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Introduction

Nature of the Book

This is an advanced book in the science and art of valuing privately held businesses.
In order to read this book, you must already have read at least one introductory
book such as Valuing a Business (Pratt, Reilly, and Schweihs, 1996 and subsequent).
Without such a background, you will be lost.

I have written this book with the professional business appraiser as my primary
intended audience, though I think this book is also appropriate for attorneys who
are very experienced in valuation matters, investment bankers, venture capitalists,
financial analysts, and MBA students.

Throughout this book, I generally write to you, the reader, as if you are sitting
next to me and we are conversing. [ am writing to you as my colleague with whom
I share my thinking process. I prefer a conversational tone to a more formal one.

Uniqueness of This Book

This is a rigorous book, and it is not easy reading. However, the following unique
attributes of this book make reading it worth the effort:

1. It emphasizes regression analysis of empirical data. Chapter 8, “Adjusting for
Levels of Control and Marketability,”! contains the first regression analysis of
the data related to restricted stock discounts. Chapter 9 from the first edition
was a sample fractional interest discount study containing a regression analysis
of the Partnership Profiles database related to secondary limited partnership
market trades. In both cases, we found very significant results. We now know
much of what drives (a) restricted stock discounts and (b) discounts from net
asset values of the publicly registered/privately traded limited partnerships. We
moved the old Chapter 9 out of this book. It is our intention eventually to
publish a workbook to accompany this book—probably when we produce the
third edition. In the meantime, we intend to provide the old Chapter 9 on
our website, www.abramsvaluation.com, under “Books,” “Quantitative Business
Valuation.” You will also see much empirical work in Chapter 5, “Discount
Rates as a Function of Log Size,” and Chapter 9, “Empirical Testing of Abrams’
Valuation Theory.”

!Chapter 7 in the first edition of the book.
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2. Tt emphasizes quantitative skills. Chapter 3 focuses on using regression analysis
in business valuation. Chapter 4, the official title of which is “Annuity Discount
Factors and the Gordon Model” (and the unofficial title of which is “The Chapter
that Would Not Die!”) is the most comprehensive treatment of ADFs in print.
For anyone wishing to use the Mercer quantitative marketability discount model,
Chapter 4 contains the ADF with constant growth not included in Mercer (1997).?
ADFs crop up in many valuation contexts. I invented several new ADFs that
appear in Chapter 4 that are useful in many valuation contexts. Chapter 10
contains the first treatise on how much statistical uncertainty we have in our
valuations and how value is affected when the appraiser makes various errors.

3. It emphasizes putting all the pieces of the puzzle together to present a com-
prehensive, unified approach to valuation that can be empirically tested and
whose principles work for the valuation of billion-dollar firms and ma-and-pa
firms alike. While this book contains more mathematics—a worm’s-eye view, if
you will—than other valuation texts, we also refocus to the bird’s-eye view in
this section.

Organization

There are seven parts to this book:

1. Forecasting Cash Flows (Chapters 1 through 4)

2. Calculating Discount Rates (Chapter 5 through 7)

3. Adjusting for Control and Marketability (i.e., valuation premiums and discounts)
(Chapter 8)

4. Putting It All Together (Chapters 9 and 10)

5. Litigation (Chapters 11 and 12)

6. Valuing ESOPs and Buyouts of Partners and Shareholders (Chapters 13
through 15)

7. Probabilistic Valuation Methods (Chapters 16 through 18)

The first three parts of this book follow the chronological sequence of perform-
ing a discounted cash flow, although the regression analysis material in Chapter 3
applies to market methods as well.

The fourth part is empirically testing whether my methodology in the first three
parts works (i.e., yields reasonable results). Additionally, we explore (1) confidence
intervals around valuation estimates and (2) what happens to the valuation when
appraisers make mistakes.

The reason for moving partnership and shareholder buyouts into Part VI, the
ESOP section, is they share the common intellectual problem of post-transaction
dilution. While the specific topic applications differ, the intellectual problem and
process to solve it are similar.

The appraisal profession is still in the relatively early stages of using probabilistic
valuation methods. However, it is a topic that is rapidly growing in importance.

*It is possible that he included this in a later edition, but T have not verified that.
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Hence we have added Chapters 17 and 18, Monte Carlo Simulation (MCS) and Real
Options (RO) Analysis, to the book. Because valuing start-ups, which was Chapter
12 in the first edition, makes use of probabilistic valuation methods, it logically fits
together with Chapters 17 and 18, which is why I moved it to Chapter 16 in the
second edition.

I invited Dr. Johnathan Mun, author of Wiley books Modeling Risk and Real
Options Analysis, in addition to many other books, to write Chapters 17 and 18.
They are introductions to these two topics and to Dr. Mun’s software. We intend
to cover practical examples of using MCS and RO in the workbook. Since that is
likely to wait to accompany the third edition of this book, in the meantime look for
it on our website somewhere between June 2010 to June 2011. I encourage readers
who want to develop a deep understanding of each topic to buy Dr. Mun’s books
and software, and watch for the workbook and updates on our website. It is simply
impossible to cover these complex topics in one chapter each.

Differences in the Chapter Numbering

I added a new chapter as Chapter 2 in the second edition. That means that Chapters
2 through 7 in the first edition are now 3 through 8, respectively. I moved Chapters
8 and 9 from the first edition to our website—eventually to appear in the workbook.
Thus, Chapters 10 and 11 from the first edition are now 9 and 10 in the second
edition.

Part V, the “Litigation” section, which consists of Chapters 11 and 12 in the
second edition, is entirely new. “Valuing Start-Ups” moved from Chapter 12 in
the first edition to Chapter 16 in this edition, as it now fits in a new section of
the book, “Probabilistic Valuation Methods.”

Chapter 13 has kept the same number in the second edition. Chapter 14 is new
in the second edition. Chapter 14 in the first edition is now Chapter 15 in the second
edition. Finally, Chapters 17 and 18 are new in the second edition.

The following two tables should help you reference between chapter numbers
in the two editions. The first one is in chapter order number of the first edition,
whereas the second one is in chapter order number of the second edition.

First Edition Second Edition
1 1
2 3
3 4
4 5
5 6
6 7
7 8
8 _
9 _

10 9
11 10
12 16
13 13

14 15
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The missing chapters in the second edition sequence are new to the second
edition: Chapters 2, 11, 12, 14, 17, and 18.

First Edition Second Edition

1 1

NA 2

2 3

3 4

4 5

5 6

6 7

7 8

8 _

9 _
10 9

11 10
NA 11

NA 12

13 13

NA 14

14 15

12 16

NA 17

NA 18

Similarities and Differences in the First and Second Editions

While the intellectual content of Chapter 1, “Cash Flow: A Mathematical Derivation,”
is largely the same, I nevertheless made a substantial rewrite for better clarity and
logical flow. In general, all chapters that were in the first edition have undergone
intensive editing, even if there is no or little new material. Chapter 2, “Forecasting
Cash Flow: Mathematics of the Payout Ratio,” is a new chapter that did not exist
in the first edition. It should help the reader in converting forecast net income to
forecast cash flow.

Chapter 3 (Chapter 2 in the first edition), “Using Regression Analysis,” is
largely the same as in the first edition, with the important addition of regressing
scaled y-variables (Price-to-Sales and Price-Earnings ratios) as a way to control for
heteroscedasticity.

Chapter 4 (3 in the first edition), “Annuity Discount Factors and the Gordon
Model,” is largely the same. However, there are two new sections added: (a) Math-
ematical Derivation of the PS Multiple;> (b) The Bias in Annual (versus Monthly)
Discounting Is Immaterial.

