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Abstract 
 

Energy based spectrum sensing detection is optimal in terms of computational complexity but 

they have certain limitations of their dependence upon noise. In contrast Eigenvalue based 

algorithms do not depend upon noise uncertainty. Eigenvalue based algorithms are 

computationally complex as compared to energy detection method. Its complexity comes from 

two steps, the decomposition of the covariance matrix and the computation of Eigenvalue. The 

decomposition of covariance matrix does not offer enough room for complexity analysis as it has 

already been studied to its maxima while the computation of Eigenvalues is still an open field for 

research.  

In this work we propose fast iterative algorithms to handle Eigenvalue problems for 

Eigenvalue based spectrum sensing detections. The proposed algorithm reduces the complexity 

of the Eigenvalue based spectrum sensing techniques to ࢯሺࡸሻ. When the noise floor is high 

enough i.e. the signal is too weak its detection is challenging. The aim of the thesis is to detect 

weak signals in cognitive radios through varying the values for the received time sample 

(smoothing factor) L with minimal complexity. Simulations based on real-time GSM signals and 

the wireless microphone signals are presented to verify the proposed.  

We have reduced the overall complexity of the Eigenvalue based spectrum sensing techniques 

which will be beneficial especially for cooperative spectrum field where we deal with multiple 

receiver and transmitter signals. Most importantly the significance of work is in the detection of 

weak signals in cognitive radios. As the signal becomes weak it will be smoothly detected using 

larger values for received time samples L. As L increase the complexity also increases where we 

can use the proposed work in Eigenvalue based spectrum sensing methods to obtain sensing 

results with reduced complexity.  
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Chapter 1 

Introduction 
             

The emergence of new wireless technologies has paved the way for communications. 

This advancement in wireless communications leads to the spectrum efficiency [1, 2]. 

The radio spectrum for different technologies has been densely allocated. Heavily 

populated radio spectrum due to increased wireless communications has raised the 

spectrum scarcity problem. To come up with spectrum shortage, there is a need for 

efficient spectrum utilization. The radio spectrum can be efficiently utilized using 

Spectrum Sensing techniques. Spectrum sensing gives the opportunity to the licensed 

frequency band to be used by the unlicensed user during the time it is vacant.  

In United States, Federal Communications Commission (FCC) is the organization 

responsible for the Radio spectrum licensing and management. The FCC has issued a 

radio spectrum chart for the frequencies allocated to various technologies that visibly 

highlights the electromagnetic spectrum scarcity problem. 

Cognitive radio is a device that performs spectrum sensing. It comprises of a transmitter 

and a receiver that continuously senses the spectrum. It senses the licensed primary 

spectrum for any transmissions. It provides the unlicensed user with the opportunity to 

avail the licensed radio spectrum. Cognitive radio efficiently detects the licensed user, the 

time it is not utilized or underutilized and allows the unlicensed user to use that spectrum 

during the time it is available. When the licensed user again starts its transmission, the 

cognitive radio again detects it and guarantee’s that no other unlicensed user can get hold 

of it. This spectrum sensing helps to manage the radio spectrum in an efficient way.  

To have resourceful radio spectrum management, different spectrum sensing techniques 

have been proposed. These techniques mainly include Matched filter based detection, 
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Cyclostationary detection, Energy detection and the latest of all being proposed is the 

Eigenvalue based detection. Some of these techniques have least computationally 

complexity but are not accurate while the others are accurate but incorporate complexity. 

There is a compromise between accuracy and the complexity of these techniques. Energy 

detection is computationally the least complex method but it is not too accurate because 

of the fact that it compares the energy of the signal with the noise threshold which in 

reality is uncertain. Matched filter detection is accurate but has complexity on the higher 

side as it requires prior knowledge of the signal for filter implementation and its threshold 

also depends upon noise uncertainty.   On the other hand cyclostationary detection 

exploits the cyclostationary features of the modulated signal for signal detection. The 

signals are generally modulated using sin waves that exhibits periodicity. Irrespective of 

the fact that the data is being random, this when modulated depicts as cyclostationary. 

These cyclostationary features are detected using spectral correlation task.  

Eigenvalue based spectrum sensing techniques are the most accurate but are 

computationally complex. In short to summarize all spectrum sensing techniques Energy 

detection has the least complexity but lacks accuracy whereas Eigenvalue based spectrum 

sensing techniques are among the most accurate ones while they exhibits complexity. So 

to come up with a Spectrum sensing solution that would be feasible would surely be the 

one with minimal complexity and have accuracy. So we aim to reduce the complexity of 

Eigenvalue based spectrum sensing methods.  

