e )
7 e1L 1— Ksin’ky;d 1i( ) 1 ) (10.6)

1T 1 - ; ;
= (=" e {€ o (—tpm b =) e (1 ¥) |
p=1

where the factors oy = o, = 1 and a3 = a4 = —1. The delay times are
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2nd+z—z, 2nd — z+ zy,
Tin = Y T = — a
1 1
(10.7)
2nd+2d+z+ zp, 2nd —2d —z —z,
Ty =———————, Tgp = —————————
c1 a

For outside the cavity, the summation was given by Equation 9.66 (v is absent
here):

Z { UJ(Z) Uj(Zm)e*iwj(tfy)}
J

1 ks
= ;{ i Tﬂlh}d (kQ] coskyjdsinkojz + sinkyjdcoskojz )

X sinkyj(z, +d)e ) (10.8)
- 1 26()
g161 (€1 +¢o)

x}j VOt =t +150) +0(E—t —T50) —0(t—t +T6n)—(t—t —T6n) }

where

z 2nd—z, z 2nd+2d+z,
Tsn:_+7’ T6n:_+7 (109)
Co ‘1 Co 41

First, we consider the field inside the cavity. Using Equation 10.6 in Equation
10.5, we have (see Equation 9.10)

E(z,t) = Fi(2,t) + Fy(2,1)

t—|z—2zm|/c1 ) ) _
+ng U i 0n=0) 3 )t e—2nl/er G (1) Bz, )l

t—(2d+z+zm) /a1
_J e =) =1} (=) i) Q242 er g (V7,0 )Y
0

nM
+ Y (=1)"(Iin + L — Iin — Is) | (10.10a)

n=1
where
t—Tpn ~
I”":J exp[{fi(vmfw)fym}(tft’)+(ivm+ym)rpn]6'm( "VE(zp,t') dt (10.10Db)
0
and

2
|pml“v2

10.10
2hwercy ( c)

gm =
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10.2
Homogeneously Broadened Atoms and Uniform Pumping

Here we go to the case of homogeneous broadening, that is

Vm = Vo, Pm = Pa, Ym =7 (1011)
2 2
volpal
=g = olPel 10.
5 J 2hweqcy (10.12)

and to uniform pumping and uniform unsaturated atomic inversion, that is

Lpp=T0,  60,=06° (10.13)

0
m
Then, by differentiation with respect to time ¢, the integral equation is converted to
a simplified differential equation:

O (Bt~ Bzt - ﬁq<z7t>}

= {0~ ) =7}{E@z 1) - Fi(z.1) - Fy(z,1)}

+Zg[exp(zw Zm‘) ( ke ZM|>Jm<t_@> (10.14)

(, 2d—|—z+zm)~< Zd—l—z—i—zm)A ( 2d+z+zm)
—exp|io———"|E|zp, t ———— |G [ t ————

C1 C1 1

—I—ZM:(—r)n{Zosp exp (i0Tpn) E(zims t— Tpn) 6’m(t—rpn)}

p=1

To go further, we divide the field waves and the driving noise forces into right-

and left-going waves, respectively:

E(z,t) = & (2, t) exp{+iw(z + d)/c1} + & (2, t) exp{—iw(z + d) /c1 }
- R . (10.15)
Fig(z,t) = fig(z.t) exp{+io(z + d)/e1} + f4 (2,t) exp{—iw(z + d) /c1}

where the suffices ¢t and g signify thermal and quantum noise, respectively.

Then, comparing the terms of the right- and left-traveling waves, and ignoring
those terms that are oscillating rapidly with z,,, having a factor exp(£2iwz,,/c1),
we have (see Equations 9.16a and 9.16b):

(§t+/){e (z,t) — 07 (z,1) }

—Zg (z—2zm)e | zm t7272m Om t727zm
’ ¢ ¢

A,< 2d+z+zm>A< 2d+z+zm)
— e (zm t— 2T G (22T

a1 %]
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oM nd+z—=z 2nd+z—z
N\ ) At m \ A m
> (F)"qe g po T o
* ") { (zm a )6m< a )

= (10.16a)
A_( 2nd+2d+z+zm)A ( 2nd+2d+z+zm) H
-t |zgt—m—--T N [t ————

C1 a

_ Zg{H(zm ,z);;(zm t:ziﬂnﬁ &m<t:27“m)
m 1 C1

N (r/)”{éf (ZW ti2nd—z+zm>&m<t72nd—z+zm>

C1 4]

A+< 2nd—2d—z—zm)A ( 2nd—2d—z—zm)H
-t lzpy, —mmm——— o[t ————T
C1 C1

(10.16b)

where
izt =f (@O +f, (1), b (@)=f @)+ @) (1017
and
Y =7 +iv — o) (10.18)
= —rexp(2idw/c) (10.19)

Here the unit step function has been denoted as H.

10.3
The Steady-State and Laplace-Transformed Equations

We go to the steady state, which here means that the field amplitude fluctuates
negligibly but the field phase diffuses freely. The amplitude is stabilized by the
gain saturation effect but the noise sources cause a random walk of the phase. We
make the assumption on the atomic inversion that the inversion keeps a constant
value in time, the value being given by the steady-state ensemble average of the
quantum-mechanical expectation value with respect to the reservoirs for the atoms
and to the free thermal field. Accordingly, we write the saturated inversion as

om(t) = (om) (10.20)
where the saturation property is given by Equation 8.16:

O

) = R ER

(10.21a)
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where

En = <(E”’ (zm))2> (10.21b)

is the reservoir-averaged quantum-mechanical expectation value of the local field
amplitude. The operator sign drops from the atomic inversion.

In order to solve the coupled equations 10.16a and 10.16b involving space
variable z and time variable t, we Laplace-transform the field operator and the
noise operators with respect to time, as in Chapter 9 (we will concentrate on the
spatial region for the time being):

)
) (10.22)
)
)

As the Laplace transform of & (zy,t— t)n) is exp(—Tpus)L* (2, ), the sum-
mations over n in Equations 10.16a and 10.16b reduce to geometric progressions,
which can be easily evaluated. Replacing the summation over m by integration
with the assumed uniform density of atoms N, we have (see Equations 9.21a
and 9.21b):

(s+9") [fr(z, s) — V+(z, s)}

o[ (- E 225 ) 1 s i

1

1 0 2d+z+2zm \a-
a 1_7r”(5)J‘7d exp (_7S>L (Zm>s)<am>dzm

%]

170 () s e |

(10.23a)

and

0 N (10.23b)
—— | exp (Z Zm s) L (zm,s){om)dzm
- d

7S> i*(zm,sxam)dzm}
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where
'(s) =t exp(—2ds/c1) = —rexp{(iw — 5)2d/c1 } (10.24)

The initial values é*(z,0) — 0(z,0) associated with the Laplace transform
vanish, as can be shown by setting t = 0 in Equation 10.5 with the aid of Equation
10.15. Differentiation with respect to z yields the following coupled differential
equations:

itz = {—i#M}ﬁ(z, 5) + {i + i} V(2 5) (10.25a)

aq s+

dilzi*(z, 5) = {i_M}f(z, 5) + {d%—i}‘?’(z, ) (10.25b)

7 s+

where we have stressed that (s,,) depends on the location z. Integrating, we obtain

+ [ Y _ 5 gN(oz) i S\ /
LY (z,s) _L;z exp UZ, dz { o + P = + o Vi (2, s)dZ

. (10.26a)
+ exp |:J dzl{_i+gN<O—z/>}:| L+(_d7 S)
_d g s+
L’(z S) :Jz exp Jz dz" iigN<(Tz”> i,i Vi(zl S)dz/
' —d 2 41 s+ dz o ’ (10.26b)

+exp U_ dz'{i - MH L (~d,s)

d a s+
Because of the nonlinear atomic inversion factors, it will be difficult to solve the

coupled equations for a general location z. Thus we look for the boundary values
I*(—d,s) and L*(0,s). From Equations 10.23a and 10.23b we have for z = —d

L (~d,s) = V' (=d,s) = —{L (—d,s) =V (—d,s)} (10.27)
But from Equations 10.2 and 10.3 F,(—d,t) = 1:“(1(—d7 t) = 0 since U(—d) = 0
because of the vanishing boundary condition (see Equation 1.41b). Thus from
Equation 10.15 we have

Vi (=d,s) + V (—d,s) =0 (10.28)

so that

LT (—d,s) = —L (—d,s) (10.29)
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This is a statement that the right-going wave at z= —d is just the left-going wave

reflected at the perfectly conducting boundary. Also from Equations 10.23a and
10.23b we have for z = 0

(s+7) [i* (0,5) — V' (0, s)]

1 0 2d+ 2z, \ -
= gN{— m J_d exp (— o s) L (zm,s){(om)dzm (10.30a)

n 1_;“5) J: exp (Zf s> £ (2m,s) <om>dzm}

and

(s+7)[L (0,5) =V (0,9)]
=gN {ﬁ %exp (_C—Zl'" S) L™ (zm, ) (om)dzm (10.30D)
B J" '(s) exp (Zd T Zm s) L (zm,s) (om>dzm}

—d 1-— T’//(S)L (%]

Comparing these two equations we obtain
fr”(s)e(z‘i/c‘)s{fr((), s)— Vo, s)} =17(0,5) — V(0,5)
or by Equation 10.24
—r’{i+(0, s)— Vo, s)} —17(0,5) — V(0,5) (10.31)

Next, from Equations 10.26a and 10.26b we have for z = 0

0 0
»+ _ n) S gN({o2) i S\t /
L (0,s) 7Ldexp UZ, dz { 61—|— sty H (dz/+c1 V (2,s)dz

. (62) (10.32a)
J s 8N |5+
ool {5 e
and
0 0
3= _ " iigN<O—Z”> i,i () /
L (O,S)—Ldexp“z, dz {01 Sty H <dz’ . V (Z,s)dz
(10.32b)

+exp Uod dz'{i - MH i (=d.s)

c s+

Provided that the quantities V*(z, s) are known, Equations 10.29, 10.31, 10.32a,
and 10.32b constitute coupled equations for L*(—d, s) and L*(0,s). Anticipating
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the need for &*(—0,t) in evaluation of the output field, we solve these coupled
equations for L*(0,s). First, we rewrite Equations 10.32a and 10.32b as

L7 (—d,s) =exp Uo_d dz'{i - MH i*(0,s)

c s+

o , (62 i (10.33a)
: " i_gNO'z” 4 S\t ,
_J_depr_ddz {61 P } (dz’+cl)v (2,s)dz
and
. 0 s gN({e )]~
I (~d,s) = d2{ -~ +82%2 Um0
(o) —emp| [ ax{- 248N 109
(10.33b)

0 74
_ _ % i_gN<‘72”> i_i &) /
J_dexp{ J_ddz {61 sty } (dz’ . V (Z,s)dz

The sum of the RHS members of these two equations vanish because of
Equation 10.29. Then using Equation 10.31 we eliminate L~ (0, s) to obtain

0 0
(s gN{o)\ 1 J o s, gN{oz) 7t
[exp{dez <C1 " )} rexp{ 7ddz Cl+ sty L (0,s)
0 2z

_ " iigN<0'2”> i SNt /

_Jdeprddz {61 s+’ } <d2/+61 V(& 9iz
0 2z
_ " i_gN<GZ”> i_i 7T /
+J_dexp{ J_ddz {Cl s+ } <d2' a v (@s)dz

exp Uoddzl{_i’LMH [PV 0,9+ 7709}

o] s+

or

X JO exp UO dz”{i _gN(oz)
—d 7 a s+

} 4

confaf (2 2
)
)
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This last equation has simple interpretations. The left-hand side (LHS) is the
difference of the amplitudes &"(t,0) and é"(t —2d/c;,0), where the latter is
multiplied by the net gain and the reflection coefficients at both end surfaces
with phase shift associated with one round trip in the cavity. Note that
r' = —rexp(2idw/c;) by Equation 10.19. The first term on the RHS is the con-
tribution to the difference from the right-going components of the noise forces
associated with amplification and the proper time delay during the path from the
location z’ of the noise source and the output end z = 0 of the cavity. The noise
source extends from z = —dto z = 0. The sum of (d/dz’) and (s/c;) represents the
total derivative (0/0z) + (9/0t)(0t/0z) for the right-going wave along the path.
The second term comes from the left-going component of the noise forces with
path length 2d— |2'| for the noise to reach z = 0 from z'. This term is also asso-
ciated with the proper net gain and phase shift as well as the proper time
delay. The sum of (d/dz’) and —(s/c,) represents the total derivative for the left-
going wave multiplied by the phase shift of n at the perfect reflector, that is
—{—(0/92) + (0/0t)(0t/Dz)}. The third term is the contribution of the noise
forces that existed at z = 0 one round-trip time before. Note that the right-going
component in the third term is associated with amplification and reflection at both
end surfaces, whereas the left-going component is amplified and phase-shifted by
7 at the left end surface but has not reflected at the output surface.

10.4
The Lowest-Order Solution

We solve Equation 10.35 in a perturbative manner. For the lowest order, we solve
the equation that is ensemble averaged with respect to the noise sources. We
assume that the ensemble averages of the thermal and quantum noise sources
vanish, that is,

(#(0)) =0 (10.36)
(Tm(t)) =0

so that we have
<€/i(z, s)> -0 (10.37)

Then from Equation 10.35 we have

{1 - r'exp{Z J: dz’<—i+gN<—GZ’>> H (0,5 =0 (10.38)

cg s+
The inverse Laplace transform reads, using Equation 10.19,

0
et (0,t) — e (0, tfZd/cl){frexp(Zidw/cl)}epr Mdz/ =0 (10.39)
a7
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where we have ignored s as compared to y’. This equation shows that, in the
steady state, the right-going wave at the location z = 0 at time tis equal to the wave at
t—2d/c; times the one round-trip net gain with associated phase shift. The net gain
means double integrated gain times the product of r and -1, the reflection coeffi-
cients at both end surfaces. Note that the factor gN(o,)/y ~ 4N(02)/c1l,,—,, is the
unsaturated gain per unit length of the laser medium for zero detuning, where ¢, the
gain per atom per unit time, was defined in Equation 4.14. The appearance of the
frequency difference in 7' =y + i(vy — ) represents the dispersion of the ampli-
fying medium. In the steady state, we have &+ (0,t) = &*(0,t — 2d/c;). Therefore, for
a non-trivial solution for é*(0, t) to exist, we should have

0

14 re?wd/a exp{ZJ dz (%)} =0 (10.40)
—d )

Rewriting exp(2idw/c1) as exp(2ikd) we have

0 2gN (o) —1
/ 2 _
exp J,d dz ( 7 ) = rep i) (10.41)

The integral on the LHS reads, by Equation 10.21a,

0 0 0 /
2gN(Gy 2gN d
J dz/( ; <'JZ>> - g«/g J ’zz 7= 264°1 (10.42)
4 y Y ,d1+EZ,/|Es\

where the quantity I was defined in Equation 8.28b as

0 /
IEJ ,dizz (10.43a)
a1+ EL/|E|

and the amplitude gain per unit length is

Ng° No®
O8N 8NO (10.43Db)
Yy +i(ve — o)
Therefore, Equation 10.41 reads
-1
20°0) = ————— 10.44
exp(22°1) r exp(2ikd) (1044)

This is exactly what appeared in Equation 8.29 in the semiclassical, nonlinear gain
analysis of the same laser as in this chapter. Equation 8.29 describes the relation be-
tween the integrated local gain and the boundary conditions at both ends of the cavity.
Since the analysis in Chapter 8 was done ignoring the noise sources, the situation
thereis the same as the situation here. Thus we can use all the results in Section 8.4 for
the present, ensemble-averaged, and steady-state analysis. As we saw in Equation 7.33,
—r~Lexp(—2ikd) is equal to exp{(2d/c1)(y, — iw + iw,)}. Therefore

0 0 /
260 N J iz 24 i+ i) (10.45)

vl BEE o
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From this equation, comparing the real and imaginary parts, we have the
oscillation frequency and the space-averaged gain, which is equal to the cavity loss
(see Equations 8.32 and 8.33)

w = Y + Yo

) (10.46)
Cc
0 0 /
go’Nep 1 1J dz
Z _ = 10.47a
7 1+46%d) g1+ E2/|E) & ( )
where
2
5 = (“’CTVVO> (10.47b)
/ c

Note that the factor go®Ne; /{y(1+6°)} = #No® is the unsaturated amplitude
gain per unit time of the laser medium. The threshold atomic inversion, and the
space-averaged, steady-state atomic inversion are (see Equations 8.48 and 8.53)

2hwe; Ve

0 — 2
0%, = G = ———— 77 (1 + %) =& (10.48)
‘ valpal’N "' sN

Also, the field amplitude at the output end of the cavity is, from Equation 8.47,

v _ JE" [vilp’Ne®d 1
<\e S >_1—7’2 e16hw V(1+52) n(1/n

(10.49)

2
:1‘E_S| {2_&in00 — ln(l/r)}
- 1

The quantity in the curly brackets in the second line is the difference between the
gain and the loss for the field amplitude for one round trip in the cavity. As was
stated in Chapter 8, we can in principle determine the amplitudes of the right- and
the left-going waves, e*(z), except for undetermined phases.

Equation 10.47a also shows that the space-averaged, saturated gain is equal to
the cavity loss.

10.5
The First-Order Solution: Temporal Evolution

10.5.1
The Formal Temporal Differential Equation

Next we consider Equation 10.35 in first order in the noise forces and in the
parameter s. If we use the notation in Equation 10.43a, we have
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0

1-7 exp{ZJ dz'(—i +g—N<UZ;>) }
—d et sty

2ds ZGNI}

=1-7e e
xp{ o +s+y’

(10.50a)

where we have used the relation go° = G (see Equations 7.16 and 8.10a). Here we
refer to Equation 9.38. As a function of s, Equation 10.50a is in the same form as
the LHS of Equation 9.38 multiplied by exp{GNd/(s+y')}. Therefore, the
expansion on the RHS of Equation 9.38 can be used also in this nonlinear case.
Thus we have

0
1 fr’exp{ZJ dz/<fi+‘&gz/>>}
—d c1 s+
B 2d/C1
s+

(10.50b)

{v+ 7. +i(vo + o — 20)}(s — o)

where s, is the pole given by Equation 10.50a obtained as in Equation 7.35:

et (o —o)(w—ox) - (ci/d) 1 48N{(o2)d2' —i{y(0— o) +7.(0—vo)}
7+, —i(vo+ 0, —20)

So =
(10.50c)

Hereafter we set s = 0 since the steady state analyzed using Equation 10.40
corresponded to this situation and the lowest-order results in Equations 10.46
and 10.47 can be obtained by setting s, =0 in Equation 10.50c. Thus the first-order
equation derived from Equation 10.35 reads, if we use Equation 10.40 on the RHS,

2dy" +v,/
a Y

0 0
o _ n) S _gN<GZ”> d S\t /
B deexp{ L o {61 s+ H (d2/+61 vz, )z

SI:+(0, s)

o L e (10.51)
vt L] e[ a2 B (G- 2)v @ e
— g 2/aT (0, 5) — g2/ % v (0,s)
where
=7+ i(v — o) (10.52a)
b = o+ i — ) (10.52b)

' = —rexp(2ikd) (10.52¢)
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Inverse transformation of Equation 10.51 yields

2 ! !
= o {iéﬂo,twff*%*(mm}
1

dt

0 0
_ [N\ [0 0 \ov iy /
~[osl [ { Gov )}
0
o)
J—d 4
0 2 gN<(TZ//> d 0
X J exp J dz”{i/} {(—/——) ff(z’,t)} dz'
—d —d Y 0z ot t—(2d+2) /e,
0 0 st (o)
+$—1I eXPU dzll{_i+gN<(,7Z >}:| {U (z70)}dzl
J—d P a1 Y 1
_ @1 exp UO dz//{gN<O'z”>}}
—d Y
0 ’ 2z A=)
. J eXp<* 2d+=z S) exp |:J dz”{gN<(/iZ”>}] {U (z 70)}612,
—d €1 —d 14 ‘1

1
rexp(2ikd)

(10.53)

—07(0,t —2d/c1) + 0 (0,t—2d/cy)

Here we have ignored sin the factor s + y’, assuming much slower variation of the
field envelope function than the dipolar relaxation. In the second term of 5, we have
eliminated ¥ using Equation 10.40. The two terms with .# ' on the RHS come from
the initial values associated with the Laplace transforms of time derivatives. These
terms are proportional to §(t — |2/|/c1) and 6{t — (2d + 2')/c1 }, respectively, and
important only at times ¢t < 2d/c;. These can be ignored for the steady state and will
be neglected. Also, the inverse Laplace transform on the LHS is proportional to d(t)
and will be neglected. There appear retardation times that correctly represent the
time required for a noise occurring at z’ to reach z = 0. In the following, we shall be
interested in the time variation of the field amplitude, which is much slower than the
cavity decay rate and the reciprocal cavity round-trip time, so that our linewidth Aw
and the time difference of interest At should satisfy

Ao <y, c1/2d
(10.54)
Aty t 2d/c,

The retardation times of the order 2d/c; will accordingly be ignored. This as-
sumption is in accordance with the approximation involved in going from Equa-
tion 10.35 to Equation 10.51: the LHS of Equation 10.35 may be written, for sy = 0,
as [1 —exp{&(—2d/c1)s}]LT(0,s), where &= (y' +7.)/7 (see Equation 10.50D).
Therefore, Equation 10.51 is under the approximation |s| < |¢| ™" (c,/2d), which is
equivalent to Equation 10.54 except for the factor |¢| ", which is usually of the
order of unity. (Despite the approximation concerning the delay times in
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the following equation 10.55, we can show that the main results below can be
derived without this approximation, that is, using Equation 10.53.) Thus Equation
10.53 becomes, moving the boundary values to the top,

d At O j)/ At P
at D =g |7V O o mika (O

+ Jid exp{‘[: dz’ (%) } { (% + %) bt (1) }dz’
+ eXp{JO az’ (gN<GZ”>> } (10.35)
—d 4
X Iid exp{J: dz" (%) } { (% - %) (2, t)}dz/}

Here we give the expressions for the noise forces. For the thermal noise we have
from Equation 9.30

- 1 hw; , ,
+ ) == E - J +i(kyj—k)(z+d) . 0 —i(wj—w)t 10.56
A —2 glL(l—Ksinzkﬁjd)e %(0)e (10.56)

For the quantum noise we have from Equations 9.34a and 9.34b
fq* (z,t)exp{iw(z+d)/c1 }

—(z—zm) /01

=hy e {H(Z — zm) exp{(ivo +7)(z — zm) /1 } J; | exp(y/'t') () d¥
. exp{ (iv0+7) 2‘”:%} [;_(Zdwm)/“ exp(t)Fu(t)d
¥ i Pespiivo+ i [ et
— exp{(ivo + y)r;n}J:w exp(y'Y) E(¥)d¥ }} (10.57a)

and

Sy (z.t) exp{—iw(z +d)/c1}
t—(zm—2z)/c1 -
= hz et [H(zm —z)exp{(ivo + 7)(zm — 2)/c1 } JO exp(y't) Do (t)dt

+ i (—r)"{exp{(ivo +9)Tm} Lﬂh exp(y/t/)]:‘m(t’)dt/

— exp{(ivo + y)un}jo_“" exp(y¥) (V) dt }] (10.57b)
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where the constant h was defined in Equation 9.33c as

_ipavo

201 (10.57¢)

10.5.2
Thermal Noise

Now we examine the noise terms in Equation 10.55. Let us first examine the
contribution from the thermal noise in the second and fourth lines in Equation
10.55. We note that, for f,"(z,),

(e aam)iven

o 0 1 ho; i Ly i (10.58a)
_ (2L 0N\ o b g)p-itoon :
(82 618t> ;2 e L(1 — Ksinzk%jd) 5(0)

=0

Similarly, the contribution from ff (z,t) also vanishes:
0 0 \ s
(& - ﬁ)ﬁ (z,1)

9 9 1 ho —i(kyj—k) (z+4) —i(e— (10.58D)
= — — —— — Ky z (0 i(wj—w)t
(82 Clat> ; 2\ eL(1 - Ksinzk%jd) ¢ aj(0)e

=0

Thus the contribution from the thermal noise comes only from the quantity in the
first line in Equation 10.55.

10.5.3
Quantum Noise

Next, let us examine the contribution from quantum noise to the first line in
Equation 10.55. We have from Equations 10.57a and 10.57b, for z = 0,

£7(0,4) expficod /i }

t+zm/C1 -
= hz et {exp{ (ivo + 7)zm/c1} J exp(y't) Ui (¢)dt

‘ 2d+2m (2d+zm)/c1 B
— exp{(wo +7) T} Jo exp(y't) T (t)dt (10.59)

00 t—Tin -
2 or{eptin e | om0
0

n=

— exp{(ivo + “/)Tsn}JOim exp(y't) ()t }}
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and

f,{ (0,t) exp{—iwd/c1 }

_ hz eVt [Z {exp{(zvo + /)‘EZn}J o exp(y't) D (¢)dt

— (10.59Db)
t—Tan
~expllin e[ et |
0
with
2nd — zp, 2nd + zp,
T ==~ T = ——
! ! (10.59¢)
2nd +2d + z, 2nd —2d — z,,
T =—————— Tgp = ——————————
c1 %1
Equation 10.59a becomes
f,;(O, t) exp{iwd/c; }
t—Tin
o] Sy
Z ¢ Lz; {exp{(wo + 7)1} exp(y't) U (t) (10.600)

— exp{(ivo + «,)13,1}L*m exp(/!)E () }}

Also, by setting n - n+1 (ty, = T3n Tan — T1s), Equation 10.59b may be
rewritten as

£;7(0,4) exp{—icod/c }

= hze V't { Z )n+1{eXp{(lV0 + )73} r m exp (Yt () dt

nie1 (10.60b)
— exp{ (ivo + y)rm}[;” exp (3t )T (¢ }}
Thus we see that
£7(0,0) exp{iod/ci} = —(—r)"'f7 (0, ) exp{—icwd/c; } (10.61a)
or
~fyr .0+ rexp@k el (0= (10.61b)

Thus the contribution from quantum noise to the firstline in Equation 10.55 vanishes.

Next we examine the contribution from the quantum noise sources to the second
and fourth lines in Equation 10.55. If we use Equations 10.57a and 10.57b, the
results of 0/0z and (1/¢;)0/0t almost cancel each other, but (0/0z)H(z — zy) =
0(z — zy) and (0/02)H(zm — 2) = —0(z — z,) remain. This is a rather strange
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result. To confirm it, we return to the original form of the quantum noise in
Equation 10.3 and go to the case of homogeneous broadening:

. t t
Bz=) [lp“zvo LZ Uj(2) Uj(zm) &™) J e (om0 ()i d | (10.62)
m J

Dividing the function Uj(z) for inside the cavity described in Equation 1.62b as

2
Ui(z) = | ————————sinky(z +d
i(2) e1L(1 — Ksin’kyjd) sinky(z + )

(10.63)
5 gikii(ztd) _ piky(z+d)
Ve L(1 — Ksinkyjd) 2
we have
f;(z, t) =exp{iot — io(z+ d)/c1 }
. ’ ikyj(z-+d)
iPaVo 2 ety
X : Uj(zm
Zﬂ: [ 2 L ; e1L(1 — Ksin’kyjd)  2i (#m) (10.64a)

"
~ efiwj(tft’) J ef(ivo#,')(t’ft”) fvm(t//)dt//dt/:|
0
and
f‘ (z,t) =exp{iot +iw(z +d)/c1 }

q
, ¢ —ikyj(z+d)
ipavo 2 e "y
X — " Uiz
; [ 2 J 2 e1L(1 — Ksin’kyd) ~ 2i (zn) (10.64b)

07

¥

> e—iwj(t—t’) [
JO

g~ (ot (E=t") fm(f’)dt”dt’}

The quantity in the second line in Equation 10.55 is thus

0 0 r+
0 0 . .
— (5 + ﬁ) exp{iot —iw(z+d)/c1}

) ¢ ikyj(z-+d)
iPaVo 2 e
X E — E —Ui(zp
2 J e1L(1 — Ksinkyjd) 2 j(#m)

m 0 j

¥

% efiwj(tft’) J ef(ivngy)(tLt”) fm(t//)dt//dt/
0
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= Clexp{iwt —iw(z+d)/ci}
1

ipa Vo 2 gikj(z+d)
X — Ui(z
; 2 ZJ: \/e1L(1 — Ksin’kyd) 2 (zm)

t
y J =) F ) dy (10.65a)
0

1 ipao ) gilly—k)(z-+d)
o 2 zJ:zlL 1 — Ksin’ky;d) 2i

m

sin kyj(zp + d)

t
% J e{i(wfvo)fy}(tft”) fm(t//)dt//
0

Likewise, the quantity in the fourth line in Equation 10.55 is

(% _ %) exp{iot +io(z + d) /e }

¢ ikyi(z+d)

iPavo 2
Uj(zm
: Z( )J ZJ: al(l— Ksinkyd) 21 )

t/
. in(tt) J et B gy
0

-1 ) .
= Zexp{w)t +iw(z+d)/c1} (10.65b)
¢ iky(z+d)

lpaVO 2
Ui(zm
- Z ( ) Ej: &L(1 — Ksin’kyd) 28 j(2m)

> Jt 6_(iv°+' )(t—t") f\ ( )d//
0

1 B,70 Z ) ¢ilky—k)(z+d)
g 2 5 e L(1 — Ksinzkljd) 2i

m

sin kyj(zn + d)

t
XJ o071t )
0

where we have set, according to Equation 10.4,

Fpu(t) = D (H)e " (10.65¢)

The good thing about Equations 10.65a and 10.65b is that the summation over j
does not contain time ¢, and the evaluation of the sum is similar to the proof of the
completeness of the universal mode functions described in Equations 1.75-1.78.
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In particular, using the expansion of the squared normalization constant described
in the first line in Equation 1.70a and using the rule (set ky; — k = x)

ro daoy =By JOO oy d Ry
0 ~o0 (10.66)

= 21c1eM5(z +d £ y)

we have, after some minor algebra, and noting that {2nd + (z £ z,,)} = 0 for

n # 0,

2 etilky—k)(z+d) . ;
. S i(Zm +
;81L(1—Ksin2kljd) 2i in kij(z )
(10.67)
¢Fikn+d)
= iié(z - zm)
&1
Thus we have, as was expected,
9 ipaVO —ik(zm+d)
Ha’0 wtd) 5 (5 —
(82 Clat)fq (1) = 2¢161 Xm:e (2 —zm)
(10.68a)
t
0
and
8 a r— ipaVO ik(zm+d)
- T Al ) = ———— k(Zim Sz —
(82 c18t>f‘4 (z,1) 26181;8 (z = zm)
(10.68D)
t
% J e{i(w—vo)—v}(t—t”)fm(t//)dt//
0
10.5.4

The Temporal Differential Equation

Thus substituting Equations 10.58a, 10.58b, 10.61b, 10.68a, and 10.68b into
Equation 10.55 we obtain

dé+(0,t) (%] “
= [0 + 00

0
lpa\)o —lkd ikz,, gN<UZ>
261{1 Ze exp{J dz( 7

% J e{i(wfvo)fy}(tft”)fm(t//)dt//
0
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x Ze‘k (2n+24) exp“ = (gN; >>} (10.69)

t
XJ (i) -1}~ (u)dtu}
0

This equation has simple interpretations. The time rate of change of the right-
going wave at the inner surface of the coupling interface is proportional to the sum
of (i) some thermal noise contributions, (ii) quantum noise propagated to the right
to the coupling surface with corresponding amplification and phase shift, and
(iif) quantum noise propagated first to the left and reflected by the perfect con-
ductor mirror and then propagated to the coupling surface. The common phase
factor e * for the quantum noise _comes from [exp {ik(z +d)},_,]'. For the
thermal noise, the coefficients for f (0,t) and f (0,t) come from the net phase
shift plus amplification during one round trip within the cavity. This is seen by
Equation 10.40 for the cavity round-trip gain and phase shift. The right-going part
will first be reflected at the coupling surface and then amplified during the round
trip with an additional phase jump of = at the perfect conductor mirror. The left-
going part is not reflected at the coupling surface during the round trip and
therefore gets a net gain of 1/r. The reason why there are no noise contributions in
Equation 10.69 that were generated further in the past than one round trip is that
any single round trip in the past experiences an amplification that is canceled by
the cavity loss and thus does not contribute to the change in the field amplitude.

10.5.5
Penetration of Thermal Noise into the Cavity

For the thermal noise, a more concise interpretation of the thermal contribution is
that the quantity in the curly bracket in the first line in Equation 10.69 is the
thermal noise that penetrated into the cavity from outside and was amplified
through one round trip in the cavity. To see this, we note from Equation 10.56 that

-4 : eii(klj—k)(Zer)d 0 efi(wjfw)t
Z L(1 - Ksmzkl id) 5(0)

and from Equation 10.132 below, or from Equations 10.2 and 1.62b, the left-going
thermal noise outside the cavity is

R hw; 2
_ 5 =i ey
Ju (1) ‘;V 2 %@(1 — Ksin? kK2d)

*ikgjl 67 ikgjl

kyj e .
X ( . I cos kyjd—— R + sin kyjd

(10.70)

> dj(o)e—i(wj—w)t

187



188 |

10 A One-Dimensional Laser with Output Coupling: Quantum Nonlinear Gain Analysis

It is easy to see that, except for the common factor of

1 ho; )
> e (0
7 2\/ &1 L(1 — Ksin®kyjd)

the quantity in question is

—F,(-0,0) + F. (~0,1)

1
rexp(2ikd)

gtk _ 1 i
rexp(2ikd)

= _e—ikd{ <1 + %) cos kyjd + i(l — %) sin kljd} (10.71)
= ig i (1 — r> {—1 (1 + r) cos kyjd + sin kljd}
r i\1—r

T s -
HTeilkdfot (+07 t)

—

where T’ = 1—ris the transmission coefficient for a wave incident on the coupling
surface from outside. Also, (14 )/(1 —r) = co/c1 = kij/ko;. This relation can be
rephrased as follows: “The left-going thermal wave just inside the cavity is the sum
of the wave transmitted from outside and the right-going wave reflected with
reflection coefficient r.” It is important to note that the final form of Equation
10.71 implies that, except for the phase factor, the thermal noise reaching z = —0
in Equation 10.69 is the noise that penetrates into the cavity at z = 0 with
transmission coefficient T’ and is amplified by |1/r| = |exp(20I)| (see Equation
10.44) during one round trip. In the next chapter, we use this property of
the thermal noise, namely that it penetrates from outside and is amplified by
the proper rate during one round trip.

10.6
Phase Diffusion and the Laser Linewidth

Here, as preparation for the subsequent analysis on the laser linewidth, we discuss
the phase diffusion and its relation to the linewidth for the case of a laser operating
above threshold with well-stabilized amplitude. We regard the amplitude &*(0, t)
as an essentially classical quantity that has well-stabilized real amplitude ey and a
fluctuating phase ¢(0,t) that is also real. Thus

&°(0,1) = eo expligh(0, £)] (10.72)

where e is given by the square root of Equation 10.49 for the case of the nonlinear
laser discussed in this chapter.



10.6 Phase Diffusion and the Laser Linewidth

The line profile or the power spectrum is obtained as the Fourier transform of the
field correlation function. In the case of the field in the form of Equation 10.72,
the correlation function has the form

(e71(0, 1+ A0 (0.1)) = hlexpl—i{$(0, ¢+ At) — $(0,)})

~e(1 - iAd +3(-iAg)?)
=a{1-i(ag) - 189} (10.73a)
—a{1-3(@ap?)}
~ep{—1((4¢)")}
where
Ap = $(0, t+ At) — $(0,1) (10.73b)

and we have assumed that the phase change A¢ in a time At is small compared to
unity. The averaged phase change (A¢) vanishes because of the random nature of
the phase change. Because of the delta-correlated nature of the noise sources, we
anticipate that the ensemble-averaged, squared phase change is proportional to At.
That is, we anticipate that

((ag)") = Bl (10.74)

Then, writing the center frequency of oscillation as ®,, we have the power
spectrum:

I(o) = J e (B0, 1+ ApE T (0.0 dar

= eéj e N (exp[—i{ p(0, t+ At) — (0, 1)}]) e M dAt
00

~ eé J efl(uAt eXP{*%<(A§[))2> }et(uuAtdAt (1075a)
—00
loe]

= eé J efiwAt exp{ —%B|At‘ }eiw‘,AtdAt

—e B

(0 — w0)” + (B/2)*

Therefore, the full width at half-maximum (FWHM) of the spectrum Aw is B, the
average squared phase change per unit time:

Aw =B (10.75b)
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Thus, using Equation 10.69 we seek the value of B. If we substitute Equation 10.72
and its complex conjugate into Equation 10.69, we have formally

dg(0,t) dg (0, t)
dt dt

= K'(b), = K"() (10.76a)

where K'(t) is the RHS of Equation 10.69 divided by {ie, exp(i¢)}. Since the phase
¢ is real, we have

d¢(0,t)
dt

= ReK'(t) = K(t) (10.76b)
Here we have defined a real function K(t). We have
t
$(0,1) = [ ()t (10.76¢)

and the phase diffusion during ¢ to t + At, measured as the ensemble average of
the squared phase shift during ¢ to t + A, is

t+At

(o0 =([ " xwerar [ ke

10.77
AL (AL ( )
= I J (K{)K("))dt dt”
Jt t
Thus, if K(t) is delta correlated, that is, if
(K(EYK(")) = Bo(t —t") (10.78)
we have
t+AL piHAt
J J (K()K())dtde" = BIAY (10.79)
t t

and we arrive at Equation 10.74.

10.7
Phase Diffusion in the Nonlinear Gain Regime

10.7.1
Phase Diffusion

We substitute Equation 10.72 into Equation 10.69 and multiply both sides by
{ieg exp(i¢p)} " to obtain dep(0, ) /dt. Because it is not guaranteed that the quantity
thus obtained is real, we have to add its Hermitian conjugate and divide by 2 to
obtain a real phase, as in Equation 10.76b:
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dp(0,t) 1 a o {w .

= RO pa——
dt  2iegexplip(0,)]2dy +/ | T rexp(2ikd)’t

0
L PO N ik(z ) gN(o)
2018126 eXp{Lm dz( Y
« [ o)1) =) ) gy
Jo
1 0
_ WaVo gN(o,)
2018 exp{J_d dz( Y
x 37 et e { J " b (gN <,O—z>> }
m —d v

t
% J e{i(f“*"‘)>77}(t7ﬂ1)fm(t,/)dt//] + H.C.
0

(10.80)

We assume that the phase diffusion is slow and the factor exp[—i¢(0,t)] does
not change much during the impulsive actions of a noise source. For this reason,
this factor can safely be absorbed into the noise terms, and we will ignore this
factor from now on. Since the function K(t) defined by the RHS of Equation 10.76b

and given by Equation 10.80 contains the operators a(0), dT(O), [(t), and T j,,(t),
the LHS of Equation 10.79 contains <&(O)dT(O)>, <dT (O)d(0)>, <fm(t)fi¢(t)>, and
<f jn(t)fm(t)> as non-vanishing noise correlations. Taking these into account and

noting Equations 10.2, 10.3, and 10.15 for the definition of the noise terms, we
construct the LHS of Equation 10.79 term by term.

First, we examine the terms of the form <&T(0)d(0)>. The explicit expressions

for fti(z, t) are obtained from Equation 10.56. We have

(Kt Ka())

- 4%% %)2 V' i Ve
O
x {_efi(kufk)d _ meﬂ(hi—kﬁ}

~ Z ho wj (O)tzfi((z)j—(z))t”

e1L(1 — Ksin? k2, d)

‘ 1 ,
_itky—k)d _ —i(kyj—k)d
% { “ rexp(2ikd) ¢ }>

2
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- (@
46l \2d
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v
Y+

1 ho;
Z; &1L(1 — Ksin’kZ,d)

2

) 1 ., . g
iky—k)d . L _i(ky—k)d \ pti(wj—o)( —t") 10.81
X
¢ * rexp(2ikd) ¢ (e | )
1 /an2| ¢ 1 hoj (147 g +i(o—w)(f—t")
_1/a L e . j
4 (zd) Y+ 428@ ) (e

J

where we have used Equation 9.4 for the correlation of the photon creation and
annihilation operators. The normalization factor for the universal mode
function has been canceled by the quantity in the absolute square with a
residual factor (1 + r)*/r2. Now the number of thermal photons (n;) is a slowly
varying function of the universal mode frequency w; and may be taken out of
the summation together with w; itself. Then the summation over j can be
approximated as

Z ha; (1 + V) 2<nj>e+i(wjﬂu)(f4/)
&L r

ho (1 2 © [ -
= {1762 <i> <nw> J 7e+l(wj7w)(t —¢ )d(J)J

r CoTt
0 (10.82)
2 00

L o (14r (1) J ) gy

£1C0TT r —00

ho (1+71\°
= o) 21 (¢ — ¢

s1co7r< r ) {1o)2md( )

where we have replaced w; by w, the center frequency of oscillation, and (n;) by
(nw). We have also set w; — @ = x and extended the lower limit of integration to
—oo on the grounds that the important contributions come from the universal
modes that are within the constraint expressed by Equation 10.54 around the
cavity resonant frequency. Thus we have

(yere) = o 5

By a similar calculation we obtain, using Equation 9.4,

(i0100) = [ 55

/

v
U

Zho (147
r

€100

)2<nw>:| 5(t, - t,/) (10.833)

/

v
Ve

o —t") (10.83b)
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These correlation functions satisfy the property in Equation 10.78. Adding these
two for the thermal noise, we have

(1A0(0.0)*) = rm JM (K(E) Ko (#')) de "

t t
1 /012 Zho (1+71\°
:473(2*;1) g( , ) ((ro) +3) 1A

The quantum noise part described by the second through sixth lines in Equation
10.80 looks complicated. Thus we use the following abbreviations:

; . N
_ PaV0 —ik(z,+d) epr dz (g <02>> (10.84a)
26181 Zm /

: 0
__WaVo gN(oz) k(2 +d) J gN<GZ>
By, = o0, exp{‘[i dz( 7 ) }e exp y dz 7 (10.84b)

We see that the constants A,, and B,, are functions of z,, and they are rapidly
oscillating in space with the exponential factors e™*(#»*%), Then the quantum noise
part of the phase change reads, from Equation 10.80,

dpg(0,t) 1 ¢ 9 e
_ A, {i(w—vo)—y}(t—t") F My
dt  2ieg2dy + 7, +9, Z J ¢ )

+ZB J e{lw vo)—=y}(t— t” (”)dt”}—FH.C.

/ (10.83¢)

_r
A

(10.85)

Then the function for quantum noise K,(t) defined in Equation 10.77 is the RHS of
this equation and the correlation function in Equation 10.79 becomes

<Kq(t,)Kq(t)> 410 (;j)z j‘/

< {ZA* J —i(w—vo)—y}(¥' —t") T(///) m

ZB* J gl—ilo=vo) =7} - w/)fj‘w(t///)d ///} +HC.

(10.86)

"
% [{ZAM JO e{x(w—vo)—y}(t —t 1—~ ( ////)d P

+ZB J elilo—vo)=7}(¥'~ t//n)fm(t////)d////} LHC

)

Because of the correlation properties (Equations 9.5a and 9.5b) for the quantum
Langevin forces, the double sum reduces to a single sum and the double time
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integral reduces to a single time integral. For example, the portion that includes

Afn,Am<lA":rn,lA“ m> reads, with suffix FT TA,

,y/
Ve

N . =k (A
(Kq(¥) Kyt )>FTFA—4,¢5 (zd)
(gz'*'tﬂ—l)/z% t’zt"

2 ~m —i(w—vo) (¥ —t")—y(¥ +t"
XZ‘AM G21,12‘3{ R )}{ (e —1)/2y, ¥ <t

:i(cl) i(w—vo) (¥ —t")}
4¢3 \2d/ |y +v. 112
(1) ) [y E sy
X { (e}:(t’—t”) (' +") )/2/ ¥ < (10.87)

The terms of exp{—y(t + ")} decay after some time and are not important in a
steady state, and so will be neglected. Similar results are obtained for

<Kq(t/)Kq(t”)>rTrB’ <Kq(t/)Kq(t”)>rrJ[A, and <Kq(tl)Kq(t//)>rrTB' For the last two
correlation functions, the noise correlation constants are GTLZI that come from the
correlation <f w ()T jn(t” )> The cross-terms involving A}, and B,, or A,, and B;,

contain space integrals of rapidly oscillating functions and have no contributions.
Thus, summarizing the results, we have

NG 2 2 2
Ky (¢) Ky (¢ :—(—) Anl> +|B
(KOK) = g (i) g 2 (Anl 18P
e”"(""”)/Zy, g (10.88)
m m {—i(w—vo)(¥ —t")} -
X <G21,12 + G12,21>e ) 12y p <t
Substituting this expression into Equation 10.77 we have for At > 0
t+AL pt+AL
J J (Ko () Ky(t"))at dt”
t t
1aN 2 2
:fé)(ﬁ) Y4y Z (‘AM‘ + ‘BM‘ )(GTl,lz +G;"2’21>
m
1 ct-+AL rt+AL
X_J dt’{‘ g ki) () (1) J g A1) (1)) it 1)
2y ), Jv ¢
1 /c1\2 "/, 2 2 2 m m
:@<ﬁ> T+ Z(‘Am‘ + Bl )(G21.12+G12.21> (10.89a)
0 / c m
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X — t ; + ;
2y ), i —vo) =7 i(@—vo) +7
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1 _ gil@—vo)At—yAt At At el—ilw—vo)Aty p—yAt _ 1
— - + - —
—{i(@—vo) =7} Ho—vo) =7 {o—vo)+7  —{i(w—vo)+7}
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If At < 0 we have

ct+AL piAL

J J (Ky(¢) Ky (#) ) d de”

t t
_ 1 2 2 g 2 2 Gm m
*4_6(2)(@) zm:(|Am| +|BM| )( 21.12+G12721)

1 t+AL t+At t
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1 J‘t+At l{e{—i(u)—vo)(ﬁ—t—m)}e—y(t’—t—At) -1 1-— e{—i(ru—vo)(ﬁ—t)}ey(l’—t)}
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Now we are assuming that the time variation of the field amplitude is much
slower than the dipole relaxation. Remember that we neglected s compared with )’
in Equation 10.53, implying that the time derivative can be ignored compared to y'.
In another words, the time scale of interest is much larger than the reciprocal
dipole damping rate. Thus we have

7]AL > 1 (10.90)

Under this approximation only the terms of At in the curly brackets in Equations
10.89a and 10.89b remain. Thus

(1860.07?) — rm J:W (Ky(#) Ky (¥) )t "

t
2z
 4e} \2d

X (G?le + Gﬁ,u) »

,V/
AR

> (|Anl + [Bul?) (10.91)

m

|At]

+ (CL) — V())Z

Summarizing, the contribution to the laser linewidth comes from the thermal
noise in the form of Equation 10.83c and from the quantum noise in the form of
Equation 10.91. The remaining task is to evaluate the sum over m in Equation 10.91,
where the coefficients A,, and B,, are defined in Equations 10.84a and 10.84Db. For
homogeneous broadening of the atoms and homogeneous pumping, the coeffi-
cients G ;, and G ,; are constants that are independent of the suffix m and, from
Equations 9.5a and 9.5b, the sum is simply

G+ Gl =2y (10.92)
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Therefore we examine the sum

2 B, 2) =5 (290 [exp [ def—28N(0)
%:OAM' + Bl )_%:(20161) [ med <V2+(w—vc)z)

° 27gN(0=)
+ exp{[d dz <m>} (10.93)

P{Jdd <v2+<w—vo>2)H
10.7.2

Evaluation of the Sum Zm(\AmP + |Bm\2)

The evaluation of the above sum can be done by consulting the results of
Chapter 8, where the same laser as here was analyzed semiclassically in the
gain saturated regime. Note that (o,) in Equation 10.93 depends on the field
amplitude through Equation 10.21a, which, in turn, depends on the location z.
First, for the spatial differential equation for the absolute square of the right- and
left-traveling field amplitudes, we again cite Equations 8.35a and 8.35b, which are,

respectively,
0 0*
(@/d)e" @) = X e ()
1+ |yl
- —(®+ o)
(d/dz)|e”(2)|” :(72>|6 @)
1+ |Exsl

Because we are now assuming that the magnitude of the field amplitude is
constant in time, allowing only phase diffusion, we can use these equations here.
These are integrated as

¥4 0 0*
@) = le o) ep( | a2 (10.942)
21+ |Eyys
Z 0 0*
e (2)” = le"(20)|” exp (— J Lam’) (10.94b)
201+ |Eyql

where, from Equation 8.23c, the power gain per unit length is

29gNe®  24No°

(vo — ) +7?2 Z!

o0 o = f—/ooN rcc = (10.94c)
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Comparing these with Equation 10.21a, that is,

0

om) = 1+ B /IEP

(10.95)

we see that the integrand in Equation 10.93 is equal to the integrand on the RHS
of Equation 10.94a:

29gN(o;) o+
PH©=v)" 14 |El

(10.96)

Thus we have

eprO dz( 218N (o) ) = e @I (10.97a)

P+ (@=-vw)?)  let(za)l
and
Zm + 2
epr dz 278N (o) 5| = L (Zm)|2 (10.97Db)
- \P*+ (@ =) le* (=d)]

Also, we have

" 2ENe) N1 _ e O)F
eXP{Jd dz <y2 (o VO)Z) } = e (—d) (10.97¢)

Now, as can be seen from Equations 10.94a and 10.94b, the product of |e* (z)|”
and |e” (2)|* is a constant:

e @I e ()" = C (10.98a)
Since the field vanishes at the perfect conductor surface at z = —d, Equation 10.15
shows that

e (—d) = —e (—d) (10.98b)

Therefore, we can set
C=le"(=d)’le" (=d)]* = | (—d)|* (10.98¢)

Thus we have

YO /let @)l = e O e (zn) /Ie (—d (10.99)
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Therefore Equation 10.93 becomes

S (ul ¢ 7)< N(J2l0) E O

0 2c11) Jer(~d)’
y J dZm(e-<zm>|2 + |e+2<zm>2>
-4 e (=)

In Appendix E we evaluate the integral in Equation 10.100. The result is

0 e (zm)* + le* @)\ _ B A
Li dzm< g ) - Zdz{l +1+—Ag(r)} (10.101)

(10.100)

where the function

1y \* 1+
g(r):§<ﬁ> + Yo _

Be 4r fe
, (10.102)
_ 2{ In(1/r) } Jr%ln(l/r){(l -/} .
(=r)/r {(=r)/ry?
is monotonically decreasing from + oo to 0 as r goes from 0 to 1, and
0_ 40
JEpa— (10.103)
O

is the fractional excess atomic inversion. The factor B, = (c1/2d)(1 — r?)/2r was
introduced in Equation 6.35 and appeared also in Equations 9.92 and 9.108
concerning the integrated, absolute squared field strength of the cavity resonant
mode. We stress here that the integral would be simply 24 if the field distribution
were uniform, as in the quasimode analysis. For r— 1 we can show that y./f,—1

and g(r)—0.
Now Equation 10.100 reads, owing to Equation E.10,
2
2df A
A2+ |Bylt) = N(1Palvo)"2dBe [y A 10.104
5 (ol + 1onf?) = N(Be) 2R fy gt (10.104)

Returning now to Equation 10.91 and using Equation 10.92, we obtain

t+AL pt+AL

[ xenyarar

t t

_ | ey N |palvo) *2d B, A
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Thus the contribution from the quantum noise to the linewidth (FWHM) is
the quantity in the square bracket. We rewrite this equation using the

(10.105)
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expression for the threshold atomic inversion in Equation 10.48 and the
expression for f:

<{A¢(o,t) }2>q - LHNJHN<Kq(t/)Kq(t”)>dt/dt"

t
2 2
hol—r> N A
1 At
ce; r? ZNG?h{ +1+Ag(1’)}]| |

(10.106)

/

v
U

10.7.3
The Linewidth and the Correction Factors

Adding the contributions from the thermal noise, Equation 10.83c, and from the
quantum noise, Equation 10.106, we have the total diffusion and the linewidth

(FWHM):
(1800.01) =5 (S [ (15) (g, 2
' C4eg \2d/) |y 4+l |eco \ T )
(10.107a)
hol—r* N A
ton 7 ZNG?h{1+1+Ag(r)}}|At
Thus
1 (cl)Z Y P lho 1 147\ <n>+1
O =——\75 - o) 5
42 \2d/ |y +7 |e1co\ r 2
plol-r N [1 A o)
ce1 12 2NaY, 11 A® (10.107b)
L (@) el 1y
46 \2d) |y 4+l e1co \ T

x {(<nw> +3) + WNG% {1 + 1+iAg(r)H

where in the second equality we have used the relation ¢y/c; = (1 +7)/(1 —r).
Here the real field amplitude e, is given by the square root of Equation 10.49.

