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ABSTRACT 

Forest plays a vital role in regulating carbon and oxygen in ecosystem. Study aims to 

map the above-ground biomass (AGB), carbon pool, and carbon sequestration potential 

of the Abbottabad Forest area, while also analyzing the impact of climate indicators on 

carbon stock through sensitivity analysis. Using remote sensing techniques and 

geospatial analysis, we quantified the biomass and carbon content in different forest 

strata. The results indicate significant variations in AGB, ranging from 93.35 to 265.02 

t/ha, with a mean of 178.6 t/ha, and corresponding above-ground carbon (AGC) values 

ranging from 43.87 to 124.56 t/ha, averaging 83.94 t/ha. Total carbon sequestration 

potential was also evaluated, showing a mean of 105.76 t/ha and a maximum of 156.94 

t/ha, while the total CO2 equivalent sequestration ranged from 202.32 to 574.41 t/ha. 

Additionally, the sensitivity analysis identified regions within the forest that are more 

susceptible to climatic changes, with some areas demonstrating high sensitivity to 

fluctuations in temperature and precipitation. Land use and land cover (LULC) changes 

were assessed, revealing significant shifts over study period, including a decrease in   

agricultural (-13.3%) and bare land (-0.5%) areas, and an increase in forest cover (9%). 

The urban and water bodies also showed slight expansions. The findings underscore the 

importance of targeted climate adaptation strategies to enhance carbon sequestration 

and improve forest resilience. Study concludes that by integrating biomass mapping 

with sensitivity analysis of climatic parameters, this research presents a comprehensive 

approach to understanding the interplay between forest dynamics and climate change, 

which is essential for informed decision-making and policy formulation. Study 

recommends to expand the application of geospatial modeling across other forest types 

in Pakistan to develop a comprehensive carbon inventory. Additionally, integrating 

these findings into local and national climate policies can enhance carbon sequestration 

and forest conservation efforts. 
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Chapter 1  

INTRODUCTION 

1.1. Background Information 

Enormous ecosystems that blanket substantial portions of our world. Forests are 

a priceless natural resource providing many means of sustenance for life. Forests 

are essential to preserving the harmony of our planet's ecosystem because of their 

thick undergrowth, tall trees, and variety of flora and fauna. As the planet's lungs, 

they take in carbon dioxide and the world's forest cover, endangering human 

societies' well-being, biodiversity, and climate stability. For the well being of 

current and future generations, we must acknowledge the vital value of forests 

and move quickly to save, protect, and restore these priceless ecosystems, which 

release oxygen, serve as habitat for innumerable species, and control regional 

climates.  

Forests are critical to the earth's ecological balance, serving as home to a large 

proportion of the world's biodiversity. They cover about 31% of the land area 

globally, with the maximum forested areas found in Russia, Canada, China, 

United States and Brazil. These ecosystems play a vital role in carbon 

sequestration, acting as significant carbon sinks that absorb and store CO2 thus 

mitigating climate change.  

Global assessments have shown that future climate change will be significantly 

impacted by forest ecosystems. Climate change refers to changes in global climate 

due to anthropogenic activities. Since industrial revolution, combustion of fossil 

fuels for energy and transportation has dramatically increased CO2 emissions. 

Deforestation further contributes to rising CO2 levels as trees that function as 

carbon sinks are removed. Environmental changes refer to any alterations in the 

biophysical environment, with ecosystems continuously undergoing both positive 

and negative transformations (Jackson et al., 2001). Urbanization, industrial 

growth, and deforestation are key drivers that impact the physical, chemical and 

biological aspects of the environment leading to the emission of gases in 

atmosphere and elevating health risks for humans. Climate variability can stem 

from natural processes in climate systems or from shifts in external forces, 
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whether natural or human-induced. In recent decades, the planet has faced an 

unprecedented warming trend, with temperatures increasing at an average rate of 

0.128 ± 0.026 °C annually over the past 59 years (Solomon et al., 2007). 

Pakistan is situated between 23° 45’ and 36° 75’ north latitude and between  61° 

and 75° 50’ east longitude. As a subtropical country, Pakistan exhibits climatic 

variability that significantly influences its ecological diversity, supporting a wide 

range of forest types. To west of Pakistan is Iran on the east is India to north-west 

side is Afghanistan, on the north is China and on south is Arabian Sea. It vary due 

to the variation in altitude from south to north and geographically, extends from 

snowcapped mountains in north to deserts and the Arabian Sea in south. Indus 

River flows in country about 2500 kilometers and starts from Karakorum and 

Himalaya to Arabian Sea therefore Pakistan is known as a land of Indus River. 

Pakistan has three major regions. Arid plateau of Baloc histan in southwest, 

mountains in north and lowlands along indus in south. The most pleasant months 

are April through September in the northern part of country, while mid-day 

temperatures can exceed 40 OC in low-lying plains of the Indus Valley.Coldest 

months are January and February , with temperatures dropping between 10 and 

25 degrees Celsius. The region receives an average annual rainfall of 76mm. In 

the northern areas of the lower Indus plains, rainfall varies from 13 cm in the 

plains to 89 cm in the Himalayan region. The monsoon typically occurs in the 

southern regions during late summer, while precipitation remains low in areas 

such as Baluchistan and the northern regions, including Gilgit-Baltistan and the 

northern parts of Khyber Pakhtunkhwa. 

Pakistan's landscape is highly diverse, particularly in the northern regions where 

the Karakoram, Hindu Kush, and Himalaya ranges converge, forming some of the 

most varied high-altitude terrains. This area is part of one of the coldest regions 

on Earth, with elevations reaching 5175 meters above sea level in Himalayas (Ali 

et al., 2015). Despite its rich landscapes, According to estimates from the Pakistan 

Bureau of Statistics and the Food and Agriculture Organization of the United 

Nations, Pakistan has a minimal amount of forest cover; just 2.2%, or 4.55 million 

hectares under forests. Between 1990 and 2010, Pakistan's forested areas 

experienced significant changes, with an annual loss of 42,000 hectares, or 1.66%, 
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leading to an overall 33.2% decline in forest cover during that period (WCMC, 

2018). The forestry sector currently contributes 0.39% to the national GDP and 

saw a growth of 7.17% in 2018, following a decline of -2.37% in 2017, largely 

due to increased timber production reported in Khyber Pakhtunkhwa 

(Government of Pakistan, 2018; National Forest Monitoring System Annual 

Report, 2022). 

1.2. Status of Forest Cover at the National Level  

Globally, forests currently cover up 31% of the terrestrial area (UN Global Forest 

Goals Report 2021). According to the definition of forest as per Pakistan Forest 

Institute, Pakistan forest cover vary between 5.1 and 5.45 percent, with an 

uncertainty of ± 0.8%, are the mean national forest cover estimates. In the 

Western Himalaya, the province of Khyber Pakhtunkhwa (1.49 million ha), the 

administrative region of Gilgit-Baltistan (0.66 million ha), and the state of Azad 

Jammu and Kashmir (0.26 million ha) have around 67% of the world's forest area. 

Between 2013 and 2019, the afforestation area officially reported was around 

123,500 hectares. Furthermore, Qamer et al. (2016) reported that the Provincial 

and State Forest Departments controlled approximately 57,912 km of linear 

plantations. 

Pakistan has diverse ecological zones, divided into various forest types based on 

altitude and species composition. Mangrove, tropical thorn/scrub, tropical dry 

deciduous, sub-tropical broad-leaved evergreen, sub-tropical chirpine, moist 

temperate, dry temperate, sub-alpine, and alpine scrub forests are among these 

woods. According to forest type, riverine (4%), irrigated plantation (4%), thorn 

(3%), mangrove (3%) and sub-alpine forests (2%), followed by sub-tropical 

broadleaved scrub (19%), moist temperate (15%), Chirr Pine (13%), and dry 

temperate forests (36%) have the highest proportionate coverage. Between 2004 

and 2012, the mean forest carbon store was calculated to be 192 million tonnes. 

(MOCC Pakistan, National Forest Monitoring System). Additionally, forests are 

crucial for sequestering carbon.  

NFMS has defined forest on the national level as ‘a minimum of 0.5 hectares of 

land with a tree crown cover percentage of above 10% that is made up of trees 
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with a minimum height potential of two metres. This would also encompass 

regions that are now under irrigation and areas that have previously been 

classified as forests in the corresponding legal documents, provided they match 

the standards outlined in Pakistan's national forest definition’. National Forest 

Monitoring System (NFMS) aims to collect accurate and consistent data across 

various forested landscapes in Pakistan. This definition aligns with international 

standards, providing a clear framework for monitoring forest resources and 

guiding sustainable forest management practices. It also serves as a critical 

reference point for assessing deforestation, afforestation, and reforestation efforts, 

helping to track progress toward national and global environmental goals. The 

inclusion of irrigated plantations and legally defined forest areas underscores the 

system's comprehensive approach to encompass diverse forest types within the 

country. 

1.3. Types of Forest in Pakistan 

Forest type is defined as unit of vegetation which possess characteristics in 

physiognomy and structure. (Champion, 1968). These characteristics can include 

factors such as species composition, canopy structure, density, and the ecological 

functions they support. A variety of environmental factors, including climate, soil 

type, altitude, and disturbance regimes influence forest types. This classification 

is essential for forest management, conservation, and biodiversity assessments, as 

it identifies and differentiates forest ecosystems based on their distinct features. 

Following are the forest types found in Pakistan. Alpine pastures are in the 

northern region of country, Hazara and Malakand division, Gilgit and Diamir 

districts of Gilgit Baltistan. Species include Salix, Lonicera, Berberis, Junipers 

and Ephedra.  

Sub-alpine forests are topmost tree formation in Himalayas from 3350 m to the 

timber limit with open canopy and are in transition zone between temperate 

forests and alpine meadows. This type of forests is found in AJK, Upper Dir, 

Swat, Chitral, Hazara and Gilgit. Main tree species are Abies pindrow and Betula 

utilis with undergrowth of Viburnum and Salix etc.  
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Dry Temperate Forests elevation range is about 1525 m to 3350 m and in upper 

reaches of Kaghan Valley, Swat, Dir, Chitral, Diamir and Gilgit; Hindu Kush 

Range, North and South Waziristan Agencies and Zhob district of Baluchistan, 

monsoons doesn’t occur in these forests. Main tree species are; Deodar, Chilgoza, 

Quercus, Kail, Juniper and Spruce. Oak forests falls in temperate zone and 

confined to lower reaches. The trees exceed 10 m in height. The soil in dry 

temperate forests are bare (except where extra edaphic supplies of moisture). 

Xerophytic vegetation occurs, small leaved and greyish foliage is found, 

predominated by aromatic shrubs such as.Artemisia, and having extensive root 

system. The grass is mostly small and forbs have thick taproot with a few 

climbers. 

1.4. Rationale 

Forests play a crucial role in absorbing carbon dioxide through photosynthesis, 

thus mitigating climate change. Deforestation and forest degradation, driven by 

human activities, significantly increase atmospheric CO2 levels. Without forests, 

CO2 accumulation would be 43% higher (Menon et al., 2007). Sustainable forest 

management, conservation, restoration, and afforestation can help reduce 

greenhouse gas emissions, while deforestation, forest fires, and fossil fuel burning 

contribute significantly to these emissions. Forests sequester carbon and offer 

various ecological, economic, and social benefits. Land use changes, including 

the conversion of forests to croplands, contribute about 10% of anthropogenic 

CO2 emissions and have exacerbated climate change over the past two hundred 

years (Dube and Stolpe, 2016; Zhang et al., 2017). As the trees grow in the forest, 

they absorb carbon dioxide from the atmosphere and hence reduce the 

concentration of carbon dioxide in atmosphere and in soil, wood, leaves it is 

accumulated. Carbon will be left in the forest deposited and will be discharged 

into environment with the destruction of forest (Justine et al., 2015). 

Climate change is caused by this global warming and as a result, natural disasters 

such as modification in food production, stress on water resources, and harm to 

human health, floods, drought, wildfires, high temperatures etc. occurs (NASA, 

2016). To mitigate climate change we need to control the emissions of greenhouse 

gasses. One of the major roles is played by forests in lessening the emission of 
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greenhouse gases as they store atmospheric carbon dioxide when they grow. Day 

to day carbon dioxide CO2 mean accumulation reached 400 ppm in “Manua Loa 

Station in May 2013”.  

Between 1990 and 2015, Pakistan lost almost a million hectares of forest (FAO, 

2014), or around 25% of its natural forests. The average annual rate of 

deforestation is projected to be 42,200 hectares (World Bank, 2015). 

Deforestation reduces biomass above and below ground at a rate of 2.2 percent 

per year, amounting to 100 million tons of CO2 e; from 330 million tons in 1990 

to 213 million tons in 2010 (World Bank, 2015). 

