
Memory Aware DVFS framework for SPARC
based LEON3 Processor

By
Zohaib Najam

NUST201362497MCEME35513F

Supervisor
Dr. Umar Shahbaz Khan

Department of Mechatronics Engineering

A thesis submitted in partial ful�llment of the requirements for the degree of Master of
Science in Mechatronics Engineering (MS-78)

In
College of Electrical and Mechanical Engineering,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(August 2016)

Memory Aware DVFS framework for SPARC
based LEON3 Processor

By
Zohaib Najam

NUST201362497MCEME35513F

A thesis submitted in partial ful�llment of the requirements for the degree
of Master of Science in Mechatronics Engineering (MS-78)

Thesis Supervisor
Dr. Umar Shahbaz Khan

Thesis Superviser's Signature:

In
College of Electrical and Mechanical Engineering,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(August 2016)

Declaration

I hereby declare and certify that this research work titled "Memory Aware DVFS

Framework for SPARC based LEON3 Processor" is my own work and to the best
of my knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the award of
any degree or diploma at NUST CEME or at any other educational institute, except
where due acknowledgement has been made in the thesis. Any contribution made to the
research by others, with whom I have worked at NUST CEME or elsewhere, is explicitly
acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,
except for the assistance from others in the project's design and conception or in style,
presentation and linguistics which has been acknowledged.

Zohaib Najam

NUST201362497MCEME35513F

Signature:

i

Language Correctness Certi�cate

This thesis has been read by an English expert and is free of typing, syntax, semantic,
grammatical and spelling mistakes. Thesis is also according to the format given by the
University.

Author Name: Zohaib Najam

NUST201362497MCEME35513F

Signature:

Superviser Signature:

ii

Copyright Statement

Copyright in text of this thesis rests with the student author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions given by
the author and lodged in the Library of NUST College of E&ME. Details may be obtained
by the Librarian. This page must form part of any such copies made. Further copies (by
any process) may not be made without the permission (in writing) of the author.
The ownership of any intellectual property rights which may be described in this thesis is
vested in NUST College of E&ME, subject to any prior agreement to the contrary, and
may not be made available for use by third parties without the written permission of the
College of E&ME, which will prescribe the terms and conditions of any such agreement.
Further information on the conditions under which disclosures and exploitation may take
place is available from the Library of NUST College of E&ME, Rawalpindi.

iii

Certi�cate of Originality

I hereby declare that this submission is my own work and to the best of my knowledge
it contains no materials previously published or written by another person, nor material
which to a substantial extent has been accepted for the award of any degree or diploma at
NUST CEME or at any other educational institute, except where due acknowledgement
has been made in the thesis. Any contribution made to the research by others, with whom
I have worked at NUST CEME or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,
except for the assistance from others in the project's design and conception or in style,
presentation and linguistics which has been acknowledged.

Author Name: Zohaib Najam

NUST201362497MCEME35513F

Signature:

iv

Acknowledgment

I am thankful to my beloved parents who raised me and supported me throughout my
life in good and bad times. I would also like to express special thanks to my supervisor
Dr. Umar Shahbaz Khan for his sincere supervision throughout my thesis and also for
Advanced Embedded System course which he has taught me.
I can safely say that I have in depth understanding of this subject. I would also like
to thank Dr. Muhammad Yasir Qadri, Dr. Khurram Kamal and Dr. Mohsin Islam
Tiwana to assess and evaluate my Thesis Dissertation, and express my special thanks to
Dr. Mubashir Saleem for his guidance as PG coordinator.
I am also thankful to Mr. Zahid and Ayaz for his support and cooperation. Finally,
I would like to express my gratitude to all the individuals who have rendered valuable
assistance to my study.

v

Abstract

This research has proposed hardware modi�cation in softcore LEON3 processor based
on SPARC V8 Architecture. LEON3 is an open source softcore processor described in
VHDL hardware description language, the softcore nature of LEON3 allows high level of
recon�guration and customization of hardware design so the major contribution of this
dissertation is to modify the hardware design to include support for dynamic voltage
frequency scaling and a technique to change the system operating frequency at run time
during the execution of standard benchmark applications. In addition, this research has
also proposed a technique to acquire performance statistics of the processor such as cache
hit/miss ratio and number of cycles consumed by the application which in turn can be
exploited to recon�gure the operating frequency to improve performance of the system.
The proposed techniques have been tested on a Xilinx prototyping board XUPV5 and
performance statistics have been validated by comparative analysis with LEON3 simulator
TSIM.

vi

Table of Contents

1 Introduction and Motivation 1

1.1 Problem Statement and Contribution . 1
1.2 LEON3 Architecture . 2
1.3 Space Applications . 3

2 Literature Review 4

2.1 Background of DVFS . 4
2.1.1 DVFS Algorithms . 5

2.2 Background of PMU . 6
2.2.1 Power estimation and PMU . 6
2.2.2 Predictability and Energy optimization using Cache line locking . . 7

3 Design and Methodology 8

3.1 DVFS related modi�cations in hardware design of LEON3 8
3.1.1 Voltage/Frequency Control Unit . 10
3.1.2 Implications of DVFS on UART . 10

3.2 PMU related modi�cations in hardware design of LEON3 11
3.2.1 Event Detection . 11
3.2.2 Event Polling . 11
3.2.3 Counter collection . 11
3.2.4 Performance monitoring scheme and HPC controller 13

4 Implementation and Results 15

4.1 Hardware Test Environment . 15
4.2 System Testing . 15

4.2.1 Development �ow . 15
4.2.2 System Con�guration . 16
4.2.3 Experimental Results of DVFS . 17
4.2.4 Experimental Results of PMU . 17

5 Conclusion 23

5.1 Future Work . 23

A VHDL Source Code - Dynamic Frequency Recon�guration 25

B VHDL Source Code - Performance Monitoring Unit 32

B.1 Hardware source modi�cation for I-Cache 32
B.2 Hardware source modi�cation for D-Cache 34

vii

List of Figures

1.1 Architectural Diagram of LEON3 showing AMBA bus connections 2

3.1 An illustration of Dynamic Frequency Scaling; System clock (clkm) never
stops and switches between clocks generated by DCM (clk_dcm) and DCM_ADV
(CLKFX_OUT), LOCKED_OUT shows the status of newly synthesized
frequency . 9

3.2 Architectural Modi�cation of LEON3 which includes support for recon�g-
urable system clock frequency . 9

3.3 Flow chart of I-Cache HPCs . 12
3.4 Flow chart of D-Cache HPCs . 13
3.5 Modi�ed architecture of LEON3 with HPC controller 14

4.1 To verify implementation of DVFS and PMU in LEON3 architecture, Xil-
inx FPGA Virtex-5 ML509 prototyping board has been deployed in our
experimentation . 16

4.2 Complete development �ow of this work which includes implementation of
enhanced LEON3 on target FPGA and debugging using GRMON 16

4.3 Normalized execution time and power consumption for Coremark bench-
mark application . 18

4.4 Normalized execution time and power consumption for Dhrystone bench-
mark application . 19

4.5 Normalized execution time and power consumption for Stanford benchmark
application . 20

4.6 Comparison of D-Cache Hit rate with GRMON (H/W) 20
4.7 Comparison of I-Cache Hit rate with GRMON (H/W) 21
4.8 Error plot of I,D cache hit rate GRMON (H/W) VS TSIM 21
4.9 Error plot of I,D cache hit rate Modelsim (Simulation) VS TSIM 22

5.1 Pseudocode of MA-DVFS Algorithm. 24

viii

List of Tables

3.1 DFS modes of operation . 10
3.2 Look-up table for system frequency . 10

4.1 LEON3 platform and system con�guration 17
4.2 Overhead Analysis and FPGA Resource Utilization 17

ix

Chapter 1

Introduction and Motivation

The research work in this dissertation has been presented in three parts. First part
includes support for performance monitoring unit in LEON architecture to report dynamic
events such as cache hit/miss ratio, number of executed instructions and number of cycles
consumed by a particular application. A performance monitoring unit is very important
to debug complex hardware design but open source GPL distribution of LEON3 does
not support this feature. Second part includes support for dynamic voltage frequency
scaling to dynamically recon�gure processor's operating frequency which will have certain
implications on performance and power consumption. The last part consist of integration
of �rst and second part i.e to recon�gure operating frequency driven and controlled by
real-time performance statistics.

1.1 Problem Statement and Contribution

In battery operated electronic devices such as smart phones, tablets and laptops better
battery time and fast processing has been the need of consumers and hence becomes a
challenging milestone for developers and design engineers. Dynamic voltage frequency
scaling has been considered as one of the most e�cient technique to reduce power con-
sumption speci�cally for battery operated devices. Over the years many sophisticated
DVFS algorithms and heuristics have been introduced to address power issues, however
most of the DVFS algorithms have been developed using direct relation of frequency and
power consumption as discussed in equation 2.2.

