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Preface

After a half-century from the birth of the laser, we now see lasers in a variety of

locations in academic institutions and industrial settings, as well as in everyday

life. The species of laser are diverse. The core of quantum-mechanical laser theory

was established in the 1960s by the Haken school and Scully. Semiclassical gas

laser theory was also established in the 1960s by Lamb. Subsequently, many

theoretical works on lasers have appeared for specific types of lasers or for specific

operation modes. So, laser science is now mature and seems to leave little to be

elucidated. Laser science has evolved into many branches of quantum-optical

science, including coherent interaction, nonlinear optics, optical communications,

quantum-optical information, quantum computation, laser-cooled atoms, and

Bose–Einstein condensation, as well as gravitational wave detection by laser in-

terferometer. Laser light is typical classical light, in that it closely simulates the

coherent state of light, while in recent years light with non-classical quality has

claimed more and more attention.

The role of laser theory is to clarify the character and quality of laser light and to

show how it arises. The Haken school considered the laser linewidth and the

amplitude distribution, while Scully considered the number distribution of laser

photons. Laser linewidth and photon number distribution are complementary

aspects of the same laser phenomenon viewed from wave phase or corpuscular

viewpoints. Analysis of a laser from these viewpoints is involved because of the

interaction of many atoms and the optical field as well as the pumping and

damping processes. Thus, a common recipe for treating the laser field is to assume

a single-mode field and reduce the number of degrees of freedom of the field to

one. Then one has a single time-dependent variable for the field or a photon

distribution for a single mode. The cost of reducing the number of degrees of

freedom for the field to one is to lose information regarding the spatial field dis-

tribution, especially the relation between the fields inside and outside the laser

cavity.

The theme of this book is to discuss how to deal with this defect of standard laser

theories. To fully incorporate the field degrees of freedom in a laser is to treat the

output coupling of the laser cavity rigorously. When the output coupling loss of

the cavity is incorporated, cavity mode quantization becomes a difficult task be-

cause of the associated losses. Usual field quantization, relying on the field ex-

pansion in terms of orthogonal modes, becomes impossible because decaying
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cavity modes are non-orthogonal. A direct approach to this problem is to set the

laser cavity in a much larger cavity that simulates the ‘‘universe.’’ Quantization is

accomplished using the normal modes of the larger cavity that includes the laser

cavity. The cost of this procedure is to have an infinite number of field modes

instead of the single mode in conventional theories.

The burden of the infinite number of field modes can be relaxed if we go to a

collective field variable expressing the total electric field. Then, the laser equation

of motion can be solved for the total electric field. Thermal or vacuum fluctuation

affecting the laser field is incorporated automatically in this procedure. Quantum

noise is introduced as the fluctuating force associated with the decay of the atomic

dipole. The resulting expressions for the laser linewidth both below and above

threshold have a common correction factor compared with the formula resulting

from the theory assuming a single mode. This factor, called the excess noise factor,

attracted the attention of many scientists, who discussed the origin of the

factor. Various approaches to derive the factor have been published. In particular,

Siegman proposed that the excess noise factor is the result of non-orthogonality or

bi-orthogonality of cavity modes. The non-orthogonality is, in turn, a consequence

of the open character of the laser cavity as compared to the closed structure of a

fictitious ‘‘single’’-mode cavity.

Using the orthogonal modes of the ‘‘universe,’’ it can be shown that the relation

between the field inside and outside the cavity is not determined simply by the

transmission coefficient of the cavity mirror, because the thermal or vacuum field

exists everywhere. Outside the cavity, the total field is the sum of the transmitted

field and the ambient thermal or vacuum field.

In this book, we present a laser theory that takes into account the output cou-

pling of the cavity and uses the orthogonal modes of the ‘‘universe.’’ We analyze

the wave aspect of the laser field in both a semiclassical and quantum-mechanical

manner. In the quantum-mechanical analysis, we obtain the excess noise factor.

We also present a simplified method to avoid the use of the modes of the ‘‘uni-

verse’’ where again the excess noise factor is derived. We analyze the spontaneous

emission process in a cavity with output coupling to show that the respective

spontaneous emission process in a cavity is not enhanced by the excess noise

factor. In order to consider the physical origin of the excess noise factor, the

theories of the excess noise factor are surveyed. Also, to compare the method taken

in this book with other methods to treat output coupling, quantum theories on

cavity output coupling or the input–output relation are surveyed.

We begin in Chapter 1 with a classical analysis of one-dimensional optical

cavities with output coupling. Chapter 2 gives a quantum-mechanical analysis of

the same cavities embedded in a larger cavity. Chapter 3 describes the necessary

preliminaries for a quantum-mechanical laser analysis. This includes the Langevin

force for the field in the case of the single-mode approximation, and those for

atomic polarization and atomic inversion. As a reference for a full laser analysis

that incorporates cavity output coupling, a laser theory assuming a single mode,

which we call a quasimode, is presented in Chapter 4. Standard, conventional

results on laser operation, especially on laser linewidth, are derived. Chapter 5
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displays, for a laser with output coupling, the complete equations of motion for the

field modes, atomic polarizations, and atomic inversions. The atomic variables are

eliminated to obtain an equation for the total field. In Chapter 6 is shown the

contour integral method of solution for the field equation utilizing the poles in

the normalization constant in the field mode functions.

Chapter 7 gives semiclassical, linear gain analysis. Ignoring the Langevin forces

and the gain saturation effect, it solves the field equation of motion using the

Fourier expansion of the normalization constant of the field mode functions. The

space-time structure of the linear build-up of the field is clarified. Chapter 8, giving

a semiclassical, nonlinear gain analysis, improves Chapter 7 by incorporating the

saturation effect in atomic inversion, but still ignoring the Langevin forces. The

steady-state field distribution is determined. Chapter 9 improves Chapter 7 by

incorporating the Langevin forces, but ignoring the saturation effect. This

amounts to a quantum, linear gain analysis. The laser linewidth below threshold is

determined. Chapter 10 gives a quantum, nonlinear gain analysis. This includes

both the Langevin forces and the saturation effect, summarizing the results of the

previous three chapters. The expression for the linewidth is shown to have two

corrections compared to that in Chapter 4, one of which is the excess noise factor.

Chapter 11 presents a simplified method of laser analysis that combines the effects

of the Langevin forces and optical boundary conditions for traveling waves.

Chapter 12 summarizes the results obtained in Chapters 7–11 and discusses

various physical aspects of laser oscillation. The spontaneous emission process in

a cavity with output coupling is analyzed in Chapter 13. Chapter 14 surveys the-

ories of excess noise factor and finally Chapter 15 surveys quantum theories of

output coupling.

The book is structured so that the reader can begin with basic quantum-

mechanical knowledge and step up to rather complicated laser wave analyses.

Knowledge of preliminary quantum mechanics, some preliminary operator alge-

bra, simple contour integrals, Fourier transforms, and differential equations is

assumed. Knowledge of elementary laser theory is also assumed. Knowledge of

basic semiclassical laser analysis is preferable. Leaps in transforming one equation

into the next are avoided as often as possible. Wherever the description of a topic is

short and poor, the relevant literature is cited for the reader’s reference. Problems

are provided in Chapters 1–5.

Fully quantum-mechanical theories of excess noise or output coupling exist, but

most of them are in a sophisticated form. Unfortunately, to treat a realistic cavity is

involved, as we will see in this book. But theories to be compared easily with ex-

periments will be of particular importance in view of the developing field of non-

classical light. We hope some of the published papers cited in this book meet this

demand. There is no doubt that future papers will appear to improve the situation.

Kikuo Ujihara
Tokyo, August 2009
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1

A One-Dimensional Optical Cavity with Output

Coupling: Classical Analysis

In this chapter, a one-dimensional optical cavity with output coupling is con-

sidered. The optical cavity has transmission loss at one or both of the end surfaces.

The classical, natural cavity mode is defined, and decaying or growing mode

functions are derived using the cavity boundary conditions. A series of resonant

modes appears. But these modes are not orthogonal to each other and are not

suitable for quantum-mechanical analysis of the optical field inside or outside of

the cavity. Hypothetical boundaries are added at infinity in order to obtain

orthogonal wave mode functions that satisfy the cavity and infinity boundary

conditions. These new mode functions are suitable for field quantization, where

each mode is quantized separately and the electric field of an optical wave is made

up of contributions from each mode. Some results of quantization are described in

the next chapter. Chapter 3 deals with the usual quasimode model: a perfect cavity

with distributed internal loss or with a fictitious loss reservoir.

1.1

Boundary Conditions at Perfect Conductor and Dielectric Surfaces

In a source-free space, the electric field E and the magnetic field H described using

a vector potential A satisfy the following equations:

r2AðrÞ � 1

c2

@

@t

� �2

AðrÞ ¼ 0 ð1:1Þ

EðrÞ ¼ � @

@t
AðrÞ ð1:2Þ

HðrÞ ¼ 1

m
r� AðrÞ ð1:3Þ
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where c is the velocity of light and m is the magnetic permeability of the medium.

We work in a Coulomb gauge where

div AðrÞ ¼ 0 ð1:4Þ

In this chapter we consider one-dimensional, plane vector waves that are

polarized in the x-direction and propagated to the z-direction. Therefore we write

AðrÞ ¼ Aðz; tÞx ð1:5Þ

where x is the unit vector in the x-direction. At the surface of a perfect conductor

that is vertical to the z-axis, the tangential component of the electric vector

vanishes. The tangential component of the magnetic field should be proportional

to the surface current. In the absence of a forced current, this condition is

automatically satisfied: the magnetic field that is consistent with the electric field

induces the necessary surface current. At the interface between two dielectric

media, or at the interface between a dielectric medium and vacuum, the tangential

components of both the electric and magnetic fields must be continuous. Thus, at

the surface zc of a perfect conductor,

@

@t
Aðzc; tÞ ¼ 0 ð1:6Þ

and at the interface zi of dielectrics 1 and 2,

@

@t
A1ðzi; tÞ ¼

@

@t
A2ðzi; tÞ ð1:7Þ

@

@z
A1ðz; tÞ

�
�
�
�
z¼zi

¼ @

@z
A2ðz; tÞ

�
�
�
�
z¼zi

ð1:8Þ

In Equation 1.8 we have dropped the magnetic permeability m1 and m2, as-

suming that both of them are equal to that in vacuum, m0, which is usually valid in

the optical region of the frequency spectrum.

1.2

Classical Cavity Analysis

1.2.1

One-Sided Cavity

Consider a one-sided cavity depicted in Figure 1.1. This cavity consists of a lossless

non-dispersive dielectric of dielectric constant e1, which is bounded by a perfect

conductor at z¼� d and vacuum at z¼ 0. The outer space 0 o z is a vacuum

of dielectric constant e0. Subscripts 1 and 0 will be used for the regions �d o z o 0

and 0 o z, respectively. The velocity of light in the regions 1 and 0 are c1 and c0,

respectively.
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The natural oscillating field mode of the cavity, the cavity resonant mode, is

defined as the mode that has only an outgoing wave in the outer space 0 o z. For

reasons that will be described in Chapter 14, we also derive a mode that has only

an incoming wave outside. For simplicity, let us call these the outgoing mode and

incoming modes, respectively. Let the mode functions be

Aðz; tÞ ¼ uðzÞe�iot; �d o z o 0

¼ ve�iðot � k0zÞ; 0 o z
ð1:9Þ

where v is a constant. We define the wavenumber k by

ki ¼ o=ci; i ¼ 0; 1 ð1:10Þ

The upper and lower signs in the second line in Equation 1.9 are for the out-

going mode and the incoming mode, respectively. Substituting Equation 1.9 into

Equation 1.1 via Equation 1.5 we obtain

�o2

c2
1

u ¼ d

dz

� �2

u; �d o z o 0

k0 ¼
o
c0
; 0 o z

ð1:11Þ

Thus we can set

uðzÞ ¼ Aeik1z þ Be�ik1z

v ¼ C
ð1:12Þ

where k1¼ok / c1. Putting this into Equation 1.6 for z¼�d and into Equations 1.7

and 1.8 for z¼ 0, we obtain

Ae�ik1d þ Beik1d ¼ 0

Aþ B ¼ C

ik1ðA� BÞ ¼ �ik0C

ð1:13Þ

We then have

e2ik1d ¼ �k0 � k1

k1 � k0
¼ �c1 � c0

c0 � c1
ð1:14Þ

Figure 1.1 The one-sided cavity model.
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For the outgoing mode (upper sign) we have

e2ik1d ¼ �c1 � c0

c0 � c1
¼ � c0 þ c1

c0 � c1
ð1:15Þ

Because we are assuming that both c1 and c0 are real and that the velocity of light

in the dielectric is smaller than that in vacuum (c1 o c0), k1 is a complex number

K1out. We reserve k1 for the real part of K1out. Then we obtain

K1out;m ¼ k1m � ig

k1m ¼
1

2d
ð2m þ 1Þp; m ¼ 0; 1; 2; 3; : : :

g ¼ 1

2d
ln

c0 þ c1

c0 � c1

� �

¼ 1

2d
ln

1

r

� �
ð1:16Þ

There is an eigenmode every p/d in the wavenumber. Note that the imaginary part

is independent of the mode number. The coefficient

r ¼ c0 � c1

c0 þ c1
ð1:17Þ

is the amplitude reflectivity of the coupling surface, z¼ 0, for the wave incident

from the left, that is, from inside the cavity. The corresponding eigenfrequency of

the mode is

Om � Okout;m ¼ ocm � igc

ocm ¼
c1

2d
ð2m þ 1Þp; m ¼ 0; 1; 2; 3; : : :

gc ¼
c1

2d
ln

c0 þ c1

c0 � c1

� �

¼ c1

2d
ln

1

r

� �
ð1:18aÞ

where we have defined the complex angular frequency Om. In subsequent

chapters, a typical cavity eigenfrequency, with a certain large number m, will be

denoted as

Oc ¼ oc � igc ð1:18bÞ

The separation of the mode frequencies is Doc ¼ c1p=d.

Likewise, for the incoming mode (lower sign) we have

e2ik1d ¼ c1 � c0

c0 þ c1
¼ � c0 � c1

c0 þ c1
ð1:19Þ

from which we obtain

K1in;m ¼ K�1out;m ¼ k1m þ ig ð1:20aÞ

and

Okin;m ¼ O�kout;m ¼ ocm þ igc � O�m ð1:20bÞ
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Going back to Equation 1.13 we now get the ratios of A, B, and C. Thus, except

for an undetermined constant factor, for the outgoing mode we have

Aðz; tÞ ¼ umðzÞe�iOmt ð1:21aÞ

umðzÞ ¼
sinfOmðzþ dÞ=c1g; �d o z o 0

sinfOmd=c1geiOmðz=c0Þ; 0 o z

(

ð1:21bÞ

and for the incoming mode we have

Aðz; tÞ ¼ ~umðzÞe�iO�mt ð1:22aÞ

~umðzÞ ¼
sinfO�mðzþ dÞ=c1g; �d o zo 0

sinfO�md=c1ge�iO�mðz=c0Þ; 0 o z

(

ð1:22bÞ

where the suffix m signifies the cavity mode. We note that the outgoing mode is

temporally decaying whereas the incoming mode is growing. Inside the cavity, the

field is a superposition of a pair of right-going and left-going waves with decaying

or growing amplitudes. We note that ~umðzÞ ¼ u�mðzÞ, meaning that the complex

conjugate of the incoming mode function is the time-reversed outgoing mode

function.

We also note that different members of the outgoing mode are non-orthogonal

in the sense that

ð0

�d
u�mðzÞ um0 ðzÞdz 6¼ 0; m 6¼ m0 ð1:23Þ

Similarly, members of the incoming mode are mutually non-orthogonal. How-

ever, a member of the outgoing mode and a member of the incoming mode are

approximately orthogonal. That is, if normalized properly, it can be shown that

ð0

�d
~u�out;mðzÞ uin;m0 ðzÞdz ffi dm;m0 ð1:24Þ

The approximation here neglects the integrals of spatially rapidly oscillating

terms. This is justified when the cavity length d is much larger than the optical

wavelength lk ¼ 2pc1=ok or when m c 1 in Equation 1.16. These relationships

among the outgoing and incoming mode functions will be discussed in Chapter 14

in relation to the quantum excess noise or the excess noise factor of a laser.

1.2.2

Symmetric Two-Sided Cavity

Consider a symmetrical, two-sided cavity depicted in Figure 1.2. This cavity con-

sists of a lossless non-dispersive dielectric of dielectric constant e1, which is
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bounded by external vacuum at both z¼�d and z¼ d. Subscripts 1 and 0 will be

used for the internal region �d o z o d and external region d o z and z o �d,

respectively. The velocity of light in the regions 1 and 0 are c1 and c0, respectively.

Let the mode functions be

Aðz; tÞ ¼ uðzÞe�iot; �d o z o d

¼ ve�iðot�k0zÞ; d o z

¼ we�iðot�k0zÞ; z o�d

ð1:25Þ

where again the upper signs are for the outgoing mode and the lower ones are for

the incoming mode, and both v and w are constants. Following a similar procedure

as above, this time we get symmetric and antisymmetric mode functions for both

outgoing and incoming modes.

The symmetric outgoing mode function is (problem 1-1)

Aðz; tÞ ¼
cosðOz=c1Þe�iOt; �d o z o d

cosðOd=c1Þe�iOft�ðz�dÞ=c0g; d o z

cosðOd=c1Þe�iOftþðzþdÞ=c0g; z o�d

8
><

>:
ð1:26Þ

where

O ¼ Om ¼ om � igc

om ¼
c1

d
mp; m ¼ 0; 1; 2; 3; : : :

gc ¼
c1

2d
ln

c0 þ c1

c0 � c1

� �

¼ c1

2d
ln

1

r

� �
ð1:27Þ

The antisymmetric outgoing mode function is

Aðz; tÞ ¼
sinðOz=c1Þe�iOt; �d o z o d

sinðOd=c1Þe�iOft�ðz�dÞ=c0g; d o z

� sinðOd=c1Þe�iOftþðzþdÞ=c0g; zo�d

8
><

>:
ð1:28Þ

Figure 1.2 The symmetrical two-sided cavity model.
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where

O ¼ Om ¼ om � igc

om ¼
c1

2d
ð2m þ 1Þp; m ¼ 0; 1; 2; 3; : : :

gc ¼
c1

2d
ln

c0 þ c1

c0 � c1

� �

¼ c1

2d
ln

1

r

� �
ð1:29Þ

The symmetric and antisymmetric incoming mode functions are given by

Equations 1.26 and 1.28, respectively, with Om replaced by O�m. Note that the

antisymmetric mode functions for 0 o z, if shifted to the left by d (z - zþ d),

coincide with the mode functions for the one-sided cavity in Equations 1.21a and

1.22a, as is expected from the mirror symmetry of the two-sided cavity. The rela-

tions 1.23 and 1.24 also hold in this cavity model.

1.3

Normal Mode Analysis: Orthogonal Modes

As we have seen in the previous section, the natural resonant modes (outgoing

mode) of the cavity, as well as the associated incoming modes, are non-orthogonal

and associated with time-decaying or growing factors. This feature is not suitable

for straightforward quantization. For straightforward quantization, we need ortho-

gonal, stationary modes describing the cavity. For this purpose, we introduce arti-

ficial boundaries at large distances so as to get such field modes.

1.3.1

One-Sided Cavity

1.3.1.1 Mode Functions of the ‘‘Universe’’

For the one-sided cavity, we add a perfectly reflective boundary of a perfect conductor

at z¼ L as in Figure 1.3. Then we have three boundaries: at z¼�d and z¼ L the

boundary condition 1.6 applies, whereas at z¼ 0 the conditions 1.7 and 1.8 apply.

The region �d o z o L is our ‘‘universe,’’ within which the region �d o z o 0 is

the cavity and the region 0 o z o L is the outside space.

Figure 1.3 The one-sided cavity embedded in a large cavity.
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Here, again, subscripts 1 and 0 will be used for the regions �d o z o 0 and

0 o z o L, respectively. Assuming, again, the form of Equation 1.5 for the field,

we assume the following form of the field:

A z; tð Þ ¼ QðtÞUðzÞ ð1:30Þ

We try solutions of the form:

A1ðz; tÞ ¼ QðtÞU1ðz; tÞ; �d o z o 0 ð1:31aÞ

A0ðz; tÞ ¼ QðtÞU0ðz; tÞ; 0 o z o L ð1:31bÞ

Then Equation 1.1 gives

d

dt

� �2

QðtÞ þ o2QðtÞ ¼ 0 ð1:32aÞ

and

d

dz

� �2

U1ðzÞ þ ðk1Þ2U1ðzÞ ¼ 0

d

dz

� �2

U0ðzÞ þ ðk0Þ2U0ðzÞ ¼ 0

ð1:32bÞ

where

ki ¼ o=ci ¼ oðeim0Þ1=2; i ¼ 0; 1 ð1:33Þ

Thus we assume the following spatial form:

UðzÞ ¼
U1ðzÞ ¼ a1eik1z þ b1e�ik1z; �d o z o 0

U0ðzÞ ¼ a0eik0z þ b0e�ik0z; 0 o z o L

(

ð1:34Þ

Applying the boundary conditions yields

a1e�ik1d þ b1eik1d ¼ 0 ð1:35aÞ

a1 þ b1 ¼ a0 þ b0 ð1:35bÞ

a1k1 � b1k1 ¼ a0k0 � b0k0 ð1:35cÞ

a0eik0L þ b0e�ik0L ¼ 0 ð1:35dÞ

For non-vanishing coefficients, we need the determinantal equation (problem 1-2)

tanðk0LÞ ¼ �ðk0=k1Þ tanðk1dÞ ð1:36Þ
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or

c1 tan
od

c1
þ c0 tan

oL

c0
¼ 0 ð1:37Þ

Under this condition, the function A can be determined except for a constant

factor as

A1ðz; tÞ¼ f sink1ðzþdÞcosðotþfÞ; �d o z o 0

A0ðz; tÞ¼ f
k1 cosk1d

k0 cosk0L
sink0ðz�LÞcosðotþfÞ

¼ f
k1

k0
cosk1dsink0zþ sink1dcosk0z

� �

cosðotþfÞ; 0 o z o L

ð1:38Þ

where f is an arbitrary phase and f is an arbitrary constant. Equation 1.37 has been

used in the last line.

1.3.1.2 Orthogonal Spatial Modes of the ‘‘Universe’’

Now the allowed values of k0,1 or o are determined by Equation 1.37. If we choose

a large L, L cd, it can be seen that the solution is distributed rather uniformly with

approximate frequency, in k0, of p/L, and that there is no degeneracy in k0 and

thus in o. It can be shown that the space part of the jth mode functions in

Equation 1.38, that is,

UjðzÞ¼
sink1jðzþdÞ; �d o z o 0

k1j

k0j
cosk1jdsink0jzþ sink1jdcosk0jz

� �

; 0 o z o L

8
><

>:
ð1:39Þ

form an orthogonal set in the sense that

ðL

�d
eðzÞUiðzÞUjðzÞdz ¼ 0; i 6¼ j ð1:40aÞ

To show this relation, let us consider the integral

I ¼
ðL

�d

1

m0

@

@z
UiðzÞ

@

@z
UjðzÞdz

¼ 1

m0

UiðzÞ
@

@z
UjðzÞ

�
�
�
�

0

�d

þ 1

m0

UiðzÞ
@

@z
UjðzÞ

�
�
�
�

L

0

� 1

m0

ð0

�d
UiðzÞ

@

@z

� �2

UjðzÞdz� 1

m0

ðL

0

UiðzÞ
@

@z

� �2

UjðzÞdz
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¼
k2

1j

m0

ð0

�d
UiðzÞUjðzÞdz þ

k2
0j

m0

ðL

0

UiðzÞUjðzÞdz

¼ o2
j

ð0

�d
e1UiðzÞUjðzÞdz þ

ðL

0

e0UiðzÞUjðzÞdz

� �

¼ o2
j

ðL

�d
eðzÞUiðzÞUjðzÞdz

ð1:40bÞ

In the second line, the values at z¼�d and z¼ L vanish because of the con-

dition on the perfect boundary, while the values at z¼ 0 cancel because of the

continuity of both the function and its derivative. The Helmholtz equation 1.32a

and 1.32b was used on going from the third to the fourth line. Finally, Equation

1.33 was used to go to the fifth line. Because we can interchange Ui(z) and Uj(z) in

the first line, we also have

I ¼ o2
i

ðL

�d
eðzÞUiðzÞUjðzÞdz ð1:40cÞ

Thus we have

0 ¼ o2
j � o2

i

� � ðL

�d
eðzÞUiðzÞUjðzÞdz ð1:40dÞ

Since the modes are non-degenerate, the integral must vanish, which proves

Equation 1.40a.

1.3.1.3 Normalization of the Mode Functions of the ‘‘Universe’’

For later convenience, we normalize the mode function 1.39 as

UjðzÞ ¼ NjujðzÞ ð1:41aÞ

ujðzÞ ¼

sin k1jðzþ dÞ; �dozo0

k1j

k0j
cos k1jd sin k0jzþ sin k1jd cos k0jz

� �

; 0ozoL

8
>><

>>:
ð1:41bÞ

with the orthonormality property

ðL

�d
eðzÞUiðzÞUjðzÞdz ¼ di;j ð1:42aÞ

where the Kronecker delta symbol

di;j ¼
1; i ¼ j

0; i 6¼ j

(

ð1:42bÞ
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It will be left for the reader to derive the normalization constant (problem 1-3):

Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1fdþ ðcos k1jd= cos k0jLÞ2Lg

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1fdþ ð1� K sin2 k1jdÞLg

s

K ¼ 1� k0j

k1j

� �2

¼ 1� c1

c0

� �2

ð1:43Þ

The condition 1.37 has been used in the second line. Note that K is a constant for

a given cavity. As will be discussed in Section 1.4, we will take the limit L - N

and ignore the quantity d in Equation 1.43 in later applications of the one-sided

cavity model.

1.3.1.4 Expansion of the Field in Terms of Orthonormal Mode Functions

and the Field Hamiltonian

If the mode functions in Equation 1.41a form a complete set, which will be dis-

cussed in the last part of this section, a vector potential of any spatio-temporal

distribution in the entire space �d r z r L, which vanishes at both ends, may be

expanded in terms of these functions in the form

Aðz; tÞ ¼
X

k

QkðtÞUkðzÞ ð1:44Þ

where Qk(t) is the time-varying expansion coefficient. The corresponding electric

and magnetic fields are found from Equations 1.2 and 1.3. In the following, we

want to calculate the total Hamiltonian associated with the waves in Equations

1.39:

H ¼
ðL

�d

e
2

Eðz; tÞ2 þ m
2

Hðz; tÞ2
h i

dz

¼
ðL

�d

e
2

@

@t
Aðz; tÞ

� �2

þ 1

2m
@

@z
Aðz; tÞ

� �2
" #

dz

ð1:45Þ

Writing

d

dt
Qk ¼ Pk ð1:46Þ

we perform the integrations in Equation 1.45, which include, for the regions both

inside and outside the cavity, the squared electric and magnetic fields for every

member k and cross-terms of electric fields coming from different members k and

ku, and similar cross-terms for the magnetic field. The integration is done in

1.3 Normal Mode Analysis: Orthogonal Modes | 11



Appendix A. The resultant expression is very simple due to the orthogonality of the

mode functions:

H ¼ 1

2

X

k

�
P2

k þ o2
kQ2

k

�
ð1:47Þ

1.3.2

Symmetric Two-Sided Cavity

1.3.2.1 Mode Functions of the ‘‘Universe’’

For the symmetric two-sided cavity, we impose a periodic boundary condition

instead of perfect boundary conditions. Figure 1.4 depicts a two-sided cavity of a

lossless non-dispersive dielectric of dielectric constant e1 extending from z¼�d to

z¼ d. The exterior regions are vacuum with dielectric constant e0. We assume a

periodicity with period L þ 2d and set another dielectric from z¼ Lþ d to

z¼ Lþ 3d. The region �d o z o Lþ d is one period of our ‘‘universe’’ within

which the region �d o z o d is the cavity. The ‘‘universe’’ may alternatively be

thought to exist in the symmetric region �L=2� d o z o L=2þ d.

Here, again, subscripts 1 and 0 will be used for the regions �d o z o d and

d o z o Lþ d, respectively. Assuming again the form of Equation 1.5 for the

field, we assume a solution of the form

Aðz; tÞ ¼ QkðtÞUkðzÞ ð1:48Þ

Equation 1.1 then yields

d

dt

� �2

Qj tð Þ ¼ �o2
j Qj tð Þ ð1:49Þ

d

dz

� �2

Uj zð Þ ¼ �k2
j Uj zð Þ ð1:50Þ

where kj ¼ oj=c. A general solution of Equation 1.50 in the one period may be

written as

U0j zð Þ ¼ Aje
ik0jz þ Bje

�ik0jz d o z o L þ dð Þ ð1:51Þ

U1j zð Þ ¼ Cje
ik1jz þ Dje

�ik1jz �d o z o dð Þ ð1:52Þ

Figure 1.4 The two-sided cavity with the cyclic boundary condition.
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where

k0;1j ¼ oj=c0;1 ð1:53Þ

Applying the continuity boundary conditions at z¼ d and the periodic boundary

conditions at z¼�d and Z¼ Lþ d, one has

U1jðdÞ ¼ U0jðdÞ

U01jðdÞ ¼ U00jðdÞ

U1jð�dÞ ¼ U0jðLþ dÞ

U01jð�dÞ ¼ U00jðLþ dÞ

ð1:54Þ

The last two equations are obtained by combining the continuous conditions at

z¼�d with the cyclic boundary conditions. With Equations 1.51 and 1.52, the

coefficients Aj, Bj, Cj, and Dj must satisfy

Cje
ik1jd þ Dje

�ik1jd ¼ Aje
ik0jd þ Bje

�ik0jd

Cjk1je
ik1jd �Djk1je

�ik1jd ¼ Ajk0je
ik0jd � Bjk0je

�ik0jd

Cje
�ik1jd þDje

ik1jd ¼ Aje
ik0j Lþdð Þ þ Bje

�ik0j Lþdð Þ

Cjk1je
�ik1jd � Djk1je

ik1jd ¼ Ajk0je
ik0j Lþdð Þ � Bjk0je

�ik0j Lþdð Þ

ð1:55Þ

It is left to the reader to show that the determinantal equation for non-zero

values of the coefficients is

1� k1j

k0j

� �2

sin2 k1jd�
k0jL

2

� �

¼ 1þ k1j

k0j

� �2

sin2 k1jdþ
k0jL

2

� �

ð1:56Þ

which reduces to two equations:

tanðk1jdÞ ¼ �
c0

c1
tan

k0jL

2

� �

ða modeÞ ð1:57aÞ

tanðk1jdÞ ¼ �
c1

c0
tan

k0jL

2

� �

ðb modeÞ ð1:57bÞ

Thus we have two sets of eigenvalues of wavenumber kj or eigenfrequency oj.

We refer to the modes determined by Equation 1.57a as a modes and those

determined by Equation 1.57b as b modes. Graphical examination shows that the

a mode and b mode solutions appear alternately on the angular frequency axis.

Then we derive mode functions from Equations 1.55 and 1.57a and 1.57b as

(problem 1-4):
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Ua
j ðzÞ ¼ aj �

sinðk1jzÞ ð�d o z o dÞ

sinðk1jdÞ cos k0jðz� dÞ
� 	

þ c0

c1
cosðk1jdÞ sin k0jðz� dÞ

� 	 ðd o z o L þ dÞ

8
>>><

>>>:

ð1:58aÞ

Ub
j zð Þ ¼ bj �

cos k1jz

 �

�do zo dð Þ
cos k1jl

 �

cos k0j z� dð Þ
� 	

� c0

c1
sin k1jl

 �

sin k0j z� dð Þ
� 	 do zo Lþ dð Þ

8
>>>><

>>>>:

ð1:58bÞ

1.3.2.2 Orthonormal Spatial Modes of the ‘‘Universe’’

It can be shown that the two different members, each from either a mode or

b mode, are orthogonal in the sense of Equation 1.40a. They are normalized in

the sense of Equation 1.42a if the constants aj and bj are given by

aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1f2dþ ð1� K sin2 k1jdÞLg

s

ð1:59aÞ

bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1f2dþ ð1� K cos2 k1jdÞLg

s

ð1:59bÞ

where K was defined in Equation 1.43. This can be derived by repeated use of the

determinantal equations 1.57a and 1.57b. As will be discussed in Section 1.4, we

will take the limit L!1 and ignore the quantity 2d in Equations 1.59a and 1.59b

in later applications of the two-sided cavity model.

1.3.2.3 Expansion of the Field in Terms of Orthonormal Mode Functions

and the Field Hamiltonian

If the mode functions in Equations 1.58a and 1.58b form a complete set, which

will be discussed in Section 1.6, a vector potential of any spatio-temporal dis-

tribution in the entire space �d o z o Lþ d or �L=2� d o z o L=2þ d may

be expanded in terms of these functions in the same form as in Equation 1.44,

Aðz; tÞ ¼
X

k

QkðtÞUkðzÞ ð1:60Þ

where Qk(t) is the time-varying expansion coefficient. The total Hamiltonian

defined as in Equation 1.45, with the upper limit of integration replaced by Lþ d,

can be evaluated again defining the ‘‘momentum’’ Pk associated with the

‘‘amplitude’’ Qk as in Equation 1.46. Using Equations 1.2 and 1.3, we perform

the integrations as in Equation 1.45, which include, for the regions both inside and

outside the cavity, the squared electric and magnetic field for every member k from

both the a mode and b mode functions, and cross-terms of electric fields coming

from different members k and ku and similar cross-terms for the magnetic field.
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All the cross-terms vanish on integration due to the orthogonality of the mode

functions. The resultant expression is the same as Equation 1.47:

H ¼ 1

2

X

k

ðP2
k þ o2

kQ2
k Þ ð1:61Þ

Note that the mode index k here includes both a mode and b mode functions.

1.4

Discrete versus Continuous Mode Distribution

The length L, expressing the extent of the outside region, was introduced for

mathematical convenience. As we have seen, this allowed us to obtain discrete,

orthogonal mode functions, which are stationary. We eventually normalized them.

Because the physical content of the outside region is the free space outside the

cavity, there is no reason to have a finite value of L. On the contrary, if L is finite

(comparable to d), various artifacts may arise due to reflections at the perfect

boundary at z¼ L in the case of one-sided cavity or at the neighboring cavity

surface in the case of the two-sided cavity. For this reason, we take the limit L!1
in what follows.

In this limit, in the case of the one-sided cavity, the normalization constant

reduces to

Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1� K sin2 k1jdÞ

s

ð1:62aÞ

and the normalized mode function is

UjðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1�K sin2 k2
1jdÞ

s

�

sink1jðzþ dÞ; �d o z o 0

k1j

k0j
cosk1jdsink0jz þ sink1jdcosk0jz

� �

; 0 o z o L

8
>><

>>:

ð1:62bÞ

The mode distribution in the frequency domain is determined by Equation 1.37.

For L!1, the spacing Do of the two eigenfrequencies is

Do ¼ ðc0=LÞp ð1:63Þ

which is infinitely small and the modes distribute continuously. The density of

modes (the number of modes per unit angular frequency) is
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rðoÞ ¼ L

pc0
ð1:64Þ

We note that the maxima of the normalization constant Nj occur at the cavity

resonant frequencies given by Equation 1.18a.

In the case of the two-sided cavity, the normalization constants become

aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1� K sin2 k1jdÞ

s

ð1:65aÞ

bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1� K cos2 k1jdÞ

s

ð1:65bÞ

It is easy to see from Equations 1.57a and 1.57b that the a mode and b mode

appear in pairs along the frequency axis and, in the limit L!1, every pair is

degenerate. The separation of the pairs is now

Do ¼ ð2c0=LÞp ð1:66Þ

so that the density of modes is

raðoÞ ¼ rbðoÞ ¼
1

2
rðoÞ ¼ L

2p c0
ð1:67Þ

For both the one-sided and the two-sided cavities, the overall density of modes

becomes independent of the cavity size and is equal to L=p c0.

In what follows we sometimes encounter the summation of some mode-

dependent quantity Bk over modes of the ‘‘universe.’’ Such a summation is

converted to an integral as follows:

X

k

Bk !
ð1

0

Bok
rðokÞdok ð1:68aÞ

for the case of a one-sided cavity, and

X

k

Bk !
ð1

0

Ba
ok
raðokÞ þ Bb

ok
rbðokÞ

n o
dok

¼ 1

2

ð1

0

ðBa
ok
þ Bb

ok
ÞrðokÞdok

ð1:68bÞ

for the case of a two-sided cavity. Correspondingly, the Kronecker delta symbol

becomes a Dirac delta function by the rule

rðokÞdk;k0 ! dðk� k0Þ ð1:69Þ

because for a k-dependent variable fk we should have
P

k fkdk;k0 ¼
Ð

dk f ðkÞdðk� k0Þ.
We note that the maxima of the a (b) mode occur at the cavity resonant frequencies

of the antisymmetric (symmetric) modes given by Equation 1.29 (Equation 1.27).
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1.5

Expansions of the Normalization Factor

The squared normalization constant for the one-sided cavity, Equation 1.62a,

divided by 2=ðe1LÞ has two expansions that are frequently used in subsequent

sections and chapters (problems 1-6 and 1-7):

1

1� K sin2 k1jd
¼ 2c0

c1

X1

n¼0

1

1þ d0;n
�rð Þncos 2nk1jd

( )

¼
X1

m¼�1

c0gc=d

g2
c þ oj � ocm


 �2

ð1:70aÞ

where the coefficient r was defined in Equation 1.17 and oj ¼ c1k1j. The

coefficients ocm and gc were defined in Equation 1.18a. The first expansion is a

Fourier series expansion and the second one in terms of cavity resonant modes

comes from the Mittag–Leffler theorem [1], which states a partial fraction

expansion based on the residue theory. Similar expansions exist for the normal-

ization constants for the two-sided cavity in Equations 1.65a and 1.65b [2]. The

expansion for Equation 1.65a is the same as in Equation 1.70a with ocm ! oa
cm:

1

1� K sin2 k1jd
¼ 2c0

c1

X1

n¼0

1

1þ d0;n
ð�rÞn cos 2nk1jd

( )

¼
X1

m¼�1

c0gc=d

g2
c þ oj � oa

cm


 �2

1

1� K cos2 k1jd
¼ 2c0

c1

X1

n¼0

1

1þ d0;n
ðrÞn cos 2nk1jd

( )

¼
X1

m¼�1

c0gc=d

g2
c þ oj � ob

cm


 �2

ð1:70bÞ

where oa
cm ¼ ð2m þ 1Þðpc1=2dÞ and ob

cm ¼ 2mðpc1=2dÞ (m is an integer); oa
cm

ðob
cmÞ is the resonant frequency of the antisymmetric (symmetric) mode function

defined in Equation 1.29 (Equation 1.27).

1.6

Completeness of the Modes of the ‘‘Universe’’

Concerning the expansion of the field in terms of the mode functions of the

‘‘universe,’’ it was mentioned above Equation 1.44 that the latter mode functions

must form a complete set. Completeness of a set of functions means the possi-

bility of expanding an arbitrary function, in a defined region of the variable(s), in

terms of them. The set of orthogonal functions in Equations 1.41a and 1.41b
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fulfills this property. Assume that an arbitrary function C(z) defined in the region

�d o z o L is expanded as

CðzÞ ¼
X

i

AiUiðzÞ ð1:71Þ

where Ai is a constant. Multiplying both sides by eðzÞUjðzÞ and integrating,

we have

ðL

�d
eðzÞUjðzÞCðzÞdz¼

ðL

�d

X

i

AieðzÞUjðzÞUiðzÞdz¼
X

i

Aidji ¼ Aj ð1:72Þ

where we have used Equation 1.42a in the second equality. Substituting this result

in Equation 1.71 we have

CðzÞ ¼
X

i

ðL

�d
eðz0ÞUiðz0ÞCðz0Þdz0UiðzÞ

¼
ðL

�d

X

i

eðz0ÞUiðz0ÞUiðzÞ
( )

Cðz0Þdz0
ð1:73Þ

Because C(z) is arbitrary, the quantity in the curly bracket should be a delta

function:

X

i

eðz0ÞUiðz0ÞUiðzÞ ¼ dðz0 � zÞ ð1:74Þ

In integral form it reads

ð1

0

eðz0ÞUiðz0ÞUiðzÞrðoiÞdoi ¼ dðz0 � zÞ ð1:75Þ

This is a necessary condition for completeness. Conversely, if Equation 1.75 holds,

we can use Equation 1.73 to find the expansion coefficient in the form of Equation

1.72. Thus Equation 1.75 is also sufficient for completeness.

Whether the mode functions in Equations 1.41a and 1.41b really fulfill this

condition is another problem. For example, for the case �d o z o 0 and

�d o z0 o 0, using Equation 1.62b, we need to show that

ð1

0

do
L

p c0
e1

2

e1L

1

1� K sin2 k1d
sin k1ðzþ dÞ sin k1ðz0 þ dÞ ¼ dðz0 � zÞ ð1:76Þ

The squared normalization constant N2
o is expanded in terms of cos 2nk1d, n¼ 0,

1, 2, 3,y, as in Equation 1.70a. So, except for constant factors, the integrand

becomes a sum of integrals of the form

ð1

0

cosf2nd � ðz� z0Þgk1dk1

or
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ð1

0

cosf2nd � ðzþ z0 þ 2dÞgk1dk1

We apply the formula [3]

ð1

0

cos zk dk ¼ pdðzÞ ð1:77Þ

Noting that dðz 6¼ 0Þ ¼ 0, we find for the above combination of z and zu that

ð1

0

do
L

p c0
e1

2

e1L

1

1� K sin2 k1d
sin k1ðzþ dÞ sin k1ðz0 þ dÞ ¼ dðz0 � zÞ

� do zo 0; �do z0o 0

ð1:78Þ

where we have discarded the term�dðzþ z0 þ 2dÞ because it is meaningful only at

the perfect boundary, z ¼ z0 ¼ �d, where all the fields vanish physically. Other

combinations of the regions for z and zu can be examined in the same way.

We have

X

k

eðz0ÞUkðz0ÞUkðzÞ ¼
ð1

0

eðz0ÞUkðz0ÞUkðzÞrðokÞdok

¼ dðz0 � zÞ
ð1:79Þ

for �d o z o L, �d o z0 o L, except z ¼ z0 ¼ 0. The exception at z ¼ z0 ¼ 0

occurs because at z¼ 0 the dielectric constant is unspecified. Also, the boundary

conditions demand that the fields should be continuous across this boundary, so

that a delta function at z¼ 0 is prohibited. The completeness of the mode

functions in the case of two-sided cavities can similarly be examined.

" Exercises

1.1 For the symmetrical, two-sided cavity model, derive the resonant frequencies

for the outgoing modes. Also derive the resonant frequencies of the incoming

modes.

1-1. Set uðzÞ ¼ A expðik1zÞ þ B expð�ik1zÞ. Then the boundary conditions at z¼ d
and z¼�d give, respectively,

A

B
¼ k1 � k0

k1 � k0
e�2ik1d;

A

B
¼ k1 � k0

k1 � k0
e2ik1d

Therefore we have

e2ik1d ¼ þ k1 � k0

k1 � k0
or � k1 � k0

k1 � k0

For e2ik1d ¼ þðk1 � k0Þ=ðk1 � k0Þ we have A¼B and have symmetric modes. With

the upper signs, a symmetric outgoing mode is obtained; and with the lower signs,

an incoming symmetric mode is obtained. For e2ik1d ¼ �ðk1 � k0Þ=ðk1 � k0Þ we
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have A¼�B and have antisymmetric modes. With the upper signs, an antisym-

metric outgoing mode is obtained; and with the lower signs, an antisymmetric

incoming mode is obtained.

1.2 Derive the determinantal equation 1.37 and the mode function in Equation 1.38.

1-2. Delete b1 and b0 from Equations 1.35b and 1.35c using Equations 1.35a and

1.35d and divide side by side to obtain Equation 1.36. Next express U1 and U0 in

terms of a1 and a0. Determine a0/a1 by the modified version of Equation 1.35c to

eliminate a0. Finally, set 2ia1 expð�ik1dÞ ¼ 1
2 f expð�ifÞ to obtain Equation 1.38.

1.3 Derive the normalization constant in Equation 1.43 for the one-sided cavity

model.

1-3. Use the form in the first line of Equation 1.38 for 0 o z o L and use the

determinantal equation 1.37.

1.4 Derive the mode functions for the symmetrical two-sided cavity model given

in Equations 1.58a and 1.58b.

1-4. See the solution to 1-2.

1.5 Show the orthogonality of mode functions in Equations 1.58a and 1.58b for

the symmetric cavity under the cyclic boundary conditions following the example

in Equations 1.40b–1.40d. In the limit L!1, an a mode and a b mode can be

degenerate. Are they orthogonal?

1-5. An a mode is antisymmetric and a b mode is symmetric with respect to

the center of the cavity z¼ 0. So, if we have the symmetric region

�L=2� d o z o L=2þ d as a cycle under the cyclic boundary condition, the a
mode and b mode are easily seen to be orthogonal even if they are degenerate.

1.6 Show that the Fourier series expansion in Equation 1.70a for the squared

normalization constant is valid.

1-6. Multiply both sides by the denominator on the left and compare the

coefficients of cos2nk1jd, n¼ 0, 1, 2, 3, y , on both sides. Note that

K ¼ 1� ðc1=c0Þ2 and r ¼ ðc0 � c1Þ=ðc0 þ c1Þ.

1.7 Show that the denominator in the squared normalization constant in Equation

1.70a vanishes at oj ¼ ocm � igc . That is, these oj are simple poles.

1-7. Rewrite the sin2 term as follows:

sin2 k1jd!
eik1jd � e�ik1jd

2i

� �2

¼ e2iðk1m�igÞd þ e�2iðk1m�igÞd � 2

�4

� �

e2iðk1m�igÞd ¼ �ð1=rÞ; e�2iðk1m�igÞd ¼ �r

Therefore
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sin2 k1jd ¼
fð1þ r2Þ=rg þ 2

4
¼ ð1þ rÞ2

4r
¼ 1

1� fð1� rÞ=ð1þ rÞg2 ¼
1

K
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2

A One-Dimensional Optical Cavity with Output Coupling:

Quantum Analysis

2.1

Quantization

Now we have a complete, orthonormal set of mode functions of the universe.

One method of quantization of the field, then, is to separately quantize the

respective field modes and then to add them up to form the total quantized

field. Thus we quantize the system represented by the Hamiltonian in Equation

1.47 or 1.61 by imposing the following commutation relations on the variables

Qk and Pk:

½Q̂ i; Q̂ j	 ¼ P̂i; P̂j

� 
¼ 0; Q̂ i; P̂j

� 
¼ i_dij ð2:1Þ

where a hat symbol is attached to a quantum-mechanical operator, and the

commutator is defined for two operators as

Â; B̂
� 

� ÂB̂� B̂Â ð2:2Þ

Now Q̂k and P̂k are operators acting on the kth mode. Imposing the above

commutation relation is equivalent to imposing an uncertainty relation between the

variables. The uncertainty relation is one of the fundamental postulates of quantum

mechanics. The ‘‘position’’ and ‘‘momentum’’ operators (the field amplitude and

its time derivative operators) of the same mode do not commute with each other.

The variances of these two variables are related by an uncertainty relation. Although

the inter-mode spacing is infinitely small, the variables belonging to different

modes are assumed to be independent variables and to commute with each other.

The Hamiltonian becomes the Hamiltonian operator

Ĥ ¼ 1

2

X

k

P̂2
k þ o2

kQ̂2
k

� �

ð2:3Þ

We define the annihilation and creation operators for the kth mode by

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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âk ¼ ð2_okÞ�1=2ðokQ̂k þ iP̂kÞ ð2:4Þ

âyk ¼ ð2_okÞ�1=2ðokQ̂k � iP̂kÞ ð2:5Þ

The inverse relation is

Q̂k ¼ ð_=2okÞ1=2ðâk þ âykÞ ð2:6Þ

P̂k ¼ �ið_ok=2Þ1=2ðâk � âykÞ ð2:7Þ

The commutation relation 2.1 can be rewritten in terms of the new operators as

âi; â
y
j

h i
¼ dij; âi; âj

h i
¼ 0; âyi ; â

y
j

h i
¼ 0 ð2:8Þ

Substituting Equations 2.6 and 2.7 into Equation 2.3 and applying Equation 2.8,

we have

Ĥ ¼
X

k

_ok

�

âþk âk þ
1

2

�

¼
X

k

Ĥk ð2:9Þ

The product âykâk is called the photon number operator of the mode k, and the

term 1
2 represents the zero-point energy of the mode.

2.2

Energy Eigenstates

The state Cj i of the free radiation field obeys the Schrödinger equation

i_
@

@t
Cj i ¼ H Cj i ð2:10Þ

a solution of which is

Cj i ¼
Y

k

jkj i ¼
Y

k

expð�iEk;nt
�
_Þ nkj i ð2:11Þ

Here the solution for mode k is

jkj i ¼ expð�iEk;nt
�
_Þ nkj i ð2:12Þ

where nkj i and Ek,n are the nth energy eigenstate and the corresponding energy of

the kth mode, respectively. The eigenstate satisfies the eigenvalue equation (see

Appendix B)

Ĥk nkj i ¼ Ek;n nkj i ¼ nk þ
1

2

� �

_ok nkj i; nk ¼ 0; 1; 2; 3; : : : ð2:13Þ

The integer number nk is the eigenvalue for the photon number operator âykâk,

and represents the photon number in the mode. The general solution to Equation
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2.10 is a superposition of the pure states of Equation 2.11. The annihilation and

creation operators have the following effects when operated on the energy

eigenstate (see Appendix B):

âk nkj i ¼
ffiffiffiffiffi
nk
p

nk � 1j i; nk ¼ 1; 2; 3; : : :

âk 0kj i ¼ 0
ð2:14Þ

and

âyk nkj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
nk þ 1j i; nk ¼ 0; 1; 2; 3; : : : ð2:15Þ

The non-vanishing matrix elements of these are therefore

ak;nk�1;nk
¼ nk � 1h jâk nkj i ¼

ffiffiffiffiffi
nk
p ð2:16aÞ

and

ayk;nkþ1;nk
¼ nk þ 1h jâyk nkj i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
ð2:16bÞ

Going back to the definition of the electric field (Equation 1.2), the operator form

of the vector potential and the electric field are then given by

Âðz; tÞ ¼
X

j

Q̂ jUjðzÞ ¼
X

j

ð_
�

2ojÞ
1=2ðâj þ âyj ÞUjðzÞ ð2:17Þ

and

Êðz; tÞ ¼ �
X

j

P̂jUjðzÞ ¼
X

j

ið_oj

�
2Þ1=2ðâj � âyj ÞUjðzÞ ð2:18Þ

Present-day detectors of the optical field cannot follow the very high frequency

of oscillation and detect only some time-averaged intensity as discussed by

Glauber [1]. In this case, the physically meaningful quantity is not the total oscillating

field but the product of so-called positive and negative frequency parts of the fields

defined, respectively, as

ÊðþÞðz; tÞ ¼
X

j

ið_oj

�
2Þ1=2

âjUjðzÞ ð2:19aÞ

and

Êð�Þðz; tÞ ¼ �
X

j

ið_oj

�
2Þ1=2

âyj UjðzÞ ð2:19bÞ

with

Êðz; tÞ ¼ ÊðþÞðz; tÞ þ Êð�Þðz; tÞ ð2:19cÞ
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2.3

Field Commutation Relation

Here we derive a commutation relation for the electric fields at two different space-

time points for the one-sided cavity. We arbitrarily choose one space point zA from

inside the cavity and another zB from outside. The corresponding time variables

are tA and tB, respectively. In order to include the time variables in the commu-

tation relation, we go to the Heisenberg picture. According to the general rule to go

to the Heisenberg picture, we have

âkH ¼ eiĤkt=_âke�iĤkt=_

âykH ¼ eiĤkt=_âyke�iĤkt=_
ð2:20Þ

where the subscript H indicates the operator in the Heisenberg picture. Taking the

non-vanishing matrix elements, we have

akH;nk�1;nk
¼ nk � 1h jeiĤkt=_âke�iĤkt=_ nkj i ¼

ffiffiffiffiffi
nk
p

e�iokt ð2:21aÞ

aþkH;nkþ1;nk
¼ nk þ 1h jeiĤkt=_âþk e�iĤkt=_ nkj i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnk þ 1Þ

p
eiokt ð2:21bÞ

where we have used the fact that Ĥ nkj i ¼ _oðnk þ 1
2Þ nkj i and nkh jĤ ¼ _o

ðnk þ 1
2Þ nkh j. The commutator for the creation and annihilation operators is

unchanged:

âkH; â
y
kH

h i
¼ eiĤkt=_âke�iĤkt=_; eiĤkt=_âyke�iĤkt=_
h i

¼ eiĤkt=_ âk; â
y
k

h i
e�iĤkt=_ ¼ eiĤkt=_e�iĤkt=_ ¼ 1

ð2:22Þ

Using Equation 1.62b we have

ÊHðz; tÞ ¼ i
X

k

_ok

e1Lð1�Ksin2k1dÞ

� �1=2

sink1ðz þ dÞðâke�iokt� âþk eioktÞ; �dozo0

¼ i
X

k

_ok

e1Lð1�Ksin2k1dÞ

� �1=2 k1

k0
cosk1dsink0zB þ sink1dcosk0zB

� �

� âke�iokt� âþk eiokt

 �

; 0 o z o L

ð2:23Þ

Therefore, the commutator is

ÊHðzA; tAÞ; ÊHðzB; tBÞ
h i

¼ 2i
X

k

_ok

e1Lð1� Ksin2k1dÞ
sin k1ðzA þ dÞ

� k1

k0
cos k1d sin k0zB þ sin k1d cos k0zB

� �

sinokðtB � tAÞ

ð2:24Þ
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Using the series expansion (Equation 1.70a) and the density of modes (Equation

1.64) we have

ÊHðzA; tAÞ; ÊHðzB; tBÞ
h i

¼ 2i

ð1

0

_ok

pc0e1

2k1

k0

X1

n¼0

1

1þ d0;n
�rð Þn cos 2nk1d

" #

sin k1ðzA þ dÞ

� k1

k0
cos k1d sin k0zB þ sin k1d cos k0zB

� �

sinokðtB � tAÞdok

ð2:25Þ

Evaluating the products of the sinusoidal functions we obtain

ÊHðzA; tAÞ; ÊHðzB; tBÞ
h i

¼ i_

pc0e1

k2
1

k0ðk1 þ k0Þ

Z 1

0

ok

X1

n¼0

�rð Þn

� sinok
zB

c0
� zA

c1
þ 2nd

c1
þ tB � tA

� ��

� sinok
zB

c0
þ zA þ 2d

c1
þ 2nd

c1
þ tB � tA

� �

� sinok
zB

c0
� zA

c1
þ 2nd

c1
� tB þ tA

� �

þ sinok
zB

c0
þ zA þ 2d

c1
þ 2nd

c1
� tB þ tA

� ��

dok

ð2:26Þ

Now, we remember that the Dirac delta function is given by the integral [2]

dðtÞ ¼ 1=pð Þ lim
K!1

ðK

0

cosot do ð2:27Þ

Differentiation with respect to t yields

d0ðtÞ ¼ �1=pð Þ lim
K!1

ðK

0

o sinot do ð2:28Þ

Therefore, we finally obtain

ÊHðzA; tAÞ; ÊHðzB; tBÞ
h i

¼ i_

e1c1

c0

c0 þ c1

X1

n¼0

�rð Þn

� �d0 zB

c0
� zA

c1
þ 2nd

c1
þ tB � tA

� �

þ d0
zB

c0
þ zA þ 2d

c1
þ 2nd

c1
þ tB � tA

� ��

þ d0
zB

c0
� zA

c1
þ 2nd

c1
� tB þ tA

� �

� d0
zB

c0
þ zA þ 2d

c1
þ 2nd

c1
� tB þ tA

� ��

;

� d o zA o 0; 0 o zB

ð2:29Þ
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The resultant expression for the commutator consists of an infinite number of

terms. They have non-zero values when their arguments are zero. The electric

fields at these two space-time points cannot be determined independently. The

physical meanings of these terms are obvious. For example, the third term in the

sum gives the intensity and the time of arrival at zB of the disturbance when a

flash of light is emitted instantaneously at zA at time tA. The first of these terms

(n¼ 0) is the disturbance transmitted directly from zA to zB. Subsequent terms

are those reflected at the output interface, at z¼ 0, n times with n round trips in

the cavity, before reaching zB. The coefficients of these terms are in powers of the

product of the reflection coefficients at z¼ 0 and at z¼ –d, which are

r ¼ ðc0 � c1Þ=ðc0 þ c1Þ and –1, respectively. Solving for n for the third term, we

have

�rð Þn ¼ �1ð Þn exp �gc tB � tAð Þ � zB

c0
� zA

c1

� ���� �

ð2:30Þ

where gc is given in Equation 1.18. Note that the decay with time is similar to that

in the outgoing mode function in Equation 1.21. The three other terms in

Equation 2.29 correspond to respective different propagation sequences.

2.4

Thermal Radiation and the Fluctuation–Dissipation Theorem

An important theoretical issue concerning the output coupling of an optical cavity

is the treatment of the thermal radiation noise, although the physical magnitude of

the thermal noise in a laser is usually negligible compared with the so-called

quantum noise. When an optical cavity has a loss, statistical mechanics tell us that

there should be a noise associated with the loss, the so-called fluctuation–dis-

sipation theorem. When the cavity loss comes from the output coupling, where

does the noise come from? Is it thermal noise? The answer is ‘‘yes,’’ as will be

shown explicitly in Chapters 9 and 10. Especially, Chapter 10 will show that the

relevant thermal noise penetrates into the cavity from outside. Also, existing

theories related to this issue will be reviewed in Chapter 15. In this section, we

develop the noise theory using the cavity models with output coupling discussed

so far.

2.4.1

The Density Operator of the Thermal Radiation Field

For the ith mode of the ‘‘universe,’’ the thermal radiation field of the mode is

described by the density operator r̂i of the mode, where

r̂i ¼ ð1� e�b_oiÞ
X1

mi¼0
e�mib_oi mij i mih j ð2:31Þ
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Here, b ¼ ðkTÞ�1 with k the Boltzmann constant and T the absolute tempera-

ture. The factor ð1� e�b_oiÞe�mib_oi � pmi is the probability that mi photons appear

in the mode at temperature T. The ensemble average of an operator ÔiðtÞ acting on

the ith mode is given by

ÔiðtÞ
� �

¼ Trfr̂i ÔiðtÞg ¼
X

ni

nih j
X

mi

pmi mij i mih jÔiðtÞ nij i

¼
X

mi

pmi mih jÔiðtÞ mij i
ð2:32Þ

Because the modes of the ‘‘universe’’ are mutually independent, the density

operator for the total field is the direct product of the respective density

operators:

r̂ ¼
Y

i

r̂i ð2:33Þ

We are assuming that the thermal radiation field described by Equation 2.33 is

prepared at t¼ 0 and the field oscillates freely afterwards. Here we are working

in the Heisenberg picture, so that the density operator does not change with time,

but the field operators do change, in general, with time. The ensemble average of

operator ÔðtÞ is given by

ÔðtÞ
� �

¼ Trfr ÔðtÞg ð2:34Þ

The ensemble average of ÔiðtÞ under Equation 2.34 reduces to that in Equation

2.32 because a trace over mode j 6¼ i, for example, simply creates a factor
P

mj
pmj ¼ 1.

2.4.2

The Correlation Function and the Power Spectrum

Now we want to discuss a theorem that connects system loss and the correlation

function of the associated noise and then derive the correlation function for our

model optical cavity. Assume that the thermal radiation field described by the

density operators in Equations 2.31 and 2.33 is prepared at t¼ 0. The positive and

negative frequency parts of the electric field are now written as (see Equation 2.19a

and 2.19b)

ÊðþÞT ðz; tÞ ¼
X

j

ið_oj

�
2Þ1=2

âjð0ÞUjðzÞe�ioj t ð2:35aÞ

and

Êð�ÞT ðz; tÞ ¼ �
X

j

ið_oj

�
2Þ1=2

âyj ð0ÞUjðzÞeioj t ð2:35bÞ
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The suffix T denotes the thermal field. Here the motion of the annihilation

operator for t Z 0 is obtained from the Heisenberg equation

i_
d

dt
âj ¼ âj; Ĥ

� 
¼ âj; Ĥj

� 
¼ âj; _oj âyj âj þ

1

2

� �� �

¼ _oj âjâ
y
j âj � âyj âjâj

� �
¼ _ojðâjâ

y
j � âyj âjÞâj

¼ _ojâj

ð2:36Þ

where the commutation relation of Equation 2.8 has been used. Motion of the

creation operator can be obtained similarly. From the matrix elements in

Equations 2.21a and 2.21b we see that

ÊðþÞT ðz; tÞ
D E

¼ Êð�ÞT ðz; tÞ
D E

¼ 0 ð2:37Þ

The normally ordered correlation function or the coherence function of

second order is defined as the ensemble average of the product Êð�ÞT ðz0; t0Þ
ÊðþÞT ðz; tÞ:

Gðz0; t0; z; tÞ ¼ Êð�ÞT ðz0; t0ÞÊ
ðþÞ
T ðz; tÞ

D E
ð2:38Þ

In a normally ordered product, all the annihilation operators come to the right of

the creation operators. The anti-normally ordered correlation function is similarly

defined as

Gaðz0; t0; z; tÞ ¼ ÊðþÞT ðz0; t0ÞÊ
ð�Þ
T ðz; tÞ

D E
ð2:39Þ

Calculating the average using Equation 2.34 we have

Gðz0; t0; z; tÞ ¼
X

j

1

2
_oj nj

� �
Ujðz0ÞUjðzÞe�iojðt�t0Þ ð2:40Þ

and

Gaðz0; t0; z; tÞ ¼
X

j

1

2
_oj nj

� �
þ 1


 �
Ujðz0ÞUjðzÞeiojðt�t0Þ ð2:41Þ

Here we have used

âyi ð0Þâjð0Þ
D E

¼ nj

� �
dij

âið0Þâyj ð0Þ
D E

¼ nj

� �
þ 1


 �
dij

ð2:42aÞ

where

nj

� �
¼ âyj ð0Þâjð0Þ
D E

¼ ðeb_oj � 1Þ�1 ð2:42bÞ

The constant b is defined below Equation 2.31.
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The correlation function in Equation 2.40 with t¼ t0 can be rewritten by use of

Equation 1.64 as

Gðz0; t; z; tÞ ¼
ð1

0

r oð Þ1
2
_o noh iUo z0ð ÞUo zð Þdo ð2:43Þ

We define the power spectrum Iðz0; z;oÞ of the thermal radiation field as the

integrand of this expression:

Iðz0; z;oÞ ¼ r oð Þ1
2
_o noh iUo z0ð ÞUo zð ÞH oð Þ ð2:44Þ

Here H (o) is the unit step function. Using the formula
Ð1
�1 eixtdt ¼ 2pdðxÞ, it is

easy to show that (problem 2-5)

I z0; z;oð Þ ¼ 1

2p

ð1

�1
G z0; 0; z; tð Þeiotdt ð2:45Þ

That is, the power spectrum is the Fourier transform of the correlation function. The

factor N2
k ¼ ð1� Ksin2k1dÞ�1 included in Uoðz0ÞUoðzÞ has simple poles at

o ¼ ocm � igc , which appear in Equations 1.18 and 1.20, but here m also takes negative

integer values. Thus from the Mittag–Leffler theorem [3] in Equation 1.70 we have

1� Ksin2k1od

 ��1 ¼

X1

m¼�1

c0gc=d

g2
c þ o� ocmð Þ2

ð2:46Þ

Substituting this into Equation 2.44 we have

I z0; z;oð Þ ¼
X1

m¼0

_o noh i
p e1d

gc

g2
c þ o� ocmð Þ2

uo z0ð Þuo zð ÞH oð Þ ð2:47Þ

where uoðzÞ ¼ sin k1oðzþ dÞ, if �d o z o 0, as was defined in Equation 1.41.

Here we have omitted unphysical negative m values. We see that each cavity

resonant mode contributes a term with a Lorentzian profile of width 2gc.

2.4.3

The Response Function and the Fluctuation–Dissipation Theorem

Let us consider a classical current source at z¼ z0 with sinusoidal time depen-

dence J expð�iotÞdðz� z0Þ and coupled linearly to the field at t¼ 0. We define the

response function Y(z, z0, o) as the asymptotic ratio of the induced field at z to the

current as the time goes to infinity:

Je�iotY z; z0;oð Þ ¼ lim
t!1

Ê
ðþÞ

z; tð Þ
D E

ð2:48Þ

where the thermal average is taken in order to extract systematic motions. Then,

if the current source has density =ðz;oÞ in the space and angular frequency

domain, the electric field may be written as
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ÊðþÞ z; tð Þ ¼
ð

dz0

ð1

�1
doY z; z0;oð Þ= z0;oð Þe�iot þ ÊðþÞT z; tð Þ ð2:49Þ

In order to obtain an expression for the response function, we solve the equation

of motion of the field operator âk in the presence of the driving current

J expð�iotÞdðz� z0Þ. The interaction is [4]

Ĥint ¼�
ðL

�d
Â z; tð Þ J exp �iotð Þ þ C:C:f gd z� z0ð Þ

� �

dz

¼�
X

k

_

2ok

� �1=2

âk þ âþk

 �

Uk z0ð Þ Je�iot þ C:C:

 �

ð2:50Þ

where we have used Equation 2.17 in the second line. Here we have written the

current in the form J exp �iotð Þ þ C:C: rather than in the form Re½ J exp �iotð Þ	, in

accordance with the definition of the positive electric field in the form of Equation

2.19c. We solve

i_
d

dt
âk ¼ ½âk; Ĥ þ Ĥint	 ¼ _okâk �

_

2ok

� �1=2

Ukðz0Þ Je�iot þ C:C:

 �

ð2:51Þ

Solving for âk and substituting into Equation 2.19a we have

Ê
ðþÞ

z; tð Þ ¼
X

k

� i

2

� �

Uk zð ÞUk z0ð Þ
1� ei o�okð Þt

o� ok
Je�iot � 1� e�i oþokð Þt

oþ ok
J�eiot

� �

þ ÊðþÞT z; tð Þ

ð2:52Þ

where the initial values of the âk constitute the thermal field given by Equation

2.35a. Since we are interested in the response to J expð�iotÞdðz� z0Þ, we discard

the second term in parentheses. Thus, with t -N as in the definition (Equation

2.48), the response function is obtained as

Y z; z0;oð Þ ¼ � i

2

X

k

Uk zð ÞUk z0ð Þz o� okð Þ ð2:53aÞ

where the zeta function [2] is

zðoÞ ¼ P

o
� ipdðoÞ ¼ �i

ð1

0

eiotdt ð2:53bÞ

From Equations 2.53a and 2.53b we see that

ReYðz; z0;oÞ ¼ �
p
2

X

k

UkðzÞUkðz0Þdðo� okÞ

¼ � p
2
roUoðzÞUoðz0Þ

ð2:54Þ

Thus from Equations 2.44 and 2.45 we see that
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_o nkh iReY z; z0;oð Þ ¼ � pIðz0; z;oÞ ¼ � 1

2

ð1

�1
G z0; 0; z; tð Þeiotdt ð2:55Þ

This is a fluctuation–dissipation theorem connecting the response function and

the correlation function. Knowledge of either one is sufficient to know the other.

The term ‘‘dissipation’’ here is related to the radiation loss of the field energy

stored inside the cavity into the outside space through the coupling surface. The

reader can check the equality of the stored energy lost per second and the mag-

nitude of the pointing vector outside the cavity for a source-free field [5].

2.4.4

Derivation of the Langevin Noise for a Single Cavity Resonant Mode

Here we derive the Langevin noise force widely assumed in laser theories. We

assume that only a single cavity mode is involved and that other cavity modes are

spectrally distant from the one in question. Then the power spectrum in Equation

2.47 may be replaced by

I z; z0;oð Þ ¼ _oc noch i
pe1d

gc

g2
c þ ðo� ocÞ2

u�oc
z0ð Þuoc zð ÞH oð Þ;

o� ocj j 
 1

2
Doc

ð2:56Þ

The inequality describes the large departure of the cavity mode oc from other

modes; and Doc ¼ pc1=d is the cavity mode separation. Since the bandwidth

concerned is narrow compared with the cavity mode separation, that is,

2gc 
 Doc , we have replaced uo z0ð Þuo zð Þ by uoc z0ð Þuoc zð Þ. Here oc is the resonant

frequency, which was defined in Equation 1.18b. Also, we have replaced _o noh i by

_oc noch i, which is valid if jo� ocj 
 kT=_ holds. The real part of the response

function Y (z, z0, o) for the cavity is given by Equations 2.55 and 2.56 as

ReY z; z0;oð Þ ¼ � 1

e1d

gc

g2
c þ ðo� ocÞ2

uoc z0ð Þuoc zð ÞH oð Þ ð2:57Þ

where we have used the approximation _o noh i ¼ _oc noch i. Because of the form of

the zeta function in Equations 2.53a and 2.53b, the imaginary part of the response

function is given by

ImY z; z0;oð Þ ¼ � 1

2
P

ð1

0

ro0Uo0 ðzÞUo0 ðz0Þ
o� o0

do0

¼P

p

ð1

0

ReY z; z0;o0ð Þ
o� o0

do0
ð2:58aÞ

where we have used Equation 2.54 in the second line. Thus, the imaginary part

becomes
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ImY z; z0;oð Þ ¼ � gcuoc z0ð Þuoc zð Þ
pe1d

P

ð1

0

do0

ðo� o0Þ g2
c þ ðo� ocÞ2

n o ð2:58bÞ

The integral can be evaluated as follows. First, we replace the lower limit of

integration by �N on the grounds that this does not affect the results because the

important region of the integrand is compressed around the frequency o or oc.

Next, we choose, for example, a contour along a large semicircle in the upper half-

plane of the frequency o0 and examine the integral along the small circle around

the pole o0 ¼ oc þ igc in the upper half-plane and that along the small semicircle

above the pole o0 ¼o. The integral along the large semicircle vanishes because the

integrand vanishes for large radius of the semicircle. Then the integral is equal to

the sum of integrals around the poles. We have

P

ð1

0

do0

ðo� o0Þ g2
c þ ðo0 � ocÞ2

n o

¼ 2pi
1

o� oc � igc

1

2igc
� pi

1

g2
c þ ðo� ocÞ2

¼ p
o� oc

g2
c þ ðo� ocÞ2

n o
gc

ð2:58cÞ

Therefore we have

ImY z; z0;oð Þ ’ � uoc z0ð Þuoc zð Þ
e1d

o� oc

g2
c þ ðo� ocÞ2

ð2:58dÞ

Adding the real and imaginary parts in Equations 2.57 and 2.58d we have

Y z; z0;oð Þ ¼ � 1

e1d

1

gc � iðo� ocÞ
uoc z0ð Þuoc zð Þ ð2:59Þ

Then, inverse Fourier transforming Equation 2.55 using Equation 2.57 we have

the correlation function

G z0; t0; z; tð Þ ¼ _oc noch i
e1d

uoc z0ð Þuoc zð Þe�gc t�t0j j�iocðt�t0Þ ð2:60Þ

where the contour integral in the lower (upper) half-plane of o has been

performed for t Wt0 (tot0) with the relevant pole at o ¼ oc � igc ðo ¼ oc þ igcÞ.
Below, we use this function to describe the correlation of the so-called Langevin

noise.

When a current source distribution =ðz;oÞ exists, Equations 2.49 and 2.37 give
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ÊðþÞ z; tð Þ
D E

¼
ð0

�d
dz0

ð1

�1
do � 1

e1d

� �
1

gc � iðo� ocÞ
uoc z0ð Þuoc zð Þ

� H oð Þ= z0;oð Þe�iot

ð2:61Þ

where we have used Equation 2.59 for the response function. Differentiation with

respect to time t changes the integrand by a factor �io ¼ �ðgc þ iocÞ þ
fgc � iðo� ocÞg. Thus we have

d

dt
ÊðþÞ z; tð Þ
D E

¼ � ðgc þ iocÞ ÊðþÞ z; tð Þ
D E

�
ð0

�d

dz0

e1d
uoc z0ð Þuoc zð Þ= z0; tð Þ

ð2:62Þ

where we have Fourier transformed the source density in the second term. If we

remove from this equation the ensemble averaging, then we may have the

Langevin force f (z,t) that drives the electric field, a fact expected from Equation

2.49 as a result of the presence of the thermal radiation field. Thus, in the absence

of the current source, we should have

d

dt
ÊðþÞ z; tð Þ ¼ �ðgc þ iocÞÊðþÞ z; tð Þ þ f̂ z; tð Þ ð2:63Þ

where the Langevin noise operator f̂ ðz; tÞ has the mean

f̂ z; tð Þ
D E

¼ 0 ð2:64Þ

Now, for simplicity, we truncate the rapid oscillation of the cavity field by writing

ÊðþÞ z; tð Þ ¼ ~̂E
ðþÞ

z; tð Þe�ioc t; f̂ ðz; tÞ ¼ ~̂
f ðz; tÞe�ioc t ð2:65Þ

Thus we have

d

dt
~̂E
ðþÞ

z; tð Þ ¼ �gc
~̂E
ðþÞ

z; tð Þ þ ~̂
f z; tð Þ ð2:66Þ

At the same time, the sinusoidal oscillation in the correlation function in

Equation 2.60 drops out: we write

~G z0; t0; z; tð Þ ¼ ~̂E
ð�Þ
T ðz0; t0Þ

~̂E
ðþÞ
T ðz; tÞ

D E

¼ _oc noch i
e1d

uoc z0ð Þuoc zð Þe�gc t�t0j j
ð2:67Þ

Then, it follows that
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~̂
f
y

z0; t0ð Þ~̂f z; tð Þ
D E

¼ d

dt0
þ gc

� �
~̂E
ð�Þ

z0; t0ð Þ
� �

d

dt
þ gc

� �
~̂E
ðþÞ

z; tð Þ
� �� �

¼ @

@t0
@

@t
þ gc

@

@t0
þ @

@t

� �

þ g2
c

� �
~G z0; t0; z; tð Þ

ð2:68Þ

Let us consider

xðt; t0Þ ¼ @

@t0
@

@t
þ gc

@

@t0
þ @

@t

� �

þ g2
c

� �

e�gc t�t0j j ð2:69aÞ

We see that x(t, t0) always vanishes for t 6¼ t0. Let us examine the region

t� e o t0o tþ e with e-0. For t0o t� e, we have ð@=@t0Þ expf�gcðt� t0Þg ¼
gc expf�gcðt� t0Þg. In the limit t0 ! t� e, this becomes gc expf�gceg. Similarly,

for t04tþ e and for t0 ! tþ e, we have ð@=@t0Þ expf�gcðt0 � tÞg ! �gc expð�gceÞ.
Thus, in the region t� eot0otþ e, the derivative in terms of t and t0,
ð@=@tÞð@=@t0Þ expf�gcjt� t0jg, which is equal to �ð@=@t0Þ2 expf�gcjt� t0jg, be-

comes 2gc expð�gceÞ=ð2eÞ. Therefore, this derivative yields a narrow square region

around t0 ¼ t on the t0-axis, the area of which tends to 2gc as e-0 (see Figure 2.1).

The term ð@=@t0Þ þ ð@=@tÞmakes at most 2gc � 2e! 0, and the term of g2
c yields

g2
c � 2e! 0. Therefore, we have

ð1

�1
xðt; t0Þdt0 ¼ lim

e!0

ðt�e

�1
xðt; t0Þdt0 þ

ð1

tþe
xðt; t0Þdt0 þ

ðtþe

t�e
xðt; t0Þdt0

� �

! 0 þ 0 þ 2gc

ð2:69bÞ

Thus, we have xðt; t0Þ ! 2gcdðt� t0Þ. Then Equation 2.68 becomes

~̂
f
y

z0; t0ð Þ~̂f z; tð Þ
D E

¼ 2gc_oc noch i
e1d

uoc z0ð Þuoc zð Þd t� t0ð Þ ð2:70aÞ

We can eliminate the tildes on the noise operators because of the delta correlated

nature:

Figure 2.1 The function x(t,t0): (a) ð@=@t0Þxðt; t0Þ; and

(b) ð@=@tÞð@=@t0Þxðt; t0Þ.
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f̂ y z0; t0ð Þf̂ z; tð Þ
D E

¼ 2gc_oc noch i
e1d

uoc z0ð Þuoc zð Þd t� t0ð Þ ð2:70bÞ

So, we have a Markovian noise for the field mode oc. The set of Equations 2.63

or 2.66, 2.64, 2.70a and 2.70b gives the usual description of the thermal Langevin

force used in quasimode laser theory. The reader may show that the noise function

f̂ ðz; tÞ can be simulated by fðd=dtÞ þ iOcgÊTðz; tÞ around a cavity resonant mode.

This is to be expected since Equation 2.63 should hold for the thermal field ÊTðz; tÞ
around the frequency oc.

The Langevin force derived here is valid only for the case of narrower field band-

width than the cavity mode spacing. In Chapters 9 and 10 the thermal noise is treated

more rigorously, taking the cavity output coupling into account. For a Langevin

equation applicable to a cavity with two-side output coupling, see Equation 15.6a.

2.4.5

Excitation of the Cavity Resonant Mode by a Current Impulse

Looking back at Equation 2.61, if the driving current is an impulse of the form

Jdðt� t0Þdðz� zAÞ, then the current density is

=ðz;oÞ ¼ 1

2p

ðþ1

�1
Jdðt� t0Þdðz� zAÞeiotdt

¼ 1

2p
Jdðz� zAÞeiot0

ð2:71Þ

Then, the induced electric field (the net field minus the thermal field) is

ÊðþÞ z; tð Þ
D E

¼
ð0

�d
dz0

ð1

�1
do � 1

e1d

� �
1

gc � iðo� ocÞ
uo z0ð Þuo zð Þ

�H oð Þ 1

2p
Jdðz0 � zAÞe�ioðt�t0Þ

ð2:72Þ

where we have retrieved the o dependences of the functions u. The integration

over o can be done on the complex o-plane by noting that the pole is at

o ¼ oc � igc � Oc in the lower half-plane. If we expand the numerator in

exponential functions, we will have exponents with �io½ðt� t0Þ � fðzþ dÞ �
ðzm þ dÞg=c1	 (see Equation 1.41). For simplicity, we assume that we are

concerned with phenomena that are slow in a time scale of order

jðzþ dÞ � ðzm þ dÞj=c1 � 2d=c1, that is, we examine the changes on a time scale

that is greater than the round-trip time in the cavity. Since this assumption expects

an optical spectrum that is narrower than c1 /(2d), this is consistent with the choice

of only one cavity mode, which anticipates an optical spectrum that is narrower

than the cavity mode spacing Doc ¼ c1p=d. Then the contour of integration can be

determined by the sign of t – t0. The result is
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ÊðþÞ z; tð Þ
D E

¼
� J

e1d uOc zAð ÞuOc zð Þe�iOcðt�t0Þ; t 4t0

0; t ot0

(

ð2:73Þ

We see that the outgoing cavity mode function in Equation 1.21 is excited by the

current impulse and that the excited amplitude is proportional to the functional

value at the source point zA. In subsequent chapters on laser analysis, we will see

this phenomenon induced by thermal noise and quantum noise that are delta

correlated in time. In a laser, the field decay constant is of course modified by the

presence of the amplifying atoms. However, the spatial form of the excited field is,

in the linear regime of amplification, the cavity outgoing mode even in the pre-

sence of the amplifying medium.

2.5

Extension to an Arbitrarily Stratified Cavity

2.5.1

Description of the Cavity Structure

Up to now we have treated two types of one-dimensional cavities both with a single

layer of dielectric: one is one-sided and the other is two-sided with respect to the

output coupling. Here we briefly discuss how to extend the cavity model so as to

allow an arbitrarily layered structure. We limit ourselves to the case where each

layer is made of a lossless non-dispersive dielectric. Also, we consider for sim-

plicity a one-sided cavity.

The cavity model is depicted in Figure 2.2, where the cavity has N layers. The nth

layer extends over the region �dn � z � �dn�1 with geometrical length

ln ¼ �dn�1 þ dn. The leftmost boundary of the cavity at z ¼ �dN ¼ �D is in

contact with a perfect conductor, and the rightmost boundary is at z ¼ �d0 ¼ 0.

The outside space is vacuum. In order to have a set of orthogonal functions of the

‘‘universe,’’ we put an imaginary boundary of a perfect conductor at z¼ L. The

region 0 � z � L of vacuum will be called the zeroth region. The field is assumed

to have linear polarization in the x-direction. Let us write the vector potential of

frequency o in the nth region as

Anðz; tÞ ¼ unðzÞe�iot; N � n � 0 ð2:74Þ

where

Figure 2.2 The arbitrarily layered cavity model.
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un zð Þ ¼ aneiknz þ bne�iknz ð2:75aÞ

bn ¼ a�n ð2:75bÞ

with

kn ¼ o=cn ð2:76Þ

The coefficient an ¼ b�n is an undetermined constant and cn is the velocity of

light in the nth region. We have assumed that the mode function un (z) is real,

yielding a standing wave. The frequency o is also to be determined by the

boundary conditions. The function un (z) satisfies

d

dz

� �2

þ knð Þ2
" #

un zð Þ ¼ 0; N � n � 0 ð2:77Þ

The electric field and the magnetic field read

En zð Þ ¼ ioðaneiknz þ bne�iknzÞ ð2:78aÞ

and

m0Hn zð Þ ¼ iknaneiknz � iknbne�iknz ¼ ðio=cnÞ aneiknz � bne�iknz

 �

ð2:78bÞ

Applying the boundary conditions of Equations 1.7 and 1.8 on the right end

surfaces of the nth region we have

ane�ikndn�1 þ bneikndn�1 ¼ an�1e�ikn�1dn�1 þ bn�1eikn�1dn�1 ð2:79aÞ

ð1=cnÞ ane�ikndn�1 � bneikndn�1

 �

¼ ð1=cn�1Þ an�1e�ikn�1dn�1 � bn�1eikn�1dn�1

 �

ð2:79bÞ

If we define the boundary values of the right- and left-traveling components of

the electric field as

Xn ¼ ane�ikndn ð2:80aÞ

Yn ¼ bneikndn ð2:80bÞ

and if we note that ane�ikndn�1 ¼ Xneiknln and bneikndn�1 ¼ Yne�iknln , it is easy to show

that the following relation holds:

Xn

Yn

 !

¼ JnMn

Xn�1

Yn�1

 !

; N � n � 1 ð2:81Þ

where

Mn ¼
e�iknln ; Rne�iknln

Rneiknln ; eiknln

 !

ð2:82aÞ
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Rn ¼ cn�1 � cnð Þ= cn�1 þ cnð Þ ð2:82bÞ

Jn ¼ 1þ Rnð Þ�1¼ cn�1 þ cn

2cn�1
ð2:82cÞ

The parameter Rn is the amplitude reflection coefficient for a wave incident from

the left to the boundary of the nth and (n – 1)th layers. Later we will use the relation

detðMnÞ ¼ 1� R2
n ð2:83Þ

The field values at the ends of the region comprising the mth, (m þ 1)th,. . .,

and the nth layers are related by

Xn

Yn

 !

¼ Jn;mMn;m

Xm�1

Ym�1

 !

; N � n � m � 1 ð2:84aÞ

where

Mn;m ¼ Mn �Mn�1 �    �Mmþ1 �Mm ð2:84bÞ

Jn;m ¼ Jn � Jn�1 �    � Jmþ1 � Jm ð2:84cÞ

The matrix elements of Mn,m are polynomials of exponential functions of io
with real exponents and real coefficients. The elements have the symmetry

property

Mn;m


 �
11
¼ Mn;m


 ��
22

ð2:85aÞ

Mn;m


 �
12
¼ Mn;m


 ��
21

ð2:85bÞ

2.5.2

The Modes of the ‘‘Universe’’

2.5.2.1 The Eigenmode Frequency

As described above, the cavity extends over the region �D � z � 0, while the

zeroth region, 0 � z � L, is the outside, vacuum region. The mode function of the

‘‘universe’’ should satisfy all the relevant boundary conditions. The field values at

both ends of the zeroth region are related by the phase of the propagation as

X0

Y0

 !

¼
e�ik0L; 0

0; eik0L

 !
XL

YL

 !

ð2:86Þ

where the suffix L denotes the location z¼ L. The boundary conditions that the

electric field vanishes at the perfect conductors, u0ðLÞ ¼ 0 and uNð�DÞ ¼ 0, read,

respectively,

XL þ YL ¼ 0 ð2:87Þ

and
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XN þ YN ¼ 0 ð2:88Þ

Then we have

Y0 ¼ �X0e2ik0L ð2:89Þ

Thus Equation 2.84a for n¼N and m¼ 1 reads

XN

�XN

 !

¼ JN;1MN;1

X0

�X0e2ik0L

 !

ð2:90Þ

Therefore, for a non-trivial solution to exist, we should have

e2ik0L ¼ ðMN;1Þ11 þ ðMN;1Þ21

ðMN;1Þ22 þ ðMN;1Þ12

¼ e2ifðoÞ
ð2:91Þ

The eigenmode frequencies are those satisfying this equation. Here

fðoÞ ¼ arg ðMN;1Þ11 þ ðMN;1Þ21

� 	
; 0 � f � 2pð Þ ð2:92Þ

The second form in Equation 2.91 results from the symmetry properties,

Equations 2.85a and 2.85b. Equation 2.91 yields

k0L ¼ fðoÞ þ pp ð2:93Þ

where p is an integer. Since the zeroth region simulates free space, L is assumed to

be very large. Since it may be argued that the phase angle f(o) as a function of o
varies much more slowly than k0L ¼ oðL=c0Þ, the eigenmode frequencies are non-

degenerate. In the limit of large L/c0, the separation between the neighboring

solutions for o is

Do ¼ c0p=L ð2:94Þ

The density of modes is thus

r ¼ 1=Do ¼ L=c0p ð2:95Þ

2.5.2.2 The Mode Functions

The orthogonality of the mode functions can be proved, just as we did in Equations

1.40a–1.40d, by performing the integration:

I ¼
ðL

�D

1

m0

@

@z
ui zð Þ

� �
@

@z
uj zð Þ

� �

dz ð2:96Þ

Note that we are assuming that the magnetic permeability is m0 for all the layers.

Using the boundary conditions and the Helmholtz equation 2.77 we can show that
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I ¼ o2
i

ðL

�D
e zð Þui zð Þuj zð Þ dz ¼ o2

j

ðL

�D
e zð Þui zð Þuj zð Þ dz ð2:97Þ

Therefore, we have the orthogonality relation

ðL

�D
e zð Þui zð Þuj zð Þ dz ¼ 0; i 6¼ j ð2:98Þ

For the jth mode we can show that

ðL

�D
e zð Þ uj zð Þ

� 	2
dz ¼ 2

Xn

n¼0

en ajn

�
�
�
�2ln ð2:99Þ

To show this formula, let us consider the integral in the nth region:

In ¼
ð�dn�1

�dn

en uj zð Þ
� 	2

dz

¼
ð�dn�1

�dn

en a2
jne2ikjnz þ b2

jne�2ikjnz þ 2ajnbjn

n o
dz

¼
ena2

jn

2ikjn
e�2ikjndn�1 � e�2ikjndn

 �

þ
enb

2
jn

�2ikjn
e2ikjndn�1 � e2ikjndn

 �

þ 2enajnbjnln

ð2:100Þ

Using the matrix relation 2.81 for the nth layer, we have

a2
jne�2ikjndn�1 ¼ð1þ RnÞ�2 ajðn�1Þe

�ikjðn�1Þdn�1 þ Rnbjðn�1Þe
ikjðn�1Þdn�1

� �2

b2
ne2ikjndn�1 ¼ð1þ RnÞ�2 Rnajðn�1Þe

�ikjðn�1Þdn�1 þ bjðn�1Þe
ikjðn�1Þdn�1

� �2
ð2:101Þ

Thus

enða2
jne�2ikjndn�1 � b2

ne2ikjndn�1Þ
2ikjn

¼ enð1� R2
nÞ

2ikjnð1þ RnÞ2
a2

jðn�1Þe
�2ikjðn�1Þdn�1 � b2

jðn�1Þe
2ikjðn�1Þdn�1

� �
ð2:102Þ

Now the factor enð1� R2
nÞ= 2ikjnð1þ RnÞ2
n o

¼ en�1=2ikjðn�1Þ, as can be shown

by use of Equation 2.82b and the fact that en ¼ e0ðc0=cnÞ2. Therefore, the integral

in Equation 2.100 becomes

In ¼
ð�dn�1

�dn

en uj zð Þ
� 	2

dz

¼ en

b2
jne2ikjndn � a2

jne�2ikjndn

2ikjn
� en�1

b2
jðn�1Þe

2ikjðn�1Þdn�1 � a2
jðn�1Þe

�2ikjðn�1Þdn�1

2ikjðn�1Þ

þ 2enajnbjnln

ð2:103Þ
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Thus the first term of the integral In cancels with the second term of Inþ 1. For

the total integral (Equation 2.99) the remaining terms are

ðL

�D
e zð Þ uj zð Þ

� 	2
dz

¼ eN

b2
jNe2ikjN D � a2

jNe�2ikjN D

2ikjN
� e0

b2
j0e2ikj0L � a2

j0e�2ikj0L

2ikj0

þ 2
XN

n¼0

en ajn

�
�
�
�2ln

ð2:104Þ

The first and second terms vanish because the electric field should vanish at the

surface of a perfect conductor (see Equation 2.78a). Thus using Equation 2.75b we

arrive at Equation 2.99.

The inverse of the square root of the quantity in Equation 2.99 gives the nor-

malization constant for the jth mode function. In the limit of large L we have

N2
j ¼ 2e0 aj0

�
�
�
�2L

� ��1

ð2:105Þ

Thus a formal expression of the normalized mode function is

Ujn zð Þ ¼ Njujn zð Þ ¼ ajneikjnz þ C:C:

2e0Lð Þ1=2 aj0

�
�
�
�
; N � n � 0 ð2:106Þ

These satisfy the orthonormality relation

ðL

�D
e zð ÞUi zð ÞUj zð Þ dz ¼ dij ð2:107Þ

For a complete expression, we still need the expression for the ratio ajn=jaj0j in

terms of the cavity parameters. We derive the expression as a product of aj0=jaj0j
and ajn=aj0. Substituting Equations 2.80a and 2.80b into Equation 2.84a with m¼ 1

we have

ajne�ikjndn

C:C:

 !

¼ Jn;1Mn;1
aj0

C:C:

� �

; N � n � 0 ð2:108Þ

Note that for a real standing wave mode we need b¼ a* as in Equation 2.75b.

Now Equation 2.89 reads

bj0 ¼ a�j0 ¼ �aj0e2ikj0L ð2:109aÞ

or

aj0

a�j0
¼ �e�2ikj0L ð2:109bÞ
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Thus, using Equation 2.91 we have for the phase factor of aj0

aj0

aj0

�
�
�
� ¼ � i

ðMN;1Þ22 þ ðMN;1Þ12

ðMN;1Þ11 þ ðMN;1Þ21

� �1=2

ð2:110Þ

Next, from Equations 2.108 and 2.109a or 2.109b we have

ajne�ikjndn ¼ Jn;1 ðMn;1Þ11aj0 � ðMn;1Þ12aj0
e2ikj0L

� �
ð2:111Þ

Substituting Equation 2.91 we have

ajn

aj0
¼ Jn;1

ðMn;1Þ11 ðMN;1Þ22 þ ðMN;1Þ12

� 	
� ðMn;1Þ12 ðMN;1Þ11 þ ðMN;1Þ21

� 	

ðMN;1Þ22 þ ðMN;1Þ12

� �

eikjndn

ð2:112Þ

The numerator of the fraction can be shown to be equal to

ðMN;nþ1Þ22 þ ðMN;nþ1Þ12

� 	
detðMn;1Þ ð2:113Þ

Thus using Equations 2.83, 2.82c, and 2.84c we have

ajn

aj0
¼ In;1

ðMN;nþ1Þ22 þ ðMN;nþ1Þ12

ðMN;1Þ22 þ ðMN;1Þ12

eikjndn ; N � n � 0 ð2:114Þ

where

In;1 ¼
Yn

i¼1

1� Rið Þ ð2:115Þ

Thus we have the ratio ajn=jaj0j from Equations 2.110 and 2.114. Using the result

and noting the symmetry property in Equation 2.85a and 2.85b, we have for the

mode function in Equation 2.106

Ujn zð Þ ¼ �i

2e0Lð Þ1=2

In;1

ðMN;1Þ11 þ ðMN;1Þ21

�
�

�
�

� ðMN;nþ1Þ22 þ ðMN;nþ1Þ12

� 	
eikjn zþdnð Þ � C:C:

h i
;

N � n � 0

ð2:116Þ

For N¼ 1, in particular, if we use Equation 2.82a with the conventions

M1;1 ¼
e�ik1d; re�ik1d

reik1d; eik1d

0

@

1

A; M1;1þ1 ¼
1; 0

0; 1

0

@

1

A;

I0;1 ¼ 1; d0 ¼ 0

ð2:117Þ
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we can show that Equation 2.116 reproduces the normalized mode function given

by Equation 1.62b. We have chosen the minus sign in Equation 2.116 so that the

formula fits with the function in Equation 1.62b.

Thus we have obtained the orthonormal mode functions of the ‘‘universe’’ for an

arbitrarily stratified one-sided cavity. Thus the quantization can be carried out as in

Section 2.1.

" Exercises

2.1 Prove the commutation rules in Equation 2.8.

2-1. Substitute Equations 2.4 and 2.5 into Equation 2.8 and use Equation 2.1 or

substitute Equations 2.6 and 2.7 into Equation 2.1.

2.2 Derive the Hamiltonian in Equation 2.9.

2-2. Substitute Equations 2.6 and 2.7 into Equation 2.3 and use Equation 2.8.

2.3 Derive the expressions for the matrix elements in Equations 2.21a and 2.21b.

2-3. Note Equations 2.13 and use the relation eÂ ¼
P1

n¼0 Ân=n! for an operator Â.

2.4 For the density operator in Equation 2.31 show that r̂i¼ 1.

2-4. Tr ri ¼
P

mi
mih jri mij i ¼ ð1� e�b_oiÞ

P1
mi¼0 e�mib_oi ¼ 1.

2.5 Prove the relation between the power spectrum and the correlation function

described in Equation 2.45. Use Equations 2.40 and 2.44.

2-5. From Equation 2.40

Gðz0; 0; z; tÞ ¼
X

j

1

2
_oj nj

� �
Ujðz0ÞUjðzÞe�ioj t

Fourier transforming this quantity we have
ð1

�1
Gðz0; 0; z; tÞeiotdt ¼

X

j

1

2
_oj nj

� �
Ujðz0ÞUjðzÞ

ð1

�1
e�iðoj�oÞtdt

¼
X

j

1

2
_oj nj

� �
Ujðz0ÞUjðzÞ2pdðoj � oÞ

¼
ð1

0

dojroj

1

2
_oj nj

� �
Ujðz0ÞUjðzÞ2pdðoj � oÞ

¼ 2pro
1

2
_o noh iUoðz0ÞUoðzÞHðoÞ

which on rearranging and using Equation 2.44 gives the required result.

2.6 Derive the equation of motion 2.51 for the annihilation operator ak under the

presence of a sinusoidal current source described in Equation 2.50.

2-6. Start with
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i_
d

dt
âk ¼ ½âk; Ĥ þ Ĥint	 ¼ ½âk; Ĥ	 þ ½âk; Ĥint	

The first term is given by Equation 2.36. For the second term, use the commu-

tation rules in Equation 2.8.

2.7 Derive the form of the correlation function in Equation 2.60.

2-7. Equation 2.55 gives

pIðz0; z;oÞ ¼ 1

2

ð1

�1
G z0; 0; z; t0ð Þeiot0dt0

Inverse Fourier transforming both sides (without the factor 1/(2p)) we have
ð1

�1
pIðz0; z;oÞe�iotdo ¼

ð1

�1

1

2

ð1

�1
G z0; 0; z; t0ð Þeiot0e�iotdt0do

The right-hand side yields pGðz0; 0; z; tÞ, and the left-hand side yields, by Equation

2.56,
ð1

�1

_oc noch i
e1d

gc

g2
c þ ðo� ocÞ2

u�oc
z0ð Þuoc zð Þe�iotdo

where we have dropped H(o) considering the narrow region of importance given

by the Lorentzian function. For correlation between t0 and t we may change the

time t in the above integral to t–t0. The contour integral in the lower (upper) half-

plane of o is appropriate for t W t0 (t o t0) with the relevant pole at o ¼ oc � igc

ðo ¼ oc þ igcÞ. For t W t0, for example, the factor 1=ðo� oc þ igcÞ yields an

integral �2pi, while the factor 1=ðo� oc � igcÞ gives 1=ð�2igcÞ, and the expo-

nential becomes e�iðoc�igcÞðt�t0Þ.

2.8 Derive the expectation value of the electric field in Equation 2.73 under the

presence of an impulsive driving force in Equation 2.71.

2-8. See the solution to 2-7. In this case the only pole is o ¼ oc � igc in the lower

half-plane.
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3

A One-Dimensional Quasimode Laser: General Formulation

In Chapters 3 and 4 we consider, as an introduction to laser theory, a simplified

one-dimensional laser model, where the laser cavity is made of perfectly reflecting

mirrors, or perfect conductors, at z ¼ �d and z ¼ 0. The mirror transmission loss

is replaced by a fictitious decay mechanism expressed by a single decay constant.

This replacement simplifies the spatial aspect of laser analysis: the spatial

distribution of the laser field is always fixed to a cavity resonant mode of the

perfect cavity. Only the field amplitude changes with time. Therefore, the analysis

can be made mostly in the time domain. We will call this fictitious perfect cavity

mode a quasimode to distinguish it from the more natural, resonant modes of the

cavity with finite transmission loss. The introduction of atoms as the amplifying

medium and a description of the associated quantum noise sources are made in

Chapter 3. Chapter 4 includes the semiclassical and the quantum analysis of the

laser with the assumed perfect cavity with additional loss mechanism.

3.1

Cavity Resonant Modes

Here we consider one-dimensional plane vector waves that are polarized in the

x-direction and propagated to the z-direction as before. Consider the perfect cavity

depicted in Figure 3.1. The cavity consists of a lossless non-dispersive dielectric of

dielectric constant e1, which is bounded by perfect conductors at z¼�d and at z¼ 0.

The natural oscillating field mode of the cavity, the cavity resonant mode, is

defined as one that satisfies the perfect boundary condition of Equation 1.6 at

z¼�d and at z¼ 0. It is easy to show that the normalized mode function is

(problem 3-1)

UkðzÞ ¼
ffiffiffiffiffiffiffi
2

e1d

r

sin
ok

c1
ðzþ dÞ ð3:1Þ

with

ok ¼ k
c1p
d
; k ¼ 1; 2; 3; . . . ð3:2Þ

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
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The form of the function in Equation 3.1 has been chosen for easy comparison

with that in Equation 1.21b for the one-sided cavity. These resonant modes are

orthogonal to each other and make up a complete set for the region �d o z o 0.

Writing the vector potential again as in Equation 1.44,

Aðz; tÞ ¼
X

k

QkðtÞUkðzÞ ð3:3Þ

and defining the time derivative of the mode amplitude as in Equation 1.46,

d

dt
Qk ¼ Pk ð3:4Þ

the total Hamiltonian of the field is now

Hf ¼
ð0

�d

e1

2
Eðz; tÞ2 þ m

2
Hðz; tÞ2

h i
dz

¼
ð0

�d

e1

2

@

@t
Aðz; tÞ

� �2

þ 1

2m
@

@z
Aðz; tÞ

� �2
" #

dz

ð3:5Þ

Here we have added a subscript f to indicate the optical field. This is easily

evaluated to obtain (problem 3-2)

Hf ¼
1

2

X

k

ðP2
k þ o2

kQ2
k Þ ð3:6Þ

The quantization procedure goes just as in Equations 2.1–2.19: we have the

creation and annihilation operators satisfying the commutation relations

âi; â
y
j

h i
¼ dij; âi; âj

h i
¼ 0; âyi ; â

y
j

h i
¼ 0 ð3:7Þ

and the Hamiltonian

Ĥf ¼
X

k

_okðâykâk þ 1
2Þ ¼

X

k

Ĥk ð3:8Þ

Figure 3.1 The perfect cavity.
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3.2

The Atoms

We assume a two-level atom having upper laser level 2 with normalized wave-

function f2(r) and lower laser level 1 with wavefunction f1(r). We describe the

atoms in the second quantized form, where the electron field amplitude is an

operator [1,2]. The electronic wavefunction for the mth atom, now an operator, is

cmðrÞ ¼ b̂m1f1ðrÞ þ b̂m2f2ðrÞ ð3:9Þ

where b̂mi is the annihilation operator for the ith level. The atomic Hamiltonian is

written as

Ĥa ¼
X

m

_nmb̂ym2b̂m2 ð3:10Þ

where b̂ymi is the creation operator for the ith level of the mth atom. The angular

frequency nm is the transition frequency of the mth atom. The product b̂ym2b̂m2 is

the number operator for level 2 of the mth atom. The Hamiltonian is evaluated

with the lower atomic level as the origin. The product b̂ym2b̂m1 is the flipping

operator from level 1 to level 2, and b̂ym1b̂m2 is that for the reverse. The atomic

operators obey the anticommutation relations

b̂mib̂
y
m0i0 þ b̂ym0i0 b̂mi ¼ dmm0dii0 ;

b̂mib̂m0i0 þ b̂m0i0 b̂mi ¼ 0;

b̂ymib̂
y
m0i0 þ b̂ym0i0 b̂

y
mi ¼ 0

ð3:11Þ

3.3

The Atom–Field Interaction

When an atom is put in a field that is described by a vector potential, the atomic

energy changes by an amount [3]

Ĥint ¼ �
e

m
ÂðrÞ  p̂ ð3:12Þ

if we ignore a small quantity that is proportional to Â
2
. Here, e is the electron

charge, m the electron mass, and p̂ the electron momentum. Here we are

assuming that the vector potential has only an x-component and that only the x-

component of the electron momentum p̂x is effective. In the second quantized

form it reads

p̂x ¼
ð

cyðrÞp̂xcðrÞdr ¼
X

i;j¼1;2

pijb̂
y
i b̂j

pij ¼
ð

fyi p̂xfjdr

ð3:13Þ
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Because in an atom the electron momentum follows the Heisenberg equation

p̂x ¼ m
d

dt
x̂ ¼ m x̂; Ĥa

� 
=ði_Þ ð3:14Þ

the (i,j) matrix element is

pij ¼
ð

f�i p̂xfjdr ¼ m

ð

f�i x̂; Ĥa

� 
fjdr=ði_Þ

¼ mðEj � EiÞxij=ði_Þ ¼ �imojixij

ð3:15Þ

where oji ¼ ðEj � EiÞ=_. Thus, using Equation 2.17 for the vector potential, we

have

Ĥint ¼ �
e

m

X

k

ð_=2okÞ1=2ðâk þ âykÞUkðzÞ
X

i;j¼1;2

ð�imojixijÞb̂yi b̂j

¼ i
X

k

ð_=2okÞ1=2ðâk þ âykÞUkðzÞ
X

i;j¼1;2

ojiexijb̂
y
i b̂j

ð3:16Þ

Here, z is interpreted as the location of the atom, which contains an approxima-

tion, called the electric dipole approximation, valid only when the spatial spread of

the atom is much smaller than the optical wavelength.

Instead of the interaction described by Equation 3.12, some textbooks, for

example, that by Loudon [4], consider the electric dipole interaction of one atom,

Ĥint ¼ �er̂  Ê ðzÞ ð3:17Þ

where e is the electron charge, r̂ the effective displacement, and ÊðzÞ the electric

field at the position of the atom. This contains also the electric dipole approxima-

tion. Here we assume again that Ê has only an x-component. The inner product

makes only the x-component x̂ in r̂ effective. The quantized form of x̂ is

x̂ ¼
ð

cyðrÞx̂cðrÞdr ¼
X

i;j¼1;2

xijb̂
y
i b̂j

xij ¼
ð

f�i x̂fj

ð3:18Þ

For Ê we use Equation 2.18,

Êðz; tÞ ¼ �
X

k

P̂kUkðzÞ ¼
X

k

ið_ok=2Þ1=2ðâk � âykÞUkðzÞ ð3:19Þ

Thus the interaction Hamiltonian of one atom is

Ĥint ¼ �e
X

i;j

xijb̂
y
i b̂j

X

k

ið_ok=2Þ1=2ðâk � âykÞUkðzÞ ð3:20Þ

Here z is the location of the atom. Usually, an atom lacks a permanent electric

dipole and thus xii¼ 0 in Equations 3.16 and 3.20. Then, there occur four kinds of
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terms in these equations, with operators b̂y1b̂2âj, b̂y1b̂2âyj , b̂y2b̂1âj, and b̂y2b̂1âyj . The

physical content of the first kind of term is the annihilation of a photon with

downward atomic flip, which contravenes energy conservation. Similarly, the

fourth term means the creation of a photon with upward atomic transition, which

also is incompatible with energy conservation. The second and third terms,

respectively, imply the creation of one photon with downward atomic transition

and the annihilation of one photon with upward atomic transition, which are both

energy conserving. In this book we assume that the energy non-conserving terms

may be ignored. This approximation is called the rotating-wave approximation.