Now we try to express the linewidth in terms of the power output. In order to
obtain the output power dependence on the linewidth, we require the relation
between the amplitude ey and the power output P. The power output per unit
cross-sectional area p may be related to the real amplitude ¢, of the right-traveling
wave at the inner surface of the coupling interface by

P = 2¢000| Teo|* = 2¢000(1 + )|l (10.108)

where we have put the absolute sign on the real amplitude for later comparison. In
the next section we will examine how the use of the transmission coefficient T in
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Equation 10.108 can be justified. Using this expression and noting that
go/er = 2/c2 = (1—1)*/(1+r)%, we have

o ey T L (1
x {((nu) +3)+ WNU& {1 + 1+iAg(r)H

Finally, using the definition 8, = (c;/2d)(1 — r?)/2r (Equation 6.35) and Equa-
tions 10.52a and 10.52b for y" and y!, together with the expression (Equation 10.46)
for the steady-state oscillation angular frequency, we have

2 2 2 2
Aoy — 2hwy? <&> ,)2(1 +25 ) i
p Ve (V + Vc) +9 (V - yc)

x {(<nw> +1) +N2N+(,§: {1 tq fﬁ“ﬂ

We use Equations 10.48 and 10.49 to relate the power output and the fractional
excess atomic inversion as

0
B /o 2 (1N [Jo
P = 26000 T <|e (0)] >_28101\Es| ln(r) {G?h 1}
:Psln<1>A
.

where P, = 28101|ES|2 is the saturation power. Therefore, the fractional excess
inversion is proportional to the output power, and Equation 10.109b can be
rewritten as

Aoy 2oy (1+0%) (E)Z
(0 +7)° + 07— )" \%e

1 1 N+ Ny N; + Ny g(r)
X |:P{(<”w> + 2) + ZNO'?h } + ZNO'?h PP, 11’1(1/}’)

/

v
Y+

(10.109a)

(10.109b)

(10.110)

(10.111)

This expression has two corrections compared to the conventional formula
obtained in Equation 4.82 and in Refs. [2] and [3]. One correction is the factor

which also appeared in the previous chapter in the quantum linear gain analysis.

The other is the newly added term that is proportional to g(r). This term origi-
nates in the quantum noise contribution. Figures 10.1 and 10.2 depict the factor
K. = (B./7.)" and the function g(r), respectively, as functions of the reflec-
tion coefficient r. The first correction factor is a decreasing function of the re-
flection coefficient r: it decreases from + co to 1 as r goes from 0 to 1, and thus is
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Figure 10.1 The longitudinal excess noise factor
K. = (B,/7.)* as a function of the amplitude reflectivity r.
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Figure 10.2 The function g(r).

important for small r. The second correction is important for large fractional
excess atomic inversion A, or small saturation power, and for small r. The function
g(r) decreases monotonically from + oo to 0 as r goes from 0 to 1 as stated earlier.
The second correction brings to the laser linewidth a non-power-reciprocal part of
the linewidth. For the region of small power output such that P < P;In(1/r),
there appears a power-independent part of the linewidth as noticed by Prasad [4]
and by Van Exter et al. [5]. The quantity PsIn(1/r) corresponds to the power output
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for the case where the field amplitude squared is equal to the saturation parameter
|2, whence oy = oy, = 6°/2 and A=1 (see Equation 10.95).

The form of the noise (n,,) +1+ (N; + N1)/(2N¢¥,) in Equation 10.111 looks
different from that in Equation 9.105, {¢?/(c101m0)}(nw) + N2/ (Nay,), obtained
for the linear gain analysis. In the case of Equation 9.105, the above form appeared
directly from the normally ordered correlation functions in Equations 9.4a and
9.5a. In the case of Equation 10.111, the factors (n.) + 3 and N/(2Noy,) appeared
because of the symmetrically ordered correlation functions used for the evaluation
of the real phase of the field. In particular, the symmetric ordering appeared in
Equations 10.83a, 10.83b and 10.88 because of the Hermitian conjugate terms. So,
in this case of nonlinear gain analysis, the anti-normally ordered correlation
functions in Equations 9.4b and 9.5b were also taken into account. Except for
the factor ¢?/(oyom), the above two forms are the same since
1+ (N2 + N1)/(2Noy,) = N3/ (Nay,). It should be noted that different orderings of
the noise operators lead to almost the same form of the noise contributions.

10.8
The Field Outside the Cavity

Up to now we have considered the linewidth for the field at the output end of the
cavity. The output power dependence of the linewidth was derived through the ad
hoc Equation 10.108, expressing the assumed relation between the output power
and the field strength at the inner surface of the coupling interface. We will now
calculate the output field for homogeneously broadened atoms and for uniform
pumping, and examine how the ad hoc equation can be justified. Equations 10.1
and 10.8 give, in a similar manner as in Chapter 9,

EY (20 = Bu(z,t) + Fy (2, t)

2.2 0
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= Fy(z,t) + Fq(z t)
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% {J : e—(ivoJr“/')(t*Tsﬂ*f)E‘( )(ZW )6 () dt"
0

t—Ten . N
_J (o 9) (=6 1" E< (Zm, ' )Am(t”)dt”} (10.113)
0

where, from Equation 10.9,

z 2nd—z, z 2nd+2d+z,
S T e (10.114)
Co C1 Co C1
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Truncating the rapid oscillation with frequency o as in Equation 10.4,

E(+)(Z7 t) = (+)(z, t)e—iwt’ j:‘t(z7 t) = f:t(27 t)e—imt7
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(10.115)
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Differentiating with respect to time ¢, we obtain

{gt +y }{E(” (z,1) — Fi(z,t) — E,(z, t)}

= ng i { wn;nE >(zm7 t— T5y)0m (t — Tsp,) (10.117)

n=0
_ eiwren E(+>(zm7 i — Tﬁn)a'm (t _ T(m)}

where Y/ =y +i(vy — ), the transmission coefficient T = 2¢y/(co +¢1) =1+,
and the constant g is defined in Equation 10.12. We decompose the field into
right- and left-going waves, as in Equation 10.15, but with the wave constant
k() = (JJ/C()Z
Eo(2,t) = & (2,t) exp{+imz/co} + & (2, 1) exp{ —iwz/co}
~ ) ) (10.118)
Fags(2,1) = f,(2.8) expl+io0z/o} + i (2, 1) expl{ —ico2/co}

where the suffix o has been added to signify a quantity existing outside the cavity.
We note from Equation 10.114 that the right-hand member of Equation 10.117
yields only right-going waves. We have

{gt+y}{ o (2:1) = (Z,t)—;;(z,t)}
) TgZi(_r)n{EXp (iwmil> B <Z'"’ t_;_m> (6m) (10.119)

m n=0 1 0 a

. 2nd+2d4z,)\ ~(+) z 2nd+2d+z,\ .
—exp|io—————|E | zyyt——————— | (Gm)

a Co 9
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For the left-going waves we have

{g ,}{ S (z,t) ft(z,t)—fo’q(z,t)}:O (10.120)

We Laplace-transform these by the correspondences

& (z,0) = L) (z,9)
g, (z,t) — Jio’ (z,5)
A (10.121a)
0y (2,t) = V' (2,5)
b, (z,1) = V, (2,5)
where
0y (2 ) =fof + foa (10.121b)

We have from Equation 10.119

{s+ 7 HLi(z,5) = V) (z,5)}

WS () (-2

Zm, 5)€ ik(zn+d) | (Zm, 5) ¢~ iKzn+d) } ()

(
{, <2nd+2d+zm } ( z 2nd+2d+zm>
—explio| —— = | texp| ——s—————"5

- exp{f 25+ (iw—s) (Zd + ZV”) }f (2, s)e~HEntd) <&m>} (10.122a)

where the factor 7/(s) = —re?©=9/% was defined in Equation 10.24. The initial
value €f(z,0) — b} (z,0) vanishes, as can be seen by examining Equations
10.113 and 10.118 for t=0. In the second expression, we have converted the
summation over m into an integration over z,,. We have ignored the terms in
the integration that are rapidly oscillating with z,,. We further rewrite Equation

10.122a as
{s+7HL (29 = V) (z9)}
0
_ _ 2 ikd 1
= TgN exp( o S) € J_d dzm 1= (10.122Db)

e (225) 2 o)) — exp (=225 1 s (o)

1



10.8 The Field Outside the Cavity

We compare this equation with the right-going wave in Equation 10.23a for
inside the cavity at the coupling surface z= —0:

(s+7) [i* (0,5) — V' (0, s)]

1

Thus we have

- gN{ - 1%”(5) ﬁd exp (— 204 2 s> L (zms){om)dzm  (10.123)

{Li(z,5) = VS (z,9)} = Texp( ) ikd [L (0,s) — \A/Jr(O,s)} (10.124)

Co

From Equation 10.120 we have

(s+9)[L; (z5) = V5 (z,5)] =0

or

L (z,5) =V, (2,5) =0 (10.125)

We inverse Laplace-transform Equations 10.124 and 10.125 to obtain

e (z,t) = f (z,) + TeMe* (—o, - ;) — Teft (—07 - 3) (10.126)
0

Co

& (z.1) =f, (z,1) (10.127)

Here we show that, outside the cavity, the only relevant noise source is the
thermal noise. In fact, if we use the expansion in Equations 10.8 and 10.9 for
outside the cavity, we have from Equation 10.62

Fq(zvt)
7ipavoi 2¢o
h 2 8161(C1+Co)

o] t—Ts5, . " on t—Ten .
m n—

0

2nd—zm

1puV0 T e R 7iiznd*2m7u B g4
2816127":”2; {J exp{ (1vo+/)<t 0o t>:|rm(t )dt

fz 2nd+2d+zm

_J757 “ exp|: (WO-H;)(t_CE_M_t//)}fm(t//)dt//}
0

=for (z,t)e /%) (10.128)
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This contains only right-going waves and has no left-going component, as we have
indicated in the last line.

Next, we examine the quantum noise that is transmitted from inside to outside
the cavity. From Equation 10.60a the right-going wave inside the cavity at the
coupling surface is, recovering the oscillation at the angular frequency w,

fq*(—O7 t) exp{iwd/c; } exp(—iwt)

o0

t—T1n B
= hz e Vet {Z {exp{ o + 7)T1n} J exp(y't) Ty (¢)dt/

n=0

— exp{(ivo + y)rs,,}[oﬂ exp(y/¥) DotV H

(10.129)

:ipaVO —(ivo)t = _n ) . 2nd — zp,
g (L
_ond—zm

1
y J Tl () gy
0

2nd+2d+zm

L , S~
—exp <(ivo +7) 2nd 4 20 %z z’”) J Ll P gy H

C1 0

where Equations 10.57c and 10.52a were used for the constant h and y’. The values
of 1y, and 13, were substituted from Equation 10.7. Comparison of Equations
10.128 and 10.129 shows that

foi (2,1) = T, (—0,t — 2/co) exp{icod /c1 } (10.130)

Therefore, concerning the quantum noise, the first and the last terms in
Equation 10.126 cancel. Thus the “raw” quantum noise disappears outside the
cavity — it appears only as an amplified noise that constitutes a part of transmitted
internal light field.

Next, we examine the case of thermal noise in Equation 10.126. From Equation 10.56
the right- and left-going waves inside the cavity are

- 1 how; . .
+ _ J +i(kij—k)(z+d) 5 —i(wj—w)t
z,t) ==+ E e Y (0)e " 10.131
VC ; 2\/e1L(1 - Ksinzk%jd) 5(0) ( )

while the right- and left-going waves outside the cavity are, using Equations 10.2
and 1.62b,

. hw; 2
= (20) = i nwj
S 2:1) ’zj:V 2 \[e1L(1 — Ksin®k2d)

Fikojz

k e +iko; )
X (:I: . Cos kijd——+ sinky; dT) &j(0)371<a’j‘*w)t (10.132)
Yl



10.8 The Field Outside the Cavity

The third term in Equation 10.126 is, using ﬁ* in Equation 10.131,

_TeME (0, ¢ — Teikd —'
e (— z/c) = Z e1L(1 — Ksin’k?, d) (10.133)

% et(klj—k)ddj<0)e—l(wjﬂu) (t—z/co)

Thus, concerning the thermal noise, the sum of the first and the third terms in
Equation 10.126 is

fof(z, t) — Te""dﬁ(—o, t—2z/coy)
h(,!) k LkoJ lkoj
= —_— k d k d
lz \/ e1L(1— Ksin? kijd) (koj cos kyj + sinky; ) (0)

X e_i(wj )t _lkOZ Lkd —
Z e1L(1— Ksm2k1 id)
(10.134)
% gilkj—k)d a(o)eﬂ(wj )(t-z/c)

_Z hCU ( ) —i(wj—w)(t—z/c)
V 2 &1 L(1 — Ksin® kljd)

ki 1 1.
<k0j cos kljd +1isin kljdi - Tie’(kli)d>

Then, noting that T=1+r and that ky;/ko; = co/c1 = (14 71)/(1 —r), it can be
shown that the quantity in the large round bracket is

kyj
( coskljd —Hsmkljd——T e(li )
koj

by y y (10.135)
= koj = cos kyjd x — 5 + isin kyjd x 3
where ' = —r. Thus
fH(z,t) — TeMf+ (=0, t— z/co)
hw; 2 )
=7/ B B — 0\ Pl Gl DI G
; V-2 \/4,L(1 — Ksin’k2d) 5(0) (10.136)
k 1 1
X ( k(l)j cos kyjd x = 5 + isinkyjd x 2)

From Equation 10.132 this quantity describes a right-going wave that is just the
left-going wave outside the cavity f; (z,t) reflected at the coupling surface with
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the reflection coefficient r’ = —r for the wave incident on the coupling surface
from outside. Thus the net result for Equation 10.126 is

&5 (2,t) = Tt (,07 t— 5) +rf; <+o, t— 5) (10.137)
Co Co

This shows that, also for thermal noise, the “raw’” thermal noise inside the
cavity does not appear outside the cavity. Consequently, Equation 10.137 together
with Equation 10.127 gives the final result for the expression for the laser field
outside the cavity. Since the second term in Equation 10.137 represents the am-
bient thermal noise existing outside the cavity, the relevant output field is given by
the first term in the equation and is a copy of the field at the inner surface of the
coupling interface at z=0:

&t (z,t) = Teg+ (—0, - Cf) (10.138)
0

Thus the phase fluctuation and the linewidth should be the same as was given for
the field at the inner surface of the coupling interface. The formal expression for the
latter field is given by Equation 10.69 and the linewidth due to phase diffusion for
this field is given by Equations 10.107b and 10.109a. In going from Equation 10.107b
to 10.109a we have expressed in Equation 10.108 the field amplitude outside the
cavity as e, = Teg, where the real amplitude e, was defined by Equation 10.72 as
et (0,t) = ey explig(0,t)]. On the other hand, Equation 10.138 gives, except for the
fluctuating phase, the constant part of the amplitude outside the cavity as

e, = Te*e, (10.139)

This does not affect the evaluation of the output power in Equation 10.108.
Therefore, the output power dependence of the linewidth of the output field is the
same as that in Equations 10.109b and 10.111, as expected.

We note, however, that this equivalence is not true if the output field is not
a laser field but a minute field from inside the cavity, because this time the
thermal field expressed by the second term in Equation 10.137 cannot be ignored.
An explicit consequence of including this second term will be described in
Section 15.1.1.1.

We note that for the expression in Equation 10.138 for the field outside the
cavity, the phase diffusion along the distance on the laser axis can likewise be
evaluated as the temporal diffusion. It is easy to see that the general expression for
the diffusion in this case reads (see Equation 10.109b)

_ 2horf; P(1+06)
P (p+9) + 80— )

N, + N A
x {(nw+%>+ 22Na°h1{1+1+Ag(r)H
t

({ad(z.0))
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11
Analysis of a One-Dimensional Laser with Two-Side Output
Coupling: The Propagation Method

In the previous chapter, we have extensively developed the rigorous method to
evaluate the phase diffusion of a one-dimensional laser with output coupling
starting from the full coupled equations of motion for the field and for the atomic
dipoles. The atomic inversion was assumed to be constant in time but was
dependent on the field strength. The detailed analysis in the previous chapter
indicates the existence of a simplified, ad hoc method that relies on the existence of
two counter-propagating waves inside the cavity and on the optical rules applied to
them at the boundaries. We name this method the propagation method or
propagation theory. This method also relies on the simplified correlation functions
for the noise sources. By limiting the number of traveling waves to two, and
allowing for their reflection and transmission rules at the two boundaries, one can
follow the development of the field during one round-trip time. On the basis of
this time development, one will obtain a diffusion equation for the phase of the
field, which can be evaluated rather easily by use of simplified models of the noise
sources. The essence of the contents of this chapter was published in Ref. [1] using
a simpler cavity model.

11.1
Model of the Laser and the Noise Sources

The model cavity is depicted in Figure 11.1. The cavity extends from z=0to z=4d.
Infinitely thin mirrors M1 and M2 are attached to the cavity ends. The dielectric
constant and the velocity of light inside the cavity are, respectively, ¢; and ¢;. The
amplitude reflection coefficients of mirrors M1 and M2 are r; and r,, respectively,
for the wave incident from inside the cavity. The amplitude transmission coeffi-
cients for mirrors M1 and M2 for the waves incident from inside are, respectively,
T and T,. The amplitude transmission coefficients for the waves incident from
outside are T; and T, respectively. The outside regions z < 0 and d < z are
vacuum. The dielectric constant and the velocity of light for the outside regions
are gy and ¢y, respectively. A gain medium made up of gain atoms of uniform
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M1 M2
%o Co e TN €9, Co
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«— T T, — 1
0 d —» z

Figure 11.1 The model of an asymmetric two-sided cavity.

density N exists in the region 0 < z < d and the medium is uniformly pumped.
The atoms are two-level atoms with angular transition frequency vy and homo-
geneous full width at half-maximum (FWHM) 2y.

We recall from Equation 10.69 that the slowly varying field amplitude at the
output surface of the one-sided cavity has its time derivative in the form of a sum
of the thermal and quantum contributions. A concise interpretation of the thermal
contribution was that the quantity in the curly bracket in the first line in Equation
10.69 is the thermal noise that penetrated into the cavity from outside and
amplified through one round trip in the cavity.

For the quantum part of the time derivative of the slowly varying field amplitude
at the inner surface of the coupling interface, there was a sum of the right-going
and left-going quantum noise fields, that is, the quantum noise propagated to the
right to the coupling surface with corresponding amplification and phase shift,
and the quantum noise propagated first to the left and reflected by the perfect
conductor mirror and then propagated to the coupling surface. The quantum
noise field is generated within the cavity from the laser active atoms and amplified
before it reaches the output mirror.

Here we are considering an asymmetric two-sided cavity with mirrors M1 and
M2, in contrast to the one-sided cavity considered in Chapter 10. We assume that
the same interpretation for the time derivative of the fields at the respective ends of
the cavity is applicable in principle, except that the thermal noise penetrates into
the cavity from both sides of the cavity instead of from the single side. Thus,
according to the arguments leading to Equation 10.71, we assume that two ther-
mal noise sources of amplitudes f;*" are penetrating from outside to inside the
cavity. The waves f;R and f;! come from the right-hand and left-hand free space
(vacuum), respectively. The thermal part of the time derivative of the slowly
varying field amplitude at the inner surface of mirror M1 (M2) will be the sum of
the thermal fields penetrating into the cavity from both sides and reaching the
mirror M1 (M2) with amplification during one round trip. The wave f;*(+0,1)

corresponds to f,; (40, t) and its correlation properties can be obtained by use of
the expression for fo_z (z,t) in Equation 10.70. For the quantum noise, the inter-
pretation of the contributions from right- and left-going waves remains the same,
except that the perfect conductor mirror is replaced by a mirror of finite reflectivity.

With the above considerations in mind, we construct the noise models. The

thermal noise has the correlation properties as obtained using Equation 10.70.



11.1 Model of the Laser and the Noise Sources

Noting the fact that the absolute square of the quantity in the large round bracket
in Equation 10.70 for z=0 is equal to 1 — K sin” ky;d times n? /4, where n is the
refractive index, converting the summation over j to an integration with the density
of modes L/(com), extending the lower limit of integration from —w to —co, and
finally using Equation 2.8, we obtain, for example,

D o L

_ Z@in_z o)1)

2 &L 4
1 (11.1a)
0 L hw; 2 n? . ,
— d Lo e \ pi(@j—w)(t—t)
Jfoc @ com 2 &L 4 (nj)e

hw
~———n,218(t — 1)
47e €0Co
where we have put wj(n;) outside the integral sign as wn,,, noting that the
important contributions come from around w. Thus, with similar considerations,
we have

2{()Co< tRT > w5 t*t)

(11.1b)
28060<tR > = (ny, + Dhwd(t —t)
280€0< | > nehwd(t — )

(11.1¢)

zeoc0<ff(t)f,“ (t’)> = (ny + 1)hod(t— 1)

Here we have used the thermal field function for the one-sided cavity and
applied the resulting properties to the thermal noise on both sides of the two-sided
cavity. This may be justified because of the quite general structure of the corre-
lation functions, which do not depend on the structure of the cavity. (The above
derivation of Equations 11.1b and 11.1c can also be deduced if we follow the cal-
culations from Equations 10.80 to 10.83, since the thermal noise in Equation 10.80
(the first large curly bracket) is proportional to foj(+0, t) by Equation 10.71, which
corresponds to f;R(+0,t).)

The factor 1 on the right-hand side (RHS) of Equations 11.1b and 11.1c, asso-
ciated with the anti-normally ordered products of the noise operators, represents
the vacuum fluctuations. The coefficient #,, is the thermal photon number per
mode of free vacuum at the angular frequency w. Equations 11.1b and 11.1c imply
that the delta-correlated normally ordered noise power in the free field is equal to
the energy of photons present multiplied by a delta function of time, which has the
dimension of “per second.”

As for the quantum noise sources, comparison of Equations 10.89a and 10.89b
to Equation 10.91 shows that we may have delta-correlated noise forces under the
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condition of Equation 10.90, that is, the noise is delta correlated at a time scale that
is larger than the reciprocal atomic linewidth. In Equation 10.69, the exponential
factors with integral of the atomic inversion are the amplification factors for the
noise fields. In the same equation, the integral containing the quantum noise T',,
may be evaluated, under the above condition expressed by Equation 10.90, as

t
. Iy o~ ~ 1
{i(w—vo)—y}(t—t") "o
e Ip@#)dt' =Ty () —— 11.2
) e Ty —

Taking this into account, we assume that the quantum noise field fm(t) asso-
ciated with atom m has the form

. ipavo fm(t)
m(t) = —_—
Jn(®) 201617 — (w — vo)

(11.3)

which has the property (see Equations 9.5a, 9.5b, and 10.92)
2mc1{ (F0fw (1)) + (fuOf(#)) } = @phor/c)mmo(t 1) (114)

where 2 = y|p,|*v3/ slhw{yz + (vo — w)z}} is the stimulated transition rate per
atom per unit density of photons, that is, thé spontaneous emission rate per atom
(see Equation 4.14). The RHS of Equation 11.4 may be interpreted as the delta-
correlated noise intensity with instantaneous intensity 24hw/c;.

11.2
The Steady State and the Threshold Condition

In the previous section, we have defined the noise sources and their correlation
functions. Before we proceed to evaluate the effect of the accumulated noise on
the field amplitude, we examine the steady state of the two-sided cavity laser in the
saturated gain regime ignoring noise. In this section, we ignore the operator
aspect of the waves and treat them as classical quantities. We assume an above-
threshold oscillation with well-stabilized amplitude. If we write the slowly varying
amplitudes of the right- and left-going waves inside the cavity as e (z) and e (),
respectively, they satisfy the differential equations (see Equations 8.35a and 8.35b
as well as Equation 10.94c)

d

5 1¢7 @I = 2Re{a(2)}e" ()
p (11.5)
5le @ = ~2Re{a(2)}]e” (2)]"

with the boundary conditions
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1e7(0)|°= [r1[*[e~(0)?

o , (11.6)
le” (@)= Ir2|"le" ()]
The amplitude gain per unit length is given as
a(z) = f—,No(z) (11.7)
where g is given by Equation 10.12 and (see Equations 8.16 and 8.22)
0
o
o(z) = (11.8)
L+ {let (2 + e~ (2)I*}/|E*
Also, we have the rule
le* (2))*e” (2)* = const = C (11.9)

For the steady state, the round-trip gain is compensated for by the mirror losses.
We write the steady-state condition as

d
r1|* |2 expj 4Re{a(z)}dz =1 (11.10)
0

Some simple rules concerning the absolute squared field amplitudes |e*(z)|* will
be given in Appendix F.
We define a neutral point z, where

le" (z)|* = | (z)]" = VC (11.11)

As in Chapter 10 we will later need the integrated local intensity, which is the sum
of the absolute squared e (z) and e (z). That is, we explore

d
I:L{|e @F + e ()P }dz (11.12)
We write
e @) + e (2) =X (11.13)

Then, because of Equation 11.9, we have
le* (2)]* — e~ (2)]* = +VX2 — 4C (11.14)

The plus sign applies for z > z, and the minus sign for z < z.. Then Equation 11.5
yields

dizX = +2Ref{a(2)}VX — 4C
N T (11.15)
1+ (X/|E[*)

where the linear, unsaturated amplitude gain per unit length is
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Ng®
P,

. (11.16)

In Appendix F, the integral I in Equation 11.12 is evaluated using Equation
11.15. Here we determine the constant C by integrating Equation 11.15. From
Equation 11.15 we have

{1+ (X/IEP)}ax

2Re{o’}dz = 11.17
(=} XEL (1.17)
Integrating from z=0 to z=d, we have
X() £1 4 (X/|E* X 11 4+ (X/|E?
arefa - [ UL OLED) ., (0 (14 DOIER
X(0) X2 —4C X(z.) X% —4C
X(z¢
XZ — 4C X(zc)
= —1n‘x+ VX2 —4c‘ —_
|ES| X(0)
X(0)
X(d)
11.18
X2 —ac | e
+ln‘X+\/X2 74c‘ TRAoEtid
|ES‘ X(zc)
X(zc)

{X(0) + \/X2(0) — 4C}{X(d) + \/X2(d) — 4C}
{X(z) + /X2(z.) — 4C}’

{\/XZ(O) T4C + /X2(d) —4C — 2¢/X(z.) — 4c}

=In

+

1
|Es[*
We note that
X2(0) —4C = |e"(0) — [e"(0)”
V@) —4C = |e (@) ~ e (@) (11.19)
X2(z) —4C = |e* ()" — e (z)* =0
Thus we have

2le”(0)/* x 2le* (d)[*
4C

{le )P = e ()P + e (@) — e~ (@)}

2Re{fx0}d:1n
(11.20)

L1
|Ed|?

Substituting Equations F.6 and F.7 in Appendix F into Equation 11.20, we have
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2Re{a°}d—lnn|1r2|+§{r—11|—|r1—|—|r—12|—|r2|} 12y
Therefore, we have
VC = le*(z)
= I (2relet)a g ) e gy (1122

The threshold condition is obtained by setting C=0. Thus

1 1
Re{of} = —In—— 11.23
{ th} 24 |r1||r2| ( )
or, by Equation 11.16,
eNoy, 1) 1 (11.24)

-l M
P+ (vo—w)? 24 |nlr]
If we define the cavity decay constant y, for the present cavity model as

C1 1
g = Lin 11.25
"= 24 nn) (11.25)
and assume the usual frequency pulling described by Equation 10.46, then Equation
11.24 reduces to the form of Equation 10.48 (note that g = v2|p,|*/(2hwe1c1) from
Equation 10.12):

0 2hoe;

Oy = Oss = p)
V(2)|Pa| N

77.(1+ %) (11.26a)

This equation can be recast in the form
Nyay, =7 (11.26b)

That the threshold atomic inversion ¢%, in Equation 11.26a is equal to the space-
averaged steady-state inversion G = (1/d) fg 0(z)dz can be shown as follows. We
use Equation F.1a with 2 = d and z= 0 to get |e* (d)|* = |e"(0)|* exp J“Od 2Rea(z)dz
and e~ (d)]* = |e (0)* exp jod {—2Rea(z)}dz. These two equations and Equation F.5
yield exp ﬁf 2Rea(z)dz = 1/(|r1]|r2]), from which the second equality in Equation
11.26a follows if we use Equation 11.7, the expression for g given above Equation
11.26a, and that for 7. in Equation 11.25.

The cavity resonant frequency w, for the present cavity model will be discussed
below.
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11.3
The Time Rate of the Amplitude Variation

Next, we consider the time rate of change of the field amplitude corresponding to
Equation 10.69 used for the case of a single-sided cavity. Here, we cite Equation 10.69
again to derive assistance for further consideration:

det(0,t) o "
dt 2dy +y/ [ f 0.8+ rexp(ZLkd)f (0.2)

lPa"O ok itz gN(oz) r (i{—vo)—7} (t—")
26181 Ze exp{J dz( Y oe
= PaVo it gN(o2)

 To(f))dt" — #1813 exp{Ji dZ< 7

Zm t
% Z eik(zm+2d) exP{J , dz (%) } JO {l ®—vo)—7}(t—t") Fm(t,/)dt”:|
™ —

The field amplitude is now an operator. We have already commented upon the
amplified thermal and quantum noise. Here we note the two factors at the front of
the right-hand member of this equation. The first factor is ¢;/(2d). This is the
reciprocal round-trip time. So the quantity in the large square bracket represents
the contributions to the amplitude change that occur in one round-trip time. This
factor originates in Equation 10.50b. Here, we cite Equation 10.50b again for
convenience:

0
1fr’exp{2J dz'<fi+z&0—z,>>}
—d C1 S+V
Zd/Cl
sty

{v 47 +i(vo + 0c — 20)}(s — %)

where ' = —rexp(2ikd) in the single-sided model. The second factor is
Y /(Y +7.). This factor also originates in the above equation (Equation 10.50b)
under the assumption of a slower variation of the field envelope function than the
natural dipolar decay, that is, under the assumption that |0/0t < y. Thus,
Equation 10.50b determines the pole in the s-plane.

We want to rewrite Equation 10.50b so as to take into account the two-sided feature
of the present cavity model. We remember that the factor —r represents the product
of rand —1, the amplitude reflection coefficients at the right and left end surfaces of
the single-sided cavity, respectively. Thus we may replace ¥ in Equation 10.50b
by riryexp(2ikd). Also, the range of spatial integration should be the region
0 < z < dinstead of —d < z < 0 of the previous chapter. Thus, for a pole s=s,, we
should have
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1 — rry exp(2ikd) ex ZJddz’ s N2\ (11.27)
172 €xp P 0 1 s+ B '
This can be rewritten as
2sd N (¢
1- exp{—Zmin +1In(r1ry) + 2ikd — gy /J (o—z/)dz’} =0 (11.28)
€ s+7"Jo
Now if we define the cavity decay constant y, as in Equation 11.25 and newly
define the cavity resonant angular frequency o, as
W, = % {2mn — arg(rir)} (11.29)
then Equation 11.28 may be rewritten as
2d 2gN d
1-— - Y.+ i(we — _— NdZ | =0 (11.30
|- 25t + [ (e <0 130
where we have used Equation 10.52a for y’. The pole is the value of s that makes
the quantity in the square bracket null. Thus
. . %] d /
{so + 7y + i(we — o) }{so + 7y +i(vo— )} — ﬁngJ (6,)dz =0 (11.31)
0
Ignoring the square of sp, we have
So =
it = 0)(0 =00 = (0/d) fgN(e)d i o) tro—w)

V+Vc_i(v0+wc_2w)

just as in Equation 10.50c. Then the left-hand side (LHS) of Equation 11.30 can be
approximated as

2d 2eN d
ST (.
c s+y+i(vo—ow) o
(11.33)
_(ﬁﬁiﬁy&ﬂ)w{ﬁw+%}“_”
o C1 S+"/, 0/ = C1 "/, 0
where
Y=y 4i—o), =7t i(o - o) (11.34)

Thus, just as in Equation 10.69, the reciprocal of the quantity (y' +7.)/y’
appears in the time derivative of the slowly varying field amplitude. The physical
meaning of this quantity, a bad cavity effect, will be discussed in the next chapter.
Note that the cavity decay constant y. and the cavity resonant angular frequency w,
have been newly defined in Equations 11.25 and 11.29, respectively.
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We evaluate the accumulated noise at the inner surface of the coupling mirror
M2. That for mirror M1 can be treated similarly. For the slowly varying amplitude
of the right-traveling wave just inside the mirror M2, the time rate of change will
be given as

erd—01) oy (. -
R~ (Ft + Fq) (11.35)

where F, and I:"q are the sums of the thermal and quantum noise field operators,
respectively, which have emerged during the last round-trip time and reached the
inner surface of the mirror M2. The reason for the absence in Equation 11.35 of noise
contributions that were generated in the past older than one round trip is that any
one round trip in the past yields a net amplification (amplification plus cavity loss) of
unity and does not contribute to the change in the field amplitude. As we saw in the
last chapter, the noise sources are amplified basically with the same rate as for the
coherent laser field under the assumption of time-independent atomic inversion.
Now the amplified thermal field is given by

. iz 2d R d
F= {T; 7 Gire? LR <d+ 0, tfa) + T} Gy eMf! (70, t7—> } (11.36)

1

Here ¢?* and ¢ are phase shifts associated with respective propagations. The
amplifying constants G,z and G, are determined as follows. The steady-state
amplitude for the oscillating laser field is maintained under the condition given by

Equation 11.27 with s=0. Thus

d
1 — r1rp exp(2ikd) exp{ZJ dz' <’%> } =0 (11.37)
0
We define the single path gain G, as
d
Gs = exp{J oc(z’)dz’} (11.38)
0

where «(z) is given by Equation 11.7. This gain satisfies
1 — riry exp(2ikd) G = 0 (11.39)
Then we have

Gir = G! = exp(—2ikd)/(r1r)

(11.40)
Gy = G; = exp(—ikd)/\/ri12

For the amplified quantum noise we have
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E, = E f t— d=zn gmged7n)

A d + z i
s (t - m> rlgMLelk(d+zm)}

where g,z is the amplification associated with the path from z=z,, to z=d and
gmr stands for the amplification associated with the path from z=z,, to z=0
and then to z=d:

(11.41)

d
gmR = epr a(z)dz
o (11.42)

Zm

gmL = Gs eXpJ “(Z)dZ
0
The factors ¢*(4*2n) represent the phase shifts associated with respective propaga-
tions. The quantum noise F;, may have a constant phase factor corresponding
to e @ in Equation 10.69 depending on the definition of &*(z,t) compared to
E™)(z,t), but it does not contribute to the phase diffusion and will be ignored.

11.4
The Phase Diffusion of the Output Field

The output field &;,(z,t) coming from é"(d — 0,t) and coupled out of the mirror
M2 is

eh(z,1) = Toe" (d—o, t—z_d> (11.43)

Co

As in the previous chapter, we assume a well-stabilized field amplitude e, , and
examine the diffusion of the phase of the field é;,(z,t). We set

&5(2,1) = ecop exp{igh,(2,1)} (11.44)
Then we have

ie7 %2 9
—maejz(z, t) + HC (1145)

0
a¢2(z7 t) =

Using Equation 11.35 we obtain

o g2 oy
Sbie =2 T
ot 2e0, 2dy +y.

T (f«; + i:q) +HC. (11.46)

where F; and Fq are given by Equations 11.36 and 11.41, respectively, with the time
being replaced by t — (z — d)/co. Now the phase change A¢, during time t to t+ At
is given by the integral over this time region of the RHS of Equation 11.46. As in
the previous chapter, we assume that the phase ¢, is slowly changing on the time
scale of the correlation times of F; and Fy, so that the factor ¢7*2 can be absorbed
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into the noise forces without affecting their delta-correlated characteristics
described in Equations 11.1b and 11.4. Thus we see that the ensemble-averaged
value of A¢, squared is proportional to At. Using Equations 11.36 and 11.41
together with Equations 11.1b and 11.4 we have

({8dy(z.0)) =

i V/ o T (4 ! 3401
{ 2T TZ{F,(t )+ Bt )} +H.C}>dt d

- 4};2’2 (%)2

+Z |ng\ +|r1gme| )

ho(2n,, + 1) (1147)
28060

,y/
Y+

2{(]T/r1GtR] +|T] Gul )

thw] |At‘

Here we have assumed that ftR and flL have no mutual correlation. Also, we have
ignored the cross-terms of g,r and gy because the phase factors ik(d=zm) p=ik(d+zm)
and e*(#+2n) g=k(d=2n) associated with these terms will yield vanishing results when
summed over m.

The summation over m in Equation 11.47 can be converted to the spatially
integrated field intensity as follows. Now by Equations 11.42, F.1a, 11.9, and F.7

d +
gl = exp | 2Refa(2)}dz = _le@-oF
- " (@) (11.48)
|3+(d o)‘ | —( )‘2: |67(Zm)‘2
|i’2|\/€
Also, using Equations 11.42, F.1a, F.6, and 11.40, we have
2 + 2
|r1gmL\2 = |r1G5|2epr 2Re{o(z)}dz = |r1GS|Z%
e
’ (11.49)

et @)l Je* (zn)l?

= | G| =
T nlVe  nlVC
Combining Equations 11.48 and 11.49 we have

3 (uel+ingonl) =y 3 (e Gl 41 ) = 2 (1150
where, in third term, we have rewritten the sum using the definition of the
integrated intensity I in Equation 11.12. The quantity I//C is evaluated in
Appendix F.

Using Equation 11.40 in the quantity in the round bracket for the thermal noise
in Equation 11.47 we obtain
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2 2
1 (|T, T;
|T5 11 Gua[*+| T} Gu| "= ml <| |rz|} + | |r1 |‘ (11.51)
2 2 1

In Appendix G we shall discuss a general multilayered mirror and show that

2
Tl 1/ 1
|r12] _ﬁ<m|r1,z|) (11.52a)
and that
2
|T1,2| —n L—’hz’ (11.52b)
}7’1,2| !rlﬂzf ’

where n (= +/&1/¢0) is the refractive index of the material inside the cavity.
11.5
The Linewidth for the Nonlinear Gain Regime

Thus the linewidth becomes, from Equation 11.47,

({8y(z.0})
STV

G B () Gy 1)
= — nl——1Inl)—-Inl+—-In
4‘802!2 2d |T’2‘ |1’1| |T’2|

1how(2n, +1 Nd A 24hw
« [Lhelrtl), {1+ 15 glinl n) 2] (1153)

,Y/
U

n 2eco In(1/|r1||r2]) 2e102

1 ho o2 271 (Ir1| + |r2)) (X = |r1|2])
i L (e
4‘6072| &0Co 2

Iral IraIr2|
1 N A
() 5 ——131 T A )
[l s

Ll
where we have used Equation F.18 for I/+/C. Also, we have used Equations 11.25
and 11.26b in the last equality. In addition, we have used the relation
n/(e1c1) = 1/(eoco). Here g(|r1|, |r2]) is given as

/

Y
Y+

g(|r1l; Iral)

223

_ 2fIn(/|ra|[ra )+ 5001/ |l )] (I *Hr2l*) (1 = P ral®) /In Pl 1 (11.54)

[(Iru] =+ [r2)) (X = [ral[r2]) /a2
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This is symmetric with respect to |r;| and |r,|. If we had calculated the linewidth
from the phase diffusion of the output field from mirror M1, by symmetry we
would have obtained

(e

( w)l_T
S e ZG_M)<r1|+|r2|><1_|r1|r2> (1155)
4|6o41|26060 247 |y + vl \Inl 1|2

x | n +1 +L 1+i (Ir1l,|72])
©T2) TaNgd, U 14 A8

Now the two expressions for the linewidth in fact give the same width. We note
from Equations 11.43 and 11.44 that

leos|*= | Toe" (d— 0, 1) (11.56)

But by Equations F.7 and 11.52b we have

T 1
|60~2|2=7|‘:2|| \F=”<**|rz\>ﬁ (11.57)

|2

where /C = ‘ei(zc)yz is the field intensity at the neutral point as defined in
Equation 11.9 and is given by Equation 11.22. Thus

(lra)) =] _ 1

_ (11.58a)
’60,2 ’2 nv/C
Similarly, we have
(Inh—Inl _ 1 (11.58b)

’6071 ’2 n\/E
Thus we have

(Aw) = (Aw),= (Aw),

:;h_w(_l)z} 7 Pl + R = Inlin)
4n+/Ceoco \2d/ |7 + 7, r1||r2 (11.59)

x |[n —5—1 +L 1—|—i (I, Ir2])
©72) T 2N, AL

Now, the fractional excess atomic inversion A is related to v/C by Equations
11.22 and 11.23 as
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In(1/|r1||r2])
VC = |E? [ralIr2] A 11.60
T 1D @ = Irallral) (11.60)

Therefore, we have

/

Y
AR

2
(Ir1] + )X = |1 [|r2])
1|12

1) N VC
Ny += | + 1+ g(|T1|,|I’2|)
( 2 ZNG?h{ VC+[E|*h(|r1l,|r2])

1 hw /c\2
(B89 = e (2d)

X
o (11.61)
:ih_w(C_l)z 7 [Pl + I = Inllr))
4negco \2d/ |y + 7yl 71|72
1 1 N N gl [rl)
=1 (o +5) + +
\/E{(w 2) ZNU?h} 2No}, V/C + |E[* (], |r2)
where
In(1
h(|7‘1|7 ‘T‘2|) — ‘ﬁ”l’zl n( /‘T]Hl’zl) (1162)

(Il + )X = [ra[r2])

Now let us consider the dependence of the laser linewidth on the total output
power. From Equation 11.57 the output power measured outside the mirror M2 is

2 1 1
Py = 2ot €02 = 26080n<m - |r2|> VC = (@ = |r2\> P, (11.63)

Similarly, the output power measured outside the mirror M1 is

1 1
P1 = 26080|60ﬁ1|2= ZCoson(m — |V1|) \/E = <m — |r1\> PE (1164)

The total output power P, is

1 1
o= Py + Py = 212~ [+~ Il |V

| |2
1_
_ ZcOSOn(W + )1 = n|lr|) NG (11.65)
r||r2]
_ (nl+ 1)@ ~|nlln) ,
r1||72 ‘

where P, = 2¢geon+/C is the power at z, of the right- or left-going wave. Therefore,
in terms of the output powers, we have
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() =22 (27 Z(L_ M) (Ira] + 1) (1 = [ra I

2 \2d 1] 1|72

,y/
VAR

() ) s ]
P, ) 2Na¥, 2Na$, Py + Py(1/|r1| — |r)h(|r], Ir2])

o ay? LZG_ U D )
T2 \2d) Py +y r nllr
v+l \Inal [r1l[r2 (11.66)
o [i{(n +}>+ N }+ N g(|ril, Ir2l) }
P2 @ 2 ZNO'?h ZNO'?h PZ -+ PS(1/|T2| — |T‘2|)I’L(|7’1‘7 |T2‘)
_ho (Ll)z 4 2{(Iﬁl + ) - ﬁllle)}2
2 \2d ”//4’]/2 ‘T‘]Hl"2|
1 1 N N g(Ir1l; Ira)
X | = o+=
[pt { (” * z> * ZNG?h} T ING Pyt PoIn(1/[nIra])
where
P, = Zsocon|ES\2: 26101|ES\2 (11.67)
is the saturation power. The factor |y'/(y' + yé)]z is evaluated as
VI 2 B 9 + i(VO _ C()) 2
YAl il — o) + 9 + i - o)
‘ L (11.68)
_ (1+6%)
(7 +70)" + (7 =)0
with
2
52— (o —o)” (11.69)
(7 +7.)*

where we have used the linear pulling relation obtained from Equation 11.32 for
the steady state (so =0):

o= Y + YcVo

11.70
Ve ( )

Henry [2] obtained the same r;, dependence as the one in the first line of
Equation 11.66 in his linear gain analysis based on the Green’s function method.
The Green’s function method will be described in Section 14.2 in Chapter 14.

The result obtained in Equation 11.66 as compared to the quasimode theoretical
result in Equation 4.82 has two corrections. The expression for the linewidth
(FWHM) in angular frequency containing the total output power, the last
expression in Equation 11.66, may be rewritten in the form
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2hoKy2 (14 6%) |1 1 N N
Aw = o2, 22 | (Mo) +5+ 5 + 55 Cq| (11.71)
(7 +7:)"+ (=776 LPr 2 2Nel,| ' 2No),

where

K, = Wnl+1nDa - Irallra))/ @I}
[In(1/r]r21)]*

2 (11.72)
_{a=1nl)/2nl+ (1 =) /2/n|}
[In(1/[r]) + In(1/|r2)))*
G = : 11.73
q_p,+P51n(1/\r1|\r2|)g(|“"|r2‘) (11.73)

The correction factor K; is the generalization of the longitudinal excess noise
factor that appeared in Equation 10.112 for the one-sided laser model. Note that
below Equation 7.37 we discussed the replacement of the cavity decay constant
in the quasimode analysis by that of the new cavity model based on the equiva-
lence of the two in the decay equations for the field amplitude. Likewise, the cavity
decay constant 7y, in Equation 11.71 is equivalent to that of the quasimode cavity
model that appears in Equation 4.82. Thus the correction to the conventional
formula is given rightly by Equation 11.72. The factor C, is the generalization of
the factor g(r)/{P + PsIn(1/r)} in Equation 10.111. When P is large compared to
P, or, roughly, when 80(20’60,172 }2<< &1 cl\E5|2, this yields a power-independent part
of the linewidth. That is, it will yield a contribution that is independent of P.