Pstatic = Ileakage × VDD. (1.1)

Pdynamic = CL × V 2
DD × fp. (1.2)

Recent research also suggests that reducing the CPU frequency may not always reduce
the power consumption due to processes involved in memory accesses. The contribution
of this dissertation is to introduce memory aware DVFS algorithm for LEON architecture,
this algorithm has been implemented on android operating system but since LEON archi-
tecture does not include support for dynamic voltage frequency scaling and performance
monitoring unit, the proposed framework was not implemented prior to this disserta-
tion. Moreover including support for PMU and DVFS are the other contributions of this
dissertation.

1

Figure 1.1: Architectural Diagram of LEON3 showing AMBA bus connections

1.2 LEON3 Architecture

LEON3 is a 32-bit soft multicore processor based on SPARC V8 architecture written in
synthesizable VHDL language[1]. The complete LEON3 system is highly con�gurable
via VHDL generics de�ned in the con�guration �le or xcon�g GUI tool made available
by its developers. The source code is available under various distrbutions from Gaisler
Research. LEON architecture has been designed for embedded and spacecraft applications
which requires stringent and precise real-time computing. Most of the source code is
available under the GNU General Public License (GPL) and has various template designs
to implement on �eld-programmable gate array (FPGA) prototype boards. The source
code under GPL distribution does not include clock gating, asymmetric multiprocessing
and �oating point unit which have been made available under commercial license. The
LEON3 system has been developed around advanced microcontroller bus architecture
(AMBA). The AMBA bus consist of two buses, the advanced peripheral bus (APB) and
the advanced high-performance bus (AHB). The system uses the AHB bus to connect
LEON3 processor to memory controller, debug support unit and other devices such as
Ethernet, serial and JTAG debug links. By default, minimal LEON3 system requires
processor to act as master on the bus, memory controller and APB bridge acts as slave
and uses the bus to communicate with the processor. The memory controller provides
access to three types of memories: SRAM, PROM and SDRAM and allows FPGA to
communicate with on-board memory standards. The APB bridge is connected to both
buses, acts as master on AHB while act as slave on the APB bus. The bus architecture
of LEON3 has made each IP core to be mapped at a particular address space, this is
useful to access on-chip registers of each attached IP core from application program, such
as UART scalar register, multiprocessor status register and GPIO data register. New
modules can be easily added to the system using AMBA AHB/APB buses and it can be
veri�ed using GRMON. A block diagram of LEON3 architecture is shown in Fig. 1.1.

2

1.3 Space Applications

The major applications of the proposed enhancement in LEON3 include hard real time
systems such as space applications. Researchers have also developed various space appli-
cations based on LEON3 processors. Performance estimation for spacecraft applications
was suggested by [2] using LEON3 FT processor with the computation of only signi�cant
events related to space applications i.e. cycles per instruction, time per instruction, time
per cycle and instructions per task. Space related applications are also tested with on
board FPGA based LEON FT processor platform by [3] for H2Sat mission and evaluate
the reliability and e�ectiveness of a recon�gurable processor i.e. LEON3 over ordinary
satellite command system.
Performance comparison between LEON based processors and other processors for vari-
ous space craft application and mission is provided in [4]. Frequency based performance
evaluation was done by [5] for space applications with LEON based platform.

1.4 Summary

In this chapter LEON3 state of the art soft core processor based on SPARC V-8 architec-
ture has been brie�y discussed, as research work under this dissertation has been carried
out on this architecture. In addition hardware modi�cation of LEON3 and contribution
of this research has also been summarized in this chapter, the rest of the chapters are
summarized as follows.
Chapter 2 talks about the literature review to discuss related work, research originality
and novelty of this dissertation. In Chapter 3 we will discuss the modi�ed and Enhanced
LEON3 architecture in terms of dynamic voltage frequency scaling (DVFS) and real time
performance statistics. Chapter 4 will include the implementation results, validation of
those results and overheads induced due to work contribution in this dissertation. The
last chapter is conclusion and it highlights research novelty and its potential in the �eld
of Embedded Systems and Computer Architecture, it also covers how this research can
be extended in future if appropriate measures are taken.

3

Chapter 2

Literature Review

The research work of this dissertation has three parts. PMU part has been implemented
by various researchers in internationally published articles, [6] has introduced a real-time
performance monitoring unit for LEON3 and made comparative analysis with LEON3
emulator TSIM but this work was limited to single core LEON3 processor. Real-time
hardware performance statistics are considered e�cient metrics to recon�gure hardware
design, memory aware DVFS framework is an instance of such recon�guration. This
algorithm has been implemented on android operating system and the results suggests
improvement in performance and energy consumption than situation of simply selecting
lowest supported frequency [7].

2.1 Background of DVFS

The increase in transistor density in hardware prototyping environments has enabled the
implementation of complex systems on a single chip at the expense of high device cost and
power consumption. Over the last decade the manufacturers of Field Programmable Gate
Arrays (FPGA) such as Actel, Altera and Xilinx have improved their devices in terms of
logic density, therefore the deployment of recon�gurable hardware in embedded systems
to optimize both performance and power consumption has been one of the important area
of research [8]. [9] highlight the challenges of recon�gurable processor architectures and
need of a performance monitoring scheme to implement complex hardware designs on
FPGA's. In [10] an e�cient power saving technique is presented in which partial dynamic
recon�guration (PDR) has been deployed in FPGA to recon�gure part of the hardware
design on the �y without interrupting rest of the system design. DVFS (Dynamic Voltage
Frequency Scaling) is also one of the widely used power reduction techniques for general
purpose processors and is generally implemented in the kernel to change the frequency
and voltage of a microprocessor in real time driven by various supported algorithms [11].
The major contribution of this paper is to include support for DVFS in LEON3 architec-
ture driven by general-purpose I/O port of LEON3. In [12] similar framework for 32-bit
PowerPC system on chip has been proposed to address battery powered applications.
Over the years researchers have greatly explored DVFS for power saving and proposed
e�cient algorithms which have proven better results as well. [5] have analyzed the per-
formance of LEON 3FT processor at di�erent operating frequencies and the end result
shows improved execution time in contrast to processors among LEON's predecessors.
The e�ciency of DVFS can be further enhanced by combining dynamic parallelism with
DVFS [13]. DVFS is a technique which allows voltage and frequency of a processor to be

4

adjusted on the �y in order to manage CPU energy consumption and processing capac-
ity. When high performance is the priority frequency can be increased to a higher level
(Over clocking) similarly frequency can be decreased to a lower level (CPU throttling)
in order to extend battery time and reduce power dissipation. However, recent research
also suggests that reducing the CPU frequency does not necessarily reduce the power
consumption [7]. This is mainly observed for memory bound applications where optimal
power consumption occurs at a frequency other than the lowest one supported by the
processor because such applications mainly rely on memory access and its latency which
are independent of CPU frequency [7].

GPL (general public license) distribution of LEON3 does not support DVFS so the
contribution of this paper involves architectural modi�cation to include support for DVFS
in LEON3. The work presented in this paper is based on integration of GPL distribu-
tion of LEON3 with Xilinx commercially available soft IP DCM_ADV. DCM_ADV is
the Xilinx primitive commercially available soft IP that provides all the clock synthesis
capabilities of the original DCM as well as access to the dynamic clock recon�guration
feature. The dynamic clock recon�gurable feature enables synthesis of a new frequency
adjusted clock without reloading the bitstream into FPGA.

2.1.1 DVFS Algorithms

DVFS is a widely used technique to leverage the trade-o� between power consumption
and throughput and it has been implemented in various architectures[14]. Modern pro-
cessors such as Intel XScale, AMD Athlon and Transmeta Crusoe are equipped with the
DVFS feature[15]. DVFS has been considered as the most e�cient way to reduce power
consumption and dissipation as it reduces both static (leakage) and dynamic power [16].

