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Abstract 

Electrocardiogram (ECG) is the graphical illustration of heart activity to diagnose various 

cardiovascular diseases. Presence of Power Line Interference (PLI) in ECG makes it difficult for 

the examiner to identify proper working of heart. To remove such interference different types of 

adaptive noise cancellers have been implemented. All the adaptive algorithms previously 

implemented for such purpose have either better convergence, mean square error (MSE) or better 

complexity. So a new algorithm named SSLMS is implemented to have a compromise between 

the previously mentioned parameters. Using SSLMS, first impulsive component of PLI has been 

removed and comparison of it has been made with NLMS, RLS and SSRLS algorithms. In later 

work, PLI having known frequency is estimated using sinusoidal model of SSLMS algorithm and 

comparisons are made with SSRLS algorithm. Later PLI with unknown frequency is being tracked 

by first converging to its true frequency and then estimating it based to the new value of frequency. 

In the end PLI with unidirectional and bidirectional frequency is being estimated and removed 

from ECG signal. Moreover, every simulation using SSLMS has also been compared with those 

of SSRLS algorithm. As SSRLS has better convergence and MSE but exceptionally high 

computational complexity than that of SSLMS algorithm, so a new hybrid algorithm is proposed 

that combines the best features of both SSRLS and SSLMS algorithms. This algorithm has faster 

convergence than that of SSLMS algorithm and lower computational complexity than SSRLS 

algorithm. Moreover, its MSE is lower than those of both SSRLS and SSLMS algorithm. 

Simulation results prove the enhanced performance of the proposed hybrid. 

 

 

Key Words: Power Line Interference, Electrocardiogram, SSLMS, SSRLS,, frequency tracking, 

adaptive filters, convergence, MSE, computational complexity, robustness 
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CHAPTER 1: INTRODUCTION 

 

In this chapter, a short overview of my work is presented. The motivation behind this work, 

Problem statement and basics of ECG are discussed along with its importance in diagnosing 

various heart diseases. Moreover, types of noises that usually affect ECG are also discussed in 

detail in order to elaborate the need of noise removal from ECG. 

1.1 Motivation: 

 Cardiovascular disease includes a group of disorders related to heart and blood vessels. 

According to World Health Organization (WHO), cardiovascular diseases are on top of the list of 

diseases causing global deaths annually [1],[2]. WHO reports in 2012 show that approximately 

17.5 million deaths, which is 31% of the world population, have occurred due to cardiovascular 

diseases [2] among which 7.4 million were cases of coronary heart disease and stroke was a cause 

of 6.7 million [2]. And with this rate, predictions are that death rate due to cardiovascular diseases 

can reach up to 23.3 million  within fifteen years [3]. In order to avoid this predictive death rate, 

there must be some efficient system to diagnose heart diseases at an early stage. In order to identify 

such diseases, a graphical illustration of electrical activity by heart are represented in a form of 

waveform. Such waveforms are called Electrocardiogram (ECG) and are used by medical 

examiners to identify the disease. 

 ECG is a very important tool that has been used to identify various cardiovascular issues 

present. The shape of this waveform has pre-determined amplitudes and duration. ECG signals are 

obtained by means of electrodes attached to the precise locations on patient’s body. But, even with 

the finest ECG recording machines available, this ECG signal can never be generated without any 

impurity or noise present in it. Types of noise corrupting ECG signal are Power Line Interference 

(PLI), Baseline Drift, Electrode Contact Noise, Motion Artifacts, Electromyography (EMG) and 

instrumentation noise. Among all these, PLI is the major type of noise present in ECG signal and 

occurs due to Electromagnetic Interference (EMI) in the cable connect to ECG machine. This EMI 

is from the power line frequency generated by any power line or plug in the surrounding region. 
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The frequency, phase and amplitude of PLI are not known to any noise cancellation scheme. So, 

in order to track these characteristics of PLI or ECG signal, we need an adaptive algorithm which 

leads us to the main motivation i.e. to find an efficient method to remove PLI for ECG signal. 

 

1.1. Electrocardiograph basics: 

 ECG is one of the most valuable and simplest cardiac diagnostic tools available that 

provides rich information about the condition of heart. An ECG signal is basically a graphical 

representation of the electrical activity of heart. One can identify beat disturbance, transmission 

irregularities and electrolyte inequities by accurately inferring these waveforms. An ECG helps in 

identifying and intensive care of such diseases like acute coronary syndromes and pericarditis.  

 For an accurate interpretation of ECG, identification of its key components is necessary 

and then these components are analyzed separately. The electrical activity of the heart produces 

currents that transfer through the surrounding tissue to the skin. Electrodes attached to the skin 

sense these signals and give a graphical representation of them. 

 

 Figure 1.1.1: Heart conditions and ECG  
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1.2 ECG waveform components: 

 An ECG complex represents the depolarization-repolarization of the heart occurring in one 

cardiac cycle. ECG waveform consists of three basic components: 

 The P wave 

 The QRS complex  

 The T wave 

The components can be further broken into following intervals and segments: 

 PR interval 

 ST segment 

 QT interval 

 

Figure 1.2.1: ECG waveform components 
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1.3   Sources of noise: 

 When ECG is acquired from human body, it gets corrupted by various types of noises. 

Most common types are: 

 Power line interference (PLI) 

 Baseline Drift 

 Electrode Contact Noise 

 Motion Artifacts 

 Electromyography 

 Instrumentational noise  

1.3.1 Power Line Interference (PLI): 

 As mentioned by the name, PLI occurs due to EMI in the power cable connected to the 

ECG machine. PLI noise is sometimes of such amplitude that it totally conceals the original ECG 

signal. Due to this reason, American Heart Association has recommended ECG recorders to have 

a 3dB frequency range from 0.67 Hz to 150 Hz [4], [5], [6].   

 PLI has two major components reported that are explained as follows: 

 Impulsive component comprises of various pulses with high amplitude and short 

duration which causes the adaptive filters to become unstable.. 

 Sinusoidal component has unknown frequency which can be a variable parameter 

in some cases along with unknown amplitude and phase. Removal of this type of 

PLI has been reported many times in literature. The sinusoidal component of PLI 

is shown in Figure 1.3.1. 
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(a) (b) 

Figure 1.3.1: ECG signal with (a) 10% PLI, (b) 25% & 50% PLI 

 

This research work focuses on PLI removal techniques from ECG signal. 

1.3.2 Baseline Drift: 

 Baseline drift as shown in Figure 1.3.2 is a sinusoidal signal having low frequency i.e. 

within 0.5 Hz to 0.5 Hz. Baseline drift occurs due to human respiration, temperature variance, 

electrode impedance and any bias occurring in the ECG machine. Due to its low frequency, 

baseline drift causes problem when analyzing low frequency components of ECG and can be 

removed by passing the corrupted ECG through a high pass filter with cut-off frequency 50 Hz. 

 

Figure 1.3.2:  ECG signal with baseline drift 
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1.3.3 Electrode Contact Noise: 

It occurs due to the loose contact of electrodes with the skin while recording ECG. Figure 

1.3.3 shows ECG signal affected by electrode contact noise. 

 

Figure 1.3.3: ECG corrupted with Electrode Contact Noise 

 

1.3.4 Motion artifacts: 

 The reason for motion artifact shown in Figure 1.3.4 is a dissimilarity between the positions 

of electrode and heart or any disturbance in the transmission medium between the electrodes and 

heart. It causes a change in amplitude of ECG signal along with baseline drift. 

 

Figure 1.3.4: ECG affected due to Motion artifacts. 
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1.3.5 Electromyography (EMG) Interference: 

 

Figure 1.3.5: Frequency spectrum of ECG and EMG. 

 

EMG signal is a random signal with a wide frequency spectrum overlapping with that of 

ECG signal as shown in Figure 1.3.5. It occurs due to the depolarization and re-polarization waves 

generated by other muscles besides heart resulting in EMG interference which is represented in 

Figure 1.3.6. The material of electrodes and muscle contraction decides the extent of EMG noise 

added.  

 

 

Figure 1.3.6: EMG noise present in ECG. 
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1.4 Problem Statement: 

“Development of efficient solutions for PLI removal from ECG signal with low 

Computational Complexity and Mean Square Error” 

 As we will see in Literature Review that Notch Filter Approach is not feasible for removal 

of PLI with unknown frequency, and in ANC domain the computational complexity of SSRLS is 

very high. So an algorithm must be proposed with low computational complexity and efficient 

noise tracking. 
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CHAPTER 2: OVERVIEW OF EXISTING TECHNIQUES 

 

 In this chapter, a brief overview of all the existing techniques for removal of PLI noise 

from ECG signal has been given. This chapter includes both conference and journal publications 

for major techniques implemented for problem under consideration. 

 Electrocardiograph (ECG) is the graphical illustration of electrical signal generated by 

heart and is an important technique to identify various cardiovascular diseases [7]. ECG signal 

being corrupted by various types of noise makes it very difficult for the examiner to identify the 

disease. Types of noise that corrupt ECG signal are Power Line Interference (PLI), Electrode 

Contact Noise, Motion Artifacts, Electromyography (EMG) and instrumentation noise. PLI is the 

interference caused in power line cable attached to the ECG machine and is the main source of 

noise. It occurs through capacitive coupling and inductive coupling, generating high and low 

frequency noise respectively [8]. A realization of PLI is generated as 

 𝑛𝑃𝐿𝐼[𝑘] = 𝜎 𝑠𝑖𝑛(𝜔𝑘𝑇 + 𝜑) (2.1) 

 

Where 𝜎 is the amplitude of PLI, ω is frequency, 𝑇 is sampling time and 𝜑 is phase. Magnitude of 

PLI must not be more than 0.5% of the peak-to-peak value of ECG signal for it to be detected with 

accuracy [9]. But for real time ECG signals, it has been observed that PLI noise does not confine 

to the 0.5% criteria. In literature, two major types of techniques implemented to remove PLI from 

ECG are named as Notch Filter and Adaptive Noise Canceller (ANC).  Notch filter can remove 

PLI only if its frequency is known as a difference in PLI and notch frequency causes spectrum 

distortion [10]. Whereas, ANC can also eliminate PLI with unknown or variable frequency [11], 

[12]. 

2.1 Notch Filter Approach 

 IIR notch filters have small filter order as compared to their equivalent FIR notch filters. 

Due to this reason, IIR notch filters have been used in most of the cases. In order to have less effect 



Anx-B 

10 

 

on the spectrum of ECG signal, the suppression band of notch filter must be kept narrow which 

leads to small ringing effect for impulse response [13]. Moreover, if the frequency of PLI and 

notch filter is not same, spectrum distortion occurs in ECG recovered ECG signal. Panda et al. 

[14] have used FIR notch filter to remove various types of noise from ECG signal. They applied 

various windows for this purpose and compared the techniques on basis of Peak SNR. Rectangular 

window is proved to be better than other applied windows due to its sharp transition from pass 

band to stop band and pulsation in stop band. Different types of notch filters are explained as 

follows: 

2.1.1 Q-varying Notch Filter 

 For a notch filter, its bandwidth and attenuation level are proportional to each other. 

Whereas, in order to remove a particular frequency, notch filter must have narrow bandwidth at 

that frequency and high attenuation level. For this purpose, tunable notch filters can tune their 

notch frequency in a specific range [15]. Adaptive Notch Filters (ANF) have been designed using 

LMS [16],[17] and RLS[18] to have an adaptable notch frequency. 