 

1.1 Problem Statement 
 

Eigenvalue based algorithms are computationally complex as compared to energy 

detection method. Its complexity comes from two steps, the decomposition of the 

covariance matrix and the computation of eigenvalues. The decomposition of covariance 

matrix does not offer enough room for complexity analysis as it has already been studied 

to its maxima while the computation of eigenvalues is still an open field for research. In 

this work we propose fast iterative algorithms to handle eigenvalue problems for 
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eigenvalue based spectrum sensing detections. This reduces the complexity of the 

eigenvalue based spectrum sensing techniques to ࢯሺࡸሻ  thus allowing the smooth 

detection of weak signals in cognitive radios. 

 

1.2 Thesis Outline 
 

This master's thesis consist of six chapters and begins with an Introduction of the 

spectrum sensing. Moreover objectives and motivations of this work have been presented 

like possible solution of the limited spectrum problem. The second chapter describes 

Spectrum Sensing techniques with their comparison. In the Chapter 3 the Eigenvalue 

based Spectrum Sensing methods are presented. Chapter 4 describes fast iterative 

Eigenvalue problem algorithms. Chapter 5 reports the computational complexity. 

Simulations and results are discussed in the sixth chapter. Conclusion is presented in the 

last section.  
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Chapter 2 

Spectrum Sensing Techniques 
             

 

2.1. Spectrum Sensing Techniques 
Different spectrum sensing techniques have been proposed which have a 

compromise between accuracy and the complexity. Few of them require the prior signal 

information while others depends upon noise uncertainty [3,9]. These methods mainly 

include matched filter detection, Cyclostationary detection, Energy detection and the 

Eigenvalue based spectrum sensing which are discussed as follows; 

 

2.1.1    Matched Filter Detection 
 

It is a technique used for detecting the presence of the primary signal. The operation 

of the matched filter is based on the principle that it increases the signal to noise ratio of 

the input signal [5]. This is done by correlating the input signal with the unknown signal 

to detect the presence of the primary user. Matched filter based detection requires perfect 

knowledge of the primary users signaling features such as bandwidth, frequency, 

modulation etc. The prior signal information is used for the implementation of the 

coefficients of the FIR filter. The matched filter detecor is shown in figure 2.1.  

 

  

 

Figure 2.1 Match Filter Detector 

FIR Filter 

 ℎ[n] 

 x[n] <γ>γ ℋ0 ℋ1 
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The output of the FIR filter is compared with the threshold value γ which depends upon 

noise variance σ2, probability of false alarm and the signal energy E. The signal is present 

when the output value is greater than the threshold γ which corresponds to hypothesis ℋ1 

and when this value is less than γ thus corresponds to hypothesis ℋ0.  

 

2.1.2    Cyclostationary Detection 
 

The input signals are generally modulated using sine wave carriers. These 

modulated signals thus exhibit periodicities which are known as Cyclostationary features 

[5]. The Cyclostationary detector senses these features using spectral correlation.  

Cyclostationary detector is shown in figure 2.2. 

 

 

  

Figure 2.2 Cyclostationary Detector 

 

2.1.3    Energy Detection 
 

Energy detection unlike matched filter detection and the Cyclostationary methods 

does not require any prior knowledge of the signal. It compares the signal energy with the 

noise power to decide the signal presence. It is only optimal for independent and 

identically distributed (iid) signals and not the correlated signals. 

ሺܧ  ௌܰሻ ൌ   ଵேೄ  ∑ ሺ݊ሻ|ேೄିଵୀݔ|                                                   (2.1) 

 

 s(t) Spectral 
Correlation 

Feature 
Detection 
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2.1.4    Eigenvalue based Detection 
 

Eigenvalue based spectrum sensing technique is optimal for both iid and correlated 

signals. Unlike other methods Eigenvalue based algorithms doesn’t require any prior 

signal knowledge and are independent of noise uncertainty. Eigenvalue based methods 

are among the most accurate spectrum sensing techniques but involves complexity.  

 

2.2. Comparison of Spectrum Sensing Techniques 
 

Different spectrum sensing techniques have certain limitations and dependencies. They 

have a compromise between  accuracy and the complexity. The comparison of various 

spectrum sensing techniques with respect to prior signal knowledge, dependency and 

computational complexity are summarized  in Table 2.1. 

