
Fast Marching Trees (FMT*) For Dynamic Motion Planning

By

Muhammad Salman Sadiq

(Registration No: 00000329897)

Department of Robotics and Artificial Intelligence

School of Mechanical and Manufacturing Engineering

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2024)

Fast Marching Trees (FMT*) For Dynamic Motion Planning

By

Muhammad Salman Sadiq

(Registration No: 00000329897)

A thesis submitted to the National University of Sciences and Technology, Islamabad,

in partial fulfillment of the requirements for the degree of

Master of Science in

Robotics and Intelligent Machine Engineering

Supervisor: Dr. Khawaja Fahad Iqbal

Co Supervisor: Dr. Sara Ali

School of Mechanical and Manufacturing Engineering

National University of Sciences & Technology (NUST)

Islamabad, Pakistan

(2024)

THESIS ACCEPTANCE CERTIFICATE

CERTIFICATE OF APPROVAL

This is to certify that the research work presented in this thesis, entitled “Fast Marching

Trees (FMT*) for Dynamic Motion Planning” was conducted by Mr. Muhammad Salman

Sadiq under the supervision of Dr Khawaja Fahad Iqbal. No part of this thesis has been

submitted anywhere else for any other degree. This thesis is submitted to the Department

of Robotics and Artificial Intelligence in partial fulfillment of the requirements for the

degree of Master of Science in Field of Robotics and Intelligent Machine Engineering

Department of Robotics and Artificial Intelligence National University of Sciences and

Technology, Islamabad.

Student Name: Muhammad Salman Sadiq Signature:

Examination Committee:

 a) External Examiner 1:NIL Signature: NA

 (Designation & Office Address)

 ……………………………….

 b) External Examiner 2: NIL Signature: NA

 (Designation & Office Address)

 …………………………………

 Supervisor Name: Dr Khawaja Fahad Iqbal Signature:

 Name of Dean/HOD: Dr Kunwar Faraz Signature:

AUTHOR’S DECLARATION

I, Muhammad Salman Sadiq hereby state that my MS thesis titled “Fast Marching Trees

(FMT*) for Dynamic Motion Planning” is my own work and has not been submitted

previously by me for taking any degree from National University of Sciences and

Technology, Islamabad or anywhere else in the country/ world.

At any time if my statement is found to be incorrect even after I graduate, the university

has the right to withdraw my MS degree.

Name of Student: Muhammad Salman Sadiq

 Date: 11th, October, 2024

PLAGIARISM UNDERTAKING

I solemnly declare that research work presented in the thesis titled “Fast Marching Trees

(FMT*) for Dynamic Motion Planning” is solely my research work with no significant

contribution from any other person. Small contribution/ help wherever taken has been duly

acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and National University of Sciences and

Technology (NUST), Islamabad towards plagiarism. Therefore, I as an author of the above

titled thesis declare that no portion of my thesis has been plagiarized and any material used

as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled thesis even

after award of MS degree, the University reserves the rights to withdraw/revoke my MS

degree and that HEC and NUST, Islamabad has the right to publish my name on the

HEC/University website on which names of students are placed who submitted plagiarized

thesis.

Student Signature:

Name: Muhammad Salman Sadiq

DEDICATION

To my loving mother.

viii

ACKNOWLEDGEMENTS

I consider myself fortunate that I gained the chance to benefit from the highly skilled and

erudite people working at the cutting edge of technology of the National Center of Artificial

Intelligence at National University of Science and Technology. An engineer must thank

many people for it is truly on the back of giants that ordinary men can peer into the

humongous vastness of science. Firstly, I would like to extend my deepest heartfelt

gratitude to my supervisor, Dr Khawaja Fahad Iqbal who accepted me as an MS Student

and stood by and guided me profusely while I was engaged in my thesis. I would also like

to thank my GEC member and Chairman NCAI, Dr Yasar Ayaz, who inspired me towards

motion planning algorithms and whose guidance at the formative phases of my research

was invaluable. Moreover, I would also like to thank my mother, Dr Sadiqa Arshad for her

support during the trying and testing times when all hope seemed to be lost

Salman Sadiq

 ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS VIII

TABLE OF CONTENTS IX

LIST OF TABLES X

LIST OF FIGURES XI

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS XII

ABSTRACT XIII

CHAPTER 1: INTRODUCTION 1

1.1 Background 1
1.2 Motivation 3

1.3 Research Contributions 4
1.4 Problem Definition 4

1.5 Thesis Overview 5

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 7

2.1 Sampling based Motion Planning Algorithm 8
2.1.1 Randomly exploring Random Tree (RRT) family of planners 9

2.1.2 Potential function guided RRT* 13
2.1.3 Fast Marching Tree Algorithm 14

2.3.1 Dynamic Motion Planning 29

CHAPTER 3: METHODOLOGY 31

3.1 Dual Tree Fast Marching Tree (DT-FMT*) 32
3.1.1 Working Principle 32

3.1.2 Tunnel Construction 34
3.1.2 Tunnel Construction 38

3.2: Reduced Sampling Re-planning Fast Marching Tree (RRFMT*) 40
3.2.1 Working Principle 40

CHAPTER 4: EXPERIMENTATION AND DISCUSSION 46
4.1 Dynamic Environments 52

4.1 Analysis 54

CHAPTER 5: CONCLUSION AND FUTURE WORK 55

REFERENCES 56

 x

LIST OF TABLES

Page No.

Table 1: Path Distance and Time Comparison ..47
Table 2: Comparison with FMT* ...48

Table 3: Comparison with ST-FMT* (preprocessing included)50
Table 4: Path Distance and Time Comparison (Dynamic)53

Table 5: T-test (Distance and Time) ...53

 xi

LIST OF FIGURES

Figure 1: Scenarios in dynamic motion planning. ...2
Figure: 2: Re-planning a path in the presence of dynamic obstacles3

Figure 3 Tree Growth Method of RRT Algorithm .. 10
Figure 4: A series of images illustrating FMT* algorithm steps 16

Figure 5: Distance Comparison of FMT*, RRT, P-RRT, RRT*, P-RRT*....................... 19
Figure 6: Time Comparison of FMT*, RRT, P-RRT, RRT*, P-RRT*. 20

Figure 7: Comparison of FMT* ... 22
Figure 8: A rendering of Generalized Voronoi Graph with multiple configurations 23

Figure 9: FMT* performance with an increasing number of samples. 24
Figure 10: Generalized Voronoi Graph (GVG) .. 28

Figure 11: An overview of the DT-FMT* algorithm.. .. 34
Figure 12: Tunnel construction methodology for DT-FMT* .. 35

Figure 13:Rendering of the performance of DT-FMT* .. 37
Figure 14: Different type of sampling distributions. ... 38

Figure 15: Different type of sampling distributions. ... 39
Figure 16: Procedure of Reduced Sampling Re-planning FMT* 41

Figure 17:Complete process of Dynamic Path computation ... 42
Figure 18: Working procedure of RR-FMT*. ... 45

Figure 19: List of Classical Motion Planning Environments used in this work. 46
Figure 20: Distance and Time Comparisons Map 1-3 ... 51

Figure 21: Distance and Time Comparison for Maps 4-6 .. 52
Figure 22: Status of the environment at different values of time 53

 xii

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

X ⊂ Rn Configuration space

Xobs Obstacle space

Xfree Obstacle-free space

Xgoal Goal Region

xgoal Goal state

xstart Initial state

τ ∗ Optimum path

Cost(τ) Cost function of path

AO Asymptotically Optimal

RRT Randomly Exploring Random Tree

RRT* Randomly Exploring Random Tree (optimal)

P-RRT* Potential guided Randomly Exploring Random Tree

PRM* Probabilistic Roadmap Methods GVG Generalized Voronoi Graph

FMT* Fast Marching Tree

aFMT* Anytime Fast Marching Tree

IAFMT* Informed Anytime Fast Marching Tree

PRM Probabilistic Roadmap Methods

PRM* Probabilistic Roadmap Methods(optimal)

DT-FMT* Dual Tree Fast Marching Tree

RR-FMT* Reduced Sample Re-planning Fast Marching Tree

SBL Single-query Bidirectional Lazy

ST-FMT* Secure Tunnel Fast Marching Tree

 xiii

ABSTRACT

In light of recent advances in autonomous mobile robots, the chance for the robot presence

in human domains have increased. To avoid collisions and to compute the optimal path

between two points, motion planning has come to the fore as an essential area of research.

Sampling based motion planners offer an advantage with respect to computational cost as

in contrast to conventional planners they avoid an explicit construction of cspace.

However, two of the major problems of sampling based motion planners is the need to

efficiently adapt in the presence of dynamic obstacles and the degradation of path quality

with a reduced number of samples. Much work has been done in order to adapt existing

sampling based motion planning algorithms, including Randomly exploring Random Trees

(RRT,RRT*), Probabilistic Roadmap Methods (PRM,PRM*), for dynamic scenarios. In

order to solve the above-mentioned problems, we introduce two different sampling

algorithms in order to solve the above mentioned problems. Firstly, Dual Tree Fast

Marching Tree (DT-FMT*) is an asymptotically optimal static motion planning algorithm

that is used to improve the path quality with a limited number of initial samples. It does

this by quickly computing an initial path and uses that information to draw a batch of new

samples to generate an improved path. Secondly, we introduced Reduced samples Re-

planning Fast Marching Tree (RR-FMT*) in order to modify an initial path in presence of

dynamic obstacles. This is done by, first, computing an initial path using DT-FMT*, then

during the course of robot motion along the path, we monitor the presence of obstacle at a

certain clearance. In case of obstruction along the path, we grow a new tree to connect the

current position of the robot to a way-point along the path. To validate our planner

performance we have rigorously tested our both DT-FMT* and RR-FMT* performance

against standard version of FMT*, as well as Secure tunnel FMT* (ST-FMT*). Similarly,

in a dynamic environment, we compared planner performance against a dynamic version

 xiv

of RRT* planner. The result show an overall improvement with respect to both path cost

and time taken to compute the path.