Thus, when there are a number of atoms, each labeled by m, the interaction

Hamiltonian is

Ĥint ¼
X

k;m

_ðkkmâykb̂ym1b̂m2 þ k�kmâkb̂ym2b̂m1Þ ð3:21Þ

kkm ¼ inmð1=2_okÞ1=2UkðzmÞpm; pm ¼ exm12; nm ¼ o21 ð3:22aÞ

from Equation 3.16 and

kkm ¼ iðok=2_Þ1=2UkðzmÞpm; pm ¼ exm12 ð3:22bÞ

from Equation 3.20. The difference between these two expressions for the atom–

field coupling coefficient is negligibly small for phenomena in the optical

frequency region.

In Equation 3.21 the sequence of the operators in the products is written in a

mixed order. The order is normal if the photon annihilation operator is set to the

rightmost position and the creation operator to the leftmost position, and it is anti-

normal if the order is reversed. Any order is allowed as long as the product

sequence is not changed during the calculation [5].

3.4

Equations Governing the Atom–Field Interaction

We examine the motion of the field using the Hamiltonians obtained so far.

Because the cavity field modes are orthogonal, it is natural to assume single-mode

operation, as is usually done in laser theories. Now the total Hamiltonian,

including the optical field, the laser active atoms, and their interaction through

dipole interaction, is

Ĥt ¼ Ĥf þ Ĥa þ Ĥint ð3:23Þ

Here we assume that the field Hamiltonian is written, from Equation 3.8, as

Ĥf ¼ _oc

�

âyâþ 1

2

�

ð3:24Þ

dropping the mode suffix from the operators. The cavity resonance angular

frequency is written as oc. The atomic Hamiltonian is given by Equation 3.10.

The interaction Hamiltonian in Equation 3.21 is rewritten as
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Ĥint ¼
X

m

_ðkmâyb̂ym1b̂m2 þ k�mâb̂ym2b̂m1Þ ð3:25Þ

with the coupling coefficient in Equation 3.22b,

km ¼ iðoc=2_Þ1=2UcðzmÞpm ð3:26Þ

Because we are most interested in the motion of the laser field, we first examine

the motion of the annihilation operator of the field in the Heisenberg picture

(problem 3-3):

d

dt
â ¼ 1

i_
½â; Ĥt	 ¼

1

i_
âĤt � Ĥtâ

 �

¼ �iocâ� i
X

m

kmðb̂ym1b̂m2Þ ð3:27Þ

where we have used the commutators in Equation 2.8 with i¼ j. The first term is

the free motion originating from the field Hamiltonian, and the second term

stems from the interaction Hamiltonian. From this result we know that the

product b̂ym1b̂m2 drives the optical field; thus b̂ym1b̂m2 is the quantum counterpart of

the classical atomic dipole. Thus we wish next to know the motion of the atomic

dipole operator b̂ym1b̂m2, which flips the atom from the upper level 2 to the lower

level 1. Again using the Heisenberg equation, we have (problem 3-4)

ðd=dtÞðb̂ym1b̂m2ÞðtÞ ¼ �inmðb̂ym1b̂m2ÞðtÞ þ ik�mâðtÞŝmðtÞ ð3:28Þ

where we have used the anticommutators in Equation 3.11,

½b̂ym1b̂m2; b̂
y
m2b̂m2	 ¼ b̂ym1b̂m2b̂ym2b̂m2� b̂ym2b̂m2b̂ym1b̂m2

¼ b̂ym1ð1� b̂ym2b̂m2Þb̂m2� b̂ym2ð�b̂ym1b̂m2Þb̂m2 ¼ b̂ym1b̂m2

ð3:29Þ

because b̂m2b̂m2 ¼ 0 due to the second member in Equation 3.11, and

½b̂ym1b̂m2; b̂
y
m2b̂m1	 ¼ b̂ym1b̂m2b̂ym2b̂m1 � b̂ym2b̂m1b̂ym1b̂m2

¼ b̂ym1ð1� b̂ym2b̂m2Þb̂m1 � b̂ym2ð1� b̂ym1b̂m1Þb̂m2

¼ b̂ym1b̂m1 � b̂ym2b̂m2 � �ŝm

ð3:30Þ

because b̂m2b̂m1 ¼ �b̂m1b̂m2 and b̂ym1b̂ym2 ¼ �b̂ym2b̂ym1. Here, the operator

ŝm ¼ b̂
y
m2b̂m2 � b̂

y
m1b̂m1 is the atomic inversion operator, which probes the popula-

tion difference between the upper and lower atomic levels. Note that an atom

operator commutes with a field operator at this first stage of calculation.

Now that a new operator appears in the equation, we further examine the

motion of the new operator ŝm (problem 3-5):

ðd=dtÞŝmðtÞ ¼ 2ifkmâyðtÞðb̂ym1b̂m2ÞðtÞ � k�mâðtÞðb̂ym2b̂m1ÞðtÞg ð3:31Þ

Here a new operator b̂ym2b̂m1 appears. But this is just the Hermitian adjoint

of b̂ym1b̂m2. So, Equations 3.27, 3.28, and 3.31 and their adjoints form a closed set of

equations. These equations describe the coherent interaction between the field and

the atoms, that is, there are no dissipation or random forces that tend to hinder
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coherent motions of the field and atoms. Now that the three coupled equations for

the three operators are derived, these operators are generally mutually mixed and

cannot be interchanged during the calculations, unlike at the first stage where we

interchanged the atom and field operators in the appropriate Heisenberg equa-

tions under the given interaction Hamiltonian.

By inspection of the details in the calculations in Equations 3.29 and 3.30, one

may notice that the general rule of reduction of a product of four atomic operators

is [1]

b̂ymib̂mjb̂
y
mkb̂ml ¼ b̂ymib̂mldjk ð3:32Þ

This is a modified form of the commutation relations in Equation 3.11.

3.5

Laser Equation of Motion: Introducing the Langevin Forces

Up to now we have considered the interaction of the cavity field mode and the

atoms. In order to consider a laser, we need to take into account (i) the pumping

process to make population inversion in the atoms, (ii) the cavity loss, which has

up to now been ignored, and (iii) the effects of atomic environment on the atoms.

These three processes are random processes if seen microscopically and introduce

randomness in the motion of the field or the atoms: thus these are incoherent

processes. The pumping process induces a relaxation of the inversion to a certain

value depending on the strength of the pumping. The cavity loss causes the field

amplitude to damp or relax to zero. And the atomic environment, for example,

collisions or vacuum fluctuations, causes the atomic dipole oscillation to lose its

phase or to relax to zero amplitude.

3.5.1

The Field Decay

The difficult point here is that, if we introduce appropriate relaxation terms into the

equations obtained above, the quantum-mechanical consistency is ruined. For

example, if, in the equation for the field (Equation 3.27), we add a decay term such as

d

dt
â ¼ �iocâ� gcâ ð3:33Þ

where we have assumed the absence of atoms, the solution to this equation and

the adjoint yield

½â; ây	 ¼ ½âð0Þe�ioc t�gc t; âyð0Þeþioc t�gc t	 ¼ ½âð0Þ; âyð0Þ	e�2gc t ¼ e�2gc t ð3:34Þ

This means that, although the commutation relation (Equation 3.7) holds at t¼ 0,

it is violated for t W 0. Thus, consistent quantum-mechanical analysis becomes

impossible.
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For the remedy, it is known that, if we are to use the decay term, we must add, at

the same time, a fluctuating noise term, or the Langevin force term Ĝf ðtÞ, which

makes the commutator revive on average. Thus we write

d

dt
â ¼ �iocâ� gcâþ Ĝf ðtÞ ð3:35Þ

We assume that the ensemble average of the noise with respect to the damping

mechanism, the so-called damping reservoir, satisfies

Ĝf ðtÞ
� �

¼ 0; Ĝyf ðtÞ
D E

¼ 0;

Ĝyf ðtÞĜf ðt0Þ
D E

¼ C1dðt� t0Þ; Ĝf ðtÞĜyf ðt
0Þ

D E
¼ C2dðt� t0Þ

ð3:36Þ

Here the angle bracket signifies the quantum-mechanical expectation value aver-

aged over the reservoir. Below, we will show that the diffusion coefficients satisfy

C1 ¼ 2gc nch i; C2 ¼ 2gcð nch i þ 1Þ ð3:37Þ

where nch i is the reservoir average of the number of thermal photons belonging to

the cavity mode. From Equation 3.35 we have

âðtÞ ¼
ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0 þ âð0Þeð�ioc�gcÞt ð3:38Þ

Thus, taking note that ĜðtÞ and âð0Þ are mutually independent, we have

½âðtÞ;âyðtÞ	
� �

¼
*"ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0þ âð0Þe�ioc t�gc t;

ðt

0

eðþioc�gcÞðt�t0ÞĜyf ðt
0Þdt0þ âyð0Þeþioc t�gc t

#+

¼
ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0;

ðt

0

eðþioc�gcÞðt�t0ÞĜyf ðt
0Þdt0

� �� �

þ ½âð0Þ;âyð0Þ	e�2gc t
� �

¼
ðt

0

dt0
ðt

0

dt0 eð�ioc�gcÞðt�t0Þþðþioc�gcÞðt�t0Þ ½Ĝf ðt0Þ;Ĝyf ðt
0Þ	

D E
þe�2gc t

ð3:39Þ

We require that this reservoir average be equal to unity. Using Equation 3.36 we have

½âðtÞ; âyðtÞ	
� �

¼ ðC2 � C1Þ
1� e�2gc t

2gc
þ e�2gc t ¼ 1 ð3:40Þ

The last equality holds if

C2 � C1 ¼ 2gc ð3:41Þ
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Thus we can retain on average the commutation relation with the above condition

described by Equation 3.41. Now, in thermal equilibrium, we should have

âyðtÞâðtÞ
� �

¼ nch i, where the thermal photon number of the cavity mode is given

by Equation 2.42b. Then, following the above calculation, we see that for t - N

the thermal photon number is âyðtÞâðtÞ
� �

¼ C1=2gc (problem 3-6). Therefore we

obtain Equation 3.37: C1 ¼ 2gc nch i and C2 ¼ 2gcð nch i þ 1Þ.
We have derived the Langevin force associated with the cavity damping

assuming the Markovian (delta-correlated) nature of the noise and requiring the

preservation of the field commutation relation. The argument does not depend on

the origin or nature of the decay constant gc. In a semiclassical analysis of a laser,

the loss is typically introduced through assumed finite conduction loss distributed

uniformly in the ‘‘perfect’’ cavity. In subsequent laser analyses in this and in the

next chapters, we assume the form of Equation 3.35 for the cavity loss without

arguing the precise origin of the decay constant.

The quantum-mechanical version of the conduction loss is to add a number of

absorbing atoms, loss atoms, in the cavity. The number of atoms is so large that

their absorbing power does not saturate, and these atoms constitute a reservoir.

Then the total cavity field plus loss atom system conserves energy. In this model of

the cavity, the cavity loss rate is determined by the atom–field coupling strength

and the spatial and spectral number density of the atoms. This reservoir model is

outlined in Appendix C.

Equations 3.35 and 3.36 are another form of the fluctuation–dissipation theorem

stated in Equation 2.55. To see this, we construct the correlation function

âyðtÞâðt0Þ
� �

using Equation 3.38. It is easy to show that (problem 3-7)

âyðtÞâðt0Þ
� �

¼ nch ie�iocðt0�tÞ�gc jt0�tj ð3:42Þ

and that its Fourier transform from the domain of tu � t to o is

ðþ1

�1
âyðtÞâðt0
� �

eioðt0�tÞdðt0 � tÞ ¼ nch i
2gc

g2
c þ ðo� ocÞ2

ð3:43Þ

Comparing Equation 3.43 with Equation 2.55 together with Equation 2.56, the

similarity is obvious. If we had constructed the correlation function Gðz0; t0; z; tÞ
using the single-mode cases of Equations 2.18 and 2.19 together with Equation 3.1,

a more precise comparison might have been possible.

We note that the cavity field decaying in the form of Equation 3.35 has a

Lorentzian spectrum of full width at half-maximum (FWHM)2gc. We will call this

width the cavity width.

3.5.2

Relaxation in Atomic Dipole and Atomic Inversion

For the motion of the dipole operator in Equation 3.28 and for the atomic inversion

in Equation 3.31, we respectively add a relaxation or damping term and the

associated Langevin force term as
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d

dt
â ¼ �iocâ� gcâ� i

X

m

kmðb̂ym1b̂m2Þ þ Ĝf ðtÞ ð3:44Þ

ðd=dtÞðb̂ym1b̂m2ÞðtÞ¼�inmðb̂ym1b̂m2ÞðtÞ�gmðb̂
y
m1b̂m2ÞðtÞ

þ ik�mâðtÞŝmðtÞþĜmðtÞ
ð3:45Þ

ðd=dtÞŝmðtÞ ¼ �GmpfŝmðtÞ � s0
mg þ 2ifkmâyðtÞðb̂ym1b̂m2ÞðtÞ

�k�mâðtÞðb̂ym2b̂m1ÞðtÞg þ ĜmkðtÞ
ð3:46Þ

where we have added the reformed equation for the field for later convenience.

The newly added terms represent incoherent motions of respective operators. The

damping constant gm for the atomic dipole comes from collision of other particles

with the atom and is ultimately determined by the spontaneous emission due to

the vacuum fluctuation of the field. For vacuum fluctuation as the cause of the

spontaneous emission, all the existing three-dimensional field modes should be

taken into account even though we are considering the motion of a single cavity

mode. Except in the case of a microcavity laser, where the cavity volume is nearly

the wavelength cubed, the three-dimensional field is, roughly, that of a free field.

The constant Gmp is the relaxation constant of the population inversion and s0
m is

the equilibrium atomic inversion under the pumping but in the absence of the

field. The latter constant is a measure of the strength of the pumping. We assume

that each atom has its own dipole reservoir and pumping reservoir.

Here we insert a brief note on the atomic bandwidth. The atomic dipole, in the

absence of the field described by Equation 3.45 without the third term, will have a

power spectrum similar in form to the one for the field described in Equation 3.43.

There will appear another Lorentzian profile with FWHM 2gm. We will call this the

atomic width or the natural width of the mth atom.

The discussion on the nature of the Langevin forces, or the noise terms, Ĝm and

Ĝmk, are rather involved. To derive their characteristics, one also assumes the

respective Markovian nature of the forces and the conservation of quantum-

mechanical consistency described by Equation 3.32. For details, the reader is

referred to the book by Haken [1] for example. Here we cite the results. We write

the time rates of change of the incoherent part of the populations and dipoles in a

multi-level atom as

d

dt
b̂yj b̂j

� �
¼
X

k

wkj b̂ykb̂k

� �
�
X

k

wjk b̂yj b̂j

� �
þ ĜjjðtÞ ð3:47aÞ

d

dt
b̂yj b̂k

� �
¼ �gjk b̂yj b̂k

� �
þ ĜjkðtÞ ð3:47bÞ

where wkj is the transition rate from level k to level j due to pumping and

incoherent damping of atoms. Then the reservoir averages of the noise sources

and of the product of the Langevin noise terms are given as
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ĜijðtÞ
� �

¼ 0; ĜyijðtÞ
D E

¼ 0 ð3:48Þ

ĜijðtÞĜklðt0Þ
� �

¼ Gij;kldðt� t0Þ ð3:49Þ

with the diffusion coefficient

Gii; jj ¼ dij

X

k

wki b̂ykb̂k

D E
þ
X

k

wik b̂yi b̂i

D E
( )

� wij b̂yi b̂i

D E
� wji b̂yj b̂j

D E

Gij; ij ¼ 0; i 6¼ j

Gij; ji ¼
X

k

wki b̂ykb̂k

D E
�
X

k

wik b̂yi b̂i

D E
þ ðgij þ gjiÞ b̂yi b̂i

D E
; i 6¼ j

ð3:50Þ

where the angle bracket signifies the quantum-mechanical expectation value

averaged over the atomic reservoirs. The constants in Equation 3.46 concerning

the pumping process in a two-level atom are related to the transition rates, if we

note that b̂y1b̂1

D E
þ b̂y2b̂2

D E
¼ 1, as

Gmp ¼ wm12 þ wm21; s0
m ¼

wm12 � wm21

wm12 þ wm21
ð3:51Þ

or

wm12 ¼
1

2
Gmpð1þ s0

mÞ; wm21 ¼
1

2
Gmpð1� s0

mÞ ð3:52Þ

There is an equation, known as the Einstein relation, connecting the diffusion

coefficient and the drift coefficients (the constants C1 and C2 in Equations 3.36

and the decay constant in Equation 3.35, for example), which, in the case of the

atoms, leads ultimately to Equation 3.50 – see, for example, the book by Sargent

et al. [6].

" Exercises

3.1 Show that the normalized mode functions for the cavity described in Figure

3.1 are given by Equations 3.1 and 3.2. Show that they are mutually orthogonal.

3-1. Assume a solution of the form that satisfies the vanishing boundary condition

at z¼�d: UðzÞ ¼ C sin kðzþ dÞ. The vanishing boundary condition at z¼ 0 yields

kd ¼ kp, k¼ 1, 2, 3,y, so that we have ok ¼ c1k ¼ kc1p=d, k¼ 1, 2, 3,y. For

orthonormality, calculate
Ð 0

�d e1C2 sinðkp=dÞðzþ dÞ sinðk0p=dÞðzþ dÞdz, which is

e1C2d=2 for k ¼ ku and vanishes for k 6¼ ku. By the normalization condition in

Equation 1.42a, we have C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðe1dÞ

p
.

3.2 Derive the Hamiltonian in Equation 3.6 from Equations 3.3–3.5.

3-2. We have
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Hf ¼
ð0

�d

e1

2

@

@t
Aðz; tÞ

� �2

þ 1

2m
@

@z
Aðz; tÞ

� �2
" #

dz

¼
ð0

�d

e1

2

X

k

PkUkðzÞ
( )2

þ 1

2m

X

k

QkU0kðzÞ
( )" #2

The first term yields, due to problem 3-1, 1
2

P
k P2

k . The second term reads

ð0

�d

1

2m

X

k

QkU0kðzÞ
( )2

dz ¼ 1

2e1m

X

k

X

k0
QkQk0

ð0

�d
e1U0kðzÞU0k0 ðzÞdz

¼ 1

2e1m

X

k

X

k0
QkQk0

�

e1UkðzÞU0k0
�
�0
�d

�
ð0

�d
e1UkðzÞU00k0 ðzÞdz

�

¼ 1

2e1m

X

k

X

k0
QkQk0

�
ð0

�d
e1UkðzÞk2

k0Uk0 ðzÞdz ¼
X

k

k2
k

2e1m
Q2

k

where a prime on a function indicates differentiation with respect to z. On going

from the second to the third line, the Helmholtz equation for the U has been used.

Note that k2
k=ðe1mÞ ¼ k2

kc2
1 ¼ o2

k .

3.3 Derive the equation of motion for the annihilation operator described in

Equation 3.27.

3-3. For the first term, see Equation 2.36. For the second term, use the commutator

in Equation 2.8.

3.4 Derive the equation of motion for the atomic dipole described in Equation

3.28.

3-4. See Equations 3.29 and 3.30.

3.5 Derive the equation of motion for the atomic inversion described in Equation

3.31.

3-5. We have ½sm;Hf 	 ¼ 0.

That ½sm;Ha	 ¼ 0 can be shown by repeated use of Equation 3.11. Then,

½b̂ym2b̂m2; b̂
y
m1b̂m2	 ¼ b̂ym2b̂m2b̂ym1b̂m2 � b̂ym1b̂m2b̂ym2b̂m2

¼ b̂ym2ð�b̂ym1b̂m2Þb̂m2 � b̂ym1ð1� b̂ym2b̂m2Þb̂m2 ¼ �b̂ym1b̂m2
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½b̂ym1b̂m1; b̂
y
m1b̂m2	 ¼ b̂ym1b̂m1b̂ym1b̂m2 � b̂ym1b̂m2b̂ym1b̂m1

¼ b̂ym1ð1� b̂ym1b̂m1Þb̂m2 � b̂ym1ð�b̂ym1b̂m2Þb̂m1 ¼ b̂ym1b̂m2

because b̂m2b̂m2 ¼ 0 and b̂ym1b̂ym1 ¼ 0. Thus ½sm; b̂
y
m1b̂m2	 ¼ �2b̂ym1b̂m2. Similarly,

½b̂ym2b̂m2; b̂
y
m2b̂m1	 ¼ b̂ym2b̂m2b̂ym2b̂m1 � b̂ym2b̂m1b̂ym2b̂m2

¼ b̂ym2ð1� b̂ym2b̂m2Þb̂m1 � b̂ym2ð�b̂ym2b̂m1Þb̂m2 ¼ b̂ym2b̂m1

½b̂ym1b̂m1; b̂
y
m2b̂m1	 ¼ b̂ym1b̂m1b̂ym2b̂m1 � b̂ym2b̂m1b̂ym1b̂m1

¼ b̂ym1ð�b̂ym2b̂m1Þb̂m1 � b̂ym2ð1� b̂ym1b̂m1Þb̂m1 ¼ �b̂ym2b̂m1

and ½sm; b̂
y
m2b̂m1	 ¼ 2b̂ym2b̂m1. Note that the rule in Equation 3.32 yields these

results more quickly.

3.6 Using the Langevin equation (Equation 3.35), show that limt!1 âyðtÞâðtÞ
� �

¼
C1=ð2gcÞ.
3-6. Equation 3.35 leads to Equation 3.38. Thus, noting that ĜðtÞ and âð0Þ are

mutually independent, we get

âyðtÞâðtÞ
� �

¼
ðt

0

eðþioc�gcÞðt�t0ÞĜyf ðt
0Þdt0 þ âyð0Þeþioc t�gc t

� ��

�
ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0 þ âð0Þe�ioc t�gc t

� ��

¼
ðt

0

eðþioc�gcÞðt�t00ÞĜyf ðt
00Þdt00

ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0
� �

þ âyð0Þâð0Þe�2gc t
� �

¼
ðt

0

dt00
ðt

0

dt0 eð�ioc�gcÞðt�t0Þþðþioc�gcÞðt�t00Þ Ĝyf ðt
00ÞĜf ðt0Þ

D E

þ âyð0Þâð0Þ
� �

e�2gc t

¼
ðt

0

dt00
ðt

0

dt0 eð�ioc�gcÞðt�t0Þþðþioc�gcÞðt�t00ÞC1dðt00 � t0Þ

þ âyð0Þâð0Þ
� �

e�2gc t

¼ C1
1� e�2gc t

2gc
þ âyð0Þâð0Þ
� �

e�2gc t

3.7 Derive the correlation function in Equation 3.42.

3-7. We have

3.5 Laser Equation of Motion: Introducing the Langevin Forces | 59



âyðtÞâðt0Þ
� �

¼
ðt

0

eðioc�gcÞðt�t00ÞĜyf ðt
00Þdt00 þ âyð0Þeðioc�gcÞt

� ��

�
ðt0

0

eð�ioc�gcÞðt0�t000ÞĜf ðt000Þdt000 þ âð0Þeð�ioc�gcÞt0
( )+

¼
ðt

0

dt00
ðt0

0

dt000 eðioc�gcÞðt�t00Þeð�ioc�gcÞðt0�t000Þ Ĝyf ðt
00ÞĜf ðt000Þ

D E

þ âyð0Þâð0Þ
� �

eðioc�gcÞteð�ioc�gcÞt0

¼
ðt

0

dt00
ðt0

0

dt000 eðioc�gcÞðt�t00Þeð�ioc�gcÞðt0�t000ÞC1dðt00 � t000Þ

þ âyð0Þâð0Þ
� �

eðioc�gcÞteð�ioc�gcÞt0

¼
C1

Ð t0

0 dt00 eiocðt�t0Þe�gcðtþt0�2t00Þ; t4t0

C1

Ð t
0 dt00 eiocðt�t0Þe�gcðtþt0�2t00Þ; tot0

8
><

>:

þ âyð0Þâð0Þ
� �

eðioc�gcÞteð�ioc�gcÞt0

¼
C1eiocðt�t0Þ e�gc ðt�t0 Þ�e�gc ðtþt0 Þ

2gc
; t4t0

C1eiocðt�t0Þ e�gc ðt
0�tÞ�e�gc ðtþt0 Þ

2gc
; tot0

8
><

>:

þ âyð0Þâð0Þ
� �

eðioc�gcÞteð�ioc�gcÞt0

If we note that C1=ð2gcÞ ¼ nch i we obtain Equation 3.42 for t; t0 ! 1.
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4

A One-Dimensional Quasimode Laser: Semiclassical and

Quantum Analysis

Now that we have a complete set of equations (Equations 3.44–3.46) with known

properties of the Langevin forces (Equations 3.37 and 3.50), we can in principle

analyze the laser in a quantum mechanically consistent manner. However, the

problem to be solved is rather hard because of the presence of random force terms.

So, before solving the complete equations, we first consider the ‘‘average’’

equations, leaving the Langevin force terms ignored. Such an approach is called

a semiclassical theory because the quantum-mechanical consistency is then not

fully preserved. After solving the average equations, we can introduce the random

forces to take fully into account the quantum effects. The semiclassical analysis

has two main steps. In the first step, we assume that the population inversion is

determined by the pumping process only and it is not affected by the presence of

the laser field. This is a linear gain analysis in that the amplification by the atoms

is linear with respect to the laser field amplitude. This theory applies to the sub-

threshold region of laser operation. In the second step, we allow for a nonlinear

behavior of the amplifying atoms. The amplifying capability of atoms then

decreases because of the consumption of inverted atoms by the presence of the

laser field because of the stimulated emission. This is called the saturation effect.

This nonlinear gain analysis yields the steady-state laser amplitude, which keeps

the inversion level or the field gain just balancing the field loss due to the cavity

loss. In this book we limit ourselves to a steady-state oscillation and do not

consider pulsed laser operation or temporal variation of the field intensity. The

quantum analysis is also divided into two main steps: the linear gain analysis and

the nonlinear gain analysis.

4.1

Semiclassical Linear Gain Analysis

Here, we assume a steady state with constant population inversion, and set

ŝmðtÞ ¼ sm in Equation 3.45. We consider the following equations, ignoring the

noise terms:

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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d

dt
âðtÞ ¼ �iocâðtÞ � gcâðtÞ � i

X

m

kmðb̂ym1b̂m2ÞðtÞ ð4:1Þ

ðd=dtÞðb̂ym1b̂m2ÞðtÞ ¼ �inmðb̂ym1b̂m2ÞðtÞ � gmðb̂
y
m1b̂m2ÞðtÞ þ ik�mâðtÞsm ð4:2Þ

From Equation 3.19 we have the positive frequency part of the electric field for a

single mode in question:

ÊðþÞðz; tÞ ¼ ið_oc=2Þ1=2UcðzÞâðtÞ ð4:3Þ

Thus multiplying both sides of Equation 4.1 by ið_oc=2Þ1=2UcðzÞ and integrating

we have

ÊðþÞðz; tÞ ¼
ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞeð�ioc�gcÞt
ðt

0

eðiocþgcÞt0
X

m

km b̂ym1b̂m2

� �
ðt0Þdt0

þ ÊðþÞðz; 0Þeð�ioc�gcÞt

ð4:4Þ

The second term comes from the initial field and vanishes for large t. So we will

ignore this term. Since k�m ¼ �inmð1=2_ocÞ1=2UcðzmÞp�m according to Equation

3.22a, we replace k�mâðtÞ in Equation 4.2 by �fnmp�m=ð_ocÞgÊðþÞðzm; tÞ. Integrating

Equation 4.2 (problem 4-1) and substituting the result into Equation 4.4, we have

ÊðþÞðz; tÞ ¼
X

m

pmj j2n2
msm

2_oc
UcðzÞUcðzmÞ

"

�
ðt

0

eð�ioc�gcÞðt�t0Þ
ðt0

0

eð�inm�gmÞðt0�t00ÞÊðþÞ zm; t
00ð Þdt00dt0

# ð4:5Þ

where we have ignored the term coming from the initial value of b̂ym1b̂m2, which

represents a switching-on effect. This form of equation, describing ÊðþÞðz; tÞ rather

than âðtÞ, has been derived for later comparison with the situation where the field

inside the cavity is non-uniform because of the coupling loss at the cavity ends.

Anyway, this form expresses the contribution of the mth atom at zm to the field

at (z,t) through the product of the mode functions at z and zm, which we saw in the

expression of the response function in Equation 2.53a (see Equation 5.34 below).

We go back to âðtÞ by dividing Equation 4.5 by ið_oc=2Þ1=2UcðzÞ to obtain

âðtÞ ¼
X

m

pmj j2n2
msm

2_oc
UcðzmÞUcðzmÞ

ðt

0

eð�ioc�gcÞðt�t0Þ

"

�
ðt0

0

eð�inm�gmÞðt0�t00Þâðt00Þdt00dt0
# ð4:6Þ

It is not easy to go further if the atoms are of different nature. For simplicity, we

assume here equally pumped, homogeneously broadened atoms and set

nm ¼ n0; pm ¼ pa; gm ¼ g; sm ¼ s ð4:7Þ
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Then we can write

âðtÞ ¼ k2Ns
ðt

0

eð�ioc�gcÞðt�t0Þ
ðt0

0

eð�in0�gÞðt0�t00Þâðt00Þdt00dt0 ð4:8Þ

with

k2Ns ¼ paj j2n2
0s

2_oc

ð0

�d
N dzm U2

c ðzmÞ ¼
paj j2n0

2e1_
Ns ¼

X

m

jkmj2s ð4:9Þ

where N is the density of atoms in the z-direction and we have set n0¼oc in the

second equality, which is usually highly accurate. Differentiating Equation 4.8

twice we have

€̂aþ fiðoc þ n0Þ þ gc þ gg _̂a� fk2Ns� ðin0 þ gÞðioc þ gcÞgâ ¼ 0 ð4:10aÞ

Because the field is oscillating at a high frequency o, which is still to be

determined, we write âðtÞ ¼ ~aðtÞe�iot and rewrite Equation 4.10a as (problem 4-2)

€~aþ fiðoc þ n0 � 2oÞ þ gc þ gg _~a

� ½k2Ns� fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg	~a ¼ 0
ð4:10bÞ

Now that ã(t) is slowly varying, we ignore the second derivative. Then the

amplitude ã(t) simply grows or decays exponentially depending on the coefficients

of the second and third terms. Since we are anticipating operation below thresh-

old, the amplitude should decay as

~a � exp
k2Ns� fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg

iðoc þ n0 � 2oÞ þ gc þ g
t

� �

ð4:11Þ

The laser threshold conditions are obtained if we set the exponent to zero. Thus we

have the threshold oscillation frequency and the threshold atomic inversion as

oth ¼
goc þ gcn0

gþ gc
ð4:12Þ

k2Nsth ¼ ggc � ðn0 � othÞðoc � othÞ ¼ ggc 1þ ðoc � n0Þ2

ðgþ gcÞ2

( )

ð4:13aÞ

or using Equation 4.9

sth ¼
2_e1ggc

paj j2n0N
ð1þ d2Þ ð4:13bÞ

where the squared relative detuning is

d2 ¼ ðn0 � ocÞ2

ðgþ gcÞ2
ð4:13cÞ

Equation 4.12 shows the linear pulling effect between the cavity resonance and

the atomic resonance frequencies. The laser frequency tends to be pulled to the
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narrower resonance. The threshold inversion is smaller for larger atomic density

and larger electric dipole matrix element, and is larger for larger atomic width,

larger cavity loss, and larger detuning between the cavity and the atomic

resonances. We rewrite Equation 4.13a as

gNsth ¼ gc ð4:13dÞ

where the coefficient

g ¼ k2

gð1þ d2Þ
¼ jpaj2n0

2e1_gð1þ d2Þ
ð4:14Þ

is interpreted as the amplitude gain per unit density of inverted atoms per unit

time. This is equal to half the stimulated transition rate per atom per unit density

of photons.

4.2

Semiclassical Nonlinear Gain Analysis

Now we take the saturation of the atomic inversion due to stimulated emission

into account in the context of semiclassical analysis. We start with Equations 3.44

and 3.45, with the noise terms discarded, and obtain, as in Equation 4.5,

ÊðþÞðz; tÞ ¼
X

m

pmj j2nm

2_
UcðzÞUcðzmÞ

"

�
ðt

0

eð�ioc�gcÞðt�t0Þ
ðt0

0

eð�inm�gmÞðt0�t00ÞÊðþÞðzm; t
00Þsmðt00Þdt00dt0

# ð4:15Þ

where we have assumed that oc B nm. We want to find the time variation of the

field amplitude ~EðþÞðz; tÞ, where

ÊðþÞðz; tÞ ¼ ~EðþÞðz; tÞe�iot ð4:16Þ

and the angular frequency o is the center frequency of oscillation to be

determined. Then we have

~EðþÞðz; tÞ ¼
X

m

pmj j2nm

2_
UcðzÞUcðzmÞ �

ðt

0

eðio�ioc�gcÞðt�t0Þ

"

�
ðt0

0

eðio�inm�gmÞðt0�t00Þsmðt00Þ~EðþÞðzm; t
00Þdt00dt0

#
ð4:17Þ

Here, again, we go to the homogeneously broadened case for simplicity:
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nm ¼ n0; pm ¼ pa; gm ¼ g ð4:18Þ

Unlike in Equation 4.7 we do not assume sm¼s here, since the atomic saturation

may differ for different atoms. Differentiating twice with respect to time, we have

@

@t

� �2
~EðþÞðz; tÞ þ ½fgc þ iðoc � oÞg þ fgþ iðn0 � oÞg	 @

@t

� �
~EðþÞðz; tÞ

þ fgc þ iðoc � oÞgfgþ iðn0 � oÞg~EðþÞðz; tÞ

�
X

m

paj j2n0

2_
UcðzÞUcðzmÞsmðtÞ~EðþÞðzm; tÞ ¼ 0

ð4:19Þ

We go to the steady state and have

~EðþÞðzÞ ¼ 1

fgc þ iðoc � oÞgfgþ iðn0 � oÞg

�
X

m

paj j2n0

2_
UcðzÞUcðzmÞsm

~EðþÞðzmÞ
ð4:20Þ

Dividing both sides by

~EðþÞðzÞ ¼ ið_oc=2Þ1=2UcðzÞ~a ð4:21Þ

we obtain the steady-state condition:

1 ¼ 1

fgc þ iðoc � oÞgfgþ iðn0 � oÞg
X

m

paj j2n0

2_
U2

c ðzmÞsm ð4:22Þ

Now Equation 3.46 for steady state without the noise term reads

Gpfsm � s0g ¼ 2ifkm~ayðbym1bm2Þ � k�m~aðbym2bm1Þg ð4:23Þ

where we have written, according to Equation 4.16,

âðtÞ ¼ ~ae�iot; b̂ym1b̂m2ðtÞ ¼ bym1bm2e�iot ð4:24Þ

Also, we have assumed a uniform pumping Gmp ¼ Gp and s0
m ¼ s0. Equation 4.2

for steady state then gives (problem 4-3)

bym1bm2 ¼
ik�m~asm

gþ iðn0 � oÞ ð4:25Þ

Substituting Equation 4.25 into Equation 4.23 we have

Gpfsm � s0g ¼ �4
gjkmj2j~aj2sm

g2 þ ðn0 � oÞ2
ð4:26Þ

where we have set ~ay~a ¼ ~a~ay ¼ j~aj2, ignoring the operator aspect of the field

amplitude. This is permissible for a semiclassical analysis. This equation shows

the balance with respect to the atomic inversion. The left-hand side describes the

supply rate of inversion by pumping, while the right-hand side describes the net
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consumption rate of the inversion by stimulated emission and absorption. The

quantity 2gjkmj2= g2 þ ðn0 � oÞ2
n o

, which is nearly equal to twice g in Equation

4.14, is the stimulated transition probability per photon for the field at frequency o.

Thus we have

sm ¼
s0

1þ 4f½gjkmj2j~aj2	=½g2 þ ðn0 � oÞ2	g=Gp

ð4:27Þ

This equation represents the saturation of the atomic inversion, or of the atomic

gain, that is, decrease of inversion due to stimulated emission. Saturation becomes

appreciable when the rate of decrease of the inversion due to stimulated emission

is comparable to its rate of increase due to pumping. If the field amplitude ã is

small, the inversion is equal to the unsaturated value s0. However, it decreases

with increasing field amplitude. Now, since we can write (see above Equation 4.5)

km~a ¼ � pa

_
~EðþÞðzmÞ ð4:28Þ

we rewrite Equation 4.27 as

sm ¼
s0

1þ ~EðþÞðzmÞ
�
�

�
�2= Esj j2

ð4:29Þ

where the saturation parameter

Esj j2¼
Gp_

2

4gp2
a

fg2 þ ðn0 � oÞ2g ð4:30Þ

If we substitute Equation 4.29 into the steady-state condition Equation 4.22, we can in

principle determine the field amplitude ~EðþÞðzmÞ
�
�

�
� and the oscillation frequency o.

However, a difficulty arises because the summation over atoms m contains

sin2ðzm þ dÞ in the denominator due to the form of the electric field ~EðþÞðzmÞ
given by Equations 4.3 and 3.1. Thus the inversion sm is locally depleted where the

mode amplitude is large. This is the so-called spatial hole in the laser gain. For

simplicity, we ignore the spatial holes and assume that we can replace

sin2ðzm þ dÞby its space average 1
2 and write

~EðþÞ
�
�

�
�2¼ 1

d

ð0

�d

~EðþÞðzmÞ
�
�

�
�2dzm ð4:31Þ

We replace j~EðþÞðzmÞj2 in Equation 4.29 by j~EðþÞj2 and the corresponding steady-

state inversion sm by sss, which is independent of atom index m,

sss ¼
s0

1þ ~EðþÞ
�
�

�
�2= Esj j2

ð4:32Þ

We then substitute Equation 4.32 into Equation 4.22 and evaluate the summation

over m similarly to obtain
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o ¼ goc þ gcn0

gþ gc
ð4:33Þ

and

~EðþÞ
�
�

�
�2 ¼ Esj j2

paj j2n0Ns0

2_e1

1

gcg� ðoc � oÞðn0 � oÞ � 1

" #

¼ Esj j2
paj j2n0Ns0

2_e1

1

gcg 1þ ðn0 � ocÞ2=ðgþ gcÞ2
n o� 1

2

4

3

5

ð4:34Þ

Note that the squared field amplitude obtained is the spatial average value. The

oscillation frequency in Equation 4.33 is the same as the threshold oscillation

frequency for the linear gain analysis in Equation 4.12. The saturation parameter

in Equation 4.30 reduces to

jEsj2 ¼
Gp_

2g
4p2

a

ð1þ d2Þ ð4:35Þ

where d is given by Equation 4.13c. The threshold atomic inversion is obtained by

setting ~EðþÞ
�
�

�
� ¼ 0 in Equation 4.34 as

s0
th ¼

2_e1ggc

jpaj2n0N
ð1þ d2Þ ð4:36Þ

which is the same as in Equation 4.13b for the linear gain analysis. Then, Equation

4.34 can be rewritten as

s0

1þ ~EðþÞ
�
�

�
�2= Esj j2

¼ s0
th ð4:37Þ

Comparison with Equation 4.32 shows that the steady-state atomic inversion is

the same as the threshold inversion:

sss ¼ s0
th ð4:38Þ

This is an example of the well-known fact that the gain of an oscillator above

threshold is clamped at the threshold value.

4.3

Quantum Linear Gain Analysis

We now return to the case of fixed atomic inversion, a linear gain regime, but

regain the noise terms. We use Equations 3.44 and 3.45 with the inversion

operator replaced by a constant ŝmðtÞ ¼ sm:
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d

dt
â ¼ �iocâ� gcâ� i

X

m

kmðb̂ym1b̂m2Þ þ Ĝf ðtÞ ð4:39aÞ

ðd=dtÞðb̂ym1b̂m2ÞðtÞ ¼ �inmðb̂ym1b̂m2ÞðtÞ � gmðb̂
y
m1b̂m2ÞðtÞ

þ ik�mâðtÞsm þ ĜmðtÞ
ð4:39bÞ

We follow the procedure used above to go from Equations 4.1 and 4.2 to Equation

4.5. Multiplying both sides of Equation 4.39a by ið_oc=2Þ1=2UcðzÞ and integrating,

we have

ÊðþÞðz; tÞ¼
ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞeð�ioc�gcÞt
ðt

0

eðiocþgcÞt0

X

m

km b̂ym1b̂m2

� �
ðt0Þþ iĜf ðt0Þ

( )

dt0 þ ÊðþÞðz;0Þeð�ioc�gcÞt
ð4:40Þ

We replace k�mâðtÞ in Equation 4.39b by �fnmp�m=ð_ocÞgÊðþÞðzm; tÞ. Integrating

Equation 4.39b (problem 4-4) and substituting the result in Equation 4.40, we

obtain, noting that km ¼ inmð1=2_ocÞ1=2UcðzmÞpm,

ÊðþÞðz; tÞ ¼
X

m

pmj j2n2
msm

2_oc
UcðzÞUcðzmÞ

ðt

0

eð�ioc�gcÞðt�t0Þ

"

�
ðt0

0

eð�inm�gmÞðt0�t00ÞÊðþÞðzm; t
00Þdt00dt0

#

þ i
X

m

nmpm

2
UcðzÞUcðzmÞ

ðt

0

eð�ioc�gcÞðt�t0Þ
�

�
ðt0

0

eð�inm�gmÞðt0�t00ÞĜmðt00Þdt00dt0
#

þ i

ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞ
ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0

ð4:41Þ

Here, we have again ignored the terms coming from the initial values â(0) and

ðb̂ym1b̂m2Þð0Þ. This form of integral equation for the field has been derived for

comparison with those in Chapter 9, where we take into account the output

coupling. Going again to the homogeneously broadened atoms and to the slowly

varying part of the field annihilation operator ã(t) as in Equation 4.10b, we obtain

€~aþ fiðoc þ n0 � 2oÞ þ gc þ gg _~a� ½k2Ns� fiðn0 � oÞ þ gg

� fiðoc � oÞ þ gcg	~a ¼ _~Gf þ fi ðn0 � oÞ þ gð Þ~Gf g � i
X

m

km
~Gm
ð4:42Þ

where we have written Ĝf ðtÞ ¼ ~Gf ðtÞe�iot and ĜmðtÞ ¼ ~GmðtÞe�iot. The factor k2Ns
was defined in Equation 4.9. We again ignore the second derivative of the slowly
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varying amplitude €~a. Also, we ignore the term _~Gf , assuming that the time variation

of ~Gf is slower than the dipole relaxation rate g. Then, we have

~aðtÞ ¼ ~að0Þes0t þ 1

iðoc þ n0 � 2oÞ þ gc þ g

�
ðt

0

es0ðt�t0Þ iðn0 � oÞ þ gf g ~Gf ðt0Þ � i
X

m

km
~Gmðt0Þ

" #

dt0
ð4:43Þ

where

s0 ¼
k2Ns� fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg

iðoc þ n0 � 2oÞ þ gc þ g
ð4:44Þ

Going back to â(t) we have

âðtÞ ¼ âð0Þeðs0�ioÞt þ 1

iðoc þ n0 � 2oÞ þ gc þ g

�
ðt

0

eðs0�ioÞðt�t0Þ iðn0 � oÞ þ gf g Ĝf ðt0Þ � i
X

m

kmĜm

" #

dt0
ð4:45Þ

We remember that the same exponential constant was obtained in Equation 4.11

for the semiclassical linear gain analysis. If the atomic inversion is below

threshold, the first term represents an exponential decay of the initial field value.

The second integral term shows the same exponential decay but incessantly

excited by the lasting noise terms. Since the exponent s0 is the same as that in

Equation 4.11 for the semiclassical linear gain analysis, we obtain the same

threshold frequency and threshold population inversion as in Equations 4.12 and

4.13b by setting s0¼ 0:

oth ¼
goc þ gcn0

gþ gc
ð4:46Þ

sth ¼
ggc

k2N
1þ ðn0 � ocÞ2

ðgþ gcÞ2

( )

¼ 2_othe1ggc

jpaj2n2
0N
ð1þ d2Þ ¼ gc

Ng
ð4:47Þ

In order to calculate the steady-state field spectrum, we calculate the correlation

function of the field using the correlation functions of the noise sources given in

Equations 3.36 and 3.49. It is well known that the power spectrum of a field is

given by the Fourier transform of the correlation function of the field. We ignore

the first term in Equation 4.45, which can be ignored in the steady state, that is, for

t - N. Then we construct

4.3 Quantum Linear Gain Analysis | 69



âyðtÞâðt0Þ
� �

¼ 1

ðoc þ n0 � 2oÞ2 þ ðgc þ gÞ2

�
ðt

0

eðs
�
0þioÞðt�t00Þ �iðn0 � oÞ þ gf g Ĝyf ðt

00Þ þ i
X

m

k�mĜ
y
mðt00Þ

" #

dt00
*

�
ðt0

0

eðs0�ioÞðt0�t000Þ iðn0 � oÞ þ gf g Ĝf ðt000Þ � i
X

m0
km0 Ĝm0 ðt000Þ

" #

dt000
+

ð4:48Þ

Note that the average sign here refers to the field reservoir as well as atomic

reservoirs in addition to the quantum-mechanical expectation value. Using Equations

3.36 and 3.48, assuming the independence of reservoirs for different atoms as well as

the independence of the field reservoir from the atomic reservoirs, we rewrite it as

âyðtÞâðt0Þ
� �

¼ 1

ðoc þ n0 � 2oÞ2 þ ðgc þ gÞ2

�
ðt

0

ðt0

0

eðs
�
0þioÞðt�t00Þeðs0�ioÞðt0�t000Þfðn0 � oÞ2 þ g2g Ĝyf ðt

00ÞĜf ðt000Þ
D E

dt00dt000
(

þ
ðt

0

ðt0

0

eðs
�
0þioÞðt�t00Þeðs0�ioÞðt0�t000Þ

X

m

jkmj2 Ĝymðt00ÞĜmðt000Þ
� �

dt0dt000
)

ð4:49Þ

The correlation function for the field reservoir is given in Equations 3.36 and

3.37. That for the atomic reservoir is obtained from Equations 3.49 and 3.50 as

Ĝymðt00ÞĜmðt000Þ
� �

¼ Ĝ21ðt00ÞĜ12ðt000Þ
� �

¼ G21;12dðt00 � t000Þ

G21;12 ¼ w12
1

2
ð1� sÞ

� �

� w21
1

2
ð1þ sÞ

� �

þ 2g
1

2
ð1þ sÞ

� �

¼ 1

2
Gpð1þ s0Þ 1

2
ð1� sÞ

� �

� 1

2
Gpð1� s0Þ 1

2
ð1þ sÞ

� �

þ 2g
1

2
ð1þ sÞ

� �

¼ gð1þ sÞ

ð4:50Þ

for all m. The last equality holds since sh i ¼ s0 ¼ s in this linear gain analysis.

Carrying out the integration we have

âyðtÞâðt0Þ
� �

¼ 2fðn0�oÞ2þ g2ggc nch iþ
P

m jkmj2gð1þsÞ
ðocþ n0� 2oÞ2þðgc þ gÞ2

�

eðs
�
0þ ioÞtþðs0� ioÞt0� eðs

�
0þ ioÞðt� t0Þ

s0þ s�0
; t 4t0

eðs
�
0þ ioÞtþðs0� ioÞt0� eðs0� ioÞðt0 � tÞ

s0þ s�0
; t ot0

8
>>>>><

>>>>>:

ð4:51Þ
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Below threshold, the real part of the exponent s0 is negative. Then the first terms

after the curly bracket vanish for long time t and tu and can be ignored for the

steady state. In the steady state, the correlation function depends only on the time

difference t� tu. The summation over m of jkmj2 can be written as K2N by Equation

4.9. So we have

âyðtþ tÞâðtÞ
� �

¼ 2fðn0 � ooÞ2 þ g2ggc nch i þ k2Ngð1þ sÞ
ðoc þ n0 � 2ooÞ2 þ ðgc þ gÞ2

�

eðs
�
0þiooÞt

2 Re s0j j ; t40

e�ðs0�iooÞt

2 Re s0j j ; to0

8
>>>><

>>>>:

ð4:52Þ

where we have rewritten the central frequency o as oo. The explicit expression for

Re s0 can be obtained from Equation 4.44 with o replaced by oo, the undetermined

center frequency of oscillation. For simplicity, we assume that this frequency is the

same as the threshold frequency, that is, we set o! oo ¼ oth. Then we have

2 Re s0j j ¼ 2ðgþ gcÞ½ggcð1þ d2Þ � k2Ns	
ðgþ gcÞ2 þ d2ðg� gcÞ2

¼ 2ðgþ gcÞggcð1þ d2Þ½1� s=sth	
ðgþ gcÞ2 þ d2ðg� gcÞ2

ð4:53Þ

where the relative detuning d is given by

d2 ¼ oc � n0

gþ gc

� �2

ð4:54Þ

In the second line in Equation 4.53 we have used Equation 4.47. Using Equation

4.53, we can rewrite Equation 4.52 as

âyðt þ tÞâðtÞ
� �

¼ 2fðn0�ooÞ2þ g2ggc nch iþk2Ngð1þsÞ
2ðgþ gcÞggcð1þd2Þ½1�s=sth	

�
eðs
�
0þiooÞt; t40

e�ðs0�iooÞt; to0

8
<

:

¼ gf nch iþN2=ðNsthÞg
ðgþ gcÞ½1�s=sth	

�
eðs
�
0þiooÞt; t40

e�ðs0�iooÞt; to0

8
<

:

ð4:55Þ

Here N2¼Nð1þsÞ=2 is the density of atoms in the upper state. In order to obtain

the power spectrum, we Fourier transform the t-dependent part of Equation 4.55

to obtain (problem 4-5)
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IðoÞ ¼
ðþ1

�1
âyðtþ tÞâðtÞ
� �

e�iotdt

/
ð0

�1
e�ðs0�iooÞt�iotdtþ

ðþ1

0

eðs
�
0þiooÞt�iotdt

¼ �2Re s0

ðoo � o� Im s0Þ2 þ ðRe s0Þ2

ð4:56Þ

Thus the power spectrum is a Lorentzian with the full width at half-maximum

(FWHM) Do given as

Do ¼ 2 Re s0j j ð4:57Þ

where the right-hand side was given in Equation 4.53. This shows that the

linewidth decreases as the atomic inversion s approaches the threshold value.

Schawlow and Townes [1] gave the laser linewidth in terms of measurable

quantities including the power output. We can obtain the stored energy W inside

the cavity in terms of the expectation value of the intensity, using Equation 4.52,

âyðtÞâðtÞ
� �

¼ 2g2gcð1þ d2Þ nch i þ k2Ngð1þ sÞ
d2ðg� gcÞ2 þ ðgc þ gÞ2

1

2 Re s0j j ð4:58Þ

Here, again, we have replaced oo by oth. By going back from âðtÞ to the electric

field ÊðþÞðz; tÞ by multiplying by the factor ið_oc=2Þ1=2UcðzÞ, composing the real

electric field operator by adding Êð�Þðz; tÞ, and integrating the electromagnetic

energy in the cavity, and using Equation 3.1, we have

W ¼
ð0

�d
e1 ÊðþÞðz; tÞ þ Êð�Þðz; tÞ
n o2

dz

� �

¼
ð0

�d
e1 ÊðþÞðz; tÞÊð�Þðz; tÞ
D E

þ Êð�Þðz; tÞÊðþÞðz; tÞ
D En o

dz

¼
ð0

�d
e1 UcðzÞj j2ð_oc=2Þ âðtÞâyðtÞ

� �
þ âyðtÞâðtÞ
� �� 	

dz

¼ e1ð_oc=2Þ âðtÞâyðtÞ
� �

þ âyðtÞâðtÞ
� �� 	 2

e1d

d

2

¼ _oc âyðtÞâðtÞ
� �

þ 1

2

� �

ð4:59Þ

(The reason for the appearance of oc instead of o, the oscillation frequency, is that

we are neglecting the presence of the atoms in estimating the stored energy. The

difference is usually negligible.)

However, the zero-point energy cannot be measured directly and Glauber [2]

showed that the energy available for measurement is
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W ¼ _oc âyðtÞâðtÞ
� �

ð4:60Þ

which states that the expectation value of the photon number in the cavity is just

âyðtÞâðtÞ
� �

, as expected. The output power P is, by assumption, equal to 2gcW .

Thus we have

P ¼ 2gcW ¼ 2gc_oc âyðtÞâðtÞ
� �

¼ 2g2gcð1þ d2Þ nch i þ k2Ngð1þ sÞ
d2ðg� gcÞ2 þ ðgc þ gÞ2

2gc_oc

2 Re s0j j
ð4:61Þ

So we have (see Equations 4.57 and 4.47)

Do ¼ 2 Re s0j j ¼ 2gc_oc

P

2g2gcð1þ d2Þ nch i þ k2Ngð1þ sÞ
d2ðg� gcÞ2 þ ðgc þ gÞ2

¼ 4_ocg2
c

P

g2ð1þ d2Þ
ðgc þ gÞ2 þ d2ðg� gcÞ2

nch i þ
N2

Nsth

� � ð4:62aÞ

This is the standard form of the expression for the laser linewidth given by

Haken [3]. A similar result, without the second factor, was given by Sargent et al.
[4]. This is inversely proportional to the output power. The major contribution, the

term of N2, comes from the noise associated with the decay of the atomic polar-

ization, usually called quantum noise. The physical content is the spontaneous

emission events that occur at random in the atoms in the upper level 2. The

spontaneously emitted photons tend to destroy the phase of the oscillating laser

field, giving the finite linewidth. A smaller contribution comes from the thermal

noise, the term of nch i, associated with the damping of the field. Physically, this is

the thermal radiation field mixed into the oscillating field and amplified by the

atoms, also disturbing the continuity of the phase of the oscillating field. Note that

nch i, the average number of thermal photons in the cavity mode in question, is

much smaller than unity for optical frequencies at moderate temperature,

_o� kT , where k is the Boltzmann constant and T is the absolute temperature.

On the other hand, the coefficient N2=ðNsthÞ, the incomplete inversion factor, is of

the order of unity or larger. This coefficient is sometimes called the spontaneous

emission factor. We see that the smaller the threshold population inversion as

compared to N2, the larger the laser linewidth. This is because the presence of the

lower-level atoms causes the number of upper-level atoms N2 to increase to retain

the necessary gain. We also see that any detuning between the atomic and the

cavity resonances, appearing in the form of d, increases the laser linewidth.

The famous Schawlow–Townes linewidth formula was given as [1]

DoST ¼
4_ocg2

c

P
ð4:62bÞ

We see that here the thermal noise is neglected, a complete inversion ðN1 ¼ 0Þ is

assumed, zero detuning ðd ¼ 0Þ is assumed, and also a large polarization decay

rate as compared to the cavity decay rate g� gc is assumed. Note that the

Schawlow–Townes linewidth DoST applies for the linear gain regime.
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4.4

Quantum Nonlinear Gain Analysis

Now we take the saturation of the atomic inversion into account again in the

context of quantum-mechanical analysis. Here we assume a steady state of con-

stant amplitude and concentrate on the phase diffusion of the oscillating field. We

start with Equations 3.44 and 3.45, with the noise terms included, and obtain

Equation 4.41, but with sm moved into the integral over tv in the form ŝmðt00Þ:

ÊðþÞðz; tÞ ¼
X

m

jpmj2n2
m

2_oc
UcðzÞUcðzmÞ

"

�
ðt

0

eð�ioc�gcÞðt�t0Þ
ðt0

0

eð�inm�gmÞðt0�t00ÞÊðþÞðzm; t
00Þŝmðt00Þdt00dt0

#

þ i
X

m

nmpm

2
UcðzÞUcðzmÞ

h

�
ðt

0

eð�ioc�gcÞðt�t0Þ
ðt0

0

eð�inm�gmÞðt0�t00ÞĜmðt00Þdt00dt0
#

þ i

ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞ
ðt

0

eð�ioc�gcÞðt�t0ÞĜf ðt0Þdt0

ð4:63Þ

Going to homogeneously broadened and uniformly pumped atoms, where

nm¼ n0, pm¼ pa, gm¼ g, Gmp¼Gp, and s0
m ¼ s0, we require the time variation of

the field amplitude ~aðtÞ as in Equation 4.42:

€~aþ fiðoc þ n0 � 2oÞ þ gc þ gg _~a

� paj j2n2
0

2_oc

X

m

ŝmðtÞU2
c ðzmÞ � fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg

" #

~a

¼ ½ _~Gf þ fiðn0 � oÞ þ gg~Gf 	 � i
X

m

km
~Gm

ð4:64Þ

We again discard the second time derivative of the slowly varying field ampli-

tude. For the moment we look for the ‘‘average’’ steady-state amplitude and

oscillation frequency, ignoring the noise terms and assuming constant (in time)

atomic inversions. What we then obtain is Equation 4.22 of the semiclassical

nonlinear gain analysis:

paj j2n2
0

2_oc

X

m

smU2
c ðzmÞ � fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg ¼ 0 ð4:65Þ

Here sm is a classical quantity instead of an operator. Following the arguments

from Equations 4.22 to 4.38, we have the steady-state oscillation frequency, the

oscillation amplitude, and the atomic inversion as
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o ¼ goc þ gcn0

gþ gc
ð4:66Þ

~EðþÞ
�
�

�
�2¼ Esj j2

paj j2n0Ns0

2_e1

1

gcg 1þ ðn0 � ocÞ2=ðgþ gcÞ2
n o� 1

2

4

3

5 ð4:67Þ

sss ¼ s0
th ¼

ggc

k2N
1þ ðn0 � ocÞ2

ðgþ gcÞ2

( )

¼ 2_e1ggc

paj j2n0N
1þ ðn0 � ocÞ2

ðgþ gcÞ2

( )

ð4:68Þ

where jEsj2 is given by Equation 4.35. We have set n0 ¼ oc in the first fraction in

Equation 4.67, which is usually highly accurate.

We now return to Equation 4.64, with the noise terms being revived. The

coefficient before ã, or the left-hand member of Equation 4.65, vanishes for this

steady state. Thus we have

fiðoc þ n0 � 2oÞ þ gc þ gg _~a ¼ _~Gf þ fiðn0 � oÞ þ gÞ~Gf g

� i
X

m

km
~Gm

ð4:69Þ

We ignore the first noise term, as in Equation 4.43. Now, since we are assuming a

stable amplitude, we decompose the field amplitude as a product of constant

amplitude and time-varying phase, where we assume both the amplitude and the

phase to be real:

~aðtÞ ¼ �aeifðtÞ ð4:70Þ

Then we have

d

dt
fðtÞ ¼ �i

fiðn0 � oÞ þ gg~Gf � i
P

m km
~Gm

fiðoc þ n0 � 2oÞ þ gc þ gg�a e�ifðtÞ ð4:71Þ

In order to obtain the real phase, we add the Hermitian conjugate of the right-

hand member and divide by 2 to obtain

d

dt
fðtÞ ¼ �i

fiðn0 � oÞ þ gg~Gf � i
P

m km
~Gm

2fiðoc þ n0 � 2oÞ þ gc þ gg�a e�ifðtÞ þH:C: ð4:72Þ

As in the previous section, we need the field correlation function for determi-

nation of the field spectrum and the laser linewidth. Because we have constant

amplitude, here we have

âyðtþ DtÞâðtÞ
� �

¼ ~ayðtþ DtÞ~aðtÞ
� �

eioDt ¼ �a2eioDt e�ifðtþDtÞeifðtÞ
D E

ð4:73Þ

Now we assume that the small phase change can be expanded as
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e�ifðtþDtÞeifðtÞ
D E

¼ e�iDfðtÞ
D E

¼ 1� iDfðtÞh i þ 1

2
iDfðtÞf g2

D E

’ e�ð1=2Þ fDfðtÞg2h i
ð4:74Þ

So if the last expression reduces to the form expð�s Dtj jÞ, s gives the half-width at

half-maximum (HWHM) of the laser line; or, ðDfÞ2
D E

= Dtj j is the full width at half-

maximum (FWHM) (see Section 10.6 for the detail). Thus, what we want to cal-

culate now is the phase diffusion in a time Dt that is large compared to the delta-

correlated fluctuation times of the noise sources. For this purpose, we construct

DfðtÞ ¼ fðtþ DtÞ � fðtÞ

¼
ðtþDt

t
�i
fiðn0 � oÞ þ gg~Gf � i

P
m km

~Gm

2fiðoc þ n0 � 2oÞ þ gc þ gg�a e�ifðtÞ þH:C:

" #

dt0
ð4:75Þ

and

fDfðtÞg2
D E

¼
ðtþDt

t
i
f�iðn0�oÞþgg~Gyf ðt0Þþi

P
mk
�
m

~Gymðt0Þ
2f�iðocþn0�2oÞþgcþgg�a

eifðt0ÞþH:C:

" #

dt0
*

�
ðtþDt

t
�i
fiðn0�oÞþgg~Gf ðt00Þ�i

P
mkm

~Gmðt00Þ
2fiðocþn0�2oÞþgcþgg�a

e�ifðt00ÞþH:C:

" #

dt00
+ ð4:76Þ

In the first integral in Equation 4.76 we have interchanged the sequence of the

two mutually conjugate terms, so as to visualize the appearance in the double

integral of the normally ordered product such as ~Gyf ðt0Þ~Gf ðt00Þ. Non-vanishing

anti-normally ordered products like ~Gf ðt0Þ~Gyf ðt00Þ also appear from the product of

the Hermitian conjugate (H.C.) terms. The evaluation of the double integral goes

just as in Equations 4.48 and 4.49 using Equations 3.36, 3.49, and 4.50 for the

noise correlation functions. Equation 3.49 gives

Ĝmðt00ÞĜymðt000Þ
� �

¼ Ĝ12ðt00ÞĜ21ðt000Þ
� �

¼ G12;21dðt00 � t000Þ

G12;21 ¼ w21
1

2
ð1þ sÞ

� �

�w12
1

2
ð1� sÞ

� �

þ 2g
1

2
ð1� sÞ

� �

¼ 1

2
Gpð1� s0Þ 1

2
ð1þ sÞ

� �

� 1

2
Gpð1þ s0Þ 1

2
ð1� sÞ

� �

þ 2g
1

2
ð1� sÞ

� �
ð4:77Þ

for all m. Thus we have (problem 4-6)

fDfðtÞg2
D E

¼ Dtj j
4�a2

1

ðgþ gcÞ2 þ ðn0 þ oc � 2oÞ2

�
"

fðn0 � oÞ2 þ g2gf2gchnci þ 2gcðhnci þ 1Þg

þ
X

m

kmj j2ðG21;12 þ G12;21Þ
#

ð4:78Þ

76 | 4 A One-Dimensional Quasimode Laser: Semiclassical and Quantum Analysis



Since by Equations 4.50 and 4.77 G21;12 þG12;21 ¼ 2g, treating the summation

over m as in Equation 4.9, we have

fDfðtÞg2
D E

¼ Dtj j
4�a2

1

ðgþ gcÞ2þðn0þoc�2oÞ2

� fðn0�oÞ2þ g2gf2gc nch iþ2gcð nch iþ1Þgþ2gk2N
h i ð4:79Þ

We use Equation 4.66 for o and Equation 4.68 for k2N. Also, we apply Equation

4.61 for the stored energy W and the output power P:

P ¼ 2gcW ¼ 2gc_oc�a
2 ð4:80Þ

Thus we have

fDfðtÞg2
D E

Dtj j ¼ _oc

P

2g2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

nch i þ
1

2
þ N

2Ns0
th

� �

ð4:81Þ

As stated below Equation 4.74, this gives the FWHM of the laser linewidth:

Do ¼
fDfðtÞg2
D E

Dtj j ¼ 2_ocg2
c

P

g2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

nch i þ
N2

N2 �N1

� �
ð4:82Þ

Here, N2 �N1 ¼ Nsss ¼ Nsth, the steady-state population inversion. This is just half

the linewidth in Equation 4.62a for the laser in the linear gain regime. The reason

for the decreased linewidth is that, in the saturated region of the gain, the amplitude

fluctuation is suppressed due to the stabilizing effect by the nonlinear gain. There

remains only the phase diffusion, which still gives a finite linewidth. In the unsaturated

region, the amplitude fluctuation contributes the same amount to the linewidth.

The forms of noises nch i versus N2=ðN2 �N1Þ in Equation 4.82 are the same as

in Equation 4.62a obtained for the linear gain analysis. In the case of Equation

4.62a, these forms appeared directly from the normally ordered correlation func-

tions in Equations 3.36 and 4.50. However, in the case of Equation 4.82, these

factors originally appeared in the forms of nch i þ 1
2 and N=ð2NsthÞ, respectively, as

seen from Equation 4.81. These forms appeared because of the symmetrically

ordered correlation functions used for the evaluation of the real phase of the field.

In particular, the symmetric ordering appeared in Equation 4.76 because of the

Hermitian conjugate terms. So, in this case of nonlinear gain analysis the anti-

normally ordered correlation functions in Equations 3.36 and 4.77 were also taken

into account. It should be noted that different orderings of the noise operators lead

to the same form of the noise contributions.

In this chapter, we have obtained standard results for a laser, such as the

oscillation frequency, threshold conditions, output power, and laser linewidth,

assuming a completely lossless cavity and introducing a decay term for the laser

field. We call this laser theory the quasimode theory. In subsequent chapters we will

use many of the concepts introduced in this chapter, especially the concept of the

Langevin noise forces for the atomic polarization associated with the damping of
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the polarization oscillation. On the contrary, the concept of the Langevin noise

force associated with the cavity loss will be discarded in subsequent chapters,

wherein the cavity output coupling is rigorously treated on the basis of the mode

functions of the universe introduced in Chapter 1. We will call such a treatment

the continuous mode theory in contrast to the quasimode theory.

" Exercises

4.1 Integrate Equation 4.2.

4-1. We have

ðb̂ym1b̂m2ÞðtÞ ¼
ðt

0

eð�inm�gmÞðt�t0Þik�mâðt0Þsmdt0 þ eð�inm�gmÞtðb̂ym1b̂m2Þð0Þ

4.2 Derive Equation 4.10b from Equation 4.10a.

4-2. We have

âðtÞ ¼ ~aðtÞe�iot

_̂aðtÞ ¼ _~aðtÞe�iot � io~aðtÞe�iot

€̂aðtÞ ¼ €~aðtÞe�iot � 2io _~aðtÞe�iot � o2~aðtÞe�iot

€~aðtÞ � 2io _~aðtÞ � o2~aðtÞ þ fiðoc þ n0Þ þ gc þ gg _~aðtÞ � io~aðtÞ
� 	

� fk2Ns� ðin0 þ gÞðioc þ gcÞg~a ¼ 0

4.3 Derive Equation 4.25 from Equation 4.2.

4-3. We have

ðd=dtÞðb̂ym1b̂m2ÞðtÞ ¼ �inmðb̂ym1b̂m2ÞðtÞ � gmðb̂
y
m1b̂m2ÞðtÞ þ ik�mâðtÞsm

âðtÞ ¼ ~ae�iot; b̂ym1b̂m2ðtÞ ¼ bym1bm2e�iot

fðd=dtÞðbym1bm2Þ � iobym1bm2ge�iot ¼ ð�inm � gmÞb
y
m1bm2e�iot þ ik�m~ae�iotsm

ðd=dtÞ ¼ 0! f�ioþ ðinm þ gmÞgb
y
m1bm2 ¼ ik�m~asm

For homogeneous atoms nm ¼ n0; gm ¼ g and we have Equation 4.25.

4.4 Integrate Equation 4.39b.

4-4. We have

ðb̂ym1b̂m2ÞðtÞ ¼
ðt

0

eð�inm�gmÞðt�t0Þ ik�mâðt0Þsm þ Ĝmðt0Þ
� 	

dt0

þ eð�inm�gmÞtðb̂ym1b̂m2Þð0Þ

4.5 Derive the last line in Equation 4.56 from the second.

4-5. Noting that Re s0o0 we have
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ð0

�1
e�ðs0�iooÞt�iotdtþ

ðþ1

0

eðs
�
0þiooÞt�iotdt

¼ 1� 0

�fiðo� o0Þ þ s0g
þ 0� 1

�fiðo� o0Þ � s�0g

¼ 1

�Re s0 � iðo� o0 þ Im s0Þ
þ �1

Re s0 � iðo� o0 þ Im s0Þ

¼ �2Re s0

ðoo � o� Im s0Þ2 þ ðRe s0Þ2

4.6 Derive Equation 4.78 from Equation 4.76.

4-6. We have

fDfðtÞg2
D E

¼
ðtþDt

t
i
f�iðn0�oÞþgg~Gyf ðt0Þþi

P
mk�m ~Gymðt0Þ

2f�iðocþn0�2oÞþgcþgg�a
eifðt0ÞþH:C:

" #

dt0
*

�
ðtþDt

t
�i
fiðn0�oÞþgg~Gf ðt00Þ�i

P
m0km0

~Gm0 ðt00Þ
2fiðocþn0�2oÞþgcþgg�a

e�ifðt00ÞþH:C:

" #

dt00
+

¼
ðtþDt

t
dt0
ðtþDt

t
dt00

fg2þðn0�oÞ2g
4�a2fðocþn0�2oÞ2þðgcþgÞ2g

"

� ~Gyf ðt
0Þ~Gf ðt00Þ

D E
eifðt0Þ�ifðt00Þþ ~Gf ðt0Þ~Gyf ðt

00Þ
D E

e�ifðt0Þþifðt00Þ
n o

þ 1

4�a2fðocþn0�2oÞ2þðgcþgÞ2g

�
X

m

kmj j2 ~Gymðt0Þ~Gmðt00Þ
� �

eifðt0Þ�ifðt00Þþ ~Gmðt0Þ~Gymðt00Þ
� �

e�ifðt0Þþifðt00Þ
n o

#

The correlation functions of the Langevin forces are delta-correlated as in

Equations 3.36 and 3.37 as well as in Equations 4.50 and 4.77. Thus we arrive at

Equation 4.78.
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5

A One-Dimensional Laser with Output Coupling: Derivation

of the Laser Equation of Motion

In this chapter, we derive the general form of the laser equation, taking into

account the coherent interaction between the atoms and the oscillating laser field,

and the incoherent processes, including pumping and damping of the atoms as

well as the decay of the atomic dipole oscillation. These incoherent processes are

associated with respective Langevin noise sources. The cavity loss, on the other

hand, is treated as a natural process of transmission loss without special Langevin

forces artificially introduced. Thus the decay of the laser field inside the cavity is

caused by the transmission of optical energy to the outside. However, this finite

transmission at the coupling surface allows the ambient thermal field to penetrate

into the laser cavity, which constitutes the noise source required by the fluctuation–

dissipation theorem. The mathematical tool to treat the above natural cavity decay

is the continuous multimode description of the field, that is, the modes of the

‘‘universe,’’ introduced in Section 1.3. The natural, decaying cavity modes cannot

be used for direct quantization because of their non-orthogonality. (The use of such

natural modes for a quantum-mechanical description of the field inside and

outside the cavity has been tried by Dutra and Nienhuis [1] but without going into

the analysis of laser operation.) In this chapter, we derive the laser equation of

motion in a one-dimensional, one-sided optical cavity, taking into account the

output coupling at the output end of the cavity. This equation gives the basis of

the continuous mode theory of the laser. The equation will be solved in the following

five chapters, where we will find a new correction factor for the laser linewidth both

below and above threshold.

5.1

The Field

In Sections 5.1 to 5.3 we consider the coherent interaction between the atoms and

the field in an optical cavity having output coupling. As the model of the one-

dimensional laser cavity, we use the one-sided cavity model discussed in Section

1.3.1 (see Figure 1.3). The jth mode function of the ‘‘universe’’ is given by

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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UjðzÞ ¼ NjujðzÞ ð5:1aÞ

ujðzÞ ¼
sin k1jðzþ dÞ; �dozo0

k1j

k0j
cos k1jd sin k0jzþ sin k1jd cos k0jz; 0ozoL

8
><

>:
ð5:1bÞ

The modes of the universe have the orthonormality and completeness properties

ðL

�d
eðzÞUiðzÞUjðzÞdz ¼ di;j ð5:2Þ

X

i

eðz0ÞUiðz0ÞUiðzÞ ¼
ð1

0

eðz0ÞUiðz0ÞUiðzÞrðoiÞdoi

¼ dðz0 � zÞ
ð5:3Þ

Equation 5.3 holds for �dozoL, �doz0oL, except z ¼ z0 ¼ 0. The density of

modes is

rðoÞ ¼ L

pc0
ð5:4Þ

The normalization constant is

Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1� K sin2 k1jdÞ

s

ð5:5Þ

with

K ¼ 1� k0j

k1j

� �2

¼ 1� c1

c0

� �2

ð5:6Þ

The factor in the denominator in the normalization constant has two kinds of

expansions (see Equation 1.70a):

1

1� K sin2 k1jd
¼ 2c0

c1

X1

n¼0

1

1þ d0;n
ð�rÞn cos 2nk1jd

( )

ð5:7Þ

where

r ¼ ðc0 � c1Þ=ðc0 þ c1Þ ð5:8Þ

and

1

1� K sin2 k1jd
¼
X1

m¼�1

c0gc=d

g2
c þ ðoj � ocmÞ2

¼
X1

m¼�1

c0

2d

1

gc þ iðoj � ocmÞ
þ 1

gc � iðoj � ocmÞ

� � ð5:9Þ

82 | 5 A One-Dimensional Laser with Output Coupling: Derivation of the Laser Equation of Motion



The field is assumed to be oriented in the x-direction and the vector potential is

expanded in terms of the mode functions as

Âðz; tÞ ¼
X

j

Q̂jðtÞUjðzÞ ð5:10Þ

and the electric field operator as

Êðz; tÞ ¼ �
X

j

P̂jUjðzÞ ¼
X

j

ið_oj=2Þ1=2ðâj � âyj ÞUjðzÞ ð5:11Þ

where P̂j ¼ ðd=dtÞQ̂j. The positive and negative frequency parts of the electric field

are

ÊðþÞðz; tÞ ¼
X

j

ið_oj=2Þ1=2âjUjðzÞ ð5:12Þ

Êð�Þðz; tÞ ¼ �
X

j

ið_oj=2Þ1=2âyj UjðzÞ ð5:13Þ

The annihilation and creation operators obey the commutation relations

âi; â
y
j

h i
¼ dij; âi; âj

h i
¼ 0; âyi ; â

y
j

h i
¼ 0 ð5:14Þ

The field Hamiltonian is given by

Ĥ ¼
X

j

Ĥj ¼
X

j

_oj âyj âj þ
1

2

� �

ð5:15Þ

5.2

The Atoms

For the model of laser atoms, we use the same model as was described in

Section 3.2. We assume two-level atoms having upper laser level 2 and lower

laser level 1. We describe the atoms in the second quantized form [2, 3]. The

Hamiltonian of the atoms, evaluated with respect to the lower atomic levels, is

written as

Ĥa ¼
X

m

_omb̂ym2b̂m2 ð5:16Þ

Here b̂ymi and b̂mi are the creation and annihilation operators, respectively, for the

ith level of the mth atom. The product b̂ym2b̂m2 is the number operator for the level 2

of the mth atom. The angular frequency om is the transition frequency of the mth

atom between the two levels. The product b̂ym1b̂m2 is the flipping operator from

level 2 to level 1 associated with the emission of a photon. The product b̂ym2b̂m1 is

the flipping operator for the reverse process. These two flipping operators are
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mutually Hermitian adjoints, and their classical counterparts are the positive

and negative frequency parts, respectively, of the oscillating dipole composed

of the two electronic states. The atomic operators obey the anticommutation

relations

b̂mib̂
y
m0i0 þ b̂ym0i0 b̂mi ¼ dmm0dii0 ; b̂mib̂m0i0 þ b̂m0i0 b̂mi ¼ 0;

b̂ymib̂
y
m0i0 þ b̂ym0i0 b̂

y
mi ¼ 0

ð5:17Þ

The general rule for the reduction of the product of four operators is

b̂ymib̂mjb̂
y
mkb̂ml ¼ b̂ymib̂mldjk ð5:18Þ

Note that any operator having either two successive annihilation or two successive

creation operators for the same atom and for the same state vanish by Equation

5.17.

5.3

The Atom–Field Interaction

The interaction between the field modes and the atoms is formally the same as in

Section 3.3 for the quasimode laser. The coherent part of the interaction is

described by the interaction Hamiltonian under the rotating-wave approximation

and the electric dipole approximation

Ĥint ¼
X

j;m

_ðkjmâyj b̂ym1b̂m2 þ k�jmâjb̂
y
m2b̂m1Þ ð5:19Þ

where the atom–field coupling coefficient, using Equation 3.22a, is

kjm ¼ inmð1=2_ojÞ1=2UjðzmÞpm ð5:20Þ

Here pm ¼ exm21 is the electric dipole matrix element of the mth atom and e is the

electron charge.

Under the total Hamiltonian

Ĥt¼ Ĥf þĤaþĤint

¼
X

j

_oj

�
âyj âjþ 1

2

�
þ
X

m

_nmb̂ym2b̂m2þ
X

j;m

_
�
kjmâyj b̂ym1b̂m2þk�jmâjb̂

y
m2b̂m1

� ð5:21Þ

the equations of motion for the mode amplitude âj, the dipole amplitude b̂ym1b̂m2,

and the atomic inversion ŝm¼ b̂ym2b̂m2� b̂ym1b̂m1 are derived by the Heisenberg

equation as (problem 5-1)

d

dt
âjðtÞ ¼ �iojâjðtÞ � i

X

m

kjmðb̂ym1b̂m2ÞðtÞ ð5:22Þ
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ðd=dtÞðb̂ym1b̂m2ÞðtÞ ¼ �inmðb̂ym1b̂m2ÞðtÞ þ i
X

j

k�jmâjðtÞŝmðtÞ ð5:23Þ

ðd=dtÞŝmðtÞ ¼ 2i
X

j

fkjmâyj ðtÞðb̂
y
m1b̂m2ÞðtÞ � k�jmâjðtÞðb̂ym2b̂m1ÞðtÞg ð5:24Þ

These three equations are the basis for the analysis of coherent interaction of

the field and the atoms. For the derivation of these equations, see Section 3.4. The

major difference from Section 3.4 is the appearance of the multitude of field

operators representing the continuous spectrum of the ‘‘universal’’ modes of the

field associated with the optical cavity having output coupling. We will call this

formalism the continuous mode theory.

5.4

Langevin Forces for the Atoms

As was discussed in Section 3.5.2, the laser atoms are in reality surrounded by

their respective environment. One factor is the pumping mechanism intentionally

added to create the population inversion that is necessary for optical field ampli-

fication. The pumping mechanism usually contains unavoidable pumping to the

lower laser level, not only to the upper level. Another factor is the environment:

collisions with other atoms, phonons, and so on cause relaxation of the laser level

populations. Especially, vacuum fluctuation causes the upper level population to

decrease through spontaneous emission. All these mechanisms yield resultant

pumping rates to upper and lower laser levels and a steady-state population

inversion in the absence of the laser field. These mechanisms also disturb the

atomic polarization and yield the decay rate of the atomic dipole oscillation. We

describe these effects in terms of the pumping and relaxation terms for the atomic

inversion, and in terms of the decay term for the atomic polarization. These

incoherent random processes inevitably accompany random forces for both the

atomic inversion and the atomic polarization, as was discussed in Section 3.5.2.

The field decay through the cavity loss, as was discussed in Section 3.5.1, does not

appear here because we are not assuming any phenomenological decay of the field

energy stored in the cavity. In this continuous mode theory, the transmission

at the cavity mirror is automatically incorporated in the ‘‘universal’’ mode func-

tions, which appear in the electric field operators in Equations 5.11–5.13. Thus

we have

d

dt
âjðtÞ ¼ �iojâjðtÞ � i

X

m

kjmðb̂ym1b̂m2ÞðtÞ ð5:25Þ

ðd=dtÞðb̂ym1b̂m2ÞðtÞ ¼ � inmðb̂ym1b̂m2ÞðtÞ � gmðb̂
y
m1b̂m2ÞðtÞ

þ i
X

j

k�jmâjðtÞŝmðtÞ þ ĜmðtÞ ð5:26Þ
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ðd=dtÞŝmðtÞ ¼ �GmpfŝmðtÞ � s0
mg þ 2i

X

j

fkjmâyj ðtÞðb̂
y
m1b̂m2ÞðtÞ

�k�jmâjðtÞðb̂ym2b̂m1ÞðtÞg þ ĜmkðtÞ
ð5:27Þ

These are the basic equations for the quantum-mechanical analysis of laser

operation in a cavity having output coupling. As stated above, we have now no decay

terms for the field modes, but have a multitude of field modes. The collection

of different field mode amplitudes eventually forms the total field amplitude of

interest. In contrast to the analysis of the quasimode laser in Chapter 4, where

we had only one field mode, the collection of field mode amplitudes that composes

the total field is of paramount importance, and the single mode amplitude as in

Equation 5.25 is important only as a step towards the calculation of the total field.

5.5

Laser Equation of Motion for a Laser with Output Coupling

In this book, we restrict ourselves to the steady-state operation of a laser with well-

stabilized amplitude, and we ignore the fluctuation of the atomic inversion. So, the

Langevin force term Ĝmk will make no contribution within our treatment. On the

other hand, the dipolar noise term Ĝm, which is the cause of the quantum noise, will

be a major factor in determining the laser linewidth. The thermal noise will be

derived from the initial field, which is persistent and does not decay because we have

no decay term here, unlike in the quasimode laser analysis in Section 3.5.1. The

thermal noise is small quantitatively, but its appearance is an important theoretical

result.

As for the atomic dipoles, their collective motion is important, as it constitutes

the gain for the field amplitude. The atomic dipole is, in turn, driven by the atomic

inversion through interaction with the collective field amplitude.

In the quasimode laser analysis, it was assumed only that the atoms are dis-

tributed uniformly in the z-direction with a given density. Except for the neglect of

the spatial holes in the nonlinear gain analysis, no explicit discussion of the local

effects of the atoms was made. However, in this continuous mode analysis, the

local effects of the atomic dipoles become important, because the electric field

distribution will not be a mere sinusoidal function but will have a slowly varying

spatial envelope function in addition to the local sinusoidal variation. Through

this spatial variation of the field, the contributions of the atomic dipoles vary spa-

tially. It will be assumed that enough atoms exist so that, for every local envelope

field, there exist a sufficient number of atoms that constitute the local amplifying

medium.

In order to convert the single mode equation (Equation 5.25) into that of the total

field amplitude expressed in terms of the positive frequency part of the electric

field, we use Equation 5.12. For this purpose, we first integrate Equations 5.25 and

5.26 to obtain
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âjðtÞ ¼ âjð0Þe�ioj t � ie�ioj t

ðt

0

eioj t0
X

m

kjm bym1bm2

� �
ðt0Þdt0 ð5:28Þ

b̂ym1b̂m2

� �
ðtÞ ¼ b̂ym1b̂m2

� �
ð0Þe�ðinmþgmÞt þ ie�ðinmþgmÞt

�
ðt

0

eðinmþgmÞt0
X

i

k�imâiðt0Þ
� 	

ŝmðt0Þ dt0

þ e�ðinmþgmÞt
ðt

0

eðinmþgmÞt0 Ĝmðt0Þ dt0

ð5:29Þ

The first term in Equation 5.28 is persistent because we are not assuming

the presence of any decaying term for the field unlike in Equation 4.1 for the

quasimode laser. The first term in Equation 5.29 decays over a long time and is

unimportant in the steady state. We will ignore this term as we did in the

quasimode laser analysis. Multiplying both sides of Equation 5.28 by

ið_oj=2Þ1=2UjðzÞ and summing over j we have

ÊðþÞðz; tÞ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞâjð0Þe�ioj t

þ
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞe�ioj t

ðt

0

eioj t0
X

m

kjm b̂ym1b̂m2

� �
ðt0Þdt0

ð5:30Þ

Before we substitute Equation 5.29 into Equation 5.30 we replace the summa-

tion over i in Equation 5.29 by the total field amplitude. We have, using Equation

5.20,

X

i

k�imâiðt0Þ
� 	

¼
X

i

ð�iÞnmð1=2_ojÞ1=2UjðzmÞp�mâiðt0Þ

¼ �
X

i

p�mnm=_oj


 �
ið_oj=2Þ1=2UjðzmÞâiðt0Þ

ð5:31Þ

Since the spectral width of the effective optical field in the atom–field interaction

in a laser is much smaller than the central frequency o of the laser oscillation, the

oj in the first round brackets in the second line can safely be replaced by o. Then

we have by Equation 5.12

X

i

k�imâiðt0Þ
� 	

¼ � p�mnm

_o

� �

ÊðþÞðzm; t
0Þ ð5:32Þ

Note that, if we had used the coupling coefficient in Equation 3.22b instead of

that in Equation 3.22a, the factor p�mnm=_o would have been replaced by p�m=_.

Thus using Equation 5.32 in Equation 5.29, substituting the result into Equation

5.30, and using Equation 5.20 again, we have (problem 5-2)
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ÊðþÞðz; tÞ ¼ F̂tðz; tÞ þ F̂qðz; tÞ

þ
X

m

pmj j2n2
m

2_o

ðt

0

X

j

UjðzÞUjðzmÞ e�iojðt�t0Þ

"

�
ðt0

0

e�ðinmþgmÞðt0�t00ÞÊðþÞðzm; t
00Þŝmðt00Þdt00dt0

#
ð5:33aÞ

where

F̂tðz; tÞ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞâjð0Þe�ioj t ð5:33bÞ

F̂qðz;tÞ ¼
X

m

ipmnm

2

ðt

0

X

j

UjðzÞUjðzmÞe�iojðt�t0Þ
ðt0

0

e�ðinmþgmÞðt0�t00ÞĜmðt00Þdt00dt0
#"

ð5:33cÞ

Equation 5.33a is the basic equation for the total (collective) electric field to be

solved for analysis of the laser having output coupling.

The meaning of the terms in Equation 5.33a may be given as follows. The first

term, or Equation 5.33b, expressing the thermal noise, is the initial electric field

(see Equation 5.12). The jth mode excites the jth mode function. The second term,

or Equation 5.33c, is the quantum noise term, made up of contributions from each

atom. The summand in the square brackets in Equation 5.33c can be rewritten in

the form proportional to

ð1

0

do Yðz; zm;oÞJoðzmÞe�iot ¼ �p
X

j

UjðzÞUjðzmÞĴojðzmÞe�ioj t ð5:34Þ

where

ĴojðzmÞ ¼
ðt

0

dt0 eioj t0 Ĵmðt0Þ

Ĵmðt0Þ ¼
ðt0

0

e�ðinmþgmÞðt0�t00ÞĜmðt00Þdt00
ð5:35Þ

Here we have used Equation 2.53a for the response function and assumed the

absence of any pole in Jo(zm). Thus, regarding the second integral in Equation 5.33c

or in Equation 5.35 as an exciting current, we can express the field as a superposition

of frequency components excited by each frequency component of the current. The

third term in Equation 5.33a represents the field induced by stimulated emission

and absorption events that is similarly excited by the effective current

ðt0

0

e�ðinmþgmÞðt0�t00ÞÊðþÞðzm; t
00Þŝmðt00Þdt00

As stated earlier, the time variation of the atomic inversion will not be con-

sidered in this book. In the subsequent linear gain analysis, we assume a constant
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inversion value independent of the field amplitude. In saturated, nonlinear gain

analysis, on the other hand, we use an averaged steady-state value for the atomic

inversion, the averaging being carried out over the fluctuating forces: that is, we

use the steady-state value obtained with the fluctuating noise forces ignored. The

inversion will be constant in time but will be dependent on location.

Equation 5.33a is an integral equation with respect to the time variable. This

equation also contains integration over zm, coming from the summation over the

atomic index m, as we have assumed a sufficiently dense and uniform distribution

of the atoms in the z-direction. This equation also includes a summation over the

field modes of a product of two mode functions and one complex, exponential

function. Because of the form of the normalization factor for the mode function,

which contains the mode index in a form given by Equation 5.5, some idea is

required in evaluating the summation. One needs to treat this normalization

factor accurately because the information concerning the structure of the optical

cavity is contained in this factor.

The Langevin noise forces appear in the discussion of the laser linewidth, and

their correlation functions will be needed. For the thermal noise described by

Equation 5.33b, the necessary correlation functions are

ayj ð0Þajð0Þ
D E

¼ nj

� �

ajð0Þayj ð0Þ
D E

¼ nj

� �
þ 1

ð5:36Þ

where

nj

� �
¼ 1

e_oj=kT � 1
ð5:37Þ

is the Planck distribution. Here k is the Boltzmann constant and T is the absolute

temperature. The angle bracket signifies the ensemble average of the quantum-

mechanical expectation value over the thermal field of temperature T. For the

quantum noise, we will need the correlation function of the Langevin noise force

as in Equations 4.50 and 4.77:

Ĝymðt00ÞĜmðt000Þ
� �

¼G21;12dðt00 � t000Þ

G21;12¼
1

2
Gpð1þs0Þ 1

2
ð1�sÞ

� �

�1

2
Gpð1�s0Þ 1

2
ð1þsÞ

� �

þ2g
1

2
ð1þsÞ

� �
ð5:38Þ

Ĝmðt00ÞĜymðt000Þ
� �

¼G12;21dðt00 � t000Þ

G12;21¼
1

2
Gpð1�s0Þ 1

2
ð1þsÞ

� �

�1

2
Gpð1þs0Þ 1

2
ð1�sÞ

� �

þ2g
1

2
ð1�sÞ

� �
ð5:39Þ

Here the angle bracket signifies ensemble average of the quantum-mechanical

expectation value over the atomic reservoirs. If the pumping and damping or the
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broadening of the atoms are non-uniform, the parameters in Equations 5.38 and

5.39 should have suffices, say m, indicating the individual atoms.

" Exercises

5.1 Derive the equations for the coherent interaction in Equations 5.22–5.24 from

the total Hamiltonian in Equation 5.21.

5-1. See Problems 3, 4, and 5 of Chapter 3.

5.2 Derive Equations 5.33a–5.33c

5-2. Using Equation 5.32 in Equation 5.29 and dropping the initial value term

we have

b̂ym1b̂m2

� �
ðtÞ ¼ �i

p�mnm

_o

� �

e�ðinmþgmÞt
ðt

0

eðinmþgmÞt0 ÊðþÞðzm; t
0Þŝmðt0Þdt0

þ e�ðinmþgmÞt
ðt

0

eðinmþgmÞt0 Ĝmðt0Þdt0

Substituting this equation and Equation 5.20 into Equation 5.30 we have

ÊðþÞðz; tÞ ¼ F̂tðz; tÞ

þ
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞe�ioj t

ðt

0

eioj t0
X

m

inm
1

2_oj

� �1=2

UjðzmÞpm

� e�ðinmþgmÞt00
ðt0

0

eðinmþgmÞtĜmðt00Þdt0dt00

þ
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞe�ioj t

ðt

0

eioj t0
X

m

nm
1

2_oj

� �1=2

UjðzmÞpm

� p�mnm

_o

� �

e�ðinmþgmÞt0
ðt0

0

eðinmþgmÞt00 ÊðþÞðzm; t
00Þŝmðt00Þdt0dt00

Rearranging the sequences of the sums and the integrals yields Equations

5.33a–5.33c.
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6

A One-Dimensional Laser with Output Coupling:

Contour Integral Method

The main problem in solving the basic equation (Equation 5.33a) is the treatment of

the summation over the continuous mode index j, which also appears in the noise

terms in Equations 5.33b and 5.33c. In particular, the summand includes the mode

function, which has a j-dependent quantity in its denominator. There are two routes

to get around this difficulty, which are based on the expansions of the squared

normalization constant described in Equations 5.7 and 5.9: one is a Fourier series

expansion, and the other is a partial fraction expansion used in the theory of complex

variables. The former gives exact equations, with terms that are mathematically

tractable, but infinite in number. On the other hand, the latter gives poles of the

normalization constants, suggesting use of a contour integral, which is also exact as

long as we take all the poles into account. However, since each pole represents a cavity

resonant mode, it is sometimes appropriate to treat only one pole, rather than all the

poles. This method of taking into account only one pole is thus an approximation.

In this chapter we try the contour integral method based on the expansion in

Equation 5.9. We take into account only one cavity mode and see how far we can go by

this method, which, as stated above, involves an approximation.

6.1

Contour Integral Method: Semiclassical Linear Gain Analysis

Here we solve Equation 5.33a with the Langevin noise terms discarded and the

atomic inversion replaced by a constant sm:

ÊðþÞðz; tÞ ¼
X

m

pmj j2n2
msm

2_o

ðt

0

X

j

UjðzÞUjðzmÞ e�iojðt�t0Þ

"

�
ðt0

0

e�ðinmþgmÞðt0�t00ÞÊ
ðþÞðzm; t

00Þdt00dt0
# ð6:1Þ

We concentrate on the self-consistent equation for inside the cavity. Therefore,

we have �d � z � 0 and �do zm o 0. We first evaluate the sum over the modes

of the ‘‘universe’’ j:
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Kikuo Ujihara
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X

j

UjðzÞUjðzmÞe�iojðt�t0Þ ¼ 2

e1L

ð1

0

rðojÞ
sink1jzsink1jzm

1�Ksin2k1jd
e�iojðt�t0Þdoj ð6:2Þ

where rðojÞ¼ L=c0p as given in Equation 5.4. Using the expansion in

Equation 5.9 and taking only one pole at oj¼Oc ¼oc� igc , where oc is one

of the ocm, we have

X

j

UjðzÞUjðzmÞ e�iojðt�t0Þ ¼ 1

e1dp

ð1

0

sin k1jðzþ dÞ sin k1jðzm þ dÞ
gc � iðoj � ocÞ

� e�iojðt�t0Þdoj

ð6:3Þ

If we expand the numerator in exponential functions, we will have exponents

with �ioj½ðt� t0Þ � fðzþ dÞ � ðzm þ dÞg=c1	. For simplicity, we assume that we

are interested in phenomena that change slowly in a time of order jðzþ dÞ�
ðzm þ dÞj=c1 � 2d=c1, that is, we concentrate on the changes on a time scale that

is greater than the round-trip time in the cavity. Since this assumption requires

an optical spectrum that is narrower than c1=ð2dÞ, this is consistent with the

choice of only one cavity mode, which in turn requires an optical spectrum that

is narrower than the cavity mode spacing Doc ¼ c1p=d. Then, we may decide on

the contour of integration by the fact that t � t0. In this case, the contour of

integration may be taken in the lower half-plane of the variable oj wherein a

pole exists at oj ¼ Oc ¼ oc � igc . See Figure 6.1 for the arrangement of the

poles and the contour of integration. Provided Docðt� t0Þ � 1 and Doc � gc ,

the contour simulates an infinitely large semicircle in the lower half-plane. Then

the result is

X

j

UjðzÞUjðzmÞ e�iojðt�t0Þ ¼ 2

e1d
sinðOcz=c1Þ sinðOczm=c1Þe�iOcðt�t0Þ ð6:4Þ

For later convenience, we define the ‘‘normalized’’ cavity resonant mode, which

is proportional to the spatial part of the outgoing mode in Equation 1.21b:

UcðzÞ �
ffiffiffiffiffiffiffi
2

e1d

r

sin
Ocðzþ dÞ

c1
ð6:5Þ

Therefore, we have

X

j

UjðzÞUjðzmÞ e�iojðt�t0Þ ¼ UcðzÞUcðzmÞe�iOcðt�t0Þ ð6:6Þ

Then Equation 6.1 becomes

ÊðþÞðz; tÞ ¼
X

m

pmj j2n2
msm

2_o

ðt

0

UcðzÞUcðzmÞe�iðoc�igcÞðt�t0Þ

"

�
ðt0

0

e�ðinmþgmÞðt0�t00ÞÊ
ðþÞðzm; t

00Þdt00dt0
# ð6:7Þ
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This form suggests that we put

ÊðþÞðz; tÞ ¼ i

ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞâðtÞ ð6:8Þ

For simplicity, we go to the case of homogeneously broadened atoms and

homogeneous pumping: nm ¼ n0; pm ¼ pa; gm ¼ g; sm ¼ s. Then we have

âðtÞ ¼ k2
CSLNs

ðt

0

e�iðoc�igcÞðt�t0Þ
ðt0

0

e�iðn0�igÞðt0�t00Þâðt00Þdt00dt0 ð6:9Þ

where

k2
CSLNs ¼ paj j2n2

0Ns
2_o

ð0

�d
Uc

2ðzmÞdzm ’
paj j2n2

0Ns
2_oe1

ð6:10Þ

In the last approximate equality, in the integration of Uc
2ðzmÞ, we have dis-

carded ðc1=4Þ sinð2Ocd=c1Þ=Oc � lc=ð8pÞ as compared to d/2, assuming that the

cavity length d is much larger than lc , the intra-cavity resonant wavelength of

the cavity mode. Because the parameter k2
CSL in Equation 6.10 is nearly equal to

the parameter k2 in Equation 4.9, Equation 6.9 is essentially the same as Equ-

ation 4.8 for the semiclassical linear gain analysis for the quasimode laser.

Thus Equations 4.10 to 4.14 to obtain the threshold oscillation frequency and the

threshold atomic inversion for the quasimode laser apply also in this case of

semiclassical linear gain analysis of a laser with output coupling. We have

oth ¼
goc þ gcn0

gþ gc
ð6:11Þ

sth ¼
2_e1ggc

paj j2n0N
ð1þ d2Þ ð6:12Þ

The mode function excited here is a complex function in Equation 6.5 in the

form of the spatial part of the cavity resonant mode given in Equation 1.21b,

Figure 6.1 (a) Arrangement of poles given by Equation 5.9.

(b) Contour of integration for a single pole.
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compared to the real function given by Equation 3.1 in the quasimode analy-

sis. This new result may be regarded as an advantage over the quasimode analysis.

Thus the contour integral method is successful in this case.

6.2

Contour Integral Method: Semiclassical Nonlinear Gain Analysis

In this case, Equation 6.7 can be used under the condition that the atomic

inversion is made a function of the location of the atom, the location determining

the local field amplitude:

ÊðþÞðz; tÞ ¼
X

m

pmj j2n2
msmðzmÞ

2_o

ðt

0

UcðzÞUcðzmÞe�iðoc�igcÞðt�t0Þ

"

�
ðt0

0

e�ðinmþgmÞðt0�t00ÞÊðþÞðzm; t
00Þdt00dt0

# ð6:13Þ

If we go to the case of homogeneously broadened atoms nm ¼ n0; pm ¼ pa;

gm ¼ g, this equation becomes

ÊðþÞðz; tÞ ¼
X

m

paj j2n2
0smðzmÞ

2_o

ðt

0

UcðzÞUcðzmÞe�iðoc�igcÞðt�t0Þ

"

�
ðt0

0

e�iðn0�igÞðt0�t00ÞÊðþÞðzm; t
00Þdt00dt0

# ð6:14Þ

If we assume as in Equation 6.8 that

ÊðþÞðz; tÞ ¼ i

ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞâðtÞ ð6:15Þ

we will formally have

âðtÞ ¼ k2
CSNNsCSN

ðt

0

e�iðoc�igcÞðt�t0Þ
ðt0

0

e�iðnm�igmÞðt0�t00Þâðt00Þdt00dt0
#"

ð6:16Þ

where

k2
CSNNsCSN ¼

paj j2n2
0N

2_o

ð0

�d
sðzmÞU2

c ðzmÞdzm

¼ paj j2n2
0N

2_o

ð0

�d

s0

1þ ~EðþÞðzmÞ=Es

�
�

�
�2
U2

c ðzmÞdzm

ð6:17Þ

Equation 4.29 has been used in the second line. Here we are regarding the field

amplitude as a classical value, and the saturation parameter is given by Equation

4.35. We have already assumed in Equation 6.15 that ÊðþÞðzÞ / UcðzÞ. However,
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there is no guarantee that the field distribution is still in the form of UcðzÞ when

the inversion distribution is in the form of sðzmÞ ¼ s0
.

1þ ~EðþÞðzmÞ=Es

�
�

�
�2

n o
.

Since UcðzÞ is proportional to the field mode amplitude of an empty cavity, it is

highly unlikely that the field distribution remains in the same form when there

exists non-uniform gain. Thus the assumption made in Equation 6.15 is invalid.

This point will be treated in Chapters 8 and 10, where the field distribution that is

consistent with the saturated inversion distribution will be rigorously considered.

Thus what we can get here is only the threshold condition, which is obtained by

setting ~EðþÞðzmÞ ¼ 0, and going back to Equations 6.9 and 6.10, which will only

give the results obtained in the previous section on semiclassical linear gain

analysis. Another thing we can do is to forget about the field distribution by setting

UcðzÞ ¼ constant and assuming a uniform field distribution. But this is just what

was done in the quasimode analysis. Therefore, we cannot go further for new

results. Thus, the contour integral method is a failure in the case of the saturated,

nonlinear gain analysis.

