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ABSTRACT 

The current world’s population increased three times than it was in the mid of the 20th century. 

The dramatic rise in population has imposed a tremendous load on agricultural industry to meet 

rising demand for food. The application of conventional fertilizers is one of the most common 

and effective strategies for raising crop yields. These fertilizers release essential plant nutrients, 

both organic and inorganic, into soil to promote the growth of crops. Nitrogenous fertilizers are 

utilized to address nitrogen deficiencies.  

Urea is one of the most commonly used nitrogenous fertilizers that contains 46% nitrogen. 

However, it has been observed that on average, more than 70% of this urea fertilizer is wasted 

in the localized region of crop fields, which is related to environmental contamination and long-

term economic losses. Slow-release urea fertilizer was created in such a manner that fulfills 

plant needs according to the requirement for growth. Coating urea fertilizer with appropriate 

materials decreases its water solubility and slows its release in the soil.  

This research study will focus on the usage of chitosan functionalized silica nanoparticles for 

coating of urea granules. Urea granules were coated using fluidized bed coater. Different 

formulations were made, and their release rates were calculated in water using UV-Visible 

Spectroscopy. Scanning Electron Microscopy (SEM) was used to check the surface structure 

of synthesized nanoparticles and coated granules. Fourier Transform Infrared Spectroscopy, X-

ray diffraction and crushing strength were employed to identify the nature of chemical bonds, 

the structural parameters and shelf life of the prepared samples. 

The nitrogen release from coated urea is a complex phenomenon. In the present study, machine 

learning models were employed to optimize the release of nitrogen from coated urea fertilizers. 

Data gathered from the literature was used to train four machine learning models i.e. Decision 

Trees, Gaussian Process Regression, Ensembled Learning Trees and Support Vector Machines. 

Particle Swarm Optimization and Genetic Algorithms were also combined with the machine 

learning models. The results suggest that Gaussian Process Regression combined with GPR is 

favored for optimizing the nitrogen release (R2 ~ 0.9766 and RMSE ~ 0.1215). In addition, a 

Graphical User Interface had been developed using the optimized GPR to facilitate the 

calculation of Release Time. 

Key words: Slow release Urea Fertilizer, chitosan functionalized silica nanoparticles, Nitrogen 

release, Machine learning, Optimization, Genetic Algorithm, Particle Swarm Optimization. 
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CHAPTER 1:  INTRODUCTION 

The current world’s population increased three times than it was in the mid of the 20th century. 

By the end of 2024, the global population will have reached 8.2 billion. The global population 

will reach roughly 8.5 billion, by 2023, with an additional 1.2 billion expected to be added 

during the next two decades, resulting in a total of 9.7 billion by 2050 [1]. The present model 

of a rapidly expanding population is clearly unsustainable, and it increases the risk of food 

shortages, emphasizing the significance of achieving "resource efficiency" within a "circular 

economy" to ensure sufficient and consistent food supply [2]. The dramatic rise in population 

has imposed a tremendous load on agricultural industry to meet rising demand for food [3], [4], 

[5], [6], [7]. To resolve food shortage, significant initiatives in the Agricultural sector had been 

required to increase crop productivity while making efficient use of total arable land [8]. The 

use of synthetic fertilizers is one of the most common and effective strategies for raising crop 

yields around the world [9], [10]. The contribution of chemical fertilizer is an essential mean 

to boost crop productivity. Farmers kept on adding fertilizer to get increased crop yield. These 

fertilizers release essential plant nutrients, both organic and inorganic, into soil to promote the 

growth of crops [11]. 

 

Figure 1-1: Different Categories of Plant Nutrients 
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There are twenty-two essential and beneficial plant nutrients. Seventeen essential nutrients are 

necessary for the normal growth of plants. These plant nutrients are categorized into three 

groups: basic nutrients, macronutrients, and micronutrients. The basic plant nutrients consist 

of three elements Hydrogen, Carbon and Oxygen [12]. Their basic source is air and water 

normally. The macronutrients contain six elements and micronutrients contain eight elements. 

There are five beneficial elements which stimulate plant growth but are either non-essential or 

only essential for specific species [13]. These twenty-two plant nutrients are depicted in Figure 

1-1 above. 

Plant components such as roots, shoots, branches, and leaves assimilate nutrients from the soil 

using various methods. The soil contains a large amount of these nutrients, but only a small 

amount is available for plant growth. The efficiency with which plants absorb these mineral 

nutrients is determined by how they are available and in exactly what forms [14]. Other factors 

that influence the uptake mechanism include pH, colloids interaction, and soil physical 

properties. The humidity of the soil and its acidic or basic nature are the most essential factors. 

In soil, these essential plant nutrients exist in three forms: solid, liquid, and gaseous [15]. Table 

1-1 below depicts important nutrients and their different forms. 

Fertilizers are used to deliver these essential nutrients to plants. However, a substantial dosage 

and inadequate application rate of conventional fertilizers have caused a wide range of adverse 

consequences, such as greenhouse effect, water pollution, resource waste, and more [16]. 

According to the figures, fertilizer usage has increased by a factor of 100 during the last 50 

years [17], [18]. Several studies have found that many nutrients from synthetic fertilizers are 

wasted into the environment, lowering the overall fertilizer efficiency [19], [20]. 

Nitrogen is an essential nutrient that plants are highly dependent on. Low nitrogen level in 

plants can lead to decreased yield as it is an essential nutrient for crop development. Nitrogen 

is essential to produce chlorophyll, proteins, and protein-carrying compounds [20]. Amino 

acids (AA) are the fundamental units of proteins, formed by the biological combination of 

nitrogen with carbon, hydrogen, oxygen, and sulfur. Plants rely on AA to make protoplasm, 

which is responsible for cell division and growth. Nitrogen enhances the quality and amount 

of dry matter in green vegetables. Nitrogen deficiency symptoms include stunted growth, 

chlorosis on older leaves, low protein levels in seeds and vegetative organs, and early maturity 

in certain crops, leading to lower productivity and quality. Severe cases may lead to mortality 

or dropping of mature leaves [21], [22]. 
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Table 1-1: Important Plant Nutrients and their accessible states in Soil 

 

1.1  Urea Fertilizer: 

Nitrogenous fertilizers are utilized to address nitrogen deficiencies. Urea is the most commonly 

used nitrogenous fertilizer. It is the only synthetic fertilizer that contains the highest nitrogen 

content, which is 46 % in dry form with the lowest manufacturing expenditure along with ease 

of usage [23]. However, it has been observed that on average, more than 70% of this urea 

fertilizer is wasted in the localized region of crop fields, which is related to environmental 

contamination and long-term economic losses. These unfavorable side effects are mostly 

caused by urea losses from leaching, decomposition, and ammonia volatilization losses. The 

remaining losses include damage when transferring during supply, bagging, and shipping [24]. 
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Harm to crop occurred due to over fertilization as fertilizer losses enhance the localized 

concentration levels. This results in negative effects rather than positive plant growth [25]. 

1.2  Soil Nitrogen Interaction: 

Around 70 percent of nitrogen from urea fertilizer is lost due to rapid chemical conversion 

caused by leaching, volatilization, and runoff, resulting in low nitrogen utilization efficiency 

[22]. 

1.2.1 Hydrolysis: 

When added into the soil, urea undergoes a reaction with soil enzyme urease and water, 

resulting in the conversion of urea into ammonium ions. The process consist of three 

fundamental steps in which firstly urea is converted into ammonia and cyanate ions. In the next 

step, cyanate is converted into carbon dioxide and ammonia. In the last step, ammonia reacts 

with carbon dioxide in the presence of water, producing ammonium and bicarbonate [26]. 

 𝑵𝑯𝟐 − 𝑪𝑶 −  𝑵𝑯𝟐  →   𝑵𝑯𝟑 + 𝑯+ +  𝑪𝑵𝑶− (1-1) 

 𝑪𝑵𝑶− + 𝑯+ +  𝑯𝟐𝑶  →   𝑵𝑯𝟑 +  𝑪𝑶𝟐 (1-2) 

 𝑵𝑯𝟑 +  𝑪𝑶𝟐 +  𝑯𝟐𝑶  →   𝑵𝑯𝟒
+ +  𝑯𝑪𝑶𝟑

− (1-3) 

 

1.2.2 Nitrification: 

The process consists of two steps, wherein Nitrosomonas bacteria initially convert ammonium 

ions into nitrite salts. The subsequent stage involves the conversion of nitrite ions into nitrate 

ions by Nitrobacter bacteria [27]. 

 𝟐𝑵𝑯𝟒
+ + 𝟒𝑶𝟐   →   𝟐𝑵𝑶𝟐

− + 𝟐𝑯𝟐𝑶 +  𝟒𝑯+ (1-4) 

 𝟐𝑵𝑶𝟐
− +  𝑶𝟐   →   𝟐𝑵𝑶𝟑

− (1-5) 

 

1.2.3 Denitrification: 

This process involves the conversion of nitrite into nitric oxide in the presence of nitrite 

reductase, followed by the conversion of nitric oxide into nitrous oxide by nitric oxide 

reductase. At last, nitrous oxide by enzyme nitrous oxide reductase is converted into nitrogen 

(N2) [28]. 
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 𝑵𝑶𝟐
−   →   𝑵𝑶  →   𝑵𝟐𝑶  →   𝑵𝟐 (1-6) 

This overall process of soil nitrogen interaction is exhibited in the following Figure 1-2. 

