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ABSTRACT 

In light of recent advances in autonomous mobile robots, the chance for the robot presence 

in human domains have increased. To avoid collisions and to compute the optimal path 

between two points, motion planning has come to the fore as an essential area of research. 

Sampling based motion planners offer an advantage with respect to computational cost as 

in contrast to conventional planners they avoid an explicit construction of cspace. 

However, two of the major problems of sampling based motion planners is the need to 

efficiently adapt in the presence of dynamic obstacles and the degradation of path quality 

with a reduced number of samples. Much work has been done in order to adapt existing 

sampling based motion planning algorithms, including Randomly exploring Random Trees 

(RRT,RRT*), Probabilistic Roadmap Methods (PRM,PRM*), for dynamic scenarios. In 

order to solve the above-mentioned problems, we introduce two different sampling 

algorithms in order to solve the above mentioned problems. Firstly, Dual Tree Fast 

Marching Tree (DT-FMT*) is an asymptotically optimal static motion planning algorithm 

that is used to improve the path quality with a limited number of initial samples. It does 

this by quickly computing an initial path and uses that information to draw a batch of new 

samples to generate an improved path. Secondly, we introduced Reduced samples Re-

planning Fast Marching Tree (RR-FMT*) in order to modify an initial path in presence of 

dynamic obstacles. This is done by, first, computing an initial path using DT-FMT*, then 

during the course of robot motion along the path, we monitor the presence of obstacle at a 

certain clearance. In case of obstruction along the path, we grow a new tree to connect the 

current position of the robot to a way-point along the path. To validate our planner 

performance we have rigorously tested our both DT-FMT* and RR-FMT* performance 

against standard version of FMT*, as well as Secure tunnel FMT* (ST-FMT*). Similarly, 

in a dynamic environment, we compared planner performance against a dynamic version 



 xiv 

of RRT* planner. The result show an overall improvement with respect to both path cost 

and time taken to compute the path. 

Keywords: Sample based motion planning, dynamic environment, optimal path 

planning, Fast Marching Tree (FMT*), computational efficiency  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Thanks to a rise in demand for intelligent systems in various fields, from self-driving cars 

[1] and unmanned aerial [2] and underwater vehicles [3], to a wide array of task specific 

robots, motion planning has come to the forefront to fulfil one of the most challenging, and 

pertinent, research problem: to develop an efficient and robust algorithm for safely 

navigating in a dynamic environment with a wide range of unknown obstacles. Sampling 

based motion planners, introduced in the 1990s [4], leverage random sampling in order to 

construct a graph to find an obstacle free path. An advantage of this is that they do not 

require exploring the full configuration space; hence, ensuring faster and more efficient 

solution. However, motion planning in dynamic environments requires the ability of a 

robot to modify its plan on the fly. 

Dynamic Environments introduce, a time constraint to the problem of motion planning [5]. 

Formally, dynamic environments are defined as environments where obstacle 

configuration is not known by the robot before starting motion, or the obstacle 

configuration can change with time or obstacles can move with time [6]. Fig 1 (a) to (h) 

gives the complete information about the types of dynamic environments a robot is likely 

to encounter. Case 1 includes environments that are static but whose presence and location 

are not known the robot when it starts moving. Case 2 consists of obstacle that appear when 

the robot is in a certain proximity. Case 3 consists of obstacles that appear at different 

intervals and also disappear when a certain time period is reached. Case 4 consists of 

moving obstacle that can follow a particular trajectory. In a typical implementation of the 

motion planning scenario, where the initial path is first computed in then motion begins, 

of motion planners, dynamic obstacles, can cause the invalidity of computed paths. Hence, 

the dynamic re-planner, is responsible for the modification, and optimization of a given 

trajectory, in response to the presence of unexpected obstacles which can come as one, or 

a combination of Case 1 to 4. 
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Figure 1: Scenarios in dynamic motion planning: (a-b) Case 1: Unknown obstacles; (cd) Case 2: Sense-able 

obstacles; (e-f) Case 3: Randomly appearing obstacles; (g-h) Case 4: Moving obstacles. 
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Fast Marching Tree (FMT*) algorithm is a sampling-based motion planning algorithm, 

based upon lazy forward recursion [7]. They were introduced in 2015 by Janson et al. [7]. 

It draws inspiration from the Fast-Marching Methods, used for a numerical solution of 

Eikonal equations [5]. The FMT* algorithm has a number of advantages over 

contemporary sampling-based planner. For one, it reduces the number of collision checks 

[8], whilst also offering a faster convergence [9]. However, during the course of this thesis 

we have highlighted two of the major problems of FMT* Algorithms. One, as a batch 

sampling algorithm, in which the total samples are taken at the beginning of the sampling 

process, as the number of samples increase the total time taken increases. Secondly, there 

have been no optimal dynamic version of the FMT* Algorithm [10]. 

  

 

 

 

 

 

1.2 Motivation 

As robots become increasingly prominent and plentiful in public and domestic 

environments, their ability to both plan its path quickly and locomote along the path rapidly 

becomes indispensable. Two of the key problems highlighted earlier, slow convergence 

speed and slow re-planning speed are key issues in today’s robotics not just at a simulation 

level, but on roads and public spaces where a lack of there can have disastrous 

consequences. This project explores the use of sampling-based planners, a category of 

planners enjoying the advantages of both faster speed and better path over other categories 

of robot motion planner, in dynamic environments. 

Figure: 2: Re-planning a path in the presence of dynamic obstacles 
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Personally, being able to contribute to this field of research is highly motivating, as motion 

planning for dynamic environments poses both theoretical and practical challenges. In 

addition, working on this field of study allows robots to be adaptive to their surroundings 

which cam have a wide range of impact on the world from efficient and safe transportation 

system as well as improved manipulator path. 

1.3 Research Contributions 

The purpose of this thesis is to present a modified FMT* Algorithm, for planning in 

dynamic environment, better convergence, and reduced computation, as well as to insulate 

the FMT* Algorithm to the effects of moving obstacles, on its trajectory. Our contribution 

is as follows: 

 Introduction of a Dual Tree Fast Marching Tree (DT-FMT*) for path improvement 

in a reduced sample set 

 As a motion planner Double-FMT* planner carries forward the asymptotic 

optimality and probabilistic completeness of FMT*, but with a much faster path 

generation in static environment with a reduced sample set. 

 Experimentation with 3 different sampling strategies based on obstacle distance for 

path improvement in dynamic environment 

 A tunnel construction strategy in order to ensure high quality contiguous samples 

 Introduction of a novel Waypoint based path replanning using RR-FMT* planner 

in dynamic environments 

 Rigorous testing in various scenarios to prove the viability of our planners 

1.4 Problem Definition 

In this section we elucidate the commonly used terminology and notations pertaining to 

sampling-based motion planners in order to facilitate greater understanding in latter 

sections. Additionally, we also formalize the definition of feasible and optimal motion 

planning. Furthermore, we also review and discuss the standard FMT* algorithm alongside 

the ST-FMT* algorithm. For a configuration space X ⊂ Rn, let Xobs be the obstacle region 
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such that the X \ Xobs is an open set. Resultantly, the obstacle-free space is defined as Xfree 

= cl(X \ Xobs). The initial xstart and goal state xgoal are elements of Xfree. Alternately, the goal 

region Xgoal is an open subset of Xfree. τ : [0, 1] → Rd is defined as a continuous sequence 

with a bounded variation. The sequence τ can be defined as a path if it is continuous and 

collision-free. 

