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ABSTRACT 

Pakistan's economy is significantly dependent on agriculture, as it is an agricultural 

country. The agriculture industry requires continuous improvement to satisfy the 

increasing demand for food, which is a result of the increasing population. It is important 

to optimize the efficiency of synthetic fertilizers in order to increase crop yield. The most 

frequently applied synthetic phosphorous fertilizer to soils is Di-Ammonium Phosphate 

(DAP). This fertilizer is used to increase the phosphorus content of the soil, a significant 

portion of which is lost in the soil and is not accessible for plant uptake. This research 

study concentrates on the integration of biotechnological interventions and machine-

learning strategies to improve the uptake of phosphorus by plants.  

The Microbial Strain Bacillus velezensis FB2 and Polyvinyl alcohol solution were 

coated to the DAP fertilizer. Bacillus velezensis FB2 can solubilize unavailable 

phosphorous in soil and convert it to available phosphorous, while PVA serves as a 

barrier for the effective slow release of nutrients in soil. The coating was applied using a 

fluidized bed coater with a solution of 0.5% PVA and 4% PSB in water. The surface 

morphology of the developed product was evaluated using scanning electron microscopy 

(SEM). The presence of functional groups and crystallinity of coated granules were 

analyzed using X-ray diffraction techniques and Fourier Transform Infrared spectroscopy 

(FTIR). UV-Vis Spectroscopy was employed to analyze the release rate of phosphorous 

and nitrogen in water, and the ability of the coated product to resist applied force was 

assessed using crushing strength. 

The product that was developed was subjected to pot trials to evaluate the impact of 

various treatments on plant yield. The impact of various treatments on the height, 

diameter, number of leaves, area of leaves, soil EC, soil pH, fresh matter yield, dry matter 

yield, quantity of available phosphorus, and change in phosphorus and nitrogen uptake of 

the plants were assessed after they were at full growth. Based on soil and plant analysis, it 

was determined that DAP coated with both PSB and PVA was the most effective 

fertilizer in terms of plant growth and the quantity of nutrients in the soil and plants. This 

is due to the ability of microbial strains to solubilize phosphorus and the effective release 

of nutrients as a result of PVA coating. A machine learning model was developed to 



 

 

XVII 

predict changes in the amount of soluble phosphorus caused by the use of a microbial 

strain. Data was obtained from the literature and utilized to train and test a number of 

models, such as Ensembled Learning Tree (ELT), Guassian Process Regression (GPR), 

Decision Tree (DT) based on Genetic Algorithm (GA), and Particle Swarm Optimization 

(PSO). The GA-based ELT model demonstrated the highest performance among all 

developed models with an R2 value of 0.7938. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Fertilizers are the primary and most significant materials in agricultural fields. The need 

for food is rising due to the alarming rate at which the world's population is growing. 

Over the next 40 years, meeting this demand will be difficult due to changes in the 

climate, a decline in arable land, an increase in water shortages, and rising costs for 

agricultural inputs [1]. 

Fertilizers will play a major role in satisfying the demand for food by increasing the 

output per unit area. Soluble fertilizers are used in considerable amounts on low-fertility 

soils in order to achieve the necessary nutritional requirements[2]. Crop yield and 

nutrient uptake efficiency are therefore essential for both fertilizer producers and users to 

maximize the efficiency of any fertilizer. Because it can have an adverse influence on the 

environment if used incorrectly or if its capacity to absorb nutrients is insufficient [3]. 

The growth and metabolism of plants depend on the study of chemical elements and 

molecules. Plants cannot complete the vegetative growth or reproductive stages of their 

life cycle when there is an elemental shortage. By utilizing the energy from sunlight to 

mix chemical elements that they have absorbed in the form of inorganic compounds, all 

green plants can produce their sustenance. It is believed that seventeen elements are 

necessary for plant growth. Plants are unable to complete their vegetative or reproductive 

life cycles if any one of these 17 components is missing which are shown in Figure 1.1 

[4]. 

Plants take up inorganic minerals from the soil or water to use as nourishment. These 

minerals are found at the soil's surface. The weathering of rock minerals, and the 

decomposition of organic materials, plants, animals, and bacteria combine to generate 

these mineral nutrients [5]. Plants receive their carbon, hydrogen, and oxygen from the 

atmosphere through the air and water. It is estimated that approximately 95 percent of the 

total dry matter of the plants is composed of these three components. Depending on the 

amount that plants need, the 17 mineral nutrients needed for plant growth are categorized 

as primary, secondary, or micronutrients. Sometimes referred to as macro or major 

nutrients, primary and secondary nutrients work together. Although they are 
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macronutrients, secondary nutrients are less commonly lacking in soils [6]. Mineral 

nutrients have crucial and distinct roles in the metabolism of plants. For example, they 

can be charge carriers, osmo-regulators, enzyme reaction activators, or components of 

basic structures [7]. Plant growth and yield levels are negatively impacted by nutritional 

deficiencies. Plants create chemicals that minimize diseases, but plant nutrients are 

necessary for both their manufacture and transportation [8]. 

 

Figure 1.1: Primary, Secondary and Micro-nutrients [9] 

Plants absorb the elements through their roots and leaves in a variety of ways. Although 

the soil has high concentrations of these elements, only a small portion of them are 

typically available [10]. The chemical characteristics and forms of the nutrient determine 

its availability to plants. Additional variables include the pH, colloid interaction, and 

physical characteristics of the soil, such as moisture, air temperature, and moisture. Soil 

Essential 
Nutrients

Non-
Minerals 

Carbon (c)

Hydrogen 
(H)

Oxygen 
(O)

Minerals

Primary 
Nutrients 

Nitrogen 
(N)

Phosphoro
us (P)

Potassium 
(K)

Secondary 
Nutrients

Calcium 
(Ca)

Magnesiu
m (Mg)

Sulfure (S)

Micro-
Nutrients

Boron (B)

Chlorine 
(Cl)

Copper 
(Cu)

Iron (Fe)

Zinc (Zn)

Manganese 
(Mn)

Molybden
um (Mo)

Nickel 
(Ni)



3 

 

contains essential elements in all three physical phases (solid, liquid, and gas) [11]. Table 

1.1 lists the essential components along with their various forms. 

Table 1.1: Essential Plant Nutrients and Their Plant-Available Forms [12] 

Plant Nutrient Plant Usable form Average concentration in 

plant tissue 

Basic Elements 

Carbon (C) CO2 45 per cent 

Hydrogen (H) H2O 6 per cent 

Oxygen (O) H2O, O2 45 per cent 

Primary Elements 

Nitrogen (N) NO3
-, NH4

+ 1.5 per cent 

Phosphorous (P) H2PO4
-, HPO4

2- , PO3
3- 02 per cent 

Potassium (K) K+  

Secondary elements 

Sulfur (S) SO4
2- 0.1 per cent 

Calcium (Ca) Ca2+ 0.5 per cent 

Magnesium (Mg) Mg2+ 0.2 per cent 

Micronutrients 

Iron (Fe) Fe2+, Fe3+ 100 mg/kg 

Zinc (Zn) Zn2+ 20 mg/kg 

Maganese (Mn) Mn2+ 20 mg/kg 
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Boron (B) H3BO3, H2BO3
- , BO3

3- 20 mg/kg 

Copper (Cu) Cu2+ 6 mg/kg 

Chloride (Cl) Cl- 100 mg/kg 

Molybdenum (Mo) MoO4
2- 0.1 mg/kg 

Nickel (Ni) Ni2+  

 

1.2 P role in Plants 

Phosphorous (P) is a main nutrient essential for plant growth because of its important role 

in metabolic and various other activities. P has a significant role in soil having both acidic 

and basic properties as it controls the yield of crops. ADP and ATP have a major role in 

energy conversion and storage processes in plants which are made up of P. Other than 

these, P is important for many major processes essential for plant development including 

photosynthesis, respiration, membrane development, and glycolysis [13], which is 

illustrated in Figure 1.2.  
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Figure 1.2: Role of Phosphorous in plants and the effect of its deficiency 

It helps in root growth, development of stem, seed production, maximum crop 

production, and nitrogen fixation processes, all of these make P an important part of 

plants and crops and its availability affects the yield. Figure 1.2 shows the role of P in 

plant growth and the effect of P deficiency in soil. Although soil contains 170 minerals 

that supply phosphorous, only a very small amount (<1%) is dissolved in soil [14]. P 

reacts with ions present in both acidic and basic soil; in acidic soil, it gets bonded with Fe 

and Al while in basic soil it forms bonds with Ca, Mg, K, and Na ions.  P is present in 

soil in two forms including organic P (Orthophosphate, nucleic acid, and phospholipids) 

and inorganic P (Soil Solution, Sorbed P, and mineral P) [15]. The only forms of P that 

are utilized by plants include primary and secondary orthophosphate ions (H2PO4)
-1 and 

(HPO4)
-2 [16]. P deficiency in plants is caused by the fixation of added P from chemical 

fertilizers with ions present in the soil as a result of adsorption and precipitation reactions 

[17].  

Due to the ability of P to rapidly react with cations like Ca2+ and Mg2+ in calcareous soils 

or Al3+ and Fe3+ in acidic soils, P is quickly immobilized in the soil when applied as 
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fertilizer. Additionally, due to a large number of soil microorganisms P cycle is impacted 

in numerous ways: although some rhizobacteria and arbuscular mycorrhizal (AM) fungi 

may help plants acquire phosphorus (P), some microorganisms have the reverse effect 

since they compete with roots to uptake P and since their actions converts P in organic 

form which is challenging for plants to absorb [18]. 

Even with a carefully designed P fertilization plan, only 30% of P applied can be used by 

plant roots; the remaining part is lost due to microbial activity and soil fixation. Due to 

these conditions, excessive fertilizer use has taken place, resulting in the accumulation of 

water reserves with undesired nutrients which produce eutrophication and hazardous 

algal blooms [19]. 

Due to these factors, effective uptake and utilization of P in soil is of very importance and 

must be enhanced. There are different ways to increase P uptake in plants by solubilizing 

precipitated P using microorganisms, zeolites, and organic matter [20]. The primary 

objective of this study is to find out and optimize the ways to enhance P acquisition 

efficiency in plants.  

1.3 Machine Learning  

 

Agricultural activities have been the primary and most conspicuous activity of all societal 

structures since the beginning of human history. Not only does it constitute a substantial 

part of the growing economy, but it is also essential for human survival. In addition to 

this, it holds an important part of the employment market. With time, there has been a 

significant increase in the need for manufacturing. The incorporation of technology in 

order to get the intended results is the challenge that the agriculture industry in Pakistan 

is looking to overcome [21]. To be successful, the new agricultural system needs to be 

effective, resilient, diverse, and long-term in character. Additionally, it needs to expand 

rapidly. Artificial Intelligence (AI) and Machine Learning (ML) can address the 

challenges posed by this new paradigm if they are able to make use of the data that they 

have obtained [22]. Agricultural markets can make better judgments based on data with 

the assistance of these methods. People are generating, delivering, and consuming food in 

different ways because of the impact of artificial intelligence. To provide support and 

insight into sustainable farming, crop protection, infection control, optimal harvesting, 
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food preferences, logistics, food security, and other agricultural-based duties, scientists 

apply methodologies driven by artificial intelligence (AI) throughout the entire food 

supply chain [23]. A number of factors, including its adaptability, superiority, and cost-

effectiveness, are the primary reasons for the application of artificial intelligence in 

farming. The usage of these technologies results in a reduction in the quantity of water, 

pesticides, and herbicides that are employed. Additionally, they contribute to the efficient 

utilization of labor and enhance the quality of the product. 