The primary causes of deforestation are population growth, grazing, changing 

land uses, illegal harvesting, and an increase in demand for forest products such 

as fuel wood, fodder, and lumber that exceeds availability (FCPF, 2013). Owing 

to sparse forest density, flooding, irrigation failure, soil erosion from watershed 

areas, Pakistan annually incurs a loss of PKR 2.3 billion (GOP and UNEP, 2019). 

Because conifer timber has such a high value, coniferous forest acreage has 

quickly shrunk. In recent decades, government forests have been moved to non-

forestry and commercial uses like infrastructure, agriculture, tourism, and defense 

(World Bank, 2015). Because of their large carbon stock, peatlands, and 

prolonged maturity age, coniferous forests in Pakistan are thought to be the most 

significant areas for preservation (Khan et al. 2019). 

Quantifying above-ground biomass (AGB) and carbon sequestration potential in 

the moist temperate forests of Abbottabad District is critical for climate change 

mitigation and sustainable forest management. This study employs a sophisticated 

approach by integrating remote sensing data from satellite imagery with detailed 

forest inventory data. The use of geospatial modeling techniques enhances the 

precision of biomass and carbon stock estimates by capturing spatial and temporal 

variations in forest structure and health. The application of the Analytic Hierarchy 

Process (AHP) to evaluate different parameters affecting biomass estimation such 

as forest type, canopy density, and topographic features is made possible by the 

integration of multiple data sources. The multi-criteria decision-making method 

enhances the reliability of the models used to forecast carbon sequestration 

capability across diverse forest landscapes. The outcomes will inform sustainable 

practices that optimize the forests' carbon sequestration capacity, contributing to 
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global efforts to mitigate climate change while ensuring the conservation of 

critical ecosystems in the Abbottabad District. 

1.5. REDD+ 

International interest in REDD+ has increased to achieve sustainable forest 

management and offset carbon release at a lower cost. The main goal of REDD+ 

is to create incentives for improving forest management forest management. 

According to the United Nation Framework Convention on Climate Change 

(UNFCCC), satisfaction can be quantified in relation to national performance; 

however, there are concerns about how these motivators will be communicated in 

non-specified nations and how the benefits of REDD+ will be divided among 

different participants.  

FRELs are the emissions that will be used to measure emission reduction under 

REDD+ program. United Nation Framework Convention on Climate Change has 

defined FREL as a benchmark for aceesing country performance in implementing 

REDD+ activities.  

As per the most recent United Nation Framework Convention on Climate Change 

Conference of Parties, suggested a universal administration structure for 

“Reducing Emissions From Deforestation and Degradation (REDD+)” and part 

of Sustainable forest management (SFM), conservation and increasing the carbon 

stock of forest in the developing countries the REDD+ eventually appear as 

execution based system that will give economic remuneration to deliberately 

taking an interest creating nations (Loft et al., 2015). The REDD+ has ability as 

a component for decreasing forest degradation, moderate ozone harming 

substance (GHG) discharges and conserve biodiversity in numerous nations (Sein 

et al., 2016). 

Pakistan is UN-REDD partner country that started REDD+ operations in 2010. 

Worldwide Fund for Nature Pakistan (WWF-Pakistan), the International Centre 

for Integrated Mountain Development (ICIMOD), and the Climate Change 

Ministry launched the REDD+ Preparedness Phase for Pakistan in 2012.It has 

recommended REDD+ guidelines that uses ground-based carbon measurement 

and RS for carbon, biomass estimation, GHG emissions, and changes in forest 
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area owing to degradation and deforestation. Forests contribute in reducing the 

atmospheric concentration of carbon dioxide (Alkama and Cescatti, 2016). 

Despite the significant contribution of forests to the global carbon cycle, they are 

destroyed at an accelerated rate, accounting for 12–20% of all anthropogenic 

carbon dioxide emissions (Collins, 2015).  

Khyber Pakhtunkhwa has 66% of the nation's coniferous forests, which offer 

enormous potential to store carbon and lower emissions as part of the REDD+ 

Programme. Khyber Pakhtunkhwa has completed a thorough inventory of forest 

carbon and produced a sub-national REDD+ policy. The Khyber Pakhtunkhwa 

government has effectively finished planting one billion trees as part of a massive 

afforestation project, which would massively increase the province's carbon store.  

Degradation and deforestation are the major cause of carbon dioxide discharge 

into the atmosphere. Out of the total greenhouse gasses emission due to the 

anthropogenic activities from degradation and deforestation, carbon emission 

contributes about 12%-20%. The goal of REDD+ is to mitigate climate change 

by reducing carbon emissions caused by degradation and deforestation in 

developing countries through a variety of actions.  

An estimated 4.123 million tonnes of CO2 were released annually between 1992 

and 2012 as a result of deforestation and forest degradation, or 2.128 million 

tonnes from deforestation and 1,995 million tonnes from degradation. Prior to 

1992, 6.458 million tonnes of CO2 were emitted annually overall. However, it is 

predicted that in 2012, the annual carbon sequestered by the trees was 5.968 

million tonnes. 

1.6. Carbon Storage Dynamics 

The processes and mechanisms by which carbon is taken in, held, and released in 

different ecosystems are referred to as carbon storage dynamics. Carbon Pool is a 

reservoir or storage area where carbon is accumulated within an ecosystem, 

including biomass, soil organic matter, and the atmosphere. Carbon Stock refers 

to the total amount of carbon stored within a specific ecosystem or ecosystem 
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compartment. The process of absorbing and storing carbon dioxide from the 

atmosphere in carbon pools is known as carbon sequestration. This process is 

mostly carried out by plants through photosynthesis.  

In 1990, the carbon stock in this Pakistan’s forests was approximately 309 tons 

per square kilometers, but it saw a decline to 261 tons per square kilometers by 

2009 due to deforestation and land-use changes. However, by 2020, the carbon 

stock had increased significantly to 409 tons per square kilometers because of 

reforestation and better forest management practices (Goheer et al. 2023) 

The total amount of greenhouse gases (mostly carbon dioxide) released into the 

atmosphere either directly or indirectly because of human activity; this amount is 

typically expressed in carbon dioxide equivalents (CO2e). Since different 

greenhouse gases have different warming effects on the Earth's atmosphere over 

time, CO2e allows for a standardized comparison. To express emissions of 

different greenhouse gases in a common unit, their emissions are converted to 

CO2e using conversion factors.  

1.7. Vegetation Indices 

Indices quantify various vegetation properties, such as biomass, greenness, 

health, and photosynthetic activity. Unlike narrowband vegetation indices, which 

utilize specific narrow wavelength bands, broadband vegetation indices integrate 

reflectance information across wider spectral regions. Canopy Water Vegetation 

Indices (CWVI) are vegetation indices specifically designed to quantify the water 

content within plant canopies. These indices utilize spectral bands sensitive to 

water absorption features in the electromagnetic spectrum, typically in the 

shortwave infrared (SWIR) region. Water absorption features occur around 

wavelengths of approximately 1.4 micrometers (µm) and 1.9 µm due to the 

presence of water molecules in plant tissues. 

Khyber Pakhtunkhwa province has more than half of the nation's coniferous 

forests, which makes it significant for sequestering carbon. All throughout the 

world, three different methods—destructive, non-destructive, and remote 

sensing—are utilised to estimate carbon stocks. Of all the existing techniques for 

measuring biomass, the destructive method is the most straightforward for 
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determining above-ground biomass and the carbon stocks present in forest 

ecosystems (Gibbs et al. 2007). 

Non-destructive approach of estimating biomass is suitable for ecosystems 

containing rare or protected tree species, where it is not practical or viable to 

harvest those species. Allometric equations relate easily measurable plant 

attributes to biomass, such as tree diameter at breast height (DBH) and height. 

These equations are species-specific and are derived from statistical relationships 

between the measured attributes and actual biomass (Nelson et al. 1999). 

1.8. Impact of Climatic parameters on carbon sequestration potential  

The impact of minimum and maximum temperatures on a forest's carbon 

sequestration potential and carbon stock is significant and can vary depending on 

the specific ecosystem, forest type, and regional climate conditions. Higher 

temperatures can enhance the rate of photosynthesis up to an optimal point. 

Beyond this point, extreme temperatures may reduce photosynthetic efficiency 

due to thermal stress, reducing carbon uptake by trees. 

Both minimum and maximum temperatures influence plant respiration rates. 

Higher temperatures increase respiration, which can lead to a net loss of carbon 

if respiration exceeds photosynthetic carbon gain. Warmer nights (higher 

minimum temperatures) can particularly increase nighttime respiration, reducing 

the overall carbon sequestration potential. Also, optimal temperatures promote 

tree growth, enhancing biomass accumulation and carbon stock. However, 

extreme temperatures, especially prolonged elevated temperatures, can cause heat 

stress, reducing growth rates and, consequently, the carbon stored in the biomass. 

In cooler climates, lower minimum temperatures can slow down soil microbial 

activity, allowing more organic carbon to be stored in the soil. However, this 

stored carbon may be released more rapidly if temperatures rise. Forests with 

species adapted to cooler temperatures may struggle in warmer conditions, 

potentially leading to species composition shifts and overall forest carbon 

dynamics. 
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1.9. Climate Feedback Loops 

Changes in forest carbon sequestration due to temperature variations can feed 

back into the climate system. Reduced carbon sequestration capacity can 

contribute to higher atmospheric CO2 levels, further driving climate change and 

creating a cycle of warming and reduced carbon storage. Historically, the forests 

in the Abbottabad district have played a vital role in carbon sequestration, acting 

as significant carbon sinks due to their dense vegetation and diverse ecosystems. 

These moist temperate forests have traditionally stored substantial amounts of 

carbon, helping to regulate the regional climate. However, with the recent shifts 

in climate patterns, including temperature increases, the capacity of these forests 

to sequester carbon is being challenged. 

In climate feedback loops, changes in the carbon sequestration capacity of these 

forests due to temperature variations can significantly impact the broader climate 

system. As temperatures rise, ability of forests and store carbon diminishes, 

leading to increased atmospheric CO2 levels. This further exacerbates global 

warming, creating a self-reinforcing warming cycle and reducing carbon storage. 

In the Abbottabad region, where forests have historically been resilient, the rising 

temperatures may begin to disrupt this balance. While temperate forests are 

generally more resilient to moderate temperature changes than tropical forests, 

continued warming could still reduce biomass and carbon storage capacity. 

Understanding and mitigating these impacts is crucial for sustaining the region's 

forest ecosystems and their role in global climate regulation. 

1.10. Analytical Hierarchy Process 

The Analytic Hierarchy Process (AHP) is used to analyze the impact of various 

climate indicators on Above-Ground Biomass (AGB) by structuring the problem 

into a hierarchy of criteria. Experts perform pairwise comparisons between 

climate factors like temperature and precipitation, assigning weights based on 

their influence on AGB. These weights are calculated through a comparison 

matrix, ensuring consistency in judgments. Pairwise comparisons are performed 

between the indicators, where experts assign weights based on their relative 

importance in influencing AGB. These comparisons are used to construct a 

pairwise comparison matrix, and the weights are derived from this matrix, 
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reflecting the significance of each indicator. The consistency ratio is calculated to 

ensure the reliability of the judgments. The final weighted scores reveal the 

relative impact of each climate indicator on AGB, providing a clear, systematic 

way to prioritize and understand how climate variables affect biomass, aiding in 

effective forest management decisions. 

By performing a pairwise comparison of these indicators, we aim to assign 

relative importance to each and develop a clear understanding of how they 

contribute to the overall carbon sequestration potential of the forest. This process 

is critical for identifying the most sensitive areas of the forest that are vulnerable 

to climatic changes and may require targeted management interventions. 

Additionally, AHP offers a mechanism for integrating geospatial analysis with 

decision-making processes, ensuring that the spatial variability of forest 

conditions is considered. This allows policymakers and resource managers to 

prioritize regions for conservation efforts based on a combination of 

environmental sensitivity and carbon storage capacity. By providing a structured, 

quantitative framework for decision-making, AHP enhances the accuracy and 

effectiveness of forest management strategies in response to climate change.  

1.11. Objectives of the study 

O map above ground biomass, carbon pool and carbon sequestration 

potential of Abbottabad Forest area. 

• To analyze the impact of climate indicators on the carbon stock of forest 

via sensitivity analysis. 

1.12. Scope of Study 

The study aims to assess the biomass and carbon sequestration potential of moist 

temperate forests in Abbottabad. The study employs geospatial modeling 

techniques to estimate AGB and carbon stock across different forests and regions 

within district. Additionally, it examines the impact of climate variables, 

particularly temperature and precipitation, on carbon sequestration. 
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Chapter 2                                                                                                                            

LITERATURE REVIEW 

Forests in Pakistan harbors approximately 213 million tons of carbon within their 

living biomass. Between 2012 and 2013, the forest growth rate showed a robust 

increase of 6.8%. However, this growth slowed notably in 2014–2015, with a 

decrease of −12.45%. Subsequently, there was a significant expansion in 2015–

2016, marked by a rapid growth rate of 14.31%. Despite a slight decrease to 

2.37% in 2016–2017, efforts such as the Billion Tree Tsunami initiative have 

propelled forest growth, with the growth rate rising to 7.17% in 2017–2018. These 

initiatives play a crucial role in combating deforestation and fostering a healthier 

forest ecosystem (FFCI 2018; WCMC 2018). 