Feasible Path Planning: For a standard motion planning formulation (xstart, Xfree, xgoal), find 

a feasible path τ: [0, 1] → Xfree if existing such that the τ [0] = xstart and τ [1] = xgoal. If no 

extant path fulfilling this criteria, then return failure. 

Optimal Path Planning: For the above-mentioned motion planning problem and a series of 

all feasible paths Σ. The cost function Cost(τ ) denotes the cost of a particular path per the 

distance metrics used. The optimal path is such that it should satisfy the following criteria: 

𝜏 ∗= 𝑎𝑟𝑔𝑚𝑖𝑛𝜏∈𝛴𝐶𝑜𝑠𝑡(𝜏) ∣ 𝜏: [0,1] → 𝑋𝑓𝑟𝑒𝑒      (1.1) 

Fast Path Planning: For a given motion planning problem, find the optimal and feasible 

path τ ∗ in the least possible amount of time t ⊂ R. 

1.5  Thesis Overview 

Chapter 2 is a review of motion planning algorithms consulted during the course of our 

thesis. It provides a comprehensive grounding in basic static motion planners, including 

RRT, RRT*, Potential-RRT, FMT* etc, as well as a select dynamic motion planners, 

including the Risk RRT-RRT* family. We also discuss recent research on these planners. 

These have been instrumental in developing our approach towards planning in dynamic 

environments. We also include our implementations of these motion planners with 

comparison in a comprehensive list of environments selected from literature.  

Chapter 3 describes the scope and details of the modification that we have made to the 

FMT* algorithm. We include the details and complete pseudo-code of both the Dual Tree 

Fast Marching Tree as well as the Reduced Sampling FMT*. Additionally, we also outline 

the extension of FMT* algorithms to dynamic environments with a certain number of 

obstacles that are not known a priori. We include certain number of obstacles that appear 
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and disappear randomly with time. Moreover, the total system design for rapid path 

computation is also presented. 

In Chapter 4 we present the result of the modification we have discussed above. We have 

made a wide range of sampling environments based on the literature. Separate experiments 

are conducted for DT-FMT* and RR-FMT*, and comparisons were made using the 

appropriate planner. DT-FMT* with standard FMT* and ST-FMT*, while RR-FMT* was 

compared with the Dynamic RRT* algorithm. 

Chapter 5 provides a conclusion and discusses the potential future work, including the 

extension of this work to a physical system; as well as the future work.  
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

Due to the advances in artificial intelligence, autonomous mobile robots are en-route to 

have an unprecedented level of access, to domains of human activity; from roads [11] and 

other public places [12] [13] [14], to the private lives of senescent individuals [15]. 

Concurrently, the usage of robots has also diversified to encompass a wide range of 

applications: service in restaurants [16], garbage removal [14], and working in space [17]. 

This has increased the chances of robots encroaching on human domains. Consequently, 

motion planning, which is responsible for ensuring collision-free robot motion from one 

point to another, has come to the fore as an indispensable part of robotics. 

Thanks to the extensive work done, motion planning algorithms can be divided into four 

categories: combinatorial approaches [18], reactive planners [19], learning based planners 

[20], and sampling based planners [21]. Combinatorial approaches to motion planning 

compute an exact representation of the free space and return a complete solution; however, 

one disadvantage of these approaches is that they are computationally expensive. Reactive 

planners monitor the state of the environment and use stimulus from the environment to 

plot an obstacle free trajectory, but, while they have utility in real time operation, they give 

no guarantee of optimality with respect to path length [22]. Learning based planners work 

by utilizing either a human designed reward function to bias behaviour [23] or by learning 

viable solutions from prior iterations to compute an optimal path. While they have the 

advantage of being flexible and handle complex tasks; however, apart form being 

computationally expensive, they are dependent upon pre-computed data [24]. Sampling 

based planners work by generating a random configuration in order to find the path 

between two points [4]. Sampling based planners are easily scalable to higher dimensions; 

however, their performance is contingent upon the number of samples taken in the 

configuration space.  
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2.1 Sampling based Motion Planning Algorithm  

Sampling based planners have become popular due to the distinct advantages they 

hold over conventional planners. Firstly, by avoiding the explicit representation of 

the c-space they ensure fast computation of feasible solutions especially in higher 

dimensions [7]. Secondly, as a result of the incremental nature of most sampling 

planner, they can reach a quick suboptimal solution first, before moving onto an 

optimal solution. Two of the most prolific sampling-based planners are Randomly 

exploring random trees (RRT) and probabilistic roadmap (PRM). PRM samples a 

roadmap from the environment and during the query stage uses a graph planner to 

find the minimum cost solution [25]. In contrast, the RRT algorithm incrementally 

grows a tree structure through generating random samples in the environment. Both 

of these planners guarantee probabilistic completeness, but are not asymptotically 

optimal (AO). Karaman [21] et al. demonstrated that the solution return by the RRT 

was not optimal and presented the RRT* and PRM* algorithms as the optimal 

versions of these planners. PRM and PRM* require the pre computation of the 

environment in order to generate the roadmap necessary. This is computationally 

expensive and not usable in cases where the environment is not known. 

In addition, although it has been proven to be asymptotically optimal, however, one 

of the problems inherent within RRT* planner is the inherently slow rate of 

convergence to the optimal solution on account of the vast number of iterations 

needed. Qureshi et al. [26] gave the Potential guided directional-RRT* as a means of 

guiding random samples toward the direction of decreasing potential, hereby 

decreasing the number of iterations required to converge to an optimal solution. 

Similarly, the obstacle RRT algorithm [27] uses the obstacle location to create a 

vector in order to modify samples for use in generating solutions in narrow regions. 

Ayaz et al. [28] introduced RRT*-Smart which optimizes an initial path and 

identifies beacon nodes in whose direction to bias sampling for a better quality path. 

Moreover, the Informed-RRT* algorithm [29] also increases the rate by convergence 
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by, firstly, quickly computing an initial solution and then concentrating the sampling 

on states admissible by a pre-defined heuristic. 

