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Abstract

Electrocardiogram (ECG) is the graphical illustration of heart activity to diagnose various
cardiovascular diseases. Presence of Power Line Interference (PLI) in ECG makes it difficult for
the examiner to identify proper working of heart. To remove such interference different types of
adaptive noise cancellers have been implemented. All the adaptive algorithms previously
implemented for such purpose have either better convergence, mean square error (MSE) or better
complexity. So a new algorithm named SSLMS is implemented to have a compromise between
the previously mentioned parameters. Using SSLMS, first impulsive component of PLI has been
removed and comparison of it has been made with NLMS, RLS and SSRLS algorithms. In later
work, PLI having known frequency is estimated using sinusoidal model of SSLMS algorithm and
comparisons are made with SSRLS algorithm. Later PLI with unknown frequency is being tracked
by first converging to its true frequency and then estimating it based to the new value of frequency.
In the end PLI with unidirectional and bidirectional frequency is being estimated and removed
from ECG signal. Moreover, every simulation using SSLMS has also been compared with those
of SSRLS algorithm. As SSRLS has better convergence and MSE but exceptionally high
computational complexity than that of SSLMS algorithm, so a new hybrid algorithm is proposed
that combines the best features of both SSRLS and SSLMS algorithms. This algorithm has faster
convergence than that of SSLMS algorithm and lower computational complexity than SSRLS
algorithm. Moreover, its MSE is lower than those of both SSRLS and SSLMS algorithm.

Simulation results prove the enhanced performance of the proposed hybrid.

Key Words: Power Line Interference, Electrocardiogram, SSLMS, SSRLS,, frequency tracking,

adaptive filters, convergence, MSE, computational complexity, robustness
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CHAPTER 1: INTRODUCTION

In this chapter, a short overview of my work is presented. The motivation behind this work,
Problem statement and basics of ECG are discussed along with its importance in diagnosing
various heart diseases. Moreover, types of noises that usually affect ECG are also discussed in

detail in order to elaborate the need of noise removal from ECG.
1.1 Motivation:

Cardiovascular disease includes a group of disorders related to heart and blood vessels.
According to World Health Organization (WHO), cardiovascular diseases are on top of the list of
diseases causing global deaths annually [1],[2]. WHO reports in 2012 show that approximately
17.5 million deaths, which is 31% of the world population, have occurred due to cardiovascular
diseases [2] among which 7.4 million were cases of coronary heart disease and stroke was a cause
of 6.7 million [2]. And with this rate, predictions are that death rate due to cardiovascular diseases
can reach up to 23.3 million within fifteen years [3]. In order to avoid this predictive death rate,
there must be some efficient system to diagnose heart diseases at an early stage. In order to identify
such diseases, a graphical illustration of electrical activity by heart are represented in a form of
waveform. Such waveforms are called Electrocardiogram (ECG) and are used by medical
examiners to identify the disease.

ECG is a very important tool that has been used to identify various cardiovascular issues
present. The shape of this waveform has pre-determined amplitudes and duration. ECG signals are
obtained by means of electrodes attached to the precise locations on patient’s body. But, even with
the finest ECG recording machines available, this ECG signal can never be generated without any
impurity or noise present in it. Types of noise corrupting ECG signal are Power Line Interference
(PLI), Baseline Drift, Electrode Contact Noise, Motion Artifacts, Electromyography (EMG) and
instrumentation noise. Among all these, PLI is the major type of noise present in ECG signal and
occurs due to Electromagnetic Interference (EMI) in the cable connect to ECG machine. This EMI

is from the power line frequency generated by any power line or plug in the surrounding region.
1
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The frequency, phase and amplitude of PLI are not known to any noise cancellation scheme. So,
in order to track these characteristics of PLI or ECG signal, we need an adaptive algorithm which

leads us to the main motivation i.e. to find an efficient method to remove PLI for ECG signal.

1.1. Electrocardiograph basics:

ECG is one of the most valuable and simplest cardiac diagnostic tools available that
provides rich information about the condition of heart. An ECG signal is basically a graphical
representation of the electrical activity of heart. One can identify beat disturbance, transmission
irregularities and electrolyte inequities by accurately inferring these waveforms. An ECG helps in

identifying and intensive care of such diseases like acute coronary syndromes and pericarditis.

For an accurate interpretation of ECG, identification of its key components is necessary
and then these components are analyzed separately. The electrical activity of the heart produces
currents that transfer through the surrounding tissue to the skin. Electrodes attached to the skin
sense these signals and give a graphical representation of them.

QRS Duration
-
Normal Heartbeat

A )
Atnal Ventricular Ventricular

Depolansation Depolarisation Repolarisation A ’ l ‘ l I

/—/—\’L\_ Fast Heartbeat
-—— \ /
PR Interval \ // M‘L\M\M

Slow Heartbeat

Irregular Heartbeat

Activation of the Activation of the Recovery wave
atna ventricles

Figure 1.1.1: Heart conditions and ECG
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1.2 ECG waveform components:

An ECG complex represents the depolarization-repolarization of the heart occurring in one

cardiac cycle. ECG waveform consists of three basic components:
e The P wave
e The QRS complex
e The T wave

The components can be further broken into following intervals and segments:

e PRinterval
e ST segment

e QT interval

QRS
Complex

R

PR ST
Segment Segment

. P wave Q T wave

" PRinterval

QT Interval

Figure 1.2.1: ECG waveform components
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1.3 Sources of noise:

When ECG is acquired from human body, it gets corrupted by various types of noises.

Most common types are:

e Power line interference (PLI)
e Baseline Drift
e Electrode Contact Noise
e Motion Artifacts
e Electromyography
e Instrumentational noise
1.3.1 Power Line Interference (PLI):

As mentioned by the name, PLI occurs due to EMI in the power cable connected to the
ECG machine. PLI noise is sometimes of such amplitude that it totally conceals the original ECG
signal. Due to this reason, American Heart Association has recommended ECG recorders to have
a 3dB frequency range from 0.67 Hz to 150 Hz [4], [5], [6].

PLI has two major components reported that are explained as follows:

e Impulsive component comprises of various pulses with high amplitude and short

duration which causes the adaptive filters to become unstable..

e Sinusoidal component has unknown frequency which can be a variable parameter
in some cases along with unknown amplitude and phase. Removal of this type of
PLI has been reported many times in literature. The sinusoidal component of PLI

is shown in Figure 1.3.1.
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Figure 1.3.1: ECG signal with (a) 10% PLI, (b) 25% & 50% PLI

This research work focuses on PLI removal techniques from ECG signal.
1.3.2 Baseline Drift:

Baseline drift as shown in Figure 1.3.2 is a sinusoidal signal having low frequency i.e.
within 0.5 Hz to 0.5 Hz. Baseline drift occurs due to human respiration, temperature variance,
electrode impedance and any bias occurring in the ECG machine. Due to its low frequency,
baseline drift causes problem when analyzing low frequency components of ECG and can be
removed by passing the corrupted ECG through a high pass filter with cut-off frequency 50 Hz.

J - v v v ¥ ¥
o 1 = 3 -

Figure 1.3.2: ECG signal with baseline drift
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1.3.3 Electrode Contact Noise:

It occurs due to the loose contact of electrodes with the skin while recording ECG. Figure

1.3.3 shows ECG signal affected by electrode contact noise.

Figure 1.3.3: ECG corrupted with Electrode Contact Noise

1.3.4 Motion artifacts:

The reason for motion artifact shown in Figure 1.3.4 is a dissimilarity between the positions
of electrode and heart or any disturbance in the transmission medium between the electrodes and

heart. It causes a change in amplitude of ECG signal along with baseline drift.

C =N W Db

W
b

L L
o 1 2

Figure 1.3.4: ECG affected due to Motion artifacts.
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1.3.5 Electromyography (EMG) Interference:

Frequency

Figure 1.3.5: Frequency spectrum of ECG and EMG.

EMG signal is a random signal with a wide frequency spectrum overlapping with that of
ECG signal as shown in Figure 1.3.5. It occurs due to the depolarization and re-polarization waves
generated by other muscles besides heart resulting in EMG interference which is represented in

Figure 1.3.6. The material of electrodes and muscle contraction decides the extent of EMG noise

added.
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Figure 1.3.6: EMG noise present in ECG.
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1.4 Problem Statement:

“Development of efficient solutions for PL1 removal from ECG signal with low

Computational Complexity and Mean Square Error”

As we will see in Literature Review that Notch Filter Approach is not feasible for removal
of PLI with unknown frequency, and in ANC domain the computational complexity of SSRLS is
very high. So an algorithm must be proposed with low computational complexity and efficient
noise tracking.
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CHAPTER 2: OVERVIEW OF EXISTING TECHNIQUES

In this chapter, a brief overview of all the existing techniques for removal of PLI noise
from ECG signal has been given. This chapter includes both conference and journal publications

for major techniques implemented for problem under consideration.

Electrocardiograph (ECG) is the graphical illustration of electrical signal generated by
heart and is an important technique to identify various cardiovascular diseases [7]. ECG signal
being corrupted by various types of noise makes it very difficult for the examiner to identify the
disease. Types of noise that corrupt ECG signal are Power Line Interference (PLI), Electrode
Contact Noise, Motion Artifacts, Electromyography (EMG) and instrumentation noise. PLI is the
interference caused in power line cable attached to the ECG machine and is the main source of
noise. It occurs through capacitive coupling and inductive coupling, generating high and low

frequency noise respectively [8]. A realization of PLI is generated as

npy k] = o sin(wkT + @) (2.1)

Where o is the amplitude of PLI, o is frequency, T is sampling time and ¢ is phase. Magnitude of
PLI must not be more than 0.5% of the peak-to-peak value of ECG signal for it to be detected with
accuracy [9]. But for real time ECG signals, it has been observed that PLI noise does not confine
to the 0.5% criteria. In literature, two major types of techniques implemented to remove PLI from
ECG are named as Notch Filter and Adaptive Noise Canceller (ANC). Notch filter can remove
PLI only if its frequency is known as a difference in PLI and notch frequency causes spectrum
distortion [10]. Whereas, ANC can also eliminate PLI with unknown or variable frequency [11],
[12].

2.1 Notch Filter Approach

IIR notch filters have small filter order as compared to their equivalent FIR notch filters.
Due to this reason, IR notch filters have been used in most of the cases. In order to have less effect
9
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on the spectrum of ECG signal, the suppression band of notch filter must be kept narrow which
leads to small ringing effect for impulse response [13]. Moreover, if the frequency of PLI and
notch filter is not same, spectrum distortion occurs in ECG recovered ECG signal. Panda et al.
[14] have used FIR notch filter to remove various types of noise from ECG signal. They applied
various windows for this purpose and compared the techniques on basis of Peak SNR. Rectangular
window is proved to be better than other applied windows due to its sharp transition from pass
band to stop band and pulsation in stop band. Different types of notch filters are explained as

follows:
2.1.1 Q-varying Notch Filter

For a notch filter, its bandwidth and attenuation level are proportional to each other.
Whereas, in order to remove a particular frequency, notch filter must have narrow bandwidth at
that frequency and high attenuation level. For this purpose, tunable notch filters can tune their
notch frequency in a specific range [15]. Adaptive Notch Filters (ANF) have been designed using
LMS [16],[17] and RLS[18] to have an adaptable notch frequency.