Pstatic = Ileakage × VDD. (2.1)

Pdynamic = CL × V 2
DD × fp. (2.2)

Over the years various algorithms and heuristics have been proposed in the implementa-
tion of DVFS. Arti�cial Intelligence (AI) driven algorithms have certainly shown its signi�-
cance in high performance computations, probabilistic models and statistical reasoning[17].
In [15] Kong and Choi have proposed a DVFS technique for multicore sytems which con-
sidered energy-delay product (EDP) of running application to decide optimal settings of
frequency and voltage of processor cores dynamically. Another approach estimates the
subsequent workload and deadlines in advance and DVFS is performed by operating sys-
tem (O.S) to reduce power consumption [18]. In another DVFS technique, the proposed
algorithm require either application or compiler support in order to perform DVFS [19].
DVFS technique which has proven better results involves processor run-time statistics and
online learning algorithm to determine voltage and frequency at a given time with a goal
of minimizing energy consumption. This algorithm has proven better results in terms of
power saving with a slight degradation in performance for both memory bound and CPU
bound applications [19, 20]. In [16] temperature aware dynamic scaling framework is pro-
posed, DVFS technique is based on chip temperature in order to reduce both static and
dynamic power. In [21] dynamic run-time events such as memory access counts and cache
hit/miss ratio obtained from performance monitoring unit (PMU) are used as heuristics
to dynamically scale voltage and frequency, similar to this approach, Y.Liang proposed

5

a novel memory aware DVFS algorithm based on correlation between critical speed and
memory access rate of the benchmark applications [22]. This approach has also proven
better results in terms of energy saving when compared to Linux built-in On-demand
DVFS [22]. Some other DVFS algorithms consider cache miss and instruction per cycle
rate (IPC) as a �ne heuristics to drive voltage scaling[23, 24]. Related work suggests that
DVFS algorithms requires real-time feedback of dynamic events but GPL distribution of
LEON3 does not include real-time performance monitoring unit which is the contribution
of [6].

2.2 Background of PMU

Most modern processors are equipped with PMS to aggregate �ne-grained information
regarding its hardware design. Requirement of performance statistics in recon�gurable
computing has motivated many researchers to provide non-intrusive and real-time moni-
toring of performance statistics with minimal resource usage. Related work has been done
for LEON3 platform by [25]. The authors provide architectural modi�cation to include
PMS under single, dual and quad-core LEON3 processors but their proposed scheme needs
to include a speci�c software infrastructure to collect performance statistics that includes
perf_event of Linux and require kernel mode for execution. Improving LEON3 with the
aid of PMS for speci�c spacecraft applications and worst-case execution time (WCET)
analysis is explained by [6], but this work was limited to a single core implementation only.
[26] compute accurate cycles per instruction (CPI) components by proposing hardware
performance counter architecture and tested using SPEC CPU 2000 benchmark suit. The
authors compared their results against the one implemented in IBM POWER5.
Ideal architecture for pro�ling require three features as explained in [27] including con-
currency, non-intrusiveness and �exibility. It requires concurrent monitoring of counters
and in this paper we have presented concurrent monitoring of events in hardware while
providing �exibility in software to sample events at run-time. Secondly it requires the
modi�cation to be less intrusive in terms of resource utilization such that there should be
no need for extra dedicated bus or new instructions for the hardware. The proposed work
has been implemented in hardware with minimal resources and less intrusive as explained
in section 4. Thirdly, hardware must allow software to control and access collected data
with �exibility and scalability, as in our work software can fully control the performance
monitoring mechanism by start pro�ling, stop pro�ling, resetting and collecting counters.

2.2.1 Power estimation and PMU

In recent years productivity of hardware counters is extended as it is considered as a
key metric for power estimation. Emulation of workload distribution using hardware per-
formance counters is presented by [28]. Recon�gurable computing is generally deployed
to optimize resource utilization per application. The recon�gurable feature can only be
exploited if software/hardware developer can monitor hardware performance metrics at
run time. [9] discuss the challenges of recon�gurable processors and e�ectiveness of per-
formance counters. [29] has exploited the correlation between power consumption and
performance of processor and complete estimation of power consumption using perfor-
mance counters without any dedicated power sensor hardware.
Common application focused by researchers using PMS is for workload optimization.

6

Performance-energy trade-o� and linear correlation between performance and energy can
be considered perfect case study for this enhanced architecture. Dynamic power esti-
mation using HPC support is exploited by [30] via related hardware counters. Only
four events i.e. [x,y,z,a] were used by [31] to estimate real time performance and thread
scheduling.

2.2.2 Predictability and Energy optimization using Cache line
locking

Recent studies show that cache line locking can be useful for improvement of predictability
and performance-power ratio in real time embedded systems. [32] provides cache locking
scheme for the improvement of predictability caused by increasing performance to power
ratio for speci�c percentage of cache size locked. Other applications of PMS includes run
time tuning and adjustment of cache con�gurations in order to save energy. Cache can
be con�gured for a more predictable behavior and for worst case execution time (WCET)
analysis using line locking. Line locking can be done both statically or dynamically. As
the cache requirements vary for various applications, [33] proposed a self tuning cache
to save energy for memory subsystems per application based on run time acquisition of
performance counters. [34] address the problem of unpredictability provided by cache
behavior using dynamic cache line locking. Authors provide useful implementation of line
locking based on cache performance counters to evaluate the the bottlenecks of unpre-
dictable cache behavior and worst case performance estimate for safe computation in hard
real time systems.
[35] also worked on unpredictability management using line locking and explored its im-
plications to avoid size related jitters and WCET analysis. However the applications of
PMS are not only limited to power estimation and predictability analysis but can also be
used in other techniques such as hardware support for bug detection in real time etc. [36].

7

Chapter 3

Design and Methodology

The design and methodology of this dissertation has three phases as discussed in the
introduction section.

3.1 DVFS related modi�cations in hardware design of

LEON3

LEON3/GRLIB includes multiple source distributions to target developers with di�erent
milestones. GPL is the GRLIB general public license (open source) distribution. This
open source distribution has a clock generation unit that uses DCM (IP Core provided
by Xilinx) to generate a �xed scale down processor clock typically 60 MHz. However, this
DCM does not support dynamically recon�gurable frequency adjusted clock feature.
The system on chip (SoC) has been extended to include frequency recon�gurable fea-
ture using DCM_ADV (IP Core provided by Xilinx) which includes full access to all the
features of original DCM as well as support for dynamic recon�guration circuit to dynami-
cally synthesize a new frequency adjusted clock. This functionality has been implemented
by dynamically changing the multiply and divide attributes of DCM (CLKFX_MUL
and CLKFX_DIV) using dynamic recon�gurable ports (DI and DADDR) introduced in
DCM_ADV IP Core (equation 3.1).

Processorclk = BoardFrequency × CLKFX_MUL

CLKFX_DIV
. (3.1)

The DCM induction in clock generation unit is intact and DCM_ADV primitive has
been introduced, the system clock is switching between the clock generated by DCM
and DCM_ADV. The clock generated by DCM is static whereas the clock generation
using DCM_ADV is dynamic, moreover when generating a new frequency adjusted clock,
LEON3 processor clock switches to static clock coming from DCM and when the new
frequency adjusted clock is locked, processor clock switches back to clock coming from
DCM_ADV. This is useful to ensure that processor clock never stops as stopping the
processor clock may halt the pipeline until it awakes back (Fig. 3.1).

In order to run LEON3 processor on Virtex-5 board, maximum supported processor
frequency is up to 80-90 MHz, DFS feature of DCM_ADV primitive has two modes of
operation; low and high. , both modes have di�erent valid output range of frequencies
which is shown in Table 3.1. The modes can be dynamically changed in order to satisfy
the needs of design engineers but in our case as LEON3 cannot run above 100 MHz so
mode selection in our experimentation is low.

8

Figure 3.1: An illustration of Dynamic Frequency Scaling; System clock (clkm) never
stops and switches between clocks generated by DCM (clk_dcm) and DCM_ADV
(CLKFX_OUT), LOCKED_OUT shows the status of newly synthesized frequency

Figure 3.2: Architectural Modi�cation of LEON3 which includes support for recon�g-
urable system clock frequency

9

Table 3.1: DFS modes of operation

DFS mode Fin (Mhz) Fout (Mhz)
Low 1.0 - 140 32.0 - 140
high 25 - 350 140 - 350

Table 3.2: Look-up table for system frequency

gpioo.val[10:8] DI[15:0] Frequency
000 0000011000001001 70MHz
001 0000011100001001 80MHz
010 0000011000010011 35MHz
011 0000100000010011 45MHz
100 0000101000010011 55MHz
101 0000110000010011 65MHz
110 0000111000010011 75MHz
111 0001000000010011 85MHz

3.1.1 Voltage/Frequency Control Unit

The recon�gurable ports which allow dynamic frequency scaling are programmed using
GPIO peripheral attached to advanced peripheral bus (APB) because GPIO can be ac-
cessed (read/write) from application program using its direction and data register mapped
at a particular address space in the architecture, so this modi�ed architecture would allow
the developers and design engineers to change the processor frequency on the �y during
the execution of application programs and benchmarks. The modi�ed architecture of
LEON3 including recon�gurable feature is presented in the Fig. 3.2.