It is easy to see that the K; in Equation 11.72 reduces to that in Equation 10.112
if we set, for example, r; — rand r, — —1. Also, for the same settings, C, reduces
to g(r)/{P+ PsIn(1/r)} in Equation 10.111. Note that g(|r1|,|r2|) is given by
Equation 11.54. The expression for the function g(r) is found in Equation 10.102 or

in Equation E.24. For a symmetric cavity with |r1| = |r,| = r, we have
1-1%)/r)?
K, = A=r)/ (11.74)
2In(1/r)]

which is the same as that for the one-sided cavity obtained in Equation 10.112.
Also, for this case, it can be shown that g(|r|,|r.|) = g(r). For this case of
|r1] = |r2| = r, C4 should read

1
C=—"—""7""— 11.75
1= 5,72 n(1n 8" (11.75)
The generalized longitudinal excess noise factor Kj is large for an asymmetric
cavity, as will be discussed in Section 12.4.1. For a fixed value of ||, the gen-
eralized longitudinal excess noise factor K; diverges for small |r1| as
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o [y@n)1?
i Ko = [1n<1/|r1\>}

A different treatment of the C, term will be given in Section 12.11.

(11.76)

11.6
The Linewidth for the Linear Gain Regime

Up to now we have considered the phase diffusion above threshold using the
simplified method. In this section, we briefly discuss, using the same simplified
method, the linewidth below threshold, where a linear gain model is appropriate.
Now, because the net gain for the coherent oscillation is negative, we have no
steady amplitude but instead have decaying amplitude. The steady state in the field
power is maintained by the added noise components, which compensate for
the negative net loss. Thus Equation 11.35 for the right-going wave just inside the
coupling mirror M2 will read

det(d—0,8) a 7V (x s
—_— = —0,t) +— F,+F ) 11.
~ 08+ (d — 0 )+2dy/+y2(t+ : (11.77)
where s, is given by Equation 11.32 with relatively small linear gain. Here Re sy <0,
so that the coherent amplitude always decays. The thermal noise source F, and the
quantum noise source F, are given, respectively, by Equations 11.36 and 11.41.
Integrating Equation 11.77 we have
/

e (d—0,t)=-L_7 r o=t
T2dy 49 o

(11.78)
X {R(t') + Fq(t’)}dt’ et (d—0, 0)e

We will calculate the correlation function for this field amplitude and Fourier-
transform the correlation function to obtain the line profile. Thus

(e"(d—0, t+1)e"(d—0,1))
-G
< {(HEEW) + (EW)E()}

Y+
Here we have ignored the contributions from the initial value, which decay with

2 ottt t gl oyl ok
J at" J dp elso+sp)t=sot —sot' +57 (11.79)
0 0

time or vanish because <1:"Lq(t) = FI 4(t) ) = 0. Taking into account the relations
in the first lines in Equations 11.1b and 11.1c, we write
<f:j (t”)E(t’)> = Dot — 1) (11.80)

where D, will be determined later. For the quantum noise, since we are using
normally ordered correlations, we use, instead of Equation 11.4, the relation in
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Equation 4.50 or 9.73, which is applicable to the case of unsaturated, linear gain.
Thus we write (see Equation 11.3 and the expression for 24 below Equation 11.4)

zslcl<f,;(t)fm,(t')> = (27he/c)){(1+ )2} O(t — ¥) (11.81)
and
<F§(tﬁ)ﬁq(t')> = Dyyd(t" — ¥) (11.82)

where Dy, will be determined later. Then, Equation 11.79 can be integrated to yield

(e1(d—0, t+7)et(d—0, 1))
£507 — glsotsyttsyT
2 —(so+s5) (11.83)
(Dtt + D‘N)

5T _ e(so+sg)t+sgr

—(so + s5)

,yl
AR

-

, <0

Discarding the terms that decay for t — oo and noting that Resy <0, we have

(e"1(d—0, t+1)e"(d—0, 1))
C1 2
=(a)

Fourier-transforming Equation 11.84, we have the power spectrum, similarly to
Equation 9.99,

/

_r
AR

2D, + D, | € >0 (11.84)

2[Reso| | g7, <0

+00
I(w) = J (E1(d—0, t+1)& (d—0, ) dr

0 ) too
o J e—soffuurd,[ + J eso‘fflwfdr (1185)
—00 0

—2Re So
(o + Imsp)® + (Resp)”

Thus the angular FWHM is

Aw = 2|Re so| (11.86)
The power output through mirror M2 is

P, = 2e0c0| T (¢71(d — 0, £) &7 (d -0, 1))

2Dy + Dy (11.87)
2|Re sp|

,y/
7

c1\ 2
= 28060‘T2|2 (2—1d)

where we have used Equation 11.84 with t=0. Combining Equations 11.86 and
11.87 we have the formal expression for the linewidth in terms of the power output:
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2
(D + Dyy) (11.88)

_ ZSOCO‘TZ‘Z !

Ga)
P, 2d

The remaining task is to evaluate Dy + Dy,. First, we consider D,,. Now Equation
11.80 becomes, by Equation 11.36,

Y

Aw
A

Duatt —1 = {{ (rinGac) 5 (a0, v - 2)

1

“meue (a0 07

1

iy (11.89)
X {Té r GtRezikdj;R (d + 0, t— a)

1o kL d

+T1GtL@ ﬁ —d—O,t—C—

1

Using Equations 11.1b and 11.1c we have
nehw 2 2

Dy =522 (173 Guel "+ 1 Gu[") (11.90)

Now the amplifying constants G;r and G,; may be given approximately by
Equation 11.40 also in this linear gain regime as long as the operation is not far
below threshold. Thus remembering Equation 11.52a we have

2

noho [(|T) T *\ noho 1 (1 1
D, =t (|12 L) e 7<——|r2\+——|r1\> (11.91)
2¢e0c0 \ |12 NG 2¢&0co 12| \|r2] 1]

Next, from Equation 11.41 we have

/ r / d— Zm x _—ik(d—z,
Dggo (¥ — 1) = <Z {fnt (t - T)é'm}ze S

m

7 d+ Zm * —1 Z,
+f (t/ - T) (r1gmp) e M4* ’”)}

; (11.92)
N — Zm k(d—z
Bl
m c1
A d+ zu ;
+ fw (t - = ) rlgm’Lelk<d+zm,> }>
1
Using Equation 11.81 we have
24hw(1 + o)
=" > (el gl (11.93)
1 m

where we have ignored the cross-terms of g,z and g,,;, which vanish on taking
the summation over m because of the rapidly oscillating functions of z,,. Now the
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amplification constants g,z and g, are defined in Equation 11.42, which, in
the linear gain regime, are

d
gmr = epr odz = exp{o®(d — zy)}
o (11.94)
gmr = Gy epr o%dz = G;exp(o°z,,)
0

where, from Equation 11.7,

NO
ao:ga

(11.95)
!y/
and from Equation 11.38
d
Gs = expj 0%dz’ = exp(o°d) (11.96)
0
Thus we have
2 2 ¢ 2Re o (d—z,,) 2 2Red’z
Z(|ng| +|rgm|’) =N (e m +1nGl’e m)dzm
m 0 (11.97)
N 2Rea’d 2 2Reo’d [ 2Rex’d
:ZReaO{e CE— 14 e (e € —1)}
But as we have approximately
|r1r2\e2R“‘0d =1 (11.98)

then Equation 11.97 becomes

Z(\gmﬂzﬂl’lgmﬂz)

m
Nd L 1+ |n ! L (11.99)
- - 1 e .
In(1/[r|lr2]) | rlIr2] In|*rl  Inlln

_ Nd 1(1 |r|+1 |r|>
In(1/[r|ral) 2 \Irn[ "2 ]

(For somewhat below threshold, the LHS member of Equation 11.98 is smaller
than unity, and the above sum becomes smaller than this expression.) So we have

24ho(1+0)  Nd 1 /1 1
w=" el Inl+ = Il
4nc In(1/Inflr2])Ira \Jri]

\7’2|
_ ho N, 1 (1 |r|+1 |12
26101 Nob, || \|nn] ! |2 ’

(11.100)

where we have used Equations 11.25 and 11.26b as well as the relation
(14 0)N =2N; in the last line. As a result, the linewidth (FWHM) in angular
frequency becomes, by Equations 11.88, 11.91, and 11.100,
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We have used Equation 11.52b in the second line. Now, let us think of the
neutral point z, inside the cavity, where |e* (z;)| = |e” (z;)| holds. If the amplitude
gain from z. to the output port z=4d is G, we have |r,G%| ~ 1. So, we have

2
Pzn\r2|/\T2\2: 2¢0cole™ (d — 0)|2n|r2| = 2£1cl|ei(zc)’ =P, (11.102)

where P, is the power associated with ¢%(z.). Thus we have
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This expression is independent of the choice of the output port. By symmetry
we have
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Thus, for the total output power P, = P; + P, we have
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with (see Equation 11.68)
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This is just twice the last line in Equation 11.66 except for the term of g(|r1], |r2|)
that appears because of the saturated atomic inversion. The factor of 2 can be
traced back to the difference between Equation 11.46 for the phase diffusion with
constant amplitude and Equation 11.77 for the field driven by the noise sources,
including the amplitude noise. This point will be discussed further in Section 12.5.
Comparison with the standard result for a quasimode laser in Equation 4.62 yields
the longitudinal excess noise factor:

(c1/2d)*{(Ir1| + [2)) (1 = [n[[r2])/ a2}
492

- {(|f1| + ) - |T1||r2)/(2|r1|r2)}2
In(1/[ry||r2])

This is the same as the factor K; in Equation 11.72 obtained for the nonlinear gain
regime. This is the generalization of the longitudinal excess noise factor in

(11.106)

K =

(11.107)




11.6 The Linewidth for the Linear Gain Regime

Equation 9.106, which was obtained for the one-sided cavity laser. Note that this
factor approaches unity in the good cavity limit |r||r,| — 1.

In Equation 11.105 the thermal noise term of n,, and the quantum noise term of
N,/NgY, have appeared through normally ordered noise operators, while in
Equation 11.66 the terms of n,, + 3 and N/(2N¢9,) have appeared through sym-
metrically ordered noise operators. The sum j + N/(2No¢9,) makes N,/No,.

The simplified ad hoc method of the present chapter, which we have named the
propagation method or propagation theory, was proposed by Ujihara [1] and by
Goldberg et al. [3], who considered spatial hole burning effects on the linewidth.
Prasad [4] also used the same method and obtained similar results, including the
power-independent part in the linewidth. The results obtained in this chapter were
also derived by Henry [2] for the linear gain regime and by van Exter et al. [5] for
the linear and nonlinear gain regime by the Green’s function method, which will
be described in Chapter 14.

Finally, we note that the present propagation method directly shows that the
excess noise factor is the result of noise amplification during the one round trip
analyzed in this chapter. We consider the linear gain regime for simplicity. If
amplification is absent but a steady state is still required, we should require that
the reflectivity of the two mirrors be unity ({rl,z} — 1) by Equation 11.98. Then,
noting that

Inal " =Inal = (1 ral) (1= [nal)/Inal = 2(1 = [nal)
the diffusion constant D, in Equation 11.91 becomes

noho 1 noho12d

D, — n2(2 —Inl—1nl) = P Ve (11.108)
where we have used the relation
C1 1 C1

vo= (2 In—— (—)2— - 11.109

o= Ga) i — (2g) @ Inl =1 (11.109)

which holds in this limit. The sum in Equation 11.99 merely becomes
> (\ylezﬂﬁgmL\z) = 2Nd (11.110)

Thus the diffusion constant D, in Equation 11.100 becomes, simply,

gho(14 o)Nd
e (11.111)

Thus the linewidth in terms of the output power P, in Equation 11.88 becomes
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Ao — goco| T (C_l) Y n w_“/c*‘w (11.112)
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We will have a similar expression in terms of the output power P; with |T,|*
replaced by | T;|*. Thus in terms of the total output power P, we have
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We use Equation G.23 in Appendix G to obtain |T1‘2|2—> 2n(1—|r12|), and we

eliminate the constant 4 using the threshold relation (Equation 11.26b) ¢Nay, = 7,
asin the previous evaluations of the linewidth. Then noting that e;¢c; = (gon?)(co/n),
itis easy to see that the linewidth reduces to the standard result in Equation 4.62a for
the linear gain regime, which lacks the excess noise factor:

2(n + NZ) (11.114)
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We have shown that, if the two mirrors are nearly perfectly reflecting and the
gain of the laser medium is unity, we will have no excess noise factor. This shows
directly that the excess noise factor originates from the finite mirror transmissions
as well as finite amplification of the thermal and quantum noise during one round
trip in the cavity. A similar argument may be given for the nonlinear, saturated
gain medium.
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12
A One-Dimensional Laser with Output Coupling: Summary and
Interpretation of the Results

Starting with the basic equations of motion for a laser having output coupling
derived in Chapter 5, we have analyzed the equations with the thermal and
quantum noise sources taken into account. We have analyzed the equations by the
use of a contour integral method and by the use of the Fourier series expansion of
the normalization factor of the mode of the “universe.” The former method
described in Chapter 6 was effective only for the linear gain regime. The latter
method described in Chapters 7 through 10 was correct, but it took laborious
efforts to solve the resulting equations. Chapters 7 and 8 were devoted to
semiclassical analyses and were intended as preparation for the quantum-
mechanical analyses developed in Chapters 9 and 10. Chapter 9 analyzed the
correlation of the field driven by the noise sources. Chapter 10 investigated phase
diffusion in the steady state. Both chapters had to deal with the complexity brought
in by the presence of the output coupling. In Chapter 11 we have presented a
simplified, ad hoc, quantum-mechanical model for the laser with output coupling
that could be analyzed with less effort. We have named this method the
propagation method or propagation theory. Except for the standard results for
laser operation, we have obtained the longitudinal excess noise factor in the
expression for the laser linewidth by taking the output coupling into account. Also,
we have encountered the power-independent part of the linewidth. The extensive
calculations needed may have left the reader adrift from the physics involved. In
this chapter we retrace the calculations in Chapters 7 through 11 and discuss the
physical aspects of the results.

12.1
Models of the Quasimode Laser and Continuous Mode Laser

First of all we discuss the difference between the quantum-mechanical laser
models used in the quasimode theory in Chapter 4 and in the multimode theory in
Chapters 9 and 10.

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara

Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 12.1 depicts the thermodynamic models of (a) the quasimode laser and
(b) the continuous mode laser. In the quasimode laser model, the atoms couple
with the (possibly single) cavity mode. The atoms are coupled with the pumping
and the damping reservoirs, while the cavity mode is coupled with the loss
reservoir. In the continuous mode laser model, the atoms are coupled with the
pumping and the damping reservoir as in the quasimode laser model. But
the atoms are coupled with the continuous, “universal” field modes. Some of the
continuous modes make up the relevant cavity mode, which has no explicit loss
reservoir. These continuous modes act as the resonant mode of the cavity as well
as the loss reservoir. The exact treatment of the output coupling is secured by this
model, provided the rigorous forms of the universal mode functions are used. This
treatment has led to the appearance of correction factors in the expression for
the laser linewidth compared with the conventional formula obtained by use of the
quasimode theory. These are the excess noise factor for the laser linewidth and
another factor for the “power-independent part” of the linewidth.

12.2
Noise Sources

12.2.1
Thermal Noise and Vacuum Fluctuation as Input Noise

One cause of laser linewidth is the ambient field fluctuation. Mathematically, this
was introduced as the fluctuating field F,(z, t) coming from the initial values, a;(0),
of the field as in Equation 5.33b. In the quantum linear gain analysis in Chapter 9
it yielded a thermal contribution proportional to (n,) in the linewidth formula
(Equation 9.105). This originated in Equation 9.72 or in the first line of Equation
5.36. In Chapter 9 the line profile was derived as the Fourier transform of the field
correlation function in the time region, and the correlation function was defined as
the ensemble average of the normally ordered field operators. The appearance

(a) (b)

Atoms Cavity Atoms _ )

.......... © Cavity
Mode
Pump Loss Pum o
p .
Damp Damp Q Continuous

Modes

Figure 12.1 The models of (a) the quasimode laser and (b) the continuous mode laser.



12.2 Noise Sources

of (n,) was determined by this ordering. If the ambient temperature was zero,
then (n,) = 0 and no thermal contribution appears.

The causes of the linewidth for the nonlinear, above-threshold operation
obtained in Chapter 10 have somewhat different origins. The form of the linewidth
formula in Equation 10.111 suggests that the ambient field resulted in the factor
(nw) +1 in contrast to the case in Chapter 9. In Chapter 10 the linewidth was
obtained through calculations of the phase diffusion, where the phase was a
real quantity. For this requirement, the phase was evaluated from a sum of an
operator quantity proportional to the field and its Hermitian conjugate. The field
correlation function was thus in a symmetrically ordered form. The term  above
came from the 1 in the second line in Equation 5.36. This factor would not vanish
even though the ambient temperature is zero and (n,) = 0. This contribution
from the ambient field should be interpreted as coming from the vacuum field
fluctuation. It is to be noted that in Chapter 10 the ambient field including the
vacuum fluctuation was shown in Equation 10.71 to come from outside the cavity.

In contrast, the thermal or vacuum part of the noise in the quasimode laser
considered in Chapter 4 came from the ““artificial”” Langevin force ff (t) introduced
in Equations 3.35, 3.36-3.37 for the field decay in the cavity. The thermal noise in
the propagation method in Chapter 11 was described as coming in to the cavity
from outside. The correlation functions in Equations 11.1b and 11.1c of this noise
were deduced by referring to Equations 10.69 to 10.71, which resulted in a rea-
sonable physical interpretation in terms of the thermal noise incident onto the
cavity. The resultant thermal noise parts of the linewidth were generalizations of
the results in Chapters 9 and 10. Note that Equations 10.69 to 10.71 are based on
the quantum-mechanically correct continuous mode theory.

12.2.2
Quantum Noise

The quantum noise, on the other hand, originated in the Langevin force I',,(t)
introduced in conjunction with the damping term in the equation of motion
(Equation 3.45) for the atomic dipole. It appeared in Equation 9.105 in a form
proportional to N, which came from the normally ordered correlation function of
the quantum Langevin noise in Equation 9.73. This implies that the noise is
proportional to the upper-level population, which is directly responsible for
spontaneous emission. Thus in this case the quantum noise is interpreted as
coming from spontaneous emission by upper-level atoms.

The quantum noise part in Equation 10.111, however, is proportional to
N = Nj + N,. Thus the quantum noise coming from the atoms is not merely from the
inverted population but also from the non-inverted population. The interpretation
may be that not only spontaneous emission events proportional to N, in number but
also absorption events proportional to N disturb the field phase. The sum of ]
and (N7 + N;)/{2(N; — N1)} is N3 /(N, — Np), and thus Equation 10.111 yields
the same form of the linewidth as Equation 9.105 except for the over all factor of §
and for the added term for the quantum noise containing the saturation power P;.
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For the case of the quasimode laser analyzed in Chapter 4, the situation is
almost the same except for the absence of the excess noise factor. The quantum
noise source for the propagation method described in Chapter 11 was a modified
version of those used in Chapters 9 and 10 or in Chapter 4. The force f,(t) in
Equation 11.3 was defined on the assumption that we are interested in the field
variation on a time scale that is larger than the reciprocal atomic linewidth.
The pertinent correlation function had an interpretation in terms of the power
emitted in a spontaneous emission event. Spontaneous emission is examined in
Section 12.12 and in Chapter 13 below.

123
Operator Orderings

In optics, normally ordered correlation functions or intensities are preferentially
used because the usual wide-band optical detector that uses absorption as the
detection mechanism responds to the normally ordered quantities [1]. The forms
of noise (n;) versus N,/(N, — Np) in the expression (Equation 4.82) for the line-
width of a quasimode laser in the nonlinear gain analysis are the same as in
Equation 4.62a obtained for the linear gain analysis. In the case of Equation 4.62a,
these forms appeared directly from the normally ordered correlation functions in
Equations 3.36 and 4.50. However, in the case of Equation 4.82, these factors
originally appeared in the forms of (n) +1 and N/(2Nay,), respectively, as seen
from Equation 4.81. These forms appeared from the symmetrically ordered cor-
relation functions used for the evaluation of the real phase of the field. The
symmetric ordering appeared in Equation 4.76 because of the Hermitian con-
jugate terms. We note that the anti-normally ordered contributions from the
thermal noise and quantum noise are (n;) + 1 and N;/(N, — Ny), respectively. It
is interesting to note that the sum of the normally ordered contribu-
tions (n:) + N2/(N; — Np) is equal to that of the anti-normally ordered con-
tributions (n;) + 1+ N;/(N; — Ny). It should be noted that different orderings
of the noise operators lead to the same form of the noise contributions.

A similar situation obtains for the continuous mode analysis of the one-sided cavity
laser. The form of the noise (n,) + 1+ (N, + Ni)/(2Ng9,) in Equation 10.111
obtained in the nonlinear gain analysis looks different from that in Equation 9.105,
{2 /(am0mo) } (o) + N /(Noy,), obtained for the linear gain analysis. In the case of
Equation 9.105, the above forms appeared directly from the normally ordered corre-
lation functions in Equations 9.4a and 9.5a. In the case of Equation 10.111, the factors
(nw) +1and N/(2Nay,) appeared because of the symmetrically ordered correlation
functions used for the evaluation of the real phase of the field. In particular, the
symmetric ordering appeared in Equations 10.83a, 10.83b and 10.88 because of the
Hermitian conjugate terms. Except for the factor 62 / (c4,00), the above two forms are
the same since J+ (N, + N1)/(2NoY,) = Ny /(Na},). Also in this case different
orderings of the noise operators lead to almost the same form of the noise
contributions.



12.4 Longitudinal Excess Noise Factor

Similarly, for the generalized two-sided cavity lasers, similar arguments can be
given for the forms in Equation 11.105, n,, + (N2/Na},), for the linear gain ana-
lysis, and in Equation 11.71, (n,,) 43 + (N/2Ng},), for the nonlinear gain analy-
sis. Goldberg et al. [2] discussed extensively the relation between the operator
ordering and the physical cause of the noise.

124
Longitudinal Excess Noise Factor

An important result that arises from using the continuous mode analysis is the
appearance of the longitudinal excess noise factor in the expression for the laser
linewidth. The longitudinal excess noise factor was found in Chapters 9 and 10
both for the linear gain analysis and for the saturated, nonlinear gain analysis for
the one-sided cavity laser model. A somewhat different result was found in the
contour integral method in Chapter 6. The result was generalized to the case of a
general asymmetric cavity in Chapter 11. This factor was defined as the ratio of the
linewidth obtained in the continuous mode analysis to that obtained in the stan-
dard quasimode theory. More precisely, the factor is the ratio of the linewidth
in a theory taking into account the local output coupling at the mirrors to that in
a quasimode theory where the coupling loss is not localized. In other words, the
difference originates in the assumed field distribution in the cavity: non-uniform
or uniform.

12.4.1
Longitudinal Excess Noise Factor Below Threshold

In the linear gain analysis applicable for a below-threshold operation, we obtained
Equation 9.106 for the one-sided cavity laser:

K, = {urz)/zr}z (12.1a)

In(1/r)
For a two-sided cavity laser we obtained Equation 11.107:
(In] + 1)) (1 — |r1||r2|)/2|r1|r2|}2
K; = 12.1b
= (1210)

This generalizes Equation 12.1a, and reduces to the form in Equation 12.1a for the
case of a one-sided cavity with |r;| = 1 and |r;| = r or for the case of a symmetric
cavity with |ri| = || = 1.

First of all we note that the factor K} is unity in the good cavity limit |, ||r,| — 1.
In this limit, the amplification coefficients for the last one round trip or the
shorter trips that appeared in Equations 11.36 and 11.41 for the two-sided cavity
laser (or Equation 10.69 for the one-sided cavity laser) are all unity, and the
noise is not amplified during the last one round trip or in the respective
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shorter trips. This shows that finite amplification of the noise and, consequently,
the non-uniformity of the field distribution is the physical origin of the excess
noise factor.

The longitudinal excess noise factor is large for an asymmetric cavity: one can
show that, for a given value p of the product |r||r;|, that is, for a given value of the
cavity decay rate, K; is maximum when |r;| = 1 and |r;| = p or when |r;| = p and
|r2| = 1. On the other hand, K| is at its minimum when |ri| = |r;| = /p. This
asymmetry effect is pronounced when p <« 1. When the mirror asymmetry is
pronounced, the field distribution inside the cavity is strongly non-uniform and
the factor K; is large. Hamel and Woerdman [3] verified this asymmetry effect
experimentally by measuring the laser linewidth of semiconductor lasers with
various combinations of facet mirror reflectivity.

Also, in Equation 9.114, we have indicated that the form of Equation 12.1a may
come from the ratio

0 . 2 2
(1o4dz sinfQu(z+ d)/ci}?)” /g2
S = <—> =K (12.2)
(1% dz lsin{o(z+ d)/a}?)” e

where €, is the complex cavity frequency in Equation 1.18b for a one-sided cavity
and o, is the cavity frequency of a quasimode cavity, which is equal to one of the
g values in Equation 3.2. Improvement on this derivation of K; will be discussed
in Chapter 14, which will discuss the physical origin of the longitudinal excess
noise factor.

12.4.2
Longitudinal Excess Noise Factor Above Threshold

We have from Equation 10.112 for the one-sided cavity laser

For a general asymmetric cavity laser we may use the result of Chapter 11
expressed by Equation 11.72:

K, = Wnl+In)( - Iriliral)/2Ir|ra ]} (12.4)

{In(1/|n i)}

Except for those factors that are common to linewidths for below-threshold opera-
tion, we have found additional terms for the linewidth for above-threshold
operation. These are associated with the quantum noise contributions. We cite
Equation 10.111 for the one-sided laser:



12.5 Mathematical Relation between Below-Threshold and Above-Threshold Linewidths

Ao — — Hhorer’ (1 +3) (ﬁ—2>
(7 +7.)" + 0% (y — )2 \72

1 1 N+ Ny N+ Ny g(r)
X |29 (Mo +3 )+ gt b s
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If the factor g(r)/{P + P;In(1/r)} is not small compared with 1/P, the correction
is appreciable. Similarly, for the generalized cavity model in Chapter 11, we had
Equation 11.71:

2hwKy?y2(1 + 62 1 1 N N
o= LZW( + 2)2{—{<nw>+—+—}+—c4 (12.6)
(7 +7)"+ (0 =70 [P 2 2NoyJ ~ 2Noy,

(12.5)

where

1
C, = , 12.7
q Pt+P51n(1/‘r1”rz|)g(|rl‘ |7’2‘) ( )

If the factor C, is not small compared with 1/P,, the correction is appreciable.

By retracing the calculations leading to the longitudinal excess noise factor and
the additional correction associated with the quantum noise, we see that these
arise from the amplification of the noise along the amplifying medium and local
dumping at the coupling surfaces. For a quasimode laser the noise is amplified
and dumped with average, mean-field rates and no local effect is involved. The
corrections stem from the local aspects of the noise amplification. Existing the-
ories for the physical interpretation of the longitudinal excess noise factor will be
surveyed in Chapter 14.

12.5
Mathematical Relation between Below-Threshold and Above-Threshold Linewidths

As we have shown several times, the laser linewidth above threshold is just half
that below threshold, except for the additional term for above threshold coming
from gain saturation. This is interpreted as the result of suppression of the
amplitude noise due to the gain saturation. That is, the gain reacts so as to cancel
the amplitude variation of the field. Here we discuss briefly the mathematical
origin of the factor 1 in reducing the linewidth on going from below to above
threshold.

The linewidth below threshold was calculated by noting the temporal decay
of the field amplitude &(t), which is compensated for by the noise F(t) to maintain
the average number of photons in the oscillating mode. The decay rate is given
by the difference between the cavity loss rate and the gain y, — g, = —sp. Thus we
have, approximately,
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d . . «
) = sob(t) + F(1) (12.8)

Thus we have, except for the term é(0) that decays in time,
t .
0 :J =) B()de (12.9)
0
and the correlation function is
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where we have set
<1:“T(t/)1:"(t)> = Dpigd(t —t) (12.11)

By the Fourier transform of the correlation function, we know that the laser
linewidth (full width at half-maximum) Aw is

Aw = 2|Resp| (12.12)
Assuming a conversion coefficient S, the power output P is

_ SDpip

= S{et(t)e =
P = S{e'(t)e(t)) 2Res (12.13)
Thus we have
D
Ao = 2|Resy| = S—;”" (12.14)

For an above-threshold operation we assume a stable amplitude ¢, and a dif-
fusing phase ¢(t). In this case we assume that the net gain y, — g, = —s is exactly
0. Then Equation 12.8 becomes

E(b(t) S a4 (12.15)

where we have assumed that the phase factor ¢~ *¢(*) is slowly varying and can be
absorbed into the noise F(t). The crucial point here is that the phase should be a
real quantity, and we warrant this claim by writing

d E(t) L Fi(b)
i B =—-i—"+1i

12.16
2ey 2ey ( )



12.6 Detuning Effects

We evaluate the expected value of the squared phase change <{A¢(t)}2> during
time At. Then it can be shown, by using the Fourier transform argument, that the
linewidth is (see Section 10.6)

({ag(0))
At

Now <{Ad)(t)}2> is evaluated as

({ag(0})*)

t+AE pt4At oy (4 (4 Tt (41 (12'18)
_ <J J {_i@H’F (t)}{—iF(t ) E )}dt’dt”>
¢ ¢ 2ep 2e; 2e 2¢e;

Assuming that

Ao = (12.17)

o ) (12.19)
F(t’)F(t)> = <FT(f)FT(t)> =0
we have
({Ap()y?) = LD (12.20)
4leo]
Therefore, we have
{Ag(t)} ‘
Ao — < > _ S(Drir + Drri) (12.21)
At 4P
Now, we have, formally,
(Drif + DEFt) above threshold = 2(DF F )pelow threshold (12.22)

as long as F(t) stands for the sum of the thermal noise and the quantum noise (see
Section 12.3 above). Thus Equation 12.21 for the linewidth above threshold gives,
formally, just half the linewidth for below threshold given by Equation 12.14. Note
that Equation 12.22 describes a formal equivalence and that it does not mean
Drir = Drgi.

12.6
Detuning Effects

First of all we stress that, in the starting equations in Chapter 3 for the quasimode
laser or in Chapter 5 for a one-sided cavity laser, we have assumed a temporarily
constant atomic inversion and otherwise made no limiting assumptions on the
relative magnitude of the decay rates of the atomic polarization and cavity field nor
on the atomic or cavity resonance frequencies. The well-known consequence of the
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presence of the detuning between the cavity resonance frequency w. and the
atomic transition frequency v, is the linear pulling effect that appears on
the oscillation frequency of a laser. This has appeared in all the laser models
considered up to now. In Equations 4.12 and 4.46 we had

_ 70+ 7%

12.23a
Y+ Ve ( )

Wip

where the subscript th stands for the threshold condition. This applies for the
extreme case of the threshold condition in the linear gain analysis. We have
obtained the same form in Chapters 6, 7, and 9. Also, Equation 11.32 will yield the
same result if we set so =0 in this equation. In Equations 4.33 and 4.66 we had the
angular oscillation frequency

o = 10 i (12.23b)
Ve

for the nonlinear, saturated gain regime. We have obtained the same result in

Chapters 8, 10, and 11.

The laser model used in Chapter 4 is the quasimode cavity model, that in
Chapters 7-10 is the one-sided cavity laser model, and the one in Chapter 11 is the
generalized two-sided cavity laser model. For these different models, the expres-
sions for the cavity decay constants and for the cavity resonant frequencies are
different. In spite of these differences, the expressions for the oscillation or
threshold frequencies are the same. This reflects a general rule for a pair of
oscillators oscillating at a single frequency as a whole. In this case the frequency is
pulled towards the oscillation frequency of the oscillator with the higher quality
factor. Thus in Equations 12.23a and 12.23D, if the cavity has a higher Q value or
sharper width 2y, than the atom of natural width 2y, then » tends to go to w,. This
is the usual situation in a single-frequency laser. If, on the other hand, the atom
has a sharper width, 2y < 2y,, the oscillation occurs close to vy.

A qualitative argument of the linear pulling based on the dispersion of the atomic
medium can be given as follows. The amplifying medium of inverted atoms has a
dispersion that gives a positive increase in the refractive index for > v, and
vice versa. Therefore, if the cavity resonance becomes higher in frequency than
the atom, the cavity field sees a longer cavity length because of the positive
refractive index increase. Then, the cavity resonant wavelength tends to increase,
that s, the cavity resonant frequency decreases compared to the bare cavity case. If,
on the other hand, the cavity frequency is smaller than the atomic frequency, the
dispersion gives a decrease in the refractive index. Thus the cavity becomes effec-
tively shorter, thus increasing the effective cavity frequency. This is the linear
pulling.

Another effect of detuning between the cavity resonance frequency w, and the
atomic transition frequency v, appears on the laser linewidth as the factor in
Equation 12.6:
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(12.24)

When y > y,, we have F ~ 72, with no detuning effect. Similarly, for y > 7., we
have F ~ 92, with no detuning effect. But when y~7y,, then F 1+ 5%, which
means that any detuning results in a broadening of the laser line. This may be
understood as the result of the broad total response of the atom-—cavity system,
which appears when two equally broadened oscillators with different center fre-
quencies cooperate.

12.7
Bad Cavity Effect

When the detuning is small, the factor F in Equation 12.24 reads

o
F=_le (12.25a)
(7 +7e)
A cavity is said to be a good cavity when the cavity bandwidth 2y, is much smaller
than the atomic width 2y. In this case the factor

F =y? (12.25b)

This is the standard form for F obtained for example by Schawlow and Townes [4],
Haken [5], and Sargent et al. [6], assuming a good cavity.

A cavity is called a bad cavity when 2y, is not smaller than 2y. The factor F in
Equation 12.24 can be rewritten in the form

1+ (/1)

Thus for a bad cavity, an appreciable reduction of the linewidth as compared to
the standard form arises. Van Exter et al. [7] gave a physical interpretation of the
reduction in terms of the effective elongation of the cavity due to the dispersion of
the gain medium. They argue that the important light velocity is the group velocity
rather than the phase velocity when the light burst from the noise sources travel
within the cavity. They showed that the group refractive index in the presence of
the Lorentzian gain is approximately 1+ (yNoy/y)” because of the atomic
dispersion. This is equal to the factor 1+ (y,/7)* that we found in Equation
12.25c. Thus the cavity length is effectively elongated, which reduces the cavity
decay rate.

Note, however, that the factor F and thus the laser linewidth is an increasing
function of the cavity decay rate y.. Prasad [8] showed that, in the extreme case of
very large y. the linewidth below threshold tends to be that of the natural

(12.25¢)
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linewidth of the atoms. The linewidth formula for below threshold, Equation
9.100, for y, > v and for far below threshold, ¢ < a4, also yields this result:

20y + 7771+ 61 —
Ao = 2011+ ) —o/on] (12.26)

(0 +7)" + 0% =)

Also, Equation 11.32 with Aw = 2|Re sy| (Equation 11.86) yields this result. Thus
a bad cavity laser has in general a broadened linewidth. Note that this result is
obtained as a result of our neutral treatment of the cavity and the atomic band-
widths. We have treated the constants y and y. as symmetrically as possible.
Sometimes in the literature it is assumed from the outset that the cavity band-
width is much smaller than the atomic width. In such a treatment, the bad cavity
effect cannot be derived.

12.8
Incomplete Inversion and Level Schemes

In the expressions for the laser linewidth, Equations 9.105, 10.111, 11.105, and
11.71, we had the quantum noise factor for the linear gain cases,

N; N
2 = 2 (12.27)
NO‘m (NZ — Nl)th
or for the saturated gain cases,
1 N N
= 2th (12.28)

—+ —
2 ZNO'?h (Nz - Nl)th

In both of these equations, N, or N, are steady-state values of the upper-level
population. The appearance of N;, the lower-level population, in the denominator
makes these factors larger than those obtained for N;=0. This makes
the linewidth broader than those obtained for N; =0. This effect is called the
incomplete inversion effect and appears in lasers other than an ideal four-level
atom laser. In an ideal four-level laser the lower-level population Ny =0 and the
spontaneous emission noise is proportional to N,. When the lower-level popula-
tion exists, the absorption events by the lower-level atoms also disturb the field
coherence and lead to a larger noise than is given by N,.

In our laser model we have employed the two-level atoms, with the upper level 2
and the lower level 1, as the model atoms. The pumping process is described as
(see Equation 3.46)

(d/dt)om(t) = ~Top{m(t) — 03} (12.29a)

where we have ignored the noise term associated with the relaxation of the atomic
inversion. The unsaturated atomic inversion ¢9, and the relaxation constant I',,,
are given by Equation 3.51 as
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0 _ Wmi2 — Wm21
Op =———
Wm12 + W21 (12.29b)

rmp = Wm12 + Wma1

where w,,;; and w,,,; are, respectively, the upward and downward incoherent
transition rates including the pumping and the natural relaxation rates. The
minimum downward transition rate W,,,; is given by the spontaneous emission
rate. The unsaturated atomic inversion may be taken arbitrarily close to unity if
we could make the pumping rate I',, much larger than W,,;, whence
Ly = W12 and 6% ~ 1. But this is usually not easy to realize in practical
systems.

In this connection, the parameter N in Equations 12.27 and 12.28 and in pre-
vious chapters should be taken as the sum of the upper- and lower-level population
densities of the laser,

N=N;+N, (12.30)

not the total atomic density, which may include populations of levels other
than the lasing levels. For example, a three-level system, where the uppermost
level acts only as the intermediate level for pumping and has a very large
relaxation rate, can be accurately simulated by a two-level atom. The possible
existence of other levels and their effects are somehow squeezed into the
equations for the atomic inversion, Equations 3.46 and 5.27. These lead to
the steady-state, saturated atomic inversion in Equations 4.29, 4.37, 8.16, and
10.21a. In Chapter 11 we have assumed a similar form of saturated inversion
in Equation 11.8.

A general four-level model was analyzed by Van Exter et al. [7] in relation to the
longitudinal excess noise factor.

12.9
The Constants of Output Coupling

The constant 2y, is usually taken as the ratio of the output power and the energy
stored in the cavity. We will show that this is not the case in the nonlinear gain
regime of a laser with finite end mirror coupling.

For a quasimode laser the damping of the stored energy is governed by the field
decay described by Equation 4.1:

2a) = —ionalt) ~1,8(0) — 13 K (Bhaba) 1) (1231)

Ignoring the last term, which describes the energy flow to or from the atoms, we
see that the energy flow to the cavity is governed by

%&(t) = —iw.a(t) — y.a(t) (12.32)
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Taking the Hermitian conjugate we have

% Al (t) = iwal(t) — y.af(t) (12.33)
Multiplying Equation 12.32 by &' (t) from the left and multiplying Equation 12.33
by d(t) from the right and adding, we obtain

%{&f(t)a(t)} = -2y {al(va(r)} (12.34)

As was described in Equation 4.60 the stored energy is proportional to (the
ensemble average of) {a'(t)a(t)}. Thus 2y, is the correct energy damping rate of
the quasimode cavity. This was used in both the linear and the nonlinear gain
regimes as in Equations 4.61 and 4.80.

For the one-sided cavity model, let us first consider the case of the linear gain
regime considered in Chapter 9. In this case the starting equation for the field
amplitude is Equation 9.1, which has no explicit cavity decay constant. One of the
original equations leading to Equation 9.1 is Equation 5.25 for the jth mode of
the universe, which also has no explicit decay constant. Therefore, it is not obvious
from these equations whether the stored energy decays with a certain decay
constant. The results in Equation 9.108 show, however, that the constant
2y, = 2(c1/2d)In(1/r) is the correct damping rate. Note that the expression
v. = (¢1/24d) In(1/r) was derived in Equation 1.18 as the natural decay constant for
the one-sided cavity model.

Next we consider the nonlinear gain regime discussed in Chapter 10. We have
the expression for the power output in Equation 10.110:

2 1 O'O
g

th
On the other hand, we have the integrated intensity in the cavity as in Equation

10.101:
’ e~ (zm) " Hle (zn) ) _ B A
Ld dzm< e =2d Y {1 + T Ag(r)} (12.36)

from which we derive the stored energy W as
0
W2 | | ()P e (2n)

A
= 481dﬂ—: {1 + H—Ag(r)}|g+(—d)|2

(12.37)

where the factor |e"(—d)|* can be found in Equation E.12 in Appendix E as

let (—d)|* = |E G —~ r) B {ZRe 2%d —In G) }
~er () () ()

(12.38)
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where we have used Equations 10.94c and 10.48 to go to the second line. Therefore
we have

P _ ay.(1/r—r) _ 2y,
W 2dp {1+ [A/2(1 +A)g(n}  1+[A/(1+A)g(r) (12.39)

" 1+g(r)/[1+ (P/P)In(1/r)]

where Equation 10.110 has been used in the last equality. This shows that 2y, is
not the correct damping factor in this case of the nonlinear gain regime. The
output coupling is more or less reduced depending on the relative excess atomic
inversion A = (¢° — ¢9) /09, or on the relative magnitude of the saturation power
and the output power. The reduction is pronounced when the reflection coefficient
r is small so that the function g(r) is large and the output power P is appreciably
larger than the saturation power P;. This is a consequence of the gain saturation,
which brings the laser out of the linear operation condition and deforms the field
distribution from that of a natural resonant field distribution of the cavity.

A similar result for the case of a general two-sided cavity laser is anticipated. The
reader may show that the ratio of the total power output to the stored energy is

P 27
W 1+ A1+ A)g(|nl, [r2]) (12.40)
B 2y, '
1+ g(nl, r2])/[L+ (Ps/Py) In(1/|r[|ra])]
where
Oyt (12.41)

A _71n7
e = 2d " [n||n|

The factor A vanishes for the linear gain regime and the ratio reduces to the usual
2y.. But for a strongly nonlinear gain regime, where P, >> P, the ratio is reduced if
g(|r1],|r2]) is large. Van Exter et al. [7] derived a different expression for the
damping constant for the nonlinear gain regime that is also smaller than 2y..

12.10
Threshold Atomic Inversion and Steady-State Atomic Inversion

The threshold atomic inversion is the minimum value of the atomic inversion to
maintain laser oscillation. The threshold is reached when the gain due to the
inversion equals the cavity loss. The threshold inversion is equal to the steady-state
value in a steady-state oscillation above threshold.

In the case of the quasimode laser in Chapter 4, the threshold atomic inversion
was given in Equation 4.13b as
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_ 2heryy, (

= 1+ 62 12.42a
|Pa|2"oN ) ( )

Oth

which can be rewritten as

gNowm =7 (12.42b)
where
|Pa|2V0 o (vo— wC)Z
F= o 0= (12.43)
2e1hy(1 +67) (7 +7¢)

Here the uniform density of atoms N is assumed to be large enough that many
atoms exist in a region the length of an optical wavelength. If the density was
sparse, the expression may depend on the degree of the overlap of the distributed
atoms and the standing mode field. The threshold inversion is smaller for
larger atomic density, larger electric dipole matrix element, smaller cavity loss,
smaller atomic width, and smaller detuning between the cavity and the atomic
resonances. Also, it was shown that the steady-state atomic inversion is the same
as the threshold inversion:

Os = Oy, (12.44)

where the steady-state inversion is the saturated value according to

o0

Ty S

Here ‘]NE ) ‘2 is the squared oscillation amplitude suitably averaged over the region
internal to the cavity and |E,|® is the saturation parameter.

For the case of the one-sided cavity laser, the contour integral method for the
linear gain regime in Chapter 6 gives the same result for the threshold inversion
(see Equation 6.12)

(12.45)

_ 2heryy,

o (14 6% (12.46)

|Pu|2V0N
Note that the cavity decay constant here has the explicit expression given by
Equation 1.18a as compared to the abstract decay constant in Equation 3.35 for the
quasimode cavity laser. The semiclassical and the quantum linear gain analyses
based on the Laplace transform in Chapters 7 and 9 give the threshold inversion as
(see Equation 7.44a)

S R SV (12.47)
2hwery(1 4 6%)

The content of this equation is essentially the same as Equation 12.42a. This
equation can be recast in the form

gNow =7, (12.48)

which is the same as Equation 12.42b. Here ¢4 is the amplitude gain per unit
density of inverted atoms per unit time. Equation 12.48 states that, at threshold,
the amplitude gain per unit time is equal to the cavity loss rate.
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The semiclassical and the quantum nonlinear, saturated gain analyses in
Chapters 8 and 10 give the same threshold inversion as for the linear gain analyses
(see Equation 8.48):
2e1hayy,

— (140 (12.49)
V5|Pal

0 _
Noy, =

This can be rewritten in the form
#Noy, =7, (12.50)

Here the superscript 0 on the inversion o denotes the unsaturated value.
The steady-state inversion averaged over the length of the cavity is equal to the
threshold value (see Equations 8.49 and 8.53)

G = O (12.51)
where
1 0
Ogs = —J OmdzZm (12.52)
d) a

For the case of the generalized two-sided cavity laser analyzed in Chapter 11 we
had formally the same results as for the quasimode cavity laser and for the one-
sided cavity laser (see Equation 11.26a):

0 2howe;

0 =Gy = 77.(1+ %) (12.53)
T el N

The expression for the cavity decay rate y, is now given by Equation 11.25. This
equation can also be recast in the form

gNoS, =7, (12.54)

12.11
The Power-Independent Part of the Linewidth

In the previous chapters we have expressed the laser linewidth in terms of the
threshold atomic inversion ¢Y, in conjunction with the reciprocal output power. In
our two-level atom model the former is a constant independent of the pump level
and thus of the power output (see Equation 12.54 above). In the expressions for the
linewidth for above threshold, we had the “power-independent part.” In the litera-
ture, some authors [7, 8] prefer to express the linewidth in terms of the unsaturated
atomic inversion . Note that this factor depends on the pump level and thus is
related to the power output. The merit of these latter forms of expression is that they
are a little more compact than our previous expressions. Let us see how they look.

For the saturated gain regime of the quasimode cavity laser, Equation 4.82 may
read

B Zha)cyf y2(1+ 52)

N,
Aw ((nc) + ) (12.55)
p (V + Vc)z + (V - yc)zéz Na?h
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Here N, is the steady-state value, that is, the saturated value of N,. We note that

1L_1.1
wo oo a

- (12.56)

0

where A = (6° — 9,) /69, is the fractional excess atomic inversion, and that

P28, pA (12.57)
%]

which can be derived from Equation 4.67 noting that P:4ycsld}l~5(+)‘2 and

P, = 28161|E5|2. We also note that the N, term in Equation 12.55 came from
1+ N/(2Ng),) (see Equation 4.81). Thus we have

_ 2hog?r(1+ 8%
G +72+ (=7

1 N9 1 N
A5 (94 Nes) * Bz anes)

where Ng is the unsaturated value of N;. In this form we have a constant, power-
independent part of the laser linewidth in the second term in the curly bracket. We
note that the linewidth below threshold in Equation 4.62a cannot be rewritten in a
similar form to have a power-independent part because Equation 12.57 is mean-
ingless below threshold.

For the case of the one-sided cavity laser above threshold, we have (see Equation
10.111)

(12.58)

Zhwﬂfyz(l + (32)
(7470 + (0 —7.)

1 1 N, +N N, + N r
< |= nu)_’___&_z 01 +2 01 g()
p 2 2No), 2Ngj, P+ PsIn(1/7)

Ao =

(12.59)

This can be rewritten, using Equation 10.110 instead of Equation 12.57, as
2haf2y? (1 + %)
(74 70)" + 80 = 70)?

1 N N+M N+ Ny {g(r)+ 1}
8 {P{<"w+2> NG }+ 2No0  P,In(1/7)

Ao =

(12.60)
2hay?(1 4 6%)

(7 +7)° + (=)

ﬁg 1 N2 + N] N2 + le(r)
X{P "ot 5) T TN [T TaNeY Py

where, by Equation 10.102,

£(r) = (%i)z{%m G) 4! - 2’4} (12.61)




12.12 Linewidth and Spontaneous Emission Rate | 253

Here we have used the relation 8, = {c1/(2d)}(1 — r?)/(2r) (Equation 6.35).
For the case of the two-sided cavity laser above threshold, we have from Equation
11.71

2ha Ky (1 + 6%)
0 +7)" + (7 — 7.8

Sk (n)+1+ N1, N ! (Irl, [r2)
P\ T2 2N [ T 2NGY, Py + PoIn(1/[n|[n)) 0

Aw =
(12.62)

We can similarly rewrite this equation as
_ 2hawy? (1 + 6%)
(747" + (7 = 2.)°8
Kpy? 1 N N nl, |r
N PPN R N, (2]

2 2 "2No°[ "2Ne® P,

(12.63)

where

+1
il Iral) = K2 8UnlIr2l)
f(| 1| ‘ 2|) L/c ln(l/\thzD

12.64
(o) () ) B2
2d/ |2 \|nl|r] 8|ri[*|r|*

We again note that the unsaturated atomic inversion ¢° is not independent of
the power output, as seen from Equation 12.57. Van Exter et al. [7] obtained, by the
Green’s function method of Tromborg et al. [9], the same result as Equation 12.63
except that the factor before f(|r1], |r2|)/Ps is N2/(Na®), in our notation, instead of
N/(2N¢®). This difference comes from their neglect of the vacuum fluctuation or
their reliance on the normally ordered correlation functions. Their results also
contain a factor concerning the degree of incomplete inversion coming from the
laser level scheme. Prasad [8] found, through a method similar to that in Chapter
11, similar results for a one-sided cavity laser. His vacuum fluctuation term is
multiplied by the refractive index of the laser medium. He found a factor pro-
portional to the function f{r) in Equation 12.61 for the power-independent part.