J. Piskorowski proposed Q-varying notch filter, as a type of ANF, which adjust its Q-factor
to have a narrow bandwidth and higher attenuation level than basic notch filter [19] due to which
it also reduces the transient response of filter.

2.1.2 Pole Radius Varying Notch Filter

For a noise of short duration, a larger initial distortion leads to lesser accuracy in PLI
removal. So for such cases, transient response must be small. Whereas, narrow bandwidth notch
filters have larger transient response. Based on pole/zero constrained filter, Li Tan et al [20]
suggested a new IIR notch filter to remove PLI from noisy ECG signal. The transient response is

reduced by adjusting the pole-placement radius of the filter.
2.2 Adaptive Noise Canceller

The concept of Adaptive Noise Canceller was first proposed by Widrow et al. [11] in 1975.

For unknown but constant frequency, once the ANC converges to its true value, it starts working
10
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like Notch Filter [11]-[12]. Due to these reasons, ANC is being used here for noise cancellation

from ECG signal.

Adaptive Noise Cancellers are further divided into two categories as reported in literature

named as ANC with reference input and without reference input.
2.3 ANC with Reference Input

Under the category of ANC with reference input, S. Z. Islam et. al [22] implemented Least
Mean Square (LMS) and Recursive Least Square (RLS) algorithms to remove both AC and DC
noises from ECG signal. Further Normalized Least Mean Square (NLMS) algorithm has been
proved to remove PLI more efficiently than LMS by comparing the SNR for both [23]. Whereas,
RLS has improved convergence and Mean Square Error (MSE) than NMLS but higher

computational complexity [24].
2.3.1 Normalized Least Mean Square (NLMS) Algorithm

NLMS is an improved and normalized version of Least Mean Square (LMS) algorithm and
exhibits faster convergence and better stability as compared to LMS. For larger input data, LMS
encounters ‘gradient noise amplification’ problem. To resolve this issue, NLMS algorithm [25] is

summarized as follows:

WyLms(0) = Oppxs (2.2)
Fork = 0,1,2,...
Xnims(®) = [x(k),x(k = 1), ..., x(k = M + 1)]T (2.3)
entms (k) = dyims(k) — Wypms ()7 Xypms (k) (2.4)

inimsenims (k) Xyims (k) (2.5)
Snims + 11 XnLms (K)?|]

Table 2.3-1 shows the parameters used in NLMS algorithm.

Wyims(k +1) = Wypys(k) +

Table 2.3-1: Parameter Description For NLMS Algorithm

Parameter Description

Wyims () Filter-tap weight vector in the kth iteration

11
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M Filter order
enims (k) Estimated error for kth iteration
dyims Desired signal
UNLMS Step size
Small number added for stability of
6NLMS NLMS

a. Recursive Least Square (RLS) Algorithm
RLS updates its gain vector ERLS recursively and uses auto-correlation of input data. Hence,

RLS has faster convergence rate than NLMS algorithm. The recursive parameters of RLS

algorithm are updated as follows [25]:

Dres(0) = Spisl,  Wrps(0) = Opxy (2.6)
Fork =0,1,2,...
Xrs(k) = [x(k),x(k — 1), ..., x(k — M + 1)]T (2.7)
Grus(k) = AxisPros(e — 1) — Ariskprs(K)X s (K)pys(k — 1) (2.8)
ERLS (k) = ¢TRLS(k)XRLs(k) (2.9)
ArLs + Xprs(K)Prrs (k) Xpps (k)
eps(k) = dpps(k) — Wpps(k)™ Xpys(k) (2.10)

Table 2.3-2 describes the parameters used in RLS algorithm.

Table 2.3-2: Parameter Description For RLS Algorithm

Parameter Description
Wrs (k) Filter-tap weight vector in the kth iteration
M Filter order
ERLS(k) Gain vector for kth iteration
ers(k) Estimated error for kth iteration
drys Desired signal
ARLs Forgetting factor (< 1)

12
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ORrLs Regularization factor

OrLs Inverse of Cross Correlation matrix

2.4  ANC without Reference Input

Various adaptive algorithms have been proposed which do not use reference input to
estimate the required signal [26], [27], [28], [29] and [30]. Butt et al. [30] proposed State Space
RLS (SSRLS) based ANC to remove 50 Hz PLI from ECG signal and compared its performance
with conventional notch filter. Table 2.4-2 compares the investigated algorithms, it is clear from
this comparison that SSRLS is better than other algorithms in terms of convergence speed, mean

square error and robustness at the cost of high computational complexity.

b. State Space Recursive Least Square Algorithm:
SSRLS [31] is a state space extension of RLS and exhibits faster convergence, better

tracking capability but high computational complexity as compared to RLS algorithms. It

recursively updates its cross-correlation matrix and observer gain as follows:

XssrLslk] = Agsprslk — 1]%ssris[k — 1] (211)

Vssrrslkl = Cssrislk]Xssris(k] (2.12)

essrslk] = Yssrislkl — Vssrrslk] (213)

bssris[k] = Assris(AssrisPssrislk — 11Asdprs + CasrisCssrLs) (2.14)
Kssrislk] = dsspisk]Cosposlk] (2.15)

Xssrrslk] = Xssrislk] + Kssrislklessris(k] (2.16)

Vssrrslkl = Cssrislk]Zssrislk] (2.17)

essreslk] = Yssrislk] — Pssrrslk] (2.18)

Table 2.4-1 describes the parameters used in SSRLS algorithm.

Table 2.4-1: Parameter Description for SSRLS Algorithm

Parameter Description

13
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Xssrislk] Predicted state
Xssrislk] Estimated state
Vssrislk] Predicted output
Vssruslk] Estimated output
essrrslk] Prediction error
essrLsk] Estimation error
Assrislk] System matrix
Cssris|k] Output matrix
bssrislk] Cross Correlation Matrix
Kssrislk] Observer gain

Other algorithms that have been reported in literature under the category of ANCs are

e Window Adaptive Canceller [33]

e Adaptive Sinusoidal Interference Canceller [34][35]
e Smoothing and Filtering [36]

e Lock-In Amplifier Algorithm [37]

e Median Filter [38]

e Empirical Mode Decomposition [39][40][41][42][43]
e Fusion of Algorithms [44]

e Parabolic Filters [45]

Furthermore, another adaptive algorithm is reported in literature named as State-Space
Least Mean Square (SSLMS) algorithm [46] with convergence speed and MSE approaching to
that of SSRLS but computational complexity much less than that of SSRLS algorithm. Motivated

14
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by the performance of SSLMS algorithm in [46], in this paper we propose SSLMS algorithm based
adaptive noise canceller. In order to further improve the performance of proposed ANC, a hybrid
algorithm is proposed that combines the fast convergence speed and low MSE of SSRLS algorithm
with the less computational complexity of SSLMS algorithm.

Table 2.4-2 compares the investigated algorithms, it is clear from this comparison that
SSRLS is better than other algorithms in terms of convergence speed, mean square error and

robustness at the cost of high computational complexity.

Table 2.4-2: Comparison of ANC Algorithms

Algorithm Convergence Mean Square | Robustness Computational
Error Complexity
NLMS v v v 5n+ 2+ 1[25]
RLS v v v v v 4n2+0(n)+1
[25]
SSRLS VAV VYAV A VISV An® + 4n? +
5n+ 1 [31]

15
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CHAPTER 3: STATE SPACE LEAST MEAN SQUARE (SSLMS)

In this chapter, State Space Least Mean Square (SSLMS) algorithm, which is the main
technique used for estimation and removal of PLI from ECG signal in this this, has been explained
and derived step by step with the help of equations. Moreover, its different models have also been
explained.

3.1 SSLMS Algorithm Overview

State-space least mean square (SSLMS) is a state-space version of LMS algorithm and
makes use of linear state-space model based on the unknown environment. Hence, the system is
not limited to the linear regression model, which was the case for LMS and RLS algorithms [25],
and handles vector outputs due to its multiple input multiple output (MIMO) nature [46]. State

estimator of SSLMS is derived based on the observations noise corrupting the measurements [47].
3.1.1 State Space Model

The output vector y € R™, m being the maximum number of outputs, is generated

by an unforced linear time varying (LTI) discrete time system [47]

Xssimslk + 1] = Assims[k]xssims(k] (3.1)
Vssimslk + 1] = Csspmslk]xssims[k]

Where xg5;ys € R™ is the state vector, n is the number of states, Agg; s being the system matrix
and Cgq s 1S Output matrix. Moreover, k is the number of sample under consideration. It is
assumed that m < n [47] and a system with m > n can be simplified to assumed conditions
without losing states information [48]. For every k" sample, Cs.ms[k] is assumed to be full-rank
and (Agsiuslk], Cssimsk]) pair must be [-step observable [48]. Moreover, Agg;ys[k] is assumed

to be invertible resulting in following properties
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Asdiuslk,j1 = Assiusl k], Vjk (3.2)
Assimslk, 1] = Assimsk, jlAssimsli, il, i<j<k
Assimslk + 1, k] = Assiuslk]

Where the state-transition matrix Ags;mslk, j] for system is [48]

1 _ (Assimslk — 1Assiyslk — 2] ... Assimsli], k> j (3.3)
Assiuslk, j1 =

I, k=j

3.1.2 State Space Estimator

Suppose that yg;s[k] Starts appearing sample by sample with firstat k = 1. The
initial state at this stage is assumes to be xss;ms[1] = x, which is unknown at this instance.
Making use of this initial assumption, SSLMS generates the estimated state Xss; 35[k] making use

of all the previous values from ygg; ys[1] ... Vssims[k]-

Using (3.1) , predicted state and output at k can be computed using the state matrix, output matrix

and estimated state at k — 1.