3.1.2 Implications of DVFS on UART

UART is one of the peripherals attached to the APB bus and is mapped at 0x80000100
in the address space. The interface is provided for serial communications and this UART
has a programmable 12-bit scalar to generate the desired baud-rate, the number of scalar
bits can be increased with VHDL generic s-bits. One appropriate formula to calculate the
scalar value for a desired baud rate is as follows.

scaler value =
system_clock_frequency

(baud_rate ∗ 8)− 1
. (3.2)

The above equation shows that system clock has a direct e�ect on scalar value so dynam-
ically changing the system clock frequency without adjusting the scalar value accordingly
can result in UART malfunctioning. In order to avoid this situation we have recon�gured
the UART scalar register every time a new frequency adjusted clock is locked. The UART
scalar register is mapped at 0x8000010C so it can be recon�gured from the application
program.

10

3.2 PMU related modi�cations in hardware design of

LEON3

The integer unit of LEON3 is composed of pipeline stages of instructions with various
signals providing status of instruction. Cache subsystem provide various signals about
cache behavior for analysis. These signals are used to collect hardware events. Two
32-bit registers were added for both Instruction and Data cache controller to poll cache
stats and one 32-bit register was added in integer unit to poll cycles count. A simple
HPC controller was added to the integer unit for the collection of counters. Tracing
data access, timing and execution information of application automatically as a feedback
from hardware is important for performance analysis and debugging. This information
can be useful to decide optimal con�guration of recon�gurable parameters. Architectural
modi�cation includes three sub systems: event detection, event polling and collecting
counters as explained below.

3.2.1 Event Detection

Event detection is based on cache hit signals and some other events that are indicator of
cache access. Instruction cache is accessed for every clock cycle except when pipeline stall
signal is set or when pipeline nulli�es the cache access. Once instruction cache access is
discerned, hit signal in cache controller indicates instruction cache hit. Similarly in data
cache controller module of the processor, hit will occur when cache access is registered
followed by the indication that instruction is executing in memory stage with a hit signal.
The �owchart of event detection phenomenon for I-Cache is explained in Fig. 3.3, while
the �ow chart for detection of HPC's of D-Cache is illustrated in Fig. 3.4.

3.2.2 Event Polling

Event polling includes addition of registers to count the number of occurrences of speci�c
events. These counters include instruction cache access counter (IAC), instruction cache
hit counter (IHC), data cache access counter (DAC), data cache hit counter (DHC) and
cycles counter (CC). IAC, IHC and DAC, DHC all reside in the instruction cache controller
and data cache controller respectively while CC resides in the integer unit.

3.2.3 Counter collection

Data from counters can be collected using some SPARC instructions or logic analyzer at
real time. This phenomena can be controlled via HPC controller that resides in integer

11

Figure 3.3: Flow chart of I-Cache HPCs

unit. Application speci�c registers (ASRs) that are part of integer unit used for the col-
lection of counters via application program as ASR's can be read/write using simple rdasr
and wrasr instructions in C program. Writing to ASR25 decides which event to capture on
ASR24 so application program is allowed to write on ASR25 with a value corresponding
to a speci�c event such as start_pro�ling() to boot counter values, stop_pro�ling() to
stop counter increments, hpc_rst() to reset all hardware performance counters and hpc()
for collection of counters sequentially. Similarly I_cache_disable() can be used to disable
the complete instruction cache, D_cache_disable() function can be used to disable data
cache completely, CL(size) function for line locking of given cache size (separately for
instruction and data cache) and energy() function for collection of energy consumption
stats. These function were written in C assembler and decoded by HPC controller in
order to control the complete working of performance counters.

HPCs are calculated under the system of event detection and event polling. To access
these counters without any speci�ed infrastructure, SPARC instructions can be used to
fully control the functionality by writing only four bits of an ASR. User can access any
speci�c counter by writing to ASR at run time. Accessing and resetting of these counters
can be done using simple user-de�ned functions based on SPARC assembly instructions.
Performance counter reset bit (PR) is used to reset all the counters dictated by software
application. HPC controller is the brain of PMS, it allow applications to access speci�c
counter and to reset them with minimal complexity and overhead on the architecture.

12

Figure 3.4: Flow chart of D-Cache HPCs

Five 32 bit registers were added to count the events concurrently, while all these counters
are multiplexed by a simple 16x1 multiplexer. Selection of some speci�c counters or some
speci�c actions on counter values can be performed by HPC controller. Hardware reset
in addition to software reset is also included which can be controlled using FPGA switch.

Hardware counters can easily be implemented using some hardware signals reside in
integer unit and cache controller module of LEON3 architecture. Flowchart to access
hardware cache statistics are shown in Fig. 3.3 and Fig. 3.4. Flow chart illustrates that
for every rising edge of clock, system determines whether there is H/W reset from board
or a S/W reset from application program to reset counter values to zero. For instruction
cache the access counter increments for every cycle except when there is a pipeline stall
or when instruction cache access is nulli�ed because of some exception, fault or pipeline
bubble. Once this is discerned the cache hit signal will indicate the instruction cache hit
and hit counter will be incremented.

Similarly data cache access counter will increment every time when there is no H/W
or S/W reset, no pipeline stall, no nulli�ed cycle and also the executing instruction must
resides in the memory stage of pipeline. Now setting of cache hit signal will indicate that
data cache was hit and data cache hit counter will be incremented.

3.2.4 Performance monitoring scheme and HPC controller

There is no need for any speci�c software infrastructure to collect these counters, inte-
gration of customized assembly instructions with benchmark's source code are enough
to get the counter values or to reset them. Integer unit module in hardware design of
LEON3 allows processor to communicate with the external world using watchpoint reg-
isters (ASR24 - ASR31). The work presented in this paper make use of two ASR's to
implement the desired functionality. ASR24 is used to read the counter values of speci�c

13

Figure 3.5: Modi�ed architecture of LEON3 with HPC controller

event from application software driven by user speci�ed logic as user can select these
counters concurrently by communicating with HPC controller through only four bits of
ASR25.

A real time environment running standard benchmark applications need to collect
hardware performance statistics for that application so there must be an interface be-
tween application and hardware to read these counters when desired. Ability to reset
these counters from application program makes it possible to extract performance in-
formation before switching to any other application, this in turn allows continuous re-
con�guration of parameters at run-time. The complete modi�cation and enhancement
of LEON3 architecture with controller for HPCs is illustrated in Fig. 3.5. Performance
counters which resides in cache controller modules are multiplexed with each other and
controlled by ASR25 so that counter value of any monitored event is readily available at
application level. HPC controller resides in integer unit and is provided with reset (RST)
signal to reset the counter values in hardware, hence, pro�ling of events can be stopped
by setting the reset signal for number of clock cycles and pro�ling can be started again
by lowering the reset signal at application level using ASR's. GRMON debugger can be
used for analysis of performance results as these counter values were also mapped to Logic
Analyzer (LOGAN) core of LEON3 available in GPL distribution for run-time evaluation.

14

Chapter 4

Implementation and Results

4.1 Hardware Test Environment

Before the discussion of tests and their obtained results, a brief introduction of the test
environment is presented. Fig. 4.1 shows the prototyping board used in our experimen-
tation to verify the proposed functionality. It is the target device for implementation
of LEON3 core. This technology supports dynamic recon�gurable clock synthesis fea-
ture as provided by DCM_ADV Xilinx primitive. The board has 100 MHz single ended
crystal oscillator and is powered by 3.3V supply, it provides the source clock to dynamic
recon�gurable circuit of DCM.

A part of test environment involves use of GRMON debug monitor, a debugging soft-
ware tool intended to debug and examine the hardware con�guration of LEON3 system
at run-time. GRMON can be started from command prompt in Windows platform and
support multiple interfaces such as JTAG, UART and Ethernet to connect to the target
device. GRMON also allows downloading and execution of cross compiled application
programs using simple load and run commands once attached to the target prototyping
board running LEON3 processor. When GRMON connects to the target system it scans
the system con�guration which includes list of attached IP cores, system operating fre-
quency and GRLIB build version. This can be done by reading plug and play information
located at 0x��f000 address on AHB bus, as this information also includes processor oper-
ating frequency so once processor operating frequency is dynamically changed during the
execution of programs, exiting and then reconnecting GRMON can be used to validate
that a new frequency has indeed been locked.

4.2 System Testing

In this section we �rst describe the complete development �ow of this study followed by
system con�guration and �nally the tests performed with their results.

4.2.1 Development �ow

The development �ow of our experimentation involves integration of embedded software
applications and embedded hardware platform. Xilinx ISE design suite is used to generate
hardware bitstream of LEON3 processor that can be downloaded on FPGA device and
the execution of software application programs on target prototyping board is controlled

15

Figure 4.1: To verify implementation of DVFS and PMU in LEON3 architecture, Xilinx
FPGA Virtex-5 ML509 prototyping board has been deployed in our experimentation

via GRMON debug monitor for LEON3 processor. The whole process is shown in Fig.4.2

4.2.2 System Con�guration

LEON3 processor is initially con�gured via GUI made available by its developers to allow
users an o�ine initial con�guration of a complete LEON3 system which includes number
of cores, operating frequency and cache size etc. Table 4.1 shows LEON3 platform and
system con�guration.