2.1.1 Randomly exploring Random Tree (RRT) family of planners 

In this section we introduce the Randomly exploring Random Tree (RRT) Algorithm along 

with the optimal version of this planner (RRT*). It is necessary to discuss these planners 

as they will be in use later on in this work. Lavalle et al. gave the basic version of RRT in 

1998 [25]. It was designed to handle a wide variety of motion planning problems especially 

those involving high dimensions. Algorithm 1 gives the complete pseudocode of the 

algorithm. As a single query motion planning algorithm, the RRT algorithm works by 

incrementally building a tree structure in order to explore a given space. The ’root’ of the 

tree is at the start position and it gradually grows by randomly sampling points in the 

environment. The process begins by initializing the tree with a single vertex at the initial 

state, and no edges. At each iteration, a random point xrand ∈ Xfree is sampled from the 

environment by SampleFree in line 3 in Algorithm 1 . The algorithm next tries to find the 

nearest vertex of the tree v ∈ V to xrand (line 4) and returns xnear. Then the Steer function 

steers a new sample xnew towards xnear. If the edge between xnear and xnew is collision free 

(line 6) then it is added to the tree structure G. The algorithm runs for a fixed number of 

iterations and afterwards returns the graph structure. Then using the xgoal node, we 

backtrack and get a series of path leading from the goal to xstart. The algorithm then 

chooses the minimum cost path: 

. 
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There has been extensive work done on RRT algorithm. Some of the most famous variants 

include RRT-Connect [30] which maintains two trees: one from xstart and the other of 

xgoal. The algorithm completes when the two trees meet, significantly enhancing search 

efficiency compared to single-tree methods and greatly increasing the speed required to 

reach a solution. The Single-query Bidirectional Lazy (SBL) planner [31] is also maintains 

two different trees; however, it maintains a lazy collision checking strategy. Similarly to 

Figure 3 Tree Growth Method of RRT Algorithm 
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SBL and RRT-Connect, Triple RRT [32] generates three trees; apart from the trees from 

the goal region and start region, a separate tree is generated within a narrow corridor region. 

As a result of this, path performance is improved in narrow corridor environments. 

Anytime-RRT [33] works by first computing an initial sub-optimal path. It then continues 

to improve the tree deals with lack of computational time for path improvement by 

generating an initial sub-optimal solution. The tree is then stored and the rest of the time is 

used to attempt to improve the solution by running iterations of the RRT. A solution is 

returned if the initial path is improved by a pre-determined method. However, the RRT 

algorithm has a set of limitations. Firstly, Karaman et al. proved that the planner does not 

guarantee an optimal solution. This means that, practically, the path turned may be be 

unnecessarily long, containing detours or redundant segments. Additionally, since RRT 

uses random sampling to explore the space, it focuses on rapid exploration rather than 

optimizing for the shortest or smoothest path. Furthermore, RRT struggles to efficiently 

explore narrow passages in the configuration space, as there is a reduced probability of 

sampling in narrow obstacle environments [34]. 
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In order to address ensure asymptotic optimality in the RRT, Karaman et al. introduced the 

RRT* version of the planner. Algorithm 2 gives the complete pseudocode of the algorithm. 

It is similar to the RRT; however, it introduces a rewiring of new nodes (line 12). After 

inserting xnew into the tree in the same manner as that of RRT, the algorithm identifies a set 

of nearby nodes within a radius r(n) of xnew.The value of r(n) is written as such: 

         𝑟(𝑛) = 𝛾𝑅(
𝑙𝑜𝑔(𝑛)

𝑛
)

1

𝑑      (2.1) 

 

where γR is the constant dependent upon the problem and d is the dimension of the space. 

For a set vertices xneighbour within r(n), the algorithm calculates the cost between xnew 

and xneighbour  

𝑐𝑛𝑒𝑤(𝑥𝑛𝑒𝑤) = 𝑐(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟) + 𝑐𝑒𝑑𝑔𝑒(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 , 𝑥𝑛𝑒𝑤)                  (2.2) 

If any of the neighbours offers a lower cost alternative then the parent of xnew is set to 

xneighbour   : 

       𝑐𝑛𝑒𝑤(𝑥𝑛𝑒𝑤) < 𝑐(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟)     (2.3) 
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However, this is not to say that RRT* planner is impeccable. The following gives the 

drawback of RRT*: 

 While RRT* eventually converges to the optimal path, its rate of convergence is 

often quite slow. This is because the algorithm refines its tree structure, rewiring it 

to improve path quality. In high-dimensional or expansive spaces, a large number 

of iterations and samples are needed before the path approaches optimality. 

Therefore, achieving an optimal or near-optimal solution can be time-consuming, 

making RRT* unsuitable for applications requiring quick planning. 

 

 Additionally, another problem is that RRT* is difficulty planning through narrow 

spaces and mazes. The reason for this is evident: the random sampling approach 

makes the probability of generating samples within these constrained regions. As a 

result, finding and exploring narrow passages can be inefficient, with the algorithm 

either taking a long time to discover these areas or failing to do so altogether, 

leading to sub-optimal or incomplete solutions in environments with tight 

constraints. 

In conclusion, while RRT* provides the benefit of converging to an optimal path over time, 

itslimitations—especially its slow exploration in large or complex spaces, delayed 

convergence,and difficulty handling narrow passages—highlight scenarios where it may 

not be the most effective choice. 

2.1.2 Potential function guided RRT*  

One solution to the above mention problem in RRT* is the Potential function 

guideddirectional RRT* devised by Quershi, which integrates the Artificial Potential Field 

algorithm [35] to improve convergence speed and achieve a faster optimal path. The 

potentialized random sample, denoted as zprand ∈ Z, and the step size, represented by α ∈ 

R, apply an adjustment to the random state zrand ∈ Z in the direction of the decreasing 

potential field gradient. This direction is indicated by f = ∇. The terms dobs and dgoal, 

previously introduced, indicate the respective distances to obstacles and the goal. 
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Furthermore, the scaling factors ka and kr represent the strengths of the attractive and 

repulsive potentials, respectively. 

2.1.3 Fast Marching Tree Algorithm 

In this section we present the Fast Marching Tree algorithm [7]. Algorithm 6 provides a 

detailed overview of the algorithm. The set Vunvisited consists of nodes not yet added to the 

tree. 

 

Initially, the entire sample set is added to Vunvisited. Similarly, the Vopen consists of nodes 

considered ’active’ for tree growth. One key feature of FMT* is that it generates a readily 

growing set of paths and preforms graph construction and graph search synchronously. 

Two samples are considered neighbours if their distance is within a certain bound. As 

FMT* is a batch sampling algorithm, SampleFree(n) generates the samples required to 
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compute the solutions. Normally, as in this case, uniform distribution is used; however, it 

has been shown [7] to work with non-uniform sampling distributions. After an initial 

amount of samples are generated across the environment, FMT* works by preforming a 

forward dynamic recursion on the set of samples. The function Near(Vunvisited, z, rn) returns 

a subset of samples within the radius rn. The cost function Cost(y, x) is used to denote the 

cost of the straight line between configuration y and x in cost to go space. Furthermore, 

after the minimum cost node is within the goal region, the planner terminates and Path(z, 

T = (Vopen ∪ Vclosed, E)) returns the optimal path from the tree. To determine the validity of 

the Collision(y,x) which is a boolean operation that returns True in case of an intersection 

of path with obstacles. 