 

Figure 1-2: Soil Nitrogen Interactions leading to Nitrogen losses 

The use of conventional urea fertilizer is directly associated with numerous constraints, 

including combined environmental issues. This is the most frequently discussed issue around 

the world. This urea discrepancy can be reduced by delaying its solubility, which can be 

achieved by employing several approaches and methodologies [29]. A potential solution is to 

synthesize a new slow-release urea fertilizer that improves efficiency and reduces 

environmental contamination compared to traditional fertilizers [30]. 

1.3  Slow-Release Urea Fertilizers: 

Slow-release urea fertilizer was created in such a manner that fulfills plant needs according to 

the requirement for growth [31]. Coating urea fertilizer with appropriate materials reduces its 

solubility in water and slows nitrogen release in the soil. The materials used to encapsulate urea 

fertilizer provide a physical barrier that influences the rate at which it dissolves in water when 

applied to soil [20], [30]. 

1.3.1 Mechanism of Slow-Release Urea Fertilizer (SRUF): 

The mechanism governing the release of SRUF is a highly complex phenomenon. The release 

of nutrients from SRFs must be sigmoidal in order to mimic the general pattern of plant nitrogen 
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uptake. The nutrient’s release from coated urea is governed by diffusion [32]. Many physical 

parameters influence the entire process, including moisture content, soil type, coating 

materials, and ambient weather conditions. Mostly used is an approach in the literature known 

as multi-stage diffusion model [33]. 

1.3.2 Multi-stage Diffusion Mechanism: 

This mechanism consists of the following steps. 

▪ Water molecules permeate the covering barrier and enters the fertilizer core. 

▪ Fertilizer core swelling and increased internal osmotic pressure. 

▪ Burst release of nutrients through the coating from the fertilizer core. 

 

Figure 1-3: Multi-stage diffusion model 

According to the above-mentioned model, the initial stage involves the penetration of water 

via coating after the coated fertilizer is applied to crops in soil. In the following stage, water 

swells the fertilizer core, increasing osmotic pressure within it. Finally, nutrients began to be 

released from the swollen core, which acted like a membrane film structure and served as a 

controlling parameter for nutrient nitrogen release. The entire phenomenon is depicted in 

Figure 1-3. 

1.4  Machine learning for optimization of release rate: 

Mathematical models based on the multi-diffusion mechanism are used to study the release of 

nitrogen from slow-release urea fertilizers. The model exhibited nitrogen release behavior(s) 

and mechanisms, resulting in inconsistencies between previous simulations and experimental 
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data. However, limitations to the model's future improvement, include the effect of urea content 

on effective diffusivity, in addition to the influence of particle shape and size [34]. These 

mechanistic models have disadvantages such as overparameterization, oversensitivity to 

changes in the operating circumstances, and require a significant amount of effort for 

calibration and validation [35]. This model is limited in its ability to incorporate data from 

various data and time scales, as well [36]. In order to solve these constraints Machine Learning 

(ML) models might be employed. In contrast, ML is a data analysis tool that can acquire 

knowledge from incoming data and make decisions autonomously [37], [38]. These algorithms 

detect a well-defined pattern using data input data during the training phase, resulting in a more 

precise output [39]. 

1.5  Benefits of Slow-Release Urea Fertilizers (SRUF’s): 

The improved efficiency of coated fertilizer saves labor costs and the number of times fertilizer 

is applied to soil. Slow-release urea fertilizer is the most cost-effective and fair option. Many 

negative effects, such as over-fertilization, can be reduced by applying the coating on urea 

particles, as well as seed damage. The plant's nutrient utilization is also boosted by the 

nitrogen’s slow release from coated urea. The coating also helps to prevent environmental 

contamination through NH3 volatilization losses. This coating improves handling capability, 

reducing losses during bagging and supply chain [40]. This efficiency boost can be achieved 

by applying the coating and decreasing its release rate in the soil. This can be done by using 

suitable coating components including polymeric polymers, organic and inorganic compounds 

on urea fertilizer particles. [30]. 

1.6  Disadvantages of Slow-Release Urea Fertilizers (SRUFs): 

The synthesis of slow-release urea fertilizer is currently a popular issue. Slow-release urea 

fertilizer is not commercially accepted for a variety of reasons, including its non-

biodegradability, which contributes to soil erosion and water contamination. Few slow-release 

urea fertilizers change soil pH, which is detrimental to many food-producing crops. Particle 

abrasion produces nutrient discharge before the crop's needed time [41]. Slow-release urea 

fertilizer is determined by its release kinetics when in contact with soil and water. This event 

occurred because to a shift in soil composition, pH, microbes, and moisture conte 
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CHAPTER 2:  LITERATURE REVIEW 

Slow-release urea fertilizers have been extensively studied since 1960. Researchers have 

investigated a variety of materials and strategies to optimize the nitrogen release rate from 

slow-release urea fertilizers. These materials not only serve as slow-releasing agents but also 

provide plant nutrients. 

2.1  Categorization of Slow-Release Urea Fertilizers: 

Hydrophobic materials are utilized for coating of urea that serves to limit its release rate in the 

soil. Coating materials are typically classified as either organic polymeric substances or 

inorganic materials. Polymer based resins and thermoplastics are organic chemicals, whereas 

inorganic coatings include bentonite, sulfur, gypsum, silica, and other inorganic materials [20], 

[43]. 

2.1.1 Polymer-Based Coatings: 

Polymeric materials effectively manage nutrients by providing a long-lasting physical barrier. 

These materials are generally placed to the surface of urea to form a matrix layer that controls 

nitrogen release. These coatings will behave hydrophobically, similar to polyolefin and rubber. 

Hydrogel materials can also fall within this category [44]. Yang et al. [45] used a combination 

of polystyrene, polyurethane (PU) and wax additive to coat urea. The study demonstrates that 

PU is superior to wax in lowering rate of release with a similar percentage of coating, as wax 

is unable to prevent water from permeating the coating layer during the initial phases of release. 

Enlarging the size of tablet lowers the rate and the necessary coating material, cutting 

manufacturing costs. Azeem et al. [46] investigated the effectiveness of Ploy vinyl alcohol 

enhanced waterborne starch-based biopolymer as a coating ingredient for producing controlled 

release urea fertilizer (CRUF). The study looks into the impact of coating thickness on the 

release of nutrients in CRUF. The findings reveal that release time increases with thickness, 

but not for coating defects or porous films. The decrease in thickness decreases the diffusion 

coefficient while it increases for defective samples and porous coatings. Achieving both the 

optimal thickness and film integrity is essential. Yu et al. [47] synthesized a nitrogenous 

fertilizer with a slow-release mechanism to enhance urea efficiency, retrieve phosphogypsum, 

and mitigate soil contamination. In order to enhance adhesion, the phosphogypsum-granulated 

urea was coated with SpanTM 80 rubber and paraffin wax. The findings indicated that the 

release in water over a period of 28 days was below 35%, and the release distribution was 

determined using a logistic model. 
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Qingshan et al. [48] investigated polyurethane-coated urea fertilizer comprising polyols, 

isocyanate, and paraffin. Upon reaction with polyols, isocyanate forms a polyurethane exterior 

layer on the surfaces of urea granules. This exterior layer has outstanding thermal stability. 

After 40 days of ambient conditions, no isocyanate was discovered in the layer. The 

polyurethane coated urea has a release period of 40-50 days in soil. Paraffin inhibits water 

penetration into polyurethane skin layers. In their study, Dai et al. [49] employed gradient 

hydrophobic films to synthesize coated urea fertilizer. The production of this film involved the 

sequential coating of a copolymer consisting of polyurethane and hydroxypropyl-terminated 

polydimethylsiloxane at varying proportions. The implementation of the coating led to a 

reduction in the rates at which urea diffuses and an increase in the duration of UEA release by 

over 60 days when compared to uniform films. A novel approach was devised by Ye et al. [50] 

to manufacture environmentally sustainable slow-release urea fertilizers by utilizing integrated 

circuits (ICs) derived from degradable polyesters. These fertilizers have a lower, adjustable 

release rate compared to neat urea. Factors like granular size, compactness, and polymer 

species are crucial for optimizing release performance. The weaker crystallizability of 

polyester chains helps achieve a slower release rate. The granules exhibited a 14-day release 

time and measured 3 mm in size. 

Li et al. [51] developed an epoxy using liquefied bagasse as a coating material for CRUF. Their 

findings demonstrated that the varying ratios of liquefied bagasse (LB) and bisphenol-A 

diglycidyl ether (BDE) had an effect on the structure and properties of the coating substance. 

