

Proceedings of the 3rd European Conference
on Computer Network Defense

 Lecture Notes in Electrical Engineering

Volume 30

Proceedings of the 3rd European Conference on Computer Network Defense
Siris, Vasilios; Anagnostakis, Kostas; Ioannidis, Sotiris;
Trimintzios, Panagiotis (Eds.)
2009, Approx. 200 p., Hardcover
ISBN: 978-0-387-85554-7, Vol. 30

Intelligentized Methodology for Arc Welding Dynamical Process
Chen, Shan-Ben; Wu, Jing
2009, Approx. 350 p., Hardcover
ISBN: 978-3-540-85641-2, Vol. 29

Proceedings of the European Computing Conference
Volume 2
Mastorakis, Nikos; Mladenov, Valeri (Eds.)
2009, Approx. 856 p., Hardcover
ISBN: 978-0-387-84818-1, Vol. 28

Proceedings of the European Computing Conference
Volume 1
Mastorakis, Nikos; Mladenov, Valeri (Eds.)
2009, Approx. 856 p., Hardcover
ISBN: 978-0-387-84813-6, Vol. 27

Electronics System Design Techniques for Safety Critical Applications
Sterpone, Luca
2009, Approx. 200 p., Hardcover
ISBN: 978-1-4020-8978-7, Vol. 26

Data Mining and Applications in Genomics
Ao, Sio-Iong
2009, Approx. 200 p., Hardcover
ISBN: 978-1-4020-8974-9, Vol. 25

Informatics in Control, Automation and Robotics
Filipe, J.B.; Ferrier, Jean-Louis; Andrade-Cetto, Juan (Eds.)
2009, Approx..300 p., Hardcover
ISBN: 978-3-540-85639-9, Vol. 24

Digital Terrestrial Broadcasting Networks
Beutler, Roland
2009, Approx. 300 p., Hardcover
ISBN: 978-0-387-09634-6, Vol. 23

Logic Synthesis for Compositional Microprogram Control Units
Barkalov, Alexander; Titarenko, Larysa
2008, Approx. 288 p., Hardcover
ISBN: 978-3-540-69283-6, Vol. 22

(continues after index)

Vasilios Siris • Sotiris Ioannidis •
Kostas Anagnostakis • Panagiotis Trimintzios
Editors

Proceedings of the 3rd
European Conference on
Computer Network Defense

123

Editors
Vasilios Siris Kostas Anagnostakis
Foundation for Research & Foundation for Research &
Technology, Hellas Technology, Hellas
Inst. Computer Science Inst. Computer Science
PO Box 1385 PO Box 1385
711 10 IRAKLION, CRETE 711 10 IRAKLION, CRETE
GREECE GREECE

Sotiris Ioannidis Panagiotis Trimintzios
Foundation for Research & European Network &
Technology, Hellas Information Security Agency
Inst. Computer Science (ENISA)
PO Box 1385 PO Box 1309
711 10 IRAKLION, CRETE 710 01 IRAKLION, CRETE
GREECE GREECE

ISSN: 1876-1100 e-ISSN: 1876-1119
ISBN: 978-0-387-85554-7 e-ISBN: 978-0-387-85555-4
DOI: 10.1007/978-0-387-85555-4

Library of Congress Control Number: 2008933668

© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

springer.com

Preface

The 3rd European Conference on Computer Network Defense took place
in September 2007 at Aldemar Hotel, in Heraklion, Crete, Greece in
cooperation with the European Network and Information Security Agency
(ENISA).

The theme of the conference was the protection of computer networks.
The conference drew participants from academia and industry in Europe
and beyond to discuss hot topics in applied network and systems security.

The conference was a great success, with 6 refereed papers and 6 invited
presentations on topics ranging from high assurance networks of virtual
machines to signaling vulnerabilities in wiretapping systems.

This book contains the refereed as well as refereed papers. We are
greatful to the authors and presenters for their contributions, as well as the
participants of EC2N’07 for making the conference a success.

We are looking forward to a successful EC2ND event in 2008.

K. G. Anagnostakis, S. Ioannidis, V. Siris

Contents

Encrypted Channels by Way of Retainting ..1
Michael Valkering, Asia Slowinska, and Herbert Bos
1 Introduction ...1
2 Architecture ...3

2.1 Tracking Issues ..4
2.2 Retainting ..6

2.2.1 Determining the Tag...6
2.2.2 Identifying the SSL Conversation ..8

2.3 Interposition Details ..9
3 Signature Generation ...9

3.1 Pattern-Based Signatures...10
3.2 Signatures for Polymorphic Buffer Overflows............................13

4 Filters ...14
5 Results ...15
6 Related Work...17
7 Conclusions ...18
References ..18

Fabrizio Baiardi and Daniele Sgandurra

1 Introduction ...21
2 Psyco-Virt Overview ...23

2.1 Overall Architecture ..24
2.2 Introspection VM...26
2.3 Monitored VM...27

3 Current Prototype ..27
3.1 Introspection Functions ...27

3.1.1 Detecting Kernel Modifications ...27
3.1.2 Running Processes Checker..28
3.1.3 Loaded Modules Authenticator ..28
3.1.4 Promiscuous Mode Checker ...28
3.1.5 Anti-Spoofing ...29

4 Security and Performance Results ...29

1 Tales from the Crypt: Fingerprinting Attacks on

2 Towards High Assurance Networks of Virtual Machines...............21

viii Contents

4.1 Effectiveness..29
4.2 Performance Overhead ..30
4.3 Limitations...31

5 Related Works ...31
6 Conclusions and Future Developments ...32

References ..32

Aikaterini Mitrokotsa, Christos Dimitrakakis, and Christos Douligeris
1 Introduction ...35
2 Cost Sensitive Classification ...36

2.1 Choice of the Cost Matrix ...37
2.2 Algorithmic Comparisons and Alternative Quality Metrics........37
2.3 Models ...38

3 Experiments ...39
3.1 Databases ...40
3.2 Technical Details ...41
3.3 Results ...42

4 Conclusions ...45
References ..46

High-Speed Networks ...49
Osman Salem, Sandrine Vaton, and Annie Gravey
1 Introduction ...49
2 Related Work...52
3 Background..53

3.1 Count-Min Sketch..53
3.2 Multi-Channel Cumulative Sum Algorithm54

4 Proposed Approach..57
5 Experiments Results ..61
6 Conclusions ...66
Acknowledgments ..67
References ..67

and Modes of Encryption ...69
Debra L. Cook, Moti Yung, and Angelos D. Keromytis
1 Introduction ...69
2 Elastic Block Cipher Examples ...70

2.1 Overview ...70

Acknowledgments ..32

3 Intrusion Detection Using Cost-Sensitive Classification35

4 A Novel Approach for Anomaly Detection over

5 Elastic Block Ciphers in Practice: Constructions

Contents ix

2.2 Common Items ..72
2.3 Elastic AES..73
2.4 Elastic Camellia...75
2.5 Elastic MISTY1...77
2.6 Elastic RC6..78
2.7 Randomness Test Results ..80
2.8 Key Schedules ...81

3 Modes of Encryption ...83
3.1 Overview ...83
3.2 Elastic Chaining Mode ..84
3.3 Elastic ECB Mode ...86

4 Conclusions ...88
Acknowledgments ..90
References ..90

Hal Burch, Art Manion, and Yurie Ito
1 Introduction ...93
2 VRDA..94

2.1 Facts...96
2.2 Light-Weight Affected Product Tags ..98
2.3 Data Exchange...100
2.4 Decision Modeling ..101

3 Current Usage ..102
4 Future Direction...102
5 Related Work...103

5.1 Common Vulnerability Scoring System (CVSS)103
5.2 Exchange Formats ...104
5.3 Other Work..104

References ..104

Using Past Activity Tests ...107
Nikos Nikiforakis, Andreas Makridakis, Elias Athanasopoulos,
and Evangelos P. Markatos
1 Introduction ...107
2 PACT Architecture ..109

2.1 PACT Definition..109
2.2 Example PACTs ..109

3 PACT evaluation ...110
3.1 PACT Resistance...110
3.2 PACT Suspension Policy...110

6 Vulnerability Response Decision Assistance93

7 Alice, What Did You Do Last Time? Fighting Phishing

x Contents

3.3 PACT Limitations..111
4 Case Studies...111

4.1 A PACT Enabled E-Mail Service..111
4.2 A PACT Enabled E-Commerce Service....................................113
4.3 Results ...114

5 Related Work...115
6 Conclusions ...116
References ..116

Relay Chat ...119
Thibaut Henin and Corinne Huguennet
1 Introduction ...119
2 Clone Attack on Internet Relay Chat...120

2.1 Internet Relay Chat..120
2.2 Bots and Botnets..120
2.3 Clone Attacks ..121
2.4 How to Prevent Such Attacks? ..122

3 Usual Protections...122
3.1 Passwords to Enter the Network..122
3.2 Blacklist ...123
3.3 Use Simple Regexp ...123

4 Qui-Gon...123
4.1 The Temporal Oracle...124
4.2 The Distinguishing Oracle...124

5 Tests and Validation of the Distinguishing Oracle.........................125
5.1 Test Against Existing Attacks ...126
5.2 Test Against a More Clever Attack ...127

6 Conclusions ...127
References ..128

Endpoint Collaboration and Interaction131
Spiros Antonatos, Michael Locasto, Stelios Sidiroglou
Angelos D. Keromytis, and Evangelos Markatos
1 Introduction ...131

1.1 Impact of Failing to Solve the Problem.....................................133
2 Research Directions ...133
3 Honey@home ..136
4 Application Communities..137
5 Conclusions ...139

8 QuiGon: The First Tool Against Clone Attack on Internet

9 Defending Against Next Generation Through Network/

Contents xi

Acknowledgments ..139
References ..139

Connected to the Internet...143
Thomas Haeberlen
1 Introduction ...143
2 Basic Architecture ...144

2.1 Using Internet Services..145
2.2 Providing Internet Services ...145
2.3 Administration and Monitoring ...146
2.4 Implementation and Operations...147

3 Discussion..148
3.1 Overall Structure..148
3.2 Structure of the Security Gateway...149
3.3 Structure of the Management Network......................................149
3.4 Structure of the Internal Network ..150

4 Conclusions ...150

Author Index ..153

Subject Index..155

10 ISi-LANA – A Secure Basic Architecture for Networks

Michael Valkering, Asia Slowinska, and Herbert Bos

Department of Computer Science, Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Abstract. Paradoxically, encryption makes it hard to detect, fingerprint and stop
exploits. We describe Hassle, a honeypot capable of detecting and fingerprinting
monomorphic and polymorphic attacks on encrypted channels. It uses dynamic
taint analysis in an emulator to detect attacks, and it tags each tainted byte in
memory with a pointer to its origin in the corresponding network trace. Upon de-
tecting an attack, we correlate tainted memory blocks with the network trace to
generate various types of signature. As correlation with encrypted data is difficult,
we retaint data on encrypted connections, making tags point to decrypted data in-
stead.

1 Introduction

Intended to enhance the security of network communication, encryption
also makes it harder to detect and analyse attacks on the Internet. Strong
encryption and pacing on network links lead to traffic that is more or less
uniformly distributed in space and time, preventing the extraction of useful
information. Methods relying on the observation of traffic characteristics
no longer work. Examples include Snort and Bro that use byte patterns
[15, 20], analysis of executable code in the network [17], static analysis
techniques [8, 23] when applied in the network, and analysis of protocol
fields [11, 12]. In addition, while advanced honeypot systems like Vigi-
lante [3], TaintCheck [14] and Argos [18] would detect attacks, most

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_1, © Springer Science+Business Media, LLC 2009

{mjvalker, asia, herbertb}@few.vu.nl

1

Encrypted Channels by Way of Retainting
Tales from the Crypt: Fingerprinting Attacks on

2 M. Valkering et al.

common techniques for signature generation cannot be directly applied.
Paradoxically, the very nature of encryption may turn against the original
security goals.

At the same time, the use of encryption is increasing in almost all net-
work services, including file systems, web servers, VPNs, databases, p2p,
instant messaging, etc. Rather than considering the fairly narrow set of ex-
ploits against encryption libraries themselves (like Linux' Slapper [16], and
Windows' SSL Bombs [1]), this work is motivated by the larger class of at-
tacks that exploit the applications using encryption. It is well-known that
given a choice between port 80 (http) and port 443 (https), attackers tend
to opt for 443 almost without exception [19]. The reason is that the content
of these channels cannot be so easily inspected by firewalls and virus
scanners.

Instead of providing a NIDS with copies of the servers' private keys
[13], something administrators may be reluctant to do, we prefer to push
fingerprinting to the end-application on the host. On the other hand, we do
not want to code manually a specific solution for each application. Rather,
we are interested in methods for signature generation that apply to a wide
variety of applications.

We emphasise that channel encryption should not be confused with
polymorphism. Even though encryption yields unique network appear-
ances for all network attacks, the nature of the attacks (polymorphic or not)
still surfaces after decryption.

This paper discusses Hassle, a honeypot capable of detecting and fin-
gerprinting monomorphic and polymorphic attacks on SSL-encrypted
channels. Hassle is not application-specific and can be applied to any
process that uses SSL for secure communication. We discuss both its de-
sign and its implementation on an x86 Linux-based architecture.

Fig. 1. Interposition, retainting, and signature generation.

SSL encryption. Encryption can be applied at many layers in the proto-
col stack. The most common examples in practice include the data-link
layer (WEP, WPA), the network layer (IPSec), and the application (SSL).
As layer-2 encryption in the NIC reduces the problem to that of non-
encrypted channels at the OS level and can therefore be handled easily by
emulators with dynamic taint [18], the most interesting design alternatives
to consider in practice concern IPSec and SSL. Without loss of generality,
we opted for implementing Hassle for SSL, as it is supported by many
servers. Nevertheless, the same techniques can be applied at other layers.

Contribution. To the best of our knowledge, we are the first to address
the problem of signature generation (and attack filtering) for encrypted
communication, while also handling non-encrypted channels. The tech-
niques we describe are applicable to most types of encryption and require
no modification of the applications that need protection. In addition, we
describe various novel signature generators that combine with Hassle. Be-
sides well-known Snort-like signatures [20], we generate very accurate
signatures for polymorphic buffer overflows on heap or stack.

The remainder of this paper is organised as follows. Sections 2 and 3
discuss architecture and implementation, respectively. Hassle is evaluated
in Section 5. In Section 6, we discuss related work, while conclusions are
drawn in Section 7.

2 Architecture

At the highest level, our system consists of a detection engine, a signature
generator, and a filter, as illustrated in Fig. 1. The detector is a honeypot
based on a full-system hardware emulator that provides taint analysis. For
this purpose, we modified an existing honeypot, known as Argos [18].

Assume for now that no encryption is used. All data from the network is
logged to a rolling trace file (1). By means of taint analysis, Hassle tags
and then tracks network data throughout the system (1), where a tag points
to the origin of the data in the network trace. Whenever tainted data is used
in a way that violates the security policy, we raise an alarm. Examples of
such behavior include attempts to execute tainted data. At that point, Has-
sle dumps as much relevant data to disk as possible. For instance, for the
process or kernel under attack, we save all tainted memory blocks with
their tags, the names of the executable and the libraries used, and the ad-
dress that triggered the alert together with its origin.

The signature generator correlates the data dumped by Hassle with those
of the network trace to determine a signature (4). For instance, one of our
signature generators dissects the input stream to determine which protocol

1 Tales from the Crypt 3

4 M. Valkering et al.

fields were responsible for a buffer overflow and computes an upperbound
on the combined length of the protocol fields as a signature. Any message in
which the length of these protocol fields exceeds the upperbound is guaran-
teed to result in an overflow. We use the signature to block the attack else-
where in the network without needing heavy-weight instrumentation (5).

Unfortunately, in case of encryption correlation between network trace
and memory dump is not possible as all memory tags point to seemingly
meaningless, uniformly distributed bytes in the network trace (2).To solve
this we want to restore a meaningful correlation, albeit not to the network
trace directly. For encrypted channels we retaint the tagged data after de-
cryption (3). Concretely, we use library interposition to place a small
amount of code between the application and the encryption library. The
interposer requests the emulator to retaint data using offsets in the de-
crypted streams as tags. The decrypted data is stored in a log for future
use. Although interposing leads to exposure of private data, we regard this
(confined) exposure as less threatening than the possibility that the system
is completely compromised by an attack via that data.

Signature generation (4) now progresses much like that of non-
encrypted channels, albeit at a higher level in the protocol stack. When
working at this level, well above the transport layer, we cannot simply dis-
sect the network data stream from the first network packet onwards to de-
termine the protocol fields that were used in the attack. Instead, we use the
retainted decrypted network stream. Similarly, the filters that block traffic
that contains the signature also must operate at higher-level protocol units
(6). We implement them as interposer filters between the SSL library and
the application that flag or drop all traffic towards the application that
matches the signature.

Before we start discussing the precise nature of our signatures, we men-
tion that as much as possible we focus on exploits rather than payloads, for
several reasons. First, exploits exhibit fewer opportunities for polymor-
phism. Second, one exploit is often used for different payloads and stop-
ping it kills multiple birds with one stone. Third, blocking exploits pre-
vents many attacks from entering the system altogether.

2.1 Tracking Issues
Tagging and tracking conceptually consists of adding meta-data to every
byte in memory. The more meta-data is added, the more powerful the at-
tack analysis can be. Again, we first consider the case that no encryption is
used, and subsequently address encrypted channels in Section 2.2.

In Hassle, we allow three types of tagging. The cheapest, (incurring an
overhead of approximately 15× on average), but also the weakest, is

known as black-white tagging and simply indicates for each byte whether
it originated in the network. It provides no clues as to the origins of tainted
data in memory other than that it came from a suspect source. The tag is a
single bit and no immediate correlation of network trace and memory is
possible. It may be possible to align patterns in memory and network trace
by means of similarity search [11, 18], but the margin of error is large.

A more powerful tagging method is known as net tracking, which keeps
track of the network origin of tainted memory. In Hassle, we have imple-
mented two modes of net tracking: full origin, and single origin.

Full-origin tracking is the most precise form of net tracking, but also the
slowest (with a slowdown of about two orders of magnitude). Whenever
data arrives from the network we tag it with a pointer to the corresponding
bytes in the network trace. Whenever two tainted values are combined
(e.g., an addition of two tainted locations), we retain the tags of both of
them. This is implemented by maintaining a set of origin pointers that refer
to the tags of the (one, two or three) tainted operands that produced this
data. By applying the procedure recursively whenever tainted values are
combined, we construct a tree with leaves pointing into the actual network
trace. In practice, the amount of memory needed for the administration is
approximately three origin pointers per tainted word. The overhead of
maintaining the origin pointers is also considerable.

In contrast, single-origin tracking retains a single origin pointer that
points to a byte in the network trace directly. If two tainted values are
combined, we pick one of the tags for the destination. Single-origin track-
ing introduces some imprecision in the tracking. In practice, however, we
have not seen instances where such imprecisely tagged data can be ex-
ploited by attackers. The advantage of single-origin is that it is much more
efficient both in memory (one word per word of tainted data) and in com-
putation (reducing the overhead to less than 20×). For this reason, we have
used single-origin tracking for this paper. If the nature of applications
changes such that single-origin tracking becomes an issue, we can switch
to full-origin tracking in the future.

The strongest tagging method, known as age-stamped net tracking,
maintains not only (full or single origin) net tracking, but also age stamps
per tainted value. The age stamps serve to separate different buffers on the
stack or the heap. For instance, every function call results in a new age
stamp, and all tainted stores in the function are associated with that age
stamp. As a result, it is easy to separate the heap or stack data contributing
to the attack from stale tainted data left by a previous function frame.

Besides age stamps, this tagging method tracks a small amount of addi-
tional meta-data. For instance, it inserts red markers just above and below
a buffer allocated on the heap. An overflow of this buffer triggers a reac-

1 Tales from the Crypt 5

6 M. Valkering et al.

tion in the emulator (e.g., to log the buffer contents for later correlation). In
addition, we maintain two bits per tainted byte to distinguish between dif-
ferent overlapping tainted buffers with the same age stamp.

The details and analysis of age stamps and related meta-data is quite
complex and beyond the scope of this paper. Interested readers are referred
to [22]. What is important for this paper is that when a buffer overflow at-
tack is detected, the origin pointers, age stamps and additional meta-data
combined allow us to determine with great accuracy the exact bytes that
contributed to an overflow. The overhead of age stamps in memory con-
sists of an additional word per tainted address. The computational over-
head is modest, less than 20% compared to single-origin tracking without
age stamps in real applications like Apache.

In principle, any tagging method can be used for Hassle. However, as
alignment is error prone in black-white tagging, we mostly used single-
origin tracking for our experiments, and age-stamp tracking where indicated.

2.2 Retainting
Regardless of tagging method, origin pointers are useless in the case of en-
crypted channels. The reason is that without the key we cannot perform the
one-to-one mapping between bytes in memory and bytes in the network
trace.

For this reason, Hassle retaints all encrypted data. Rather than pointing
to a specific byte in the encrypted network trace, we make it point to a
specific byte in the decrypted SSL stream. Of course, the nature of de-
crypted streams is different from that of the network trace. For instance,
layer 2–4 headers are not visible and TCP flows have already been reas-
sembled. As a result, we will have to adjust the signature generation and
filtering components accordingly.

Two implementation issues remain. First, after separating encrypted and
non-encrypted data we must retaint the data right after decryption in such a
way that a tag used for retainting is unique across all streams. As a result,
the tag cannot be a simple offset into any one particular SSL stream. Sec-
ond, we should be able to uniquely identify SSL conversations and associ-
ate incoming data with an SSL stream. In the next two sections, we discuss
our solution to each problem separately.

2.2.1 Determining the Tag
As decryption occurs in user space, we employ light-weight interposing li-
braries between the application and the SSL functions. Whenever a read is
performed on an SSL stream, the data will be decrypted. At that point the
interposer requests a retaint for the decrypted data and logs the decrypted

data to file. Beyond that, the interposer serves as a low-overhead relay be-
tween the SSL library and the application.

While the interposer trivially knows the offset of decrypted data in the
corresponding SSL stream, determination of the tag should not take place
there. Given a tainted data item, Hassle must be able to identify exactly the
decrypted SSL block in which it originates. In other words, a tag must be
unique not only within its own SSL stream, but across all streams. Doing
such retainting in the interposer requires adding a unique SSL stream iden-
tifier to each tag, which is both complex and expensive in memory.

Instead, we perform trivial retainting in the emulator and push all com-
plexity to detection time. For the remainder of this section, refer to Fig. 2
which zooms in on the decrypted data log and shows a situation where
three SSL connections are active; the decrypted data blocks in the channels
are tagged by the emulator.

We maintain, conceptually, a single log for all SSL streams and let the
emulator determine a tag consisting of an offset in this global log. In real-
ity, we store each SSL stream in separate append-only logs identified by a
unique SSL stream identifier (the nature of which will be discussed in Sec-
tion 2.2.2). For instance, the tags in Fig. 2 refer to an offset in the global
input. That is, the blocks that are tagged 0, 10, and 20 indicate that the first
block starts at global offset 0, and since the next block starts at offset 10,
the first block contains 10 bytes. Similarly, the third block starts at offset
20, so the second block also contains 10 bytes. However, while this is the
second block in the global input, it is the first block in SSL stream 2. For
completeness, the figure also shows on the left some tainted data that has
been copied, leading to tag propagation.

In other words, Hassle orders and tracks all updates to the decrypted
data log in a global order, layering a virtual append-only global log over
the individual SSL stream logs. The log for SSL stream 1 in Fig. 2 con-
tains two data blocks, containing 10 and 20 bytes respectively. The global
log, on the other hand, consists of five data blocks. Blocks 1 and 2 both
contain 10 bytes; block 3 contains 50, and so on. Hassle tags the decrypted

Fig. 2. Global offsets in the decrypted data log.

1 Tales from the Crypt 7

8 M. Valkering et al.

data with an offset into the global log, trivially guaranteeing uniqueness.
When an attack is detected, the tags of offending bytes point to a specific
block in the global log. We maintain a simple index to find the correspond-
ing SSL stream and hence all decrypted data.

Finally, for each SSL stream we also store the original tag of the first
decrypted data block. This tag points to a byte in the encrypted network
trace where it originated. Thus, we are always able to find the network
flow that carried the attack, which in turn enables us to identify the IP ad-
dresses and port numbers of the attack.

In summary, for retainting the interposer asks the emulator to determine
a new tag for the data as explained earlier. It then pushes the decrypted
data to the decrypted data log. Currently, this is implemented as a request
over a UDP connection to the host OS. As UDP is unreliable, we take into
account potential reordering and loss. For the first chunk of decrypted data
in the SSL stream, we also log the association between the decrypted data
and the original tag, enabling us to recover conveniently the network flow
(IP addresses, ports, etc.) in which an attack originated.

The administration of all other meta-data works in exactly the same
fashion as in the non-encrypted version. In particular, this is true for the
meta-data that is kept for age stamp tracking, such as age stamps and red
markers as described in Section 2.1.

2.2.2 Identifying the SSL Conversation
The construction of a unique identifier for a single conversation is not triv-
ial. Ideally, the identifier should be a unique number derived from one or
more fields of the SSL connection structure. Simply using the memory ad-
dress of the ssl structure (see Listing 1) will not suffice, because new
conversations may reuse the structures associated with old conversations.

However, the handshake phase of SSL (version 3) connections includes
the exchange of unique challenges by client and server, which can be ob-
tained from the SSL structure. Unlike client challenges, server challenges
cannot be influenced by clients, and are thus well-suited for identifying the
conversation. Unfortunately, SSL version 2 does not support server chal-
lenges. While older versions of SSL are not our main concern, we decided
to add some support for version 2. For such conversations, we currently re-
sort to a combination of the client challenge with the memory address of
the SSL connection structure and the thread id of the process using the
OpenSSL library. Admittedly a hack, the values of the latter two are not
controllable by any attacker and the combination is pseudo-unique.

2.3 Interposition Details
SSL conversations start with a handshake phase that deals with authentica-
tion and creation of a session key. No application data is transmitted dur-
ing this phase and we therefore do not monitor it. This phase also creates
the SSL structure for the conversation.

Whenever an application calls SSL_read to decrypt and read data, we
intercept the call by way of library interposition. Besides the call to
SSL_read, we are interested in a small subset of other calls, including
SSL_shutdown and CRYPTO_num_locks and a few others1. As an
example, we show the code for the SSL_read interposer in Listing 1. In
the first few lines we find (line 2) and execute (line 3) the real SSL_read
function as requested by the client. Next, we retaint the data and log the
decrypted stream using the retaint_netidx and in-
form_logclient functions, respectively. None of the retaint functions
are visible to the caller, rendering the interposer transparent to the client.

Listing 1: Interposer for ssl_read library function
01 int SSL_read(SSL *ssl, void *buffer, int length) {
02 int(*func)() = (int(*)())dlsym(RTLD_NEXT,"SSL_read");
03 int func_result = func(ssl, buffer, length);
04 retaint_netidx(...); // now retaint
05 inform_log(...); // log decrypted data (Fig. 1)
06 return func_result; // return original result
07 }

A call to SSL_shutdown simply leads to destruction of state main-
tained by Hassle. CRYPTO_num_locks is more complex. OpenSSL uses
a number of global data structures that will be implicitly shared when mul-
tiple threads use the library. To use the library in the context of threads
safely, we need locks to prevent simultaneous access to the global struc-
tures and CRYPTO_num_locks returns the number of locks needed by
the library to synchronise access. Because our interposing library also im-
plements a global data structure, the number of locks should be increased
by one. So we interpose this function to make another lock available to
protect the global data structure.

3 Signature Generation
As illustrated in Fig. 1, signature generation is devolved from detection
and different generators can be plugged into the architecture. We currently

1 In fact, we interpose SSL_write also, but the reasons for doing so are related to
attack replaying and beyond the scope of this paper.

1 Tales from the Crypt 9

10 M. Valkering et al.

support two main classes of generator that will be referred to as pattern-
based and vulnerability-based, respectively. Pattern-based signatures are
widely used in network intrusion detection systems such as Snort [20] and
Bro [15]. They consist of a basic identification of the type of packet (e.g.,
TCP or UDP and port number), together with a byte pattern which is
matched against traffic of the appropriate type.

In vulnerability-based signatures we focus on buffer overflows on the
heap and stack and decouple the signature from the attack's content in
bytes completely. The signature consist of a bound on the combined length
of a set of protocol fields. Any message where such fields have a com-
bined length that exceeds this bound will incur an overflow, regardless of
their content, so these signatures cater well to polymorphic attacks. On the
surface, they are quite similar to those of Covers [11], but we will show
that they are considerably more accurate.

Each class of signatures has four variants of generators: (1) encrypted
vs. non-encrypted, and (2) single-origin net tracking with age stamps vs.
single-origin net tracking without age-stamps. The main difference be-
tween encrypted and non-encrypted channels, as far as signatures are con-
cerned, is where they are applied. For non-encrypted channels, we are able
to apply signatures in the network before the malicious traffic reaches the
host (indicated by (5) in Fig. 1). In contrast, encrypted channels require the
filters to be applied at a higher level, i.e., as an interposer filter in user-
space (indicated by (6)). In addition, an interposer filter must know which
signatures to apply. To do so, the signature generators consults the network
tag that was stored in the decrypted data log to find the corresponding flow
in the network trace. By means of the flow, we obtain the port numbers
used in the attack (and possibly other network-specific information). Fi-
nally, the forensics data generated by Hassle specifies details about the ap-
plication under attack. This is then used by remote clients to determine
which interposer filters should apply the filter.

3.1 Pattern-Based Signatures
Our pattern-based signatures handle all buffer overflows and all code in-
jection attacks (with slightly better signatures for buffer overflows). Note
that while code injection may be caused by buffer overflows, there also ex-
ists exploits for double frees, format strings, etc. Regardless of exploit,
Hassle is able to fingerprint such attacks also. We distinguish between sig-
nature generators with and without age-stamp analysis.

Single origin net tracking without age stamp analysis (SontNoAsa).
Whenever Hassle detects an attack, we determine whether the program
counter (EIP) register was tainted. If so, we use the origin pointer of the

register to locate the corresponding byte in the network trace. Next, we
perform a correspondence search between the flow content in the network
trace prior to this byte and the tainted data in memory. Whenever the tags
point to the appropriate values in the trace, we include them in the pattern.
Pseudo-code for this naïve algorithm is shown in Listing 2.

Listing 2: Naïve generator for pattern-based signatures
01 char *addr = top of memory location loaded in EIP;
02 sig_t sig = { *addr }; // signature as byte sequence
03 while (tag(addr-1) == tag(addr)-1)
04 sig = concatenate (*--addr, sig);

Hassle improves on this naive scheme by taking into account simple
gaps in the tainted memory region and Unicode character encodings (e.g.,
UTF-8). Gaps may occur in tainted buffers for many reasons, e.g., due to
non-tainted assignments to overflown memory after the buffer overflow
occurred and before the control flow was diverted. For instance, consider
the (contrived) code snippet in Listing 3.

Listing 3: Tainted data: gaps in tainted data
01 void read_from_socket (int fd) {
02 int n;
03 char unrelated_1 [8]; // not vulnerable
04 char vuln_buf [8]; // vulnerable buffer
05 char unrelated_2 [8]; // not vulnerable
06 read (vuln_buf, fd, 32); // overflow
07 read (unrelated_1, fd, 8);// tainted gap
08 read (unrelated_2, fd, 8);// adjacent buffer tainted
09 n = 1; // untaints 4 bytes: gap
10 return;
11 }

While the code is not very realistic, it serves to illustrate a number of
complications that prevent the naive solution from producing correct results
in some cases. Before the attack is detected (when return is executed),
the assignment in line (9) creates an untainted gap of 4 bytes in the tainted
buffer. Similarly, the read in line (7) creates a tainted gap filled with unre-
lated data. Finally, the vulnerable buffer may adjoin another buffer that also
contains tainted data, as demonstrated by the read in line (8).

In the pattern-based signatures generated using SontNoAsa, gaps are de-
tected by looking at the tags. Gaps either have no tags, or tags with unex-
pected values. Gaps are skipped whenever the byte on the other side of the
gap has the appropriate (expected) tag value. In case there is no such byte,
the signature stops here. Unfortunately, the adjacent buffer unre-
lated_2 that also contains tainted data cannot be distinguished from the
vulnerable buffer and is therefore also included in the signature. As a re-
sult, SontNoAsa and pattern-based signature can lead to false negatives.

1 Tales from the Crypt 11

12 M. Valkering et al.

Hassle can easily cater to well-known forms of encoding like Unicode.
Sometimes a network trace carries ASCII data, which is translated to a
Unicode representation in memory, or vice versa. Either way, the skew be-
tween network trace and memory is predictable. As both gap- and Unicode
handling are trivial extensions to the naive algorithm in Listing 2 we will
not show them here.

Single-origin net tracking with age stamp analysis (SontAsa). Applying
age-stamp analysis improves the accuracy of pattern-based signatures in
the case of buffer overflows attacks on heap or stack. Extended age-stamp
analysis directly yields all bytes in memory that were used in the overflow.
By means of single-origin net tracking we obtain the corresponding net-
work bytes. As we only identify the relevant bytes, compensating for gaps
and Unicode is no longer necessary, as it is handled automatically. In fact,
the signature generation is considerably more accurate, as age stamp
analysis is also capable of distinguishing buffers vuln_buf and unre-
lated_22.

Code injection signatures. Not all attacks are overflows. Perhaps other
means were used to divert control to the code injected by the attacker.
Since such code is tainted by nature, the attack is detected when instruc-
tions in the tainted region are executed. On rare occasions, injected code
may be executed because of legitimate control flow (i.e., a bona fide jump
to a memory area that is tainted). More commonly, the jump is the result of
a control flow diversion by means of a format string attack, heap corrup-
tion, or the overflows mentioned earlier. Regardless of how the injected
code is reached, we again align memory and network trace to generate a
signature. The only difference is that if the attack is not an overflow, we
match against the injected code.

In case we detect both a buffer overflow and code injection (i.e., the
buffer overflow was used to divert control to the injected code), we have to
decide whether to use as signature either the match against the injected
code, or the match against the overflow bytes. As injected code is more
likely to be polymorphic than the exploit itself, we favour the overflow
signature. As a rule of thumb we use the injected code signature only if (a)
it is longer than the overflow signature, and (b) if the length of the over-
flow signature is less than some minimum length Lmin (e.g., Lmin= = 12).

Limitations. Pattern-based signatures are attractive because of their sim-
plicity, and their popularity in existing IDSs. Unfortunately, they are also
fairly weak and incur both false positives and false negatives. In particular,
by using the actual content of the attack, traffic pattern-based signatures

2 And indeed more complicated cases. For details, see [22].

are powerless against polymorphic attacks. They also do not work when
multiple tainted buffers are adjacent in memory.

3.2 Signatures for Polymorphic Buffer Overflows
For polymorphic buffer overflow attacks we decouple the signature from
an attack's content in bytes. Instead, we look at the vulnerabilities. A mes-
sage that causes a buffer overflow contains one or more protocol fields of
unusual length that, when copied collectively into a vulnerable buffer,
overwrite critical data. Vulnerability-based signatures establish a maxi-
mum length L for the field(s). Any message where the combined length of
these fields exceeds L is sure to overflow the buffer. We first discuss a na-
ive implementation that is also used by other projects and demonstrate why
it is flawed. Next, we explain how age stamp analysis helps us solve the
problems.

Single-origin net tracking without age-stamps (SontNoAsa). In this na-
ive implementation, we trace the point of attack X to a byte N in the net-
work trace and establish what protocol field P contains this byte. Doing so
is trivial if traffic is not encrypted. In our case, we reassemble the TCP
stream and dissect the higher-layer protocols with a protocol dissector (we
use a modified version of Ethereal [2]). After locating the protocol field
containing N we generate a signature consisting of an identification of the
stream and application (port numbers, executable name) together with a
bound L on the length P, where L is (N – start of P). It is likely that any
message with P longer or equal to L results in an overflow (but not certain,
as we shall see shortly).

For encrypted traffic the procedure is a little more complicated as we
cannot start from the network packets to dissect the input stream. As we
start dissecting above the transport layer, how do we decide which proto-
col dissector to use? We identify three solutions for dealing with the prob-
lem. First, we may use custom interposers for specific applications. For in-
stance, we can apply an HTTP interposer for Apache which always
assumes HTTP traffic. Second, we may use the port numbers in the net-
work trace as an indication of the protocol (e.g., all port80 traffic will be
assumed to be HTTP). Third, we may use the information about the appli-
cation as an indicator for the protocol (if the application is “apache”, we
use the HTTP dissector). Currently, we use hard-coded associations.

In our implementation, we modified the Ethereal protocol analyser [2]
to start from higher-level protocols and to work with incomplete protocol
messages. As this signature generator is very similar to Covers [11], we re-
fer to it as Hassle-Covers.

1 Tales from the Crypt 13

14 M. Valkering et al.

Limitations. Unfortunately, Covers (and thus Hassle-Covers) yields both
false positives and false negatives. First, exploits like Apache-Knacker
[21] use the fact that sometimes multiple protocol fields are copied in the
same buffer to generate an overflow of the buffer with the content from all
these fields. As a result, establishing a bound on the length of a single field
may miss attacks where the length of P is small, but the combined length
of all fields exceeds the length the buffer. Similarly, it may misdiagnose a
message as malicious when P is longer than L, even though the combined
length of all the relevant fields is less than the buffer size.

The second reason is related, but more subtle. It is also more serious.
The dissector used to generate signatures may work at different protocol
field granularities than the application itself. For instance, the dissector
may identify subfields in a record-like protocol field as separate fields,
while the application simply treats it a single protocol field. As a conse-
quence, the two types of misclassification described above may occur even
if the exploit does not explicitly use multiple fields. As we generally do not
have the application's source code, and hence have no knowledge about the
granularity of the application's dissector, this is a serious problem.

Single-origin net tracking with age-stamp analysis (SontAsa). To deal
with this problem we take into account all bytes used in the overflow. A
reliable way of establishing which bytes were used in the exploit is by
means of age-stamped net tracking. In the case of non-encrypted traffic we
find those bytes in the network trace directly. In the case of encrypted traf-
fic those bytes are found in the decrypted data log using the modified Ethe-
real protocol dissector, as described in the previous sections.

To be precise, we find accurately all bytes that were used in the over-
flow and we do so before a single instruction of the attack is executed and
without the need to replay the attack. Gaps in the buffer overflow (as ex-
plained in Section 3.1), be they tainted or non-tainted, are duly skipped,
and adjacent buffers that are both tainted but different are separated. In ad-
dition, encodings like Unicode are automatically handled. The details are
complex and beyond the scope of this paper. The exact procedure is ex-
plained in [22].

Given the overflow bytes, we then identify all protocol fields that were
used in the attack and establish an upperbound L on their combined length
according to our dissector. Whether or not the application uses a different
protocol field granularity is now immaterial.