The primary objective of this study is to examine the utilization of technologies such as 

Machine Learning (ML) to estimate the quantity of phosphorous present in soil and, 

consequently, its impact on crop production. A relatively new technology known as 

machine learning is providing farmers with comprehensive crop suggestions and insights, 

which is helping them to reduce the amount of money they lose from farming [24]. The 

technique is a quickly expanding strategy that is supporting every industry in making 

feasible judgments to create the most renowned of its applications. They are doing this by 

assisting the technique. To increase the overall productivity of the agriculture industry, 

the basic idea is to make use of Machine Learning models. The purpose of the research is 

to devise a method that will not only automate agricultural processes but also provide 

farmers with the ability to make educated decisions regarding the most efficient way to 

apply fertilizer [25].  

Supervised learning is one of the two primary branches of machine learning that enables 

models to predict future outcomes after they have been trained based on data from the 

past with the help of supervised learning. To train the model, we make use of 

input/output pairs or labeled data [26]. Our objective is to generate a function that is 

sufficiently approximated to be able to predict outputs for new inputs when they are 

presented to them. Regression and classification problems are the two available 

categories of supervised learning opportunities. In situations where the outputs are 

continuous, a regression problem arises; in situations where the outputs are categorical, a 

classification problem arises. 

 The prediction of the amount of available phosphorous in the soil after a phosphorous-

solubilizing bacteria has been used falls in the category of regression analysis [27] . This 

research study aims to determine the links that exist between the amount of phosphorous, 
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which is the dependent variable, and other independent factors such as the pH of the soil 

and the amount of phosphorous that is present in the soil. The significance of regression 

analysis lies in the fact that it enables one to determine the factors that are of the utmost 

importance, those that are susceptible to being neglected, and the connections that exist 

between those variables [28].  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Phosphorous cycle in soil 

The soil contains three P pools: labile P which is regarded as active P, non-labile P also 

known as fixed P, and soil solution. In the soil solution, phosphorus exists as the 

orthophosphate ions. Highly acidic soils (pH 4 to 5.5) are dominated by monovalent 

anions (H2PO4)
-1, while higher pH levels are dominated by divalent anions (HPO4)

-2 [29]. 

Normally, this P pool is easily accessible to plants or can be converted into secondary 

minerals. The portion of phosphorus (P) that is uptaken by plants and chemically free, 

ready to exchange ions, and can react in the soil is termed labile P (Al-P, Fe-P, and Ca-P) 

[30]. Sesquioxides or carbonates, crystalline substances, are abundant with labile and 

bioavailable phosphate bonded onto their surfaces. By forming relatively weak bonds, P 

is attached to the components of soil and organic material. When quantity of P in the soil 

solution falls, P in labile pool refills the dissolved P. The amount of phosphorus (P) that 

is not easily accessible to plants due to formation of complexes with oxides and 

hydroxides of Fe, Ca and Al is contained in mineral complexes like apatite also referred 

as non-labile part. The transformation of non-labile P to labile P and soil solution is 

slower because the non-labile P is difficult to solubilize. Only primary and secondary 

minerals can dissolve to release non-labile P. The P in these three pools is continuously 

transferred from one form to another; in order to maintain equilibrium as illustrated in 

Figure 2.1. For instance, when plants absorb P from the solution, the labile fraction 

replaces it, whereas the non-labile fraction restores it more gradually [31]. 
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Figure 2.1: Phosphorous Cycle in Plants [32] 

2.1.1 Precipitation and adsorption reaction 

The retention mechanism of phosphates involves both precipitation and adsorption 

processes. Phosphate ion adsorption over crystalline clay compounds, sesquioxides, or 

carbonate surfaces is the predominant mechanism when the concentration of 

orthophosphate is less. On the other hand, soluble P gets precipitated with cations at high 

orthophosphate concentrations to form Fe and Al phosphates at low pH and Ca and Mg 

phosphates at high pH in acidic and basic soil respectively. The adsorption procedure is 

thought to be crucial for controlling the dissolution of P for a short period of time. 

A rapid increase in soil solution P content is viewed by the addition of soluble P in the 

soil as fertilizers or additives. These P parts then go through processes like precipitation 

or adsorption to lose some of their solubility. The soil pH is the governing parameter in 

certain chemical processes. Al3+ and Fe3+ ions typically precipitate with H2PO4 ions in 

acidic soils resulting in insoluble hydroxyl phosphates (Figure 2.2) which can hardly be 

accessed  by plants [33]. 
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Figure 2.2: Precipitation (a) and adsorption (b) reaction in phosphorous fixation process  

[34] 

Ligand exchange reaction takes place when orthophosphate ions replace metal hydroxide 

or oxides on clay surface (Figure 4b). Because P becomes an essential part of the oxide 

mineral during the reaction, its ability to desorb in soil solution is less. 

 

2.1.2 Dissolution, Desorption, and Mineralization Reactions 

Dissolution is the process of dissolving phosphate minerals releasing P back in soluble 

form. The dissolution of soil minerals depends on hydrogen ions, which often come from 

the soil or through the discharge of roots or microorganisms which act as a sink for 

calcium and phosphorus [35]. 

Desorption, which is the opposite of sorption, is the process by which sorbed P is 

dissolved from clays, oxides, and minerals and diffuses into the soil solution, having a 

concentration gradient as a driving force. This happens when plant uptake of P reduces 

the quantity of soluble P in the soil solution to a minimal level and creates a 
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concentration gradient that makes it easier for the gradual release of P adsorbed from the 

soil components to maintain equilibrium in P pools [36]. 

Mineralization and solubilization can enhance accessible P in addition to dissolution and 

desorption processes. A large number of microorganisms present in soil and its 

rhizosphere, in the natural environment, are effective in releasing P from the total soil P 

by mineralization and solubilization. Phosphate-solubilizing microorganisms are 

microbes that convert insoluble P into soluble P and monitor P cycle in soil [37].  

2.2 Factors affecting phosphorous availability in soils 

Phosphorus is returned to the soil solution by dissolution, desorption, and mineralization 

of organic materials. The soil properties that control P sorption and desorption affect P 

availability to plants. It includes the amount of clay and its mineralogy, organic matter, 

soil pH and concentration of Al3+, Fe3+, and Ca2+ ions in the soil solution as shown in 

Figure 2.3. 

 

Figure 2.3: Factors affecting Phosphorous availability in soil 

 

 

2.2.1   Clay content and mineralogy 
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Fe and Al concentration as well as the amount of clay in acidic soils regulate phosphorus 

release. Al and Fe oxides present in clay cause adsorption of P due to which clays with 

high concentrations of Fe and Al oxides such as 1:1 Clays (Kaolinite) have a higher 

tendency for P adsorption as compared to 2:1 clays (monmorillonite). In other words, a 

given type of clay has a stronger potential to adsorb P; the more surface area it exposes. 

By exchanging out the hydroxide ion (OH) from clays, phosphate is strongly adsorbed on 

clay surfaces. Additionally, the degree of P retention is significantly influenced by the 

amount of clay in a soil profile, with higher P retention in soils having high clay content 

[38] [39]. 

 

2.2.2 Organic matter  

The addition of organic matter can increase P availability since it can solubilize fixed P in 

soil and chelate Al3+
 and Fe3+ ions. Humic compounds, such as carboxyl, hydroxyl, and 

carbonyl, which have several negative charges and functional groups, make up organic 

matter [40]. These functional groups prevent their interactions with P by forming stable 

complexes with Al and Fe. Sesquioxides can be coated with organic material to minimize 

adsorption of P, releasing more P for plant uptake [41]. Low molecular weight organic 

acids like citric, oxalic, tartaric, and malic acids are created when organic matter is 

mineralized. By strongly competing for the adsorption sites, this process decreases P 

adsorption in soil. Organic acids produced due to the breakdown of organic matter or that 

are introduced to the soil system via wastewater also help to maintain a larger amount of 

soluble phosphorus by lowering P adsorption [42]. 

2.2.3 Soil pH 

In terms of orthophosphate bioavailability, soil pH is significant. Soil pH can alter the 

content of Fe and Al oxides present in soil which cause precipitation of P in soil. The best 

pH range for soil P availability is between 6.5 and 7.0. The relationship between soil pH 

and P fixation is shown in Figure 2.4. 

 



14 

 

 

Figure 2.4: Effect of pH on Phosphorous availability in soil [43] 

Due to the possibility of orthophosphate being locked out of the soil solution, Al3+ and 

Fe3+ ions can be problematic in acidic soils.  Orthophosphate reacts with Fe and Al ions 

present in soil forming insoluble compounds of Fe-P and Al-P In acidic soil, P becomes 

unavailable due to two different reactions: Precipitation of P with Al3+ and Fe3+ ions and 

sorption reaction of P with oxides and hydroxides. Following chemical reactions take 

place as a result [44]. 

Precipitation reaction; 

𝐹𝑒3+ + 𝐻2𝑃𝑂4
− → 𝐹𝑒(𝐻2𝑃𝑂4)2+ 

Sorption reaction;  

𝐴𝑙(𝑂𝐻)3 + 𝐻2𝑃𝑂4
− → 𝐴𝑙(𝑂𝐻)2𝐻2𝑃𝑂4 + 𝑂𝐻− 

𝐹𝑒(𝑂𝐻)3 + 𝐻2𝑃𝑂4
− → 𝐹𝑒(𝑂𝐻)2𝐻2𝑃𝑂4 + 𝑂𝐻− 

Reaction with Ca; 

3𝐶𝑎(𝑂𝐻)2 + 2𝐻3𝑃𝑂4
− → 𝐶𝑎3(𝑃𝑂4)2 + 6𝐻2𝑂 

3𝐶𝑎𝐶𝑂3 + 2𝐻3𝑃𝑂4
− → 𝐶𝑎3(𝑃𝑂4)2 + 3𝐶𝑂2 + 3𝐻2𝑂 

2.2.4 Sesquioxides 

The oxides of iron and Al present in soil adsorb a large amount of P. Iron and Al oxides 

in soil adsorb a high content of P which can be related to their high P fixation ability. It 

has also been found that the amount of sesquioxides in the soil affects the adsorption 
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capacity of soils. Al-oxides have a higher ability to adsorb P as compared to Fe-oxides 

[45]. 

2.2.5 Calcium carbonate 

P in soil gets adsorbed on CaCO3 particles present in soil which have a high surface area. 

The coating of Fe oxides increases the adsorption ability of CaCO3 [46].  

2.2.6 Effect of Cations  

The presence of divalent cations like Ca2+ in soil increases P retention considerably more 

than the presence of monovalent ions like Na. The occurrence of Ca2+ ions in the 

soil increases the potential of P adsorption by increasing the availability of positively 

charged sites to phosphate ions. This happens when the pH drops below 6.5 [47].   

2.2.7 Effect of Anions 

Anions including NO3- and Cl- have a low impact on P adsorption, whereas OH-, (SO4)
2-, 

and HSiO3
- have the tendency to compete with P anions to get adsorb on available sites. 