 J. Piskorowski proposed Q-varying notch filter, as a type of ANF, which adjust its Q-factor 

to have a narrow bandwidth and higher attenuation level than basic notch filter [19] due to which 

it also reduces the transient response of filter. 

2.1.2 Pole Radius Varying Notch Filter 

 For a noise of short duration, a larger initial distortion leads to lesser accuracy in PLI 

removal. So for such cases, transient response must be small. Whereas, narrow bandwidth notch 

filters have larger transient response. Based on pole/zero constrained filter, Li Tan et al [20] 

suggested a new IIR notch filter to remove PLI from noisy ECG signal. The transient response is 

reduced by adjusting the pole-placement radius of the filter. 

2.2 Adaptive Noise Canceller 

 The concept of Adaptive Noise Canceller was first proposed by Widrow et al. [11] in 1975. 

For unknown but constant frequency, once the ANC converges to its true value, it starts working 
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like Notch Filter [11]-[12]. Due to these reasons, ANC is being used here for noise cancellation 

from ECG signal. 

Adaptive Noise Cancellers are further divided into two categories as reported in literature 

named as ANC with reference input and without reference input.  

2.3 ANC with Reference Input 

Under the category of ANC with reference input, S. Z. Islam et. al [22] implemented Least 

Mean Square (LMS) and Recursive Least Square (RLS) algorithms to remove both AC and DC 

noises from ECG signal. Further Normalized Least Mean Square (NLMS) algorithm has been 

proved to remove PLI more efficiently than LMS by comparing the SNR for both [23]. Whereas, 

RLS has improved convergence and Mean Square Error (MSE) than NMLS but higher 

computational complexity [24]. 

2.3.1 Normalized Least Mean Square (NLMS) Algorithm 

 NLMS is an improved and normalized version of Least Mean Square (LMS) algorithm and 

exhibits faster convergence and better stability as compared to LMS. For larger input data, LMS 

encounters ‘gradient noise amplification’ problem. To resolve this issue, NLMS algorithm [25] is 

summarized as follows:  

 𝑤̂𝑁𝐿𝑀𝑆(0) = 0𝑀𝑥1 (2.2) 

 𝐹𝑜𝑟 𝑘 =  0,1,2,….  

 𝑋𝑁𝐿𝑀𝑆(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 1),… , 𝑥(𝑘 − 𝑀 + 1)]𝑇 (2.3) 

 𝑒𝑁𝐿𝑀𝑆(𝑘) = 𝑑𝑁𝐿𝑀𝑆(𝑘) − 𝑤̂𝑁𝐿𝑀𝑆(𝑘)𝐻𝑋𝑁𝐿𝑀𝑆(𝑘) (2.4) 

 
𝑤̂𝑁𝐿𝑀𝑆(𝑘 + 1) =  𝑤̂𝑁𝐿𝑀𝑆(𝑘) +

𝜇𝑁𝐿𝑀𝑆𝑒𝑁𝐿𝑀𝑆(𝑘)𝑋𝑁𝐿𝑀𝑆(𝑘)

𝛿𝑁𝐿𝑀𝑆 + ||𝑋𝑁𝐿𝑀𝑆(𝑘)2||
 

(2.5) 

Table 2.3-1 shows the parameters used in NLMS algorithm. 

Table 2.3-1: Parameter Description For NLMS Algorithm 

Parameter  Description 

𝑤̂𝑁𝐿𝑀𝑆(𝑘) Filter-tap weight vector in the kth iteration 
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𝑀 Filter order 

𝑒𝑁𝐿𝑀𝑆(𝑘) Estimated error for kth iteration 

𝑑𝑁𝐿𝑀𝑆 Desired signal 

𝜇𝑁𝐿𝑀𝑆 Step size 

𝛿𝑁𝐿𝑀𝑆 

Small number added for stability of 

NLMS 

 

a. Recursive Least Square (RLS) Algorithm 

RLS updates its gain vector 𝑘⃑ 𝑅𝐿𝑆 recursively and uses auto-correlation of input data. Hence, 

RLS has faster convergence rate than NLMS algorithm. The recursive parameters of RLS 

algorithm are updated as follows [25]: 

 𝜙𝑅𝐿𝑆(0) = 𝛿𝑅𝐿𝑆
−1 𝐼, 𝑤̂𝑅𝐿𝑆(0) = 0𝑀𝑥1 (2.6) 

 𝐹𝑜𝑟 𝑘 = 0,1,2,….  

 𝑋𝑅𝐿𝑆(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 1),… , 𝑥(𝑘 − 𝑀 + 1)]𝑇 (2.7) 

 𝜙𝑅𝐿𝑆(𝑘) =  𝜆𝑅𝐿𝑆
−1 𝜙𝑅𝐿𝑆(𝑘 − 1) − 𝜆𝑅𝐿𝑆

−1 𝑘𝑅𝐿𝑆(𝑘)𝑋𝑅𝐿𝑆
𝑇 (𝑘)𝜙𝑅𝐿𝑆(𝑘 − 1) (2.8) 

 
𝑘⃑ 𝑅𝐿𝑆(𝑘) =

𝜙𝑅𝐿𝑆(𝑘)𝑋𝑅𝐿𝑆(𝑘)

𝜆𝑅𝐿𝑆 + 𝑋𝑅𝐿𝑆
𝑇 (𝑘)𝜙𝑅𝐿𝑆(𝑘)𝑋𝑅𝐿𝑆(𝑘)

 
(2.9) 

 𝑒𝑅𝐿𝑆(𝑘) = 𝑑𝑅𝐿𝑆(𝑘) − 𝑤̂𝑅𝐿𝑆(𝑘)𝐻𝑋𝑅𝐿𝑆(𝑘) (2.10) 

 

Table 2.3-2 describes the parameters used in RLS algorithm. 

Table 2.3-2: Parameter Description For RLS Algorithm 

Parameter  Description  

𝑤̂𝑅𝐿𝑆(𝑘) Filter-tap weight vector in the kth iteration 

𝑀 Filter order 

𝑘⃑ 𝑅𝐿𝑆(𝑘) Gain vector for kth iteration 

𝑒𝑅𝐿𝑆(𝑘) Estimated error for kth iteration 

𝑑𝑅𝐿𝑆 Desired signal 

𝜆𝑅𝐿𝑆 Forgetting factor (< 1) 
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𝛿𝑅𝐿𝑆 Regularization factor 

𝜙𝑅𝐿𝑆 Inverse of Cross Correlation matrix 

 

2.4 ANC without Reference Input 

Various adaptive algorithms have been proposed which do not use reference input to 

estimate the required signal [26], [27], [28], [29] and [30]. Butt et al. [30] proposed State Space 

RLS (SSRLS) based ANC to remove 50 Hz PLI from ECG signal and compared its performance 

with conventional notch filter.  Table 2.4-2 compares the investigated algorithms, it is clear from 

this comparison that SSRLS is better than other algorithms in terms of convergence speed, mean 

square error and robustness at the cost of high computational complexity. 

b. State Space Recursive Least Square Algorithm: 

SSRLS [31] is a state space extension of RLS and exhibits faster convergence, better 

tracking capability but high computational complexity as compared to RLS algorithms. It 

recursively updates its cross-correlation matrix and observer gain as follows: 

 𝑥̅𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝐴𝑆𝑆𝑅𝐿𝑆[𝑘 − 1]𝑥𝑆𝑆𝑅𝐿𝑆[𝑘 − 1] (2.11) 

 𝑦̅𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝐶𝑆𝑆𝑅𝐿𝑆[𝑘]𝑥̅𝑆𝑆𝑅𝐿𝑆[𝑘] (2.12) 

 𝜀𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝑦𝑆𝑆𝑅𝐿𝑆[𝑘] − 𝑦̅𝑆𝑆𝑅𝐿𝑆[𝑘] (2.13) 

 𝜙𝑆𝑆𝑅𝐿𝑆[𝑘] =  𝜆𝑆𝑆𝑅𝐿𝑆(𝐴𝑆𝑆𝑅𝐿𝑆
−𝑇 𝜙𝑆𝑆𝑅𝐿𝑆[𝑘 − 1]𝐴𝑆𝑆𝑅𝐿𝑆

−1 + 𝐶𝑆𝑆𝑅𝐿𝑆
𝑇 𝐶𝑆𝑆𝑅𝐿𝑆) (2.14) 

 𝐾𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝜙𝑆𝑆𝑅𝐿𝑆
−1 [𝑘]𝐶𝑆𝑆𝑅𝐿𝑆

𝑇 [𝑘] (2.15) 

 𝑥𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝑥̅𝑆𝑆𝑅𝐿𝑆[𝑘] + 𝐾𝑆𝑆𝑅𝐿𝑆[𝑘]𝜀𝑆𝑆𝑅𝐿𝑆[𝑘] (2.16) 

 𝑦̂𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝐶𝑆𝑆𝑅𝐿𝑆[𝑘]𝑥̂𝑆𝑆𝑅𝐿𝑆[𝑘] (2.17) 

 𝑒𝑆𝑆𝑅𝐿𝑆[𝑘] = 𝑦𝑆𝑆𝑅𝐿𝑆[𝑘] − 𝑦̂𝑆𝑆𝑅𝐿𝑆[𝑘] (2.18) 

 

Table 2.4-1 describes the parameters used in SSRLS algorithm. 

Table 2.4-1: Parameter Description for SSRLS Algorithm 

Parameter  Description  
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𝑥̅𝑆𝑆𝑅𝐿𝑆[𝑘] Predicted state 

𝑥̂𝑆𝑆𝑅𝐿𝑆[𝑘] Estimated state 

𝑦̅𝑆𝑆𝑅𝐿𝑆[𝑘] Predicted output 

𝑦̂𝑆𝑆𝑅𝐿𝑆[𝑘] Estimated output 

𝜀𝑆𝑆𝑅𝐿𝑆[𝑘] Prediction error 

𝑒𝑆𝑆𝑅𝐿𝑆[𝑘] Estimation error 

𝐴𝑆𝑆𝑅𝐿𝑆[𝑘] System matrix 

𝐶𝑆𝑆𝑅𝐿𝑆[𝑘] Output matrix 

𝜙𝑆𝑆𝑅𝐿𝑆[𝑘] Cross Correlation Matrix 

𝐾𝑆𝑆𝑅𝐿𝑆[𝑘] Observer gain 

 

Other algorithms that have been reported in literature under the category of ANCs are 

 Window Adaptive Canceller [33]  

 Adaptive Sinusoidal Interference Canceller  [34][35] 

 Smoothing and Filtering [36] 

 Lock-In Amplifier Algorithm [37] 

 Median Filter [38]  

 Empirical Mode Decomposition [39][40][41][42][43] 

 Fusion of Algorithms [44] 

 Parabolic Filters [45] 

  Furthermore, another adaptive algorithm is reported in literature named as State-Space 

Least Mean Square (SSLMS) algorithm [46] with convergence speed and MSE approaching to 

that of SSRLS but computational complexity much less than that of SSRLS algorithm. Motivated 
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by the performance of SSLMS algorithm in [46], in this paper we propose SSLMS algorithm based 

adaptive noise canceller. In order to further improve the performance of proposed ANC, a hybrid 

algorithm is proposed that combines the fast convergence speed and low MSE of SSRLS algorithm 

with the less computational complexity of SSLMS algorithm. 

Table 2.4-2 compares the investigated algorithms, it is clear from this comparison that 

SSRLS is better than other algorithms in terms of convergence speed, mean square error and 

robustness at the cost of high computational complexity. 