Xssimslk] = Assimslk — U Zsspms[k — 1] (3.4)
Yssmslkl = Cosims[klXssims k] (3.5)

The prediction error is now the difference in predicted output and observation ygg; -

esstmslk] = Yssimslk] — Vssims[k] (3.6)

Similarly, estimation error is calculated as

essimslk] = Yssimslk] — Vssimslk] (3.7)

17



Anx-B

Where, Y. 1ms[k] is the estimated output at k

Vssmslkl = Cosims[k1Xssims k] (3.8)

And Xsq;s[k] is the estimated state at k. Relating equation (3.6) and (3.7),

essimslk] = essimslk] — Cosims[k16[k] (3.9)
Ossimslk] = Zssimslk] — Xsspms(k] (3.10)

Assuming Css;mslk] to be full rank, we can chose Xsg;is[k] such that egg;s[k] = 0. Hence,
rewriting (3.9) as

essimsk] = Cssims[k]Sssimslk] (3.11)

In order to compute X5, ms[k], dssimsk] can be written as [23]

Sssimslk] = Cspmslklessims k] (3.12)
Rssimslk] = Zssimslk] + Cospms[klessims k] (3.13)

Based on this analysis, we write estimated states as

Xssimslk]l = Xsspmslk] + Kssimslklessims[k] (3.14)

Where K, 5[k] is the observer gain at k" sample and is defined as

KSSLMS [k] = MSSLMSGSSLMSC.STSLMS [k] (315)

Where ugq; s controls the rate of convergence of SSLMS algorithm and is termed as step-size
parameter. Gggp s IS Selected to make the pair (Assimslk — 1] — Kssims k1 Cosims [kl Assims[k —

1], Kss1ms[k]) controllable to ensure valid estimation [46].
18
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3.2  Steady State SSLMS
Using equation (3.4) and (3.6) in (3.14),

fSSLMS[k] = ASSLMS[k - 1]£SSLMS [k - 1] + KSSLMS[k] (ySSLMS[k] (316)
- CSSLMS [k]ASSLMS [k - 1]£SSLMS [k - 1])

If kll_fr(}o Cssimslk] = Csspys exists, then by (3.15), kh_)rrgo Kssimslk] = .USSLMSGSSLMSCSTSLms-

Moreover, if klim Agsimslk] = Assims also exists, then (3.16) can be written as

Xssimslkl = AssimsZssimslk — 1] + Ksspms Vssims k] (3.17)

- CSSLMSASSLMS)/C\SSLMS[k - 1])

AS X mslk] in (3.17) isan LTI system, its transfer function mapping from ygs; ys[k] 10 Xspms (k]

can be written as follows [47]

H(z) = z(zl — Asspms + KSSLMSCSSLMSASSLMS)_1KSSLMS (3-18)

Steady state SSLMS is numerically efficient as compared to standard SSLMS algorithm.
3.3  State space models

For different types of unknown environments, SSLMS uses various models in order to
track a signal. In [46], different state-space models for SSRLS have been proposed which can also

be implemented for tracking using SSLMS algorithm. Most commonly used models are as follows:
3.3.1 Constant Model

Constant model for SSLMS is represented as

Assims =1 (3.19)
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Cssims =1

Using these parameter in (3.18), we get

H(z) = z(zl — I + KgspmsD) ™ Kssims (3.20)
H(z) = z(I — Ksspms) + Ksspus

3.3.2 Velocity Model

Velocity model is given as

1 T
Assims = [O 1 (3.21)

Cssims = [1 0]

Where T is the sampling time. Using these parameter in (3.18), and Ggg; s = [(1) (1) in (3.15) we
get
Kssims = [g] (3.22)
;7]
H(z) = 0
z?2—=2z+z(u—1)+1
uz(z —1)
HZ) =22+ 2z2(u—-3)+1
0

3.3.3 Acceleration Model

Acceleration model is demonstrated as follows
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T2 (3.23)
1 T 7
Assims = 01 T
0O 0 1
Cssims =[1 0 0]

Updating (3.18), and using Gggs;ps = 1 O] in (3.15) we get

0 1
H (3.24)
Kssims = [Ol
0

T? -
z=lt+p T-1 —@-1 F)‘l

0 z—1 -T 0
0 0 z—1

H(z) =z

3.3.4 Sinusoidal Model

As PLI is assumed to sinusoidal in nature, a sinusoidal SSLMS model has
been selected. The system and output matrix of model are as follows [46]
2 _ [ cos(wT)  sin(wT) (3.25)
SSLMS ™ | —sin(wT) cos(wT)

Cssims = [1 0]

Where w is the frequency in rad/sec and T is the sampling time. Moreover, for sinusoidal case,

matrix Ggg; s 1S NOt required [46]. Updating (3.18), we get

Kssims = [g] (3.26)
[u(z — cos(wT))]
H(z) = —usin(wT)
D= z(u — z) cos(wT) + (u — 1) cos?(wWT) + sin?(WT) — u sin(wT)
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CHAPTER 4: TRACKING AND REMOVAL OF IMPULSIVE PLI FROM
ECG SIGNAL

In this chapter, the performance of the proposed SSLMS based noise canceller is compared
with the reported algorithms for ECG signal corrupted with impulsive noise using MATLAB
version R2012a.

4.1  Impulsive Noise Generation

The impulsive noise is generated using the method reported in [52]. Table 4.1-1 shows the

parameters which are used to generate impulsive noise.

Table 4.1-1: Parameter set for impulsive noise generation

Parameter Symbol | Description

Total Time T 100
Sampling Frequency f 10
Average Time between samples B 1
Mean of Additive Gaussian Noise Uy 0.1
Standard Deviation of Gaussian Noise On 0.5
Mean of Log Amplitude A 10 dB
Standard Deviation of Log Amplitude B 5dB
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The impulsive noise generated using the above mentioned parameters, is shown in Figure
4.1.1(a). Figure 4.1.1(b) shows pure as well as noisy ECG signal taken from MIT-BIH database
[49] with peak to peak amplitude normalized at 1 and sampling frequency 360 Hz.

Impulsive Noise ECG Signal with Impulsive Noise added

12

12

— ECG signal

10k 101 noisy ECG signal j
84
o 8 o
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g s
Z 6f -
g g
=) 5
[2IA (7]
2 1
21 0—-_4’,\_ J; __/L_
0 Mk 2 . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000
Time(s) Iterations
(a) (b)

Figure 4.1.1: (a) Impulsive Noise (b) Pure and Noisy ECG signal.

4.2 Impulsive Noise Reduction using previous techniques

In this section, impulsive noise is estimated and removed using NLMS [25], RLS [25] and
SSRLS [32] algorithms

Table 4.2-1: Parameter value for NLMS, RLS and SSLMS

Parameter Value
M 3
HNLMsS 0.001
ARLs 0.9
AssrLs 0.01

The parameters for all the underlying algorithms are mentioned in Table 4.2-1. It is proved

from simulation results that higher order models can better track sharp transitions in the reference
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signal but at the expense of increased computational complexity. For tracking impulsive noise we

have used third order model i.e. an acceleration model. For SSLMS matrix G is selected as in [46]

1 0 0
G=103 0 0
03 0 0

Figure 4.2.1 shows the comparison of output of the investigated adaptive filters with the original

ECG signal. The result shows that best noise reduction from noisy ECG signal is achieved by the

SSLMS algorithm.

Figure 4.2.1 (a) shows that RLS filter has better performance than that of NLMS filter. In Figure
4.2.1 (b) and (c) it is observed that SSRLS algorithm is reducing impulsive noise from the noisy
ECG signal more efficiently than NLMS and RLS algorithms. Moreover, it is clearly indicated
that SSLMS algorithm has reduced all the high peaks of noisy ECG signal.

Impulsive Noise Cancellation of ECG Signal using multiple Adaptive Filters
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Figure 4.2.1: Comparison of ECG signal recovered using (a) NLMS (b) RLS (c) SSLMS
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Figure 4.2.2 represents the MSE in dB, which also explains the results shown in Figure 4.2.1.

Comarison of MSE (dB) of Adaptie Filters
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Figure 4.2.2: Comparison of MSE (dB) of NLMS, RLS and SSRLS

4.3  Impulsive Noise reduction using SSLMS algorithm

In this section, SSLMS is implemented to remove impulsive noise, with
Ussims = 0.999, from ECG and simultaneously the results are compared with those of SSRLS
algorithm.

Figure 4.3.1 shows that from the plots of estimated ECG signal, both SSLMS and SSRLS
algorithms are estimating the unknown ECG signal efficiently. Whereas, going further into the
details of estimation, we can see that in Figure 4.3.2 that there is a minor difference between their

MSE which shows that the estimation of two algorithms is approximately same.
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Impulsive Noise Cancellation of ECG Signal using multiple adaptive filters
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Figure 4.3.1: Comparison of ECG signal recovered using (a) SSLMS (b) SSRLS
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Comarison of MSE (dB) of Adaptie Filters
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Figure 4.3.2: Comparison of MSE (dB) of NLMS, RLS and SSRLS

4.4  Computational Complexity

The computational complexities of the investigated algorithms are mentioned in Table
5.3-1.

Table 4.4-1: Computational Complexities of Adaptive Algorithms [32]

Algorithm | Multiplication and Addition | Division

SSLMS 4n% 4+ 2n -

SSRLS A2 +4n®+5n+1 -
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Algorithm | Multiplication and Addition | Division
RLS 4n% + 0(n) 1
NLMS 5n + 2 1

45 Conclusion

The computational complexity of SSLMS algorithm is greater than NLMS and RLS
algorithm but it outperforms NLMS and RLS algorithms in terms of low MSE and excellent
tracking capability. Whereas, it has high MSE than low computational complexity than that of

SSRLS but it can be seen from section 4.4 that it has computational complexity much better than

SSRLS which makes it to be overall better than other algorithms.
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CHAPTER 5: TRACKING AND REMOVAL OF SINUSOIDAL PLI WITH
KNOWN FREQUENCY FROM ECG SIGNAL

This chapter explains the tracking of sinusoidal component of PLI having known frequency
from ECG signal using SSLMS Algorithm. The results are generated using MATLAB R2012a.
The comparison of SSLMS is done with SSRLS algorithm with respect to convergence, mean

square error and computational complexity.

5.1 Standard ECG Signal

Standard ECG Signal is generated using MIT-BIH database [49] with peak-to-peak
amplitude normalized at 1 and sampling frequency of 360 Hz as shown in Figure 5.1.1 (a). This
database has been frequently used by the community doing medical research. Figure 5.1.1 (b)
shows the frequency response of pure ECG signal and it can be seen that there is no component of

50 Hz in pure ECG signal.

Pure ECG Signal Frequency Response of Pure ECG Signal
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Figure 5.1.1: Pure ECG Signal using MIT-BIH database (a) Amplitude (b) Frequency response

Table 5.1-1: Parameters to generate Sinusoidal PLI

Parameter

Symbol

Value

Amplitude

0.1
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Frequency W 2m X 50
Phase ) 0
Sampling Time T, 1
— =0.028
360

Figure 5.1.2 shows the pure ECG signal corrupted by PLI generated using parameters in Table
5.1-1 along with its frequency response. As we can see in Figure 5.1.2 (b) that there is a peak at
50 Hz showing the addition of 50 Hz PLI to ECG signal.

ECG Signal Corrupted by PLI Frequency Response of ECG Signal Corrupted by PLI
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Figure 5.1.2: PLI Corrupted ECG Signal (a) Amplitude (b) Frequency response

5.2 Implementation of SSLMS Algorithm

Figure 5.2.1 shows the mechanism used to remove PLI with known frequency. SSLMS

algorithm estimates the PLI using the following state space model

4 _ [ cos(2m x 50 x 0.028) sin(2m x 50 X 0.028) (5.1)
SSLMS ™ | _sin(2m x 50 X 0.028) cos(2m x 50 x 0.028)

Cssims = [1 0]
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The output of SSLMS Filter is the estimated PLI (i.e. Yssims[k] = ngsims[k]), which is subtracted

from noisy ECG signal to produce clean ECG signal at the output of noise canceller.