Their bonding strength determines the resultant effect [48].  

2.2.8 Temperature  

The inability of plant roots to expand in low temperatures limits the amount of 

phosphorus (P) available to plants. When soil temperatures are raised to the optimal range 

(25-30°C), microbial activity is increased, leading to a high mineralization rate [49]. 

2.2.9 Liming 

When acid soils are limed, polynuclear complexes of Al are formed, and they 

significantly adsorb P, reducing the available P concentration present in the soil. In 

addition, H2PO4
- is dissociated into HPO4

-, which is more conveniently adsorbed by soil, 

when the pH of the soil is raised through liming. To increase plant availability of 

phosphorus, soil pH can be raised at low rates using lime, leading to a significant 

decrease in soil exchangeable Al [50].  
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2.3 Phosphorous Solubilizing Bacteria (PSB) 

For a long time, scientists have recognized that the bacterial population displays 

significant differences in its capacity to solubilize P in soil. Pseudomonas, Azotobacter, 

Burkholderia, Bacillus, and Rhizobium are all prominent soil bacteria that have been 

shown to increase P availability [51]. PSB produces organic acids and converts fixed soil 

phosphorus, to transform inorganic insoluble P to soluble form. The use of PSB would 

therefore not only reduce the need for fertilizers but would also aid in converting 

insoluble phosphates already in the soil to more usable form. Since the beginning of the 

eighteenth century, PSB-related research has been documented [52]. 

Bacilli and Pseudomonas stains are found to be the most efficient in Ecto-rhizospheric 

isolates, a bacterial community in soil. Most PSB may be found in the rhizosphere, and P 

solubilizers from the rhizosphere act more metabolically than those from other sources. 

There are several distinct types and populations of PSB, which vary from soil to soil. The 

bacterial population in 1g of fertile soil ranges between 100 to 1,000 bacteria, which are 

present in many shapes and sizes, like bacilli (rod, 0.3–0.5 µm), spiral (1–100 µm), and 

cocci (sphere, 0.5 µm) [53].  

Therefore, it may be possible to develop more effective biofertilizer agents by identifying 

the underlying genetic pathways and working to improve their rhizosphere competency. 

Phosphorus solubilization with bacteria depends on the creation of metabolites such 

organic acids, which can chelate cations linked with phosphates with their carboxyl and 

hydroxyl groups [54]. 

Hormones for plant growth including auxin, gibberellins (GA1, GA3, GA5, GA18, and 

GA19), and abscisic acid have been reported to be secreted by the novel strain Bacillus 

tequilensis, and inoculation with this strain has been proven to develop plant biomass, 

leaves structure, and photosynthetic pigment in soybean in heat stress. An increase in 

jasmonic acid concentration and salicylic acid amount was also detected in the 

rhizosphere, but the amount of stress abscisic acid decreased [55]. Pseudomonas 

plecoglossicida isolated from soybean rhizosphere, is an example of a recently identified 

elite strain that can be used as a biofertilizer to solubilize large amounts of phosphate and 

create hormones required for the development of plants which include indole acetic acid 

at levels as high as 38.89 ppm. The strain of Gordonia terrae is known for its ability to 
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solubilize phosphorus to an extent of 299.3 mgL-1 under extreme brine conditions, i.e., 

1.5 M NaCl concentration. Through interaction with the host immune system, the 

bacterial hormone indole acetic acid inhibits fungal pathogen growth [56] [57]. 

2.4 Mechanism of Phosphorous Solubilization through PSB 

The primary focus of phosphorus solubilization mechanisms is the regulation of critical 

parameters of the phosphorous cycle in soil, including dissolution-precipitation, 

mineralization-fixation, and adsorption-desorption [58]. These components are not only 

associated with microbial strains but also governed by phospholipids-related genes. Acids 

and enzymes are secreted by most phosphate-solubilizing bacteria, which can also form 

chelates or complex metal ions (Ca+2, Fe2+, Al3+) in the soil to liberate phosphate ions. 

This process mineralizes or hydrolyzes the insoluble phosphate ions in the soil. There are 

a few of PSBs that can alter the pH of the environment by the release of gases like CO2 to 

solubilize unavailable phosphorous. PSB has a tendency to maximize phosphorus 

accumulation in soils by modifying the microbial community within the soil. The 

diversity of the microbial community and the associated enzymes are increased by PSB 

in the soil, which in turn alters the phosphorus composition of the soil and improves crop 

yield [59] (Figure 2.5). 

 

Figure 2.5: Mechanism of Phosphorous Solubilization [51] 

 

The solubilization mechanism of PSB is changed by altering structure and occurrence of 

bacterial communities in the soil, which are discussed below: 
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2.4.1 Physiological Mechanism 

2.4.1.1. Solubilizing Mechanism of Acids 

The mechanism of both organic and inorganic acids is involved in acidolysis; the 

majority of PSB secrete organic acids, while only a small number secrete inorganic acids. 

During the growth process, PSB bacteria have the capacity to secrete a variety of lower 

molecular weight organic acids, like malic acid, acetic acid, succinic acid, tartaric 

acid, fumaric acid, propionic acid, glutamic acid, 2-ketogluconic acid, saccharinic 

acid, lactic acid,   and oxalic acid [60]. Under low pH conditions, these low-molecular-

weight organic acids can chelate with metal ions in the soil (Ca2+, Fe2+, Al3+) through 

hydroxyl and carboxyl groups [61]. They can compete with phosphate ions for adsorption 

sites in the soil due to their Ca2+ chelation ability, which is their most important trait. 

Both the solubilizing capacity of inorganic phosphorus and the uptake of phosphate by 

the soil is increased because of this disparity, which ultimately leads to an increase in the 

solubility and availability of mineral phosphates [62]. Nevertheless, the adsorption 

capacities of various organic acids for phosphate are significantly different, and distinct 

PSBs produce different types of organic acids (Table 2.1). A small number of PSBs also 

secrete inorganic acids, such as hydrochloric, sulfuric, nitric, and carbonic acids. These 

acids are capable of dissolving inorganic phosphorus and lowering the soil pH. When 

compared to organic acids, however, they do not perform as efficient at same pH level 

[63]. 

  

Table 2.1: Organic acids secreted by different PSBs 

Phylum PSB 

Species 

PSB Source Secreted 

Organic Acids 

Reference 

Proteobacteria Enterobacter 

aerogenes 

Mangrove 

rhizosphere soil 

Lactic acid, 

succinic acid, 

isobutyric and 

acetic acid 

[64] 

Firmicutes Bacillus Rice paddy soil Citric acid, 

Gluco-oxalic 

[65] 
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acid, 

Succinic acid 

Actinobacteria Tsukamure-

llatrosinosolvens 

Tea tree 

rhizosphere soil 

Lactic acid and 

maleic acid  

[66] 

 

It is PSB that secretes organic molecules that influence the roots of plants. This 

rhizosphere effect, which involves an increase in the bacterial communities and relative 

abundance of controlling bacteria in the rhizosphere zone, has an indirect impact on the 

amount of phosphorus that is accessible in the soil [67]. Although the acidic environment 

that is produced by organic acids compatible for the enrichment of PSBs, it is also rather 

specific. Take, for example, the bacteria Pseudomonas fluorescens WCS365, which is 

capable of colonizing tomato roots and may be responsive to both citric and malic acids 

[68]. Watermelon roots produce citric and malic acids, which enhance the colonization of 

roots by the rhizosphere microbial strain Bacillus polymyxa SQR-21 [69].  

It is possible to significantly improve the mechanism of phosphate solubilization through 

research into the synthesis of organic acids in the interaction between the plant root 

system, the PSB network, and the plant root system. 

 There have been several studies that have found that the release of organic acids is one 

of the primary ways that PSB operates; nevertheless, there are still some people who have 

alternative opinions. During their research, Zhao and colleagues came to the realization 

that the phosphorus-solubilizing capacity of PSB did not have any connection with the 

amount of organic acid present in the medium [70]. A strong association between the 

ability of bacteria to solubilize phosphate and the secretion of organic acids was not 

always shown to exist, according to the findings of this study. In addition, the crucial 

mechanism that exists between organic acids and bacteria that are capable of phosphate-

solubilizing was not completely investigated, and it is necessary to conduct additional 

research on this topic. 

 

2.4.1.2 Mineralization Action of Enzymes 

PSB is responsible for the secretion of enzymes that are responsible for the 

mineralization of organophosphorus, which is one of the key processes of 
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dephosphorylation (Table 2.2). There are a few enzymes that have been found to have a 

dephosphorylating action, the most prominent of which are phytases, phosphatases, and 

C-P enzymes. It has also been established in many trials that PSB boosts enzyme activity 

in the soil, which ultimately increases the amount of phosphorus that is available in the 

soil [71]. However, the mineralization of organic phosphorus is influenced by various 

hydrolytic enzymes in distinct ways. Phosphatase, which is also referred to as 

phosphomonolipase, is primarily encoded by olpA and is organized into three types: 

acidic, alkaline, and neutral phosphatases [72]. ACP is more effective in mineralizing 

organic phosphorus in acidic soils with pH values below 7. Alkaline phosphatases, also 

known as ALPs, are enzymes that are largely responsible for the hydrolysis of 

phospholipids (such as phosphoglucose-6 and ATP) and the release of inorganic 

phosphorus in soils that have a pH of more than 7. In contrast, neutral phosphatases do 

not have a significant impact on phosphorus mineralization and hydrolysis, as opposed to 

acid and alkaline phosphatases. Phytase is an additional type of phosphatase that is 

primarily responsible for the mineralization of organic phosphorus in phytate [73]. 

Table 2.2: Different enzymes secreted by PSBs 

PSB Species PSB Source Secreted Enzymes Source 

Pantoea sp.  Forest soil Phytase [74] 

Enterobacter sp. Rhizosphere soil of  

bamboos 

ACP [75] 

Pseudomonas 

asiatica 

Ant hill soil ALP [76] 

Burkholderia sp. Zea mays soil ACP [77] 

 

2.4.1.3 Chelation and Complexation 

Chelation and complexation are two fundamental processes that play a role in phosphorus 

solubilization. These mechanisms are based on the idea that the functional group binds to 
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metal cations in the soil, which then releases phosphate and makes it easier for 

phosphorus to be dissolved [78]. The degradation of plant and animal wastes, the 

formation of siderophores by phosphorus-solubilizing bacteria, and the utilization of 

extracellular polysaccharides are the keyways that are now utilized for the processes of 

chelation and complexation. Siderophores are molecules that are quite small and have a 

low relative molecular weight. Phosphate-dissolving bacteria create siderophores that 

chelate Ca+2, Fe3+, and Al3+  in the soil, thereby releasing phosphate ions for phosphate 

dissolution. This occurs when the amount of iron stress in the soil is low [79]. As a result 

of the formation of metal-iron carrier complexes, these complexes have the capability of 

binding to iron carrier receptor proteins that are located on cell membranes, which 

enables them to enter cells. The uptake of iron by plants is facilitated by this mechanism, 

which also accelerates the growth of the plants. PSB is responsible for the secretion of 

extracellular polysaccharides, which are sugar polymers with a high molecular weight 

that are linked to the surfaces of bacteria [80]. Anions, such as phosphate, carboxyl, and 

succinate groups, as well as numerous -OH and -COOH acid groups on the surface of 

these polymers, can form complexes with the metal cations that are present in the soil. 