Figure 4.2: Complete development �ow of this work which includes implementation of
enhanced LEON3 on target FPGA and debugging using GRMON

16

Table 4.1: LEON3 platform and system con�guration

System Frequency Recon�gurable (New feature)
PMU Yes (New feature)

Processor Cores 4 (SMP)
I-Cache 8KB, 32bytes/line
D-Cache 4KB, 32bytes/line

Integer Unit Yes
Target Technology Virtex-5 FPGA

Simulation Environment ModelSim
GRLIB Release GPL 1.2.2-b4123

Table 4.2: Overhead Analysis and FPGA Resource Utilization

Type of Resource LEON3 LEON3 + DVFS Resource Increment
Slices 7251 out of 17280 7251 out of 17280 No Increment
LUTs 15,771 out of 69,120 15,792 out of 69,120 21 out of 69,120 (0.03%)
Block RAM 27 out of 148 27 out of 148 No Increment
Fan-out 3361 3373 12
DCM_ADVs 6 out of 12 7 out of 12 1 out of 12 (8.33%)
BUFGs 15 out of 32 18 out of 32 3 out of 32 (9.40%)
Power (W) 4.709 4.757 0.048

4.2.3 Experimental Results of DVFS

In this study standard representative benchmarks such as Dhrystone, Coremark and Stan-
ford have been considered to analyze the implications of DVFS on execution time and
power consumption of corresponding programs, these benchmark applications are tested
at nine di�erent frequencies supported by enhanced LEON3 architecture and the results
are shown in Fig. 4.3, 4.4, 4.5. In order to compute power consumption of these pro-
grams product of number of cycles and power per cycle was measured. XPower Analyzer
tool has been used to evaluate power per cycle at each supported frequency level. A brief
comparison of FPGA resource utilization is also presented in Table 4.2 to analyze the
overheads introduced by the proposed system due to architectural modi�cations.

Results suggests that the benchmarks included in this study are CPU bounded pro-
grams, for memory bounded programs minimum power consumption occurs at a frequency
other than the lowest one supported by the architecture [7].

4.2.4 Experimental Results of PMU

As explained earlier, the results have been evaluated and compared using three di�erent
approaches for various benchmarks. Instruction cache hit rate as a performance stastistic
is evaluated for stanford and coremark bench suits with Modelsim, TSIM and hardware
as illustrated in Fig. 4.6. Similarly I cache results are explained in Fig. 4.7 for those
benchmarks.

17

Figure 4.3: Normalized execution time and power consumption for Coremark benchmark
application

Comparison with TSIM

Results have been validated and compared with TSIM. TSIM is an instruction level,
cycle accurate, con�gurable LEON emulator provided by Aero�ex Gaisler. It can emulate
a single LEON processor non-intrusively. System con�gurations deployed in our test
environment are same as default TSIM con�gurations. The perf command of TSIM
provide number of cycles, instructions executed, CPI and cache miss/hit ratio for both
I-cache and D-cache. The e�ectiveness of TSIM is limited as it cannot be used for real
time analysis. Simulation results of PMS are obtained using Modelsim and for real time
hardware results GRMON application software is used to load and execute programs with
customized assembly instructions in order to get the counter values of dynamic hardware
events

Performance statistics of various standard benchmarks have been observed over TSIM
for comparative analysis with the results obtained in this study. Results section suggest
the precision achieved in this study as the error percentage lies within the tolerance lelvel
of TSIM as established in �gure 4.8 and 4.9. Application programs considered in this paper
are small programs such as tree, bubble, perm etc extracted from Stanford benchmark so
that performance statistics can be obtained in simulation using Modelsim.

18

Figure 4.4: Normalized execution time and power consumption for Dhrystone benchmark
application

19

Figure 4.5: Normalized execution time and power consumption for Stanford benchmark
application

Q
u
ic
k

T
ow

er

Q
u
ee
n
s

In
tm

m

C
or
em

ar
k

P
er
m

T
re
e

B
u
b
b
le

90

95

100

D
C
ac
h
e
h
it
ra
te

%

Hardware TSIM Modelsim

Figure 4.6: Comparison of D-Cache Hit rate with GRMON (H/W)

20

Q
u
ic
k

T
ow

er

Q
u
ee
n
s

In
tm

m

C
or
em

ar
k

P
er
m

T
re
e

B
u
b
b
le

99.2

99.4

99.6

99.8

100

I
C
ac
h
e
h
it
ra
te

%

Hardware TSIM Modelsim

Figure 4.7: Comparison of I-Cache Hit rate with GRMON (H/W)

Q
u
ic
k

T
ow

er

Q
u
ee
n
s

In
tm

m

C
or
em

ar
k

P
er
m

T
re
e

B
u
b
b
le

0

2

4

6

8

E
rr
or

%

I-Cache D-Cache

Figure 4.8: Error plot of I,D cache hit rate GRMON (H/W) VS TSIM

21

Q
u
ic
k

T
ow

er

Q
u
ee
n
s

In
tm

m

C
or
em

ar
k

P
er
m

T
re
e

B
u
b
b
le

0

2

4

6

E
rr
or

%

I-Cache D-Cache

Figure 4.9: Error plot of I,D cache hit rate Modelsim (Simulation) VS TSIM

22

Chapter 5

Conclusion

This dissertation has a major contribution in open source hardware design of LEON3
soft core processor. The hardware design of LEON3 written in VHDL hardware de-
scription language has been modi�ed to include support for run-time recon�guration of
system frequency and real time processor statistics in terms of cache hit/miss ratio. The
contribution of this dissertation allows developers and researchers to apply various intel-
ligent algorithms based on memory access rate to recon�gure system frequency in order
to optimize both performance and power consumption. Prior to this research work these
algorithms cannot be validated on a LEON3 system as the open source LEON3 design
neither supports run-time frequency scaling nor gives real time processor statistics which
are pre-requisites to use memory aware algorithms.
This MS dissertation has produced two research articles accepted in international con-
ferences in 2016. Research article titled Real Time Implementation of DVFS Enhanced
LEON3 MPSoC on FPGA has been accepted in International Conference on Intelligent
and Advanced System (ICIAS 2016) and research article titled Enhancement of LEON3
processor for Real Time and Feedback Applications has been accepted in International
Seminar on Intelligent Technology and Its Applications (ISITIA - 2016).

5.1 Future Work

This MS dissertation has a great potential of future work, the contribution of this research
work can be extended to implement memory aware algorithm for dynamic recon�guration
of hardware variable such as number if processor cores, cache size and system operating
frequency which can lead to better performance and optimal power consumption. One
such algorithm is presented in [22] where system operating frequency is dynamically re-
con�gured based on memory access rate of the running application. This algorithm has
been implemented in Android and Linux operating system with underlying ARM archi-
tecture [22] [7]. As this MS dissertation comes with prerequisites of this algorithm, the
MAR algorithm can be implemented on a LEON3 system to improve performance and
power requirements of LEON3 which is speci�cally designed for space applications. The
summary of MA-DVFS algorithm is presented in Figure 5.1 where MAR is the memory
access rate de�ned by the following expression.

MAR =
Instruction cachemisses+Data cachemisses

Number of Executed Instructions
. (5.1)

23

Figure 5.1: Pseudocode of MA-DVFS Algorithm.

24

Appendix A

VHDL Source Code - Dynamic

Frequency Recon�guration

entity c lkgen_vir tex5 i s

generic (
clk_mul : i n t e g e r := 1 ;
clk_div : i n t e g e r := 1 ;
sdramen : i n t e g e r := 0 ;
noc lk fb : i n t e g e r := 0 ;
pc ien : i n t e g e r := 0 ;
p c i d l l : i n t e g e r := 0 ;
p c i s y s c l k : i n t e g e r := 0 ;
f r e q : i n t e g e r := 25000 ; −− c l o c k f requency in KHz
c lk2xen : i n t e g e r := 0 ;
c l k s e l : i n t e g e r := 0) ; −− enab l e c l o c k s e l e c t

port (
rst_adcm : in s td_log i c ;
cnt : in s td_log ic_vector (2 downto 0) ;
dcm_clk_off : out s td_ulog ic ;

c l k i n : in s td_ulog ic ;
p c i c l k i n : in s td_ulog ic ;
c l k : out s td_ulog ic ; −− main c l o c k
c lkn : out s td_ulog ic ; −− i n v e r t e d main c l o c k
c lk2x : out s td_ulog ic ; −− doub le c l o c k
sdc lk : out s td_ulog ic ; −− SDRAM c lo c k
p c i c l k : out s td_ulog ic ; −− PCI c l o c k
c g i : in clkgen_in_type ;
cgo : out clkgen_out_type ;
c lk1xu : out s td_ulog ic ; −− unsca led c l o c k
c lk2xu : out s td_ulog ic −− unsca led 2X c l o c k