Table 2.4-2: Comparison of ANC Algorithms 

Algorithm Convergence Mean Square 

Error 

Robustness Computational 

Complexity 

NLMS    5𝑛 + 2 + 1 [25] 

RLS       4𝑛2 + 𝑂(𝑛) + 1 

[25] 

SSRLS                4𝑛3 + 4𝑛2 +

5𝑛 + 1 [31] 
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CHAPTER 3: STATE SPACE LEAST MEAN SQUARE (SSLMS) 

 

 In this chapter, State Space Least Mean Square (SSLMS) algorithm, which is the main 

technique used for estimation and removal of PLI from ECG signal in this this, has been explained 

and derived step by step with the help of equations. Moreover, its different models have also been 

explained. 

3.1 SSLMS Algorithm Overview 

 State-space least mean square (SSLMS) is a state-space version of LMS algorithm and 

makes use of linear state-space model based on the unknown environment. Hence, the system is 

not limited to the linear regression model, which was the case for LMS and RLS algorithms [25], 

and handles vector outputs due to its multiple input multiple output (MIMO) nature [46]. State 

estimator of SSLMS is derived based on the observations noise corrupting the measurements [47]. 

3.1.1 State Space Model 

  The output vector 𝑦 ∈ 𝑅𝑚, m being the maximum number of outputs, is generated 

by an unforced linear time varying (LTI) discrete time system [47] 

 𝑥𝑆𝑆𝐿𝑀𝑆[𝑘 + 1] = 𝐴𝑆𝑆𝐿𝑀𝑆[𝑘]𝑥𝑆𝑆𝐿𝑀𝑆[𝑘] 

𝑦𝑆𝑆𝐿𝑀𝑆[𝑘 + 1] = 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝑥𝑆𝑆𝐿𝑀𝑆[𝑘] 

(3.1) 

 

Where  𝑥𝑆𝑆𝐿𝑀𝑆 ∈ 𝑅𝑛 is the state vector, 𝑛 is the number of states, 𝐴𝑆𝑆𝐿𝑀𝑆 being the system matrix 

and 𝐶𝑆𝑆𝐿𝑀𝑆 is output matrix. Moreover, 𝑘 is the number of sample under consideration. It is 

assumed that 𝑚 ≤ 𝑛 [47] and a system with 𝑚 > 𝑛 can be simplified to assumed conditions 

without losing states information [48]. For every 𝑘𝑡ℎ sample, 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘] is assumed to be full-rank 

and (𝐴𝑆𝑆𝐿𝑀𝑆[𝑘], 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]) pair must be 𝑙-step observable [48]. Moreover, 𝐴𝑆𝑆𝐿𝑀𝑆[𝑘] is assumed 

to be invertible resulting in following properties 
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 𝐴𝑆𝑆𝐿𝑀𝑆
−1 [𝑘, 𝑗] = 𝐴𝑆𝑆𝐿𝑀𝑆[𝑗, 𝑘], ∀ 𝑗, 𝑘 

𝐴𝑆𝑆𝐿𝑀𝑆[𝑘, 𝑖] = 𝐴𝑆𝑆𝐿𝑀𝑆[𝑘, 𝑗]𝐴𝑆𝑆𝐿𝑀𝑆[𝑗, 𝑖], 𝑖 ≤ 𝑗 ≤ 𝑘 

𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 + 1, 𝑘] = 𝐴𝑆𝑆𝐿𝑀𝑆[𝑘] 

(3.2) 

 

Where the state-transition matrix 𝐴𝑆𝑆𝐿𝑀𝑆[𝑘, 𝑗] for system is [48] 

 
𝐴𝑆𝑆𝐿𝑀𝑆[𝑘, 𝑗] = {

𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 − 2]…𝐴𝑆𝑆𝐿𝑀𝑆[𝑗], 𝑘 > 𝑗
𝐼, 𝑘 = 𝑗

 
(3.3) 

 

3.1.2 State Space Estimator 

  Suppose that 𝑦𝑆𝑆𝐿𝑀𝑆[𝑘] starts appearing sample by sample with first at 𝑘 = 1. The 

initial state at this stage is assumes to be 𝑥𝑆𝑆𝐿𝑀𝑆[1] = 𝑥𝑜 which is unknown at this instance. 

Making use of this initial assumption, SSLMS generates the estimated state 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] making use 

of all the previous values from 𝑦𝑆𝑆𝐿𝑀𝑆[1]…𝑦𝑆𝑆𝐿𝑀𝑆[𝑘]. 

Using (3.1) , predicted state and output at 𝑘 can be computed using the state matrix, output matrix 

and estimated state at 𝑘 − 1. 

 𝑥̅𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1] (3.4) 

 𝑦̅𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝑥̅𝑆𝑆𝐿𝑀𝑆[𝑘] (3.5) 

 

The prediction error is now the difference in predicted output and observation 𝑦𝑆𝑆𝐿𝑀𝑆. 

 𝜀𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝑦𝑆𝑆𝐿𝑀𝑆[𝑘] − 𝑦̅𝑆𝑆𝐿𝑀𝑆[𝑘] (3.6) 

 

Similarly, estimation error is calculated as 

 𝑒𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝑦𝑆𝑆𝐿𝑀𝑆[𝑘] − 𝑦̂𝑆𝑆𝐿𝑀𝑆[𝑘] (3.7) 
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Where, 𝑦̂𝑆𝑆𝐿𝑀𝑆[𝑘] is the estimated output at 𝑘 

 𝑦̂𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] (3.8) 

 

And 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] is the estimated state at 𝑘. Relating equation (3.6) and (3.7), 

 𝑒𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝜀𝑆𝑆𝐿𝑀𝑆[𝑘] − 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝛿[𝑘] (3.9) 

 𝛿𝑆𝑆𝐿𝑀𝑆[𝑘] =  𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] − 𝑥̅𝑆𝑆𝐿𝑀𝑆[𝑘] (3.10) 

 

Assuming 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘] to be full rank, we can chose 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] such that 𝑒𝑆𝑆𝐿𝑀𝑆[𝑘] = 0. Hence, 

rewriting (3.9) as  

 𝜀𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝛿𝑆𝑆𝐿𝑀𝑆[𝑘] (3.11) 

 

In order to compute 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘], 𝛿𝑆𝑆𝐿𝑀𝑆[𝑘] can be written as [23] 

 𝛿𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐶𝑆𝑆𝐿𝑀𝑆
𝑇 [𝑘]𝜀𝑆𝑆𝐿𝑀𝑆[𝑘] (3.12) 

 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] =  𝑥̅𝑆𝑆𝐿𝑀𝑆[𝑘] + 𝐶𝑆𝑆𝐿𝑀𝑆
𝑇 [𝑘]𝜀𝑆𝑆𝐿𝑀𝑆[𝑘] (3.13) 

 

Based on this analysis, we write estimated states as 

 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] =  𝑥̅𝑆𝑆𝐿𝑀𝑆[𝑘] + 𝐾𝑆𝑆𝐿𝑀𝑆[𝑘]𝜀𝑆𝑆𝐿𝑀𝑆[𝑘] (3.14) 

 

Where 𝐾𝑆𝑆𝐿𝑀𝑆[𝑘] is the observer gain at 𝑘𝑡ℎ sample and is defined as 

 𝐾𝑆𝑆𝐿𝑀𝑆[𝑘] =  𝜇𝑆𝑆𝐿𝑀𝑆𝐺𝑆𝑆𝐿𝑀𝑆𝐶𝑆𝑆𝐿𝑀𝑆
𝑇 [𝑘] (3.15) 

 

Where 𝜇𝑆𝑆𝐿𝑀𝑆 controls the rate of convergence of SSLMS algorithm and is termed as step-size 

parameter. 𝐺𝑆𝑆𝐿𝑀𝑆 is selected to make the pair (𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 − 1] − 𝐾𝑆𝑆𝐿𝑀𝑆[𝑘]𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 −

1], 𝐾𝑆𝑆𝐿𝑀𝑆[𝑘]) controllable to ensure valid estimation [46]. 
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3.2 Steady State SSLMS 

Using equation (3.4) and (3.6) in (3.14),  

 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] =  𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1] + 𝐾𝑆𝑆𝐿𝑀𝑆[𝑘](𝑦𝑆𝑆𝐿𝑀𝑆[𝑘]

− 𝐶𝑆𝑆𝐿𝑀𝑆[𝑘]𝐴𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]) 

(3.16) 

 

If lim
𝑘→ ∞

𝐶𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐶𝑆𝑆𝐿𝑀𝑆 exists, then by (3.15), lim
𝑘→ ∞

𝐾𝑆𝑆𝐿𝑀𝑆[𝑘] =𝜇𝑆𝑆𝐿𝑀𝑆𝐺𝑆𝑆𝐿𝑀𝑆𝐶𝑆𝑆𝐿𝑀𝑆
𝑇 . 

Moreover, if lim
𝑘→ ∞

𝐴𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐴𝑆𝑆𝐿𝑀𝑆 also exists, then (3.16) can be written as 

 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] =  𝐴𝑆𝑆𝐿𝑀𝑆𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1] + 𝐾𝑆𝑆𝐿𝑀𝑆(𝑦𝑆𝑆𝐿𝑀𝑆[𝑘]

− 𝐶𝑆𝑆𝐿𝑀𝑆𝐴𝑆𝑆𝐿𝑀𝑆𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]) 

(3.17) 

 

As 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] in (3.17) is an LTI system, its transfer function mapping from 𝑦𝑆𝑆𝐿𝑀𝑆[𝑘] to 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] 

can be written as follows [47] 

 𝐻(𝑧) = 𝑧(𝑧𝐼 − 𝐴𝑆𝑆𝐿𝑀𝑆 + 𝐾𝑆𝑆𝐿𝑀𝑆𝐶𝑆𝑆𝐿𝑀𝑆𝐴𝑆𝑆𝐿𝑀𝑆)
−1𝐾𝑆𝑆𝐿𝑀𝑆 (3.18) 

 

Steady state SSLMS is numerically efficient as compared to standard SSLMS algorithm.  