Keywords: Sample based motion planning, dynamic environment, optimal path

planning, Fast Marching Tree (FMT*), computational efficiency

1

CHAPTER 1: INTRODUCTION

1.1 Background

Thanks to a rise in demand for intelligent systems in various fields, from self-driving cars

[1] and unmanned aerial [2] and underwater vehicles [3], to a wide array of task specific

robots, motion planning has come to the forefront to fulfil one of the most challenging, and

pertinent, research problem: to develop an efficient and robust algorithm for safely

navigating in a dynamic environment with a wide range of unknown obstacles. Sampling

based motion planners, introduced in the 1990s [4], leverage random sampling in order to

construct a graph to find an obstacle free path. An advantage of this is that they do not

require exploring the full configuration space; hence, ensuring faster and more efficient

solution. However, motion planning in dynamic environments requires the ability of a

robot to modify its plan on the fly.

Dynamic Environments introduce, a time constraint to the problem of motion planning [5].

Formally, dynamic environments are defined as environments where obstacle

configuration is not known by the robot before starting motion, or the obstacle

configuration can change with time or obstacles can move with time [6]. Fig 1 (a) to (h)

gives the complete information about the types of dynamic environments a robot is likely

to encounter. Case 1 includes environments that are static but whose presence and location

are not known the robot when it starts moving. Case 2 consists of obstacle that appear when

the robot is in a certain proximity. Case 3 consists of obstacles that appear at different

intervals and also disappear when a certain time period is reached. Case 4 consists of

moving obstacle that can follow a particular trajectory. In a typical implementation of the

motion planning scenario, where the initial path is first computed in then motion begins,

of motion planners, dynamic obstacles, can cause the invalidity of computed paths. Hence,

the dynamic re-planner, is responsible for the modification, and optimization of a given

trajectory, in response to the presence of unexpected obstacles which can come as one, or

a combination of Case 1 to 4.

2

Figure 1: Scenarios in dynamic motion planning: (a-b) Case 1: Unknown obstacles; (cd) Case 2: Sense-able

obstacles; (e-f) Case 3: Randomly appearing obstacles; (g-h) Case 4: Moving obstacles.

3

Fast Marching Tree (FMT*) algorithm is a sampling-based motion planning algorithm,

based upon lazy forward recursion [7]. They were introduced in 2015 by Janson et al. [7].

It draws inspiration from the Fast-Marching Methods, used for a numerical solution of

Eikonal equations [5]. The FMT* algorithm has a number of advantages over

contemporary sampling-based planner. For one, it reduces the number of collision checks

[8], whilst also offering a faster convergence [9]. However, during the course of this thesis

we have highlighted two of the major problems of FMT* Algorithms. One, as a batch

sampling algorithm, in which the total samples are taken at the beginning of the sampling

process, as the number of samples increase the total time taken increases. Secondly, there

have been no optimal dynamic version of the FMT* Algorithm [10].

1.2 Motivation

As robots become increasingly prominent and plentiful in public and domestic

environments, their ability to both plan its path quickly and locomote along the path rapidly

becomes indispensable. Two of the key problems highlighted earlier, slow convergence

speed and slow re-planning speed are key issues in today’s robotics not just at a simulation

level, but on roads and public spaces where a lack of there can have disastrous

consequences. This project explores the use of sampling-based planners, a category of

planners enjoying the advantages of both faster speed and better path over other categories

of robot motion planner, in dynamic environments.

Figure: 2: Re-planning a path in the presence of dynamic obstacles

4

Personally, being able to contribute to this field of research is highly motivating, as motion

planning for dynamic environments poses both theoretical and practical challenges. In

addition, working on this field of study allows robots to be adaptive to their surroundings

which cam have a wide range of impact on the world from efficient and safe transportation

system as well as improved manipulator path.

1.3 Research Contributions

The purpose of this thesis is to present a modified FMT* Algorithm, for planning in

dynamic environment, better convergence, and reduced computation, as well as to insulate

the FMT* Algorithm to the effects of moving obstacles, on its trajectory. Our contribution

is as follows:

 Introduction of a Dual Tree Fast Marching Tree (DT-FMT*) for path improvement

in a reduced sample set

 As a motion planner Double-FMT* planner carries forward the asymptotic

optimality and probabilistic completeness of FMT*, but with a much faster path

generation in static environment with a reduced sample set.

 Experimentation with 3 different sampling strategies based on obstacle distance for

path improvement in dynamic environment

 A tunnel construction strategy in order to ensure high quality contiguous samples

 Introduction of a novel Waypoint based path replanning using RR-FMT* planner

in dynamic environments

 Rigorous testing in various scenarios to prove the viability of our planners

1.4 Problem Definition

In this section we elucidate the commonly used terminology and notations pertaining to

sampling-based motion planners in order to facilitate greater understanding in latter

sections. Additionally, we also formalize the definition of feasible and optimal motion

planning. Furthermore, we also review and discuss the standard FMT* algorithm alongside

the ST-FMT* algorithm. For a configuration space X ⊂ Rn, let Xobs be the obstacle region

5

such that the X \ Xobs is an open set. Resultantly, the obstacle-free space is defined as Xfree

= cl(X \ Xobs). The initial xstart and goal state xgoal are elements of Xfree. Alternately, the goal

region Xgoal is an open subset of Xfree. τ : [0, 1] → Rd is defined as a continuous sequence

with a bounded variation. The sequence τ can be defined as a path if it is continuous and

collision-free.

Feasible Path Planning: For a standard motion planning formulation (xstart, Xfree, xgoal), find

a feasible path τ: [0, 1] → Xfree if existing such that the τ [0] = xstart and τ [1] = xgoal. If no

extant path fulfilling this criteria, then return failure.

Optimal Path Planning: For the above-mentioned motion planning problem and a series of

all feasible paths Σ. The cost function Cost(τ) denotes the cost of a particular path per the

distance metrics used. The optimal path is such that it should satisfy the following criteria:

𝜏 ∗= 𝑎𝑟𝑔𝑚𝑖𝑛𝜏∈𝛴𝐶𝑜𝑠𝑡(𝜏) ∣ 𝜏: [0,1] → 𝑋𝑓𝑟𝑒𝑒 (1.1)

Fast Path Planning: For a given motion planning problem, find the optimal and feasible

path τ ∗ in the least possible amount of time t ⊂ R.

1.5 Thesis Overview

Chapter 2 is a review of motion planning algorithms consulted during the course of our

thesis. It provides a comprehensive grounding in basic static motion planners, including

RRT, RRT*, Potential-RRT, FMT* etc, as well as a select dynamic motion planners,

including the Risk RRT-RRT* family. We also discuss recent research on these planners.

These have been instrumental in developing our approach towards planning in dynamic

environments. We also include our implementations of these motion planners with

comparison in a comprehensive list of environments selected from literature.

Chapter 3 describes the scope and details of the modification that we have made to the

FMT* algorithm. We include the details and complete pseudo-code of both the Dual Tree

Fast Marching Tree as well as the Reduced Sampling FMT*. Additionally, we also outline

the extension of FMT* algorithms to dynamic environments with a certain number of

obstacles that are not known a priori. We include certain number of obstacles that appear

6

and disappear randomly with time. Moreover, the total system design for rapid path

computation is also presented.

In Chapter 4 we present the result of the modification we have discussed above. We have

made a wide range of sampling environments based on the literature. Separate experiments

are conducted for DT-FMT* and RR-FMT*, and comparisons were made using the

appropriate planner. DT-FMT* with standard FMT* and ST-FMT*, while RR-FMT* was

compared with the Dynamic RRT* algorithm.

Chapter 5 provides a conclusion and discusses the potential future work, including the

extension of this work to a physical system; as well as the future work.

7

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

Due to the advances in artificial intelligence, autonomous mobile robots are en-route to

have an unprecedented level of access, to domains of human activity; from roads [11] and

other public places [12] [13] [14], to the private lives of senescent individuals [15].

Concurrently, the usage of robots has also diversified to encompass a wide range of

applications: service in restaurants [16], garbage removal [14], and working in space [17].

This has increased the chances of robots encroaching on human domains. Consequently,

motion planning, which is responsible for ensuring collision-free robot motion from one

point to another, has come to the fore as an indispensable part of robotics.

Thanks to the extensive work done, motion planning algorithms can be divided into four

categories: combinatorial approaches [18], reactive planners [19], learning based planners

[20], and sampling based planners [21]. Combinatorial approaches to motion planning

compute an exact representation of the free space and return a complete solution; however,

one disadvantage of these approaches is that they are computationally expensive. Reactive

planners monitor the state of the environment and use stimulus from the environment to

plot an obstacle free trajectory, but, while they have utility in real time operation, they give

no guarantee of optimality with respect to path length [22]. Learning based planners work

by utilizing either a human designed reward function to bias behaviour [23] or by learning

viable solutions from prior iterations to compute an optimal path. While they have the

advantage of being flexible and handle complex tasks; however, apart form being

computationally expensive, they are dependent upon pre-computed data [24]. Sampling

based planners work by generating a random configuration in order to find the path

between two points [4]. Sampling based planners are easily scalable to higher dimensions;

however, their performance is contingent upon the number of samples taken in the

configuration space.