) ;
end ;

architecture s t r u c t of c lkgen_vir tex5 i s

component BUFG port (O : out s td_log i c ; I : in s td_log i c) ;

25

end component ;

component BUFGMUX port (O : out s td_ulog ic ; I0 : in s td_ulog ic ;
I1 : in s td_ulog ic ; S : in s td_ulog ic) ;

end component ;

component DCM
generic (
CLKDV_DIVIDE : r e a l := 2 . 0 ;
CLKFX_DIVIDE : i n t e g e r := 1 ;
CLKFX_MULTIPLY : i n t e g e r := 4 ;
CLKIN_DIVIDE_BY_2 : boolean := f a l s e ;
CLKIN_PERIOD : r e a l := 1 0 . 0 ;
CLKOUT_PHASE_SHIFT : s t r i n g := "NONE" ;
CLK_FEEDBACK : s t r i n g := "1X" ;
DESKEW_ADJUST : s t r i n g := "SYSTEM_SYNCHRONOUS" ;
DFS_FREQUENCY_MODE : s t r i n g := "LOW" ;
DLL_FREQUENCY_MODE : s t r i n g := "LOW" ;
DSS_MODE : s t r i n g := "NONE" ;
DUTY_CYCLE_CORRECTION : boolean := true ;
FACTORY_JF : b i t_vector := X"C080" ;
PHASE_SHIFT : i n t e g e r := 0 ;
STARTUP_WAIT : boolean := f a l s e

) ;
port (
CLKFB : in s td_log i c ;
CLKIN : in s td_log i c ;
DSSEN : in s td_log i c ;
PSCLK : in s td_log i c ;
PSEN : in s td_log i c ;
PSINCDEC : in s td_log i c ;
RST : in s td_log i c ;
CLK0 : out s td_log i c ;
CLK90 : out s td_log i c ;
CLK180 : out s td_log i c ;
CLK270 : out s td_log i c ;
CLK2X : out s td_log i c ;
CLK2X180 : out s td_log i c ;
CLKDV : out s td_log i c ;
CLKFX : out s td_log i c ;
CLKFX180 : out s td_log i c ;
LOCKED : out s td_log i c ;
PSDONE : out s td_log i c ;
STATUS : out s td_log ic_vector (7 downto 0)

) ;
end component ;

26

COMPONENT adcm
PORT(

CLKIN_IN : IN s td_log i c ;
DADDR_IN : IN s td_log ic_vector (6 downto 0) ;
DCLK_IN : IN s td_log i c ;
DEN_IN : IN s td_log i c ;
DI_IN : IN s td_log ic_vector (15 downto 0) ;
DWE_IN : IN s td_log i c ;
RST_IN : IN s td_log i c ;
CLKFX_OUT : OUT s td_log i c ;
CLK0_OUT : OUT s td_log i c ;
DRDY_OUT : OUT s td_log i c ;
LOCKED_OUT : OUT s td_log i c
) ;

ENDCOMPONENT;

component BUFGDLL port (O : out s td_log i c ; I : in s td_log i c) ;
end component ;

constant VERSION : i n t e g e r := 1 ;
−−cons tant CLKIN_PERIOD_ST : s t r i n g := "20 .0" ;
constant FREQ_MHZ : i n t e g e r := f r e q /1000 ;

−−a t t r i b u t e CLKIN_PERIOD : s t r i n g ;
−−a t t r i b u t e CLKIN_PERIOD of d l l 0 : l a b e l i s CLKIN_PERIOD_ST;
signal gnd , clk_i , clk_j , clk_k , clk_l , clk_m , l s d c l k : s td_log i c ;
signal clk_x , clk_n , clk_o , clk_p , clk_i2 , clk_sd , clk_r : s td_log i c ;
signal d l l 0 r s t , d l l 0 l o ck , d l l 1 l o ck , d l l 2 x l o c k : s td_log i c ;
signal d l l 1 r s t , d l l 2 x r s t : s td_log ic_vector (0 to 3) ;
signal clk0B , c l k i n t , p c i c l k i n t : s td_log i c ;

−−−−−−−−−−−DCM_ADV−−−−−−−−−−−−−−−−−−−−−−−−−−−
signal c lk fx , c lk0 , locked , drdy , dcm_clk : s td_log i c ;
signal di : s td_log ic_vector (15 downto 0) ;
signal clkscale_m7d10 : s td_log ic_vector (15 downto 0) := 16#0609#;
signal clkscale_m8d10 : s td_log ic_vector (15 downto 0) := 16#0709#;
signal clkscale_m7d20 : s td_log ic_vector (15 downto 0) := 16#0613#;
signal clkscale_m9d20 : s td_log ic_vector (15 downto 0) := 16#0813#;
signal clkscale_m11d20 : s td_log ic_vector (15 downto 0) := 16#0A13#;
signal clkscale_m13d20 : s td_log ic_vector (15 downto 0) := 16#0C13#;
signal clkscale_m15d20 : s td_log ic_vector (15 downto 0) := 16#0E13#;
signal clkscale_m17d20 : s td_log ic_vector (15 downto 0) := 16#1013#;
−−−
begin

dcm_clk_off <= dcm_clk ;
c lk_i <= c l k f x when (locked = '1 ') else dcm_clk ;

gnd <= ' 0 ' ;

27

c l k <= clk_i when (CLK2XEN = 0) else clk_p ;
c lkn <= clk_m ; c lk2x <= clk_i2 ;

c0 : i f (PCISYSCLK = 0) or (PCIEN = 0) generate

c l k i n t <= c l k i n ;
end generate ;

c2 : i f PCIEN /= 0 generate

p c i c l k i n t <= pc i c l k i n ;
p3 : i f PCISYSCLK = 1 generate c l k i n t <= p c i c l k i n t ;

end generate ;
p0 : i f PCIDLL = 1 generate

x1 : BUFGDLL port map (I => pc i c l k i n t , O => pc i c l k) ;
end generate ;
p1 : i f PCIDLL = 0 generate

x1 : BUFG port map (I => pc i c l k i n t , O => pc i c l k) ;
end generate ;

end generate ;

c3 : i f PCIEN = 0 generate

p c i c l k <= ' 0 ' ;
end generate ;

c lk1xu <= clk_k ;
c lk2xu <= clk_x ;
bufg0 : BUFG port map (I => clk0B , O => dcm_clk) ;
bufg1 : BUFG port map (I => clk_j , O => clk_k) ;
bufg2 : BUFG port map (I => clk_l , O => clk_m) ;
buf34gen : i f (CLK2XEN /= 0) generate

cs0 : i f (c l k s e l = 0) generate

bufg3 : BUFG port map (I => clk_n , O => clk_i2) ;
end generate ;
c s1 : i f (c l k s e l /= 0) generate

bufg3 : BUFGMUX port map (S => cg i . c l k s e l (0) ,
I0 => clk_o , I1 => clk_n , O => clk_i2) ;

end generate ;
bufg4 : BUFG port map (I => clk_o , O => clk_p) ;

end generate ;
d l l 0 r s t <= not c g i . p l l r s t ;

d l l 0 : DCM
generic map (CLKFX_MULTIPLY => clk_mul ,

CLKFX_DIVIDE => clk_div ,
DFS_FREQUENCY_MODE => "LOW" ,

DLL_FREQUENCY_MODE => "LOW")
port map (CLKIN => c lk i n t , CLKFB => clk_k ,

DSSEN => gnd , PSCLK => gnd ,
PSEN => gnd , PSINCDEC => gnd ,

28

RST => d l l 0 r s t , CLK0 => clk_j ,
CLKFX => clk0B , CLK2X => clk_x ,

CLKFX180 => clk_l , LOCKED => d l l 0 l o c k) ;
−− end genera te ;

Inst_adcm : adcm PORTMAP(
CLKIN_IN => c lk i n t ,
DADDR_IN => "1010000" ,
DCLK_IN => c lk i n t ,
DEN_IN => '1 ' ,
DI_IN => di ,
DWE_IN => '1 ' ,
RST_IN => rst_adcm ,
CLKFX_OUT => clk fx ,
CLK0_OUT => clk0 ,
DRDY_OUT => drdy ,
LOCKED_OUT => locked

) ;

c lk2xgen : i f (CLK2XEN /= 0) generate

d l l 2 x : DCM generic map

(CLKFX_MULTIPLY => 2 ,
CLKFX_DIVIDE => 2 ,

DFS_FREQUENCY_MODE => "LOW" ,
DLL_FREQUENCY_MODE => "LOW")

port map (CLKIN => clk_i , CLKFB => clk_p ,
DSSEN => gnd , PSCLK => gnd ,
PSEN => gnd , PSINCDEC => gnd ,
RST => d l l 2 x r s t (0) , CLK0 => clk_o ,