3.3 State space models 

 For different types of unknown environments, SSLMS uses various models in order to 

track a signal. In [46], different state-space models for SSRLS have been proposed which can also 

be implemented for tracking using SSLMS algorithm. Most commonly used models are as follows: 

3.3.1 Constant Model 

   Constant model for SSLMS is represented as 

 𝐴𝑆𝑆𝐿𝑀𝑆 = I (3.19) 



Anx-B 

20 

 

𝐶𝑆𝑆𝐿𝑀𝑆 = I 

 

Using these parameter in (3.18), we get 

 𝐻(𝑧) = 𝑧(𝑧𝐼 − 𝐼 + 𝐾𝑆𝑆𝐿𝑀𝑆𝐼)
−1𝐾𝑆𝑆𝐿𝑀𝑆 

𝐻(𝑧) = 𝑧(𝐼 − 𝐾𝑆𝑆𝐿𝑀𝑆) + 𝐾𝑆𝑆𝐿𝑀𝑆 

(3.20) 

 

3.3.2 Velocity Model 

   Velocity model is given as 

 𝐴𝑆𝑆𝐿𝑀𝑆 = [
1 𝑇
0 1

] 

𝐶𝑆𝑆𝐿𝑀𝑆 = [1 0] 

(3.21) 

 

Where 𝑇 is the sampling time. Using these parameter in (3.18), and 𝐺𝑆𝑆𝐿𝑀𝑆 = [
1 0
0 1

] in (3.15) we 

get 

 𝐾𝑆𝑆𝐿𝑀𝑆 = [
𝜇
0
] 

𝐻(𝑧) =
[𝜇𝑧2 − 𝜇𝑧

0
]

𝑧2 − 2𝑧 + 𝑧(𝜇 − 1) + 1
 

𝐻(𝑧) = [
𝜇𝑧(𝑧 − 1)

𝑧2 + 𝑧(𝜇 − 3) + 1
0

] 

(3.22) 

3.3.3 Acceleration Model 

   Acceleration model is demonstrated as follows 
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𝐴𝑆𝑆𝐿𝑀𝑆 = [
1 𝑇

𝑇2

2
0 1 𝑇
0 0 1

] 

𝐶𝑆𝑆𝐿𝑀𝑆 = [1 0 0] 

(3.23) 

 

Updating (3.18), and using 𝐺𝑆𝑆𝐿𝑀𝑆 = [
1 0
0 1

] in (3.15) we get 

 
𝐾𝑆𝑆𝐿𝑀𝑆 = [

𝜇
0
0
] 

𝐻(𝑧) = z [
𝑧 − 1 + 𝜇 𝑇(𝜇 − 1)

𝑇2

2
(𝜇 − 1)

0 𝑧 − 1 −𝑇
0 0 𝑧 − 1

]

−1

[
𝜇
0
0
] 

(3.24) 

 

3.3.4 Sinusoidal Model 

   As PLI is assumed to sinusoidal in nature, a sinusoidal SSLMS model has 

been selected. The system and output matrix of model are as follows [46] 

 
𝐴𝑆𝑆𝐿𝑀𝑆 = [

cos (𝑤𝑇) 𝑠𝑖𝑛(𝑤𝑇)
−𝑠𝑖𝑛(𝑤𝑇) 𝑐𝑜𝑠(𝑤𝑇)

] 

𝐶𝑆𝑆𝐿𝑀𝑆 = [1 0] 

(3.25) 

 

Where 𝑤 is the frequency in 𝑟𝑎𝑑/𝑠𝑒𝑐 and 𝑇 is the sampling time. Moreover, for sinusoidal case, 

matrix 𝐺𝑆𝑆𝐿𝑀𝑆 is not required [46]. Updating (3.18), we get 

 𝐾𝑆𝑆𝐿𝑀𝑆 = [
𝜇
0
] 

𝐻(𝑧) =

[
𝜇(𝑧 − cos(𝑤𝑇))

−𝜇𝑠𝑖𝑛(𝑤𝑇)
]

𝑧2 − 𝑧(𝜇 − 𝑧) cos(𝑤𝑇) + (μ − 1) cos2(𝑤𝑇) + sin2(𝑤𝑇) − 𝜇 sin(𝑤𝑇)
 

(3.26) 
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CHAPTER 4: TRACKING AND REMOVAL OF IMPULSIVE PLI FROM 

ECG SIGNAL  

 

 In this chapter, the performance of the proposed SSLMS based noise canceller is compared 

with the reported algorithms for ECG signal corrupted with impulsive noise using MATLAB 

version R2012a.  

4.1 Impulsive Noise Generation 

 The impulsive noise is generated using the method reported in [52]. Table 4.1-1 shows the 

parameters which are used to generate impulsive noise. 

Table 4.1-1: Parameter set for impulsive noise generation 

 

Parameter  Symbol Description 

Total Time T 100 

Sampling Frequency f 10 

Average Time between samples Β 1 

Mean of Additive Gaussian Noise μn 0.1 

Standard Deviation of Gaussian Noise σn 0.5 

Mean of Log Amplitude A 10 dB 

Standard Deviation of Log Amplitude B 5 dB 
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 The impulsive noise generated using the above mentioned parameters, is shown in Figure 

4.1.1(a). Figure 4.1.1(b) shows pure as well as noisy ECG signal taken from MIT-BIH database 

[49] with peak to peak amplitude normalized at 1 and sampling frequency 360 Hz. 

 

 

(a) 

 

(b) 

Figure 4.1.1: (a) Impulsive Noise (b) Pure and Noisy ECG signal. 

4.2 Impulsive Noise Reduction using previous techniques 

 In this section, impulsive noise is estimated and removed using NLMS [25], RLS [25] and 

SSRLS [32] algorithms 

Table 4.2-1: Parameter value for NLMS, RLS and SSLMS 

Parameter Value 

𝑀 3 

𝜇𝑁𝐿𝑀𝑆 0.001 

𝜆𝑅𝐿𝑆 0.9 

𝜆𝑆𝑆𝑅𝐿𝑆 0.01 

 

 The parameters for all the underlying algorithms are mentioned in Table 4.2-1. It is proved 

from simulation results that higher order models can better track sharp transitions in the reference 
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signal but at the expense of increased computational complexity. For tracking impulsive noise we 

have used third order model i.e. an acceleration model. For SSLMS matrix G is selected as in [46] 

𝐺 =  [
1 0 0

0.3 0 0
0.3 0 0

] 

Figure 4.2.1 shows the comparison of output of the investigated adaptive filters with the original 

ECG signal. The result shows that best noise reduction from noisy ECG signal is achieved by the 

SSLMS algorithm.  

Figure 4.2.1 (a) shows that RLS filter has better performance than that of NLMS filter. In Figure 

4.2.1 (b) and (c) it is observed that SSRLS algorithm is reducing impulsive noise from the noisy 

ECG signal more efficiently than NLMS and RLS algorithms. Moreover, it is clearly indicated 

that SSLMS algorithm has reduced all the high peaks of noisy ECG signal. 

 

Figure 4.2.1: Comparison of ECG signal recovered using (a) NLMS (b) RLS (c) SSLMS 
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Figure 4.2.2 represents the MSE in dB, which also explains the results shown in Figure 4.2.1. 

 

Figure 4.2.2: Comparison of MSE (dB) of NLMS, RLS and SSRLS 

4.3 Impulsive Noise reduction using SSLMS algorithm 

 In this section, SSLMS is implemented to remove impulsive noise, with  

𝜇𝑆𝑆𝐿𝑀𝑆 = 0.999, from ECG and simultaneously the results are compared with those of SSRLS 

algorithm.  

Figure 4.3.1 shows that from the plots of estimated ECG signal, both SSLMS and SSRLS 

algorithms are estimating the unknown ECG signal efficiently. Whereas, going further into the 

details of estimation, we can see that in Figure 4.3.2 that there is a minor difference between their 

MSE which shows that the estimation of two algorithms is approximately same. 
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Figure 4.3.1: Comparison of ECG signal recovered using (a) SSLMS (b) SSRLS 
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Figure 4.3.2: Comparison of MSE (dB) of NLMS, RLS and SSRLS 

4.4 Computational Complexity 

 The computational complexities of the investigated algorithms are mentioned in Table 

5.3-1.  

Table 4.4-1: Computational Complexities of Adaptive Algorithms [32] 

Algorithm Multiplication and Addition Division 

SSLMS 4n2 + 2n - 

SSRLS 4𝑛3 + 4𝑛2 + 5𝑛 + 1  - 
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Algorithm Multiplication and Addition Division 

RLS  4n2 + O(n) 1 

NLMS  5n + 2 1 

 

4.5 Conclusion 

 The computational complexity of SSLMS algorithm is greater than NLMS and RLS 

algorithm but it outperforms NLMS and RLS algorithms in terms of low MSE and excellent 

tracking capability. Whereas, it has high MSE than low computational complexity than that of 

SSRLS but it can be seen from section 4.4 that it has computational complexity much better than 

SSRLS which makes it to be overall better than other algorithms. 
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CHAPTER 5: TRACKING AND REMOVAL OF SINUSOIDAL PLI WITH 

KNOWN FREQUENCY FROM ECG SIGNAL 

 

 This chapter explains the tracking of sinusoidal component of PLI having known frequency 

from ECG signal using SSLMS Algorithm. The results are generated using MATLAB R2012a. 

The comparison of SSLMS is done with SSRLS algorithm with respect to convergence, mean 

square error and computational complexity.  

5.1 Standard ECG Signal 

 Standard ECG Signal is generated using MIT-BIH database [49] with peak-to-peak 

amplitude normalized at 1 and sampling frequency of 360 Hz as shown in Figure 5.1.1 (a). This 

database has been frequently used by the community doing medical research. Figure 5.1.1 (b) 

shows the frequency response of pure ECG signal and it can be seen that there is no component of 

50 Hz in pure ECG signal.  

  

(a) (b) 

Figure 5.1.1: Pure ECG Signal using MIT-BIH database (a) Amplitude (b) Frequency response 

Table 5.1-1: Parameters to generate Sinusoidal PLI 

Parameter Symbol Value 

Amplitude 𝜎𝑠 0.1 
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Frequency 𝜔 2𝜋 × 50 

Phase 𝜑 0 

Sampling Time 𝑇𝑠 1

360
= 0.028 

 

Figure 5.1.2 shows the pure ECG signal corrupted by PLI generated using parameters in Table 

5.1-1 along with its frequency response. As we can see in Figure 5.1.2 (b) that there is a peak at 

50 Hz showing the addition of 50 Hz PLI to ECG signal. 

  

(a) (b) 

Figure 5.1.2: PLI Corrupted ECG Signal (a) Amplitude (b) Frequency response 

 

5.2 Implementation of SSLMS Algorithm 

 Figure 5.2.1 shows the mechanism used to remove PLI with known frequency. SSLMS 

algorithm estimates the PLI using the following state space model 

 
𝐴𝑆𝑆𝐿𝑀𝑆 = [

cos(2𝜋 × 50 × 0.028) sin(2𝜋 × 50 × 0.028)

− sin(2𝜋 × 50 × 0.028) cos(2𝜋 × 50 × 0.028)
] 

𝐶𝑆𝑆𝐿𝑀𝑆 = [1 0] 

(5.1) 
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The output of SSLMS Filter is the estimated PLI (i.e. 𝑦̂𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝑛𝑆𝑆𝐿𝑀𝑆
′ [𝑘]), which is subtracted 

from noisy ECG signal to produce clean ECG signal at the output of noise canceller. 

 

Figure 5.2.1: Block Diagram for Cancelation of PLI with known frequency 

 

SSLMS is initialized with 𝑥𝑜 = [
0
0
] and 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05. Figure 5.2.2 shows the output of SSLMS 

algorithm. It can be seen from Figure 5.2.2 (b) that along with other frequencies having minimal 

presence, the signal with 50 Hz has also been tracked by SSLMS algorithm. Subtracting the 

estimated PLI signal from corrupted ECG gives the desired ECG signal.  

  

(a) (b) 

Figure 5.2.2: Output of SSLMS Algorithm with 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05 (a) Amplitude (b) Frequency 

response  

 

0 100 200 300 400 500 600 700 800 900
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Sample Number

N
o

rm
a
li
z
e
d

 A
m

p
li
tu

d
e

Output of SSLMS Algorithm: Estimated PLI Noise

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Frequency(Hz)

M
a
g

n
it

u
d

e
(A

b
s
o

lu
te

 V
a
lu

e
s
)

Frequency Response of Output of SSLMS Algorithm



Anx-B 

32 

 

As we can see in Figure 5.2.3 (a) that initially it takes some time for the canceller to track ECG 

and with further iterations, the tracking is improved. Similarly the frequency response in Figure 

5.2.3 (b) is similar to that in Figure 5.1.1 (b) showing that SSLMS based ANC removes the noise 

effectively. 