6.3

Contour Integral Method: Quantum Linear Gain Analysis

We consider Equations 5.33a–5.33c with the assumption of a constant atomic

inversion. Thus we consider

ÊðþÞðz; tÞ ¼ F̂tðz; tÞ þ F̂qðz; tÞ þ
X

m

jpmj2n2
msm

2_o

"

�
ðt

0

X

j

UjðzÞUjðzmÞ e�iojðt�t0Þ
ðt0

0

e�ðinmþgmÞðt0�t00ÞÊðþÞðzm; t
00Þdt00dt0

# ð6:18Þ

The last term can be modified by use of the contour integral just as in Section

6.1 in the form of Equation 6.7. The quantum noise term F̂qðz; tÞ is treated in just

the same way, since also in this term we can set (see Equation 6.6)
X

j

Uj zð ÞUj zmð Þ e�ioj t�t0ð Þ ¼ UcðzÞUcðzmÞe�iOc t�t0ð Þ ð6:19Þ

and get

F̂q z; tð Þ ¼
X

m

ipmnm

2
UcðzÞUcðzmÞ

ðt

0

eð�ioc�gcÞ t�t0ð Þ

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞĜðt00Þdt00dt0
# ð6:20Þ

For the thermal noise term we remember Equation 2.63, which is applicable to

the thermal noise described by Equation 2.35a, which is the same as F̂t z; tð Þ in

Equation 5.33b:
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d

dt
ÊðþÞ z; tð Þ ¼ �ðgc þ iocÞÊðþÞ z; tð Þ þ f̂ z; tð Þ ð6:21Þ

with Equation 2.70b

f̂ y z0; t0ð Þf̂ z; tð Þ
D E

¼ 2gc_oc noch i
e1d

uoc z0ð Þuoc zð Þd t� t0ð Þ ð6:23Þ

Thus

f̂ y z0; t0ð Þf̂ z; tð Þ
D E

¼ gc_oc noch iUcðz0ÞUcðzÞd t� t0ð Þ ð6:24Þ

The F̂t z; tð Þ in Equation 5.33b can be expressed as

F̂t z; tð Þ ¼ F̂t z; 0ð Þe�ðgcþiocÞt þ
ðt

0

e�ðgcþiocÞðt�t0Þ f̂ ðz; t0Þdt0 ð6:25Þ

assuming the same z-dependences for both F̂t z; tð Þ and f̂ z; tð Þ. The first term on

the right-hand side can be ignored for the steady-state analysis. Substituting

Equation 6.20 and the second term of Equation 6.25 into Equation 6.18 we obtain

ÊðþÞ z;tð Þ¼
X

m

pmj j2n2
msm

2_o
UcðzÞUcðzmÞ

ðt

0

e�iðoc�igcÞ t�t0ð Þ

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞÊðþÞ zm;t
00ð Þdt00dt0 þ

X

m

ipmnm

2
UcðzÞUcðzmÞ

�
ðt

0

eð�ioc�gcÞ t�t0ð Þ
ðt0

0

e� inmþgmð Þ t0�t00ð ÞĜmðt00Þdt00dt0

þ
ðt

0

e�ðgcþiocÞðt�t0Þ f̂ ðz;t0Þdt0

ð6:26Þ

We assume the spatial dependence of the field and the thermal noise in the

forms

ÊðþÞðz; tÞ ¼ i

ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞâðtÞ ð6:27Þ

f̂ ðz; tÞ ¼ i

ffiffiffiffiffiffiffiffi
_oc

2

r

UcðzÞĝðtÞ ð6:28Þ

with

ĝyðtÞgðt0Þ
� �

¼ 2gc noch idðt� t0Þ ð6:29Þ

Equation 6.26 is then almost equivalent to Equation 4.41 for the quasimode

quantum linear gain analysis provided that the mode function UðzÞ is replaced

by UcðzÞ, except for the thermal noise, and provided that the Langevin force

Ĝf ðtÞ is replaced by ĝðtÞ. Note that the correlation function of ĝðtÞ is the same as

that for Ĝf ðtÞ described in Equation 3.36. Going to homogeneously broadened
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atoms and homogeneous pumping nm ¼ n0, pm ¼ pa, gm ¼ g, sm ¼ s, we mul-

tiply both sides of Equation 6.26 by Uc
�ðzÞ, integrate with respect to z, and then

divide both sides by

ð0

�d
U�c ðzÞUcðzÞ dz ¼ ð1=e1Þ½ð1� r2Þ=f2r lnð1=rÞg	

The factor ĝðt0Þ will then be multiplied by

ð0

�d
U�c ðzÞUcðzÞ dz

�ð0

�d
U�c ðzÞUcðzÞ dz ¼ 2

ffiffi
r
p
=ð1þ rÞ � hðrÞ

We obtain

â tð Þ ¼
X

m

paj j2n2
0s

2_o
U2

c ðzmÞ
ðt

0

e�iðoc�igcÞ t�t0ð Þ
ðt0

0

e� in0þgð Þ t0�t00ð Þâ t00ð Þdt00dt0

þ
X

m

ffiffiffiffiffiffiffiffi
2

_oc

r
pan0

2
UcðzmÞ

ðt

0

eð�ioc�gcÞ t�t0ð Þ

�
ðt0

0

e� in0þgð Þ t0�t00ð ÞĜmðt00Þdt00dt0

þ hðrÞ
ðt

0

e�ðgcþiocÞðt�t0Þĝðt0Þdt0

ð6:30Þ

We go to the slowly varying amplitudes by writing âðtÞ ¼ ~aðtÞe�iot, ĝðtÞ ¼
~gðtÞe�iot, and ĜmðtÞ ¼ ~GmðtÞe�iot. Then differentiating twice with respect to time

we have

€~aþ fiðoc þ n0 � 2oÞ þ gc þ gg _~a

� ½k2
CQLNs� fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg	~a

¼ hðrÞ½ _~g þ fiðn0 � oÞ þ gÞ~gg	 � i
X

m

kmC
~Gm

ð6:31Þ

where

k2
CQLNs ¼ k2

CSLNs ¼ paj j2n2
0Ns

2_o

ð0

�d
U2

c ðzmÞdzm ’
paj j2n2

0Ns
2_oe1

ð6:32Þ

and

kmC ¼ i

ffiffiffiffiffiffiffiffiffiffi
1

2_oc

r

pan0UcðzmÞ ð6:33Þ

The square of kmC has the property that
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X

m

jkmCj2 ¼
paj j2n2

0N

2_o

ð0

�d
jUcðzmÞj2dzm

¼ paj j2n2
0N

2_o
2

e1d

ð0

�d

eðiocþgcÞðzmþdÞ=c1 � e�ðiocþgcÞðzmþdÞ=c1

2i

�
�
�
�

�
�
�
�

2

dzm

¼ paj j2n2
0N

2_oe1

ð1� r2Þ=ð2rÞ
lnð1=rÞ ¼ k2

CQLN
bc

gc

ð6:34Þ

where we note that gc ¼ ðc1=2dÞ lnð1=rÞ (see Equation 1.18). Here we have defined

bc �
c1

2d

1� r2

2r
ð6:35Þ

Because, as stated below Equation 6.10, the factor in Equation 6.32 is numeri-

cally the same as k2Ns in the quantum linear gain analysis of the quasimode laser

model in Equation 4.9, we are dealing with almost the same equation as in

Equation 4.42 despite the appearance of the resonant, outgoing mode function

UcðzÞ instead of the perfect cavity mode function UcðzÞ. Thus, the resulting time

dependence of the amplitude âðtÞ is the same as Equation 4.45 with Ĝf ðtÞ replaced

by hðrÞĝðtÞ and km replaced by kmC :

âðtÞ¼ âð0Þeðs0�ioÞtþ 1

iðocþn0�2oÞþ gcþ g

�
ðt

0

eðs0�ioÞðt�t0Þ fiðn0�oÞþ gghðrÞ ĝðt0Þ� i
X

m

kmCĜm

( )

dt0
ð6:36Þ

Here the decay constant s0 is the same as that in Equation 4.44 with the k2

replaced by k2
CQL and is numerically the same as that in Equation 4.44:

s0 ¼
k2

CQLNs� fiðn0 � oÞ þ ggfiðoc � oÞ þ gcg
iðoc þ n0 � 2oÞ þ gc þ g

ð6:37Þ

We have the threshold conditions

oth ¼
goc þ gcn0

gþ gc
ð6:38Þ

sth ¼
ggc

k2
CQLN

1þ ðn0 � ocÞ2

ðgþ gcÞ2

( )

’ 2_oe1ggc

paj j2n2
0N
ð1þ d2Þ ð6:39Þ

Using the properties of the Langevin forces described in Equations 4.50 and

6.29, we have the correlation function for the field amplitude for large t as
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âyðt þ tÞâðtÞ
� �

¼
2fðn0�ooÞ2þg2ggch

2ðrÞ nch iþk2
CQLNðbc=gcÞgð1þsÞ

ðocþn0�2ooÞ2þðgcþgÞ2

�
eðs
�
0þiooÞt

2 Res0j j ; t40

e�ðs0�iooÞt
2 Res0j j ; to0

8
>><

>>:

ð6:40Þ

where Equation 6.34 has been used. Here oo is the center frequency defined in

Equation 4.52. We have the laser linewidth (FWHM)

Do ¼ 2 Re s0j j ¼
2ðgþ gcÞ½ggcð1þ d2Þ � k2

CQLNs	
ðgþ gcÞ2 þ d2ðg� gcÞ2

ð6:41Þ

The linewidth is numerically the same as that in Equation 4.53. However, the

quantum noise part of the correlation function differs by the factor bc=gc from that

in Equation 4.52. Also, the thermal noise part differs by h2ðrÞ.
A strange difference from the quasimode laser model arises when we try to

express the linewidth in terms of the power output P. The difference originates

from the field distribution UcðzÞ versus UcðzÞ. In the quasimode model the stored

energy was calculated in Equation 4.59 as

W ¼
ð0

�d
e1 UcðzÞj j2ð_oc=2Þ âðtÞâyðtÞ

� �
þ âyðtÞâðtÞ
� �� 	

dz

¼ e1ð_oc=2Þ âðtÞâyðtÞ
� �

þ âyðtÞâðtÞ
� �� 	 2

e1d

d

2

¼ _oc âyðtÞâðtÞ
� �

þ 1

2

� �

ð6:42Þ

Here the mode function is UcðzÞ. Thus we have

W ¼
ð0

�d
e1 UcðzÞj j2ð_oc=2Þ âðtÞâyðtÞ

� �
þ âyðtÞâðtÞ
� �� 	

dz

¼ e1ð_oc=2Þ âðtÞâyðtÞ
� �

þ âyðtÞâðtÞ
� �� 	 2

e1d

d

2

ð1� r2Þ=ð2rÞ
lnð1=rÞ

¼ _oc âyðtÞâðtÞ
� �

þ 1

2

� �
bc

gc

ð6:43Þ

Assuming that 2gc is the correct damping factor also in this case, and discarding

the zero-point energy 1
2


 �
, we have

P ¼ 2gcW ¼ 2gc_oc âyðtÞâðtÞ
� � bc

gc
ð6:44Þ

Using Equation 6.40 with t ¼ 0 we have
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Do ¼ 2 Re s0j j

¼ 2gc_oc

P

2g2gcð1þ d2Þh2ðrÞ nch i þ k2
CQLNðbc=gcÞgð1þ sÞ

d2ðg� gcÞ2 þ ðgc þ gÞ2
bc

gc

¼ 4_ocg2
c

P

g2ð1þ d2Þ
ðgc þ gÞ2 þ d2ðg� gcÞ2

h2ðrÞ nch i þ
N2

Nsth

bc

gc

� �
bc

gc

ð6:45Þ

where use has been made of Equation 6.39 in the second line.

Thus, in this form of the linewidth, we have, as compared to the formula

Equation 4.62a for the quasimode model, a correction factor ðbc=gcÞ2 for the

quantum noise. The correction factor is h2ðrÞðbc=gcÞ ¼ 2fð1� rÞ=ð1þ rÞg= lnð1=rÞ
for the thermal noise. The ratio bc=gc ¼ fð1� r2Þ=ð2rÞg= lnð1=rÞ is always larger

than unity and is large especially when the reflectivity r of the coupling surface is

small. Note that the correction factor originates essentially from the field dis-

tribution UcðzÞ, which is non-uniform along the z-axis. In Chapters 9 and 10, we

will show that the correction factor ðbc=gcÞ2 appears for both the thermal and the

quantum noise. The reason why the thermal noise term here has a different

correction factor seems to be the absence of amplification associated with spatial

propagation for the thermal noise in this contour integral method. In Chapter 9 it

will be shown that both the spatial field distribution and the amplification with

propagation contribute to the factor ðbc=gcÞ2.

6.4

Contour Integral Method: Quantum Nonlinear Gain Analysis

In this case, Equation 6.26 can be used under the condition that the atomic

inversion is a function of the location of the atom through the local field

amplitude:

ÊðþÞ z; tð Þ ¼
X

m

pmj j2n2
msðzmÞ

2_o
UcðzÞUcðzmÞ

ðt

0

e�iðoc�igcÞ t�t0ð Þ

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞÊðþÞ zm; t
00ð Þdt00dt0

þ
X

m

ipmnm

2
UcðzÞUcðzmÞ

ðt

0

eð�ioc�gcÞ t�t0ð Þ

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞĜmðt00Þdt00dt0

þ
ðt

0

e�ðgcþiocÞðt�t0Þ f̂ ðz; t0Þdt0

ð6:45Þ

with

sðzmÞ ¼ s0
.

1þ EðzmÞ=Esj j2
n o

ð6:46Þ
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where EðzmÞj j2 is the reservoir average of Êð�ÞðzmÞÊðþÞðzmÞ. As discussed in

Section 6.2 for the semiclassical analysis, using this equation, it is difficult to

obtain the correct field distribution because of the nonlinear dependence of the

inversion on the field amplitude. The addition of the noise terms further com-

plicates the problem. So, we refrain from going further with this contour integral

method. The correct treatment will be given in Chapter 10.
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7

A One-Dimensional Laser with Output Coupling: Semiclassical

Linear Gain Analysis

In Chapters 7 and 8 we solve the laser equation of motion (Equation 5.33a) ignoring

the Langevin noise forces F̂t z; tð Þ and F̂q z; tð Þ for the one-sided cavity model

described in Section 1.3.1. In Chapter 6, the spatial field distribution was inferred

from the results of contour integration with respect to the continuous mode

frequency. In contrast, the treatment in this chapter relies on the Fourier series

expansion of the normalization constant of the mode function. This allows one to

follow the variation of the field amplitude along the laser cavity axis and at the cavity

end surfaces. Moreover, an explicit expression for the output field is obtained using

the present continuous mode analysis, which takes the output coupling into

account exactly. Especially, one can obtain, in principle, the field distribution

even in the case of the saturated, nonlinear gain case, which we failed to obtain

by use of the contour integral method. As in the case of the quasimode laser, we

divide the analysis into two categories: linear gain analysis applicable to operation

below threshold, and nonlinear, saturated gain analysis applicable to operation above

threshold. In the former case, we take the atomic inversion ŝmðtÞ as a constant sm

that is determined by the pumping process only, ignoring the saturation effects of the

field on the inversion. In the nonlinear gain analysis, which is described in the next

chapter, we take ŝmðtÞ as a scalarsmðtÞ that is dependent on the average field intensity

at the atomic location. The essence of the content of this chapter was published in [1]

(where the negative frequency part of the electric field was considered).

We here concentrate on the linear gain analysis. The equation to be solved reads,

from Equation 5.33a, for the entire region �d o z o L,

ÊðþÞðz; tÞ ¼
X

m

pmj j2n2
msm

2_o

ðt

0

X

j

Uj zð ÞUj zmð Þ e�ioj t�t0ð Þ

"

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞÊ
ðþÞ

zm0 t
00
 �

dt00dt0
# ð7:1Þ

Because this equation has no driving force for the electric field, we arbitrarily add

an initial field I(z)d(t), which is a delta function of time t. For later convenience,

we truncate the oscillation in the optical frequency from the electric field
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ÊðþÞðz; tÞ ¼ ~EðþÞðz; tÞe�iot ð7:2Þ

where o is the center frequency of oscillation to be determined. Then we have

~E
ðþÞ

z; tð Þ � IðzÞdðtÞ

¼
X

m

pmj j2n2
msm

2_o

ðt

0

X

j

Uj zð ÞUj zmð Þ eiðo�ojÞ t�t0ð Þ

"

�
ðt0

0

efiðo�nmÞ�gmg t0�t00ð Þ~E
ðþÞ

zm; t
00ð Þdt00dt0

#

ð7:3Þ

where I(z)d(t) appears unchanged because of the delta function. The equation is a

self-consistency equation for inside the cavity �d o z o 0, where the atoms are

located. For the field outside the cavity, z W 0, we have only to carry out the

summation and the integration once ~EðþÞðzm; tÞ is known.

7.1

The Field Equation Inside the Cavity

In order to treat the sum
P

j Uj zð ÞUj zmð Þe�ioj t�t0ð Þ, we use the first expansion of the

squared normalization constant in Equation 1.70a:

1

1� Ksin2k1jd
¼ 2c0

c1

X1

n¼0

1

1þ d0;n
�rð Þn cos 2nk1jd

( )

ð7:4Þ

Then from the sine functions of z and zm, from the cosine function in the

expansion, and from the exponential function of the time difference, we have eight

types of infinite series of sums of exponential functions over the frequency oj:

X

j

Uj zð ÞUj zmð Þe�i oj�oð Þ t�t0ð Þ

¼
X

j

2

e1L

1

1� Ksin2k1jd
sin k1jðzþ dÞ sin k1jðzm þ dÞe�i oj�oð Þ t�t0ð Þ

¼ c0

2Le1c1

X1

n¼0

1

1þ d0;n
�rð Þn

X4

r¼1

ar
X

j

eitrnoj þ e�itrnoj

 �

ei oj�oð Þ t�t0ð Þ

ð7:5Þ

where the factors a1 ¼ a2 ¼ 1 and a3 ¼ a4 ¼ �1. The delay times are

t1n ¼
2ndþ z� zm

c1
; t2n ¼

2nd� zþ zm

c1

t3n ¼
2ndþ 2dþ zþ zm

c1
; t4n ¼

2nd� 2d� z� zm

c1

ð7:6Þ

Note that the delay times trn depend on the atomic location zm, but we have

omitted the suffix m for simplicity.

Let us consider the summation
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S�rn ¼
X

j

exp i �trnoj þ oj � o

 �

t� t0ð Þ
� 	� 

ð7:7Þ

We go to an integration using the density of modes in Equation 1.64 and setting

X¼oj � o:

S�rn ¼
L

c0p

� �

exp �itrno

 �

ð1

�o
exp i �trn þ t� t0


 �
X

� 	
dX ð7:8Þ

Since the frequency is very high in the optical region of the spectrum, the lower limit of

the integration may be replaced by�N. This approximation yields a delta function:

S�rn ¼
2L

c0

� �

exp �itrno

 �

d �trn þ t� t0

 �

ð7:9Þ

Thus we have

X

j

Uj zð ÞUj zmð Þe�i oj�oð Þ t�t0ð Þ
n o

¼ 1

e1c1

X1

n¼0

1

1þ d0;n
�rð Þn

�
X4

r¼1

ar eitrnod �trn þ t� t0

 �

þ e�itrnod trn þ t� t0

 �� 	

ð7:10Þ

Substitution of Equation 7.10 into Equation 7.3 yields

~E
ðþÞ

z;tð Þ¼I zð Þd tð Þ

þ
X

m

Gm

ðt� z�zmj j=c1

0

(

�exp �i nm�oð Þ�gmf g t�t0ð Þþ inmþgmð Þ z�zmj j
c1

� �

�~E
ðþÞ

zm;t
0ð Þdt0�

ðt� 2dþzþzmð Þ=c1

0

�exp �i nm�oð Þ�gmf g t�t0ð Þþ inmþgmð Þ2dþzþzm

c1

� �

�~E
ðþÞ

zm;t
0ð Þdt0þ

XnM

n¼1

�rð Þn I1nþI2n�I3n�I4nð Þ
)

ð7:11Þ

where

Irn ¼
ðt�trn

0

exp �i nm � oð Þ � gmf g t� t0ð Þ þ inm þ gmð Þtrn

� 
~E
ðþÞ

zm; t
0ð Þ dt0 ð7:12Þ

and

Gm ¼
pmj j2n2

msm

2_oe1c1
ð7:13Þ
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Note that the absolute sign in the first integral in Equation 7.11 appears from the

n¼ 0 terms in the expansion 7.10 on using the delta functions dð�t10 þ t� t0Þ and

dð�t20 þ t� t0Þ because of the constraint that t Zt0 in the double integral in

Equation 7.3. The second integral in Equation 7.11 comes from the terms of t30 and

t40 in Equation 7.10. The integer nM is the maximum value of n for which tW trn and

may differ for different tr. For simplicity, we have written the equations here as if all

the tr have the same nM. In the steady state, t -N, we can make nM go to infinity.

7.2

Homogeneously Broadened Atoms and Uniform Atomic Inversion

We specialize to the case of homogeneously broadened atoms and uniform atomic

inversion by setting

nm ¼ n0; pm ¼ pa; gm ¼ g; sm ¼ s ð7:14Þ

Using Equation 7.14 and differentiating Equation 7.11 with respect to time t, we

have

@

@t
~E
ðþÞ

z; tð Þ � I zð Þd tð Þ
n o

¼ �i n0 � oð Þ � gf g ~E
ðþÞ

z; tð Þ � I zð Þd tð Þ
n o

þ
X

m

G exp io
z� zmj j

c1

� ��
~E
ðþÞ

zm; t� z� zmj j
c1

� �

� exp io
2dþ zþ zm

c1

� �
~E
ðþÞ

zm; t� 2dþ zþ zm

c1

� �

þ
XnM

n¼1

�rð Þn
X4

r¼1

ar exp iotrn


 �
~E
ðþÞ

zm; t� trn


 �
( )#

ð7:15Þ

where

G ¼ paj j2n2
0s

2_oe1c1
ð7:16Þ

The first term on the right-hand side represents damping of the field via the

damping of the atomic polarization. The other terms represent the net increase

in the field amplitude at location z at time t. Examination of the latter terms reveals

the following amplification processes in the cavity. The atoms emit, by the sti-

mulated process, increments of waves to the positive and negative directions that

are proportional to the instantaneous field intensity at the location of the respective

atoms. The increment of the field that is proportional to G~EðzmÞ is emitted to both

directions by the mth atom and transmitted without changing its amplitude but

with proper phase changes. At the boundaries, the increment is reflected with

changes in amplitude or phase. As a result, the instantaneous increase of the field
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amplitude at a particular spatial point z is given by a sum of such increments that

have just reached the position z. Figure 7.1 shows the time charts for these

contributions by two representative atoms at zm and zm
0. The four kinds of re-

tarded times are depicted. For example, the second term in Equation 7.15 gives,

except for the phase associated with the propagation, the increment of the field

emitted at the mth atom that is proportional to the field strength at zm at the proper

retarded time and reached at z at time t by direct propagation from zm to z with the

distance of propagation jz� zmj. The retarded time is jz� zmj=c1. The third term,

coming from the t30 term, on the other hand, gives an increment emitted at zm

and first propagated to the perfect conductor mirror at z¼�d and then to the

location z. The net distance for this folded propagation is fz� ð�dÞgþ
fzm � ð�dÞg ¼ zþ zm þ 2d. The minus sign of this term represents the extra

phase change of p on reflection at the perfect conductor. The t41 term represents

another increment emitted at zm and first propagated to the coupling surface at

z¼ 0 and then to the location z. The distance of propagation is

ð0� zÞ þ ð0� zmÞ ¼ �z� zm. There is a doubly folded route for an increment to

reach to the position z from the initial position zm. For example, the t11 term with

zm W z gives a route from zm to the coupling surface, then to the perfect con-

ductor, and finally to the position z. The propagation distance for this route is

2d� ðzm � zÞ. For all the above routes, there are associated routes with integer

number of added round trips in the cavity. The members in the fourth term re-

present such routes with round trips. The factor (�r)n represents the phase change

and the reduction in amplitude at the end surfaces associated with n round trips

after emission by the mth atom. We see that even a single atom contributes many

times to the field increase at a particular location, with decreasing weight for in-

creasing retarded time.

Figure 7.1 The time charts showing the contributions of an

atom at zm or zm0 to the time derivative of the field amplitude

at z at time t. The contributions are composed of the field

values at the retarded times indicated.
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We note that the increments, once emitted, propagate with velocity de-

termined by the passive dielectric and are never amplified nor absorbed. They

undergo amplitude or phase change at the cavity boundaries. In another words,

the increments propagate as if in an empty cavity. However, they stimulate the

atoms as they pass them to emit new increments that are in phase with them

and proportional to the inducing increments in magnitude. The effects of sti-

mulated absorption by non-inverted atoms are also taken into account in

Equation 7.15 through the appearance of the atomic inversion s in the gain

coefficient G for the increments. This coefficient describes the net effect of

stimulated emission and stimulated absorption. This picture of laser amplifi-

cation described by Equation 7.15 gives a clear space-time structure of the laser

action in the linear gain regime.

7.3

Solution of the Laser Equation of Motion

Equation 7.15 was derived for the field inside the cavity and for homogeneously

broadened atoms with uniform atomic inversion.

7.3.1

The Field Equation for Inside the Cavity

We assume that the field inside the cavity can be divided into two oppositely

traveling waves as

~EðþÞ z; tð Þ ¼ eþ z; tð Þ exp þio zþ dð Þ=c1f g þ e� z; tð Þ

� exp �io zþ dð Þ=c1f g
ð7:17Þ

We also assume that the envelope functions eþ z; tð Þ and e� z; tð Þ are slowly

varying in the z-direction. They are also slowly varying with time. Substituting

Equation 7.17 into Equation 7.15 and comparing the coefficients of

exp þio zþ dð Þ=c1f g and exp �io zþ dð Þ=c1f g, we have

@

@t
þ g0

� �

eþ z; tð Þ � uþ z; tð Þf g

¼
X

m

G Hðz� zmÞeþ zm; t� t10ð Þ � e� zm; t� t30ð Þ
"

þ
XnM

n¼1

r0ð Þn eþ zm; t� t1nð Þ � e� zm; t� t3nð Þf g
#

ð7:18Þ

and
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@

@t
þ g0

� �

e� z; tð Þ � u� z; tð Þf g ¼
X

m

G Hðzm � zÞe� zm; t� t20ð Þ
"

þ
XnM

n¼1

r0ð Þn e� zm; t� t2nð Þ � eþ zm; t4nð Þf g
# ð7:19Þ

Here H is the Heaviside unit step function, and

uþ z; tð Þ ¼ yþ zð Þd tð Þ; u� z; tð Þ ¼ y� zð Þd tð Þ ð7:20Þ

where yþ (z) and y�(z) are the components of the initial field I(z) varying as

expfþioðzþ dÞ=c1g and expf�ioðzþ dÞ=c1g, respectively. The constants g0 and r0

are respectively defined as

g0 ¼ gþ i v0 � oð Þ ð7:21Þ

and

r0 ¼ �r exp 2ido=c1ð Þ ð7:22Þ

In deriving Equations 7.18 and 7.19 we have neglected those rapidly oscillating

terms with a factor expðþ2ioz=c1Þ or expð�2ioz=c1Þ. The two oppositely traveling

waves are coupled to each other.

7.3.2

Laplace-Transformed Equations

In order to solve the coupled equations involving space variable z and time variable t,
we Laplace-transform Laplace transform them with respect to time and concentrate

on the spatial region:

eþ z; tð Þ !Lþðz; sÞ

e� z; tð Þ !L�ðz; sÞ

uþ z; tð Þ !Vþ z; sð Þ ¼ yþðzÞ

u� z; tð Þ !V� z; sð Þ ¼ y�ðzÞ

ð7:23Þ

Since the Laplace transform of eþ zm; t� tð Þ is expð�tsÞLþðzm; sÞ, the summa-

tions over n in Equations 7.18 and 7.19 reduce to geometrical progressions, which

can be easily evaluated. Here we assume that the time t is so large that the upper

limit of the summation can go to infinity. Also, we again assume enough density

of atoms Ndzm for the summation over m to go to integration over zm. Then we

have
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sþ g0ð Þ Lþ z; sð Þ � Vþ z; sð Þf g

¼ GN

ðz

�d
exp � z� zmð Þs=c1f g

�

Lþ zm; sð Þdzm

� 1

1� r00 sð Þ

ð0

�d
exp � zþ zm þ 2dð Þs=c1f gL� zm; sð Þdzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp � z� zmð Þs=c1f gLþ zm; sð Þdzm

�

ð7:24aÞ

and

sþ g0ð Þ L� z; sð Þ � V� z; sð Þf g

¼ GN

ð0

z
exp z� zmð Þs=c1f g

�

L� zm; sð Þdzm

� r00 sð Þ
1� r00 sð Þ

ð0

�d
exp zþ zm þ 2dð Þs=c1f gLþ zm; sð Þdzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp z� zmð Þs=c1f gL� zm; sð Þdzm

�

ð7:24bÞ

where

r00 sð Þ ¼ r0 exp �2ds=c1ð Þ ¼ �r expfðio� sÞ2d=c1g ð7:25Þ

The initial values e�ðz; 0Þ � u�ðz; 0Þ associated with the Laplace transform

vanish, as can be shown by setting t¼ 0 in Equation 7.3 with the aid of Equation

7.17. Differentiation with respect to z and division by (sþ g0) yields

d

dz
Lþ z; sð Þ � Vþ z; sð Þf g ¼ � s

c1
Lþ z; sð Þ � Vþ z; sð Þf g þ GNLþ z; sð Þ

sþ g0ð Þ ð7:26aÞ

d

dz
L� z; sð Þ � V� z; sð Þf g ¼ s

c1
L� z; sð Þ � V� z; sð Þf g �GNL� z; sð Þ

sþ g0ð Þ ð7:26bÞ

Rearranging the terms we have

d

dz
Lþ z; sð Þ � Vþ z; sð Þf g ¼ � s

c1
þ GN

sþ g0ð Þ

� �

fLþ z; sð Þ � Vþ z; sð Þg

þ GN

sþ g0ð ÞV
þ z; sð Þ

ð7:27aÞ

d

dz
L� z; sð Þ � V� z; sð Þf g ¼ s

c1
� GN

sþ g0ð Þ

� �

fL� z; sð Þ � V� z; sð Þg

� GN

sþ g0ð ÞV
� z; sð Þ

ð7:27bÞ

Integrating these for L�ðz; sÞ � V�ðz; sÞ we have
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Lþ z; sð Þ � Vþ z; sð Þ ¼
ðz

�d
exp � s

c1
þ GN

sþ g0ð Þ

� �

ðz� zmÞ
� �

� GN

sþ g0ð ÞV
þ zm; sð Þdzm

þ exp � s

c1
þ GN

sþ g0ð Þ

� �

ðzþ dÞ
� �

� Lþ �d; sð Þ � Vþ �d; sð Þf g

ð7:28aÞ

L� z; sð Þ � V� z; sð Þ ¼ �
ðz

�d
exp

s

c1
� GN

sþ g0ð Þ

� �

ðz� zmÞ
� �

� GN

sþ g0ð ÞV
� zm; sð Þdzm

þ exp
s

c1
� GN

sþ g0ð Þ

� �

ðzþ dÞ
� �

� L� �d; sð Þ � V� �d; sð Þf g

ð7:28bÞ

where L�ð�d; sÞ are undetermined constants. In order to determine these

constants, we first set z¼�d and z¼ 0 in Equations 7.24a and 7.24b to obtain

the boundary conditions at the two ends of the cavity. Then we set z¼ 0 in

Equations 7.28a and 7.28b. Then we have four coupled equations for L�ð�d; sÞ and

L�ð0; sÞ, which can be solved easily (see Appendix D for the details). We obtain

L� �d; sð Þ ¼y�ð�dÞ � GN

sþ g0

�

Ð 0

�d r0yþ zmð Þ exp zm�d
c1

s� GNzm
sþg0

� �
� y� zmð Þ exp � zmþd

c1
sþ GNzm

sþg0
� �n o

dzm

exp � GNd
sþg0

� �
� r0 exp GNd

sþg0 � 2ds
c1

� �

ð7:29Þ

When substituted into Equations 7.28a and 7.28b, the terms with the denomi-

nator in Equation 7.29 give the main pole, yielding slowly decaying terms as

compared with the first terms, which have a pole at s ¼ �g0 ¼ �g� i v0 � oð Þ,
leading to fast decays. Let us examine the pole mentioned above. Set

exp � GNd

sþ g0

� �

� r0 exp
GNd

sþ g0
� 2ds

c1

� �

¼ 0 ð7:30Þ

or with Equation 7.22 for r0

1þ r exp
2ido

c1

� �

exp
2GNd

sþ g0
� 2ds

c1

� �

¼ 0 ð7:31Þ

Thus we have
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1� exp ln r þ 2ido
c1
þ 2GNd

sþ g0
� 2ds

c1
� ð2m þ 1Þpi

� �

¼ 0 ð7:32Þ

or

1�exp
2d

c1
�gcþ ioþ GNc1

sþ gþ iðn0�oÞ� s� ioc

� �� �

¼ 1�exp
2d

c1

GNc1� sþ gþ iðn0�oÞf g sþ gcþ iðoc�oÞf g
sþ gþ iðn0�oÞ

� �� �

¼ 0

ð7:33Þ

where m is an integer and we have used Equation 1.18a, writing ocm¼oc. Also,

Equation 7.21 has been used. This equation yields

s2 þ gþ gc þ i v0 þ oc � 2oð Þf gsþ gcg

þ v0 � oð Þ o� ocð Þ � GNc1 � i g o� ocð Þ þ gc o� v0ð Þf g ¼ 0
ð7:34Þ

As in the previous chapters, we discard s2, anticipating a slow decay. Writing the

pole satisfying Equations 7.30–7.34 as s0, we have the main pole

s0¼�
ggcþ v0�oð Þ o�ocð Þ�GNc1� i g o�ocð Þþ gc o� v0ð Þf g

gþ gcþ i v0þoc�2oð Þ ð7:35Þ

where

GNc1 ¼
paj j2n2

0Ns
2_oe1

¼ k2Ns ð7:36Þ

The factor k2 was defined in Equation 4.9 for the quasimode analysis. Here we

have ignored the small difference between o and n0. Thus the denominator in

Equation 7.29 for s around the main pole s0 can be rewritten as

exp � GNd

sþ g0

� �

� r0 exp
GNd

sþ g0
� 2ds

c1

� �

¼ exp � GNd

s0 þ g0

� �
2d=c1

s0 þ g0
fgþ gc þ i v0 þ oc � 2oð Þgðs� s0Þ

ð7:37Þ

Here we briefly mention the cavity decay constant gc for the one-sided cavity.

This was defined in Equation 1.18a and the modified cavity model with a perfect

mirror at z¼ L is being used in this chapter. In Chapter 4 analyzing the quasi-

mode laser, we introduced the decay constant using the same symbol gc without

any concrete model for the cavity decay. Now comparing the form of Equation 7.35

for the one-sided cavity and the decay equation in Equation 4.11 for the quasimode

cavity, we see that the cavity decay constant gc in this chapter replaces the role of

that in Chapter 4.

Returning to the topic of the pole, for later use we derive from Equation 7.33 an

equation that is equivalent to Equation 7.34. Since the quantity in the curly bracket

in the first line is zero, we have
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s0

c1
� GN

s0 þ g0
¼ � iðoc � oÞ þ gc

c1
ð7:38Þ

where we have written s0 instead of s.

7.3.3

The Field Inside the Cavity

Substituting Equation 7.29 into Equations 7.28a and 7.28b and inverse Laplace-

transforming for the main poles, we have

eþðz; tÞ ¼ exp � s0

c1
þ GN

s0 þ g0ð Þ

� �

ðzþ dÞ
� �

C expðs0tÞ ð7:39aÞ

e�ðz; tÞ ¼ � exp
s0

c1
� GN

s0 þ g0ð Þ

� �

ðzþ dÞ
� �

C expðs0tÞ ð7:39bÞ

where the constant C is given by

C ¼� GNc1=2dð Þ exp GNd=ðs0 þ g0Þ½ 	
gþ gc þ i v0 þ oc � 2oð Þ

�
ð0

�d
yþ zmð Þr0 exp � gc � i o� ocð Þf g zm

c1
� s0d

c1

� ��

� y� zmð Þ exp gc � i o� ocð Þf g zm

c1
� s0d

c1

� ��

dzm

¼� GNc1=2dð Þ
gþ gc þ i v0 þ oc � 2oð Þ

�
ð0

�d
yþ zmð Þ exp � gc � i o� ocð Þf g zm þ d

c1

� ��

� y� zmð Þ exp gc � i o� ocð Þf g zm þ d

c1

� ��

dzm

ð7:40Þ

and where Equation 7.38 has been used for the coefficients of zm=c1 in the

exponentials. Also, Equation 7.32 has been used to eliminate r0. Here, the driving

forces yþ (z) and y� (z) are the components of the initial field I(z) varying as

expfþioðzþ dÞ=c1g and expf�ioðzþ dÞ=c1g, respectively. Note that this right-

going (left-going) part of the initial field is projected onto the decreasing

(increasing) function of zm. The latter functions are the left-going (right-going)

parts of the function adjoint to the cavity mode function, as will be discussed in

Chapter 14.

Remembering Equation 7.38 above and going back to Equation 7.2 via Equation

7.17, we have the main terms
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Ê
ðþÞ

z; tð Þ ¼ C exp gc þ iocð Þ zþ dð Þ=c1f g½
� exp � gc þ iocð Þ zþ dð Þ=c1f g	 � exp s0 � ioð Þtf g

¼ 2iC sin Oc zþ dð Þ=c1f g exp s0 � ioð Þtf g ð7:41Þ

for inside the cavity, �d o z o 0. The cavity resonant mode in Equation 1.21b is

excited with the decay constant s0. The oscillating frequency o may be determined

if we assume a near-threshold behavior as in Equation 4.12 for the quasimode

laser or as in Equation 6.11 for the contour integral method for the laser with

output coupling. At threshold, setting s0¼ 0 in Equation 7.35, we have

oth ¼
goc þ gcv0

gþ gc
ð7:42Þ

and

GthNc1

g 1þ oc � v0ð Þ2
.

gþ gcð Þ2
n o ¼ gc ð7:43Þ

or by Equation 7.16

paj j2n2
0

2_oe1gð1þ d2Þ

( )

Nsth ¼ gc ð7:44aÞ

where d was defined in Equation 4.13c as

d2 ¼ oc � n0

gþ gc

� �2

ð7:44bÞ

This can be written, using the amplitude gain per unit density of inverted atoms

per unit time, g, defined in Equation 4.14, as

gNsth ¼ gc ð7:44cÞ

7.3.4

The Field Outside the Cavity

The power of the continuous mode expansion in terms of the modes of the

‘‘universe’’ in laser analysis is that it allows for the exact expression for the field

outside the cavity. This expression is also required for the calculation of the output

power. Now that we know the expression for the field inside the cavity, under the

constraint of homogeneous broadening of the atoms and uniform pumping as

expressed by Equation 7.14, we can use Equation 7.1 to obtain the main part of the

field outside the cavity. Here, for Uj(z), we need to use the expression for the field

outside in the second line of Equation 1.41b and, for Uj(zm), that for inside in the
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first line of Equation 1.41b. So, through a similar procedure to obtaining Equation

7.10, we have

X

j

Uj zð ÞUj zmð Þe�ioj t�t0ð Þ
n o

¼
X

j

2

e1L

1

1�Ksin2k1jd

k1j

k0j
cosk1jdsink0jzþ sink1jdcosk0jz

� �

� sink1jðzmþdÞe�ioj t�t0ð Þ

¼ 1

e1c1

2c0

c1þ c0ð Þ
X1

n¼0

�rð Þn d t� t0 þ t5nð Þf

þd t� t0 � t5nð Þ�d t� t0 þ t6nð Þ�d t� t0 � t6nð Þg

ð7:45Þ

where

t5n ¼
z

c0
þ 2nd� zm

c1
; t6n ¼

z

c0
þ 2ndþ 2dþ zm

c1
ð7:46Þ

The procedure to obtain the delta functions in Equation 7.45 is just like that

from Equations 7.4 to 7.10. Here the delay time t5n expresses the time required for

a signal emitted at zm inside the cavity to reach z outside the cavity after traveling

from zm towards the positive z-direction followed by n round trips in the cavity and

then to z in the outer space. Similarly, t6n is the time required for a signal that first

goes to the negative z-direction with subsequent n round trips and a single travel to z.

We have used the fact that k1j=k0j ¼ c0=c1 to eliminate the k in favor of the c. Sub-

stitution of the last expression in Equation 7.45 into Equation 7.1 yields

Ê
ðþÞ

z;tð Þ¼
X

m

paj j2n2
0s

2_o
1

e1c1

2c0

c1þc0ð Þ
X1

n¼0

�rð Þn
ðt

0

d t�t0þt5nð Þf þd t� t0�t5nð Þ

�d t� t0þt6nð Þ�d t�t0�t6nð Þg
ðt0

0

e� in0þgð Þ t0�t00ð ÞÊ
ðþÞ

zm;t
00ð Þdt00dt0

¼
X

m

paj j2n2
0s

2_oe1c1

2c0

c1þc0ð Þ
X1

n¼0

�rð Þn
ðt�t5n

0

e� in0þgð Þ t�t5n�t00ð ÞÊ
ðþÞ

zm;t
00ð Þdt00

�

�
ðt�t6n

0

e� in0þgð Þ t�t6n�t00ð ÞÊ
ðþÞ

zm;t
00ð Þdt00

�

ð7:47Þ

Substituting Equation 7.41 for ÊðþÞðzmÞ, using Equation 7.16, and noting that

the transmission coefficient at the coupling surface for the wave incident from

inside is
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T ¼ 1þ r ¼ 2c0

c0 þ c1
ð7:48Þ

we have

Ê
ðþÞ

z; tð Þ ¼ CGT
X

m

X1

n¼0

�rð Þn
ðt�t5n

0

e� in0þgð Þ t�t5n�t00ð Þ exp gc þ iocð Þ zm þ dð Þ=c1f g½
�

� exp � gc þ iocð Þ zm þ dð Þ=c1f g	 exp s0 � ioð Þt00f gdt00

�
ðt�t6n

0

e� in0þgð Þ t�t6n�t00ð Þ exp gc þ iocð Þ zm þ dð Þ=c1f g½

� exp � gc þ iocð Þ zm þ dð Þ=c1f g	exp s0 � ioð Þt00f gdt00g

ð7:49Þ

The integrations over tv can easily be performed:

Ê
ðþÞ

z; tð Þ ¼ CGT

gþ s0þ iðn0�oÞ

�
X

m

exp gcþ iocð Þ zmþdð Þ=c1f g½ �exp � gcþ iocð Þ zmþdð Þ=c1f g	

�
X1

n¼0

�rð Þn exp s0� ioð Þ t� t5nð Þf g½ �exp � in0þ gð Þ t� t5nð Þf g

�exp s0� ioð Þ t� t6nð Þf gþexp � in0þ gð Þ t� t6nð Þf g	

ð7:50Þ

Also, the summations over n, which are simple geometrical progressions, can be

easily evaluated:

Ê
ðþÞ

z; tð Þ ¼ CGT

gþ s0 þ iðn0 � oÞ

�
X

m

exp gc þ iocð Þ zm þ dð Þ=c1f g½ � exp � gc þ iocð Þ zm þ dð Þ=c1f g	

� exp s0 � ioð Þ t� z=c0 þ zm=c1ð Þf g
1þ r exp � s0 � ioð Þ 2d=c1ð Þf g

�

� exp � in0 þ gð Þ t� z=c0 þ zm=c1ð Þf g
1þ r exp in0 þ gð Þ 2d=c1ð Þf g

� exp s0 � ioð Þ t� z=c0 � ð2dþ zmÞ=c1½ 	f g
1þ r exp � s0 � ioð Þ 2d=c1ð Þf g

þ exp � in0 þ gð Þ t� z=c0 � ð2dþ zmÞ=c1½ 	f g
1þ r exp in0 þ gð Þ 2d=c1ð Þf g

�

ð7:51Þ

The summations over m are evaluated by going to integrations with the density of

atoms N. There appear eight terms to be integrated. The result is
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Ê
ðþÞ

z;tð Þ

¼ CGNc1T

gþs0þ iðn0�oÞ
exp s0� ioð Þ t�z=c0ð Þf gexp � s0� ioð Þ d=c1ð Þf g

1þrexp � s0� ioð Þ 2d=c1ð Þf g

�

� 2sin h gcþ iocþs0� ioð Þ d=c1ð Þf g
gcþ iocþs0� io

�

� 2sin h gcþ ioc�s0þ ioð Þ d=c1ð Þf g
gcþ ioc�s0þ io

�

� exp � in0þgð Þ t�z=c0ð Þf gexp in0þgð Þ d=c1ð Þf g
1þrexp in0þgð Þ 2d=c1ð Þf g

� 2sin h gcþ ioc� in0�gð Þ d=c1ð Þf g
gcþ ioc� in0�g

�

� 2sin h gcþ iocþ in0þgð Þ d=c1ð Þf g
gcþiocþ in0þg

��

ð7:52Þ

Now the second term in the square bracket decays fast as exp (�gt) and may be

ignored. The second term in the first large curly bracket is small compared to the

first term because of the sum, as compared to the difference, of two high fre-

quencies in the denominator and may also be ignored. Thus we have

Ê
ðþÞ

z; tð Þ ¼ 2CGNc1T

gþ s0 þ iðn0 � oÞ
exp � s0 � ioð Þ d=c1ð Þf g

1þ r exp � s0 � ioð Þ 2d=c1ð Þf g

� sin h gc þ ioc þ s0 � ioð Þ d=c1ð Þf g
s0 þ gc þ iðoc � oÞ exp s0 � ioð Þ t� z=c0ð Þf g

ð7:53Þ

This can be simplified as follows. First, let us remember the transformation of r
to � exp ln r � ð2m þ 1Þpif g ¼ � expfð�gc � iocÞð2d=c1Þg in Equation 7.32. By a

similar modification of r in the denominator of the second factor, we see that

1þ rexp � s0� ioð Þ 2d=c1ð Þf g¼1�exp � gcþ iocþs0� ioð Þ 2d=c1ð Þf g

¼exp � gcþ iocð Þ d=c1ð Þ� s0� ioð Þ d=c1ð Þf g2sin h gcþ iocþs0� ioð Þ d=c1ð Þf g
ð7:54Þ

Therefore we have

2 exp � s0 � ioð Þ d=c1ð Þf g sin h gc þ ioc þ s0 � ioð Þ d=c1ð Þf g
1þ r exp � s0 � ioð Þ 2d=c1ð Þf g

¼ exp gc þ iocð Þ d=c1ð Þf g

¼ exp iOc d=c1ð Þf g

ð7:55Þ

Next, the product of the first and the third factors in the denominator is easily seen

to be equal to GNc1 from Equation 7.34. Therefore we have

ÊðþÞ z; tð Þ ¼ CT exp iOc
d

c1

� �

exp s0 � ioð Þ t� z

c0

� �� �

ð7:56Þ

This is the desired result for the field coupled out of the cavity to the region 0 o z.

The field outside has only an outgoing wave with proper wave velocity. The above

derivation procedure of this result is logical, because we have used solely the basic

equation (Equation 7.1) for the case of homogeneous broadening and uniform

pumping for the derivation of both the field inside the cavity and the field outside.
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There is, however, an ad hoc means to derive Equation 7.56. This is to use the

transmission coefficient T for the amplitude of the right-traveling wave inside the

cavity at the coupling surface z¼ 0. The last quantity is, from Equation 7.41,

Ê
ðþÞð0; tÞ

�
�
�
right�going

¼ C exp gc þ iocð Þ d=c1ð Þf g exp s0 � ioð Þtf g ð7:57Þ

So, if we multiply this amplitude by the transmission coefficient T and add the

correct translational shift with the velocity of light c0 in the outside region, we

recover Equation 7.56. This second derivation is arbitrary, however, and not

necessarily logical. Although we have used the boundary condition at the coupling

surface, the transmission coefficient appeared as a consequence of the appropriate

use of the mode functions of the ‘‘universe,’’ but not from the boundary conditions

directly. Also, the fast-decaying component in Equation 7.52 may not be inferred

from the ad hoc method. In spite of this caution on the ad hoc method, it is well

known that many rules of optical wave phenomena prevail also in quantum

mechanics, and an ad hoc compromise of quantum mechanics and classical optics

is sometimes used in problems where this compromise gives a convenient method

of analysis. We will see examples of such a method in Chapter 11 concerning the

derivation of quantum excess noise.

Finally we rewrite Equation 7.56, using Equations 1.18a and 7.48, in the form

ÊðþÞ z; tð Þ ¼ 2iC sin Oc
d

c1

� �

exp s0 � ioð Þ t� z

c0

� �� �

ð7:58Þ

which shows the form of the outer field in Equation 1.21b when the inner field is

Equation 7.41.

Reference

1 Ujihara, K. (1976) Jpn. J. Appl. Phys., 15,

1529–1541.
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8

A One-Dimensional Laser with Output Coupling: Semiclassical

Nonlinear Gain Analysis

Here we take into account the gain saturation or saturation in the atomic

inversion but still ignore noise forces. The steady-state operation above threshold is

examined. The essence of the contents of this chapter was published in [1].

We use Equation 5.33a, discarding the noise terms:

ÊðþÞ z; tð Þ ¼
X

m

pmj j2n2
m

2_o

" ðt

0

X

j

Uj zð ÞUj zmð Þ e�ioj t�t0ð Þ

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞÊðþÞ zm; t
00ð Þŝmðt00Þdt00dt0	

ð8:1Þ

We go to slowly varying amplitude by setting

ÊðþÞ z; tð Þ ¼ ~EðþÞ z; tð Þe�iot ð8:2Þ

We obtain

~EðþÞ z; tð Þ ¼
X

m

pmj j2n2
m

2_o

ðt

0

X

j

Uj zð ÞUj zmð Þ

� ei o�ojð Þ t�t0ð Þe� i nm�oð Þþgmf gt0

�
ðt0

0

e i nm�oð Þþgmf gt00 ŝm t00ð Þ~EðþÞ zm; t
00ð Þdt0dt00

ð8:3Þ

8.1

The Field Equation Inside the Cavity

For inside the cavity, �d o z o 0, the summation over j was calculated in

Equation 7.10:

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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X

j

Uj zð ÞUj zmð Þ exp �iðoj � oÞ t� t0ð Þ
� 	

¼ 1

e1c1

X1

n¼0

1

1þ d0;n
�rð Þn exp iotm

1n


 �
d t� t0 � tm

1n


 ��

þ exp �iotm
1n


 �
d t� t0 þ tm

1n


 �

þ exp iotm
2n


 �
d t� t0 � tm

2n


 �
þ exp �iotm

2n


 �
d t� t0 þ tm

2n


 �

� exp iotm
3n


 �
d t� t0 � tm

3n


 �
� exp �iotm

3n


 �
d t� t0 þ tm

3n


 �

� exp iotm
4n


 �
d t� t0 � tm

4n


 �
� exp �iotm

4n


 �
d t� t0 þ tm

4n


 �	

ð8:4Þ

where

tm
1n ¼

z� zm þ 2nd

c1
; tm

2n ¼
zm � zþ 2nd

c1
;

tm
3n ¼

2dþ zþ zm þ 2nd

c1
; tm

4n ¼
� 2dþ zþ zmð Þ þ 2nd

c1

ð8:5Þ

(In equation 18.1 of Ref. [1], d(tu � t � t) and d(tu � tþ t) should be interchanged.)

Here the superscript m for the delay times tm
rn indicates the dependence of the

delay times on zm, which we omitted in Equations 7.5 and 7.6. Substituting

Equation 8.4 into Equation 8.3 we have

~EðþÞ z; tð Þ¼
X

m

gme� i nm�oð Þþgmf gt ei omþgmð Þ z�zmj j=c1

ðt� z�zmj j=c1ð Þ

0

fm t00ð Þdt00
"

� e inmþgmð Þð2dþzþzmÞ=c1

ðt� 2dþzþzmð Þ=c1f g

0

fm t00ð Þdt00

þ
X

n�1

�rð Þn I1þ I2� I3� I4f g
#

ð8:6Þ

where

fm tð Þ ¼ e i nm�oð Þþgmf gtŝm tð Þ~EðþÞ zm; tð Þ ð8:7Þ

and

Ir ¼ e inmþgmð Þtm
rn

ðt�tm
rn

0

fm t00ð Þdt00 ð8:8Þ

gm ¼
n2

m pmj j2

2_oe1c1
ð8:9Þ

Equation 8.6 has a similar structure to that of Equation 7.11. The difference is

that the atomic inversion ŝmðtÞ appears next to the electric field ~EðþÞðzm; tÞ instead

of within the constant Gm as in Equation 7.13. Here a new constant gm appears

instead of Gm. Note that the absolute sign in the first term in Equation 8.6 appears
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from the n¼ 0 terms in the expansion in Equation 8.4 on using the delta functions

dð�tm
10 þ t� t0Þ and dð�tm

20 þ t� t0Þ because of the constraint that t Z tu in the

double integral in Equation 8.3. In Equation 8.6 we have not explicitly shown

the upper limit of the summation over n, which is limited by the constraint that

the delay times tm
rn should not exceed time t because of the delta functions.

However, for a sufficiently long time t, the contribution from the final term in the

sum becomes negligibly small, so that the upper limit can safely be taken to be

infinity.

8.2

Homogeneously Broadened Atoms and Uniform Pumping

We go to the case of homogeneously broadened atoms, that is,

nm ¼ n0; pm ¼ pa; gm ¼ g; gm ¼ g ¼ n2
0 paj j2

2_oe1c1
ð8:10aÞ

and to uniform pumping and uniform unsaturated atomic inversion, that is,

Gmp ¼ Gp; ŝ0
m ¼ s0 ð8:10bÞ

The inversion of the mth atom is now dependent on the field strength at the atom,

which, in turn, is dependent on z. Differentiation of Equation 8.6 with respect to

time t yields

@=@tð Þ~EðþÞ z;tð Þ

¼� i n0�oð Þþgf g~EðþÞ z;tð Þ

þg
X

m

�

exp
io z�zmj j

c1

� �

ŝm t� z�zmj j
c1

� �
~EðþÞ zm; t�

z�zmj j
c1

� �

�exp
io 2dþzþzmð Þ

c1

� �

ŝm t�2dþzþzm

c1

� �
~EðþÞ zm; t�

2dþzþzm

c1

� �

þ
X1

n¼1

�rð Þn exp iotm
1n


 ��
ŝm t�tm

1n


 �
~EðþÞ zm;t�tm

1n


 �

þexp iotm
2n


 �
ŝm t�tm

2n


 �
~EðþÞ zm;t�tm

2n


 �

�exp iotm
3n


 �
ŝm t�tm

3n


 �
~EðþÞ zm;t�tm

3n


 �

�exp iotm
4n


 �
ŝm t�tm

4n


 �
~EðþÞ zm;t�tm

4n


 �
g
�

ð8:11Þ

We have explicitly written the upper limit N for the summation over n according

to the discussion given below Equation 8.9.
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8.3

The Steady State

We go to the steady state, where we can forget the time dependences of ŝmðtÞ and
~EðþÞðzm; tÞ. Then the equation simplifies to

~EðþÞ zð Þ ¼ g 0
X

m

ŝm
~EðþÞ zmð Þ

h
exp io z� zmj j=c1f g

� exp io 2dþ zþ zmð Þ=c1f g

þ
X1

n¼1

�rð Þn exp iotm
1n


 ��
þ exp iotm

2n


 �

� exp iotm
3n


 �
� exp iotm

4n


 �
g
i

ð8:12Þ

where

g 0 ¼ g

i n0 � oð Þ þ g
¼ g

g0
ð8:13aÞ

Note that

Re g 0 ¼ g

c1
ð8:13bÞ

that is, Re g 0 is equal to the amplitude gain per unit density of inverted atoms per

unit length, where g was defined in Equation 4.14.

Now we consider the steady-state atomic inversion. Utilizing Equation 5.32 in

Equation 5.26, discarding the noise term, for a steady state we have

ðb̂ym1b̂m2Þsve ¼
�in0p�aŝm

�
_o

i n0 � oð Þ þ g
~EðþÞ zmð Þ ð8:14Þ

where the suffix sve signifies the slowly varying envelope: ðb̂ym1b̂m2Þsve ¼
ðb̂ym1b̂m2Þeiot. Then using Equations 5.27 and 5.32 and again discarding the noise

term, we obtain

Gpfŝm � s0g ¼ �4
g n0pa=_oj j2 ~EðþÞðzmÞ

�
�

�
�2ŝm

g2 þ ðn0 � oÞ2
ð8:15Þ

Thus the steady-state atomic inversion is

ŝm ¼
s0

1þ ~EðþÞ zmð Þ
�
�

�
�2
.

Esj j2
ð8:16Þ
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where the saturation parameter

Esj j2¼
4gn2

0 paj j2

Gp_
2o2

1

n0 � oð Þ2þ g2

( )�1

ð8:17Þ

On substitution of Equation 8.16 into Equation 8.12, regarding the summation

over m as an integration with respect to zm, we have a nonlinear integral equation.

We solve this equation, again assuming the decomposition of the electric field into

two oppositely traveling waves. Beforehand we perform the summation over n in

Equation 8.12:

~EðþÞ zð Þ¼ g 0
X

m

s0

1þ E zmð Þj j= Esj jf g2
~EðþÞ zmð Þ exp ik z�zmj jð Þ

(

� exp ik 2dþ zþ zmð Þf g þ �rexp 2ikdð Þ
1þrexp 2ikdð Þ exp ik z�zmð Þf g½

þ exp �ik z�zmð Þf g�exp ik 2dþzþzmð Þf g�exp �ik 2dþzþzmð Þf g	
)

ð8:18Þ

where

k ¼ o=c1 ð8:19Þ

and we have written E(zm) for ~EðþÞðzmÞ in the denominator for simplicity. Then

we set

~EðþÞ z; tð Þ ¼ eþ z; tð Þ exp þik zþ dð Þf g þ e� z; tð Þ exp �ik zþ dð Þf g ð8:20Þ

Comparing the terms of exp þio zþ dð Þ=c1f g and exp �io zþ dð Þ=c1f g, and

discarding rapidly oscillating (spatially) terms in Equation 8.18, we have

eþ zð Þ ¼
X

z4zm

g 0s0

1þ E zmð Þj j= Esj jf g2
eþ zmð Þ

�
X

m

g 0s0

1þ E zmð Þj j= Esj jf g2

r exp 2ikdð Þeþ zmð Þ þ e� zmð Þf g
1þ r exp 2ikdð Þ

ð8:21aÞ

e� zð Þ ¼
X

zozm

g 0s0

1þ E zmð Þj j= Esj jf g2
e� zmð Þ

þ
X

m

g 0s0r exp 2ikdð Þ
1þ E zmð Þj j= Esj jf g2

eþ zmð Þ � e� zmð Þf g
1þ r exp 2ikdð Þ

ð8:21bÞ

The squared amplitude in the denominator is
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E zmð Þj j2¼ ~EðþÞ zmð Þ~EðþÞ� zmð Þ ’ eþ zmð Þj j2þ e� zmð Þj j2 ð8:22Þ

Here rapidly oscillating terms in zm have been ignored. Equations 8.21a

and 8.21b are rewritten as

eþ zð Þ ¼
ðz

�d

a0eþ zmð Þdzm

1þ Em=s

�
�

�
�2

þ
ð0

�d

�a0

1þ Em=s

�
�

�
�2

r exp 2ikdð Þeþ zmð Þ þ e� zmð Þ
1þ r exp 2ikdð Þ dzm

ð8:23aÞ

e� zð Þ ¼
ð0

z

a0e� zmð Þdzm

1þ Em=s

�
�

�
�2

þ
ð0

�d

a0

1þ Em=s

�
�

�
�2

r exp 2ikdð Þ
1þ r exp 2ikdð Þ eþ zmð Þ � e� zmð Þf gdzm

ð8:23bÞ

a0 ¼ g 0s0N ¼ GN

g0
¼ n2

0 paj j2

2_oe1c1

Ns0

i n0 � oð Þ þ g
ð8:23cÞ

where G is given by Equation 7.16 with the understanding that the atomic

inversion s in the linear gain analysis is the same as the unsaturated inversion s0

in the nonlinear gain analysis. The parameter a0 is the amplitude gain per unit

length, and G / gu is the gain per atom. Note that a0 is related to g, the amplitude

gain per unit density of inverted atoms per unit time, as

Re a0 ¼ Re g 0s0N ¼ gNs0

c1
ð8:23dÞ

In Equations 8.23a and 8.23b Em=s

�
�

�
�2 abbreviates ~EðþÞ zmð Þ

�
�

�
�
�

Esj j
� 	2

. It can

easily be shown that Equations 8.23a and 8.23b are equivalent to the following four

equations:

d=dzð Þeþ zð Þ ¼ a0

1þ Ez=s

�
�

�
�2

eþ zð Þ ð8:24aÞ

d=dzð Þe� zð Þ ¼ �a0

1þ Ez=s

�
�

�
�2

e� zð Þ ð8:24bÞ

e� �dð Þ ¼ �eþ �dð Þ ð8:24cÞ

e� 0ð Þ ¼ r exp 2ikdð Þeþ 0ð Þ ð8:24dÞ

where Ez=s

�
�

�
�2 abbreviates ~EðþÞ zð Þ

�
�

�
�
�

Esj j
� 	2

. Note that Equations 8.24a and 8.24b

are coupled equations because both eþ (z) and e�(z) exist in the denominators as

described by Equation 8.22.
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8.4

Solution of the Coupled Nonlinear Equations

We can solve for eþ (z) and e� (z) by the unique structure of the coupled equations

as follows. Integrating Equations 8.24a and 8.24b we have

eþ zð Þ ¼ eþ �dð Þ exp I zð Þf g ð8:25aÞ

e� zð Þ ¼ e� �dð Þ exp �I zð Þf g ð8:25bÞ

I zð Þ ¼
ðz

�d

a0dz0

1þ Ez0=s

�
�

�
�2

ð8:25cÞ

so that

eþ zð Þe� zð Þ ¼ const ¼ eþ �dð Þe� �dð Þ ¼ � eþ �dð Þf g2 ð8:26Þ

We have used Equation 8.24c in the last equality. This equation is the key to

solving the nonlinear equations.

We first look for the steady-state oscillation frequency. For this purpose we set

z¼ 0 in Equations 8.25a and 8.25a to obtain

eþ 0ð Þ ¼ eþ �dð Þ exp I 0ð Þf g ð8:27aÞ

e� 0ð Þ ¼ e� �dð Þ exp �I 0ð Þf g ð8:27bÞ

where I(0) may be written as

I 0ð Þ ¼
ð0

�d

a0dz0

1þ Ez0=s

�
�

�
�2
¼ a0I ð8:28aÞ

where

I ¼
ð0

�d

dz0

1þ Ez0=s

�
�

�
�2

ð8:28bÞ

Because we know the ratio of eþ (0) and e�(0) from Equation 8.24d, and that for

eþ (�d) and e�(�d) from Equation 8.24c, we have from Equations 8.27a and 8.27b

1

r expð2ikdÞ ¼ � exp 2a0I
� 	

ð8:29Þ

As we saw in Equation 7.33, �r�1 expð�2ikdÞ is equal to expfð2d=c1Þ
ðgc � ioþ iocÞg. Therefore, noting that a0 ¼ GN=g0 from Equation 8.23c and

that g0 ¼ gþ iðn0 � oÞ from Equation 8.13a, and comparing the phase and the

magnitude of both sides, we have
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2d

c1
oc � oð Þ ¼ � 2GNIðn0 � oÞ

g2 þ ðn0 � oÞ2
ð8:30Þ

gc ¼
c1

2d

2GNIg

g2 þ ðn0 � oÞ2
ð8:31Þ

Thus eliminating GNI, we have

o ¼ goc þ gcv0

gþ gc
ð8:32Þ

Equation 8.31 gives the necessary gain

GN ¼ g2 þ ðn0 � oÞ2

2Ig
2d

c1
gc ð8:33Þ

We do not know the value of I as yet. But, at threshold, ~EðþÞ zð Þ ¼ 0 and I¼ d.

Therefore, we have the threshold population inversion

Ns0
th ¼

2e1_oggc

n2
0 paj j2

1þ ðn0 � ocÞ2

ðgþ gcÞ2

( )

ð8:34Þ

where we have used Equations 7.16 and 8.32. This is the same as that in Equation

7.44a for the linear gain analysis

In order to solve for the field amplitude, we need to consider the absolute

squares of the amplitudes because of their appearance in the denominator in

Equation 8.25c. Thus multiplying Equation 8.24a by feþ zð Þg� and its complex

conjugate by eþ (z) and adding, we have

d=dzð Þ eþ zð Þj j2¼ a0 þ a0�

1þ Ez=s

�
�

�
�2

eþ zð Þj j2 ð8:35aÞ

Similarly, from Equation 8.24b we have

d=dzð Þ e� zð Þj j2¼
� a0 þ a0�

 �

1þ Ez=s

�
�

�
�2

e� zð Þj j2 ð8:35bÞ

These equations were derived by Rigrod [2]. Using Equation 8.22 in Equation 8.35a

with zm replaced by z, and eliminating e�(z) by Equation 8.26, we have

1þ eþ zð Þj j2þ constj j2 eþ zð Þj j�2
� �

= Esj j2

eþ zð Þj j2
d eþ zð Þj j2¼ ða0 þ a0� Þdz ð8:36Þ

Integrating both sides we have

ln eþ zð Þj j2þ eþ zð Þj j2� constj j2 eþ zð Þj j�2

Esj j2
¼ ða0 þ a0� Þzþ C ð8:37Þ

We determine the constant C by setting z¼�d:
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C ¼ ln eþ �dð Þj j2þ eþ �dð Þj j2� constj j2 eþ �dð Þj j�2

Esj j2
þ ða0 þ a0� Þd ð8:38Þ

Since in the second term on the right-hand side constj j2 eþ �dð Þj j�2¼ e� �dð Þj j2 by

Equation 8.26 and it is equal to eþ �dð Þj j2 by Equation 8.24c, the second term

vanishes. Thus we have

ln eþ zð Þj j= eþ �dð Þj jf g2þ eþ zð Þj j2� constj j2 eþ zð Þj j�2
n o.

Esj j2

¼ a0 þ a0�

 �

zþ dð Þ
ð8:39Þ

Note that, if the constant or eþ �dð Þf g2
is known, the z dependence of eþ zð Þj j2 is

known from this equation. In particular, the left-hand side is a monotonically

increasing function of eþ zð Þj j2. On the other hand, taking the logarithm of the

absolute square of Equation 8.25a, we have

ln eþ zð Þj j=eþ �dð Þf g2¼ I zð Þ þ I� zð Þ ¼
ðz

�d

a0 þ a0�

 �

dz0

1þ Ez0=s

�
�

�
�2

ð8:40Þ

where we have used Equation 8.25c in the last equality. Comparing Equations 8.39

and 8.40 we have

I zð Þ ¼ �a0

a0 þ a0�
eþ zð Þj j2� e� zð Þj j2

Esj j2
þ a0 zþ dð Þ ð8:41Þ

where we have replaced constj j2 eþ zð Þj j�2
by e� zð Þj j2 using Equation 8.26.

Substituting this into Equation 8.25a and setting z¼ 0, we have

eþ 0ð Þ ¼ eþ �dð Þ exp
�a0

a0 þ a0�
eþ 0ð Þj j2� e� 0ð Þj j2

Esj j2
þ a0d

( )

ð8:42aÞ

Similarly, from Equation 8.25a we have

e� 0ð Þ ¼ e� �dð Þ exp
a0

a0 þ a0�
eþ 0ð Þj j2� e� 0ð Þj j2

Esj j2
� a0d

( )

ð8:42bÞ

Taking the ratios of both sides of Equations 8.42a and 8.42b, because we know the

ratio of eþ (0) and e�(0) from Equation 8.24d, and that for eþ (�d) and e�(�d) from

Equation 8.24c, we obtain

�1

r expð2ikdÞ ¼ exp
�2a0

a0 þ a0�
eþ 0ð Þj j2ð1� r2Þ

Esj j2
þ 2a0d

( )

ð8:43Þ

As in Equation 8.29, comparing the phase and magnitude of both sides we have

2d

c1
gc ¼ � 1� r2


 � eþ 0ð Þj j
Esj j

� �2

þ a0 þ a0�

 �

d ð8:44Þ
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2d

c1
o� ocð Þ ¼ �i

a0 � a0�

 �

a0 þ a0�ð Þ
1� r2ð Þ eþ 0ð Þj j2

Esj j2
� d a0 þ a0�

 �

( )

ð8:45Þ

Noting that iða0 � a0� Þ=ða0 þ a0� Þ ¼ ðn0 � oÞ=g from Equation 8.23c, we have

again

o ¼ goc þ gcv0

gþ gc
ð8:46Þ

and from Equation 8.44 we have the absolute square of the amplitude of the right-

traveling wave at the output surface:

eþ 0ð Þj j2¼ Esj j2

1� r2

n2
0 raj j2Ns0d

e1c1_o
g

n0 � oð Þ2þg2
� ln 1=rð Þ

( )

¼ Esj j2

1� r2

n2
0 raj j2Ns0d

e1c1_o
1

gð1þ d2Þ
� ln 1=rð Þ

( ) ð8:47Þ

Setting eþ (0)¼ 0 and using Equation 8.46 we have Equation 8.34 again for the

threshold atomic inversion:

s0
th ¼

2e1_oggc

n2
0 paj j2N

1þ d2

 �

¼ gc

gN
ð8:48Þ

Now integrating Equation 8.16 and dividing by d, we examine the average atomic

inversion for steady state:

�sss �
1

d

ð0

�d
smdzm ¼

s0

d

ð0

�d

dz0

1þ Ez0=s

�
�

�
�2
¼ s0

d

ln eþ 0ð Þj j= eþ �dð Þj jf g2

ða0 þ a0� Þ ð8:49Þ

where we have used Equations 8.40 in the last expression. Now comparing the

square of Equations 8.42a and 8.43 we have

eþ 0ð Þ
eþ �dð Þ

� �2

¼ �1

r expð2ikdÞ ð8:50Þ

Thus

eþ 0ð Þ
eþ �dð Þ

�
�
�
�

�
�
�
�

2

¼ 1

r
ð8:51Þ

Using this relation and the expression in Equation 8.23c for a0 we have

�sss ¼
2_oe1

n2
0 paj j2N

ggcð1þ d2Þ ¼ gc

gN
ð8:52aÞ

where
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d2 ¼ oc � n0

gþ gc

� �2

ð8:52bÞ

Thus, comparing it with Equation 8.48, we confirm that

�sss ¼ s0
th ð8:53Þ

as is usual for an oscillator operating above threshold. But here what is equal to the

threshold inversion is the space average of the location-dependent inversion.

Now that eþ 0ð Þj j2 is known, we can determine the distribution of the field

amplitude as follows. First, we have Equations 8.25a and 8.25a for eþ (z) and e�(z),

which are determined by the integral in Equation 8.25c. The integral is known, in

principle, if we know eþ zð Þj j2 and e� zð Þj j2. The former eþ zð Þj j2 is determined by

Equation 8.39 completely if we know eþ �dð Þj j2. But it is given by Equation 8.51 in

terms of eþ 0ð Þj j2, which is given by Equation 8.47. The latter e� zð Þj j2 is determined

by the relation in Equation 8.26. Thus we can, in principle, determine eþ (z) and

e�(z) completely, except for undetermined phases.

Here we briefly discuss how the field distribution in this nonlinear gain analysis

is related to that in the linear gain analysis. The present analysis goes to the linear

gain analysis in the limit of infinitely large saturation parameter Es !1. That is

to say, in the limit Ez=s ! 0. In this limit, Equations 8.25a–8.25c show that

e�ðzÞ ¼ e�ð�dÞ exp �a0ðzþ dÞ
� 	

. But Equation 8.44 shows that, in this limit,

a0 ’ lnð1=rÞ=ð2dÞ. Therefore, we have e�ðzÞ ’ e�ð�dÞ exp �gcðzþ dÞ=c1f g, which

is just the field distribution consistent with the cavity resonant field that appeared

in Equation 7.41 of the linear gain analysis.

8.5

The Field Outside the Cavity

Similarly to Equation 7.45, we calculate the summation over j in Equation 8.3 for

the field outside the cavity:

X

j

Uj zð ÞUj zmð Þe�iðoj�oÞ t�t0ð Þ
n o

¼
X

j

2

e1L

1

1� K sin2 k1jd

k1j

k0j
cos k1jd sin k0jzþ sin k1jd cos k0jz

� �

� sin k1jðzm þ dÞe�ioj t�t0ð Þ ¼ 1

e1c1

2c0

c0 þ c1

X1

n¼0

�rð Þn

� exp iotm
5n


 �
d t0 � tþ tm

5n


 ��
þ exp �iotm

5n


 �
d t0 � t� tm

5n


 �

� exp iotm
6n


 �
d t0 � tþ tm

6n


 �
� exp �iotm

6n


 �
d t0 � t� tm

6n


 �	

ð8:54Þ

where
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tm
5n ¼

z

c0
� zm

c1
þ 2nd

c1
; tm

6n ¼
z

c0
þ 2dþ zm

c1
þ 2nd

c1
ð8:55Þ

Substituting Equation 8.54 into Equation 8.3 and taking Equations 8.10a and 8.10b

into account, we have

~EðþÞ z; tð Þ ¼
X

m

in2
0 paj j2

2_o
1

e1c1

2c0

c1 þ c0ð Þ
X1

n¼0

�rð Þn

� eiotm
5n exp � i n0 � oð Þ þ gf gðt� tm

5n
Þ

h i
(

�
ðt�tm

5n

0

exp i n0 � oð Þ þ gf gt00½ 	ŝm t00ð Þ~EðþÞ zm; t
00ð Þdt00

� eiotm
6n exp � i n0 � oð Þ þ gf gðt� tm

6n
Þ

h i

�
ðt�tm

6n

0

exp i n0 � oð Þ þ gf gt00½ 	ŝm t00ð Þ~EðþÞ zm; t
00ð Þdt00

)

ð8:56Þ

After differentiation with respect to time t, we go to the steady state. We have

~EðþÞ zð Þ ¼
X

m

2c0

c0 þ c1

n2
0 paj j2

2e1c1_o
1

i n0 � oð Þ þ g

�
X1

n¼0

�rð Þn exp iotm
5n


 ��
ŝm

~EðþÞ zmð Þ � exp iotm
6n


 �
ŝm

~EðþÞ zmð Þ
o
ð8:57Þ

Performing the summation over n, changing the summation over m to an

integration, and using Equation 8.16 for the atomic inversion, we have

~EðþÞ zð Þ ¼ 2c0

c0 þ c1

a0

1þ r exp 2ikdð Þ

�
ð0

�d
exp io

z

c0
� zm

c1

� �� ��

� exp io
z

c0
þ 2dþ zm

c1

� �� �� ~EðþÞ zmð Þdzm

1þ Em=s

�
�

�
�2

ð8:58Þ

where the constant a0 is defined by Equation 8.23c. Substituting Equation 8.20 for
~EðþÞ zmð Þ in the integral and ignoring rapidly oscillating terms, we have

~EðþÞ zð Þ ¼ 2c0

c0 þ c1

1

1þ r exp 2ikdð Þ exp io
z

c0
þ d

c1

� �� �

�
ð0

�d

a0eþ zmð Þdzm

1þ Ez=s

�
�

�
�2
�
ð0

�d

a0e� zmð Þdzm

1þ Ez=s

�
�

�
�2

( ) ð8:59Þ

Using Equations 8.23a and 7.48 we can rewrite this equation as
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~EðþÞ zð Þ ¼ T exp io
z

c0
þ d

c1

� �� �

eþ 0ð Þ ð8:60Þ

Thus we have for the field outside the cavity

ÊðþÞ z; tð Þ ¼ T eþðzÞ expfikðzþ dÞg½ 	z¼0exp �io t� z

c0

� �� �

ð8:61Þ

Outside the cavity, the field has only an outgoing wave and its amplitude is

independent of the distance from the coupling surface z¼ 0. Equation 8.61 clearly

shows that the field outside is that of the right-traveling wave inside the cavity at

the coupling surface transmitted to the outside with the proper amplitude trans-

mission coefficient and shifted in phase with the proper wavenumber o / c0. The

expression in Equation 8.60 or 8.61 may be obtained without the procedure

described in this subsection by an ad hoc means: multiplication of the right-going

wave at the surface by the transmission coefficient and addition of the proper

phase. However, as was discussed at the end of the last chapter, it this at best

arbitrary and not necessarily logical.
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9

A One-Dimensional Laser with Output Coupling:

Quantum Linear Gain Analysis

In Chapters 9 and 10 we solve the laser equation of motion (Equation 5.33a)

quantum mechanically for the one-sided cavity model described in Sections 1.3.1

and 1.4. As in the case of the quasimode laser, we divide the analysis into two

categories: linear gain analysis, applicable to operation below threshold; and

nonlinear gain analysis, applicable to above-threshold operation. In this chapter,

the atomic inversion is assumed to be constant, but it will be allowed to be field

dependent in the next chapter. In Chapter 7, the linear gain analysis was

performed semiclassically, with the atomic inversion assumed to have a fixed

value and the noise terms being ignored. There, instead of the noise terms, an

initial field distribution with temporal delta-function property was assumed. The

temporal decay of the field from the initial value was derived using the Laplace

transform method, which yielded a decay constant that represents the net effect of

the field gain associated with propagation along the gain medium and reflections

at the end surfaces. The explicit expression for the output field was also obtained

by virtue of the continuous mode expansion of the field. Here, we take into

account the noise terms for the atoms. However, the thermal noise is derived

automatically by the field expansion using the continuous modes of the ‘‘uni-

verse.’’ These noise terms act as incessant driving forces for the field. Thus,

because of the linear nature of the assumed equation, the field becomes a

superposition of the decaying components, each excited at the atoms or in the

cavity at random instants, all the decay constants being the same as that obtained

in Chapter 7. The spatial dependence of the excited field will be that of the cavity

resonant mode as in Chapter 7. An important quantum result is that the

expression for the linewidth of the output field has a correction factor compared

with the conventional formula obtained for the quasimode laser. This factor is

ðbc=gcÞ2 ¼ f1� r2=ð2rÞg2= lnð1=rÞf g2, which is determined solely by the reflection

coefficient at the cavity end surface. Similar factors appeared in Chapter 6, where

the contour integral method was used. The nonlinear, saturated gain analysis

applicable to operation above threshold will be covered in the next chapter, where

correction factors for the linewidth will also be derived. The essence of the

contents of this chapter was published in [1].

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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9.1

The Equation for the Quantum Linear Gain Analysis

Here we concentrate on the linear gain analysis. The equation to be solved reads,

from Equation 5.33, for the entire region –d o z o L ,

ÊðþÞ z; tð Þ ¼ F̂t z; tð Þ þ F̂q z; tð Þ

þ
X

m

pmj j2n2
msm

2_o

ðt

0

X

j

Uj zð ÞUj zmð Þ e�ioj t�t0ð Þ

"

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞÊðþÞ zm; t
00ð Þdt00dt0

#
ð9:1Þ

where

F̂t z; tð Þ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

Uj zð Þâj 0ð Þe�ioj t ð9:2Þ

F̂q z; tð Þ ¼
X

m

ipmnm

2

ðt

0

X

j

Uj zð ÞUj zmð Þ e�ioj t�t0ð Þ
ðt0

0

e� inmþgmð Þ t0�t00ð ÞĜmðt00Þdt00dt0
#"

ð9:3Þ

Here we have taken the atomic inversion ŝmðtÞ as a constant sm that is determined

by the pumping process only. The strategy for solving the equation is to seek the

expression for the field in terms of the noise forces and to construct the correlation

function. The correlation functions of the noise forces will determine the corre-

lation function of the field. Then we will obtain the field power spectrum as the

Fourier transform of the field correlation function. From Equations 5.36, 5.38, and

5.39, the correlation functions to be used are

ayi ð0Þajð0Þ
D E

¼ nj

� �
dij ð9:4aÞ

aið0Þayj ð0Þ
D E

¼ nj

� �
þ 1


 �
dij ð9:4bÞ

and

ĜymðtÞĜm0 ðt0Þ
� �

¼ Gm
21;12dðt� t0Þdmm0

Gm
21;12 ¼

1

2
Gmpð1þ s0

mÞ
1

2
ð1� smÞ

� �

� 1

2
Gmpð1� s0

mÞ
1

2
ð1þ smÞ

� �

þ 2gm
1

2
ð1þ smÞ

� �
ð9:5aÞ
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ĜmðtÞĜym0 ðt0Þ
D E

¼ Gm
12;21dðt� t0Þdmm0

Gm
12;21 ¼

1

2
Gmpð1� s0

mÞ
1

2
ð1þ smÞ

� �

� 1

2
Gmpð1þ s0

mÞ
1

2
ð1� smÞ

� �

þ 2gm
1

2
ð1� smÞ

� �

ð9:5bÞ

Here we have assumed that the different modes of the universe are not corre-

lated initially. We have also assumed that the reservoirs for the dipoles of different

atoms are also not correlated. In Equations 9.4a and 9.4b nj

� �
is the expectation

value of the number of thermal photons, that is, the Planck distribution, in the jth
‘‘universal’’ mode. If the pumping and damping of the atoms are non-uniform,

the parameters in Equations 9.5a and 9.5b are different for different atoms. Thus

we have added the suffix m to indicate the individual atoms. In this chapter, the

saturated and unsaturated atomic inversion are the same constants, that is

sm ¼ s0
m. Thus we have

ĜymðtÞĜm0 ðt0Þ
� �

¼ gmð1þ smÞdmm0dðt� t0Þ ð9:5cÞ

ĜmðtÞĜym0 ðt0Þ
D E

¼ gmð1� smÞdmm0dðt� t0Þ ð9:5dÞ

We have removed the sign of the ensemble average because we are assuming here

that the atomic inversion is a constant. In order to utilize the calculations in

Chapter 7 as far as possible, we truncate the oscillation in the optical frequency

from the electric field and the noise, as in Chapter 7,

ÊðþÞðz; tÞ ¼ ~EðþÞðz; tÞe�iot; F̂t z; tð Þ ¼ ~Ft z; tð Þe�iot;

F̂q z; tð Þ ¼ ~Fq z; tð Þe�iot
ð9:6Þ

and obtain

~EðþÞ z;tð Þ¼
X

m

pmj j2n2
msm

2_o

ðt

0

X

j

Uj zð ÞUj zmð Þeiðo�ojÞ t�t0ð Þ

"

�
ðt0

0

efiðo�nmÞ�gmg t0�t00ð Þ~EðþÞ zm;t
00ð Þdt00dt0

#

þ~Ft z;tð Þþ~Fq z;tð Þ

ð9:7Þ

This form of the equation is the same as Equation 7.3 except that the initial driving

force term in Equation 7.3 is replaced by the noise forces. Thus the analysis in

Sections 7.1–7.3 can be applied here with the proper replacement of the driving force

by the noise forces. Let us follow the procedure of the analysis in Sections 7.1–7.3.

We first evaluate the summation over j and find delta functions of time involving
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delay times that correspond to the possible routes for a light signal to go from

position zm to position z:

X

j

Uj zð ÞUj zmð Þe�i oj�oð Þ t�t0ð Þ
n o

¼ 1

e1c1

X1

n¼0

1

1þ d0;n
�rð Þn

�
X4

r¼1

ar eitrnod �trn þ t� t0

 �

þ e�itrnod trn þ t� t0

 �� 	

ð9:8Þ

where the factors a1 ¼ a2 ¼ 1 and a3 ¼ a4 ¼ �1. The delay times are

t1n ¼
2ndþ z� zm

c1
; t2n ¼

2nd� zþ zm

c1

t3n ¼
2ndþ 2dþ zþ zm

c1
; t4n ¼

2nd� 2d� z� zm

c1

ð9:9Þ

After performing the integration using the delta functions, we obtain a temporal

integral equation containing a sum over the field values at each atom at various

retarded times:

~EðþÞ z; tð Þ ¼ ~Ft z; tð Þ þ ~Fq z; tð Þ þ
X

m

Gm

ðt� z�zmj j=c1

0

(

� exp �i nm �oð Þ � gmf g t� t0ð Þ þ inm þ gmð Þ z� zmj j
c1

� �
~E zm; t

0ð Þdt0

�
ðt�ð2dþzþzmÞ=c1

0

exp �i nm �oð Þ � gmf g t� t0ð Þ þ inm þ gmð Þ 2dþ zþ zm

c1

� �

� ~E zm; t
0ð Þdt0 þ

XnM

n¼1

�rð Þn I1n þ I2n � I3n � I4nð Þ
)

ð9:10Þ

where

Irn ¼
ðt�trn

0

exp �i nm � oð Þ � gmf g t� t0ð Þ þ inm þ gmð Þtrn

� 
~E zm; t

0ð Þ dt0 ð9:11aÞ

and

Gm ¼
pmj j2n2

msm

2_oe1c1
ð9:11bÞ

136 | 9 A One-Dimensional Laser with Output Coupling: Quantum Linear Gain Analysis



9.2

Homogeneously Broadened Atoms and Uniform Atomic Inversion

To go further, we have to assume homogeneously broadened atoms and homo-

geneous pumping:

nm ¼ n0; pm ¼ pa; gm ¼ g; sm ¼ s ð9:12Þ

Then, differentiating with respect to time t, the integral equation is converted to a

simplified differential equation:

@

@t
~EðþÞ z; tð Þ � ~Ft z; tð Þ � ~Fq z; tð Þ
n o

¼ �i n0 � oð Þ � gf g ~EðþÞ z; tð Þ � ~Ft z; tð Þ � ~Fq z; tð Þ
n o

þ
X

m

G exp io
z� zmj j

c1

� ��
~EðþÞ zm; t�

z� zmj j
c1

� �

� exp io
2dþ zþ zm

c1

� �
~EðþÞ zm; t�

2dþ zþ zm

c1

� �

þ
XnM

n¼1

�rð Þn
X4

r¼1

ar exp iotrn


 �
~EðþÞ zm; t� trn


 �
( )#

ð9:13Þ

with

G ¼ paj j2n2
0s

2_oe1c1
ð9:14Þ

Here we introduce the assumption that the field waves and the driving forces are

both divided into right- and left-going waves, respectively:

~EðþÞ z; tð Þ ¼ êþ z; tð Þ exp þio zþ dð Þ=c1f g

þ ê� z; tð Þ exp �io zþ dð Þ=c1f g
ð9:15Þ

and similarly for the noise force terms. Here we have stressed that the field

amplitudes are operators, in contrast to those in Chapter 7, where they were

classical variables. Then we get two coupled temporal differential equations for the

two traveling waves, which still contain various retarded times corresponding to

the number of round trips that the waves make until they arrive at location z after

having started from location zm of the mth atom. The equations also contain

summations over the atoms:

@

@t
þ g0

� �

êþ z; tð Þ � ûþ z; tð Þf g ¼
X

m

G Hðz� zm Þ̂eþ zm; t� t10ð Þ � ê� zm; t� t30ð Þ
"

þ
XnM

n¼1

r0ð Þn êþ zm; t� t1nð Þ � ê� zm; t� t3nð Þf g
# ð9:16aÞ
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@

@t
þ g0

� �

ê� z; tð Þ � û� z; tð Þf g ¼
X

m

G Hðzm � zÞ̂e� zm; t� t20ð Þ
"

þ
XnM

n¼1

r0ð Þn ê� zm; t� t2nð Þ � êþ zm; t4nð Þf g
# ð9:16bÞ

where

ûþ z; tð Þ ¼ f̂ þt z; tð Þ þ f̂ þq z; tð Þ; û� z; tð Þ ¼ f̂ �t z; tð Þ þ f̂ �q z; tð Þ ð9:17Þ

Here f̂ �t ðz; tÞ are the right- and left-traveling parts, respectively, of the thermal

noise operator ~Ftðz; tÞ, varying as expf�ioðzþ dÞ=c1g, respectively, and f̂ �q ðz; tÞ
are the right- and left-traveling parts of the quantum noise operator ~Fqðz; tÞ. The

constants g0 and r 0, respectively, are defined as

g0 ¼ gþ i v0 � oð Þ ð9:18Þ

and

r0 ¼ �r exp 2ido=c1ð Þ ð9:19Þ

9.3

Laplace-Transformed Equations

In order to solve the coupled equations 9.16a and 9.16b involving space variable z
and time variable t, we Laplace-transform the field and the noise operators as

follows and concentrate on the spatial region:

êþ z; tð Þ ! L̂þðz; sÞ

ê� z; tð Þ ! L̂�ðz; sÞ

ûþ z; tð Þ ! V̂þ z; sð Þ

û� z; tð Þ ! V̂� z; sð Þ

ð9:20Þ

Proceeding as in Chapter 7, after performing the summation over n, with

nM !1, the transformed equations become

sþ g0ð Þ L̂þ z; sð Þ � V̂þ z; sð Þ
� 	

¼ GN

ðz

�d
exp � z� zmð Þs=c1f gL̂þ zm; sð Þdzm

�

� 1

1� r00 sð Þ

ð0

�d
exp � zþ zm þ 2dð Þs=c1f gL̂� zm; sð Þdzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp � z� zmð Þs=c1f gL̂þ zm; sð Þdzm

�

ð9:21aÞ
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and

sþ g0ð Þ L̂� z; sð Þ � V̂� z; sð Þ
� 	

¼ GN

ð0

z
exp z� zmð Þs=c1f g

�

L̂� zm; sð Þdzm

� r00 sð Þ
1� r00 sð Þ

ð0

�d
exp zþ zm þ 2dð Þs=c1f gL̂þ zm; sð Þdzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp z� zmð Þs=c1f gL̂� zm; sð Þdzm

�

ð9:21bÞ

where

r00 sð Þ ¼ r0 exp �2ds=c1ð Þ ¼ �r expfðio� sÞ2d=c1g ð9:22Þ

The initial values accompanying the Laplace transforms of the time derivatives,

ê� z; 0ð Þ � û� z; 0ð Þ, vanish, as can be seen by inspection of Equations 9.7 and 9.15

and the definition of û� z; tð Þ. Differentiation with respect to z yields the following

coupled differential equations:

d

dz
L̂þ z; sð Þ � V̂þ z; sð Þ
� 	

¼ � s

c1
þ GN

sþ g0ð Þ

� �

fL̂þ z; sð Þ � V̂þ z; sð Þg þ GN

sþ g0ð Þ V̂
þ z; sð Þ

ð9:23Þ

d

dz
L̂� z; sð Þ � V̂� z; sð Þ
� 	

¼ s

c1
� GN

sþ g0ð Þ

� �

fL̂� z; sð Þ � V̂� z; sð Þg � GN

sþ g0ð Þ V̂
� z; sð Þ

ð9:24Þ

Integrating, we have the following formal solutions:

L̂þ z;sð Þ�V̂þ z;sð Þ¼
ðz

�d
exp � s

c1
þ GN

sþg0ð Þ

� �

ðz�z0Þ
� �

GN

sþg0ð ÞV̂
þ z0;sð Þdz0

þ exp � s

c1
þ GN

sþg0ð Þ

� �

ðzþdÞ
� �

L̂þ �d;sð Þ�V̂þ �d;sð Þ
� 	

ð9:25Þ

L̂� z; sð Þ�V̂� z; sð Þ ¼ �
ðz

�d
exp

s

c1
� GN

sþg0ð Þ

� �

ðz�z0Þ
� �

GN

sþg0ð ÞV̂
� z0;sð Þdz0

þ exp
s

c1
� GN

sþg0ð Þ

� �

ðzþdÞ
� �

L̂� �d; sð Þ�V̂� �d; sð Þ
� 	

ð9:26Þ
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These are formally equivalent to Equations 7.28a and 7.28b. The undetermined

factors L̂� �d;sð Þ�V̂� �d;sð Þ are obtained by using the results of Appendix D and

expressed in terms of V̂� z;sð Þ as

L̂� �d; sð Þ � V̂�ð�dÞ

¼ � GN

sþ g0

�

Ð 0

�d r0V̂þ z0; sð Þ exp z0�d
c1

s� GNz0

sþg0
� �

� V̂� z0; sð Þ exp � z0þd
c1

sþ GNz0

sþg0
� �n o

dz0

exp �GNd
sþg0

� �
� r0 exp GNd

sþg0 � 2ds
c1

� �

ð9:27Þ

Equations 9.25 and 9.26 together with Equation 9.27 are the formal solutions in

the Laplace-transformed domain.

9.4

Laplace-Transformed Noise Forces

In order to evaluate Equations 9.25–9.27, we need the Laplace transforms of the

noise forces. From Equations 9.17 and 9.20 we have

V̂� z; sð Þ ¼V̂�t z; sð Þ þ V̂�q z; sð Þ

V̂�t z; sð Þ ¼L f̂ �t ðz; tÞ
n o

V̂�q z; sð Þ ¼L f̂ �q ðz; tÞ
n o

ð9:28Þ

where the letter L signifies the Laplace transform. From Equations 9.2 and 1.62b,

the thermal noise term reads

~Ft z; tð Þ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

Uj zð Þâj 0ð Þe�iðoj�oÞt

¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1�K sin2 k2
1jdÞ

s

sin k1jðzþ dÞâj 0ð Þe�iðoj�oÞt

ð9:29Þ

Thus

f̂ �t z; tð Þ ¼ �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1jdÞ

s

e�iðk1j�kÞðzþdÞâj 0ð Þe�iðoj�oÞt ð9:30Þ

and

V̂�t z; sð Þ ¼ �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1jdÞ

s

� e�iðk1j�kÞðzþdÞâj 0ð Þ 1

sþ iðoj � oÞ

ð9:31Þ
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For the quantum noise part, the noise force ~Fq z; tð Þ defined by Equations 9.3 and

9.6 reads

~Fq z; tð Þ ¼
X

m

ipmnm

2

ðt

0

X

j

Uj zð ÞUj zmð Þ eiðo�ojÞ t�t0ð Þ

"

�
ðt0

0

efiðo�nmÞ�gmg t0�t00ð Þ~Gm t00ð Þdt00dt0
# ð9:32Þ

It is easy to see that the right-hand side has the same structure as the second line

of Equation 9.7 except that the constant factor pmj j2n2
msm=ð2_oÞ is replaced by

ipmnm=2 and that the field amplitude ~EðþÞ zm; t00ð Þ is replaced by the Langevin force
~Gmðt00Þ. Therefore, the evaluation of the ~Fq z; tð Þ goes just the same as for the

second line of Equation 9.7. For homogeneous broadening and uniform pumping,

referring to Equations 9.8–9.10, we have

~Fq z; tð Þ ¼
X

m

h

ðt� z�zmj j=c1

0

exp �i n0 � oð Þ � gf g t� t0ð Þ þ in0 þ gð Þ z� zmj j
c1

� �
~Gm t0ð Þdt0

(

�
ðt�ð2dþzþzmÞ=c1

0

exp �i n0 � oð Þ � gf g t� t0ð Þ þ in0 þ gð Þ 2dþ zþ zm

c1

� �
~Gm t0ð Þdt0

þ
XnM

n¼1

�rð Þn I1n þ I2n � I3n � I4nð Þ
)

ð9:33aÞ

where

Irn ¼
ðt�trn

0

exp �i n0 � oð Þ � gf g t� t0ð Þ þ in0 þ gð Þtrn

� 
~Gm t0ð Þ dt0 ð9:33bÞ

and

h ¼ ipan0

2e1c1
ð9:33cÞ

As right-going waves, we choose those terms containing the factor expðin0z=c1Þ,
and as left-going wave those containing expð�in0z=c1Þ. Thus, using Equation 9.9,

we obtain

f̂ þq ðz; tÞ exp ioðzþ dÞ=c1f g

¼ h
X

m

e�g
0t Hðz� zmÞ exp ðin0 þ gÞðz� zmÞ=c1f g
"

�
ðt�ðz�zmÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0 � exp in0 þ gð Þ 2dþ zþ zm

c1

� �

�
ðt�ð2dþzþzmÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0 þ
X1

n¼1

�rð Þn exp in0 þ gð Þt1nf g
�
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�
ðt�t1n

0

exp g0t0ð Þ~Gmðt0Þdt0 � exp in0 þ gð Þt3nf g

�
ðt�t3n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð9:34aÞ

f̂ �q ðz; tÞ exp �ioðzþ dÞ=c1f g

¼ h
X

m

e�g
0t Hðzm � zÞ exp ðin0 þ gÞðzm � zÞ=c1f g
�

�
ðt�ðzm�zÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0

þ
X1

n¼1

�rð Þn exp in0 þ gð Þt2nf g
ðt�t2n

0

exp g0t0ð Þ~Gmðt0Þdt0
�

� exp in0 þ gð Þt4nf g
ðt�t4n

0

exp g0t0ð Þ~Gmðt0Þdt0
��

ð9:34bÞ

where H is the Heaviside unit step function and g0 was defined in Equation 9.18.

Now, combining the rules of the Laplace transform, we have

L e�g
0t

ðt�ðz�zmÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0
( )

¼ 1

sþ g0
exp

�ðz� zmÞðsþ g0Þ
c1

� �
~GmðsÞ

ð9:35aÞ

where

~GmðsÞ ¼L ~GmðtÞ
� 	

ð9:35bÞ

Thus we have

V̂þq z; sð Þ exp ioðzþ dÞ=c1f g

¼ h
X

m

~GmðsÞ
sþ g0

Hðz� zmÞ exp
ðz� zmÞðio� sÞ

c1

� ��

� exp io� sð Þ 2dþ zþ zm

c1

� �

þ
X1

n¼1

�rð Þn exp
2ndþ z� zm

c1

�

io� sð Þ
� �

� exp
2ndþ 2dþ zþ zm

c1

�

io� sð Þ
���
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¼ h
X

m

~GmðsÞ
sþ g0

Hðz� zmÞ exp
ðz� zmÞðio� sÞ

c1

� ��

� 1

1� r00ðsÞ exp io� sð Þ 2dþ zþ zm

c1

� �

þ r00ðsÞ
1� r00ðsÞ exp

ðz� zmÞðio� sÞ
c1

� ��

ð9:36aÞ

and

V̂�q z; sð Þ exp �ioðzþ dÞ=c1f g

¼ h
X

m

~GmðsÞ
sþ g0

Hðzm � zÞ exp
ðzm � zÞðio� sÞ

c1

� ��

þ
X1

n¼1

�rð Þn exp
2nd� zþ zm

c1

�

io� sð Þ
� �

� exp
2nd� 2d� z� zm

c1

�

io� sð Þ
���

¼ h
X

m

~GmðsÞ
sþ g0

Hðzm � zÞ exp
ðzm � zÞðio� sÞ

c1

� ��

þ r00ðsÞ
1� r00ðsÞ exp io� sð Þ zm � z

c1

� �

� r00ðsÞ
1� r00ðsÞ exp

�ð2dþ zþ zmÞðio� sÞ
c1

� ��

ð9:36bÞ

where we have used Equation 9.18 and set nM !1 as we did in Equation 9.21a

and 9.21b.

Finally we have

V̂þq z; sð Þ ¼ h
X

m

~GmðsÞ
sþ g0

Hðz� zmÞ exp �s
z� zm

c1
� io

zm þ d

c1

� ��

� 1

1� r00ðsÞ exp �s
2dþ zþ zm

c1
þ io

dþ zm

c1

� �

þ r00ðsÞ
1� r00ðsÞ exp �s

z� zm

c1
� io

zm þ d

c1

� ��

ð9:37aÞ

V̂�q z; sð Þ ¼ h
X

m

~GmðsÞ
sþ g0

Hðzm � zÞ exp �s
zm � z

c1
þ io

zm þ d

c1

� ��

þ r00ðsÞ
1� r00ðsÞ exp �s

zm � z

c1
þ io

zm þ d

c1

� �

� r00ðsÞ
1� r00ðsÞ exp s

2dþ zþ zm

c1
� io

zm þ d

c1

� ��

ð9:37bÞ

where r00(s) was defined in Equation 9.22.
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9.5

The Field Inside the Cavity

Up to now, in this chapter, we have been considering the field inside the

cavity. Here, we inverse Laplace-transform Equations 9.25 and 9.26 using

Equation 9.27. The main pole, yielding a slowly decaying time function,

appears in the denominator in Equation 9.27, which was derived in Equations

7.35 and 7.37. Equation 9.27 contains the main pole in the form of Equation

7.37:

exp � GNd

sþ g0

� �

� r0 exp
GNd

sþ g0
� 2ds

c1

� �

¼ exp � GNd

s0 þ g0

� �
2d=c1

s0 þ g0
fgþ gc þ i v0 þ oc � 2oð Þgðs� s0Þ

ð9:38Þ

where s0 is the solution of Equation 7.34 and to a good approximation is given by

Equation 7.35, which was

s0 ¼ �
ggc þ v0 � oð Þ o� ocð Þ �GNc1 � i g o� ocð Þ þ gc o� v0ð Þf g

gþ gc þ i v0 þ oc � 2oð Þ

By setting s0¼ 0, we have the threshold oscillation frequency and the threshold

atomic inversion in the forms of Equations 7.42 and 7.44a, which were,

respectively,

oth ¼
goc þ gcv0

gþ gc

and

paj j2n2
0

2_oe1gð1þ d2Þ

( )

Nsth ¼ gc

In order to obtain the Laplace transforms L� z; sð Þ of ê� z; tð Þ in concrete form,

the Laplace-transformed noise forces in Equations 9.31, 9.37a, and 9.37b should be

substituted into Equation 9.27 and further into Equations 9.25 and 9.26. For

simplicity, we rewrite Equation 9.38 as

exp � GNd

sþ g0

� �

� r0 exp
GNd

sþ g0
� 2ds

c1

� �

¼ Mðs0Þðs� s0Þ

Mðs0Þ ¼ exp � GNd

s0 þ g0

� �
2d=c1

s0 þ g0
fgþ gc � i v0 þ oc � 2oð Þg

ð9:39Þ
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Then Equation 9.27 reads

L̂� �d; sð Þ � V̂�ð�dÞ ¼ � GN

sþ g0
1

Mðs0Þðs� s0Þ

�
ð0

�d
r0V̂þ z0; sð Þ exp

z0 � d

c1
s�GNz0

sþ g0

� ��

�V̂� z0; sð Þ exp � z0 þ d

c1
sþGNz0

sþ g0

� ��

dz0

ð9:40Þ

Now, in Equations 9.25 and 9.26, the first integral terms, with a pole at s¼ –g0,
will give a rapidly decaying field as compared to the second terms, with the pole at

s¼ s0, which will yield slowly decaying fields. Thus these first terms will be

ignored. Also, the noise terms V̂� z; sð Þ on the left-hand sides of these equations

will simply give lasting noise fields, which are small compared to the amplified

terms of the main pole. These noise terms will also be ignored. Thus the main

contributions to the Laplace transforms L̂� z; sð Þ read

L̂þ z; sð Þ ¼ exp � s

c1
þ GN

sþ g0ð Þ

� �

ðzþ dÞ
� �

GN

sþ g0
1

Mðs0Þðs� s0Þ

�
ð0

�d
r0V̂þ z0; sð Þ exp

z0 � d

c1
s�GNz0

sþ g0

� ��

�V̂� z0; sð Þ exp� z0 þ d

c1
sþ GNz0

sþ g0

� ��

dz0

ð9:41Þ

and

L̂� z; sð Þ ¼ � exp
s

c1
� GN

sþ g0ð Þ

� �

ðzþ dÞ
� �

GN

sþ g0
1

Mðs0Þðs� s0Þ

�
ð0

�d
r0V̂þ z0; sð Þ exp

z0 � d

c1
s�GNz0

sþ g0

� ��

�V̂� z0; sð Þ exp � z0 þ d

c1
sþGNz0

sþ g0

� ��

dz0

ð9:42Þ

As can be seen from Equation 7.38, we have the following relation at the main

pole for a cavity resonant mode of angular frequency oc:

s0

c1
� GN

s0 þ g0
¼ � iðoc � oÞ þ gc

c1
ð9:43Þ

Thus, rewriting the first exponential functions, we obtain

L̂� z; sð Þ ¼ � exp � iðoc � oÞ þ gc

c1

� �

ðzþ dÞ
� �

GN

sþ g0
1

Mðs0Þðs� s0Þ

�
ð0

�d
r0V̂þ z0; sð Þ exp

�d

c1
s� iðoc � oÞ þ gc

c1
z0

� ��

�V̂� z0; sð Þ exp � d

c1
sþ iðoc � oÞ þ gc

c1
z0

� ��

dz0

ð9:44Þ
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Here we note that the spatial functions excited by the noise are the right- and

left-going waves of the cavity mode in Equation 1.21b. We also note that, as stated

in Chapter 7, the right-traveling (left-traveling) noise is multiplied by a decreasing

(increasing) function of z. The latter functions are the left-going (right-going) part

of the adjoint mode function, which will be discussed in Chapter 14. This can be

seen more clearly if we use Equation 9.48 below and rewrite the integrand as

exp � d

c1
iðoc � oÞ þ gc þ sf g

� �

� V̂þ z0; sð Þ exp
io
c1
ðz0 þ dÞ

� �

exp � ioc þ gc

c1
ðz0 þ dÞ

� ��

� V̂� z0; sð Þ exp � io
c1
ðz0 þ dÞ

� �

exp
ioc þ gc

c1
ðz0 þ dÞ

� ��

The remaining task before inverse Laplace-transforming is to evaluate the

integral in Equation 9.44. We need to substitute the Laplace transforms of

the noise terms defined in Equation 9.28. We consider V̂�t z; sð Þ and V̂�q z; sð Þ
separately to obtain four integrals.