PSB is responsible for the production of compounds that are like humic acid during the 

process of degrading plant and animal wastes. In addition, these chemicals can chelate 

Ca+2, Fe3+, Al3+ in the soil, which results in an increase in the amount of phosphorus that 

is available and the release of phosphate [81]. 

2.4.2 Molecular Mechanism 

The molecular mechanism of PSB is also crucial, in addition to the physiological 

mechanism that it possesses. It is important to note that the research community does not 

yet have a thorough understanding of the molecular mechanism that underlies the PSB 

pathway [82]. Because of this, the mechanism of PSB metabolism is gradually developed 

by the integration of several functional genes and the metabolites that they regulate [83]. 

2.4.2.1 Functional Genes Related to the Regulation of Acidolysis 

The synthesis and secretion of organic acids are the key processes by which PSB 

solubilizes phosphorus. This is even though the mechanism of acidolysis has not been 

thoroughly studied [84]. Among the genes that have been discovered as potential 

regulators of phosphate solubilization, only a limited number of genes have been 
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identified. These genes include pyruvate dehydrogenase (poxB), glyoxylate reductase 

(gyaR), l-lactate dehydrogenase (ldh), and 6-ketoglucuronate reductase (ghrB) [85]. The 

research that has been done on the TCA cycle and the acidolysis mechanism of PSB is 

limited, and additional research is required to acquire a complete understanding of these 

topics [86].  

2.4.2.2 Functional Genes  for Enzymolysis 

There are several enzymes that are encoded by several carrier genes in PSB. These 

enzymes include alpha-phosphatases, phytase, acid phosphatases , extracellular 

polyphosphatase, C-P cleavage enzyme , and polyphosphate kinase. Alkaline 

phosphatases, specifically phoD and phoA, have been the subject of a significant amount 

of research among these enzymes [84]. There are three gene families (phoA, phoD, and 

phoX) that are identical to one another, and each of these gene families is responsible for 

determining the generation of alkaline phosphatase in PSB. Pho regulator is comprised of 

these genes in its entirety [87].  

2.4.3 Mechanisms of Microbial Community Effects 

Research that is currently being conducted on PSB mechanisms focuses primarily on 

microorganisms. Furthermore, in addition to the actions that are carried out by bacteria, 

changes in the nutrients that are present in the soil also have a specific influence on the 

phosphorus-solubilizing activity that bacteria have. In addition, the interaction between 

PSB and native microorganisms in the soil can have a direct impact on the composition 

and activity of soil microorganisms, which in turn means that the process of phosphorus 

conversion in the soil can be altered. 

2.4.3.1 Influence of Soil Nutrients on the Occurrence of PSBs 

A direct correlation exists between the population abundance of PSB and the phosphorus-

solubilizing capacity of PSB. This population abundance is closely related to the nutrient 

cycling that occurs in the soil. Externally applied fertilizers can improve soil nutrients 

and influence the number of bacterial populations that are capable of dissolving 

phosphates. This is accomplished through the use of pH and C:N:P stoichiometry [88]. 

The ratios of carbon, nitrogen, and phosphorus content in the soil are the main factors 

that influence changes in the composition and activity of PSB [89]. Multiple experiments 

have successfully verified that the continuous and external introduction of inorganic 
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phosphorus, biochar, and organic carbon leads to an increase in pH. Additionally, the 

presence of PSB communities is found to be positively associated with pH, biomass, 

phosphorus content, and phosphorus uptake [90] [91]. However, the impact of applying 

nitrogen fertilizer on the number of PSB communities is not very evident.  

2.4.3.2 Influence of PSB on Soil Microbial Systems 

The biodiversity and microbiological makeup of soil are adversely affected by current 

agricultural techniques, which are also unsustainable [92]. PSB, on the other hand, has a 

more favorable impact on soil microbes. The incorporation of PSB into soils can impact 

the diversity and population of the native microbial community. While the presence of 

PSB may increase the amount and variety of microorganisms, certain studies have proved 

that the application of PSB leads to a notable reduction in the amount of the indigenous 

microbial community, an increase in the population of the inoculated PSB, and an 

elevation in the soil phosphorus content [93]. There exists a favorable correlation 

between the number of bacterial communities and the growth of certain compounds 

connected to the phospholysis mechanism, such as phosphatase and phytase [94]. Hence, 

the involvement of the bacterial community in the process of phosphorus solubilization 

can be indirectly enhanced through the interaction between PSB and native 

microorganisms [95] [96]. 

2.5 Overview of Machine Learning Models 

 

As part of this research work, supervised machine learning models have been utilized. 

These models employ regression techniques to produce predictions regarding the quantity 

of phosphorous that has been solubilized. For the purpose of developing a model that can 

accurately anticipate output, approaches such as Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO) are utilized.  

2.5.1 Genetic Algorithm 

An evolutionary algorithm that models the process of biological evolution is referred to 

as a genetic algorithm (GA). In 1975, Holland put up an idea that may be applied to 

genetic algorithms. The theory of evolution proposed by Charles Darwin, which 

mimicked the preservation of superior species and the genes of those species, affected 
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genetic analysis. A great number of scholars have made use of generalized estimating 

equations to evaluate the resolution of difficult problems whose performance parameters 

do not possess the characteristics of continuity and differentiability. 

An algorithm that works with a collection of solutions rather than selecting a single 

answer is called a genetic algorithm. This type of algorithm is a population-based feature 

selection type of algorithm. From the beginning, the population is selected, and each 

solution is encoded as a chromosome of genes or bits. A population is a collection of 

solutions, and each and every chromosome has its own fitness value. When all of these 

chromosomes are joined, they are referred to as a population. 

 The concepts of genetic inheritance and natural selection serve as the foundation for this 

method, which is known as an inhabitant's algorithm. Each set of solutions represents a 

chromosome, and each parameter represents a gene in the organism. Fitness is an 

objective function that is used by GA to measure the fitness of each individual member of 

the population. In order to improve solutions that are not satisfactory, a selection strategy 

is utilized to select the best possibilities in an arbitrary manner. Furthermore, throughout 

the process of selecting wrong replies, there is a greater possibility of avoiding local 

optimal solutions. It is necessary to repeat this process until either an optimal solution is 

found, an extreme integer of repetitions or population is understood, or a 15-point 

variance between solutions is smaller than a limit that has been defined. Because it 

retains the finest solutions in each iteration and makes use of them to improve succeeding 

possibilities, this method is dependable and can calculate the global optimal solution for a 

particular problem.  

2.5.2 Particle Swarm Optimization (PSO) 

PSO is a swarm-based stochastic algorithm that was initially introduced by Kennedy and 

Eberhart. It takes advantage of the principles of the social behavior of animals, such as 

fish schooling and bird flocking, to solve problems [97]. In PSO, every possible answer 

to a certain problem is viewed as a particle with a specific velocity that is moving through 

the space of the problem in the same manner as a flock of birds are moving through the 

space. Each particle then combines, with some random disturbances, some aspect of the 

record of its own historical best location and present location with those of one or more 
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agents of the swarm to calculate its next movement through the search space. This 

process is repeated until the desired movement was determined. When all of the particles 

have been relocated, the subsequent iteration will take place. It is likely that the swarm 

(for example, a flock of birds that are all looking for food together) will eventually get 

closer and closer to the optimal value of the objective function. PSO has finally been 

quite popular among researchers and has emerged as a method that offers great 

performance in a variety of application areas. It also can hybridize and specialize, as well 

as exhibit some emergent features that are interesting. One of the primary benefits of 

PSO is that it requires fewer parameters to be tuned. Particle swarm optimization (PSO) 

can get the optimal solution because to the interaction of particles; nevertheless, due to 

the high-dimensional search space, it converges at a relatively slow speed towards the 

global optimal solution. In addition, it produces findings of poor quality when applied to 

datasets that are both complex and extensive. There is a high probability that PSO will 

not be successful in locating the global optimal solution when the problem at hand 

contains a significant number of dimensions. It is not only the presence of a local optima 

trap that is responsible for this phenomenon; it is also the potential fluctuation of the 

velocities of particles that causes the consecutive range of trials to be bounded inside a 

sub-plain of the overall search hyper-plain [98]. 

2.5.3 Ensemble Learning Tree 

Tree-based models that anticipate output by applying logical principles are the foundation 

of the decision tree, which is the machine learning technique that is utilized the most to 

this day. Instead of relying on a previous correlation between the input and output 

properties, it generates a regression model that is based on the tree structure of the 

conditional statement. Decisions are made by DT based on the attributes included within 

the dataset in order to divide the data into more manageable categories [99]. 

2.5.4 Gaussian Process Regression 

GPR is a Bayesian tool that is implemented as an efficient learning model for the purpose 

of solving nonlinear regression issues. In addition to making predictions, this method is 

also capable of delivering the coefficient of determination for each prediction point. This 

coefficient is a measurement of the uncertainty associated with the forecast [100]. It is 

possible that probability distributions could be categorized as Gaussian processes. In 
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order to determine the probability of an input vector, the mean and variance of a Gaussian 

distribution are utilized in the calculation. The GPR model generates a mean and 

correlation vector rather than a scalar mean and variance. This makes the model more 

accurate. GPR provides a method for directly and quantitatively adjusting the locality of 

the interpolation, which is embedded in the assumption that the interpolation is smooth 

[101].  
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CHAPTER 3 OBJECTIVES 

1. Optimization of polymer concentration for PSB coating  

2. Synthesis of coated DAP fertilizer using fluidized bed coater 

3. Microbial Survival Evaluation of coating solution and coated product 

4. Physical and Chemical analysis of PSB and polymer-coated fertilizer 

5. Pot test experiment and analysis 

6. Development of a machine learning model for prediction of P uptake in plants 

using phosphorus-solubilizing bacteria  
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CHAPTER 4 MATERIALS AND METHODS 

Coating materials and coating techniques are discussed in this chapter. Characterization 

techniques and pot trials are also described.  

4.1 Materials 

Phosphate Solubilizing Bacteria (Bacillus Velezensis FB2 strain) , Polyvinyl Alcohol, 

Tryptone, Agar, Yeast, NaCl, DAP fertilizer, urea and water were used in the 

experiments.  

 

 

Figure 4.1: Experimental Design Methodology 

 

 

4.2 Determination of Optimum Polymer concentration 

Different solutions of Phosphate Solubilizing Bacteria (PSB) and Polyvinyl Alcohol 

(PVA) were specifically formulated. The PVA composition was experimentally altered in 

these solutions to determine the optimal composition for maximizing microbial viability. 

Table 4.1 provided lists several concentrations of the evaluated solution. The total 

volume of solution was maintained at 25ml. 
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Table 4.1: Composition of solutions 

Solution No.  Quantity of PSB PVA Concentration 

1 1ml 0.5% 

2 1ml 1% 

3 1ml 1.5% 

 

4.3 Microbial Survival Evaluation 

 

500ml of LB agar was prepared using 5g tryptone, 10g agar, 2.5g yeast, 5g NaCl, and 

500ml of distilled water. The solution was prepared in a 1L media bottle to keep it half 

empty and prevent it from boiling in an autoclave. The solution was thoroughly mixed by 

whirling. The bottle was capped properly and covered with aluminum foil. The solution 

was placed in an autoclave for 30-60 minutes at around 15 psi.  