Bruce et al. (1999) conducted a study on allometric regressions to improve 

estimates of secondary forest biomass in central Amazon. They developed 

regression equations for eight abundant tree species using DBH as the primary 

input variable. Models using DBH, height and SD inputs showed better accuracy 

and lower error rates.  

Brown et al. (1989) estimated the above ground biomass of tropical forest via 

regression equations. They applied these regressions to 5300 trees in 43 sample 

plots from forest inventories. Forest stands with smaller trees had higher 

expansion factors, which decreased to a constant value as QSD increased. For 

undisturbed forests, the expansion factors were 1.74, 1.95 and 1.5 for moist, moist 

to dry and dry life zones respectively. With FAO data, it increased previous 

volume-derived biomass estimates by 28% to 47%. However destructive based 

samples remained higher compared to volume data-based estimates.  

Fakuda et al. (2003) analyzed forest inventory data to assess carbon budgets in 

hinoki and sugi forests in Japan. They converted wood volume data to biomass 

carbon values for accurate carbon stock estimates. Their research sought to assess 

carbon stocks in all sugi and hinoki plantations using forestry information. 

Enabling carbon stock calculations and mapping. Volume calculations for 

approximately 1000 trees were conducted using Smalian's formula. Bivariate 

regression equations were then developed based on the calculated volume, girth 
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at breast height (GBH), and height for various girth classes. Hinoki forests 

showed lower volume accumulation than sugi forests until maturity. Biomass 

allocation varied by forest type, with hinoki forests exhibiting higher branch 

biomass proportions in younger stands. Total biomass to bole biomass ratios 

decreased with age, stabilizing after 30 years. The average expansion factor for 

both forest types was 1.72 Mg per hectare. Results indicated sugi and hinoki 

plantations in Japan collectively stored 346 and 139  x 106 Mg of carbon, 

respectively. Significant carbon stocks were observed in the southwestern region 

of Japan in both sugi and hinoki forests.         

Ullah et al. (2012) analyzed carbon reserves in Bangladesh's Tankawati natural 

hill forest. To quantify biomass and soil carbon stocks, they used wet oxidation 

and loss on ignition techniques along with a systematic sampling approach and 

GPS to locate sampling spots. The forest's total carbon stock was 283.80 t·ha−1, 

with 110.94 tons from trees, 0.50 tons from undergrowth (grass, shrubs, and 

herbs), 4.21 tons from litter fall, and 168.15 tons from soil (down to 1 m). This 

suggests that the forest has the capacity to sequester carbon dioxide by acting as 

a substantial carbon reservoir. The total soil organic carbon measured in the study 

area at five different soil depths was 168.15 tons per hectare, which is very similar 

to the national average for India. Research recommends combining carbon 

sequestration with the Kyoto Protocol CDM carbon trading scheme to maximize 

the potential of Bangladesh's forest sector.    

Mani et al. (2007) carried out research aimed at determining the distribution of 

AGB in 10 one hectare plots  situated in forests india. There were two linear 

regression equations used. Using basal area (BA, Method 1) in one case, and 

height and BA in another (Method 2). AGB from Method 1 ranged from 39.69 to 

170.02 Mg ha−1, whereas Method 2 produced results from 73.06 to 173.10 Mg 

ha−1. In both inland and coastal locations, positive associations between BA and 

AGB were found. 42 different tree species' basic wood-specific gravities ranged 

from 0.47 to 0.89 g cm−3 for coastal locations and from 0.46 to 0.92 g cm−3 for 

inland areas based on oven-dry weight by volume. This study's AGB estimation 

provides a more accurate representation of biomass in tropical dry evergreen 

forests due to the extensive sampling conducted.   
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Ghosh et al. (2021) estimated above-ground biomass (AGB) in an Indian 

mangrove forest that is rich in carbon using multi-temporal factors gathered from 

Sentinel 1 and Sentinel 2 data. They used RF, XGBoost, GBM models for 

prediction. Data find the best technique. Based on individual date data values, 

analysis showed that modeling AGB produced estimates with root mean square 

errors (RMSE) ranging from 149.242 t/ha for XGB to 151.149 t/ha for RF. On 

the other hand, prediction accuracy was improved by AGB modeling using the 

multi-temporal picture stack's average and percentile metrics, 81.8 t/ha for XGB 

to 74 t/ha for RF. Additional accuracy improvement.  

Ali et al. (2020) assessed the subnational carbon stock in detail, taking into 

account every species of forest in the province. Data were obtained from 449 

sample plots using a stratified cluster sampling technique. A total of 144.71 

million tons of quantified carbon stock were found, with an average of 127.66 ± 

9.32 tons per hectare. Out of this, 68.15 million tons (48 percent of the total) of 

above-ground carbon stock were estimated, with 10% coming from below-ground 

biomass and 1% from litter. The study highlighted that hold the highest carbon 

stock at 99.41 tons per hectare, followed by moist temperate forests  at 85.04 tons 

per hectare. Sub Alpine forests were found to have above-ground carbon stocks 

of 34 tons per hectare. Subtropical forest demonstrated an above-ground carbon 

stock of 24.77 tons per hectare. In comparison, sub tropical forest have lower 

above-ground carbon stocks, with values of 4.52 and 4.48 tons per hectare, 

respectively.  

Ghaffor et al. (2019) conducted the work Assessment of tree carbon biomass in 

Soan valley Scrub Forest, Pakistan 2019.  The researchers compared the reliability 

of current generic pantropical models with local counterparts. 47 plots were 

measured for tree biomass as part of the study carried out in the Hayat-ul-Mir 

Forest, and estimations produced using allometric equations. No obvious 

differences were observed in biomass carbon estimates between the local and 

pantropical models for Acacia modesta, nor among the three models for Olea 

ferruginea. While all models exhibited a strong fit to the data, the pantropical 

model incorporating biophysical variables emerged as the most robust, offering 

accurate biomass predictions for subtropical species. This finding underscores the 
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potential of pantropical models in the absence of locally developed equations, 

ensuring reliable reporting of carbon stock in subtropical forests. 

Ahmad et al. (2014) assessed carbon stock in Chir forest of Dir district, Kpk. 

Study utilized data on growing stock obtained from the forest inventory conducted 

by the respective forest departments. Stem biomass was determined based on the 

respective tree species volume (m3) and wood density. The total above-ground 

biomass for individual trees varied depending on diameter classes.20.59 kg/tree 

for diameters up to 10 cm, 58.041 kg/tree for diameters between 11 and 20 cm, 

and 197.214 kg/tree for diameters above 20 cm. Similarly, trees total biomass 

within the respective diameter classes was 24.71 kg, 69.649 and 236 kg. 

Coniferous forest in Dir exhibited carbon stock valued 129 Mg/ha with a carbon 

content of 8.06 Tg.   

Munawar et al. (2015) undertook a study focusing on implementing measures to 

reduce emission in forest degradation in northern Pakistan. They developed time 

series analyses to track the temporal changes in CO2 emissions across the Dir 

District. Carbon stock data considered only aboveground emissions and 

sequestrations. The research aimed to identify potential REDD implementation 

sites in forest rich districts using SPOT and MODIS data. Analysis covered forest 

cover changes from 2000 to 2012 and associated with CO2 emissions trends. 

Results showed increases in NDVI of 9.7 and 11.16%, respectively. However, 

emission inventories like EDGAR and REAS indicated a general upward trend in 

CO2 emissions, mainly due to human activities.  

Imran et al.  (2020) employed remote sensing to quantify biomass a nd carbon 

content of Siran Forest Division. The research was mostly carried out between 

2015 and 2020. Carbon stock estimation predominantly relies on non-destructive 

methods, with remote sensing being a commonly adopted approach. Destructive 

methods are utilized solely to develop allometric equations. Recorded values for 

aboveground and below-ground biomass varied, with the highest recorded at 246 

and 64 t/ha and lowest at 55 and 14 t/ha. Above and below ground carbon stock 

ranged between 116 to 26 tons per hectare and from 30 t/ha to 6.7 tons per hectare. 
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Ali et al. (2018) conducted a study to estimate carbon stocks within the 

subtropical forest of Khanpur range Haripur. They employed satellite imagery 

and forest inventory data to quantify both biomass and carbon stocks. NDVI 

emerged as the preferred model for mapping biomass distribution, while Landsat-

8 imagery served for comparative analysis. The highest recorded aboveground 

biomass reached 246 t/ha, with below-ground biomass ranging between 14 and 

64 t/ha. Above-ground carbon stocks ranged from 26 to 116 t/ha, while below-

ground carbon stocks varied from 6.7 to 30 t/ha. Total carbon stock assessed 

amounted to 43,570.9 t. On average, biomass was 104.6 and carbon stock was 

49.7 t/ha. Garanthum exhibited highest biomass at 187.3 t/ha and carbon stock 87 

t/ha, Choi Forest has 148 t/ha. 

Ahmad eta l.(2018) used forest inventory techniques to examine the carbon sink 

of Deodar forest in Kumrat Valley located in Pakistan's Hindu Kush Himalaya 

region. categorized forest in 3 elevation classes (2300 - 2400 m, 2400 - 2500 m, 

and 2500 - 2700 m above sea level). They established nine sample plots (33*33 

m2) in each elevation class to measure carbon values in living tree biomass. 

Understory vegetation biomass was assessed by destructive sampling of 

vegetation in each subplot. The study aimed to assess carbon  in different biomass 

components. Overall, the results revealed that the Deodar Forest stored an average 

of 716 t/ha. The results highlight the Kumrat valley's impressive deodar forests' 

capacity to store carbon. 

As per Ashraf et al. (2022), the most recent national forest cover study from 2012 

indicates that Pakistan's forest cover ranges from 5.45 to 5.67 percent, with an 

uncertainty of ±0.8%. KPK province has the highest forest density in the country. 

TBTTP aims to bring additional 25% of the provincial area under forest cover 

technical profiling of the areas to be forested pose a severe challenge in 

afforestation efforts because of lack of proper scientific research and its potential 

impacts regarding plantation drive.    

Dang et al.(2019) used a machine learning regression approach to quantify 

aboveground biomass of forest in Yok Don National Park, Vietnam.. The study 

estimated aboveground biomass (AGB) and ultimately 5 carbon stocks by 

combining field-measured biomass with Sentinel2 satellite imagery with Random 
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Forest. The number of regression trees created using a bootstrap sample of 

observations (Ntree) the number of variables provided to prediction tree (Mtry) 

were the two input parameters that were optimized in RF. The trees were trained 

using two thirds of the data, and the remaining third were utilized to estimate the 

error using an internal cross-validation method. AGB was predicted by 132 

spectral and texture factors, with an R2 value of 0.94. Utilized are remote sensing 

data combined with forest inventories.  

Yagsi et al. (2021) carried out a GIS-based site suitability analysis for Konya, 

Turkey's afforestation. The criteria for analysis included land use capability 

(LUC), rainfall, slope, aspect, erosion. The paired comparison matrices generated 

were used to determine the weights of each criterion. The comparison matrix 

came first in the calculation of the parameter weights. All weighted layers were 

gathered and the resulting weights were used to create the research area map. The 

study's 15% most appropriate area and 25.52% suitable area were determined by 

the results, 28.95% was medium, 12.76% was low and 17.7 was found very low 

for the afforestation. After determining the areas to be afforested, 10 mostsuitable 

sites were displayed on website.    

Natsagdorj et al. (2022) geospatial information system and a multicriteria 

decision-making process were used to evaluate the appropriateness of the forests 

in the province of Khuvsgul. MCDM of the Geographic Information System and 

14 carefully chosen natural and socioeconomic characteristics were combined in 

the study's strategy to assess prospective forest suitability in Khuvsgul province. 

The findings showed that, of the Khuvsgul province's total area, roughly 24.5 

percent is highly suitable, around 74.4 percent is suitable, and 1.1 percent is 

moderately appropriate for forest restoration. Three multicriteria decision-making 

techniques were compared by Rashidi et al. 2022 in order to determine which area 

would be best for afforestation in Iran's Ardabil province. Three layers of criteria 

(primary criterion and two sets of sub-criteria) were identified for the suitability. 

The research indicates that the utilisation of TOPSIS in conjunction with the fuzzy 

AHP method yields more dependable results than the AHP method alone. Making 

more educated decisions about afforestation in the area may be aided by the 

findings.  