8

2.1 Sampling based Motion Planning Algorithm

Sampling based planners have become popular due to the distinct advantages they

hold over conventional planners. Firstly, by avoiding the explicit representation of

the c-space they ensure fast computation of feasible solutions especially in higher

dimensions [7]. Secondly, as a result of the incremental nature of most sampling

planner, they can reach a quick suboptimal solution first, before moving onto an

optimal solution. Two of the most prolific sampling-based planners are Randomly

exploring random trees (RRT) and probabilistic roadmap (PRM). PRM samples a

roadmap from the environment and during the query stage uses a graph planner to

find the minimum cost solution [25]. In contrast, the RRT algorithm incrementally

grows a tree structure through generating random samples in the environment. Both

of these planners guarantee probabilistic completeness, but are not asymptotically

optimal (AO). Karaman [21] et al. demonstrated that the solution return by the RRT

was not optimal and presented the RRT* and PRM* algorithms as the optimal

versions of these planners. PRM and PRM* require the pre computation of the

environment in order to generate the roadmap necessary. This is computationally

expensive and not usable in cases where the environment is not known.

In addition, although it has been proven to be asymptotically optimal, however, one

of the problems inherent within RRT* planner is the inherently slow rate of

convergence to the optimal solution on account of the vast number of iterations

needed. Qureshi et al. [26] gave the Potential guided directional-RRT* as a means of

guiding random samples toward the direction of decreasing potential, hereby

decreasing the number of iterations required to converge to an optimal solution.

Similarly, the obstacle RRT algorithm [27] uses the obstacle location to create a

vector in order to modify samples for use in generating solutions in narrow regions.

Ayaz et al. [28] introduced RRT*-Smart which optimizes an initial path and

identifies beacon nodes in whose direction to bias sampling for a better quality path.

Moreover, the Informed-RRT* algorithm [29] also increases the rate by convergence

9

by, firstly, quickly computing an initial solution and then concentrating the sampling

on states admissible by a pre-defined heuristic.

2.1.1 Randomly exploring Random Tree (RRT) family of planners

In this section we introduce the Randomly exploring Random Tree (RRT) Algorithm along

with the optimal version of this planner (RRT*). It is necessary to discuss these planners

as they will be in use later on in this work. Lavalle et al. gave the basic version of RRT in

1998 [25]. It was designed to handle a wide variety of motion planning problems especially

those involving high dimensions. Algorithm 1 gives the complete pseudocode of the

algorithm. As a single query motion planning algorithm, the RRT algorithm works by

incrementally building a tree structure in order to explore a given space. The ’root’ of the

tree is at the start position and it gradually grows by randomly sampling points in the

environment. The process begins by initializing the tree with a single vertex at the initial

state, and no edges. At each iteration, a random point xrand ∈ Xfree is sampled from the

environment by SampleFree in line 3 in Algorithm 1 . The algorithm next tries to find the

nearest vertex of the tree v ∈ V to xrand (line 4) and returns xnear. Then the Steer function

steers a new sample xnew towards xnear. If the edge between xnear and xnew is collision free

(line 6) then it is added to the tree structure G. The algorithm runs for a fixed number of

iterations and afterwards returns the graph structure. Then using the xgoal node, we

backtrack and get a series of path leading from the goal to xstart. The algorithm then

chooses the minimum cost path:

.

10

There has been extensive work done on RRT algorithm. Some of the most famous variants

include RRT-Connect [30] which maintains two trees: one from xstart and the other of

xgoal. The algorithm completes when the two trees meet, significantly enhancing search

efficiency compared to single-tree methods and greatly increasing the speed required to

reach a solution. The Single-query Bidirectional Lazy (SBL) planner [31] is also maintains

two different trees; however, it maintains a lazy collision checking strategy. Similarly to

Figure 3 Tree Growth Method of RRT Algorithm

11

SBL and RRT-Connect, Triple RRT [32] generates three trees; apart from the trees from

the goal region and start region, a separate tree is generated within a narrow corridor region.

As a result of this, path performance is improved in narrow corridor environments.

Anytime-RRT [33] works by first computing an initial sub-optimal path. It then continues

to improve the tree deals with lack of computational time for path improvement by

generating an initial sub-optimal solution. The tree is then stored and the rest of the time is

used to attempt to improve the solution by running iterations of the RRT. A solution is

returned if the initial path is improved by a pre-determined method. However, the RRT

algorithm has a set of limitations. Firstly, Karaman et al. proved that the planner does not

guarantee an optimal solution. This means that, practically, the path turned may be be

unnecessarily long, containing detours or redundant segments. Additionally, since RRT

uses random sampling to explore the space, it focuses on rapid exploration rather than

optimizing for the shortest or smoothest path. Furthermore, RRT struggles to efficiently

explore narrow passages in the configuration space, as there is a reduced probability of

sampling in narrow obstacle environments [34].

12

In order to address ensure asymptotic optimality in the RRT, Karaman et al. introduced the

RRT* version of the planner. Algorithm 2 gives the complete pseudocode of the algorithm.

It is similar to the RRT; however, it introduces a rewiring of new nodes (line 12). After

inserting xnew into the tree in the same manner as that of RRT, the algorithm identifies a set

of nearby nodes within a radius r(n) of xnew.The value of r(n) is written as such:

 𝑟(𝑛) = 𝛾𝑅(
𝑙𝑜𝑔(𝑛)

𝑛
)

1

𝑑 (2.1)

where γR is the constant dependent upon the problem and d is the dimension of the space.

For a set vertices xneighbour within r(n), the algorithm calculates the cost between xnew

and xneighbour

𝑐𝑛𝑒𝑤(𝑥𝑛𝑒𝑤) = 𝑐(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟) + 𝑐𝑒𝑑𝑔𝑒(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 , 𝑥𝑛𝑒𝑤) (2.2)

If any of the neighbours offers a lower cost alternative then the parent of xnew is set to

xneighbour :

 𝑐𝑛𝑒𝑤(𝑥𝑛𝑒𝑤) < 𝑐(𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟) (2.3)

13

However, this is not to say that RRT* planner is impeccable. The following gives the

drawback of RRT*:

 While RRT* eventually converges to the optimal path, its rate of convergence is

often quite slow. This is because the algorithm refines its tree structure, rewiring it

to improve path quality. In high-dimensional or expansive spaces, a large number

of iterations and samples are needed before the path approaches optimality.

Therefore, achieving an optimal or near-optimal solution can be time-consuming,

making RRT* unsuitable for applications requiring quick planning.

 Additionally, another problem is that RRT* is difficulty planning through narrow

spaces and mazes. The reason for this is evident: the random sampling approach

makes the probability of generating samples within these constrained regions. As a

result, finding and exploring narrow passages can be inefficient, with the algorithm

either taking a long time to discover these areas or failing to do so altogether,

leading to sub-optimal or incomplete solutions in environments with tight

constraints.

In conclusion, while RRT* provides the benefit of converging to an optimal path over time,

itslimitations—especially its slow exploration in large or complex spaces, delayed

convergence,and difficulty handling narrow passages—highlight scenarios where it may

not be the most effective choice.

2.1.2 Potential function guided RRT*

One solution to the above mention problem in RRT* is the Potential function

guideddirectional RRT* devised by Quershi, which integrates the Artificial Potential Field

algorithm [35] to improve convergence speed and achieve a faster optimal path. The

potentialized random sample, denoted as zprand ∈ Z, and the step size, represented by α ∈

R, apply an adjustment to the random state zrand ∈ Z in the direction of the decreasing

potential field gradient. This direction is indicated by f = ∇. The terms dobs and dgoal,

previously introduced, indicate the respective distances to obstacles and the goal.

14

Furthermore, the scaling factors ka and kr represent the strengths of the attractive and

repulsive potentials, respectively.

2.1.3 Fast Marching Tree Algorithm

In this section we present the Fast Marching Tree algorithm [7]. Algorithm 6 provides a

detailed overview of the algorithm. The set Vunvisited consists of nodes not yet added to the

tree.

Initially, the entire sample set is added to Vunvisited. Similarly, the Vopen consists of nodes

considered ’active’ for tree growth. One key feature of FMT* is that it generates a readily

growing set of paths and preforms graph construction and graph search synchronously.

Two samples are considered neighbours if their distance is within a certain bound. As

FMT* is a batch sampling algorithm, SampleFree(n) generates the samples required to

15

compute the solutions. Normally, as in this case, uniform distribution is used; however, it

has been shown [7] to work with non-uniform sampling distributions. After an initial

amount of samples are generated across the environment, FMT* works by preforming a

forward dynamic recursion on the set of samples. The function Near(Vunvisited, z, rn) returns

a subset of samples within the radius rn. The cost function Cost(y, x) is used to denote the

cost of the straight line between configuration y and x in cost to go space. Furthermore,

after the minimum cost node is within the goal region, the planner terminates and Path(z,

T = (Vopen ∪ Vclosed, E)) returns the optimal path from the tree. To determine the validity of

the Collision(y,x) which is a boolean operation that returns True in case of an intersection

of path with obstacles.

2.1.3.1 Working Principle

After n samples have been taken across Xfree, they are initially placed within Vunvisited with

xstart being placed within Vopen. At least one sample must be within the goal region Xgoal.

Afterward, a tree is initialized with its root nodes at xstart. Then the lowest cost node z is

selected. Near returns Xnear the subset of z neighbours in Vunvisited Then, for each x in Xnear,

the algorithm tries to find the neighbouring nodes y within Vopen. It then considers the

most locally optimal of these node for incorporation into the tree and preforms a collision

check in order to determine if the edge is obstacle-free. If so then it adds y to the tree. Such

a collisionchecking strategy is known as ’lazy’ [36]. Node x is then shifted to Vopen and z

moves to Vclosed, the set ineligible for further expansion. This process repeats itself until the

tree reaches Xgoal. In case Vopen is empty, then the planner returns Failure.