2.1.3.1  Working Principle 

After n samples have been taken across Xfree, they are initially placed within Vunvisited with 

xstart being placed within Vopen. At least one sample must be within the goal region Xgoal. 

Afterward, a tree is initialized with its root nodes at xstart. Then the lowest cost node z is 

selected. Near returns Xnear the subset of z neighbours in Vunvisited Then, for each x in Xnear, 

the algorithm tries to find the neighbouring nodes y within Vopen. It then considers the 

most locally optimal of these node for incorporation into the tree and preforms a collision 

check in order to determine if the edge is obstacle-free. If so then it adds y to the tree. Such 

a collisionchecking strategy is known as ’lazy’ [36]. Node x is then shifted to Vopen and z 

moves to Vclosed, the set ineligible for further expansion. This process repeats itself until the 

tree reaches Xgoal. In case Vopen is empty, then the planner returns Failure. 
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Figure 4: A series of images illustrating FMT* algorithm steps 
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2.1.3.2  Comparison of FMT* with other planners 

In this section we present out work on the comparison of FMT* in contrast to various 

environments. Our comparison planners are the RRT,RRT*,p-RRT* and the PRM* 

planner. Our results show the improvement with respect to path cost and time of FMT*. 

Fig 5 (a) to (i) show the outcome of our results. Our results show that the FMT* planner 

out-preforms the RRT by 75 % , 70 % RRT* ,69 % P-RRT, 65 %P-RRT* with respect to 

time and distance. 

2.1.3.3  Recent work on FMT* 

The Anytime FMT* (aFMT*) [37] introduces a hybrid sampling, and a region 

identification in order to present a solution to the narrow corridor problem. It uses a three-

sampling distribution uniform sampling, Gaussian sampling, and bridge sampling over the 

configuration space, the classification of different regions, and then concentration of 

sampling over the ‘difficult’ regions, where it is most likely to achieve a breakthrough. The 

bridge test is a method of evaluating the feasibility of a sample. A sample passes the bridge 

test if it is on a line [38] segment such that the two end of the lien segment, lie on obstacles. 

The aFMT* also adds another modification to the lazy optimal local one step connection 

strategy. If a node has been added once into the tree as an optimal node, then it cannot be 

added again. The aFMT* first of all takes a hybrid sample over the configuration space. It 

then establishes buRatio between bridge samples and uniform samples, and a guRatio 

between the gaussian and the uniform samples. The region construction is done on the basis 

of a sample type (Gaussian Samples are given priority) and a certain radius. Depending on 

the buRatio it will also adjust the number an type of samples. New samples are then added 

to the difficult regions and then passed on to the FMT*. The Informed Anytime FMT* 

Algorithm [9], introduces a hyperelliptic subregion for directed sampling, reminiscent of 

the BIT* [8] or Informed RRT* [29] algorithm. In addition to this it also introduces a 

Rewiring procedure to extend the tree based on non-lazy evaluation of the state space.  

The Group Marching Tree (GMT) [39] , uses the parallel computing power of multiple 

GPUs in order to expand multiple nodes at  
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 Figure 5: Distance Comparison of FMT*, RRT, P-RRT, RRT*, P-RRT*. 
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Figure 6: Time Comparison of FMT*, RRT, P-RRT, RRT*, P-RRT*. 
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the same time. Such an approach however is computationally expensive and dependent 

upon the number of GPUs available. The Online FMT* [40] introduces an online sampling, 

and an online rewiring and pruning strategy. In uses a threshold value, in order to limit the 

number of nodes. It also uses the current position of the robot as new root of the robot. It 

also continues to sample but new nodes are instead not added to the tree. Using a new 

sample as a center, a nearest neighbor search is then done, in order to get the lowest cost 

node. It then adopts a rewiring strategy reminiscent of RRT*, in order to get a low-cost 

path, however it also updates the cost function. 

A Bidirectional variant of the Fast-Marching Tree Algorithm (BFMT*) [41], involves two 

different trees, one expanded from the starting position, and another from the goal position. 

Apart from the traditional alternate bidirectional tree expansion strategy, a balanced tree 

criteria is introduced, in which the frontier node with minimum cost node is expanded from 

the frontier of both sides. In addition, two termination conditions are also introduced. Apart 

from the ‘First Path Criteria’, when there the two trees have connected, the other is when 

the node selected, is a node in the interior of the other tree. The Heuristic Bidirectional Fast 

Marching Tree [42], simply introduces a basic heuristic to the BFMT*, speeding up the 

search process considerably 

The Hierarchical Bidirectional FMT* [43], is a bidirectional implementation of the FMT* 

algorithm, on a re-configurable mobile robot platform. It initially implements the bidirec-

tional FMT*, on a 3DOF space, before using a hybrid sampling strategy on the full 8 DOF 

state space. The hybrid sampling strategy involves a uniform sampling, and a Gaussian 

concentrated sampling based on the initial path computed. Another hardware based 

implementation algorithm, is the Dual Tree FMT*(DTFMT*) Algorithm [44], It involves 

a search over the self-motion manifold, and a validity checking of nodes, in order to ensure 

valid motion. 
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Figure 7: Comparison of FMT* with RRT (black), RRT* (blue), P-RRT* (pink), P-RRT 
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2.1.3.4  Limitations of FMT* Planner 

However, FMT* has some limitation. Firstly, when working with a reduced set of samples 

the reduction in path quality is drastic. This is demonstrated in Fig 9 (a). Additionally, the 

planner may struggle to explore the entire space. Secondly, with an increase in the number 

of samples, there is a tendency to explore useless region which may reduce the speed of 

convergence. Additionally, the increase in no of samples may also increase the time taken 

as shown in Fig 9 (b). In order to address these limitation we have devised and implemented 

a novel approach which meliorates the quality of path alongside the speed of convergence. 

2.1.3.5  Secure Tunnel FMT* 

Wu et al. gave the Secure Tunnel FMT* Algorithm in order to address some of the 

limitations of FMT*. The algorithm works by first using the Generalized Voronoi Graph 

(GVG) [45] method to get a well-connected roadmap. This process is discussed in  

Figure 8: A rendering of Generalized Voronoi Graph with multiple configurations 
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Algorithm 5. It then quickly finds an initial path using the A* algorithm. The GVG planner 

works by generating a Voronoi diagram whose edges are equidistant to obstacle space. 

These edges form the roadmap and we insert the start and goal positions into the roadmap. 

Then another graph search algorithm, most commonly A* or Dijkstra, is used in order to 

find the minimum cost path. Figure 8 and Figure 9 show the type of graph created. The 

path returned is such that it maintains an equal distance from any obstacles at any point. It 

also has a rough approximation of the general direction of the optimal path.  