 
 

19 
 

Chapter 3 

MATERIALS AND METHODS 

3.1. Stusy Area 

Area of interest (Figure 3.1) is Abbottabad district located at 34°14'45.77"N, 

73°19'1.78"E in Hazara Division at an average elevation of 1256 m. With a 

population of 1.3 million, it covers an area of 1967 km2. Between 1998 and 2017, 

growth rates were 2.5% and 4.34% for urban and rural areas (Pakistan Bureau of 

Statistics 2017). The average temperature is 18°C. From May to September, the 

hot season has an average daily hot temperature exceeding 28°C, lasting 4.4 

months. June is the warmest month of the year, with an elevated temperature of 

31° C and low temperature of 18°C. The cold season, which spans 2.9 months 

from December to March, is characterized by daily average highs below 15°C. 

January is the coldest month of the year in Abbottabad, with temperature between 

11°C and  -1°C (Weather Atlas, 2023). 

3.2. Climate and Topography 

According to the Pakistan Meteorological Department (2023), the average annual 

precipitation in Abbottabad is approximately 1262mm. The driest month is 

November with 28mm of precipitation and wettest month is July having 229mm 

of average precipitation. Elevation and moon-soon winds influence the pattern of 

rainfall in the region. The average rainfall reaches 1366.16mm.  Average monthly 

rainfall varies significantly throughout the year, with the monsoon season from 

July to September accounting for much of the precipitation. Wettest month is 

usually July, with an average rainfall of over 200 mm.  

Topography includes ridges, valleys, and hill shadows with erratic slopes and 

rugged surface configuration. The region is covered with a humid temperate forest 

prevalent in areas with deep soil and gentle slopes, particularly in the cool 

northern aspect. Situated at the foot of the Himalayas, the terrain is mountainous 

with an average height of 2300 m, providing a temperate environment year-round 

(IUCN, 2004).  
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  Figure 3.1. Study area map of Abbottabad. 
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3.3. Forest Types and Vegetation 

Khyber Pakhtunkhwa (KPK) province is home to 40% of Pakistan's total forested 

land (Bukhari et al., 2012). The forested area ranges in elevation 1000 to 4000 

meters in Abbottabad (Ahmad et al. 2012). Forest are vital to rural livelihoods in 

KPK. Most local population meets their needs for fuelwood, sawn timber, and 

fodder(Sajjad et al. 2015); nevertheless, since 1992, coniferous forests have been 

losing ground at a pace of 1.3% annually (Ahmad et al., 2012). 

Abbottabad has 0.054 million hectares of forest covering 30% of the district’s 

total area (Mahmood, 2011). The KPK Forests Department "Gallies Forest 

Division (GFD)" oversees the Abbottabad forests, which are referred as "Gallies 

Forests" (KP-FD). Most forests comprise of coniferous forests protected under 

two different management schemes: community forests and reserved forests. 

Reserved woods are governed by a forestry selection system, and certain sections 

within them are granted certain rights to the local populace (Khan et al., 2019). 

Residents own the community woods, and their ownership rights over them are 

comparatively more expansive than those over reserved forests (Hasan, 2007). 

Most of the Abbottabad's forest cover is found in the Gilliat region; nevertheless, 

during the past century, changes in Galliyat's land use have resulted in a 50% loss 

in the territory's forest cover (Irshad and Khan, 2012). The tree density in 

community forests has decreased because of the severe forest clearing that has 

occurred in Ayyubia National Park (ANP) in Galliyat (Aumeeruddy et al., 2004). 

The three most common species in the study area are deodar, fir and blue  pine. 

At the highest altitudes, fir is present, followed by deodar and kail at intermediate 

heights, and chir in lower altitudes (Khan, 2002). 

3.4. Materials 

Multiple fields measuring equipment's were used to collect forest inventory data 

on the field. Table 2.1 shows us various instruments used for field inventory of 

Above Ground Biomass estimation. 
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3.4.1. Tools and Software  

For the analysis and processing of data the tools and software’s used are listed in 

Table 2.2 

3.4.2. Dataset 

Research was conducted by integrating following datasets. Satellite imagery from 

landsat 8 and 5 were downloaded from USGS.The Pakistan Meteorological 

Department (PMD) in Islamabad provided climate data, which included 

temperature, precipitation, and humidity levels. Administrative boundaries at 

levels 1 and 2 were represented by shapefiles (PAK_adm1.shp and 

PAK_adm2.shp), which were downloaded from GADM website 

(http://www.gadm.org/). Additionally, forest inventory data; DBH, tree density, 

tree species distribution, and terrain parameters, was accessed and downloaded 

the Ministry of Climate Change National Forest Monitoring (NFMS) portal. 

Datasets used in the research along with the sources are mentioned in Table 3.3. 

3.5. Analytical Framework  

3.5.1. Methods 

Study is divided into four major sections: 

Step 1. Field Data Collection 

This step includes field data collection. Forest inventory data was collected, 

including Diameter and Height data of the trees in sample plots, which was then 

processed via allometric equations for biomass estimation.  

Step 2. Geospatial analysis of Hyperspectral Imagery 

In this step preprocessing of satellite imagery is done. Then, the computation of 

vegetation indices is done to analyze their relationship with forest inventory data. 

Finally, biomass mapping is done from spectral indices of Landsat 8- OLI 

imagery. 

Step 3. Quantifying Carbon pool and Forest Emissions 

http://www.gadm.org/
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In the third step estimation of carbon stock, carbon Sequestration potential and 

CO2e emissions and carbon emissions are calculated. 

Step 4. Analyzing the impact of climate indicators via Analytical Hierarchy 

Process 

Sensitivity to climate indicators was analyzed using the Analytic Hierarchy 

Process (AHP), where pairwise comparisons were conducted to assign weights to 

each indicator, revealing their relative impact on Above-Ground Biomass (AGB). 

The resulting weighted scores provided a systematic evaluation of the influence 

of each climate factor. Step-wise procedure is explained below, and methodology 

of the study is displayed in Figure 2.2. 

3.5.2. Field Data Collection 

3.5.2.1 Forest Inventory 

Field materials were prepared, and training on the field equipment was done in 

pre-field work, followed by field data sheet preparation to collect data. Field data 

was obtained from 36 sample plots for ROI in 2022 to estimate biomass and 

carbon stocks.  

3.5.2.2. Win rock sampling method 

The Win rock sampling method developed by Win rock International was a 

systematic approach employed for forest carbon measurement. The method used 

stratified cluster sampling to represent different forest types and conditions 

adequately. The forest area was divided into strata based on factors such as forest 

type, management practices and age. This stratification helped improve the 

precision of carbon stock estimates. The Win rock plot calculator helps to 

construct carbon stock measurement field campaigns by predicting the number of 

sample plots required to estimate terrestrial carbon stocks. It aimed to provide 

accurate and consistent estimates of forests. 
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Table 3.1 List of Field Equipment used in the study 

Sr. No Equipment Utility 

 1 Haga Altimeter Height measurement 

2 Sunnto Clinometer Slope and height measurement 

3 DBH tape Diameter Measurement (DBH) 

4 GPS device Navigation 

5 Ranging Rods Plot Centre and Location 

Table 3.2 Tools and Software used in study for analysis  

Sr.No Software and Tools Utility 

1 ERDAS 2014, QGIS 2.8.9, ENVI Classification, Preprocessing of Sentinel-2 

Imagery 

2 Arc Map 10.8.2 Vegetation Indices and Biomass mapping, 

AHP 

3 SPSS, Microsoft Excel Statistical Analysis 

4 Win rock Sample Plot Calculator Forest Inventory Sampling Design 

5 Microsoft Word Project Report Writing 

6 Satellite Land Monitoring Systems Design of systematic sampling 

Table 3.3 Datasets, variables and their sources used in the study. 

Sr. No Data Variables Source 

1 Satellite imagery Landsat 5 and 8. USGS 

2 Climate Data Temperature, Precipitation, 

Humidity. 

PMD, Islamabad 

3 Administrative 

Boundaries 

(PAK_adm1.shp) 

(Pak_adm2.shp) 

Global Administrative 

Areas 

http://www.gadm.org/ 

4 Forest Inventory Data  DBH, Tree Density, Tree 

Species Distribution, terrain 

parameters. 

Ministry of Climate 

Change (NFMS portal) 
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3.5.2.3. Stratified cluster sampling 

Figure 3.2 depicts the initial sampling, which consisted of 10'x 10' grid plots. To 

collect forest inventory data, sample plots were put out in the research region 

using the stratified cluster sampling technique. In June 2022, tree diameter and 

height characteristics were collected for the forest inventory. Sampling design 

employs a stratified two-phase sampling approach, integrating the SLMS process. 

In the first phase, a systematic grid of 10’x10’ was generated for visual 

interpretation of land use and forest cover analysis. During the second phase, the 

10’x10’ grid was adjusted to smaller sizes of 5’x5’, 2.5’x2.5’, and 1.25’x1.25’ to 

determine the number of sample plots and accessibility criteria. Stratification was 

based on forest types using the forest mask from 2012, and forest type boundaries 

developed during the pilot NFI 2018 were utilized. 

The cluster sample plot as shown in Fig 3.3 comprises five sub-plots. The Primary 

Sub-unit (PSU) is situated at the center of the cluster, while the four Secondary 

Subunits (SSUs) are located at the four corners, each 200 meters apart. Each sub-

plot comprises three concentric circular plots. The first sub-plot has a radius of 

17.84 meters and is used for measuring all living trees and standing deadwood 

stems with diameter breast height (DBH) above 5 cm. Second subplot with the 

radius of 5.64 meters, is designated for counting seedlings and measuring shrubs. 

Third subplot with the radius of 0.56 meters is used for measuring above-ground 

non-tree biomass, litter, and soil samples. This design was adopted to maintain 

consistency with the previous inventory conducted by MOCC in 2020 (NFMS-

MRV Report, MOCC 2020) (Nizami, 2012). Figures 3.2 and Figure 3.3 below 

shows the location of sample points in Abbottabad. 
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Figure 3.2.10’x 10’ grid plots using stratified cluster sampling technique 

 

      

Fig 3.3.Cluster sample plot comprised of five sub-plots 
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3.5.2.4. National Forest Inventory Protocol 

The National Forest Inventory Protocol were mainly adopted from the National 

Forest Inventory Manual developed during phases. All carbon pools were 

measured during the current MRV campaign. Measurement of sample trees was 

carried out by following protocol. All trees with DBH-1 above 5 cm are measured 

from the17.84c meter radius sample plots. Species and DBH-1 (at 1.3 meters). In 

case of anomaly at 1.3 m the DBH was measured slightly above that point. In the 

case of forked tree below DBH, two trees were considered, broken top or not. 

Broken top trees were not selected as sample trees. 

3.5.3 Calculation of biomass from Allometric Equations 

Using data from the forest inventory, allometric equations are statistical 

regression models created to estimate biomass; some are specie specific (Basuki 

et al., 2009). The accuracy of allometric equations' biomass predictions is 

dependent on field-collected forest inventory data; any errors in field 

measurement will be reflected in the equation (Picard et al., 2012). Using 

allometric equations, tree volume can be calculated by putting forest inventory 

parameters. The data from the forest inventory is entered into the allometric 

formulas to determine carbon stock and biomass. According to Brown et al., 

(1989), an equation can be created for multiple species or for a single species, 

allowing biomass to be approximated globally or for a particular region. 

Allometric equations are different for different species, meaning they are specie 

specific. Table 3.4 shows the allometric equations for the species identified in the 

forest region taken from Pakistan Forest Institute, Peshawar.  
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During the fieldwork, the treelevel field data and GNSS coordinates were appro

priately entered into the pre-designed field forms and tally sheets. In the event 

where differential devices were utilized, the GNSS coordinates were post-

processed using a differential correction method. All PSU and SSU center 

coordinates were adjusted using base station data in this procedure. This process 

corrected all PSU and SSU center coordinates with base station data, which was 

located at a known location. For the National Forest Inventory (NFI) in Pakistan, 

data processing and storage encompassed the entry of data into a database system 

using customized applications developed on Open Foris Collect. Validated data 

was uploaded into the NFMS National Forest Inventory Database. Finally, the 

data was exported in csv format, which was suitable for the spreadsheet software 

used for inventory calculation. Finally, the data was exported in csv format, which 

was suitable for the spreadsheet software used for inventory calculation. Finally, 

the data was exported in csv format, which was suitable for the spreadsheet 

software used for inventory calculation. 

3.5.4 Image Acquisition  

For a temporal evaluation of changes in land cover and use for 2011 Landsat 5 

data was downloaded for September. The title used was of Landsat 5, Scene No. 