Noisy ECG
ylk] = s[k] +nlk]

SSLMS — e[k] = y[k] - Plk] = s' (n)
Filter \-l_-/ " Estimated ECG

Jlk] = Clk]x[k] = n'[k]
Estimated PLI

Figure 5.2.1: Block Diagram for Cancelation of PLI with known frequency

SSLMS is initialized with x, = [8] and pge,ys = 0.05. Figure 5.2.2 shows the output of SSLMS

algorithm. It can be seen from Figure 5.2.2 (b) that along with other frequencies having minimal
presence, the signal with 50 Hz has also been tracked by SSLMS algorithm. Subtracting the
estimated PLI signal from corrupted ECG gives the desired ECG signal.

Output of SSLMS Algorithm: Estimated PLI Noise Frequency Response of Output of SSLMS Algorithm
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Figure 5.2.2: Output of SSLMS Algorithm with pgs; s = 0.05 (@) Amplitude (b) Frequency
response
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As we can see in Figure 5.2.3 (a) that initially it takes some time for the canceller to track ECG
and with further iterations, the tracking is improved. Similarly the frequency response in Figure
5.2.3 (b) is similar to that in Figure 5.1.1 (b) showing that SSLMS based ANC removes the noise
effectively.

Estimated ECG using SSLMS Noise Canceller Frequency Response of Estimated ECG using SSLMS Noise Canceller
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Figure 5.2.3: Estimated ECG signal using SSLMS based ANC with pgs; s = 0.05 (a)
Amplitude (b) Frequency response

Moreover, it can be observed in Figure 5.2.4 that after SSLMS converges, there is very
small error at the stages where QRS complex peaks have occurred in ECG signal. These results
demonstrate that SSLMS based ANC removes PLI efficiently from ECG signal. Further results
will demonstrate its comparison with SSRLS algorithm with respect to noise removal efficiency

and computational complexity.
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SSLMS: Error in Estimation of ECG Signal
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Figure 5.2.4: Estimation Error of SSLMS based ANC using pgs; s = 0.05

5.3 Comparison with SSRLS Algorithm

Comparison between SSLMS based ANC using step-size pgs;s = 0.05 and SSRLS based
ANC using forgetting factor Aggz.s = 0.99 based upon error and MATLAB elapsed time has been

made in this section.

Error signal plot of SSRLS in Figure 5.3.1 shows convergence and error at later samples. The
error peaks occur due to QRS complex peaks, which give a little disturbance in the estimation of
PLI from noisy ECG. Comparing it with estimation error using SSLMS as shown in Figure 5.2.4,

it can be seen that SSLMS has slower convergence than SSRLS.
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Error in Estimation of ECG Signal using SSRLS
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Figure 5.3.1: ECG Estimation error using SSRLS (Agsrs = 0.99)

Moreover, comparing the mean square error (MSE) plots of both algorithms in Figure
5.3.2, it can be seen that after convergence, there is a difference of approximately 10dB in the error
estimation of both algorithms.

Hence, the performance of SSLMS degrades than that of SSRLS with a small ratio.
However, comparing the elapsed time for MATLAB simulations in Table 5.3-1, it is clear that
SSLMS is sixty times faster than that of SSRLS algorithm proving SSLMS to be overall better
than SSRLS algorithm.

SSLMS: Mean Square Error(dB) in Estimation of ECG Signal SSRLS: Mean Square Error(dB) in Estimation of ECG Signal
-20 © : : : . . . : -20 : : r r : . . .
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(@) (b)

Figure 5.3.2: MSE using (a) SSLMS (ugs;ms = 0.05) (b) SSRLS (Agsgs = 0.99) algorithm

Table 5.3-1: Computational complexity and elapsed time for MATLAB simulations of SSLMS

and SSRLS algorithms
Parameter SSLMS SSRLS
Computational 4n? + 2n [32] 4n3 + 4n? + 5n + 1 [32]
Complexity
Elapsed Time 0.013704 seconds 0.849161 seconds

5.4 Conclusion

Concluding this part of thesis, it is clear from the results shown in above figures that
although SSRLS algorithm has better estimation performance than that of SSLMS algorithm, but
it can be seen from the comparison between Figure 5.3.2 and Table 5.3-1 that such small reduction

in MSE is subsided by exceptionally high computational complexity. Hence, SSLMS is better than
SSRLS algorithm on overall basis.
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CHAPTER 6: TRACKING AND REMOVAL OF SINUSOIDAL PLI WITH
UNKNOWN FREQUENCY FROM ECG SIGNAL

This chapter explains the tracking of sinusoidal component of PLI having unknown
frequency from ECG signal using SSLMS Algorithm. The results are generated using MATLAB
R2012a. The parameter for tracking are analyzed for their performance. The comparison of
SSLMS is done with SSRLS algorithm with respect to convergence, mean square error and
computational complexity.

6.1 SSLMS based Adaptive Tracking scheme

It is very rare to have PLI with known frequency. So in order to track a sinusoidal with
unknown frequency, an adaptive tracking scheme has been proposed using SSRLS algorithm [50].

o + - SSLMS Phase
Filter X[k] Estimator
P[k]
vik] |
Sinusoidal Frequency
State Space [* — -
Model w[k] Estimator

Figure 6.1.1 Adaptive tracking of Sinusoidal Signal using SSLMS Algorithm

A modified block diagram of adaptive tracking system integrated with SSLMS based noise
canceller has been shown in Figure 6.1.1. ECG signal generated using MIT-BIH database [49] as
shown in Figure 5.1.1 is represented by u[k]. vp;;[ k] is the PLI signal having unknown frequency

as is mathematically formulated as

VUpLl [k] = Og Sln((l)kT + (p) (61)

36



Anx-B

Where g, = amplitude, w = frequency, ¢ = phase and T = sampling time of the unknown PLI
signal. State space model for this LTI model is
2 (k] = cos(w[k]T) sin(w[k]T) (6.2)
SSIMSUL ™ | —sin(w[k]T) cos(w[k]T)
Csstms = [1 0]

As the purpose of this scheme is to track the unknown parameter, the state transition matrix is a

time-varying parameter. The states xss; s[k] and coefficients are related as

a
xssimslk] = Afsius [b] (6.3)

Where a = g, cos(p)and b = a,sin(¢) are the initial conditions. Rearranging above equation

|

] = AE;CLMSQSSLMS [k] (6.4)

S Q)

The inverse of Agg; s Can be calculated using (3.2) and (3.3) whereas X[k] can be updated

recursively using (3.14). Using @ and b, we can track the phase using the following relation

~

R ) (6.5)
@ssimslk] = tan™ (5)

As the phase is being updated recursively, any discontinuities in its tracking can be handled by
unwrapping its value [51]. Further, the frequency of unknown sinusoid can be updated using a

stochastic gradient like equation as follows

Wssimslk] = Dsspmslk — 1] + n(Pssimslk] — Psspmslk — 11) (6.6)
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Where 1 is the step-size parameter for adaptive tracking system. The difference between the

estimated values of phase can also be computed using a discrete filter with transfer function.

Hz)= z"%(z—1) (6.7)

Using the updated frequency, the state space model can be updated as follows

pee ] = [ COS@EOD)  sin@(0T) (65)
SSLMSUL = | sin(@(k)T)  cos(@(k)T)

Cssumslk]l = [1 0]

The summarized block diagram is shown in Figure 6.1.2 along with the computations at each step

of tracking.

+
I
ulk] QV“"'] SSLMS P Phase

Filter £[k] Estimator
A a
#[k] = Ak || -
a = o4 cos() blk]
vIk] il b = o,sin(¢)
Inusoida
v[k] = ogsin(wkT + @) State Space Frequency

~ Estimator
Model w[k]

_ [ cos(w(k)T) sin(®(k)T)
Alk] = [—sin((ﬁ(k)T) cos(r’f)(k)T)]
Clkl=[1 0]

®lk] = ®lk = 1] + n(@lk] - Hlk — 1)

Figure 6.1.2: Adaptive tracking of Sinusoidal Signal using SSLMS Algorithm with equations

The unknown sinusoidal signal vp;;[k] has been generated using the following parameters

Table 6.1-1: Parameters to generate Sinusoidal Noise of frequency 49.5

Parameter Symbol Value

Amplitude Os 0.1
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Frequency ) 2m X 49.5
Phase ) T
4
Sampling Time T, 1
—— =0.02
360 0.028

Figure 6.1.3 shows pure ECG signal u[k] from MIT-BIH database [49]. Adding vp;;[k] generated

using parameters shown in Table 6.1-1, we get PLI corrupted signal as mentioned in Figure 6.1.4.

Pure ECG Signal

[ [ [ T [ [ [ [

Normalized Amplitude

02 L L L [ L L L L
0 0 100 200 300 400 500 600 700 800 900
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Figure 6.1.3: Pure ECG Signal using MIT-BIH database
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ECG Signal Corrupted by PLI
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Figure 6.1.4: 49.5 Hz Sinusoidal PLI corrupted ECG Signal

6.2 Simulation Results

The adaptive frequency system has been initialized as w, = 2m X 50 and ¢, = 0. In order
to analyze the tracking ability of SSLMS based ANC, the value of frequency and phase are
different from those of PLI. SSLMS algorithm is initialized as ugg s = 0.005 and the value of
7 is 0.02. Further discussion shows the simulation results for tracking the frequency and estimation
PLI noise and recovery of noise-free ECG signal. It can be shown in Figure 6.2.1 that initially the
frequency is 50 Hz and slowly it tracks down to 49.5 Hz. Once the frequency reaches its true value,

it stays constant.
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Frequency tracking using SSLMS
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Figure 6.2.1: Frequency tracking of PLI using pgs;ps = 0.005 and n = 0.02

Figure 6.2.2 shows that as the frequency converges, estimated PLI signal reaches its correct

amplitude i.e. 0.1.

Output of SSLMS: Estimated PLI Signal

Amplitude
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Sample Number

Figure 6.2.2: Estimated PLI of 49.5 Hz using ugss s = 0.005 and n = 0.02
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Moreover, as shown in Figure 6.2.3 and Figure 6.2.4, the estimated ECG is being tracked
efficiently and the error signal reduces to zero as the system converges to correct frequency value.
It must be seen that initially the amplitude of error is close to that of PLI signal. But as the estimated

PLI converges, the error reduces to zero.

Estimation of ECG Signal using SSLMS

12 T T T T T T I :
—estimated ECG signal
1l —pure ECG signal
0.8 s
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2 o6l .
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g
o 04r i
n
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0 100 200 300 400 500 600 700 800 900
Sample Number
Figure 6.2.3: Estimated ECG Signal using pgs;ys = 0.005 and n = 0.02
Estimation Error of ECG Signal using SSLMS
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Figure 6.2.4: Error in estimation of ECG Signal using pgssiys = 0.005 and n = 0.02
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6.3 Effect of n on frequency tracking

Step-size parameter n in (6.6) controls the convergence of frequency in the adaptive
tracking mechanism as it controls the effect of phase-difference at each step. Before, we have
concluded from the analysis in 6.2 that as soon as correct frequency is tracked, the SSLMS
algorithm also converges. So, indirectly, parameter n is controlling the convergence of SSLMS.