Figure 9: FMT* performance with an increasing number of samples. Here, n is the number 
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Therefore, in order to maximize exploitation whilst having a reasonable estimate of the 

exploration, the path returned is used to create a ’secure tunnel’ in order to find an optimal 

and safe motion path. The initial path generated by ST-FMT* is then discritized using a 

discretization factor f and to generate a set of points q. Each point is at the center of a circle  

                              𝑆 = {𝐶𝑖𝑟(𝑥𝑑𝑖𝑠,𝑚 , 𝐷𝑟(𝑥𝑚))}( 𝑞
𝑚=0

)             (2.4) 

The radius of each circle Dr(xm) is given as the minimum distance to an obstacle.The 

coverage area of the secure tunnel is dictated by the discretization factor f, which controls 

the resolution of the initial path This parameter essentially determines how finely the path 

is segmented, directly impacting the size and scope of the tunnel created around the path. 

Once this secure tunnel is defined, a uniform sampling strategy is employed within its 

bounds. Importantly, as discussed in [54], collision detection during the sampling phase 

inside the tunnel can be omitted. This omission significantly reduces computational 

overhead, as collision checking is often a resource-intensive step. By skipping this process 

in the secure tunnel, the ST-FMT* algorithm is able to enhance its computational 

efficiency, leading to faster overall performance. The effectiveness of this approach is 

largely due to the dense distribution of samples within the secure tunnel, particularly 

around the initial path generated by the Generalized Voronoi Graph (GVG) method. These 

densely distributed samples allow the Fast Marching Tree (FMT*) algorithm to converge 

more quickly to an optimal solution, as the samples are focused on a specific region of 

interest rather than being spread uniformly across the entire environment. This localized 

sampling strategy contrasts with global uniform sampling approaches, where the 

distribution of samples is more widespread, potentially leading to inefficiencies and slower 

convergence times. 

In the secure tunnel, however, even with a lower density of samples compared to global 

sampling, high-quality solutions can be found due to the proximity of the samples to the 

optimal path. The secure tunnel thus concentrates the sample distribution in areas that are 

most relevant to the motion planning task, accelerating the convergence of the FMT* 

algorithm. By focusing computational resources on the most important regions, the 

algorithm is able to find an optimal path more efficiently than through traditional methods. 
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Moreover, the combined use of secure tunnel construction and focused sampling not only 

improves the performance of ST-FMT*, but also has broader applications. This 

combination can be employed as an independent preprocessing technique in a variety of 

sampling-based motion planning algorithms. For example, algorithms like Rapidly-

exploring Random Trees (RRT) or Probabilistic Roadmaps (PRM) could benefit from this 

preprocessing step, where the secure tunnel is first established, and then sampling is 

conducted within this confined region. This approach could reduce computation time, 

improve solution quality, and provide a framework for more efficient motion planning 

across diverse robotic systems or autonomous navigation tasks. Thus, the secure tunnel 

framework represents a powerful tool in motion planning, not only for the ST-FMT* 

algorithm but also for its potential integration into other sampling-based approaches. Its 

ability to focus sample distribution and reduce collision checking makes it a highly efficient 

and effective strategy for generating optimal paths in complex environments. 

2.1.3.6  Limitations of ST-FMT* 

However, one of the setbacks of both ST-FMT* and OB-FMT* is the requirement of initial 

preprocessing of the environment in order to define a sampling zone which is 

computationally expensive. In addition, Hou et al. [46] shows that the increase in samples 

numbers and density has an adverse effect on the time required to converge to a solution. 

As seen in Fig 10 (b) and (c), the path discretization method used in ST-FMT* gives no 

guarantee of contiguous samples. Additionally, these drawback extend to the roadmap 

planning used in [46]. Similarly, as shown in Fig 10 (a), the initial solution by roadmap 

may not necessarily lie within the bounds of our environment.  

. 
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To address these problem, in this paper we introduce Double-FMT* planner. Inspired by 

STFMT*, we replace the computationally costly environment decomposition required for 

the GVG planner with an initial path generated by a reduced no of samples. In addition, we 

modify the construction of the tunnel to ensure a minimum overlap between the constituent 

circles of the tunnel. By concentrating a limited batch of samples within the tunnel we can 

get an improved path with respect to path distance and time. A second planner working 

within the new samples over the tunnel generates an improved path 

2.1.3.6  Artificial Potential Fields  

The Artificial Potential Field (APF) algorithm, developed in 1985 by Khatib [47] , has seen 

a wide variety of use in motion planning [48] [49] [50] [51] [52]. The basic idea, behind 

APF field is simple. The robot is modelled, as a particle, under the effect of attractive (from 

goal), and repulsive (from obstacles) potentials. There have been many adaptations of APF 

and RRT family of path planning algorithms. The Adaptive Potential Guided Directional 

RRT(APGDRRT), developed by Qureshi [53], is an extension of the earlier PGD-RRT 

[26]. The basis of APGD is on the basis of computing a random sample using a 

Randomized Gradient Descent (RGD). It is similar to the Gradient Descent, however 

unlike the classic version, the next state is not dependent on the previous state. The random 

Figure 10: Generalized Voronoi Graph (GVG) planner-based path discretization with secure tunnel 

construction using path discretization parameter f=10. (a) GVG failed to return path in given environment 

boundaries. (b) GVG returning less ideal result (c) Non contiguous tunnel construction 
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sample, is moved iteratively along the direction of the potential field. APGD-RRT, 

accelerates the rate of convergence by employing a directional sampling strategy. Building 

upon this, PIB-RRT* and PB-RRT* [54] introduces the Bi-directional Potential Gradient 

(BPG), a variation on the original equation, for bi directional search, in cluttered 

environment. Xinyu [55], introduces a variant of the P-RRT*, called P-RRT*connect, 

which introduces a switching to classic RRT*, when the robot encounters a local minimum. 

2.3.1 Dynamic Motion Planning 

Dynamic Environments introduce, a time constraint to the problem of motion planning 

[56]. In offline implementation of motion planners, dynamic obstacles, can cause the 

invalidity of computed paths. The dynamic re-planner, is responsible for the modification, 

and optimization of a given trajectory, in response to the presence of unexpected obstacles. 

Putatively, there are two broad categorization of algorithm, Reactive algorithms, consider 

only the current condition of the environment, including the number and position of 

obstacles, in order to adjust its trajectory. Combining, local and global planning Otte et al. 

[57], introduced the RRTX algorithm, which continually refines an initial trajectory and 

repairs it in case of obstacles. Time Based-RRT(TB-RRT) [58], pairs each node with a 

time stamp, and introduces a time constraint, with the goal of reaching the goal position in 

given time. 

Active algorithm assumes knowledge of obstacle trajectories. Incorporating some aspects 

of Time based RRT, Risk based RRT, [59] model the probability of Collison for dynamic 

obstacles, as Gaussian Mixture Models (GMM). The search for a feasible path, is guided 

by the probabilistic risk of collision, and the time stamp of the particular node. The Risk 

guided search uses a initial reference, based on the classic RRT, computes the probability 

of collision for both static and dynamic obstacles. It then updates the existing nodes, and 

updates the weight assigned to each node, with the collision probability and length apparent 

of path. It then grows the tree in that direction. However, the risk based RRT requires a 

separate algorithm to track obstacles. Much work has been done, in recent years on the 

Risk base RRT. The Risk Dual Tree RRT (Risk DTRRT) [59], introduces a dual tree, in 

order to save the original heuristic trajectory generated by the robot. A Line of Sight (LOS) 
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algorithm is also used in order for checking the feasibility of a given trajectory bearing in 

mind the motion constraints on the robot and the presence of obstacles. Pruning is done 

based on this, hence the need for a second tree, saving original data, in order for rewiring.  