150-036, which had 7 bands. For year 2022, Scene No. 150-036, Landsat-8 

satellite data was downloaded for April because of more cloud cover in the month 

of September. Images of those months were downloaded in which the vegetation 

with less snow and cloud cover. The United States Geological Survey Earth 

Explorer website (Earthexplorer.usgs.gov) provided the remotely sensed data that 

was downloaded.  Landsat 8 data has 11 bands and was of 30 m resolution. Details 

are mentioned in the table 3.5. 
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Table 3.4 Allometric equations used to calculate above ground biomass for tree 

species in Abbottabad 

 

 

Table 3.5.Data sources used for Satellite Image Acquisition 

S.No. Satellite Scene No. No. of Bands Acquisition Date 

1 Landsat 5 150-036 7 25-09-2011 

2 Landsat 8 OLI 150-036 11 16-04-2022 

 

 

S.No. Species Allometric Equation References 

1 Olea ferruginea (Kahu) AGB=7.8863+0.0556(D2H)  Ali 2020 (KP) 

2 Pinus wallichiana (Kial) AGB=0.0631×(D2H)0.8798  Ali et al. 2017  

3 Abies pindrow (Fir) AGB=0.0954×(D2H)0.8114  Ali 2020 (KP)  

4 Cedrus deodara (Deodar) AGB=0.0458(D2H)0.92  Ali 2020 (KP) 

5 Picea smithiana (Spruce) AGB=0.0843(D2H)0.8472 Ali 2020 (KP)  

6 Pinus roxburghii (Chir 

Pine) 

AGB= 0.0224(D2H)0.9767  RFEL/NFMS, 2020 
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3.5.4.1 Landsat 5 Thematic Mapper (TM)  

The Landsat 5 Thematic Mapper (TM) has seven spectral bands in total. These 

bands include: 

• Blue (44.52-0.52 µm) 

• Red (0.63-0.69 µm) 

• Green (0.52-0.60 µm) 

•    Near Infrared (NIR) (0.76-0.90 µm)  

•    Shortwave Infrared 1 (SWIR 1) (1.55-1.75 µm)  

•    Thermal Infrared (10.40-12.50 µm)  

•    Shortwave Infrared 2 (SWIR 2) (2.08-2.35 µm) 

Thermal band was acquired at 120 meter resolution while all other bands had a 

resolution of 30 meters. 

3.5.4.2 Operational Land Imager (OLI) and Thermal Infrared Sensor 

(TIRS)/Landsat 8  

It consists of 11 spectral bands: 

1. Ultra Blue (Band 1)  

2. Blue (Band 2)  

3. Green (Band 3)  

4. Red (Band 4)  

5. Near Infrared (NIR) (Band 5)  

6. Shortwave Infrared 1 (SWIR 1) (Band 6)  

7. Shortwave Infrared 2 (SWIR 2) (Band 7)  

8. Panchromatic (Band 8)  

9. Cirrus (Band 9)  

10. Thermal Infrared Sensor 1 (TIRS 1) (Band 10)  

11. Thermal Infrared Sensor 2 (TIRS 2) (Band 11) 

Bands 1 and 9 are used for coastal and aerosol studies, while band 10 and 11 are 

thermal bands. All bands were resampled to 30m resolution. 
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3.5.5 Preprocessing  

3.5.5.1 Radiometric Correction 

Using ENVI software, radiometric correction of the optical images from Landsat 

5 and 8 was carried out to enhance the image quality. Reducing the impacts of 

sun angle and atmosphere was the primary goal of radiometric correction 

(Baillarin et al., 2012). Dark Object Subtraction (DOS) was applied to convert 

imagery from radiance to surface reflectance using a semi-automated 

classification plugin the QGIS software. This approach has the benefit of being 

simple to use. Moreover, because it is image-based, ground truth data is not 

necessary (Chavez, 1996).  

3.5.5.2 Layer stacking and Image sub-setting 

Layer stacking refers to the process of combining multiple raster layers or bands 

from different images into a single composite image. This technique is commonly 

used in remote sensing and GIS to create images with merged data from different 

sensors or sources. Using ERDAS Imagine, layer stacking of the Landsat 5 and 8 

bands was done. After that image sub-setting was done to extract region of interest 

from both tiles via extract by mask tool in ArcMap 10.8.2. This allows for the 

generation of composite images that combine data from both Landsat 5 and 

Landsat 8, enhancing the analysis and interpretation of the selected area. 

3.5.5.3 Derivation of LULC map 

Using a supervised imagery classification approach, satellite images were 

classified into six LULC classes- forest, water, bare land, vegetation, built-up area 

and agriculture land. The area= under study was analyzed using Maximum 

Likelihood Classification to determine the patterns of land use and landcover for 

the years 2011 and 2022. Using seed pixels, it created signature files and 

combined them to create a single signature for each class. In order to reduce 

classification anomalies that may result from similar spectral responses of objects, 

the maximum likelihood classification algorithm takes into account the vector 

average of signatures for each land cover category (Yuan et al., 2005). Training 

samples collected for each class by digitizing polygons on the basis of their 
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spectral profiles and background information. More than signature files were 

compiled for each land cover type.  Rate of change of LULC categories per year 

according to LULC maps of 2011and 2022 analyzed via statistical analysis. Land 

use and Landcover maps for the year 2011 and 2022 were generated. 

3.5.6 Deriving Vegetation Indices 

Vegetation indices are numerical indicators that describe various vegetation 

properties based on the reflectance of different wavelengths of light. In order to 

improve the contribution of vegetation characteristics and enable accurate 

geographical and temporal inter-comparisons, the spectral image transformation 

of two or more bands is considered. Rectified images of Landsat 8 were used to 

derive spectral indices by using raster calculator in arcmap. Optical images of 

Landsat 8 were used in this work to estimate biomass by correlating field data 

with biomass. Saturation and low spatial resolution issues are major challenges in 

estimation of above ground biomass(Lu, 2005).  

For plot-wise vegetation indices derivation, coordinates of each plot was laid 

upon vegetation indices and values were extracted in ArcGIS software. After that 

linear regression analysis was applied by step-wise multi-linear regression to 

analyze the relationship between vegetation indices and AGB followed by 

extraction of pixel values for each plot. Sixteen vegetation indices were calculated 

for this study and in these indices only eight were selected based on their R-square 

and P-value performance, Root Men Square error and Standard error. VIs with 

high r and R2, low p value and standard error indicated the best fit for AGB 

modeling. From each land-use type, 75% of AGB data were randomly selected 

for the AGB modeling equation, whereas the remaining 25% of AGB data for 

validation of the mode. Two categories considered in selecting the VIs include 

Broadband and Canopy Water Content Indices. 

3.5.6.1 Broadband Vegetation Indices 

Broadband vegetation indices are numerical values calculated from the spectral 

reflectance measurements acquired by satellite or airborne sensors over broad 

wavelength ranges spanning visible and near infrared part of electromagnetic 

spectrum. These indices are used to quantify various vegetation properties as 
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biomass, greenness, health, and photosynthetic activity. They are sensitive to 

canopy leaf area so they are used for monitoring. Unlike narrowband vegetation 

indices which utilize specific narrow wavelength bands, broadband vegetation 

indices integrate reflectance information across wider spectral regions. Following 

broadband vegetation indices are used in this study: 

3.5.6.1.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is calculated as the normalized difference between NIR and red spectral 

bands that measure vegetation greenness and vigour. It is the normalized ration 

between NIR and red bands. Equation to calculate NDVI is as below: 

                    𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 + 𝑅𝑒𝑑)/(𝑁𝐼𝑅 − 𝑅𝑒𝑑) ………………………..…2.1 

where band 5 of Landsat 8 OLI is NIR with wavelength of 0.85 - 0.88 µm, and 

red is band 4 with a wavelength of 0.64 - 0.67 µm. Since a normalization process 

is used to generate the index, the range of values is 0 to 1, with even low 

vegetation-covered areas exhibiting a sensitive sensitivity to green vegetation. 

3.5.6.1.2 Green Normalized Difference Vegetation Index (GNDVI) 

The green band, sensitive to variations in the amount of chlorophyll in vegetation 

but less susceptible to the effects of soil background, is used in the modified 

NDVI (Green and Dielson et al., 1996). The formula used to calculate GNDVI is: 

               𝑮𝑵𝑫𝑽𝑰 = (𝑵𝑰𝑹 − 𝑮𝒓𝒆𝒆𝒏)/(𝑵𝑰𝑹 + 𝑮𝒓𝒆𝒆𝒏)……………………..2.2 

Where NIR is band 5 of Landsat 8 OLI with wavelength range 0.85 - 0.88 µm 

whereas band 3 is green with wavelength range of 0.53 - 0.59 µm. 

3.5.6.1.3 Soil Adjusted Vegetation Index (SAVI) 

SAVI is an NDVI modification intended to reduce the impact of fluctuations in 

soil brightness in places with little or no plant cover. This is accomplished by 

adding a soil adjustment factor L. The formula used to get SAVI is: 

            𝑆𝐴𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)(1 + 𝐿)………..…………..2.3 

Where L is correction factor ranging from 0 to 1. A common value for 𝐿 0.5, 

which is typically used in areas with intermediate vegetation cover.  
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3.5.6.1.4 Enhanced Vegetation Index (EVI) 

EVI is an improved version of NDVI providing a more accurate representation of 

vegetation canopy characteristics by doing atmospheric corrections. It is 

particularly used for its sensitivity to changes in vegetation cover. It is developed 

to address some limitations of other vegetation indices regarding saturation in 

dense vegetation and sensitivity to atmospheric conditions in areas with dense 

canopies. The formula for the Enhanced Vegetation Index is:   

               𝐸𝑉𝐼 = 𝐺 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 2.4𝑅𝑒𝑑 + 1)………………...…2.4 

Where NIR and Red are the the reflectance in band 5 and band 4 of Landsat 8 

OLI with wavelength range of 0.85 - 0.88 µm and 0.64 - 0.67 µm. G is the gain 

factor set to 2.5 and value 1 is the soil adjustment factor, used to reduce soil 

background effects. 

3.5.6.1.5 Moisture Soil Index (MSI) 

It is a measurement of reflectance that changes in response to rising leaf water 

content. The degree of absorption at 1599nm increases with the amount of water 

that leaves in vegetation canopies contain. Since absorption at 819nm is 

essentially unaffected by variations in water content, it serves as the standard. 

Formula for MSI is. 

    𝑀𝑆𝐼 =  (𝑆𝑊𝐼𝑅/𝑁𝐼𝑅)………………………………2.5 

This index has a value between 0 and greater than 3. Green vegetation typically 

ranges from 0.4 to 2.  

3.5.6.1.6 Square Root Simple Ratio (SQSR) 

It is square root of simple ratio (Itkonen, 2012).  Formula of SQSR is  

                                𝑆𝑄𝑆𝑅 =  √(𝑁𝐼𝑅/𝑅𝑒𝑑)……………………………....2.6 

where NIR is spectral band 5 0.85 - 0.88 µm and Red is spectral band 4 of 

wavelength 0.64 - 0.67 µm of Landsat 8 OLI satellite imagery. 
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3.5.6.2 Canopy Water Vegetation Indices  

Canopy Water Vegetation Indices (CWVI) are vegetation indices specifically 

designed to quantify the water content within plant canopies. If water content in 

canopy foliage is high, the carbon contents will also be high. These indices utilize 

spectral bands sensitive to water absorption features in the electromagnetic 

spectrum, typically in the shortwave infrared (SWIR) region. Water absorption 

features occur around wavelengths of approximately 1.4 micrometers (µm) and 

1.9 µm due to the presence of water molecules in plant tissues. The following two 

indices were selected in this category: 

3.5.6.2.1 Normalized Difference Water Index (NDWI) 

NDWI is commonly used to estimate canopy water content in remote sensing 

imagery. It is calculated using the following formula. 

               𝑁𝐷𝑊𝐼 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)/ (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)……….....……….……2.7 

For Landsat 8 satellite data, NIR is usually around the range of 0.08 to 0.90 

micrometers, while SWIR is around 1.55 to 1.75 micrometers. 

The NDWI values themselves can range -1 to 1, where negative values generally 

indicate features like vegetation while positive indicate water. A higher positive 

value typically suggests a higher concentration of water. 

3.5.6.2.2 Normalize Difference Infrared Index (NDII) 

It is used to estimate water content or water stress in vegetation canopies. NDII is 

sensitive to canopy water whose value increase with increase in canopy water 

(Hunt et al., 2012). Following formula is used to calculate NDII:  

                      𝑁𝐷𝐼𝐼 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)/(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)    ...…………..……..2.8 

Where SWIR is the band 6 and NIR is band 5 and of OLI. For Landsat 8 satellite 

data, NIR is usually around the range of 0.08 to 0.90 micrometers, while SWIR 

is around 1.55 to 1.75 micrometers. 
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3.5.7 Statistical Analysis 

A linear regression model was employed to evaluate each VI's relationship to the 

AGB. SPSS and Microsoft Excel were utilized for statistical analysis. Goodness 

of fit was assessed using P-value, standard error, R2 (coefficient of determination), 

and RMSE wherein the lowest RMSE, highest r2, and P value less than 0.01 were 

used to identify the optimal model. Since R2 has a value ranging from -1 to +1 so 

it was preferred. Consequently, it is simple to comprehend how independent and 

dependent variables relate to one another (Ji and Peters, 2007). Indices were 

significant, having p-value less than 0.01. We can see that the correlation of 

indices with biomass is good hence we can simply say that relationship exists 

between biomass and spectral indices. Indices were significant, having p-value 

less than 0.01. We can see that the correlation of indices with biomass is good 

hence we can simply say that relationship exists between biomass and spectral 

indices.All the vegetation indices along with their formulas are mentioned in the 

table 3.6. 