CLK2X => clk_n , LOCKED => d l l 2 x l o c k) ;
−− end genera te ;

r s t d e l 2 x : process (clk_i , d l l 0 l o c k)
begin

i f d l l 0 l o c k = '0 ' then d l l 2 x r s t <= (others => ' 1 ') ;
e l s i f r i s ing_edge (c lk_i) then

d l l 2 x r s t <= d l l 2 x r s t (1 to 3) & ' 0 ' ;
end i f ;

end process ;
end generate ;

d i_drive : process (cnt , rst_adcm) i s

begin

i f (cnt = "000") then

di <= clkscale_m7d10 ;
e l s i f (cnt = "001") then

di <= clkscale_m8d10 ;
e l s i f (cnt = "010") then

29

di <= clkscale_m7d20 ;
e l s i f (cnt = "011") then

di <= clkscale_m9d20 ;
e l s i f (cnt = "100") then

di <= clkscale_m11d20 ;
e l s i f (cnt = "101") then

di <= clkscale_m13d20 ;
e l s i f (cnt = "110") then

di <= clkscale_m15d20 ;
else

di <= clkscale_m17d20 ;
end i f ;
end process ;

clk_sd1 : i f (CLK2XEN = 0) generate

c lk_i2 <= clk_x ;
d l l 2 x l o c k <= d l l 0 l o c k ;
clk_sd <= dcm_clk ;

end generate ;

clk_sd2 : i f (CLK2XEN = 1) generate clk_sd <= clk_p ; end generate ;
clk_sd3 : i f (CLK2XEN = 2) generate clk_sd <= clk_i2 ; end generate ;

sd0 : i f (SDRAMEN /= 0) and (NOCLKFB=0) generate

cgo . c l k l o c k <= d l l 1 l o c k ;
d l l 1 : DCM generic map

(CLKFX_MULTIPLY => 2 ,
CLKFX_DIVIDE => 2 ,

DFS_FREQUENCY_MODE => "LOW" ,
DLL_FREQUENCY_MODE => "LOW" ,

DESKEW_ADJUST => "SOURCE_SYNCHRONOUS")
port map (CLKIN => clk_sd , CLKFB => cg i . p l l r e f ,

DSSEN => gnd , PSCLK => gnd ,
PSEN => gnd , PSINCDEC => gnd , RST => d l l 1 r s t (0) ,

CLK0 => l sdc l k , −−CLK2X => clk2x ,
LOCKED => d l l 1 l o c k) ;

−− end genera te ;
bufgx : BUFG port map (I => l sdc l k , O => sdc lk) ;
r s t d e l : process (clk_sd , d l l 2 x l o c k)
begin

i f d l l 2 x l o c k = '0 ' then d l l 1 r s t <= (others => ' 1 ') ;
e l s i f r i s ing_edge (clk_sd) then

d l l 1 r s t <= d l l 1 r s t (1 to 3) & ' 0 ' ;
end i f ;

end process ;
end generate ;

30

sd1 : i f ((SDRAMEN = 0) or (NOCLKFB = 1)) and (CLK2XEN /= 2)
generate

sdc lk <= clk_i ;
cgo . c l k l o c k <= d l l 0 l o c k when (CLK2XEN = 0) else d l l 2 x l o c k ;

end generate ;

sd1_2x : i f ((SDRAMEN = 0) or (NOCLKFB = 1)) and (CLK2XEN = 2)
generate

sdc lk <= clk_i2 ;
cgo . c l k l o c k <= d l l 2 x l o c k ;

end generate ;
cgo . p c i l o c k <= ' 1 ' ;

end ;

31

Appendix B

VHDL Source Code - Performance

Monitoring Unit

B.1 Hardware source modi�cation for I-Cache

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
l ibrary g r l i b ;
use g r l i b . amba . a l l ;
use g r l i b . s t d l i b . a l l ;
l ibrary g a i s l e r ;
use g a i s l e r . l i b i u . a l l ;
use g a i s l e r . l i b c a ch e . a l l ;
use g a i s l e r . mmuconfig . a l l ;
use g a i s l e r . mmuiface . a l l ;

entity mmu_icache i s

generic (
i c en : i n t e g e r range 0 to 1 := 0 ;
i r e p l : i n t e g e r range 0 to 3 := 0 ;
i s e t s : i n t e g e r range 1 to 4 := 1 ;
i l i n e s i z e : i n t e g e r range 4 to 8 := 4 ;
i s e t s i z e : i n t e g e r range 1 to 256 := 1 ;
i s e t l o c k : i n t e g e r range 0 to 1 := 0 ;
lram : i n t e g e r range 0 to 1 := 0 ;
l r ams i z e : i n t e g e r range 1 to 512 := 1 ;
l r amsta r t : i n t e g e r range 0 to 255 := 16#8e#;
mmuen : i n t e g e r := 0

) ;
port (

r s t : in s td_log i c ;
c l k : in s td_log i c ;
hitcounter_p : out s td_log ic_vector (31 downto 0) ;
cache_access_count_p : out s td_log ic_vector (31 downto 0) ;
hpc_rst : in s td_ulog ic ;−−najam added−−

32

holdn : in s td_ulog ic ;
i c i : in icache_in_type ;
i c o : out icache_out_type ;
dc i : in dcache_in_type ;
dco : in dcache_out_type ;
mci i : out memory_ic_in_type ;
mcio : in memory_ic_out_type ;
i c rami : out icram_in_type ;
icramo : in icram_out_type ;
fpuholdn : in s td_log i c ;
mmudci : in mmudc_in_type ;
mmuici : out mmuic_in_type ;
mmuico : in mmuic_out_type

) ;
end ;

architecture r t l of mmu_icache i s

begin

h i tcount : process (c l k)
begin

i f r i s ing_edge (c l k) then

i f (r s t = '1 ') then

i f (i c i . i n u l l = '0 ') then

i f (holdn = '1 ') then

i f (r . h i t = '1 ') then

h i t count e r <= h i t count e r + 1 ;
else

h i t count e r <= h i t count e r ;
end i f ;

end i f ;
end i f ;

else

h i t count e r <= "00000000000000000000000000000000" ;
end i f ;

end i f ;

i f hpc_rst= '1 ' then−−modif ied−−
h i t count e r <= "00000000000000000000000000000000" ;

end i f ;
end process ;

cache_access : process (c l k)
begin

i f r i s ing_edge (c l k) then

i f (r s t = '1 ') then

i f (i c i . i n u l l = '0 ') then

i f (holdn = '1 ') then

cache_access_count <= cache_access_count + 1 ;

33

else

cache_access_count <= cache_access_count ;
end i f ;

end i f ;
else

cache_access_count <= 16#0000#;
end i f ;

end i f ;
i f hpc_rst= '1 ' then−−modif ied−−
cache_access_count <= "00000000000000000000000000000000" ;

end i f ;
end process ;
end ;

B.2 Hardware source modi�cation for D-Cache

d_hitcount : process (c l k)
begin

i f r i s ing_edge (c l k) then

i f (r s t = '1 ') then

i f (dc i . enaddr and holdn and not dc i . n u l l i f y) = '1 ' then

i f (r . h i t = '1 ') then

d_hitcounter <= d_hitcounter + 1 ;
else

d_hitcounter <= d_hitcounter ;
end i f ;

end i f ;
else

d_hitcounter <= 16#0000#;
end i f ;

end i f ;
i f hpc_rst= '1 ' then−−modif ied−−
d_hitcounter <= "00000000000000000000000000000000" ;

end i f ;
end process ;

dcache_accesscount : process (c l k)
begin

i f r i s ing_edge (c l k) then

i f (r s t = '1 ') then

i f (dc i . enaddr and holdn and not dc i . n u l l i f y) = '1 ' then

dcache_accesscounter <= dcache_accesscounter + 1 ;
else

dcache_accesscounter <= dcache_accesscounter ;
end i f ;

else

dcache_accesscounter <= 16#0000#;
end i f ;

34

end i f ;
i f hpc_rst= '1 ' then−−modif ied−−
dcache_accesscounter <= "00000000000000000000000000000000" ;

end i f ;
end process ;

35

Bibliography

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wil-
son, N. Borkar, G. Schrom et al., �A 48-core ia-32 message-passing processor with
dvfs in 45nm cmos,� in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2010 IEEE International. IEEE, 2010, pp. 108�109.

[2] D. E. D. G. V. A. M. S. U. Shruthi N, Prashant Kulshreshtha, �Performance Esti-
mation of a LEON 3FT Processor Based Design for Spacecraft Applications,� IOSR
Journal of Electronics and Communication Engineering (IOSR-JECE), vol. 9, no. 3,
pp. 48�54, June 2014.