4 Filters
Hassle filters for non-encrypted traffic consist of simple checks, either
matching pattern-based signatures against network packets, or looking at

the length of fields of specific protocol messages for vulnerability-based
signatures. They can be applied in the network or in the operating system
kernel.

For encrypted channels, similar procedures are used, except that they are
applied by means of library interposition in user-space. Filters should only
apply those signatures that apply to the specific application that uses the
SSL library. Currently, this is done by explicitly associating a separate
interposer filter library with every application we want to protect. Each
interposer filter only picks up the signatures for the application it is pro-
tecting. Since Hassle provides the full name of the executable as part of
the signatures, the association is trivial. For vulnerability-based signatures,
the interposer filters again use the modified version of Ethereal for proto-
col dissection.

5 Results
For realistic performance measurements we compare the speed of code
running on Hassle with that of code running without emulation. While this
is an honest way of showing the slowdown incurred by our system, it is not
necessarily the most relevant measure, as we use Hassle as a honeypot
rather than a desktop machine. To our knowledge, no automated attacks
exist that shun slow hosts, because they might be honeypots.

It should also be mentioned that encryption is known to be one of the
most challenging applications for dynamic taint analysis, because decryp-
tion requires a large number of tainted operations. For instance, recent
work on demand emulation [7] describes a technique to speed up emula-
tion-based taint analysis by switching to fast VM-mode when possible.
While many applications incurred as little as a factor 2 slowdown, SSL in-
curred a slowdown of 150.

Performance. To quantify the observed slowdown we used the Apache
2.2.3 web server using the OpenSSL library. The first simple test consisted
of requests to read a 5 MB block from the client to the server, which on top
of a vanilla Qemu emulator took Apache 19.9s to complete (2.06Mbps).
On Hassle, the same task took 23.47 s (1.75 Mbps), incurring a 15% over-
head.

We also evaluated Apache throughput in terms of number of processed
requests per second and the corresponding average response time. We used
httperf3 for generating requests. The experiments were conducted on a
dual Intel™ Xeon at 2.80 GHz with 2 MB of L2 cache and 4 GB of RAM.
The system was running SlackWare Linux 10.2 with kernel 2.6.15.4.

3 www.hpl.hp.com/research/linux/httperf/.

1 Tales from the Crypt 15

16 M. Valkering et al.

Table 1. Maximum rates for https connections.

Description Average
(req/s)

Standard
deviation

Relative to
native

Response time
(ms)

https/native 57.0 0.3 1.0 21
https/Argos 0.6 0.07 95.0 87
https/Hassle 0.55 0.12 103.6 63
http/Argos 38 1.8 n/a 147
http/Hassle 38 1.7 n/a 200

The results for https (using SSL) are summarised in Table 1. The table

lists results for 3 Apache configurations: (i) running natively, (ii) running
on the Argos honeypot, and (iii) running on Hassle. We also show some
results for non-encrypted http connections for comparison4. The results are
the best possible in the sense that at this rate the webserver was able to
keep up fully with the request rate, while not yet incurring unreasonably
long response times. For instance, for all reported rates the response times
were below 200 ms. Beyond these rates, response times shot up to many
hundreds or even thousands of milliseconds.

The experiments confirm that SSL is very expensive for dynamic taint
analysis, incurring a slowdown of approximately a factor 100 over native
code running SSL, and a factor 70 over non-encrypted channels using the
same (emulated) configuration. Consequently, dynamic taint analysis for
SSL encrypted channels is only viable on honeypots, and even here the
number of connections should be limited. Note however, that slowness is
not really a major issue for a honeypot as long as it is able to serve a re-
quest sufficiently fast. Moreover, in most deployments of honeypots like
Argos (e.g., at SURFnet5, Eurecom [10], and in the Noah project6), a first-
pass filter of low-interaction honeypots is used to shield the high-
interaction honeypot from most requests. The second thing to observe is
that there is little difference between Hassle and the original Argos (i.e., a
honeypot without retainting and logging of encrypted data).

Probing further, it appeared that most of the overhead is in the connec-
tion set-up where SSL uses asymmetric encryption. As a result, perform-
ance improves significantly when use is made of https sessions. For in-
stance, for 100 sessions per connection, the reply rates for https Hassle are
shown in Table 2.

4 We were unable to measure reliably the native version for plain http, because
httperf at the client side became the bottleneck.
5 http://honey.surfnet.nl/
6 http://www.fp6-noah.org/

Table 2. Maximum rates for https connections with sessions.

Description Average rate (req/s) Relative to native
https/native with sessions 486 1.0
https/Argos with sessions 31.1 15.6
https/Hassle with sessions 25.0 19.4

Micro-benchmarks. Retainting itself is not very expensive. We meas-

ured 200µs on a Pentium M at 1.4GHz with 1GB of RAM, running Ub-
untu Linux 6.0.6. The guest OS ran Ubuntu Linux 5.05 with kernel
2.6.12.9, on top of Qemu 0.8, Argos and Hassle. Similarly, the overhead of
the entire interposition library to do the retainting is modest. We measured
performance with and without the interposition library for both SSL reads
and SSL writes for block sizes ranging from 100B to 16 kB bytes. For
writes, the relative overhead lies between 17.5% for the largest blocks and
26% for the smallest ones. For reads, the results range from 24.5% for the
largest to 50% for the smallest blocks. Likewise, in our evaluation the
interposer filters that scan SSL streams for the occurrence of a signature
incurred overheads between 2 and 15% compared to a system without the
filters, for the most expensive (pattern-based) signatures.

Generating a single-origin net tracking signature. In a cursory
evaluation of the signature generator we tested the generators for pattern-
based and vulnerability-based signatures using request sizes of 170 B and
100 kB, respectively (representing different amounts of data to dissect
and/or scan). The pattern-based signature was generated in 1.1 ms for the
small request, and 14 ms for the large one (median values). Vulnerability
based signatures for polymorphic attacks required 3.9 ms, and 26 ms to be
completed (assuming the protocol dissector is loaded already).

6 Related Work
To our knowledge, we are the first to tackle the problem of one-shot signa-
ture generation for communication on encrypted channels. Dynamic taint
analysis, on the other hand, is well-known and used in TaintCheck [14],
Vigilante [3], and Argos [18]. None of these projects offer signatures for
encrypted traffic.

Library interposition as a way of monitoring interaction with libraries is
used frequently to analyse applications [4] and generate audit trails [9]. Li-
ang et al. propose library interposition to learn about program inputs that
lead to crashes induced by buffer overflows [12]. In essence, they consider
library calls made from a given program context and raise an alert when an

1 Tales from the Crypt 17

18 M. Valkering et al.

input is significantly longer than the maximum input length seen in the
past. Interposition is also applied at the system-call level either to confine
the application [6], or to monitor the compliance of a sequence of calls
with a predefined application model [5, 12]. In contrast, we intercept li-
brary calls to switch to tracking decrypted network streams by adjusting
the tags in dynamic taint analysis.

Several of our signature generators are based on existing work. In par-
ticular, the pattern-based signatures are quite popular in open-source
NIDSs like Snort [20] and Bro [15]. However, the way we generate the
signatures is a little different from existing projects. This is true for the
way Hassle skips gaps and handles Unicode, and even more so for the age-
stamped net tracker that determines accurately which bytes are used in a
buffer overflow.

Similarly, the single-field vulnerability-based signature is already pro-
posed in Covers [11]. We have demonstrated that such signatures have
fundamental flaws and shown how we solved them.

Application-level filtering is performed by virus scanners and Vigilante.
Filters in interposing libraries are not very common. While the paper is a
bit vague about it, we suspect that they are also used in ARBOR [12], al-
though the filters are of a very different nature.

7 Conclusions
We have described Hassle, a honeypot system that is capable of generating
signatures for communication over both encrypted and non-encrypted
channels. For encrypted traffic we retaint the tainted data by making the
tags point to the decrypted SSL streams. Different types of signature gen-
erator can be used in the system. Which one should be used is a tradeoff
between simplicity and accuracy. In our opinion, pattern-based signatures
are useful for simple, non-polymorphic attacks, while vulnerability-based
signatures work well with more advanced, polymorphic exploits. To our
knowledge, we are the first to develop a system capable of fingerprinting
attacks over encrypted channels and cater to both monomorphic and poly-
morphic exploits.

References
[1] P. Bueno. IIS Exploit released / Gagobot.XZ – SANS Microsoft Advisories.

http://isc.sans.org/diary.html?date=2004-04-14, April 2004.
[2] G. Combs. Ethereal network protocol analyzer. http://www.ethereal.com.
[3] M. Costa, J. Crowcroft, M. Castro, A Rowstron, L. Zhou, L. Zhang and P.

Barham. Vigilante: End-to-end containment of internet worms. In Proc. of

the 20th ACM Symposium on Operating Systems Principles, Brighton, UK,
2005.

[4] T. W. Curry. Profiling and tracing dynamic library usage via interposition. In
Usenix ATC, Boston, MA, June 1994.

[5] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusion detection.
In 11th Annual Network and Distributed Systems Security Symposium, 2004.

[6] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environ-
ment for untrusted helper applications. In Proceedings of the 6th Usenix Se-
curity Symposium, 1996.

[7] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical taint-
based protection using demand emulation. SIGOPS Oper. Syst. Rev. (Proc. of
ACM SIGOPS EuroSys, April 2006, Leuven, Belgium), 40(4):29–41, 2006.

[8] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic
worm detection using structural information of executables. 8th International
Symposium on Recent Advances in Intrusion Detection (RAID), Sept 2005.

[9] B. A. Kuperman and E. Spafford. Generation of application level data via li-
brary interposition. Technical Report CERIAS TR 1999-11, 1999.

[10] C. Leita, M. Dacier, and G. Wicherski. SGNET: a distributed infrastructure
to handle zero-day exploits. Technical Report EURECOM+2164, 2007.

[11] Z. Liang and R. Sekar. Fast and automated generation of attack signatures: a
basis for building self-protecting servers. CCS ’05.

[12] Z. Liang, R. Sekar, and D. C. DuVarney. Automatic synthesis of filters to
discard buffer overflow attacks: A step towards realizing self-healing sys-
tems. In USENIX Annual Technical Conference - short paper, Anaheim, CA,
2005.

[13] McAfee. Encrypted threat protection – network IPS for SSL encrypted traf-
fic. White paper, February 2005.

[14] J. Newsome and D. Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In
Proc. of Network and Distributed System Security Symposium (NDSS), 2005.

[15] V. Paxson. Bro: A system for detecting network intruders in real-time. Com-
puter Networks, 31:23–24, December 1998.

[16] F. Perriot and P. Szor. An analysis of the slapper worm exploit - white paper.
Technical report, Symantec Security Response, 2002.

[17] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Network-level
polymorphic shellcode detection using emulation. In R. Büschkes and P.
Laskov, editors, DIMVA, volume 4064 of Lecture Notes in Computer Sci-
ence.

[18] G. Portokalidis, A. Slowinska, and H. Bos. Argos: An emulator for finger-
printing zero-day attacks. In Proc. ACM SIGOPS EUROSYS’2006.

[19] C. Prosise and S. U. Shah. Hackers’ tricks to avoid detection. WindowSecu-
rity White Paper, http://secinf.net/info/misc/tricks.html, 2002.

1 Tales from the Crypt 19

[20] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceed-
ings of the 1999 USENIX LISA Systems Adminstration Conference.

20 M. Valkering et al.

[21] SecurityFocus. Can-2003–0245 apache apr-psprintf memory corruption vul-
nerability. http://www.securityfocus.com/bid/7723/discussion/, 2003.

[22] A. Slowinska and H. Bos. Prospector: Accurate analysis of heap and stack
overflows by means of agestamps. Technical Report IR-CS-031, Vrije Uni-
versiteit Amsterdam, June 2007.

[23] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract pay-
load execution. In Recent Advances in Intrusion Detection, 2002.

Fabrizio Baiardi1 and Daniele Sgandurra2

1 Polo G. Marconi La Spezia, Università di Pisa, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy
{baiardi, daniele}@di.unipi.it

Abstract. We propose a methodology to check software integrity based upon vir-
tual machines (VMs) that integrates controls at distinct execution levels. The base-
line of the proposed approach is the virtual machine monitor (VMM) capability to
access the memory of a VM to apply a set of consistency checks to the VM oper-
ating system (OS). In turn, the OS can apply a different set of consistency checks
to the application processes, and applications can also enforce a further set of se-
curity controls. The union of all the consistency checks forms a chain of trust,
where each level controls the integrity of the one above it through the proper inter-
face for that level. In this way, the proposed approach minimizes the semantic gap
in-between two different levels, because each level only applies those security
controls that are coherent with the view of the level. We apply this methodology
to build a distributed intrusion detection system (IDS) to detect attacks against a
network of VMs. According to the proposed methodology, the tool adopts VM in-
trospection (VMI) to apply a set of consistency checks to the kernel of the OS of
each VM. Then, we extend the kernel of each VM with a set of functions to check
the integrity of the processes involved in the detection of intrusions.

1 Introduction

Any approach to intrusion detection should take into account that most so-
phisticated attacks strive to occupy the lowest system level. This is due to
at least two reasons: (i) to achieve a full system control; (ii) to deceive the
legitimate system owner by hiding the traces of the compromise and pro-
viding the owner with a false sense of security. As an example, rootkits

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_2, © Springer Science+Business Media, LLC 2009

2

Machines
Towards High Assurance Networks of Virtual

22 F. Baiardi and D. Sgandurra

have gradually evolved from user-level to kernel-level rootkits [10, 28].
This implies that, since both rootkits and tools that detect them run at the
lowest level, the kernel one, only the first one able to predict and prevent
the adversary moves can eventually succeed in getting full control of the
system [31].

In the context previously described, a fully general, level-independent
technique to discover signs of intrusions is introspection. This technique
analyzes the system memory to rebuild data structures of interest and
check their consistency. If no dedicated hardware support is available [26],
virtual machine introspection [12] can be applied provided that the OS and
applications to be monitored are executed inside a VM. A VM is an execu-
tion environment created by a virtualization technology that emulates, at
software, the behavior of the underlying architecture [7, 34]. To create,
manage and monitor the VMs, this technology introduces the virtual ma-
chine monitor (VMM) [13] a thin software layer in-between the OS layer
and the hardware/firmware one. In this way, a standard physical machine
supports several VMs, each running a distinct OS. By exploiting the VMM
direct access to the memory of each VM, virtual machine introspection can
analyze the state of the kernel hosted on a VM. In this way, introspection
is applied at a lower level than the one an attacker can gain and, provided
that the VMM cannot be subverted, we can build from the VMM up a
chain of trust where each level applies a set of different consistency checks
to discover attacks. In the following we will use the term introspection
rather than the more correct, but longer, virtual machine introspection.

As discussed in the next sections, we believe that VMM and introspec-
tion are important building blocks to create high assurance systems. In this
view, we have developed Psyco-Virt, a software architecture that integrates
introspection with a set of host and network IDS tools to achieve high as-
surance on the integrity of the VMs. The overall architecture consists of a
cluster of monitored VMs (Mon-VMs), i.e. the VMs to monitor, and intro-
spection VMs (IVMs) to implement the monitoring. All the Mon-VMs are
mapped onto a cluster of physical nodes, and one IVM is introduced for
each physical node. All the Mon-VMs are connected by a virtual network,
the data one, to exchange application traffic. A further virtual network, the
control network, connects all the IVMs and each IVM and the Mon-VMs
on the same node. This is a private hierarchical network that spans across
distinct physical nodes to support the exchange of alerts and introspection
information. A set of IDS agents on each Mon-VM discovers attempted in-
trusions/attacks and, in such a case, an agent alerts the IVM through the
control network. In Psyco-Virt, the kernel of each Mon-VM guarantees the
integrity of the controls implemented by the IDS agents, while an intro-
spector running on the IVM exploits the VMM control interface to apply

introspection and monitor the kernel of each Mon-VM to discover attacks
against the kernel itself. In this way, the overall assurance is achieved in
three steps:

1. the IDS agents apply a broad range of security checks, such as file

system integrity, denial-of-service detection and prevention, anomaly
detection;

2. the kernel of a Mon-VM controls the correct execution and integrity
of the IDS agents;

3. the IVM applies introspection to assure the integrity of the kernel
inside each Mon-VM.

Obviously, the second step may also use already existing security fea-

tures, such as those offered by SELinux [21, 20].
The overall architecture provides assurance that critical VM compo-

nents, such as the kernel and the agents, cannot be tampered with to make
them return bogus data. In this way, the trusted computing base (TCB) in-
cludes all the components protected by the chain of trust starting with in-
trospection. In turn, this strongly reduces the probability of a successful at-
tack against the Mon-VMs. A further advantage of the architecture is that
the configuration of each VM can be specialized to minimize the software
it runs according to both its role and the applications of interest [33, 27, 4].
Lastly, since IDS agents may be simple wrappers to standard IDS tools,
the architecture exploits at best current security tools to discover intrusions
and attacks against the Mon-VMs.

2 Psyco-Virt Overview

After presenting the overall architecture of Psyco-Virt, we discuss the
tasks of the IVMs and of the Mon-VMs.

The rest of the paper is organized as follows. Section 2 describes the
overall architecture of Psyco-Virt and justifies the main assumptions
underlying its definition. Section 3 discusses the current implementation
and shows some examples of IDS agents and of integrity checks applied at
different levels. Section 4 presents an evaluation of security and
performance results and describes the current limitations of the prototype.
Section 5 discusses related works. Finally, in Section 6 we draw a first set
of conclusions and outline future developments.

2 Towards High Assurance Networks of Virtual Machines 23

24 F. Baiardi and D. Sgandurra

2.1 Overall Architecture
Psyco-Virt assumes that the applications of interest are mapped onto a
cluster of VMs, the Mon-VMs, which are then mapped onto a cluster of
physical nodes. Each node runs a VMM and an introspector VM (IVM). In
turn, each Mon-VM runs an OS and a set of IDS agents (see Fig. 1). A col-
lector on each Mon-VM supports the exchange of alerts and commands
among the agents and the IVM. All the Mon-VMs are connected by a data
network that supports application and OS traffic. A distinct network, the
control one, connects the IVMs and each IVM to the Mon-VMs on the
same node. This is a virtual private network, which cannot be accessed
from the outside world. The control network connects the Mon-VMs in a
hierarchical way to the IVMs to exchange: (i) commands among the IVM
and the collector or the agents; (ii) alerts reporting intrusions or attacks
from the agents to the IVM; (iii) control information among the IVMs to
coordinate the detection.

One of the main tasks of an IVM is to apply introspection to protect the
kernel of each Mon-VM. In this way, Psyco-Virt integrates both agents to
detect intrusions on the Mon-VMs and introspection to preserve the integ-
rity of the kernel of the Mon-VMs themselves. Each agent is a wrapper for
a tool, such as chkrootkit [5] or Snort [30], which monitors critical parts of
the system and alerts the IVM through the control network each time an in-
trusion is suspected. The IVM analyzes the alerts received from the agents
and handles the detection of an intrusion or attack by executing a proper
action, i.e. stop or freeze the execution of a compromised Mon-VM. The
ability of freezing a VM to examine its state in more details is a fundamen-
tal advantage and a peculiarity of the virtualization technology.

Fig. 1. Psyco-virt Architecture.

Note that a Mon-VM can be introduced just to run an agent, as an ex-
ample, a network IDS that analyzes the data network traffic. Obviously,
the configuration of this Mon-VM should be optimized to reduce the soft-
ware it runs and hence the opportunity of a successful attack against it.

To justify the multi-level approach we have adopted, consider an alter-
native solution that applies introspection by modifying an existing IDS
tool so that it can apply introspection at the VMM level from the IVM. The
complexity of this solution is very high because the IDS tool should moni-
tor the Mon-VMs through a set of checks defined at the hardware level. A
further, distinct, approach applies introspection to evaluate a set of consis-
tency checks defined according to the OS-level semantics. This approach
does not have to modify the IDS, provided that the introspection library
enables the IDS to exploit a high level view of the VMs, defined in terms
of files, processes and virtual memory. This is particularly challenging, as
in the case of reproducing the structure and the operations of an existing
file system. Both approaches are feasible, but the first one requires current
IDS tools to be modified so that they work at the hardware level. On the
other hand, the second approach requires a complex introspection library
that should also support the various versions of the OSes of interest. Our
approach is different from both the previous ones. In fact, Psyco-Virt dis-
covers intrusions on a Mon-VM through agents that exploit standard IDS
tools, which do not have to be modified, as in the first approach. Further-
more, to simplify the adoption of introspection, our solution extends the
kernel with functions that monitor the agents. As a consequence, Psyco-
Virt only requires an introspection library much simpler than the one of the
second approach because it only evaluates kernel related properties, and
the introspector on the IVM can guarantee the integrity of the overall de-
tection system by monitoring the kernel of the Mon-VMs only.

An important assumption of our approach is that the VMM can be
trusted and that introspection is the basis of a chain of trust from the VMM
to the kernel and then to the IDSes. The reason for assuming that both the
VMM and introspection are trusted is twofold. Firstly, the VMM has full
visibility of a Mon-VM, because it can access every VM components, such
as the memory it allocates to them. Secondly, the VMM is more robust
than commodity OSes because: (i) the interface it exports to the higher
levels is very simple and so more difficult to subvert than, for example, the
one of an OS kernel that implements hundreds of system-calls; (ii) the
small size of its code reduces the likelihood of a compromise. In conclu-
sion, since the VMM has full visibility of the VMs it supports and it is es-
sentially isolated from these VMs, the complexity of compromising the
VMM or of eluding the introspection monitoring capabilities is very high.

2 Towards High Assurance Networks of Virtual Machines 25

26 F. Baiardi and D. Sgandurra

2.2 Introspection VM
The introspector on the IVM applies introspection to discover attacks
against critical components of the kernel of a Mon-VM. In particular, it
monitors the text section of the kernel and that of the loaded modules to
discover whether they have been modified. These memory regions should
be read-only, hence any attempt to update them implies that an attacker is
trying to insert and execute arbitrary instructions. As an example, this hap-
pens when a kernel-level rootkit tries to modify the code of a system call.

When an agent on a Mon-VM detects an attack or when the introspector
discovers that the kernel of a Mon-VM has been modified, the IVM han-
dles the corresponding event by executing one of the following actions: (i)
stop the execution of a VM and save its state in a file; (ii) kill a process
(the offending one); (iii) close the connection of the VM to the data net-
work; (iv) disconnect a user connected to a VM; (v) send an alert to the
system console to inform the administrator. Since further information may
be required to choose the proper action, the IVM runs a director to: (i) col-
lect all the alerts from either the agents through the collector or the intro-
spector; (ii) actively interact with the agents on the Mon-VMs to access
specific information about the monitored systems.

The Psyco-Virt introspection library enables the introspector on the
IVM to build a high level view of a Mon-VM state starting from the raw
data in the Mon-VM memory. This library plays a fundamental role be-
cause the VMM control interface provides only a low level view of a Mon-
VM, i.e. in terms of memory, registers and disk blocks, whereas the intro-
spector should reason in terms of kernel data structures, such as the proc-
ess descriptor or the system call table. Thus, the library should translate the
low level data received from the VMM control interface into a high level
view in terms of kernel data structures. This requires that the library knows
the kernel hosted by each Mon-VM, the data structures it uses and the
memory areas where they are allocated. In this way, Psyco-Virt can exploit
a kernel level view of the status of the Mon-VMs and consider global in-
formation such as the list of the running processes, the list of the loaded
modules or information associated with a process identifier (PID), such as
the list of open files/sockets. This information may be used to implement a
very general and effective consistency check: the IVM builds a list of ker-
nel data structures and compares this information against the one returned
by an OS command executed on the Mon-VM. Any difference may signal
that an attacker is trying to hide her presence.

The control network among the IVMs simplifies the recognition of dis-
tributed attacks because the IVMs can broadcast information about attacks,
detected either by agents or through introspection. This network is also

used to coordinate the shutdown of the Mon-VMs executing applications
that are the target of a distributed attack.

2.3 Monitored VM
Each Mon-VM may run several IDS agents, each checking a distinct as-
pect of the OS or of the applications. The collector receives all the mes-
sages from these agents, and immediately forwards any message that re-
ports an attack or an intrusion to the director on the IVM. Custom agents
may be created to directly interact with Psyco-Virt to discover intrusions,
or existing NIDS/HIDS tools can be used. For example, custom agents
could analyze audit logs to discover unsuccessful login attempts. Con-
versely, tools such as Tripwire [23] may alert the collector any time they
detect an attempted intrusion or attack. Each agent behaves like a common
host IDS that monitors system calls, audit and applications log files and
file system changes. The number of agents and the checks they implement
are strongly related to the required security level.

3 Current Prototype

The first prototype of Psyco-Virt has been developed using the C lan-
guage. The VMM we used is Xen [7] while all the Mon-VMs run the
Linux Debian distribution. We also used XenAccess [36] as the basis of
the Psyco-Virt introspection library and the Xen Control library to stop a
VM, save its state to a file and resume a suspended VM. Lastly, we used
OpenSSL [24] and the Linux Cryptolib to compute the hashes, while
OpenVPN [25] was used to set up the control network among the IVMs in
distinct nodes. The source code of the current prototype is available at
http://www.di.unipi.it/~daniele/projects/projects.php.

3.1 Introspection Functions
The following paragraphs discuss the implementation of some sample in-
trospection functions to exemplify some of the capabilities of Psyco-Virt.
To implement these functions, we used the headers of the Linux kernel
running inside the Mon-VMs, so that through introspection the introspec-
tor could reconstruct kernel data structures.

3.1.1 Detecting Kernel Modifications
This introspection function discovers attacks to the kernel of a Mon-VM.
The IVM checks the memory pages storing:

2 Towards High Assurance Networks of Virtual Machines 27

28 F. Baiardi and D. Sgandurra

• the kernel code, from the address _text to _etext;
• the system call dispatch table, stored in the sys_call_table array;
• the interrupt descriptor table, stored in the idt_table table.

Since these pages should never be modified, the introspector periodi-

cally computes their hashes to verify that they have not been updated. To
detect illegal updates to pages that can be modified, a set of invariants can
also be evaluated at runtime [9]. This idea is left for a future work.

3.1.2 Running Processes Checker
According to the general approach previously described, the introspector
applies introspection to rebuild the list pointed by the init_task symbol and
retrieve the set of the running processes on a VM. Then, it compares this
set against the one returned by executing the command ps on the Mon-
VM. If the two sets of PIDs differ, then it is very likely that an attacker has
replaced critical system binaries with trojaned versions to hide her pres-
ence. In case of systems running a fixed number of processes, more severe
checks can be defined because the list of allowed PIDs, paired with the
name of the processes, can be fixed during the boot of a Mon-VM.

3.1.3 Loaded Modules Authenticator
This function rebuilds the list pointed by the modules symbol to retrieve
the list of the modules inserted into the kernel. Then, it checks their integ-
rity and that if they are authorized kernel modules. To this purpose, the
first time a Mon-VM is started, we load all the kernel modules it can run.
For each module, this function computes the hash of the pages storing its
code and save these values and the name of the module in a file. Later,
when the Mon-VM is running, this function periodically computes the
hash of the pages storing the code of each loaded module and checks if this
value differs from the previous one or if the name of a module differs from
the stored values. Any difference implies that either a module has been
modified or a not authorized one has been loaded. An analogous check is
applied to the list of open files.

3.1.4 Promiscuous Mode Checker
This function requests the pages starting from the kernel symbol dev_base,
a pointer to a list of device structures in the Mon-VM. For each structure,
the function verifies whether the corresponding flags indicate that the in-
terface is set into promiscuous mode. This approach applies the same
 checks implemented in [11], but at a distinct level. In fact, while kstat ac-

cesses these structures at the user-level through /dev/kmem or, if imple-
mented as a module, at the kernel-level, the introspector function of Psyco-
Virt applies these checks at the VMM level. Hence, it cannot be defeated
even if an attacker gains root privileges.

3.1.5 Anti-Spoofing
To support the anti-spoofing capabilities, the IVM Linux kernel is com-
piled with the following options:

• CONFIG_NETFILTER_XT_MATCH_PHYSDEV
• CONFIG_BRIDGE_NETFILTER
• CONFIG_NETFILTER_NETLINK
• CONFIG_NETFILTER_XTABLES
• CONFIG_BRIDGE

The IVM implements the anti-spoofing checks on the virtual bridge
connecting the VMs on the same node using a set of iptables [22] rules.
Each rule is defined in terms of the static IP address bound to the virtual
interface assigned to a Mon-VM. Every packet with a spoofed source IP
address is dropped and logged.

4 Security and Performance Results

This section presents an evaluation of Psyco-Virt from the security and the
performance points of view. To test Psyco-Virt capabilities, we configured
an IVM to compute, with a predefined frequency, the hashes of the text
area of the kernel and of the modules inside each Mon-VM. In turn, an au-
thorized module into the kernel of each Mon-VM periodically computes
the hashes of the text area of critical processes of a Mon-VM, such as the
collector, the hosts and network IDSes. The IVM also verifies that the list
of the loaded modules into the kernel only contains authorized modules,
and that the list of running processes and open files does not include hid-
den entries. Lastly, it applies anti-spoofing techniques on the virtual bridge
and checks that no Mon-VM is sniffing traffic.

4.1 Effectiveness
To evaluate the effectiveness of the checks implemented by Psyco-Virt, we
wrote sample rootkits to update both the text area of a critical process and

2 Towards High Assurance Networks of Virtual Machines 29

30 F. Baiardi and D. Sgandurra

an entry in the idt_table pointing to a modified interrupt handler [17]. We
also inserted a malicious module into the kernel of each Mon-VM to mod-
ify both a pointer in the sys_call_table and an existing system call. Be-
sides, we replaced the system binaries ps and lsof to hide specific proc-
esses/files.

The IVM detects the modifications to the system call handler or to an
existing system call as well as to pointers in the sys_call_table or to an en-
try in the idt_table. The module into the Mon-VM kernel also detects when
the text area of a critical process is modified, while the IVM detects each
not authorized module loaded into the Mon-VM kernel, as well as a mali-
cious update to an authorized module. Moreover, chkrootkit or Tripwire
detects any update to system binaries and the process checker discovers the
presence of hidden processes/files. In any of the previous cases, an alert is
sent to the director. Finally, the IVM easily detects when an interface is set
to promiscuous mode, or when the IP source address of a packet has been
spoofed.

4.2 Performance Overhead

Fig. 2. IOzone read performance on a Mon-VM.

To evaluate the overhead due to Psyco-Virt, we ran the IOzone Filesystem
benchmark tool [14] on a Mon-VM, while the IVM applies the whole set
of consistency checks discussed earlier, with a period between each invo-
cation of 1, 5, 10, 30, 60 seconds or without applying any check. Figure 2
shows that the maximum overhead on the read test, due to the consistency
checks, is about 7%. The same result holds for the write test.

4.3 Limitations
Currently there are some attacks that Psyco-Virt cannot detect. As an ex-
ample, Psyco-Virt only checks that the idt_table and the sys_call_table
have not been updated, but several other kernel sensitive data structures
need to be protected. Moreover, any malicious modification against dy-
namic data in memory, both in the kernel and user space, is not detected.
As an example, malicious updates of the stack or of the heap are not de-
tected. The complexity of preventing these attacks is very high because a
set of memory invariants has to be computed for each process and for the
kernel. Another problem arises if an attacker detects the presence of the
VMM. In fact, she can try to directly attack the VMM or evade the consis-
tency checks. Evasion is possible provided that sensitive data structures are
updated after the checks have been applied and that a consistent state is re-
stored just before the checks are applied again. Finally, provided that an at-
tacker can insert a module the first time the hashes of the authorized mod-
ules are computed, a malicious module can be considered an authentic one.

5 Related Works

VMI is first discussed in [12] together with Livewire, which is a prototype
of VMI IDS. ReVirt [8] supports recovery, checkpoint and roll-back of
VMs and uses virtual-machine replay to re-execute a system, encapsulated
in a VM, instruction-by-instruction for recovering purposes. IntroVirt [16]
is a system that detects intrusions by executing vulnerability-specific
predicates. Paladin [1] is a framework that exploits the virtualization tech-
nology to detect and contain rootkit attacks. Manitou [19] is a system im-
plemented within a VMM that ensures that a VM can only execute author-
ized code by computing the hash of each page before executing the code
and setting the executable bit only if its hash belongs to a list of authorized
hashes. [35] describes a hierarchical trust management framework, where
the root of trust is a secure co-processor, which periodically triggers a set
of security checkers to build up a chain of trust. The idea of a distributed
IDS was first introduced in [29] to monitor a heterogeneous network. The
proposed prototype combined data reduction and a centralized data analy-
sis. Netstat [32] is a NIDS that applies state transition analysis techniques
by modeling intrusions through state transition diagrams. Hyperspector
[18] is a monitoring environment to detect intrusions in a distributed sys-
tem, by running each IDS inside a dedicated VM, and connecting all the
IDS using an independent virtual network. Collapsar [15] is a virtual
honeypot architecture to detect network attacks.

2 Towards High Assurance Networks of Virtual Machines 31

32 F. Baiardi and D. Sgandurra

6 Conclusions and Future Developments

Psyco-Virt shows that the proposed multi-level approach to achieve highly
assurance intrusion detection systems is feasible and effective, and that the
overhead is acceptable. The proposed approach defines a three-steps strat-
egy: (i) a set of processes implements HIDS and NIDS tools to detect at-
tacks and intrusions on the Mon-VMs; (ii) specific modules into the kernel
of the Mon-VMs check the integrity of these critical processes; (iii) virtual
machine introspection is used to protect kernel integrity. In this way, the
proposed architecture builds a chain of trust, where each level verifies the
integrity of the one above it.

Our future research is focused on the use of introspection to check at
runtime a set of memory invariants that should hold for a process or for the
kernel. These invariants are computed by applying formal static analysis
based on an abstract interpretation approach to the programs or to the ker-
nel code [6, 3, 2]. The set of invariants is an input for the IVM which, for
example, may freeze a Mon-VM each time a system call is executed, and
apply introspection to check that invariant properties regarding system call
parameters are verified.

Acknowledgments

We would like to thank Fabio Campisi which helped us in writing and test-
ing the code and the anonymous reviewers for their suggestions.

References
[1] A Baliga, X Chen, and L Iftode. Paladin: Automated detection and contain-

ment of rootkit attacks, Jan 2006. Rutgers University Department of Com-
puter Science Technical Report DCS-TR-593.

[2] T Ball, R Majumdar, T D Millstein, and S K Rajamani. Automatic predicate
abstraction of c programs. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 203–213, 2001.

[3] F Bourdoncle. Abstract debugging of higher-order imperative languages. In
PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference on Pro-
gramming language design and implementation, pp. 46–55, New York, NY,
USA, 1993. ACM Press.

[4] R Bradshaw, N Desai, T Freeman, and K Keahey. A scalable approach to de-
ploying and managing appliances. In TeraGrid 2007, June 2007.

[5] chkrootkit – locally checks for signs of a rootkit. http://www.chkrootkit.org/.

[6] P Cousot and R Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL, pp. 238–252, 1977.

[7] B Dragovic, K Fraser, S Hand, T Harris, A Ho, I Pratt, A Warfield, P Bar-
ham, and R Neugebauer. Xen and the art of virtualization. In Proceedings of
the ACM Symposium on Operating Systems Principles, October 2003.

[8] G W Dunlap, S T King, S Cinar, M A Basrai, and P M. Chen. ReVirt: ena-
bling intrusion analysis through virtual-machine logging and replay. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation, pp. 211–224, New York, NY, USA, 2002. ACM Press.

[9] T Fraser. Automatic discovery of integrity constraints in binary kernel mod-
ules, Technical report, University of Maryland Institute for Advanced Com-
puter Studies, December 2004

[10] The FU rootkit. http://www.rootkit.com/project.php?id=12.
[11] FuSyS. Kstat. http://www.s0ftpj.org/tools/kstat24 v1.1-2.tgz.
[12] T Garfinkel and M Rosenblum. A virtual machine introspection based archi-

tecture for intrusion detection. In Proceedings of the Network and Distributed
Systems Security Symposium, February 2003.

[13] R P Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–
45, 1974.

[14] IOzone Filesystem Benchmark, http://www.iozone.org/.
[15] X Jiang and D Xu. Collapsar: A VM-based architecture for network attack

detention center. In USENIX Security Symposium, pp. 15–28, 2004.
[16] A Joshi, S T King, G W Dunlap, and P M Chen. Detecting past and present

intrusions through vulnerability specific predicates. In SOSP ’05: Proceed-
ings of the Twentieth ACM symposium on Operating systems principles, pp.
91–104, New York, NY, USA, 2005. ACM Press.

[17] kad. Handling Interrupt Descriptor Table for fun and profit. Phrack, 11(59),
July 2002.

[18] K Kourai and S Chiba. HyperSpector: virtual distributed monitoring envi-
ronments for secure intrusion detection. In VEE ’05: Proceedings of the 1st
ACM/USENIX international conference on Virtual execution environments,
pp. 197–207, New York, USA, 2005. ACM Press.

[19] L Litty and D Lie. Manitou: a layer below approach to fighting malware. In
ASID ’06: Proceedings of the 1st Workshop on Architectural and System
Support for Improving Software Dependability, pp. 6–11, New York, USA,
2006. ACM Press.

[20] P Loscocco and S Smalley. Integrating flexible support for security policies
into the linux operating system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, pp. 29–42, Berkeley, CA, USA,
2001. USENIX Association.

[21] P A Loscocco and S D Smalley. Meeting critical security objectives with se-
curity enhanced linux. In Proceedings of the 2001 Ottawa Linux Symposium,
2001.

[22] Netfilter/Iptables project. www.netfilter.org/.
[23] Open source tripwire. http://sourceforge.net/ projects/tripwire/.

2 Towards High Assurance Networks of Virtual Machines 33

34 F. Baiardi and D. Sgandurra

[24] Openssl: The open source toolkit for ssl/tls. http://www.openssl.org/.
[25] OpenVPN - An Open Source SSL VPN Solution. http://openvpn.net/.
[26] N L Petroni, T Fraser, J Molina, and W A Arbaugh. Copilot - a coprocessor-

based kernel runtime integrity monitor. In USENIX Security Symposium,
pp.179–194, 2004.

[27] C Sapuntzakis, D Brumley, R Chandra, N Zeldovich, J Chow, M Lam, and M
Rosenblum. Virtual appliances for deploying and maintaining software,
2003.

[28] sd and devik. Linux on-the-fly kernel patching without LKM. Phrack, 10(58),
December 2001.

[29] S R Snapp, J Brentano, G V Dias, T L Goan, L T Heberlein, C Ho, K N
Levitt, B Mukherjee, S E Smaha, T Grance, D M Teal, and D Mansur. DIDS
(Distributed Intrusion Detection System) - motivation, architecture, and an
early prototype. In Proceedings of the 14th National Computer Security Con-
ference, pp. 167–176,Washington, DC, 1991.