The solution was detached from the autoclave and after letting it slightly cool down it 

was poured into plates. The plates had been autoclaved before this step. Pouring must be 

done aseptically before the solution gets solidified.  

The aperture of the bottle was thoroughly heated, and a sterile pipette was used. To 

prevent air bubbles, gradual pouring was started. This was done in Laminar Flow Hood to 

avoid any contamination. Petri dishes were covered and were allowed to cool down and 

harden. Plates were inverted to prevent moisture from dripping into the agar.  



30 

 

The plates were left in LFH for 24 hours. After that, the previously prepared solution was 

poured over the solidified plates drop and the plates were sealed again using a parafilm. 

The sealed plates were kept in a shaking incubator for 72 hours at 2530C.  

 

4.4 Preparation of coated DAP fertilizer 

 

At the Product Technology Laboratory of SCME, National University of Science & 

Technology, Islamabad, di-ammonium phosphate (commercial DAP) fertilizer [(NH4)2 

HPO4] with 46% P2O5 and 18% N was coated with an optimized polymer and bacteria 

solution. The DAP granules were coated using the YC-1000 Mini Spray Granulator 

(Shanghai Pilotech Instrument & Equipment Co., Ltd, China). The apparatus was made 

from Bosiloricate Glass and stainless-steel SUS 304. A 0.3 kg quantity of DAP granules 

was processed at a time, with a spray nozzle situated just below the fluidized bed that 

contained the feed. In the spray granulator, DAP granules with a spherical shape and a 

diameter of 2-4mm were employed. The coating solution was prepared by stirring 1.5% 

Polyvinyl alcohol and 4% PSB in 100 ml of de-ionized water at a constant temperature of 

60°C for 30 minutes using a magnetic stirrer and a hot plate. The coating sample was 

atomized by pressurized air from an air compressor, and the granules were fluidized 

using hot air in a mini spray granulator. The peristaltic pump was employed to transfer 

the coating sample via a nozzle. After the coating was completed, the granules were 

removed from the bed and allowed to dry for 15 minutes [102]. 

  

4.5 Microbial Survival Evaluation of coated granules 

Agar plates were prepared following the same procedure stated above. Coated granules 

were placed over solidified plates and placed in a shaking incubator for 72 hours at 

2530C.  

4.6 Physical and Chemical analysis of PSB and polymer-coated DAP 

4.6.1 Scanning Electron Microscopy (SEM) 

The morphology of the sample was investigated by analyzing the granular surface using a 

Scanning Electron Microscope (SEM). The coated samples were also cross-examined 

with DAP granules that were not coated for reference beforehand. Coated granules were 
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generated in an ion-sputtering machine before examination. The Ion Sputtering Machine 

JFC- 1500 of JEOL Ltd. was used to perform gold sputtering on DAP granules. The 

particles were gold-coated to a depth of 250 angstroms. The surface of the sample 

granules was analyzed using a secondary electron detector at an accelerating voltage of 

10 kV [102]. 

4.6.2 X-ray diffraction (XRD) 

The STOE Germany apparatus was used to conduct X-ray diffraction (XRD) of both 

uncompacted and compacted DAP granules. XRD was conducted to verify the 

crystallinity of all products that were developed. The scan angle ranged from 10º to 90º. 

The step measure and step time were set at 0.4 degrees and 1 second, respectively. The 

radiation employed for the illustration was Cu K α-1 [103]. 

4.6.3 Fourier Transform Infrared (FTIR) 

Fourier Transform Infrared(FTIR) Spectroscopy of coated granules was done using an 

FTIR Perkin Elmer Spectrum 100 spectrometer. The presence of functional groups is 

indicated by the FTIR results. The bond formation in the biodegradable anionic polymer 

was investigated by analyzing the polymer within the 400 to 4000cm-1 range [103]. 

4.6.4 Crushing Strength 

The objective of crushing strength analysis is to ensure that the DAP granules can 

withstand the transition from the production stage to the marketing and selling phase. 

Crushing experiments were conducted on compacted DAP granules using Universal 

testing equipment (AGX Plus). Compacted DAP granules were randomly selected from 

the sample set. During the experiment, DAP granules were subjected to a predetermined 

level of tension using a metal plunger. The observed force at the point of fracture of DAP 

granules served as an indicator of its strength. In general, this test was conducted on the 

primary particle size of DAP granules. The experiment involved the interaction of the 

DAP granules with a metal pusher and a predetermined stress intensity. The force at 

which the DAP granules ruptured was used to assess their rigidity. Typically, this 

experiment was conducted on the larger granules [103]. 

 

 

 



32 

 

4.6.5 Phosphorous Release Rate Analysis of DAP granules 

4.6.5.1 UV-Visible Spectrophotometry 

Using the Ammonium Molybdenum Blue Method, the rate and efficiency of phosphorus 

release from PSB and polymeric-coated DAP was evaluated. The calibration curve was 

initially established using Analytical grade Potassium Dihydrogen Phosphate (99.9% 

Pure) with a GENESYST™ 20 UV-Visible spectrophotometer. Standardized solutions of 

Potassium Dihydrogen Phosphate of analytical grade (10ppm, 20ppm, 30ppm, 40ppm, 

50ppm, 60ppm, 70ppm, and 80ppm) were prepared in advance to determine the slope of 

the established calibration curve. An ultraviolet-visible spectrophotometer was used to 

measure the absorbance of the standard solution. Thereafter, a calibration graph is 

generated by plotting the absorbance against the known phosphorous content. The 

dissolution rate of coated DAP was evaluated using the following test procedure [106].  

4.6.5.2 Test Protocol 

Sample DAP grains weighing 10 grams were placed in a 1-liter glass beaker containing 

deionized water. Following that, 1 ml of the sample was extracted from the middle of the 

beaker at time intervals of 1 hour, 2 hours, 3 hours, 4 hours, and 1 hour. The sample was 

then transferred into a 25 ml volumetric flask for absorbance measurement using a UV-

Visible Spectrophotometer technique. The beaker was agitated for 15 seconds prior to 

sample collection. After transferring a 1 ml sample into a 25 ml volumetric flask, proceed 

to add 2 ml of solutions of Ammonium Molybdate (2.5 %) and 0.5 mL of Sulfuric Acid 

(10 N). Thoroughly agitate the reaction mixture. Next, introduce 1 mL of a 0.5 M 

hydrazine hydrate solution into it, together with de-ionized water, to get a correct volume. 

Incubate the solution for 45 minutes to get optimal color development. A wavelength of 

840 mm was employed to measure absorbance to determine the unknown concentration 

of phosphorous in coated DAP, as well as the release rate and efficiency [106]. 

4.6.6 Nitrogen Release Rate Analysis of DAP granules 

To determine the Nitrogen release rate of DAP granules, the extracted sample of 1mL 

and 0.5 mL of para-dimethyl amino benzaldehyde and 0.1 mL of HCL were added into a 

25mL beaker. The prepared solution was analyzed in a spectrophotometer using a 

wavelength of 418nm to determine absorbance, which was then used to calculate 
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unknown Nitrogen concentration in coated DAP and release rate efficiency using Eq. 1 

and Eq. 2 respectively [107]. 

𝑁 𝑜𝑟 𝑃 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑝𝑝𝑚) = 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 −  
𝑌−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒
  Eq.1 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
𝐶𝑢−𝐶𝑐

𝐶𝑢
        Eq.2 

4.7 Pot Test Experimentation  

4.7.1 Experiment Location 

The department of agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan, 

was selected as a research site for experimental work. It is located at an altitude of 508 m, 

with latitude and longitude of 33.6492 °N and 33.6492 °E, respectively, from sea level. 

The temperature of the region may fluctuate between -4 and 25 °C in the winter and up to 

40 °C in the summer. Rainfall is inconsistent and primarily contingent upon the season, 

with storms occurring frequently between July and August. 

 

4.7.2 Design of Experimental Work 

A completely randomized design (CRD) was used to place the pots in the study area. The 

study region included five treatments and six replications. This research location was also 

the source of the soil that was collected. There are 27 centimeters in the diameter of the 

pot and 0.057 square meters in its area. At the time of planting, each pot was filled with 

18 kg of soil, and 101:72:47 kghc-1 NPK ratio was used. The maize used in the 

experiment was grown from seed with 7 seeds per pot. Trimming was done after seed 

germination to keep three plants per pot. Every pot was watered daily to keep it at 60% 

moisture. 

4.7.3 Treatments 

 

Table 4.2: Different treatments of DAP used in Pot Trials 

Nomenclature Treatment DAP (g/pot) Urea (g/pot) 

C Control   

T1 Uncoated DAP 0.845 0.906 

T2 PSB Coated DAP 0.905 0.906 

T3 PVA Coated DAP 0.897 0.906 

T4 PSB+PVA coated DAP 0.906 0.906 
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4.8 Plant Analysis 

The maize plants were gathered after the ultimate harvest of the crop. Root and shoot 

analysis requires their segregation. The plant stem is cut for additional examination. To 

fully remove the dirt from the roots, separating them from the soil is necessary. Place the 

bundle of roots in a water bath and let them soak for two hours. Soil around roots breaks 

down after a heavy watering, and roots are able to pull themselves out from the soil. The 

following section will cover the parameters that will be estimated following the crop 

harvest. 

 Height of the Plant 

 Steam diameter 

 Area of leaf 

 Number of leaves 

 Plant fresh yield 

 Plant dry yield 

 Total Phosphorous uptake 

 Total Nitrogen uptake 

4.8.1 Plant height 

The height of the maize crop was estimated following the harvesting. Three plants were 

selected from every pot for this purpose, and their height was measured in centimeters 

using a measuring tape. 

4.8.2 Plant diameter 

After the maize crop was harvested, the diameter of the plant was estimated. Three plants 

were selected from every pot for this purpose, and the diameter of each plant was 

measured using a Vernier caliper. 

4.8.3 Number of leaves 

Number of leaves for each plant were counted and recorded.  

4.8.4 Area per leaf 

To measure leaf area, three leaves were selected, and their length and width were 

measured from random points using measuring tape. It was converted to area.  

4.8.5 Plant fresh yield 
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The fresh weight of the crop is promptly measured following its harvest. Plants are 

chopped into tiny pieces to determine their fresh weight. The fresh weight of plants can 

be measured in grams using a weight balance. Roots were separated from soil and were 

soaked in water for 2hrs. After washing them fully, their fresh weight was taken.  

 

4.8.6 Plant dry yield 

Plant samples including shoots and roots were dried at 700C for 72hrs or till constant 

weight. Dry weight was measured using a weight balance.  

4.8.7 Plant Total Phosphorous  

Ammonium molybdenum solution was used as color developing solution and was mixed 

with digested samples. Phosphorous content was measure by measuring absorbance of 

sample at 840nm.  