9.5.1

Thermal Noise

First we use Equation 9.31 for the thermal noise:

I1ðsÞ ¼
ð0

�d
r0V̂þt z0; sð Þ exp

�d

c1
s� iðoc � oÞ þ gc

c1
z0

� �� �

dz0

¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1dÞ

s

âj 0ð Þ 1

sþ iðoj � oÞ

�
ð0

�d
r0eiðoj�oÞðz0þdÞ=c1 exp

�d

c1
s� iðoc � oÞ þ gc

c1
z0

� �� �

dz0

¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1dÞ

s

âj 0ð Þ r
0e�ds=c1þiðoj�oÞd=c1

sþ iðoj � oÞ

� 1� e� iðoj�ocÞ�gcf gd=c1

iðoj � ocÞ � gc

� 	
=c1

ð9:45Þ

and

I2ðsÞ ¼
ð0

�d
�V̂�t z0; sð Þ exp � d

c1
sþ iðoc � oÞ þ gc

c1
z0

� �� �

dz0

¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1dÞ

s

âj 0ð Þ 1

sþ iðoj � oÞ
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�
ð0

�d
e�iðoj�oÞðz0þdÞ=c1 exp � d

c1
sþ iðoc � oÞ þ gc

c1
z0

� �� �

dz0

¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1dÞ

s

âj 0ð Þ e
�ds=c1�iðoj�oÞd=c1

sþ iðoj � oÞ

� 1� e iðoj�ocÞ�gcf gd=c1

�iðoj � ocÞ þ gc

� 	
=c1

ð9:46Þ

Adding these two we have

I1ðsÞþI2ðsÞ¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1�K sin2 k2
1dÞ

s

âj 0ð Þ e�ds=c1

sþ iðoj�oÞ
1

iðoj�ocÞ�gc

� 	
=c1

� r0eiðoj�oÞd=c1� 1�e� iðoj�ocÞ�gcf gd=c1

n oh

�e�iðoj�oÞd=c1 1�e iðoj�ocÞ�gcf gd=c1

n oi

¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1�K sin2 k2
1dÞ

s

âj 0ð Þ e�ds=c1

sþ iðoj�oÞ
1

iðoj�ocÞ�gc

� 	
=c1

� r0 eiðoj�oÞd=c1�e iðoc�oÞþgcf gd=c1

n o
� e�iðoj�oÞd=c1� e� iðoc�oÞþgcf gd=c1

n oh i

ð9:47Þ

The second and fourth terms cancel because, as seen from the comparison of

Equations 7.31 and 7.33,

r0 ¼ �r exp
2id

c1
o

� �

¼ exp � 2d

c1
iðoc � oÞ þ gcf g

� �

ð9:48Þ

Thus we have

I1ðsÞ þ I2ðsÞ ¼
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1 � K sin2 k2
1dÞ

s

âj 0ð Þ e�ds=c1

s þ iðoj � oÞ
1

iðoj � ocÞ � gc

� 	
=c1

� r0eiðoj�oÞd=c1

h
� e�iðoj�oÞd=c1

i

¼ �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1 � K sin2 k2
1dÞ

s
âj 0ð Þ

s þ iðoj � oÞ
eðio�sÞd=c1

iðoj � ocÞ � gc

� 	
=c1

� reiojd=c1 þ e�iojd=c1

n o

¼ �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1 � K sin2 k2
1dÞ

s
c1âj 0ð Þ

s þ iðoj � oÞ
eðio�s�gcÞd=c1

iðoj � ocÞ � gc

� 	

� 2 cos h gc � ioj


 �
d=c1

� 	

ð9:49Þ

where we have used the relation r ¼ expf�ð2d=c1Þgcg in the last line.
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9.5.2

Quantum Noise

Next we turn to the quantum noise part. The final result for the integral in Equation

9.44 concerning the quantum noise will be found in Equation 9.57. For V̂�q z; sð Þ, it is

more convenient to return the factor� iðoc � oÞ þ gcf gz0=c1 in Equation 9.44 to the

original form ðs0=c1Þz0 � GN=ðs0 þ g0Þf gz0 in Equation 9.43. Now the Laplace

transforms of the right- and left-traveling quantum noise forces are found in

Equations 9.37a and 9.37b, respectively. For the right-traveling part we have

I3ðsÞ¼
ð0

�d
r0V̂þq z0; sð Þexp

�d

c1
sþ s

c1
z0 � GN

sþ g0
z0

� �

dz0

¼
ð0

�d
r0h
X

m

~GmðsÞ
sþ g0

Hðz0 �zmÞexp �s
ðz0 �zmÞ

c1
� io

ðzmþdÞ
c1

� ��

� 1

1� r00ðsÞexp �s
2dþz0 þzm

c1
þ io

dþzm

c1

� �

þ r00ðsÞ
1� r00ðsÞexp �s

ðz0 �zmÞ
c1

� io
ðzmþdÞ

c1

� ��

exp
�d

c1
sþ s

c1
z0 � GN

sþ g0
z0

� �

dz0

¼ r0h
X

m

~GmðsÞ
sþ g0

ð0

zm

exp
sðzm�dÞ

c1
� io
ðzmþdÞ

c1

� �

:exp � GN

sþ g0
z0

� �

dz0

þ
ð0

�d
r0h
X

m

~GmðsÞ
sþ g0

� 1

1� r00ðsÞexp �s
2dþzmþd

c1
þ io

dþzm

c1

� ��

þ r00ðsÞ
1� r00ðsÞexp

sðzm�dÞ
c1

� io
ðzmþdÞ

c1

� ��

exp � GN

sþ g0
z0

� �

dz0

¼�r0h
X

m

~GmðsÞ
GN

exp
�2ds

c1
�ðio� sÞzmþd

c1

� �

1� e�GNzm=ðsþg0Þ
n o

þ r0h
X

m

~GmðsÞ
GN

1

1� r00ðsÞexp

�

�s
2d

c1
þðio� sÞdþzm

c1

� �

1� eGNd=ðsþg0Þ
n o

� r00ðsÞ
1� r00ðsÞexp

�2ds

c1
�ðio� sÞzmþd

c1

� �

1� eGNd=ðsþg0Þ
n o�

ð9:50Þ

For the left-traveling part of the quantum noise we have

I4ðsÞ ¼ �
ð0

�d
V̂�q z0; sð Þ exp � d

c1
s� z0

c1
sþ GNz0

sþ g0

� �� �

dz0

¼ �
ð0

�d
h
X

m

~GmðsÞ
sþ g0

Hðzm � z0Þ exp �s
zm � z0

c1
þ io

zm þ d

c1

� �

� exp � d

c1
s� z0

c1
sþ GNz0

sþ g0

� �

dz0
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�
ð0

�d
h
X

m

~GmðsÞ
sþ g0

þ r00ðsÞ
1� r00ðsÞexp �s

zm � z0

c1
þ io

zm þ d

c1

� ��

� r00ðsÞ
1� r00ðsÞexp s

2dþ z0 þ zm

c1
� io

zm þ d

c1

� ��

exp � d

c1
s� z0

c1
sþGNz0

sþ g0

� �

dz0

¼ �
ðzm

�d
h
X

m

~GmðsÞ
sþ g0

exp ðio� sÞzm þ d

c1

� �

:exp
GNz0

sþ g0

� �

dz0

�
ð0

�d
h
X

m

~GmðsÞ
sþ g0

þ r00ðsÞ
1� r00ðsÞexp ðio� sÞzm þ d

c1

� ��

� r00ðsÞ
1� r00ðsÞexp �ðio� sÞzm þ d

c1

� ��

exp
GNz0

sþ g0

� �

dz0

¼ h
X

m

~GmðsÞ
GN

�exp ðio� sÞzm þ d

c1

� ��

eGNzm=ðsþg0Þ � e�GNd=ðsþg0Þ
n o

� r00ðsÞ
1� r00ðsÞexp ðio� sÞzm þ d

c1

� �

1� e�GNd=ðsþg0Þ
n o

þ r00ðsÞ
1� r00ðsÞexp �ðio� sÞzm þ d

c1

� �

1� e�GNd=ðsþg0Þ
n o�

ð9:51Þ

Adding the right- and left-going parts we obtain

I3ðsÞþ I4ðsÞ¼�r0h
X

m

~GmðsÞ
GN

exp
�2ds

c1
�ðio� sÞzmþd

c1

� �

1� e�GNzm=ðsþg0Þ
n o

þ r0h
X

m

~GmðsÞ
GN

1

1� r00ðsÞexp

�

�s
2d

c1
þðio� sÞdþzm

c1

� �

1� eGNd=ðsþg0Þ
n o

� r00ðsÞ
1� r00ðsÞexp

�2ds

c1
�ðio� sÞzmþd

c1

� �

1� eGNd=ðsþg0Þ
n o�

þh
X

m

~GmðsÞ
GN

�exp ðio� sÞzmþd

c1

� ��

eGNzm=ðsþg0Þ � e�GNd=ðsþg0Þ
n o

� r00ðsÞ
1� r00ðsÞexp ðio� sÞzmþd

c1

� �

1� e�GNd=ðsþg0Þ
n o

þ r00ðsÞ
1� r00ðsÞexp �ðio� sÞzmþd

c1

� �

1� e�GNd=ðsþg0Þ
n o�

ð9:52Þ

Here we note from Equation 7.37 that, for the main pole s¼ s0,

r00 sð Þ ¼ r0 exp �2ds=c1ð Þ ¼ exp � 2GNd

sþ g0

� �

ð9:53Þ
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or

r0 ¼ exp
2ds0

c1
� 2GNd

s0 þ g0

� �

ð9:54Þ

Then we find that the terms without the factors expf�GNzm=ðsþ g0Þg cancel

each other: the coefficient of expfðio� sÞðzm þ dÞ=c1g in the summation

h
P

~GmðsÞ=GN is

þ exp
2ds0

c1
� 2GNd

s0þ g0

� �
1

1� r00ðsÞexp �s
2d

c1

� �

1� eGNd=ðsþg0Þ
n o

� eGNzm=ðsþg0Þ � e�GNd=ðsþg0Þ
n o

� 1

1� rðsÞexp �2GNd

sþ g0

� �

1� e�GNd=ðsþg0Þ
n o

¼ 1

1� r00ðsÞ e�2GNd=ðsþg0Þ � e�GNd=ðsþg0Þ � e�2GNd=ðsþg0Þ þ r00ðsÞe�GNd=ðsþg0Þ
n o

� eGNzm=ðsþg0Þ � e�GNd=ðsþg0Þ
n o

¼�eGNzm=ðsþg0Þ

ð9:55aÞ

where we have set s¼ s0 and used Equation 9.54 in the first line and Equation 9.53

in the second and the third lines. The coefficient of expf�ðio� sÞðzm þ dÞ=c1g is,

similarly,

� exp
2ds0

c1
� 2GNd

s0 þ g0

� �

exp
�2ds

c1

� �

1� e�GNzm=ðsþg0Þ
n o

þ exp
2ds0

c1
� 2GNd

s0 þ g0

� �

� r00ðsÞ
1� r00ðsÞ exp

�2ds

c1

� �

1� eGNd=ðsþg0Þ
n o��

þ r00ðsÞ
1� r00ðsÞ 1� e�GNd=ðsþg0Þ

n o

¼ � exp � 2GNd

s0 þ g0

� �

1� e�GNzm=ðsþg0Þ
n o

� r00ðsÞ
1� r00ðsÞ e�2GNd=ðsþg0Þ � e�GNd=ðsþg0Þ � 1þ e�GNd=ðsþg0Þ

n o

¼ e�GNðzmþ2dÞ=ðsþg0Þ

ð9:55bÞ

Therefore, we have a rather simple result:

I3ðsÞ þ I4ðsÞ ¼ h
X

m

~GmðsÞ
GN

� exp ðio� sÞ zm þ d

c1

� �

exp
GNzm

sþ g0

� ��

þ exp �ðio� sÞ zm þ d

c1

� �

exp
�GNðzm þ 2dÞ

sþ g0

� �� ð9:56Þ
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The modification and use of Equation 9.43 reveals that the coupling strength of

the quantum noise at the mth atom to the field is proportional to the amplitude of

the cavity resonant mode at the location of the atom, that is,

I3ðsÞ þ I4ðsÞ ¼ h
X

m

~GmðsÞ
GN

exp � GNd

sþ g0

� �

� exp ðio� sÞ zm þ d

c1

� �

exp
GNðzm þ dÞ

sþ g0

� ��

þexp �ðio� sÞ zm þ d

c1

� �

exp
�GNðzm þ dÞ

sþ g0

� ��

¼ �2h
X

m

~GmðsÞ
GN

exp � GNd

sþ g0

� �

sin h
io� s

c1
þ GN

sþ g0

� �

ðzm þ dÞ
� �

¼ �2h
X

m

~GmðsÞ
GN

exp � GNd

sþ g0

� �

sin h
ioc þ gc

c1
ðzm þ dÞ

� �

¼ �2ih
X

m

~GmðsÞ
GN

exp � GNd

sþ g0

� �

sin
oc � igc

c1
ðzm þ dÞ

� �

ð9:57Þ

9.5.3

The Total Field

Now we substitute the above results obtained in Equations 9.49 and 9.57 into the

integral in Equation 9.44. We also substitute Equation 9.39 for M(s0) into Equation 9.44

and use Equation 9.33c for h:

L̂� z;sð Þ¼�exp � iðoc�oÞþgc

c1

� �

ðzþdÞ
� �

GN

sþg0
1

Mðs0Þðs�s0Þ

� �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1�K sin2 k2
1dÞ

s
c1âj 0ð Þ

sþ iðoj�oÞ

"

� eðio�s�gcÞd=c1

iðoj�ocÞ�gc

� 	2cos h
ðgc� iojÞd

c1

� �

�2ih
X

m

~GmðsÞ
GN

exp � GNd

s0þg0

� �

sin
oc� igc

c1
ðzmþdÞ

� ��

¼�exp � iðoc�oÞþgc

c1

� �

ðzþdÞ
� �

1

fgþgc� i v0þoc�2oð Þg
1

ðs�s0Þ

� �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1�K sin2 k2
1dÞ

s
fGNc2

1=ð2dÞgâj 0ð Þ
sþ iðoj�oÞ

1

iðoj�ocÞ�gc

� 	

"

�exp
GNd

s0þg0

� �

eðio�s�gcÞd=c1 2cos h ðgc� iojÞd=c1

� 	

þ pan0

2e1d

X

m

~GmðsÞsin
oc� igc

c1
ðzmþdÞ

� ��

ð9:58Þ

9.5 The Field Inside the Cavity | 151



By use of Equation 9.43 again, we can rewrite the product in the second line

from the bottom as

exp
GNd

s0 þ g0

� �

eðio�s�gcÞd=c1 ¼ exp
s0d

c1
þ iðoc � oÞ þ gc

c1
d

� �

eðio�s�gcÞd=c1

¼ exp
ioc

c1
d

� � ð9:59Þ

where we have set s¼ s0. We finally obtain

L̂� z; sð Þ ¼ � exp � iðoc � oÞ þ gc

c1

� �

ðzþ dÞ
� �

1

fgþ gc � i v0 þ oc � 2oð Þg
1

ðs� s0Þ

� �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1dÞ

s
ðGNc2

1=dÞâj 0ð Þ
sþ iðoj � oÞ

1

iðoj � ocÞ � gc

� 	

"

� exp
ioc

c1
d

� �

cosh
ðgc � iojÞd

c1

� �

þ pan0

2e1d

X

m

~GmðsÞsin
oc � igc

c1

� �

ðzm þ dÞ
� ��

ð9:60Þ

The inverse Laplace transform of a product of two functions of s is a convolution

of inverse transformed functions. Thus

L�1 1

s� s0

1

sþ iðoj � oÞ

� �

¼
ðt

0

e�iðoj�oÞtes0ðt�tÞdt

¼ eiot

ðt

0

e�iojteðs0�ioÞðt�tÞdt

L�1 1

s� s0

~GmðsÞ
� �

¼
ðt

0

~GmðtÞ es0ðt�tÞdt

¼ eiot

ðt

0

~GmðtÞe�ioteðs0�ioÞðt�tÞdt

¼ eiot

ðt

0

ĜmðtÞ eðs0�ioÞðt�tÞdt

ð9:61Þ

So, going back to Equation 9.15, we have for the field excited by the thermal

noise and quantum noise, respectively,

ê�thermal z; tð Þ exp � io
c1
ðzþ dÞ

� �

¼ � exp � ioc þ gc

c1

� �

ðzþ dÞ
� �

1

fgþ gc � i v0 þ oc � 2oð Þg
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� �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1dÞ

s
ðGNc2

1=dÞâj 0ð Þ
iðoj � ocÞ � gc

"

� exp
ioc

c1
d

� �

cosh ðgc � iojÞd=c1

� 	
eiot

ðt

0

e�iojteðs0�ioÞðt�tÞdt
�

ð9:62Þ

and

ê�quantum z; tð Þexp � io
c1
ðzþdÞ

� �

¼�exp � iocþ gc

c1

� �

ðzþdÞ
� �

1

fgþ gc� i v0þoc�2oð Þg

� pan0

2e1d

X

m

sin
oc� igc

c1

� �

ðzmþdÞ
� �

eiot

ðt

0

ĜmðtÞeðs0�ioÞðt�tÞdt
�"

ð9:63Þ

Thus going further back to Equation 9.6, we have the expression for the field

inside the cavity:

ÊðþÞ z; tð Þ ¼ sinOcðzþ dÞ=c1

gþ gc þ i v0 þ oc � 2oð Þ

�
X

j

Cjâj 0ð Þ
" ðt

0

e�iojt exp s0 � ioð Þ t� tð Þ½ 	dtþ iv0pa

e1d

�
X

m

sinfOcðzm þ dÞ=c1g
ðt

0

Ĝm tð Þ exp s0 � ioð Þ t� tð Þ½ 	dt
#

;

� d � z � 0

ð9:64Þ

with

Cj ¼ �i
_o
e1L

1

1� K sin2 k1jd

 !1=2

� GN c1ð Þ2

d

exp iocd=c1ð Þ cosh gc � ioj


 �
d=c1

� 

iðoj � ocÞ � gc

ð9:65Þ

We see that the cavity resonant mode is excited by thermal noise coming from the

initial fluctuation of every ‘‘universal’’ mode and by the quantum noise coming from

damping of every atomic polarization. The strength of the quantum noise at the mth

atom is proportional to the amplitude of the pertinent cavity resonant mode at the

location of the atom, as noted earlier. Before examining the correlation function of

the field inside the cavity, we look for the expression for the field outside the cavity.
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9.6

The Field Outside the Cavity

Now that we know the expression for the field inside the cavity, we can use

Equation 9.1 to derive the expression for the field outside the cavity, just as we did

in Chapter 7 for the semiclassical analysis. In this case, the ‘‘universal’’ mode

function Uj(z) is that for outside the cavity, as given by the last line of Equation

1.62b. The function Uj(zm) is, of course, that for inside the cavity. If we use

Equation 7.45, the summation over j in Equation 9.1 reads

X

j

Uj zð ÞUj zmð Þe�ioj t�t0ð Þ
n o

¼
X

j

2

e1L

1

1� K sin2 k1jd

k1j

k0j
cos k1jd sin k0jzþ sin k1jd cos k0jz

� �

� sin k1jðzm þ dÞe�ioj t�t0ð Þ

¼ 1

e1c1

2c0

c1 þ c0ð Þ
X1

n¼0

�rð Þn d t� t0 þ t5nð Þf

þ d t� t0 � t5nð Þ � d t� t0 þ t6nð Þ�d t� t0 � t6nð Þg

ð9:66Þ

where

t5n ¼
z

c0
þ 2nd� zm

c1
; t6n ¼

z

c0
þ 2ndþ 2dþ zm

c1
ð9:67Þ

Substituting Equation 9.66 into Equation 9.1 we have

ÊðþÞ z; tð Þ ¼ F̂t z; tð Þþ F̂q z; tð Þþ
X

m

paj j2n2
0s

2_o
1

e1c1

2c0

c1þ c0ð Þ

�
X1

n¼0

�rð Þn
ðt

0

d t� t0 þ t5nð Þf þ d t� t0 � t5nð Þ

�d t� t0 þ t6nð Þ� d t� t0 � t6nð Þg
ðt0

0

e� in0þgð Þ t0�t00ð ÞÊðþÞ zm; t
00ð Þdt00dt0

¼ F̂t z; tð Þþ F̂q z; tð Þþ
X

m

paj j2n2
0s

2_oe1c1

2c0

c1þ c0ð Þ

�
X1

n¼0

�rð Þn
ðt�t5n

0

e� in0þgð Þ t�t5n�t00ð ÞÊðþÞ zm; t
00ð Þdt00

�

�
ðt�t6n

0

e� in0þgð Þ t�t6n�t00ð ÞÊðþÞ zm; t
00ð Þdt00

�

ð9:68Þ

We substitute Equation 9.64 for ÊðþÞðzm; t00Þ and obtain the field outside the

cavity. As was the case for the field inside the cavity, the first and second terms in

Equation 9.68 represent the lasting small noise terms and will be ignored. (In the
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next chapter we will show that the net result of including these terms is the

appearance of an extra thermal noise term in the expression for the output field.)

Then, from the calculations in Chapter 7, we find that the substitution of the field

inside the cavity in Equation 7.41 results in the outside field in the form of

Equation 7.56. The net effect of the conversion was, except for the neglect of a

rapidly decaying term and of a small term (in Equation 7.52), to change from

ÊðþÞ z; tð Þ ¼ C exp gc þ iocð Þ zþ dð Þ=c1f g½

� exp � gc þ iocð Þ zþ dð Þ=c1f g	 exp s0 � ioð Þtf g

¼ 2iC sinOcðzþ dÞ exp s0 � ioð Þtf g; �d � z � 0

ð9:69Þ

to

ÊðþÞ z; tð Þ ¼ CT exp gc þ iocð Þ d

c1

� �

exp s0 � ioð Þ t� z

c0

� �� �

¼ CT exp iOc
d

c1

� �

exp s0 � ioð Þ t� z

c0

� �� �

; 0 � z

ð9:70Þ

The effect is (i) to get the field value of the right-traveling wave at z¼ 0, (ii) to

multiply by the transmission coefficient T, and (iii) to add the retarded time z/c0.

Now, if we look back at Equation 9.64 for the field inside the cavity, in spite of the

seeming complexity of the expression, the equation is a linear superposition of the

form in Equation 9.69: the z dependence sinOcðzþ dÞ=c1 and the time depen-

dence exp s0 � ioð Þtf g are common to all the terms in the summation over j and

over m for a fixed value of the parameter t. In other words, Equation 9.64 is a

superposition of terms of the form in Equation 9.69 summed over j and m and

integrated over t. Thus, applying the three conversion rules stated above to every

member of the summation and ingredients of the integration, we find

ÊðþÞ z; tð Þ ¼ ð1=2iÞexpðiOcd=c1ÞT
gþ gc þ i v0 þoc � 2oð Þ

�
X

j

Cjaj 0ð Þ
" ðt

0

e�iojt exp s0 � ioð Þ t� z=c0� tð Þ½ 	dtþ iv0pa

e1d

�
X

m

sinfOcðzm þ dÞ=c1g
ðt

0

Ĝm tð Þ exp s0 � ioð Þ t� z=c0� tð Þ½ 	dt
#

;

0� z

ð9:71Þ

This expression can, of course, be obtained by substituting Equation 9.64 into

Equation 9.68 and faithfully performing the integration and related evaluations.

But this is simply to repeat the calculations of Equations 7.47–7.56 on every

member of the above-mentioned summations and the ingredients of the

integration, including the approximations stated below Equation 7.52. A more

precise treatment of the thermal noise outside the cavity will be given in the next

chapter.
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9.7

The Field Correlation Function

Now we are in a position to derive the correlation functions of the field inside and

outside the cavity. We are assuming that the ‘‘universal’’ modes are initially

mutually independent and the Langevin forces for different atoms are also

mutually independent. Thus we will use the correlations (see Equations 9.4a

and 9.5c)

ayi ð0Þajð0Þ
D E

¼ nj

� �
dij ¼ ðeb_oj � 1Þ�1dij ð9:72Þ

ĜymðtÞĜm0 ðt0Þ
� �

¼ Ĝ21mðtÞĜ12m0 ðt0Þ
� �

¼ gð1þ sÞdmm0dðt� t0Þ ð9:73Þ

The reader is referred to Equations 2.42 and 4.50 for these equations. Also, the

thermal and quantum noise forces are assumed to be mutually independent.

Therefore, we evaluate the correlation function separately for the thermal part and

for the quantum part.

First take the thermal part of the field ÊðþÞt z; tð Þ inside the cavity described by the

first term in Equation 9.64. Using Equation 9.72 we calculate

Êð�Þt z0; t0ð ÞÊðþÞt z; tð Þ
D E

¼ 1

gþ gc þ i v0 þ oc � 2oð Þ

�
�
�
�

�
�
�
�

2

sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

�
X

j

C�j âyj 0ð Þ
ðt0

0

eiojt0 exp s�0 þ io

 �

t0 � t0ð Þ
� 

dt0
*

�
X

k

Ckâk 0ð Þ
ðt

0

e�iokt exp s0 � ioð Þ t� tð Þ½ 	dt
+

¼ 1

gþ gc þ i v0 þ oc � 2oð Þ

�
�
�
�

�
�
�
�

2

sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

�
X

j

Cj

�
�
�
�
�
�
2

nj

� �
ðt0

0

eiojt0 exp s�0 þ io

 �

t0 � t0ð Þ
� 

dt0

�
ðt

0

e�iojt exp s0 � ioð Þ t� tð Þ½ 	dt

ð9:74Þ

To go further we need the evaluation of the summation over the ‘‘universal’’ modes j:

X

j

Cj

�
�
�
�2 nj

� �
eiojðt0�tÞ ¼ _o

e1L

GN c1ð Þ2

d

 !2

�
X

j

nj

� �
eiojðt0�tÞ 1

ðoj � ocÞ2 þ g2
c

cosh gc � ioj


 �
d=c1

� 	�
�

�
�2

1� K sin2 k1jd

" # ð9:75Þ
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We will shortly show that the quantity in the square bracket yields a constant

factor independent of the index j. Also, since nj

� �
is a very slowly varying function

of the frequency oj, while important contributions come from the region around

�gcooj � ocogc , it can be taken outside the summation sign. So, noting that the

density of modes is given by Equation 1.64, we calculate

X

j

exp iojðt0 � tÞ
� 	 1

ðoj � ocÞ2 þ g2
c

¼
ð1

0

L

c0p
exp iojðt0 � tÞ
� 	 doj

ðoj � ocÞ2 þ g2
c

¼
ð1

�oc

L

c0p
exp iðx þ ocÞðt0 � tÞf g dx

x2 þ g2
c

ð9:76Þ

where we have set x ¼ oj � oc. Here we make the following approximation. That is,

since the important contribution to the integral comes from the region around

�gcoxogc , the lower limit of integration can safely be replaced by�N as long as the

cavity half-width gc is much smaller than the resonance frequency oc. Thus we have

X

j

exp iojðt0 � tÞ
� 	 1

ðoj � ocÞ2 þ g2
c

¼
ð1

�1

L

c0p
exp iðx þ ocÞðt0 � tÞf g dx

x2 þ g2
c

¼ L

c0p
exp iocðt0 � tÞf g p

gc
exp �gcjt0 � tjf g

ð9:77Þ

The last line is obtained by contour integrations in the upper (lower) half region

of the complex x-plane for t0 � t40 t0 � to0ð Þ with the pole at x ¼ igcð�igcÞ.
Since we are concentrating on the slowly varying field amplitude corresponding to

a narrow laser linewidth, we make the further assumption that the difference t0 – t
of interest is much larger than the cavity decay time g�1

c . This assumption is valid

if the laser linewidth is much smaller than the cavity half-width gc. Then the

exponential function in Equation 9.77 can be taken to be like a delta function. The

area below the exponential function is 2/gc. Therefore the exponential function is

regarded to be equal to ð2=gcÞdðt0 � tÞ. Thus we have

X

j

exp iojðt0 � tÞ
� 	 1

ðoj � ocÞ2 þ g2
c

¼ 2L

c0g2
c

dðt0 � tÞ ð9:78Þ

Next, using Equation 1.18 for gc and Equations 1.17 and 1.43 for K, we evaluate

cos h gc � ioj


 �
d=c1

� 	�
�

�
�2

¼ 1

4
e gc�iojð Þd=c1 þ e� gc�iojð Þd=c1

�
�
�

�
�
�
2

¼ 1

4

ffiffi
r
p
þ 1

ffiffi
r
p

� �2

cos2 k1jdþ
ffiffi
r
p
� 1

ffiffi
r
p

� �2

sin2 k1jd

( )
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¼ ð1þ rÞ2

4r
1� 1� 1� r

1þ r

� �2
( )

sin2 k1jd

" #

¼ ð1þ rÞ2

4r
1� K sin2 k1jd

 �

ð9:79Þ

Thus
cos h gc � ioj


 �
d=c1

� 	�
�

�
�2

1� K sin2 k1jd
¼ ð1þ rÞ2

4r
ð9:80Þ

Summarizing Equations 9.75–9.80 we have

X

j

Cj

�
�
�
�2 nj

� �
eiojðt0�tÞ ¼ _o

e1L

GN c1ð Þ2

d

 !2

�
X

j

nj

� �
eiojðt0�tÞ 1

ðoj � ocÞ2 þ g2
c

cos h gc � ioj


 �
d=c1

� 	�
�

�
�2

1� K sin2 k1jd

" #

¼ Ddðt0 � tÞ

ð9:81aÞ

with

D ¼ 2_o
e1c0g2

c

GN c1ð Þ2

d

 !2
ð1þ rÞ2

4r
noh i ð9:81bÞ

where noh i is the thermal photon number per ‘‘universal’’ mode at the central

oscillation frequency o, which may be close to the threshold oscillation frequency

oih in Equation 7.42. The correlation function in Equation 9.74 then becomes

Êð�Þt z0; t0ð ÞÊðþÞt z; tð Þ
D E

¼ 1

gþ gc þ i v0 þ oc � 2oð Þ

�
�
�
�

�
�
�
�

2

� sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f gD

ðt0

0

dt0
ðt

0

dt dðt0 � tÞ

� exp s�0 þ io

 �

t0 � t0ð Þ
� 

exp s0 � ioð Þ t� tð Þ½ 	

ð9:82Þ

The double integral is, as in Equation 4.51,

ðt0

0

dt0
ðt

0

dt dðt0 � tÞ exp s�0 þ io

 �

t0 � t0ð Þ
� 

exp s0 � ioð Þ t� tð Þ½ 	

¼

Ð t
0 exp s�0 þ io


 �
t0 � tð Þ þ s0 � ioð Þ t� tð Þ

� 
dt; t o t0

Ð t0

0 exp s�0 þ io

 �

t0 � tð Þ þ s0 � ioð Þ t� tð Þ
� 

dt; t 4 t0

8
><

>:

¼

eðs
�
0þioÞt0þðs0�ioÞt � eðs

�
0þioÞðt0�tÞ

s0 þ s�0
; t o t0

eðs
�
0þioÞt0þðs0�ioÞt � eðs0�ioÞðt�t0Þ

s0 þ s�0
; t 4 t0

8
>>>>><

>>>>>:

ð9:83Þ
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The first terms decay relatively fast and are unimportant after a long time. The

second terms decay according to the time difference. Thus the first terms will be

ignored. Then we have, noting that Re s0o0,

Êð�Þt z0; tþ tð ÞÊðþÞt z; tð Þ
D E

¼ D

ðgþ gcÞ2 þ v0 þ oc � 2oð Þ2

� sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

�

eðs
�
0þioÞt

2 Re s0j j ; t40

e�ðs0�ioÞt

2 Re s0j j ; to0

8
>>>><

>>>>:

ð9:84Þ

Using Equation 7.35 for s0, we have

2 Re s0j j ¼ 2

ðgþ gcÞ2 þ d2ðg� gcÞ2
ðgþ gcÞ ggcð1þ d2Þ �GNc1

� 	�

þ v0 þ oc � 2oð Þ g o� ocð Þ þ gc o� v0ð Þf g	

’
2ðgþ gcÞ ggcð1þ d2Þ �GNc1

� 	

ðgþ gcÞ2 þ d2ðg� gcÞ2

ð9:85Þ

In the third line, we have, for simplicity, neglected the quantity in the second

line, assuming that the oscillation frequency is close to the threshold frequency

given by Equation 7.42. Further, using Equation 9.81b for D and Equation 9.14 for

G, and referring to Equations 7.44 and 6.35 for sth and bc, respectively, we have the

constant part in Equation 9.84 as

D

ðgþ gcÞ2 þ v0 þ oc � 2oð Þ2
1

2jRe s0j

¼ 2_o
e1c0g2

c

GN c1ð Þ2

d

 !2
ð1þ rÞ2

4r
noh i

1

2ðgþ gcÞ½ggcð1þ d2Þ �GNc1	

¼ _ogbc=gc

e1d gþ gcð Þ 1� s=sthð Þ
s2

sthsth 0

� �

noh i

ð9:86Þ

where sth 0 is the threshold atomic inversion at zero detuning. In the last line, we

have used the relation GthNc1 ¼ ggc 1þ d2
� 	

from Equation 7.43 and the fact that

G=Gth ¼ s=sth. The quantity bc was defined in Equation 6.35 and

c1=c0 ¼ ð1� rÞ=ð1þ rÞ by Equation 1.17. Note that the quantity in Equation 9.86

diverges as the atomic inversion s approaches the threshold value. Thus we have

Êð�Þt z0; tþ tð ÞÊðþÞt z; tð Þ
D E

¼ sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

� _ogbc=gc

e1d gþ gcð Þ 1� s=sthð Þ
s2

sthsth 0

� �

noh i �
eðs
�
0þioÞt; t40

e�ðs0�ioÞt; to0

8
<

:

ð9:87Þ
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Next we consider the correlation function of the quantum noise part ÊðþÞq z; tð Þ
for the field inside the cavity described by the second term in Equation 9.64. Using

Equation 9.73 we have

Êð�Þq z0; t0ð ÞÊðþÞq z; tð Þ
D E

¼
sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

gþ gc þ i v0 þ oc � 2oð Þj j2
v0 paj j
e1d

� �2

�
X

m0
sinfO�c ðzm0 þ dÞ=c1g

ðt0

0

Ĝym0 t
0ð Þ exp s�0 þ io


 �
t0 � t0ð Þ

� 
dt0

*

�
X

m

sinfOcðzm þ dÞ=c1g
ðt

0

Ĝm tð Þ exp s0 � ioð Þ t� tð Þ½ 	dt
+

¼ sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g v0 paj j=e1dð Þ2

gþ gc þ i v0 þ oc � 2oð Þj j2

�
X

m

sinfOcðzm þ dÞ=c1gj j2gð1þ sÞ
ðt0

0

dt0
ðt

0

dt dðt0 � tÞ

� exp s�0 þ io

 �

t0 � t0ð Þ
� 

exp s0 � ioð Þ t� tð Þ½ 	

ð9:88Þ

The double integral is the same as the one evaluated in Equation 9.83. Thus we have

Êð�Þq z0; t0ð ÞÊðþÞq z; tð Þ
D E

¼ sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g v0 paj j=e1dð Þ2

gþ gc þ i v0 þ oc � 2oð Þj j2

�
X

m

sinfOcðzm þ dÞ=c1gj j2gð1þ sÞ

�

e
ðs�

0
þioÞt0þðs0�ioÞt�e

ðs�
0
þioÞðt0�tÞ

s0þs�
0

; t o t0

e
ðs�

0
þioÞt0þðs0�ioÞt�eðs0�ioÞðt�t0 Þ

s0þs�
0

; t 4 t0

8
>><

>>:

ð9:89Þ

By the same reasoning as that used below Equation 9.83, we go to

Êð�Þq z0; tþ tð ÞÊðþÞq z; tð Þ
D E

¼ sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

� v0 paj j=e1dð Þ2

gþ gc þ i v0 þ oc � 2oð Þj j2
gð1þ sÞ
2 Re s0j j

�
X

m

sinfOcðzm þ dÞ=c1gj j2
eðs
�
0þioÞt; t40

e�ðs0�ioÞt; to0

8
<

:

ð9:90Þ
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Using Equation 9.85 again, and also using Equation 7.44, we have the constant

part in Equation 9.90 as

v0 paj j=e1dð Þ2

gþ gc þ i v0 þ oc � 2oð Þj j2
gð1þ sÞ
2 Re s0j j ¼

v0 paj j=e1dð Þ2gð1þ sÞ
2ðgþ gcÞ½ggcð1þ d2Þ �GNc1	

¼ _ogð1þ sÞ
e1d2ðgþ gcÞf1� ðs=sthÞgNsth

ð9:91Þ

The summation over m in Equation 9.90 is evaluated by using Equation 1.18 and

going to the integration over zm:

X

m

sinfOcðzm þ dÞ=c1gj j2 ¼
ð0

�d
N dzm sinfOcðzm þ dÞ=c1gj j2

¼ Nd

2

ð1� r2Þ=ð2rÞ
lnð1=rÞ

¼ Nd

2

bc

gc

ð9:92Þ

Thus writing the population in the upper level as

Nð1þ sÞ=2 ¼ N2 ð9:93Þ

we have

Êð�Þq z0; tþ tð ÞÊðþÞq z; tð Þ
D E

¼ sin O�c ðz0 þ dÞ=c1

� 	

� sin Ocðzþ dÞ=c1f gbc

gc

_ogN2

e1dðgþ gcÞf1� ðs=sthÞgNsth

�
eðs
�
0þioÞt; t40

e�ðs0�ioÞt; to0

8
<

:

ð9:94Þ

Adding Equations 9.87 and 9.94 we have the total correlation function for inside

the cavity:

Êð�Þ z0; tþ tð ÞÊðþÞ z; tð Þ
D E

¼ sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g

� _ogbc=gc

e1d gþ gcð Þ 1� s=sthð Þ
s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

�
eðs
�
0þioÞt; t40

e�ðs0�ioÞt; to0

8
<

:

� d � z � 0

ð9:95Þ

Next we turn to the field correlation function for outside the cavity. Using

Equation 9.71 we have
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Êð�Þ z0; t0ð ÞÊðþÞ z; tð Þ
D E

¼ ð1=2iÞ expðiOcd=c1ÞT
gþ gc þ i v0 þ oc � 2oð Þ

�
�
�
�

�
�
�
�

2 X

i;j

C�i Cj âyi 0ð Þâj 0ð Þ
D E

2

4

�
ðt0

0

dt0
ðt

0

dt eiðoit0�ojtÞ

� exp s�0 þ io

 �

t0 � z0=c0 � t0ð Þ þ s0 � ioð Þ t� z=c0 � tð Þ
� 

þ v0pa

e1d

�
�
�
�

�
�
�
�

2X

m0;m

sinfO�c ðzm0 þ dÞ=c1g sinfOcðzm þ dÞ=c1g

�
ðt0

0

dt0
ðt

0

dt Ĝym0 t
0ð ÞĜm tð Þ

D E

� exp s�0 þ io

 �

t0 � z0=c0 � t0ð Þ þ s0 � ioð Þ t� z=c0 � tð Þ
� 

;

0 � z0; 0 � z

ð9:96Þ

If we look back at Equation 9.74, the thermal noise part is obtained by replacing

the space functions sin O�c ðz0 þ dÞ=c1

� 	
sin Ocðzþ dÞ=c1f g by ð1=2iÞ expðiOcd=c1Þj

T j2 ¼ T2=ð4rÞ and the time variables t0 and t by t0 � ðz0=c0Þ and t� ðz=c0Þ,
respectively. Similarly, the quantum noise part is obtained by the same replace-

ments. Thus if we write

z0 � z ¼ Dz ð9:97Þ

we have (see Equation 9.95)

Êð�Þ zþ Dz; tþ tð ÞÊðþÞ z; tð Þ
D E

¼ T2_ogbc=gc

4re1d gþ gcð Þ 1� s=sthð Þ
s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

�
eðs
�
0þioÞft�ðDz=c0Þg; t� ðDz=c0Þ40

e�ðs0�ioÞft�ðDz=c0Þg; t� ðDz=c0Þo0

8
<

:

ð9:98Þ

9.8

The Laser Linewidth and the Correction Factor

Next, we turn to the laser linewidth below threshold. The correlation function in

Equation 9.95 for inside the cavity is in the same form as that for outside the cavity
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in Equation 9.98 for equal locations Dz¼ 0. Thus the power spectra, the Fourier

transform of the temporal part of these correlation functions, are both

IðoÞ ¼
ðþ1

�1
Êð�Þ z; tþ tð ÞÊðþÞ z; tð Þ
D E

e�iotdt

/
ð0

�1
e�ðs0�iooÞt�iotdtþ

ðþ1

0

eðs
�
0þiooÞt�iotdt

¼ �2Re s0

ðoo � o� Im s0Þ2 þ ðRe s0Þ2

ð9:99Þ

where we have rewritten the central frequency o as oo. Thus the power spectrum

is a Lorentzian with the full width at half-maximum (FWHM) Do given by

Do ¼ 2 Re s0j j

¼ 2ðgþ gcÞ½ggcð1þ d2Þ �GNc1	
ðgþ gcÞ2 þ d2ðg� gcÞ2

¼ 2ðgþ gcÞggcð1þ d2Þ½1� s=sth	
ðgþ gcÞ2 þ d2ðg� gcÞ2

ð9:100Þ

In order to express the laser linewidth in terms of laser output power, we calculate

the power output utilizing the correlation function in Equation 9.98. Note that the

power output P per unit cross-sectional area is (see discussion on Equation 4.59)

P ¼ c0e0 Ê2
D E

¼ 2c0e0 Êð�ÞÊðþÞ
D E

ð9:101Þ

Thus

P ¼ 2c0e0 Êð�Þ z; tð ÞÊðþÞ z; tð Þ
D E

¼ c0e0T2_ogbc=gc

2re1d gþ gcð Þ 1� s=sthð Þ
s2

sthsth 0

� �

noh i þ
N2

Nsth

� � ð9:102Þ

Note that this is independent of time t and of location z. Since T¼ 1þr and

c0e0ð1þ rÞ2=ðre1dÞ ¼ 4bc , we have

P ¼
2_ogb2

c

�
gc

gþ gcð Þ 1� s=sthð Þ
s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

ð9:103Þ

Thus by Equation 9.100 the product PDo is

PDo ¼ 4_og2b2
c ð1þ d2Þ

ðgþ gcÞ2 þ d2ðg� gcÞ2
s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

ð9:104Þ
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We have the following laser linewidth (FWHM) in angular frequency:

Do ¼ 4_ob2
c

P

g2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

ð9:105Þ

where sth0 is the threshold atomic inversion at zero detuning. Except for the factor

before noh i, this formula is ðbc=gcÞ2 times the conventional formula obtained for

example by Haken [2] and reproduced in Equation 4.62a for two-level atoms.

Note that, below Equation 7.37, we discussed the validity of replacing the cavity

decay constant of the quasimode analysis by that of the present cavity model based

on the equivalence of the two in the decay equations for the field amplitude.

So, the cavity decay constant gc in the above factor ðbc=gcÞ2 can be replaced by that

of the present chapter. This correction factor was reported by Ujihara [1] for the

first time. This factor has since been called the noise enhancement factor, excess

noise factor, longitudinal Petermann factor, and so on. We shall call this factor the

longitudinal excess noise factor KL. Then we have

KL ¼
bc

gc

� �2

¼ c1=2dð Þ 1� r2ð Þ=2r½ 	
c1=2dð Þ ln 1=rð Þ

� �2

¼ 1� r2ð Þ=2r

ln 1=rð Þ

� �2

ð9:106Þ

which depends on only the reflection coefficient r and is a decreasing function of r.
It approaches unity as the reflection coefficient r goes to unity. The correction

becomes important when r is small. We will see in the next chapter that a similar

correction factor appears also in the nonlinear gain regime or in operation above

threshold.

We will now examine if the same output power as in Equation 9.103 can be

derived from the internal field correlation function in Equation 9.95. We have the

stored energy W per unit cross-sectional area as

W ¼
ð0

�d
dz 2e1 Êð�Þ z; tð ÞÊðþÞ z; tð Þ

D E

¼
ð0

�d
dz sin Ocðzþ dÞ=c1f gj j2

� �
2e1_ogbc=gc

e1d gþ gcð Þ 1� s=sthð Þ

� s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

ð9:107Þ

The integral was evaluated in Equation 9.92. Thus we have

W ¼ b2
c

g2
c

_og
gþ gcð Þ 1� s=sthð Þ

s2

sthsth 0

� �

noh i þ
N2

Nsth

� �

¼ P

2gc

ð9:108Þ

where P is given by Equation 9.103. Therefore, we see that the power output is 2gc

times the stored energy. This shows that 2gc is the correct power damping factor in

this linear gain regime. We will see in the next chapter that this is not the case in

the nonlinear gain regime.
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Finally, let us consider the mathematical origin of the correction factor ðbc=gcÞ2
for the laser linewidth. The appearance of this factor is rather direct in the case of

the quantum noise and in the case of the evaluation of the laser output through the

stored energy in the cavity. Exactly this factor appears in Equation 9.108. The factor

ðbc=gcÞ came from Equation 9.95, which in turn came from the integral of the

absolute square of the cavity mode function in Equation 9.92. This contribution

stems from the quantum noise arising at the location of each atom. Another factor

ðbc=gcÞ originates from the integration of the stored energy in Equation 9.107. The

correction factor thus seems to come from the square of the integral of the

absolute square of the cavity mode function:

ð0

�d
dz sinfOcðzþ dÞ=c1gj j2

� �2

¼ d

2

bc

gc

� �2

ð9:109Þ

Let us recall from Equation 4.45 that the field in the quasimode cavity in the

linear regime was

âðtÞ ¼ âð0Þeðs0�ioÞt þ 1

iðoc þ n0 � 2oÞ þ gc þ g

�
ðt

0

eðs0�ioÞðt�t0Þ fiðn0 � oÞ þ gÞ Ĝf ðt0Þ � i
X

m

kmĜm

( )

dt0
ð9:110Þ

Multiplying by ið_oc=2Þ1=2UcðzÞ ¼ ið_oc=e1dÞ1=2 sinfðoc=c1Þðzþ dÞg (see Equa-

tions 3.1 and 2.19a) and using Equation 3.22b for km, we rewrite the quantum part as

ÊðþÞ z; tð Þ ¼ sinfðok=c1Þðzþ dÞg
iðoc þ n0 � 2oÞ þ gc þ g

i
paoc

e1d

ðt

0

eðs0�ioÞðt�t0Þ

�
X

m

sinfðok=c1Þðzm þ dÞgĜmðt0Þ dt0
ð9:111Þ

We compare it with the quantum part in Equation 9.64:

ÊðþÞ z;tð Þ¼ sinOcðzþdÞ=c1

gþgcþ i v0þoc�2oð Þ
iv0pa

e1d

X

m

sinfOcðzmþdÞ=c1g

�
ðt

0

Ĝm tð Þexp s0� ioð Þ t�tð Þ½ 	dt
ð9:112Þ

So, the major difference is that the quasimode function sinfðok=c1ÞðzþdÞg
replaces the complex cavity mode function sinOcðzþdÞ=c1. If we repeat the

square of the integral in Equation 9.109 with the quasimode function, we have

ð0

�d
dz sinfocðzþ dÞ=c1gj j2

� �2

¼ d

2

� �2

ð9:113Þ
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Thus

Ð 0

�d dz sinfOcðzþ dÞ=c1gj j2
� �2

Ð 0

�d dz sinfocðzþ dÞ=c1gj j2
� �2

¼ bc

gc

� �2

¼ KL ð9:114Þ

Therefore, we may conclude that the linewidth correction factor KL ¼ ðbc=gcÞ2
comes from the use of the proper cavity resonant mode function that reflects the

output coupling, at least for the quantum noise. The physical interpretation of the

correction factor, the excess noise factor, will be discussed and a more general

derivation of the factor will be given in Chapter 14. In particular, the general

derivation scheme will show that the quantity to be compared with that in

Equation 9.109 is the squared modulus of the integrated squared mode function

instead of that in Equation 9.113 due to the quasimode function (see Equation

14.46). This is related to the projection of the noise function onto the adjoint mode

function, as was mentioned below Equation 9.44.
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10

A One-Dimensional Laser with Output Coupling:

Quantum Nonlinear Gain Analysis

In this chapter, we solve the laser equation of motion (Equation 5.33a) quantum

mechanically for the one-sided cavity model described in Sections 1.3 and 1.4. We take

into account the gain saturation behavior in the atomic motion: the atomic inversion

is dependent on the field strength at the location of the atom. Because of the output

coupling, the field distribution is not uniform. So we need to find consistent

distributions of the atomic inversion and the field strength. Because of this nonlinear

nature of the problem, it is difficult to solve the time-varying behavior of the laser. We

concentrate on steady-state operation, assuming the presence of a time-independent

field amplitude that still depends on the location. The field phase is, however, allowed

to diffuse under the action of the noise forces. The steady-state, time-independent

field distribution in the presence of gain saturation was found in Chapter 8, ignoring

the noise. Thus, in this chapter, the main problem is to find the degree of phase

diffusion, which determines the laser linewidth. The resultant expression for the laser

linewidth will contain correction factors compared with the conventional formula

when expressed in terms of the inverse output power. One of the correction factors,

(bc/gc)
2, is the same as that in the quantum linear gain analysis in the previous

chapter. The other factor results in a non-power-reciprocal part in the linewidth

formula. The essence of the contents of this chapter was published in Ref. [1].

10.1

The Equation for the Quantum Nonlinear Gain Analysis

From Equation 5.33, for the entire region�d o z o L, the equation to be solved reads

ÊðþÞ z; tð Þ ¼ F̂t z; tð Þ þ F̂q z; tð Þ

þ
X

m

pmj j2n2
m

2_o

" ðt

0

X

j

Uj zð ÞUj zmð Þ e�ioj t�t0ð Þ

�
ðt0

0

e� inmþgmð Þ t0�t00ð ÞÊ
ðþÞ

zm; t
00ð Þŝmðt00Þdt00dt0

#
ð10:1Þ

where
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F̂t z; tð Þ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

Uj zð Þâj 0ð Þe�ioj t ð10:2Þ

and

F̂q z; tð Þ¼
X

m

ipmnm

2

ðt

0

X

j

Uj zð ÞUj zmð Þe�ioj t�t0ð Þ
ðt0

0

e� inmþgmð Þ t0�t00ð Þ Ĝmðt00Þdt00dt0
" #

ð10:3Þ

Assuming a single-frequency oscillation, we truncate the sinusoidal motion at the

center angular frequency o. We write

ÊðþÞðz; tÞ ¼ ~EðþÞðz; tÞe�iot; F̂t z; tð Þ ¼ ~Ft z; tð Þe�iot;

F̂q z; tð Þ ¼ ~Fq z; tð Þe�iot
ð10:4Þ

Then, for � d o z o L, we have

~E
ðþÞ

z; tð Þ ¼
X

m

pmj j2n2
m

2_o

ðt

0

X

j

Uj zð ÞUj zmð Þ eiðo�ojÞ t�t0ð Þ

"

�
ðt0

0

efiðo�nmÞ�gmg t0�t00ð Þ~E
ðþÞ

zm; t
00ð Þŝmðt00Þdt00dt0

#

þ ~Ft z; tð Þ þ ~Fq z; tð Þ

ð10:5Þ

We will first seek the differential equation for ~EðþÞ z; tð Þ with respect to time.

Next, we will Laplace-transform the differential equation. Then we will look for the

steady-state field distribution in the transformed domain. We will finally look for

the phase diffusion in the inverse transformed domain, that is, in the time do-

main. The correlation for the noise forces was discussed in the previous chapter.

These correlation characteristics determine the degree of phase diffusion.

The summation over j present on the right-hand side (RHS) was evaluated in

Equation 9.8 for inside the cavity:

X

j

Uj zð ÞUj zmð Þe�i oj�oð Þ t�t0ð Þ
n o

¼
X

j

2

e1L

1

1�Ksin2k1jd
sink1jðzþdÞ sink1jðzmþdÞe�ioj t�t0ð Þ

¼ 1

e1c1

X1

n¼0

1

1þd0;n
�rð Þn

X4

r¼1

ar eitrnod �trnþ t� t0

 �

þ e�itrnod trnþ t� t0

 �� 	

ð10:6Þ

where the factors a1 ¼ a2 ¼ 1 and a3 ¼ a4 ¼ �1. The delay times are
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t1n ¼
2ndþ z� zm

c1
; t2n ¼

2nd� zþ zm

c1

t3n ¼
2ndþ 2dþ zþ zm

c1
; t4n ¼

2nd� 2d� z� zm

c1

ð10:7Þ

For outside the cavity, the summation was given by Equation 9.66 (o is absent

here):

X

j

Uj zð ÞUj zmð Þe�ioj t�t0ð Þ
n o

¼
X

j

2

e1L

1

1�Ksin2k1jd

k1j

k0j
cosk1jdsink0jzþ sink1jdcosk0jz

� �

� sink1jðzmþdÞe�ioj t�t0ð Þ

¼ 1

e1c1

2c0

c1þ c0ð Þ

�
X1

n¼0

�rð Þn d t� t0 þ t5nð Þf þd t� t0 � t5nð Þ�d t� t0 þ t6nð Þ�d t� t0 � t6nð Þg

ð10:8Þ

where

t5n ¼
z

c0
þ 2nd� zm

c1
; t6n ¼

z

c0
þ 2ndþ 2dþ zm

c1
ð10:9Þ

First, we consider the field inside the cavity. Using Equation 10.6 in Equation

10.5, we have (see Equation 9.10)

~E z; tð Þ ¼ ~Ft z; tð Þ þ ~Fq z; tð Þ

þ
X

m

gm

ðt� z�zmj j=c1

0

e �i nm�oð Þ�gmf g t�t0ð Þþ inmþgmð Þ z�zmj j=c1

"

ŝmðt0Þ~E zm; t
0ð Þdt0

�
ðt�ð2dþzþzmÞ=c1

0

e �i nm�oð Þ�gmf g t�t0ð Þþ inmþgmð Þ 2dþzþzmð Þ=c1 ŝmðt0Þ~E zm; t
0ð Þdt0

þ
XnM

n¼1

�rð Þn I1n þ I2n � I3n � I4nð Þ
#

ð10:10aÞ

where

Irn¼
ðt�trn

0

exp �i nm�oð Þ�gmf g t� t0ð Þþ inmþgmð Þtrn

� 
ŝmðt0Þ~E zm;t

0ð Þdt0 ð10:10bÞ

and

gm ¼
pmj j2n2

m

2_oe1c1
ð10:10cÞ
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10.2

Homogeneously Broadened Atoms and Uniform Pumping

Here we go to the case of homogeneous broadening, that is

nm ¼ n0; pm ¼ pa; gm ¼ g ð10:11Þ

gm ¼ g ¼ n2
0 paj j2

2_oe1c1

ð10:12Þ

and to uniform pumping and uniform unsaturated atomic inversion, that is

Gmp ¼ Gp; ŝ0
m ¼ ŝ0 ð10:13Þ

Then, by differentiation with respect to time t, the integral equation is converted to

a simplified differential equation:

@

@t
~E z; tð Þ � ~Ft z; tð Þ � ~Fq z; tð Þ
� 	

¼ �i n0�oð Þ � gf g ~E z; tð Þ � ~Ft z; tð Þ � ~Fq z; tð Þ
� 	

þ
X

m

g exp io
z� zmj j

c1

� �"

~E zm; t� z� zmj j
c1

� �

ŝm t� z� zmj j
c1

� �

� exp io
2dþ zþ zm

c1

� �
~E zm; t� 2dþ zþ zm

c1

� �

ŝm t� 2dþ zþ zm

c1

� �

þ
XnM

n¼1

�rð Þn
X4

r¼1

ar exp iotrn


 �
~E zm; t� trn


 �
ŝmðt� trnÞ

( )#

ð10:14Þ

To go further, we divide the field waves and the driving noise forces into right-

and left-going waves, respectively:

~E z; tð Þ ¼ êþ z; tð Þ exp þio zþ dð Þ=c1f g þ ê� z; tð Þ exp �io zþ dð Þ=c1f g
~Ft;qðz; tÞ ¼ f̂ þt;q ðz; tÞ exp þio zþ dð Þ=c1f g þ f̂ �t;q ðz; tÞ exp �io zþ dð Þ=c1f g

ð10:15Þ

where the suffices t and q signify thermal and quantum noise, respectively.

Then, comparing the terms of the right- and left-traveling waves, and ignoring

those terms that are oscillating rapidly with zm, having a factor expð�2iozm=c1Þ,
we have (see Equations 9.16a and 9.16b):

@

@t
þ g0

� �

êþ z; tð Þ � ûþ z; tð Þ
� 	

¼
X

m

g Hðz� zm Þ̂eþ zm; t� z� zm

c1

� �

ŝm t� z� zm

c1

� ��

� ê� zm; t� 2dþ zþ zm

c1

� �

ŝm t� 2dþ zþ zm

c1

� �
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þ
XnM

n¼1

r0ð Þn êþ zm; t�2ndþz�zm

c1

� �

ŝm t�2ndþz�zm

c1

� ��

� ê� zm; t�2ndþ2dþzþzm

c1

� �

ŝm t�2ndþ2dþzþzm

c1

� ��� ð10:16aÞ

and

@

@t
þ g0

� �

ê� z; tð Þ � û� z; tð Þf g

¼
X

m

g Hðzm � zÞ ê� zm; t��zþ zm

c1

� ��

ŝm t��zþ zm

c1

� �

þ
XnM

n¼1

r0ð Þn ê� zm; t� 2nd� zþ zm

c1

� �

ŝm t� 2nd� zþ zm

c1

� ��

� êþ zm;
2nd� 2d� z� zm

c1

� �

ŝm t� 2nd� 2d� z� zm

c1

� ���

ð10:16bÞ

where

ûþ z; tð Þ ¼ f̂t
þ

z; tð Þ þ f̂q
þ

z; tð Þ; û� z; tð Þ ¼ f̂t
�

z; tð Þ þ f̂q
�

z; tð Þ ð10:17Þ

and

g0 ¼ gþ i v0 � oð Þ ð10:18Þ

r0 ¼ �r exp 2ido=c1ð Þ ð10:19Þ

Here the unit step function has been denoted as H.

10.3

The Steady-State and Laplace-Transformed Equations

We go to the steady state, which here means that the field amplitude fluctuates

negligibly but the field phase diffuses freely. The amplitude is stabilized by the

gain saturation effect but the noise sources cause a random walk of the phase. We

make the assumption on the atomic inversion that the inversion keeps a constant

value in time, the value being given by the steady-state ensemble average of the

quantum-mechanical expectation value with respect to the reservoirs for the atoms

and to the free thermal field. Accordingly, we write the saturated inversion as

ŝmðtÞ ¼ smh i ð10:20Þ

where the saturation property is given by Equation 8.16:

smh i ¼ s0

1þ �E2
m

�
Esj j2

ð10:21aÞ
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where

�Em ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~E
ðþÞ

zmð Þ
�
�
�

�
�
�
2

� �s

ð10:21bÞ

is the reservoir-averaged quantum-mechanical expectation value of the local field

amplitude. The operator sign drops from the atomic inversion.

In order to solve the coupled equations 10.16a and 10.16b involving space

variable z and time variable t, we Laplace-transform the field operator and the

noise operators with respect to time, as in Chapter 9 (we will concentrate on the

spatial region for the time being):

êþ z; tð Þ ! L̂
þðz; sÞ

ê� z; tð Þ ! L̂
�ðz; sÞ

ûþ z; tð Þ ! V̂
þ

z; sð Þ

û� z; tð Þ ! V̂
�

z; sð Þ

ð10:22Þ

As the Laplace transform of êþ zm; t� trn


 �
is expð�trnsÞL̂þðzm; sÞ, the sum-

mations over n in Equations 10.16a and 10.16b reduce to geometric progressions,

which can be easily evaluated. Replacing the summation over m by integration

with the assumed uniform density of atoms N, we have (see Equations 9.21a

and 9.21b):

sþ g0ð Þ L̂
þ

z; sð Þ � V̂
þ

z; sð Þ
h i

¼ gN

ðz

�d
exp � z� zm

c1
s

� ��

L̂
þ

zm; sð Þ smh idzm

� 1

1� r00 sð Þ

ð0

�d
exp � 2dþ zþ zm

c1
s

� �

L̂
�

zm; sð Þ smh idzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp

zm � z

c1
s

� �

L̂
þ

zm; sð Þ smh idzm

�

ð10:23aÞ

and

sþ g0ð Þ L̂
�

z; sð Þ � V̂
�

z; sð Þ
� 

¼ gN

ð0

z
exp

z� zm

c1
s

� ��

L̂
�

zm; sð Þ smh idzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp

z� zm

c1
s

� �

L̂
�

zm; sð Þ smh idzm

� r00 sð Þ
1� r00 sð Þ

ð0

�d
exp

2dþ zþ zm

c1
s

� �

L̂
þ

zm; sð Þ smh idzm

�

ð10:23bÞ
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where

r00 sð Þ ¼ r0 exp �2ds=c1ð Þ ¼ �r expfðio� sÞ2d=c1g ð10:24Þ

The initial values ê� z; 0ð Þ � û� z; 0ð Þ associated with the Laplace transform

vanish, as can be shown by setting t ¼ 0 in Equation 10.5 with the aid of Equation

10.15. Differentiation with respect to z yields the following coupled differential

equations:

d

dz
L̂þ z; sð Þ ¼ � s

c1
þ gN szh i

sþ g0

� �

L̂þ z; sð Þ þ d

dz
þ s

c1

� �

V̂þ z; sð Þ ð10:25aÞ

d

dz
L̂� z; sð Þ ¼ s

c1
� gN szh i

sþ g0

� �

L̂� z; sð Þ þ d

dz
� s

c1

� �

V̂� z; sð Þ ð10:25bÞ

where we have stressed that smh i depends on the location z. Integrating, we obtain

Lþ z; sð Þ ¼
ðz

�d
exp

ðz

z0
dz00 � s

c1
þ gN sz00h i

sþ g0

� �� �
d

dz0
þ s

c1

� �

Vþ z0; sð Þdz0

þ exp

ðz

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

Lþ �d; sð Þ
ð10:26aÞ

L� z; sð Þ ¼
ðz

�d
exp

ðz

z0
dz00

s

c1
� gN sz00h i

sþ g0

� �� �
d

dz0
� s

c1

� �

V� z0; sð Þdz0

þ exp

ðz

�d
dz0

s

c1
� gN sz0h i

sþ g0

� �� �

L� �d; sð Þ
ð10:26bÞ

Because of the nonlinear atomic inversion factors, it will be difficult to solve the

coupled equations for a general location z. Thus we look for the boundary values

L�ð�d; sÞ and L�ð0; sÞ. From Equations 10.23a and 10.23b we have for z ¼ �d

L̂þ �d; sð Þ � V̂þ �d; sð Þ ¼ � L̂
� �d; sð Þ � V̂

� �d; sð Þ
� 	

ð10:27Þ

But from Equations 10.2 and 10.3 F̂t �d; tð Þ ¼ F̂q �d; tð Þ ¼ 0 since Uj(�d ) ¼ 0

because of the vanishing boundary condition (see Equation 1.41b). Thus from

Equation 10.15 we have

V̂þ �d; sð Þ þ V̂� �d; sð Þ ¼ 0 ð10:28Þ

so that

L̂þ �d; sð Þ ¼ �L̂� �d; sð Þ ð10:29Þ

10.3 The Steady-State and Laplace-Transformed Equations | 173



This is a statement that the right-going wave at z¼�d is just the left-going wave

reflected at the perfectly conducting boundary. Also from Equations 10.23a and

10.23b we have for z ¼ 0

sþ g0ð Þ L̂
þ

0; sð Þ � V̂
þ

0; sð Þ
h i

¼ gN � 1

1� r00 sð Þ

� ð0

�d
exp � 2dþ zm

c1
s

� �

L̂
�

zm; sð Þ smh idzm

þ 1

1� r00 sð Þ

ð0

�d
exp

zm

c1
s

� �

L̂
þ

zm; sð Þ smh idzm

�

ð10:30aÞ

and

sþ g0ð Þ L̂
�

0; sð Þ � V̂
�

0; sð Þ
� 

¼ gN

ð0

�d

r00 sð Þ
1� r00 sð Þ

�

exp
�zm

c1
s

� �

L̂
�

zm; sð Þ smh idzm

�
ð0

�d

r00 sð Þ
1� r00 sð Þexp

2dþ zm

c1
s

� �

L̂
þ

zm; sð Þ smh idzm

�
ð10:30bÞ

Comparing these two equations we obtain

�r00ðsÞeð2d=c1Þs L̂
þ

0; sð Þ � V̂
þ

0; sð Þ
n o

¼ L̂� 0; sð Þ � V̂� 0; sð Þ

or by Equation 10.24

�r0 L̂
þ

0; sð Þ � V̂
þ

0; sð Þ
n o

¼ L̂� 0; sð Þ � V̂� 0; sð Þ ð10:31Þ

Next, from Equations 10.26a and 10.26b we have for z ¼ 0

L̂
þ

0; sð Þ ¼
ð0

�d
exp

ð0

z0
dz00 � s

c1
þ gN sz00h i

sþ g0

� �� �
d

dz0
þ s

c1

� �

V̂
þ

z0; sð Þdz0

þ exp

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

L̂
þ �d; sð Þ

ð10:32aÞ

and

L̂
�

0; sð Þ ¼
ð0

�d
exp

ð0

z0
dz00

s

c1
� gN sz00h i

sþ g0

� �� �
d

dz0
� s

c1

� �

V̂
�

z0; sð Þdz0

þ exp

ð0

�d
dz0

s

c1
� gN sz0h i

sþ g0

� �� �

L̂
� �d; sð Þ

ð10:32bÞ

Provided that the quantities V̂� z; sð Þ are known, Equations 10.29, 10.31, 10.32a,

and 10.32b constitute coupled equations for L̂�ð�d; sÞ and L̂�ð0; sÞ. Anticipating
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the need for êþ �0; tð Þ in evaluation of the output field, we solve these coupled

equations for L̂þð0; sÞ. First, we rewrite Equations 10.32a and 10.32b as

L̂
þ �d; sð Þ ¼ exp

ð0

�d
dz0

s

c1
� gN sz0h i

sþ g0

� �� �

L̂
þ

0; sð Þ

�
ð0

�d
exp

ðz0

�d
dz00

s

c1
� gN sz00h i

sþ g0

� �" #
d

dz0
þ s

c1

� �

V̂
þ

z0; sð Þdz0
ð10:33aÞ

and

L̂
� �d; sð Þ ¼ exp

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

L̂
�

0; sð Þ

�
ð0

�d
exp �

ðz0

�d
dz00

s

c1
� gN sz00h i

sþ g0

� �" #
d

dz0
� s

c1

� �

V̂
�

z0; sð Þdz0
ð10:33bÞ

The sum of the RHS members of these two equations vanish because of

Equation 10.29. Then using Equation 10.31 we eliminate L� 0; sð Þ to obtain

exp

ð0

�d
dz0

s

c1
� gN sz0h i

sþ g0

� �� ��

� r0exp

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� ��

L̂
þ

0; sð Þ

¼
ð0

�d
exp

ðz0

�d
dz00

s

c1
� gN sz00h i

sþ g0

� �" #
d

dz0
þ s

c1

� �

V̂
þ

z0; sð Þdz0

þ
ð0

�d
exp �

ðz0

�d
dz00

s

c1
� gN sz00h i

sþ g0

� �" #
d

dz0
� s

c1

� �

V̂
�

z0; sð Þdz0

� exp

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

r0V̂
þ

0; sð Þþ V̂
�

0; sð Þ
n o

ð10:34Þ

or

1� r0exp 2

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� ���

L̂
þ

0; sð Þ

¼
ð0

�d
exp �

ð0

z0
dz00

s

c1
� gN sz00h i

sþ g0

� �� �
d

dz0
þ s

c1

� �

V̂
þ

z0; sð Þdz0

þ exp �2

ð0

�d
dz0

s

c1
� gN sz0h i

sþ g0

� �� �

�
ð0

�d
exp

ð0

z0
dz00

s

c1
� gN sz00h i

sþ g0

� �� �
d

dz0
� s

c1

� �

V̂
�

z0; sð Þdz0

� exp 2

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

r0V̂
þ

0; sð Þ þ V̂
�

0; sð Þ
n o

ð10:35Þ
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This last equation has simple interpretations. The left-hand side (LHS) is the

difference of the amplitudes êþðt; 0Þ and êþðt� 2d=c1; 0Þ, where the latter is

multiplied by the net gain and the reflection coefficients at both end surfaces

with phase shift associated with one round trip in the cavity. Note that

r0 ¼ �r exp 2ido=c1ð Þ by Equation 10.19. The first term on the RHS is the con-

tribution to the difference from the right-going components of the noise forces

associated with amplification and the proper time delay during the path from the

location zu of the noise source and the output end z ¼ 0 of the cavity. The noise

source extends from z ¼ �d to z ¼ 0. The sum of (d/dzu) and (s/c1) represents the

total derivative ð@=@zÞ þ ð@=@tÞð@t=@zÞ for the right-going wave along the path.

The second term comes from the left-going component of the noise forces with

path length 2d – 9zu9 for the noise to reach z ¼ 0 from zu. This term is also asso-

ciated with the proper net gain and phase shift as well as the proper time

delay. The sum of (d/dzu) and –(s/c1) represents the total derivative for the left-

going wave multiplied by the phase shift of p at the perfect reflector, that is

�f�ð@=@zÞ þ ð@=@tÞð@t=@zÞg. The third term is the contribution of the noise

forces that existed at z ¼ 0 one round-trip time before. Note that the right-going

component in the third term is associated with amplification and reflection at both

end surfaces, whereas the left-going component is amplified and phase-shifted by

p at the left end surface but has not reflected at the output surface.

10.4

The Lowest-Order Solution

We solve Equation 10.35 in a perturbative manner. For the lowest order, we solve

the equation that is ensemble averaged with respect to the noise sources. We

assume that the ensemble averages of the thermal and quantum noise sources

vanish, that is,

âj 0ð Þ
� �

¼0

ĜmðtÞ
� �

¼0
ð10:36Þ

so that we have

V̂
�ðz; sÞ

D E
¼ 0 ð10:37Þ

Then from Equation 10.35 we have

1� r0exp 2

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� ���

L̂þ 0; sð Þ ¼ 0 ð10:38Þ

The inverse Laplace transform reads, using Equation 10.19,

êþð0; tÞ� êþð0; t�2d=c1Þf�r exp 2ido=c1ð Þgexp

ð0

�d

2gN sz0h i
g0

dz0 ¼ 0 ð10:39Þ
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where we have ignored s as compared to gu. This equation shows that, in the

steady state, the right-going wave at the location z ¼ 0 at time t is equal to the wave at

t�2d/c1 times the one round-trip net gain with associated phase shift. The net gain

means double integrated gain times the product of r and –1, the reflection coeffi-

cients at both end surfaces. Note that the factor gN szh i=g ’ gN szh i=c1joc¼n0
is the

unsaturated gain per unit length of the laser medium for zero detuning, whereg, the

gain per atom per unit time, was defined in Equation 4.14. The appearance of the

frequency difference in g0 ¼ gþ i v0 � oð Þ represents the dispersion of the ampli-

fying medium. In the steady state, we have êþð0; tÞ ¼ êþð0; t� 2d=c1Þ. Therefore, for

a non-trivial solution for êþ 0; tð Þ to exist, we should have

1þ re2iod=c1 exp 2

ð0

�d
dz0

gN sz0h i
g0

� �� �

¼ 0 ð10:40Þ

Rewriting exp 2ido=c1ð Þ as expð2ikdÞ we have

exp

ð0

�d
dz0

2gN sz0h i
g0

� �

¼ �1

r expð2ikdÞ ð10:41Þ

The integral on the LHS reads, by Equation 10.21a,

ð0

�d
dz0

2gN sz0h i
g0

� �

¼ 2gNs0

g0

ð0

�d

dz0

1þ �E2
z0
�

Esj j2
¼ 2a0I ð10:42Þ

where the quantity I was defined in Equation 8.28b as

I �
ð0

�d

dz0

1þ �E2
z0
�

Esj j2
ð10:43aÞ

and the amplitude gain per unit length is

a0 ¼ gNs0

g0
¼ gNs0

gþ iðn0 � oÞ ð10:43bÞ

Therefore, Equation 10.41 reads

exp 2a0I

 �

¼ �1

r expð2ikdÞ ð10:44Þ

This is exactly what appeared in Equation 8.29 in the semiclassical, nonlinear gain

analysis of the same laser as in this chapter. Equation 8.29 describes the relation be-

tween the integrated local gain and the boundary conditions at both ends of the cavity.

Since the analysis in Chapter 8 was done ignoring the noise sources, the situation

there is the same as the situation here. Thus we can use all the results in Section 8.4 for

the present, ensemble-averaged, and steady-state analysis. As we saw in Equation 7.33,

�r�1 expð�2ikdÞ is equal to expfð2d=c1Þðgc � ioþ iocÞg. Therefore

2gs0N

g0

ð0

�d

dz0

1þ �E2
z0
�

Esj j2
¼ 2d

c1
ðgc � ioþ iocÞ ð10:45Þ
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From this equation, comparing the real and imaginary parts, we have the

oscillation frequency and the space-averaged gain, which is equal to the cavity loss

(see Equations 8.32 and 8.33)

o ¼ goc þ gcv0

gþ gc
ð10:46Þ

gs0Nc1

g
1

1þ d2

1

d

ð0

�d

dz0

1þ �E2
z0
�

Esj j2
¼ gc ð10:47aÞ

where

d2 ¼ oc � n0

gþ gc

� �2

ð10:47bÞ

Note that the factor gs0Nc1= gð1þ d2Þ
� 	

¼ gNs0 is the unsaturated amplitude

gain per unit time of the laser medium. The threshold atomic inversion, and the

space-averaged, steady-state atomic inversion are (see Equations 8.48 and 8.53)

s0
th ¼ �sss ¼

2_oe1

n2
0 paj j2N

ggcð1þ d2Þ ¼ gc

gN
ð10:48Þ

Also, the field amplitude at the output end of the cavity is, from Equation 8.47,

eþ 0ð Þj j2
D E

¼ Esj j2

1� r2

n2
0 pj j2Ns0d

e1c1_o
1

gð1þ d2Þ
� ln 1=rð Þ

( )

¼ Esj j2

1� r2

2d

c1
gNs0 � ln 1=rð Þ

� �
ð10:49Þ

The quantity in the curly brackets in the second line is the difference between the

gain and the loss for the field amplitude for one round trip in the cavity. As was

stated in Chapter 8, we can in principle determine the amplitudes of the right- and

the left-going waves, e�ðzÞ, except for undetermined phases.

Equation 10.47a also shows that the space-averaged, saturated gain is equal to

the cavity loss.

10.5

The First-Order Solution: Temporal Evolution

10.5.1

The Formal Temporal Differential Equation

Next we consider Equation 10.35 in first order in the noise forces and in the

parameter s. If we use the notation in Equation 10.43a, we have
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1� r0 exp 2

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

¼ 1� r0 exp � 2ds

c1
þ 2GNI

sþ g0

� � ð10:50aÞ

where we have used the relation gs0 ¼ G (see Equations 7.16 and 8.10a). Here we

refer to Equation 9.38. As a function of s, Equation 10.50a is in the same form as

the LHS of Equation 9.38 multiplied by expfGNd=ðsþ g0Þg. Therefore, the

expansion on the RHS of Equation 9.38 can be used also in this nonlinear case.

Thus we have

1� r0 exp 2

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

¼ 2d=c1

s0 þ g0
fgþ gc þ iðv0 þ oc � 2oÞgðs� s0Þ

ð10:50bÞ

where s0 is the pole given by Equation 10.50a obtained as in Equation 7.35:

s0¼�
ggcþ v0�oð Þ o�ocð Þ�ðc1=dÞ

Ð 0

�d gN sz0h idz0 � i
�
g o�ocð Þþgc o�v0ð Þ

	

gþgc� i v0þoc�2oð Þ
ð10:50cÞ

Hereafter we set s0 ¼ 0 since the steady state analyzed using Equation 10.40

corresponded to this situation and the lowest-order results in Equations 10.46

and 10.47 can be obtained by setting s0¼ 0 in Equation 10.50c. Thus the first-order

equation derived from Equation 10.35 reads, if we use Equation 10.40 on the RHS,

2d

c1

g0 þ gc
0

g0
sL̂
þ

0; sð Þ

¼
ð0

�d
exp �

ð0

z0
dz00

s

c1
� gN sz00h i

sþ g0

� �� �
d

dz0
þ s

c1

� �

V̂
þ

z0; sð Þdz0

þ e�2ds=c1
1

r0

ð0

�d
exp

ð0

z0
dz00

s

c1
� gN sz00h i

sþ g0

� �� �
d

dz0
� s

c1

� �

V̂
�

z0; sð Þdz0

� e�2ds=c1 V̂
þ

0; sð Þ � e�2ds=c1
1

r0
V̂
�

0; sð Þ

ð10:51Þ

where

g0 ¼ gþ iðn0 � oÞ ð10:52aÞ

gc
0 ¼ gc þ iðoc � oÞ ð10:52bÞ

r0 ¼ �r expð2ikdÞ ð10:52cÞ
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Inverse transformation of Equation 10.51 yields

2d

c1

g0 þ gc
0

g0
d

dt
êþ 0; tð Þ þL�1êþ 0; 0ð Þ

� �

¼
ð0

�d
exp

ð0

z0
dz00

gN sz00h i
g0

� �� �
@

@z0
þ @

c1@t

� �

ûþ z0; tð Þ
� �

tþz0=c1

dz0

þ exp

ð0

�d
dz00

gN sz00h i
g0

� �� �

�
ð0

�d
exp

ðz0

�d
dz00

gN sz00h i
g0

� �" #
@

@z0
� @

c1@t

� �

û� z0; tð Þ
� �

t�ð2dþz0Þ=c1

dz0

þL�1

ð0

�d
exp

ð0

z0
dz00 � s

c1
þ gN sz00h i

g0

� �� �
ûþ z0; 0ð Þ

c1

� �

dz0

�L�1 exp

ð0

�d
dz00

gN sz00h i
g0

� �� �

�
ð0

�d
exp � 2dþ z0

c1
s

� �

exp

ðz0

�d
dz00

gN sz00h i
g0

� �" #
û� z0; 0ð Þ

c1

� �

dz0

� ûþð0; t� 2d=c1Þ þ
1

r expð2ikdÞ û
�ð0; t� 2d=c1Þ

ð10:53Þ

Here we have ignored s in the factor s þ gu, assuming much slower variation of the

field envelope function than the dipolar relaxation. In the second term of û�, we have

eliminated ru using Equation 10.40. The two terms withL�1 on the RHS come from

the initial values associated with the Laplace transforms of time derivatives. These

terms are proportional to dðt� jz0j=c1Þ and dft� ð2dþ z0Þ=c1g, respectively, and

important only at times t � 2d=c1. These can be ignored for the steady state and will

be neglected. Also, the inverse Laplace transform on the LHS is proportional to d(t)
and will be neglected. There appear retardation times that correctly represent the

time required for a noise occurring at zu to reach z ¼ 0. In the following, we shall be

interested in the time variation of the field amplitude, which is much slower than the

cavity decay rate and the reciprocal cavity round-trip time, so that our linewidth Do
and the time difference of interest Dt should satisfy

Do
 gc; c1=2d

Dt� g�1
c ; 2d=c1

ð10:54Þ

The retardation times of the order 2d/c1 will accordingly be ignored. This as-

sumption is in accordance with the approximation involved in going from Equa-

tion 10.35 to Equation 10.51: the LHS of Equation 10.35 may be written, for s0 ¼ 0,

as ½1� expfxð�2d=c1Þsg	Lþð0; sÞ, where x ¼ ðg0 þ g0cÞ=g0 (see Equation 10.50b).

Therefore, Equation 10.51 is under the approximation sj j 
 xj j�1ðc1=2dÞ, which is

equivalent to Equation 10.54 except for the factor xj j�1, which is usually of the

order of unity. (Despite the approximation concerning the delay times in
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the following equation 10.55, we can show that the main results below can be

derived without this approximation, that is, using Equation 10.53.) Thus Equation

10.53 becomes, moving the boundary values to the top,

d

dt
êþ 0; tð Þ ¼ c1

2d

g0

g0 þ g0c
�ûþð0; tÞ þ 1

r expð2ikdÞ û
�ð0; tÞ

�

þ
ð0

�d
exp

ð0

z0
dz00

gN sz00h i
g0

� �� �
@

@z0
þ @

c1@t

� �

ûþ z0; tð Þ
� �

dz0

þ exp

ð0

�d
dz00

gN sz00h i
g0

� �� �

�
ð0

�d
exp

ðz0

�d
dz00

gN sz00h i
g0

� �( )
@

@z0
� @

c1@t

� �

û� z0; tð Þ
� �

dz0
#

ð10:55Þ

Here we give the expressions for the noise forces. For the thermal noise we have

from Equation 9.30

f̂ �t z; tð Þ ¼ �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� Ksin2k2
1jdÞ

s

e�iðk1j�kÞðzþdÞâj 0ð Þe�iðoj�oÞt ð10:56Þ

For the quantum noise we have from Equations 9.34a and 9.34b

f̂ þq ðz; tÞexp ioðzþ dÞ=c1f g

¼ h
X

m

e�g
0t Hðz� zmÞexp ðin0þ gÞðz� zmÞ=c1f g

ðt�ðz�zmÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0
"

� exp in0 þ gð Þ2dþ zþ zm

c1

� �ðt�ð2dþzþzmÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0

þ
X1

n¼1

�rð Þn exp in0þ gð Þt1nf g
ðt�t1n

0

exp g0t0ð Þ~Gmðt0Þdt0
�

� exp in0 þ gð Þt3nf g
ðt�t3n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð10:57aÞ

and

f̂ �q ðz; tÞ exp �ioðzþ dÞ=c1f g

¼ h
X

m

e�g
0t Hðzm � zÞ exp ðin0 þ gÞðzm � zÞ=c1f g

ðt�ðzm�zÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0
"

þ
X1

n¼1

�rð Þn exp in0 þ gð Þt2nf g
ðt�t2n

0

exp g0t0ð Þ~Gmðt0Þdt0
�

� exp in0 þ gð Þt4nf g
ðt�t4n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð10:57bÞ
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where the constant h was defined in Equation 9.33c as

h ¼ ipan0

2e1c1
ð10:57cÞ

10.5.2

Thermal Noise

Now we examine the noise terms in Equation 10.55. Let us first examine the

contribution from the thermal noise in the second and fourth lines in Equation

10.55. We note that, for f̂ þt z; tð Þ,

@

@z
þ @

c1@t

� �

f̂ þt z; tð Þ

¼ @

@z
þ @

c1@t

� �X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� Ksin2k2
1jdÞ

s

eiðk1j�kÞðzþdÞâj 0ð Þe�iðoj�oÞt

¼ 0

ð10:58aÞ

Similarly, the contribution from f̂ �t z; tð Þ also vanishes:

@

@z
� @

c1@t

� �

f̂ �t z; tð Þ

¼ @

@z
� @

c1@t

� �X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� Ksin2k2
1jdÞ

s

e�iðk1j�kÞðzþdÞâj 0ð Þe�iðoj�oÞt

¼ 0

ð10:58bÞ

Thus the contribution from the thermal noise comes only from the quantity in the

first line in Equation 10.55.

10.5.3

Quantum Noise

Next, let us examine the contribution from quantum noise to the first line in

Equation 10.55. We have from Equations 10.57a and 10.57b, for z ¼ 0,

f̂ þq ð0; tÞ exp iod=c1f g

¼ h
X

m

e�g
0t exp �ðin0 þ gÞzm=c1f g

ðtþzm=c1

0

exp g0t0ð Þ~Gmðt0Þdt0
"

� exp in0 þ gð Þ 2dþ zm

c1

� �ðt�ð2dþzmÞ=c1

0

exp g0t0ð Þ~Gmðt0Þdt0

þ
X1

n¼1

�rð Þn exp in0 þ gð Þt1nf g
ðt�t1n

0

exp g0t0ð Þ~Gmðt0Þdt0
�

� exp in0 þ gð Þt3nf g
ðt�t3n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð10:59aÞ
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and

f̂ �q ð0; tÞ exp �iod=c1f g

¼ h
X

m

e�g
0t
X1

n¼1

�rð Þn exp in0 þ gð Þt2nf g
ðt�t2n

0

exp g0t0ð Þ~Gmðt0Þdt0
�"

� exp in0 þ gð Þt4nf g
ðt�t4n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð10:59bÞ

with

t1n ¼
2nd� zm

c1
; t2n ¼

2ndþ zm

c1

t3n ¼
2ndþ 2dþ zm

c1
; t4n ¼

2nd� 2d� zm

c1

ð10:59cÞ

Equation 10.59a becomes

f̂ þq ð0; tÞ exp iod=c1f g

¼ h
X

m

e�g
0t
X1

n¼0

�rð Þn exp in0 þ gð Þt1nf g
ðt�t1n

0

exp g0t0ð Þ~Gmðt0Þdt0
�"

� exp in0 þ gð Þt3nf g
ðt�t3n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð10:60aÞ

Also, by setting n - nþ 1 (t2n - t3n, t4n - t1n), Equation 10.59b may be

rewritten as

f̂ �q ð0; tÞ exp �iod=c1f g

¼ h
X

m

e�g
0t
X1

nþ1¼1

�rð Þnþ1 exp in0 þ gð Þt3nf g
ðt�t3n

0

exp g0t0ð Þ~Gmðt0Þdt0
�"

� exp in0 þ gð Þt1nf g
ðt�t1n

0

exp g0t0ð Þ~Gmðt0Þdt0
�#

ð10:60bÞ

Thus we see that

f̂ þq ð0; tÞ exp iod=c1f g ¼ �ð�rÞ�1 f̂ �q ð0; tÞ exp �iod=c1f g ð10:61aÞ

or

�f̂ þq ð0; tÞ þ
1

r expð2ikdÞ f̂
�

q ð0; tÞ ¼ 0 ð10:61bÞ

Thus the contribution from quantum noise to the first line in Equation 10.55 vanishes.

Next we examine the contribution from the quantum noise sources to the second

and fourth lines in Equation 10.55. If we use Equations 10.57a and 10.57b, the

results of q/qz and ð1=c1Þ@=@t almost cancel each other, but ð@=@zÞHðz� zmÞ ¼
dðz� zmÞ and ð@=@zÞHðzm � zÞ ¼ �dðz� zmÞ remain. This is a rather strange

10.5 The First-Order Solution: Temporal Evolution | 183



result. To confirm it, we return to the original form of the quantum noise in

Equation 10.3 and go to the case of homogeneous broadening:

F̂q z; tð Þ¼
X

m

ipan0

2

ðt

0

X

j

Uj zð ÞUj zmð Þe�ioj t�t0ð Þ
ðt0

0

e� in0þgð Þ t0�t00ð ÞĜmðt00Þdt00dt0
#"

ð10:62Þ

Dividing the function Uj(z) for inside the cavity described in Equation 1.62b as

UjðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1� Ksin2k1jdÞ

s

sin k1jðzþ dÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

e1Lð1� Ksin2k1jdÞ

s
eik1jðzþdÞ � e�ik1jðzþdÞ

2i

ð10:63Þ

we have

f̂ þq z; tð Þ ¼ exp iot� ioðzþ dÞ=c1f g

�
X

m

ipan0

2

ðt

0

X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� Ksin2k1jdÞ

s
eik1jðzþdÞ

2i
Uj zmð Þ

"

� e�ioj t�t0ð Þ
ðt0

0

e� in0þgð Þ t0�t00ð Þ Ĝmðt00Þdt00dt0
#

ð10:64aÞ

and

f̂ �q z; tð Þ ¼ exp iotþ ioðzþ dÞ=c1f g

�
X

m

� ipan0

2

ðt

0

X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� Ksin2k1jdÞ

s
e�ik1jðzþdÞ

2i
Uj zmð Þ

"

� e�ioj t�t0ð Þ
ðt0

0

e� in0þgð Þ t0�t00ð Þ Ĝmðt00Þdt00dt0
#

ð10:64bÞ

The quantity in the second line in Equation 10.55 is thus

@

@z
þ @

c1@t

� �

f̂ þq ðz; tÞ

¼ @

@z
þ @

c1@t

� �

exp iot� ioðzþ dÞ=c1f g

�
X

m

ipan0

2

ðt

0

X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� Ksin2k1jdÞ

s
eik1jðzþdÞ

2i
Uj zmð Þ

� e�ioj t�t0ð Þ
ðt0

0

e� in0þgð Þ t0�t00ð Þ Ĝmðt00Þdt00dt0
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¼ 1

c1
exp iot� ioðzþ dÞ=c1f g

�
X

m

ipan0

2

X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� Ksin2k1jdÞ

s
eik1jðzþdÞ

2i
Uj zmð Þ

�
ðt

0

e� in0þgð Þ t�t00ð Þ Ĝmðt00Þdt00

¼ 1

c1

X

m

ipan0

2

X

j

2

e1Lð1� Ksin2k1jdÞ
eiðk1j�kÞðzþdÞ

2i
sin k1j zm þ dð Þ

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ ~Gmðt00Þdt00

ð10:65aÞ

Likewise, the quantity in the fourth line in Equation 10.55 is

@

@z
� @

c1@t

� �

f̂ �q ðz; tÞ

¼ @

@z
� @

c1@t

� �

exp iotþ ioðzþ dÞ=c1f g

�
X

m

� ipan0

2

� �ðt

0

X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� Ksin2k1jdÞ

s
e�ik1jðzþdÞ

2i
Uj zmð Þ

� e�ioj t�t0ð Þ
ðt0

0

e� in0þgð Þ t0�t00ð Þ Ĝmðt00Þdt00dt0

¼ �1

c1
exp iotþ ioðzþ dÞ=c1f g

�
X

m

� ipan0

2

� �X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� Ksin2k1jdÞ

s
e�ik1jðzþdÞ

2i
Uj zmð Þ

�
ðt

0

e� in0þgð Þ t�t00ð Þ Ĝmðt00Þdt00

¼ 1

c1

X

m

ipan0

2

X

j

2

e1Lð1� Ksin2k1jdÞ
e�iðk1j�kÞðzþdÞ

2i
sin k1j zm þ dð Þ

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ ~Gmðt00Þdt00

ð10:65bÞ

where we have set, according to Equation 10.4,

Ĝm tð Þ ¼ ~Gm tð Þe�iot ð10:65cÞ

The good thing about Equations 10.65a and 10.65b is that the summation over j
does not contain time t, and the evaluation of the sum is similar to the proof of the

completeness of the universal mode functions described in Equations 1.75–1.78.
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In particular, using the expansion of the squared normalization constant described

in the first line in Equation 1.70a and using the rule (set k1j � k ¼ x)

ð1

0

doj e�iðk1j�kÞðzþdÞþik1jy ’
ð1

�1
c1dx e�ixðzþdÞþiðxþkÞy

¼ 2pc1eikydðzþ d� yÞ
ð10:66Þ

we have, after some minor algebra, and noting that df2nd� ðz� zmÞg ¼ 0 for

n 6¼ 0,

X

j

2

e1Lð1� Ksin2k1jdÞ
e�iðk1j�kÞðzþdÞ

2i
sin k1j zm þ dð Þ

¼ � e�ikðzmþdÞ

e1
d z� zmð Þ

ð10:67Þ

Thus we have, as was expected,

@

@z
þ @

c1@t

� �

f̂ þq ðz; tÞ ¼
ipan0

2c1e1

X

m

e�ikðzmþdÞd z� zmð Þ

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00

ð10:68aÞ

and

@

@z
� @

c1@t

� �

f̂ �q ðz; tÞ ¼ �
ipan0

2c1e1

X

m

eikðzmþdÞd z� zmð Þ

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00

ð10:68bÞ

10.5.4

The Temporal Differential Equation

Thus substituting Equations 10.58a, 10.58b, 10.61b, 10.68a, and 10.68b into

Equation 10.55 we obtain

dêþð0; tÞ
dt

¼ c1

2d

g0

g0 þ g0c
�f̂ t

þ
ð0; tÞ þ 1

r expð2ikdÞ f̂ t

�
ð0; tÞ

�

þ ipan0

2c1e1
e�ikd

X

m

e�ikzm exp

ð0

zm

dz
gN szh i

g0

� �� �

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00
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� ipan0

2c1e1
e�ikd exp

ð0

�d
dz

gN szh i
g0

� �� �

�
X

m

eikðzmþ2dÞ exp

ðzm

�d
dz

gN szh i
g0

� �� �

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00
�

ð10:69Þ

This equation has simple interpretations. The time rate of change of the right-

going wave at the inner surface of the coupling interface is proportional to the sum

of (i) some thermal noise contributions, (ii) quantum noise propagated to the right

to the coupling surface with corresponding amplification and phase shift, and

(iii) quantum noise propagated first to the left and reflected by the perfect con-

ductor mirror and then propagated to the coupling surface. The common phase

factor e�ikd for the quantum noise comes from ½exp fikðzþ dÞgz¼0	
�1. For the

thermal noise, the coefficients for f̂t
þ
ð0; tÞ and f̂t

�
ð0; tÞ come from the net phase

shift plus amplification during one round trip within the cavity. This is seen by

Equation 10.40 for the cavity round-trip gain and phase shift. The right-going part

will first be reflected at the coupling surface and then amplified during the round

trip with an additional phase jump of p at the perfect conductor mirror. The left-

going part is not reflected at the coupling surface during the round trip and

therefore gets a net gain of 1/r. The reason why there are no noise contributions in

Equation 10.69 that were generated further in the past than one round trip is that

any single round trip in the past experiences an amplification that is canceled by

the cavity loss and thus does not contribute to the change in the field amplitude.

10.5.5

Penetration of Thermal Noise into the Cavity

For the thermal noise, a more concise interpretation of the thermal contribution is

that the quantity in the curly bracket in the first line in Equation 10.69 is the

thermal noise that penetrated into the cavity from outside and was amplified

through one round trip in the cavity. To see this, we note from Equation 10.56 that

f̂ �t z; tð Þ ¼ �
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� Ksin2k1jdÞ

s

e�iðk1j�kÞðzþdÞâj 0ð Þe�iðoj�oÞt

and from Equation 10.132 below, or from Equations 10.2 and 1.62b, the left-going

thermal noise outside the cavity is

f̂ �ot z; tð Þ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

e1Lð1� K sin2 k2
1jdÞ

s

� � k1j

k0j
cos k1jd

e�ik0jz

2i
þ sin k1jd

e�ik0jz

2

� �

âj 0ð Þe�iðoj�oÞt

ð10:70Þ
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It is easy to see that, except for the common factor of

X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� Ksin2k1jdÞ

s

âj 0ð Þe�iðoj�oÞt

the quantity in question is

� f̂ t

þ
ð�0; tÞ þ 1

r expð2ikdÞ f̂ t

�
ð�0; tÞ

! �eiðk1j�kÞd � 1

r expð2ikdÞ e
�iðk1j�kÞd

¼ �e�ikd 1þ 1

r

� �

cos k1jdþ i 1� 1

r

� �

sin k1jd

� �

¼ ie�ikd 1� r

r

� �

� 1

i

1þ r

1� r

� �

cos k1jdþ sin k1jd

� �

! T 0

r
e�ikdf̂ o t

�
ðþ0; tÞ

ð10:71Þ

where T u ¼ 1�r is the transmission coefficient for a wave incident on the coupling

surface from outside. Also, ð1þ rÞ=ð1� rÞ ¼ c0=c1 ¼ k1j=k0j. This relation can be

rephrased as follows: ‘‘The left-going thermal wave just inside the cavity is the sum

of the wave transmitted from outside and the right-going wave reflected with

reflection coefficient r.’’ It is important to note that the final form of Equation

10.71 implies that, except for the phase factor, the thermal noise reaching z ¼ �0

in Equation 10.69 is the noise that penetrates into the cavity at z ¼ 0 with

transmission coefficient T u and is amplified by 1=rj j ¼ expð2a0IÞj j (see Equation

10.44) during one round trip. In the next chapter, we use this property of

the thermal noise, namely that it penetrates from outside and is amplified by

the proper rate during one round trip.

10.6

Phase Diffusion and the Laser Linewidth

Here, as preparation for the subsequent analysis on the laser linewidth, we discuss

the phase diffusion and its relation to the linewidth for the case of a laser operating

above threshold with well-stabilized amplitude. We regard the amplitude êþ 0; tð Þ
as an essentially classical quantity that has well-stabilized real amplitude e0 and a

fluctuating phase f(0,t) that is also real. Thus

êþ 0; tð Þ ¼ e0 exp if 0; tð Þ½ 	 ð10:72Þ

where e0 is given by the square root of Equation 10.49 for the case of the nonlinear

laser discussed in this chapter.
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The line profile or the power spectrum is obtained as the Fourier transform of the

field correlation function. In the case of the field in the form of Equation 10.72,

the correlation function has the form

êþy 0; tþ Dtð Þ̂eþ 0; tð Þ
D E

¼ e2
0 exp �iff 0; tþ Dtð Þ � fð0; tÞg½ 	h i

¼ e2
0 exp �iDf½ 	h i

� e2
0 1� iDfþ 1

2 �iDfð Þ2
D E

¼ e2
0 1� i Dfh i � 1

2 Dfð Þ2
D En o

¼ e2
0 1� 1

2 Dfð Þ2
D En o

� e2
0 exp �1

2 Dfð Þ2
D En o

ð10:73aÞ

where

Df � f 0; tþ Dtð Þ � fð0; tÞ ð10:73bÞ

and we have assumed that the phase change Df in a time Dt is small compared to

unity. The averaged phase change Dfh i vanishes because of the random nature of

the phase change. Because of the delta-correlated nature of the noise sources, we

anticipate that the ensemble-averaged, squared phase change is proportional to Dt.
That is, we anticipate that

Dfð Þ2
D E

¼ B Dtj j ð10:74Þ

Then, writing the center frequency of oscillation as o0, we have the power

spectrum:

IðoÞ ¼
ð1

�1
e�ioDt Ê

ð�Þð0; tþ DtÞÊðþÞð0; tÞ
D E

dDt

¼ e2
0

ð1

�1
e�ioDt exp �iff 0; tþ Dtð Þ � fð0; tÞg½ 	h ieiooDtdDt

� e2
0

ð1

�1
e�ioDt exp �1

2 Dfð Þ2
D En o

eiooDtdDt

¼ e2
0

ð1

�1
e�ioDt exp �1

2BjDtj
� 	

eiooDtdDt

¼ e2
0

B

ðo� ooÞ2 þ ðB=2Þ2

ð10:75aÞ

Therefore, the full width at half-maximum (FWHM) of the spectrum Do is B, the

average squared phase change per unit time:

Do ¼ B ð10:75bÞ

10.6 Phase Diffusion and the Laser Linewidth | 189



Thus, using Equation 10.69 we seek the value of B. If we substitute Equation 10.72

and its complex conjugate into Equation 10.69, we have formally

dfð0; tÞ
dt

¼ K 0ðtÞ; dfð0; tÞ
dt

¼ K 0�ðtÞ ð10:76aÞ

where Ku(t) is the RHS of Equation 10.69 divided by fie0 expðifÞg. Since the phase

f is real, we have

dfð0; tÞ
dt

¼ ReK 0ðtÞ � KðtÞ ð10:76bÞ

Here we have defined a real function K(t). We have

fð0; tÞ ¼
ðt

�1
Kðt0Þdt0 ð10:76cÞ

and the phase diffusion during t to t þDt, measured as the ensemble average of

the squared phase shift during t to t þDt, is

Dfð0; tÞf g2
D E

¼
ðtþDt

t
Kðt0Þdt0

ðtþDt

t
Kðt00Þdt00

� �

¼
ðtþDt

t

ðtþDt

t
Kðt0ÞKðt00Þh idt0dt00

ð10:77Þ

Thus, if K(t) is delta correlated, that is, if

Kðt0ÞKðt00Þh i ¼ Bdðt0 � t00Þ ð10:78Þ

we have

ðtþDt

t

ðtþDt

t
Kðt0ÞKðt00Þh idt0dt00 ¼ B Dtj j ð10:79Þ

and we arrive at Equation 10.74.

10.7

Phase Diffusion in the Nonlinear Gain Regime

10.7.1

Phase Diffusion

We substitute Equation 10.72 into Equation 10.69 and multiply both sides by

fie0 expðifÞg�1 to obtain dfð0; tÞ=dt. Because it is not guaranteed that the quantity

thus obtained is real, we have to add its Hermitian conjugate and divide by 2 to

obtain a real phase, as in Equation 10.76b:
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dfð0; tÞ
dt

¼ 1

2ie0 exp if 0; tð Þ½ 	
c1

2d

g0

g0 þ g0c
�f̂ t

þ
ð0; tÞ þ 1

r expð2ikdÞ f̂ t

�
ð0; tÞ

�

þ ipan0

2c1e1

X

m

e�ikðzmþdÞ exp

ð0

zm

dz
gN szh i

g0

� �� �

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00

� ipan0

2c1e1
exp

ð0

�d
dz

gN szh i
g0

� �� �

�
X

m

eikðzmþdÞ exp

ðzm

�d
dz

gN szh i
g0

� �� �

�
ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00
�

þH:C:

ð10:80Þ

We assume that the phase diffusion is slow and the factor exp �if 0; tð Þ½ 	 does

not change much during the impulsive actions of a noise source. For this reason,

this factor can safely be absorbed into the noise terms, and we will ignore this

factor from now on. Since the function K(t) defined by the RHS of Equation 10.76b

and given by Equation 10.80 contains the operators âð0Þ, âyð0Þ, ĜmðtÞ, and ĜymðtÞ,

the LHS of Equation 10.79 contains âð0Þâyð0Þ
D E

, âyð0Þâð0Þ
D E

, ĜmðtÞĜymðtÞ
D E

, and

ĜymðtÞĜmðtÞ
D E

as non-vanishing noise correlations. Taking these into account and

noting Equations 10.2, 10.3, and 10.15 for the definition of the noise terms, we

construct the LHS of Equation 10.79 term by term.

First, we examine the terms of the form âyð0Þâð0Þ
D E

. The explicit expressions

for f̂ �t z; tð Þ are obtained from Equation 10.56. We have

K
ayðt

0ÞKaðt00Þ
D E

¼ 1

4e2
0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

�
X

i

1

2

* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oi

e1Lð1� Ksin2k2
1idÞ

s

â
y
i 0ð Þeþiðoi�oÞt0

� �e�iðk1i�kÞd � 1

r expð�2ikdÞ e
þiðk1i�kÞd

� �

�
X

j

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_oj

e1Lð1� K sin2 k2
1jdÞ

s

âj 0ð Þe�iðoj�oÞt00

� �eiðk1j�kÞd � 1

r expð2ikdÞ e
�iðk1j�kÞd

� ��
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�
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4e2
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� �2 g0
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�
�
�
�

�
�
�
�

2
1

4

X

j

_oj

e1L

1þ r

r

� �2

nj

� �
eþiðoj�oÞðt0�t00Þ

ð10:81Þ

where we have used Equation 9.4 for the correlation of the photon creation and

annihilation operators. The normalization factor for the universal mode

function has been canceled by the quantity in the absolute square with a

residual factor ð1þ rÞ2=r2. Now the number of thermal photons nj

� �
is a slowly

varying function of the universal mode frequency oj and may be taken out of

the summation together with oj itself. Then the summation over j can be

approximated as

X

j

_oj

e1L

1þ r

r

� �2

nj

� �
eþiðoj�oÞðt0�t00Þ

¼ _o
e1L

1þ r

r

� �2

noh i
ð1

0

L

c0p
eþiðoj�oÞðt0�t00Þdoj

’ _o
e1c0p

1þ r

r

� �2

noh i
ð1

�1
eþixðt0�t00Þdx

¼ _o
e1c0p

1þ r

r

� �2

noh i2pdðt0 � t00Þ

ð10:82Þ

where we have replaced oj by o, the center frequency of oscillation, and nj

� �
by

noh i. We have also set oj � o ¼ x and extended the lower limit of integration to

�N on the grounds that the important contributions come from the universal

modes that are within the constraint expressed by Equation 10.54 around the

cavity resonant frequency. Thus we have

K
ayðt

0ÞKaðt00Þ
D E

¼ 1

8e2
0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 _o
e1c0

1þ r

r

� �2

noh i
" #

dðt0 � t00Þ ð10:83aÞ

By a similar calculation we obtain, using Equation 9.4,

Kaðt0ÞK
ayðt

00Þ
D E

¼ 1

8e2
0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 _o
e1c0

1þ r

r

� �2

no þ 1h i
" #

dðt0 � t00Þ ð10:83bÞ
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These correlation functions satisfy the property in Equation 10.78. Adding these

two for the thermal noise, we have

Dfð0; tÞf g2
D E

t
¼
ðtþDt

t

ðtþDt

t
Ktðt0ÞKtðt00Þh idt0dt00

¼ 1

4e2
0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 _o
e1c0

1þ r

r

� �2

noh i þ 1
2


 �
jDtj

ð10:83cÞ

The quantum noise part described by the second through sixth lines in Equation

10.80 looks complicated. Thus we use the following abbreviations:

Am ¼
ipan0

2c1e1
e�ikðzmþdÞ exp

ð0

zm

dz
gN szh i

g0

� �

ð10:84aÞ

Bm ¼ �
ipan0

2c1e1
exp

ð0

�d
dz

gN szh i
g0

� �� �

eikðzmþdÞ exp

ðzm

�d
dz

gN szh i
g0

� �� �

ð10:84bÞ

We see that the constants Am and Bm are functions of zm and they are rapidly

oscillating in space with the exponential factors e�ikðzmþdÞ. Then the quantum noise

part of the phase change reads, from Equation 10.80,

dfqð0; tÞ
dt

¼ 1

2ie0

c1

2d

g0

g0 þ g0c

X

m

Am

ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00
(

þ
X

m

Bm

ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00
)

þH:C:

ð10:85Þ

Then the function for quantum noise Kq(t) defined in Equation 10.77 is the RHS of

this equation and the correlation function in Equation 10.79 becomes

Kqðt0ÞKqðtÞ
� �

¼ 1

4e2
0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

�
X

m0
A�m0

ðt0

0

e �iðo�n0Þ�gf g t0�t000ð Þ~Gym0 ðt000Þdt000
("*

þ
X

m0
B�m0

ðt0

0

e �iðo�n0Þ�gf g t0�t000ð Þ~Gym0 ðt000Þdt000
)

þH:C:

#

�
X

m

Am

ðt00

0

e iðo�n0Þ�gf g t00�t0000ð Þ~Gmðt0000Þdt0000
("

þ
X

m

Bm

ðt

0

e iðo�n0Þ�gf g t00�t0000ð Þ~Gmðt0000Þdt0000
)

þH:C:

#+

ð10:86Þ

Because of the correlation properties (Equations 9.5a and 9.5b) for the quantum

Langevin forces, the double sum reduces to a single sum and the double time
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integral reduces to a single time integral. For example, the portion that includes

A�m0Am Ĝym0 Ĝm

D E
reads, with suffix GyGA,

Kqðt0ÞKqðt00Þ
� �
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m
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2gt00 �1Þ=2g; t0 � t00
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¼ 1
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�
�

�
�
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�

2X

m

Amj j2Gm
21;12e �iðo�n0Þðt0�t00Þf g

�
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0þt00ÞÞ=2g; t0 � t00

ðegðt0�t00Þ �e�gðt
0þt00ÞÞ=2g; t0ot00

(

ð10:87Þ

The terms of expf�gðt0 þ t00Þg decay after some time and are not important in a

steady state, and so will be neglected. Similar results are obtained for

Kqðt0ÞKqðt00Þ
� �

GyGB
, Kqðt0ÞKqðt00Þ
� �

GGyA
, and Kqðt0ÞKqðt00Þ

� �

GGyB
. For the last two

correlation functions, the noise correlation constants are Gm
12;21 that come from the

correlation Ĝmðt0ÞĜymðt00Þ
D E

. The cross-terms involving A�m and Bm or Am and B�m

contain space integrals of rapidly oscillating functions and have no contributions.

