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PREFACE

This book has as its purpose to draw together lessons of the past 35 years regarding soil
strength and slope stability. During this period, techniques and equipment for laboratory and
in situ tests have improved, our ability to perform analyses of slope stability has been revo-
lutionized by the widespread use of computers, new methods of reinforcing and stabilizing
slopes have been developed, and a large number of investigations into slope failures have
provided well-documented and valuable case histories to guide engineering practice. It is
therefore an appropriate time to bring these elements together in a book that can serve geo-
technical graduate students and professionals.

Development of this book would not have been possible without the assistance of many
colleagues, whose contributions to our understanding we gratefully acknowledge. Foremost
among these is Professor Harry Seed, who taught both of us and was the inspiration for our
lifelong interest in soil strength and slope stability. We are also grateful for the opportunity
to work with Nilmar Janbu, who during his sabbatical at Berkeley in 1969 taught us many
valuable lessons regarding analysis of slope stability and the shear strength of soils. Our
university colleagues Jim Mitchell, Roy Olson, Clarence Chan, Ken Lee, Peter Dunlop, Guy
LeFebvre, Fred Kulhawy, Suphon Chirapuntu, Tarciso Celestino, Dean Marachi, Ed Becker,
Kai Wong, Norman Jones, Poul Lade, Pat Lucia, Tim D’Orazio, Jey Jeyapalan, Sam Bryant,
Erik Loehr, Loraine Fleming, Bak Kong Low, Bob Gilbert, Vern Schaefer, Tim Stark, Mo-
hamad Kayyal, Marius DeWet, Clark Morrison, Tom Brandon, Ellen Rathje, George Filz, Mike
Pockoski, and Jaco Esterhuizen have also contributed greatly to our understanding of solid
strength and stability. Our experiences working with professional colleagues Al Buchignani,
Laurits Bjerrum, Jim Sherard, Tom Leps, Norbert Morgenstern, George Sowers, Robert Schus-
ter, Ed Luttrell, Larry Franks, Steve Collins, Dave Hammer, Larry Cooley, John Wolosick,
Luis Alfaro, Max DePuy and his group at the Panama Canal Authority, and Fernando Bolinaga
have helped us to see the useful relationships among teaching, research, and professional
practice. Special thanks goes to Chris Meehan for his invaluable assistance with figures, ref-
erences, proofing, and indexing. Finally, we express our deepest appreciation and love to our
wives, Ann and Ouida, for their support, understanding, and constant encouragement through-
out our careers and during the countless hours we have spent working together on this book.

J. Michael Duncan
Stephen G. Wright
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CHAPTER 1

Introduction

Evaluating the stability of slopes in soil is an impor-
tant, interesting, and challenging aspect of civil engi-
neering. Concerns with slope stability have driven
some of the most important advances in our under-
standing of the complex behavior of soils. Extensive
engineering and research studies performed over the
past 70 years provide a sound set of soil mechanics
principles with which to attack practical problems of
slope stability.

Over the past decades, experience with the behavior
of slopes, and often with their failure, has led to de-
velopment of improved understanding of the changes
in soil properties that can occur over time, recognition
of the requirements and the limitations of laboratory
and in situ testing for evaluating soil strengths, devel-
opment of new and more effective types of instrumen-
tation to observe the behavior of slopes, improved
understanding of the principles of soil mechanics that
connect soil behavior to slope stability, and improved
analytical procedures augmented by extensive exami-
nation of the mechanics of slope stability analyses,
detailed comparisons with field behavior, and use of
computers to perform thorough analyses. Through
these advances, the art of slope stability evaluation has
entered a more mature phase, where experience and
judgment, which continue to be of prime importance,
have been combined with improved understanding and
rational methods to improve the level of confidence
that is achievable through systematic observation, test-
ing, and analysis. This seems an appropriate stage in
the development of the state of the art to summarize
some of these experiences and advances in a form that
will be useful for students learning about the subject
and for geotechnical engineers putting these techniques
into practice. This is the objective that this book seeks
to fill.

Despite the advances that have been made, evalu-
ating the stability of slopes remains a challenge. Even

when geology and soil conditions have been evaluated
in keeping with the standards of good practice, and
stability has been evaluated using procedures that have
been effective in previous projects, it is possible that
surprises are in store. As an example, consider the case
of the Waco Dam embankment.

In October 1961, the construction of Waco Dam was
interrupted by the occurrence of a slide along a 1500-
ft section of the embankment resting on the Pepper
shale formation, a heavily overconsolidated, stiff-
fissured clay. A photograph of the 85-ft-high embank-
ment section, taken shortly after the slide occurred, is
shown in Figure 1.1. In the slide region, the Pepper
shale had been geologically uplifted to the surface and
was bounded laterally by two faults crossing the axis
of the embankment. The slide was confined to the
length of the embankment founded on Pepper shale,
and no significant movements were observed beyond
the fault boundaries.

The section of the embankment involved in the slide
was degraded to a height of approximately 40 ft, and
an extensive investigation was carried out by the U.S.
Army Corps of Engineers to determine the cause of
the failure and to develop a method for repairing the
slide. The investigation showed that the slide extended
for several hundred feet downstream from the em-
bankment, within the Pepper shale foundation. A sur-
prising finding of the studies conducted after the failure
was the highly anisotropic nature of the Pepper shale,
which contained pervasive horizontal slickensided fis-
sures spaced about in. (3 mm) apart. The strength1–8
along horizontal planes was found to be only about
40% as large as the strength measured in conventional
tests on vertical specimens. Although conventional
testing and analysis indicated that the embankment
would be stable throughout construction, analyses per-
formed using the lower strengths on horizontal planes
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Figure 1.1 Slide in the downstream slope of the Waco Dam embankment.

produced results that were in agreement with the fail-
ure observed (Wright and Duncan, 1972).

This experience shows that the conventional practice
of testing only vertical samples can be misleading, par-
ticularly for stiff fissured clays with a single dominant
fissure orientation. With the lesson of the Waco Dam
experience in mind, geotechnical engineers are better
prepared to avoid similar pitfalls.

The procedures we use to measure soil strengths and
evaluate the stability of slopes are for the most part
rational and may appear to be rooted solidly in engi-
neering science. The fact that they have a profound
empirical basis is illustrated by the case of an under-
water slope in San Francisco Bay. In August 1970,
during construction of a new shipping terminal at the
Port of San Francisco, a 250-ft (75-m)-long portion of
an underwater slope about 90 ft (30 m) high failed,
with the soil on one side sliding into the trench, as
shown in Figure 1.2. The failure took place entirely
within the San Francisco Bay mud, a much-studied
highly plastic marine clay.

Considerable experience in the San Francisco Bay
area had led to the widely followed practice of exca-
vating underwater slopes in Bay mud at 1 (horizon-
tal)�1 (vertical). At this new shipping terminal,
however, it was desired to make the slopes steeper, if
possible, to reduce the volume of cut and fill and the
cost of the project. Thorough investigations, testing,
and analyses were undertaken to study this question.

Laboratory tests on the best obtainable samples, and
extensive analyses of stability, led to the conclusion

that it would be possible to excavate the slopes at
0.875�1. At this inclination, the factor of safety com-
puted for the slopes would be 1.17. Although such a
low factor of safety was certainly unusual, the condi-
tions involved were judged to be exceptionally well
known and understood, and the slopes were excavated
at the steep angle. The result was the failure depicted
in Figure 1.2. An investigation after the failure led to
the conclusion that the strength of the Bay mud that
could be mobilized in the field over a period of several
weeks was lower than the strength measured in labo-
ratory tests in which the Bay mud was loaded to failure
in a few minutes, and that the cause of the difference
was creep strength loss (Duncan and Buchignani,
1973).

The lesson to be derived from this experience is that
our methods may not be as scientifically well founded
as they sometimes appear. If we alter our conventional
methods by ‘‘improving’’ one aspect, such as the qual-
ity of samples used to measure the undrained strength
of Bay mud, we do not necessarily achieve a more
accurate result. In the case of excavated slopes in Bay
mud, conventional sample quality and conventional
test procedures, combined with conventional values of
factor of safety, had been successful many times. When
the procedures were changed by ‘‘refining’’ the sam-
pling and strength testing procedures, the result was
higher values of undrained shear strength than would
have been measured if conventional procedures had
been used. When, in addition, the value of the safety
factor was reduced, the result was a decision to use an
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Figure 1.2 Failure of the San Francisco LASH Terminal trench slope.

excessively steep slope, which failed. Altering conven-
tional practice and reducing the factor of safety led to
use of a procedure that was not supported by experi-
ence.

SUMMARY

The broader messages from these and similar cases are
clear:

1. We learn our most important lessons from ex-
perience, often from experience involving
failures. The state of the art is advanced through
these failures and the lessons they teach. As a
result, the methods we use depend strongly on
experience. Despite the fact that our methods
may have a logical background in mechanics and
our understanding of the behavior of soils and
rocks, it is important to remember that these
methods are semi-empirical. We depend as much
on the fact that the methods have worked in the
past as we do on their logical basis. We cannot
count on improving these methods by altering
only one part of the process that we use.

2. We should not expect that we have no more les-
sons to learn. As conditions arise that are differ-
ent from the conditions on which our experience
is based, even in ways that may at first seem sub-
tle, we may find that our semi-empirical methods
are inadequate and need to be changed or ex-
panded. The slide in Waco Dam served clear no-
tice that conventional methods were not sufficient
for evaluating the shear strength of Pepper shale
and the stability of embankments founded on it.
The lesson learned from that experience is now
part of the state of the art, but it would be im-
prudent to think that the current state of knowl-
edge is complete. We need to keep abreast of
advances in the state of the art as they develop
and practice our profession with humility, in rec-
ognition that the next lesson to be learned may
be lurking in tomorrow’s project.

The objective of this book is to draw together some
of the lessons that have been learned about measuring
soil strengths and performing limit equilibrium analy-
ses of stability into a consistent, clear, and convenient
reference for students and practicing engineers.
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CHAPTER 2

Examples and Causes of Slope Failure

Experience is the best teacher but not the kindest. Fail-
ures demand attention and always hold lessons about
what not to do again. Learning from failures—
hopefully from other people’s failures—provides the
most reliable basis for anticipating what might go
wrong in other cases. In this chapter we describe 10
cases of slope failure and recount briefly the circum-
stances under which they occurred, their causes, and
their consequences. The examples are followed by an
examination of the factors that influence the stability
of slopes, and the causes of instability, as illustrated
by these examples.

EXAMPLES OF SLOPE FAILURE

The London Road and Highway 24 Landslides

The London Road landslide in Oakland, California, oc-
curred in January 1970 during a period of heavy rain-
fall. Front-page headlines in the January 14, 1970,
Oakland Tribune exclaimed ‘‘Storm Hammers State—
Slide Menaces 14 Homes—The Helpless Feeling of
Watching Ruin Approach.’’ Figure 2.1 shows houses in
the slide area that were destroyed by the slide and had
to be abandoned by their owners. The slide covered an
area of about 15 acres, and the sliding surface was
estimated to be as deep as 60 ft (20 m) beneath the
surface of the ground. As evident from the height of
the headscarp in comparison with the houses on the
right in Figure 2.1, the slide movements were very
large. Some 14 houses were destroyed, and a jet fuel
pipeline at the bottom of the hill was never used again
because of the danger that it would be ruptured by
slide movements. Because the cost of stabilizing the
massive slide was greater than the economic benefit, it
was not repaired, and an entire neighborhood was lost
permanently.

Not only was there heavy rainfall during January
1970, the entire preceding year had been unusually
wet, with about 140% of the average rainfall recorded
at the nearest rain gage station. As discussed later,
these prolonged wet conditions played a significant
role in the occurrence of the massive landslide.

The Highway 24 landslide shown in Figure 2.2 oc-
curred in January 1982, when a storm blew in from
the Pacific Ocean and stalled over the San Francisco
Bay area. In a 24-hour period in early January, the
storm dumped nearly 10 in. of rain on the area, where
the normal yearly rainfall is about 25 in. The sudden
enormous deluge resulted in literally thousands of
landslides in the San Francisco Bay area. Typically,
these slides were shallow. The intense rainfall saturated
the upper few feet of the ground on the hillsides, which
came sliding and flowing down in many places, knock-
ing down trees, destroying houses, and blocking roads.
Figure 2.2 shows Highway 24 near Orinda, California,
partially blocked by a flow of sloppy, saturated soil that
flowed onto the roadway, just one of the thousands of
slides that occurred during the storm.

The London Road landslide and the flow slide on
Highway 24, less than 10 miles apart, illustrate two
very different types of slope failures that occur in the
same area. The London Road landslide was very deep-
seated and followed two successive years of above-
normal rainfall. Although detailed soil exploration was
not carried out at the London Road site, some inter-
esting facts may be surmised based on what could be
seen at the ground surface. The slide movement ex-
posed serpentine rock in one area. Serpentine is a met-
amorphic rock that can be hard and strong but is
subject to rapid deterioration to a weak powdery mass
when exposed to air and water. Although the exposed
serpentine retained its rocklike appearance, it could be
penetrated several inches with a bare hand and had
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Figure 2.1 London Road landslide, Oakland, California. (J. M. Duncan photos.)

essentially no strength or stiffness. It can be surmised
that the strength of the serpentine, and other soils and
rocks underlying the London Road area, had been de-
teriorating slowly over a period of many tens, hun-
dreds, even thousands of years since the hillside was
formed. Such deterioration results from chemical and
physical processes that can gradually change the prop-
erties of earth materials. Eventually, this reduction in
strength, combined with two years of heavy rainfall
and resulting high groundwater levels, led to the very
deep-seated landslide.

In contrast, the slide that blocked Highway 24 was
very shallow, probably no more than 3 ft (1 m) deep.
This type of slide develops very quickly as a result of
relatively brief, extremely intense rainfall. Infiltration
within a brief period affects only the upper few feet of
soil. Within this depth, however, the soil may become
saturated and lose much of its strength. In the area east
of San Francisco Bay, the hillsides are blanketed by
silty and sandy clays of low plasticity over the top of
less weathered and stronger rock. The thickness of the
soil cover ranges from zero to 15 ft (5 m). The soil
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Figure 2.2 Flow slide on Highway 24 near Orinda, California. (J. M. Duncan photo.)

has formed from the underlying rocks and has reached
its present condition through processes of weathering,
erosion, shallow sliding, and deposition farther down-
hill. When dry, the soils that blanket the hillsides are
stiff and strong, and the slopes they form are stable.
During intense rains, however, water infiltrates the
ground rapidly because the ground contains many
cracks that provide secondary permeabilty. Although
the processes leading to this type of slide are still the
subject of research study, it is clear that conditions can
change very quickly, and that the transition from stable
ground to a fluid mass in rapid motion can take place
within minutes. The high velocities with which these
slides move makes them very dangerous, and many
lives have been lost when they flowed down and
crushed houses without warning.

The London Road and the Highway 24 slides illus-
trate a relationship between rainfall and landslides that
has been observed in many places: Long periods of
higher-than-average rainfall cause deep-seated, slow-
moving slides, with shear surfaces that can extend tens
of feet below the ground surface. One or two days of
very intense rainfall, in contrast, tend to cause shallow
slides involving only a few feet of soil, which move
with high velocity once they are in motion.

The Landslide at Tuve, Sweden

In December 1977 a large landslide occurred on a gen-
tle hillside in the town of Tuve, Sweden, a suburb north
of Göteborg. A photograph and three cross sections
through the slide are shown in Figure 2.3. The soil at
the site was a layer of quick clay overlying a thin layer

of permeable granular material on top of rock. The
slide covered an area of 15 ha (40 acres), destroyed
about 50 houses, and took 11 lives. Quick clays of the
type involved in this slide are noted for their great
sensitivity and extremely brittle behavior. When they
fail, they lose practically all shear strength and flow
like a viscous liquid.

The slide is believed to have started as a small slope
failure in the side of a road embankment. The small
slide left unstable the slope it slid away from, and a
slightly larger failure of that slope took place. The
process was repeated as the slide grew in the uphill
direction, covering a larger and larger area. Houses in
the area were undermined by the retrogressing slides
and cruised downhill on the weakened slippery clay,
crashing into other houses. As soil and houses from
the failed area moved downhill, the soil in the area
into which it moved was loaded and disturbed, and it
began to fail also. The slide thus grew uphill and
downhill from the original small slope failure in the
middle.

Slides that grow uphill by increments are called ret-
rogressive; slides that grow downhill by increments are
called progressive. The Tuve slide was both. The small
embankment failure that started the Tuve slide is be-
lieved to have been caused by erosion steepening the
slope of the roadway embankment at the location of a
small drainage culvert. This small slope failure was the
trigger for a slide of immense proportions because of
the metastable structure of the Swedish quick clay. It
is likely that the strength of the bottom part of the
quick clay layer was unusually low as a result of ar-
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Figure 2.4 Interstate 80 embankment slope failure.

tesian pressures in the permeable granular material be-
neath the clay. Similar conditions in Norway have been
found to be especially treacherous.

Slope Failures in Highway and Dam Embankments

Pinole, California, slide. Figure 2.4 shows a slope
failure that occurred on a section of Interstate 80 near
Pinole, California, where the road was supported on an
embankment of well-compacted clayey soil. It can be
seen that the back scarp of the failure is very steep.
This is an indication that the embankment material was
very strong, or it would not have remained stable in
this nearly vertical slope, which was about 30 ft (10
m) high. The weak link was the foundation, which con-
tained organic soil that had not been removed when
the highway was constructed.

The natural ground sloped upward away from the
south side of the embankment (the left side in Figure
2.4) and downward away from the right side. During
rains, water tended to pond against the embankment
because there was no underdrainage, and water seeped
from south to north through the foundation of the em-
bankment. The slide occurred after a period of heavy
rain in the winter of 1969.

Houston, Texas, slide. A slide in a highway em-
bankment near Houston, Texas, is shown in Figure 2.5.
The embankment was constructed of compacted highly
plastic clay and was built with 2 (horizontal)�1 (ver-
tical) side slopes. The fill was well compacted. The
embankment was stable when it was built and re-
mained stable for many years afterward. However, as
time went by and the fill was wetted and dried repeat-

edly during alternating rainy and dry periods, it grad-
ually swelled and grew softer and weaker. Finally,
about 20 years after the embankment was built, the
failure shown in Figure 2.5 occurred.

San Luis Dam, California, slide. On September 4,
1981, a massive slide occurred in the upstream slope
of San Luis Dam, about 100 miles southeast of San
Francisco, California. A photograph of the slide is
shown in Figure 2.6. At the left end of the slide the
movements were about 35 ft (about 10 m). The amount
of displacement decreased to the right, diminishing to
zero in a length of about 1100 ft (350 m). In the area
where the slide occurred, the embankment was 200 ft
(60 m) high and was constructed on a layer of highly
plastic clay slope wash overlying the rock that formed
the hillside. This material was formed from the under-
lying rocks by the same processes of weathering, ero-
sion, shallow sliding, and deposition farther downhill
that formed the soils on the hills east of San Francisco
Bay.

When the San Luis Dam embankment was con-
structed in 1969, the highly plastic clay slope-wash
that covered the foundation was dry and very strong.
However, when it was wetted by the water stored in
the reservoir, it became much weaker. Furthermore,
over the period of 12 years between construction of
the dam and the slide shown in Figure 2.6, the water
level in the reservoir moved up and down several times
as the pumped-storage reservoir was filled in the wet
season and as water was withdrawn in the dry season.
Stark and Duncan (1991) performed tests on the slope-
wash and analyses of the slide which indicated that the
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Figure 2.5 Slide in highway embankment near Houston, Texas. Embankment constructed
of highly plastic clay.

Figure 2.6 San Luis Dam upstream slope failure.

strength of the slope-wash was gradually reduced to a
low residual value due to the wetting and the cyclic
variations in shear stress caused by the changes in the
water level in the reservoir. Finally, in September 1981,
the slide shown in Figure 2.6 occurred following the
largest and fastest drawdown of the reservoir. The slide
was stabilized by rebuilding the failed part of the dam,

adding a 60-ft (18-m)-high buttress at the base (ENR,
1982).

The Olmsted Landslide

The Olmsted Locks and Dam project was built on the
Ohio River about 50 miles (80 km) above the conflu-
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Figure 2.7 Lower bank landslide at Olmsted locks and dam site on the Ohio River.

ence of the Ohio with the Mississippi. To satisfy nav-
igational requirements, the project had to be built at a
location where there was a massive active landslide on
the Illinois bank of the river. The slide extends for
about 3300 ft (1000 m) along the river bank. Evidence
of instability on the Illinois shore at Olmsted was first
discovered in 1987 during the foundation investigation
for the proposed locks and dam. The extent of the un-
stable ground was mapped on the basis of slide scarps,
cracks, leaning trees, and hummocky terrain. The dif-
ference in elevation from the toe of the slide to the
scarp shown in Figure 2.7 is about 70 ft. Slope incli-
nometers were installed to determine the location of
the shear surface, and piezometers were installed to
determine water levels.

In late May and early June 1988, a drop of 7 ft (2.1
m) in the river level took place over a period of 10
days. During this period the groundwater levels within
the slope dropped 1 to 3 ft (0.3 to 0.9 m). When the
river level dropped, the slide moved, and nearly-
vertical scarps about 3 ft (0.9 m) high developed at the
head of the slide. The location of the sliding surface
in the 1988 movement was determined based on data
from 12 slope inclinometers, and the elevations of
crimping in the riser tubes of five standpipe piezome-
ters.

It was found that the shear surface was located
within the McNairy I formation, which consists of in-
terbedded layers of clay, silt, and sand. The thicknesses
of these layers vary from fractions of an inch to as
much as a foot. The layering within the McNairy I
formation makes determination of shear strengths very
difficult. First, the shear strength varies with the direc-
tion of the shear plane, being much higher when the
shear plane crosses silt and sand layers than when it
passes entirely through clay. Second, it is difficult to
obtain representative undisturbed samples for labora-
tory testing. However, because the conditions at the
time of sliding were well defined, it was possible to
determine the shearing resistance of the McNairy I by
back analysis. The strength was estimated, slope sta-
bility analyses were performed, the estimated strengths
were adjusted, and the analyses were repeated until the
calculated factor of safety was 1.0. The strengths back-
calculated from the observed failure were used in sub-
sequent analyses to design flatter slopes and buttresses
that ensured long-term stability of the slope.

Panama Canal Landslides

The Panama Canal has been plagued by slope failures
ever since the beginning of construction by the French
(McCullough, 1999). To achieve even marginal stabil-
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Figure 2.8 1986 Cucaracha landslide at the Panama Canal.

ity, it was necessary to excavate much gentler slopes
than anticipated when the first optimistic estimates of
the volume of excavation were made. Unfortunately,
the clay shales in which most of the slopes were cut
are subject to serious deterioration over time, and
many slopes that stood when first excavated failed
later.

Construction of the canal was completed in 1914,
but slope failures continued for many years. In October
1986 a large landslide occurred on the Cucaracha reach
of the canal, where the slopes had failed many times
before. The 1986 landslide, shown in Figure 2.8,
closed the canal for 12 hours and impeded traffic until
December 1986, when the slide mass was cleared from
the navigation channel by dredging.

For some years preceding the 1986 Cucaracha slide,
the budget devoted to landslide problems in the canal
had gradually decreased, because no large slides had
occurred. The 1986 slide engendered renewed appre-
ciation of the important effect that landslides could
have on the canal, and the Panama Canal Commission
immediately devoted more resources to detection and
control of landslides. The commission increased the
size of the geotechnical engineering staff and instituted
a landslide control program to reduce the hazard that
landslides pose to the operation of the canal. The land-
slide control program included investigation of the
causes of the Cucaracha slide and measures to stabilize
it, a program of precise and essentially continuous
measurements of surface movements on slopes, sys-

tematic inspections of slopes for indications of insta-
bility, improvement of surface drainage, installation of
horizontal drains for subsurface drainage, and exca-
vation to flatten and unload slopes. This approach,
which treats landslides along the canal as a hazard that
requires continuing attention and active management,
has been highly successful.

The Rio Mantaro Landslide

On April 25, 1974, one of the largest landslides in
recorded history occurred on a slope in the valley of
the Rio Montaro in Peru (Lee and Duncan, 1975). A
photograph of the landslide is shown in Figure 2.9, and
a cross section through the slope is shown in Figure
2.10. As shown in Figure 2.10, the slope on which the
landslide occurred was about 3.7 miles (6 km) long
and 1.2 miles (2 km) high. It was approximately the
same height and steepness as the south rim of the
Grand Canyon in Arizona, also shown in Figure 2.10.
The volume of earth involved in the slide was about 2
billion cubic yards (about 1.5 billion cubic meters). It
was estimated that the sliding mass achieved a velocity
of 120 miles/hr (190 km/h) as it moved down the
slope. When it slammed into the opposite side of the
valley, it splashed up to a height of 600 ft (200 m)
above the bottom of the valley and then slumped back
to form a landslide dam about 550 ft (170 m) high.
The impact as the sliding mass hit the opposite valley
wall was recorded at a seismographic station 30 miles
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Figure 2.9 Rio Mantaro landslide in Peru, 1974.

(50 km) away as an event comparable to a magnitude
4 earthquake.

Prior to the slide, a town of about 450 inhabitants,
Mayunmarca, was situated on the slope where the
landslide occurred. After the landslide, no trace was
found of the town or any of its inhabitants.

Kettleman Hills Landfill Slope Failure

On March 19, 1988, a slide occurred in a 90-ft (27-
m)-high slope of a hazardous-waste landfill at Kettle-

man Hills, California (Mitchell et al., 1990; Seed et al.,
1990). The failure involved about 580,000 cubic yards
of waste (Golder Associates, 1991). A plan view and
cross section through the fill are shown in Figure 2.11.
The failure occurred by sliding on interfaces within the
composite liner beneath the waste. The liner included
three geomembranes, six geotextiles, three layers of
granular fill, and two layers of compacted clay. Mitch-
ell et al. (1990) found that some of the interfaces
within the liner system had interface friction angles
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as low as 8�. The lowest friction angles were found
for interfaces between high-density polyethylene
(HDPE) geomembranes and geotextiles, between geo-
membranes and geonets, and between geomembranes
and compacted clay that was saturated after compac-
tion. Seed et al. (1990) showed that factors of safety
calculated for the conditions at failure were near 1.0 if
the effect of wetting of the lower, nearly flat portion
of the liner was taken into account and if consideration
was given to three-dimensional effects. One particu-
larly interesting aspect of the failure is that the maxi-
mum section (C1–C2 in Figure 2.11) did not have the
lowest factor of safety. A shallower section near the
top of Figure 2.11 had a considerably smaller factor of
safety (Seed et al., 1990).

CAUSES OF SLOPE FAILURE

It is important to understand the agents of instability
in slopes for two reasons. First, for purposes of de-
signing and constructing new slopes, it is important to
be able to anticipate the changes in the properties of
the soil within the slope that may occur over time and

the various loading and seepage conditions to which
the slope will be subjected over the course of its life.
Second, for purposes of repairing failed slopes, it is
important to understand the essential elements of the
situation that lead to its failure, so that repetition of
the failure can be avoided. Experience is the best
teacher—from experiences with failures of slopes
come the important lessons regarding what steps are
necessary to design, construct, and repair slopes so that
they will remain safe and stable.

In discussing the various causes of slope failures, it
is useful to begin by considering the fundamental re-
quirement for stability of slopes: that the shear
strength of the soil must be greater than the shear
stress required for equilibrium. Given this basic re-
quirement, it follows that the most fundamental cause
of instability is that for some reason, the shear strength
of the soil is less than the shear strength required for
equilibrium. This condition can be reached in two
ways:

• Through a decrease in the shear strength of the
soil
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Figure 2.11 Kettleman Hills, California, landfill slope fail-
ure: (a) surface topography, March 15, 1988; (b) cross sec-
tion C1–C2. (After Mitchell et al., 1990.)

• Through an increase in the shear stress required
for equilibrium

The slope failures discussed in Chapters 1 and 2 in-
clude examples of both of these causes of instability.

Decrease in Shear Strength

Several different processes can lead to reduction in the
shear strengths of soils. Experience has shown that the
following processes are of particular importance with
regard to slope stability:

1. Increased pore pressure (reduced effective
stress). Rise in groundwater levels and more ad-
verse seepage, frequently during periods of
heavy rainfall, are the most frequent reasons for
increased pore pressures and associated de-
crease in effective stresses within slopes. All
types of soils are affected. The length of time

required for the pore pressures to change de-
pends on the permeability of the soil. In soils
with high permeability, changes can occur rap-
idly, and in soils with low permeability, changes
can be slow. Although the matrix permeability
of clayey soils is usually very low, clay masses
can have surprisingly high secondary permea-
bility, due to cracks, fissures, and lenses of more
permeable materials. As a result, pore pressures
within clay deposits can change with surprising
rapidity.

2. Cracking. Slope failures are frequently preceded
by development of cracks through the soil near
the crest of the slope. These cracks develop as
a result of tension in the soil at the ground sur-
face that exceeds the tensile strength of the soil.
Cracks are possible only in soils that have some
tensile strength. Quite clearly, once the soil is
cracked, all strength on the plane of the crack
is lost.

3. Swelling (increase in void ratio). Clays, espe-
cially highly plastic and heavily overconsoli-
dated clays, are subject to swell when in contact
with water. Low confining pressures and long
periods of access to water promote swell. It has
generally not been possible to achieve the same
amount of swell in laboratory tests as occurs in
the field. Kayyal (1991) studied highway em-
bankments near Houston, Texas, constructed of
highly plastic compacted clays, which failed 10
to 20 years after construction as a result of swell
and strength loss. Similar shallow slides in
highly plastic clays have occurred in many ar-
eas. Skempton (1964) showed three cases of
slides in the overconsolidated London clay,
where zones of higher water content extended
for about an inch on either side of the shear
surfaces, indicating that the shear stresses within
the developing rupture zone led to localized di-
lation of the heavily overconsolidated clay.

4. Development of slickensides. Slickensided sur-
faces develop in clays, especially highly plastic
clays, as a result of shear on distinct planes of
slip. As shear displacements occur on a distinct
plane, platelike clay particles tend to be rea-
ligned parallel to the plane of slip. The result is
a smooth surface that exhibits a dull luster, com-
parable in appearance to the lustrous surface of
a new bar of soap. The clay separates readily
across these surfaces, and they can be found by
breaking hand samples in tension or by picking
at the walls of trenches. Slickensided surfaces
are weaker than the surrounding clay where par-
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ticles are randomly oriented. The friction angle
on slickensided surfaces is called the residual
friction angle. In highly plastic clays this may
be only 5 or 6�, compared with peak friction
angles of 20 or 30� in the same clay. Slicken-
sides develop most prominently in clays that
consist predominantly of clay-size particles; sig-
nificant silt or sand content inhibits their for-
mation. In some deposits randomly oriented
slickensides develop as a result of tectonic
movements. These have less significance for
slope stability than a single set of slickensides
with an adverse orientation.

5. Decomposition of clayey rock fills. Clay shales
and claystones excavated for use as fill may
break into pieces of temporarily sound rock that
can be compacted into a seemingly stable rock
fill. Over time, however, as the fill is wetted by
infiltration or by groundwater seepage, the
pieces of rock may slake and revert to chunks
of disaggregated clay particles. As the clay
swells into the open voids within the fill, it can
lose a great deal of its strength, and the fill can
become unstable.

6. Creep under sustained loads. Clays, especially
highly plastic clays, deform continuously when
subjected to sustained loading. These clays may
eventually fail under these sustained loads, even
at shear stresses that are significantly smaller
than the short-term strength. Creep is exacer-
bated by cyclic variations in conditions, such as
freeze–thaw and wet–dry. When the cyclically
varying conditions are at their adverse extremes,
movements occur in the downhill direction.
These movements are permanent—they are not
recovered when conditions are less adverse. The
long-term result is ratcheting downslope move-
ment that gradually increases from year to year,
and this may eventually result in sliding on a
continuous failure plane.

7. Leaching. Leaching involves changes in the
chemical composition of pore water as water
seeps through the voids. Leaching of salt from
the pore water of marine clays contributes to the
development of quick clays, which have virtu-
ally no strength when disturbed.

8. Strain softening. Brittle soils are subject to
strain softening. After the peak of the stress–
strain curve has been reached, the shearing re-
sistances of brittle soils decrease with increasing
strain. This type of stress–strain behavior makes
progressive failure possible and makes it im-
possible to count on mobilizing the peak

strength simultaneously at all points around a
shear surface (see Chapter 3).

9. Weathering. Rocks and indurated soils are sub-
ject to strength loss as a result of weathering,
which involves various physical, chemical, and
biological processes (Mitchell, 1993). Physical
processes break the strong soil or rock into
smaller pieces, and the chemical and biological
process change it into material with fundamen-
tally different properties. Weaker soils are also
subject to weathering effects, but may become
stronger, rather than weaker, as a result (Mitch-
ell, 1993).

10. Cyclic loading. Under the influence of cyclic
loads, bonds between soil particles may be bro-
ken and pore pressures may increase. The soils
most subject to loss of strength due to cyclic
loads are loose soils and soils with particles that
are weakly bonded into loose structures. Loose
sands may liquefy under cyclic loading, lose
virtually all strength, and flow like a liquid.

Water plays a role in many of the processes that
reduce strength, and as discussed in the following sec-
tion, water is also involved in many types of loads on
slopes that increase shear stresses. It is not surprising,
therefore, that virtually every slope failure involves the
destabilizing effects of water in some way, and often
in more than one way.

Another factor involved in most slope failures is the
presence of soils that contain clay minerals. The be-
havior of clayey soils is much more complicated than
the behavior of sands, gravels, and nonplastic silts,
which consist of chemically inert particles. The me-
chanical behavior of clays is affected by the physico-
chemical interaction between clay particles, the water
that fills the voids between the particles, and the ions
in the water. The larger the content of clay minerals,
and the more active the clay mineral, the greater is its
potential for swelling, creep, strain softening, and
changes in behavior due to physicochemical effects.
The percentage of clay in a soil and the activity of clay
minerals are reflected qualitatively by the value of the
plasticity index (PI). For that reason PI affords a useful
first indication of the potential for problems that a
clayey soil poses: The higher the PI, the greater the
potential for problems. See Mitchell (1993) for a thor-
ough discussion of the physicochemical behavior of
clays.

It is safe to say that except for the effects of water
and clayey soils, slope failures would be extremely
rare. The truth of this statement is illustrated by the
slopes on the surface of the moon, where there is nei-
ther water nor clay. In that environment, slopes remain
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stable for eons, failing only under the influence of vi-
olent meteor impacts. On Earth, however, both water
and clays are common, and slope failures occur fre-
quently, sometimes with little or no warning.

Increase in Shear Stress

Even if the strength of the soil does not change, slopes
can fail if the loads on them change, resulting in in-
creased shear stresses within the soil. Mechanisms
through which shear stresses can increase include:

1. Loads at the top of the slope. If the ground at the
top of a slope is loaded, the shear stress required
for equilibrium of the slope will increase. Com-
mon occurrences that load the ground are place-
ment of fill and construction of buildings
supported on shallow foundations. To avoid sig-
nificantly increasing the shear stresses in the
slope, such loads should be kept away from the
top of the slope. An acceptable distance can be
determined by slope stability analysis.

2. Water pressure in cracks at the top of the slope.
If cracks at the top of a slope are filled with water
(or partially filled), the hydrostatic water pressure
in the cracks loads the soil within the slope, in-
creasing shear stresses and destabilizing the
slope. If the cracks remain filled with water long
enough for seepage toward the slope face to de-
velop, the pore pressures in the soil increase,
leading to an even worse condition.

3. Increase in soil weight due to increased water
content. Infiltration and seepage into the soil
within a slope can increase the water content of
the soil, thereby increasing its weight. This in-
crease in weight is appreciable, especially in
combination with the other effects that accom-
pany increased water content.

4. Excavation at the bottom of the slope. Excavation
that makes a slope steeper or higher will increase
the shear stresses in the soil within the slope and
reduce stability. Similarly, erosion of soil by a
stream at the base of a slope has the same effect.

5. Drop in water level at the base of a slope. Ex-
ternal water pressure acting on the lower part of
a slope provides a stabilizing effect. (This is per-
haps the only good thing that water can do to a
slope.) If the water level drops, the stabilizing
influence is reduced and the shear stresses within
the soil increase. When this occurs rapidly, and
the pore pressures within the slope do not de-

crease in concert with the drop in outside water
level, the slope is made less stable. This condi-
tion, called rapid drawdown or sudden draw-
down, is an important design condition for the
upstream slopes of dams and for other slopes that
are partially submerged.

6. Earthquake shaking. Earthquakes subject slopes
to horizontal and vertical accelerations that result
in cyclic variations in stresses within the slope,
increasing them above their static values for brief
periods, typically fractions of a second. Even if
the shaking causes no change in the strength of
the soil, the stability of the slope is reduced for
those brief instants when the dynamic forces act
in adverse directions. If the cyclic loading causes
reduction in soil strength, the effects are even
more severe.

SUMMARY

When a slope fails, it is usually not possible to pinpoint
a single cause that acted alone and resulted in insta-
bility. For example, water influences the stability of
slopes in so many ways that it is frequently impossible
to isolate one effect of water and identify it as the
single cause of failure. Similarly, the behavior of
clayey soils is complex, and it might not be possible
to determine in some particular instance whether soft-
ening, progressive failure, or a combination of the two
was responsible for failure of a slope. Sowers (1979)
expressed the difficulties in attempting to isolate the
cause of failure in these words: ‘‘In most cases, several
‘causes’ exist simultaneously; therefore, attempting to
decide which one finally produced failure is not only
difficult but also technically incorrect. Often the final
factor is nothing more than a trigger that sets a body
of earth in motion that was already on the verge of
failure. Calling the final factor the cause is like calling
the match that lit the fuse that detonated the dynamite
that destroyed the building the cause of the disaster.’’

The fact that it is so difficult to isolate a single cause
of failure highlights the importance of considering and
evaluating all potential causes of failure in order to
develop an effective means of repairing and stabilizing
slopes that have failed. Similarly, in designing and con-
structing new slopes, it is important to attempt to an-
ticipate all of the changes in properties and conditions
that may affect a slope during its life and to be sure
that the slope is designed and constructed so that it
will remain stable despite these changes.
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CHAPTER 3

Soil Mechanics Principles

For slope stability analyses to be useful, they must rep-
resent the correct problem, correctly formulated. This
requires (1) mastery of the principles of soil mechan-
ics, (2) knowledge of geology and site conditions, and
(3) knowledge of the properties of the soils at the site.
In this chapter we deal with the principles of soil me-
chanics that are needed to understand and to formulate
analyses of slope stability problems correctly.

DRAINED AND UNDRAINED CONDITIONS

The concepts of drained and undrained conditions are
of fundamental importance in the mechanical behavior
of soils, and it is worthwhile to review these concepts
at the beginning of this examination of soil mechanics
principles. The lay definitions of drained and un-
drained (drained � dry or emptied, undrained � not
dry or not emptied) do not describe the way these
words are used in soil mechanics. The definitions used
in soil mechanics are related to the ease and speed with
which water moves in or out of soil in comparison with
the length of time that the soil is subjected to some
change in load. The crux of the issue is whether or not
changes in changes in load cause changes in pore
pressure:

• Drained is the condition under which water is able
to flow into or out of a mass of soil in the length
of time that the soil is subjected to some change
in load. Under drained conditions, changes in the
loads on the soil do not cause changes in the water
pressure in the voids in the soil, because the water
can move in or out of the soil freely when the
volume of voids increases or decreases in response
to the changing loads.

• Undrained is the condition under which there is
no flow of water into or out of a mass of soil in

the length of time that the soil is subjected to some
change in load. Changes in the loads on the soil
cause changes in the water pressure in the voids,
because the water cannot move in or out in re-
sponse to the tendency for the volume of voids to
change.

An example that illustrates these conditions is
shown in Figure 3.1, which shows a clay test specimen
in a direct shear test apparatus. The permeability of the
clay is low, and its compressibility is high. When the
normal load P and the shear load T are increased, there
is a tendency for the volume of the clay to decrease.
This decrease in volume of the clay would take place
entirely by reduction of the volume of the voids be-
cause the clay particles themselves are virtually incom-
pressible. However, for the volume of the voids in the
clay to decrease, water would have to run out of the
clay because water is also virtually incompressible.

If the loads P and T were increased quickly, say in
1 second, the clay specimen would be in an undrained
state for some period of time. Within the period of 1
second involved in increasing P and T, there would not
be enough time for any significant amount of water to
flow out of the clay. It is true that even in a period of
1 second there would be some small amount of flow,
but this would be insignificant. For all practical pur-
poses the clay would be undrained immediately after
the loads were changed.

If the loads P and T were held constant for a longer
period, say one day, the state of the clay specimen
would change from undrained to drained. This is be-
cause within a period of one day, there would be suf-
ficient time for water to flow out of the clay. Within
this time the volume of the voids would decrease and
come essentially to equilibrium. It is true that equilib-
rium would be approached asymptotically, and strictly
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Shear load T

Normal load P

Clay test specimen

Shear plane

Shear box

Porous stone

Metal plate

h = height of water
      above shear plane

Figure 3.1 Direct shear test apparatus.

speaking, equilibrium would be approached closely but
never be reached. However, for all practical purposes
the clay would be drained after the loads were held
constant for one day.

It is clear from this example that the difference be-
tween undrained and drained, as these words are used
in soil mechanics, is time. Every mass of soil has char-
acteristics that determine how long is required for tran-
sition from an undrained to a drained condition. A
practical measure of this time is t99, the time required
to achieve 99% of the equilibrium volume change,
which for practical purposes, we consider to be equi-
librium. Using Terzaghi’s theory of consolidation, we
can estimate the value of t99:

2D
t � 4 (3.1)99 cv

where t99 is the time required for 99% of the equilib-
rium volume change, D the greatest distance that water
must travel to flow out of the soil mass (length units),
and cv the coefficient of consolidation (length squared
per unit of time). For the test specimen in Figure 3.1,
D would be half the specimen thickness, about 1.0 cm,
and cv would be about 2 cm2/h (19 ft2 /yr). Using these
numbers, we would estimate that t99 would be 2.0 h.
One second after the new loads were applied, the test
specimen would be undrained. After 2 hours or longer,
the test specimen would be drained.

Parenthetically, it should be noted that the use of
the direct shear test as an example of drained and un-
drained conditions is not meant to indicate that the
direct shear apparatus is suitable for both drained and

undrained shear tests on soils. Direct shear tests are
suitable for drained shear tests on soils, but not for
undrained tests. Drained direct tests are performed us-
ing thin specimens so that D is small, and using a slow
rate of shearing so that the specimen is drained
throughout the test. Direct shear tests are not good for
undrained tests, because the only way to prevent drain-
age is to apply the loads very quickly, which can result
in higher measured strength due to strain rate effects.
Triaxial tests are better suited to undrained testing in
the laboratory, because drainage can be prevented com-
pletely by sealing the test specimens in impermeable
membranes. Undrained triaxial tests can therefore be
performed slowly enough to eliminate undesirable rate
effects, and still be undrained.

Recapitulation

• The difference between undrained and drained
conditions is time.

• Undrained signifies a condition where changes in
loads occur more rapidly than water can flow in
or out of the soil. The pore pressures increase or
decrease in response to the changes in loads.

• Drained signifies a condition where changes in
load are slow enough, or remain in place long
enough, so that water is able to flow in or out of
the soil, permitting the soil to reach a state of
equilibrium with regard to water flow. The pore
pressures in the drained condition are controlled
by the hydraulic boundary conditions, and are un-
affected by the changes in loads.
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TOTAL AND EFFECTIVE STRESSES

Stress is defined as force per unit area. Total stress is
the sum of all forces, including those transmitted
through interparticle contacts and those transmitted
through water pressures, divided by the total area. Total
area includes both the area of voids and the area of
solid.

Effective stress includes only the forces that are
transmitted through particle contacts. It is equal to the
total stress minus the water pressure. The total normal
stress on the potential shear plane in the test specimen
in Figure 3.1 is equal to

W � P
� � (3.2)

A

where � is the total stress (force per unit of area); W
the weight of the upper half of the specimen, porous
stone, metal plate, and the steel ball through which the
load is applied; P the applied normal load (F); and A
the total area (L2). For a typical direct shear apparatus,
with a 102-mm2 (4-in2) shear box, W would be about
12.4 N (2.8 lb).

Before any load is applied to the specimen (when
P � 0), the normal stress on the horizontal plane is

12.4 N
� � � 1.2 kPa (3.3)0 20.0103 m

The effective stress is equal to the total stress minus
the water pressure. Consider the condition before any
load is applied to the specimen (when P � 0): If the
specimen has had enough time to come to a drained
condition, the water pressure would be hydrostatic and
its value would be governed by the depth of water in
the reservoir around the shear box. For a typical direct
shear apparatus the depth of water (h in Figure 3.1)
would be about 2 in. (about 0.051 m). The correspond-
ing hydrostatic water pressure at the level of the hor-
izontal plane would be

3u � � h � (9.81 kN/m )(0.051 m) � 0.5 kPa0 w (3.4)

where u0 is the initial water pressure in the specimen,
�w the unit weight of water � 9.81 kN/m3, and h the
height of water above the horizontal plane � 0.051 m.

With � � 1.2 kPa and u0 � 0.5 kPa, the effective
stress is equal to 0.7 kPa:

�� � � � u � 1.2 kPa � 0.5 kPa � 0.7 kPa (3.5)0 0 0

where is the initial effective stress. If a load P ���0
200 N is applied to the specimen, the change in normal
stress would be

200 N
�� � � 19.4 kPa (3.6)20.0103 m

and the total stress after the load is applied would be

� � � � �� � 1.2 kPa � 19.4 kPa � 20.6 kPa0

(3.7)

The values of total stress are defined without refer-
ence to how much of the force might be carried by
contacts between particles or to how much is trans-
mitted through water pressure. Total stress is the same
for the undrained and drained conditions. The value of
total stress depends only on equilibrium; it is equal to
the total of all normal forces divided by the total area.

When the load P is applied rapidly and the specimen
is undrained, the pore pressure changes. The specimen
is confined within the shear box and cannot deform.
The clay is saturated (the voids are filled with water),
so the volume of the specimen cannot change until
water flows out. In this condition, the added load is
carried entirely by increased water pressure. The soil
skeleton (the assemblage of particles in contact with
one another) does not change shape, does not change
volume, and carries none of the new applied load.

Under these conditions the increase in water pres-
sure is equal to the change in total stress:

�u � �� � 19.4 kPa (3.8)

where �u is the increase in water pressure due to the
change in load in the undrained condition. The water
pressure after the load is applied is equal to the initial
water pressure plus this change in pressure:

u � u � �u � 0.5 kPa � 19.4 kPa � 19.9 kPa0

(3.9)

The effective stress is equal to the total stress [Eq.
(3.7)] minus the water pressure [Eq. (3.9)]:

�� � 20.6 kPa � 19.9 kPa � 0.7 kPa (3.10)

Because the increase in water pressure caused by the
200-N load is equal to the increase in total stress, the
effective stress does not change.
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The effective stress after the load is applied [Eq.
(3.10)] is the same as the effective stress before the
load is applied [Eq. (3.5)]. This is because the speci-
men is undrained. Water does not have time to drain
as the load is applied, so there is no volume change in
the saturated specimen. As a result, the soil skeleton
does not strain. The load carried by the soil skeleton,
which is measured by the value of effective stress, does
not change.

If the load is maintained over a period of time,
drainage will occur, and eventually the specimen will
be drained. The drained condition is achieved when
there is no difference between the water pressures in-
side the specimen (the pore pressure) and the water
pressure outside, governed by the water level in the
reservoir around the direct shear apparatus. This con-
dition will be achieved (for practical purposes) in about
2 hours and will persist until the load is changed again.
After 2 hours the specimen will have achieved 99%
equilibrium, the volume change will be essentially
complete, and the pore pressure on the horizontal plane
will be equal to the hydrostatic head at that level, u �
0.5 kPa.

In this drained condition the effective stress is

�� � 20.6 kPa � 0.5 kPa � 20.1 kPa (3.11)

and all of the 200-N load is carried by the soil skeleton.

Recapitulation

• Total stress is the sum of all forces, including
those transmitted through particle contacts and
those transmitted through water pressures, divided
by total area.

• Effective stress is equal to the total stress minus
the water pressure. It is the force transmitted
through particle contacts, divided by total area.

DRAINED AND UNDRAINED SHEAR
STRENGTHS

Shear strength is defined as the maximum value of
shear stress that the soil can withstand. The shear
stress on the horizontal plane in the direct shear test
specimen in Figure 3.1 is equal to the shear force di-
vided by the area:

T
� � (3.12)

A

The shear strength of soils is controlled by effec-
tive stress, whether failure occurs under drained or un-
drained conditions. The relationship between shear
strength and effective stress can be represented by a
Mohr–Coulomb strength envelope, as shown in Figure
3.2. The relationship between � and �� shown in Figure
3.2 can be expressed as

s � c� � �� tan �� (3.13)ff

where c� is the effective stress cohesion, the effec-��ff
tive stress on the failure plane at failure, and �� the
effective stress angle of internal friction.

Sources of Shear Strength

If a shear load T is applied to the test specimen shown
in Figure 3.1, the top of the shear box will move to
the left relative to the bottom of the box. If the shear
load is large enough, the clay will fail by shearing on
the horizontal plane, and the displacement would be
very large. Failure would be accompanied by devel-
opment of a rupture zone, or break through the soil,
along the horizontal plane.

As the upper half of the specimen moved to the left
with respect to the lower half and the strength of the
soil was mobilized, the particles within the rupture
zone would be displaced from their original positions
relative to adjacent particles. Interparticle bonds would
be broken, some individual particles would be broken,
particles would rotate and be reoriented into new po-
sitions, and particles would slide across their contacts
with neighboring particles. These movements of the
particles would be resisted by the strength of interpar-
ticle bonds, by frictional resistance to sliding, and by
forces from adjacent particles resisting displacement
and reorientation. These types of resistance are the
sources of shear strength in soils.

The two most important factors governing the
strengths of soils are the magnitude of the interparticle
contact forces and the density of the soil. Larger in-
terparticle contact forces (larger values of effective
stress) and higher densities result in higher strengths.
As � increases, the shear displacement (�x) between
the top and the bottom of the shear box would increase,
as shown in Figure 3.3. This shear displacement results
from shear strains in the rupture zone. The shear dis-
placements in direct shear tests can be measured easily,
but shear strains cannot be determined, because the
thickness of the shear zone is not known. While the
direct shear test can be used to measure the shear
strengths of soils, it provides only qualitative infor-
mation about stress–strain behavior. It is possible to
determine whether soils are ductile (shear resistance
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Figure 3.2 Effective stress shear strength envelopes: (a) for clay; (b) for sands, gravels, and
rockfill.

remains high after failure) or brittle (shear resistance
decreases after failure).

Drained Strength

Drained strength is the strength of the soil when it is
loaded slowly enough so that no excess pore pressures
are induced by applied loads. In the field, drained con-
ditions result when loads are applied slowly to a mass
of soil, or where they persist for a long enough time
so that the soil can drain. In the laboratory, drained
conditions are achieved by loading test specimens
slowly so that excess pore pressures do not develop as
the soil is loaded.

Imagine that the direct shear test specimen shown in
Figure 3.1 reached a drained condition under the load
of 200 N and was then loaded to failure by increasing

T slowly so that excess pore pressures did not develop.
As shown by Eq. (3.11), the effective stress on the
horizontal plane at equilibrium under the 200-N load
would be 20.1 kPa, and it would remain constant as
the clay was sheared slowly.

The strength of the specimen can be calculated using
Eq. (3.13). If the clay is normally consolidated, c�
would be zero. The value of �� would probably be
between 25 and 35� for normally consolidated sandy
or silty clay. As an example, suppose that �� is equal
to 30�. The drained strength of the clay would be

s � c� � �� tan �� � 0 � (20.1)(0.58) � 11.6 kPaff

(3.14)

where c� � 0 and tan �� � tan 30� � 0.58.
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Figure 3.3 Shear stress–shear displacement curves for direct
shear test.

Volume Changes During Drained Shear

Whether a soil tends to compress or dilate when
sheared depends on its density and the effective stress
that confines it. In dense soils the particles are packed
tightly together, and tight packing results in a great
deal of interference between particles when they move
relative to one another. In very dense soils, particles
cannot move relative to each other unless they ride up
over each other, which causes dilation.

Higher effective stresses tend to prevent dilation, be-
cause work is required to cause the soil to expand
against the effective confining pressure. If the effective
confining pressure is high enough, the soil may not
dilate. Instead, as shearing takes place, individual par-
ticles will be broken.

In soils with low densities the soil particles are far-
ther apart on average, in a loose assemblage. As a
loose soil is sheared, particles tend to fall into the gaps
between adjacent particles, and the volume of the soil
decreases.

The lower the density and the higher the effective
stress, the more likely the soil is to compress when
sheared. Conversely, the higher the density and the
lower the confining pressure, the more likely the soil
is to dilate. In clays, density is governed primarily by
the highest effective stress to which the clay has been
subjected.

A normally consolidated soil is one that has not
been subjected to an effective stress higher than the
present effective stress, and its density is the lowest
possible for any given effective stress. As a result,

normally consolidated clays tend to compress when
sheared.

An overconsolidated clay is one that was subjected
previously to higher effective stress and thus has a
higher density than that of a normally consolidated soil
at the same effective stress. As a result, overconsoli-
dated soils compress less when sheared than do nor-
mally consolidated soils, or if the previous maximum
effective stress was much higher than the effective
stress during shearing, the clay will dilate.

Pore Pressure Changes During Undrained Shear

The tendency of normally consolidated and lightly ov-
erconsolidated clays to compress when sheared results
in increased pore pressures when shear stresses in-
crease under undrained conditions. The tendency of
heavily overconsolidated soils to dilate when sheared
results in negative changes in pore pressures when
shear stresses increase under undrained conditions.
Thus, when clays are sheared under undrained condi-
tions, the effective stress on the potential failure plane
changes, becoming lower in normally consolidated
soils and higher in heavily overconsolidated soils.

Undrained Strength

Undrained strength is the strength of the soil when
loaded to failure under undrained conditions. In the
field, conditions closely approximating undrained
condtions result when loads are applied to a mass of
soil faster than the soil can drain. In the laboratory,
undrained conditions are achieved by loading test spec-
imens so rapidly that they cannot drain, or by sealing
them in impermeable membranes. (As noted previ-
ously, it is preferable to control drainage through the
use of impermeable membranes rather than very high
rates of loading, to avoid high strain rates that are not
representative of field conditions.)

Imagine that the direct shear test specimen shown in
Figure 3.1 reached a drained condition under the load
of 200 N and was then loaded to failure by increasing
T rapidly. As shown by Eq. (3.11), the effective stress
on the horizontal plane at equilibrium under the 200-
N load, before the shear load was increased, would be
20.1 kPa. The pore pressure before the shear load was
increased would be 0.5 kPa, as shown by Eq. (3.4).

As the shear load T was applied without allowing
time for drainage, the pore pressure would increase,
because the clay is normally consolidated under the
20.1 kPa effective stress. As the shear load T is in-
creased, the pore pressure within a specimen of a typ-
ical normally consolidated clay under these conditions
would increase by about 12 kPa, and the effective nor-
mal stress on the failure plane at failure would(��)ff
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Figure 3.4 Drained and undrained stress paths and shear
strengths.

decrease by the same amount. The effective stress on
the failure plane at failure would thus be equal to 20.1
kPa � 12 kPa, or about 8 kPa. The undrained shear
strength of the clay would thus be about 4.6 kPa:

s � c� � �� tan�� � 0 � (8.0)(0.58) � 4.6 kPa

(3.15)

Figure 3.4 shows the stress paths and shear strengths
for drained and undrained failure of the direct shear
test specimen. The drained stress path is vertical, cor-
responding to an increase in shear stress and constant
effective normal stress on the horizontal plane. The
undrained stress path curves to the left, as the increase
in shear stress is accompanied by a decrease in effec-
tive normal stress due to the increase in pore pressure.

As is typical for normally consolidated clays, the
undrained strength is lower than the drained strength.
This is due to the fact that the pore pressure increases
and the effective stress decreases during undrained
shear. For very heavily overconsolidated clays, the re-
verse is true: The undrained strength is greater than the
drained strength, because pore pressure decreases and
effective stress increases during undrained shear.

Strength Envelopes

Strength envelopes for soils are developed by perform-
ing strength tests on soils using a range of pressures
and plotting the results on a Mohr stress diagram, as
shown in Figure 3.5. Both effective stress and total
stress strength envelopes can be developed. The
strength envelopes shown in Figure 3.5 are represen-
tative of the results of tests on undisturbed specimens
of clay, all trimmed from the same undisturbed sample
and therefore all having the same preconsolidation

pressure. The effective stress envelope represents the
fundamental behavior of the clay, because the strength
of the clay is controlled by effective stress and density.
The total stress envelope reflects the pore pressures
that develop during undrained shear as well as the fun-
damental behavior in terms of effective stresses.

Effective stress strength envelopes for clays consist
of two parts. At high stresses the clay is normally con-
solidated, and the high-pressure part of the envelope
extends back through the origin. At low stresses the
clay is overconsolidated. The strength envelope in this
range of pressures does not extend through the origin.
The values of the effective stress shear strength pa-
rameters c� and �� depend on whether the clay is nor-
mally consolidated or overconsolidated. If the clay is
tested in a range of pressures where it is normally con-
solidated, c� is zero and �� is constant. If the clay is
tested in a range of pressures where it is overconsoli-
dated, c� is greater than zero and �� is smaller than the
normally consolidated value. Because the values of c�
and �� that characterize the strength of the clay depend
on the magnitude of the stresses in relation to the pre-
consolidation pressure, it is important that the range of
stresses used in laboratory strength tests should cor-
respond to the range of stresses involved in the prob-
lem being analyzed.

The total stress envelope is horizontal, representing
shear strength that is constant and independent of the
magnitude of the total stress used in the test. This be-
havior is characterized by these relationships:

c � s (3.16a)u

� � 0 (3.16b)u
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Figure 3.6 Drained and undrained strength envelopes for
partly saturated clay.

where c is the total stress cohesion intercept, su the
undrained shear strength, and �u the total stress friction
angle.

The shear strength is the same for all values of total
normal stress because the clay is saturated and un-
drained. Increasing or decreasing the total normal
stress results only in a change in pore pressure that is
equal in magnitude and opposite in sign to the change
in normal stress. Thus, the effective stress is constant,
and because the effective stress is constant the strength
is constant because strength is controlled by effective
stress. Although strength is controlled by effective
stress, it is more convenient for some purposes to use
the total stress envelope and the corresponding total
stress parameters. Use of effective and total stress pa-
rameters in stability analyses is discussed later in the
chapter.

If the clay were only partly saturated, the undrained
strength envelope would not be horizontal. Instead, it
would be inclined and shaped as shown in Figure 3.6.
As the total normal stress increases, the strength also
increases, because changes in total stress do not cause
equal increases in pore pressure. As the total stress
applied to a partly saturated specimen is increased,
both the pore pressure and the effective stress increase.
This occurs because, with both water and air in the
voids of the clay, the pore fluid (the mixture of water
and air) is not incompressible, and only part of the
added total stress is carried by the pore fluid. The bal-
ance is carried by the soil skeleton, which results in an
increase in effective stress.

How much of a change in total stress is borne by
the change in pore pressure and how much by change
in effective stress depends on the degree of saturation
of the clay. At degrees of saturation in the range of
70% and lower, the change in pore pressure is negli-

gible and virtually all of the change in total stress is
reflected in change in effective stress. At degrees of
saturation approaching 100%, the opposite is true: Vir-
tually all of the change in total stress is reflected in
change in pore pressure, and the change in effective
stress is negligible. This behavior is responsible for the
curvature of the total stress envelope in Figure 3.6: The
degree of saturation increases as the total confining
pressure increases. Therefore, at low values of total
stress, where the degree of saturation is lower, the en-
velope is steeper because changes in effective stress
are a larger portion of changes in total stress. At high
values of total stress, where the degree of saturation is
higher, the envelope is flatter because changes in ef-
fective stress are a smaller portion of changes in total
stress.

Recapitulation

• Shear strength is defined as the maximum shear
stress that the soil can withstand.

• The strength of soil is controlled by effective
stresses, whether failure occurs under drained or
undrained conditions.

• Drained strength is the strength corresponding to
failure with no change in effective stress on the
failure plane.

• Undrained strength is the strength corresponding
to failure with no change in water content.

• Effective stress strength envelopes represent fun-
damental behavior, because strength is controlled
by effective stress and density.

• Total stress strength envelopes reflect the pore
pressures that develop during undrained shear, as
well as fundamental behavior in terms of effective
stress.

• Total stress strength envelopes for saturated clays
are horizontal, corresponding to c � su, �u � 0.
Total stress envelopes for partly saturated clays
are not horizontal, and �u is greater than zero.

BASIC REQUIREMENTS FOR SLOPE STABILITY
ANALYSES

Whether slope stability analyses are performed for
drained conditions or undrained conditions, the most
basic requirement is that equilibrium must be satisfied
in terms of total stresses. All body forces (weights),
and all external loads, including those due to water
pressures acting on external boundaries, must be in-
cluded in the analysis. These analyses provide two use-
ful results: (1) the total normal stress on the shear
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surface and (2) the shear stress required for equilib-
rium.

The factor of safety for the shear surface is the ratio
of the shear strength of the soil divided by the shear
stress required for equilibrium. The normal stresses
along the slip surface are needed to evaluate the shear
strength: Except for soils with � � 0, the shear
strength depends on the normal stress on the potential
plane of failure.

In effective stress analyses, the pore pressures along
the shear surface are subtracted from the total stresses
to determine effective normal stresses, which are used
to evaluate shear strengths. Therefore, to perform ef-
fective stress analyses, it is necessary to know (or to
estimate) the pore pressures at every point along the
shear surface. These pore pressures can be evaluated
with relatively good accuracy for drained conditions,
where their values are determined by hydrostatic or
steady seepage boundary conditions. Pore pressures
can seldom be evaluated accurately for undrained
condtions, where their values are determined by the
response of the soil to external loads.

In total stress analyses, pore pressures are not sub-
tracted from the total stresses, because shear strengths
are related to total stresses. Therefore, it is not neces-
sary to evaluate and subtract pore pressures to perform
total stress analyses. Total stress analyses are applica-
ble only to undrained conditions. The basic premise of
total stress analysis is this: The pore pressures due to
undrained loading are determined by the behavior of
the soil. For a given value of total stress on the poten-
tial failure plane, there is a unique value of pore pres-
sure and therefore a unique value of effective stress.
Thus, although it is true that shear strength is really
controlled by effective stress, it is possible for the un-
drained condition to relate shear strength to total nor-
mal stress, because effective stress and total stress are
uniquely related for the undrained condition. Clearly,
this line of reasoning does not apply to drained con-
ditions, where pore pressures are controlled by hy-
draulic boundary conditions rather than the response
of the soil to external loads.

Analyses of Drained Conditions

Drained conditions are those where changes in load
are slow enough, or where they have been in place long
enough, so that all of the soils reach a state of equilib-
rium and no excess pore pressures are caused by the
loads. In drained conditions pore pressures are con-
trolled by hydraulic boundary conditions. The water
within the soil may be static, or it may be seeping
steadily, with no change in the seepage over time and
no increase or decrease in the amount of water within

the soil. If these conditions prevail in all the soils at a
site, or if the conditions at a site can reasonably be
approximated by these conditions, a drained analysis
is appropriate. A drained analysis is performed using:

• Total unit weights
• Effective stress shear strength parameters
• Pore pressures determined from hydrostatic water

levels or steady seepage analyses

Analyses of Undrained Conditions

Undrained conditions are those where changes in loads
occur more rapidly than water can flow in or out of
the soil. The pore pressures are controlled by the be-
havior of the soil in response to changes in external
loads. If these conditions prevail in the soils at a site,
or if the conditions at a site can reasonably be approx-
imated by these conditions, an undrained analysis is
appropriate. An undrained analysis is performed using:

• Total unit weights
• Total stress shear strength parameters

How Long Does Drainage Take?

As discussed earlier, the difference between undrained
and drained conditions is time. The drainage charac-
teristics of the soil mass, and its size, determine how
long will be required for transition from an undrained
to a drained condition. As shown by Eq. (3.1):

2D
t � 4 (3.17)99 cv

where t99 is the time required to reach 99% of drainage
equilibrium, D the length of the drainage path, and cv

the coefficient of consolidation.
Values of cv for clays vary from about 1.0 cm2/h

(10 ft2 /yr) to about 100 times this value. Values of cv

for silts are on the order of 100 times the values for
clays, and values of cv for sands are on the order of
100 times the values for silts, and higher. These typical
values can be used to develop some rough ideas of the
lengths of time required to achieve drained conditions
in soils in the field.

Drainage path lengths are related to layer thick-
nesses. They are half the layer thickness for layers that
are bounded on both sides by more permeable soils,
and they are equal to the layer thickness for layers that
are drained only on one side. Lenses or layers of silt
or sand within clay layers provide internal drainage,
reducing the drainage path length to half of the thick-
ness between internal drainage layers.
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Figure 3.7 Time required for drainage of soil deposits (t99 based on Terzagh’s theory of
consolidation).

Values of t99 calculated using Eq. (3.17) are shown
in Figure 3.7. For most practical conditions, many
years or tens of years are required to reach drainage
equilibrium in clay layers, and it is usually necessary
to consider undrained conditions in clays. On the other
hand, sand and gravels layers almost always reach
drainage equilibrium quickly, and only drained condi-
tions need be considered for these materials. Silts fall
in between sands and clays, and it is often difficult to
anticipate whether silt layers are better approximated
as drained or undrained. When there is doubt whether
a layer will be drained or undrained, the answer is to
analyze both conditions, to cover the range of possi-
bilities.

Short-Term Analyses

Short term refers to conditions during or following
construction—the time immediately following the
change in load. For example, if constructing a sand
embankment on a clay foundation takes two months,
the short-term condition for the embankment would be
the end of construction, or two months. Within this
period of time, it would be a reasonable approximation
that no drainage would occur in the clay foundation,
whereas the sand embankment would be fully drained.

For this condition it would be logical to perform a
drained analysis of the embankment and an undrained

analysis of the clay foundation. There is no problem
with performing a single analysis in which the em-
bankment is considered to be drained and is treated in
terms of effective stresses, and in which the foundation
is considered to be undrained and is treated in terms
of total stresses.

As discussed earlier, equilibrium in terms of total
stresses must be satisfied for both total and effective
stress analyses. The only differences between total and
effective stress analyses relate to the strength param-
eters that are used and whether pore pressures are spec-
ified. In the case of short-term analysis of a sand
embankment on a clay foundation, the strength of the
sand would be characterized in terms of effective
stresses (by a value of �� for the sand), and the
strength of the clay would be characterized in terms of
total stresses (by values of su � c varying with depth,
with �u � 0 for a saturated clay).

Pore pressures would be specified for the sand if the
water table was above the top of the clay or if there
was seepage through the embankment, but pore pres-
sures would not be specified for the clay. There would,
of course, be pore pressures in the clay. However, be-
cause the strength of the clay is related to total stress,
it would be unneccesary to specify these nonzero val-
ues. Because most computer programs subtract pore
pressures when they are specified, specifying pore
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Figure 3.8 Mechanism of progressive failure of an excavated slope in overconsolidated clay.

pressures for soils that are being treated as undrained
can result in errors. Therefore, for soils that are treated
in terms of total stresses, pore pressures should be set
to zero, even though, in fact, they are not zero. (In the
particular case of � � 0, no error will result if pore
pressures are not specified as zero, because strengths
are independent of normal stress, and misevaluating
normal stress does not result in strengths that are
wrongly evaluated.)

External water pressures acting on the surface of the
foundation or the embankment would be specified for
both materials, because external water pressures are a
component of total stress, and they must be included
to satisfy equilibrium in terms of total stress.

Long-Term Analyses

After a period of time, the clay foundation would reach
a drained condition, and the analysis for this condition
would be performed as discussed earlier under ‘‘Anal-
yses of Drained Conditions,’’ because long term and
drained conditions carry exactly the same meaning.
Both of these terms refer to the condition where drain-
age equilibrium has been reached and there are no ex-
cess pore pressures due to external loads.

For the long-term condition, both the sand embank-
ment and clay foundation would be characterized in
terms of effective stresses. Pore pressures, determined
from hydrostatic water levels or steady seepage anal-
yses, would be specified for both materials. External
water pressures on the surface of the foundation or
embankment would be specified for both materials, as
always; these must be included to satisfy equilibrium
in terms of total stress.

Progressive Failure

One of the fundamental assumptions of limit equilib-
rium analyses is that the strength of the soil can be
mobilized over a wide range of strains, as shown by
the curve labeled ‘‘ductile’’ in Figure 3.3. This implicit
assumption arises from the fact that limit equilibrium
analyses provide no information regarding deforma-
tions or strains.

Progressive failure is a strong possibility in the case
of excavated slopes in overconsolidated clays and
shales, particularly stiff-fissured clays and shales.
These materials have brittle stress–strain characteris-
tics, and they contain high horizontal stresses, often
higher than the vertical stress. When an excavation is
made in stiff fissured clay or shale, the excavated slope
rebounds horizontally, as shown in Figure 3.8. Finite
element studies by Duncan and Dunlop (1969), (1970)
showed that shear stresses are very high at the toe of
the slope, and there is a tendency for failure to begin
at the toe and progress back beneath the crest, as
shown in Figure 3.8.

Immediately after excavation of the slope (at time
t1), the stresses at point A might just have reached the
peak of the stress–displacement curve, and the stresses
at points B and C would be lower. With time, the slope
would continue to rebound into the cut, due to a de-
layed response to the unloading from the excavation,
and possibly also due to swelling of the clay as its
water content increases following the reduction in
stress. At a later time (t2), therefore, the displacements
at A, B, and C would all be larger, as shown in Figure
3.8. The shear stress at point A would decease as it
moved beyond the peak, and the shear stresses at
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points B and C would increase. At a later time (t3), the
displacement at point B would be large enough so that
the shear stress there would fall below the peak.
Through this process, progressively, failure would
spread around the slip surface, without ever mobilizing
the peak shear strength simultaneously at all points
along the slip surface.

Because progressive failure can occur for soils with
brittle stress–strain characteristics, peak strengths
should not be used for these soils in limit equilibrium
analyses; using peak strengths for brittle soils can lead
to inaccurate and unconservative assessment of stabil-
ity. As discussed in Chapter 5, experience with slopes
in overconsolidated clays, particularly fissured clays,
shows that fully softened strengths are appropriate for
these materials in cases where slickensides have not
developed, and residual strengths are appropriate in
conditions where slickensides have developed.

Recapitulation

• Equilibrium must be satisfied in terms of total
stress for all slope stability analyses.

• In effective stress analyses, pore pressures are
subtracted from total stresses to evaluate the ef-
fective stresses on the shear surface.

• In total stress analyses, pore pressures are not
subtracted. Shear strengths are related to total
stresses.

• The basic premise of total stress analyses is that
there is a unique relationship between total stress
and effective stress. This is true only for un-
drained conditions.

• Total stress analyses are not applicable to drained
conditions.

• The time required for drainage of soil layers var-
ies from minutes for sands and gravels to tens or
hundreds of years for clays.

• In short-term conditions, soils that drain slowly
may best be characterized as undrained, while
soils that drain more quickly are best character-
ized as drained. Analyses of such conditions can
be performed by using effective stress strength
parameters for the drained soils and total stress
strength parameters for the undrained soils.

• When effective stress strength parameters are
used, pore pressures determined from hydraulic
boundary conditions are specified. When total
stress strength parameters are used, no pore pres-
sures are specified.

• An implicit assumption of limit equilibrium anal-
yses is that the soils exhibit ductile stress–strain
behavior. Peak strengths should not be used for
materials such as stiff fissured clays and shales
which have brittle stress–strain characteristics,
because progressive failure can occur in these
materials. Using peak strengths can result in
inaccurate and unconservative evaluations of sta-
bility.
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CHAPTER 4

Stability Conditions for Analyses

Variations of the loads acting on slopes, and variations
of shear strengths with time, result in changes in the
factors of safety of slopes. As a consequence, it is often
necessary to perform stability analyses corresponding
to several different conditions, reflecting different
stages in the life of a slope.

When an embankment is constructed on a clay foun-
dation, the embankment load causes the pore pressures
in the foundation clay to increase. Over a period of
time the excess pore pressures will dissipate, and even-
tually, the pore pressures will return to values governed
by the groundwater conditions. As the excess pore
pressures dissipate, the effective stresses in the foun-
dation clay increase, the strength of the clay will in-
crease, and the factor of safety of the embankment will
also increase. Figure 4.1 illustrates these relationships.
If, as shown, the embankment height stays constant
and there is no external loading, the most critical con-
dition occurs at the end of construction. In this case,
therefore, it is only necessary to analyze the end-of-
construction condition.

When a slope in clay is created by excavation, the
pore pressures in the clay decrease in response to re-
moval of the excavated material. Over time, the neg-
ative excess pore pressures dissipate and the pore
pressures eventually return to values governed by the
groundwater conditions. As the pore pressures in-
crease, the effective stresses in the clay around the ex-
cavation decrease, and the factor of safety of the slope
decreases with time. Figure 4.2 shows these relation-
ships. If the depth of excavation is constant and there
are no external loads, the factor of safety continually
decreases, and its minimum value is reached when the
pore pressures reach equilibrium with the groundwater
seepage condition. In this case, therefore, the long-
term condition is more critical than the end-of-
construction condition.

In the case of a natural slope, not altered by either
fill placement or excavation, there is no end-of-
construction condition. The critical condition for a nat-
ural slope corresponds to whatever combination of
seepage and external loading results in the lowest fac-
tor of safety. The higher the phreatic surface within the
slope and the more severe the external loading condi-
tion, the lower is the factor of safety.

In the case of an embankment dam, several different
factors affect stability. Positive pore pressures may de-
velop during construction of clay embankments, par-
ticularly if the material is compacted on the wet side
of optimum. The same is true of clay cores in zoned
embankments. Over time, when water is impounded
and seepage develops through the embankment, the
pore pressures may increase or decrease as they come
to equilibrium with steady seepage conditions. Reser-
voir levels may vary with time during operation of the
dam. A rapid drop in reservoir level may create a crit-
ical loading condition on the upstream slope. A rise
from normal pool level to maximum pool level may
result in a new state of seepage through the embank-
ment and a more severe loading condition on the
downstream slope.

Earthquakes subject slopes to cyclic variations in
load over a period of seconds or minutes that can cause
instability or permanent deformations of the slope, de-
pending on the severity of the shaking and its effect
on the strength of the soil. As noted in Chapter 10,
loose sands may liquefy and lose almost all shearing
resistance as a result of cyclic loading. Other, more
resistant soils may deform during shaking but remain
stable.

END-OF-CONSTRUCTION STABILITY

Slope stability during and at the end of construction is
analyzed using either drained or undrained strengths,
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depending on the permeability of the soil. Many fine-
grained soils are sufficiently impermeable that little
drainage occurs during construction. This is particu-
larly true for clays. For these fine-grained soils, un-
drained shear strengths are used, and the shear strength
is characterized using total stresses. For soils that drain
freely, drained strengths are used; shear strengths are
expressed in terms of effective stresses, and pore water
pressures are defined based on either water table in-
formation or an appropriate seepage analysis. Un-
drained strengths for some soils and drained strengths
for others can be used in the same analysis.

For many embankment slopes the most critical con-
dition is the end of construction. In some cases, how-
ever, there may be intermediate conditions during
construction that might be more critical and should
therefore be analyzed. In some fill placement opera-
tions, including some waste fills, the fill may be placed
with a slope geometry such that the stability conditions
during construction are more adverse than at the con-

clusion of construction. As discussed later, if an em-
bankment is constructed in stages, and significant
consolidation occurs between stages, each construction
stage should be analyzed.

LONG-TERM STABILITY

Over time after construction the soil in slopes may
either swell (with increase in water content) or con-
solidate (with decrease in water content). Long-term
stability analyses are performed to reflect the condi-
tions after these changes have occurred. Shear
strengths are expressed in terms of effective stresses
and the pore water pressures are estimated from the
most adverse groundwater and seepage conditions an-
ticipated during the life of the slope. Seepage analyses
can be performed using either graphical techniques
(flow nets) or numerical analyses (finite element, finite
difference), depending on the complexity of the cross
section.

RAPID (SUDDEN) DRAWDOWN

Rapid or sudden drawdown is caused by a lowering of
the water level adjacent to a slope, at a rate so fast that
the soil does not have sufficient time to drain signifi-
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cantly. Undrained shear strengths are assumed to apply
for all but the coarsest free-draining materials (k �
10�3 cm/s). If drawdown occurs during or immediately
after construction, the undrained shear strength used in
the drawdown analysis is the same as the undrained
shear strength that applies to the end-of-construction
condition. If drawdown occurs after steady seepage
conditions have developed, the undrained strengths
used in the drawdown analysis are different from those
used in the end-of-construction analyses. For soils that
expand when wetted, the undrained shear strength will
be lower if drawdown occurs some time after construc-
tion than if it occurs immediately after construction.
Rapid drawdown is discussed in Chapter 9.

EARTHQUAKE

Earthquakes affect the stability of slopes in two ways,
as discussed in Chapter 10: (1) The acceleration pro-
duced by the seismic ground motion during an earth-
quake subjects the soil to cyclically varying forces, and
(2) the cyclic strains induced by the earthquake loads
may cause reduction in the shear strength of the soil.

If the strength of the soil is reduced less than 15%
by cyclic loading, pseudostatic analyses of the earth-
quake loading can be used. In pseudostatic analyses,
the effect of the earthquake is represented crudely by
applying a static horizontal force to the potential slid-
ing mass. This type of analysis, which is discussed in
Chapter 10, provides a semi-empirical means of deter-
mining whether deformations due to an earthquake will
be acceptably small.

If the strength of the soil is reduced more than 15%
as a result of cyclic loading, dynamic analysis are
needed to estimate the deformations that would result
from earthquakes. Some engineers perform this type of
analysis for all slopes, even if the strength reduction
due to earthquake loading is less than 15%. These
more complex analyses are highly specialized and are
beyond the scope of this book.

In addition to analyses to estimating the potential
for earthquake-induced deformation, analyses are also
needed to evaluate post-earthquake stability. Strengths
for these analyses are discussed in Chapter 5, and anal-
ysis procedures are discussed in Chapter 10.

PARTIAL CONSOLIDATION AND STAGED
CONSTRUCTION

In cases where a clay foundation is so weak that it is
unable to support the loads imposed by an embank-
ment, the stability of the embankment can be improved

by placing only a portion of the planned fill and allow-
ing the foundation clay to consolidate and gain
strength before additional fill is placed. In these cases,
consolidation analyses are needed to estimate the in-
crease in effective stresses due to consolidation of the
foundation under the weight of the fill. The calculated
values of effective stress are used to estimate the un-
drained shear strengths for use in total stress (un-
drained strength) analyses or are used directly in
effective stress analyses. Procedures for analyses of
staged constructions are discussed in Chapter 11.

Recapitulation

• End-of-construction stability is analyzed using
drained or undrained strengths, depending on the
permeability of the soil.

• Long-term stability analyses, which reflect con-
ditions after swelling and consolidation are com-
plete, are analyzed using drained strengths and
pore water pressures corresponding to steady
seepage conditions.

• Sudden drawdown removes the stabilizing effect
of external water pressures and subjects the slope
to increased shear stress. Either drained or un-
drained strengths are used, depending on the per-
meability of the soil.

• Earthquakes subject slopes to cyclically varying
stresses and may cause reduction in the shear
strength of the soil as a result of cyclic loading.
Shear strengths measured in cyclic loading tests
are appropriate for analyses of stability during
earthquakes.

• Stability analyses for staged construction of em-
bankments require consolidation analyses to esti-
mate the increase in effective stresses that results
from partial consolidation of the foundation.

OTHER LOADING CONDITIONS

The five loading conditions described above are those
most frequently considered for earth slopes. There are,
however, other loading conditions that may occur and
should be considered. Two of these involve placement
of surcharge loads at the top of a slope, and interme-
diate water levels producing partial submergence of a
slope.

Surcharge Loading

Loads may be imposed on slopes as a result of either
construction activities or operational conditions. The
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loads may be short term, such as passage of a heavy
vehicle, or permanent, such as construction of a build-
ing. Depending on whether the load is temporary or
permanent, and whether the soil drains quickly or
slowly, undrained or drained strengths may be appro-
priate. If the surcharge loading occurs shortly after
construction, the undrained strengths would be the
same as those used for end-of-construction stability.
However, if the load is imposed some time after con-
struction, and the soil has had time to drain (consoli-
date or expand), the undrained strengths may be
different and would be estimated using the same pro-
cedures as those used to estimate undrained strengths
for rapid drawdown.

In many cases slopes will have a sufficiently high
factor of safety that the effect of small surcharge loads
is insignificant. Often, the loads imposed by even
heavy vehicles and multistory buildings are negligible

compared to the weight of the soil in the slope. For
example, a typical one-story building will exert loads
of about the same magnitude as an additional 1 ft of
soil. If it is unclear whether a surcharge load will have
a significant affect on stability, the condition should be
analyzed.

Partial Submergence and Intermediate Water Levels

For the upstream slopes of dams and other slopes
where the level of an adjacent body of water has an
influence on stability, the lowest water level usually
produces the most adverse conditions. In the case of
slopes that contain zones of materials with different
strength characteristics, the factor of safety of the up-
stream slope may be lower with a water level at some
elevation between the top and the toe of the slope. The
most critical water level for these conditions must be
determined by repeated trials.
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CHAPTER 5

Shear Strengths of Soil and Municipal Solid Waste

A key step in analyses of soil slope stability is mea-
suring or estimating the strengths of the soils. Mean-
ingful analyses can be performed only if the shear
strengths used are appropriate for the soils and for the
particular conditions analyzed. Much has been learned
about the shear strength of soils within the past 60
years, often from surprising and unpleasant experience
with the stability of slopes, and many useful research
studies of soil strength have been performed. The
amount of information that has been amassed on soil
strengths is very large. The following discussion fo-
cuses on the principles that govern soil strength, the
issues that are of the greatest general importance in
evaluating strength, and strength correlations that have
been found useful in practice. The purpose is to pro-
vide information that will establish a useful framework
and a point of beginning for detailed studies of the
shear strengths of soils at particular sites.