16

Figure 4: A series of images illustrating FMT* algorithm steps

17

18

2.1.3.2 Comparison of FMT* with other planners

In this section we present out work on the comparison of FMT* in contrast to various

environments. Our comparison planners are the RRT,RRT*,p-RRT* and the PRM*

planner. Our results show the improvement with respect to path cost and time of FMT*.

Fig 5 (a) to (i) show the outcome of our results. Our results show that the FMT* planner

out-preforms the RRT by 75 % , 70 % RRT* ,69 % P-RRT, 65 %P-RRT* with respect to

time and distance.

2.1.3.3 Recent work on FMT*

The Anytime FMT* (aFMT*) [37] introduces a hybrid sampling, and a region

identification in order to present a solution to the narrow corridor problem. It uses a three-

sampling distribution uniform sampling, Gaussian sampling, and bridge sampling over the

configuration space, the classification of different regions, and then concentration of

sampling over the ‘difficult’ regions, where it is most likely to achieve a breakthrough. The

bridge test is a method of evaluating the feasibility of a sample. A sample passes the bridge

test if it is on a line [38] segment such that the two end of the lien segment, lie on obstacles.

The aFMT* also adds another modification to the lazy optimal local one step connection

strategy. If a node has been added once into the tree as an optimal node, then it cannot be

added again. The aFMT* first of all takes a hybrid sample over the configuration space. It

then establishes buRatio between bridge samples and uniform samples, and a guRatio

between the gaussian and the uniform samples. The region construction is done on the basis

of a sample type (Gaussian Samples are given priority) and a certain radius. Depending on

the buRatio it will also adjust the number an type of samples. New samples are then added

to the difficult regions and then passed on to the FMT*. The Informed Anytime FMT*

Algorithm [9], introduces a hyperelliptic subregion for directed sampling, reminiscent of

the BIT* [8] or Informed RRT* [29] algorithm. In addition to this it also introduces a

Rewiring procedure to extend the tree based on non-lazy evaluation of the state space.

The Group Marching Tree (GMT) [39] , uses the parallel computing power of multiple

GPUs in order to expand multiple nodes at

19

 Figure 5: Distance Comparison of FMT*, RRT, P-RRT, RRT*, P-RRT*.

20

Figure 6: Time Comparison of FMT*, RRT, P-RRT, RRT*, P-RRT*.

21

the same time. Such an approach however is computationally expensive and dependent

upon the number of GPUs available. The Online FMT* [40] introduces an online sampling,

and an online rewiring and pruning strategy. In uses a threshold value, in order to limit the

number of nodes. It also uses the current position of the robot as new root of the robot. It

also continues to sample but new nodes are instead not added to the tree. Using a new

sample as a center, a nearest neighbor search is then done, in order to get the lowest cost

node. It then adopts a rewiring strategy reminiscent of RRT*, in order to get a low-cost

path, however it also updates the cost function.

A Bidirectional variant of the Fast-Marching Tree Algorithm (BFMT*) [41], involves two

different trees, one expanded from the starting position, and another from the goal position.

Apart from the traditional alternate bidirectional tree expansion strategy, a balanced tree

criteria is introduced, in which the frontier node with minimum cost node is expanded from

the frontier of both sides. In addition, two termination conditions are also introduced. Apart

from the ‘First Path Criteria’, when there the two trees have connected, the other is when

the node selected, is a node in the interior of the other tree. The Heuristic Bidirectional Fast

Marching Tree [42], simply introduces a basic heuristic to the BFMT*, speeding up the

search process considerably

The Hierarchical Bidirectional FMT* [43], is a bidirectional implementation of the FMT*

algorithm, on a re-configurable mobile robot platform. It initially implements the bidirec-

tional FMT*, on a 3DOF space, before using a hybrid sampling strategy on the full 8 DOF

state space. The hybrid sampling strategy involves a uniform sampling, and a Gaussian

concentrated sampling based on the initial path computed. Another hardware based

implementation algorithm, is the Dual Tree FMT*(DTFMT*) Algorithm [44], It involves

a search over the self-motion manifold, and a validity checking of nodes, in order to ensure

valid motion.

22

Figure 7: Comparison of FMT* with RRT (black), RRT* (blue), P-RRT* (pink), P-RRT

23

2.1.3.4 Limitations of FMT* Planner

However, FMT* has some limitation. Firstly, when working with a reduced set of samples

the reduction in path quality is drastic. This is demonstrated in Fig 9 (a). Additionally, the

planner may struggle to explore the entire space. Secondly, with an increase in the number

of samples, there is a tendency to explore useless region which may reduce the speed of

convergence. Additionally, the increase in no of samples may also increase the time taken

as shown in Fig 9 (b). In order to address these limitation we have devised and implemented

a novel approach which meliorates the quality of path alongside the speed of convergence.

2.1.3.5 Secure Tunnel FMT*

Wu et al. gave the Secure Tunnel FMT* Algorithm in order to address some of the

limitations of FMT*. The algorithm works by first using the Generalized Voronoi Graph

(GVG) [45] method to get a well-connected roadmap. This process is discussed in

Figure 8: A rendering of Generalized Voronoi Graph with multiple configurations

24

Algorithm 5. It then quickly finds an initial path using the A* algorithm. The GVG planner

works by generating a Voronoi diagram whose edges are equidistant to obstacle space.

These edges form the roadmap and we insert the start and goal positions into the roadmap.

Then another graph search algorithm, most commonly A* or Dijkstra, is used in order to

find the minimum cost path. Figure 8 and Figure 9 show the type of graph created. The

path returned is such that it maintains an equal distance from any obstacles at any point. It

also has a rough approximation of the general direction of the optimal path.

Figure 9: FMT* performance with an increasing number of samples. Here, n is the number

25

Therefore, in order to maximize exploitation whilst having a reasonable estimate of the

exploration, the path returned is used to create a ’secure tunnel’ in order to find an optimal

and safe motion path. The initial path generated by ST-FMT* is then discritized using a

discretization factor f and to generate a set of points q. Each point is at the center of a circle

 𝑆 = {𝐶𝑖𝑟(𝑥𝑑𝑖𝑠,𝑚 , 𝐷𝑟(𝑥𝑚))}(𝑞
𝑚=0

) (2.4)

The radius of each circle Dr(xm) is given as the minimum distance to an obstacle.The

coverage area of the secure tunnel is dictated by the discretization factor f, which controls

the resolution of the initial path This parameter essentially determines how finely the path

is segmented, directly impacting the size and scope of the tunnel created around the path.

Once this secure tunnel is defined, a uniform sampling strategy is employed within its

bounds. Importantly, as discussed in [54], collision detection during the sampling phase

inside the tunnel can be omitted. This omission significantly reduces computational

overhead, as collision checking is often a resource-intensive step. By skipping this process

in the secure tunnel, the ST-FMT* algorithm is able to enhance its computational

efficiency, leading to faster overall performance. The effectiveness of this approach is

largely due to the dense distribution of samples within the secure tunnel, particularly

around the initial path generated by the Generalized Voronoi Graph (GVG) method. These

densely distributed samples allow the Fast Marching Tree (FMT*) algorithm to converge

more quickly to an optimal solution, as the samples are focused on a specific region of

interest rather than being spread uniformly across the entire environment. This localized

sampling strategy contrasts with global uniform sampling approaches, where the

distribution of samples is more widespread, potentially leading to inefficiencies and slower

convergence times.

In the secure tunnel, however, even with a lower density of samples compared to global

sampling, high-quality solutions can be found due to the proximity of the samples to the

optimal path. The secure tunnel thus concentrates the sample distribution in areas that are

most relevant to the motion planning task, accelerating the convergence of the FMT*

algorithm. By focusing computational resources on the most important regions, the

algorithm is able to find an optimal path more efficiently than through traditional methods.

26

Moreover, the combined use of secure tunnel construction and focused sampling not only

improves the performance of ST-FMT*, but also has broader applications. This

combination can be employed as an independent preprocessing technique in a variety of

sampling-based motion planning algorithms. For example, algorithms like Rapidly-

exploring Random Trees (RRT) or Probabilistic Roadmaps (PRM) could benefit from this

preprocessing step, where the secure tunnel is first established, and then sampling is

conducted within this confined region. This approach could reduce computation time,

improve solution quality, and provide a framework for more efficient motion planning

across diverse robotic systems or autonomous navigation tasks. Thus, the secure tunnel

framework represents a powerful tool in motion planning, not only for the ST-FMT*

algorithm but also for its potential integration into other sampling-based approaches. Its

ability to focus sample distribution and reduce collision checking makes it a highly efficient

and effective strategy for generating optimal paths in complex environments.

2.1.3.6 Limitations of ST-FMT*

However, one of the setbacks of both ST-FMT* and OB-FMT* is the requirement of initial

preprocessing of the environment in order to define a sampling zone which is

computationally expensive. In addition, Hou et al. [46] shows that the increase in samples

numbers and density has an adverse effect on the time required to converge to a solution.

As seen in Fig 10 (b) and (c), the path discretization method used in ST-FMT* gives no

guarantee of contiguous samples. Additionally, these drawback extend to the roadmap

planning used in [46]. Similarly, as shown in Fig 10 (a), the initial solution by roadmap

may not necessarily lie within the bounds of our environment.

.