Chapter 5 (4 in the first edition) has the following new material: (a) Keeping in
the Roaring Twenties and the Great Depression; (b) Ibbotson’s Opinion of Outliers
and the Financial Crisis of 2008; (¢) Is the Equity Premium Declining?; (d) Growth

3The first edition had a mathematical derivation of the Price-to-Earnings (PE) ratio. Now these
two topics are combined in one section.
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versus Value Stocks; and (e) The Wedge between Public and Private Firm Valuations
[This section is extremely important, being a reconciliation between the Ibbotson
total returns equation » = d (dividend yield) + g (growth, i.e., capital gains) and the
Gordon model.]; (f) Satisfying Revenue Ruling 59-60 is substantially different.

Chapters 6 and 7 (5 and 6, respectively, in the first edition), “Arithmetic versus
Geometric Means” and “An Iterative Valuation Approach,” are largely the same.

Chapter 8 (7 in the first edition), “Adjusting for Levels of Control and Mar-
ketability,” is the largest chapter in the book and requires some explanation. Unlike
other chapters, time pressure with the publishing schedule necessitated finishing
the chapter before I would have preferred. This chapter could use another 3 to 6
months’ more research. Of course, by that time, it may well be large enough to
become a book by itself. When I write the third edition of this book, it is likely
either that Chapter 8 will become a book by itself, or that T will split it into two or
more chapters.

Table 8.1A contains new data on the Mergerstat database. Chris Mercer extended
the debate that we had in the first edition into a Business Valuation Review article,
and I responded in kind. T have added my response to this chapter, which is
covered in Tables 8.20, 8.21, 8.23, and 8.24. Table 8.22 shows summary statistics
of Management Planning Inc.’s 2008 restricted stock study, and Tables 8.25 through
8.27 do the same with FMV Opinions’ 2008 restricted stock study.

In general, I cite and summarize new academic and professional articles and
include those into our analysis. The analysis is more complex, the data conflict more,
and conclusions are murkier in the second edition.

Chapters 9 and 10 (10 and 11 in the first edition), “Empirical Testing of Abrams’
Valuation Theory” and “Measuring Valuation Uncertainty and Error,” are largely the
same. Chapters 11 and 12, “Demonstrating Expert Bias” and “Lost Inventory and Lost
Profits Damage Formulas in Litigation,” are new to the second edition and comprise
the litigation section.

The next three chapters comprise Part 6. Chapter 13, “ESOPs: Measuring and
Apportioning Dilution,” is largely the same, while Chapter 14, “The Tradeoff in
Selling to an ESOP versus an Outside Buyer,” is new. Chapter 15 (14 in the first
edition), “Buyouts of Partners and Shareholders,” while covering the same topic, is
completely different in the second edition. I use a different model for the effects of
post-transaction dilution.

Chapter 16 (12 in the first edition), “Valuing Start-Ups,” has little change to the
quantitative sections. However, there is some important new research on venture
capital and angel investor rates of return. Chapters 17 and 18, “Monte Carlo Risk
Simulation” and “Real Options,” are new.

How to Read This Book

Because this book is more difficult than most, I have done my best to try to provide
more paths through it. Chapter 5 contains a shortcut version of the chapter at the
end for those who want the bottom line without all the detail. In general, T have
attempted to move most of the heaviest mathematics to appendices in order to
leave the bodies of the chapters more readable. Where that was not optimal, I have
given instructions on which material can be safely skipped.
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How you read this book depends on your quantitative skills and how much time
you have available. For the reader with strong quantitative skills and abundant time,
the ideal path is to read the book in its exact order, as there is a logical sequence.

Because most professionals do not have abundant time, I want to suggest an-
other path geared for the maximum benefit from the least investment in time. The
heart of the book is “Discount Rates as a Function of Log Size” and “Adjusting for
Levels of Control and Marketability,” Chapters 5 and 8, respectively. I recommend
the time-pressed reader follow this order:

1. Chapter 4—the following sections: from the beginning through the section titled
“A Brief Summary”; “Periodic Perpetuity Factors: Perpetuities for Periodic Cash
Flows”; and “Relationship of the Gordon Model Multiple to the Price/Earnings
and Price/Sales Ratios.”

2. Chapter 5 (the log size model for calculating discount rates)

Chapter 8 (“Adjusting for Levels of Control and Marketability”)

Chapter 9 (this empirically tests Chapters 5 and 9, the heart of the book)

N

After these chapters, you can read the remainder of the book in any order,
though it is best to read each part of the book in order and, better yet, to read the
entire book in order.

This book has well over 100 tables, many of them being two or three
pages long. To facilitate your reading, you can go to my company’s Web site,
www.abramsvaluation.com, click under “Publications” (on the left), then “Books,”
then “Quantitative Business Valuation,” and then look for the file download for the
QBV tables in PDF format. Then print out the tables and have them handy as you
read the book. Otherwise, you will spend an inordinate amount of time flipping
pages back and forth.

My Thanks to You

I thank you for investing your valuable time and money to understand my work. I
sincerely hope you will greatly benefit from it.
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PART I

Forecasting Cash Flow

Introduction

Part I of this book focuses on forecasting cash flows, the initial step in the valuation
process. In order to forecast cash flows, it is important to:

® Precisely define the components of cash flow.
® Develop statistical tools to aid in forecasting cash flows.
® Analyze different types of annuities, which are structured series of cash flows.

Chapter 1: Cash Flow: A Mathematical Derivation

In Chapter 1, we mathematically derive the cash flow statement as the result of
creating and manipulating a series of accounting equations and identities. This may
provide the appraiser with a much greater depth of understanding of how cash
flows derive from and relate to the balance sheet and income statement. It may help
eliminate errors made by appraisers who perform discounted cash flow analysis
using shortcut or even incorrect definitions of cash flow.

Chapter 2: Forecasting Cash Flow: Mathematics of the Payout Ratio

This chapter has extremely important practical use as a shortcut method of converting
forecast net income to forecast cash flows based on a mathematical formula in the
chapter. The formula measures the ratio of future capital expenditures to historical
depreciation and then adds in the effect of sales growth on net working capital. It
can save the valuation practitioner much time compared with the long method and
alternatively can be a sanity check on the long method.

Chapter 3: Using Regression Analysis

In Chapter 3, we demonstrate in detail:

® How appraisers can use regression analysis to forecast sales and expenses, the
latter being by far the more important use of regression.
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® When and why the common practice of not using more than five years of
historical data to prevent using stale data may be wrong.

® How to use regression analysis in the market approach valuation methods.
While this is not related to forecasting sales and expenses, it fits in with our
other discussions about using regression analysis.

When using publicly traded guideline companies of widely varying sizes, ordi-
nary least squares (OLS) regression will usually fail, as statistical error is generally
proportional to the market value (size) of the guideline company. However, there
are simple transformations the appraiser can make to the data that will (1) enable
him or her to minimize the negative impact of differences in size and (2) still preserve
the very important benefit we derive from the variation in size of the publicly traded
guideline companies, as we discuss in the chapter. The final result is valuations that
are more reliable, realistic, and objective.

Most electronic spreadsheets provide a least squares regression that is adequate
for most appraisal needs. I am familiar with the regression tools in both Microsoft
Excel and Lotus 123. Excel does a better job of presentation and offers much more
comprehensive statistical feedback. Lotus 123 has one significant advantage: It can
provide multiple regression analysis for a virtually unlimited number of variables,
while Excel is limited to 16 independent variables. However, Lotus has lost most of
its market share and is no longer widely in use.

Chapter 4: Annuity Discount Factors and the Gordon Model

In Chapter 4, we discuss annuity discount factors (ADFs). Historically, ADFs have
not been used much in business valuation. Thus, they have had relatively little
importance. Their importance is growing, however, for several reasons. They can
be used in:

B Calculating the present value of annuities, including those with constant growth.
This application has become far more important since the Mercer “quantitative
marketability discount model” requires an ADF with growth.