GRANULAR MATERIALS

The strength characteristics of all types of granular
materials (sands, gravels, and rockfills) are similar in
many respects. Because the permeabilities of these ma-
terials are high, they are usually fully drained in the
field, as discussed in Chapter 3. They are cohesionless:
The particles do not adhere to one another, and their
effective stress shear strength envelopes pass through
the origin of the Mohr stress diagram.

The shear strength of these materials can be char-
acterized by the equation

s � �� tan �� (5.1)

where s is the shear strength, �� the effective normal
stress on the failure plane, and �� the effective stress

angle of internal friction. Measuring or estimating the
drained strengths of these materials involves determin-
ing or estimating appropriate values of ��.

The most important factors governing values of ��
for granular soils are density, confining pressure, grain-
size distribution, strain boundary conditions, and the
factors that control the amount of particle breakage
during shear, such as the types of mineral and the sizes
and shapes of particles.

Curvature of Strength Envelope

Mohr’s circles of stress at failure for four triaxial tests
on the Oroville Dam shell material are shown in Figure
5.1. Because this material is cohesionless, the Mohr–
Coulomb strength envelope passes through the origin
of stresses, and the relationship between strength and
effective stress on the failure plane can be expressed
by Eq. (5.1).

A secant value of �� can be determined for each of
the four triaxial tests. This value corresponds to a lin-
ear failure envelope going through the origin and pass-
ing tangent to the circle of stress at failure for the
particular test, as shown in Figure 5.1. The dashed line
in Figure 5.1 is the linear strength envelope for the test
with the highest confining pressure. The secant value
of �� for an individual test is calculated as

��1ƒ�1�� � 2 tan � 45� (5.2)�� � ����3ƒ

where and are the major and minor principal�� ��1ƒ 3ƒ

stresses at failure. Secant values of �� for the tests on
Oroville Dam shell material shown in Figure 5.1 are
given in Table 5.1, and the envelope for � 4480��3
kPa is shown in Figure 5.1.
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Table 5.1 Stresses at Failure and Secant Values of
�� for Oroville Dam Shell Material

Test (kPa)��3 (kPa)��1 �� (deg)

1 210 1,330 46.8
2 970 5,200 43.4
3 2,900 13,200 39.8
4 4,480 19,100 38.2

The curvature of the envelope and the decrease in
the secant value of �� as the confining pressure in-
creases are due to increased particle breakage as the
confining pressure increases. At higher pressures the
interparticle contact forces are larger. The greater these
forces, the more likely it is that particles will be broken
during shear rather than remaining intact and sliding
or rolling over neighboring particles as the material is
loaded. When particles break instead of rolling or slid-
ing, it is because breaking requires less energy, and
because the mechanism of deformation is changing as
the pressures increase, the shearing resistance does not
increase in exact proportion to the confining pressure.
Even though the Oroville Dam shell material consists
of hard amphibolite particles, there is significant par-
ticle breakage at higher pressures.

As a result of particle breakage effects, strength en-
velopes for all granular materials are curved. The en-
velope does pass through the origin, but the secant
value of �� decreases as confining pressure increases.
Secant values of �� for soils with curved envelopes
can be characterized using two parameters, �0 and ��:

��3�� � � � �� log (5.3)0 10 pa

where �� is the secant effective stress angle of internal
friction, �0 the value of �� for � 1 atm, �� the��3
reduction in �� for a 10-fold increase in confining pres-
sure, the confining pressure, and pa � atmospheric��3
pressure. This relationship between �� and is shown��3
in Figure 5.2a. The variation of �� with for the��3
Oroville Dam shell material is shown in Figure 5.2b.

Values of �� should be selected considering the con-
fining pressures involved in the conditions being ana-
lyzed. Some slope stability computer programs have
provisions for using curved failure envelopes, which is
an effective means of representing variations of ��
with confining pressure. Alternatively, different values
of �� can be used for the same material, with higher
values of �� in areas where pressures are low and
lower values of �� in areas where pressures are high.
In many cases, sufficient accuracy can be achieved by
using a single value of �� based on the average con-
fining pressure.

Effect of Density

Density has an important effect on the strengths of
granular materials. Values of �� increase with density.
For some materials the value of �0 increases by 15� or
more as the density varies from the loosest to the dens-
est state. Values of �� also increase with density, var-
ying from zero for very loose materials to 10� or more
for the same materials in a very dense state. An ex-
ample is shown in Figure 5.3 for Sacramento River
sand, a uniform fine sand composed predominantly of
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Figure 5.3 Effect of density on strength of Sacramento
River sand: (a) variations of �� with confining pressure; (b)
strength envelopes. (Data from Lee and Seed, 1967.)

feldspar and quartz particles. At a confining pressure
of 1 atm, �0 increases from 35� for Dr � 38% to 44�
for Dr � 100%. The value of �� increases from 2.5�
for Dr � 38% to 7� for Dr � 100%

Effect of Gradation

All other things being equal, values of �� are higher
for well-graded granular soils such as the Oroville
Dam shell material (Figures 5.1 and 5.2) than for uni-
formly graded soils such as Sacramento River sand
(Figure 5.3). In well-graded soils, smaller particles fill
gaps between larger particles, and as a result it is pos-
sible to form a denser packing that offers greater re-

sistance to shear. Well-graded materials are subject to
segregation of particle sizes during fill placement and
may form fills that are stratified, with alternating
coarser and finer layers unless care is taken to ensure
that segregation does not occur.

Plane Strain Effects

Most laboratory strength tests are performed using
triaxial equipment, where a circular cylindrical test
specimen is loaded axially and deforms with radial
symmetry. In contrast, the deformations for many field
conditions are close to plane strain. In plane strain, all
displacements are parallel to one plane. In the field,
this is usually the vertical plane. Strains and displace-
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(a) grain-size curves for original, modeled, and scalped cobbely sandy gravel; (b) friction
angles for scalped specimens of Goschenalp Dam rockfill. (After Zeller and Wullimann,
1957.)

ments perpendicular to this plane are zero. For exam-
ple, in a long embankment, symmetry requires that all
displacements are in vertical planes perpendicular to
the longitudinal axis of the embankment.

The value of �� for plane strain conditions ( ) is��ps

higher than the value for triaxial conditions ( ).��t
Becker et al. (1972) found that the value of was 1��ps

to 6� larger than the value of for the same material��t
at the same density, tested at the same confining pres-
sure. The difference was greatest for dense materials
tested at low pressures. For confining pressures below
100 psi (690 kPa), they found that was 3 to 6���ps

larger than .��t

Although there may be a significant difference be-
tween values of �� measured in triaxial tests and the
values most appropriate for conditions close to plane
strain, this difference is usually ignored. It is conser-
vative to ignore the difference and use triaxial values
of �� for plane strain conditions. This conventional
practice provides an intrinsic additional safety margin
for situations where the strain boundary conditions are
close to plane strain.

Strengths of Compacted Granular Materials

When cohesionless materials are used to construct fills,
it is normal to specify the method of compaction or
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the minimum acceptable density. Angles of internal
friction for sands, gravels, and rockfills are strongly
affected by density, and controlling the density of a fill
is thus an effective way of ensuring that the fill will
have the desired strength.

Minimum test specimen size. For the design of ma-
jor structures such as dams, triaxial tests performed on
specimens compacted to the anticipated field density
are frequently used to determine values of ��. The di-
ameter of the triaxial test specimens should be at least
six times the size of the largest soil particle, which can
present problems for testing materials that contain
large particles. The largest triaxial test equipment
available in most soil mechanics laboratories is 100 to
300 mm (4 to 12 in.) in diameter. The largest particle
sizes that can be tested with this equipment are thus
about 16 to 50 mm (0.67 to 2 in.).

Modeling grain size curves and scalping. When
soils with particles larger than one-sixth the triaxial
specimen diameter are tested, particles that are too
large must be removed. Becker et al. (1972) prepared
test specimens with modeled grain-size curves. The
curves for the modeled materials were parallel to the
curve for the original material, as shown in Figure
5.4a. It was found that the strengths of the model ma-
terials were essentially the same as the strengths of the
original materials, provided that the test specimens
were prepared at the same relative density, Dr:

e � emaxD � � 100% (5.4)r e � emax min

where Dr is the relative density, emax the maximum void
ratio, e the void ratio, and emin the minimum void ratio.

Becker et al. (1972) found that removing large par-
ticles changed the maximum and minimum void ratios
of the material, and as a result, the same relative den-
sity was not the same void ratio for the original and
model materials. The grain-size modeling technique
used by Becker et al. (1972) can be difficult to use for
practical purposes. When a significant quantity of
coarse material has to be removed, there may not be
enough fine material available to develop the model
grain-size curve. An easier technique is scalping,
where the large sizes are not replaced with smaller
sizes. A scalped gradation is shown in Figure 5.4a.

The data in Figure 5.4b show that the value of ��
for scalped test specimens is essentially the same as
for the original material, provided that all specimens
are prepared at the same relative density. Again, the

same relative density will not be the same void ratio
for the original and scalped materials.

Controlling field densities. Using relative density to
control the densities of laboratory test specimens does
not imply that it is necessary to use relative density for
control of density in the field during construction. Con-
trolling the density of granular fills in the field using
relative density has been found to be difficult, espe-
cially when the fill material contains large particles.
Specifications based on method of compaction, or on
relative compaction, can be used for field control, even
though relative density may be used in connection with
laboratory tests.

Strengths of Natural Deposits of Granular Materials

It is not possible to obtain undisturbed samples of
granular materials, except by exotic procedures such
as freezing and coring the ground. In most cases fric-
tion angles for natural deposits of granular materials
are estimated using the results of in situ tests such as
the standard penetration test (SPT) or the cone pene-
tration test (CPT). Correlations that can be used to in-
terpret values of �� from in situ tests are discussed
below.

Strength correlations. Many useful correlations
have been developed that can be used to estimate the
strengths of sands and gravels based on correlations
with relative densities or the results of in situ tests.
The earliest correlations were developed before the in-
fluence of confining pressure on �� was well under-
stood. More recent correlations take confining pressure
into account by correlating both �0 and �� with rel-
ative density or by including overburden pressure in
correlations between �� and the results of in situ tests.

Table 5.2 relates values of �0 and �� to relative
density values for well-graded sands and gravels,
poorly graded sands and gravels, and silty sands. Fig-
ures 5.5 and 5.6 can be used to estimate in situ relative
density based on SPT blow count or CPT cone resis-
tance. Values of relative density estimated using Figure
5.5 or 5.6 can be used together with Table 5.2 to es-
timate values of �0 and �� for natural deposits.

Figures 5.7 and 5.8 relate values of �� to overburden
pressure and SPT blow count or CPT cone resistance.
Figure 5.9 relates �� to relative density for sands. The
values of �� in Figure 5.9 correspond to confining
pressures of about 1 atm, and are close to the values
of �0 listed in Table 5.2. Tables 5.3 and 5.4 relate
values of �� to SPT blow count and CPT cone resis-
tance. The correlations are easy to use, but they do not
take the effect of confining pressure into account.
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Figure 5.5 Relationship among SPT blow count, overburden
pressure, and relative density for sands. (After Gibbs and
Holtz, 1957, and U.S. Dept. Interior, 1974.)

Table 5.2 Values of �0 and �� for Sands and
Gravels

Unified
classification

Standard
Proctor

RCa (%)

Relative
density,
Dr

b (%)
�0

c

(deg)
��

(deg)

GW, SW 105 100 46 10
100 75 43 8

95 50 40 6
90 25 37 4

GP, SP 105 100 42 9
100 75 39 7

95 50 36 5
90 25 33 3

SM 100 — 36 8
95 — 34 6
90 — 32 4
85 — 30 2

Source: Wong and Duncan (1974).
aRC � relative compaction � �d /�d max � 100%.
bD � (e � e) /e � e ) � 100%.r max max min
c�� � �0 � �� log10 where pa is atmospheric�� /p3 a

pressure.

Recapitulation

• The drained shear strengths of sands, gravels, and
rockfill materials can be expressed as s � �� tan
��.

• Values of �� for these materials are controlled by
density, gradation, and confining pressure.

• The variation of �� with confining pressure can
be represented by

��3�� � � � �� log0 10 pa

where is the confining pressure and pa is at-��3
mospheric pressure.

• When large particles are removed to prepare spec-
imens for laboratory tests, the test specimens
should be prepared at the same relative density as
the original material, not the same void ratio.

• Values of �� for granular materials can be esti-
mated based on the Unified Soil Classification,
relative density, and confining pressure.

• Values of �� for granular materials can also be
estimated based on results of standard penetration
tests or cone penetration tests.

SILTS

The shear strength of silts in terms of effective stress
can be expressed by the Mohr–Coulomb strength cri-
terion as

s � c� � �� tan �� (5.5)

where s is the shear strength, c� the effective stress
cohesion intercept, and �� the effective stress angle of
internal friction.

The behavior of silts has not been studied as exten-
sively and is not as well understood as the behavior of
granular materials or clays. Although the strengths of
silts are governed by the same principles as the
strengths of other soils, the range of their behavior is
wide, and sufficient data are not available to anticipate
or estimate their properties with the same degree of
reliability as is possible in the case of granular soils or
clays.

Silts encompass a broad range of behavior, from be-
havior that is very similar to the behavior of fine sands
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Figure 5.6 Relationship among CPT cone resistance, over-
burden pressure, and relative density of sands. (After
Schmertmann, 1975.)
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Figure 5.8 Relationship between CPT cone resistance, over-
burden pressure, and �� for sands. (After Robertson and
Campanella, 1983.)

at one extreme to behavior that is essentially the same
as the behavior of clays at the other extreme. It is use-
ful to consider silts in two distinct categories: non-
plastic silts, which behave more like fine sands, and
plastic silts, which behave more like clays.

Nonplastic silts, like the silt of which Otter Brook
Dam was constructed, behave similarly to fine sands.
Nonplastic silts, however, have some unique charac-
teristics, such as lower permeability, that influence
their behavior and deserve special consideration.

An example of highly plastic silt is San Francisco
Bay mud, which has a liquid limit near 90, a plasiticity
index near 45, and classifies as MH (a silt of high
plasticity) by the Unified Soil Classification System.
San Francisco Bay mud behaves like a normally con-
solidated clay. The strength characteristics of clays dis-
cussed later in this chapter are applicable to materials
such as San Francisco Bay mud.

Sample Disturbance

Disturbance during sampling is a serious problem in
nonplastic silts. Although they are not highly sensitive
by the conventional measure of sensitivity (sensitivity
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Figure 5.9 Correlation between friction angle and relative
density for sands. (Data from Schmertmann, 1975, and Lunne
and Kleven, 1982.)

Table 5.3 Relationship Among Relative Density,
SPT Blow Count, and Angle of Internal Friction for
Clean Sands

State of
packing

Relative
density,

Dr

(%)

SPT
blow count,

Na

(blows/ft)

Angle of internal
friction

��b

(deg)

Very loose
Loose
Compact
Dense
Very dense

� 20
20–40
40–60
60–80
� 80

� 4
4–10

10–30
30–50
� 50

� 30
30–35
35–40
40–45
� 45

Source: Meyerhof (1956).
aN � 15 � (N� � 15)/2 for N� � 15 in saturated very

fine or silty sand, where N is the blow count corrected for
dynamic pore pressure effects during the SPT, and N� is
the measured blow count.

bReduce �� by 5� for clayey sand; increase �� by 5� for
gravelly sand.

Table 5.4 Correlation Among Relative Density, CPT
Cone Resistance, and Angle of Internal Friction for
Clean Sands

State of
packing

Relative
density,

Dr

(%)

qc

(tons/ft2 or
kgf/cm2)

��

(deg)

Very loose
Loose
Medium
Dense
Very dense

� 20
20–40
40–60
60–80
� 80

� 20
20–50
50–150

150–250
250–400

� 32
32–35
35–38
38–41
41–45

Source: Meyerhof (1976).

� undisturbed strength/remoulded strength), they are
very easily disturbed. In a study of a silt from the Alas-
kan arctic (Fleming and Duncan, 1990), it was found
that disturbance reduced the undrained strengths mea-
sured in unconsolidated–undrained tests by as much as
40%, and increased the undrained strengths measured
in consolidated–undrained tests by as much as 40%.
Although silts can usually be sampled using the same

techniques as those used for clays, the quality of sam-
ples should not be expected to be as good.

Cavitation

Unlike clays, nonplastic silts almost always tend to di-
late when sheared, even if they are normally consoli-
dated. In undrained tests, pore pressures decrease as a
result of this tendency to dilate, and pore pressures can
become negative. When pore pressures are negative,
dissolved air or gas may come out of solution, forming
bubbles within test specimens that greatly affect their
behavior.

Figure 5.10 shows stress–strain and pore pressure–
strain curves for consolidated–undrained triaxial tests
on nonplastic silt from the Yazoo River valley. As the
specimens were loaded, they tended to dilate, and the
pore pressures decreased. As the pore pressures de-
creased, the effective confining pressures increased.
The effective stresses stopped increasing when cavi-
tation occurred, because from that point on the volume
of the specimens increased as the cavitation bubbles
expanded. The value of the maximum deviator stress
for each sample was determined by the initial pore
pressure (the back pressure), which determined how
much negative change in pore pressure took place be-
fore cavitation occurred. The higher the back pressure,
the greater was the undrained strength. These effects
can be noted in Figure 5.10.

Drained or Undrained Strength?

Values of cv for nonplastic silts are often in the range
100 to 10,000 cm2/h (1000 to 100,000 ft2 /yr). It is
often difficult to determine whether silts will be
drained or undrained under field loading conditions,
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Figure 5.10 Effect of cavitation on undrained strength of
reconstituted Yazoo silt. (From Rose, 1994.)

Table 5.5 Values of su / for Normally��1c

Consolidated Alaskan Silts

Testa kc
b su /��1c Reference

UU NA 0.25–0.30 Fleming and Duncan (1990)
UU NA 0.18 Jamiolkowski et al. (1985)
IC-U 1.0 0.25 Jamiolkowski et al. (1985)
IC-U 1.0 0.30 Jamiolkowski et al. (1985)
IC-U 1.0 0.85–1.0 Fleming and Duncan (1990)
IC-U 1.0 0.30–0.65 Wang and Vivatrat (1982)
AC-U 0.84 0.32 Jamiolkowski et al. (1985)
AC-U 0.59 0.39 Jamiolkowski et al. (1985)
AC-U 0.59 0.26 Jamiolkowski et al. (1985)
AC-U 0.50 0.75 Fleming and Duncan (1990)

aUU, unconsolidated undrained triaxial; IC-U, isotrop-
ically consolidated undrained triaxial; AC-U, anisotropi-
cally consolidated undrained triaxial.

bkc � during consolidation.�� /��3c 1c

and in many cases it is prudent to consider both pos-
sibilities.

Strengths of Compacted Silts

Laboratory test programs for silts to be used as fills
can be conducted following the principles that have
been established for testing clays. Silts are moisture-
sensitive and compaction characteristics are similar to
those for clays. Densities can be controlled effectively
using relative compaction. Undrained strengths of both
plastic and nonplastic silts at the as-compacted con-
dition are strongly influenced by water content.

Nonplastic silts have been used successfully as cores
for dams and for other fills. Their behavior during
compaction is sensitive to water content, and they be-
come rubbery when compacted close to saturation. In

this condition they deform elastically under wheel
loads, without failure and without further increase in
density. Highly plastic silts, such as San Francisco Bay
mud, have also been used as fills, but adjusting the
moisture contents of highly plastic materials to achieve
the water content and the degree of compaction needed
for a high-quality fill is difficult.

Evaluating Strengths of Natural Deposits of Silt

Plastic and nonplastic silts can be sampled using tech-
niques that have been developed for clays, although
the quality of the samples is not as good. Disturbance
during sampling is a problem for all silts, and care to
minimize disturbance effects is important, especially
for samples used to measure undrained strengths. Sam-
ple disturbance has a much smaller effect on measured
values of the effective stress friction angle (��) than it
has on undrained strength.

Effective stress failure envelopes for silts can be de-
termined readily using consolidated–undrained triaxial
tests with pore pressure measurements, using test spec-
imens trimmed from ‘‘undisturbed’’ samples. Drained
direct shear tests can also be used. Drainage may occur
so slowly in triaxial tests that performing drained tri-
axial tests may be impractical as a means of measuring
drained strengths.

Correlations are not available for making reliable es-
timates of the undrained strengths of silts, because val-
ues of su / measured for different silts vary widely.��1c

A few examples are shown in Table 5.5.



44 5 SHEAR STRENGTHS OF SOIL AND MUNICIPAL SOLID WASTE

Additional studies will be needed to develop more
refined methods of classifying silts and correlations
that can be used to make reliable estimates of un-
drained strengths. Until more information is available,
properties of silts should be based on conservative
lower-bound estimates, or laboratory tests on the spe-
cific material.

Recapitulation

• The behavior of silts has not been studied as ex-
tensively, and is not as well understood, as the
behavior of granular materials and clays.

• It is often difficult to determine whether silts will
be drained or undrained under field loading con-
ditions. In many cases it is prudent to consider
both possibilities.

• Silts encompass a broad range of behavior, from
fine sands to clays. It is useful to consider silts in
two categories: nonplastic silts, which behave
more like fine sands, and plastic silts, which be-
have like clays.

• Disturbance during sampling is a serious problem
in nonplastic silts.

• Cavitation may occur during tests on nonplastic
silts, forming bubbles within test specimens that
greatly affect their behavior.

• Correlations are not available for making reliable
estimates of the undrained strengths of silts.

• Laboratory test programs for silts to be used as
fills can be conducted following the principles that
have been established for testing clays.

CLAYS

Through their complex interactions with water, clays
are responsible for a large percentage of problems with
slope stability. The strength properties of clays are
complex and subject to changes over time through con-
solidation, swelling, weathering, development of slick-
ensides, and creep. Undrained strengths of clays are
important for short-term loading conditions, and
drained strengths are important for long-term condi-
tions.

The shear strength of clays in terms of effective
stress can be expressed by the Mohr-Coulomb strength
criterion as

s � c� � �� tan �� (5.6)

where s is the shear strength, c� the effective stress
cohesion intercept, and �� the effective stress angle of
internal friction.

The shear strength of clays in terms of total stress
can be expressed as

s � c � � tan � (5.7)

where c and � are the total stress cohesion intercept
and the total stress friction angle.

For saturated clays, � is equal to zero, and the un-
drained strength can be expressed as

s � s � c (5.8a)u

� � � � 0 (5.8b)u

where su is the undrained shear strength, independent
of total normal stress, and �u is the total stress friction
angle.

Factors Affecting Clay Strength

Low undrained strengths of normally consolidated and
moderately overconsolidated clays cause frequent
problems with stability of embankments constructed
on them. Accurate evaluation of undrained strength, a
critical factor in evaluating stability, is difficult because
so many factors influence the results of laboratory and
in situ tests for clays.

Disturbance. Sample disturbance reduces strengths
measured in unconsolidated–undrained (UU) tests in
the laboratory. Strengths measured using UU tests may
be considerably lower than the undrained strength in
situ unless the samples are of high quality. Two pro-
cedures have been developed to mitigate disturbance
effects (Jamiolkowski et al., 1985):

1. The recompression technique, described by Bjer-
rum (1973), involves consolidating specimens in
the laboratory at the same pressures to which
they were consolidated in the field. This replaces
the field effective stresses with the same effective
stresses in the laboratory and squeezes out extra
water that the sample may have absorbed as it
was sampled, trimmed, and set up in the triaxial
cell. This method is used extensively in Norway
to evaluate undrained strengths of the sensitive
marine clays found there.

2. The SHANSEP technique, described by Ladd and
Foott (1974) and Ladd et al. (1977), involves
consolidating samples to effective stresses that
are higher than the in situ stresses, and interpret-
ing the measured strengths in terms of the un-
drained strength ratio, su / . Variations of su /�� ��v v

with OCR for six clays, determined from this
type of testing, are shown in Figure 5.11. Data
of the type shown in Figure 5.11, together with
knowledge of the variations of and OCR with��v
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Figure 5.12 Stress orientation at failure, and undrained
strength anisotropy of clays and shales: (a) stress orientations
at failure; (b) anisotropy of clays and shales—UU triaxial
tests.

depth, can be used to estimate undrained
strengths for deposits of normally consolidated
and moderately overconsolidated clays.

As indicated by Jamiolkowski et al. (1985), both the
recompression and the SHANSEP techniques have
limitations. The recompression technique is preferable
whenever block samples (with very little disturbance)
are available. It may lead to undrained strengths that
are too low if the clay has a delicate structure that is
subject to disturbance as a result of even very small
strains (these are called structured clays), and it may
lead to undrained strengths that are too high if the clay
is less sensitive, because reconsolidation results in void
ratios in the laboratory that are lower than those in the
field. The SHANSEP technique is applicable only to
clays without sensitive structure, for which undrained
strength increases in direct proportion to the consoli-
dation pressure. It requires detailed knowledge of past
and present in situ stress conditions, because the un-
drained strength profile is constructed using data such
as those shown in Figure 5.11, based on knowledge of

and OCR.��v
Anisotropy. The undrained strength of clays is an-

isotopic; that is, it varies with the orientation of the
failure plane. Anisotropy in clays is due to two effects:

inherent anisotropy and stress system-induced aniso-
tropy.

Inherent anisotropy in intact clays results from the
fact that plate-shaped clay particles tend to become
oriented perpendicular to the major prinicpal strain
direction during consolidation, which results in
direction-dependent stiffness and strength. Inherent
anisotropy in stiff-fissured clays also results from the
fact that fissures are planes of weakness.

Stress system-induced anisotropy is due to the fact
that the magnitudes of the stresses during consolidation
vary depending on the orientation of the planes on
which they act, and the magnitudes of the pore pres-
sures induced by undrained loading vary with the ori-
entation of the changes in stress.

The combined result of inherent and stress-induced
anisotropy is that the undrained strengths of clays var-
ies with the orientation of the principal stress at failure
and with the orientation of the failure plane. Figure
5.12a shows orientations of principal stresses and fail-
ure planes around a shear surface. Near the top of the
shear surface, sometimes called the active zone, the
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Figure 5.13 Strength loss due to sustained loading.

major principal stress at failure is vertical, and the
shear surface is oriented about 60� from horizontal. In
the middle part of the shear surface, where the shear
surface is horizontal, the major principal stress at fail-
ure is oriented about 30� from horizontal. At the toe
of the slope, sometimes called the passive zone, the
major principal stress at failure is horizontal, and the
shear surface is inclined about 30� past horizontal. As
a result of these differences in orientation, the un-
drained strength ratio (su / ) varies from point to point��v
around the shear surface. Variations of undrained
strengths with orientation of the applied stress in the
laboratory are shown in Figure 5.12b for two normally
consolidated clays and two heavily overconsolidated
clay shales.

Ideally, laboratory tests to measure the undrained
strength of clay would be performed on completely
undisturbed plane strain test specimens, tested under
unconsolidated–undrained conditions, or consolidated
and sheared with stress orientations that simulate those
in the field. However, equipment that can apply and
reorient stresses to simulate these effects is highly
complex and has been used only for research purposes.
For practical applications, tests must be performed
with equipment that is easier to use, even though it
may not replicate all the various aspects of the field
conditions.

Triaxial compression (TC) tests, often used to sim-
ulate conditions at the top of the slip surface, have been
found to result in strengths that are 5 to 10% lower
than vertical compression plane strain tests. Triaxial
extension (TE) tests, often used to simulate conditions
at the bottom of the slip surface, have been found to
result in strengths that are significantly less (at least
20% less) than strengths measured in horizontal com-
pression plane strain tests. Direct simple shear (DSS)

tests, often used to simulate the condition in the central
portion of the shear surface, underestimate the un-
drained shear strength on the horizontal plane. As a
result of these biases, the practice of using TC, TE,
and DSS tests to measure the undrained strengths of
normally consolidated clays results in strengths that are
lower than the strengths that would be measured in
ideally oriented plane strain tests.

Strain rate. Laboratory tests involve higher rates of
strain than are typical for most field conditions. UU
test specimens are loaded to failure in 10 to 20
minutes, and the duration of CU tests is usually 2 or
3 hours. Field vane shear tests are conducted in 15
minutes or less. Loading in the field, on the other hand,
typically involves a period of weeks or months. The
difference in these loading times is on the order of
1000. Slower loading results in lower undrained shear
strengths of saturated clays. As shown in Figure 5.13,
the strength of San Francisco Bay mud decreases by
about 30% as the time to failure increases from 10
minutes to 1 week. It appears that there is no further
decrease in undrained strength for longer times to fail-
ure.

In conventional practice, laboratory tests are not cor-
rected for strain rate effects or disturbance effects. Be-
cause high strain rates increase strengths measured in
UU tests and disturbance reduces them, these effects
tend to cancel each other when UU laboratory tests are
used to evaluate undrained strengths of natural deposits
of clay.

Methods of Evaluating Undrained Strengths of Intact
Clays

Alternatives for measuring or estimating undrained
strengths of normally consolidated and moderately ov-
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Table 5.6 Methods of Measuring or Estimating the Undrained Strengths of Clays

Procedure Comments

UU tests on vertical, inclined, and
horizontal specimens to determine
variation of undrained strength with
direction of compression

Relies on counterbalancing effects of disturbance and creep.
Empirical method of accounting for anisotropy gives results
in agreement with vertical and horizontal plane strain
compression tests for San Francisco Bay mud and with
field behavior of Pepper shale.

AC-U triaxial compression, triaxial
extension, and direct simple shear tests,
using the recompression or SHANSEP
technique

All three tests give lower undrained strengths than the ideal
oriented plane strain tests they approximate. Creep strength
loss tends to counterbalance these low strengths.

Field vane shear tests, corrected using
empirical correction factors (see Figure
5.14)

Correction accounts for anisotropy and creep strength loss.
The data on which the correction factor is based contain
considerable scatter.

Cone penetration tests, with an empirical
cone factor to evaluate undrained strength
(see Figure 5.15)

Empirical cone factors can be determined by comparison with
corrected vane strengths or estimated based on published
data. Strengths based on CPT results involve at least as
much uncertainty as strengths based on vane shear tests.

Standard Penetration Tests, with an
empirical factor to evaluate undrained
strength (see Figure 5.16)

The Standard Penetration Test is not a sensitive measure of
undrained strengths in clays. Strengths based on SPT
results involve a great deal of uncertainty.

Use su � [0.23(OCR)0.8]��v This empirical formula, suggested by Jamiolkowski et al.
(1985), reflects the influence of (effective overburden��v
pressure) and OCR (overconsolidation ratio), but merely
approximates the average of the undrained strengths shown
in Figure 5.11. The strengths of particular clays may be
higher or lower.

Use su � 0.22��p This empirical formula, suggested by Mesri (1989) combines
the influence of and OCR in (preconsolidation�� ��v p

pressure), resulting in a simpler expression. The degree of
approximation is essentially the same as for the formula
suggested by Jamiolkowski et al. (1985).

erconsolidated clays are summarized in Table 5.6.
Samples used to measure strengths of natural deposits
of clay should be as nearly undisturbed as possible.
Hvorslev (1949) has detailed the requirements for good
sampling, which include (1) use of thin-walled tube
samplers (wall area no more than about 10% of sample
area), (2) a piston inside the tube to minimize strains
in the clay as the sample tube is inserted, (3) sealing
samples after retrieval to prevent change in water con-
tent, and (4) transportation and storage procedures that
protect the samples from shock, vibration, and exces-
sive temperature changes. Block samples, carefully
trimmed and sealed in moistureproof material, are the
best possible types of sample. The consequence of
poor sampling is scattered and possibly misleading
data. One test on a good sample is better than 10 tests
on poor samples.

Field vane shear tests. When the results of field
vane shear tests are corrected for strain rate and ani-
sotropy effects, they provide an effective method of
measuring the undrained strength of soft and medium
clays in situ. Bjerrum (1972) developed correction fac-
tors for vane shear tests by comparing field vane (FV)
strengths with strengths back-calculated from slope
failures. The value of the correction factor, 	, varies
with the plasticity index, as shown in Figure 5.14. The
data that form the basis for these corrections are rather
widely scattered, and vane strengths should not be
viewed as precise, even after correction. Nevertheless,
the vane shear test avoids many of the problems in-
volved in sampling and laboratory testing and has been
found to be a useful tool for measuring the undrained
strengths of normally consolidated and moderately ov-
erconsolidated clays.
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Cone penetration tests. Cone penetration tests
(CPTs) are attractive as a means of evaluating un-
drained strengths of clays in situ because they can be
performed quickly and at lower cost than field vane
shear tests. The relationship between undrained
strength and cone tip resistance is

q � �c vos � (5.9)u *Nk

where su is the undrained shear strength, qc the CPT
tip resistance, �v the total overburden pressure at the
test depth, and the cone factor. The units for su, qc,

*Nk

and �v in Eq. (5.9) must be the same.
Values of the cone factor for a number of differ-*Nk

ent clays are shown in Figure 5.15. These values were
developed by comparing corrected vane strengths with
cone penetration resistance. Therefore Eq. (5.9) pro-
vides values of su comparable to values determined
from field vane shear tests after correction. It can be
seen that there is little systematic variation of with*Nk

the plasticity index. A value of is appli-*N � 14 � 5k

cable to clays with any PI value.
A combination of field vane shear and CPT tests can

often be used to good advantage to evaluate undrained
strengths at soft clay sites. A few vane shear tests are
performed close to CPT test locations, and a site-
specific value of is determined by comparing the*Nk

results. The cone test is then used for production test-
ing.

Standard Penetration Tests. Undrained strengths
can be estimated very crudely based on the results of
Standard Penetration Tests. Figure 5.16, which shows
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Table 5.7 Typical Values of Peak Friction Angle
(��) for Normally Consolidated Claysa

Plasticity index
��

(deg)

10 33 � 5
20 31 � 5
30 29 � 5
40 27 � 5
60 24 � 5
80 22 � 5

Source: Data from Bjerrum and Simons (1960).
ac� � 0 for these materials.

the variation of su /N with Plasticity Index, can be used
to estimate undrained strength based on SPT blow
count. In Figure 5.16 the value of su is expressed in
kgf/cm2 (1.0 kgf/cm2 is equal to 98 kPa, or 1.0 ton
per square foot). The Standard Penetration Test is not
a sensitive indicator of the undrained strength of clays,
and it is not surprising that there is considerable scatter
in the correlation shown in Figure 5.16.

Typical Peak Friction Angles for Intact Clays

Tests to measure peak drained strengths of clays in-
clude drained direct shear tests and triaxial tests with
pore pressure measurements to determine c� and ��.
The tests should be performed on undisturbed test
specimens. Typical values of �� for normally consoli-
dated clays are given in Table 5.7. Strength envelopes
for normally consolidated clays go through the origin
of stresses, and c� � 0 for these materials.

Stiff-Fissured Clays

Heavily overconsolidated clays are usually stiff, and
they usually contain fissures. The term stiff-fissured
clays is often used to describe them. Terzaghi (1936)
pointed out what has since been confirmed by many
others—the strengths that can be mobilized in stiff-
fissured clays in the field are less than the strength of
the same material measured in the laboratory.

Skempton (1964, 1970, 1977, 1985), Bjerrum
(1967), and others have shown that this discrepancy is
due to swelling and softening that occurs in the field
over long periods of time but does not occur in the
laboratory within the period of time used to perform
laboratory strength tests. A related factor is that fis-
sures, which have an important effect on the strength
of the clay in the field, are not properly represented in
laboratory samples unless the test specimens are large

enough to include a significant number of fissures. Un-
less the specimen size is several times the average fis-
sure spacing, both drained and undrained strengths
measured in laboratory tests will be too high.

Peak, fully softened, and residual strengths of stiff-
fissured clays. Skempton (1964, 1970, 1977, 1985)
investigated a number of slope failures in the stiff-
fissured London clay and developed procedures for
evaluating the drained strengths of stiff-fissured clays
that have been widely accepted. Figure 5.17 shows
stress–displacement curves and strength envelopes for
drained direct shear tests on stiff-fissured clays. The
undisturbed peak strength is the strength of undis-
turbed test specimens from the field. The magnitude of
the cohesion intercept (c�) depends on the size of the
test specimens. Generally, the larger the test speci-
mens, the smaller the value of c�. As displacement con-
tinues beyond the peak, reached at �x � 0.1 to 0.25
in. (3 to 6 mm), the shearing resistance decreases. At
displacements of 10 in. (250 mm) or so, the shearing
resistance decreases to a residual value. In clays with-
out coarse particles, the decline to residual strength is
accompanied by formation of a slickensided surface
along the shear plane.

If the same clay is remolded, mixed with enough
water to raise its water content to the liquid limit, con-
solidated in the shear box, and then tested, its peak
strength will be lower than the undisturbed peak.
The strength after remolding and reconsolidating is
shown by the NC (normally consolidated) stress–
displacement curve and shear strength envelope. The
peak is less pronounced, and the NC strength envelope
passes through the origin, with c� equal to zero. As
shearing displacement increases, the shearing resis-
tance decreases to the same residual value as in the
test on the undisturbed test specimen. The displace-
ment required to reach the residual shearing resistance
is again about 10 in. (250 mm).

Studies by Terzaghi (1936), Henkel (1957), Skemp-
ton (1964), Bjerrum (1967), and others have shown
that factors of safety calculated using undisturbed peak
strengths for slopes in stiff-fissured clays are larger
than unity for slopes that have failed. It is clear, there-
fore, that laboratory tests on undisturbed test speci-
mens do not result in strengths that can be used to
evaluate the stability of slopes in the field.

Skempton (1970) suggested that this discrepancy is
due to the fact that more swelling and softening occurs
in the field than in the laboratory. He showed that
the NC peak strength, also called the fully softened
strength, corresponds to strengths back-calculated from
first-time slides, slides that occur where there is no
preexisting slickensided failure surface. Skempton also



50 5 SHEAR STRENGTHS OF SOIL AND MUNICIPAL SOLID WASTE

S
he

ar
 s

tr
es

s 
- τ

Shear displacement - Δx
0.1 in. 10 in.

τ

Δx

Fully softened
(NC) peak

Residual

Undisturbed peak

Undisturbed peak

Fully softened (NC) peak

Effective normal stress - σ '

S
he

ar
 s

tr
es

s 
- τ

Figure 5.17 Drained shear strength of stiff fissured clay.
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Figure 5.18 Correlation among liquid limit, clay size fraction, and fully softened friction
angle. (From Stark and Eid, 1997.)

showed that once a failure has occurred and a contin-
uous slickensided failure surface has developed, only
the residual shear strength is available to resist sliding.
Tests to measure fully softened and residual drained
strengths of stiff clays can be performed using any
representative sample, disturbed or undisturbed, be-
cause they are performed on remolded test specimens.

Direct shear tests have been used to measure fully
softened and residual strengths. They are more suitable
for measuring fully softened strengths because the dis-
placement required to mobilize the fully softened peak
strength is small, usually about 0.1 to 0.25 in. (2.5 to

6 mm). Direct shear tests are not so suitable for mea-
suring residual strengths because it is necessary to
displace the top of the shear box back and forth to
accumulate sufficient displacement to develop a slick-
ensided surface on the shear plane and reduce the shear
strength to its residual value. Ring shear tests (Stark
and Eid, 1993) are preferable for measuring residual
shear strengths because unlimited shear displacement
is possible through continuous rotation.

Figures 5.18 and 5.19 show correlations of fully
softened friction angle and residual friction angle with
liquid limit, clay-size fraction, and effective normal
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Figure 5.19 Correlation among liquid limit, clay size fraction, and residual friction angle.
(From Stark and Eid, 1994.)

Table 5.8 Typical Peak Drained Strengths for Compacted Cohesive Soils

Unified
classification

Relative
compaction, RCa

(%)

Effective stress
cohesion, c�

(kPa)

Effective stress
friction angle, ��

(deg)

SM-SC 100 15 33
SC 100 12 31
ML 100 9 32
CL-ML 100 23 32
CL 100 14 28
MH 100 21 25
CH 100 12 19

Source: After U.S. Dept. Interior (1973).
aRC, relative compaction by USBR standard method, same energy as the Stan-

dard Proctor compaction test.

stress that were developed by Stark and Eid (1994,
1997). Both fully softened and residual friction angle
are fundamental soil properties, and the correlations
shown in Figures 5.18 and 5.19 have little scatter. Ef-
fective normal stress is a factor because the fully soft-
ened and residual strength envelopes are curved, as are
the strength envelopes for granular materials. It is thus
necessary to represent these strengths using nonlinear
relationships between shear strength and normal stress,
or to select values of �� that are appropriate for the
range of effective stresses in the conditions analyzed.

Undrained strengths of stiff-fissured clays. The un-
drained strength of stiff-fissured clays is also affected
by fissures. Peterson et al. (1957) and Wright and Dun-
can (1972) showed that the undrained strengths of stiff-
fissured clays and shales decreased as test specimen
size increased. Small specimens are likely to be intact,
with few or no fissures, and therefore stronger than a
representative mass of the fissured clay. Heavily ov-
erconsolidated stiff fissured clays and shales are also
highly anisotropic. As shown in Figure 5.12, inclined
specimens of Pepper shale and Bearpaw shale, where
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failure occurs on horizontal planes, are only 30 to 40%
of the strengths of vertical specimens.

Compacted Clays

Compacted clays are used often to construct embank-
ment dams, highway embankments, and fills to support
buildings. When compacted well, at suitable water
content, clay fills have high strength. Clays are more
difficult to compact than are cohesionless fills. It is
necessary to maintain their moisture contents during
compaction within a narrow range to achieve good

Recapitulation

• The shear strength of clays in terms of effective
stress can be expressed by the Mohr–Coulomb
strength criterion as s � c� � �� tan ��.

• The shear strength of clays in terms of total stress
can be expressed as s � c � � tan �.

• For saturated clays, � is zero, and the undrained
strength can be expressed as s � su � c, � � �u

� 0.
• Samples used to measure undrained strengths of

normally consolidated and moderately overcon-
solidated clay should be as nearly undisturbed as
possible.

• The strengths that can be mobilized in stiff fis-
sured clays in the field are less than the strength
of the same material measured in the laboratory
using undisturbed test specimens.

• The normally consolidated peak strength, also
called the fully softened strength, corresponds to
strengths back calculated from first-time slides.

• Once a failure has occurred and a continuous
slickensided failure surface has developed, only
the residual shear strength is available to resist
sliding.

• Tests to measure fully softened and residual
drained strengths of stiff clays can be performed
on remolded test specimens.

• Ring shear tests are preferable for measuring re-
sidual shear strengths, because unlimited shear
displacement is possible through continuous ro-
tation.

• Values of c� and �� for compacted clays can be
measured using consolidated–undrained triaxial
tests with pore pressure measurements or drained
direct shear tests.

• Undrained strengths of compacted clays vary with
compaction water content and density and can be
measured using UU triaxial tests performed on
specimens at their as-compacted water contents
and densities.

compaction, and more equipment passes are needed to
produce high-quality fills. High pore pressures can de-
velop in fills that are compacted wet of optimum, and
stability during construction can be a problem in wet
fills. Long-term stability can also be a problem, partic-
ularly with highly plastic clays, which are subject to
swell and strength loss over time. It is necessary to
consider both short- and long-term stability of com-
pacted fill slopes in clay.

Drained strengths of compacted clays. Values of c�
and �� for compacted clays can be measured using
consolidated–undrained triaxial tests with pore pres-
sure measurements or drained direct shear tests. The
values determined from either type of test are the same
for practical purposes. The effective stress strength
parameters for compacted clays, measured using sam-
ples that have been saturated before testing, are not
strongly affected by compaction water content.

Table 5.8 lists typical values of c� and �� for cohe-
sive soils compacted to RC � 100% of the Standard
Proctor maximum dry density. As the value of RC de-
creases below 100%, values of �� remain about the
same, and the value of c� decreases. For RC � 90%,
values of c� are about half the values shown in Table
5.8.
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waste based on large-scale direct shear tests and back anal-
ysis of stable slopes. (After Kavazanjian et al., 1995.)

Undrained strengths of compacted clays. Values of
c and � (total stress shear strength parameters) for the
as-compacted condition can be determined by perform-
ing UU triaxial tests on specimens at their compaction
water contents. Undrained strength envelopes for com-
pacted, partially saturated clays tested are curved, as
discussed in Chapter 3. Over a given range of stresses,
however, a curved strength envelope can be approxi-
mated by a straight line and can be characterized in
terms of c and �. When this is done, it is especially
important that the range of pressures used in the tests
correspond to the range of pressures in the field con-
ditions being evaluated. Alternatively, if the computer
program used accommodates nonlinear strength enve-
lopes, the strength test data can be represented directly.

Values of total stress c and � for compacted clays
vary with compaction water content and density. An
example is shown in Figure 5.20 for compacted Pitts-
burgh sandy clay. The range of confining pressures
used in these tests was 1.0 to 6.0 tons/ft2. The value
of c, the total stress cohesion intercept from UU tests,
increases with dry density but is not much affected by
compaction water content. The value of �, the total
stress friction angle, decreases as compaction water
content increases, but is not so strongly affected by dry
density.

If compacted clays are allowed to age prior to test-
ing, they become stronger, apparently due to thixo-
tropic effects. Therefore, undrained strengths measured
using freshly compacted laboratory test specimens pro-
vide a conservative estimate of the strength of the fill
a few weeks or months after compaction.

MUNICIPAL SOLID WASTE

Waste materials have strengths comparable to the
strengths of soils. Strengths of waste materials vary
depending on the amounts of soil and sludge in the
waste, as compared to the amounts of plastic and other
materials that tend to interlock and provide tensile
strength (Eid et al., 2000). Larger amounts of materials
that interlock increase the strength of the waste. Al-
though solid waste tends to decompose or degrade with
time, Kavazanjian (2001) indicates that the strength af-
ter degradation is similar to the strength before deg-
radation.

Kavazanjian et al. (1995) used laboratory test data
and back analysis of stable slopes to develop the lower-
bound strength envelope for municipal solid waste
shown in Figure 5.21. The envelope is horizontal with
a constant strength c � 24 kPa, � � 0 at normal pres-

sures less than 37 kPa. At pressures greater than 37
kPa, the envelope is inclined at � � 33� with c � 0.

Eid et al. (2000) used results of large-scale direct
shear tests (300 to 1500 mm shear boxes) and back
analysis of failed slopes in waste to develop the range
of strength envelopes show in Figure 5.22. All three
envelopes (lower bound, average, and upper bound) are
inclined at � � 35�. The average envelope shown in
Figure 5.22 corresponds to c � 25 kPa, and the lowest
of the envelopes corresponds to c � 0.
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CHAPTER 6

Mechanics of Limit Equilibrium Procedures

Once appropriate shear strength properties, pore water
pressures, slope geometry and other soil and slope
properties are established, slope stability calculations
need to be performed to ensure that the resisting forces
are sufficiently greater than the forces tending to cause
a slope to fail. Calculations usually consist of com-
puting a factor of safety using one of several limit
equilibrium procedures of analysis. All of these pro-
cedures of analysis employ the same definition of the
factor of safety and compute the factor of safety using
the equations of static equilibrium.

DEFINITION OF THE FACTOR OF SAFETY

The factor of safety, F, is defined with respect to the
shear strength of the soil as

s
F � (6.1)

�

where s is the available shear strength and � is the
equilibrium shear stress. The equilibrium shear stress
is the shear stress required to maintain a just-stable
slope and from Eq. (6.1) may be expressed as

s
� � (6.2)

F

The equilibrium shear stress is equal to the available
shear strength divided (factored) by the factor of
safety. The factor of safety represents the factor by
which the shear strength must be reduced so that the
reduced strength is just in equilibrium with the shear
stress (�) (i.e., the slope is in a state of just-stable
limiting equilibrium. The procedures used to perform

such computations are known as limit equilibrium pro-
cedures.

The shear strength can be expressed by the Mohr–
Coulomb equation. If the shear strength is expressed
in terms of total stresses, Eq. (6.2) is written as

c � � tan �
� � (6.3)

F

or

c � tan �
� � � (6.4)

F F

where c and � are the cohesion and friction angle for
the soil, respectively, and � is the total normal stress
on the shear plane. The same values for the factor of
safety are applied to cohesion and friction in this equa-
tion. Equation (6.4) can also be written as

� � c � � tan � (6.5)d d

where

c
c � (6.6)d F

tan �
tan � � (6.7)d F

The quantities cd and �d represent the developed (or
mobilized) cohesion and friction angle, respectively.

If the shear strength is expressed in terms of effec-
tive stresses (e.g., drained shear strengths are being
used), the only change from the above is that Eq. (6.3)
is written in terms of effective stresses as
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c� � (� � u) tan ��
� � (6.8)

F

where c� and �� represent the shear strength parame-
ters in terms of effective stresses, and u is the pore
water pressure.

To calculate the factor of safety, a slip surface is
assumed and one or more equations of static equilib-
rium are used to calculate the stresses and factor of
safety for each surface assumed. The term slip surface
is used here to refer to an assumed surface along which
sliding or rupture might occur. However, it is the intent
of slope stability calculations that sliding and rupture
not occur along such surfaces if the slope is designed
adequately.

The factor of safety is assumed to be the same at all
points along the slip surface. Thus, the value represents
an average or overall value for the assumed slip sur-
face. If failure were to occur, the shear stress would
be equal to the shear strength at all points along the
failure surface and the assumption that the factor of
safety is constant would be valid. If, instead, the slope
is stable, the factor of safety probably varies along the
slip surface (e.g., Wright et al., 1973). However, this
should not be of significant consequence as long as the
overall factor of safety is suitably greater than 1 and
the assumed shear strengths can be fully mobilized
along the entire slip surface.

A number of slip surfaces must be assumed to find
the slip surface that produces a minimum factor of
safety. The surface with the minimum factor of safety
is termed the critical slip surface. Such a critical sur-
face and the corresponding minimum factor of safety
represent the most likely sliding surface, presuming
that all of the shear strengths have been determined in
a comparable way and with comparable degrees of cer-
tainty. Although the slip surface with the minimum
factor of safety may not represent a failure mechanism
with a significant consequence, the minimum factor of
safety is unique for a given problem and should be
calculated as part of any analysis of stability. Other
slip surfaces with higher factors of safety than the min-
imum may also be of interest and are discussed in
Chapter 13.

Recapitulation

• The factor of safety is defined with respect to
shear strength.

• The same factor of safety is applied to both co-
hesion (c, c�) and friction (tan �, tan ��).

• The factor of safety is computed for an assumed
slip surface.

• The factor of safety is assumed to be constant
along the slip surface.

• A number of different slip surfaces must be as-
sumed and the factor of safety computed for each
to determine a critical slip surface with a mini-
mum factor of safety.

EQUILIBRIUM CONDITIONS

Two different approaches are used to satisfy static
equilibrium in the limit equilibrium analysis proce-
dures. Some procedures consider equilibrium for the
entire mass of soil bounded beneath by an assumed
slip surface and above by the surface of the slope. In
these procedures, equilibrium equations are written and
solved for a single free body. The infinite slope pro-
cedure and the Swedish slip circle method are exam-
ples of such single-free-body procedures. In other
procedures the soil mass is divided into a number of
vertical slices and equilibrium equations are written
and solved for each slice. These procedures, termed
procedures of slices, include such methods as the Or-
dinary Method of Slices, the Simplified Bishop pro-
cedure, and Spencer’s Procedure.

Three static equilibrium conditions are to be satis-
fied: (1) equilibrium of forces in the vertical direction,
(2) equilibrium of forces in the horizontal direction,
and (3) equilibrium of moments about any point. The
limit equilibrium procedures all use at least some static
equilibrium equations to compute the factor of safety.
Some procedures use and satisfy all of the equilibrium
equations, others use and satisfy only some. The
Ordinary Method of Slices and Simplified Bishop
procedure satisfy only some of the equilibrium re-
quirements. In contrast, Spencer’s procedure and the
Morgenstern and Price procedure satisfy all the re-
quirements for static equilibrium.

Regardless of whether equilibrium is considered for
a single free body or a series of individual vertical
slices making up the total free body, there are more
unknowns (forces, locations of forces, factor of safety,
etc.) than the number of equilibrium equations; the
problem of computing a factor of safety is statically
indeterminate. Therefore, assumptions must be made
to achieve a balance of equations and unknowns. Dif-
ferent procedures make different assumptions to satisfy
static equilibrium. Two procedures may even satisfy
the same equilibrium conditions but make different as-
sumptions and therefore produce different values for
the factor of safety.
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Figure 6.1 Infinite slope and plane slip surface.

A number of limit equilibrium procedures are de-
scribed in more detail in the following sections. Each
procedure differs from the others in one or more of the
ways described above. The different procedures may
or may not divide the soil mass into slices, may satisfy
different equilibrium conditions, and/or may make dif-
ferent assumptions to obtain a statically determinate
solution. The procedures discussed in this chapter were
selected because each has a particular advantage or
usefulness depending on the slope geometry, the soil
strength, and the purpose of the analysis.

Recapitulation

• Equilibrium may be considered either for a single
free body or for individual vertical slices.

• Depending on the analysis procedure, complete
static equilibrium may or may not be satisfied.

• Some assumptions must be made to obtain a stat-
ically determinate solution for the factor of safety.

• Different procedures make different assumptions,
even when they may satisfy the same equilibrium
equations.

SINGLE FREE-BODY PROCEDURES

The infinite slope, logarithmic spiral, and Swedish slip
circle methods all consider equilibrium for a single
free-body. These procedures are relatively simple to
use and useful within their range of applicability.

Infinite Slope Procedure

As implied by its name, in the infinite slope procedure
the slope is assumed to extend infinitely in all direc-
tions and sliding is assumed to occur along a plane
parallel to the face of the slope (Taylor, 1948). Because
the slope is infinite, the stresses will be the same on
any two planes that are perpendicular to the slope, such
as the planes A–A� and B–B� in Figure 6.1. Equilib-
rium equations are derived by considering a rectan-
gular block like the one shown in Figire 6.1. For an
infinite slope, the forces on the two ends of the block
will be identical in magnitude, opposite in direction,
and collinear. Thus, the forces on the ends of the block
exactly balance each other and can be ignored in the
equilibrium equations. Summing forces in directions
perpendicular and parallel to the slip plane gives the
following expressions for the shear force, S, and nor-
mal force, N, on the plane:

S � W sin 
 (6.9)

N � W cos 
 (6.10)

where 
 is the angle of inclination of the slope and
slip plane, measured from the horizontal, and W is the
weight of the block. For a block of unit thickness in
the direction perpendicular to the plane of the cross
section in Fig. 6.1, the weight is expressed as

W � � lz cos 
 (6.11)

where � is the total unit weight of the soil, l the dis-
tance between the two ends of the block, measured
parallel to the slope, and z the vertical depth to the
shear plane. Substituting Eq. (6.11) into Eqs. (6.9) and
(6.10) gives

S � �lz cos 
 sin 
 (6.12)
2N � �lz cos 
 (6.13)

The shear and normal stresses on the shear plane are
constant for an infinite slope and are obtained by di-
viding Eqs. (6.12) and (6.13) by the area of the plane
(l � 1), to give

� � �z cos 
 sin 
 (6.14)
2� � �z cos 
 (6.15)

Substituting these expressions for the stresses into Eq.
(6.3) for the factor of safety for total stresses gives

2c � �z cos 
 tan �
F � (6.16)

�z cos 
 sin 


For effective stresses, the equation for the factor of
safety becomes
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Figure 6.2 Summary of equations for computing the factor
of safety for an infinite slope using both total stresses and
effective stresses.

2c� � (�z cos 
 � u)tan ��
F � (6.17)

�z cos 
 sin 


Equations for computing the factor of safety for an
infinite slope are summarized in Figure 6.2 for both
total stress and effective stress analyses and a variety
of water and seepage conditions.

For a cohesionless (c, c� � 0) soil, the factor of
safety calculated by an infinite slope analysis is inde-
pendent of the depth, z, of the slip surface. For total
stresses (or effective stresses with zero pore water pres-
sure) the equation for the factor of safety becomes

tan �
F � (6.18)

tan 


Similarly for effective stresses, if the pore water pres-
sures are proportional to the depth of slide, the factor
of safety is expressed by

F � [cot 
 � r (cot 
 � tan 
)] tan �� (6.19)u

where ru is the pore water pressure coefficient sug-
gested by Bishop and Morgenstern (1960). The pore
water pressure coefficient is defined as

u
r � (6.20)u �z

Because the factor of safety for a cohesionless slope
is independent of the depth of the slip surface, it is
possible for a slip surface that is only infinitesimally
deep to have the same factor of safety as that for
deeper surfaces. Regardless of the lateral extent of the
slope, a slip surface can develop that is shallow with
respect to the lateral dimensions of the slope. Any
slope will constitute an infinite slope as long as the
soil is cohesionless. Therefore, the infinite slope anal-
ysis procedure is the appropriate procedure to use for
any slope in cohesionless soil.1

The infinite slope analysis is also applicable to
slopes in cohesive soils provided that a firmer stratum
parallel to the face of the slope limits the depth of the
failure surface. If such a stratum exists at a depth that
is small compared to the lateral extent of the slope, an
infinite slope analysis provides a suitable approxima-
tion for stability calculations.

The infinite slope equations were derived by consid-
ering equilibrium of forces in two mutually perpendic-
ular directions and thus satisfy all force equilibrium
requirements. Moment equilibrium was not considered
explicitly; however, the forces on the two ends of the
block are collinear and the normal force acts at the
center of the block. Thus, moment equilibrium is sat-
isfied, and the infinite slope procedure can be consid-
ered to fully satisfy all the requirements for static
equilibrium.

1 An exception to this may occur for soils with curved Mohr failure
envelopes that pass through the origin. Although there is no strength
at zero normal stress, and thus the soil might be termed cohesionless,
the factor of safety depends on the depth of slide and the infinite
slope analysis may not be appropriate. Also see the example of the
Oroville Dam presented in Chapter 7.
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Figure 6.3 Slope and logarithmic spiral slip surface. (After Frohlich, 1993.)

Recapitulation

• For a cohesionless slope the factor of safety is
independent of the depth of the slip surface, and
thus an infinite slope analysis is appropriate (ex-
ceptions may occur for nonhomogeneous slopes
and/or curved Mohr failure envelopes).

• For cohesive soils the infinite slope analysis pro-
cedure may provide a suitable approximation pro-
vided that the slip surface is parallel to the slope
and limited to a depth that is small compared to
the lateral dimensions of the slope.

• The infinite slope analysis procedure fully satis-
fies static equilibrium.

Logarithmic Spiral Procedure

In the Logarithmic Spiral procedure, the slip surface is
assumed to be a logarithmic spiral, as shown in Figure
6.3 (Frohlich, 1953). A center point and an initial ra-
dius, r0, define the spiral. The radius of the spiral varies
with the angle of rotation, �, about the center of the
spiral according to the expression

� tan �dr � r e (6.21)0

where �d is the developed friction angle; �d depends
on the friction angle of the soil and the factor of safety.
The stresses along the slip surface consist of the nor-
mal stress (�) and the shear stress (�). The shear stress
can be expressed in the case of total stresses by the
normal stress, the shear strength parameters (c and �),
and the factor of safety. From Eq. (6.4),

c tan �
� � � � (6.22)

F F

or in terms of developed shear strengths,

� � c � � tan � (6.23)d d

A log spiral has the properties that the radius extended
from the center of the spiral to a point on the slip
surface intersects the slip surface at an angle, �d, to
the normal (Figure 6.3). Because of this property, the
resultant forces produced by the normal stress (�) and
the frictional portion of the shear stress (� tan �d) act
along a line through the center of the spiral and pro-
duce no net moment about the center of the spiral. The
only forces on the slip surface that produce a moment
about the center of the spiral are those due to the de-
veloped cohesion. An equilibrium equation may be
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Figure 6.4 Critical logarithmic spiral slip surface for a co-
hesionless slope.

written by summing moments about the center of the
spiral, which involves only the factor of safety as the
unknown. This equation may be used to compute the
factor of safety.

In the logarithmic spiral procedure a statically de-
terminant solution is achieved by assuming a particular
shape (logarithmic spiral) for the slip surface. By as-
suming a logarithmic spiral, no additional assumptions
are required. Force equilibrium is not considered ex-
plicitly in the logarithmic spiral procedure. However,
there are an infinite number of combinations of normal
and shear stresses along the slip surface that will sat-
isfy force equilibrium. All of these combinations of
shear and normal stress will yield the same value for
the factor of safety that satisfies moment equilibrium.
Thus, the logarithmic spiral implicitly satisfies com-
plete static equilibrium. The logarithmic spiral and
infinite slope procedures are the only two limit
equilibrium procedures that satisfy complete equilib-
rium by assuming a specific slope geometry and shape
for the slip surface.

Because the logarithmic spiral procedure fully sat-
isfies static equilibrium, it is relatively accurate. Also,
for homogeneous slopes, a logarithmic spiral appears
to approximate the shape of the most critical potential
sliding surface reasonably well. The logarithmic spiral
procedure is theoretically the best limit equilibrium
procedure for analyses of homogeneous slopes.

For cohesionless (c, c� � 0) slopes the critical log-
arithmic spiral that produces the minimum factor
of safety has an infinite radius and the spiral coin-
cides with the face of the slope (Figure 6.4). In this
case the logarithmic spiral and infinite slope proce-
dures produce identical values for the minimum factor
of safety.

The logarithmic spiral equations are relatively com-
plex and awkward for hand calculations, because of
the assumed shape of the slip surface. However, the
logarithmic spiral procedure is computationally effi-
cient and well suited for implementation in computer
calculations. The procedure is useful for performing
the computations required to produce slope stability
charts, and once such charts have been developed there
is little need for using the detailed logarithmic spiral
equations (Wright, 1969; Leshchinsky and Volk, 1985;
Leschinsky and San, 1994). The logarithmic spiral pro-
cedure has also received recent interest and attention
for use in software to analyze reinforced slopes, par-
ticularly for design software that must perform many
repetitive calculations to find a suitable arrangement
for reinforcement (Leshchinsky, 1997).

Recapitulation

• The logarithmic spiral procedure achieves a stat-
ically determinate solution by assuming a specific
logarithmic spiral shape for the slip surface [Eq.
(6.21)].

• The logarithmic spiral procedure explicitly satis-
fies moment equilibrium and implicitly satisfies
complete force equilibrium. Because complete
equilibrium is satisfied, the procedure is relatively
accurate.

• The logarithmic spiral procedure is theoretically
the best procedure for analysis for homogeneous
slopes. Much of the effort required can be reduced
by use of dimensionless slope stability charts
(Leshchinsky, 1985, 1994).

• The logarithmic spiral procedure is used in several
computer programs for design of reinforced
slopes using geogrids, soil nails, and so on.

Swedish Circle/� � 0 Method

In the Swedish Circle method the slip surface is as-
sumed to be a circular arc and moments are summed
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Figure 6.5 Slope and slip surface for the Swedish circle (� � 0) procedure.

about the center of the circle to calculate a factor of
safety. Some form of the method was apparently first
used by Petterson in about 1916 (Petterson, 1955), but
the method seems to have first been formalized for
� � 0 by Fellenius in 1922 (Fellenius, 1922; Skemp-
ton, 1948). The friction angle is assumed to be zero
and thus the shear strength is assumed to be due to
‘‘cohesion’’ only. For this reason, the Swedish Circle
method is also called the � � 0 method.

The Swedish Circle or ‘‘� � 0’’ method is actually
a special case of the logarithmic spiral procedure:
When � � 0, a logarithmic spiral becomes a circle.
However, the equilibrium equations for a circle are
much simpler than those for a more general logarith-
mic spiral, and thus the Swedish Circle method is
generally considered to be a separate method. The
Swedish Circle method also seems to have preceded
the development of the logarithmic spiral method for
slope stability analysis.

Referring to the slope and circular slip surface
shown in Figure 6.5, the driving (overturning) moment
tending to produce rotation of the soil about the center
of the circle is given by

M � Wa (6.24)d

where W is the weight of the soil mass above the cir-
cular slip surface and a is the horizontal distance be-
tween the center of the circle and the center of gravity
of the soil mass; a is the moment arm. The resisting
moment is provided by the shear stresses (�) acting

along the circular arc. For a unit thickness of the cross
section shown in Figure 6.5, the resisting moment is
given by

M � �lr (6.25)r

where l is the length of the circular arc and r is the
radius. For equilibrium, the resisting and overturning
moments must balance. Thus,

Wa � �lr (6.26)

The shear stress in this equation can be expressed in
terms of the shear strength and factor of safety using
Eq. (6.1). Introducing Eq. (6.1) and replacing the shear
strength by the cohesion c yields

clr
Wa � (6.27)

F

or, after rearranging,

clr
F � (6.28)

Wa

Equation (6.28) is the equation used to compute the
factor of safety by the Swedish Circle method.

The term clr in the numerator of Eq. (6.28) repre-
sents the available resisting moment; the term Wa in
the denominator represents the driving moment. There-
fore, the factor of safety in this case is equal to the
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Figure 6.6 Circular slip surface subdivided into segments when the undrained shear strength
varies.

available resisting moment, Mr , divided by the actual
driving moment, Md :

available resisting moment
F � (6.29)

actual driving moment

The Swedish Circle method can be derived by starting
with Eq. (6.29) as the definition of the factor of safety,
and this approach is sometimes used. There are also
other definitions that have been suggested for the factor
of safety, and these are discussed later under the head
‘‘Alternative Definitions for the Factor of Safety.’’
However, the authors prefer to begin with the definition
of the factor of safety in terms of shear strength given
by Eq. (6.1) rather than Eq. (6.29).

Because the Swedish Circle method is a special case
of the logarithmic spiral method, it also satisfies com-
plete static equilibrium. Both the logarithmic spiral and
� � 0 methods use only the equilibrium equation for
summation of moments about the center point of the
slip surface, but all conditions of static equilibrium are
implicitly satisfied. The � � 0 method achieves a stat-
ically determinate solution by assuming that � � 0 and
a circular slip surface. No direct assumptions are made
about the unknown forces that contribute to equilib-
rium.

Equation (6.28) was derived for a constant value of
cohesion, but the equation is easily extended to cases
where the cohesion varies. If c varies, the circular slip
surface is subdivided into an appropriate number of

segments of length, �li, each with a corresponding av-
erage strength, ci (Figure 6.6). The expression for the
resisting moment becomes

(c �l r)� i i
M � (6.30)r F

where the summation is performed for the segments
along the slip surface. The equation for the factor of
safety is then

r (c �l )� i i
F � (6.31)

Wa

The term Wa in Eqs. (6.28) and (6.31) represents the
driving moment due to the weight of the soil. To com-
pute the moment arm, a, it is necessary to compute the
center of gravity of the soil mass above the slip sur-
face, which is not easy considering the usually odd
shape of the soil mass. Instead, in practice, calculations
are usually performed using either slope stability charts
like those described in the Appendix or one of the
procedures of slices that are described in the next sec-
tion. The procedures of slices provide a more conven-
ient way to calculate the driving moment, and for a
circular slip surface the procedures of slices produce
the same value for the factor of safety as the Swedish
Circle method.
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Figure 6.7 Circular slip surface with overlying soil mass subdivided into vertical slices.

Recapitulation

• The Swedish Circle (or � � 0) method explicitly
satisfies moment equilibrium and implicitly sat-
isfies force equilibrium completely.

• The Swedish Circle (or � � 0) method is an ac-
curate method of slope stability analysis for both
homogeneous and inhomogeneous slopes in � �
0 soils, provided that the slip surface can be ap-
proximated by a circle.

PROCEDURES OF SLICES: GENERAL

In the remaining procedures covered in this chapter,
the soil mass above the slip surface is subdivided into
a number of vertical slices. The actual number of slices
used depends on the slope geometry and soil profile
and is discussed in more detail in Chapter 14.

Some procedures of slices assume a circular slip sur-
face while others assume an arbitrary (noncircular) slip
surface. Procedures that assume a circular slip surface
consider equilibrium of moments about the center of
the circle for the entire free body composed of all
slices. In contrast, the procedures that assume an
arbitrary shape for the slip surface usually consider
equilibrium in terms of the individual slices. It is
appropriate to consider the procedures for circular and
noncircular slip surfaces separately.

PROCEDURES OF SLICES: CIRCULAR SLIP
SURFACES

Procedures based on a circular slip surface consider
equilibrium of moments about the center of the circle.
Referring to the slope and circular slip surface shown
in Figure 6.7, the overturning moment can be ex-
pressed as

M � W a (6.32)�d i i

where Wi is the weight of the ith slice and ai is the
horizontal distance between the center of the circle and
the center of the slice. Distances toward the crest of
the slope, to the right of the center shown in Figure
6.7, are positive; distances toward the toe of the slope,
to the left of the center, are negative. Although theo-
retically the moment arm, ai, is measured from the cen-
ter of the circle to the center of gravity of the slice, a
sufficient number of slices is generally used that the
differences between the center (midwidth) and center
of gravity of the slice are negligible. In most cases ai

is measured from the center of the circle to the center
(midwidth) of the slice.

The moment arm, ai, in Eq. (6.32) can be expressed
in terms of the radius of the circle and the inclination
of the bottom of the respective slice. Although the base
of the slice is curved, the base can be assumed to be
a straight line, as suggested in Figure 6.7, with negli-
gible loss in accuracy. The inclination of the base of
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the slice is represented by the angle, �i, measured be-
tween the base of the slice and the horizontal. Positive
and negative values are indicated in Figure 6.7. The
angle between a line extended from the center of the
circle to the center of the base of the slice and a ver-
tical line is also equal to the angle, �i (Figure 6.7).
Thus, the moment arm (ai) is expressed by

a � r sin � (6.33)i i

and the driving moment becomes

M � r W sin � (6.34)�d i i

The radius in Eq. (6.34) has been moved outside the
summation because the radius is constant for a circle.

The resisting moment is provided by the shear
stresses (�) on the base of each slice; normal stresses
(�) on the base of each slice act through the center of
the circle and thus produce no moment. The total re-
sisting moment for all slices is

M � rS � r S (6.35)� �r i i

where Si is the shear force on the base of the ith slice
and the summation is performed for all slices. The
shear force is the product of the shear stress, �i, and
the area of the base of the slice, which for a slice of
unit thickness is �li � 1. Thus,

M � r � �l (6.36)�r i i

The shear stress can be expressed in terms of the shear
strength and the factor of safety by Eq. (6.1) to give

s �li iM � r (6.37)�r F

Equating the resisting moment [Eq. (6.37)] and the
driving moment [Eq. (6.34)] and rearranging, the fol-
lowing equation can be written for the factor of safety:

s �l� i i
F � (6.38)

W sin �� i i

The radius has been canceled from both the numerator
and denominator of this equation. However, the equa-
tion is still valid only for a circular slip surface.

At this point the subscript i will be dropped from
use with the understanding that the quantities inside
the summation are the values for an individual slice

and that the summations are performed for all slices.
Thus, Eq. (6.38) is written as

s�l�
F � (6.39)

W sin ��
For total stresses the shear strength is expressed by

s � c � � tan � (6.40)

Substituting this into Eq. (6.39), gives

(c � � tan �) �l�
F � (6.41)

W sin ��
Equation (6.41) represents the static equilibrium

equation for moments about the center of a circle. If
� is equal to zero, Eq. (6.41) becomes

c �l�
F � (6.42)

W sin ��
which can be solved for a factor of safety. Equations
(6.42) and (6.31), derived earlier for the Swedish Cir-
cle (� � 0) method, both satisfy moment equilibrium
about the center of a circle and make no assumptions
other than that � � 0 and the slip surface is a circle.
Therefore, both equations produce the same value for
the factor of safety. The only difference is that Eq.
(6.31) considers the entire free body as a single mass;
Eq. (6.42) subdivides the mass into slices. Equation
(6.42), based on slices, is more convenient to use than
Eq. (6.31) because it avoids the need to locate the cen-
ter of gravity of what may be an odd-shaped soil mass
above the slip surface.

If the friction angle is not equal to zero, the equation
presented above for the factor of safety [Eq. (6.41)]
requires that the normal stress on the base of each slice
be known. The problem of determining the normal
stress is statically indeterminate and requires that ad-
ditional assumptions be made in order to compute the
factor of safety. The Ordinary Method of Slices and
the Simplified Bishop procedures described in the next
two sections make two different sets of assumptions to
obtain the normal stress on the base of the slices and,
subsequently, the factor of safety.

Ordinary Method of Slices

The Ordinary Method of Slices is a procedure of slices
that neglects the forces on the sides of the slice. The
Ordinary Method of Slices has also been referred to as
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Figure 6.8 Slice with forces considered in the Ordinary
Method of Slices.

the ‘‘Swedish Method of Slices’’ and the ‘‘Fellenius
Method.’’ This method should not, however, be con-
fused with the U.S. Army Corps of Engineers’ Modi-
fied Swedish method, which is described later.
Similarly, the method should not be confused with
other methods of slices that Fellenius developed, in-
cluding a method of slices that fully satisfies static
equilibrium (Fellenius, 1936).

Referring to the slice shown in Figure 6.8 and re-
solving forces perpendicular to the base of the slice,
the normal force for the Ordinary Method of Slices
can be expressed as

N � W cos � (6.43)

The normal force expressed by Eq. (6.43) is the same
as the normal force that would exist if the resultant
force due to the forces on the sides of the slice acted
in a direction parallel to the base of the slice (Bishop,
1955). However, it is impossible for this to occur and
for the forces on the slice to be in equilibrium unless
the interslice forces are zero.

The normal stress on the base of a slice is obtained
by dividing the normal force by the area of the base
of the slice (1 � �l), to give

W cos �
� � (6.44)

�l

Substituting this expression for the normal force into
Eq. (6.41), derived above for the factor of safety from
moment equilibrium, gives the following equation for
the factor of safety:

(c �l � W cos � tan �)�
F � (6.45)

W sin ��
Equation (6.45) is the equation for the factor of safety
by the Ordinary Method of Slices when the shear
strength is expressed in terms of total stresses.

When the shear strength is expressed in terms of
effective stresses the equation for the factor of safety
from moment equilibrium is

(c� � �� tan ��) �l�
F � (6.46)

W sin ��
where �� is the effective normal stress, � � u. From
Eq. (6.44) for the total normal stress, the effective nor-
mal stress can be expressed as

W cos �
�� � � u (6.47)

�l

where u is the pore water pressure on the slip surface.
Substituting this expression for the effective normal
stress [Eq. (6.47)] into the equation for the factor of
safety (6.46) and rearranging gives

[c� �l � (W cos � � u �l) tan ��]�
F � (6.48)

W sin ��
Equation (6.48) represents an expression for the factor
of safety by the Ordinary Method of Slices for effec-
tive stresses. However, the assumption involved in this
equation (� � W cos � /�l) can lead to unrealistically
low, even negative values for the effective stresses on
the slip surface. This can be demonstrated as follows:
Let the weight of the slice be expressed as

W � �hb (6.49)

where h is the height of the slice at the centerline and
b is the width of the slice (Figure 6.9). The width of
the slice is related to the length of the base of the slice,
�l, as
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Figure 6.9 Dimensions for an individual slice.

b � �l cos � (6.50)

Thus, Eq. (6.49) can be written as

W � �h �l cos � (6.51)

Substituting this expression for the weight of the slice
into Eq. (6.48) and rearranging gives

2[c��l � (�h cos � � u)�l tan ��]�
F � (6.52)

W sin ��
The expression in parentheses, �h cos2� � u, repre-
sents the effective normal stress, ��, on the base of the
slice. Therefore, we can also write

�� u2� cos � � (6.53)
�h �h

where the ratio �� /�h is the ratio of effective normal
stress to total overburden pressure and u /�h is the ratio
of pore water pressure to total vertical overburden
pressure. Let’s now suppose that the pore water pres-

sure is equal to one-third the overburden pressure (i.e.,
u /�h � ). Further suppose that the slip surface is1–3
inclined upward at an angle, �, of 60� from the hori-
zontal. Then, from Eq. (6.53),

�� 2 1–� cos (60�) � � �0.08 (6.54)3�h

which indicates that the effective normal stress is neg-
ative! Negative values will exist for the effective stress
in Eq. (6.52) as the pore water pressures become larger
and the slip surface becomes steeper (� becomes
large). The negative values occur because the forces
on the sides of the slice are ignored in the Ordinary
Method of Slices and there is nothing to counteract the
pore water pressure.

By first expressing the weight of the slice in terms
of an effective weight and then resolving forces per-
pendicular to the base of the slice, a better expression
for the factor of safety can be obtained for the Ordinary
Method of Slices (Turnbull and Hvorslev, 1967). The
effective slice weight, W �, is given by

W� � W � ub (6.55)

The term ub represents the vertical uplift force due to
the pore water pressure on the bottom of the slice. The
uplift force acts to counterbalance the weight of the
slice. Resolving forces due to the effective stresses in
a direction perpendicular to the base of the slice gives
the effective normal force, N�,

N� � W� cos � (6.56)

or from Eqs. (6.50) and (6.55),

2N� � W cos � � u �l cos � (6.57)

The effective normal stress, ��, is obtained by dividing
this force by the area of the base of the slice, which
gives

W cos � 2�� � � u cos � (6.58)
�l

Finally, introducing Eq. (6.58) for the effective normal
stress into Eq. (6.46) for the factor of safety derived
from moment equilibrium gives
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Figure 6.10 Slice with forces for the Simplified Bishop pro-
cedure.

2[c� �l � (W cos � � u �l cos �)tan ��]�
F �

W sin ��
(6.59)

This alternative expression for the factor of safety by
the Ordinary Method of Slices does not result in neg-
ative effective stresses on the slip surface as long as
the pore water pressures are less than the total vertical
overburden pressure, a condition that must clearly exist
for any reasonably stable slope.

Recapitulation

• The Ordinary Method of Slices assumes a circular
slip surface and sums moments about the center
of the circle; the method only satisfies moment
equilibrium.

• For � � 0 the Ordinary Method of Slices gives
exactly the same value for the factor of safety as
does the Swedish Circle method.

• The Ordinary Method of Slices permits the factor
of safety to be calculated directly. All of the other
procedures of slices described subsequently re-
quire an iterative, trial-and-error solution for the
factor of safety. Thus, the method is convenient
for hand calculations.

• The Ordinary Method of Slices is less accurate
than are other procedures of slices. The accuracy
is less for effective stress analyses and decreases
as the pore water pressures become larger.

• Accuracy of the Ordinary Method of Slices can
be improved by using Eq. (6.59) rather than Eq.
(6.48) for effective stress analyses.

Simplified Bishop Procedure

In the Simplified Bishop procedure the forces on the
sides of the slice are assumed to be horizontal (i.e.,
there are no shear stresses between slices). Forces are
summed in the vertical direction to satisfy equilibrium
in this direction and to obtain an expression for the
normal stress on the base of each slice. Referring to
the slice shown in Figure 6.10 and resolving forces in
the vertical direction, the following equilibrium equa-
tion can be written for forces in the vertical direction:

N cos � � S sin � � W � 0 (6.60)

Forces are considered positive when they act upward.
The shear force in Eq. (6.60) is related to the shear
stress by

S � � �l (6.61)

or in terms of the shear strength and factor of safety
[Eq. (6.2)], we can write

s �l
S � (6.62)

F

For shear strengths expressed in terms of effective
stresses with the Mohr–Coulomb strength equation, we
can write

1
S � [c� �l � (N � u �l)tan ��] (6.63)

F

Combining Eqs. (6.60) and (6.63) and solving for the
normal force, N, we obtain

W � (1/F)(c� �l � u �l tan��)sin �
N � (6.64)

cos � � (sin � tan ��) /F

the effective normal stress on the base of the slice is
given by

N
�� � � u (6.65)

�l

Combining Eqs. (6.64) and (6.65) and introducing
them into the equation for equilibrium of moments
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about the center of a circle for effective stresses [Eq.
(6.46)], we can write, after rearranging terms,

c� �l cos � � (W � u �l cos �)tan ���� �cos � � (sin � tan ��) /F
F �

W sin ��
(6.66)

Equation (6.66) represents the equation for the factor
of safety for the Simplified Bishop procedure.

Equation (6.66) was derived with the shear strength
expressed in terms of effective stresses. The only dis-
tinction between total and effective stresses that is
made in deriving any equation for the factor of safety
is in whether the shear strength is expressed in terms
of total stresses or effective stresses [e.g., Eq. (6.3) vs.
Eq. (6.8)]. An equation for the factor of safety based
on total stresses can be obtained from the equation for
effective stresses by replacing the effective stress shear
strength parameters (c� and ��) by their total stress
equivalents (c and �) and setting the pore water pres-
sure term (u) to zero. Thus, the equation for the factor
of safety in terms of total stresses for the Simplified
Bishop procedure is

c �l cos � � W tan ��� �cos � � (sin � tan �) /F
F � (6.67)

W sin ��
In many problems, the shear strength will be expressed
in terms of total stresses (e.g., UU strengths) for some
materials and in terms of effective stresses (e.g., CD
strengths) for other materials. Thus, the terms being
summed in the numerator of Eq. (6.66) or (6.67) will
contain a mixture of effective stresses and total
stresses, depending on the applicable drainage condi-
tions along the slip surface (base of each slice).

For saturated soils and undrained loading, the shear
strength may be characterized using total stresses with
� � 0. In this case Eq. (6.67) reduces further to

c�l�
F � (6.68)

W sin ��
Equation (6.68) is identical to Eq. (6.42) derived for
the Ordinary Method of Slices. In this case (� � 0)
the logarithmic spiral, Swedish Circle, Ordinary
Method of Slices, and Simplified Bishop procedures
all give the same value for the factor of safety. In fact,
any procedure that satisfies equilibrium of moments
about the center of a circular slip surface will give the

same value for the factor of safety for � � 0 condi-
tions.

Although the Simplified Bishop procedure does not
satisfy complete static equilibrium, the procedure gives
relatively accurate values for the factor of safety.
Bishop (1955) showed that the procedure gives im-
proved results over the Ordinary Method of Slices, es-
pecially when analyses are being performed using
effective stresses and the pore water pressure are rel-
atively high. Also, good agreement has been shown
between the factors of safety calculated by the Sim-
plified Bishop procedure and limit equilibrium proce-
dures that fully satisfy static equilibrium (Bishop,
1955; Fredlund and Krahn, 1977; Duncan and Wright,
1980). Also Wright et al. (1973) have shown that the
factor of safety calculated by the Simplified Bishop
procedure agrees favorably (within about 5%) with the
factor of safety calculated using stresses computed in-
dependently using finite element procedures. The pri-
mary practical limitation of the Simplified Bishop
procedure is that it is restricted to circular slip surfaces.

Recapitulation

• The Simplified Bishop procedure assumes a cir-
cular slip surface and horizontal forces between
slices. Moment equilibrium about the center of the
circle and force equilibrium in the vertical direc-
tion for each slice are satisfied.