[30] Snort - the de facto standard for intrusion detection/prevention.
http://www.snort.org/.

[31] S Sparks and J Butler. Shadow Walker: Raising the bar for rootkit detection.
www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf.

[32] G Vigna and R A. Kemmerer. Netstat: A network-based intrusion detection
system. Journal of Computer Security, 7(1), 1999.

[33] VMTN - Virtual Appliance Marketplace. http://www.vmware.com/vmtn/ap-
pliances/.

[34] VMware. http://www.vmware.com/.
[35] L Wang and P Dasgupta. Kernel and application integrity assurance: Ensur-

ing freedom from rootkits and malware in a computer system. In AINAW
’07: Proceedings of the 21st International Conference on Advanced Informa-
tion Networking and ApplicationsWorkshops, pp. 583–589,Washington, DC,
USA, 2007. IEEE Computer Society.

[36] XenAccess Library. http://xenaccess.sourceforge.net/.

Aikaterini Mitrokotsa1,*, Christos Dimitrakakis2 3

1 Vrije University Amsterdam, Netherlands mitrokat@unipi.gr
2 University of Leoben, Leoben, Austria, christos.dimitrakakis@mu-leoben.at
3 University of Piraeus, Piraeus, Greece, cdoulig@unipi.gr

1 Introduction

Standard classification problems require making the classification decision
that minimizes the probability of error. However, for many problem do-
mains, the requirement is not merely to predict the most probable class la-
bel, since different types of errors carry different costs. Instances of such
problems include authentication, where the cost of allowing unauthorized
access can be much greater than that of wrongly denying access to author-
ized individuals, and intrusion detection, where raising false alarms has a
substantially lower cost than allowing an undetected intrusion. In such
cases, it is preferable to make the classification decision that has minimum
expected cost, rather than that with the lowest error probability.

While there has been an extensive body of work in this field, particu-
larly in the domain of optimal statistical decisions (see for example [1] for

* Work done while Aikaterini Mitrokotsa was with the University of Piraeus.

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_3, © Springer Science+Business Media, LLC 2009

Abstract. Intrusion Detection is an invaluable part of computer networks defense.
An important consideration is the fact that raising false alarms carries a signifi-
cantly lower cost than not detecting attacks. For this reason, we examine how
cost-sensitive classification methods can be used in Intrusion Detection systems.
The performance of the approach is evaluated under different experimental condi-
tions, cost matrices and different classification models, in terms of expected cost,
as well as detection and false alarm rates. We find that even under unfavourable
conditions, cost-sensitive classification can improve performance significantly, if
only slightly.

, and Christos Douligeris

3

Classification
Intrusion Detection Using Cost-Sensitive

36 A. Mitrokotsa et al.

an overview), this has been largely ignored in the domain of intrusion de-
tection. We are currently aware of two other papers ([2], [3]) dealing with
cost-sensitive intrusion detection, both using a wrapper algorithm (Meta-
Cost [4] and Weighted [5] respectively) together with RIPPER [6]. Al-
though both papers report results on the KDD database, neither does so for
the given cost matrix, so direct comparisons between the statistical models
employed herein and the wrapper algorithms are not possible. This paper
attempts to answer some very basic questions about cost-sensitive classifi-
cation. Firstly, to what extent must the test distribution match the training
data distribution. Secondly, for the dataset used, are some methods consis-
tently better than others, or is there some variability and why. Finally, to
what extent does the false alarm rate grow when the cost of missed attacks
rises with respect to the cost of false alarms.

The next section discusses how to use classification methods that can be
readily embedded in the formal optimal statistical decision framework in
order to create intrusion detection systems that will be effective in mini-
mizing the expected cost of their operation and analyses the relationship
between cost matrices and the desired trade-off between detection and
false alarm rates. Finally, it gives a brief introduction to the classification
models used. Section 3 outlines the experiments performed and we con-
clude with a discussion on the significance of the results and on future re-
search directions.

2 Cost Sensitive Classification

Given a specification of costs for correct and incorrect predictions, the
class decision should be the one that leads to the lowest expected cost,
where the expectation is computed using the conditional probability of
each class given the example, according to our model1. More formally, for
a set Ω of k classes let a k x k matrix C such that C(i, j) is the expected
cost of predicting class i when the true class is j. If i = j then the decision is
correct, while if i ≠ j the decision is incorrect. Furthermore, let Y, H be
random variables denoting the actual and hypothesized class labels. For
any observations x∈X the optimal decision will be the class i that mini-
mizes a loss function equal to the expected cost

() [] () ()j.iCxX|jYPiH,xX|CEi,xL
j

⋅∑ ==≡===
∈Ω

 (1)

1 The implicit dependency on some model m can be made explicit by conditioning
everything on the model. Then the expectation would be written []m,f,x|CE
and the conditional class probability ()m,x|yP .

where ()X|YP denotes the conditional distribution of class labels given an
observation, according to our model. In this framework, all that is neces-
sary is a model that can estimate this probability. The cost-sensitive deci-
sion-making function Ω→Sf: would then simply chose the decision i
that minimises the expected cost given the decision and the example2.
More formally,

()i,xLminarg)x(f
i Ω∈

= (2)

The form of the cost matrix C will depend on the actual application. In
general, it is reasonable to choose the diagonal entries equal to zero, i.e.
C(i, j) = 0 for i = j, since correct classification normally incurs no cost.
The other entries specify the cost of incorrectly misclassifying an example
of class j as belonging to class i. They should be non-negative if the diago-
nal is zero, i.e. C(i, j) ≥ 0 for i ≠ j. Note that when this is equal to 1, the
cost measure is the same as the classification error measure.

2.1 Choice of the Cost Matrix
As an example, consider a cost matrix C for two classes, positive and
negative. The cost of a false positive is C(2, 1), while that of a false nega-
tive is C(1, 2) and we can set C(1, 1) = C(2, 2) = 0, i.e. a correct classifica-
tion will have no cost. For intrusion detection applications, it is common to
refer to attacks as positive and normal instances as negative example. Fur-
thermore, the occurrence of false negatives (FN) is usually considered a
worse kind of error than that of a false positive (FP), thus the matrix C
should reflect that, by having C(1, 2) ≥ C(2, 1). In some cases, such as in
some benchmark databases for intrusion detection, the cost matrix is given,
while in others it must be chosen by the user.

2.2 Algorithmic Comparisons and Alternative Quality Metrics
When comparisons are made between algorithms, it is important to use the
same measure of quality for all of them. A common measure of quality is
the empirical value of the expected value of the cost C measured over an
independent test set D,

() ()(),
Dd

dy,dxfC
D
1D|CÊ ∑

∈
= (3)

2 Which of course is not necessarily identical to the decision with the minimum er-
ror probability. Furthermore, this framework is easily extensible to the case
where the set of decisions differs from the set of class labels.

3 Intrusion Detection Using Cost-Sensitive Classification 37

38 A. Mitrokotsa et al.

where ()dd y,xd ≡ . Whenever such a cost matrix is set as the evaluation
metric in a benchmark database, then it is preferable to use it. However, it
is important to note that in much of the literature, the following pair of
measures is used instead. The Detection Rate (DR), and the False Alarm
(FA) rate

TNTP
TPDR
+

= ,
FPTN

FPFA
+

= (4)

where TP, TN, FP, FN, denote the number of true (T) and false (F) posi-
tives and negatives respectively. The aim would be to reduce FA rate,
while at the same time increasing DR. Since this is not usually possible, a
trade-off between the two quantities is often sought instead. While such a
trade-off may be automatically accomplished through the use of an appro-
priate cost matrix3, in this paper we will only use these quantities as a sec-
ondary alternative comparison metric.

2.3 Models
As mentioned in the beginning of Section 2, the computation of class
probabilities is model-dependent. Ideally one would assume a Bayesian
viewpoint and consider a distribution over all possible models in a set of
models, however in this case we will only consider point distributions in
model space, i.e. a single parameter vector in parameter space. While this
can cause problems with overfitting, we will use frequentist model selec-
tion methods to avoid this potential pitfall. These are described further in
Section 3.2. The rest of this section gives a brief overview of the two mod-
els used in this work, the multilayer perceptron (MLP) and the Gaussian
mixture model (GMM). A specific instance of an MLP can be viewed sim-
ply as a function Ω→Sg: , where g can be further defined as a composi-
tion of other functions ZS:zi → . In most cases of interest, this decompo-
sition can be written as))x(zw(K)x(g ′= , with Sx∈ , w being a
parameter vector, while K is a particular kernel and the function
() () ()[],...xz,xzxz 21= is referred to as the hidden layer. For each of those,

we have)xv(K)x(z iii ′= , where each iv is a parameter vector,
[],...v,vV 21= is the parameter matrix of the hidden layer and finally Ki is

3 Let the expected cost be E[C] = qP(H = 1|C = 2)P(C = 2) +r P(H = 2|C = 1)P(C
=1) = q(1 – DR)P(C = 2) + rFA P(C = 1), where 2 denotes a positive example.
Setting r = 1/P(C = 1) and q = k/P(C = 2) we obtain a cost function minimizing FA
– kDR, with k being a free parameter specifying the trade-off we are interested in.

an arbitrary kernel. For this particular application wish to use an MLP m as
a model for the conditional class probability given the observations, i.e.

),x(gy),mM,xX|yY(P ==== (5)

for which reason we are using a sigmoid kernel for K. In the experiments
we shall be employing a hyperbolic tangent as the kernel for the hidden
layer, when there is one. The case where there is no hidden layer is equiva-
lent to zi = xi and corresponds to the linear model. The GMM, the second
model under consideration, will be used to model the conditional observa-
tion density for each class, i.e.

)mM,yY|xX(P === (6)

This can be achieved simply by using a separate set of mixtures yU for
modeling the observation density of each class y. Then, for a given class y
the density at each point x is calculated by marginalizing over the mixture
components yUu∈ , for the class, dropping the dependency on m for sim-
plicity.

() () ()yY|uUP
u

uU|xXPyY|xXP ==∑ ===== (7)

Note that the likelihood function ()uU|xXp == will have Gaussian form,
with parameters uΣ , the covariance matrix and uμ the mean vector, while
()yY|uUP == will be another parameter, the component weight4. Finally,

we must separately estimate P(Y = y) from the data, thus obtaining the
conditional class probability given the observations

() () ()yYPyY|xXP
Z
1xX|yYP ====== (8)

where () ()∑ ==== ∈Ωj jYPyY|xXPZ does not depend on y and

where we have again dropped the dependency on m.
The conditional class probabilities from either (7) or (8), depending on the

model, can then be plugged into (1), for calculating the decision function (2).

3 Experiments

In order to examine the effectiveness of the proposed approach, we con-
ducted a series of experiments under varying conditions. In our experi-

4 Since we use separate mixture components for each class, 0)yY|uU(P === , when

yUu∉ , which also allows us to drop the dependency on y in the likelihood function.

3 Intrusion Detection Using Cost-Sensitive Classification 39

40 A. Mitrokotsa et al.

ments we performed comparisons in terms of the weighted cost defined in
equation (3) using four different models: the MLP, Linear, GMM with di-
agonal covariance matrixes and Naïve Bayes models (GMM with a single
Gaussian). It was expected that using the cost matrix to make decisions
would result in a lower cost than when not doing so, even if the models’
class probability estimates are not very accurate. A particularly interesting
question was how the divergence between the training and testing data dis-
tributions affects the measured cost, for a fixed cost matrix. We further-
more investigated how the false alarm and detection rates change when we
vary the relative cost of false alarms and false negatives.

3.1 Databases
We performed our experiments on the KDD database [7], using the 10%
KDD dataset for training and cross-validation. The KDD dataset include
four types of attacks Denial of Service (DoS), Remote to Local (R2L),
User to Root (U2R) and Probe.

Denial of Service (DoS): The main aim of a DoS attack is the disruption
of services by attempting to limit access to a machine or service. Examples
are back, land pod teardrop, smurf and neptnune.
Remote to Local (R2L): In a remote to local attack the attacker gains un-
authorized local access from a remote machine and exploits this access in
order to send packets over the network. Examples are Ftp_write, Guess
passwd, Imap, warezclient, warezmaster, phf, spy and multihop.
User to Root (U2R): In U2R the attacker gains unauthorized access to lo-
cal super user (root) privileges. Examples are Loadmodule, Perl, rookit and
buffer overflow.
Probe: the attacker scans a network in order to find vulnerabilities requires
little technical expertise. Examples are ipsweep, nmap, portsweep and satan.

Furthermore we performed two evaluations. For the first evaluation, we
used the standard test KDD dataset, which includes 311,029 connections,
including 17 types of attacks which are never observed in the training data-
set. More specifically, in the full test data there are 4 new U2R attacks that
correspond to the 92.90% (189/228) of the U2R class, 7 new R2L attacks
that correspond to 63% (10196/16189) of R2L class in that dataset, 4 new
DoS attacks that correspond to 2.85% (6555/229853) of the DoS class and
2 new types of Probe attacks that correspond to 42.94% (1789/4166) of all
the Probe attacks. For this reason, for our second evaluation we used a ver-
sion of this dataset which does not include these novel attacks. In both
cases, the probability distribution of the test datasets is not the same as that
of the training dataset.

The datasets are summarised in Table 1.

Table 1. Proportion of attack and normal connections for training and testing datasets.

Datasets Probe DoS R2L U2R Total Total

10% KDD
Dataset

4107 391458 1126 52 396743 97278

Test Dataset 1 4166 229853 16189 228 250436 60593
Test Dataset 2 2377 223298 5993 39 231707 60593

3.2 Technical Details
In order to select the best parameters for each model we performed 10-fold
cross validation. For each MLP model we tuned three parameters, the
learning rate (η), the number of iterations (Τ) and the number of hidden
units (n_h). Keeping stable the n_h (equal to 0) we selected the appropriate
η among values that range between 0.0001 and 0.1 with step 0.1 and the
appropriate Τ selecting among 10, 100, 500 and 1000. For the selection of
the appropriate n_h, having selected the appropriate η and the appropriate
of Τ, we examined various values for n_h and selected the best among 10,
20, 40, 60, 80, 100, 120, 140, 160, 320. We additionally, used the MLP
model with no hidden units as a Linear model.

For the GMM model we also tuned three parameters the threshold (θ),
the number of iterations (Τ) and the number of Gaussian Mixtures (n_g).
Keeping stable the n_g (equal to 20) we selected the appropriate θ among
values that range between 0.0001 and 0.1 with step 0.1 and the appropriate
Τ among 25, 100, 500 and 1000. For the selection of the appropriate n_g,
after selecting the appropriate θ and the appropriate Τ, we examined vari-
ous values for the n_g and the selected the best among 10, 20, 40, 60, 80,
100, 120, 140, 160, 320. We additionally, used the GMM model with one
Mixture component as a Naïve Bayes model.

We have used the cost matrix defined for the KDD 1999 Dataset [8],
which is shown in Table 2. We have also defined an arbitrary table in order
to examine how the measured cost changes when the relative cost for the
misclassification of attack versus normal connection increases. Thus, we
define a 5x5 cost matrix A where A(j,1)=α, and A(1,i)=1 for j=2,3,4,5 and
i=2,3,4,5. Also A(i,j)=0, for i=2,3,4,5 and j=2,3,4,5, A(1,1)=0 and a take
values between 1 and 10 with step 1. Since the fields of the KDD dataset
include discrete and continuous values, we represent the discrete values us-
ing one hot encoding. Furthermore, to ensure a good behaviour of all train-
ing algorithms we have normalized all the datasets to zero mean and unit
variance.

attacks normal

3 Intrusion Detection Using Cost-Sensitive Classification 41

42 A. Mitrokotsa et al.

Table 2. Cost matrix for the KDD 99 dataset.

 Predicted
Actual

Normal Probe DoS U2R R2L

Normal 0 1 2 2 2
Probe 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

3.3 Results
We have evaluated each algorithm both with and without the use of a cost
matrix for making decisions. Table 3 shows the results for Dataset 1, while
Table 4 for Dataset 2. In both cases, μ is the expected cost, while low and
high are the boundary values of the 99% confidence interval. The latter
was estimated using 1000 bootstrap [9] samples of the test datasets.

It is clear that the empirical average cost for Dataset 1 is much higher
than the corresponding cost for Dataset 2. Τhis was expected, since Dataset
1 includes types of attacks that were not included in the training data. It is
also evident that the Linear and GMM classifiers both achieve better re-
sults when we are using the cost matrix to make decisions. However, this
was not the case for either the MLP or the Naive Bayes classifier. The lat-
ter's failure could be attributed to the fact that the Naive classifier assumes

Table 3. Expected cost (μ) and boundary values (Low, High) with confidence
99% for Testing Dataset 1 with and without the use of a cost matrix.

 Without cost With cost
 Low μ High Low μ High
MLP 0.2384 0.2427 0.2472 0.2390 0.2431 0.2476
Linear 0.2425 0.2467 0.2511 0.2414 0.2452 0.2489
GMM 0.2497 0.2538 0.2578 0.2378 0.2420 0.2457
Naïve Bayes 0.3786 0.3829 0.3871 0.5304 0.5400 0.5353

Table 4. Expected cost (μ) and boundary values (Low, High) with confidence
99% for Testing Dataset 2 with and without the use of a cost matrix.

 Without cost With cost
 Low μ High Low μ High
MLP 0.0711 0.0736 0.0759 0.0713 0.0739 0.0765
Linear 0.0735 0.0761 0.0784 0.0716 0.074 0.0763
GMM 0.0821 0.0845 0.0869 0.0686 0.071 0.0734
Naïve Bayes 0.2173 0.2204 0.2231 0.3733 0.3775 0.3817

We have performed a series of experiments for the MLP classifier, since
this one presents the lower classification error, for the arbitrary cost matrix
described in Section 3.2. We examined how the performance of the MLP
changes when we increase the cost (α) of false positives relative to that of
false negatives. Again, we used the boostrap methodology to obtain confi-
dence intervals for the results.

In Fig. 1 (a) and (b) the middle line (μ) represents the expected cost as it
was estimated for the testing Datasets 1 and 2 respectively. The surround-
ing lines denote the 99% confidence interval of the expected cost as this
was estimated from the bootstrap samples. From Fig. 1 (a) and (b), it is
clear that the expected cost for Datasets 1 and 2 respectively, increases
linearly with α, which indicates a good behavior of the classifier.

(a) Expected Cost for Testing Dataset 1 (b) Expected Cost for Testing Dataset 2

Fig. 1. Expected cost (μ) for Testing Datasets 1 (a) and 2 (b) respectively, with the
cost of false negatives (attacks detected as normal) being equal to α, and the cost
of false positives (false alarms) set equal to 1. The dashed lines (+,−) represent the
bootstrap estimate of the 99% confidence intervals.

that all features of the training Dataset are independent. The reason for
the behaviour of the MLP is not entirely clear. One possibility is that the
probabilities that the model outputs do not accurately represent the un-
certainty of classification, i.e. the classifier is ‘too confident’ due to the
maximum likelihood training. However, we also note that nevertheless
the MLP model performed as well as the weighted GMM model. This
hypothesis is consistent with the fact that the MLP nevertheless per-
formed as well as the weighted GMM model in Dataset 1, but signifi-
cantly worse in Dataset 2.

3 Intrusion Detection Using Cost-Sensitive Classification 43

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

co
st

Cost for MLP classifier

μ
+
−

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

α

co
st

Cost for MLP classifier

μ
+
−

44 A. Mitrokotsa et al.

(a) Detection Rate for Testing Dataset 1 (b) Detection Rate for Testing Dataset 2

Fig. 2. The Detection Rate (DR) evaluated on Testing Datasets 1 (a) and 2 (b) re-
spectively, with the cost of false negatives (attacks detected as normal) being
equal to α, and the cost of false positives (false alarms) set equal to 1.

In Fig. 2 (a) and (b) we observe the detection rate for each type of attack
for both testing datasets. The Detection Rate (DR) of all attacks is better
for Dataset 2 while there is an increase of the Detection Rate for all type of
attacks and both Datasets. While we observe a significant increase in the
detection rate for the attacks in the training Dataset, this is not the case for
the novel attacks, especially for the R2L attacks. The Detection Rate for
DoS and Probe attacks presents only a slight increase for both cases. While
for U2R attacks and Dataset 1 the Detection Rate ranges from 0.184 to
0.325 an increase of 14.1%. For U2R attacks and Dataset 2 we also ob-
serve a substantial increase of the Detection Rate from 0.615 to 0.82, an
increase of 20%. For R2L attacks and Dataset 1 there is an increase of the
Detection Rate from 0.06 to 0.108, an increase of 10.2%. For R2L attacks
and Dataset 2 the Detection Rate ranges from 0.163 to 0.297, an increase
of 13.4%.

In Fig. 3 we observe that the average Detection Rate (DR) presents a
slight increase from 0.913 to 0.919 for Dataset 1 and from 0.977 to 0.98
for Dataset 2. Figure 4 depicts how the False Alarm (FA) rate is influenced
by the increase of the cost of false positives relative to that of false nega-
tives. We observe a slight increase from 0.016 to 0.018, thus the increase is
of 0.2%. The False Alarm (FA) rate is the same for both Datasets since the
number of normal connections is the same in both Datasets. Overall, the
detection was increased significantly for the U2R (20%) and R2L (13.4%)
attacks for Dataset 2, but not for novel attacks in these categories. In any
case, the increase in false alarms was only 0.2%.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

α

DR for every type of attacks

DR Probe
DR DoS
DR U2R
DR R2L

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

α

DR for every type of attacks

DR Probe
DR DoS
DR U2R
DR R2L

Fig. 3. The average DR for each Testing Dataset using the MLP classifier for vari-
ous values of the cost of false positives relative to that of false negatives (α).

Fig. 4. The FA rate for each Testing Dataset using the MLP classifier for various
values of the cost of false positives relative to that of false negatives (α).

4 Conclusions

The experimental results indicate that cost-sensitive classification methods
using standard statistical classifiers to estimate class probabilities can be-
have quite well even in some cases where assumptions about the test data
distribution are violated. This is not true for all methods tested. For the Na-
ïve model, this can be explained by the fact that the assumption of feature
independence cannot be maintained. However the behaviour of the MLP
model is not as easy to explain. One possible explanation could have been
that the predicted class probabilities by the MLP are more close to 1 than

3 Intrusion Detection Using Cost-Sensitive Classification 45

1 2 3 4 5 6 7 8 9 10
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

α

average DR for MLP classifier

DR Dataset1
DR Dataset2

1 2 3 4 5 6 7 8 9 10
0.0155

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

α

FA for MLP classifier

FA

46 A. Mitrokotsa et al.

Future work would have to further examine the relationship between
distribution divergence and the use of cost matrices. An interesting ap-
proach would be to use fully Bayesian methods, and also to perform more
complete comparisons. A final point that we have only touched upon in the
introduction is that the set of actions does not necessarily have to coincide
with the set of classes. Then we would make decisions that minimise the
expected cost of each decision. Examples of such decisions would be “Do
nothing”, “Call Administrator”, “Block IP Address”. Furthermore, we
could even consider intrusion detection as a sequential decision making [1]
problem, where each decision would not only depend upon the current ob-
servation, but on the history of observations and past decisions. This would
not only make such systems more flexible, but could also reduce much of
the future engineering performed in order to select what is the best time
window in which to collect packet statistics.

References

[1] DeGroot MH (2004) Optimal Statistical Decisions. John Wiley & Sons, New
York. 1970. Republished in 2004

[2] Fan W, Lee W, Stolfo SJ, Miller M (2000) A multiple model cost-sensitive
approach for intrusion detection. In: Proceedings of the 11th European con-
ference on Machine Learning 2000 (ECML’00), Barcelona, Catalonia, Spain,
Lecture Notes in Computer Science, vol. 1810, pp 142–153

[3] Pietraszek P (2004) Using adaptive alert classification to reduce false posi-
tives in intrusion Detection. In: Proceedings of Recent Advances in Intrusion
Detection 7th International Symposium (RAID’04), Sophia, Antipolis,
France, Lecture Notes in Computer Science 3224, Springer, pp102–124

[4] Domingos P (1999) MetaCost A general method for making classifiers cost-
sensitive. In: Proceedings of the Fifth ACM SIGKDD Int’l conf. On Knowl-
edge Discovery and Data Mining, San Diego, CA, pp 155–164

[5] Ting K (1998) Inducing cost-sensitive trees via instance weighting. In: Pro-
ceedings of the Second European Symposium on Principles of Data Mining
and Knowledge Discovery. vol 1510 of Lecture Notes in AI., Springer-
Verlag, pp 137–147

is warranted. However, Figs. 1–4 do not give support to this hypothesis.
On the other hand, while the GMM’s cost is significantly reduced when
using weighted decisions, as can be seen by the lack of overlap between
the confidence intervals, the MLP (whether weighted or not) is performing
just as well as the weighted GMM in terms of cost. A possible explanation
then is that the training and test data distributions are different enough for
the generalization ability of a classifier to be more important than the use
of the correct cost matrix.

[6] Cohen WW (1995) Fast effective rule induction. In: Proceedings of the
Twelfth International Conference on Machine Learning, Lake Taho, CA,
Morgan Kaufmann, pp 115–123

[7] KDD Cup 1999 Data (1999). Available from <http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html>

[8] Elkan C (1999) Results of the KDD'99 Classifier Learning Contest. Septem-
ber, Available from < http://www-cse.ucsd.edu/users/elkan/clresults.html>

[9] Efron B, Tibshirani RJ (1994) An Introduction to the Bootstrap. Monographs
on Statistics & Applied Probability, vol. 57, Chapmann & Hall, New York,
Nov, Pub.

3 Intrusion Detection Using Cost-Sensitive Classification 47

Osman Salem, Sandrine Vaton, and Annie Gravey

ENST Bretagne, Department of Computer Science, Brest France
{osman.salem, sandrine.vaton, annie.gravey}@enst-bretagne.fr

Abstract. This paper provides a new framework for efficient detection and identi-
fication of network anomalies over high speed links, in early stage of its occur-
rence to quickly react by taking the appropriate countermeasures. The proposed
framework is based on change point detection in counters value of reversible
sketch, which aggregates multiple data streams from high speed links in a
stretched database. To detect network anomalies, we apply the cumulative sum
(CUSUM) algorithm at the counter value of each bucket in the proposed reversible
sketch, to detect change point occurrence and to uncover culprit flows via a new
approach for sketch inversion. Theoretical framework for attacks detection is pres-
ented. We also give the results of our experiments analysis over two real data
traces containing anomalies, and extensively analyzed in OSCAR French research
project. Our analysis results from real-time internet traffic and online implementa-
tion over Endace DAG 3.6ET card show that our proposed architecture is able to
detect culprit flows quickly with a high level of accuracy.

1 Introduction

Security threats for computer network have increased significantly, which
include viruses, worm-based attacks, PortScan, NetScan, denial of service
(DoS), and its distributed version (DDoS), etc. However, with the increas-
ing of link speeds and traffic volume, the real time monitoring and analyz-
ing of IP traffic to detect attacks become a complicated task, but crucial for
managing large networks (e.g. for ISP, Enterprise, etc.).

Two approaches to network anomaly detection are used. The first is sig-
nature based-approach, which is extensively explored in many software

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_4, © Springer Science+Business Media, LLC 2009

4

High-Speed Networks
A Novel Approach for Anomaly Detection over

50 O. Salem et al.

systems and toolkits such as Bro [17] and Snort [18]. This approach is
used for anomaly detection with signatures known in advance, and it can
not be applied to identify new anomalies.

The second approach is the statistics based approach, which does not re-
quire prior knowledge about the nature and properties of anomalies and
therefore can be effective even for new anomalies or variants of existing
anomalies. A very important component of statistics based approach is
change detection [11]. It builds a model for normal user behavior in learn-
ing phase, and any inconsistent behavior with the build model is consid-
ered as anomaly. While wide range anomaly detection algorithms have
been introduced to undermine attacks, the effectiveness of these models is
largely dependent of traffic distributions parameters and their variations.
They lack the capability of handling shape irregularities and unpredictable
large fluctuations of real IP traffic.

Furthermore, most existing intrusion detection systems (IDS) reside at
end host or end router. They lack scalability in handling large state space
traffic information at high speed links, where even the handling at flow
level is very costly in term of per-flow storage requirement, and up-
date/search operations complexity. Flows are usually characterized by 5
fields (e.g. Netflow [2]): source and destination IP address, source and des-
tination port, and protocol number. This means monitoring flows state
space requires updating and handling a database table of size 2104.

A naïve idea for monitoring flows over high speed links is to maintain a
database for active flows in a fixed time interval T, and to track the k fre-
quent destination addresses in IP traffic (top ten or heavy hitter destina-
tions). For example, to detect victim servers of SYN flooding DDoS at-
tack, an ISP can query database for destinations IP with a received number
of SYN that exceeds a given percentage of the total number of SYN,
which was relayed by the monitoring node. However, this strategy is not
scalable, where spatial and temporal complexities for update and query op-
erations, on active flows database prevent its use for handling a large num-
ber of flows at high speed links in real time.

In response to these limitations, an efficient data structure based on k-
ary hash tables (Fig. 1), called sketch [1, 11, 12] was proposed and used to
handle large state space, with a small amount of memory requirement and
a linear computational (update/query) complexity. It is a multistage bloom
filter based on random aggregations, where flow identifier (denoted by
key) is mapped to index of bucket using k different hash functions (one in-
dex per stage of the array of k hash tables). These hash functions are gen-
erally chosen to reduce collision effect and to uniformly distribute keys
over buckets of hash table.

0 1w −1
0

1d −

iv+
iv+

iv+
iv+

(),i ivκ

1()ih κ

()d ih κ

...

Fig. 1. Sketch data structure.

To use sketch in context of network anomalies detection, IP flows can
be classified by some combinations of fields in packet header, such as des-
tination IP address (DIP), or source and destination IP address (SIP/DIP),
etc. This flow identifier is used as key to update the kth hash table by its as-
sociated value (key,value). The value is a reward associated with key, and
which can be the number of: packets, bytes, connection requests (#SYN),
half open connections (#SYN - #SYNACK), etc.

Recent work with Count-Min Sketch (CMS [5]) has showed that random
aggregation of flows does not significantly disrupt their variations. The
CMS query request algorithm can indicate if a given key exhibits large ac-
cumulated value, and even one can query sketch data structure about an
approximate estimation of occurrence frequency for a given key.

However, sketch is based on universal hash functions, which are not re-
versible. Consequently, we cannot use sketch to report the set of frequent
or heavy hitter keys, because sketch does not store any information about
its key entry. Thus, the only way to get all heavy keys (which exhibit
heavy accumulated value) is to test all possible entry, by hashing for the
second time all keys, in order to determine those mapped to heavy buckets.
That mean when monitoring high speed links, all keys must be recorded
and verified. Unfortunately, this approach is neither scalable nor accurate
for online monitoring.

In this paper, we consider the problem of online detection of network
anomalies over high speed links, in order to cope with attacks as soon as
possible. We propose a new variation of sketch by adding an inversion
procedure for sketch, and we use a parametric version of multi-channel
CUSUM (M-CUSUM [10, 21, 22]) as sequential algorithm [9] for anom-
aly detection in each bucket of sketch. Our contribution is twofold. First,
we resolve the problem of sketch inversion with a software compliant pro-
cedure method, and second we analyse the efficiency of M-CUSUM (a se-
quential algorithm for anomaly detection) over this compact way for stor-

...

4 A Novel Approach for Anomaly Detection over High-Speed Networks 51

52 O. Salem et al.

ing flows information. Sketch was used for offline anomaly detection
through searching heavy hitter flows, and the use of sequential change
point detection algorithm over sketch was never been addressed.

2 Related Work

The authors of [24] use a non parametric version of CUSUM, as sequential
hypothesis testing algorithm [9] for anomaly detection with TCP SYN
flooding. In [20], the authors evaluate and compare two anomaly detection
algorithms (adaptive threshold and CUSUM) for detecting TCP SYN at-
tacks. They conclude that CUSUM is more efficient than adaptive thresh-
old, especially for the detection of low intensity attacks. Moreover, they
compare their results obtained with a parametric version of CUSUM (by
assuming a normal distribution for SYN inter-arrival packets), with the re-
sult of non-parametric version used in [24], and they conclude to better
performance. For this reason, we will restrict our study in this paper to the
parametric version of CUSUM. However, CUSUM algorithm is not able to
pinpoint the malicious flow responsible of anomaly. It only raises an alarm
after the detection of anomaly. In [10, 21, 22], the authors prove that multi-
channel CUSUM is more efficient than single channel, which means ap-
plying CUSUM at flow level (given some criteria for packets aggregations
and flows classifications), is more efficient in anomaly detection than ap-
plying this algorithm over the total number of ingoing packets.

The Multi-channel CUSUM (M-CUSUM [10, 21, 22]) is statistical self
learning algorithm for initializing required parameters (e.g. mean and vari-
ance) in order to build an initial normal profile, in an adaptive manner with
various network load and traffic patterns. M-CUSUM belongs to anomaly-
based intrusion detection class, which detect a change in traffic parame-
ters, through using the assumption that most anomalies induce a change in
distributions of monitored parameters (mean, variance, etc.).

However, per flow application of CUSUM is prohibitive for real time
operations over high speed networks, where storage and update operations

The remainder of this paper is organized as follows. In the following
section, we discuss the related work and previous research related to our
work. In section III, we give a brief overview of CMS Sketch and parame-
tric M-CUSUM mechanisms that are related to our studies. Section IV de-
scribes our proposed method for detecting change point in a reversible
sketch. In section V, we present the analysis results from the application of
the proposed framework over real internet traces. Finally, Section 6 pre-
sents concluding remarks and the future work.

of state-space flows information are very costly. In [1, 11, 12], a stretched
data structure with a linear complexity of update/search operations, was
proposed and used to handle large data. The authors in [3, 4, 13] have tack-
led the problem of offline anomaly detection over sketch by verifying if
the values of the sketch buckets associated to a given key are heavy hitter
or not. Recent work in [19] lookup for heavy buckets in the sketch resulted
from the difference between current epoch and time series forecasting
sketches. However, heavy hitter flows do not necessarily correspond to
malicious flows. Therefore, we will address this problem by using M-
CUSUM over sketch buckets in this paper.

Sketch is based on universal hash functions and random aggregations,
and does not store information about active flows identifiers. In [12], it
was used with the storage of all existing flows identifiers during a time in-
terval, and through re-hashing of all stored identifiers to determine mali-
cious flows. Unfortunately, storing all flows identifiers, especially when
monitoring high speed links, is neither scalable nor efficient for online
monitoring. There is a need for a software compliant reversal procedure
over sketch to pinpoint corresponding keys to malicious flows.

3 Background

In this section, we briefly survey the underlying count-min sketch data
structure and multi-channel CUSUM theory related to our work.

3.1 Count-Min Sketch

Let S=s1s2…sn be the set of input stream that arrives sequentially, item by
item [5]. Each item si=(κi , νi) is identified by a key κi ∈ U drawn from a
fixed universe U of items. Each key κi is associated with a reward (or up-
date for frequency occurrence) value νi∈ R. The arrival of item with key κi
increment its associated counter in the jth hash table by νi (C[j][hj] += νi),
as shown Fig. 1. The update procedure is realized by d different hash func-
tion, chosen from the set of 2-universal hash function
Hj(κi)=((ajκi + bj) modPU) modw to uniformly distribute κi over hash tab-
les and to reduce collision. Parameter PU is a prime number larger than the
maximum number in universe, and Mersenne prime numbers of the
form 2i-1 are generally chosen for fast implementation.

The count-min query returns an estimate of the accumulated value for a
given key, as the minimum value of d counter (ŝ(κi)=

0 j d
min
≤ <

{C[j][κi]}).

4 A Novel Approach for Anomaly Detection over High-Speed Networks 53

54 O. Salem et al.

Ongoing IP packets into an ISP can be classified as series of (κi,νi),
where κi can be the IP destination address (DIP), or any other fields in
packets header, and the value νi can be the number of SYN request. CMS
query can estimate if a given DIP (key) is under SYN flooding attack by
verifying the value of ŝ(κi).

In CMS we use d=⎡ln(1/δ)⎤ pairwise independent hash functions, where
each one receives κi as parameter and returns a random integer in the
range w=[0,e/ε]. ε is the error rate with probability less than δ. Thus, it
maintains modest storage requirements of O(ln(1/δ) × (1/ε)) count cells.

3.2 Multi-Channel Cumulative Sum Algorithm

In contrast to the most widely used techniques with sketch for anomalies
detection (heavy hitter), sketch can be used with various sophisticated se-
quential detection procedures [10, 20, 24] to uncover anomalies. In this
paper, we will focus on multi-channel CUSUM algorithm, due to its low
computational overhead and modest storage requirements.

In this section, we briefly review the sequential parametric multi-
channel CUSUM [10, 20] algorithm used to detect change point in traffic.
CUSUM relies on two phases: training and detection. In training phase, it
establishes and updates a dynamic behavior profiles for normal flows. In
detection phase, it uses log likelihood ratio to detect any kind of abrupt de-
viation from well established profile. In multi-channel version of CUSUM,
the algorithm is applied over many channels, and once an anomaly is de-
tected in any channel, an alarm is raised.