To elaborate the effect of step-size on frequency tracking, different values of # have been chosen

in Table 6.3-1 along with their point of convergence.

Table 6.3-1: Effect of step-size n on frequency convergence

Parameter 1 Convergence after samples

0.01 550
0.02 300
0.05 130
0.1 60
0.2 30
0.5 15

1 10

It can be seen in Table 6.3-1 that as # increases, the convergence speed of adaptive tracking has
increased. There is a difference of only three sample for n = 0.5 and n = 1, so it is clear that
beyond n = 0.5, the converegence speed does not improve distinctively. Hence, 0.5 has been

chosed as the maximum value of n and the comparison between two different values has been

shown in Figure 6.3.1 to further explain frequency convergence phenomenon.
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Frequency tracking using SSLMS Frequency tracking using SSLMS
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Figure 6.3.1: Frequency tracking of PLI using pss.ms=0.005 with (a) n = 0.02 (b) n =0.5

Output of SSLMS: Estimated PLI Signal Output of SSLMS: Estimated PLI Signal

0.15

0.15

01
0.05
3 3
h= h=
= =
£ 005 £ 005
< <
01 041
-0.15 015

02 ; ; ; : ; ; : : 02 ; ; ; : ; ; ; :
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Sample Number Sample Number
(a) (b)

Figure 6.3.2: Estimated PLI of 49.5 Hz using pssLms=0.005 with (a) = 0.02 (b) n=10.5

It’s elaborated in the plots of Figure 6.3.1 that for larger n, frequency convergence takes
much lesser time and similarly estimated PLI reaches its true amplitude much faster as shown in
Figure 6.3.2. According to this, the effect of ) on estimated ECG signal and error in estimation is

shown in Figure 6.3.3 and Figure 6.3.4.
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Estimation of ECG Signal using SSLMS
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Figure 6.3.3: Estimated ECG Signal using pssLms=0.005 with (a) n = 0.02 (b) n = 0.5

0.15

Estimation Error of ECG Signal using SSLMS

0.1

0.05

Error

— Error: mu = 0.005, eta=0.02
——Error: mu=0.005,eta=0.5 |

100 200 300 400 500 600 700 800 900
Sample Number

(@)

Error

-0.02
-0.04
-0.06
-0.08

Estimation Error of ECG Signal using SSLMS

0.1
0.08
0.06
0.04
0.02

O}-—._I\

-0.1

200

400

600 800

Sample Number

(b)

Figure 6.3.4: Error in estimation of ECG Signal using pss.ms=0.005 with (a) n =0.02 (b) n=0.5

6.4  Effect of pssLms on convergence and error

The value of ugs; s does not affect the frequency tracking but it is directly related to the

convergence of SSLMS algorithm and its estimation error. This section shows the simulation

results for comparison between SSLMS performance using pgss s = 0.005 and pggps = 0.05.

In order to analyze this process in detail, the value of n has been kept smaller. As we can see in
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Figure 6.4.1 that frequency tracking is not affected by changes in pgg;ps. HOWever, we can see
the in Figure 6.4.4 that for smaller value of ugs; s, SSLMS takes longer to converge but has

small estimation error at the QRS complex peaks of ECG signal and vice versa.
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Figure 6.4.1: Frequency tracking of PLI using n = 0.02 with (a) pussLms=0.005 (b) pussims =0.05
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Estimation of ECG Signal using SSLMS Estimation of ECG Signal using SSLMS
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Figure 6.4.3: Estimated ECG Signal using n = 0.02 with (a) pussLms=0.005 (b) ussims =0.05
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Figure 6.4.4: Error in estimation of ECG Signal using n = 0.02 with (a) usstms=0.005 (b) pssLms
=0.05

For specific signal to noise ratio (SNR), PLI parameter and sampling frequency, a suitable

[Ussims, ] pair must be decided which in this case is [0.005,0.5].

6.5 Comparison with SSRLS algorithm

Simulation results for estimating unknown PLI signal using SSRLS algorithm [50] and

SSLMS algorithm shown in Figure 6.1.1 have been compared in this section. The step-size
47



Anx-B

parameter for SSLMS is ugs; s = 0.005 and forgetting factor used for SSRLS is Aggrrs = 0.999.
Moreover, in order to observe convergence in details,  has been set at 0.02. Figure 6.5.1 shows
that as far as n is same for both adaptive tracking schemes, change of noise canceller does not
affect the convergence of frequency. It can be seen in Figure 6.5.2 that the convergence speed of
SSLMS is faster than that of SSRLS algorithm due to model uncertainty factor. This performance
analysis is also exhibited in Figure 6.5.3 and Figure 6.5.4.
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Figure 6.5.1: Frequency tracking of PLI using n = 0.02 with (a) SSLMS (uss.ms=0.005) (b)
SSRLS (AssrLs = 0.999)
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Figure 6.5.2: Estimated PLI of 49.5 Hz using n = 0.02 with (a) SSLMS (ussLms=0.005) (b)
SSRLS (AssrLs = 0.999)
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Estimation of ECG Signal using SSLMS Estimation of ECG Signal using SSRLS
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Figure 6.5.3: Estimated ECG Signal using n = 0.02 with (a) SSLMS (ussLms=0.005) (b) SSRLS
(AssrLs = 0.999)
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Figure 6.5.4: Error in estimation of ECG Signal using n = 0.02 with (a) SSLMS (ussLms=0.005)
(b) SSRLS (Assris = 0.999)

Table 6.5-1 compares the MATLAB simulations elapsed time and it is clear that SSLMS is
approximately twenty six times faster than that of SSRLS algorithm hence proving SSLMS to be
better than that of SSRLS algorithm.
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Table 6.5-1: Elapsed time of MATLAB simulations for SSLMS and SSRLS algorithms
SSLMS SSRLS

0.033861 seconds 0.868233 seconds

6.6 Conclusion

From this chapter, PLI with frequency unknown to the system has been removed from
noisy ECG signal by first tracking its frequency and then estimating it. From the simulation results,
we have concluded that, in case of unknown frequency, SSLMS gives better results for a larger
value of n and smaller value of ugg; s Where former determines frequency tracking and later leads
to convergence. Moreover, SSLMS has better convergence speed and computational complexity

than SSRLS algorithm for a fixed value of .
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CHAPTER 7: TRACKING AND REMOVAL OF SINUSOIDAL PLI WITH
VARYING FREQUENCY FROM ECG SIGNAL

This chapter explains the tracking of sinusoidal component of PLI having frequency which
is varying unidirectional or bidirectional from ECG signal using SSLMS Algorithm. The results
are generated using MATLAB R2012a. The parameter for tracking are analyzed for their
performance. The comparison of SSLMS is done with SSRLS algorithm with respect to

convergence, mean square error and computational complexity.
7.1 SSLMS based Adaptive Tracking of Varying Frequency

In real life situations, there is a chance for PLI frequency to vary within a certain range.
This drifting PLI is hard to estimate and can be modeled as a chirp signal and it has been shown
in literature that SSLMS can track a chirp signal [50]. In this chapter, SSLMS will be implemented
to first track the frequency of signal and then estimating it. In order to track the variable frequency,
the mechanism mentioned in section 6 has been used. However, the noisy signal vp;,[k] is

generated as follows:

vpy k] = osin[wkT + d(kT)? + @] (7.1)

Where ¢ = amplitude, w = frequency, d = frequency drift rate, ¢ = phase and T = sampling time

of the unknown and variable PL1I signal.
7.2  Tracking PLI with Unidirectional Drifting Frequency

For any signal with unidirectional varying frequency, its frequency increases or decrease
till the last sample. Figure 7.2.1 shows ten cycles of pure ECG signal u[k] from MIT-BIH database

[49] normalized.
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Pure ECG Signal
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Figure 7.2.1: Pure ECG Signal using MIT-BIH database

The unknown sinusoidal vp;;[k] has been generated using the parameter mentioned in

Table 7.2-1. The frequency has been linearly increased from 49.5 Hz to 50.5 Hz.

Table 7.2-1: Parameters to generate Sinusoidal Noise with linearly varying frequency

Parameter Symbol Value
Amplitude O 0.1
Frequency W 2m X 49.5 t0 2w X 50.5
Phase @ T

4
Sampling Time T. 1
PIng s =5 =0.028

Adding vp;;[k] we get PLI corrupted signal as mentioned in Figure 7.2.2.
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ECG Signal Corrupted by PLI

[ [ [ [ [

N o o
S o ©
I I I
! ! !

Normalized Amplitude
o
T
]

0.2 [ [ [
0 500 1000 1500 2000 2500 3000

Sample Number

Figure 7.2.2: Unidirectional Frequency Sinusoidal PLI corrupted ECG Signal

7.2.1 Simulation Results

SSLMS based ANC has been initialized with w, = 2w X 50, ¢, = 0, tgs; s = 0.005 and
n = 0.5. Value of 7 is kept higher than 0.02 as the frequency is varying and such small step-size

will not be able to track the desired results.

It can be seen in Figure 7.2.3 that the tracked frequency is varying from 49.5 Hz to 50.5
Hz, hence the frequency is being track correctly. Due to larger value of n, Figure 7.2.4 shows that
the output of SSLMS algorithm converges in the beginning. Moreover, Figure 7.2.5 exhibit that
the ECG is estimated correctly and Figure 7.2.6 shows that due to small estimation error, SSLMS

is an efficient algorithm in tracking and removing unidirectional varying PLI.
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Frequency tracking using SSLMS
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Figure 7.2.3: Frequency tracking unidirectional varying of PL1 using pgss; s = 0.005 and n =
0.5

Output of SSLMS: Estimated PLI Signal
0.15 T T T T T

0.1

0.05

o

Amplitude
©
&

-0.1

[ [ [ [ [

“o 500 1000 1500 2000 2500 3000
Sample Number

Figure 7.2.4: Estimated unidirectional varying PLI using pgs; s = 0.005 and 1 =0.5
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Figure 7.2.5: Estimated ECG Signal using pgs;ps = 0.005 and n = 0.5
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Figure 7.2.6: Error in estimation of ECG Signal using pgs;ps = 0.005 and 1 =0.5
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7.2.2 Effect of ) on frequency tracking

Values of n chosen for analysis are n = 0.02 and n = 0.5. Figure 7.2.7 show that for n =
0.02, frequency converges from 50Hz, which the initial frequency of the system, and takes some
iterations to reach near its correct value. Moreover, the estimated PLI signal at the output of
SSLMS algorithm with smaller n also takes longer to converge than with larger n as shown in
Figure 7.2.8.

In Figure 7.2.9, it can be seen that for SSLMS with smaller n, estimated ECG is not
accurate. The reason for this behavior is that due to frequency varying at every step, it is very
difficult to track it with a smaller value of n. This inaccuracy in ECG estimation can also be shown

in the error plots of Figure 7.2.10.