• For � � 0 the Simplified Bishop procedure gives
the same, identical value for the factor of safety
as the Swedish Circle and Ordinary Method of
Slices procedures because all these procedures
satisfy moment equilibrium about the center of a
circle and that produces a unique value for the
factor of safety.

• The Simplified Bishop procedure is more accurate
than the Ordinary Method of Slices, especially for
effective stress analyses with high pore water
pressures.

Inclusion of Additional Known Forces

The equations presented above for the factor of safety
by both the Ordinary Method of Slices and Simplified
Bishop procedures are based on the assumption that
the only driving forces are due to the weight of the
soil mass, and the only resisting forces are those due
to the shear strength of the soil. Frequently, there are
additional known driving and resisting forces: Slopes
that have water adjacent to them or support additional
surcharge loads due to traffic or stockpiled materials
are subjected to additional loads. Also, the pseudostatic
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Figure 6.11 Slope with additional known seismic and rein-
forcement forces.
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Figure 6.12 Individual slice with additional known forces.

analyses for seismic loading, which are discussed in
Chapter 10, involve an additional horizontal body force
on the slices to represent earthquake loading. Finally,
stability computations for reinforced slopes include ad-
ditional forces to represent the reinforcement. All these
forces are considered to be known forces; that is, they
are prescribed as part of the definition of the problem
and must be included in the equilibrium equations to
compute the factor of safety. However, because the ad-
ditional forces are known, they can be included in the
equilibrium equations without requiring any additional
assumptions to achieve a statically determinate solu-
tion. The inclusion of additional forces is shown below
using the Simplified Bishop procedure for illustration.

Consider first the equation of overall moment equi-
librium about the center of a circle. With only forces
due to the weight and shear strength of the soil, equi-
librium is expressed by

s �li ir � r W sin � � 0 (6.69)� � i iF

where counterclockwise (resisting) moments are con-
sidered positive and clockwise (overturning) moments
are considered negative. Instead, if there are also seis-
mic forces, kWi, and forces due to soil reinforcement,
Ti (Figure 6.11), the equilibrium equation might be
written as

s �li ir � r W sin �� � i iF
� kW d � T h � 0 (6.70)� �i i i i

where k is the seismic coefficient, di the vertical dis-
tance between the center of the circle and the center
of gravity of the slice, Ti represents the force in the

reinforcement where the reinforcement crosses the slip
surface, and hi is the moment arm of the reinforcement
force about the center of the circle. The summation, 	
kWidi, is performed for all slices, while the summation,
	 Tihi, applies only to slices where the reinforcement
intersects the slip surface. The reinforcement shown in
Figure 6.11 is horizontal, and thus the moment arm is
simply the vertical distance between the reinforcement
and the center of the circle. This, however, may not
always be the case. For example, in Figure 6.12 a slice
is shown where the reinforcement force is inclined at
an angle, 
, from the horizontal.

Because the forces represented by the last two sum-
mations in Eq. (6.70) involve only known quantities,
it is convenient to replace these summations by a single
term, Mn, that represents the net moment due to the
known forces. The known forces may include seismic
forces, reinforcement forces, and in the case of the
slice shown in Figure 6.12, an additional moment due
to a force, P, on the top of the slice. Equation (6.70)
is then written as

s �li ir � r W sin � � M � 0 (6.71)� � i i nF

Positive values for Mn represent a net counterclockwise
moment; negative values represent a net clockwise mo-
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ment. The equation for the factor of safety that satisfies
moment equilibrium then becomes

s �l� i i
F � (6.72)

W sin � � M /r� i i n

If the shear strength, s, is expressed in terms of effec-
tive stresses, and the subscripts i are now dropped with
the understanding that the terms inside each summa-
tion apply to an individual slice, Eq. (6.72) can be
written as

[c� � (� � u) tan��] �l�
F � (6.73)

W sin � � M /r� n

To determine the normal stress, � (� N /�l) in Eq.
(6.73), the equation for equilibrium of forces in the
vertical direction is used again. Suppose that the slice
contains the known forces shown in Figure 6.12. The
known forces in this instance consist of a seismic
force, kW, a force, P, due to water loads on the surface
of the slope, and force, T, due to reinforcement inter-
secting the base of the slice. The force P acts perpen-
dicular to the top of the slice, and the reinforcement
force is inclined at an angle, 
, from the horizontal.
Summation of forces in the vertical direction gives

N cos � � S sin � � W � P cos 
 � T sin 
 � 0

(6.74)

where 
 is the inclination of the top of the slice and

 represents the inclination of the reinforcement from
the horizontal. Equation (6.74) is based on the Sim-
plified Bishop assumption that there are no shear
forces on the sides of the slice (i.e., the interslice forces
are horizontal). Note that because the seismic force is
assumed to be horizontal, it does not contribute to
equilibrium in the vertical direction; however, if there
were a seismic force component in the vertical direc-
tion, the vertical component would appear in Eq.
(6.74). It is again convenient to combine the contri-
bution of the known forces into a single quantity, rep-
resented in this case by a vertical force, Fv, which
includes the vertical components of all of the known
forces except the slice weight,2 that is,

2 The weight, W, could also be included in the force, Fv, but for now
the weight will be kept separate to make these equations more easily
compared with those derived previously with no known forces except
the slice weight.

F � �P cos 
 � T sin 
 (6.75)v

Positive forces are assumed to act upward; negative
forces act downward. The summation of forces in the
vertical direction then becomes

N cos � � S sin � � W � F � 0 (6.76)v

Introducing the Mohr–Coulomb strength equation,
which includes the definition of the factor of safety
[Eq. (6.63)], into Eq. (6.76) and then solving for the
normal force, N, gives

W � F � (1/F)(c� �l � u �l tan ��)sin �vN �
cos � � (sin � tan ��) /F

(6.77)

Combining Eq. (6.77) for the normal force with Eq.
(6.73) for the factor of safety then gives

c��l cos � � (W � F � u�l cos �)tan ��v�� �cos � � (sin � tan ��) /F
F �

W sin � � M /r� n

(6.78)

The term Mn represents moments due to all known
forces except the weight, including moments produced
by the seismic forces (kW), external loads (P), and
reinforcement (T) on the slice in Figure 6.12.

Equation (6.78) is the equation for the factor of
safety by the Simplified Bishop procedure extended to
include additional known forces like those due to seis-
mic loads, reinforcement, and external water pressures.
However, because only vertical and not horizontal
force equilibrium is considered, the method largely ne-
glects any contribution to the normal stresses on the
slip surface from horizontal forces, such as a seismic
force and horizontal reinforcement forces. Horizontal
forces are included in Eq. (6.78) only indirectly
through their contribution to the moment, Mn. Conse-
quently, care should be exercised if the Simplified
Bishop procedure is used where there are significant
horizontal forces that contribute to stability. However,
it has been the writers’ experience that even when there
are significant horizontal forces, the Simplified Bishop
procedure produces results comparable to those ob-
tained by procedures that satisfy all conditions of equi-
librium.

The Simplified Bishop procedure is often used for
analysis of reinforced slopes. If the reinforcement is
horizontal, the reinforcement contributes in the equa-
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tion of moment equilibrium but does not contribute in
the equation for equilibrium of forces in the vertical
direction. Thus, the effect of the reinforcement can be
neglected in the equation of vertical force equilibrium
[Eq. (6.74)]. However, if the reinforcement is inclined,
the reinforcement contributes to both moment equilib-
rium and vertical force equilibrium. Some engineers
have ignored the contribution of inclined reinforcement
in the equation of vertical force equilibrium [Eq.
(6.74)], while others have included its effect. Conse-
quently, different results have been obtained depending
on whether or not the contribution of vertical reinforce-
ment forces is included in the equation of vertical force
equilibrium (Wright and Duncan, 1991). It is recom-
mended that the contribution always be included, as
suggested by Eq. (6.74), and when reviewing the work
of others it should be determined whether or not the
force has been included.

Equations similar to those presented above for the
Simplified Bishop procedure can be derived using the
Ordinary Method of Slices. However, because of its
relative inaccuracy, the Ordinary Method of Slices is
generally not used for analyses of more complex con-
ditions, such as those involving seismic loading or re-
inforcement. Therefore, the appropriate equations for
additional known loads with the Ordinary Method of
Slices are not presented here.

Complete Bishop Procedure

Bishop (1955) originally presented two different pro-
cedures for slope stability analysis. One procedure is
the ‘‘Simplified’’ procedure described above; the other
procedure considered all of the unknown forces acting
on a slice and made sufficient assumptions to fully
satisfy static equilibrium. The second procedure is of-
ten referred to as the Complete Bishop procedure. For
the complete procedure, Bishop outlined what steps
and assumptions would be necessary to fully satisfy
static equilibrium; however, no specific assumptions or
details were stated. In fact, Bishop’s second procedure
was similar to a procedure that Fellenius (1936) de-
scribed much earlier. Neither of these ‘‘procedures’’
consists of a well-defined set of assumptions and steps
like those of the other procedures described in this
chapter. Because neither the Complete Bishop proce-
dure nor Fellenius’s rigorous method has been de-
scribed completely, these methods are not considered
further. Since the pioneering contributions of Bishop
and Fellenius, several procedures have been developed
that set forth a distinct set of assumptions and steps
for satisfying static equilibrium. These newer proce-
dures are discussed later in this chapter.

PROCEDURES OF SLICES: NONCIRCULAR SLIP
SURFACES

Up to this point, all of the procedures of slices as well
as the single free-body procedures that have been pre-
sented are based on relatively simple shapes for the
slip surface: a plane, a logarithmic spiral, or a circle.
Many times the slip surface is more complex, often
following zones or layers of relatively weak soil or
weak interfaces between soil and other materials, such
as geosynthetics. In such cases it is necessary to com-
pute stability using more complex shapes for the slip
surface. Several procedures have been developed for
analyses of more complex, noncircular slip surfaces.
These procedures are all procedures of slices. Some of
the procedures consider all of the conditions of static
equilibrium; others consider only some of them. Sev-
eral procedures are based on satisfying only the re-
quirements of force equilibrium; these are known as
force equilibrium procedures. Most of the other pro-
cedures for analysis with noncircular slip surfaces con-
sider all of the requirements for static equilibrium and
are referred to as complete equilibrium procedures.
The force equilibrium and complete equilibrium pro-
cedures are discussed separately below.

Force Equilibrium (Only) Procedures

Force equilibrium procedures satisfy only the condi-
tions of force equilibrium and ignore moment equi-
librium. These procedures use the equations for
equilibrium of forces in two mutually perpendicular
directions to compute the factor of safety, the forces
on the base of each slice, and the resultant interslice
forces. Usually, forces are resolved either vertically
and horizontally or parallel and perpendicular to the
base of the slice. To obtain a solution that is statically
determinate (equal number of equations and un-
knowns), the inclinations of the forces between each
slice are assumed. Once the inclination of the force is
assumed, the factor of safety can be calculated.

Interslice force assumptions. Various authors have
suggested different assumptions for the interslice force
inclinations to be used in force equilibrium procedures.
Three of the most recognized assumptions are sum-
marized in Table 6.1 along with the names commonly
associated with each assumption.

Of the three assumptions shown in Table 6.1, the
one suggested by Lowe and Karafiath (1959), that the
interslice forces act at the average of the inclination of
the slope and slip surface, seems to produce the best
results. Factors of safety calculated using Lowe and
Karafiath’s procedure are generally in closest agree-
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Table 6.1 Interslice Force Assumptions Used in Force Equilibrium Procedures

Procedure/assumption Description

Lowe and Karafiath (Lowe and Karafiath, 1959) The interslice forces are assumed to be inclined at the average
slope of the ground surface and slip surface. The inclination
varies from slice to slice, depending on where the slice
boundaries are located.

Simplified Janbu (Janbu et al., 1956; Janbu, 1973) The side forces are horizontal; there is no shear stress between
slices. Correction factors are used to adjust (increase) the factor
of safety to more reasonable values.

U.S. Army Corps of Engineers’ modified Swedish
method (U.S. Army Corps of Engineers, 1970).

The side forces are parallel to the average embankment slope.
Although not clearly stated in their 1970 manual, the Corps of
Engineers has established that the interslice force inclination
will be the same for all slicesa.

aDuring the development of the UTEXAS2 and UTEXAS3 slope stability software, the U.S. Army Corps of Engineers’
CAGE Committee made the decision that in the Modified Swedish procedure, all side forces would be assumed to be
parrallel.

Figure 6.13 Correction factors for Janbu’s simplified pro-
cedure of slices.

ment with the factors of safety calculated using pro-
cedures that satisfy complete equilibrium.

The Simplified Janbu procedure is based on the as-
sumption that the interslice forces are horizontal. This
assumption alone almost always produces factors of
safety that are smaller than those obtained by more
rigorous procedures that satisfy complete equilibrium.
To account for this, Janbu et al. (1956) proposed the
correction factors shown in Figure 6.13. These correc-
tion factors are based on a number of slope stability
computations using both the simplified procedure with
horizontal interslice forces and the more rigorous GPS
procedure described later. The correction factors are
only approximate, being based on analyses of 30 to 40
cases; however, the correction factors seem to provide
an improved value for the factor of safety for many
slopes.3 Caution should be used in evaluating analyses
that are reported using the Simplified Janbu procedure:
Some analyses and computer programs automatically
apply the correction factor to the computed factor of
safety; others do not. Whenever results are reported for
the Simplified Janbu procedure, it should be deter-
mined whether the correction factor has been applied,
as the correction can have a noticeable effect on the
results.

3 Janbu (1973) indicates that the correction factors are based on a
comprehensive investigation of some 40 different soil profiles. In a
more recent personal communication (2003) between the authors and
Janbu, Janbu confirmed that the correction factors were established
based on analyses of approximately 30 cases in the files of the Nor-
wegian Geotechnical Institute.

The U.S. Army Corps of Engineers’ Modified Swed-
ish procedure is based on the assumption that the in-
terslice forces act at the ‘‘average inclination of the
embankment slope’’ (U.S. Army Corps of Engineers,
1970). This can be interpreted in at least three different
ways, as illustrated in Figure 6.14. As shown in the
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All interslice forces 
parallel to this line

Interslice force here 
is parallel to average 
slope here

All interslice forces 
parallel to this line

(a)

(b)

(c)

Figure 6.14 Candidate interpretations of the U.S. Army
Corps of Engineers’ assumption for the interslice force incli-
nations in the Modified Swedish procedure—average incli-
nations of the embankment slope: (a) interpretation 1; (b)
interpretation 2; (c) interpretation 3.

figure, the interslice force inclinations may be inter-
preted either as being the same for every slice (Figure
6.14a and b) or differing from slice to slice (Figure
6.14c). To the writers’ knowledge all three interpreta-
tions that are shown in Figure 6.14 have been used.
However, currently the standard practice is to assume
that the interslice forces all have the same inclination.4

Regardless of the interpretation, any of the three as-
sumptions illustrated in Figure 6.14 can lead to factors
of safety that are larger than those obtained by more
rigorous procedures of analysis that fully satisfy mo-
ment equilibrium, and thus the factors of safety are
unconservative. Accordingly, some engineers elect to
assume flatter angles for the interslice forces than those
suggested by the U.S. Army Corps of Engineers

4 During development of the UTEXAS2 and UTEXAS3 slope stabil-
ity software, a decision was made by the Corps of Engineers’ CAGE
Committee that all interslice forces would be assumed to be parallel.

(1970).5 If in the extreme the interslice forces are as-
sumed to be horizontal, the Modified Swedish proce-
dure becomes identical to the Simplified Janbu
procedure (without the correction factor) and the pro-
cedure then probably underestimates the factor of
safety. As with the Simplified Janbu procedure, it is
recommended that the details of the interslice force
assumptions be determined whenever reviewing the re-
sults of calculations performed by others using the
Modified Swedish procedure.

One of the principal limitations of force equilibrium
procedures is that the procedures are sensitive to what
is assumed for the interslice force inclination. To il-
lustrate this sensitivity, calculations were performed for
the short-term stability of the homogeneous slope
shown in Figure 6.15a. The slope is composed of sat-
urated clay. The undrained shear strength is 400 psf at
the elevation of the crest of the slope and increases
linearly with depth below the crest at the rate of 7.5
psf per foot of depth. Stability calculations were per-
formed using force equilibrium procedures with par-
allel interslice forces (i.e., all interslice forces had the
same inclination). The interslice force inclination was
varied from horizontal to 21.8�. An inclination of 21.8�
represents interslice forces parallel to the slope face—
the Corps of Engineers’ Modified Swedish assumption.
For each interslice force inclination assumed, the min-
imum factor of safety was computed using circular slip
surfaces for simplicity. The factors of safety computed
are plotted in Figure 6.15b versus the assumed inter-
slice force inclination. The values range from approx-
imately 1.38 to 1.74, a difference of approximately
25%. As discussed earlier, there is a unique value for
the factor of safety calculated from moment equilib-
rium that satisfies complete static equilibrium for cir-
cular slip surfaces when � � 0. The factor of safety
for moment equilibrium is 1.50. The factors of safety
computed from the force equilibrium solutions where
the interslice force inclinations were varied range from
approximately 8% less (Simplified Janbu without cor-
rection factor) to 16% greater (Corps of Engineers
Modified Swedish procedure) than the value satisfying
complete static equilibrium. These differences are for
the relatively simple slope and problem chosen for il-
lustration; even larger differences should be anticipated
for other slopes and soil properties.

The factor of safety computed by Spencer’s proce-
dure, which is described later in this chapter, is also

5 In discussions with various Corps of Engineers’ personnel, the writ-
ers have learned that flatter angles have been used at the engineers’
discretion in recognition of the fact that steeper angles may lead to
too high a value for the factor of safety.
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Figure 6.15 Influence of interslice force inclination on the computed factor of safety for
force equilibrium with parallel interslice forces.

plotted in Figure 6.15b. Spencer’s procedure assumes
that the interslice forces are parallel but solves for the
interslice force inclination that satisfies both force and
moment equilibrium. For this problem the minimum
factor of safety by Spencer’s procedure is 1.50, as ex-
pected, and the corresponding interslice force inclina-
tion is 6.11�. The factor of safety is plotted in Figure
6.15b versus the interslice force inclination (6.13�).
Somewhat surprisingly, the factor of safety by Spen-
cer’s procedure, which satisfies complete equilibrium,
is larger than what would be expected for a force equi-
librium solution for a interslice force inclination of

6.13�; the point corresponding to Spencer’s procedure
plots slightly above the line from the force equilibrium
solutions. The difference occurs because the critical
circle for Spencer’s procedure, where the interslice
force inclination may be different for each circle, is
not the same as the critical circle for the force equilib-
rium solution where the interslice force inclination is
the same for all circles.

Solution procedure: general. All of the force equi-
librium procedures require that trial-and-error methods
be used to solve the equilibrium equations and calcu-
late the factor of safety. Calculations using force equi-
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librium procedures have been performed for many
years, and the procedures were first used long before
electronic calculators and computers were readily
available. Thus, originally the equilibrium equations
were ‘‘solved’’ using trial-and-error graphical methods
rather than numerical methods. The graphical methods
consisted of constructing force equilibrium polygons
(vector diagrams) repeatedly until the assumed factor
of safety satisfied equilibrium (i.e., the force polygons
‘‘closed’’). Such graphical procedures are now seldom
used and, instead, have been replaced by hand calcu-
lators, spreadsheets, or more sophisticated software
programs. However, the graphical methods provide a
useful insight into the force equilibrium procedures
and the results that are obtained. In some instance, con-
struction of the force equilibrium polygons is helpful
in understanding the forces acting to stabilize or de-
stabilize a slope and can even provide insight into nu-
merical problems that may develop. Graphical methods
are also helpful in explaining the force equilibrium
procedures.

Graphical solutions. A graphical solution for the
factor of safety is begun by assuming a trial value for
the factor of safety. Once a trial value is assumed, the
equilibrium requirements for the first slice are used to
determine the magnitudes of the unknown normal
force on the base of the slice and the interslice force
between the first and second slices. It is convenient to
illustrate this procedure with the example shown in
Figures 6.16, 6.17, and 6.18. The equilibrium force
polygon for the first slice is shown in Figure 6.16. The
forces on the first slice include:

1. The weight for the slice (W1).
2. A force (u �l) representing the effect of the pore

water pressure on the base of the slice, which is
considered separately from the effective normal
force.

3. A force (R�) representing the resultant due to the
effective normal force (N �) and the component of
the shear force due to friction (N� tan ). The��d
resulting force acts at an angle of from a line��d
perpendicular to the base of the slice. Because
the factor of safety has been assumed, is de-��d
fined.

4. A force due to the mobilized cohesion (c��l).d

5. A interslice force (Z2) on the right side of the
slice acting at an inclination, �. The value of � is
assumed before starting a solution.

All of the information about the forces is known
except for the magnitudes of the resulting forces R� on
the slip surface and Z2 on the vertical slice boundary.
The directions of both of these forces are known. From

the equilibrium force polygon the magnitudes of R�
and Z2 are then determined by the requirement that the
force polygon must close. Once R� is found, the effec-
tive normal force, N�, is simply calculated from N� �
R� cos .��d

For the second slice an undrained shear strength ex-
pressed in terms of total stresses is used. Because the
soil is saturated, � is zero. Thus, while effective
stresses were used for the first slice, total stresses are
used for the second slice. The forces on the second
slice include:

1. The weight for the slice (W2).
2. A force due to the mobilized cohesion (cd �l).

Again, because a factor of safety has been as-
sumed, cd can be calculated.

3. A force, R, representing the resulting force due
to the normal force, N, and the component of
shear strength due to friction. However, because
� � 0, the resultant force, R, is the same as the
normal force, N.

4. The interslice forces (Z2 and Z3) on the left and
right sides of the slice, respectively.

Again the only two unknown quantities are the mag-
nitudes of the force, N, on the base of the slice and
the force, Z3, on the right side of the slice. Thus, the
magnitude of N and Z3 can be determined.

The steps above are repeated, constructing equilib-
rium force polygons slice-by-slice until the last slice
is reached. For the last slice only the value of the re-
sulting force, R, is unknown because there is no in-
terslice force on the right of this slice. A value for this
force (R) may or may not be found that closes the force
polygon. As shown in Figure 6.18, the force polygon
can be made to close only by introducing an additional
force. The magnitude of the additional force required
to close the force polygon will depend on the direction
assumed. If all interslice forces are parallel, the addi-
tional force is generally assumed to have the same in-
clination as the interslice forces; if the inclination of
the interslice forces varies from slice to slice, the im-
balanced force is often assumed to be horizontal. In
Figure 6.18 the additional force is assumed to be hor-
izontal and is represented as Zimbalance. The horizontal
force indicates that the factor of safety that was as-
sumed at the outset is not correct. The force Zimbalance

provides a measure of the error in the assumed factor
of safety. In the case of a slope facing to the left, like
the one shown in Figure 6.18, if the imbalanced force
acts to the left, it indicates that an additional force (one
pushing the potential slide mass downslope) is needed
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Figure 6.16 Force equilibrium polygon (vector diagram) of forces acting on the first slice
for a force equilibrium solution by the graphical method.

to produce the factor of safety that was assumed. Be-
cause such a force does not actually exist, the value
that was assumed for the factor of safety must have
been too low, and a larger value of F should be as-
sumed for the next trial.

In the graphical procedure, values for the factor of
safety are assumed repeatedly and the equilibrium
force polygons are drawn. This process is repeated un-
til closure of the force polygons with negligible error
(force imbalance) is achieved (i.e., until Zimbalance � 0).

Although today, graphical procedures have largely
been abandoned in favor of electronic means of cal-
culation, the graphical procedures provide useful in-
sight into the forces contributing to slope stability. The

relative magnitudes of forces, like those due to cohe-
sion and friction, for example, provide insight into the
relative importance of each. Even though force poly-
gons may no longer be used as the means of solving
for the factor of safety, they provide a useful means
for examining a solution graphically.

Analytical solutions. Today, most analyses per-
formed using force equilibrium procedures are carried
out by performing calculations using a spreadsheet or
other computer program. In this case the equilibrium
equations are written as algebraic equations. Consider
the slice shown in Figure 6.19. Summation of forces
in the vertical direction for an individual slice produces
the following equilibrium equation:
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Figure 6.17 Force equilibrium polygon (vector diagram) of
forces acting on the second slice for a force equilibrium so-
lution by the graphical method.

F � Z sin � � Z sin �v i i i�1 i�1

� N cos � � S sin � � 0 (6.79)

where Zi and �i represent the respective magnitudes
and inclinations of the inteslice force at the left of the
slice, Zi�1 and �i�1 represent the corresponding values
at the right of the slice, and Fv represents the sum of
all known forces in the vertical direction, including the
weight of the slice. In the absence of any surface loads
and reinforcement forces, Fv is equal to �W. Forces
are considered positive when they act upward. Sum-
mation of forces in the horizontal direction yields the
following, second equation of force equilibrium:

F � Z cos � � Z cos �h i i i�1 i�1

� N sin � � S cos � � 0 (6.80)

The quantity Fh represents the net sum of all known
forces acting on the slice in the horizontal direction;
forces acting to the right are considered positive. If
there are no seismic forces, external loads or reinforce-
ment forces, the force, Fh, will be zero; for seismic
loading alone, Fh � �kW.

Equations (6.79) and (6.80) can be combined with
the Mohr–Coulomb equation for the shear force [Eq.
(6.63)] to eliminate the shear and normal forces (S and
N) and obtain the following equation for the interslice
force, Zi�1, on the right side of a slice:

F sin � � F cos � � Z cos(� � �)v h i

�[F cos � � F sin � � u �lv h

� Z sin (� � �)](tan �� /F) � c� �l /FiZ �i�1 cos(� � � ) � [sin(� � � ) tan ��] /Fi�1 i�1

(6.81)

By first assuming a trial value for the factor of safety,
Eq. (6.81) is used to calculate the interslice force, Zi�1,
on the right of the first slice where Zi � 0. Proceeding
to the next slice, where Zi is equal to the value of Zi�1

calculated for the previous slice, the interslice force on
the right of the second slice is calculated. This process
is repeated slice by slice for the rest of the slices from
left to right until a force on the right of the last slice
is calculated. If the force, Zi�1, on the right of the last
slice is essentially zero, the assumed factor of safety
is correct because there is no ‘‘right side’’ on the last
slice, which is triangular. If the force is not zero, a new
trial value is assumed for the factor of safety and the
process is repeated until the force on the right of the
last slice is acceptably small.

Janbu’s Generalized Procedure of Slices. At this
point it is appropriate to return to the procedure known
as Janbu’s Generalized Procedure of Slices (GPS)
(Janbu, 1954, 1973a). There has been some debate as
to whether this procedure satisfies complete equilib-
rium or only force equilibrium. In the GPS procedure
the vertical components of the interslice forces are
assumed based on a numerical approximation of the
following differential equation for equilibrium of
moments for a slice of infinitesimal width6:

dE
X � �E tan � � h (6.82)t t dX

6 Additional terms appear in this equation when there are external
forces and other known forces acting on the slice; these additional
terms are omitted here for simplicity.
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Figure 6.18 Force equilibrium polygon (vector diagram) of
forces acting on the last slice for a force equilibrium solution
by the graphical method.
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Figure 6.19 Slice with forces for force equilibrium proce-
dures.

The quantities X and E represent the vertical and hor-
izontal components, respectively, of the interslice
forces. The quantity ht represents the height of the line
of thrust above the slip surface. The line of thrust is
the imaginary line drawn through the points where the
interslice forces, E (or Z), act (Figure 6.20). The term
�t is an angle, measured from the horizontal, that rep-
resents the slope of the line of thrust. In the GPS pro-
cedure the location of the line of thrust is assumed by
the user. The derivative dE /dx in Eq. (6.82) is approx-
imated numerically in the GPS procedure, and Eq.
(6.82) is written in difference form as

E � Ei�1 i�1X � �E tan � � h (6.83)t t X � Xi�1 i�1

Equation (6.83) is based on considerations of moment
equilibrium. However, Eq. (6.83) does not rigorously
satisfy moment equilibrium in this discrete form; only
Eq. (6.82) rigorously satisfies moment equilibrium.
The other procedures of slices that are considered next
satisfy complete equilibrium rigorously for a discrete
set of slices. Thus, they are considered complete equi-
librium procedures, whereas the GPS procedure is not.

The factor of safety is computed in the GPS pro-
cedure by performing successive force equilibrium so-
lutions similar to those described in previous sections.
Initially, the interslice forces are assumed to be hori-
zontal and the unknown factor of safety and horizontal
interslice forces, E, are calculated. Using this initial set
of interslice forces, E, new interslice shear forces, X,
are calculated from Eq. (6.83) and the force equilib-
rium solution is repeated. This process is repeated,
each time making a revised estimate of the vertical
component (X) of the interslice force and calculating
the unknown factor of safety and horizontal interslice
forces, until the solution converges (i.e., until there is
not a significant change in the factor of safety). The
GPS procedure frequently produces a factor of safety
that is nearly identical to values calculated by proce-
dures that rigorously satisfy complete static equilib-
rium. However, the procedure does not always produce
a stable numerical solution that converges within an
acceptably small error.

The GPS procedure satisfies moment equilibrium in
only an approximate way [Eq. (6.83) rather than
(6.82)]. It can be argued that once the approximate
solution is obtained, a solution can be forced to satisfy
moment equilibrium by summing moments for each
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Figure 6.20 Line of thrust describing the locations of the interslice forces on slice bound-
aries.
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Figure 6.21 Interslice forces and resultant when interslice
forces are parallel.

slice individually and calculating a location for the nor-
mal force (N) on the base of the slice, which will then
satisfy moment equilibrium rigorously. This, however,
can be done with any of the force equilibrium proce-
dures described in this chapter, but by summing mo-
ments only after a factor of safety is calculated, there
is no influence of moment equilibrium on the com-
puted factor of safety. Summing moments to compute
the location of the normal force on the base of slices
does not appear to be particularly useful.

Complete Equilibrium Procedures

Several different procedures of slices satisfy static
equilibrium completely. Each of these procedures
makes different assumptions to achieve a statically de-
terminate solution. Several of these procedures are de-
scribed in this section.

Spencer’s procedure. Spencer’s (1967) procedure
is based on the assumption that the interslice forces are
parallel (i.e., all interslice forces have the same incli-
nation). The specific inclination of the interslice forces
is unknown and is computed as one of the unknowns
in the solution of the equilibrium equations. Spencer’s
procedure also assumes that the normal force (N) acts
at the center of the base of each slice. This assumption
has negligible influence on the computed values for the
unknowns provided that a reasonably large number of
slices is used; virtually all calculations with Spencer’s
procedure are performed by computer and a suffi-
ciently large number of slices is easily attained.7

Spencer originally presented his procedure for cir-
cular slip surfaces, but the procedure is easily extended
to noncircular slip surfaces. Noncircular slip surfaces
are assumed here. In Spencer’s procedure, two equilib-
rium equations are solved first. The equations represent

7 The number of slices used is discussed further in Chapter 14 and is
not a matter of importance here.

overall force and moment equilibrium for the entire
soil mass, consisting of all slices.8 The two equilibrium
equations are solved for the unknown factor of safety,
F, and interslice force inclination, �. Because the in-
terslice forces are assumed to be parallel, there is only
one unknown inclination for interslice forces to be
solved for.

The equation for force equilibrium can be written as

Q � 0 (6.84)� i

where Qi is the resultant of the interslice forces, Zi and
Zi�1, on the left and right, respectively, of the slice
(Figure 6.21). That is,

Q � Z � Z (6.85)i i i�1

Because the interslice forces are assumed to be paral-
lel, Qi, Zi, and Zi�1 have the same direction and Qi is
simply the scalar difference between the interslice
forces on the left and right of the slice.

8 The equations for overall force equilibrium in the horizontal and
vertical directions reduce to a single equation when interslice forces
are parallel. Thus, there is only one force equilibrium equation con-
sidered at this stage.
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Figure 6.22 Coordinates for noncircular slip surface used in
Spencer’s procedure.
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Figure 6.23 Slice with all known and unknown forces for
Spencer’s procedure.

For moment equilibrium, moments can be summed
about any arbitrary point. Taking moments about the
origin (x � 0, y � 0) of a Cartesian coordinate system,
the equation for moment equilibrium is expressed as

Q(x sin � � y cos �) � 0 (6.86)� b Q

where xb is the x (horizontal) coordinate of the center
of the base of the slice and yQ is the y (vertical) co-
ordinate of the point on the line of action of the force,
Q , directly above the center of the base of the slice
(Figure 6.22). The coordinate yQ can be expressed in
terms of the y coordinate of the point on the center of
the base of the slice (yb) by

Moy � y � (6.87)Q b Q cos �

where Mo is the moment produced by any known
forces about the center of the base of the slice. In the
absence of forces due to seismic loads, loads on the
surface of the slope, and any internal forces due to
reinforcement, the moment Mo is zero and yQ � yb

9.
Each of the quantities in the summation shown for Eq.
(6.86) represents the value for an individual slice. The
subscript i has been omitted for simplicity and will be
omitted in subsequent discussion with the understand-
ing that the quantities Q , xb, yb, and so on, represent
values for individual slices.

The expression for Q in the equilibrium equations
[(6.84) and (6.86)] is obtained from the equations of

9 The forces W, S, and N all act through a common point on the
center of the base of the slice, and thus Q must also act through this
point unless there are additional forces on the slice. In Spencer’s
(1967) original derivation Mo is zero, and thus yQ � yb.

force equilibrium for individual slices (Figure 6.23).
Summing forces in directions perpendicular and par-
allel to the base of the slice gives the following two
equilibrium equations:

N � F cos � � F sin � � Q sin (� � �) � 0v h

(6.88)

S � F sin � � F cos � � Q cos (� � �) � 0v h

(6.89)

The quantities Fh and Fv represent all known hor-
izontal and vertical forces on the slice, including the
weight of the slice, seismic loads, forces due to dis-
tributed and concentrated surface loads, and reinforce-
ment forces. Combining these two force equilibrium
equations [(6.88) and (6.89)] with the Mohr–Coulomb
equation for the shear force, S [Eq. (6.63)] and solving
for Q gives

�F sin � � F cos � � (c� �l /F)v h

� (F cos � � F sin � � u �l)(tan �� /F)v hQ �
cos(� � �) � [sin (� � �) tan�� /F]

(6.90)

Equations (6.87) for yQ and (6.90) for Q can be sub-
stituted into the equilibrium equations [(6.84) and
(6.86)] to give two equations with two unknowns: the
factor of safety, F, and the interslice force inclination,
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�. Trial-and-error procedures are used to solve Eqs.
(6.84) and (6.86) for F and �. Values of F and � are
assumed repeatedly until these two equations are sat-
isfied within acceptable levels of error (force and mo-
ment imbalance). Once the factor of safety and
interslice force inclination are computed, the equations
of force and moment equilibrium for the individual
slices are used to calculate the values of the normal
force (N) on the base of the slice, the individual in-
terslice force resultants (Z) between slices, and the lo-
cation (yt) of the interslice forces on the vertical
boundary between the slices.

Morgenstern and price procedure. The Morgen-
stern and Price (1965) procedure assumes that the
shear forces between slices are related to the normal
forces as

X � �ƒ(x)E (6.91)

where X and E are the vertical and horizontal forces
between slices, � is an unknown scaling factor that is
solved for as part of the unknowns, and ƒ(x) is an
assumed function that has prescribed values at each
slice boundary. In the Morgenstern and Price procedure
the location of the normal force on the base of the slice
is also explicitly or implicitly assumed. In the original
formulation of the Morgenstern and Price procedure,
stresses were integrated across each slice assuming that
ƒ(x) varied linearly across the slice (Morgenstern and
Price, 1967). This implicitly fixed the distribution of
the normal stresses, including the location of the nor-
mal force on the base of the slice. In more recent im-
plementations of the Morgenstern and Price procedure,
discrete formulations have been used for slices and the
location of the normal force has been assumed. Typi-
cally, the normal force is assumed to act at the mid-
point of the base of the slice or at a point on the base
of the slice that is directly below the center of gravity.

The unknowns that are solved for in the Morgen-
stern and Price procedure are the factor of safety (F),
the scaling parameter (�), the normal forces on the
base of the slice (N), the horizontal interslice force (E),
and the location of the interslice forces (line of thrust).
The vertical component of the interslice force, X, is
known [defined by Eq. (6.91)]; that is, once the un-
knowns are calculated using the equilibrium equations,
the vertical component of the interslice forces is cal-
culated from the independent equation (6.91).

Morgenstern and Price’s procedure is similar to
Spencer’s procedure. The only difference in terms of
unknowns is that Spencer’s procedure involves a single
interslice force inclination whereas Morgenstern and

Price’s procedure involves a single ‘‘scaling’’ parame-
ter, �. If the function ƒ(x) is assumed to be constant
in Morgenstern and Price’s procedure it produces
results essentially identical to those using Spencer’s
procedure.10 The major difference between the two
procedures is that Morgenstern and Price’s procedure
provides added flexibility in the assumptions for the
interslice force inclinations. The added flexibility al-
lows the assumption regarding the interslice forces to
be changed. However, the assumptions generally ap-
pear to have little effect on the computed factor of
safety when static equilibrium is satisfied, and thus
there is little practical difference among Spencer’s,
Morgenstern and Price’s, and all the other complete
equilibrium procedures of slices.

Chen and Morgenstern procedure. The Chen and
Morgenstern (1983) procedure represents a refinement
of the Morgenstern and Price procedure that attempts
to account better for the stresses at the ends of a slip
surface. Chen and Morgenstern suggested that at the
ends of the slip surface the interslice forces must be-
come parallel to the slope. This leads to the following
relationship between the shear (X) and horizontal (E)
forces on the side of the slice:

X � [�ƒ(x) � ƒ (x)]E (6.92)0

where ƒ(x) and ƒ0(x) are two separate functions that
define the distribution of the interslice force inclina-
tions. The function ƒ(x) is zero at each end of the slip
surface, and the function ƒ0(x) is equal to the tangent
of the slope inclination at each end of the slip surface.
The variations of both ƒ(x) and ƒ0(x) between the two
ends of the slip surface are assumed by the engineer.
Chen and Morgenstern’s procedure restricts the range
of admissible interslice force inclinations and thus re-
duces the range of possible solutions.

Sarma’s procedure. Sarma’s (1973) procedure is
different from all the other procedures discussed in this
chapter because it considers the seismic coefficient (k)
to be unknown, and the factor of safety is considered
to be known. A value for the factor of safety is as-
sumed and the seismic coefficient required to produce
this factor of safety is solved for as an unknown. Usu-
ally, the factor of safety is assumed to be 1 and the
seismic coefficient that is then calculated represents the
seismic coefficient required to cause sliding, referred
to in Chapter 10 as the seismic yield coefficient. In

10 There may be subtle differences in the two procedures in this case
because of slightly different locations assumed for the normal forces
on the base of the slice. However, these differences are negligible for
all practical purposes.
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Sarma’s procedure the shear force between slices is
related to shear strength by the relationship

X � �ƒ(x)S (6.93)v

where Sv is the available shear force on the slice
boundary, � is an unknown scaling parameter, and
ƒ(x) is an assumed function with prescribed values at
each vertical slice boundary. The shear force, Sv, de-
pends on the shear strength parameters (c, c� and �,
��) for the soil along the slice boundary and for fric-
tional materials (�, �� � 0) on the normal (horizontal)
interslice force, E. For effective stress analyses the
shear force also depends on the pore water pressure on
the slice boundary.

Sarma’s procedure was developed for evaluations of
seismic stability and offers some advantage over other
procedures for this purpose. In Sarma’s procedure the
seismic coefficient and other unknowns can be calcu-
lated directly; no iterative, trial-and-error procedure is
required to calculate the unknowns. Sarma’s procedure
can also be used to calculate a factor of safety by re-
peatedly assuming different values for the factor of
safety and calculating the seismic coefficient. The
process is repeated until the value assumed for the seis-
mic coefficient matches the value for which the factor
of safety is desired. For slopes with no seismic loads
the target seismic coefficient is zero. However, to com-
pute a factor of safety, Sarma’s procedure requires trial
and error and thus offers no advantage over other com-
plete equilibrium procedures.

The function, ƒ(x), and scaling parameter, �, in
Sarma’s procedure are similar, but not identical, to the
corresponding quantities in the Morgenstern and Price
(1965) and the Chen and Morgenstern (1983) proce-
dures. Depending on the assumption for ƒ(x) in these
procedures, different inclinations will be found for the
interslice forces. Depending on the range of assumed
ƒ(x) patterns, there will probably be some overlap
among solutions by the three (Morgenstern and Price,
Chen and Morgenstern, and Sarma) procedures. Except
for small differences in the values for ƒ(x) and �, the
three procedures should produce similar results for ei-
ther the seismic coefficient required to produce a given
factor of safety or the factor of safety corresponding
to a given seismic coefficient. Sarma’s procedure is
easier to use to calculate a seismic coefficient for a
prescribed factor of safety. On the other hand, the Mor-
genstern and Price procedure involves an assumption
for the interslice forces that is much simpler and easier
to use.

Sarma’s procedure requires that the shear strength,
Sv, along vertical slice boundaries be determined. For
complex slopes with several materials and complex
distributions of pore water pressure, Sarma’s procedure
becomes relatively complex. For frictional materials
(�, �� � 0), additional assumptions must then be made
about what fractions of the total normal force (E) be-
tween slices is distributed to each different material
along the slice boundary. If the shear strength is rep-
resented by effective stresses, the distribution of pore
water pressures along the slice boundary must also be
considered. This makes the procedure excessively
complex for many practical problems and difficult to
implement in computer software. The major utility of
Sarma’s procedure seems to be for hand calculations
for slopes with relatively simple geometries.

Discussion. All of the complete equilibrium pro-
cedures of slices have been shown to give very similar
values for the factor of safety (Fredlund and Krahn,
1977; Duncan and Wright, 1980). Thus, no complete
equilibrium procedure is significantly more or less ac-
curate than another. Spencer’s procedure is the sim-
plest of the complete equilibrium procedures for
calculating the factor of safety, while Sarma’s proce-
dure may be simplest for calculating the seismic co-
efficient required to produce failure (i.e., the seismic
yield coefficient).

Morgenstern and Price’s and Chen and Morgen-
stern’s procedures are the most rigorous and flexible
of the complete equilibrium procedures and may be
useful for cases where interslice forces might have a
significant effect on stability. In most cases interslice
force inclinations have little effect on the factor of
safety computed, provided that complete equilibrium
is satisfied. The writers are aware of few cases where
the assumptions regarding interslice forces have a no-
ticeable effect on either the computed factor of safety
or the numerical stability of a solution in the complete
equilibrium procedures. Two cases where the assump-
tions regarding interslice force inclinations can be im-
portant are:

1. When the slip surface is forced to change
direction abruptly, due to the geometry and prop-
erties of the slope cross section (Figure 6.24a)

2. For slopes with significant forces due to rein-
forcement or external loads whose direction is
very different from the usual direction of the in-
terslice forces (Figure 6.24b and c).

In these two cases, procedures that will allow the in-
terslice force assumptions to be varied are useful in



REPRESENTATION OF INTERSLICE FORCES (SIDE FORCES) 83

Waste slip surface

liner system

high-capacity
anchor

(a)

(b)

(c)

Figure 6.24 Slope and slip surface conditions where the as-
sumptions pertaining to the interslice forces may have a sig-
nificant effect on the results of slope stability computations
by complete equilibrium procedures.

establishing the amount of uncertainty and probable
ranges in the factor of safety.

ASSUMPTIONS, EQUILIBRIUM EQUATIONS,
AND UNKNOWNS

As noted at the beginning of this chapter, all of the
limit equilibrium procedures employ the equations of
static equilibrium to compute a factor of safety. As-
sumptions are required to make the problem statically
determinate and to obtain a balance between the num-
ber of equations and the number of unknowns that are
solved for. Table 6.2 lists the various procedures dis-
cussed in this chapter along with the assumptions that
are made, the equilibrium equations that are satisfied,

and the unknowns. In each case there is an equal num-
ber of equations and unknowns.

Thirteen different procedures of limit equilibrium
analysis have been discussed in this chapter. In general,
the procedures that satisfy complete static equilibrium
are the most accurate and preferred when all other
things are equal. However, there are numerous in-
stances where simpler, though less accurate procedures
are useful. All of the procedures examined in this
chapter are summarized in Table 6.3 along with the
range or conditions of practical usefulness for each
procedure.

REPRESENTATION OF INTERSLICE FORCES
(SIDE FORCES)

Up to this point the interslice forces have been as-
sumed to represent all of the forces transmitted across
a slice boundary, including the forces due to effective
stresses in the soil, pressures in the pore water, and
forces in any internal soil reinforcing. The interslice
forces have been represented either in terms of their
vertical and horizontal components (X and E), or the
resultant force and its inclination (Z and �). No dis-
tinction has been made between the various compo-
nents that make up the total force on an interslice
boundary. However, because some of the forces, such
as the force due to water pressures, may be known, it
is possible to separate the forces into various compo-
nents, which are then treated independently.

Soil and Water Forces

For ordinary unreinforced slopes the interslice forces
represent the forces due to effective stresses and pore
water pressures. These forces can be represented sep-
arately as an effective force in the soil and a force in
the water. Possible representations of the interslice
forces are illustrated in Figure 6.25. When the forces
are represented as total forces, as they have been in
previous sections of the chapter, the shear and normal
components, X and E, respectively, are treated as un-
knowns and their values are either assumed or calcu-
lated from the equilibrium equations (Figure 6.25b). If,
instead, the forces are represented by the forces due to
effective stresses (E � and X) plus the force due to water
pressure (U), the water pressures are assumed to be
known and the effective force components are treated
as either unknowns that are calculated or they are as-
sumed (Figure 6.25c). In either representation there are
two forces that must be calculated or assumed on each
slice boundary: E and X, or E � and X.
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Table 6.2 Assumptions, Equilibrium Conditions, and Unknowns in Limit Equilibrium Procedures

Procedure Assumptions
Equilibrium equations

satisfied Unknowns solved for

Infinite Slope A slope of infinite extent;
slip surface parallel to
slope face.

1 	 Forces perpendicular
to slope

1 	 Forces parallel to slope

2 Total equations
(Moment equilibrium is

implicitly satisfied)

1 Factor of safety (F)
1 Normal force on shear

surface (N )

2 Total unknowns

Logarithmic Spiral The slip surface is a
logarithmic spiral.

1 	 Moments about center
of spiral

1 Total equations
(Force equilibrium is

implicitly satisfied)

1 Factor of safety (F)

1 Total unknown

Swedish Circle (� � 0) The slip surface is
circular; the friction
angle is zero.

1 	 Moments about center
of circle

1 Total equations
(Force equilibrium is

implicitly satisfied)

1 Factor of safety (F)

1 Total unknown

Ordinary Method of Slices
(also known as Fellenius’s
Method; Swedish Method
of Slices)

The slip surface is
circular; the forces on
the sides of the slices
are neglected.

1 	 Moments about center
of circle

1 Total equations

1 Factor of safety (F)

1 Total unknown

Simplified Bishop The slip surface is
circular; the forces on
the sides of the slices
are horizontal (i.e.,
there is no shear force
between slices).

1 	 Moments about center
of circle

n 	 Forces in the vertical
direction.

n � 1 Total equations

1 Factor of safety (F)
n Normal force on the

base of slices (N )

n � 1 total unknowns

Force Equilibrium
(Lowe and Karafiath,

Simplified Janbu, Corps
of Engineer’s Modified
Swedish, Janbu’s GPS
procedure)

The inclinations of the
interslice forces are
assumed; assumptions
vary with procedure.

n 	 Forces in the
horizontal direction

n 	 Forces in the vertical
direction

2n Total equations

1 Factor of safety (F)
n Normal force on the

base of slices (N )
n � 1 Resultant

interslice forces
(Z)

2n Total unknowns

Spencer Interslice forces are
parallel, (i.e., all have
the same inclination).
The normal force (N )
acts at the center of the
base of the slice
(typically).

n 	 Moments about any
selected point

n 	 Forces in the
horizontal direction

n 	 Forces the vertical
direction

3n Total equations

1 Factor of safety (F)
1 Interslice force

inclination (�)
n Normal force on the

base of slices (N )
n � 1 Resultant interslice

forces (Z)
n � 1 Location of side

forces (line of
thrust)

3n Total unknowns
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Table 6.2 (Continued )

Procedure Assumptions
Equilibrium equations

satisfied Unknowns solved for

Morgenstern and Price Interslice shear force is
related to interslice
normal force by X �
�ƒ(x)E; the normal
force (N) acts at the
center of the base of
the slice (typically).

n 	 Moments about any
selected point

n 	 Forces in the
horizontal direction

n 	 Forces in the vertical
direction

3n Total equations

1 Factor of safety (F)
1 Interslice force

inclination
‘‘scaling’’ factor (�)

n Normal force on the
base of slices (N )

n � 1 Horizontal
interslice
forces (E)

n � 1 Location of
interslice forces
(line of thrust)

3n Total unknowns

Chen and Morgenstern Interslice shear force is
related to interslice
normal force by X �
[�ƒ(x) � ƒo(x)]E; the
normal force (N ) acts
at the center of the
base of the slice
(typically).

n 	 Moments about any
selected point

n 	 Forces in the
horizontal direction

n 	 Forces in the vertical
direction

3n Total equations

1 Factor of safety (F)
1 Interslice force

inclination
‘‘scaling’’ factor (�)

n Normal force on the
base of slices (N )

n � 1 Horizontal
interslice
forces (E)

n � 1 Location of
interslice forces
(line of thrust)

3n Total unknowns

Sarma Interslice shear force is
related to the interslice
shear strength, Sv, by
X � �ƒ(x)Sv; interslice
shear strength depends
on shear strength
parameters, pore water
pressures, and the
horizontal component
of interslice force; the
normal force (N ) acts
at the center of the
base of the slice
(typically).

n 	 Moments about any
selected point

n 	 Forces in the
horizontal direction

n 	 Forces in the vertical
direction

3n Total equations

1 Seismic coefficient (k)
[or factor of safety
(F) if trial and error
is used]

1 Interslice force scaling
factor (�)

n Normal force on the
base of slices (N )

n � 1 Horizontal
interslice
forces (E)

n � 1 Location of side
forces (line of
thrust)

3n Total unknowns
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Table 6.3 Summary of Procedures for Limit Equilibrium Slope Stability Analysis and Their Usefulness

Procedure Use

Infinite Slope Homogeneous cohesionless slopes and slopes where the stratigraphy restricts the slip
surface to shallow depths and parallel to the slope face. Very accurate where
applicable.

Logarithmic Spiral Applicable to homogeneous slopes; accurate. Potentially useful for developing slope
stability charts and used some in software for design of reinforced slopes.

Swedish Circle; � � 0 method Applicable to slopes where � � 0 (i.e., undrained analyses of slopes in saturated
clays). Relatively thick zones of weaker materials where the slip surface can be
approximated by a circle.

Ordinary Method of Slices Applicable to nonhomogeneous slopes and c–� soils where slip surface can be
approximated by a circle. Very convenient for hand calculations. Inaccurate for
effective stress analyses with high pore water pressures.

Simplified Bishop procedure Applicable to nonhomogeneous slopes and c–� soils where slip surface can be
approximated by a circle. More accurate than Ordinary Method of Slices,
especially for analyses with high pore water pressures. Calculations feasible by
hand or spreadsheet.

Force Equilibrium procedures
(Lowe and Karafiath’s side

force assumption
recommended)

Applicable to virtually all slope geometries and soil profiles. The only procedures
suitable for hand calculations with noncircular slip surfaces. Less accurate than
complete equilibrium procedures and results are sensitive to assumed inclinations
for interslice forces.

Spencer’s procedure An accurate procedure applicable to virtually all slope geometries and soil profiles.
The simplest complete equilibrium procedure for computing the factor of safety.

Morgenstern and Price’s
procedure

An accurate procedure applicable to virtually all slope geometries and soil profiles.
Rigorous, well-established complete equilibrium procedure.

Chen and Morgenstern’s
procedure

Essentially an updated Morgenstern and Price procedure. A rigorous and accurate
procedure applicable to any shape of slip surface and slope geometry, loads, etc.

Sarma’s procedure An accurate procedure applicable to virtually all slope geometries and soil profiles.
A convenient complete equilibrium procedure for computing the seismic
coefficient required to produce a given factor of safety. Side force assumptions
are difficult to implement for any but simple slopes.

Fundamentally, it seems logical to represent the in-
terslice forces by the known component due to water
pressures and the unknown components due to effec-
tive stresses (Figure 6.25c). If the water pressures
along an interslice boundary are simply hydrostatic, as
suggested in Figure 6.26a, it is relatively easy to cal-
culate the force due to water pressure and include it in
stability computations. However, if the water pressures
vary in a more complex manner, perhaps with dis-
tinctly different pressure regimes in different strata, as
suggested in Figure 6.26b, it can be difficult to com-
pute the force due to water pressures and its location.
For complex groundwater conditions and subsurface
soil profiles it is impractical to compute the forces due
to water pressures, on each interslice boundary. Even
though it may be possible to compute the force due to
water pressures, the added effort complicates the logic
and coding of computer programs that are used to per-

form such computations. For these practical reasons
most slope stability formulations and computations are
based on representing the interslice forces as total
forces that include the force due to both the effective
stress and the water pressures in the soil.

For procedures of slices that satisfy complete static
equilibrium, it makes very little difference whether the
unknown interslice forces include the water pressure
force or the water pressure force is considered as a
known force separately from the unknown force due
to effective stress. The submerged slope shown in Fig-
ure 6.27 can be used to illustrate this. The factor of
safety for this slope was calculated two different ways
using Spencer’s procedure of slices. In the first case
the factor of safety was calculated with the interslice
forces representing the total forces between slices. In
the second case the water pressures on the side of the
slice were computed and treated independent of the
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Figure 6.25 (a) Slope and slice. Representations of interslice forces as (b) total forces and
(c) effective forces with water pressure forces.

unknown interslice forces due to the effective stresses.
Computations were performed for two different heights
of water above the top of the slope: 30 and 60 ft. Com-
putations were performed using both Spencer’s
complete equilibrium procedure and the Corps of
Engineers’ Modified Swedish force equilibrium pro-
cedure. For the Modified Swedish procedure the in-
terslice forces (total or effective) were assumed to be
parallel to the slope face (i.e., they were inclined at an
angle of 21.8� from the horizontal). The factors of
safety calculated for each case by both procedures are
summarized in Table 6.4. The inclinations, �, of the
interslice forces are also shown in Table 6.4. For Spen-
cer’s procedure it can be seen that the factors of safety
calculated with total and effective interslice forces are
almost identical. It can also be seen that the calculated
inclination of the interslice forces is less when the in-
terslice forces represent the total force (soil � water)
rather than the effective force (soil only). The force
due to water always acts horizontally, and it is there-

fore logical that the total force due to soil and water
should be inclined at a flatter angle than the force due
to effective stresses alone.

The factors of safety shown in Table 6.4 for the
Modified Swedish procedure are very different de-
pending on whether the interslice forces were repre-
sented using total or effective forces. Representation of
the forces as effective forces with the water pressures
treated separately produced factors of safety in close
agreement with those calculated by Spencer’s proce-
dure, while representation of the interslice forces as
total forces produced factors of safety that were from
47 to 60% higher! Representation of the interslice
forces as total forces with the same inclination as the
effective forces meant that the total forces were in-
clined more steeply than when the effective and water
pressure forces were considered separately. As already
shown, the steeper the inclination of the interslice
forces, generally the higher the factor of safety (e.g.,
Figure 6.15). The results presented in Table 6.4 suggest
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Figure 6.26 Pore water pressure distributions on interslice boundaries; (a) simple hydro-
static pressures; (b) complex groundwater and pore water pressure conditions.
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Figure 6.27 Submerged slope analyzed with total and effec-
tive stress representations of the interslice forces.

that it would be better to express the interslice forces
in terms of effective forces and forces due to water
pressures. However, as discussed earlier, this is diffi-
cult and impractical for complex slopes.

Soil-Water and Reinforcement Forces

For slopes like the one shown in Figure 6.28a, with
reinforcement such as geogrids, geotextiles, piles, soil
nails, and tieback anchors, the interslice forces include
both the forces in the soil and water, as well as the
forces transmitted across the interslice boundaries

through the reinforcing elements. This allows addi-
tional choices pertaining to the representation of the
interslice forces. One possibility is to let the interslice
forces represent the forces both in the soil and in the
reinforcing (Figure 6.28b); another possibility is to
separate the interslice forces due to the reinforcement
from the forces due to the soil and water (Figure
6.28c). If the interslice forces represent all the forces
between the slices, the total interslice forces (X and E,
or Z and �) are considered unknown. Once the inter-
slice forces are calculated, the amount of force carried
by just the soil and the water can be determined by
subtracting the known forces due to the reinforcement
from the total interslice forces. If, on the other hand,
the reinforcement forces are considered separately
from the forces due to the soil and the water, the re-
inforcement forces are determined first and treated as
known interslice forces and the remaining (soil � wa-
ter) interslice forces are treated as unknown forces. For
hand calculations it is usually easiest (requires fewer
calculations) to let the interslice forces represent all the
force, soil � water � reinforcement, together as one
set of forces. However, for calculations using a com-
puter program, it is probably more appropriate to treat
the forces in the reinforcement separately from the
forces due to the soil and water.

To compute the stability of a reinforced slope in a
computer program, it is necessary to define the forces
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Table 6.4 Summary of Calculations for Slope Using Total Interslice Forces and Effective Interslice Forces with
Water Pressuresa

Procedure of
analysis

30 ft of water above slope crest

Total forces

Effective
forces and

water forces

60 ft of water above slope crest

Total forces

Effective
forces and

water forces

Spencer’s F � 1.60
� � 1.7�

F � 1.60
� � 17.2�

F � 1.60
� � 1.1�

F � 1.60
� � 17.2�

Corps of Engineers’
Modified Swedish

F � 2.38
� � 21.8�

F � 1.62
� � 21.8�

F � 2.60
� � 21.8�

F � 1.62
� � 21.8�

a�, inclination of interslice forces.

Zi

Zi+1

Zi

Zi+1Ti

Ti+1

Zi, Zi+1 = total interslice force Zi, Zi+1 = interslice force in soil & water;
Ti, Ti+1 = force in reinforcement

(a)

(b) (c)

Figure 6.28 Alternative representations of interslice forces for a slope with internal rein-
forcing elements; (a) slope with internal reinforcing elements; (b) reinforcement and soil �
water forces combined; (c) reinforcement and soil � water forces considered separately.
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for any point along the reinforcement and to be able
to compute the force wherever the reinforcement
crosses a boundary. There is very little difference be-
tween the scheme used to compute the force where the
reinforcement crosses the slip surface and the scheme
used to compute the force where the reinforcement
crosses a slice boundary. Therefore, once a suitable
computational scheme has been developed, it can be
used to compute the reinforcement force at points
where the reinforcement crosses both the interslice
boundaries and the slip surface. Unlike calculating the
water pressure force on an interslice boundary, it is
relatively easy to compute the reinforcement force on
an interslice boundary. Thus, it is also relatively easy
to consider the reinforcement force separately from the
remaining interslice forces. Also, the reinforcement
forces may act in directions that are very different from
the interslice forces in the soil and water. By treating
the reinforcement forces separately from the forces due
to the soil and water, more rational assumptions can
be made about the inclinations of the interslice forces.

Separation of the reinforcement force from the force
due to the soil and water at the interslice boundaries
also produces a more realistic set of internal forces and
usually a more stable numerical solution to the equi-
librium equations. If the reinforcement forces are ap-
plied where the reinforcement intersects both the slip
surface and each interslice boundary, the forces that
are applied to each slice will be more realistic. For
example, for a slice like the one shown in Figure 6.29b,
the actual force exerted on the slice by the reinforce-
ment will be equal to the difference between the force
where the reinforcing element enters the slice at the
left interslice boundary and exits the slice (slip surface)
at the bottom. The net reinforcement force, Ti�1 � Ti,
on the slice in this case may be quite small. In contrast,
if only the reinforcement force, Ti�1, acting on the base
of the slice is applied to the slice, the applied rein-
forcement force could be quite large. For equilibrium
to be satisfied with the reinforcement force applied
only to the base of the slice, the unknown interslice
force on the left of the slice might need to be much
larger than the unknown interslice force on the right
of the slice, and the inclination of the interslice forces
on the left and right of the slice might be very differ-
ent. Such abrupt changes in the magnitude and incli-
nation of the interslice forces can lead to numerical
problems in the solution of the equilibrium equations.

The reason for separating the interslice forces due
to reinforcement from those in the soil can be further
seen by considering a slice such as the one shown in
Figure 6.29c where the reinforcing element passes en-
tirely across the slice, intersecting both vertical bound-

aries. The actual force exerted on the slice by the
reinforcement will be the force that is transferred by
shear (load transfer) between the reinforcing element
and the soil as the reinforcing element passes through
the slice. This force is properly represented as the dif-
ference between the forces in the reinforcing element
at the two sides of the slice (i.e., Ti�1 � Ti). If the
reinforcement forces on each side of the slice (Ti and
Ti�1) are computed and applied as known forces, sep-
arately from the unknown interslice forces in the soil,
the slice will be assured of receiving the proper con-
tribution of the reinforcement.

COMPUTATIONS WITH ANISOTROPIC SHEAR
STRENGTHS

Earlier, the shear strength has been expressed by ap-
propriate values of cohesion (c, c �) and friction angle
(�, ��). If the shear strengths are anisotropic, the val-
ues of cohesion and friction angle may depend on the
orientation of the failure plane. Typically, the shear
strength in such cases is the undrained shear strength
and � will be equal to zero, so the anisotropic shear
strength is expressed by the variation in undrained
shear strength, su, with orientation of the failure plane.
To perform stability computations when the strengths
vary with the failure plane orientation, it is simply nec-
essary to assign appropriate values of cohesion and
friction to each slice based on the inclination of the
bottom of the slice (slip surface). Once the strengths
are assigned, computations proceed in the normal
manner.

COMPUTATIONS WITH CURVED FAILURE
ENVELOPES

All of the equations presented previously assume that
the shear strength will be represented by a linear
Mohr–Coulomb failure envelope defined by an inter-
cept (cohesion) and a slope (friction angle). However,
failure envelopes are often curved. Curved failure en-
velopes require somewhat more effort in a stability
analysis. If the Mohr failure envelope is curved, the
shear strength varies with the normal stress (�, ��),
and the normal stress must be known before the shear
strength is known. Only the Ordinary Method of Slices
allows the normal stress to be computed without know-
ing the shear strength; all other procedures require that
the shear strength be known before the normal stress
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Figure 6.29 Reinforcement forces acting on individual slices: (a) slope with internal rein-
forcing elements; (b) reinforcement forces for slice 4; (c) reinforcement forces for slice 3.

can be computed (solved for). In these procedures it is
necessary to estimate the shear strength first and then
perform the necessary stability computations to cal-
culate the normal stress (and factor of safety). Once
the normal stress is found, new shear strengths can be
estimated and the process repeated until convergence
is reached. Shear strengths may be assigned as a pure
cohesion (� � 0), based on the estimated normal stress
(Figure 6.30a). Alternatively, the shear strength may
be represented by a cohesion and a friction angle rep-
resenting a failure envelope tangent to the curved en-
velope at the estimated normal stress (Figure 6.30b).
The second approach of using an envelope tangent to
the curved envelope is more complex but produces

faster convergence in the necessary trial-and-error
procedures. However, both methods produce identical
results once convergence is reached.

ALTERNATIVE DEFINITIONS OF THE FACTOR
OF SAFETY

Up to this point the factor of safety has been defined
with respect to the shear strength of the soil. This def-
inition is the one generally used for slope stability
analyses, and this definition [Eq. (6.1)] is recom-
mended and used throughout the book unless otherwise
noted. However, other definitions for the factor of
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Figure 6.30 Alternative representations of nonlinear Mohr
failure envelopes by equivalent values of cohesion and fric-
tion angle: (a) representation by equivalent strength c (� �
0); (b) representation by equivalent tangent values of cohe-
sion and friction.

B = 8 ft

c = 0, φ = 37°, γ = 132 pcf

q = 10,000 psf

Figure 6.31 Footing problem used to illustrate differences
between factors of safety applied to load and to soil shear
strength.

safety have sometimes been used. These usually lead
to different values for the factor of safety. Two such
definitions for the factor of safety are discussed below.

Factor of Safety for Load

One definition of the factor of safety is with respect to
load. The case where the factor of safety is usually
defined with respect to load is bearing capacity. The
factor of safety for bearing capacity defined in terms
of load is

load required to cause failure
F � (6.94)

actual applied load

To illustrate the difference between this definition of
the factor of safety and the factor of safety defined with
respect to shear strength, consider the footing shown
in Figure 6.31. The footing is 8 ft wide, rests on co-
hesionless soil, and exerts a bearing pressure of 10,000
psf on the soil. The ultimate bearing pressure, qult, re-
quired to cause failure of the footing is expressed as

1–q � �BN (6.95)ult 2 �

where N� is a bearing capacity factor, which depends
only on the angle of internal friction, �. For a friction
angle of 37� the value of N� is 53 and the ultimate
bearing capacity is then

1 1– –q � �BN � (132)(8)(53) � 27,984 � 28,000 lbult 2 � 2

(6.96)

Thus, the factor of safety for load is

28,000
F � � 2.80 (6.97)

10,000

Equation (6.96) is actually a limit equilibrium equation
that relates the shear strength (�) to the bearing pres-
sure that produces equilibrium when the shear strength
of the soil is fully developed. If, instead, we consider
some fraction of the shear strength being developed
such that

tan �
tan � � (6.98)d F

where F is the factor of safety on shear strength and
�d is the developed friction angle, we can write

1–q � �BN (6.99)equil 2 � -developed

where qequil is the equilibrium bearing pressure and
N� -developed is the value of N� based on the developed
friction angle, �d. If we let the applied bearing pressure
of 10,000 psf shown in Figure 6.31 be the equilibrium
pressure, we can find the value of the factor of safety
with respect to shear strength (and �d) that satisfies
equilibrium [Eq. (6.99)]. This was done by trial and
error, assuming a factor of safety and computing the
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Figure 6.32 Slope and soil properties used to compute fac-
tors of safety applied to shear strength and applied to load.

Table 6.5 Summary of Computed Equilibrium
Bearing Pressures for Various Factors of Safety on
Shear Strength

Assumed F �d (deg) N�-developed qequil (psf)

1.00 37.0 53 28,000
1.25 31.1 19 10,000
1.50 26.7 9 4,800

Table 6.6 Sumary of Computed Factors of Safety
Applied to Shear Strength and Applied to Load for
Example Slope and Three Sets of Soil Properties

Property set

Factor of safety applied to:

Shear strength Load

1 (� � 0) 1.50 1.50
2 (c � 0, � � 0) 1.50 11.00
3 (c � 0) 1.50 Infinite

corresponding equilibrium bearing pressure. The re-
sults are summarized in Table 6.5. Referring to Table
6.5, it can be seen that a factor of safety of 1.25 applied
to the shear strength produces equilibrium of the foot-
ing under the applied load of 10,000 psf. This value
(1.25) for the factor of safety applied to shear strength
is considerably less than the corresponding value of
2.80 applied to load, which was calculated earlier [Eq.
(6.97)]. Factors of safety that are applied to load for
bearing capacity are thus not comparable to the factors
of safety applied to shear strength, as used for slope
stability analyses.

The factor of safety with respect to shear strength is
closer to 1.0 than the factor of safety with respect to
load; however, the magnitude of the difference varies
significantly depending on the value of �. Consider,
for example, the slope shown in Figure 6.32. Factors
of safety were calculated for the three different sets of
shear strength parameters shown in this figure. The val-
ues of the shear strength parameters were selected so
that the factor of safety with respect to shear strength
[Eq. (6.1)] was approximately 1.5. For each slope the
factors of safety both with respect to shear strength and
with respect to load were calculated. The factor of

safety with respect to load was calculated by multiply-
ing the unit weight of the soil by a factor of safety
until the slope was in just-stable equilibrium with the
shear strength fully developed. The factors of safety
for shear strength and load are summarized for the
three slopes in Table 6.6. For the first set of shear
strengths (� � 0) the factors of safety for shear
strength and load are identical. This will always be the
case when � � 0, for slope stability as well as for
bearing capacity problems such as the footing shown
previously. For the second set of shear strength pa-
rameters, the factor of safety with respect to load was
approximately 11, whereas the factor of safety for
shear strength was approximately 1.5. This represents
a difference of over 700%. Finally, for the third set of
shear strength parameters, � � 36.9� and c � 0, the
factor of safety with respect to shear strength was 1.5,
whereas the factor of safety with respect to load is
infinite (i.e., no matter how large the weight of soil,
the shear strength always remains greater than the
shear stress). In summary, the factors of safety for
shear strength and for load can vary from being the
same to being very different for large values of �, and
the two values are not comparable. Because the soil
shear strength is one of the largest unknowns in a slope
stability analysis—certainly it presents greater uncer-
tainty than the unit weight of soil in almost all in-
stances—it seems logical to apply the factor of safety
to shear strength.

Factor of Safety for Moments

Another definition that has been suggested for the fac-
tor of safety is one based on moments. In this case the
factor of safety is defined as the ratio of the available
resisting moment divided by the actual driving mo-
ment:

available resisting moment MrF � � (6.100)
actual driving moment Md

This can be rearranged and written as
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Figure 6.33 Simple reinforced slope with driving and re-
sisting moments.

MrM � � 0 (6.101)d F

Equation (6.101) is an equilibrium equation that ex-
presses a balance between the driving moment and a
developed resisting moment that is equal to the total
available resisting moment factored by the factor of
safety. If the resisting moment is due entirely to the
shear strength of the soil, the factor of safety applied
to the resisting moment is the same as the factor of
safety defined earlier with respect to shear strength. In
fact, it was shown earlier for the Swedish Circle
method [Eq. (6.28)] that the factor of safety defined
with respect to shear strength was equal to the ratio of
moments expressed by Eq. (6.100). In this case there
is no difference between the factors of safety defined
with respect to shear strength [Eq. (6.1)] and with re-
spect to moments [Eq. (6.100)].

If instead of a simple slope, where all resistance is
from the shear strength of the soil, there are additional
forces due to reinforcement, the two definitions of fac-
tor of safety [Eqs. (6.1) and (6.100)] can be quite dif-
ferent. Also, the definition of the factor of safety as a
ratio of moments can be ambiguous. To illustrate this,
consider the slope and circular slip surface shown in
Figure 6.33. This slope has a single layer of reinforce-
ment. Let the moment taken about the center of the
circle due to the reinforcement be designated as Mt.
Let the corresponding moments due to the available

shear strength be designated as Ms, and the moment
due to the weight of soil be designated as Md. We can
now define a factor of safety with respect to resisting
and driving moments. If we choose to add the moment
due to the reinforcement to the resisting moment due
to the shear strength of the soil, we can write

M � Ms tF � (6.102)
Md

Alternatively, we can choose to subtract the restoring
moment due to the reinforcement from the driving mo-
ment due to the soil weight and write

MsF � (6.103)
M � Md t

Equations (6.102) and (6.103) both represent legiti-
mate definitions for the factor of safety defined as a
ratio of moments; however, the two definitions give
different values for the factor of safety. Equations
(6.102) and (6.103) are more easily interpreted if we
rewrite them as follows: For Eq. (6.102) we can write

M Ms tM � � (6.104)d F F

and for Eq. (6.103) we can write

MsM � � M (6.105)d tF

Both of these equations can be interpreted as equilib-
rium equations. The first equation, where the contri-
bution of the reinforcement was added to the resisting
moment, states that the driving moment is balanced by
moments due to the developed shear strength and the
developed reinforcement forces, where developed val-
ues are the available values reduced by a factor of
safety, F. Thus, the factor of safety in Eq. (6.104) is
applied equally to the reinforcement forces and the
shear strength. The second of the two equilibrium
equations [Eq. (6.105)], where the reinforcement con-
tribution was used to reduce the driving moments,
states that the driving moment is in equilibrium with
the full reinforcement force, plus the factored resis-
tance due to the shear strength of the soil. In this case
the factor of safety is applied only to the soil shear
strength.

To illustrate the differences in values computed for
the factors of safety of reinforced slopes depending on
how the factor of safety is defined, consider the slope
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1.51
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force only.

4.82
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strength and reinforcement force.

1.32
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20 ft

Figure 6.34 Reinforced slope with computed factors of safety defined (applied) in three
different ways.

shown in Figure 6.34. This slope has a single layer of
reinforcement and � � 0. The factor of safety for the
unreinforced slope is 0.91, thus indicating that the re-
inforcement is necessary to make the slope stable. Fac-
tors of safety were first computed by applying the
factor of safety to shear strength only [Eq. (6.105)] and
to both shear strength and reinforcement force equally
[Eq. (6.104)]. A third factor of safety was computed
by applying the factor of safety to only the reinforce-
ment force (i.e., the shear strength was assumed to be
fully mobilized and the reinforcement force was re-
duced by the factor of safety). The three different val-
ues for the factor of safety shown in Figure 6.34 range
from approximately 1.3 to 4.8, a difference of over
threefold. Clearly, the manner in which the factor of
safety is defined will affect the computed value.

Although any of the foregoing definitions for factor
of safety could be used to compute a factor of safety,
only Eq. (6.105) is consistent with the definition of
factor of safety generally used for slope stability anal-
yses throughout this book. Instead of defining and
computing a factor of safety that is applied equally to
the reinforcement forces and soil strength [Eq. (6.104)]
or to only the reinforcement force, it seems more ap-
propriate first to apply a suitable factor of safety to the

reinforcement forces before any slope stability com-
putations begin and then compute a separate factor of
safety with respect to the shear strength of the soil.
This approach is recommended and is discussed further
in Chapter 8.

PORE WATER PRESSURE REPRESENTATION

Whenever the shear strength of one or more materials
is expressed in terms of effective stresses, the pore wa-
ter pressures must be determined and represented in
the slope stability analysis. Several methods exist for
doing this, depending on the seepage and groundwater
conditions and the degree of rigor required. The vari-
ous methods are described and discussed in this sec-
tion.

Flow Net Solutions

When steady-state seepage conditions exist in a slope,
a graphical flow net solution can be used to determine
the pore water pressures. For most slopes this requires
determining the location of a line of seepage repre-
senting the uppermost flow line, and then constructing
families of curves representing flow and equipotential
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lines in the region of saturated flow, below the line of
seepage (Casagrande, 1937). Once a correct flow net
has been constructed, pore water pressures can be cal-
culated at any point desired; pore water pressures are
usually assumed to be zero above the line of seepage.

Although flow nets provide an accurate representa-
tion of pore water pressures, flow nets are difficult and
tedious to use in slope stability computations. For each
slice of each trial slip surface, pore water pressures
must be calculated. This generally requires some in-
terpolation between the equipotential lines in the flow
net to get the pore water pressures at each slice. If done
manually, the task is extremely tedious. It is also dif-
ficult to use a flow net in computer calculations. To do
so, the pore water pressures must first be computed
from the flow net at selected points. Usually, points
corresponding to the intersections of the flow lines and
equipotential lines are used. Once the pressures are
computed, which must be done manually, the digitized
values of pressure need to be entered into a computer
program. In the computer program it is necessary to
interpolate the values of pressure that were input to get
pore water pressures at the center of the base of each
slice. Although the interpolation process can be auto-
mated, much as it is when using pore water pressures
calculated from finite element analyses, a substantial
effort is still required to construct a flow net and then
compute the pore water pressures for entry into the
computer program. Also, for complex slopes it is im-
practical to construct a flow net by hand.

Numerical Solutions

Today, most analyses of seepage and groundwater flow,
for any but the simplest conditions, are conducted us-
ing finite difference or finite element numerical solu-
tions. Because of the great flexibility that it provides,
most such analyses are done using the finite element
method. Results of such analyses consist of values of
pore water pressure at each of a number of nodal
points in the finite element mesh.

Most of the earlier and even some of today’s finite
element modeling schemes model only the region of
saturated flow, below the line of seepage. Essentially,
these schemes mimic what is done with flow net so-
lutions by establishing a line of seepage and assuming
no flow above the line of seepage. Various schemes
have been used to determine the location of the line of
seepage; including adjusting the geometry of the finite-
mesh and truncating the finite element mesh at the
point where it intersects the line of seepage (zero pres-
sure line). With these schemes pore water pressure are
calculated only in the region of saturated flow, where

the pore water pressures are positive. Pore water pres-
sures are assumed to be zero above the line of seepage.

Most current finite element modeling schemes
model the entire cross section of a slope, including the
region where the pore water pressures are negative and
the soil may be unsaturated. These schemes employ
finite elements everywhere there is soil, and the hy-
draulic conductivity is adjusted to reflect the pore wa-
ter pressures and degree of saturation. Both positive
and negative values of pore water pressure are calcu-
lated. However, for slope stability analyses the pore
water pressures are usually assumed to be zero in the
region where negative pressures have been calculated.

Regardless of the finite element scheme used, results
of a finite element analysis consist of the value of pore
water pressure at each nodal point. These values must
then be used along with a suitable interpolation scheme
to calculate the pore water pressures at the center of
the base of individual slices along a slip surface.

Interpolation Schemes

Several interpolation schemes have been used to cal-
culate the pore water pressures along the slip surface
from the results of finite element analyses. Several of
these schemes are described below.

Three- and four-point interpolation. One of the
earliest schemes used to interpolate pore water pres-
sures from gridded data for slope stability calculations
was based on a three- or four-point interpolation func-
tion (Wright, 1974; Chugh, 1981). In this scheme the
three or four points where pore water pressures were
defined (e.g., nodal points) that are closest to the point
where pore water pressures are to be calculated are
located. If four points are used, the pore water pres-
sures are then interpolated using an equation of the
form

u � a � a x � a y � a xy (6.106)1 2 3 4

where x and y are coordinates and a1, a2, a3, and a4

are four coefficients that are evaluated using the co-
ordinates and pore water pressures at the four inter-
polation points (nodal points). Once the coefficients are
determined, Eq. (6.106) is used to compute the pore
water pressure at the point on the slip surface. If three
points are used for interpolation, the form of the equa-
tion is

u � a � a x � a y (6.107)1 2 3

but otherwise, the procedure is the same as for four
points. This three- or four-point interpolation scheme
has problems that sometimes lead to erroneous values,
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especially when pore water pressures are interpolated
(actually, extrapolated) outside the perimeter of the re-
gion formed by the three or four interpolation points.
Some improvement was achieved in this scheme
through an ‘‘averaging’’ scheme proposed by Chugh
(1981); however, the scheme still can lead to erroneous
values, especially when three or more of the interpo-
lation points lie along a nearly straight line.

Spline interpolation. Two-dimensional interpola-
tion schemes based on spline surfaces are more rig-
orous and overcome some of the limitations of the
three- and four-point schemes described above. In the
spline interpolation schemes a much larger number of
points is used to interpolate the pore water pressures
at any given point (Geo-Slope, 2002; RocScience,
2002). Also, a much larger system of equations must
be solved for the interpolation coefficients. The pro-
cedures work well but can be relatively time consum-
ing in terms of computational effort and computer
memory requirements. These schemes may also result
in values being extrapolated outside the actual range
of the interpolation point data (i.e., the pore water pres-
sures may exceed or be less than the respective highest
and lowest values at points used for interpolation).

Finite element shape functions. Another scheme
that should be quite accurate, but has not been widely
used, employs the same shape functions that are used
for the finite element formulation to interpolate pore
water pressures once the finite element solution is com-
pleted. This scheme has been used by the writers as
well as by Geo-Slope (2002). The scheme closely in-
tegrates the finite element solution with the subsequent
interpolation of pore water pressures and thus should
not introduce additional errors resulting from the in-
terpolation scheme. With this scheme the element that
contains the point where pore water pressures are to
be interpolated is found first. The pore water pressures
are then calculated using the values of the head at the
adjoining nodal points and the finite element shape (in-
terpolation) functions. This scheme is relatively com-
plex computationally, but more important, the scheme
is only well suited for interpolation of pore water pres-
sures when the pore water pressures have been com-
puted using the finite element method. The scheme
requires more close integration of the finite element
and slope stability analyses than most other schemes.

Triangulated irregular network scheme. One of the
best interpolation schemes is based on use of a trian-
gulated irregular network (TIN) for interpolation
(Wright, 2002). The TIN consists of a set of triangles
whose vertices coincide with the points where pore
water pressures are defined and which cover without
overlapping the entire region where pore water pres-

sures are defined. A convenient scheme for creating
the triangles is the Delaunay triangulation scheme
(Figure 6.35). In this scheme the triangles are created
such that no interpolation point lies within the circum-
circle of any triangle (Lee and Schachter, 1980; Wat-
son and Philip, 1984). A circumcircle is the circle
passing through the three vertices of a triangle and
contains the three vertices, but there are no points in-
side the circle.11. Robust algorithms exist for creating
a Delaunay triangulation for any series of discrete
points.

Once a Delaunay triangulation is created interpola-
tion consists of a two-step process for interpolating
pressures at any point: First, the triangle that contains
the point where pressures are to be interpolated is lo-
cated. Then, the pore water pressures are interpolated
linearly from the values of pore water pressure at the
three vertices of the enclosing triangle. The interpola-
tion equation is of the form of Eq. (6.107), but differs
from the previous scheme in that the interpolation
point never lies outside the perimeter of the triangle
formed by the three points used for interpolation. Also
by using the Delaunay triangulation scheme it is usu-
ally possible to avoid having the three points used for
interpolation being located on essentially a straight
line. One of the most important advantages of the TIN-
based scheme is that algorithms exist for very quickly
locating the appropriate triangle that contains the point
where pressures are to be interpolated, and thus, the
points to be used for interpolation are located quickly
(Lee and Schachter, 1980; Mirante and Weingarten,
1982; Jones, 1990). The three- and four-point schemes
described earlier as well as schemes using the finite
element shape functions may involve a significant
amount of time being spent on locating the appropriate
points or finite element that are to be used for the in-
terpolation. The TIN-based scheme also has the ad-
vantage of using a very simple linear interpolation
function [Eq. (6.107)] which requires very little com-
putational time and computer memory for storage.

Another advantage of the TIN-based interpolation
scheme is that it is applicable to interpolation using
any type of irregularly gridded data, not just the results
from finite element analyses. For example, there may
be cases where some pore water pressures are recorded
in piezometers or by groundwater observations. These
measured data may then be supplemented by additional
data points based on judgment and interpretation to
provide a grid of values. Such values can then easily

11 It is possible for more than three points to lie on a circumcircle
(e.g., if four points form a rectangle); however, no point will ever lie
inside the circumcircles in a Delaunay triangulation.