Optimizing the amount of BED improves the compactness and hydrophobicity thus slowing 

the rate of release. Chen et al. [52] synthesized a slow-release fertilizer utilizing biochar and a 

waterborne based copolymer of polyvinylpyrrolidone and polyvinyl alcohol as coating 

ingredients to improve the nitrogen release rate. They investigated the impact of sources and 

concentrations of the coating ingredients on the characteristics of biochar-copolymers. Biochar 

enhanced degradability and reduced the water absorption, improving the slow-release 

characteristic of the coated fertilizer. The biochar based copolymer proved significant release 

behavior with a release rate of 65.28%. Santos et al. [53] studied the coatings of polyurethane 

(PU) derived from soybean and  castor oil. It was found that castor oil-based polyurethane 

exhibits superior adhesion properties, resulting in extended-release times. 5% castor and 7.5% 

soybean based PU coating released nitrogen within fourty days, exhibiting that similar results 

may be attained with castor oil derived PU of reduced coating thickness. 
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Uzoh et al. [54] synthesized a CRUF by coating urea granules with starch-based bio-

composites. The bio-composites were derived from cassava starch, rubber and castor seed oils. 

The optimal nitrogen release was determined based on the release time, pH and coating 

thickness. They observed that castor  oil can offer enhanced controlled  release characteristics 

with reduced cost. Liu et al. [55] synthesized a variety of eco-friendly poly (eugenol sulfone) 

using eugenol and SO2 as raw materials. These materials were used to coat urea fertilizer. They 

observed that high molecular weight poly (eugenol sulfone) exhibited a smoother shell, which 

showed superior slow-release performance and gradual degradability. Rychter et al. [56] 

developed a CRUF using starch, with urea functioning as a plasticizer. They discovered that 

urea decreases the moisture content, therefore improving the mechanical  properties of the 

matrix. Higher urea  content reduces the release; however, they observed that it was insufficient 

i.e. 75% nutritional release in approximate 12 hours and that additional adjustment is required 

to improve hydrophobicity for prolonged use.  

In their study, Giroto et al. [57] found that the release of a starch/melamine/urea Control release 

fertilizer is hindered by higher melamine content. This inhibition is attributed to the interaction 

among the amine group of urea  with both melamine  and starch. Within a span of 120 hours, 

it liberates 40% of urea. Xie et al. [58] produced a new class of macromolecular fertilizers 

known as poly dimethylurea phosphate, which has a reduced solubility compared to urea. 

Experimental evidence has confirmed that PDPU functions as a physical obstruction, 

effectively decelerating the flow rate. Employing a superabsorbent covering made from wheat 

straw enhances performance by allowing it to gradually expand into a hydrogel  and release 

67.6% of  the nutrients within a 30-day period. Li et al. [59] conducted analogous studies; 

however, the release was documented at 85% within 8 days, perhaps attributable to the more 

rapid breakdown of urea compared to PDPU. Araújo et al. [60] produced a coating material by 

incorporating humic components (peat, humic acid, and humin) with chitosan. Their findings 

indicate that the rate of release differs based on the specific humic compounds and the pH of 

the watery solution, owing to the functional  groups and possible interactions of  urea with each 

component. 

Niu et al. [61], used  starch chemically bounded with  vinyl acetate to enhance its hydrophobic 

properties. This reduces susceptibility to swelling, enhances the effectiveness of encapsulation, 

and restricts the cumulative release of nutrients to 50% during a 30-hour timeframe, which is 

slower compared to previous investigations. Versino et al. [62]  produced a coating material 

predominantly composed of starch, with urea serving as the plasticizer  and bagasse as a 
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strengthening component. This improves the  mechanical properties, and, consistent with other 

studies, raising the urea content and reinforcing agent promotes  interactions that postpone the 

release. Prior studies have shown that this composite material exhibits superior performance in 

terms of progressive release, releasing 95% of the urea over a period of 15 days. 

2.1.2 Inorganic Material-Based Coatings: 

Ibrahim et al. [63] employed a combination of 4 distinct materials, specifically gypsum, 

cement, sulfur, and zeolite, for the purpose of designing coating materials. A urea coating 

containing same amount of gypsum  and sulfur demonstrated superior crushing strength and 

reduced release rate. Nevertheless, the efficiency was enhaced by that of putting liquefied 

paraffin wax onto the heated urea surface. Integrating  gypsum-sulfur (20% total coating), 3% 

paraffin wax, and sifting the coating components prior to application led to a 26% enhancement 

in the efficiency of the urea coating. Babadi et al. [64] investigated the use of gypsum,  sulfur, 

and crushed magnesium lime as economical formulations for coatings. The results of their 

study suggest that urea, when coated with an equivalent proportion of gypsum-ground 

magnesium  lime (GML), exhibited a decreased urea release and a notable fracture strength. 

Employing polyols as a sealer on the outer layer of the urea coating led to enhanced 

performance. A 34.2% enhancement in the effectiveness of the urea coating was seen when 

gypsum–GML (1:1 ratio) containing 1.1% polyols was utilized.  

Yu and Li [65] developed a phosphogypsum/paraffin controlled release formulation (CRF). It 

demonstrated better controlled  release characteristics of urea compared to earlier research and 

meets the controlled release requirements set by the  CEN. The enhanced adherence of the 

brittle paraffin coating can be attributed to the incorporation of the emulsifier, Span− 80. 

Moreover, the rate at which it is released decreases considerably with the increase in thickness 

of the paraffin covering. Dubey et al. [66] developed a zeolite  coated urea fertilizer by 

incorporating various binders (corn and potato starch, bentonite, white cement,  acrylic 

polymer) using a pan granulator under dynamic operating circumstances. The zeolite-coated 

urea with acrylic polymer exhibited excellent structural  stability and demonstrated robust 

crushing strength. This regulated the nitrogen release by 54.7% more effectively than other 

CRUFs. 

2.1.2.1 Nanoparticle-Based Coatings: 

Nanoparticles have amazing qualities, including a high  surface area-to-volume ratio and 

improved optoelectronic, thermal, and physicochemical capabilities as compared to their bulk  
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counterpart [67]. In agriculture, nanotechnology shows potential for increasing production 

efficiency through the use of nano fertilizers (NFs) [68], [69], [70]. NFs are synthesized from 

nanoparticles (NPs). NFs improve nitrogen use efficiency (NUE), water retention capacity, 

nutrient uptake, crop yield, and overall production efficiency. Furthermore, NFs aid to reduce 

fertilizer demands, production costs, and negative environmental impacts [71]. NFs can be 

divided into three categories: (1) nano-nutrients, in which essential nutrients are converted into 

nanoparticles; (2) nano-additives, in which nanoscale additives are incorporated into chemical 

fertilizers; and (3) nano-coating, in which nanoparticles are applied as a coating or loaded onto 

traditional fertilizers. Fertilizer encapsulation employing nanoparticles coating has proven to 

be more efficient and adaptable than other types of NFs. The notable nanoparticles explored in 

literature include Zn, Fe, Si, Cu, Mn, S, N, P, and K [72], [73].  

Beig et al. [74] developed a CRUF  by coating urea with zinc oxide nanoparticles. They found 

that these coatings increase the release time of urea. The coated formulation releases 100% of 

urea in 160 minutes, improving nutrient availability. The coating materials chosen by Shakeel 

et al. [75] for urea fertilizer include micronutrients (B, Fe, Zn, and Cu). In order to coat urea 

prills, a total of thirty combinations of these coating ingredients were prepared, using either 

half or full prescribed values. Applications of (B) full  and (Fe+Zn) full coated urea can 

decrease the volatilization of Ammonia and extend the duration of urea exposure in soil, 

thereby promoting efficient plant absorption. 

Li et al. [76] synthesized and characterized mesoporous silica exhibiting three distinct 

morphologies, namely fiber, nano-rod, and sphere. In-situ reactive-layer spray method was 

employed to fabricate polyurethane (PU)/silica composites using urea granules. The release 

characteristics of PU were greatly enhanced by rod-like silica nanoparticles at the same filler 

loading, whereas other fillers did not contribute to this improvement. The nitrogen release 

period of the coating extended to 80 days when the  weight of the coating accounted for 3.5 

percent of the coated urea solution. 

2.1.2.2 Chitosan functionalized Silica nanoparticles: 

Silica nanoparticles (SiNPs) have been proven to exert a beneficial influence on the growth 

and development of plants. In addition to their growth-stimulating properties, SiNPs are 

documented to enhance the level of stress  tolerance in plants. Silica nanoparticles (SiNPs) are 

known to alleviate the adverse effects of drought and salinity stress by enhancing the  

absorption of nutrients and optimize water use efficiency [77]. Silicon is absorbed by the plant 
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roots via aquaporins and subsequently transported to the aboveground sections by xylem 

loading and unloading mechanism [78], [79], [80], [81]. Silica promotes the salicylic  acid 

biosynthesis genes (EDS1 and PAD4) to activate the defense-related genes, therefore triggering 

the activation of pathogen-related defense genes [82].  

Recently, silica derived from natural resources has attracted significant attention due  to its 

abundant availability, affordable price, and environmentally  friendly nature. A variety of living 

organisms, including higher plants, have developed the ability to synthesize biogenic silica 

[23]. As an agricultural byproduct, rice husk (RH) produces more than 600 million tons 

annually worldwide [24]. Nevertheless, the use of rice husk is very limited because of its low 

nutritional value, resistance to degradation, and high  ash content [25]. Furthermore, RH 

consists of 15 - 20% SiO2 [26]. A variety of techniques, such as sol-gel processes [27], 

microwave hydrothermal processes [28], flame  synthesis [29], and combustion  synthesis [30], 

have been employed to produce biogenic silica nanoparticles from RH. Nevertheless, the 

majority of silica manufacturing techniques are laborious and yield silica of compromised 

purity.  