  

Table 2.1 Spectrum Sensing Techniques Comparison 
 

 Prior Signal 

Knowledge 

Noise 

Dependence 

Computational 

Complexity 

 

Matched Filter Detection 

 

Yes 

 

Yes 

 

Less 

 

Cyclostationary Detection 

 

Yes 

 

Yes 

 

High 

 

Energy Detection 

 

No 

 

Yes 

 

Less 

 

Eigenvalue based Detection 

 

No 

 

No 

 

High 

 

 

  



 

Chapter 3 

Eigenvalue based
    

 

3.1 System Model 
 

Signal detection model

of the signal and ℋ0 represen

 ℋ0:  Nℋ1: S

Fig

Where ݔሺ݊ሻ and ݏሺ݊ሻ are 

Moreover ߟሺ݊ሻ represents t

probabilities, probability of d

our interest. The probability 

it is detected as a signal t
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d Spectrum Sensing Techni
       

l falls among the two hypothesis. ℋ1 represent

nts its absence as shown in Figure 3.1. 

No signal: ݔሺ݊ሻ ൌ ሺ݊ሻߟ                                  

ignal:  ݔሺ݊ሻ ൌ ሺ݊ሻݏ   ሺ݊ሻߟ                     

 

 
gure 3.1 Signal Detection Hypothesis 

 

the received signal and the primary signal 

the noise with zero mean and variance ఎଶߪ
detection ( ௗܲ) and the probability of false alarm

of detection ( ௗܲ)  is the probability that there is

too. Whereas the probability of false alarm 

iques 
  

t the presence 

             (3.1) 

             (3.2) 

respectively. ఎଶ . The two 

m ( ܲ) are of 

s a signal and 

( ܲ ) is the 



 

probability that there is a sign

and it is detected to be signal

 

The presence of signal is rep

hypothesis ℋ1. The probab

corresponds to hypothesis ℋ
signal ݔሺ݊ሻ is defined as 

ሺ݊ሻݔ 
 

Let L be the received time sa

is shown as  

ෝሺ݊ሻ ݔ   ൌ
For theoretical understanding

Figure 3.2. 

Figure 3.2

The statistical covariance ma

 ܴ
Since the input samples are fiܴ௫ሺܰ
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nal and it is not detected as signal or the signal 

l [6]. 

presented by the probability of detection and co

bility of false alarm represents the absence oℋ0. Let ௌܰ be the total number of input samples,

ൌ  ሾݔଵሺ݊ሻ, ,ଶሺ݊ሻݔ ,ଷሺ݊ሻݔ … , ே௦ሺ݊ሻሿ்ݔ                 

amples (smoothing factor) then the estimated re

ൌ  ሾ்ݔሺ݊ሻ, ሺ்݊ݔ െ 1ሻ, … , ሺ்݊ݔ െ ܮ  1ሻሿ்          

g an example for estimated received signal is su

 
2 Received and Estimated Received Signal 

 

atrix of the received signal is defined as 

ܴ௫ ൌ ො்ሺ݊ሻ൯ݔොሺ݊ሻݔ൫ܧ                                            

finite so the sample covariance matrix is as unde

ௌܰሻ ൌ   ଵேೄ ∑ ොିଵୀݔ ሺ݊ሻݔො்ሺ݊ሻ                                  

is not present 

orresponds to 

of signal and 

, the received 

             (3.3) 

eceived signal 

             (3.4) 

 

ummarized in 

             (3.5) 

r: 

             (3.6) 



 

The covariance matrix is T

diagonal entries are same.  

 

3.2 General Algor
In general the Eigenvalue bas

Figure 3.4. 

Figure 3.4 Steps fo
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3.3 Eigenvalue based Spectrum Sensing Algorithms 
 

Different Eigenvalue based spectrum sensing algorithms have been proposed. 

These algorithms calculates the eigenvalues of the covariance matrix and uses them in 

various fashions for signal detection. These algorithms mainy includes maximum to 

minimum eigenvalue detection (MME), energy to minimum detection (EME), and 

maximum eigenvalue based detection (MED). 

 

3.3.1   Maximum to Minimum Eigenvalue Detection 
 

In maximum to minimum eigenvalue detection method the ratio of maximum to 

minimum eigenvalues are calculated and then compared with the threshold in the 

decision stage to determine signal presence [6].  

 

Step 1 Compute the sample covariance matrix of the received input samples. 