Let { ,1 ,1 }nT
ijX i d j w≤ ≤ ≤ ≤ be the value of each bucket during

the nth time interval. Observations nT
ijX are i.i.d with a pdf 0, ()ijf xγ for

n < ta (before attack occurrence) and with another pdf 1, ()ijf xγ for n ≥ ta
(after attack), where ta is the instant of attack detection. M-CUSUM tests
statistical hypotheses Hij (eq. (1)) to detect abrupt change in bucket with
index (i,j) at the time epoch n=ta :

,0 0:ij ijH γ γ= Versus ,1 1:ij ijH γ γ= (1)
Where γ0 and γ1 are respectively the pdf parameters before and after
change occurrence. The detection of anomaly is based on log likelihood ra-
tio for an observation nT

ijX test between the two hypotheses:

1

0

(|)
ln

(|)

nT
ijnT

ij nT
ij

pr X
s

pr X
γ
γ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2)

If we assume Gaussian distribution 0
2

, ,0 ,0() (,)ij ij ijf x N µγ σ= for the hypo-
thesis ,0ijH and 1

2
, ,1 ,1() (,)ij ij ijf x N µγ σ= for ,1,ijH the log likelihood ratio is

then:
2 2

,0 ,0 ,1
2 2

,1 ,0 ,1

() ()
ln

2 2

nT nT
ij ij ij ij ijnT

ij
ij ij ij

X µ X µ
s

σ
σ σ σ

− −
= + − (3)

The cumulative sum is a summation of the log likelihood ratio:

1

n
nT kT
ij ij

k
S s

=

= ∑ (4)

nT
ijS will increase when 0kT

ijs > , and decreases for 0.kT
ijs < When the

value of nT
ijS become greater than threshold h, a decision can be taken

about the hypotheses (,0
nT
ijH for normal condition and ,1

nT
ijH for attack con-

dition). Therefore, the relevant information for detecting change lies in the
difference between the value of the log-likelihood ratio and its current
minimum value [20]. Hence the stopping time for the CUSUM algorithm
is defined by:

() min{ 1: }nT
a a ijt t h n G h= = ≥ ≥ (5)

Where:
nT nT nT
ij ij ijG S m= − and

1
1

minnT nT
ij iji d

j w

m S
≤ ≤
≤ ≤

= (6)

The statistic function nT
ijG obeys the recursion:

1(1)

0

(|)
max 0, ln

(|)

nT
ijnT n T

ij ij nT
ij

pr X µ
G G

pr X µ
−

⎧ ⎫⎛ ⎞⎪ ⎪= + ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 and 0 0ijG = (7)

We consider that nT
ijX follows a Gaussian distribution with known vari-

ance σ

2
ij that remains unchanged after the attack, and µ0 and µ1 are the

mean before and after attack. µ1 can be estimated online in self learning
manner, under the condition that attack occurrence leads to change in the
mean value of µ0 → µ1 (µ1>µ0 with a value of µ1=αµ0), by following the
same analysis and assumptions in [20], where authors have conclude to
more false alarm and more miss detection when replacing the Gaussian
distribution assumption in CUSUM by its non-parametric version. It is im-
portant to recall that other statistical parameters may change with the mean

4 A Novel Approach for Anomaly Detection over High-Speed Networks 55

56 O. Salem et al.

value under attack, and they will be treated as noise. With the assumption
of Gaussian distribution, eq. (7) takes the following forms:

,1 ,0 ,1 ,0(1)
2max 0,

2
ij ij ij ijnT n T nT

ij ij ij
ij

µ µ µ µ
G G X

σ
−

⎧ ⎫− +⎛ ⎞⎪ ⎪= + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 and 0 0ijG = (8)

After the substitution of µij,1 by µij,1=αµij,0, eq. (8) becomes:

,0 ,0(1)
2

(1) (1)
max 0,

2
ij ijnT n T nT

ij ij ij
ij

µ µ
G G X

α α
σ

−
⎧ ⎫− +⎛ ⎞⎪ ⎪= + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 and 0 0ijG = (9)

The detection of anomaly is given by testing the value of M-CUSUM
function nT

ijG (if nT
ijG h> then alarm is raised). The values of µij,0 and 2

ijσ
can be estimated in a self learning phase and updated dynamically using
EWMA (Exponential Weighted Moving Average) formulas in eq. (10):

(1)
,0 ,0 ,0(1)nT n T nT

ij ij ijµ µ Xβ β−= + −

()2 2 2
,0 ,0() (1) (1)()nT nT

ij ij ij ijnT n T X µσ βσ β= − + − −
(10)

In fact, with the large fluctuations and variations in traffic characteristics
(heavy tailed distributions for packets length, memory-less inter-arrival,
self-similarity and long-range dependence, etc.), and with the lack of con-
sensus about distributions of traffic characteristic parameters, one may
wonder about the efficiency of Gaussian distribution assumption for
CUSUM. The M-CUSUM [10] function in non parametric version is up-
dated using the following formula:

{ }(1)
,0 ,1max 0, ()nT n T nT

ij ij ij ij ij ij ijG G c X µ µε−= + − − and 0 0ijG = (11)

However, the problem is in choosing the parameters (cij, εij, and µij,1) that
control the sensitivity of attack detection, which is not a straightforward
task, and left to user. cij a positive weight which is set to 1 in [24]. Parame-
ter εij is a tuning parameter chosen from [0,1] due to the average delay de-
tection [10] which must be a positive number:

0 ,0 ,1
,1 ,0

() 0 1 /
(1)t a ij ij ij

ij ij ij

hADD t µ µ
µ µ

ε
ε

= > ⇒ < −
− −

 (12)

In fact, we can get the Gaussian parametric version of CUSUM (given in
eq. (8)) from the non-parametric version by substituting parameters εij and
cij in eq. (11) by:

,1
2

2 ij ij
ij

ij

µ
c

ε
σ

= and ,1 ,0

,12
ij ij

ij
ij

µ µ
µ

ε
−

= . (13)

Therefore, parametric version of CUSUM is not more than special case of
non-parametric version, and choosing normal distribution becomes pa-
rameters adjustment choice for CUSUM detection algorithm.

A good detection procedure should have a low false alarm rate FAR
and small values of the expected detection delay. In [22], it is proven that
CUSUM is asymptotically optimal. It minimizes the average delay detec-
tion 0 ()t aADD t for a fixed false alarm rate ,FAR i.e () .aFAR t FAR≤
The FAR increases by decreasing the speed of detection, and a trade-off
between low FAR and minimum delay detection is required. The threshold
value should be chosen from the condition 0 () 1aE t h FAR= to minimize
delay detection given a .FAR It is worth noting that value of threshold h
controls the sensitivity of the attack detection, hence large value of h de-
creases the FAR, but true attacks may also completely missed. We refer to
[10, 20, 21, 22] for complete reference about CUSUM parameters and im-
plementation details.

4 Proposed Approach

Our proposed framework is based on 2 data summary architecture: a
Multi-Layer Reversible Sketch (MLRS) and a Count-Min Sketch (CMS) as
shown in Fig. 2. The operations of the proposed framework are performed
by two steps. Firstly, it continuously updates the two sketches (MLRS and
CMS) counters from input data stream (κi,νi) for a fixed time interval T.
Secondly, it applies M-CUSUM in the background at each bucket to detect
anomalies. Afterward we identify and output keys that mapped to buckets
with a raised alarm by CUSUM.

In this paper, we seek to detect victim servers of TCP SYN flooding, as
it was widely shown in the literature that more than 90% of the DoS at-
tacks use TCP [15]. Ongoing packets are classified by DIP as key for flow
identifier, and only packets with bit SYN set to 1 in TCP flag are consid-
ered. We associate with the key κi the DIP, and with νi the value of bit
SYN in packet header ((κi,νi)=(DIP,SYN)). We can also monitor another
kind of flooding with TCP (ACK, RST, FIN, etc.) or with other protocol
(flooding UDP, SMURF, etc.) by changing the associated reward νi, but
we will restrict our analysis to TCP SYN flooding in this paper.

4 A Novel Approach for Anomaly Detection over High-Speed Networks 57

58 O. Salem et al.

1h

dh

0 1w −10 0 1w −1
0

1l −

iv+ iv+

iv+

iv+

iv+iv+

iv+

iv+... ...

Fig. 2. MLRS and CMS sketch.

However, M-CUSUM only raises alarm in buckets after the detection of
abrupt change, and due to random aggregations and collisions occurrences,
reversing sketch is a difficult operation to uncover responsible flow of
anomaly. There is only two existing approaches in the literature. The
first [12] is based on intuitive idea by storing all keys in T time interval,
and achieve verification by hashing for the second time the set of stored
keys at the end of each interval. This strategy is inefficient in term of stor-
age space and update speed for the list of keys.

The second approach [6, 19] is based on modular hashing and mangling
via Galois Field GF(2n) operators, which is complex and more efficient for
hardware implementation, as it was done in [19].

Our idea to reverse sketch is based on exploiting index in an additional
multi-layer reversible sketch (Fig. 2), where indexes are used to store keys.
In fact, the MLRS is used in the same way as CMS sketch, where the arri-
vals of each key increments its associated counter. However, each key
has l counter (one by layer), where we split the key of N bit into l × w0 bit,
with w0=2P, and l=⎡N/P⎤. P is the number of bits used to split the key, and
w0 is used as layer width in MLRS. The update procedure is summarized in
Algorithm 1.

Algorithm 1 Sketch Update procedure
1: _ _ 4();Mkey encrypt optimized RC key=
2: 0 -1 for i to d do=
3: _ ();ij universal hash Mkey=
4: [][]. ;iCMS i j counter v+ =
5: end for
6: 0 -1 for j to l do=
7: [][& (2 -1)]. ;P

iMLRS j Mkey counter v+ =
8: Mkey P>>=
9: end for

... ...

If we seek to search for victims DIP (or keys that hash to buckets with
raised alarm by M-CUSUM), we can release hierarchical search procedure
in MLRS. If we don't find at least one bucket with raised alarm in each of
the ith (i ≤ l-1) first layers of MLRS, there is no need to continue searching
in other deep layers or through the second CMS sketch. Malicious flows
must have one alarmed bucket in each layer.

We will begin by the simple case, where we assume that there is at most
one bucket with CUSUM raised alarm in each layer as shown in Fig. 2. To
recover key, we concatenate the l index in MLRS and we get the value of
suspect key (e.g. DIP). We can not be sure of suspect before verification,
where due to collision with other IP prefix, their value becomes large. The
suspect key is verified through hashing and verification (by count-min
query of CUSUM function) in the CMS for confirmation.

In general, even with a different value of width (e.g. 212 or 214) for the
MLRS, many buckets in different layers will be subject to collision occur-
rence, and in some case, we will be found with a bigger set of keys to ver-
ify through CMS than the original one. Nevertheless, it is important to no-
tify that even if the set of suspect key is larger than departure one, it
requires a small memory and fast update time with respect to original list.

To resolve this problem and reduce collision in MLRS, we use the idea
of IP-mangling technique presented in [19], but with an optimized version
of RC4 (Ron's Code [7]) ciphering algorithm rather than Galois Field
GF(2n). The optimized RC4 code is available from [8].

IP mangling is a reversible procedure, which randomizes the input data
in an attempt to destroy correlation between keys, and to disperse adjacent
keys uniformly at all available buckets. Mangled key is denoted by Mkey
in this paper. This technique is a bijective function that maps keys in a
universe U to U. Each key κi is mapped to yi=f(κi), with the function f cho-
sen in a way to destroy any correlation between keys, as show in Table 1.
Any bijective function able to destroy correlation between keys, and return
a completely random set of keys, can be used. Afterward, we use f-1(yi) to
recover suspect key κi from MLRS.

Table 1. Mangling DIP by optimized RC4.

• DIP • Mangled key
• 192.168.92.40 • 10010100101001011110100010011011
• 192.168.92.41 • 10101011011001000011001000100110
• 192.168.92.42 • 10010110111011000010010010101110
• 192.168.92.43 • 00100000001101001000000001101101

4 A Novel Approach for Anomaly Detection over High-Speed Networks 59

60 O. Salem et al.

In [19], the function f(κi) = a⊗κi ⊕ b is used for mangling, where ⊗ is
the multiplication operator defined on GF(2n), ⊕ is the bit-wise XOR op-
erator, and a and b are two random number uniformly chosen from the
universe U. The reverse of a mangled key is obtained from f

-1(yi) = a-1⊗ (yi
⊕ b) by precomputing the value of a

-1. In the other hand, the authors
of [19] explain clearly that the direct calculation of a ⊗ x is very expen-
sive, as it requires multiplying two polynomials (of degree n-1) modulo an
irreducible polynomial (of degree n). Therefore, they use tabulation and
many additional pre-computing tables to reduce complexity. In fact, Galois
field is based on bit by bit operations which is hardware compliant, and re-
quires additional memory for fast calculation of polynomial product. In
contrast, the optimized RC4 bloc cipher algorithm is ideal for software im-
plementation, as it requires only byte manipulations and its implementa-
tion is based on few lines of code. It has been proven to be powerful in our
experimentations for mangling and destroying any correlation between ad-
jacent keys, in terms of random Hamming distance between adjacent keys,
as shown binary values in Table 1.

In Fig. 3, we show the distribution of collision when using direct map-
ping and mangling to update multi-layer sketch with P=8 for a universe
size of 32-bit (κi=DIP). Data traces from 1 minute real bidirectional Inter-
net traffic of 1776 flows (here flows are classified by DIP). In fact, used
mangling techniques allow to uniformly distributing key over buckets, and
prevent collision over IP with same prefix.

At the end of each time interval T, and after updating counters of MLRS
and CMS continuously in online manner, M-CUSUM anomaly detection
algorithm run in the background, to update CUSUM function in each
bucket, and to raise alarm in bucket where the value of function nT

ijG ex-
ceeds the threshold. Afterward, we scan MLRS for identification of all pos-
sible sequence of l bucket (one per layer) with triggered alarm and we real-
ize verification through count-min query over the CMS, to ensure that the
corresponding buckets with the d universal hash functions have a triggered
alarm by CUSUM. However, we don't store the set of suspect keys, but
once we have a suspect, we realize verification through the CMS before in-
tegrating it in alert message.

0 100 200 300
0

200

400

600

800

1000

1200

1400

Buckets (sorted by Nb of collisions)

N
b

of
 c

ol
lis

io
ns

 fo
r e

ac
h

bu
ck

et
s

Direct mapping

Layer 0
Layer 1
Layer 2
Layer 3

0 50 100 150 200 250 300
0

5

10

15

20

Buckets (sorted by Nb of collisions)

N
b

of
 c

ol
lis

io
ns

 fo
r e

ac
h

bu
ck

et
s

Mapping with mangling

Layer 0
Layer 1
Layer 2
Layer 3

Fig. 3. Distribution of collisions for each bucket.

The hierarchical search procedure for alarmed buckets in MLRS, and the
verification through CMS sketch are given in algorithm 2, for a universe of
size 2n, and a width of 2P for MLRS, P=n/2 and l=2. Boolean alarm varia-
ble is used to indicate the state of CUSUM function.

Algorithm 2 Hierarchical search and verification
1: 0 2 -1 Pfor i to do=
2: ([0][].)if MLRS i Alarm then
3: 0 2 -1 Pfor j to do=
4: ([1][].)if MLRS i Alarm then
5: () | ;Mkey j P i= >>
6: _ (,);Alarm cms query CMS Mkey=
7: ()if Alarm then
8: _ _ 4();DIP decrypt optimized RC Mkey=
9: ();WriteLn DIP
10: end if
11: end if
12: end for
13: end if
14: end for

5 Experiments Results

In this section, we present performance analysis results of juxtaposing M-
CUSUM detection algorithm over reversible sketch, for detecting victims

4 A Novel Approach for Anomaly Detection over High-Speed Networks 61

62 O. Salem et al.

of TCP SYN flooding attacks. We have implemented M-CUSUM over
sketch in C using the code of CMS available from [14]. We applied the
proposed algorithm over many public traces (LBL-TCP-3, Abilene, Auck-
land, etc.) available from [16], and other traces used in OSCAR RNRT
French Research project (OTIP, ADSL). Online implementation over En-
dace DAG 3.6ET is realized, and many experiments have been conducted
for accuracy analysis. Our results are encouraging in terms of accuracy and
response time.

In this paper, we present the results of our experiments over the set of
traces used in OSCAR project, and extensively studied by other partners
in this project. We are interested in detecting victim of DoS/DDoS
SYN Flooding in these traces. Afterward, we conduct performance
analysis to study the influence of parameters at true positive and false
detection.

The parameters we considered for the M-CUSUM algorithm were:
threshold h=5, α=1.5, β=0.9 as in [20]. For sketch parameters: P=8 unless
otherwise noted, w0=256, l=4, d=4 hash functions chosen from the set of
2-universal hash function, and with the use of tabulation [23].

First, we present our analysis result over anonymized OTIP traces: 3
days of bidirectional traces collected by France Telecom ISP with Netflow
format (~6.9GB) and contains ~896.105 flows.

Figure 4a and b show the variation of the number of packets during a
time interval T=1min, as well as the variation of number of SYN during
the 3 days. We have applied our proposed framework over this trace to un-
cover attacks, and we isolate the number of connection request received by
each of identified victim as shown in Fig. 4c. The separation of received
SYN by each destination is realized for additional information about the
false alarm rate, and has been used for manual verification. The raised
alarms by M-CUSUM for detected victims and their IP addresses are pre-
sented in Fig. 4d.

M-CUSUM detects a constant rate attacks as soon as it begins, as well
as attacks with increasing rate, and with high sensitivity in detection of
attacks with high/low intensity (Fig. 4c). However, in constant rate at-
tacks, CUSUM raises alarm only in the beginning phase (the first few
minutes) of flooding, where it updates the mean value by EWMA for-
mula, with a slow rate (1-β=0.1) of convergence after change occur-
rence. It is worth noting that response time for analyzing the whole
3 days OTIP trace is less than 2 min. over a Pentium 1.72 Ghz with 1 GB
of RAM memory.

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5 x 104
#P

ac
ke

ts

Time (min)
1000 2000 3000

1000

2000

3000

4000

5000

6000

7000

8000

#S
Y

N

Time (min)

(a) # Packets

(b) #SYN

1000 2000 3000
0

1000

2000

3000

4000

5000

6000

Time (min)

#S
Y

N

251.36.255.40
231.29.226.114
10.120.119.81
13.209.95.186
231.117.189.150
247.19.52.134

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5 x 104

#P
ac

ke
ts

Time (min)

(c) Detected malicious flows

(d) M-CUSUM raised alarms

Fig. 4. Analysis results for OTIP trace.

Our second experiments consider two anonymized unidirectional traces
ADSL (up and down) during 3 hours of capture in pcap format. We realize
the same analysis study and manual verification as in the first experiment.
First, we show the result obtained over upload traffic, and afterward we
present the analysis result for the down traffic.

Figure 5a and b show the variation of the total number of packets and
the number of SYN during a time interval of 1 min. Figure 5c and d show
the number of SYN received by the only existing victims in this trace (with
~841.105 packets), and the raised alarms by M-CUSUM. Similarly, Fig. 6a
and b show the total number of packets and the number of SYN in the
down traffic (with ~825.105 packets), and Fig. 6c and Fig. 6d show the
number of SYN received by the two detected victims and the raised alarms
by CUSUM. However, deep manual investigations show that the DIP ad-
dress (97.68.23.88) is not victim of SYN flooding, but of PortScan attack.

4 A Novel Approach for Anomaly Detection over High-Speed Networks 63

64 O. Salem et al.

0 50 100 150
0

1

2

3

4

5
x 105

#P
ac

ke
ts

Time (min)
0 50 100 150

0

1

2

3

4

x 104

#S
Y

N

Time (min)

(a) # Packets

(b) #SYN

50 100 150
0

1000

2000

3000

4000

5000

6000

7000

Time (min)

#S
Y

N

103.18.245.250

0 50 100 150
0

1

2

3

4

5
x 105

#P
ac

ke
ts

Time (min)

(c) Detected malicious flows

(d) M-CUSUM raised alarms

Fig. 5. Analysis results for ADSL up trace.

In the third set of our experiments, we conduct performance analysis
study via Receiver Operational Characteristics (ROC) curve, to study the
accuracy of the proposed framework. Our analysis verifies the false posi-
tive and true positive probabilities, with the variation of the value of
threshold h and the MLRS sketch width. However, due to the lack of public
well documented traces with well known attacks, we use the overall at-
tacks uncovered by other research laboratory that have analyzed OTIP
traces, as a complete set of existing one. Therefore, true positive and false
positive probabilities are easily verified because we know in advance the
IP address of victim servers, and the number of existing attacks. PTP is the
number of detected attacks divided by the total number of existing
ones. PFP is the percentage of raised alarm that did not correspond to real
attack.

0 50 100 150
0

1

2

3

4

5
x 105

#P
ac

ke
ts

Time (min) 0 50 100 150
0

5000

10000

15000

#S
Y

N

Time (min)

(a) # Packets

(b) #SYN

0 50 100 150
0

1000

2000

3000

4000

5000

6000

Time (min)

#S
Y

N

97.65.192.238
97.68.23.88

0 50 100 150
0

1

2

3

4

5
x 105

#P
ac

ke
ts

Time (min)

(c) Detected malicious flows

(d) M-CUSUM raised alarms

Fig. 6. Analysis results for ADSL down trace.

Figure 7 illustrates the relation between true positive and false positive
(PFP=f(PTP)), as well as PFP=f(h) and PFP=f(h), where false positive FP de-
creases as the threshold h increases, and true attacks may also completely
missed. Hence, a tradeoff between false alarm and true positive detection
is required to control the sensitivity and to prevent miss detection. We also
notice that larger sketch width decreases the false positive and increases
the detection rate. Furthermore, we investigate the effect of increasing the
number of hash function at detection rate. Our analysis results show the
existence of point after which increasing the number of hash functions
does not improve the detection rate.

4 A Novel Approach for Anomaly Detection over High-Speed Networks 65

66 O. Salem et al.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Threshold h

Tr
ue

 p
os

iti
ve

/F
al

se
 p

os
iti

ve

True positive
False detection

0 20 40 60 80 100

0

20

40

60

80

100

Fa
ls

e
po

si
tiv

e

True positive

(a) PFP=f(h) and PTP=f(h) for P=8

(b) PFP=f(PTP) for P=8

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Threshold h

Tr
ue

 p
os

iti
ve

/F
al

se
 p

os
iti

ve

True positive
False detection

20 40 60 80 100
0

20

40

60

80

100
Fa

ls
e

po
si

tiv
e

True positive

(c) PFP=f(h) and PTP=f(h) for P=14

(d) PFP=f(PTP) for P=14

Fig. 7. PFP=f(h) and PTP=f(h) for P=8 and P=14.

6 Conclusions

In this paper, we propose a new framework that integrates sketch and M-
CUSUM, for online anomalies detection over high speed links. Proposed
framework is able to automatically pinpoint the malicious IP flows respon-
sible of anomaly, through exploiting bucket index in an additional multi-
layer sketch.

We proved the effectiveness of the proposed approach through implem-
entation and testing on real traces with DoS/DDoS. Results of our experi-
mentations have proved the capacity of early detection even for low inten-
sity of DoS/DDoS attacks.

The proposed method is easily decentralized due to linear property of
sketch with respect to addition operator. Ongoing work will be converged

toward the hierarchical distribution of the proposed approach, and the re-
duction of the size of exchanged sketch information between different
monitoring nodes in different layers.

Acknowledgments

This work has been partially funded by the French National Research
Agency through the OSCAR project.

References
[1] Charikar M, Chen K, Farach-Colton M (2002) Finding frequent items in data

streams. In: 29th International Colloquium on Automata, Languages and Pro-
gramming (ICALP ’02), London, UK, pp. 693–703.

[2] Cisco Systems Inc: Cisco netflow. http://www.cisco.com/wrap/public-
/732/Tech/netflow

[3] Cormode G, Korn F, Muthukrishnan S, Srivastava D (2004) Diamond in the
rough: Finding hierarchical heavy hitters in multi-dimensional data. In: 23rd
ACM SIGMOD, pp. 155–166.

[4] Cormode G, Muthukrishnan S (2004) What’s new: Finding significant differ-
ences in network data streams. In: IEEE Infocom’04, pp. 1534–1545.

[5] Cormode G, Muthukrishnan S (2005). An improved data stream summary: The
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75.

[6] Feng W, Zhang Z, Jia Z., Fu Z (2006). Reversible sketch based on the xor-
based hashing. In: Asia-Pacific Conference on Services Computing (APSCC
’06), Guangzhou, Guangdong, China, pp. 93–98.

[7] Fluhrer S, McGrew D (2001). Statistical analysis of the alleged RC4 key-
stream generator. In: 7th International Workshop on Fast Software Encryp-
tion (FSE ’00), London, UK, pp. 19–30.

[8] Gutmann P (1996), Optimized RC4 code. http://www.zengl.net/freeswan/.
[9] Jung J, Paxson V, Berger A, Balakrishnan H (2004) Fast portscan detection

using sequential hypothesis testing, in: IEEE Symposium on Security and
Privacy, pp. 9–12.

[10] Kim H, Rozovskii B, Tartakovsky A (2004) A nonparametric multichart
cusum test for rapid intrusion detection. Journal of Computing and Informa-
tion Science, 2(3):149–158.

[11] Krishnamurthy B, Sen S, Zhang Y, Chen Y (2003) Sketch-based change detec-
tion: methods, evaluation, and applications. In: 3rd ACM SIGCOMM Confer-
ence on Internet Measurement (IMC’03), New York, USA, pp. 234–247.

[12] Li X, Bian F, Crovella M, Diot C, Govindan R, Iannaccon G, Lakhina A
(2006) Detection and identification of network anomalies using sketch sub-
spaces. In: 6th ACM SIGCOMM on Internet Measurement (IMC ’06), New
York, USA, pp. 147–152.

4 A Novel Approach for Anomaly Detection over High-Speed Networks 67

68 O. Salem et al.

[13] Li Y, Yang J, An C, Zhang H (2007) Finding hierarchical heavy hitters in
network measurement system. In: ACM Symposium on Applied Computing
(SAC ’07), New York, USA, pp. 232–236.

[14] Massive Data Analysis Lab: MassDal: Count-min sketch source code.
http://www.cs.rutgers.edu/7Emuthu/massdal-code-index.html

[15] Moore D, Voelker G, Savage S (2001) Inferring internet denial-of-service ac-
tivity. In: Usenix Security Symposium, pp. 9–22.

[16] National Laboratory of Applied Network Research: NLANR: Traces archive.
http://pma.nlanr.net/Special/.

[17] Paxson V (1999). Bro: A system for detecting network intruders in real-time.
Journal of Computer Networks, 31(23–24):2435–2463.

[18] Roesch M (1999) Snort – lightweight intrusion detection for networks. In:
USENIX Lisa ’99, Seattle, WA, USA.

[19] Schweller R, Li Z, Chen Y, Gao Y, Gupta A, Parsons E, Zhang Y, Dinda P,
Kao M.-Y, Memik G (2006) Reverse hashing for high-speed network moni-
toring: Algorithms, evaluation, and applications. In: INFOCOM 06, pp. 1–12.

[20] Siris V. A, Papagalou F (2004) Application of anomaly detection algorithms
for detecting Syn flooding attacks. In: GLOBECOM ’04, vol 4, Dallas, USA,
pp. 2050–2054.

[21] Tartakovsky A (2005) Asymptotic performance of a multichart cusum test
under false alarm probability constraint. In: 44th IEEE Conference on Deci-
sion and Control and the European Control Conference, Seville, Spain, pp.
320–325.

[22] Tartakovsky A, Rozovskii B, Blazek R, Kim H (2006) A novel approach to
detection of intrusions in computer networks via adaptive sequential and
batch-sequential change-point detection methods. Journal of IEEE Transac-
tions on Signal Processing, 54(9):3372–3382.

[23] Thorup M, Zhang Y (2004) Tabulation based 4-universal hashing with appli-
cations to second moment estimation. In: ACM-SIAM Symposium on Dis-
crete Algorithms (SODA ’04), New Orleans, LA, USA.

[24] Wang H, Zhang D, Shin K. G (2002) Syn-dog: Sniffing syn flooding sources.
In: 22nd International Conference on Distributed Computing Systems
(ICDCS’02), Washington, DC, USA, pp. 421–429.

Debra L. Cook1, *, Moti Yung2, and Angelos D. Keromytis2

1Columbia University, New York, USA dcook@cs.columbia.edu
1

2Department of Computer Science, Columbia University, New York, USA
{moti, angelos}@cs.columbia.edu

Abstract. We demonstrate the general applicability of the elastic block cipher
method by constructing examples from existing block ciphers: AES, Camellia,
MISTY1 and RC6. An elastic block cipher is a variable-length block cipher cre-
ated from an existing fixed-length block cipher. The elastic version supports any
block size between one and two times that of the original block size. We compare
the performance of the elastic versions to that of the original versions and evaluate
the elastic versions using statistical tests measuring the randomness of the cipher-
text. The benefit, in terms of an increased rate of encryption, of using an elastic
block cipher varies based on the specific block cipher and implementation. In
most cases, there is an advantage to using an elastic block cipher to encrypt blocks
that are a few bytes longer than the original block length. The statistical test re-
sults indicate no obvious flaws in the method for constructing elastic block ci-
phers. We also use our examples to demonstrate the concept of a generic key
schedule for block ciphers. In addition, we present ideas for new modes of encryp-
tion using the elastic block cipher construction.

1 Introduction

We illustrate the method for creating elastic block ciphers with four con-
structions. Elastic block ciphers are variable-length block ciphers created
from existing block ciphers [5]. The elastic version of a block cipher sup-
ports any block size between one and two times that of the original block
size. The method consists of a substitution-permutation network that uses

* This work was completed while the author was at Columbia University.

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_5, © Springer Science+Business Media, LLC 2009

5

and Modes of Encryption
Elastic Block Ciphers in Practice: Constructions

70 D.L. Cook et al.

the round function from the existing fixed-length block cipher. In this
work, we construct elastic block ciphers from AES [13], Camellia [1],
MISTY1 [8] and RC6 [18], to serve as examples of the general applicabil-
ity of the method. We analyze the randomness of the cipher’s output using
standard statistical tests and evaluate the performance of the elastic ver-
sions. We also use our constructions to illustrate the use of a generic key
schedule for block ciphers. Additionally, we propose how the method can
be used to create new modes of encryption.

Our performance tests demonstrate that the benefit of using an elastic
block cipher varies based on the specific block cipher and implementation.
In most cases, there is an increased rate of encryption when using an elas-
tic block cipher to encrypt blocks a few bytes longer than the original
block length as opposed to padding the data to two full blocks. The statis-
tical tests applied to the block ciphers do not prove a cipher is secure but
instead serve as a sanity check to determine if there are design flaws in the
cipher. The test results for the elastic versions are consistent with those of
the original ciphers and indicate no obvious flaws in the method for con-
structing elastic block ciphers.

The remainder of this paper is organized as follows. In Section 2, we
describe our four constructions, including the use of a generic key sched-
ule. In Section 3, we propose ideas for new modes of encryption. Section 4
concludes the paper.

2 Elastic Block Cipher Examples

2.1 Overview
We briefly review our method for creating elastic block ciphers [5]. Our
method converts the encryption and decryption functions of any existing
block cipher, G, that accepts blocks of size b bits to a variable-length block
cipher, G', that accepts block sizes of b+y bits, where 0 ≤ y ≤ b. Figure 1
shows the general structure of an elastic block cipher. The round function
of G' is a cycle of G, where a cycle is the sequence in which all b bits have
been processed by the round function of G. For example, in AES the
round function is a cycle. If G is a Feistel network, a cycle is the sequence
of applying the round function of G to the left and right halves of the b bit
block. In each round of G', the leftmost b bits are processed by the round
function and the rightmost y bits are omitted from the round function. Af-
terwards, the rightmost y bits are XORed with a subset of y bits from the
leftmost b bits and the results swapped. What y bits are chosen from the
leftmost b bits for use in the swap step may vary per round. The swap step

Fig. 1. Elastic block cipher structure.

is omitted after the last round. The number of rounds in G' is r’ = r +
⎡(ry)/b⎤ where r is the number of cycles in G. The elastic version also in-
cludes initial and end-of-round whitening on all b+y bits, and an initial and
final key-dependent permutation that processes all b+y bits.

In the remainder of this section we describe the elastic versions of AES,
Camellia, MISTY1 and RC6. We choose these particular block ciphers be-
cause they were finalists in standards competitions that represent different
methods for how the round function process bits. AES serves as the sim-
plest example for creating an elastic block cipher because its round func-
tion processes the entire 128-bit block in each application. Camellia, one
of the recommended 128-bit block ciphers from NESSIE’s competition for
cryptographic algorithms [10], is a Feistel network with an additional func-
tion applied after certain cycles. MISTY1, the recommended 64-bit block
cipher from NESSIE, is also structured as a Feistel network. Its elastic ver-
sion provides an example of a cipher covering blocks in the range of 64 to
128 bits. RC6, a finalist from the AES competition, breaks the data block
into quarters and the round function updates two of the quarters using the
values of the other two quarters. We use a 128-bit version of RC6.

whitening

round function =
cycle of G

whitening

⊕

Total # of rounds:
r’ = r + ⎡ ry/b⎤
r = number of cycles in G

whitening

b+y bit ciphertext

last
round

key-dependent permutation

key-dependent permutation

Swap step: XOR the y bits omitted
from the round with y of the b bits
output from the round function and
swap the two segments. The exact y
bit positions used from the round
function’s output may vary per round.

round function =
cycle of G

b+y bit plaintext, 0 ≤ y ≤ b

b bits y

5 Elastic Block Ciphers in Practice 71

72 D.L. Cook et al.

2.2 Common Items
We first describe implementation details shared by the four examples. In
the elastic versions of block ciphers, the bits in a block of data are num-
bered from the most significant (leftmost) to the least significant (right-
most). Bits 1 to b become the b-bit portion and bits b+1 to b+y become the
y-bit portion. The initial and final key-dependent permutations perform a
byte or word level rotation combined with a swapping of any fractional
byte of data. Two expanded-key bytes are utilized by each of the permuta-
tions. The amount of the rotation depends on an expanded-key byte. When
the block size is not an integral number of bytes or words, the rightmost
fractional byte or word is omitted from the rotation and swapped with bits
from the rotation’s result. A second expanded-key byte determines the byte
or word from which bits are swapped with the fractional byte. If the block
size is an integral number of bytes or words, this second expanded-key
byte is unused. RC4 [17] was used for the key schedule. The first 512
bytes of RC4’s output are discarded [9], then RC4 is run until the required
amount of expanded key bytes are obtained. How the bits are selected for
the swap steps varies slightly among our constructions. In all cases, the
bits swapped out of the b-bit portion at the end of the round are y sequen-
tial bits (circling back to the leftmost bit after reaching the rightmost bit),
but the starting position of this sequence varies per cipher. As shown in
[4], the exact positions of the bits swapped does not matter in the sense
that the elastic version will be secure against any attack that works by re-
covering key or round key bits if the original cipher is secure against the
attack regardless of the bit positions chosen for each swap step.

For each cipher, we compared the performance of the elastic version to
the original version with padding. We measured the rate of encryption for
each block size that is an integral number of bytes. This excludes the time
to expand the key. In the elastic implementations, when the block size is
not an integral number of bytes, the fractional byte is stored in a byte and
the processing time is the same as if a full byte of data is present; there-
fore, the time to encrypt b+y bits is the time to encrypt ⎡(b+y)/8⎤ bytes. It
is possible for the computational workload to vary at a more granular level,
such as in a hardware implementation. The time for the fixed-length ver-
sion to encrypt a (b+y)-bit block is the time to encrypt 2b bits in order to
represent the padding required when using a b-bit block cipher. We meas-
ured the time to encrypt one million (b+y)-bit blocks, where 0 ≤ y ≤ b and
y is an integer multiple of 8, using the elastic version and two million b-bit
blocks using the fixed-length version. The time to pad the data was not in-
cluded when measuring the performance of the original cipher. We imple-
mented all the ciphers in C. All tests were conducted on a 2.8 Ghz

Pentium 4 processor with 1 GB RAM running Redhat Linux 2.4.22, unless
otherwise noted.

We also compared the performance of the elastic versions to the per-
formance of two previous proposals for variable-length block ciphers. The
first proposal is by Bellare and Rogaway [2]. Their method involves run-
ning an existing block cipher, G, in CBC mode under one key, encrypting
the last block of output from the CBC mode with G using a second key and
using its output as an IV into G run in counter mode using third key. The
ciphertext is the IV for the counter mode concatenated with the result of
XORing the output from counter mode with the plaintext minus the last
block. The second proposal is a modification by Patel, Ramzan and Sunda-
rama to the first method that replaces the CBC portion with a hash function
[15]. We used SHA-256 [14] as the hash function. Both proposals are less
efficient than padding the plaintext to two full blocks and encrypting with
a fixed-length block cipher, and both do not vary the workload for plain-
text that is between one and two blocks in length. Bellare and Rogaway’s
method requires slightly more than twice the work of using fixed-sized, b-
bit blocks for any (b+y)-bit block, where 0 < y ≤ b. Patel’s method re-
quires two full applications of the block cipher plus the cost of a hash
function to encrypt b+y bits.

2.3 Elastic AES
We created the elastic version of AES by adding the swap step between
rounds of AES, expanding AES’s whitening steps (AddRoundKey) from
b = 128 bits to 128+y bits, and adding the initial and final key-dependent
permutations. The round function consists of AES’s SubBytes, Shiftrows
and MixColumns steps, with the MixColumns step omitted in the last
round to be consistent with the fixed-length version of AES [13]. The
number of rounds ranges from 10 when y = 0 to 20 when 116 ≤ y ≤ 128.
We implemented the swap step by selecting y sequential bits from the
leftmost b bits, wrapping around from the right to the left as needed. The
starting position is varied by moving one byte to the right each round to
avoid using the same bit positions in each swap. This avoids any complex
selection process for choosing the y bits that would decrease performance.

We implemented two elastic versions of AES that differed in how the
round function was implemented. In Version I, we implemented the round
function as a straightforward sequence of the SubBytes, Shiftrows and
MixColumns steps as defined in [13]. In Version II, we combined these
steps into a table lookup. This results in the round function being a series
of byte-level table lookups and XORs. Version II requires fewer CPU cy-
cles than Version I, at the cost of an increase in memory usage. The round

5 Elastic Block Ciphers in Practice 73

74 D.L. Cook et al.

function can also be implemented to process the data as 32-bit words, in
which case the table entries are 32-bit words. We kept table lookups at the
byte level because we chose to implement the key-dependent permutations
and swap step at the byte level.

The elastic versions increase the number of operations beyond the 128-
bit versions due to the swap steps, the two key-dependent permutations
and the expansion of whitening to cover 128 + y its. In Version I, the elas-
tic version saves processing time over padding. Obviously, as the block
size approaches two full blocks, 20 rounds of AES are incurred in the elas-
tic version along with the added steps, which increases the number of op-
erations beyond the 20 rounds of AES that are required when padding the
data to two full blocks. Therefore, it is expected that there is no perform-
ance benefit when encrypting blocks just under 32 bytes. In Version II, the
elastic version does not offer a performance benefit compared to padding.
This is because of the simplistic nature of the operations involved (table
lookups and XORs) for the round function. Even though there are fewer
rounds in the elastic version than with padding, the operations for the swap
step and the two key-dependent permutations consume any savings gained
from having fewer rounds. However, Version II offers a performance
benefit over the variable-length block cipher construction by Bellare and
Rogaway, and its modification by Patel, et al.

Figure 2 summarizes the results from the following three cases: Case 1:
Version I tested on a 1.3 Ghz Pentium 4 processor with 512 MB RAM run-
ning Windows XP, Case 2: Version I tested in the Linux environment de-
scribed in Section 2.2. Case 3: Version II tested in the Linux environment

0
20
40
60
80

100
120
140
160
180
200

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

block size in bytes

of

 b
lo

ck
s

en
cr

yp
te

d
in

 u
ni

t
tim

e
t

Fixed Length Case 1 Case 2 Case 3

0
20
40
60
80

100
120
140
160
180
200

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

block size in bytes

of

 b
lo

ck
s

en
cr

yp
te

d
in

 u
ni

t
tim

e
t

Fixed Length Case 1 Case 2 Case 3

Fig. 2. Normalized # of blocks encrypted by elastic AES in unit time (regular AES
= 100)}.

described in Section 2.2. In the first trial, the number of (b+y)-bit blocks
the elastic version can encrypt per second ranges from 190% of the num-
ber of 2b-bit blocks AES can encrypt per second when y = 1 to 100%
when y = 97. Then the elastic version’s performance decreased gradually
to a low of 83% of AES’s rate. In the second trial, the values ranged from
186% to 69% of AES’s rate, with the elastic version becoming slower than
the fixed-length version when y = 73. In the third trial, the elastic version
was slower than the fixed-sized version with padding for all block sizes.