27

28

To address these problem, in this paper we introduce Double-FMT* planner. Inspired by

STFMT*, we replace the computationally costly environment decomposition required for

the GVG planner with an initial path generated by a reduced no of samples. In addition, we

modify the construction of the tunnel to ensure a minimum overlap between the constituent

circles of the tunnel. By concentrating a limited batch of samples within the tunnel we can

get an improved path with respect to path distance and time. A second planner working

within the new samples over the tunnel generates an improved path

2.1.3.6 Artificial Potential Fields

The Artificial Potential Field (APF) algorithm, developed in 1985 by Khatib [47] , has seen

a wide variety of use in motion planning [48] [49] [50] [51] [52]. The basic idea, behind

APF field is simple. The robot is modelled, as a particle, under the effect of attractive (from

goal), and repulsive (from obstacles) potentials. There have been many adaptations of APF

and RRT family of path planning algorithms. The Adaptive Potential Guided Directional

RRT(APGDRRT), developed by Qureshi [53], is an extension of the earlier PGD-RRT

[26]. The basis of APGD is on the basis of computing a random sample using a

Randomized Gradient Descent (RGD). It is similar to the Gradient Descent, however

unlike the classic version, the next state is not dependent on the previous state. The random

Figure 10: Generalized Voronoi Graph (GVG) planner-based path discretization with secure tunnel

construction using path discretization parameter f=10. (a) GVG failed to return path in given environment

boundaries. (b) GVG returning less ideal result (c) Non contiguous tunnel construction

29

sample, is moved iteratively along the direction of the potential field. APGD-RRT,

accelerates the rate of convergence by employing a directional sampling strategy. Building

upon this, PIB-RRT* and PB-RRT* [54] introduces the Bi-directional Potential Gradient

(BPG), a variation on the original equation, for bi directional search, in cluttered

environment. Xinyu [55], introduces a variant of the P-RRT*, called P-RRT*connect,

which introduces a switching to classic RRT*, when the robot encounters a local minimum.

2.3.1 Dynamic Motion Planning

Dynamic Environments introduce, a time constraint to the problem of motion planning

[56]. In offline implementation of motion planners, dynamic obstacles, can cause the

invalidity of computed paths. The dynamic re-planner, is responsible for the modification,

and optimization of a given trajectory, in response to the presence of unexpected obstacles.

Putatively, there are two broad categorization of algorithm, Reactive algorithms, consider

only the current condition of the environment, including the number and position of

obstacles, in order to adjust its trajectory. Combining, local and global planning Otte et al.

[57], introduced the RRTX algorithm, which continually refines an initial trajectory and

repairs it in case of obstacles. Time Based-RRT(TB-RRT) [58], pairs each node with a

time stamp, and introduces a time constraint, with the goal of reaching the goal position in

given time.

Active algorithm assumes knowledge of obstacle trajectories. Incorporating some aspects

of Time based RRT, Risk based RRT, [59] model the probability of Collison for dynamic

obstacles, as Gaussian Mixture Models (GMM). The search for a feasible path, is guided

by the probabilistic risk of collision, and the time stamp of the particular node. The Risk

guided search uses a initial reference, based on the classic RRT, computes the probability

of collision for both static and dynamic obstacles. It then updates the existing nodes, and

updates the weight assigned to each node, with the collision probability and length apparent

of path. It then grows the tree in that direction. However, the risk based RRT requires a

separate algorithm to track obstacles. Much work has been done, in recent years on the

Risk base RRT. The Risk Dual Tree RRT (Risk DTRRT) [59], introduces a dual tree, in

order to save the original heuristic trajectory generated by the robot. A Line of Sight (LOS)

30

algorithm is also used in order for checking the feasibility of a given trajectory bearing in

mind the motion constraints on the robot and the presence of obstacles. Pruning is done

based on this, hence the need for a second tree, saving original data, in order for rewiring.

Based on a planning-replanning paradigm, the Multi Objective Dynamic RRT* Algorithm

(MOD-RRT*) [60], uses a backward expansion from the goal position. The heuristic

trajectory generated, is further optimized, using an Ant Colony Optimization, which will

be discussed later. For the replanning phase, it involves a implementation of Praeto

Dominance comparing length of the path, and the turning angel of each node. Another

formulation, based on the dynamic replanning, is the Elastic Band RRT(EBRRT) [61]. It

uses Elastic Band theory developed by Quinlan et al. [62], which models the trajectory as

an elastic band under contractive and repulsive forces. An initial trajectory is generated

and modified by the re-planner, based on real time data. The Horizon Based Lazy Optimal

RRT(HL-RRT) [63], after generating an initial trajectory, it collects an elite set of nodes.

Based on a Gaussian Mixture Model (GMM), it then generates a set of new samples based

on the parameter of an Expectation Minimization algorithm, that best fits the GMM. It also

performs a lazy collision strategy, by keeping a model of the future using model predictive

control and preforming collision detection on a partial portion.

31

CHAPTER 3: METHODOLOGY

As discussed previously in Chapter 2, the main idea of FMT* is to reduce the number of

collision checks by the lazy extension procedure; however the laziness property of FMT*

can lead to sub-optimality. But, it has been proved that as the number of sub optimal

connections become rare, as number of samples goes to infinity. [7] The AO of the

algorithm is also proved to converge in probability, a mathematically weaker notation.

 One of the optimization direction we have identified is the need for a optimizing and

improving existing paths. Similar to different members of the RRT family of algorithms

the optimization methodology is a sampling strategy [9] [29] [40] [53]. The tunnel, strategy

is applied in order to take advantage of a rapidly computed initial path, as biasing the

sampling based on an existing path [43]. A Hybrid Sampling involving the use of Uniform

Sampling with Gaussian Sampling, has also been used [37]. Rewiring and Single Query

Reconnecting

In Chapter 2 we have proved that there is an inverse relationship between the number of

samples and time taken for the planner to return a solution to the problem. Similarly, earlier

work on the RT-FMT* has further highlighted this problem because as the number of

samples and sampling density increase there is an increase in the time taken to compute a

solution. This can have a negative solution in the case of dynamic obstacles where fast

computation is necessary in order to compute a fast path to the obstacle.

32

3.1 Dual Tree Fast Marching Tree (DT-FMT*)

In this section we present the DT-FMT* whose detailed pseudocode is given in Algorithm

9 and 10. Fig 11 gives a brief overview of DT-FMT* in action.

3.1.1 Working Principle

Our entire approach is based on two-stage batch sampling of the environment. For a total

number of samples ntotal, we subdivide the samples into two batches. During the

preprocessing stage we use the reduced amount of samples to compute a rough initial path

based on those values. One of the advantages of sampling based planners is that they

provide a much more computationally efficient solution [21] and we utilize this by using

the standard FMT* algorithm to construct an initial path. Doing so allows us to get an

approximate direction of the optimal path. After discretizing the initial path into a set of

equidistant points based on our path discritizing factor f, we construct a tunnel to

encompass the entire region where we believe the optimal path is likely to lie. Then, we

generate l
𝑁𝑡𝑜𝑡𝑎𝑙

2
 new samples in the above mentioned region and utilize the FMT* planner

to find a new path.

33

The tunnel effectively limits the search space to a smaller, more relevant portion of the

environment hence improving path quality.These tunnel samples help refine the path by

introducing more candidate waypoints, ensuring that the final path is both feasible and

efficient. By focusing the sampling within the tunnel, we increases our chances of finding

an optimal or near-optimal solution while avoiding unnecessary exploration of distant

areas.

34

3.1.2 Tunnel Construction

The details of tunnel construction are given in Algorithm 4. For an initial path given by P,

we discretize the path to get a series of equidistant points:

𝑥𝑑𝑖𝑠𝑐,1 , 𝑥𝑑𝑖𝑠𝑐,2 , 𝑥𝑑𝑖𝑠𝑐,4 , … 𝑥𝑑𝑖𝑠𝑐,𝑖

Figure 11: An overview of the DT-FMT* algorithm. (a) A given environment map. (b)

Initial path computed with n = 1000. (c) Initial path discretized with f = 10 and overlap =

10, new samples n = 1000. (d) New path computed c = 971.24, t = 1.422.

35

Figure 12: Tunnel construction methodology for DT-FMT* (a) An idealized case when path discretized points and

radius constuction ensure contiguous samples. (b) A less ideal case when path discretization is not enough to ensure

contiguous samples. (c) M

where i is the total number of points. To compute this, we use the discretization parameter

f, given as [1, 5, 10, 20, . . .]%. There is an inverse relation between f and computational

efficiency. After getting the path points, Algorithm 3, line 7 computes the nearest distance

to an obstacle in order to get an initial radius Dr(xi) based on the distance to the nearest

obstacle.

36

As shown in Fig 12, the use of an initial path based on FMT* can create a scenario where,

in case of path abutting an obstacle, the value of Dr(xi) to be such that it does not guarantee

a contiguous tunnel region. Additionally, such ’obstacle hugging’ behaviour of a path,

while representative of a near-optimal path in many situations e.g in a cluttered

environment, narrow corridor e.t.c, means that in a situation where the path point xdisc,i

lies just on the edge of the obstacle in Xfree the value of Dr(xi) would be minuscule. As we

have to generate a number of samples within the points constituting the tunnel, it is essential

that the samples should be adjacent to each other i.e there are no large gaps within the

sampling regions that result in our planner failing to return a solution. In case of a

minuscule value of Dr(xi) the path discretization factor f would need to be decreased in

order to generate minimum points for contiguous samples. As shown in [64] this has the

effect of increasing computational cost.

37

Our solution to avoid this is to incorporate an overlap factor α in order to ensure contiguous

samples without increasing computational efficiency. The modified circle for each discrete

point xdisc,i with an overlap factor α is defined as:

 𝑆 = 𝐶𝑖𝑟(𝑥𝑑𝑖𝑠𝑐,𝑖 , 𝐷𝑟′(𝑥𝑖)) (3.1)

With

 𝐷𝑟′(𝑥𝑖) = 𝑚𝑎𝑥(
𝑑(𝑥𝑑𝑖𝑠𝑐,𝑖,𝑥𝑑𝑖𝑠𝑐,𝑖+1)

1−𝛼
)

After tunnel computation, uniform sampling is performed in order to generate the reduced

batch of samples .Bialkowski et al. [57] showed that the collision checking can be omitted

during the tunnel’s sampling processing order to improves the computational efficiency.