Surface functionalization of silicon nanoparticles (SiNPs) provides an added benefit compared 

to the unmodified SiNPs in terms of their capacity to accurately transport molecules or 

chemicals that can enhance the plants' capabilities to counteract the negative impacts of 

stressors more effectively [83]. To avoid unwanted interactions of SiNPs and improve the 

efficient absorption of SiNPs, the surface has been modified using several polymeric 

stabilizers. Surface functionalization encompasses both physical and chemical alterations that 

enhance its versatility, biocompatibility, and suitability for various applications [84], [85], [86]. 

Functionalization of silica nanoparticles with chitosan improves its bioavailability and 

biodegradability. Chitosan is renowned for its exceptional biocompatible and biodegradable 

characteristics, making it a highly favored biopolymer [87]. 

2.1.3 Machine learning for optimizing nitrogen release: 

Irfan et al. [88] developed a ML model built on Gaussian process regression (GPR) to forecast 

the nutrient’s release from a  biopolymer coated fertilizer that experiences simultaneous 

enzymatic and microbiological degradation. Furthermore, this work introduces the concept of 

kernel optimization for the GPR. By taking into account the inputs of coating thickness, 

temperature, granule radius, and nutrient’s concentration, the optimized  model has excellent 

predictability with a 𝑅2 value of 1 and RMSE value of 0.003. The model findings are 
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scrutinized against the experimental results, and the projected outcomes demonstrate a 

significant degree of agreement with the experimental results. 

Swain et al. [89] employed three different types of coatings to USG: bentonite clay and neem 

oil without heat, bentonite  clay and neem  oil with heat, and sulfur and acacia oil respectively. 

A variety of methods, including artificial neural networks, SVM, random forests, reduced error 

pruning trees, and  Response surface methodology, were used to evaluate the acquired data for 

predicting nitrate leaching of USG. The response surface approach consistently demonstrated 

superior prediction capabilities for all coating types. SVM and Random forest algorithms are 

applicable for modeling nitrate leaching in USG. 

According to Shen et al. [90], the nutrient release  profiles from a CRF population were directly 

influenced by the characteristics of the core fertilizer, coating material, coating %,  distribution 

of granule radii, and coating thickness. The LS-SVM model, which included the variability 

within a CRF population, demonstrated high effectiveness and accuracy in simulating nutrient 

release from the population. The Relative Percentage Demand was 6.98, Relative Predictive 

Value was 0.994, and Relative Mean Squared Error was 1.48%. Both inverse 'L' (R2 = 0.999 

and RMSE = 0.54%) and 'S' (R2 = 0.998 and RMSE = 1.15%) display a significant level of 

similarity. 

2.2  Research Gap 

Prior research has not investigated the application of chitosan-functionalized biogenic silica 

nanoparticles for coating urea in slow-release fertilizers. And, although machine learning 

models have been used to enhance the efficiency of fertilizers, there is currently no study that 

has integrated machine learning with genetic algorithms (GA) and Particle Swarm 

Optimization (PSO) to optimize the rate at which nitrogen is released from these coatings. 

These research gaps indicate the need for additional research on the development of innovative 

coating materials and the implementation of optimization techniques to enhance the efficiency 

of fertilizers.  
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CHAPTER 3:  RESEARCH OBJECTIVES 

Fertilizers have been applied to fields to improve agricultural productivity and soil fertility. 

Urea is the most  commonly used artificial fertilizer due  to its high nitrogen content. Because 

of its greater solubility, urea releases most of its nitrogen content into the atmosphere via 

ammonia volatilization and leaching mechanisms. The usage of conventional urea fertilizer is 

directly related to several restrictions, including compounded environmental concerns. The aim 

of this project is to develop chitosan functionalized silica nanoparticles coated urea fertilizer. 

The main objectives of this research study are: 

• Synthesis of Chitosan functionalized biogenic SiO2 nanoparticles coated Urea 

Fertilizer. 

• Characterization of the Chitosan functionalized biogenic SiO2 nanoparticles coated 

Urea Fertilizer. 

• Analysis of nitrogen  release rate from the formulated fertilizers. 

• Development of a Machine  Learning model to optimize the nitrogen release from 

formulated fertilizer. 

• Comparison of experimental results with model predictions to assess  the accuracy 

and effectiveness of the machine learning model. 

 

 

 

 

 

 

  



16 
 

CHAPTER 4:  MATERIALS AND METHODS 

This chapter outlines the methodology employed in both experimental and computational 

aspects of this study. The experimental part focuses on the synthesis, functionalization and 

coating of biogenic silica nanoparticles, followed by characterizations. Simultaneously the 

machine learning part focuses on optimizing the process of coating and predicting nitrogen 

release  behavior of the coated urea fertilizer. The integration of machine learning models 

allowed for the refinement of coating parameters to enhance the fertilizers efficiency. In both 

methodologies each step is described to ensure clarity. 

4.1  Experimental Methodology 

4.1.1 Materials 

All the chemical reagents utilized in the present research study are of laboratory grade with 

highest purity. The Pyrex glassware was used during the experimentation and analysis. The 

chemicals include hydrochloric acid, acetic acid, chitosan, p-methyl amino Benz aldehyde, 

ethanol, and deionized water. Urea fertilizer was purchased from local vendor with 46% N 

content. Rice husk was purchased from the local market. 

4.1.2 Synthesis of Biogenic Silica nanoparticles (bSNPs) 

An aqueous solution of 1 N hydrochloric acid (HCl) was made using deionized water. Further, 

5 grammes of rice husk were combined with 25 millilitres of this solution using magnetic 

stirring. The solution was moved to an autoclave and subjected to a temperature  of 120 oC for 

a duration of 2 hours while being sealed under pressure. Following acid treatment, the rice 

husks were rinsed with deionized water to eliminate hydrochloric acid [91].  The acid-treated 

rice husks were subsequently dried in an  oven at 80 oC for 3 hours, followed by incinerating 

the dried pretreated rice husks at 700 oC for 3 hours in a muffle furnace. The production of 

silica nanoparticles was  indicated by the acquisition of a white residue at completion. 

4.1.3 Surface Functionalization of Biogenic Silica nanoparticles (bSNPs): 

A 20 mL chitosan solution was prepared  by dissolving 1% (w/v) chitosan in 10% acetic  acid. 

100 mg of bSNPs were introduced in this solution. After that, the solution was ultra-probe 

sonicated for 2 hours, followed by additional stirring for 3 hours to get the bSNPs 

functionalized with chitosan (Cs-bSNPs). After washing the solution with deionized water, the 

purified Cs-bSNPs were collected and dried in an oven [92]. 
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4.1.4 Coating solution Preparation: 

The solutions used in the coating process were prepared in deionized water. The prescribed 

amount of bSNPs, Chitosan and Cs-bSNPs were added in the beaker filled with water to form 

a suspension. The suspension was heated at 80°C with sonication using an ultra-probe   

sonicator for 2 h. All the formulations were prepared using similar methodology. 

Table 4-1: Coating Formulation used in Experiment 

Coating 

Formulation 

Wt. % /100 g urea 

Chitosan bSNPs Cs-bSNPs 

UC - - - 

CU 2 - - 

SU - 1 - 

CSU - - 1 

 

4.1.5 Fluidized Bed Coating: 

The coating process was initiated with the sieving of urea granules. The coating was carried 

out using a fluidized bed coater YC-1000 manufactured by  Shanghai Pilotech Instrument & 

Equipment Company Limited. The chamber was initially dried using hot air at 80 oC for 5 

minutes in order to remove any moisture. The granules were loaded into a fluidized bed, which 

was set at 80 oC. The air blower was operated at a frequency of 40 Hz. The inbuilt peristaltic 

pump was installed to facilitate the flow of hot solution. It was maintained at 15 rpm for 

pumping the solution. Before being sprayed over fluidized granules in the bed, the heated 

coating  solution was atomized using pressured air supplied through a compressor. To prevent 

the agglomeration of nanoparticles, the coating solution must be continuously stirred while 

being heated. After the coating, the drying process started for 15 minutes with hot air. Upon 

drying, the granules were then taken out from the fluidized bed and analyzed using  different 

characterization techniques. 

The Figure 4-1 below summarizes the experimental workflow for silica nanoparticles 

synthesis, functionalization and coating on urea granules. 

4.1.6 Characterization Techniques: 

The bSNPs and Cs-bSNPs were characterized with SEM, XRD and FTIR. The uncoated urea 

prills and coated prills were examined using UV-VIS Spectrophotometer, SEM, FTIR, XRD 
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and Crushing Strength. The surface structure and morphology were studied by utilizing a 

scanning electron microscope. The IR spectra were got in the wave number ranging from 400-

4000cm-1 using a Fourier transforms IR spectrophotometer. Uncoated and coated prills were 

examined using scan angle ranging from 0o to 90o on X- ray diffraction apparatus. 