ܴ௫ሺ ௌܰሻ ൌ   1ܰௌ  ොିଵݔ
ୀ ሺ݊ሻݔො்ሺ݊ሻ 

here NS is the number of received samples and L is received  input 

samples. 

Step 2  Calculate the maximum eigenvalue λmaxof the covariance matrix RX. 
Step 3  Decision:   

Signal exists, if   λmax/ λmin>1ߛ else signal does not exist.  Here 1ߛ is the 

threshold 
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3.3.2   Energy to Minimum Eigenvalue Detection 
 

In energy to minimum eigenvalue detection method the ratio of energy to minimum 

eigenvalues are calculated and then compared with the threshold in the decision stage to 

determine signal presence [6].  

 

Step 1 Compute the sample covariance matrix of the received input samples. 

ܴ௫ሺ ௌܰሻ ൌ   1ܰௌ  ොିଵݔ
ୀ ሺ݊ሻݔො்ሺ݊ሻ 

here NS is the number of received samples and L is received  input 

samples. 

Step 2 Calculate the minimum eigenvalue λminof the covariance matrix RX. Also 

compute the Energy T(NS) as defined by, 

ܶሺ ௌܰሻ ൌ ܯ1   ௌܰ   ሺ݊ሻ|ଶேೞିଵݔ|
ୀ

ெ
ୀଵ  

Where M and NS represents the number of transmitted signals (primary 

users) and the total number of received samples respectively.  

Step 3  Decision:   

Signal exists, if   T (NS)/ λmin>2ߛ else signal does not exist.  Here 2ߛ is the 
threshold 
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3.3.3   Maximum Eigenvalue Detection 
 

The sample auto correlations of the received signal is defined as, 

ሺ݈ሻߣ  ൌ ଵேೞ ∑ ሺ݉ݔሺ݉ሻݔ െ ݈ሻ,          ݈ ൌ 0,1,2, … , ܮ െ 1ேೞିଵୀ               (3.7) 

 

Here Ns are the number of received input samples. The statistical covariance matrix RX 

can be approximated by sample autocorrelation samples as [7], 

 

ܴ௫ሺ ௦ܰሻ ൌ ൦ ܮሺߣڭሺ1ሻߣሺ0ሻߣ െ 1ሻ
ܮሺߣڭሺ0ሻߣሺ1ሻߣ െ 2ሻ

ڮڭڮڮ
ܮሺߣ െ 1ሻߣሺܮ െ 2ሻߣڭሺ0ሻ ൪                                      (3.8) 

 

Note that the sample covariance matrix is symmetric and Toeplitz (matrix property).  

Step 1 Compute the sample autocorrelations and form the covariance matrix Rx 

as defined above 

Step 2  Calculate the maximum eigenvalue λmaxof the covariance matrix Rx. 

Step 3  Decision:   

Signal exists, if   λmax>ߛ ση2 else signal does not exist.  Here ߛ is the 

threshold and ση2 is the noise variance 
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3.4 Threshold Calculation 
 

The thresholds for the Eigenvalue based spectrum sensing methods have been calculated 

using different statistical distributions [6]. These thresholds includes Tracy Widom 

distribution for the largest Eigenvalues and the Gaussian distribution for the smallest 

Eigenvalues.  

3.4.1    Tracy Widom Distribution 
 

The distribution for the largest Eigenvalue has recently proposed by I. M. Johnstone and 

K. Johansson [6]. The Tracy Widom distribution plot is shown in Figure 3.5. 

 

Figure 3.5 Tracy Widom Disribution of Order 1 
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The threshold 1ߛ for the maximum to minimum Eigenvalue (MME) detection is given by 

[6], 

ଵߛ ൌ ൫ඥேೄା√ெ൯మ൫ඥேೄି√ெ൯మ ൭1  ൫ඥேೄା√ெ൯షమ/యሺேೄெሻభ/ల ଵ൫1ିܨ െ ܲ൯൱                        (3.9) 

The threshold ߛ for the maximum Eigenvalue detection (MED) is given by [7], 

ߛ ൌ ൫ඥேೄା√൯మேೄ ൭1  ൫ඥேೄା√൯షమ/యሺேೄሻభ/ల ଵ൫1ିܨ െ ܲ൯൱                           (3.10) 

The thresholds does not depend upon noise any prior signal knowledge which is the key 

for Eigenvalue based spectrum sensing technique. The threshold only depends upon 

number of samples ௌܰ, received time samples L, number of received signal M and the 

probability of false alarm ܲ. Here ܨଵ shows the inverse Tracy Widom distribution.  