12.12
Linewidth and Spontaneous Emission Rate

In Equation 4.13d and in other equations relating to the threshold condition, there
appeared the constant 4, which was interpreted as half the coefficient of the sti-
mulated emission rate. This rate should be related to the spontaneous emission rate.
As the laser linewidth is sometimes interpreted as resulting from spontaneous
emission, it will be instructive to derive the expression for the spontaneous emission
rate and its relation to the laser linewidth. Also, this discussion will become
necessary in Chapter 14 where theories of the excess noise factor are reviewed.
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12.12.1
Spontaneous Emission in the Quasimode Laser

We first consider the quasimode cavity laser. For the below-threshold case, we start
with the time derivative of Equation 4.43 for the field amplitude and its Hermitian
adjoint (we ignore the initial value term, which will decay eventually)

d_ o il = o) +93Tp() =i, kel (1)
aa(t) = soa(t) + e+ vo —20) F 7.+ 7

_ (12.65)
d . =5 (1) + {=ilvo — o) + 7} TH) +i 3, 5T (1)

—i(we +vo — 20) + 7y +7
Multiplying the first equation by &' (t) from the left and the second equation by a(t)
from the right and adding, we obtain

d i . T -

1@ am} = (o +s)a' (a() +a'(r)

x{i(vo — @) + 7} (H) =i, kD ()
(we +vo — 20) + 7y, + 7
{=ilvo = @) + PITH(1) + i 30,1, T ()
—i(we +vo — 20) + 7, +7

a(t)(12.66)

We use Equation 4.43 and its Hermitian adjoint on the right-hand side and take the
reservoir average. Using the delta-correlated natures of the noise forces (see Equa-
tions 3.36, 3.37, and 9.5c), we have for the reservoir average of the photon number

2 @ 0am) = (o +5)(a'09a00)

<je 0 iy — @) + 7} () + 1 5, 65,0 () fa

—i(w; +vo — 20) +y.+7

" {i(vo — @) + 7} ff(t) iy, Kmfm(t)
i(wc+"0 7260) + Y.+

{Hito =)+ TH®) } +i 5,6, T 0 (12.67a)
+ ;
—i(we +vo — 2mw) + 7y, +y

X

Jo e {i(vo — @) + p} Tr(¥) — i %, kD () }at
i(we +vo = 20) + 79, +7
= (s0 +s5) (@' (t)a(t))
{(vo = @)* + 7132, (ne) + 2, I1m|"30(1 + 0)
(a)c + Vo — zw)Z + (Vc + ,J})Z

+ 2

Here, we have used the integral [} (¢ — #)dt' = 1/2. Thus we have
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a, . ,
yr (@'(t)a(t)) = (so + sg)(a' (t)a(t)) + Ry + Ry (12.67b)
with
v
e e (12.68)
s
Ry = |——| 24N, 12.69
p Vl_'—y/c g2 ( )

where Equation 3.26 has been used for k,,, the summation over m of U%(z,,) has
been evaluated as N/¢;, the relation |y’|*= 72(1 + 6°) has been used, and the factor
¢ is given in Equation 12.43.

In Equation 12.67b the first term on the right-hand side gives the decay rate of
the photon number, which is the difference between the stimulated emission rate
and the cavity loss rate (see Equation 4.53). In Equations 12.68 and 12.69 the
absolute squared factor is given in Equation 11.68 and represents the detuning and
the bad cavity effects. Except for this factor, the rate R, is interpreted as the
injection rate of thermal photons and the rate Ry, is the total spontaneous emission
rate within the cavity. Below Equation 4.14 the constant 4 was interpreted as
“half the stimulated transition rate per atom per unit density of photons.”
Therefore, the quantity 2g is the stimulated transition rate per atom per unit
density of photons. For a free space mode, this rate is equal to the spontaneous
emission rate per atom into the mode. However, in this case, the spontaneous
emission rate into the cavity mode per atom is multiplied by the absolute squared
factor because of the above-mentioned effects in the quasimode cavity. Hereafter,
we use the term “total spontaneous emission rate” for the spontaneous emission
by all the atoms in an active cavity to distinguish it from the spontaneous emission
by individual atoms, for which we retain the term “spontaneous emission rate.”

This total spontaneous emission rate is related to the laser linewidth in Equation
4.62a. Noting that the output power P = 2y, hw(a'a) and that 4Ny, =y, (Equa-
tion 4.47), we can show that

R; + R;
Ao =——7 12.70
= " ata) (12.70)
for below-threshold operation. For above-threshold operation, we have from
Equation 4.82

_ R+ Ry

A
“ = 2(ata)

(12.71)

Thus the linewidth in angular frequency above threshold is, except for the
thermal injection rate, the spontaneous emission rate divided by twice the photon
number in the cavity, as noted by Henry [10]. (In Henry’s formula, this linewidth
is multiplied by 1+ ¢, the Henry factor — see Section 12.13.3.)
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12.12.2
Spontaneous Emission in the One-Sided Cavity Laser

Next we consider the one-sided cavity laser below threshold analyzed in Chapter 9.
We have from Equation 9.64 (for —d < z < 0)

sinQ.(z+d)/c;
77 +i(vo+ o —20)

EM(z,t)=

X

~ ' —imit . iVopa
;Cjaj(O)Le exp[(so — i) (t—1)]dr + od (9.64)

X Z sin{Q(zy+d)/c1} Jo I\ (1) exp[(so — i) (t— r)}df]

Differentiation with respect to time yields

d . sinQ (z+d)/a

ZEW(z,t) = s0ED (z,1) + :
dat (z:8) = %E7(z1) 7+ 7. +i(vo + 0, — 20)

i (12.72)
% [Z Cid(0) et + % Z sin{Qc(zym +d)/c1} fm(t)]
j m

As in Equation 12.67a we have

2

%<E(_)(z,t)f5(+> (29) = (@ +5)(EOEHED (2,0 + sinQ:(z+d)/er

Y+

(12.73)
VOpu

e1d

X | D+

> Isin{Q(zm +d)/ci} (1 +0)

where D is given in Equation 9.81b. Here E(*)(z,t) is the Hermitian adjoint of
E™)(z,t) (see Equation 2.19b). In this case E(*)(z,1) is not the photon annihilation
operator of the cavity mode. In view of the spatial dependence of Equation 9.64 we
assume the form

E™)(z,t) = Ba(t) sin{Q.(z + d)/c1} (12.74)

where B is the normalization constant to be determined and (a'(t)a(t)) describes
the photon number in the cavity. Since the field energy stored inside the cavity
divided by A is equal to the photon number, we have

’ g(= B+ PR
261 Ll dZ<E( (@ )EM) (=, t>> = ho(al (t)a(t)) (12.75)

or

0

261 B* (al (1)a(r)) J_d |sin{Qc(z + d)/c1 }*dz = ho(a' (H)a(t)) (12.76)

Thus we have
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2 hw 1

B _
Bl 2& (Lod |sin{Q.(z +d) /c1 }*dz

(12.77)

Substituting Equation 12.74 into Equation 12.73 and using Equation 12.77 we
have

2e1 [0 sin{Q(z + d) /a1 }*dz
hw sin{Q.(z + d)/cl}|2

(@ ()a() = (s0 + ;)@ (Da(y) +
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~
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X
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Referring to Equation 9.92 for the integral and to Equation 4.14 for the constant
¢, we have

7 (a'()a()) = (so + sg)(a' (Ha(t)) + R, + Ry (12.79)
where

o? i ARG

R= omal, |V +7 (T) ko) 27e{ma)

. e th (12.80)

"// 2 ﬁ 2

o= (25) 2N,

P+ <vc> 7

Here we have used Equation 9.81b for D and Equation 9.14 for G in the expression
for D. Also we have used Equation 7.44a for oy, This time both the thermal
photon injection rate and the total spontaneous emission rate in the cavity have
a new factor, (f./7.)°, which was identified as the longitudinal excess noise
factor for the case of the one-sided cavity laser below threshold. Also, the
factor o?/(oy00,) appears here as in Equation 9.105. The laser linewidth in
Equation 9.105 can be rewritten as

_ R, + Ry

Aw (afa)

(12.81)

For above-threshold operation, Equation 10.111 for the same laser reduces,
except for the extra term coming from the gain saturation (the term containing

g(n), to

_ R+ Ry

Aw 2(a'a)

(12.82)

Here R, is defined in Equation 12.80. Comparison of Equation 12.81 or Equation
12.82 with Equation 12.70 or Equation 12.71 shows that, except for the thermal
contribution and the term coming from the gain saturation, the linewidth is in
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general given by the spontaneous emission rate divided by the number of photons
in the cavity or by twice the number of photons [10], depending on whether
operation is below or above threshold. The difference between the quasimode laser
case and the one-sided cavity laser case appears as the absence or the presence of
the excess noise factor in the total spontaneous emission rate. Thus we can say that
an enhanced linewidth with an excess noise factor is the result of the enhanced
total spontaneous emission rate in the cavity. Note that the total spontaneous
emission rate in the cavity does not mean the spontaneous emission rate of
individual atoms. The latter is the standard emission rate in the medium.
(See Chapter 13 for the modified spontaneous emission rate of an atom in a
microcavity.) We note that the thermal photon injection rate is also enhanced
by the same excess noise factor in the one-sided cavity laser.

12.12.3
Spontaneous Emission in the Two-Sided Cavity Laser

The case of the general two-sided cavity laser may be analyzed in a similar fashion.
But for this case we need the specification of the cavity mode function involved,
which has not been done in Chapter 11. Thus this analysis will be postponed to
Chapter 14. (See Equations 14.36, 14.90, and 14.113 for spontaneous emission in a
laser with a general cavity structure.) We will see that the total spontaneous
emission rate is enhanced by the excess noise factor.

12.13
Further Theoretical Problems

There are several issues concerning the laser linewidth and the longitudinal excess
noise factor that have not been taken into account in the previous chapters but
have to be known when one goes to more realistic analyses. This section describes
those issues of general importance.

12.13.1
Filling Factor

Up to now we have assumed that the active laser medium containing active atoms
exists in the whole space of the cavity. In practice, the laser medium sometimes
exists only in a part of the cavity space. The ratio of the volume where the laser
medium exists to the whole volume of the cavity is called the filling factor. In our
one-dimensional case, the filling factor may be defined as the ratio of the optical
length of the laser medium to the whole optical length of the cavity. The effect of
the presence of the spatial region where the laser medium does not exist can be
analyzed easily assuming that the laser field in such a region propagates with no
change in amplitude but with finite phase change. This free propagation results in
a relative increase of the cavity length and thus in a relative decrease in the cavity
decay rate. Henry [10] considered this problem, ignoring thermal noise, and
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obtained a laser linewidth similar to ours, including the longitudinal excess noise
factor, but multiplied by the square of the filling factor. In our case of a general
two-sided cavity laser, the “diffusion coefficient” D, in Equation 11.100
will be multiplied by the filling factor because in the sum in Equation 11.99 the
cavity length d should be replaced by the active length [, say, if there are inactive
regions within the cavity. This results in a linewidth in Equation 11.101, for
example, multiplied by the filling factor I/d. The apparent difference from Henry’s
result, multiplication by the square of the filling factor, comes from Henry’s
expression for the linewidth containing the active length.

12.13.2
Inhomogeneous Broadening

Throughout this book, the laser active atoms are assumed to be homogeneously
broadened. This is not necessarily true in practice. Kuppens et al. [11] considered
this problem theoretically and experimentally, taking into account the presence of
a longitudinal excess noise factor. On the basis of the argument concerning the
intracavity round-trip time, they found that, when the inhomogeneous gain width
is large compared with the homogeneous Lorentzian width, the laser linewidth
tends to decrease. They verified this point by experiments using a He-Xe gas laser.

12.13.3
Amplitude-Phase Coupling

Henry [12] showed that, in a medium where the refractive index changes appre-
ciably with field amplitude, fluctuation of the field amplitude due to noise causes
the field phase to fluctuate strongly. Thus this amplitude-phase coupling intro-
duces another cause of laser line broadening. The effect was shown to broaden the
laser linewidth by a factor 1+ o?, the Henry factor, where
!/

o= % (12.83)
Here An’ and An” are the changes in the real and imaginary parts of the refractive
index, respectively, under a given change in the field amplitude. This effect should
appear more or less if we take the amplitude fluctuation into account.

In previous chapters we have ignored the temporal fluctuation of the atomic
inversion: we have ignored the Langevin force l;mH (t) in Equations 3.46 and 5.27 in
our analysis and simply used the reservoir-averaged, steady-state values of the
atomic inversion. Therefore, the Henry factor did not appear.

Goldberg et al. [13] noticed the formal resemblance of the mathematics leading
to the Henry factor and the detuning effect. They showed that the detuning of the
cavity frequency from the oscillation frequency (they assumed that the oscillation
frequency is equal to the atomic transition frequency) gives equations relating the
amplitude and phase changes with the field intensity that are equivalent to those
that appear for the case of amplitude-phase coupling via refractive index change.
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They showed that the parameter Q = (vo — ;) /7, Where 7, is the net damping

rate of the field in the active cavity, has the same role as the parameter o and yields

a linewidth enhancement factor 1+ Q* However, they showed numerically that,

for a large output coupling, the detuning effect is smaller than the 1+ Q? factor.
In this context we have obtained in Section 12.6 a factor

(vo — wC)z

1+0* =1+
(7 +7)°

(12.84)

only for the case y ~ y.. When either y > y.or y « y. we had no detuning effect.

12.13.4
Internal Loss

By the term internal loss we mean the optical losses other than that due to output
coupling. One physical cause of internal loss is scattering of the laser field by
impurities or optical imperfections. The other is absorption of the laser field by any
absorber other than the lasing atoms or by the lasing atoms involving non-lasing
levels.

The loss may be localized or distributed through the cavity. The internal loss
merely consumes the laser field energy, while the output coupling loss leads to the
laser output. As mentioned in Chapter 3 and in Appendix C, these losses are
associated with fluctuating forces so as to maintain the quantum-mechanical
consistency.

12.13.4.1 Internal Loss in a Quasimode Laser

In the case of the quasimode laser model, the addition of an internal loss
mechanism does not lead to much difficulty. The internal loss adds a decay
term with a decay constant y; in Equation 4.39a together with a fluctuating force
term, for example, I';(). Here the subscript I signifies the internal loss. Thus

b= —ioci— 7,8 —pa—i Y k(b bm) + Tp(t) + (1) (12.85)
m

S

The correlation function for I'(t) is given analogously to Equations 3.36 and 3.37:

Iy(t)) =0, @) =o0
i) < l > (12.86)

Therefore, the analysis for the quasimode laser in Chapter 4 does not change
significantly: the cavity decay rate becomes y.+ y; instead of y,, and the normally or
anti-normally ordered noise correlations yield (see Appendix C)
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{0 + 0 M) + D)} ) =200 +mmdE — ¥)

(12.87)
({50 + DO HTH) + T ) }) = 2600 + 1) (n0 + 1ot~ ¥)

where we have assumed the mutual independence of the two noise forces.
The laser output power is still 2y, times the stored energy. The product of 2y,
and the stored energy gives the power dissipation rate to the internal loss
mechanism. So, most of the y. in Chapter 4 become 7.+ 7y, except the one in
Equation 4.80 for the power output and one of the y, in the numerator in the
expression for the linewidth in Equations 4.81 and 4.82.

12.13.4.2 Internal Loss in a Two-Sided Cavity Laser

For the case of continuous mode analysis starting in Chapter 5, it is not obvious
how to take the decay rate 7, and the fluctuating force I'(t) into account in the
starting equation (Equation 5.25) because this deals with the individual universal
mode but not the cavity mode as a whole. Therefore, it is not advisable to use the
continuous mode analysis from the outset. Any internal loss may be artificially
squeezed into the theory after we get the equation of motion for the total cavity
field, for example, Equation 10.69 obtained for the nonlinear, saturated gain
analysis of a one-sided cavity laser. Here the time rate of change of the internal
field is related to the thermal and quantum noise forces.

The simplified, propagation method used for the analysis of a generalized two-
sided cavity laser in Chapter 11 was based on this equation. Equations 11.35 and
11.77 for the nonlinear and linear gain regimes, respectively, were the disguised
forms of Equation 10.69 with suitably dressed-up noise forces. Two coupling
surfaces with respective arbitrary reflectivity, r; and r,, were introduced instead of
the two with r and —1 for the one-sided cavity. The noise forces associated with
possible internal losses may be introduced into Equations 11.35 and 11.77. For
generality, let us assume that we have local losses at the two mirrors with
respective loss rate y;; and yj, respectively, and a distributed loss with overall loss
rate 75 Then, the factor F, + ﬁq in Equations 11.35, for example, may have
additional terms due to these internal losses:

det(d—0,t) o
dt S 2dy + L

(Ft +Fy+Fy+ Fp+ de) (12.88)

The noise from the mirrors may be treated just as the thermal noise entering
from the two mirrors. We cite Equation 11.36:

F, = {Tgrl Gire?™fR (d +0, t— i—d) + T} Guef! <—o, t— g) } (11.36)

1 1
Here the noise forces are multiplied by the net amplification plus phase shift for
one round trip or a one-way trip to mirror M2. Inspection of the calculation
procedure to go from this equation to the linewidth formula in Equation 11.66
shows that the resultant squared transmission coefficients | T} ,|* result in the
factor (|ri| 4 |r2])(1 — |r1||r2])/|r1||r2], which, together with the factor (c;/2d),
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reduces to 21In(1/|r||r2]) = 2y, in the limit |r1], |r2|] — 1. If we look at the above
factor more precisely, it appeared in Equation 11.53 in the form |r;| ' —|r;| plus
|r2| " —|r2]. They came from |T}|* and |T}|?, respectively. In the limit |r|, |[r2| — 1,
they would lead to 2y, = 2(¢1/2d) In(1/|r1|) and 2y, = 2(¢1/2d) In(1/|r,]), respec-
tively, where, of course, we have y.; 4+ 7, = 7.. Thus we see that the usual cavity
decay rate was incorporated through the transmission coefficients. Therefore 131172
may Dbe given as

S 2 2d R d
Fip + Fy = T},r1 Gige?™fR (t - C—) + T}, Gue™ft (t - C—) (12.89)
1

1

where T}, and T, should lead to their respective loss rates y; and y,. One
prescrlptlon for this is to set

T, =T, ;i T, =T, [12 (12.90)

cl c2

For the distributed loss, if it is uniformly distributed, we may have, as in
Equation 11.41 for the quantum noise,

A —Zi ik(d—z: - d+z ) ;
B :2{ ld( —T’>ngek<d ) 4 f (t— : ) ngmLekM} (12.91)

The factor fild is the noise amplitude emitted by the ith fragment of the distributed
loss mechanism. The assembled noise

fa=3_f" (12.92)

should lead to the decay rate y,,;. Therefore, this may be given, as in Equation 12.90,
by

fu=TR  T=T, y— (12.93a)
C.

fu=Tift,  Th=Ti, /f’d (12.93b)
cl

These two alternatives should lead to the same results. The individual noises ﬁld,
which are mutually independent, may be determined so that

fhma? Zfl‘” B (¢ (12.94)

or

Finally, the noises Fy + Fiy + Fyy should be determined so that, in the final
expression for the linewidth and in a good cavity limit, every y,, for example in
Equation 11.66, is replaced by y, + ;1 + 71, + 714 except for the one that is related
directly to the power output.
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12.13.4.3 Internal Loss and Optimum Output Coupling

A practical benefit of taking into account the internal loss is that this allows us to
know the optimum output coupling or the optimum mirror reflectivity to get the
largest power output for a given pumping strength. As seen from Equation 4.34, in
the presence of an internal loss mechanism, the power output P is (see Equation
4.14)

0

P = 2y.61d|E,[? {& - 1] (12.95)
Ve i

Note that 4 does not contain y, nor y; (see Equation 4.14). We assume, for

simplicity, that the 7, (and y;) dependence of |E,|* given in Equation 4.35 can be

ignored. Then the power output P as a function of y, vanishes at y.=0 and at

7. = ¢N6® — y; but has a maximum at

Ve =/ #Na%y — (12.96)

The maximum power is

2
P= 281d|ES\2< gNa® — \/71) (12.97)

If we had y,=0, P would increase with decreasing y, and would be at its maximum
at y.=0. This is unphysical since y.=0 means zero output power. In reality we
cannot avoid some internal loss, which leads to a finite optimum coupling loss.

12.13.5
Spatial Hole Burning

In a laser where the laser active atoms cannot move freely in space, the gain
saturation occurs selectively at the locations where the field intensity is large. In
lasers with Fabry—Perot type cavities, there exist two counter-traveling waves that
interfere to bring an interference pattern with a period of half the wavelength in
the laser medium. If the pumping is uniform, the portion of bright interference
becomes more saturated than the portion of dark interference. This is called
spatial hole burning in contrast to the usual hole burning that occurs in the gain
spectral region in an inhomogeneously broadened medium. Spatial hole burning
leads to a quasi-periodically modulated gain distribution along the length of the
laser medium with the period being a half-wavelength.

In previous chapters, this phenomenon was disregarded because an accurate
inclusion of this effect demands more complicated mathematics. For example, in
Chapter 4 for a quasimode laser, we have replaced sin’(z,, + d) by its space
average ; in going from Equation 4.29 to Equation 4.32. Similarly, in Chapter 8
devoted to the semiclassical analysis of the one-sided cavity laser, we have ignored,
in Equation 8.22, the interference terms in the absolute square of the total electric
field, which would lead to spatial holes. This approximation was carried over to
Chapter 10 for the quantum, nonlinear gain analysis of the same laser.
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Agrawal and Lax [14] developed a method to treat the spatial hole burning and
showed that the gain is in general different for the right- and left-going waves in
the presence of spatial holes. Goldberg et al. [13] extensively examined the effect
of spatial holes on the longitudinal excess noise factor, extending the method of
Agrawal and Lax to include asymmetric cavities, and showed that the spatial holes
increase the linewidth because of the decreased output power and that, when the
cavity is two-sided and asymmetric, the directional gain results in a further
increase in the excess noise factor.

12.13.6
Transition From Below Threshold to Above Threshold

A laser is an oscillator in the optical frequency region. An oscillator has in general a
clear threshold gain and its operation changes abruptly at threshold: from no coherent
output power below threshold to finite coherent output power above threshold. A laser
also has a clear threshold behavior: we experience an abrupt emergence of a bright
light beam at threshold. Accordingly, the analyses presented so far have been divided
into linear gain analysis for below-threshold operation, and nonlinear, saturated gain
analysis for above-threshold operation. In particular, the expression for the laser
linewidth had a decrease by a factor of 2 from below to above threshold.

A closer look at threshold, however, reveals a smooth transition from below
threshold to above threshold of various quantities in a laser. Risken [15] calculated
the smooth change of the linewidth, showing a decrease by a factor of 2 from
below to far above threshold. He treated the classical field amplitude using a
Fokker—Planck equation approach. The Fokker—Planck equation for a laser deals
with the probability distribution of the field amplitude [5,6]. Another method
suitable for analyzing the smooth change through threshold is the density matrix
equation method, used by, among others, Scully and Lamb [16]. This method
treats the photon number distribution and derives a smooth change in the photon
number distribution: from that of a black-body radiation for far below threshold to
a Poisson distribution for far above threshold.
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13
Spontaneous Emission in a One-Dimensional
Optical Cavity with Output Coupling

In this chapter we analyze spontaneous emission from a single excited atom in a
one-dimensional, symmetric two-sided cavity. Perturbative treatments and exact
non-perturbative treatments are given. We show that the spontaneous emission
rate can be enhanced, compared to the case in a free one-dimensional space, by the
so-called Purcell factor, but not by the excess noise factor. Thus this analysis makes
it clear that the excess noise factor of the previous chapters is not a result of the
enhancement of the spontaneous emission rate of individual atoms by the excess
noise factor. Parts of the analyses presented in this chapter are due to Feng and
Ujihara [1] and Takahashi and Ujihara [2]. Extension to three dimensions is
considered in the final section.

13.1
Equations Describing the Spontaneous Emission Process

We consider the spontaneous emission process by a two-level atom located in an
optical cavity having output coupling. The atom is initially prepared in the upper
state and the field modes are initially in the vacuum states. Here we use the
symmetric two-sided cavity model of Section 1.3.2 where the cavity is composed
of a dielectric slab extending in the region —d < z < d. The dielectric has
dielectric constant ¢; and refractive index n with the velocity of light inside
the dielectric being c;. The outside regions are vacuum with dielectric constant &,
and velocity of light ¢y. We naturally have ¢; =¢y/n. For quantization, we have
imposed on the field modes a cyclic boundary condition with period L+ 2d~ L.
The mode functions of the universe are given in Equation 1.58, where we have
antisymmetric and symmetric functions.

In this chapter we use the Schrédinger equation in contrast to the Heisenberg
equation used in Chapters 3 through 11. The Hamiltonian describing the spon-
taneous emission process by a two-level atom is given as
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H, = Hy + Hy + Hin (13.1)

Here the field Hamiltonian is
~ N e 1
Hf = ; H; = thwj (a}aj + E) (13.2)

where the suffix j denotes a “universal” mode. The atom with Hamiltonian H, has
two levels |u) and |I) with energy eigenvalues

Hylu) = hoalu),  Hyll) =0[) =0 (13.3)

The interaction Hamiltonian is (cf. Equations 3.17 and 3.19)

i = 13" iy - ) (13.4)
J

where ji =ex is the component of the atom’s electric dipole operator et in
the direction of the polarization of the electric field, which is assumed to be
in the x-direction. The function Uj(z) is the jth mode of the “universe” and z, is
the location of the atom.

Now the electric dipole is a constant operator that does not change with time.
Also, the annihilation and creation operators of the modes of the “universe” are
constant in time. What changes with time is now the wavefunction, for which we
assume the form

|0(1) = Cu(B)]w)|0)e ™ + >~ Cy(n)[h][1;)e (13.5)
j

with the initial conditions
C,(0)=1 and Ci(0)=0 (13.6)

Here the field state |0) denotes the state where no photon exists in any mode, while
|1;) denotes the state where one photon exists in the mode j but no photon exists
in any of the other modes. The time-varying coefficients C,(t) and Cj(t) are the
probability amplitudes for the combined states |u)|0) and |I) ’11>, respectively. In
Equation 13.5 we are implicitly assuming that the system has an appreciable
probability only for one excitation state, that is, the state with an excited atom and
no photons, or the state with a de-excited atom and one photon. We assume that
the probabilities for states with zero excitations and with two excitations or more
can be ignored. This corresponds to the rotating-wave approximation where
energy-conserving terms are selectively treated.
Now the Schrédinger equation

i lo(0) = Filo() (1372

reads
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i {cu<t>|u>|o>e"w +2 cy<t>|l>|1j>e"‘”ft}

:{Zhwj<aaj >+H lZ\/7 Ui(za)lt aT)} (13.7b)
{ J(5)[u)|0) *“”A‘+ZCQ )| }

Thus the left-hand side (LHS) is
LHS = ihC,(t)|u)[0)e™"*" + hoaCu(t) |u)[0)e "

+ lhz Cl_/ |1 71&)} + h Z chl_/ |1 > 71&)} (138)

On the right-hand side (RHS) we use Equations 2.14, 2.15 and 13.3 and ignore
states with two photons. Thus the RHS is

RHS = Zf“z”"{cu(t)|u>|o>ew + > GO |1,>eiwﬁ}
J

i

+ Z hchlj(t) |l> | 1j>e*iu’jt 4 h(UACu(t)|M> ‘0>efiwAt

‘ (13.9)
_ iZ ? Uj(za)iiCy (1) |1y |0)e "
J
+ lz ? UJ(ZA)/AiCu(t)‘LQ ’1j>e*i")At
J

Note that the second and fourth terms on the LHS cancel with the fourth and
third terms on the RHS, respectively. Multiplying both sides by (u|(0| and by
(11{1j|, we have, respectively,

¢ h(}), i(wa—wj
zhCu(t):Z ‘Z\/ Uj(za) (ul]l) Gy () =)

(13.10)

o hw; hw; R .
ihCy1) = 3275 Co(t) + iy 7 Uea) il Cufr)e "

i

The factor ); hw;/2 can be shown to give C, and Cj the same phase factor
exp{i }_; (w;/2)t}, which we ignore from now on. Thus we ignore the first terms
on the RHS in both lines of Equations 13.10. We obtain
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s w; . .
G == \/% Uj(za)ua Cy(1)e" ="
: (13.11)

Ci(t) = | /22 Ujlzas Cult)e ="

where we have written (u|i|l) = uy.

13.2
The Perturbation Approximation

We first consider the process perturbatively where the probability amplitude of the
initial state |u)|0) does not change much so that C,(t) ~ 1. Thus the second line of
Equations 13.10 can be integrated to yield

w: . e—i(uJA—u)j)t -1
Git) = 5L Gleai (13.12)

A —i(wa — j)

The total probability P of the atom being in the lower state is

P=>lGw[ =3 U (a8 = 5)1/2) (13.13)
J

2
7 (@4 — )
We take the limit t — oo whence

4sin’*{(wa — w))t/2}

(04 — @)’

— 27td(wa — ;) (13.14)

Using the density of modes p(w) given by Equation 1.67 and the mode functions
given in Equations 1.58 and 1.65, we have

p— tMATW {pa(wA) (s, (zA))2+pb(wA) (s, (zA)>2} (13.15)

Thus the spontaneous emission rate R is

k= %P - %ﬂﬂz {pa(wA) (UZ;A(ZA))2+ PP (w4) (UZA(ZA))Z}

(13.16)
A (c_l)( sin® kyjaza N cos? kiaza )
0 Co 1-— KSil’l2 klAd 1 — Kcos? klAd

where

2
Ay = PAlkAl (13.17)

hCl &1
is the spontaneous emission rate in a one-dimensional, unbounded dielectric of
dielectric constant &;. This expression for Ay can be obtained if we use the density

of modes L/(2cim) for both the mode functions +/2/(eil)sinkyjz and

V/2/(e1L) cos kyjz.



13.3 Wigner—Weisskopf Approximation

We see that the spontaneous emission rate depends both on the atomic location
and on the atomic frequency relative to the cavity resonant frequencies. Note that
kia = wa/c1. The emission rate is large when either resonant condition
sin kjad = 1 or cos?kjad = 1 is satisfied. In the case of a single-sided cavity,
where the second term in Equation 13.16 becomes the same as the first term, the
emission rate dependences on the atomic location and on the atomic frequency
relative to the cavity resonant frequencies are more pronounced. Since C,,(f) &~ 1is
assumed, this perturbation approximation is valid only for e ® ~ 1 or t < 1/R.
Another restriction for time t comes from the width of the delta function in
Equation 13.14 (~ 2n/t), which should be narrower than the spectral width of the
mode functions (x 2y,).

13.3
Wigner—Weisskopf Approximation

In the Wigner—Weisskopf approximation, an exponential decay of the upper level
|u) is assumed:

Cu(t) = e /2 (13.18)

where the decay constant y should be determined in a consistent manner.
This approximation is valid up to t ~ 1/y. We use this in the second equation
in Equation 13.11 to obtain

c wj { (y/2)— 1((uA7wJ)}t -1 13.19
(1) = /2 U; .

Substituting Equations 13.18 and 13.19 into the first equation in Equation 13.11
we obtain

oI , 1— gilwa—w))i+(y/2)t
7= _7 U (za)lual -
25 Y e o —a

1 _ et(zuA wj)t (1320)

= Z h U2 (za) |l Ton—a)

where in the second line we have ignored y/2 as small compared to w 4. The factor
{1 — €@ /(s — ;) is {(wa — ) for t - oo where the zeta function is
given by Equation 2.53b. Thus for t —» oo

Rey ~ Z % U2 (za)|pal* (w4 — wj)

= LWAANM {Pu((DA) (UZA (ZA)>2+Pb(wA) (UZA (ZA)> 2} (1321)

=R
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Thus we have shown that the real part of the assumed decay constant is the
same as the spontaneous emission rate in Equation 13.16 obtained by the lowest-
order perturbation calculation. The imaginary part expressing the line shift can be
shown to be small [3]. Because this solution is valid up to t ~ 1/, we can discuss
the emission spectrum, which is determined after the atom has fully decayed. The
absolute square of Cj; (t) in Equation 13.19 with yt >> 1 multiplied by the density of
modes p(w;) gives the emission spectrum I(w;):

1
lfey) = p(@)| O = pley) 5} Uzl gy (1322)
j
where
N2 1 sin® kijza cos? kyjza
p(@))Uj(za) = mooer \ 1 — Ksin® kyjd T Keos? kyjd (13.23)

If the mode functions were of a flat spectrum, we would simply have a Lor-
entzian spectrum with full width at half-maximum (FWHM) of y. However, both
the spatially antisymmetric and symmetric modes have peaks at w; = wf, =
(2m +1)(nc1/2d) and ;= b, = 2m(nc;/2d) (integer m), respectively, with
FWHM of 2y, where 7, = (¢1/ Zd) In(1/r)and r is the amplitude reflectivity of the
coupling surfaces for waves incident from the inside. Therefore, the transition
from the first to the second equation in Equation 13.20 may be allowed only if y <
2y.. Thus the present results under the Wigner—Weisskopf approximation are
limited also by the above inequality. If the reverse inequality holds, the emitted
photon energy will accumulate in the cavity and will be reabsorbed by the atom,
leading to the damped Rabi oscillation discussed below.

13.4
The Delay Differential Equation

Integrating the second equation in Equation 13.11 and substituting the result into
the first equation, we have

Cult) = |“2Ah‘ JO dt ij U?(z4) Cy () €ll@a=)(=1) (13.24)

Using the density of modes p(w) we rewrite it in the form

2 t 00
C“(t):’lqu‘%Jodt/J, daoy p(w)) UF (z4)e 0 C, () (13.25)

Here, assuming that the time variation of C,(t) is much slower than the optical
frequency, and hence the actual integration range in frequency is small compared
to the optical frequency, we have taken w; out of the integration, replacing it by w,,
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and extended the lower limit of the frequency integral to —co. Using the form of
the product p(w;) sz(zA) in Equation 13.23 we have

o alfoa J r“ ,
Cult) = 2mhcoes Odtl S do

(13.26)

-2
sin® kyjza N cos® kyjza glon-o)i-1)C,(¢)
1 — Ksin® kyd  1-— K cos? kyjd
Using the Fourier series expansion in Equation 1.70b we have
sin” kyjz4 cos? kyjza
1 — K sin® kyd 11— K cos? kyjd
200 & o 1, n even (13.27)
0
=— cos(2nky;d) x
¢1 g1+ 6on (2nks;d) cos(2kyza), nodd
By a similar procedure to Equations 7.5-7.10 we have
00 22
J dooe [ B kjza N cos? kijza i(on—op)(—7)
oo \1 = Ksin? kiyjd 1 — Kcos®kyd
269 N 2n Jm
=—>r dw;
x| cos(anty) + L cos{oy(nty + 1)} + - cos{ay(nty + 1)}
————cos(wjnt,) + = cos{w;(nt, —cos{w;(nt,
1+ o )j 2 )j 1 2 )j 2
o gloa—op—t) _ 20 S (13.28)
a n=0
X ! {9 5(E — t+ nt,) + e S(Y —t —nt,)}
1+ o § '
+ % {eiwA(”t’+’1)5(t' —tnt 4 ty) e A TS (Y g, — tl)}
+% {eimA(ntﬂrtz)é(t/ —tdnt o+ tz) + e*i(I)A(ﬂtr‘FtZ)é(t/ —t—nt — tz)}:|
where
t, :4d/(317 ) = Z(d*ZA)/Cl, t) :2(d+ZA)/Cl (1329)

Here t, is the cavity round-trip time. The delay time t;(t,) is for a round trip
between the atom and the right-hand (left-hand) mirror. Substituting Equation
13.28 into Equation 13.26 and performing the integration, we have the delay
differential equation
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. A, 0 .
Cult) = — 70 Cu()H(t) +2) 1™ Cy(t — nt, ) H(t — nt;)
n=1
> .
+ Y PPt Gt — b, — 1) H(E — nt — 1) (13.30)
n=0
+ Y PRI C (¢ — ity — 1) H(t — nty — 1)
n=0

where H(t) is the unit step function and A, is the spontaneous emission rate in a
one-dimensional, unbounded dielectric of dielectric constant ¢;, which is given by
Equation 13.17. The first term describes the natural decay process in a free
dielectric. It lasts until t = min(t;,t,). For t> min(t,t,) the decay process is
affected by the fed-back “signal” with reduced magnitude determined by the
mirror reflectivity. There are four kinds of routes for the “signal” to come back to
the atom. For larger time t, more and more terms with smaller and smaller
magnitudes come into play. According to Milonni and Knight [4], these terms can
also be interpreted as coming from the mirror images of the atom decaying
cooperatively. Equation 13.30 is the same as that obtained by Cook and Milonni [5]
who used resonant mode functions of the cavity and introduced the mirror
reflectivity phenomenologically.

In the special case where the atom is at the center of the symmetric two-sided
cavity, t; = t; = t,/2 and Equation 13.30 is written as

. A ©
Cu(t) = =S Cu(DH() — Ag Y reoan/?
2 =i (13.31a)
x Cyu(t—n(t,/2))H(t — n(t,/2))
We further rewrite it as
. Ao 00
Cu(t) = — 5 C.()H(t) + Z gn(wanty)Cy(t,) H(t,) (13.31b)
n=1
where
Gn(x) = —Agr"e™, ty =t — nty, ty = t,/2 (13.31¢)
Then the solution is obtained as [6]
> T (watn)qy: 2waty) - - - g2 (nwaty,
Cu(t) _ Z |:qu ( )an(' : ) 'q ( )t:f
=0 1140 =+ Oy
(13.32a)

X exp (— ? tnﬂ H(ty)

where the sum is over all non-negative integers a; (i =1,2,. . . ,n) that satisfy
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la; +2a, +---+na, =n (13.32b)
and
m=a1+a;+--+ay (13.32¢)

For a free space (r — 0) Equation 13.31a shows that the upper-state population
decays as |C,(t)]*= exp(—Aot), as expected.

In Figure 13.1, typical decay curves are presented (after [2]). Here, the cavity
length is 2d=(5/2)4, r=0.6, and Aot,=0.5. The curves are for the atom at an
antinode (curve A) at z4 = (1/5)d=(1/4)4, at a node (curve C) at
za = (2/5)d = (1/2)A, and between an antinode and a node (curve B) at
za = 0.35d >~ 0.432. Note that curve A shows weak Rabi oscillation (see next
section). A curve for a natural decay in “free” space (e7) would come between
the lowest and uppermost curves.

13.5
Expansion in Terms of Resonant Modes and Single Resonant Mode Limit

Using the second, resonant mode expansion of Equation 1.70b in Equation 13.26,
we have

1
c
Lo
kS
3
Q
Q
o
Q
< 05¢
@
@
Q
o
)
O h e T T e 1
0 2 4 6 8 10

Time t/tr

Figure 13.1 The time evolution of the upper-state
population |C,(£)|% for 2d = 2.5%, r = 0.6, and Agt, = 0.5.
The time is scaled to the round-trip time t,. (lowest curve) A,
za [ d = 0.2 (antinode); (middle curve) B, z4 / d = 0.35
(between node and antinode); and (uppermost curve) C,

zp [ d = 0.4 (node). After Ref. [2].

275



276 | 13 Spontaneous Emission in a One-Dimensional Optical Cavity with Output Coupling

~ a0 J ,JW (o)t
C, (1) = —ZAL 72 gy dow: i(wa—wj)(t )C ¥
u( ) ZﬂhC()Sl o . wj € u( )

o coy,/d coy,/d
Z {—0 Ve/ sin? kijza + 2 o7/ cos? kljzA}

V% + (wj - w?m)z Ve + (wj - w?m)z

m=—00

_ AOJ dt J d(JJJ ei((uAfcuj')(tft’)Cu(t/) (1333)

Tk,

= i
x —+CC
A Gamrare)

i

x sin? kijza + (T
Wj — Wy, + 1)

+ C.C.) cos? kljzA}

where C.C. denotes the complex conjugate. This equation contains contributions
from all the cavity resonant modes. When the spectrum of C,(t) is limited, we may
choose several cavity modes around the atomic frequency w,. Further, if the atom
decays slowly during one round-trip time, and if for some @, both the cavity half-
width v, and the detuning w, — w,,, are small compared to the cavity mode spacing
Aw; = nc /(2d), that is, if

Ay < 1/t Y. <K Awy, |wa — Wem| < Aw (13.34)

then we may choose only the cavity mode w,,. For wg, = % , we have in the

single resonant mode limit

Eult) = A"J dt Cu(t )Jm dwj(;Jrc.c.)

ity e j — 0, + 17,

cm?

(13.35)

« sinz kljeri(mAfwj)(tft’)
(For wgm = w”, we have cos? kyjz4 instead of sin® kijz4 in Equation 13.35.) In the
integrand we have a pole at w; = wf,, — iy, ~ w? . Since we are not interested in
the variation during a time of order t, ~ z4/c1, we can take sin? kijza outside of
the integral concerning w; and set it equal to sin®(w%,z4/c1). Thus, by the contour
integral on the lower half-plane of w; and evaluation of the residue, we have

Cu(t) = —(2A0/t,)sin2(w§mzA/cl)J i’ C, () @a= it (=) (13.36)

Differentiation with respect to time ¢ yields

éu(t) - i(wA wcm + l/ﬁ) (t) + (ZAO/tr) (13.373)
x sin®(w%,za/c1)Cu(t) = 0

which can be formally written as
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Cult) + (7 +i0) Cult) + (Qr/2)*Cu(t) = 0
A=wl, —wa

(13.37b)

(2A0/tr) sinz(wgmzA/cl), Wem = O,

(Qr/2)*=
(2A0/t,) cos?(w? za/c1), O = 0,

where we have added the result for wg, = wi’m. From the initial condition,
Equation 13.6, we have C, (0)=1 and C,(0) =0 (see Equation 13.11), so that
the solution to Equation 13.37b is

;»26)”]1: — /116/121t
Cu(t) = 28— 1e”
(t) R

: (13.38)

where the + sign is for ; and the — sign for 1,.
We examine two cases. The first is the underdamped case where y. < Qg. For
simplicity we assume that A=0. Then we have

Cu(t)
(it )e TR b (i f Lo
—2i4/ Q%2 (13.39)
—7ct/2 \/ Q%2 \/ Q%2
S — —2iy/Q%—y%cos VIR T —2iy,sin VIR T
—2iy [QR 2 2 2
[4

In the limit y, < Qg we have a damped oscillation

N 1 1_,
|Cu(8)]* = €77 cos? (iQRt) = Ee’“t{l + cos(Qgrt)} (13.40)

The oscillation frequency Qp is known as the Rabi frequency. Note that the decay
rate is the same as the decay rate of the cavity field amplitude but is half that of the
cavity field energy. The damped Rabi oscillation was derived by Sachdev [7] using a
different method, a reservoir method in a single mode context. The regime
7. < Qp is known as the strong coupling regime in the field of cavity quantum
electrodynamics.

The second case is the overdamped case where y, > Qg. Then we have, assuming
again that A=0,
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Cu(t)
_ (%4_ \/@Tgiv g’{ (?'r\/“/f*—ﬂfe)/z}t+ («/C_ \/ﬁg) @’{ (7;+\/7§7—Q§)/2}f (13.41)
—24/72-O%

In the limit y, > Qg we have

2
|CL(1)]* = e*(?’c*\/}’%*—ﬂfz)t _ exp<7 Q% t)

_ o sin'(05,20/1) t), — (13.42)

Yebr

exp (

— b
Wem = Wy,

Vebr

2 a
exp<_wt),

At a node where sinz(wgmzA/cl) =1 for wy = 0%, or cosz(w?mzA/cl) =1 for

wen = 0!, the spontaneous decay rate is enhanced by a factor

4 4A 4
_ 180 _ %o (13.43a)
Ytr w2y, m

where the cavity mode spacing Aw, = ¢;7/(2d) and F is the finesse of the cavity.

When the mode number m is 1, or the mode is the lowest resonant mode, we have
4 4

f= =-Q (13.43b)

Vb T

where Q is the cavity quality factor. Thus in an overdamped cavity the spontaneous
emission rate is enhanced by roughly the finesse or the cavity quality factor. The
enhancement by the so-called Purcell factor, f = 3Q/° /47> V~Q, where V is the
volume of the cavity and 4 the transition wavelength, was predicted by Purcell [8]
for a cavity used in the radio frequency. The regime y. > Qg is known as the weak
coupling regime.

Note that the enhancement factor in Equation 13.43a is different from the excess
noise factor in Equation 12.1a applicable to the present symmetric cavity model,
which reads

K — {%%Zr}z (13.44)

If we have sin®(w®,za/c1) =0 (cos?(w®,za/c1) = 0) in Equation 13.42, which
occurs for an atom at a node, the spontaneous emission is inhibited as the decay
rate becomes 0. This occurs in the single-mode limit in general, as seen from
Equation 13.36, where for wg, = w?, we have C, =0 for sinz(wgmzA/cl) =0.
(This zero decay rate apparently contradicts the statement below the delay
differential equation, Equation 13.30, that a natural decay lasts until
t = min(#, ;). Of course, a natural decay lasts until t = min(t,t,). But after
that, the alternate terms in Equation 13.30 destructively add to inhibit all-over
decay when the zero-decay condition in this single-mode limit holds (see, for
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example, curve B in Figure 13.1). A different kind of inhibition of spontaneous
emission, inhibition by a smaller cavity size than the radiation wavelength, was
predicted by Kleppner [9].

13.6
Spontaneous Emission Spectrum Observed Outside the Cavity

We consider the observation of spontaneously emitted light at a detector outside
the cavity. Regardless of the location of the detector, the detected intensity is
proportional to [10]

I(z.1) = (p())| B @) D (2) (1) (13.45)

Substituting Equation 13.5 for the wavefunction, the expression from Equation
2.19a for the positive frequency part of the electric field operator,

ho; N
:iZ\EUj(zm
J

and its adjoint into Equation 13.45, we obtain

I(z.t) = ( L)l 06+ 37 G (1] ¢ ) > \/%
x> @ Uj(2)dy (cu<t>|u> 0)e ¢+ 37y (t>|l>|1jf>el’wﬂ)
.

J

, (13.46)
= ZZE /aiw; Ui(z) Uj(2) Gy (1) Cy (1)~
2
hw 7L(Ui
Cl] J
where Cj; (1) is given by Equations 13.11 and 13.6 as
wj R I\ —i(wp—w))t
Cy(t) = ﬁUj(zA)uA L at’ C,(t)e A (13.47)
Thus the intensity at the observation point zp (>d) is
on ' i ol
I(zg,t) = ZHZJ Uj(23) Uj(2a) J dr Cu(t/)et(wj—m)(t —t)
j 2 0
, (13.48)

J dt' C,( ij{ (zp U“(ZA)—I— Uh(zB)[Jjb(zA)}eK‘“f"“A)("J)
J
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We use Equations 1.58a and 1.58b with Equations 1.65a and 1.65b for the
functions U(zg), U (za), Ujb(zB), and U}’(ZA). We also use the Fourier series
expansion of the normalization constants in Equation 1.70b. Then, by a similar
procedure as in Equations 13.25-13.30, we have

wi|#A|2 2 2
I(zp,t) = —2—=—(1 —1%)| f(2a, 28, 1) (13.49a)
48081(?0(?1

where

[o¢]
f(za,zp,t) =€ At Zrz"ei(“’*(”t'“” Cu(t—nt, —tr)H(t—nt, —tg)
n=0

(13.49b)
D oAt I C (bt — ) H(E—nt, —t;) | (25> d)
n=0
and
4d
b= —
1
d— —d
pp= oA 2B 0 (z5>d) (13.49¢)
C1 Co
t, d4+za zp—4d
==+ A 2B "

2 c co

The retardation time tp is the time required for an optical wave to go directly
from z, to zp. The time t; is the time required to go from z4 to zp after reflection at
the left interface at z=—d. The equation for zp<—d can be obtained from
Equations 13.49a and 13.49b by replacing z4 and zp in Equation 13.49c by —z,4 and
—2zp, respectively. The “intensity” in Equation 13.49a has a simple interpretation:
the field amplitude at zp and at ¢ is made up of discrete contributions that were
“emitted” with the strength of the probability amplitudes C,, at respective retarded
times and underwent a phase shift as well as a reduction caused during the trip
associated with multiple reflections. Note that the field amplitude at zz and at ¢t can
be regarded as being proportional to f(za,zp,t) in Equation 13.49b. Then the
observed spectrum can be obtained as the absolute square of the Fourier transform
of the field amplitude. Thus we have the power spectrum S(z4, zp, ®)

00 2
J dtf(za, zp, 1) (13.50)

—00

2 2
w
S(za,zp, ®) = % 1-— r2)

Here we define the time history of the emitter amplitude as
D(t) = e 4'C, () H(t) (13.51)

Then, the term of e=@atr2neioalrtte) C, (t — nt, — tg)H(t — nt, — t), for example,
is transformed as
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J dt ¢te it y2ng st tR) € (f — b, — tR)H(t — nt, — tg)
—00
o0
— 20 gio(nt+x) J dt eiw(z—nt,—tR)e—iwA(t—m,—tR)Cu(t —nt, — tR)H(t — nt, — tp) (13.52)
—00

_ r2neiw(nty+tk) D(UJ)

where D(w) is the Fourier transform of D(t). Then, carrying out the summation
over n, the resultant spectrum is obtained as
S(za, 25, 00) = Mrw(w)f
A= 4epe10o01
1+ R+ 2vVRcos{2w(z4 + d)/c1}
1+ R> — 2Rcos(4wd/cy)

(13.53)

(z5>d)

where R=7” and T=1 — 7. For zz < —d the sum z, +d should be replaced by
d— za.