We compared Bellare and Rogaway’s method and Patel’s method to
AES with padding on the Pentium 4 processor used in cases 2 and 3. Bel-
lare and Rogaway’s method encrypted between 49 and 50 (b+y)-bit blocks
in the same amount of time AES with padding encrypted 100 blocks, for
both Version I and II of AES. Patel’s method encrypted 96 (b+y)-bit
blocks in the time it took Version I of AES to encrypt 100 blocks, and en-
crypted 18 (b+y)-bit blocks in the time it took Version II of AES to en-
crypt 100 blocks. When using Version I, elastic AES is computationally
more efficient than both Bellare and Rogaway’s method and Patel’s
method for all block sizes. When using Version II, elastic AES is computa-
tionally more efficient than Bellare and Rogaway’s method for block sizes
up to 21 bytes in length, and is more efficient than Patel’s method for
block sizes less than 31 bytes and is as efficient as Patel’s method for
block sizes between 31 and 32 bytes.

2.4 Elastic Camellia
Camellia processes 128-bit blocks and is a Feistel network with additional
steps. A function, referred to as the FL function, is applied after every
three cycles in the Feistel network, except after the last three cycles. FL is
applied to the left half and its inverse is applied to right half of the b = 128
bits. Camellia contains initial and final whitening steps, but not end-of-
round whitening. Creating the elastic version involved using a cycle from
the Feistel network as the round function, expanding the two existing
whitening steps to cover 128+y bits and adding end-of-round whitening
steps to all the other rounds, and adding the same initial and final key-
dependent permutations that we used in elastic AES. We apply the FL
function after every three rounds, except for the last round. A round of the
elastic version is shown in Fig. 3. The data is processed as bytes. The swap
step was implemented by altering the starting positions between the left
and right halves of the b-bit portion then rotating it one byte to the right
within the half. Camellia has 9 cycles. The number of rounds in the elastic
version ranges from 9 when y = 0 to 18 when 114 ≤ y ≤ 128.

5 Elastic Block Ciphers in Practice 75

76 D.L. Cook et al.

Fig. 3. Round function for elastic camellia.

0
20
40
60
80

100
120
140
160
180

17181920212223242526272829303132

block size in bytes

of

 b
lo

ck
s

en
cr

yp
te

d
in

un
it

tim
e

t

Fixed Length Case 1 Case 2

Fig. 4. Normalized #of blocks encrypted by elastic Camellia in unit time (regular
Camellia = 100)}.

The elastic version offered no performance gain over the fixed-length
version with padding. We also measured the performance of the elastic
version without the initial and final permutations. Removing these two
steps results in the elastic version offering a performance benefit when
encrypting blocks that are one to three bytes over the normal 16-byte block
size. Results for the following two cases are shown in Fig. 4: Case 1: elas-
tic Camellia with all steps, Case 2: elastic Camellia without the initial and
final key-dependent permutations. By using a lower bound of twice the
work of padding for Bellare and Rogaway’s method, elastic Camellia with
the key-dependent permutations provides a performance benefit for block

FL FL-1

right 64 bits left 64 bits

y bits b bits

whitening and swap steps

round
function

every 3rd
round

sizes up to 22 bytes and the version without the key-dependent permuta-
tions provides a performance benefit for block sizes in the range of 9–25
bytes compared to Bellare and Rogaway’s method. Patel’s method en-
crypted 61 (b+y)-bit blocks, 0 < y ≤ b, in the time it took Camellia with
padding to encrypt 100 blocks. Elastic Camellia is more efficient than
Patel’s method for block sizes up to 21 bytes and 23 bytes, respectively,
for the two cases.

2.5 Elastic MISTY1
MISTY1 is a 64-bit block cipher structured as a Feistel network with an
additional function, called the FL function (not to be confused with the FL
function from Camellia), applied once per cycle. While the number of cy-
cles is not fixed, four cycles are recommended [10] and is the number
upon which we base the number of rounds in the elastic version. MISTY1
does not contain whitening steps. A cycle from MISTY1 is used as the
round function in the elastic version, shown in Fig. 5. Creating the elastic
version involved adding the whitening steps, the initial and final key-
dependent permutations and the swapping of bits after each cycle. The data
is processed as 32-bit words. The key-dependent permutations are of the
same form (a rotation and swap) as those used in the other three elastic
block cipher examples. We alternate the starting position for the swap be-
tween the left and right halves of the round’s output and, within each
halve, rotate the starting position one word each time.

Fig. 5. Round function for elastic MISTY1.

5 Elastic Block Ciphers in Practice 77

78 D.L. Cook et al.

0

50

100

150

200

9 10 11 12 13 14 15 16

block size in bytes

of

 b
lo

ck
s

en
cr

yp
te

d
in

un
it

tim
e

t

Fixed Length Case 1 Case 2
Fig. 6. Normalized # of blocks encrypted by elastic MISTY1 in unit time (Regular
MISTY1 = 100).

We implemented elastic versions, with and without the key-dependent
permutations, and the regular version of MISTY1. The performance results
are shown in Fig. 6. Case 1 refers to the version with the key-dependent
permutations and Case 2 refers to the version without the key-dependent
permutations. The elastic versions increased the number of operations be-
yond the 64-bit version of MISTY1 due to the whitening, the swap steps
and, in one version, the key-dependent permutations. The elastic version of
MISTY1 provides a performance benefit compared to padding for blocks
that are one to four bytes over the 8-byte block size that MISTY1 processes.
The benefit increases significantly in Case 2 compared to Case 1 for block
sizes that are up to one additional byte over MISTY1’s 8-byte block size.
The performance benefit from removing the initial and final key permuta-
tions decreases as the block size increases because they represent an increas-
ingly smaller portion of the operations as more rounds are added. In both
cases, the elastic version provides a performance benefit when compared to
Bellare and Rogaway’s method based on a lower bound of twice the work of
padding for their method. Patel’s method encrypted 51 (b+y)-bit blocks, 0 <
y ≤ b, in the time it took MISTY1 with padding to encrypt 100 blocks using
padding. Both cases of the elastic version of MISTY1 encrypt at a faster rate
than Patel’s method for all block sizes between 8 and 16 bytes.

2.6 Elastic RC6
RC6 is an example of a block cipher other than a Feistel network whose
round function processes only a segment of the data block. RC6 divides a
128-bit data block into four 32-bit words, which we will refer to as ABCD.
A and C are updated by the round function based on the values of B and D.

At the end of the round, A and C have expanded-key bits added to them then
all the words are rotated to the left one word. B and D have expanded-key
bits added to them before the first round, and A and C have expanded-key
bits added to them after the last round. The addition of expanded-key bits to
a word is a type of whitening. Since this “whitening” does not cover the en-
tire data block and is not the same as performing whitening by XORing data
with expanded-key bits, we view this addition as a step in the round function
and not as whitening that should be expanded to all b+y bits when forming
the elastic version. A sequence of four applications of the round function of
RC6 is a cycle and serves as the round function in the elastic version, as
shown in Fig. 7. Initial and end-of-round whitening, and the initial and final
key-dependent permutations are also added to create the elastic version. The
rotations and XOR in the initial and final permutations were performed at
the word level this time instead of at the byte level as done in elastic AES
and elastic Camellia. The number of cycles in RC6 for 128-bit blocks is 5
(20 applications of RC6’s round function). The number of rounds in the
elastic version ranges from 5 when y=0 to 10 when y=103 (20–40 applica-
tions of RC6’s round function). The swap step was implemented with the
starting position rotating to the right one word each round.

The elastic version provides a performance benefit compared to padding
for blocks of under 21 bytes in length. The results shown in Fig. 8. Using a
lower bound of twice the work of padding for Bellare and Rogaway’s
method, the elastic version of RC6 provides a performance benefit for
blocks under 30 bytes in length when compared to Bellare and Rogaway’s
method. Patel’s method encrypted 52 blocks (b+y)-bit blocks, 0 < y ≤ b, in
the time it took RC6 with padding to encrypt 100 blocks. Elastic RC6 is
more efficient than Patel’s method for block sizes up to 29 bytes.

Fig. 7. Round of elastic RC6.

128 bits

RC6’s round function

y bits

whitening and swap steps

RC6’s round function

RC6’s round function

RC6’s round function

round
function

5 Elastic Block Ciphers in Practice 79

80 D.L. Cook et al.

0

20

40

60

80

100

120

140

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

block size in bytes

of

 b
lo

ck
s

en
cr

yp
te

d
in

 u
ni

t t
im

e
t

Fixed Length Variable Length
Fig. 8. Normalized # of blocks encrypted by elastic RC6 in unit time (Regular
RC6 = 100).

2.7 Randomness Test Results
We applied statistical tests used by NIST on the AES candidates to both
the original and elastic versions of the four ciphers. While these tests do
not prove a cipher is secure, they do assist in determining if there are any
obvious weaknesses with the cipher. There are sixteen tests performed on
eight sets of data for each cipher. Refer to NIST’s special publication 800-
22 [12] for a description of the tests and to the NIST report entitled “Ran-
domness Testing of the Advanced Encryption Standard Finalist Candi-
dates” [11] for a description of the data sets. We tested every (b+y)-bit
block size where y is an integral of 8 and b ≤ b+y ≤ 2b. We also tested
two block sizes that were not an integral number of bytes. These were
129-bit and 171-bit blocks for the elastic versions of AES, Camellia and
RC6, and 69-bit and 75-bit blocks for the elastic version of MISTY1. We
used 128-bit keys in all of our tests. Each data set required either an initial
set of random plaintexts or random keys. We created these random bit
strings by extracting bits from files of random bits available from ran-
dom.org [16]. Based on the results, each of our three elastic block cipher
examples show no signs of any statistical weakness compared to the
original ciphers. In the AES competition, finalists passed each test at a rate
of 96.33% or higher [11]. The elastic versions of the ciphers also met or
exceeded this rate. For the elastic versions of the ciphers, the percentage of
samples passing each test was consistent across all block sizes and data
sets.

2.8 Key Schedules
The key schedule for an elastic version of a block cipher has to generate
more expanded-key bits than the key schedule of the original block cipher.
Additional key bits are needed due to the expansion or addition of whiten-
ing steps, the two key-dependent mixing steps and the increase in the
number of rounds. In practice, every block cipher includes its own key
schedule, which is typically designed with a focus on performance and
little concern about the lack of pseudorandomness in the expanded-key
bits. This tendency in key schedule design results in key schedules con-
tributing to attacks (due to the ease in which additional key bits can be de-
termined once a few are found and by increasing the opportunity for re-
lated key attacks [3]) and forces applications supporting multiple block
ciphers to support a separate key schedule for each cipher. When creating
elastic block ciphers, we wanted to avoid these disadvantages of existing
key schedules. Furthermore, unlike the encryption algorithms of block ci-
phers which follow a somewhat generic structure by being a series of
rounds, key schedules vary extensively in their structures. This makes it
unlikely a general method can be devised for modifying the key schedules
to generate additional bits as needed based on the block size. Therefore,
we required a generic key schedule that is independent of the block cipher
and that generates as many pseudorandom expanded-key bits (or close to
pseudorandom) as needed while adhering to a performance bound. Existing
stream ciphers are potential candidates for satisfying these requirements.
We used RC4 as the key schedule in the elastic block ciphers to illustrate
the concept of a generic key schedule satisfying these requirements. The
first 512 bytes of RC4’s output are discarded due to a slight statistical
weakness in the initial bytes output from RC4 [9]. We re-initialized RC4’s
“S” array is for each expanded key. A disadvantage of a generic key sched-
ule is that if a weakness is discovered in the key schedule, it will impact any
block cipher using the key schedule. However, having one key schedule
decreases the likeliness of overlooked design flaws and implementation er-
rors compared to when multiple key schedules are required.

In contrast to RC4 and any other stream cipher used in practice, the key
schedules of AES and Camellia generate expanded keys that can easily be
distinguished from random bits. In AES, an expanded-key byte is a combi-
nation of two other expanded-key bytes. When designing AES, Daemen and
Rijmen noted the benefit of pseudorandom key bits, but stated that they
took a “less ambitious” approach focused on avoiding symmetry between
rounds and attacks due to related keys because “All other attacks are sup-
posed to be prevented by the rounds of the block cipher.” [6], page 77. In
Camellia, there is a large overlap amongst the round keys. In MISTY1, the

5 Elastic Block Ciphers in Practice 81

82 D.L. Cook et al.

same expanded key bits are used in multiple locations within the block ci-
pher. In RC6, it is more difficult to determine key bits from other expanded-
key bits compared to AES and Camellia. Each original key byte is altered
with an addition and a rotation. The resulting byte is then added to a previ-
ous expanded-key byte and a constant to create the next expanded-key byte.

We compared the performance of RC4 when generating enough ex-
panded key bits to encrypt a b-bit block to the performance of the four ci-
phers’ key schedules. When encrypting b bits, the number of expanded-
key bits in an elastic block cipher is 32 more than the number in the origi-
nal cipher (due to the key-dependent permutations) plus the number of bits
needed for any initial and/or end-of-round whitening that was not in the
original cipher. Recall that whitening steps were added when forming the
elastic versions of Camellia and RC6; whereas, AES already contained
whitening and only required that its whitening steps be expanded to cover
all b+y bits.

When measuring the performance of the original key schedules, we re-
moved any statements from the original ciphers’ key schedules that were
present only for the support of key sizes other than 128 bits. Specifically,
we removed the statements from AES’s key schedules that were for the
support of 192 and 256-bit keys. We also compared each elastic block ci-
pher’s key expansion rate to that of AES’s original key schedule because
in practice AES’s key expansion rate is presently accepted. Let ti, for i =
1,2,3,4, correspond to the key expansion rate for the fixed-length versions
of AES, Camellia, MISTY1 and RC6, respectively. Table 1 shows the
number of expanded-key bytes needed in the elastic block ciphers for
block sizes of b, b+8 and 2b bits. The key-expansion rates for the elastic
versions compared to that of the original versions are shown in Table 2.

Table 1. Number of expanded key bytes in elastic versions.

Cipher Block size in bytes # of rounds # of Expanded-key bytes
AES 16 10 180
AES 17 11 208
AES 32 20 676
Camellia 16 9 340
Camellia 17 10 383
Camellia 32 18 980
MISTY1 8 4 196
MISTY1 9 5 246
MISTY1 16 8 444
RC6 16 20 516
RC6 17 21 562
RC6 32 40 1652

Table 2. Key expansion rate.

Elastic
cipher

Block size
in bytes

Elastic version’s rate
(RC4) vs fixed-length
version’s rate

Elastic version’s rate
(RC4) vs fixed-length
AES’s rate

AES 16 5.94t1 5.94t1
Camellia 16 43.54t2 6.89t1
MISTY1 8 119.24t3 6.09t1
RC6 16 6.29t4 7.84t1

We note that Camellia and MISTY1 have the fastest key schedule of the
four ciphers and also requires the most expanded-key bits, thus resulting
in RC4 appearing to be significantly slower. However, Camellia’s and
MISTY1’s key schedules have the least amount of randomness of the four
ciphers due to reusing expanded-key bits in multiple locations. Overall,
the RC4-based key expansion used in the elastic ciphers when encrypting
b-bit blocks is just under six to just under eight times the rate of AES’s key
schedule.

3 Modes of Encryption

3.1 Overview
An elastic block cipher can be used in existing modes of encryption in two
ways. The first option is to use the block size of the original, fixed-length
block cipher for all blocks except the last block, then use a variable-length
block at the end to avoid padding. A second option is to use a block size
different from the fixed-length block cipher for all blocks, with the size of
the last block set to avoid padding. When using an existing mode, the only
benefit the elastic version of a cipher provides is the elimination of pad-
ding; it does not eliminate any existing attack against the mode. For short
segments of data between one and two blocks, an elastic block cipher al-
lows all of the bits to be encrypted as a single block, avoiding the need to
use a mode of encryption and creating a stronger binding across the cipher-
text bits compared to the ciphertext produced by a mode of encryption.
Elastic block ciphers also allow for new modes of encryption. We provide
a sketch of two new modes, Elastic Chaining and Elastic Electronic Code
Book (Elastic ECB). Both modes are intended as initial ideas for future
work.

5 Elastic Block Ciphers in Practice 83

84 D.L. Cook et al.

3.2 Elastic Chaining Mode
Elastic Chaining is depicted in Fig. 9. y bits from the ith ciphertext block
are prepended to the (i+1)st plaintext block and the result encrypted as a
(b+y)-bit block. This concatenation creates a stronger binding between the
ith and (i+1)st blocks compared to that created by the XOR used in CBC
mode. The stronger binding is achieved by increasing the work per block
from the number of rounds required for b bits to the number required for
b+y bits, while the number of blocks is unchanged. The output consists of
the leftmost b bits from each ciphertext block for all but the last block and
the entire ciphertext of the last block. The first block to be encrypted can
consist of b plaintext bits with a y-bit IV prepended to it, b+y plaintext
bits, or contain only b plaintext bits. Overall, the ciphertext will be at most
y bits longer than the plaintext. If the plaintext is not an integral number of
b-bit blocks, the last block may be shorter than b+y bits. When the plain-
text is not an integral number of b-bit blocks, the mode can be imple-
mented without padding the last block; whereas, using the non-elastic ver-
sion of the block cipher would require padding and also produce a
ciphertext longer than the plaintext. The performance of the mode depends
on the size of y. For a block cipher with r rounds, nr rounds are computed
to encrypt n b-bit blocks with ECB, CBC or CTR mode. The number of
rounds using elastic chaining will range from n(r+1) when y=1 to 2nr
when ⎡(ry)/b⎤ = r. This mode is useful in applications where the decryp-
tion can start at the last block. For example, when decrypting a file or
segments of a database.

Fig. 9. Elastic chaining mode.

IV

b bits b bits b bits

b bits

b bits b bits

b bits b bits

b bits

y bits y bits y bits

y bits y bits

elastic
block
cipher

elastic
block
cipher

elastic
block
cipher

…

b bitsb bits b bits input

…

…

…

…

y bits

The ciphertext can be decrypted by decrypting the last block, concate-
nating the y bits from the plaintext block with the previous ciphertext
block, and then decrypting the next block. When using an IV with the first
block, the IV is not needed for decryption; however, having it available for
decryption provides a type of integrity check in that the first y bits of the
resulting plaintext can be verified against the IV.

The mode allows for variations. These include altering which positions
the y bits from the previous ciphertext block are inserted into in the current
plaintext block. Instead of prepending the y bits to the next plaintext block,
they could be appended or inserted amongst the b bits as either y consecu-
tive or nonconsecutive bits. The size of y can also vary between blocks,
possibly based on the key value.

This mode offers several security benefits because, even if the plaintext
is known, an attacker does not know the actual (b+y)-bit block being en-
crypted. If y varies per block based on key material, the attacker does not
even know the length of each block being encrypted. Incorporating the
previous ciphertext block into the current plaintext block when encrypting
will hide plaintext patterns. In the way the mode is depicted in Figure 9, a
single bit toggled in the ciphertext is detectable because it will garble all
plaintext prior to and including the altered block. In order to insert or
splice together ciphertext blocks, the inserted ciphertext block must de-
crypt to a plaintext which produces the same leftmost y bits as the original
ciphertext block; otherwise, all plaintext blocks prior to this one will be
garbled, resulting in a much more noticeable impact than the single gar-
bled block produced by a splicing attack on CBC. Block-wise adaptive at-
tacks [7], to which CBC is subject, are prevented because there is no need
for the device performing the encryption to output the last y bits of each
ciphertext block, except for the last block. This prevents the attacker from
knowing the actual block being encrypted because the attacker only gets to
choose b bits of the b+y bit block and block-wise adaptive attacks depend
on the attacker knowing the exact plaintext.

To prepend blocks to the ciphertext, the attacker must be able to insert a
ciphertext block that, when prepended to the leftmost y bits of the original
first plaintext block will decrypt to some meaningful plaintext. Since these
y bits are the IV, if the IV is not secret, the attacker will know what the y
bits are and needs to find b bits that can be prepended to the y bits. How-
ever, notice that the attacker does not have a library of (plaintext, cipher-
text) pairs from which to search for a possible b-bit value to prepend to the
IV unless the entire plaintext is one block, in which case the mode is not
necessary. The attacker will not have (b+y)-bit (plaintext, ciphertext) pairs
from the (input, output) pairs of data encrypted with this mode because the
leftmost y bits of the ciphertext are not included in the output except for

5 Elastic Block Ciphers in Practice 85

86 D.L. Cook et al.

the last block and the b+y input to the last block is not known. Appending
blocks requires that the attacker append blocks of ciphertext which decrypt
to a plaintext whose leftmost y bits are the same as the last y bits of the
original ciphertext. In both cases, the smaller y is, the more likely it is that
the attacker can form meaningful blocks to prepend or append, since there
are only 2y values to try. If y or the bit positions used for the y bits vary per
block based on the key, an attacker will need to try all values of y and pos-
sible positions for the y bits.

It is not possible to rearrange ciphertext blocks without garbling the
plaintext because y bits from each plaintext block are used to decrypt the
previous plaintext block. In order to swap ciphertext block i with cipher-
text block j, the attacker has to find a ciphertext block in position i which,
when prepended to the leftmost y bits from the (j+1)st plaintext block, will
decrypt to a plaintext block whose leftmost y bits are the same as the y bits
appended to the (j−1)st ciphertext block during decryption. Likewise, the
jth block must be such that when it is prepended to the leftmost y bits from
the (i+1)st plaintext block, will decrypt to a plaintext block whose leftmost
y bits are the same as the y bits appended to the (i−1)st ciphertext block
during decryption. Furthermore, because the recipient of the ciphertext
does not receive the rightmost y bits of each block except for the last
block. The attacker does not even know all of the ciphertext bits used to
decrypt a given block of plaintext when trying to determine what cipher-
text blocks can be rearranged without garbling the message.

3.3 Elastic ECB Mode
Our second new mode, shown in Fig. 10, is a possible alternative to ECB
mode that offers some protection against pattern detection in and alterations
of the ciphertext compared to ECB. In tests, Elastic ECB significantly

Fig. 10. Elastic ECB mode.

p1: b+y1 p2: b+y2 p3: b+y3 pn: b+yn …

c2: b+y2 c3: b+y3 cn: b+yn

Ek(p1) Ek(p2) Ek(p3) Ek(pn) …

…c1: b+y1

reduced the number of patterns when encrypting data that has repeated
plaintext blocks aligning on 16-byte boundaries [4]. The data is encrypted as
in ECB mode, but the block size varies per block based on the key, as shown
in Fig. 10. The ith block is of length b + yi for 0 ≤ yi ≤ b and yi is based on
key bits. The ith block can be decrypted without decrypting any other block
by determining its starting position and length from the key. If the key bits
are sufficiently random, yi will be uniformly random within [0,b]. Another
option is to use key bits to set the first block’s length then set each subse-
quent block size based on bits from the previous ciphertext block, although
this will not allow the block lengths to be set in advance.

The i th block can start at any position in the range b(i−1) + 1 and
2b(i−1) + 1, with an average of (3b(i−1)+2)/2. For a plaintext pattern to
show up in the ciphertext, the starting position of the block (which is now
random) and yi would have to match the starting position of the plaintext
pattern and its length in the file. This method does not work for all cases
because there are b+1 possible block sizes (b to 2b) if all values of y are
used and (b/8)+1 possible block sizes if the block size must be an integral
number of bytes. If the file is large enough and has a significant number of
repeated entries, ciphertext repetitions will occur. The degenerate case is a
file consisting entirely of the same byte value repeated, in which case there
will be b/8 distinct ciphertext blocks if y is restricted to being a multiple of 8.

Replacing individual blocks without garbling the plaintext is possible if
the attacker can determine the start and end position of the individual
blocks where the modification will occur. Any block being replaced will
have to be replaced with a block of the same length; otherwise, the block
and all subsequent plaintext blocks will be garbled. The probability of an
attacker determining the start and end of the ith block is 1/(b2(i−1)). (The
probability of guessing the start position of the ith block is 1/(b(i−1)) and
the probability of guessing the length, yi, of the ith block is 1/b.) Splicing is
even more difficult than replacing individual blocks. If two ciphertexts are
being spliced together, the individual block lengths of the result must be
the same as the lengths corresponding to the key. If a block is removed, the
block boundaries for all subsequent blocks will not correspond to the
boundaries used in encryption and the remaining plaintext will be garbled.

Elastic ECB mode is aimed at applications where at least two b-bit
blocks are available when encrypting all but the last block so the block size
can be varied, with y set to any value in the range of 0 to b. Elastic ECB
mode may require a greater amount of computation than ECB due to the
need to compute the yi’s from the key and due to varying the block length.
Overall encryption time compared to ECB may or may not increase be-
cause the longer block lengths will result in fewer blocks to encrypt. The

5 Elastic Block Ciphers in Practice 87

88 D.L. Cook et al.

Table 3. Percent of matching blocks in ECB mode vs elastic ECB mode.

File type Percent of blocks counting as a
match with ECB (10,000 total
blocks)

Percent of blocks counting as a
match with ECB (max over 10
trials)

Emails 13.62% 0.85%
Email log 34.38% 9.46%
Web log 38.70% 7.49%

total number of rounds required of the elastic ECB mode to encrypt nb
bits, for some integer n > 0, will depend on the n,b and yi values.

To illustrate how elastic ECB mode reduces patterns, the number of
times two or more identical blocks occur within a file was determined
when using 16-byte blocks and (16+Y)-byte blocks, where Y is an integer
between 0 and 16 that varies per block. We focused the tests on files where
patterns are present. English text such as news articles and research papers
are unlikely to have repeated phrases that align on 128-bit block bounda-
ries [4]. In contrast, patterns are likely to appear in the ciphertext produced
by ECB mode when encrypting structured files where the format of the
content results in patterns, such as email logs.

We used files where repetitions of plaintext were frequent but not inten-
tionally aligned on 16-byte boundaries. These files consisted of emails,
email logs (SMTP header information) and a log of visitors (IP addresses,
and related information) to a web site. The email consisted of emails be-
tween three people. The emails were generally short and included for-
warded emails but no attached files or images. 160,000 bytes were used
from each file. When using elastic ECB mode, the block sizes were deter-
mined randomly using the key value as a seed to a random number genera-
tor. We ran 10 trials, each with a different key. The results are summarized
in Table 3. A block counted as a match if it was identical to any previous
block in the file. The maximum number of matches (greatest percent) out
of the 10 trials is reported for elastic ECB mode. The number of blocks
ranged from 6792 to 6845 across the combined 30 trials of elastic ECB
mode on the three file types.

4 Conclusions

The constructions of the elastic versions of AES, Camellia, MISTY1 and
RC6 illustrate how to apply the method for creating variable-length block
ciphers. By applying the statistical tests used in NIST’s AES competition,

we conclude that there is no obvious flaw in the design because the level
of randomness of the ciphertext produced by each of the elastic versions is
consistent with the level required in the AES competition. The workload of
the elastic version of a cipher is proportional to the block size, with the
number of rounds increasing as the block size increases. The performance
benefit from using the elastic version of a block cipher depends on the
original cipher and the exact implementation. The percent of overhead in-
volved in adding the swap steps, whitening and two key-dependent permu-
tations varies based on the number of operations and exact implementation
of the original cipher. For AES, whose block size is 16 bytes, there is a
significant performance benefit when using the elastic version to encrypt
blocks up to 25 bytes in length using an implementation of AES that re-
quires little memory; whereas, there is no performance benefit when using
a memory intensive implementation that consists entirely of table lookups
and XORs. For Camellia, whose block size is 16 bytes, there is a perform-
ance benefit when using the elastic version for block sizes up to 19 bytes
in length when the initial and final key-dependent permutations are not in-
cluded. For MISTY1, whose block size is 8 bytes, there is a performance
benefit when using the elastic version for block sizes up to 12 bytes. For
RC6 with a block size of 16 bytes, there is a performance benefit when us-
ing the elastic version for blocks up to 20 bytes in length. The elastic ver-
sions offer a performance benefit over previous methods that treat the
block cipher as a black box and apply it multiple times.

The ability to encrypt variable-length blocks allows new modes of en-
cryption to be designed. We proposed two ways of using variable-length
blocks to create new modes. Elastic Chaining involves processing blocks
in a manner such that bits from the ith ciphertext block become part of the
(i+1)st plaintext block. When encrypting a sequence of blocks, y bits
from the previous ciphertext block are prepended to the current plaintext
block to form a (b+y)-bit block. This mode prevents the block-wise adap-
tive attacks to which CBC is subject and, compared to CBC, results in
more garbled plaintext blocks when attempting to splice or otherwise alter
ciphertext blocks. Elastic ECB mode is ECB mode with key bits determin-
ing each block’s size such that the block size varies across the blocks. This
significantly reduces the probability that patterns are detected, even in
highly repetitious data. Furthermore, insertion, removal or rearrangement
of blocks requires determining the start position and length of the blocks.
These proposals for modes of encryption are intended as initial concepts to
demonstrate additional potential uses of elastic block ciphers and require
further analysis.

5 Elastic Block Ciphers in Practice 89

90 D.L. Cook et al.

Acknowledgments

This work was partially supported by NSF Grants ITR CNS-04-26623 and
CPA CCF-05-41093. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF or the U.S Government.

References

[1] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita. “Camellia: A 128-Bit Block Cipher Suitable for Multiple Plat-
forms – Design and Analysis”. In Proceedings of Selected Areas in Cryptog-
raphy, LNCS 2012, Springer-Verlag, pp. 39–56, 2000.

[2] M. Bellare and P. Rogaway. “On the Construction of Variable Length-Input
Ciphers”. In Proceedings of Fast Software Encryption, LNCS 1636, Springer-
Verlag, 1999.

[3] M. Ciet, G. Piret, and J. Quisquater. “Related-Key and Slide Attacks: Analy-
sis, Connections and Improvements, Extended Abstract”. UCL Crypto Group
Technical Report, 2002.

[4] D. Cook. “Elastic Block Ciphers”. Ph.D. Thesis, Columbia University, New
York, 2006.

[5] D. Cook, M. Yung, and A. Keromytis. “Elastic Block Ciphers: The Basic De-
sign”. In Proceedings of ASIACCS, ACM, pp. 350–355, March 2007.

[6] J. Daemon and V. Rijmen, “The Design of Rijndael: AES the Advanced En-
cryption Standard”. Springer-Verlag, Berlin, 2002.

[7] A. Joux, G. Martinet, and F.Valette. “Blockwise-Adaptive Attackers: Revisit-
ing the (In)Security of Some Provably Secure Encryption Models”. In Pro-
ceedings of Advances in Cryptology – CRYPTO, LNCS 2442, Springer-
Verlag, August 2002.

[8] M. Matsui, “New Block Encryption Algorithm MISTY”. In Proceedings of
Fast Software Encryption, LNCS 1267, Springer-Verlag, pp. 54–68, 1997.

[9] I. Mironov. “(Not So) Random Shuffles of RC4”. In Proceedings of Ad-
vances in Cryptology – CRYPTO, LNCS 2442, Springer-Verlag, August
2002.

[10] “NESSIE Security Report, Version 2”. https://www.cosic.esat.kuleuven.ac.
be/nessie, February 2003.

[11] NIST. “Randomness Testing of the Advanced Encryption Standard Finalist
Candidates”, http://citeseer.ist.psu.edu/soto00randomness.html, March 2000.

[12] NIST. “A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications”. NIST Special Publication
800–22. http://www.csrc.nist.gov/publications/nistir, 2001.

[13] NIST. “FIPS 197 Advanced Encryption Standard (AES)”, http://www.csrc.
nist.gov/publications/fips/ fips197/fips-197.pdf, 2001.

[14] NIST. “FIPS 180-2 Secure Hash Standard”, http://www.csrc.nist.gov/publi-
cations/fips/fips180-2/fips180-2withchangenotice.pdf, 2002.

[15] S. Patel, Z. Ramzan, and G. Sundaram. “Efficient Constructions of Variable-
Input-Length Block Ciphers”. In Proceedings of Selected Areas in Cryptog-
raphy, LNCS 3357, Springer-Verlag, 2004.

[16] random.org. http://wwww.random.org/files.
[17] R. Rivest. “RC4”. In Applied Cryptography by B. Schneier, John Wiley and

Sons, New York, 1996.
[18] R. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. “RC6 Block Cipher”.

http://www.rsa.security.com/rsalabs/rc6, 1998.

5 Elastic Block Ciphers in Practice 91

Hal Burch1, Art Manion1, and Yurie Ito2

1 Carnegie Mellon University, Pittsburgh, PA, USA

2 Japan Computer Emergency Response Team Coordination Center, Tokyo, Japan
yito@jpcert.or.jp

Abstract. Each year, thousands of new software vulnerabilities are reported, and
affected organizations must analyze them and decide how to respond. Many or-
ganizations employ ad hoc systems of decision making, which often result in in-
consistent decisions that do not properly reflect the concerns of the organization at
large. VRDA (Vulnerability Response Decision Assistance) allows organizations
to leverage the analysis effort at other organizations and to structure decision-
making. VRDA enables organizations to spend less time analyzing vulnerabilities
in which they are not interested, to make decisions more consistently, and to struc-
ture their decision making to better align with the goals of the organization.
VRDA consists of a data exchange format, a decision making model, a decision
model creation technique, and a tool embodying these concepts. One response
team is employing a basic form of VRDA to cut the number of vulnerabilities ana-
lyzed by a factor of two. Another response team is developing and testing a
VRDA implementation within their organization.

1 Introduction

In 2006, CERT/CC recorded more than 8,064 vulnerabilities [1] and NVD
recorded 6,604 vulnerabilities [2]. For each vulnerability, organizations
must analyze the vulnerability to determine which software systems are
affected, the impact of a successful exploit, and how difficult it is for an
attacker to successfully exploit the vulnerability. Once this analysis is

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_6 , © Springer Science+Business Media, LLC 2009

6
Vulnerability Response Decision Assistance

{hburch, amanion}@cert.org

94 H. Burch et al.

complete, the organization must determine whether or not the vulnerability
warrants further action, whether that be producing an alert, conducting fur-
ther analysis, or otherwise responding to the vulnerability. This expensive
analysis is repeated at organizations around the world, resulting in a large
duplication of effort.

Once the analysis is complete, an organization must decide how they
will respond to the vulnerability. Responses vary; it may ignore the issue,
immediately starting the patching process, record the issue for the next pe-
riodic update, or publish the information about the vulnerabilities (inter-
nally or externally). The actions warranted by a particular vulnerability are
based on the number of systems affected, the value of those systems, how
likely exploit is perceived to be, the impact of a successful exploit, and the
risk and expense induced by testing the patch and deploying it.

In many organizations, the decision about which actions are warranted
is made in an ad hoc manner based on staff experience. This results in in-
correct and inconsistent decisions that tend to reflect the goals of the or-
ganization as perceived by the decision maker, not the true organizational
goals. Multiple decision makers only confound the problem.

We propose a new system called VRDA (Vulnerability Response De-
cision Assistance). VRDA address these problems by giving structure to
the decision making process. This structuring enables interchange of the
analysis, reducing the duplication of effort. In addition, the concerns of
the organization can be codified into a model, making the decisions more
consistent and better aligned with the organizational goals. VRDA is de-
signed to answer the questions about which vulnerabilities an organiza-
tion should be responding to, what the response should be, and with what
priority.

2 VRDA

VRDA is composed of multiple components: a break-down of facts (at-
tributes or properties of vulnerabilities), a method for recording relation-
ship between affected systems and fact values, a data exchange architec-
ture, a data exchange format, a format for modeling decision, and a method
for creating decision models. To maximize the value that organizations can
derive from it, VRDA is designed to be open and modular. Thus, an or-
ganization need only use the components that best meet their needs. The
various components of VRDA are explained throughout this paper. An
overview of VRDA usage is shown in Fig. 1.

Fig. 1. VRDA system overview.

During the installation phase, the organization using VRDA must de-
termine what information (facts) is necessary to make accurate response
decisions (perform tasks). VRDA is configured with the selected facts and
tasks. Facts may be obtained from an upstream provider; in otherwords,
the organization may subscribe to a feed of VRDA facts from a computer
security incident response team (CSIRT) that has vulnerability analysis ca-
pability. Analysts knowledgeable about the organization’s IT assets and
business operations must then train the system, recording the appropriate
response (desired behavior) for a set of sample vulnerability reports. This
process encodes the organization’s values into a decision model.

With a working decision model, VRDA can enter the operational phase.
As analysts score vulnerabilities, or append organization-specific data to
the upstream feed, VRDA suggests appropriate responses. The actual re-
sponse decision is also recorded, so that the model can be refined if neces-

6 Vulnerability Response Decision Assistance 95

96 H. Burch et al.

sary. For example, if VRDA regularly suggests a certain response, but ana-
lysts often disagree, then the model most likely does not accurately reflect
the organization’s values, or VRDA may not be configured with the neces-
sary facts.

VRDA is designed to tolerate incomplete information and “best
guesses” by analysts. VRDA often does not examine every fact to reach a
decision, and even a few off-by-one scoring errors are unlikely to signifi-
cantly affect the decision. A well-constructed model will quickly and accu-
rately enable easy decisions, such as ignoring vulnerability reports that do
not affect the organization or flagging high severity reports.

2.1 Facts
In VRDA terms, facts are assertions about vulnerabilities. Facts can also
be thought of as attributes, characteristics, or properties of vulnerabilities.
The act of an analyst researching and recording facts is called scoring. A
VRDA fact is not a “fact” in the strict definition, that is, VRDA facts are
not indisputable and may be subject to interpretation. Facts represent the
best information available to the analyst at the time of scoring, and fact
values may be determined in part by analyst judgment and experience.

VRDA proposes a set of “core” facts. An organization may, however,
create and score any additional facts that affect response decisions. A
VRDA instance that does not consider significant facts will likely produce
incorrect suggestions. In other words, the set of facts used by a VRDA in-
stance is not fixed.

Most facts have an ordered range of possible values. To balance the
value of accuracy with the cost of achieving accuracy, the granularity for
fact values is fairly low. For example, a common range contains four pos-
sible values: “low,” “low-medium,” “medium-high,” and “high.” VRDA
prefers four values to reduce the tendency of analysts to select the median
“safe” value. When lacking sufficient information to make a confident se-
lection, analysts should make an intuitive, educated guess.

VRDA facts are organized into three categories: vulnerability facts,
world facts, and constituency facts. The distinctions between categories do
not affect the decision modeling. The distinctions do help inform how the
facts apply and whom should provide them.