4.8.8 Plant Total Nitrogen 

The nitrogen content of the plant is determined using the Kjeldahl apparatus. Add 5 g of 

ground dry plant powder to the digestion tube. Following that, add 10 ml of concentrated 

sulfuric acid (H2SO4) and 3.5 g of digestion catalyst mixture. Carefully shake the 

mixture. Heat for a minimum of three hours at 4200C. The subsequent procedure involves 

the distillation of ammonia using a 40% sodium hydroxide (NaOH) solution. Boric acid 

(HBO3) is employed to capture and form the solvated ammonium ions. The titration is 

currently conducted with the assistance of 0.01N H2SO4.  

 

Nitrogen apparent recovery (%) = [(𝑁𝑠 × 𝐷𝑀𝑠) − (𝑁0 × 𝐷𝑀0)]/𝑇𝑁𝛼 

 

𝑁𝑠= Nitrogen content in maize plant samples 

𝐷𝑀𝑠= Maize DM yield (Kg ha-1) 

𝑁0= Maize nitrogen content in control treatment 

𝑇𝑁𝛼= Total amount of applied Nitrogen 

 

4.9 Soil analysis 

Three samples of the initial soil and the sample collected after the final harvest of the 

crop are used to assess the impact of DAP fertilizer on the chemical characteristics of the 
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soil. Soil analysis includes the measurement of pH, Electrical Conductivity (EC), pH, 

Soil Organic Matter, Soil Mineral nitrogen, Soil Available Phosphorous, Soil Microbial 

Phosphorous. Table 4.3 shows the properties of the soil sample collected before 

experimentation. 

Table 4.3: Initial Soil Properties 

Parameter Value 

Soil pH 7.89 

Soil EC 3.198 dS m-1 

Soil Organic Matter 4.01 g Kg-1 

Soil Mineral Nitrogen 9.08 mg Kg-1 

Soil Available Phosphorous 15.02 mg Kg-1 

Soil Microbial Phosphorous 6.02 mg Kg-1 

 

 

4.9.1 Soil pH 

The pH of the soil was determined by utilizing a 2:1 ratio of water to soil suspension. To 

achieve this ratio, a soil-water suspension will be formed by mixing 20 g of soil and 40 

ml of distilled water in a glass. The pH was determined using a pH meter after the 

solution was agitated for 30 minutes at 25 °C [106].  

4.9.2 Soil Electrical Conductivity 

The electrical conductivity of samples is measured using an EC meter, which is 

normalized with a 0.01 N KCl solution, using the same solution that is used to measure 

pH. [108] 

4.9.3 Soil Organic Matter 

In a 250 ml beaker, place 0.5 g of soil. This was followed by the injection of 5 mL of 1 N 

potassium dichromate solution and 10 mL of concentrated H2SO4. The soil in the 

treatment container was subsequently agitated to ensure that it was thoroughly mixed, 

resulting in a release of fumes. Allow the beaker to reach ambient temperature to 

eliminate fumes. The beaker solution will now be replenished with 5 mL of concentrated 

orthophosphoric acid and 100 mL of distilled water. Afterward, utilize a magnetic stirrer 

to ensure that the solution is thoroughly mixed. Insert 10-15 droplets of diphenylamine 

indicator and stir the solution until it turns violet blue. A ferrous ammonium sulfate 
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solution (0.5 M) was employed to titrate the solution. The completion of the titration is 

indicated by the appearance of an intense green color. All reagents will be mixed and 

titrated ferrous ammonium sulfate solution (0.5 M) will be used for the blank sample, 

which is devoid of soil. The formula for calculating the total organic carbon (TOC) of 

soil is as follows: [108] 

%𝑂𝑥𝑖𝑑𝑖𝑧𝑎𝑏𝑙𝑒 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 =
[𝑉𝑏𝑙𝑎𝑛𝑘 − 𝑉𝑠𝑎𝑚𝑝𝑙𝑒] × 0.3 ×  𝑀

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑖𝑟 − 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙
 

 

%𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 = 1.334 ×  𝑂𝑥𝑖𝑑𝑖𝑧𝑎𝑏𝑙𝑒 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 

M= Molarity of ferrous ammonium sulfate solution 

𝑉𝑏𝑙𝑎𝑛𝑘= Volume of ferrous ammonium sulfate solution 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒= Volume of solution required to titrate the sample (ml) 

 

4.9.4 Soil Mineral Nitrogen 

Kjeldahl digestion was used to evaluate the nitrogen content of samples in all treatments. 

The digestion procedure was conducted in a digestion apparatus using 1 g of dried wheat 

samples and concentrated sulfuric acid. By incorporating a tri-acid mixture, the reaction 

temperature was progressively elevated to 145 °C for 1 hour. The temperature of the 

system was further elevated to 240°C. Subsequently, the mixture was allowed to settle to 

room temperature. The mixture was subsequently filtered using Whatman filter paper No. 

42. The process was followed by distillation and titration. [108] 

4.9.5 Soil available Phosphorous 

Weigh 5 g of air-dry soil (2-mm) into a 250-mL Erlenmeyer flask. Add 100 mL of a 0.5 

M NaHCO3 solution. Cover the flask with a silicone stopper and shake it on a shaker at 

200–300 rpm for 30 minutes. Only one flask (Blank) should be included, which should 

contain all chemicals but not soil. Utilize a Whatman No. 40 filter paper to filter the 

suspension. 

Transfer 10 mL of the clear filtrate to a 50-mL vial using a pipette. To acidify each 10 

mL NaHCO3 extract to pH 5, add 1 mL of 5 N H2SO4 to all the unknown solutions. 

Dilute the solution to a 40-mL volume by adding DI water. Then, add 8 mL of Reagent-

B, agitate thoroughly, and then bring it to volume. In order to generate a standard curve, 
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Pipette 2 mL of each standard (1–5 ppm) and proceed in the same manner as the samples. 

Use 10 mL of a 0.5 M NaHCO3 solution to create a blank and proceed in the same 

manner as the samples. The absorbance of the blank, standards, and samples should be 

measured on the Spectrophotometer at a wavelength of 882 nm after 10 minutes. Develop 

a calibration curve for standards by plotting the absorbance against the corresponding P 

concentrations. Utilize the calibration curve to determine the concentration of P in the 

unknown samples [108]. 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 𝑃 (𝑝𝑝𝑚) = 𝑝𝑝𝑚 𝑃 (𝑓𝑟𝑜𝑚 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒) ×
𝑉

𝑊𝑡
×

𝑉2

𝑉1
 

4.9.6 Soil Microbial Phosphorous   

The microbial biomass phosphorus in soil was regulated through the application of a 

fumigation extraction technique (Reddy, 2008). Soil from the specimen weighing 5 g was 

transferred to a test tube and deposited in a desiccator with chloroform (ethanol-free) for 

36 hours. Subsequently, the test containers should be extracted from the desiccator and 

placed in the water bath at 80°C for 120 minutes. The sediment from the test is 

subsequently transferred to the beaker. Next, introduce 25 ml of 0.5 M NaHCO3 solution 

and maintain constant agitation of the solution in a swirling round inoculator for 2 hours. 

The solution was filtered using Whatman no. 42 filter paper. For non-fumigated samples, 

combine 5 g of soil with 25 ml of 0.5 M NaHCO3 solution. The solution was thoroughly 

agitated to obtain the clear filtrate, and Whatman no. 42 filter paper was employed. 

In order to quantify microbial phosphorous, add 1 mL of extract to a test tube and 2.5 mL 

of color developing solution. A spectrophotometer was employed to quantify the optical 

density of phosphorus [110]. 

4.10 Machine Learning Model development 

 

Figure 4.2 shows the methodology that was adopted for the development of the machine 

learning model in this research study. In the present study, data is gathered from a 

complete literature review of experimental experiments that have been published related 

to phosphorous solubilization using phosphorous solubilizing bacteria. The primary 

factors that were retrieved from the literature include bacteria species, fertilizer used, 

crop, soil pH, soil available phosphorus, and amount of phosphorus solubilized.  

Following the completion of the process of collecting data from linked publications, the 
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process of extracting feature data and categorizing it was finished in order to construct 

and test machine learning models. 

 
Figure 4.2: Machine Learning Strategy Workflow 

 

MATLAB was used to import data from excel sheet. Data was preprocessed using 

MATLAB code to fill missing data, remove outliers and to smooth data.  

Using MATLAB code different machine learning models were trained to analyze the 

developed model on the basis of R-square value, RMSE, MAE values. Data was further 

modified through feature selection to optimize results. Hyper tuning parameters were 

determined and the model was optimized using the optimal value of the hyper tuning 

parameter.  

4.11 Statistical Analysis 

Statistical Analysis was carried out using Python and MATLAB by Analysis of Variance 

(ANOVA). Tukey’s Honest Significant Difference Test was performed to statistically 

analyze effect of treatment for each variable. All graphs were plotted using MATLAB 

and Origin Software.   
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CHAPTER 5 RESULTS AND DISCUSSION 

5.1 Microbial Survival Evaluation 

 

 
Figure 5.1: Microbial Survival Evaluation (a) Coating Solution (b) DAP Granules 

Following the evaluation of the coating solution on agar plates, the microbial activity that 

was observed is shown in Figure 5.1. There were three different concentrations of 

polyvinyl alcohol (PVA) used in the preparation of microbial solutions: 0.5%, 1%, and 

1.5%. When the concentration of PVA was 0.5%, the highest level of microbial activity 

was found. DAP granules were coated with this solution. In order to determine the 

microbial activity of the DAP granules, they were subjected to another round of testing 

after being coated with a microbial solution. Additionally, microbial activity can be seen 

around each of the coated DAP granules illustrated in Figure 5.1 (b). Additionally, it was 

discovered that bacteria were able to survive the coating procedure.  

 

5.2 Physical and Chemical analysis of PSB and polymer-coated DAP 

 

5.2.1 Scanning Electron Microscopy (SEM) 

 

The technique of scanning electron microscopy was used in order to analyze the 

morphological structure of both coated and uncoated DAP granules. To determine the 

shape and formation of an outer coating layer on DAP granules, the coated surface and its 
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formation was investigated.  The scanning electron micrograph (SEM) depicts uncoated 

DAP granules at three distinct magnification levels, which are respectively *33, *5000, 

and *2000.  In Figure 5.2(a), a scanning electron micrograph (SEM) of DAP granules 

coated with PSB is displayed at several levels of magnification. On granules of DAP that 

have porous surfaces, the existence of the film can be observed. The presence of bacteria 

causes pores to be formed and causes the coating film to be broken. 

The SEM image of DAP granules that have been coated with PVA is shown in Figure 5.2 

(b). A coating layer can be seen to have tiny pores on the surface. Due to the presence of 

PVA, the structure of the coating was similar to that of a chain network that was cross-

linked.  The SEM image of DAP granules that have been coated with both PSB and PVA 

is shown in Figure 5.2 (c). In certain areas, the coating thickness is greater than in others 

because of the irregular structure of the DAP granules. As can be observed, the 

coating has a more compact appearance.  

 
 

 

Figure 5.2: SEM Micrographs of coated DAP fertilizer 
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5.2.2 X-ray diffraction (XRD) 

For the purpose of analyzing the crystalline properties of coated DAP granules, X-ray 

diffraction (XRD) is an extremely useful technique. It was noted that the typical 

diffraction peaks of DAP granules were located at 16-18.2 degrees, 26-29 degrees, and 

32-35.5 degrees in the XRD pattern as illustrated in Figure 5.3. The peaks that were more 

prominent were observed within the 16° to 36° range. The XRD spectra of coated DAP 

granules, which are displayed in Figure 5.3, all had prominent peaks that were 

comparable to those of uncoated DAP. Peaks exhibited a high degree of crystallinity, 

which led to the formation of a transparent coating on DAP granules at the same time. 