Note that the spectrum is independent of the location zp of the detector, as
expected from the one-dimensional nature of the process being considered. Note
also that the power spectrum is not determined simply by the spectrum of the
“emitter” history D(w). It depends also on the quantity in the square bracket,
which is dependent on the cavity structure and the atomic location. This factor
represents how the emitted field is transferred to the observation point. In fact,
this factor is proportional to the absolute square of the response function defined
in Equation 2.53a for the present case of the two-sided cavity with source point
inside and observation point outside the cavity:

1471+ rexp{2iw(za+d)/c1} ot

T2ua [ 1- P exp(diod/e) (z5>d) (13.54)

Y(zp,2z4,0) =
For zp < —d, the sum z,+d should be replaced by d—z4. This response
function can be derived by use of the mode functions in Equations 1.58 and 1.65
and the Fourier series expansion of the normalization constants in Equation 1.70b
and by performing principal part integrations. The evaluation can be done term by
term. One has two geometric progressions, which can easily be summed. The
response function in Equation 13.54 can also be obtained intuitively by a classical
consideration, as follows. One assumes a current source Jexp(—iwt)d(z — za)
inside the two-sided «cavity, then we have an induced electric field
Eexp(—iwt) = —JZ exp(—iwt) at z=z, where Z = /uy/e1 = 1/(e161) is the space
impedance. Because the problem is one dimensional here, this electric field
amplitude is transmitted to the two sides with half the magnitude, that is, with
—(JZ/2) exp(—iwt). These waves are transmitted to zp (>d) directly or after a
single or multiple reflections at the coupling surfaces with respective phase
changes and amplitude reductions. All the contributions have associated trans-
mission coefficient 1+ r at the coupling surface at z=d. The two geometrical
progressions thus obtained easily yield Equation 13.54 if we divide the resultant
total field at zp (<d) by J exp(—iwt).
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Now using Equation 13.54 in Equation 13.53 and noting that &6, = gocon =
¢oco(1+1)/(1 —r), we can write

S(za, 28, @) = WA |ual*|D(@)[*Y (25, 24, ) (13.55)

That this is a general formula not restricted to the present two-sided cavity can be
shown by using the first equation in Equation 13.48. We show the derivation in
Appendix H. Figure 13.2 shows an example of the calculated spectrum to be
observed outside the cavity. Figure 13.2a is | D(w)|* multiplied by »?, Figure 13.2b
is the absolute squared response function |Y(zp, 24, ®)|” multiplied by 2cZ, and
Figure 13.2c is the intensity spectrum observed outside the cavity, in arbitrary
units. The parameters are the same as for curve A in Figure 13.1. In Figure 13.2b,c
the solid and dashed curves are for zz < d and zg < —d, respectively. Two peaks
corresponding to the Rabi oscillation with Qg = 0.32Aw, are seen. In the figure w,
stands for the intermode spacing Aw,.

13.7
Extension to Three Dimensions

The three-dimensional analysis of a laser with spatially distributed active atoms is
difficult in general, even if the cavity has a simple structure such as the planar ones
considered so far in this book. This is because the propagation of the emitted field
from one atom to the next involves three-dimensional effects concerning the
direction of propagation and the direction of field polarization. The influence of
the transmitted field on the receiving atom is dependent on the atom’s polariza-
tion direction. Thus it is extremely difficult to write down consistent equations of
motion for the field and the atoms when the atoms are distributed in three-
dimensional space.

On the other hand, the process of spontaneous emission usually involves only a
single atom. In this case a three-dimensional analysis in free space is well
established. The spontaneous emission process in a cavity can also be analyzed
three dimensionally if the cavity structure is simple and the relevant field mode
functions are available. Here we briefly describe the case where the cavity is a
dielectric slab, or a simple two-sided cavity, as was considered one dimensionally
in Section 1.3.2 and in the previous sections in this chapter. The description will
follow Ho and Ujihara [6].

The cavity is composed of a dielectric slab extending in the region —d < z < d.
The dielectric has dielectric constant ¢; and refractivity n, with the velocity of light
inside the dielectric being ¢;. The outside regions are vacuum with dielectric
constant & and the velocity of light co. The slab is assumed to have infinite extents
in the x- and y-directions, and the atom of transition frequency w4 and dipole
operator ji is positioned inside the cavity at r, = (0,0,z4). The mode functions of
the three-dimensional “universe” Uj(r) are defined by imposing periodic boundary
conditions in the x-, y-, and z-directions with periods L, L,, and L, +2d ~ L,,
respectively. They are normalized so that
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Figure 13.2 The spectra of (a) D(¢), (b) the absolute squared

response function |Y(zg, za, )|, and (c) the emission
spectrum S(za, zp, t) observed outside the cavity. After Ref. [2].
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J &(r)Ui(r)Uj(r)dr = oy (13.56)
\4

where V = L,L,L,. As before, the mode functions inside the cavity and outside are
denoted as Uy; and Uy, respectively, and will be given in terms of the relevant
mode wavevectors ky o = (kx, k;, k10,) for inside and outside the cavity and their
projections onto the x-y plane k, = (k,, k,,0) in addition to the mode index j. The
mode functions are categorized into TE and TM mode functions of even and odd
symmetries in the z-direction, and they are further classified into even and odd
modes in the x—y direction.
The odd x—y TE mode functions are given, suppressing the mode index j, as

Uy o(r) = a(xk, — pky) sin(k, - r)ui 0(2) (13.57)

where u; o(z) and the normalization constant « for odd z TE modes are

uE(z) = sinky,z
b (13.58)
ungE (z) = sinky,dcosky,(z — d) + k—oz cos ki dsinky,(z — d)
and
0zTE __ l@ 2
kokie [oov(1 - Ksin® kid
\/ oV 12d) (13.59)
k—1- (%=
- ki,
and for even z TE modes
uTE(2) = coski,z
(13.60)
ezTE klz . .
ug “(z) = cos ki dcosk,(z — d) — Ksm ki,dsinko,(z — d)
and
ezTE _ l@ 2
kpkiz \/e9 V(1 — K cos? ki, d) (13.61)

12
-8
k.
The even x—y TE mode functions are obtained by replacing sin(k,-r) by
cos(k, - r) in Equation 13.57.

The odd x—y TM mode functions are given, again suppressing the mode index j,
as
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Uy o(r) = oo| (Xky + Pky) sin(k, - r)dizul’o(z) - ék}z, cos(k, - r)ul‘o(z)] (13.62)

where u; ¢ (z) and the normalization constant « for odd z TM modes are

u* ™ (2) = sinky,z
ke, K2 (13.63)
MSZTM (z) = sinkydcosko,(z — d) + k—zk—gcos ki.dsin ko, (z — d)
0z M
and
oo _ 1 ko ki 2
= 2
kpko k12 kg \/80V(1 — K'sin® kyd) (13.64)
k2 k* .
K=1- (& _1>
B
and for even z TM modes are
u?™ (2) = cosky,z
k k2 (13.65)
uZ™ (2) = cos ky,d cos ko, (z — d) — ~ k—gsin ki dsin ko, (z — d)
0z q
and
erv_ 1 ko K 2
 kpko ki k3 \/eoV(1 — K’ cos? ki d
’ 0 Vel 124) (13.66)

K2, Kkt
K=1- (ﬁ J)
k. K

The even x—y TM mode functions are obtained by replacing sin(k, - r) in front of
(d/dz)ui0(z) by cos(k, - 1) and —cos(k, - r) in front of u, (2) by sin(k, - r) in
Equation 13.62.

The reader may notice some similarities of the mode functions and the nor-
malization constants in these equations and in those for the one-dimensional ver-
sions in Sections 1.3.2 and 1.4. The equations here reduce to those in Section 1.3.2
in the limit k, — 0, whence the distinction between the TE and TM modes
disappears.

The normalization constants have similar Fourier series expansions as those in
Equation 1.70b:
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e2TE\2 4 1 ka & n
=— —=—<1+2 2nki,d
(2=1F) ¥ B b + n; " cos 2nky,

klz - ka
klz + ka

oz 4 1 ko >
(oc TM) o~ k kz k(l)z ﬁ{ Z " cos 2nk1zd}

n=1

(13.67)

) _ koo — kikd
kak% + klzk(z)

Expansions for odd z TE and even z TM modes are obtained by replacing r and
by —r and —7/, respectively.

From now on, we assume for simplicity that the dielectric constant &, of the slab
is equal to the vacuum dielectric constant g, but the reflectivities in the Fourier
series expansions in Equation 13.67 are kept finite. Moreover, we assume that
r=r" and that they are independent of the k-vector orientation. This assumption
makes the three-dimensional summation over mode j tractable.

Now that we have the relevant mode functions, we can formulate the sponta-
neous emission process as in Section 13.1 with the Hamiltonian and the
wavefunction

Ht = Hf+Ha+Hint

. , [hw; Y (13.68)
Hint = —lz TJU](rA) . u(aj — a}T)
J

|o(1) = CuB)|w)]0)e ™ + > Cy(p)[h[1)e (13.69)

J

where the interaction Hamiltonian is rewritten for the three-dimensional mode
functions and a vector dipole moment operator.

With these formulations in hand, we can perform perturbative and non-
perturbative analyses as before. For example, as in Section 13.4, one can derive the
delay differential equation for the probability amplitude of the upper-state

population:
Cu(t):_TC W(H)H +;P2n want,)Cy(t—nt, ) H(t—nt,)
1 oo
+EZ [Pzn+1{wA nte+t1)} Cu(t—nt, —t1) H(t—nt, — tq). (13.70)

n=0

+ponr1{wa(nt, +1)}Cu(t—nt, — 1)) H(t—nt, — 1)

where the spontaneous emission rate in a free vacuum is
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3 2
AN
= 13.71
3nhcieo ( )
and
3A 1 1 1 ;
Il _ 220 a2 2 L) ix
Pn(¥) 2’ (ix+x2 ix3>e

(13.72)

1 1 .
1 — 3A n 1x
P (%) = 340(=1) <x2 ix3>e

The retardation times t,, t;, and t, are given by Equation 13.29 with ¢; replaced
by co. The coefficient pu(x) applies when the atomic dipole is oriented parallel to
the x—y plane or to the mirror surfaces, and p.(x) applies when the dipole is
perpendicular to the plane. For the derivation of the delay differential equation
(Equation 13.70), the reader is referred to the paper by Ho and Ujihara [6]. If the
atom is at the center of the cavity z, =0, we have

Cu(t) = —% C.(HH(t) + ipn(ZkAnd) Cu(tn)H(tn) (13.73)
where
b, = t—zcﬂl (13.74)

Then the solution is obtained as in Equation 13.32a

Zl ] (13.75a)
A )
where the sum is over all non-negative integers a; (i = 1,2,...,n) that satisfy
la, +2a; +---+na, =n (13.75b)
and
m=ay+a+- - -+ay (13.75¢)

The non-perturbative results are obtained numerically using Equation 13.70 and
assuming that the atomic dipole is oriented parallel to the x—y plane. One finds, for
a very good cavity of length of 1,/2, a Rabi-type oscillation in the upper atomic
population. For longer cavities with lengths 2 x (14/2), 3 X (4a/2), . . ., the
spontaneous decay rate approaches that in free vacuum.

The perturbation approximation result is obtained by replacing the C, on the
RHS of Equation 13.70 by the initial value C, (0)=1. Then the spontaneous
emission rate R can be obtained by using the relation
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d, .2
R=—=|C, 13.
o |Cu (13.76)
as
R=A,— 2ReZp2n(a}Ant,) — Rez [pZnH{wA(ntr +t)}
n=1 n=0

+ panir {wa(nt, + tz)}} (13.77)

The spontaneous emission rate based on the perturbation approximation can of
course be obtained as in Equations 13.13-13.16:

R=>""Uj(ra) - "0 () - wa) (13.78)
J

That this is equal to Equation 13.77 may be proved by going to summation over
the categories and to three-dimensional integration over the kj-vector and by using
the Fourier series expansion of the normalization constants.

Equation 13.77 shows directly that R — Ag as r — 0, that is, as the reflectivity
vanishes, the spontaneous emission rate becomes equal to that in free vacuum.
The reader may show also that the rate in Equation 13.78 reduces to A, in the limit
r—0.

A perturbation result based on Equation 13.78 was derived by De Martini et al.
[11] by using traveling-wave mode functions associated with a cavity composed of
two, parallel, infinitely thin mirrors of different complex reflectivities. They gave
compact expressions for the spontaneous emission rate for high-Q cavities and
detailed numerical results on decay rate dependence on various parameters. They
also gave experimental results on inhibition and enhancement of spontaneous
emission using a Fabry—Perot microcavity with europium atoms in dibenzoyl-
methane complex as the emitter.

The field intensity observed at an arbitrary location outside the cavity can be
obtained as for the one-dimensional case in Section 13.6. One can examine the
intensity at the observation point rg, I(rs, t) = (@(t)| EC) (r5) B (rp)|(t)), just as
in Equation 13.48, which can be evaluated analytically for the summation over the
field modes j and numerically for C,, (t) (see [6]).

One may wonder if the present cavity model, where the mirrors extend infinitely
in transverse directions, can adequately simulate actual plane parallel cavities of
finite transverse size. Specifically, one may wonder if the present model does not
ignore the spillover of the optical field from the mirror edges. That the transverse
extent of the spontaneously emitted fields is, in important cases, finite and is of the
order of the emitted wavelength multiplied by the square root of the cavity Q can
be shown as follows.

One route to arrive at a finite transverse extent is given by De Martini et al. [12]
through the uncertainty principle on the transverse position and momentum of
the photon. For a planar Fabry—Perot cavity of length d and mirror reflectivities r,
and r,, the FWHM of the angular k-vector distribution around the normally
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resonant k-vector is A®y = 2(fN)~'/?, where f = ny/1112/(1 — r1r2) is the finesse
and N=d/(2/2) the mode number. By writing Ap,Ap, = (hkA®y/2)?, one finds
for cylindrical symmetry the expression for the transverse quantum correlation
length Ly = 24(fN)"? = 2{Nm\/772/(1 — i) } /7.

Ujihara et al. [13] derived the mode radius through a different route. They
compared the emission rate formula calculated for a symmetric planar cavity
model with Purcell’s enhancement factor. They used three-dimensional mode
functions for the perturbation calculation. The calculated enhancement factor was
1/(2N) for an atom at an antinode for a normally resonant mode. Equating it to the
Purcell factor F ~ (Q/4n)(2*/V), with Q = Nz/(1 — 1?), yields the mode radius
Fode = AN/{n(1 = r%)}]'"*

The third simple route is to consider the photon mean free path in the trans-
verse direction. The photon lifetime in the cavity is t, ~ d/{c(1 — rir2)}, during
which a photon propagating in the direction A@y/2 traverses along the mirror
surfaces a distance

= atA®w/2 = (3/2) [N/ (/A1 - rm)]

For a good cavity, these three expressions agree except for numerical factors and
give the transverse extent ~/Q4, which is usually smaller than an actual mirror
size.

13.8
Experiments on Spontaneous Emission in a Fabry—Perot Type Cavity

Goy et al. [14] first observed strong shortening of the spontaneous emission life-
time of Rydberg atoms when they are made to cross a high-Q superconducting,
resonant cavity. The experiment was performed with Na atoms at 340 GHz using a
cavity of Q of the order of 10°. Hulet et al. [15] observed inhibition of spontaneous
emission from a Cs Rydberg atom at 1=0.45mm when the atom is passed
between two parallel metal plates separated by less than 1/2. The emission lifetime
was increased by more than 20 times, which they attributed to the vanishing of
available mode density for the radiation of relevant polarization at 4.

In the infrared region, Jhe et al. [16] observed similar inhibition of spontaneous
emission. Using Cs atoms and passing them through a metal gap of d=1.1 um,
they observed the decay of the atoms emitting at 3.49 um. The hyperfine sublevels
of the 5Ds);, state emit either ¢ or n polarized light corresponding, respectively, to
photons polarized parallel and perpendicular to the metal surfaces. For a small gap
with d < 1/2, the theoretical mode density is zero for ¢ polarization, while it is
enhanced by a factor of 34/4d for n polarization. They confirmed that the emission
rate of a ¢ emitting sublevel is reduced at most to 0.4 times the natural decay rate.

In the optical region, the observation of enhanced and inhibited spontaneous
emission was made by De Martini et al. [17]. Using ethanol solution of tetra-
phenylnaphthacene dye in a 98-96% flat mirror cavity, they observed the lifetime
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Figure 13.3 Oscilloscope traces showing (a) enhanced and
(b) inhibited spontaneous emissions in a planar microcavity
as compared to (c) the free-space decay.

Source: From Ref. [17]. De Martini, F., Innocenti, G.,
Jacobovitz, G.R., and Mataloni, P. (1987), Phys. Rev. Lett., 59,
2955, Figure 2.

of the fluorescence at 6328 A. For cavity lengths of 1/2 and /8 they observed clear
enhancement and suppression of the spontaneous decay. In Figure 13.3 the
enhanced and inhibited spontaneous emissions as compared to the free-space
decay are shown.

Heinzen et al. [18] observed slight changes in spontaneous emission when
excited atoms of Yb crossed the focus of a 5 cm long confocal resonator. The
resonator mirrors had transmissions of 2.8% and 1.8%. The fluorescence observed
through one of the mirrors is enhanced by a factor of 19 when the cavity is tuned to
the 556 nm fluorescence and is inhibited by a factor of 42 when it is detuned. This
resulted in a fractional increase of 1.6% and decrease of 0.5% in the total emission
rate.

Yamamoto et al. [19] observed spontaneous emission of free excitons in a GaAs
quantum well that is embedded in a semiconductor microcavity composed of two
distributed Bragg reflectors. When the fluorescence at 800 nm is resonant with the
cavity and the quantum well is placed at the antinode of the cavity resonance, they
observed an enhancement by a factor of 130, while, when the fluorescence is off-
resonant and the quantum well is placed at a node, an inhibition by a factor of 30
was observed.

Norris et al. [20] studied the Rabi oscillation due to the two-dimensional excitons
emitting in a GaAs/Al,Ga;_,As multiple quantum well embedded in a planar
semiconductor microcavity of length 4 =785 nm and of finesse about 150. A two-
dimensional exciton couples only with those field modes with the same in-plane
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Figure 13.4 The time-resolved emission intensity (in
arbitrary units) from the impulsively excited microcavity.
Source: From Ref. [20]. Norris, T. B., Rhee, J.-K., Sung, C.-Y.,
Arakawa, Y., Nishioka, M., and Weisbuch, C. (1994) Phys. Rev.
B, 50, 14663, Figure 1.

wavevectors as its own, as contrasted to an atom, which couples with all oblique
modes as long as the atom’s polarization is not perpendicular to the mode
polarization. They observed a damped Rabi oscillation with period of 600 fs, close
to the expected value, and decay time approximately twice the cavity lifetime,
~2 x 140fs. In Figure 13.4 the time-resolved emission intensities from the
impulsively excited cavity are shown. In Figure 13.4a, the cavity and exciton modes
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are near resonance. In Figure 13.4b, the cavity is detuned from the exciton reso-
nance. In the inset, the dotted line shows the pump pulse spectrum, and the solid
line shows the reflected pump spectrum, wherein the two dips correspond to the
two normal modes of the system.
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14
Theory of Excess Noise

A standard quantum-mechanical calculation for the light emission by an atom into
a single field mode yields an emission rate proportional to the number of
photons present in the mode plus one. The portion proportional to the number
of photons is interpreted as the stimulated emission. The portion proportional to
“one” is spontaneous emission due to vacuum fluctuation or to radiation reaction
[1]. This relative rate of spontaneous emission is the basis of the laser linewidth
formulas, for example the Schawlow—Townes linewidth formula [2]. This is also at
the heart of the Planck radiation formula [3]. The excess noise factor discussed so
far violates this notion of one extra photon for the spontaneous emission. Where
do the extra photons, more than one, come from? This is the theme of the theory
of excess noise.

In this chapter we review the theories of the excess noise factor. First we review
the adjoint mode theory, which was developed by Siegman [4, 5] for the transverse
excess noise factor instead of the longitudinal excess noise factor. For the theory of
the longitudinal excess noise factor, which has been one of the main topics in the
previous chapters, we follow the treatment of Champagne and McCarthy [6],
adding our additional contribution. Next we review the Green’s function method
developed by Henry [7] and by Tromborg et al. [8]. Third we review the propagation
method or propagation theory developed by Ujihara [9] and by Goldberg et al. [10]
as well as by Prasad [11]. This theory has already been described and used in
Chapter 11. The relation of this theory to the adjoint mode theory will be described.
Finally we make reference to some sophisticated, abstract theories aimed at
quantum-mechanical consistency. The transverse excess noise factor and polariza-
tion excess noise factor will be described. Some experimental results will be cited.

14.1
Adjoint Mode Theory

We recall that the excess noise factor appeared for the one-sided cavity laser and
the general two-sided cavity laser but not for the quasimode cavity laser. The
former laser cavities have output coupling at the end(s) of the cavity, while
the quasimode cavity has no explicit output coupling but has perfect mirrors.

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara

Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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While the quasimode cavity in Chapter 4 had power orthogonal modes in the
sense that

J e (2)un(2)dz = S (14.12)
cavity

the former cavities did not have power orthogonal modes of this property in one
dimension: the outgoing modes defined in Chapter 1 have the property

J W (2)un(2)dz # S (14.1b)
cavity

According to Siegman [4] this is the result of non-Hermitian boundary conditions
of the cavity, and for such cavities there exist adjoint modes v(z) that are bi-
orthogonal to the cavity mode functions and satisfy

J  Vm(2)un(2)dz = Gmn (14.2)
cavity

when properly normalized. The function v(z) is the solution to the transposed
equation to the original equation describing the cavity and physically corresponds
to the backward-propagating wave (see Siegman [12] for details). These adjoint
modes are also non-power orthogonal

J V) (2)vn(2)dz # Omn (14.3)
cavity

Siegman [4] showed that, if, in addition to the normalization in Equation 14.2, the
mode function is normalized such that

J Pz = 1 (14.4)
cavity
the adjoint mode has the property

J || dz > 1 (14.5)
cavity

We will see later that this is the mathematical origin of the excess noise factor.
In some literature [13, 14] v, (z) = v%,(2) is defined as the adjoint mode function,
with the inner product (integral over the specified volume) being taken by multiplying
Vv, % (2) (= vm(2)) with the other function. The results of calculations are, of course,
the same as in this book. By the way, the incoming modes discussed in Section 1.2.1
constitute adjoint modes in this sense associated with the outgoing modes.
Let the Maxwell’s equation for the classical wave inside the cavity be written as

2
V2E(z,t) — uo%n(z, ) =0 (14.6a)
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where
D(z,t) = ¢E(z,t) + P(z,1) (14.6Db)

Here the polarization term represents classical random noise forces. The dielectric
constant ¢ may be complex, reflecting the presence of a gain medium. Following
Champagne and McCarthy [6] we put

E(z,t) = > 2Re {am(t) Cnm¥m(2) exp(—iwmt)} (14.7a)

P(z,t) = 2Re {P(2,t) exp(—iwt)} (14.7b)

(We have put a factor 2 before Re in Equations 14.7a and 14.7b so as to conform
with our previous definition of Eas E = E(*) + E(") rather than E = Re{E‘*)}in
classical terms.) Here the summation is over the cavity mode number. We are
assuming that the cavity mode functions W¥,,(z) constitute a complete set to expand
the total electric field. Anticipating projection of the electric field E(z,t) and the
polarization P(z, t) onto an adjoint mode function of interest, which has an angular
frequency o, we retain only one mode function in E(z,t) and drop the mode
number m (see Equation 14.13 below)

E(z,t) = 2Re {a(t)Cy'¥(2z) exp(—iwt)} (14.8)

Here a(t) is a variable whose squared modulus averaged over the noise reservoirs
describes the total number of photons of the mode in the cavity. The constant Cyis the
normalization constant for a(t) to have the above property. (But note that the photon
number in the mode cannot be determined independently with those of other non-
orthogonal modes because of the non-orthogonality [15].) The mode function ¥(z2) is
the one chosen by the above-mentioned projection. It corresponds to one of the mode
functions, say u,,, in Equation 14.2. It satisfies the wave equation in the cavity

(V2+xH)¥(2) =0 (14.9)

and the boundary conditions. Here x is the possibly complex wavenumber
reflecting the coupling loss at the cavity end surfaces. We divide the mode
function into right- and left-going waves as

Y (2) = ¥ (2) exp(ikz) + y_(z) exp(—ikz) (14.10)

Here k is a real wavenumber and we are assuming that the cavity is much longer
than the wavelength of the mode. This function may not be normalized with
respect to the integral over the cavity length.

Substitution of Equations 14.6b, 14.7b, and 14.8 into Equation 14.6a yields

— a(t) 2P (2) — 1o [SCN‘P(Z){'d(t) —2iwa(t) — wla(t)}
. ) (14.11)
+{P(2,t) — 2iwP(z,t) — 0*P(2, t)}} =0
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We assume that the variation of the noise amplitude is slow so that we have

’wzf’} > ’wf", f” Ignoring the second derivative of a(t) we have

K% — gpgw?
—a

2ia(t)eCyY(z) =
(eCy¥(z) ="

(H)CnP(2) + 0P(z,t) (14.12)

We multiply both sides of Equation 14.12 by the adjoint function W'(z), which
corresponds to v, in Equation 14.2, and integrate over the length of the cavity to obtain

a(t) = spa(t) + p(t) (14.13)

2

where sy = (k2 — gugw?)/2iguyw is the net gain per unit time and

(14.14)

—iw [ P 2)P(z,t)dz
p(t) J::avny ( ))( )

B 2eCy [ Pl (2)¥(2)dz

Jeavity

For simplicity we assume that we are in the linear gain regime with Re sy <0 and
evaluate the laser linewidth using Equation 14.13 and the correlation property of
the noise P(z, t). Now the correlation property of the term P(z, t) in Equation 14.6b
was given by Siegman [5] as

<P*(z7 HP(2, t’)> - %yNzé(t —¥)o(z—2) (14.15)

where o is the central frequency of the noise emitter. Siegman derived the
coefficient on the right-hand side by equating the emitted power from a polarization
in a small volume V to that from the N,V atoms each having spontaneous emission
rate 2 4. (In the original paper by Siegman the factor 4 is written as 16, but here we
have taken care of the factor 2 added before the Re sign in Equation 14.7b.) The
correspondence of the noise polarization in Equation 14.15 to the noise field in
Equation 11.4 or 14.110 below is shown in Appendix I.

We proceed to evaluate the correlation function just as in Equations 4.42—4.49,
but noting that the central frequency of oscillation w is truncated here. We have

t+t ot . , .
(a4 D)at) :J J e a0 [ (1)p() (14.16)

0 0

Using Equations 14.14 and 14.15 we have

(&)

<a*(t + ‘C)a(t)> = m

(14.17)

-+t pt
x J J et o= 5 — ¢y dY g
0 0
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where the round brackets on the right-hand side indicate the integral of the
quantity over the length of the cavity, for example,

(W) = J W (2) P (2)dz (14.18)

cavity

Note that taking the complex conjugate of the first function is not intended in this
definition. The double time integral is as in Equation 4.52

es(’;r
—_ >0
gt § 2|Resp|’
J J gSoli+T=t) pso (1= )5(t/ —¢)dt'dt" = LﬂOTO' (14.19)
o Jo R <0
2|Resp|’ !

The Fourier transform of this double integral to the angular frequency domain yields
a Lorentzian line and reveals that the linewidth Aw is 2|Re so| (see Equation 4.56).
Using Equation 14.19 in Equation 14.17 and setting © = 0 yields a relation between
2|Resp| and (a*(t)a(t)). Thus we have the linewidth in the form

2
4he

1
— 7N (P (14.20)

<a*(t)a(t)>

Now the normalization constant is determined by equating the stored energy to
the photon energy:

w
2:Cy (PTP)

Aw = 2|Resy| =

2£|CN|2<a*(t)a(t)> LMY W (2)¥ (2)dz = <a*(t)a(t)>hw (14.21)
so that

[Cuf= 2¢ .[cavity ‘{ZO(JZ)‘P(z)dz (14.22)
Thus we have

Ao = 2[Resy| = 24N, (#7) () (14.23)

(a(Dalt))| (¥1w) [

To express the linewidth in terms of the output power, we recall that in the linear
gain regime the power output is the stored energy times twice the cavity decay
constant: P = 2y hw(a*a). Also, we have ¢Noy, =7y, (see Equation 7.44c for
example). Therefore, we have
Aoy = e No (\P*\P).(‘PT*;P') (14.24)
P Noy, |(LIJIIIJ)|

Comparing this result with that for the quasimode laser in Equation 4.62a, we
see three different points. First, this result lacks the bad cavity and detuning
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effects. Second, we have no thermal noise contribution here because the correla-
tion in Equation 14.15 takes only quantum noise into account. Third, and most
important here, we have the excess noise factor
) (pipt
g, - THETY) (14.25)
[(¥1Y)]

If we compare Equation 14.24 with the Schawlow—Townes linewidth formula in
Equation 4.62b, the incomplete inversion factor and the excess noise factors are
added here.

By the way, we present here the method to express the output power in terms
of the functional form in Equation 14.10. Referring to Figure 11.1 and Equation
14.8 the output powers P, , from mirrors M; , are given by

Py = 2¢000| The—(0))* = 28000|T1|2<‘fk“>|CN|2\‘/L(0)|2
(14.26)
Py = 2e0co| Toe. (d) = 260c0| Tol* (a°a ) [y (@)

The total output power is then
2 2 2 2 2/
P = Py + Py = 26060l Cn[*{ IT PW_(0) + I To P + ()} {a'a) (14.27)

From Equations G.17 to G.19 in Appendix G we have

1
-y

2
_ n(lA? - |BP)

=n(l — || 14.28
i (1 = Inf) (14.28)

Using Equations 14.22 and 14.28 we have

C1 hw

Pf:(l}'*\y){(l — P OF + (1 = [nP)ly + @ }(a'a)  (14.29)

where we have set ¢ =& = n?¢. This expression for the output power was
presented by Champagne and McCarthy [6]. Now if we use the mode function
for a two-sided cavity in Equation 14.52 in Example 2 below, we have
W_(0)" =1/|n|* and |, (d)|* = exp(2yd) = 1/(|r1]|r2|), where we have used
Equation 14.49. Further, using Equation 14.54 or (W*¥) w recover

P, = C—lln#hw<a*a> = Zychw<a*u> (14.30)
d " [nr|
as expected. Note, however, that this relation does not hold for a laser in the
saturated, nonlinear gain regime, as we mentioned in Section 12.9. This is because
the mode function is deformed because of the location-dependent saturated gain.
Next we examine the spontaneous emission rate. As in Section 12.12, say in
Equation 12.66, we derive from Equation 14.13

%<a*(t)a(t)> = (0 + s;;)<a*(t)a(t)> + Ry (14.31a)
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where the last term is interpreted as the total spontaneous emission rate (see above
Equation 12.70) and is given by

Ry = (a(0p()) + (p" (0a() (14.31b)

We have from Equation 14.13

a(t) = a(0)e + J; e Op(¢)dt (14.32)
Since a(0) is not correlated to p(t) for t > 0 we have

Ry = <J; e p () dt/p(t)> + <p*(t) J; e p(t) dt’> (14.33)

Then using Equations 14.14 in the first term in Equation 14.33 we have

([ et warn)

w2 J“(; £5o(t=t)

iy i ¥ )W ) (P (2, 0Bz, ) )bz (1434)

2
260 [y P (2) ¥ (22
The second term in Equation 14.33 can be evaluated similarly. Therefore, by use of

Equation 14.15, the spontaneous emission rate becomes, using (féé(t—t’ )

i =1/2,

2
_ hwyNz J‘cavity |lPJf (Z)| dz

= el T . (14.35)
EItN Jcavity lIJT (Z)\P(Z)dZ’
Substituting Equation 14.22 into Equation 14.35 we have
)Pz [ |P2) [ dz
Rsp _ ZyNZ fcawty | ( )‘ Jcawty | ( )| (1436)

‘2

Jeaviy ¥i(2)¥(2)dz

Since 24N, is the standard spontaneous emission rate that will be obtained in a
free one-dimensional space, the remaining factors give the longitudinal excess
noise factor K; (see also Equation 12.69 for the total spontaneous emission rate in
the quasimode cavity). Note, however, that this rate is for the total mode, but not
for individual atoms. Thus we have

() Pdz [ |Wi(2) P dz
K, = fcawty‘ ( )l LW’W’ ( )| (14.373)

Jraiy ¥ (2 (2)de|

This is the same as the expression in Equation 14.25 obtained through evaluation
of the laser linewidth. We stress again that this enhancement factor applies to the
mode as a whole but is not for the individual atoms. This equation is valid for
the non-normalized mode function ¥(z) and also for the non-normalized adjoint
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mode function W'(z). If the mode function is normalized in the sense of Equa-
tion 14.4 and the adjoint mode function is also normalized in the sense of
Equation 14.2, we have, according to Equation 14.5,

K = J |\1ﬁ(z)|2dz >1 (14.37b)
cavity

Now, what is the adjoint mode ¥'(z) for W(z) in Equation 14.10 explicitly?
According to Siegman [4] the adjoint mode is the counter-propagating mode
within the same structure defining the original mode. Thus the right- and left-
going components of W(z) in Equation 14.10 are mutually adjoint. Thus we put

wi( Cyi {¥_(z) exp(—ikz) + ¥ (z) exp(ikz) } (14.38)

where Cy; is the normalization constant discussed below. Therefore, for a Fabry—
Perot cavity, K; in Equation 14.37a reduces to

K, = {Joi ¥} (14.39)

P2 (z)dz‘z

J‘cavity

This equation may be used for mode functions that are not normalized. This is
because, if one insists on normalizing the integral in the numerator, then the
normalization constant appears in the denominator, thus yielding the same result.
The same result as in Equation 14.39 was reported also by Arnaud [16], and a
similar result for the transverse excess noise factor (which will be discussed below)
was obtained by Petermann [17]. Petermann obtained this factor as an enhance-
ment factor for the spontaneous emission factor (the fraction in power of the
emission going to the mode of interest) in a gain-guided laser.

Now we will normalize W(z) with an added normalization constant Cy as in
Equation 14.4:

Lm'CW 2)[dz = |Cy] J (W@ )P bdz =1 (14.40)

cavity

Also, we normalize the product as in Equation 14.2:

J v, (2) um(z)dz — J ¥i(z) Cy'¥(2)dz
cavity cavity

| cuculy @ esp(-ikz) + b, (2) explika)
cavity

x {y . (z) exp(ikz) + _(z) exp(—ikz) }dz (14.41)
:[ 26w Cob (@) (2)dz

=1
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Next for ¥¥(z) we have

[ 2, 2 2 _‘Cr|2
| w@re=icul|  {.e H-@P = (1442)

where we have used Equation 14.40 in the last equality. Now multiplying both the
numerator and the denominator of Equation 14.37a by |Cy|* and using Equations
14.40-14.42 we obtain

C
Ki=—35>1 (14.43)

if we use Equation 14.5. Thus the evaluation of the excess noise factor reduces to
that of the normalization constants [18]. The last inequality may be proved as
follows. We note from Equations 14.41 and 14.42 that

1

= 2.2 (2)dz| < | 20y, (2)Y_(2)|dz

Clyf Cy mety quvtty (14.442{)
<[ (@l @r) =

cavity
Thus we have
Cyt
= (14.44b)

Note that the equality in Equations 14.43-14.44b occurs if y, (z) = y* (z) for all z.
This condition expresses a flat field distribution in the cavity as in the quasimode
cavity laser of Chapter 4 where we had no excess noise factor. We can say that the
longitudinal excess noise factor is in a sense a barometer of the field non-
uniformity. It is large for a cavity with high-transmission mirrors with high gain
medium, which results in a highly non-uniform field distribution.

A different normalization scheme from the one described in this section will
appear in Section 14.6.

In some of the literature, especially in works treating semiconductor lasers, the
formula for the longitudinal excess noise factor in Equation 14.25 or 14.37a is
modified in some respects. First, the laser medium can be dispersive. Second, the
dielectric constant € or the refractive index may be position dependent. Third,
the gain or the density of inverted atoms N, may also be position dependent. If
these matters are taken into account, the expression for the spontaneous emission
rate will include all these effects, while the expression for the excess noise factor
will include the dispersive effect and the position-dependent refractive index in the
integrals (see, for example, Champagne and McCarthy [6]).

Up to now we have described the mode function and the adjoint mode function
as defined by the “empty” cavity. This is true for below-threshold operation where
the gain is linear. We saw explicitly in Chapter 9 that the cavity spatial mode is
excited by the driving noise sources. For above-threshold operation where the gain
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is saturated, the mode function is deformed, as we saw in Chapter 10. Even for this
case the adjoint mode theory can be used with the mode function properly
adjusted for the saturated gain distribution. In particular, Equation 14.9 may be
rewritten, for the steady state, as

(V2 + &(z)pow®) ¥(2) = 0 (14.45)

where we have set so = 0 or x%(z) — &(z)uew? = 0 (see below Equation 14.13).
Here the dielectric constant £(z) contains the imaginary part corresponding to the
gain, which may be saturated non-uniformly. If the field distribution consistent
with this non-linear equation for the field is used, a correct result can be obtained.

The physical origin of the enhanced spontaneous emission noise is given by
Siegman [4] as the correlation between the noise emissions into different cavity
modes due to the non-orthogonality of the modes. We saw that the noise that
drives the mode u,, is given not by the projection of the noise polarization P on u,,
but by the projection onto the adjoint mode v,,. Thus spontaneous emission into
cavity modes other than u,, can drive u,, enhancing the spontaneous emission in
the mode u,,. How this enhancement of spontaneous emission noise develops
with time or with wave propagation has been discussed by many authors. Siegman
[4] introduced the concept of initial wave excitation factor, which is equal to the
excess noise factor and describes the total power in a selected mode just after
the input plane (of an amplifier) for an input field with unit power. This factor is
large when the input field is spatially mode matched not to the desired mode but to
the complex conjugate of the adjoint mode. New [19] examined the time devel-
opment of the injected wave in the time-reversed sense (in the form of the complex
conjugate of the adjoint mode) for the case of an unstable strip resonator, and
found strong confinement of the wave around the cavity axis for initial round trips,
resulting in much smaller transient energy loss than expected for the self-
reproducing wave. Deutsch et al. [15] studied the development of the photon
number for a field configuration along the length of a gain-guided amplifier and
found strong initial increase followed by oscillatory approach to the steady state
with the correct excess noise factor. The initial strong increase in photon number
resulted again from the initial field: the initial field came into the expression for
the photon number in the form of the adjoint mode function rather than the mode
function of interest.

We shall now look at a series of examples.

Example 14.1

In the last part of Chapter 9 we obtained the longitudinal excess noise factor
(from Equation 9.114)

o (1) - (awim)

as the squared ratio of the integrated squared modulus of the mode function
sinQ.(z+d)/c; to that of the quasimode function sin{(wy/c1)(z+d)}.
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According to Equation 14.39, this interpretation should be modified: it should
be expressed as the squared ratio of the integrated squared modulus of the
mode function sinQ.(z+ d)/c; to the modulus of the integrated squared
mode function. The complex frequency €, is given in Equation 1.18b. We have

(1%, delsin{ou(z + ) fe)f)’
1%, de(sin{Qu(z + d)/a)?|

__(@/2[a = )/{2rin1/n)})’
(d/2) — (c1/49) sin(2Q.d/c;)|*

(14.46)

Here the second term in the absolute sign is of the order of the optical
wavelength and can be ignored if the cavity length d is much larger than a
wavelength. Then we obtain

K, = {Z;T(lr;r)}z (14.47)

Example 14.2

We want to reproduce the excess noise factor for a generalized two-sided cavity
laser, Equations 11.72 and 11.107. The cavity model is depicted in Figure 11.1.
We describe the right- and left-going waves inside the cavity as a exp(ixz) and
bexp(—ikz), respectively. We require that there exist only outgoing waves
outside the cavity, and write these outgoing waves as cexp(ikz) and
d exp(—ikz). Then we have

Ceircd _ atzeih‘d
d = bty
] ) (14.48)
be—md _ rzaewcd
a=nb
From the last two equations we have
rry exp(2ikd) =1 (14.49)
Thus we have
K=k—iy (14.50)
where
1
k=_—02nm— ¢ —¢,)
2d
(14.51)

1 1

p— —In——
7= 24 |
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where we have set r1; = }n‘z’ei‘f’ll. Using the last equality in Equation 14.48
we may have an non-normalized mode function

L 1 .
¥(z) = glk=in)z + — prilk=in)z (14.52)
"

Substitution of this form into the numerator of Equation 14.39 yields

d
[ @raz =5 (@t 1) - e
° ! /Inl (14.53)
T ok 4y 1 oika
2 )~ g, (¢ Y

Using Equation 14.51 we obtain

d d 1 1
Y(z 2d22—<—— rn|+——|r ) 14.54
Jo e = prmy () asse

where we have ignored the last two terms in Equation 14.53 assuming that

k> 7y or d>> J, where A is the wavelength of the cavity mode. Similarly, we
have for the denominator in Equation 14.39

2d

d 2i(k—iy)d —2i(k—iy)d
2d  elk=ind 1 q g 2itkmind g
Y2 (2)dz == = == 14.55
J (2) dz 2 =2ik—1iy) n ( )

0 n + 2i(k —iy) *

The last equality is obtained under the same approximation as above. Using
Equations 14.54 and 14.55 in Equation 14.39 we have

K, = {1/|r1\ —Inl+1/lr| - |T2}2
t 2In(1/|r[[r2])

(14.56)
which is the same as in Equations 11.72 and 11.107.

Example 14.3

We consider the problem treated in Example 2 using the rule expressed in

Equation 14.43. Let the normalized mode function and the normalized adjoint
mode function be

i i 1 1 1ny
lFN(Z) = C\Pl{’(z) = Clp{et(k—r/)z + *87'<k”’)2}
-
1 (14.57)
lP}\I(Z) = Cyi {l gilk=in)z 4 ei(kfiy)z}

n

where W(z) is given by Equation 14.52. The subscript N stands for normal-
ization. The first normalization condition, Equation 14.40, becomes



14.1 Adjoint Mode Theory | 305

d
d 1 1
Col’|¥(2)’dz = |C 2—(—— ni+o =l )
J tevPre s = e e (= ) s
=1

under the same approximation as in Equation 14.54. The second normal-
ization condition corresponding to Equation 14.41 is

d
2d
J CyCyqiW(2)dz = CyCyi — =1 (14.59)
0 n

also under the same approximation. Thus using Equation 14.39 we have

2
K, — |G Cel _{1/|r1||r1|+1/|rz||rz|}2
|Col* 2In(1/n[[n])

(14.60)

Example 14.4

We cite the vector inner product method used by Hamel and Woerdman [18],
applying it to the same problem as in Examples 2 and 3. The authors define a
two-component vector, where the top component is the right-going wave and
the bottom component is the left-going wave. The adjoint is the vector with the
components interchanged:

gilk=i)z 1 -ik—ip)z
‘1’(2)—<1ei<ki«/>z> and ‘I‘T(Z)—<“ ) (14.61)

P ei(kfiy)z

The inner product is defined as the integration over the cavity length of the
product of the transpose of the first vector and the second vector. Thus if we
use Equation 14.61 in Equation 14.37a we obtain

[4
|\I_1(Z)|2 — <e*i(k+i}’)l7 l*ei(k+i}')z> . . _ 6272 n 1 : B*Z?Z
T % e—l(k—r,r)z |1’1 |
1 1 efi(kfi*,')z 1
Wi(z)|” = (7 Gtz e—i(k+iy>z> " = Loy 22 (14.62)
n ¢ilk-inz |
1 ez(k—i}')z 5
PP (2) = [ —ilk=i)z  ilk=ip)z _2
(2)¥(2) (rl e , € . -
n

The inner products are the respective integrations over the cavity length. It is
easy to see, using Equation 14.51, that
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|‘PT(z)|2dZ
‘Z

|lP (Z) ‘Zdz J::avity

Lavity

K =

Lavity ¥i(2)¥(2)dz

(14.63)

{d/{In|In(1/Inllr2D (/0| = nl +1/In] = )}
j2d/n |

which is the same as those in Equations 14.56 and 14.60. This vector product
method avoids the appearance of the cross-terms that were ignored in the
previous examples. Note that the rule in Equation 14.39 is not directly
applicable for this formulation as opposed to the general rule in Equation
14.37a. This seeming confusion occurs because the spatial functions in
Equations 14.10 and 14.38 are the same. They are different if expressed in the
vector form as seen in Equation 14.61.

Example 14.5

We can consider the same problem using Equation 14.43 under the vector
product formulation of the previous example. Let us set

gilk—in)z
Yn(z) = Cy 1 i)z and
n
14.64
1 pilk—in)z (14.64)
¥i(@) =Cyi |
i(k—iy)z

If we normalize these as in Example 3, but using the vector product concept
shown in Equation 14.62, it is easy to see that the same calculations as in
Equations 14.58 and 14.59 in Example 3, but without the cross-terms, will be
obtained. So, we will arrive at the same excess noise factor as in Equation
14.60.

14.2
Green’s Function Theory

Henry [7] and Tromborg et al. [8] analyzed the excess noise factor using the
Green'’s function method. They express a frequency component of the random
electric field driven by the noise sources in terms of Green’s function, the Green’s
function being the solution to the wave equation driven by a spatial delta function
noise source. The spatial distribution of the driven field component is determined
by the Green’s function. The result is Fourier-transformed with a resultant
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temporal differential equation for the amplitude of the driven field. This differ-
ential equation contains the noise source and yields the spontaneous emission
rate.

Following Tromborg et al. [8] we consider the w component E,,(z) of the scalar
electric field defined by

E(z,t) = EC E,(z) exp(—iwt)dw + C.C. (14.65)

The component E,,(z) satisfies the wave equation
2
V?E,(2) + C—ZnZE,,, (z,t) = upw?P,(2) = f,(2) (14.66)
0

where P, is the w component of the noise polarization that appeared in Equation 14.6b.
We look for the Green’s function G (z,2) associated with Equation 14.66 that
satisfies

2
<V2 + %rﬂ) Gu(z,2) =0(z—2) (14.67)
0

Then E,(z) is given by
E,(2) = J Go (2. 2)f (2)d2 (14.68)

The Green’s function is given as

Zr(2)Z1(Z)H(z — 2') + Zp(2') Z1(2) H(Z' — 2)

Gy(z,7) = W (14.69)

where H(z) is the Heaviside unit step function. The Wronskian W is
W=2Zz )i Z Za(2) L 7 ) 14.70
= Z1(2) - Zr(2) = Zr(2) - Z1(2 (14.70)

Here Z;(2) is the solution to the homogeneous equation associated with Equation 14.66
with f;,(z) = 0, which satisfies the boundary condition at the left end of the cavity,
and Zp(2) is the solution satisfying the boundary condition at the right end of the
cavity:

2, O,
0

Because of this relation we have

d
—W=0 14.72
- (14.72)
that is, W is constant over the length of the cavity.

Equations 14.68 and 14.69 suggest that, when the noise f,(z) is vanishingly
small, W should vanish in order to have a finite electric field E,(z). This means
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that the zeros of W as a function of w give the poles for the electric field. We
assume that the system is operating in the vicinity of a pole, say the zeroth pole w =
o, which may be complex. At this pole W(wo) = 0 and Equation 14.70 shows
that the functions Z;(z) and Zg(z) are proportional to each other. At this pole we
can set

Z1(2) = Zx(2) = Zo(2) (14.73)

Then Equation 14.68 becomes

_ %(2)

50 = W)

JZO(Z’)fU,(z’)dz’ (14.74)

We assume that the functional form Zy(z) for the field is maintained even for finite
values of f,,(z). For a finite noise, the Wronskian may deviate from zero. Expanding
it around the zeroth pole we have

W(w) = W(wo) + 88% (0 — o) = (?9% (@ — o) (14.75)

Substitution of Equation 14.75 into Equation 14.74 yields

_ Z() (Z)
oW /0w

(@ — w0)Eu(2) J Zo(Z)f(2)d2 (14.76)

This form suggests that the field component is proportional to Zy(z). We set
Em(z) - BawZO(z) (1477)

where B is a normalization constant to be determined later and a,, is the Fourier
component of the time variation of the electric field. Substitution of Equation 14.77
into Equation 14.76 gives

1

(@ = w0)ao = 355750

JZO (2Vfu(2)d2' (14.78)

We construct the field amplitude a(f) by multiplying a, by exp(—iwt) and
integrating over . The trick here is that the o term on the left-hand side yields
the time derivative (d/dt)a(t). We thus have

d .
aa(t) + iwoa(t) = Fu(t) (14.79)

where

—i

Falt) = BOW /0w

JZo(z)f(z, t)dz (14.80)
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and
flzh) = jexp(—iwt)  (2)do (14.81)

The factor 0W/0w is independent of w and Tromborg et al. [8], analyzing the
changes in Z;(z) and Zg(z) due to a small change in k, showed that

oW 2k [ o,
8_(,0 = T vaity ZO (Z) dz (1482)

where ko corresponds to wo. Once we get the Langevin equation (Equation 14.79),
we can obtain the total spontaneous emission rate from the diffusion coefficient
for F,(t) as in Equations 14.31-14.36 above. As in Equation 14.33 the total
spontaneous emission rate is

Ry = <J; Ei(t) dt’F,,(t)> + <F;(t) J:) Fa(t) dt’> (14.83)

1 * ! £ ] * / ]
T L dt JCM dz LMY Az Z3(2) Z0(2)(f* (2, {)f (z,8))  (14.84)

We use Equations 14.15 and 14.66 to obtain

(FEOf D) = (10 (P )P 1)

(14.85)
4
= (uow?)* ngzé(t/ —1)6(2 — z)
where we have assumed that P, (z) is peaked around w. Thus we have
(ﬂowz)z 4he J 2

= —> —————— gN| Zo(z)|"dz

P |B|2|8W/8(U|2 w g2 Cavityl O( )|
(14.86)

272

w 4he

(#0 ) > gNZJ 4 ‘Z()(Z)‘zdz
Zé (Z) dZ‘ (/) cavity

1B (2k0/©) [y

where we have used Equation 14.82 in the second line. Finally, we determine the
normalization constant B so that the stored energy in the cavity is (a*(t)a(t))
multiplied by the photon energy fiw. Noting from Equations 14.65 and 14.77 that

E(z,t) = Ba(t)Zy(z) + C.C. (14.87)
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we have
2s|B|2<a* (t)a(t)> J |Zo(2)Pdz = hw<a*(t)a(t)> (14.88)
cavity
and
h
Bpf=— 2 (14.89)

2e Lamy |Zo(2)|*dz
Thus we finally have

{Jcavity \ZO(Z)\Zdz}Z

2
Luvity Z(% (Z) dz)

Ry = 24N, (14.90)

where we have used the relations ky ~ w/c and pye = c~2. This yields the same
form of excess noise factor as in Equation 14.39:

Ky = {quvity ZO(Z)Zd’Zz} (14.91)

chuvity Z(% (Z ) dz

That the excess noise factor is given in this form rather than that of Equation 14.37a
reflects the fact that this Green’s function method assumes a Fabry—Perot cavity. The
equivalence of the function Z; to the function ¥(z) in the previous section may
be argued by comparison of Equations 14.9 and 14.71 and by comparison of the
boundary conditions that these functions satisfy.