Vulnerability facts apply directly to vulnerabilities. These facts are
typically inherent technical properties of vulnerabilities. Vulnerability
facts apply regardless of other world or constituency facts. For example,
a denial-of-service impact exists whether or not exploit code is available
or the vulnerable software is deployed within a given constituency.
While anyone can score vulnerability facts, VRDA expects an experi-

enced analyst (e.g., a CSIRT or response team) to score vulnerability
facts and provide them to downstream consumers. The following is a
working list of vulnerability facts. Further explanation is provided in
VRDA documentation.
Security Product – Does the vulnerability affect a security product?
(Yes/No)
Network Infrastructure Product – Does the vulnerability affect a net-
work infrastructure product? (Yes/No)
Multiple Vendors – Does the vulnerability affect multiple vendors?
(Yes/No)
Impact 1 – What is the general level of impact of the vulnerability on a
system? (Low, Low-Medium, Medium-High, High)
Impact 2 – What are the levels of impact for confidentiality, integrity,
and availability of the vulnerability on a system? (Low, Low-Medium,
Medium-High, High)
Access Required – What access is required by an attacker to be able to
exploit the vulnerability? (Routed, Non-routed, Local, Physical)
Authentication – What level of authentication is required by an attacker
to be able to exploit the vulnerability? (None, Limited, Standard, Privi-
leged)
Actions Required – What actions by non-attackers are required for an at-
tacker to exploit the vulnerability? (None, Simple, Complex)
Technical Difficulty – What degree of technical difficulty does an at-
tacker face in order to exploit the vulnerability? (Low, Low-Medium,
Medium-High, High)

World facts apply to “meta” information about vulnerabilities. World
facts describe states of the world or environment in which vulnerabili-
ties exist. World facts apply to all constituencies. Anyone can score
world facts, although VRDA expects experienced analysts to score and
provide them to downstream consumers. The following is a working list
of world facts. Further explanation is provided in VRDA documenta-
tion.
Public Attention – What amount of public attention is the vulnerability
receiving? (None, Low, Low-Medium, Medium-High, High)
Quality of Public Information – What is the quality of public informa-
tion available about the vulnerability? (Unacceptable, Acceptable, High)
Exploit Activity – What level of exploit or attack activity exists? (None,
Exploit exists, Low activity, High activity).

6 Vulnerability Response Decision Assistance 97

98 H. Burch et al.

Report Source – What person or group reported the vulnerability?

Constituency facts measure information about vulnerabilities that is
specific to a given constituency. For example, a CSIRT may consider a
large scope, like entire site, or even the entire Internet, when deciding
how to respond. A system administrator may consider a smaller scope,
such as a site, lab, or business unit. Constituency facts most likely differ
between constituencies and must be provided by (or on behalf of) the
constituency making the response decision.
Population – What is the population of vulnerable systems within the
constituency? (None, Low, Low-Medium, Medium-High, High)
Population Importance – How important are the vulnerable systems
within the constituency? (Low, Low-Medium, Medium-High, High)

Default Fact Sets (DFS) are preset fact values for a set of facts. DFS
help analysts consistently score similar vulnerabilities. DFS was con-
ceived to help score impact. For example, an analyst may determine that
most vulnerabilities that allow an attacker to execute arbitrary code have
the value “high” for the confidentiality, integrity, and availability Im-
pact 2 facts. The analyst could define a DFS named “execute arbitrary
code” that sets the Impact 2 facts when the DFS is applied to a vulner-
ability report. In addition to applying the default fact sets, the name of
the DFS itself is a fact (i.e., that the analyst applied the DFS named
“execute arbitrary code” may factor into the response decision). In this
sense, a DFS is similar to a keyword or tag.

2.2 Light-Weight Affected Product Tags
One barrier to the exchange of facts about vulnerabilities is that some im-
portant facts, such as population size and population importance, are con-
stituency facts that cannot be determined by an outside entity. If the popu-
lation of a particular affected system is high in one constituency, it does
not guarantee the population is high in any subset of that constituency. For
example, Microsoft Internet Explorer has a high population on the internet
as a whole, but a given organization may have few systems using Micro-
soft Internet Explorer, either because they, by policy, use a different
browser or because they have few Microsoft Windows systems.

As a result, constituency facts are generically not helpful to communicate.
Light-weight affected product tags (LAPTs) communicate the set of affected
systems so that the constituency facts can be computed. A vulnerability is
tagged with the list of affected systems encoded as LAPTs. When VRDA
receives a vulnerability with LAPTs, it consults a database to determine the
constituency fact values for each LAPT listed and, for each constituency

fact, selects the value corresponding to the worst (most likely to result in ac-
tion) value appearing in the LAPTs. For example, if a vulnerability affects a
high population LAPT and a low population LAPT, the population is set to
high. The worst value is selected as the best guess and the least likely to hide
an important vulnerability. Few vulnerabilities affect a large set of low
population systems that together represent a high population.

This combination can lead to perhaps unexpected results, when a low
population and high value product is affected along with a high population
but low value product. The resulting constituency facts are a high popula-
tion size and value, which is arguably incorrect. The root of the problem,
however, is not LAPTs but rather simplification in the fact modeling. A
population with a few high-value systems and a lot of low-value systems is
difficult to model in terms of purely population size and population value.
We believe that modeling as we have is more useful, but if an organization
was so inclined, VRDA can be configured to population sizes for each
population value, in which case this problem would not arise.

LAPTs are designed to be general descriptions of the affected system.
Thus, it specifies the vendor and the system. Unless a population is large
and many vulnerabilities affect only particular versions, the version is not
included. For example, the Apache web server is a single LAPT. The mo-
tivations for this lack of specificity are as follows:

1. Difficulty of determining version information: It is often difficult to
determine the exact versions affected, particular for commercial sys-
tems or systems that don’t require patches to be applied in a particu-
lar order.

2. Cost of inventory maintenance: It is difficult enough to maintain in-
ventory of the size of each software product. Keeping track of ver-
sion numbers can make the problems an order of magnitude worse.

3. Limited usefulness: Most vulnerabilities discovered affect the cur-
rent version of the affected software product, and often all recent
versions. Thus, few vulnerabilities will be discarded by checking
version numbers.

Most LAPTs refer to particular software products. When a vulnerability
affects a technology or is an error common to many implementations of a
technology, a “technology LAPT” can be utilized. For example, an error
that is observed in SSL or in many SSL libraries might be attributed to the
technology of “SSL”, rather than listing all the affected products, although
the list of LAPTs might also include products known to be affected. For
common technologies, any list of products using the technology is doomed
to be incomplete. Technology LAPTs provide a mechanism to describe a
class of affected products to avoid this incompleteness.

6 Vulnerability Response Decision Assistance 99

100 H. Burch et al.

2.3 Data Exchange
One of the goals of VRDA is to reduce the redundant analysis of vulner-
abilities that takes place today. To this end, an organization must be able to
obtain structured vulnerability information, in the form of fact values and
LAPTs from another organization. Once an organization receives this in-
formation, they may refine the fact values or augment with additional fact
values as desired and republish the results for use by other organizations.
For example, a CSIRT with national responsibility might publish the in-
formation for a company’s CSIRT who then passes information on to
groups internal to that company. This second level might be in the form of
alerts or a subset of the vulnerabilities in VRDA format, perhaps aug-
mented with additional local information.

When an organization receives vulnerability information in the form of
fact values and LAPTs, any previously unknown LAPTs must have their
values recorded. Once they are recorded or if there are no new LAPTs, the
constituency facts can be added to the vulnerability information. At this
point, VRDA filters out based in its configuration. Ideally, VRDA would
filter out the majority of the vulnerabilities, enabling an organization to fo-
cus its resources better. For vulnerabilities that pass this filter, the organi-
zation adds fact values for any local facts. Then, decisions are suggested
based on the process described in “decision modeling.”

The data exchange format is based on VULDEF [3]. Most of the op-
tional fields of VULDEF, such as Solution, Related, and Exploit, are ig-
nored by VRDA. The major differences from VULDEF to the VRDA ex-
change format is AffectedItem is augmented with a LAPT and FactList
and facts tags are added to communicate the values of the facts.

An abbreviated example of the interchange format
<?xml version="1.0" encoding="UTF-8"?>
<Vulinfo>
 <VulinfoID>JVN#178394</VulinfoID>
 <VulinfoData>
 <Affected version="1.0" historyno="2">
 <AffectedItem lapt="Microsoft-Windows-XP"/>
 <AffectedItem lapt="Tech-HTTP-Server"/>
 </Affected>
 <FactList version="1.0" historyno="2">
 <ImpactConfidential-
ity>Low</ImpactConfidentiality>
 <ImpactAvailability>Low</ImpactAvailability>
 <ImpactIntegrity>Medium</ImpactIntegrity>
 <AccessRequired>Routed</AccessRequired>
...
</VulinfoData>
</Vulinfo>

2.4 Decision Modeling
VRDA makes decisions by modeling the process as a decision tree [4]. An
example of a decision tree is shown in Fig. 2. The evaluation of a decision
tree begins at the root. At each node along the evaluation path, the child
based on the attribute associated with that node. In the example decision
tree, if the population is high, then the left child is followed, at which point
the difficulty of exploit is considered. If the difficulty of exploit is low,
then the decision tree evaluates to “must”.

We selected decision trees because their behavior is clearly indicated
and they can be hand-modified. Although we expect decision trees to be
computed based on recorded decisions for past vulnerabilities, the com-
puted trees might need refinement. For example, an organization may, as
policy, not need independently verify reports from particular sources or
may always respond to particular types of reports. Modifying a decision
tree to represent such policies can be done clearly and simply. Alternative
decision models, such as neural nets or linear combinations, might be able
to better capture the intricacies of the decision making process, but it is
difficult to understand what policy they implement and they lack the abil-
ity to predictably hand-tune the model.

We expect the resulting decisions to be imperfect. However, we com-
pensate for that by giving gradients of decisions, rather than Boolean val-
ues. In particular, we use four levels: “must”, “should”, “might”, and
“won’t”. The goal is that the resulting decision level should not differ more
than one from the “correct” value. Since, in our experience, experts often
disagree more widely than that anyway, this accuracy may be ambitious. In
any case, the decisions serve as a guideline, rather than a rule, to handlers.
This allows for automated prioritization, including deciding to ignore

Fig. 2. An example of a decision tree.

6 Vulnerability Response Decision Assistance 101

102 H. Burch et al.

vulnerabilities whose evaluation falls says “won’t” for all decisions, which
reduces the load on handlers within an organization VRDA constructs de-
cision trees using a similar algorithm to the one described in two refer-
ences ([4] and [5]) which is based on a recursive selection of the attribute
that reduces entropy the most. However, instead of pruning the decision
tree after its construction, attributes that fail the chi-squared test of signifi-
cance are not considered when constructing the tree.

Once the decision tree is constructor, the organization can modify the
decision tree, change leaf values, changing the attribute used at a node, and
have the algorithm compute a leaf value or an entire sub-tree. These opera-
tions allow the organization to codify an important and well-understood
policy decision, such as always patching certain types of vulnerabilities
manually and then allowing the tree for the other vulnerabilities to be
computed automatically.

3 Current Usage

CERT/CC uses a limited implementation of VRDA to decide which vul-
nerability reports require the attention of a human analyst. A brief study
showed that two facts heavily influenced this decision: the population of
affected systems and the broad impact of the vulnerability. By recording
these two facts and applying a simple decision model, the number of re-
ports assigned to analysts was reduced by half.

JPCERT/CC has developed a web-based VRDA implementation called
KENGINE. JPCERT/CC is using KENGINE internally and is testing with
several constituents. In addition to implementing the VRDA specification,
KENGINE provides workflow management and reporting features to
monitor performance and decision behavior. JPCERT/CC is planning to
publish vulnerability information in VRDA format and to release
KENGINE to the public.

4 Future Direction

The teams developing VRDA expect to do the following:
1. Score vulnerability reports and provide facts to downstream con-

sumers, possibly the general public. Consumers may use the facts as
they wish, with or without the decision support component.

2. Provide documentation and guidance for consumers to use the deci-
sion support component.

3. Deploy beta VRDA systems to knowledgeable consumers to gain
real-world experience and determine if VRDA is useful and viable.

4. Refine VRDA according to results of the beta deployments and
community feedback.

5. Examine interoperability with other vulnerability information sys-
tems, particularly the Common Vulnerability Scoring System
(CVSS) [6].

5 Related Work

A number of efforts have been made (or are currently underway) to repre-
sent vulnerability information and provide consumers some means to de-
termine severity, leading to an appropriate response. These efforts include
metrics, information exchange formats and protocols, and vulnerability in-
formation databases. VRDA draws ideas and inspiration from many of
these efforts while proposing a decision support approach to vulnerability
response.

5.1 Common Vulnerability Scoring System (CVSS)
Perhaps the most similar and contemporary effort, the Common Vulner-
ability Scoring System (CVSS) “… is designed to rank information system
vulnerabilities and provide the end user with a composite score represent-
ing the overall severity and risk the vulnerability presents.” [6] VRDA is
similar to CVSS in some ways, particularly in the representation of facts
(VRDA) and metrics (CVSS) used to describe vulnerabilities. It may well
be possible to use the decision support component of VRDA with CVSS
metrics. While VRDA specifies a set of core facts, any fact that contributes
significantly to a response decision for an organization can and should be
considered. In contrast, CVSS specifies a fixed list of metrics.

A more notable difference is that VRDA uses decision support concepts
to generate individual response decisions, while CVSS assigns fixed val-
ues to metrics and applies a single equation to calculate severity. VRDA
effectively allows organizations to set their own individual values and
make their own individual response decision. This design choice comes at
a cost – VRDA requires more effort on the part of the organization than
CVSS. And in fairness, CVSS does provide limited environmental metrics
that modify the overall score based on characteristics that are unique to in-
dividual organizations.

Although CVSS and VRDA measure vulnerability characteristics simi-
larly, the two systems are designed with somewhat different goals. CVSS

6 Vulnerability Response Decision Assistance 103

104 H. Burch et al.

aims to provide an overall severity score, while VRDA focuses on the de-
cision-making aspect of how an individual organization responds to vul-
nerabilities.

5.2 Exchange Formats
There exist a variety of vulnerability information exchange formats, in-
cluding the Common Announcement Interchange Format (CAIF) [7], the
Common Model of System Information (CMSI) [8], the EISPP Common
Advisory Format Description [9] and the Deutsches Advisory Format
(DAF) [10]. These formats generally describe ways to exchange and pre-
sent vulnerability information for use in advisory documents and include
functionality that is unnecessary for VRDA. In some cases, the formats
cannot be reasonably extended to meet VRDA requirements.

5.3 Other Work
Other related work includes (in no particular order): the Purdue University
CERIAS Cassandra tool [11], the CERT Coordination Center/US-CERT
Metric [12], MITRE Common Vulnerabilities and Exposures (CVE) [13]
and Open Vulnerability and Assessment Language (OVAL) [14], the
VULnerability Data publication and Exchange Format (VULDEF) [3]
(used as the basis for the VRDA exchange format), NIST ICAT (now dep-
recated) [15], the National Vulnerability Database (NVD, successor to
ICAT) [2], the, the Vulnerability and eXposure Markup Language
(VuXML) [16], the Open Source Vulnerability Database (OSVDB) [17],
and SIGVI [18].

References
[1] CERT/CC Statistics 1988 – 2006, http://www.cert.org/stats/
[2] National Vulnerability Database (NVD) Statistics, http://nvd.nist.gov/statistics.cfm
[3] Terada, M.: VULDEF: The VULnerability Data publication and Exchange

Format data model, http://jvnrss.ise.chuo-u.ac.jp/jtg/vuldef/index.en.html
[4] Russell, S., Norvig P.: Artificial Intelligence: A Modern Approach. Prentice-

Hall, Englewood Cliff, NJ (1995)
[5] Moore, A.: Decision Trees, http://www.autonlab.org/tutorials/dtree.html
[6] Forum of Incident Response Teams: Common Vulnerability Scoring System

(CVSS), http://www.first.org/cvss/, http://www.first.org/cvss/cvss-guide.html
[7] RUS-CERT: Common Announcement Interchange Format (CAIF),

http://www.caif.info/
[8] Grobauer, B.: CVE, CME,..., CMSI? – Standardizing System Information,

http://www.first.org/conference/2005/papers/dr.-bernd-grobauer-paper-1.pdf

[9] European Information Security Promotion Programme (EISPP): Common
Advisory Format Description 2.0, http://www.eispp.org/commonformat_2_0.pdf

[10] Deutscher CERT-Verbund: Deutsches Advisory Format (DAF),
http://www.cert-verbund.de/daf/index.html, 2004.

[11] CERIAS Cassandra tool, https://cassandra.cerias.purdue.edu/main/index.html
[12] US-CERT Vulnerability Notes Field Descriptions – Metric, http://www.kb.cert.

org/vuls/html/fieldhelp#metric
[13] Common Vulnerabilities and Exposures (CVE), http://cve.mitre.org/
[14] Vulnerability and Assessment Language (OVAL), http://oval.mitre.org/
[15] ICAT Metabase, http://icat.nist.gov/icat_documentation.htm, http://web.ar-

chive.org/web/20050320143644/http://icat.nist.gov/icat_documentation.htm
[16] Vulnerability and eXposure Markup Language (VuXML), http://www.vuxml.org/
[17] OSVDB: The Open Source Vulnerability Database, http://osvdb.org/
[18] SIGVI, http://sigvi.sourceforge.net/what_is.php

6 Vulnerability Response Decision Assistance 105

Nikos Nikiforakis, Andreas Makridakis, Elias Athanasopoulos,
and Evangelos P. Markatos

Institute of Computer Science, FORTH, Heraklion, Greece

Abstract. Phishing attacks are one of the most crucial modern security threats in
the current World Wide Web. An adversary may clone a legitimate Web site and
lure a user to submit her credentials to the malicious construct. The adversary may
then use the stolen credentials to the authentic site. In this paper we present a
novel idea to fight phishing using Past Activity Tests (PACTs). In a nutshell,
PACTs take advantage of the fact that the user has accessed at least once her ac-
count in the past, contrary to the phisher who accesses the user’s account for the
first time. Thus, a user can answer a question relative to her past activity, but the
attacker can not.

1 Introduction

Phishing attacks exploit social engineering techniques in order to lure us-
ers and convince them to give their account information, such as their
login and their password, in a fraud web site. A phishing attack is held by
building a web site identical of the authentic one. This process does not re-
quire cloning the legitimate web site in whole, but only the pages involved
in the login process of a user, in order to give the impression to the victim
that she is visiting the authentic web site and not the cloned one.

Phishing attacks are considered as a major security threat in modern
Internet. In Phishing Attack Trends Report, published by Anti-Phishing

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_7, © Springer Science+Business Media, LLC 2009

7

Phishing Using Past Activity Tests
Alice, What Did You Do Last Time? Fighting

{nikifor, amakrid, elathan, markatos}@ics.forth.gr

108 N. Nikiforakis et al.

Working Group (APWG) [1] in April 2007, it was reported that the num-
ber of unique phishing web sites detected by APWG rose to 55,643 in
April 2007. A massive jump of nearly 35,000 from March was detected,
resulting from aggressive sub-domain phishing tactics by which phishers
started using the tactic of putting a large number of phishing URLs on
the same domain. A large number of banks were targeted in April with
seven of the most-targeted 20 brands in that month belonging to Euro-
pean banks. In addition, one of the top 20 was a Canadian financial insti-
tution.

Phishing is usually connected with the cloning of sites that are active in
e-commerce, like bank services or on-line stores. However, a phishing at-
tack may target sites that are not involved directly with money transac-
tions. These sites may still embed private social information which is sen-
sitive and must not be leaked to third parties. Some examples are, blog
services, e-mail services or content hosting services, like Flickr.com.1
These sites are expected to be phishing targets with a lower probability
than e-commerce sites, which may not be willing to invest a large amount
of money for an anti-phishing approach that requires an extensive effort
and modifications to the site’s infrastructure.

In this paper, we present a novel anti-phishing approach, which:

- is easily deployable in the server side of a web site,
- does not need client-side modifications to a web browser,
- is low cost,
- is user friendly.

Our anti-phishing solution adds an extra authenticating step between the

username/password form and the complete authentication of the user. It is
based on the fact that the phisher is accessing the victim’s account for the
first time in contrast with the legitimate user, who has accessed her ac-
count in the past. The rest of this paper is organized as follows. In Section 2
we present our anti-phishing approach by introducing for the first time Past
Activity Tests (PACTs). In Section 3 we evaluate theoretically the PACT
approach and we highlight PACTs’ limitations. In Section 4 we present
two real deployments. We present related work in Section 5 and we con-
clude in Section 6.

1 A popular site, which hosts a user’s pictures in private or public areas.

2 PACT Architecture

This section highlights the basic components of an anti-phishing architec-
ture, which is based on Past Activity Tests (PACTs). We assume Alice is a
registered user to an on-line service and Trudy an adversary, who tries to
steal Alice’s credentials using phishing.

2.1 PACT Definition
We define a PACT as follows:

PACT definition: A PACT is a dynamic test with N possible answers but
only one solution. The solution is correlated with Alice’s past activity of
her account. The correct solution can only be given by the user with prob-
ability 1, or by Trudy with probability 1/N.

Following directly from PACT definition, the idea we are building over
our anti-phishing solution, relies on the following observation:

Alice has visited her account at least once in the past. On the contrast,
Trudy has access in Alice’s active account for the first time.

Using PACT we ask Alice to give an answer to an obvious question, which
is based on her past activity to her account. This answer can only be
guessed by Trudy, since she is not the real owner of the account and thus,
has no knowledge of its past activity.

2.2 Example PACTs
In order to deploy PACT in a real on-line service, the service must create
dynamic puzzles based on its subscribers profiles. These puzzles must be
solved upon a user is authenticating herself to the on-line service. In order
to build a PACT a service must have the following information:

- A summary of Alice’s past actions.
- A pool of abstract actions to the service performed by a speculative

subscriber.

For example in an e-mail service, Alice may be asked to choose from a
pool of e-mail addresses, an e-mail address with which she had contact in
the near past. In Table 1 we list a series of PACT examples.

7 Fighting Phishing Using Past Activity Tests 109

110 N. Nikiforakis et al.

Table 1. Example of PACTs for different possible on-line services.

Service PACT
E-mail Select an e-mail address you had contact with in the near past.
E-commerce Select an item you have purchased in the past.
Content host Select a picture you have uploaded in the near past 2.
Instant messaging Select a user, who is in your contact list3 .

3 PACT Evaluation

In this section we present a theoretical evaluation of PACTs and highlight
their limitations.

3.1 PACT Resistance
Following directly from PACT definition, the probability of solving a
PACT is ps = 1/N, where N denotes the number of possible answers. An
interesting property of PACTs is that they can be combined so as the prob-
ability ps to degrade exponentially. For example, by combining m PACTs
we have ps = 1/ N m. Assuming that the on-line server suspends an account
after a false attempt, a brute force approach for by-passing a PACT is con-
sidered unrealistic. Between the exploiting of an on-line account, by mali-
cious users, and the temporary suspension of it, the latter is preferable.

3.2 PACT Suspension Policy
PACTs can adapt their suspension policy, according to the type of service
provided and the available amount of data from the user.

In an e-mail service a user has probably sent more than one e-mails in
the near past. So, if she fails to answer the first PACT puzzle, she is pro-
vided a new puzzle with a different correct answer. Thus, the account will
be suspended after two unsuccessful attempts.

On the contrast, in a bidding service a user will more likely find the cor-
rect answer to the first PACT puzzle, since the question concerns an item
bought by her in the past. Thus, the account can be suspended after the
first unsuccessful attempt.

2 The majority of popular content host providers allow you to maintain a private
area with your content. We assume that PACTs solution is taken from Alice’s
private area.
3 This is a case where PACT is used to an on-line service that is not necessarily-
hosted in the World Wide Web.

3.3 PACT Limitations
PACT can resist to a phishing attack since the probability for an adversary
for solving a PACT is quite low. However, PACT can not resist to a Man-
in-the-Middle attack. If Trudy can set up a Phishing Proxy between Alice
and the on-line service, then Trudy, upon reaching the PACT, can redirect
the test to Alice and get the solution.

Although PACT can not resist to a MiM attack, it actually prohibits the
attacker of creating a collection of stolen accounts that she can later use
and/or distribute. Even if an attacker manages to authenticate a session of a
user, she can only use it at that time, until the session expires (e.g. bank
sessions expire within hours). When the session expires, a new PACT puz-
zle will be introduced and the attacker will not be able to solve it. So mass-
phishing is doable but cumbersome.

Fighting the Phishing Proxy threat model is beyond the scope of the
PACT solution. However, there are other countermeasures for malicious
Proxies. The most widely adopted is the use of Cryptographic Certificates.
It is assumed, that the malicious Proxy can not have access to the authentic
server’s certificate. Also, it is not easy for an attacker to register a security
certificate that obviously tries to impersonate a valid well-known company
(e.g. citybank vs citybanc). Then, it is a matter of the adversary to con-
vince the user to accept the forged certificate.

We also acknowledge that an implementation of PACTs in an e-mail
service may pose a minor privacy issue, because one out of N presented
e-mail addresses will be a valid contact. But without PACTs the attacker
already has full access to the victim’s mailbox. So, though we may not
completely solve the privacy problem, we are increasing the overall secu-
rity of the service provided.

4 Case Studies

In this section we present two real deployments of on-line services, which
use PACT as an anti-phishing countermeasure.

4.1 A PACT Enabled E-Mail Service
This case study refers to a secure way of management an e-mail account.
Our goal is to prevent Trudy from accessing Alice’s e-mail account. When
Alice authenticates herself to the e-mail service, then the service requires
from her to answer the following PACT: “Please choose an e-mail address,
in which you have sent an e-mail in the near past”. A list of ten e-mail ad-
dresses is presented and Alice must choose the valid one.

7 Fighting Phishing Using Past Activity Tests 111

112 N. Nikiforakis et al.

In the left frame of Fig. 1 we present a screenshot of the e-mail service,
which has been developed using PHP [2]. In order to store the information
needed for the dynamic creation of PACTs, we used a PostgreSQL Data-
Base [3] (version 8.1.8).

Our implementation scheme consists of three tables. The first one,
named “users”, has four fields: userid, username, password and sus-
pended. Every tuple of this table correspond to a specific e-mail user. The
second table, named “emails”, has three fields: id, address and valid. The
tuples of this table represent valid and invalid e-mail addresses. The last
table, named “emailsFromUsers”, has two fields: user_id and e-mail. It
contains both valid and invalid (fake) e-mails which will be used by
PACT.

In order to test the service we collected 900 e-mail addresses from Ya-
hoo public lists [4], using a script written in Python. 85.3% of these ad-
dresses correspond to yahoo domain. For the purposes of our experiment,
we assumed that 800 of the above e-mails are invalid and the rest 100 are
valid. All these e-mail addresses were inserted, as tuples, in table “emails”.
The “valid” field is false for the 800 tuples, which represent invalid
e-mails and true for the rest 100 valid e-mail addresses.

Alternatively, construction of invalid e-mail addresses can be used in-
stead of harvesting them off the Internet. According to the results of a
quick experiment, 8 out of 10 real e-mail addresses do not produce results
in Google [5]. So, a malicious user can not easily find out the correct an-
swer of a PACT puzzle in time.

In the initial page of the e-mail service, Alice must insert into the login
form the correct username and password. In case of valid input, a list of
ten e-mail addresses is presented. Nine addresses are randomly selected
tuples from table e-mails, where field “valid” is false, and the other ad-
dress is randomly selected from the same table, where field “valid” is true.
If Alice selects the valid e-mail address, a new list of ten addresses will be
presented. The new list is created with the same mechanism, as mentioned
before. Each time, the ids of these 10 addresses, along with the proper user
id, are inserted in table “emailsFromUsers”. All the previous tuples of this
table, that correspond to the user trying to login, are deleted. Since Alice
must choose twice a valid e-mail from a list of ten e-mails, the probability
Trudy to efficiently log in Alice’s e-mail account is (1/10) * (1/10),
namely 1/100.

In the case where Alice inserts into the login form her valid username
and password, her account is temporally suspended. This is achieved
via the assignment of value “true” in the field “suspended” of table “us-
ers”, in the tuple that corresponds to Alice. Thus, Trudy can not observe
some of the puzzles in order to infer the list of valid e-mail addresses.

Alice’s account becomes unsuspended, exclusively if she answers correct
both questions. However there are possible situations where Alice:

1. fails to answer one of the two questions, selecting an invalid e-mail
address

2. answers any of the two questions, but in a time interval longer than
60 seconds

3. never answers the puzzle
4. visits another webpage and then forwards again on the webpage of

the questions.

In all the above cases, Alice’s account remains suspended and she must
contact the site’s administrator, in order to unsuspend her account.

For administration purposes, the e-mail service keeps log files, where
information about visiting users is appended. Particularly, information is
appended in the following cases:

- the login form is made out with invalid username and/or invalid
password

- the login form is made out with valid username and valid password,
so that user’s account becomes temporally suspended

- a user tries to log in a suspended account
- a user answers correct each of the two questions, so that her account

becomes unsuspended
- a user fails to answer one of the two questions
- a user answers one of the two questions in a time interval longer than

60 s.

This idea could be implemented in real webmail services, such as Hotmail
[6] and Google mail [7]. In a real implementation, the list of valid e-mail
addresses can be extracted from sent-mail list. The set of invalid e-mail
addresses can be constructed using an algorithm that produces plausible
e-mail addresses.

4.2 A PACT Enabled E-Commerce Service
For our second case study, we chose to implement our new security meas-
ure on a bidding site.

In this case study we wanted to prevent the misuse of a bidding account,
even if a prior phishing attack was successful, and the malicious user had
obtained a valid username/password pair for entrance in the authentic site.

7 Fighting Phishing Using Past Activity Tests 113

114 N. Nikiforakis et al.

Fig. 1. Screenshots from the two prototype PACT enabled services deployed.

The PACT used in this case study is: “Select which item(s) you have
bought in the past”. The list of items, from which Alice has to pick the cor-
rect one, is dynamic, meaning that both the items and their position on the
list, change every time Alice’s logs in. The knowledge of an item bought at
the past, is one that, theoretically, only Alice possesses. For the users that
have not yet bought an item, we supplied them with a random “dummy
purchase” at the time of their registration, so that they too, can be protected
by our extra security measure. If the user trying to login, chooses the
wrong item, or makes more than 60 s to decide, the account is suspended.
Our core for the experiment is pretty much the same PHP pages and SQL
tables used in our first case study of the e-mail service. In the right frame
of Fig. 1, we present a screenshot of our bidding site.

4.3 Results
In this section, we present the experimental evaluation of our prototype
implementation of Past Activity Tests (PACTs). We created two fake ac-
counts, in Flickr [8] and in Google mail [7]. Also, two accounts were cre-
ated, for our two case studies (the e-mail service and the bidding service).
All of the above accounts correspond to a specific user, thus the username
and password are the same. The details of these accounts were stored in a
text file, which was shared in the Gnutella P2P network [9]. The purpose
of this action was to invite attention of prospective attackers, in order to
test our services’ implementation. Respecting to the e-mail service, two
specific users tried to log in, but in the first question, an invalid e-mail ad-
dress was selected. In the bidding service, the same users tried to log in
plus another one. The first user successfully logged in, with his first effort.

However, in his second try, a wrong item-product was selected. Then, the
attacker tried again to log in, but his account was suspended, so the bid-
ding service could not efficiently process his requirement. Concerning the
second attacker, he picked an invalid product, thus his account remained
suspended. Lastly, the third attacker tried to log in four times. His first try
was successful but the rest were not. The three attackers used the pair of
username and password, stored in the shared text file, as mentioned above.

5 Related Work

There are many approaches previously proposed for fighting phishing at-
tacks.

The first approach is a browser plug-in, PwdHash [10], that transpar-
ently transforms user passwords to domain specific ones. This is done by
substituting user’s password with a hash of the password and the domain
name of the web page that the password is going to be submitted. A main
problem of this approach is the implementation in web sites that have mul-
tiple domain names.

A second approach is to use dynamically generated virtual skins [11]. Al-
ice may customize her index page in Bob’s site and store her preferences to
Bob’s database. Thus, an attacker can not clone Alice’s index page in Bob’s
site, since he has not access to Alice’s preferences, which are stored in Bob’s
database. However, this approach requires the developing of new habits
from users, such as customization of the Internet services they use everyday.

AntiPhish [12] tries to protect users from giving away their sensitive
data to untrusted web sites. Users have to specify what they consider sensi-
tive data and which web sites are trusted. However, situations where an at-
tacker tricks Alice to submit her credentials via another media, for exam-
ple via e-mail, and not in a cloned web site can not be defeated by
AntiPhish.

Another interesting approach, illustrated in [13], is based on visual simi-
larity. A legitimate owner of a web page can use this technique to search
the Web for suspicious web pages, which are visually similar to the true
web page. The visual similarity between two web pages is based on three
metrics: block level similarity, layout similarity and overall similarity. A
web page is considered as a phishing suspect if any of these similarities to
the true web page is higher than a threshold.

An approach, similar to PACTs, is the use of graphical passwords in-
stead of text-based passwords. In an authentication procedure a user is pre-
sented with a set of images and he passes the authentication by recognizing

7 Fighting Phishing Using Past Activity Tests 115

116 N. Nikiforakis et al.

and identifying the images he had selected during the registration stage.
“Passface” is a technique, based on graphical passwords, developed by
Real User Corporation [14]. Through this technique a user will be asked to
choose four images of human faces from a database as his future password.
In the authentication stage, the user sees a grid of nine faces, consisting of
one face previously chosen and eight decoy faces. The user recognizes and
clicks on the known face. This procedure is repeated for several rounds,
thus the user is fully authenticated if he correctly identifies the four faces.
Passfaces replaces or works in conjunction with text passwords. However,
passface-based login process takes longer than text passwords. Also, an-
other drawback is that passwords created using this technique have obvi-
ous patterns among them. This makes the passface-based password some-
what predictable.

Apart from the above, there is a series of academic papers [15,16],
which try to detect phishing Web sites based on visual similarities or con-
tent based similarities [17]. Past Activity Tests (PACTs) is a very interest-
ing but completely different approach to fight phishing.

6 Conclusions

In this paper we presented Past Activity Tests (PACTs) as a countermea-
sure against phishing attacks. PACTs rely on the idea that a user has ac-
cessed her account in the past, but an adversary is accessing it for the first
time. Thus, a user can answer easily a question in regards to her past activ-
ity, but the adversary can not.

We presented two real deployments of PACT enabled on-line services.
We created accounts for our on-line services and injected their credentials
in P2P file sharing networks so as to lure possible adversaries to access our
on-line services. The results showed that PACT could resist in an attempt
from a third party trying to access the service with stolen credentials.

PACTs are not only an anti-phishing solution, but also a more secure
way of general web-based authentication.

Part of our future work is to explore user-friendly PACTs for various
on-line services which are not covered in this paper.

References
[1] APWG. Anti-phishing working group. http://www.antiphishing.org
[2] PHP. Hypertext preprocessor. http://www.php.net
[3] PostgreSQL. The world’s most advanced open source database.

http://www.postgresql.org

[4] Yahoo people search. http://people.yahoo.com
[5] Google. Search engine. http://www.google.com
[6] Hotmail. Free e-mail service with security by Microsoft. http://www.hotmail.com
[7] Gmail. A new kind of webmail. http://mail.google.com
[8] Flickr. Photo sharing service. http://www.flickr.com
[9] Gnutella. http://www.gnutella.com
[10] B. Ross, C. Jackson, N. Miyake, D. Boneh, J. C. Mitchell (2005). Stronger

Password Authentication Using Browser Extensions. In SSYM’05: Proceed-
ings of the 14th Conference on USENIX Security Symposium, pp. 2–2,
Berkeley, CA, USA. Usenix Association

[11] R. Dhamija and J. D. Tygar (2005). The Battle Against Phishing: Dynamic
Security Skins. In SOUPS ‘05: Proceedings of the 2005 Symposium on Us-
able Privacy and Security, pp. 77–88, New York, USA, 2005. ACM Press

[12] E. Kirda and C. Kruegel (2005). Protecting Users Against Phishing Attacks
with AntiPhish. In COMPSAC ‘05: Proceedings of the 29th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC’05)
Vol. 1, pp. 517–524, Washington, DC, USA. IEEE Computer Society.

[13] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min and X. Deng (2005). Detection of
Phishing Webpages Based on Visual Similarity. In WWW ‘05: Special Inter-
est Tracks and Posters of the 14th International Conference on World Wide
Web, pp. 1060–1061, New York, USA. ACM Press

[14] Passfaces. Patented graphical passwords for enterprise. http://www.passfaces.com
[15] A.Y. Fu (2006). Detecting Phishing Web Pages with Visual Similarity As-

sessment Based on Earth Mover’s Distance (EMD). IEEE Trans. Dependable
Secur. Comput., 3(4):301–311. Senior Member-Liu Wenyin and Senior
Member-Xiaotie Deng.

[16] W. Liu, X. Deng, G. Huang and A.Y. Fu (2006). An Antiphishing Strategy
Based on Visual Similarity Assessment. IEEE Educational Activities De-
partment, 10(2):58–65

[17] Y. Zhang, J. Hong and L. Cranor (2007). CANTINA: A Content-Based Ap-
proach to Detecting Phishing Web Sites. In Proceedings of the 16th Interna-
tional World Wide Web Conference (WWW2007)

7 Fighting Phishing Using Past Activity Tests 117

Thibaut Henin and Corinne Huguennet

arsouyes.org, France
{Tbowan, aryliin}@arsouyes.org

Abstract. Clone attacks are a way to perform DDOS attack on Internet Relay
Chat networks. There is no tool which prevents an IRC network against such at-
tacks despite some handcrafted methods which are not so efficient. Here, we pre-
sent qui-gon, the first tool which defeat clones attacks. It uses a temporal oracle
which detect attacks by measuring the connection rate; and another oracle which
distinguish clones using probabilistic automata. These oracles learn the character-
istic of the network in order to fit better to the network.

1 Introduction

Deny Of Services Attack (DOS) is a kind of easy yet powerful attack. The
aim of such attack is to make a system, a service or a website not working
as it should. This can be done by sending some handcrafted packets or too
many request to the server. This method is quite popular and simple [1–3].

When they are distributed, it’s more difficult to detect and prevent them.
Such attack is performed by compromising a lot of hosts and then order
them to attack any service. Because of the many-to-one aspect of this kind
of attack, common techniques can not be applied [1, 2].

These Distributed Deny Of Services (DDOS) also occurs on Internet
Relay Chat and are called clone attacks [3]. The attack is performed by
connecting lots of clones to a targeted server. The effect range from a
server crashing down to networks split.