  

(a) (b) 

Figure 5.2.3: Estimated ECG signal using SSLMS based ANC with 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05 (a) 

Amplitude (b) Frequency response 

 

 Moreover, it can be observed in Figure 5.2.4 that after SSLMS converges, there is very 

small error at the stages where QRS complex peaks have occurred in ECG signal. These results 

demonstrate that SSLMS based ANC removes PLI efficiently from ECG signal. Further results 

will demonstrate its comparison with SSRLS algorithm with respect to noise removal efficiency 

and computational complexity. 
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Figure 5.2.4: Estimation Error of SSLMS based ANC using 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05 

5.3 Comparison with SSRLS Algorithm 

 Comparison between SSLMS based ANC using step-size 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05 and SSRLS based 

ANC using forgetting factor 𝜆𝑆𝑆𝑅𝐿𝑆 = 0.99 based upon error and MATLAB elapsed time has been 

made in this section.  

Error signal plot of SSRLS in Figure 5.3.1 shows convergence and error at later samples. The 

error peaks occur due to QRS complex peaks, which give a little disturbance in the estimation of 

PLI from noisy ECG. Comparing it with estimation error using SSLMS as shown in Figure 5.2.4, 

it can be seen that SSLMS has slower convergence than SSRLS. 
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Figure 5.3.1: ECG Estimation error using SSRLS (𝜆𝑆𝑆𝑅𝐿𝑆 = 0.99) 

 

 Moreover, comparing the mean square error (MSE) plots of both algorithms in Figure 

5.3.2, it can be seen that after convergence, there is a difference of approximately 10dB in the error 

estimation of both algorithms.  

 Hence, the performance of SSLMS degrades than that of SSRLS with a small ratio. 

However, comparing the elapsed time for MATLAB simulations in Table 5.3-1, it is clear that 

SSLMS is sixty times faster than that of SSRLS algorithm proving SSLMS to be overall better 

than SSRLS algorithm.  
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(a) (b) 

Figure 5.3.2: MSE using (a) SSLMS (𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05) (b) SSRLS (𝜆𝑆𝑆𝑅𝐿𝑆 = 0.99) algorithm 

 

Table 5.3-1: Computational complexity and elapsed time for MATLAB simulations of SSLMS 

and SSRLS algorithms 

Parameter SSLMS SSRLS 

Computational 

Complexity 

4𝑛2 + 2𝑛 [32] 4𝑛3 + 4𝑛2 + 5𝑛 + 1 [32] 

Elapsed Time 0.013704 seconds 0.849161 seconds 

5.4 Conclusion 

 Concluding this part of thesis, it is clear from the results shown in above figures that 

although SSRLS algorithm has better estimation performance than that of SSLMS algorithm, but 

it can be seen from the comparison between Figure 5.3.2 and Table 5.3-1 that such small reduction 

in MSE is subsided by exceptionally high computational complexity. Hence, SSLMS is better than 

SSRLS algorithm on overall basis. 
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CHAPTER 6: TRACKING AND REMOVAL OF SINUSOIDAL PLI WITH 

UNKNOWN FREQUENCY FROM ECG SIGNAL 

This chapter explains the tracking of sinusoidal component of PLI having unknown 

frequency from ECG signal using SSLMS Algorithm. The results are generated using MATLAB 

R2012a. The parameter for tracking are analyzed for their performance. The comparison of 

SSLMS is done with SSRLS algorithm with respect to convergence, mean square error and 

computational complexity. 

6.1 SSLMS based Adaptive Tracking scheme 

It is very rare to have PLI with known frequency. So in order to track a sinusoidal with 

unknown frequency, an adaptive tracking scheme has been proposed using SSRLS algorithm [50].  

 

Figure 6.1.1  Adaptive tracking of Sinusoidal Signal using SSLMS Algorithm 

 

A modified block diagram of adaptive tracking system integrated with SSLMS based noise 

canceller has been shown in Figure 6.1.1.  ECG signal generated using MIT-BIH database [49] as 

shown in Figure 5.1.1 is represented by 𝑢[𝑘]. 𝑣𝑃𝐿𝐼[𝑘] is the PLI signal having unknown frequency 

as is mathematically formulated as 

 𝑣𝑃𝐿𝐼[𝑘] =  𝜎𝑠 𝑠𝑖𝑛(𝜔𝑘𝑇 + 𝜑) (6.1) 
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Where 𝜎𝑠 = amplitude, 𝜔 = frequency, 𝜑 = phase and 𝑇 = sampling time of the unknown PLI 

signal. State space model for this LTI model is 

 
𝐴𝑆𝑆𝐿𝑀𝑆[𝑘] =  [

cos(𝜔[𝑘]𝑇) sin(𝜔[𝑘]𝑇)

− sin(𝜔[𝑘]𝑇) cos(𝜔[𝑘]𝑇)
] 

𝐶𝑆𝑆𝐿𝑀𝑆 = [1 0] 

(6.2) 

 

As the purpose of this scheme is to track the unknown parameter, the state transition matrix is a 

time-varying parameter. The states 𝑥𝑆𝑆𝐿𝑀𝑆[𝑘] and coefficients are related as  

 𝑥𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝐴𝑆𝑆𝐿𝑀𝑆
𝑘 [

𝑎
𝑏
] (6.3) 

 

Where 𝑎 = 𝜎𝑠 cos(𝜑)and b = 𝜎𝑠sin (𝜑) are the initial conditions. Rearranging above equation 

 [
𝑎̂
𝑏̂
] = 𝐴𝑆𝑆𝐿𝑀𝑆

−𝑘 𝑥̂𝑆𝑆𝐿𝑀𝑆[𝑘] (6.4) 

 

The inverse of 𝐴𝑆𝑆𝐿𝑀𝑆 can be calculated using (3.2) and (3.3) whereas 𝑥̂[𝑘] can be updated 

recursively using (3.14). Using 𝑎̂ and 𝑏̂, we can track the phase using the following relation 

 
𝜑̂𝑆𝑆𝐿𝑀𝑆[𝑘] = tan−1(

𝑏̂

𝑎̂
) 

(6.5) 

 

As the phase is being updated recursively, any discontinuities in its tracking can be handled by 

unwrapping its value [51]. Further, the frequency of unknown sinusoid can be updated using a 

stochastic gradient like equation as follows 

 𝜔̂𝑆𝑆𝐿𝑀𝑆[𝑘] = 𝜔̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1] + 𝜂(𝜑̂𝑆𝑆𝐿𝑀𝑆[𝑘] − 𝜑̂𝑆𝑆𝐿𝑀𝑆[𝑘 − 1]) (6.6) 
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Where 𝜂 is the step-size parameter for adaptive tracking system. The difference between the 

estimated values of phase can also be computed using a discrete filter with transfer function. 

 𝐻(𝑧) =  𝑧−2(𝑧 − 1) (6.7) 

 

Using the updated frequency, the state space model can be updated as follows 

 
ASSLMS[𝑘] = [

cos(𝜔̂(𝑘)𝑇) sin(𝜔̂(𝑘)𝑇)

− sin(𝜔̂(𝑘)𝑇) cos(𝜔̂(𝑘)𝑇)
] 

CSSLMS[𝑘] = [1 0] 

(6.8) 

 

The summarized block diagram is shown in Figure 6.1.2 along with the computations at each step 

of tracking. 

 

Figure 6.1.2: Adaptive tracking of Sinusoidal Signal using SSLMS Algorithm with equations 

 

The unknown sinusoidal signal 𝑣𝑃𝐿𝐼[𝑘] has been generated using the following parameters 

Table 6.1-1: Parameters to generate Sinusoidal Noise of frequency 49.5 

Parameter Symbol Value 

Amplitude 𝜎𝑠 0.1 
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Frequency 𝜔 2𝜋 × 49.5 

Phase 𝜑 𝜋

4
 

Sampling Time 𝑇𝑠 1

360
= 0.028 

 

Figure 6.1.3 shows pure ECG signal 𝑢[𝑘] from MIT-BIH database [49]. Adding 𝑣𝑃𝐿𝐼[𝑘] generated 

using parameters shown in Table 6.1-1, we get PLI corrupted signal as mentioned in Figure 6.1.4. 

 

Figure 6.1.3: Pure ECG Signal using MIT-BIH database 

 

0 100 200 300 400 500 600 700 800 900
-0.2

0

0.2

0.4

0.6

0.8

1

Sample Number

N
o

rm
a
li
z
e
d

 A
m

p
li
tu

d
e

Pure ECG Signal



Anx-B 

40 

 

 

Figure 6.1.4: 49.5 Hz Sinusoidal PLI corrupted ECG Signal 

6.2 Simulation Results 

The adaptive frequency system has been initialized as 𝜔𝑜 = 2𝜋 × 50 and 𝜑𝑜 = 0. In order 

to analyze the tracking ability of SSLMS based ANC, the value of frequency and phase are 

different from those of PLI.  SSLMS algorithm is initialized as 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and the value of 

𝜂 is 0.02. Further discussion shows the simulation results for tracking the frequency and estimation 

PLI noise and recovery of noise-free ECG signal. It can be shown in Figure 6.2.1 that initially the 

frequency is 50 Hz and slowly it tracks down to 49.5 Hz. Once the frequency reaches its true value, 

it stays constant.  
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Figure 6.2.1: Frequency tracking of PLI using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.02 

Figure 6.2.2 shows that as the frequency converges, estimated PLI signal reaches its correct 

amplitude i.e. 0.1.  

 

Figure 6.2.2: Estimated PLI of 49.5 Hz using 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.02 
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 Moreover, as shown in Figure 6.2.3 and Figure 6.2.4, the estimated ECG is being tracked 

efficiently and the error signal reduces to zero as the system converges to correct frequency value. 

It must be seen that initially the amplitude of error is close to that of PLI signal. But as the estimated 

PLI converges, the error reduces to zero. 

 

Figure 6.2.3: Estimated ECG Signal using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.02 

 

Figure 6.2.4: Error in estimation of ECG Signal using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.02 
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6.3 Effect of η on frequency tracking 

Step-size parameter 𝜂 in (6.6) controls the convergence of frequency in the adaptive 

tracking mechanism as it controls the effect of phase-difference at each step. Before, we have 

concluded from the analysis in 6.2 that as soon as correct frequency is tracked, the SSLMS 

algorithm also converges. So, indirectly, parameter 𝜂 is controlling the convergence of SSLMS. 

To elaborate the effect of step-size on frequency tracking, different values of η have been chosen 

in Table 6.3-1 along with their point of convergence. 

Table 6.3-1: Effect of step-size η on frequency convergence 

Parameter η Convergence after samples 

0.01 550 

0.02 300 

0.05 130 

0.1 60 

0.2 30 

0.5 15 

1 10 

 

It can be seen in Table 6.3-1 that as η increases, the convergence speed of adaptive tracking has 

increased. There is a difference of only three sample for 𝜂 = 0.5 and 𝜂 = 1, so it is clear that 

beyond 𝜂 = 0.5, the converegence speed does not improve distinctively. Hence, 0.5 has been 

chosed as the maximum value of 𝜂 and the comparison between two different values has been 

shown in Figure 6.3.1 to further explain frequency convergence phenomenon. 
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(a) (b) 

Figure 6.3.1: Frequency tracking of PLI using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 

 

  

(a) (b) 

Figure 6.3.2: Estimated PLI of 49.5 Hz using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 

 

 It’s elaborated in the plots of Figure 6.3.1 that for larger 𝜂, frequency convergence takes 

much lesser time and similarly estimated PLI reaches its true amplitude much faster as shown in 

Figure 6.3.2. According to this, the effect of η on estimated ECG signal and error in estimation is 

shown in Figure 6.3.3 and Figure 6.3.4. 