 

Figure 4-1: Experimental plan for silica nanoparticles synthesis, chitosan functionalization and urea 

coating 

4.1.6.1 Nitrogen Release Rate in water: 

The nitrogen release from all the coated treatments along with uncoated granules was 

performed using the p-methyl amino Benz aldehyde method. Initially, analytical grade urea 

was used to draw the calibration curve (99.9% Pure) by utilizing GENESYSTM 20 UV-Visible 

spectrophotometer. Normalized solutions of lab grade  urea (20ppm, 40ppm, 60ppm, 80ppm, 

and 100 ppm) were prearranged to get the  slope from the drawn  calibration curve as shown 

in Figure 4-2. The absorbance of the standardized solutions were noted using UV-Visible 

Spectrophotometer shown in Table 4-2. The following mentioned test protocol was 

implemented to calculate the release nitrogen from urea. 

p-methyl amino Benzaldehyde method: 

10 g of the coated urea sample was added in a beaker containing 5 liters of distilled water. 10 

mL sample solution was collected at different intervals 3, 6, 9, 12, 15, 30, 60 and 120 minutes. 

1 mL of HCl solution and 5 mL of coloring agent (p-methyl amino benzaldehyde) were added 
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along with deionized water to the markup level of measuring flask. This final solution was then 

well shake and applied in spectrophotometer to check its absorbance at 418 nm [93]. This 

absorbance was then converted into  concentration with the help of Equation (4-1) and 

efficiency with help of Equation (4-2). 

 
𝑢𝑟𝑒𝑎 (𝑝𝑝𝑚) =  

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 − 𝑌 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑆𝑙𝑜𝑝𝑒
 

(4-1) 

 
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  

𝐶𝑈 −  𝐶𝐶𝑈

𝐶𝑈
∗ 100 

    (4-2) 

 

Table 4-2: Urea Concentration (ppm) versus Absorbance (Au) 

Sr. No. Concentration (ppm) Absorbance (Au) 

1 0 0 

2 20 0.024 

3 40 0.051 

4 60 0.072 

5 80 0.096 

6 100 0.12 

 

 

Figure 4-2: Calibration curve of analytical grade urea 
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4.1.6.2 Scanning Electron Microscopy 

The technique of scanning electron microscopy (SEM) was  used to study the morphology of 

nanoparticles and prepared samples. SEM gives higher resolution micrographs which are 

helpful to get an insight of the morphology of the surface and particle size. For SEM analysis, 

gold sputtering  was carried out on all the samples using JEOL-1500 machine. The surface, 

structure and size evaluation of bSNPs along with coated urea was carried out on S 4700, 

Hitachi, Japan at 20 kV [94]. 

4.1.6.3 Fourier Transform Infrared Spectroscopy 

The Fourier Transform Infrared spectroscopy (FTIR) is a non-destructive technique used for 

identifying the nature of chemical bonds present in the test sample. When IR radiation is 

transmitted through the test sample, FTIR spectrums are obtained as either absorbed or 

transmitted radiations. The infrared radiation produces unique patterns of test material which 

are subsequently utilized in the analysis of the composition and chemical nature of the 

compounds. The bSNPs samples are examined using the dried potassium bromide method by 

making pellets. The test was carried out on FTIR PerkinElmer  Spectrum 100 spectrometer in 

the range of wavelenths, 4000-400 cm-1 [94]. 

4.1.6.4 X-ray Diffraction 

X-ray diffraction analysis is used to identify the crystallinity of unknown samples. 

Additionally, the structural parameters associated with the prepared samples are also 

determined with the help of this analysis. The synthesized bSNPs were tested on XRD machine 

STOE Germany. During the testing of nanoparticles, the step size was maintained at 0.05 

seconds and scan ratio was maintained at 0.5 seconds. The scan angle was fixed in the range 

of 0-90° at 40 kV applied voltage [3]. 

4.1.6.5 Crushing Strength 

The crushing strength of fertilizer is very important to predict its shelf life during the different 

phases in its life cycle, including production, bagging, shipping, and marketing. Higher values 

of crushing strength improve the shelf life of the product as well as its ability to withstand 

different stresses and harsh environmental conditions, including humidity and temperature. The 

coating improves the crushing strength, which substantially increases the  shelf life of the 

product. The test is conducted on a Universal Testing Machine  (AGX Plus). The urea particles 

are placed between metal plungers, and force is applied to them. The force in Newton (N) is 
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noted when the particles fragment into fine powder. This measured value is referred to as the 

crushing strength of coated particles [95]. 

4.2  Machine Learning Methodology: 

4.2.1 Data Collection 

In this research study, data is gathered from a comprehensive  literature review of experimental 

studies that have been reported on the release of nitrogen from coated urea fertilizer. Coated 

urea fertilizer, coating thickness, and release time comprised the primary criteria for data 

selection. Relevant articles were searched in Google Scholar, and Science Direct by employing 

a variety of keywords, including coated urea fertilizer, slow-release urea, coating material, 

coating thickness, release time, and percent release. The features data extraction and 

categorization were done to build and evaluate machine learning models after the reclamation 

of data from related papers. 

A full set of 122 release time data points were gathered from 31 resaerch papers. The sample’s 

data were obtained from the nitrogen release experiment on the composition of coated urea 

fertilizer, as well as the nitrogen release time. The literature was consulted for pertinent figures, 

tables, and supplementary data. Data regarding the release rate of coated urea fertilizers was 

gathered, including the granular radius, coating thickness, coating material, and release time. 

Polymers, additives, granular radius and coating thickness were used as input parameters in the 

nitrogen release from coated urea fertilizers. The output parameter of this process was the 

release time. Table 4-3 shows the data distribution of the data all. 

Table 4-3: Coated urea fertilizer data distribution 

 
 

Polymer Additives 
Radius 

(cm) 

Coating 

Thickness (cm) 

Release Time 

(days) 

mean 120.786885 870.688525 0.334867 0.131925 34.800796 

std 133.059126 1014.665096 0.504720 1.021408 49.275850 

min 0.000000 0.000000 0.050000 0.000880 0.016664 

25% 10.000000 0.000000 0.150000 0.003790 0.614825 
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50% 70.000000 0.000000 0.200000 0.008987 19.931818 

75% 202.250000 1950.000000 0.300000 0.014709 49.826087 

max 420.000000 3250.000000 2.600000 10.000000 280.000000 

 

4.2.2 Overview of Developed Models: 

This study employed Gaussian Process Regression, Ensembled Tree, Support Vector machine, 

and Decision Tree algorithms to develop models for accurately predicting the release of urea 

from coated surfaces, taking into account the coating material, granule radius, and coating 

thickness. The machine learning models in this work were constructed, trained, and evaluated 

using the MATLAB software. Further enhancement of the release time was achieved by the 

application of genetic algorithms and  particle swarm optimization techniques. 

4.2.2.1 Genetic Algorithm: 

A genetic algorithm (GA) is an evolutionary algorithm that attempts to replicate the process of 

biological evolution. In 1975, Holland proposed a theory for genetic algorithms. Darwin's 

theory of evolution, which simulated the preservation of better species and their genes, had an 

impact on GA. Numerous researchers have utilized generalized estimating equations [96] to 

assess the resolution of challenging issues whose performance parameters lack the qualities of 

continuity and differentiability [97]. 

A genetic algorithm is a  feature selection method that operates on a set of solutions instead of 

selecting a single optimum solution. At the start, the population is selected, and each solution 

is represented as a chromosome consisting of genes or bits. A population is a collection of 

solutions formed by combining the fitness values of individual chromosomes. A generation 

refers to a specific population at a particular time. The fitness  function is a crucial element in 

the Genetic Algorithm as it defines the specific problem that needs to be  optimized. The 

reproductive success of a chromosomal pair is determined by their fitness [98]. 

It is an inhabitant’s algorithm that is built on the ideas of genetic inheritance and natural 

selection. Each solution stands in for a chromosome, and each parameter denotes a gene. GA 

measures each population member's fitness using an objective function called fitness. A 

selection technique is used to arbitrarily select the best options in order to enhance poor 
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solutions. Because probability and fitness are related, this operator is a little more likely to 

choose the optimal options (objective value). Additionally, there is a higher likelihood to 

avoid local optima while choosing incorrect answers. It suggests that excellent alternatives can 

be removed with the aid of other solutions if they get trapped in a local solution. Until an 

optimal solution is established, an extreme integer of repetitions or population is 

comprehended, or a variation between solutions is smaller than a predetermined limit, this 

process is repeated [99], [100]. 

A genetic algorithm can drastically alter the search   process in order to obtain the best potential 

solution by using the likelihood of genetic crossover and mutation. GA has the ability to change 

encoded genes. GA can examine numerous  individuals and generate various optimal solutions. 

As a result, GA provides enhanced worldwide search capabilities. Babies born via 

chromosomal exchange between  parents are likely to ruin magnificent genetic architecture, 

and the crossover formula is as follows: 

 
𝑲 =

𝑮 + 𝟐√𝒈

𝟑𝑮
 

(4-3) 

𝐾 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔, 𝑎𝑛𝑑 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑔 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

𝐺  =  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.[101]  

 

4.2.2.2 Particle Swarm Optimization: 

Particle swarm optimization (PSO) is a population based, self-adaptive, stochastic optimization 

method that finds the best  position and calculates the optimal function value for every particle 

at that position. This algorithm calculates new velocities based on the current velocities, each 

particle's optimal position, and the optimal positions of its neighbors [102]. 