98 6 MECHANICS OF LIMIT EQUILIBRIUM PROCEDURES

Figure 6.35 Delaunay triangulation of a series of interpolation points (e.g., nodal points)
with accompanying circumcircles.

be used to compute values of pore water pressure at
other points using the TIN-based interpolation scheme.

A related advantage of TIN-based interpolation
schemes is that once such schemes are developed and
implemented in computer codes, they can also be used
for other forms of interpolation required in slope sta-
bility computations. For example, TIN-based schemes
are useful for interpolating values of undrained shear
strength. This is particularly useful when the undrained
shear strengths vary both vertically and horizontally.
Typical examples where such spatial variation in un-
drained shear strength occur include some mine tail-
ings disposal structures and clay foundations beneath
embankments built with staged construction tech-
niques.

Phreatic Surface

Flow net and finite element seepage solutions are com-
plex and time consuming to perform. In many cases it
is more appropriate to use simple approximations of
the seepage and pore water pressures in a slope. Con-
sidering that groundwater and seepage conditions are
often not well known, the simple approximations may
be more than justified. One approximation is to define
the pore water pressures using a line that represents a
phreatic surface. The phreatic surface corresponds to
the line of seepage from a flow net [i.e., the phreatic
surface is considered to be a flow line and a line of
zero (atmospheric) pressure]. The line of zero pressure
from a finite element solution is also often considered
equivalent to the phreatic surface even though in this
case the zero pressure line may not be a flow line.

When the pore water pressures are defined by a
phreatic surface, the pore water pressure is equal to the

product of the pressure head, hp, and the unit weight
of water, �w:

u � h � (6.108)p w

If the phreatic surface is a straight line and the equi-
potential lines are also straight lines (Figure 6.36a),
perpendicular to the phreatic surface, the pressure head
is related to the vertical depth, zp, below the phreatic
surface by

2h � z cos 
 (6.109)p p

where 
 is the slope of the phreatic surface. If, instead,
the phreatic surface and equipotential lines are curved
as shown in Figure 6.36b, the pore water pressure can
be expressed by the following inequalities:

2 2z � cos 
� � u � z � cos 
� (6.110)p w p w

where 
� is the slope of the phreatic surface at the
point where the equipotential line intersects the phre-
atic surface and 
� is the slope of the phreatic surface
directly above the point of interest. In this case (
� �

�) it is conservative to express the pore water pressure
as

2u � z � cos 
� (6.111)p w

where again 
� is the slope of the phreatic surface di-
rectly above the point of interest.

Several computer programs have used Eq. (6.111)
or a similar form to approximate the pore water pres-
sures from a phreatic surface. This seems to provide a
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Figure 6.36 (a) Linear and (b) curved phreatic surfaces used
to approximate pore water pressures.

reasonable approximation for many cases, but as
shown later the approximation can also lead to uncon-
servative results depending on seepage conditions.

Piezometric Line

As a further approximation and simplification of pore
water pressures a piezometric line may be used. With
a piezometric line the pore water pressures are com-
puted by multiplying the vertical depth below the pi-
ezometric line by the unit weight of water. Thus,

u � z � (6.112)p w

This representation is sometimes considered to be a
conservative representation of the pore water pressures
compared to the phreatic surface described previously.
However, the differences between the two representa-
tions of pore water pressure are typically small because

the slope (
) for most surfaces is small. Furthermore,
because the phreatic surface is at times unconservative
(i.e., it can underestimate the pore water pressures),
representation by a piezometric line may be just as
suitable as a phreatic surface. It should be recognized
that both represent approximations that may or may
not be valid, depending on the particular seepage con-
ditions in a slope.

Examples

To illustrate differences in the various representations
of pore water pressure described above, analyses of
two examples are presented. For each of these two ex-
amples a finite element steady-state seepage analysis
was performed first using the GMS/SEEP2D software
(EMRL, 2001) to calculate the pore water pressures.
The seepage analyses were performed by modeling the
entire soil cross section shown for each example and
using appropriate values of saturated or unsaturated
hydraulic conductivity depending on the pore water
pressures. Pore water pressures calculated from the fi-
nite element seepage analyses were then used to inter-
polate pore water pressures along the slip surface for
each trail slip surface and slice. Pore water pressures
were interpolated using the TIN-based interpolation
scheme described earlier. A phreatic surface was also
established by locating the line (contour) correspond-
ing to zero pore water pressure. Pore water pressures
were calculated from the phreatic surface using Eq.
(6.111). Finally, a piezometric line was defined from
the line of zero pressure (i.e., the phreatic surface and
piezometric line were the same). Pore water pressures
were calculated from the piezometric line using Eq.
(6.112).

Factors of safety were calculated for both examples
using each of the pore water pressure representations
described above. For each slope and representation of
pore water pressure the critical circle with the mini-
mum factor of safety was found.

Example 1. The slope for the first example is
shown in Figure 6.37. The slope and foundation are
homogeneous and composed of the same soil. Total
heads, expressed relative to a datum at the bottom of
the foundation, are 75 ft at the entrance to the cross
section and 40 ft at the ground surface beyond the toe
of the slope. The slope face is assumed to be a free
discharge surface, and it is assumed that no infiltration
occurs along the slope face or behind the crest of the
slope.

The contour of zero pressure determined from the
finite element seepage analysis is shown in Figure
6.38. In the finite element analysis, pore water pres-
sures were negative above and positive below this line.
In the subsequent slope stability analyses, the zero
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Figure 6.37 Homogeneous slope used to illustrate different schemes for representing pore
water pressures in slope stability analyses.

75 ft

Zero pressure line

Figure 6.38 Zero-pressure line (contour) determined using finite element analysis, used to
represent the phreatic surface and the piezometric line for a homogeneous slope.

Table 6.7 Summary of Computed Factors of Safety
for Three Different Representations of Pore Water
Pressure: Homogeneous Slope and Foundation

Pore water pressure
representation Factor of safety

Finite element analysis with pore
pressures interpolated from
nodal points values using
triangle-based interpolation
scheme

1.138

Phreatic surface approximation 1.147
Piezometric line approximation 1.141

pressure line was used to represent both the piezomet-
ric line and the phreatic surface.

Factors of safety calculated for each of the three
representations of pore water pressure are summarized
in Table 6.7. The three values shown for the different
representations of pore water pressures are all ex-
tremely close; the values are shown to three decimal
places to illustrate the differences. All three represen-
tations produced approximately the same factor of
safety of approximately 1.14 to 1.15. The phreatic sur-
face in this case produced a slightly higher factor of
safety because of a slight upward component of flow
beyond the toe of the slope, which causes the phreatic
surface and Eq. (6.111) to underestimate pore water
pressures slightly.

Example 2. The slope for the second example con-
sists of the earth embankment dam resting on a layered
soil foundation as shown in Figure 6.39. Soil properties
are shown in Figure 6.39. The foundation consists of
a low-permeability clay layer underlain by a more per-
meable layer of sand. A significant amount of under-
seepage occurs through the more permeable sand layer
at depth and produces upward flow near the down-
stream portion of the dam. The zero-pressure line de-
termined from the finite element analyses is shown in
Figure 6.40. This line was used as a phreatic surface
and piezometric line for the slope stability analyses.

Although the minimum factor of safety for this slope
occurs for very shallow circles (sloughs) near the toe
of the slope, deeper slip surfaces are likely to be of
interest as well. Therefore, the overall minimum factor
of safety (shallow circles) and the minimum factor of
safety for circles tangent to elevation 197 (bottom of
clay) were both calculated. The factors of safety are
summarized in Table 6.8. Factors of safety calculated
by both the phreatic surface and piezometric line rep-
resentations of pore water pressures were essentially
the same because of the relatively flat zero-pressure
surface. However, both the piezometric line and phre-
atic surface representations of pore water pressures
produced factors of safety that ranged from 14 to 19%
greater than the factors of safety calculated from the
finite element solution and interpolation. These rela-
tively large differences are due to the upward flow of
water through the clay foundation, which is not rep-
resented well by either a phreatic surface or a single
piezometric line.
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Figure 6.39 Embankment dam on layered foundation used to illustrate different schemes
for representing pore water pressures in slope stability analyses.
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Figure 6.40 Zero-pressure line (contour) determined using finite element analysis, used to
represent the phreatic surface and the piezometric line for an embankment dam.

Table 6.8 Summary of Computed Factors of Safety for Three Different Representations of Pore Water
Pressure: Embankment Dam on Layered Soil Foundation

Pore water pressure representation

Minimum factors of safety

Overall critical
circle

Critical circle
tangent to elev. 197

Finite element analysis with pore pressures interpolated from nodal points
values using triangle-based interpolation scheme

1.11 1.37

Phreatic surface approximation 1.32 1.57
Piezometric line approximation 1.30 1.57
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Figure 6.41 Two piezometric lines used to represent the pore water pressures for an em-
bankment dam.

Results of the stability calculations for the second
example can be improved by using more than one pi-
ezometric line. To illustrate this, a second piezometric
line was established based on the pore water pressures
at the bottom of the foundation clay layer (top of sand
layer). The second piezometric line is shown in Figure
6.41 and better represents the pore water pressures (to-
tal head) in the sand and lower part of the clay. An
additional set of slope stability calculations was per-
formed using the second piezometric line to define the
pore water pressures in the bottom half of the clay
layer, and the original first piezometric line was used
to define the pore water pressures in the upper half of
the foundation clay as well as in the embankment. Cal-
culations were performed for circles tangent to eleva-
tion 197, which is the bottom of the clay layer. The
factor of safety computed using the two piezometric
lines was 1.36, which is almost identical to the value
(1.37) that was obtained when the pore water pressures
were obtained by interpolation of the values from the
finite element analysis. Thus, the use of multiple—in
this case, two—piezometric lines can improve the so-
lution obtained using piezometric lines, although the
very close agreement between the results with two pi-
ezometric lines and interpolation may be somewhat
fortuitous. Also, it is not always as easy to establish
appropriate piezometric lines when multiple lines are
to be used.

SUMMARY

When flow is predominately horizontal (vertical equi-
potential lines), both a phreatic surface and single pi-
ezometric line can be used to approximate the pore
water pressures relatively well, with an error of only a
few percent at most. There appears to be little differ-
ence between these two representations of pore water
pressure (phreatic surface and piezometric line); the
refinement of using a phreatic surface representation
rather than a simpler piezometric line does not appear
to produce a better representation. In fact, the phreatic
surface may actually produce less accurate results than
the piezometric line.

For cases where the flow is not predominately hor-
izontal and as the component of flow and head loss in
the vertical direction increases, neither a phreatic sur-
face nor a single piezometric line represent pore water
pressures well; both may result in errors on the unsafe
side. In such cases, care must be exercised in selecting
an appropriate representation of pore water pressures.
It is probably better to use an appropriate seepage so-
lution and interpolate pore water pressures. Currently,
there are several good finite element software programs
available for seepage analyses. Use of pore water pres-
sures from a finite element analysis requires some ef-
fort to interpolate pore water pressures from nodal
point values to points along a slip surface (base of
slices), but robust and efficient interpolation schemes
are available for this as well.
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CHAPTER 7

Methods of Analyzing Slope Stability

Methods for analyzing stability of slopes include sim-
ple equations, charts, spreadsheet software, and slope
stability computer programs. In many cases more than
one method can be used to evaluate the stability for a
particular slope. For example, simple equations or
charts may be used to make a preliminary estimate of
slope stability, and later, a computer program may be
used for detailed analyses. Also, if a computer program
is used, another computer program, slope stability
charts, or a spreadsheet should be used to verify re-
sults. The various methods used to compute a factor
of safety are presented in this chapter.

SIMPLE METHODS OF ANALYSIS

The simplest methods of analysis employ a single sim-
ple algebraic equation to compute the factor of safety.
These equations require at most a hand calculator to
solve. Such simple equations exist for computing the
stability of a vertical slope in purely cohesive soil, of
an embankment on a much weaker, deep foundation,
and of an infinite slope. Some of these methods, such
as the method for computing the stability of an infinite
slope, may provide a rigorous solution, whereas others,
such as the equations used to estimate the stability of
a vertical slope, represent some degree of approxima-
tion. Several simple methods are described below.

Vertical Slope in Cohesive Soil

For a vertical slope in cohesive soil a simple expres-
sion for the factor of safety is obtained based on a
planar slip surface like the one shown in Figure 7.1.
The average shear stress, �, along the slip plane is ex-
pressed as

2W sin � W sin � W sin �
� � � � (7.1)

l H /sin � H

where � is the inclination of the slip plane, H is the
slope height, and W is the weight of the soil mass. The
weight, W, is expressed as

21 �H
W � (7.2)

2 tan �

which when substituted into Eq. (7.2) and rearranged
gives

1–� � �H sin � cos � (7.3)2

For a cohesive soil (� � 0) the factor of safety is
expressed as

c 2c
F � � (7.4)

� �H sin � cos �

To find the minimum factor of safety, the inclination
of the slip plane is varied. The minimum factor of
safety is found for � � 45�. Substituting this value for
� (45�) into Eq. (7.4) gives

4c
F � (7.5)

�H

Equation (7.5) gives the factor of safety for a vertical
slope in cohesive soil, assuming a plane slip surface.
Circular slip surfaces give a slightly lower value for
the factor of safety (F � 3.83c /�h); however, the dif-
ference between the factors of safety based on a plane
and a circular slip surface is small for a vertical slope
in cohesive soil and can be ignored.
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Figure 7.1 Vertical slope and plane slip surface.

Equation (7.5) can also be rearranged to calculate
the critical height of a vertical slope (i.e., the height
of a slope that has a factor of safety of unity). The
critical height of a vertical slope in cohesive soil is

4c
H � (7.6)critical �

Bearing Capacity Equations

The equations used to calculate the bearing capacity of
foundations can also be used to estimate the stability
of embankments on deep deposits of saturated clay.
For a saturated clay and undrained loading (� � 0),
the ultimate bearing capacity, qult, based on a circular
slip surface is1

q � 5.53c (7.7)ult

Equating the ultimate bearing capacity to the load,
q � �H, produced by an embankment of height, H,
gives

�H � 5.53c (7.8)

where � is the unit weight of the soil in the embank-
ment; �h represents the maximum vertical stress pro-
duced by the embankment. Equation (7.8) is an
equilibrium equation corresponding to ultimate condi-
tions (i.e., with the shear strength of the soil fully de-
veloped). If, instead, only some fraction of the shear
strength is developed (i.e., the factor of safety is

1 Although Prandtl’s solution of qult � 5.14c is commonly used for
bearing capacity, it is more appropriate to use the solution based on
circles, which gives a somewhat higher bearing capacity and offsets
some of the inherent conservatism introduced when bearing capacity
equations are applied to slope stability.

greater than unity), a factor of safety can be introduced
into the equilibrium equation (7.8) and we can write

c
�H � 5.53 (7.9)

F

In this equation F is the factor of safety with respect
to shear strength; the term c /F represents the devel-
oped cohesion, cd. Equation (7.9) can be rearranged to
give

c
F � 5.53 (7.10)

�H

Equation (7.10) can be used to estimate the factor of
safety against a deep-seated failure of an embankment
on soft clay.

Equation (7.10) gives a conservative estimate of the
factor of safety of an embankment because it ignores
the strength of the embankment and the depth of the
foundation in comparison with the embankment width.
Alternative bearing capacity equations that are appli-
cable to reinforced embankments on thin clay foun-
dations are presented in Chapter 8.

Infinite Slope

In Chapter 6 the equations for an infinite slope were
presented. For these equations to be applicable, the
depth of the slip surface must be small compared to
the lateral extent of the slope. However, in the case of
cohesionless soils, the factor of safety does not depend
on the depth of the slip surface. It is possible for a slip
surface to form at a small enough depth that the re-
quirements for an infinite slope are met, regardless of
the extent of the slope. Therefore, an infinite slope
analysis is rigorous and valid for cohesionless slopes.
The infinite slope analysis procedure is also applicable
to other cases where the slip surface is parallel to the
face of the slope and the depth of the slip surface is
small compared to the lateral extent of the slope. This
condition may exist where there is a stronger layer of
soil at shallow depth: for example, where a layer of
weathered soil exists near the surface of the slope and
is underlain by stronger, unweathered material.

The general equation for the factor of safety for an
infinite slope with the shear strength expressed in terms
of total stresses is

c
F � cot 
 tan � � (cot 
 � tan 
) (7.11)

�z
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where z is the vertical depth of the slip surface below
the face of the slope. For shear strengths expressed by
effective stresses the equation for the factor of safety
can be written as

u
F � cot 
 � (cot 
 � tan 
) tan ��� ��z

c�
� (cot 
 � tan 
) (7.12)

�z

where u is the pore water pressure at the depth of the
slip surface.

For effective stress analyses, Eq. (7.12) can also be
written as

F � [cot 
 � r (cot 
 � tan 
)] tan ��u

c�
� (cot 
 � tan 
) (7.13)

�z

where ru is the pore pressure ratio defined by Bishop
and Morgenstern (1960) as

u
r � (7.14)u �z

Values of ru can be determined for specific seepage
conditions. For example, for seepage parallel to the
slope, the pore pressure ratio, ru, is given by

� hw w 2r � cos 
 (7.15)u � z

where hw is the height of the free water surface verti-
cally above the slip surface (Figure 7.2a). If the seep-
age exits the slope face at an angle (Figure 7.2b), the
value of ru is given by

� 1wr � (7.16)u � 1 � tan 
 tan �

where � is the angle between the direction of seepage
(flow lines) and the horizontal. For the special case of
horizontal seepage (� � 0), the expression for ru re-
duces to

�wr � (7.17)u �

Recapitulation

• Simple equations can be used to compute the fac-
tor of safety for several slope and shear strength
conditions, including a vertical slope in cohesive
soil, an embankment on a deep deposit of satu-
rated clay, and an infinite slope.

• Depending on the particular slope conditions and
equations used, the accuracy ranges from excel-
lent, (e.g., for a homogeneous slope in cohesion-
less soil) to relatively crude (e.g., for bearing
capacity of an embankment on saturated clay).

SLOPE STABILITY CHARTS

The stability of many relatively homogeneous slopes
can be calculated using slope stability charts based on
one of the analysis procedures presented in Chapter 6.
Fellenius (1936) was one of the first to recognize that
factors of safety could be expressed by charts. His
work was followed by the work of Taylor (1937) and
Janbu (1954b). Since the pioneering work of these au-
thors, numerous others have developed charts for com-
puting the stability of slopes. However, the early charts
of Janbu are still some of the most useful for many
conditions, and these are described in further detail in
the Appendix. The charts cover a range in slope and
soil conditions and they are quite easy to use. In ad-
dition, the charts provide the minimum factor of safety
and eliminate the need to search for a critical slip sur-
face.

Stability charts rely on dimensionless relationships
that exist between the factor of safety and other pa-
rameters that describe the slope geometry, soil shear
strengths, and pore water pressures. For example, the
infinite slope equation for effective stresses presented
earlier [Eq. (7.13)] can be written as

tan �� c�2 2F � [1 � r (1 � tan 
)] � (1 � tan 
)u tan 
 �z

(7.18)

or

tan �� c�
F � A � B (7.19)

tan 
 �z

where
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Figure 7.2 Infinite slope with seepage: (a) parallel to slope face; (b) exiting the slope face.

2A � 1 � r (1 � tan 
) (7.20)u

2B � 1 � tan 
 (7.21)

A and B are dimensionless parameters (stability num-
bers) that depend only on the slope angle, and in the
case of A, the dimensionless pore water pressure co-
efficient, ru. Simple charts for A and B as functions of
the slope angle and pore water pressure coefficient, ru,
are presented in the Appendix.

For purely cohesive (� � 0) soils and homogeneous
slopes, the factor of safety can be expressed as

c
F � N (7.22)0 �H

where N0 is a stability number that depends on the
slope angle, and in the case of slopes flatter than about
1�1, on the depth of the foundation below the slope.
For vertical slopes the value of N0 according to the
Swedish slip circle method is 3.83. This value (3.83)
is slightly less than the value of 4 shown in Eq. (7.5)
based on a plane slip surface. In general, circular slip
surfaces give a lower factor of safety than a plane,
especially for flat slopes. Therefore, circles are gener-

ally used for analysis of most slopes in cohesive soils.
A complete set of charts for cohesive slopes of various
inclinations and foundation depths is presented in the
Appendix. Procedures are also presented for using av-
erage shear strengths with the charts when the shear
strength varies.

For slopes with both cohesion and friction, addi-
tional dimensionless parameters are introduced. Janbu
(1954) showed that the factor of safety could be ex-
pressed as

c�
F � N (7.23)cf �H

where Ncf is a dimensionless stability number. The sta-
bility number depends on the slope angle, 
, the pore
water pressures, u, and the dimensionless parameter,
�c�, which is defined as

�H tan��
� � (7.24)c� c�

Stability charts employing �c� and Eq. (7.23) to cal-
culate the factor of safety are presented in the Appen-



COMPUTER PROGRAMS 107

dix. These charts can be used for soils with cohesion
and friction as well as a variety of pore water pressure
and external surcharge conditions.

Although all slope stability charts are based on the
assumption of constant shear strength (c, c� and �, ��
are constant) or else a simple variation in undrained
shear strength (e.g., c varies linearly with depth), the
charts can be used for many cases where the shear
strength varies. Procedures for using the charts for
cases where the shear strength varies are described in
the Appendix. Examples for using the charts are also
presented in the Appendix.

Recapitulation

• Slope stability charts exist for computing the fac-
tor of safety for a variety of slopes and soil con-
ditions.

SPREADSHEET SOFTWARE

Detailed computations for the procedures of slices can
be performed in tabular form using a table where each
row represents a particular slice and each column rep-
resents the variables and terms in the equations pre-
sented in Chapter 6. For example, for the case where
� � 0 and the slip surface is a circle, the factor of
safety is expressed as

c �l�
F � (7.25)

W sin ��
A simple table for computing the factor of safety using
Eq. (7.25) is shown in Figure 7.3. For the Ordinary
Method of Slices with the shear strength expressed in
terms of effective stresses, the preferred equation for
computing the factor of safety is

2[c� �l � (W cos � � u �l cos �)tan ��]�
F �

W sin ��
(7.26)

A table for computing the factor of safety using this
form of the Ordinary Method of Slices equation is il-
lustrated in Figure 7.4. Tables such as the ones shown
in Figures 7.3 and 7.4 are easily represented and im-
plemented in computer spreadsheet software. In fact,
more sophisticated tables and spreadsheets can be de-
veloped for computing the factor of safety using pro-
cedures of slices such as the Simplified Bishop, force
equilibrium, and even Chen and Morgenstern’s proce-
dures (Low et al., 1998).

The number of different computer spreadsheets that
have been developed and used to compute factors of
safety is undoubtedly very large. This attests to the
usefulness of spreadsheets for slope stability analyses,
but at the same time presents several important prob-
lems: First, because such a large number of different
spreadsheets are used and because each spreadsheet is
often used only once or twice, it is difficult to validate
spreadsheets for correctness. Also, because one person
may write a spreadsheet, use it for some computations
and then discard the spreadsheet, results are often
poorly archived and difficult for someone else to in-
terpret or to understand later. Electronic copies of the
spreadsheet may have been discarded. Even if an elec-
tronic copy is maintained, the software that was used
to create the spreadsheet may no longer be available
or the software may have been updated such that the
old spreadsheet cannot be accessed. Hard copies of
numerical tabulations from the spreadsheet may have
been saved, but unless the underlying equations, for-
mulas, and logic that were used to create the numerical
values are also clearly documented, it may be difficult
to resolve inconsistencies or check for errors.

Recapitulation

• Spreadsheets provide a useful way of performing
calculations by the procedures of slices.

• Spreadsheet calculations can be difficult to check
and archive.

COMPUTER PROGRAMS

For more sophisticated analyses and complex slope,
soil, and loading conditions, computer programs are
generally used to perform the computations. Computer
programs are available that can handle a wide variety
of slope geometries, soil stratigraphies, soil shear
strength, pore water pressure conditions, external
loads, and internal soil reinforcement. Most programs
also have capabilities for automatically searching for
the most critical slip surface with the lowest factor of
safety and can handle slip surfaces of both circular and
noncircular shapes. Most programs also have graphics
capabilities for displaying the input data and the results
of the slope stability computations.

Types of Computer Programs

Two types of computer programs are available for
slope stability analyses: The first type of computer pro-
gram allows the user to specify as input data the slope
geometry, soil properties, pore water pressure condi-
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Figure 7.3 Sample table for manual calculations using the Swedish circle (� � 0) proce-
dure.

tions, external loads, and soil reinforcement, and com-
putes a factor of safety for the prescribed set of
conditions. These programs are referred to as analysis
programs. They represent the more general type of
slope stability computer program and are almost al-
ways based on one or more of the procedures of slices.

The second type of computer program is the design
program. These programs are intended to determine
what slope conditions are required to provide one or
more factors of safety that the user specifies. Many of
the computer programs used for reinforced slopes and
other types of reinforced soil structures such as soil
nailed walls are of this type. These programs allow the

user to specify as input data general information about
the slope geometry, such as slope height and external
loads, along with the soil properties. The programs
may also receive input on candidate reinforcement ma-
terials such as either the tensile strength of the rein-
forcement or even a particular manufacturer’s product
number along with various factors of safety to be
achieved. The computer programs then determine what
type and extent of reinforcement are required to pro-
duce suitable factors of safety. The design programs
may be based on either procedures of slices or single-
free-body procedures. For example, the logarithmic
spiral procedure has been used in several computer
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Figure 7.4 Sample table for manual calculations using the Ordinary Method of Slices and
effective stresses.

programs for both geogrid and soil nail design (Lesh-
chinsky, 1997; Byrne, 20032). The logarithmic spiral
procedure is very well suited for such applications
where only one soil type may be considered in the
cross section.

Design programs are especially useful for design of
reinforced slopes using a specific type of reinforcement
(e.g., geogrids or soil nails) and can eliminate much of
the manual trial-and-error effort required. However, the
design programs are usually restricted in the range of
conditions that can be handled and they often make
simplifying assumptions about the potential failure
mechanisms. Most analysis program can handle a
much wider range of slope and soil conditions.

Automatic Searches for Critical Slip Surface

Almost all computer programs employ one or more
schemes for searching for a critical slip surface with
the minimum factor of safety. Searches can be per-
formed using both circular and noncircular slip sur-
faces. Usually, different schemes are used depending

2 Byrne has utilized the log spiral procedure in an unreleased version
of the GoldNail software. One of the authors (Wright) has also used
the log spiral successfully for this purpose in unreleased software for
analyzing soil nail walls.

on the shape (circular vs. noncircular) of slip surface
used. Many different search schemes have been used,
and it is beyond the scope of this chapter to discuss
these in detail. Nevertheless, several recommendations
and guidelines can be offered for searching for a crit-
ical slip surface:

1. Start with circles. It is almost always preferable
to begin searching for a critical slip surface using
circles. Very robust schemes exist for searching
with circles, and it is possible to examine a large
number of possible locations for a slip surface
with relatively little effort on the part of the user.

2. Let stratigraphy guide the search. For both cir-
cular and noncircular slip surfaces, the stratigra-
phy often suggests where the critical slip surface
will be located. In particular, if a relatively weak
zone exists, the critical slip surface is likely to
pass through it. Similarly, if the weak zone is
relatively thin and linear, the slip surface may
follow the weak layer and is more likely to be
noncircular than circular.

3. Try multiple starting locations. Almost all au-
tomatic searches begin with a slip surface that the
user specifies in some way. Multiple starting lo-
cations should be tried to determine if one loca-
tion leads to a lower factor of safety than another.
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4. Be aware of multiple minima. Many search
schemes are essentially optimization schemes
that seek to find a single slip surface with the
lowest factor of safety. However, there may be
more than one ‘‘local’’ minimum and the search
scheme may not necessarily find the local mini-
mum that produces the lowest factor of safety
overall. This is one of the reasons why it is im-
portant to use multiple starting locations for the
search.

5. Vary the search constraints and other parame-
ters. Most search schemes require one or more
parameters that control how the search is per-
formed. For example, some of the parameters that
may be specified include:
• The incremental distances that the slip surface

is moved during the search
• The maximum depth for the slip surface
• The maximum lateral extent of the slip surface

or search
• The minimum depth or weight of soil mass

above the slip surface
• The maximum steepness of the slip surface

where it exits the slope
• The lowest coordinate allowed for the center of

a circle (e.g., to prevent inversion of the circle)
Input data should be varied to determine how
these parameters affect the outcome of the search
and the minimum factor of safety.

A relatively large number of examples and bench-
marks can be found in the literature for the factor of
safety for a particular slip surface. However, many
fewer examples can be found to confirm the location
of the most critical slip surface (lowest factor of
safety), even though this may be the more important
aspect of verification. For complex slopes, much more
effort is usually spent in a slope stability analysis to
verify that the most critical slip surface is found than
is spent to verify that the factor of safety for a given
slip surface has been computed correctly.

Restricting the Critical Slip Surfaces of Interest

In general, all areas of a slope should be searched to
find the critical slip surface with the minimum factor
of safety. However, is some cases it may be desirable
to search only a certain area of the slope by restricting
the location of trial slip surfaces. There are two com-
mon cases where this is appropriate. One case is where
there are insignificant modes of failure that lead to low
factors of safety, but the consequences of failure are
small. The other case is where the slope geometry is

such that a circle with a given center point and radius
does not define a unique slip surface and slide mass.
These two cases are described and discussed further
below.

Insignificant modes of failure. For cohesionless
slopes it has been shown that the critical slip surface
is a very shallow plane, essentially coincident with the
face of the slope. However, the consequences of a slide
where only a thin layer of soil is involved may be very
low and of little significance. This is particularly the
case for some mine tailings disposal dams. In such
cases it is desirable to investigate only slip surfaces
that have some minimum size and extent. This can be
done in several ways, depending on the particular com-
puter program being used:

• The slip surfaces investigated can be required to
have a minimum depth.

• The slip surfaces investigated can be forced to
pass through a specific point at some depth below
the surface of the slope.

• The soil mass above the slip surface can be re-
quired to have a minimum weight.

• An artificially high shear strength, typically ex-
pressed by a high value of cohesion, can be as-
signed to a zone of soil near the face of the slope
so that shallow slip surfaces are prevented. In do-
ing so, care must be exercised to ensure that slip
surfaces are not unduly restricted from exiting in
the toe area of the slope.

Ambiguities in slip surface location. In some cases
it is possible to have a circle where more than one
segment of the circle intersects the slope (Figure 7.5).
In such cases there is not just a single soil mass above
the slip surface, but rather there are multiple, disasso-
ciated soil masses, probably with different factors of
safety. To avoid ambiguities in this case, it is necessary
to be able to designate that only a particular portion of
the slope is to be analyzed.

Recapitulation

• Computer programs can be categorized as design
programs and analysis programs. Design pro-
grams are useful for design of simple reinforced
slopes, while analysis programs generally can
handle a much wider range of slope and soil con-
ditions.

• Searches to locate a critical slip surface with a
minimum factor of safety should begin with cir-
cles.
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Figure 7.5 Cases where the slide mass defined by a circular
slip surface is ambiguous and may require selective restric-
tion.

• Multiple searches with different starting points
and different values for the other parameters that
affect the search should be performed to ensure
that the most critical slip surface is found.

• In some case it is appropriate to restrict the region
where a search is conducted; however, care must
be taken to ensure that an important slip surface
is not overlooked.

VERIFICATION OF ANALYSES

Most slope stability analyses are performed using
general-purpose computer programs. The computer
programs offer a number of features and may involve
tens of thousands, and sometimes millions, of lines of
computer code with many possible paths through the
logic, depending on the problem being solved. Forester
and Morrison (1994) point out the difficulty of check-
ing even simple computer programs with multiple

combinations of paths through the software. Consider,
for example, a comprehensive computer program for
slope stability analysis that contains the features listed
in Table 7.1. Most of the more sophisticated computer
programs probably contain at least the number of op-
tions or features listed in this table. Although some
programs will not contain all of the options listed, they
may contain others. A total of 40 different features and
options is listed in Table 7.1. If we consider just two
different possibilities for the input values for each op-
tion or feature, there will be a total of over 1 � 1012

(� 240) possible combinations and paths through the
software. If we could create, run, and verify problems
to test each possible combination at the rate of one test
problem every 10 minutes, over 20 million years would
be required to test all possible combinations, working
24 hours a day, 7 days a week. Clearly, it is not pos-
sible to test sophisticated computer programs for all
possible combinations of data, or even a reasonably
small fraction, say 1 of 1000, of the possible combi-
nations. Consequently, there is a significant possibility
that any computer program being used has not been
tested for the precise combination of paths involved in
a particular problem.

Because it is very possible that any computer pro-
gram has not been verified for the particular combi-
nation of conditions the program is being used for,
some form of independent check should be made of
the results. This is also true for other methods of cal-
culation. For example, spreadsheets are just another
form of computer program, and the difficulty of veri-
fying spreadsheet programs was discussed earlier. It is
also possible to make errors in using slope stability
charts and even in using simple equations. Further-
more, the simple equations generally are based on ap-
proximations that can lead to important errors for some
applications. Consequently, regardless of how slope
stability computations are performed, some indepen-
dent check should be made of the results. A number
of examples of slope stability analyses and checks that
can be made are presented in the next section.

Recapitulation

• Because of the large number of possible paths
through most computer programs, it is likely most
programs have not been tested for the precise
combination of paths involved in any particular
analysis.

• Some check should be made of the results of
slope stability calculations, regardless of how the
calculations are performed.
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Table 7.1 Possible Options and Features for a Comprehensive Slope Stability Computer Program

Soil profile lines—stratigraphy
Soil shear strength c–� soil—total stresses

c�–�� soil—effective stresses
Curved Mohr failure envelope—total stresses
Curved Mohr failure envelope—effective stresses
Undrained shear strength varies with depth below horizontal datum
Undrained shear strength defined by contour lines or interpolation
Shear strength defined by a c /p ratio
Anisotropic strength variation—undrained strength and total stresses
Anisotropic strength variation—drained strength and effective stresses
Consolidated–undrained shear strength (e.g., for rapid drawdown—linear strength envelopes)
Consolidated–undrained shear strength (e.g., for rapid drawdown—curved strength envelopes)
Structural materials (e.g., steel, concrete, timber)

Pore water pressure Constant pore water pressure
Constant pore pressure coefficient, ru

Piezometric line
Phreatic surface
Interpolated values of pore water pressure (e.g., from finite element analyses)
Interpolated values of pore water pressure coefficient, ru

Slope geometry
Left vs. right face of slope analyzed
Distributed surface loads (e.g., water)
Line loads

Reinforcement Geotextiles
Geogrids
Soil nails
Tieback anchors
Piles
Piers

Slip surface(s) Individual circle
Individual noncircular slip surface
Systematic search with circles
Random search with circles
Systematic search with noncircular slip surfaces
Random search with noncircular slip surfaces

Procedure of
analysis

Simplified Bishop procedure
Spencer’s procedure
Corps of Engineers’ Modified Swedish procedure
Simplified Janbu procedure
Chen and Morgenstern’s procedure

EXAMPLES FOR VERIFICATION OF STABILITY
COMPUTATIONS

Ten example slopes were selected for the slope stabil-
ity analyses presented in this section. These examples
were selected with two purposes in mind: First, to il-
lustrate the different methods for computing the factor
of safety that were discussed in the preceding sections
of this chapter, and second, to illustrate several impor-

tant details and features of slope stability analyses. For
example, one problem addresses the use of submerged
unit weights. Several other problems illustrate the dif-
ferences among various procedures of slices. Some of
these and other examples illustrate the importance of
locating the critical slip surface. Most of the examples
are presented with enough detail that they can be used
as benchmarks for verifying results of calculations us-
ing other means (e.g., with other computer programs).
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The 10 example problems selected for analysis are
summarized in Table 7.2. Each example is described
briefly and the methods of calculation (simple equa-
tions, charts, spreadsheets, and computer programs) are
indicated. Any calculations presented using computer
programs were performed with the UTEXAS4 soft-
ware (Wright, 1999) unless otherwise stated. The sum-
mary also indicates whether analyses were performed
for short- or long-term stability conditions. Additional
features illustrated by each example are indicated in
the last column of Table 7.2. The 10 cases listed in
this table provide a useful collection of problems for
computer program verification.

Example 1: Unbraced Vertical Cut in Clay

Tschebotarioff (1973) describes the failure of a vertical
excavated slope that was made for a two-story base-
ment in varved clay. The excavation was made, without
bracing, to a depth of 22 ft on one side and 31.5 ft on
the other side. The average unconfined compressive
strength of the clay from an investigation nearby was
reported to be 1.05 tons/ft2 and the unit weight of the
clay was 120 lb/ft3. Factors of safety were calculated
for the deeper of the two cuts (Figure 7.6) using the
equation for a vertical slope with a plane slip surface,
and using the slope stability charts presented in the
Appendix. Calculations were also performed using a
computer program. For an undrained shear strength, Su

of 1050 psf (� qu /2), the factor of safety for a plane
slip surface is calculated as

4c (4)(1050)
F � � � 1.11 (7.27)

�H (120)(31.5)

Using Janbu’s charts for � � 0 presented in the Ap-
pendix, the factor of safety is calculated as

c 1050
F � N � (3.83) � 1.06 (7.28)0 �H (120)(31.5)

Calculations with circles using the computer program
resulted in a factor of safety of 1.06. The calculations
with the charts confirm the results with the computer
program, and both show that circular slip surfaces give
a slightly lower factor of safety than plane slip sur-
faces.

Although the foregoing calculations are in close
agreement, they may not correctly reflect the true fac-
tor of safety of the slope. Terzaghi (1943) pointed out
that the upper part of the soil adjacent to a vertical
slope is in tension. If the soil cannot withstand tension,
cracks will form and the factor of safety will be re-
duced. Terzaghi showed that if one conservatively es-

timates that a crack will form to a depth equal to
one-half the slope height, the equation for the factor
of safety (assuming a planar slip surface) becomes

c
F � 2.67 (7.29)

�H

Thus, for the slope described above,

(2.67)(1050)
F � � 0.74 (7.30)

(120)(31.5)

which would clearly indicate that the slope was not
stable. A computed factor of safety less than 1.0 for
this case seems reasonable, because the slope failed
and the unconfined compression tests that were used
to measure the shear strength would be expected to
underestimate strength due to sample disturbance.

In the first calculations with the computer program,
tension was observed on the bottoms of several of the
slices near the upper part of the slope. Subsequently,
a series of slope stability calculations was performed
in which vertical tension cracks were introduced, be-
ginning with a crack depth of 1 ft, and successively
increasing the crack depth in 1-ft increments until there
was no longer tension. The assumed crack depths, cor-
responding factors of safety, and minimum normal
stresses on the base of slices are summarized in Table
7.3. If we take the factor of safety as being the value
where the tensile stresses are first eliminated, we
would conclude that the factor of safety is less than 1
(between 0.96 and 0.99).

For this example the stability calculations support
the behavior observed quite well. However, the close-
ness of the factor of safety to unity may be due in part
to compensating errors caused by factors that were not
considered. The shear strengths used were based on
unconfined compression tests, which typically under-
estimate the shear strength. Thus, it is likely that the
undrained shear strength of the clay was actually
greater than what was assumed. At the same time, be-
cause the slope was excavated, the unloading due to
excavation would cause the soil to swell gradually and
lose strength with time. Also, it is possible that vertical
cracks may have opened to substantial depths. It is
possible to imagine that the undrained strength mea-
sured in more appropriate UU tests would have been
considerably higher than the shear strength used, while
losses of strength due to swell and the development of
deep tension cracks could have reduced the stability by
a substantial amount. These offsetting factors could
have affected the stability of the slope significantly,
and it can be seen that the failure may have taken place
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Table 7.2 Summary of Example Problems for Verification of Slope Stability Analyses

No. Description
Short or

long term

Methods of analysis and verification of results

Simple equations

Vertical
slope—
plane

Bearing
capacity

Infinite
slope

Charts

� � 0:
Janbu

� � 0:
Hunter

and
Schuster

c, � Soil:
Janbu

Spreadsheets

� � 0 OMS
Simplified

Bishop
Force

equilibrium

Computer program

UTEXAS4 Other Additional features

1 Unbraced vertical
cut in saturated
clay (after
Tschebotarioff);
including
effects of
tension crack

S Y Y Y Effects of tension and a
tension crack.

2 LASH terminal:
submerged
slope excavated
in saturated,
nearly normally
consolidated
clay

S Y Y Use of total unit
weights and pore
water pressures vs.
submerged unit
weights.

3 Bradwell slip—
excavated slope
in stiff-fissured
clay

S Y Y Application of Janbu
correction factor in
simplified Janbu
procedure. Slope
may fail even with
high factor of safety.

4 Hypothetical
example of
cohesionless
slope (c � 0)
on saturated
clay (� � 0)
foundation

S Y Y Y Application of Janbu
correction factor in
simplified Janbu
procedure. Relatively
large differences in
F by various
procedures.

5 Oroville Dam—
high rockfill
dam

L Y Y Stability computations
with a curved Mohr
shear strength
envelope.
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6 James Bay dike—
embankments
constructed on
soft clay
foundation

S Y Y Importance of finding
critical slip surface.

7 Homogeneous
earth dam with
steady-state
seepage

L Y Y Effects of how pore
water pressures are
represented (by flow
net, piezometric line,
phreatic surface).
Illustrates effects of
pore pressure in
Ordinary Method of
Slices.

8 Zoned (or clay
core) earth dam
with steady-
state seepage

L Y Y Effects of how pore
water pressures are
represented (by flow
net, piezometric line,
phreatic surface).

9 Reinforced slope
(1):
embankment on
a soft clay
foundation

S Y Y Reinforced slope
analysis; influence of
location of critical
circle.

10 STABGM
reinforced slope
(2): steep
reinforced slope

L Y Y Reinforced slope
analysis; influence of
location of critical
circle.
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Varved Clay:
qu = 1.05 tons/ft2

γ = 120 lb/ft3
31.5 ft

Figure 7.6 Unbraced vertical cut in clay described by
Tschebotarioff (1973).

Table 7.3 Variation in the Factor of Safety and
Minimum Normal Stress on the Slip Surface with the
Assumed Depth of Tension Crack

Assumed crack
depth
(ft)

Minimum normal
stress on slip

surface (base of
slices)
(psf)

Calculated factor
of safety

0 �241 1.06
1 �160 1.04
2 �67 1.01
3 �62 0.99
4 40 0.96

under conditions quite different from what was as-
sumed in the stability calculations.

Recapitulation

• Slope stability charts, the computer program, and
the simple equation for stability of a vertical cut
based on plane slip surfaces all gave nearly iden-
tical values for the factor of safety.

• Plane slip surfaces, compared to circles, give sim-
ilar but slightly higher values for the factor of
safety of a vertical slope.

• Tensile stresses may develop behind the crest of
steep slopes in clay and may lead to cracking that
will substantially reduce the stability of the slope.

• Close agreement between computed and actual
factors of safety may be fortuitous and a result of
multiple large errors that compensate.

Example 2: Underwater Slope in Soft Clay

Duncan and Buchignani (1973) described the failure
of a slope excavated underwater in San Francisco Bay.
The slope was part of a temporary excavation and was
designed with an unusually low factor of safety to min-
imize construction costs. During construction a portion
of the excavated slope failed. A drawing of the slope
cross section is shown in Figure 7.7. The undrained
shear strength profile is presented in Figure 7.8. The
original design factor of safety based on undrained
shear strengths was reported by Duncan and Buchig-
nani to be 1.17.

Recently (2003), new slope stability calculations
were performed by the writers, first using a computer
program with Spencer’s procedure of slices. The min-
imum factor of safety calculated was 1.17. Because the
undrained shear strength for the clay in the slope in-
creases linearly with depth, Hunter and Schuster’s
(1968) slope stability charts described in the Appendix
can also be used to compute the factor of safety. The
factor of safety computed using these charts is 1.18.

The slope stability calculations described above
were performed using submerged (buoyant) unit
weights to account for the slope being fully sub-
merged. Submerged unit weights are convenient to use
when the computations are being performed with either
slope stability charts or by hand using a spreadsheet.
Submerged unit weights can be used for this example
because there was no seepage force (no flow of water).
However, in general when using computer programs it
is preferable to use total unit weights and to specify
external and internal water pressures. Computer cal-
culations were repeated for this slope using total unit
weights and distributed loads on the surface of the
slope to represent the water pressures. The factor of
safety was again found to be 1.17. This not only con-
firms what is expected but provides a useful check on
the calculations of the weights of slices and the forces
due to external distributed loads calculated by the com-
puter program.

A simple and useful check of any computer program
is to perform separate sets of slope stability calcula-
tions for a submerged slope (with no flow) using (1)
submerged unit weights and (2) total unit weights with
water pressures. If the computer program is working
properly and being used properly, it should give the
same result for both sets of calculations.3

3 This may not be true with force equilibrium procedures with in-
clined interslice forces. Similar results may not be obtained with
submerged unit weights and total unit weights plus water pressures
when the interslice forces are total forces, due to both earth and water
pressures, as described in Chapter 6. In this case the differences in
factors of safety calculated using submerged unit weights and total
unit weights plus water pressures may be large.
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Figure 7.7 Underwater slope in San Francisco Bay mud described by Duncan and Buchig-
nani (1973) and Duncan (2000).
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Figure 7.8 Undrained shear strength profile for underwater
slope in San Francisco Bay mud. (From Duncan, 2000.)

Although the calculations presented above confirm
the factor of safety calculated by Duncan and Buchig-
nani (1973) and indicate that the slope would be ex-
pected to be stable, a portion of the slope failed, as
noted earlier. Duncan and Buchignani (1973) showed
that the effects of sustained loading (creep) under un-
drained conditions was probably sufficient to reduce
the shear strength and cause the failure. More recent
reliability analyses by Duncan (2000) have shown that

the probability of failure was almost 20%. This prob-
ability of failure is consistent with the fact that about
20% of the length of the slope actually failed. Given
the accuracy with which such analyses can be made,
the close agreement between the probability of failure
and the fraction of the slope that failed is probably
fortuitous.

Because this slope was only temporary, it was ap-
propriate to compute the stability using undrained
shear strengths. However, if the slope was permanent,
much lower drained shear strengths would apply. As
the soil swells due to unloading by excavation, the
shear strength would gradually be reduced. Eventually,
the fully drained shear strength would become appli-
cable. Representative values of the drained (effective
stress) shear strength parameters for San Francisco Bay
mud are c� � 0, �� � 34.5� (Duncan and Seed, 1966b).
For a fully submerged slope and c� � 0, the factor of
safety can be calculated using the equation for an in-
finite slope as

tan �� tan 34.5�
F � � � 0.60 (7.31)

tan 
 1/0.875

Clearly, this factor of safety (0.60) is much less that
the factor of safety (1.17) based on undrained shear
strengths, indicating that a substantial reduction in fac-
tor of safety would have occurred if the excavated
trench had not been filled with sand.

Recapitulation

• Identical values for the factor of safety were ob-
tained using a computer program and a slope sta-
bility chart.

• Either submerged unit weights or total unit
weights and water pressures may be used to com-
pute the stability of a submerged slope when there
is no flow.



118 7 METHODS OF ANALYZING SLOPE STABILITY

+17.5'

+6'

-3'

-27'

Clay Fill

Marsh Clay

Brown
London Clay

Blue
London Clay

1:1

1:1

1/2:1

12'

6'

-31'

Original ground level

28'

48.5'

Figure 7.9 Cross section of excavated slope for reactor 1 at Bradwell. (From Skempton and
LaRochelle, 1965.)

Figure 7.10 Undrained shear strength profile for reactor 1
excavation slope at Bradwell. (From Skempton and La-
Rochelle, 1965.) Table 7.4 Summary of Short-Term Slope Stability

Analyses for an Excavated Slope in Stiff-Fissured
Clay: The Bradwell Slip

Procedure of slices
Factor of

safety

Spencer 1.76
Simplified Bishop 1.76
Corps of Engineers’ Modified Swedish 1.80
Simplified Janbu—no correction 1.63
Simplified Janbu—with correction, ƒ0 1.74

• Even though the calculated factor of safety was
greater than unity (1.17), the slope failed due to
creep strength loss.

• For an excavated slope, the short-term factor of
safety based on undrained conditions may be
much higher than the long-term factor of safety
based on drained conditions.

Example 3: Excavated Slope in Stiff-Fissured Clay

Skempton and LaRochelle (1965) describe a deep ex-
cavation in the London Clay at Bradwell. A cross sec-
tion of the excavation for reactor 1 is shown in Figure
7.9. The excavation is 48.5 ft deep. The lower 28 ft of
the excavation is in London Clay and is inclined at
(horizontal)�1(vertical). The London Clay is overlain1–2

by 9 ft of Marsh clay where the excavation slope was
inclined at 1�1 (45�). Approximately 11.5 ft of clay
from the excavation was placed at the top of the ex-
cavation, over the marsh clay. The clay fill was also
inclined at 1�1.

Short-term stability analyses were performed for the
slope using undrained shear strengths. The marsh clay
was reported to have an average undrained shear
strength of 300 psf and a total unit weight of 105 pcf.
The clay fill was assumed to crack to the full depth of
the fill (11.5 ft), and thus its strength was ignored.
Skempton and LaRochelle reported a total unit weight
of 110 pcf for the fill. The undrained shear strength
profile for the London Clay is shown in Figure 7.10.
The undrained shear strength increases at a decreasing
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Summations:

S
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N

o.

b
(ft)

10.8

hfill
(ft)

11.5

γfill
(pcf)

110

hmarsh
(ft)

γmarsh
(pcf)

4.5 105

hclay
(ft)

γclay
(pcf)

- -1

α
(deg)

39.8

Δ�
(ft)

14.1

c
(psf)

300

cΔ�

4,215

W sinα
W
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18,748 12,008
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14,873
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5,284

3,590

1,759

135,525 76,835

F = 135,525
76,835

= 1.76

Figure 7.11 Manual calculations by the Ordinary Method of Slices for short-term stability
of the slope at Bradwell.

rate with depth. A representative unit weight for the
London Clay at the site is 120 pcf.

Stability computations were first performed for this
example using a computer program and several pro-
cedures of slices. The resulting factors of safety are
summarized in Table 7.4. The values for the factor of
safety are as expected: Spencer’s procedure and the
Simplified Bishop procedure give identical values be-
cause they both satisfy moment equilibrium; there is
only one value for the factor of safety that will satisfy
moment equilibrium for a circular slip surface. The
Corps of Engineers’ Modified Swedish procedure, a
force equilibrium procedure, overestimates the factor
of safety compared to procedures that satisfy complete
equilibrium, as is commonly the case. The Simplified
Janbu procedure (force equilibrium with horizontal in-
terslice forces) without Janbu et al.’s (1956) correction
factor underestimates the factor of safety, as is also
typically the case. The correction factor, ƒ0, for the
Simplified Janbu procedure was calculated from the
following equation presented by Abramson et al.,
(2002):

2d d
ƒ � 1 � b � 1.4 (7.32)� � � �0 1 L L

where b1 is a factor that depends on the soil type (c
and �) and d /L represents the slide depth-to-length

ratio. For � � 0, b1 is 0.69 and the depth-to-length
ratio for the critical circle found for the Simplified
Janbu procedure is 0.13. The resulting correction factor
calculated from Eq. (7.32) is 1.07 and the corrected
factor of safety is 1.74 (� 1.07 � 1.63). This corrected
value (1.74) for the factor of safety by the Simplified
Janbu procedure agrees well with the value (1.76) cal-
culated by procedures that satisfy moment equilibrium.

The factor of safety was also calculated manually
using a spreadsheet program based on the Ordinary
Method of Slices. Because � is zero for this problem
and the Ordinary Method of Slices satisfies moment
equilibrium, the Ordinary Method of Slices should give
the same value for the factor of safety as Spencer’s
and the Simplified Bishop procedures. There is no need
to use a more complex procedure than the Ordinary
Method of Slices for this case. The calculations for the
Ordinary Method of Slices are shown in Figure 7.11.
As expected, the factor of safety is 1.76, which is the
same as the value shown previously for Spencer’s and
the Simplified Bishop procedures.

Although the factor of safety calculated for this
slope is almost 1.8, the slope failed approximately 5
days after excavation was completed. Skempton and
LaRochelle (1965) discuss the probable causes of fail-
ure. These include overestimates of the shear strength
due to testing of samples of small size, strength losses
due to sustained loading (creep), and the presence of
fissures. Skempton and LaRochelle concluded that the
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100 ft

50 ft

100 ft

2
1

2
1

Sand:
c = 0
φ = 40°
γ = 140 pcf

Saturated clay: su = 2500 (φ = 0)
γ = 140 pcf

r = 174 ft

Critical circle -
Spencers
procedure

Figure 7.12 Cohesionless fill slope on saturated clay foundation.

Table 7.5 Summary of Slope Stability Analyses for
a Cohesionless Embankment Supported by a
Saturated Clay Foundation

Procedure of slices
Factor of

safety

Spencer 1.19
Simplified Bishop 1.22
Corps of Engineers’ Modified Swedish 1.54
Simplified Janbu—no correction 1.07
Simplified Janbu—with correction aƒ0 1.16

aCorrection based on Eq. (7.32) with b1 � 0.5 and
d /L � 0.34; ƒ0 � 1.09.

opening of fissures and a lower, residual strength along
the fissures were probable causes of failure of the
slope, even though the factor of safety computed based
on undrained shear strengths was relatively high.

Recapitulation

• Spencer’s, the Simplified Bishop, and Ordinary
Method of Slices procedures all gave the same
value for the factor of safety for circular slip sur-
faces because � � 0, and all these procedures
satisfy moment equilibrium.

• The computer solution and the manual solution
using a spreadsheet gave the same value for the
factor of safety.

• The Corps of Engineers’ Modified Swedish pro-
cedure overestimated the factor of safety for this
case by a small amount (2%).

• The Simplified Janbu procedure without the cor-
rection factor applied underestimated the factor of
safety by about 7%.

• The corrected factor of safety by the Simplified
Janbu procedure agrees within 1% with the value
of the factor of safety calculated using methods
that satisfy moment equilibrium.

• Although the factor of safety for short-term sta-
bility was much greater than 1, the slope failed
approximately five days after construction, due to
several factors that influenced the shear strength.

Example 4: Cohesionless Slope on Saturated Clay
Foundation

The fourth example is for a hypothetical embankment
constructed of cohesionless granular material resting
on a saturated clay (� � 0) foundation, as shown in
Figure 7.12. The embankment is assumed to drain al-
most instantaneously, and thus its strength will not
change over time. The clay in the foundation is ex-
pected to consolidate with time and its strength is ex-

pected to increase with time. Therefore, the critical pe-
riod (lowest factor of safety) for the embankment
should be immediately after construction.

Soil shear strength and unit weight properties are
shown in Figure 7.12. Drained (effective stress) shear
strength parameters are shown for the embankment,
and undrained shear strengths are shown for the clay
foundation. Stability computations were first per-
formed using a computer program and several proce-
dures of slices. The minimum factors of safety for
various procedures are summarized in Table 7.5, and
the critical slip surface by Spencer’s procedure is
shown in Figure 7.12.

As expected, the Simplified Bishop procedure gives
a value for the factor of safety that is very close to the
one calculated by Spencer’s procedure. The Simplified
Janbu procedure without the correction factor applied
gives a factor of safety that is approximately 10%
lower, but the corrected value (1.16) agrees closely
with the values by the Simplified Bishop and Spencer’s
procedures. The Corps of Engineers’ Modified Swed-
ish procedure produced a factor of safety about 25%
higher than the value by Spencer’s procedure. The
much higher value clearly demonstrates the potentially
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unconservative nature of the Modified Swedish force
equilibrium procedure.

The factor of safety was also computed using the
Ordinary Method of Slices with a spreadsheet program
for the critical circle found by Spencer’s procedure.
The computations are shown in Figure 7.13. The com-
puted factor of safety is 1.08, approximately 10% less
than the value calculated using Spencer’s procedure.
Differences of this order (10%) are typical for cases
like this one where c and � vary significantly along
the slip surface.

As an additional, approximate check on the stability
of the embankment, the bearing capacity equation [Eq.
(7.10)] was used to calculate a factor of safety. This
gave

2500
F � 5.53 � 0.99 (7.33)

(140)(100)

Although the bearing capacity solution represented by
Eq. (7.33) underestimates the stability of the embank-
ment in this example, it provides a simple and con-
venient way of preliminary screening for potential
problems. In general, if the factor of safety for bearing
capacity is near or below 1, the factor of safety is likely
to be marginal and additional, more detailed analyses
are probably warranted.

Recapitulation

• Spencer’s procedure and the Simplified Bishop
procedure give very similar values for the factor
of safety.

• The Corps of Engineers’ Modified Swedish pro-
cedure can substantially overestimate the factor of
safety.

• The Simplified Janbu procedure without the cor-
rection factor applied underestimated the factor of
safety, but the value is improved by applying the
correction.

• The Ordinary Method of Slices underestimates the
factor of safety but provides a convenient way of
checking a computer solution using more accurate
methods.

• The simple equation for bearing capacity on a sat-
urated clay foundation gives a conservative esti-
mate of stability but provides a useful tool for
screening for stability problems.

Example 5: Cohesionless Embankment
(Oroville Dam)—Curved Mohr–Coulomb Envelope

The next example is of the Oroville Dam, in particular,
the stability of the downstream slope (Figure 7.14).

The downstream slope is composed of rockfill (am-
phibolite gravel). As for most granular materials, the
Mohr failure envelope is curved. Due to the great
height of the Oroville Dam (778 ft) and the large var-
iation in the pressures from the top to the bottom of
the embankment, the curved Mohr failure envelope re-
quires special consideration for the slope stability com-
putations.

Curved (nonlinear) Mohr failure envelope. For this
example the shear strength of the downstream shell
material is characterized by a secant friction angle
(i.e., tan �� � �ƒ / ), which represents the slope of a��ƒ
line drawn from the origin of the Mohr diagram to a
point on the Mohr failure envelope. As discussed in
Chapter 5, the secant friction angle varies with confin-
ing pressure and can be related to the minor principal
stress, by��3

��3�� � � � �� log (7.34)0 10 pa

where �0 is the friction angle for a confining pressure
( ) of 1 atm, �� is the change in friction angle per��3
log-cycle (10-fold) change in confining pressure, and
pa is atmospheric pressure. Duncan et al. (1989) sum-
marize shear strength data for the Oroville dam and
report values of �0 � 51� and �� � 6� for the shell
material.

For slope stability computations the shear strength
needs to be defined by a Mohr failure envelope that
expresses the shear strength, �, as a function of the
normal stress, � or ��, depending on whether total or
effective stress analyses are being performed. The nor-
mal stress, ��, should be the normal stress on the fail-
ure plane at failure, . The relationship between��ƒƒ

and confining pressure, , depends on the shear�� ��ƒƒ 3

strength parameters. For a cohesionless soil (c� � 0)
the relationship is expressed as

2cos ��
�� � �� (7.35)ƒƒ 3ƒ 1 � sin ��

Ratios of to are tabulated in Table 7.6 for a�� ��ƒƒ 3ƒ

range in friction angles that are representative for gran-
ular materials. The ratios shown in Table 7.6 vary with
friction angle; however, it is convenient to assume that
the ratio, is constant and equal to 1.5 for any�� / /��ƒƒ 3ƒ

value of ��. This assumption has very little effect on
the Mohr failure envelope that is subsequently com-
puted. To illustrate this, consider a material with a
value of �0 of 40� and �� of 10�. Computation of the
friction angles, ��, for values of effective normal
stress, �� (� ), of 100, 1000, and 10,000 psf are��ƒƒ

shown in Table 7.7. For each value of the effective
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Figure 7.14 Cross section of Oroville Dam.
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Table 7.6 Relationship Between the Ratio �� /��ƒƒ 3ƒ

and the Friction Angle

��

(deg)
��ƒƒ

��3ƒ

30 1.50
40 1.64
50 1.77

Table 7.7 Computed Secant Friction Angles for Different Confining Pressures and Various Assumed Values for
the Ratio �� /��ƒƒ 3

��ƒƒ

(psf)

� 1.5
��ƒƒ

��3ƒ

��3
(psf)

��

(deg)

� 1.65
��ƒƒ

��3ƒ

��3
(psf)

��

(deg)

��ƒƒ � 1.8
��3ƒ

��3
(psf)

��

(deg)

100 67 55.0 61 55.4 56 55.8
1,000 667 45.0 606 45.4 556 45.8

10,000 6,667 35.0 6,061 35.4 5556 35.8

Table 7.8 Points Calculated to Define the Nonlinear
Mohr Failure Envelope for the Oroville Dam Shell
Material

�� ��3 �� �

150 100 59.0 250
300 200 57.1 465
600 400 55.3 870

1,200 800 53.5 1,625
2,400 1,600 51.7 3,040
4,800 3,200 49.9 5,705
9,600 6,400 48.1 10,705

19,200 12,800 46.3 20,100
38,400 25,600 44.5 37,740
76,800 51,200 42.7 70,865

153,600 102,400 40.9 133,015

normal stress, the confining pressure, , was com-��3ƒ

puted assuming values of 1.5, 1.65, and 1.8 for the
ratio . The resulting confining pressures were�� /��ƒƒ 3ƒ

then used to compute the friction angles from Eq.
(7.34). The assumed value for the ratio, , can�� /��ƒƒ 3ƒ

be seen to have very little effect on the friction angle
computed for a given confining pressure. The maxi-
mum difference between the friction angles computed
assuming 1.5 and 1.8 for the ratio, , was only�� /��ƒƒ 3ƒ

0.8�. The shear stress, , defining the Mohr failure�ƒƒ

envelope for a given normal stress, , is computed��ƒƒ

by multiplying the normal stress by the tangent of the
friction angle (i.e., �ƒƒ � tan ��). A 0.8� difference��ƒƒ

in the friction angle corresponds to a difference of no
more than 3% in the shear stress. If it is assumed that
the ratio, , is 1.5 when the value may actually�� /��ƒƒ 3ƒ

be somewhat higher, the resulting value for the friction
angle will be estimated slightly conservatively.

Based on the preceding discussion, a nonlinear
Mohr failure envelope was determined for the Oroville
Dam shell material using values of �0 � 51� and
�� � 6�, and assuming that � 1.5. The en-�� /��ƒƒ 3ƒ

velope was defined by a series of discrete points com-
puted using the following steps:

1. A range in values of normal stress was
established to encompass the maximum range ex-
pected for Oroville Dam. The minimum normal

stress of interest was considered to be the normal
stress at a depth of 1 ft, which for a total unit
weight of 150 pcf was taken to be 150 psf. The
maximum normal stress was estimated based on
the height of the dam. For a height of 770 ft and
a unit weight of 150 pcf, the maximum stress is
approximately 115,000 psf.

2. Specific values of normal stress, ��, ranging from
150 psf to the maximum were selected for com-
puting points defining the Mohr–Coulomb failure
envelope. Beginning with the minimum stress of
150 psf, a geometric progression of values was
used (e.g., 150, 300, 600, 1200 psf). Particular
attention was paid to selecting points at low
stresses because it was anticipated that the critical
slip surface would be relatively shallow due to
the cohesionless nature of the Oroville Dam shell
material.

3. For each value of normal stress the corresponding
value of the confining pressure was computed as
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Figure 7.15 Critical circular slip surface for downstream
slope of Oroville Dam.

Fill: φ = 30°, γ = 20 kN/m3

Clay "crust": Su = 41 kN/m2, φ = 0, γ = 20 kN/m3

Marine clay: Su = 34.5 kN/m2, φ = 0, γ = 18.8 kN/m3

Lacustrine clay: Su = 31.2 kN/m2, φ = 0, γ = 20.3 kN/m3

Till (very strong)

12 ft

4 ft

8 ft

6.5 ft

6 ft
3

1
3

1

56.3

6 ft

Figure 7.16 Cross section of James Bay dike.

��
�� � (7.36)3 1.5

4. Secant values of the friction angle were com-
puted for each value of from Eq. (7.34) as��3

��3�� � 51� � 6� log (7.37)10 pa

where pa (atmospheric pressure) is 2116 psf for
units of pounds and feet that were used.

5. Shear stresses, �, were calculated for each value
of normal stress from

� � �� tan �� (7.38)

The values calculated for the Oroville Dam shell
material are summarized in Table 7.8. The pairs of val-
ues of �� and � were used as points defining a nonlin-
ear Mohr failure envelope for the slope stability

computations. Although not shown in this table, an ad-
ditional point representing the origin (�� � 0, � � 0)
was included in the data defining the envelope for the
slope stability computations. Nonlinear Mohr failure
envelopes were also defined for the transition zone and
the core of Oroville Dam; however, because the critical
slip surface did not pass significantly through these
zones, the shear strength data are not included here.

Slope stability computations. Slope stability com-
putations were performed using the computer program
and the nonlinear Mohr failure envelopes discussed
earlier. Computations were performed using Spencer’s
procedure and circular slip surfaces. The critical slip
surface is shown in Figure 7.15, and the minimum fac-
tor of safety is 2.28.

One way of checking the computer solution is to
calculate the factor of safety manually using a proce-
dure of slices such as the Ordinary Method of Slices
or Simplified Bishop procedure. The friction angle
could be varied for each slice depending on the normal
stress, ��. This is easiest to do with the Ordinary
Method of Slices because the normal stress can be cal-
culated independently of the shear strength using the
following equation

2W cos � � u �l cos �
�� � (7.39)

�l

With the Simplified Bishop procedure, the normal
stress depends on the friction angle (i.e., the normal
stress is part of the solution for the unknowns). There-
fore, the normal stress must first be estimated to com-
pute the friction angle, and then trial and error is used
until the estimated and calculated values are in reason-
able agreement. To estimate the friction angle initially
for the Simplified Bishop procedure, either the normal
stress can be estimated from the vertical overburden
pressure or the normal stress can be calculated from
Eq. (7.39) from the Ordinary Method of Slices.
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Fill

Clay "crust"

Marine clay

Lacustrine clay

Till (very strong)

Critical circle, F = 1.45

Critical noncircular slip 
surface, F = 1.17

Figure 7.17 Critical circular and noncircular slip surfaces for James Bay dike.

Because the critical slip surface for the downstream
slope was relatively shallow for this case, the infinite
slope procedure was used to check the results of the
computer solution. To do this the average normal stress
was calculated for the critical slip surface found from
the computer solution. The average normal stress was
calculated using the equation

� �l� i i
�� � (7.40)av �l� i

where the summations were performed for all slices.
The average normal stress calculated for the critical
slip surface was 12,375 psf. From the nonlinear Mohr
failure envelope in Table 7.8, the corresponding shear
stress, �, is 13,421 psf and the equivalent secant fric-
tion angle is 47.3�. The factor of safety based on an
infinite slope is then

tan �� tan 47.3�
F � � � 2.17 (7.41)

tan 
 1/2.0

This value (2.17) from the infinite slope analysis is
within 5% of the value of 2.28 obtained from the com-
puter solution with circular slip surfaces.

Recapitulation

• When the friction angle depends on the confining
stress, the friction angle is expressed conveniently
by a secant angle, which is a function of confining
pressure, �3. This requires additional steps to de-
termine an equivalent nonlinear Mohr failure en-
velope for slope stability analyses.

• To relate confining pressure, �3, to normal stress,
�, for a nonlinear Mohr failure envelope, the con-
fining pressure can be assumed to be equal to two-
thirds (� 1/1.5) the normal stress. This facilitates
defining points on the Mohr failure envelope
when the friction angle is defined in terms of con-
fining pressure, �3.

• For shallow slides in cohesionless soils, stability
computations can be checked with an infinite
slope analysis, even when the Mohr failure en-
velope is nonlinear. When the Mohr failure
envelope is nonlinear, the average normal stress
on the slip surface from a computer solution
can be used to define an equivalent secant fric-
tion angle that is then used in the infinite slope
analysis.
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Example 6: James Bay Dike

The James Bay hydroelectric project involved the de-
sign of dikes that were to be constructed on soft and
sensitive clays (Christian et al., 1994). A typical cross
section of one of the planned dikes is shown in Figure
7.16. Soil properties for the materials in the dike and
its foundation are summarized in this figure.

An analysis was first performed using circular slip
surfaces, with a computer program and Spencer’s pro-
cedure. The minimum factor of safety was calculated
to be 1.45 for the critical circle, which is shown in
Figure 7.17. This value of 1.45 for the factor of safety
is the same as the value (1.453) that Christian et al.
reported for the slope.

Additional analyses were performed using noncir-
cular slip surfaces and an automatic search. The au-
tomatic search was started with the critical circle from
the previous analyses. Ten points were used to define
the slip surface. These points were shifted systemati-
cally using the search routine implemented in the com-
puter program until a minimum factor of safety was
found. The corresponding critical noncircular slip sur-
face was then adjusted by adding some points and re-
moving others. Points were adjusted so that there was
a point located at the interfaces between soil layers,
and these points were shifted in the horizontal direc-
tion until the minimum factor of safety was again
found. The most critical noncircular slip surface found
after searching is shown in Figure 7.17. The corre-
sponding minimum factor of safety is 1.17, which is
approximately 20% less than the minimum value com-
puted using circles.

Christian et al. (1994) discussed the effects of vari-
ations and uncertainties in shear strength on the com-
puted factors of safety for the James Bay dikes. They
showed that the variation in shear strength could have
an important effect on the evaluation of stability. The
results presented in the preceding paragraph show that
the effect of using noncircular slip surfaces is of com-
parable magnitude, thus illustrating the importance of
locating the critical slip surface accurately.

To verify the computations with noncircular slip sur-
faces, additional computations were performed using a
force equilibrium procedure and a computer spread-
sheet program. For these computations the interslice
forces were assumed to be parallel; the interslice force
inclination was assumed to be the same as the incli-
nation (2.7 degrees) determined from the computer so-
lution with Spencer’s procedure. The spreadsheet
computations are presented in Figure 7.18. The com-
puted factor of safety was 1.17, thus verifying the
value calculated using the computer program.

Recapitulation

• Noncircular slip surfaces may give significantly
lower factors of safety than circles.

• The critical circle provides a good starting point
for searching for the critical noncircular slip sur-
face.

• A force equilibrium solution using a spreadsheet
with the interslice force inclination from Spen-
cer’s procedure provides a good method for
checking a computer solution with Spencer’s pro-
cedure and is applicable to circular and noncir-
cular slip surfaces.

Example 7: Homogeneous Earth Dam with
Steady-State Seepage

A homogeneous earth embankment resting on a rela-
tively impervious foundation is illustrated in Figure
7.19. The embankment impounds water on one side,
and steady-state seepage is assumed to have developed.
Stability computations were performed for this em-
bankment to evaluate the long-term stability of the
downstream slope. Drained effective stress shear
strength parameters were used and are shown on the
cross section of the embankment.

Pore water pressures. Finite element seepage anal-
ysis was performed for the embankment to calculate
pore water pressures. The GMS/SEEP2D software was
used for this purpose (Tracy, 1991; EMRL, 2001). The
entire cross section of the embankment was modeled
with finite elements, and appropriate saturated or un-
saturated hydraulic conductivities were assigned de-
pending on the pore water pressure. The hydraulic
conductivity for the saturated soil (positive pressures)
was 1 � 10�5 ft /min. The hydraulic conductivity for
the unsaturated soil was assumed to decrease sharply
to a residual hydraulic conductivity equal to 0.1% of
the value for saturated conditions as the water pres-
sures decreased below atmospheric. This essentially re-
stricted almost all flow to the saturated (positive water
pressure) zone of the cross section. The finite element
mesh used for this problem contained 589 node points
and 1044 elements.

Finite element seepage analyses produced values of
pore water pressure at each node point. These values
of pore water pressure were then used to interpolate
values of pore water pressure along each slip surface
in the slope stability computations. Interpolation was
performed using the triangle-based interpolation
scheme described by Wright (2002). This scheme is
very efficient and introduces negligible error caused by
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Figure 7.19 Cross section for homogeneous embankment with steady-state seepage.

Figure 7.20 Zero-pressure line (contour) used as phreatic surface and piezometric line for
homogeneous embankment.

Table 7.9 Summary of Factors of Safety from Slope
Stability Computations for Homogeneous
Embankment Subjected to Steady-State Seepage
(Spencer’s Procedure and Circular Clip Surfaces)

Procedure of slices
Factor of

safety

Finite element seepage analysis—
pore water pressures interpolated

1.19

Piezometric line 1.16
Phreatic surface 1.24

interpolation. In fact, many fewer nodes and elements
could probably have been used for the finite element
seepage analysis with no loss in accuracy in the com-
puted factor of safety (Wright, 2002).

The finite element seepage analysis was also used
to determine a position for a phreatic surface and a
piezometric line (Figure 7.20). The phreatic surface
and piezometric line were assumed to be the same as
the line of zero pore water pressure determined from
contours of pore water pressure obtained from the fi-
nite element seepage analysis. Experience with a num-
ber of finite element seepage analyses where both
saturated and unsaturated flow has been modeled has
shown that the contour of zero pore water pressure
corresponds very closely to the classical line of seep-
age described by Casagrande (1937) for saturated flow.

For the slope stability computations, pore water
pressures were calculated from the phreatic surface and
piezometric line using the procedures discussed in
Chapter 6. The pore water pressures calculated from
the phreatic surface were always as small as or smaller
than those based on the piezometric line and were usu-
ally slightly larger than those based on the actual finite
element seepage analysis.

Although the pore water pressures calculated in the
finite element analyses were negative in the uppermost
part of the flow region, above the piezometric line and
phreatic surface, negative pore water pressures were
neglected in all of the slope stability calculations. Neg-
ative pore water pressures probably would exist and

would contribute slightly to stability, but their effect
would be small for this problem and it seems reason-
able to neglect them. Only when negative pore water
pressures can be sustained throughout the life of the
slope should they be counted on for stability. Sustain-
able negative pore water pressures seem unlikely for
most slopes.

Stability analyses. Slope stability calculations were
first performed using a computer program and each of
the three representations of pore water pressure dis-
cussed above. Spencer’s procedure was used for all of
the calculations. In each case an automatic search was
conducted to locate the most critical circle for each
representation of pore water pressures. The minimum
factors of safety are summarized in Table 7.9. All three
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(1) hpiezometric = depth below piezometric line to slip surface.
(2) u = γw x hpiezometric
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Figure 7.21 Manual calculations for stability of embankment with steady-state seepage us-
ing the Ordinary Method of Slices (the preferred method of representing pore water pres-
sures).

representations of pore water pressure produced simi-
lar values for the factor of safety, with the differences
between the rigorous finite element solution and the
approximate representations being 4% or less. As ex-
pected, the piezometric line produced lower factors of
safety than the phreatic surface, although the differ-
ences were small. The phreatic surface did, however,
result in a higher factor of safety than the rigorous
finite element solution, and thus this approximation
errs on the unsafe side for these conditions.

A manual solution using a computer spreadsheet
program and the Ordinary Method of Slices was per-
formed as verification of the computer solutions. Cal-
culations were performed using both the preferred and
alternative methods of handling pore water pressures
in the Ordinary Method of Slices that were discussed
in Chapter 6. For both sets of calculations the pore
water pressures were calculated using the piezometric
line.

The calculations for the Ordinary Method of Slices
are presented in Figures 7.21 and 7.22 for the preferred
and alternative methods, respectively. Using the pre-

ferred method of handling pore water pressures, the
factor of safety was 1.19 (Figure 7.21). This value is
identical to the value calculated using the finite ele-
ment seepage solution and slightly higher than the
value with the piezometric line based on the computer
solutions with Spencer’s procedure. The other, alter-
native method of handling pore water pressures in the
Ordinary Method of Slices resulted in a lower factor
of safety of 1.08, which is approximately 10% lower
than the other solutions. This is consistent with what
was shown in Chapter 6 for the Ordinary Method of
Slices and illustrates why the form of the method il-
lustrated in Figure 7.21 is preferred.

The final set of calculations was performed using
the charts in the Appendix and are summarized in Fig-
ure 7.23. The factor of safety from the chart solution
is 1.08. This value is slightly lower than the values
from the more accurate computer solutions. The
slightly lower value from the chart solution probably
reflects use of the Ordinary Method of Slices to de-
velop the charts as well as other approximations that
are made regarding seepage and pore water pressures.
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(1) hpiezometric = depth below piezometric line to slip surface.
(2) u = γw x hpiezometric
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Figure 7.22 Manual calculations for stability of embankment with steady-state seepage us-
ing the Ordinary Method of Slices (a poor method of representing pore water pressures).

Nevertheless, the chart solution confirms the validity
of the other more accurate solutions for this example
and is conservative.

Recapitulation

• The zero-pressure line from finite element seep-
age analysis can be used to define an equivalent
piezometric line and phreatic surface.

• Pore water pressures determined by interpolation
of pressures from finite element seepage analysis
and pore water pressures represented by an equiv-
alent piezometric line and a phreatic surface all
produced similar factors of safety, with pore water
pressures from a piezometric line producing the
lowest factors of safety.

• The form of the Ordinary Method of Slices rec-
ommended for effective stress analyses in Chapter
6 produces much better agreement with complete
equilibrium procedures than the alternative form.

Example 8: Earth Dam with Thick Core—
Steady-State Seepage

A series of stability computations similar to those for
the preceding example was performed for the earth
dam shown in Figure 7.24. Soil properties for the core
and shell of the dam are shown in the figure. The pri-
mary purposes of this example were to illustrate with
additional computations the differences among various
methods for representing pore water pressures in a
slope stability analysis and to present results of a
spreadsheet solution using the Simplified Bishop pro-
cedure for effective stress analyses.

Pore water pressures were calculated from a finite
element analysis with GMS/SEEP2D software. A pi-
ezometric line and phreatic surface were determined
from the finite element analysis by locating the zero-
pressure line as described for the preceding example.
Slope stability computations were performed for the
three representations of pore water pressure using the
computer program and Spencer’s procedure with cir-
cular slip surfaces. Results of these calculations are
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Figure 7.23 Calculations for stability of homogeneous embankment with steady-state seep-
age using Janbu’s slope stability charts.
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Figure 7.24 Cross section and soil properties for earth dam with thick clay core.
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Table 7.10 Summary of Slope Stability Calculations
for Dam with Clay Core (Spencer’s Procedure and
Circular Clip Surfaces)

Procedure of slices
Factor of

safety

Finite element seepage analysis—
pore water pressures interpolated

1.69

Piezometric line 1.67
Phreatic surface 1.70

summarized in Table 7.10. The results shown in this
table are very similar to those shown for the homo-
geneous dam in the preceding example: The piezo-
metric line produces a slightly lower factor of safety
that the more rigorous interpolation of pore water pres-
sures, while the phreatic surface approximation pro-
duces a slightly higher value for the factor of safety.
All three representations in this case produce very sim-
ilar values for the factor of safety.

Additional computations were performed using the
computer program with the Simplified Bishop proce-
dure and the piezometric line to represent pore water
pressures. The factor of safety calculated by the Sim-
plified Bishop procedure was 1.61, which is approxi-
mately 4% less than the corresponding value (1.67) by
Spencer’s procedure. One of the purposes of calculat-
ing the factor of safety by the Simplified Bishop pro-
cedure was to be able to compare the value from the
computer solution with a manual solution using a
spreadsheet. Results of the spreadsheet solution for the
critical circle found with the Simplified Bishop pro-
cedure are summarized in Figure 7.25. The factor of
safety calculated by the spreadsheet solution (1.61) is
the same as the value calculated with the computer
program.

Recapitulation

• Conclusions similar to those reached for the ho-
mogeneous dam can be drawn regarding the rep-
resentations of pore water pressures: All three
representations of pore water pressure produced
similar results, with the piezometric line produc-
ing the lowest factors of safety.

• The Simplified Bishop procedure provides an ex-
cellent check of a computer solution for effective
stress analyses with circular slip surfaces.

Example 9: Reinforced Slope (1)

This and the next example were selected to demon-
strate how results obtained using one computer pro-

gram may be verified using another computer program.
The two examples chosen are part of the user’s docu-
mentation for the STABGM 2.0 slope stability soft-
ware (Duncan et al., 1998). The first example involves
an embankment resting on a soft, saturated clay foun-
dation with a single layer of reinforcement at the base
of the embankment (Figure 7.26). Because the clay in
the foundation will consolidate with time and become
stronger under the weight of the overlying embank-
ment, the short-term stability condition is most critical
and was selected for analyses. The undrained shear
strength profile for the foundation is shown along with
the other soil properties in Figure 7.26.

Stability computations were performed with the
UTEXAS4 computer program using the Simplified
Bishop procedure. An automatic search was conducted
to find the most critical slip surface, giving a minimum
factor of safety of 1.13. This value is approximately
5% less than the value of 1.19 that is reported in the
STABGM user’s documentation. Differences of this
magnitude (5%) are larger than normally expected
when two different computer programs are used, pro-
vided that both programs use the same input data and
the same procedures for computation. In the present
case the relatively large difference is due to differences
in the degree of refinement of the search used to locate
a critical slip surface. The critical circle reported using
STABGM is shown in Figure 7.27 along with the crit-
ical circle found using UTEXAS4. With STABGM,
circles were only investigated at depths corresponding
to the bottom of each soil layer shown in Figure 7.27.
With UTEXAS4, circles were also investigated at in-
termediate depths, and a more critical circle was found.
STABGM would probably have given the same factor
of safety as UTEXAS4 had a more refined search been
used in the STABGM analyses.

An additional set of stability calculations was per-
formed with UTEXAS4 for the critical circle from
STABGM. The computed factor of safety for this circle
with UTEXAS4 was 1.19, which is identical to the
value reported by STABGM. This confirms that the
differences in factor of safety reported earlier were due
to the input data for the automatic search rather than
to differences between the two programs. The close
agreement in results when comparable conditions are
used verifies the correctness of the results for this case.

Recapitulation

• One computer program may be used to verify re-
sults obtained by another computer program.

• When comparing results from two different com-
puter programs, it is important to compare results
for the same conditions, including the same slope
geometry, soil properties, and slip surface.
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(1) hpiezometric = depth below piezometric line to slip surface.
(2) u = γw x hpiezometric
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Figure 7.25 Manual calculations for stability of clay core dam with steady-state seepage
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Figure 7.26 Soil properties and slope geometry for reinforced embankment on a soft clay
foundation from the STABGM user’s documentation.
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Figure 7.27 Critical circles for reinforced embankment on a soft clay foundation.
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Figure 7.29 Critical circles for reinforced slope on rock
foundation.