Frequency tracking using SSLMS Frequency tracking using SSLMS
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Figure 7.2.7: Frequency tracking of unidirectional varying PLI using pssLms=0.005 with (a) n =
0.02(b)n=0.5
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Output of SSLMS: Estimated PLI Signal Output of SSLMS: Estimated PLI Signal
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Figure 7.2.8: Estimated unidirectional varying PLI using pssLms=0.005 with (a) n =0.02 (b) n =
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Figure 7.2.9: Estimated ECG Signal using pssLms=0.005 with (a) n =0.02 (b) n = 0.5
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Estimation Error of ECG Signal using SSLMS Estimation Error of ECG Signal using SSLMS
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Figure 7.2.10: Error in estimation of ECG Signal using pss.ms=0.005 with (a) n = 0.02 (b) n =
0.5

7.2.3 Effect of pssums on convergence and error

Figure 7.2.14 shows that for larger value of ugg; s i.€. 0.05, SSLMS algorithm exhibits
poor estimation at the occurrence of QRS complex peaks in ECG. This estimation performance

also affects the tracking of frequency as shown in Figure 7.2.11.

Frequency tracking using SSLMS Frequency tracking using SSLMS
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Figure 7.2.11: Frequency tracking of unidirectional varying PLI using n = 0.5 with (a)
sstms=0.005 (b) pssims =0.05
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Output of SSLMS: Estimated PLI Signal
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Figure 7.2.12: Estimated unidirectional varying PLI using n = 0.5 with (a) ussLms=0.005 (b)

ussims =0.05
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Figure 7.2.13: Estimated ECG Signal using = 0.5 with (a) pssLms=0.005 (b) ussims =0.05
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Estimation Error of ECG Signal using SSLMS Estimation Error of ECG Signal using SSLMS
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Figure 7.2.14: Error in estimation of ECG Signal using n = 0.5 with (a) usstms=0.005 (b) pssLms
=0.05

7.2.4 Comparison with SSRLS algorithm

Tracking of variable frequency PLI has been shown in this section using pgss;s = 0.005,
Assrrs = 0.999 and n = 0.5 for both adaptive filters. As shown earlier in Figure 6.5.1, it can also
be observed from Figure 7.2.15 that the change of algorithm does not affect frequency convergence
as far as 7 is constant. Figure 7.2.18 shows that the estimation error of SSLMS is better that that

of SSRLS in this specific case.

Frequency Tracking using SSRLS

Frequency Tracking using SSLMS
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Figure 7.2.15: Frequency tracking of unidirectional varying PLI using n = 0.5 with (a) SSLMS
(1ssLms=0.005) (b) SSRLS (AssrLs = 0.999)
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Figure 7.2.16: Estimated unidirectional varying PLI using n = 0.5 with (a) SSLMS
(1ssLms=0.005) (b) SSRLS (AssrLs = 0.999)
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Figure 7.2.17: Estimated ECG Signal using n = 0.5 with (a) SSLMS (ussLms=0.005) (b) SSRLS
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Estimation Error of ECG Signal using SSLMS Estimation Error of ECG Signal using SSRLS
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Figure 7.2.18: Error in estimation of ECG Signal using n = 0.5 with (a) SSLMS (ussLms=0.005)
(b) SSRLS (Assris = 0.999)

In Table 7.2-2, it is shown that SSLMS requires lesser time to execute than SSRLS algorithm.

Table 7.2-2: Elapsed time of MATLAB simulations for SSLMS and SSRLS algorithms
SSLMS SSRLS
0.065857 seconds 0.217688 seconds

Hence the simulation results and elapsed time analysis prove SSLMS based adaptive noise

canceller to be better than SSRLS one in case of unidirectional varying frequency.
7.3  PLI with Bidirectional Drifting Frequency

Bidirectional frequency means that it increases or decreases in one direction to a
specific sample and then goes vice versa and so on. Figure 7.2.1 shows ten cycles of pure ECG
signal u[k] from MIT-BIH database [49] normalized. In order to test the working of SSLMS on
bidirectional varying frequency, vp;;[k] has been increased from 49.5 Hz to 50.5 Hz till the center

of the signal and then decreased back to 49.5 Hz as shown in
Table 7.3-1.

Table 7.3-1: Parameters to generate Sinusoidal Noise with bidirectional varying frequency
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Parameter Symbol Value
Amplitude O 0.1
Frequency 1) Sample 1:1500 — 27 X 49.5 to 2w X 50.5
Sample 1501:3000 — 27 X 50.5 to 2w X
49.5
Phase ® n
4
mpling Tim 1
Sampling Time Ts =5 = 0.028

Adding vp;;[k] we get PLI corrupted signal as mentioned in Figure 7.3.1.

ECG Signal Corrupted by PLI
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[

[ [ [

I /
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Sample Number

Figure 7.3.1: Bidirectional Frequency Sinusoidal PLI corrupted ECG Signal

7.3.1 Simulation Results

SSLMS has been initialized with w, = 2w X 50, ¢, = 0, uss s = 0.005 and step-size

parameter for adaptive tracking scheme in section 6 isn = 0.5.
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Figure 7.3.2 shows that SSLMS based adaptive tracking algorithm has traced frequency efficiently.
Also Figure 7.3.4 and Figure 7.3.5 show excellent interference cancellation ability of SSLMS

algorithm.

Frequency tracking using SSLMS
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Figure 7.3.2: Frequency tracking bidirectional varying of PLI using pgg; s = 0.005 and ) =
0.5
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Figure 7.3.3: Estimated bidirectional varying PLI using ugss;ys = 0.005 andn=0.5
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Figure 7.3.5: Error in estimation of ECG Signal using pssius
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7.3.2 Effect of ) on frequency tracking

n = 0.02 and n = 0.5 have been chosen for this comparative analysis. Figure 7.3.6 shows
that for smaller 7, the frequency is not being tracked correctly and even after convergence, it’s
value is slightly lesser than true value hence giving out more error in estimation as shown in Figure

7.3.8 and Figure 7.3.9.
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Figure 7.3.6: Frequency tracking of bidirectional varying PLI using pss.ms=0.005 with (a) n =
0.02 (b)n =05
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Figure 7.3.7: Estimated bidirectional varying PLI using pss.ms=0.005 with (a) n = 0.02 (b) n =
0.5
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Estimation of ECG Signal using SSLMS Estimation of ECG Signal using SSLMS
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Figure 7.3.8: Estimated ECG Signal using pssLms=0.005 with (a) n =0.02 (b) n = 0.5
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Figure 7.3.9: Error in estimation of ECG Signal using pss.ms=0.005 with (a) n =0.02 (b) n=0.5

7.3.3 Effect of p on convergence and error

Results in this section exhibit that smaller the value of ugg; x5, SMaller the estimation error
at QRS complex peaks of ECG signal. It can be seen in Figure 7.3.10 that for smaller ugss; s,
frequency tracking is also affected at the point of occurrence of ECG signal peaks which also leads

to error in estimation as shown in Figure 7.3.13.
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Frequency tracking using SSLMS Frequency tracking using SSLMS
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Figure 7.3.10: Frequency tracking of bidirectional varying PLI using = 0.5 with (a)
usstms=0.005 (b) pssims =0.05
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Figure 7.3.11: Estimated bidirectional varying PLI using n = 0.5 with (a) pssLms=0.005 (b)
usstms =0.05
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Estimation of ECG Signal using SSLMS
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Figure 7.3.13: Error in estimation of ECG Signal using n = 0.5 with (a) pssLms=0.005 (b) ussLms

=0.05

7.3.4 Comparison with SSRLS algorithm

Figure 7.3.14 shows the frequency tracking of PLI with bidirectional variable using

Ussims = 0.005, Agsrrs = 0.999 and n = 0.5. Figure 7.3.17 shows that the estimation error of

SSLMS is better that that of SSRLS for such type of frequency variation.
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Frequency Tracking using SSLMS Frequency Tracking using SSRLS
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Figure 7.3.14: Frequency tracking of bidirectional varying PLI using n = 0.5 with (a) SSLMS
(nssLms=0.005) (b) SSRLS (AssrLs = 0.999)
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Figure 7.3.15: Estimated bidirectional varying PLI using n = 0.5 with (a) SSLMS
(ussLms=0.005) (b) SSRLS (AssrLs = 0.999)
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Estimation of ECG Signal using SSLMS

Estimation of ECG Signal using SSRLS
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Figure 7.3.16: Estimated ECG Signal using n = 0.5 with (a) SSLMS (ussLms=0.005) (b) SSRLS

(AssrLs = 0.999)
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Figure 7.3.17: Error in estimation of ECG Signal using n = 0.5 with (a) SSLMS (ussLms=0.005)

(b)

SSRLS (AsskLs = 0.999)

In Table 7.3-2, it is shown that for SSLMS, MATLAB requires lesser time to execute than that
for SSRLS algorithm.

Table 7.3-2: Elapsed time of MATLAB simulations for SSLMS and SSRLS algorithms

SSLMS

SSRLS

0.120216 seconds

1.437904 seconds
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Hence the simulation results and elapsed time analysis proves SSLMS based adaptive noise

canceller to be better than SSRLS one in case of unidirectional varying frequency.

7.4 Conclusion

From this chapter, PLI with frequency unidirectional and bidirectional varying has been
removed from noisy ECG signal by first tracking its frequency and then estimating it. From the
simulation results, we have concluded that, in case of drifting frequency, SSLMS gives better
results for a larger value of n and smaller value of pugs; s Where former determines frequency
tracking and later leads to convergence. Moreover, SSLMS has better convergence speed and

computational complexity than SSRLS algorithm for a fixed value of n.
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CHAPTER 8: SSRLS-SSLMS HYBRID ALGORITHM BASED ADAPTIVE
NOISE CANCELLER

In this chapter a hybrid of SSRLS and SSLMS algorithm has been proposed to remove
sinusoidal PLI with known frequency from ECG signal. The results are generated using MATLAB
R2012a. The parameter for hybrid to switch from one algorithm to another has been explained.

Moreover, the results have been compared with those of SSLMS and SSRLS algorithm.
8.1 Overview of HybridssrLs-ssLms Algorithm

In Table 8.1-1, SSRLS and SSLMS algorithms have been compared in light of previous
simulations mentioned in section 5.3. It is clear that SSRLS algorithm has better convergence
speed and MSE but has very high computational complexity (Table 2.4-2So in order to benefit
from both algorithms, a hybrid of SSRLS and SSLMS has been proposed which combines
convergence and MSE of former and computational complexity of later algorithm as shown in
Table 8.1-1.