 

3.4.2    Gaussian Distribution 
 

The threshold ߛ 2 for the Energy with Minimum Eigenvalue algorithm (EME) is 

approximated by Gaussian distribution and is represented by [6], 

ଶߛ ൌ ൬ට ଶெேೄ ܳିଵ൫ ܲ൯  1൰ ேೄ൫ඥேೄି√ெ൯మ                                         (3.11) 

In the above equation ܳ  shows the Q-function. Unlike classical spectrum sensing 

techniques, the eigenvalue based spectrum sensing methods does not require any prior 

knowledge of the signal and also are independent of noise unncertainity. These methods 

depends upon the number of samples ௌܰ, received time samples L and the number of 

received signals M.  

 

  



 

Chapter 4 

Fast Iterative Ei
    

 

The majority of the eige

eigenvalue or the minimum 

one might like to get few eig

large, the computation of its 

only interested in few extrem

efficient way. Eigenvalue al

issues and they carry out th

desired eigenvalues [13, 16]. 
 

Figure 4.1 Targ

Eigenvalue solving problem 
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his by computing the target subspace associa
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are practically not feasible. The direct methods expands the entire subspace to find the 

eigenvalues and involves matrix matrix multiplication that invokes computational 

complexity. 

 

4.2 Iterative Methods 
 

Iterative methods are used for calculating the extreme eigenvalues. These methods are 

approximated methods that are fast and only require ߍሺܰଶሻ  operations unlike direct 

methods which require ߍሺܰଷሻ operations. The solutions have some errors which can 

easily be tolerated.  

 

4.2.1    Krylov Subspace 
 

Krylov methods are one important type of iterative methods. Let we have a large n x n 

matrix A and a vector x. we can find the Krylov sequence as [12], 

,ݔ  ,ݔܣ ,ݔଶܣ ,ݔଷܣ …                                                              (4.1) 

 

For a given matrix A and nonzero vector x, the Krylov subspace is defined by 

  

Қሺܣ, ሻݔ ൌ ,ݔሼ ݊ܽݏ ,ݔܣ ,ݔଶܣ ,ݔଷܣ … ,  ሽ                             (4.2)ݔିଵܣ

 

referred to as the mth Krylov subspace. It is associated with the pair ሺܣ,  ሻ and denoted byݔ

Қሺܣ,  ሻ or simply Қ. In order to build up the Krylov subspace, we need a startingݔ

vector x.  In the beginning we don’t have any idea about the invariant subspace. 

Considering all that we choose vector x at random to start and we will be able to get 

better approximation for x later after some iterations.  

 

Krylov methods unlike direct methods employ matrix vector multiplication thus avoiding 

matrix-matrix multiplication that involves complexity. The Arnoldi and Lanczos 
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compute an orthonormal basis of the Krylov su

is shown in Figure 4.2. 
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.3  Fast Eigenvalue Computation Methods 
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4.3.1 Implicit Restart Arnoldi Algorithm 
 

The implicit restart Arnoldi method is for non hermition matrices [14]. The algorithm is 

given Table 4.1. 

Table 4.1 Implicit Restart Arnoldi Algorithm 

 

Let the Arnoldi relation ܳܣ ൌ ܳ ܪ  כ݁ݎ  be given 

repeat 
     Determine k shifts ߤଵ, … ,  ;ߤ
כݒ      ൌ   ݁כ ; 
     for ݅ ൌ 1, … , ݇ do 

ܪ          െ ܫߤ  ൌ  ܸܴ;   /* QR Factorization */ 

ܪ          ൌ  ܸܪכ ܸ;        ܳ ൌ  ܳ ܸ; 
כݒ          ൌ כݒ  ܸ; 
     end for 
ݎ      ൌ ାଵାݍ  ାߚ  ,ାݒݎ  ; 
     ܳ :ൌ ܳሺ ,1: ܪ       ;ሻ ൌ  :ሺ1ܪ  , 1:  ;ሻ
     Starting with 

ܳܣ                                           ൌ  ܳܪ    כ݁ݎ 

      execute k additional steps of the Arnoldi algorithm until      

ܳܣ                                            ൌ  ܳܪ  כ݁ݎ                     

until convergence       

 