Thus, summarizing the results, we have

Kqðt0ÞKqðt00Þ
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8
<

:

ð10:88Þ

Substituting this expression into Equation 10.77 we have for Dt W 0

ðtþDt

t

ðtþDt

t
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ð10:89aÞ
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If Dt o 0 we have
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ð10:89bÞ

Now we are assuming that the time variation of the field amplitude is much

slower than the dipole relaxation. Remember that we neglected s compared with gu
in Equation 10.53, implying that the time derivative can be ignored compared to gu.
In another words, the time scale of interest is much larger than the reciprocal

dipole damping rate. Thus we have

g Dtj j � 1 ð10:90Þ

Under this approximation only the terms of Dt in the curly brackets in Equations

10.89a and 10.89b remain. Thus

Dfð0; tÞf g2
D E

q
¼
ðtþDt

t

ðtþDt

t
Kqðt0ÞKqðt00Þ
� �

dt0dt00

¼ 1

4e2
0
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2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2X

m

Amj j2 þ Bmj j2

 �

� Gm
21;12 þGm

12;21

� � jDtj
g2 þ ðo� n0Þ2

ð10:91Þ

Summarizing, the contribution to the laser linewidth comes from the thermal

noise in the form of Equation 10.83c and from the quantum noise in the form of

Equation 10.91. The remaining task is to evaluate the sum over m in Equation 10.91,

where the coefficients Am and Bm are defined in Equations 10.84a and 10.84b. For

homogeneous broadening of the atoms and homogeneous pumping, the coeffi-

cients Gm
21;12 and Gm

12;21 are constants that are independent of the suffix m and, from

Equations 9.5a and 9.5b, the sum is simply

Gm
21;12 þGm

12;21 ¼ 2g ð10:92Þ
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Therefore we examine the sum

X

m

Amj j2 þ Bmj j2

 �

¼
X

m

ran0

2c1e1

� �2

exp

ð0

zm

dz
2ggN szh i

g2 þ ðo� n0Þ2

 !"

þ exp

ð0

�d
dz

2ggN szh i
g2 þ ðo� n0Þ2

 !( )

� exp

ðzm

�d
dz

2ggN szh i
g2 þ ðo� n0Þ2

 !( )#

ð10:93Þ

10.7.2

Evaluation of the Sum
P

m

�

9Am9
2þ 9Bm9

2

�

The evaluation of the above sum can be done by consulting the results of

Chapter 8, where the same laser as here was analyzed semiclassically in the

gain saturated regime. Note that szh i in Equation 10.93 depends on the field

amplitude through Equation 10.21a, which, in turn, depends on the location z.

First, for the spatial differential equation for the absolute square of the right- and

left-traveling field amplitudes, we again cite Equations 8.35a and 8.35b, which are,

respectively,

d=dzð Þ eþ zð Þj j2 ¼ a0 þ a0�

1þ Ez=s

�
�

�
�2

eþ zð Þj j2

d=dzð Þ e� zð Þj j2 ¼
� a0 þ a0�
 �

1þ Ez=s

�
�

�
�2

e� zð Þj j2

Because we are now assuming that the magnitude of the field amplitude is

constant in time, allowing only phase diffusion, we can use these equations here.

These are integrated as

eþ zð Þj j2 ¼ eþ z0ð Þj j2 exp

ðz

z0

a0 þ a0�

1þ Ez0=s

�
�

�
�2

dz0
 !

ð10:94aÞ

e� zð Þj j2 ¼ e� z0ð Þj j2 exp �
ðz

z0

a0 þ a0�

1þ Ez0=s

�
�

�
�2

dz0
 !

ð10:94bÞ

where, from Equation 8.23c, the power gain per unit length is

a0 þ a0� ¼ g

g0
s0N þ C:C: ¼ 2ggNs0

n0 � oð Þ2 þ g2
¼ 2gNs0

c1
ð10:94cÞ
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Comparing these with Equation 10.21a, that is,

smh i ¼ s0

1þ �E2
m

�
Esj j2

ð10:95Þ

we see that the integrand in Equation 10.93 is equal to the integrand on the RHS

of Equation 10.94a:

2ggN szh i
g2 þ ðo� n0Þ2

¼ a0 þ a0�

1þ Ez=s

�
�

�
�2

ð10:96Þ

Thus we have

exp

ð0

zm

dz
2ggN szh i

g2 þ ðo� n0Þ2

 !

¼ eþ 0ð Þj j2

eþ zmð Þj j2
ð10:97aÞ

and

exp

ðzm

�d
dz

2ggN szh i
g2 þ ðo� n0Þ2

 !

¼ eþ zmð Þj j2

eþ �dð Þj j2
ð10:97bÞ

Also, we have

exp

ð0

�d
dz

2ggN szh i
g2 þ ðo� n0Þ2

 !( )

¼ eþ 0ð Þj j2

eþ �dð Þj j2
ð10:97cÞ

Now, as can be seen from Equations 10.94a and 10.94b, the product of eþ zð Þj j2

and e� zð Þj j2 is a constant:

eþ zð Þj j2 e� zð Þj j2 ¼ C ð10:98aÞ

Since the field vanishes at the perfect conductor surface at z ¼ �d, Equation 10.15

shows that

eþ �dð Þ ¼ �e� �dð Þ ð10:98bÞ

Therefore, we can set

C ¼ eþ �dð Þj j2 e� �dð Þj j2 ¼ eþ �dð Þj j4 ð10:98cÞ

Thus we have

eþ 0ð Þj j2
.

eþ zmð Þj j2 ¼ eþ 0ð Þj j2 e� zmð Þj j2
.

eþ �dð Þj j4 ð10:99Þ
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Therefore Equation 10.93 becomes

X

m

Amj j2 þ Bmj j2

 �

¼ N
paj jn0

2c1e1

� �2 eþ 0ð Þj j2

eþ �dð Þj j2

�
ð0

�d
dzm

e� zmð Þj j2 þ eþ zmð Þj j2

eþ �dð Þj j2

 ! ð10:100Þ

In Appendix E we evaluate the integral in Equation 10.100. The result is

ð0

�d
dzm

e� zmð Þj j2 þ eþ zmð Þj j2

eþ �dð Þj j2

 !

¼ 2d
bc

gc
1þ D

1þ D
gðrÞ

� �

ð10:101Þ

where the function

gðrÞ ¼ 1

2

gc

bc

� �2

þ 1þ r2

4r

gc

bc
� 1

¼ 2
ln 1=rð Þ
1� r2ð Þ=r

� �2

þ
1
2 ln 1=rð Þ 1� r4ð Þ=r2f g

1� r2ð Þ=rf g2
� 1

ð10:102Þ

is monotonically decreasing from þN to 0 as r goes from 0 to 1, and

D ¼ s0 � s0
th

s0
th

ð10:103Þ

is the fractional excess atomic inversion. The factor bc ¼ ðc1=2dÞð1� r2Þ=2r was

introduced in Equation 6.35 and appeared also in Equations 9.92 and 9.108

concerning the integrated, absolute squared field strength of the cavity resonant

mode. We stress here that the integral would be simply 2d if the field distribution

were uniform, as in the quasimode analysis. For r-1 we can show that gc/bc-1

and g(r)-0.

Now Equation 10.100 reads, owing to Equation E.10,

X

m
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� �2 2d
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� �

ð10:104Þ

Returning now to Equation 10.91 and using Equation 10.92, we obtain

ðtþDt

t
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t
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Dtj j
ð10:105Þ

Thus the contribution from the quantum noise to the linewidth (FWHM) is

the quantity in the square bracket. We rewrite this equation using the
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expression for the threshold atomic inversion in Equation 10.48 and the

expression for bc:

Dfð0;tÞf g2
D E
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Dtj j
ð10:106Þ

10.7.3

The Linewidth and the Correction Factors

Adding the contributions from the thermal noise, Equation 10.83c, and from the

quantum noise, Equation 10.106, we have the total diffusion and the linewidth

(FWHM):
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ð10:107aÞ

Thus
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 �
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ð10:107bÞ

where in the second equality we have used the relation c0=c1 ¼ ð1þ rÞ=ð1� rÞ.
Here the real field amplitude e0 is given by the square root of Equation 10.49.

Now we try to express the linewidth in terms of the power output. In order to

obtain the output power dependence on the linewidth, we require the relation

between the amplitude e0 and the power output P. The power output per unit

cross-sectional area r may be related to the real amplitude e0 of the right-traveling

wave at the inner surface of the coupling interface by

P ¼ 2e0c0 Te0j j2 ¼ 2e0c0ð1þ rÞ2 e0j j2 ð10:108Þ

where we have put the absolute sign on the real amplitude for later comparison. In

the next section we will examine how the use of the transmission coefficient T in
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Equation 10.108 can be justified. Using this expression and noting that

e0=e1 ¼ c2
1=c2

0 ¼ ð1� rÞ2=ð1þ rÞ2, we have

Do ¼ 2_o
P

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 1� r2

2r

� �2

� noh i þ 1
2


 �
þ N

2Ns0
th

1þ D
1þ D

gðrÞ
� �� � ð10:109aÞ

Finally, using the definition bc ¼ ðc1=2dÞð1� r2Þ=2r (Equation 6.35) and Equa-

tions 10.52a and 10.52b for gu and g0c together with the expression (Equation 10.46)

for the steady-state oscillation angular frequency, we have

Do ¼ 2_og2
c

P

bc

gc

� �2 g2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

� noh i þ 1
2


 �
þN2 þN1

2Ns0
th

1þ D
1þ D

gðrÞ
� �� � ð10:109bÞ

We use Equations 10.48 and 10.49 to relate the power output and the fractional

excess atomic inversion as

P ¼ 2e0c0T2 eþ 0ð Þj j2
D E

¼ 2e1c1 Esj j2 ln
1

r

� �
s0

s0
th

� 1

� �

¼ Ps ln
1

r

� �

D

ð10:110Þ

where Ps ¼ 2e1c1 Esj j2 is the saturation power. Therefore, the fractional excess

inversion is proportional to the output power, and Equation 10.109b can be

rewritten as

Do ¼ 2_og2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

bc

gc

� �2

� 1

P
noh i þ 1

2


 �
þN2 þ N1

2Ns0
th

� �

þN2 þN1

2Ns0
th

gðrÞ
P þ Ps lnð1=rÞ

� � ð10:111Þ

This expression has two corrections compared to the conventional formula

obtained in Equation 4.82 and in Refs. [2] and [3]. One correction is the factor

KL ¼
bc

gc

� �2

¼ 1� r2ð Þ=2r

ln 1=rð Þ

� �2

ð10:112Þ

which also appeared in the previous chapter in the quantum linear gain analysis.

The other is the newly added term that is proportional to g(r). This term origi-

nates in the quantum noise contribution. Figures 10.1 and 10.2 depict the factor

KL ¼ ðbc=gcÞ2 and the function g(r), respectively, as functions of the reflec-

tion coefficient r. The first correction factor is a decreasing function of the re-

flection coefficient r: it decreases from þN to 1 as r goes from 0 to 1, and thus is
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important for small r. The second correction is important for large fractional

excess atomic inversion D, or small saturation power, and for small r. The function

g(r) decreases monotonically from þN to 0 as r goes from 0 to 1 as stated earlier.

The second correction brings to the laser linewidth a non-power-reciprocal part of

the linewidth. For the region of small power output such that P
 Ps lnð1=rÞ,
there appears a power-independent part of the linewidth as noticed by Prasad [4]

and by Van Exter et al. [5]. The quantity Ps lnð1=rÞ corresponds to the power output

Figure 10.2 The function g(r).

Figure 10.1 The longitudinal excess noise factor

KL ¼ ðbc=gcÞ2 as a function of the amplitude reflectivity r.
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for the case where the field amplitude squared is equal to the saturation parameter

9Es9
2, whence sss ¼ sth ¼ s0=2 and D¼ 1 (see Equation 10.95).

The form of the noise noh i þ 1
2þ ðN2 þ N1Þ=ð2Ns0

thÞ in Equation 10.111 looks

different from that in Equation 9.105, s2= sthsth0ð Þf g noh i þN2=ðNsthÞ, obtained

for the linear gain analysis. In the case of Equation 9.105, the above form appeared

directly from the normally ordered correlation functions in Equations 9.4a and

9.5a. In the case of Equation 10.111, the factors nch i þ 1
2 and N=ð2NsthÞ appeared

because of the symmetrically ordered correlation functions used for the evaluation

of the real phase of the field. In particular, the symmetric ordering appeared in

Equations 10.83a, 10.83b and 10.88 because of the Hermitian conjugate terms. So,

in this case of nonlinear gain analysis, the anti-normally ordered correlation

functions in Equations 9.4b and 9.5b were also taken into account. Except for

the factor s2= sthsth0ð Þ, the above two forms are the same since
1
2þ ðN2 þN1Þ=ð2NsthÞ ¼ N2=ðNsthÞ. It should be noted that different orderings of

the noise operators lead to almost the same form of the noise contributions.

10.8

The Field Outside the Cavity

Up to now we have considered the linewidth for the field at the output end of the

cavity. The output power dependence of the linewidth was derived through the ad
hoc Equation 10.108, expressing the assumed relation between the output power

and the field strength at the inner surface of the coupling interface. We will now

calculate the output field for homogeneously broadened atoms and for uniform

pumping, and examine how the ad hoc equation can be justified. Equations 10.1

and 10.8 give, in a similar manner as in Chapter 9,

Ê
ðþÞ
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þ
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m

paj j2n2
0

2_oe1c1
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�
ðt�t5n

0
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�
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0

e� in0þgð Þ t�t6n�t00ð ÞÊ
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zm; t
00ð Þŝmðt00Þdt00

�

ð10:113Þ

where, from Equation 10.9,

t5n ¼
z

c0
þ 2nd� zm

c1
; t6n ¼

z

c0
þ 2ndþ 2dþ zm

c1
ð10:114Þ
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Truncating the rapid oscillation with frequency o as in Equation 10.4,

ÊðþÞðz; tÞ ¼ ~EðþÞðz; tÞe�iot; F̂t z; tð Þ ¼ ~Ft z; tð Þe�iot;

F̂q z; tð Þ ¼ ~Fq z; tð Þe�iot
ð10:115Þ

we have

~E
ðþÞ

z; tð Þ ¼ ~Ft z; tð Þ þ ~Fq z; tð Þ þ
X

m
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ðþÞ

zm; t
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e� iðn0�oÞþgf g t�t6n�t00ð Þeiot6n ~E
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zm; t
00ð Þŝmðt00Þdt00

�

ð10:116Þ

Differentiating with respect to time t, we obtain

@

@t
þ g0

� �
~E
ðþÞ

z; tð Þ � ~Ft z; tð Þ � ~Fq z; tð Þ
n o

¼ Tg
X

m

X1

n¼0

�rð Þn eiot5n ~E
ðþÞ

zm; t� t5nð Þŝmðt� t5nÞ
n

� eiot6n ~E
ðþÞ

zm; t� t6nð Þŝmðt� t6nÞ
o

ð10:117Þ

where g0 ¼ gþ i v0 � oð Þ, the transmission coefficient T ¼ 2c0=ðc0 þ c1Þ ¼ 1þ r,

and the constant g is defined in Equation 10.12. We decompose the field into

right- and left-going waves, as in Equation 10.15, but with the wave constant

k0 ¼ o=c0:

~Eo z; tð Þ ¼ êþo z; tð Þ exp þioz=c0f g þ ê�o z; tð Þ exp �ioz=c0f g

~Fo q;t z; tð Þ ¼ f̂ þo q;t z; tð Þ exp þioz=c0f g þ f̂ �o q;t z; tð Þ exp �ioz=c0f g
ð10:118Þ

where the suffix o has been added to signify a quantity existing outside the cavity.

We note from Equation 10.114 that the right-hand member of Equation 10.117

yields only right-going waves. We have

@

@t
þg0

� �
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ð10:119Þ
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For the left-going waves we have

@

@t
þ g0

� �

ê�o z; tð Þ � f̂ �o t z; tð Þ � f̂ �o q z; tð Þ
n o

¼ 0 ð10:120Þ

We Laplace-transform these by the correspondences

êþo z; tð Þ ! L̂þo ðz; sÞ

ê�o z; tð Þ ! L̂�o ðz; sÞ

ûþo z; tð Þ ! V̂þo z; sð Þ

û�o z; tð Þ ! V̂�o z; sð Þ

ð10:121aÞ

where

û�o z; tð Þ ¼ f̂ �ot þ f̂ �oq ð10:121bÞ

We have from Equation 10.119
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ð10:122aÞ

where the factor r00ðsÞ ¼ �re2dðio�sÞ=c1 was defined in Equation 10.24. The initial

value êþo ðz; 0Þ � ûþo ðz; 0Þ vanishes, as can be seen by examining Equations

10.113 and 10.118 for t¼ 0. In the second expression, we have converted the

summation over m into an integration over zm. We have ignored the terms in

the integration that are rapidly oscillating with zm. We further rewrite Equation

10.122a as

sþ g0f g L̂þo z; sð Þ � V̂þo z; sð Þ
� 	

¼ TgN exp � z
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�
ð10:122bÞ
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We compare this equation with the right-going wave in Equation 10.23a for

inside the cavity at the coupling surface z¼�0:

sþ g0ð Þ L̂
þ
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Thus we have
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From Equation 10.120 we have

ðsþ g0Þ L̂�o ðz; sÞ � V̂�o ðz; sÞ
� 

¼ 0

or

L̂�o ðz; sÞ � V̂�o z; sð Þ ¼ 0 ð10:125Þ

We inverse Laplace-transform Equations 10.124 and 10.125 to obtain
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ð10:126Þ

ê�o z; tð Þ ¼ f̂ �o z; tð Þ ð10:127Þ

Here we show that, outside the cavity, the only relevant noise source is the

thermal noise. In fact, if we use the expansion in Equations 10.8 and 10.9 for

outside the cavity, we have from Equation 10.62
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¼ f̂ þoq ðz;tÞe�ioðt�z=c0Þ ð10:128Þ
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This contains only right-going waves and has no left-going component, as we have

indicated in the last line.

Next, we examine the quantum noise that is transmitted from inside to outside

the cavity. From Equation 10.60a the right-going wave inside the cavity at the

coupling surface is, recovering the oscillation at the angular frequency o,
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ð10:129Þ

where Equations 10.57c and 10.52a were used for the constant h and gu. The values

of t1n and t3n were substituted from Equation 10.7. Comparison of Equations

10.128 and 10.129 shows that

f̂ þoq ðz; tÞ ¼ Tf̂ þq ð�0; t� z=c0Þ exp iod=c1f g ð10:130Þ

Therefore, concerning the quantum noise, the first and the last terms in

Equation 10.126 cancel. Thus the ‘‘raw’’ quantum noise disappears outside the

cavity – it appears only as an amplified noise that constitutes a part of transmitted

internal light field.

Next, we examine the case of thermal noise in Equation 10.126. From Equation 10.56

the right- and left-going waves inside the cavity are

f̂ �t z; tð Þ ¼ �
X

j
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s
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while the right- and left-going waves outside the cavity are, using Equations 10.2

and 1.62b,
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The third term in Equation 10.126 is, using f̂ þt in Equation 10.131,
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ð10:133Þ

Thus, concerning the thermal noise, the sum of the first and the third terms in

Equation 10.126 is
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Then, noting that T¼ 1þr and that k1j=k0j ¼ c0=c1 ¼ ð1þ rÞ=ð1� rÞ, it can be

shown that the quantity in the large round bracket is
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where r0 ¼ �r. Thus
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From Equation 10.132 this quantity describes a right-going wave that is just the

left-going wave outside the cavity f̂ �ot z; tð Þ reflected at the coupling surface with
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the reflection coefficient r u ¼ �r for the wave incident on the coupling surface

from outside. Thus the net result for Equation 10.126 is

êþo z; tð Þ ¼ Teikdêþ �0; t� z

c0

� �

þ r0 f̂ �ot þ0; t� z

c0

� �

ð10:137Þ

This shows that, also for thermal noise, the ‘‘raw’’ thermal noise inside the

cavity does not appear outside the cavity. Consequently, Equation 10.137 together

with Equation 10.127 gives the final result for the expression for the laser field

outside the cavity. Since the second term in Equation 10.137 represents the am-

bient thermal noise existing outside the cavity, the relevant output field is given by

the first term in the equation and is a copy of the field at the inner surface of the

coupling interface at z¼ 0:

êþo z; tð Þ ¼ Teikdêþ �0; t� z

c0

� �

ð10:138Þ

Thus the phase fluctuation and the linewidth should be the same as was given for

the field at the inner surface of the coupling interface. The formal expression for the

latter field is given by Equation 10.69 and the linewidth due to phase diffusion for

this field is given by Equations 10.107b and 10.109a. In going from Equation 10.107b

to 10.109a we have expressed in Equation 10.108 the field amplitude outside the

cavity as eo ¼ Te0, where the real amplitude e0 was defined by Equation 10.72 as

êþ 0; tð Þ ¼ e0 exp if 0; tð Þ½ 	. On the other hand, Equation 10.138 gives, except for the

fluctuating phase, the constant part of the amplitude outside the cavity as

eo ¼ Teikde0 ð10:139Þ

This does not affect the evaluation of the output power in Equation 10.108.

Therefore, the output power dependence of the linewidth of the output field is the

same as that in Equations 10.109b and 10.111, as expected.

We note, however, that this equivalence is not true if the output field is not

a laser field but a minute field from inside the cavity, because this time the

thermal field expressed by the second term in Equation 10.137 cannot be ignored.

An explicit consequence of including this second term will be described in

Section 15.1.1.1.

We note that for the expression in Equation 10.138 for the field outside the

cavity, the phase diffusion along the distance on the laser axis can likewise be

evaluated as the temporal diffusion. It is easy to see that the general expression for

the diffusion in this case reads (see Equation 10.109b)

Dfðz; tÞf g2
D E

¼ 2_ocb
2
c

P

g2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

� no þ 1
2

� �
þ N2 þN1

2Ns0
th

1þ D
1þ D

gðrÞ
� �� �

Dt� Dz

c0

�
�
�
�

�
�
�
�

ð10:140Þ
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11

Analysis of a One-Dimensional Laser with Two-Side Output

Coupling: The Propagation Method

In the previous chapter, we have extensively developed the rigorous method to

evaluate the phase diffusion of a one-dimensional laser with output coupling

starting from the full coupled equations of motion for the field and for the atomic

dipoles. The atomic inversion was assumed to be constant in time but was

dependent on the field strength. The detailed analysis in the previous chapter

indicates the existence of a simplified, ad hoc method that relies on the existence of

two counter-propagating waves inside the cavity and on the optical rules applied to

them at the boundaries. We name this method the propagation method or

propagation theory. This method also relies on the simplified correlation functions

for the noise sources. By limiting the number of traveling waves to two, and

allowing for their reflection and transmission rules at the two boundaries, one can

follow the development of the field during one round-trip time. On the basis of

this time development, one will obtain a diffusion equation for the phase of the

field, which can be evaluated rather easily by use of simplified models of the noise

sources. The essence of the contents of this chapter was published in Ref. [1] using

a simpler cavity model.

11.1

Model of the Laser and the Noise Sources

The model cavity is depicted in Figure 11.1. The cavity extends from z¼ 0 to z¼ d.

Infinitely thin mirrors M1 and M2 are attached to the cavity ends. The dielectric

constant and the velocity of light inside the cavity are, respectively, e1 and c1. The

amplitude reflection coefficients of mirrors M1 and M2 are r1 and r2, respectively,

for the wave incident from inside the cavity. The amplitude transmission coeffi-

cients for mirrors M1 and M2 for the waves incident from inside are, respectively,

T1 and T2. The amplitude transmission coefficients for the waves incident from

outside are T 01 and T 02, respectively. The outside regions z o 0 and d o z are

vacuum. The dielectric constant and the velocity of light for the outside regions

are e0 and c0, respectively. A gain medium made up of gain atoms of uniform
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Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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density N exists in the region 0 o z o d and the medium is uniformly pumped.

The atoms are two-level atoms with angular transition frequency n0 and homo-

geneous full width at half-maximum (FWHM) 2g.

We recall from Equation 10.69 that the slowly varying field amplitude at the

output surface of the one-sided cavity has its time derivative in the form of a sum

of the thermal and quantum contributions. A concise interpretation of the thermal

contribution was that the quantity in the curly bracket in the first line in Equation

10.69 is the thermal noise that penetrated into the cavity from outside and

amplified through one round trip in the cavity.

For the quantum part of the time derivative of the slowly varying field amplitude

at the inner surface of the coupling interface, there was a sum of the right-going

and left-going quantum noise fields, that is, the quantum noise propagated to the

right to the coupling surface with corresponding amplification and phase shift,

and the quantum noise propagated first to the left and reflected by the perfect

conductor mirror and then propagated to the coupling surface. The quantum

noise field is generated within the cavity from the laser active atoms and amplified

before it reaches the output mirror.

Here we are considering an asymmetric two-sided cavity with mirrors M1 and

M2, in contrast to the one-sided cavity considered in Chapter 10. We assume that

the same interpretation for the time derivative of the fields at the respective ends of

the cavity is applicable in principle, except that the thermal noise penetrates into

the cavity from both sides of the cavity instead of from the single side. Thus,

according to the arguments leading to Equation 10.71, we assume that two ther-

mal noise sources of amplitudes f R;L
t are penetrating from outside to inside the

cavity. The waves f R
t and f L

t come from the right-hand and left-hand free space

(vacuum), respectively. The thermal part of the time derivative of the slowly

varying field amplitude at the inner surface of mirror M1 (M2) will be the sum of

the thermal fields penetrating into the cavity from both sides and reaching the

mirror M1 (M2) with amplification during one round trip. The wave f R
t ðþ0; tÞ

corresponds to f̂ �o t ðþ0; tÞ and its correlation properties can be obtained by use of

the expression for f̂ �o t ðz; tÞ in Equation 10.70. For the quantum noise, the inter-

pretation of the contributions from right- and left-going waves remains the same,

except that the perfect conductor mirror is replaced by a mirror of finite reflectivity.

With the above considerations in mind, we construct the noise models. The

thermal noise has the correlation properties as obtained using Equation 10.70.

Figure 11.1 The model of an asymmetric two-sided cavity.

212 | 11 Analysis of a One-Dimensional Laser with Two-Side Output Coupling: The Propagation Method



Noting the fact that the absolute square of the quantity in the large round bracket

in Equation 10.70 for z¼ 0 is equal to 1� K sin2 k1jd times n2=4, where n is the

refractive index, converting the summation over j to an integration with the density

of modes L=ðc0pÞ, extending the lower limit of integration from �o to �N, and

finally using Equation 2.8, we obtain, for example,

f̂ Ry
t ðtÞf̂ R

t ðt0Þ
D E

¼
X

j

X

i

_
ffiffiffiffiffiffiffiffiffiffiojoi
p

2

2

e1L

n2

4
âyj ð0Þâið0Þ
D E

eiðoj�oÞt�iðoi�oÞt0

¼
X

j

_oj

2

2

e1L

n2

4
nj

� �
eiðoj�oÞðt�t0Þ

¼
ð1

�1
doj

L

c0p
_oj

2

2

e1L

n2

4
nj

� �
eiðoj�oÞðt�t0Þ

’ _o
4pe0c0

no2pdðt� t0Þ

ð11:1aÞ

where we have put oj nj

� �
outside the integral sign as ono, noting that the

important contributions come from around o. Thus, with similar considerations,

we have

2e0c0 f̂ Ry
t ðtÞf̂ R

t ðt0Þ
D E

¼ no_odðt� t0Þ

2e0c0 f̂ R
t ðtÞf̂

Ry
t ðt0Þ

D E
¼ ðno þ 1Þ_odðt� t0Þ

ð11:1bÞ

2e0c0 f̂ Ly
t ðtÞf̂ L

t ðt0Þ
D E

¼ no_odðt� t0Þ

2e0c0 f̂ L
t ðtÞf̂

Ly
t ðt0Þ

D E
¼ ðno þ 1Þ_odðt� t0Þ

ð11:1cÞ

Here we have used the thermal field function for the one-sided cavity and

applied the resulting properties to the thermal noise on both sides of the two-sided

cavity. This may be justified because of the quite general structure of the corre-

lation functions, which do not depend on the structure of the cavity. (The above

derivation of Equations 11.1b and 11.1c can also be deduced if we follow the cal-

culations from Equations 10.80 to 10.83, since the thermal noise in Equation 10.80

(the first large curly bracket) is proportional to f̂ �o t ðþ0; tÞ by Equation 10.71, which

corresponds to f R
t ðþ0; tÞ.)

The factor 1 on the right-hand side (RHS) of Equations 11.1b and 11.1c, asso-

ciated with the anti-normally ordered products of the noise operators, represents

the vacuum fluctuations. The coefficient no is the thermal photon number per

mode of free vacuum at the angular frequency o. Equations 11.1b and 11.1c imply

that the delta-correlated normally ordered noise power in the free field is equal to

the energy of photons present multiplied by a delta function of time, which has the

dimension of ‘‘per second.’’

As for the quantum noise sources, comparison of Equations 10.89a and 10.89b

to Equation 10.91 shows that we may have delta-correlated noise forces under the
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condition of Equation 10.90, that is, the noise is delta correlated at a time scale that

is larger than the reciprocal atomic linewidth. In Equation 10.69, the exponential

factors with integral of the atomic inversion are the amplification factors for the

noise fields. In the same equation, the integral containing the quantum noise ~Gm

may be evaluated, under the above condition expressed by Equation 10.90, as

ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~GmðtÞdt00 ¼ ~GmðtÞ
1

g� iðo� n0Þ
ð11:2Þ

Taking this into account, we assume that the quantum noise field f̂mðtÞ asso-

ciated with atom m has the form

f̂mðtÞ ¼
ipan0

2c1e1

~GmðtÞ
g� iðo� n0Þ

ð11:3Þ

which has the property (see Equations 9.5a, 9.5b, and 10.92)

2e1c1 f̂ ymðtÞf̂m0 ðt0Þ
D E

þ f̂m0 ðtÞf̂ ymðt0Þ
D En o

¼ ð2g_o=c1Þdmm0dðt� t0Þ ð11:4Þ

where 2g ¼ g paj j2n2
0= e1_o g2 þ ðn0 � oÞ2

n oh i
is the stimulated transition rate per

atom per unit density of photons, that is, the spontaneous emission rate per atom

(see Equation 4.14). The RHS of Equation 11.4 may be interpreted as the delta-

correlated noise intensity with instantaneous intensity 2g_o=c1.

11.2

The Steady State and the Threshold Condition

In the previous section, we have defined the noise sources and their correlation

functions. Before we proceed to evaluate the effect of the accumulated noise on

the field amplitude, we examine the steady state of the two-sided cavity laser in the

saturated gain regime ignoring noise. In this section, we ignore the operator

aspect of the waves and treat them as classical quantities. We assume an above-

threshold oscillation with well-stabilized amplitude. If we write the slowly varying

amplitudes of the right- and left-going waves inside the cavity as eþðzÞ and e�ðzÞ,
respectively, they satisfy the differential equations (see Equations 8.35a and 8.35b

as well as Equation 10.94c)

d

dz
eþðzÞj j2 ¼ 2Re aðzÞf g eþðzÞj j2

d

dz
e�ðzÞj j2 ¼ �2Re aðzÞf g e�ðzÞj j2

ð11:5Þ

with the boundary conditions
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eþð0Þj j2¼ r1j j2 e�ð0Þj j2

e�ðdÞj j2¼ r2j j2 eþðdÞj j2
ð11:6Þ

The amplitude gain per unit length is given as

aðzÞ ¼ g

g0
NsðzÞ ð11:7Þ

where g is given by Equation 10.12 and (see Equations 8.16 and 8.22)

sðzÞ ¼ s0

1þ fjeþðzÞj2 þ je�ðzÞj2g=jEsj2
ð11:8Þ

Also, we have the rule

jeþðzÞj2je�ðzÞj2 ¼ const ¼ C ð11:9Þ

For the steady state, the round-trip gain is compensated for by the mirror losses.

We write the steady-state condition as

jr1j2jr2j2 exp

ðd

0

4Re aðzÞf gdz ¼ 1 ð11:10Þ

Some simple rules concerning the absolute squared field amplitudes je�ðzÞj2 will

be given in Appendix F.

We define a neutral point zc where

jeþðzcÞj2 ¼ je�ðzcÞj2 ¼
ffiffiffiffi
C
p

ð11:11Þ

As in Chapter 10 we will later need the integrated local intensity, which is the sum

of the absolute squared eþðzÞ and e�ðzÞ. That is, we explore

I ¼
ðd

0

jeþðzÞj2 þ je�ðzÞj2
n o

dz ð11:12Þ

We write

jeþðzÞj2 þ je�ðzÞj2 ¼ X ð11:13Þ

Then, because of Equation 11.9, we have

jeþðzÞj2 � je�ðzÞj2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p

ð11:14Þ

The plus sign applies for z W zc and the minus sign for z o zc. Then Equation 11.5

yields

d

dz
X ¼ �2Re aðzÞf g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � 4C
p

¼ �2Re a0
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � 4C
p

1þ ðX=jEsj2Þ

ð11:15Þ

where the linear, unsaturated amplitude gain per unit length is
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a0 ¼ gNs0

g0
ð11:16Þ

In Appendix F, the integral I in Equation 11.12 is evaluated using Equation

11.15. Here we determine the constant C by integrating Equation 11.15. From

Equation 11.15 we have

2Re a0
� 	

dz ¼ �f1þ ðX=jEsj2ÞgdX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p ð11:17Þ

Integrating from z¼ 0 to z¼ d, we have

2Re a0
� 	

d ¼ �
ðXðzcÞ

Xð0Þ

f1þ ðX=jEsj2Þg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p dXþ

ðXðdÞ

XðzcÞ

f1þ ðX=jEsj2Þg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p dX

¼ � ln X þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p�

�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

XðzcÞ

Xð0Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p

jEsj2

�
�
�
�
�

XðzcÞ

Xð0Þ

þ ln X þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p�

�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

XðdÞ

XðzcÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p

jEsj2

�
�
�
�
�

XðdÞ

XðzcÞ

¼ ln
Xð0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ð0Þ � 4C

p� 	
XðdÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðdÞ � 4C

p� 	

XðzcÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðzcÞ � 4C

p� 	2

þ 1

jEsj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ð0Þ � 4C

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðdÞ � 4C

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðzcÞ � 4C

pn o

ð11:18Þ

We note that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ð0Þ � 4C

p
¼ je�ð0Þj2 � jeþð0Þj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðdÞ � 4C

p
¼ jeþðdÞj2 � je�ðdÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2ðzcÞ � 4C

p
¼ jeþðzcÞj2 � je�ðzcÞj2 ¼ 0

ð11:19Þ

Thus we have

2Re a0
� 	

d ¼ ln
2je�ð0Þj2 � 2jeþðdÞj2

4C

þ 1

jEsj2
je�ð0Þj2 � jeþð0Þj2 þ jeþðdÞj2 � je�ðdÞj2
n o ð11:20Þ

Substituting Equations F.6 and F.7 in Appendix F into Equation 11.20, we have
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2Re a0
� 	

d ¼ ln
1

jr1jjr2j
þ

ffiffiffiffi
C
p

jEsj2
1

jr1j
� jr1j þ

1

jr2j
� jr2j

� �

ð11:21Þ

Therefore, we have

ffiffiffiffi
C
p
¼ je�ðzcÞj2

¼ jEsj2 2Re a0
� 	

d� ln
1

jr1jjr2j

� �
jr1jjr2j

jr1j þ jr2jð Þ 1� jr1jjr2jð Þ ð11:22Þ

The threshold condition is obtained by setting C¼ 0. Thus

Re a0
th

� 	
¼ 1

2d
ln

1

jr1jjr2j
ð11:23Þ

or, by Equation 11.16,

ggNs0
th

g2 þ ðn0 � oÞ2
¼ 1

2d
ln

1

jr1jjr2j
ð11:24Þ

If we define the cavity decay constant gc for the present cavity model as

gc ¼
c1

2d
ln

1

jr1jjr2j
ð11:25Þ

and assume the usual frequency pulling described by Equation 10.46, then Equation

11.24 reduces to the form of Equation 10.48 (note that g ¼ n2
0jpaj2=ð2_oe1c1Þ from

Equation 10.12):

s0
th ¼ �sss ¼

2_oe1

n2
0jpaj2N

ggcð1þ d2Þ ð11:26aÞ

This equation can be recast in the form

Ngs0
th ¼ gc ð11:26bÞ

That the threshold atomic inversion s0
th in Equation 11.26a is equal to the space-

averaged steady-state inversion �sss ¼ ð1=dÞ
Ð d

0 sðzÞdz can be shown as follows. We

use Equation F.1a with z0 ¼ d and z¼ 0 to get jeþðdÞj2 ¼ jeþð0Þj2 exp
Ð d

0 2Re aðzÞdz
and je�ðdÞj2 ¼ je�ð0Þj2 exp

Ð d
0 f�2Re aðzÞgdz. These two equations and Equation F.5

yield exp
Ð d

0 2Re aðzÞdz ¼ 1=ðjr1jjr2jÞ, from which the second equality in Equation

11.26a follows if we use Equation 11.7, the expression for g given above Equation

11.26a, and that for gc in Equation 11.25.

The cavity resonant frequency oc for the present cavity model will be discussed

below.
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11.3

The Time Rate of the Amplitude Variation

Next, we consider the time rate of change of the field amplitude corresponding to

Equation 10.69 used for the case of a single-sided cavity. Here, we cite Equation 10.69

again to derive assistance for further consideration:

dêþð0; tÞ
dt

¼ c1

2d

g0

g0 þ g0c
�f̂ þt ð0; tÞ þ

1

r expð2ikdÞ f̂
�

t ð0; tÞ
�

þ ipan0

2c1e1
e�ikd

X

m

e�ikzm exp

ð0

zm

dz
gN szh i

g0

� �� �ðt

0

e iðo�n0Þ�gf g t�t00ð Þ

� ~Gmðt00Þdt00 � ipan0

2c1e1
e�ikd exp

ð0

�d
dz

gN szh i
g0

� �� �

�
X

m

eikðzmþ2dÞ exp

ðzm

�d
dz

gN szh i
g0

� �� �ðt

0

e iðo�n0Þ�gf g t�t00ð Þ~Gmðt00Þdt00
#

The field amplitude is now an operator. We have already commented upon the

amplified thermal and quantum noise. Here we note the two factors at the front of

the right-hand member of this equation. The first factor is c1=ð2dÞ. This is the

reciprocal round-trip time. So the quantity in the large square bracket represents

the contributions to the amplitude change that occur in one round-trip time. This

factor originates in Equation 10.50b. Here, we cite Equation 10.50b again for

convenience:

1� r0 exp 2

ð0

�d
dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

¼ 2d=c1

s0 þ g0
fgþ gc þ iðv0 þ oc � 2oÞgðs� s0Þ

where r0 ¼ �r expð2ikdÞ in the single-sided model. The second factor is

g0=ðg0 þ g0cÞ. This factor also originates in the above equation (Equation 10.50b)

under the assumption of a slower variation of the field envelope function than the

natural dipolar decay, that is, under the assumption that @=@tj j 
 g. Thus,

Equation 10.50b determines the pole in the s-plane.

We want to rewrite Equation 10.50b so as to take into account the two-sided feature

of the present cavity model. We remember that the factor�r represents the product

of r and�1, the amplitude reflection coefficients at the right and left end surfaces of

the single-sided cavity, respectively. Thus we may replace r0 in Equation 10.50b

by r1r2 expð2ikdÞ. Also, the range of spatial integration should be the region

0 � z � d instead of �d � z � 0 of the previous chapter. Thus, for a pole s¼ s0, we

should have
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1� r1r2 expð2ikdÞ exp 2

ðd

0

dz0 � s

c1
þ gN sz0h i

sþ g0

� �� �

¼ 0 ð11:27Þ

This can be rewritten as

1� exp �2mipþ lnðr1r2Þ þ 2ikd� 2sd

c1
þ 2

gN

sþ g0

ðd

0

sz0h idz0
� �

¼ 0 ð11:28Þ

Now if we define the cavity decay constant gc as in Equation 11.25 and newly

define the cavity resonant angular frequency oc as

oc ¼
c1

2d
2mp� argðr1r2Þf g ð11:29Þ

then Equation 11.28 may be rewritten as

1�exp �2d

c1
sþ gcþ iðoc�oÞf gþ 2gN

sþgþ iðn0�oÞ

ðd

0

sz0h idz0
� �

¼ 0 ð11:30Þ

where we have used Equation 10.52a for g0. The pole is the value of s that makes

the quantity in the square bracket null. Thus

s0 þ gc þ iðoc � oÞf g s0 þ gþ iðn0 � oÞf g � c1

2d
2gN

ðd

0

sz0h idz0 ¼ 0 ð11:31Þ

Ignoring the square of s0, we have

s0 ¼

�
ggcþ v0�oð Þ o�ocð Þ� c1=dð Þ

Ð d
0 gN sz0h idz0 � i g o�ocð Þþ gc o� v0ð Þf g

gþ gc� i v0þoc� 2oð Þ ð11:32Þ

just as in Equation 10.50c. Then the left-hand side (LHS) of Equation 11.30 can be

approximated as

1� exp � 2d

c1
sþ gc þ iðoc � oÞf g þ 2gN

sþ gþ iðn0 � oÞ

ðd

0

sz0h idz0
� �

¼ 2d

c1

g0 þ g0c
sþ g0

� �

ðs� s0Þ ’
2d

c1

g0 þ g0c
g0

� �

ðs� s0Þ
ð11:33Þ

where

g0 ¼ gþ iðn0 � oÞ; g0c ¼ gc þ iðoc � oÞ ð11:34Þ

Thus, just as in Equation 10.69, the reciprocal of the quantity ðg0 þ g0cÞ=g0
appears in the time derivative of the slowly varying field amplitude. The physical

meaning of this quantity, a bad cavity effect, will be discussed in the next chapter.

Note that the cavity decay constant gc and the cavity resonant angular frequency oc

have been newly defined in Equations 11.25 and 11.29, respectively.
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We evaluate the accumulated noise at the inner surface of the coupling mirror

M2. That for mirror M1 can be treated similarly. For the slowly varying amplitude

of the right-traveling wave just inside the mirror M2, the time rate of change will

be given as

dêþðd� 0; tÞ
dt

¼ c1

2d

g0

g0 þ g0c
F̂t þ F̂q

� �
ð11:35Þ

where F̂t and F̂q are the sums of the thermal and quantum noise field operators,

respectively, which have emerged during the last round-trip time and reached the

inner surface of the mirror M2. The reason for the absence in Equation 11.35 of noise

contributions that were generated in the past older than one round trip is that any

one round trip in the past yields a net amplification (amplification plus cavity loss) of

unity and does not contribute to the change in the field amplitude. As we saw in the

last chapter, the noise sources are amplified basically with the same rate as for the

coherent laser field under the assumption of time-independent atomic inversion.

Now the amplified thermal field is given by

F̂t ¼ T 02 r1 GtR e2ikdf̂ R
t dþ 0; t� 2d

c1

� �

þT 01 GtL eikdf̂ L
t �0; t� d

c1

� �� �

ð11:36Þ

Here e2ikd and eikd are phase shifts associated with respective propagations. The

amplifying constants GtR and GtL are determined as follows. The steady-state

amplitude for the oscillating laser field is maintained under the condition given by

Equation 11.27 with s¼0. Thus

1� r1r2 expð2ikdÞ exp 2

ðd

0

dz0
gN sz0h i

g0

� �� �

¼ 0 ð11:37Þ

We define the single path gain Gs as

Gs � exp

ðd

0

aðz0Þdz0
� �

ð11:38Þ

where a(z) is given by Equation 11.7. This gain satisfies

1� r1r2 expð2ikdÞG2
s ¼ 0 ð11:39Þ

Then we have

GtR ¼ G2
s ¼ expð�2ikdÞ=ðr1r2Þ

GtL ¼ Gs ¼ expð�ikdÞ= ffiffiffiffiffiffiffiffi
r1r2
p ð11:40Þ

For the amplified quantum noise we have
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F̂q ¼
X

m

f̂m t� d� zm

c1

� �

gmReikðd�zmÞ
�

þ f̂m t� dþ zm

c1

� �

r1gmLeikðdþzmÞ
� ð11:41Þ

where gmR is the amplification associated with the path from z¼ zm to z¼ d and

gmL stands for the amplification associated with the path from z¼ zm to z¼ 0

and then to z¼ d:

gmR ¼ exp

ðd

zm

aðzÞdz

gmL ¼ Gs exp

ðzm

0

aðzÞdz

ð11:42Þ

The factors eikðd�zmÞ represent the phase shifts associated with respective propaga-

tions. The quantum noise F̂q may have a constant phase factor corresponding

to e�ikd in Equation 10.69 depending on the definition of êþðz; tÞ compared to

ÊðþÞðz; tÞ, but it does not contribute to the phase diffusion and will be ignored.

11.4

The Phase Diffusion of the Output Field

The output field êþo;2ðz; tÞ coming from êþðd� 0; tÞ and coupled out of the mirror

M2 is

êþo;2ðz; tÞ ¼ T2 êþ d� 0; t� z� d

c0

� �

ð11:43Þ

As in the previous chapter, we assume a well-stabilized field amplitude e0,2 and

examine the diffusion of the phase of the field êþo;2ðz; tÞ. We set

êþo;2ðz; tÞ ¼ e0;2 exp if2ðz; tÞf g ð11:44Þ

Then we have

@

@t
f2ðz; tÞ ¼ �

ie�if2

2e0;2

@

@t
êþo;2ðz; tÞ þH:C: ð11:45Þ

Using Equation 11.35 we obtain

@

@t
f2ðz; tÞ ¼ �

ie�if2

2e0;2

c1

2d

g0

g0 þ g0c
T2 F̂t þ F̂q

� �
þH:C: ð11:46Þ

where F̂t and F̂q are given by Equations 11.36 and 11.41, respectively, with the time

being replaced by t� ðz� dÞ=c0. Now the phase change Df2 during time t to tþDt
is given by the integral over this time region of the RHS of Equation 11.46. As in

the previous chapter, we assume that the phase f2 is slowly changing on the time

scale of the correlation times of F̂t and F̂q, so that the factor e�if2 can be absorbed

11.4 The Phase Diffusion of the Output Field | 221



into the noise forces without affecting their delta-correlated characteristics

described in Equations 11.1b and 11.4. Thus we see that the ensemble-averaged

value of Df2 squared is proportional to Dt. Using Equations 11.36 and 11.41

together with Equations 11.1b and 11.4 we have

Df2ðz; tÞf g2
D E

¼

� i

2e0;2

c1

2d

g0

g0 þ g0c
T2 F̂tðt00Þ þ F̂qðt00Þ
n o

þH:C:

� ��

dt0dt00

¼ 1

4 e0;2

�
�

�
�2

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

T2j j2 T 02 r1 GtR

�
�

�
�2þ T 01 GtL

�
�

�
�2

� � _oð2no þ 1Þ
2e0c0

�

þ
X

m

gmRj j2þ r1gmLj j2

 �2g_o

2e1c2
1

�

Dtj j

ð11:47Þ

Here we have assumed that f̂ R
t and f̂ L

t have no mutual correlation. Also, we have

ignored the cross-terms of gmR and gmL because the phase factors eikðd�zmÞ e�ikðdþzmÞ

and eikðdþzmÞ e�ikðd�zmÞ associated with these terms will yield vanishing results when

summed over m.

The summation over m in Equation 11.47 can be converted to the spatially

integrated field intensity as follows. Now by Equations 11.42, F.1a, 11.9, and F.7

gmRj j2 ¼ exp

ðd

zm

2Re aðzÞf gdz ¼ eþðd� 0Þj j2

eþðzmÞj j2

¼ eþðd� 0Þj j2

C
e�ðzmÞj j2¼ e�ðzmÞj j2

jr2j
ffiffiffiffi
C
p

ð11:48Þ

Also, using Equations 11.42, F.1a, F.6, and 11.40, we have

r1gmLj j2 ¼ r1Gsj j2exp

ðzm

0

2Re aðzÞf gdz ¼ r1Gsj j2 eþðzmÞj j2

eþð0Þj j2

¼ r1Gsj j2 eþðzmÞj j2

jr1j
ffiffiffiffi
C
p ¼ eþðzmÞj j2

jr2j
ffiffiffiffi
C
p

ð11:49Þ

Combining Equations 11.48 and 11.49 we have

X

m

gmRj j2þ r1gmLj j2

 �

¼ 1

jr2j
X

m

1
ffiffiffiffi
C
p eþðzmÞj j2þ e�ðzmÞj j2
� �

¼ N

jr2j
I
ffiffiffiffi
C
p ð11:50Þ

where, in third term, we have rewritten the sum using the definition of the

integrated intensity I in Equation 11.12. The quantity I=
ffiffiffiffi
C
p

is evaluated in

Appendix F.

Using Equation 11.40 in the quantity in the round bracket for the thermal noise

in Equation 11.47 we obtain
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T 02 r1 GtR

�
�

�
�2þ T 01 GtL

�
�

�
�2¼ 1

r2j j
T 02
�
�

�
�2

r2j j
þ

T 01
�
�

�
�2

r1j j

 !

ð11:51Þ

In Appendix G we shall discuss a general multilayered mirror and show that

T 01;2

�
�
�

�
�
�
2

r1;2

�
�

�
� ¼

1

n

1

r1;2

�
�

�
�� r1;2

�
�

�
�

 !

ð11:52aÞ

and that

T1;2

�
�

�
�2

r1;2

�
�

�
� ¼ n

1

r1;2

�
�

�
�� r1;2

�
�

�
�

 !

ð11:52bÞ

where n (¼
ffiffiffiffiffiffiffiffiffiffi
e1=e0

p
) is the refractive index of the material inside the cavity.

11.5

The Linewidth for the Nonlinear Gain Regime

Thus the linewidth becomes, from Equation 11.47,

Doð Þ2 ¼
Df2 z; tð Þf g2

D E

Dtj j

¼ 1

4 e0;2

�
�

�
�2

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

n
1

r2j j
� r2j j

� �
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� �

� 1

n

_o 2no þ 1ð Þ
2e0c0

�

þ Nd

ln 1= r1j j r2j jð Þ 1þ D
1þ D

g r1j j; r2j jð Þ
� �

2g_o
2e1c2

1

�

¼ 1

4 e0;2

�
�

�
�2

_o
e0c0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2
1

r2j j
� r2j j

� �
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ

r1j j r2j j

� no þ
1

2

� �

þ N

2Ns0
th

1þ D
1þ D

g r1j j; r2j jð Þ
� �� �

ð11:53Þ

where we have used Equation F.18 for I=
ffiffiffiffi
C
p

. Also, we have used Equations 11.25

and 11.26b in the last equality. In addition, we have used the relation

n=ðe1c1Þ ¼ 1=ðe0c0Þ. Here gðjr1j; jr2jÞ is given as

g r1j j; r2j jð Þ

¼
2 ln 1= r1j j r2j jð Þ½ 	2þ 1

2 ln 1= r1j j r2j jð Þ½ 	 r1j j2þ r2j j2

 �

1� r1j j2 r2j j2

 ��

r1j j2 r2j j2

r1j j þ r2j jð Þ 1� r1j j r2j jð Þ= r1j j r2j j½ 	2
� 1
ð11:54Þ
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This is symmetric with respect to 9r19 and 9r29. If we had calculated the linewidth

from the phase diffusion of the output field from mirror M1, by symmetry we

would have obtained

Doð Þ1 ¼
Df1 z; tð Þf g2

D E

Dtj j

¼ 1

4 e0;1

�
�

�
�2

_o
e0c0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 1

r1j j
� r1j j

� �
r1j jþ r2j jð Þ 1� r1j j r2j jð Þ

r1j j r2j j

� noþ
1

2

� �

þ N

2Ns0
th

1þ D
1þD

g r1j j; r2j jð Þ
� �� �

ð11:55Þ

Now the two expressions for the linewidth in fact give the same width. We note

from Equations 11.43 and 11.44 that

e0;2

�
�

�
�2¼ T2eþðd� 0; tÞj j2 ð11:56Þ

But by Equations F.7 and 11.52b we have

e0;2

�
�

�
�2¼ T2j j2

r2j j
ffiffiffiffi
C
p
¼ n

1

r2j j
� r2j j

� �
ffiffiffiffi
C
p

ð11:57Þ

where
ffiffiffiffi
C
p
¼ e�ðzcÞ
�
�

�
�2 is the field intensity at the neutral point as defined in

Equation 11.9 and is given by Equation 11.22. Thus

1= r2j jð Þ � r2j j
e0;2

�
�

�
�2

¼ 1

n
ffiffiffiffi
C
p ð11:58aÞ

Similarly, we have

1= r1j jð Þ � r1j j
e0;1

�
�

�
�2

¼ 1

n
ffiffiffiffi
C
p ð11:58bÞ

Thus we have

Doð Þ ¼ Doð Þ1¼ Doð Þ2

¼ 1

4n
ffiffiffiffi
C
p _o

e0c0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

� no þ
1

2

� �

þ N

2Ns0
th

1þ D
1þ D

g r1j j; r2j jð Þ
� �� �

ð11:59Þ

Now, the fractional excess atomic inversion D is related to
ffiffiffiffi
C
p

by Equations

11.22 and 11.23 as
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ffiffiffiffi
C
p
¼ Esj j2

r1j j r2j j ln 1= r1j j r2j jð Þ
r1j j þ r2j jð Þ 1� r1j j r2j jð ÞD ð11:60Þ

Therefore, we have

Doð Þ ¼ 1

4n
ffiffiffiffi
C
p _o

e0c0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

� no þ
1

2

� �

þ N

2Ns0
th

1þ
ffiffiffiffi
C
p

ffiffiffiffi
C
p
þ Esj j2h r1j j; r2j jð Þ

g r1j j; r2j jð Þ
( )" #

¼ 1

4n

_o
e0c0

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

� 1
ffiffiffiffi
C
p no þ

1

2

� �

þ N

2Ns0
th

� �

þ N

2Ns0
th

g r1j j; r2j jð Þ
ffiffiffiffi
C
p
þ Esj j2h r1j j; r2j jð Þ

" #

ð11:61Þ

where

h r1j j; r2j jð Þ ¼ r1j j r2j j ln 1= r1j j r2j jð Þ
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ ð11:62Þ

Now let us consider the dependence of the laser linewidth on the total output

power. From Equation 11.57 the output power measured outside the mirror M2 is

P2 ¼ 2c0e0 e0; 2

�
�

�
�2¼ 2c0e0n

1

r2j j
� r2j j

� �
ffiffiffiffi
C
p
¼ 1

r2j j
� r2j j

� �

Pc ð11:63Þ

Similarly, the output power measured outside the mirror M1 is

P1 ¼ 2c0e0 e0; 1

�
�

�
�2¼ 2c0e0n

1

r1j j
� r1j j

� �
ffiffiffiffi
C
p
¼ 1

r1j j
� r1j j

� �

Pc ð11:64Þ

The total output power Pt is

Pt ¼ P1 þ P2 ¼ 2c0e0n
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� �
ffiffiffiffi
C
p

¼ 2c0e0n
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ

r1j j r2j j
ffiffiffiffi
C
p

¼ r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

Pc

ð11:65Þ

where Pc ¼ 2c0e0n
ffiffiffiffi
C
p

is the power at zc of the right- or left-going wave. Therefore,

in terms of the output powers, we have
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2

c1
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¼ _o
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�
�
�
�
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�
�
�

2 r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j
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� 1
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no þ

1

2

� �

þ N

2Ns0
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� �

þ N

2Ns0
th

g r1j j; r2j jð Þ
Pt þ Ps ln 1= r1j j r2j jð Þ

� �

ð11:66Þ

where

Ps ¼ 2e0c0n Esj j2¼ 2e1c1 Esj j2 ð11:67Þ

is the saturation power. The factor g0=ðg0 þ g0cÞ
�
�

�
�2 is evaluated as

g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

¼ gþ iðn0 � oÞ
gþ iðn0 � oÞ þ gc þ iðoc � oÞ

�
�
�
�

�
�
�
�

2

¼ g2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

ð11:68Þ

with

d2 ¼ ðn0 � ocÞ2

ðgþ gcÞ2
ð11:69Þ

where we have used the linear pulling relation obtained from Equation 11.32 for

the steady state (s0¼ 0):

o ¼ goc þ gcn0

gþ gc
ð11:70Þ

Henry [2] obtained the same r1,2 dependence as the one in the first line of

Equation 11.66 in his linear gain analysis based on the Green’s function method.

The Green’s function method will be described in Section 14.2 in Chapter 14.

The result obtained in Equation 11.66 as compared to the quasimode theoretical

result in Equation 4.82 has two corrections. The expression for the linewidth

(FWHM) in angular frequency containing the total output power, the last

expression in Equation 11.66, may be rewritten in the form
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Do ¼ 2_oKLg2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

1

Pt
noh i þ

1

2
þ N

2Ns0
th

� �

þ N

2Ns0
th

Cq

� �

ð11:71Þ

where

KL ¼
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ= 2 r1j j r2j jð Þf g2

ln 1= r1j j r2j jð Þ½ 	2

¼
1� r1j j2

 ��

2 r1j j þ 1� r2j j2

 ��

2 r2j j
� 	2

ln 1= r1j jð Þ þ ln 1= r2j jð Þ½ 	2

ð11:72Þ

Cq ¼
1

Pt þ Ps ln 1= r1j j r2j jð Þ g r1j j; r2j jð Þ ð11:73Þ

The correction factor KL is the generalization of the longitudinal excess noise

factor that appeared in Equation 10.112 for the one-sided laser model. Note that

below Equation 7.37 we discussed the replacement of the cavity decay constant

in the quasimode analysis by that of the new cavity model based on the equiva-

lence of the two in the decay equations for the field amplitude. Likewise, the cavity

decay constant gc in Equation 11.71 is equivalent to that of the quasimode cavity

model that appears in Equation 4.82. Thus the correction to the conventional

formula is given rightly by Equation 11.72. The factor Cq is the generalization of

the factor gðrÞ=fP þ Ps lnð1=rÞg in Equation 10.111. When Ps is large compared to

P, or, roughly, when e0c0 e0;1;2

�
�

�
�2
 e1c1 Esj j2, this yields a power-independent part

of the linewidth. That is, it will yield a contribution that is independent of P.

It is easy to see that the KL in Equation 11.72 reduces to that in Equation 10.112

if we set, for example, r1 ! r and r2 ! �1. Also, for the same settings, Cq reduces

to gðrÞ=fP þ Ps lnð1=rÞg in Equation 10.111. Note that g r1j j; r2j jð Þ is given by

Equation 11.54. The expression for the function g(r) is found in Equation 10.102 or

in Equation E.24. For a symmetric cavity with r1j j ¼ r2j j ¼ r, we have

KL ¼
1� r2ð Þ=r½ 	2

2 ln 1=rð Þ½ 	2
ð11:74Þ

which is the same as that for the one-sided cavity obtained in Equation 10.112.

Also, for this case, it can be shown that g r1j j; r2j jð Þ ¼ g rð Þ. For this case of

r1j j ¼ r2j j ¼ r, Cq should read

Cq ¼
1

Pt þ 2Ps lnð1=rÞ gðrÞ ð11:75Þ

The generalized longitudinal excess noise factor KL is large for an asymmetric

cavity, as will be discussed in Section 12.4.1. For a fixed value of jr2j, the gen-

eralized longitudinal excess noise factor KL diverges for small jr1j as
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lim
jr 1j!0

KL ¼
1= 2 r1j jð Þ
ln 1= r1j jð Þ

� �2

ð11:76Þ

A different treatment of the Cq term will be given in Section 12.11.

11.6

The Linewidth for the Linear Gain Regime

Up to now we have considered the phase diffusion above threshold using the

simplified method. In this section, we briefly discuss, using the same simplified

method, the linewidth below threshold, where a linear gain model is appropriate.

Now, because the net gain for the coherent oscillation is negative, we have no

steady amplitude but instead have decaying amplitude. The steady state in the field

power is maintained by the added noise components, which compensate for

the negative net loss. Thus Equation 11.35 for the right-going wave just inside the

coupling mirror M2 will read

dêþðd� 0; tÞ
dt

¼ s0 êþðd� 0; tÞ þ c1

2d

g0

g0 þ g0c
F̂t þ F̂q

� �
ð11:77Þ

where s0 is given by Equation 11.32 with relatively small linear gain. Here Re s0o0,

so that the coherent amplitude always decays. The thermal noise source F̂t and the

quantum noise source F̂q are given, respectively, by Equations 11.36 and 11.41.

Integrating Equation 11.77 we have

êþðd� 0; tÞ ¼ c1

2d

g0

g0 þ g0c

ðt

0

es0ðt�t0Þ

� F̂tðt0Þ þ F̂qðt0Þ
n o

dt0 þ êþðd� 0; 0Þes0t

ð11:78Þ

We will calculate the correlation function for this field amplitude and Fourier-

transform the correlation function to obtain the line profile. Thus

êþyðd� 0; tþ tÞ êþðd� 0; tÞ
� �

¼ c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2ðtþt

0

dt00
ðt

0

dt0 eðs0þs�0Þt�s�0t00�s0t0þs�0t

� F̂yt ðt00ÞF̂tðt0Þ
D E

þ F̂yqðt00ÞF̂qðt0Þ
D En o

ð11:79Þ

Here we have ignored the contributions from the initial value, which decay with

time or vanish because F̂t;qðtÞ
D E

¼ F̂yt;qðtÞ
D E

¼ 0. Taking into account the relations

in the first lines in Equations 11.1b and 11.1c, we write

F̂yt ðt00ÞF̂tðt0Þ
D E

¼ Dttdðt00 � t0Þ ð11:80Þ

where Dtt will be determined later. For the quantum noise, since we are using

normally ordered correlations, we use, instead of Equation 11.4, the relation in
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Equation 4.50 or 9.73, which is applicable to the case of unsaturated, linear gain.

Thus we write (see Equation 11.3 and the expression for 2g below Equation 11.4)

2e1c1 f̂ ymðtÞf̂m0 ðt0Þ
D E

¼ ð2g_o=c1Þfð1þ sÞ=2gdmm0dðt� t0Þ ð11:81Þ

and

F̂yqðt00ÞF̂qðt0Þ
D E

¼ Dqqdðt00 � t0Þ ð11:82Þ

where Dqq will be determined later. Then, Equation 11.79 can be integrated to yield

êþyðd� 0; tþ tÞ êþðd� 0; tÞ
� �

¼ c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

Dtt þDqq


 �

es�0t � eðs0þs�0Þtþs�0t

�ðs0 þ s�0Þ
; t40

e�s0t � eðs0þs�0Þtþs�0t

�ðs0 þ s�0Þ
; to0

8
>>>>><

>>>>>:

ð11:83Þ

Discarding the terms that decay for t!1 and noting that Res0o0, we have

êþyðd� 0; tþ tÞ êþðd� 0; tÞ
� �

¼ c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2Dtt þDqq

2 Res0j j

es�0t; t40

e�s0t; to0

8
<

:

ð11:84Þ

Fourier-transforming Equation 11.84, we have the power spectrum, similarly to

Equation 9.99,

IðoÞ ¼
ðþ1

�1
êþyðd� 0; tþ tÞ êþðd� 0; tÞ
� �

e�iotdt

/
ð0

�1
e�s0t�iotdtþ

ðþ1

0

es�0t�iotdt

¼ �2Re s0

ðoþ Im s0Þ2 þ ðRe s0Þ2

ð11:85Þ

Thus the angular FWHM is

Do ¼ 2 Re s0j j ð11:86Þ

The power output through mirror M2 is

P2 ¼ 2e0c0 T2j j2 êþyðd� 0; tÞ êþðd� 0; tÞ
� �

¼ 2e0c0 T2j j2
c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2Dtt þDqq

2 Re s0j j
ð11:87Þ

where we have used Equation 11.84 with t¼ 0. Combining Equations 11.86 and

11.87 we have the formal expression for the linewidth in terms of the power output:

11.6 The Linewidth for the Linear Gain Regime | 229



Do ¼ 2e0c0 T2j j2

P2

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

Dtt þDqq


 �
ð11:88Þ

The remaining task is to evaluate Dtt þDqq. First, we consider Dtt. Now Equation

11.80 becomes, by Equation 11.36,

Dttdðt0 � tÞ ¼
��

T 02 r1GtRe2ikd

 ��

f̂ Ry
t dþ 0; t0 � 2d

c1

� �

þ T 01 GtLeikd

 ��

f̂ L
t
y �d� 0; t0 � d

c1

� ��

�
�

T 02 r1GtRe2ikdf̂ R
t dþ 0; t� 2d

c1

� �

þ T 01 GtLeikdf̂ L
t �d� 0; t� d

c1

� ���

ð11:89Þ

Using Equations 11.1b and 11.1c we have

Dtt ¼
no_o
2e0c0

T 02 r1GtR

�
�

�
�2þ T 01 GtL

�
�

�
�2

� �
ð11:90Þ

Now the amplifying constants GtR and GtL may be given approximately by

Equation 11.40 also in this linear gain regime as long as the operation is not far

below threshold. Thus remembering Equation 11.52a we have

Dtt ¼
no_o
2e0c0

T 02
r2

�
�
�
�

�
�
�
�

2

þ T 01ffiffiffiffiffiffiffiffi
r1r2
p
�
�
�
�

�
�
�
�

2
 !

¼ no_o
2e0c0

1

n r2j j
1

r2j j
� r2j j þ

1

r1j j
� r1j j

� �

ð11:91Þ

Next, from Equation 11.41 we have

Dqqdðt0 � tÞ ¼
�X

m

�

f̂ ym t0 � d� zm

c1

� �

g�mRe�ikðd�zmÞ

þ f̂ ym t0 � dþ zm

c1

� �

r1gmLð Þ�e�ikðdþzmÞ
�

�
X

m0

�

f̂m0 t� d� zm0

c1

� �

gm0Reikðd�zm0 Þ

þ f̂m0 t� dþ zm0

c1

� �

r1gm0Leikðdþzm0 Þ
��

ð11:92Þ

Using Equation 11.81 we have

Dqq ¼
2g_oð1þ sÞ

4e1c2
1

X

m

gmRj j2þ r1gmLj j2

 �

ð11:93Þ

where we have ignored the cross-terms of gmR and gmL, which vanish on taking

the summation over m because of the rapidly oscillating functions of zm. Now the
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amplification constants gmR and gmL are defined in Equation 11.42, which, in

the linear gain regime, are

gmR ¼ exp

ðd

zm

a0dz ¼ expfa0ðd� zmÞg

gmL ¼ Gs exp

ðzm

0

a0dz ¼ Gs expða0zmÞ
ð11:94Þ

where, from Equation 11.7,

a0 ¼ gNs0

g0
ð11:95Þ

and from Equation 11.38

Gs � exp

ðd

0

a0dz0 ¼ expða0dÞ ð11:96Þ

Thus we have

X

m

gmRj j2þ r1gmLj j2

 �

¼ N

ðd

0

e2Re a0ðd�zmÞ þ r1Gsj j2e2Re a0zm

� �
dzm

¼ N

2Re a0
e2Re a0d � 1þ r1j j2e2Re a0d e2Rea0d � 1

� �n o
ð11:97Þ

But as we have approximately

r1r2j je2Re a0d ¼ 1 ð11:98Þ

then Equation 11.97 becomes
X

m

gmRj j2þ r1gmLj j2

 �

¼ Nd

ln 1= r1j j r2j jð Þ
1

r1j j r2j j
� 1þ r1j j2

1

r1j j2 r2j j2
� 1

r1j j r2j j

 !( )

¼ Nd

ln 1= r1j j r2j jð Þ
1

r2j j
1

r1j j
� r2j j þ

1

r2j j
� r1j j

� �

ð11:99Þ

(For somewhat below threshold, the LHS member of Equation 11.98 is smaller

than unity, and the above sum becomes smaller than this expression.) So we have

Dqq ¼
2g_oð1þ sÞ

4e1c2
1

Nd

ln 1= r1j j r2j jð Þ
1

r2j j
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� �

¼ _o
2e1c1

N2

Ns0
th

1

r2j j
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� � ð11:100Þ

where we have used Equations 11.25 and 11.26b as well as the relation

ð1þ sÞN ¼ 2N2 in the last line. As a result, the linewidth (FWHM) in angular

frequency becomes, by Equations 11.88, 11.91, and 11.100,
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Do ¼ _o
P2

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 T2j j2

n r2j j
1

r2j j
� r2j j þ

1

r1j j
� r1j j

� �

no þ
N2

Ns0
th

� �

¼ _o
P2

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2
1

r2j j
� r2j j

� �
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ

r1j j r2j j
no þ

N2

Ns0
th

� � ð11:101Þ

We have used Equation 11.52b in the second line. Now, let us think of the

neutral point zc inside the cavity, where eþðzcÞj j ¼ e�ðzcÞj j holds. If the amplitude

gain from zc to the output port z¼ d is Gcd, we have r2G2
cd

�
�

�
� ’ 1. So, we have

P2n r2j j= T2j j2¼ 2e0c0 eþðd� 0Þj j2n r2j j ¼ 2e1c1 e�ðzcÞ
�
�

�
�2¼ Pc ð11:102Þ

where Pc is the power associated with e�ðzcÞ. Thus we have

Do ¼ _o
Pc

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2
1

r2j j
� r2j j þ

1

r1j j
� r1j j

� �

no þ
N2

Ns0
th

� �

ð11:103Þ

This expression is independent of the choice of the output port. By symmetry

we have

Do ¼ _o
P1

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2
1

r1j j
� r1j j

� �

� r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

no þ
N2

Ns0
th

� � ð11:104Þ

Thus, for the total output power Pt ¼ P1 þ P2 we have

Do ¼ _o
Pt

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

� �2

no þ
N2

Ns0
th

� �

ð11:105Þ

with (see Equation 11.68)

g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

¼ g2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

ð11:106Þ

This is just twice the last line in Equation 11.66 except for the term of g r1j j; r2j jð Þ
that appears because of the saturated atomic inversion. The factor of 2 can be

traced back to the difference between Equation 11.46 for the phase diffusion with

constant amplitude and Equation 11.77 for the field driven by the noise sources,

including the amplitude noise. This point will be discussed further in Section 12.5.

Comparison with the standard result for a quasimode laser in Equation 4.62 yields

the longitudinal excess noise factor:

KL ¼
c1=2dð Þ2 r1j j þ r2j jð Þ 1� r1j j r2j jð Þ= r1j j r2j jf g2

4g2
c

¼ r1j j þ r2j jð Þ 1� r1j j r2j jð Þ= 2 r1j j r2j jð Þ
ln 1= r1j j r2j jð Þ

� �2
ð11:107Þ

This is the same as the factor KL in Equation 11.72 obtained for the nonlinear gain

regime. This is the generalization of the longitudinal excess noise factor in
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Equation 9.106, which was obtained for the one-sided cavity laser. Note that this

factor approaches unity in the good cavity limit r1j j r2j j ! 1.

In Equation 11.105 the thermal noise term of no and the quantum noise term of

N2=Ns0
th have appeared through normally ordered noise operators, while in

Equation 11.66 the terms of no þ 1
2 and N=ð2Ns0

thÞ have appeared through sym-

metrically ordered noise operators. The sum 1
2þN=ð2Ns0

thÞ makes N2=Ns0
th.

The simplified ad hoc method of the present chapter, which we have named the

propagation method or propagation theory, was proposed by Ujihara [1] and by

Goldberg et al. [3], who considered spatial hole burning effects on the linewidth.

Prasad [4] also used the same method and obtained similar results, including the

power-independent part in the linewidth. The results obtained in this chapter were

also derived by Henry [2] for the linear gain regime and by van Exter et al. [5] for

the linear and nonlinear gain regime by the Green’s function method, which will

be described in Chapter 14.

Finally, we note that the present propagation method directly shows that the

excess noise factor is the result of noise amplification during the one round trip

analyzed in this chapter. We consider the linear gain regime for simplicity. If

amplification is absent but a steady state is still required, we should require that

the reflectivity of the two mirrors be unity ( r1;2

�
�

�
�! 1) by Equation 11.98. Then,

noting that

r1;2

�
�

�
��1� r1;2

�
�

�
� ¼ 1þ r1;2

�
�

�
�


 �
1� r1;2

�
�

�
�


 ��
r1;2

�
�

�
�! 2 1� r1;2

�
�

�
�


 �

the diffusion constant Dtt in Equation 11.91 becomes

Dtt !
no_o
2e0c0

1

n
2 2� r1j j � r2j jð Þ ¼ no_o

e0c0

1

n

2d

c1
gc ð11:108Þ

where we have used the relation

gc ¼
c1

2d

� �
ln

1

r1j j r2j j
! c1

2d

� �
2� r1j j � r2j jð Þ ð11:109Þ

which holds in this limit. The sum in Equation 11.99 merely becomes

X

m

gmR

�
�

�
�2þ r1gmLj j2

� �
¼ 2Nd ð11:110Þ

Thus the diffusion constant Dqq in Equation 11.100 becomes, simply,

Dqq ¼
g_oð1þ sÞNd

e1c2
1

ð11:111Þ

Thus the linewidth in terms of the output power P2 in Equation 11.88 becomes

Do ¼ 2e0c0 T2j j2

P2

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 no_o
e0c0n

2d

c1
gc þ

g_oð1þ sÞNd

e1c2
1

� �

ð11:112Þ

We will have a similar expression in terms of the output power P1 with jT2j2
replaced by jT1j2. Thus in terms of the total output power Pt we have
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Do ¼
2e0c0 T1j j2þ T2j j2


 �

Pt

c1

2d

� �2 g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

� no_o
e0c0n

2d

c1
gc þ

g_oð1þ sÞNd

e1c2
1

� � ð11:113Þ

We use Equation G.23 in Appendix G to obtain T1;2

�
�

�
�2! 2n 1� r1;2

�
�

�
�


 �
, and we

eliminate the constant g using the threshold relation (Equation 11.26b) gNsth ¼ gc

as in the previous evaluations of the linewidth. Then noting that e1c1 ¼ ðe0n2Þðc0=nÞ,
it is easy to see that the linewidth reduces to the standard result in Equation 4.62a for

the linear gain regime, which lacks the excess noise factor:

Do ¼ 4_og2
c

Pt

g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

no þ
N2

Nsth

� �

ð11:114Þ

We have shown that, if the two mirrors are nearly perfectly reflecting and the

gain of the laser medium is unity, we will have no excess noise factor. This shows

directly that the excess noise factor originates from the finite mirror transmissions

as well as finite amplification of the thermal and quantum noise during one round

trip in the cavity. A similar argument may be given for the nonlinear, saturated

gain medium.
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12

A One-Dimensional Laser with Output Coupling: Summary and

Interpretation of the Results

Starting with the basic equations of motion for a laser having output coupling

derived in Chapter 5, we have analyzed the equations with the thermal and

quantum noise sources taken into account. We have analyzed the equations by the

use of a contour integral method and by the use of the Fourier series expansion of

the normalization factor of the mode of the ‘‘universe.’’ The former method

described in Chapter 6 was effective only for the linear gain regime. The latter

method described in Chapters 7 through 10 was correct, but it took laborious

efforts to solve the resulting equations. Chapters 7 and 8 were devoted to

semiclassical analyses and were intended as preparation for the quantum-

mechanical analyses developed in Chapters 9 and 10. Chapter 9 analyzed the

correlation of the field driven by the noise sources. Chapter 10 investigated phase

diffusion in the steady state. Both chapters had to deal with the complexity brought

in by the presence of the output coupling. In Chapter 11 we have presented a

simplified, ad hoc, quantum-mechanical model for the laser with output coupling

that could be analyzed with less effort. We have named this method the

propagation method or propagation theory. Except for the standard results for

laser operation, we have obtained the longitudinal excess noise factor in the

expression for the laser linewidth by taking the output coupling into account. Also,

we have encountered the power-independent part of the linewidth. The extensive

calculations needed may have left the reader adrift from the physics involved. In

this chapter we retrace the calculations in Chapters 7 through 11 and discuss the

physical aspects of the results.

12.1

Models of the Quasimode Laser and Continuous Mode Laser

First of all we discuss the difference between the quantum-mechanical laser

models used in the quasimode theory in Chapter 4 and in the multimode theory in

Chapters 9 and 10.

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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Figure 12.1 depicts the thermodynamic models of (a) the quasimode laser and

(b) the continuous mode laser. In the quasimode laser model, the atoms couple

with the (possibly single) cavity mode. The atoms are coupled with the pumping

and the damping reservoirs, while the cavity mode is coupled with the loss

reservoir. In the continuous mode laser model, the atoms are coupled with the

pumping and the damping reservoir as in the quasimode laser model. But

the atoms are coupled with the continuous, ‘‘universal’’ field modes. Some of the

continuous modes make up the relevant cavity mode, which has no explicit loss

reservoir. These continuous modes act as the resonant mode of the cavity as well

as the loss reservoir. The exact treatment of the output coupling is secured by this

model, provided the rigorous forms of the universal mode functions are used. This

treatment has led to the appearance of correction factors in the expression for

the laser linewidth compared with the conventional formula obtained by use of the

quasimode theory. These are the excess noise factor for the laser linewidth and

another factor for the ‘‘power-independent part’’ of the linewidth.

12.2

Noise Sources

12.2.1

Thermal Noise and Vacuum Fluctuation as Input Noise

One cause of laser linewidth is the ambient field fluctuation. Mathematically, this

was introduced as the fluctuating field F̂tðz; tÞ coming from the initial values, âjð0Þ,
of the field as in Equation 5.33b. In the quantum linear gain analysis in Chapter 9

it yielded a thermal contribution proportional to noh i in the linewidth formula

(Equation 9.105). This originated in Equation 9.72 or in the first line of Equation

5.36. In Chapter 9 the line profile was derived as the Fourier transform of the field

correlation function in the time region, and the correlation function was defined as

the ensemble average of the normally ordered field operators. The appearance

Figure 12.1 The models of (a) the quasimode laser and (b) the continuous mode laser.
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of noh i was determined by this ordering. If the ambient temperature was zero,

then noh i ¼ 0 and no thermal contribution appears.

The causes of the linewidth for the nonlinear, above-threshold operation

obtained in Chapter 10 have somewhat different origins. The form of the linewidth

formula in Equation 10.111 suggests that the ambient field resulted in the factor

noh i þ 1
2 in contrast to the case in Chapter 9. In Chapter 10 the linewidth was

obtained through calculations of the phase diffusion, where the phase was a

real quantity. For this requirement, the phase was evaluated from a sum of an

operator quantity proportional to the field and its Hermitian conjugate. The field

correlation function was thus in a symmetrically ordered form. The term 1
2 above

came from the 1 in the second line in Equation 5.36. This factor would not vanish

even though the ambient temperature is zero and noh i ¼ 0. This contribution

from the ambient field should be interpreted as coming from the vacuum field

fluctuation. It is to be noted that in Chapter 10 the ambient field including the

vacuum fluctuation was shown in Equation 10.71 to come from outside the cavity.

In contrast, the thermal or vacuum part of the noise in the quasimode laser

considered in Chapter 4 came from the ‘‘artificial’’ Langevin force Ĝf ðtÞ introduced

in Equations 3.35, 3.36–3.37 for the field decay in the cavity. The thermal noise in

the propagation method in Chapter 11 was described as coming in to the cavity

from outside. The correlation functions in Equations 11.1b and 11.1c of this noise

were deduced by referring to Equations 10.69 to 10.71, which resulted in a rea-

sonable physical interpretation in terms of the thermal noise incident onto the

cavity. The resultant thermal noise parts of the linewidth were generalizations of

the results in Chapters 9 and 10. Note that Equations 10.69 to 10.71 are based on

the quantum-mechanically correct continuous mode theory.

12.2.2

Quantum Noise

The quantum noise, on the other hand, originated in the Langevin force ĜmðtÞ
introduced in conjunction with the damping term in the equation of motion

(Equation 3.45) for the atomic dipole. It appeared in Equation 9.105 in a form

proportional to N2, which came from the normally ordered correlation function of

the quantum Langevin noise in Equation 9.73. This implies that the noise is

proportional to the upper-level population, which is directly responsible for

spontaneous emission. Thus in this case the quantum noise is interpreted as

coming from spontaneous emission by upper-level atoms.

The quantum noise part in Equation 10.111, however, is proportional to

N¼N1þN2. Thus the quantum noise coming from the atoms is not merely from the

inverted population but also from the non-inverted population. The interpretation

may be that not only spontaneous emission events proportional to N2 in number but

also absorption events proportional to N1 disturb the field phase. The sum of 1
2

and ðN1 þN2Þ=f2ðN2 �N1Þg is N2=ðN2 �N1Þ, and thus Equation 10.111 yields

the same form of the linewidth as Equation 9.105 except for the over all factor of 1
2

and for the added term for the quantum noise containing the saturation power Ps.
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For the case of the quasimode laser analyzed in Chapter 4, the situation is

almost the same except for the absence of the excess noise factor. The quantum

noise source for the propagation method described in Chapter 11 was a modified

version of those used in Chapters 9 and 10 or in Chapter 4. The force f̂mðtÞ in

Equation 11.3 was defined on the assumption that we are interested in the field

variation on a time scale that is larger than the reciprocal atomic linewidth.

The pertinent correlation function had an interpretation in terms of the power

emitted in a spontaneous emission event. Spontaneous emission is examined in

Section 12.12 and in Chapter 13 below.

12.3

Operator Orderings

In optics, normally ordered correlation functions or intensities are preferentially

used because the usual wide-band optical detector that uses absorption as the

detection mechanism responds to the normally ordered quantities [1]. The forms

of noise nch i versus N2=ðN2 �N1Þ in the expression (Equation 4.82) for the line-

width of a quasimode laser in the nonlinear gain analysis are the same as in

Equation 4.62a obtained for the linear gain analysis. In the case of Equation 4.62a,

these forms appeared directly from the normally ordered correlation functions in

Equations 3.36 and 4.50. However, in the case of Equation 4.82, these factors

originally appeared in the forms of nch i þ 1
2 and N=ð2NsthÞ, respectively, as seen

from Equation 4.81. These forms appeared from the symmetrically ordered cor-

relation functions used for the evaluation of the real phase of the field. The

symmetric ordering appeared in Equation 4.76 because of the Hermitian con-

jugate terms. We note that the anti-normally ordered contributions from the

thermal noise and quantum noise are nch i þ 1 and N1=ðN2 �N1Þ, respectively. It

is interesting to note that the sum of the normally ordered contribu-

tions nch i þ N2=ðN2 � N1Þ is equal to that of the anti-normally ordered con-

tributions nch i þ 1þN1=ðN2 �N1Þ. It should be noted that different orderings

of the noise operators lead to the same form of the noise contributions.

A similar situation obtains for the continuous mode analysis of the one-sided cavity

laser. The form of the noise noh i þ 1
2þ ðN2 þ N1Þ=ð2Ns0

thÞ in Equation 10.111

obtained in the nonlinear gain analysis looks different from that in Equation 9.105,

s2=ðsthsth0Þf g noh i þN2=ðNsthÞ, obtained for the linear gain analysis. In the case of

Equation 9.105, the above forms appeared directly from the normally ordered corre-

lation functions in Equations 9.4a and 9.5a. In the case of Equation 10.111, the factors

noh i þ 1
2 and N=ð2NsthÞ appeared because of the symmetrically ordered correlation

functions used for the evaluation of the real phase of the field. In particular, the

symmetric ordering appeared in Equations 10.83a, 10.83b and 10.88 because of the

Hermitian conjugate terms. Except for the factor s2= sthsth0ð Þ, the above two forms are

the same since 1
2þ ðN2 þN1Þ=ð2Ns0

thÞ ¼ N2=ðNs0
thÞ. Also in this case different

orderings of the noise operators lead to almost the same form of the noise

contributions.
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Similarly, for the generalized two-sided cavity lasers, similar arguments can be

given for the forms in Equation 11.105, no þ ðN2=Ns0
thÞ, for the linear gain ana-

lysis, and in Equation 11.71, noh i þ 1
2þ ðN=2Ns0

thÞ, for the nonlinear gain analy-

sis. Goldberg et al. [2] discussed extensively the relation between the operator

ordering and the physical cause of the noise.

12.4

Longitudinal Excess Noise Factor

An important result that arises from using the continuous mode analysis is the

appearance of the longitudinal excess noise factor in the expression for the laser

linewidth. The longitudinal excess noise factor was found in Chapters 9 and 10

both for the linear gain analysis and for the saturated, nonlinear gain analysis for

the one-sided cavity laser model. A somewhat different result was found in the

contour integral method in Chapter 6. The result was generalized to the case of a

general asymmetric cavity in Chapter 11. This factor was defined as the ratio of the

linewidth obtained in the continuous mode analysis to that obtained in the stan-

dard quasimode theory. More precisely, the factor is the ratio of the linewidth

in a theory taking into account the local output coupling at the mirrors to that in

a quasimode theory where the coupling loss is not localized. In other words, the

difference originates in the assumed field distribution in the cavity: non-uniform

or uniform.

12.4.1

Longitudinal Excess Noise Factor Below Threshold

In the linear gain analysis applicable for a below-threshold operation, we obtained

Equation 9.106 for the one-sided cavity laser:

KL ¼
ð1� r2Þ=2r

lnð1=rÞ

� �2

ð12:1aÞ

For a two-sided cavity laser we obtained Equation 11.107:

KL ¼
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ=2 r1j j r2j j

lnð1= r1j j r2j jÞ

� �2

ð12:1bÞ

This generalizes Equation 12.1a, and reduces to the form in Equation 12.1a for the

case of a one-sided cavity with r1j j ¼ 1 and r2j j ¼ r or for the case of a symmetric

cavity with r1j j ¼ r2j j ¼ r.

First of all we note that the factor KL is unity in the good cavity limit r1j j r2j j ! 1.

In this limit, the amplification coefficients for the last one round trip or the

shorter trips that appeared in Equations 11.36 and 11.41 for the two-sided cavity

laser (or Equation 10.69 for the one-sided cavity laser) are all unity, and the

noise is not amplified during the last one round trip or in the respective
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shorter trips. This shows that finite amplification of the noise and, consequently,

the non-uniformity of the field distribution is the physical origin of the excess

noise factor.

The longitudinal excess noise factor is large for an asymmetric cavity: one can

show that, for a given value r of the product r1j j r2j j, that is, for a given value of the

cavity decay rate, KL is maximum when r1j j ¼ 1 and r2j j ¼ r or when r1j j ¼ r and

r2j j ¼ 1. On the other hand, KL is at its minimum when r1j j ¼ r2j j ¼
ffiffiffi
r
p

. This

asymmetry effect is pronounced when r
 1. When the mirror asymmetry is

pronounced, the field distribution inside the cavity is strongly non-uniform and

the factor KL is large. Hamel and Woerdman [3] verified this asymmetry effect

experimentally by measuring the laser linewidth of semiconductor lasers with

various combinations of facet mirror reflectivity.

Also, in Equation 9.114, we have indicated that the form of Equation 12.1a may

come from the ratio

Ð 0

�d dz sinfOcðzþ dÞ=c1gj j2
� �2

Ð 0
�d dz sinfocðzþ dÞ=c1gj j2

� �2
¼ bc

gc

� �2

¼ KL ð12:2Þ

where Oc is the complex cavity frequency in Equation 1.18b for a one-sided cavity

and oc is the cavity frequency of a quasimode cavity, which is equal to one of the

ok values in Equation 3.2. Improvement on this derivation of KL will be discussed

in Chapter 14, which will discuss the physical origin of the longitudinal excess

noise factor.

12.4.2

Longitudinal Excess Noise Factor Above Threshold

We have from Equation 10.112 for the one-sided cavity laser

KL ¼
bc

gc

� �2

¼ ð1� r2Þ=2r

lnð1=rÞ

� �2

ð12:3Þ

For a general asymmetric cavity laser we may use the result of Chapter 11

expressed by Equation 11.72:

KL ¼
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ=2 r1j j r2j jf g2

lnð1= r1j j r2j jÞf g2
ð12:4Þ

Except for those factors that are common to linewidths for below-threshold opera-

tion, we have found additional terms for the linewidth for above-threshold

operation. These are associated with the quantum noise contributions. We cite

Equation 10.111 for the one-sided laser:
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Do ¼ 2_og2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

b2
c

g2
c

� �

� 1

P
no þ

1

2

� �

þ N2 þN1

2Ns0
th

� �

þN2 þ N1

2Ns0
th

gðrÞ
P þ Ps lnð1=rÞ

� � ð12:5Þ

If the factor gðrÞ=fP þ Ps lnð1=rÞg is not small compared with 1/P, the correction

is appreciable. Similarly, for the generalized cavity model in Chapter 11, we had

Equation 11.71:

Do ¼ 2_oKLg2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

1

Pt
noh i þ

1

2
þ N

2Nsth

� �

þ N

2Nsth
Cq

� �

ð12:6Þ

where

Cq ¼
1

Pt þ Ps ln 1= r1j j r2j jð Þ g r1j j; r2j jð Þ ð12:7Þ

If the factor Cq is not small compared with 1/Pt, the correction is appreciable.

By retracing the calculations leading to the longitudinal excess noise factor and

the additional correction associated with the quantum noise, we see that these

arise from the amplification of the noise along the amplifying medium and local

dumping at the coupling surfaces. For a quasimode laser the noise is amplified

and dumped with average, mean-field rates and no local effect is involved. The

corrections stem from the local aspects of the noise amplification. Existing the-

ories for the physical interpretation of the longitudinal excess noise factor will be

surveyed in Chapter 14.

12.5

Mathematical Relation between Below-Threshold and Above-Threshold Linewidths

As we have shown several times, the laser linewidth above threshold is just half

that below threshold, except for the additional term for above threshold coming

from gain saturation. This is interpreted as the result of suppression of the

amplitude noise due to the gain saturation. That is, the gain reacts so as to cancel

the amplitude variation of the field. Here we discuss briefly the mathematical

origin of the factor 1
2 in reducing the linewidth on going from below to above

threshold.

The linewidth below threshold was calculated by noting the temporal decay

of the field amplitude ê(t), which is compensated for by the noise F̂ðtÞ to maintain

the average number of photons in the oscillating mode. The decay rate is given

by the difference between the cavity loss rate and the gain gc � ga � �s0. Thus we

have, approximately,
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d

dt
êðtÞ ¼ s0êðtÞ þ F̂ðtÞ ð12:8Þ

Thus we have, except for the term ê(0) that decays in time,

êðtÞ ¼
ðt

0

es0ðt�t0ÞF̂ðt0Þdt0 ð12:9Þ

and the correlation function is

êyðtþ tÞ̂eðtÞ
� �

¼
ðtþt

0

es�0ðtþt�t0ÞF̂yðt0Þdt0
ðt

0

es0ðt�t00ÞF̂ðt00Þdt00
� �

’ DFyF �

es�0t

2 Re s0j j ; t40

e�s0t

2 Re s0j j ; to0

8
>>><

>>>:

ð12:10Þ

where we have set

F̂yðt0ÞF̂ðtÞ
D E

¼ DFyFdðt0 � tÞ ð12:11Þ

By the Fourier transform of the correlation function, we know that the laser

linewidth (full width at half-maximum) Do is

Do ¼ 2 Re s0j j ð12:12Þ

Assuming a conversion coefficient S, the power output P is

P ¼ S êyðtÞ̂eðtÞ
� �

¼ SDFyF

2 Re s0j j ð12:13Þ

Thus we have

Do ¼ 2 Re s0j j ¼ SDFyF

P
ð12:14Þ

For an above-threshold operation we assume a stable amplitude e0 and a dif-

fusing phase f(t). In this case we assume that the net gain gc � ga � �s0 is exactly

0. Then Equation 12.8 becomes

d

dt
fðtÞ ¼ �i

F̂ðtÞ
e0

ð12:15Þ

where we have assumed that the phase factor e�ifðtÞ is slowly varying and can be

absorbed into the noise F̂ðtÞ. The crucial point here is that the phase should be a

real quantity, and we warrant this claim by writing

d

dt
fðtÞ ¼ �i

F̂ðtÞ
2e0
þ i

F̂yðtÞ
2e�0

ð12:16Þ
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We evaluate the expected value of the squared phase change fDfðtÞg2
D E

during

time Dt. Then it can be shown, by using the Fourier transform argument, that the

linewidth is (see Section 10.6)

Do ¼
fDfðtÞg2
D E

Dt
ð12:17Þ

Now fDfðtÞg2
D E

is evaluated as

fDfðtÞg2
D E

¼
ðtþDt

t

ðtþDt

t
�i

F̂ðt0Þ
2e0
þ i

F̂yðt0Þ
2e�0

( )

�i
F̂ðt00Þ
2e0
þ i

F̂yðt00Þ
2e�0

( )

dt0dt00
* + ð12:18Þ

Assuming that

F̂ðt0ÞF̂yðtÞ
D E

¼ DFFydðt0 � tÞ and

F̂ðt0ÞF̂ðtÞ
D E

¼ F̂yðt0ÞF̂yðtÞ
D E

¼ 0
ð12:19Þ

we have

fDfðtÞg2
D E

¼ DFyF þDFFy

4 e0j j2
Dt ð12:20Þ

Therefore, we have

Do ¼
fDfðtÞg2
D E

Dt
¼ SðDFyF þDFFy Þ

4P
ð12:21Þ

Now, we have, formally,

DFyF þ DFFyð Þabove threshold¼ 2 DFyFð Þbelow threshold ð12:22Þ

as long as F̂ðtÞ stands for the sum of the thermal noise and the quantum noise (see

Section 12.3 above). Thus Equation 12.21 for the linewidth above threshold gives,

formally, just half the linewidth for below threshold given by Equation 12.14. Note

that Equation 12.22 describes a formal equivalence and that it does not mean

DFyF ¼ DFFy .

12.6

Detuning Effects

First of all we stress that, in the starting equations in Chapter 3 for the quasimode

laser or in Chapter 5 for a one-sided cavity laser, we have assumed a temporarily

constant atomic inversion and otherwise made no limiting assumptions on the

relative magnitude of the decay rates of the atomic polarization and cavity field nor

on the atomic or cavity resonance frequencies. The well-known consequence of the
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presence of the detuning between the cavity resonance frequency oc and the

atomic transition frequency n0 is the linear pulling effect that appears on

the oscillation frequency of a laser. This has appeared in all the laser models

considered up to now. In Equations 4.12 and 4.46 we had

oth ¼
goc þ gcn0

gþ gc
ð12:23aÞ

where the subscript th stands for the threshold condition. This applies for the

extreme case of the threshold condition in the linear gain analysis. We have

obtained the same form in Chapters 6, 7, and 9. Also, Equation 11.32 will yield the

same result if we set s0¼ 0 in this equation. In Equations 4.33 and 4.66 we had the

angular oscillation frequency

o ¼ goc þ gcn0

gþ gc
ð12:23bÞ

for the nonlinear, saturated gain regime. We have obtained the same result in

Chapters 8, 10, and 11.

The laser model used in Chapter 4 is the quasimode cavity model, that in

Chapters 7–10 is the one-sided cavity laser model, and the one in Chapter 11 is the

generalized two-sided cavity laser model. For these different models, the expres-

sions for the cavity decay constants and for the cavity resonant frequencies are

different. In spite of these differences, the expressions for the oscillation or

threshold frequencies are the same. This reflects a general rule for a pair of

oscillators oscillating at a single frequency as a whole. In this case the frequency is

pulled towards the oscillation frequency of the oscillator with the higher quality

factor. Thus in Equations 12.23a and 12.23b, if the cavity has a higher Q value or

sharper width 2gc than the atom of natural width 2g, then o tends to go to oc. This

is the usual situation in a single-frequency laser. If, on the other hand, the atom

has a sharper width, 2g
 2gc , the oscillation occurs close to n0.

A qualitative argument of the linear pulling based on the dispersion of the atomic

medium can be given as follows. The amplifying medium of inverted atoms has a

dispersion that gives a positive increase in the refractive index for o W n0 and

vice versa. Therefore, if the cavity resonance becomes higher in frequency than

the atom, the cavity field sees a longer cavity length because of the positive

refractive index increase. Then, the cavity resonant wavelength tends to increase,

that is, the cavity resonant frequency decreases compared to the bare cavity case. If,

on the other hand, the cavity frequency is smaller than the atomic frequency, the

dispersion gives a decrease in the refractive index. Thus the cavity becomes effec-

tively shorter, thus increasing the effective cavity frequency. This is the linear

pulling.

Another effect of detuning between the cavity resonance frequency oc and the

atomic transition frequency n0 appears on the laser linewidth as the factor in

Equation 12.6:

244 | 12 A One-Dimensional Laser with Output Coupling: Summary and Interpretation of the Results



F ¼ g2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

d2 ¼ ðn0 � ocÞ2

ðgþ gcÞ2

ð12:24Þ

When g� gc , we have F � g2
c , with no detuning effect. Similarly, for g� gc , we

have F � g2, with no detuning effect. But when g� gc , then F / 1þ d2, which

means that any detuning results in a broadening of the laser line. This may be

understood as the result of the broad total response of the atom–cavity system,

which appears when two equally broadened oscillators with different center fre-

quencies cooperate.

12.7

Bad Cavity Effect

When the detuning is small, the factor F in Equation 12.24 reads

F ¼ g2
c g

2

ðgþ gcÞ2
ð12:25aÞ

A cavity is said to be a good cavity when the cavity bandwidth 2gc is much smaller

than the atomic width 2g. In this case the factor

F ¼ g2
c ð12:25bÞ

This is the standard form for F obtained for example by Schawlow and Townes [4],

Haken [5], and Sargent et al. [6], assuming a good cavity.

A cavity is called a bad cavity when 2gc is not smaller than 2g. The factor F in

Equation 12.24 can be rewritten in the form

F ¼ g2
c

1þ ðgc=gÞ2
ð12:25cÞ

Thus for a bad cavity, an appreciable reduction of the linewidth as compared to

the standard form arises. Van Exter et al. [7] gave a physical interpretation of the

reduction in terms of the effective elongation of the cavity due to the dispersion of

the gain medium. They argue that the important light velocity is the group velocity

rather than the phase velocity when the light burst from the noise sources travel

within the cavity. They showed that the group refractive index in the presence of

the Lorentzian gain is approximately 1þ ðgNsss=gÞ2 because of the atomic

dispersion. This is equal to the factor 1þ ðgc=gÞ2 that we found in Equation

12.25c. Thus the cavity length is effectively elongated, which reduces the cavity

decay rate.

Note, however, that the factor F and thus the laser linewidth is an increasing

function of the cavity decay rate gc. Prasad [8] showed that, in the extreme case of

very large gc, the linewidth below threshold tends to be that of the natural
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linewidth of the atoms. The linewidth formula for below threshold, Equation

9.100, for gc � g and for far below threshold, s
 sth, also yields this result:

Do ¼ 2ðgþ gcÞggcð1þ d2Þ½1� s=sth	
ðgþ gcÞ2 þ d2ðg� gcÞ2

! 2g ð12:26Þ

Also, Equation 11.32 with Do ¼ 2 Re s0j j (Equation 11.86) yields this result. Thus

a bad cavity laser has in general a broadened linewidth. Note that this result is

obtained as a result of our neutral treatment of the cavity and the atomic band-

widths. We have treated the constants g and gc as symmetrically as possible.

Sometimes in the literature it is assumed from the outset that the cavity band-

width is much smaller than the atomic width. In such a treatment, the bad cavity

effect cannot be derived.

12.8

Incomplete Inversion and Level Schemes

In the expressions for the laser linewidth, Equations 9.105, 10.111, 11.105, and

11.71, we had the quantum noise factor for the linear gain cases,

N2

Nsth
¼ N2

ðN2 � N1Þth
ð12:27Þ

or for the saturated gain cases,

1

2
þ N

2Ns0
th

¼ N2th

ðN2 � N1Þth
ð12:28Þ

In both of these equations, N2 or N2th are steady-state values of the upper-level

population. The appearance of N1, the lower-level population, in the denominator

makes these factors larger than those obtained for N1¼ 0. This makes

the linewidth broader than those obtained for N1¼ 0. This effect is called the

incomplete inversion effect and appears in lasers other than an ideal four-level

atom laser. In an ideal four-level laser the lower-level population N1¼ 0 and the

spontaneous emission noise is proportional to N2. When the lower-level popula-

tion exists, the absorption events by the lower-level atoms also disturb the field

coherence and lead to a larger noise than is given by N2.

In our laser model we have employed the two-level atoms, with the upper level 2

and the lower level 1, as the model atoms. The pumping process is described as

(see Equation 3.46)

ðd=dtÞŝmðtÞ ¼ �GmpfŝmðtÞ � s0
mg ð12:29aÞ

where we have ignored the noise term associated with the relaxation of the atomic

inversion. The unsaturated atomic inversion s0
m and the relaxation constant Gmp

are given by Equation 3.51 as
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s0
m ¼

wm12 � wm21

wm12 þ wm21

Gmp ¼ wm12 þ wm21

ð12:29bÞ

where wm12 and wm21 are, respectively, the upward and downward incoherent

transition rates including the pumping and the natural relaxation rates. The

minimum downward transition rate Wm21 is given by the spontaneous emission

rate. The unsaturated atomic inversion may be taken arbitrarily close to unity if

we could make the pumping rate Gmp much larger than Wm21, whence

Gmp � wm12 and s0
m ’ 1. But this is usually not easy to realize in practical

systems.

In this connection, the parameter N in Equations 12.27 and 12.28 and in pre-

vious chapters should be taken as the sum of the upper- and lower-level population

densities of the laser,

N ¼ N1 þN2 ð12:30Þ

not the total atomic density, which may include populations of levels other

than the lasing levels. For example, a three-level system, where the uppermost

level acts only as the intermediate level for pumping and has a very large

relaxation rate, can be accurately simulated by a two-level atom. The possible

existence of other levels and their effects are somehow squeezed into the

equations for the atomic inversion, Equations 3.46 and 5.27. These lead to

the steady-state, saturated atomic inversion in Equations 4.29, 4.37, 8.16, and

10.21a. In Chapter 11 we have assumed a similar form of saturated inversion

in Equation 11.8.

A general four-level model was analyzed by Van Exter et al. [7] in relation to the

longitudinal excess noise factor.

12.9

The Constants of Output Coupling

The constant 2gc is usually taken as the ratio of the output power and the energy

stored in the cavity. We will show that this is not the case in the nonlinear gain

regime of a laser with finite end mirror coupling.

For a quasimode laser the damping of the stored energy is governed by the field

decay described by Equation 4.1:

d

dt
âðtÞ ¼ �iocâðtÞ � gcâðtÞ � i

X

m

kmðb̂ym1b̂m2ÞðtÞ ð12:31Þ

Ignoring the last term, which describes the energy flow to or from the atoms, we

see that the energy flow to the cavity is governed by

d

dt
âðtÞ ¼ �iocâðtÞ � gcâðtÞ ð12:32Þ
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Taking the Hermitian conjugate we have

d

dt
âyðtÞ ¼ iocâ

yðtÞ � gcâ
yðtÞ ð12:33Þ

Multiplying Equation 12.32 by âyðtÞ from the left and multiplying Equation 12.33

by â(t) from the right and adding, we obtain

d

dt
âyðtÞâðtÞ
� 	

¼ �2gc âyðtÞâðtÞ
� 	

ð12:34Þ

As was described in Equation 4.60 the stored energy is proportional to (the

ensemble average of) âyðtÞâðtÞ
� 	

. Thus 2gc is the correct energy damping rate of

the quasimode cavity. This was used in both the linear and the nonlinear gain

regimes as in Equations 4.61 and 4.80.

For the one-sided cavity model, let us first consider the case of the linear gain

regime considered in Chapter 9. In this case the starting equation for the field

amplitude is Equation 9.1, which has no explicit cavity decay constant. One of the

original equations leading to Equation 9.1 is Equation 5.25 for the jth mode of

the universe, which also has no explicit decay constant. Therefore, it is not obvious

from these equations whether the stored energy decays with a certain decay

constant. The results in Equation 9.108 show, however, that the constant

2gc ¼ 2ðc1=2dÞ lnð1=rÞ is the correct damping rate. Note that the expression

gc ¼ ðc1=2dÞ lnð1=rÞ was derived in Equation 1.18 as the natural decay constant for

the one-sided cavity model.

Next we consider the nonlinear gain regime discussed in Chapter 10. We have

the expression for the power output in Equation 10.110:

P ¼ 2e1c1 Esj j2ln
1

r

� �
s0

s0
th

� 1

� �

ð12:35Þ

On the other hand, we have the integrated intensity in the cavity as in Equation

10.101:

ð0

�d
dzm

e� zmð Þj j2þ eþ zmð Þj j2

eþ �dð Þj j2

 !

¼ 2d
bc

gc
1þ D

1þ D
gðrÞ

� �

ð12:36Þ

from which we derive the stored energy W as

W ¼ 2e1

ð0

�d
e� zmð Þj j2þ eþ zmð Þj j2dzm

¼ 4e1d
bc

gc
1þ D

1þ D
gðrÞ

� �

eþ �dð Þj j2
ð12:37Þ

where the factor eþ �dð Þj j2 can be found in Equation E.12 in Appendix E as

eþ �dð Þj j2 ¼ Esj j2
1

r
� r

� ��1

2Re a0d� ln
1

r

� �� �

¼ Esj j2
1

r
� r

� ��1

ln
1

r

� �
s0

s0
th

� 1

� � ð12:38Þ
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where we have used Equations 10.94c and 10.48 to go to the second line. Therefore

we have

P

W
¼ c1gc 1=r � rð Þ

2dbc 1þ ½D=ð1þ DÞ	gðrÞf g ¼
2gc

1þ ½D=ð1þ DÞ	gðrÞ

¼ 2gc

1þ gðrÞ=½1þ ðPs=PÞ lnð1=rÞ	

ð12:39Þ

where Equation 10.110 has been used in the last equality. This shows that 2gc is

not the correct damping factor in this case of the nonlinear gain regime. The

output coupling is more or less reduced depending on the relative excess atomic

inversion D ¼ ðs0 � s0
thÞ=s0

th or on the relative magnitude of the saturation power

and the output power. The reduction is pronounced when the reflection coefficient

r is small so that the function g(r) is large and the output power P is appreciably

larger than the saturation power Ps. This is a consequence of the gain saturation,

which brings the laser out of the linear operation condition and deforms the field

distribution from that of a natural resonant field distribution of the cavity.