In the PSO algorithm, each solution is referred to as a "bird"  or "particle" in the search space. 

These particles move in a swarm as they look for the ideal position. In N-dimensional problems, 

the particle includes both the position and  velocity vectors [103]. 

The velocity field vector is represented by: 

 𝑉𝑖 =  𝑉𝑖1, 𝑉𝑖2, 𝑉𝑖3, 𝑉𝑖4, 𝑉𝑖5, . … … … , 𝑉𝑖𝑁 (4-4) 
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And the position field vector is given by Equation (4-5): 

 𝑋𝑖 =  𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, 𝑋𝑖4, 𝑋𝑖5, . … … … , 𝑋𝑖𝑁 (4-5) 

 

N is the number of unknown variables, and i represents the ith particle.  The equations below 

are used to update the particle's velocity and position. 

 𝑉𝑖
𝑘 = 𝜔. 𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 −  𝑋𝑖

𝑘) +  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑘 −  𝑋𝑖
𝑘) (4-6) 

 𝑋𝑖
𝑘+1 =  𝑋𝑖

𝑘 +  𝑉𝑖
𝑘+1 (4-7) 

Here "gbest" represent the optimal location search of the swarm and "pbest" represent the best 

position of the ith particle individually. The impact of the previous velocity vector on the 

second vector is quantified by the inertia  weight w. An upper bound is imposed on the velocity 

vector in all dimensions, denoted as Vmax. Each time the method is iterated, the current position 

is evaluated as a possible solution to the problem. If the location in question is deemed more 

favorable than all previously determined locations, the coordinates  are then included into the 

second position vector, Xi [104]. In order to simplify the comparison in subsequent rounds, the 

result of the optimal  function is saved in a variable called pbest. The aim is to further explore 

more ideal locations and improve pbest i
k and Xi. The approach is implemented by modifying 

Vi, which can be conceptualized as a variable size, and selecting new locations by appending 

Vi coordinates to Xi. 

4.2.2.3 Gaussian Process Regression 

Gaussian Process Regression is a highly efficient learning model employed for addressing 

nonlinear regression problems. This method not only predicts but also calculates the coefficient 

of determination for each prediction point, which quantifies the uncertainty of the forecast. 

Statistical probability distributions can be regarded as Gaussian processes. The computed 

probability of an input vector is derived from both the variance and the average of a Gaussian 

distribution. Rather than a scalar mean and variance, the GPR model generates a mean and 

correlation vector [105]. 

Gaussian Process Regression (GPR) is a non-parametric and stochastic approach in machine 

learning that is employed to estimate the probability distribution across all feasible functions 

[106]. In Gaussian Process Regression (GPR), a Gaussian process prior is assumed. This prior 

can be defined by utilizing a mean function m(x) and a covariance function k (x, x’). Gaussian 
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Process Reanalysis (GPR) is based on the assumption of a Gaussian process prior, which can 

be defined as the average of the covariance function k (x, x') and function m(x). 

 ƒ (𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (4-8) 

 

When selecting a Gaussian process model, the form of the covariance kernel and mean function 

are determined. There exist several choices for kernel functions, including square, linear, and 

constant with multiple kernels composition. A kernel composition is a fixed kernel generated 

by the radial basis kernel function, which represents the smooth function. A constant times 

radial basis kernel function (RBF) is defined by the following equation: 

 
𝑘(𝑥, 𝑥/) = 𝜎𝑓

2 𝑒𝑥𝑝(−
1

2𝑙2
‖𝑥 − 𝑥/‖2) 

(4-9) 

 

This study examines two hyperparameters: kernel length scale l and signal variance σ². After 

careful consideration, it is evident that GPR has several benefits, such as its capacity to handle 

small datasets and its capability to assess prediction uncertainty. 

4.2.2.4 Support Vector Machine: 

The Support Vector Machine (SVM) is a computer-generated machine learning algorithm used 

for both classification and regression problems [107]. In regression and classification issues, 

the support vector machine employs the kernel function to establish a mathematical link 

between the input and output variable. MATLAB allows users to specify custom kernels for 

Support Vector Machine (SVM) decision processes by defining kernel functions. This 

functionality enables the SVM method to address linear classification and regression problems 

effectively, eliminating the requirement for hyperparameter adjustment. Support Vector 

Machines (SVMs) has a distinctive capability to deliver well-balanced predicted outcomes, 

especially in study with limited sample sizes [108]. The optimization objective in this work is 

to determine the nitrogen release time. Precision tuning of Support Vector Machine (SVM) 

parameters is crucial for a target-optimization problem. Initially, the performance assessment 

index for SVM parameter optimization is established, and subsequently, the optimal parameter 

is determined using the MATLAB application [109]. 

Structural Vector Machines (SVM) were initially developed to address classification 

difficulties and subsequently extended to regression problems. To differentiate between distinct 
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data sets, this method relies on the creation of a hyperplane in a space with a high (or infinite) 

number of dimensions. To optimize the separation, it is advisable to position the hyperplane at 

a considerable distance from the closest training data points. In the feature space, Support 

Vector Regression (SVR) produces a linear regression function as provided by an equation 

using a dataset of feature vectors. 𝑥 =  𝑥𝑖  ∈  𝑅𝑃;  𝑖 = 1, , , 𝑛, and a target value 𝑌 ∈  𝑅𝑛. 

 ƒ(𝑥)  = 𝑤𝑇𝜑(𝑥) + 𝑏 (4-10) 

 

w = weight vector and b = bias 

The following equations are solved to estimate these terms. 

 
𝑚𝑖𝑛 

1

2
𝑤𝑇𝑤 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 
(4-11) 

Subject to constraints: 

 𝑦𝑖 − 𝑤𝑇 Ф(𝑥𝑖) − 𝑏   ≤ 𝜉 + 𝜉𝑖 (4-12) 

 𝑤𝑇 Ф(𝑥𝑖) + 𝑏   ≤  𝜉𝑖 + 𝜉𝑖
∗
 (4-13) 

 𝜉𝑖, 𝜉𝑖
∗ ≥ 0 (4-14) 

ξ = error of  models distant from the  hyperplane where 𝜉𝑖
∗
, ξ depend on the sample position, 

below or above the 𝞮 tube, C represents the plenty  term. The key  hyperparameters are C and 

𝞮, in which, a low value of C is recommended for datasets with high levels of noise. The 

prediction of Support vector regression by the lagrangian  dual technique can be analyzed by 

following Equation (4-15). 

 
ƒ(𝑥) =  ∑(𝛼𝑖 + 𝛼𝑖

∗)

𝑛

𝑖=1

𝐾(𝑥𝑖 + 𝑥𝑗) + 𝑏 
(4-15) 

𝛼 = Lagrang  multiplier of dual form, 

K = Kernel  function [95] 

 𝐾(𝑥𝑖 + 𝑥𝑗) = Ф(𝑥𝑖)
𝑇Ф(𝑥𝑗) (4-16) 
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4.2.2.5 Decision Tree: 

The advanced algorithm known as Random Forest was developed using the multi-decision tree 

(DT) architecture. Each decision tree (DT) arises autonomously after acquiring a random subset 

of the input data, commonly known as a  bootstrap sample. Although individual decision trees 

in the random forest are widely regarded as ineffective learners, the collective performance of 

the RF can attain superior levels of competence and accuracy when they collectively make 

predictions [110]. As the samples with desired values are  grouped together, a decision tree 

systematically divides the feature space, (x), by employing a randomly selected set of data 

d(x,y). The dataset is denoted as dm, with nm samples at node (m) as illustrated in Equation 

(4-17) & (4-18).  

 𝑑𝑚
𝑙𝑒𝑓𝑡

= {(𝑥, 𝑦)|𝑥𝑝  ≤  𝑡𝑚} (4-17) 

 
𝑑𝑚

𝑟𝑖𝑔ℎ𝑡
=  

𝑑𝑚

𝑑𝑚
𝑙𝑒𝑓𝑡

 
(4-18) 

The dataset dm is partitioned into two subsets, namely dmleft and dmright. The candidate is 

divided into two variables, p and tm, where p represents a feature and tm represents a threshold. 

These subsets are preserved until the maximum reachable depth is achieved. The development 

of RF prediction is indicated in Equation (4-19). 

 

 
𝑓(𝑥) =  

1

𝐾
 ∑ 𝐷𝑇𝑡(𝑥)

𝐾

𝐾=1

 

(4-19) 

whereas K =number of DTs. (‘n estimators’) in the  random forest. 