Example 10: Reinforced Slope (2)

This example is for a reinforced fill slope resting on a
much stronger soil foundation and is also described in
the STABGM 2.0 user’s manual (Duncan et al., 1998).
The slope and soil properties are presented in Figure
7.28. The soil in the slope is assumed to drain freely,
and thus long-term stability computations were per-
formed using shear strengths expressed in terms of
effective stresses. The slope contains six layers of
reinforcement, beginning at the bottom of the slope
and spaced 4 ft apart vertically. Each reinforcement
layer is 20 ft long, with a tensile force of 800 lbs per
lineal foot, decreasing linearly to zero over the final 4
ft of embedded length.

Slope stability analyses were performed using
UTEXAS4 with circular slip surfaces and Spencer’s
procedure. The minimum factor of safety calculated
was 1.61. This value is less that the value of 1.71 that
is reported by Duncan et al. using STABGM 2.0, rep-
resenting a difference of approximately 6% in the fac-
tor of safety. As discussed for the preceding example,
differences of this magnitude (5 to 6%) are larger than
expected for two computer programs if the same con-
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ditions are analyzed. Subsequently, an analysis was
performed using UTEXAS4 and the critical circle that
was found using SSTABGM 2.0. The factor of safety
was then calculated to be 1.71, which is identical to
the value reported by Duncan et al. for the critical cir-
cle found using STABGM. The critical circles found

using UTEXAS4 and STABGM 2.0 are plotted in Fig-
ure 7.29. It can be seen that the two circles are differ-
ent. If a more refined search had been conducted with
STABGM 2.0, it is likely that the minimum factor of
safety would have been similar to the minimum factor
of safety (1.61) found with UTEXAS4.
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CHAPTER 8

Reinforced Slopes and Embankments

Reinforcement can be used to improve the stability of
slopes and embankments, making it possible to con-
struct slopes and embankments steeper and higher than
would otherwise be possible. Reinforcement has been
used in four distinct types of applications:

1. Reinforced slopes. Multiple layers of reinforce-
ment at various elevations within fill slopes have
been used to increase the factor of safety for slip
surfaces that cut through the reinforcement, mak-
ing it possible to construct slopes steeper than
would be possible without reinforcement.

2. Reinforced embankments on weak foundations.
Reinforcement at the bottom of an embankment
on a weak foundation can increase the factor of
safety for slip surfaces passing through the em-
bankment, making it possible to construct the
embankment higher than would be possible with-
out reinforcement.

3. Reinforced soil walls or mechanically stabilized
earth walls. Several different proprietary systems
have been developed for reinforced soil walls,
which are used as alternatives to conventional re-
taining walls. Most of the companies that market
MSE walls have developed proprietary design
procedures. The stability of MSE walls can also
be evaluated using the methods described in this
chapter.

4. Anchored walls. Vertical soldier pile walls or
slurry trench concrete walls can be ‘‘tied back’’
or anchored at one or more levels to provide ver-
tical support for excavations or fills. Anchored
walls have been used in both temporary and per-
manent applications. The methods described in
this chapter can be used to evaluate the stability
of anchored walls.

LIMIT EQUILIBRIUM ANALYSES WITH
REINFORCING FORCES

Reinforced slopes can be analyzed using the proce-
dures described in Chapter 6 by including the rein-
forcement forces in the analyses as known forces.
Zornberg et al. (1998a,b) have shown through centri-
fuge tests that limit equilibrium analyses provide valid
indications of factor of safety and failure mechanisms
for reinforced slopes. Their analyses, which agreed
well with the results of their tests, were performed us-
ing peak values of �� rather than the lower critical-
state friction angle of the backfill soil.

The amount of force required to achieve a target
value of factor of safety can be determined using re-
peated trials, varying the magnitude of the force until
the factor of safety computed is the one desired. Some
computer programs can perform this operation auto-
matically—the input is the desired factor of safety, and
the output is the required reinforcement force. This
type of program is better adapted to design of rein-
forced slopes, since there is no need for repeated anal-
yses.

FACTORS OF SAFETY FOR REINFORCING
FORCES AND SOIL STRENGTHS

Two methods have been used for limit equilibrium
analyses of reinforced slopes.

• Method A. The reinforcement forces used in the
analysis are allowable forces and are not divided
by the factor of safety calculated during the slope
stability analysis. Only the soil strength is divided
by the factor of safety calculated in the slope sta-
bility analysis.
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Figure 8.1 Check problem for determining whether a com-
puter program is using method A or method B for analysis
of reinforced slopes.

• Method B. The reinforcement forces used in the
analysis are ultimate forces, and are divided by
the factor of safety calculated in the slope stability
analysis. Both the reinforcing force and the soil
strength are divided by the factor of safety cal-
culated in the slope stability analysis.

Method A is preferable, because the soil strength
and the reinforcement forces have different sources of
uncertainty, and they therefore involve different
amounts of uncertainty. Factoring them separately
makes it possible to reflect these differences.

When a computer program is used to analyze rein-
forced slopes, it is essential to understand which of
these methods is being used within the program, so
that the appropriate measure of reinforcing force (al-
lowable force or ultimate force) can be specified in the
input for the analysis.

If the documentation of a computer program does
not specify whether the reinforcement force should be
allowable or ultimate, this can be deduced from the
equations employed to compute the factor of safety.

Method A Equations

If the factor of safety for circular slip surfaces is de-
fined by an equation of the form

soil resisting moment
F �

overturning moment � reinforcement moment

(8.1)

or, more generally, if the factor of safety is defined by
an equation of the form

shear strength
F � (8.2)

shear stress required for equilibrium
� reinforcement resistance

the program uses method A, and the reinforcement
forces specified in the input should be allowable
forces, denoted here as Pall.

Method B Equations

If the factor of safety for circular slip surfaces is de-
fined by an equation of the form

soil resisting moment � reinforcement moment
F �

overturning moment

(8.3)

or, more generally, by an equation of the form

shear strength � reinforcement resistance
F �

shear stress required for equilibrium

(8.4)

the program uses method B, and the reinforcement
forces specified in the input should be the unfactored
long-term load capacity of the reinforcement, denoted
here as Plim.

If it is not clear which method is used by a computer
program, this can be determined by analyzing the re-
inforced slope problem shown in Figure 8.1. This slope
is 20 ft high and is inclined at 2.0 vertical on 1.0 hor-
izontal. The soil within the slope is uniform, with � �
100 pcf, � � 0, and c � 500 psf. There is a firm layer
beneath the toe. A reinforcing force of 10,000 lb/ft
acts horizontally at midheight, 10 ft above the toe of
the slope. Results for two analyses are shown in Figure
8.1. The analyses considered only circular slip surfaces
tangent to the top of the firm layer. The critical circles,
located as shown in Figure 8.1, exit slightly above the
toe of the slope.

The method used by any computer program can be
determined based on the computed factor of safety:
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• If the program computes F � 2.19, the program
uses method A. Allowable reinforcement forces
should be used with the program.

• If the program computes F � 1.72, the program
uses method B. Ultimate reinforcement forces
should be used with the program.

Slight deviations from F � 2.19 or F � 1.72 can be
expected, depending on the number of slices used by
the program, and the method used to locate the critical
circle. The differences should be no more than 1 or
2%, however.

TYPES OF REINFORCEMENT

The principal types of reinforcing materials that have
been used for slopes and embankments are geotextile
fabrics, geogrids, steel strips, steel grids, and high-
strength steel tendons. Geotextiles are manufactured by
weaving polymeric fibers into a fabric or by matting
the fibers together to form a continuous nonwoven fab-
ric. Woven geotextiles are stiffer and stronger than
nonwoven geotextiles and more useful for reinforced
slope applications. Geogrids are manufactured by
stretching sheets of polymer plastic in one or both di-
rections to form a high-strength grid. Stretching the
polymeric materials makes them stiffer and stronger.
Galvanized or epoxy-coated steel strips have been used
for slope reinforcement. The strips usually have raised
ribs to increase their pullout resistance. Welded mild
steel mats or grids have also been used for reinforcing
slopes and embankments.

Key sources of information about geosynthetic re-
inforcing for slopes are the book by Koerner (1998),
which contains a great deal of information on the fun-
damental characteristics and properties of polymers,
geotextiles, and geogrids, and the FHWA (2000) pub-
lication entitled Mechanically Stabilized Earth Walls
and Reinforced Soil Slopes: Design and Construction
Guidelines, which covers a wide range of subjects re-
lated to geotextiles, geogrids, steel strips, and steel
grids, and their use in reinforced walls and slopes.

REINFORCEMENT FORCES

The long-term capacity of reinforcement, denoted here
as Tlim, depends on the following factors:

• Tensile strength. For steel, the tensile strength is
the yield strength. For geosynthetics, the tensile

strength is measured using short-term wide-width
tensile tests.

• Creep characteristics. Steel does not creep appre-
ciably, but geosynthetic materials do. The tensile
loads used for design of geotextile- and geogrid-
reinforced walls must be reduced to values lower
than those measured in short-term tensile tests, to
stresses that are low enough so that little or no
creep deformation will occur over the design life
of the structure.

• Installation damage. Geotextiles and geogrids are
subject to damage during installation that results
in holes and tears in the material. Epoxy-coated
and PVC coatings on steel are subject to damage
during installation, and galvanization is therefore
preferred for corrosion protection.

• Durability. The mechanical properties of geosyn-
thetics are subject to deterioration during service
as a result of attack by chemical and biological
agents. Steel is subject to corrosion.

• Pullout resistance. Near the ends of the reinforce-
ment, capacity is limited by the resistance to pull-
out, or slip between the reinforcement and the soil
within which it is embedded.

• Reinforcement stiffness and tolerable strain within
the slope. To be useful for slope reinforcement,
the reinforcing material must have stiffness as well
as strength. A very strong but easily extensible
rubber band would not provide effective reinforce-
ment, because it would have to stretch so much to
mobilize its tensile capacity that it would not be
able to limit the deformation of the slope.

Values of Tlim, the long-term capacity of reinforcing
materials, must satisfy the following three criteria:

1. Tlim � capacity determined by short-term tensile
strength, creep, installation damage, and deteri-
oration of properties over time.

2. Tlim � capacity determined by pullout resistance.
3. Tlim � capacity determined by stiffness and tol-

erable strain.

Methods of applying these requirements to geosyn-
thetics and steel reinforcing are described in the fol-
lowing sections.

Criterion 1: Creep, Installation Damage, and
Deterioration in Properties over Time

Geotextiles and geogrids. The effects of creep, in-
stallation damage, and long-term deterioration on
geosynthetic materials can be evaluated using the
expression
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Table 8.2 Corrosion Rates for Steel Reinforcement
in Mildly Corrosive Backfill

Material
corroding

Period of
time

Corrosion
rate

(	m/yr)
Corrosion ratea

(in. /yr)

Zinc First two years 15 5.9 � 10�4

Zinc Thereafter 4 1.6 � 10�4

Carbon steel Thereafter 12 4.7 � 10�4

aThese corrosion rates are applicable for steel reinforce-
ment in backfill with these electrochemical properties: Re-
sistivity greater than 3000 � � cm, pH between 5 and 10,
chlorides less than 100 ppm, sulfates less than 200 ppm,
organic content less than 1%.

Source: After FHWA (2000).

Table 8.1 Reduction Factors for Tensile Strengths of
Geotextiles and Geogrids for Use in Eq. (8.5)

Reduction for: Factor Polymer
Range of
valuesa

Creep RFCR Polyester 1.6–2.5
Polypropylene 4.0–5.0
Polyethylene 2.6–5.0

Installation
damage

RFID Any polymer 1.1–3.0

Deterioration
in service

RFD Any polymer 1.1–2.0

aThese values (from FHWA, 2000) are applicable to
reinforcement in granular soils with maximum particle
sizes up to 19 mm, values of pH from 4.5 to 9.0, and in-
service temperatures below 30�C. Geotextiles weighing
less than 270 g/m2 are subject to greater damage during
installation and should not be used for reinforcement.

TultT � (8.5)lim (RF )(RF )(RF )CR ID D

where Tlim is the long-term limit load (F/L); Tult the
short-term ultimate strength, measured in a wide-strip
tension test (F/L); RFCR the strength reduction factor
to allow for creep under long-term load; RFID the
strength reduction factor to allow for installation dam-
age; RFD the strength reduction factor to allow for de-
terioration in service. Values of RFCR, RFID, and RFD

recommended by the FHWA are given in Table 8.1.
The units of Tlim and Tult are force per unit length of
reinforced slope.

Steel reinforcement. Steel reinforcing does not
creep appreciably and is not subject to installation
damage. Epoxy and PVC coatings are subject to in-
stallation damage, but galvanized coating is not. The
effects of long-term deterioration of steel due to cor-
rosion can be evaluated using the expression

T � A ƒ (8.6)lim C y

where Tlim is the allowable long-term reinforcement
tension load (F/L); Ac the cross-sectional area of re-
inforcement after corrosion, calculated by reducing the
metal thickness by the loss expected during the life of
the installation [Ac is the area per unit length of slope
(L2/L)]; and ƒy the yield strength of steel (F/L2). Cor-
rosion rates for steel in mildly corrosive backfill ma-
terials are given in Table 8.2.

Criterion 2: Pullout Resistance

To develop tensile capacity, reinforcement must be re-
strained sufficiently by friction in the soil. The maxi-
mum possible resistance (Tpo) is proportional to the
effective overburden pressure. Tpo begins from zero at
the end of the reinforcement, where the embedded
length is zero and increases with distance from the end,
as shown in Figure 8.2. The slope of the curve repre-
senting the variation of Tpo with distance can be ex-
pressed as

dTpo
� 2�z�F* (8.7)

dL

where Tpo is the pullout resistance (F/L); L the length
of embedment, or distance from the end of the rein-
forcement (L); � the unit weight of fill above the re-
inforcement (F/L3); z the depth of fill above the
reinforcement (L); � the adjustment factor for exten-
sible reinforcement (dimensionless); and F* the pull-
out resistance factor (dimensionless).

Values of � and F* recommended by the FHWA
(2000) are listed in Table 8.3. These values are con-
servative estimates. Larger values may be applicable
and can be used if they are supported by tests per-
formed on the specific soil and reinforcing material.

Equation (8.7) gives the slope of the pullout resis-
tance curve at any location. If the thickness of fill
above the reinforcement is constant, the slope of the
pullout curve is constant, and the pullout resistance can
be expressed as

T � 2�z�F*L (8.8)po e

where Le is the distance from the end of the reinforce-
ment or length of embedment (L).
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Figure 8.2 Variation of Tlim and Tall with distance along re-
inforcement.

Table 8.3 Pullout Resistance Factors � and F* for
Use in Eq. (8.7)

Pullout
resistance

factora

Type of
reinforcement

Resistance
factor value

� Geotextiles 0.6
Geogrids 0.8
Steel strips and steel grids 1.0

F* Geotextiles 0.67 tan �
Geogrids 0.8 tan �
Steel strips and steel grids 1.0 tan �

aHigher values of F* generally apply at depths shal-
lower than 6 m. Larger values of both � and F* may be
applicable and can be used if they are supported by tests
performed on the specific soil and reinforcing material.

Source: FHWA (2000).

If the overburden pressure increases with distance
from the end of the reinforcement, as it does beneath
the slope on the left in Figure 8.2, the slope of the Tpo

curve also increases with distance, and the pullout re-
sistance diagram is a curve. In this case the pullout
resistance can be expressed as

2T � � tan 
 �F*(L ) (8.9)po e

where 
 is the slope angle in degrees, as shown in
Figure 8.2.

Criterion 3: Reinforcement Stiffness

Reinforcing materials must be stiff enough so that re-
inforcement forces can be mobilized without excessive
strain. The value of Tlim should not exceed the product
of the long-term secant modulus of the reinforcement
multiplied by the tolerable strain for the slope:

T � E � (8.10)lim secant tolerable

where Esecant is the secant modulus of reinforcing at
axial strain � �tolerable (F/L) and �tolerable is the strain
within the slope at the location of the reinforcing that
can be tolerated without excessive slope deformation
or failure (dimensionless).

Steel reinforcing is often described as inextensible
because it stiffness is very high compared to its yield
strength. With a modulus equal to 500 to 1000 times
its yield strength, the yield strength of steel is mobi-
lized at a strain of only 0.1 to 0.2%, far less than the
tolerable strains for soil reinforcing applications. As a
result, criterion 3 never governs the value of Tlim for
steel reinforcing. The stiffness of geosynthetic mate-
rials, on the other hand, may be low enough so that
criterion 3 governs the value of Tlim for applications
where the tolerable strain is small.

As shown in Figure 8.3, Esecant is the slope of a line
extending from the origin to the point on the T–� curve
where the strain is equal to �tolerable. Note that the units
of Esecant, like the units of Tlim, are force per unit length.

Values of tolerable strain are based on the results of
finite element analyses (Rowe and Soderman, 1985);
and on experience (Fowler, 1982; Christopher and
Holtz, 1985; Haliburton et al., 1982; Bonaparte et al.,
1987). A summary of published recommendations is
given in Table 8.4.

ALLOWABLE REINFORCEMENT FORCES AND
FACTORS OF SAFETY

The preceding section is concerned with the long-term
capacity of reinforcement (Tlim). These values of Tlim
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Figure 8.3 Definition of Esecant for geosynthetic reinforce-
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Table 8.4 Tolerable Strains for Reinforced Slopes
and Embankments

Application �tol (%)

Reinforced soil walls 10
Reinforced slopes of embankments on firm

foundations
10

Reinforced embankments on nonsensitive
clay, moderate crest deformations
tolerable

10

Reinforced embankments on nonsensitive
clay, moderate crest deformations not
tolerable

5–6

Reinforced embankments on highly
sensitive clay

2–3

Source: Compiled from Fowler (1982), Christopher and
Holtz (1985), Haliburton et al. (1982), Rowe and Soder-
man (1985), and Bonaparte et al. (1987).

Table 8.5 Recommended Values of FR

Consequences
of failure

Uncertainties in
Tlim and load in
reinforcement

Appropriate
value of FR

Minimal Small 1.5
Minimal Large 2.0
Great Small 2.0

reflect consideration of long-term loading, installation
damage, deterioration in properties over time, pullout
resistance, and tolerable strains, but they do not include
a factor of safety.

The allowable load assigned to reinforcing materials
should include a factor of safety, as indicated by

TlimT � (8.11)all FR

where Tall is the allowable long-term reinforcement
force (F/L) and FR is the factor of safety for reinforce-

ment force. The value of FR should reflect (1) the de-
gree of uncertainty involved in estimating the value of
Tlim, (2) the degree of uncertainty involved in estimat-
ing the load that the reinforcement must carry, and (3)
the consequences of failure. Recommended values of
FR are given in Table 8.5.

ORIENTATION OF REINFORCEMENT FORCES

Various orientations of reinforcement forces have been
suggested (Schmertmann et al., 1987; Leshchinsky and
Boedeker, 1989; Koerner, 1998; FHWA, 2000). The
extremes are (1) reinforcement forces that are aligned
with the original orientation of the reinforcement, and
(2) reinforcement forces that are parallel to the slip
surface. The latter assumption, which results in larger
factors of safety, has been justified by the concept that
the reinforcement will be realigned where the slip sur-
face crosses the reinforcement. This is more likely if
the reinforcement is very flexible. The assumption that
the orientation of the reinforcement force is the same
as the orientation of the reinforcement is more conser-
vative, is supported by the findings of Zornberg et al.
(1998a), and is the more logical, reliable choice. This
is the approach recommended here.

REINFORCED SLOPES ON FIRM FOUNDATIONS

Reinforcement in embankments can be used to con-
struct slopes steeper than would be possible without
reinforcing. Usually, several layers of reinforcing are
used, spaced more closely near the base of the slope
and farther apart near the top, as shown in Figure 8.4.
Secondary shorter lengths of lower-strength reinforce-
ment, between the primary reinforcement layers, can
be used to improve surficial stability (FHWA, 2000).
Zornberg et al. (1998a) showed that such layers near
the bottom of the slope significantly enhance stability
if they are wrapped around at the face and overlap the
adjacent layers. In this configuration they are anchored
firmly and not subject to pullout failure.
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Figure 8.4 Limit equilibrium analyses of a reinforced slope
using circular, wedge, and smooth noncircular slip surfaces:
(After Wright and Duncan, 1991). (a) critical circular slip
surface; (b) critical two-part wedge; (c) critical noncircular
slip surfaces.
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Figure 8.5 (a) Reinforcement force coefficients; (b) rein-
forcement length coefficients. (After Schmertmann et al.,
1987.)

The stability of reinforced slopes can be evaluated
using the procedures outlined in Chapter 6. An ex-
ample is shown in Figure 8.4. It can be seen that the
factor of safety varies slightly with the shape of the
slip surface, from F � 1.43 for the most critical two-
part wedge slip surface, to F � 1.33 for the most crit-
ical noncircular slip surface, a difference of about 7%.
The most critical circle gives a factor of safety F �
1.40, which is sufficiently accurate for practical pur-
poses.

Schmertmann et al. (1987) Charts

Before an analysis of the type illustrated in Figure 8.4
can be performed, the strength, length, and spacing of
the reinforcement must be estimated. Determining
these by trial and error can be time consuming because
many trials can be required to determine strength,
length, and spacing.

Designing reinforced slopes is facilitated greatly by
slope stability charts of the type developed by
Schmertmann et al. (1987), which are shown in Figure
8.5a and b. Figure 8.5a can be used to determine the
total reinforcing force, and Figure 8.5b can be used to
determine the length of reinforcing required for a given
factor of safety. The terminology used in these charts
is:

K � � dimensionless force coefficient
2Tall

2�(H�)
(8.12)

H� � H � � effective height, including effect of
q
�

surcharge (L) (8.13)

��ƒ � arctan � factored friction angle
tan ��

F
(degrees) (8.14)
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Figure 8.5 (Continued )

Figure 8.6 Potential modes of failure of reinforced embank-
ments: (a) block sliding outward along reinforcement with
slumping of the crest; (b) foundation failure with rotational
sliding through embankment; (c) excessive elongation of re-
inforcement. (Modified from Haliburton et al., 1978).

LB � required length of reinforcement at the bottom
of the slope (L)

LT � required length of reinforcement at the top of
the slope (L)


 � slope angle (degrees)

� � unit weight of soil (F/L3)

q � surcharge pressure (F/L2)

u � pore pressure, assumed to be zero throughout
the slope

Example. As an example of the use of these charts,
consider the slope shown in Figure 7.27. Pertinent pa-
rameter values from Figure 7.27 are H � 24 ft, � �
130 pcf, � � 37�, 
 � arctan(1.25) � 39�, q � 0,
c � 0, and u � 0. The factor of safety computed in

the STABGM user’s manual and Chapter 7 is F �
1.71.

The charts in Figure 8.5a and b can be used to de-
termine the total reinforcement force and the length of
reinforcement required for a factor of safety F � 1.71
using the following steps:

1. Compute � arctan tan �� /F � arctan 0.75/��f
1.71 � 24�.

2. Compute H� � H � q /� � 24 ft � 0/130 pcf �
24 ft.

3. From Figure 8.5a, determine K � 0.11.
4. Compute Tall � (0.11)( )(130 pcf)(24 ft)2 � 41001–2

lb/ft.

In Figure 7.27 there are five active layers of rein-
forcement. The sixth layer shown in the STABGM
manual and Figure 7.27, at the elevation of the toe,
does not cut across any of the slip surfaces shown in
Figure 7.28 and therefore does not influence the factor
of safety. The factors of safety computed using
STABGM and UTEXAS4 are the same whether this
bottom layer of reinforcement is included or not. The
total reinforcement force from step 4, 4100 lb/ft,
agrees well with the total of 4000 lb/ft provided by
the five active layers of reinforcement.
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Figure 8.7 Bearing capacity mode of failure of a strongly reinforced embankment on a
weak foundation.

5. From Figure 8.5b determine LB /H� � 0.88, LT /
H� � 0.55.

6. Compute LB � (0.88)(24 ft) � 21 ft and LT �
(0.55)(24 ft) � 13 ft.

In Figure 7.27, LT � LB � 20 ft. The results from
Figure 8.5b indicate that the reinforcement could be
somewhat shorter at the top of the slope.

EMBANKMENTS ON WEAK FOUNDATIONS

Reinforcement near the base of an embankment can be
used to improve stability with regard to spreading of
the embankment and with regard to shear failure
through the embankment and foundation. With rein-
forcement at the bottom of the embankment, the slopes
can be made as steep as for an embankment con-

structed on a firm foundation. The volume of the em-
bankment and the total load it imposes on the
foundation can be reduced and its height can be in-
creased.

Reinforced embankments have been used at a num-
ber of sites where weak foundations posed difficult sta-
bility problems, including Almere in the Netherlands
(Rowe and Soderman, 1985); Mohicanville Dike 2 in
Ohio (Duncan et al., 1988; Franks et al., 1988, 1991);
St. Alban in Canada (Busbridge et al., 1985; Schaefer
and Duncan, 1986, 1987); Hubrey Road in Ontario,
Canada (Rowe and Mylleville, 1996); and Sackville,
New Brunswick, Canada (Rowe et al., 1996).

Modes of failure. Potential modes of failure of re-
inforced embankments on weak foundations have been
discussed by Haliburton et al. (1978) and by Bonaparte
and Christopher (1987). Three possible modes of fail-
ure are shown in Figure 8.6.
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Figure 8.6a shows the embankment sliding across
the top of the reinforcing. This mode of failure is most
likely if the interface friction angle between the em-
bankment and the reinforcement is low, as it may be
with geotextile reinforcement. A wedge analysis can
be used to assess the safety of the embankment with
regard to this mode of failure.

Figure 8.6b shows a shear surface cutting across the
reinforcement and into the weak foundation. This
mode of failure can occur only if the reinforcement
ruptures or pulls out. Safety with regard to this mode
of failure can be evaluated using circular, wedge, or
noncircular slip surfaces, including reinforcement
forces in the analysis as discussed previously.

Figure 8.6c shows large settlement of the embank-
ment resulting from excessive elongation of the rein-
forcement. This mode of failure can occur if the strain
in the reinforcement required to mobilize the reinforce-
ment load is too large. Satisfying limit load criterion
3, discussed previously, will prevent this type of fail-
ure.

Even if an embankment is completely stable inter-
nally, it may still be subject to bearing capacity failure,
as shown in Figure 8.7. This mode of failure can be
analyzed using bearing capacity theory. If the foun-
dation thickness (T) is small compared to the width of
the equivalent uniform embankment load (B), the value
of the bearing capacity factor Nc increases, as shown
in the tabulated values in Figure 8.7 and the factor of

safety with respect to bearing capacity failure also in-
creases. Therefore, the shallower is the weak founda-
tion, the less likely is the bearing capacity mode of
failure.

Bonaparte and Christopher (1987) charts. Prelim-
inary estimates of the reinforcement force required for
a given factor of safety can be made using the stability
charts shown in Figure 8.8, which were developed by
Bonaparte and Christopher (1987). The terminology
used in these charts is:
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�
Tall

2�H
dimensionless reinforcement force coefficient

(8.15)

�
su

F�H
dimensionless factored stability coefficient

(8.16)

Tall � allowable reinforcement force (F/L)

�Tall � change in Tall for embankment � 
 30�

� � total unit weight of embankment (F/L3)

H � height of embankment (L)

su � undrained shear strength of foundation soil
(foundation � � 0)

D � foundation depth (L)


 � slope angle (degrees)

Example. As an example of the use of these charts,
consider the Mohicanville Dike No. 2 embankment
shown in Figure 8.9. The Mohicanville project is de-
scribed in more detail in the next section. Pertinent
parameter values for the embankment and foundation

are H � 24 ft, � � 136 pcf, �� � 32� for the em-
bankment fill, embankment slope angle 
 � arctan
(0.33) � 18�, average foundation shear strength � 700
psf, D � 80 ft, su /F�H � 700/(1.3)(136)(24) � 0.16
for factor of safety on soil shear strength F � 1.3.

The cohesion of the embankment fill (c � 200 psf)
is neglected because the charts in Figure 8.8 were de-
veloped for cohesionless embankment fill. The charts
assume that the reinforcement is placed at the bottom
of the embankment, where it is most effective in im-
proving stability. The charts can be used to determine
the magnitude of the reinforcement force required for
a given factor of safety using the following steps:

1. Compute D /H � (80 ft) /(24 ft) � 3.3.
2. Compute

s 700 psfu � � 0.16
F�H (1.3)(136 pcf)(24 ft)

3. From Figure 8.8a, estimate � 0.4 (the2T /�Hall

value of D /H is above the top of the chart, and
� 0.4 was estimated by extrapolation).2T /�Hall

4. From Figure 8.8c, determine � �0.01.2�T /�Hall

5. Compute � 0.40 � 0.01 � 0.39.2T /�Hall
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6. Compute Tall � (0.39)(136)(24)2 � 31,000 lb/ft.
7. Compute Tlim � TallFR � (31,000 lb/ft)(1.5) �

47,000 lb/ft for FR � 1.5.

As shown in the next section, this result is in rea-
sonable agreement with the results of detailed studies,
indicating that the charts in Figure 8.8 can be used for
preliminary assessment of reinforcement force.

Case history. Mohicanville Dike No. 2 is a rim
dike on the Mohicanville Reservoir in Wayne County,
Ohio (Duncan et al., 1988; Franks et al., 1988, 1991).
Constructed on a weak peat and clay foundation, the
dike failed during construction, and for many years the
crest was 22 ft below its design elevation. A cross sec-
tion through the dike is shown in Figure 8.9.

After evaluation of a number of alternatives for rais-
ing the dike to its design height, it was concluded that
construction of a reinforced embankment afforded the
best combination of cost and reliability. Limit equilib-
rium analyses and finite element analyses were pre-
formed to determine the reinforcing force required for
stability of the embankment. It was found that to
achieve a factor of safety F � 1.3, a reinforcing force
of 30,000 lb/ft was required. The results of equilib-
rium analyses are shown in Figure 8.10.

A heavy steel mesh was selected for reinforcement.
This mesh has No. 3 mild steel bars spaced 2 in. apart
perpendicular to the axis of the dike, welded into a
mesh with No. 2 bars spaced 6 in. apart parallel to the
axis of the dike. This mesh provided a cross-sectional
area of about 1 in2 of steel per foot of embankment
length and a yield force (Tlim) equal to 48,000 lb/ft.
This provides a factor of safety on reinforcement ca-
pacity, FR � Tlim /Tall � 48,000/30,000 � 1.6.

The steel mesh was rolled up after fabrication into
rolls containing strips 8 ft wide and 320 ft long. The
steel yielded in bending, deformed plastically as it was
rolled up, and stayed rolled up without restraint. The
rolled strips of mesh were transported on trucks and
were unrolled at the project site using the same equip-
ment as that used to roll up the mesh in the fabricating
plant. Each strip was cut into two 160-ft-long pieces
that reached across the full width of the embankment,
from upstream to downstream. The strips were dragged
into position on the embankment using a front-end
loader and a bulldozer. They were laid on, and were
covered by, about 1 ft of clean sand.

The reinforcing mat was placed at elevation 960 ft,
approximately 4 ft above the original ground elevation.
In most areas, about 6 to 8 ft of old embankment fill
was excavated to reach elevation 960 ft. In one 100-
ft-long section of the embankment, where the foun-
dation soils were thought to be exceptionally weak, a
second layer of reinforcing was placed at elevation
961 ft.

The steel mat was not galvanized or otherwise pro-
tected against corrosion. Although the steel reinforce-
ment will probably corrode in time, it is needed only
for the first few years of the embankment’s life. After
the foundation gains strength through consolidation,
the reinforcement will no longer be required for sta-
bility.

The embankment was designed using limit equilib-
rium analyses and finite element analyses that modeled
consolidation of the foundation soils as well as inter-
action between the embankment and the steel reinforc-
ing. The embankment was instrumented to measure
reinforcement forces, settlements, horizontal move-
ments, and pore pressures. Computed and measured
reinforcement forces at the end of construction are
shown in Figure 8.11. It can be seen that the calculated
values agree quite well with the measured values. It is
worthwhile to note that the finite element analyses
were performed before the embankment was con-
structed, and the results shown in Figure 8.11 therefore
constitute a true prediction of performance, not an
after-the-fact matching of analytical results and field
measurements.

This case history indicates that both limit equilib-
rium analyses and finite element analyses can be used
to design reinforced embankments on weak founda-
tions and to anticipate their performance. In most cases
limit equilibrium analyses can be used as the sole de-
sign tool. However, in precedent-setting cases, as Mo-
hicanville Dike No. 2 was in the mid-1980s, it is
prudent to perform more thorough analyses using the
finite element method.

Recapitulation

• Reinforcement can be used to improve the stabil-
ity of slopes and embankments, making it possible
to construct slopes and embankments steeper and
higher than would otherwise be possible.

• Reinforced slopes and embankments can be ana-
lyzed using the procedures described in Chapter
6 by including the reinforcement forces as known
forces in the analyses. The amount of force re-
quired to achieve a target value of factor of safety
can be determined using repeated trials.

• Two methods have been used for limit equilibrium
analyses of reinforced slopes: method A, in which
allowable reinforcing forces are specified, and
method B, in which ultimate reinforcing forces are
specified. Method A is preferable, because it pro-
vides a means of applying different factors of
safety to soil strength and reinforcing force, which
have different sources of uncertainty and different
amounts of uncertainty associated with their val-
ues.
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• The principal types of reinforcing materials that
have been used for slopes and embankments are
geotextile fabrics, geogrids, steel strips, steel
grids, and high-strength steel tendons.

• The long-term capacity of reinforcement, denoted
here as Tlim, depends on tensile strength, creep
characteristics, installation damage, durability,
pullout resistance, and stiffness.

• The allowable load assigned to reinforcing mate-
rials should include a factor of safety, as indi-
cated by the expression Tall � , whereT /Flim R

Tall is the allowable force, Tlim is the capacity of
the reinforcement to carry long-term loads,
and FR is the reinforcement factor of safety.
The value of FR should reflect the level of uncer-
tainty in the analyses and the consequences of
failure.

• Designing reinforced slopes is facilitated greatly
by slope stability charts of the type developed by
Schmertmann et al. (1987), which are shown in
Figure 8.5a and b.

• Potential modes of failure of reinforced embank-
ments on weak foundations include sliding across
the top of the reinforcing, shear through the re-
inforcement and into the weak foundation, large
settlement of the embankment resulting from ex-
cessive elongation of the reinforcement, and bear-
ing capacity failure.

• Preliminary estimates of the reinforcement force
required for a given factor of safety can be made
using the stability charts shown in Figure 8.8.

• The Mohicanville Dike No. 2 case history shows
that both limit equilibrium analyses and finite el-
ement analyses can be used to design reinforced
embankments on weak foundations and to antic-
ipate their performance. Finite element analyses
should be performed for precedent-setting appli-
cations.
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CHAPTER 9

Analyses for Rapid Drawdown

Rapid drawdown takes place when the water level out-
side a slope drops so quickly that impermeable soils
within the slope do not have sufficient time to drain.
As the water level drops, the stabilizing effect of the
water outside the slope is removed, and the shear
stresses for equilibrium increase. The shear stresses
within the slope are resisted by undrained strength in
zones of low permeability and by drained strength
within zones of higher permeability. This is a severe
loading condition that can cause failure of slopes that
are stable before drawdown.

Whether a soil zone drains or not can be estimated
by calculating the value for the dimensionless time fac-
tor, T, given by

c tvT � (9.1)2D

where cv is the coefficient of consolidation, t the time
for drawdown, and D the drainage distance. Typical
values of cv for various soils are shown in Table 9.1.
If the calculated value of T is equal to 3 or more, the
dissipation of pore water pressures induced by the
drawdown exceeds 98%, and it is reasonable to treat
the material as drained. Most soils with coefficients of
permeability of 10�4 cm/s or more can be assumed to
drain under normal rates of drawdown, and drained
shear strengths can be used for these zones.

Rapid drawdown may occur at any time during the
life of a slope, including during construction if the
slope is built in water or water rises next to the slope
during construction. Therefore, it may be necessary to
analyze rapid drawdown for during and end-of-
construction stability as well as for long-term condi-
tions. The approaches and shear strengths used for the
two cases (during and end of construction; long term)

are different and are described in the following sec-
tions.

DRAWDOWN DURING AND AT THE END OF
CONSTRUCTION

If drawdown occurs during or immediately after con-
struction, the appropriate shear strengths to be used in
stability computations are the same as those used when
no drawdown occurs: For soils that drain freely, the
shear strengths are expressed in terms of effective
stresses and appropriate pore water pressures are
used. For soils that do not drain freely, undrained
shear strengths, determined from the results of
unconsolidated–undrained shear tests, are used. Sta-
bility computations are performed using effective
stresses for soils that drain and total stresses for soils
that do not drain.

DRAWDOWN FOR LONG-TERM CONDITIONS

If drawdown occurs long after construction, the soils
within the slope will have had time to come to equi-
librium under a new effective stress regime. The
undrained shear strengths of low-permeability soils
during drawdown are governed by the consolidation
stresses in the equilibrium state before drawdown. The
drained shear strengths of high-permeability soils are
governed by the water pressures after drawdown.

Stability at the end of rapid drawdown has been an-
alyzed in two basically different ways: (1) using effec-
tive stress methods, and (2) using total stress methods,
in which the undrained shear strengths of low-
permeability soils are related to effective consolidation
pressures in the slope prior to drawdown. Both meth-
ods treat free-draining materials in the same way. The
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Table 9.1 Typical Values of the Coefficient of
Consolidation, cv

Type of soil
Values of cv

(ft2 /day)

Coarse sand �10,000
Fine sand 100–10,000
Silty sand 10–1000
Silt 0.5–100
Compacted clay 0.05–5
Soft clay �0.2

strengths of free-draining materials are expressed in
terms of effective stresses, and the pore water pressures
are estimated assuming either steady seepage or hy-
drostatic conditions depending on the particular slope.

Effective Stress Methods

The advantage of effective stress analyses is that it is
relatively easy to evaluate the required shear strength
parameters. The effective stress shear strength param-
eters for soils are readily determined by means of
isotropically consolidated undrained (IC-U) triaxial
compression tests with pore pressure measurements.
This type of test is well within the capability of most
soil mechanics laboratories.

The disadvantage of effective stress analyses is that
it is difficult to estimate the pore water pressures that
will exist within low-permeability soils during draw-
down. The pore pressure changes during drawdown de-
pend on the changes in stress that result from the
changing water loads on the slope and the undrained
response of the soils within the slope to these changes
in load. While the changes in stress can be estimated
with reasonable accuracy, particularly at shallow
depths beneath the surface of the slope, the undrained
response of the soil is much harder to estimate. The
changes in pore pressure are considerably different for
materials that tend to dilate during shear and those that
do not. Although in principle it is possible to estimate
these pore water pressures, for example, by using
Skempton’s pore water pressure coefficients (Skemp-
ton, 1954), in practice this is difficult and the results
are uncertain.

Most effective stress analyses of stability during
rapid drawdown have used the assumptions regarding
pore water pressures that were suggested by Bishop
(1954) and later used by Morgenstern (1963). These
assumptions have been justified on the basis of the fact
that they are conservative in most cases. They have
been found to result in reasonable values of factor of

safety for dams that suffered rapid drawdown failures:
Wong et al. (1983) found that the values of safety fac-
tor calculated using Morgenstern’s assumption were
F � 1.2 for Pilarcitos Dam and F � 1.0 for Walter
Bouldin Dam, both of which failed.

It seems likely that Bishop and Morgenstern’s as-
sumptions for pore water pressures during drawdown
may be more accurate for soils that do not tend to
dilate during shear than for those that do tend to dilate.
Thus, although these assumptions may show reasona-
ble correspondence with failures of slopes in materials
that are not densely compacted and do not tend to di-
late during shear, they are likely to be unduly conser-
vative for better-compacted materials that do tend to
dilate during shear. Use of effective stress analyses
based on the Bishop and Morgenstern assumptions
would treat all fill materials alike with respect to pore
water pressures during drawdown, regardless of how
well they are compacted or how strongly they might
tend to dilate during shear.

Terzaghi and Peck (1967) suggested that pore water
pressures during drawdown in well-compacted silty
sands could be estimated using flow nets. Several in-
vestigators (Browzin, 1961; Brahma and Harr, 1963;
Newlin and Rossier, 1967; Desai and Sherman, 1971;
Desai, 1972, 1977) used theoretical methods to analyze
the nonsteady flow conditions following drawdown.
Like the Bishop and Morgenstern pore pressure as-
sumptions, these methods do not consider the behavior
of the soil with regard to dilatancy and are thus not
capable of representing all of the important factors that
control the pore water pressures during drawdown.

Svano and Nordal (1987) and Wright and Duncan
(1987) used procedures for estimating pore water pres-
sures during drawdown that reflect the influence of di-
latancy on the pore water pressure changes. Svano and
Nordal used two-stage stability analyses and iterated
to achieve consistency between the calculated factor of
safety and the values of the pore water pressures.
Wright and Duncan used finite element analyses to
estimate the stress changes during drawdown and
Skempton’s pore pressure parameters to calculate the
pore water pressures. These studies indicate that it is
possible to estimate realistic pore water pressures for
effective stress analyses, but it is more cumbersome
and difficult than using total stress analyses, as de-
scribed in the following sections.

Terzaghi and Peck (1967) summarized the problems
in estimating pore water pressures during drawdown in
these words:

[I]n order to determine the pore pressure conditions for the
drawdown state, all the following factors need to be
known: The location of the boundaries between materials
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with significantly different properties; the permeability and
consolidation characteristics of each of these materials;
and the anticipated maximum rate of drawdown. In addi-
tion, the pore pressures induced by the changes in the
shearing stresses themselves . . . need to be taken into
consideration. In engineering practice, few of these factors
can be reliably determined. The gaps in the available in-
formation must be filled by the most unfavorable assump-
tions compatible with the known facts.

By using undrained strengths in low-permeability
zones, as described in the following sections, many of
the problems associated with estimating pore water
pressures for effective stress analyses can be avoided,
and the accuracy of rapid drawdown stability analyses
can be improved very considerably.

Total Stress Methods

Total stress methods are based on undrained shear
strengths in low-permeability zones. The undrained
shear strengths are estimated based on the effective
stresses that exist in the slope prior to drawdown.
Some zones within the slope may consolidate with
time following construction, and their undrained
strengths will increase. Portions of the same soils at
lower stresses (near the surface of the slope) may ex-
pand following construction, and their undrained
strengths will decrease with time.

Several total stress analysis methods have been sug-
gested and used for sudden-drawdown analyses. These
include the U.S. Army Corps of Engineer’s (1970)
method, and Lowe and Karafiath’s (1959) method.
Duncan et al. (1990) reviewed both of these methods
and suggested an alternative three-stage analysis pro-
cedure that is described in the following paragraphs.
The three-stage procedure combines the best features
of both the Corps of Engineers’ and Lowe and Kara-
fiath’s methods. Following along the lines of the Corps
of Engineers’ method, the three-stage procedure ac-
counts for the effect of drainage and the fact that the
drained strength may be less than the undrained
strength. It differs from the Corps of Engineers’ pro-
cedure in the way that the undrained strength is eval-
uated and the way that the drained strength is taken
into account. Following Lowe and Karafiath’s sugges-
tion, the three-stage procedure accounts for the effects
of anisotropic consolidation, which can result in sig-
nificantly higher undrained shear strength.

Each stage in the three-stage stability analysis pro-
cedure involves a separate set of slope stability com-
putations for each trial slip surface. For free-draining
materials, effective stresses are used for all three
stages, with different pore water pressures based on
water levels and seepage conditions. The effective

stress shear strength parameters are the same for all
three stages. For low-permeability zones effective
stresses are used for the first stage, before drawdown,
and total stresses and undrained strengths are used for
the second stage, after drawdown. For the third stage
the lower of the drained and undrained strengths is
used, whichever is lower, to be conservative.

First-stage computations. The first-stage stability
computations are performed for conditions prior to
drawdown. The purpose of the computations is to es-
timate effective stresses along the slip surface prior to
drawdown. Effective stress shear strength parameters
are used with pore water pressures based on estimated
groundwater and seepage conditions. Steady-state
seepage is assumed. Although the first-stage stability
computations are performed in the same way that long-
term stability computations are performed, the purpose
is not to calculate the factor of safety; only the effec-
tive stresses on the slip surface are of interest.

The first-stage stability computations are used to cal-
culate the shear stress and effective normal stress on
the slip surface. The effective normal stress (��) is
computed for the base of each slice from the total nor-
mal force (N) on the bottom of each slice and the
corresponding pore water pressure:

N
�� � � u (9.2)ƒc �l

This normal stress represents the effective stress on a
potential failure plane that exists at the time of con-
solidation. Accordingly, this normal stress and the cor-
responding shear stress are designated with the
subscript ƒc. The corresponding shear stress is com-
puted from the Mohr–Coulomb equation and the factor
of safety using

1
� � (c� � �� tan ��) (9.3)ƒc F

or, alternatively, the shear stress can be computed from
the shear force on the base of each slice from the re-
lationship

S
� � (9.4)ƒc �l

where S is the shear force on the base of the slice.
These consolidation stresses and �ƒc) are used to(��ƒc

estimate undrained shear strengths for the second-stage
computations.
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Figure 9.2 Shear strength envelopes used to define the un-
drained shear strengths for the second stage of a three-stage
analysis.
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Figure 9.1 Mohr’s circle for effective stresses at failure
showing the shear stress on the failure plane.

Second-stage computations. In the second-stage
computations, undrained shear strengths and total
stress analysis procedures are used for low-
permeability zones. Undrained shear strengths are es-
timated for the second stage using the stresses
calculated from the first stage and shear strength en-
velopes that relate the undrained shear strength to the
effective consolidation pressure. The undrained shear
strength is expressed as the value of the shear stress
on the failure plane at failure, �ƒƒ (Fig. 9.1). The sub-
script ƒƒ distinguishes this value of shear stress from
the value of shear stress at consolidation (�ƒc). The
shear stress on the failure plane at failure is calculated
from the principal stress difference, �1 � �3, at failure
and the friction angle, ��, using the relationship

� � �1ƒ 3ƒ
� � cos �� (9.5)ƒƒ 2

The effective stress friction angle is the same one used
for the first-stage analysis where effective stress en-
velopes are used for all soils. If the friction angle varies
with effective stress, the value of the friction angle for
the applicable range of effective stresses is used.

Undrained shear strength for second stage. The un-
drained shear strength, �ƒƒ, is plotted versus the effec-
tive stress on the failure plane at consolidation, .��ƒc

Two shear strength envelopes are plotted (Fig. 9.2):
One corresponds to isotropic consolidation (Kc � /��1c

� 1), the other corresponds to anisotropic consol-��3c

idation with the maximum effective principal stress
ratio possible (i.e., Kc � Kfailure). The first envelope
(Kc � 1) is obtained from consolidated–undrained tri-
axial shear tests with isotropic consolidation. The ef-

fective stress on the failure plane for this envelope(�� )ƒc

is the isotropic consolidation pressure, . The enve-��3c

lope for Kc � 1 is obtained by plotting �ƒƒ calculated
from Eq. (9.5) versus the effective consolidation pres-
sure, . The second shear strength envelope (Kc ���3c

Kƒ) is the same as the effective stress envelope used in
the first-stage stability computations. The intercept and
slope of the strength envelope for Kc � Kƒ are the same
as the effective cohesion and friction angle, c� and ��,
respectively. This envelope corresponds to the maxi-
mum effective principal stress ratio possible, with the
soil at failure during consolidation.

The slope and intercept of the strength envelope for
Kc � 1 are related to the intercept and slope of the
failure envelope that is often referred to as the R or
total stress envelope. The R envelope is drawn on a
Mohr diagram by plotting circles where �3 is the minor
principal stress at consolidation ( ) and the principal��3c

stress difference (diameter of circle) is equal to the
principal stress difference at failure, �1ƒ � �3ƒ, as il-
lustrated in Fig. 9.3.1 The intercept and slope of the
failure envelopes drawn on such a diagram are desig-
nated cR and �R. The intercepts and slopes for the �ƒƒ

vs. envelope and the R envelope are similar but not��ƒc

equal. However, the intercepts and slopes of the two
envelopes can be related to one another. If cR and �R

are the respective intercept and slope angle for the R
envelope and the envelope is drawn tangent to the cir-
cles on a Mohr diagram (Figure 9.3a), the intercept, d,

1 Note: These are not actually Mohr’s circles because one stress
is at consolidation while the other stress (�1ƒ � �3ƒ) is at failure.(�� )3c
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Figure 9.3 Shear strength envelopes used to define the un-
drained shear strengths for the second stage of three-stage
analyses: (a) failure envelope tangent to circles; (b) failure
envelope through points representing stresses on the failure
plane.

and slope, 
, for the corresponding Kc � 1 envelope
are related as follows:

cos � cos ��Rd � c (9.6)K �1 Rc 1 � sin �R

sin � cos ��R
 � arctan (9.7)K �1c 1 � sin �R

The R envelope is sometimes drawn such that it passes
through points corresponding to stresses on the failure
plane. If the R envelope is drawn in this manner (Fig-
ure 9.3b), the slope and intercept of the Kc � 1 enve-
lope are computed from

cRd �K �1c 1 � (sin �� � 1) tan � /cos ��R

tan �R
 � arctanK �1c 1 � (sin �� � 1) tan � /cos ��R

(9.8)

(9.9)

Variation of �ƒƒ with and Kc. The undrained shear��fc
strength envelopes shown in Figure 9.2, for Kc � 1 and
Kc � Kƒ, represent the extremes possible for the lowest
and highest possible values of Kc. Lowe and Karafiath
(1959) showed that for the same value of , the un-��ƒc

drained strength (�ƒƒ) varies with the value of Kc. They
recommended that anisotropically consolidated un-
drained (ACU) triaxial tests be performed to measure
undrained shear strengths using a range of Kc values,
to develop data that could be used to evaluate un-
drained strengths for second-stage analyses. This pro-
cedure results in accurate evaluation of undrained
strengths for the second-stage analyses but requires ex-
tensive and difficult testing. The ACU test specimens
must be consolidated slowly to avoid failure during
consolidation.

Wong et al. (1983) found that the difficult ACU tests
could be avoided by interpolating undrained strengths
for values of Kc between Kc � 1 and Kc � Kƒ instead
of determining the strengths experimentally. They
found that values of �ƒƒ calculated assuming that �ƒƒ

varies linearly with Kc were the same as measured val-
ues. Using this method of interpolation, only isotrop-
ically consolidated undrained (ICU) tests with pore
water pressure measurements need be performed. Both
of the envelopes shown in Figure 9.2 can be deter-
mined from these tests, which are much easier to per-
form than ACU tests.

Once the Kc � Kƒ and Kc � 1 envelopes shown in
Figure 9.2 have been determined, the undrained shear
strength for the second-stage computations is obtained
based on the effective normal stress on the slip surface,
�� [Eq. (9.2)] and the estimated effective principal
stress ratio for consolidation, Kc. The effective princi-
pal stress ratio for consolidation is estimated following
the recommendations of Lowe and Karafiath (1959).
They suggested the assumption that the orientation of
the principal stresses at consolidation is the same as
the orientation of the principal stresses at failure. This
leads to the following equation for the effective prin-
cipal stress ratio:

�� � �[(sin �� � 1)/cos ��]
K � (9.10)1 �� � �[(sin �� � 1)/cos ��]

where K1 is the effective principal stress ratio for
consolidation corresponding to the stage 1 analyses
and �� and � are the effective normal stress and shear
stress on the shear plane at consolidation.

Values of the effective principal stress ratio can be
calculated from Eq. (9.10) using the shear stress and
effective normal stress calculated from Eqs. (9.2) and
(9.3); the friction angle is the effective stress friction
angle used in the first-stage computations and in Eq.
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(9.5) to calculate �ƒƒ. Values of the undrained shear
strength for the effective consolidation pressure, ��,
and a consolidation stress ratio Kc � K1 are obtained
from the two shear strength envelopes shown in Figure
9.2. Linear interpolation between the values for Kc �
1 and Kc � Kƒ to obtain the value corresponding to K1

can be expressed by

(K � K )� � (K � 1)�ƒ 1 ƒƒ(K �1) 1 ƒƒ(K �K )c c ƒ
� � (9.11)ƒƒ K � 1ƒ

where and are the undrained shear� �ƒƒ(K �1) ƒƒ(K �K )c c ƒ

strengths from the two shear strength envelopes shown
in Figure 9.2. The undrained shear strengths are deter-
mined from these two envelopes using the value of the
effective stress, , which was calculated from Eq.��ƒc

(9.2).
The effective principal stress ratio at failure shown

in Eq. (9.11) can be calculated from the effective stress
shear strength parameters. If there is no cohesion, the
value for Kƒ does not depend on the magnitude of the
stress and is given by

��2K � tan 45 � (9.12)� �ƒ 2

If the value of c� is not zero, the value of Kƒ depends
on the effective stress on the slip surface and is given
by

(�� � c� cos ��)(1 � sin ��)
K � (9.13)ƒ (�� � c� cos ��)(1 � sin ��)

where �� is the effective stress on the slip surface after
consolidation (and also at failure because Kc � Kƒ).

If a significant effective cohesion (c�) exists, the ef-
fective minor principal stress, implicit in Eqs. (9.10)��3
and (9.13) may become negative (i.e., the terms in the
denominator of these equations becomes negative).
When this occurs, the effective consolidation stress ra-
tios become negative and are nonsensical. The negative
stress results from the fact that the soil is assumed to
have cohesion, and this implies a tensile strength. The
corresponding negative values for are, however, not��3
realistic. In cases where negative effective stresses are
calculated, the values are rejected and instead of inter-
polating shear strengths using values of Kc, the shear
strength is taken to be the lower of the shear strengths
from the Kc � 1 and Kc � Kƒ envelopes. Negative
effective stresses can be detected by calculating the
effective minor principal stresses after consolidation
using Eqs. (9.14) and (9.15):

sin �� � 1
�� � �� � � (9.14)3c ƒc ƒc cos ��

1 � sin ��
�� � (�� � c� cos ��) (9.15)3ƒ ƒc 2cos ��

Equation (9.14) is the effective minor principal stress
corresponding to the Kc � 1 envelope; Eq. (9.15) cor-
responds to the Kc � Kƒ envelope. The values of ��3c

and correspond to the stresses in Eqs. (9.10) and��3ƒ

(9.13), respectively. If either value is negative (or
zero), no interpolation is performed and the lower of
the Kc � 1 and Kc � Kƒ strengths is used for the un-
drained shear strength in the second-stage stability
computations. After the undrained shear strength is de-
termined for each slice, a total stress analysis is per-
formed using the undrained shear strengths and the
external water loads after drawdown.

The factor of safety calculated in the second-stage
analysis assumes that all of the low-permeability ma-
terials are undrained during rapid drawdown. Addi-
tional, third-stage computations are performed to check
if the drained shear strength might be lower than the
undrained shear strength, and thus the factor of safety
would be lower if these low-permeability materials
were drained rather than undrained.

Third-stage computations. For the third stage the
undrained shear strengths used for the second-stage
computations are compared with the drained strengths
for each point along the slip surface. The drained shear
strengths are estimated using the total normal stresses
from the second-stage analysis and pore water pres-
sures corresponding to the water level after drawdown.
The total normal stresses are calculated for each slice
using

N
� � (9.16)

�l

where N is the total normal force on the base of the
slice calculated for the second stage and �l is the
length of the base of the slice. The effective stress is
the total normal stress minus the applicable pore water
pressure, u. The drained strength that would exist is
then calculated from the Mohr–Coulomb equation,

s � c� � (� � u) tan �� (9.17)

If at any point on the slip surface the drained shear
strength calculated using Eq. (9.17) is lower than the
undrained shear strength, an additional slope stability
calculation is performed. If, however, the estimated
drained strengths are all higher than the undrained
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Figure 9.4 Slope used for example calculations of stability
due to rapid drawdown using three-stage analysis procedure.
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Figure 9.5 Shear strength envelopes for example problem.

shear strengths used for the second-stage computa-
tions, no additional computations are performed, and
the factor of safety calculated from the second-stage
computations is the factor of safety for rapid draw-
down.

When a third set of stability computations is per-
formed, new shear strengths are assigned to the slices
where the drained shear strengths were estimated2 to
be lower than the undrained shear strengths. For these
slices effective stress shear strength parameters are as-
signed and appropriate pore water pressures are stip-
ulated. If the estimated drained strength for any slice
is greater than the undrained shear strength, the
strength is not changed, and undrained shear strength
is used for the third stage. Thus, some portions of the
slip surface will have effective stress shear strength
parameters assigned and others will still have un-
drained shear strengths. Once the appropriate drained
or undrained shear strength has been assigned for each
slice, the third-stage stability calculations are per-
formed. The factor of safety from the third-stage cal-
culations represents the factor of safety for rapid
drawdown. If the third-stage calculations are not re-
quired (i.e., undrained shear strengths are less than
drained shear strengths for low-permeability materials
everywhere along the slip surface), the factor of safety
from the second stage is the factor of safety for rapid
drawdown, as mentioned previously.

Example. A simple example problem is described
to illustrate the three-stage analysis procedure de-
scribed above. To simplify the calculations and allow
them to be performed easily by hand, the example con-
siders the rapid drawdown stability of an infinite slope.
The slope is 3 (horizontal)�1 (vertical), as shown in
Figure 9.4. At the point in the slope where the stability
calculations are performed, the slope is assumed to be
submerged beneath 100 ft of water before drawdown.
Although a depth of water is assumed, the water depth
has no effect on the final results as long as the slope
is fully submerged before drawdown. The total (satu-
rated) unit weight of the soil is 125 pcf. The effective
stress shear strength parameters are c� � 0, �� � 40�.
The intercept and slope of the Kc � 1 undrained shear
strength envelope (d and 
) are 2000 psf and 20�. The
shear strength envelopes are shown in Figure 9.5.

2 At the end of the second stage the drained shear strengths can only
be estimated because the normal stress that corresponds to drained
shear strengths depends to some extent on the drained strengths them-
selves. The drained strengths calculated at the end of the second stage
are based on total normal stresses that were calculated using un-
drained rather than drained shear strengths. Thus, the drained
strengths are considered to be ‘‘estimated’’ on the basis of the second
stage. However, the degree of approximation involved in this estimate
is very small.

Stability calculations are performed for two slip sur-
faces. Both of the slip surfaces are planes parallel to
the surface of the slope; one is 5 ft deep, the other is
30 ft deep. Total drawdown is assumed to occur (i.e.,
the water is assumed to be fully removed from the face
of the slope). It is further assumed that after drainage
has occurred, the pore water pressures are zero. The
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Table 9.2 Summary of Stability Calculations for Rapid Drawdown of Example Slope

Quantity z � 5 ft z � 30 ft

Stage 1 Total normal stress on the failure plane, �ƒc 6834 psf 9803 psf
Pore water pressure, u 6552 psf 8112 psf
Effective normal stress on the failure plane (consolidation

pressure), ��ƒc

282 psf 1691 psf

Shear stress on the failure plane after consolidation, �ƒc 94 psf 562 psf
Stage 2 Shear strength, �ƒƒ (Kc � 1) 2103 psf 2615 psf

Shear strength, �ƒƒ (Kc � Kƒ) 237 psf 1419 psf
Effective principal stress ratio for consolidation, K1 2.0 2.0
Undrained shear strength (interpolated), �ƒƒ 1585 psf 2283 psf
Shear stress (after drawdown), � 187 psf 1123 psf
Factor of safety (undrained strengths) 8.48 2.03

Stage 3 Total normal stress (after drawdown), � 563 psf 3376 psf
Pore water pressure (after drawdown and drainage) 0 0
Effective normal stress (after drawdown and drainage) 563 psf 3376 psf
Drained shear strength 472 psf 2833 psf

Final stage Governing strength after drawdown 472 psf (drained) 2283 psf (undrained)
Factor of safety after drawdown 2.52 (third stage) 2.03 (second stage)

calculations for each of the three stages are described
below, and key quantities are summarized in Table 9.2.

First-stage analysis. The total normal stress on the
slip surface is computed for a submerged infinite slope
from the equation

2 2� � �z cos 
 � � (h � z sin 
) (9.18)w w

Thus, for the slip surface at a depth of 5 ft,

2� � (125)(5)cos (18.4�) � (62.4)[100
2� (5)sin (18.4�)] � 6834 psf (9.19)

Similarly, for the slip surface at a depth of 30 ft, the
total normal stress is 9803 psf. The pore water pressure
on the slip plane is computed from

u � � (z � h ) (9.20)w w

For the slip surface at a depth of 5 ft, the pore water
pressure is

u � (62.4)(5 � 100) � 6552 psf (9.21)

and similarly, the pore water pressure at a depth of 30
ft is u � 8112 psf. The effective normal stress is com-
puted by subtracting the pore water pressure form the
total stress (i.e., �� � � � u). Thus, for the slip surface
at a depth of 5 ft the effective stress is

�� � 6834 � 6552 � 282 psf (9.22)

and for the slip surface at a depth of 30 ft, the effective
normal stress is 1691 psf (� 9803 � 8112). These
represent the effective normal stresses after consoli-
dation, . The effective normal stresses can also be��ƒc

calculated directly using submerged unit weights (��)
and the following equation, because there is no flow:

2�� � ��z cos 
 (9.23)

The shear stress on the slip surfaces is calculated
from

� � (� � � )z sin 
 cos 
 (9.24)w

For the slip surface at a depth of 5 ft, this gives

� � (125 � 62.4)(5)sin(18.4�)cos(18.4�) � 94 psf

(9.25)

and similarly, for the slip surface at a depth of 30 ft,
the shear stress is 562 psf. These stresses represent the
shear stresses, �ƒc, on the two potential slip surfaces
after consolidation. The consolidation stresses are sum-
marized in Table 9.2.

Second-stage analysis. For the second-stage analysis
the undrained shear strengths are determined based on

and �ƒc. The undrained shear strengths for the��ƒc
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Kc � 1 shear strength envelope are computed using the
equation

� � d � �� tan 
 (9.26)ƒƒ(K �1) ƒcc

For the slip surface at a depth of 5 ft, this gives

� � 2000 � (282)tan(20�) � 2103 psf (9.27)ƒƒ(K �1)c

The corresponding value for the slip surface at a depth
of 30 ft is � 2615 psf. The shear strengths�ƒƒ(K �1)c

from the envelope for Kc � Kƒ are computed from

� � c� � �� tan �� (9.28)ƒƒ(K �K ) ƒcc ƒ

For the slip plane at a depth of 5 ft, this gives

� � 0 � (282)tan(40�) � 237 psf (9.29)ƒƒ(K �K )c ƒ

Similarly, for the slip surface at 30 ft depth, �ƒƒ(K �K )c ƒ

is 1419 psf.
The undrained shear strengths for the second-stage

analysis are interpolated using the effective principal
stress ratios and the undrained shear strength values
determined above. The effective principal stress ratios
after consolidation are calculated using the stresses
from the first-stage analysis and Eq. (9.10). For the slip
surface at a depth of 5 ft,

282 � 94{[sin(40�) � 1]/cos(40�)}
K � � 2.01 282 � 94{[sin(40�) � 1]/cos(40�)}

(9.30)

The effective principal stress ratio for consolidation for
the slip surface at a depth of 30 ft is also equal to 2.0.

The effective principal stress ratio at failure is cal-
culated from Eq. (9.12). The effective principal stress
ratio at failure is 4.6 and is the same for both depths
because c� � 0. Undrained shear strengths are deter-
mined using Eq. (9.11). For the slip surfaces at depths
of 5 and 30 ft, the shear strengths are as follows:

(4.6 � 2.0)2103 � (2.0 � 1)237
� 1585 psf

4.6 � 1

for 5-ft depth
� �ƒƒ (4.6 � 2.0)2615 � (2.0 � 1)1419

� 2283 psf� 4.6 � 1

for 30-ft depth

(9.31)

(9.32)

The next step in the second-stage analysis is to cal-
culate the factor of safety after drawdown using the

undrained shear strengths. For the infinite slope and
complete drawdown (no water above slope), the shear
stress is calculated from

� � �z sin 
 cos 
 (9.33)

For the slip surface at a depth of 5 ft, this gives

� � (125)(5)sin(18.4�)cos(18.4�) � 187 psf (9.34)

Similarly, for the slip surface at a depth of 30 ft the
shear stress is 1123 psf. The factors of safety for the
slip surfaces are calculated by dividing the undrained
shear strength by the shear stress. For the slip surfaces
at depths of 5 and 30 ft, this gives, respectively,

1585
� 8.48 for 5-ft depth

187
F �

2283� � 2.03 for 30-ft depth
1125

(9.35)

(9.36)

These values represent the factors of safety for un-
drained conditions during drawdown.

Third-stage analysis. The third-stage analysis is be-
gun by estimating the fully drained shear strengths of
the soil (assuming that all excess pore water pressures
due to drawdown have dissipated). For this example
the water level is assumed to be lowered to such a
depth that there will be no pore water pressures after
drainage is complete. The total normal stress and ef-
fective stress are equal since the pore water pressures
are zero. The effective stress for drained conditions
after drawdown is computed from the equation

2�� � �z cos 
 (9.37)

For the slip surface at a depth of 5 ft, this gives

2�� � (125)(5)cos (18.4�) � 563 (9.38)

The drained shear strength is then

� � 0 � (563)tan(40�) � 472 psf (9.39)drained

This value (472 psf) is much less than the value of
undrained shear strength (1585 psf) determined earlier.
Therefore, the factor of safety would be lower if drain-
age occurred. The shear stress was calculated above
[Eq. (9.34)] to be 187 psf, and the factor of safety for
the slip surface at a depth of 5 ft is, therefore,
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472
F � � 2.52 (9.40)

187

For the slip surface at a depth of 30 ft, the effective
normal stress after drainage is calculated as

2�� � (125)(30)cos (18.4�) � 3376 (9.41)

and the corresponding drained shear strength is

� � 0 � (3376)tan(40�) � 2833 (9.42)drained

This value of 2833 psf for the drained shear strength
is higher than the value of 1125 psf determined earlier
for the undrained shear strength. Thus, the undrained
shear strength controls, and the factor of safety is equal
to the value of 2.02 that was calculated earlier [Eq.
(9.36)].

The calculations for this example show that the
drained shear strength controls the stability after draw-
down for the shallow (5 ft) depth while the undrained
shear strength controls the stability for deeper (30 ft)
depth. It is commonly found that drained shear strength
is smaller at shallower depths, and undrained shear
strength is smaller at deeper depths. Generally, this pat-
tern of drained and undrained shear strengths control-
ling the stability is expected to happen. For slip

surfaces that encompass a range of depths, the con-
trolling shear strength may be the drained strength in
some parts and the undrained strength in others.

PARTIAL DRAINAGE

Partial drainage during drawdown may result in re-
duced pore water pressures and improved stability.
Theoretically, such improvement in stability could be
computed and taken into account by effective stress
stability analyses. The computations would be per-
formed like effective stress analyses for long-term sta-
bility except that pore water pressures for drawdown
would be considered. Although such an approach
seems logical, it is beyond the current state of practice
and probably beyond the present state of the art. The
principal difficulties lie in predicting the pore water
pressures induced by drawdown. Approaches based on
construction of flow nets, and most of the existing nu-
merical solutions (finite difference, finite element), do
not account for changes in pore water pressures in-
duced by shear deformations. Ignoring shear-induced
pore water pressures may lead to errors on the unsafe
side. For a more complete discussion of procedures for
estimating pore water pressures due to sudden draw-
down, see Wright and Duncan (1987).
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CHAPTER 10

Seismic Slope Stability

Earthquakes expose slopes to dynamic loads that can
reduce the soil shear strength and cause instability.
During the past 30 years, significant advances have
been made in the understanding of earthquake ground
motions, nonlinear stress–strain properties of soils,
strength losses due to earthquake loading, and dynamic
response analyses for earth slopes. This progress has
resulted in development of sophisticated procedures for
analyzing stability of slopes subjected to earthquakes.
At the same time, advances have been made in the use
of simpler procedures for screening analyses, to deter-
mine if more complex analyses are needed.

ANALYSIS PROCEDURES

Detailed, Comprehensive Analyses

Comprehensive analysis procedures are generally used
for any large embankment or any slope or embankment
where the consequences of failure are high or signifi-
cant soil strength losses occur. Although the specific
details and steps of these procedures may vary, the
general approach that is used is as follows (Seed, 1979;
Marcuson et al., 1990):

1. Determine the cross section of the slope and
underlying foundation that is to be analyzed.

2. Determine, with the aid of geologists and seis-
mologists working as a team, the anticipated
acceleration–time history for the ground beneath
the dam. This should account for attenuation of
motion away from the causative fault and ampli-
fication of motion as waves propagate upward
through foundation soils overlying the bedrock.

3. Determine the static and dynamic stress–strain
properties of the natural soils and fill materials
within and beneath the slope.

4. Estimate the initial static stresses in the slope or
embankment prior to the earthquake. This may
involve the use of static finite element analyses
in which the sequence of construction is simu-
lated, or simpler methods.

5. Perform a dynamic finite element analysis to
compute the stresses and strains induced in the
embankment by the earthquake acceleration–
time history.

6. Estimate the reductions in shear strength and in-
creases in pore water pressure that will result
from the earthquake. The most sophisticated dy-
namic analyses may include computations of re-
ductions in strength as an integral part of the
dynamic analysis in step 5.

7. Compute the stability of the slope using conven-
tional limit equilibrium procedures with the re-
duced shear strengths determined in step 6. This
may require analyses using both undrained and
drained shear strengths to determine which
strengths are most critical.

8. If the analyses indicate that the slope will be sta-
ble after the earthquake, compute the permanent
displacements. If strength losses due to cyclic
loading are small, a Newmark-type sliding block
analysis may be used for this purpose (Newmark,
1965). However, if strength losses are significant,
other methods should be used. For example, Seed
(1979) showed that pseudostatic analysis proce-
dures did not adequately reveal the problems with
large displacement for the Upper Van Norman
Dam, and he used the concept of a strain poten-
tial to evaluate the displacements. Conceptually,
a complete nonlinear finite element analysis
should be able to calculate any permanent dis-
placements in a slope or dam; however, such
analyses are very complex, involve considerable
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Figure 10.1 Derivation of the equation for the factor of
safety of an infinite slope with a seismic force (kW)—total
stress analyses.

uncertainties, and are seldom performed in prac-
tice.

The details involved in evaluation of dynamic soil
properties and performing the type of dynamic re-
sponse analyses outlined above are beyond the scope
of this book. However, simpler procedures, to deter-
mine if detailed analyses are needed, are described in
the following sections.

Pseudostatic Analyses

One of the earliest procedures of analysis for seismic
stability is the pseudostatic procedure, in which the
earthquake loading is represented by a static force,
equal to the soil weight multiplied by a seismic coef-
ficient, k. The pseudostatic force is used in a conven-
tional limit equilibrium slope stability analysis. The
seismic coefficient may be thought of loosely as an
acceleration (expressed as a fraction of the accelera-
tion, g, due to gravity) that is produced by the earth-
quake. However, the pseudostatic force is treated as a
static force and acts in only one direction, whereas the
earthquake accelerations act for only a short time and
change direction, tending at certain instances in time
to stabilize rather than destabilize the soil.

The term pseudostatic is a misnomer, because the
approach is actually a static approach that is more cor-
rectly termed pseudodynamic; however, the term pseu-
dostatic has been used for many years and is common
in the geotechnical literature. The vertical components
of the earthquake accelerations are usually neglected
in the pseudostatic method, and the seismic coefficient
usually represents a horizontal force.

Application of a seismic coefficient and pseudostatic
force in limit equilibrium slope stability analyses is
relatively straightforward from the perspective of the
mechanics: The pseudostatic force is assumed to be a
known force and is included in the various equilibrium
equations. This is illustrated in Figure 10.1 for an in-
finite slope with the shear strength expressed in terms
of total stresses. Similar equations can be derived for
effective stresses and for other limit equilibrium pro-
cedures, including any of the procedures of slices dis-
cussed in Chapter 6.

An issue that arises in pseudostatic analyses is the
location of the pseudostatic force. Terzaghi (1950) sug-
gested that the pseudostatic force should act through
the center of gravity of each slice or the entire sliding
soil mass. This would be true only if the accelerations
were constant over the entire soil mass, which they
probably are not. Seed (1979) showed that the location
assumed for the seismic force can have a small but
noticeable effect on the computed factor of safety: For

the Sheffield Dam, changing the location of the pseu-
dostatic force from the centers of gravity to the bot-
toms of the slices reduced the factor of safety from
1.32 to 1.21 for a seismic coefficient of 0.1.

Dynamic analyses of the response of many dams to
earthquakes (Makdisi and Seed, 1978) indicate that
peak accelerations increase (i.e., they are amplified)
from the bottom to the top of a dam. Thus, the location
of the resultant seismic force would be expected to be
above the center of gravity of the slice. In the case of
circular slip surfaces, this would reduce the moment
about the center of the circle due to the seismic forces,
in comparison to applying the force at the center of
gravity of the slice, and the factor of safety would be
expected to increase. This reasoning is consistent with
the results of Seed (1979) for the Sheffield Dam, which
showed that the factor of safety decreased when the
seismic force was located below the center of gravity
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Figure 10.3 Double integration of acceleration–time history
to compute permanent displacements.

(a) (b)

a(t)
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Figure 10.2 (a) Actual slope; (b) sliding block representa-
tion used to compute permanent soil displacements in a slope
subjected to earthquake shaking.

of the slice. Assuming that the pseudostatic force acts
through the center of gravity of the slice is probably
slightly conservative for most dams. Thus, it appears
that Terzaghi’s suggestion is reasonable. For most
pseudostatic analyses the pseudostatic force is assumed
to act through the center of gravity of each slice. If a
force equilibrium (only) procedure is used, the location
of the pseudostatic force has no effect on the factor of
safety computed.

For many years, seismic coefficients were estimated
based on empirical guidelines and codes. Typical val-
ues for seismic coefficients used ranged from about
0.05 to about 0.25 (Seed, 1979; Hynes-Griffin and
Franklin, 1984; Kavazanjian et al., 1997). However,
with the development of more sophisticated analyses,
particularly displacement analyses such as the sliding
block analyses described in the next section, correla-
tions can be made between the seismic coefficient, the
expected earthquake accelerations, and the probable
displacements. Most seismic coefficients used today
are based on experience and results from deformation
analyses.

Sliding Block Analyses

Newmark (1965) first suggested a relatively simple de-
formation analysis based on a rigid sliding block. In
this approach the displacement of a mass of soil above
a slip surface is modeled as a rigid block of soil sliding
on a plane surface (Figure 10.2). When the accelera-
tion of the block exceeds a yield acceleration, ay, the
block begins to slip along the plane. Any acceleration
that exceeds the yield acceleration causes the block to
slip and imparts a velocity to the block relative to the
velocity of the underlying mass. The block continues
to move after the acceleration falls below the yield
acceleration. Movement continues until the velocity of
the block relative to the underlying mass goes to zero,
as shown in Figure 10.3. The block will slip again if
the acceleration again exceeds the yield acceleration.
This stick-slip pattern of motion continues until the
accelerations fall below the yield acceleration and the
relative velocity drops to zero for the last time. To

compute displacements, the accelerations in excess of
the yield acceleration are integrated once to compute
the velocities and a second time to compute the dis-
placements (Figure 10.3). Given an acceleration–time
history and yield acceleration, the integration can be
performed numerically. Movements in the upslope di-
rection are neglected (i.e., all displacements are as-
sumed to be ‘‘one-way’’). Details are beyond the scope
of this chapter but can be found in the literature (e.g.,
Jibson, 1993; Kramer, 1996; Kramer and Smith, 1997).

Limit equilibrium slope stability analyses are used
to compute the values of yield acceleration, ay, used in
sliding block analyses. The yield acceleration is usu-
ally expressed as a seismic yield coefficient, ky � ay /
g. The seismic yield coefficient is the seismic coeffi-
cient that produces a factor of safety of unity in a pseu-
dostatic slope stability analysis.

The value of ky is determined using conventional
slope stability analysis procedures. However, rather
than searching for the slip surface that gives the min-
imum static factor of safety, searches are conducted to
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find the slip surface that gives the minimum value of
ky. The slip surface giving the minimum value of ky is
usually different from the one giving the minimum fac-
tor of safety for static conditions.

Recapitulation

• Comprehensive analysis procedures exist and are
used to evaluate seismic stability for large em-
bankments and slopes where the consequences of
failure are high or significant soil strength losses
are anticipated.

• Pseudostatic analysis procedures approximate the
earthquake loads as a static force and are less ac-
curate than other procedures, but useful as a
screening tool.

• The pseudostatic seismic force is usually assumed
to act through the center of gravity of the soil
mass, and this assumption seems reasonable.

• Newmark-type sliding block analyses provide a
simple way of estimating permanent displace-
ments in a slope caused by an earthquake.

• Improvements have been made in the criteria for
selecting seismic coefficients for pseudostatic
analyses through studies of embankment displace-
ments using sliding block analyses and case stud-
ies.

PSEUDOSTATIC SCREENING ANALYSES

Pseudostatic analyses provide a useful way of screen-
ing for potential seismic stability problems, especially
when the soils involved are not expected to lose a sig-
nificant amount of their strength due to the earthquake.
Makdisi and Seed (1977) found that for clayey soils,
dry or partially saturated cohesionless soils, or very
dense saturated cohesionless soils, 80% of the static
undrained strength represents an approximate threshold
between large and small strains induced by cyclic load-
ing. Substantial permanent strains may be produced
when these nonliquefiable soils are subjected to cyclic
loads near their full undrained strengths. Essentially
elastic behavior was observed when these same soils
were subjected to large numbers of cycles (�100) at
80% of their undrained strengths. Accordingly, Mak-
disi and Seed (1977) recommended the use of 80% of
the static undrained strength as the dynamic yield
strength for nonliquefiable soils.

Use of pseudostatic analyses as screening analyses
can be a simple process. A suitable seismic coefficient
is determined based on an appropriate criterion and the
factor of safety is computed. The computed factor of
safety provides an indication of the possible magnitude

of seismically induced displacements. Criteria for se-
lection of seismic coefficients and for determining
what are acceptable factors of safety have been devel-
oped by Makdisi and Seed (1978), Hynes-Griffin and
Franklin (1984), Bray et al. (1998), and Kavazanjian
et al. (1997) by comparing the results of pseudostatic
analyses with field experience and the results of de-
formation analyses.

Several methods for using pseudostatic analyses to
determine the need for more detailed studies are sum-
marized in Table 10.1. Each involves these compo-
nents:

1. A reference peak acceleration, aref. The reference
accelerations used are either the peak accelera-
tion in bedrock beneath the slope, or the peak
soil acceleration at the top of the slope. Peak bed-
rock acceleration is easier to use, because deter-
mining peak acceleration at the top of the slope
requires a dynamic response analysis.

2. Acceleration multiplier. The seismic coefficient
used in the pseudostatic analysis is equal to aref /
g multiplied by an acceleration multiplier, a /aref

[k � (aref /g)(a /aref)]. Values of acceleration mul-
tiplier ranging from 0.17 to 0.75 have been rec-
ommended, as shown in Table 10.1.

3. Shear strength reduction factor. Most authorities
recommend using reduced shear strengths in
pseudostatic analyses. As shown in Table 10.1,
the strength most often recommended is 80% of
the static shear strength, following the findings of
Makdisi and Seed (1977). For landfills with geo-
synthetic liners, Bray et al. (1998) recommended
using residual strengths because the geosynthetic
interface strength is reached at small deforma-
tions that usually are exceeded during landfill
construction.

4. Minimum factor of safety. All of the screening
criteria summarized in Table 10.1 stipulate a min-
imum acceptable factor of safety. The values are
either 1.0 or 1.15.

5. Tolerable permanent deformation. Each set of
criteria summarized in Table 10.1 carries with it
the notion that a certain amount of earthquake-
induced deformation is tolerable. The magnitudes
of deformation judged to be tolerable vary from
0.15 m in the case of landfill base liners to 1.0
m for dams.

Each of the suggested methods outlined in Table
10.1 is complete within itself, and should be viewed
in this way: If a pseudostatic analysis using the spec-
ified reference acceleration shown in column (2), the
acceleration multiplier shown in column (3), and the
strength reduction factor shown in column (4) results
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Table 10.1 Suggested Methods for Performing Pseudostatic Screening Analyses

(1)

Reference

(2)

Reference
acceleration, aref

(3)

Acceleration
multiplier, a /aref

(4)

Strength
reduction factor

(5)
Minimum
factor of

safety

(6)

Tolerable
displacement

Makdisi and Seed
(1978)

0.2 g (M � 6 )1–2 0.5 0.8 1.15 Approx. 1 m

Makdisi and Seed
(1978)

0.75 g (M � 8 )1–4 0.2 0.8 1.15 Approx. 1 m

Hynes-Griffin
and Franklin
(1984)

PHArock 0.5 0.8 1.0 1 m

Bray et al. (1998) PHArock 0.75 Recommend using
conservative (e.g.,
residual) strengths

1.0 0.30 m for
landfill covers;
0.15 m for
landfill base
sliding

Kavazanjian et al.
(1997)

PHAsoil 0.17 if response
analysis is
performed

0.8a 1.0 1 m

Kavazanjian et al.
(1997)

PHAsoil 0.5 if response
analysis is
not
performed

0.8a 1.0 1 m

aFor fully saturated or sensitive clays.

in a factor of safety greater than or equal to the value
shown in column (5), this indicates that the permanent
displacements induced by the earthquake will not be
larger than those shown in column (6).

Although the methods summarized in Table 10.1 dif-
fer with regard to details, they employ the same pro-
cedure for screening conditions that would lead to
development of large permanent seismically induced
displacements. It will be noted that the methods that
are more stringent with respect to seismic coefficient
use tighter criteria for displacements that are consid-
ered tolerable.

The criteria by Hynes-Griffin and Franklin (1984)
were developed for earth dams and reflect results of
extensive analyses not reflected in Makdisi and Seed’s
(1978) criteria. The criteria by Bray et al. (1998) are
applicable to landfills, and like Hynes-Griffin and
Franklin’s criteria, reflect the results of deformation
analyses. The criteria developed by Hynes-Griffin and
Franklin and by Bray et al. are based on peak hori-
zontal bedrock acceleration, PHArock, and do not re-
quire site response analyses. However, the criteria are
more conservative than those proposed by Kavazanjian
et al. (1997), which do require response analysis. The
additional effort involved in performing a response

analysis can be weighed against the increased conser-
vatism required if a site response analysis is not per-
formed. Simplified procedures for estimating site
response have been discussed by Kavazanjian et al.
(1997).