® Valuing intellectual property, which typically has a finite life.

® Valuing periodic expenses such as moving expenses, losses from lawsuits, and
SO on.

B Calculating the present value of periodic capital expenditures with growth (e.g.,
What is the PV of keeping one airplane of a certain class in service perpetually?).

® Calculating loan payments.

® Calculating loan principal amortization.

® Calculating the present value of a loan. This is important in calculating the cash
equivalency selling price of a business, as seller financing typically takes place
at less-than-market rates.

® The present value of a loan is also important in ESOP valuations.

An important addition to Chapter 4 in the second edition is developing a math-
ematical formula for the price-to-sales (PS) ratio. Combined with the formula we
already developed for the PE ratio in the first edition, these two formulas provide
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important theoretical guidance as to which independent variables to consider in a
market approach method, thereby reducing the probability of obtaining spurious
results through data mining.

Among my colleagues in the office, I unofficially titled Chapter 4, “The Chapter
that Would Not Dielll” T edited and rewrote this chapter close to 40 times striving
for perfection, the elusive and unattainable goal. It was quite a task to decide what
belongs in the body of the chapter and what should be relegated to the appendix.
My goal was to maximize readability by keeping the most practical formulas in the
chapter and moving the least useful and most mathematical work to the appendix.
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CHAPTER 1

Cash Flow

A Mathematical Derivation

Introduction

In 1987, the Financial Accounting Standards Board (FASB) issued Statement of Finan-
cial Accounting Standards No. 95, “Statement of Cash Flows.” This standard stipulates
that a statement of cash flows is required as part of a full set of financial statements
for almost all business enterprises.

As an accounting student in 1972—1974, T learned the logic of the statement of
cash flows by rote. My professors taught us the logic of the individual adjustments
from accrual net income, but they never presented the big picture, that is, how
one can derive the statement of cash flows. This chapter provides the reader with
the mathematics and conceptual logic to understand how we derive cash flows. It
should enable the reader to be more adept at working with cash flows in business
valuations.

This chapter is intended for readers who already have a basic knowledge of
accounting. Much of what follows will involve alternating between accrual and cash
reporting, which can be very challenging material.

Operating, Investing, and Financing Activities

The primary purpose of a statement of cash flows is to provide relevant informa-
tion about the cash receipts and cash payments of an enterprise. We must classify
these receipts and payments according to three basic types of activities—operating,
investing, and financing.

OPERATING ACTIVITIES ~ Operating activities involve those transactions that enter
into the determination of net income. Examples of these activities are sales and
purchases of goods and services and compensation of employees.

Let’s define our terminology, so we are clear in our meaning. Net income on
a cash basis is cash flows from operations. When we refer to net income without

The author wishes to thank Donald Shannon, School of Accountancy, DePaul University,
for his help with this chapter in the first edition of this book. The mathematical model was
published in Abrams (1994). In this second edition, Abrams substantially rewrote this chapter.
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qualifying the basis, we are referring to accrual basis. With net income the company
reports its operating activities when it earns or incurs them. With cash flows from
operations, the company reports these activities only when it collects cash for its
receivables or pays its bills.

For example, net income increases when we make a sale even though we do not
collect cash. Cash flows from operations reflect the increase only when we collect
the cash. Net income decreases when we receive a bill for insurance even though
payment is due only in one month. Cash flows from operations reflect the decrease
only when we make the payment.

INVESTING AND FINANCING ACTIVITIES ~ Companies engage in numerous transactions
involving cash that have no impact on the income statement. We classify these
transactions as investing or financing activities. Investing activities include the ac-
quiring of fixed assets (a.k.a. property, plant, and equipment—PP&E), and this has
no income statement impact. Retiring fully depreciated fixed assets or selling them
for book value also has no income statement impact.! Financing activities include
obtaining and repaying funds from debt and equity holders and paying dividends
to the owners.

Direct versus Indirect Method

Firms can use either the direct or the indirect method as a basis for reporting cash
flows from operating activities. The direct method is preferable when the information
to do so exists. However, for firms with accrual-based financial statements, that
information often does not exist, and the company has no choice but to employ the
indirect method.

Under the direct method, the enterprise lists its major categories of cash re-
ceipts from operations, for example, receipts from product sales or consulting ser-
vices and cash disbursements for inventory, wages, interest, and taxes. The differ-
ence between these receipts and disbursements is net cash flows from operations.
We then subtract or add, as appropriate, cash flows from the other two types of
transactions—investing and financing activities. Thus, for investing activities we
subtract the cash spent for capital expenditures or cash received for selling capital
equipment, and for financing activities we add cash received from borrowing or
selling stock or subtract cash paid to pay off the principal of the company’s loans
or to repurchase company stock.

The indirect method is more laborious, as we need to make adjustments to
accrual-basis accounting to compute cash-basis amounts. This entails all the work
described earlier in the direct method, and in addition we need to undo various
accrual entries.

Here we briefly describe the reasons why the indirect method requires additional
procedures to calculate cash flow, and we follow up later with the details of how to
accomplish that.

IThis introductory comment presumes the company sells its long-lived assets for their net
book values. Of course, when there are gains or losses on disposition, they do appear in the
income statement, as does depreciation of property, plant, and equipment. We address this
issue later in the chapter.
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1. Operating activities. We cannot simply use accrual-basis sales minus expenses
to compute cash from operations because they may be larger or smaller than
cash-basis sales and expenses. Instead, we have to adjust their differences by
adding the increase or subtracting the decrease in net working capital.

2. Investing activities. Accrual accounting creates entries for depreciation expense
and accumulated depreciation on capital equipment purchased and retirement
thereof upon the sale of the equipment. It also recognizes gain or loss on the
sale of equipment, neither of which are cash basis. In the indirect method, we
have to reverse out the effect of these entries.

3. Financing activities. Accrual accounting generates entries to record accrual and
payment of interest expense as well as principal and may differ from cash-basis
accounting. In the indirect method we will have to reverse any differences with
cash-basis accounting.

In summary, the indirect method requires additional procedures compared to
the direct method of calculating cash flow. For operations, it requires calculations
of changes in current assets and liabilities, which are in the upper-left and -right
sides of the balance sheet; for investing activities, it requires additional adjustments
involving fixed assets (the lower-left-hand side of the balance sheet); and financing
activities involve transactions in long-term debt, interest expense, and equity, which
are in the middle and lower-right-hand side of the balance sheet, and non-operating
expenses in the income statement.

ANALYZING BALANCE SHEET CHANGES OVER TIME Under the indirect method we
calculate net cash flows from operations by adjusting accrual net income for changes
in related asset and liability accounts. For example, let’s analyze the change (A) in
accounts receivable (AR) from December 31, 2008, to December 31, 2009. We will
denote time as ¢ and set ¢ = 12/31/09 for the current balance sheet date and ¢t — 1 =
12/31/08 for last year’s balance sheet date. Accounts receivable on December 31,
2009, equals AR on 12/31/08 plus accrual-based sales in 2009 minus cash collections
in 2009. Algebraically, we state this as equation (1.1):

AR, = AR,_1 + Sales — Collections. 1.1D

In equation (1.1), the time periods, ¢ and ¢ — 1, are points in time, that is,
specific days, December 31, 2009 and 2008, respectively, in our example. The sales
and collections are for a span of time, that is, for the entire year 2009 in our
example. These concepts of time are consistent with the balance sheet versus the
income statement, where the former is a snapshot of a company at a point in time
and the latter is a flow over a period of time—one year in this example. Rearranging
the equation, we get

Collections = Sales — (AR, — AR,_1), (1.2)
or
Collections = Sales — AAR. (1.3)

When accounts receivable increase, AAR is positive and cash collections on
sales are less than accrual-based sales. The reverse is true when accounts receivable
decrease.
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Thus, an increase in accounts receivable indicates that cash receipts from sales
are less than reported revenues. Receivables increase as a result of failing to collect all
revenues reported. Therefore, in the indirect method we must subtract the increase
in accounts receivable from net income to arrive at net cash flows from operations.
If accounts receivable decrease instead, then we add the decrease to net income to
calculate cash flow.