A similar result for the case of a general two-sided cavity laser is anticipated. The

reader may show that the ratio of the total power output to the stored energy is

Pt

W
¼ 2gc

1þ ½D=ð1þ DÞ	g r1j j; r2j jð Þ

¼ 2gc

1þ g r1j j; r2j jð Þ= 1þ Ps=Ptð Þ ln 1= r1j j r2j jð Þ½ 	

ð12:40Þ

where

gc ¼
c1

2d
ln

1

r1j j r2j j
ð12:41Þ

The factor D vanishes for the linear gain regime and the ratio reduces to the usual

2gc. But for a strongly nonlinear gain regime, where Pt � Ps, the ratio is reduced if

g r1j j; r2j jð Þ is large. Van Exter et al. [7] derived a different expression for the

damping constant for the nonlinear gain regime that is also smaller than 2gc.

12.10

Threshold Atomic Inversion and Steady-State Atomic Inversion

The threshold atomic inversion is the minimum value of the atomic inversion to

maintain laser oscillation. The threshold is reached when the gain due to the

inversion equals the cavity loss. The threshold inversion is equal to the steady-state

value in a steady-state oscillation above threshold.

In the case of the quasimode laser in Chapter 4, the threshold atomic inversion

was given in Equation 4.13b as
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sth ¼
2_e1ggc

paj j2n0N
1þ d2

 �

ð12:42aÞ

which can be rewritten as

gNsth ¼ gc ð12:42bÞ
where

g ¼ paj j2n0

2e1_gð1þ d2Þ
; d2 ¼ ðn0 � ocÞ2

ðgþ gcÞ2
ð12:43Þ

Here the uniform density of atoms N is assumed to be large enough that many

atoms exist in a region the length of an optical wavelength. If the density was

sparse, the expression may depend on the degree of the overlap of the distributed

atoms and the standing mode field. The threshold inversion is smaller for

larger atomic density, larger electric dipole matrix element, smaller cavity loss,

smaller atomic width, and smaller detuning between the cavity and the atomic

resonances. Also, it was shown that the steady-state atomic inversion is the same

as the threshold inversion:

sss ¼ sth ð12:44Þ

where the steady-state inversion is the saturated value according to

sss ¼
s0

1þ ~EðþÞ
�
�

�
�2
.

Esj j2
ð12:45Þ

Here ~EðþÞ
�
�

�
�2 is the squared oscillation amplitude suitably averaged over the region

internal to the cavity and Esj j2 is the saturation parameter.

For the case of the one-sided cavity laser, the contour integral method for the

linear gain regime in Chapter 6 gives the same result for the threshold inversion

(see Equation 6.12)

sth ¼
2_e1ggc

paj j2n0N
ð1þ d2Þ ð12:46Þ

Note that the cavity decay constant here has the explicit expression given by

Equation 1.18a as compared to the abstract decay constant in Equation 3.35 for the

quasimode cavity laser. The semiclassical and the quantum linear gain analyses

based on the Laplace transform in Chapters 7 and 9 give the threshold inversion as

(see Equation 7.44a)

paj j2n2
0

2_oe1gð1þ d2Þ

( )

Nsth ¼ gc ð12:47Þ

The content of this equation is essentially the same as Equation 12.42a. This

equation can be recast in the form

gNsth ¼ gc ð12:48Þ
which is the same as Equation 12.42b. Here g is the amplitude gain per unit

density of inverted atoms per unit time. Equation 12.48 states that, at threshold,

the amplitude gain per unit time is equal to the cavity loss rate.

250 | 12 A One-Dimensional Laser with Output Coupling: Summary and Interpretation of the Results



The semiclassical and the quantum nonlinear, saturated gain analyses in

Chapters 8 and 10 give the same threshold inversion as for the linear gain analyses

(see Equation 8.48):

Ns0
th ¼

2e1_oggc

n2
0 paj j2

ð1þ d2Þ ð12:49Þ

This can be rewritten in the form

gNs0
th ¼ gc ð12:50Þ

Here the superscript 0 on the inversion s denotes the unsaturated value.

The steady-state inversion averaged over the length of the cavity is equal to the

threshold value (see Equations 8.49 and 8.53)

�sss ¼ sth ð12:51Þ
where

�sss �
1

d

ð0

�d
smdzm ð12:52Þ

For the case of the generalized two-sided cavity laser analyzed in Chapter 11 we

had formally the same results as for the quasimode cavity laser and for the one-

sided cavity laser (see Equation 11.26a):

s0
th ¼ �sss ¼

2_oe1

n2
0 paj j2N

ggcð1þ d2Þ ð12:53Þ

The expression for the cavity decay rate gc is now given by Equation 11.25. This

equation can also be recast in the form

gNs0
th ¼ gc ð12:54Þ

12.11

The Power-Independent Part of the Linewidth

In the previous chapters we have expressed the laser linewidth in terms of the

threshold atomic inversion s0
th in conjunction with the reciprocal output power. In

our two-level atom model the former is a constant independent of the pump level

and thus of the power output (see Equation 12.54 above). In the expressions for the

linewidth for above threshold, we had the ‘‘power-independent part.’’ In the litera-

ture, some authors [7, 8] prefer to express the linewidth in terms of the unsaturated

atomic inversion s0. Note that this factor depends on the pump level and thus is

related to the power output. The merit of these latter forms of expression is that they

are a little more compact than our previous expressions. Let us see how they look.

For the saturated gain regime of the quasimode cavity laser, Equation 4.82 may

read

Do ¼ 2_ocg2
c

P

g2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

nch i þ
N2

Ns0
th

� �

ð12:55Þ
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Here N2 is the steady-state value, that is, the saturated value of N2. We note that

1

s0
th

¼ 1

s0
þ 1

s0
D ð12:56Þ

where D ¼ ðs0 � s0
thÞ=s0

th is the fractional excess atomic inversion, and that

P ¼ 2d

c1
gcPsD ð12:57Þ

which can be derived from Equation 4.67 noting that P ¼ 4gce1d ~EðþÞ
�
�

�
�2 and

Ps ¼ 2e1c1 Esj j2. We also note that the N2 term in Equation 12.55 came from
1
2þN=ð2Ns0

thÞ (see Equation 4.81). Thus we have

Do ¼ 2_ocg2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

� 1

P
nch i þ

N0
2

Ns0

� �

þ 1

Psð2d=c1Þgc

N

2Ns0

� � ð12:58Þ

where N0
2 is the unsaturated value of N2. In this form we have a constant, power-

independent part of the laser linewidth in the second term in the curly bracket. We

note that the linewidth below threshold in Equation 4.62a cannot be rewritten in a

similar form to have a power-independent part because Equation 12.57 is mean-

ingless below threshold.

For the case of the one-sided cavity laser above threshold, we have (see Equation

10.111)

Do ¼ 2_ob2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

� 1

P
no þ

1

2

� �

þ N2 þN1

2Ns0
th

� �

þN2 þ N1

2Ns0
th

gðrÞ
P þ Ps lnð1=rÞ

� � ð12:59Þ

This can be rewritten, using Equation 10.110 instead of Equation 12.57, as

Do ¼ 2_ob2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

� 1

P
no þ

1

2

� �

þ N2 þN1

2Ns0

� �

þN2 þ N1

2Ns0

gðrÞ þ 1f g
Ps lnð1=rÞ

� �

¼ 2_og2ð1þ d2Þ
ðgþ gcÞ2 þ d2ðg� gcÞ2

� b2
c

P
no þ

1

2

� �

þ N2 þN1

2Ns0

� �

þN2 þ N1

2Ns0

f ðrÞ
Ps

� �

ð12:60Þ

where, by Equation 10.102,

f ðrÞ ¼ c1

2d

� �2 1

2
ln

1

r

� �

þ 1� r4

8r2

� �

ð12:61Þ
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Here we have used the relation bc ¼ fc1=ð2dÞgð1� r2Þ=ð2rÞ (Equation 6.35).

For the case of the two-sided cavity laser above threshold, we have from Equation

11.71

Do ¼ 2_oKLg2
c g

2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

� 1

Pt
noh i þ

1

2
þ N

2Ns0
th

� �

þ N

2Ns0
th

1

Pt þ Ps ln 1= r1j j r2j jð Þ g r1j j; r2j jð Þ
� � ð12:62Þ

We can similarly rewrite this equation as

Do ¼ 2_og2ð1þ d2Þ
ðgþ gcÞ2 þ ðg� gcÞ2d2

� KLg2
c

Pt
noh i þ

1

2
þ N

2Ns0

� �

þ N

2Ns0

f r1j j; r2j jð Þ
Ps

� � ð12:63Þ

where

f r1j j; r2j jð Þ ¼ KLg2
c

g r1j j; r2j jð Þ þ 1

ln 1= r1j j r2j jð Þ

¼ c1

2d

� �2 1

2
ln

1

r1j j r2j j

� �

þ
r1j j2þ r2j j2

 �

1� r1j j2 r2j j2

 �

8 r1j j2 r2j j2

( ) ð12:64Þ

We again note that the unsaturated atomic inversion s0 is not independent of

the power output, as seen from Equation 12.57. Van Exter et al. [7] obtained, by the

Green’s function method of Tromborg et al. [9], the same result as Equation 12.63

except that the factor before f ðjr1j; jr2jÞ=Ps is N2=ðNs0Þ, in our notation, instead of

N=ð2Ns0Þ. This difference comes from their neglect of the vacuum fluctuation or

their reliance on the normally ordered correlation functions. Their results also

contain a factor concerning the degree of incomplete inversion coming from the

laser level scheme. Prasad [8] found, through a method similar to that in Chapter

11, similar results for a one-sided cavity laser. His vacuum fluctuation term is

multiplied by the refractive index of the laser medium. He found a factor pro-

portional to the function f(r) in Equation 12.61 for the power-independent part.

12.12

Linewidth and Spontaneous Emission Rate

In Equation 4.13d and in other equations relating to the threshold condition, there

appeared the constant g, which was interpreted as half the coefficient of the sti-

mulated emission rate. This rate should be related to the spontaneous emission rate.

As the laser linewidth is sometimes interpreted as resulting from spontaneous

emission, it will be instructive to derive the expression for the spontaneous emission

rate and its relation to the laser linewidth. Also, this discussion will become

necessary in Chapter 14 where theories of the excess noise factor are reviewed.
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12.12.1

Spontaneous Emission in the Quasimode Laser

We first consider the quasimode cavity laser. For the below-threshold case, we start

with the time derivative of Equation 4.43 for the field amplitude and its Hermitian

adjoint (we ignore the initial value term, which will decay eventually)

d

dt
~aðtÞ ¼ s0~aðtÞ þ

iðn0 � oÞ þ gf g~Gf ðtÞ � i
P

m km
~GmðtÞ

iðoc þ n0 � 2oÞ þ gc þ g

d

dt
~ayðtÞ

¼ s�0~ayðtÞ þ �iðn0 � oÞ þ gf g~Gyf ðtÞ þ i
P

m k�m ~GymðtÞ
�iðoc þ n0 � 2oÞ þ gc þ g

ð12:65Þ

Multiplying the first equation by ~ayðtÞ from the left and the second equation by ~aðtÞ
from the right and adding, we obtain

d

dt
~ayðtÞ~aðtÞ
� 	

¼ ðs0 þ s�0Þ~ayðtÞ~aðtÞ þ ~ayðtÞ

� iðn0 � oÞ þ gf g~Gf ðtÞ � i
P

m km
~GmðtÞ

iðoc þ n0 � 2oÞ þ gc þ g

þ
�iðn0 � oÞ þ gf g~Gyf ðtÞ þ i

P
m k�m ~GymðtÞ

�iðoc þ n0 � 2oÞ þ gc þ g
~aðtÞð12:66Þ

We use Equation 4.43 and its Hermitian adjoint on the right-hand side and take the

reservoir average. Using the delta-correlated natures of the noise forces (see Equa-

tions 3.36, 3.37, and 9.5c), we have for the reservoir average of the photon number

d

dt
~ayðtÞ~aðtÞ
� �

¼ ðs0 þ s�0Þ ~ayðtÞ~aðtÞ
� �

þ

Ð t
0 es�ðt�t0Þ �iðn0 � oÞ þ gg ~Gyf ðt0Þ þ i

P
m k�m ~Gymðt0Þ

n o
dt0

�iðoc þ n0 � 2oÞ þ gc þ g

*

�
iðn0 � oÞ þ gf g ~Gf ðtÞ � i

P
m km

~GmðtÞ
iðoc þ n0 � 2oÞ þ gc þ g

+

þ
�iðn0 � oÞ þ gg ~Gyf ðtÞ
n o

þ i
P

m k�m ~GymðtÞ
�iðoc þ n0 � 2oÞ þ gc þ g

*

�
Ð t

0 esðt�t0Þ iðn0 � oÞ þ gg ~Gf ðt0Þ � i
P

m km
~Gmðt0Þ

� 	
dt0

iðoc þ n0 � 2oÞ þ gc þ g

+

¼ ðs0 þ s�0Þ ~ayðtÞ~aðtÞ
� �

þ 2
fðn0 � oÞ2 þ g2g1

22gc nch i þ
P

m kmj j21
2gð1þ sÞ

ðoc þ n0 � 2oÞ2 þ ðgc þ gÞ2

ð12:67aÞ

Here, we have used the integral
Ð t

0 dðt� t0Þdt0 ¼ 1=2. Thus we have
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d

dt
~ayðtÞ~aðtÞ
� �

¼ ðs0 þ s�0Þ ~ayðtÞ~aðtÞ
� �

þ Rt þ Rsp ð12:67bÞ

with

Rt ¼
g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

2gc nch i ð12:68Þ

Rsp ¼
g0

g0 þ g0c

�
�
�
�

�
�
�
�

2

2gN2 ð12:69Þ

where Equation 3.26 has been used for km, the summation over m of U2
c ðzmÞ has

been evaluated as N=e1, the relation g0j j2¼ g2ð1þ d2Þ has been used, and the factor

g is given in Equation 12.43.

In Equation 12.67b the first term on the right-hand side gives the decay rate of

the photon number, which is the difference between the stimulated emission rate

and the cavity loss rate (see Equation 4.53). In Equations 12.68 and 12.69 the

absolute squared factor is given in Equation 11.68 and represents the detuning and

the bad cavity effects. Except for this factor, the rate Rt is interpreted as the

injection rate of thermal photons and the rate Rsp is the total spontaneous emission
rate within the cavity. Below Equation 4.14 the constant g was interpreted as

‘‘half the stimulated transition rate per atom per unit density of photons.’’

Therefore, the quantity 2g is the stimulated transition rate per atom per unit

density of photons. For a free space mode, this rate is equal to the spontaneous

emission rate per atom into the mode. However, in this case, the spontaneous

emission rate into the cavity mode per atom is multiplied by the absolute squared

factor because of the above-mentioned effects in the quasimode cavity. Hereafter,

we use the term ‘‘total spontaneous emission rate’’ for the spontaneous emission

by all the atoms in an active cavity to distinguish it from the spontaneous emission

by individual atoms, for which we retain the term ‘‘spontaneous emission rate.’’

This total spontaneous emission rate is related to the laser linewidth in Equation

4.62a. Noting that the output power P ¼ 2gc_o âyâ
� �

and that gNsth ¼ gc (Equa-

tion 4.47), we can show that

Do ¼ Rt þ Rsp

âyâh i ð12:70Þ

for below-threshold operation. For above-threshold operation, we have from

Equation 4.82

Do ¼ Rt þ Rsp

2 âyâh i ð12:71Þ

Thus the linewidth in angular frequency above threshold is, except for the

thermal injection rate, the spontaneous emission rate divided by twice the photon

number in the cavity, as noted by Henry [10]. (In Henry’s formula, this linewidth

is multiplied by 1þ a2, the Henry factor – see Section 12.13.3.)
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12.12.2

Spontaneous Emission in the One-Sided Cavity Laser

Next we consider the one-sided cavity laser below threshold analyzed in Chapter 9.

We have from Equation 9.64 (for �d r z r 0)

ÊðþÞ z; tð Þ¼ sinOcðzþdÞ=c1

gþ gcþ i v0þoc�2oð Þ

�
X

j

Cjâj 0ð Þ
" ðt

0

e�iojt exp s0� ioð Þ t� tð Þ½ 	dtþ iv0pa

e1d

�
X

m

sinfOcðzmþdÞ=c1g
ðt

0

Ĝm tð Þexp s0� ioð Þ t� tð Þ½ 	dt
#

ð9:64Þ

Differentiation with respect to time yields

d

dt
ÊðþÞ z; tð Þ ¼ s0ÊðþÞ z; tð Þ þ sinOcðzþ dÞ=c1

gþ gc þ i v0 þ oc � 2oð Þ

�
X

j

Cjâj 0ð Þ e�ioj t

"

þ iv0pa

e1d

X

m

sinfOcðzm þ dÞ=c1g Ĝm tð Þ
# ð12:72Þ

As in Equation 12.67a we have

d

dt
Êð�Þ z; tð ÞÊðþÞ z; tð Þ
D E

¼ ðs0þ s�0Þ Êð�Þ z; tð ÞÊðþÞ z; tð Þ
D E

þ sinOcðzþ dÞ=c1

g0 þ g0c

�
�
�
�

�
�
�
�

2

� Dþ v0pa

e1d

�
�
�
�

�
�
�
�

2X

m

sinfOcðzmþ dÞ=c1gj j2gð1þsÞ
" # ð12:73Þ

where D is given in Equation 9.81b. Here Êð�Þ z; tð Þ is the Hermitian adjoint of

ÊðþÞ z; tð Þ (see Equation 2.19b). In this case ÊðþÞ z; tð Þ is not the photon annihilation

operator of the cavity mode. In view of the spatial dependence of Equation 9.64 we

assume the form

ÊðþÞ z; tð Þ ¼ BâðtÞ sinfOcðzþ dÞ=c1g ð12:74Þ

where B is the normalization constant to be determined and âyðtÞâðtÞ
� �

describes

the photon number in the cavity. Since the field energy stored inside the cavity

divided by _o is equal to the photon number, we have

2e1

ð0

�d
dz Êð�Þ z; tð ÞÊðþÞ z; tð Þ
D E

¼ _o âyðtÞâðtÞ
� �

ð12:75Þ

or

2e1 Bj j2 âyðtÞâðtÞ
� �

ð0

�d
sinfOcðzþ dÞ=c1gj j2dz ¼ _o âyðtÞâðtÞ

� �
ð12:76Þ

Thus we have
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Bj j2¼ _o
2e1

1
Ð 0

�d sinfOcðzþ dÞ=c1gj j2dz
ð12:77Þ

Substituting Equation 12.74 into Equation 12.73 and using Equation 12.77 we

have

d

dt
ây tð Þâ tð Þ
� �

¼ ðs0 þ s�0Þ ây tð Þâ tð Þ
� �

þ 2e1

_o

Ð 0

�d sinfOcðzþ dÞ=c1gj j2dz

sinfOcðzþ dÞ=c1gj j2

� sinOcðzþ dÞ=c1

g0 þ g0c

�
�
�
�

�
�
�
�

2

� Dþ v0pa

e1d

�
�
�
�

�
�
�
�

2X

m

sinfOcðzm þ dÞ=c1gj j2gð1þ sÞ
" #

ð12:78Þ

Referring to Equation 9.92 for the integral and to Equation 4.14 for the constant

g, we have

d

dt
ây tð Þâ tð Þ
� �

¼ ðs0 þ s�0Þ ây tð Þâ tð Þ
� �

þ R0t þ Rsp ð12:79Þ

where

R0t ¼ Rt
s2

sths0
th

¼ g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 bc

gc

� �2 s2

sths0
th

2gc noh i

Rsp ¼
g0

g0 þ g0c

�
�
�
�

�
�
�
�

2 bc

gc

� �2

2gN2

ð12:80Þ

Here we have used Equation 9.81b for D and Equation 9.14 for G in the expression

for D. Also we have used Equation 7.44a for sth. This time both the thermal

photon injection rate and the total spontaneous emission rate in the cavity have

a new factor, ðbc=gcÞ2, which was identified as the longitudinal excess noise

factor for the case of the one-sided cavity laser below threshold. Also, the

factor s2=ðsths0
thÞ appears here as in Equation 9.105. The laser linewidth in

Equation 9.105 can be rewritten as

Do ¼ R0t þ Rsp

âyâh i ð12:81Þ

For above-threshold operation, Equation 10.111 for the same laser reduces,

except for the extra term coming from the gain saturation (the term containing

g(r)), to

Do ¼ Rt þ Rsp

2 âyâh i ð12:82Þ

Here Rt is defined in Equation 12.80. Comparison of Equation 12.81 or Equation

12.82 with Equation 12.70 or Equation 12.71 shows that, except for the thermal

contribution and the term coming from the gain saturation, the linewidth is in

12.12 Linewidth and Spontaneous Emission Rate | 257



general given by the spontaneous emission rate divided by the number of photons

in the cavity or by twice the number of photons [10], depending on whether

operation is below or above threshold. The difference between the quasimode laser

case and the one-sided cavity laser case appears as the absence or the presence of

the excess noise factor in the total spontaneous emission rate. Thus we can say that

an enhanced linewidth with an excess noise factor is the result of the enhanced

total spontaneous emission rate in the cavity. Note that the total spontaneous

emission rate in the cavity does not mean the spontaneous emission rate of

individual atoms. The latter is the standard emission rate in the medium.

(See Chapter 13 for the modified spontaneous emission rate of an atom in a

microcavity.) We note that the thermal photon injection rate is also enhanced

by the same excess noise factor in the one-sided cavity laser.

12.12.3

Spontaneous Emission in the Two-Sided Cavity Laser

The case of the general two-sided cavity laser may be analyzed in a similar fashion.

But for this case we need the specification of the cavity mode function involved,

which has not been done in Chapter 11. Thus this analysis will be postponed to

Chapter 14. (See Equations 14.36, 14.90, and 14.113 for spontaneous emission in a

laser with a general cavity structure.) We will see that the total spontaneous

emission rate is enhanced by the excess noise factor.

12.13

Further Theoretical Problems

There are several issues concerning the laser linewidth and the longitudinal excess

noise factor that have not been taken into account in the previous chapters but

have to be known when one goes to more realistic analyses. This section describes

those issues of general importance.

12.13.1

Filling Factor

Up to now we have assumed that the active laser medium containing active atoms

exists in the whole space of the cavity. In practice, the laser medium sometimes

exists only in a part of the cavity space. The ratio of the volume where the laser

medium exists to the whole volume of the cavity is called the filling factor. In our

one-dimensional case, the filling factor may be defined as the ratio of the optical

length of the laser medium to the whole optical length of the cavity. The effect of

the presence of the spatial region where the laser medium does not exist can be

analyzed easily assuming that the laser field in such a region propagates with no

change in amplitude but with finite phase change. This free propagation results in

a relative increase of the cavity length and thus in a relative decrease in the cavity

decay rate. Henry [10] considered this problem, ignoring thermal noise, and
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obtained a laser linewidth similar to ours, including the longitudinal excess noise

factor, but multiplied by the square of the filling factor. In our case of a general

two-sided cavity laser, the ‘‘diffusion coefficient’’ Dqq in Equation 11.100

will be multiplied by the filling factor because in the sum in Equation 11.99 the

cavity length d should be replaced by the active length l, say, if there are inactive

regions within the cavity. This results in a linewidth in Equation 11.101, for

example, multiplied by the filling factor l/d. The apparent difference from Henry’s

result, multiplication by the square of the filling factor, comes from Henry’s

expression for the linewidth containing the active length.

12.13.2

Inhomogeneous Broadening

Throughout this book, the laser active atoms are assumed to be homogeneously

broadened. This is not necessarily true in practice. Kuppens et al. [11] considered

this problem theoretically and experimentally, taking into account the presence of

a longitudinal excess noise factor. On the basis of the argument concerning the

intracavity round-trip time, they found that, when the inhomogeneous gain width

is large compared with the homogeneous Lorentzian width, the laser linewidth

tends to decrease. They verified this point by experiments using a He–Xe gas laser.

12.13.3

Amplitude–Phase Coupling

Henry [12] showed that, in a medium where the refractive index changes appre-

ciably with field amplitude, fluctuation of the field amplitude due to noise causes

the field phase to fluctuate strongly. Thus this amplitude–phase coupling intro-

duces another cause of laser line broadening. The effect was shown to broaden the

laser linewidth by a factor 1þ a2, the Henry factor, where

a ¼ Dn0

Dn00
ð12:83Þ

Here Dn0 and Dn00 are the changes in the real and imaginary parts of the refractive

index, respectively, under a given change in the field amplitude. This effect should

appear more or less if we take the amplitude fluctuation into account.

In previous chapters we have ignored the temporal fluctuation of the atomic

inversion: we have ignored the Langevin force ĜmkðtÞ in Equations 3.46 and 5.27 in

our analysis and simply used the reservoir-averaged, steady-state values of the

atomic inversion. Therefore, the Henry factor did not appear.

Goldberg et al. [13] noticed the formal resemblance of the mathematics leading

to the Henry factor and the detuning effect. They showed that the detuning of the

cavity frequency from the oscillation frequency (they assumed that the oscillation

frequency is equal to the atomic transition frequency) gives equations relating the

amplitude and phase changes with the field intensity that are equivalent to those

that appear for the case of amplitude–phase coupling via refractive index change.
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They showed that the parameter O ¼ ðn0 � ocÞ=gnet, where gnet is the net damping

rate of the field in the active cavity, has the same role as the parameter a and yields

a linewidth enhancement factor 1þO2. However, they showed numerically that,

for a large output coupling, the detuning effect is smaller than the 1þO2 factor.

In this context we have obtained in Section 12.6 a factor

1þ d2 ¼ 1þ ðn0 � ocÞ2

ðgþ gcÞ2
ð12:84Þ

only for the case g B gc. When either g c gc or g { gc we had no detuning effect.

12.13.4

Internal Loss

By the term internal loss we mean the optical losses other than that due to output

coupling. One physical cause of internal loss is scattering of the laser field by

impurities or optical imperfections. The other is absorption of the laser field by any

absorber other than the lasing atoms or by the lasing atoms involving non-lasing

levels.

The loss may be localized or distributed through the cavity. The internal loss

merely consumes the laser field energy, while the output coupling loss leads to the

laser output. As mentioned in Chapter 3 and in Appendix C, these losses are

associated with fluctuating forces so as to maintain the quantum-mechanical

consistency.

12.13.4.1 Internal Loss in a Quasimode Laser

In the case of the quasimode laser model, the addition of an internal loss

mechanism does not lead to much difficulty. The internal loss adds a decay

term with a decay constant gl in Equation 4.39a together with a fluctuating force

term, for example, ĜlðtÞ. Here the subscript l signifies the internal loss. Thus

d

dt
â ¼ �iocâ� gcâ� gl â� i

X

m

kmðb̂ym1b̂m2Þ þ Ĝf ðtÞ þ ĜlðtÞ ð12:85Þ

The correlation function for ĜlðtÞ is given analogously to Equations 3.36 and 3.37:

ĜlðtÞ
� �

¼ 0; Ĝyl ðtÞ
D E

¼ 0

Ĝyl ðtÞĜlðt0Þ
D E

¼ 2gl nch idðt� t0Þ; ĜlðtÞĜyl ðt
0Þ

D E
¼ 2gl nch i þ 1ð Þdðt� t0Þ

ð12:86Þ

Therefore, the analysis for the quasimode laser in Chapter 4 does not change

significantly: the cavity decay rate becomes gcþ gl instead of gc, and the normally or

anti-normally ordered noise correlations yield (see Appendix C)
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Ĝyf ðtÞ þ Ĝyl ðtÞ
n o

Ĝf ðt0Þ þ Ĝlðt0Þ
� 	D E

¼ 2ðgc þ glÞnodðt� t0Þ

Ĝf ðtÞ þ ĜlðtÞ
� 	

Ĝyf ðt
0Þ þ Ĝyl ðt

0Þ
n oD E

¼ 2ðgc þ glÞðno þ 1Þdðt� t0Þ
ð12:87Þ

where we have assumed the mutual independence of the two noise forces.

The laser output power is still 2gc times the stored energy. The product of 2gl

and the stored energy gives the power dissipation rate to the internal loss

mechanism. So, most of the gc in Chapter 4 become gcþ gl except the one in

Equation 4.80 for the power output and one of the gc in the numerator in the

expression for the linewidth in Equations 4.81 and 4.82.

12.13.4.2 Internal Loss in a Two-Sided Cavity Laser

For the case of continuous mode analysis starting in Chapter 5, it is not obvious

how to take the decay rate gl and the fluctuating force ĜlðtÞ into account in the

starting equation (Equation 5.25) because this deals with the individual universal

mode but not the cavity mode as a whole. Therefore, it is not advisable to use the

continuous mode analysis from the outset. Any internal loss may be artificially

squeezed into the theory after we get the equation of motion for the total cavity

field, for example, Equation 10.69 obtained for the nonlinear, saturated gain

analysis of a one-sided cavity laser. Here the time rate of change of the internal

field is related to the thermal and quantum noise forces.

The simplified, propagation method used for the analysis of a generalized two-

sided cavity laser in Chapter 11 was based on this equation. Equations 11.35 and

11.77 for the nonlinear and linear gain regimes, respectively, were the disguised

forms of Equation 10.69 with suitably dressed-up noise forces. Two coupling

surfaces with respective arbitrary reflectivity, r1 and r2, were introduced instead of

the two with r and �1 for the one-sided cavity. The noise forces associated with

possible internal losses may be introduced into Equations 11.35 and 11.77. For

generality, let us assume that we have local losses at the two mirrors with

respective loss rate gl1 and gl2, respectively, and a distributed loss with overall loss

rate gld. Then, the factor F̂t þ F̂q in Equations 11.35, for example, may have

additional terms due to these internal losses:

dêþðd� 0; tÞ
dt

¼ c1

2d

g0

g0 þ g0c
F̂t þ F̂q þ F̂l1 þ F̂l2 þ F̂ld

� �
ð12:88Þ

The noise from the mirrors may be treated just as the thermal noise entering

from the two mirrors. We cite Equation 11.36:

F̂t ¼ T 02r1GtRe2ikdf̂ R
t dþ 0; t� 2d

c1

� �

þ T 01 GtLeikdf̂ L
t �0; t� d

c1

� �� �

ð11:36Þ

Here the noise forces are multiplied by the net amplification plus phase shift for

one round trip or a one-way trip to mirror M2. Inspection of the calculation

procedure to go from this equation to the linewidth formula in Equation 11.66

shows that the resultant squared transmission coefficients jT 01;2j
2 result in the

factor r1j j þ r2j jð Þ 1� r1j j r2j jð Þ= r1j j r2j j, which, together with the factor (c1/2d),
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reduces to 2 lnð1=jr1jjr2jÞ ¼ 2gc in the limit jr1j; jr2j ! 1. If we look at the above

factor more precisely, it appeared in Equation 11.53 in the form r1j j�1� r1j j plus

r2j j�1� r2j j. They came from jT 01j
2 and jT 02j

2, respectively. In the limit jr1j; jr2j ! 1,

they would lead to 2gc1 ¼ 2ðc1=2dÞ lnð1=jr1jÞ and 2gc2 ¼ 2ðc1=2dÞ lnð1=jr2jÞ, respec-

tively, where, of course, we have gc1 þ gc2 ¼ gc . Thus we see that the usual cavity

decay rate was incorporated through the transmission coefficients. Therefore F̂l1;2

may be given as

F̂l2 þ F̂l1 ¼ T 0l2r1GtRe2ikdf̂ R
t t� 2d

c1

� �

þ T 0l1 GtLeikdf̂ L
t t� d

c1

� �

ð12:89Þ

where T 0l1 and T 0l2 should lead to their respective loss rates gl1 and gl2. One

prescription for this is to set

T 0l1 ¼ T 01

ffiffiffiffiffiffi
gl1

gc1

r

; T 0l2 ¼ T 02

ffiffiffiffiffiffi
gl2

gc2

r

ð12:90Þ

For the distributed loss, if it is uniformly distributed, we may have, as in

Equation 11.41 for the quantum noise,

F̂ld ¼
X

i

f̂ ld
i t� d� zi

c1

� �

gmReikðd�ziÞ þ f̂ ld
i t� dþ zi

c1

� �

r1gmLeikðdþziÞ
� �

ð12:91Þ

The factor f̂ ld
i is the noise amplitude emitted by the ith fragment of the distributed

loss mechanism. The assembled noise

f̂ld ¼
X

i

f̂ ld
i ð12:92Þ

should lead to the decay rate gld. Therefore, this may be given, as in Equation 12.90,

by

f̂ld ¼ T 0ldf̂ R
t ; T 0ld ¼ T 02

ffiffiffiffiffiffi
gld

gc2

r

ð12:93aÞ

or

f̂ld ¼ T 00ldf̂ L
t ; T 00ld ¼ T 01

ffiffiffiffiffiffi
gld

gc1

r

ð12:93bÞ

These two alternatives should lead to the same results. The individual noises f̂ ld
i ,

which are mutually independent, may be determined so that

f̂ yldðtÞf̂ldðt
0Þ ¼

X

i

f̂ ldy
i ðtÞf̂

ld
i ðt0Þ ð12:94Þ

Finally, the noises F̂l1 þ F̂l2 þ F̂ld should be determined so that, in the final

expression for the linewidth and in a good cavity limit, every gc, for example in

Equation 11.66, is replaced by gc þ gl1 þ gl2 þ gld except for the one that is related

directly to the power output.
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12.13.4.3 Internal Loss and Optimum Output Coupling

A practical benefit of taking into account the internal loss is that this allows us to

know the optimum output coupling or the optimum mirror reflectivity to get the

largest power output for a given pumping strength. As seen from Equation 4.34, in

the presence of an internal loss mechanism, the power output P is (see Equation

4.14)

P ¼ 2gce1d Esj j2
gNs0

gc þ gl
� 1

� �

ð12:95Þ

Note that g does not contain gc nor gl (see Equation 4.14). We assume, for

simplicity, that the gc (and gl) dependence of Esj j2 given in Equation 4.35 can be

ignored. Then the power output P as a function of gc vanishes at gc¼ 0 and at

gc ¼ gNs0 � gl but has a maximum at

gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gNs0gl

q
� gl ð12:96Þ

The maximum power is

P ¼ 2e1d Esj j2
ffiffiffiffiffiffiffiffiffiffiffiffi
gNs0

q
� ffiffiffiffi

gl
p

� �2

ð12:97Þ

If we had gl¼ 0, P would increase with decreasing gc and would be at its maximum

at gc¼ 0. This is unphysical since gc¼ 0 means zero output power. In reality we

cannot avoid some internal loss, which leads to a finite optimum coupling loss.

12.13.5

Spatial Hole Burning

In a laser where the laser active atoms cannot move freely in space, the gain

saturation occurs selectively at the locations where the field intensity is large. In

lasers with Fabry–Perot type cavities, there exist two counter-traveling waves that

interfere to bring an interference pattern with a period of half the wavelength in

the laser medium. If the pumping is uniform, the portion of bright interference

becomes more saturated than the portion of dark interference. This is called

spatial hole burning in contrast to the usual hole burning that occurs in the gain

spectral region in an inhomogeneously broadened medium. Spatial hole burning

leads to a quasi-periodically modulated gain distribution along the length of the

laser medium with the period being a half-wavelength.

In previous chapters, this phenomenon was disregarded because an accurate

inclusion of this effect demands more complicated mathematics. For example, in

Chapter 4 for a quasimode laser, we have replaced sin2ðzm þ dÞ by its space

average 1
2 in going from Equation 4.29 to Equation 4.32. Similarly, in Chapter 8

devoted to the semiclassical analysis of the one-sided cavity laser, we have ignored,

in Equation 8.22, the interference terms in the absolute square of the total electric

field, which would lead to spatial holes. This approximation was carried over to

Chapter 10 for the quantum, nonlinear gain analysis of the same laser.
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Agrawal and Lax [14] developed a method to treat the spatial hole burning and

showed that the gain is in general different for the right- and left-going waves in

the presence of spatial holes. Goldberg et al. [13] extensively examined the effect

of spatial holes on the longitudinal excess noise factor, extending the method of

Agrawal and Lax to include asymmetric cavities, and showed that the spatial holes

increase the linewidth because of the decreased output power and that, when the

cavity is two-sided and asymmetric, the directional gain results in a further

increase in the excess noise factor.

12.13.6

Transition From Below Threshold to Above Threshold

A laser is an oscillator in the optical frequency region. An oscillator has in general a

clear threshold gain and its operation changes abruptly at threshold: from no coherent

output power below threshold to finite coherent output power above threshold. A laser

also has a clear threshold behavior: we experience an abrupt emergence of a bright

light beam at threshold. Accordingly, the analyses presented so far have been divided

into linear gain analysis for below-threshold operation, and nonlinear, saturated gain

analysis for above-threshold operation. In particular, the expression for the laser

linewidth had a decrease by a factor of 2 from below to above threshold.

A closer look at threshold, however, reveals a smooth transition from below

threshold to above threshold of various quantities in a laser. Risken [15] calculated

the smooth change of the linewidth, showing a decrease by a factor of 2 from

below to far above threshold. He treated the classical field amplitude using a

Fokker–Planck equation approach. The Fokker–Planck equation for a laser deals

with the probability distribution of the field amplitude [5,6]. Another method

suitable for analyzing the smooth change through threshold is the density matrix

equation method, used by, among others, Scully and Lamb [16]. This method

treats the photon number distribution and derives a smooth change in the photon

number distribution: from that of a black-body radiation for far below threshold to

a Poisson distribution for far above threshold.
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13

Spontaneous Emission in a One-Dimensional

Optical Cavity with Output Coupling

In this chapter we analyze spontaneous emission from a single excited atom in a

one-dimensional, symmetric two-sided cavity. Perturbative treatments and exact

non-perturbative treatments are given. We show that the spontaneous emission

rate can be enhanced, compared to the case in a free one-dimensional space, by the

so-called Purcell factor, but not by the excess noise factor. Thus this analysis makes

it clear that the excess noise factor of the previous chapters is not a result of the

enhancement of the spontaneous emission rate of individual atoms by the excess

noise factor. Parts of the analyses presented in this chapter are due to Feng and

Ujihara [1] and Takahashi and Ujihara [2]. Extension to three dimensions is

considered in the final section.

13.1

Equations Describing the Spontaneous Emission Process

We consider the spontaneous emission process by a two-level atom located in an

optical cavity having output coupling. The atom is initially prepared in the upper

state and the field modes are initially in the vacuum states. Here we use the

symmetric two-sided cavity model of Section 1.3.2 where the cavity is composed

of a dielectric slab extending in the region –d r z r d. The dielectric has

dielectric constant e1 and refractive index n with the velocity of light inside

the dielectric being c1. The outside regions are vacuum with dielectric constant e0

and velocity of light c0. We naturally have c1¼ c0/n. For quantization, we have

imposed on the field modes a cyclic boundary condition with period Lþ 2dEL.

The mode functions of the universe are given in Equation 1.58, where we have

antisymmetric and symmetric functions.

In this chapter we use the Schrödinger equation in contrast to the Heisenberg

equation used in Chapters 3 through 11. The Hamiltonian describing the spon-

taneous emission process by a two-level atom is given as
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Ĥt ¼ Ĥf þ Ĥa þ Ĥint ð13:1Þ

Here the field Hamiltonian is

Ĥf ¼
X

j

Ĥj ¼
X

j

_oj âyj âj þ
1

2

� �

ð13:2Þ

where the suffix j denotes a ‘‘universal’’ mode. The atom with Hamiltonian Ĥa has

two levels uj i and lj i with energy eigenvalues

Ĥa uj i ¼ _oA uj i; Ĥa lj i ¼ 0 lj i ¼ 0 ð13:3Þ

The interaction Hamiltonian is (cf. Equations 3.17 and 3.19)

Ĥint ¼ �i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzAÞm̂ðâj � âyj Þ ð13:4Þ

where m̂ ¼ ex̂ is the component of the atom’s electric dipole operator er̂ in

the direction of the polarization of the electric field, which is assumed to be

in the x-direction. The function Uj(z) is the jth mode of the ‘‘universe’’ and zA is

the location of the atom.

Now the electric dipole is a constant operator that does not change with time.

Also, the annihilation and creation operators of the modes of the ‘‘universe’’ are

constant in time. What changes with time is now the wavefunction, for which we

assume the form

jðtÞj i ¼ CuðtÞ uj i 0j ie�ioAt þ
X

j

CljðtÞ lj i 1j

�
�
�
e�ioj t ð13:5Þ

with the initial conditions

Cuð0Þ ¼ 1 and Cljð0Þ ¼ 0 ð13:6Þ

Here the field state 0j i denotes the state where no photon exists in any mode, while

1j

�
�
�

denotes the state where one photon exists in the mode j but no photon exists

in any of the other modes. The time-varying coefficients Cu(t) and Clj(t) are the

probability amplitudes for the combined states uj i 0j i and lj i 1j

�
�
�
, respectively. In

Equation 13.5 we are implicitly assuming that the system has an appreciable

probability only for one excitation state, that is, the state with an excited atom and

no photons, or the state with a de-excited atom and one photon. We assume that

the probabilities for states with zero excitations and with two excitations or more

can be ignored. This corresponds to the rotating-wave approximation where

energy-conserving terms are selectively treated.

Now the Schrödinger equation

i_
@

@t
jðtÞj i ¼ Ĥt jðtÞj i ð13:7aÞ

reads
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i_
@

@t
CuðtÞ uj i 0j ie�ioAt þ

X

j

CljðtÞ lj i 1j

�
�
�
e�ioj t

( )

¼
X

j

_oj âyj âj þ
1

2

� �

þ Ĥa � i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzAÞm̂ðâj � âyj Þ
( )

� CuðtÞ uj i 0j ie�ioAt þ
X

j

CljðtÞ lj i 1j

�
�
�
e�ioj t

( )

ð13:7bÞ

Thus the left-hand side (LHS) is

LHS ¼ i_ _CuðtÞ uj i 0j ie�ioAt þ _oACuðtÞ uj i 0j ie�ioAt

þ i_
X

j

_CljðtÞ lj i 1j

�
�
�
e�ioj t þ _

X

j

ojCljðtÞ lj i 1j

�
�
�
e�ioj t ð13:8Þ

On the right-hand side (RHS) we use Equations 2.14, 2.15 and 13.3 and ignore

states with two photons. Thus the RHS is

RHS ¼
X

i

_oi

2
CuðtÞ uj i 0j ie�ioAt þ

X

j

CljðtÞ lj i 1j

�
�
�
e�ioj t

( )

þ
X

j

_ojCljðtÞ lj i 1j

�
�
�
e�ioj t þ _oACuðtÞ uj i 0j ie�ioAt

� i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzAÞm̂CljðtÞ lj i 0j ie�ioj t

þ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzAÞm̂CuðtÞ uj i 1j

�
�
�
e�ioAt

ð13:9Þ

Note that the second and fourth terms on the LHS cancel with the fourth and

third terms on the RHS, respectively. Multiplying both sides by uh j 0h j and by

lh j 1j

� �
�, we have, respectively,

i_ _CuðtÞ ¼
X

i

_oi

2
CuðtÞ � i

X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzAÞ uh jm̂ lj iCljðtÞeiðoA�ojÞt

i_ _CljðtÞ ¼
X

i

_oi

2
CljðtÞ þ i

ffiffiffiffiffiffiffi
_oj

2

r

UjðzAÞ lh jm̂ uj iCuðtÞe�iðoA�ojÞt

ð13:10Þ

The factor
P

i _oi=2 can be shown to give Cu and Clj the same phase factor

expfi
P

j ðoj=2Þtg, which we ignore from now on. Thus we ignore the first terms

on the RHS in both lines of Equations 13.10. We obtain
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_CuðtÞ ¼ �
X

j

ffiffiffiffiffi
oj

2_

r

UjðzAÞmACljðtÞeiðoA�ojÞt

_CljðtÞ ¼
ffiffiffiffiffi
oj

2_

r

UjðzAÞm�ACuðtÞe�iðoA�ojÞt

ð13:11Þ

where we have written uh jm̂ lj i ¼ mA.

13.2

The Perturbation Approximation

We first consider the process perturbatively where the probability amplitude of the

initial state uj i 0j i does not change much so that CuðtÞ � 1. Thus the second line of

Equations 13.10 can be integrated to yield

CljðtÞ ¼
ffiffiffiffiffi
oj

2_

r

UjðzAÞm�A
e�iðoA�ojÞt � 1

�iðoA � ojÞ
ð13:12Þ

The total probability P of the atom being in the lower state is

P ¼
X

j

CljðtÞ
�
�

�
�2 ¼

X

j

oj

2_
U2

j ðzAÞ mAj j2
4 sin2 ðoA � ojÞt=2

� 	

ðoA � ojÞ2
ð13:13Þ

We take the limit t - N whence

4 sin2 ðoA � ojÞt=2
� 	

ðoA � ojÞ2
! 2ptdðoA � ojÞ ð13:14Þ

Using the density of modes r(o) given by Equation 1.67 and the mode functions

given in Equations 1.58 and 1.65, we have

P ¼ t
poA mAj j2

_
raðoAÞ Ua

oA
ðzAÞ

� �2

þrbðoAÞ Ub
oA
ðzAÞ

� �2
� �

ð13:15Þ

Thus the spontaneous emission rate R is

R ¼ d

dt
P ¼ poA mAj j2

_
raðoAÞ Ua

oA
ðzAÞ

� �2

þ rbðoAÞ Ub
oA
ðzAÞ

� �2
� �

¼ A0
c1

c0

� �
sin2 k1AzA

1� K sin2 k1Ad
þ cos2 k1AzA

1� K cos2 k1Ad

� � ð13:16Þ

where

A0 ¼
oA mAj j2

_c1e1
ð13:17Þ

is the spontaneous emission rate in a one-dimensional, unbounded dielectric of

dielectric constant e1. This expression for A0 can be obtained if we use the density

of modes L=ð2c1pÞ for both the mode functions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðe1LÞ

p
sin k1jz andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðe1LÞ
p

cos k1jz.
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We see that the spontaneous emission rate depends both on the atomic location

and on the atomic frequency relative to the cavity resonant frequencies. Note that

k1A ¼ oA=c1. The emission rate is large when either resonant condition

sin2 k1Ad ¼ 1 or cos2 k1Ad ¼ 1 is satisfied. In the case of a single-sided cavity,

where the second term in Equation 13.16 becomes the same as the first term, the

emission rate dependences on the atomic location and on the atomic frequency

relative to the cavity resonant frequencies are more pronounced. Since CuðtÞ � 1 is

assumed, this perturbation approximation is valid only for e�Rt ’ 1 or t
 1=R.

Another restriction for time t comes from the width of the delta function in

Equation 13.14 (E 2p/t), which should be narrower than the spectral width of the

mode functions (E 2gc).

13.3

Wigner–Weisskopf Approximation

In the Wigner–Weisskopf approximation, an exponential decay of the upper level

uj i is assumed:

CuðtÞ ¼ e�ðg=2Þt ð13:18Þ

where the decay constant g should be determined in a consistent manner.

This approximation is valid up to t � 1=g. We use this in the second equation

in Equation 13.11 to obtain

CljðtÞ ¼
ffiffiffiffiffi
oj

2_

r

UjðzAÞm�A
ef�ðg=2Þ�iðoA�ojÞgt � 1

�ðg=2Þ � iðoA � ojÞ
ð13:19Þ

Substituting Equations 13.18 and 13.19 into the first equation in Equation 13.11

we obtain

g ¼
X

j

oj

_
U2

j ðzAÞ mAj j2
1� eiðoA�ojÞtþðg=2Þt

�ðg=2Þ � iðoA � ojÞ

’
X

j

oj

_
U2

j ðzAÞ mAj j2
1� eiðoA�ojÞt

�iðoA � ojÞ

ð13:20Þ

where in the second line we have ignored g/2 as small compared to oA. The factor

f1� eiðoA�ojÞtg=ðoA � ojÞ is zðoA � ojÞ for t - N where the zeta function is

given by Equation 2.53b. Thus for t - N

Reg ’
X

j

oj

_
U2

j ðzAÞ mAj j2pdðoA � ojÞ

¼ poA mAj j2

_
raðoAÞ Ua

oA
ðzAÞ

� �2

þrbðoAÞ Ub
oA
ðzAÞ

� �2
� �

¼ R

ð13:21Þ
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Thus we have shown that the real part of the assumed decay constant is the

same as the spontaneous emission rate in Equation 13.16 obtained by the lowest-

order perturbation calculation. The imaginary part expressing the line shift can be

shown to be small [3]. Because this solution is valid up to t � 1=g, we can discuss

the emission spectrum, which is determined after the atom has fully decayed. The

absolute square of Clj (t) in Equation 13.19 with gt� 1 multiplied by the density of

modes r(oj) gives the emission spectrum I(oj):

IðojÞ ¼ rðojÞ CljðtÞ
�
�

�
�2¼ rðojÞ

oj

2_
U2

j ðzAÞ mAj j2
1

ðg=2Þ2 þ ðoA � ojÞ2
ð13:22Þ

where

rðojÞU2
j ðzAÞ ¼

1

pc0e1

sin2 k1jzA

1� K sin2 k1jd
þ

cos2 k1jzA

1� K cos2 k1jd

 !

ð13:23Þ

If the mode functions were of a flat spectrum, we would simply have a Lor-

entzian spectrum with full width at half-maximum (FWHM) of g. However, both

the spatially antisymmetric and symmetric modes have peaks at oj ¼ oa
cm ¼

ð2m þ 1Þðpc1=2dÞ and oj ¼ ob
cm ¼ 2mðpc1=2dÞ (integer m), respectively, with

FWHM of 2gc, where gc � ðc1=2dÞ lnð1=rÞand r is the amplitude reflectivity of the

coupling surfaces for waves incident from the inside. Therefore, the transition

from the first to the second equation in Equation 13.20 may be allowed only if go
2gc. Thus the present results under the Wigner–Weisskopf approximation are

limited also by the above inequality. If the reverse inequality holds, the emitted

photon energy will accumulate in the cavity and will be reabsorbed by the atom,

leading to the damped Rabi oscillation discussed below.

13.4

The Delay Differential Equation

Integrating the second equation in Equation 13.11 and substituting the result into

the first equation, we have

_CuðtÞ ¼ �
mAj j2

2_

ðt

0

dt0
X

j

ojU
2
j ðzAÞCuðt0ÞeiðoA�ojÞðt�t0Þ ð13:24Þ

Using the density of modes r(o) we rewrite it in the form

_CuðtÞ ¼ �
mAj j2oA

2_

ðt

0

dt0
ð1

�1
doj rðojÞU2

j ðzAÞeiðoA�ojÞðt�t0ÞCuðt0Þ ð13:25Þ

Here, assuming that the time variation of Cu(t) is much slower than the optical

frequency, and hence the actual integration range in frequency is small compared

to the optical frequency, we have taken oj out of the integration, replacing it by oA,
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and extended the lower limit of the frequency integral to �N. Using the form of

the product rðojÞU2
j ðzAÞ in Equation 13.23 we have

_CuðtÞ ¼ �
mAj j2oA

2p_c0e1

ðt

0

dt0
ð1

�1
doj

sin2 k1jzA

1� K sin2 k1jd
þ cos2 k1jzA

1� K cos2 k1jd

 !

eiðoA�ojÞðt�t0ÞCuðt0Þ
ð13:26Þ

Using the Fourier series expansion in Equation 1.70b we have

sin2 k1jzA

1� K sin2 k1jd
þ cos2 k1jzA

1� K cos2 k1jd

¼ 2c0

c1

X1

n¼0

rn

1þ d0;n
cos 2nk1jd

 �

�
1; n even

cos 2k1jzA


 �
; n odd

8
<

:

ð13:27Þ

By a similar procedure to Equations 7.5–7.10 we have

ð1

�1
doj

sin2 k1jzA

1� K sin2 k1jd
þ cos2 k1jzA

1� K cos2 k1jd

 !

eiðoA�ojÞðt�t0Þ

¼ 2c0

c1

X1

n¼0

r2n

ð1

�1
doj

� 1

1þ d0;n
cosðojntrÞ þ

r

2
cosfojðntr þ t1Þg þ

r

2
cosfojðntr þ t2Þg

� �

� eiðoA�ojÞðt�t0Þ ¼ 2c0

c1
p
X1

n¼0

r2n

� 1

1þ d0;n
eioAntrdðt0 � tþ ntrÞ þ e�ioAntrdðt0 � t� ntrÞ
� 	

�

þ r

2
eioAðntrþt1Þdðt0 � tþ ntr þ t1Þ þ e�ioAðntrþt1Þdðt0 � t� ntr � t1Þ
n o

þ r

2
eioAðntrþt2Þdðt0 � tþ ntr þ t2Þ þ e�ioAðntrþt2Þdðt0 � t� ntr � t2Þ
n o�

ð13:28Þ

where

tr ¼ 4d=c1; t1 ¼ 2ðd� zAÞ=c1; t2 ¼ 2ðdþ zAÞ=c1 ð13:29Þ

Here tr is the cavity round-trip time. The delay time t1(t2) is for a round trip

between the atom and the right-hand (left-hand) mirror. Substituting Equation

13.28 into Equation 13.26 and performing the integration, we have the delay

differential equation
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_CuðtÞ ¼ �
A0

2
CuðtÞHðtÞ þ 2

X1

n¼1

r2neioAntr Cuðt� ntrÞ
"

Hðt� ntrÞ

þ
X1

n¼0

r2nþ1eioAðntrþt1ÞCuðt� ntr � t1ÞHðt� ntr � t1Þ

þ
X1

n¼0

r2nþ1eioAðntrþt2ÞCuðt� ntr � t2ÞHðt� ntr � t2Þ
#

ð13:30Þ

where H(t) is the unit step function and A0 is the spontaneous emission rate in a

one-dimensional, unbounded dielectric of dielectric constant e1, which is given by

Equation 13.17. The first term describes the natural decay process in a free

dielectric. It lasts until t ¼ minðt1; t2Þ. For t4minðt1; t2Þ the decay process is

affected by the fed-back ‘‘signal’’ with reduced magnitude determined by the

mirror reflectivity. There are four kinds of routes for the ‘‘signal’’ to come back to

the atom. For larger time t, more and more terms with smaller and smaller

magnitudes come into play. According to Milonni and Knight [4], these terms can

also be interpreted as coming from the mirror images of the atom decaying

cooperatively. Equation 13.30 is the same as that obtained by Cook and Milonni [5]

who used resonant mode functions of the cavity and introduced the mirror

reflectivity phenomenologically.

In the special case where the atom is at the center of the symmetric two-sided

cavity, t1 ¼ t2 ¼ tr=2 and Equation 13.30 is written as

_CuðtÞ ¼ �
A0

2
CuðtÞHðtÞ � A0

X1

n¼1

rneioAnðtr=2Þ

� Cu t� nðtr=2Þð ÞH t� nðtr=2Þð Þ
ð13:31aÞ

We further rewrite it as

_CuðtÞ ¼ �
A0

2
CuðtÞHðtÞ þ

X1

n¼1

qnðoAnthÞCuðtnÞHðtnÞ ð13:31bÞ

where

qnðxÞ ¼ �A0rneix; tn ¼ t� nth; th ¼ tr=2 ð13:31cÞ

Then the solution is obtained as [6]

CuðtÞ ¼
X1

n¼0

X qa1

1 ðoAthÞqa2

2 ð2oAthÞ    qan
n ðnoAthÞ

a1!a2!    an!
tm
n

�

� exp �A0

2
tn

� ��

HðtnÞ
ð13:32aÞ

where the sum is over all non-negative integers ai ði ¼ 1; 2; : : : ; nÞ that satisfy
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1a1 þ 2a2 þ    þ nan ¼ n ð13:32bÞ

and

m ¼ a1 þ a2 þ    þ an ð13:32cÞ

For a free space (r - 0) Equation 13.31a shows that the upper-state population

decays as CuðtÞj j2¼ expð�A0tÞ, as expected.

In Figure 13.1, typical decay curves are presented (after [2]). Here, the cavity

length is 2d¼ (5/2)l, r¼ 0.6, and A0tr¼ 0.5. The curves are for the atom at an

antinode (curve A) at zA ¼ ð1=5Þd ¼ ð1=4Þl, at a node (curve C) at

zA ¼ ð2=5Þd ¼ ð1=2Þl, and between an antinode and a node (curve B) at

zA ¼ 0:35d ’ 0:43l. Note that curve A shows weak Rabi oscillation (see next

section). A curve for a natural decay in ‘‘free’’ space ðe�A0tÞ would come between

the lowest and uppermost curves.

13.5

Expansion in Terms of Resonant Modes and Single Resonant Mode Limit

Using the second, resonant mode expansion of Equation 1.70b in Equation 13.26,

we have

Figure 13.1 The time evolution of the upper-state

population jCuðtÞj2, for 2d ¼ 2.5l, r ¼ 0.6, and A0tr ¼ 0.5.

The time is scaled to the round-trip time tr. (lowest curve) A,

zA / d ¼ 0.2 (antinode); (middle curve) B, zA / d ¼ 0.35

(between node and antinode); and (uppermost curve) C,

zA / d ¼ 0.4 (node). After Ref. [2].
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_CuðtÞ ¼ �
mAj j2oA

2p_c0e1

ðt

0

dt0
ð1

�1
doj eiðoA�ojÞðt�t0ÞCuðt0Þ

�
X1

m¼�1

c0gc=d

g2
c þ oj � oa

cm


 �2 sin2 k1jzA þ
c0gc=d

g2
c þ oj � ob

cm


 �2 cos2 k1jzA

( )

¼ � A0

ptr

ðt

0

dt0
ð1

�1
doj eiðoA�ojÞðt�t0ÞCuðt0Þ

�
X1

m¼�1

i

oj � oa
cm þ igc

þ C:C:

� ��

� sin2 k1jzA þ
i

oj � ob
cm þ igc

þ C:C:

� �

cos2 k1jzA

�

ð13:33Þ

where C.C. denotes the complex conjugate. This equation contains contributions

from all the cavity resonant modes. When the spectrum of Cu(t) is limited, we may

choose several cavity modes around the atomic frequency oA. Further, if the atom

decays slowly during one round-trip time, and if for some ocm both the cavity half-

width gc and the detuning oA – ocm are small compared to the cavity mode spacing

Doc ¼ pc1=ð2dÞ, that is, if

A0 
 1=tr ; gc 
 Doc; oA � ocmj j 
 Doc ð13:34Þ

then we may choose only the cavity mode ocm. For ocm ¼ oa
cm, we have in the

single resonant mode limit

_CuðtÞ ¼ �
A0

ptr

ðt

0

dt0 Cuðt0Þ
ð1

�1
doj

i

oj � oa
cm þ igc

þ C:C:

� �

� sin2 k1jzAeiðoA�ojÞðt�t0Þ
ð13:35Þ

(For ocm ¼ ob
cm we have cos2 k1jzA instead of sin2 k1jzA in Equation 13.35.) In the

integrand we have a pole at oj ¼ oa
cm � igc ’ oa

cm. Since we are not interested in

the variation during a time of order tr � zA=c1, we can take sin2 k1jzA outside of

the integral concerning oj and set it equal to sin2ðoa
cmzA=c1Þ. Thus, by the contour

integral on the lower half-plane of oj and evaluation of the residue, we have

_CuðtÞ ¼ �ð2A0=trÞ sin2ðoa
cmzA=c1Þ

ðt

0

dt0 Cuðt0ÞeiðoA�oa
cmþigcÞðt�t0Þ ð13:36Þ

Differentiation with respect to time t yields

€CuðtÞ � iðoA � oa
cm þ igcÞ _CuðtÞ þ ð2A0=trÞ

� sin2ðoa
cmzA=c1ÞCuðtÞ ¼ 0

ð13:37aÞ

which can be formally written as
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€CuðtÞ þ ðgc þ iDÞ _CuðtÞ þ OR=2ð Þ2CuðtÞ ¼ 0

D ¼ oa
cm � oA

OR=2ð Þ2¼
ð2A0=trÞ sin2ðoa

cmzA=c1Þ; ocm ¼ oa
cm

ð2A0=trÞ cos2ðob
cmzA=c1Þ; ocm ¼ ob

cm

8
<

:

ð13:37bÞ

where we have added the result for ocm ¼ ob
cm. From the initial condition,

Equation 13.6, we have Cu (0)¼ 1 and _Cuð0Þ ¼ 0 (see Equation 13.11), so that

the solution to Equation 13.37b is

CuðtÞ ¼
l2el1t � l1el2t

l2 � l1

l1;2 ¼
1

2
�ðgc þ iDÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgc þ iDÞ2 � O2
R

q� � ð13:38Þ

where theþ sign is for l1 and the – sign for l2.

We examine two cases. The first is the underdamped case where gco OR. For

simplicity we assume that D¼ 0. Then we have

CuðtÞ

¼
� gcþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q� �

e� gc�i
ffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

p
 �
=2

� 	
tþ gc�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q� �

e� gcþi
ffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

p
 �
=2

� 	
t

�2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q

¼ e�gc t=2

�2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q �2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q

2
t

0

@

1

A�2igcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

R�g2
c

q

2
t

0

@

1

A

8
<

:

9
=

;

ð13:39Þ

In the limit gc
OR we have a damped oscillation

CuðtÞj j2¼ e�gc t cos2 1

2
ORt

� �

¼ 1

2
e�gc t 1þ cosðORtÞf g ð13:40Þ

The oscillation frequency OR is known as the Rabi frequency. Note that the decay

rate is the same as the decay rate of the cavity field amplitude but is half that of the

cavity field energy. The damped Rabi oscillation was derived by Sachdev [7] using a

different method, a reservoir method in a single mode context. The regime

gc 
 OR is known as the strong coupling regime in the field of cavity quantum

electrodynamics.

The second case is the overdamped case where gc4OR. Then we have, assuming

again that D¼ 0,
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CuðtÞ

¼
� gcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

c�O2
R

q� �

e� gc�
ffiffiffiffiffiffiffiffiffiffi
g2

c�O2
R

p
 �
=2

� 	
tþ gc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

c�O2
R

q� �

e� gcþ
ffiffiffiffiffiffiffiffiffiffi
g2

c�O2
R

p
 �
=2

� 	
t

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

c�O2
R

q
ð13:41Þ

In the limit gc�OR we have

CuðtÞj j2 ¼ e� gc�
ffiffiffiffiffiffiffiffiffiffi
g2

c�O2
R

p
 �
t ¼ exp �O2

R

2gc
t

� �

¼
exp � 4A0 sin2ðoa

cmzA=c1Þ
gc tr

t
� �

; ocm ¼ oa
cm

exp � 4A0 cos2ðoa
cmzA=c1Þ

gc tr
t

� �
; ocm ¼ ob

cm

8
>><

>>:

ð13:42Þ

At a node where sin2ðoa
cmzA=c1Þ ¼ 1 for ocm ¼ oa

cm or cos2ðoa
cmzA=c1Þ ¼ 1 for

ocm ¼ ob
cm, the spontaneous decay rate is enhanced by a factor

f ¼ 4

gctr
¼ 4

p
Doc

2gc
¼ 4

p
F ð13:43aÞ

where the cavity mode spacing Doc ¼ c1p=ð2dÞ and F is the finesse of the cavity.

When the mode number m is 1, or the mode is the lowest resonant mode, we have

f ¼ 4

gctr
¼ 4

p
Q ð13:43bÞ

where Q is the cavity quality factor. Thus in an overdamped cavity the spontaneous

emission rate is enhanced by roughly the finesse or the cavity quality factor. The

enhancement by the so-called Purcell factor, f ¼ 3Ql3=4p2V�Q , where V is the

volume of the cavity and l the transition wavelength, was predicted by Purcell [8]

for a cavity used in the radio frequency. The regime gc � OR is known as the weak

coupling regime.

Note that the enhancement factor in Equation 13.43a is different from the excess

noise factor in Equation 12.1a applicable to the present symmetric cavity model,

which reads

KL ¼
ð1� r2Þ=2r

lnð1=rÞ

� �2

ð13:44Þ

If we have sin2ðoa
cmzA=c1Þ ¼ 0 ðcos2ðoa

cmzA=c1Þ ¼ 0Þ in Equation 13.42, which

occurs for an atom at a node, the spontaneous emission is inhibited as the decay

rate becomes 0. This occurs in the single-mode limit in general, as seen from

Equation 13.36, where for ocm ¼ oa
cm we have _Cu ¼ 0 for sin2ðoa

cmzA=c1Þ ¼ 0.

(This zero decay rate apparently contradicts the statement below the delay

differential equation, Equation 13.30, that a natural decay lasts until

t ¼ minðt1; t2Þ. Of course, a natural decay lasts until t ¼ minðt1; t2Þ. But after

that, the alternate terms in Equation 13.30 destructively add to inhibit all-over

decay when the zero-decay condition in this single-mode limit holds (see, for
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example, curve B in Figure 13.1). A different kind of inhibition of spontaneous

emission, inhibition by a smaller cavity size than the radiation wavelength, was

predicted by Kleppner [9].

13.6

Spontaneous Emission Spectrum Observed Outside the Cavity

We consider the observation of spontaneously emitted light at a detector outside

the cavity. Regardless of the location of the detector, the detected intensity is

proportional to [10]

Iðz; tÞ ¼ jðtÞh jÊð�ÞðzÞÊðþÞðzÞ jðtÞj i ð13:45Þ

Substituting Equation 13.5 for the wavefunction, the expression from Equation

2.19a for the positive frequency part of the electric field operator,

ÊðþÞðzÞ ¼ i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞâj

and its adjoint into Equation 13.45, we obtain

Iðz; tÞ ¼ C�uðtÞ uh j 0h jeioAt þ
X

i0
C�li0 ðtÞ lh j 1i0h j eioi0 t

 !
X

i

ffiffiffiffiffiffiffiffi
_oi

2

r

UiðzÞâyi

�
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞâj CuðtÞ uj i 0j ie�ioAt þ
X

j0
Clj0 ðtÞ lj i 1j0

�
�
�
e�ioj0 t

 !

¼
X

i

X

j

_

2

ffiffiffiffiffiffiffiffiffiffi
oioj
p

UiðzÞUjðzÞC�liðtÞCljðtÞeiðoi�ojÞt

¼
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðzÞCljðtÞe�ioj t

�
�
�
�
�

�
�
�
�
�

2

ð13:46Þ

where Clj (t) is given by Equations 13.11 and 13.6 as

CljðtÞ ¼
ffiffiffiffiffi
oj

2_

r

UjðzAÞm�A
ðt

0

dt0 Cuðt0Þe�iðoA�ojÞt0 ð13:47Þ

Thus the intensity at the observation point zB (Wd) is

IðzB; tÞ ¼
X

j

m�A
oj

2
UjðzBÞUjðzAÞ

ðt

0

dt0 Cuðt0Þeiðoj�oAÞðt0�tÞ

�
�
�
�
�

�
�
�
�
�

2

¼ m�A
2

ðt

0

dt0 Cuðt0Þ
X

j

oj Ua
j ðzBÞUa

j ðzAÞ þUb
j ðzBÞUb

j ðzAÞ
n o

eiðoj�oAÞðt0�tÞ

�
�
�
�
�

�
�
�
�
�

2
ð13:48Þ
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We use Equations 1.58a and 1.58b with Equations 1.65a and 1.65b for the

functions Ua
j ðzBÞ, Ua

j ðzAÞ, Ub
j ðzBÞ, and Ub

j ðzAÞ. We also use the Fourier series

expansion of the normalization constants in Equation 1.70b. Then, by a similar

procedure as in Equations 13.25–13.30, we have

IðzB; tÞ ¼
o2

A mAj j2

4e0e1c0c1
ð1� r2Þ f ðzA; zB; tÞj j2 ð13:49aÞ

where

f ðzA;zB;tÞ¼ e�ioAt
X1

n¼0

r2neioAðntrþtRÞCuðt�ntr� tRÞ
"

Hðt�ntr�tRÞ

þ
X1

n¼0

r2nþ1eioAðntrþtLÞCuðt�ntr� tLÞHðt�ntr�tLÞ
#

ðzB4dÞ

ð13:49bÞ

and

tr ¼
4d

c1

tR ¼
d� zA

c1
þ zB � d

c0
ðzB4dÞ

tL ¼
tr

2
þ dþ zA

c1
þ zB � d

c0

ð13:49cÞ

The retardation time tR is the time required for an optical wave to go directly

from zA to zB. The time tL is the time required to go from zA to zB after reflection at

the left interface at z¼�d. The equation for zBo�d can be obtained from

Equations 13.49a and 13.49b by replacing zA and zB in Equation 13.49c by�zA and

�zB, respectively. The ‘‘intensity’’ in Equation 13.49a has a simple interpretation:

the field amplitude at zB and at t is made up of discrete contributions that were

‘‘emitted’’ with the strength of the probability amplitudes Cu at respective retarded

times and underwent a phase shift as well as a reduction caused during the trip

associated with multiple reflections. Note that the field amplitude at zB and at t can

be regarded as being proportional to f ðzA; zB; tÞ in Equation 13.49b. Then the

observed spectrum can be obtained as the absolute square of the Fourier transform

of the field amplitude. Thus we have the power spectrum SðzA; zB;oÞ

SðzA; zB;oÞ ¼
o2

A mAj j2

4e0e1c0c1
ð1� r2Þ

ð1

�1
dt f ðzA; zB; tÞeiot

�
�
�
�

�
�
�
�

2

ð13:50Þ

Here we define the time history of the emitter amplitude as

DðtÞ ¼ e�ioAtCuðtÞHðtÞ ð13:51Þ

Then, the term of e�ioAtr2neioAðntrþtRÞCuðt� ntr � tRÞHðt� ntr � tRÞ, for example,

is transformed as
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ð1

�1
dt eiote�ioAtr2neioAðntrþtRÞCuðt� ntr � tRÞHðt� ntr � tRÞ

¼ r2neioðntrþtRÞ
ð1

�1
dt eioðt�ntr�tRÞe�ioAðt�ntr�tRÞCuðt� ntr � tRÞHðt� ntr � tRÞ

¼ r2neioðntrþtRÞDðoÞ

ð13:52Þ

where D(o) is the Fourier transform of D(t). Then, carrying out the summation

over n, the resultant spectrum is obtained as

SðzA; zB;oÞ ¼
o2

A mAj j2

4e0e1c0c1
T DðoÞj j2

� 1þ Rþ 2
ffiffiffiffi
R
p

cos 2oðzA þ dÞ=c1f g
1þ R2 � 2R cosð4od=c1Þ

� �

ðzB4dÞ
ð13:53Þ

where R¼ r2 and T¼ 1 – r2. For zB o �d the sum zAþ d should be replaced by

d � zA.

Note that the spectrum is independent of the location zB of the detector, as

expected from the one-dimensional nature of the process being considered. Note

also that the power spectrum is not determined simply by the spectrum of the

‘‘emitter’’ history D(o). It depends also on the quantity in the square bracket,

which is dependent on the cavity structure and the atomic location. This factor

represents how the emitted field is transferred to the observation point. In fact,

this factor is proportional to the absolute square of the response function defined

in Equation 2.53a for the present case of the two-sided cavity with source point

inside and observation point outside the cavity:

YðzB; zA;oÞ ¼ �
1þ r

2e1c1

1þ r exp 2ioðzA þ dÞ=c1f g
1� r2 expð4iod=c1Þ

� �

eiotR ðzB4dÞ ð13:54Þ

For zBo�d, the sum zAþ d should be replaced by d� zA. This response

function can be derived by use of the mode functions in Equations 1.58 and 1.65

and the Fourier series expansion of the normalization constants in Equation 1.70b

and by performing principal part integrations. The evaluation can be done term by

term. One has two geometric progressions, which can easily be summed. The

response function in Equation 13.54 can also be obtained intuitively by a classical

consideration, as follows. One assumes a current source J expð�iotÞdðz� zAÞ
inside the two-sided cavity, then we have an induced electric field

E expð�iotÞ ¼ �JZ expð�iotÞ at z¼ zA where Z ¼
ffiffiffiffiffiffiffiffiffiffiffi
m0=e1

p
¼ 1=ðe1c1Þ is the space

impedance. Because the problem is one dimensional here, this electric field

amplitude is transmitted to the two sides with half the magnitude, that is, with

�ðJZ=2Þ expð�iotÞ. These waves are transmitted to zB (Wd) directly or after a

single or multiple reflections at the coupling surfaces with respective phase

changes and amplitude reductions. All the contributions have associated trans-

mission coefficient 1þ r at the coupling surface at z¼ d. The two geometrical

progressions thus obtained easily yield Equation 13.54 if we divide the resultant

total field at zB (od) by J expð�iotÞ.
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Now using Equation 13.54 in Equation 13.53 and noting that e1c1 ¼ e0c0n ¼
e0c0 1þ rð Þ= 1� rð Þ, we can write

SðzA; zB;oÞ ¼ o2
A mAj j2 DðoÞj j2 YðzB; zA;oÞj j2 ð13:55Þ

That this is a general formula not restricted to the present two-sided cavity can be

shown by using the first equation in Equation 13.48. We show the derivation in

Appendix H. Figure 13.2 shows an example of the calculated spectrum to be

observed outside the cavity. Figure 13.2a is DðoÞj j2 multiplied by o2
c , Figure 13.2b

is the absolute squared response function YðzB; zA;oÞj j2 multiplied by e2
0c2

0, and

Figure 13.2c is the intensity spectrum observed outside the cavity, in arbitrary

units. The parameters are the same as for curve A in Figure 13.1. In Figure 13.2b,c

the solid and dashed curves are for zB o d and zB o �d, respectively. Two peaks

corresponding to the Rabi oscillation with OR ¼ 0:32Doc are seen. In the figure oc

stands for the intermode spacing Doc.

13.7

Extension to Three Dimensions

The three-dimensional analysis of a laser with spatially distributed active atoms is

difficult in general, even if the cavity has a simple structure such as the planar ones

considered so far in this book. This is because the propagation of the emitted field

from one atom to the next involves three-dimensional effects concerning the

direction of propagation and the direction of field polarization. The influence of

the transmitted field on the receiving atom is dependent on the atom’s polariza-

tion direction. Thus it is extremely difficult to write down consistent equations of

motion for the field and the atoms when the atoms are distributed in three-

dimensional space.

On the other hand, the process of spontaneous emission usually involves only a

single atom. In this case a three-dimensional analysis in free space is well

established. The spontaneous emission process in a cavity can also be analyzed

three dimensionally if the cavity structure is simple and the relevant field mode

functions are available. Here we briefly describe the case where the cavity is a

dielectric slab, or a simple two-sided cavity, as was considered one dimensionally

in Section 1.3.2 and in the previous sections in this chapter. The description will

follow Ho and Ujihara [6].

The cavity is composed of a dielectric slab extending in the region �d r z r d.

The dielectric has dielectric constant e1 and refractivity n, with the velocity of light

inside the dielectric being c1. The outside regions are vacuum with dielectric

constant e0 and the velocity of light c0. The slab is assumed to have infinite extents

in the x- and y-directions, and the atom of transition frequency oA and dipole

operator l̂ is positioned inside the cavity at rA¼ (0,0,zA). The mode functions of

the three-dimensional ‘‘universe’’ Uj(r) are defined by imposing periodic boundary

conditions in the x-, y-, and z-directions with periods Lx, Ly, and Lz þ 2d � Lz,

respectively. They are normalized so that

282 | 13 Spontaneous Emission in a One-Dimensional Optical Cavity with Output Coupling



Figure 13.2 The spectra of (a) D(t), (b) the absolute squared

response function jYðzB; zA;oÞj2, and (c) the emission

spectrum SðzA; zB; tÞ observed outside the cavity. After Ref. [2].
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ð

V
eðrÞUiðrÞUjðrÞdr ¼ dij ð13:56Þ

where V ¼ LxLyLz. As before, the mode functions inside the cavity and outside are

denoted as U1j and U0j, respectively, and will be given in terms of the relevant

mode wavevectors k1;0 ¼ ðkx; ky; k1;0 zÞ for inside and outside the cavity and their

projections onto the x–y plane kp ¼ ðkx; ky; 0Þ in addition to the mode index j. The

mode functions are categorized into TE and TM mode functions of even and odd

symmetries in the z-direction, and they are further classified into even and odd

modes in the x–y direction.

The odd x–y TE mode functions are given, suppressing the mode index j, as

U1;0ðrÞ ¼ aðx̂ky � ŷkxÞ sinðkp  rÞu1;0ðzÞ ð13:57Þ

where u1,0(z) and the normalization constant a for odd z TE modes are

uozTE
1 ðzÞ ¼ sin k1zz

uozTE
0 ðzÞ ¼ sin k1zd cos k0zðz� dÞ þ k1z

k0z
cos k1zd sin k0zðz� dÞ

ð13:58Þ

and

aozTE ¼ 1

kp

k0z

k1z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0V 1� K sin2 k1zd

 �q

K ¼ 1� k2
0z

k2
1z

� �
ð13:59Þ

and for even z TE modes

uezTE
1 ðzÞ ¼ cos k1zz

uezTE
0 ðzÞ ¼ cos k1zd cos k0zðz� dÞ � k1z

k0z
sin k1zd sin k0zðz� dÞ

ð13:60Þ

and

aezTE ¼ 1

kp

k0z

k1z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0V 1� K cos2 k1zdð Þ

p

K ¼ 1� k2
0z

k2
1z

� � ð13:61Þ

The even x–y TE mode functions are obtained by replacing sinðkp  rÞ by

cosðkp  rÞ in Equation 13.57.

The odd x–y TM mode functions are given, again suppressing the mode index j,
as
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U1;0ðrÞ ¼ a ðx̂kx þ ŷkyÞ sinðkp  rÞ
d

dz
u1;0ðzÞ � ẑk2

p

�

cosðkp  rÞu1;0ðzÞ
�

ð13:62Þ

where u1,0 (z) and the normalization constant a for odd z TM modes are

uozTM
1 ðzÞ ¼ sin k1zz

uozTM
0 ðzÞ ¼ sin k1zd cos k0zðz� dÞ þ k1z

k0z

k2
0

k2
1

cos k1zd sin k0zðz� dÞ
ð13:63Þ

and

aozTM ¼ 1

kpk0

k0z

k1z

k2
1

k2
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0V 1� K 0 sin2 k1zd

 �q

K 0 ¼ 1� k2
0z

k2
1z

k4
1

k4
0

� �
ð13:64Þ

and for even z TM modes are

uezTM
1 ðzÞ ¼ cos k1zz

uezTM
0 ðzÞ ¼ cos k1zd cos k0zðz� dÞ � k1z

k0z

k2
0

k2
1

sin k1zd sin k0zðz� dÞ
ð13:65Þ

and

aezTM ¼ 1

kpk0

k0z

k1z

k2
1

k2
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0V 1� K 0 cos2 k1zdð Þ

p

K 0 ¼ 1� k2
0z

k2
1z

k4
1

k4
0

� � ð13:66Þ

The even x–y TM mode functions are obtained by replacing sinðkp  rÞ in front of

ðd=dzÞu1;0ðzÞ by cosðkp  rÞ and � cosðkp  rÞ in front of u1,0 (z) by sinðkp  rÞ in

Equation 13.62.

The reader may notice some similarities of the mode functions and the nor-

malization constants in these equations and in those for the one-dimensional ver-

sions in Sections 1.3.2 and 1.4. The equations here reduce to those in Section 1.3.2

in the limit kp - 0, whence the distinction between the TE and TM modes

disappears.

The normalization constants have similar Fourier series expansions as those in

Equation 1.70b:
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aezTE

 �2 ¼ 4

e0V

1

k2
p

k0z

k1z
1þ 2

X1

n¼1

rn cos 2nk1zd

( )

r ¼ k1z � k0z

k1z þ k0z

aozTM

 �2 ¼ 4

e0V

1

k2
pk2

0

k0z

k1z

k2
1

k2
0

1þ 2
X1

n¼1

ðr0Þn cos 2nk1zd

( )

r0 ¼ k0zk2
1 � k1zk2

0

k0zk2
1 þ k1zk2

0

ð13:67Þ

Expansions for odd z TE and even z TM modes are obtained by replacing r and ru
by �r and �ru, respectively.

From now on, we assume for simplicity that the dielectric constant e1 of the slab

is equal to the vacuum dielectric constant e0 but the reflectivities in the Fourier

series expansions in Equation 13.67 are kept finite. Moreover, we assume that

r¼ ru and that they are independent of the k-vector orientation. This assumption

makes the three-dimensional summation over mode j tractable.

Now that we have the relevant mode functions, we can formulate the sponta-

neous emission process as in Section 13.1 with the Hamiltonian and the

wavefunction

Ĥt ¼ Ĥf þ Ĥa þ Ĥint

Ĥint ¼ �i
X

j

ffiffiffiffiffiffiffi
_oj

2

r

UjðrAÞ  l̂ðâj � âyj Þ
ð13:68Þ

jðtÞj i ¼ CuðtÞ uj i 0j ie�ioAt þ
X

j

CljðtÞ lj i 1j

�
�
�
e�ioj t ð13:69Þ

where the interaction Hamiltonian is rewritten for the three-dimensional mode

functions and a vector dipole moment operator.

With these formulations in hand, we can perform perturbative and non-

perturbative analyses as before. For example, as in Section 13.4, one can derive the

delay differential equation for the probability amplitude of the upper-state

population:

_CuðtÞ¼�
A0

2
CuðtÞHðtÞþ

X1

n¼1

p2nðoAntrÞCuðt�ntrÞHðt�ntrÞ

þ1

2

X1

n¼0

h
p2nþ1 oAðntrþ t1Þf gCuðt�ntr� t1ÞHðt�ntr� t1Þ:

þp2nþ1 oAðntrþ t2Þf gCuðt�ntr� t2ÞHðt�ntr� t2Þ
i

ð13:70Þ

where the spontaneous emission rate in a free vacuum is
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A0 ¼
o3

A mAj j2

3p_c3
0e0

ð13:71Þ

and

pknðxÞ ¼ �
3A0

2
rn 1

ix
þ 1

x2
� 1

ix3

� �

eix

p?n ðxÞ ¼ 3A0ð�rÞn 1

x2
� 1

ix3

� �

eix

ð13:72Þ

The retardation times tr, t1, and t2 are given by Equation 13.29 with c1 replaced

by c0. The coefficient pknðxÞ applies when the atomic dipole is oriented parallel to

the x–y plane or to the mirror surfaces, and p?n ðxÞ applies when the dipole is

perpendicular to the plane. For the derivation of the delay differential equation

(Equation 13.70), the reader is referred to the paper by Ho and Ujihara [6]. If the

atom is at the center of the cavity zA¼ 0, we have

_CuðtÞ ¼ �
A0

2
CuðtÞHðtÞ þ

X1

n¼1

pnð2kAndÞCuðtnÞHðtnÞ ð13:73Þ

where

tn ¼ t� 2nd

c0
ð13:74Þ

Then the solution is obtained as in Equation 13.32a

CuðtÞ ¼
X1

n¼0

X pa1

1 ð2kAdÞpa2
2 ð4kAdÞ    pan

n ð2nkAdÞ
a1!a2!    an!

�

tm
n exp �A0

2
tn

� ��

HðtnÞ
ð13:75aÞ

where the sum is over all non-negative integers ai ði ¼ 1; 2; . . . ; nÞ that satisfy

1a1 þ 2a2 þ    þ nan ¼ n ð13:75bÞ

and

m ¼ a1 þ a2 þ    þ an ð13:75cÞ

The non-perturbative results are obtained numerically using Equation 13.70 and

assuming that the atomic dipole is oriented parallel to the x–y plane. One finds, for

a very good cavity of length of lA/2, a Rabi-type oscillation in the upper atomic

population. For longer cavities with lengths 2 � (lA/2), 3 � (lA/2), . . . , the

spontaneous decay rate approaches that in free vacuum.

The perturbation approximation result is obtained by replacing the Cu on the

RHS of Equation 13.70 by the initial value Cu (0)¼ 1. Then the spontaneous

emission rate R can be obtained by using the relation
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R ¼ � d

dt
Cuj j2 ð13:76Þ

as

R ¼ A0 � 2Re
X1

n¼1

p2nðoAntrÞ � Re
X1

n¼0

h
p2nþ1 oAðntr þ t1Þf g

þ p2nþ1 oAðntr þ t2Þf g
i
ð13:77Þ

The spontaneous emission rate based on the perturbation approximation can of

course be obtained as in Equations 13.13–13.16:

R ¼
X

j

poj

_
UjðrAÞ  l̂
�
�

�
�2d oj � oA


 �
ð13:78Þ

That this is equal to Equation 13.77 may be proved by going to summation over

the categories and to three-dimensional integration over the kj-vector and by using

the Fourier series expansion of the normalization constants.

Equation 13.77 shows directly that R - A0 as r - 0, that is, as the reflectivity

vanishes, the spontaneous emission rate becomes equal to that in free vacuum.

The reader may show also that the rate in Equation 13.78 reduces to A0 in the limit

r-0.

A perturbation result based on Equation 13.78 was derived by De Martini et al.
[11] by using traveling-wave mode functions associated with a cavity composed of

two, parallel, infinitely thin mirrors of different complex reflectivities. They gave

compact expressions for the spontaneous emission rate for high-Q cavities and

detailed numerical results on decay rate dependence on various parameters. They

also gave experimental results on inhibition and enhancement of spontaneous

emission using a Fabry–Perot microcavity with europium atoms in dibenzoyl-

methane complex as the emitter.

The field intensity observed at an arbitrary location outside the cavity can be

obtained as for the one-dimensional case in Section 13.6. One can examine the

intensity at the observation point rB, IðrB; tÞ ¼ jðtÞh jÊð�ÞðrBÞÊðþÞðrBÞ jðtÞj i, just as

in Equation 13.48, which can be evaluated analytically for the summation over the

field modes j and numerically for Cu (t) (see [6]).

One may wonder if the present cavity model, where the mirrors extend infinitely

in transverse directions, can adequately simulate actual plane parallel cavities of

finite transverse size. Specifically, one may wonder if the present model does not

ignore the spillover of the optical field from the mirror edges. That the transverse

extent of the spontaneously emitted fields is, in important cases, finite and is of the

order of the emitted wavelength multiplied by the square root of the cavity Q can

be shown as follows.

One route to arrive at a finite transverse extent is given by De Martini et al. [12]

through the uncertainty principle on the transverse position and momentum of

the photon. For a planar Fabry–Perot cavity of length d and mirror reflectivities r1

and r2, the FWHM of the angular k-vector distribution around the normally
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resonant k-vector is DYN ¼ 2ðfNÞ�1=2, where f ¼ p
ffiffiffiffiffiffiffiffi
r1r2
p

=ð1� r1r2Þ is the finesse

and N¼ d/(l/2) the mode number. By writing DpxDpy ¼ ð_kDYN=2Þ2, one finds

for cylindrical symmetry the expression for the transverse quantum correlation

length lN ¼ 2lðfNÞ1=2 ¼ 2l Np
ffiffiffiffiffiffiffiffi
r1r2
p

=ð1� r1r2Þ
� 	1=2

.

Ujihara et al. [13] derived the mode radius through a different route. They

compared the emission rate formula calculated for a symmetric planar cavity

model with Purcell’s enhancement factor. They used three-dimensional mode

functions for the perturbation calculation. The calculated enhancement factor was

1/(2N) for an atom at an antinode for a normally resonant mode. Equating it to the

Purcell factor F ’ ðQ=4pÞðl3=VÞ, with Q ¼ Np=ð1� r2Þ, yields the mode radius

rmode ¼ l N= pð1� r2Þf g½ 	1=2
.

The third simple route is to consider the photon mean free path in the trans-

verse direction. The photon lifetime in the cavity is tc � d=fcð1� r1r2Þg, during

which a photon propagating in the direction DYN/2 traverses along the mirror

surfaces a distance

lc ¼ ctcDYN=2 ¼ ðl=2Þ
h
N=fp ffiffiffiffiffiffiffiffi

r1r2
p ð1� r1r2Þg

i1=2

For a good cavity, these three expressions agree except for numerical factors and

give the transverse extent �
ffiffiffiffiffi
Q

p
l, which is usually smaller than an actual mirror

size.

13.8

Experiments on Spontaneous Emission in a Fabry–Perot Type Cavity

Goy et al. [14] first observed strong shortening of the spontaneous emission life-

time of Rydberg atoms when they are made to cross a high-Q superconducting,

resonant cavity. The experiment was performed with Na atoms at 340 GHz using a

cavity of Q of the order of 106. Hulet et al. [15] observed inhibition of spontaneous

emission from a Cs Rydberg atom at l¼ 0.45mm when the atom is passed

between two parallel metal plates separated by less than l/2. The emission lifetime

was increased by more than 20 times, which they attributed to the vanishing of

available mode density for the radiation of relevant polarization at l.

In the infrared region, Jhe et al. [16] observed similar inhibition of spontaneous

emission. Using Cs atoms and passing them through a metal gap of d¼ 1.1 mm,

they observed the decay of the atoms emitting at 3.49 mm. The hyperfine sublevels

of the 5D5/2 state emit either s or p polarized light corresponding, respectively, to

photons polarized parallel and perpendicular to the metal surfaces. For a small gap

with d o l/2, the theoretical mode density is zero for s polarization, while it is

enhanced by a factor of 3l/4d for p polarization. They confirmed that the emission

rate of a s emitting sublevel is reduced at most to 0.4 times the natural decay rate.

In the optical region, the observation of enhanced and inhibited spontaneous

emission was made by De Martini et al. [17]. Using ethanol solution of tetra-

phenylnaphthacene dye in a 98–96% flat mirror cavity, they observed the lifetime
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of the fluorescence at 6328 Å. For cavity lengths of l/2 and l/8 they observed clear

enhancement and suppression of the spontaneous decay. In Figure 13.3 the

enhanced and inhibited spontaneous emissions as compared to the free-space

decay are shown.

Heinzen et al. [18] observed slight changes in spontaneous emission when

excited atoms of Yb crossed the focus of a 5 cm long confocal resonator. The

resonator mirrors had transmissions of 2.8% and 1.8%. The fluorescence observed

through one of the mirrors is enhanced by a factor of 19 when the cavity is tuned to

the 556 nm fluorescence and is inhibited by a factor of 42 when it is detuned. This

resulted in a fractional increase of 1.6% and decrease of 0.5% in the total emission

rate.

Yamamoto et al. [19] observed spontaneous emission of free excitons in a GaAs

quantum well that is embedded in a semiconductor microcavity composed of two

distributed Bragg reflectors. When the fluorescence at 800 nm is resonant with the

cavity and the quantum well is placed at the antinode of the cavity resonance, they

observed an enhancement by a factor of 130, while, when the fluorescence is off-

resonant and the quantum well is placed at a node, an inhibition by a factor of 30

was observed.

Norris et al. [20] studied the Rabi oscillation due to the two-dimensional excitons

emitting in a GaAs/AlxGa1–xAs multiple quantum well embedded in a planar

semiconductor microcavity of length l¼ 785 nm and of finesse about 150. A two-

dimensional exciton couples only with those field modes with the same in-plane

Figure 13.3 Oscilloscope traces showing (a) enhanced and

(b) inhibited spontaneous emissions in a planar microcavity

as compared to (c) the free-space decay.

Source: From Ref. [17]. De Martini, F., Innocenti, G.,

Jacobovitz, G.R., and Mataloni, P. (1987), Phys. Rev. Lett., 59,

2955, Figure 2.
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wavevectors as its own, as contrasted to an atom, which couples with all oblique

modes as long as the atom’s polarization is not perpendicular to the mode

polarization. They observed a damped Rabi oscillation with period of 600 fs, close

to the expected value, and decay time approximately twice the cavity lifetime,

�2� 140 fs. In Figure 13.4 the time-resolved emission intensities from the

impulsively excited cavity are shown. In Figure 13.4a, the cavity and exciton modes

Figure 13.4 The time-resolved emission intensity (in

arbitrary units) from the impulsively excited microcavity.

Source: From Ref. [20]. Norris, T. B., Rhee, J.-K., Sung, C.-Y.,

Arakawa, Y., Nishioka, M., and Weisbuch, C. (1994) Phys. Rev.

B, 50, 14663, Figure 1.
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are near resonance. In Figure 13.4b, the cavity is detuned from the exciton reso-

nance. In the inset, the dotted line shows the pump pulse spectrum, and the solid

line shows the reflected pump spectrum, wherein the two dips correspond to the

two normal modes of the system.
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14

Theory of Excess Noise

A standard quantum-mechanical calculation for the light emission by an atom into

a single field mode yields an emission rate proportional to the number of

photons present in the mode plus one. The portion proportional to the number

of photons is interpreted as the stimulated emission. The portion proportional to

‘‘one’’ is spontaneous emission due to vacuum fluctuation or to radiation reaction

[1]. This relative rate of spontaneous emission is the basis of the laser linewidth

formulas, for example the Schawlow–Townes linewidth formula [2]. This is also at

the heart of the Planck radiation formula [3]. The excess noise factor discussed so

far violates this notion of one extra photon for the spontaneous emission. Where

do the extra photons, more than one, come from? This is the theme of the theory

of excess noise.

In this chapter we review the theories of the excess noise factor. First we review

the adjoint mode theory, which was developed by Siegman [4, 5] for the transverse

excess noise factor instead of the longitudinal excess noise factor. For the theory of

the longitudinal excess noise factor, which has been one of the main topics in the

previous chapters, we follow the treatment of Champagne and McCarthy [6],

adding our additional contribution. Next we review the Green’s function method

developed by Henry [7] and by Tromborg et al. [8]. Third we review the propagation

method or propagation theory developed by Ujihara [9] and by Goldberg et al. [10]

as well as by Prasad [11]. This theory has already been described and used in

Chapter 11. The relation of this theory to the adjoint mode theory will be described.

Finally we make reference to some sophisticated, abstract theories aimed at

quantum-mechanical consistency. The transverse excess noise factor and polariza-

tion excess noise factor will be described. Some experimental results will be cited.

14.1

Adjoint Mode Theory

We recall that the excess noise factor appeared for the one-sided cavity laser and

the general two-sided cavity laser but not for the quasimode cavity laser. The

former laser cavities have output coupling at the end(s) of the cavity, while

the quasimode cavity has no explicit output coupling but has perfect mirrors.

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7
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While the quasimode cavity in Chapter 4 had power orthogonal modes in the

sense that

ð

cavity
u�mðzÞunðzÞdz ¼ dmn ð14:1aÞ

the former cavities did not have power orthogonal modes of this property in one

dimension: the outgoing modes defined in Chapter 1 have the property

ð

cavity
u�mðzÞunðzÞdz 6¼ dmn ð14:1bÞ

According to Siegman [4] this is the result of non-Hermitian boundary conditions

of the cavity, and for such cavities there exist adjoint modes v(z) that are bi-

orthogonal to the cavity mode functions and satisfy

ð

cavity
vmðzÞunðzÞdz ¼ dmn ð14:2Þ

when properly normalized. The function v(z) is the solution to the transposed

equation to the original equation describing the cavity and physically corresponds

to the backward-propagating wave (see Siegman [12] for details). These adjoint

modes are also non-power orthogonal

ð

cavity
v�mðzÞvnðzÞdz 6¼ dmn ð14:3Þ

Siegman [4] showed that, if, in addition to the normalization in Equation 14.2, the

mode function is normalized such that

ð

cavity
umj j2dz ¼ 1 ð14:4Þ

the adjoint mode has the property

ð

cavity
vmj j2 dz � 1 ð14:5Þ

We will see later that this is the mathematical origin of the excess noise factor.

In some literature [13, 14] v0mðzÞ ¼ v�mðzÞ is defined as the adjoint mode function,

with the inner product (integral over the specified volume) being taken by multiplying

v0m � ðzÞ (¼ vm(z)) with the other function. The results of calculations are, of course,

the same as in this book. By the way, the incoming modes discussed in Section 1.2.1

constitute adjoint modes in this sense associated with the outgoing modes.

Let the Maxwell’s equation for the classical wave inside the cavity be written as

r2Eðz; tÞ � m0

@2

@t2
Dðz; tÞ ¼ 0 ð14:6aÞ
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where

Dðz; tÞ ¼ eEðz; tÞ þ Pðz; tÞ ð14:6bÞ

Here the polarization term represents classical random noise forces. The dielectric

constant e may be complex, reflecting the presence of a gain medium. Following

Champagne and McCarthy [6] we put

Eðz; tÞ ¼
X

m

2Re famðtÞCNmCmðzÞ expð�iomtÞg ð14:7aÞ

Pðz; tÞ ¼ 2Re f~Pðz; tÞ expð�iotÞg ð14:7bÞ

(We have put a factor 2 before Re in Equations 14.7a and 14.7b so as to conform

with our previous definition of E as E ¼ E(þ ) þ E(�) rather than E ¼ Re{E(þ )} in

classical terms.) Here the summation is over the cavity mode number. We are

assuming that the cavity mode functions Cm(z) constitute a complete set to expand

the total electric field. Anticipating projection of the electric field E(z, t) and the

polarization P(z, t) onto an adjoint mode function of interest, which has an angular

frequency o, we retain only one mode function in E(z, t) and drop the mode

number m (see Equation 14.13 below)

Eðz; tÞ ¼ 2Re faðtÞCNCðzÞ expð�iotÞg ð14:8Þ

Here a(t) is a variable whose squared modulus averaged over the noise reservoirs

describes the total number of photons of the mode in the cavity. The constant CN is the

normalization constant for a(t) to have the above property. (But note that the photon

number in the mode cannot be determined independently with those of other non-

orthogonal modes because of the non-orthogonality [15].) The mode function C(z) is

the one chosen by the above-mentioned projection. It corresponds to one of the mode

functions, say um, in Equation 14.2. It satisfies the wave equation in the cavity

r2 þ k2

 �

CðzÞ ¼ 0 ð14:9Þ

and the boundary conditions. Here k is the possibly complex wavenumber

reflecting the coupling loss at the cavity end surfaces. We divide the mode

function into right- and left-going waves as

CðzÞ ¼ cþðzÞ expðikzÞ þ c�ðzÞ expð�ikzÞ ð14:10Þ

Here k is a real wavenumber and we are assuming that the cavity is much longer

than the wavelength of the mode. This function may not be normalized with

respect to the integral over the cavity length.

Substitution of Equations 14.6b, 14.7b, and 14.8 into Equation 14.6a yields

� aðtÞCNk2CðzÞ � m0 eCNCðzÞf€aðtÞ � 2io _aðtÞ � o2aðtÞg
h

þf€~Pðz; tÞ � 2io _~Pðz; tÞ � o2~Pðz; tÞg
i
¼ 0

ð14:11Þ
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We assume that the variation of the noise amplitude is slow so that we have

o2~P
�
�

�
�� o _~P

�
�
�

�
�
�; €~P
�
�
�
�
�
�. Ignoring the second derivative of a(t) we have

2i _aðtÞeCNCðzÞ ¼
k2 � em0o

2

m0o
aðtÞCNCðzÞ þ o~Pðz; tÞ ð14:12Þ

We multiply both sides of Equation 14.12 by the adjoint function Cw(z), which

corresponds to vm in Equation 14.2, and integrate over the length of the cavity to obtain

_aðtÞ ¼ s0aðtÞ þ pðtÞ ð14:13Þ

where s0 ¼ ðk2 � em0o
2Þ=2iem0o is the net gain per unit time and

pðtÞ ¼
�io

Ð
cavity C

yðzÞ~Pðz; tÞdz

2eCN

Ð
cavity C

yðzÞCðzÞdz
ð14:14Þ

For simplicity we assume that we are in the linear gain regime with Re s0o0 and

evaluate the laser linewidth using Equation 14.13 and the correlation property of

the noise ~Pðz; tÞ. Now the correlation property of the term Pðz; tÞ in Equation 14.6b

was given by Siegman [5] as

D
P�ðz; tÞPðz0; t0Þ

E
¼ 4_e

o
gN2dðt� t0Þdðz� z0Þ ð14:15Þ

where o is the central frequency of the noise emitter. Siegman derived the

coefficient on the right-hand side by equating the emitted power from a polarization

in a small volume V to that from the N2V atoms each having spontaneous emission

rate 2 g. (In the original paper by Siegman the factor 4 is written as 16, but here we

have taken care of the factor 2 added before the Re sign in Equation 14.7b.) The

correspondence of the noise polarization in Equation 14.15 to the noise field in

Equation 11.4 or 14.110 below is shown in Appendix I.

We proceed to evaluate the correlation function just as in Equations 4.42–4.49,

but noting that the central frequency of oscillation o is truncated here. We have

D
a�ðtþ tÞaðtÞ

E
¼
ðtþt

0

ðt

0

es�0ðtþt�t0Þes0ðt�t00Þ
D

p�ðt0Þpðt00Þ
E

dt0dt00 ð14:16Þ

Using Equations 14.14 and 14.15 we have

D
a�ðtþ tÞaðtÞ

E
¼ o

2eCN CyC

 �

�
�
�
�
�

�
�
�
�
�

2
4_e
o

gN2 Cy�Cy

 �

�
ðtþt

0

ðt

0

es�0ðtþt�t0Þes0ðt�t00Þdðt0 � t00Þdt0dt00

ð14:17Þ
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where the round brackets on the right-hand side indicate the integral of the

quantity over the length of the cavity, for example,

CyC

 �

¼
ð

cavity
CyðzÞCðzÞdz ð14:18Þ

Note that taking the complex conjugate of the first function is not intended in this

definition. The double time integral is as in Equation 4.52

ðtþt

0

ðt

0

es�0ðtþt�t0Þes0ðt�t00Þdðt0 � t00Þdt0dt00 ¼

es�0t

2jRe s0j
; t40

e�s0t

2jRe s0j
; to0

8
>>><

>>>:

ð14:19Þ

The Fourier transform of this double integral to the angular frequency domain yields

a Lorentzian line and reveals that the linewidth Do is 2jRe s0j (see Equation 4.56).

Using Equation 14.19 in Equation 14.17 and setting t ¼ 0 yields a relation between

2jRe s0j and a�ðtÞaðtÞh i. Thus we have the linewidth in the form

Do ¼ 2jRe s0j ¼
1

D
a�ðtÞaðtÞ

E
o

2eCN CyC

 �

�
�
�
�
�

�
�
�
�
�

2
4_e
o

gN2 Cy�Cy

 �

ð14:20Þ

Now the normalization constant is determined by equating the stored energy to

the photon energy:

2e CNj j2
D

a�ðtÞaðtÞ
E ð

cavity
C�ðzÞCðzÞdz ¼

D
a�ðtÞaðtÞ

E
_o ð14:21Þ

so that

CNj j2¼ _o
2e
Ð

cavity C
�ðzÞCðzÞdz

ð14:22Þ

Thus we have

Do ¼ 2jRe s0j ¼ 2gN2

C�Cð Þ Cy�Cy

 �

D
a�ðtÞaðtÞ

E
CyC

 ��
�

�
�2

ð14:23Þ

To express the linewidth in terms of the output power, we recall that in the linear

gain regime the power output is the stored energy times twice the cavity decay

constant: P ¼ 2gc_o a�ah i. Also, we have gNsth ¼ gc (see Equation 7.44c for

example). Therefore, we have

Do ¼ 4_og2
c

P

N2

Nsth

C�Cð Þ Cy�Cy

 �

CyC

 ��
�

�
�2

ð14:24Þ

Comparing this result with that for the quasimode laser in Equation 4.62a, we

see three different points. First, this result lacks the bad cavity and detuning
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effects. Second, we have no thermal noise contribution here because the correla-

tion in Equation 14.15 takes only quantum noise into account. Third, and most

important here, we have the excess noise factor

KL ¼
C�Cð Þ Cy�Cy


 �

CyC

 ��
�

�
�2

ð14:25Þ

If we compare Equation 14.24 with the Schawlow–Townes linewidth formula in

Equation 4.62b, the incomplete inversion factor and the excess noise factors are

added here.