4.2.2.6 Ensembled Learning Tree: 

The ensemble learning method is an approach that combines numerous learners using 

predefined combination protocols. When compared to earlier black-box algorithms, tree-based 

machine learning models are more easily comprehensible and capable of addressing both linear 

and non-linear issues [111]. In order to generate efficient diagnostic criteria, the tree ensemble 

approach employed multi-objective   optimization. The suggested approach utilizes two 

models: base learners for predicting the posterior class probabilities of a sample, and a meta-

learner for predicting the label of the final class by combining the basic learners. The 

construction of a model involves a critical examination of model combination and model 

selection from several perspectives. To achieve an accurate and comprehensible ensemble, we 

employ a multi-objective method for selecting models. This method aims to optimize both 

accuracy and ensemble complexity simultaneously. The tree  ensemble approach use the hill-
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climbing technique to identify a stable collection of rules, dependent on the selection of rules 

and their accuracy [112]. 

The machine learning process used for the data analysis and optimization in illustrated in the 

Figure 4-3. 
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Figure 4-3: Machine learning workflow for data pre-processing, model development, and nitrogen 

release optimization. 
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CHAPTER 5:  RESULTS & DISCUSSIONS 

This chapter covers the key findings, which include both experimental data and machine 

learning predictions. The study focuses on the synthesis, characterization, and nitrogen release 

properties of chitosan-functionalized biogenic silica-coated urea fertilizer. In parallel, machine 

learning models were used to anticipate and optimize nitrogen release rates using experimental 

data. 

5.1  Experimental Results: 

5.1.1 Nitrogen Release Rate: 

The purpose of this method of analysis was to measure the  rate of urea release following the 

application of the coating on urea granules. The test was conducted by immersing the urea 

granules that had been coated in de-ionized water. In addition, uncoated granules were 

examined for comparison with coated ones. 

Table 5-1: Concentration of coated and uncoated urea granules 

Sr. No. Time 

(minutes) 

UC 

(ppm) 

SU 

(ppm) 

CU 

(ppm) 

CSU 

(ppm) 

1 4 0 220 160 100 

2 8 340 320 260 200 

3 12 440 380 320 260 

4 15 600 480 420 360 

5 30 800 560 500 440 

6 45 1200 680 560 500 

7 90 1500 780 640 580 

8 120 1780 880 700 640 

9 240 1880 1140 960 820 

10 360 2000 1360 1220 980 

11 480 2000 1560 1440 1160 

12 960 2000 1880 1800 1600 

13 1440 2000 2000 1960 1840 

14 1920 2000 2000 2000 1940 

15 2400 2000 2000 2000 2000 
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The release  rate of urea granules exhibited the similar behavior of coated urea upon contact 

with water. Furthermore, this test assesses the effectiveness of coating materials that slow down 

the liberation of urea. Release experiments were conducted using various combinations of 

coated urea granules. The results  of the tests were  reported in terms of urea concentration in 

parts per million (ppm) using Equation (4-1). The effectiveness of each combination was 

determined by comparing the urea content at 15 minutes of the untreated sample with the coated 

sample using Equation (4-2). An analysis of the concentration of uncoated  and coated urea 

granules at various time intervals is presented in Table 5-1. 

Figure 5-1 exhibited the release of uncoated and coated urea fertilizers. Uncoated urea granules 

(UC), release entirely in water after 240 minutes. Without coating, the UC will adhere to the 

burst flow mechanism. This occurred because of the exposed surface that enables water 

molecules to penetrate more easily. bSNPs coated urea granules (SU), completely release in 

water after 960 minutes. Chitosan coated urea (CU), completely release in water after 1440 

minutes and Cs-bSNPs coated urea (CSU), released in 2400 minutes. This is because of the 

resistant layer provided by Cs-bSNPs. It lets water penetrate through it and results in swelling 

of coating layer with gradual release of nutrients. 

 

Figure 5-1: Cumulative release of urea from UC, SU, CU and CSU 
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Figure 5-2 exhibited the efficiency of coated urea fertilizers SU, CU and CSU which was 

calculated using the efficiency Equation (4-2). Concentrations of Coated as well as uncoated 

urea granules at 15 minutes were used to  calculate the efficiency of coated urea. 

 

Figure 5-2: Efficiency of coated urea fertilizers: SU, CU and CSU 

5.1.2 Surface Morphology: 

The morphology of all the samples were investigated using scanning  electron microscope. 

bSNPs were scanned to examine the morphology of the surface and dimensions of the bSNPs. 

Analysis was carried out on the coating surface to assess the shape, uniformity and structure of 

coating layer applied on urea. 

 

Figure 5-3: SEM Micrograph of bSNPs at different magnifications (a) X30000 and (b) X20000 
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Figure 5-4: SEM Micrograph of (a) UC at X40, (b) UC at X500, (c) CU at X40, (d) CU at X500, (e) 

SU at X40, (f) SU at X500, (g) CSU at X40 and (h) CSU at X500 

 

The SEM images of bSNPs showed spherical configuration of nanoparticles in Figure 5-3. The 

nanoparticles in SEM micrograph exhibited minimal agglomeration. As depicted in the figure, 

the average size of bSNPs ranged between 80 to 90 nm. 

The SEM images of coated and uncoated urea are shown in Figure 5-4. The UC shows rough 

and crystalline structure leading to rapid nitrogen release. The CU shows rough and porous 

surface allowing for moderate nitrogen release. SU has a thin and uneven layer which slightly 

slows the release. CSU has a smooth and compact coating providing more controlled release. 

5.1.3 Fourier Transform Infrared Spectroscopy: 

The Figure 5-5 presents the FTIR spectrum of bSNPs and Cs-SNPs. In bSNPs spectrum, the 

peak at 463 cm-1 corresponds to O-Si- bending. A stretching vibration arising from the Si-O-Si 

group is observable at 1105 and 810 cm-1. Furthermore, there are peaks observed at 1625 and 

3437 cm-1. The stretching and bending vibrations may indicate that adsorbed water molecules 

are  present on the surface of nano-silica particles. Modifying silica with chitosan increases the 

intensity of 3437 peak. Intensity of peaks at 1105, 810 and 463 cm-1 also increases [113], [114], 

[115]. 
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Figure 5-5: FTIR Spectra of bSNPs and Cs-bSNPs 

The Figure 5-6 presents the FTIR spectrum of uncoated and coated urea. Uncoated urea 

exhibits both asymmetric and symmetric vibrations of NH2, within the wavelength range of 

3430 and 3340 cm-1. The peak at 1625 cm-1 corresponds to a carbonyl (CO) molecule, while 

the peak at 1465 cm-1 corresponds to NH and CH and  stretching vibration of compound O=C-

NH2. There is also a stretching seen at 1465 cm−1 due to –CN bonds. A stretching vibration 

mode arising from the –C-O-C group is observable at 1150 cm-1. Also, at this peak stretching 

vibrations from C-H group are detected. 

 

Figure 5-6: FTIR Spectra of UC, CU and SU 
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The spectra of all coated and uncoated urea appeared identical, with just a few modifications. 

The peaks at 2100 and 2010 cm-1 indicates C≡N stretching vibration and C≡C stretching 

vibration [116]. 

5.1.4 X-Ray Diffraction: 

The Figure 5-7 presents the XRD pattern of bSNPs and Cs-bSNPs. According to the pattern of 

b-SNPs the most evident amorphous curve appears at 25o in the 2 angle. It exhibits an 

amorphous state of silica. In Cs-bSNPs pattern, curve broadening is observed. And the curve 

appears between 25 to 35o [117], [118]. 

The Figure 5-8 represents the XRD patterns of uncoated and coated urea fertilizers.  The 

prominent  diffraction peaks are observed at 2 values of 22o, 24.5o, 29.5o and 35.5o, 

corresponding to 110, 101, 111 and 210 planes respectively. The more prominent peaks are 

observed between 20 to 25o. The XRD patterns of coated urea also exhibited dominant peaks 

in this range. In the XRD pattern of CU, slight changes occurred due to addition of chitosan, 

so peaks at 29.5o, 31o and 36o become more prominent. In XRD patterns of SU and CSU no 

prominent peak except the 22o is observed [94]. 

 

 

Figure 5-7: XRD pattern of bSNPs and Cs-bSNPs 
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Figure 5-8: XRD patterns of UC, CU, SU and CSU 

 

5.1.5 Crushing Strength: 

After the application of the coating, if the granular urea fractures, the  availability of nutrient 

nitrogen would be comparable to granules without the coating material. Preference will be 

given to samples that exhibit greater impact resistance against all anomalous forces, 

considering storage, bagging, and transportation points [95]. In this research, several coating 

formulations were employed to granular urea and subjected to pressure testing utilizing a 

tensile tester till fracture occurred. 

Figure 5-9 depicted the crushing strength outcomes after undergoing testing using the universal 

testing machine. The final measurement is recorded when the urea granules are completely 

compressed into fine powder. Uncoated granules were crushed with a force of 7.03 N. The CSU 

exhibited the greatest crushing strength of 9.38 N. This is because of the presence of Cs-bSNPs. 

The three coating formulations have shown almost the same crushing strength. The average 

force required to crush coated urea granules is almost 45% more than the uncoated commercial 

fertilizer. Hence, the crushing strength of granules enhanced when three coating substances 

were utilized. 
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Figure 5-9:  Crushing Strength of Uncoated and Coated Urea 

5.2  Machine Learning Results: 

5.2.1 Box Plot Presentation: 

A Box Plot is an approach employed to visually represent the distribution of a dataset. The 

shown parameters include the maximum and lowest range, median, mean, tolerance, as well as 

the lower and upper quartiles. A comprehensive grasp of the structure and origin of the box 

plot enables the assessment of data and its applications [119]. Figure 5-10 displays a box plot 

illustrating the distribution of radius and coating thickness, against their distinct values. The 

radius and coating thickness varied between 0.05cm and 2.6cm, 0.088cm and 0.71 cm, 

respectively.  