Based on a planning-replanning paradigm, the Multi Objective Dynamic RRT* Algorithm 

(MOD-RRT*) [60], uses a backward expansion from the goal position. The heuristic 

trajectory generated, is further optimized, using an Ant Colony Optimization, which will 

be discussed later. For the replanning phase, it involves a implementation of Praeto 

Dominance comparing length of the path, and the turning angel of each node. Another 

formulation, based on the dynamic replanning, is the Elastic Band RRT(EBRRT) [61]. It 

uses Elastic Band theory developed by Quinlan et al. [62], which models the trajectory as 

an elastic band under contractive and repulsive forces. An initial trajectory is generated 

and modified by the re-planner, based on real time data. The Horizon Based Lazy Optimal 

RRT(HL-RRT) [63], after generating an initial trajectory, it collects an elite set of nodes. 

Based on a Gaussian Mixture Model (GMM), it then generates a set of new samples based 

on the parameter of an Expectation Minimization algorithm, that best fits the GMM. It also 

performs a lazy collision strategy, by keeping a model of the future using model predictive 

control and preforming collision detection on a partial portion. 
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CHAPTER 3: METHODOLOGY  

As discussed previously in Chapter 2, the main idea of FMT* is to reduce the number of 

collision checks by the lazy extension procedure; however the laziness property of FMT* 

can lead to sub-optimality. But, it has been proved that as the number of sub optimal 

connections become rare, as number of samples goes to infinity. [7] The AO of the 

algorithm is also proved to converge in probability, a mathematically weaker notation. 

 One of the optimization direction we have identified is the need for a optimizing and 

improving existing paths. Similar to different members of the RRT family of algorithms 

the optimization methodology is a sampling strategy [9] [29] [40] [53]. The tunnel, strategy 

is applied in order to take advantage of a rapidly computed initial path, as biasing the 

sampling based on an existing path [43]. A Hybrid Sampling involving the use of Uniform 

Sampling with Gaussian Sampling, has also been used [37]. Rewiring and Single Query 

Reconnecting 

In Chapter 2 we have proved that there is an inverse relationship between the number of 

samples and time taken for the planner to return a solution to the problem. Similarly, earlier 

work on the RT-FMT* has further highlighted this problem because as the number of 

samples and sampling density increase there is an increase in the time taken to compute a 

solution. This can have a negative solution in the case of dynamic obstacles where fast 

computation is necessary in order to compute a fast path to the obstacle. 
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3.1  Dual Tree Fast Marching Tree (DT-FMT*) 

In this section we present the DT-FMT* whose detailed pseudocode is given in Algorithm 

9 and 10. Fig 11 gives a brief overview of DT-FMT* in action. 

3.1.1  Working Principle 

Our entire approach is based on two-stage batch sampling of the environment. For a total 

number of samples ntotal, we subdivide the samples into two batches. During the 

preprocessing stage we use the reduced amount of samples to compute a rough initial path 

based on those values. One of the advantages of sampling based planners is that they 

provide a much more computationally efficient solution [21] and we utilize this by using 

the standard FMT* algorithm to construct an initial path. Doing so allows us to get an 

approximate direction of the optimal path. After discretizing the initial path into a set of 

equidistant points based on our path discritizing factor f, we construct a tunnel to 

encompass the entire region where we believe the optimal path is likely to lie. Then, we 

generate l
𝑁𝑡𝑜𝑡𝑎𝑙

2
  new samples in the above mentioned region and utilize the FMT* planner 

to find a new path. 
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The tunnel effectively limits the search space to a smaller, more relevant portion of the 

environment hence improving path quality.These tunnel samples help refine the path by 

introducing more candidate waypoints, ensuring that the final path is both feasible and 

efficient. By focusing the sampling within the tunnel, we increases our chances of finding 

an optimal or near-optimal solution while avoiding unnecessary exploration of distant 

areas. 
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3.1.2  Tunnel Construction 

The details of tunnel construction are given in Algorithm 4. For an initial path given by P, 

we discretize the path to get a series of equidistant points: 

𝑥𝑑𝑖𝑠𝑐,1 ,  𝑥𝑑𝑖𝑠𝑐,2 , 𝑥𝑑𝑖𝑠𝑐,4 , … 𝑥𝑑𝑖𝑠𝑐,𝑖 

 

Figure 11: An overview of the DT-FMT* algorithm. (a) A given environment map. (b) 

Initial path computed with n = 1000. (c) Initial path discretized with f = 10 and overlap = 

10, new samples n = 1000. (d) New path computed c = 971.24, t = 1.422. 
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Figure 12: Tunnel construction methodology for DT-FMT* (a) An idealized case when path discretized points and 

radius constuction ensure contiguous samples. (b) A less ideal case when path discretization is not enough to ensure 

contiguous samples. (c) M 

where i is the total number of points. To compute this, we use the discretization parameter 

f, given as [1, 5, 10, 20, . . . ]%. There is an inverse relation between f and computational 

efficiency. After getting the path points, Algorithm 3, line 7 computes the nearest distance 

to an obstacle in order to get an initial radius Dr(xi) based on the distance to the nearest 

obstacle.  
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As shown in Fig 12, the use of an initial path based on FMT* can create a scenario where, 

in case of path abutting an obstacle, the value of Dr(xi) to be such that it does not guarantee 

a contiguous tunnel region. Additionally, such ’obstacle hugging’ behaviour of a path, 

while representative of a near-optimal path in many situations e.g in a cluttered 

environment, narrow corridor e.t.c, means that in a situation where the path point xdisc,i 

lies just on the edge of the obstacle in Xfree the value of Dr(xi) would be minuscule. As we 

have to generate a number of samples within the points constituting the tunnel, it is essential 

that the samples should be adjacent to each other i.e there are no large gaps within the 

sampling regions that result in our planner failing to return a solution. In case of a 

minuscule value of Dr(xi)  the path discretization factor f would need to be decreased in 

order to generate minimum points for contiguous samples. As shown in [64] this has the 

effect of increasing computational cost. 
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Our solution to avoid this is to incorporate an overlap factor α in order to ensure contiguous 

samples without increasing computational efficiency. The modified circle for each discrete 

point xdisc,i with an overlap factor α is defined as: 

               𝑆 = 𝐶𝑖𝑟(𝑥𝑑𝑖𝑠𝑐,𝑖 , 𝐷𝑟′(𝑥𝑖))                   (3.1) 

With   

 𝐷𝑟′(𝑥𝑖) = 𝑚𝑎𝑥(
𝑑(𝑥𝑑𝑖𝑠𝑐,𝑖,𝑥𝑑𝑖𝑠𝑐,𝑖+1)

1−𝛼
) 

 

After tunnel computation, uniform sampling is performed in order to generate the reduced 

batch of samples .Bialkowski et al. [57] showed that the collision checking can be omitted 

during the tunnel’s sampling processing order to improves the computational efficiency. 