As noted in the previous section, in some of the literature, especially on
semiconductor lasers, the formula for the longitudinal excess noise factor in
Equation 14.91 is modified in some respects. First, the laser medium can be
dispersive. Second, the dielectric constant ¢ or the refractive index may be position
dependent. Third, the gain or the density of inverted atoms N, may also be
position dependent. If these matters are taken into account, the expression for the
spontaneous emission rate will include all these effects, while the expression for
the excess noise factor will include the dispersive effect and the position-depen-
dent refractive index in the integrals. For more details, see, for example, Henry [7]
and Tromborg et al. [8].

We have described the function Zy(z) as defined by the “empty” cavity of index n
everywhere. As in the previous section, this limitation can be relaxed if we allow
the factor n” in Equation 14.67 to represent the index distribution inside the cavity
or the (saturated) gain distribution. Then, with the mode function Zy(z) properly
adjusted for the index distribution or the (saturated) gain distribution, the correct
result can be obtained. In fact, for a laser with saturated gain, van Exter et al. [20]
obtained the longitudinal excess noise factor and the power-independent part of
the laser linewidth using this Green’s function method.
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14.3
Propagation Theory

The third theory used to derive the excess noise factor is the simplified method
developed in Chapter 11 and used independently by Goldberg et al. [10] and by
Prasad [11]. This theory may be called the propagation theory or propagation
method, where the noise fields propagate to a coupling surface of the cavity, being
amplified on the way, to form the total noise field at that point. The detail of this
method has already been described in Chapter 11. This theory stresses the
importance of the amplification of the thermal noise and the quantum noise,
leading to the longitudinal excess noise factor. As mentioned at the end of Chapter
11, this theory directly shows that the excess noise factor originates from the finite
mirror transmissions as well as the finite amplification of the thermal and
quantum noise during one round trip in the cavity. According to New [19] this
interpretation of the excess noise is in line with the view that emphasizes initial
temporary enhancement resulting from the excitation of the mode in a time-
reversed sense (in the complex conjugate of the adjoint mode). We stress that this
propagation theory can treat thermal noise and quantum noise on an equal footing
as compared to the adjoint mode theory or Green’s function theory, which are not
suited to treat the injected thermal noise.

In the same spirit of taking into account the amplification of spontaneous
emission noise along the length of the cavity, Thompson [21] arrived at the same
enhancement factor as in Equation 14.47 by considering the power aspect of the
field with the longitudinal boundary conditions of a symmetric cavity taken into
account.

Here, we want to show the connection of this theory to the adjoint mode theory.
We do this by generalizing the propagation theory. In Chapter 11 we summed all
the contributing noise fields at a coupling surface. We change this location to sum
all the noise fields to a general position inside the cavity and assume that the field
amplitude is the product of a time-varying amplitude operator and a cavity mode
function. Then we analyze the spontaneous emission rate to derive the excess
noise factor.

For simplicity, we consider the linear gain regime of a generalized two-sided
cavity laser treated in Section 11.6. From Equation 11.77 the basic equation reads

det(d—0,t) a7 (x s
S It GRS e (Ft+Fq) (14.92)

with the thermal and quantum noise fields F, and I:"q given by Equations 11.36
and 11.41 respectively. In both of these equations, the two possible routes to
the mirror at z = d from the noise sources at the mirrors or at the locations of the
atoms are taken into account. The noises are amplified along these routes. Now we
want to change the position z = d to a general position z within the cavity. This
time we have four routes for both the thermal and quantum noise. For the thermal
noise, the noise penetrates into the cavity at the two mirrors and goes to position z
either directly or after one reflection at the opposite mirror — see Figure 14.1a as
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(a)
M1 M2
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:E: — ftR
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Figure 14.1 Routes for (a) the thermal noise and (b) the quantum noise to reach the
position z.

well as Figure 11.1. For the quantum noise, the noise field from an atom at z,, goes
to z directly, or after one reflection at either mirror, or after two successive
reflections at the two mirrors — see Figure 14.1b as well as Figure 11.1.

Then Equation 11.77 may be rewritten in the form

dé(dzt,t)_ ez, )+ﬁy,ji“ {E(z,t)+i~‘q(z,t)} (14.93)

where

. . . d—
Fi(z,1) = T el+*)@-2) R (d+o, - z)
1

} X d
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(14.94a)
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2d—z
T (ik+0°)(2d—2) 7 0 P
+ Tire f o
and
A
- m
m
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(14.94b)
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Note that both F; and Fq contain waves propagating to the right and the left. Thus
é(z,t) also contains waves propagating in both directions. We assume that the
laser is operating with a mode function in the form of Equation 14.52 expressing
an outgoing mode for a generalized two-sided cavity. We also assume that the loss
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rate 7 is slightly larger than, but nearly equal to, the gain o°. Thus the mode
function is

. 1 .,
Y(z) = ¢lki2)z 4 = pilk-in)z (14.95)
"
where k is the real wavenumber. We may write the field amplitude as

é(z,t) = Cna()P(2) (14.96)

where Cy is the normalization constant enabling (a'(t)a(t)) to represent the
number of photons in the cavity. As in Equations 14.22 and 14.89

hw

Ol =
261 [[ gy | ¥ (2)[*dz

(14.97)

We project Equation 14.93 onto the adjoint mode function

1 .. .
\PT(Z) _ Ee—;(k—mo)z + el(k—wzo)z (1498)

Then we have formally

Cn(PIP) id(t) = 5oCn (PTW)a(t)

dt
o () + ()}

where the bracket indicates an integral over the cavity length. We have

(14.99)

(wmzrwww@&=? (14.100)

For simplicity, we consider the thermal part and the quantum part separately.
For the thermal part, we have, by Equation 14.94a,

(‘PU%) _ {T/2 de(ik+a0)dﬁR(d+07 B+ T de(ikﬁxﬂ)df;R(dJrQ 1)

d - , .
+ Tll r_lf;L(_07 t) + TI] rzde(tk+a0)2df;L(_0’ t)} (14101)

T, - 1.
=2d Rd+0,t) + Th—f1(—0,t
{garon+milit-on)
where we have ignored the integrals of rapidly oscillating terms. Here we have
replaced the time values in Equation 14.94a by t on the grounds that we are interested
in the field fluctuation on a time scale larger than the cavity round-trip time. We have
also used Equation 14.49 describing the steady-state condition with y — o°:

nryexp{2(ik+o%)d} =1 (14.102)
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Thus we have for the thermal noise
d ' 1
PO S G
Cn(YIW) Y +7 vt

TS - T oL
t (d+0’t)+\/_ﬁft ( O,t)}

(14.103)

We examine the noise photon injection rate as in Equations 12.65-12.68 or in
Equations 12.72-12.80. We have

- m V,«/C\/l" [?Z{Jt &0 (FR(d+0,¢)fR(d+0,1) ot
+ Jt & (R (d+ 0,0fF(d + 0, t’)>dt’} (14.104)
\7/-1_ {J £olt= t’)<f (—0,t) L( )>dt +JO <f (—0,1) L( ,)> }}

The last term in the square bracket in Equation 14.104 is the noise photon
injection rate R;. The correlation function of the thermal noise is given by the first
equations of Equations 11.1b and 11.1c. We have, using Equations 14.97 and
14.100 for |Cy|* and (‘PT‘I‘), respectively,

2
261 f [P@) A2y P (cl) n T, |? kS 2} noho
t — n
hw v+ b ! \/T \/T 28000
o (14.105)
2
y o 1 ( 1 1 >
= -_— + — T n,
v+ 72| 4l ]~ "y Il) e

where we have used Equations 11.52a and 14.54, and the relation neycy = 1¢1 in
the second line. We have also used the integral Jo (t—1t)dt' =1/2. Using
Equation 11.25 for the definition of the cavity decay rate y,, we have

!

2
R = 2y, n, Ky

v
Y+l

K, — {mm Il +1/Ins| - |}
2In(1/[n][r2])

(14.106)

Comparing with Equation 12.68 for the noise photon injection rate for the case of
the quasimode cavity laser, we obtain the longitudinal excess noise factor that was
obtained in Equation 14.56 on the basis of the adjoint mode theory.
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Next we consider the quantum noise part in Equation 14.99 using Equation
14.94b:

d
(\PT Fq) :J dz (l gilk=ia®)z | ei(k—ifx")z)
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where we have ignored integrals of rapidly oscillating terms. The terms propor-
tional to z,, cancel each other. In the last equality, we have used Equation 14.102.
Here, as for the thermal noise, we have replaced the time values in Equation
14.107 by t on the grounds that we are interested in the field fluctuation on a time
scale larger than the cavity round-trip time. Note that the quantity in the last curly
bracket is ¥'(z,,). As in Equation 14.103 we have for the quantum noise

d. . €1 Y 7 f(
B30 = 50i0) + G S w0 ) (14.108)

Thus we have

%<af(t)a(t)> =(s + s:;)<d*(t)d(t)>

! m/i—/m ;ijw*(%’)w(zm) (14.109)
X {L: esou—f><ﬁif(t)f m(t’)>dt’ + E gfot=1) <frjl,(t’)fm(t)>dt’}

Since we have only normally ordered products of the noise operators, this time
we use, instead of Equation 11.4,

2161 <f,i(t)fm/(t’)> = {J(1 + 0)h/61 } Sy d(t — ) (14.110)
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(cf. Equation 9.5¢c). We are assuming that half the stimulated emission rate 4 and
the atomic inversion © are, respectively, common for all the atoms. That is, we are
assuming homogeneously broadened atoms and uniform pumping. Using
Equation 14.110 in Equation 14.109 we have the total spontaneous emission rate

2

y! a g(1+0)hw t 2
Ry, = ¥ 14.111
Pl en(PY) | 2a Xm: [¥1(zn)] ( )
Now we can write
d
3 | Wizn)|" = NJ \Wi(z)| dz = N(WI W) (14.112)
m 0

Using Equations 14.97 and 14.112 in Equation 14.111 we have

,yl
s

)
(¥

Ry (14.113)

Thus, by comparison with Equation 12.69 for the spontaneous emission rate in a
quasimode cavity laser, we have the excess noise factor
) (P
K, = ()(72) (14.114)
|(¥7¥)]

which is the same as the one in Equation 14.25 derived on the basis of the adjoint
mode theory. Therefore, we have shown that the formulation in the propagation
theory can be converted to that in the adjoint mode theory. In this example,
Equation 14.114 reduces to Equation 14.56 because of the forms of ¥(z)
in Equation 14.95 and W'(z) in Equation 14.98. As we saw in Chapters 10 and
11, this propagation theory can be applied to a saturated gain regime, which leads
not only to the longitudinal excess noise factor but also to power-independent part
of the laser linewidth, which increases the linewidth. Goldberg et al. [10] also
examined the gain saturation with the spatial hole burning taken into account. The
latter effect was found to further increase the linewidth.

14.4
Three-Dimensional Cavity Modes and Transverse Effects

The adjoint mode theory described in Section 14.1 was devoted to the derivation of
the longitudinal excess noise factor. However, it is easy to see that the discussion
from Equation 14.6a to Equation 14.25 or to Equation 14.45 can be generalized to
the three-dimensional case without much alteration. In fact, except for Equations
14.10 and 14.38 for the expression for the mode function and the adjoint mode
function, respectively, all the functions of variable z can be replaced by functions of
variable r. In particular, for the functions above, we may write
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¥(r) =y (r) exp(ikz) + ¢ _(r) exp(—ikz) (14.115)
Wi(r) = y_(r) exp(—ikz) + ¥ (r) exp(ikz) (14.116)

Here we assume that a set of mode functions and corresponding adjoint mode
functions for a given cavity or a laser are known analytically or numerically. The
other quantities D(z,t), E(z,t), and P(z,t) may be replaced by D(r,t), E(r,t), and P(r,t),
respectively. The correlation function for noise polarization P(r,t) in Equation
14.15 may be rewritten as

<p*(r, BHP(Y, t/)> - %gNzé(t — ) —1) (14.117)

The central equation of motion for the field amplitude reads

a(t) = soat) + p(t) (14.118)
where
—iw [, P (r)P(r, t)dr
_ cavity
p(t) - ZHCN J\caviLY lPT(r)\P(r)dr (14119)

The limits of integration in the z-direction are the same as before. The integration
range in the transverse direction is from the cavity axis to a certain outer surface of the
mode, which may be infinity. The analysis of the laser linewidth or the spontaneous
emission rate can be carried out in a similar manner as in Section 14.1. Thus the
excess noise factor K corresponding to that in Equation 14.25 becomes

* * *(r T)dr . T T t r)ar
o W) foiy VOV () [, ¥ () ¥ (1)d (14.120)

()" Loy ' (r)‘P(r)dr‘z

Now if the mode function is expressible as the product of the longitudinal mode
function W;(z) and the transverse mode function ¢(s), where s = (x,y), it can be
seen that the total excess noise factor is the product of the longitudinal and
transverse excess noise factors

K=KKr, W) =Y (2)dr(s) (14.121)

where

o v ) 1412)
(i)
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is the same as in Equation 14.25, now with the suffix L. The transverse excess
noise factor Kr is given as

(97(8)92(5) (4] (5)97(5))
|(sh@re)|
RO dsf O1 (8)9}(s)ds
LS¢T Dr(s)ds|

T =

(14.123)

where the symbol cs indicates the cross-section of the cavity mode. Champagne
and McCarthy [6] derived the general expression in Equation 14.120 and noted that
the product form in Equation 14.121 cannot be always true.

The transverse excess noise factor equivalent to Equation 14.123 was first
derived by Petermann [17] by an analysis of the spontaneous emission factor (the
fraction in power of the emission going to the mode of interest) in a gain-guided
semiconductor laser, and then by Siegman [4] through the adjoint mode theory for
a general open optical system that has non-Hermitian boundary conditions. An
ideal stable cavity laser or an index-guided laser having orthogonal transverse
modes has Kry=1, while a planar purely gain-guided laser has Kr = v/2 (see
Ref. [17]). Doumont et al. [22] analyzed a laser with variable reflectivity mirrors
(mirrors with Gaussian reflectivity distribution along the distance from the mirror
center) and gave approximate analytic expressions for the transverse excess noise
factor for a stable as well as an unstable cavity. They predicted a transverse excess
noise factor of 10*~10°for an unstable cavity with a large magnification and a large
Fresnel number especially for higher-order transverse modes.

The transverse excess noise factor for a stable laser resonator with one or two
apertures was studied by Brunel et al. [23]. In their study, the non-Hermitian
property of the Huygens—Fresnel kernel, which determines the round-trip field
development, is introduced by the presence of the apertures. They predicted a
value of 100 for the observable transverse excess noise factor. The transverse excess
noise factor for an unstable, confocal strip resonator was studied by New [19]. He
obtained an excess noise factor in excess of 10* for a narrow region of the Fresnel
number. He attributed such a large excess noise factor to significant difference in
the shapes of the phase fronts of the mode and the adjoint mode functions. He
also emphasized the importance of the initial wave excitation factor for the phy-
sical interpretation of the noise enhancement.

Firth and Yao [24] considered the transverse excess noise of misaligned cavities
and predicted a value in excess of 10" for a cavity that is slightly unstable in
structure and has a Gaussian aperture mirror that is offset from the axis. This
value was obtained for a relatively small misalignment power loss. They argued
that, in view of such a large excess noise, the excess noise factor may be interpreted
more physically as due to transient gain than to correlation between multiple
modes.
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14.5
Quantum Theory of Excess Noise Factor

In Section 14.3 the field variable was treated as an operator following the
quantum-mechanical analysis in Chapter 11. However, except in Section 14.3,
the field variable has been a classical variable in this chapter. How can one
make the adjoint mode theory a consistent quantum theory? One way seems to be
to get a quantum-mechanically correct expression for the noise polarization as was
done in Section 14.3. Even in Section 14.3 the introduction of the annihilation
operator in the form of Equation 14.96 and the mode normalization in the form of
Equation 14.97 may need justification in view of the non-orthogonality of the
relevant mode functions. It is not that the treatment in Section 14.3 is not correct
quantum mechanically, but rather that the derivation of the equation used in
Section 14.3 and in Chapter 11 was originally based on the field expansion
in terms of the normal modes of the “universe” as was carried out in Chapters 9
and 10. The expansion of the field in normal modes of the “universe” allowed
quantum-mechanically consistent analysis. In this connection, one would hope to
have a general quantum-mechanical theory of the excess noise factor that extends
the classical adjoint mode theory. Two of the quantization methods reported for
the derivation of the excess noise factor are reviewed in this section.

14.5.1
Excess Noise Theory Based on Input—-Output Commutation Rules

One method to derive the excess noise factor quantum mechanically was devel-
oped by Granjier and Poizat [25]. Here the outline of their derivation will be
described. They start with a set of normalized and orthogonal mode functions. The
field is expanded in terms of these normal modes and the (input and output) fields
before and after one round trip in the cavity are expressed as column vectors {e;, }
and {e,,;}, respectively. The character of the empty cavity is written in terms of a
unitary scattering matrix as

{eow} = S{ein} (14.124)

Since S is unitary, all the commutation relations are preserved in the input to
output evolution. Then they assume that the modes can be split into “laser”
modes and “loss” modes, and introduce projection operators P and Q, which
project on the “laser” modes and on the “loss” modes, respectively:

PP =P, Q*=0, P+Q=1 (14.125)
Thus we have
P{eou} = PS(P+ Q){ein} = TP{ein} + PSQ{ein} (14.126)

where T'= PSP describes the input—output relation for the “laser” modes only. The
matrix Tis not unitary in general and will have eigenvectors that are non-orthogonal:
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TU = UG (14.127)
Here U is the matrix with columns formed by the normalized eigenvectors {u,,} of

T and G is a diagonal matrix formed by the corresponding eigenvalues y,. Next,
one introduces the adjoint of U by

V= (U (14.128)
From Equations 14.127 and 14.128 one obtains
ViT=GVi, T'V = VG! (14.129)

Thus Vis a matrix with columns formed by the eigenvectors {v,} of T" and G is a
diagonal matrix formed by the corresponding eigenvalues y?. It is argued that, as
{u,} are normalized, {v,} cannot be normalized, but that one has the bi-
orthogonality relation:

Viu=Uv=1 (14.130)

One may notice that the story here traces the adjoint mode theory described from
Equations 14.1a-14.5. Multiplying PV’ = PU! to both sides of Equation 14.126
and using VIT = GV one has

PV'P{eu:} = G(PV'P{ei}) + PVIPSQ{ein} (14.131)

This corresponds to projection onto the adjoint modes. It is assumed that one can
quantize a particular “laser” mode by replacing the amplitudes {e;,} and {e...} by
the operators {ai,} and {8}, respectively. As a next step, an amplifier is
introduced assuming a mean-field theory. That is, the mean field along the length
of the cavity is considered, ignoring the longitudinal distribution. The gain matrix
is gP+ Q and the spontaneous emission noise is added [26, 27]. Equation 14.126
then becomes

P{éou} = g(TP{an} + PSQ{an}) +/lgl” — 1 P{b}, | (14.132)

where P{Bip} is a column vector of spontaneous emission noise operators, each
one corresponding to a mode belongirf to the “laser” mode. For a completely

A B, (t)) =

inverted atom, the correlations read blp(t),l:)sp(t/ )> =0 and <Bsp(t), b
o(t —t') (see Ref. [28]). Then, Equation 14.131 becomes

PV'P{éo} =gG(PV'P{ai}) + gPVI PSQ{din}
N (14.133)
+/lgl = 1pVIP{B}}
We consider a lasing mode n in a steady state where gy, = 1. Using the identity

PV P{agu,in} = PU P{aous,in} + P(I — U'U)PVI P{aus in } (14.134)
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one constructs PU' P{do,} — gG(PUP{a;,}) from Equation 14.133 and takes the
nth line to get

(PUTP{daut})n - (PUTP{&I”})VL
. 14.135
= —|—(gPVTPSQ{&in} +4/lg - 1 PVTP{%}) | )

where terms that are proportional to 1 — gy,, have been omitted. The left-hand side
can be interpreted as the time derivative multiplied by the cavity round-trip time of
the relevant quantity for the steady state. In the language of the adjoint mode
theory, this equation corresponds to Equation 14.13, where the equation of motion
for the field is projected onto the adjoint mode function and the amplitude of the
mode of interest is extracted. This equation also corresponds, physically, to
Equation 11.35 with the first and second terms in Equation 14.135 corresponding
to F, and f:q, respectively. Grangier and Poizat [25] then calculate the phase
diffusion by evaluating the variance of the round-trip change in the penetrating
vacuum and the spontaneous emission noise. In particular, they consider the
variance of the phase quadrature of these quantities. Here the phase quadrature of
dis Y = (a — a')/(2i). This calculation corresponds to the evaluation of the reser-
voir average of the squared phase change in Equations 11.46 and 11.47, although
the treatment of the gain medium is different. They define column matrices

P{5 rvuc} = (l/yn)(PVTPSQ{?m})
P{oTy,} =\/1/Ip /> = 1(PVIP{Y,})

and derive, assuming minus zero temperature thatleads to < ?;,> = 1/4 (see Ref.[27))

and using <vac| f’i2n|vac> = 1/4, for the covariance matrices

(14.136)

p<{5 Tuae } {0 Tuae}! >P = (PVVIP — PGVIVG'P) /(4]y,*)
(14.137)
P({o Ty} {oTy} )P = (PVIVP)(1 = I3, )/ (4lr")

where the relations Q=1—P and PSP=T as well as Equation 14.129 have been
used in the first line.

Finally, one compares the result with the case of an ideal single-mode laser,
which is described as

ot = grétin +g\/1 — [r[* buac + /|g]* — 1B}, (14.138)

where g is the gain and r is the amplitude reflectivity of the mirror from where
the vacuum noise l;m comes in. Defining {0 'y} and {5 T Sp} as in Equation
14.136, but for the single-mode case, and setting r=y and gy =1, one obtains
(6T2, )= (0 l"szp> = (1 —|y]")/(4]y]%). As a result, the excess noise factor for both
vacuum and spontaneous emission noise becomes
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Kvac,n = Rspn = (VT V)n,n (14139)

This corresponds to the excess noise factor in Equation 14.37b. One merit of this
analysis is its ability to show that both the vacuum fluctuation and spontaneous
emission result in the same form of the excess noise factor. Grangier and Poizat
[25] gave a discussion showing that the excess noise results from the coupling
between laser modes, which comes from sharing the common noise contribu-
tions, the latter being due to the same loss modes. They called it the loss-induced
mode coupling.

Grangier and Poizat [29] gave a calculation of the longitudinal excess noise factor
using a laser model that extends the model in Equation 14.138 in that two end
mirrors are included. This model is similar to the one we analyzed in Chapter 11
but is different in that a “lumped” amplifier model as in Equation 14.132 is
assumed. Their working equation for the field . just inside the mirror M1 is

Gcour =8°T1T20c + §P0T28in + ghabin + gray/Igl” — 14l

+4/lgl*~1b!

(14.140)

where now a;, and };m are vacuum noise entering from M1 and M2, respectively.
The spontaneous emission noise 4] and Ei are those traversing the amplifier
towards the right and left, respectively. These two are assumed to be uncorrelated.
The reflectivities r; and r, are positive. Subtracting 4, from both sides makes
the time derivative of 4, multiplied by the cavity round-trip time, and the
phase diffusion can be analyzed via the variation of Y, = (&, — a.')/(2i) as in
Equations 11.46 and 11.47. Grangier and Poizat [29] obtain

Aw = (L)Z e (14.141)
2L 8(rlr2)zpout

where P,; = Piow + Paout, Plows = tﬂocc|2 /(2L/c), and similarly for P,,,. Here L is
the cavity length and o is the steady-state amplitude just inside M1. Comparing this
with the standard result Aw = {¢/(2L)}*{In(r1r2)}>/(2Po), they obtain a long-
itudinal excess noise factor corresponding to that in Equation 11.72 or 11.107:

_J(n+n)1-—nn) 2
= {W} (14.142)

(In our calculation, the factor 8 in the denominator of Equation 14.141 becomes 2
and the 7% in their standard result may be 2, resulting in the same K;.) Although
the correct longitudinal excess noise factor is obtained by use of the model laser
described in Equation 14.140, it is still desirable to show how to reach this model
from the general quantization method using the projection operators P and Q.
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14.5.2
Excess Noise Theory Based on Non-Orthogonal Mode Quantization

Chen and Siegman [30] developed a theory of the excess noise factor based on a
basis-independent quantization formalism. Here the idea of their quantization
scheme and the framework of the derivation of the excess noise factor for the non-
orthogonal laser modes will be described. As in Chapters 5-10 and in the previous
section, a set of orthonormal modes {e;}, here in the form of plane-wave modes, is
first assumed, with the usual commutation relation for the annihilation and
creation operators of each mode. Next one introduces the system eigenmode basis
{u}} composed of the solutions of the wave equation and the boundary conditions
and an additional basis {u;'} that fills the functional space not covered by {u:}.
Then the complete set {u,} = {ui} + {1/} expands the same functional space
defined by the plane-wave mode basis {e;}. It is assumed that each mode of {u,}
consists of single-frequency components ,, and is written as

Un = > Cukll (14.143)
k

where the summation is only taken over |k| = w,/c. The electric field is expanded
in terms of {e;} and {U,} basis, respectively, as

~ hwk ~ At

h
On (a Uy + af u) (14.144)
2¢&9 "

where

(e, 0f,] = O, (e, Ge,] = [0 8] ] =0 (14.145)

Here one introduces a new basis set {¢,}, the adjoint modes to {u,}, satisfying
(fnlum) = qu;umdx = Owm (14.146)

and it is proposed that the electric field is projected onto the adjoint mode. Then
one has

&un = Z (d)n|ek)&ek7 dL,, = Z (¢n|ek)*&lk (14147)

k k

Note that, as in Equation 14.143, the summation over k extends only over the mode
with w;, = w,. The commutation relations for these two are

[0, 8,1 = > (Dule) (g1dy) e, 8] = (D4l)

iy (14.148)
[dumdum] = [dlnvalm} =0
where the closure relation ), |e;)(e)] =1 has been used. It is argued that {u,}

need not be non-orthogonal modes (if the system is a closed system).
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Next, one considers the general quantum Langevin equation for an operator 6
interacting with a reservoir:
d.

1 A
Zo=——vo+F, 14.149

dt 277 ( )
The relaxation constant is y and F, is the corresponding Langevin noise operator.
In the limit of short correlation time of the reservoir compared with the relaxation

time of the operator, one has

[Fo(t), FL(¢)] = y[o, 0116 (¢ — ¥) (14.150)
and

[Ea,, (6). B}, (€] = 7la,a},1(t = ¢) = 9([$,)0(6 — ¥) (14.151)

The interaction between the field and the atoms is described by the interaction
Hamiltonian

Hy = de S g {al, 1 (05 (x) + 6 (), ()} (14.152)

where g, is the coupling constant and 6(x) is the atomic dipole distributed over the
cavity. The equation of motion for the field mode » is
d., 1

P *Eyc,ndun —igy, de ¢, (x)6(x) + Fa,, (14.153)

The adjoint mode function in the second term appears from

1) = [0S g, (0509,
T (14.154)
= i a3 gl W)

where Equation 14.148 has been used. To obtain the second term above, one
uses the closure relation ), ¢, (x)u;,(x) = 6(x' —x), which can be derived
using Equation 14.146. From the equation for the atomic dipole 6(x), when
the dipole relaxation is fast compared to the time variation of the popula-
tion, one obtains the approximate dipole, which is roughly the sum of
the population inversion 6, — 6, and the Langevin force F;(x) divided by the
dipolar relaxation constant y (see Equation 4.39b, for example). Thus

Equation 14.153 becomes

d. 1 .8n . A
gt =~ 3Ventu, — I;de ¢ (x) %:gn/(oefag)aun, Uy

(14.155)

un

~ i%J.dxﬁ(x)Fg,(x) 4,
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Assuming a well-stabilized amplitude A, of laser oscillation of a particular mode 0,
one analyses the phase diffusion of a,,. One has

% = Zi(;"/ { (¢0|F&(X)> + (%IF&(X))T} +Tixo {Fau,, ~H, } (14.156)

Now the Einstein relation, which was mentioned at the end of Chapter 3 and
which reduces to Equations 3.37 and 3.50, gives

(FLxOFs(X,¥)) = 29(5)g0(t — £)0(x —X)

(Fold DFL(x,¥)) = 29(3g) 0 (t = ¥)o(x = X)

(14.157)

where small terms compared to y have been omitted. The subscript R denotes the
reservoir average. Also, we have

<F;u0 () Fa, (t/)>R = 7’cA0<&Tuoduo>R5(t —t)
(Fay O], (1)) = veo{dundl, ) 8(:—1)

The reservoir average of the products of the field amplitudes taken for the vacuum
state are, by Equation 14.147,

(a0 = D (Dol (5]600) (0la} 3, 0) =0

— R
i

(Budly) =D (dole)(gldo)(01anal 0) = (dldo)

i

(14.158)

(14.159)

Using Equations 14.156-14.159, the linewidth is obtained as in Chapter 10:

2
Ao = % ((bo‘(i)o)(ge + Gg) + 4%4(2)%,0(450@0) (14'1603)

Using the steady-state condition (g3 /y)(. — g) = 37,0 and the expression for the
output power P = y_ohwoAj, one has finally

hwo?? O, + 0
A0 = (dolghy) -2e0 (1 n g)

4P Ge — 0

5 (14.160b)
2hwg (VC,O/Z) O¢

P G, — Og

= (¢o|¢o)

This is (¢g|¢,) times the standard linewidth (see Equation 4.82). So one obtains
the excess noise factor (¢,|¢,) in terms of the adjoint mode function correspond-
ing to the laser mode function u, as in the previous section:

K = (¢ldo) = [¢3¢>odx (14.161)
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Since uyg is a certain sum of original basis functions e, where the summation is
taken only over |k| = wo/c, which implies zero temporal decay, it might be dif-
ficult to determine the composition of a cavity mode with finite output coupling or
diffraction loss in this approach.

For another quantum-mechanical theory on the excess noise factor using the
master equation (evolution equation for the system density matrix), the reader is
referred to Bardroff and Stenholm [31].

14.6
Two Non-Orthogonal Modes with Nearly Equal Losses

There are cases where only two modes of the laser cavity have relatively low and
nearly equal losses and other modes have higher losses. In this case, analysis
with only two modes is possible and, if the two modes are non-orthogonal, the
excess noise factor is determined by the interaction of the two modes. Theore-
tically, the excess noise factor diverges as the two modes become nearly
identical.

Let us consider two orthogonal modes u; and u, of a cavity satisfying
(u’{ul) = (ujuz) =1 and (ufuz) = 0. Here the bracket signifies the spatial inte-
gration over the cavity:

(ujw) = J u; widr (14.162)

cavity

Note that taking the complex conjugate of the first function is not intended in this
definition. Let us assume that some mechanism M is introduced to couple them
during the propagation in the cavity, such as

dfm) (™ b 14.163

E up o Uy + Fz ( ’ )
Here F;, are the Langevin noises for modes u, ,, respectively. They are mutually
orthogonal and of equal magnitude. Let us assume that the matrix M has two
mutually non-orthogonal eigenmodes e; and ¢,. The adjoint mode v; correspond-
ing to e; is orthogonal to e,. (The adjoint mode v, corresponding to e, is orthogonal
to e;.) Now, if e; and e, are normalized to unity and the product (vie;) is also

normalized to unity, the excess noise factor is given by (see Equations 14.5 and
14.25)

. (vin) 1
K= (vin) = 5 = 5 14.164
( ) (vier) {(wi/Im])es} ( )
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Therefore, if we abandon the normalization of (v;e;) and assume, instead, that v, is
normalized (and write v, /|v1| — v1), we have

K= (14.165)
(Vl‘?l)2
where
e; — e (eje
v = ;(12)2 (14.166)
1- |(ejer) |
Note that it satisfies (vqe,) =0. Since we can show that (vlel)z =1- !(ejel) 2, we
have
1
Ke——— (14.167)
1—|(eser)]

Therefore, we have a large excess noise factor when the two eigenmodes of the
cavity have nearly identical field distributions.
As an example, let consider a case where the matrix M has the form

—N1 b
M= 14.168
( 0 -7, > ( )

where y; and 7y, are the damping constants of the modes u; and u,, respectively,
while b (assumed to be real) is the one-way coupling constant of mode u, to mode
uy. The eigenvalues of M are —y; and —y,, and the corresponding normalized
eigenmodes are

€1 = U
R ) (14.169)

VIR

respectively, where

N1 =N

y= (14.170)
b
The normalized adjoint modes to these eigenmodes are, respectively,
w=m""% g oy, = U (14.171)

VI+72
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One can check that (efe;) = (ee2) = (Vi) = (vjv2) =1 and that (ev;) =
(eav1) = 0. Writing the amplitudes of these eigenmodes as a;(t) and a(t),
respectively, one may have

a161 = (—yl + a)alel + Fl/

F{ +yF/ (14.172)
V1+9y?

where o is the gain and now the noise F; and F’, should contain, in addition to F;
and F,, the quantum noise for u; and u,, respectively, associated with the

amplification. Projecting these onto respective adjoint modes and dividing by
the respective integrated products, we obtain

(mF{)
(vier)
(nF{) +y(nF7)
v1+ “/2(11262)
Since v and v, are normalized, it is easy to see that the diffusion constant of the

last terms in Equation 14.173 are those of F; and F, multiplied by (vie) % and
(v,€5) %, respectively. Thus we have, using Equations 14.169-14.171,

1492 b \?
K=t =15 1 ()
Y V1 — 72

1492 b \?
1= 72

e = (—y, +a)aze; +

a1 = (=71 +o)ar +

(14.173)
Gy = (=7, +®)az +

(14.174)

The excess noise factors for the two eigenmodes are the same. We see that both
K; , diverge as (y,—7y1)/b— 0. In this limit, Equation 14.169 shows that e, —&; = u;.
We can say that the excess noise can be very large if the difference of the decay
constants of the two modes is small compared to the coupling constant of the
mode u, to the mode u;. In this limit, as Equation 14.169 shows, the mode e,
becomes nearly identical to mode ¢;.

Grangier and Poizat [29] gave a similar quantum-mechanical two-mode model
that incorporates a loss mode instead of the noise F;, in Equation 14.163 and
emphasized that the laser modes are coupled by sharing common noise due to the
same loss modes. Van der Lee et al. [32] gave an analysis of two coupled polar-
ization modes of a laser and found a large polarization excess noise factor K, for an
induced frequency splitting close to the magnitude of dissipative coupling.

Van der Lee et al. [33] showed that the intensity noise of a laser with two non-
orthogonal polarization modes in a gas laser is enhanced with the same polar-
ization excess noise factor as obtained in [32] and that the noise spectrum is not
white but had finite bandwidth due to the time needed for the excess noise to
develop. Poizat et al. [34] analyzed the case of two non-orthogonal transverse
modes of a semiconductor laser and showed that the intensity noise of the oscil-
lating mode is enhanced by the presence of a non-orthogonal, second mode that is
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below threshold. They also showed that the excess noise factor also appears in the
expression for the intensity noise.

Van Eijkelenborg et al. [35] analyzed the transverse excess noise in a gas laser
having a hard-edged unstable cavity. They showed that, when two modes were
made to have equal lowest losses by adjustment of the Fresnel number of the
cavity, the excess noise factor was strongly increased. Grangier and Poizat [25] also
analyzed the frequency spectrum of the excess noise and found a high excess noise
factor when a second low-loss mode existed. The spectral width was shown to be
the narrower the larger the excess noise factor.

14.7
Multimode Theory

A theory of a single-mode operation that takes into account the non-orthogonal,
non-lasing modes was developed by Dutra et al. [36]. They showed that the laser
spectrum is generally non-Lorentzian due to the coupling of the non-lasing modes
to the oscillating mode through gain saturation.

Van Exter et al. [37] developed a theory of more general non-orthogonal multimode
operation where the amplitudes of all the non-orthogonal modes of the system are
traced and the projection onto the measured single oscillating mode inevitably picks
up the contributions from other non-oscillating modes because of the non-ortho-
gonality. They stated that the excess noise originates, for both below- and above-
threshold operation, from the field fluctuations in other modes that project onto the
lasing mode upon evolution. For below threshold, the dynamics of the modes
(determined by the cavity geometry) determines the excess noise factor, which can be
the same for the phase noise above threshold. For above threshold, the gain fluctua-
tion, in addition to the dynamics, has a role in determining the excess intensity noise.

Van der Lee et al. [38] discussed the limitation in obtaining an intensity-
squeezed laser light [39] exerted by the excess noise. Using essentially two-mode
analysis but incorporating the effects of other non-orthogonal modes as a collected
noise term, they found the upper limit of the excess noise factor to be 1.5 to obtain
an intensity squeezing. They tried experimentally to reduce the intensity noise by
proper mixing of a correlated non-lasing mode to the lasing mode.

14.8
Experiments on Excess Noise Factor

Here we briefly review the experimental results on the longitudinal excess noise
factor, the transverse excess noise factor, and the polarization excess noise factor.
We also add the experiments on intensity noise, which is related to the excess
noise factor.

The longitudinal excess noise factor was observed by Hamel and Woerdman [40]
using single-mode semiconductor lasers. They compared two cases of the same
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Figure 14.2 Measured laser linewidth as a function of inverse total output power. From Ref. [40].
Hamel, W.A. and Woerdman, J.P. (1990) Phys. Rev. Lett., 64, 1506, Figure 2.

overall losses. For facet reflectivity of 30%—30% they found smaller excess noise
factor by a factor of 1/1.64 than for facet reflectivity of 10%-90%, in fair agreement
with the prediction of 1/1.33 for the formula in Equation 14.56, showing that an
asymmetry of the cavity enhances the non-orthogonality of the modes and thus
excess noise. In Figure 14.2 is shown the measured laser linewidth as a function of
inverse total output power. The triangles refer to the 10%-90% lasers and the
squares to the 30%-30% lasers. The slopes (the linewidth x power product) of
the two lines are 610 and 372 MHz mW, yielding the ratio 1.64/1 (see Equations
14.24 and 14.25 as well as Equation 14.56).

The transverse excess noise factor for a stable laser resonator with a diffracting
aperture was studied by Lindberg et al. [41]. They used a Xe—He gas laser operating
at 3.51 um and, by inserting an aperture that is smaller in size than the mode
diameter of the otherwise stable cavity, observed an excess noise factor up to 15.
Emile et al. [42] also measured the transverse excess noise factor in a similar stable-
cavity Xe-He gas laser operating at 3.51 pm. They inserted an aperture in front of
one of the end mirrors and obtained an excess noise factor up to 13.4. The effect of
a second aperture in front of the other mirror was studied with the longitudinal
excess noise factor taken into account.

The transverse excess noise factor for an unstable laser resonator was observed
by Yao et al. [43] using a quantum-well semiconductor laser. The round-trip
magnification of the unstable cavity was 6.9. They determined the spontaneous
emission factor (the ratio of the spontaneous emission power coupled to the cavity
mode of interest to the total emission power) from the observed input-output
curve. They deduced the excess noise factor by considering that the spontaneous
emission factor for a real cavity is that of an ideal closed cavity multiplied by the
transverse and longitudinal excess noise factor. They found that the excess noise
factor caused by the unstable geometry was as large as 500 for pulsed operation.
The numerically estimated transverse excess noise factor was 175 and the long-
itudinal factor was 4.
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Figure 14.3 Absolute value of the eigenvalues, |«/, of
a number of transverse modes as functions of equivalent
Fresnel number N, for the square resonator with M = 1.95.
Note the mode crossing at N, = 0.90. The mode profiles
(a), (b), and (c) are for N.; = 0.42,0.90, and 1.38,
respectively.

Source: From Ref. [35]. van Eijkelenborg, M.A., Lindberg,
AM., Thijssen, M.S., and Woerdman, J.P. (1996) Phys. Rev.
Lett., 77, 4314, Figure 2.

Cheng et al. [44] observed the excess noise factor for an unstable Nd:YVO, laser.
The cavity was composed of a convex mirror and a small flat mirror with mag-
nification around 2. An excess noise factor as large as 330 was observed, in fair
agreement with theory. Here the longitudinal excess noise factor was estimated to
be only 1.1.

Van Eijkelenborg et al. [45] tried to express the excess noise factor of an unstable
cavity laser in terms of geometrical factors concerning the diffraction loss and
compared it with the non-orthogonality theory. They found reasonable agreement
only for the case of magnification of 2 and for the lowest-order transverse mode.
But, using a He—Xe laser, they experimentally found serious deviations for other
cases, and concluded that it is unlikely that a direct relation between diffraction
loss and excess noise factor exists.

Using a Xe-He gas laser with an unstable cavity operating at 3.51 pm, van
Eijkelenborg et al. [35] observed a sharp increase in the excess noise factor when
two transverse modes have a common lowest loss as the Fresnel number is varied
by changing the size of the square aperture inserted. A transverse excess noise
factor over 200 was observed. Figure 14.3 shows the calculated absolute value of
the eigenvalue |0 as a function of the Fresnel number N,, for a cavity with
magnification M of 1.95. (The eigenvalue here is the complex multiplying factor
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Figure 14.4 The excess noise factor K as a function of
equivalent Fresnel number N,g: (a) theoretical, and

(b) experimental.

Source: From Ref. [35]. van Eijkelenborg, M.A., Lindberg, AM.,,
Thijssen, M.S., and Woerdman, |.P. (1996), Phys. Rev. Lett.,
77, 4314, Figure 3.

for the transverse field distribution associated with a round trip [4].) The insets
show the calculated transverse mode profiles. Figure 14.4 shows the calculated and
observed excess noise factor (K-factor) as functions of the Fresnel number N,,. An
abrupt increase in the K-factor is seen at the crossing point N,,=0.9. This is in
accord with the discussions in Section 14.6.

Van der Lee et al. [32] studied the polarization properties of a Xe—He gas laser
operating at 3.51 pm where two polarization modes are coupled by inserting a
dissipative object. A polarization excess noise factor of up to 60 was observed.

The intensity noise spectrum of a He—Xe laser with two polarization modes was
observed by van der Lee et al. [33]. They found a narrow spectrum for a large excess
noise factor at zero frequency and vice versa. This shows that the excess noise
factor appears only on a sufficiently long time scale and that laser dynamics is
involved in determining the excess noise. The enhancement factor for the intensity
noise was the same as that for the phase noise [32]. They also showed that, by
proper use of a polarizer on detection to utilize the correlation between the modes,
the excess noise can be greatly reduced.

Poizat et al. [34] studied the intensity noise of a laser diode with an oscillating
TEqo mode and a non-oscillating TE;, mode. Correlation between the intensity
noises of the two modes was observed to enhance the noise of the lasing mode.
The intensity noise of the oscillating mode was reduced when the correlation to
the side mode was decreased by adjustment of the cavity.

Van Eijkelenborg et al. [46] compared the intensity noises of an unstable and a
stable cavity He—Xe laser. On the basis of their analysis of the linearized equations
for the photon number and the inversion, they found an expression for the
intensity noise spectrum that contains the excess noise factor and the spontaneous
emission factor. Combining the results of a few measurements, they obtained both
factors in fair agreement with theory. The theoretical excess noise factors were



References

82 and 1.1 for the unstable and the stable cavity, respectively, whereas the observed
values were 32 and 1.1, respectively. The theoretical spontaneous emission factors
were (1.2—5.9) x 1077 and 3.7 x 10 ° for the unstable and the stable cavity,
respectively, whereas the observed values were 0.71x 1077 and 2.0 x 10°°,
respectively.
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15
Quantum Theory of the Output Coupling
of an Optical Cavity

An optical system often includes an optical cavity or an optical resonator. A laser is
a typical example. An ideal optical cavity has perfect boundaries and consequently
has a set of discrete eigenmodes that are mutually orthogonal. Chapter 4 dealt with
such a cavity. A real optical cavity has output coupling so as to allow waves to go
into and to come out of it. This coupling inevitably introduces cavity loss and an
imperfect boundary. The modes of the cavity become lossy and they are no longer
orthogonal to each other. The consequences of the presence of a real cavity in a laser
have been described in depth up to now in this book. As we have seen, one aspect of
the consequences is the appearance of thermal noise associated with the output
coupling (and with other unwanted losses). Another aspect is the appearance of the
excess noise factor associated with the laser linewidth that is due to local output
coupling at the mirrors. This second aspect has been interpreted in terms of the
modes and the adjoint modes associated with the non-Hermiticity of the system. We
saw that the thermal noise was also enhanced by the excess noise factor.

The quantum-theoretical treatment of cavity loss or output coupling is a hard
task, as we have seen. This belongs to the common topic of the quantum theory of
an open system where a system is coupled to its reservoir(s). The accuracy of the
description of the coupling determines the extent to which the theory is applicable.

The treatment of output coupling in this book has been based on the expansion
of the field in terms of the continuous, normal modes of the “universe,” which
were defined in a large box including the optical cavity, and led to cavity decay as
well as thermal Langevin noise [1, 2]. The analyses of laser linewidth revealed the
existence of the excess noise factor [3, 4].

Other methods of field expansion were developed to derive the cavity decay and
the Langevin forces due to the output coupling and to obtain the expression for the
output field [5, 6, 7-8]. These methods, which are based on field expansion in
terms of some continuous field modes, are called quantum field theories.

Since the 1980s, the consequences of the output coupling of an optical cavity have
been extensively discussed in relation to the nature of the squeezed state of an optical
field that is generated in an optical parametric oscillator. (A “squeezed state” here is a
state where the fluctuation of one quadrature is suppressed below the level that
both quadratures preserve when the field is not squeezed and the fluctuations of both
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quadratures are the same. For this state, the other quadrature has an increased
fluctuation.) There was an apparent discrepancy between theory and measurements
on the degree of squeezing. The theory was first developed for the field inside
the cavity [9], while the measurements were of course done outside. Surprisingly, the
measurements revealed a larger degree of squeezing than the theoretical prediction
[10]. So, a theory of optical squeezing was needed that could calculate the degree of
squeezing outside the cavity. This led to the development of the so-called input—output
theory for an optical cavity. This theory, also termed quantum noise theory, was based
on a system-reservoir model that is similar to the one described in Appendix C, and
gave the relation between the input to and the output from the cavity in addition to the
relation between the cavity decay constant and the fluctuation of the input noise field.
The standard reservoir theory was developed by Haken [11] and Lax [12]. The input—
output theory and related theories were developed by Collet and Gardiner [13],
Gardiner and Collett [14], Carmichael [15], and Yamamoto and Imoto [16].

More recently, a generation of various non-classical quantum states of the light field
in a cavity and transfer to another cavity have been studied for use in quantum
information technology, such as quantum computation and quantum communica-
tion. In these systems, the maintenance of the quantum state is of crucial importance.
Degradation of a quantum state due to unwanted contact with other systems or
reservoirs is called “decoherence,” which should be avoided as much as possible. In
this context, the effect of unwanted noise (noise other than that associated with finite
transmission of the mirrors) on the performance, or the input—output characteristics,
of the cavity is of great importance. Semenov et al. [17] approached this problem by
input—output theory, and Khanbekyan et al. [18] used the Green’s function method.
The Green’s function method is often used to treat distributed losses in an absorptive
dielectric that exists within a cavity or in the output mirror(s) [19].

In this chapter we review some of these quantum theories on output coupling of
an optical cavity.