In the Implicitlty restarted Arnoldi algorithm, A is the input matrix, Q is the unitary 

matrix and H represents the upper Hessenberg matrix. The QR factorization is done for k 

fixed number of iterations and then the starting vector is replaced with new one and 

performed the iterations until convergence is reached. The algorithm reduces the matrix 

into upper Hessenberg form. Upper Hessenberg matrix is defined as, 

,ሺ݅ܪ  ݆ሻ ൌ ݅  ݎ݂   0 > ሺ݆  1ሻ ;                                               (4.3) 
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4.3.2 Implicit Restart Lanczos Algorithm 
The Lanczos algorithm is used for finding the extreme eigenvalues of symmetric matrices 

[15]. The algorithm for the Implicitly Restarted Lanczos algorithm is shown in Table 4.2. 

Table 4.2 Implicit Restart Lanczos Algorithm 

 

start with ݒଵ ൌ ݒ ԡݒԡ⁄  with starting vector v 

compute an m-step Lanczos factorization 

ܣ             ܸ ൌ  ܸ ܶ  ݎ݁כ  

repeat until convergence ሺ ܶ ൌ  ሻ݈ܽ݊݃ܽ݅݀ ܦ 

         compute ߪሺ ܶሻ and select p shifts ߤଵ, ,ଶߤ … ,  ߤ

         initialize ܳ ൌ  ܫ 

         for ݆ ൌ 1, 2, … ,  ,
               QR-factorize ܳ ܴ ൌ  ܶ െ  ܫߤ 

                update ܶ ൌ  ܳכ ܶܳ, ܳ ൌ ܳܳ  

          end for 

ݎ           ൌ ߚାଵݒ   ,ߪݎ  ߚ ℎݐ݅ݓ ൌ  ܶሺ݇  1, ݇ሻ and ߪ ൌ ܳሺ݉, ݇ሻ     

          ܸ ൌ  ܸܳሺ: , 1: ݇ሻ;   ܶ ൌ  ܶሺ1: ݇, 1: ݇ሻ 

        beginning with the k-step Lanczos factorization  

ܣ                        ܸ ൌ  ܸ ܶ   ,כ݁ݎ 
     Apply p additional steps of the Lanczos process to obtain new m-step 

Lanczos factorization,  

ܣ           ܸ ൌ  ܸ ܶ  ݎ݁כ ,   
end repeat             

 

Ideally for eigenvalue computations the initial starting vector v should be the one that is 

in the direction of the required subspace. In the absence of any prior knowledge of the 

subspace, the random starting vector is a reasonable choice.   The shifts ߤ are selected 

with respect to user’s desired sets of eigenvalues. Here k is the number of eigenvalues to 
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be computed and r represents the residual. The desired sets specification includes the k 

algebraically smallest eigenvalues, the k algebraically largest eigenvalues.  

 

4.3.3 Jacobi-Davidson Algorithm 
 

The Arnoldi and Lanczos methods are very effective to compute the eigenvalues when 

the eigenvalues are well separated from the spectrum [17]. When this is not the case then 

Jacobi-Davison is an attractive algorithm to compute the extreme eigenvalues.  

Let ݒଵ, ,ଶݒ … ,  be the set of orthogonal vectors, spanning the search space with ܸݒ ൌ ሾݒଵ, ,ଶݒ … ,  ሿ. Let u be the approximation to the eigenvector x. Jacobi proposed thisݒ

correction by a vector t such that  

൫uܣ   t൯ ൌ ൫uߣ  t൯,            u ٣ t                                   (4.4) 

 

for eigenvalue problemݔܣ ൌ  The Jacobi-Davidson correction equation is given as .ݔߣ

 ൫ܫ െ uuכ൯൫ܣ െ ܫ൯൫ܫߴ െ uuכ൯t ൌ  െr     ൌ െ൫ܣ െ  ൯u,            (4.5)ܫߴ

 

Where in the above equation ߴ represents the Ritz value. The residual is denoted by r and shown as  r ൌ uܣ െ  uߴ . The algorithm for the Jacobi-Davidson method is 

shown in Table 4.3.  
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Table 4.3 Jacobi-Davidson Algorithm 

     

     initialize search subspace and Rayleigh-Ritz procedure 

     v ൌ v ԡvԡ⁄ ;    v ൌ  ;vܣ
     ܸ ൌ v;    ݆ ൌ 1; 
ܩ      ൌ v் v; 
     u ൌ ܸ; ߠ  ൌ  ;ܩ
ݎ      ൌ v െ  ;uߠ
 ℎ݈݅݁ሺ1ሻݓ     