Parenthetically, equations (1.1) through (1.3) are equally true if we redefine the
passage of time. We could define + — 1 as November 30, 2009. In this example, the
relevant sales and collections would be during the month of November. Alternatively,
we could work in quarters, in which case + — 1 would be September 30, 2009, and
sales and collections would be for the last quarter (i.e., October through December).
Thus, the equations work with different spans of time, and we need only be careful
in properly defining the points in time and the spans of time and in keeping them
consistent. Now we return to the previous discussion.

Let’s look at a liability account. Logically, since liabilities are on the opposite
side of the fundamental accounting equation, they should behave the opposite of
assets; that is, increases in a liability are a source of cash rather than a use of cash.
We will see that this is true.

Wages payable on December 31, 2009 (WP,) equals wages payable on December
31, 2008 (WP;_1) plus accrual-based wages minus cash payments for wages for the
current year.? We will model the algebra in equations (1.1a) through (1.32) parallel
to the algebra for accounts receivable:

WP, = WP,_y + Salary Exp — Salaries (Cash). (1.12)
We can rearrange equation (1.1a) as equation (1.2a):

Salaries (Cash) = Salary Exp — (WP, — WP;_1), (1.22)
Salaries (Cash) = Salary Exp — AWP. (1.32)

If wages payable increase from 2008 to 2009, A WP is positive and cash payments
for salaries are less than the accrual-based salary expense. When we begin with
accrual-based net income in the indirect method, we must subtract the increase in
wages payable (or add the decrease) from expenses, which increases cash-basis net
income. This confirms our earlier statement that an increase in a liability is a source
of cash.

Usually, it is easy to follow the logic of the adjustment required to infer the
cash flows associated with any single reported revenue or expense. However, most
statements of cash flows require a number of such adjustments, which often result
in confusing entanglements.

Business appraisers spend a significant part of their careers forecasting cash
flows. The objective of this chapter is to improve your understanding of the statement
of cash flows and its interrelationship with the balance sheet and the income state-
ment. Hopefully, appraisers who read this chapter will be able to better understand
the cash flow logic and to distinguish true cash flows from shortcut approximations
thereof.

We use the terms wages and salaries as synonymous and interchangeable.



Cash Flow 11

To achieve this result, this chapter provides a mathematical derivation of the
cash flow statement using the indirect method. A realistic numerical example and
an intuitive explanation accompany the mathematical derivation.?

The Mathematical Model

This mathematical model of the statement of cash flows involves the following
process:

1. It begins with the fundamental accounting equation—assets equal liabilities
plus capital—which is the equation of a balance sheet.

2. We then create a dynamic fundamental accounting equation that shows that
changes in assets equal the changes in liabilities plus the changes in capital. We
call this dynamic because it refers to changes over a span of time (usually a
year, but it could be a month or a quarter) as opposed to quantities at a fixed
point in time.

3. We go through a series of accounting definitions and algebraic substitutions,
and this enables us to demonstrate how the income statement and the balance
sheet affect the statement of cash flows.

Throughout this book, be careful to distinguish between equations and tables,
as they have the same numbering system to describe them. Our numbering system is
the chapter number, then a period, and then either the table or equation number. We
generally label them as equation or table, and equations have parentheses around
them.

List of Algebraic Symbols

Following is a list of the algebraic symbols that we use in this chapter:
List of Symbols

Balance Sheet

c = Cash

OCA = Other current assets

GPPE = Gross property, plant, and equipment
AD = Accumulated depreciation

NPPE = Net property, plant, and equipment

A = Total assets

CL = Current liabilities

LTD = Long-term debt

L = Total liabilities

CAP = Capital (i.e., total stockholders’ equity)

31t is possible to examine in detail every conceivable type of accounting transaction and its
relation to cash flow. Here we have not considered unusual transactions such as recapital-
izations, the effects of accounting changes, and inventory write-downs. The author feels the
additional complication of their inclusion would more than offset any benefits.
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Property, Plant, and Equipment

CAPEXP = Capital expenditures

DEPR = Depreciation expense

RETGBV = Gross book value of retired property, plant, and equipment
RETAD = Accumulated depreciation on retired assets

SALESFA = Selling price of fixed assets (property, plant, and equipment)

disposed or retired
Stockholders’ Equity

NI = Net income

DIV = Dividends paid

SALSTK = Sale of stock

TRSTK = Purchase of treasury stock
OET = Other equity transactions
AET = Additional equity transactions
Required Working Capital

RWC = Required working capital
Cheg = Required cash

The Fundamental Accounting Equation

The balance sheets for Feathers R Us for 2008 and 2009 are in Table 1.1, columns C
and D. We show the changes in the balance sheet accounts from 2008 to 2009 in col-
umn E and repeat the symbols used later to refer to these accounts in mathematical
expressions in column A.

THE STATIC EQUATION ~ We begin with the fundamental accounting equation, which
is a mathematical statement that defines a balance sheet, that is, that total assets equal
total liabilities plus capital (also known as sharebolders’ equity). The balance sheet
for the current year ( = 2009) is in balance. Total assets equal $3,150,000 (D14),
total liabilities equal $1,085,000 (D19), and capital equals $2,065,000 (D26). Total
liabilities plus equity also equal $3,150,000 (D28). Equation (1.4) is the algebraic
expression of the fundamental accounting equation for the current year:

A[ = L[ + CAP[
3,150,000 = 1,085,000 + 2,065,000
D14 D19 D26 1.4

Note that there are three rows in the equation. The top row is the algebraic
equation, the middle row is the numbers in Table 1.1, and the bottom row is the
cell references in the table.

Likewise, equation (1.5) is the fundamental accounting equation (balance sheet)
for the preceding year, t — 1 = 2008:

A =L + CAP; 4
2,800,000 = 1,075,000 + 1,725,000
Cl4 C19 C26 (1.5
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A ] B | C | D | E

~ Table 1.1

3 | Feathers R Us

| 4 | Abbreviated Balance Sheets

| 5 | for Calendar Years
6 Increase
7 | Symbols | ASSETS: 2008 2009 (Decrease)
8 |[C Cash 1,125,000 1,500,000 375,000
9 | OCA Other current assets 875,000 790,000 (85,000)
10 Total current assets 2,000,000 2,290,000 290,000
11 | GPPE Gross property, plant, and equipment 830,000 900,000 70,000
12 | AD Accumulated depreciation 30,000 40,000 10,000
13 | NPPE Net property, plant, and equipment 800,000 860,000 60,000
14 [A Total assets = (10)+(13) 2,800,000 3,150,000 350,000
15

16 | LIABILITIES
17 | CL Current liabilities 325,000 360,000 35,000
18 | LTD Long-term debt 750,000 725,000 (25,000)
19 (L Total liabilities 1,075,000 1,085,000 10,000
20

21 | STOCKHOLDERS’ EQUITY

227 Capital stock 100,000 150,000 50,000

23] Additional paid in capital 200,000 500,000 300,000

24 | Retained earnings 1,425,000 1,465,000 40,000

|25 | Treasury stock 0 50,000 50,000
26 | CAP Stockholders’ equity = Sum((22):(24))—(25) 1,725,000 2,065,000 340,000
27

28| Total liabilities and equity = (19)+(26) [ 2,800,000 3,150,000 350,000

THE DYNAMIC EQUATION  In equation (1.6), we subtract the 2008 balance sheet from
the 2009 balance sheet. This shows that the changes from one year to the next are
also in balance.