[3] A. Hofmann, R. Wansch, R. Glein, and B. Kollmannthaler, �An FPGA based on-
board processor platform for space application,� in Adaptive Hardware and Systems
(AHS), 2012 NASA/ESA Conference on. IEEE, 2012, pp. 17�22.

[4] S. De Florio, E. Gill, S. D'Amico, and A. Grillenberger, �Performance comparison
of microprocessors for space-based navigation applications,� in Small Satellites for
Earth Observation: 7th International Symposium of the International Academy of
Astronautics (IAA), 4-8 May 2009, Berlin, Germany, 2009.

[5] N. Shruthi and C. Vinay, �LEON 3FT Processor Based Design for Spacecraft
Applications-Frequency Based Performance Analysis,� International Journal of En-
gineering Science Invention, vol. 3, no. 12, pp. 21�27, 2014.

[6] D. Guzman, M. Prieto, S. Sanchez, J. Almena, O. Rodriguez, and D. Meziat, �Im-
proving the LEON Spacecraft Computer Processor for Real-Time Performance Anal-
ysis,� Journal of Spacecraft and Rockets, vol. 48, no. 4, pp. 671�678, 2011.

[7] Y. Liang, P. Lai, and C. Chiou, �An energy conservation dvfs algorithm for the
android operating system,� Journal of Convergence, vol. 1, no. 1, 2010.

[8] P. Patel, �Embedded systems design using fpga,� in VLSI Design, 2006. Held jointly
with 5th International Conference on Embedded Systems and Design., 19th Interna-
tional Conference on, Jan 2006, pp. 1 pp.�.

[9] A. G. Schmidt, N. Steiner, M. French, and R. Sass, �HwPMI: an extensible perfor-
mance monitoring infrastructure for improving hardware design and productivity on
FPGAs,� International Journal of Recon�gurable Computing, vol. 2012, p. 2, 2012.

[10] I. Zaidi, A. Nabina, C. N. Canagarajah, and J. Nunez-Yanez, �Power/area analysis of
a fpga-based open-source processor using partial dynamic recon�guration,� in Digital
System Design Architectures, Methods and Tools, 2008. DSD'08. 11th EUROMICRO
Conference on. IEEE, 2008, pp. 592�598.

36

[11] B. Lin, A. Mallik, P. Dinda, G. Memik, and R. Dick, �User- and process-driven
dynamic voltage and frequency scaling,� in Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on, April 2009, pp.
11�22.

[12] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock, K. Ishii,
T. Y. Nguyen, J. L. Burns et al., �A 32-bit powerpc system-on-a-chip with support
for dynamic voltage scaling and dynamic frequency scaling,� Solid-State Circuits,
IEEE Journal of, vol. 37, no. 11, pp. 1441�1447, 2002.

[13] S. Jafri, M. Tajammul, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen, �Energy-
aware-task-parallelism for e�cient dynamic voltage, and frequency scaling, in cgras,�
in Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), 2013 International Conference on, July 2013, pp. 104�112.

[14] E. Intel, �Speedstep R© technology for the intel R© pentium R© m processor white paper,
march 2004,� Recovered 30/1/2011 from World Wide Web: ftp://download. intel.
com/design/network/papers/30117401. pdf, Tech. Rep., 2004.

[15] J. Kong, J. Choi, L. Choi, and S. W. Chung, �Low-cost application-aware dvfs for
multi-core architecture,� in Convergence and Hybrid Information Technology, 2008.
ICCIT'08. Third International Conference on, vol. 2. IEEE, 2008, pp. 106�111.

[16] Y.-W. Yang and K. S.-M. Li, �Temperature-aware dynamic frequency and voltage
scaling for reliability and yield enhancement,� in Proceedings of the 2009 Asia and
South Paci�c Design Automation Conference. IEEE Press, 2009, pp. 49�54.

[17] Z.-h. Wu, �Brain-machine interface (bmi) and cyborg intelligence,� Journal of Zhe-
jiang University Science, vol. 15, pp. 805�806, 2014.

[18] T. Ishihara and H. Yasuura, �Voltage scheduling problem for dynamically variable
voltage processors,� in Low Power Electronics and Design, 1998. Proceedings. 1998
International Symposium on. IEEE, 1998, pp. 197�202.

[19] G. Dhiman and T. S. Rosing, �Dynamic voltage frequency scaling for multi-tasking
systems using online learning,� in Proceedings of the 2007 international symposium
on Low power electronics and design. ACM, 2007, pp. 207�212.

[20] K. Choi, R. Soma, and M. Pedram, �Fine-grained dynamic voltage and frequency
scaling for precise energy and performance tradeo� based on the ratio of o�-chip
access to on-chip computation times,� Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 24, no. 1, pp. 18�28, 2005.

[21] A. Weissel and F. Bellosa, �Process cruise control: event-driven clock scaling for
dynamic power management,� in Proceedings of the 2002 international conference
on Compilers, architecture, and synthesis for embedded systems. ACM, 2002, pp.
238�246.

[22] W.-Y. Liang, S.-C. Chen, Y.-L. Chang, and J.-P. Fang, �Memory-aware dynamic
voltage and frequency prediction for portable devices,� in Embedded and Real-Time
Computing Systems and Applications, 2008. RTCSA '08. 14th IEEE International
Conference on, Aug 2008, pp. 229�236.

37

[23] D. Marculescu, �On the use of microarchitecture-driven dynamic voltage scaling,� in
Workshop on Complexity-E�ective Design, vol. 42. Citeseer, 2000.

[24] S. Ghiasi, J. Casmira, and D. Grunwald, �Using ipc variation in workloads with
externally speci�ed rates to reduce power consumption,� in Workshop on Complexity
E�ective Design. Citeseer, 2000.

[25] N. Ho, P. Kaufmann, and M. Platzner, �A hardware/software infrastructure for per-
formance monitoring on LEON3 multicore platforms,� in Field Programmable Logic
and Applications (FPL), 2014 24th International Conference on. IEEE, 2014, pp.
1�4.

[26] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, �A performance counter
architecture for computing accurate CPI components,� ACM SIGOPS Operating Sys-
tems Review, vol. 40, no. 5, pp. 175�184, 2006.

[27] P.-H. Chen, C.-T. King, Y.-Y. Chang, and S.-Y. Tseng, �Multiprocessor system-on-
chip pro�ling architecture: design and implementation,� in Parallel and Distributed
Systems (ICPADS), 2009 15th International Conference on. IEEE, 2009, pp. 519�
526.

[28] A. Bhattacharjee, G. Contreras, and M. Martonosi, �Full-system chip multiproces-
sor power evaluations using FPGA-based emulation,� in Low Power Electronics and
Design (ISLPED), 2008 ACM/IEEE International Symposium on. IEEE, 2008, pp.
335�340.

[29] W. L. Bircher and L. K. John, �Complete system power estimation using processor
performance events,� Computers, IEEE Transactions on, vol. 61, no. 4, pp. 563�577,
2012.

[30] X. Liu, L. Shen, C. Qian, and Z. Wang, �Dynamic Power Estimation with Hardware
Performance Counters Support on Multi-core Platform,� in Advanced Computer Ar-
chitecture. Springer, 2014, pp. 177�189.

[31] K. Singh, M. Bhadauria, and S. A. McKee, �Real time power estimation and thread
scheduling via performance counters,� ACM SIGARCH Computer Architecture News,
vol. 37, no. 2, pp. 46�55, 2009.

[32] A. Asaduzzaman, F. N. Sibai, and A. Abonamah, �A dynamic way cache locking
scheme to improve the predictability of power-aware embedded systems,� in Elec-
tronics, Circuits and Systems (ICECS), 2011 18th IEEE International Conference
on. IEEE, 2011, pp. 756�759.

[33] A. Gordon-Ross and F. Vahid, �A self-tuning con�gurable cache,� in Proceedings of
the 44th annual Design Automation Conference. ACM, 2007, pp. 234�237.

[34] X. Vera, B. Lisper, and J. Xue, �Data cache locking for tight timing calculations,�
ACM Transactions on Embedded Computing Systems (TECS), vol. 7, no. 1, p. 4,
2007.

[35] E. Mezzetti, N. Holsti, A. Colin, G. Bernat, and T. Vardanega, �Attacking the sources
of unpredictability in the instruction cache behavior,� in 16th International Confer-
ence on Real-Time and Network Systems (RTNS 2008), 2008.

38

[36] J. Arulraj, P.-C. Chang, G. Jin, and S. Lu, �Production-run software failure diagno-
sis via hardware performance counters,� in ACM SIGARCH Computer Architecture
News, vol. 41, no. 1. ACM, 2013, pp. 101�112.

39