Figure 13:Rendering of the performance of DT-FMT* in the seven different environments. (a)-(g) blank environment used in the

experiments. (g)-(i) is the initial path computed. (o)-(u) is final path computed.

38

The samples within the secure tunnel provide a high-quality solution even with a reduced

sample set.

Figure 14: Different type of sampling distributions.

3.1.2 Tunnel Construction

After we have formed the centers of the circles bu discretizing our path, the next step in

our equation is to generate a set of new samples within the circles. One of the most common

methods of sampling within a circle is to take a random value of a angle within (0, 2π),

then taking a random value of radius between (0,R). However after following this strategy,

our results show it does not generate a uniform distribution across a circle. While, it has

been proved by Janson et al. that the FMT* is valid for non uniform sampling distributions,

however, we do not want our final path to be as independent as possible from the initial

path computed. Fig 14 shows the biased path generated by using this approach.

One solution to this is given as such: generate points uniformly within a square region,

ranging from 0 to 1 in both radius and angle. Afterwards, we apply a transformation to

adjust their distribution. This transformation maps the generated point’s first coordinate to

the square root of the original value multiplied by the circle’s radius.

The transformation is instead given by:

 𝑥 = √𝑟𝑐𝑜𝑠𝜃, 𝑦 = √𝑟𝑠𝑖𝑛𝜃 (3.2)

39

During our tunnel construction we have utilized this when computing new samples over

the tunnel that we have constructed. Another solution is rejection sampling. This works by

generating points on a square enclosing the circle, and then filtering out the points that do

not lie within the bounds of a circle. The details are given by Algorithm 12. This is shown

in 3.4 (c) and as it shows there it also generates an unbaised sampling distribution on the

circle. We have not used this version as it is computationally more expensive. In order to

sample within the entire circle, firstly we choose a random circle circle center and also

compute a random point across a unit circle. We then scale it for that particular circle

center. The full results using all three sampling paradigms is shown in Fig 15

Figure 15: Different type of sampling distributions.

40

3.2: Reduced Sampling Re-planning Fast Marching Tree (RRFMT*)

In this section we introduce our original work for dynamic motion planning. As mentioned

previously one of the problems facing one of the only extant motion planning for dynamic

environment is the lack of optimality guarantees as a result of changing radius [10].

Another problem facing the FMT* Algorithm is that there is the increased computation

time taken as a result of increasing samples. Contradictorily, the better path quality is only

possible as a result of increased sampling density. In order to solve this problem in the

presence of dynamic obstacles, hereby, in this paper defined as obstacles that appear and

disappear rapidly.

The following section provides greater detail about the process behind the RR-FMT*.

3.2.1 Working Principle

Our algorithm starts by computing an initial path of the environment. In order to get the

best possible path, we utilize the DT-FMT* that we introduced earlier in this chapter in

order to quickly converge to a solution that is within a reasonable value of the optimal path,

but which requires an egregiously lesser amount of iterations to compute. Fig 16 shows the

exact procedure we have used.

41

After we generate an initial path, we, first, discretize the path in order to get a set of

equidistant points on the map. Then, we start to transverse the path way-points. As the

robot starts to move across the map, it is constantly beset by dynamic obstacles. In order

to test the our algorithm rigorously, we have set the obstacle to be totally random with

respect to time and geometry. The total number of dynamic obstacles is also set to be totally

random, albeit with an upper bound of 10. This allows us to have a much better and

challenging environment for our planner.

Figure 16: Procedure of Reduced Sampling Re-planning FMT*

42

Figure 17:Complete process of Dynamic Path computation

43

44

3.2.1.1 Function Definition

45

RR-FMT* leverages the property of FMT* Algorithm that we have discussed earlier: as

the number of samples increase so does the time required. The inverse is also true, as the

number of samples decrease so too does the time required. In case of dynamic

environments one key necessity is for a planner to have low latency. We solve this by

firstly, decreasing the space to one in between the start point and the nearest unblocked

way-point. This distance is typically very low and by distributing our samples to across the

space between the goal position and the current position we ensure quick computation of

the path to rejoin the optimal path.

Figure 18: Working procedure of RR-FMT*.

46

CHAPTER 4: EXPERIMENTATION AND DISCUSSION

In this section we present the results of our experiments. In order to empirically prove the

viability of our planner we have conducted two sets of test against both the standard FMT*

planner and also against the ST-FMT* planner. All of our experiments were preformed

during the course of a few days using a Windows 11, 64 GB RAM, and AMD processor.

Table 4.1 gives the result of our comparison with FMT*. The programming language used

was Python 3.11 using Visual Studio interface. It is important to note that two different

sets of experiments were run separate from each other. The planner was evaluated on seven

different 2d environment maps from literature given in Fig 3.3 (a)-(g).We have set the size

of our environments as 720 x 720 pixels as we find that it is acceptable distance required.

Figure 19: List of Classical Motion Planning Environments used in this work.

47

Both the FMT* and ST-FMT* planners that we used in our experiments have shared

functionality with respect to collision checking, tree growth e.t.c. Since our main focus

with DTFMT* is improving path performance with a reduced number of , our total

number of samples have remained the same for each planner.The value we are using is

2000 samples. In case of our planner DT-FMT* we have divided these samples into

batches of 1000 for each stage of the planning process. The number of iterations to be run

in order to evaluate performance is 130 and the average values of path cost and time were

calculated.

Map c* Initial Path Distance Final Path Distance Initial Time (s) Final Time (s)

Map 1 965 989.9624 973.2381 1.5775 1.4756

Map 2 895 917.8420 902.4884 1.3114 1.3464

Map 3 649 659.7693 651.7199 0.8913 1.0092

Map 4 1078 1140.1551 1122.3930 5.0553 0.5650

Map 5 1136 1241.6540 1192.4367 3.4418 3.9211

Map 6 770 800.2739 777.1681 1.0754 1.2528

Map 7 1065 1136.6432 1071.2102 1.0540 1.0863

 Table 1: Path Distance and Time Comparison

48

Map c* Planner Path Cost Time (s) t, p values

Map 1 965 DT-FMT* 973.24 3.05

Distance:

t = 13.85

p = 6.37e−34

Time:

t = 12.46

p = 4.28e−20

 FMT* 982.82 3.71

Map 2 895 DT-FMT* 902.49 2.66

Distance:

t = 18.56

p = 3.45e−49

Time:

t = 14.36

p = 2.58e−33

 FMT* 911.45 3.20

Map 3 649 DT-FMT* 651.72 1.90

Distance:

t = 18.26

p = 6.48e−42

Time:

t = 15.73

p = 3.42e−30

 FMT* 657.52 2.42

Table 2: Comparison with FMT*

49

Map c* Planner Path Cost Time (s) t, p values

Map 4 1078 DT-FMT* 1122.39 5.06

Distance:

t = 0.44

p = 0.66

Time:

t = 0.73

p = 0.54

 FMT* 1127.44 5.62

Map 5 1136 DT-FMT* 1192.44 7.36

Distance:

t = 7.71

p = 3.33e−13

Time:

t = 6.98

p = 1.19e−10

 FMT* 1211.29 8.10

Map 6 770 DT-FMT* 777.17 2.33

Distance:

t = 20.41

p = 4.75e−50

Time:

t = 16.00

p = 7.32e−40

 FMT* 788.01 2.69

Map 7 1065 DT-FMT* 1071.21 2.14

Distance:

t = 16.72

p = 1.72e−43

Time:

t = 14.53

p = 4.12e−35

 FMT* 1107.66 2.57

50

Map c* Planner Path Cost Time (s) t and p values

Map 1 965 DT-FMT* 973.4798 1.2791

tdist = 66.3156, pdist = 1.6817e−109

ttime = 80.6109, ptime = 1.2206e−119

 ST-FMT* 993.7137 10.9327

Map 2 895 DT-FMT* 904.3894 1.0800

tdist = 75.2391, pdist = 4.8513e−110

ttime = 149.9489, ptime = 5.7006e−157

 ST-FMT* 954.9683 9.8956

Map 3 649 DT-FMT* 651.8916 0.7299

tdist = 18.6315, pdist = 3.96273e−45

ttime = 231.3086, ptime = 5.0914e−215

 ST-FMT* 655.5222 6.5546

Map 4 1078 DT-FMT* 1122.3930 2.2937
tdist = 8.9804, pdist = 2.6236e−15

ttime = 160.3799, ptime = 3.0699e−162

 ST-FMT* 1140.5072 20.1590

Map 5 1136 DT-FMT* 1193.4175 3.8099
tdist = 45.9593, pdist = 2.1143e−83

ttime = 150.6859, ptime = 6.8969e−167

 ST-FMT* 1287.7622 47.4827

Map 6 770 DT-FMT* 777.7545 1.0161
tdist = 5.0337, pdist = 9.05871e−07

ttime = 153.6632, ptime = 1.4976e−184

 ST-FMT* 779.4894 5.4533

Map 7 1065 DT-FMT* 1072.7599 0.9545
tdist = 0.9545, pdist = 5.2558e−92

ttime = 5.2558e−92, ptime = 1.3200e−2284

 ST-FMT* 1156.1979 7.4787 ttime = 5.2558e−92, ptime = 1.3200e−2284

 Table 3: Comparison with ST-FMT* (preprocessing included)

51

Similarly, the Welch’s t-test was also employed to compare the performance metrics of

DTFMT* with respect to FMT* and ST-FMT*. We have used Welch’s t-test as it

provides a more robust comparison metric especially when the variance of the two input

datasets differs.