Table 8.1-1: Comparison of SSRLS, SSLMS and Hybrid algorithm with respect to convergence,
MSE and computational complexity

Convergence Mean Square Error Computational
Complexity
SSRLS v v x
SSLMS x x v
SSRLS-SSLMS v v
Hybrid

In order to have better convergence for the proposed hybrid, SSRLS algorithm is being executed
for first v iteration, and after that for the rest of the estimation SSLMS based adaptive noise
cancellation has been implemented. Value of i is decided according to the convergence property

of respective SSRLS algorithm.
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SSRLS (8.1)

Iterati <1p
eration —
>

SSLMS
The selection of Agsg,. s for faster convergence and g, s fOr improved mean square error in later

iterations is further explained in Section 8.2.
8.2 Implementation of Hybrid ssrLs-ssLms Algorithm

SSRLS-SSLMS Hybrid algorithm has been used to remove PLI noise generated parameters
using Table 5.1-1. Figure 5.1.1 and Figure 5.1.2 show the pure ECG signal [49] and noisy ECG
signal respectively along with their frequency response. For SSRLS algorithm, larger value of
forgetting factor Aggr;s leads to slow convergence. Similarly for SSLMS algorithm, in order to

have efficient estimation at QRS complex peaks of the ECG signal, uss;s must be kept smaller.
Keeping this in view, hybrid algorithm is initialized with x, = [8], Atybria = 0.99 aNd hyrypria =
0.01. Moreover, SSRLS algorithm has been executed for the first cycle of ECG signal in this case

which leads to ¥y = 300.

Figure 8.2.1 shows the amplitude and frequency response of proposed hybrid algorithm.
It can be seen that after convergence, estimated PLI reaches its true amplitude i.e. 0.1. Frequency

response in Figure 8.2.1 (b) shows that it has estimated the 50 Hz PLI very efficiently.

Output of Hybrid: Estimated PLI Noise FFT of Output of Hybrid algorithm
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Figure 8.2.1: Output of SSRLS-SSLMS Hybrid algorithm (a) Amplitude (b) Frequency response

Figure 8.2.2 shows the amplitude and frequency response using the Hybrid algorithm based

adaptive noise canceller and it can be seen from frequency response that 50 Hz component has

been significantly removed by the improved ANC.
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Figure 8.2.3 shows the error in the estimation of the noise-free ECG signal and it can be seen that

this proposed technique reduce the error remarkably.
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Figure 8.2.3: Estimation error using SSRLS-SSLMS Hybrid based ANC

8.3 Comparison with SSLMS and SSRLS algorithms

This section shows the comparison of proposed hybrid algorithm with SSRLS and SSLMS
algorithms. The parameters used are wpgsims = 0.05, Assims = 0.99, ppypria = 0.01 and
Auybria = 0.99. Analyzing Figure 8.3.1, we can see that MSE of Hybrid algorithm is lowest than

both SSRLS and SSLMS algorithms making it better in sense of convergence and MSE than both
existing algorithms.

Mean Square Error(dB) in Estimation of ECG Signal
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Figure 8.3.1: Comparison of MSE of SSLMS, SSRLS and Hybrid ssris-ssLms based ANCs for
noise cancellation

Moreover, it can be seen in Figure 8.3.2 that estimated PLI using hybrids algorithm shows
no peaks at the occurrence points of ECG QRS complex peaks. Figure 8.3.3 shows the estimated
ECG signal and it can be shown that Hybrid algorithm has better tracking efficiency than SSLMS
and SSRLS based ANCs. Figure 8.3.4 shows that after the hybrid converges, it has lower error that

the other two algorithms under consideration.
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Output of SSLMS: Estimated PLI Noise Output of SSRLS: Estimated PLI Noise

0.2

0.2

Amplitude
Amplitude

-0.151

r : : : : : : :
200 400 600 800 1000 1200 1400 1600 1800
Sample Number

02 r r r r r r r r 0.
0 200 400 600 800 1000 1200 1400 1600 1800 0

Sample Number
(a) (b)

Output of Hybrid: Estimated PLI Noise
0-2 13 13 13 13 T T T T

0.15

Amplitude

_0.2 r r r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800
Sample Number

(©)
Figure 8.3.2: Estimated PLI of (a) SSLMS (b) SSRLS (c) Hybrid ssris-ssLms based ANCs

77



An

78

x-B

Estimated ECG Signal using SSLMS

081 A
0.6 A
04r b
0.2 A

owwwu«wm

-0.2

Normalized Amplitude

0 200 400 600 800 1000 1200 1400 1600 1800
Sample Number

(a)

Normalized Amplitude

-0.2

T

0.8

0.6

041

0.2

o~

Estimated ECG Signal using SSRLS

T

T

N

Al s

0 200 400 600 800 1000 1200 1400 1600 1800

Sample Number

Estimated ECG Signal using Hybrid

(b)

3 3 T

0.8

06

04r

Normalized Amplitude

3 3

oM~ A~

3

LA

3 3

A

A

WA

Sample Number

(©)

0 200 400 600 800 1000 1200 1400 1600 1800

Figure 8.3.3: Estimated ECG of (a) SSLMS (b) SSRLS (c) Hybrid ssris-ssLms based ANCs



Anx-B

Error in Estimation of ECG Signal using SSLMS Error in Estimation of ECG Signal using SSRLS
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Figure 8.3.4: Estimated error of (a) SSLMS (b) SSRLS (c) Hybrid ssris-ssLms based ANCs

Table 8.3-1 shows the comparison of elapsed time for MATLAB simulations mentioned above. It
shows that Hybrid algorithm has slightly higher elapsed time than that of SSLMS algorithm but is
much faster than SSRLS.

Table 8.3-1: Elapsed time of MATLAB simulations for algorithms

Algorithm Elapsed Time
SSRLS 0.178354 seconds
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SSLMS
Hybrid

0.019853 seconds
0.029893 seconds

Hence, it is proved from the simulations that SSRLS-SSLMS Hybrid algorithm has better
convergence, MSE and computational speed that both SSRLS and SSLMS algorithms.

8.4 Computational Complexity analysis of SSRLS-SSLMS Hybrid

Algorithm

Table 8.4-1 shows the computational complexity of SSRLS algorithm being implemented
on first ¥ iteration. During these iteration, hybrid algorithm converges reducing the mean square

error.

Table 8.4-1: Computational complexity for the first v iterations using SSRLS algorithm

Eq’s Operation X + -
1 x[k]ix1 = Alk — 1 x X[k — 1]1x1 L? 1> —L —
2 ylklix1 = ClklixpX[k]Lxa L L-1 —
3 elklrx1 = YkI1xs — 7K 1r = 1 .
4 Glklixr = AApLLdlk — 11 Arxs 213 =217 217 - I? 1

+ Clx1Cixt)
5 Klk]ixi = o7 k]pxi CT[K]x1 L L>—1L -
6 X[klix1 = X[k]px1 + K[k]ix1€[k]lixa L - -
7 Ylklix1 = ClklixiX[k]Lx1 L L-1 —
8 elklix1 = ylklix1 — Plk]1x1 - 1 -
Total 213 +4L% | 213+ L? 1

+ 3L

413 4+ 5L% + 3L 1
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Similarly, Table 8.4-2 shows the computational complexity, of SSLMS algorithm, for the

samples after the convergence has been attained.

Table 8.4-2: Computational complexity for the remaining iterations using SSLMS algorithm

Eq’s Equation X + +
1 x[k] = Alk — 1]%[k — 1] 12 12 -1 —
2 y[k] = C[k]x[k] L L—1 —
3 [k] = ylk] — y[k] - 1 -
4 K[k] = uCT[k] L - -
5 X[k] = x[k] + K[k]e[k] L - -
6 ylk] = Clk]x[k] L L—-1 -
7 elk] = y[k] — y[k] - 1 -

Total LZ+4L L*+1L -
2L* + 5L -

As mentioned in previous section, 1y = 300 which means that for 300 iterations the computational
complexity is 4L3 + 5L% + 3L and for remaining 1500 iteration, according to the simulations in
Section 8.2, it is 2L? + 5L. Computing the average of this complexity over total 1800 iterations,
the approximate complexity is 0.667L3 + 2.5L? + 4.667L + 0.1667 as shown in Table 8.4-3.

Table 8.4-3: Average computational complexity of Hybrid SSRLS-SSLMS algorithm over 1800
iterations with ¢ = 300

Multiplication and Addition

Samples

1-300 (SSRLS)

300(4L3 + 512 + 3L + 1)

201-1800 (SSLMS)

1500(2L? + 5L)

Average computation per sample

0.667L3% + 2.5L% + 4.667L + 0.1667

As sinusoidal model is used to estimate PLI. So L = 2 for above mentioned computational

complexity analysis. Table 8.4-4 shows the approximate number of computations per iteration it
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takes for the three algorithms under study by putting the value of L in Table 8.4-1, Table 8.4-2 and
Table 8.4-3. It is clear from the results that Hybrid algorithm has its computational complexity
improved that that of SSRLS algorithm.

Table 8.4-4: Number of computations per iteration for Hybrid, SSRLS and SSLMS algorithms

Algorithm Number of Computations (L =2)
SSRLS 59
SSLMS 15
Hybrid 24

8.5 Conclusion

In this chapter, simulation results and MATLAB elapsed time have proved HybridssrLs-
ssLms to be better than SSLMS and SSRLS algorithms. Comparative analysis has been carried out
for analyzing convergence, MSE, robustness and computational complexity of algorithms under

consideration.
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CHAPTER 9; CONCLUSION AND FUTURE WORK

After detailed description and performance comparison of proposed solutions overall conclusion

and future recommendations are presented in this chapter.
9.1 Conclusion

In this this, SSLMS based adaptive noise cancellation technique has been proposed in order
to estimate and remove impulsive component of PLI from ECG signal. The simulation results and

comparison with existing techniques show that SSLMS has better overall performance.

Moreover, sinusoidal PLI with known, unknown and drifting frequency have also been
removed from ECG signal using SSLMS Algorithm. Simulations have proved that SSLMS based
ANC cancels out PLI efficiently. Step size parameters for SSLMS and adaptive tracking schemes
have also been compared to decide the values giving better results. Proposed technique has also

been compared with SSRLS based ANC and has proved to give better estimation performance.

In the end, a hybrid algorithm has been proposed that benefits from fast convergence, mean
square error (MSE) and computational complexity of both SSRLS and SSLMS algorithm. It has
been implemented to remove sinusoidal PLI with known frequency from ECG signal. Better
performance of hybrid algorithm has been proved by simulation results along with its

computational complexity analysis.
9.2 Future Work

Hybridssris-ssLms Algorithm has implemented where the convergence of SSRLS is better
than SSLMS. In case of unknown and drifting sinusoidal PLIs, SSLMS has better estimation
performance than SSRLS algorithm. In order to have better performance, Hybridssris-ssLms must

be analysed for such frequency cases.
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9.3 Research Contribution

* J Habib, A Zeb, A Mirza, SA Sheikh, “SSLMS Algorithm based Impulsive Noise
Cancellation from ECG Signal”, IEEE International Conference of Multimedia Systems

and Signals Processing, New Taipei, Taiwan, 3-5 September, 2016

* Journal “PLI Removal from ECG signal using Adaptive Algorithms”-submitted

84



Anx-B

REFERENCES

[1] http://mww.who.int/mediacentre/factsheets/fs317/en/.

[2] Global status report on non-communicable diseases 2010. World Health

Organization, 2014.

[3] Mathers CD, Loncar D. Projections of global mortality and burden of disease from
2002 to 2030. PL0S Med, 2006, 3(11):e442.