3.5.8 Biomass Map 

After selecting one vegetation index with the best performance that is NDVI, it 

was used to map above ground biomass via linear regression model. Two methods 

of biomass estimation are used. The non-destructive method was primarily used 

to estimate AGB, which is crucial for accurate carbon stock assessment without 

causing harm to the forest ecosystem. Remote sensing techniques, combined with 

field data, offer a reliable way to quantify biomass across large areas, especially 

when direct measurements are impractical. On the other hand, the destructive 

method was applied selectively to develop allometric equations and biomass 

expansion factors (BEFs), which are essential for refining biomass estimates. 

These allometric equations relate easily measurable variables like tree diameter 

and height to total biomass, providing an empirical basis for AGB 

calculations.The Intergovernmental Panel on Climate Change (IPCC) explains 

how to calculate changes in carbon stocks, greenhouse gas emissions, and 

biomass content in forest areas using various methodologies. Typically, carbon 

accounts for around half of the dry biomass (Malhi et al.  2004). 
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Table 3.6 Vegetation indices and their formulas 

 

Index Name 
 

Formula  Landsat 8 References 

NDVI (NIR – Red) / (NIR + Red) (B5 – B4) / (B5 + B4) (GU, 2019) 

GNDVI (NIR-Green)/(NIR+ Green) (B5-B3)/(B5+B3) (Gabri, 2019) 

EVI 𝐺×(𝑁𝐼𝑅−𝑅𝐸𝐷)/(𝑁𝐼𝑅+2.4Red 

+1) 

 

 

2.5(B5 – B4) / (B5 + 

2.4 B4* B4+1) 

(USGS, 2019) 

NDWI (NIR – SWIR2) / (NIR + 

SWIR2) 

(B3 – B5) / (B3 + B5) (Ceccato et al., 

2001) 

NDII (NIR+SWIR1)/(NIR−SWIR1) (B5-b7)/(B5+B7) (Gao et al. 2015) 

SAVI ((NIR – R) / (NIR + R + L)) * 

(1 + L) 

 

 

((B5 – B4) / (B5+ B4 

+ 0.5)) * (1.5) 

(USGS, 2019) 

MSI (SWIR / NIR) (B6 / B5) (Welikhe et al., 

2017) 

SQSR √(NIR /Red) √(B5/B4) (Kashif et a., 

2019) 

 

 

 

https://www.geo.university/pages/blog?p=spectral-indices-with-multispectral-satellite-data
https://www.usgs.gov/land-resources/nli/landsat/landsat-enhanced-vegetation-index?qt-science_support_page_related_con=0#qt-science_support_page_related_con
http://doi.org/10.4172/2469-4134.1000200
http://doi.org/10.4172/2469-4134.1000200
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3.5.9 Validation of Biomass Map 

Validating a biomass map from ground truth data typically involves comparing 

the biomass estimates derived from remote sensing or other modelling techniques 

with actual biomass measurements collected on the ground. An accurate 

assessment is done by interpreting the statistical metrics RMSE, P value, and 

Mean Absolute Error. Factors such as measurement errors, sampling bias, spatial 

resolution, and temporal differences between data sources can influence the 

validation results. Mean Absolute Error is the average of absolute differences 

between ground truth and estimated biomass whereas Root Mean Square error is 

square root of average squared differences between ground truth and estimated 

biomass values. Pearson correlation coefficient measures the linear relationship 

between ground truth and estimated biomass values.  

3.5.10 Above Ground Carbon (AGC) 

To convert above ground biomass (AGB) to above ground carbon (AGC), carbon 

content within the biomass is considered. According to IPCC guidelines, the 

typical carbon content of above-ground biomass for forests and woody vegetation 

uses a default carbon conversion factor of 50% for above-ground biomass. 

The formula to convert AGB to AGC is: 

AGC=0.47×AGB 

where: 

• 0.47 = IPCC conversion factor 

This formula assumes that half the dry weight of the above-ground biomass is 

carbon. It is an ideal condition; actual carbon content however can vary depending 

on factors such as plant species and growth conditions. 
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3.5.11 Below Ground Biomass 

For assessment of BGB (Below Ground Biomass), the AGB (Above Ground 

Biomass) is multiplied with conversion factor of 0.26 (IPCC, 2006; Ravindranath 

and Ostwald, 2008; Khan and Iqbal, 2019). 

The formula to convert AGB to BGB is: 

BGB = AGB×0.26 

Where: 

• 0.26 = IPCC conversion factor 

• AGB= Above Ground Biomass 

• BGB= Below Ground Biomass 

3.5.12 Below Ground Carbon 

Similarly, BGC (Below Ground Carbon Stocks) is obtained by multiplying AGC 

(Above Ground Carbon) with conversion factor of 0.26 (IPCC, 2006; 

Ravindranath and Ostwald, 2008; Khan and Iqbal, 2019). 

The formula to convert AGC to BGC is: 

BGC = AGC×0.26 

Where: 

• 0.26 = IPCC conversion factor 

• AGC= Above Ground Carbon 

• BGC= Below Ground Carbon 
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Conversion factor 0.26 is according to the method mentioned by Ostwald and 

Ravindranath in the Handbook for Greenhouse Gas Inventory; book named 

Carbon Inventory methods as per guidelines mentioned by IPCC on BGC 

conversion factors.  

3.5.13 Total Biomass and Total Carbon 

Total biomass is calculated by the sum of AGB (Above Ground Biomass) and 

BGB (Below Ground Biomass) whereas total carbon is calculated by the sum of 

AGC (Above Ground Carbon) and BGC (Below Ground Carbon). 

3.5.14 Carbon Stock  

Calculating carbon sequestration in a forest from above ground biomass involves 

estimating the amount of carbon stored in the trees based on their biomass. The 

formula for calculating carbon stock stored in AGB is 

C=AGB×CF  

Where,  

• C = Carbon Stock  

• AGB = Above Ground Biomass  

• CF = Conversion Fraction of Above Ground Biomass (0.47) 

The carbon fraction represents the portion of biomass that is carbon. This fraction 

is typically around 0.5 for most tree species, meaning that approximately half of 

the biomass is carbon. Unit is metric tons. 

3.5.15 Carbon dioxide Equivalent 

Since different greenhouse gases have different warming effects on the Earth's 

atmosphere over time, CO2e allows for a standardized comparison. To express 

emissions of different greenhouse gases in a common unit, their emissions are 

converted to CO2e using conversion factors.  
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Here Carbon is converted to CO2e by multiplying total carbon stock (biomass) 

with 3.66 while the 3.66 is ratio of molecular mass to atomic mass of carbon. 

CO2 e= C×3.66 

Where, 

• CO2e = Carbon dioxide equivalent 

• C = Carbon Stock 

• 3.66 = Conversion factor for CO2 e by IPCC 

3.5.16 Impact of Climate Indicators on Above Ground Biomass via 

Analytical Hierarchy process 

3.5.16.1 Data Collection and Data Cleaning 

The temperature (minimum and maximum) and precipitation data for the 

Abbottabad district were obtained from the Pakistan Meteorological Department 

(PMD). These data sets included historical records necessary for analyzing the 

impact of climate indicators on the carbon stock of the forest area. The acquired 

climate data were thoroughly cleaned to remove any anomalies, such as missing 

values or outliers. This process involved cross-referencing the data with other 

sources to ensure accuracy and consistency, as well as applying statistical 

techniques to address any gaps or inconsistencies in the dataset. 

3.5.16.2 Data Interpolation and generation of criterion map layers 

To generate continuous surface data for the entire Abbottabad region, the 

collected temperature and precipitation data were interpolated using the Inverse 

Distance Weighting (IDW) method. This technique allowed for the estimation of 

climate variables at unsampled locations, providing a comprehensive spatial 

representation of the climate indicators. It assumes that points closer to each other 

are more similar than those farther apart. IDW operates on the principle that the 

interpolated value at any unsampled location is a weighted average of the values 

at surrounding known points. The weights assigned to each known point are 

inversely proportional to the distance from the unsampled point. This means that 
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closer points will have a higher influence on the estimated value than farther 

points. After interpolation, the resulting raster layers were extracted using a mask 

that delineated the boundaries of the Abbottabad Forest area. This step ensured 

that all analyses were confined to the specific study area, facilitating a more 

accurate assessment of the impact of climate indicators on carbon stock. 

3.5.16.3 Sensitivity Analysis via AHP 

Finally, a sensitivity analysis was conducted using the Analytic Hierarchy Process 

(AHP) to evaluate the relative impact of each climate indicator on the carbon 

stock. The AHP methodology involved structuring the problem into a hierarchy, 

performing pairwise comparisons, and calculating the weights of each climate 

indicator based on their influence on carbon sequestration and above-ground 

biomass in the Abbottabad Forest area. 

To assign weights to precipitation, maximum temperature, minimum temperature, 

and biomass in the AHP analysis, criteria were defined as Precipitation, 

Maximum Temperature, Minimum Temperature, and Biomass. A pairwise 

comparison matrix (Table 3.7) was constructed with the following values: 

Precipitation was assigned a weight of 3 compared to both Maximum and 

Minimum Temperature, and a weight of 5 compared to Biomass, indicating its 

higher importance. Maximum Temperature was assigned a weight of 1 compared 

to Minimum Temperature and a weight of 2 compared to Biomass. Minimum 

Temperature was assigned a weight of 1/2 compared to Biomass. Biomass was 

considered the least important relative to the other criteria. The normalized matrix 

was used to calculate the final weights for each criterion. Precipitation received 

the highest weight, followed by Maximum Temperature, Minimum Temperature, 

and Biomass. The consistency ratio was computed to ensure the judgments were 

reliable, with a CR below 0.02 indicating acceptable consistency. The results 

indicated that Precipitation had the highest influence on biomass, followed by 

Maximum Temperature, Minimum Temperature, and Biomass. 
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Table 3.7: Pairwise comparison matrix for sensitivity analysis 

Criteria Precipitation  Max Temp Min Temp Biomass  

Precipitation  1 5 7 9 

Maximum Temperature  1/5 1 3 7 

Minimum Temperature  1/7 1/3 1 5 

Biomass  1/9 1/7 1/5 1 
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Chapter 4  

RESULTS AND DISCUSSION 

4.1 LULC maps 

Classification of Landsat satellite images of the year 2011 (Landsat-5) and 2022 

(Landsat 8) was done using method of supervised classification in Arc map 

10.8.2. Classes include forest, water, barren land, settlement, vegetation, and 

agricultural land. Figures 4.1 and 4.2 show LULC maps for the year 2011 and 

2022. In 2011, the area covered by agriculture was 25,386.82 hectares, 

constituting 14% of the total area. By 2022, this had decreased to 13,779.55 

hectares, representing 0.7% of the total area. This indicates a reduction of 

11,607.28 hectares, marking a -13.3% change. In 2011, bare land covered 

16,171.82 hectares, accounting for 0.8% of the total area. By 2022, the area had 

decreased to 6,168.79 hectares, making up 0.3% of the total area. This reflects a 

decrease of 10,003.04 hectares, corresponding to a -0.5% change. Forest areas 

increased from 28,475.37 hectares in 2011, which was 15% of the total area, to 

44,872.17 hectares in 2022, covering 24% of the total area. This represents an 

increase of 16,396.80 hectares, a 9% change. The urban area expanded from 

6,705.03 hectares in 2011 (0.6% of the total area) to 11,226.30 hectares in 2022 

(0.6% of the total area), indicating an increase of 4,521.26 hectares, which is a 

0.3% change. Vegetation decreased from 99,631.81 hectares in 2011, which was 

55% of the total area, to 96,626.94 hectares in 2022, representing 53% of the total 

area. This shows a decrease of 3,006.86 hectares, a -2% change. Water bodies 

expanded from 3,796.71 hectares in 2011, accounting for 0.2% of the total area, 

to 7,496.16 hectares in 2022, which is 0.4% of the total area. This indicates an 

increase of 3,699.45 hectares, a 0.2% change. Statistical interpretation of land use 

and land cover changes over the course of 11 years is represented by table 4.1. 