 

 

0 100 200 300 400 500 600 700 800 900

49.5

49.6

49.7

49.8

49.9

50

50.1

Sample Number

F
re

q
u

e
n

c
y

Frequency tracking using SSLMS

 

 

0 100 200 300 400 500 600 700 800 900

49.5

49.6

49.7

49.8

49.9

50

50.1

Sample Number

F
re

q
u

e
n

c
y

Frequency tracking using SSLMS

 

 

0 100 200 300 400 500 600 700 800 900
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Sample Number

A
m

p
li
tu

d
e

Output of SSLMS: Estimated PLI Signal

 

 

0 100 200 300 400 500 600 700 800 900
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Sample Number

A
m

p
li
tu

d
e

Output of SSLMS: Estimated PLI Signal

 

 



Anx-B 

45 

 

  

(a) (b) 

Figure 6.3.3: Estimated ECG Signal using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 

 

 
 

(a) (b) 

Figure 6.3.4: Error in estimation of ECG Signal using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 
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Figure 6.4.1 that frequency tracking is not affected by changes in 𝜇𝑆𝑆𝐿𝑀𝑆. However, we can see 

the in Figure 6.4.4 that for smaller value of 𝜇𝑆𝑆𝐿𝑀𝑆 , SSLMS takes longer to converge but has 

small estimation error at the QRS complex peaks of ECG signal and vice versa. 

  

(a) (b) 

Figure 6.4.1: Frequency tracking of PLI using η = 0.02 with (a) μSSLMS=0.005 (b) μSSLMS =0.05 

 

 

  

(a) (b) 

Figure 6.4.2: Estimated PLI of 49.5 Hz using η = 0.02 with (a) μSSLMS=0.005 (b) μSSLMS =0.05 
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(a) (b) 

Figure 6.4.3: Estimated ECG Signal using η = 0.02 with (a) μSSLMS=0.005 (b) μSSLMS =0.05 

 

 

  

(a) (b) 

Figure 6.4.4: Error in estimation of ECG Signal using η = 0.02 with (a) μSSLMS=0.005 (b) μSSLMS 

=0.05 

 

For specific signal to noise ratio (SNR), PLI parameter and sampling frequency, a suitable 

[𝜇𝑆𝑆𝐿𝑀𝑆, 𝜂] pair must be decided which in this case is [0.005,0.5]. 
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parameter for SSLMS is 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and forgetting factor used for SSRLS is 𝜆𝑆𝑆𝑅𝐿𝑆 = 0.999. 

Moreover, in order to observe convergence in details, 𝜂 has been set at 0.02. Figure 6.5.1 shows 

that as far as 𝜂 is same for both adaptive tracking schemes, change of noise canceller does not 

affect the convergence of frequency. It can be seen in Figure 6.5.2 that the convergence speed of 

SSLMS is faster than that of SSRLS algorithm due to model uncertainty factor. This performance 

analysis is also exhibited in Figure 6.5.3 and Figure 6.5.4. 

  

(a) (b) 

Figure 6.5.1: Frequency tracking of PLI using η = 0.02 with (a) SSLMS (μSSLMS=0.005) (b) 

SSRLS (λSSRLS = 0.999) 

 

 

  

(a) (b) 

Figure 6.5.2: Estimated PLI of 49.5 Hz using η = 0.02 with (a) SSLMS (μSSLMS=0.005) (b) 

SSRLS (λSSRLS = 0.999) 
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(a) (b) 

Figure 6.5.3: Estimated ECG Signal using η = 0.02 with (a) SSLMS (μSSLMS=0.005) (b) SSRLS 

(λSSRLS = 0.999) 

 

 

  

(a) (b) 

Figure 6.5.4: Error in estimation of ECG Signal using η = 0.02 with (a) SSLMS (μSSLMS=0.005) 

(b) SSRLS (λSSRLS = 0.999) 

 

 

Table 6.5-1 compares the MATLAB simulations elapsed time and it is clear that SSLMS is 

approximately twenty six times faster than that of SSRLS algorithm hence proving SSLMS to be 

better than that of SSRLS algorithm. 
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Table 6.5-1: Elapsed time of MATLAB simulations for SSLMS and SSRLS algorithms 

SSLMS SSRLS 

0.033861 seconds 0.868233 seconds 

 

6.6 Conclusion 

 From this chapter, PLI with frequency unknown to the system has been removed from 

noisy ECG signal by first tracking its frequency and then estimating it. From the simulation results, 

we have concluded that, in case of unknown frequency, SSLMS gives better results for a larger 

value of 𝜂 and smaller value of 𝜇𝑆𝑆𝐿𝑀𝑆 where former determines frequency tracking and later leads 

to convergence. Moreover, SSLMS has better convergence speed and computational complexity 

than SSRLS algorithm for a fixed value of 𝜂.  
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CHAPTER 7: TRACKING AND REMOVAL OF SINUSOIDAL PLI WITH 

VARYING FREQUENCY FROM ECG SIGNAL 

 This chapter explains the tracking of sinusoidal component of PLI having frequency which 

is varying unidirectional or bidirectional from ECG signal using SSLMS Algorithm. The results 

are generated using MATLAB R2012a. The parameter for tracking are analyzed for their 

performance. The comparison of SSLMS is done with SSRLS algorithm with respect to 

convergence, mean square error and computational complexity. 

7.1 SSLMS based Adaptive Tracking of Varying Frequency 

In real life situations, there is a chance for PLI frequency to vary within a certain range. 

This drifting PLI is hard to estimate and can be modeled as a chirp signal and it has been shown 

in literature that SSLMS can track a chirp signal [50]. In this chapter, SSLMS will be implemented 

to first track the frequency of signal and then estimating it. In order to track the variable frequency, 

the mechanism mentioned in section 6 has been used. However, the noisy signal 𝑣𝑃𝐿𝐼[𝑘] is 

generated as follows: 

 𝑣𝑃𝐿𝐼[𝑘] =  𝜎sin [𝜔𝑘𝑇 + 𝜕(𝑘𝑇)2 +  𝜑] (7.1) 

 

Where 𝜎 = amplitude, 𝜔 = frequency, 𝜕 = frequency drift rate, 𝜑 = phase and 𝑇 = sampling time 

of the unknown and variable PLI signal.  

7.2 Tracking PLI with Unidirectional Drifting Frequency 

For any signal with unidirectional varying frequency, its frequency increases or decrease 

till the last sample. Figure 7.2.1 shows ten cycles of pure ECG signal 𝑢[𝑘] from MIT-BIH database 

[49] normalized.  
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Figure 7.2.1: Pure ECG Signal using MIT-BIH database 

 

The unknown sinusoidal 𝑣𝑃𝐿𝐼[𝑘] has been generated using the parameter mentioned in 

Table 7.2-1. The frequency has been linearly increased from 49.5 Hz to 50.5 Hz.  

Table 7.2-1: Parameters to generate Sinusoidal Noise with linearly varying frequency 

Parameter Symbol Value 

Amplitude 𝜎𝑠 0.1 

Frequency 𝜔 2𝜋 × 49.5 to 2𝜋 × 50.5 

Phase 𝜑 𝜋

4
 

Sampling Time 𝑇𝑠 1

360
= 0.028 

 

Adding 𝑣𝑃𝐿𝐼[𝑘] we get PLI corrupted signal as mentioned in Figure 7.2.2. 
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Figure 7.2.2: Unidirectional Frequency Sinusoidal PLI corrupted ECG Signal 

 

7.2.1 Simulation Results 

SSLMS based ANC has been initialized with 𝜔𝑜 = 2𝜋 × 50, 𝜑𝑜 = 0, 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and 

𝜂 = 0.5. Value of 𝜂 is kept higher than 0.02 as the frequency is varying and such small step-size 

will not be able to track the desired results.  

It can be seen in Figure 7.2.3 that the tracked frequency is varying from 49.5 Hz to 50.5 

Hz, hence the frequency is being track correctly. Due to larger value of 𝜂, Figure 7.2.4 shows that 

the output of SSLMS algorithm converges in the beginning. Moreover, Figure 7.2.5 exhibit that 

the ECG is estimated correctly and Figure 7.2.6 shows that due to small estimation error, SSLMS 

is an efficient algorithm in tracking and removing unidirectional varying PLI. 

0 500 1000 1500 2000 2500 3000
-0.2

0

0.2

0.4

0.6

0.8

1

Sample Number

N
o

rm
a
li
z
e
d

 A
m

p
li
tu

d
e

ECG Signal Corrupted by PLI



Anx-B 

54 

 

 

Figure 7.2.3: Frequency tracking unidirectional varying of PLI using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 

0.5 

 

 

Figure 7.2.4: Estimated unidirectional varying PLI using 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.5 
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Figure 7.2.5: Estimated ECG Signal using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.5 

 

 

Figure 7.2.6: Error in estimation of ECG Signal using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.5 
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7.2.2 Effect of η on frequency tracking 

Values of 𝜂 chosen for analysis are 𝜂 = 0.02 and 𝜂 = 0.5. Figure 7.2.7 show that for 𝜂 =

0.02, frequency converges from 50Hz, which the initial frequency of the system, and takes some 

iterations to reach near its correct value. Moreover, the estimated PLI signal at the output of 

SSLMS algorithm with smaller 𝜂 also takes longer to converge than with larger 𝜂 as shown in 

Figure 7.2.8. 

In Figure 7.2.9, it can be seen that for SSLMS with smaller 𝜂, estimated ECG is not 

accurate. The reason for this behavior is that due to frequency varying at every step, it is very 

difficult to track it with a smaller value of 𝜂. This inaccuracy in ECG estimation can also be shown 

in the error plots of Figure 7.2.10. 

  

(a) (b) 

Figure 7.2.7: Frequency tracking of unidirectional varying PLI using μSSLMS=0.005 with (a) η = 

0.02 (b) η = 0.5 
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(a) (b) 

Figure 7.2.8: Estimated unidirectional varying PLI using μSSLMS=0.005 with (a) η = 0.02 (b) η = 

0.5 

 

  

(a) (b) 

Figure 7.2.9: Estimated ECG Signal using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 
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(a) (b) 

Figure 7.2.10: Error in estimation of ECG Signal using μSSLMS=0.005 with (a) η = 0.02 (b) η = 

0.5 

 

7.2.3 Effect of μSSLMS on convergence and error 

Figure 7.2.14 shows that for larger value of 𝜇𝑆𝑆𝐿𝑀𝑆 i.e. 0.05, SSLMS algorithm exhibits 

poor estimation at the occurrence of QRS complex peaks in ECG. This estimation performance 

also affects the tracking of frequency as shown in Figure 7.2.11. 