AA = AL + AcAP
350,000 = 10,000 + 340,000
E14 E19 E26 (1.6)

Equation (1.6) is a dynamic fundamental accounting equation, while the first
two equations were static; that is, equation (1.6) represents the changes in the
balance sheet that occurred during the year 2009, while equations (1.4) and (1.5)
represent the balance sheet at two single points in time—December 31, 2009, and
2008, respectively. Whereas the static fundamental accounting equation defines the
balance sheet, the dynamic equation incorporates the income statement and defines
the cash flow statement. However, it will take several more equations to see why
this is true.

SOME DETAILS OF CHANGES IN ASSETS AND LIABILITIES ~ We can provide some details
for each of the terms in equation (1.6), although we will need to fill in more details
later on. The change in total assets (AA) consists of the changes in cash (AQ),
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other current assets (AOCA), and net property, plant, and equipment (ANPPE).
Net property, plant, and equipment (NPPE) is gross property, plant, and equipment
(GPPE) less the accumulated depreciation (AD) on these assets. As we will see in
Table 1.3, the change in net property, plant, and equipment (ANPPE) is the result
of subtracting the change in accumulated depreciation from the change in gross
property, plant, and equipment (AGPPE — AAD).*

In equation (1.7) we fill in some of the details to equation (1.6):

AA = AC + AOCA + (AGPPE — AAD)
350,000 = 375,000 4+ —85,000 4 (70,000 — 10,000)
El4 E8 E9 E1l1 E12 a.7n

Next, the change in total liabilities (AL) consists of the change in current liabili-
ties (ACL) and the change in long-term debt (ALTD):

AL = ACL + ALTD
10,000 = 35,000 + —25,000
E19 E17 E18 (1.8

Bridge to the Income Statement

The change in capital in equation (1.6) is a bridge to the income statement, since
net income is the operating component—and generally the most important one—in
explaining the change in capital from one year to the next. To explain the change in
stockholders’ equity, we need to know the company’s net income, which appears
in the income statement in Table 1.2.

Table 1.2 shows that Feathers R Us had net income after tax (NI) of $90,000
(B17). This explains only a portion of the change in the stockholder’s equity. The
total change in stockholder’s equity (ACAP) is equal to net income (ND and other
equity transactions (OET), which we define in equation (1.9):

ACAP = NI + OET
340,000 = 90,000 + 250,000
Table 1.1, E26  Table 1.2, B17 Table 1.4, G16 1.9

The OET consist of the purchase and sale of the company’s stock and the pay-
ment of cash dividends.> We will provide a detailed description of these transactions
later in our description of Table 1.4.

“We treat other long-lived assets such as intangibles and certain investments the same as
property, plant, and equipment.
>For simplicity, we assume the company pays all dividends declared.
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A B

a Table 1.2

2 Feathers R Us

| 3 Income Statement

% for Calendar Year 2009
6 | Sales 1,000,000
7 | Costs of sales 600,000
8 | Gross profit 400,000
9 | Sales expense 100,000
10 | General and administrative expense 150,000
11 | Depreciation 30,000
12 | Total expense 280,000
13 | Operating income 120,000
14 | Gain on sale of assets 30,000
15 | Net income before taxes 150,000
16 | Income taxes [1] 60,000
17 | Netincome 90,000
18

19| [1] For instructional purposes, we use a 40% tax rate even though

20 | taxable income is below the maximum corporate tax rate.

Substituting equations (1.7), (1.8), and (1.9) into equation (1.6) results in equa-

tion (1.10):°

It is in equation (1.10) that we first clearly see how the dynamic fundamental

AC + AOCA + (AGPPE — AAD)
=ACL + ALTD + NI + OET

375,000 + —85,000 + (70,000 — 10,000)
= 35,000 + —25,000 4+ 90,000 + 250,000

(1.10)

accounting equation is the interface between the income statement, balance sheet,
and statement of cash flow.

Analyzing Property, Plant, and Equipment Transactions

We put brackets around AGPPE and AAD in equation (1.10) to emphasize think-

ing of these terms together as a unit, as they equal ANPPE. We can rearrange that

®We repeat some equations from prior pages in the footnotes for the reader’s convenience.
Equation (1.6): AA = AL + ACAP
Equation (1.7): AA = AC + AOCA + (AGPPE — AAD)
Equation (1.8): AL = ACL + ALTD
Equation (1.9): ACAP = NI + OET
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equation to satisfy the objective of the statement of cash flows—providing an ex-
planation of the change in the cash balance:

AC = NI — AOCA + ACL
— (AGPPE — AAD)
+ ALTD + OET

375,000 = 90,000 — —85,000 4 35,000
— (70,000 — 10,000)
+ —25,000 + 250,000 (1.1D

Equation (1.11) provides an explanation of the $375,000 (E8) increase in the
cash balance from 2008 to 2009. However, it is still somewhat preliminary. It is best
to defer our explanation until we incorporate more details into the model.

The balance sheets in Table 1.1 show that net property, plant, and equipment
increased by $60,000 (E13). We need a more detailed understanding of this change
and can accomplish this with an analysis of property, plant, and equipment like the
one in Table 1.3.

TABLE 1.3: ANALYSIS OF PROPERTY, PLANT, AND EQUIPMENT  This analysis shows that
gross property, plant, and equipment increases with capital expenditures (CAPEXP)
and decreases with the original book value of any assets retired (RETGBV).

A | B [ C D E

;— Table 1.3

e Feathers R Us

| 3 | Analysis of Property, Plant, and Equipment

|4 for Calendar Year 2009
5 =(C)-(D) [1]
6 | Symbols GPPE AD NPPE
7 Gross Prop, Accumulated Net Prop,
8 Plant and Equip Depreciation | Plant and Equip
9
10 | Balance, 2008 830.000 30,000 800,000
11
12 | CAPEXP | Capital expenditures [2] 175,000 175,000
13 | DEPR Depreciation expense [3] 30,000 30,000
14 Retirements
15 | RETGBV Gross book value [4] 105,000 105,000
16 | RETAD Accumulated depreciation [5] 20,000 20,000
17
18 | Balance, 2009 | 900,000 | 40,000 | 860,000
19
20 [ Change in the balance | 70,000 | 10,000 | 60,000
21
22 |[1] Column E equals (C) — (D) for rows 10, 18, and 20, but it equals (C) + (D) for rows 12 through 16.

3 |[2] CAPEXP adds to column C and column E.

24 |[3] Depreciation expense adds to column D but subtracts from column E.
25 |[4] RETGBYV subtracts from column C and E.
26 |[5] RETAD subtracts from column D but adds to column E.
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We restate this relationship as equation (1.12):
AGPPE = CAPEXP — RETGBV
70,000 = 175,000 — 105,000
C20 C12 C15 (1.12)
Similarly, accumulated depreciation increases with depreciation expense and
decreases with accumulated depreciation on any assets retired. We restate this rela-
tionship as equation (1.13):
AAD = DEPR — RETAD
10,000 = 30,000 — 20,000
D20 D13 D16 (1.13)
Substituting equations (1.12) and (1.13) into equation (1.11) and rearranging the
terms results in equation (1.14):’
AC = NI + DEPR — AOCA + ACL
— CAPEXP + RETGBV — RETAD
+ ALTD + OET

375,000 = 90,000 + 30,000 — —85,000 + 35,000
- 175,000 + 105,000 — 20,000
+ —25,000 + 250,000 (1.19)

The bold symbols in equation (1.14) are the symbols that changed with the
substitutions described above; that is, DEPR, CAPEXP, RETGBV, and RETAD in
equation (1.14) did not appear in equation (1.11). Notice that we are subtracting
a decrease in other current assets of $85,000, which mathematically is the same as
adding $85,000 (i.e., the double negative makes a positive number).