There were no significant variations in the location or intensity of the peaks between the 

spectrum of coated DAP granules and the spectrum of uncoated DAP granules found in 

the spectrum. Due to the absence of new peaks in the coated DAP grains, it is possible 

that no new phases were formed or that the structure underwent deformation during the 

coating process.  Slight variations in peak sharpness were observed in the case of PVA 

coating. 
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Figure 5.3: XRD Pattern of coated DAP fertilizer. T1_Uncoated DAP, T2_DAP coated 

with PSB, T3_DAP coated with PVA, and T4_DAP coated with PSB and PVA.  

 

5.2.3 Fourier Transform Infrared Diffraction (FTIR) 

A FTIR spectrum of DAP granules that have been coated with PSB is shown in Figure 

5.4. Considering that the coating of bacteria is primarily associated with amide groups 

that are visible at 1550 cm-1, the C–H stretching vibrations of lipids and fatty acids that 

come from bacteria can be observed in a band that extends from 2850 to 2950 cm⁻¹. The 

stretching of the phosphate group may be observed at 1000-1100 cm-1, but this stretching 

has been shifted because of the microbial coating. In the case of DAP coated with PVA, 

as illustrated in Figure 5.4 the stretching vibrations of the O–H bond, which are obtained 

from the hydroxyl groups of polyvinyl alcohol, are observed in this FTIR spectrum at a 

range of 3200 to 3600 cm⁻¹. PVA coating has been identified to be present as a result of 
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this. There is a visible P–O stretching for the DAP phosphate group at around 1000–1100 

cm⁻¹; however, the degree of this stretching has been broadened as a result of the PVA 

coating. 

 

 

Figure 5.4: FTIR Spectrum of Coated DAP fertilizer.T1_uncoated DAP, T2_DAP coated 

with PSB, T3_DAP coated with PVA, and T4_DAP coated with PSB and PVA. 

 

5.2.4 Crushing Strength 

Following the application of the coating, if the granular DAP were to fracture, the 

availability of nutrients such as nitrogen and phosphorus would be comparable to that of 

granular DAP that did not contain any coating material applied. The samples that have 

higher impact resistance against all odd forces will be preferred from the point of view of 

storage, bagging, and shipping as they are more likely to be preserved. For this research 
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study, DAP was coated with different coating materials. These coatings were then put 

through a series of tests in which they were subjected to pressure using a tensile tester 

until they broke. Following its passage through the universal testing equipment, the 

crushing strength results are presented in Figure 5.5. The final reading was taken at the 

point in time when the DAP granules were totally crushed into a powder. The granules of 

uncoated DAP were crushed with a force of 28.573 N. It was found that the crushing 

strength of PVA-covered DAP was the highest. The cross-linked structure of PVA is the 

reason for this phenomenon. By increasing the crushing strength of the material through 

the use of effective coating materials, the efficiency of the storage and transportation 

processes will be improved. When compared to the industrial-grade product that is 

already on the market, the average force required to crush polymer-coated granules is 

significantly higher. Therefore, the utilization of coating substances resulted in an 

increase in the compressive resistance of granules because of this. 
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Figure 5.5: Crushing Strength of different fertilizer treatments. T1_uncoated DAP, T2 _ 

DAP coated with PSB, T3 _ DAP coated with PVA, and T4 _ DAP coated with PSB and 

PVA. 

 

5.2.5 Phosphorous Release Rate Analysis of DAP granules 

 

The mechanism by which phosphorous is released from DAP granules when they come 

into contact with water is shown in Figure 5.6. When it came to the release of 

phosphorous, a similar pattern was observed in nitrogen. It was noticed that there was a 

quick release of phosphorous when there was no coating present. This occurred because 

of the exposed bare surface, which allowed a greater penetration of water molecules from 

the surrounding environment.  However, the degree of efficiency varied depending on the 

type of coating material. Although all coating materials were successful in slowing down 

the rate at which phosphorous was released, the degree of effectiveness varied 

accordingly. This observation happened to come about as a result of the presence of a 
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coating layer, that acts as a barrier to the release of nutrients from DAP granules.  

In comparison to DAP that had not been coated with PSB, DAP which had been coated 

with PSB was able to reduce the rate of phosphorus release to a greater level. The 

polyvinyl alcohol coating caused a further decrease in the rate of release because of its 

presence. The reason for this is that the cross-linked structure of PVA prevents it from 

releasing nutrients as quickly as it would otherwise. When both coatings were used 

together, there was an even greater reduction in the rate of release that was observed.  

 
Figure 5.6: Release rate kinetic for Phosphorous release rate of DAP fertilizer. T1_ 

uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA, and T4_ DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error. 
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5.2.6 Nitrogen Release Rate Analysis of DAP granules 

 

The objective of this analytical technique was to evaluate the rate of nitrogen release after 

the coating application on DAP granules. After adding the coated DAP granules to the 

deionized water, the test was carried out successfully. To make comparisons with coated 

granules, uncoated granules were investigated as well. The pattern of how coated DAP 

responds when in contact with water was demonstrated by the release rate of DAP 

granules. This test also evaluates the effectiveness of coating materials which inhibit the 

release of nitrogen and phosphorus.  

Figure 5.7 illustrates the pattern of nitrogen release from uncoated and coated DAP 

granules. The concentration of nitrogen was measured at various time intervals, and the 

results were used to calculate the release rate. This was accomplished by comparing the 

differences in concentration that occurred at two separate time intervals.  

The absence of a coating on the uncoated DAP caused it to release its nitrogen in a short 

amount of time. This occurred as a result of the exposed bare surface, which allowed for 

a larger penetration of water molecules. All coating materials were successful in slowing 

down the rate at which nitrogen was released, however, the degree of effectiveness varied 

depending on the type of coating material. The presence of a coating layer, which acts as 

a barrier to the release of nutrients from DAP granules, was responsible for this 

observation.  

To a greater extent than uncoated DAP, the release rate of nitrogen was slowed down by 

DAP that had been coated with PSB. An additional drop-in release rate occurred by the 

polyvinyl alcohol coating. This is because the cross-linked structure of PVA causes it to 

slow down the release of nutrients. Further reduction in release rate was observed when 

both coatings were utilized when combined.  
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Figure 5.7: Release rate kinetic for Nitrogen release of DAP fertilizer. T1_uncoated 

DAP, T2_DAP coated with PSB, T3_DAP coated with PVA, and T4_DAP coated with 

PSB and PVA. One-way ANOVA was performed for statistical analysis of data. Error 

bars represent the standard error. 

5.3 Plant Analysis 

5.3.1 Plant height 

Figure 5.8 illustrates the impact that various types of coated DAP have on the height of 

plants. It can be seen in the figure that the T4 treatment resulted in the highest plant 

height (158.1714.17), followed by the T2 treatment (150.662.16). In the control group, 

the lowest plant height (60.8318.68) was measured.  
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Figure 5.8: Effect of different DAP treatments on Plant height. C_Control, T1_uncoated 

DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP coated with 

PSB and PVA. One-way ANOVA was performed for statistical analysis of data. Error 

bars represent the standard error of the mean (n=6). 

 

5.3.2 Plant Diameter 

Figure 5.9 illustrates the impact that various types of coated DAP have on the diameter of 

plants. It can be seen in the figure that the T4 treatment resulted in the highest plant 

diameter (1.130.09), followed by the T2 treatment (1.090.08). In the control group, the 

lowest plant diameter (0.620.21) was depicted.  
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Figure 5.9: Effect of different treatments on Plant diameter. C_Control, T1_uncoated 

DAP, T2_DAP coated with PSB, T3_DAP coated with PVA, and T4_DAP coated with 

PSB and PVA. One-way ANOVA was performed for statistical analysis of data. Error 

bars represent the standard error of mean (n=6). 

5.3.3 Number of leaves 

Before plants were harvested, the number of leaves in each pot was counted. Highest 

number of leaves were counted to be in T3 (162.3) followed by T2 (153.9) as shown in 

Figure 5.10. 
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Figure 5.10: Effect of different treatments on Number of leaves. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA, and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of mean (n=6). 

5.3.4 Area per leaf 

 

Figure 5.11 illustrates the impact that various types of coated DAP have on the area of 

leaves. It can be seen in the figure that the T4 treatment resulted in the highest area of 

leaves (263.8830.18), followed by the T2 treatment (245.6136.62). In the control 

group, the lowest plant diameter (99.2434.58) was depicted.  
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Figure 5.11: Effect of different DAP treatments on Area of leaves. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA, and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of the mean (n=6). 

5.3.5 Plant Fresh Yield 

The impact that various types of coated DAP have on the amount of fresh matter that is 

produced is illustrated in Figure 5.12. As can be shown in the figure, the T4 treatment 

yielded the highest amount of shoot fresh matter (327.6728.10) followed by the T2 

treatment (319.3366.83). The lowest shoot fresh matter yield (153.1798.34) was 

observed in the control group. The highest root fresh matter yield was recorded in T4 

(429.0096.46), followed by T2 as the second highest (292.00 148.56). The root fresh 

matter yield in the control was found to be the lowest (95.17 64.75).  
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Figure 5.12: Effect of different treatments on Plant fresh yield. C_Control, T1_uncoated 

DAP, T2_DAP coated with PSB, T3_DAP coated with PVA, and T4_DAP coated with 

PSB and PVA. One-way ANOVA was performed for statistical analysis of data. Error 

bars represent the standard error of mean (n=6). 

5.3.6 Plant Dry yield 

The impact that various types of coated DAP have on the amount of dry matter that is 

produced is illustrated in Figure 5.13. As can be shown in the figure, the T4 treatment 

yielded the highest amount of shoot dry matter (60.17 9.62) followed by the T2 

treatment (46.5  7.55). The lowest shoot dry matter yield (31.5 17.34) was observed in 

the control group. The highest root dry matter yield was recorded in T4 (78.33  25.97), 

followed by T2 as the second highest (71.33  29.65). The root dry matter yield in the 

control was found to be the lowest (20.33  13.35).  
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Figure 5.13: Effect of different treatments on Plant dry yield. C_Control, T1_uncoated 

DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP coated with 

PSB and PVA. One-way ANOVA was performed for statistical analysis of data. Error 

bars represent the standard error of mean (n=6). 

5.3.7 Plant total Phosphorous 

The effect that various types of coated DAP have on total phosphorous content in plants 

is shown in Figure 5.14. As can be shown in the figure, T2 yielded the highest 

Phosphorous content (0.98  0.031) in shoots, followed by T4 (0.85  0.019).  
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Figure 5.14: Effect of different treatments on Plant Total Phosphorous. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of mean (n=6). 

5.3.8 Total Plant Nitrogen 

 

The impact that various types of coated DAP have on total nitrogen content in plants is 

shown in Figure 5.15. As can be shown in the figure, T4 yielded the highest nitrogen 

content (0.62  0.031) in shoots, followed by T2 (0.47  0.019). The lowest nitrogen 

content (0.31  0.001) was found in control. The highest nitrogen content in roots was 

found to be in T4 (0.88  0.02), followed by T2 (0.76  0.02). The lowest nitrogen 

content (0.57  0.02) was found to be in control.  
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Figure 5.15: Effect of different treatments on Plant Total Nitrogen. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of the mean (n=6). 