  

(a) (b) 

Figure 7.2.11: Frequency tracking of unidirectional varying PLI using η = 0.5 with (a) 

μSSLMS=0.005 (b) μSSLMS =0.05 
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(a) (b) 

Figure 7.2.12: Estimated unidirectional varying PLI using η = 0.5 with (a) μSSLMS=0.005 (b) 

μSSLMS =0.05 

 

  

(a) (b) 

Figure 7.2.13: Estimated ECG Signal using η = 0.5 with (a) μSSLMS=0.005 (b) μSSLMS =0.05 
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(a) (b) 

Figure 7.2.14: Error in estimation of ECG Signal using η = 0.5 with (a) μSSLMS=0.005 (b) μSSLMS 

=0.05 

 

7.2.4 Comparison with SSRLS algorithm 

Tracking of variable frequency PLI has been shown in this section using 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005, 

𝜆𝑆𝑆𝑅𝐿𝑆 = 0.999 and 𝜂 = 0.5 for both adaptive filters.  As shown earlier in Figure 6.5.1, it can also 

be observed from Figure 7.2.15 that the change of algorithm does not affect frequency convergence 

as far as 𝜂 is constant. Figure 7.2.18 shows that the estimation error of SSLMS is better that that 

of SSRLS in this specific case. 

  

(a) (b) 

Figure 7.2.15: Frequency tracking of unidirectional varying PLI using η = 0.5 with (a) SSLMS 

(μSSLMS=0.005) (b) SSRLS (λSSRLS = 0.999) 
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(a) (b) 

Figure 7.2.16: Estimated unidirectional varying PLI using η = 0.5 with (a) SSLMS 

(μSSLMS=0.005) (b) SSRLS (λSSRLS = 0.999) 

 

  

(a) (b) 

Figure 7.2.17: Estimated ECG Signal using η = 0.5 with (a) SSLMS (μSSLMS=0.005) (b) SSRLS 

(λSSRLS = 0.999) 
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(a) (b) 

Figure 7.2.18: Error in estimation of ECG Signal using η = 0.5 with (a) SSLMS (μSSLMS=0.005) 

(b) SSRLS (λSSRLS = 0.999) 

 

In Table 7.2-2, it is shown that SSLMS requires lesser time to execute than SSRLS algorithm. 

Table 7.2-2: Elapsed time of MATLAB simulations for SSLMS and SSRLS algorithms 

SSLMS SSRLS 

0.065857 seconds 0.217688 seconds 

 

 Hence the simulation results and elapsed time analysis prove SSLMS based adaptive noise 

canceller to be better than SSRLS one in case of unidirectional varying frequency. 

7.3 PLI with Bidirectional Drifting Frequency 

 Bidirectional frequency means that it increases or decreases in one direction to a 

specific sample and then goes vice versa and so on. Figure 7.2.1 shows ten cycles of pure ECG 

signal 𝑢[𝑘] from MIT-BIH database [49] normalized. In order to test the working of SSLMS on 

bidirectional varying frequency, 𝑣𝑃𝐿𝐼[𝑘] has been increased from 49.5 Hz to 50.5 Hz till the center 

of the signal and then decreased back to 49.5 Hz as shown in  

Table 7.3-1. 

Table 7.3-1: Parameters to generate Sinusoidal Noise with bidirectional varying frequency 
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Parameter Symbol Value 

Amplitude 𝜎𝑠 0.1 

Frequency 𝜔 Sample 1:1500 → 2𝜋 × 49.5 to 2𝜋 × 50.5 

Sample 1501:3000 → 2𝜋 × 50.5 to 2𝜋 ×

49.5 

Phase 𝜑 𝜋

4
 

Sampling Time 𝑇𝑠 1

360
= 0.028 

 

Adding 𝑣𝑃𝐿𝐼[𝑘] we get PLI corrupted signal as mentioned in Figure 7.3.1. 

 

Figure 7.3.1: Bidirectional Frequency Sinusoidal PLI corrupted ECG Signal 

 

7.3.1 Simulation Results 

 SSLMS has been initialized with 𝜔𝑜 = 2𝜋 × 50, 𝜑𝑜 = 0, 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and step-size 

parameter for adaptive tracking scheme in section 6 is 𝜂 = 0.5.  
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Figure 7.3.2 shows that SSLMS based adaptive tracking algorithm has traced frequency efficiently. 

Also Figure 7.3.4 and Figure 7.3.5 show excellent interference cancellation ability of SSLMS 

algorithm. 

 

Figure 7.3.2: Frequency tracking bidirectional varying of PLI using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 

0.5 

 

 

Figure 7.3.3: Estimated bidirectional varying PLI using 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.5 
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Figure 7.3.4: Estimated ECG Signal using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.5 

 

 

Figure 7.3.5: Error in estimation of ECG Signal using  𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005 and η = 0.5 
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7.3.2 Effect of η on frequency tracking 

𝜂 = 0.02 and 𝜂 = 0.5 have been chosen for this comparative analysis. Figure 7.3.6 shows 

that for smaller 𝜂, the frequency is not being tracked correctly and even after convergence, it’s 

value is slightly lesser than true value hence giving out more error in estimation as shown in Figure 

7.3.8 and Figure 7.3.9. 

  

(a) (b) 

Figure 7.3.6: Frequency tracking of bidirectional varying PLI using μSSLMS=0.005 with (a) η = 

0.02 (b) η = 0.5 

 

  

(a) (b) 

Figure 7.3.7: Estimated bidirectional varying PLI using μSSLMS=0.005 with (a) η = 0.02 (b) η = 

0.5 
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(a) (b) 

Figure 7.3.8: Estimated ECG Signal using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 

 

  

(a) (b) 

Figure 7.3.9: Error in estimation of ECG Signal using μSSLMS=0.005 with (a) η = 0.02 (b) η = 0.5 

 

7.3.3 Effect of μ on convergence and error 

Results in this section exhibit that smaller the value of 𝜇𝑆𝑆𝐿𝑀𝑆, smaller the estimation error 

at QRS complex peaks of ECG signal. It can be seen in Figure 7.3.10 that for smaller 𝜇𝑆𝑆𝐿𝑀𝑆, 

frequency tracking is also affected at the point of occurrence of ECG signal peaks which also leads 

to error in estimation as shown in Figure 7.3.13. 
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(a) (b) 

Figure 7.3.10: Frequency tracking of bidirectional varying PLI using η = 0.5 with (a) 

μSSLMS=0.005 (b) μSSLMS =0.05 

 

  

(a) (b) 

Figure 7.3.11: Estimated bidirectional varying PLI using η = 0.5 with (a) μSSLMS=0.005 (b) 

μSSLMS =0.05 
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(a) (b) 

Figure 7.3.12: Estimated ECG Signal using η = 0.5 with (a) μSSLMS=0.005 (b) μSSLMS =0.05 

 

  

(a) (b) 

Figure 7.3.13: Error in estimation of ECG Signal using η = 0.5 with (a) μSSLMS=0.005 (b) μSSLMS 

=0.05 

 

7.3.4 Comparison with SSRLS algorithm 

Figure 7.3.14 shows the frequency tracking of PLI with bidirectional variable using 

𝜇𝑆𝑆𝐿𝑀𝑆 = 0.005, 𝜆𝑆𝑆𝑅𝐿𝑆 = 0.999 and 𝜂 = 0.5.  Figure 7.3.17 shows that the estimation error of 

SSLMS is better that that of SSRLS for such type of frequency variation. 
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(a) (b) 

Figure 7.3.14: Frequency tracking of bidirectional varying PLI using η = 0.5 with (a) SSLMS 

(μSSLMS=0.005) (b) SSRLS (λSSRLS = 0.999) 

 

  

(a) (b) 

Figure 7.3.15: Estimated bidirectional varying PLI using η = 0.5 with (a) SSLMS 

(μSSLMS=0.005) (b) SSRLS (λSSRLS = 0.999) 
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(a) (b) 

Figure 7.3.16: Estimated ECG Signal using η = 0.5 with (a) SSLMS (μSSLMS=0.005) (b) SSRLS 

(λSSRLS = 0.999) 

 

  

(a) (b) 

Figure 7.3.17: Error in estimation of ECG Signal using η = 0.5 with (a) SSLMS (μSSLMS=0.005) 

(b) SSRLS (λSSRLS = 0.999) 

 

In Table 7.3-2, it is shown that for SSLMS, MATLAB requires lesser time to execute than that 

for SSRLS algorithm. 

Table 7.3-2: Elapsed time of MATLAB simulations for SSLMS and SSRLS algorithms 

SSLMS SSRLS 

0.120216 seconds 1.437904 seconds 
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 Hence the simulation results and elapsed time analysis proves SSLMS based adaptive noise 

canceller to be better than SSRLS one in case of unidirectional varying frequency. 

7.4 Conclusion 

 From this chapter, PLI with frequency unidirectional and bidirectional varying has been 

removed from noisy ECG signal by first tracking its frequency and then estimating it. From the 

simulation results, we have concluded that, in case of drifting frequency, SSLMS gives better 

results for a larger value of 𝜂 and smaller value of 𝜇𝑆𝑆𝐿𝑀𝑆 where former determines frequency 

tracking and later leads to convergence. Moreover, SSLMS has better convergence speed and 

computational complexity than SSRLS algorithm for a fixed value of 𝜂. 
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CHAPTER 8: SSRLS-SSLMS HYBRID ALGORITHM BASED ADAPTIVE 

NOISE CANCELLER 

 In this chapter a hybrid of SSRLS and SSLMS algorithm has been proposed to remove 

sinusoidal PLI with known frequency from ECG signal. The results are generated using MATLAB 

R2012a. The parameter for hybrid to switch from one algorithm to another has been explained. 

Moreover, the results have been compared with those of SSLMS and SSRLS algorithm. 

8.1 Overview of HybridSSRLS-SSLMS Algorithm 

In Table 8.1-1, SSRLS and SSLMS algorithms have been compared in light of previous 

simulations mentioned in section 5.3. It is clear that SSRLS algorithm has better convergence 

speed and MSE but has very high computational complexity (Table 2.4-2So in order to benefit 

from both algorithms, a hybrid of SSRLS and SSLMS has been proposed which combines 

convergence and MSE of former and computational complexity of later algorithm as shown in 

Table 8.1-1. 

Table 8.1-1: Comparison of SSRLS, SSLMS and Hybrid algorithm with respect to convergence, 

MSE and computational complexity 

 Convergence Mean Square Error Computational 

Complexity 

SSRLS    

SSLMS    

SSRLS-SSLMS 

Hybrid 

   

 

In order to have better convergence for the proposed hybrid, SSRLS algorithm is being executed 

for first 𝜓 iteration, and after that for the rest of the estimation SSLMS based adaptive noise 

cancellation has been implemented. Value of 𝜓 is decided according to the convergence property 

of respective SSRLS algorithm.  
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               SSRLS 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
<

>
𝜓 

SSLMS 

(8.1) 

The selection of 𝜆𝑆𝑆𝑅𝐿𝑆 for faster convergence and 𝜇𝑆𝑆𝐿𝑀𝑆 for improved mean square error in later 

iterations is further explained in Section 8.2. 

8.2 Implementation of Hybrid SSRLS-SSLMS Algorithm 

SSRLS-SSLMS Hybrid algorithm has been used to remove PLI noise generated parameters 

using Table 5.1-1. Figure 5.1.1 and Figure 5.1.2 show the pure ECG signal [49] and noisy ECG 

signal respectively along with their frequency response. For SSRLS algorithm, larger value of 

forgetting factor 𝜆𝑆𝑆𝑅𝐿𝑆 leads to slow convergence. Similarly for SSLMS algorithm, in order to 

have efficient estimation at QRS complex peaks of the ECG signal, 𝜇𝑆𝑆𝐿𝑀𝑆 must be kept smaller. 