15.1
Quantum Field Theory

There are two schemes of field quantization. One scheme quantizes the field by giving
the total field vector potential A(r,t) and the canonical momentum field I'(r,t) a suitable
commutation relation and expresses the total Hamiltonian in terms of them. The second
scheme is based on the field expansion in terms of the normal modes of the whole space
including the cavity, the “universe,” which satisfy the orthonormality condition. One
quantizes each mode by imposing suitable commutation relations on the expansion
coefficients and their time derivatives. Most of the literature follows the latter scheme.

15.1.1
Normal Mode Expansion

15.1.1.1 The One-Sided Cavity Discussed in Chapters 1, 2, and 5-10
Here we summarize the results on the one-sided cavity discussed in Chapters 1, 2,
and 5-10 using the second scheme. The cavity consists of a lossless, non-dispersive
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dielectric of dielectric constant ¢; that is bounded by a perfect conductor at z= —d
and by a vacuum at z=0.

For a single cavity mode at w,, we have derived, using the approximate power
spectrum for a single cavity mode in Equation 2.56, the Langevin equation
(Equation 2.63)

2 E () = (o, + 100 B (z.0) + f (2.1

where (Equation 2.70b)

2y haoc(ng,,)

(1@ 1) (= 0) = =250 (2, ()32~ )

So, we have a Markovian noise for the field mode w,.. Here v, is the cavity decay
constant due to output coupling, u,, (z) is the universal mode function at the
resonance frequency w,, and (n,, ) is the expectation value of the number of
thermal photons per universal mode at ..

This Langevin force f(z, t) should correspond to the Langevin force ff(t) for the
quasimode introduced in Equation 3.35 in which the equation was written for

the annihilation operator @ of the quasimode. For comparison we write
EM)(z,) = Ba(t)uo, (2)
; . (15.1)
f(z,1) = BL(t)uo, (2)

where the constant B is for normalization so that a](t)a.(t) expresses the number
of photons in the cavity. As in Equations 14.88 and 14.89 we have

" = ~ (15.2)
281 jcavity |l’twC (Z)|2dZ Sld .

where we have used the expression u,, (z) = sin{w.(z + d)/c1} (see Equation 1.41b).
Therefore, Equation 2.70b cited above becomes

(THETL(t)) = 29,(n0, )0 (t — 1) (15.3)

We see that this corresponds to the property in Equations 3.36 and 3.37 for the
Langevin force introduced for the quasimode. In Equation 15.6a below we will give
another Langevin equation applicable to the one-sided cavity that is more rigorous in
the sense that the output coupling at the mirror, as well as the cavity field distribution,
is taken into account exactly, thus leading to the correct excess noise factor.

In Equation 10.71 we have shown that the thermal noise that affects the field
inside the cavity is the thermal noise that penetrated into the cavity from outside.
This relation can be rewritten as

M1 (—0,1) — (7™ /1)f.7(—0,8) = —(T'/r)f;; (+0, 1) (15.4)

Except for a phase factor, the terms on the left-hand side appear in Equation 10.71
or 10.69 as the effective thermal noise at z= —0, the inner surface of the coupling
mirror. The first term is the right-going thermal noise at z=—0 and the second
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term is the left-going noise amplified during one round trip by 1/r with = phase
shift at the perfect mirror at z=—d. Equation 15.4 says that the sum is equal to
the ambient noise that penetrated into the cavity with transmission coefficient T”
and was amplified by 1/r with a m phase shift. The correlation properties of
the ambient noise foj(—i—O, t) are the same as those given in Equation 11.1 for
the ambient thermal noise f;*":

280c0<ﬁ,;f(+o, Bf; (+0, t')> = nohwd(t —t)
(15.5)

260c0<f0;(+o, 0Lt (o, t')> = (1 + Dhwd(t — )

We note that the noise f(;t (40, t), which was originally a superposition of the initial
values of the modes of the “universe” as in Equation 10.70, has simple correlation
functions as a “collective” thermal noise operator. However, it is difficult, if we
follow the calculations in Chapter 10 or in Chapter 9, to relate this thermal noise
with the cavity decay constant as in Equation 15.3 or in Equations 3.36 and 3.37.

In order to relate the thermal noise to the cavity decay constant, we need to
rewrite the field equation of motion as in Equation 2.63 cited above using an
equation like Equation 15.1, where the optical field and the thermal field are cast
on the same spatial functions and see the relation between the remaining tem-
poral factors. One method to do this is to go from, for example, Equation 10.69 for
et (—0,t) to the corresponding equation for &(z,t) as we did in Section 14.3 and
cast the equations on to the appropriate adjoint mode (in this case
sin{Q(z+d)/c1}). Then, through a procedure similar to Equations 14.103-
14.106 one can obtain the normally ordered correlation function for the thermal
noise and get its relation to the cavity decay constant. The anti-normally ordered
correlation function may be obtained similarly. Here, instead of deriving a Lan-
gevin equation for the one-sided cavity considered in Chapters 9 and 10, we derive
a Langevin equation for a general two-sided cavity according to the directions
mentioned above. We have Equation 14.103, which can be rewritten, after using
Equations 14.97, 14.100, and 14.54, as well as Equation 11.52a, as

%&(t) — y.a(t) + Ki/“{Kzl/“i;R(d +0,8) + K/*BE(—0, t)} (15.6a)

where

BRE = —22‘50\/275 FRE, (PR WMBRAY)) = 2900t —¢)  (15.6b)

and
2 2 2
1-—
K = (ﬁcl + ﬁcZ) 7 K1,2 _ (ﬁcl,Z) , ﬁﬂ,z _ |r1,2‘ (156C)
Ve Ve 2‘?’172|

Here we have used Equation 11.31 with (g,) =0 and set w =, to treat an
empty cavity. The factor y'/(y’ + y.) coming from the dispersion of the medium
has also been omitted. The Langevin noise forces defined in Equation 15.6b have



15.1 Quantum Field Theory

standard forms of correlation, but these are multiplied by factors related to the
excess noise factor in the above equation. Equation 15.6a shows clearly the sepa-
rate contributions of the noise from the two mirrors. The K; in Equation 15.6c¢ is
the same as those in Equations 11.72 and 11.107. By setting r; — —1 and r, — r we
have the Langevin equation for the one-sided cavity treated in Chapters 9 and 10. In
this case K} reduces to those in Equations 9.106 and 10.112. Note that this derivation
of the Langevin force is more rigorous than that in Equation 15.3 above in the sense
that the output coupling at the mirrors, as well as the cavity field distribution, is taken
into account exactly. If applied to the one-sided cavity, we have

2
K;/2K5/2<Z)Rf(t)BR(tf)> - (%) 2.n00(t — 1) (15.6d)
which is larger than Equation 15.3 by the factor (f,/y.)?, which appeared in
Chapters 9 and 10 as the excess noise factor.

In Chapter 10 we have examined in detail the relation between the field inside
the cavity, the field coupled out from the cavity, and the ambient thermal field. We
have from Equations 10.137 and 10.127, respectively

é:(z7 t) = Tgikdé+ (707 t— E) + rlf;); (+07 t— E>

Co Co

& (z.t) =f; (2,0) = f, (2.1)

Here the suffix o signifies a wave existing outside the cavity, and the + (—) sign
designates a right-going (left-going) wave. We see that, outside the cavity, the right-
going waves are the waves transmitted from inside and the thermal wave reflected
at the mirror. The left-going wave is only the thermal field, as expected. Note that,
as shown in Equations 10.26 and 10.130 and meant by foj (z,t) above, the quantum
noise does not appear outside the cavity in its raw form. Its effect is contained in
e (—=0,t — z/cp) in the first term in Equation 10.137.

In Chapter 10 we have ignored the second term in Equation 10.137 in evaluating
the linewidth. The consequence of taking this term into account was discussed by
Yamamoto and Imoto [16] (using an input-output theory similar to that of
Carmichael [15]), who found a constant term in the phase noise spectrum in
addition to that obtained for inside the cavity. (They also found changes in the
photon statistics.) The thermal noise contained in the first term in Equation 10.137
is, by Equation 10.69 together with Equation 10.71, proportional to the time
integral of fot‘ (z,t), which is roughly in phase quadrature with the second term.
Thus it can be shown that the inclusion of the second term will bring no inter-
ference and add a constant (white) term in the power spectrum.

15.1.1.2 A One-Sided Cavity with a Dielectric-Slab Mirror

Knoll et al. [6] considered an empty one-sided cavity of length L with a perfect
reflector at z = 0. The coupling mirror is composed of a dielectric slab of thickness
d with refractive index n, and the inside and outside of the cavity are vacuum. The
refractive index distribution is n(x) =1, for 0 < x < L, L+d < x, and n(x) = n,
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for L < x < L+ d. Eventually, the thickness d will be made to be very small. The
vector potential A(k, x) is given by

d2

d?A(k’ x) + n?(x)k*A(k, x) = 0, K = w?/d (15.7)
giving
. h 1/2 T(w)(eikx _ e—ikx)7 0<x<L ;
Ak, x) = [4—711:50(0} [T(w)/f*(wﬂeikx _ gk, L<x (15.8a)

where F is the mirror area. Here the function T(w) is the spectral response
function of the cavity, which reads

T(ow) = HYEEU% (15.8b)

where c¢ is the velocity of light in vacuum and #(w) and 7(w) are the transmission

and reflection coefficients, respectively, of the mirror, which should satisfy
W) + |[Fo))* =1
) + ) 550
t(0)F(w) + Hw)r (w) =0

Assuming that the frequency dependences of t(w) and 7(w) are small, we write
Hw) =t= [t|e” and F(w) =7 = |F|e". In this case, the poles of T(w) giving the
cavity resonance are given, assuming a good cavity ([f|* < 1), as

Q= wp —iT/2

nc ¢
O =m— o (m =) (15.9)
_ ¢ CE\2 L C o2
I = Lln(l [£]%) 2L\t|
where m is an integer. In the vicinity of a cavity mode m, Equation 15.8b reads
_ c 1/2 ew’
T ~ (—F) - 15.10
(@) 2L I'/2—i(ow— o) ( )

The positive frequency part of the electric field operator is given as

EM)(x,t) = ir dk wA(k, x)a(k, t) (15.11)

0
Defining the propagation function

00

1> )
KW (51,1155, 1) = — %J dk wA(k, x1)A* (k, % )1 7"2) (15.12)

0

we have, using the orthogonal property of the mode functions,

0
EM) (x,1) = sz:OFJ dx' K (x, 15 ) E) (x ) (15.13)
0
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Here we ignore the source terms that drive the electric field (although these are

included in the authors’ paper) but concentrate on the thermal field. The propa-
gation function for the case where both x; and x, are inside the cavity reads

K(+)(x17t];x27t2) =

[Gl{tl —t — (x1 —x)/c}

47IF8()C
Gi{t, —t — —
+Gi{tz =t — (21 —x2)/c} (15.14)
—Gi{ti —t, — (%1 +x2)/c}
~ Gift,—t — (v +m)/c}]
The propagation function for the case x; > L and 0<x, <L is
K (x1,t130, 1) = — AnFeoc [Gz{tl —t — (x1 —x)/c}
Gi{tr—tr — (%1 —
+ Gfta =t — (1 —x2)/c} (15.15)
-Gt —ty — (%1 +x2)/c}
= Gyt~ t1 — (1 + %)/}
The functions G;(t) and G;(t) are given as
Gl(t) :J dw|T (D —imt ~ ch —iwmt—(T/2)|t]
0
(15.16)

Gy(t) = J do T(w)e ™ ~ Zzn[ } eid’@(t)efi{wmfi(l"/Z)}t

0

Here O(t) is the unit step function. The second expression in each of G;(t) and
G,(t) have been obtained under the approximation that we have a good cavity
(J#I* < 1) and the assumption that we are interested in the field variation that is
slower than w. The latter assumption has allowed us to extend the lower limit of
the frequency integral to — oo

We further assume that the cavity field can be (approximately) expressed in
terms of the standing waves and that we are concerned with a time scale that is
larger than the cavity round-trip time but smaller than the cavity decay time
(2L/c < At < T71). In this case, the propagation function in Equation 15.14 for
both x and «’ inside the cavity may be rewritten as

1 r
(+) ol P — T i i _
KT (x, %', 1) Feol Em exp{ L<wm 12)(t t)}

X sin(wpx/c) sin(wmx’/c)

(15.17)
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The propagation function in Equation 15.15 for x’>L and 0<x<L may be
rewritten as

i 172 .
K (e, 2 ) = —— [LF} ’
k)= S ]

(15.18)
v exp{—i(a)m - é) (b=t — x//c)} sin(op/c)

Now we introduce the normalized cavity mode function as

1/2
Ap(x) = {LF;:)(U } sin(wmx/c), O<x<lL (15.19)

and write the field operator in terms of the mode creation operators a,,(t):

EP(x,t) =i onAn(x)am(t) (15.20)

Then, using the property of G,(t) in Equation 15.16, one can show that Equations
15.13, 15.17, and 15.18 yield

() = am(t) exp{—i(wm - u%) (t— t’)}

t - (15.21)
4+ T2 J exp{—i(a)m - ii) (t— r)} by (1)dt
t/
where
. vz,
(1) = — {%ﬂ B () (15.22)

Here Ef,f )(r) stems from the incoming part (e~*¥) of the outer field in
Equation 15.8a. (The outgoing part (¢**) does not contribute due to destructive
interference with the preceding factor.) In Equation 15.21, 7 is defined as

1=t +x'/c
Differentiation of Equation 15.21 with respect to time yields the Langevin
equation
P ; T 1/2 i,
am(t) = —i| o — iz am(t) + T/2€ %y, (t) (15.23)

Here the coefficient I'/2 is the damping rate and the incoming field of b,,(t)
provides the thermal Langevin noise. The output field Eg;)(t) comes from the
outgoing part (¢*¥) in Equation 15.8a. Following a similar procedure that led to
Equation 15.21, the authors show that the total input—output relation is

1/2
=) — 5 _ /2 hopm N
By (t—x/c) =FEN(t x/c)+zmj ¢ {—ZSOFC am(t—x/c) (15.24)
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The authors further examine the commutation relations for the cavity field
mode operator d,,(t), and the incoming and outgoing field operators, l;}m(t) and
Cm(t). Here & () is given by Eé;) (7) as in Equation 15.22. Under the good cavity
approximation and the assumption on the time scale mentioned above, they find
the proper commutation relations:

[am, ain,] - [l ] = 0 = [ain, ain,]

(b (0, By (1)] = dmmdt = £), [bu(®), b (V)] = 0= [BL, (1), B}, ()] (15.25)
[6n(0), 61y ()] =m0t =€), [e(0), (1) = 0 = [e1,(8), 8} (1)]
Also, the causality is derived as

[dm(t),i)mr(t’)} —0= {am(t),b;/(t')}, <t

(15.26)
[an(0), 6w ()] = 0= [an(0) 2, ()], ¢
The first equation says that the future input does not affect the present field inside
the cavity, and the second says that the past outgoing wave does not affect the
present field inside the cavity. The authors also outline the way to construct
the (multi-space-time) correlation functions of the outgoing field in terms of those
of the internal and incoming fields.

15.1.1.3 Other Works on Normal Mode Expansion

Historically, the first paper on the thermal Langevin force on the cavity field as the
superposition of initial values of the modes of the “universe” was published by
Lang and Scully [20] using the one-sided cavity model similar to that used by Knéll
et al. [6] in the previous subsection. They showed that the correlation function of
the force is related to the cavity damping rate so as to fulfill the proper fluctuation—
dissipation theorem. Gea-Banacloche et al. [21] used a similar cavity model to
describe the input—output relation for application to the problem of squeezing in a
cavity mode relative to the squeezing of the field coupled out of the cavity. Baseia
et al. [22, 23] also used a similar cavity model to analyze the laser operation using
the modes of the “universe” but going to the “collective” mode amplitude, and
examined the relation of the internal and external fields through essentially a
semiclassical approach. Glauber and Lewenstein [5] considered a general scatter-
ing and transmission problem in the presence of a non-uniform, linear dielectric.
They used the normal mode expansion of the field and quantized the field by
treating the expansion coefficients as the operators. They also expanded the field in
terms of the plane waves and found a Hamiltonian in a non-diagonal form. The
two quantization schemes are discussed in relation to the scattering theory and
field fluctuation due to the dielectric. The results are applied to the problem of
spontaneous emission and emission by a charged particle.
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15.1.2
Natural Mode Quantization

A natural mode of a cavity with transmission loss is, as we saw in Chapter 1,
a decaying mode. Quantization schemes of such modes were described in
Chapter 14 in relation to the theory of the excess noise factor. One was due to
Grangier and Poizat [24], who divided the “‘universal modes” into laser modes and
loss modes by use of projection operators, and introduced the cavity mode as those
corresponding to the laser. The other was presented by Cheng and Siegman [25],
who also divided the “universal modes” into system eigenmodes and the
remaining modes. Both of these two papers utilized the concept of adjoint mode
to derive the excess noise in a laser. These two works were formal and gave no
connection with realistic cavity decay.

Dutra and Nienhuis [7] gave a direct approach to quantize the natural decaying
modes of a leaky cavity. They also depended on the concept of adjoint mode in
quantizing the decaying modes. Here we show excerpts of the last.

The cavity model considered is a one-dimensional cavity with a perfect mirror at
x = —L and a coupling surface at x =0. The interior of the cavity is a vacuum and
the outside region 0 <x < oo is filled with a dielectric of refractive index n4. The
amplitude reflection coefficient of the coupling surface for a wave incident from
inside the cavity is r. The electric field is polarized in the y-direction. The natural
mode of the cavity, which has only an outgoing wave outside, is

gin® 4 ,,efiwc7 —-L<x<0 15.27
g(CKn,X) = (1 +r)eilcnndx7 0<x ( . )

where k, =k, — iy with k, = (n/L)n (integer n) and y = (1/2L)In(1/|r|). The
adjoint mode, which has only an incoming wave outside, is

- 1 ..
eilm¥ +fefn\mx7 L S x<0
. r
g(cxy,, %) = 147 .. (15.28)
— T i 0<x
’

Note that the adjoint mode here is the complex conjugate of that defined in
Chapter 14 (see below Equation 14.5). The natural mode diverges at large x and is
not suitable for quantization in this form. One looks for other functions suitable
for outside the cavity, which the authors claim is the natural mode for the outside
region that satisfies the boundary condition at the interface x=0 and at x= + oo.
It reads

L) = (1—r)e i, x<0
G(ck,x) = giknax _ ik 0<x (15.29)
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where k is real. The adjoint mode for this is
g etkx, x<0
Glck,x) =4 " (15.30)

. 1.
e—zkndx _ 7etkndx’ 0<x
r

Because, for inside the cavity, the mode function and the adjoint mode function
are not strictly orthogonal, the authors seek exact orthogonality. For this purpose,
they introduce spinor notation, as in Example 4 in Chapter 14 (see Equation 14.61),

where the upper and lower members signify the right- and left-going wave,
respectively. These members are given formally as

g(cKy, x) fﬁ%g(cxn,x)
L [ ) (15.31)

glcky, x) = —— ;
8 ) VBL | g(crn, %) + e e 8(Ckn, %)

and the adjoint g(cx’,,x) can be obtained by replacing g(cku,x) by g(cxk,,x)
and «, by x’,. The factor v/8L is for normalization in Equation 15.32 below.
Physically, the upper and lower members in the spinor are shown to be equal to
E(x) + ¢B(x)/n(x) and E(x) — cB(x)/n(x), which are, respectively, right- and left-
going waves in the cavity. It can be shown that

0 ~
J dxg (e, %)g(Cien, X)12 (%) = S (15.32)
—L

Note that the dagger sign here denotes the transpose and the transposed quantity

should be complex conjugated. Thus g(cx,, x) and its adjoint g(ck?,, x) constitute
the cavity modes and their adjoint modes as discussed in Chapter 14.
The spinor form of the outside mode and its adjoint are constructed in just the

same manner as for inside. The resultant spinor G(ck,x) and its adjoint G(ck, x)
satisfy

ro dx G (ck', %) Glck, x)n(x) = 5(k — k) (15.33)
0

The field can be written in the spinor form as

(15.34)

The field inside the cavity can be expanded in terms of the spinors g(ck,, x) and
g(ex?t,, x). Similarly, the field outside can be expanded in terms of G(ck, x)
and G(ck, x). The expansion coefficient for the mode is given by the projection of
the field onto the adjoint mode and vice versa:
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Fou( Z glcrn, x J dx’?(crc;,x’)F(x’)nz(x’)
L

n=—od0

Foan( Z g cKkh x J dx’gT(cxn,x’)F(x')nz(x’)
emuur L (15.35)
Fou(x) = J dk G(ck, x) L dx’ at(clg x)F(x)n?(x')

—00

Fou () = Jm dk G(ck, ) r@ d’ G (ck, X' YF(x' )2 ()

0

—00

For treating the field at the coupling surface x =0, we represent the field as

F(x) = lim [{FW %) + Foa(%) O (& — %)
(15.36)
o+ {Fou(x) + Fous(%) }O(c + x|

This expression can be shown to allow for the correct value of F(0) regardless of the
actual value of the refractive index at x=0.

The next task is to quantize the field. The quantization is carried out by regarding
the expansion coefficients in Equation 15.35 as operators. For example, we set

. > heky,. -
Foav(x) = Z \/ 250 ang(ckn, x)
n=—o0 (15.37)

A_ZSOO/:T*/AIZI
=\ | '8 (e B )

where the field F(x) is now an operator (see below). Other operators, by, dou(k),
and b,y (k) are defined similarly. The b operators are quantized versions of the
expansion coefficients for adjoint modes. Then using Equation 15.36 in

H =z Jm dx B () B ()2 (%)

one obtains the expression for the Hamiltonian in terms of the mode operators. It

contains terms of ZJL&”, dTiJn, dldnr, and BLBnr, as well as of Eiut(k)dom(k),

&Zut(k)bout(k)r Gyt (K)o (K'), and bout(k)bout(k,)-

As is expected from the form of Equation 15.36, where the operators for the
cavity modes and the outside modes appear only in separate spatial regions,
the Hamiltonian has no cross-terms between the cavity mode and the outside
mode operators. This is in contrast to, for example, Equation C.1 in Appendix C for
the reservoir model or Equation 15.45 below for the projection operator method,
where the system (cavity) and the reservoir (channel) modes are quantized inde-
pendently of each other and their interaction is expressed by the cross-terms of the
operators for the system and for the reservoir. How can the interaction between
the inner cavity modes and the outer modes occur without cross-terms here? The
answer is that in this formalism the commutator between the cavity operators and



15.1 Quantum Field Theory

outside field operators do not vanish in general (while the corresponding operators
commute in the case of the system-reservoir model or in the case of the projection
operator method cited below due to their mutual independence).

Let us examine the commutators. For this purpose, we need the commutators
concerning the field F(x). These commutators are obtained through the modes of
the “universe” approach, as follows. We write the mode of the universe as U(w x),
where w is a continuous variable, which comes from the universe model that
extends to x — oo (cf. Section 1.4). In a similar fashion to that leading to Equation
1.75, the authors derive the closure relation

do U (0, %) U(w,x') =

o U'(0.0)U(0. %) o

where the second term appears because of the presence of a perfect mirror at

x=—L (see below Equation 1.78). Then, introducing the continuous creation and

annihilation operators d(w) and a'(w), the electric field and the magnetic flux can
be written as

rc O(x —x') — d(x + «' 4+ 2L) (15.38)

(15.39)

B(x) = —iEO dw\/gozw% U(w, x)i(w) + H.C.

Using Equation 15.38 together with the commutation relation [3(w), af(w')] =
d(w — ') we have

7~ YV . 0 / /

[D(x), B(x')] = 1h@{5(x —x') —o(x+x' +2L)} (15.40)
where D(x) = gon?(x)E(x) is the electric displacement operator.

Using Equation 15.40 with the quantized form of Equation 15.34, we can
evaluate the commutators involving the operator in Equation 15.37 and similar
expressions. The cavity modes d,, and di, do not commute, expressing the non-
orthogonality, and similarly for the adjoint modes:

i Kn+ 1,12 — 1
AL\ [Kcui Kp — Ky T2

The operators of the outside region have essentially delta-correlated commutators:

(15.41)

1
=)

[an BL’}* =

[&m &L'} =

(k) 8 (V)] = - b (6), DK

1 (1472 P , 1

,
4mr?

vk

The mode operator d,, and the adjoint mode operator Z)L, have the familiar form of
the commutator expressing the bi-orthogonality and similarly for the outside
region:

(15.42)
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[, B!,

1= 0w, [Goulk), bl (¥)] = ok — ¥) (15.43)

The important inside—outside relations are obtained as

(G, Bl (R)] = 12 [n, Gou(K)] = [B], Gous (k)]
(15.44)

The formulation of this theory is applicable to a cavity of arbitrary transmission
loss, because no assumptions or approximations concerning the reflectivity r have
been made. The authors further discuss the motion of the spinor field g(cxy,, x)
and speculate that the laser excess noise factor K may be given by K =
jEL dx g' (cicn, %)g(cien, x)n?(x). (The value of K thus obtained is (1 —|r*)/
{2|r[*In(1/|r])}, which is different from Equation 14.47 for the one-sided cavity.
Since the spinor for the mode g(ck,, x) is not normalized here, a factor

0
|| v ex g, ) = (1 = 42101/ 1)

should be multiplied on the right-hand side of the proposed formula for correct
evaluation of K — see Equation 14.25.)

15.1.3
Projection Operator Method

Viviescas and Hackenbroich [8] considered the quantization of the field in the
presence of a spatially non-uniform dielectric and optical cavities defined by
mirrors of arbitrary shape. They introduced the projection operators for the inside
and outside regions of the cavity. After projection operations on the field equa-
tions, they obtained the working Hamiltonian

H= Z hwiaﬂak—l— Z de hob! ()b, (w)

oY de{W;um(w)azbm(w) +uc)

where / stands for the cavity modes and m stands for the “channels” representing
the outside region. The coefficient W;,,,(w) comes from the boundary conditions. We
note that the Hamiltonian in Equation 15.45 is in a similar form as the system-—
reservoir Hamiltonian discussed in Appendix C. The Langevin equation for the
cavity mode can be derived as in Appendix C. It can be shown that different cavity
modes are coupled via the damping forces, and the noise forces for different
cavity modes are correlated because the cavity modes couple to the same external
channels. (This latter point makes contact with the assertion by Grangier and
Poizat [24] on the “loss-induced coupling.”)

(15.45)
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15.2
Quantum Noise Theory

The thermal noise force associated with the cavity decay was traditionally treated
by the system-reservoir model as in Appendix C, where the cavity modes are
discrete and each cavity mode interacts with the reservoir modes of a fairly broad
spectrum. The latter modes are independent of the cavity modes. The coupling
strength is assumed to be constant over a wide frequency range. A fluctuating
force was derived, which assured the preservation of the commutation relation for
the cavity mode on the reservoir average. The output to the reservoir (outside
region) was not considered seriously.

15.2.1
The Input-Output Theory by Time Reversal

To treat the output from a cavity with output coupling, Gardiner and Collett [14]
developed a theory, called input—output theory, that paid attention not only to
incoming noise but also to the outgoing field, which is the main quantity to be
measured. They considered a system interacting with a heat bath (reservoir)
described by the Hamiltonian

H= Hsys+HB+Hint

Hp = h[;da)wbt(w)b(w) (15.46)
Hiw — if [;dw k() {bl(@)c — c'be)}

where b(w) (bf(w)) are boson annihilation (creation) operators for the bath, which
satisfy [b(w), bf(0')] = 6(w — @'), and ¢ is one of the system operators. The factor
k(w) is the coupling constant (here assumed to be real). The equations of motion
for the bath operator and a system operator a read

b(w) = —iwb(w) + Kk(w)e
(15.47)

i

b=~ a Hyl EO dor () { b ()la. ] ~ [a.c'}b(o) |

Solving for b(w) with the initial value by(w) at t = to and substituting the result into
the second equation, we have

0= f% [a, Hys) + J, dw K(w){giw(i*%)bg(w) [a,d] — [, Ct]e—iw(tfto)bo(w)}
N P (15.48)
+J do KZ(QJ)J dt’{eiw(t_‘,)cf(t')[a, ] — [a, cT]e_i”’(t_t/)c(t’)}
—00 to

where the time variables for a and c¢ are omitted for brevity.
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To proceed further we assume that the coupling coefficient x(w) is a constant

and write k(w) = 1/y/2n. We define the input field by
1 .
bin(t) = EJ, de e =) hy () (15.49)
Using the cornrnutator [bo(w), b(')( )] = 0(w — '), we can show the commuta-
tion relation [by,(t), b (t’ ] =0(t—1t). Equation 15.48 is now rewritten as a

Langevin equation:

= = plovHod = [[a.c){ G0+ Vb0
5.5
{5+ vitlo o] Y

If the operator that couples with the bath is a and Hy, = hwo(a'a + 1), we have

a=—iwa—ya — \/7biu(t) (15.51)

This reproduces the damping term and the Langevin force term as obtained in
Appendix C. Note, however, that the appearance of the damping does not need the
incoherence of b;,(t). The latter can be thermal or coherent or a mixture of them.
Assume that we consider a future time t; (>1), integrate the first of Equations 15.47

with the temporal boundary condition b(w),_, = bi(®), and define
bou(t) = \/%J, dor e~ 0, () (15.52)

Then, we obtain an alternative equation to Equation 15.50, a time-reversed Langevin
equation:

= = lon o] = [l {3+ Vbt }

(15.53)
- {__'VCT + \/_bout }[a C]
For c=a and Hyy = hwo(a'a +1) we have
4= —iwa+39a — \/7bou(t) (15.54)

Comparing Equations 15.50 and 15.53, or Equations 15.51 and 15.54 for c=a,
yields the input-output relation

bout(“*) - bin(t) = ﬁc(t) (15 55)
Bowe(t) — bin(t) = v/7(t) '

To show the first line more directly, one can use the first line in Equation 15.47
with Equations 15.49 and 15.53. The quantities b;,(t) and b,,(t) can be interpreted
as the input to and output from the system, and Equation 15.55 is the boundary
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condition relating the input, the output, and the internal modes. Assuming
causality, the authors deduce the commutators

[a’(t)7 bin(t/)] = 07 t<t’

(15.56)
[ll(t), bout(t,)} = 0, t>1
Combining these with Equation 15.55 we have
a(t), bin(t)] = —u(t — t')\/7alt), c(¥
[a(t), bin(t)] (t—t)yla(t), e(t)] (1557)

[a(), bou(¥)] = u(t' — £)\/7[a(t), c()]

where u(t) is the unit step function.

The authors further develop the theory of the quantum stochastic differential
equation and the master equation (equation of motion for the density matrix) for
the system and the bath to calculate the correlation functions of the output field in
terms of those for the input and the internal fields, which are beyond the scope of
this book. The same authors [13] also consider the results of having a second
coupling mirror, which introduces an additional noise source.

15.2.2
The Input-Output Theory by the Boundary Condition

Another method of deriving the input-output relation was given by Carmichael [15].
The author uses a reservoir model, which is composed of quantized outer traveling
modes incident on a semitransparent mirror of a ring cavity. These modes are
partially reflected. The reflected reservoir modes are superimposed with the output
from the cavity.

A periodic boundary condition is imposed on the reservoir modes, where the
period is from z=—L/2 to z=L/2 with the mirror at z=0, and the paths of
the modes are deflected by 90° at the mirror — see Figure 15.1.

The Hamiltonians of the cavity mode, the reservoir, and their interaction are
written, respectively, as

Hs = hw.a'a

Hp = Z hwjr]rj
J

Hsx = Y h(na' +kirla)
J

(15.58)

where a and af are the annihilation and creation operators for the cavity
mode, respectively, while r; and +1 are the annihilation and creation operators,
respectively, for the jth reservoir mode of frequency ;. The constant k; is
the coupling constant, which will be determined later. (The author considers
also intracavity interaction, a second coupling mirror, as well as reservoirs that

351



352 | 15 Quantum Theory of the Output Coupling of an Optical Cavity

cenfeeez=L/2

=-L/2

~O-

T=0 T=T, <1

T=T, <1 \\ /T=0

m—e|eea N

Figure 15.1 Schematic representation of ring—cavity system.
Source: From Ref. [15]. Carmichael, H.). (1987) J. Opt. Soc. Am. B, 4, 1588, Figure 1.

are not directly coupled to the cavity mode. These are omitted here for
simplicity.)
The positive frequency part of the external (reservoir) field is written as

R o \ 12
EM(z,1) = iz (Z:IOXL) r;(t) exp(ikjz) (15.59)

J

Here A is the cross-sectional area of the reservoir field. As in Appendix C (see
Equation C.12), the damping constant of the cavity, and consequently the coupling
constant, are given by

Ve = mplica [ = n(L/2n0) k0|

Ko = /27:/¢/L

(15.60)

where p = L/2nc is the density of modes of the reservoir modes. From Equation 15.58
we have

a4 =—iw.a — iZ Kjt;
] (15.61)

= —wir — lKj a
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Integrating the second equation and using Equation 15.59 we obtain

R o \ 12
ED(z,t) = Z (2:;&) 1i(0) exp{ —iw;(t — z/c) }

J

+ exp{—iw.(t — z/c)}%J:O do <2:’00€’A> 172 \/%K* () (15.62)

v J'O d a(t) exp{—i(we — )t — t+2/c)}

where G(t) = a(t)e“. The first term is the free reservoir field. We assume that the
time variation of d(t) is slow compared to the optical frequency, or the bandwidth
of d(t) is much narrower than w,, so that \/w«x*(w) can be replaced by /w:x*(w,).
Then the lower limit of the frequency integral can be extended to —co. Defining
the second term in Equation 15.62 as the source term EY (z,t) and using
Equation 15.60, we have

EM)(z,t) = exp{—io(t — Z/C)}( ho, >1/2

2¢9cA
t b0t (15.63)
x et ZyCJ W a(t)5(t —t+2/c)
0
where ¢ is the phase of k*(w,). Performing the time integral we obtain
=) ha)j 1/2 .
CTEDY () 0 exp{-inss—2/0)}
(15.64)

ho \V2 a(t —z/c), ct>2z>0
() e
ZéocA (1/2)a(t),  z=0
It is easy to see that the photon flux due to E& (z,t) collected over the area A is
equal to 2y (al (t — z/c)a(t — z/c)), the mean number of photons inside the cavity
multiplied by the power damping rate of the cavity. We now define field operators
7(z,t) and rt(z, t) for the reservoir in photon flux units by

- (2e0cA\ V2 .
r(z,t):e”p(oi) EH)(z,1) (15.65)

hao,
Then Equation 15.64 reads

2y.a(t—z/c), ct>z>0
r(z,t) = rr(z,t) + 1 /Tra(t), 220 (15.66)

where 17(z,t) corresponds to the first term in Equation 15.64 and exists for the
region —oo < z < oo with L — co. We have for z= +0 and for z=0
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T’(—l-07 t) = T’f(+0, t) + Zyca(t - 0)
(0,8) = 17(0,1) + 1/ Zy,a(t) (15.67)

r(+0.) ~ 1v/27a()

The last two lines yields the input—output relation
7(+0,t) = 17(0,t) + /2y.a(t) (15.68)

This shows that the output field is the sum of the reservoir field and the internal
field coupled out of the cavity. (This corresponds to Equation 15.55 where b;,(t) and
bou(t) correspond to r¢(0,¢) and r(+0,t), and y to 2y, respectively.) Now using
Equations 15.59, 15.60, and 15.65, we have for z=0

s [ 260CA vz, s [ 260CA 72 ho; \ M2
1) = g [ 202 E(*) p) = ¢ [ 220 ] (t
H0.8) =e ( ha, ) 0. =¢ ha, l; 2e0AL ()
(15.69)

i» /€ 1
~ ie‘d’\/:inj(t) ~ i—ZKjrj(t)
L 7 V29, S

Using this result and the second line of Equation 15.67 in Equation 15.61, we have
the Langevin equation

0= —iwea — 7,8 — /27,77 (t) (15.70)

(This corresponds to Equation 15.51 with 2y. — y and r¢(t) — b;,(t).) If the reservoir
is initially in the vacuum state, we have

() = (FO@)) = (o)) =0

Also, it can be shown that <ry(t)r}(t’ )> = 0(t — t'). The author further calculates
correlation functions between a system operator 5(t) and r¢(t) or r(t) using the
Langevin equation (Equation 15.70) and the master equation for the cavity—
reservoir system (the latter is beyond the scope of this book).

15.2.3
Another Quantum Noise Theory

Semenov et al. [17] considered the absorption or scattering loss in the coupling
mirror. These affect the input wave before entering the cavity and the output wave
after leaving the cavity. It also introduces a feedback of the output back to the
cavity. The authors modeled these effects by setting three half-mirrors outside a
lossless semitransparent mirror. This theory extends the input-output theories
considered so far by introducing two new noise sources with added feedback and
explores new forms of Langevin equations and input—output relations.
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15.3
Green’s Function Theory

Gruner and Welsch [19] considered the input-output relation for dispersive and
absorptive linear dielectric layers. Taking into account the fact that an absorptive
medium is associated with distributed noise sources, the authors solve the wave
equation for a dielectric layer incorporating the noise sources as a distributed
driving term. The solution is a convolution of the noise term and the Green’s
function that satisfies an equation of the form in Equation 14.67. Here n” is
replaced by the complex permittivity ¢(x, ). The dielectrics should satisfy the
Kramers—Kronig relation. The authors construct a spatial quantum Langevin
equation associated with wave propagation and investigate the spatial input—
output relation for the multilayered structure.

Khanbekyan et al. [18] considered the absorption loss in the coupling mirror of a
cavity that Semenov et al. [17] considered using the input—output formalism. The
authors, using the Green’s function method and assuming a slow amplitude
variation, show that the cavity mode obeys the quantum Langevin equation and
investigate the input-output relations. The mirror loss introduces additional noise
terms into the input—output relation. The problem of extracting the quantum state
of the cavity mode was studied.

15.4
Quasimode Theory

Dalton et al. [26] considered the quantization of linear optical devices including
radiating atoms. The quasimode functions for the device are obtained by solving
the Helmbholtz equation for a spatially dependent electrical permittivity that is
specially designed to have an ideal quasimode. The Hamiltonian for the electro-
magnetic field is found to be equivalent to those of a set of harmonic oscillators,
but these oscillators are coupled. The atoms are shown to be coupled only to
certain types of quasimodes. The emission from an atom inside the cavity is
described as a two-step process: de-excitation of an atom with the creation of a
cavity quasimode photon; and annihilation of the quasimode photon with the
creation of an external quasimode photon.

15.5
Summary

Here we briefly compare the results of the theories of output coupling of an optical
cavity in terms of input-output relation and of the Langevin equation.

First, the input-output relations given by Equations 10.137, 15.24, 15.55, and 15.68
all relate the output field to the input and internal field. In the case of our treatment
(Equation 10.137) and of the approximate universal modes (Equation 15.24), the
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input field is associated with the reflection coefficient of the coupling mirror. Other
treatments lack this factor. In the case of quantum noise theories (Equations 15.55
and 15.68), the mirror transmission is assumed to be small. The contribution of the
inner field is associated with the accurate transmission coefficient in our case
(Equation 10.137), while all other cases have expressions in terms of the square root
of the power damping rate. This reflects the neglect of the inner field distribution or
the use of the approximate mode function in these other theories. Note that our
formulation lead to different constants of output coupling for below- and above-
threshold operation of the laser, as shown in Section 12.9.

The natural mode theory gives the non-commuting operator relations between
the inside modes and the outside modes, but does not give a concrete input—
output relation. In the cases of the approximate universal modes (Equation 15.24),
the input—output relation involving multiple cavity modes is given. The definitions
of the input and output fields in the cases of the quantum noise theory (Equation
15.55) do not fit with our intuition. This is because the fields in these theories are
not instantaneous values but are associated with fictitious past or future times
coming from the time-reversal concept.

Second, the Langevin equation for the field inside the cavity is given in Equa-
tions 15.6a, 15.23, 15.51, and 15.70, where the noise forces are interpreted as
coming from the outer free fields. The noise correlations are associated with the
power damping rate of the cavity, which may be reinterpreted as the penetration
rate of the outer noise power. The case of our relation (Equation 15.6a) is asso-
ciated with the excess noise factor (see Equation 15.6d) in addition to the above
penetration rate. The natural mode theory does not give any Langevin equation for
the cavity mode.

We may conclude that, except for the capability of treating several cavity modes
at the same time, our methods of normal mode expansion yield the most natural
input—output relation as well as the most general Langevin equation despite the
complexity of the calculations. The problem of multiple cavity modes would not be
difficult to solve if we had tackled it from the outset. The quantum field theories in
general need complicated calculations associated with a cavity structure, although
the results are sometimes in simple forms. On the contrary, the quantum noise
theories are simple in calculations but are not applicable to a cavity with large
transmission loss. Most theories, quantum field theories or quantum noise the-
ories, lack some delicate information such as mirror transmission coefficient or
excess noise factor.

15.6
Equations for the Output Coupling and Input—Output Relation

For ease of comparison, we enumerate, in this section, the equations for the
output coupling and input—output relation given by several authors.
Ujihara (this book, [4]):



15.6 Equations for the Output Coupling and Input—Output Relation

%d(t) = —p.a(t) + 1<1/4{ K*BR(d + 0,t) + K}/*bL(—0, t)}

& (z,t) = TeMer <70, t— f) +rfy <+0, t— 5)
Co Co
(BB () ) = 2yenud(t — ¥)
Knoll et al. [6]:
z . T 1/2 i3,
Om(t) = —i| 0w — ) am(t) + /7€ %y (t)

. r .
am(t) = —i(wm + i5> G (£) + TV267 08, (1)

1/2
ES)(t—x/c) = 7ED (8 — x/c) + Z /2 {hw’" } i (£ — x/)

out in 2eoFc
[am, a;] = St (G, ] = 0 = [ajn, a;,]
[Bm(t), Bjn,(t')] = SOt — 1), [Em(t),i)mr(t’)] —0= [Ejn(t),i;;,(t')]

[En(0), 64 ()] = Smmd(t = £), [en(D) e (¥)] = 0 = [Eh(8), 8} (1)
Dutra and Nienhuis [7]:

F(x) = 111m {{FW x) + Fegy(x x)}O(e —x +{Fom x) + Fou(x )}G)(eer)}

1 i Kn+ K512 —1
2

by, bl,]" =
[bu, b,]" = 4L\ /[Knicy Kn — Ky T

[dm BL/] - (SnnH [dout( )7 bout’(k/)} = 5(k - k/)

[, 4}, =

[y Bl ()] = r* [ (k), Bour (k)] = [B], Bouar (k)]

R
(b bour (k)] 2\ Lnk,k

Gardiner and Collett [14]:

a = —ioa —Iya — \/7bi(t)

4= —iwa+39a — \/7bou(t)
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out (£)
out (£)

[bin (), b, ()] = 8 — ¥)
Carmichael [15]:

b
b

2yca(t)
0 = —iwea — 7,8 — /27,77 (t)

(o)) = ot — 1)

r(+0,t) = rr(0,t) +
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Appendices

Appendix A
Integration for the Field Hamiltonian

Here we derive Equation 1.47 of the text. We are assuming that

&, —d<z<0
e(z) =

&, O<z<lL (A1)
w(z) = po, —d<z<L

We start with Equations 1.44 and 1.46. We substitute these into Equation 1.45
using Equation 1.41 for the mode function. Now we have

H= de [8(22) <6%A(Z’ t))2+ Z,ul(z) <%A(z, t))z] dz
= Jid [@ (ij Py Uk(z))2+ %LO (; Qk% U(z))2

Because of the orthonormality in Equation 1.42, the first term in the integration
becomes

dz

[uy

EZ P} (A3)

k

L e(z2) ’ 1 [ 2 —
Jd2<2k: Py Uk(Z)) dz = Ezk: Pk .[—d {;(Z) Uk (Z)dZ -

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara

Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-40763-7

359



360 | Appendices

The second term is

[ (o) -

9, .0
Zﬂo;QkaJ 55 V(@) 5 Un (2)dz

B 0 ) t
:—ZQka Ui(2) 5, Ur (2) ZQka Ui(2)5, Ur(2)| (A4)
Ho 't - 0k 0
9\
Zuo%;Qka J Us( )(5) Uy (2)dz
ZQkafJ. k(2 (8) U (z)dz
2:”0 (%%
Since the mode function vanishes at both ends of the space, atz = —dand z = L,

and the mode function and its derivative are continuous at the interface, z = 0, the
first and second terms on the right-hand side vanish. Also, since the mode
functions satisfy the Helmholtz equations (Equations 1.32b), the second deriva-
tives in the third and fourth terms can be replaced by —(k,f and —(k,Y,
respectively. From Equation 1.33 we have

2
(kll,()) _ (wk’) &1,01o
Ho Ho

(wk') €10 (A.5)

for inside and outside the cavity, respectively. Therefore, the third and fourth
terms in Equation A.4 reduce to

0 9 2
ZMO;Qka/J U( )<$> Up (2)dz

ZMOZQkaJ (z <6) Up(z)dz

kK

=5 Z QrQu J (op)*e1 Uy (2) Uy (2)dz

kk’

+5 ZQka'J (0r) 60 Up(2) Up (2)dz (A.6)

k.k'

=z Z Q1 Qu (o) de &(z) Uy(2) Uy (2)dz

k K

=5 Z QuQu (wi) e

kk’

:E;wiQi
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where we have used the orthonormality relation in Equation 1.42 again. Thus
adding the results in Equations A.3 and A.6, we arrive at Equation 1.47.

Appendix B
Energy Eigenstates of a Single Field Mode

Here we show that the energy eigenstate of a field mode k satisfies the eigenvalue
equation

N 1
Hk|nk> = Ekﬁ,,|nk) = (nk+ )hwk\rm n,=0,1,2,3,... (B.1)
where, from Equation 2.9, the Hamiltonian is

. 1

Hk = h(j)k akak + E (BZ)
We have to show that

1

howy, (akak+ >|nk> fhwk<nk—|— )\nk) nm=0,1,2,3,... (B.3)

Let us write the eigenvalue equation as
1
hoy, akak -‘r |ukj> Ek,j‘uk,j> (B.4)

where the suffix j denotes the jth eigenvalue and the corresponding jth eigenstate.
Let us multiply &£ from the left on both sides:

hwkak (akak + ) |ukj> Ekjak|ukj> (B.5)
By the commutation rule in Equation 2.8, the left-hand side is
Stoats y o Lot
hwkak akak + |ur;) = hond ay(aLa) + 2% ’ukj>
Al i 1
= hays al (@a, — 1) + Zak |uk ) (B.6)

= hwk{ (akak + 2>ak - ak}’ukj>

Adding hwkduuk‘ ;) to both sides of Equation B.5 then yields

i 1\. o+
hwy, (a,'cak + E) a“ukj> = (Ekyj + hwk) a,'c|ukj> (B.7a)
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We add parentheses below merely for clarity:

ho (afkak + %) (afe)) = (Bus -+ hone) (af ) ) (B.7b)

This equation says that the state af|u,;) is a new eigenstate of Hj with the
eigenvalue Ey ;4 hoy. We write the state as cﬁl‘uk J+1> If we repeat the above
procedure, we see that ( ak "|uj) is an eigenstate with the elgenvalue Eyj + nhoy,
where n is a non-negative integer. We see that the operator @, acts to increase the
energy by hw.

Next, let us multiply d;, from the left on both sides of Equation B.4:

haoydy, (akak + ) ’ukj> Ekjak’ukj (B.S)

By the commutation rule in Equation 2.8, the left-hand side is
N
hawyay, akak + |uk J> = hwy, (akak)ak + Eak ]uk,j>

= hwk{( p+ 1) + Zak} }u;w> (B.9)

JEUCEA A
= hwk{ (alak JrE) ap + ak} ’ukj>

Subtracting hwk&k|uk7 j> from both sides of Equation B.8 then yields

ho (aﬁkak + %) afur ) = (Buj — how)ay|m ;) (B.10a)
We again add parentheses below merely for clarity:

oo (a;ak n %) (e e,)) = (Ew — hooy) (o] w ) (B.10b)

This equation says that the state ?zk|uk7 j> is a new eigenstate of H, with the
eigenvalue E;; — hwy. We write the state as cj_l{ukv j,1>. If we repeat the above
procedure, we see that (&k)m}uk ;) is an eigenstate with the eigenvalue
Ey j — mhoy, where m is a non-negative integer. We see that the operator 4 acts
to reduce the energy by hwy.

From the above results, the operator di is now interpreted as the photon creation
operator and d; as the photon annihilation operator.

Since the energy eigenvalue should be non-negative, we should have in general

Ek‘j — mhay > 0 (B.11)

If we write the state of the smallest eigenvalue Ej,.;, as |min), then we have
Ejmin — ho < 0, and ag|min) should vanish to avoid eigenstates with negative
energies. Thus we have
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ag|min) =0 (B.12)
Applying the Hamiltonian on |min) we have

L R A 1 .