GAINS AND LOSSES ON SALE OF FIXED ASSETS  Thus far, we have considered only the
book value of any assets retired. Most often, the retirement or disposition of assets
involves a gain or a loss (a negative gain). This gain is the difference between the
selling price of the fixed assets (property, plant, and equipment) (SALESFA) and
their net book values (RETGBV — RETAD). In this illustration the company sold its
fixed assets for $115,000. They had a net book value of $85,000, producing a gain
of $30,000 (Table 1.2, B14). This gain is in the income statement, but it is not cash
flow.® Therefore, we have to subtract it from net income to calculate cash flow. We
show the calculation of the gain in equation (1.15):

GAIN = SALESFA — (RETGBV — RETAD)

30,000 = 115,000 — (105,000 — 20,000) (1.1
Equation (1.16) is simply a rearrangement of equation (1.15):

RETGBV = SALESFA — GAIN + RETAD

105,000 = 115,000 — 30,000 + 20,000 1.16)

7Equation (1.11): AC = NI — AOCA + ACL — (AGPPE — AAD) + ALTD + OET
80nly the $115,000 sale is a cash flow.
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Substituting equation (1.16) into equation (1.14) results in:’

AC = NI + DEPR — AOCA + ACL
— CAPEXP + SALESFA — GAIN + RETAD — RETAD
+ ALTD + OET

375,000 = 90,000  + 30,000  — —85,000 + 35,000
— 175,000 + 115,000 - 30,000 + 20,000 — 20,000
+ —25,000 + 250,000 117

After canceling the + RETAD and — RETAD terms and rearranging, equation
(1.17) simplifies to:

AC =N/ — GAIN 4+ DEPR — AOCA + ACL
— CAPEXP + SALESFA
+ ALTD  + OET
375,000 = 90,000 — 30,000 + 30,000 — —85,000 + 35,000
— 175,000 + 115,000
+ —25,000 + 250,000 (1.18)

The first row of equation (1.18) represents cash flows from operating activ-
ities, which consists of making adjustments to net income, that is, adding back
depreciation and other non-cash expenses, subtracting the gain on sale of fixed
assets (because it is included in accrual net income but is not a source of cash),
subtracting the increase in other current assets, and adding the increase in current
liabilities. We will explain these adjustments in more detail later in the chapter.
The second row in the equation represents cash flows from investing activities,
and the third row represents a preliminary version of cash flows from financing
activities.

Equity Transactions—Dividends and Sale or Purchase of Stock

The details of the OET in equation (1.9) are also important. In this example the
statement of stockholder’s equity included three types of equity transactions: issuing
cash dividends (DIV), selling stock (SALSTK), and buying treasury stock (TRSTK).
We show these in Table 1.4.

During the year, the company paid cash dividends of $50,000 (E13), sold addi-
tional shares of stock for $350,000 (C14 + D14), and bought back treasury stock!”
for $50,000 (F15). The net effect of these three OET is a $250,000 (G16) increase in
stockholder’s equity. We summarize this in equation (1.19). We add the term AET

°Equation (1.14): AC = NI + DEPR — AOCA + ACL — CAPEXP + RETGBV — RETAD +
ALTD + OET.

19To clarify, this is simply a transaction to buy back company stock, and we label it “treasury
stock” after the fact.
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A ] B [ ¢ ] D | E [ F ] G

y

N Table 1.4

3] Feathers R Us

2 Statement of Stockholders’ Equity

| for Calendar Year 2009
5 = Sum((C):(F))
6 Additional Total
7 Capital Paid in | Retained | Treasury | Shareholder
8 Stock Capital | Earnings Stock Equity
9 | Symbols | Balance 2008 100,000 | 200,000 | 1,425,000 0 1,725,000
10 | NI Net income 90,000 90,000
11 Other equity
12 transactions
13 | DIV — Dividends 50,000 50,000
14 | SALSTK | + Sale of stock 50,000 | 300,000 350,000
15 | TRSTK — Purchase of stock 50,000 50,000
16 | OET Total = (14) — (13) — (15) 50,000 | 300,000 | (50,000)| (50,000) 250,000
17
18 | Balance 2009 = (9)+(10)+(16) | 150,000] 500,000 | 1,465,000 | (50,000) | 2,065,000

to equation (1.19) to represent additional equity transactions.!!

OET = SALSTK — TRSTK — DIV + AET
250,000 = 350,000 — 50,000 — 50,000 + O
G16 Gl4 GI15 G13 (1.19)

Substituting equation (1.19) into equation (1.18) results in equation (1.20):1?

AC = NI — GAIN + DEPR — AOCA + ACL
— CAPEXP + SALESFA
+ ALTD  + SALSTK — TRSTK — DIV + AET
375,000 = 90,000 — 30,000 + 30,000 — —85,000 + 35,000
— 175,000 + 115,000
+ —25,000 + 350,000 — 50,000 — 50,000 + 0 (1.20)

UNye used the term additional equity transactions to describe equity transactions other than
the sale or purchase of the company’s stock and the payment of dividends. One example
of an additional equity transaction would be the contribution of property to the company in
exchange for an equity interest. For analytical purposes, we could treat the increase in equity
as a source of cash from financing activities and the corresponding increase in assets as a
use of cash from investing activities. The net result would be an overall zero effect on cash.
Normally, noncash transactions of this nature are not incorporated in formal statements of
cash flow, but are appended in a separate schedule.

2Equation (1.18): AC = NI — GAIN + DEPR — AOCA + ACL — CAPEXP + SALESFA +
ALTD + OET Equation (1.19): OET = SALESTK — TRSTK — DIV + AET
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We can simplify equation (1.20) to the more familiar form:

AC = Cash flows from operating activities

+ Cash flows from investing activities

+ Cash flows from financing activities

375,000 = 210,000
+ (60,000)
+ 225,000

(1.2D

Equations (1.20) and (1.21) describe the conventional statement of cash flows in
Table 1.5. Note that the three components of cash flow in equation (1.21) appear in
Table 1.5 in D16, D21, and D28, respectively, with a total of $375,000 in D29. Total
cash on December 31, 2008 and December 31, 2009 of $1,125,000 and $1,500,000
in D30 and D31 appear in Table 1.1, C8 and D8.

A B C D
> Table 1.5
3 Feathers R Us
2 Abbreviated
5 Statement of Cash Flows
6 for Calendar Year 2009
7 | Symbols
8 Cash flows from operating activities
9 |NI Net income 90,000
10 Adjustments to reconcile net income to
11 net cash provided by operating activities:
12 | GAIN Gain on sale of property, plant, and equipment (30,000)
13 | DEPR Depreciation expense 30,000
14 | AOCA Decrease in current assets 85,000
15 |ACL Increase in current liabilities 35,000 120,000
16 Net cash provided by operating activities 210,000
17
18 Cash flows from investing activities
19 | CAPEXP Purchase of property, plant, and equipment (175,000)
20 | SALESFA Sale of property, plant, and equipment 115,000
21 Net cash used by investing activities (60,000)
22
23 Cash flows from financing activities
24 |ALTD Increase in long-term debt (25,000)
25 | SALSTK Sale of stock 350,000
26 | TRSTK Purchase of treasury stock (50,000)
27 | DIV Payment of dividends (50,000)
28 Net cash provided by financing activities 225,000
29 Net increase in cash 375,000
30 Cash, December 31, 2008 1,125,000
31 Cash, December 31, 2009 1,500,000
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Required Working Capital

Thus far, we have used the classical accounting definition of net working capital,
which is current assets minus current liabilities. We filled in the details of those
changes and defined cash flow as in equation (1.20). It turns out that this defini-
tion of net working capital is insufficient for valuation purposes, as some cash is
required in the business for the company to be able to pay its bills. Therefore, not
all cash flows are available for distribution to shareholders. We want to develop the
equation for cash flows available for distribution to shareholders. We will do this
in steps.