Figure 20: Distance and Time Comparisons Map 1-3

52

Figure 21: Distance and Time Comparison for Maps 4-6

4.1 Dynamic Environments

Using the same experimental setup we have also tested our planner in a dynamic constraint.

Our dynamic environments as shown in Fig 4.5 involves a time varying series of obstacles.

The configuration of the environment, is not know to the robot beforehand and it must

modify its path as soon as the obstacles start to appear.We have compared the performance

of RRFMT* to the Dynamic version of the RRT* which also rewires its path when in the

presence of obstacles.

53

Figure 22: Status of the environment at different values of time

Map Distance (Dynamic RRT*) Distance (RR-FMT*) Time (Dynamic RRT*) (s) Time (RR-FMT*) (s)

1 1744.378 1031.897 69.593 39.789

2 1701.811 987.686 88.110 38.872

8 1435.941 881.950 98.711 31.574

Table 4: Path Distance and Time Comparison (Dynamic)

Map T value (Distance)
P-Value

(Distance)
T value (Time) P-Value (Time)

1 18.737 3.053e-19 3.035 8.773e-03

2 22.685 4.052e-37 5.482 3.579e-05

8 11.507 2.866e-13 7.256 2.803e-05

Table 5: T-test (Distance and Time)

54

4.1 Analysis

Our results in Tables 4.1 4.3 show the improvement in path quality that has been done as

a result of our planner. We have exceeded the amount of iterations typically performed to

show the validity of our motion planning algorithm and in order to solidify that have also

performed the t-test. Across seven different environments and two planner, our values of t

and p lie within the acceptable range in order to make our results statistically significant.

Similarly we have done the same with the RR-FMT* and compared it to three different

dynamic environments. Hereto, the results show a wide variety of improvement over the

dynamic RRT* planner and robot we have used at identical velocities.

55

CHAPTER 5: CONCLUSION AND FUTURE WORK

During the course of this work, we have proposed two different variants of the FMT*: the

DT-FMT*, an efficient asymptotically optimal sampling-based planning algorithm

designed to improve path quality with reduced sampling for mobile robot applications; and

the RR-FMT* algorithm designed to provide an asymptotically optimal solution for mobile

robot planning in the presence of dynamic obstacles. The core of the DT-FMT* planner

lies in its secure tunnel preprocessing and centralized exploration strategy. This approach

allows the planner to achieve high-quality solutions with fewer samples, thereby improving

both computational efficiency and path planning performance. The use of a reduced sample

distribution, facilitated by secure tunnel construction, ensures that the planner remains

highly efficient while maintaining optimal path quality. We prove this in our experiments

in the previous sections. The RR-FMT* planner utilizes a similar strategy in order to

generate the final path from a position of proximity of one blocked way-point to another.

We overcome the inverse relationship between time and sample numbers by generating a

very small number of samples between the current position and the goal position which

allows us to get a fast solution whilst retaining optimality in the presence of dynamic

obstacles. Our simulation and experimental results confirm the effectiveness of DT-FMT*,

demonstrating faster convergence and improved performance compared to existing

algorithms. These results underscore the planner’s capability to provide high-quality

solutions with reduced sampling effort, making it highly suitable for environments with

limited computational resources or strict time constraints.

Future work will explore extending DT-FMT* to more dynamic and complex

environments, such as those with moving obstacles or unknown terrains. Additionally, the

algorithm could be adapted real-time applications through high-frequency planning.

Integrating DT-FMT* into a hierarchical planning framework could further enhance its

adaptability, allowing for robust global and local planning in diverse robotic applications.

56

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[2] Z. Zuo, C. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control

methods and future challenges,” IEEE/CAA Journal of Automatica Sinica, vol. 9,

no. 4, pp. 601–614, 2022.

[3] M. Z. Zahid, M. Nadeem, and M. Ismail, “Numerical study of submarine launched

underwater vehicle,” in 2020 17th International Bhurban Conference on Applied

Sciences and Technology (IBCAST), 2020, pp. 472–476.

[4] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,”

IEEE Access, vol. 2, pp. 56–77, 2014.

[5] A. Valero-Gomez, J. Gómez, S. Garrido, and L. Moreno, “Fast marching methods

in path planning,” IEEE Robotics and Automation Magazine, vol. 20, pp. 111 –

120, 12 2013.

[6] M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query sampling-

based motion planning with quick replanning,” The International Journal of

Robotics Research, vol. 35, no. 7, pp. 797–822, 2016. [Online]. Available:

https://doi.org/10.1177/0278364915594679

[7] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast

marching sampling-based method for optimal motion planning in many

dimensions,” The International Journal of Robotics Research, vol. 34, no. 7, pp.

883–921, 2015, pMID: 27003958. [Online]. Available:

https://doi.org/10.1177/0278364915577958

[8] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed trees (bit*):

Informed asymptotically optimal anytime search,” The International Journal of

57

Robotics Research, vol. 39, no. 5, pp. 543–567, 2020. [Online]. Available:

https://doi.org/10.1177/0278364919890396

[9] J. Xu, K. Song, D. Zhang, H. Dong, Y. Yan, and Q. Meng, “Informed anytime

fastmarching tree for asymptotically optimal motion planning,” IEEE Transactions

on Industrial Electronics, vol. 68, no. 6, pp. 5068–5077, 2021.

[10] J. Silveira, K. Cabral, S. Givigi, and J. A. Marshall, “Real-time fast marching tree

for mobile robot motion planning in dynamic environments,” in 2023 IEEE

International Conference on Robotics and Automation (ICRA), 2023, pp. 7837–

7843.

[11] I. Giorgi, F. A. Tirotto, O. Hagen, F. Aider, M. Gianni, M. Palomino, and G. L.

Masala, “Friendly but faulty: A pilot study on the perceived trust of older adults in

a social robot,” IEEE Access, vol. 10, pp. 92 084–92 096, 2022.

[12] S. Mussakhojayeva and A. Sandygulova, “Cross-cultural differences for adaptive

strategies of robots in public spaces,” in 2017 26th IEEE International Symposium

on Robot and Human Interactive Communication (RO-MAN), 2017, pp. 573–578.

[13] S. O. Oruma and S. Petrovic, “Security threats to 5g networks for social robots in

public spaces: A survey,” IEEE Access, vol. 11, pp. 63 205–63 237, 2023.

[14] S. Gao and C. Du, “Design of garbage automatic sorting and disposal robot,” in

2023 International Symposium on Intelligent Robotics and Systems (ISoIRS),

2023, pp. 81–85.

[15] S. Ono, Y. Okazaki, K. Kanetsuna, and M. Mizumoto, “Egocentric, altruistic, or

hypocritic?: cross-cultural study of choice between pedestrian-first and driver-first

of autonomous car,” IEEE Access, vol. 11, pp. 108 716–108 726, 2023.

https://doi.org/10.1177/0278364919890396

58

[16] H. Dong, “Research progress and review on service interaction between intelligent

service robots and customers,” in 2023 International Conference on Service

Robotics (ICoSR), 2023, pp. 1–8.

[17] Z. Jiang, J. Xu, H. Li, and Q. Huang, “Stable parking control of a robot astronaut

in a space station based on human dynamics,” IEEE Transactions on Robotics,

vol. 36, no. 2, pp. 399–413, 2020.

[18] S. M. LaValle, Planning Algorithms. USA: Cambridge University Press, 2006.

[19] J. R. Sánchez-Ibáñez, C. J. Pérez-del Pulgar, and A. García-Cerezo, “Path planning

for autonomous mobile robots: A review,” Sensors, vol. 21, no. 23, 2021. [Online].

Available: https://www.mdpi.com/1424-8220/21/23/7898

[20] L. Dong, Z. He, C. Song, and C. Sun, “A review of mobile robot motion planning

methods: from classical motion planning workflows to reinforcement learning-

based architectures,” Journal of Systems Engineering and Electronics, vol. 34, no.

2, pp. 439–459, 2023.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–

894, 2011.

[22] Y. B. Jmaa and D. Duvivier, “A review of path planning algorithms,” in Intelligent

Systems Design and Applications, A. Abraham, A. Bajaj, T. Hanne, P. Siarry, and

K. Ma, Eds. Cham: Springer Nature Switzerland, 2024, pp. 119–130.

[23] A. Artuñedo, G. Corrales, J. Villagra, and J. Godoy, “Machine learning based

motion planning approach for intelligent vehicles,” in 2020 IEEE Intelligent

Vehicles Symposium (IV), 2020, pp. 963–970.

https://www.mdpi.com/1424-8220/21/23/7898

59

[24] J. Wang, T. Zhang, N. Ma, Z. Li, H. Ma, F. Meng, and M. Q. Meng, “A survey of

learning-based robot motion planning,” IET Cyber-Systems and Robotics, 2021.

[Online]. Available: https://api.semanticscholar.org/CorpusID:236381976

[25] S. M. LaValle, “Rapidly-exploring random trees: a new tool for path planning,”

The Annual Research Report, 1998. [Online]. Available:

https://api.semanticscholar.org/CorpusID:14744621

[26] A. H. Qureshi, K. F. Iqbal, S. M. Qamar, F. Islam, Y. Ayaz, and N. Muhammad,

“Potential guided directional-rrt* for accelerated motion planning in cluttered

environments,” in 2013 IEEE International Conference on Mechatronics and

Automation, 2013, pp. 519–524.

[27] Rodriguez, X. Tang, J.-M. Lien, and N. Amato, “An obstacle-based rapidly-

exploring random tree,” in Proceedings 2006 IEEE International Conference on

Robotics and Automation, 2006. ICRA 2006., 2006, pp. 895–900.

[28] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M. S.

Muhammad, “Rrt*-smart: A rapid convergence implementation of rrt*,”

International Journal of Advanced Robotic Systems, vol. 10, no. 7, p. 299, 2013.