Keeping this in view, hybrid algorithm is initialized with 𝑥𝑜 = [
0
0
], 𝜆𝐻𝑦𝑏𝑟𝑖𝑑 = 0.99 and 𝜇𝐻𝑦𝑏𝑟𝑖𝑑 =

0.01. Moreover, SSRLS algorithm has been executed for the first cycle of ECG signal in this case 

which leads to 𝜓 = 300. 

 Figure 8.2.1 shows the amplitude and frequency response of proposed hybrid algorithm. 

It can be seen that after convergence, estimated PLI reaches its true amplitude i.e. 0.1. Frequency 

response in Figure 8.2.1 (b) shows that it has estimated the 50 Hz PLI very efficiently. 
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Figure 8.2.1: Output of SSRLS-SSLMS Hybrid algorithm (a) Amplitude (b) Frequency response 

 

 Figure 8.2.2 shows the amplitude and frequency response using the Hybrid algorithm based 

adaptive noise canceller and it can be seen from frequency response that 50 Hz component has 

been significantly removed by the improved ANC. 

  

(a) (b) 

 

Figure 8.2.2: Estimated ECG signal using proposed hybrid based ANC (a) Amplitude (b) 

Frequency response 

Figure 8.2.3 shows the error in the estimation of the noise-free ECG signal and it can be seen that 

this proposed technique reduce the error remarkably. 
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Figure 8.2.3: Estimation error using SSRLS-SSLMS Hybrid based ANC 

8.3 Comparison with SSLMS and SSRLS algorithms 

 This section shows the comparison of proposed hybrid algorithm with SSRLS and SSLMS 

algorithms. The parameters used are 𝜇𝑆𝑆𝐿𝑀𝑆 = 0.05, 𝜆𝑆𝑆𝐿𝑀𝑆 = 0.99, 𝜇𝐻𝑦𝑏𝑟𝑖𝑑 = 0.01 and 

𝜆𝐻𝑦𝑏𝑟𝑖𝑑 = 0.99. Analyzing Figure 8.3.1, we can see that MSE of Hybrid algorithm is lowest than 

both SSRLS and SSLMS algorithms making it better in sense of convergence and MSE than both 

existing algorithms.  

 

Figure 8.3.1: Comparison of MSE of SSLMS, SSRLS and Hybrid SSRLS-SSLMS based ANCs for 

noise cancellation 

 

 Moreover, it can be seen in Figure 8.3.2 that estimated PLI using hybrids algorithm shows 

no peaks at the occurrence points of ECG QRS complex peaks. Figure 8.3.3 shows the estimated 

ECG signal and it can be shown that Hybrid algorithm has better tracking efficiency than SSLMS 

and SSRLS based ANCs. Figure 8.3.4 shows that after the hybrid converges, it has lower error that 

the other two algorithms under consideration. 
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(a) (b) 

 

(c) 

Figure 8.3.2: Estimated PLI of (a) SSLMS (b) SSRLS (c) Hybrid SSRLS-SSLMS based ANCs  
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(a) (b) 

 

(c) 

Figure 8.3.3: Estimated ECG of (a) SSLMS (b) SSRLS (c) Hybrid SSRLS-SSLMS based ANCs 
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(a) (b) 

 

(c) 

Figure 8.3.4: Estimated error of (a) SSLMS (b) SSRLS (c) Hybrid SSRLS-SSLMS based ANCs 

 

Table 8.3-1 shows the comparison of elapsed time for MATLAB simulations mentioned above. It 

shows that Hybrid algorithm has slightly higher elapsed time than that of SSLMS algorithm but is 

much faster than SSRLS. 

Table 8.3-1: Elapsed time of MATLAB simulations for algorithms 

Algorithm Elapsed Time 

SSRLS 0.178354 seconds 
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SSLMS 0.019853 seconds 

Hybrid 0.029893 seconds 

 

 Hence, it is proved from the simulations that SSRLS-SSLMS Hybrid algorithm has better 

convergence, MSE and computational speed that both SSRLS and SSLMS algorithms. 

8.4 Computational Complexity analysis of SSRLS-SSLMS Hybrid 

Algorithm 

Table 8.4-1 shows the computational complexity of SSRLS algorithm being implemented 

on first 𝜓 iteration. During these iteration, hybrid algorithm converges reducing the mean square 

error. 

Table 8.4-1: Computational complexity for the first 𝜓 iterations using SSRLS algorithm 

Eq’s Operation × ± ÷ 

1 𝑥̅[𝑘]𝐿×1 = 𝐴[𝑘 − 1]𝐿×𝐿𝑥̂[𝑘 − 1]𝐿×1 𝐿2 𝐿2 − 𝐿 − 

2 𝑦̅[𝑘]1×1 = 𝐶[𝑘]1×𝐿𝑥̅[𝑘]𝐿×1 𝐿 𝐿 − 1 − 

3 𝜀[𝑘]1×1 = 𝑦[𝑘]1×1 − 𝑦̅[𝑘]1×1 − 1 − 

4 𝜙[𝑘]𝐿×𝐿 =  𝜆(𝐴𝐿×𝐿
−𝑇 𝜙[𝑘 − 1]𝐿×𝐿𝐴𝐿×𝐿

−1

+ 𝐶𝐿×1
𝑇 𝐶1×𝐿) 

2𝐿3 − 2𝐿2 2𝐿3 − 𝐿2 1 

5 𝐾[𝑘]𝐿×1 = 𝜙−1[𝑘]𝐿×𝐿𝐶
𝑇[𝑘]𝐿×1 𝐿2 𝐿2 − 𝐿 − 

6 𝑥̂[𝑘]𝐿×1 = 𝑥̅[𝑘]𝐿×1 + 𝐾[𝑘]𝐿×1𝜀[𝑘]1×1 𝐿 − − 

7 𝑦̂[𝑘]1×1 = 𝐶[𝑘]1×𝐿𝑥̂[𝑘]𝐿×1 𝐿 𝐿 − 1 − 

8 𝑒[𝑘]1×1 = 𝑦[𝑘]1×1 − 𝑦̂[𝑘]1×1 − 1 − 

 Total 𝟐𝑳𝟑 + 𝟒𝑳𝟐

+ 𝟑𝑳 

𝟐𝑳𝟑 + 𝑳𝟐 𝟏 

  𝟒𝑳𝟑 + 𝟓𝑳𝟐 + 𝟑𝑳 𝟏 
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 Similarly, Table 8.4-2 shows the computational complexity, of SSLMS algorithm, for the 

samples after the convergence has been attained. 

Table 8.4-2: Computational complexity for the remaining iterations using SSLMS algorithm 

Eq’s Equation × ± ÷ 

1 𝒙̅[𝒌] = 𝐴[𝒌 − 𝟏]𝒙̂[𝒌 − 𝟏] 𝐿2 𝐿2 − 𝐿 − 

2 𝑦̅[𝑘] = 𝐶[𝑘]𝑥̅[𝑘] 𝐿 𝐿 − 1 − 

3 𝜀[𝑘] = 𝑦[𝑘] − 𝑦̅[𝑘] − 1 − 

4 𝐾[𝑘] = 𝜇𝐶𝑇[𝑘] 𝐿 − − 

5 𝑥̂[𝑘] = 𝑥̅[𝑘] + 𝐾[𝑘]𝜀[𝑘] 𝐿 − − 

6 𝑦̂[𝑘] = 𝐶[𝑘]𝑥̂[𝑘] 𝐿 𝐿 − 1 − 

7 𝑒[𝑘] = 𝑦[𝑘] − 𝑦̂[𝑘] − 1 − 

 Total 𝑳𝟐 + 𝟒𝑳 𝑳𝟐 + 𝑳 − 

  𝟐𝑳𝟐 + 𝟓𝑳 − 

 

As mentioned in previous section, 𝜓 = 300 which means that for 300 iterations the computational 

complexity is 4𝐿3 + 5𝐿2 + 3𝐿 and for remaining 1500 iteration, according to the simulations in 

Section 8.2, it is 2𝐿2 + 5𝐿. Computing the average of this complexity over total 1800 iterations, 

the approximate complexity is 0.667𝐿3 + 2.5𝐿2 + 4.667𝐿 + 0.1667 as shown in Table 8.4-3. 

Table 8.4-3: Average computational complexity of Hybrid SSRLS-SSLMS algorithm over 1800 

iterations with 𝜓 = 300 

Samples Multiplication and Addition 

1-300 (SSRLS) 300(4𝐿3 + 5𝐿2 + 3𝐿 + 1) 

201-1800 (SSLMS) 1500(2𝐿2 + 5𝐿) 

Average computation per sample 0.667𝐿3 + 2.5𝐿2 + 4.667𝐿 + 0.1667 

 

 As sinusoidal model is used to estimate PLI. So 𝐿 = 2 for above mentioned computational 

complexity analysis. Table 8.4-4 shows the approximate number of computations per iteration it 
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takes for the three algorithms under study by putting the value of L in Table 8.4-1, Table 8.4-2 and 

Table 8.4-3. It is clear from the results that Hybrid algorithm has its computational complexity 

improved that that of SSRLS algorithm. 

Table 8.4-4: Number of computations per iteration for Hybrid, SSRLS and SSLMS algorithms 

Algorithm Number of Computations (L =2) 

SSRLS 59 

SSLMS 15 

Hybrid 24 

 

8.5 Conclusion 

 In this chapter, simulation results and MATLAB elapsed time have proved HybridSSRLS-

SSLMS to be better than SSLMS and SSRLS algorithms. Comparative analysis has been carried out 

for analyzing convergence, MSE, robustness and computational complexity of algorithms under 

consideration. 
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CHAPTER 9; CONCLUSION AND FUTURE WORK 

 

After detailed description and performance comparison of proposed solutions overall conclusion 

and future recommendations are presented in this chapter.   

9.1 Conclusion 

 In this this, SSLMS based adaptive noise cancellation technique has been proposed in order 

to estimate and remove impulsive component of PLI from ECG signal. The simulation results and 

comparison with existing techniques show that SSLMS has better overall performance. 

 Moreover, sinusoidal PLI with known, unknown and drifting frequency have also been 

removed from ECG signal using SSLMS Algorithm. Simulations have proved that SSLMS based 

ANC cancels out PLI efficiently. Step size parameters for SSLMS and adaptive tracking schemes 

have also been compared to decide the values giving better results. Proposed technique has also 

been compared with SSRLS based ANC and has proved to give better estimation performance.  

 In the end, a hybrid algorithm has been proposed that benefits from fast convergence, mean 

square error (MSE) and computational complexity of both SSRLS and SSLMS algorithm. It has 

been implemented to remove sinusoidal PLI with known frequency from ECG signal. Better 

performance of hybrid algorithm has been proved by simulation results along with its 

computational complexity analysis. 

9.2 Future Work 

 HybridSSRLS-SSLMS Algorithm has implemented where the convergence of SSRLS is better 

than SSLMS. In case of unknown and drifting sinusoidal PLIs, SSLMS has better estimation 

performance than SSRLS algorithm. In order to have better performance, HybridSSRLS-SSLMS must 

be analysed for such frequency cases. 
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9.3 Research Contribution 

• J Habib, A Zeb, A Mirza, SA Sheikh, “SSLMS Algorithm based Impulsive Noise 

Cancellation from ECG Signal”, IEEE International Conference of Multimedia Systems 

and Signals Processing, New Taipei, Taiwan, 3-5 September, 2016 

• Journal “PLI Removal from ECG signal using Adaptive Algorithms”-submitted 
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