Negative signs in the data indicate a decreasing trend in the respective LULC 

classes. Comparative analysis and net change in land use change patterns is 

represented by the bar graphs as shown in figure 4.2. To know forest cover change 

and how much area has been gained by forest cover, forest area was calculated 

separately for both years forest cover maps were created as shown in figure 4.3 
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and 4.4. A gradual increase in trend after 2014 is due to the massive afforestation 

project of the government of Khyber Pakhtunkhwa named the Billion Tree 

Tsunami through planting and natural regeneration, to restore the province's 

depleted forests and combat the effects of climate change. Results show a 

continuously increasing trend in vegetation and built-up areas, whereas the 

category other land showed a decreasing trend. A gradual increase in trend after 

2014 is due to the massive afforestation project of the government of Khyber 

Pakhtunkhwa named the Billion Tree Tsunami through planting and natural 

regeneration, to restore the province's depleted forests and combat the effects of 

climate change. Results show a continuously increasing trend in vegetation and 

built-up areas, whereas the category other land showed a decreasing trend. 

The pie charts in figures 4.3 and 4.4 depict the land use and land cover (LULC) 

distribution for 2011 and 2022. 2011 agriculture covered 14% of the total area, 

while bareland accounted for 0.8%. Forests made up 15%, and urban areas 

constituted 3% of the land. Vegetation was the largest category, covering 55%, 

and water bodies represented 0.2%. By 2022, there were significant changes. The 

agricultural area decreased to 7%, and bareland reduced to 0.3%. Forest areas saw 

a notable increase, rising to 24% of the total area. Urban areas expanded to 6%. 

Vegetation remained stable, making up 53% of the land, while water bodies 

doubled their percentage to 0.4%. Table 4.2 illustrates a significant reduction in 

agricultural and bareland areas, substantial growth in forest and urban areas, and 

a slight increase in vegetation and water bodies over the 11-year period.  

Table 4.2 represents change in forest cover area from year 2011 to 2022. Area 

increased from 28475.37 ha to 44872.17 ha with a net increase of 16396.80 ha. 

Forest cover covered 15% of the area of district in 2011 but with 9% increase over 

the span of 11 years it increased to 24% of the land cover vof the forest by year 

2022 under the massive afforestation efforts by the government of Khyber 

Pakhtunkhawa subsequently leading to enhanced carbon stock and carbon 

sequestration potential of the forest region. These results are comparable those 

recorded by Ali et al. (2015) when assessing the land-use pattern in District 

Abbottabad using GIS and RS. Similar observations were made by Ali et 

al. (2017) while estimating carbon stock for the Moist temperate forest of KPK.  
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  Figure 4.1. Land use and land cover map of Abbottabad district (2011) 

 

  Figure 4.2.Land use and land cover map for Abbottabad (2022) 
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Table 4.1. Percentage and area wise distribution of Land cover and land use 

classes of 2011 and 2022 

LULC 

Class 

Area (ha)- 

2011 

Percentage- 

2011 

Area (ha)- 

2022 

Percentage- 

2022 

Agriculture 25386.82 14 13779.55 0.7 

Bareland 16171.82 0.8 6168.79 0.3 

Forest 28475.37 15 44872.17 24 

Urban 6705.03 0.3 11226.30 0.6 

Vegetation 99633.81 55 96626.94 53 

Water 3796.71 0.2 7496.16 0.4 

Total Area 180169.57 

 

180169.91 

 

 

  

Figure 4.3. Pie chart displaying percentages of LULC for year 2011 and 2022 
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Table 4.2. Statistical computation of rate of change of various LULC categories 

per year according to LULC maps of 2000 and 2015  

LULC Change Area Change (ha) Percentage change 

Agriculture -11607.28 -13.3 

Bareland -10003.04 -0.5 

Forest 16396.80 9 

Urban 4521.26 0.3 

Vegetation -3006.86 -2 

Water 3699.45 0.2 

Total Area 180169.91  

 

 

Figure 4.5.Bar Graph displaying the relative change in different Land cover and 

land use classes from in year 2011 and 2022 (%) 
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  Figure 4.6.Map displaying forest cover for Abbottabad (2011)  

 

Figure4.7. Figure 4.6.Map displaying forest cover for Abbottabad (2022) 
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Table 4.3. Change in forest cover area from 2011 to 2022 

Forest 2011 2022 Net change 

Area (ha) 28475.37 44872.17 16396.80 

Percentage 15% 24% 9% 

 

 

Figure4.8. Bar graph representing change in forest area 
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4.2 Estimation of Biomass from Vegetation Indices 

Coordinates of each plot were laid upon different VI images and values were 

extracted by using a tool that extracts by point values in ArcGIS software to derive 

all eight vegetation indices. Multi-linear regression then analyzed the relationship 

between Above Ground Biomass and vegetation indices, followed by extraction 

of pixel values for each plot of different indices. Multi-linear regression then 

analyzed the relationship between Above Ground Biomass and vegetation 

indices, followed by extraction of pixel values for each plot of different indices. 

Multi-linear regression then analyzed the relationship between Above Ground 

Biomass and vegetation indices, followed by extraction of pixel values for each 

plot of different indices. Out of sixteen vegetation indices calculated for this study 

and only eight selected with high r and R2, low p value and standard error. Figure 

4 shows the vegetation index map for NDVI. The scatter plot displays the 

relationship between calculated AGB and NDVI. From the plot, it is observed that 

as the value of X increases, the value of Y also tends to increase. The upward 

slope of the trend line illustrates this positive correlation. The data points, while 

scattered, generally align with this trend, indicating a moderate to strong positive 

relationship between the two variables. 

Two categories considered in selecting the VIs include Broadband and Canopy 

Water Content Indices. From the plot, it is observed that as the value of X 

increases, the value of Y also tends to increase. The upward slope of the trend line 

illustrates this positive correlation. The data points, while scattered, generally 

align with this trend, indicating a moderate to strong positive relationship between 

the two variables. 

NDVI was the best fit for AGB modeling. From each land-use type, 75% of AGB 

data were randomly selected for the AGB modeling equation, whereas the 

remaining 25% of AGB data for validation of the mode. Two categories 

considered in selecting the VIs include Broadband and Canopy Water Content 

Indices. 
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  Figure 4.9.Map displaying the relationship between NDVI and calculated AGB 

 

 Figure 4.10.Map displaying the relationship between EVI and calculated AGB 
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  Figure 4.11.Map displaying the relationship between GNDVI and calculated AGB 

 

  Figure 4.12. Map showing the relationship between MSI and calculated AGB 
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  Figure 4.13. Map showing the relationship between NDII and calculated AGB 

 

 Figure 4.14. Map showing the relationship between NDWI and calculated AGB 
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  Figure 4.15. Map showing the relationship between SAVI and calculated AGB 

 

 Figure 4.16. Map showing the relationship between SQSR and calculated AGB 
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Scatter plots displaying the relationship between Broadband VIs and AGB 

 

 

Figure 4.18.Scatter plot showing the relationship between EVI and AGB 

 

Figure 4.19.Scatter plot showing the relationship between GNDVI and AGB 

 

Figure 4.20.Scatter plot showing the relationship between SQSR and AGB 
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Figure 4.17: Scatter plot showing the relationship between NDVI and AGB 
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Figure 4.21.Scatter plot showing the relationship between SAVI and AGB 

 

Figure 4.22.Scatter plot showing the relationship between NDVI and AGB 

 

Figure 4.23.Scatter plot showing the relationship between NDII and AGB 

 

Figure 4.24.Scatter plot showing the relationship between MSI and AGB 
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4.3 Validation of Biomass Map 

The validation of the biomass map, based on the given metrics, demonstrates 

strong accuracy and reliability. The Root Mean Square Error (RMSE) is 31.26, 

indicating a relatively low average deviation between observed and predicted 

values. The Mean Absolute Error (MAE) is 0.29, further confirming minimal 

discrepancies. The R-squared value of 0.8 signifies a near to perfect correlation 

between the observed and predicted data, suggesting that the model explains 

100% of the variance in biomass. Additionally, the p-value is less than 0.01, 

highlighting that the results are statistically significant and unlikely to have 

occurred by chance. These metrics collectively confirm the high precision and 

validity of the biomass map. 

4.4 Biomass and Carbon Stock Estimation Results 

For Above-Ground Biomass (AGB), the minimum value recorded was 93.35 t/ha, 

while the maximum was 265.02 t/ha. The total AGB summed up to 5893.63 t/ha, 

with an average (mean) of 178.60 t/ha. The standard deviation was 44.12, 

indicating variability in the data, and the standard error was 7.68. Above-Ground 

Carbon (AGC) 's minimum value was 43.87 t/ha and the maximum was 124.56 

t/ha. The total AGC was 2770.01 t/ha, with a mean value of 83.04 t/ha. The 

standard deviation was 20.74, and the standard error was 3.61. For Below-Ground 

Biomass (BGB), the minimum recorded was 24.27 t/ha and the maximum was 

68.90 t/ha. The sum of BGB amounted to 1532.35 t/ha, with an average value of 

46.43 t/ha. The standard deviation was 11.47, and the standard error was 2.00. 

Below-ground carbon (BGC) had a minimum value of 11.41 t/ha and a maximum 

of 32.38 t/ha. The total BGC was 720.20 t/ha, with a 21.82 t/ha mean. The 

standard deviation was 5.39, and the standard error was 0.94. Total Biomass's 

minimum value was 117.61 t/ha and the maximum was 333.92 t/ha. The sum of 

the total biomass was 7425.98 t/ha, with an average of 225.03 t/ha. The standard 

deviation was 55.59, and the standard error was 9.68. Total Carbon had a 

minimum of 55.28 t/ha and a maximum of 156.94 t/ha. The total carbon summed 

up to 3490.21 t/ha, with a mean value of 105.76 t/ha. The standard deviation was 

26.13, and the standard error was 4.55. For CO2 e, the minimum value was 202.32 

t/ha and the maximum was 574.41 t/ha. The total CO2e was 12774.18 t/ha, with 



 
 

59 
 

an average of 387.10 t/ha. The standard deviation was 95.63, and the standard 

error was 16.65. All the results are summarized in Table 4.4. 

Results are comparable with the estimates mentioned by Moazzam et al. 2022 

study. The average biomass (t·ha−1) was 237 in Ghora gali site and 186 t·ha−1in 

Lehterar site. However, on average, both the forests have 114.5± 2.26 t·ha−1 of 

carbon stock which comprises 92% in tree biomass and only 8% in the topsoils. 

Brown and Lugo (1984) estimated that the tropical forests of Bangladesh hold 

approximately 55−90 t·ha-1 of carbon in forest ecosystems. 

In a study conducted by Sharma et al. (2018) on above-ground biomass and 

carbon stock estimation in the temperate forests of the Western Himalayas, the 

researchers utilized remote sensing and field inventory data to assess biomass 

variability across different forest types. The results indicated an average above-

ground biomass (AGB) of 190.5 tons per hectare, with corresponding carbon 

stock averaging 90.3 tons per hectare. They found that forests at higher elevations 

with cooler temperatures and moderate rainfall had higher AGB and carbon 

sequestration capacity. Moreover, minimal land-use change areas retained more 

biomass, highlighting the importance of preserving forest cover in mitigating 

climate change. 

Similarly, Ahmed et al. (2020) evaluated the carbon sequestration potential of 

forests in northern Pakistan using satellite data and field surveys. The study 

reported an average AGB of 165.7 tons per hectare, with an associated carbon 

stock of 78.6 tons per hectare. The total carbon sequestration potential of the study 

area was estimated at 5,600 metric tons. The findings also revealed that forests in 

regions with stable precipitation and cooler climates had higher carbon 

sequestration rates, while areas with greater temperature variability showed 

reduced biomass accumulation. The authors emphasized the need for targeted 

conservation policies to enhance the carbon storage potential of these forests. he 

findings also revealed that forests in regions with stable precipitation and cooler 

climates had higher carbon sequestration rates, while areas with greater 

temperature variability showed reduced biomass accumulation. The authors 

emphasized the need for targeted conservation policies to enhance the carbon 

storage potential of these forests. 
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  Figure 4.26: Estimated Biomass Map for Abbottabad 

Table 4.4. Statistics of Biomass and Carbon Stock Estimation 

Statistics 
AGB(t/ha) AGC(t/ha) BGB(t/ha) BGC(t/ha) 

Total 

Biomass(t/ha) 

Total 

Carbon(t/ha) 

CO2 e 

(t/ha) 

Minimum 93.35 43.87 24.27 11.41 117.61 55.28 202.32 

Maximum 265.02 124.56 68.9 32.38 333.92 156.94 574.41 

Mean 5893.63 2770.01 1532.35 720.2 7425.98 3490.21 12774.18 

Sum 178.6 83.94 46.43 21.82 225.03 105.76 387.1 

St. Dev 44.12 20.74 11.47 5.39 55.59 26.13 95.63 

St. Error 7.68 3.61 2 0.94 9.68 4.55 16.65 
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4.6 Sensitivity Analysis to analyze the impact of climate indicators on the 

Above Ground Biomass 

The climate data layers for annual average precipitation, average minimum 

temperature, and average maximum temperature were prepared using the Inverse 

Distance Weighting (IDW) interpolation method, and corresponding maps were 

generated to visualize these parameters across the study area. These maps were 

then integrated into an Analytical Hierarchy Process (AHP) to create a sensitivity 

analysis map, identifying biomass areas most sensitive to climatic parameters. 