For the moment, we will define the required change in working capital as the
change in current assets other than cash less the change in current liabilities, as
shown in equation (1.22).!? Note that the cell references are to Table 1.1.

ARWC = A0CA — ACL
—120,000 = —85,000 — 35,000
E9 E17 (1.22)
This illustration is somewhat unusual. Here, the changes in other current assets
and current liabilities are reducing working capital. This reduction is a source of the

cash from operating activities. (In the typical case, working capital increases when

sales grow. In that case, the increase in working capital is a use of cash.)

Substituting equation (1.22) into equation (1.20) results in:'4

AC  =NI — GAIN  + DEPR — ARWC
— CAPEXP + SALESFA
+ ALTD  + SALSTK — TRSTK — DIV + AET
375,000 = 90,000 — 30,000 + 30,000 — —120,000
— 175,000 + 115,000
+ —25,000 + 350,000 — 50,000 — 50,000  + 0 (1.23)

We can represent the first row of equation (1.23) as follows:

Activity Symbol Description

Operating NI + Net income
GAIN — Gains (+ losses) on the sale of property, plant, and equipment
DEPR + Depreciation and other non-cash charges
ARWC — Increases (+ decreases) in required working capital

As mentioned previously, we subtract the gain (or add the loss) on the sale of
property, plant, and equipment to compute cash flow, because it is a component of
net income that does not produce cash flow.

B3We will modify the definition in equation (1.22) later in the chapter.

14Equation [(1.20): AC = NI — GAIN + DEPR — AOCA + ACL — CAPEXP + SALESFA +
ALTD + SALSTK — TRSTK — DIV + AET. Equation (1.22): ARWC = AOCA — ACL. Note that
ACL cancels out in equation (1.23).
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Depreciation and other non-cash expenses do reduce net income, but they do
not involve any payments during the current period. Therefore, when we use the
indirect method and net income is the starting point for arriving at a firm’s net cash
flow, we must add back these non-cash expenses.

We will discuss the rationale for subtracting required increases (or adding de-
creases) in working capital at some length in the next section after introducing the
components of the changes in other current assets (AOCA) and current liabilities
(ACD).

To complete our explanation of equation (1.23), the second and third rows
consist of the following:!®

Activity Symbol Description

Investing CAPEXP  — Capital expenditures
SALESFA  + Selling price of property, plant, and equipment disposed of or

retired
Financing  ALTD + Increases (— decreases) in long-term debt
SALSTK + Proceeds received from the sale of stock
TRSTK — Payments for treasury stock
DIV — Dividends
AET + Additional equity transactions

ADDING DETAIL OF THE COMPONENTS OF REQUIRED WORKING CAPITAL ~ Before discussing
required working capital further, it will be helpful to break down changes in other
current assets (AOCA) and current liabilities (ACL) into some typical component
parts. Table 1.6 is a restatement of Table 1.1 with this additional detail in the shaded
sections.

Here, other current assets consist of accounts receivable, inventory, and addi-
tional current assets. Current liabilities include accounts payable, short-term notes
payable, and accrued expenses.

We treat accounts receivable, inventory, and additional current assets in the
same way as other current assets. When using the indirect method, we subtract
increases (add decreases) in these accounts from net income to arrive at net cash
provided by operating activities.

Likewise, we treat accounts payable, short-term notes payable, and accrued
expenses in the same way as current liabilities when using the indirect method. We
add increases (subtract decreases) in these accounts to net income to arrive at net
cash provided by operating activities.

Applying the procedures outlined in the two preceding paragraphs results in
the statement of cash flows shown in Table 1.7, which is simply Table 1.5 with the
addition of the shaded detail '

5The second row is — CAPEXP + SALESFA, and the third row is ALTD + SALSTK — TRSTK
— DIV + AET.

[y Table 1.7, the signs of other current assets are switched—as we did in Table
1.5—because our equation calls for subtracting AOCA when computing AC.
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A B | ¢ D E
1 Table 1.6
2 Feathers R Us
3 Balance Sheets
g for Calendar Years
6 Increase
7 | Symbols | ASSETS: 2008 2009 | (Decrease)
8 C | Cash 1,125,000 | 1,500,000 375,000
9 Accounts receivable 100,000 150,000 50,000
10 Inventory 750,000 600,000 (150,000)
11 Additional current assets 25,000 40,000 15,000
12 Total current assets 2,000,000 | 2,290,000 290,000
13 GPPE | Gross property, plant, and equipment 830,000 900,000 70,000
14 AD | Accumulated depreciation 30,000 40,000 10,000
15 NPPE | Net property, plant, and equipment 800,000 860,000 60,000
16 A | Total assets 2,800,000 3,150,000 350,000
17
18 LIABILITIES
19 Accounts payable 200,000 225,000 25,000
20 Short-term notes payable 50,000 35,000 (15,000)
21 Accrued expenses 75,000 100,000 25,000
22 CL | Current liabilities 325,000 360,000 35,000
23 LTD | Long-term debt 750,000 725,000 (25,000)
24 L | Total liabilities 1,075,000 | 1,085,000 10,000
25
26 STOCKHOLDERS’ EQUITY
27 Capital stock 100,000 150,000 50,000
28 Additional paid in capital 200,000 500,000 300,000
29 Retained earnings 1,425,000 1,465,000 40,000
30 Treasury stock 0 50,000 50,000
31 CAP | Total stockholders’ equity 1,725,000 | 2,065,000 340,000
32
33 | Total liabilities and equity 2,800,000 | 3,150,000 | 350,000
ADJUSTING FOR REQUIRED CASH  For valuation purposes, it is important to recognize

that all firms require a certain amount of cash to be kept on hand; otherwise, checks
would constantly bounce. Therefore, the amount of required cash (Cg.,) Will not be
available for dividend payments.

A good method to estimate required cash is to ask management how many
days’ costs and expenses it needs to be safe. For example, suppose the answer is
10 working days. Since most firms work 250 days per year, management requires
4 percent of total costs and expenses in the cash account. For example, if total cost
of sales and expenses are $10 million per year, we could forecast required cash as
$400,000 for the prior year, to be increased going forward by the forecast growth
rate.

In equation (1.22), we defined the required change in working capital simply
as the change in current assets other than cash, less the change in current liabilities.
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A ] B | ¢ D
Table 1.7
Feathers R Us
Statement of Cash Flows—Detailed
for Calendar Year 2009

Symbols Cash flows from operating activities
NI Net Income 90,000
Adjustments to reconcile net income to

net cash provided by operating activities:

SEEEEEEEEE RN ERE
B>

GAIN Gain on sale of property, plant, and equipment (30,000)
DEPR Depreciation expense 30,000
Increase in accounts receivable (50,000)
A Decrease in inventory 150,000
A Increase in additional current assets (15,000)
A Increase in accounts payable 25,000
A Decrease in short-term notes payable (15,000)
A Increase in accrued expenses 25,000 120,000
Net cash provided by operating activities 210,000
20
21 Cash flows from investing activities
22 | CAPEXP Purchase of property, plant, and equipment (175,000)
23 | SALESFA Sale of property, plant, and equipment 115,000
24 Net cash used by investing activities (60,000)
25
26 Cash flows from financing activities
27 |ALTD Decrease in long-term debt (25,000)
28 | SALSTK Sale of stock 350,000
29 | TRSTK Purchase of treasury stock (50,000)
30 | DIV Payment of dividends (50,000)
31 Net cash provided by financing activities 225,000
32 Net increase in cash 375,000
33 Cash, December 31, 2008 1,125,000
34 Cash, December 31, 2009 1,500,000

We will now modify that definition in equation (1.24) to include the changes in the
cash balance the firm must keep on hand ($20,000 in this illustration):!’