Recapitulation

• Several simple screening criteria have been de-
veloped for evaluating seismic stability using
pseudostatic analysis procedures.

• The screening criteria differ in the reference seis-
mic acceleration, acceleration multiplier, strength
reduction factor, acceptable factor of safety, and
tolerable displacement criterion used.

DETERMINING PEAK ACCELERATIONS

Peak accelerations can be determined for highly seis-
mic areas, where extensive data from previous earth-
quakes has been accumulated, using empirical atten-
uation relations. For sites where less information is
available, peak accelerations can be established using
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Table 10.2 Peak Rock Acceleration Results

Zip code

PGArock with 10% probability
of excedence in 50 years
(500-year return period)

PGArock with 5% probability
of excedence in 50 years
(1000-year return period)

PGArock with 2% probability
of excedence in 50 years
(2500-year return period)

24060 0.054 g 0.097 g 0.194 g
78712 0.012 g 0.021 g 0.039 g

the U.S. Geological Survey Geohazards Internet Web
site (http: / /eqhazmaps.usgs.gov / ). The Web site pro-
vides peak rock acceleration (PGArock) based on lati-
tude and longitude or zip code. Example results are
shown in Table 10.2.

SHEAR STRENGTH FOR PSEUDOSTATIC
ANALYSES

The shear strength appropriate for use in a pseudostatic
analysis depends on whether the analysis is being per-
formed for short-term (end-of-construction) conditions
or for a slope that has been in existence for many
years. Pseudostatic analyses may need to be performed
for both short- and long-term conditions depending on
the particular slope.

Because seismic loading is of short duration, it is
reasonable to assume that except for some coarse grav-
els and cobbles, the soil will not drain appreciably dur-
ing the period of earthquake shaking. Thus, undrained
shear strengths are used for most pseudostatic analyses
(with the exception noted later of soils that tend to
dilate when sheared and may lose strength after the
earthquake as they drain).

Earthquakes Immediately after Construction

Pseudostatic analyses for short-term stability are only
appropriate for new slopes. Undrained shear strength
can be evaluated using conventional unconsolidated–
undrained testing procedures and samples identical to
the ones that would be tested to determine the shear
strength for static conditions. The analyses are per-
formed using shear strengths expressed in terms of to-
tal stresses.

Earthquakes After the Slope Has Reached
Consolidated Equilibrium

All slopes that will be subjected to earthquakes should
be evaluated for long-term stability using values of un-
drained shear strength that reflect the eventual long-
term conditions, including consolidation or swell after

the slope is constructed. The manner in which the un-
drained shear strength is determined for this condition
depends on whether we are dealing with an existing
slope or a slope that is yet to be built.

Existing slopes. If a slope has reached consolidated
equilibrium, the shear strength can be determined by
taking representative samples of the soil and perform-
ing tests using unconsolidated–undrained testing pro-
cedures. The stability analysis is then performed much
like a short-term stability analysis, using shear strength
parameters expressed in terms of total stresses.

New slopes. For new slopes it is necessary to sim-
ulate the effects of future consolidation and swell in
the laboratory using consolidated–undrained testing
procedures (Seed, 1966). The testing and analysis pro-
cedures are almost identical to those described in
Chapter 9 for rapid drawdown: The soil is first con-
solidated to a state of effective stress and then sheared
with no drainage. The difference between rapid draw-
down and seismic loading in a pseudostatic analysis is
that the undrained loading for rapid drawdown is due
to lowering the water level adjacent to the slope, while
the undrained loading for an earthquake is caused by
seismic forces.

Once the appropriate shear strength envelopes are
determined from the results of consolidated–undrained
triaxial shear tests, the slope stability computations are
performed using a two-stage analysis procedure nearly
identical to the procedures described in Chapter 9 for
rapid drawdown. A first-stage analysis is performed for
conditions prior to the earthquake (no seismic coeffi-
cient) to compute the consolidation stresses, and��ƒc

�ƒc. These stresses are then used to estimate the un-
drained shear strength for seismic loading using the
same procedures as for rapid drawdown. The un-
drained shear strength is then used in the second-stage
computations (with seismic coefficient) to compute the
pseudostatic factor of safety for the slope. For rapid
drawdown a third stage of computations is performed
to account for the likelihood of drainage during draw-
down, but drainage during an earthquake is much less
likely, and thus a third stage of computations is usually
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Figure 10.4 R (total stress) undrained shear strength enve-
lope plotted from consolidated–undrained triaxial compres-
sion tests.

not necessary. However, drainage after the earthquake
could adversely affect stability and should be consid-
ered as discussed in the final section of this chapter.

Simplified procedure (R envelope and single-stage
analysis). Although the two-stage analysis procedure
described above is the proper way to perform a pseu-
dostatic analysis for a slope, analyses are sometimes
performed using a simple single-stage procedure. In
the single-stage procedure the R shear strength enve-
lope is used. The R envelope, as it is called in U.S.
Army Corps of Engineers’ terminology, is obtained by
plotting results of consolidated–undrained triaxial tests
as shown on the Mohr–Coulomb diagram in Figure
10.4. In this diagram circles are plotted as follows: The
minor principal stress is the effective stress, , at��3c

consolidation; the diameter of the circle is the princi-
pal stress difference at failure, �1ƒ � �3ƒ. Because the
two stresses used to plot the circles ( and �1ƒ � �3ƒ)��3c

exist at different times during a test, the circles are not
actually Mohr circles—a Mohr’s circle represents the
state of stress at a point at an instant in time (e.g., at
consolidation or at failure). Similarly the R envelope
drawn on such a diagram is not actually a Mohr–
Coulomb failure envelope. However, the envelope that
is drawn on such a diagram is often quite similar to
the corresponding �ƒƒ vs. envelope that is plotted��ƒc

from consolidated–undrained tests described in Chap-
ter 9. To illustrate the similarities between the R and
�ƒƒ vs. envelopes, the two envelopes are plotted in��ƒc

Figure 10.5 for four different soils. The four soils and
properties are summarized in Table 10.3. It can be seen
that the R envelope in each case plots below the �ƒƒ

vs. envelope. There may be other cases where the��ƒc

R envelope lies above the �ƒƒ vs. envelope.��ƒc

In the simplified pseudostatic procedure a single set
of computations is performed for each trial slip surface
using the appropriate seismic coefficient and the inter-
cept and slope (cR and �R) of the R envelope as Mohr–
Coulomb shear strength parameters. In this simplified
approach it is important to use the proper pore water
pressures: The R envelope in this case is being used
as an envelope approximating the relationship between
the undrained shear strength (��ƒƒ) and effective con-
solidation pressure (� ). Thus, pore water pressures��ƒc

equal to those during consolidation (e.g., for steady-
state seepage) should be used in the computations.1

To illustrate the differences between the simple
single-stage procedure using the R envelope and the
more rigorous two-stage procedure such as the one de-
scribed earlier, a pseudostatic slope stability analysis
was performed for the slope shown in Figure 10.6. A
seismic coefficient of 0.15 was used and computations
were performed for the slope with both dry (zero pore
water pressure) and fully submerged conditions prior
to earthquake loading. Computations were performed
using each of the four different sets of soil strength
properties shown in Figure 10.4 and Table 10.3. Re-
sults of the computations are summarized in Table 10.4
and plotted in Figure 10.7. In all cases the factor of
safety computed by the simpler procedure is less than
the factor of safety computed by the more rigorous
two-stage procedure. The factor of safety from the
single-stage procedure varies between about 80 and
90% of the value from the two-stage analysis.

Recapitulation

• Unconsolidated–undrained tests performed on un-
disturbed or laboratory compacted specimens can
be used to determine the shear strength for pseu-
dostatic analyses of existing slopes or new slopes
at the end of construction.

• To determine the shear strength for new slopes
after the slope has reached consolidated equi-
librium, shear strengths are determined using
consolidated–undrained testing procedures and
analyses are performed as two-stage analyses us-
ing procedures similar to those used for rapid
drawdown.

1 Although the R envelope is called a total stress envelope in many
texts (Terzaghi and Peck, 1967; Peck et al., 1974; Wu, 1976; Sowers,
1979; Dunn et al., 1980; Holtz and Kovacs, 1981; Lee et al., 1983;
McCarty, 1993; Liu and Evett, 2001; Abramson et al., 2002; Das,
2002), when the envelope is used in pseudostatic slope stability com-
putations, effective stresses and appropriate pore water pressures
must be used.
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Figure 10.5 Comparison of �ƒƒ- shear strength envelope with R (total stress) envelope��ƒc

for undrained shear.

• A simplified single-stage analysis procedure using
the R strength envelope appears in many cases to
produce conservative estimates for the pseudo-
static factor of safety after the slope has reached
consolidated equilibrium.

• Reductions in strength of up to 20% caused by
cyclic loading during an earthquake are probably
offset by the effects of a higher loading rate dur-
ing an earthquake compared to normal loading
rates in static tests.

Effects of Rapid Load Application

Pseudostatic analysis procedures are appropriate only
for cases involving soils that do not lose significant
strength during an earthquake. Several of the screening
guidelines summarized in Table 10.1 allow for mod-
erate strength losses by using a nominal strength re-
duction factor. However, even if no such factor is used,
strength losses of no more than 15 to 20% can prob-
ably be safely ignored in selecting shear strength for
pseudostatic analyses because of strain rate effects.
Most soils that are subjected to undrained loading at

the rates imposed by earthquakes will exhibit strengths
that are 20 to 50% higher than the shear strength mea-
sured in conventional static loading tests where the
time to failure is several minutes or longer. Soils typ-
ically show an increase in undrained shear strength of
5 to 25% per tenfold increase in strain rate (decrease
in time to failure). Considering earthquake loading
with a period of 1 s, the time to increase the load from
zero to the peak would be approximately 0.25 s. If a
static test is performed with a time to failure of 10
minutes (600 s), and the shear strength of the soil in-
creases 10% per tenfold decrease in the time to failure,
the effect of strain rate on the strength during an earth-
quake would be expected to be about 34% higher:

600
10% � log � 34%10 0.25

Such increases in strength due to load rate effects
will offset a 15 to 20% reduction in strength due to
cyclic loading. Thus, there is some basis for not re-
ducing the shear strength used in pseudostatic analy-
ses, provided, of course, that the analysis is only being
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Table 10.3 Summary of Soil Properties Used in Comparison of R and 	ƒƒ vs. Strength Envelopes��ƒc

Soil
no. Description and reference Index properties

c�

(psf)
��

(deg)
cR

(psf)
�R

(deg)
da

(psf)

b

(deg)

1 Sandy clay (CL) material
from Pilarcitos Dam;
envelope for low (0–10
psi) confining pressures.
(Wong et al., 1983)

Percent minus No. 200: 60–70
Liquid limit: 45
Plasticity index: 23

0 45 60 23 64 24.4

2 Brown sandy clay from dam
site in Rio Blanco,
Colorado (Wong et al.,
1983)

Percent minus No. 200: 25
Liquid limit: 34
Plasticity index: 12

200 31 700 15 782 16.7

3 Same as soil 1 except
envelope fit to 0–100 psi
range in confining
pressure (Wong et al.,
1983)

Percent minus No. 200: 60–70
Liquid limit: 45
Plasticity index: 23

0 34 300 15.5 327 16.8

4 Hirfanli Dam fill material
(Lowe and Karafiath,
1960)

Percent minus No. 200: 82
Liquid limit: 32.4
Plastic limit: 19.4

0 35 1400 22.5 1716 26.9

aIntercept of �ƒƒ vs. envelope—can be calculated knowing c�, ��, cR, and �R.��ƒc
bSlope of �ƒƒ vs. envelope—can be calculated knowing c�, ��, cR, and �R.��ƒc

30 ft

Case II - Submereged slope

Case I - u = 0

γ = 135 pcf

Figure 10.6 Slope used to compare simple, single-stage and
rigorous, two-stage pseudostatic analyses.

Figure 10.7 Comparison of factors of safety by simplified
single-stage pseudostatic and more rigorous two-stage pseu-
dostatic analyses.Table 10.4 Summary of Pseudostatic Safety Factors

Computed Using Simple Single-Stage and Rigorous
Two-Stage Procedures

Soil

Case I:
dry slope

Single-stage
analysis

Two-stage
analysis

Case II:
submerged slope

Single-stage
analysis

Two-stage
analysis

1 0.95 1.06 0.83 0.95
2 1.56 1.77 1.59 1.79
3 1.07 1.19 1.10 1.21
4 2.76 3.42 2.83 3.49

used for cases where significant (more than 15 to 20%)
strength losses are not anticipated.

POSTEARTHQUAKE STABILITY ANALYSES

Following an earthquake, the stability of a slope may
be diminished because cyclic loading has reduced the
shear strength of the soil. The reductions in shear
strength are generally treated differently depending on
whether or not liquefaction occurs. Stability follow-
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blowcount (N1)60-cs and undrained residual strength from
case studies. (After Seed and Harder, 1990.)

ing an earthquake can be evaluated using a three-step
process.

Step 1. Estimate if Liquefaction Will Occur

The first step in evaluating strength losses is to deter-
mine if the soil will liquefy. The procedures for doing
this are semiempirical, based on results of field tests
and case histories, mostly for horizontal ground. Ac-
cording to Youd et al. (2001) four different field tests
are suitable for measuring soil resistance to liquefac-
tion: (1) cone penetration tests, (2) Standard Penetra-
tion tests, (3) shear-wave velocity measurements, and
(4) for gravelly sites, the Becker penetration test. Var-
ious correlations have been developed that relate the
resistance or stiffness characteristics of the soil mea-
sured in these tests to the cyclic shear stresses required
to cause liquefaction. The cyclic shear stresses required
to cause liquefaction are generally expressed as a nor-
malized ratio of cyclic shear stress to effective vertical
consolidation pressure, �cyclic / known as the cyclic�� ,vo

resistance ratio (CRR). Based on one or more of the
field tests described above, an estimate is made of the
cyclic resistance ratio using appropriate correlations.
The cyclic resistance is then compared with the seis-
mically induced seismic stress ratio (CSR) to deter-
mine if liquefaction will occur.

Step 2. Estimate Reduced Undrained Shear Strengths

If the soil is expected to liquefy, reduced values of the
undrained residual shear strengths are estimated.2 Seed
and Harder (1990) suggested the relationship shown in
Figure 10.8 between the undrained residual shear
strength and the corrected standard penetration resis-
tance, (N1)60. Poulos, Castro, and their co-workers have
proposed an alternative approach based on the concept
of steady-state shear strength (Poulos et al., 1985). The
steady-state strength is estimated based on the void
ratio in the field and a relationship between steady-
state strength and void ratio determined in the labo-
ratory. A third approach to determining the undrained
residual shear strength has been proposed by Stark and
Mesri (1992) and Olson and Stark (2002). They have
proposed determining an equivalent c /p ratio repre-
senting the ratio of the undrained residual shear
strength to the effective preearthquake consolidation
pressure. Stark and his co-workers have developed em-
pirical correlations that relate values of c /p to Standard

2 Undrained residual shear strength, should be distinguished from
residual shear strength, used to describe the long-term ‘‘drained’’
shear strength of soils that have previously experienced large static
shear strains.

Penetration resistance (Figure 10.9) and cone penetra-
tion resistance (Figure 10.10).

Although a soil may not liquefy during an earth-
quake, it is possible that pore water pressures will in-
crease in the soil and the shear strength may be
reduced. Marcuson et al. (1990) suggest that in this
case the pore water pressures due to the earthquake
can be related to the factor of safety against liquefac-
tion, defined as the cyclic shear stress divided by the
cyclic shear stress required to cause liquefaction (based
on estimates of the cyclic resistance ratio described
earlier). Marcuson et al. present the curves shown in
Figure 10.11 for estimating the residual excess pore
water pressures. However, care must be exercised in
using such curves and defining pore water pressures
that will be used in an effective stress representation
of shear strength. It is possible that the shear strength
corresponding to an effective stress analysis will ac-
tually be greater than the original undrained shear
strength of the soil because the pore water pressures
that are estimated as residual values may not be as
large as the pore water pressures when the soil is
sheared to failure with no drainage. Accordingly, it is
recommended that if pore water pressures are esti-
mated and used in an effective stress analysis, a check
be made to ensure that the shear strength does not ex-
ceed the undrained shear strength before the earth-
quake.

As an alternative to the effective stress approach
suggested by Marcuson for soils that lose some
strength but do not liquefy during an earthquake, re-
duced values of undrained shear strength can be used.
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Figure 10.9 Relationship between undrained critical strength ratio and equivalent clean sand
blow count. (From Stark and Mesri, 1992.)
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Figure 10.11 Typical residual excess pore water pressure ra-
tios as a function of the factor of safety against liquefaction
for sand and gravel. (After Marcuson et al., 1990.)
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Figure 10.12 Stability of lower San Fernando Dam immediately after earthquake. (After
Seed, 1979.)

Reduced undrained shear strengths can be estimated
by performing laboratory tests in which specimens are
consolidated to stresses comparable to those expected
in the field before the earthquake, subjected to loads
simulating the earthquake, and finally, sheared to fail-
ure in a static load test.

Step 3. Compute Slope Stability

Once the postearthquake shear strengths have been de-
termined, a conventional static slope stability analysis
is performed. For some soils and slope geometries, the
undrained shear strength after seismic loading may

represent the minimum shear strength, and the shear
strength will gradually increase with time after the
earthquake. For these soils and slopes, the slope sta-
bility computations can be performed using undrained
shear strengths that reflect the effects of cyclic loading
as discussed in the two preceding sections. However,
for other soils, especially those that dilate when
sheared, the shear strength may decrease with time af-
ter the earthquake as the soil drains and water migrates
from zones of high pore water pressure to zones of
lower pressure. This was illustrated by Seed (1979) in
Figures 10.12 and 10.13 for the Lower San Fernando
Dam. The factor of safety computed using undrained
strengths immediately after the earthquake (Figure
10.12) was 1.4, while the factor of safety accounting
for partial drainage and redistribution of pore water
pressure (Figure 10.13) was only 0.8.

In cases where some combination of undrained and
drained (or partially drained) shear strengths control
the stability, it seems appropriate to perform stability
analyses that use the lower of the drained and un-
drained shear strengths, as is done for rapid drawdown.
Procedures similar to the multistage analysis proce-
dures described in Chapter 9 can be used for this pur-
pose. Specifically, the procedures suggested for the
analysis of stability following an earthquake involve
the following two analysis stages for each trial slip
surface:

• Stage 1. Stability computations are performed us-
ing undrained shear strengths that reflect the
effects of cyclic loading for low-permeability ma-
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Figure 10.13 Stability of lower San Fernando Dam after partial drainage and redistribution
of pore water pressures following the earthquake. (After Seed, 1979.)

terials3; effective stresses and drained shear
strengths are used for high-permeability soils.

• Stage 2. Based on the total normal stress that is
computed from the first-stage stability analysis
and the pore water pressures that will exist after
complete drainage (full excess pore water pressure
dissipation), the fully drained shear strength is es-
timated. This is done slice by slice along the slip
surface in all low-permeability soils. If the drained
shear strength is less than the undrained shear
strength, the drained shear strength is assigned to
the slice; otherwise, the undrained shear strength
is assumed to be applicable. Stability computa-

3 If an effective stress approach, such as the one suggested by Mar-
cuson et al. (1990), where excess pore water pressures are used to
represent the postearthquake strengths, effective stress shear strength
parameters and excess pore water pressures are used in lieu of un-
drained shear strengths for the first-stage analysis.

tions are then repeated. The computations will in-
volve a mix along the slip surface of total stresses
(where undrained strengths are used) and effective
stresses (where drained strengths are used). The
factor of safety computed from the second-stage
analysis is the factor of safety after the earthquake.

Recapitulation

• Static slope stability analyses should be per-
formed using reduced undrained shear strengths
that reflect the earthquake load effects to deter-
mine that the slope is sufficiently stable after the
earthquake.

• For soils that may lose strength as they drain after
the earthquake, a two-stage analysis can be per-
formed using the lower of the drained and un-
drained shear strength along each slop surface.
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CHAPTER 11

Analyses of Embankments with Partial Consolidation
of Weak Foundations

Clay foundations are sometimes too weak to support
the entire load of an embankment. Methods of im-
proving stability in these cases include constructing the
embankment in stages, allowing time for partial con-
solidation between stages, constructing the embank-
ment continuously but slowly to allow time for partial
consolidation, and using wick drains or sand drains to
accelerate the rate of drainage and pore pressure dis-
sipation. As the foundation clay consolidates, its
strength increases and stability is improved.

Figure 11.1 shows a stress path (shear stress and
effective normal stress on a potential failure plane) for
an element of soil in the foundation of an embankment
constructed in stages. The most critical periods (the
periods when the factor of safety is lowest) are those
corresponding to the end of placement of a new portion
of the embankment, when the stresses are closest to
the failure envelope. The factor of safety increases as
consolidation occurs, and the stress point moves away
from the failure envelope. After a period of consoli-
dation, it is possible to increase the height of the em-
bankment safely.

The benefits of consolidation during construction are
illustrated clearly by studies of two test embankments
constructed in Poland (Wolski et al., 1988, 1989). The
engineers who performed the studies summarized their
findings as follows (Wolski et al., 1989): ‘‘[I]t was
shown that by constructing the fill in stages, it was
possible to safely construct a fill twice as thick as the
original shear strength in the ground would have per-
mitted. After another two years of consolidation even
this load could be doubled to an 8 m thick fill before
failure occurred.’’

When it is impractical to construct an embankment
slowly or to construct it in stages to achieve partial
consolidation during construction, wick drains or sand

drains can be used to accelerate the rate of consoli-
dation. In any of these cases where consolidation dur-
ing constuction is essential to the stability of the
embankment, consolidation and stability analyses are
needed to determine the amount of consolidation, the
factor of safety, and the allowable rate of fill place-
ment.

CONSOLIDATION DURING CONSTRUCTION

Although it is frequently assumed that there is no con-
solidation or dissipation of excess pore water pressure
during construction of embankments on weak clays,
this may not be a good approximation. The rate of
consolidation of clays in the field is frequently fast
enough so that a significant amount of dissipation of
excess pore water pressure will occur during construc-
tion. As shown in Figure 11.2, undrained conditions
would correspond to point 2a, whereas partial dissi-
pation during construction would correspond to point
2b or point 2c, which would have higher factors of
safety. If some dissipation does occur, stability analy-
ses performed assuming completely undrained condi-
tions at the end of construction (point 2a) will
underestimate the factor of safety. This may lead to a
perceived need for staged or slow construction, or for
wick drains to accelerate the rate of consolidation,
when in fact neither would be needed.

An example of such a case is the embankment of
La Esperanza Dam in Ecuador. A portion of the dam
was built on an ancient incised valley that contained
recent alluvium, including as much as 15 m (50 ft) of
weak, compressible clay. Stability analyses showed
that if the clay was undrained, the embankment would
be unstable. Settlement calculations indicated that the
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Figure 11.1 Stress changes during staged construction.

Figure 11.2 Effect of pore pressure dissipation during em-
bankment construction.

settlement of the 45-m (150-ft)-high embankment
would be approximately 1.5 m (5 ft). Measurements of
the settlement of an instrumented test fill showed that
the actual rate of settlement was much faster than the
rate calculated using the results of laboratory consoli-
dation tests. The actual rate of consolidation was about
12 times as fast as calculations had indicated they
would be. Based on this finding it was concluded that
it would be possible to construct the dam without ex-
cavating the foundation clay, without restricting the
rate of construction of the embankment, and without
installing sand drains to accelerate consolidation of the
clay. As a result it was possible to reduce the time
required for construction of the dam from four years
to three. The dam was completed successfully in Sep-
tember 1995.

The lesson to be learned from this experience is that
in circumstances where the factor of safety calculated
assuming undrained conditions is lower than accepta-
ble, the amount of consolidation and dissipation of ex-
cess pore water pressures during construction should
be evaluated. It may be found that it is unnecessary to
use slow construction, staged construction, or drains to
accelerate consolidation, because sufficient dissipation
of excess pore pressures will occur without these mea-
sures so that the factor of safety will be acceptable
throughout and after construction.

ANALYSES OF STABILITY WITH PARTIAL
CONSOLIDATION

Idealized variations of embankment height, excess
pore water pressure, and factor of safety with time dur-
ing staged construction are shown in Figure 11.3. The
most critical times are those, like points 2 and 4, which
correspond to the end of a period of rapid fill place-
ment. These are the conditions for which stability must
be evaluated to ensure an adequate factor of safety
throughout and after construction. As shown in Fig.
11.3, the factor of safety increases with time after fill
placement stops.

The mechanisms through which stability is im-
proved by partial consolidation—dissipation of excess
pore pressures and strength increasing as effective
stress increases—are founded on well-established prin-
ciples of soil mechanics. However, specific methods
for applying these principles to evaluation of stability
with partial consolidation have not been well estab-
lished, and there is disagreement in the profession re-
garding whether it is preferable to use effective stress
analyses or total stress analyses to evaluate stability for
such cases (Ladd, 1991).

Effective Stress Approach

If stability is evaluated using the effective stress ap-
proach, the analyses are performed as follows:

1. Conduct drained strength tests, or consolidated–
undrained tests with pore pressure measurements,
to determine the effective stress shear strength
parameters (c� and ��) for the foundation clay.
Perform either drained or undrained tests to de-
termine strength parameters for the fill. If suffi-
cient experience already exists with the soils, it
may be possible to estimate the values of the
needed properties.

2. Estimate the variations of excess pore water pres-
sures with depth and laterally in the foundation
for a condition of no drainage. These pore water
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Figure 11.3 Variations of embankment height, excess pore pressure, and factor of safety
with time.

pressures would correspond to the no dissipation
line in Figure 11.3.

3. Perform consolidation analyses to determine how
much excess pore water pressure dissipation will
occur during construction. The results of these
analyses would correspond to the partial dissi-
pation line in Figure 11.3.

4. Perform stability analyses for stages such as
points 2 and 4 in Figure 11.3, when the factor of
safety would be lowest.

The primary advantage of the effective stress ap-
proach is that stability can be checked during construc-

tion by measuring the pore water pressures and
performing additional stability analyses using the mea-
sured pore pressures.

Total Stress Approach

If stability is evaluated using the total stress (or un-
drained strength) approach, the analyses are performed
using undrained shear strengths, expressed in terms of
total stresses. For saturated soils the undrained shear
strength is represented in the analyses by c � su, with
� � 0. The analyses are performed as follows:
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Figure 11.4 Corrected values of shear strengths in the foun-
dation of a test embankment constructed in stages: (a) end
of stage 1 (4.84); (b) end of stage 2 (5.85); (c) end of stage
3 (7.87). (From Wolski et al., 1989.)

1. Conduct laboratory tests to determine the varia-
tion of su with effective stress (��) and overcon-
solidation ratio (OCR) for the foundation clay.
Perform either drained or undrained tests to
determine strength parameters for the fill. If suf-
ficient experience already exists with the soils, it
may be possible to estimate the values of the
needed properties.

2. Determine the variation of preconsolidation pres-
sure, pp (also called maximum past pressure,
�vmax) with depth in the foundation from the re-
sults of laboratory consolidation tests, in situ
tests, or past experience.

3. Estimate the excess pore water pressures in the
foundation for a condition of no drainage, and
perform consolidation analyses to determine how
much excess pore water pressure dissipation will
occur during construction, as for effective stress
analyses. Compute the variation of effective
stress (��) and OCR with depth and laterally for
each stage at which stability will be evaluated.
Use these to estimate the variation of undrained
strength with depth and laterally beneath the em-
bankment.

4. Perform stability analyses for stages such as
points 2 and 4 in Figure 11.3, when the factor of
safety would be lowest.

The primary advantage cited for the total stress ap-
proach is that if failure occurred, it would be un-
drained. Thus, using undrained strength is more
appropriate because it corresponds more closely to the
behavior being evaluated.

OBSERVED BEHAVIOR OF AN EMBANKMENT
CONSTRUCTED IN STAGES

The studies performed by Wolski et al. (1988, 1989)
are uniquely valuable because they are so well docu-
mented and because the embankment they studied was
eventually loaded to failure. The reports of these stud-
ies do not provide information about the effectiveness
of undrained pore pressure estimates or consolidation
analyses, because the foundation pore pressures were
measured rather than calculated. Even so, the studies
are very instructive because of the wealth of detail they
contain and the clarity with which the results are pre-
sented.

The earlier investigation (Wolski et al., 1988) in-
cluded studies of two embankments constructed in
stages, one with wick drains and the other without. The
later investigation (Wolski et al., 1989) involved in-
creasing the height of the embankment without wick
drains until failure occurred.

The embankments were constructed at a site in Po-
land where the subsoil contained a layer of peat about
3 m (10 ft) thick, underlain by a layer of weak calcar-
eous soil about 4.7 m (15 ft) thick. The calcareous
layer was underlain by sand. Measurements included
the consolidation characteristics of the peat and cal-
careous soil, drained and undrained shear strengths,
pore water pressures in the foundation, and horizontal
and vertical movements of the embankments.

Undrained strengths (vane shear strengths) in the
foundation at three different times during construction
are shown in Figure 11.4. It can be seen that the in-
crease in strength with time was very significant, es-
pecially near the top of the peat layer and the bottom
of the calcareous soil, where consolidation advanced
most rapidly. In the center of the calcareous soil, where
consolidation was slowest, the undrained strength was
found to be relatively low. Although the vane shear
strengths shown in Figure 11.4 required correction for
use in evaluating stability, they provided a useful
means for effective evaluation of strength increase due
to consolidation.

Stage 1 of the embankment (1.2 m high) was built
in November 1983. Stage 2 (which increased the
height to 2.5 m) was added in April 1984. Stage 3
(which brought the height to 3.9 m) was completed in
June 1985. In July 1987 the height of the embankment
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Table 11.1 Factors of Safety for an Embankment
Constructed in Stagesa

Ft

(total stress)
Fe

(effective stress)

Two-dimensional
factor of safety

0.85 0.89

Estimated increase
due to three-
dimensional
effects

12 to 18% N.A.

Estimated three-
dimensional
factor of safety

0.95 to 1.00 N.A.

Source: (Wolski et al. (1989).
aBoth Ft and Fe were calculated using Janbu’s (1973)

Generalized Procedure of Slices. Fe was calculated using
measured pore pressures.

Figure 11.5 Estimated failure zone in a test embankment constructed in stages. (From Wol-
ski et al., 1989.)

was increased to 7.95 m (26 ft) in a period of seven
days, whereupon the embankment failed. Failure oc-
curred in the middle of the night when there was no
construction activity. The measurements made at the
end of the previous day had given no sign that failure
was imminent.

The shape of the failure zone was estimated based
on surface observations and field vane shear tests to
locate zones in the foundation where the undrained
strength had been reduced by remolding that accom-
panied the large displacements at failure. The shape of
the failure zone inferred from these measurements is
shown in Figure 11.5. It can be noted that there is a
steep ‘‘active’’ zone beneath the center of the embank-
ment, a nearly horizontal section where failure fol-
lowed the least consolidated and weakest part of the
calcareous soil, and a gently inclined passive zone
where the failure extended upward toward the ground
surface. These three zones fit well into the active, di-
rect simple shear and passive failure surface orienta-
tions described by Ladd (1991).

Factors of safety for the embankment were calcu-
lated for several stages during construction. Of greatest
interest are those calculated for the conditions at the
time of failure, which are shown in Table 11.1. Ideally,
the factors of safety calculated would be 1.0 for con-
ditions at failure. Within the range of accuracy of the
calculations, this is true for both the total and effective
stress analyses.

By the time the embankment reached its final height
of 8 m, it was shaped like a truncated pyramid, much
narrower at the top than at the base. As a result, the
two-dimensional analyses represented the conditions at
the maximum section but had to be adjusted to achieve
a result that was representative of the average condi-
tions for the entire embankment. These adjustments
could be approximated for the undrained case only.
Even so, two conclusions are clear from the results:
(1) The effective stress and total stress factors of safety

are very nearly equal at the failure condition. No sig-
nificance can be attached to the small difference be-
tween the calculated values of Ft and Fe. (2) With a
reasonable allowance for three-dimensional effects, the
factor of safety calculated for the total stress analysis
is unity. There is no reason to believe that the same
would not be true for the effective stress analysis as
well.

DISCUSSION

As noted earlier, methods for analysis of staged con-
struction have not been well established, and there is
still disagreement concerning whether effective stress
analyses or total stress analyses are preferable. The
writers believe that this state of affairs is due to the
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fact that the there are not a sufficient number of well-
documented case histories of staged construction fail-
ures against which to gage the effectiveness of the
methods that have been proposed. Some excellent case
studies have been performed, notably by Wolski et al.
(1988, 1989) and Bromwell and Carrier (1983), but
none of these provides information regarding the ac-
curacy of stability evaluations based on consolidation
analyses to estimate pore pressures for conditions of
partial consolidation.

To the writers’ knowledge, only the load test per-
formed by Wolski et al. (1989) was continued to fail-
ure. The tailings dam studied by Bromwell and Carrier
did not fail, and the one-dimensional consolidation
analyses they performed (only vertical flow) did not
match measured pore pressures, probably because
there was significant horizontal flow during consoli-
dation.

Ladd’s exhaustive study (Ladd, 1991) shows how
complex, how difficult, and how fraught with uncer-
tainty analyses of staged construction can be. More
case studies are needed to advance the state of the art
in this area. Until the results of such studies are avail-
able, it seems prudent to use both total and effective
stress analyses in tandem and to bear in mind the dif-
ficult aspects of this class of problems.

Difficulties in Estimating Pore Pressures

A considerable part of the uncertainty in both the ef-
fective stress approach and the total stress approach
stems from the difficulties in estimating the excess
pore pressures due to embankment loading and from
the difficulties in estimating their rates of dissipation.
The uncertainties in these processes can best be appre-
ciated by considering some of the details of such anal-
yses.

Estimating these pore water pressures requires per-
forming three types of analyses: (1) a stress distribu-
tion analysis to calculate the increase in total stress in
the clay due to construction of the embankment; (2)
an analysis to estimate the values of excess pore water
pressure that would result from these changes in total
stress with no drainage (these pore water pressure
changes should reflect the effects of changes in shear
stress as well as changes in mean normal stress); and
(3) a consolidation analysis to calculate the remaining
excess pore water pressures after a period of dissipa-
tion. These remaining excess pore water pressures are
added to the initial (before construction) pore pressures
to determine the total pore water pressures remaining
after dissipation.

Estimating the distribution of pore water pressure
that results from undrained loading requires consider-

able effort and is difficult to do accurately. The most
straightforward way of estimating these stress changes
is by using elastic theory, but elastic theory may result
in stresses at some locations that exceed the strength
of the clay and would have to be adjusted to values
that are consistent with the strength. Alternatively, it
would be necessary to perform more sophisticated
stress analyses that provide stresses compatible with
the strength characteristics of the clay.

The pore pressures that result from the increases in
total stress at each point in the foundation depend on
(1) the properties of the clay, (2) the overconsolidation
ratio (OCR), and (3) the magnitude of the stress in-
crease, particularly how close to failure the clay is
loaded. The value of the OCR and the magnitude of
the changes in total stress vary from point to point
through the foundation.

Skempton (1954) expressed the change in pore wa-
ter pressure due to changes in total stress in the form

�u � B �� � A(�� � �� ) (12.1)3 1 3

where �u is the change in pore water pressure caused
by changes in total stress ��1 and ��3, and B and A
are Skempton’s pore pressure parameters.

If the clay is saturated, the value of B is equal to
unity. The value of , however, depends on the prop-A
erties of the clay, the OCR at the location where the
pore water pressure is being calculated, and how close
the stresses at the point are to the failure envelope. As
a result, the value of is difficult to estimate accu-A
rately.

Difficulties in Consolidation Analyses

To determine the distribution of pore water pressures
after a period of consolidation, it is necessary to per-
form a consolidation analysis using the undrained con-
dition as the initial condition. Variations in the values
of coefficient of consolidation, compressibility, precon-
solidation pressure, and change in stress with depth can
have a significant effect on the rate of consolidation.
In most cases consolidation occurs more rapidly in the
field than would be expected based on conventional
settlement calculations (Duncan, 1993). To take these
factors into account, consolidation analyses should be
performed using numerical techniques rather than con-
ventional chart solutions.

Due to lateral flow, pore water pressures may in-
crease in areas of initially low excess pore water pres-
sures (beneath the toe of the embankment) while they
are decreasing in other areas (beneath the center of the
embankment). To include this effect, it would be nec-
essary to perform two-dimensional consolidation anal-
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yses that take horizontal as well as vertical flow into
account. Such analyses are possible, but difficult, and
are not yet done routinely in practice.

If wick drains or sand drains are used to accelerate
the rate of consolidation, suitable analyses are needed
to estimate the rate of consolidation with radial flow
to the drains. The book by Holtz et al. (1991) is a
valuable resource that covers both the theoretical and
practical aspects of designing wick drain systems.
Hansbo (1981) has developed the most widely used
theory for analysis of consolidation with wick drains.
The theory includes the effects of smear due to distur-
bance when the wicks are installed, and the effects of
the finite flow capacity of the wicks.

With or without drains to accelerate the rate of dis-
sipation, predicting pore water pressures for staged
construction analyses is a difficult task. It is clear from
the preceding discussion that making these estimates
requires extensive effort and is susceptible to consid-
erable inaccuracy.

Difficulties in Estimating Undrained Shear Strengths

Ladd (1991) has shown that undrained shear strengths
of clays depend on several factors:

• The magnitude of the effective consolidation pres-
sure, p�

• The value of the overconsolidation ratio (OCR)
• The ratio of the effective principal stresses during

consolidation, Kc � /�� ��1 3

• The amount of reorientation of the principal
stresses during loading

• The orientation of the failure plane

Accounting for each of these effects is difficult.
Ladd recommends employing simplifying assumptions
that result in conservative estimates of undrained shear
strength. He assumes that p� is equal to the vertical
effective stress, that the Kc ratio is equal to 1/K0, and
that the amount of stress reorientation and the orien-
tation of the failure plane are uniquely related. The
amount of conservatism involved in these simplifica-
tions is difficult to estimate.

As discussed in Chapter 5, two methods of labora-
tory testing can be used to evaluate undrained
strengths. Bjerrum (1973) recommended use of what
is termed the recompression procedure, wherein test
specimens are consolidated in the laboratory to their
estimated in situ stresses, to overcome some of the
effects of disturbance. Ladd and Foott (1974) and Ladd
et al. (1977) advocate use of the SHANSEP procedure,
wherein test specimens are consolidated to pressures
several times higher than the in situ stresses and shear
strengths are characterized in terms of ratios of un-

drained strength divided by effective vertical stress
during consolidation, su / There is fairly general�� .vc

agreement that the recompression procedure is prefer-
able for sensitive and highly structured clays, and that
SHANSEP is more suitable for young clays that are
not very sensitive and which have no significant bonds
or structures that are subject to damage by large strains
during consolidation. In addition, if SHANSEP is used,
it needs to be established (not just assumed) that
su / is a suitable parameter for characterizing the��vc

strength of the clay in question (i.e., that undrained
strength divided by consolidation pressure is a constant
for the clay).

Intrinsic Difference in Effective Stress and Total
Stress Factors of Safety

Effective stress and total stress factors of safety are
intrinsically different because they use different mea-
sures of shear strength, as illustrated in Figure 3.4. The
effective stress factor of safety (Fe) is equal to the shear
stress required for equilibrium divided by the shear
strength of the soil if the soil fails with no change in
the effective stress on the failure plane. The total stress
factor of safety (Ft) is equal to the shear stress required
for equilibrium divided by the shear strength of the soil
if the soil fails with no change in water content. For
saturated soils this corresponds to failure with no
change in void ratio. In general, the values of Fe and
Ft are not the same. For clays that generate positive
pore pressures due to changes in shear stress, as shown
in Figure 3.4, Fe is greater than Ft. At failure, both Fe

and Ft are equal to unity, but for stable conditions, Fe

is not equal to Ft.

Instrumentation for Staged Construction

Because the results of analyses of stability during
staged construction are so uncertain, it is appropriate
to use the observational method (Peck, 1969) to sup-
plement the results of analyses. Two types of instru-
mentation are especially useful for this purpose.

Piezometers can be used to measure pore water pres-
sures at key points in the foundation, and comparisons
of the measured and calculated pore water pressures
provide an effective means of determining if the cal-
culated values are high, low, or accurate. Effective
stress stability analyses can be performed using the
measured pore water pressures to check on stability
during construction.

Inclinometers (slope indicators) and settlement
plates can be used to measure horizontal movements
in the foundation beneath the toe of the fill and settle-
ments under the center of the embankment. Tavenas et
al. (1979) have developed criteria that can be used to



182 11 ANALYSES OF EMBANKMENTS WITH PARTIAL CONSOLIDATION OF WEAK FOUNDATIONS

interpret whether the movements observed are due to
consolidation of the foundation clay or whether they
indicate impending instability.

Need for Additional Case Histories

As mentioned previously, because there are not enough
published case histories of failures of embankments
during staged construction, and none that include con-
solidation analyses, it is difficult to judge the accuracy

of the methods of analysis that have been proposed.
The studies conducted by Wolski et al. (1988, 1989)
are extremely valuable. The instrumentation and test-
ing that they used provide a model of what is desirable
in such studies, and much can be learned from review
of their results. However, more such studies, including
both consolidation and stability analyses, will be
needed to determine whether any of the analysis meth-
ods that have been proposed are accurate and reliable.
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CHAPTER 12

Analyses to Back-Calculate Strengths

When a slope fails by sliding it can provide a useful
source of information on the conditions in the slope at
the time of the failure as well as an opportunity to
validate stability analysis methods. Because the slope
has failed, the factor of safety is considered to be unity
(1.0) at the time of failure. Using this knowledge and
an appropriate method of analysis it is possible to de-
velop a model of the slope at the time that it failed.
The model consists of the unit weights and shear
strength properties of the soil, groundwater, and pore
water pressure conditions and the method of analysis,
including failure mechanisms. Such a model can help
in understanding the failure better and be used as a
basis for analysis of remedial measures. The process
of determining the conditions and establishing a suit-
able model of the slope from a failure is termed back-
analysis or back-calculation.

BACK-CALCULATING AVERAGE SHEAR
STRENGTH

The simplest back-analysis is one where an average
shear strength is calculated from the known slope ge-
ometry and soil unit weights. This is accomplished by
assuming a friction angle of zero and calculating a
value of cohesion that will produce a factor of safety
of 1. This practice of calculating an average strength
expressed as a cohesion can, however, lead to errone-
ous representations of shear strength and potentially
unfavorable consequences (Cooper, 1984). For exam-
ple, consider the natural slope shown in Figure 12.1
and suppose that the slope has failed. We can begin by
assuming a value of cohesion and calculating a factor
of safety. If we assume a cohesion of 500 psf, the
calculated factor of safety is 0.59. The developed co-
hesion, cd, can then be calculated as

c 500
c � � � 850 psf (12.1)d F 0.59

The cohesion developed is the cohesion required for a
factor of safety of 1.0. Thus, the back-calculated shear
strength is 850 psf. Now, suppose that one remedial
measure being considered is to decrease the height of
the slope to 30 ft (Figure 12.2). If the slope height is
reduced to 30 ft and the cohesion is 850 psf, the new
factor of safety is 1.31. Because the shear strength has
been calculated from an actual slide, much of the un-
certainty normally associated with the measurement of
shear strength is eliminated. Thus, a factor of safety of
1.31 may be more than adequate, and based on this
analysis we might choose to reduce the slope height to
30 ft as the repair measure.

In the foregoing case we were able to back-calculate
an average shear strength expressed as a cohesion, c,
with � � 0. Little more can be done if all that we
know about the slope is that it failed. However, often
there is more information that can be used to obtain a
better estimate of the shear strength and other condi-
tions in the slope at the time of failure. Suppose that
the slope described above failed many years after the
slope was formed. If this is the case, we would analyze
the stability using drained shear strengths and effective
stresses; we would not consider the friction angle to
be zero unless the slope had failed soon after construc-
tion. Let’s suppose further that from experience with
clays like the clay in this slope, we know that the fric-
tion angle is about 22� and that there is a small cohe-
sion, c�. Finally, let’s suppose that we have found from
observations that a piezometric line such as the one
shown in Figure 12.3 approximates the seepage con-
ditions in the slope at the time of failure. We can then
back-calculate a value for the effective cohesion (c�)
that will produce a factor of safety of 1.0. The proce-
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Figure 12.4 Variation in factor of safety with the assumed
value for the cohesion (c�) for simple homogeneous slope
and foundation. �� � 22�.

Table 12.1 Summary of Back-Analyses and
Analyses of Remedial Measures for Homogeneous
Slope

Shear strength
parameters from

back-analysis

Factor of safety for remedial
measure

Decrease slope
height to 30 ft

Lower water
level to toe

of slope

c � 850 psf, � � 0 1.31 1.00
c� � 155 psf, �� � 22� 1.04 1.38

dure for back-calculating the cohesion in this case is
slightly different from what was done above. Several
values of cohesion need to be assumed. With a friction
angle of 22� and the piezometric line shown in Figure
12.3, the factor of safety is calculated for each assumed
value of cohesion. The results of such calculations are
summarized in Figure 12.4. It can be seen that a co-
hesion of approximately 155 psf produces a factor of
safety of 1.0. Using the shear strength parameters
(c� � 155 psf, �� � 22�) determined by back-analysis,
we can again calculate the stability of the slope with
the height reduced from 40 ft to 30 ft. The factor of
safety with the height reduced to 30 ft is 1.04. This
factor of safety (1.04) is substantially less than the fac-
tor of safety (1.31) determined for the slope when the
shear strength was back-calculated as a cohesion with
� � 0.

Next, suppose that for the slope described above,
another alternative remedial measure is to lower the
water level to the elevation of the toe of the slope. If

we apply the first set of shear strengths that were back-
calculated (c � 850 psf, � � 0), we will conclude that
lowering the water level has no effect on the factor of
safety because the friction angle is zero, and thus the
shear strength does not depend on either the total or
the effective normal stress. However, if we use the ef-
fective stress shear strength parameters (c� � 155 psf,
�� � 22�) that were determined by the second back-
analysis, the factor of safety is increased to 1.38, which
would indicate that lowering the groundwater level
would be an acceptable remedial measure.

The results of the back-analyses and the analyses of
remedial alternatives described above are summarized
in Table 12.1. It can be seen that very different con-
clusions would be reached regarding the effectiveness
of remedial measures, depending on how the shear
strength is characterized and what information is used
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for back-analysis. For the natural slope that failed a
number of years after formation, back-calculation of
an average shear strength expressed as cohesion led to
an overestimate of the effectiveness of reducing the
slope height and an underestimate of the effectiveness
of lowering the water level.

By using back-analysis, it is only possible to back-
calculate a single shear strength parameter. In the first
case summarized in Table 12.1, � was assumed to be
zero and an average shear strength, expressed as a co-
hesion, was back-calculated. In the second case knowl-
edge that the friction angle was approximately 22� and
the approximate location of a piezometric line were
used to back-calculate an effective cohesion, c�. In both
cases, cohesion was back-calculated while the friction
angle (�, ��) was either assumed or known from other
information. It would also be possible to assume that
the cohesion (c, c�) was zero and to back-calculate a
friction angle; however, only one unknown shear
strength parameter can be calculated using back-
analysis.

Recapitulation

• Only one strength parameter (c, c� or �, ��) can
be calculated by back-analysis.

• Back-calculation of an average shear strength ex-
pressed as a cohesion, c (� � 0) can produce
misleading results when a slope has failed under
long-term drained conditions.

BACK-CALCULATING SHEAR STRENGTH
PARAMETERS BASED ON SLIP SURFACE
GEOMETRY

Although for any given slope there are an infinite num-
ber of pairs of values for cohesion (c, c�) and friction
angle (�, ��) that will produce a factor of safety of 1,
each such pair of values will also produce a different
location for the critical slip surface. This is illustrated
for a simple slope in Figure 12.5. Three sets of shear
strength parameters and corresponding critical circles
are shown. Each set of shear strength parameters pro-
duces a factor of safety of 1, but the critical slip surface
is different. For a simple homogeneous slope such as
the one shown in Figure 12.5, the depth of the slip
surface is related to the dimensionless parameter, �c�,
defined as

�H tan �
� � (12.2)c� c

where H is the slope height and c and � represent the
appropriate total stress or effective stress, shear
strength parameters. Values of �c� are shown along
with the shear strength parameters in Figure 12.5. As
�c� increases, the depth of the slip surface decreases.
When �c� is zero, the slip surface is deep, and when
�c� is infinite (c, c� � 0), the slip surface is shallow—
essentially a shallow infinite slope failure. Because
each pair of shear strength parameters (c–� or c�–��)
corresponds to a unique slip surface, the location of
the slip surface, along with the knowledge that the
slope has failed (i.e., F � 1), can be used to back-
calculate values for two shear strength parameters
(c–� or c�–��).

To illustrate how the location of the slip surface can
be used to back-calculate both cohesion and friction,
consider the slope illustrated in Figure 12.6. This is a
highway embankment constructed in Houston, Texas,
of highly plastic clay, known locally as Beaumont
Clay. A slide developed in the embankment approxi-
mately 17 years after the embankment was built. The
estimated location of the slip surface is shown in Fig-
ure 12.6. Because the failure occurred many years after
construction, drained shear strengths were assumed
and slope stability analyses were performed to calcu-
late shear strength parameters in terms of effective
stresses. The pore water pressure was assumed to be
zero for these particular analyses. The following steps
were performed to back-calculate the shear strength
parameters and slip surface location:

1. Several pairs of values of cohesion and friction
angle (c� and ��) were assumed. The pairs of
values were chosen such that they represented a
range in the dimensionless parameter �c�, but the
values did not necessarily produce a factor of
safety of 1.

2. The critical circles and corresponding minimum
factors of safety were calculated for each pair of
values of the strength parameters.

3. Values of the developed shear strength parame-
ters ( and ) were calculated for each pair ofc� ��d d

strength parameters from the following equations
using the assumed cohesion and friction angle
and the computed factor of safety:

c�
c� � (12.3)d F

tan ��
�� � arctan (12.4)d F

The developed cohesion and friction angle rep-
resent back-calculated values required to produce
a factor of safety of 1.
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Figure 12.5 Critical circles for three different sets of shear strength parameters giving a
factor of safety of 1.
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Figure 12.6 Slide in compacted high-PI clay fill.

4. The depth of the critical slip surface for each pair
of values of strength parameters was calculated.

5. The back-calculated cohesion and friction angle
from step 3 were plotted versus the depth of the
slip surface, calculated in step 4 (Figure 12.7).

6. The cohesion and friction angle corresponding to
the observed slide depth (3.5) ft were determined
from the plotted results.

These steps showed that a cohesion of 5 psf and a
friction angle of 19.5� produce a factor of safety of 1
with a slide depth of 3.5 ft. These values seem reason-
able for the effective stress shear strength parameters
for a highly plastic clay.

Calculations like the ones described above can be
simplified by the use of dimensionless stability charts
that allow the cohesion and friction angle to be back-
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Figure 12.7 Variation in values for cohesion (c�) and friction
angle (��) that produce a factor of safety of 1 with the depth
of the slip surface.

calculated directly. Such charts are based on dimen-
sionless parameters similar to those described for the
stability charts used to compute factors of safety,
which are described in the Appendix. Abrams and
Wright (1972) and Stauffer and Wright (1984) have
developed charts for this purpose. Stauffer and Wright
used these charts and back-calculated shear strength
parameters from a number of slides in embankments
constructed of high-PI clays. These analyses were use-
ful in establishing that the effective cohesion values
were small for the embankments examined.

Duncan and Stark (1992) also back-calculated shear
strength parameters using procedures similar to those
described above. They back-calculated values for the
Northolt Slip and found that the friction angles that
were back-calculated exceed values determined in lab-
oratory tests. They concluded that the procedure was
not completely reliable, possibly because of the effects

of progressive failure in the slope. Poor agreement may
also have been caused by heterogeneity in the slope,
which is common in natural slopes. Duncan and Stark
also showed that the factor of safety changes only
slightly with changes in the position of the slip surface,
and thus the position of the slip surface is likely to be
influenced to a significant degree by the normal vari-
ations in shear strength that occur in a slope.

Back-calculation of cohesion and friction angles by
matching the computed critical slip surface with the
observed location of the actual slip surface has met
with only limited success and should be used cau-
tiously. In many cases greater success is obtained by
using other information, such as correlations between
Atterberg limits and friction angles, to estimate one of
the shear strength parameters and then to back-
calculate the other. Several additional examples of
back-analyses to determine slope conditions at the time
of failure are presented in the next section.

Recapitulation

• Each combination of cohesion and friction angle
that produces a factor of safety of 1 produces a
unique location for the critical slip surface. Ac-
cordingly, the location of the slip surface can be
used to calculate values for both cohesion (c, c�)
and friction angle (�, ��).

• Use of the location of the slip surface to back-
calculate both cohesion and friction has had
mixed success and does not seem to work when
there is significant progressive failure or distinct
layering and inhomogeneities in the slope.

EXAMPLES OF BACK-ANALYSES OF FAILED
SLOPES

The stability of any slope, including the results of any
slope stability analysis, depends on numerous varia-
bles, including:

1. Unit weight of the soil
2. Loading conditions (i.e., whether the loading is

undrained or drained)
3. Shear strength parameters, including whether the

soil is anisotropic or the Mohr failure envelope
is linear or nonlinear

4. Variability in the undrained shear strength or the
shear strength parameters laterally and vertically

5. Seepage conditions and pore water pressures
6. Subsurface stratigraphy, including the presence

of thin layers of soil with contrasting hydraulic
or shear strength properties
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Figure 12.8 Embankment on soft clay foundation.
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Figure 12.9 Undrained shear strength profiles from back-
analysis of embankment on soft clay.

7. Shape of the slip surface
8. Method of analysis, including the assumptions

made in the limit equilibrium procedure used

Some amount of uncertainty will exist in each of the
foregoing variables, and the outcome of any analysis
will reflect this uncertainty. If we seek to determine a
shear strength parameter (c, c�, � or ��) by back-
analysis, the value will reflect the uncertainty in all of
the other variables that were used in the analysis. The
degree of uncertainty in the shear strength parameter
will be no less than the degree of uncertainty in all of
the other variables that affect the stability analysis. In
fact, the back-analysis should actually be conceived as
a back-analysis to determine all of the variables that
are applicable to the failure, rather than only shear
strength. To reduce the uncertainty in this determina-
tion it is important to utilize all the information that is
known or can be estimated by other means prior to
performing the back-analysis. The back-analysis will
then serve to establish reasonable values for all the
variables.

Several examples are presented in this section to il-
lustrate how available information is used in conjunc-
tion with back-analyses to establish a complete
‘‘model’’ of the slope at the time of failure. Some of
these examples are of actual slopes or patterned after
actual slopes and some are hypothetical.

Example 1: Embankment on Saturated Clay
Foundation

The first example is of the cohesionless embankment
(fill) slope resting on a deep deposit of saturated clay
shown in Figure 12.8. The embankment has failed dur-
ing construction, due to the underlying weak clay foun-
dation. From knowledge of the fill material we can
estimate that the friction angle for the embankment is
35� and the fill has a unit weight of 125 pcf. We can

calculate the average undrained shear strength of the
foundation by varying the assumed shear strength and
calculating the factor of safety. From the results of
such calculations it is determined that the average un-
drained shear strength is approximately 137 psf. Now,
instead, suppose that we know from past experience
with the soils in the area of the slope that the clay is
slightly overconsolidated and that the undrained shear
strength increases approximately linearly with depth at
the rate of 10 psf per foot of depth. We can calculate
a value for the undrained shear strength at the ground
surface, assuming that the shear strength increases at
the rate of about 10 psf per foot of depth below the
surface. Doing so, we find that if the shear strength is
approximately 78 psf at the ground surface and in-
creases at the rate of 10 psf per foot of depth, the factor
of safety will be 1. The two shear strength represen-
tations described above are plotted in Figure 12.9. Both
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Figure 12.10 Critical circles from back-analysis of embankment on soft clay assuming con-
stant undrained shear strength and linear increase in undrained shear strength with depth for
foundation.

of these representations give a factor of safety of 1.
However, the locations of the corresponding critical
slip surfaces are very different as shown in Figure
12.10. In addition, if we use the two shear strength
representations to evaluate the effectiveness of reduc-
ing the slope height, we will reach different conclu-
sions. Suppose, for example, that we want to increase
the factor of safety to 1.5. Decreasing the slope height
to 4 ft with the constant shear strength of 137 psf for
the foundation is sufficient to achieve a factor of safety
of 1.5. However, if the shear strength increases linearly
with depth as represented by the second shear strength
profile, the factor of safety is only increased to 1.3 by
reducing the slope height to 4 ft. A factor of safety of
1.3 may very well be adequate for this embankment if
the shear strength has been established from back-
analysis, but if a factor of safety of 1.5 is necessary,
the slope height must be reduced to something less
than 4 ft.

For this example slope, knowledge of the shear
strength of the embankment soil and how the shear
strength varied with depth was used to establish a rep-
resentation of shear strength. With the knowledge of
the shear strength of the embankment, it was possible
to calculate the shear strength of the foundation. Fur-
ther, with knowledge of how the shear strength in-
creased with depth, it was possible to establish a better
representation of strength than was obtained when only
an average (constant) shear strength was calculated.
Without such information a greater amount of uncer-
tainty would exist in the shear strengths determined by
back-analysis.

Example 2: Natural Slope

The second example is of a natural slope located in
the western United States. The soil profile consists of
approximately 40 ft of weathered shale overlying un-
weathered shale (Figure 12.11). Substantial movement
of the weathered shale was observed. The movement
was believed to be taking place by slippage along the
bottom of the weathered shale zone. Based on the
movements that had already taken place, as well as
experience with similar slopes in weathered shale, re-
sidual shear strengths were believed to be applicable.
From the results of laboratory tests on the shale and
correlations presented by Stark and Eid (1994), a re-
sidual friction angle ( ) of 12� was estimated for the��r
shale. In this case the shear strength parameters were
believed to be relatively well known and the largest
uncertainty was in the pore water pressure conditions
in the slope. Therefore, a primary goal of the back-
analysis was to estimate the seepage conditions in the
slope that would be required to produce a factor of
safety of 1. Because of the large lateral extent of the
slope movements, infinite slope analysis procedures
were used. Assuming a residual friction angle of 12�
(c� � 0), it was found that a piezometric surface at a
depth of approximately 12 ft below the ground surface
would produce a factor of safety of 1. The actual water
conditions in the slope varied widely over the large
area of the slope, but groundwater observations in sev-
eral borings were consistent with the back-calculated
water level.

This slope was stabilized successfully and move-
ment was halted by installation of a number of hori-
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Figure 12.11 Natural slope in weathered shale.

Figure 12.12 Cross section of dam on foundation with weak clay layer.

Table 12.2 Shear Strength Parameters for Victor
Braunig Dam Embankment and Foundation Clay
Layer

Description

Peak strengths

c� (psf) �� (deg)

Residual strengths

(psf)c�r (deg)��r

Embankment 400 22 200 22
Foundation clay 500 18 100 9

Source: Reuss and Schattenberg (1972).

zontal drains that lowered the water level. Lowering
the water level 10 ft, from approximately 12 ft below
the surface to approximately 22 ft below the surface,
produced a factor of safety of 1.2. An increase from
1.0 to 1.2 was judged sufficient to stabilize the slope.
In this case the back-analysis was used to confirm the
residual shear strength values and determine the pore
water pressure conditions at the time of failure. The
resulting conditions then provided a basis for assessing
the effectiveness of stabilizing the slope with horizon-
tal drains.

Example 3: Earth Dam

The third example is of an earth dam. This example is
patterned after the slide that occurred in the Victor
Braunig Dam in San Antonio, Texas (Reuss and Schat-
tenberg, 1972). Except for some minor adjustments in
the geometry to simplify the problem, conditions are
very similar to those of the actual dam. Information on
the geometry and shear strength properties was taken
from Reuss and Schattenberg. The cross section used
for the present analyses is shown in Figure 12.12. The
slide that occurred passed through the embankment
and nearly horizontally along a clay layer near the top
of the foundation. The slide occurred approximately
five years after the dam was built. Due to layers and

lenses of sand in the foundation of the dam, it was
assumed that steady-state seepage was established in
the foundation. Steady-state seepage was also assumed
to have developed in the embankment, although the
seepage conditions in the embankment did not have a
major effect on the computed stability.

Analyses by Reuss and Schattenberg (1972) indi-
cated that low residual shear strengths in the founda-
tion contributed to the failure of the dam. Peak and
residual shear strengths were measured for both the
embankment soil and the clay in the foundation. Shear
strength parameters from these tests are summarized in
Table 12.2. A piezometric line representing the pore
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Figure 12.14 Piezometric line assumed for foundation of dam.
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Figure 12.13 Piezometric line assumed for embankment of dam.

water pressures in the embankment is shown in Figure
12.13. Pore water pressures in the foundation, partic-
ularly beneath the downstream half of the dam where
the slide occurred, were assumed to be controlled by
sand layers and lenses in the foundation. The sand lay-
ers and lenses were connected to the reservoir in the
vicinity of the upstream toe of the dam. A simple linear
piezometric surface that varied from the level of the
reservoir at the upstream toe of the dam to the eleva-
tion of the ground surface at the downstream toe of
the dam was assumed for the pore water pressures in
the foundation (Figure 12.14). Factors of safety were
calculated using both peak and residual shear
strengths. With peak shear strengths the factor of safety
was 1.78, while with residual shear strengths the factor
of safety was 0.99. These calculations indicate that re-
sidual shear strengths probably developed in the foun-
dation of the dam and contributed to the slide that
occurred.

A significant source of uncertainty in the analyses
described above was the pore water pressures in the
foundation of the dam. Limited measurements of pore
water pressures in the foundation were available, and
these were in general agreement with the assumed pi-
ezometric levels chosen for the analyses. However, to
determine if there might have been higher pore water
pressures, and thus that possibly peak, rather than re-
sidual, shear strengths controlled the stability at the
time of failure, additional analyses were performed us-

ing higher pore water pressures in the foundation of
the dam. Two different piezometric lines chosen for
these analyses are illustrated in Figure 12.15. Pore wa-
ter pressures from these piezometric lines approach the
overburden pressure in some areas of the downstream
slope, and thus the piezometric lines are considered to
represent an extreme condition. Stability calculations
were performed using peak shear strengths and the two
piezometric lines. Factors of safety for both piezomet-
ric lines were about 1.6 (range 1.56 to 1.58). Thus, it
seems unlikely that peak shear strengths were appli-
cable to this failure, and it was concluded that the
earlier analysis with residual shear strengths was
appropriate for the conditions at failure.

The slide in the Victor Braunig was stabilized suc-
cessfully with a berm at the downstream toe. Analyses
with a berm, residual shear strengths, and the piezo-
metric lines shown in Figures 12.13 and 12.14 showed
that the factor of safety was approximately 2.0 with
the stabilizing berm in place.

Example 4: High-PI Clay Embankment

The failure of a highly plastic clay embankment was
described earlier and illustrated in Figure 12.6. Back-
analyses to calculate shear strength parameters that
matched the location of the observed slip surface were
shown to give c� � 5 psf, �� � 19.5�. After these
analyses had been performed, consolidated–undrained
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Figure 12.15 Alternative piezometric lines assumed for foundation of dam with peak shear
strengths.

25002000150010000
0

500

500

1000

1500

2000

Effective Normal Stress, σ′ - psf

S
he

ar
 S

tr
es

s,
 τ

 -
 p

sf

Measured
Back-calculated

Figure 12.16 Measured failure envelope and failure enve-
lope determined by back-analysis using the critical slip sur-
face location.
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Figure 12.17 Measured fully softened and peak failure en-
velopes and failure envelope determined by back-analysis us-
ing the critical slip surface location.

triaxial shear tests with pore water pressure measure-
ments were performed to measure the effective stress
Mohr failure envelope for the clay. The failure enve-
lope determined from these tests is slightly curved and
is shown in Figure 12.16. Also shown in this figure is
the failure envelope that was back-calculated earlier
from the slide geometry. The failure envelope that was
back-calculated is substantially below the failure en-
velope that was measured in the laboratory tests. One
possible explanation for the differences between the
measured and back-calculated failure envelopes is that
the pore water pressures were assumed to be zero for
the back-calculated envelope. To determine if higher
pore water pressures might explain the discrepancies,
additional stability analyses were performed using the
measured failure envelope and higher pore water pres-
sures. For these analyses a piezometric line coincident
with the slope face was assumed. This corresponds to
uniform horizontal seepage in the entire slope and rep-
resents substantial pore water pressures in the slope.

The factor of safety using this piezometric line and the
measured shear strength envelope shown in Figure
12.16 was approximately 2.0. Thus, it seems highly
unlikely that the discrepancy between the measured
and back-calculated shear strengths was due to the as-
sumption of zero pore water pressures used in the
back-analyses.

Because of the apparent discrepancies between the
back-analyses and the laboratory measurements of
shear strength, additional laboratory tests were under-
taken. These additional tests on the fill material from
the embankment showed that significant softening of
the soil occurred when it was subjected to repeated
wetting and drying that ultimately led to a lower,
‘‘fully-softened’’ shear strength. The Mohr failure en-
velope for the fully-softened clay is shown in Figure
12.17. The failure envelopes for peak strength as well
as the failure envelope back-calculated earlier are also
shown in this figure. The fully softened strength can
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be seen to be significantly less than the peak strength;
however, the fully softened strength is still much
higher than the strength that was back-calculated. One
possible explanation could again be that the pore water
pressures were assumed to be zero in the back-
analysis.

To determine if pore water pressures could possibly
explain the discrepancies between the fully-softened
and back-calculated shear strength envelopes, addi-
tional analyses were preformed using the fully-
softened strength envelope and assuming various pore
water pressure conditions. Pore water pressures repre-
sented by a piezometric line coincident with the slope
face were found to produce a factor of safety of ap-
proximately 1 with the fully softened strength. Based
on these analyses, it thus appears that the fully soft-
ened shear strengths are applicable and that relatively
high pore water pressures were developed in the em-
bankment. The slide in the embankment occurred fol-
lowing a period of wet weather and significant rainfall.
It is likely that high pore water pressures developed in
the slope at least temporarily. Thus, the back-analyses
combined with laboratory testing to measure the fully
softened shear strength of the soil were used to estab-
lish the probable conditions in the slope when failure
occurred. The earlier back-analyses in which the pore
water pressures were assumed to be zero and the shear
strength parameters were calculated to match the depth
of the assumed slip surface were useful in establishing
that the shear strengths were relatively low, less than
the measured peak shear strengths. However, the initial
back-analyses did not fully explain the conditions at
failure; only after further laboratory testing and use of
the results from the laboratory tests in back-analyses
to determine the pore water pressures were the con-
ditions in the slope better understood.

Example 5: Kettleman Hills Landfill Failure

The final example is the Kettleman Hills landfill fail-
ure. Mitchell et al. (1990), Seed et al. (1990), Byrne
et al. (1992), and Stark and Poeppel (1994) have dis-
cussed this failure extensively. One issue that has
emerged from the studies by various investigators is
whether peak or residual shear strengths were devel-
oped in the liner system along the base of the waste
fill. Gilbert et al. (1996b) reanalyzed this failure using
probabilistic methods. Rather than calculate a single
value for the factor of safety based on assumed con-
ditions, they considered the probability of failure.
Their analyses accounted for the uncertainties in shear
strength due to variability in measured peak and resid-
ual shear strengths, as well as the uncertainty associ-
ated with the method of analysis, including the effect
of interslice force assumptions and potential three-

dimensional effects. For their analyses, Gilbert et al.
expressed the strength relative to peak and residual val-
ues, by a mobilized strength factor, Rs, defined as

s � sav.rR � (12.5)s s � sav.p av.r

where s is the shear strength, sav.r the mean residual
shear strength, and sav.p the mean peak shear strength.
Envelopes for both the peak and residual shear
strengths were assumed to possess random variability,
and a normal distribution was assumed; values from
the mean failure envelopes were used to compute Rs.
If the residual shear strength is developed, Rs is zero,
and if the peak strength is developed, the value of Rs

is 1.
Gilbert et al. (1996b) performed analyses for the

cross section shown in Figure 12.18 and calculated the
probability of failure as a function of the value for the
factor Rs. Their results are summarized in Figure 12.19.
The most probable value of Rs is 0.44, indicating that
the shear strength developed at failure was approxi-
mately halfway between the peak (Rs � 1) and residual
(Rs � 0) values. Previous studies by Byrne et al. (1992)
and Stark and Poeppel (1994) had concluded that peak
shear strengths were developed along the base of the
landfill, while another study by Gilbert et al. (1996a)
concluded that residual shear strengths were devel-
oped. The subsequent analyses by Gilbert et al.
(1996b) indicate that the probabilities of peak and re-
sidual shear strengths being developed are approxi-
mately equal. However, the analyses also indicate that
probably neither peak nor residual shear strengths, but
rather some intermediate values of shear strengths,
were developed. The analyses indicated that a pro-
gressive failure probably took place, and this is sup-
ported by subsequent finite element analyses by Filz
et al. (2001).

Back-analyses of the Kettleman Hills landfill using
probabilistic methods were helpful in understanding
the failure that occurred and what shear strengths were
developed at the time of failure. However, for analysis
and design of remedial measures in this case, it is prob-
ably more appropriate to use residual shear strengths
rather than the higher strengths that were developed at
the onset of failure, because the slope experienced rel-
atively large deformations.

Summary

In each of the examples presented above, some infor-
mation about the shear strength parameters or pore
water pressure conditions was available to guide the
back-analyses. This information, along with the knowl-
edge that the factor of safety was 1, was used to arrive
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Figure 12.18 Prefailure cross section of Kettleman Hills landfill.
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Figure 12.19 Probabilities of failure for various relative amounts of mobilized peak and
residual shear strengths in Kettleman Hills landfill liner.

at a complete set of conditions that were believed to
be representative of those in the slope at the time of
failure. In three of the five examples, the pore water
pressures at failure were uncertain, and some infor-
mation was available about the shear strength param-
eters. Back-analyses were used to establish the pore
water pressures as well as to confirm the values of the
shear strength parameters.

Duncan (1999) presented results of back-analyses
for three case histories where procedures similar to
those described above were used to establish the con-
ditions in the slope at the time of failure. These three
examples are summarized in Table 12.3 along with the

five examples presented in the preceding section. For
each example the important conditions that were es-
tablished by the back-analyses are indicated. In each
of these cases there was at least some uncertainty in
several variables, and the back-analyses served to es-
tablish a reasonable set of conditions at the time of
failure. Also, by performing the analyses with the same
limit equilibrium procedures used subsequently to an-
alyze the remedial measures, the validity of the com-
putational procedure was established along with the
soil and slope properties. This validation gave in-
creased confidence in the analyses that were performed
to evaluate remedial measures.
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Table 12.3 Summary of Examples of Back-Analyses and Results

Example Conditions defined by back-analysis

Example 1: embankment on
saturated clay foundation

Back-analyses established the undrained shear strength at the ground surface
using estimated rates of strength increase with depth.

Example 2: natural slope Back-analyses confirmed residual shear strengths and established a piezometric
level in agreement with groundwater observations.

Example 3: earth dam Back-analyses showed that residual shear strengths were developed and
established piezometric levels used later for evaluation of remedial measures.

Example 4: high-PI clay
embankment

Initial back-analyses showed that negligible cohesion intercept existed. Further
analyses supported by laboratory data showed that shear strengths were
reduced from peak to fully softened and that relatively high pore water
pressures must have existed at the time of failure.

Example 5: Kettleman Hills
landfill failure

Probabilistic analyses were used to establish that the shear strength developed
at failure was somewhere between peak and residual values and suggested
that progressive failure occurred.

San Luis Dam (Duncan, 1999) Back-analyses established that residual shear strengths were developed in highly
plastic clay slopewash.

Olmsted landslide (Duncan, 1999;
Filz et al., 1992)

Back-analyses established anisotropic shear strength values for McNairy I
formation and piezometric levels in slope.

La Esperanza Dam (Duncan, 1999) Back-analyses established piezometric levels and confirmed estimated shear
strengths of brecciated shale.

PRACTICAL PROBLEMS AND LIMITATION OF
BACK-ANALYSES

Back-analyses can provide a useful insight into the
conditions in a slope at the time of failure; however,
several limitations and factors can complicate such
analyses. These are discussed below.

Progressive Failure

A fundamental assumption in all limit equilibrium
slope stability analyses is that the shear strength is mo-
bilized simultaneously along the entire slip surface. If
a single set of shear strength parameters (i.e., a single
value for c and �) is assumed, while in reality the
values vary as a result of progressive failure, the back-
calculated values represent only an ‘‘average’’ of the
shear strength parameters that were mobilized on the
failure surface; the average may not represent the ac-
tual shear strength parameters at any point on the fail-
ure surface. This is very likely to be the case where
progressive failure occurs. As Duncan and Stark
(1992) showed for the analysis of the Northolt Slip,
the shear strength parameters back-calculated from the
slide geometry did not agree with either peak or resid-
ual shear strength values. Gilbert et al. (1996b) showed
similar results for the Kettleman Hills landfill failure.
In the case of Kettleman Hills, probabilistic methods
were useful in understanding the shear strengths that

were developed, as were the finite element analyses
presented by Filz at al. (2001).

If progressive failure occurs, the back-calculated
shear strengths are likely to be inappropriate for re-
design. For most slopes where progressive failure oc-
curs, the movements are likely to be large enough that
once the slide movement has ceased, the strengths are
reduced to residual values, and residual values should
be used for redesign even though higher values may
be determined by back-analysis. The use of average
values calculated from the initial slide geometry may
be unconservative.

Decreasing Strengths with Time

In most cases back-analyses are performed for either
short-term conditions with undrained shear strengths
or for long-term conditions with effective stress
shear strength parameters and steady-state seepage or
groundwater levels. The corresponding back-analyses
assuming the appropriate one of these conditions, how-
ever, may not result in the most critical value of shear
strength. For example, consider an excavated slope in
clay that fails during construction. Ordinarily, un-
drained conditions would be assumed and used to
back-calculate shear strengths for such a slope. The
undrained shear strength calculated from such analyses
should reflect the shear strength when the failure oc-
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curred. If the slope was excavated very recently, or if
it fails during construction, the soil is probably under-
going swelling (expansion) and the shear strength and
stability will continue to decrease after failure occurs.
For redesign, a strength significantly lower than the
one determined by back-analysis may be appropriate.

Even when slopes fail a number of years after con-
struction, the strength that is calculated only represents
the strength at the time of failure, and the strength may
still be decreasing further. For back-analysis of slopes
that fail a number of years after they are built, the pore
water pressures are often assumed based on an esti-
mated groundwater level, and if seepage occurs, the
seepage is assumed to have reached a steady-state con-
dition. This is probably the case with early investiga-
tions of a number of slopes in London Clay. Skempton
(1964) first suggested that many slopes that failed in
London Clay failed at different times after construction
because progressive failure was occurring and the
strength (effective stress shear strength parameters)
was decreasing with time. Although Skempton did not
clearly indicate what pore water pressure conditions
were assumed for his analyses, it appears that steady-
state seepage was assumed and that groundwater levels
were assumed to have reached steady-state equilibrium
levels. Vaughan and Walbancke (1973) later measured
pore water pressures in slopes in London Clay and
showed that the pore water pressures increased grad-
ually over many years. This led to the realization that
a significant portion of the time-related delay in failure
may have been due to changes in pore water pressure;
progressive failure over time may actually have played
only a small role in the failures.

Complex Shear Strength Patterns

Back-calculation of shear strength in most cases con-
sists of back-calculating one quantity (c or �) or at
most two quantities (c and �) to represent the shear
strength of the soil. In reality the shear strength is gen-
erally more complex and knowledge of the shear
strength is helpful in establishing what should be back-
calculated. For example, for the Example 1 slope
shown in the preceding section, the undrained shear
strength was known to increase with depth, and when
this was taken into account, very different results were
obtained compared to what was found when the shear
strength was assumed to be constant.

In addition to the shear strength varying with depth,
there are other forms of shear strength variations that
may affect and complicate the back-calculation of
shear strength. One such case is where the shear
strength varies with the orientation of the failure plane
(i.e., where the shear strength is anisotropic); another
case is where the shear strength varies nonlinearly with

the normal stress (i.e., where the Mohr failure envelope
is curved). In both these cases, back-calculation of a
single c or � value may lead to significant errors that
vary with the location of the slip surface. If the slip
surface that was used for the back-analysis is very dif-
ferent in its orientation or depth from the critical slip
surface for the redesigned slope, the back-calculated
shear strengths may not be applicable and may not
reflect the proper shear strength for other than the orig-
inal slip surface.

In back-calculating shear strengths it is important to
have the proper model for the shear strength. Labora-
tory data or estimates of shear strength based on cor-
relations between shear strength and index properties
can be useful in estimating shear strength parameters.
It is also essential to know whether the shear strengths
should be represented by undrained shear strength
parameters and total stresses or by drained shear
strengths and effective stresses. Similarly, it is impor-
tant to know if:

1. The soil is likely to be anisotropic and anisotropy
will play a significant role in the location of the
failure surface.

2. The shear strength envelope is curved such that
c and � are stress dependent.

3. The undrained shear strength (su � c, � � 0) is
constant or varies significantly with depth.

As noted previously, it is also important to judge
whether the appropriate shear strength to be calculated
is the undrained shear strength or the drained shear
strength, and if the shear strength may decrease after
failure.

Recapitulation

• Back-calculated shear strengths must be used cau-
tiously if progressive failure has occurred.

• Laboratory data and experience can provide use-
ful information to guide the back-calculation of
shear strengths. Even when laboratory data are not
available, it is possible to make reasonable esti-
mates of the friction angle, ��, based on index
properties.

• If the shear strengths are decreasing significantly
at the time of failure due either to changes in pore
water pressure or softening of the soil structure,
the back-calculated shear strengths may not be ap-
propriate for use in designing remedial measures.

• It is important to assume the appropriate model to
back-calculate the shear strength parameters.
Curved Mohr failure envelopes and anisotropy
may influence the validity of back-calculated
shear strengths.



OTHER UNCERTAINTIES 197

OTHER UNCERTAINTIES

Slope stability analyses can involve numerous uncer-
tainties, and some of the uncertainties can be difficult
to quantify. One of the benefits of back-analyses is that
many of the same errors exist for both the back-
analysis and the redesign. Thus, there are compensat-
ing effects and the net result of the errors is diminished
or removed entirely. This needs to be kept in mind
when the results from back-analysis are compared with
data obtained by other means. For example, results of
laboratory tests may not compare favorably with re-

sults of back-analysis if there are significant three-
dimensional effects that were not considered in the
slope stability analyses. However, if the slope is to be
redesigned using two-dimensional analyses and, again,
three-dimensional effects are neglected, the back-
calculated values may be the more appropriate values
to use. Caution must also be exercised, however, be-
cause neglect of three-dimensional effects will cause
back-calculated shear strengths to be too high, and if
comparable three-dimensional effects do not exist for
the slope redesign, the results may be on the unsafe
side.
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CHAPTER 13

Factors of Safety and Reliability

Factors of safety provide a quantitative indication of
slope stability. A value of F � 1.0 indicates that a slope
is on the boundary between stability and instability;
the factors tending to make the slope stable are in pre-
cise balance with those tending to make the slope un-
stable. A calculated value of F less than 1.0 indicates
that a slope would be unstable under the conditions
contemplated, and a value of F greater than 1.0 indi-
cates that a slope would be stable.

If we could compute factors of safety with absolute
precision, a value of F � 1.1 or even 1.01 would be
acceptable. However, because the quantities involved
in computing factors of safety are always uncertain to
some degree, computed values of F are never abso-
lutely precise. We need larger factors of safety to be
sure (or sure enough) that a slope will be stable. How
large the factor of safety should be is determined by
experience, by the degree of uncertainty that we think
is involved in calculating F, and by the consequences
that would ensue if the slope failed.

The reliability of a slope (R) is an alternative mea-
sure of stability that considers explicitly the uncertain-
ties involved in stability analyses. The reliability of a
slope is the computed probability that a slope will not
fail and is 1.0 minus the probability of failure:

R � 1 � P (13.1)f

where Pƒ is the probability of failure and R is the re-
liability or probability of no failure. A method for
computing Pƒ is described later in the chapter. Factors
of safety are more widely used than R or Pƒ to char-
acterize slope stability. Although R and Pƒ are equally
logical measures of stability, there is less experience
with their use, and therefore less guidance regarding
acceptable values.

Another consideration regarding use of reliability
and probability of failure is that it is sometimes easier
to explain the concepts of reliability or probability of
failure to laypeople. However, some find it disturbing
that a slope has a probability of failure that is not zero,
and may not be comfortable hearing that there is some
chance that a slope might fail. Factors of safety and
reliability complement each other, and each has its own
advantages and disadvantages. Knowing the values of
both is more useful than knowing either one by itself.

DEFINITIONS OF FACTOR OF SAFETY

The most widely used and most generally useful def-
inition of factor of safety for slope stability is

shear strength of the soil
F � (13.2)

shear stress required for equilibrium

Uncertainty about shear strength is often the largest
uncertainty involved in slope stability analyses, and it
is therefore logical that the factor of safety—called by
George Sowers the factor of ignorance—should be re-
lated directly to shear strength. One way of judging
whether a value of F provides a sufficient margin of
safety is by considering the question: What is the low-
est conceivable value of shear strength? A value of
F � 1.5 for a slope indicates that the slope should be
stable even if the shear strength was 33% lower than
anticipated (if all the other factors were the same as
anticipated). When shear strength is represented in
terms of c and �, or c� and ��, the same value of F is
applied to both of these components of shear strength.

It can be said that this definition of factor of safety
is based on the assumption that F is the same for every
point along the slip surface. This calls into question
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whether such analyses are reasonable, because it can
be shown, for example by finite element analyses, that
the factor of safety for every slice is not the same, and
it therefore appears that an underlying assumption of
limit equilibrium analysis is not true. However, despite
the fact that the local factor of safety may be more or
less than the value of F calculated by conventional
limit equilibrium methods, the average value calculated
by these methods is a valid and very useful measure
of stability. The factor of safety determined from con-
ventional limit equilibrium analyses is the answer to
the question: By what factor could the shear strength
of the soil be reduced before the slope would fail? This
is a significant question, and the value of F calculated
as described above is the most generally useful mea-
sure of stability that has been devised.