Figure 13:Rendering of the performance of DT-FMT* in the seven different environments. (a)-(g) blank environment used in the 

experiments. (g)-(i) is the initial path computed. (o)-(u) is final path computed. 
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The samples within the secure tunnel provide a high-quality solution even with a reduced 

sample set. 

 

Figure 14: Different type of sampling distributions. 

3.1.2  Tunnel Construction 

After we have formed the centers of the circles bu discretizing our path, the next step in 

our equation is to generate a set of new samples within the circles. One of the most common 

methods of sampling within a circle is to take a random value of a angle within (0, 2π), 

then taking a random value of radius between (0,R). However after following this strategy, 

our results show it does not generate a uniform distribution across a circle. While, it has 

been proved by Janson et al. that the FMT* is valid for non uniform sampling distributions, 

however, we do not want our final path to be as independent as possible from the initial 

path computed. Fig 14 shows the biased path generated by using this approach. 

One solution to this is given as such: generate points uniformly within a square region, 

ranging from 0 to 1 in both radius and angle. Afterwards, we apply a transformation to 

adjust their distribution. This transformation maps the generated point’s first coordinate to 

the square root of the original value multiplied by the circle’s radius.  

The transformation is instead given by:  

    𝑥 = √𝑟𝑐𝑜𝑠𝜃, 𝑦 = √𝑟𝑠𝑖𝑛𝜃   (3.2) 
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During our tunnel construction we have utilized this when computing new samples over  

the tunnel that we have constructed. Another solution is rejection sampling. This works by 

generating points on a square enclosing the circle, and then filtering out the points that do 

not lie within the bounds of a circle. The details are given by Algorithm 12. This is shown 

in 3.4 (c) and as it shows there it also generates an unbaised sampling distribution on the 

circle. We have not used this version as it is computationally more expensive. In order to 

sample within the entire circle, firstly we choose a random circle circle center and also 

compute a random point across a unit circle. We then scale it for that particular circle 

center. The full results using all three sampling paradigms is shown in Fig 15 

 

 

 

Figure 15: Different type of sampling distributions. 
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3.2:   Reduced Sampling Re-planning Fast Marching Tree (RRFMT*) 

In this section we introduce our original work for dynamic motion planning. As mentioned 

previously one of the problems facing one of the only extant motion planning for dynamic 

environment is the lack of optimality guarantees as a result of changing radius [10]. 

Another problem facing the FMT* Algorithm is that there is the increased computation 

time taken as a result of increasing samples. Contradictorily, the better path quality is only 

possible as a result of increased sampling density. In order to solve this problem in the 

presence of dynamic obstacles, hereby, in this paper defined as obstacles that appear and 

disappear rapidly. 

The following section provides greater detail about the process behind the RR-FMT*. 

3.2.1 Working Principle 

Our algorithm starts by computing an initial path of the environment. In order to get the 

best possible path, we utilize the DT-FMT* that we introduced earlier in this chapter in 

order to quickly converge to a solution that is within a reasonable value of the optimal path, 

but which requires an egregiously lesser amount of iterations to compute. Fig 16 shows the 

exact procedure we have used.  
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After we generate an initial path, we, first, discretize the path in order to get a set of 

equidistant points on the map. Then, we start to transverse the path way-points. As the 

robot starts to move across the map, it is constantly beset by dynamic obstacles. In order 

to test the our algorithm rigorously, we have set the obstacle to be totally random with 

respect to time and geometry. The total number of dynamic obstacles is also set to be totally 

random, albeit with an upper bound of 10. This allows us to have a much better and 

challenging environment for our planner. 

Figure 16: Procedure of Reduced Sampling Re-planning FMT* 
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Figure 17:Complete process of Dynamic Path computation 
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3.2.1.1  Function Definition  
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RR-FMT* leverages the property of FMT* Algorithm that we have discussed earlier: as 

the number of samples increase so does the time required. The inverse is also true, as the 

number of samples decrease so too does the time required. In case of dynamic 

environments one key necessity is for a planner to have low latency. We solve this by 

firstly, decreasing the space to one in between the start point and the nearest unblocked 

way-point. This distance is typically very low and by distributing our samples to across the 

space between the goal position and the current position we ensure quick computation of 

the path to rejoin the optimal path. 

 

 

 

 

Figure 18: Working procedure of RR-FMT*. 
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CHAPTER 4: EXPERIMENTATION AND DISCUSSION 

In this section we present the results of our experiments. In order to empirically prove the 

viability of our planner we have conducted two sets of test against both the standard FMT* 

planner and also against the ST-FMT* planner. All of our experiments were preformed 

during the course of a few days using a Windows 11, 64 GB RAM, and AMD processor. 

Table 4.1 gives the result of our comparison with FMT*. The programming language used 

was Python 3.11 using Visual Studio interface. It is important to note that two different 

sets of experiments were run separate from each other. The planner was evaluated on seven 

different 2d environment maps from literature given in Fig 3.3 (a)-(g).We have set the size 

of our environments as 720 x 720 pixels as we find that it is acceptable distance required. 

 

Figure 19: List of Classical Motion Planning Environments used in this work. 
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Both the FMT* and ST-FMT* planners that we used in our experiments have shared 

functionality with respect to collision checking, tree growth e.t.c. Since our main focus 

with DTFMT* is improving path performance with a reduced number of , our total 

number of samples have remained the same for each planner.The value we are using is 

2000 samples. In case of our planner DT-FMT* we have divided these samples into 

batches of 1000 for each stage of the planning process. The number of iterations to be run 

in order to evaluate performance is 130 and the average values of path cost and time were 

calculated. 

Map c* Initial Path Distance Final Path Distance Initial Time (s) Final Time (s) 

Map 1 965 989.9624 973.2381 1.5775 1.4756 

Map 2 895 917.8420 902.4884 1.3114 1.3464 

Map 3 649 659.7693 651.7199 0.8913 1.0092 

Map 4 1078 1140.1551 1122.3930 5.0553 0.5650 

Map 5 1136 1241.6540 1192.4367 3.4418 3.9211 

Map 6 770 800.2739 777.1681 1.0754 1.2528 

Map 7 1065 1136.6432 1071.2102 1.0540 1.0863 

    

    Table 1: Path Distance and Time Comparison 
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Map c* Planner Path Cost Time (s) t, p values 

Map 1 965 DT-FMT* 973.24 3.05 

Distance: 

t = 13.85 

p = 6.37e−34 

Time: 

t = 12.46 

p = 4.28e−20 

  FMT* 982.82 3.71  

Map 2 895 DT-FMT* 902.49 2.66 

Distance: 

t = 18.56 

p = 3.45e−49 

Time: 

t = 14.36 

p = 2.58e−33 

  FMT* 911.45 3.20  

Map 3 649 DT-FMT* 651.72 1.90 

Distance: 

t = 18.26 

p = 6.48e−42 

Time: 

t = 15.73 

p = 3.42e−30 

  FMT* 657.52 2.42  

Table 2: Comparison with FMT* 
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Map c* Planner Path Cost Time (s) t, p values 