Here, we present Qui-Gon, the first tool against clone attacks on Internet
Relay Chat servers. Despite two handcrafted methods, there is no released

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_8, © Springer Science+Business Media, LLC 2009

8

Internet Relay Chat
QuiGon: The First Tool Against Clone Attack on

120 T. Henin and C. Huguennet

tool against such attack. Our method can detect the attack and recognize
clones.

In the first part, we will present Internet Relay Chat and the clone at-
tack. Next, we will explain some usual protections. We will then introduce
Qui-gon and the methods used to detect the attack and clones. Finally, we
give some test results and a conclusion.

2 Clone Attack on Internet Relay Chat

2.1 Internet Relay Chat
Internet Relay Chat (IRC) is a form of real time communication [4]. It’s

mainly used for group and broadcast communications. Once connected to a
server, users join so-called channel where they can communicate with the
users present in this channel. IRC is also used for private communications,
file sharing and games.

Users are identified by their nicknames. Once connected to a server, a
user chooses his nickname and sends it to the server. After that, he can join
channel, speaks with others, and so on. Since many users can use the same
public IP address, it can not be used to identify any user.

An IRC network is made by connecting servers to form a tree. Each
server is responsible of some users and channels and routes any informa-
tion to each concerned server. This network architecture was chosen to
avoid duplication but, obviously, a server crash cause a network split. This
lead to two disconnected IRC networks with duplicated channels.

In addition of simple users, there are so called IRC-operators. These us-
ers have privileges on the entire IRC networks and the servers. Their job is
to administrate the network and keep it working. For example, they can
disconnect users, ban users and IP addresses.

The first user who joins a channel gains the ownership of this channel.
This first user is called the founder of the channel. The founder gains the
most privileges on the channel and becomes a channel operator and can
give same privileges to others users on the channel.

If a channel becomes empty, the first user to re-join the channel gains
the ownership.

2.2 Bots and Botnets
Bots (abbreviation of “robots”) are programs connected to any network
[5, 6]. They perform simple and repetitive tasks such as searching the web
and indexing web-sites. They can also replace players in online games.

On IRC, these bots are very commons. There are service bots, whose
purpose is to maintain some order [7] such as NickServ which register and
protect nicknames. Some bots provides more general features such as
weather-reports, quiz-games or conversation finding [8]. Finally, there are
some bots trying to pass the Turing test by speaking with users like ALICE
[9].

Botnets are mostly networks formed by IRC bots which are waiting for
commands [10]. These bots are installed in compromised hosts and con-
nect themselves to an IRC network and join a specified channel where
their Master can order them some actions. These actions vary from com-
promise others hosts, update their code and make a DDOS attack against
another host [5, 6].

2.3 Clone Attacks
A clone attack is when an attacker mastering a botnet orders his bots to
DDOS a server of the IRC network. The bots make multiple connections to
the server (these connections are called “clones”) [3, 5, 6]. Because for
each connection, the server keeps lots of informations, there is no need for
too many clones to crash down a server.

Clone attacks are used to shutdown an IRC network, or to take-over an
IRC channel. This kind of attack is an easy way to crash down a server.
So, it’s an easy way to disturb users and IRC-operators. Once the network
split occurs, the attacker may join some channels and gain ownership.

These clone attacks can’t be defeat only by IRC-operators. A clone at-
tack is too brief and IRC-operators don’t have time to respond it. These at-
tacks are also too intense. So, IRC-operators notice the attack only after its
effect.

There are also clone attacks against channel instead of servers. In this
case, the bots are already connected to an IRC server. When the attacker
asks them, they simply join a specified channel and some time floods it (by
sending lots of messages). This channel is then unusable.

This kind of attack can easily be defeat and is then out of the scope of
this article. To avoid bots to send message on a channel, one can simply
set the mode “m” (moderated) to the channel. This mode allow sending
message only to users with the mode “v” (voice). This way, privileged us-
ers can set this mode to legitimate users they know manually, or ask chan-
serv to do this automatically.

Thus, in the next sections, we will only focus on clone attacks against
servers.

8 QuiGon: The First Tool Against Clone Attack on Internet Relay Chat 121

122 T. Henin and C. Huguennet

2.4 How to Prevent Such Attacks?
Obviously, IRC-operators need an automated tool to detect, prevent and
defeat clones attacks. Such tool should act just after the connection of any
client and before his first join of any channel. This way, when a Clone At-
tack occurs, the tool will refuse any clone connection as early as possible
and keep the network working. This tool need to implement in some way
the three following features :

Detect the attack. Clone attacks occur a few times but are too brief
and can not be detected by IRC-operators. So, tools who want to defeat
such attacks need to detect them before their effects occur.

Distinguish clones by their nicknames. Once the attack is de-
tected, we need to refuse clones but accept legitimate users. One could
simply refuse all connections during the attack; however, this would pre-
vent anybody from joining the network creating another kind of DOS [11].
As mentioned before, the only way to recognize users is their nickname.
So, our tool needs to distinguish legitimate users by reading their nick-
name in order to accept them and refuse the clones.

Learn. Each IRC-network has its own characteristics. A connection
which could be considered as an attack in a small network should be con-
sidered as normal traffic in a bigger one that may have a lot of connection
per hour. Because of different cultural habits between networks, nick-
names differ between networks [12]. A nickname which sounds like clones
in one network could be one of a legitimate user in an other.

3 Usual Protections

We have found no publication or tools concerning the defence against
clone attacks despite one feature of IRC networks and two handcrafted
methods. These methods have been seen in some IRC networks but have
not been released.

3.1 Passwords to Enter the Network
Access to IRC networks can be protected by a password. This way, when a
user wants to connect to a server, he must give the good password. Such
networks are called private networks. While this technique is effective to
protect the network against unguests users, it obviously does not prevent it
against clones mastered by a user of this network knowing the pass.

3.2 Blacklist
This method distinguish clones from their IP addresses. The main idea is to
keep a black-list of IP Address. These IP addresses are manually added to
the list after an attack and send to other IRC-operator so they could use the
list for other IRC networks.

Obviously, this is not an effective method to defeat a Clone Attack. As
already mentioned, many users can use a single IP Address. If this address
has been added to the black-list, legitimate user will be refused by the sys-
tem. Furthermore, new bots, whose address is not already in the list, will
be accepted.

3.3 Use Simple Regexp

Again, this method is not effective. A simple regexp is too restrictive
and lots of legitimate nicknames are considered as clones’ nicknames. In
addition, when the regexp is known, it is very easy to create nicknames
that match the regexp.

4 Qui-Gon

Qui-Gon is our tool against clone attacks. It detects attacks, distinguishes
clones and learns to fit better his network.

Its architecture is based on two oracles. The first one (the temporal ora-
cle) detects attacks and when asked, answers whatever or not an attack oc-
cur. The second oracle (the distinguishing oracle) distinguishes clones and
users. This way, we can improve each oracle individually and if another
method to detect attacks or distinguish clones is found, it can be incorpo-
rate simply by replacing the oracle.

Both oracle are working together to improve the system. In fact, when
the temporal oracle detect a false attack (to much users connecting them-
selves), the distinguishing oracle let them connect because it recognize
them. Furthermore, the only negatives false the distinguishing oracle can
make are while a detected attack and won’t be embarrassing.

1 A regexp: regular expression [19].

Since clone nicknames are automatically generated, the second method use
simple regexp1 to distinguish clones. The regexp is made by IRC-operators
who find some characteristics in the nicknames of the clones after an at-
tack. For example, any nickname ending with two digits can be considered
as a clone nickname.

8 QuiGon: The First Tool Against Clone Attack on Internet Relay Chat 123

124 T. Henin and C. Huguennet

4.1 The Temporal Oracle
To detect an attack, the oracle measures the connection rate. As already
stated, an attack consists of a lot of connections during a short time. Thus,
during an attack, the connection rate increases significantly and then can
be detected.

The oracle considers an attack occurs when the average rate exceed a
learned value. We can simply measure the time between two connections.
But if two users connect themselves at the same time, the oracle see an at-
tack. Thus, we take the time taken by a fixed number of connections as
main measure. The learn phase take place in peace period; the oracle ob-
served the maximum value and take it as reference.

Since the connection rate is very fast, this method is effective. Using a
large number of connections, we are able to smooth the impact of few si-
multaneous legitimate connections. Although, with a large number of con-
nection, we will not refuse the first clones but all the next ones. Despite the
few clones accepted, the others will not crash down the server and the at-
tack will be defeat.

4.2 The Distinguishing Oracle
As stated before, users from an IRC network use nickname which follows
some rules [12, 13]. For cultural or habits reasons, users do not choose
their nicknames as random but throughout some mental process [12].

Furthermore, clone nicknames are automatically generated and follow
some computational rules. Usually, they are choosing randomly over the
set of all possible nicknames made by letters and digits [14].

The main idea is to use probabilistic automata to distinguish clones and
users.

Probabilistic automata used to distinguish clones Distinguishing

clones could be done with Markov chains. Markov chains are well suited
for classification problems such as distinguishing set of first names [15].

Instead of using directly Markov chain, we conceptualize our sets of
clone nicknames and legitimate users with Probabilistic automata [16, 17].
There is no formal definition of probabilistic automata and we will use the
one from Henin [16]. A probabilistic automaton is an automaton with
probabilities on transitions and final states. To get the probability of the
nickname, one simply read it throughout the automata’s transitions. The
probability of the nickname is the product of the probabilities on these
transitions and the probability of the ending state to be final. This way,

languages conceptualized by Markov chains are included into those con-
ceptualized by our automata [16].

The distinction is made by comparing the probability given by two
automata. The first automaton (called the bad one) identifies clones’ nick-
names while the second (called the good one) identifies legitimate users’
nicknames. If the probability given by the good automaton is bigger than
the one given by the bad automaton, the nickname is considered as a le-
gitimate user’s nickname.

The good automaton learns during peace period of time. Because a
clone attack is always fast, during that phase, we consider all users are le-
gitimate ones. The automaton uses then all these nicknames as forming the
learning set.

The bad automaton learn only on demand. Because of a lot of users dur-
ing the clone attack are not all clone, we can’t learn automatically. After an
attack, the IRC-operators must sort nicknames from the attack. The set of
nicknames considered as clones is then given to the bad automaton. These
set of clones names can be sent to other IRC-operators of other networks to
prevent them for such attack.

5 Tests and Validation of the Distinguishing
Oracle

The set B2 from the real attack does not follow the same pattern as the
set generated by the tool (set B1). The tool generates nickname by choos-
ing 9 random letters. The nicknames from the real attack are also chosen
randomly and are formed with 5 letters and 1–3 digits append to the end.
Both pattern are use to perform real clone attacks and are not just artificial
patterns.

Here, we show two scenarios of tests. The first one tests the oracle
against existing attacks and tools. Next, we present a more clever attack.

2 The authors were IRC operators of this IRC network.

We have tested the distinguishing oracle with some sets of nicknames. We
have used a set of 259 nicknames found in [12] (set A1), another set of 107
nicknames found on the IRC network geekirc2 (set A2). These are real
nicknames of human users. We have also used clones nicknames: a set of
70 nicknames generated by a real tool performing clones attacks [14] (set
B1) and another set of 20 nicknames from a real attack we have saw on
geekirc (set B2).

8 QuiGon: The First Tool Against Clone Attack on Internet Relay Chat 125

126 T. Henin and C. Huguennet

5.1 Test Against Existing Attacks
In this test, the oracle has learned a subset of 200 nicknames of A1 as le-
gitimate ones and a subset of 50 nicknames of B1. Theses sets represent a
set of users the oracle have already seen on the networks and some nick-
names of bots it has also seen.

Then, we have tested the oracle on all the sets of nicknames. In this test,
we consider that some new human user want to connect to our networks
while an attack. This attack consists of clones generated by some real tools
(sets B1 and B2). Results are shown on Table 1.

Firstly, we notice that the oracle made no negative false. As we can see
(Table 1), all the clones are well recognized. The oracle considered as
clones all those that have been learned and all those generated by the same
pattern. It shows that the learning process is effective. Furthermore, the 20
clones from geekirc were also well recognized showing us that the oracle
can recognize unknown clones made by other tools.

Next, There’s little positive false in the learning set. There were only 3
nicknames badly recognized. So, during an attack, the oracle will let con-
nect almost all legitimate users it has already seen.

Finally, new legitimate users could sometime connect while an attack.
As we can see, more than a half of the nicknames from the same network
as the learning set (A1) are well recognized. One out of three nicknames
from another network (A2) is well recognized. Thus, the oracle let connect
some legitimate new users and refuse some others. It’s not a bad point
since the distinction is made only during an attack. The QoS3 will be main-
tained. Finally, as we can infer [12, 13], users from the same background
are better recognized than those from another background.

Table 1. Classification of nicknames into legitimate users’ nicknames. After
learning 200 legitimate nicknames and 50 generated by a real clone attack tool
each set has been tested. For each set, we give the amount of nicknames consid-
ered as legitimate users and the amount of errors the oracle has done.

Population Considered as legitimate
200 Legitimate learned nicknames (subset of A1) 98.5 %
59 Legitimate tested nicknames (subset of A1) 57.6 %
107 Legitimate tested nicknames (set A2) 36.4 %
50 Learned Clones from pru.c (subset of B1) 0.0 %
20 Tested Clones from pru.c (subset of B1) 0.0 %
20 Tested Clones from a real attack (set B2) 0.0 %

3 Quality of Service.

Table 2. Behaviour against more clever attacks. After learning A1 as legitimate
nicknames and 50 nicknames from A2 as clone ones each set has been tested. For
each set, we give the amount of nicknames considered as legitimate users and the
amount of errors the oracle has done.

Population Considered as legitimate
259 Legitimate learned nicknames (A1) 91.1 %
50 Learned Clones from A2 4.0 %
57 Tested Clones from A2 42.0 %

5.2 Test Against a More Clever Attack
Obviously, one can also pick some nicknames from others networks, web-
sites, dictionaries ... In this test, we consider the set A1 of nicknames from
geekirc as the picked ones and use them as nicknames of clones. As the
previous test show, the first time this attack occurs, only 36 percent of
clones will succeed.

But once the first attack have finished, QuiGon learn the set of clones
and things may change. Thus, in this test, the oracle has learnt the set A1
as legitimate users and a subset of 50 nicknames of A2 as clones. Then, we
have tested the oracle on the set A1 and A2. Results are shown in Table 2

First, we can see that the oracle still make few positive false. Only
around 10 percent of legitimate users have been considered as clones. But
since this occurs only while an attack, these legitimate users will be able to
connect themselves later, which is not so embarrassing.

Next, we can see that this time, the oracle make some negative false but
learn efficiently. He have considered as legitimate 4 percent of clones it
has already seen and 42 percent of clones it never saw. Once QuiGon has
learnt a set of nicknames of clones, he will recognize them as clones later
if they come back.

6 Conclusions

By using Probabilistic automata, the tool can learn the nicknames patterns
and adapt itself to other networks. The probabilistic automata are well
suited to classified nicknames [17] and produce no negative false. Despite
some positive false, the oracle recognizes almost all legitimate users it’s
already seen.

Its use two distinct oracles, both could be replace and allow to simply
improve the tool. We are looking to improvements. Obviously, the net-
work activity is not constant and we’re trying to conceptualize such char-
acteristic into the temporal oracle. Furthermore, the distinguishing oracle

8 QuiGon: The First Tool Against Clone Attack on Internet Relay Chat 127

128 T. Henin and C. Huguennet

know a fixed automata. Despite the probability on the transitions and stats,
the structure can’t evolve. We’re trying to adapt state melting [16] and
state splitting [18] to those automata in order to characterize better the
nicknames sets.

Thus, QuiGon is the first and only tool dedicated to prevent clone at-
tacks. Despite some handcrafted methods which are not so efficient there
are no such tools. Our method can detect attack and distinguish clones.
This way, during an attack, the clones are refused, defeating the attack.

References
[1] J. Mirkovic, P. Reiher: A Taxonomy of DDoS Attacks and Defense Mecha-

nisms, ACM SIGCOMM Computer Communications Review, vol. 34, no. 2, 2004
[2] C. Douligeris, A. Mitrokotsa: DDoS Attacks and Defense Mechanisms: Clas-

sification and State-of-the-Art, Computer Networks, vol 44, no 5, 2003
[3] H. Alaganandam, P. Mittal, A. Singh, C. Fleizach: Cybercriminal Activity, 2005
[4] J. Oikarinen, D. Reed: Internet Relay Chat Protocol, IETF, RFC n1459, 1993
[5] B. McCarty: Botnets: Big and Bigger, IEEE Security and Privacy, vol. 1,

[6] D. Geer: Malicious bots threaten network security, IEEE Computer Society,
vol. 38, no. 1, 2005

[7] D. R. Karrels: Internet Relay Chat Service Framework : GNUWorld, 2003
[8] N. W. Van Dyke, H. Lieberman, P. Maes: Butterfly: a conversationfinding

agent for Internet Relay Chat, 4th International Conference on Intelligent
User Interfaces, 1998

[9] Dr. R. S. Wallace: The Elements of AIML Style, A.L.I.C.E. Artificial Intelli-
gence Foundation, Inc., 2003

[10] J. Canavan: The evolution of malicious IRC Bots, Virus Bulletin Conference,
2005

[11] D. Bernstein: Syn cookies - http://cr.yp.to/syncookies.html, Last accessed:

no. 4, 2003

 July 2007
[12] H. Bechar-Israeli: From Bonehead to cLoNehEAd: Nicknames, Play and

Identity on Internet Relay Chat, Journal of Computer-Mediated Communica-
tion, vol 1, no. 2, 1996

[13] E. M. Reid: Electropolis : Communication and Community on Internet Relay
Chat, 1991

[14] http://packetstormsecurity.org/DoS/pru.c, Example of clone attack tool, Last

[15] P. Dupont: Noisy Sequence Classification with smoothed Markov Chains,
8me confrence francophone sur l’apprentissage automatique, 2006

[16] T. Henin: Reprsentation par jeu du chaos de squences d’ADN, ENS Cachan,
University Rennes 1, 2007

accessed: July 2007

8 QuiGon: The First Tool Against Clone Attack on Internet Relay Chat 129

[18] J. Callut, P. Dupont: Inducing Hidden Markov Models to Model Long-Term
Dependencies, Artificial Intelligence, European Conference on Machine
Learning, 2005

[17] F. Thollard, A. Clark: Apprentissage d’automates probabilistes dterministes,
Confrence d’Apprentissage, 2004

[19] V. Laurikari: Efficient Submatch Addressing for Regular Expressions, Hel-
sinki University of Technology, 2001

Spiros Antonatos1, Michael Locasto2, Stelios Sidiroglou2,
Angelos D. Keromytis2 and Evangelos Markatos1

1 Foundation for Research and Technology Hellas, Heraklion, Greece

2 Department of Computer Science Columbia University, New York, USA

1 Introduction

Over the past few years we have seen the use of Internet worms, i.e., mali-
cious self-replicating programs, as a mechanism to rapidly invade and
compromise large numbers of remote computers [30]. Although the first
worms released on the Internet were large-scale, easy-to-spot massive se-
curity incidents [6, 17, 18, 23], also known as flash worms [29], it is cur-
rently envisioned (and we see already see signs, in the wild) that future
worms will be increasingly difficult to detect, and will be known as stealth
worms. This may be partly because the motives of early worm developers
are thought to have been centered around self-gratification brought by the
achievement of compromising large numbers of remote computers, while
the motives of recent worm and malware developers have progressed to
more mundane (and sinister) financial and political gains. Therefore, al-
though recent attackers still want to be able to control a large number of
compromised computers, they prefer to compromise these computers as
quietly as possible, over a longer period of time, so as to impede detection
by current defense mechanisms. To achieve stealthy behavior, these at-
tackers have started using, or at least have the capacity to use, a wide vari-
ety of mechanisms that will make their worms more difficult to detect.
Such mechanisms might include:

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_9, © Springer Science+Business Media, LLC 2009

9

Network/Endpoint Collaboration and Interaction
Defending Against Next Generation Through

 {antonat, markatos}@ics.forth.gr

 {locasto, stelios, angelos}@cs.columbia.edu

132 S. Antonatos et al.

• Encryption: Attackers may communicate with the potential victim
using a secure (encrypted) connection, making it difficult for net-
work-based Intrusion Detection Systems [22, 32] to spot their at-
tempted attack.

• Metamorphism: The body of worms usually contains some initial
code that will be executed when the worm invades the victim com-
puter. Metamorphism obfuscates this code by adding various instruc-
tions to it, and/or by substituting blocks of instructions with equiva-
lent blocks of other instructions [31]. In this way, two “copies” of the
worm would appear to be completely different from each other, con-
fusing worm detection systems that depend on all copies of a worm
being practically identical [1, 14, 27].

• Polymorphism: Polymorphic approaches obfuscate the worm’s body
by encoding it and prepending a decoder. When propagating, the
worm mutates its body so that two “copies” of the worm would look
completely different from each other (modulo the body of the en-
coder) [10, 15, 31]. Much like metamorphic approaches, polymorphic
systems confuse worm detection systems.

• Hit Lists: The first versions of recent worms selected their victims
pseudo-randomly, i.e., by generating a random IP address in the range
0.0.0.0 to 255.255.255.255. It has been proposed however, that
worms may be more effective if they first create a hit-list of all vul-
nerable computers and then attack only computers in that hit-list
[3, 30]. This hit-list may even be filtered to exclude honeypots.1
Armed with a hit-list, a worm is able to compromise a number of vul-
nerable computers, while generating the minimum amount of traffic
possible, limiting the effectiveness of defense mechanisms that detect
visible traffic anomalies.

• Hybrid Worms: Traditionally, worms have exploited vulnerabilities
in applications and services open to Internet traffic. However, as
more computers are located behind firewalls and NATs, they are
theoretically protected from such types of attacks. Unfortunately,
worm developers may exploit several different invasion paths includ-
ing, infected email attachments, infected files shared through peer-to-
peer (P2P) networks, and infected files accessed through locally
shared disks [13].

1A honeypot is a computer waiting to be attacked. Once attacked, the honeypot re-
cords as much information as possible so that the administrators will be able to
characterize the attack and possibly generate a signature for it.

• Defense Mapping: Many of the proposed (and deployed) techniques
for detecting and countering new attacks use honeypots as early-
warning systems [5, 8, 9, 20, 28, 33]. However, recent work has
shown that attackers can exploit certain features and aspects of
honeypot behavior to identify and avoid such detectors [7, 21, 24].
Combined with hit-lists, this can render worms (especially slow-
spreading ones) and other automated attacks virtually undetectable.

• Client-side Attacks: In the past few years (2005–2006) we have seen
an increase in the use of zero-day attacks aimed at client software
(especially browsers, but also various types of document viewers
such as Microsoft Word, Excel and PowerPoint, and Adobe Acrobat).
Other than stand-alone, host-based intrusion detection/prevention
mechanisms (such as virus scanners), very little has been done in
hardening vulnerable client systems.

1.1 Impact of Failing to Solve the Problem

Compromised computers can be used to cause harm to third parties or even
to cause harm to their traditional owners.

• Attacks to third parties: Recent worm writers organize compromised

computers into botnets, i.e., armies of hosts that are primarily used for
malicious acts, including launching of Denial of Service (DoS) attacks,
blackmailing, sending of SPAM mail, click fraud, theft of intellectual
property, and even identity theft. One would envision that botnets in
the future could be used for political warfare purposes as well.

• Attacks to the owners of compromised computers: A compro-
mised computer can be used to steal private data and facilitate iden-
tity theft. Unfortunately, once ordinary users start to realize the dan-
gers of a compromised computer, they will probably get increasingly
less inclined to trust their computers for financial transactions or pri-
vate communications. This will probably impede the adoption of an
information society and may eventually reduce its overall spread and
impact.

2 Research Directions

Over the last five years significant research has been conducted in the area
of detection and containment of cyber-attacks. Indeed, we believe that we
have currently reached the point where it is possible to readily detect one

9 Defending Against Next Generation Through Network 133

134 S. Antonatos et al.

particular class of worms: rapidly spreading and massively parallel flash
worms. However, it is unclear we have the technical knowledge or the de-
ployed mechanisms in order to detect and contain stealth attacks. Using a
combination of the techniques described earlier, such attacks can become
invisible (or at least very difficult to detect) to network-based defenses.

Our view is that such attacks can only be detected via large-scale col-
laboration among end-hosts: by exchanging and correlating relevant in-
formation, it is possible to identify stealthy attacks, and to take appropriate
measures to defend against them, or at least quarantine those nodes that
appear to have been compromised. Specifically, we believe that it is in-
creasingly important to include home and small business computers in the
attack-detection process. These computers are increasingly becoming the
primary targets of most attackers. Therefore, including them in the worm-
(or, more generally, attack-) detection process will increase the chances of
attack detection. Exemplifying a large range of access patterns and a large
range of applications, these computers typically tend to have more repre-
sentative configurations than the traditional honeypots currently being
used in worm detection. Furthermore, ordinary computers being used by
their regular owners are more difficult to be categorized as honeypots and
avoided by future attacks. The inclusion, however, of home computers in
the detection process, should (1) guarantee the safety of the end computer
and (2) the minimum possible intrusion in the ordinary use of the com-
puter. Towards this direction, we propose two systems: Honey@home and
Application Communities. We give a high-level description of both sys-
tems in the next two sections, both as concrete examples of collaborative
defense mechanisms and to motivate further work in this direction.

On the other hand, we are not completely discounting network-based
defenses: rather, we believe that such defenses must be integrated with
end-host defenses. In the past, network and end-host security were viewed
as two distinct areas that were meant to complement each other but kept
separate. While this allowed for a clean separation between the respective
security mechanisms, it also meant that the potential of both was stunted.
Furthermore, by keeping them isolated, it was (and is) impossible to ex-
ploit scale for defensive purposes. Exploiting scale is something that at-
tackers have learned to do well, as evidenced by such phenomena as dis-
tributed denial of service attacks, self-propagating worms, and botnets.

The industry is beginning to follow such an approach, albeit in a frag-
mented, ad hoc fashion. For example, several enterprises exchange alert
and IDS logs through sites such as DShield.org; anti-virus vendors with
extensive presence on the desktop are correlating information about appli-
cation behavior from thousands of hosts; network security and monitoring

companies perform similar correlation using network traces and distributed
black-holes (honeypots). To the extent that such approaches are being ex-
plored, they seem largely confined to the realm of information gathering.
This also largely seems to be the situation with the US Department of De-
fense and the various intelligence agencies. For example, DARPA is cur-
rently funding the Application Communities effort, which seeks to lever-
age large software monocultures to distribute the task of attack monitoring
– again, an approach confined to the end-host. Previous work (notably in
the DARPA OASIS program) looked into the space of reactive security,
but only considered small-scale environments. Arguably, we need to ex-
tend the reach of our collaboration-based mechanisms to counter such per-
vasive threats as DDoS and botnets.

Thus, we argue that it is important to transition into an network architec-
ture design where networks and end-hosts, in various combinations, can
elect to collaborate and coordinate their actions and reactions to better pro-
tect themselves (and, by implication, the network at large). There are sev-
eral research issues arising in such an environment, including:

• What problems are best addressed through a collaborative approach;
• New mechanisms at all levels of the network architecture (routers,

protocols, end-hosts, processes, hardware) that are “collaboration
friendly”;

• Metrics that quantify the security of collaborative approaches over
non-collaborative approaches ;

• Who to trust, and to what extend;
• How to prevent attacks that exploit such mechanisms, including in-

sider threats;
• Command-and-control vs. loose-coupling mechanism composition.

Furthermore, in an era of distributed software services (what is fash-

ionably called “Web 2.0”), no single application, node, or network has
enough information to detect and counter high-level semantic attacks, or
even some of the more conventional web-based malware (e.g., cross-site
scripting attacks). Large-scale distributed systems require large-scale dis-
tributed defenses. This is particularly true within specific application do-
mains (such as health care and industrial SCADA control), where large-
scale collaborative (but independent) defenses will allow better control to
critical information and resources.

9 Defending Against Next Generation Through Network 135

136 S. Antonatos et al.

3 Honey@home
Traditional honeypot architectures are based on monitoring unused IP ad-
dresses located at specific institutes and organizations [8]. This unused IP
address space, also called “dark space”, is easy to identify and thus be
blacklisted by attackers [7]. Furthermore, all honeypot technologies rely on
the size of the dark space in order to be effective; the more dark space is
used, the faster and more accurate the results obtained. To overcome these
two problems, Honey@home [4] empowers ordinary users and organiza-
tions, institutes and enterprises, who are not familiar with honeypot tech-
nologies, to contribute their dark space to a network of affined honeypots.
Many public bodies, universities and even home users do not use all the
address space they possess. They also do not have the expertise to setup
and maintain a honeypot to monitor that unused space. Honey@home fills
that gap by installing a virtual honeypot to the machine(s) of unfamiliar
users. Several other “@home” approaches, like Seti@home and Fold-
ing@home, have shown that users can contribute significantly towards a
common goal.

Honey@home is designed to be used by people unfamiliar with honey-
pot technologies. From the user perspective, no configuration is needed.
Honey@home is a cross-platform tool that requires minimal resources and
can run unsupervised at the background, just like modern messengers. Its
basic functionality is to claim an unused IP address through the DHCP
server of the local network it is installed on and forward all the traffic go-
ing to that address to a centralized farm of honeypots. The centralized farm
runs multiple services/applications, and processes all the traffic received
from Honey@home clients. Central honeypots will provide answers to the
received traffic and send them back to the Honey@home clients. From
their side, Honey@home clients will send the responses from honeypots
back to the originators of the attack. The attacker is under the impression
that she communicates with the address claimed by Honey@home client,
but in reality she communicates with a central honeypot that gathers, ana-
lyzes, and responds to her attacks and probes. More advanced users can
manually declare their dark space and contribute more than one unused IP
address. The centralized farm is implemented by a number of Argos [19]
honeypots that are able to catch previously unknown attack vectors.

Honey@home enables the creation of an infrastructure where the moni-
tored dark space is distributed over the network and can become arbitrarily
large, depending on the number of Honey@home clients. Although the
idea of forwarding traffic destined for an unused IP address to a central-
ized farm of honeypots may sound simple, there are several challenges be-
hind the Honey@home approach. First, participating clients should be

undetectable. If an attacker can easily determine whether an address is
monitored by Honey@home, clients can be blacklisted and not contribute
to the overall infrastructure. (Note, however, that this could be turned into
a defensive advantage by acting as a deterrent.) Second, central honeypots
must be hidden so that they cannot be remotely exploited or otherwise at-
tacked. Finally, the installation of mock clients that will overload the cen-
tral honeypots with nonsense traffic must be prevented. Honey@home
tries to deal with these challenges by employing various techniques, like
anonymization networks [11] to hide honeypots and a registration process
to prevent massive automatic installation of fake clients.

4 Application Communities

An Application Community (AC) is a collection of congruent instances of
the same application running autonomously on end-hosts distributed across
a wide-area network, whose members cooperate in identifying previously
unknown flaws/attacks [16]. By exchanging information, the AC members
may be able to prevent the failure from manifesting in the future. Although
individual members may be susceptible to new failures, the AC should
eventually converge into a state of immunity against a particular fault, add-
ing a dimension of learning and adaptation to the system. An AC may be
considered a “virtual honeypot” composed of many machines/applications
that are in actual use (i.e., they are not passive, non-guided entities as tradi-
tional honeypots are); AC members contribute a share of their resources
(such as CPU cycles) towards the processing done by this virtual honey-
pot. By using real applications and systems as detectors, Application
Communities can identify targeted attacks, attacks that exploit specific
state, or attacks that require user action (e.g., for client applications such as
web browsers). The size of the AC, in terms of number of participating
nodes, impacts coverage (in detecting faults) and fairness (in distributing
the monitoring task) [2]. An AC is composed of three main mechanisms,
for monitoring, communication, and defense, respectively.

The purpose of the monitoring mechanism is the detection of previ-
ously unknown (“zero day”) software failures. There exists a plethora of
work in this area, namely, using the compiler to insert run-time safety
checks,“sandboxing”, anomaly detection, and content-based filtering [2].
While shortcomings may be attributed to each of the approaches, when
they are considered within the scope of an AC a different set of considera-
tions need to be examined. Specifically, the significance of the security vs.
performance tradeoff is de-escalated with respect to the ability to effi-
ciently employ the mechanism in a distributed fashion. The advantage of

9 Defending Against Next Generation Through Network 137

138 S. Antonatos et al.

utilizing an AC is that the use of a fairly invasive mechanism (in terms of
performance) may be acceptable, since the associated cost can be distrib-
uted to the participating members. By employing a more invasive instru-
mentation technique, the likelihood of detecting subversion and identifying
the source of the vulnerability is increased. The monitoring mechanism in
our prototype is an instruction-level emulator that can be selectively in-
voked for arbitrary segments of code, allowing us to mix emulated and
non-emulated execution inside the same execution context [26], although
other mechanisms can be used instead (or in addition) [25].

Once a failure is detected by a member’s monitoring component, the
relevant information is distributed across the AC. Specifically, the purpose
of the communication component is the dissemination of information
pertaining to the discovery of new failures and the distribution of the
monitoring work load within the AC. The choice of the communication
model to be employed by an AC is subject to the characteristics of the col-
laborating community, such as size and flexibility. The immediate trade-
off associated with the communication model is the overhead in messages
versus the latency of the information in the AC. In the simplest case, a cen-
tralized approach is arguably the most efficient communication mecha-
nism. However, there are a number of scalability and trust issues associ-
ated with this approach. If there is a fixed number of collaborating nodes, a
secure structured overlay network can be employed, with exemption from
the problems associated with voluminous joins and leaves. If nodes enter
and leave the AC at will, a decentralized approach may be more appropri-
ate. Efficient dissemination of messages is outside the scope of this paper,
but has been the topic of much research in the networking community.

The immunizing component of our architecture is responsible for pro-
tecting the AC against future instances of a specific failure. Ideally, upon
receiving notification of a failure observed by another AC member, indi-
vidual members independently confirm the validity of the reported weak-
ness and create their own fix in a decentralized manner. At that point, each
member in the AC decides autonomously what fix to apply in order to in-
oculate itself. As independent verification of an attack report may be im-
possible in some situations, a member’s action may depend on predefined
trust metrics (e.g., trusted verifications servers). Depending on the level of
trust among users, alternative mechanisms may be employed for the adop-
tion of universal fixes and verification of attack reports. In the case of sys-
tems where there is minimal trust among members a voting system can be
employed at the cost of an increased communication overhead. Finally,
given that a fix could be universally adopted by the AC, special care must be
placed in minimizing the performance implications of the immunization.

5 Conclusions
We have argued that the Internet-borne cyber-attacks of the future require
collaborative solutions that encompass (and perhaps focus) on end-hosts,
rather than depend on network-based defenses. We have briefly described
two such research thrusts, Honey@home [4] and Application Communities
[AC06]. Although there are many research challenges (and opportunities)
ahead, we believe that large-scale collaborative defenses hold the key to a
future secure Internet.

Acknowledgments
This material is partially based on research sponsored by the Air Force Re-
search Laboratory under agreement number FA8750-06-2-0221 and by NSF
Grant 06-27473, with additional support from Google and New York State.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.
There opinions expressed herein do not reflect those of the NSF or the U.S.
Government. This work was also supported in part by the project Cyber-
Scope, funded by the Greek General Secretariat for Research and Technol-
ogy under the contract number PENED 3ED440, and by the FP6 project
NoAH, funded by the European Union under the contract number 011923.

References
[1] P. Akritidis, K. G. Anagnostakis, and E. P. Markatos. Efficient content based

worm detection. In Proceedings of the 40th IEEE International Conference
on Communications (ICC), 2005.

[2] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and
A. D. Keromytis. Detecting targeted attacks using shadow honeypots. In Pro-
ceedings of the 14th USENIX Security Symposium, pp. 129–144, August
2005.

9 Defending Against Next Generation Through Network 139

The inoculating approach that can be employed by the AC is contingent
on the nature of the detection mechanism and the subsequent information
provided on the specific failure. The type of protection can range from
statistical blocking, behavioral or structural transformation. For example,
IP address and content filtering, code randomization [12], adaptive
defenses [25], and emulation [26] may be used for the protection of the
AC members.

140 S. Antonatos et al.

[3] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. Defend-
ing against hit list worms using network address space randomization. In
Proceedings of the ACM Workshop on Rapid Malcode (WORM), pp. 30–40,
November 2005.

[4] S. Antonatos, K. G. Anagnostakis and E. P. Markatos. Honey@home: A new
approach to large-scale threat monitoring. To appear in the Proceedings of
the 5th ACM Workshop on Recurring Malcode (WORM), November 2007.

[5] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The internet
motion sensor: A distributed blackhole monitoring system. In Proceedings of
the 12th ISOC Symposium on Network and Distributed Systems Security
(SNDSS), pp. 167–179, February 2005a.

[6] M. Bailey, E. Cooke, F. Jahanian, D. Watson, and J. Nazario. The blaster
worm: Then and now. In IEEE Security & Privacy Magazine, 3(4):26–31,
2005b.

[7] J. Bethencourt, J. Franklin, and M. Vernon. Mapping internet sensors with
probe response attacks. In Proceedings of the 14th USENIX Security Sympo-
sium, pp. 193–208, August 2005.

[8] E. Cooke, M. Bailey, Z. M. Mao, and D. McPherson. Toward understanding
distributed blackhole placement. In Proceedings of the ACM Workshop on
Rapid Malcode (WORM), pp. 54–64, October 2004.

[9] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen.
HoneyStat: Local worm detection using honepots. In Proceedings of the 7th
International Symposium on Recent Advances in Intrusion Detection
(RAID), pp. 39–58, October 2004.

[10] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic
shellcode engine using spectrum analysis. In Phrack, 11(61), August 2003.

[11] R. Dingledine, N. Matthewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[12] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection at-
tacks with instruction-set randomization. In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS), pp. 272–280,
October 2003.

[13] D. M. Kienzle and M. C. Elder. Recent worms: A survey and trends. In Pro-
ceedings of the ACM Workshop on Rapid Malcode (WORM), pp. 1–10,
2003.

[14] H. Kim and B. Karp. Autograph: Toward automated, distributed worm signa-
ture detection. In Proceedings of the 13th USENIX Security Symposium,
pp. 271–286, August 2004.

[15] K2. ADMmutate. http://www.ktwo.cal/ADMmutate-0.8.4.tar. gz.
[16] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Software self-healing us-

ing collaborative application communities. In Proceedings of the 13th ISOC
Symposium on Network and Distributed Systems Security (SNDSS),
pp. 95–106, February 2006.

[17] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the slammer worm. In IEEE Security & Privacy Magazine, 1(4):
33–39, 2003.

[18] D. Moore, C. Shannon, and J. Brown. Code-Red: A case study on the spread
and victims of an Internet worm. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurement (IMW), pp. 273–284, 2002.

[19] G. Portokalidis, A. Slowinska, and H. Bos. Argos: An emulator for fingerprint-
ing zero-day attacks. In Proceedings of ACM SIGOPS Eurosys, April 2006.