By the way, we present here the method to express the output power in terms

of the functional form in Equation 14.10. Referring to Figure 11.1 and Equation

14.8 the output powers P1,2 from mirrors M1,2 are given by

P1 ¼ 2e0c0jT1e�ð0Þj2 ¼ 2e0c0jT1j2
D

a�a
E
jCN j2jc�ð0Þj

2

P2 ¼ 2e0c0jT2eþðdÞj2 ¼ 2e0c0jT2j2
D

a�a
E
jCN j2jcþðdÞj

2
ð14:26Þ

The total output power is then

Pt ¼ P1 þ P2 ¼ 2e0c0jCN j2 jT1j2jc�ð0Þj
2 þ jT2j2jcþ ðdÞj2

n oD
a�a
E
ð14:27Þ

From Equations G.17 to G.19 in Appendix G we have

jT2j2 ¼
1

A

�
�
�
�

�
�
�
�

2

¼ nðjAj2 � jBj2Þ
jAj2

¼ nð1 � jr2j2Þ ð14:28Þ

Using Equations 14.22 and 14.28 we have

Pt ¼
c1_o
C�Cð Þ ð1 � jr1j2Þjc�ð0Þj

2 þ ð1 � jr2j2Þjcþ ðdÞj2
n oD

a�a
E
ð14:29Þ

where we have set e ¼ e1 ¼ n2e0. This expression for the output power was

presented by Champagne and McCarthy [6]. Now if we use the mode function

for a two-sided cavity in Equation 14.52 in Example 2 below, we have

jc�ð0Þj
2 ¼ 1=jr1j2 and jcþðdÞj

2 ¼ expð2gdÞ ¼ 1=ðjr1jjr2jÞ, where we have used

Equation 14.49. Further, using Equation 14.54 or ðC�CÞ w recover

Pt ¼
c1

d
ln

1

jr1jjr2j
_o
D

a�a
E
¼ 2gc_o

D
a�a
E

ð14:30Þ

as expected. Note, however, that this relation does not hold for a laser in the

saturated, nonlinear gain regime, as we mentioned in Section 12.9. This is because

the mode function is deformed because of the location-dependent saturated gain.

Next we examine the spontaneous emission rate. As in Section 12.12, say in

Equation 12.66, we derive from Equation 14.13

d

dt

D
a�ðtÞaðtÞ

E
¼ ðs0 þ s�0Þ

D
a�ðtÞaðtÞ

E
þ Rsp ð14:31aÞ
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where the last term is interpreted as the total spontaneous emission rate (see above

Equation 12.70) and is given by

Rsp ¼
D

a�ðtÞpðtÞ
E
þ
D

p�ðtÞaðtÞ
E

ð14:31bÞ

We have from Equation 14.13

aðtÞ ¼ að0Þes0t þ
ðt

0

es0ðt�t0Þpðt0Þdt0 ð14:32Þ

Since a(0) is not correlated to p(t) for t W 0 we have

Rsp ¼
ðt

0

es�0ðt�t0Þp�ðt0Þ dt0pðtÞ
� �

þ p�ðtÞ
ðt

0

es0ðt�t0Þpðt0Þ dt0
� �

ð14:33Þ

Then using Equations 14.14 in the first term in Equation 14.33 we have

ðt

0

es�0ðt�t0Þp�ðt0Þ dt0pðtÞ
� �

¼
o2
Ð t

0 es�0ðt�t0Þ Ð
cavity

Ð
cavity C

y�ðz0ÞCyðzÞ ~P
�ðz0; t0Þ~Pðz; tÞ

D E
dzdz0dt0

2eCN

Ð
cavity C

yðzÞCðzÞdz
�
�
�

�
�
�
2

ð14:34Þ

The second term in Equation 14.33 can be evaluated similarly. Therefore, by use of

Equation 14.15, the spontaneous emission rate becomes, using
Ð t

0 dðt� t0Þ
dt0 ¼ 1=2,

Rsp ¼
_ogN2

e CNj j2

Ð
cavity CyðzÞ

�
�

�
�2dz

Ð
cavity C

yðzÞCðzÞdz
�
�
�

�
�
�
2 ð14:35Þ

Substituting Equation 14.22 into Equation 14.35 we have

Rsp ¼ 2gN2

Ð
cavity CðzÞj j2dz

Ð
cavity CyðzÞ

�
�

�
�2dz

Ð
cavity C

yðzÞCðzÞdz
�
�
�

�
�
�
2 ð14:36Þ

Since 2gN2 is the standard spontaneous emission rate that will be obtained in a

free one-dimensional space, the remaining factors give the longitudinal excess

noise factor KL (see also Equation 12.69 for the total spontaneous emission rate in

the quasimode cavity). Note, however, that this rate is for the total mode, but not

for individual atoms. Thus we have

KL ¼
Ð

cavity CðzÞj j2dz
Ð

cavity CyðzÞ
�
�

�
�2dz

Ð
cavity C

yðzÞCðzÞdz
�
�
�

�
�
�
2 ð14:37aÞ

This is the same as the expression in Equation 14.25 obtained through evaluation

of the laser linewidth. We stress again that this enhancement factor applies to the

mode as a whole but is not for the individual atoms. This equation is valid for

the non-normalized mode function C(z) and also for the non-normalized adjoint
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mode function Cw(z). If the mode function is normalized in the sense of Equa-

tion 14.4 and the adjoint mode function is also normalized in the sense of

Equation 14.2, we have, according to Equation 14.5,

KL ¼
ð

cavity
CyðzÞ
�
�

�
�2dz � 1 ð14:37bÞ

Now, what is the adjoint mode Cw(z) for C(z) in Equation 14.10 explicitly?

According to Siegman [4] the adjoint mode is the counter-propagating mode

within the same structure defining the original mode. Thus the right- and left-

going components of C(z) in Equation 14.10 are mutually adjoint. Thus we put

CyðzÞ ¼ CCy c�ðzÞ expð�ikzÞ þ cþðzÞ expðikzÞ
� 	

ð14:38Þ

where CCy is the normalization constant discussed below. Therefore, for a Fabry–

Perot cavity, KL in Equation 14.37a reduces to

KL ¼

Ð
cavity CðzÞj j2dz

n o2

Ð
cavity C

2ðzÞdz
�
�
�

�
�
�
2 ð14:39Þ

This equation may be used for mode functions that are not normalized. This is

because, if one insists on normalizing the integral in the numerator, then the

normalization constant appears in the denominator, thus yielding the same result.

The same result as in Equation 14.39 was reported also by Arnaud [16], and a

similar result for the transverse excess noise factor (which will be discussed below)

was obtained by Petermann [17]. Petermann obtained this factor as an enhance-

ment factor for the spontaneous emission factor (the fraction in power of the

emission going to the mode of interest) in a gain-guided laser.

Now we will normalize C(z) with an added normalization constant CC as in

Equation 14.4:

ð

cavity
CCCðzÞj j2dz ¼ CCj j2

ð

cavity
cþðzÞ
�
�

�
�2þ c�ðzÞj j2

n o
dz ¼ 1 ð14:40Þ

Also, we normalize the product as in Equation 14.2:

ð

cavity
v�mðzÞumðzÞdz!

ð

cavity
CyðzÞCCCðzÞdz

¼
ð

cavity
CCyCC c�ðzÞ expð�ikzÞ þ cþðzÞ expðikzÞ

� 	

� cþðzÞ expðikzÞ þ c�ðzÞ expð�ikzÞ
� 	

dz

¼
ð

cavity
2CCyCCcþðzÞc�ðzÞdz

¼ 1

ð14:41Þ
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Next for Cw(z) we have

ð

cavity
CyðzÞ
�
�

�
�2dz ¼ CCy

�
�

�
�2
ð

cavity
cþðzÞ
�
�

�
�2þ c�ðzÞj j2

n o
dz ¼

CCy
�
�

�
�2

CCj j2
ð14:42Þ

where we have used Equation 14.40 in the last equality. Now multiplying both the

numerator and the denominator of Equation 14.37a by CCj j2 and using Equations

14.40–14.42 we obtain

KL ¼
CCy
�
�

�
�2

CCj j2
� 1 ð14:43Þ

if we use Equation 14.5. Thus the evaluation of the excess noise factor reduces to

that of the normalization constants [18]. The last inequality may be proved as

follows. We note from Equations 14.41 and 14.42 that

1

CCyCC

�
�
�
�

�
�
�
� ¼

ð

cavity
2cþðzÞc�ðzÞdz

�
�
�
�
�

�
�
�
�
�
�
ð

cavity
2 cþðzÞc�ðzÞ
�
�

�
� dz

�
ð

cavity
cþðzÞ
�
�

�
�2þ c�ðzÞj j2

� �
dz ¼ 1

CCj j2

ð14:44aÞ

Thus we have

CCy

CC

�
�
�
�

�
�
�
� � 1 ð14:44bÞ

Note that the equality in Equations 14.43–14.44b occurs if cþðzÞ ¼ c��ðzÞ for all z.

This condition expresses a flat field distribution in the cavity as in the quasimode

cavity laser of Chapter 4 where we had no excess noise factor. We can say that the

longitudinal excess noise factor is in a sense a barometer of the field non-

uniformity. It is large for a cavity with high-transmission mirrors with high gain

medium, which results in a highly non-uniform field distribution.

A different normalization scheme from the one described in this section will

appear in Section 14.6.

In some of the literature, especially in works treating semiconductor lasers, the

formula for the longitudinal excess noise factor in Equation 14.25 or 14.37a is

modified in some respects. First, the laser medium can be dispersive. Second, the

dielectric constant e or the refractive index may be position dependent. Third,

the gain or the density of inverted atoms N2 may also be position dependent. If

these matters are taken into account, the expression for the spontaneous emission

rate will include all these effects, while the expression for the excess noise factor

will include the dispersive effect and the position-dependent refractive index in the

integrals (see, for example, Champagne and McCarthy [6]).

Up to now we have described the mode function and the adjoint mode function

as defined by the ‘‘empty’’ cavity. This is true for below-threshold operation where

the gain is linear. We saw explicitly in Chapter 9 that the cavity spatial mode is

excited by the driving noise sources. For above-threshold operation where the gain
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is saturated, the mode function is deformed, as we saw in Chapter 10. Even for this

case the adjoint mode theory can be used with the mode function properly

adjusted for the saturated gain distribution. In particular, Equation 14.9 may be

rewritten, for the steady state, as

r2 þ eðzÞm0o
2


 �
CðzÞ ¼ 0 ð14:45Þ

where we have set s0 ¼ 0 or k2ðzÞ � eðzÞm0o
2 ¼ 0 (see below Equation 14.13).

Here the dielectric constant e(z) contains the imaginary part corresponding to the

gain, which may be saturated non-uniformly. If the field distribution consistent

with this non-linear equation for the field is used, a correct result can be obtained.

The physical origin of the enhanced spontaneous emission noise is given by

Siegman [4] as the correlation between the noise emissions into different cavity

modes due to the non-orthogonality of the modes. We saw that the noise that

drives the mode um is given not by the projection of the noise polarization P on um

but by the projection onto the adjoint mode vm. Thus spontaneous emission into

cavity modes other than um can drive um, enhancing the spontaneous emission in

the mode um. How this enhancement of spontaneous emission noise develops

with time or with wave propagation has been discussed by many authors. Siegman

[4] introduced the concept of initial wave excitation factor, which is equal to the

excess noise factor and describes the total power in a selected mode just after

the input plane (of an amplifier) for an input field with unit power. This factor is

large when the input field is spatially mode matched not to the desired mode but to

the complex conjugate of the adjoint mode. New [19] examined the time devel-

opment of the injected wave in the time-reversed sense (in the form of the complex

conjugate of the adjoint mode) for the case of an unstable strip resonator, and

found strong confinement of the wave around the cavity axis for initial round trips,

resulting in much smaller transient energy loss than expected for the self-

reproducing wave. Deutsch et al. [15] studied the development of the photon

number for a field configuration along the length of a gain-guided amplifier and

found strong initial increase followed by oscillatory approach to the steady state

with the correct excess noise factor. The initial strong increase in photon number

resulted again from the initial field: the initial field came into the expression for

the photon number in the form of the adjoint mode function rather than the mode

function of interest.

We shall now look at a series of examples.

Example 14.1

In the last part of Chapter 9 we obtained the longitudinal excess noise factor

(from Equation 9.114)

KL ¼
bc

gc

� �2

¼ 1� r2

2r lnð1=rÞ

� �2

as the squared ratio of the integrated squared modulus of the mode function

sinOcðzþ dÞ=c1 to that of the quasimode function sinfðok=c1Þðzþ dÞg.
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According to Equation 14.39, this interpretation should be modified: it should

be expressed as the squared ratio of the integrated squared modulus of the

mode function sinOcðzþ dÞ=c1 to the modulus of the integrated squared

mode function. The complex frequency Oc is given in Equation 1.18b. We have

KL ¼

Ð 0

�d dz sinfOcðzþ dÞ=c1gj j2
� �2

Ð 0
�d dz sinfOcðzþ dÞ=c1ð Þ2
�
�
�

�
�
�
2

¼ ðd=2Þ2 ð1� r2Þ=f2r lnð1=rÞg½ 	2

ðd=2Þ � ðc1=4OcÞ sinð2Ocd=c1Þj j2

ð14:46Þ

Here the second term in the absolute sign is of the order of the optical

wavelength and can be ignored if the cavity length d is much larger than a

wavelength. Then we obtain

KL ¼
1� r2

2r lnð1=rÞ

� �2

ð14:47Þ

Example 14.2

We want to reproduce the excess noise factor for a generalized two-sided cavity

laser, Equations 11.72 and 11.107. The cavity model is depicted in Figure 11.1.

We describe the right- and left-going waves inside the cavity as a expðikzÞ and

b expð�ikzÞ, respectively. We require that there exist only outgoing waves

outside the cavity, and write these outgoing waves as c expðikzÞ and

d0 expð�ikzÞ. Then we have

ceikd ¼ at2eikd

d0 ¼ bt1

be�ikd ¼ r2aeikd

a ¼ r1b

ð14:48Þ

From the last two equations we have

r1r2 expð2ikdÞ ¼ 1 ð14:49Þ

Thus we have

k ¼ k� ig ð14:50Þ

where

k ¼ 1

2d
2np� f1 � f2ð Þ

g ¼ 1

2d
ln

1

r1j j r2j j

ð14:51Þ

14.1 Adjoint Mode Theory | 303



where we have set r1;2 ¼ r1;2

�
�

�
�eif1;2 . Using the last equality in Equation 14.48

we may have an non-normalized mode function

CðzÞ ¼ eiðk�igÞz þ 1

r1
e�iðk�igÞz ð14:52Þ

Substitution of this form into the numerator of Equation 14.39 yields

ðd

0

CðzÞj j2dz ¼ 1

2g
e2gd � 1

 �

� 1

2g r1j j2
e�2gd � 1

 �

þ 1

2ikr�1
e2ikd � 1

 �

� 1

2ikr1
e�2ikd � 1

 �

ð14:53Þ

Using Equation 14.51 we obtain

ðd

0

CðzÞj j2dz ¼ d

r1j j ln 1= r1j j r2j jð Þ
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� �

ð14:54Þ

where we have ignored the last two terms in Equation 14.53 assuming that

k� g or d� l, where l is the wavelength of the cavity mode. Similarly, we

have for the denominator in Equation 14.39

ðd

0

C2ðzÞ dz ¼ 2d

r1
þ e2iðk�igÞd � 1

2iðk� igÞ þ
1

r2
1

e�2iðk�igÞd � 1

�2iðk� igÞ ¼
2d

r1
ð14:55Þ

The last equality is obtained under the same approximation as above. Using

Equations 14.54 and 14.55 in Equation 14.39 we have

KL ¼
1= r1j j � r1j j þ 1= r2j j � r2j j

2 ln 1= r1j j r2j jð Þ

� �2

ð14:56Þ

which is the same as in Equations 11.72 and 11.107.

Example 14.3

We consider the problem treated in Example 2 using the rule expressed in

Equation 14.43. Let the normalized mode function and the normalized adjoint

mode function be

CNðzÞ ¼ CCCðzÞ ¼ CC eiðk�igÞz þ 1

r1
e�iðk�igÞz

� �

CyNðzÞ ¼ CCy
1

r1
e�iðk�igÞz þ eiðk�igÞz

� � ð14:57Þ

where C(z) is given by Equation 14.52. The subscript N stands for normal-

ization. The first normalization condition, Equation 14.40, becomes
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ðd

0

CCj j2 CðzÞj j2dz ¼ CCj j2 d

r1j j ln 1= r1j j r2j jð Þ
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� �

¼ 1

ð14:58Þ

under the same approximation as in Equation 14.54. The second normal-

ization condition corresponding to Equation 14.41 is

ðd

0

CCCCyC
2ðzÞ dz ¼ CCCCy

2d

r1
¼ 1 ð14:59Þ

also under the same approximation. Thus using Equation 14.39 we have

KL ¼
CCyCC
�
�

�
�2

CCj j4
¼ 1= r1j j � r1j j þ 1= r2j j � r2j j

2 ln 1= r1j j r2j jð Þ

� �2

ð14:60Þ

Example 14.4

We cite the vector inner product method used by Hamel and Woerdman [18],

applying it to the same problem as in Examples 2 and 3. The authors define a

two-component vector, where the top component is the right-going wave and

the bottom component is the left-going wave. The adjoint is the vector with the

components interchanged:

CðzÞ ¼
eiðk�igÞz

1
r1

e�iðk�igÞz

 !

and CyðzÞ ¼
1
r1

e�iðk�igÞz

eiðk�igÞz

 !

ð14:61Þ

The inner product is defined as the integration over the cavity length of the

product of the transpose of the first vector and the second vector. Thus if we

use Equation 14.61 in Equation 14.37a we obtain

CðzÞj j2 ¼ e�iðkþigÞz;
1

r�1
eiðkþigÞz

� � eiðk�igÞz

1
r1

e�iðk�igÞz

0

@

1

A ¼ e2gz þ 1

r1j j2
e�2gz

CyðzÞ
�
�

�
�2 ¼ 1

r�1
eiðkþigÞz; e�iðkþigÞz

� � 1
r1

e�iðk�igÞz

eiðk�igÞz

0

@

1

A ¼ 1

r1j j2
e�2gz þ e2gz

CyðzÞCðzÞ ¼ 1

r1
e�iðk�igÞz; eiðk�igÞz

� � eiðk�igÞz

1
r1

e�iðk�igÞz

0

@

1

A ¼ 2

r1

ð14:62Þ

The inner products are the respective integrations over the cavity length. It is

easy to see, using Equation 14.51, that
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KL ¼
Ð

cavity CðzÞj j2dz
Ð

cavity CyðzÞ
�
�

�
�2dz

Ð
cavity C

yðzÞCðzÞdz
�
�
�

�
�
�
2

¼ d= r1j j ln 1= r1j j r2j jð Þf g½ 	 1= r1j j � r1j j þ 1= r2j j � r2j jð Þf g2

2d=r1j j2

ð14:63Þ

which is the same as those in Equations 14.56 and 14.60. This vector product

method avoids the appearance of the cross-terms that were ignored in the

previous examples. Note that the rule in Equation 14.39 is not directly

applicable for this formulation as opposed to the general rule in Equation

14.37a. This seeming confusion occurs because the spatial functions in

Equations 14.10 and 14.38 are the same. They are different if expressed in the

vector form as seen in Equation 14.61.

Example 14.5

We can consider the same problem using Equation 14.43 under the vector

product formulation of the previous example. Let us set

CNðzÞ ¼ CC

eiðk�igÞz

1
r1

e�iðk�igÞz

0

@

1

A and

CyNðzÞ ¼ CCy

1
r1

e�iðk�igÞz

eiðk�igÞz

0

@

1

A

ð14:64Þ

If we normalize these as in Example 3, but using the vector product concept

shown in Equation 14.62, it is easy to see that the same calculations as in

Equations 14.58 and 14.59 in Example 3, but without the cross-terms, will be

obtained. So, we will arrive at the same excess noise factor as in Equation

14.60.

14.2

Green’s Function Theory

Henry [7] and Tromborg et al. [8] analyzed the excess noise factor using the

Green’s function method. They express a frequency component of the random

electric field driven by the noise sources in terms of Green’s function, the Green’s

function being the solution to the wave equation driven by a spatial delta function

noise source. The spatial distribution of the driven field component is determined

by the Green’s function. The result is Fourier-transformed with a resultant
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temporal differential equation for the amplitude of the driven field. This differ-

ential equation contains the noise source and yields the spontaneous emission

rate.

Following Tromborg et al. [8] we consider the o component Eo(z) of the scalar

electric field defined by

Eðz; tÞ ¼
ð1

0

EoðzÞ expð�iotÞdoþ C:C: ð14:65Þ

The component Eo(z) satisfies the wave equation

r2EoðzÞ þ
o2

c2
0

n2Eoðz; tÞ ¼ m0o
2PoðzÞ � foðzÞ ð14:66Þ

where Po is theo component of the noise polarization that appeared in Equation 14.6b.

We look for the Green’s function Goðz; z0Þ associated with Equation 14.66 that

satisfies

r2 þ o2

c2
0

n2

� �

Goðz; z0Þ ¼ dðz� z0Þ ð14:67Þ

Then Eo(z) is given by

EoðzÞ ¼
ð

Goðz; z0Þfoðz0Þdz0 ð14:68Þ

The Green’s function is given as

Goðz; z0Þ ¼
ZRðzÞZLðz0ÞHðz� z0Þ þ ZRðz0ÞZLðzÞHðz0 � zÞ

W
ð14:69Þ

where H(z) is the Heaviside unit step function. The Wronskian W is

W ¼ ZLðzÞ
d

dz
ZRðzÞ � ZRðzÞ

d

dz
ZLðzÞ ð14:70Þ

Here ZL(z) is the solution to the homogeneous equation associated with Equation 14.66

with foðzÞ ¼ 0, which satisfies the boundary condition at the left end of the cavity,

and ZR(z) is the solution satisfying the boundary condition at the right end of the

cavity:

r2 þ o2

c2
0

n2

� �

ZL;RðzÞ ¼ 0 ð14:71Þ

Because of this relation we have

d

dz
W ¼ 0 ð14:72Þ

that is, W is constant over the length of the cavity.

Equations 14.68 and 14.69 suggest that, when the noise fo(z) is vanishingly

small, W should vanish in order to have a finite electric field Eo(z). This means
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that the zeros of W as a function of o give the poles for the electric field. We

assume that the system is operating in the vicinity of a pole, say the zeroth pole o ¼
o0, which may be complex. At this pole Wðo0Þ ¼ 0 and Equation 14.70 shows

that the functions ZL(z) and ZR(z) are proportional to each other. At this pole we

can set

ZLðzÞ ¼ ZRðzÞ ¼ Z0ðzÞ ð14:73Þ

Then Equation 14.68 becomes

EoðzÞ ¼
Z0ðzÞ
WðoÞ

ð

Z0ðz0Þfoðz0Þdz0 ð14:74Þ

We assume that the functional form Z0(z) for the field is maintained even for finite

values of fo(z). For a finite noise, the Wronskian may deviate from zero. Expanding

it around the zeroth pole we have

WðoÞ ¼Wðo0Þ þ
@W

@o
ðo� o0Þ ¼

@W

@o
ðo� o0Þ ð14:75Þ

Substitution of Equation 14.75 into Equation 14.74 yields

ðo� o0ÞEoðzÞ ¼
Z0ðzÞ
@W=@o

ð

Z0ðz0Þfoðz0Þdz0 ð14:76Þ

This form suggests that the field component is proportional to Z0(z). We set

EoðzÞ ¼ BaoZ0ðzÞ ð14:77Þ

where B is a normalization constant to be determined later and ao is the Fourier

component of the time variation of the electric field. Substitution of Equation 14.77

into Equation 14.76 gives

ðo� o0Þao ¼
1

B @W=@o

ð

Z0ðz0Þfoðz0Þdz0 ð14:78Þ

We construct the field amplitude a(t) by multiplying ao by expð�iotÞ and

integrating over o. The trick here is that the o term on the left-hand side yields

the time derivative ðd=dtÞaðtÞ. We thus have

d

dt
aðtÞ þ io0aðtÞ ¼ FaðtÞ ð14:79Þ

where

FaðtÞ ¼
�i

B @W=@o

ð

Z0ðzÞf ðz; tÞdz ð14:80Þ
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and

f ðz; tÞ ¼
ð

expð�iotÞfoðzÞdo ð14:81Þ

The factor qW/qo is independent of o and Tromborg et al. [8], analyzing the

changes in ZL(z) and ZR(z) due to a small change in k, showed that

@W

@o
¼ 2k0

c

ð

cavity
Z2

0ðzÞ dz ð14:82Þ

where k0 corresponds to o0. Once we get the Langevin equation (Equation 14.79),

we can obtain the total spontaneous emission rate from the diffusion coefficient

for Fa(t) as in Equations 14.31–14.36 above. As in Equation 14.33 the total

spontaneous emission rate is

Rsp ¼
ðt

0

F�aðt0Þ dt0FaðtÞ
� �

þ F�aðtÞ
ðt

0

Faðt0Þ dt0
� �

ð14:83Þ

and

ðt

0

F�aðt0Þ dt0FaðtÞ
� �

¼ 1

Bj j2 @W=@oj j2
ðt

0

dt

ð

cavity
dz0
ð

cavity
dz Z�0ðz0ÞZ0ðzÞ f �ðz0; t0Þf ðz; tÞh i ð14:84Þ

We use Equations 14.15 and 14.66 to obtain

D
f �ðz0; t0Þf ðz; tÞ

E
¼ ðm0o

2Þ2
D

P�ðz0; t0ÞPðz; tÞ
E

¼ ðm0o
2Þ2 4_e

o
gN2dðt0 � tÞdðz0 � zÞ

ð14:85Þ

where we have assumed that Po(z) is peaked around o. Thus we have

Rsp ¼
ðm0o

2Þ2

Bj j2 @W=@oj j2
4_e
o

gN2

ð

cavity
Z0ðzÞj j2dz

¼ ðm0o
2Þ2

Bj j2 2k0=cð Þ
Ð

cavity Z2
0ðzÞdz

�
�
�

�
�
�
2

4_e
o

gN2

ð

cavity
Z0ðzÞj j2dz

ð14:86Þ

where we have used Equation 14.82 in the second line. Finally, we determine the

normalization constant B so that the stored energy in the cavity is a�ðtÞaðtÞh i
multiplied by the photon energy _o. Noting from Equations 14.65 and 14.77 that

Eðz; tÞ ¼ BaðtÞZ0ðzÞ þ C:C: ð14:87Þ
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we have

2e Bj j2
D

a�ðtÞaðtÞ
E ð

cavity
Z0ðzÞj j2dz ¼ _o

D
a�ðtÞaðtÞ

E
ð14:88Þ

and

Bj j2¼ _o

2e
Ð

cavity Z0ðzÞj j2dz
ð14:89Þ

Thus we finally have

Rsp ¼ 2gN2

Ð
cavity Z0ðzÞj j2dz

n o2

Ð
cavity Z2

0ðzÞdz
�
�
�

�
�
�
2 ð14:90Þ

where we have used the relations k0 ’ o=c and m0e ¼ c�2. This yields the same

form of excess noise factor as in Equation 14.39:

KL ¼

Ð
cavity Z0ðzÞj j2dz

n o2

Ð
cavity Z2

0ðzÞdz
�
�
�

�
�
�
2 ð14:91Þ

That the excess noise factor is given in this form rather than that of Equation 14.37a

reflects the fact that this Green’s function method assumes a Fabry–Perot cavity. The

equivalence of the function Z0 to the function C(z) in the previous section may

be argued by comparison of Equations 14.9 and 14.71 and by comparison of the

boundary conditions that these functions satisfy.

As noted in the previous section, in some of the literature, especially on

semiconductor lasers, the formula for the longitudinal excess noise factor in

Equation 14.91 is modified in some respects. First, the laser medium can be

dispersive. Second, the dielectric constant e or the refractive index may be position

dependent. Third, the gain or the density of inverted atoms N2 may also be

position dependent. If these matters are taken into account, the expression for the

spontaneous emission rate will include all these effects, while the expression for

the excess noise factor will include the dispersive effect and the position-depen-

dent refractive index in the integrals. For more details, see, for example, Henry [7]

and Tromborg et al. [8].

We have described the function Z0(z) as defined by the ‘‘empty’’ cavity of index n
everywhere. As in the previous section, this limitation can be relaxed if we allow

the factor n2 in Equation 14.67 to represent the index distribution inside the cavity

or the (saturated) gain distribution. Then, with the mode function Z0(z) properly

adjusted for the index distribution or the (saturated) gain distribution, the correct

result can be obtained. In fact, for a laser with saturated gain, van Exter et al. [20]

obtained the longitudinal excess noise factor and the power-independent part of

the laser linewidth using this Green’s function method.
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14.3

Propagation Theory

The third theory used to derive the excess noise factor is the simplified method

developed in Chapter 11 and used independently by Goldberg et al. [10] and by

Prasad [11]. This theory may be called the propagation theory or propagation

method, where the noise fields propagate to a coupling surface of the cavity, being

amplified on the way, to form the total noise field at that point. The detail of this

method has already been described in Chapter 11. This theory stresses the

importance of the amplification of the thermal noise and the quantum noise,

leading to the longitudinal excess noise factor. As mentioned at the end of Chapter

11, this theory directly shows that the excess noise factor originates from the finite

mirror transmissions as well as the finite amplification of the thermal and

quantum noise during one round trip in the cavity. According to New [19] this

interpretation of the excess noise is in line with the view that emphasizes initial

temporary enhancement resulting from the excitation of the mode in a time-

reversed sense (in the complex conjugate of the adjoint mode). We stress that this

propagation theory can treat thermal noise and quantum noise on an equal footing

as compared to the adjoint mode theory or Green’s function theory, which are not

suited to treat the injected thermal noise.

In the same spirit of taking into account the amplification of spontaneous

emission noise along the length of the cavity, Thompson [21] arrived at the same

enhancement factor as in Equation 14.47 by considering the power aspect of the

field with the longitudinal boundary conditions of a symmetric cavity taken into

account.

Here, we want to show the connection of this theory to the adjoint mode theory.

We do this by generalizing the propagation theory. In Chapter 11 we summed all

the contributing noise fields at a coupling surface. We change this location to sum

all the noise fields to a general position inside the cavity and assume that the field

amplitude is the product of a time-varying amplitude operator and a cavity mode

function. Then we analyze the spontaneous emission rate to derive the excess

noise factor.

For simplicity, we consider the linear gain regime of a generalized two-sided

cavity laser treated in Section 11.6. From Equation 11.77 the basic equation reads

dêþðd� 0; tÞ
dt

¼ s0 êþðd� 0; tÞ þ c1

2d

g0

g0 þ g0c
F̂t þ F̂q

� �
ð14:92Þ

with the thermal and quantum noise fields F̂t and F̂q given by Equations 11.36

and 11.41 respectively. In both of these equations, the two possible routes to

the mirror at z ¼ d from the noise sources at the mirrors or at the locations of the

atoms are taken into account. The noises are amplified along these routes. Now we

want to change the position z ¼ d to a general position z within the cavity. This

time we have four routes for both the thermal and quantum noise. For the thermal

noise, the noise penetrates into the cavity at the two mirrors and goes to position z
either directly or after one reflection at the opposite mirror – see Figure 14.1a as
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well as Figure 11.1. For the quantum noise, the noise field from an atom at zm goes

to z directly, or after one reflection at either mirror, or after two successive

reflections at the two mirrors – see Figure 14.1b as well as Figure 11.1.

Then Equation 11.77 may be rewritten in the form

dêðz; tÞ
dt

¼ s0êðz; tÞ þ c1

2d

g0

g0 þ g0c
F̂tðz; tÞ þ F̂qðz; tÞ
n o

ð14:93Þ

where

F̂tðz; tÞ ¼ T 02 eðikþa
0Þðd�zÞ f̂ R

t dþ 0; t� d� z

c1

� �

þ T 02 r1eðikþa
0ÞðdþzÞ f̂ R

t dþ 0; t� dþ z

c1

� �

þ T 01 eðikþa
0Þzf̂ L

t �0; t� z

c1

� �

þ T 01 r2eðikþa
0Þð2d�zÞ f̂ L

t �0; t� 2d� z

c1

� �

ð14:94aÞ

and

F̂qðz; tÞ ¼
X

m

f̂m t� jz� zmj
c1

� �

eðikþa
0Þjz�zm j

�

þ f̂m t� zþ zm

c1

� �

r1eðikþa
0ÞðzþzmÞ

þ f̂m t� 2d� z� zm

c1

� �

r2eðikþa
0Þð2d�z�zmÞ

þ f̂m t� 2d� jz� zmj
c1

� �

r1r2eðikþa
0Þð2d�jz�zm jÞ

�

ð14:94bÞ

Note that both F̂t and F̂q contain waves propagating to the right and the left. Thus

êðz; tÞ also contains waves propagating in both directions. We assume that the

laser is operating with a mode function in the form of Equation 14.52 expressing

an outgoing mode for a generalized two-sided cavity. We also assume that the loss

Figure 14.1 Routes for (a) the thermal noise and (b) the quantum noise to reach the

position z.
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rate g is slightly larger than, but nearly equal to, the gain a0. Thus the mode

function is

CðzÞ ¼ eiðk�ia0Þz þ 1

r1
e�iðk�ia0Þz ð14:95Þ

where k is the real wavenumber. We may write the field amplitude as

êðz; tÞ ¼ CNâðtÞCðzÞ ð14:96Þ

where CN is the normalization constant enabling âyðtÞâðtÞ
� �

to represent the

number of photons in the cavity. As in Equations 14.22 and 14.89

CNj j2¼ _o

2e1

Ð
cavity CðzÞj j2dz

ð14:97Þ

We project Equation 14.93 onto the adjoint mode function

CyðzÞ ¼ 1

r1
e�iðk�ia0Þz þ eiðk�ia0Þz ð14:98Þ

Then we have formally

CN CyC

 � d

dt
âðtÞ ¼ s0CN CyC


 �
âðtÞ

þ c1

2d

g0

g0 þ g0c
CyF̂t

� �
þ CyF̂q

� �n o ð14:99Þ

where the bracket indicates an integral over the cavity length. We have

CyC

 �

¼
ðd

0

CyðzÞCðzÞdz ¼ 2d

r1
ð14:100Þ

For simplicity, we consider the thermal part and the quantum part separately.

For the thermal part, we have, by Equation 14.94a,

CyF̂t

� �
¼ T 02 deðikþa

0Þdf̂ R
t dþ 0; tð Þ þ T 02 deðikþa

0Þdf̂ R
t dþ 0; tð Þ

n

þ T 01
d

r1
f̂ L
t �0; tð Þ þ T 01 r2deðikþa

0Þ2df̂ L
t �0; tð Þ

o

¼ 2d
T 02
ffiffiffiffiffiffiffiffi
r1r2
p f̂ R

t dþ 0; tð Þ þ T 01
1

r1
f̂ L
t �0; tð Þ

� �

ð14:101Þ

where we have ignored the integrals of rapidly oscillating terms. Here we have

replaced the time values in Equation 14.94a by t on the grounds that we are interested

in the field fluctuation on a time scale larger than the cavity round-trip time. We have

also used Equation 14.49 describing the steady-state condition with g - a0:

r1r2 exp 2ðikþ a0Þd
� 	

¼ 1 ð14:102Þ
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Thus we have for the thermal noise

d

dt
âðtÞ ¼ s0âðtÞ þ c1

CN CyC

 �

g0

g0 þ g0c

1
ffiffiffiffi
r1
p

� T2
0
ffiffiffiffi
r2
p f̂ R

t dþ 0; tð Þ þ T1
0
ffiffiffiffi
r1
p f̂ L

t �0; tð Þ
� � ð14:103Þ

We examine the noise photon injection rate as in Equations 12.65–12.68 or in

Equations 12.72–12.80. We have

d

dt

D
âyðtÞâðtÞ

E
¼ ðs0 þ s�0Þ

D
âyðtÞâðtÞ

E

þ c1

CN CyC

 �

g0

g0 þ gc
0

1
ffiffiffiffi
r1
p

�
�
�
�
�

�
�
�
�
�

2
T2
0
ffiffiffiffi
r2
p
�
�
�
�

�
�
�
�

2 ðt

0

es�0ðt�t0Þ f̂ Ry
t dþ 0; t0ð Þf̂ R

t dþ 0; tð Þ
D E

dt0
�"

þ
ðt

0

es0ðt�t0Þ f̂ Ry
t dþ 0; tð Þf̂ R

t dþ 0; t0ð Þ
D E

dt0
�

þ T1
0
ffiffiffiffi
r1
p
�
�
�
�

�
�
�
�

2 ðt

0

es�0ðt�t0Þ f̂ Ly
t �0; t0ð Þf̂ L

t �0; tð Þ
D E

dt0 þ
ðt

0

es0ðt�t0Þ f̂ Ly
t �0; tð Þf̂ L

t �0; t0ð Þ
D E

dt0
� �#

ð14:104Þ

The last term in the square bracket in Equation 14.104 is the noise photon

injection rate Rt. The correlation function of the thermal noise is given by the first

equations of Equations 11.1b and 11.1c. We have, using Equations 14.97 and

14.100 for jCN j2 and CyC

 �

, respectively,

Rt ¼
2e1

Ð
cavity CðzÞj j2dz

_o
g0

g0 þ gc
0

�
�
�
�

�
�
�
�

2 c1

2d

� �2

r1j j
T2
0
ffiffiffiffi
r2
p
�
�
�
�

�
�
�
�

2

þ T1
0
ffiffiffiffi
r1
p
�
�
�
�

�
�
�
�

2
#

no_o
2e0c0

"

¼ g0

g0 þ gc
0

�
�
�
�

�
�
�
�

2 c1

4d

1

ln 1= r1j j r2j jð Þ
1

r1j j
� r1j j þ

1

r2j j
� r2j j

� �2

no

ð14:105Þ

where we have used Equations 11.52a and 14.54, and the relation ne0c0 ¼ e1c1 in

the second line. We have also used the integral
Ð t

0 dðt� t0Þdt0 ¼ 1=2. Using

Equation 11.25 for the definition of the cavity decay rate gc, we have

Rt ¼
g0

g0 þ gc
0

�
�
�
�

�
�
�
�

2

2gcnoKL

KL ¼
1= r1j j � r1j j þ 1= r2j j � r2j j

2 ln 1= r1j j r2j jð Þ

� �2
ð14:106Þ

Comparing with Equation 12.68 for the noise photon injection rate for the case of

the quasimode cavity laser, we obtain the longitudinal excess noise factor that was

obtained in Equation 14.56 on the basis of the adjoint mode theory.
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Next we consider the quantum noise part in Equation 14.99 using Equation

14.94b:

CyF̂q

� �
¼
ðd

0

dz
1

r1
e�iðk�ia0Þz þ eiðk�ia0Þz

� �

�
X

m

f̂ m t� jz� zmj
c1

� �

eðikþa
0Þjz�zm j þ

�

f̂ m t� zþ zm

c1

� �

r1eðikþa
0ÞðzþzmÞ

þ f̂ m t� 2d� z� zm

c1

� �

r2eðikþa
0Þð2d�z�zmÞ

þ f̂ m t� 2d� jz� zmj
c1

� �

r1r2eðikþa
0Þð2d�jz�zm jÞ

�

¼
X

m

f̂ m tð Þ zmeðikþa
0Þzm þ d� zm

r1
e�ðikþa

0Þzm

� ��

þ f̂ m tð Þdeðikþa
0Þzm þ f̂ m tð Þr2deðikþa

0Þð2d�zmÞ

þ f̂ m tð Þr1r2eðikþa
0Þ2d zm

r1
e�ðikþa

0Þzm þ ðd� zmÞeðikþa
0Þzm

� ��

¼ 2d
X

m

f̂ m tð Þ 1

r1
e�ðikþa

0Þzm þ eðikþa
0Þzm

� �

ð14:107Þ

where we have ignored integrals of rapidly oscillating terms. The terms propor-

tional to zm cancel each other. In the last equality, we have used Equation 14.102.

Here, as for the thermal noise, we have replaced the time values in Equation

14.107 by t on the grounds that we are interested in the field fluctuation on a time

scale larger than the cavity round-trip time. Note that the quantity in the last curly

bracket is CyðzmÞ. As in Equation 14.103 we have for the quantum noise

d

dt
âðtÞ ¼ s0âðtÞ þ c1

CN CyC

 �

g0

g0 þ g0c

X

m

f̂ m tð ÞCyðzmÞ ð14:108Þ

Thus we have

d

dt

D
âyðtÞâðtÞ

E
¼ðs0 þ s�0Þ

D
âyðtÞâðtÞ

E

þ c1

CN CyC

 �

g0

g0 þ g0c

�
�
�
�
�

�
�
�
�
�

2
X

m0

X

m

Cy�ðzm0 ÞCyðzmÞ

�
ðt

0

es0ðt�t0Þ f̂ ym0 tð Þf̂ m t0ð Þ
D E

dt0
�

þ
ðt

0

es�0ðt�t0Þ f̂ ym0 t0ð Þf̂ m tð Þ
D E

dt0
�

ð14:109Þ

Since we have only normally ordered products of the noise operators, this time

we use, instead of Equation 11.4,

2e1c1 f̂ ymðtÞf̂ m0 ðt0Þ
D E

¼ fgð1þ sÞ_o=c1gdmm0dðt� t0Þ ð14:110Þ
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(cf. Equation 9.5c). We are assuming that half the stimulated emission rate g and

the atomic inversion s are, respectively, common for all the atoms. That is, we are

assuming homogeneously broadened atoms and uniform pumping. Using

Equation 14.110 in Equation 14.109 we have the total spontaneous emission rate

Rsp ¼
g0

g0 þ gc
0

�
�
�
�

�
�
�
�

2 c1

CN CyC

 �

�
�
�
�
�

�
�
�
�
�

2
gð1þ sÞ_o

2e1c2
1

X

m

CyðzmÞ
�
�

�
�2 ð14:111Þ

Now we can write

X

m

CyðzmÞ
�
�

�
�2 ¼ N

ðd

0

CyðzÞ
�
�

�
�2dz ¼ N Cy�Cy


 �
ð14:112Þ

Using Equations 14.97 and 14.112 in Equation 14.111 we have

Rsp ¼
g0

g0 þ gc
0

�
�
�
�

�
�
�
�

2

2gN2

C�Cð Þ Cy�Cy

 �

CyC

 ��
�

�
�2

ð14:113Þ

Thus, by comparison with Equation 12.69 for the spontaneous emission rate in a

quasimode cavity laser, we have the excess noise factor

KL ¼
C�Cð Þ Cy�Cy


 �

CyC

 ��
�

�
�2

ð14:114Þ

which is the same as the one in Equation 14.25 derived on the basis of the adjoint

mode theory. Therefore, we have shown that the formulation in the propagation

theory can be converted to that in the adjoint mode theory. In this example,

Equation 14.114 reduces to Equation 14.56 because of the forms of C(z)

in Equation 14.95 and CyðzÞ in Equation 14.98. As we saw in Chapters 10 and

11, this propagation theory can be applied to a saturated gain regime, which leads

not only to the longitudinal excess noise factor but also to power-independent part

of the laser linewidth, which increases the linewidth. Goldberg et al. [10] also

examined the gain saturation with the spatial hole burning taken into account. The

latter effect was found to further increase the linewidth.

14.4

Three-Dimensional Cavity Modes and Transverse Effects

The adjoint mode theory described in Section 14.1 was devoted to the derivation of

the longitudinal excess noise factor. However, it is easy to see that the discussion

from Equation 14.6a to Equation 14.25 or to Equation 14.45 can be generalized to

the three-dimensional case without much alteration. In fact, except for Equations

14.10 and 14.38 for the expression for the mode function and the adjoint mode

function, respectively, all the functions of variable z can be replaced by functions of

variable r. In particular, for the functions above, we may write
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CðrÞ ¼ cþðrÞ expðikzÞ þ c�ðrÞ expð�ikzÞ ð14:115Þ

CyðrÞ ¼ c�ðrÞ expð�ikzÞ þ cþðrÞ expðikzÞ ð14:116Þ

Here we assume that a set of mode functions and corresponding adjoint mode

functions for a given cavity or a laser are known analytically or numerically. The

other quantities D(z,t), E(z,t), and P(z,t) may be replaced by D(r,t), E(r,t), and P(r,t),
respectively. The correlation function for noise polarization P(r,t) in Equation

14.15 may be rewritten as

D
P�ðr; tÞPðr0; t0Þ

E
¼ 4_e

o
gN2dðt� t0Þdðr � r0Þ ð14:117Þ

The central equation of motion for the field amplitude reads

_aðtÞ ¼ s0aðtÞ þ pðtÞ ð14:118Þ

where

pðtÞ ¼
�io

Ð
cavity C

yðrÞ~Pðr; tÞdr

2eCN

Ð
cavity C

yðrÞCðrÞdr
ð14:119Þ

The limits of integration in the z-direction are the same as before. The integration

range in the transverse direction is from the cavity axis to a certain outer surface of the

mode, which may be infinity. The analysis of the laser linewidth or the spontaneous

emission rate can be carried out in a similar manner as in Section 14.1. Thus the

excess noise factor K corresponding to that in Equation 14.25 becomes

K ¼
C�Cð Þ Cy�Cy


 �

CyC

 ��
�

�
�2

¼
Ð

cavity C
�ðrÞCðrÞdr

Ð
cavity C

y�ðrÞCyðrÞdr
Ð

cavity C
yðrÞCðrÞdr

�
�
�

�
�
�
2 ð14:120Þ

Now if the mode function is expressible as the product of the longitudinal mode

function CL(z) and the transverse mode function fT(s), where s¼ (x,y), it can be

seen that the total excess noise factor is the product of the longitudinal and

transverse excess noise factors

K ¼ KLKT ; CðrÞ ¼ CLðzÞfTðsÞ ð14:121Þ

where

KL ¼
CL
�CLð Þ Cy�L CyL

� �

CyLCL

� ��
�
�

�
�
�
2

ð14:122Þ
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is the same as in Equation 14.25, now with the suffix L. The transverse excess

noise factor KT is given as

KT ¼
f�TðsÞfTðsÞ

 �

fy�T ðsÞf
y
TðsÞ

� �

fyTðsÞfTðsÞ
� ��
�
�

�
�
�
2

¼
Ð

cs f
�
TðsÞfTðsÞds

Ð
cs f
y�
T ðsÞf

y
TðsÞds

Ð
cs f
y
TðsÞfTðsÞds

�
�
�

�
�
�
2

ð14:123Þ

where the symbol cs indicates the cross-section of the cavity mode. Champagne

and McCarthy [6] derived the general expression in Equation 14.120 and noted that

the product form in Equation 14.121 cannot be always true.

The transverse excess noise factor equivalent to Equation 14.123 was first

derived by Petermann [17] by an analysis of the spontaneous emission factor (the

fraction in power of the emission going to the mode of interest) in a gain-guided

semiconductor laser, and then by Siegman [4] through the adjoint mode theory for

a general open optical system that has non-Hermitian boundary conditions. An

ideal stable cavity laser or an index-guided laser having orthogonal transverse

modes has KT¼ 1, while a planar purely gain-guided laser has KT ¼
ffiffiffi
2
p

(see

Ref. [17]). Doumont et al. [22] analyzed a laser with variable reflectivity mirrors

(mirrors with Gaussian reflectivity distribution along the distance from the mirror

center) and gave approximate analytic expressions for the transverse excess noise

factor for a stable as well as an unstable cavity. They predicted a transverse excess

noise factor of 104–105for an unstable cavity with a large magnification and a large

Fresnel number especially for higher-order transverse modes.

The transverse excess noise factor for a stable laser resonator with one or two

apertures was studied by Brunel et al. [23]. In their study, the non-Hermitian

property of the Huygens–Fresnel kernel, which determines the round-trip field

development, is introduced by the presence of the apertures. They predicted a

value of 100 for the observable transverse excess noise factor. The transverse excess

noise factor for an unstable, confocal strip resonator was studied by New [19]. He

obtained an excess noise factor in excess of 104 for a narrow region of the Fresnel

number. He attributed such a large excess noise factor to significant difference in

the shapes of the phase fronts of the mode and the adjoint mode functions. He

also emphasized the importance of the initial wave excitation factor for the phy-

sical interpretation of the noise enhancement.

Firth and Yao [24] considered the transverse excess noise of misaligned cavities

and predicted a value in excess of 1010 for a cavity that is slightly unstable in

structure and has a Gaussian aperture mirror that is offset from the axis. This

value was obtained for a relatively small misalignment power loss. They argued

that, in view of such a large excess noise, the excess noise factor may be interpreted

more physically as due to transient gain than to correlation between multiple

modes.
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14.5

Quantum Theory of Excess Noise Factor

In Section 14.3 the field variable was treated as an operator following the

quantum-mechanical analysis in Chapter 11. However, except in Section 14.3,

the field variable has been a classical variable in this chapter. How can one

make the adjoint mode theory a consistent quantum theory? One way seems to be

to get a quantum-mechanically correct expression for the noise polarization as was

done in Section 14.3. Even in Section 14.3 the introduction of the annihilation

operator in the form of Equation 14.96 and the mode normalization in the form of

Equation 14.97 may need justification in view of the non-orthogonality of the

relevant mode functions. It is not that the treatment in Section 14.3 is not correct

quantum mechanically, but rather that the derivation of the equation used in

Section 14.3 and in Chapter 11 was originally based on the field expansion

in terms of the normal modes of the ‘‘universe’’ as was carried out in Chapters 9

and 10. The expansion of the field in normal modes of the ‘‘universe’’ allowed

quantum-mechanically consistent analysis. In this connection, one would hope to

have a general quantum-mechanical theory of the excess noise factor that extends

the classical adjoint mode theory. Two of the quantization methods reported for

the derivation of the excess noise factor are reviewed in this section.

14.5.1

Excess Noise Theory Based on Input–Output Commutation Rules

One method to derive the excess noise factor quantum mechanically was devel-

oped by Granjier and Poizat [25]. Here the outline of their derivation will be

described. They start with a set of normalized and orthogonal mode functions. The

field is expanded in terms of these normal modes and the (input and output) fields

before and after one round trip in the cavity are expressed as column vectors {ein}

and {eout}, respectively. The character of the empty cavity is written in terms of a

unitary scattering matrix as

eoutf g ¼ S einf g ð14:124Þ

Since S is unitary, all the commutation relations are preserved in the input to

output evolution. Then they assume that the modes can be split into ‘‘laser’’

modes and ‘‘loss’’ modes, and introduce projection operators P and Q , which

project on the ‘‘laser’’ modes and on the ‘‘loss’’ modes, respectively:

P2 ¼ P; Q2 ¼ Q ; P þQ ¼ 1 ð14:125Þ

Thus we have

P eoutf g ¼ PSðP þQÞ einf g ¼ TP einf g þ PSQ einf g ð14:126Þ

where T¼PSP describes the input–output relation for the ‘‘laser’’ modes only. The

matrix T is not unitary in general and will have eigenvectors that are non-orthogonal:
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TU ¼ UG ð14:127Þ
Here U is the matrix with columns formed by the normalized eigenvectors {un} of

T and G is a diagonal matrix formed by the corresponding eigenvalues gn. Next,

one introduces the adjoint of U by

V ¼ ðU�1Þy ð14:128Þ

From Equations 14.127 and 14.128 one obtains

V yT ¼ GV y; TyV ¼ VGy ð14:129Þ

Thus V is a matrix with columns formed by the eigenvectors {nn} of Tw and Gw is a

diagonal matrix formed by the corresponding eigenvalues g�n. It is argued that, as

{un} are normalized, {nn} cannot be normalized, but that one has the bi-

orthogonality relation:

V yU ¼ UyV ¼ I ð14:130Þ

One may notice that the story here traces the adjoint mode theory described from

Equations 14.1a–14.5. Multiplying PV y ¼ PU�1 to both sides of Equation 14.126

and using V yT ¼ GV y one has

PV yP eoutf g ¼ G PV yP einf g

 �

þ PV yPSQ einf g ð14:131Þ

This corresponds to projection onto the adjoint modes. It is assumed that one can

quantize a particular ‘‘laser’’ mode by replacing the amplitudes {ein} and {eout} by

the operators fâing and fâoutg, respectively. As a next step, an amplifier is

introduced assuming a mean-field theory. That is, the mean field along the length

of the cavity is considered, ignoring the longitudinal distribution. The gain matrix

is gPþQ and the spontaneous emission noise is added [26, 27]. Equation 14.126

then becomes

P âoutf g ¼ g TP âinf g þ PSQ âinf gð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2 � 1

q

P b̂ysp

n o
ð14:132Þ

where P b̂ysp

n o
is a column vector of spontaneous emission noise operators, each

one corresponding to a mode belonging to the ‘‘laser’’ mode. For a completely

inverted atom, the correlations read b̂yspðtÞ; b̂spðt0Þ
D E

¼ 0 and b̂spðtÞ; b̂yspðt0Þ
D E

¼
dðt� t0Þ (see Ref. [28]). Then, Equation 14.131 becomes

PV yP âoutf g ¼gG PV yP âinf g

 �

þ gPV yPSQ âinf g

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2 � 1

q

PVyP b̂ysp

n o ð14:133Þ

We consider a lasing mode n in a steady state where ggn¼ 1. Using the identity

PV yP âout; in

� 	
¼ PUyP âout; in

� 	
þ PðI �UyUÞPV yP âout; in

� 	
ð14:134Þ
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one constructs PUyP âoutf g � gG PUyP âinf g

 �

from Equation 14.133 and takes the

nth line to get

PUyP âoutf g

 �

n
� PUyP âinf g

 �

n

¼ þ gPVyPSQ âinf g þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2 � 1

q

PV yP b̂ysp

n o� �

n

ð14:135Þ

where terms that are proportional to 1 – ggn have been omitted. The left-hand side

can be interpreted as the time derivative multiplied by the cavity round-trip time of

the relevant quantity for the steady state. In the language of the adjoint mode

theory, this equation corresponds to Equation 14.13, where the equation of motion

for the field is projected onto the adjoint mode function and the amplitude of the

mode of interest is extracted. This equation also corresponds, physically, to

Equation 11.35 with the first and second terms in Equation 14.135 corresponding

to F̂t and F̂q, respectively. Grangier and Poizat [25] then calculate the phase

diffusion by evaluating the variance of the round-trip change in the penetrating

vacuum and the spontaneous emission noise. In particular, they consider the

variance of the phase quadrature of these quantities. Here the phase quadrature of

â is Ŷ ¼ ðâ� âyÞ=ð2iÞ. This calculation corresponds to the evaluation of the reser-

voir average of the squared phase change in Equations 11.46 and 11.47, although

the treatment of the gain medium is different. They define column matrices

P dGvacf g ¼ ð1=gnÞ PV yPSQ Ŷin

� 	
 �

P dGsp

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=jgnj2 � 1

q

PV yP Ŷsp

� 	
 � ð14:136Þ

and derive, assuming minus zero temperature that leads to Ŷ2
sp

D E
¼ 1=4 (see Ref. [27])

and using vac Ŷ2
in

�
�
�
�vac

� �
¼ 1=4, for the covariance matrices

P dGvacf g dGvacf gy
D E

P ¼ PVVyP � PGVyVGyP

 �

=ð4jgnj2Þ

P dGsp

� 	
dGsp

� 	y
D E

P ¼ PV yVP

 �

ð1 � jgnj2Þ=ð4jgnj2Þ
ð14:137Þ

where the relations Q¼ 1�P and PSP¼T as well as Equation 14.129 have been

used in the first line.

Finally, one compares the result with the case of an ideal single-mode laser,

which is described as

âout ¼ grâin þ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � jrj2
q

b̂vac þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2 � 1

q

b̂ysp ð14:138Þ

where g is the gain and r is the amplitude reflectivity of the mirror from where

the vacuum noise b̂vac comes in. Defining dGvacf g and dGsp

� 	
as in Equation

14.136, but for the single-mode case, and setting r¼ g and gg¼ 1, one obtains

dG2
vac

� �
¼ dG2

sp

D E
¼ ð1 � jgj2Þ=ð4jgj2Þ. As a result, the excess noise factor for both

vacuum and spontaneous emission noise becomes
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Kvac;n ¼ Ksp;n ¼ ðV yVÞn;n ð14:139Þ

This corresponds to the excess noise factor in Equation 14.37b. One merit of this

analysis is its ability to show that both the vacuum fluctuation and spontaneous

emission result in the same form of the excess noise factor. Grangier and Poizat

[25] gave a discussion showing that the excess noise results from the coupling

between laser modes, which comes from sharing the common noise contribu-

tions, the latter being due to the same loss modes. They called it the loss-induced

mode coupling.

Grangier and Poizat [29] gave a calculation of the longitudinal excess noise factor

using a laser model that extends the model in Equation 14.138 in that two end

mirrors are included. This model is similar to the one we analyzed in Chapter 11

but is different in that a ‘‘lumped’’ amplifier model as in Equation 14.132 is

assumed. Their working equation for the field âc just inside the mirror M1 is

âc;out ¼g2r1r2âc þ g2t1r2âin þ gt2b̂in þ gr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2�1

q

âys

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgj2�1

q

b̂ys

ð14:140Þ

where now âin and b̂in are vacuum noise entering from M1 and M2, respectively.

The spontaneous emission noise âys and b̂ys are those traversing the amplifier

towards the right and left, respectively. These two are assumed to be uncorrelated.

The reflectivities r1 and r2 are positive. Subtracting âc from both sides makes

the time derivative of âc multiplied by the cavity round-trip time, and the

phase diffusion can be analyzed via the variation of Ŷc ¼ ðâc � âc
yÞ=ð2iÞ as in

Equations 11.46 and 11.47. Grangier and Poizat [29] obtain

Do ¼ c

2L

� �2 ðr1 þ r2Þ2ð1� r1r2Þ2

8ðr1r2Þ2Pout

ð14:141Þ

where Pout ¼ P1out þ P2out, P1out ¼ t2
1jacj2=ð2L=cÞ, and similarly for P2out. Here L is

the cavity length and ac is the steady-state amplitude just inside M1. Comparing this

with the standard result Do ¼ fc=ð2LÞg2 lnðr1r2Þf g2=ð2PoutÞ, they obtain a long-

itudinal excess noise factor corresponding to that in Equation 11.72 or 11.107:

KL ¼
ðr1 þ r2Þð1� r1r2Þ

2ðr1r2Þ lnðr1r2Þ

� �2

ð14:142Þ

(In our calculation, the factor 8 in the denominator of Equation 14.141 becomes 2

and the ½ in their standard result may be 2, resulting in the same KL.) Although

the correct longitudinal excess noise factor is obtained by use of the model laser

described in Equation 14.140, it is still desirable to show how to reach this model

from the general quantization method using the projection operators P and Q.
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14.5.2

Excess Noise Theory Based on Non-Orthogonal Mode Quantization

Chen and Siegman [30] developed a theory of the excess noise factor based on a

basis-independent quantization formalism. Here the idea of their quantization

scheme and the framework of the derivation of the excess noise factor for the non-

orthogonal laser modes will be described. As in Chapters 5–10 and in the previous

section, a set of orthonormal modes {ek}, here in the form of plane-wave modes, is

first assumed, with the usual commutation relation for the annihilation and

creation operators of each mode. Next one introduces the system eigenmode basis

fus
ig composed of the solutions of the wave equation and the boundary conditions

and an additional basis fuj
0g that fills the functional space not covered by fus

ig.
Then the complete set fung ¼ fus

ig þ fuj
0g expands the same functional space

defined by the plane-wave mode basis {ek}. It is assumed that each mode of {un}

consists of single-frequency components on, and is written as

un ¼
X

k

cn;kek ð14:143Þ

where the summation is only taken over jkj ¼ on=c. The electric field is expanded

in terms of {ek} and {Un} basis, respectively, as

Ê ¼
X

k

ffiffiffiffiffiffiffiffi
_ok

2e0

s

âek
ek þ âyek

e�k

� �
¼
X

n

ffiffiffiffiffiffiffiffi
_on

2e0

s

âun un þ âyun
u�n

� �
ð14:144Þ

where

½âek
; âyek0
	 ¼ dk;k0 ; ½âek

; âek0 	 ¼ ½â
y
ek
; âyek0
	 ¼ 0 ð14:145Þ

Here one introduces a new basis set {fn}, the adjoint modes to {un}, satisfying

ðfnjumÞ �
ð

f�numdx ¼ dnm ð14:146Þ

and it is proposed that the electric field is projected onto the adjoint mode. Then

one has

âun ¼
X

k

ðfnjekÞ âek
; âyun

¼
X

k

ðfnjekÞ�âyek
ð14:147Þ

Note that, as in Equation 14.143, the summation over k extends only over the mode

with ok¼on. The commutation relations for these two are

½âun ; â
y
um
	 ¼

X

i;j

ðfnjeiÞðejjfmÞ½âei ; â
y
ej
	 ¼ ðfnjfmÞ

½âun ; âum 	 ¼ ½âyun
; âyum
	 ¼ 0

ð14:148Þ

where the closure relation
P

i jeiÞðeij ¼ 1 has been used. It is argued that {un}

need not be non-orthogonal modes (if the system is a closed system).
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Next, one considers the general quantum Langevin equation for an operator ô
interacting with a reservoir:

d

dt
ô ¼ � 1

2
gôþ F̂ô ð14:149Þ

The relaxation constant is g and F̂ô is the corresponding Langevin noise operator.

In the limit of short correlation time of the reservoir compared with the relaxation

time of the operator, one has

½F̂ôðtÞ; F̂yôðt
0Þ	 ¼ g½ô; ôy	dðt� t0Þ ð14:150Þ

and

½F̂âun
ðtÞ; F̂yâun

ðt0Þ	 ¼ g½âun ; â
y
un
	dðt� t0Þ ¼ gðfnjfnÞdðt� t0Þ ð14:151Þ

The interaction between the field and the atoms is described by the interaction

Hamiltonian

HI ¼
ð

dx
X

n

_gn âyun
u�nðxÞŝðxÞ þ ŝyðxÞâun unðxÞ

n o
ð14:152Þ

where gn is the coupling constant and ŝðxÞ is the atomic dipole distributed over the

cavity. The equation of motion for the field mode n is

d

dt
âun ¼ �

1

2
gc;nâun � ign

ð

dxf�nðxÞŝðxÞ þ Fâun
ð14:153Þ

The adjoint mode function in the second term appears from

i

_
½HI; âun 	 ¼ i

ð

dx
X

m

gm½âyun
u�mðxÞŝðxÞ; âun 	

¼ �i

ð

dx
X

m

gmðfnjfmÞu�mðxÞŝðxÞ
ð14:154Þ

where Equation 14.148 has been used. To obtain the second term above, one

uses the closure relation
P

m fmðx0Þu�mðxÞ ¼ dðx0 � xÞ, which can be derived

using Equation 14.146. From the equation for the atomic dipole ŝðxÞ, when

the dipole relaxation is fast compared to the time variation of the popula-

tion, one obtains the approximate dipole, which is roughly the sum of

the population inversion ŝe � ŝg and the Langevin force FŝðxÞ divided by the

dipolar relaxation constant g (see Equation 4.39b, for example). Thus

Equation 14.153 becomes

d

dt
âun ¼�

1

2
gc;nâun � i

gn

g

ð

dxf�nðxÞ
X

n0
gn0 ðŝe�ŝgÞâun0un0

� i
gn

g

ð

dxf�nðxÞFŝðxÞ þ Fâun

ð14:155Þ
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Assuming a well-stabilized amplitude A0 of laser oscillation of a particular mode 0,

one analyses the phase diffusion of âu0
. One has

d

dt
f ¼ � g0

2A0g
f0 FŝðxÞj
� �

þ f0 FŝðxÞj
� �y

� �

þ 1

2iA0
Fâun
� Fyâun

n o
ð14:156Þ

Now the Einstein relation, which was mentioned at the end of Chapter 3 and

which reduces to Equations 3.37 and 3.50, gives

Fyŝðx; tÞFŝðx0; t0Þ
D E

R
’ 2g ŝeh iRdðt� t0Þdðx� x0Þ

Fŝðx0; tÞFyŝðx; t0Þ
D E

R
’ 2g ŝg

� �
R
dðt� t0Þdðx� x0Þ

ð14:157Þ

where small terms compared to g have been omitted. The subscript R denotes the

reservoir average. Also, we have

Fyâu0
ðtÞFâu0

ðt0Þ
D E

R
¼ gc;0 âyu0

âu0

D E

R
dðt� t0Þ

Fâu0
ðtÞFyâu0

ðt0Þ
D E

R
¼ gc;0 âu0

âyu0

D E

R
dðt� t0Þ

ð14:158Þ

The reservoir average of the products of the field amplitudes taken for the vacuum

state are, by Equation 14.147,

âyu0
âu0

D E

R
¼
X

i;j

ðf0jeiÞðejjf0Þ 0jâyei
âej 0j

D E

R
¼ 0

âu0
âyu0

D E

R
¼
X

i;j

ðf0jeiÞðejjf0Þ 0jâei â
y
ej

0j
D E

R
¼ ðf0jf0Þ

ð14:159Þ

Using Equations 14.156–14.159, the linewidth is obtained as in Chapter 10:

Do ¼ g2
0

2A2
0g

f0 f0jð Þðse þ sgÞ þ
1

4A2
0

gc;0 f0 f0jð Þ ð14:160aÞ

Using the steady-state condition ðg2
0=gÞðse � sgÞ ¼ 1

2gc;0 and the expression for the

output power P ¼ gc;0_o0A2
0, one has finally

Do ¼ f0 f0jð Þ
_o0g2

c;0

4P
1þ se þ sg

se � sg

� �

¼ f0 f0jð Þ
2_o0ðgc;0=2Þ2

P

se

se � sg

ð14:160bÞ

This is ðf0jf0Þ times the standard linewidth (see Equation 4.82). So one obtains

the excess noise factor ðf0jf0Þ in terms of the adjoint mode function correspond-

ing to the laser mode function u0 as in the previous section:

K ¼ ðf0jf0Þ ¼
ð

f�0f0dx ð14:161Þ
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Since u0 is a certain sum of original basis functions ek where the summation is

taken only over jkj ¼ o0=c, which implies zero temporal decay, it might be dif-

ficult to determine the composition of a cavity mode with finite output coupling or

diffraction loss in this approach.

For another quantum-mechanical theory on the excess noise factor using the

master equation (evolution equation for the system density matrix), the reader is

referred to Bardroff and Stenholm [31].

14.6

Two Non-Orthogonal Modes with Nearly Equal Losses

There are cases where only two modes of the laser cavity have relatively low and

nearly equal losses and other modes have higher losses. In this case, analysis

with only two modes is possible and, if the two modes are non-orthogonal, the

excess noise factor is determined by the interaction of the two modes. Theore-

tically, the excess noise factor diverges as the two modes become nearly

identical.

Let us consider two orthogonal modes u1 and u2 of a cavity satisfying

u�1u1


 �
¼ u�2u2


 �
¼ 1 and u�1u2


 �
¼ 0. Here the bracket signifies the spatial inte-

gration over the cavity:

u�i uj


 �
¼
ð

cavity
u�i ujdr ð14:162Þ

Note that taking the complex conjugate of the first function is not intended in this

definition. Let us assume that some mechanism M is introduced to couple them

during the propagation in the cavity, such as

d

dt

u1

u2

 !

¼ M
u1

u2

 !

þ
F1

F2

 !

ð14:163Þ

Here F1,2 are the Langevin noises for modes u1,2, respectively. They are mutually

orthogonal and of equal magnitude. Let us assume that the matrix M has two

mutually non-orthogonal eigenmodes e1 and e2. The adjoint mode n1 correspond-

ing to e1 is orthogonal to e2. (The adjoint mode n2 corresponding to e2 is orthogonal

to e1.) Now, if e1 and e2 are normalized to unity and the product (n1e1) is also

normalized to unity, the excess noise factor is given by (see Equations 14.5 and

14.25)

K ¼ v�1v1


 �
¼

v�1v1


 �

v1e1ð Þ2
¼ 1

v1= v1j jð Þe1f g2
ð14:164Þ
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Therefore, if we abandon the normalization of (n1e1) and assume, instead, that n1 is

normalized (and write v1= v1j j ! v1), we have

K ¼ 1

v1e1ð Þ2
ð14:165Þ

where

v1 ¼
e�1 � e�2 e�1e2


 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�1e2


 ��
�

�
�2

q ð14:166Þ

Note that it satisfies (n1e2)¼ 0. Since we can show that v1e1ð Þ2 ¼ 1� e�2e1


 ��
�

�
�2, we

have

K ¼ 1

1� e�2e1ð Þ
�
�

�
�2

ð14:167Þ

Therefore, we have a large excess noise factor when the two eigenmodes of the

cavity have nearly identical field distributions.

As an example, let consider a case where the matrix M has the form

M ¼
�g1 b

0 �g2

 !

ð14:168Þ

where g1 and g2 are the damping constants of the modes u1 and u2, respectively,

while b (assumed to be real) is the one-way coupling constant of mode u2 to mode

u1. The eigenvalues of M are �g1 and �g2, and the corresponding normalized

eigenmodes are

e1 ¼ u1

e2 ¼
u1 þ gu2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p

ð14:169Þ

respectively, where

g ¼ g1 � g2

b
ð14:170Þ

The normalized adjoint modes to these eigenmodes are, respectively,

v1 ¼
gu�1 � u�2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p and v2 ¼ u�2 ð14:171Þ
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One can check that e�1e1


 �
¼ e�2e2


 �
¼ v�1v1


 �
¼ v�2v2


 �
¼ 1 and that e1v2ð Þ ¼

e2v1ð Þ ¼ 0. Writing the amplitudes of these eigenmodes as a1(t) and a2(t),
respectively, one may have

_a1e1 ¼ ð�g1 þ aÞa1e1 þ F1
0

_a2e2 ¼ ð�g2 þ aÞa2e2 þ
F1
0 þ gF2

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
ð14:172Þ

where a is the gain and now the noise F01 and F02 should contain, in addition to F1

and F2, the quantum noise for u1 and u2, respectively, associated with the

amplification. Projecting these onto respective adjoint modes and dividing by

the respective integrated products, we obtain

_a1 ¼ ð�g1 þ aÞa1 þ
v1F1

0ð Þ
v1e1ð Þ

_a2 ¼ ð�g2 þ aÞa2 þ
v2F1

0ð Þ þ g v2F2
0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
v2e2ð Þ

ð14:173Þ

Since n1 and n2 are normalized, it is easy to see that the diffusion constant of the

last terms in Equation 14.173 are those of F01 and F02 multiplied by v1e1ð Þ�2 and

v2e2ð Þ�2, respectively. Thus we have, using Equations 14.169–14.171,

K1 ¼ v1e1ð Þ�2 ¼ 1þ g2

g2
¼ 1þ b

g1 � g2

� �2

K2 ¼ v2e2ð Þ�2 ¼ 1þ g2

g2
¼ 1þ b

g1 � g2

� �2
ð14:174Þ

The excess noise factors for the two eigenmodes are the same. We see that both

K1,2 diverge as (g2 – g1)/b-0. In this limit, Equation 14.169 shows that e2-e1¼ u1.

We can say that the excess noise can be very large if the difference of the decay

constants of the two modes is small compared to the coupling constant of the

mode u2 to the mode u1. In this limit, as Equation 14.169 shows, the mode e2

becomes nearly identical to mode e1.

Grangier and Poizat [29] gave a similar quantum-mechanical two-mode model

that incorporates a loss mode instead of the noise F1,2 in Equation 14.163 and

emphasized that the laser modes are coupled by sharing common noise due to the

same loss modes. Van der Lee et al. [32] gave an analysis of two coupled polar-

ization modes of a laser and found a large polarization excess noise factor Kp for an

induced frequency splitting close to the magnitude of dissipative coupling.

Van der Lee et al. [33] showed that the intensity noise of a laser with two non-

orthogonal polarization modes in a gas laser is enhanced with the same polar-

ization excess noise factor as obtained in [32] and that the noise spectrum is not

white but had finite bandwidth due to the time needed for the excess noise to

develop. Poizat et al. [34] analyzed the case of two non-orthogonal transverse

modes of a semiconductor laser and showed that the intensity noise of the oscil-

lating mode is enhanced by the presence of a non-orthogonal, second mode that is
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below threshold. They also showed that the excess noise factor also appears in the

expression for the intensity noise.

Van Eijkelenborg et al. [35] analyzed the transverse excess noise in a gas laser

having a hard-edged unstable cavity. They showed that, when two modes were

made to have equal lowest losses by adjustment of the Fresnel number of the

cavity, the excess noise factor was strongly increased. Grangier and Poizat [25] also

analyzed the frequency spectrum of the excess noise and found a high excess noise

factor when a second low-loss mode existed. The spectral width was shown to be

the narrower the larger the excess noise factor.

14.7

Multimode Theory

A theory of a single-mode operation that takes into account the non-orthogonal,

non-lasing modes was developed by Dutra et al. [36]. They showed that the laser

spectrum is generally non-Lorentzian due to the coupling of the non-lasing modes

to the oscillating mode through gain saturation.

Van Exter et al. [37] developed a theory of more general non-orthogonal multimode

operation where the amplitudes of all the non-orthogonal modes of the system are

traced and the projection onto the measured single oscillating mode inevitably picks

up the contributions from other non-oscillating modes because of the non-ortho-

gonality. They stated that the excess noise originates, for both below- and above-

threshold operation, from the field fluctuations in other modes that project onto the

lasing mode upon evolution. For below threshold, the dynamics of the modes

(determined by the cavity geometry) determines the excess noise factor, which can be

the same for the phase noise above threshold. For above threshold, the gain fluctua-

tion, in addition to the dynamics, has a role in determining the excess intensity noise.

Van der Lee et al. [38] discussed the limitation in obtaining an intensity-

squeezed laser light [39] exerted by the excess noise. Using essentially two-mode

analysis but incorporating the effects of other non-orthogonal modes as a collected

noise term, they found the upper limit of the excess noise factor to be 1.5 to obtain

an intensity squeezing. They tried experimentally to reduce the intensity noise by

proper mixing of a correlated non-lasing mode to the lasing mode.

14.8

Experiments on Excess Noise Factor

Here we briefly review the experimental results on the longitudinal excess noise

factor, the transverse excess noise factor, and the polarization excess noise factor.

We also add the experiments on intensity noise, which is related to the excess

noise factor.

The longitudinal excess noise factor was observed by Hamel and Woerdman [40]

using single-mode semiconductor lasers. They compared two cases of the same
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overall losses. For facet reflectivity of 30%–30% they found smaller excess noise

factor by a factor of 1/1.64 than for facet reflectivity of 10%–90%, in fair agreement

with the prediction of 1/1.33 for the formula in Equation 14.56, showing that an

asymmetry of the cavity enhances the non-orthogonality of the modes and thus

excess noise. In Figure 14.2 is shown the measured laser linewidth as a function of

inverse total output power. The triangles refer to the 10%–90% lasers and the

squares to the 30%–30% lasers. The slopes (the linewidth � power product) of

the two lines are 610 and 372 MHz mW, yielding the ratio 1.64/1 (see Equations

14.24 and 14.25 as well as Equation 14.56).

The transverse excess noise factor for a stable laser resonator with a diffracting

aperture was studied by Lindberg et al. [41]. They used a Xe–He gas laser operating

at 3.51 mm and, by inserting an aperture that is smaller in size than the mode

diameter of the otherwise stable cavity, observed an excess noise factor up to 15.

Emile et al. [42] also measured the transverse excess noise factor in a similar stable-

cavity Xe–He gas laser operating at 3.51 mm. They inserted an aperture in front of

one of the end mirrors and obtained an excess noise factor up to 13.4. The effect of

a second aperture in front of the other mirror was studied with the longitudinal

excess noise factor taken into account.

The transverse excess noise factor for an unstable laser resonator was observed

by Yao et al. [43] using a quantum-well semiconductor laser. The round-trip

magnification of the unstable cavity was 6.9. They determined the spontaneous

emission factor (the ratio of the spontaneous emission power coupled to the cavity

mode of interest to the total emission power) from the observed input–output

curve. They deduced the excess noise factor by considering that the spontaneous

emission factor for a real cavity is that of an ideal closed cavity multiplied by the

transverse and longitudinal excess noise factor. They found that the excess noise

factor caused by the unstable geometry was as large as 500 for pulsed operation.

The numerically estimated transverse excess noise factor was 175 and the long-

itudinal factor was 4.

Figure 14.2 Measured laser linewidth as a function of inverse total output power. From Ref. [40].

Hamel, W.A. and Woerdman, J.P. (1990) Phys. Rev. Lett., 64, 1506, Figure 2.

330 | 14 Theory of Excess Noise



Cheng et al. [44] observed the excess noise factor for an unstable Nd:YVO4 laser.

The cavity was composed of a convex mirror and a small flat mirror with mag-

nification around 2. An excess noise factor as large as 330 was observed, in fair

agreement with theory. Here the longitudinal excess noise factor was estimated to

be only 1.1.

Van Eijkelenborg et al. [45] tried to express the excess noise factor of an unstable

cavity laser in terms of geometrical factors concerning the diffraction loss and

compared it with the non-orthogonality theory. They found reasonable agreement

only for the case of magnification of 2 and for the lowest-order transverse mode.

But, using a He–Xe laser, they experimentally found serious deviations for other

cases, and concluded that it is unlikely that a direct relation between diffraction

loss and excess noise factor exists.

Using a Xe–He gas laser with an unstable cavity operating at 3.51 mm, van

Eijkelenborg et al. [35] observed a sharp increase in the excess noise factor when

two transverse modes have a common lowest loss as the Fresnel number is varied

by changing the size of the square aperture inserted. A transverse excess noise

factor over 200 was observed. Figure 14.3 shows the calculated absolute value of

the eigenvalue 9a9 as a function of the Fresnel number Neq for a cavity with

magnification M of 1.95. (The eigenvalue here is the complex multiplying factor

Figure 14.3 Absolute value of the eigenvalues, 9a9, of

a number of transverse modes as functions of equivalent

Fresnel number Neq for the square resonator with M ¼ 1.95.

Note the mode crossing at Neq ¼ 0.90. The mode profiles

(a), (b), and (c) are for Neq ¼ 0.42, 0.90, and 1.38,

respectively.

Source: From Ref. [35]. van Eijkelenborg, M.A., Lindberg,

Å,M., Thijssen, M.S., and Woerdman, J.P. (1996) Phys. Rev.

Lett., 77, 4314, Figure 2.
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for the transverse field distribution associated with a round trip [4].) The insets

show the calculated transverse mode profiles. Figure 14.4 shows the calculated and

observed excess noise factor (K-factor) as functions of the Fresnel number Neq. An

abrupt increase in the K-factor is seen at the crossing point Neq¼ 0.9. This is in

accord with the discussions in Section 14.6.

Van der Lee et al. [32] studied the polarization properties of a Xe–He gas laser

operating at 3.51 mm where two polarization modes are coupled by inserting a

dissipative object. A polarization excess noise factor of up to 60 was observed.

The intensity noise spectrum of a He–Xe laser with two polarization modes was

observed by van der Lee et al. [33]. They found a narrow spectrum for a large excess

noise factor at zero frequency and vice versa. This shows that the excess noise

factor appears only on a sufficiently long time scale and that laser dynamics is

involved in determining the excess noise. The enhancement factor for the intensity

noise was the same as that for the phase noise [32]. They also showed that, by

proper use of a polarizer on detection to utilize the correlation between the modes,

the excess noise can be greatly reduced.

Poizat et al. [34] studied the intensity noise of a laser diode with an oscillating

TE00 mode and a non-oscillating TE10 mode. Correlation between the intensity

noises of the two modes was observed to enhance the noise of the lasing mode.

The intensity noise of the oscillating mode was reduced when the correlation to

the side mode was decreased by adjustment of the cavity.

Van Eijkelenborg et al. [46] compared the intensity noises of an unstable and a

stable cavity He–Xe laser. On the basis of their analysis of the linearized equations

for the photon number and the inversion, they found an expression for the

intensity noise spectrum that contains the excess noise factor and the spontaneous

emission factor. Combining the results of a few measurements, they obtained both

factors in fair agreement with theory. The theoretical excess noise factors were

Figure 14.4 The excess noise factor K as a function of

equivalent Fresnel number Neq: (a) theoretical, and

(b) experimental.

Source: From Ref. [35]. van Eijkelenborg, M.A., Lindberg, Å,M.,

Thijssen, M.S., and Woerdman, J.P. (1996), Phys. Rev. Lett.,

77, 4314, Figure 3.
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82 and 1.1 for the unstable and the stable cavity, respectively, whereas the observed

values were 32 and 1.1, respectively. The theoretical spontaneous emission factors

were (1.2�5.9)� 10�7 and 3.7� 10�6 for the unstable and the stable cavity,

respectively, whereas the observed values were 0.71� 10�7 and 2.0� 10�6,

respectively.
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15

Quantum Theory of the Output Coupling

of an Optical Cavity

An optical system often includes an optical cavity or an optical resonator. A laser is

a typical example. An ideal optical cavity has perfect boundaries and consequently

has a set of discrete eigenmodes that are mutually orthogonal. Chapter 4 dealt with

such a cavity. A real optical cavity has output coupling so as to allow waves to go

into and to come out of it. This coupling inevitably introduces cavity loss and an

imperfect boundary. The modes of the cavity become lossy and they are no longer

orthogonal to each other. The consequences of the presence of a real cavity in a laser

have been described in depth up to now in this book. As we have seen, one aspect of

the consequences is the appearance of thermal noise associated with the output

coupling (and with other unwanted losses). Another aspect is the appearance of the

excess noise factor associated with the laser linewidth that is due to local output

coupling at the mirrors. This second aspect has been interpreted in terms of the

modes and the adjoint modes associated with the non-Hermiticity of the system. We

saw that the thermal noise was also enhanced by the excess noise factor.

The quantum-theoretical treatment of cavity loss or output coupling is a hard

task, as we have seen. This belongs to the common topic of the quantum theory of

an open system where a system is coupled to its reservoir(s). The accuracy of the

description of the coupling determines the extent to which the theory is applicable.

The treatment of output coupling in this book has been based on the expansion

of the field in terms of the continuous, normal modes of the ‘‘universe,’’ which

were defined in a large box including the optical cavity, and led to cavity decay as

well as thermal Langevin noise [1, 2]. The analyses of laser linewidth revealed the

existence of the excess noise factor [3, 4].

Other methods of field expansion were developed to derive the cavity decay and

the Langevin forces due to the output coupling and to obtain the expression for the

output field [5, 6, 7–8]. These methods, which are based on field expansion in

terms of some continuous field modes, are called quantum field theories.

Since the 1980s, the consequences of the output coupling of an optical cavity have

been extensively discussed in relation to the nature of the squeezed state of an optical

field that is generated in an optical parametric oscillator. (A ‘‘squeezed state’’ here is a

state where the fluctuation of one quadrature is suppressed below the level that

both quadratures preserve when the field is not squeezed and the fluctuations of both

Output Coupling in Optical Cavities and Lasers: A Quantum Theoretical Approach
Kikuo Ujihara
Copyright r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40763-7

| 335



quadratures are the same. For this state, the other quadrature has an increased

fluctuation.) There was an apparent discrepancy between theory and measurements

on the degree of squeezing. The theory was first developed for the field inside

the cavity [9], while the measurements were of course done outside. Surprisingly, the

measurements revealed a larger degree of squeezing than the theoretical prediction

[10]. So, a theory of optical squeezing was needed that could calculate the degree of

squeezing outside the cavity. This led to the development of the so-called input–output

theory for an optical cavity. This theory, also termed quantum noise theory, was based

on a system–reservoir model that is similar to the one described in Appendix C, and

gave the relation between the input to and the output from the cavity in addition to the

relation between the cavity decay constant and the fluctuation of the input noise field.

The standard reservoir theory was developed by Haken [11] and Lax [12]. The input–

output theory and related theories were developed by Collet and Gardiner [13],

Gardiner and Collett [14], Carmichael [15], and Yamamoto and Imoto [16].

More recently, a generation of various non-classical quantum states of the light field

in a cavity and transfer to another cavity have been studied for use in quantum

information technology, such as quantum computation and quantum communica-

tion. In these systems, the maintenance of the quantum state is of crucial importance.

Degradation of a quantum state due to unwanted contact with other systems or

reservoirs is called ‘‘decoherence,’’ which should be avoided as much as possible. In

this context, the effect of unwanted noise (noise other than that associated with finite

transmission of the mirrors) on the performance, or the input–output characteristics,

of the cavity is of great importance. Semenov et al. [17] approached this problem by

input–output theory, and Khanbekyan et al. [18] used the Green’s function method.

The Green’s function method is often used to treat distributed losses in an absorptive

dielectric that exists within a cavity or in the output mirror(s) [19].

In this chapter we review some of these quantum theories on output coupling of

an optical cavity.

15.1

Quantum Field Theory

There are two schemes of field quantization. One scheme quantizes the field by giving

the total field vector potential A(r,t) and the canonical momentum fieldP(r,t) a suitable

commutationrelationandexpresses thetotalHamiltonianintermsof them.Thesecond

scheme is based on the field expansion in terms of the normal modes of the whole space

including the cavity, the ‘‘universe,’’ which satisfy the orthonormality condition. One

quantizes each mode by imposing suitable commutation relations on the expansion

coefficients and their time derivatives. Most of the literature follows the latter scheme.

15.1.1

Normal Mode Expansion

15.1.1.1 The One-Sided Cavity Discussed in Chapters 1, 2, and 5–10

Here we summarize the results on the one-sided cavity discussed in Chapters 1, 2,

and 5–10 using the second scheme. The cavity consists of a lossless, non-dispersive
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dielectric of dielectric constant e1 that is bounded by a perfect conductor at z¼�d
and by a vacuum at z¼ 0.

For a single cavity mode at oc, we have derived, using the approximate power

spectrum for a single cavity mode in Equation 2.56, the Langevin equation

(Equation 2.63)

d

dt
ÊðþÞ z; tð Þ ¼ �ðgc þ iocÞÊðþÞ z; tð Þ þ f̂ z; tð Þ

where (Equation 2.70b)

f̂ y z0; t0ð Þf̂ z; tð Þ
D E

¼ 2gc_oc noch i
e1d

u�oc
z0ð Þuoc zð Þd t� t0ð Þ

So, we have a Markovian noise for the field mode oc. Here gc is the cavity decay

constant due to output coupling, uoc zð Þ is the universal mode function at the

resonance frequency oc, and noch i is the expectation value of the number of

thermal photons per universal mode at oc.

This Langevin force f̂ ðz; tÞ should correspond to the Langevin force Ĝf ðtÞ for the

quasimode introduced in Equation 3.35 in which the equation was written for

the annihilation operator â of the quasimode. For comparison we write

ÊðþÞ z; tð Þ ¼ BâcðtÞuoc zð Þ

f̂ ðz; tÞ ¼ BĜcðtÞuoc zð Þ
ð15:1Þ

where the constant B is for normalization so that âycðtÞâcðtÞ expresses the number

of photons in the cavity. As in Equations 14.88 and 14.89 we have

Bj j2¼ _o

2e1

Ð
cavity uoc ðzÞj j2dz

¼ _o
e1d

ð15:2Þ

where we have used the expression uoc zð Þ ¼ sinfocðzþ dÞ=c1g (see Equation 1.41b).

Therefore, Equation 2.70b cited above becomes

Ĝyc t0ð ÞĜc tð Þ
� �

¼ 2gc noch id t� t0ð Þ ð15:3Þ

We see that this corresponds to the property in Equations 3.36 and 3.37 for the

Langevin force introduced for the quasimode. In Equation 15.6a below we will give

another Langevin equation applicable to the one-sided cavity that is more rigorous in

the sense that the output coupling at the mirror, as well as the cavity field distribution,

is taken into account exactly, thus leading to the correct excess noise factor.

In Equation 10.71 we have shown that the thermal noise that affects the field

inside the cavity is the thermal noise that penetrated into the cavity from outside.

This relation can be rewritten as

eikdf̂ þt ð�0; tÞ � ðe�ikd=rÞf̂ �t ð�0; tÞ ¼ �ðT 0=rÞf̂ �o t ðþ0; tÞ ð15:4Þ

Except for a phase factor, the terms on the left-hand side appear in Equation 10.71

or 10.69 as the effective thermal noise at z¼�0, the inner surface of the coupling

mirror. The first term is the right-going thermal noise at z¼�0 and the second
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term is the left-going noise amplified during one round trip by 1/r with p phase

shift at the perfect mirror at z¼�d. Equation 15.4 says that the sum is equal to

the ambient noise that penetrated into the cavity with transmission coefficient T u

and was amplified by 1/r with a p phase shift. The correlation properties of

the ambient noise f̂ �o t ðþ0; tÞ are the same as those given in Equation 11.1 for

the ambient thermal noise f R;L
t :

2e0c0 f̂ �yo t ðþ0; tÞf̂ �o t ðþ0; t0Þ
D E

¼ no_odðt� t0Þ

2e0c0 f̂ �o t ðþ0; tÞf̂ �yo t ðþ0; t0Þ
D E

¼ ðno þ 1Þ_odðt� t0Þ
ð15:5Þ

We note that the noise f̂ �o t ðþ0; tÞ, which was originally a superposition of the initial

values of the modes of the ‘‘universe’’ as in Equation 10.70, has simple correlation

functions as a ‘‘collective’’ thermal noise operator. However, it is difficult, if we

follow the calculations in Chapter 10 or in Chapter 9, to relate this thermal noise

with the cavity decay constant as in Equation 15.3 or in Equations 3.36 and 3.37.

In order to relate the thermal noise to the cavity decay constant, we need to

rewrite the field equation of motion as in Equation 2.63 cited above using an

equation like Equation 15.1, where the optical field and the thermal field are cast

on the same spatial functions and see the relation between the remaining tem-

poral factors. One method to do this is to go from, for example, Equation 10.69 for

êþð�0; tÞ to the corresponding equation for êðz; tÞ as we did in Section 14.3 and

cast the equations on to the appropriate adjoint mode (in this case

sinfO�c ðzþ dÞ=c1g). Then, through a procedure similar to Equations 14.103–

14.106 one can obtain the normally ordered correlation function for the thermal

noise and get its relation to the cavity decay constant. The anti-normally ordered

correlation function may be obtained similarly. Here, instead of deriving a Lan-

gevin equation for the one-sided cavity considered in Chapters 9 and 10, we derive

a Langevin equation for a general two-sided cavity according to the directions

mentioned above. We have Equation 14.103, which can be rewritten, after using

Equations 14.97, 14.100, and 14.54, as well as Equation 11.52a, as

d

dt
âðtÞ ¼ �gcâðtÞ þ K1=4

L K1=4
2 b̂R dþ 0; tð Þ þ K1=4

1 b̂L �0; tð Þ
n o

ð15:6aÞ

where

b̂R;L ¼
ffiffiffiffiffiffiffiffiffiffi
2e0c0

_o

r
ffiffiffiffiffiffiffi
2gc

p
f̂ R;L; b̂R;LyðtÞb̂R;Lðt0Þ

D E
¼ 2gcnodðt� t0Þ ð15:6bÞ

and

KL ¼
bc1 þ bc2

gc

� �2

; K1;2 ¼
bc1;2

gc

� �2

; bc1;2 ¼
1� jr1;2j2

2jr1;2j
ð15:6cÞ

Here we have used Equation 11.31 with szh i ¼ 0 and set o¼oc to treat an

empty cavity. The factor g0=ðg0 þ g0cÞ coming from the dispersion of the medium

has also been omitted. The Langevin noise forces defined in Equation 15.6b have
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standard forms of correlation, but these are multiplied by factors related to the

excess noise factor in the above equation. Equation 15.6a shows clearly the sepa-

rate contributions of the noise from the two mirrors. The KL in Equation 15.6c is

the same as those in Equations 11.72 and 11.107. By setting r1 !�1 and r2 ! r we

have the Langevin equation for the one-sided cavity treated in Chapters 9 and 10. In

this case KL reduces to those in Equations 9.106 and 10.112. Note that this derivation

of the Langevin force is more rigorous than that in Equation 15.3 above in the sense

that the output coupling at the mirrors, as well as the cavity field distribution, is taken

into account exactly. If applied to the one-sided cavity, we have

K1=2
L K1=2

2 b̂RyðtÞb̂Rðt0Þ
D E

¼ bc

gc

� �2

2gcnodðt� t0Þ ð15:6dÞ

which is larger than Equation 15.3 by the factor ðbc=gcÞ2, which appeared in

Chapters 9 and 10 as the excess noise factor.

In Chapter 10 we have examined in detail the relation between the field inside

the cavity, the field coupled out from the cavity, and the ambient thermal field. We

have from Equations 10.137 and 10.127, respectively

êþo z; tð Þ ¼ Teikdêþ �0; t� z

c0

� �

þ r0 f̂ �ot þ0; t� z

c0

� �

ê�o z; tð Þ ¼ f̂ �o z; tð Þ ¼ f̂ �ot z; tð Þ

Here the suffix o signifies a wave existing outside the cavity, and the þ (�) sign

designates a right-going (left-going) wave. We see that, outside the cavity, the right-

going waves are the waves transmitted from inside and the thermal wave reflected

at the mirror. The left-going wave is only the thermal field, as expected. Note that,

as shown in Equations 10.26 and 10.130 and meant by f̂ �ot z; tð Þ above, the quantum

noise does not appear outside the cavity in its raw form. Its effect is contained in

êþð�0; t� z=c0Þ in the first term in Equation 10.137.

In Chapter 10 we have ignored the second term in Equation 10.137 in evaluating

the linewidth. The consequence of taking this term into account was discussed by

Yamamoto and Imoto [16] (using an input–output theory similar to that of

Carmichael [15]), who found a constant term in the phase noise spectrum in

addition to that obtained for inside the cavity. (They also found changes in the

photon statistics.) The thermal noise contained in the first term in Equation 10.137

is, by Equation 10.69 together with Equation 10.71, proportional to the time

integral of f̂ �ot z; tð Þ, which is roughly in phase quadrature with the second term.

Thus it can be shown that the inclusion of the second term will bring no inter-

ference and add a constant (white) term in the power spectrum.

15.1.1.2 A One-Sided Cavity with a Dielectric-Slab Mirror

Knöll et al. [6] considered an empty one-sided cavity of length L with a perfect

reflector at z¼ 0. The coupling mirror is composed of a dielectric slab of thickness

d with refractive index n, and the inside and outside of the cavity are vacuum. The

refractive index distribution is nðxÞ ¼ 1, for 0 � x � L, Lþ d � x, and nðxÞ ¼ n,
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for L � x � Lþ d. Eventually, the thickness d will be made to be very small. The

vector potential Aðk; xÞ is given by

d2

dx2
Aðk; xÞ þ n2ðxÞk2Aðk; xÞ ¼ 0; k2 ¼ o2=c2 ð15:7Þ

giving

Aðk; xÞ ¼ _

4pFe0o

� �1=2 �TðoÞðeikx � e�ikxÞ; 0 � x � L
�TðoÞ

�
�T�ðoÞ

� 
eikx � e�ikx; L � x

(

ð15:8aÞ

where F is the mirror area. Here the function �TðoÞ is the spectral response

function of the cavity, which reads

�TðoÞ ¼
�tðoÞ

1þ �rðoÞe2iLo=c
ð15:8bÞ

where c is the velocity of light in vacuum and �tðoÞ and �rðoÞ are the transmission

and reflection coefficients, respectively, of the mirror, which should satisfy

j�tðoÞj2 þ j�rðoÞj2 ¼ 1

�t�ðoÞ�rðoÞ þ�tðoÞ�r�ðoÞ ¼ 0
ð15:8cÞ

Assuming that the frequency dependences of �tðoÞ and �rðoÞ are small, we write
�tðoÞ ¼ �t ¼ j�tjeif and �rðoÞ ¼ �r ¼ j�rjeic. In this case, the poles of �TðoÞ giving the

cavity resonance are given, assuming a good cavity ðj�tj2 
 1Þ, as

Om ¼ om � iG=2

om ¼ m
pc

L
þ c

2L
ðp� cÞ

G ¼ � c

L
lnð1 � j�tj2Þ1=2 � c

2L
j�tj2

ð15:9Þ

where m is an integer. In the vicinity of a cavity mode m, Equation 15.8b reads

�TðoÞ � c

2L
G

� �1=2 eif

G=2� iðo� omÞ
ð15:10Þ

The positive frequency part of the electric field operator is given as

ÊðþÞðx; tÞ ¼ i

ð1

0

dkoAðk; xÞâðk; tÞ ð15:11Þ

Defining the propagation function

KðþÞðx1; t1; x2; t2Þ ¼ �
1

_

ð1

0

dk oAðk; x1ÞA�ðk; x2Þe�ioðt1�t2Þ ð15:12Þ

we have, using the orthogonal property of the mode functions,

ÊðþÞðx; tÞ ¼ �2e0F

ð1

0

dx0KðþÞðx; t; x0; t0ÞÊðþÞðx0; t0Þ ð15:13Þ
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Here we ignore the source terms that drive the electric field (although these are

included in the authors’ paper) but concentrate on the thermal field. The propa-

gation function for the case where both x1 and x2 are inside the cavity reads

KðþÞðx1; t1; x2; t2Þ ¼ �
1

4pFe0c

h
G1ft1 � t2 � ðx1 � x2Þ=cg

þ G�1ft2 � t1 � ðx1 � x2Þ=cg

� G1ft1 � t2 � ðx1 þ x2Þ=cg

�G�1ft2 � t1 � ðx1 þ x2Þ=cg
i

ð15:14Þ

The propagation function for the case x14L and 0ox2oL is

KðþÞðx1; t1; x2; t2Þ ¼ �
1

4pFe0c

h
G2ft1 � t2 � ðx1 � x2Þ=cg

þ G�2ft2 � t1 � ðx1 � x2Þ=cg

� G2ft1 � t2 � ðx1 þ x2Þ=cg

� G�2ft2 � t1 � ðx1 þ x2Þ=cg
i

ð15:15Þ

The functions G1ðtÞ and G2ðtÞ are given as

G1ðtÞ ¼
ð1

0

doj�TðoÞj2e�iot ’
X

m

pc

L
e�iomt�ðG=2Þjtj

G2ðtÞ ¼
ð1

0

do �TðoÞe�iot ’
X

m

2p
c

2L
G

h i1=2

eifYðtÞe�ifom�iðG=2Þgt
ð15:16Þ

Here YðtÞ is the unit step function. The second expression in each of G1ðtÞ and

G2ðtÞ have been obtained under the approximation that we have a good cavity

ðj�tj2 
 1Þ and the assumption that we are interested in the field variation that is

slower than o. The latter assumption has allowed us to extend the lower limit of

the frequency integral to �N.

We further assume that the cavity field can be (approximately) expressed in

terms of the standing waves and that we are concerned with a time scale that is

larger than the cavity round-trip time but smaller than the cavity decay time

ð2L=c 
 Dt
 G�1Þ. In this case, the propagation function in Equation 15.14 for

both x and xu inside the cavity may be rewritten as

KðþÞðx; t; x0; t0Þ ¼ � 1

Fe0L

X

m

exp �i om � i
G
2

� �

ðt� t0Þ
� �

� sinðomx=cÞ sinðomx0=cÞ
ð15:17Þ
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The propagation function in Equation 15.15 for x04L and 0oxoL may be

rewritten as

KðþÞðx; t; x0; t0Þ ¼ i

Fe0L

X

m

c

2L
G

h i1=2

eif

� exp �i om � i
G
2

� �

ðt� t0 � x0=cÞ
� �

sinðomx=cÞ
ð15:18Þ

Now we introduce the normalized cavity mode function as

AmðxÞ ¼
_

LFe0om

� �1=2

sinðomx=cÞ; 0oxoL ð15:19Þ

and write the field operator in terms of the mode creation operators âmðtÞ:

ÊðþÞðx; tÞ ¼ i
X

m

omAmðxÞâmðtÞ ð15:20Þ

Then, using the property of G2ðtÞ in Equation 15.16, one can show that Equations

15.13, 15.17, and 15.18 yield

âmðtÞ ¼ âmðt0Þ exp �i om � i
G
2

� �

ðt� t0Þ
� �

þ G1=2eif
ðt

t0
exp �i om � i

G
2

� �

ðt� tÞ
� �

b̂mðtÞdt
ð15:21Þ

where

b̂mðtÞ ¼ �
2e0Fc

_om

� �1=2

ÊðþÞin ðtÞ ð15:22Þ

Here ÊðþÞin ðtÞ stems from the incoming part ðe�ikxÞ of the outer field in

Equation 15.8a. (The outgoing part ðeikxÞ does not contribute due to destructive

interference with the preceding factor.) In Equation 15.21, t is defined as

t ¼ t0 þ x0=c.

Differentiation of Equation 15.21 with respect to time yields the Langevin

equation

_̂amðtÞ ¼ �i om � i
G
2

� �

âmðtÞ þ G1=2eifb̂mðtÞ ð15:23Þ

Here the coefficient G/2 is the damping rate and the incoming field of b̂mðtÞ
provides the thermal Langevin noise. The output field ÊðþÞout ðtÞ comes from the

outgoing part ðeikxÞ in Equation 15.8a. Following a similar procedure that led to

Equation 15.21, the authors show that the total input–output relation is

ÊðþÞout ðt� x=cÞ ¼ �rÊðþÞin ðt� x=cÞ þ
X

m

G1=2eif _om

2e0Fc

� �1=2

âmðt� x=cÞ ð15:24Þ
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The authors further examine the commutation relations for the cavity field

mode operator âmðtÞ, and the incoming and outgoing field operators, b̂mðtÞ and

ĉmðtÞ. Here ĉmðtÞ is given by ÊðþÞout ðtÞ as in Equation 15.22. Under the good cavity

approximation and the assumption on the time scale mentioned above, they find

the proper commutation relations:

âm; â
y
m0

h i
¼ dmm0 ; âm; âm0½ 	 ¼ 0 ¼ âym; â

y
m0

h i

b̂mðtÞ; b̂ym0 ðt0Þ
h i

¼ dmm0dðt� t0Þ; b̂mðtÞ; b̂m0 ðt0Þ
h i

¼ 0 ¼ b̂ymðtÞ; b̂
y
m0 ðt0Þ

h i

ĉmðtÞ; ĉym0 ðt0Þ
h i

¼ dmm0dðt� t0Þ; ĉmðtÞ; ĉm0 ðt0Þ½ 	 ¼ 0 ¼ ĉymðtÞ; ĉ
y
m0 ðt0Þ

h i

ð15:25Þ

Also, the causality is derived as

âmðtÞ; b̂m0 ðt0Þ
h i

¼ 0 ¼ âmðtÞ; b̂ym0 ðt0Þ
h i

; tot0

âmðtÞ; ĉm0 ðt0Þ½ 	 ¼ 0 ¼ âmðtÞ; ĉym0 ðt0Þ
h i

; t4t0
ð15:26Þ

The first equation says that the future input does not affect the present field inside

the cavity, and the second says that the past outgoing wave does not affect the

present field inside the cavity. The authors also outline the way to construct

the (multi-space-time) correlation functions of the outgoing field in terms of those

of the internal and incoming fields.

15.1.1.3 Other Works on Normal Mode Expansion

Historically, the first paper on the thermal Langevin force on the cavity field as the

superposition of initial values of the modes of the ‘‘universe’’ was published by

Lang and Scully [20] using the one-sided cavity model similar to that used by Knöll

et al. [6] in the previous subsection. They showed that the correlation function of

the force is related to the cavity damping rate so as to fulfill the proper fluctuation–

dissipation theorem. Gea-Banacloche et al. [21] used a similar cavity model to

describe the input–output relation for application to the problem of squeezing in a

cavity mode relative to the squeezing of the field coupled out of the cavity. Baseia

et al. [22, 23] also used a similar cavity model to analyze the laser operation using

the modes of the ‘‘universe’’ but going to the ‘‘collective’’ mode amplitude, and

examined the relation of the internal and external fields through essentially a

semiclassical approach. Glauber and Lewenstein [5] considered a general scatter-

ing and transmission problem in the presence of a non-uniform, linear dielectric.

They used the normal mode expansion of the field and quantized the field by

treating the expansion coefficients as the operators. They also expanded the field in

terms of the plane waves and found a Hamiltonian in a non-diagonal form. The

two quantization schemes are discussed in relation to the scattering theory and

field fluctuation due to the dielectric. The results are applied to the problem of

spontaneous emission and emission by a charged particle.
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15.1.2

Natural Mode Quantization

A natural mode of a cavity with transmission loss is, as we saw in Chapter 1,

a decaying mode. Quantization schemes of such modes were described in

Chapter 14 in relation to the theory of the excess noise factor. One was due to

Grangier and Poizat [24], who divided the ‘‘universal modes’’ into laser modes and

loss modes by use of projection operators, and introduced the cavity mode as those

corresponding to the laser. The other was presented by Cheng and Siegman [25],

who also divided the ‘‘universal modes’’ into system eigenmodes and the

remaining modes. Both of these two papers utilized the concept of adjoint mode

to derive the excess noise in a laser. These two works were formal and gave no

connection with realistic cavity decay.

Dutra and Nienhuis [7] gave a direct approach to quantize the natural decaying

modes of a leaky cavity. They also depended on the concept of adjoint mode in

quantizing the decaying modes. Here we show excerpts of the last.

The cavity model considered is a one-dimensional cavity with a perfect mirror at

x ¼ �L and a coupling surface at x¼ 0. The interior of the cavity is a vacuum and

the outside region 0oxo1 is filled with a dielectric of refractive index nd. The

amplitude reflection coefficient of the coupling surface for a wave incident from

inside the cavity is r. The electric field is polarized in the y-direction. The natural

mode of the cavity, which has only an outgoing wave outside, is

gðckn; xÞ ¼
eiknx þ re�iknx; �L � xo0

ð1þ rÞeiknndx; 0ox

(

ð15:27Þ

where kn ¼ kn � ig with kn ¼ ðp=LÞn (integer n) and g ¼ ð1=2LÞ lnð1=jrjÞ. The

adjoint mode, which has only an incoming wave outside, is

~gðck�m; xÞ ¼
eik�mx þ 1

r
e�ik�mx; �L � xo0

1þ r

r
e�ik�mndx; 0ox

8
>><

>>:
ð15:28Þ

Note that the adjoint mode here is the complex conjugate of that defined in

Chapter 14 (see below Equation 14.5). The natural mode diverges at large x and is

not suitable for quantization in this form. One looks for other functions suitable

for outside the cavity, which the authors claim is the natural mode for the outside

region that satisfies the boundary condition at the interface x¼ 0 and at x¼ þN.