Hi|min) = hoy | a,0¢ + 3 |min) = Eha)k|mm> (B.13)
Therefore, the minimum energy eigenvalue is Jhiw. The corresponding eigenstate
is usually written as

|min) = |0) (B.14)

Thus, applying the operator &fc sequentially, we can generate the states |n;) with
energies (1-+3)hwy, (2+Hhwy,..., (n+3)hwy,.... Thus we have the energy
eigenstates and the energy levels

Hilm) = Epnlme)

1 (B.15)
Ek,n: (nk +E)hwk7 nk:07172537"'
The integer ny is the eigenvalue for the photon number operator &l&k,
alam) = mlm),  me=0,1,2,3,.. (B.16)

and represents the photon number in the mode.
Finally, we determine the coefficients ¢, ; that appear on operating dl or diona
state |ng). We assume that the eigenstates are normalized so that

(me|me) =1, m=0,1,2,3,... (B.17)
According to the statement below Equation B.7b, we write
duuk,n> = o1 | Uini1) (B.18)
Taking the squared modulus of both sides we have
(Ut @ral ) = (Uens|Ch o G |tensr ) (B.19)

Using the commutation relation in Equation 2.8 and Equation B.16 as well as
Equation B.17, we have

len1]’= m + 1 (B.20)
We can arbitrarily choose the phase of ¢, | ; to be zero, so that

Cor1 =V +1 (B.21)

Similarly, according to the statement below Equation B.10b, we write

k|t n) = Cot[then1) (B.22)
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Taking the squared modulus of both sides we have
(|| uin) = (uina|c)_ it [Uin1) (B.23)
Using Equations B.16 and B.17 we have
len-1]= me (B.24)

Again choosing the phase to be zero, we have

Cot = /T (B.25)

Therefore, from Equations B.18 and B.21 and from Equations B.22 and B.25,
respectively, we can write

atlm) = Vm + 1m +1),  m=0,1,2,3,..

) (B.26)
ak|nk> :\/n—k|nk_1>7 nk:172737"'

and from Equations B.12 and B.14
a|0k) =0 (B.27)

In the above, we have derived the energy eigenstates on the basis of the com-
mutation relation for the creation and annihilation operators for the mode using
the Hamiltonian in the form of the photon number operator plus one-half, mul-
tiplied by the photon energy. If, instead, we use the original Hamiltonian in
Equation 2.3, the time-independent Schrédinger equation will formally read

S(P + 0l 0DW(Q) = BP(Q) (8.28)

and the corresponding differential equation will read

hz 82 202
(~Fag+ 52 ¥ - 5@ (8.29)

It is known that the solutions to this equation are the Hermite-Gaussian functions
with the same eigenvalues as obtained above. Therefore, each eigenstate in the
form of a ket has a corresponding expression in the form of a Hermite-Gaussian
function of the coordinate Q. See, for example, Schiff [1].

Appendix C
The Reservoir Model for the Cavity Loss

Here we describe a reservoir model for the cavity loss and derive the correlation
function for the associated random noise force following Haken [2].

We assume that the cavity loss is caused by a large number of loss oscillators
that are coupled to the cavity mode in question. The total Hamiltonian for the
cavity mode and the loss oscillators may be written in the form
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= hoala -+ hoblby + 1> (kobla + ki bod ) (C.1)

w (0]

The first term is the Hamiltonian for the free cavity field. The vacuum energy is
subtracted, since it does not affect the interaction with the reservoir, as can be
easily verified (see Equation 13.20). The second term is the Hamiltonian for the
loss oscillators, o being the oscillation frequency of the oscillator. The third term is
the interaction Hamiltonian under the rotating-wave approximation. The coupling
constant k,, is assumed to be slowly varying with frequency.

By the Heisenberg equation, the equation of motion for the field and the loss
oscillators becomes

d. Co 7

0= Tl —i gw Kb (C.2)
A b, — iy (C.3)
e = 1oy — WKpa .

Integrating Equation C.3 we have

t
bw — _iKa)J efw)t t) ( )dt +b ( ) —iwt (C4)
0

Substituting this into Equation C.2 we have

d *lUJ *lUJ
7% = —iwd — Z Koo |* J (=g LZ K by (0)e (C.5)

Truncating the cavity resonance frequency, we set
a(t) = a(t)e (C.6)

Then we have

_a_ Z|Kw| J —i(w—w)(t— t) dtj—lZK bw l(UL )t (C7)

Here we assume that the density of the loss oscillators per unit angular fre-
quency is p(w) and the density is a slowly varying function of the frequency. We
have

Z Jic |20 0=1) — J p(x + 0c) Ko |26 dx (C.8)
p= -,

where we have set w — w, = x. Since the integrand is important only around x =0,
we may take p|x|> outside the integral sign and replace the lower limit of
integration by — oo with minimal error. Thus we may write

Z'Kw‘z 71 w—o.)(t—t) ~ an(wc)leclzé(t*t/) (C9)
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Thus Equation C.7 reduces to

d
_ _ La) —w)t
dta_ mp(w,)|ke, | a(t) — i E K bw (C.10)

]

where we have used the property of the delta function that

t

J FE)S(E— £t = % £(8) (C.11a)
0

Going back to d(t) we have
d b 7uut b
aa— —iwa — p.a( —lzkw » (C.11b)
where
Ve = mp(e) K, | (C.12)

Now the last term in Equation C.11b gives a fluctuating force r r(t) = r F(t)e it
Then I (t) gives the fluctuating force for the cavity mode amplitude, the
correlation function of which is

<1"T > <ka/b glle'—oot ZK“ ¢ o= “’C>t>
(C.13)

o'

S (B0 e e

w

<ff(t/)f}(t)> — <Z KZ)/B(U/ *l o —we)t Z K(u m 1((1)(;)E)t>
(C.14)

(0]

- Z |Kw|2<i’wi?L (0)> @00 (=t)

where we have assumed the independence of different loss oscillators:
<l;wf (O)BL'U(())> =0 for w # «'. Here the bracket signifies an ensemble average

with respect to the reservoir of the quantum-mechanical expectation value. If we
write the average number of oscillator bosons as

(Bl (0)) = 1o (C.15)
the corresponding average is
<Bwi;jo(0)> =y + 1 (C.16)

Now, assuming that n,, is also a slowly varying function of @, the summations in
Equations C.13 and C.14 may be performed as in Equation C.9, with the result that
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(THOT1)) = 2mlio Pp(@c)na, 6~ 1)

= Zycnwcé(t - t,)

(C.17)

(T ) = 27l ple0) (0, + 1)o(2 )

= 2y (R, +1)0(t — t/)

(C.18)

If the approximation made in obtaining Equation C.9, namely that we replace
—w, by —o0, is relaxed to the one where we replace the lower limit of integration
0 by —o0, the above correlations may be rewritten as

(FHEOT(1)) = 2mlio Pp(@c)na, o~ 1)

(C.19)
= Z}Vanué(t - t/)
(FOF0)) = 2nlk Po@0) 0, + Do~ 1)
(C.20)
= 29.(ne, +1)3(t = t)
Thus Equation C.11 may be rewritten as
d . o N .
—a = —iwa —7.a(t) + Tp(t) (C.21)

dt

with Equations C.19 and C.20 taken as valid. Thus the presence of the reservoir
made up of loss oscillators results in a damping of the cavity mode plus a
fluctuating force. Then, just as in Equations 3.35-3.41, we can show the
preservation of the commutation relation:

(a(ral(t) —al(va(r)) =1 (C.22)

Appendix D
Derivation of Equation 7.29: The Laplace-Transformed Solution

Here we derive Equation 7.29. We first set z = —d in Equations 7.24a and 7.24b to
give

(s + 9 ){L"(—d,s) — V" (—d,s)}
1 0 -
=N |- | el + )L s, (D.1)

() (O .
+ m]_d exp{(zm + d)s/c1 } L* (2, s)d2zpm
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and

(s+9){L(—d,s) = V" (—d,s)}

=GN Ud exp{(zm + d)s/c1}L™ (zm, S)dzm

(s 0
1-— 5//)(5) J—d exp{(zm + d)S/cl}L+ (Zm, 5)dzm

r//(S) J ) exp{(zm + d)s/cl}ff (zm7 s)dzm

iz r(s) )

Comparing these two equations we obtain
L+(_d> S) - V+(_da S) = _{L_(_da S) - V_(_da S)}
Next we set z = 0 in Equations 7.24a and 7.24b to give

(s+7y){L*(0,5) — V(0,5)}

T -
=GN {_TV”(S)LHI exp{—(zm + 2d)s/c1 } L™ (2m, S)dzm

0
T ) P/} e e
and
(s+9"){L(0,s) — V7 (0,s)}

= __ref exp{(z s/c1}L" (zm,s)dz
=N |- 0| expllen + 25/} a9

- Jdexp(—zms/cl)r(zms)dz’”

+1— r(s) J_

Comparing these two equations we have

L=(0,s) — V7(0,s) = —r"(s) exp(2ds/c1 ) { LT (0,s) — V*(0,s)}

= —T/{L+(0, S) - V+(075)}

where we have used Equation 7.25.
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Then we set z = 0 in Equations 7.28a and 7.28b to obtain

9= v09=[ o[ T b iy v

(D.7)

+exp H—%Wﬂ;)}d} (L (=d,8) = V' (—d,s5)}

L (0,8)— V- (O,S):—Jidexp {—{%—%}zm} %v— (2m,5)dzm

(D.8)
texp Hi—ﬂ}d} (L (=dys)— V- (—d,5)}

a  (s+y)

Addition of Equation D.7 multiplied by ¥ and Equation D.8 yields a null sum for
the left-hand sides because of Equation D.6. Thus the similar sum of the right-
hand sides is also zero. Therefore, eliminating {L™(—d,s) — V" (—d,s)} using
Equation D.3, we obtain

o ool e

a G+ )" s+

47 exp Hfi + ﬂ}d} (L*(~d,s) — V*(—d,5)}

o by (D.9)
Lol (-l a v e
e
We finally have
it -V o= 25 [ ow{-(5-25)e)
S

i , (s GN
x V (zm,s)dzm] {r exp{ (Cl s+v’>d}
s GN !
“or (G

The solution for {L™(—d,s) — V~(—d,s)} is obtained as the right-hand side of
Equation D.10 multiplied by (—1) because of Equation D.3. Multiplying both the
numerator and the denominator by exp (—ds/c;) and writing V*(z,s) = 0%(z) and

V7~ (z,s) = 0™ (z) (because the initial driving field is assumed to be a delta function
of time), we arrive at Equation 7.29.
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Appendix E
Integrated Absolute Squared Field Strength of the Cavity Resonant Mode

In order to prove Equations 10.101 and 10.102, we evaluate

[ g [l et (2

I‘J.;;”( e+ (—d) | > (ED
Let us set

x(2) = e (2)P+le" (2)] (E.2)

From Equations 8.35a and 8.35b cited above Equation 10.94a, we have

d 2Re o’ (Pl (=)
E"@—m('e @) ~le(2))
2Re o’ (£3)
T 1+ {x(2)/E2} (v —4c)

where the constant C is defined in Equations 10.98a and 10.98c. Since 2 Re o is
positive and because of Equation 10.98b, Equations 10.94a and 10.94b show that
le"(2)|*—|e (z)|* is never negative. Thus we can choose the positive sign in
Equation E.3. We have

0 x(0) {1 + (x/|ES\2)}
J 2Reo’dz = J a7 dx (E.4)
—d x(—d) x2 —4C
Integrating both sides
x(0) 7—ac|™”
2Rea0d:ln‘x+\/x2 —4C +x72
s-a) BT |,

= tn[x(0) + /*2(0) — 4C| ~ In|x(~d) + V2(~d) —4| (ES)

N Vx2(0) —4C  \/x2(—d) —4C
|Eq|? |E?

Since

x2(0) — 4C = |e" (0)]* e~ (0)]
x2(—d) — 4C = |e* (—d)[*~|e (~d)[’= 0
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where we have used Equation 10.98b, we have

2Rea’d = In| 2/e* (0)* | ~ In| 2/e* (~d) | +

E}
(E.7)
[ O e OF -l ©)F
le* (—d)[* |E?
Now from Equations 8.27a and 8.27b we have
" (0)]* = |e" (—d)*exp{I1(0) + I'(0
le”(0)|" = [e7(=d)|"exp{1(0) + I"(0)} (£8)

e () = |e™ (—d)"exp{~1(0) — I"(0)}

and from Equations 8.28a and 8.29

1(0) + I'(0) = 2Re (a°I) = Re {m{ﬁ;m)}} =In G) (E.9)

(The I in Equation E.9 should not be confused with that in Equation E.1.)
Therefore we have

le" (0)* = |e* (—d)|*/r

(E.10)
e (O = e (—d)*r
Thus Equation E.7 reads
1 1 et (=d)|”
ZReocOdzln(—) + <——r>72 (E.11)
r r | Eg|
This gives
1\ 1
et (—d))’= VC = |E? (; — r) {ZRe «’d —In (;)} (E.12)

Next we multiply both sides of Equation E.3 by x and rewrite the result as in
Equation E.4 to have

2Re o’ Jid x(z)dz = Jx(O) de (E.13)

x(—d) x2 —4C
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The right-hand side is evaluated as

r(O) x+(x2—4c+4c)/|}55|2dx
x(—d) x%—4C

=Vx2—-4C “0 (x\/xz— 4C1n‘x+ \/xZ—D
x(—d) 2| S‘
| 2 (In‘x—&-\/xz—_‘) (E.14)

=e"(0)[*~[e" ()

ST (|e+<o>|2+|e*<o>|2) (Ie*@F e ()1)

20 [ O
In| —————
TEP <|e+<—d>|2)

where we have used Equation E.6. Using Equation E.10 again we have

r(O) x+ (¥ —4C+4C)/|E|"
x(—d) x2 —4C

(e i )

where we have used Equation 10.98c. Thus the original integral in Equation E.1,

I= Jo dz, ('e(zm)|2+e*(2m)|2> _ Lax(zn)dzn (E.16)
—d et (—d)* et (=)

(E.15)

is Equation E.15 divided by |e"(—d)|* and by 2Re o®. Thus

() () S 2O} e

Here we can use Equation E.12 for |e*(—d)|*/ E?. Thus

|G-+ G- 7) () G-

(E.18)
1
X {ZRe o’d —1n (;) H
Now from Equation 10.94c we have
2ygNa®
Reo® = 87— pgo (E.19)

(vo — @)*+7?
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where we have defined the constant D, which is equal to 24N/c; by Equation
10.94c. The threshold condition is obtained from Equation E.12 by setting
le*(—d)|*= 0. We have

2Reod —In G) =0 (E.20a)
or
o 1
Ddoy, —In - = 0 (E.20b)

Thus by Equations E.19 and E.20b

(1)) ) e
()G ) ) e
i) ()6 -8

Using the definitions y, = (¢1/2d) In (1/7) (Equation 1.18) and f5, = (¢1/24)
(1 —r?)/(2r) (Equation 6.35), we can rearrange the terms as

I— zdf—:{l + < —Z—%‘)g(r)} _ de—z{l +1+iAg(r)} (£.22)

1

Dg?

where A is the fractional excess atomic inversion

0_ 0
A=T T (E.23)
Tth
and the function of the reflection coefficient r,
2 11 1 1—r4)/r?
In(1/r) ¥ m/r) (@ —=r)/r
g(r)=2 . + —— —

(1—=r3)/r [(1—r2)/1] (E.24)

_l(v_c>2+1+r2&_1
2\p.) "4 B,

is monotonically decreasing from o0 to 0 as r goes from 0 to 1.
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Appendix F

Some Rules on the Absolute Squared Amplitudes and Evaluation of the
Integrated Intensity

From Equation 11.5 we have in general that

le" (2)]? exp{r 2Re oc(z)dz}

z

™,
+
—
N\
—
)
Il

le=(2)]* = |e(z)|2exp{r 2Rea(z)dz}

In particular we have

et (0))? exp{J: 2Re oc(z)dz}

A\
o
—
S
=
o
Il

(V‘
—
S
=
o

I

= (0)2 exp{— r IRe oc(z)dz}

0
We define a neutral point z,, where

e (zo)]” = le (z)]* =VC

Then we have

le* (zc)I?

16+ (0) 2 exp{f 2Re oc(z)dz}
el = e O exp{ - [ 2Reatz)ie)

0
and

et () = e+<d>|2exp{—r Rea(2)dz

Ze

d
le”(z)]* = le (d)] exp{J 2Reo¢(z)dz}
From Equations 11.10 and F.1b we obtain
1

ot
|r1[r2]

e" @) = [e7(0) and |e”(d)" = | (0)[r||ra]

Combining Equations 11.6 and 11.9 we have
€O = [n|VC and [ (d)]" = n]VC
Using these in Equation F.5 we have

e (@) = ve

Il

and le"(0))* = Ve

~Inl

(F.1a)

(F.1b)

(F.4)

(F.7)

Next we evaluate the integral I in Equation 11.12. Since we know the value of
the constant C (see Equation 11.22), Equation 11.17 gives the value of X(z)
completely. Thus the integral I in Equation 11.12 can be evaluated as follows.
Multiplying both sides of Equation 11.17 by X = |e*(2)|* + |e”(2)| we have
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{X + (x*/|E")yax

2Re {o°}X dz==+

X2 —4C
(F.8)
B X VX -4c, 4C ix
X2 —4C |E|* |E|*VX2 — 4C

Here the plus sign applies for z > z, and the minus sign for z < z,. Integrating,
we obtain

2Re{o’}I
- J’“Zf) X+ 0/ |E)dx un) {X+ 0/ |E[)}dx
X(0) X2 —4C X(z.) X2 —4C
X(zc)
X(z¢
— _VXT_4C XEO)) T (x\/xz —4Cln|X + VX2 4 D
X(0)
X(d)
X2 — +\/X2—4C ‘o
X(d)
2|E‘ (X\/XZ 4c1n)X+\/X2 c))
X(zc)
X2 —
1
(V2 1) 12 . + 2 - 2
=IO = e O)F = { ~4CIn(le" @) + P
(I @ +1e" @) (Il ()P = |e* (0)) +4CIn (2l (O)) }  (F.9)
4C

_—{ln<|e (ZC)| +le” (zo)] )—ln(2|€_(0)|2>}

|EP
e @R —le P+ { (e @+l @F) (I @F - le” @)
i
j

2|E,?
74Cln(2|e+ d)\z) +4c1n(\e @) + e (2

")
+ (e @F) ~n (e P+l )

—[e ()]~ ¢ (0)/” f%{lnce (ze) +le” () ") ~In (2le (0)1") }

+ 5zl O+ ) (e O -Ie* OF)

Tl @ ~ e (@) +m{1n(z|e P ) ~in(le* )P+l z)P) }
(e @+l @P) (e @F e (@)P)

+
2|E
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Substituting Equations F.2, F.6, and F.7 into Equation F.9, we obtain

1 2C C 1 1
2Re{o’ I:\/E<—— T1> ni+—-; ( + 1)(—— r1>
{«"} B I &P In|r| 25 \n] I Py I

2C | C (1 1 (F.10)
2y gl g (o) ()
|r| |2| |Eg| |2| 2|E| |I’| |2‘ |T‘ |2|
We consider the integrated intensity scaled to v/C = |e*(z)|*
I 1 1 1 2V/C 1
— +——1n| ) +—In{ ——
o= (1 i ) e ()
(F.11)

Ve (1 , 1 5
Rabrrar e R L ey Al L)
2|Ef|” \In| |12

For the remaining v/C on the right-hand side, we substitute Equation 11.22
to obtain

L _ 1 {(|V1|+|Yz|)(1—|r1\lrz\)
VC  2Re{a’} [r1[|r2]

e P e ST

1 1(In P+ (1= nfrnl?)
x < 2ln 4+ = >
[rillral) 2 [r1]” |72 ]

We use Equation 11.23 or

—

1
2dRe {0} :ln< > F.13
{ th} |T’1HT’2| ( )
and
Re{of,} o},
— _th F.14
Re{a®} o° (F.14)
Thus
1 o) 1 ad, 2d (F.15)

Re{o%} ~ 6" Re{af}  o° In(1/[n[Ira])

Then, we have

Ll bl f (LY
V/C 71|72 |r1[r2]

oy 71|72 ]
+d f—‘h>
( o) (] + )T = [ln) (F.16)

1 1(In+n?) (1 = Inl*n?)
x < 2In + = >
Inllrl) 2 1|72
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Finally, we introduce the fractional excess atomic inversion A by

A o® —dY,
3

Then noting that ¢9% /6 =1/(1+A)=1—-A/(1+A) and that 1 — (¢%,/6°) =

A/(1+ A), we rearrange the terms to obtain

1 Unl+ i) =[nllr)/In|lr|

NG In(1/[r]|r2)

A

X [1 +m

" {2(1n(1/|r1|r2))2+%1n(1/r1||r2|)(|r1|2+|r2|2)(1—|r1|2r2|2)/|r12r2|2_1H
((Ira] + 2D (X = Il [ra])/ I |2

(F.17)

(F.18)

Appendix G
Derivation of Equations 11.52a and 11.52b: Treatment of a Multilayered
Dielectric Mirror

Here we derive Equations 11.52a and 11.52b for mirrors M1 and M2. As shown in
Figure 11.1, the cavity comprises a lossless and non-dispersive dielectric of length
d for which the dielectric constant is ¢;, the light velocity is ¢;, and the refractive
index is n = /&1 /&o. The outside regions to the right and left of the cavity are both
half free spaces (vacuum) for which the dielectric constants are g, and the light
velocities are cy. The mirror M1 is at the interface of the cavity dielectric and the
left half free space, and the mirror M2 is at the interface of the cavity dielectric and
the right half free space. The mirrors are assumed to be made up of several thin
layers of lossless and non-dispersive dielectrics. We assume that the thickness of
either mirror can be ignored as compared to the cavity length d. Figure G.1 depicts
the structure of M2, for example.

Let us assume that layers a, b, ¢, etc. are coated successively on the cavity
dielectric. The first layer of dielectric constant ¢, and light velocity ¢, extends from
z = z,t0 z = z, with thickness I, = z, — z;; the second layer of ¢, and ¢, extends
from z = z, to z = z, with thickness I, = z, — z,; and so on. The magnetic

€1, C1 €a, Ca €p, Co €9, Co €0, Co

sscsse

Z =24 Za Zp Zy

Figure G.1 The multi-dielectric-layer mirror.
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permeability is assumed to be i, everywhere. We write the vector potential of the
nth region as

An(2,1) = un(2)e ", n=1a,b,..,00 (G.1)

Un(2) = a,e™® 4 Be %= (G.2)

where region 1 is the region inside the cavity; the layered region o is that facing the
outer free space; and the region 0 is the outer free space. The first term in Equation
G.2 represents the right-going wave and the second term the left-going wave in the
nth region. First we want to show that the quantities in regions 1 and 0 are related
in the form

o eik1 z A B oo eikgzO
s = i (G3)
ﬁle k121 B* A* /306 ikoz,
where the quantities A = A(w) and B = B(w) are some definite functions of @
determined by the mirror structure; and A* and B* are their respective complex
conjugates.

The electric and magnetic fields are given as

E,(z) = —iw(0,e** + Be %) (G.4)

toHn(2) = tknotne™™? — ik, e ™% = (iw/c,) (aae™* — B,e~ %) (G.5)

At any boundary, both the electric and magnetic fields should be continuous. Thus
at the right interface z, of the nth region we have

€% 4 fe T = oy g g g e (G-6)

(1/6) (26" — Be ) = (1/G012) (tn1€%7% — Byqe™0%)  (G7)

Therefore for the boundary at z = z, we have

OCneiknzn Ont1 gikni1zn
(ﬁ e*iknln ) - Mn‘n+1 (zn) (ﬁ +le—ikn+lzn (GS)
where
1 1
E(l +Cu/Cnt1) E(l — Cn/Cny1)
Mn,n+1 (Zn) = 1 1 (G9)
E(l - Cn/CnJrl) E(l + Cn/cn+1)

The propagation in the (n + 1)th region is described as
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ikn+12 ikni12
“n+1el n+1Zn ops1€ n+1Zn+1
<Bn+1f3_ik”’1z” = My (zn7zn+1) ﬁn+1e_ik"‘1zn‘l (G.lO)
where
e—ikn ribni1 0
M, 1 (zm Zn+1) = 0 gkt (G'll)

It is clear that the matrix that should appear in Equation G.3 is

Mio(21,20) = My g(21)Ma(21,25) Mo p(2a) My (24, 21) - - - Moo (20) (G.12)

As shown by Equations G.9 and G.11, all the component matrices have the

property of the matrix in Equation G.3, that is, the lower left element and the lower

right element are, respectively, the complex conjugate of the upper right element

and upper left element. But it is easy to show that a product of two such matrices
has the same property:

« p 7 0 ay+ ot wd+ Byt
proof oy By + o 6" BT+ oty
(G.13)
oy + Bo* od + By*

(@ + )" (oy + Bo°)°

Therefore, the product of an arbitrary number of matrices having this property
also has this same property. Thus the matrix in Equation G.12 and, consequently,
that in Equation G.3 should have this property. Thus we have proved the form of
the matrix in Equation G.3.

Now we prove Equations 11.52a and 11.52b using Equation G.3. First consider
the energy conservation among the input and output waves to the mirror M2.
Because the layers are all lossless, the sum of the input powers should be equal to
the sum of the output powers:
?

slclwz|o<1|2 + go00w?|Bo]* = 8151w2|[i1|2 + socowz\oco\z (G.14)

Since &1¢1/(g9co) = n we have
”(‘051|2 - |ﬁ1|2) = \Oﬂo|2 - |/3o‘z (G.15)
Using Equation G.3

|a1\27|ﬁ1|2 _ |Aaoeikozo + Bﬁoe—ikozo Zi‘B*aoeikozo +A*ﬁoeqkozc 2

, , , , (G.16)
= (A" = [BI*)(leo|"—[Bo")
The above two equations give
n(|AP - |B*) = 1 (G.17)

Next, from Figure 11.1 and Equation G.3 we have
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B ﬂle—iklzl B B* ;L (Xo@ikon _ B C18
=k | T AT 2T potem| T A (G.18)
1 Bo=0 0 o =0
ikoz,
oL etro%e 1

T, = = == (G.19)

o ez o0

=

where the expression for ), the reflectivity for the wave incident from outside, has
been given for completeness. When o; = 0, Equation G.3 yields

0 = Augefoz + Bﬂoe_ik‘)z“

) ) ) (G.20)
Bre 17 = Broge + A" e 0%
Thus
pre = B . _lA"—[B’
b g B G.21
2 ﬁoe—tkom =0 A + A ( )
From Equations G.18 and G.19 we have
o /AP 1
2" _[1/A]” _ (G.22)

2| |B/A]  |AB]

Using Equation G.17

IT2l>  n(lAP - |B]*) (‘A‘ ‘BD < 1 )
7] |AB] Bl |A "] el (G-23)

Also, from Equations G.18 and G.21 we have, using Equation G.17 again,

T} mﬁ—s%mw:@wwmqﬂfb

| |B/A| B |A

(G.24)

Thus we have proved Equations 11.52a and 11.52b for mirror M2. These cal-
culations leading to Equations G.23 and G.24 can be repeated for mirror M1, with
results where r, is replaced by r;. To do this, we may rotate Figure 11.1 by 180° so
that the mirror M1 comes to the right-hand side of the cavity. Then, except for the
particular forms of the constants A and B in Equation G.3, all the procedure from
Equations G.1 to G.24 are applicable with replacement of the suffix 2 by suffix 1 for
r, ¥, T, and T".
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Appendix H
Spontaneous Emission Spectrum Observed Outside the Cavity

Here we show that the spontaneous emission spectrum observed outside the cavity
is given in general by Equation 13.65. We start with Equation 13.58. We first use
the definition in Equation 13.61 of D(f). Thus Equation 13.58 reads

2

t
wj ZB) U (ZA)67i<(uJ —wa)t JO ar eiwjt’ e*iwAt’ Cu(t/)

ZB7

L, (HI)

2
= |ual"|wal

1 i(wj—w ' it
21505 Ul Uaa)e | at & i)

I 0

where we have taken w; out of the summation sign and replaced it by w, because
the spectrum of D(t) is sharply peaked at w. We formally rewrite D(t') in the form
of the inverse Fourier transform:

I(ZB,t)
2
2 2 1 —i(wj—wa)t ' ! it =~ —iot’
= uaPloal!| 325 Uen) Uz o | arér [~ Do) do
7 0 —00 (HZ)
2
2 2 oo 1 —i(wj—wa)t iw;t’ ﬂwt
= |ual"lwal ZE Uj(zs) Uj(za)e " e D(w)dao
J—oo 0

where we have moved the integration sign for frequency to the top. As we are now
considering the spectrum, we may take the time t to be large, so that the time
integral becomes

t 00
J dt’ ot g=iot J ar elei—o) — LC((UJ — w) (H?,)
0 0

where the zeta function was defined in Equation 2.53b and is here meaningful
only for w; = w. Thus we have

I(zp, ) = sl 0l

| {Z%%(zBM(zA)awj—w)}e -4 D(w)doy
J

—00

2 (H.4)
X

Now the quantity in the curly bracket is i times the response function Y(zp,z4, ®)
as given by Equation 2.53a. Thus we have
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2
I(zp, ) = |ual* |l

J Y(zp, zam)e @~V D(w)dw
—00

X (H.5)

= [pal*|oal’

J Y(2p,24.0)D(w)e " dw

Thus the field amplitude at the observation point zp is proportional to the
integral inside the absolute value sign, which is in the form of the inverse
Fourier transform of Y(zp,zaw)D(w). Thus the Fourier spectrum of the
field amplitude is proportional to Y(zg,z4,w)D(w) and for the power spectrum
we have

S(za, 23, @) = Wi |ual*|D(@)*Y (25, 24, @) (H.6)

Appendix |
Correspondence of the Noise Polarization to the Noise Field

Here we show the correspondence of the noise polarization in Equation 14.15 and
the noise field in Equation 14.110. Both of these represent the quantum noise
associated with spontaneous emission. The temporal and spatial correlation for the
noise polarization in the classical sense is written from Equation 14.15 as

(P*(z,H)P(Z, 1)) = % N (t—1)d(z — 2)

and from Equation 14.110 the reservoir average of the quantum-mechanical
expectation value for the product of the noise electric field is

20161 (0w (¥)) = {51+ )/ c1}omd (2~ 1)

These noise terms appear in Equations 14.12 and 14.93, respectively, as

K% — euyw?

2ia(t)eCyY(2) =
(eCy¥(z) =

a(t)Cn'P(2) + oP(z, t)

and

de(z,t)
dt

%]
= —F
506(27 t) + Zd q(27 t)

In Equation 14.93 cited above, we have omitted the factor y'/(y' + y..) describing
the bad cavity and detuning effects, which are not considered in Equation 14.15.
Also, in Equation 14.93 above, the thermal noise term has been omitted. F; (z,t)
and fm(t) are related as in Equation 14.94b. In view of the expression for
the electric field in Equation 14.8, Equation 14.12 above may be rewritten
formally as
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d O ~
Ee(z7 t) = soe(z,t) + EP(Z7 t) (I.1)

where ¢ (z,t) is the slowly varying envelope of the positive frequency part of the
electric field. In view of Equation 14.107, where the noise source projected onto the
adjoint mode function reproduces the adjoint mode function, the noise F; (z.t)
may be written effectively as

Fy(z,t) =24 fud(z — zu) (1.2)

We may convert the discrete noise source in Equation 1.2 into a spatially con-
tinuous noise field

Fyz.t) =24 fud(z — zw) — 2df (z.1) (1.3)
with the property

(Fi20f@0) =D 36 = 2w)0(z = 2u) (F () ®)

=30 =) (FLOh ) (14)

= L2 T OOI NS (2 — 2)(t — ¢

where Equation 14.110 has been used in the third line. The spatial density of
atoms N per unit length has been taken into account. Now, by Equations 1.2 and
1.3, Equation 14.93 is rewritten as

de(z, t)

= szt +a f(z,1) (15)

and the last terms of Equations 1.1 and 1.5 correspond to each other. We take the
correlation functions of these two and compare them. For Equation 1.1 we have

<{sz( : )}*z%f)(z,t)> Zz4h£yN25(t7t/)é(zfz’)

(1.6)
hw / /
= ?yNzé(t —t)o(z—2)
where Equation 14.15 has been used. For Equation 1.5 we have
. o 1 h
({afen} afen) = a LD N~ 5o v)
) hl ! (1.7)
_ L+ o)he Noé(Z —z)o(t—t)
281

where Equation I.4 has been used. Since N (14 ) = 2N, and the ¢ in Equation
1.6 is ¢; if applied to the case of the two-sided cavity in Figure 11.1, the correlation
function in Equation 1.6 for the noise “polarization” has an exact correspondence
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to that for the noise “field” in Equation I.7. Note that Equation 1.6 is a classical
reservoir average, whereas Equation 1.7 is a reservoir average of a quantum-
mechanical expectation value.
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Index

a

absorption loss, 354

adjoint function, 296

adjoint mode, 294, 323, 327, 344
adjoint mode function, 146, 313, 382
adjoint mode theory, 311
amplification

— noise, 233

amplified quantum noise, 220
amplified thermal field, 220

amplitude gain, 64, 114, 122, 124, 177, 250

— unsaturated, 215

amplitude noise, 241

— suppression, 241

amplitude—phase coupling, 259
amplitude reflectivity, 4

annihilation, 342

annihilation operator, 23, 30, 48, 349, 351
— electron, 49, 83

— photon, 362

anticommutation relation, 49, 84

anti-normally ordered correlation function,

76, 202, 213
asymmetric cavity, 240
asymmetry effect, 240
atom, 49, 83, 246
— natural linewidth, 245-246
— transition frequency, 49
atom-—field coupling coefficient, 84
atom-field interaction, 49, 51, 84
atomic dipole, 52, 55, 324
— damping constant, 56

atomic inversion, 55, 65, 74, 84, 103, 120, 124,

137
— average, 128
— constant, 61, 67, 103, 134, 135, 171
— excess, 198, 252, 373, 377
— incomplete, 246
— nonlinear, 173

— operator, 52

— relaxation constant, 56

— saturation, 64, 66, 74, 119

— space-averaged, 178

— steady state, 67, 122, 128, 178, 249
— threshold, 67, 128, 178, 217, 249
— uniform, 106

— unsaturated, 121, 124, 170
atomic polarization, 85

— decay rates, 243

atomic transition frequency, 244
atomic width, 56

atoms, density of, 116

b

backward-propagating wave, 294
bad cavity, 245

bad cavity effect, 219, 245
bi-orthogonality, 320, 347
boundary condition, 295, 351
— cyclic, 12

— dielectric surface, 1

— non-Hermitian, 294

— perfect conductor, 1

— periodic, 12, 351

— temporal, 350

c

causality, 343, 351

cavity

— asymmetric, 240

— damping rate, 248, 249, 353

— decay constant, 112, 217, 219, 248, 337

— decay rate, 243, 245, see cavity decay
constant

— decay time, 157

— dielectric slab, 283

— eigenfrequency, 4

— Fabry-Perot, 289, 310
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— half-width, 157

— layered, 38

—loss, 178, 364

— loss rate, 250, 253

— mode, 364

— incoming, 3

— natural, 1

— outgoing, 3

— mode function

— normalized, 342

— one-sided, 2

— perfect, 48

— resonance frequency, 219, 244

— resonant mode, 3, 33, 37, 47, 92, 93, 145, 370

— excitation, 37, 114, 153

— normalized, 92

— round-trip time, 273

— stable, 318

— stratified, 38

— two-sided, 5

— unstable, 318

— width, 55

closure relation, 323, 324, 347

coherence function of second order, 30

coherent interaction, 52, 81, 85

collective electric field, see total electric field

collective mode amplitude, see total electric
field

commutation relation, 23, 26, 48, 53, 83, 319,
323, 343, 361, 367

- field, 26

commutation rule, see commutation relation

commutator, 23, 54, 346

complete set, 295

completeness, 17, 82

continuous mode laser, 235

continuous mode theory, 78, 85

contour integral method, 91

correction factor, 100, 162, 164, 167, 199, 227

correlation function, 29, 69, 89, 134, 213, 228,
237, 242, 296, 317, 364, 366, 383

— anti-normally ordered, 30, 77, 202, 238

— field, 156

— inside the cavity, 161

— normally ordered, 30, 77, 202, 228, 236, 238

— outside the cavity, 161

— symmetrically ordered, 77, 202, 237, 238

Coulomb gauge, 2

coupling coefficient, 51, 52, 324, 349, 351, 365

coupling constant, 351

— see also coupling coefficient

creation operator, 23, 30, 48, 83, 349, 351

— electron, 49, 83

— photon, 362

current, 281

— driving, 281

— source, 31

cyclic boundary condition, 12

d

damping, 55

— factor, see cavity damping rate
— rate

— cavity, 248, 249

— reservoir, 54

decay constant, 55, 271

delay differential equation, 272, 287

delay time, 104, 107, 115, 120, 136, 168, 180,
273, 280

delta function, 16, 18, 27, 366

density of atoms, 63, 116

density of modes, 15, 351

density operator, 28

detuning, 243

detuning effect, 259

diffusion coefficient, 54, 57, 309

dipole amplitude, 84

dipole damping rate, 195

dipole interaction, 51

dipole operator, 55

dispersion, 177, 244, 245

driving current, 37, 88

— effective, 88

e

effective current, 88

eigenmode, 327

— frequency, 40

eigenstate, 361

eigenvalue, 24, 361

— equation, 24, 361

Einstein relation, 57, 325

electric dipole approximation, 50, 84

electric dipole matrix element, 64, 84

electric dipole operator, 268

electric displacement, 347

electric field, 1, 25, 29, 62, 83, 86, 103, 120,
347, 352, 378, 382

— negative frequency part, 25, 29, 83

— positive frequency part, 25, 29, 62, 83, 86,
340, 351, 382

emission spectrum, 272, 282

energy damping rate,
see cavity damping rate

energy eigenstate, 24, 361

energy eigenvalue, 268

excess noise

— adjoint mode theory, 293



— experiment, 329

— factor, 164, 264, 293, 298, 310, 317, 322, 325,
326, 332, 335, 339

— Green’s function theory, 306

— multimode theory, 329

— physical origin, 302

— polarization, 328, 332

— propagation theory, 311

— quantum theory, 319

— theory, 319, 323

— transverse, 318, 330

field amplitude, 107, 128, 218

field correlation function, 75, 189

field decay, 53

field distribution, 240

— flat, 301

— non-uniform, 240, 301

field equation

— inside the cavity, 104, 108, 119

field Hamiltonian, 11

field inside the cavity, 113, 144, 169

field intensity, 279

— outside the cavity, 288

field outside the cavity, 114, 129, 154, 202

filling factor, 258

flipping operator, 49, 83

fluctuation—dissipation theorem, 28, 31, 55, 343

four-level atom, 247

fractional excess atomic inversion, 198, 200,
224, 252

Fresnel number, 331

g .

gain

— saturation, 119, 167
— space-averaged, 178
— unsaturated, 178
gain-guided laser, 318
good cavity, 245
Green’s function, 306

h

Hamiltonian, 346, 349, 364

— atom, 49, 51, 268

- field, 11, 14, 48, 51, 83, 268, 359
— interaction, 50, 51, 268, 286, 324
— operator, 23

heat bath, see reservoir
Heisenberg equation, 30, 50, 84, 365
Heisenberg picture, 26

Helmholtz equation, 360

Henry factor, 259

Index

Hermite—Gaussian function, 364

Hermitian adjoint, see Hermitian conjugate

Hermitian conjugate, 52, 75, 190

homogeneous broadening, 62, 114, 117, 141,
170, 184, 195

homogeneously broadened atoms, 62, 68, 74,
93, 96, 106, 121, 137, 170, 316

1

incoherent process, 53

incoherent transition rate, 247

incoming mode, 3, 294

incoming wave, 344

incomplete inversion, 253

incomplete inversion factor, 73

index-guided laser, 318

inhomogeneous broadening, 259

initial field, 103

initial wave excitation factor, 302, 318

input noise, 236

input-output relation, 336, 342, 343, 349, 350,
351, 354, 356

intensity noise, 328, 332

interaction Hamiltonian, 84

internal loss, 260

inversion, 171, see atomic inversion

— saturated, 171

k
Kronecker delta, 10, 16

I

Langevin equation, 309, 324, 337, 338, 342,
350, 354, 355

— spatial, 355

— time-reversed, 350

Langevin force, 33, 35, 53, 54, 55, 85, 141

— thermal, 343

Langevin noise, 89, 237, 324, 326, 338, 342

— quantum, 237

— thermal, 335, 342

— see also Langevin force

Laplace-transformed equation, 109, 138, 171

Laplace-transformed noise force, 140

laser, 81, 91, 103, 119, 133, 167, 211, 235

laser equation of motion, 53, 81, 86, 108

laser linewidth, 73, 77, 99, 162, 163, 164, 188,
242, 244, 246, 310, 330

— below threshold, 162

— non-power-reciprocal part, 167

— power-independent part, 310

— standard form, 73

laser mode, 319

laser theory, 61
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level scheme, 246, 253

linear gain analysis, 61, 67, 228, 296, 311

— quantum, 67, 95, 133

— semiclassical, 61, 91, 103

linear pulling, 63, 226, 244

linewidth, 199, 223, 228, 229, 231, 253, 264,
297, 325

— above-threshold, 241, 243

— below-threshold, 241, 243

— enhanced, 258

— power-independent part, 201, 227, 251, 252

longitudinal excess noise factor, 164, 201, 227,
239, 257, 299, 310, 311, 314, 316, 322, 329

— above threshold, 240

— below threshold, 239

— generalized, 227, 232

longitudinal Petermann factor, 164

loss oscillator, 364

lower laser level, 83

m

magnetic field, 1, 378
magnetic flux, 347
Markovian noise, 37, 55, 56, 337
microcavity, 56

— planar, 290, 291

mode

— amplitude, 84

— counter-propagating, 300
— density of, 15

— distribution, 15

— radius, 289

— resonant, 1

mode function, 10

— normalization, 10

— orthogonality, 41

— orthonormal, 11, 14

—TE, 284

- TM, 284

— of the “universe”, 7, 12
mode of the “universe”, 40
modes, 326

— bi-orthogonal, 294

— non-power orthogonal, 294
— power orthogonal, 294

— two non-orthogonal, 326
modes of the “universe”, 82
— orthogonal, 9

multilayered dielectric mirror, 223, 377

n

natural cavity mode, 1

natural mode, 344

natural mode quantization, 344

natural resonant mode, 7

noise, 140, 168

— amplification, 233, 240, 241

— enhancement factor, 164

- field, 296, 382

— force, 135

— delta-correlated, 213

— random, 295

— photon injection rate, 314

— polarization, 296, 307, 317, 382

— source, 211, 236

nonlinear gain analysis, 61

— quantum, 74, 100, 167

— semiclassical, 64, 94, 119

nonlinear gain regime, 190, 214, 223, 249

non-orthogonal mode quantization, 323

non-orthogonality, 5, 347

normal mode, 7

normal mode expansion, 336, 343

normalization, 10

normalization constant, 15, 43, 82, 256, 284,
285, 297, 300, 308, 313

— Fourier series expansion, 17, 104, 273, 285

— resonant mode expansion, 17, 275

normalization factor, see normalization
constant

normally ordered correlation function, 202,
238

normally ordered product, 30, 76, 315

number operator, 49

— electron, 49

1]

one-sided cavity, 2, 7, 238, 239, 240, 244, 248,
250, 252, 336, 339

— dielectric-slab mirror, 339

— laser, 256

operator ordering, 238

— anti-normal, 51

— mixed, 51

— normal, 51

optical cavity, 267, 335

— one dimensional, 1, 23

orthogonal modes, 7

orthogonality, 5

orthonormality, 10, 43, 82, 359

oscillating dipole, 84

oscillation amplitude, 74

oscillation frequency, 67, 74, 178

outgoing mode, 3, 294, 312

outgoing mode function, 98

outgoing wave, 117, 131, 344

output coupling, 1, 23, 81, 86, 91, 103, 119,
133, 167, 235, 267, 356



— constant of, 247

— Green’s function theory, 355

— input-output theory, 336, 349, 351

— optimum, 263

— quantum field theory, 335, 336

— quantum noise theory, 336, 349, 354

— quantum theory, 335

— quasimode theory, 355

output field, 221

output power, 73, 77, 163, 199, 225, 232, 253,
297, 325, 330

p
perfect cavity, 48

periodic boundary condition, 12, 351

perturbation approximation, 270

phase diffusion, 74, 167, 188, 190, 221

phase quadrature, 321

photon annihilation operator, 362

photon creation operator, 362

photon number operator, 24, 363

polarization, 295

polarization excess noise factor, 328

population inversion, 77

power damping factor, 164

power gain, 196

power-independent part of the linewidth, 251

power output, see output power

power spectrum, 29, 71, 134, 163, 189, 229,
280, 381

projection, 295, 313, 320, 345, 348

projection operator, 348

propagation function, 340

propagation method, see propagation theory

propagation theory, 211, 233

— generalized, 311

pumping, 65, 85, 97, 114, 117, 121, 137, 141,
170, 195, 316

q

quantization, 23

quantum field theory, 335, 336

quantum linear gain analysis, 67, 95, 133

quantum mechanical analysis, 86

quantum noise, 73, 88, 89, 95, 141, 148, 170,
181, 182, 183, 213, 228, 237, 311, 382

— amplified, 220

— outside the cavity, 206

— right- and left-traveling parts, 138

— theory, 336, 349, 354

quantum nonlinear gain analysis, 74, 100, 167

quasimode, 47

quasimode cavity, 244, 248

Index

quasimode laser, 47, 61, 235, 238, 249, 251,
254, 260
quasimode theory, 77, 355

r

Rabi frequency, 277

Rabi oscillation, 275, 290

— damped, 272, 291

reflection coefficient, 164, 373, 379
— amplitude, 211

reflectivity

— amplitude, 4, 201

— see also reflection coefficient
refractive index, 223, 377
relative detuning, 63, 71
relaxation, 55

— atomic dipole, 55

— atomic inversion, 55
reservoir, 346, 349, 351

— average, 54

- damping, 54, 56

— model, 55, 364

— pumping, 56

resonant mode, 275

response function, 31, 281, 282
retardation time, see delay time
retarded time, 155

— see also delay time
rotating-wave approximation, 51, 84, 268, 365

S

saturated gain regime, 251

— see also nonlinear gain regime

saturated inversion, 171

saturation effect, 61

saturation parameter, 66, 123, 202, 250

saturation power, 200, 226

scattering loss, 354

Schawlow-Townes linewidth formula, 73

Schrodinger equation, 24, 267, 268

semiclassical

— linear gain analysis, 61, 91, 103

— nonlinear gain analysis, 64, 94, 119

— theory, 61

semiconductor laser, 301, 310

single path gain, 220

space-averaged gain, 178

spatial hole, 66

spatial hole burning, 263

spinor notation, 305, 345

spontaneous emission, 85, 237, 254, 256, 258,
267, 293, 323, 382

— enhancement, 288, 290, 302

— experiment, 289

389



390

Index

— factor, 73, 300, 318

— inhibition, 288, 289, 290

— noise, 320

— rate, 253, 270, 272, 288

— free vacuum, 286

— one-dimensional dielectric, 270

— spectrum, 279

— outside the cavity, 279, 380

squeezed state, 335

stabilized amplitude, 75, 188, 221, 242, 325

stable cavity, 330

steady state, 65, 74, 122, 171, 130, 214

— atomic inversion, 249, 251

— condition, 65, 313, 325

— inversion, 217

— space-averaged, 217

— oscillation frequency, 125

stimulated absorption, 108

stimulated emission, 64, 108, 293

stimulated emission rate, 253

stimulated transition rate, 64, 66

stored energy, 77

strong coupling regime, 277

symmetric cavity, 278

symmetrically ordered correlation function,
202, 238

system, 346, 249

t

thermal field

— amplified, 220

thermal noise, 73, 88, 89, 95, 140, 146, 170,
181, 182, 205, 208, 212, 228, 236, 311

— ambient, 208, 338, 339

— outside the cavity, 205, 208

— penetration, 187

— right- and left-traveling parts, 138

thermal photon, 54, 213, 257

— injection rate, 257

— number, 158

thermal radiation, 28

thermal radiation field, 28

— density operator, 28

three dimension, 283, 316

three-level atom, 247

threshold, 114, 250, 264

threshold atomic inversion, 69, 93, 128, 144,
249

threshold condition, 98, 214, 217

— atomic inversion, 63

— oscillation frequency, 63

threshold frequency, 69

threshold oscillation frequency, 93, 144

threshold population inversion, 126

time reversal, 349

time-varying phase, 75

total electric field, 88, 343

total field, 151

total field amplitude, 86

total spontaneous emission rate, 253, 257,
299, 309, 316

— enhanced, 258

transmission coefficient, 115, 118, 131, 155,
188, 199, 202, 281, 338

— amplitude, 211

transmission loss, 1

transverse effect, 316

transverse quantum correlation length, 289

two-component vector, see spinor notation

two oppositely traveling waves, 108, 123, 137

— right-and left-traveling waves, 170

two-level atom, 49, 83, 246, 267

two-side output coupling, 211

two-sided cavity, 239, 253

— asymmetric, 212

— generalized, 239, 244, 249, 251, 311, 312, 338

— laser, 261

- symmetric, 5, 12, 267

two sided cavity laser, 258

u

unit step function, 109, 142, 171, 307, 341,
351

universe, 7

unsaturated atomic inversion,, 170, 251

unsaturated gain, 177, 178

unstable cavity, 330, 331

upper laser level, 83

14

vacuum fluctuation, 85, 213, 236, 237, 322
vector potential, 1, 25, 377

velocity of light, 2

w

wave equation, 295

wavefunction, 286

wavenumber, 3, 295

weak coupling regime, 278
Wigner-Weisskopf approximation, 271
Wronskian, 307

z
zero-point energy, 24
zeta function, 32, 381
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