The annual average precipitation map as shown in figure illustrates spatial 

variations in precipitation across the study area, ranging from 1266 mm to 1655 

mm. The central region experiences moderate rainfall, while the eastern and 

southwestern parts receive higher amounts, as darker blue shades indicate. 

The average minimum temperature map as shown in figure depicts the spatial 

distribution of minimum temperatures, which range from 7.65°C to -1.03°C. 

Warmer minimum temperatures (in red and orange) are predominant in the central 

and southern areas, while cooler temperatures (in green and blue) are confined to 

the northern regions, indicating potential frost risks. 

The average maximum temperature map as shown in figure shows variations 

in maximum temperatures, ranging from 34°C to 41°C. The highest temperatures 

(in red) are recorded in the central and southern parts, whereas the northern 

regions have relatively lower maximum temperatures, as denoted by yellow and 

blue hues. 

The sensitivity analysis map as shown in figure 4.25 offers a detailed assessment 

of how various regions within the study area respond to changes in key climatic 

parameters such as precipitation, minimum temperature, and maximum 

temperature. Created using the Analytical Hierarchy Process (AHP), this map 

integrates the three climate data layers, each contributing differently to the overall 

sensitivity of biomass in the region. The sensitivity levels are categorized on a 
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scale from low (1) to high (5), represented by a gradient from green (low 

sensitivity) to red (high sensitivity). 

Areas marked in red on the map indicate regions with high sensitivity, suggesting 

that biomass in these areas is more susceptible to changes in climatic conditions. 

These zones may face significant biomass variability due to fluctuations in 

temperature or precipitation, requiring more adaptive management practices. The 

presence of high sensitivity in the central and southern parts of the study area, as 

shown by red and orange colors, could be attributed to the combined effect of 

high maximum temperatures and moderate to high precipitation levels. These 

conditions may create a delicate balance where even slight climatic changes could 

significantly impact biomass production. 

Conversely, areas in green represent regions with low sensitivity, where biomass 

is less affected by climatic changes. These regions, typically located in the 

northern and northeastern parts, may benefit from more stable climate conditions 

with less extreme variations in temperature and precipitation, resulting in more 

consistent biomass levels. 

The sensitivity analysis highlights critical zones that require focused attention for 

climate adaptation measures. High-sensitivity areas may benefit from strategies 

such as improved water management, drought-resistant crop varieties, or 

enhanced soil conservation practices. Meanwhile, low-sensitivity areas might 

serve as relatively stable regions for sustainable biomass production under current 

climatic conditions. 

By understanding these spatial variations in sensitivity, policymakers and 

resource managers can make more informed decisions, directing resources and 

interventions to the areas most at risk from climate variability and ensuring more 

resilient agricultural and ecological systems. 
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Figure 4.27. Sensitivity analysis maps showing biomass areas sensitive to climatic 

parameters. 
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Conclusion 

The research on "Assessment of Above-Ground Biomass and Carbon 

Sequestration Potential in the Moist Temperate Forests of Abbottabad District" 

concludes that geospatial modeling and remote sensing techniques are effective 

in quantifying biomass and carbon sequestration potential. The study highlights a 

significant positive impact of afforestation efforts, with a 9% increase in forest 

cover in the study area. Analysis of carbon pools revealed an average contribution 

of 105.76 tons of carbon per hectare in 2022, with a total carbon stock of 4,745.68 

metric tons for the region of interest. The forest in Abbottabad also demonstrated 

its importance in carbon dynamics, acting as a source of 2.2 metric tons/ha CO2 

equivalent over the period of 2011-2022, compared to its carbon sequestration 

potential of 0.6 metric tons/ha. 

Additionally, sensitivity analysis showed that forests at higher altitudes, with 

lower temperatures and moderate rainfall, are less vulnerable to climatic changes 

compared to other areas. These findings emphasize the role of such forests in 

mitigating climate change and underscore the importance of targeted climate 

adaptation strategies to enhance carbon sequestration and improve forest 

resilience. afforestation efforts have positively impacted forest cover, with a 9% 

increase, and that forests in the region play a significant role in carbon dynamics. 

The total carbon stock was estimated at 4,745.68 metric tons, with an average 

contribution of 105.76 tons per hectare. The sensitivity analysis revealed that 

areas with high altitude, low temperature, and moderate rainfall are less 

vulnerable to climatic changes, while central and southern areas, marked in red, 

showed high sensitivity to temperature and precipitation fluctuations. These high-

sensitivity zones may experience significant biomass variability, requiring 

adaptive management strategies such as improved water management and 

drought-resistant crops. Conversely, areas marked in green showed lower 

sensitivity, benefiting from more stable climate conditions and consistent biomass 

levels.The research recommends expanding the use of geospatial modeling to 

other forest types in Pakistan to build a comprehensive carbon inventory. 

Integrating these results into climate policies can further support forest 

conservation and carbon sequestration efforts at both local and national levels. 
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Appendices 

Appendix 1- Forest Inventory Data. 

 

 

FID grid_coor_x grid_coor_y Area AGB (t/ha) BGB (t/ha) 

1 89.19517021 37.64450166 Abbotabad 30.74825 7.994545 

2 89.18517021 37.64350166 Abbotabad 3.409615 0.8865 

3 89.20517021 37.64350166 Abbotabad 2.079115 0.54057 

4 89.20517021 37.64550166 Abbotabad 56.34455 23.45443 

5 89.18517021 37.64550166 Abbotabad 65.24553 32.53211 

6 90.40276069 37.68208978 Abbotabad 43.08017 11.20084 

7 90.39276069 37.68108978 Abbotabad 12.58355 3.271723 

8 90.39276069 37.68308978 Abbotabad 25.87597 6.727751 

9 90.41276069 37.68308978 Abbotabad 33.01147 8.582981 

10 90.41276069 37.68108978 Abbotabad 78.45335 38.53463 

11 90.71669038 37.7774209 Abbotabad 156.2209 40.61743 

12 90.72669038 37.7764209 Abbotabad 46.31012 12.04063 

13 90.72669038 37.7784209 Abbotabad 66.54227 17.30099 

14 90.70669038 3777842.09 Abbotabad 109.6117 28.49904 

15 90.70669038 37.7764209 Abbotabad 53.79727 13.98729 

16 90.04536915 37.81888874 Abbotabad 232.2558 60.38652 

17 90.03536915 37.81788874 Abbotabad 86.1186 22.39084 

18 90.03536915 37.81988874 Abbotabad 21.43035 5.571891 

19 90.05536915 37.81788874 Abbotabad 134.1977 34.89139 

20 90.05536915 37.81988874 Abbotabad 37.73455 9.810982 

21 91.02987655 37.90313092 Abbotabad 62.79402 16.32645 

22 91.01987655 37.90213092 Abbotabad 53.45059 13.89715 

23 91.01987655 37.90413092 Abbotabad 54.67614 14.2158 

24 91.03987655 37.90213092 Abbotabad 24.68912 6.419171 

25 91.03987655 37.90413092 Abbotabad 90.345 44.75389 

26 89.97211613 37.95308497 Abbotabad 68.00703 17.68183 

27 89.98211613 37.95208497 Abbotabad 42.26499 10.9889 

28 89.98211613 37.95408497 Abbotabad 63.92934 16.62163 

29 89.96211613 37.95408497 Abbotabad 179.7804 46.74289 

30 89.96211613 37.95208497 Abbotabad 212.0041 55.12106 

31 89.36425213 37.99651996 Abbotabad 23.97239 6.232822 

32 89.36425213 37.99851996 Abbotabad 20.05757 5.214967 

33 89.38435213 37.99851996 Abbotabad 52.07169 13.53864 

34 89.38425213 37.99651996 Abbotabad 37.38259 9.719474 

35 89.37425213 37.99751996 Abbotabad 72.34427 18.80951 
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Appendix 2- Estimated AGB in Abbottabad District. 

ID Longitude Latitude Area NDVI AGB t/ha AGC t/ha 

1 891951.7021 3764450.166 Abbotabad 0.300705 239.006 112.3328 

2 891851.7021 3764350.166 Abbotabad 0.275231 131.065 61.60055 

3 892051.7021 3764350.166 Abbotabad 0.312257 229.123 107.6878 

4 892051.7021 3764550.166 Abbotabad 0.380069 237.231 111.4986 

5 891851.7021 3764550.166 Abbotabad 0.345877 265.016 124.5575 

6 904027.6069 3768208.978 Abbotabad 0.307024 145.256 68.27032 

7 903927.6069 3768108.978 Abbotabad 0.292094 170.145 79.96815 

8 903927.6069 3768308.978 Abbotabad 0.228268 93.345 43.87215 

9 904127.6069 3768308.978 Abbotabad 0.279251 163.023 76.62081 

10 904127.6069 3768108.978 Abbotabad 0.293508 146.098 68.66606 

11 907166.9038 3777742.09 Abbotabad 0.30513 176.594 82.99918 

12 907266.9038 3777642.09 Abbotabad 0.302968 234.231 110.0886 

13 907266.9038 3777842.09 Abbotabad 0.295889 119.173 56.01131 

14 907066.9038 3777842.09 Abbotabad 0.336334 230.014 108.1066 

15 907066.9038 3777642.09 Abbotabad 0.243924 189.356 88.99732 

16 900353.6915 3781788.874 Abbotabad 0.284481 132.519 62.28393 

17 900353.6915 3781988.874 Abbotabad 0.276956 149.187 70.11789 

18 900553.6915 3781788.874 Abbotabad 0.217601 170.387 80.08189 

19 900553.6915 3781988.874 Abbotabad 0.252902 156.786 73.68942 

20 910298.7655 3790313.092 Abbotabad 0.333448 178.276 83.78972 

21 910198.7655 3790213.092 Abbotabad 0.329835 244.498 114.9141 

22 910198.7655 3790413.092 Abbotabad 0.354821 205.409 96.54223 

23 910398.7655 3790213.092 Abbotabad 0.376049 238.167 111.9385 

24 910398.7655 3790413.092 Abbotabad 0.294346 193.39 90.8933 

25 899721.1613 3795308.497 Abbotabad 0.22742 113.278 53.24066 

26 899821.1613 3795208.497 Abbotabad 0.299683 176.709 83.05323 

27 899821.1613 3795408.497 Abbotabad 0.28227 216.247 101.6361 

28 899621.1613 3795408.497 Abbotabad 0.259764 161.378 75.84766 

29 893642.5213 3799651.996 Abbotabad 0.322175 184.378 86.65766 

30 893642.5213 3799851.996 Abbotabad 0.296692 177.673 83.50631 

31 893842.5213 3799851.996 Abbotabad 0.298774 159.382 74.90954 

32 893842.5213 3799651.996 Abbotabad 0.216876 111.376 52.34672 

33 893742.5213 3799751.996 Abbotabad 0.29694 155.921 73.28287 
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Appendix 3-  Carbon Stock Estimated in ROI. 

Statistics AGB(t/ha) AGC(t/ha) BGB(t/ha) BGC(t/ha) Total 
Biomass(t/ha) 

Total 
Carbon(t/ha) 

CO2 e 
(t/ha) 

Minimum 93.35 43.87 24.27 11.41 117.61 55.28 202.32 

Maximum 265.02 124.56 68.90 32.38 333.92 156.94 574.41 

Sum 5893.63 2770.01 1532.35 720.20 7425.98 3490.21 12774.18 

Mean  178.60 83.94 46.43 21.82 225.03 105.76 387.10 

St. Dev 44.12 20.74 11.47 5.39 55.59 26.13 95.63 

St. Error 7.68 3.61 2.00 0.94 9.68 4.55 16.65 

 

Appendix 4- Land use and Land cover calculations of year 2011 and 2022. 

2011 
  

2022 
   

LULC Area (ha) Percentage Area Percentage Area change % change 
Agriculture 25386.82 14 13779.55 0.7 -11607.28 -13.3 
Bareland 16171.82 0.8 6168.79 0.3 -10003.04 -0.5 
Forest 28475.37 15 44872.17 24 16396.80 9 
Urban 6705.03 0.3 11226.30 0.6 4521.26 0.3 
Vegetation 99633.81 55 96626.94 53 -3006.86 -2 
Water 3796.71 0.2 7496.16 0.4 3699.45 0.2 

 