 

Figure 5-10: Box plot representation of the numerical data 
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5.2.2 Count Plot Presentation: 

A count plot visualizes the frequency distribution of categorical data [120]. In this work, count 

plots were used to assess and compare the occurrence of various polymers and additives 

employed in coating formulations. The x-axis depicts the various types of polymers and 

additives, while the y-axis shows their corresponding counts. This enables for a simple 

comparison of the usage of different materials. Figure 5-11 exhibits the count plot presentation 

of data. 

 

Figure 5-11: Count plot representation of categorical data: (a) Polymers (b) Additives 

 

5.2.3 Performance Evaluation Criteria: 

The GPR, DT, ELT, and SVM algorithms from the MATLAB package were pre-processed 

using the predefined hyperparameter specifications. Statistical measures of RMSE and R2 were 

used to assess preprocessing methods. In order to preprocess and thoroughly model the 

variables, the datasets were randomly partitioned into training datasets (80%) and testing 

datasets (20%). To reduce data wastage and overfitting, the developed models were validated 

using 5-fold cross-validation. The hyperparameter tuning ranges were determined using the 

Regression model toolbox of each model and subsequently optimized using Genetic Algorithm 

(GA) and Particle  Swarm Optimization (PSO). Once established, these hyperparameters were 

employed to construct and evaluate models. The mean values of the statistical indices were 

used to assess the performance of the validation phase in comparison to the modelling process. 
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Two specific criteria were utilized to evaluate the prediction performance of each final machine 

learning model: 

1) RMSE (Root Mean Squared Error) 

2) R2, coefficient of determination 

Presented below are the R2 and RMSE equations: 

 

 
R2 = 1 −

∑ (𝑌𝑖
𝑒𝑥𝑝 −  𝑌𝑖)

2𝑛

𝑖=1

∑ (𝑌𝑖
𝑒𝑥𝑝

−  𝑌𝑖
𝑒𝑥𝑝

)2
𝑛

𝑖

 
(5-1) 

 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
 ∑(𝑌𝑖

𝑒𝑥𝑝 −  𝑌𝑖)2

𝑛

𝑖=1

   

(5-2) 

𝑌𝑖
𝑒𝑥𝑝 𝑖𝑠 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒,   𝑌𝑖 𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

5.2.4 Prediction Performance: 

Predictions of the Release Time were made using various ML models, including GPR, ELT, 

DT, and SVM. The nitrogen release was properly predicted by all four machine learning models 

based on GA and PSO. Furthermore, we employed  optimization methodologies such as 

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) to enhance the efficiency of 

these predictive models. We employed key metrics to assess the effectiveness of the predictive 

models. The following Table 5-2,  

Table 5-3 and Table 5-4 represent the performance outcomes of each model before and after 

the implementation of optimization methods, namely Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO). 

Table 5-2: A Comparison of different ML Models 

Models 
Training Testing 

R2 RMSE R2 RMSE 

GPR 0.75 26.107 0.25 33.826 

DT 0.55 34.703 0.15 35.878 

ELT 0.65 30.626 0.13 36.384 

SVM 0.03 50.942 0.12 36.602 
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Table 5-3: A Comparison of different ML models combined with GA 

Models 
Training Testing 

R2 RMSE R2 RMSE 

GPR 0.9976 0.0173 0.9766 0.1215 

DT 0.9727 7.8056e-14 0.6431 3.0458e-14 

ELT 0.8971 1.2428 0.5211 0.7540 

SVM 0.9638 8.5285 0.3961 4.8953 

 

Figure 5-12: Comparison of training and testing graphs of different models combined with GA: (a) 

GPR Training, (b) GPR Testing, (c) DT Training, (d) DT Testing, (e) ELT Training, (f) ELT Testing, 

(g) SVM Training and (h) SVM Testing 
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Table 5-4: A Comparison of different ML models combined with PSO 

Models 
Training Testing 

R2 RMSE R2 RMSE 

GPR 0.6706 0.2434 0.9766 0.1215 

DT 0.9838 1.2274e-13 0.6431 3.0458e-14 

ELT 0.8478 3.079 0.5312 0.8828 

SVM 0.9649 7.6991 0.4284 5.1348 

 

 

Figure 5-13: Comparison of training and testing graphs of different models combined with PSO: (a) 

GPR Training, (b) GPR Testing, (c) DT Training, (d) DT Testing, (e) ELT Training, (f) ELT Testing, 

(g) SVM Training and (h) SVM Testing 
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An analysis of the four machine learning models is shown in Table 5. The outcomes indicate 

that the performance of GPR, ELT, and DT models was acceptable when compared to the SVM 

model for predicting release time. Performance of the GPR model with GA surpassed that of 

that of all other models in both the training and testing phases. Furthermore, the DT model with 

PSO outperformed all other models in both the training and testing phases. Performance of 

machine learning models has been assessed using performance coefficient (R2) and root mean 

square error (RMSE) values. The performance trends for training and testing are as follows: 

GPR>DT>ELT>SVM. 

5.2.5 Features Importance: 

The correlation between input parameters and Release time can be well described by the GPR 

model with the Shapley technique. An operational principle of the Shapley method is the 

quantification of feature attribution. The present study utilized this approach to evaluate the 

relative significance of different input parameters on the release time of coated urea fertilizers. 

The impact of coating materials and coating thickness on release time is depicted in Figure 

5-14. Significant impact on release time was observed with additives polymers and coating 

thickness, whereas the influence of radius on nitrogen release time was found to be less 

significant. 

 

Figure 5-14: Shapley analysis of GPR Model 

5.2.6 Effect of Parameters on Release Time: 

Parametric analysis of partial dependent plots (PDPs) is a statistical technique employed to 

evaluate the impact of input  factors on output. Within the PDPs, only the factors that exert an 

impact on the outcome were chosen. Figure 5-15 (a) demonstrates the influence of granular 

radius on release time. An upward trend in release time was seen as the radius was extended 
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from 0 to 0.18 cm. Machine learning models propose that the release time can be enhanced by 

increasing radius but up to a certain limit. 

The relationship between the thickness of the coating and the release time of coated urea 

fertilizer is shown in Figure 5-15 (b). Release time shows an increasing trend when coating 

thickness was increased but up to a certain limit. The combined influence of coating thickness 

and radius was demonstrated by three-dimensional PDP in Figure 5-16. 

 

Figure 5-15: 2D Plots for release time using radius and coating thickness 

 

Figure 5-16: 3D PDPs for release time using radius and coating thickness 
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5.2.7 Graphical User Interface: 

A Graphical User Interface (GUI) is a technology interface that enables individuals to engage 

with electronic devices by means of graphical icons, symbols, and user-friendly software 

implemented through a command driven interface. The GUI shown in Figure 5-17 offered 

customers the ability to enter information on coating materials, such as polymer, additives, 

granular radius, and coating thickness. The GUI uses the GPR prediction tool to estimate the 

Release Time. 

 

Figure 5-17: GUI for Release Time Prediction 
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CHAPTER 6:  CONCLUSIONS AND RECOMMENDATIONS 

6.1  Conclusions: 

The main research objective behind this research study was to experimentally evaluate the 

nitrogen release of chitosan functionalized biogenic silica nanoparticles and predict the 

nitrogen release using machine learning models trained on data collected from literature. The 

primary findings are as follows: 

• The research demonstrated that encapsulating urea granules with biogenic silica 

nanoparticles functionalized with chitosan reduced nitrogen release significantly. This 

illustrates the promise of sustainable materials like biogenic silica in reducing the rapid 

nitrogen loss caused by traditional urea fertilizers. 

• Data collected from the literature on coated urea fertilizers were utilized to train four 

machine learning models: GPR, DT, ELT and SVM to predict nitrogen release time. 

The GPR model performed best with the highest R2 and lowest RMSE. 

• The trained models were validated with experimental data, showing strong alignment 

between the predicted and observed nitrogen release time. This highlighted the value 

of employing data from literature to build predictive algorithms capable of accurately 

estimating nutrient release behavior. 

• This research successfully combines experimental results with machine learning 

approaches. This integration offers a viable approach for increasing fertilizer efficiency 

while reducing environmental effect. 

6.2  Recommendations: 

The following conclusions are proposed based on this study’s conclusion: 

• Excessive pot tests to be conducted on various plants with different soils to check the 

impact of coating on plant growth. 

• Future research should focus on increasing the dataset by incorporating more literature-

based data to improve model predictions. 

• Alternative biodegradable materials in coating formulations should be investigated to 

increase the sustainability and efficiency of slow-release fertilizers. 
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• Future research should focus on developing environmentally sustainable fertilizers that 

reduce nitrogen loss and improve nitrogen use efficiency, thus facilitating the global 

shift to more sustainable farming practices. 
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