 

5.4 Soil Analysis 

5.4.1 Soil pH 

A slight decrease in pH was recorded in the soil after harvesting compared to the initial 

pH of the soil as shown in Figure 5.16. The highest decrease of 0.39 was recorded in T2 

followed by a decrease of 0.14 in T4. This can be attributed to the presence of PSB in 

soil. PSB has the characteristics to decrease soil pH releasing acids.  
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Figure 5.16: Effect of different treatments on Soil pH. C_Control, T1_uncoated DAP, 

T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP coated with PSB and 

PVA. One-way ANOVA was performed for statistical analysis of data. Error bars 

represent the standard error of mean (n=6). 

5.4.2 Soil EC 

A slight increase in the value of EC was recorded for all treatments compared to the 

initial EC value, as shown in Figure 5.17. The highest value of EC was recorded for T3 

(3.4  0.02) and the lowest was recorded for T1 and T4 (3.2 0.05).  
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Figure 5.17: Effect of different treatments on Soil EC. C_Control, T1_uncoated DAP, 

T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP coated with PSB and 

PVA. One-way ANOVA was performed for statistical analysis of data. Error bars 

represent the standard error of mean (n=6). 

5.4.3 Soil Organic matter  

Figure 5.18 shows the data recorded for Soil Organic Matter in different treatments. An 

increase in the quantity of organic matter has been observed in all treatments. The highest 

value of Soil Organic Matter has been recorded for T4 (4.82  0.005) followed by T2 

(4.61  0.005) while the lowest change in the value of Soil organic matter was recorded 

for control (4.14 0.001). The high value of organic matter indicated high nutrient 

amounts in soil which can be seen in the case of DAP coated with both PSB and PVA. 

 

 



60 

 

 
Figure 5.18: Effect of different treatments on Soil Organic matter. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of mean (n=6). 

5.4.4 Soil Mineral Nitrogen 

Mineral nitrogen present in soil was determined before plantation and after harvesting as 

shown in Figure 5.19. The graph shows the change in the value of mineral nitrogen in all 

treatments compared to the initial value of mineral nitrogen. The highest amount of 

mineral nitrogen was observed in T4 (12.64  0.11). This is due to the effective release of 

nutrients in soil from coated DAP. The control showed the lowest values of Soil Mineral 

Nitrogen (10.10 0.17). 
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Figure 5.19: Effect of different treatments on Soil Mineral Nitrogen. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of mean (n=6). 

5.4.5 Soil available Phosphorous 

 

The soil was tested to determine the amount of available phosphorous before the 

experiment and after that. The data obtained for an initial amount of soil available 

phosphorous, and the amount determined for other treatments have been shown in Figure 

5.20. The highest amount of available phosphorous was observed in T4 (18.94  0.10). 

This is due to the effective release of nutrients in the soil from coated DAP and the use of 

PSB has increased the amount of available phosphorous in the soil. The control showed 

the lowest values of Soil-available phosphorous (15.06 0.01). 
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Figure 5.20: Effect of different treatments on Soil Available Phosphorous. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of mean (n=6). 

5.4.6 Soil Microbial Phosphorous 

The soil was analyzed to determine the amount of microbial phosphorous before the 

experiment and after that. The data obtained for an initial amount of soil microbial 

phosphorous, and the amount determined for other treatments have been shown in Figure 

5.21. The highest amount of microbial phosphorous was observed in T4 (18.94  0.10) 

followed by T2. This is due to the effective release of nutrients in the soil from coated 

DAP and the use of PSB has increased the amount of microbial phosphorous in the soil. 

The control showed the lowest values of Soil-available phosphorous (15.06 0.01). 



63 

 

 
Figure 5.21: Effect of different treatments on Soil Microbial Phosphorous. C_Control, 

T1_uncoated DAP, T2_DAP coated with PSB, T3_DAP coated with PVA and T4_DAP 

coated with PSB and PVA. One-way ANOVA was performed for statistical analysis of 

data. Error bars represent the standard error of mean (n=6). 
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5.5 Machine Learning  

5.5.1 Box and Violin Plot Presentation 

The Box and Violin plot is a technique that can be utilized to display the distribution of a 

dataset. It displays the highest and lowest possible range, as well as the median, mode, 

tolerance, and lower and upper quartiles. The box plot is a useful tool for understanding 

data and the ranges it contains. The microbial strain, crop, fertilizer, soil pH, soil 

phosphorus, and change in phosphorus uptake are all plotted against their distribution in a 

box plot presentation shown in Figure 5.22. 

 

Figure 5.22: Box and Violin Plot presentation of data 

 

5.5.2 Correlation Heat Map 

A correlation heat map of the data set is displayed in Figure 5.23. A heat map is a useful 

tool for determining the degree to which one feature is dependent on another. This makes 

it easier to understand the data and the correlations that exist between its many features. 
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Figure 5.23: Heat map presentation of data 

5.5.3 Performance Evaluation Criteria 

 

The default hyperparameters were used to do preprocessing on the GPR, Ensembled tree, 

and DT that were obtained from the MATLAB library. Evaluation of preprocessing 

methods was carried out with the help of R-square, RMSE, and MAE. For pre-processing 

and deep modeling, the datasets were randomly split into two categories: training datasets 

(80%) and testing datasets (20%). Ranges for the tuning of the hyperparameters were 

established using the Regression model toolbox of each model, and then the models were 

optimized with the help of GA and PSO. Next, these hyperparameters were applied in the 

process of developing and testing models. To evaluate the performance of the validation 
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phase in comparison to the modeling technique, the average values of the statistical 

indices were applied. Table 5.1 shows the comparison of different ML models based on 

R2, RMSE and MAE values. 

 

 

Table 5.1: Comparison of different ML models 

 Model Training R2 Testing R2 

GA DT 0.5208 0.0000 

GPR 0.6169 0.8829 

ELT 0.7938 0.8887 

PSO DT 0.5208 

  

6.6613 

GPR 0.6173 0.883 

ELT 0.6986 0.88 

 

5.5.4 Hyperparameter Tuning 

 

The regression toolbox was used to specify the parameters that were chosen for 

modifying amongst the several machine learning models. Table 5.2 shows the 

hyperparameters that were chosen and the values that were optimized for them. The 

Genetic Algorithm and Particle Swarm Optimization were utilized to tune and optimize 

these hyperparameters for the GPR, DT, and ELT models.  

 

Table 5.2: Optimized values of selected parameters 

 ML 

Method 

Parameter Optimized value 

GA 

Model 

DT MinLeafsSize 21.0327780327756 

 Surrogate off 
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GPR Basic Function constant, ... 

 KernelFunction ardexponential 

 Sigma 1481.95794668497 

 Standardize false 

ELT Method LSBoost, ... 

 NumLearningCycles 457.554169508120 

 LearnRate 0.655442905969867 

 Output predict (Char_ensembled,X 

PSO  DT MinLeafsSize 21.0327780327756 

 Surrogate off 

GPR Basic Function constant, ... 

 KernelFunction ardexponential 

 Sigma 1481.95794668497 

 Standardize false 

ELT Method Bag, … 

 NumLearningCycles 239.811258540396, 

 LearnRate 0. 0168725661655034 

 Output predict (Char_ensembled,X 

 

 

5.5.5 Prediction Performance 

 

A number of models, such as GPR, ELT, DT on GA, and PSO based algorithms, were 

used in order to make predictions regarding phosphorous uptake rates. Results 

demonstrate that the GA-based ELT model produced the best outcomes when compared 

to the R2 values of each model. With the help of the R-square function, GA-ELT was 

utilized to predict the value of phosphorous uptake. With the use of the GA-ELT model, 

Figure 5.24 illustrates the relationship between the actual value of phosphorus uptake and 

the predicted value.  
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Figure 5.24: Validation of GA-ELT model 

5.5.6 Shapley Plot 

 

The GA-ELT model combined with the Shapley method can effectively illustrates the 

correlation between input parameters and phosphorus uptake. The Shapley approach 

works according to the significance of feature attribution. This was utilized to assess the 

relative importance of various input parameters on phosphorus uptake in plants. Figure 

19 depicts the influence of crop type, fertilizer, microbial strain, soil pH, and soil 

phosphorus on phosphorus uptake. The specific microbial strain utilized in the study and 

tested crop significantly affects phosphorus uptake in plants.  
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Figure 5.25: Shapley Plot 

5.5.7 Partial Dependence Plots 

 

Partial dependence plots illustrate the influence of input parameters on output. 

Phosphorous solubilization in soil is highly influenced by the type of microbial strain 

employed for solubilization and pH of the soil. Figure 5.26 illustrates partial dependence 

plots which demonstrate the effect of soil pH, Microbial strain and Soil phosphorous on 

an increase in phosphorous uptake in plants.  

 

 

Figure 5.26: Partial Dependence Plots 
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Machine learning models indicate that increase in phosphorous uptake can be increased 

by lowering soil pH which will increase phosphorous solubilization and hence 

phosphorous uptake. Furthermore, the use of different microbial strain effects 

phosphorous uptake in plants.  

5.5.8 Graphical User Interface 

 

Graphical User Interface (GUI) enables users to deal with electronic devices through 

graphical icons, symbols, and intuitive software, as opposed to a command-driven 

interface. For this study, GUI was developed which makes use of sowing conditions 

including microbial strain, fertilizer, type of crop, soil phosphorous and soil pH and 

predicts an increase in phosphorous uptake. GUI was developed using the GA-ELT 

model to predict phosphorous uptake with the help of MATLAB 2024a. GUI illustrated 

in Figure 5.27 depicts the use of distinct values (Microbial Strain 10, Crop 104, Fertilizer 

1000, P in soil 18.5mg/kg, Soil pH 8) as input. The GUI predicted an increase of 6.25% 

in phosphorous uptake as output.   

 

 

 

Figure 5.27: Graphical User Interface 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

The main finding of this study is that DAP coated with PSB and PVA proved to be the 

most efficient treatment in terms of plant height, plant diameter, leaf area, and nutrient 

availability. The slow-release characteristics, validated by UV-Vis spectroscopy, 

indicated that DAP coated with PSB and PVA exhibited a reduced rate of nutrient 

release. The controlled nutrient release increased the availability of nutrients for longer 

periods and thus making them available for plant uptake promoting consistent and 

enhanced plant growth. The improved fertilizer efficiency is evident for the viability of 

employing microbiological and polymer coatings to boost nutrient delivery in agriculture. 

In addition to these, the integration of machine learning models provided a prediction of 

phosphorous uptake influenced by microbial strains. The cross-validation performance of 

the developed models indicated that the GA-based Ensembled Learning Tree (ELT) 

model achieved the highest R² of 0.7938. This modeling methodology highlights the 

potential of data-driven strategies to enhance empirical research by providing accurate 

prediction and optimal intervention strategies. 

It is recommended to analyze the economic perspective of the use of PSB to enhance the 

efficiency of DAP fertilizer and make it market available. The machine learning model 

can be further improved to predict the effect of the use of PSB on the availability of other 

nutrients such as nitrogen and potassium. 
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