Alternative Definitions of F

Other definitions of F have sometimes been used for
slope stability. For analyses using circular slip sur-
faces, the factor of safety is sometimes defined as the
ratio of resisting moment divided by overturning mo-
ment. Because the resisting moment is proportional to
shear strength, and the shear stress required for equi-
librium of a mass bounded by a circular slip surface is
proportional to the overturning moment, the factor of
safety defined as the ratio of resisting to overturning
moment is the same as the factor of safety defined by
Eq. (13.1).

In times past, different factors of safety were some-
times applied to cohesion and friction. However, this
is seldom done any more. The strength parameters c
and �, or c� and ��, are empirical coefficients in equa-
tions that relate shear strength to normal stress or to
effective normal stress. There is no clear reason to fac-
tor them differently, and the greater complexity that
results if this is done seems not to be justified by ad-
ditional insight or improved basis for judging the ad-
equacy of stability.

Reinforcing and anchoring elements within a slope
impose stabilizing forces that, like the soil strength,
should be factored to include a margin of safety to
reflect the fact that there is uncertainty in their mag-
nitudes. The issues causing uncertainties in reinforcing
and anchoring forces are not the same as the issues
leading to uncertainties in soil strength, and it is there-
fore logical to apply different factors of safety to re-
inforcement and soil strength. This can be achieved by
prefactoring reinforcement and anchor forces and in-
cluding them in stability analyses as known forces that
are not factored further in the course of the analysis.

FACTOR OF SAFETY CRITERIA

Importance of Uncertainties and Consequences of
Failure

The value of the factor of safety used in any given
case should be commensurate with the uncertainties
involved in its calculation and the consequences that
would ensue from failure. The greater the degree of
uncertainty about the shear strength and other condi-
tions, and the greater the consequences of failure, the
larger should be the required factor of safety. Table
13.1 shows values of F based on this concept.

Corps of Engineers’ Criteria for Factors of Safety

The values of factor of safety listed in Table 13.2 are
from the U.S. Army Corps of Engineers’ slope stability
manual. They are intended for application to slopes of
embankment dams, other embankments, excavations,
and natural slopes where conditions are well under-
stood and where the properties of the soils have been
studied thoroughly. They represent conventional, pru-
dent practice for these types of slopes and conditions,
where the consequences of failure may be significant,
as they nearly always are for dams.

Recommended values of factor of safety, like those
in Table 13.2, are based on experience, which is logi-
cal. It is not logical, however, to apply the same values
of factor of safety to conditions that involve widely
varying degrees of uncertainty. It is therefore signifi-
cant that the factors of safety in Table 13.2 are intended
for Corps of Engineers’ projects, where methods of
exploration, testing, and analysis are consistent from
one project to another and the degree of uncertainty
regarding these factors does not vary widely. For other
situations, where practices and circumstances differ,
the values of F in Table 13.2 may not be appropriate.

RELIABILITY AND PROBABILITY OF FAILURE

Reliability calculations provide a means of evaluating
the combined effects of uncertainties and a means of
distinguishing between conditions where uncertainties
are particularly high or low. Despite the fact that it has
potential value, reliability theory has not been used
much in routine geotechnical practice because it in-
volves terms and concepts that are not familiar to many
geotechnical engineers, and because it is commonly
perceived that using reliability theory would require
more data, time, and effort than are available in most
circumstances.
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Table 13.1 Recommended Minimum Values of Factor of Safety

Cost and consequences of slope failure

Uncertainty of analysis conditions

Smalla Largeb

Cost of repair comparable to incremental cost to construct more
conservatively designed slope

1.25 1.5

Cost of repair much greater than incremental cost to construct
more conservatively designed slope

1.5 2.0 or greater

aThe uncertainty regarding analysis conditions is smallest when the geologic setting is well understood, the soil con-
ditions are uniform, and thorough investigations provide a consistent, complete, and logical picture of conditions at the
site.

bThe uncertainty regarding analysis conditions is largest when the geologic setting is complex and poorly understood,
soil conditions vary sharply from one location to another, and investigations do not provide a consistent and reliable
picture of conditions at the site.

Table 13.2 Factor of Safety Criteria from U.S. Army Corps of Engineers’ Slope Stability Manual

Types of slopes

Required factors of safetya

For end of
constructionb

For long-term
steady seepage

For rapid
drawdownc

Slopes of dams, levees, and dikes, and other
embankment and excavation slopesc

1.3 1.5 1.0–1.2

aFor slopes where either sliding or large deformations have occurred, and back analyses have been performed to
establish design shear strengths, lower factors of safety may be used. In such cases probabilistic analyses may be useful
in supporting the use of lower factors of safety for design. Lower factors of safety may also be justified when the
consequences of failure are small.

bTemporary excavated slopes are sometimes designed only for short-term stability, with knowledge that long-term
stability would be inadequate. Special care, and possibly higher factors of safety, should be used in such cases.

cF � 1.0 applies to drawdown from maximum surcharge pool, for conditions where these water levels are unlikely to
persist for long enough to establish steady seepage. F � 1.2 applies to maximum storage pool level, likely to persist for
long periods prior to drawdown. For slopes in pumped storage projects, where rapid drawdown is a normal operating
condition, higher factors of safety (e.g., 1.3 to 1.4) should be used.

Harr (1987) defines the engineering definition of
reliability as follows: ‘‘Reliability is the probability of
an object (item or system) performing its required
function adequately for a specified period of time un-
der stated conditions.’’ As it applies in the present con-
text, the reliability of a slope can be defined as follows:
The reliability of a slope is the probability that the
slope will remain stable under specified design con-
ditions. The design conditions include, for example,
the end-of-construction condition, the long-term steady
seepage condition, rapid drawdown, and earthquake of
a specified magnitude.

The design life of a slope and the time over which
it is expected to remain stable are usually not stated
explicitly but are generally thought of as a long time,
probably beyond the lifetime of anyone alive today.
The element of time may be considered more explicitly
when design conditions involve earthquakes with a
specified return period, or other loads whose occur-
rence can be stated in probabilistic terms.

Christian et al. (1994), Tang et al. (1999), Duncan
(2000), and others have described examples of the use
of reliability for slope stability. Reliability analysis can
be applied in simple ways, without more data, time, or
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Table 13.3 Undrained Shear Strength Values for
San Francisco Bay Mud at Hamilton Air Force Base
in Marin County, Californiaa

Depth (ft) Test su (tons/ft2)

10.5 UU 0.25
UC 0.22

11.5 UU 0.23
UC 0.25

14.0 UU 0.20
UC 0.22

14.5 UU 0.15
UC 0.18

16.0 UU 0.19
UC 0.20
UU 0.23
UC 0.25

16.5 UU 0.15
UC 0.18

17.0 UU 0.23
UC 0.26

17.5 UU 0.24
UC 0.25

19.5 UU 0.24
UC 0.21

aValues measured in unconfined compression (UC) and
unconsolidated–undrained (UU) triaxial compression
tests.

effort than are commonly available. Working with the
same quantity and types of data, and the same types
of engineering judgments that are used in conventional
analyses, it is possible to make approximate but useful
evaluations of probability of failure and reliability.

The results of simple reliability analyses are neither
more accurate nor less accurate than factors of safety
calculated using the same types of data, judgments,
and approximations. Although neither deterministic
nor reliability analyses are precise, they both have
value, and each enhances the value of the other. The
simple types of reliability analyses described in this
chapter require only modest extra effort compared to
that required to calculate factors of safety, but they can
add considerable value to the results of slope stability
analyses.

STANDARD DEVIATIONS AND COEFFICIENTS
OF VARIATION

If several tests are performed to measure a soil prop-
erty, it will usually be found that there is scatter in the
values measured. For example, consider the undrained
strengths of San Francisco Bay mud measured at a site
on Hamilton Air Force Base in Marin County, Cali-
fornia, that are shown in Table 13.3. There is no dis-
cernible systematic variation in the measured values of
shear strength between 10 and 20 ft depth at the site.
The differences among the values in Table 13.3 are due
to natural variations in the strength of the Bay mud in
situ, and varying amounts of disturbance of the test
specimens. Standard deviation is a quantitative mea-
sure of the scatter of a variable. The greater the scatter,
the larger the standard deviation.

Statistical Estimates

If a sufficient number of measurements have been
made, the standard deviation can be computed using
the formula

N1 2� � (x � x ) (13.3)� av�N � 1 1

where � is the standard deviation, N the number of
measurements, x the measured variable, and xav the av-
erage value of x. Standard deviation has the same units
as the measured variable.

The average of the 20 measured values of su in Table
13.3 is 0.22 tsf (tons/ft2). The standard deviation, com-
puted using Eq. (13.3), is

201 2� � (s � s ) � 0.033 tsf (13.4)�s u u,avu �19 1

where su is the undrained shear strength and su,av is the
average undrained shear strength � 0.22 tsf. The co-
efficient of variation is the standard deviation divided
by the expected value of a variable, which for practical
purposes can be taken as the average:

�
COV � (13.5)

average value

where COV is the coefficient of variation, usually ex-
pressed in percent. Thus the coefficient of variation of
the measured strengths in Table 13.3 is

0.033
COV � � 15% (13.6)su 0.22

where is the coefficient of variation of the un-COVsu

drained strength data in Table 13.3.
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Table 13.4 Coefficients of Variation for Geotechnical Properties and In Situ Tests

Property or in situ test COV (%) References

Unit weight (�) 3–7 Harr (1987), Kulhawy (1992)
Buoyant unit weight (�b) 0–10 Lacasse and Nadim (1997), Duncan (2000)
Effective stress friction angle (��) 2–13 Harr (1987), Kulhawy (1992), Duncan (2000)
Undrained shear strength (Su) 13–40 Kulhawy (1992), Harr (1987), Lacasse and Nadim (1997)
Undrained strength ratio (su / )��v 5–15 Lacasse and Nadim (1997), Duncan (2000)
Standard penetration test blow count (N) 15–45 Harr (1987), Kulhawy (1992)
Electric cone penetration test (qc) 5–15 Kulhawy (1992)
Mechanical cone penetration test (qc) 15–37 Harr (1987), Kulhawy (1992)
Dilatometer test tip resistance (qDMT) 5–15 Kulhawy (1992)
Vane shear test undrained strength (Sv) 10–20 Kulhawy (1992)

The coefficient of variation is a very convenient
measure of scatter in data, or uncertainty in the value
of the variable, because it is dimensionless. If all of
the strength values in Table 13.3 were twice as large
as those shown, the standard deviation of the values
would be twice as large, but the coefficient of variation
would be the same. The tests summarized in Table 13.3
were performed on high-quality test specimens using
carefully controlled procedures, and the Bay mud at
the Hamilton site is very uniform. The value of

� 15% for these data is about as small as couldCOVsu

ever be expected. Harr (1987) suggests that a repre-
sentative value of .COV � 40%su

Estimates Based on Published Values

Frequently in geotechnical engineering, the values of
soil properties are estimated based on correlations or
on meager data plus judgment, and it is not possible
to calculate values of standard deviation or coefficient
of variation as shown above. Because standard devia-
tions or coefficients of variation are needed for relia-
bility analyses, it is essential that their values can be
estimated using experience and judgment. Values of
COV for various soil properties and in situ tests are
shown in Table 13.4. These values may be of some use
in estimating COVs for reliability analysis, but the val-
ues cover wide ranges, and it is not possible to use this
type of information to make refined estimates of COV
for specific cases.

The 3� Rule

This rule of thumb, described by Dai and Wang (1992),
uses the fact that 99.73% of all values of a normally
distributed parameter fall within three standard devia-
tions of the average. Therefore, if HCV is the highest
conceivable value of the parameter and LCV is the

lowest conceivable value of the parameter, these are
approximately three standard deviations above and be-
low the average value.

The 3� rule can be used to estimate a value of stan-
dard deviation by first estimating the highest and low-
est conceivable values of the parameter, and then
dividing the difference between them by 6:

HCV � LCV
� � (13.7)

6

where HCV is the highest conceivable value of the
parameter and LCV is the lowest conceivable value of
the parameter.

Consider, for example, how the 3� rule can be used
to estimate a coefficient of variation for a friction angle
for sand that is estimated based on a correlation with
standard penetration test blow count: For a value of
N60 � 20, the most likely value (MLV) of �� might be
estimated to be 35�. However, no correlation is precise,
and the value of �� for a particular sand with an SPT
blow count of 20 might be higher or lower than 35�.
Suppose that the HCV was estimated to be 45�, and
the LCV was estimated to be 25�. Then, using Eq.
(13.7), the COV would be estimated to be

45� � 25�
�� � � 3.3� (13.8)� 6

and the coefficient of variation � 3.3� /35� � 9%.
Studies have shown that there is a tendency to es-

timate a range of values between HCV and LCV that
is too small. One such study, described by Folayan et
al. (1970), involved asking a number of geotechnical
engineers to estimate the possible range of values of
Cc / (1 � e) for San Francisco Bay mud, with which
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they all had experience. The data collected in this ex-
ercise are summarized below:

CcAverage value of estimate by experienced
1 � e

engineers � 0.29

CcAverage value of from 45 laboratory tests
1 � e

� 0.34

CcAverage COV of estimate by experienced
1 � e

engineers � 8%

CcAverage COV of from 45 laboratory tests
1 � e

� 18%

The experienced engineers were able to estimate the
value of Cc / (1 � e) for Bay mud within about 15%,
but they underestimated the COV of Cc / (1 � e) by
about 55%.

Christian and Baecher (2001) showed that people
(experienced engineers included) tend to be over-
confident about their ability to estimate values, and
therefore estimate possible ranges of values that are
narrower than the actual range. If the range between
the highest conceivable value (HCV) and the lowest
conceivable value (LCV) is too small, values of coef-
ficient of variation estimated using the 3� rule will also
be too small, introducing an unconservative bias in re-
liability analysis.

Based on statistical analysis, Christian and Baecher
(2001) showed that the expected range of values in a
sample containing 20 values is 3.7 times the standard
deviation, and the expected range of values in a sample
of 30 is 4.1 times the standard deviation. This infor-
mation can be used to improve the accuracy of esti-
mated values of standard deviation by modifying the
3� rule. If the experience of the person making the
estimate encompasses sample sizes in the range of 20
to 30 values, a better estimate of standard deviation
would be made by dividing the range between HCV
and LCV by 4 rather than 6:

HCV � LCV
� � (13.9)

4

If Eq. (13.9) is used to estimate the coefficient of
variation of ��, the value is

45� � 25�
� � � 5� (13.10)

4

and the coefficient of variation is 5� /35� � 14%.
With the 3� rule it is possible to estimate values of

standard deviation using the same amounts and types
of data that are used for conventional deterministic
geotechnical analyses. The 3� rule can be applied
when only limited data are available and when no data
are available. It can also be used to judge the reason-
ableness of values of the coefficient of the variation
from published sources, considering that the lowest
conceivable value would be two or three standard de-
viations below the mean, and the highest conceivable
value would be two or three standard deviations above
the mean. If these values seem unreasonable, some ad-
justment of values is called for.

The 3� rule uses the simple normal distribution as
a basis for estimating that a range of three standard
deviations covers virtually the entire population. How-
ever, the same is true of other distributions (Harr,
1987), and the 3� rule is not tied rigidly to any par-
ticular probability distribution.

Graphical 3� Rule

The concept behind the 3� rule of Dai and Wang
(1992) can be extended to a graphical procedure that
is applicable to many situations in geotechnical engi-
neering, where the parameter of interest, such as un-
drained shear strength, varies with depth. An examples
is shown in Figure 13.1.

The steps involved in applying the graphical 3� rule
are as follows:

1. Draw a straight line or a curve through the data
that represent the most likely average variation of
the parameter with depth.

2. Draw straight lines or curves that represent the
highest and lowest conceivable bounds on the
data. These should be wide enough to include all
valid data and an allowance for the fact that the
natural tendency is to estimate such bounds too
narrowly, as discussed previously. Note that some
points in Figure 13.1 are outside the estimated
highest and lowest conceivable lines, indicating
that these data points are believed to be errone-
ous.

3. Draw straight lines or curves that represent the
average plus one standard deviation and the av-
erage minus one standard deviation. These are
one-third of the distance (or one-half of the dis-
tance) from the average line to the highest and
lowest conceivable bounds.
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Figure 13.1 Example of graphical 3� rule for undrained
strength profile.

The average-plus-1� and average-minus-1� curves
or lines are used in the Taylor series method described
below in the same way as are parameters that can be
represented by single values.

The graphical 3� rule is also useful for character-
izing strength envelopes for soils. In this case the quan-
tity (shear strength) varies with normal stress rather
than depth, but the procedure is the same. Strength
envelopes are drawn that represent the average and the
highest and lowest conceivable bounds on the data, as
shown in Figure 13.2. Then average-plus-1� and
average-minus-1� envelopes are drawn one-third of
the distance (or one-half of the distance) from the av-
erage envelope to the highest and lowest conceivable
bounds.

Using the graphical 3� rule to establish average-
plus-1� and average-minus-1� strength envelopes is
preferable to using separate standard deviations for the
strength parameters c and �. Strength parameters (c
and �) are useful empirical coefficients that character-
ize the variation of shear strength with normal stress,
but they are not of fundamental significance or interest
by themselves. The important parameter is shear
strength, and the graphical 3� rule provides a straight-
forward means for characterizing the uncertainty in
shear strength.

COEFFICIENT OF VARIATION OF FACTOR OF
SAFETY

Reliability and probability of failure can be determined
easily once the factor of safety and the coefficient of
variation of the factor of safety (COVF) have been de-
termined. The value of factor of safety is determined
in the usual way, using a computer program, slope sta-
bility charts, or spreadsheet calculations. The value of
COVF can be evaluated using the Taylor series method,
which involves these steps:

1. Estimate the standard deviations of the quantities
involved in analyzing the stability of the slope:
for example, the shear strengths of the soils, the
unit weights of the soils, the piezometric levels,
the water level outside the slope, and the loads
on the slope.

2. Use the Taylor series numerical method (Wolff,
1994; U.S. Army Corps of Engineers, 1998) to
estimate the standard deviation and the coeffi-
cient of variation of the factor of safety, using
these formulas:

2 2 2
�F �F �F1 2 N� � � � ��� �� � � � � �F � 2 2 2

(13.11)

�FCOV � (13.12)F FMLV

where �F1 � ( � ). is the factor of safety� � �F F F1 1 1

calculated with the value of the first parameter
increased by one standard deviation from its most
likely value, and is the factor of safety cal-�F1

culated with the value of the first parameter de-
creased by one standard deviation.

In calculating and , the values of all of the� �F F1 1

other variables are kept at their most likely values. The
other values of �F2, �F3, . . . �, FN are calculated by
varying the values of the other variables by plus and
minus one standard deviation from their most likely
values. FMLV in Eq. (13.12) is the most likely value of
factor of safety, computed using most likely values for
all the parameters.

Substituting the values of �F into Eq. (13.11), the
value of the standard deviation of the factor of safety
(�F) is computed, and the coefficient of variation of
the factor of safety (COVF) is computed using Eq.
(13.12). With both FMLV and COVF known, the prob-
ability of failure (Pƒ) can be determined using Table



206 13 FACTORS OF SAFETY AND RELIABILITY

Figure 13.2 Example of graphical 3� rule for shear strength envelope.

13.5, Figure 13.3, or the reliability index, as explained
below.

Table 13.5 and Figure 13.3 assume that the factor of
safety is lognormally distributed, which seems reason-
able because calculating the factor of safety involves
many multiplication and division operations. The cen-
tral limit theorem indicates that the result of adding
and subtracting many random variables approaches a
normal distribution as the number of operations in-
creases. Since multiplying and dividing amounts to
adding and subtracting logarithms, it follows that the
factor of safety distribution can be approximated by a
lognormal distribution. Thus, although there is no
proof that factors of safety are lognormally distributed,
it is at least a reasonable approximation. The assump-
tion of a lognormal distribution for factor of safety
does not imply that the values of the individual vari-
ables must be distributed lognormally. It is not neces-
sary to make any particular assumption concerning the
distributions of the variables to use this method.

RELIABILITY INDEX

The reliability index (
) is an alternative measure of
safety, or reliability, which is uniquely related to the
probability of failure. The value of 
 indicates the
number of standard deviations between F � 1.0 (fail-
ure) and FMLV, as shown in Figure 13.4. The usefulness
of 
 lies in the fact that probability of failure and re-
liability are uniquely related to 
, as shown in Figure

13.5. The lognormal reliability index, 
LN, can be de-
termined from the values of FMLV and COVF using Eq.
(13.13):

2ln (F /�1 � COV )MLV F

 � (13.13)LN 2�ln(1 � COV )F

where 
LN is the lognormal reliability index, FMLV the
most likely value of factor of safety, and COVF the
coefficient of variation of factor of safety.

The relationship between 
 and Pƒ shown in Figure
13.5 is called the standard cumulative normal distri-
bution function, which can be found in many textbooks
on probability and reliability. Values of Pƒ correspond-
ing to a given value of 
 can be calculated using
the NORMSDIST function in Excel. The argument of
this function is the reliability index, 
LN. In Excel,
under ‘‘Insert Function,’’ ‘‘Statistical,’’ choose
‘‘NORMSDIST’’ and type the value of 
LN. The result
is the reliability, R. For example, for 
LN � 2.32, the
result is 0.9898, which corresponds to Pƒ � 0.0102.
Table 13.5 and Figures 13.3 and 13.5 were developed
using this Excel function.

PROBABILITY OF FAILURE

Once the most likely value of factor of safety (FMLV)
and the coefficient of variation of factor of safety
(COVF) have been evaluated, the probability of failure
(Pƒ) can be determined in any of the following ways:
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Table 13.5 Probabilities of Failure (%) Based on Lognormal Distribution of F

FMLV
a

COVF � coefficient of variation of factor of safety

10% 12% 14% 16% 20% 25% 30% 40% 50%

1.05 33.02 36.38 38.95 41.01 44.14 47.01 49.23 52.63 55.29
1.10 18.26 23.05 26.95 30.15 35.11 39.59 42.94 47.82 51.37
1.15 8.83 13.37 17.53 21.20 27.20 32.83 37.10 43.24 47.62
1.20 3.77 7.15 10.77 14.29 20.57 26.85 31.76 38.95 44.05
1.25 1.44 3.54 6.28 9.27 15.20 21.68 26.98 34.95 40.66
1.30 0.49 1.64 3.49 5.81 11.01 17.30 22.75 31.26 37.48
1.35 0.15 0.71 1.86 3.53 7.83 13.66 19.06 27.88 34.49
1.40 0.04 0.29 0.95 2.08 5.48 10.69 15.88 24.80 31.70
1.50 0.00 0.04 0.23 0.67 2.57 6.38 10.85 19.49 26.69
1.60 0.00 0.01 0.05 0.20 1.15 3.71 7.29 15.21 22.40
1.70 0.00 0.00 0.01 0.06 0.49 2.11 4.84 11.81 18.75
1.80 0.00 0.00 0.00 0.01 0.21 1.18 3.18 9.13 15.67
1.90 0.00 0.00 0.00 0.00 0.08 0.65 2.07 7.03 13.08
2.00 0.00 0.00 0.00 0.00 0.03 0.36 1.34 5.41 10.91
2.20 0.00 0.00 0.00 0.00 0.01 0.10 0.56 3.19 7.59
2.40 0.00 0.00 0.00 0.00 0.00 0.03 0.23 1.88 5.29
2.60 0.00 0.00 0.00 0.00 0.00 0.01 0.09 1.11 3.70
2.80 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.66 2.60
3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.39 1.83

aFMLV, factor of safety computed using most likely values of parameters.

1. Using Table 13.5
2. Using Figure 13.3
3. Using Figure 13.5, with 
LN computed using Eq.

(13.13)
4. Using the Excel function NORMSDIST, with 
LN

computed using Eq. (13.13)

Interpretation of Probability of Failure

The event whose probability is described as the prob-
ability of failure is not necessarily a catastrophic fail-
ure. In the case of shallow sloughing of a slope, for
example, failure very likely would not be catastrophic.
If the slope could be repaired easily and there were no
serious secondary consequences, shallow sloughing
would not be catastrophic. However, a slope failure
that would be very expensive to repair, or that would
have the potential for delaying an important project, or
that would involve threat to life, would be catastrophic.
Although the term probability of failure would be used
in both of these cases, it is important to recognize the
different nature of the consequences.

In recognition of this important distinction between
catastrophic failure and less significant performance
problems, the Corps of Engineers uses the term prob-

ability of unsatisfactory performance (U.S. Army
Corps of Engineers, 1998). Whatever terminology is
used, it is important to keep in mind the real conse-
quences of the event analyzed and not to be blinded
by the word failure where the term probability of fail-
ure is used.

Probability of Failure Criteria

There is no universally appropriate value of probability
of failure. Experience indicates that slopes designed in
accord with conventional practice often have a proba-
bility of failure in the neighborhood of 1%, but like
factor of safety, the appropriate value of Pƒ should de-
pend on the consequences of failure.

One important advantage of probability of failure is
the possibility of judging an acceptable level of risk
based on the potential cost of failure. Suppose, for ex-
ample, that two alternative designs for the slopes on a
project are analyzed, with these results:

• Case A. Steep slopes, construction and land costs
� $100,000, Pƒ � 0.1.

• Case B. Flat slopes, construction and land costs �
$400,000, Pƒ � 0.01.
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Figure 13.3 Probabilities of failure based on lognormal distribution of F.

Figure 13.4 Relationship of 
LN to probability distribution.

Figure 13.5 Variation of Pf with 
.

Suppose further that the consequences of failure are
estimated to be the same in either case, $5,000,000,
considering primary and secondary consequences of
failure. In case A, the total cost of construction, land,
and probable cost of failure is $100,000 �
(0.1)($5,000,000) � $600,000. In case B, the total cost
is $400,000 � (0.01)($5,000,000) � $450,000. Con-
sidering the probable cost of failure, as well as con-
struction and land costs, case B is less costly overall.
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Figure 13.6 Underwater slope failure in San Francisco Bay.

Table 13.6 Reliability Analysis for 0.875 Horizontal on 1.0 Vertical Underwater Slope in San Francisco Bay
Mud

Variable Values F �F

Undrained shear strength
Buoyant unit weight

Average line in Figure 13.1
� � 38 pcfb(av)
FMLV � 1.17 —

Undrained shear strength Average � � line in Figure 13.1 F� � 1.33 0.31
Average � � line in Figure 13.1 F� � 1.02

Buoyant unit weight Average � � � 41.3 pcf F� � 1.08 0.20
Average � � � 34.7 pcf F� � 1.28

Even without cost analysis, Pƒ may provide a better
basis for judging what is an acceptable risk than does
factor of safety. Many people may find that comparing
one chance in 10 with one chance in 100 provides a
more understandable basis for decision than does com-
paring a factor of safety of 1.3 with a factor of safety
of 1.5.

Example. In August 1970, a trench about 100 ft
deep was excavated underwater in San Francisco Bay.
The trench was to be filled with sand to stabilize the
adjacent area and reduce seismic deformations at a new
lighter aboard ship (LASH) terminal. The trench slopes
were made steeper than was the normal practice in
order to reduce the volume of excavation and fill. As
shown in Figure 13.6, the slopes were excavated at an
inclination of 0.875 horizontal to 1.0 vertical.

On August 20, after a section of the trench about
500 ft long had been excavated, the dredge operator
found that the clamshell bucket could not be lowered
to the depth from which mud had been excavated only
hours before. Using the side-scanning sonar with
which the dredge was equipped, four cross sections

made within two hours showed that a failure had oc-
curred that involved a 250-ft-long section of the trench.
The cross section is shown in Figure 13.6. Later, a
second failure occurred, involving an additional 200 ft
of length along the trench. The rest of the 2000-ft-long
trench remained stable for about four months, at which
time the trench was backfilled with sand. Additional
details regarding the failure can be found in Duncan
and Buchignani (1973).

Figure 13.1 shows the variation of undrained
strength of the Bay mud at the site, and the average,
average � � and average � � lines established by
Duncan (2000) for a reliability analysis of the slope.
The average buoyant unit weight of the Bay mud was
38 pcf and the standard deviation was 3.3 pcf, based
on measurements made on undisturbed samples.

Factors of safety calculated using average values of
strength and unit weight (FMLV) and using average ��
and average �� values are shown in Table 13.6. The
�F value for variation in Bay mud strength is 0.31,
and the �F value for unit weight variation is 0.20. The
�F due to strength variation is always significant, but
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Table 13.7 Summary of Analyses of LASH Terminal Trench Slope

Case Slope (H on V) FMLV

COVF
a

(%)
Pf

(%)
Trench volumeb

(yd3)

As constructed 0.875 on 1.0 1.17 16% 18% 860,000
Less-steep A 1.25 on 1.0 1.3 16% 6% 1,000,000
Less-steep B 1.6 on 1.0 1.5 16% 1% 1,130,000

aThe value of COVF is the same for all cases because COVs of strength and unit weight are the same for all cases.
bFor the as-constructed case, an additional 100,000 yd3 of slumped material had to be excavated after the failure.

it is unusual for the �F due to unit weight variation to
be as large as it is in this case. Its magnitude in this
case is due to the fact that the buoyant unit weight is
so low, only 38 pcf. Therefore, the variation by �3.3
pcf has a significant effect.

The standard deviation and coefficient of variation
of the factor of safety are calculated using Eqs. (13.11)
and (13.12):

2 20.31 0.20
� � � � 0.18 (13.14)� � � �F � 2 2

0.18
COV � � 16% (13.15)F 1.17

The probability of failure corresponding to these
values of FMLV and COVF can be determined using any
of the four methods discussed previously. A value of
Pƒ � 18% was determined using the Excel function
NORMSDIST. Such a large probability of failure is not
in keeping with conventional practice. Although it ap-
peared in 1970, when the slope was designed, that the
conditions were known well enough to justify using a
very low factor of safety of 1.17, the failure showed
otherwise. Based on this experience, it is readily ap-
parent that such a low factor of safety and such a high
probability of failure exceed the bounds of normal
practice. The probability of failure was computed after
the failure (Duncan, 2000) and was not available to
guide the design in 1970. In retrospect, it seems likely
that knowing that the computed probability of failure
was 18% might have changed the decision to make the
trench slopes so steep.

The cost of excavating the mud that slid into the
trench, plus the cost of extra sand backfill, was ap-
proximately the same as the savings resulting from the
use of steeper slopes. Given the fact that the expected
savings were not realized, that the failure caused great
alarm among all concerned, and that the confidence of
the owner was diminished as a result of the failure, it
is now clear that using 0.875 (horizontal) on 1 (verti-
cal) slopes was not a good idea.

Further analyses have been made to determine what
the probability of failure would have been if the in-
board slope had been excavated less steep. Two addi-
tional cases have been analyzed, as summarized in
Table 13.7. The analyses were performed using the
chart developed by Hunter and Schuster (1968) for
shear strength increasing linearly with depth, which is
given in the Appendix. The factors of safety for the
less-steep alternatives A and B are in keeping with the
factor of safety criteria of the Corps of Engineers, sum-
marized in Table 13.2.

A parametric study such as the one summarized in
Table 13.7 provides a basis for decision making and
for enhanced communication among the members of
the design team and with the client. The study could
be extended through estimates of the costs of construc-
tion for the three cases and estimates of the potential
cost of failure. This would provide a basis for the de-
sign team and clients to decide how much risk should
be accepted. This type of evaluation was not made in
1970 because only factors of safety were computed to
guide the design.

Recapitulation

• Uncertainty about shear strength is usually the
largest uncertainty involved in slope stability anal-
yses.

• The most widely used and most generally useful
definition of factor of safety for slope stability is

shear strength of the soil
F �

shear stress required for equilibrium

• The value of the factor of safety used in any given
case should be commensurate with the uncertain-
ties involved in its calculation and the conse-
quences of failure.

• Reliability calculations provide a means of eval-
uating the combined effects of uncertainties and
a means of distinguishing between conditions
where uncertainties are particularly high or low.
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• Standard deviation is a quantitative measure of the
scatter of a variable. The greater the scatter, the
larger the standard deviation. The coefficient of
variation is the standard deviation divided by the
expected value of the variable.

• The 3� rule can be used to estimate a value of
standard deviation by first estimating the highest
and lowest conceivable values of the parameter
and then dividing the difference between them by
6. If the experience of the person making the es-
timate encompasses sample sizes in the range of
20 to 30 values, a better estimate of standard
deviation can be made by dividing by 4 rather
than 6.

• Reliability and probability of failure can readily
be determined once the factor of safety (FMLV) and
the coefficient of variation of the factor of safety
(COVF) have been determined, using the Taylor
series numerical method.

• The event whose probability is described as the
probability of failure is not necessarily a cata-
strophic failure. It is important to recognize the
nature of the consequences of the event and not
to be blinded by the word failure.

• The principal advantage of probability of failure,
in contrast with factor of safety, is the possibility
of judging acceptable level of risk based on the
estimated cost and consequences of failure.
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CHAPTER 14

Important Details of Stability Analyses

The reliability of slope stability computations depends
on the validity of the soil properties, the slope and
subsurface geometry, and the pore water pressures used
in the analyses. The reliability of the results is also
dependent on several other aspects of the computation
procedures. These include the following:

• Method of searching for the critical slip surface
and verifying that the most critical slip surface has
been located

• Detection and elimination of tensile forces be-
tween slices at the top of the slip surface

• Detection and elimination of unreasonably large
compressive or tensile forces between slices at the
toe of the slip surface

• Evaluation of possible three-dimensional effects

These and several other aspects of slope stability
computations are discussed in this chapter.

LOCATION OF CRITICAL SLIP SURFACES

For simple slopes it is possible to estimate the location
of the critical slip surface relatively well. For example,
for a homogeneous slope composed of dry cohesion-
less soil with a constant friction angle (linear failure
envelope), the critical slip surface is a plane coincident
with the face of the slope; the factor of safety is given
by the equation for an infinite slope: F � tan �� / tan

. For most cases the critical slip surface must be de-
termined by trial and error. Even for a homogeneous
slope composed of cohesionless soil, the critical slip
surface must be located by trial and error if the Mohr
failure envelope is curved or if there is a nonuniform
seepage pattern (hydraulic gradients vary) near the face
of the slope.

Infinite Slope

The easiest critical slip surface to locate is the one for
an infinite slope. For an infinite slope the slip surface
is a plane parallel to the face of the slope. Location of
the critical slip surface involves finding the depth of
the shear plane that produces the minimum factor of
safety. For cohesionless soils (c � 0 or c� � 0) the
critical plane is in the layer with the lowest friction
angle, unless seepage conditions dictate otherwise. For
purely cohesive soils (� � 0) the critical slip surface
will usually be at the depth where the ratio of shear
strength to depth, c /z, is a minimum; the critical slip
surface will pass to the bottom of any layer that has a
constant shear strength. If stability is checked for slip
surfaces located at the top and bottom of each soil
layer, the critical slip surface will almost always be
found.

Circular Slip Surfaces

Locating a critical circle is more complicated than
finding the depth of the critical slip surface for an in-
finite slope. Locating a critical circle requires a system-
atic search in which the center point of the circle and
its radius are varied. Such searches are usually per-
formed using a computer program in which the search
is automated. Details of the particular search methods
vary from one computer program to another. It is im-
portant to understand the particular method used, and
to be able to control the search, to ensure that the
search is thorough.

Most of the schemes used in computer programs to
locate critical circles require that an initial estimate be
made of the starting location of the circles used in the
search. The initial estimate is usually based on an es-
timate of the location of the center point and the radius
of the critical circle. Depending on the search scheme
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Figure 14.1 Locations of center points for critical circles in
(a) purely cohesionless (c, c � � 0) and (b) purely cohesive
(�, �� � 0) slopes.

employed either a specific initial trial circle for starting
the search is designated or the extent of a grid of center
points over which the search will be conducted is spec-
ified. Usually, the radius is estimated and designated
by specifying one of the following:

• The depth of a line to which circles are tangent
• A point through which circles pass
• The radius of circles

Depending on the specific search scheme used, the in-
itial information may define either the radius for a
single initial trial circle or a range in radii to be
investigated. The following guidelines can be used to
estimate the location of a critical circle for initiating a
search.

Center point location. A likely center point for a
critical circle can be estimated from what is known
about the critical circles for the cases of simple, ho-
mogeneous slopes in purely frictional soil (c, c� � 0)
and purely cohesive (� � 0) soil. For a cohesionless
slope the critical slip surface is a plane coincident with
the face of the slope. If a search is performed with
circles, the critical ‘‘circle’’ is very shallow and has a
very large radius. The critical circle degenerates to es-
sentially a plane parallel to the slope surface. The cen-
ter of the critical circle is located along a line passing
through the midpoint of the slope, perpendicular to the
face of the slope (Figure 14.1a). In contrast, for a
purely cohesive slope, the critical circle passes as deep
as possible. In this case the center of the critical circle
lies along a vertical line passing through the midpoint
of the slope as shown in Figure 14.1b.1 In both cases
(c � 0 and � � 0) the centers of the critical circles lie
on a line passing through the midpoint of the slope,
and the line is inclined at an angle, �d , from vertical
(Figure 14.2), where �d is the ‘‘mobilized’’ friction an-
gle (i.e., tan �d � tan � /F). Based on this knowledge,
an estimate of the center of the critical circle for other
slopes can be made by drawing a line from the mid-
point of the slope inclined at an angle, �d, from vertical
(see O–P in Figure 14.2). A sufficient estimate of the
factor of safety can usually be made for the purpose
of determining the developed friction angle, �d. A
good starting point for searching for the critical circle
is a point along the line (O–P) at a distance equal to
one or two times the slope height above the crest of
the slope (see point C in Figure 14.2). Also, a starting
center anywhere in the region between a vertical line
and a line drawn perpendicular to the midpoint of the

1 This is true only for slopes flatter than 53�, but covers many of the
cases of practical interest.

slope (the shaded area in Figure 14.2) would be a rea-
sonable starting center.

Radius (depth of circles). When a search is con-
ducted to locate a critical slip surface, it is important
to explore circles that pass through all of the different
materials in the cross section. If the shear strength of
a given stratum is characterized by c � constant, � �
0, the critical circle will usually, but not always, pass
to the bottom of the layer. Circles should be analyzed
that pass to the bottom of each stratum that has a con-
stant shear strength. Also, it is usually more effective
to start with deep circles and search upward rather than
searching downward. By starting the search with cir-
cles that are deep, the trial circles should intersect most
layers in the cross section, and the circles will be more
likely to migrate into the layers that produce the lower
factors of safety. Another useful strategy is to search
for the critical circle that passes through the toe of the
slope and to examine other types of circles (radii and
tangent depths), using the critical toe circle as the be-
ginning circle.

Increments for center point coordinates and ra-
dius. Most computer programs that employ search
schemes using circles vary the coordinates of the cen-
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Figure 14.2 Estimation of starting center point to search for critical circles.

ter point systematically and the radius in increments
until a minimum factor of safety is found. It is impor-
tant that the increments used to vary the center point
coordinates and the radius be small enough so that im-
portant features in the cross section are detected by the
search. This requires that the increments be no greater
than some fraction of the thickness of the thinnest layer
in the cross section. A distance no larger than one-half
to one-fourth of the later thickness is effective. Search
increments from one-tenth (0.1) to one-hundredth
(0.01) of the slope height are suitable if there are no
thin layers in the cross section. With the computational
speed of current computers a search increment of 1%
of the slope height (0.01 H) can be used with little
concern for the computation time required.

Multiple minimums. For even simple slopes more
than one circle may be found that produces a local
minimum for the factor of safety. That is, if the circle
is moved slightly in any direction away from the local

minimum, the factor of safety will increase. As an il-
lustration, consider the three simple, purely cohesive
(� � 0) slopes shown in Figure 14.3. The slopes
shown in this figure are identical except for the thick-
ness of the foundation. The slope shown in Figure
14.3a has a 30-ft-thick foundation. The two circles
shown in this figure both represent local minimums,
with factors of safety of 1.124 for the shallow circle
and 1.135 for the deep circle. The shallower circle
through the toe of the slope is slightly more critical
and thus represents the overall minimum factor of
safety. The slope shown in Figure 14.3b has a slightly
deeper foundation, 46.5 ft deep. This slope also has
two circles that produce locally minimum factors of
safety, but both circles have the same factor of safety
(1.124); there are two critical circles with identical
minimum factors of safety. The third slope, shown in
Figure 14.3c, has the deepest foundation: 60 ft deep.
There are again two local minimums for this slope,
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with the shallow circle producing a factor of safety of
1.124 and the deeper circle having a factor of safety
of 1.119. In this case the deeper circle represents the
more critical of the two local minimums. This example
shows that with relatively small changes in the depth
of the foundation there may be quite different locations
for the critical circle, and in some cases there may even
be two different critical circles that have the same min-
imum factor of safety.

Another example of a slope with two local mini-
mums for the factor of safety is shown in Figure 14.4.
For the cohesionless embankment there is a local min-
imum factor of safety corresponding to a shallow, in-
finite slope mechanism. The factor of safety for this
shallow slip surface is 1.44. Another local minimum

occurs for a deeper circle passing to the bottom of the
clay foundation. The factor of safety for the deeper
circle is 1.40 and is the overall minimum factor of
safety for this slope. In cases like the ones illustrated
in Figure 14.3 and 14.4, it is important to conduct mul-
tiple searches to explore both deep and shallow regions
of the slope profile.

When searches for the critical circle are done man-
ually, it is straightforward to explore all regions of the
cross section. However, when searches are done using
computer programs in which the search is conducted
automatically, care is required to ensure that all feasi-
ble regions of the slope and foundation have been ex-
plored and that the critical circle has been found. Most
computer programs with automatic search routines per-
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Figure 14.4 Slope with two local critical slip surfaces and minimum factors of safety.

mit the starting point for the search to be designated
as input data. Therefore, it is possible to perform a
number of independent searches by using different
starting locations. It is good practice to perform several
searches using different starting locations to ensure
that all regions of the cross section are explored and
that the most critical slip surface is found.

One scheme for locating a critical circle is to vary
the radius for each trial center point until a critical
radius, corresponding to the minimum factor of safety
for the center point, is found. When the radii are varied
for a given center point, multiple local minimums may
be found. For example, Figure 14.5 shows the variation
in factor of safety with the radius (depth) of a circle
whose center point is the center of the most critical
circle overall. It can be seen that there are several local
minimums for the factor of safety for the designated
center point. It is important in such cases to vary the
radius between wide limits and in relatively small in-
crements to capture this behavior and to ensure that
the minimum factor of safety is found. An appropriate
scheme for doing this is to select the minimum and
maximum radius (or tangent line elevation) of interest,
along with a suitable increment for varying the radius.
The increment used to vary the radius should not ex-
ceed one-half to one-fourth of the thickness of the thin-
nest layer.

Although varying the radius to find a critical radius
for each trial center point is relatively inefficient com-
putationally—many more circles may be analyzed than
perhaps are necessary—the scheme can provide useful
information. This scheme is particularly useful when
contours are to be drawn to show how the factor of
safety varies with the location of the center point. The
most meaningful contours that can be drawn for a se-
ries of selected center points are those for factors of

safety corresponding to the critical radius (minimum
factor of safety) for each point.

Noncircular Shear Surfaces

Critical noncircular slip surfaces are much more diffi-
cult to locate because they involve many more varia-
bles than circles. Circles are described by three values:
the x and y coordinates of the center, and the radius.
Noncircular slip surfaces are described by two values
(x and y) for each point on the slip surface.2 Depending
on the number of points required to characterize the
noncircular slip surface, the number of variabes in the
search can be quite large.

Two basically different approaches have been used
to vary the positions of noncircular slip surfaces and
find the slip surface with the minimum factor of safety.
One approach employs a systematic shifting of the slip
surface, with an appropriate minimization or optimi-
zation scheme. Implementations of this method vary
from sophisticated schemes employing linear program-
ming methods to much simpler, direct numerical tech-
niques (e.g., Baker, 1980; Celestino and Duncan, 1981;
Arai and Tagyo, 1985; Nguyen, 1985; Li and White,
1987; Chen and Shao, 1988).

The second approach for finding a critical noncir-
cular slip surface employs a random process to select
trial slip surfaces. This scheme generally proceeds until
a specified number of slip surfaces have been explored
(e.g., Boutrop and Lovell, 1980; Siegel et al., 1981).
A random number generator is used to establish the
location of the random slip surfaces.

2 The exception to this is at the ends of the slip surface, where the
points are constrained additionally to be either on the surface of the
slope or at the bottom of a crack profile.
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Figure 14.5 Variation of the factor of safety with depth (radius) of circles for an embank-
ment on a stratified soil foundation.

Regardless of the scheme used to find a critical non-
circular slip surface, the potential location of the crit-
ical slip surface must usually be estimated either as a
starting point for the search or to establish limits on
the search. A good estimate for the starting location of
the noncircular slip surface is the location of the crit-
ical circular slip surface. Locating the critical circle
and then using several (4 to 10) points along the crit-
ical circle to define an initial trial noncircular slip sur-
face works well in many cases. The locations of the
initial points are varied in accordance with whatever
search scheme is being used to find a more critical
noncircular slip surface. Additional points may be
added to the noncircular slip surface as the search pro-
gresses. This scheme works well in most cases, partic-
ularly where there are not very thin, weaker zones of
soil. Alternatively, if distinctly weaker zones exist, a
slip surface passing through the weaker zones may be
selected as a starting point.

When a particularly thin, weak layer is likely to con-
trol stability, it is usually better to start with a noncir-
cular slip surface that has a portion of the slip surface
following along the weak layer. Such a surface may
enter or exit the slope through stronger overlying ma-
terial. When it does, the inclination of the slip surface
at the crest and at the toe of the slope should be chosen
to conform to the inclinations of active and passive
shear planes, respectively. Active and passive zones are
discussed later in this chapter. Near the crest of the
slope the slip surface will usually be chosen to enter

at an angle of 45 to 65� from the horizontal. Near the
toe of the slope the slip surface will usually be chosen
to exit at an angle of 25 to 45� from the horizontal.

As with circles, it is important with noncircular slip
surfaces to choose several starting locations for the slip
surface and perform searches beginning with each. The
initial slip surfaces should pass through the various
zones of soil that are expected to influence stability. It
is also important that sufficiently small increments be
used to vary the position of points on the slip surface
so that the effects of thin layers are evaluated accu-
rately. Increments no greater than one-half the thick-
ness of the thinnest significant stratum and as small as
1% of the slope height (0.01 horizontal) are appropri-
ate. In most cases it should be anticipated that more
than one local minimum exists.

Importance of Cross-Section Details

In embankment dams with complex cross sections,
there may be numerous zones of different materials
that result in at least several local minimum factors of
safety. It is important that each potential slip surface
and mechanism of sliding be explored. It is also im-
portant to model the cross section in as much detail as
possible, because these details may have an effect on
the stability. For example, the slope protection (riprap)
and associated filters on the upstream face of an earth
dam can have a large effect on the stability and safety
against shallow sliding due to drawdown. Omission of
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the shallow layers of slope protection in the geometry
used for an analysis of sudden drawdown may result
in the factor of safety being significantly underesti-
mated, and unnecessary conservatism in the design.

To illustrate the importance of cross-section details,
consider the embankment dam shown in Figure 14.6.
The embankment is to be subjected to a rapid draw-
down of 19 ft, and slope stability computations were
performed using the U.S. Army Corps of Engineers
(1970) procedure for rapid drawdown. Computations
were performed with and without the riprap and filter
zones included in the cross section used for analysis.
When the filter and riprap were excluded, the material
was assumed to be the same as the embankment ma-
terial. Factors of safety are summarized in Figure 14.6.
The factor of safety with the riprap and filter zones
included in the analyses was 1.09. The factor of safety
dropped to 0.84 when the riprap was excluded—a de-
crease in factor of safety of approximately 23%. Con-
sidering that the U.S. Army Corps of Engineers (1970)
recommended factor of safety for this case is 1.0, the
effect of omitting the riprap and filters from the anal-
ysis was to change the factor of safety from acceptable
to unacceptable.

Recapitulation

• An initial estimate of the critical circle can be
made from what is known about the critical circles
for homogeneous slopes (Figure 14.2).

• Searches should be conducted beginning at sev-
eral starting points to fully explore the soil profile
and detect multiple minimums.

• Searches are usually more successful when the
search is started deep rather than shallow.

• Increments of distance used to move the center
and change the radius of circles in a search should
not exceed one-half the thickness of the thinnest
stratum of interest. Increments are typically cho-
sen to be 0.01 to 0.1 times the slope height. The
speed of current computers allows use of small
increments with no practical penalty.

• Good starting locations for a search with noncir-
cular slip surfaces can be estimated by starting
from the critical circle, or by examining the slope
cross section to identify layers of weakness.

• The smallest increments used to move the points
when searching with noncircular slip surfaces
should not exceed one-half the thickness of the
thinnest stratum of interest and are typically cho-
sen to be 0.01 to 0.1 times the slope height.

• All cross section details that may influence the
position of the critical slip surface and factor of
safety should be included in the geometry used
for the slope stability analysis.

EXAMINATION OF NONCRITICAL SLIP
SURFACES

In some cases the slip surface with the minimum factor
of safety may not be the slip surface of greatest inter-
est. For example, the minimum factor of safety for the
embankment shown in Figure 14.7 is 1.15. The mini-
mum factor of safety corresponds to an infinite slope
failure in the cohesionless fill. Also shown in Figure
14.7 is a deeper circle that has a locally minimum fac-
tor of safety. This deeper circle has a factor of safety
of 1.21, which is higher than the factor of safety for
the shallower, infinite slope slip surface. However, if
sliding occurred along the deep circle, it would have a
far more severe consequence. Failure along the shallow
surface in the embankment would consist simply of
raveling of material down the slope and might, at the
most, represent a maintenance problem. In contrast,
failure along the deeper surface might require recon-
struction of the embankment. Consequently, the deeper
surface and the associated factor of safety of 1.21
would be considered unacceptable, while a factor of
safety of 1.15 for the shallower, most critical slip sur-
face might be acceptable.

More than one mechanism of failure and associated
factor of safety must sometimes be examined for de-
sign. It is good practice to locate as many locally crit-
ical slip surfaces as possible. In some cases it is also
useful to examine slip surfaces that are important but
do not represent local minimum factors of safety. A
good example of cases where noncritical slip surfaces
need to be studied is older mine tailings disposal dams.
Many older tailing dams consist predominately of co-
hesionless materials where the critical slip surface is a
shallow ‘‘skin’’ slide. The consequences of shallow
sliding may be minor, but deeper sliding must be
avoided. To address this concern, stability computa-
tions can be performed using slip surfaces that extend
to various depths. The variation of the factor of safety
with the assumed depth of slide is then examined and
a judgment is made regarding the depth of sliding that
can be tolerated. Minimum factor of safety require-
ments are established for slip surfaces that extend
deeper than the tolerable limit. To investigate deeper
slip surfaces that do not necessarily represent mini-
mum factors of safety, several techniques can be used
to define the slip surfaces that will be analyzed. Three
techniques for doing this are illustrated in Figure 14.8.
They consist of:

1. Forcing trial slip surfaces to be tangent to a line
that is parallel to and below the surface of the
slope (Figure 14.8a)

2. Forcing trial slip surfaces to pass through a des-
ignated point that is located at some depth below
the surface (Figure 14.8b)
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Figure 14.6 Effect of included cross-section detail on computed factor of safety for rapid
drawdown.
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Figure 14.7 Slope with shallow critical slip surface and deeper, locally critical circle.

3. Requiring that the soil mass above the slip sur-
face have some minimum weight (Figure 14.8c)

Many computer programs provide some capability for
limiting the extent of a search for a critical slip surface
in one or more of the ways described above.

Earth dams represent another case where there are
slip surfaces besides the slip surface producing the
minimum factor of safety that are of interest. Stability
analyses must be performed for both the upstream and
downstream slopes of dams. One slope (upstream or
downstream) typically has a lower factor of safety than
the other. In searching for a critical circle on one face
of the dam it is possible that the search will ‘‘hop’’ to
the other face and abandon searching further for the
critical slip surface beneath the slope face of interest.

If this occurs, it is necessary to employ some means
to restrict the search to a specific slope face. Some
computer programs automatically restrict the search to
the slope face where the search was started; other pro-
grams may require that additional constraints be used.

Recapitulation

• The slip surface with the minimum factor of
safety is not always the one of greatest interest.

• It is often desirable to examine slip surfaces and
factors of safety that are not minimums, especially
when the consequences of other mechanisms of
failure are important.
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Figure 14.8 Artificial constraints imposed to examine non-
critical slip surfaces of interest: (a) all circles tangent to a
line; (b) all circles pass through a fixed point; (c) all circles
have minimum weight.
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Figure 14.9 Active Rankine horizontal earth pressures be-
neath a horizontal ground surface.

TENSION IN THE ACTIVE ZONE

When there are cohesive soils in the upper portion of
a slope, slope stability calculations usually will reveal
tension at the interfaces between slices as well as on
the bottom of the slices. The existence of tension may
be of concern for two reasons:

1. Most soils do not have significant tensile strength
and thus cannot withstand tension. Calculated
tensile stresses are unrealistic and inappropriate.

2. When significant tension develops it can cause
numerical problems in the slope stability calcu-
lations.

For both reasons it is desirable to eliminate the tensile
forces from the analyses.

Rankine Active Earth Pressures

The tension at the top of the slope that occurs in slope
stability analyses is analogous to the tensile stresses

that are computed from Rankine active earth pressure
theory. In fact, the mechanisms that produce tension in
slope stability analyses and active earth pressure cal-
culations are the same. For total stresses the Rankine
active earth pressure beneath a horizontal ground sur-
face, �h, is given by

� �2� � �z tan 45 � � 2c tan 45 � (14.1)� � � �h 2 2

where z is the depth below the ground surface (Figure
14.9). At the ground surface, where z � 0, the expres-
sion for the horizontal stress is

�
� � �2c tan 45 � (14.2)� �h 2

which indicates that stresses are negative (tensile) if c
is greater than zero. Negative stresses extend to a
depth, zt , given by

2c
z � (14.3)t � tan(45 � � /2)
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Figure 14.10 Mohr’s circle with tensile stresses for a co-
hesive soil.
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Figure 14.11 Lateral compressive and tensile stresses on an
interslice boundary that produce a line of thrust at infinity.

The active earth pressures increase linearly from the
negative value given by Eq. (14.2) to zero at the depth,
z t. Below the depth z t the active earth pressures are
positive and continue to increase linearly with depth.

Rankine’s theory for active earth pressures and the
limit equilibrium slope stability analysis procedures
described in Chapter 6 are similar for soil near the crest
of a slope. Both employ equations of static equilibrium
to compute the stresses on vertical planes; in the case
of slope stability analyses the interslice forces repre-
sent the stresses on vertical planes.

There are also some differences between Rankine
earth pressures and limit equilibrium slope analysis
procedures. For Rankine earth pressures the forces on
vertical planes are parallel to the ground surface; while
for limit equilibrium slope stability analyses, various
assumptions are made for the direction of forces, de-
pending on the particular procedure of slices used.
Also, for Rankine earth pressures the shear strength is
assumed to be fully developed (F � 1), while for slope
stability the shear strength is generally not fully de-
veloped (i.e., F � 1).

Despite the differences between slope stability and
earth pressure calculations, the fundamental cause of
tension is the same: Tension is due to some or all of
the shear strength of the soil being mobilized, when
the soil is assumed to have cohesion. As shown in
Figure 14.10, if a Mohr–Coulomb failure envelope
with cohesion is assumed, tensile strength is implied.
The Mohr circle shown in Figure 14.10 has a major
principal stress that is positive while the minor prin-
cipal stress is negative. Although cohesion may be ap-
propriate for describing the position of a failure
envelope for positive normal stresses (�, �� � 0), the
same envelope is generally not appropriate for negative
(tensile) normal stresses. To achieve more realistic re-

sults, it is necessary to ignore the implied tensile
strength.

Tension can appear in the results of limit equilibrium
slope stability computations in three different ways:

1. The interslice forces become negative.
2. The total or effective normal forces on the bases

of slices become negative.
3. The line of thrust moves outside the slice.

Theoretically, at the point where the compressive and
tensile stresses are equal on the boundary between
slices the line of thrust must lie an infinite distance
away from the slope (Figure 14.11). At the point where
the compressive and tensile stresses produce equal re-
sultant forces, there is a finite moment but no resultant
force to produce the moment. Thus, an infinite moment
arm (line of thrust) is required.

Tension may appear in one or more of the three
forms listed above. For the Simplified Bishop proce-
dure, interslice forces are not computed, and thus ten-
sion appears only in the form of negative normal forces
on the bottom of slices. For force equilibrium proce-
dures such as the Modified Swedish and Simplified
Janbu procedures, the interslice forces are computed,
but not their locations. Thus, in these procedures ten-
sion may appear in the form of negative interslice
forces and negative normal forces on the base of slices.
Finally, for procedures such as Spencer’s that consider
complete equilibrium, tension may appear in any of
the three forms listed above.

Eliminating Tension

Two different techniques can be used to eliminate the
effects of tension from the results of slope stability
calculations:
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Figure 14.12 Slope and slip surface with a tension crack to
eliminate tensile stresses.
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Figure 14.13 Variation in factor of safety with the assumed
depth of crack.

1. A tension crack can be used in the slope stability
calculations.

2. The Mohr failure envelope can be adjusted so
that there is no shear strength when the normal
stress becomes negative.

Tension crack. A tension crack is introduced into
slope stability calculations by terminating the slip sur-
face at the edge of a slice at an appropriate depth be-
low the ground surface (Figure 14.12). The depth of
tension can be estimated from Eq. (14.3) using the de-
veloped shear strength parameters cd and �d. The es-
timated depth for the vertical crack is given by

2cdd � (14.4)crack �z tan(45 � � /2)d

Although cd and �d depend on the factor of safety,
values can usually be estimated with sufficient accu-
racy for calculating the depth of crack before the factor
of safety is calculated. If necessary, the values for cd

and �d can be adjusted and the calculations repeated
with a revised crack depth once an initial factor of
safety is calculated with the estimated crack depth.

In general, when a vertical crack is introduced, the
crack should not extend significantly beyond the depth
of tension. If the crack depth is overestimated, com-
pressive forces will be eliminated and the factor of
safety will be overestimated. In many cases a tension
crack has only a minor effect on the computed factor
of safety. However, one reason for introducing a ten-
sion crack is to eliminate numerical stability problems
and inappropriate negative stresses. Thus, even though
a tension crack may not have a significant effect on
the computed factor of safety, it is a good practice to
introduce a crack when there are cohesive soils present
along the upper portion of the slip surface.

In most cases only an approximate estimate of the
depth of tension crack is needed and can be made
based on considerations of active earth pressures as
described above. However, if the effect of tension is
unclear, a series of stability computations can be per-
formed in which a vertical crack is introduced and the

depth is varied. Typically, these analyses will show that
the factor of safety first decreases as the crack depth
is increased and tension is eliminated and then in-
creases as the crack depth becomes greater and com-
pressive stresses are eliminated as well (Figure 14.13).
Such analyses are useful where there are questions re-
garding the effects of tension and the appropriate crack
depth.

Zero tensile strength envelope. Instead of introduc-
ing a tension crack, the shear strength envelope can be
adjusted so that the shear strength is zero when there
is tension. This can be accomplished using a nonlinear
Mohr failure envelope like either of the ones shown by
the heavy lines in Figure 14.14. Trial-and-error pro-
cedures are then required to determine the appropriate
shear strength because the shear strength parameters
(c, c� and �, ��) depend on the normal stress (�, ��).
If the Mohr failure envelope has abrupt changes in
slope, numerical instability and convergence problems
can occur in these trial-and-error procedures. That is,
the shear strength may oscillate between zero and
some finite value of shear strength on successive iter-
ations. Thus, although use of a nonlinear failure en-
velope may be a good approach from a fundamental
viewpoint, appropriate envelopes are difficult to deter-
mine, and their use can cause additional numerical
problems. Use of a tension crack as described earlier
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Figure 14.14 Nonlinear Mohr failure envelopes (heavy
lines) used to prevent tension in cohesive soils.

(a)

(b)

Pf

Figure 14.15 Load representations for embankments where
the shear strength is neglected: (a) vertical surcharge; (b)
lateral thrust produced by weak fill.

is usually a more practical alternative for eliminating
tension.

Replacing Cracked Embankments by Surface Loads

In some cases, particularly where relatively strong co-
hesive embankments rest on much weaker foundations,
the crack depth calculated from Eq. (14.4) may exceed
the height of the embankment. If a crack depth equal
to the height of the embankment is assumed, the em-
bankment strength plays no role in the computed factor
of safety. The factor of safety calculated with a tension
crack extending through the full height of the embank-
ment is identical to the factor of safety that is calcu-
lated assuming a vertical surcharge, represented by a
distribution of vertical stress such as the one shown in
Figure 14.15a.

When an embankment is treated as a vertical sur-
charge, the shear strength of the embankment has no
effect on the computed factor of safety. This, however,
is not equivalent to the case where an embankment is
assumed to have no, or very little, shear strength. If an
embankment or fill has negligible strength, there will
be a significant horizontal thrust that is not represented
by a vertical surcharge (see Pƒ in Figure 14.15b). It is

appropriate in the latter instances to model the fill as
a low strength material by assigning small or zero val-
ues for the shear strength parameters (c and �). If the
embankment is assigned a small or zero shear strength,
the appropriate lateral thrust will be reflected in the
limit equilibrium calculations.

Recapitulation

• Tension can cause numerical stability problems in
the solution for the factor of safety.

• Tension can imply tensile strength that does not
exist and will result in a calculated factor of safety
that is too high.

• Introducing a tension crack can eliminate the ad-
verse effects of tension.

• The depth for a tension crack can be estimated
from simple equations derived from earth pressure
theory.

• Neglecting the strength of an embankment by in-
troducing a tension crack or treating the embank-
ment as a vertical surcharge is appropriate when
the embankment is very strong, but is not correct
when the embankment is very weak.

INAPPROPRIATE FORCES IN THE PASSIVE
ZONE

In the preceding section problems that can develop
near the crest of the slope were discussed. Other prob-
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Figure 14.16 Forces leading to infinite values at the toe of
the slip surface.

lems can develop near the toe of the slope. As with
the problems near the crest of the slope, earth pressure
theories are helpful in understanding the stresses and
problems that can develop near the toe of a slope and
slip surface. The region near the toe of a slip surface
corresponds to a zone of passive earth pressures. Prob-
lems in the form of very large compressive or even
tensile stresses can develop near the toe of the slope.

Cause of Problems

Problems develop near the toe of a slope when the
direction of the resultant force, R, on the base of the
last slice is very close to the direction of the interslice
force, Z. In this case the resultant force on the base of
the slice and the interslice force become either very
large or negative. This is illustrated for a typical slice
in Figure 14.16. It is assumed in this case that the soil
is cohesionless. The resultant force (R) due to the nor-
mal stress and the mobilized shear strength acts at the
angle, �d, from a line perpendicular to the base of the
slice. The slice shown in Figure 14.16 has a base slope
angle (�) of �55� and the mobilized friction angle is
25�. The resultant interslice force inclination is 10�.
The interslice force and the resultant force on the base
of the slice both have the same line of action. There
is no force perpendicular to these two forces (R and Z)
to balance the weight of the slice. Consequently, math-

ematically the interslice force and the force on the base
of the slice become infinite. This condition is reflected
by the following term that appears in the denominator
of the equations for the interslice force resultant, Q ,
presented in Chapter 6 for Spencer’s procedure:

sin(� � �) tan ��
cos(� � �) � (14.5)

F

This quantity appears in the denominator of one of the
terms for the interslice force resultant (Q). Substituting
values, � � �55�, tan �� /F � tan �d � tan 25�, and
� � 10� into (14.5) produces a value of zero. As a
result, the equations used to compute the factor of
safety by Spencer’s procedure contain zero in the de-
nominator for one or more slices, and the forces Q and
N become infinite. Whitman and Bailey (1967) noted
that a similar problem occurs in the Simplified Bishop
procedure when the following term, designated as m�,
becomes small:

sin � tan ��
m � cos � � (14.6)� F

This term is identical to the term in Eq. (14.5) from
Spencer’s procedure when the interslice force inclina-
tion (�) is set to zero, as is done in the Simplified
Bishop procedure. The problem that is illustrated in
Figure 14.16 and is shown by Eqs. (14.5) and (14.6)
exists with all limit equilibrium procedures of slices
except the Ordinary Method of Slices, which ignores
the forces on vertical slice boundaries.

Eliminating the Problem

When the conditions described in the preceding para-
graph occur, any of the following may happen:

1. The trial-and-error solution for the factor of
safety may not converge—the solution may
‘‘blow up.’’

2. Forces may become extremely large and produce
very high shear strengths in frictional materials.

3. Forces may become negative (tensile).

Mathematically, negative stresses in frictional ma-
terials will produce negative shear strengths! If this
occurs, the factor of safety may be much smaller than
reasonable. In this case, if an automatic search is being
performed to locate a critical slip surface, the search
may suddenly pursue an unrealistic minimum as a so-
lution. The solution may be correct from a mathemat-
ical perspective, being a valid root to the simultaneous
equations and representing a minimum value for F;
however, such a solution is clearly not realistic phys-
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ically and should be rejected. Whitman and Bailey
(1967) suggested that when the Simplified Bishop pro-
cedure is being used and the value of m� expressed by
Eq. (14.6) becomes less than 0.2, alternative solutions
should be explored.

The problem of negative stresses near the toe of the
slip surface can be eliminated in at least four different
ways. These are described below.

Change the slip surface inclination. Large or neg-
ative forces at the toe of the slip surface occur because
the inclination of the interslice force and slip surface
are different from those corresponding to critical con-
ditions. In other words, the inclinations of the interslice
force and slip surface are significantly different from
the inclinations corresponding to the minimum passive
earth pressure. The relationship between the slip sur-
face inclination and the interslice force inclination for
minimum passive earth pressures has been presented
by Jumikis (1962) and is illustrated in Figure 14.17. If
the assumption pertaining to the inclinations of the in-
terslice forces in a solution are reasonable, as they usu-
ally are, the most realistic remedy for inappropriate
forces in the passive zone is to change the inclination
of the slip surface near the toe of the slope. The incli-
nation of the slip surface that should be used for a
given interslice force inclination, and developed shear
strength (�d) can be estimated from Figure 14.17.

Changing the slip surface inclination is the most ap-
propriate way to eliminate inappropriate stresses in the
passive zone. However, if calculations are being per-
formed using circular slip surfaces, this remedy cannot
be used because the overall geometry of the circle de-
termines the orientation of the toe of the slip surface.
In such cases one of the three remaining alternatives
described below may be adopted.

Compute strength independently. Ladd (personal
communication) has suggested one alternative remedy
for tension in the passive zone. He suggested that the
shear strength in the passive zone can be estimated
independent of the slope stability calculations based on
the stresses calculated using Rankine passive earth
pressure theory. If the overlying ground surface is hor-
izontal and the soil is cohesionless, the vertical and
horizontal stresses, �h and �v, respectively, are princi-
pal stresses that can be calculated as follows:

� � � � �z (14.7)v 3

��2� � � � �z tan 45 � (14.8)� �h 1 2

The corresponding shear strength on the slip surface is
then determined from the following:

� � � 1 ��1 3 2� � cos �� � �z tan 45 � � 1� � � �ƒƒ 2 2 2

(14.9)

where �ƒƒ is the shear stress on the failure plane at
failure.

The shear strength, s � �ƒƒ, can be calculated from
Eq. (14.9) and entered into the slope stability calcu-
lations as a cohesion (s � c � �ƒƒ) that increases lin-
early with depth and with � � 0. This approach is
simple and seems to work reasonably well. If the zone
where the problem occurs does not have a major im-
pact on the stability of the slope, Ladd’s simple as-
sumption is adequate.

Use the Ordinary Method of Slices. Very large or
negative normal stresses at the toe of the slope do not
occur in the Ordinary Method of Slices. The normal
force on the base of the slice varies from a value equal
to the weight of the slice (when the base is horizontal)
to zero (as the base of the slice approaches vertical).
Thus, if problems occur in the passive zone with other
limit equilibrium procedures, the Ordinary Method of
Slices can be used.

Change the side force inclination. The final remedy
for eliminating tension near the toe of the slip surface
is to change the inclination of the interslice forces in
the area where the problem occurs. Figure 14.17 can
be used to determine an appropriate interslice force
inclination that is consistent with the slip surface in-
clination in the passive shear zone. Depending on the
developed friction angle (�d) and slip surface inclina-
tion (�), an appropriate interslice force inclination (�)
can be determined from Figure 14.17. The inclination
can be used directly as the assumed interslice force
inclination in force equilibrium slope stability calcu-
lations. However, this can only be done with force
equilibrium procedures. The interslice force inclination
cannot be changed directly in other limit equilibrium
procedures, although the inclination can be changed
indirectly in the Morgenstern and Price and Chen and
Morgenstern procedures through the assumed values
for ƒ(x) and g(x).

Discussion. Slope stability calculations in which
critical noncircular slip surfaces have been located
show that the critical slip surface exits the toe of the
slope at angles very similar to what would be expected
based on passive earth pressure theory (i.e., the incli-
nations agree well with those shown in Figure 14.17).
Thus, it is generally sufficient to initiate a search with
a reasonable starting angle (45� or less, depending on
the shear strength properties of the soil), and the crit-
ical slip surface is then usually found without prob-
lems. It is also helpful to place constraints on the
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Figure 14.17 Combinations of slip surface inclination and interslice (earth pressure) force
inclination for minimum passive earth pressures.

inclination of the slip surface in an automatic search
to avoid very steep slip surfaces being considered
where unreasonable solutions may exist due to nega-
tive stresses at the toe of the slope. Many computer
programs that search for critical noncircular slip sur-
faces contain provisions for limiting the steepness of
the slip surfaces where they exit the slope.

Use of the appropriate passive inclination for the slip
surface appears to be the most realistic solution to
problems at the toe of the slope and probably conforms
most closely with conditions in the field. The only in-
stances where one of the other techniques described
needs to be employed is when circular slip surfaces are
being used. In these cases the second and third op-
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tions—calculation of the strength independently, and
using the Ordinary Method of Slices—usually work
well.

Recapitulation

• Very large positive or negative forces may develop
on the sides and bottom of slices when the slip
surface is steep near the toe of the slope, and the
forces act in directions that are significantly dif-
ferent from the directions corresponding to mini-
mum passive earth pressures.

• The problem of inappropriate stresses at the toe
of the slip surface is best remedied by changing
the inclination of the slip surface so that it cor-
responds more closely to the inclination of the
shear plane for passive earth pressures.

• The problem of inappropriate stresses at the toe
of a slope may also be remedied by (1) estimating
shear strength directly based on Rankine passive
earth pressure theory, (2) using the Ordinary
Method of Slices, or (3) changing the interslice
force inclination.

OTHER DETAILS

Additional details that affect the results of slope sta-
bility calculations include the number of slices into
which the soil mass is divided, and the tolerances used
to define convergence in the iterative procedures for
calculating factors of safety.

Iteration Tolerances and Convergence

All procedures except the infinite slope and the Ordi-
nary Method of Slices procedures require an iterative
(trial-and-error) process to calculate the factor of safety
for a given slip surface. The iterative process requires
one or more convergence criteria to define when
iterations can be stopped and a sufficiently accurate
solution for the factor of safety has been found.
Convergence criteria can be specified in terms of max-
imum allowable changes in the calculated values of
factor of safety on successive iterations, or limits on
the magnitude of allowable force and moment imbal-
ance, or on a combination of these criteria. The toler-
ances for convergence may be embedded in the
software or they may be included as part of the input
data. In either case, awareness of the criteria and the
possible consequences is important.

When a search is being conducted to locate a critical
slip surface the convergence criteria for the factor of

safety must be smaller than the changes in factor of
safety between adjacent slip surfaces analyzed in the
search process. If the convergence criteria produce fac-
tors of safety that are less precise than the changes that
occur when the slip surface is moved small distances,
the search can result in false minimums for the factor
of safety. For typical slopes and search schemes, it is
appropriate for convergence criteria to produce factors
of safety that are precise to 0.0001.

Convergence criteria for force and moment imbal-
ances need to be chosen carefully, depending on the
problem being solved. Criteria that require force and
moment equilibrium to be satisfied to within 100 lb
and 100 ft-lb usually work well. However, for very
shallow slides these limits should be reduced. Slip sur-
faces for very shallow slides that approximate infinite
slope failures sometimes involve less than 100 lb of
total weight and a precision of 100 lb force imbalance
is not adequate; a 100-lb force imbalance could cause
twofold variations in the computed factors of safety. In
contrast to very shallow slides where very small im-
balance tolerances are required, massive slides may re-
quire larger than usual equilibrium tolerances. For
example, Gucwa and Kehle (1978) describe slope sta-
bility analyses for a massive landslide in the Bearpaw
Mountains of Montana. The lateral extent of the slide
from the crest to the toe of the slide mass was in excess
of 10 km, and the depth of the slip surface may have
approached 1 km. For analyses of the slide it was nec-
essary to use as acceptable force imbalances values
that were several orders of magnitude greater than the
usual 100 lb.

An additional level of iteration is required to cal-
culate the factor of safety when the Mohr failure en-
velope is curved rather than linear. In such cases the
shear strength parameters (c, c � and �, ��) vary with
the normal stress, but the normal stress can only be
determined once the shear strength parameters are
known. Only the infinite slope and Ordinary Method
of Slices procedures permit the normal stress to be
calculated independently of the shear strength param-
eters. Any of the other limit equilibrium procedures
requires trial-and-error solutions when curved (nonlin-
ear) Mohr failure envelopes are used. In the trial-and-
error procedures, the shear strength is estimated, the
factor of safety and normal stresses are calculated, new
strengths are calculated, and the process is repeated
until the assumed and calculated shear strengths are
sufficiently alike. Some tolerance must either be built
into or entered as input data into any computer pro-
gram that performs such calculations. If the tolerances
are too large, they can result in inaccurate solutions or
false local minima for the factor of safety.
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Figure 14.18 Locations where slice boundaries are required.

Number of Slices

All of the procedures of slices involve subdividing the
soil above the slip surface into slices. The number of
slices used depends on several factors, including the
complexity of the soil profile, whether the calculations
are performed by hand or by a computer program, and
accuracy requirements.

Required slices. Most slopes have several points
where it is either convenient or necessary to place slice
boundaries. For example, boundaries are usually
placed wherever there is a break in the slope profile
(points b and ƒ in Figure 14.18), wherever a stratum
outcrops on the slope surface (point c in Figure 14.18),
or wherever the slip surface crosses a boundary be-
tween two different strata (points a, d and e in Figure
14.18). By placing slice boundaries at such points, the
base of each slice will be in only one material, and the
soil strata will vary continuously and smoothly across
each slice. Slice boundaries may also be placed where
there is a change in the slope of a piezometric surface,
where the slip surface crosses either the water table or
piezometric line, and where there is an abrupt change
in distributed load on the surface of the slope.

For circular slip surfaces, once the required slice
boundaries are established, additional slices are added
to achieve a more precise approximation of the curved
slip surface by straight-line segments (the bases of the
slices). Additional slices may also be appropriate to
account better for variations in shear strength or pore
water pressure along a slip surface. Also, the number
of slices used depends on whether the calculations are
being performed by hand or by computer.

Hand calculations. When calculations are done by
hand, the achievable level of accuracy is on the order
of 1%. The number of slices needed to be consistent
with this accuracy is usually no more than 8 to 12.
Once the required number of slices is set, a few ad-
ditional slices may be added to make the slices more
uniform in size. For complex geometries with a variety
of piezometric surfaces and distributed loads, as many
as 30 to 50 slices are sometimes required to capture

all of the details in the cross section. This number (30
to 50), however, is exceptional. It would be unusual to
use hand calculations for such a problem except to
verify a computer solution.

Computer calculations. When calculations are per-
formed using a computer, rather than by hand, many
more slices are used. Very little time is required to
perform the calculations with a computer, even when
50 or more slices are used.

For circles, the effect of the number of slices on the
factor of safety is best related to the angle, �s, sub-
tended by radii drawn to each side of the base of each
slice (Figure 14.19). It has been found that the accu-
racy of a solution is related more to the angle, �s, than
to the number of slices (Wright, 1969). To illustrate
the effect of the subtended angle and number of slices,
slope stability computations were performed for the
two slopes shown in Figure 14.20. For the slope shown
in the lower part of Figure 14.20, two different repre-
sentations of undrained shear strength were used for
the foundation, and separate computations were per-
formed for each. The subtended angle used to generate
slices was varied from 1 to 40�. Results for the three
different slope shear strength combinations are sum-
marized in Table 14.1. Several conclusions can be
drawn from these results:

• Factors of safety are essentially the same (maxi-
mum difference 0.1%) using 1� and 3� as the
maximum subtended angle for subdivision into
slices.

• The factor of safety tends to increase very slightly
(less than 1%) as the subtended angle is increased
from 3� to 15�.

• For very large subtended angles (more than 15�)
the factor of safety may either increase or de-
crease, depending on the particular slope geometry
and variation in soil properties.

It is very likely that the factor of safety could vary
differently with the number of slices, depending on the
particular algorithms employed to compute the slide
weights, length of slip surface, and the center of grav-
ity and moment arms for slices. However, it seems un-
likely that there will be any significant differences or
errors if the slices are subdivided using a subtended
angle of 3� or less.

Based on the discussion above, the most appropriate
way to set the number of slices is to set an upper limit
for the subtended angle, �s. A value of 3� works well
for this purpose, and 3� typically results in from 30 to
60 slices, assuming total subtended angles for the slip
surface of 90 to 180�. For deep slip surfaces with large
total subtended angles, 50 or more slices may be re-
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Figure 14.19 Subtended angle, �s, used to characterize the size of slices.
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Figure 14.20 Slopes used to illustrate the effect of subdivision into slices: (a) example slope
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Table 14.1 Variations in Factors of Safety with the Subtended Angle Used for Subdivision of the Soil Mass
into Slicesa

Subtended angle
(deg)

Factor of safety

Example slope 1
Example slope 2–
strength profile I

Example slope 2–
strength profile II

1 1.528 1.276 1.328
3 1.529

(0.1)
1.276

(0.0)
1.328

(0.0)
5 1.530

(0.1)
1.277

(0.1)
1.329

(0.1)
10 1.535

(0.5)
1.279

(0.2)
1.332

(0.3)
20 1.542

(0.9)
1.291

(1.2)
1.331

(0.2)
30 1.542

(0.9)
1.323

(3.7)
1.314

(�1.1)
40 1.542

(0.9)
1.323

(3.7)
1.295

(�2.5)

aNumbers in parentheses represent the percent increase (�) or decrease (�) in factor of safety compared to the factor
of safety when the soil mass is subdivided into slices using a subtended angle of 1�.

Δ�

Δ�

Figure 14.21 Subdivision for slices with a noncircular slip
surface so that the bases of slices are of approximately con-
stant length.

quired for a subtended angle of 3�. On the other hand,
for very shallow slip surfaces that approximate the in-
finite slope mechanism, very few slices are required to
achieve the same degree of accuracy. The number of
slices will also depend on the complexity of the slope
geometry and the number of interslice boundaries re-
quired.

In some cases where circles are very shallow, a max-
imum subtended angle of 3� may produce only one
slice. This causes the base of the slice (slip surface) to
coincide with the surface of the slope, and the slice
has zero area. When this occurs, an arbitrary number
of slices is used. The number of slices is not impor-
tant—as few as two or three slices will suffice. In these
cases it is more appropriate to subdivide the slip sur-
face into slices using a prescribed arc length rather
than a prescribed subtended angle. The arc length can
be chosen so that any slip surface that is of sufficient
length to be of interest will be divided into 5 to 10
slices. For example, if slip surfaces with lengths of 10
ft or more are judged to be of interest, a maximum arc
length of 2 ft could be used for subdividing into slices.

The number of slices used to represent noncircular
slip surfaces has an effect on the computed factor of
safety, but the criterion for the number of slices cannot
be represented by a subtended angle. Instead, a mini-

mum number of slices is usually chosen; usually, 30
or more slices works well. Similarly to circles, the best
results are obtained by subdividing the soil mass such
that the lengths of the base of slices, �l, are approxi-
mately equal, rather than using slices with equal
widths, �x. Use of a constant base length along the
slip surface produces more slices at the more steeply
inclined ends of the slip surface and fewer where the
slip surface is flatter (Figure 14.21).
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Recapitulation

• Convergence criteria that are too coarse can result
in false minima and an incorrect location for the
critical slip surface.

• Convergence criteria for force and moment im-
balance should be scaled to the size of the slope.
Tolerances of 100 lb/ft (0.1 kN/m) and 100 ft-lb/
ft (0.1 kNm/m) are suitable for most slopes.

• The number of slices does not have a large effect
on the computed factor of safety, provided that
details of the slope and subsurface stratigraphy are
represented.

• For hand calculations only a small number of
slices (6 to 12) is required to be consistent with
the accuracy achievable by hand calculations.

• For computer solutions with circular slip surfaces,
the number of slices is usually chosen by selecting
a maximum subtended angle, �s, of 3� per slice.

• For computer solutions with noncircular slip sur-
faces, 30 or more slices are used. Slices are sub-
divided to produce approximately equal lengths
for the base of the slices along the slip surface.

VERIFICATION OF CALCULATIONS

Any set of slope stability calculations should be
checked by some independent means. Numerous ex-
amples of how analyses can be checked have already
been presented in Chapter 7. Also, Duncan (1992)
summarized several ways in which the results of slope
stability calculations can be checked, including:

1. Experience (what has happened in the past and
what is reasonable)

2. By performing extra analyses to confirm the
method used by comparison with known results

3. By performing extra analyses to be sure that
changes in input causes changes in results that
are reasonable

4. By comparing key results with computations per-
formed using another computer program, slope
stability charts, spreadsheet, or detailed hand cal-
culations

Many slope stability calculations are performed with
a computer program that uses a complete equilibrium
procedure of slices. Most of these complete equilib-
rium procedures (Spencer, Morgenstern and Price,
Chen and Morgenstern, etc.) are too complex for cal-
culation by hand. In this case suitable manual checks

of the calculations can be made using force equilib-
rium procedures and assuming that the interslice forces
are inclined at the angle(s) obtained from the computer
solution. Suitable spreadsheets for this purpose and ex-
ample calculations are presented in Chapter 7.

Published benchmark problems also provide a useful
way for checking the validity of computer codes, and
although benchmarks do not verify the solution for the
particular problem of interest, they can lend confidence
that the computer software is working properly and
that the user understands the input data. Several com-
pilations of benchmark problems have been developed
and published for this purpose (e.g., Donald and Giam,
1989; Edris and Wright, 1987).