          െ ݁ݐ ݃݊݅݀݊ܽݔℎ݁ ܿݎܽ݁ݏℎ ݁ܿܽݏ – 

           Solving Jacobi-Davidson correction equation for z ሺܫ െ uu்ሻሺܣ െ ܫሻሺܫߠ െ uu்ሻݖ ൌ െr;     zTu ൌ 0;  
 

݉ܽݎܩ ݂݀݁݅݅݀݉ ݃݊݅ݏݑ ܸ ݐݏ݊݅ܽ݃ܽ ݖ ݁ݖ݈݅ܽ݉ݎ݊ℎݎ         െ ܵܿℎ݉݅݀ݐ݁݉ ݐℎ݀
 

         ܸ ൌ ሾܸ, zሿ;    v ൌ       ;zܣ
 

         െ ܿݏݎ݅ܽ ݖݐܴ݅ ݁ݐݑ݉ െ                

ܩ          ൌ ሾܩ, ்ܸv; v் ܸ, v் ;ሿݖ  ܩ ݁ݐܽ݀ݑ   

         ሾܹ, ܵሿ ൌ eigሺܩሻ;     ݈ܾ݉݁ݎ݊݁݃݅݁ ݀݁ݐ݆ܿ݁ݎ ݁ݒ݈ݏ       

         ሾߠ, ሿݔܽ݉݅ ൌ max൫݀݅ܽ݃ሺܵሻ൯;      ݁ݑ݈ܽݒ ݖݐܴ݅ ݐݏ݁݃ݎ݈ܽ ݐ݈ܿ݁݁ݏ 

         u ൌ ܸܹሺ: , ;ሻݔܽ݉݅  ݎݐܿ݁ݒ ݖݐܴ݅ ݀݁ݐܽ݅ܿݏݏܽ        

ݎ          ൌ uܣ െ ;uߠ                ݈ܽݑ݀݅ݏ݁ݎ ݁ݐݑ݉ܿ                 
         ݆ ൌ ݆  1;              
         ݂݅ ԡrԡ <      ݊ܽ݅ݎ݁ݐ݅ݎܿ ݃݊݅ݐݏ      ,ߝ

   ;݇ܽ݁ݎܾ             
        ݁݊݀ ݂݅         

ߣ          ℎ݈݅݁ݓ ݀݊݁    ൌ  ;ߠ
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Chapter 5 

Computational Complexity 
             

 

Eigenvalue based spectrum sensing methods perform well in noise as compared to energy 

detection, which is susceptible to noise. When the noise floor is high enough the signal is 

too weak to be identified in noise. When the SNR is as low as -20 dB, the detection of 

signal is challenging [11]. The matlab simulations are performed for signals under 

different noise floors as shown in Figure 5.1  

 

Figure 5.1   Signal with Different Noise Floors 
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The weak signals are smoothly detected by varying received time samples L. This 

follows the same concept assampling in which increasing the sampling can get better 

reconstruction of the signal. The weak signals can be detected using the increased values 

for received time samples L. As the complexity of eigenvalue based spectrum sensing 

techniques is directly proportional to the covariance matrix size, hence complexity 

increases with increased values for received time samples L. The fast iterative algorithms 

are incorporated in eigenvalue based spectrum sensing methods to get the eigenvalues 

with reduced complexity. Hence the proposed thesis work can be used to detect the 

presence of weak signals smoothly in cognitive radios.  

 

Figure 5.2  Minimum Received Time Samples L vs. SNR 

 

The above figure shows the plot for the received time samples L versus the SNR. The 
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be easily detected using lower values for the L. The simulations are performed on 

different test vectors using ensemble averages. The results are obtained using ensemble 

average over 100 iterations for different values for L under different noise floors to get 

optimum values for L for smooth detection of the weak signals. The computational 

complexity of the eigenvalue based Spectrum Sensing techniques is given as [6], ܯଶܮ ௌܰ  Οሺܯଷܮଷሻ                                                     (5.1) 

The first part of equation 5.1 shows the complexity of covariance matrix formation 

whereas the latter part of the equation shows the complexity of the eigenvalue 

decomposition. The fast iterative eigenvalue problem algorithms reduce the complexity 

of the eigenvalue decomposition part to ߍሺܮሻ. The improved overall complexity of the 

eigenvaluebased spectrum sensing algorithm is ܯଶܮ ௌܰ  Οሺܯଷܮሻ                                                     (5.2) 