Map 4 1078 DT-FMT* 1122.39 5.06 

Distance: 

t = 0.44 

p = 0.66 

Time: 

t = 0.73 

p = 0.54 

  FMT* 1127.44 5.62  

Map 5 1136 DT-FMT* 1192.44 7.36 

Distance: 

t = 7.71 

p = 3.33e−13 

Time: 

t = 6.98 

p = 1.19e−10 

  FMT* 1211.29 8.10  

Map 6 770 DT-FMT* 777.17 2.33 

Distance: 

t = 20.41 

p = 4.75e−50 

Time: 

t = 16.00 

p = 7.32e−40 

  FMT* 788.01 2.69  

Map 7 1065 DT-FMT* 1071.21 2.14 

Distance: 

t = 16.72 

p = 1.72e−43 

Time: 

t = 14.53 

p = 4.12e−35 

  FMT* 1107.66 2.57  
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Map c* Planner Path Cost Time (s)  t and p values 

Map 1 965 DT-FMT* 973.4798 1.2791 

tdist = 66.3156, pdist = 1.6817e−109 

ttime = 80.6109, ptime = 1.2206e−119 

  ST-FMT* 993.7137 10.9327  

Map 2 895 DT-FMT* 904.3894 1.0800 

tdist = 75.2391, pdist = 4.8513e−110 

ttime = 149.9489, ptime = 5.7006e−157 

  ST-FMT* 954.9683 9.8956  

Map 3 649 DT-FMT* 651.8916 0.7299 

tdist = 18.6315, pdist = 3.96273e−45 

ttime = 231.3086, ptime = 5.0914e−215 

  ST-FMT* 655.5222 6.5546  

Map 4 1078 DT-FMT* 1122.3930 2.2937 
tdist = 8.9804, pdist = 2.6236e−15 

ttime = 160.3799, ptime = 3.0699e−162 

  ST-FMT* 1140.5072 20.1590  

Map 5 1136 DT-FMT* 1193.4175 3.8099 
tdist = 45.9593, pdist = 2.1143e−83 

ttime = 150.6859, ptime = 6.8969e−167 

  ST-FMT* 1287.7622 47.4827  

Map 6 770 DT-FMT* 777.7545 1.0161 
tdist = 5.0337, pdist = 9.05871e−07 

ttime = 153.6632, ptime = 1.4976e−184 

  ST-FMT* 779.4894 5.4533  

Map 7 1065 DT-FMT* 1072.7599 0.9545 
tdist = 0.9545, pdist = 5.2558e−92 

ttime = 5.2558e−92, ptime = 1.3200e−2284 

  ST-FMT* 1156.1979 7.4787 ttime = 5.2558e−92, ptime = 1.3200e−2284 

   Table 3: Comparison with ST-FMT* (preprocessing included) 
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Similarly, the Welch’s t-test was also employed to compare the performance metrics of 

DTFMT* with respect to FMT* and ST-FMT*. We have used Welch’s t-test as it 

provides a more robust comparison metric especially when the variance of the two input 

datasets differs. 

 

Figure 20: Distance and Time Comparisons Map 1-3 
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Figure 21:  Distance and Time Comparison for Maps 4-6 

4.1 Dynamic Environments 

Using the same experimental setup we have also tested our planner in a dynamic constraint. 

Our dynamic environments as shown in Fig 4.5 involves a time varying series of obstacles. 

The configuration of the environment, is not know to the robot beforehand and it must 

modify its path as soon as the obstacles start to appear.We have compared the performance 

of RRFMT* to the Dynamic version of the RRT* which also rewires its path when in the 

presence of obstacles. 
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Figure 22: Status of the environment at different values of time 

Map Distance (Dynamic RRT*) Distance (RR-FMT*) Time (Dynamic RRT*) (s) Time (RR-FMT*) (s) 

1 1744.378 1031.897 69.593 39.789 

2 1701.811 987.686 88.110 38.872 

8 1435.941 881.950 98.711 31.574 

Table 4: Path Distance and Time Comparison (Dynamic) 

 

Map T value (Distance) 
P-Value 

(Distance) 
T value (Time) P-Value (Time) 

1 18.737 3.053e-19 3.035 8.773e-03 

2 22.685 4.052e-37 5.482 3.579e-05 

8 11.507 2.866e-13 7.256 2.803e-05 

Table 5: T-test (Distance and Time) 
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4.1 Analysis 

Our results in Tables 4.1 4.3 show the improvement in path quality that has been done as 

a result of our planner. We have exceeded the amount of iterations typically performed to 

show the validity of our motion planning algorithm and in order to solidify that have also 

performed the t-test. Across seven different environments and two planner, our values of t 

and p lie within the acceptable range in order to make our results statistically significant. 

Similarly we have done the same with the RR-FMT* and compared it to three different 

dynamic environments. Hereto, the results show a wide variety of improvement over the 

dynamic RRT* planner and robot we have used at identical velocities. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

During the course of this work, we have proposed two different variants of the FMT*: the 

DT-FMT*, an efficient asymptotically optimal sampling-based planning algorithm 

designed to improve path quality with reduced sampling for mobile robot applications; and 

the RR-FMT* algorithm designed to provide an asymptotically optimal solution for mobile 

robot planning in the presence of dynamic obstacles. The core of the DT-FMT* planner 

lies in its secure tunnel preprocessing and centralized exploration strategy. This approach 

allows the planner to achieve high-quality solutions with fewer samples, thereby improving 

both computational efficiency and path planning performance. The use of a reduced sample 

distribution, facilitated by secure tunnel construction, ensures that the planner remains 

highly efficient while maintaining optimal path quality. We prove this in our experiments 

in the previous sections. The RR-FMT* planner utilizes a similar strategy in order to 

generate the final path from a position of proximity of one blocked way-point to another. 

We overcome the inverse relationship between time and sample numbers by generating a 

very small number of samples between the current position and the goal position which 

allows us to get a fast solution whilst retaining optimality in the presence of dynamic 

obstacles. Our simulation and experimental results confirm the effectiveness of DT-FMT*, 

demonstrating faster convergence and improved performance compared to existing 

algorithms. These results underscore the planner’s capability to provide high-quality 

solutions with reduced sampling effort, making it highly suitable for environments with 

limited computational resources or strict time constraints. 

Future work will explore extending DT-FMT* to more dynamic and complex 

environments, such as those with moving obstacles or unknown terrains. Additionally, the 

algorithm could be adapted real-time applications through high-frequency planning. 

Integrating DT-FMT* into a hierarchical planning framework could further enhance its 

adaptability, allowing for robust global and local planning in diverse robotic applications. 
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