[20] M. A. Rajab, F. Monrose, and A. Terzis. On the effectiveness of distributed
worm monitoring. In Proceedings of the 14th USENIX Security Symposium,
pp. 225–237, August 2005.

[21] M. A. Rajab, F. Monrose, and A. Terzis. Fast and evasive attacks: Highlight-
ing the challenges ahead. In Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID), pp. 206–225, September
2006.

[22] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceed-
ings of USENIX LISA, pp. 229–238, 1999.

[23] C. Shannon and D. Moore. The spread of the Witty worm. In IEEE Security
& Privacy Magazine, 2(4):46–50, 2004.

[24] Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of passive internet threat
Monitors. In Proceedings of the 14th USENIX Security Symposium,
pp. 209–224, August 2005.

[25] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis. A Dynamic mechanism
for recovering from buffer overflow attacks. In Proceedings of the 8th Infor-
mation Security Conference (ISC), pp. 1–15, September 2005.

[26] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building Ra
Reactive Immune System for Software Service. In Proceedings of the
USENIX Annual Technical Conference, pp. 149–161, April 2005.

[27] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Finger-
printing. In Proceedings of OSDI, pp. 45–60, 2004.

[28] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, Boston, MA,
2003.

[29] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash
worms. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),
pp. 33–42, November 2004.

[30] S. Staniford, V. Paxson, and N. Weaver. How to own the internet in your spare
time. In Proceedings of the 11th USENIX Security Symposium, August 2002.

[31] P. Szor and P. Ferrie. Hunting for metamorphic. In Proceedings of the Virus
Bulletin Conference, pp. 123–144, September 200l.

[32] K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnostakis, and E. P. Marka-
tos. An active splitter architecture for intrusion detection and prevention. In
IEEE Transactions on Dependable Secure Computing, 3(1):31–44, 2006.

[33] V. Yegneswaran, P. Barford, and D. Plonka. On the design and use of inter-
net sinks for network abuse monitoring. In Proceedings of the 7th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID),
pp. 146–165, October 2004.

9 Defending Against Next Generation Through Network 141

Thomas Haeberlen

Federal Office for Information Security (BSI), Bonn, Germany

Abstract. This P-A-Per gives a brief summary of a study compiled for the Ger-
man Federal Office for Information Security (BSI). The study will be published as
part of a new series of documents on Internet security later this year. A basic ar-
chitecture to support secure operation of a network connected to the internet is
proposed. By implementing this basic architecture, the risks associated with con-
necting a network to the internet, can be greatly reduced. The basic architecture
and recommendations cover the robust design of the network, the selection and
configuration of network equipment, as well as aspects of network operations. The
view is mostly on security aspects of the lower layers of the TCP/IP reference
model; application specific aspects of internet security will be subject of addi-
tional studies scheduled to appear later in 2007 and in 2008.

1 Introduction

When a network is connected to the Internet, the IT systems and the in-
formation processing are exposed to a great number of threats and attacks
that don’t exist in a disconnected environment. It is therefore necessary to
modify the structure of a network to provide for adequate protection.

In the basic architecture proposed by the ISi-LANA study, both using
and providing the most popular services Web and E-Mail are supported.
The concept can be adapted to the size and complexity of the network in-
frastructure, the number and types of services to support and the individual
security requirements of applications. The study provides a number of
variations covering on one hand small and non-critical IT infrastructures
and on the other hand supporting high security requirements by supple-
mentary measures or modular extensions.

V. Siris et al. (eds.), Proceedings of the 3rd European Conference on Computer
Network Defense, Lecture Notes in Electrical Engineering,
DOI 10.1007/978-0-387-85555-4_10, © Springer Science+Business Media, LLC 2009

10

thomas.haeberlen@bsi.bund.de

Networks Connected to the Internet
ISi-LANA – A Secure Basic Architecture for

144 T. Haeberlen

The underlying principles of the proposed architecture can be summa-
rised as follows:

- Defence in depth: There exist several independent layers of defence.
There must be no single point of failure that would allow an attacker
to gain access to the internal network after overcoming just one line
of defence.

- Separation of functionality: Independent functions should be
implemented independently (“one service – one server”). This holds
especially for security-related functionality. This serves to reduce the
complexity of the configuration of security components, servers and
services, thereby minimising the “contact surface” and the load of the
individual components.

- Minimality: All components - especially those of the security gateway
itself and of the Internet-facing servers – should be configured in a
minimal way. Unnecessary software should be deinstalled,
unnecessary functionality should be deactivated.

- Need-to-Know: System components, applications and services may
only disclose such information on the network and its users, that are
essential for the functioning and the use of the IT infrastructure.
Available information should be protected according to a role and
permissions scheme.

- Whitelisting: All filter rules should be such that only explicitly
allowed packets or connections are allowed and everything else is
blocked (“default deny”).

- Currentness: Operating systems and applications should always be
kept up to date. Available patches should be applied as soon as
possible.

2 Basic Architecture

The core principle of the basic architecture is controlling the data flow be-
tween the Internet and the local network by a three-stage security gateway
in “P-A-P” setup, i.e. consisting of an outer Packet filter, an Application
level gateway and an inner Packet filter. No connection should be initiated
from the “outside” with any computer on the internal network. Moreover,
the internal network is divided into several security zones separated by
packet filters.

For all network zones, private IP address ranges such as 192.168.0.0/16
should be used; the necessary network address translation will be done on
the packet filter PF1. Ingress / egress filtering and antispoofing rules
should be implemented on the perimeter router.

Regarding the connection to the Internet, the two modes of using and
providing Internet services have to be distinguished. While in the first case
the communication goes straight over the three steps of the P-A-P security
gateway, external requests for any services provided have to be dealt with
on a server located in a separate demilitarised zone (DMZ) of the security
gateway. These servers can revert to other servers located in downstream
security zones of the DMZ.

2.1 Using Internet Services
The P-A-P gateway for using Internet services like WWW and E-Mail
consists of the outer packet filter PF1, the application level gateway (ALG)
containing proxy servers for protocols such as HTTP and SMTP, and the
inner packet filter PF2. These two packet filters should support stateful
filtering.

The security gateway must not be circumvented. All traffic between the
internal network and the Internet has to pass through this gateway, with the
gateway using a strict whitelist policy, i.e. allowing only the explicitly
permitted protocols. Furthermore, the ALG needs filtering capabilities for
all supported protocols, notably an E-mail virus (or rather: malware) scan-
ner and a filtering module for the Web proxy. The latter should be config-
ured to filter out most, if not all, Active Content in Web pages. In some
cases, JavaScript and other types of Active Content may be required for
certain Web sites. Generally, Active Content should only be allowed on a
case by case basis for selected sites on a whitelist.

To allow complete control, there can, in general, be no encrypted traffic
through the security gateway. Checking this type of traffic requires proxy
functionalties on the application level gateway (ALG) which allow the de-
cryption and re-encryption of protocols like HTTPS. End-to-end encryp-
tion will only be permitted on a case by case basis for selected partners and
trustworthy Web sites. While this has some drawbacks, it is a necessary
trade-off providing an acceptable security level at the expense of some
functionality. As an example, certificate checks for SSL-protected Web
sites will not be possible for the end users and will have to be made by the
SSL proxy component of the ALG. This is, however, the only way to keep
malware from directly reaching the internal network through encrypted
tunnels.

2.2 Providing Internet Services
In the basic architecture, the Internet-facing services DNS and WWW are
covered. A separate server for the administration and an internal web
server (WWW int), as well as a web application server (WWW AS) capable

10 ISi-LANA – A Secure Basic Architecture for Networks 145

146 T. Haeberlen

of serving dynamically-generated pages, are foreseen. The WWW int server
is available as a frontend for the administration of the web services pro-
vided, and for providing dedicated web services for users from the internal
network. Requests from the internal network to the WWW int server have
to pass through the ALG and the servers are separated from the ALG by a
packet filter, hence there is a P-A-P gateway between them and the clients
on the internal network.

As a backend for the web service, a database server (WWW DB) is in-
cluded in a separate security zone. The communication between this server
and the WWW AS application server is controlled by a packet filter, limit-
ing the traffic to the necessary protocols, e.g. ODBC, JDBC or a vendor-
specific proprietary protocol. If the database server has to be synchronised
with an internal database server, this can be implemented over the man-
agement network.

The Internet-facing WWW and DNS servers are located in a forward se-
curity zone of the Security Gateway, separated from the Internet only by
the packet filter PF1. Therefore, they have to be separated from the down-
stream servers by the packet filter PF3. There is no implicit trust relation-
ship between the WWW server and the clients in the internal network. If
clients from the internal network want to use the „external” Web service,
the requests are routed through the P-A-P gateway in the same manner as
they would be for an external Web server. That way, an intruder who
might have captured the WWW server, can not use this server as a starting
point for attacking computers in the internal network e.g. by placing mali-
cious JavaScript code in the served pages, because malicious code will be
filtered out by the application level gateway component.

2.3 Administration and Monitoring
Administration and monitoring of all servers and security components in
the Security Gateway zone are done “out-of-band” over a separate man-
agement network.

In the management network, log and monitoring data are collected from
the individual devices e.g. via remote syslog or SNMP and are stored on
one or several management servers (in Fig. 1, only one server is shown).
This allows for central evaluation and correlation of events, giving the ad-
ministrators the opportunity to quickly detect and react to problems.

In the same way, data from host- or network-based intrusion detection
sensors can be collected and processed. If properly implemented, this can
give the network early-warning capabilities.

A time server, connected to a high precision time source such as GPS or
DCF-77 is placed in the inner zone of the management network. This

Fig. 1. Basic architecture including management and monitoring network.

server is used to synchronise the system clocks of all components of the
management and security gateway zones, as well as for the internal NTP
server, which provides a network time source for the computers on the in-
tenal network.

The management network is divided in several zones by the packet fil-
ters PF7 – PF10.

2.4 Implementation and Operations
As the network architecture alone can not guarantee the security of the
network, in the ISi-LANA study the basic architecture is complemented by
extensive advice concerning implementation and network operations. In-
cluded are

- basic requirements for all network and server components,
- more specific requirements for switches, packet filters, application level

gateway components and servers,
- general configuration advice for the network devices, application level

gateway components and servers,

as well as some points concerning operations. For more details concerning
procedures and security management, the reader is referred to standards
such as the BSI Grundschutz Manual (GSHB).

10 ISi-LANA – A Secure Basic Architecture for Networks 147

148 T. Haeberlen

3 Discussion

3.1 Overall Structure
The overall structure was developed during extensive discussions. Re-
quirements from various sources such as the BSI Grundschutz Manual
(GSHB) and the E-Government Manual (EGov) were collected and com-
bined. The resulting structure derives naturally from the requirements and
the basic principles mentioned above.

The (ISi-LANA 2007) study provides an extensive list of well-known
network-related threats on the lower layers of the OSI reference model.
Examples include

- MAC- or ARP-spoofing,
- attacks on the network infrastructure through inter-switch protocols (e.g.

STP or VLAN-related protocols) or routing protocols,
- attacks via basic properties of the IP protocol suite (e.g. related to

ICMP, fragmentation or broadcast mechanisms),
- TCP- or UDP-related attacks (such as TCP connection hijacking), and
- attacks on DNS and other “service” protocols.

It was assumed that the network has normal protection requirements.
The network structure should provide an adequate level of protection
against these threats, while keeping complexity and cost at a reasonable
level.

When making trade-offs between security and functionality, security
was given precedence over functionality or cost in most cases. In real life,
things may not always work out that way. For organisations with a higher
risk acceptance, or budget constraints, it is possible to simplify the struc-
ture in several places. In (ISi-LANA 2007), a number of variants are dis-
cussed, describing the possible benefits and the associated risks. On the
other hand, variants providing better protection for networks with higher
protection requirements are also described.

Two examples can serve to illustrate the way the network architecture
was developed:

- Out-of-band management is a result of the following requirements:
firstly, no connections should be made from outside the security
gateway to the inside network. Secondly, on one hand no encrypted
tunnels should be permitted, but on the other hand insecure and outdated
protocols like telnet and SNMPv1 should not be used on the “main”
network because the data transported over these protocols can be of

rather sensitive nature. The separate management network solves this
apparent conflict in a natural way.

- The place of the network address translation was chosen to be the packet
filter PF1 for simplicity. Translation further downstream is not
necessary due to the requirement that all outbound requests and
transmissions should pass through the application level gateway ALG,
which will terminate the connection coming from the internal network
and initiate a new connection on its own external interface. Therefore,
the address of the ALG is the only address that will show up on PF1.
Nevertheless, the ALG should not get a “public” IP address because the
NAT will protect its TCP/IP stack from direct attacks.

3.2 Structure of the Security Gateway
The security gateway is structured in a way that implements different secu-
rity zones even inside the security gateway itself. Some reasons for this
were already discussed above.

The separate internal web server WWW int helps to secure the admini-
stration interface of the web application server WWW AS. Often, web ap-
plications have their adminstration and “members only” sections reachable
more or less directly from the front page. That way, all that is between an
attacker and the administration interface is a password and a piece of soft-
ware that often is not implemented very securely. By separating the man-
agement and the internal web service from the outward facing server (as-
suming that the application server and web content management system
support this), this potential problem is eliminated.

Routing all requests even from the clients on the internal network
through the application level gateway provides an additional line of de-
fence against attacks on the application layer.

Using separate packet filters PF3 - PF5 instead of just putting all serv-
ers on different interfaces of a larger packet filter was chosen to keep the
complexity of the filtering rules down. Using only one packet filter may be
possible, but as the complexity of the filtering rules grows very quickly
with the size of the communication matrix, the administration of such a
central hub device would be quite tricky and the risk for configuration er-
rors would be high.

3.3 Structure of the Management Network
While using four packet filters in the Management Network zone may
seem like overkill at first, it is a necessary precaution in order to imple-
ment the defence in depth principle. If, for example, only PF7 was used as
a single packet filter, this would constitute a single point of failure that, if

10 ISi-LANA – A Secure Basic Architecture for Networks 149

150 T. Haeberlen

captured, would allow an attacker to completely circumvent the security
gateway and reach the internal network in only one step. In the proposed
setup, an attacker will still find himself completely outside the security
gateway even after capturing PF7 and will need to compromise several
other security devices before finally reaching the internal network.

Unlike the “main” packet filters PF1 and PF2 in the security gateway
zone, PF7 – PF10 need not necessarily support stateful filtering. Also, the
bandwith requirements of the management network will usually be lower
than those of the main internet connection. Therefore the packet filters in
the management network can be built with cheaper hardware.

3.4 Structure of the Internal Network
The proposed structure of the internal network is not overly sophisticated:
the servers are separated from the clients by a packet filter, which should
support stateful filtering. Network security inside the internal network con-
sists mainly of configuration options on the switches to limit the impact of
attacks on the lower layers of the ISO model, such as ARP or ICMP spoof-
ing.

One more recommendation should be noted at this point: using the
VLAN functionality of switches should not be considered a security meas-
ure. VLANs can be used to keep broadcast domains small, but they should
not be used to separate security zones.

(ISi-LANA 2007) also discusses variants for higher security require-
ments, such as segmentation of the client network or using a more sophis-
ticated security gateway to protect the server zone.

4 Conclusions

The basic architecture proposed by ISi-LANA provides a good level of
protection against threats on the network level and also limits the options
of an inside attacker. Due to its modular and extensible design, the archi-
tecture can be adapted to different requirements and thus provide a starting
point for the design of secure networks in most scenarios.

The study also presents variants for organisations with higher security
requirements.

It has to be noted that the implementation of the network structure needs
to be complemented by appropriate security measures on the clients in the
internal network, ranging from secure configuration to an up to date mal-
ware protection. These and other aspects of the security of networks con-

10 ISi-LANA – A Secure Basic Architecture for Networks 151

The upcoming modules “ISi-Mail” and “ISi-Web” will provide a more in-
depth coverage of the most used services in internet-connected networks.

nected to the Internet will be covered in separate modules of the ISi series.

Author Index

A
Antonatos, Spiros, 131
Athanasopoulos, Elias, 107

B
Baiardi, Fabrizio, 21
Bellare, M., 73,
Bos, Herbert, 1
Burch, Hal, 93

C
Cook, Debra L., 69

D
Daemen, J., 81
Dimitrakakis, Christos, 35
Douligeris, Christos, 35

G
Gravey, Annie, 49

H
Haeberlen, Thomas, 143
Henin, Thibaut, 119, 124
Huguennet, Corinne, 119

I
Ito, Yurie, 93

K
Keromytis, Angelos D., 69, 131

L
Liang, Z., 17
Locasto, Michael, 131

M
Makridakis, Andreas, 107
Manion, Art, 93
Markatos, Evangelos P., 107, 131
Mitrokotsa, Aikaterini, 35

N
Nikiforakis, Nikos, 107

P
Patel, S., 73

R
Ramzan, Z., 73
Rijmen, V., 81
Rogaway, P. 73

S
Salem, Osman, 49
Sgandurra, Daniele, 21
Sidiroglou, Stelios, 131
Slowinska, Asia, 1
Sundaram, G., 73

V
Valkering, Michael, 1
Vaton, Sandrine, 49

Y
Yung, Moti, 69

Subject Index

A
Adaptive defenses, 139
AddRoundKey, 73
Adobe Acrobat, 133
ADSL, 62–63
Advisory format description, 104
AES, 70–71, 80–82, 88–89
Age-stamp analysis, 10, 12
Age-stamped net tracking, 5, 14
Algorithm, 42, 50–52, 59–60, 81

anomaly detection algorithms, 50
cipher algorithm, 60
ciphering algorithm, 59
encryption algorithms, 81
sequential algorithm, 51
sequential hypothesis testing

algorithm, 52
Anomaly detection, 23, 49–54, 56,

60, 66, 137
count-min sketch, 53–54
introduction, 49–52
multi-channel cumulative sum

algorithm, 54–57
Anonymization networks, 137
Anti-phishing

architecture, 109
solution, 108

Anti-Phishing Working Group
(APWG), 107–108

Anti-virus vendors, 134
Apache-Knacker, 14
Application communities, 134–135,

137–139
Application-level filtering, 18
Application-level gateway (ALG),

144–147, 149
ARBOR, 18

Architecture, 3–9
interposition details, 9
retainting, 6–8
tracking issues, 4–6

Argos, 1, 3, 16–17, 136
Audit trails, 17

B
Bayesian methods, 46
Benchmark tool, 30
Black-holes, see Honeypots
Black-white tagging, 5–6
Blacklist, 123
Block cipher, 69–70, 72, 81–82, 84
Boolean alarm variable, 61
Boostrap methodology, 43
Botnets, 134–135
BSI Grundschutz Manual (GSHB),

147–148

C
Camellia, 70–71, 75, 77, 79–83,

88–89
CBC mode, 73, 84
Chkrootkit, 24, 30
Ciphertext block, 84–87, 89
Ciphertext repetitions, 87
Clones, 119–127
Clone attack, 119–123, 125

bots and botnets, 120–121
internet relay chat, 120

CMS, see Count-min sketch
Code injection signatures, 12
Code randomization, 139
Collapsar, 31
Common announcement interchange

format (CAIF), 104

156 Subject Index

Common model of system
information (CMSI), 104

Common vulnerabilities and
exposures, 104

Common vulnerability scoring system
(CVSS), 103

Communication component, 138
Computer security incident response

team (CSIRT), 95, 97–98, 100
Content-based filtering, 137
Content filtering, 139
Cost matrix, 36–38, 40–43, 46
Cost-sensitive classification methods,

35, 45
Count-Min Sketch, 51–54, 57–62
Cryptographic

algorithm, 71
certificates, 111

CUSUM, 53, 56–57, 59–62

D
Dark space, 136
DDoS, see Distributed Deny Of

Services
Decision support, 102–103
Decision tree, 101–102
Decrypted data log, 7–8, 10, 14
Decrypted SSL, 6–7, 18
Default deny, 144
Default fact sets (DFS), 98
Demilitarised zone (DMZ), 145
Denial-of-Service, 23, 40, 49, 96,

119, 133–134
Detection rate (DR), 38, 40, 44, 65
Deutsches advisory format, 104
Distributed Deny Of Services (DDOS),

49–50, 62, 66, 119, 135
DoS, see Denial-of-Service
Downstream security zones, 145
DShield.org, 134

E
e-commerce, 108
E-Government Manual (EGov), 148
Elastic block ciphers, 69–90

examples, 70–83

common items, 72–73
elastic AES, 73–75
elastic camellia, 75–77
elastic MISTY1, 77–78
elastic RC6, 78–79
Key schedules, 81–83
randomness test results, 80

introduction, 69–70
Elastic camellia, 76

See also Camellia
Elastic chaining, 83–84, 89
Elastic electronic code book, 83
Emulation, 15, 139
Encryption, 69–70, 83–84, 86, 89

elastic chaining mode, 84–86
elastic ECB mode, 86–88
overview, 83

End-of-round whitening, 71, 75, 79, 82
End-to-end encryption, 145
Ethereal, 13–15
Eurecom, 16
Excel, 133
Exponential weighted moving

average (EWMA), 56, 62

F
False alarm (FA), 35–36, 38, 40, 44,

55, 57, 62, 65
False alarm rate, 36, 38, 57, 62
Feistel network, 70–71, 75, 77–78
Filters, 14–15
fingerprint, 10
Fingerprinting, 1–2, 18
Fixed-length block cipher, 73, 83
FL function, 75, 77
Flickr, 108, 114
Format string, 10, 12
France Telecom, 62

G
Galois field, 58–60
Gaussian distribution, 55–56
Gaussian mixture model (GMM),

38–39, 41, 43
Gnutella P2P network, 114
Google, 112–114

Subject Index 157

Graphical password, 115–116
See also Password

H
Hamming distance, 60
Hassle, 2–4, 6–7, 9–18
Heap corruption, 12
Hidden layer, 38
HIDS tools, 32
High-speed Network, 49–68
Hit-list, 132–133
Honey@home, 134, 136–137
Honeypot, 3, 15–16, 18, 132–134,

136–137
Host-based intrusion detection

sensors, 146
Hotmail, 113
Hyperspector, 31

I
IDS, see Intrusion detection systems
Immunizing component, 138
Internal network, structure of, 150
Internet relay chat, 119–120
Internet worms, 131–133

client-side attacks, 133
defense mapping, 133
encryption, 132
flash worm, 131
hit lists, 132
hybrid worms, 132
metamorphism, 132
polymorphism, 132
stealth worm, 131

Interposer filter, 4, 10, 15, 17
Interposition, 4, 17–18
Introspection, 22, 25
IntroVirt, 31
Intrusion detection

agents, 22–24, 27
cost sensitive classification, 36–39

algorithmic comparison, 37–38
alternative quality metrics, 37–38
cost matrix, 37
models, 38–39

experiments, 39–45

introduction, 35–37
tool, 22–23, 25

IOzone Filesystem, 30
IPSec, 3
IRC network geekirc, 125
ISi-LANA, 143–151
ISi-Mail, 151
ISi-Web, 151

J
JavaScript, 145–146
JDBC, 146

K
K-ary hash table, 50
K-hash tables, 50
KDD dataset, 36, 40–41
KENGINE, 102
Kernel, 3, 22–27, 28, 32

code, 28, 32
level rootkits, 22
symbol, 28

Key-dependent permutation, 72–74,
77–79, 82, 89

Key-expansion rates, 82

L
LAPT, see Light-weight affected

product tags
Library interposition, 17
Light-weight affected product tags,

98–100
Linux cryptolib, 27
Linux debian distribution, 27
Livewire, 31

M
Malware, 145
Management network, structure of, 149
Mangled key, 59–60
Manitou, 31
Markov chain, 124–125
Massphishing, 111
Meta-cost, 36
Metamorphism, 132
Micro-benchmarks, 17

158 Subject Index

Microsoft Word, 133
MISTY1, 69–71, 78, 80–83, 88–89
MixColumns steps, 73
MLP model, 38, 41, 43, 45
MLRS, see Multi-layer reversible

sketch
Monitoring mechanism, 137–138
Multi-layer reversible sketch, 57–61, 64

N
Naïve Bayes model, 40–41
Naive classifier, 42
NATs, 132
Net tracking, 5, 10, 17

signature, 17
Netflow, 50, 62
NetScan, 49
Netstat, 31
Network-based intrusion detection

sensors, 146
Network trace, 3–6, 8, 10–14, 135
NickServ, 121
NIDS, 2, 18, 27, 31–32
Noah project, 16
Non-polymorphic attacks, 18

O
ODBC, 146
128-bit block, 71, 75, 79, 88
Open Source Vulnerability Database

(OSVDB), 104
Open Vulnerability and Assessment

Language (OVAL), 104
OpenSSL, 8–9, 15, 27
OpenVPN, 27
OS-level semantics, 25
OSCAR project, 62
OTIP traces, 62, 64

P
P-A-P gateway, 144–146
Packet filter, 147, 149–150
PACT

architecture, 109
definition, 109
example, 109

case studies, 111–115
PACT enabled e-commerce

service, 113–114
PACT enabled e-mail service,

111–113
evaluation, 110–111

limitations, 111
resistance, 110
suspension policy, 110

Paladin, 31
Passface, 116
Password, 115–116, 122
Past Activity Tests, see PACT
Pattern-based signature, 10–11, 12,

14, 17–18
Phishing, 107–108, 111, 116

attack trends report, 107
proxy threat model, 111
web sites, 108, 116

PID, see process identifier
Polymorphic

attacks, 2, 10, 13, 17
buffer, 3, 13

Polymorphism, 2, 4, 132
PortScan, 49, 63
PostgreSQL Data-Base, 112
PowerPoint, 133
Private networks, 122
Probabilistic automata, 124, 127
Probe, 40
Process identifier, 26, 28
Prototype

anti-spoofing, 29
modules authenticator, 28
processes checker, 28
promiscuous mode checker, 28–29

Pseudo-code, 11
Pseudo-unique combination, 8
Psyco-Virt, 22–27, 29–31

evaluation of, 29
function of, 29
Introspection VM, 26–27
limitation, 31
monitored VM, 27
overall architecture, 24–25

PwdHash, 115

Subject Index 159

Q
Qemu 0.8, 17
Qui-Gon, 119, 123–125, 127

distinguishing Oracle, 124–125
temporal Oracle, 124

R
R2L, see Remote to Local
RC4, 72
RC6, 70, 88
Real user corporation, 116
Receiver operational characteristics

(ROC), 64
Regexp (regular expression), 123
Remote to Local (R2L), 40, 44
ReVirt, 31
Robots, 120
Rolling trace file, 3
Rootkits, 21–22, 29

S
Sandboxing, 137
SCADA, 135
Scoring, 96
Security and Performance, 29–31

effectiveness, 29–30
limitations, 31
performance overhead, 30

Security gateway, 144–145, 148, 150
P-A-P, 145
Structure, 149
three-stage, 144
zone of, 146, 150

Self-propagating worms, 134
SELinux, 23
Shiftrows step, 73
Signature generation, 4, 9–14

pattern-based, 10–13
polymorphic buffer overflows, 13–14

Single-origin net tracking with
age-stamp analysis (SontAsa),
12, 14

Single-origin net tracking without
age-stamps (SontNoAsa),
10–11, 13

16-byte boundaries, 87–88

64-bit block cipher, 77
Sketch, see K-ary hash table
SMTP, 88, 145
SMURF, 57
Snort and Bro, 1–3, 10, 18, 24, 50
Snort-like signature, 3
Splicing, 85, 87
SSL connection structure, 8
SSL encryption, 3
SSL library, 4, 7, 15
State melting, 128
State splitting, 128
Static analysis techniques, 1
Stealth attack, 134
STEM05, 138–139
SURFnet5, 16
SYN flooding, 50, 52, 54, 57, 62–63

T
TaintCheck, 1, 17
Tainted data, 3, 5, 7, 11, 18
Tests and validation of the

distinguishing Oracle, 125–127
test against a more clever attack, 127
test against existing attacks, 126

Tripwire, 27, 30
Trusted computing base (TCB), 23

U
U2R, see User to Root attack
UDP, 8, 10, 57, 148
Unicode, 11–12, 18
User to Root (U2R), 40, 44
UTF-8, 11

V
Variable-length block cipher, 74
Vigilante, 1, 17–18
Virtual honeypot, 31, 136–137

See also Honeypot
Virtual machines (VMs), 21
Virtual machine introspection, 22, 32
Virtual machine monitor (VMM),

21–22
Virtual skins, 115
Virtualization technology, 22, 24, 31

160 Subject Index

VRDA, see Vulnerability response
decision assistance

Vulnerabilities, 13, 40, 95
properties of, 96

Vulnerability and eXposure Markup
Language (VuXML), 104

Vulnerability-based signature, 10, 13,
15, 17–18

VULnerability Data publication and
Exchange Format (VULDEF),
100, 104

Vulnerability response decision
assistance, 93–105

data exchange, 100
decision modeling, 101–102
facts, 96–98
filters, 100

introduction, 93–94
light-weight affected product tags,

98–99

W
Web 2.0, 135
Wrapper algorithm, 36

X
Xen Control library, 27
XenAccess, 27
XOR, 60, 74, 84, 89
XORing, 73, 79

Z
Zero-day attack, 133
Zero-day software failures, 137

Lecture Notes in Electrical Engineering

(continued from page ii)

Sensors
Mukhopadhyay, Subhas Chandra; Huang, Yueh-Min (Eds.)
2008, Approx. 444 p., Hardcover
ISBN: 978-3-540-69030-6, Vol. 21

Smart Sensors and Sensing Technology
Mukhopadhyay, S.C.; Gupta, G.S. (Eds.)
2008, Approx. 433 p., Hardcover
ISBN: 978-3-540-79589-6, Vol. 20

Basic Principles of Fresnel Antenna Arrays
Minin, Igor V.; Minin, Oleg V.
2008, Approx. 217 p., Hardcover
ISBN: 978-3-540-79558-2, Vol. 19

Fundamental Numerical Methods for Electrical Engineering
Rosloniec, Stanislaw
2008, Approx. 300 p., Hardcover
ISBN: 978-3-540-79518-6, Vol. 18

RFID Security and Privacy
Henrici, Dirk
2008, Approx. 300 p., Hardcover
ISBN: 978-3-540-79075-4, Vol. 17

Advances in Mobile and Wireless Communications
Frigyes, István; Bito, Janos; Bakki, Péter (Eds.)
2008, Approx. 430 p., Hardcover
ISBN: 978-3-540-79040-2, Vol. 16

Informatics in Control Automation and Robotics
Andrade Cetto, Juan; Ferrier, Jean-Louis; Pereira, José Miguel Costa Dias;
Filipe, Joaquim (Eds.)
2008, Approx. 400 p., Hardcover
ISBN: 978-3-540-79141-6, Vol. 15

Advances in Computational Algorithms and Data Analysis
Ao, Sio-Iong, Rieger, Burghard; Chen, Su-Shing (Eds.)
2008, Approx. 500 p., Hardcover
ISBN: 978-1-4020-8918-3, Vol. 14

Bandwidth Extension of Speech Signals
Iser, B.; Minker, Wolfgang; Schmidt, Gerhard
2008, Approx. 200 p., Hardcover
ISBN: 978-0-387-68898-5, Vol. 13

Proceedings of Light-Activated Tissue Regeneration and
Therapy II Conference
Waynant, Ronald; Tata, Darrell B.
2008, Approx. 400 p., Hardcover
ISBN: 978-0-387-71808-8, Vol. 12

Advances in Numerical Methods
Mastorakis, Nikos; Sakellaris, John (Eds.)
2008, Approx. 300 p., Hardcover
ISBN: 978-0-387-76482-5, Vol. 11

Embedded Systems Specification and Design Languages
Villar, Eugenio (Ed.)
2008, Approx. 400 p., Hardcover
ISBN: 978-1-4020-8296-2 , Vol. 10

Content Delivery Networks
Buyya, Rajkumar; Pathan, Mukaddim; Vakali, Athena (Eds.)
2008, Approx. 400 p., Hardcover
ISBN: 978-3-540-77886-8 , Vol. 9

Unifying Perspectives in Computational and Robot Vision
Kragic, Danica; Kyrki, Ville (Eds.)
2008, Approx. 250 p., Hardcover
ISBN: 978-0-387-75521-2 , Vol. 8

Sensor and Ad-Hoc Networks
Makki, S.K.; Li, X.-Y.; Pissinou, N.; Makki, S.; Karimi, M.; Makki, K. (Eds.)
2008, Approx. 350 p. 20 illus., Hardcover
ISBN: 978-0-387-77319-3 , Vol. 7

Trends in Intelligent Systems and Computer Engineering
Castillo, Oscar; Xu, Li; Ao, Sio-Iong (Eds.)
2008, Approx. 750 p., Hardcover
ISBN: 978-0-387-74934-1, Vol. 6

Advances in Industrial Engineering and Operations Research
Chan, Alan H.S.; Ao, Sio-Iong (Eds.)
2008, XXVIII, 500 p., Hardcover
ISBN: 978-0-387-74903-7, Vol. 5

Advances in Communication Systems and Electrical Engineering
Huang, Xu; Chen, Yuh-Shyan; Ao, Sio-Iong (Eds.)
2008, Approx. 700 p., Hardcover
ISBN: 978-0-387-74937-2, Vol. 4

Time-Domain Beamforming and Blind Source Separation
Bourgeois, J.; Minker, W.
2009, approx. 200 p., Hardcover
ISBN: 978-0-387-68835-0, Vol. 3

Digital Noise Monitoring of Defect Origin
Aliev, T.
2007, XIV, 223 p. 15 illus., Hardcover
ISBN: 978-0-387-71753-1, Vol. 2

Multi-Carrier Spread Spectrum 2007
Plass, S.; Dammann, A.; Kaiser, S.; Fazel, K. (Eds.)
2007, X, 106 p., Hardcover
ISBN: 978-1-4020-6128-8, Vol. 1

	Cover
	Proceedings of the 3rd European Conference
on Computer Network Defense
	Lecture Notes in Electrical Engineering
Volume 30
	ISBN: 0387855548
	Preface
	Contents

	1
Encrypted Channels by Way of RetaintingTales from the Crypt: Fingerprinting Attacks on
	1 Introduction
	2 Architecture
	2.1 Tracking Issues
	2.2 Retainting
	2.2.1 Determining the Tag
	2.2.2 Identifying the SSL Conversation

	2.3 Interposition Details

	3 Signature Generation
	3.1 Pattern-Based Signatures
	3.2 Signatures for Polymorphic Buffer Overflows

	4 Filters
	5 Results
	6 Related Work
	7 Conclusions
	References

	2
MachinesTowards High Assurance Networks of Virtual
	1 Introduction
	2 Psyco-Virt Overview
	2.1 Overall Architecture
	2.2 Introspection VM
	2.3 Monitored VM

	3 Current Prototype
	3.1 Introspection Functions
	3.1.1 Detecting Kernel Modifications
	3.1.2 Running Processes Checker
	3.1.3 Loaded Modules Authenticator
	3.1.4 Promiscuous Mode Checker
	3.1.5 Anti-Spoofing

	4 Security and Performance Results
	4.1 Effectiveness
	4.2 Performance Overhead
	4.3 Limitations

	5 Related Works
	6 Conclusions and Future Developments
	Acknowledgments
	References

	3
ClassificationIntrusion Detection Using Cost-Sensitive
	1 Introduction
	2 Cost Sensitive Classification
	2.1 Choice of the Cost Matrix
	2.2 Algorithmic Comparisons and Alternative Quality Metrics
	2.3 Models

	3 Experiments
	3.1 Databases
	3.2 Technical Details
	3.3 Results

	4 Conclusions
	References

	4
High-Speed NetworksA Novel Approach for Anomaly Detection over
	1 Introduction
	2 Related Work
	3 Background
	3.1 Count-Min Sketch
	3.2 Multi-Channel Cumulative Sum Algorithm

	4 Proposed Approach
	5 Experiments Results
	6 Conclusions
	Acknowledgments
	References

	5
and Modes of EncryptionElastic Block Ciphers in Practice: Constructions
	1 Introduction
	2 Elastic Block Cipher Examples
	2.1 Overview
	2.2 Common Items
	2.3 Elastic AES
	2.4 Elastic Camellia
	2.5 Elastic MISTY1
	2.6 Elastic RC6
	2.7 Randomness Test Results
	2.8 Key Schedules

	3 Modes of Encryption
	3.1 Overview
	3.2 Elastic Chaining Mode
	3.3 Elastic ECB Mode

	4 Conclusions
	Acknowledgments
	References

	6
Vulnerability Response Decision Assistance
	1 Introduction
	2 VRDA
	2.1 Facts
	2.2 Light-Weight Affected Product Tags
	2.3 Data Exchange
	2.4 Decision Modeling

	3 Current Usage
	4 Future Direction
	5 Related Work
	5.1 Common Vulnerability Scoring System (CVSS)
	5.2 Exchange Formats
	5.3 Other Work

	References

	7
Phishing Using Past Activity TestsAlice, What Did You Do Last Time? Fighting
	1 Introduction
	2 PACT Architecture
	2.1 PACT Definition
	2.2 Example PACTs

	3 PACT Evaluation
	3.1 PACT Resistance
	3.2 PACT Suspension Policy
	3.3 PACT Limitations

	4 Case Studies
	4.1 A PACT Enabled E-Mail Service
	4.2 A PACT Enabled E-Commerce Service
	4.3 Results

	5 Related Work
	6 Conclusions
	References

	8
Internet Relay ChatQuiGon: The First Tool Against Clone Attack on
	1 Introduction
	2 Clone Attack on Internet Relay Chat
	2.1 Internet Relay Chat
	2.2 Bots and Botnets
	2.3 Clone Attacks
	2.4 How to Prevent Such Attacks?

	3 Usual Protections
	3.1 Passwords to Enter the Network
	3.2 Blacklist
	3.3 Use Simple Regexp

	4 Qui-Gon
	4.1 The Temporal Oracle
	4.2 The Distinguishing Oracle

	5 Tests and Validation of the DistinguishingOracle
	5.1 Test Against Existing Attacks
	5.2 Test Against a More Clever Attack

	6 Conclusions
	References

	9
Network/Endpoint Collaboration and InteractionDefending Against Next Generation Through
	1 Introduction
	1.1 Impact of Failing to Solve the Problem

	2 Research DirectionsOver the last five years significant research
	3 Honey@home
	4 Application Communities
	5 Conclusions
	Acknowledgments
	References

	10 ISi-LANA – A Secure Basic Architecture for Networks Connected to the Internet

	1 Introduction
	2 Basic Architecture
	2.1 Using Internet Services
	2.2 Providing Internet Services
	2.3 Administration and Monitoring
	2.4 Implementation and Operations

	3 Discussion
	3.1 Overall Structure
	3.2 Structure of the Security Gateway
	3.3 Structure of the Management Network
	3.4 Structure of the Internal Network

	4 Conclusions

	Author Index
	Subject Index