It reads

Gðck; xÞ ¼
ð1� rÞe�ikx; xo0

e�ikndx � reikndx; 0ox

(

ð15:29Þ
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where k is real. The adjoint mode for this is

~Gðck; xÞ ¼

r � 1

r
eikx; xo0

e�ikndx � 1

r
eikndx; 0ox

8
>><

>>:
ð15:30Þ

Because, for inside the cavity, the mode function and the adjoint mode function

are not strictly orthogonal, the authors seek exact orthogonality. For this purpose,

they introduce spinor notation, as in Example 4 in Chapter 14 (see Equation 14.61),

where the upper and lower members signify the right- and left-going wave,

respectively. These members are given formally as

g
_ðckn; xÞ ¼

1
ffiffiffiffiffi
8L
p

gðckn; xÞ � i
nðxÞkn

@
@x gðckn; xÞ

gðckn; xÞ þ i
nðxÞkn

@
@x gðckn; xÞ

2

4

3

5 ð15:31Þ

and the adjoint ~g
_ðck�m; xÞ can be obtained by replacing gðckn; xÞ by ~gðck�m; xÞ

and kn by k�m. The factor
ffiffiffiffiffi
8L
p

is for normalization in Equation 15.32 below.

Physically, the upper and lower members in the spinor are shown to be equal to

EðxÞ þ cBðxÞ=nðxÞ and EðxÞ � cBðxÞ=nðxÞ, which are, respectively, right- and left-

going waves in the cavity. It can be shown that

ð0

�L
dx ~g

_yðck�m; xÞg
_ðckn; xÞn2ðxÞ ¼ dnm ð15:32Þ

Note that the dagger sign here denotes the transpose and the transposed quantity

should be complex conjugated. Thus g
_ðckn; xÞ and its adjoint ~g

_ðck�m; xÞ constitute

the cavity modes and their adjoint modes as discussed in Chapter 14.

The spinor form of the outside mode and its adjoint are constructed in just the

same manner as for inside. The resultant spinor G
_

ðck; xÞ and its adjoint
~
G
_

ðck; xÞ
satisfy

ð1

0

dx
~
G
_ y
ðck0; xÞG

_

ðck; xÞn2ðxÞ ¼ dðk� k0Þ ð15:33Þ

The field can be written in the spinor form as

FðxÞ ¼ 1

2

EðxÞ þ c

nðxÞBðxÞ

EðxÞ � c

nðxÞBðxÞ

2

6
6
4

3

7
7
5 ð15:34Þ

The field inside the cavity can be expanded in terms of the spinors g
_ðckn; xÞ and

~g
_ðck�m; xÞ. Similarly, the field outside can be expanded in terms of G

_

ðck; xÞ

and
~
G
_

ðck; xÞ. The expansion coefficient for the mode is given by the projection of

the field onto the adjoint mode and vice versa:
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FcavðxÞ ¼
X1

n¼�1
g
_ðckn; xÞ

ð0

�L
dx0 ~g

_yðck�n; x0ÞFðx0Þn2ðx0Þ

~FcavðxÞ ¼
X1

n¼�1

~g
_ðck�n; xÞ

ð0

�L
dx0 g

_yðckn; x
0ÞFðx0Þn2ðx0Þ

FoutðxÞ ¼
ð1

�1
dk G

_

ðck; xÞ
ð1

0

dx0
~
G
_ y
ðck; x0ÞFðx0Þn2ðx0Þ

~FoutðxÞ ¼
ð1

�1
dk

~
G
_

ðck; xÞ
ð1

0

dx0G
_ y
ðck; x0ÞFðx0Þn2ðx0Þ

ð15:35Þ

For treating the field at the coupling surface x¼ 0, we represent the field as

FðxÞ ¼ 1
2 lim
e!0þ

h
FcavðxÞ þ ~FcavðxÞ
� 	

Yðe� xÞ

þ FoutðxÞ þ ~FoutðxÞ
� 	

Yðeþ xÞ
i ð15:36Þ

This expression can be shown to allow for the correct value of F(0) regardless of the

actual value of the refractive index at x¼ 0.

The next task is to quantize the field. The quantization is carried out by regarding

the expansion coefficients in Equation 15.35 as operators. For example, we set

F̂cavðxÞ ¼
X1

n¼�1

ffiffiffiffiffiffiffiffiffiffi
_ckn

2e0

s

âng
_ðckn; xÞ

ân ¼
ffiffiffiffiffiffiffiffiffiffi
2e0

_ckn

r ð0

�L
dx0 ~g

_yðck�n; x0ÞF̂ðx0Þn2ðx0Þ

ð15:37Þ

where the field F̂ðxÞ is now an operator (see below). Other operators, b̂n, âoutðkÞ,
and b̂outðkÞ are defined similarly. The b̂ operators are quantized versions of the

expansion coefficients for adjoint modes. Then using Equation 15.36 in

H ¼ e0

ð1

�L
dx F̂

yðxÞF̂ðxÞn2ðxÞ

one obtains the expression for the Hamiltonian in terms of the mode operators. It

contains terms of b̂ynân, âynb̂n, âynân0 , and b̂ynb̂n0 , as well as of b̂youtðkÞâoutðkÞ,
âyoutðkÞb̂outðkÞ, âyoutðkÞâoutðk0Þ, and b̂

y
outðkÞb̂outðk0Þ.

As is expected from the form of Equation 15.36, where the operators for the

cavity modes and the outside modes appear only in separate spatial regions,

the Hamiltonian has no cross-terms between the cavity mode and the outside

mode operators. This is in contrast to, for example, Equation C.1 in Appendix C for

the reservoir model or Equation 15.45 below for the projection operator method,

where the system (cavity) and the reservoir (channel) modes are quantized inde-

pendently of each other and their interaction is expressed by the cross-terms of the

operators for the system and for the reservoir. How can the interaction between

the inner cavity modes and the outer modes occur without cross-terms here? The

answer is that in this formalism the commutator between the cavity operators and
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outside field operators do not vanish in general (while the corresponding operators

commute in the case of the system–reservoir model or in the case of the projection

operator method cited below due to their mutual independence).

Let us examine the commutators. For this purpose, we need the commutators

concerning the field F̂ðxÞ. These commutators are obtained through the modes of

the ‘‘universe’’ approach, as follows. We write the mode of the universe as U(o x),

where o is a continuous variable, which comes from the universe model that

extends to x -N (cf. Section 1.4). In a similar fashion to that leading to Equation

1.75, the authors derive the closure relation

ð1

0

doU�ðo; xÞUðo; x0Þ ¼ dðx � x0Þ � dðx þ x0 þ 2LÞ
n2ðxÞ ð15:38Þ

where the second term appears because of the presence of a perfect mirror at

x¼�L (see below Equation 1.78). Then, introducing the continuous creation and

annihilation operators â(o) and âyðoÞ, the electric field and the magnetic flux can

be written as

ÊðxÞ ¼
ð1

0

do

ffiffiffiffiffiffi
_o
e0

s

Uðo; xÞâðoÞ þH:C:

B̂ðxÞ ¼ �i

ð1

0

do

ffiffiffiffiffiffiffiffi
_

e0o

s
@

@x
Uðo; xÞâðoÞ þH:C:

ð15:39Þ

Using Equation 15.38 together with the commutation relation ½âðoÞ; âyðo0Þ	 ¼
dðo� o0Þ we have

½D̂ðxÞ; B̂ðx0Þ	 ¼ i_
@

@x0
dðx � x0Þ � dðx þ x0 þ 2LÞf g ð15:40Þ

where D̂ðxÞ ¼ e0n2ðxÞÊðxÞ is the electric displacement operator.

Using Equation 15.40 with the quantized form of Equation 15.34, we can

evaluate the commutators involving the operator in Equation 15.37 and similar

expressions. The cavity modes ân and âyn0 do not commute, expressing the non-

orthogonality, and similarly for the adjoint modes:

½ân; âyn0 	 ¼
1

r2
½b̂n; b̂yn0 	

� ¼ i

4L
ffiffiffiffiffiffiffiffiffiffiffi
knk�n0

p
kn þ k�n0
kn � k�n0

r2 � 1

r2
ð15:41Þ

The operators of the outside region have essentially delta-correlated commutators:

½âoutðkÞ; âyoutðk0Þ	 ¼
1

r2
½b̂outðkÞ; b̂youtðk0Þ	�

¼ 1
ffiffiffiffiffiffi
kk0
p 1þ r2

2r2
kdðk� k0Þ � i

1� r2

4pr2
ðkþ k0ÞP 1

k� k0

� � ð15:42Þ

The mode operator ân and the adjoint mode operator b̂yn0 have the familiar form of

the commutator expressing the bi-orthogonality and similarly for the outside

region:
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�
ân; b̂

y
n0

¼ dnn0 ;

�
âoutðkÞ; b̂youtðk0Þ


¼ dðk� k0Þ ð15:43Þ

The important inside–outside relations are obtained as

�
ân; b̂youtðkÞ


¼ r2

�
ân; âoutðkÞ


¼
�
b̂yn; âoutðkÞ



¼
�
b̂yn; b̂outðkÞ;


¼ i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Lpknk

s ð15:44Þ

The formulation of this theory is applicable to a cavity of arbitrary transmission

loss, because no assumptions or approximations concerning the reflectivity r have

been made. The authors further discuss the motion of the spinor field g
_ðckn; xÞ

and speculate that the laser excess noise factor K may be given by K ¼Ð 0

�L dx ~g
_yðckn; xÞ~g

_ðckn; xÞn2ðxÞ. (The value of K thus obtained is ð1 � jrj2Þ=
f2jrj2 lnð1=jrjÞg, which is different from Equation 14.47 for the one-sided cavity.

Since the spinor for the mode g
_ðckn; xÞ is not normalized here, a factor

ð0

�L
dx g

_yðckn; xÞg
_ðckn; xÞn2ðxÞ ¼ ð1 � jrj2Þ=f2 lnð1=jrjÞg

should be multiplied on the right-hand side of the proposed formula for correct

evaluation of K – see Equation 14.25.)

15.1.3

Projection Operator Method

Viviescas and Hackenbroich [8] considered the quantization of the field in the

presence of a spatially non-uniform dielectric and optical cavities defined by

mirrors of arbitrary shape. They introduced the projection operators for the inside

and outside regions of the cavity. After projection operations on the field equa-

tions, they obtained the working Hamiltonian

H ¼
X

l

_olaylalþ
X

m

ð

do _obymðoÞbmðoÞ

þ _
X

l

X

m

ð

do WlmðoÞaylbmðoÞ þH:C:
n o ð15:45Þ

where l stands for the cavity modes and m stands for the ‘‘channels’’ representing

the outside region. The coefficient Wlm(o) comes from the boundary conditions. We

note that the Hamiltonian in Equation 15.45 is in a similar form as the system–

reservoir Hamiltonian discussed in Appendix C. The Langevin equation for the

cavity mode can be derived as in Appendix C. It can be shown that different cavity

modes are coupled via the damping forces, and the noise forces for different

cavity modes are correlated because the cavity modes couple to the same external

channels. (This latter point makes contact with the assertion by Grangier and

Poizat [24] on the ‘‘loss-induced coupling.’’)
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15.2

Quantum Noise Theory

The thermal noise force associated with the cavity decay was traditionally treated

by the system–reservoir model as in Appendix C, where the cavity modes are

discrete and each cavity mode interacts with the reservoir modes of a fairly broad

spectrum. The latter modes are independent of the cavity modes. The coupling

strength is assumed to be constant over a wide frequency range. A fluctuating

force was derived, which assured the preservation of the commutation relation for

the cavity mode on the reservoir average. The output to the reservoir (outside

region) was not considered seriously.

15.2.1

The Input–Output Theory by Time Reversal

To treat the output from a cavity with output coupling, Gardiner and Collett [14]

developed a theory, called input–output theory, that paid attention not only to

incoming noise but also to the outgoing field, which is the main quantity to be

measured. They considered a system interacting with a heat bath (reservoir)

described by the Hamiltonian

H ¼ Hsys þHB þHint

HB ¼ _

ð1

�1
doobyðoÞbðoÞ

Hint ¼ i_

ð1

�1
dokðoÞ

n
byðoÞc � cybðoÞ

o

ð15:46Þ

where b(o) ðbyðoÞÞ are boson annihilation (creation) operators for the bath, which

satisfy ½bðoÞ; byðo0Þ	 ¼ dðo� o0Þ, and c is one of the system operators. The factor

k(o) is the coupling constant (here assumed to be real). The equations of motion

for the bath operator and a system operator a read

_bðoÞ ¼ �iobðoÞ þ kðoÞc

_a ¼ � i

_
½a;Hsys	 þ

ð1

�1
dokðoÞ

n
byðoÞ½a; c	 � ½a; cy	bðoÞ

o ð15:47Þ

Solving for b(o) with the initial value b0(o) at t¼ t0 and substituting the result into

the second equation, we have

_a ¼ � i

_
½a;Hsys	 þ

ð1

�1
dokðoÞ eioðt�t0Þby0ðoÞ½a; c	 � ½a; cy	e�ioðt�t0Þb0ðoÞ

n o

þ
ð1

�1
dok2ðoÞ

ðt

t0

dt0 eioðt�t0Þcyðt0Þ½a; c	 � ½a; cy	e�ioðt�t0Þcðt0Þ
n o ð15:48Þ

where the time variables for a and c are omitted for brevity.
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To proceed further, we assume that the coupling coefficient k(o) is a constant

and write kðoÞ ¼
ffiffiffiffiffiffiffiffiffiffi
g=2p

p
. We define the input field by

binðtÞ ¼
1
ffiffiffiffiffiffi
2p
p

ð1

�1
do e�ioðt�t0Þb0ðoÞ ð15:49Þ

Using the commutator ½b0ðoÞ; by0ðo0Þ	 ¼ dðo� o0Þ, we can show the commuta-

tion relation ½binðtÞ; byinðt0Þ	 ¼ dðt� t0Þ. Equation 15.48 is now rewritten as a

Langevin equation:

_a ¼ � i

_
½a;Hsys	 � ½a; cy	 1

2
gc þ ffiffiffi

g
p

binðtÞ
� ��

� 1

2
gcy þ ffiffiffi

g
p

byinðtÞ
� �

½a; c	
� ð15:50Þ

If the operator that couples with the bath is a and Hsys ¼ _o0ðayaþ 1
2Þ, we have

_a ¼ �ioa� 1
2ga�

ffiffiffi
g
p

binðtÞ ð15:51Þ

This reproduces the damping term and the Langevin force term as obtained in

Appendix C. Note, however, that the appearance of the damping does not need the

incoherence of bin(t). The latter can be thermal or coherent or a mixture of them.

Assume that we consider a future time t1 (Wt), integrate the first of Equations 15.47

with the temporal boundary condition bðoÞt¼t1
¼ b1ðoÞ, and define

boutðtÞ ¼
1
ffiffiffiffiffiffi
2p
p

ð1

�1
do e�ioðt�t1Þb1ðoÞ ð15:52Þ

Then, we obtain an alternative equation to Equation 15.50, a time-reversed Langevin

equation:

_a ¼ � i

_
½a;Hsys	 � ½a; cy	 �1

2
gc þ ffiffiffi

g
p

boutðtÞ
� ��

� �1
2gc
y þ ffiffiffi

g
p

byoutðtÞ
n o

½a; c	
i ð15:53Þ

For c¼ a and Hsys ¼ _o0ðayaþ 1
2Þ we have

_a ¼ �ioaþ 1
2ga�

ffiffiffi
g
p

boutðtÞ ð15:54Þ

Comparing Equations 15.50 and 15.53, or Equations 15.51 and 15.54 for c¼ a,

yields the input–output relation

boutðtÞ � binðtÞ ¼
ffiffiffi
g
p

cðtÞ

boutðtÞ � binðtÞ ¼
ffiffiffi
g
p

aðtÞ
ð15:55Þ

To show the first line more directly, one can use the first line in Equation 15.47

with Equations 15.49 and 15.53. The quantities bin(t) and bout(t) can be interpreted

as the input to and output from the system, and Equation 15.55 is the boundary
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condition relating the input, the output, and the internal modes. Assuming

causality, the authors deduce the commutators

½aðtÞ; binðt0Þ	 ¼ 0; tot0

½aðtÞ; boutðt0Þ	 ¼ 0; t4t0
ð15:56Þ

Combining these with Equation 15.55 we have

½aðtÞ; binðt0Þ	 ¼ �uðt� t0Þ ffiffiffigp ½aðtÞ; cðt0Þ	

½aðtÞ; boutðt0Þ	 ¼ uðt0 � tÞ ffiffiffigp ½aðtÞ; cðt0Þ	
ð15:57Þ

where u(t) is the unit step function.

The authors further develop the theory of the quantum stochastic differential

equation and the master equation (equation of motion for the density matrix) for

the system and the bath to calculate the correlation functions of the output field in

terms of those for the input and the internal fields, which are beyond the scope of

this book. The same authors [13] also consider the results of having a second

coupling mirror, which introduces an additional noise source.

15.2.2

The Input–Output Theory by the Boundary Condition

Another method of deriving the input–output relation was given by Carmichael [15].

The author uses a reservoir model, which is composed of quantized outer traveling

modes incident on a semitransparent mirror of a ring cavity. These modes are

partially reflected. The reflected reservoir modes are superimposed with the output

from the cavity.

A periodic boundary condition is imposed on the reservoir modes, where the

period is from z¼�L/2 to z¼ L/2 with the mirror at z¼ 0, and the paths of

the modes are deflected by 901 at the mirror – see Figure 15.1.

The Hamiltonians of the cavity mode, the reservoir, and their interaction are

written, respectively, as

HS ¼ _oca
ya

HR ¼
X

j

_ojr
y
j rj

HSR ¼
X

j

_ kjrja
y þ k�j ryj a

� �
ð15:58Þ

where a and ay are the annihilation and creation operators for the cavity

mode, respectively, while rj and ryj are the annihilation and creation operators,

respectively, for the jth reservoir mode of frequency oj. The constant kj is

the coupling constant, which will be determined later. (The author considers

also intracavity interaction, a second coupling mirror, as well as reservoirs that
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are not directly coupled to the cavity mode. These are omitted here for

simplicity.)

The positive frequency part of the external (reservoir) field is written as

ÊðþÞðz; tÞ ¼ i
X

j

_oj

2e0AL

� �1=2

rjðtÞ expðikjzÞ ð15:59Þ

Here A is the cross-sectional area of the reservoir field. As in Appendix C (see

Equation C.12), the damping constant of the cavity, and consequently the coupling

constant, are given by

gc ¼ prjkoc j
2 ¼ pðL=2pcÞjkoc j

2

jkoc j ¼
ffiffiffiffiffiffiffi
2gc

p ffiffiffiffiffiffiffi
c=L

p ð15:60Þ

where r ¼ L=2pc is the density of modes of the reservoir modes. From Equation 15.58

we have

_a ¼ �ioca� i
X

j

kjrj

_rj ¼ �iojr � ik�j a

ð15:61Þ

Figure 15.1 Schematic representation of ring–cavity system.

Source: From Ref. [15]. Carmichael, H.J. (1987) J. Opt. Soc. Am. B, 4, 1588, Figure 1.
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Integrating the second equation and using Equation 15.59 we obtain

ÊðþÞðz; tÞ ¼
X

j

_oj

2e0AL

� �1=2

rjð0Þ exp �iojðt� z=cÞ
� 	

þ expf�iocðt� z=cÞg 1

2p

ð1

0

do
_o

2e0cA

� �1=2
ffiffiffi
L

c

r

k�ðoÞ

�
ðt

0

dt0 ~aðt0Þ exp �iðoc � oÞðt0 � tþ z=cÞf g

ð15:62Þ

where ~aðtÞ ¼ aðtÞeioc t. The first term is the free reservoir field. We assume that the

time variation of ã(t) is slow compared to the optical frequency, or the bandwidth

of ã(t) is much narrower than oc, so that
ffiffiffiffi
o
p

k�ðoÞ can be replaced by
ffiffiffiffiffiffi
oc
p

k�ðocÞ.
Then the lower limit of the frequency integral can be extended to �N. Defining

the second term in Equation 15.62 as the source term ÊðþÞs ðz; tÞ and using

Equation 15.60, we have

ÊðþÞs ðz; tÞ ¼ expf�iocðt� z=cÞg _oc

2e0cA

� �1=2

� e�if
ffiffiffiffiffiffiffi
2gc

p ðt

0

dt0 ~aðt0Þdðt0 � tþ z=cÞ
ð15:63Þ

where f is the phase of k*(oc). Performing the time integral we obtain

ÊðþÞðz; tÞ ¼
X

j

_oj

2e0AL

� �1=2

rjð0Þ exp �iojðt� z=cÞ
� 	

þ _oc

2e0cA

� �1=2

e�if
ffiffiffiffiffiffiffi
2gc

p aðt� z=cÞ; ct 4 z 4 0

ð1=2ÞaðtÞ; z ¼ 0

8
<

:

ð15:64Þ

It is easy to see that the photon flux due to ÊðþÞs ðz; tÞ collected over the area A is

equal to 2gc ayðt� z=cÞaðt� z=cÞ
� �

, the mean number of photons inside the cavity

multiplied by the power damping rate of the cavity. We now define field operators

r(z, t) and ryðz; tÞ for the reservoir in photon flux units by

rðz; tÞ ¼ eif 2e0cA

_oc

� �1=2

ÊðþÞðz; tÞ ð15:65Þ

Then Equation 15.64 reads

rðz; tÞ ¼ rf ðz; tÞ þ
ffiffiffiffiffiffiffi
2gc

p
aðt� z=cÞ; ct4z40

1
2

ffiffiffiffiffiffiffi
2gc

p
aðtÞ; z ¼ 0

(

ð15:66Þ

where rf (z,t) corresponds to the first term in Equation 15.64 and exists for the

region �No zoN with L-N. We have for z¼ þ 0 and for z¼ 0
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rðþ0; tÞ ¼ rf ðþ0; tÞ þ
ffiffiffiffiffiffiffi
2gc

p
aðt� 0Þ

rð0; tÞ ¼ rf ð0; tÞ þ 1
2

ffiffiffiffiffiffiffi
2gc

p
aðtÞ

¼ rðþ0; tÞ � 1
2

ffiffiffiffiffiffiffi
2gc

p
aðtÞ

ð15:67Þ

The last two lines yields the input–output relation

rðþ0; tÞ ¼ rf ð0; tÞ þ
ffiffiffiffiffiffiffi
2gc

p
aðtÞ ð15:68Þ

This shows that the output field is the sum of the reservoir field and the internal

field coupled out of the cavity. (This corresponds to Equation 15.55 where bin(t) and

bout(t) correspond to rf (0,t) and r(þ 0,t), and g to 2gc, respectively.) Now using

Equations 15.59, 15.60, and 15.65, we have for z¼ 0

rð0; tÞ ¼ eif 2e0cA

_oc

� �1=2

ÊðþÞð0; tÞ ¼ eif 2e0cA

_oc

� �1=2

i
X

j

_oj

2e0AL

� �1=2

rjðtÞ

’ ieif

ffiffiffi
c

L

r

i
X

j

rjðtÞ ’ i
1
ffiffiffiffiffiffiffi
2gc

p
X

j

kjrjðtÞ
ð15:69Þ

Using this result and the second line of Equation 15.67 in Equation 15.61, we have

the Langevin equation

_a ¼ �ioca� gca�
ffiffiffiffiffiffiffi
2gc

p
rf ðtÞ ð15:70Þ

(This corresponds to Equation 15.51 with 2gc - g and rf (t)-bin(t).) If the reservoir

is initially in the vacuum state, we have

rf ðtÞrf ðt0Þ
� �

¼ ryf ðtÞr
y
f ðt
0Þ

D E
¼ ryf ðtÞrf ðt0Þ
D E

¼ 0

Also, it can be shown that rf ðtÞryf ðt0Þ
D E

¼ dðt� t0Þ. The author further calculates

correlation functions between a system operator ŝðtÞ and rf (t) or r(t) using the

Langevin equation (Equation 15.70) and the master equation for the cavity–

reservoir system (the latter is beyond the scope of this book).

15.2.3

Another Quantum Noise Theory

Semenov et al. [17] considered the absorption or scattering loss in the coupling

mirror. These affect the input wave before entering the cavity and the output wave

after leaving the cavity. It also introduces a feedback of the output back to the

cavity. The authors modeled these effects by setting three half-mirrors outside a

lossless semitransparent mirror. This theory extends the input–output theories

considered so far by introducing two new noise sources with added feedback and

explores new forms of Langevin equations and input–output relations.
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15.3

Green’s Function Theory

Gruner and Welsch [19] considered the input–output relation for dispersive and

absorptive linear dielectric layers. Taking into account the fact that an absorptive

medium is associated with distributed noise sources, the authors solve the wave

equation for a dielectric layer incorporating the noise sources as a distributed

driving term. The solution is a convolution of the noise term and the Green’s

function that satisfies an equation of the form in Equation 14.67. Here n2 is

replaced by the complex permittivity e(x, o). The dielectrics should satisfy the

Kramers–Kronig relation. The authors construct a spatial quantum Langevin

equation associated with wave propagation and investigate the spatial input–

output relation for the multilayered structure.

Khanbekyan et al. [18] considered the absorption loss in the coupling mirror of a

cavity that Semenov et al. [17] considered using the input–output formalism. The

authors, using the Green’s function method and assuming a slow amplitude

variation, show that the cavity mode obeys the quantum Langevin equation and

investigate the input–output relations. The mirror loss introduces additional noise

terms into the input–output relation. The problem of extracting the quantum state

of the cavity mode was studied.

15.4

Quasimode Theory

Dalton et al. [26] considered the quantization of linear optical devices including

radiating atoms. The quasimode functions for the device are obtained by solving

the Helmholtz equation for a spatially dependent electrical permittivity that is

specially designed to have an ideal quasimode. The Hamiltonian for the electro-

magnetic field is found to be equivalent to those of a set of harmonic oscillators,

but these oscillators are coupled. The atoms are shown to be coupled only to

certain types of quasimodes. The emission from an atom inside the cavity is

described as a two-step process: de-excitation of an atom with the creation of a

cavity quasimode photon; and annihilation of the quasimode photon with the

creation of an external quasimode photon.

15.5

Summary

Here we briefly compare the results of the theories of output coupling of an optical

cavity in terms of input–output relation and of the Langevin equation.

First, the input–output relations given by Equations 10.137, 15.24, 15.55, and 15.68

all relate the output field to the input and internal field. In the case of our treatment

(Equation 10.137) and of the approximate universal modes (Equation 15.24), the
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input field is associated with the reflection coefficient of the coupling mirror. Other

treatments lack this factor. In the case of quantum noise theories (Equations 15.55

and 15.68), the mirror transmission is assumed to be small. The contribution of the

inner field is associated with the accurate transmission coefficient in our case

(Equation 10.137), while all other cases have expressions in terms of the square root

of the power damping rate. This reflects the neglect of the inner field distribution or

the use of the approximate mode function in these other theories. Note that our

formulation lead to different constants of output coupling for below- and above-

threshold operation of the laser, as shown in Section 12.9.

The natural mode theory gives the non-commuting operator relations between

the inside modes and the outside modes, but does not give a concrete input–

output relation. In the cases of the approximate universal modes (Equation 15.24),

the input–output relation involving multiple cavity modes is given. The definitions

of the input and output fields in the cases of the quantum noise theory (Equation

15.55) do not fit with our intuition. This is because the fields in these theories are

not instantaneous values but are associated with fictitious past or future times

coming from the time-reversal concept.

Second, the Langevin equation for the field inside the cavity is given in Equa-

tions 15.6a, 15.23, 15.51, and 15.70, where the noise forces are interpreted as

coming from the outer free fields. The noise correlations are associated with the

power damping rate of the cavity, which may be reinterpreted as the penetration

rate of the outer noise power. The case of our relation (Equation 15.6a) is asso-

ciated with the excess noise factor (see Equation 15.6d) in addition to the above

penetration rate. The natural mode theory does not give any Langevin equation for

the cavity mode.

We may conclude that, except for the capability of treating several cavity modes

at the same time, our methods of normal mode expansion yield the most natural

input–output relation as well as the most general Langevin equation despite the

complexity of the calculations. The problem of multiple cavity modes would not be

difficult to solve if we had tackled it from the outset. The quantum field theories in

general need complicated calculations associated with a cavity structure, although

the results are sometimes in simple forms. On the contrary, the quantum noise

theories are simple in calculations but are not applicable to a cavity with large

transmission loss. Most theories, quantum field theories or quantum noise the-

ories, lack some delicate information such as mirror transmission coefficient or

excess noise factor.

15.6

Equations for the Output Coupling and Input–Output Relation

For ease of comparison, we enumerate, in this section, the equations for the

output coupling and input–output relation given by several authors.

Ujihara (this book, [4]):

356 | 15 Quantum Theory of the Output Coupling of an Optical Cavity



d

dt
âðtÞ ¼ �gcâðtÞ þ K1=4

L K1=4
2 b̂R dþ 0; tð Þ þ K1=4

1 b̂L �0; tð Þ
n o

êþo z; tð Þ ¼ Teikdêþ �0; t� z

c0

� �

þ r0 f̂ �ot þ0; t� z

c0

� �

b̂RyðtÞb̂Rðt0Þ
D E

¼ 2gcnodðt� t0Þ

Knöll et al. [6]:

_̂amðtÞ ¼ �i om � i
G
2

� �

âmðtÞ þ G1=2eifb̂mðtÞ

_̂amðtÞ ¼ �i om þ i
G
2

� �

âmðtÞ þ G1=2e�if ĉmðtÞ

ÊðþÞout ðt� x=cÞ ¼ �rÊðþÞin ðt� x=cÞ þ
X

m

G1=2eif _om

2e0Fc

� �1=2

âmðt� x=cÞ

âm; â
y
m0

h i
¼ dmm0 ; âm; âm0½ 	 ¼ 0 ¼ âym; â

y
m0

h i

b̂mðtÞ; b̂ym0 ðt0Þ
h i

¼ dmm0dðt� t0Þ; b̂mðtÞ; b̂m0 ðt0Þ
h i

¼ 0 ¼ b̂ymðtÞ; b̂
y
m0 ðt0Þ

h i

ĉmðtÞ; ĉym0 ðt0Þ
h i

¼ dmm0dðt� t0Þ; ĉmðtÞ; ĉm0 ðt0Þ½ 	 ¼ 0 ¼ ĉymðtÞ; ĉ
y
m0 ðt0Þ

h i

Dutra and Nienhuis [7]:

FðxÞ ¼ 1
2 lim
e!0þ

�

FcavðxÞ þ ~FcavðxÞ
� 	

Yðe� xÞ þ FoutðxÞ þ ~FoutðxÞ
� 	

Yðeþ xÞ
�

½ân; âyn0 	 ¼
1

r2
½b̂n; b̂yn0 	

� ¼ i

4L
ffiffiffiffiffiffiffiffiffiffiffi
knk�n0

p
kn þ k�n0
kn � k�n0

r2 � 1

r2

½ân; b̂yn0 	 ¼ dnn0 ; ½âoutðkÞ; b̂yout0 ðk0Þ	 ¼ dðk� k0Þ

½ân; b̂yout0 ðkÞ	 ¼ r2½ânðkÞ; âoutðkÞ	 ¼ ½b̂yn; âoutðkÞ	

¼ ½b̂yn; b̂outðkÞ	 ¼
i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Lpknk

s

Gardiner and Collett [14]:

_a ¼ �ioa� 1
2ga�

ffiffiffi
g
p

binðtÞ

_a ¼ �ioaþ 1
2ga�

ffiffiffi
g
p

boutðtÞ
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boutðtÞ � binðtÞ ¼
ffiffiffi
g
p

c

boutðtÞ � binðtÞ ¼
ffiffiffi
g
p

a ðc ¼ aÞ

½binðtÞ; byinðt
0Þ	 ¼ dðt� t0Þ

Carmichael [15]:

rðþ0; tÞ ¼ rf ð0; tÞ þ
ffiffiffiffiffiffiffi
2gc

p
aðtÞ

_a ¼ �ioca� gca�
ffiffiffiffiffiffiffi
2gc

p
rf ðtÞ

rf ðtÞryf ðt
0Þ

D E
¼ dðt� t0Þ
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Appendices

Appendix A

Integration for the Field Hamiltonian

Here we derive Equation 1.47 of the text. We are assuming that

eðzÞ ¼
e1; �dozo 0

e0; 0ozoL

8
<

:

mðzÞ ¼ m0; �dozoL

ðA:1Þ

We start with Equations 1.44 and 1.46. We substitute these into Equation 1.45

using Equation 1.41 for the mode function. Now we have

H ¼
ðL

�d

eðzÞ
2

@

@t
Aðz; tÞ

� �2

þ 1

2mðzÞ
@

@z
Aðz; tÞ

� �2
" #

dz

¼
ðL

�d

eðzÞ
2

X

k

PkUkðzÞ
 !2

þ 1

2m0

X

k

Qk
@

@z
UðzÞ

 !2" #

dz

ðA:2Þ

Because of the orthonormality in Equation 1.42, the first term in the integration

becomes

ðL

�d

eðzÞ
2

X

k

PkUkðzÞ
 !2

dz ¼ 1

2

X

k

P2
k

ðL

�d
eðzÞU2

k ðzÞdz ¼ 1

2

X

k

P2
k ðA:3Þ
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The second term is

ðL

�d

1

2m0

X

k

Qk
@

@z
UkðzÞ

 !2" #

dz

¼ 1

2m0

X

k;k0
QkQk0

ðL

�d

@

@z
UkðzÞ

@

@z
Uk0 ðzÞdz

¼ 1

2m0

X

k;k0
QkQk0UkðzÞ

@

@z
Uk0 ðzÞ

�
�
�
�

0

�d

þ 1

2m0

X

k;k0
QkQk0UkðzÞ

@

@z
Uk0 ðzÞ

�
�
�
�

L

0

� 1

2m0

X

k;k0
QkQk0

ð0

�d
UkðzÞ

@

@z

� �2

Uk0 ðzÞdz

� 1

2m0

X

k;k0
QkQk0

ðL

0

UkðzÞ
@

@z

� �2

Uk0 ðzÞdz

ðA:4Þ

Since the mode function vanishes at both ends of the space, at z ¼ �d and z ¼ L,

and the mode function and its derivative are continuous at the interface, z ¼ 0, the

first and second terms on the right-hand side vanish. Also, since the mode

functions satisfy the Helmholtz equations (Equations 1.32b), the second deriva-

tives in the third and fourth terms can be replaced by �ðk01Þ
2 and �ðk00Þ

2,

respectively. From Equation 1.33 we have

ðk01;0Þ
2

m0

¼ ðok0 Þ2e1;0m0

m0

¼ ðok0 Þ2e1;0 ðA:5Þ

for inside and outside the cavity, respectively. Therefore, the third and fourth

terms in Equation A.4 reduce to

� 1

2m0

X

k;k0
Q kQ k0

ð0

�d
UkðzÞ

@

@z

� �2

Uk0 ðzÞdz

� 1

2m0

X

k;k0
Q kQ k0

ðL

0

UkðzÞ
@

@z

� �2

Uk0 ðzÞdz

¼ 1

2

X

k;k0
Q kQ k0

ð0

�d
ðok0 Þ2e1UkðzÞUk0 ðzÞdz

þ 1

2

X

k;k0
Q kQ k0

ðL

0

ðok0 Þ2e0UkðzÞUk0 ðzÞdz

¼ 1

2

X

k;k0
Q kQ k0 ðok0 Þ2

ðL

�d
eðzÞUkðzÞUk0 ðzÞdz

¼ 1

2

X

k;k0
Q kQ k0 ðok0 Þ2dkk0

¼ 1

2

X

k

o2
kQ2

k

ðA:6Þ
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where we have used the orthonormality relation in Equation 1.42 again. Thus

adding the results in Equations A.3 and A.6, we arrive at Equation 1.47.

Appendix B

Energy Eigenstates of a Single Field Mode

Here we show that the energy eigenstate of a field mode k satisfies the eigenvalue

equation

Ĥk nkj i ¼ Ek;n nkj i ¼ nk þ
1

2

� �

_ok nkj i; nk ¼ 0; 1; 2; 3; ::: ðB:1Þ

where, from Equation 2.9, the Hamiltonian is

Ĥk ¼ _ok âykâk þ
1

2

� �

ðB:2Þ

We have to show that

_ok âykâk þ
1

2

� �

nkj i ¼ _ok nk þ
1

2

� �

nkj i; nk ¼ 0; 1; 2; 3; ::: ðB:3Þ

Let us write the eigenvalue equation as

_ok âykâk þ
1

2

� �

uk; j

�
�

�
¼ Ek; j uk; j

�
�

�
ðB:4Þ

where the suffix j denotes the jth eigenvalue and the corresponding jth eigenstate.

Let us multiply âyk from the left on both sides:

_okâyk âykâk þ
1

2

� �

uk; j

�
�

�
¼ Ek; jâ

y
k uk; j

�
�

�
ðB:5Þ

By the commutation rule in Equation 2.8, the left-hand side is

_okâyk âykâk þ
1

2

� �

uk; j

�
�

�
¼ _ok âykðâ

y
kâkÞ þ

1

2
âyk

� �

uk; j

�
�

�

¼ _ok âykðâkâyk � 1Þ þ 1

2
âyk

� �

uk; j

�
�

�

¼ _ok âykâk þ
1

2

� �

âyk � âyk

� �

uk; j

�
�

�

ðB:6Þ

Adding _okâyk uk; j

�
�

�
to both sides of Equation B.5 then yields

_ok âykâk þ
1

2

� �

âyk uk; j

�
�

�
¼ Ek; j þ _ok


 �
âyk uk; j

�
�

�
ðB:7aÞ
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We add parentheses below merely for clarity:

_ok âykâk þ
1

2

� �

âyk uk; j

�
�

�� �
¼ Ek; j þ _ok


 �
âyk uk; j

�
�

�� �
ðB:7bÞ

This equation says that the state âyk uk; j

�
�

�
is a new eigenstate of Ĥk with the

eigenvalue Ek; j þ _ok. We write the state as cjþ1 uk;jþ1

�
�

�
. If we repeat the above

procedure, we see that ðâykÞ
n uk; j

�
�

�
is an eigenstate with the eigenvalue Ek; j þ n_ok,

where n is a non-negative integer. We see that the operator âyk acts to increase the

energy by _ok.

Next, let us multiply âk from the left on both sides of Equation B.4:

_okâk âykâk þ
1

2

� �

uk; j

�
�

�
¼ Ek; jâk uk; j

�
�

�
ðB:8Þ

By the commutation rule in Equation 2.8, the left-hand side is

_okâk âykâk þ
1

2

� �

uk; j

�
�

�
¼ _ok ðâkâykÞâk þ

1

2
âk

� �

uk; j

�
�

�

¼ _ok ðâykâk þ 1Þâk þ
1

2
âk

� �

uk; j

�
�

�

¼ _ok âykâk þ
1

2

� �

âk þ âk

� �

uk; j

�
�

�

ðB:9Þ

Subtracting _okâk uk; j

�
�

�
from both sides of Equation B.8 then yields

_ok âykâk þ
1

2

� �

âk uk; j

�
�

�
¼ Ek; j � _ok


 �
âk uk; j

�
�

�
ðB:10aÞ

We again add parentheses below merely for clarity:

_ok âykâk þ
1

2

� �

âk uk; j

�
�

�
 �
¼ Ek; j � _ok


 �
âk uk; j

�
�

�
 �
ðB:10bÞ

This equation says that the state âk uk; j

�
�

�
is a new eigenstate of Ĥk with the

eigenvalue Ek; j � _ok. We write the state as cj�1 uk; j�1

�
�

�
. If we repeat the above

procedure, we see that ðâkÞm uk; j

�
�

�
is an eigenstate with the eigenvalue

Ek; j �m_ok, where m is a non-negative integer. We see that the operator âk acts

to reduce the energy by _ok.

From the above results, the operator âyk is now interpreted as the photon creation

operator and âk as the photon annihilation operator.

Since the energy eigenvalue should be non-negative, we should have in general

Ek; j �m_ok � 0 ðB:11Þ

If we write the state of the smallest eigenvalue Ek,min as minj i, then we have

Ek;min � _ok o 0, and âk minj i should vanish to avoid eigenstates with negative

energies. Thus we have
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âk minj i ¼ 0 ðB:12Þ

Applying the Hamiltonian on minj i we have

Ĥk minj i ¼ _ok âykâk þ
1

2

� �

minj i ¼ 1

2
_ok minj i ðB:13Þ

Therefore, the minimum energy eigenvalue is 1
2_ok. The corresponding eigenstate

is usually written as

minj i ¼ 0j i ðB:14Þ

Thus, applying the operator âyk sequentially, we can generate the states nkj i with

energies ð1þ 1
2Þ_ok, ð2þ 1

2Þ_ok,y, ðnþ 1
2Þ_ok,y. Thus we have the energy

eigenstates and the energy levels

Ĥk nkj i ¼ Ek;n nkj i

Ek;n ¼ ðnk þ
1

2
Þ_ok; nk ¼ 0; 1; 2; 3; :::

ðB:15Þ

The integer nk is the eigenvalue for the photon number operator âykâk,

âykâk nkj i ¼ nk nkj i; nk ¼ 0; 1; 2; 3; ::: ðB:16Þ

and represents the photon number in the mode.

Finally, we determine the coefficients cn71 that appear on operating âyk or âk on a

state nkj i. We assume that the eigenstates are normalized so that

nkh jnki ¼ 1; nk ¼ 0; 1; 2; 3; ::: ðB:17Þ

According to the statement below Equation B.7b, we write

âyk uk;n

�
�

�
¼ cnþ1 uk;nþ1

�
�

�
ðB:18Þ

Taking the squared modulus of both sides we have

uk;n

� �
�âkâyk uk;n

�
�

�
¼ uk;nþ1

� �
�c�nþ1cnþ1 uk;nþ1

�
�

�
ðB:19Þ

Using the commutation relation in Equation 2.8 and Equation B.16 as well as

Equation B.17, we have

cnþ1j j2¼ nk þ 1 ðB:20Þ

We can arbitrarily choose the phase of cnþ 1 to be zero, so that

cnþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
ðB:21Þ

Similarly, according to the statement below Equation B.10b, we write

âk uk;n

�
�

�
¼ cn�1 uk;n�1

�
�

�
ðB:22Þ
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Taking the squared modulus of both sides we have

uk;n

� �
�âykâk uk;n

�
�

�
¼ uk;n�1

� �
�c�n�1cn�1 uk;n�1

�
�

�
ðB:23Þ

Using Equations B.16 and B.17 we have

cn�1j j2¼ nk ðB:24Þ

Again choosing the phase to be zero, we have

cn�1 ¼
ffiffiffiffiffi
nk
p ðB:25Þ

Therefore, from Equations B.18 and B.21 and from Equations B.22 and B.25,

respectively, we can write

âyk nkj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
nk þ 1j i; nk ¼ 0; 1; 2; 3; :::

âk nkj i ¼
ffiffiffiffiffi
nk
p

nk � 1j i; nk ¼ 1; 2; 3; :::
ðB:26Þ

and from Equations B.12 and B.14

âk 0kj i ¼ 0 ðB:27Þ

In the above, we have derived the energy eigenstates on the basis of the com-

mutation relation for the creation and annihilation operators for the mode using

the Hamiltonian in the form of the photon number operator plus one-half, mul-

tiplied by the photon energy. If, instead, we use the original Hamiltonian in

Equation 2.3, the time-independent Schrödinger equation will formally read

1

2
ðP̂2

k þ o2
kQ̂2

kÞCðQ kÞ ¼ EkCðQ kÞ ðB:28Þ

and the corresponding differential equation will read

� _2

2

@2

@Q2
k

þ o2
kQ2

k

2

� �

CðQ kÞ ¼ EkCðQ kÞ ðB:29Þ

It is known that the solutions to this equation are the Hermite–Gaussian functions

with the same eigenvalues as obtained above. Therefore, each eigenstate in the

form of a ket has a corresponding expression in the form of a Hermite–Gaussian

function of the coordinate Qk. See, for example, Schiff [1].

Appendix C

The Reservoir Model for the Cavity Loss

Here we describe a reservoir model for the cavity loss and derive the correlation

function for the associated random noise force following Haken [2].

We assume that the cavity loss is caused by a large number of loss oscillators

that are coupled to the cavity mode in question. The total Hamiltonian for the

cavity mode and the loss oscillators may be written in the form
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Ĥ ¼ _ocâ
yâþ

X

o

_ob̂yob̂o þ _
X

o

kob̂yoâþ k�ob̂oây
� �

ðC:1Þ

The first term is the Hamiltonian for the free cavity field. The vacuum energy is

subtracted, since it does not affect the interaction with the reservoir, as can be

easily verified (see Equation 13.20). The second term is the Hamiltonian for the

loss oscillators, o being the oscillation frequency of the oscillator. The third term is

the interaction Hamiltonian under the rotating-wave approximation. The coupling

constant ko is assumed to be slowly varying with frequency.

By the Heisenberg equation, the equation of motion for the field and the loss

oscillators becomes

d

dt
â ¼ �iocâ� i

X

o

k�ob̂o ðC:2Þ

d

dt
b̂o ¼ �iob̂o � ikoâ ðC:3Þ

Integrating Equation C.3 we have

b̂o ¼ �iko

ðt

0

e�ioðt�t0Þâðt0Þdt0 þ b̂oð0Þe�iot ðC:4Þ

Substituting this into Equation C.2 we have

d

dt
â ¼ �iocâ�

X

o

jkoj2
ðt

0

e�ioðt�t0Þâðt0Þdt0 � i
X

o

k�ob̂oð0Þe�iot ðC:5Þ

Truncating the cavity resonance frequency, we set

âðtÞ ¼ ~aðtÞe�ioc t ðC:6Þ

Then we have

d

dt
~a ¼ �

X

o

jkoj2
ðt

0

e�iðo�ocÞðt�t0Þ~aðt0Þdt0 � i
X

o

k�ob̂oð0Þeiðoc�oÞt ðC:7Þ

Here we assume that the density of the loss oscillators per unit angular fre-

quency is r(o) and the density is a slowly varying function of the frequency. We

have

X

o

jkoj2e�iðo�ocÞðt�t0Þ ¼
ð1

�oc

rðx þ ocÞjkxþoc j
2e�ixðt�t0Þdx ðC:8Þ

where we have set o – oc ¼ x. Since the integrand is important only around x¼ 0,

we may take rjkj2 outside the integral sign and replace the lower limit of

integration by �N with minimal error. Thus we may write

X

o

jkoj2e�iðo�ocÞðt�t0Þ � 2prðocÞjkoc j
2dðt� t0Þ ðC:9Þ

Appendix C The Reservoir Model for the Cavity Loss | 365



Thus Equation C.7 reduces to

d

dt
~a ¼ �prðocÞjkoc j

2~aðtÞ � i
X

o

k�ob̂oð0Þeiðoc�oÞt ðC:10Þ

where we have used the property of the delta function that

ðt

0

f ðt0Þdðt� t0Þdt0 ¼ 1

2
f ðtÞ ðC:11aÞ

Going back to â(t) we have

d

dt
â ¼ �iocâ� gcâðtÞ � i

X

o

k�ob̂oð0Þe�iot ðC:11bÞ

where

gc ¼ prðocÞjkoc j
2 ðC:12Þ

Now the last term in Equation C.11b gives a fluctuating force Ĝf ðtÞ ¼ ~Gf ðtÞe�ioc t.

Then ~Gf ðtÞ gives the fluctuating force for the cavity mode amplitude, the

correlation function of which is

~Gyf ðt
0Þ~Gf ðtÞ

D E
¼

X

o0
ko0 b̂

y
o0 ð0Þeiðo0�ocÞt0

X

o

k�ob̂oð0Þe�iðo�ocÞt

* +

¼
X

o

jkoj2 b̂yob̂oð0Þ
D E

e�iðo�ocÞðt�t0Þ
ðC:13Þ

~Gf ðt0Þ~Gyf ðtÞ
D E

¼
X

o0
k�o0 b̂o0 ð0Þe�iðo0�ocÞt0

X

o

kob̂yoð0Þeiðo�ocÞt

* +

¼
X

o

jkoj2 b̂ob̂yoð0Þ
D E

eiðo�ocÞðt�t0Þ
ðC:14Þ

where we have assumed the independence of different loss oscillators:

b̂o0 ð0Þb̂yoð0Þ
D E

¼ 0 for o 6¼ o0. Here the bracket signifies an ensemble average

with respect to the reservoir of the quantum-mechanical expectation value. If we

write the average number of oscillator bosons as

b̂yob̂oð0Þ
D E

¼ no ðC:15Þ

the corresponding average is

b̂ob̂yoð0Þ
D E

¼ no þ 1 ðC:16Þ

Now, assuming that no is also a slowly varying function of o, the summations in

Equations C.13 and C.14 may be performed as in Equation C.9, with the result that
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~Gyf ðt
0Þ~Gf ðtÞ

D E
¼ 2pjkoc j

2rðocÞnocdðt� t0Þ

¼ 2gcnocdðt� t0Þ
ðC:17Þ

~Gf ðt0Þ~Gyf ðtÞ
D E

¼ 2pjkoc j
2rðocÞðnoc þ 1Þdðt� t0Þ

¼ 2gcðnoc þ 1Þdðt� t0Þ
ðC:18Þ

If the approximation made in obtaining Equation C.9, namely that we replace

�oc by �N, is relaxed to the one where we replace the lower limit of integration

0 by �N, the above correlations may be rewritten as

Ĝyf ðt
0ÞĜf ðtÞ

D E
¼ 2pjkoc j

2rðocÞnocdðt� t0Þ

¼ 2gcnocdðt� t0Þ
ðC:19Þ

Ĝf ðt0ÞĜyf ðtÞ
D E

¼ 2pjkoc j
2rðocÞðnoc þ 1Þdðt� t0Þ

¼ 2gcðnoc þ 1Þdðt� t0Þ
ðC:20Þ

Thus Equation C.11 may be rewritten as

d

dt
â ¼ �iocâ� gcâðtÞ þ Ĝf ðtÞ ðC:21Þ

with Equations C.19 and C.20 taken as valid. Thus the presence of the reservoir

made up of loss oscillators results in a damping of the cavity mode plus a

fluctuating force. Then, just as in Equations 3.35–3.41, we can show the

preservation of the commutation relation:

âðtÞâyðtÞ � âyðtÞâðtÞ
� �

¼ 1 ðC:22Þ

Appendix D

Derivation of Equation 7.29: The Laplace-Transformed Solution

Here we derive Equation 7.29. We first set z ¼ �d in Equations 7.24a and 7.24b to

give

sþ g0ð Þ Lþ �d; sð Þ � Vþ �d; sð Þf g

¼ GN � 1

1� r00 sð Þ

ð0

�d
exp � zm þ dð Þs=c1f gL� zm; sð Þdzm

�

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp zm þ dð Þs=c1f gLþ zm; sð Þdzm

�
ðD:1Þ
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and

sþ g0ð Þ L� �d; sð Þ � V� �d; sð Þf g

¼ GN

ð0

�d
exp zm þ dð Þs=c1f gL� zm; sð Þdzm

2

4

� r00 sð Þ
1� r00 sð Þ

ð0

�d
exp zm þ dð Þs=c1f gLþ zm; sð Þdzm

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp zm þ dð Þs=c1f gL� zm; sð Þdzm

�

ðD:2Þ

Comparing these two equations we obtain

Lþ �d; sð Þ � Vþ �d; sð Þ ¼ � L� �d; sð Þ � V� �d; sð Þf g ðD:3Þ

Next we set z ¼ 0 in Equations 7.24a and 7.24b to give

sþ g0ð Þ Lþ 0; sð Þ � Vþ 0; sð Þf g

¼ GN � 1

1� r00 sð Þ

ð0

�d
exp � zm þ 2dð Þs=c1f g

�

L� zm; sð Þdzm

þ 1

1� r00 sð Þ

ð0

�d
exp zms=c1f gLþ zm; sð Þdzm

�

ðD:4Þ

and

sþ g0ð Þ L� 0; sð Þ � V� 0; sð Þf g

¼ GN � r00 sð Þ
1� r00 sð Þ

ð0

�d
exp zm þ 2dð Þs=c1f gLþ zm; sð Þdzm

�

þ r00 sð Þ
1� r00 sð Þ

ð0

�d
exp �zms=c1ð ÞL� zm; sð Þdzm

�

ðD:5Þ

Comparing these two equations we have

L� 0; sð Þ � V� 0; sð Þ ¼ �r00 sð Þ exp 2ds=c1ð Þ Lþ 0; sð Þ � Vþ 0; sð Þf g

¼ �r0 Lþ 0; sð Þ � Vþ 0; sð Þf g
ðD:6Þ

where we have used Equation 7.25.
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Then we set z ¼ 0 in Equations 7.28a and 7.28b to obtain

Lþ 0;sð Þ�Vþ 0;sð Þ¼
ð0

�d
exp

s

c1
� GN

sþg0ð Þ

� �

zm

� �
GN

sþg0ð ÞV
þ zm;sð Þdzm

þexp � s

c1
þ GN

sþg0ð Þ

� �

d

� �

Lþ �d;sð Þ�Vþ �d;sð Þf g
ðD:7Þ

L� 0;sð Þ�V� 0;sð Þ¼�
ð0

�d
exp � s

c1
� GN

sþg0ð Þ

� �

zm

� �
GN

sþg0ð ÞV
� zm;sð Þdzm

þexp
s

c1
� GN

sþg0ð Þ

� �

d

� �

L� �d;sð Þ�V� �d;sð Þf g
ðD:8Þ

Addition of Equation D.7 multiplied by r0 and Equation D.8 yields a null sum for

the left-hand sides because of Equation D.6. Thus the similar sum of the right-

hand sides is also zero. Therefore, eliminating L� �d; sð Þ � V� �d; sð Þf g using

Equation D.3, we obtain

r0
ð0

�d
exp

s

c1
� GN

sþ g0ð Þ

� �

zm

� �
GN

sþ g0ð ÞV
þ zm; sð Þdzm

þ r0 exp � s

c1
þ GN

sþ g0ð Þ

� �

d

� �

Lþ �d; sð Þ � Vþ �d; sð Þf g

�
ð0

�d
exp � s

c1
� GN

sþ g0ð Þ

� �

zm

� �
GN

sþ g0ð ÞV
� zm; sð Þdzm

� exp
s

c1
� GN

sþ g0ð Þ

� �

d

� �

Lþ �d; sð Þ � Vþ �d; sð Þf g ¼ 0

ðD:9Þ

We finally have

Lþ �d; sð Þ �Vþ �d; sð Þf g ¼ GN

sþ g0ð Þ

�ð0

�d
exp � s

c1
� GN

sþ g0

� �

zm

� �

�V� zm; sð Þdzm � r0
ð0

�d
exp

s

c1
� GN

sþ g0

� �

zm

� �

�Vþ zm; sð Þdzm

��

r0 exp � s

c1
� GN

sþ g0

� �

d

� �

� exp
s

c1
� GN

sþ g0

� �

d

� ���1

ðD:10Þ

The solution for L� �d; sð Þ �V� �d; sð Þf g is obtained as the right-hand side of

Equation D.10 multiplied by (�1) because of Equation D.3. Multiplying both the

numerator and the denominator by exp (�ds/c1) and writing Vþ z; sð Þ ¼ yþðzÞ and

V� z; sð Þ ¼ y�ðzÞ (because the initial driving field is assumed to be a delta function

of time), we arrive at Equation 7.29.
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Appendix E

Integrated Absolute Squared Field Strength of the Cavity Resonant Mode

In order to prove Equations 10.101 and 10.102, we evaluate

I ¼
ð0

�d
dzm

e� zmð Þj j2þ eþ zmð Þj j2

eþ �dð Þj j2

 !

ðE:1Þ

Let us set

xðzÞ ¼ e� zð Þj j2þ eþ zð Þj j2 ðE:2Þ

From Equations 8.35a and 8.35b cited above Equation 10.94a, we have

d

dz
xðzÞ ¼ 2Re a0

1þ Ez=s

�
�

�
�2

eþ zð Þj j2� e� zð Þj j2
� �

¼ 2Re a0

1þ xðzÞ=E2
s

� 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðzÞ � 4C

p� �
ðE:3Þ

where the constant C is defined in Equations 10.98a and 10.98c. Since 2 Re a0 is

positive and because of Equation 10.98b, Equations 10.94a and 10.94b show that

eþ zð Þj j2� e� zð Þj j2 is never negative. Thus we can choose the positive sign in

Equation E.3. We have

ð0

�d
2Re a0dz ¼

ðxð0Þ

xð�dÞ

1þ x=jEsj2
� �n o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4C
p dx ðE:4Þ

Integrating both sides

2Re a0d ¼ ln x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4C
p�

�
�

�
�
�

�
�
�
�

xð0Þ

xð�dÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4C
p

jEsj2

�
�
�
�
�

xð0Þ

xð�dÞ

¼ ln xð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð0Þ � 4C

p�
�
�

�
�
�� ln xð�dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð�dÞ � 4C

p�
�
�

�
�
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð0Þ � 4C

p

jEsj2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð�dÞ � 4C

p

jEsj2

ðE:5Þ

Since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð0Þ � 4C

p
¼ eþð0Þj j2� e�ð0Þj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð�dÞ � 4C

p
¼ eþð�dÞj j2� e�ð�dÞj j2¼ 0

ðE:6Þ
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where we have used Equation 10.98b, we have

2Re a0d ¼ ln 2 eþð0Þj j2
�
�
�

�
�
�� ln 2 eþð�dÞj j2

�
�
�

�
�
�þ

eþð0Þj j2� e�ð0Þj j2

E2
s

¼ ln
eþð0Þj j2

eþð�dÞj j2

 !

þ eþð0Þj j2� e�ð0Þj j2

jEsj2

ðE:7Þ

Now from Equations 8.27a and 8.27b we have

eþ 0ð Þj j2 ¼ eþ �dð Þj j2exp I 0ð Þ þ I�ð0Þf g

e� 0ð Þj j2 ¼ e� �dð Þj j2exp �I 0ð Þ � I�ð0Þf g
ðE:8Þ

and from Equations 8.28a and 8.29

I 0ð Þ þ I�ð0Þ ¼ 2Re a0I

 �

¼ Re ln
�1

r expð2ikdÞ

� �� �

¼ ln
1

r

� �

ðE:9Þ

(The I in Equation E.9 should not be confused with that in Equation E.1.)

Therefore we have

eþ 0ð Þj j2 ¼ eþ �dð Þj j2=r

e� 0ð Þj j2 ¼ e� �dð Þj j2r
ðE:10Þ

Thus Equation E.7 reads

2Re a0d ¼ ln
1

r

� �

þ 1

r
� r

� �
eþ �dð Þj j2

jEsj2
ðE:11Þ

This gives

eþ �dð Þj j2¼
ffiffiffiffi
C
p
¼ jEsj2

1

r
� r

� ��1

2Re a0d� ln
1

r

� �� �

ðE:12Þ

Next we multiply both sides of Equation E.3 by x and rewrite the result as in

Equation E.4 to have

2Re a0

ð0

�d
xðzÞdz ¼

ðxð0Þ

xð�dÞ

x þ x2=jEsj2
� �n o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4C
p dx ðE:13Þ
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The right-hand side is evaluated as

ðxð0Þ

xð�dÞ

xþ x2�4Cþ4Cð Þ=jEsj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�4C
p dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�4C
p �

�
�
xð0Þ

xð�dÞ
þ 1

2jEsj2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�4C
p

�4C ln xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�4C
p�

�
�

�
�
�

� ��
�
�
xð0Þ

xð�dÞ

þ 4C

jEsj2
ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�4C
p�

�
�

�
�
�

� ��
�
�
xð0Þ

xð�dÞ

¼ eþð0Þj j2� e�ð0Þj j2þ 1

2jEsj2
eþð0Þj j2þ e�ð0Þj j2

� �
eþð0Þj j2� e�ð0Þj j2

� �

þ 2C

jEsj2
ln

eþð0Þj j2

eþð�dÞj j2

 !

ðE:14Þ

where we have used Equation E.6. Using Equation E.10 again we have

ðxð0Þ

xð�dÞ

x þ x2 � 4C þ 4Cð Þ=jEsj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4C
p dx

¼ 1

r
� r

� �

eþ �dð Þj j2þ 1

r2
� r2

� �
eþ �dð Þj j4

2jEsj2
þ 2 eþ �dð Þj j4

jEsj2
ln

1

r

� � ðE:15Þ

where we have used Equation 10.98c. Thus the original integral in Equation E.1,

I ¼
ð0

�d
dzm

e� zmð Þj j2þ eþ zmð Þj j2

eþ �dð Þj j2

 !

¼
Ð 0

�d xðzmÞdzm

eþ �dð Þj j2
ðE:16Þ

is Equation E.15 divided by eþ �dð Þj j2 and by 2Re a0. Thus

I ¼ 1

2Re a0

1

r
� r

� �

þ 1

r2
� r2

� �
eþ �dð Þj j2

2jEsj2
þ 2 eþ �dð Þj j2

jEsj2
ln

1

r

� �( )

ðE:17Þ

Here we can use Equation E.12 for eþ �dð Þj j2=E2
s . Thus

I ¼ 1

2Re a0

1

r
� r

� �

þ
�

1

2

1

r2
� r2

� �

þ 2 ln
1

r

� �� �
1

r
� r

� ��1

� 2Re a0d� ln
1

r

� �� �� ðE:18Þ

Now from Equation 10.94c we have

2Re a0 ¼ 2ggNs0

n0 � oð Þ2þg2
� Ds0 ðE:19Þ
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where we have defined the constant D, which is equal to 2gN=c1 by Equation

10.94c. The threshold condition is obtained from Equation E.12 by setting

eþ �dð Þj j2¼ 0. We have

2Re a0
thd� ln

1

r

� �

¼ 0 ðE:20aÞ

or

Dds0
th � ln

1

r

� �

¼ 0 ðE:20bÞ

Thus by Equations E.19 and E.20b

I ¼ 1

Ds0

1

r
� r

� �

þ 1

2

1

r2
� r2

� �

þ 2 ln
1

r

� �� �
1

r
� r

� ��1

Ds0d�Ds0
thd

� 	
" #

¼ 1

r
� r

� �
1

Ds0
þ

�
1

2

1

r2
� r2

� �

þ 2 ln
1

r

� �� �
1

r
� r

� ��1

d 1� s0
th

s0

� ��

¼ d
1

r
� r

� �
s0

th

ln 1=rð Þs0
þ

�
1

2

1

r2
� r2

� �

þ 2 ln
1

r

� �� �
1

r
� r

� ��1

1� s0
th

s0

� ��

ðE:21Þ

Using the definitions gc ¼ (c1/2d) ln (1/r) (Equation 1.18) and bc ¼ ðc1=2dÞ
ð1� r2Þ=ð2rÞ (Equation 6.35), we can rearrange the terms as

I ¼ 2d
bc

gc
1þ 1� s0

th

s0

� �

gðrÞ
� �

¼ 2d
bc

gc
1þ D

1þ D
gðrÞ

� �

ðE:22Þ

where D is the fractional excess atomic inversion

D ¼ s0 � s0
th

s0
th

ðE:23Þ

and the function of the reflection coefficient r,

gðrÞ ¼ 2
lnð1=rÞ
ð1� r2Þ=r

� �2

þ
1

2
lnð1=rÞ ð1� r4Þ=r2

½ð1� r2Þ=r	2
� 1

¼ 1

2

gc

bc

� �2

þ 1þ r2

4r

gc

bc
� 1

ðE:24Þ

is monotonically decreasing from þN to 0 as r goes from 0 to 1.
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Appendix F

Some Rules on the Absolute Squared Amplitudes and Evaluation of the

Integrated Intensity

From Equation 11.5 we have in general that

jeþðz0Þj2 ¼ jeþðzÞj2 exp

ðz0

z
2Re aðzÞdz

( )

je�ðz0Þj2 ¼ je�ðzÞj2 exp �
ðz0

z
2Re aðzÞdz

( ) ðF:1aÞ

In particular we have

jeþðdÞj2 ¼ jeþð0Þj2 exp

ðd

0

2Re aðzÞdz

� �

je�ðdÞj2 ¼ je�ð0Þj2 exp �
ðd

0

2Re aðzÞdz

� � ðF:1bÞ

We define a neutral point zc, where

jeþðzcÞj2 ¼ je�ðzcÞj2 ¼
ffiffiffiffi
C
p

ðF:2Þ
Then we have

jeþðzcÞj2 ¼ jeþð0Þj2 exp

ðzc

0

2Re aðzÞdz

� �

je�ðzcÞj2 ¼ je�ð0Þj2 exp �
ðzc

0

2Re aðzÞdz

� � ðF:3Þ

and

jeþðzcÞj2 ¼ jeþðdÞj2 exp �
ðd

zc

2Re aðzÞdz

� �

je�ðzcÞj2 ¼ je�ðdÞj2 exp

ðd

zc

2Re aðzÞdz

� � ðF:4Þ

From Equations 11.10 and F.1b we obtain

jeþðdÞj2 ¼ jeþð0Þj2 1

jr1jjr2j
and je�ðdÞj2 ¼ je�ð0Þj2jr1jjr2j ðF:5Þ

Combining Equations 11.6 and 11.9 we have

jeþð0Þj2 ¼ jr1j
ffiffiffiffi
C
p

and je�ðdÞj2 ¼ jr2j
ffiffiffiffi
C
p

ðF:6Þ
Using these in Equation F.5 we have

jeþðdÞj2 ¼
ffiffiffiffi
C
p

jr2j
and je�ð0Þj2 ¼

ffiffiffiffi
C
p

jr1j
ðF:7Þ

Next we evaluate the integral I in Equation 11.12. Since we know the value of

the constant C (see Equation 11.22), Equation 11.17 gives the value of X(z)

completely. Thus the integral I in Equation 11.12 can be evaluated as follows.

Multiplying both sides of Equation 11.17 by X ¼ jeþðzÞj2 þ je�ðzÞj2, we have
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2Re a0
� 	

X dz ¼ �fX þ ðX
2=jEsj2ÞgdX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p

¼ � X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p

jEsj2
þ 4C

jEsj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4C
p

" #

dX

ðF:8Þ

Here the plus sign applies for z W zc and the minus sign for z o zc. Integrating,

we obtain

2 Re a0
� 	

I

¼�
ðXðzcÞ

Xð0Þ

fXþðX2=jEsj2ÞgdX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p þ

ðXðdÞ

XðzcÞ

fXþðX2=jEsj2ÞgdX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p �

�
�
XðzcÞ

Xð0Þ
� 1

2jEsj2
X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p

�4C ln Xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p�

�
�

�
�
�

� �
�
�
�
�
�

XðzcÞ

Xð0Þ

� 4C

jEsj2
ln Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p�

�
�

�
�
�

�
�
�
�

XðzcÞ

Xð0Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p �

�
�
XðdÞ

XðzcÞ

þ 1

2jEsj2
X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p

�4C ln Xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p�

�
�

�
�
�

� �
�
�
�
�
�

XðdÞ

XðzcÞ

þ 4C

jEsj2
ln Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�4C
p�

�
�

�
�
�

�
�
�
�

XðdÞ

XðzcÞ

¼ je�ð0Þj2�jeþð0Þj2� 1

2jEsj2
�4C ln jeþðzcÞj2þje�ðzcÞj2

� �n

� je�ð0Þj2þjeþð0Þj2
� �

je�ð0Þj2�jeþð0Þj2
� �

þ4C ln 2je�ð0Þj2
� �o

� 4C

jEsj2
ln jeþðzcÞj2þje�ðzcÞj2
� �

� ln 2je�ð0Þj2
� �n o

þjeþðdÞj2�je�ðdÞj2þ 1

2jEsj2
jeþðdÞj2þje�ðdÞj2
� �n

jeþðdÞj2�je�ðdÞj2
� �

�4C ln 2jeþðdÞj2
� �

þ4C ln jeþðzcÞj2þje�ðzcÞj2
� �o

þ 4C

jEsj2
ln 2jeþðdÞj2
� �

� ln jeþðzcÞj2þje�ðzcÞj2
� �n o

¼ je�ð0Þj2�jeþð0Þj2� 2C

jEsj2
ln jeþðzcÞj2þje�ðzcÞj2
� �n

� ln 2je�ð0Þj2
� �o

þ 1

2jEsj2
je�ð0Þj2þjeþð0Þj2
� �

je�ð0Þj2�jeþð0Þj2
� �

þjeþðdÞj2�je�ðdÞj2þ 2C

jEsj2
ln 2jeþðdÞj2
� �

� ln jeþðzcÞj2þje�ðzcÞj2
� �n o

þ 1

2jEsj2
jeþðdÞj2þje�ðdÞj2
� �n

jeþðdÞj2�je�ðdÞj2
� �

ðF:9Þ
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Substituting Equations F.2, F.6, and F.7 into Equation F.9, we obtain

2Re a0
� 	

I¼
ffiffiffiffi
C
p 1

jr1j
� jr1j

� �

� 2C

jEsj2
ln jr1jþ

C

2jEsj2
1

jr1j
þ jr1j

� �
1

jr1j
� jr1j

� �

þ
ffiffiffiffi
C
p 1

jr2j
� jr2j

� �

� 2C

jEsj2
ln jr2jþ

C

2jEsj2
1

jr2j
þ jr2j

� �
1

jr2j
� jr2j

� � ðF:10Þ

We consider the integrated intensity scaled to
ffiffiffiffi
C
p
¼ je�ðzcÞj2:

I
ffiffiffiffi
C
p ¼ 1

2Re a0f g
1

jr1j
� jr1j þ

1

jr2j
� jr2j

� ��

þ 2
ffiffiffiffi
C
p

jEsj2
ln

1

jr1jjr2j

� �

þ
ffiffiffiffi
C
p

2jEsj2
1

jr1j2
� jr1j2 þ

1

jr2j2
� jr2j2

 !) ðF:11Þ

For the remaining
ffiffiffiffi
C
p

on the right-hand side, we substitute Equation 11.22

to obtain

I
ffiffiffiffi
C
p ¼ 1

2Re a0f g
r1j j þ r2j jð Þ 1� r1j j r2j jð Þ

r1j j r2j j

�

þ 2Re a0
� 	

d� ln
1

jr1jjr2j

� �� �
r1j j r2j j

r1j j þ r2j jð Þ 1� r1j j r2j jð Þ

� 2 ln
1

jr1jjr2j

� �

þ 1

2

r1j j2þ r2j j2

 �

1� r1j j2 r2j j2

 �

r1j j2 r2j j2

( )#

ðF:12Þ

We use Equation 11.23 or

2dRe a0
th

� 	
¼ ln

1

jr1jjr2j

� �

ðF:13Þ

and

Re a0
th

� 	

Re a0f g ¼
s0

th

s0
ðF:14Þ

Thus

1

Re a0f g ¼
s0

th

s0

1

Re a0
th

� 	 ¼ s0
th

s0

2d

lnð1=jr1jjr2jÞ
ðF:15Þ

Then, we have

I
ffiffiffiffi
C
p ¼ d

s0
th

s0

r1j j þ r2j jð Þ 1� r1j j r2j jð Þ
r1j j r2j j

�

ln
1

jr1jjr2j

� �

þ d 1� s0
th

s0

� �
r1j j r2j j

r1j j þ r2j jð Þ 1� r1j j r2j jð Þ

� 2 ln
1

jr1jjr2j

� �

þ 1

2

r1j j2þ r2j j2

 �

1� r1j j2 r2j j2

 �

r1j j2 r2j j2

( )

ðF:16Þ
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Finally, we introduce the fractional excess atomic inversion D by

D ¼ s0 � s0
th

s0
th

ðF:17Þ

Then noting that s0
th=s

0 ¼ 1=ð1þ DÞ ¼ 1� D=ð1þ DÞ and that 1� ðs0
th=s

0Þ ¼
D=ð1þ DÞ, we rearrange the terms to obtain

I
ffiffiffiffi
C
p ¼ d

r1j jþ r2j jð Þ 1� r1j j r2j jð Þ= r1j j r2j j
ln 1= r1j j r2j jð Þ

�
�

1þ D
1þD

�
2 ln 1= r1j j r2j jð Þð Þ2þ1

2ln 1= r1j j r2j jð Þ r1j j2þ r2j j2

 �

1� r1j j2 r2j j2

 ��

r1j j2 r2j j2

r1j jþ r2j jð Þ 1� r1j j r2j jð Þ= r1j j r2j jð Þ2
�1

( )�

ðF:18Þ

Appendix G

Derivation of Equations 11.52a and 11.52b: Treatment of a Multilayered

Dielectric Mirror

Here we derive Equations 11.52a and 11.52b for mirrors M1 and M2. As shown in

Figure 11.1, the cavity comprises a lossless and non-dispersive dielectric of length

d for which the dielectric constant is e1, the light velocity is c1, and the refractive

index is n ¼
ffiffiffiffiffiffiffiffiffiffi
e1=e0

p
. The outside regions to the right and left of the cavity are both

half free spaces (vacuum) for which the dielectric constants are e0 and the light

velocities are c0. The mirror M1 is at the interface of the cavity dielectric and the

left half free space, and the mirror M2 is at the interface of the cavity dielectric and

the right half free space. The mirrors are assumed to be made up of several thin

layers of lossless and non-dispersive dielectrics. We assume that the thickness of

either mirror can be ignored as compared to the cavity length d. Figure G.1 depicts

the structure of M2, for example.

Let us assume that layers a, b, c, etc. are coated successively on the cavity

dielectric. The first layer of dielectric constant ea and light velocity ca extends from

z ¼ z1 to z ¼ za with thickness la ¼ za – z1; the second layer of eb and cb extends

from z ¼ za to z ¼ zb with thickness lb ¼ zb – za; and so on. The magnetic

Figure G.1 The multi-dielectric-layer mirror.
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permeability is assumed to be m0 everywhere. We write the vector potential of the

nth region as

Anðz; tÞ ¼ unðzÞe�iot; n ¼ 1; a; b; :::; o; 0 ðG:1Þ

un zð Þ ¼ aneiknz þ bne�iknz ðG:2Þ

where region 1 is the region inside the cavity; the layered region o is that facing the

outer free space; and the region 0 is the outer free space. The first term in Equation

G.2 represents the right-going wave and the second term the left-going wave in the

nth region. First we want to show that the quantities in regions 1 and 0 are related

in the form

a1eik1z1

b1e�ik1z1

 !

¼
A B

B� A�

� � a0eik0zo

b0e�ik0zo

 !

ðG:3Þ

where the quantities A ¼ A(o) and B ¼ B(o) are some definite functions of o
determined by the mirror structure; and A� and B� are their respective complex

conjugates.

The electric and magnetic fields are given as

En zð Þ ¼ �ioðaneiknz þ bne�iknzÞ ðG:4Þ

m0Hn zð Þ ¼ iknaneiknz � iknbne�iknz ¼ ðio=cnÞ aneiknz � bne�iknz

 �

ðG:5Þ

At any boundary, both the electric and magnetic fields should be continuous. Thus

at the right interface zn of the nth region we have

aneiknzn þ bne�iknzn ¼ anþ1eiknþ1zn þ bnþ1e�iknþ1zn ðG:6Þ

ð1=cnÞ aneiknzn � bne�iknzn

 �

¼ ð1=cnþ1Þ anþ1eiknþ1zn � bnþ1e�iknþ1zn

 �

ðG:7Þ

Therefore for the boundary at z ¼ zn we have

aneiknzn

bne�iknzn

 !

¼ Mn;nþ1ðznÞ
anþ1eiknþ1zn

bnþ1e�iknþ1zn

 !

ðG:8Þ

where

Mn;nþ1ðznÞ ¼

1

2
ð1þ cn=cnþ1Þ

1

2
ð1� cn=cnþ1Þ

1

2
ð1� cn=cnþ1Þ

1

2
ð1þ cn=cnþ1Þ

0

B
B
@

1

C
C
A ðG:9Þ

The propagation in the (n þ 1)th region is described as

378 | Appendices



anþ1eiknþ1zn

bnþ1e�iknþ1zn

 !

¼ Mnþ1ðzn; znþ1Þ
anþ1eiknþ1znþ1

bnþ1e�iknþ1znþ1

 !

ðG:10Þ

where

Mnþ1ðzn; znþ1Þ ¼
e�iknþ1 lnþ1 0

0 eiknþ1 lnþ1

 !

ðG:11Þ

It is clear that the matrix that should appear in Equation G.3 is

M1;0ðz1; zoÞ ¼ M1;aðz1ÞMaðz1;zaÞMa;bðzaÞMbðza; zbÞ   Mo;0ðzoÞ ðG:12Þ
As shown by Equations G.9 and G.11, all the component matrices have the

property of the matrix in Equation G.3, that is, the lower left element and the lower

right element are, respectively, the complex conjugate of the upper right element

and upper left element. But it is easy to show that a product of two such matrices

has the same property:

a b

b� a�

0

@

1

A
g d

d� g�

0

@

1

A ¼
agþ bd� adþ bg�

b�gþ a�d� b�dþ a�g�

0

@

1

A

¼
agþ bd� adþ bg�

ðadþ bg�Þ� ðagþ bd�Þ�

8
<

:

9
=

;

ðG:13Þ

Therefore, the product of an arbitrary number of matrices having this property

also has this same property. Thus the matrix in Equation G.12 and, consequently,

that in Equation G.3 should have this property. Thus we have proved the form of

the matrix in Equation G.3.

Now we prove Equations 11.52a and 11.52b using Equation G.3. First consider

the energy conservation among the input and output waves to the mirror M2.

Because the layers are all lossless, the sum of the input powers should be equal to

the sum of the output powers:

e1c1o2ja1j2 þ e0c0o2jb0j2 ¼ e1c1o2jb1j2 þ e0c0o2ja0j2 ðG:14Þ

Since e1c1=ðe0c0Þ ¼ n we have

nðja1j2 � jb1j2Þ ¼ ja0j2 � jb0j2 ðG:15Þ

Using Equation G.3

a1j j2� b1j j2 ¼ Aa0eik0zo þ Bb0e�ik0zo
�
�

�
�2� B�a0eik0zo þ A�b0e�ik0zo
�
�

�
�2

¼ ðjAj2 � jBj2Þð a0j j2� b0j j2Þ
ðG:16Þ

The above two equations give

nðjAj2 � jBj2Þ ¼ 1 ðG:17Þ

Next, from Figure 11.1 and Equation G.3 we have
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r2 ¼
b1e�ik1z1

a1eik1z1

�
�
�
�
b0¼0

¼ B�

A
; r02 ¼

a0eik0z0

b0e�ik0z0

�
�
�
�
a1¼0

¼ �B

A
ðG:18Þ

T2 ¼
a0eik0zo

a1eik1z1

�
�
�
�
b0¼0

¼ 1

A
ðG:19Þ

where the expression for r02, the reflectivity for the wave incident from outside, has

been given for completeness. When a1 ¼ 0, Equation G.3 yields

0 ¼ Aa0eik0zo þ Bb0e�ik0zo

b1e�ik1zi ¼ B�a0eik0zo þ A�b0e�ik0zo

ðG:20Þ

Thus

T 02 ¼
b1e�ik1z1

b0e�ik0zo

�
�
�
�
a1¼0

¼ �B�
B

A
þ A� ¼ jAj

2 � jBj2

A
ðG:21Þ

From Equations G.18 and G.19 we have

jT2j2

jr2j
¼ j1=Aj2

jB=Aj ¼
1

jABj ðG:22Þ

Using Equation G.17

jT2j2

jr2j
¼ nðjAj2 � jBj2Þ

jABj ¼ n
A

B

�
�
�
�

�
�
�
��

B

A

�
�
�
�

�
�
�
�

� �

¼ n
1

jr2j
� jr2j

� �

ðG:23Þ

Also, from Equations G.18 and G.21 we have, using Equation G.17 again,

jT 02j
2

jr2j
¼ ðjAj

2 � jBj2Þ2=jAj2

jB=Aj ¼ ðjAj2 � jBj2Þ A

B

�
�
�
�

�
�
�
��

B

A

�
�
�
�

�
�
�
�

� �

¼ 1

n

1

jr2j
� jr2j

� � ðG:24Þ

Thus we have proved Equations 11.52a and 11.52b for mirror M2. These cal-

culations leading to Equations G.23 and G.24 can be repeated for mirror M1, with

results where r2 is replaced by r1. To do this, we may rotate Figure 11.1 by 1801 so

that the mirror M1 comes to the right-hand side of the cavity. Then, except for the

particular forms of the constants A and B in Equation G.3, all the procedure from

Equations G.1 to G.24 are applicable with replacement of the suffix 2 by suffix 1 for

r, r0, T, and T00.
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Appendix H

Spontaneous Emission Spectrum Observed Outside the Cavity

Here we show that the spontaneous emission spectrum observed outside the cavity

is given in general by Equation 13.65. We start with Equation 13.58. We first use

the definition in Equation 13.61 of D(t). Thus Equation 13.58 reads

IðzB; tÞ ¼
X

j

m�A
1

2
ojUjðzBÞUjðzAÞe�iðoj�oAÞt

ðt

0

dt0 eioj t0e�ioAt0Cuðt0Þ
�
�
�
�
�

�
�
�
�
�

2

¼ mAj j2 oAj j2
X

j

1

2
UjðzBÞUjðzAÞe�iðoj�oAÞt

ðt

0

dt0 eioj t0Dðt0Þ
�
�
�
�
�

�
�
�
�
�

2
ðH:1Þ

where we have taken oj out of the summation sign and replaced it by oA because

the spectrum of D(t) is sharply peaked at oA. We formally rewrite D(t0) in the form

of the inverse Fourier transform:

IðzB; tÞ

¼ mAj j2 oAj j2
X

j

1

2
UjðzBÞUjðzAÞe�iðoj�oAÞt

ðt

0

dt0 eioj t0
ð1

�1
DðoÞe�iot0do

�
�
�
�
�

�
�
�
�
�

2

¼ mAj j2 oAj j2
ð1

�1

X

j

1

2
UjðzBÞUjðzAÞe�iðoj�oAÞt

ðt

0

dt0 eioj t0e�iot0DðoÞdo
�
�
�
�
�

�
�
�
�
�

2

ðH:2Þ

where we have moved the integration sign for frequency to the top. As we are now

considering the spectrum, we may take the time t to be large, so that the time

integral becomes

ðt

0

dt0 eioj t0e�iot0 !
ð1

0

dt0 eiðoj�oÞt0 ¼ izðoj � oÞ ðH:3Þ

where the zeta function was defined in Equation 2.53b and is here meaningful

only for oj ¼ o. Thus we have

IðzB; tÞ ¼ mAj j2 oAj j2

�
ð1

�1

X

j

1

2
UjðzBÞUjðzAÞzðoj � oÞ

( )

e�iðo�oAÞtDðoÞdo
�
�
�
�
�

�
�
�
�
�

2 ðH:4Þ

Now the quantity in the curly bracket is i times the response function YðzB; zA;oÞ
as given by Equation 2.53a. Thus we have
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IðzB; tÞ ¼ mAj j2 oAj j2
ð1

�1
YðzB; zA;oÞe�iðo�oAÞtDðoÞdo

�
�
�
�

�
�
�
�

2

¼ mAj j2 oAj j2
ð1

�1
YðzB; zA;oÞDðoÞe�iotdo

�
�
�
�

�
�
�
�

2
ðH:5Þ

Thus the field amplitude at the observation point zB is proportional to the

integral inside the absolute value sign, which is in the form of the inverse

Fourier transform of YðzB; zA;oÞDðoÞ. Thus the Fourier spectrum of the

field amplitude is proportional to YðzB; zA;oÞDðoÞ and for the power spectrum

we have

SðzA; zB;oÞ ¼ o2
AjmAj2 DðoÞj j2 YðzB; zA;oÞj j2 ðH:6Þ

Appendix I

Correspondence of the Noise Polarization to the Noise Field

Here we show the correspondence of the noise polarization in Equation 14.15 and

the noise field in Equation 14.110. Both of these represent the quantum noise

associated with spontaneous emission. The temporal and spatial correlation for the

noise polarization in the classical sense is written from Equation 14.15 as

P�ðz; tÞPðz0; t0Þh i ¼ 4_e
o

gN2dðt� t0Þdðz� z0Þ

and from Equation 14.110 the reservoir average of the quantum-mechanical

expectation value for the product of the noise electric field is

2e1c1 f̂ ymðtÞf̂m0 ðt0Þ
D E

¼ fgð1þ sÞ_o=c1gdmm0dðt� t0Þ

These noise terms appear in Equations 14.12 and 14.93, respectively, as

2i _aðtÞeCNCðzÞ ¼
k2 � em0o

2

m0o
aðtÞCNCðzÞ þ o~Pðz; tÞ

and

deðz; tÞ
dt

¼ s0eðz; tÞ þ c1

2d
Fqðz; tÞ

In Equation 14.93 cited above, we have omitted the factor g0=ðg0 þ g0cÞ describing

the bad cavity and detuning effects, which are not considered in Equation 14.15.

Also, in Equation 14.93 above, the thermal noise term has been omitted. Fq (z,t)
and f̂mðtÞ are related as in Equation 14.94b. In view of the expression for

the electric field in Equation 14.8, Equation 14.12 above may be rewritten

formally as
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d

dt
eðz; tÞ ¼ s0eðz; tÞ þ o

2ie
~Pðz; tÞ ðI:1Þ

where e (z,t) is the slowly varying envelope of the positive frequency part of the

electric field. In view of Equation 14.107, where the noise source projected onto the

adjoint mode function reproduces the adjoint mode function, the noise Fq (z,t)
may be written effectively as

Fqðz; tÞ ¼ 2d
X

m

f̂mdðz� zmÞ ðI:2Þ

We may convert the discrete noise source in Equation I.2 into a spatially con-

tinuous noise field

Fqðz; tÞ ¼ 2d
X

m

f̂mdðz� zmÞ ! 2df̂ ðz; tÞ ðI:3Þ

with the property

f̂ yðz0; t0Þf̂ ðz; tÞ
D E

¼
X

m0

X

m

dðz0 � zm0 Þdðz� zmÞ f̂ ym0 ðt0Þf̂mðtÞ
D E

¼
X

m

dðz0 � zÞ f̂ ymðt0Þf̂mðtÞ
D E

¼ gð1þ sÞ_o=c1

2e1c1
Ndðz0 � zÞdðt� t0Þ

ðI:4Þ

where Equation 14.110 has been used in the third line. The spatial density of

atoms N per unit length has been taken into account. Now, by Equations I.2 and

I.3, Equation 14.93 is rewritten as

deðz; tÞ
dt

¼ s0eðz; tÞ þ c1 f̂ ðz; tÞ ðI:5Þ

and the last terms of Equations I.1 and I.5 correspond to each other. We take the

correlation functions of these two and compare them. For Equation I.1 we have

o
2ie

~Pðz; tÞ
n o� o

2ie
~Pðz; tÞ

D E
¼ o2

4e2

4_e
o

gN2dðt� t0Þdðz� z0Þ

¼ _o
e
gN2dðt� t0Þdðz� z0Þ

ðI:6Þ

where Equation 14.15 has been used. For Equation I.5 we have

c1 f̂ ðz; tÞ
n oy

c1 f̂ ðz; tÞ
� �

¼ c2
1

gð1þ sÞ_o=c1

2e1c1
Ndðz0 � zÞdðt� t0Þ

¼ gð1þ sÞ_o
2e1

Ndðz0 � zÞdðt� t0Þ
ðI:7Þ

where Equation I.4 has been used. Since N (1þs) ¼ 2N2 and the e in Equation

I.6 is e1 if applied to the case of the two-sided cavity in Figure 11.1, the correlation

function in Equation I.6 for the noise ‘‘polarization’’ has an exact correspondence
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to that for the noise ‘‘field’’ in Equation I.7. Note that Equation I.6 is a classical

reservoir average, whereas Equation I.7 is a reservoir average of a quantum-

mechanical expectation value.
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Index

a
absorption loss, 354

adjoint function, 296

adjoint mode, 294, 323, 327, 344

adjoint mode function, 146, 313, 382

adjoint mode theory, 311

amplification

– noise, 233

amplified quantum noise, 220

amplified thermal field, 220

amplitude gain, 64, 114, 122, 124, 177, 250

– unsaturated, 215

amplitude noise, 241

– suppression, 241

amplitude–phase coupling, 259

amplitude reflectivity, 4

annihilation, 342

annihilation operator, 23, 30, 48, 349, 351

– electron, 49, 83

– photon, 362

anticommutation relation, 49, 84

anti-normally ordered correlation function,

76, 202, 213

asymmetric cavity, 240

asymmetry effect, 240

atom, 49, 83, 246

– natural linewidth, 245–246

– transition frequency, 49

atom–field coupling coefficient, 84

atom–field interaction, 49, 51, 84

atomic dipole, 52, 55, 324

– damping constant, 56

atomic inversion, 55, 65, 74, 84, 103, 120, 124,

137

– average, 128

– constant, 61, 67, 103, 134, 135, 171

– excess, 198, 252, 373, 377

– incomplete, 246

– nonlinear, 173

– operator, 52

– relaxation constant, 56

– saturation, 64, 66, 74, 119

– space-averaged, 178

– steady state, 67, 122, 128, 178, 249

– threshold, 67, 128, 178, 217, 249

– uniform, 106

– unsaturated, 121, 124, 170

atomic polarization, 85

– decay rates, 243

atomic transition frequency, 244

atomic width, 56

atoms, density of, 116

b
backward-propagating wave, 294

bad cavity, 245

bad cavity effect, 219, 245

bi-orthogonality, 320, 347

boundary condition, 295, 351

– cyclic, 12

– dielectric surface, 1

– non-Hermitian, 294

– perfect conductor, 1

– periodic, 12, 351

– temporal, 350

c
causality, 343, 351

cavity

– asymmetric, 240

– damping rate, 248, 249, 353

– decay constant, 112, 217, 219, 248, 337

– decay rate, 243, 245, see cavity decay

constant

– decay time, 157

– dielectric slab, 283

– eigenfrequency, 4

– Fabry–Perot, 289, 310
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– half-width, 157

– layered, 38

– loss, 178, 364

– loss rate, 250, 253

– mode, 364

–– incoming, 3

–– natural, 1

–– outgoing, 3

– mode function

–– normalized, 342

– one-sided, 2

– perfect, 48

– resonance frequency, 219, 244

– resonant mode, 3, 33, 37, 47, 92, 93, 145, 370

–– excitation, 37, 114, 153

–– normalized, 92

– round-trip time, 273

– stable, 318

– stratified, 38

– two-sided, 5

– unstable, 318

– width, 55

closure relation, 323, 324, 347

coherence function of second order, 30

coherent interaction, 52, 81, 85

collective electric field, see total electric field

collective mode amplitude, see total electric

field

commutation relation, 23, 26, 48, 53, 83, 319,

323, 343, 361, 367

– field, 26

commutation rule, see commutation relation

commutator, 23, 54, 346

complete set, 295

completeness, 17, 82

continuous mode laser, 235

continuous mode theory, 78, 85

contour integral method, 91

correction factor, 100, 162, 164, 167, 199, 227

correlation function, 29, 69, 89, 134, 213, 228,

237, 242, 296, 317, 364, 366, 383

– anti-normally ordered, 30, 77, 202, 238

– field, 156

– inside the cavity, 161

– normally ordered, 30, 77, 202, 228, 236, 238

– outside the cavity, 161

– symmetrically ordered, 77, 202, 237, 238

Coulomb gauge, 2

coupling coefficient, 51, 52, 324, 349, 351, 365

coupling constant, 351

– see also coupling coefficient

creation operator, 23, 30, 48, 83, 349, 351

– electron, 49, 83

– photon, 362

current, 281

– driving, 281

– source, 31

cyclic boundary condition, 12

d
damping, 55

– factor, see cavity damping rate

– rate

–– cavity, 248, 249

– reservoir, 54

decay constant, 55, 271

delay differential equation, 272, 287

delay time, 104, 107, 115, 120, 136, 168, 180,

273, 280

delta function, 16, 18, 27, 366

density of atoms, 63, 116

density of modes, 15, 351

density operator, 28

detuning, 243

detuning effect, 259

diffusion coefficient, 54, 57, 309

dipole amplitude, 84

dipole damping rate, 195

dipole interaction, 51

dipole operator, 55

dispersion, 177, 244, 245

driving current, 37, 88

– effective, 88

e
effective current, 88

eigenmode, 327

– frequency, 40

eigenstate, 361

eigenvalue, 24, 361

– equation, 24, 361

Einstein relation, 57, 325

electric dipole approximation, 50, 84

electric dipole matrix element, 64, 84

electric dipole operator, 268

electric displacement, 347

electric field, 1, 25, 29, 62, 83, 86, 103, 120,

347, 352, 378, 382

– negative frequency part, 25, 29, 83

– positive frequency part, 25, 29, 62, 83, 86,

340, 351, 382

emission spectrum, 272, 282

energy damping rate,

see cavity damping rate

energy eigenstate, 24, 361

energy eigenvalue, 268

excess noise

– adjoint mode theory, 293
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– experiment, 329

– factor, 164, 264, 293, 298, 310, 317, 322, 325,

326, 332, 335, 339

– Green’s function theory, 306

– multimode theory, 329

– physical origin, 302

– polarization, 328, 332

– propagation theory, 311

– quantum theory, 319

– theory, 319, 323

– transverse, 318, 330

f
field amplitude, 107, 128, 218

field correlation function, 75, 189

field decay, 53

field distribution, 240

– flat, 301

– non-uniform, 240, 301

field equation

– inside the cavity, 104, 108, 119

field Hamiltonian, 11

field inside the cavity, 113, 144, 169

field intensity, 279

– outside the cavity, 288

field outside the cavity, 114, 129, 154, 202

filling factor, 258

flipping operator, 49, 83

fluctuation–dissipation theorem, 28, 31, 55, 343

four-level atom, 247

fractional excess atomic inversion, 198, 200,

224, 252

Fresnel number, 331

g
gain

– saturation, 119, 167

– space-averaged, 178

– unsaturated, 178

gain-guided laser, 318

good cavity, 245

Green’s function, 306

h
Hamiltonian, 346, 349, 364

– atom, 49, 51, 268

– field, 11, 14, 48, 51, 83, 268, 359

– interaction, 50, 51, 268, 286, 324

– operator, 23

heat bath, see reservoir

Heisenberg equation, 30, 50, 84, 365

Heisenberg picture, 26

Helmholtz equation, 360

Henry factor, 259

Hermite–Gaussian function, 364

Hermitian adjoint, see Hermitian conjugate

Hermitian conjugate, 52, 75, 190

homogeneous broadening, 62, 114, 117, 141,

170, 184, 195

homogeneously broadened atoms, 62, 68, 74,

93, 96, 106, 121, 137, 170, 316

i
incoherent process, 53

incoherent transition rate, 247

incoming mode, 3, 294

incoming wave, 344

incomplete inversion, 253

incomplete inversion factor, 73

index-guided laser, 318

inhomogeneous broadening, 259

initial field, 103

initial wave excitation factor, 302, 318

input noise, 236

input–output relation, 336, 342, 343, 349, 350,

351, 354, 356

intensity noise, 328, 332

interaction Hamiltonian, 84

internal loss, 260

inversion, 171, see atomic inversion

– saturated, 171

k
Kronecker delta, 10, 16

l
Langevin equation, 309, 324, 337, 338, 342,

350, 354, 355

– spatial, 355

– time-reversed, 350

Langevin force, 33, 35, 53, 54, 55, 85, 141

– thermal, 343

Langevin noise, 89, 237, 324, 326, 338, 342

– quantum, 237

– thermal, 335, 342

– see also Langevin force

Laplace-transformed equation, 109, 138, 171

Laplace-transformed noise force, 140

laser, 81, 91, 103, 119, 133, 167, 211, 235

laser equation of motion, 53, 81, 86, 108

laser linewidth, 73, 77, 99, 162, 163, 164, 188,

242, 244, 246, 310, 330

– below threshold, 162

– non-power-reciprocal part, 167

– power-independent part, 310

– standard form, 73

laser mode, 319

laser theory, 61
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level scheme, 246, 253

linear gain analysis, 61, 67, 228, 296, 311

– quantum, 67, 95, 133

– semiclassical, 61, 91, 103

linear pulling, 63, 226, 244

linewidth, 199, 223, 228, 229, 231, 253, 264,

297, 325

– above-threshold, 241, 243

– below-threshold, 241, 243

– enhanced, 258

– power-independent part, 201, 227, 251, 252

longitudinal excess noise factor, 164, 201, 227,

239, 257, 299, 310, 311, 314, 316, 322, 329

– above threshold, 240

– below threshold, 239

– generalized, 227, 232

longitudinal Petermann factor, 164

loss oscillator, 364

lower laser level, 83

m
magnetic field, 1, 378

magnetic flux, 347

Markovian noise, 37, 55, 56, 337

microcavity, 56

– planar, 290, 291

mode

– amplitude, 84

– counter-propagating, 300

– density of, 15

– distribution, 15

– radius, 289

– resonant, 1

mode function, 10

– normalization, 10

– orthogonality, 41

– orthonormal, 11, 14

– TE, 284

– TM, 284

– of the ‘‘universe’’, 7, 12

mode of the ‘‘universe’’, 40

modes, 326

– bi-orthogonal, 294

– non-power orthogonal, 294

– power orthogonal, 294

– two non-orthogonal, 326

modes of the ‘‘universe’’, 82

– orthogonal, 9

multilayered dielectric mirror, 223, 377

n
natural cavity mode, 1

natural mode, 344

natural mode quantization, 344

natural resonant mode, 7

noise, 140, 168

– amplification, 233, 240, 241

– enhancement factor, 164

– field, 296, 382

– force, 135

–– delta-correlated, 213

–– random, 295

– photon injection rate, 314

– polarization, 296, 307, 317, 382

– source, 211, 236

nonlinear gain analysis, 61

– quantum, 74, 100, 167

– semiclassical, 64, 94, 119

nonlinear gain regime, 190, 214, 223, 249

non-orthogonal mode quantization, 323

non-orthogonality, 5, 347

normal mode, 7

normal mode expansion, 336, 343

normalization, 10

normalization constant, 15, 43, 82, 256, 284,

285, 297, 300, 308, 313

– Fourier series expansion, 17, 104, 273, 285

– resonant mode expansion, 17, 275

normalization factor, see normalization

constant

normally ordered correlation function, 202,

238

normally ordered product, 30, 76, 315

number operator, 49

– electron, 49

o
one-sided cavity, 2, 7, 238, 239, 240, 244, 248,

250, 252, 336, 339

– dielectric-slab mirror, 339

– laser, 256

operator ordering, 238

– anti-normal, 51

– mixed, 51

– normal, 51

optical cavity, 267, 335

– one dimensional, 1, 23

orthogonal modes, 7

orthogonality, 5

orthonormality, 10, 43, 82, 359

oscillating dipole, 84

oscillation amplitude, 74

oscillation frequency, 67, 74, 178

outgoing mode, 3, 294, 312

outgoing mode function, 98

outgoing wave, 117, 131, 344

output coupling, 1, 23, 81, 86, 91, 103, 119,

133, 167, 235, 267, 356
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– constant of, 247

– Green’s function theory, 355

– input–output theory, 336, 349, 351

– optimum, 263

– quantum field theory, 335, 336

– quantum noise theory, 336, 349, 354

– quantum theory, 335

– quasimode theory, 355

output field, 221

output power, 73, 77, 163, 199, 225, 232, 253,

297, 325, 330

p
perfect cavity, 48

periodic boundary condition, 12, 351

perturbation approximation, 270

phase diffusion, 74, 167, 188, 190, 221

phase quadrature, 321

photon annihilation operator, 362

photon creation operator, 362

photon number operator, 24, 363

polarization, 295

polarization excess noise factor, 328

population inversion, 77

power damping factor, 164

power gain, 196

power-independent part of the linewidth, 251

power output, see output power

power spectrum, 29, 71, 134, 163, 189, 229,

280, 381

projection, 295, 313, 320, 345, 348

projection operator, 348

propagation function, 340

propagation method, see propagation theory

propagation theory, 211, 233

– generalized, 311

pumping, 65, 85, 97, 114, 117, 121, 137, 141,

170, 195, 316

q
quantization, 23

quantum field theory, 335, 336

quantum linear gain analysis, 67, 95, 133

quantum mechanical analysis, 86

quantum noise, 73, 88, 89, 95, 141, 148, 170,

181, 182, 183, 213, 228, 237, 311, 382

– amplified, 220

– outside the cavity, 206

– right- and left-traveling parts, 138

– theory, 336, 349, 354

quantum nonlinear gain analysis, 74, 100, 167

quasimode, 47

quasimode cavity, 244, 248

quasimode laser, 47, 61, 235, 238, 249, 251,

254, 260

quasimode theory, 77, 355

r
Rabi frequency, 277

Rabi oscillation, 275, 290

– damped, 272, 291

reflection coefficient, 164, 373, 379

– amplitude, 211

reflectivity

– amplitude, 4, 201

– see also reflection coefficient

refractive index, 223, 377

relative detuning, 63, 71

relaxation, 55

– atomic dipole, 55

– atomic inversion, 55

reservoir, 346, 349, 351

– average, 54

– damping, 54, 56

– model, 55, 364

– pumping, 56

resonant mode, 275

response function, 31, 281, 282

retardation time, see delay time

retarded time, 155

– see also delay time

rotating-wave approximation, 51, 84, 268, 365

s
saturated gain regime, 251

– see also nonlinear gain regime

saturated inversion, 171

saturation effect, 61

saturation parameter, 66, 123, 202, 250

saturation power, 200, 226

scattering loss, 354

Schawlow–Townes linewidth formula, 73

Schrödinger equation, 24, 267, 268

semiclassical

– linear gain analysis, 61, 91, 103

– nonlinear gain analysis, 64, 94, 119

– theory, 61

semiconductor laser, 301, 310

single path gain, 220

space-averaged gain, 178

spatial hole, 66

spatial hole burning, 263

spinor notation, 305, 345

spontaneous emission, 85, 237, 254, 256, 258,

267, 293, 323, 382

– enhancement, 288, 290, 302

– experiment, 289
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– factor, 73, 300, 318

– inhibition, 288, 289, 290

– noise, 320

– rate, 253, 270, 272, 288

–– free vacuum, 286

–– one-dimensional dielectric, 270

– spectrum, 279

–– outside the cavity, 279, 380

squeezed state, 335

stabilized amplitude, 75, 188, 221, 242, 325

stable cavity, 330

steady state, 65, 74, 122, 171, 130, 214

– atomic inversion, 249, 251

– condition, 65, 313, 325

– inversion, 217

–– space-averaged, 217

– oscillation frequency, 125

stimulated absorption, 108

stimulated emission, 64, 108, 293

stimulated emission rate, 253

stimulated transition rate, 64, 66

stored energy, 77

strong coupling regime, 277

symmetric cavity, 278

symmetrically ordered correlation function,

202, 238

system, 346, 249

t
thermal field

– amplified, 220

thermal noise, 73, 88, 89, 95, 140, 146, 170,

181, 182, 205, 208, 212, 228, 236, 311

– ambient, 208, 338, 339

– outside the cavity, 205, 208

– penetration, 187

– right- and left-traveling parts, 138

thermal photon, 54, 213, 257

– injection rate, 257

– number, 158

thermal radiation, 28

thermal radiation field, 28

– density operator, 28

three dimension, 283, 316

three-level atom, 247

threshold, 114, 250, 264

threshold atomic inversion, 69, 93, 128, 144,

249

threshold condition, 98, 214, 217

– atomic inversion, 63

– oscillation frequency, 63

threshold frequency, 69

threshold oscillation frequency, 93, 144

threshold population inversion, 126

time reversal, 349

time-varying phase, 75

total electric field, 88, 343

total field, 151

total field amplitude, 86

total spontaneous emission rate, 253, 257,

299, 309, 316

– enhanced, 258

transmission coefficient, 115, 118, 131, 155,

188, 199, 202, 281, 338

– amplitude, 211

transmission loss, 1

transverse effect, 316

transverse quantum correlation length, 289

two-component vector, see spinor notation

two oppositely traveling waves, 108, 123, 137

– right-and left-traveling waves, 170

two-level atom, 49, 83, 246, 267

two-side output coupling, 211

two-sided cavity, 239, 253

– asymmetric, 212

– generalized, 239, 244, 249, 251, 311, 312, 338

– laser, 261

– symmetric, 5, 12, 267

two sided cavity laser, 258

u
unit step function, 109, 142, 171, 307, 341,

351

universe, 7

unsaturated atomic inversion,, 170, 251

unsaturated gain, 177, 178

unstable cavity, 330, 331

upper laser level, 83

v
vacuum fluctuation, 85, 213, 236, 237, 322

vector potential, 1, 25, 377

velocity of light, 2

w
wave equation, 295

wavefunction, 286

wavenumber, 3, 295

weak coupling regime, 278

Wigner–Weisskopf approximation, 271

Wronskian, 307

z
zero-point energy, 24

zeta function, 32, 381
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