In addition to benchmark problems there are several
ways that simple problems can be developed to verify
that computer codes are working properly. Most of
these simple problems are based on the fact that it is
possible to model the same problem in more than one
way. Examples of several simple test problems are
listed below and illustrated in Figures 14.22 and 14.23:

1. Computation of the factor of safety for a sub-
merged slope under drained conditions using:
a. Total unit weights, external loads representing

the water pressures, and internal pore water
pressures

b. Submerged unit weights with no pore water
pressure or external water loads

This is illustrated in Figure 14.22a. Both ap-
proaches should give the same factor of safety.3

2. Computation of the factor of safety with the same
slope facing to the left and to the right (Figure
14.22b). The factor of safety should not depend
on the direction that the slope faces.

3. Computation of the factor of safety for a partially
or fully submerged slope, treating the water as:
a. An externally applied pressure on the surface

of the slope
b. A ‘‘soil’’ with no strength (c � 0, � � 0) and

having the unit weight of water.
This is illustrated in Figure 14.22c.

4. Computation of the factor of safety for a slope
with very long internal reinforcement (geogrid,
tieback) applying the reinforcement loads as:
a. External loads on the slope
b. As internal loads at the slip surface

3 See also the discussion in Chapter 6 of water pressures and how
they are handled. Large differences between the two ways of repre-
senting water pressures may occur if force equilibrium procedures
are used. See also Example 2 in Chapter 7.
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Figure 14.22 Equivalent representations for selected slope problems: (a) simple submerged
slope, no flow; (b) left- and right-facing slope; (c) partially submerged slope.

This is illustrated in Figure 14.23a. Although in-
tuitively the location where the force is applied
might be expected to have an effect, the location
does not have a large effect on the computed fac-
tor of safety, provided that the slip surface does
not pass behind the reinforcement and the force
does not vary along the length of the reinforce-
ment.

5. Computation of the bearing capacity of a uni-
formly loaded strip footing on a horizontal, infi-
nitely deep, purely cohesive foundation (Figure
14.23b). For circular slip surfaces and a bearing
pressure equal to 5.53 times the shear strength
(c) of the soil, a factor of safety of unity should
be calculated.

6. Computation of the seismic stability of a slope
using:
a. A seismic coefficient, k
b. No seismic coefficient, but the slope is steep-

ened by rotating the entire slope geometry
through an angle, �, where the tangent of � is

the seismic coefficient (i.e., k � tan�) and the
unit weight is increased by multiplying the ac-
tual unit weight by 2�1 � k

This is illustrated in Figure 14.23c. In both so-
lutions the magnitude and direction of the forces
will be the same and should produce the same
factor of safety.

Additional test problems can also be created using
slope stability charts like the ones presented in the Ap-
pendix.

THREE-DIMENSIONAL EFFECTS

All the analysis procedures discussed in Chapter 6 as-
sume that the slope is infinitely long in the direction
perpendicular to the plane of interest; failure is as-
sumed to occur simultaneously along the entire length
of the slope. A two-dimensional (plane strain) cross
section is examined, and equilibrium is considered in



234 14 IMPORTANT DETAILS OF STABILITY ANALYSES
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Figure 14.23 Equivalent representations for selected slope problems: (a) reinforced slope;
(b) bearing capacity on saturated clay; (c) pseudostatic analyses.

just two directions. On the other hand, most slope fail-
ures are finite, and most failure surfaces are three-
dimensional, often being bowl-shaped.

Many three-dimensional failures occur because soil
properties and pore water pressures vary along the
length of the slope (i.e., subsurface conditions and soil
properties are not uniform). Generally, there are not
enough data to describe the variation in properties
along the length of a slope in sufficient detail to per-
form more rigorous analyses that account for spatial
variations.

Three-dimensional slope failures may also occur due
to the three-dimensional geometry of the slope. Several
analysis methods have been developed to address the
effects of three-dimensional geometry. Comparisons
can be and have been made between results of two-

and three-dimensional analyses. In comparing results
of three-dimensional slope stability analysis with those
from two-dimensional analyses, it is important that the
cross section used for the two-dimensional analyses be
stipulated. Two-dimensional analyses are generally
performed either for the maximum cross section or for
the cross section that gives the lowest factor of safety.
The maximum cross section is the cross section where
the slope is highest or where the maximum amount of
soil is involved in potential sliding. The maximum
cross section for a dam is usually near the center of
the valley (Figure 14.24a); the maximum cross section
for a waste fill may be perpendicular to an exposed
face of the fill, approximately midway between two
opposing, lateral side slopes (Figure 14.24b). However,
the maximum cross section does not always produce
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(a)

(b)

Figure 14.24 Typical ‘‘maximum’’ cross sections used for
the two-dimensional analysis of three-dimensional geome-
tries: (a) earth dam; (b) waste fill.

the minimum factor of safety. This was clearly dem-
onstrated by Seed et al. (1990) for the analyses of a
slide that occurred at the Kettleman Hills landfill. Fac-
tors of safety calculated for the maximum sections
were 1.10 to 1.35, while factors of safety for smaller
sections near the side slopes were as low as 0.85. Con-
clusions drawn regarding differences between two-
and three-dimensional analyses will thus depend on
whether the two-dimensional analyses are performed
for the maximum cross section or for the cross section
with the minimum factor of safety. Very different con-
clusions may be drawn regarding differences depend-
ing on which two-dimensional cross section is used for
the analyses.

The two-dimensional factor of safety for the most
critical (lowest factor of safety) section will always be
lower than the three-dimensional factor of safety, pro-
vided that comparable limit equilibrium approaches are
used (i.e., similar assumptions and rigor are used to
satisfy static equilibrium).

Most of the general-purpose three-dimensional slope
stability analysis procedures are based on a method of

columns. The methods of columns are the three-
dimensional equivalent of the two-dimensional proce-
dures of slices. In the method of columns the soil mass
is subdivided into a number of vertical columns, each
with an approximately square cross section in plan
view. A considerable number of assumptions must be
made to achieve a statically determinate solution with
the method of columns. Several procedures employ
simplifying approaches comparable to the Ordinary
Method of Slices, rather than fully satisfying the six
equations4 of static equilibrium. The effects of these
assumptions may be as large as the three-dimensional
effects themselves. Thus, a considerable amount of un-
certainty exists in the results from many of the three-
dimensional procedures, and the procedures should be
used cautiously, especially when they are being used
as a basis for acceptance when two-dimensional anal-
yses might indicate unacceptably low factors of safety.

Hutchinson and Sharma (1985) and Leshchinsky
and Baker (1986) pointed out that for cohesionless
soils two- and three-dimensional analyses should give
the same factor of safety because the critical slip sur-
face is a plane coincident with the surface of the slope.
Unless there is significant cohesion or the geometry
and soil strengths are such that the failure surface
is deep, the difference between two- and three-
dimensional analyses is likely to be small.

Azzouz et al. (1981) and Leshchinsky and Huang
(1992) both noted that when shear strengths are back-
calculated using two-dimensional analyses for three-
dimensional conditions, the shear strengths will be too
high. This error is compensated, however, if the shear
strengths are subsequently used in two-dimensional
analyses of similar conditions.

Most slope stability analyses neglect three-
dimensional effects without significant consequence.
However, there are two practical instances where two-
dimensional analyses might not be adequate, and three-
dimensional analyses would be warranted:

1. When strengths are back-calculated from
three-dimensional failures and the bias in the
back-calculated strengths would not be compen-
sated in subsequent analyses

2. When, due to the slope geometry, there may be
a significant benefit of the three-dimensional ef-
fects that will improve stability

In these cases, three-dimensional analyses may be war-
ranted.

4 Three equations for force equilibrium and three equations for equi-
librium of moments about three axes.
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CHAPTER 15

Presenting Results of Stability Evaluations

Clear and comprehensive presentations of results of
slope stability evaluations are important for several
reasons:

1. Results need to be checked. Results may be
checked and reviewed by several persons, includ-
ing both engineers in the organization doing the
stability analyses and engineers in other organi-
zations that have review and regulatory respon-
sibilities.

2. Results need to be clear to the client or other
person for whom the evaluations were made.

3. Responsibility for engineering is sometimes
transferred to another engineer within the orga-
nization or to an entirely different organization.
The person assuming responsibility needs a clear
understanding of what has been done and the ba-
sis for decisions that have been made.

4. Engineers often need to ‘‘revisit’’ their work
many years later or resume work after delays
cause it to be put aside. Clear documentation of
the work that has already been done is important.

The level and form of documentation may vary de-
pending on the progress of the job. In general, some
form of written documentation should be prepared and
maintained at all stages of the job so that if the job is
stopped or delayed prematurely, work can be resumed
later and prior work can be understood. The primary
emphasis of this chapter is on the presentation of re-
sults of a slope stability evaluation once it has been
completed. However, many of the components of this
final documentation should be prepared as the work
progresses.

SITE CHARACTERIZATION AND
REPRESENTATION

Any presentation should designate the location of the
site and slope being evaluated. As a minimum the pre-

sentation should contain sufficient information so that
the site can be located and visited by the person re-
viewing the work. Presentation of the site location may
vary from a simple written description of the site lo-
cation to elaborate site maps, plan sheets, and photo-
graphs showing the location in detail. Where such
plans and drawings are presented they may also in-
clude topographic contours and identification of poten-
tially important features. For example, the site plan
may identify nearby reservoirs, rivers, streams, areas
of extensive fill work or excavation, structures, and
transportation and other infrastructure elements (roads,
pipelines, electricity and telecommunication transmis-
sion lines, etc.).

An appropriate description of the geologic setting is
essential. Geologic details often play a major role in
slope stability and thus the geologic information is
very important. The extent to which such information
is included as a specific part of a stability evaluation
as compared to part of the geotechnical engineering
for the overall project will vary, of course, and this
may or may not be an integral part of the presentation
of the slope stability evaluation.

One or more cross sections should be prepared to
show the geometry of the slope and immediate foun-
dation area that are being evaluated. Where field in-
vestigations have been performed using exploratory
borings, test pits, and nonintrusive geophysical meth-
ods, soil profile cross sections or an equivalent graph-
ical representation of the subsurface (fence diagrams,
three-dimensional solid and surface models, etc.)
should be prepared.

A cross-section drawing should be prepared showing
all the details that are considered important for the sta-
bility analyses, but the cross section may exclude ex-
traneous and minor features if they are known to be
unimportant. The cross section should be drawn to
scale.
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Figure 15.1 Sample spreadsheet for simplified Bishop procedure.

SOIL PROPERTY EVALUATION

The basis for the soil properties used in a stability eval-
uation should be described and appropriate laboratory
test data should be presented. If properties are esti-
mated based on experience, or using correlations with
other soil properties or from data from similar sites,
this should be explained. Results of laboratory tests
should be summarized to include index properties, wa-
ter content, and unit weights. For compacted soils, suit-
able summaries of compaction moisture–density data
are useful. A summary of shear strength properties is
particularly important and should include both the
original data and the shear strength envelopes used for
analyses (Mohr–Coulomb diagrams, modified Mohr–
Coulomb diagrams, �ƒƒ vs. diagrams).��ƒc

The principal laboratory data that are used in slope
stability analyses are the unit weights and shear
strength envelopes. If many more extensive laboratory
data are available, the information can be presented
separately from the stability analyses in other sections,
chapters, or separate reports. Only the summary of
shear strength and unit weight information need be
presented with the stability evaluation in such cases.

PORE WATER PRESSURES

For effective stress analyses the basis for pore water
pressures should be described. If pore water pressures

are based on measurements of groundwater levels in
bore holes or with piezometers, the measured data
should be described and summarized in appropriate
figures or tables. If seepage analyses are performed to
compute the pore water pressures, the method of anal-
ysis, including computer software, that was used
should be described. Also, for such analyses the soil
properties and boundary conditions as well as any as-
sumptions used in the analyses should be described.
Soil properties should include the hydraulic conductiv-
ities. Appropriate flow nets or contours of pore water
pressure, total head, or pressure head should be pre-
sented to summarize the results of the analyses.

SPECIAL FEATURES

Slopes sometimes have special features of their
makeup and construction that should be included in the
presentation of results. For example, for reinforced
slopes the type of reinforcement (nails, geogrid, geo-
textile, tieback anchors, piles, etc.) is important and
should be indicated. In the case of reinforcement, the
basis for determining the forces in the reinforcement
should be described, including what factors of safety
were applied to the reinforcement forces. Important de-
tails of any nonsoil materials such as geosynthetics and
the interfaces between soil and nonsoil materials or
between nonsoil and nonsoil materials (e.g., geomem-
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Table 15.1 Sample Description of Contents of
Spreadsheet Presented in Figure 15.1

Column
no. Description

1 Slice number
2 Horizontal width of slice
3 Height of portion of slice in the shell material;

measured at midpoint of slice, hshell

4 Total unit weight of shell material, �shell

5 Height of portion of slice in the core material;
measured at midpoint of slice, hcore

6 Total unit weight of core material, �core

7 Weight of slice, W � b(�shellhshell � �corehcore)
8 Inclination of the bottom of the slice, �, in

degrees measured from the horizontal
[positive when the bottom of the slice is
inclined in the same direction as the slope
face (e.g., near the crest of the slope);
negative when the base of the slice is
inclined in the direction opposite that of the
slope face (e.g., near the toe of the slope)]

9 Product of slice weight and sine of the
angle, �

10 Cohesion value for soil at bottom of slice
11 Friction angle for soil at bottom of slice
12 Height of pieizometric line (hpiez) above the

center of the base of the slice
13 Pore water pressure at the center of the

bottom of the slice, u � �waterhpiez

14 Intermediate term used to compute numerator
in equation for factor of safety: c�b �
(W � ub)tan��

15 Value of the quantity m� for trial factor of
safety; trial factor of safety is shown above
column 15 (m� � cos � � sin � tan�� /F)

16 Column 14 divided by column 15,
representing terms in the numerator of the
expression for factor of safety; column 16
summed for all slices and divided by the
summation of column 9 to compute a new
factor of safety, F�

branes and geotextiles) should also be included in the
report.

For compacted clay fills, the compaction procedures
and construction quality control are important in de-
termining the shear strength values. In some cases the
construction sequence will determine the geometries
that must be considered and may dictate consideration
of special stages in construction that need attention,
due either to the shear strengths that will exist at that

time or the geometric configuration of the slope. Im-
portant details of construction should be addressed in
the report.

Operational details can also be important and need
to be included in a report. For example, the operating
procedures for a dam or reservoir will control the
amount of drawdown and thus have a direct bearing
on stability. Temporary construction or stockpiling of
materials or other heavy items near the crest of a slope
will influence its stability and should be duly noted
and accounted for in the stability evaluation. Also, for
seismic areas the characteristics of the design earth-
quake should be described.

CALCULATION PROCEDURE

Presentations of slope stability analyses should clearly
identify the procedures used to perform the stability
calculations. When computer software is used, the soft-
ware and references to documentation (manuals)
should be specified; software without manuals or doc-
umentation should not be used. Inclusion of detailed
computer output is usually unnecessary if proper re-
lated documentation is presented as described else-
where in this chapter. If computer output is included,
it should be organized in appendixes and clearly la-
beled.

If spreadsheets are included as part of a presentation
of results, a complete description of the content of
items (rows, columns) in the spreadsheet should be in-
cluded. An example for this type of documentation is
the spreadsheet for the Simplified Bishop procedure
shown in Figure 15.1. Table 15.1 contains a description
of the contents of the columns in this spreadsheet, in-
cluding the equations used for computation of the con-
tents of each column, except where the information is
self-explanatory.

ANALYSIS SUMMARY FIGURE

Results of stability calculations for each condition
(e.g., end-of-construction, long-term, sudden draw-
down) should be presented in separate figures showing,
at least, the slope and subsurface geometry. The figure
should also show the most critical slip surface that
gave the minimum factor of safety. The figure need not
include all of the details shown for the cross section
described earlier in the section ‘‘Site Characterization
and Representation’’ but should include sufficient de-
tail that the location of important features relative to
the critical slip surface can be readily seen. For ex-
ample, in an embankment dam, the various zones of
pervious and impervious soils should be shown on
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Saturated clay: su = 2500 psf (φ = 0)
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Figure 15.2 Slope with soil properties shown on the cross section.

Rock

1 1

23 3

44

1 Foundation overburden 134 350

Mat'l Description
Unit Wt.

(pcf)
c'

(psf)
φ'

(degs)

2 Core (clay) 130 29200
3 Transition 135 320
4 Shell (gravel) 140 370

Figure 15.3 Presentation of slope with soil properties in a table.

each cross section. For embankments and excavated
slopes in natural soils, the locations of various strata
should be delineated.

The summary figure for each stability condition
should also include information showing what set of
shear strength properties were used and, for effective
stress analyses, what pore water pressure conditions
were used in the analyses. For simple soil and slope
conditions the shear strength properties may be shown
directly on the figure, at applicable locations in the
cross section (Figure 15.2) or in a separate table in-
cluded on the figure (Figure 15.3). For more complex
shear strength conditions, a separate table with refer-
ences between the table and drawing of the slope may
be needed. If a separate table is used, the material
properties and the zones to which they apply should
be identified clearly. It is usually appropriate in this

case to number the materials as well as to use descrip-
tive terms (e.g., 1, silty sand; 2, clay foundation; 3,
slope protection; 4, filters) (Figure 15.4 and Table
15.2).

If anisotropic shear strengths or nonlinear Mohr fail-
ure envelopes are used in the stability calculations, ad-
ditional figures should be prepared to show the shear
strength. For anisotropic shear strengths the variation
in shear strength with the orientation of the failure
plane (slip surface) should be shown (Figure 15.5). For
nonlinear Mohr failure envelopes the envelope should
be shown on a Mohr–Coulomb diagram (Figure 15.6).

For reinforced slopes the reinforcement pattern as-
sumed for the analyses should be shown on an appro-
priate figure (Figure 15.7). The reinforcement may
either be shown on the main figure used to summarize
the analysis, or if the reinforcement is relatively com-
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Clay "cap" (12)

Sand filter/drain (9)

Gravel shell (7)
Clay

core (8)

Bedrock (1)

Shale (2)
Bentonitic layer (3)

Silty sand (4)

Silty clay (5)

Sandy clay overburden (6)Sandy clay overburden (6)

Gravel shell (7)

Sand filter/drain (9)
Riprap filter (10)

Riprap (11)

Note: Numbers in parentheses correspond to material numbers shown in accompanying Table 15.2 of soil 
properties.

Figure 15.4 Slope with material property identification numbers and accompanying Table
15.2 with soil properties.

Table 15.2 Soil Properties for Slope Shown in Figure 15.4

Mat’l Description
Unit weight

(pcf)
Cohesion, c�

(psf)
Friction angle, ��

(deg)

1 Bedrock 150 10,000 0
2 Shale (foundation) 133 100 21
3 Bentonitic layer (foundation) 127 0 12
4 Silty sand (foundation) 124 0 29
5 Silty clay (foundation) 131 100 26
6 Sandy clay overburden 125 0 32
7 Gravel shell 142 0 38
8 Clay core 135 250 24
9 Sand filter /drain 125 0 35

10 Riprap filter 125 0 33
11 Riprap 130 0 36
12 Clay cap on crest 125 1000 0

plex, a separate figure may be used. The figure should
clearly show the spacing of the reinforcement and its
length. Appropriate information should also be given
for the force in the reinforcement. This may consist of
information ranging from a simple note on the drawing
to indicate that all reinforcement was assumed to carry
a certain, constant force, to a table showing the specific
forces in each layer of reinforcement. If the force var-
ies along the length of the reinforcement, appropriate
information on the variation should be shown either

graphically (Figure 15.8) or in tabular form. Caution
should be exercised in using computer software that
automatically assigns forces to reinforcement based on
other information (e.g., manufacturers names or prod-
uct numbers); the values of the forces that are assigned
and eventually used to compute stability should be
given clearly.

A summary of results of stability calculations for
more than one stability condition on a single figure is
not desirable. Similarly, summary on one figure of re-
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Figure 15.5 Presentation of the variation of undrained shear strength with failure plane
orientation for a soil that is anisotropic.

sults of parametric studies in which more than one
variable was changed (see the next section) should be
avoided.

When analyses are performed using slope stability
charts, the summary figure should include the critical
slip surface if it can be determined from the chart. The
summary figure or accompanying text should designate
what charts were used and other relevant information,
including appropriate summary calculations. Several
examples of summary calculations with slope stability
charts are presented in the Appendix.

PARAMETRIC STUDIES

Parametric studies are useful to examine the effect of
various assumptions about important quantities, espe-
cially when there is significant uncertainty about the
values. Parametric studies may be performed by var-
ying the shear strengths, pore water pressures, surface
or seismic loads, and slope and subsurface geometry
and computing the factor of safety for each set of as-
sumed value. When parametric studies are performed,
only one quantity at a time should be varied. For ex-
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Figure 15.6 Presentation of nonlinear Mohr failure enve-
lope.
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Figure 15.7 Presentation of reinforcement layout.

ample, the shear strength of a particular stratum might
be varied, or different reservoir levels and seepage pat-
terns might be assumed.

When several quantities are varied in parametric
studies, separate figures should be presented for each
quantity that is varied. For example, a figure might be
prepared to show how the factor of safety varies with
the shear strength of a particular stratum (Figure 15.9).
The figure might show the cross section and, on the
same figure, a diagram or table showing how the factor
of safety varies with the shear strength. If the critical
slip surfaces vary significantly as the value of a quan-
tity is varied, selected individual critical slip surfaces
or surfaces representing the extremes might be illus-
trated. However, there is no need to show critical slip
surfaces for each value of each quantity that is varied
if there is little effect on the location of the critical slip
surface.

DETAILED INPUT DATA

If it is known that someone else will perform addi-
tional analyses, and a significant amount of input data
(coordinate or pore water pressure data) will be
needed, it is helpful to provide such data in tabular
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Figure 15.9 Presentation of results for parametric study in which the rate of increase in
undrained shear strength (cz) for the foundation was varied.

form to reduce the amount of effort that will be re-
quired later. If such data are included in a presentation
they should be neatly organized in appropriate appen-
dixes and clearly labeled and described. Electronic ver-
sions of the data on removable storage media may also
be provided.

TABLE OF CONTENTS

A sample table of contents for presentation of a sta-
bility evaluation is shown in Table 15.3. Details will
vary from slope to slope, but most of the items shown
should be contained in any presentation of results.
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Table 15.3 Sample Table of Contents for
Presentation of Results of Stability Analyses

Introduction
Description of site

Location
Geology

Soil properties
Laboratory testing program (or basis for selection)
Unit weights
Shear strengths

Undrained shear strengths
Drained shear strengths

Groundwater, seepage, and pore water pressure
conditions

Special features
Slope reinforcing
Nonsoil materials and interfaces
Construction procedures

Stability evaluation procedures
Computer software
Slope stability charts
Empirical correlations and experience with slope in

area
Summary of results

End-of-construction stability
Long-term stability
Stability for rapid drawdown
Seismic (earthquake stability)

Discussion and recommendation
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CHAPTER 16

Slope Stabilization and Repair

The causes and the nature of a slope failure should be
understood before embarking on corrective action.
Does the failure involve only the soil above the toe of
the slope, or does it extend into the foundation? Was
the failure caused by an excessively thick fill on a
weak foundation; by an excessively steep slope; by a
rise in the groundwater level: by blockage of seepage
paths; by erosion at the toe; by loss of soil strength
over time due to swelling, creep, and weathering?

When investigating what caused a slope failure, it is
well to remember that there may be more than a single
cause, as noted by Sowers (1979): ‘‘In most cases, sev-
eral ‘causes’ exist simultaneously; therefore, attempt-
ing to decide which one finally produced failure is not
only difficult but also technically incorrect. Often the
final factor is nothing more than a trigger that sets a
body of earth in motion that was already on the verge
of failure. Calling the final factor the cause is like call-
ing the match that lit the fuse that detonated the dy-
namite that destroyed the building the cause of the
disaster.’’

Thorough geological study and detailed exploration
are the first steps to investigate slope failures. Topo-
graphic surveys and measurements on surface markers
help to define the area affected and the magnitudes of
vertical and horizontal movements. The location of the
shear zone can often be determined using test borings,
accessible borings, trenches, or slope indicators. Pi-
ezometers and observation wells can be used to deter-
mine groundwater levels within the slope.

USE OF BACK-ANALYSIS

As discussed in Chapter 12, back-analysis can be used
to determine what shear strength would correspond to
a factor of safety equal to 1.0 for the conditions at the

time of failure. The shear strength determined through
back-analysis provides a highly reliable basis for eval-
uating the factor of safety of the slope after stabiliza-
tion. Back-analysis not only provides shear strengths
that are consistent with the slope failure but results in
a complete analytical model (soil stratigraphy, soil unit
weights, seepage conditions, etc.) that is consistent
with the failure. Such an analytical model, based on
the experience gained through the failure, is more re-
liable than an analytical model based on the results of
laboratory tests and idealized estimates of groundwater
conditions. When soil strengths and other conditions
have been assessed through back-analysis, it is justified
to use lower-than-conventional factors of safety for the
stabilized slope.

FACTORS GOVERNING SELECTION OF
METHOD OF STABILIZATION

Many methods have been used to stabilize slopes, each
of them found to be appropriate for a particular set of
conditions. In choosing among the methods that are
technically feasible, the following factors need to be
considered:

1. What is the purpose of stabilizing the slope? Is
it only to prevent further large movements, or is
it to restore the capacity of the moving ground to
provide firm support for structures or pavements?
It is more difficult to restore the load-carrying
capacity of the ground than merely to stop move-
ments, particularly when the ground has already
been disrupted by large movements.

2. How much time is available? Is it essential that
the repair be accomplished quickly: for example,
to open a blocked highway, railroad, or canal, or
is time a less critical element? If time is of the
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Perforated or slotted PVC 
pipe inserted in drilled 

100 ft to 300 ft

Figure 16.1 Horizontal drains.

essence, expeditious methods that can be under-
taken without delay are the only ones appropri-
ate. If time is not so critical, it may be possible
to fine-tune the fix through thorough study and
to devise a less expensive solution for the prob-
lem. If it is possible to wait until the dry season
before undertaking permanent repair, it may be
feasible to use methods, such as excavation of the
sliding mass and reconstruction of the slope, that
make the slope temporarily steeper.

3. How accessible is the site, and what types of con-
struction equipment can be mobilized there? If
the site is reachable only by small roads, or by
water, or if steep terrain rules out the use of
heavy equipment, considerations of access may
limit the methods of stabilization that can be
used.

4. What would be the cost of the repair? If the costs
exceed the benefits, can less expensive methods
be used? Unless political factors dictate other-
wise, it is illogical to stabilize a slope when the
costs exceed the benefits.

DRAINAGE

Drainage is by far the most frequently used means of
stabilizing slopes. Slope failures are very often precip-
itated by a rise in the groundwater level and increased
pore pressures. Therefore, lowering groundwater levels
and reducing pore pressures is a logical means of im-
proving stability. In addition, improving drainage is of-
ten less expensive than other methods of stabilization,
and a large volume of ground can frequently be sta-
bilized at relatively low cost. As a result, drainage is
an often-used method, either alone or in conjunction
with other methods.

Drainage improves slope stability in two important
ways: (1) It reduces pore pressures within the soil,
thereby increasing effective stress and shear strength;
and (2) it reduces the driving forces of water pressures
in cracks, thereby reducing the shear stress required
for equilibrium. Once a system of drainage has been
established, it must be maintained to keep it functional.
Erosion may disrupt surface drains and ditches, and
underground drains may become clogged by siltation
or bacterial growth. Siltation can be minimized by con-
structing drains of materials that satisfy filter criteria,
and bacterial clogging can be removed by flushing with
chemical agents, such as bleach.

Surface Drainage

Preventing water from ponding on the ground surface,
and directing surface flow away from the slide area,

will help to reduce groundwater levels and pore pres-
sures within the slide mass. Means to improve surface
drainage include:

1. Establishing lined or paved ditches and swales to
convey water away from the site

2. Grading to eliminate low spots where water can
pond

3. Minimizing infiltration—in the short term by
covering the ground with plastic, in the long term
through the use of vegetation or paving

Covering the ground with plastic has some draw-
backs. Once an area is covered, it is no longer visible,
making observation of the condition of the slope and
movement of the ground impossible. Undulations in
the surface of the plastic tend to collect water, and
because individual sheets of plastic are not sealed to
each other, water can reach the ground at points of
overlap between the sheets. Vegetation increases resis-
tance to erosion by surface runoff and stabilizes the
top foot or two of soil at the surface of the slope. In
the long term, evapotranspiration helps to lower the
groundwater level.

Paving the surface of a slope promotes runoff and
impedes infiltration, but it also impedes evaporation
and may actually cause water to collect beneath the
paved surface. Saleh and Wright (1997), who studied
highly plastic clay embankments in Texas, found that
paving the slopes helped to reduce the frequency of
slides by minimizing the seasonal wetting and drying
that can result in gradual degradation in the shear
strengths of these clays.

Horizontal Drains

Horizontal drains, sometime called Hydrauger drains,
after the type of drill first used to install them, are
perforated pipes inserted in drilled holes in a slope to
provide underground drainage. As shown in Figure
16.1, they usually slope upward into the slope, to per-
mit groundwater to drain by gravity. They are usually
100 to 300 ft long, although longer drains have been
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Figure 16.2 Drilling horizontal drains in the right abutment of La Esperanza Dam in
Ecuador.

used. The drain pipes are commonly perforated or slot-
ted PVC pipe, although steel pipe was used for early
applications. The drains are installed by drilling into
the slope using a hollow-stem auger, as shown in Fig-
ure 16.2, inserting the drain pipe, and withdrawing the
auger, leaving the drain in place. The hole is allowed
to collapse around the drain pipe. There is no filter
between the pipe and the soil.

Horizontal drains are usually installed from points
of convenient access for the drill rig, often fanning out
as shown in Figure 16.3 to achieve broad coverage of
the area. It is commonly found that some drains are
very productive and others are nonproductive, but it is
very difficult to predict in advance which drains will
produce significant flow. Flows usually decline with
time after installation and then fluctuate seasonally
through wet and dry periods. Rahardjo et al. (2003)
found that horizontal drains are most effective when
placed low in the slope, provided that the slope does
not contain distinct layers of high permeability above
the drains.

Drain Wells and Stone Columns

Where soil strata of varying permeability are oriented
horizontally, horizontal drains do not provide the most
effective means of intercepting seepage. Vertical
drains, which cross the layers, are more effective. An
example is shown in Figure 16.4. Two-foot diameter
holes were drilled in a line along the crest of the slope
and were filled with drain rock that satisfied filter cri-

teria for the intercepted soils. The wells were tapped
by drilling from the base of the slope to provide drain-
age by gravity. Vertical wells can be drained using
deep pumps, but the requirement for continual power
and pump maintenance makes this a less desirable al-
ternative.

Drain wells can be designed using gravity well flow
theory (U.S. Army Corps of Engineers, 1986). Be-
tween the wells, the phreatic surface rises above the
level at the wells, as shown in Figure 16.5. The effec-
tive average is about two-thirds of the way up from
the head in the drain well to the maximum head be-
tween wells. The maximum head between wells de-
creases as the spacing between wells decreases.

Stone columns provide drainage in much the same
way as drain wells, provided that they have a low-level
outlet for the water they collect. Because the material
in stone columns is compacted as it is placed in the
drilled holes, they have the further beneficial effect of
increasing the strength of the surrounding soil by den-
sification and increase in lateral stress.

Wellpoints and Deep Wells

Wellpoints are small-diameter vacuum wells that are
driven or jetted into place. Vacuum is applied to the
tops of the wellpoints through a header—a horizontal
pipe that applies vacuum to suck water up the well-
points. They work best in clean sand and less well in
fine-grained soils. Because the water is drawn up the
riser pipe by vacuum, their maximum effectiveness is
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Figure 16.3 Orinda, California landslide: (a) access roads for excavation and drain instal-
lation; (b) horizontal drains.
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Figure 16.4 Drain wells used to stabilize four landslides near Seattle. (After Palmer et al.,
1950.)

Drain wells

Before drawdown

After drawdown

Figure 16.5 Water level between drain wells.

limited to 20 to 25 ft (Mansur and Kaufman, 1962;
Sowers, 1979).

Multistage systems can be used to drain deeper ex-
cavations. Figure 16.6a shows a 200-ft deep excavation
in Australia (Anon., 1981) that was dewatered using
eight wellpoint stages and 10 deep wells. Figure 16.6b
shows the slope failures that occurred in the sides of
the excavation when pumping from the wellpoints was
stopped.

Deep wells use submerged pumps to push water to
the top of the well and are not limited to a lift of 20

to 25 ft, like suction wells. Each well has its own pump
and operates independently. The wells are usually 12
to 24 in. in diameter and have filters surrounding a
perforated casing. Like wellpoints, they must be op-
erated continuously to remain effective.

Trench Drains

Trench drains are excavated trenches filled with drain
rock that satisfies filter criteria for the surrounding soil,
as shown in Figure 16.7. They are sloped to drain by
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Figure 16.6 (a) Aerial view of Bowman’s trial pit during excavation and dewatering; (b)
view of Bowman’s trial pit after dewatering was stopped.
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Figure 16.7 Trench drain at Lawrence Berkeley Laboratory.

gravity and may contain a pipe to increase flow capac-
ity. Where pipes are used, manholes are usually pro-
vided at intervals for inspection and maintenance. The
maximum depth that a trench drain can extend below
the ground surface is governed by the requirement that
the sides of the trench must remain stable without sup-
port until they are backfilled with drain rock.

Drainage Galleries

Where drainage is needed deep within a hillside, a
drainage gallery (tunnel) can be used. As shown in
Figure 16.8, drains can be drilled outward from the
tunnel, extending the drainage through the slope. This
technique was used to stabilize the hillside below the
Getty Museum in Los Angeles, where improved sta-
bility was needed, but environmental considerations
made it impossible to flatten the slopes or to construct
access roads for the purpose of installing horizontal
drains. A deep drainage gallery, with drilled drain
holes fanning out from it, was used to stabilize a land-
slide at the Clyde Power Project in New Zealand (Gil-

lon et al., 1992). At La Esperanza Dam in Ecuador,
drainage galleries were tunneled into the abutments,
and vertical drains were drilled upward through the
roof to drain a permeable layer of brecciated shale
(Duncan et al., 1994a).

Finger or Counterfort Drains

Trench drains excavated perpendicular to a slope, as
shown in Figure 16.9, are called finger drains. Exca-
vating trenches perpendicular to the slope, as shown in
Figure 16.9, does not affect the stability of the slope
as much as would excavation of a trench drain exca-
vated parallel to the slope. The trench drain that con-
nects the finger drains can be excavated and backfilled
in short sections to avoid compromising stability of the
slope.

EXCAVATIONS AND BUTTRESS FILLS

A slope can be made more stable by excavation to
reduce its height or make it less steep, as illustrated in
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Drain holes drilled from 
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Figure 16.8 Drainage gallery.

Figure 16.9 Finger drains.

Figure 16.10 Slope repair by excavation.

Figure 16.10. Flattening a slope or reducing its height
as shown in Figure 16.10 reduces the shear stresses
along potential sliding surfaces and increases the factor
of safety. As shown in Figure 16.10, any type of ex-
cavation results in a reduction of the useful area at the
crest of the slope. Improving stability by excavation
requires (1) that an area at the top of the slope can be
sacrificed to improve stability, (2) that the site is ac-
cessible to construction equipment, and (3) that an area
is available for disposal of the excavated material.

Buttress fills are of two types. A buttress of high-
strength well-compacted material (see Figure 16.11)
provides strength and weight, both of which improve
stability. A berm of uncompacted material at the bot-
tom of a slope, sometimes called a gravity berm, pro-
vides weight and reduces the shear stresses in the
slope, even if it consists of weak and compressible soil.
The effectiveness of either type of berm is improved
if it is placed on a layer of free-draining material that
allows drainage of water from the soil beneath.

An example involving both excavation and buttress-
ing is shown in Figure 16.12. Balancing the volume of

cut and fill makes it unnecessary to dispose of material
off-site or to import soil for buttress construction. Even
soil that has been involved in sliding can be improved
and made suitable for berm construction by compac-
tion to high density near optimum water content.

RETAINING STRUCTURES

Retaining structures can be used to improve slope sta-
bility by applying stabilizing forces to slopes, thereby
reducing the shear stresses on potential slip surfaces.

Prestressed Anchors and Anchored Walls

Prestressed anchors and anchored walls have the ad-
vantage that they do not require slope movement be-
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Figure 16.12 Slope stabilization by cut and fill. (After Jones, 1991.)

fore they impose restraining forces. Although anchors
can be used without a vertical wall, they do require
bearing pads to distribute their loads to the surface of
the slope. Figure 16.13 shows an anchored wall con-
structed to stabilize the Price’s Fork landslide, near
Blacksburg, Virginia. Soldier piles were driven through
the fill at the head of the slide, just behind the slide
scarp, and were anchored into rock. After the soil in
front of the wall was excavated and wood lagging was
fitted between the flanges of the soldier piles, a rein-
forced concrete footing was constructed in front of the
soldier piles, with steel reinforcing bars grouted into
rock to restrain the bottoms of the piles, as shown in
Figure 16.14. A concrete panel wall was hung in front
of the soldier piles to improve the appearance and pro-
tect the wood lagging from vandalism.

Figure 16.15 shows anchors used to stabilize a land-
slide above Tablachaca Dam on the Rio Mantaro River

in Peru (Millet et al., 1992). The slide is on the moun-
tainside above a power plant that provides 40% of the
electrical power for Peru. Back-analysis of the slide
was performed to assess the shearing resistance of the
rock and to provide a means for computing the in-
crease in the factor of safety that could be achieved
through the use of anchors. Because the maximum in-
crease in the factor of safety that could be achieved
with anchors was less than desired, a drainage tunnel
and a berm at the toe of the slope were used to improve
stability further.

The improvement in stability afforded by anchors
and anchored walls can be evaluated using conven-
tional limit equilibrium slope stability analyses, with
the force applied by the anchors included in the anal-
ysis as a force of known magnitude and direction, act-
ing at a known location on the slope. The anchor force
should be a working load (i.e., the ultimate anchor ca-
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Figure 16.13 Price’s fork wall.

pacity divided by a suitable factor of safety). The fac-
tor of safety for the anchor forces should reflect the
uncertainties involved in evaluating the anchor capac-
ity and the consequences of anchor failure.

Gravity Walls, MSE Walls, and Soil Nailed Walls

Conventional gravity retaining walls, mechanically sta-
bilized earth (MSE) walls, and soil nailed walls, which
are not prestressed, must move before they can develop
resistance to stabilize a landslide. Such walls can be
designed using the following three steps:

1. Using conventional limit equilibrium slope sta-
bility analyses, determine the force required at
the location of the wall to stabilize the slope (i.e.,
to raise the factor of safety of the slope to the
desired value). These analyses can be performed
using any method in which an external force of
specified location, direction, and magnitude can
be included. The analyses are performed using
repeated trials. The magnitude of the force is var-
ied until the desired factor of safety is achieved.
Each of the analyses with a new trial force should
search for the location of the critical slip surface.
This critical slip surface is not the same as the
critical surface with no stabilizing force but is
often close to that surface.

The magnitude of the stabilizing force can be
determined with acceptable accuracy using a
force equilibrium analysis, with the directions of
the side forces between slices assumed to be the

average of the slope inclination and the failure
surface inclination, or using a method that satis-
fies all conditions of equilibrium. The position of
the stabilizing force can reasonably be assumed
to be about 0.4H above the bottom of the wall,
where H is the height measured from the bottom
of the wall to the surface of the slope.

2. Using conventional retaining wall design proce-
dures, determine the external dimensions of the
retaining wall, MSE wall, or soil nailed wall re-
quired for global wall stability, with the force
determined in step 1 applied to the wall. The con-
siderations for external stability of the wall in-
clude sliding, overturning, bearing capacity, po-
sition of the resultant force on the base, and
deep-seated sliding (failure through the founda-
tion beneath the wall).

3. Using conventional design procedures, evaluate
the requirements for internal strength. For gravity
walls, these include the shear and moment ca-
pacity of the footing and stem. For MSE walls,
these include the length of reinforcement,
strength of reinforcement, and spacing of rein-
forcement. For soil nailed walls, these include
nail capacity, nail length, and nail spacing.

REINFORCING PILES AND DRILLED SHAFTS

Piles or drilled shafts that extend through a sliding
mass, into more stable soil beneath, can be used to
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improve slope stability. Construction of drilled shafts
has a smaller adverse effect on slope stability than does
driving piles, and drilled shafts are often preferred for
this reason. The piles or drilled shafts are installed in
one or more lines parallel to the crest of the slope, to
provide resistance to down-slope movement. The
shafts in each row should be spaced closely enough so
that the soil cannot flow between them, rendering them
ineffective in stopping slope movements. The usual
center-to-center spacing is two to four diameters. Pou-
los (1995) found that the optimum location of stabiliz-
ing shafts is near the center of the potential sliding
mass, as opposed to the head or the toe of the slope.

Like retaining walls that are not restrained by pre-
stressed anchors, piles and drilled shafts require move-
ment of the sliding mass before they develop
stabilizing forces. The magnitude of the stabilizing
force increases as the movement increases, up to the
point where the structural capacity of the shafts is
reached, or the maximum passive earth pressure is mo-
bilized against the uphill side of the part of the shafts
that extend above the sliding surface. The structural
capacity of the drilled shafts is controlled by moment
rather than shear, and Poulos (1995) indicated that a
smaller number of large-diameter drilled shafts results
in more effective stabilization than a larger number of
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Figure 16.15 Tablachaca slide repair. (Millet et al., 1992.)

small-diameter shafts. The shafts should extend deep
enough so that potential slip surfaces passing beneath
the shafts have adequate factors of safety.

As in the case of retaining walls, the force required
to stabilize the slope can be calculated using any
method of slope stability analysis in which an external
force of specified magnitude can be included. The
magnitude of the required force is determined using
repeated trials, varying the magnitude of the force until
the desired factor of safety is achieved. Each of the
analyses with a new trial force should search for the
location of the critical slip surface. This critical slip
surface is not the same as the critical surface with no
stabilizing force but is often close to that surface.

Methods of evaluating the shear forces and moments
in the piles have been proposed by Reese et al. (1992),
Poulos (1995), Shmuelyan (1996), Hassiotis et al.
(1997), Yamagami et al. (2000), and Reese and Van
Impe (2001). Poulos (1995) used boundary element
analyses to compute the forces that drilled shafts would
apply to the soil above the sliding plane and also the
interaction between the shafts and the stable ground
beneath the sliding plane, based on assumed patterns
and magnitudes of soil movement.

Reese et al. (1992) and Reese and Van Impe (2001)
have described methods for evaluating the shear forces
and bending moments in piles used to stabilize slopes.
These methods use p–y concepts to estimate the sta-
bilizing forces that the piles can exert on the slope, and
the shear forces and bending moments in the piles.
These procedures can be implemented through the fol-
lowing steps:

1. Estimate the relative movements between the
portion of the piles that will extend above the slip
surface and the surrounding ground. These esti-
mated movements should be based on the amount
of slope movement after pile installation that is
considered tolerable, and the estimated amount
that the piles will deflect when loaded.

2. Select a trial diameter and center-to-center spac-
ing between piles.

3. Using p–y curves and estimated relative move-
ments between the soil and the section of the pile
projecting above the slip surface, determine the
value of p at each point along the projecting por-
tion of the pile. An example of such a distribution
is shown in Figure 16.16b. The quantity p is the



REINFORCING PILES AND DRILLED SHAFTS 259

Portion of
pile above
slip surface

Portion of
pile below
slip surface

Soil above slip surface imposes force P on pile,
at distance Y above slip surface

Portion of pile below slip surface is subjected
to shear load P and moment load M = PY

The moving soil imposes a force P on the portion
of each pile above the slip surface, at a distance
Y above the slip surface.  The distance Y is
determined by the distribution of unit resistance.

Y

P

Design Principles

Critical slip
surface (with P)

P = resultant

The distribution of p
is determined by the
estimated relative
movement and p-y
resistance

P

P

M = P Y

Y

M
P

p = unit resistance

(a)

(c)

(b)

(d)

Figure 16.16 (a) Design principles for stabilizing a slope with piles; (b) unit resistance p
and resultant Ppile; (c) portion of pile above slip surface; (d) portion of pile below slip surface.

soil reaction used in laterally loaded pile analyses
and has units of force per unit length, the length
being measured along the length of the pile.

4. Calculate the area under the p-diagram, denoted
here as P.

5. Calculate the corresponding stabilizing force per
unit length of slope:

P (force)
P (force per unit length) �slope S(length)

(16.1)

where Pslope is the stabilizing force per unit length
of slope, P the force on one pile, and S the center-
to-center pile spacing, measured parallel to the
crest of the slope. If Pslope computed from Eq.
(16.1) is less than the force required to achieve
the desired factor of safety for the slope, increase
the pile diameter or reduce the pile spacing, and
repeat steps 3 through 5. If Pslope is larger than
the force required to achieve the desired factor of
safety, reduce the pile diameter or increase the
pile spacing, and repeat steps 3 through 5. When

pile spacing and diameter have been found that
will provide the desired stabilizing force, proceed
to step 6.

6. Determine the shear force and bending moment
on the part of the pile embedded below the slip
surface. The shear force is equal to P. The mo-
ment is equal to (P)(y), where y is the distance
from the slip surface to the P, as shown in Figure
16.16b.

7. Compute the distributions of shear and bending
moment in the part of the pile below the slip
surface when subjected to a shear force � P and
a moment � Py. The maximum moment in the
lower part of the pile governs the required mo-
ment capacity of the pile. The pile should be ca-
pable of carrying this moment with a suitable
factor of safety against brittle failure or formation
of a plastic hinge.

8. Select a pile type, or drilled shaft reinforcing, that
is capable of carrying the shear forces and bend-
ing moments calculated in step 7. If the moments
are too large for the pile, repeat from step 2 with
a larger pile diameter and larger spacing between
piles.
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Figure 16.17 Stabilization of landslide at Fenny Compton, England, by injection of neat
cement grout. (After Purbrick and Ayres, 1956.)

The key step in this process is the first one: esti-
mating the relative movement between the soil and the
part of the pile that projects above the slip surface. A
safe assumption, with respect to the loads on the piles,
is to assume that the relative movement will be large
enough to mobilize the maximum value of p (usually
denoted as pult) along the full length of the part of the
pile that projects above the slip surface. However, this
extreme loading is unlikely if the pile extends for a
large distance above the slip surface, because the flex-
ural deformations of long piles will cause them to de-
form with the surrounding ground.

The stabilizing force Pslope is entered in the slope
stability analysis as a known force and is not further
reduced during the slope stability analysis. This cor-
responds to the procedure called method A in Chap-
ter 8.

INJECTION METHODS

Injection methods are attractive because they can be
implemented at relatively low cost. Their drawback is
that it is difficult to quantify the beneficial effects. In
addition, when fluids are injected, the short-term effect
may be to make the slope less stable. The beneficial
effects may be achieved only later, when the injected
material has hardened or has reacted with the soil to
alter its properties.

Lime Piles and Lime Slurry Piles

Lime piles are drilled holes filled with lime. Lime
slurry piles are drilled holes filled with a slurry of lime

and water. Rogers and Glendinning (1993, 1994, and
1997) reviewed the use of lime piles and lime slurry
piles to stabilize slopes, and the mechanisms through
which they improve soil strength and stability. Handy
and Williams (1967) described the use of quicklime
placed in drilled holes to stabilize a landslide in Des
Moines, Iowa. Six-inch-diameter holes were drilled
through a compacted silty clay fill, down to the surface
of the underlying shale, where the fill was sliding on
the top of the shale. About 50 lb of quicklime was
placed in each hole, filling the bottom 3 ft. Water was
then added to hydrate the lime, and the holes were
backfilled to the surface with soil. Holes were drilled
5 ft apart, stabilizing an area 200 ft by 125 ft using
abut 20 tons of quicklime. Physical and chemical tests
on the treated soil showed that the lime was reacting
with and strengthening the silty clay fill. Movement of
the slide essentially stopped within three months after
treatment, while movements continued in adjacent un-
treated areas.

Cement Grout

Stabilizing landslides by injecting cement grout has
been used extensively on both American (Smith and
Peck, 1955) and British railroads (Purbrick and Ayres,
1956; Ayres, 1959, 1961, 1985). Typical practice in-
volves driving grout points about 5 ft apart in rows
parallel to the track, the rows being about 15 ft apart.
The tips of the grout points are driven about 3 ft below
the estimated depth of the rupture surface, and about
50 ft3 of grout is injected through each point. Quite
high grouting pressures are used for the shallow depths
involved: For grouting only 15 ft beneath the surface,
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Figure 16.18 Stabilization of landslide near Santa Monica, California, by drying clay stra-
tum. (After Hill, 1934.)

a grouting pressure of 75 psi might be used for injec-
tion of the first 10 ft3, subsequently dropping to 20 psi.

One of the most intriguing aspects of the method is
that it is used to stabilize landslides in clay. Cement
cannot penetrate the voids of clays because the parti-
cles are too large, and the grout pressures cannot cause
compaction if the clay is saturated, as it often is. Nev-
ertheless, the method is effective. Trenches excavated
into the treated area show how the method works. Fig-
ure 16.17 shows a cross section revealed in one such
trench. The grout did not penetrate the voids of the
clay or the fissures in the clay but did penetrate the
voids of the coarser fill called ash, which has gravel-
sized particles. Within the clay, the grout penetrated
along the rupture surface, lifting the mass above, and
a solid mass of neat cement concrete was formed along
the slip surface when it hardened.

VEGETATION

Vegetation on slopes provides protection against ero-
sion and shallow sliding (Gray and Leiser, 1982; Wu
et al., 1994). Roots reinforce or bind the soil and pro-
vide cohesion that improves stability against shallow
sliding. In addition, plant roots are believed to reduce
pore pressures within slopes by intercepting rainfall
(reducing infiltration) and by evapotranspiration (Wu

et al., 1994). Gray and Sotir (1992) found that living
woody plant material (brush), embedded in horizontal
layers at the surface of slopes, provided some rein-
forcement immediately, and more as the plants began
to grow and put out new roots. Gray and Sotir (1995)
suggested that these brush layers also improve stability
by intercepting water flowing within the slope and di-
verting it to the surface, reducing pore pressures in the
process. Use of vegetation in combination with me-
chanical reinforcement such as geogrids is called bio-
technical stabilization (Gray and Sotir, 1992).

THERMAL TREATMENT

Thermal treatment has not been widely used to stabi-
lize landslides. One of the few examples, described by
Hill (1934), is illustrated in Figure 16.18. The lower
part of the slip surface passed through a horizontal clay
seam slightly above the toe of the slope. Drainage tun-
nels driven through the clay, parallel to the crest of the
slope, were ineffective because the permeability of the
clay was so low that no water drained into the tunnels.
To dry out the clay, a gas furnace was constructed, and
heated air was blown through a network of intercon-
nected tunnels and drill holes, as shown in Figure
16.18. Hill indicated that the capitalized cost of oper-
ating the heating system in perpetuity would be less
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Figure 16.19 Landslide bridge at Lawrence Berkeley Laboratory, California: (a) top of
bridge; (b) excavated area beneath bridge.

than the cost of a restraining structure large enough to
stabilize the slide.

Other examples of thermal treatment have been de-
scribed by Beles and Stanculescu (1958). Landslides
in a cut slope, a natural slope, and an embankment
were stabilized by drilling down past the slide plane
and burning gas in the holes to heat and harden the
surrounding soil.

BRIDGING

A landslide on the Lawrence Berkeley Laboratory
grounds in California was stabilized using the novel
but effective method of building a reinforced concrete
bridge on the ground surface near the head of the land-
slide, and excavating soil from beneath it to unload the
slide, as shown in Figure 16.19. The bridge was sup-
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Figure 16.20 Repair of landslide at Lawrence Berkeley Laboratory by removal and replace-
ment of the sliding mass. (After Harding, Miller, Lawson, and Associates, 1970.)

ported on drilled shafts that were installed before the
bridge deck was cast. After the drilled shafts had been
constructed and the bridge deck had been cast on the
ground surface, about 5000 tons of soil was excavated
from beneath the bridge deck, unloading the upper part
of the slide. The utilities that ran through the area were
hung on supports attached to the bottom of the bridge
deck. This ingenious system, conceived and designed
by LBL engineer Sherad Talati, halted the movement
of the landslide, which had threatened important struc-
tures, including the Bevatron building.

REMOVAL AND REPLACEMENT OF THE
SLIDING MASS

When a sliding mass has moved a long distance and
has become disturbed and softer as the result of the
movement, there may be no alternative to removing
and replacing the sliding mass if the usefulness of the
slide area for supporting structures is to be restored.

Excavating a sliding mass usually makes the slope
exposed by excavation even steeper than the slope was
before the slide, as shown in Figure 16.20. Therefore,
excavation is not undertaken until the stability of the
slide has improved (e.g., by drainage). In areas where
there are pronounced wet and dry seasons, excavation

can sometimes be accomplished in the dry season. It
is important that the excavation be observed carefully,
to be sure that it extends below the rupture surface,
into undisturbed soil, and that all of the unstable ma-
terial is removed.

After the sliding mass has been removed, the slope
is reconstructed, as illustrated in Figure 16.20. The
slope can often be rebuilt using the soil that has been
removed, installing drains behind and beneath the
compacted fill as it is replaced. Good drainage and
well-compacted soil are the keys to improved stability.
The process requires an area to store the excavated
material temporarily, since it must be removed before
reconstruction of the slope can begin. In some cases,
where the slide volume is small, the excavated material
is wasted, and the slope is reconstructed of free-
draining material that requires little or no compaction.

A landslide at the Lawrence Berkeley Laboratory in
California was stabilized by removal and replacement,
as shown in Figure 16.20. The excavation extended
well below the rupture surface, and benches were cut
into the stable soils beneath. The material removed was
compacted back into place, and drains were con-
structed behind the fill as it was placed. Horizontal
drains, a trench drain, and a drain well were installed
as temporary stabilization measures before the sliding
mass was excavated. They intercepted considerable
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quantities of groundwater at the time they were in-
stalled, and continued to flow at a rate of 11,000 gal-
lons per day for some time after the repair was
completed (Kimball, 1971).

The cost of this type of repair can be quite large,
especially for deep slides. Removal and replacement
of a sliding mass 27 ft deep, at a combined cost of $10
per cubic yard for excavation and replacement, would
be $10 per square foot, or more than $400,000 per
acre. The method is very reliable, however, and can
restore full usefulness to the area stabilized.

Recapitulation

• The causes and the nature of a slope failure should
be understood before corrective action is under-
taken.

• Back-analysis of a slope failure provides a highly
reliable basis for designing stabilizing measures
and for evaluating the factor of safety after sta-
bilization.

• Drainage is by far the most frequently used means
of stabilizing slopes. It can be used alone or in
combination with other methods and often pro-
vides effective stabilization at relatively low cost.

• Drainage improves slope stability in two ways: (1)
it reduces pore pressures within the soil, thereby
increasing effective stress and shear strength; and
(2) it reduces the driving forces of water pressures
in cracks.

• Flattening a slope reduces the shear stresses along
potential sliding surfaces, increasing the factor of
safety.

• Prestressed anchors and anchored walls do not re-
quire slope movement before they impose re-
straining forces.

• Conventional gravity retaining walls, mechani-
cally stabilized earth (MSE) walls, and soil nailed
walls, which are not prestressed, must move be-
fore they can develop resistance to stabilize a
landslide.

• Piles or drilled shafts that extend through a sliding
mass, into more stable soil beneath, can be used
to improve slope stability. A combination of limit
equilibrium slope stability analyses and p–y anal-
yses can be used to design piles or drilled shafts
to achieve the desired increase in factor of safety
of the slope.

• Slopes have been stabilized using lime piles,
grouting with cement, vegetation, thermal treat-
ment, and construction of a reinforced concrete
bridge on the ground surface, followed by exca-
vation of soil from beneath the bridge to unload
the head of a landslide.

• When a sliding mass has been disturbed signifi-
cantly as the result of slope movement, and the
slide area must support structures or pavements,
it may be necessary to excavate and replace the
entire sliding mass. Excavation and replacement,
with good compaction and drains beneath the fill,
provide a very reliable means of restoring full
usefulness to a slide area. The cost of the method
is large when the surface of sliding is deep be-
neath the ground.
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APPENDIX

Slope Stability Charts

USE AND APPLICABILITY OF CHARTS FOR
ANALYSIS OF SLOPE STABILITY

Slope stability charts provide a means for rapid anal-
ysis of slope stability. They can be used for preliminary
analyses and for checking detailed analyses. They are
especially useful for making comparisons between de-
sign alternatives, because they provide answers so
quickly. The accuracy of slope stability charts is usu-
ally as good as the accuracy with which shear strengths
can be evaluated.

In this appendix, chart solutions are presented for
four types of slopes:

1. Slopes in soils with � � 0 and uniform strength
throughout the depth of the soil layer

2. Slopes in soils with � � 0 and c � 0 and uniform
strength throughout the depth of the soil layer

3. Infinite slopes in soils with � � 0 and c � 0 and
soils with � � 0 and c � 0

4. Slopes in soils with � � 0 and strength increas-
ing linearly with depth

Using approximations in slope geometry and care-
fully selected soil properties, these chart solutions can
be applied to a wide range of nonhomogeneous slopes.

This appendix contains the following charts:

• Figure A-1: Slope stability charts for � � 0 soils
• Figure A-2: Surcharge adjustment factors for � �

0 and � � 0 soils
• Figure A-3: Submergence and seepage adjustment

factors for � � 0 and � � 0 soils
• Figure A-4: Tension crack adjustment factors for

� � 0 and � � 0 soils
• Figure A-5: Slope stability charts for � � 0 soils
• Figure A-6: Steady seepage adjustment factor for

� � 0 soils

• Figure A-7: Slope stability charts for infinite
slopes

• Figure A-8: Slope stability charts for � � 0 soils,
with strength increasing with depth

AVERAGING SLOPE INCLINATIONS, UNIT
WEIGHTS, AND SHEAR STRENGTHS

For simplicity, charts are developed for simple homo-
geneous soil conditions. To apply charts to nonhomo-
geneous conditions, it is necessary to approximate the
real conditions with an equivalent homogeneous slope.
The most effective method of developing a simple
slope profile for chart analysis is to begin with a cross
section of the slope drawn to scale. On this cross sec-
tion, using judgment, draw a geometrically simple
slope that approximates the real slope as closely as
possible.

To average the shear strengths for chart analysis, it
is useful to know the location of the critical slip sur-
face, at least approximately. The charts contained in
the following sections provide a means of estimating
the position of the critical circle. Average strength val-
ues are calculated by drawing the critical circle deter-
mined from the charts on the slope. Then the central
angle of arc subtended within each layer or zone of
soil is measured with a protractor. The central angles
are used as weighting factors to calculate weighted av-
erage strength parameters, cav and �av:

� c� i i
c � (A-1)av �i�

� �� i i
� � (A-2)av �i�
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where

cav � average cohesion (stress units)
�av � average angle of internal friction (degrees)

�i � central angle of arc, measured around the
center of the estimated critical circle, within
zone i (degrees)

ci � cohesion in zone i (stress units)
�i � angle of internal friction in zone i degrees

One condition in which it is preferable not to use
these averaging procedures is the case in which an em-
bankment overlies a weak foundation of saturated clay,
with � � 0. Using Eqs. (A-1) and (A-2) to develop
average values of c and � in such a case would lead
to a small value of �av (perhaps 2 to 5�). With �av �
0, it would be necessary to use the chart shown in
Figure A-5, which is based entirely on circles that pass
through the toe of the slope. With weak � � 0 foun-
dation soils, the critical circle usually goes below the
toe into the foundation. In these cases it is better to
approximate the embankment as a � � 0 soil and to
use the � � 0 slope stability charts shown in Figure
A-1. The equivalent � � 0 strength of the embankment
soil can be estimated by calculating the average normal
stress on the part of the slip surface within the em-
bankment (one-half the average vertical stress is usu-
ally a reasonable approximation of the normal stress
on this part of the slip surface) and determining the
corresponding shear strength at that point on the shear
strength envelope for the embankment soil. This value
of strength is treated as a value of su for the embank-
ment, with � � 0. The average value of su is then
calculated for both the embankment and the foundation
using the same averaging procedure as described
above:

� (s )� i u i
(s ) � (A-3)u av �i�

where (su)av is the average undrained shear strength (in
stress units), �i the central angle of arc, measured
around the center of the estimated critical circle, within
zone i (degrees), and (su)i the su in layer i (in stress
units). This average value of su is then used, with � �
0, for analysis of the slope.

To average unit weights for use in chart analysis, it
is usually sufficient to use layer thickness as a weight-
ing factor, as indicated by the following expression:

� h� i i
� � (A-4)av hi�

where �av is the average unit weight (force per length
cubed), �i the unit weight of layer i (force per length
cubed), and hi the thickness of layer i (in length units).
Unit weights should be averaged only to the depth of
the bottom of the critical circle. If the material below
the toe of the slope is a � � 0 material, the unit weight
should be averaged only down to the toe of the slope,
since the unit weight of the material below the toe has
no effect on stability in this case.

SOILS WITH � � 0

The slope stability chart for � � 0 soils developed by
Janbu (1968) is shown in Figure A-1. Charts providing
adjustment factors for surcharge loading at the top of
the slope are shown in Figure A-2. Charts providing
adjustment factors for submergence and seepage are
shown in Figure A-3. Charts providing adjustment fac-
tors to account for tension cracks are shown in Figure
A-4.

Steps for the use of � � 0 charts are:

Step 1. Using judgment, select the range of depths for
possible critical circles to be investigated. For uni-
form soil conditions, the critical circle passes
through the toe of the slope if the slope is steeper
than about 1 (horizontal) on 1 (vertical). For flatter
slopes, the critical circle usually extends below the
toe. The chart in Figure A-1 can be used to compute
factors of safety for circles extending to any depth,
and three or more depths should be analyzed, to be
sure that the overall critical circle and overall min-
imum factor of safety have been found.

Step 2. The following criteria can be used to determine
which possibilities should be examined:
a. If there is water outside the slope, a circle pass-

ing above the water may be critical.
b. If a soil layer is weaker than the one above it,

the critical circle may extend into the lower
(weaker) layer. This applies to layers both above
and below the toe.

c. If a soil layer is stronger than the one above it,
the critical circle may be tangent to the top of
the layer.
The following steps are performed for each po-

tential critical circle.
Step 3. Calculate the depth factor, d, using the formula

D
d � (A-5)

H

where D is the depth from the toe of the slope to
the lowest point on the slip circle (L; length) and H
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Figure A-1 Slope stability charts for � � 0 soils. (After Janbu, 1968.)
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1968.)

is the slope height above the toe of the slope (L).
The value of d is zero if the circle does not pass
below the toe of the slope. If the circle being ana-
lyzed is entirely above the toe, its point of intersec-
tion the slope should be taken as an adjusted toe
and all dimensions (e.g., D, H, and Hw) adjusted
accordingly in the calculations.

Step 4. Find the center of the critical circle for the trial
depth using the charts at the bottom of Figure A-1,

and draw this circle to scale on a cross section of
the slope.

Step 5. Determine the average value of the strength,
c � su, for the circle, using Eq. (A-3).

Step 6. Calculate the quantity Pd using Eq. (A-6):

�H � q � � Hw wP � (A-6)d 	 	 	q w t
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where

� � average unit weight of soil (F/L3)
H � slope height above toe (L)
q � surcharge (F/L2)

�w � unit weight of water (F/L3)
Hw � height of external water level above toe (L)
	q � surcharge adjustment factor (Figure A-2)
	w � submergence adjustment factor (Figure

A-3)
	t � tension crack adjustment factor (Figure

A-4)

If there is no surcharge, 	q � 1; if there is no ex-
ternal water above the toe, 	w � 1; if there are no
tension cracks, 	t � 1.

Step 7. Using the chart at the top of Figure A-1, de-
termine the value of the stability number, No, which
depends on the slope angle, 
, and the value of d.

Step 8. Calculate the factor of safety, F:

N coF � (A-7)
Pd

where No is the stability number and c is the average
shear strength � (su)av (F/L2).

The example problems in Figures A-9 and A-10 il-
lustrate the use of these methods. Note that both prob-
lems involve the same slope, and that the only
difference between the two problems is the depth of
the circle analyzed.

SOILS WITH � � 0

The slope stability chart for � � 0 soils, developed by
Janbu (1968), is shown in Figure A-5. Adjustment fac-
tors for surcharge are shown in Figure A-2. Adjustment
factors for submergence and seepage are shown in Fig-
ure A-3. Adjustment factors for tension cracks are
shown in Figure A-4. The stability chart in Figure A-
5 may be used for analyses in terms of effective
stresses. The chart may also be used for total stress
analysis for slopes in soils with � � 0.

Steps for the use of � � 0 charts are:

Step 1. Estimate the location of the critical circle. For
most conditions of slopes in uniform soils with
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� � 0, the critical circle passes through the toe of
the slope. The stability numbers given in Figure A-
5 were developed by analyzing toe circles. When c
� 0, the critical mechanism is shallow sliding,
which can be analyzed as the infinite slope failure
mechanism. The stability chart shown in Figure A-
7 can be used in this case. If there is water outside
the slope, the critical circle may pass above the wa-
ter.

If conditions are not homogeneous, a circle pass-
ing above or below the toe may be more critical
than the toe circle. The following criteria can be
used to determine which possibilities should be ex-
amined:
a. If there is water outside the slope, a circle

passing above the water may be critical.
b. If a soil layer is weaker than the one above it,

the critical circle may be tangent to the base of
the lower (weaker) layer. This applies to layers
both above and below the toe.

c. If a soil layer is stronger than the one above it,
the critical circle may be tangent to the base of
either layer, and both possibilities should be ex-
amined. This applies to layers both above and
below the toe.

The charts in Figure A-5 can be used for nonuniform
conditions provided that the values of c and � used in
the calculation represent average values for the circle
considered. The following steps are performed for each
circle.

Step 2. Calculate Pd:

�H � q � � Hw wP � (A-8)d 	 	 	q w t

where

� � average unit weight of soil (F/L3)
H � slope height above toe (L)
q � surcharge (F/L2)

�w � unit weight of water (F/L3)
Hw � height of external water level above toe (L)
	q � surcharge reduction factor (Figure A-2)
	w � submergence reduction factor (Figure A-3)
	t � tension crack reduction factor (Figure A-4)

If there is no surcharge, 	q � 1; if there is no
external water above the toe, 	w � 1; and if there
are no tension cracks, 	t � 1.

If the circle being studied passes above the toe of
the slope, the point where the circle intersects the
slope face should be taken as the toe of the slope
for the calculation of H and Hw.

Step 3. Calculate Pe:

�H � q � � H�w wP � (A-9)e 	 	�q w

where is the height of water within the slope (L)H�w
and is the seepage correction factor (Figure A-	�w
3). The other factors are as defined previously.

is the average level of the piezometric surfaceH�w
within the slope. For steady seepage conditions this
is related to the position of the phreatic surface be-
neath the crest of the slope as shown in Figure A-
6. If the circle being studied passes above the toe
of the slope, is measured relative to the adjustedH�w
toe. If there is no seepage, � 1, and if there is	�w
no surcharge, 	q � 1. In a total stress analysis, in-
ternal pore water pressure is not considered, so

� 0 and � 1 in the formula for Pe.H� 	�w w

Step 4. Calculate the dimensionless parameter, �c�:

P tan�e� � (A-10)c� c

where � is the average value of � and c is the av-
erage value of c (F/L2). For c � 0, �c� is infinite.
Use the charts for infinite slopes in this case.

Steps 4 and 5 are iterative steps. On the first itera-
tion, average values of tan � and c are estimated using
judgment rather than averaging.

Step 5. Using the chart at the top of Figure A-5, de-
termine the center coordinates of the circle being
investigated. Plot the critical circle on a scaled cross
section of the slope and calculate the weighted av-
erage values of � and c using Eqs. (A-1) and (A-
2).

Return to step 4 with these average values of the
shear strength parameters and repeat this iterative
process until the value of �c� becomes constant. One
iteration is usually sufficient.

Step 6. Using the chart at the left side of Figure A-5,
determine the value of the stability number Ncf,
which depends on the slope angle, 
, and the value
of �c�.

Step 7. Calculate the factor of safety:

c
F � N (A-11)cf Pd
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The example problems in Figures A-11 and A-12
illustrate the use of these methods for total stress and
effective stress analyses.

INFINITE SLOPE CHARTS

Two types of conditions can be analyzed using the
charts shown in Figure A-7:

1. Slopes in cohesionless materials, where the crit-
ical failure mechanism is shallow sliding or
surface raveling.

2. Slopes in residual soils, where a relatively thin
layer of soil overlies firmer soil or rock, and the
critical failure mechanism is sliding along a plane
parallel to the slope, at the top of the firm layer.

Steps for use of charts for effective stress analyses
are:

Step 1. Determine the pore pressure ratio, ru, which is
defined by

u
r � (A-12)u �H

where u is the pore pressure (F/L2), � the total unit
weight of soil (F/L3), and H the depth correspond-
ing to pore pressure, u (L).

For an existing slope, the pore pressure can be
determined from field measurements using piezom-
eters installed at the depth of sliding or estimated
for the most adverse anticipated seepage condition.
For seepage parallel to the slope, which is a con-
dition frequently used for design, the value of ru can
be calculated using the formula

X �w 2r � cos 
 (A-13)u T �
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where

X � distance from the depth of sliding to the
surface of seepage, measured normal to the
surface of the slope (L)

T � distance from the depth of sliding to the
surface of the slope, measured normal to
the surface of the slope (L)

�w � unit weight of water (F/L3)
� � total unit weight of soil (F/L3)

 � slope angle

For seepage emerging from the slope, which is
more critical than seepage parallel to the slope, the
value or ru can be calculated using the formula
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� 1wr � (A-14)u � 1 � tan 
 tan �

where � is the angle of seepage measured from the
horizontal direction. The other factors are as defined
previously. Submerged slopes, with no excess pore
pressures, can be analyzed using � � �b (buoyant
unit weight) and ru � 0.

Step 2. Determine the values of the dimensionless pa-
rameters A and B from the charts at the bottom of
Figure A-7.

Step 3. Calculate the factor of safety:

tan �� c�
F � A � B (A-15)

tan 
 �H

where �� is the angle of internal friction in terms
of effective stress, c� the cohesion intercept in terms
of effective stress (F/L2), 
 the slope angle, H the
depth of sliding mass measured vertically (L), and
the other factors are as defined previously.

Steps for use of charts for total stress analyses are:

Step 1. Determine the value of B from the chart in the
lower right corner of Figure A-7.

Step 2. Calculate the factor of safety:

tan � c
F � � B (A-16)

tan 
 �H

where � is the angle of internal friction in terms of
total stress and c is the cohesion intercept in terms
of total stress (F/L2). The other factors are as de-
fined previously.

The example in Figure A-13 illustrates use of the
infinite slope stability charts.

SOILS WITH � � 0 AND STRENGTH
INCREASING WITH DEPTH

The chart for slopes in soils with � � 0 and strength
increasing with depth is shown in Figure A-8. Steps
for use of the chart are:

Step 1. Select the linear variation of strength with
depth that best fits the measured strength data. As
shown in Figure A-8, extrapolate this straight line
upward to determine H0, the height at which the
straight line intersects zero.

Step 2. Calculate M � H0 /H, where H is the slope
height.

Step 3. Determine the dimensionless stability number,
N, from the chart in the lower right corner of Figure
A-8.

Step 4. Determine the value of cb, the strength at the
elevation of the bottom (the toe) of the slope.

Step 5. Calculate the factor of safety:

cbF � N (A-17)
�(H � H )0

where �total is the total unit weight of soil for slopes
above water, �buoyant is the buoyant unit weight for
submerged slopes, and � is the weighted average
unit weight for partly submerged slopes. The ex-
ample shown in Figure A-14 illustrates use of the
stability chart shown in Figure A-8.

EXAMPLES

Example A-1. Figure A-9 shows a slope in � � 0
soil. There are three layers, each with different
strength. There is water outside the slope. Two circles
were analyzed for this slope: shallow circle tangent to
elevation �8 ft and a deep circle tangent to elevation
�20 ft.

The shallower circle, tangent to elevation –8 ft, is
analyzed first. For this circle:

D 0
d � � � 0

H 24

H 8w � � 0.33
H 24

Using the charts at the top of Figure A-1, with 
 �
50� and d � 0:

x � 0.35 and y � 1.40 0

X � (H)(x ) � (24)(0.35) � 8.4 ft0 0

Y � (H)(y ) � (24)(1.4) � 33.6 ft0 0

Plot the critical circle on the slope. The circle is
shown in Figure A-9.

Measure the central angles of arc in each layer using
a protractor. Calculate the weighted average strength
parameter cav using Eq. (A-1):

� c� i i (22)(600) � (62)(400)
c � � � 452 psfav 22 � 62�i�

From Figure A-3, with 
 � 50� and Hw /H � 0.33, find
	w � 0.93.
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Figure A-8 Slope stability charts for � � 0 soils, with strength increasing with depth. (After
Hunter and Schuster, 1968.)

Use layer thickness to average the unit weights. Unit
weights are averaged only to the bottom of the critical
circle.

� h� i i (120)(12) � (100)(12)
� � � � 110av 12 � 12hi�

Calculate the driving force term Pd as follows:

�H � q � � Hw wP �d 	 	 	q w t

(110)(24) � 0 � (62.4)(8)
� � 2302

(1)(0.93)(1)

From Figure A-1, with d � 0 and 
 � 50�, find N0 �
5.8.
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Figure A-10 Circle tangent to elevation �20 ft for cohesive soil with � � 0.

Calculate the factor of safety using Eq. (A-7):

N c (5.8)(452)0F � � � 1.14
P 2302d

Example A-2. Figure A-10 shows the same slope
as in Figure A-9. The deeper circle, tangent to eleva-
tion �20 ft, is analyzed as follows. For this circle:

D 12
d � � � 0.5

H 24

H 8w � � 0.33
H 24

Using the charts at the bottom of Figure A-1, with 

� 50� and d � 0.5:

x � 0.35 and y � 1.50 0

X � (H)(x ) � (24)(0.35) � 8.4 ft0 0

Y � (H)(y ) � (24)(1.5) � 36 ft0 0

Plot the critical circle on the slope as shown in Figure
A-10.

Measure the central angles of arc in each layer using
a protractor. Calculate the weighted average strength
parameter cav using Eq. (A-1).

� c� i i
c �av �i�

(16)(600) � (17)(400) � (84)(500)
� � 499 psf

16 � 17 � 84
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Figure A-11 Total stress analysis of a toe circle in soils with both c and �.

From Figure A-3, with d � 0.5 and Hw /H � 0.33, 	w

� 0.95. Use layer thickness to average the unit
weights. Since the material below the toe of the slope
is a � � 0 material, the unit weight is averaged only
down to the toe of the slope. The unit weight below
the toe has no influence on stability if � � 0.

� h� i i (120)(12) � (100)(12)
� � � � 110av 12 � 12hi�

Calculate the driving force term Pd as follows:

�H � q � � Hw wP �d 	 	 	q w t

(110)(24) � 0 � (62.4)(8)
� � 2253

(1)(0.95)(1)

From Figure A-1, with d � 0.5 and 
 � 50�, N0 �
5.6. Calculate the factor of safety using Eq. (A-7):

N c (5.6)(499)oF � � � 1.24
P 2253d

This circle is less critical than the circle tangent to
elevation �8 ft analyzed previously.

Example A-3. Figure A-11 shows a slope in soils
with both c and �. There are three layers, each with
different strength. There is no water outside the slope.
The factor of safety for a toe circle is calculated as
follows.

Use the layer thickness to average the unit weights.
Unit weights are averaged down to the toe of the slope,
since the unit weight of the material below the toe has
little effect on stability.

� h� i i (115)(20) � (110)(20)
� � � � 112.5av 20 � 20hi�

Since there is no surcharge, 	q � 1; since there is no
external water above the toe, 	w � 1; since there is no
seepage, � 1; since there are no tension cracks, 	t	�w
� 1.
Calculate the driving force term:

�H � q � � H (112.5)(40)w wP � � � 4500 psfd 	 	 	 (1)(1)(1)q w t

Calculate Pe as follows:

�H � q � � H� (112.5)(40)w wP � � � 4500 psfe 	 	� (1)(1)q w

Estimate cav � 700 psf and �av � 7�, and calculate �c�

as follows:

P tan� (4500)(0.122)e� � � � 0.8c� c 700

From Figure A-5, with b � 1.5 and �c� � 0.8:

x � 0.6 and y � 1.50 0

X � (H)(x ) � (40)(0.6) � 24 ft0 0

Y � (H)(y ) � (40)(1.5) � 60 ft0 0

Plot the critical circle on the given slope, as shown in
Figure A-11.

Calculate cav, tan �av, and �c� as follows:
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Figure A-12 Effective stress analysis of a toe circle in soils with both c� and ��.

� c� i i
c �av �i�

(20)(800) � (31)(600) � (44)(800)
�

20 � 31 � 44

� 735 psf

� tan�� i i
tan� �av �i�

(20)(tan 8�) � (31)(tan 6�) � (44)(tan 0�)
�

20 � 31 � 44

� 0.064

P tan� (4500)(0.064)e� � � � 0.4c� c 735

From Figure A-5, with b � 1.5 and �c� � 0.4:

x � 0.65 and y � 1.450 0

X � (H)(x ) � (40)(0.65) � 26 ft0 0

Y � (H)(y ) � (40)(1.45) � 58 ft0 0

This circle is close to the previous iteration, so keep
�c� � 0.4 and cav � 735 psf. From Figure A-5, with
b � 1.5 and �c� � 0.4, Ncf � 6.0. Calculate the factor
of safety:

c 735
F � N � 6.0 � 1.0� �cf P 4500d

According to this calculation, the slope is on the
verge of instability.

Example A-4. Figure A-12 shows the same slope
as shown in Figure A-11. Effective stress strength pa-
rameters are shown in the figure, and the analysis is
performed using effective stresses. There is water out-
side the slope and seepage within the slope.

Use layer thickness to average the unit weights. Unit
weights are averaged only down to the toe of the slope.

� h� i i (115)(20) � (115)(20)
� � � � 115av 20 � 20hi�

For this slope:

H 10w � � 0.25
H 40

H� 30w � � 0.75
H 40

Since there is no surcharge, 	q � 1. Using Figure A-
3 for toe circles, with Hw /H � 0.25 and 
 � 33.7�,
find 	w � 0.96. Using Figure A-3 for toe circles, with

/H � 0.75 and 
 � 33.7�, find � 0.95. SinceH� 	�w w
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20°

Figure A-13 Infinite slope analysis.

there are no tension cracks, 	t � 1. Calculate the driv-
ing force term:

�H � q � � Hw wP �d 	 	 	q w t

(115)(40) � 0 � (62.4)(10)
� � 4141 psf

(1)(0.96)(1)

Calculate Pe:

�H � q � � H�w wP �e 	 	�q w

(115)(40) � 0 � (62.4)(30)
� � 2870 psf

(1)(0.95)

Estimate cav � 120 psf and �av � 33�.

P tan� (2870)(0.64)e� � � � 15.3c� c 120

From Figure A-5, with b � 1.5 and �c� � 15.3:

x � 0 and y � 1.90 0

X � (H)(x ) � (40)(0) � 0 ft0 0

Y � (H)(y ) � (40)(1.9) � 76 ft0 0

Plot the critical circle on the given slope as shown in
Figure A-12. Calculate cav, tan �av, and �c� as follows:

� c� i i (19)(100) � (42)(150)
c � � � 134 psfav 19 � 42�i�

� tan �� i i
tan � �av �i�

(19)(tan 35�) � (42)(tan 30�)
� � 0.62

19 � 42

(2870)(0.62)
� � � 13.3c� 134

From Figure A-5, with b � 1.5 and �c� � 13.3:

x � 0.02 and y � 1.850 0

X � (H)(x ) � (40)(0.02) � 0.8 ft0 0

Y � (H)(y ) � (40)(1.85) � 74 ft0 0

This circle is close to the previous iteration, so keep
�c� � 13.3 and cav � 134 psf. From Figure A-5, with
b � 1.5 and �c� � 13.3, Ncf � 35. Calculate the factor
of safety:

c 134
F � N � 35 � 1.13� �cf P 4141d

With F � 1.13, the slope would be very close to fail-
ure.

Example A-5. Figure A-13 shows a slope where a
relatively thin layer of soil overlies firm soil. The crit-
ical failure mechanism for this example is sliding along
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γ = 100 pcf
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45°

150 psf
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0 H0 = 15 ft

H = 100 ft

Figure A-14 � � 0, and strength increasing with depth.

a plane parallel to the slope, at the top of the firm layer.
This slope can be analyzed using the infinite slope sta-
bility chart shown in Figure A-7. Calculate the factor
of safety for seepage parallel to the slope and for hor-
izontal seepage emerging from the slope.

For seepage parallel to the slope:

X � 8 ft and T � 11.3 ft

X � 8 62.4w 2 2r � cos 
 � (0.94) � 0.325� �u T � 11.3 120

From Figure A-7, with ru � 0.325 and cot 
 � 2.75,
A � 0.62 and B � 3.1. Calculate the factor of safety:

tan �� c� 0.577
F � A � B � 0.62 � �tan 
 �H 0.364

300
� 3.1 � 0.98 � 0.65 � 1.63� �(120)(12)

For horizontal seepage emerging from slope, � � 0�:

� 1wr �u � 1 � tan 
 tan �

62.4 1
� � 0.52� �120 1 � (0.364)(0)

From Figure A-7, with ru � 0.52 and cot 
 � 2.75,
A � 0.41 and B � 3.1. Calculate the factor of safety:

tan �� c�
F � A � B

tan 
 �H

0.577 300
� 0.41 � 3.1� � � �0.364 (120)(12)

� 0.65 � 0.65 � 1.30

Note that the factor of safety for seepage emerging
from the slope is smaller than the factor of safety for
seepage parallel to the slope.

Example A-6. Figure A-14 shows a submerged
clay slope with � � 0 and strength increasing linearly
with depth. The factor of safety is calculated using the
slope stability chart shown in Figure A-8. Extrapolat-
ing the strength profile up to zero gives H0 � 15 ft.
Calculate M as follows:

H 150M � � � 0.15
H 100

From Figure A-8, with M � 0.15 and 
 � 45�, N �
5.1. From the soil strength profile, cb � 1150 psf. Cal-
culate the factor of safety:

c 1150bF � N � 5.1 � 1.36� ��(H � H ) (37.6)(115)0
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