[Online]. Available: https://doi.org/10.5772/56718

[29] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal

sampling-based path planning focused via direct sampling of an admissible

ellipsoidal heuristic,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2014, pp. 2997–3004.

[30] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query

path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings

(Cat. No.00CH37065), vol. 2, 2000, pp. 995–1001 vol.2.

[31] G. Sánchez and J.-C. Latombe, “A single-query bi-directional probabilistic

roadmap planner with lazy collision checking,” in Robotics Research, R. A. Jarvis

https://api.semanticscholar.org/CorpusID:236381976
https://api.semanticscholar.org/CorpusID:14744621

60

and A. Zelinsky, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.

403–417.

[32] J. Zhong and J. Su, “Triple-rrts for robot path planning based on narrowpassage

identification,” in 2012 International Conference on Computer Science and

Information Processing (CSIP), 2012, pp. 188–192.

[33] D. Ferguson and A. Stentz, “Anytime rrts,” in 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2006, pp. 5369–5375.

[34] W. Wang, Y. Li, X. Xu, and S. X. Yang, “An adaptive roadmap guided multi-rrts

strategy for single query path planning,” in 2010 IEEE International Conference

on Robotics and Automation, 2010, pp. 2871–2876.

[35] O. Khatib, The Potential Field Approach And Operational Space Formulation In

Robot Control. Boston, MA: Springer US, 1986, pp. 367–377. [Online].

Available: https://doi.org/10.1007/978-1-4757-1895-926

[36] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Proceedings 2000

ICRA. Millennium Conference. IEEE International Conference on Robotics and

Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, 2000, pp. 521–

528 vol.1.

[37] C. Zhong and H. Liu, “A region-specific hybrid sampling method for optimal path

planning,” International Journal of Advanced Robotic Systems, vol. 13, no. 2, p.

71, 2016. [Online]. Available: https://doi.org/10.5772/63031

[38] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow

passages with probabilistic roadmap planners,” in 2003 IEEE International

Conference on Robotics and Automation (Cat. No.03CH37422), vol. 3, 2003, pp.

4420–4426 vol.3.

[39] B. Ichter, E. Schmerling, and M. Pavone, “Group marching tree: Sampling-based

approximately optimal motion planning on gpus,” in 2017 First IEEE

International Conference on Robotic Computing (IRC). Los Alamitos, CA, USA:

61

IEEE Computer Society, apr 2017, pp. 219–226. [Online]. Available:

https://doi.ieeecomputersociety.org/10.1109/IRC.2017.72

[40] B. Chandler and M. A. Goodrich, “Online rrt* and online fmt*: Rapid replanning

with dynamic cost,” in 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2017, pp. 6313–6318.

[41] J. Starek, J. Gómez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone, “An

asymptoticallyoptimal sampling-based algorithm for bi-directional motion

planning,” Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots

and Systems, vol. 2015, 07 2015.

[42] W. Gao, Q. Tang, J. Yao, Y. Yang, and D. Yu, “Heuristic bidirectional fast

marching tree for optimal motion planning,” in 2018 3rd Asia-Pacific Conference

on Intelligent Robot Systems (ACIRS), 2018, pp. 71–77.

[43] W. Reid, R. Fitch, A. H. Göktoˇggan, and S. Sukkarieh, Motion Planning for

Reconfigurable Mobile Robots Using Hierarchical Fast Marching Trees. Cham:

Springer International Publishing, 2020, pp. 656–671. [Online]. Available:

https://doi.org/10.1007/978-3-030-43089-442

[44] J. Xia, Z. Jiang, H. Zhang, R. Zhu, and H. Tian, “Dual fast marching tree

algorithm for human-like motion planning of anthropomorphic arms with task

constraints,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp.

2803–2813, 2021.

[45] H. Choset and J. Burdick, “Sensor based planning. i. the generalized voronoi

graph,” in Proceedings of 1995 IEEE International Conference on Robotics and

Automation, vol. 2, 1995, pp. 1649–1655 vol.2.

[46] J. Hou, Z. Liu, and H. Su, “Obstacle based fast marching tree for global motion

planning,” in IECON 2022 – 48th Annual Conference of the IEEE Industrial

Electronics Society, 2022, pp. 1–6.

62

[47] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in

Proceedings. 1985 IEEE International Conference on Robotics and Automation,

vol. 2, 1985, pp. 500–505.

[48] J. Amirian and M. Jamzad, “Adaptive motion planning with artificial potential

fields using a prior path,” 10 2015, pp. 731–736.

[49] N. Zhang, Y. Zhang, C. Ma, and B. Wang, “Path planning of six-dof serial robots

based on improved artificial potential field method,” in 2017 IEEE International

Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 617–621.

[50] G. Shao, Z. Li, Y. Wen, and L. Zhuang, “The behavior coding of artificial life

body based on dynamic potential field approach,” in 2006 6th World Congress on

Intelligent Control and Automation, vol. 1, 2006, pp. 2546–2550.

[51] N. He, Y. Su, j. Guo, X. Fan, Z. Liu, and B. Wang, “Dynamic path planning of

mobile robot based on artificial potential field,” in 2020 International Conference

on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020, pp.

259–264.

[52] W. Chao, M. Feng, W. Qing, and W. Shuwu, “A situation awareness approach for

usv based on artificial potential fields,” in 2017 4th International Conference on

Transportation Information and Safety (ICTIS), 2017, pp. 232–235.

[53] A. H. Qureshi, S. Mumtaz, K. F. Iqbal, B. Ali, Y. Ayaz, F. Ahmed, M. S.

Muhammad, O. Hasan, W. Y. Kim, and M. Ra, “Adaptive potential guided

directional-rrt*,” in 2013 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2013, pp. 1887–1892.

[54] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially guided

bidirectionalized rrt* for fast optimal path planning in cluttered environments,”

Robotics and Autonomous Systems, vol. 108, pp. 13–27, 2018. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0921889017309387

63

[55] W. Xinyu, L. Xiaojuan, G. Yong, S. Jiadong, and W. Rui, “Bidirectional potential

guided rrt* for motion planning,” IEEE Access, vol. 7, pp. 95 046–95 057, 2019.

[56] S. Petti and T. Fraichard, “Partial motion planning framework for reactive

planning within dynamic environments,” 09 2005.

[57] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient collision checking

in sampling-based motion planning via safety certificates,” The International

Journal of Robotics Research, vol. 35, no. 7, pp. 767–796, 2016. [Online].

Available: https://doi.org/10.1177/0278364915625345

[58] A. Sintov and A. Shapiro, “Time-based rrt algorithm for rendezvous planning of

two dynamic systems,” 2014 IEEE International Conference on Robotics and

Automation (ICRA), pp. 6745–6750, 2014. [Online]. Available:

https://api.semanticscholar.org/CorpusID:3211158

[59] G. Chi, C.Wang, J.Wang, and M. Meng, “Risk-dtrrt-based optimal motion

planning algorithm for mobile robots,” IEEE Transactions on Automation Science

and Engineering, vol. PP, pp. 1–18, 11 2018.

[60] J. Qi, H. Yang, and H. Sun, “Mod-rrt*: A sampling-based algorithm for robot

path planning in dynamic environment,” IEEE Transactions on Industrial

Electronics, vol. PP, pp. 1–1, 06 2020.

[61] J. Wang, M. Meng, and O. Khatib, “Eb-rrt: Optimal motion planning for mobile

robots,” IEEE Transactions on Automation Science and Engineering, vol. PP, pp.

1–11, 04 2020.

[62] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning and control,”

[1993] Proceedings IEEE International Conference on Robotics and Automation,

pp. 802–807 vol.2, 1993. [Online]. Available:

https://api.semanticscholar.org/CorpusID:5641886

64

[63] Y. Chen, Z. He, and S. Li, “Horizon-based lazy optimal rrt for fast, efficient

replanning in dynamic environment,” Auton. Robots, vol. 43, no. 8, p. 2271–2292,

Dec. 2019. [Online]. Available: https://doi.org/10.1007/s10514-019-09879-8

[64] Z.Wu, Y. Chen, J. Liang, B. He, and Y.Wang, “St-fmt*: A fast optimal global

motion planning for mobile robot,” IEEE Transactions on Industrial Electronics,

vol. 69, no. 4, pp. 3854–3864, 2022.

	aCKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS, ABBREVIATIONS and acronyms
	aBSTRACT
	chapter 1: Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Contributions
	1.4 Problem Definition
	1.5 Thesis Overview

	CHAPTER 2: BackGRound and LITERATURE REVIEW
	2.1 Sampling based Motion Planning Algorithm
	2.1.1 Randomly exploring Random Tree (RRT) family of planners
	2.1.2 Potential function guided RRT*
	2.1.3 Fast Marching Tree Algorithm
	2.1.3.1 Working Principle
	2.1.3.2 Comparison of FMT* with other planners
	2.1.3.3 Recent work on FMT*
	2.1.3.4 Limitations of FMT* Planner
	2.1.3.5 Secure Tunnel FMT*
	2.1.3.6 Limitations of ST-FMT*
	2.1.3.6 Artificial Potential Fields

	2.3.1 Dynamic Motion Planning

	Chapter 3: MEthodology
	3.1 Dual Tree Fast Marching Tree (DT-FMT*)
	3.1.1 Working Principle
	3.1.2 Tunnel Construction
	3.1.2 Tunnel Construction (1)

	3.2: Reduced Sampling Re-planning Fast Marching Tree (RRFMT*)
	3.2.1 Working Principle
	3.2.1.1 Function Definition

	Chapter 4: Experimentation and Discussion
	4.1 Dynamic Environments
	4.1 Analysis

	Chapter 5: Conclusion and future work
	REFERENCES