Thus the complexity of the eigenvalue based spectrum sensing techniques reduces by 

using fast iterative eigenvalue problem algorithms. 
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Chapter 6 

Simulations and Results 
             

 

6.1 Wireless Microphone  Signal 
 

The wireless microphone test vectors are generated according to IEEE 802.22 Wireless 

RANS standard [19, 20]. The FM modulated wireless microphone signal is generated, 

sample rate 6 MHz at the receiver. For simulations, the number of samples ௌܰ is taken as 

100,000.  The fast iterative algorithms are incorporated in Eigenvalue based spectrum 

sensing for smooth signal detection. Simulation results as depicted in Figure 6.1. 

 
Fig 6.1  Convergence Time vs. Covariance Matrix Size  
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The above graph shows that the proposed algorithms become more efficient as the 

covariance matrix size increases unlike direct methods whose complexity is directly 

proportional to the covariance matrix size. Among the proposed three fast iterative 

algorithms, simulation illustrates that implicitly restarted Lanczos algorithm has the least 

convergence time for all covariance matrix sizes.  

 

 

 
Fig 6.2  Log Normal Plot of Complexity vs Covariance Matrix  
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both real and the simulated sample to verify the results.  

 

 

Fig 6.3  Convergence of Eigenvalues 

 

Figure 6.3 shows the convergence of maximum eigenvalue computed using direct and 

different iterative methods. The plot shows that  the maximum eigenvalue computed 

through various eigenvalue computation algorithms converge to same values. 
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6.2 Real-time GSM Signal 

 
The downlink GSM band is from 925 MHz to 960 MHz. The 5 MHz GSM band is 

recorded using the National Instruments (NI) equipment that comprises of digitizer and 

down converter, centered at 929.5 MHz and has sampling frequency 12 MHz.  Figure 6.4 

shows the GSM band at baseband level centered at zero from 2.50 MHz to 2.50 MHz.  

 

 

Fig 6.4  GSM 5MHz Band at Baseband Level. 

 

The entire 5 MHz GSM band is filtered to 200 kHz fractions starting from 927 MHz. 

Low pass and band pass filters are used to filter 200 kHz fraction parts of the recorded 

band.  
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6.5  GSM Recorded Band Fragmention 
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Fig 6.7  Probability of Detection  
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Conclusion and Future Work 
             

Conclusion 
 

Conventional spectrum sensing methods depends upon prior signal information and the 

noise uncertainity. Eigenvalues based spectrum sensing techniques unlike these methods 

does not require any prior signal knowledge and are independent of noise uncertainity. 

Eigenvalue based spectrum sensing methods are computationally complex but are very 

accurate. Their complexity mainly comes from two parts, the covariance matrix 

formation and the eigenvalues decomposition.  Received time samples (smoothing factor) 

L are directly proportional to covariance matrix size that is directly related to 

computational complexity. As the value of L increases the complexity of eigenvalue 

based spectrum sensing techniques increases. The direct methods for the computation of 

the eigenvalues invlolves the complexity ࢯሺࡸሻ . The proposed eigenvalue based 

spectrum sensing techniques reduces the complexity to ࢯሺࡸሻ.  

 

Eigenvalue based spectrum sensing methods behave well in noise unlike classical 

spectrum sensing methods particularly energy detection and matched filter detection due 

to their dependence upon noise. But when the noise level is high enough i.e. the signal is 

too weak to detect, the detection of such weak signal is difficult ask. The eigenvalue 

based spectrum sensing methods with reduced complexity can be used to smoothly detect 

the presence of signal by using the increased value of received time samples L. Thus as 

the noise level increases we can smoothly detect the presence of the primary signal by 

increasing the values for the received time samples L.  
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Future work 
 

The complexity analysis of eigenvalue based spectrum sensing techniques opens up a 

new eve for research in that domain. The implementation of the proposed eigenvalue 

based spectrum sensing methods in hardware platform for the smooth detection of weak 

signals in cognitive radios. On the other, hand the extension of the work in a cooperative 

spectrum sensing domain can also be very benificail. In cooperative spectrum sensing the 

covariance matrix size is large due to multiple transmitter and receiver antennas. As the 

covariance matrix size increases the complexity of the algorithm also increases.  The 

proposed methods will help to reduce the complexity of the eigenvalue based spectrum 

sensing techniques to be used in cooperative spectrum sensing.  
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