[4] H. V. Pipberger et al., “AHA Committee Report: Recommendations for
standardization of leads and of specifications for instruments in electrocardiography

and vectorcardiography,” Circulation, vol. 52, pp. 11-31, 1975.

[5] J. J. Bailey et al., “AHA Scientific Council Special Report: Recommendations for
standardization and specifications in automated electrocardiography,” Circulation, vol.

81, pp. 730-739, 1990.

[6] Martin J. Burke and Denis T. Gleeson, “A micropower dry-electrode ECG
preamplifier,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 2, Feb.

2000.
[7] "Electrocardiography,” https://en.wikipedia.org/wiki/Electrocardiography.
[8] Mujagic, Muris. "Characterization of ECG Noise Sources."

[9] Van Rijn, A.M., Peper, A. and Grimbergen, C.A., 1990. High-quality recording of
bioelectric events. Medical and Biological Engineering and Computing, 28(5),
pp.389-397.

[10] Martens, Suzanna MM, Massimo Mischi, S. Guid Oei, and Jan WM Bergmans.
"An improved adaptive power line interference canceller for electrocardiography.”
IEEE transactions on Biomedical Engineering 53, no. 11 (2006): 2220-2231.

85


http://www.who.int/mediacentre/factsheets/fs317/en/
http://www.who.int/mediacentre/factsheets/fs317/en/

Anx-B

[11] B. Widrow et al., “Adaptive noise cancelling: Principles and applications,” IEEE
proceedings, vol. 63, no. 12, pp. 1692-1716, Dec. 1975.

[12] J. R. Glover,“Adaptive noise canceling applied to sinusoidal interferences,” IEEE

Trans. on Acoust. Speech, Signal Process., vol. 25, no. 6, pp.484-491, Dec. 1977.

[13] S. Martens, M. Mischi, S. Oei, and J. Bergmans, “An improved adaptivepower line
interference canceller for electrocardiography,” IEEE Transactions on Biomedical

Engineering, vol. 53, no. 11, pp. 2220 —2231, Nov. 2006.

[14] Panda, R.; Pati, U.C., “Removal of artifacts from electrocardiogram using digital
filter,” 2012 IEEE Students’ Conference on Electrical, Electronics and Computer
Science (SCEECS), pp.1,4, 1-2, March 2012.

[15] M. Makundi, T. I. Laakso, and L. Yaohui, “Asynchronous implementation of

transient suppression in tunable IIR filters,” Int. Conf. on Digital Signal Process., vol.

2, pp. 815-818, 2002,

[16] P.S. Hamilton, “A comparison of adaptive and non-adaptive filters for reduction
of power line interference in the ECG,” IEEE Trans. on Biomed. Eng., vol. 43, no. 1,
pp. 105-109, Jan. 1996.

[17] N. V. Thakor and Y. S. Zhu, “Application of adaptive filtering to ECG analysis:
Noise cancellation and arrhythmia detection,” IEEE Trans. on Biomed. Eng., vol. 38,

no. 8, pp. 785-794, Aug. 1991.

[18] W.K.Ma, Y. T. Zhang, and F. S. Yang, “A fast recursive-least-squares adaptive

notch filter and its applications to biomedical signals,” Med. Biol. Eng. Comput., vol.

37, no. 1, pp. 99-103, Jan. 1999.

[19] Piskorowski, J., “Digital '-'-?-Varying Notch IR Filter With Transient Suppression,”
IEEE Transactions on Instrumentation and Measurement, vol.59, no.4, pp.866, 872,

April 2010.
86



Anx-B

[20] Li Tan; Jean Jiang; Liangmo Wang, “Pole-Radius-Varying IIR Notch Filter With

[21] Transient Suppression,” IEEE Transactions on Instrumentation and Measurement,
vol.61, no.6, pp.1684,1691, June 2012.

[22] Islam, Syed Zahurul, Syed Zahidul Islam, Razali Jidin, and Mohd Alauddin Mohd
Ali. "Performance study of adaptive filtering algorithms for noise cancellation of ECG
signal.” In Information, Communications and Signal Processing, 2009. ICICS 2009.

7th International Conference on, pp. 1-5. IEEE, 2009.

[23] Maniruzzaman, Md, Kazi Md Shimul Billah, Uzzal Biswas, and Bablu Gain.
"Least-Mean-Square algorithm based adaptive filters for removing power line
interference from ECG signal.” In Informatics, Electronics & Vision (ICIEV), 2012
International Conference on, pp. 737-740. IEEE, 2012.

[24] Chandrakar, Chinmay, and M. K. Kowar. "Denoising ECG signals using adaptive
filter algorithm.™ International Journal of Soft Computing and Engineering (IJSCE) 2,
no. 1 (2012): 120-123.

[25] S. Haykin, Adaptive Filter Theory, 4th ed., Upper Saddle River, NJ: Prentice-Hall,
2002.

[26] A.K.Ziarani and A. Konrad,“A nonlinear adaptive method of elimination of power
line interference in ECG signals,” IEEE Trans. on Biomed. Eng., vol. 49, no. 6, pp.
540-547, Jun. 2002.

[27] Soumyadipta Acharya, Dale H. Mugle, Bruce C. Taylor, “A fast adaptive filter for
electrocardiography”, Proceedings of the IEEE 30th Annual Northeast Bioengineering
Conference, April 2004.

[28] 1. S. Badreldin, D. S. El-Kholy, and A. A. EI-Wakil, “Modified adaptive noise
canceler for electrocardiography with no power-line reference,” Cairo International

Biomedical Engineering Conference, Cairo, Egypt, Dec. 2010.

87



Anx-B

[29] I. S. Badreldin, D. S. EI-Kholy, and A. A. EI-Wakil, “Harmonic adaptive noise
canceler for electrocardiography with no power-line reference,” Electrotechnical
Conference (MELECON), Mediterranean, March 2012.

[30] Butt, M., Razzaq, N., Sadiq, I., Salman, M. and Zaidi, T., 2013, March. Power line
interference removal from ECG signal using SSRLS algorithm. In Signal Processing
and its Applications (CSPA), 2013 IEEE 9th International Colloquium on (pp. 95-98).
IEEE.

[31] Mohammad Bilal Malik “State-Space Recursive Least Squares: part 1 ,” Signal
Processing, vol. 84/9, pp. 1709-1728, 2004.

[32] M.B. Malik, State-space recursive least squares with adaptive memory, Signal
Process. J. 86 (2006) 1365-1374.

[33] Bharath, H. N.; Prabhu, K. M M, "A new LMS based adaptive interference
canceller for ECG power line removal," 2012 International Conference on Biomedical
Engineering (ICoBE), pp.68,73, 27-28, Feb. 2012.

[34] T. Kanachareon, J. Koseeyaporn, R. Punchalard, and P. Wardkein, “New

Adaptive Filter Algorithm for Noise Cancellation in ECG Signals,” The 31th
Electrical Engineering Conference, Thailand, Oct. 2008.

[35] Koseeyaporn, P.; Koseeyaporn, J.; Wardkein, P., “An enhanced adaptive algorithm
for PLI cancellation in ECG signals,” 7th International Conference on Information,

Communications and Signal Processing ICICS 2009, pp.1,5, 8-10 Dec.

2009.

[36] Manpreet Kaur, Birmohan Singh, “Powerline Interference Reduction in ECG
Using Combination of MA Method and IIR Notch”, Electronic Letters, International

Journal of Recent Trends in Engineering, vol 2, no. 6, Nov. 2009.

88



Anx-B

[37] Tong T J, ChenY, Tong J J, eta.l, “A new application of lock-in amplifieradaptive
noise canceller”, The 3rd International Conference on Bioinformatics and Biomedical

Engineering, New York, 2009.

[38] S.X.Li, L.Y.Liu, “Design of wavelet domain median filter”, Journal of UEST of
China, pp: 18-21, 2003.

[39] Zhi-Dong Zhao; Yu-quan Chen, “A New Method for Removal of Baseline

Wander and Power Line Interference in ECG Signals,” International Conference

on Machine Learning and Cybernetics, pp.4342, 4347, 13-16, Aug. 2006.

[40] Huang.N.E, et al, “The empirical mode composition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis”, Proceeding of R.Soc.Lond.A, vol
454, pp. 903-995, 1998.

[41] Flandrin. P, Rilling. G, Goncalves.P, “Empirical mode decomposition as a filter
bank”, IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, 2004.

[42] Rilling.G, Flandrin. P, Goncalves. P, “Empirical mode decomposition, fractional

Gaussian noise and Hurst exponent estimation”, Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol 4544, pp. 489-492,
2005.

[43] Norden E. Huang, “HHT basics and applications for speech, machine health
monitoring, and bio-medical data. Analysis,” pp.1-78, March 2003.

[44] Junling Li; Bohu Liang; Xiaodong Su, “Research on ECG signal filtering
algorithm based on the fusion of multiple algorithms,” International Conference on

Measurement, Information and Control (MIC), vol.1, pp.370,373, 18-20 May 2012.

89



Anx-B

[45] Kavya, G.; Thulasibai, V., “Parabolic Filter for Removal of Powerline Interference
in ECG Signal Using Periodogram Estimation Technique,” International Conference

on Advances in Computing and Communications, pp.106,109, 9-11 Aug.

[46] Malik, M.B. and Salman, M., 2008. State-space least mean square. Digital Signal
Processing, 18(3), pp.334-345.

[47] Malik, M.B. and Bhatti, R.A., 2004, October. Tracking of linear time-varying
systems using state-space least mean square. In Communications and Information
Technology, 2004. ISCIT 2004. IEEE International Symposium on (Vol. 1, pp. 582-
585). IEEE.

[48] W.J. Rugh, Linear System Theory, second ed., Prentice Hall, Upper Saddle River,
NJ, 1996.

[49] A. L. Goldberger et al., “PhysioBank, PhysioToolkit and Physionet: Components
of a new research resource for complex physiologic signals Circulation,” Circulation,
vol. 101(23), June 2000, doi: http://dx.doi.org/10.1161/01.CIR.101.23.e215

[50] Malik, M.B. and Salman, M., 2006, July. Adaptive tracking of a noisy
sinusoid/chirp with unknown parameters. In 2006 IEEE International Symposium on
Industrial Electronics (Vol. 1, pp. 593-598). IEEE.

[51] Richard G. Lyons, Understanding Digital Signal Processing, 2nd Ed, Pearsan
Education, 2004.

[52] Tario,P., Sanchez, MG., Cuinas, I., "An Algorithm to Simulate Impulsive Noise,"
19th International Conference on Telecommunications and Computer Networksm
Split, Croatia, p 1-4, 2011.

90



Anx-B

Completion Certificate

It is to certify that the thesis titled “PL1 Removal from ECG Signal using Adaptive Algorithms”
submitted by NS Javeria Habib Registration No. NUST201464399MCEME35014F is

satisfactory for completion of the partial fulfillment of requirement for Degree of Master of

Science in Electrical Engineering.

Thesis Advisor:

(Dr Shahzad Amin Sheikh)

91