ARWC =AOCA — ACL + ACgy
(100,000) = —85,000 — 35,000 + 20,000 (1.24)

In equation (1.22), the $85,000 decrease in other current assets and the $35,000
increase in current liabilities gave rise to a reduction in required working capital
of $120,000. After taking into consideration the $20,000 additional cash that will be
required, the reduction in required working capital falls to $100,000; that is, the net

UTypically appraisers forecast required cash as a percentage of sales. Required cash increases
(decreases) by that percentage multiplied by the increase (decrease) in sales.
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addition to cash flow from the reduction in required net working capital is $20,000
less.

Using this modified definition for ARWC lowers the resulting cash flow to
$355,000 in equation (1.23a) from the $375,000 originally shown in equation (1.23).'8
AC* is the same as AC, except that AC* defines ARWC using equation (1.24) instead
of equation (1.22).

AcC* = NI — GAIN 4+ DEPR — ARWC
— CAPEXP + SALESFA
+ ALTD  + SALSTK — TRSTK — DIV + AET

355,000 = 90,000 — 30,000 + 30,000 — (100,000)
— 175,000 + 115,000
+ —25,000 + 350,000 — 50,000 — 50,000 +0 (1.23a)
This $355,000 amount represents the net cash flow available for dividend payments
in excess of the $50,000 of dividends already paid.

Alternatively, we can add DIV to both sides of equation (1.23a) to show the
total amount of net cash flow available for distribution to stockbolders. That amount
is $405,000, as shown in equation (1.23b):

AC*+DIV = NI — GAIN  + DEPR — ARWC
— CAPEXP + SALESFA
+ ALTD  + SALSTK — TRSTK + AET
405,000 = 90,000 — 30,000 4+ 30,000 — (100,000)
— 175,000 + 115,000
+ —25,000 4 350,000 — 50,000 + 0 (1.23b)

Analysis of the Mathematical Model

In this section, we compare our results to another definition of cash flow in valuation
literature, and we make a conceptual statement of how the income statement and
the statement of cash flows are both reconciliations of different parts of the balance
sheet.

Comparison to Other Cash Flow Definitions

We can summarize the definition of net cash flows available for distribution to
stockholders in equation (1.23b) in the following way:

Activity Symbol Description

Operating NI + Net income
GAIN — Gains (+ losses) on the sale of property, plant, and equipment
DEPR + Depreciation and other non-cash charges
ARWC — Increases (+ decreases) in required working capital*

BAC* = AC — ACgeq.
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Investing CAPEXP — Capital expenditures
SALESFA  + Selling price of property, plant, and equipment disposed of or
retired
Financing ALTD + Increases (— decreases) in long-term debt
SALSTK + Proceeds received from the sale of stock
TRSTK — Payments for treasury stock
AET + Additional equity transactions

*After adjusting for required cash.

We compare this summary to another definition in our professional literature.
For example, one group of authors (Pratt, Reilly, and Schweihs, 1996) used the
following definition of net cash flow available for distribution to stockholders in
their Formula 9-3 (pp. 156—157):

Description

+ Net income

+ Depreciation and other non-cash charges

— Increases (4 decreases) in required working capital

— Capital expenditures

+ Selling price of property, plant, and equipment disposed of or retired
+ Increases (— decreases) in long-term debt

This definition of cash flow is obviously much simpler than ours and considers
only the most common types of transactions. Implicitly, this definition assumes that
gains and losses on the sale of property, plant, and equipment and the selling price
of property, plant, and equipment disposed of or retired are immaterial. Likewise,
this definition assumes that there are no material sales or purchases of stock or
additional equity transactions.

These assumptions are reasonable in a large number of cases.!” However, it
is important for the analyst to be cognizant of these underlying assumptions and
beware of situations in which one or more of these assumptions are no longer rea-
sonable. The abbreviated definition obviously is insufficient when valuing a firm that
intends to raise capital in several rounds of financing or for a heavy manufacturing
firm that routinely has material sales of its property, plant, and equipment.

When calculating value by capitalizing a single-period cash flow, we consider-
ably magnify the consequences of making adjustments to the initial cash flow. It is
important for the analyst to understand how these hidden assumptions might influ-
ence the amount of initial cash flow that we capitalize and how these assumptions
might impact the future cash flows available for distribution to stockholders.

For example, if a company were to routinely sell its equipment for significant
sums, the analyst would be remiss if he or she overlooked the cash flows from these
sales. On the other hand, it is also important to consider the potential effect on sales
and operating expenses of depleting the company’s capital equipment.

9\With respect to the proceeds from the sale of stock, it is unlikely that a firm would sell its
stock in order to obtain cash for distribution to its stockholders. However, sometimes large
sales of stock do occur, especially in venture-financed high-tech start-ups.
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The Income Statement and Cash Flow as Reconciliations

We can now see a conceptual similarity and difference between the income state-
ment and the statement of cash flows. Both serve as a reconciling link between the
beginning and ending balance sheets. The income statement is an accrual-based
partial reconciliation between the beginning and ending balances in retained earn-
ings,?® and the statement of cash flows is a cash-based reconciliation between the
beginning and ending cash balances.

Recall that cash flows from operating activities are the cash equivalent of the
accrual-based income statement. To complete the reconciliation between the begin-
ning and ending cash balances, the statement of cash flows (as illustrated above)
must also include cash from investing and financing activities.

This explains why cash flows are much more volatile than income. Net income
changes over time with revenues and expenses, while cash flow changes in re-
sponse to all account changes—income, expenses, balance sheet accounts, capital
expenditures, and so on. There are far more accounts affecting cash flow, so it is
not surprising to find that cash flow fluctuates far more than net income.

Summary

A clear understanding of the mathematics and accounting logic in this chapter should
enhance the valuation analyst’s understanding of the derivation of the statement of
cash flows, how it works, and how it relates to the balance sheet and income state-
ment. It should also make the analyst aware of the simplifying assumptions embed-
ded in abbreviated definitions of cash flows available for distribution to stockholders.
Hopefully, this awareness will result in superior valuations in those instances when
it is unwarranted to make these simplifying assumptions.
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CHAPTER 2

Forecasting Cash Flow
Mathematics of the Payout Ratio

Introduction

We all have used the discounted cash flow (DCF) method. Most of us would agree
that it is generally the best, most comprehensive, and theoretically correct valuation
model available in the income approach. It also has an empirical reason to be the
best, which is that many of us calculate our discount rates using the Ibbotson data
in the SBBI annual yearbooks, which are based on publicly traded stock data. Those
stock returns are cash returns—the dividend yield plus the capital gains, which can
be converted to cash at any time.! Thus, it is consistent to discount cash flow with
discount rates on cash returns. So far, everything is well and good.

Difficulties in Forecasting Cash Flow

Well, almost; the problem is that forecasting net income is work, and forecasting net
free cash flows (net cash flows or cash flows) is detailed, exacting work. Few well-
adjusted people really like doing it. The most disciplined of us keep a stiff upper
lip and do it—especially in the large valuation firms with clients who are willing
to pay for doing it right. The American Society of Appraisers’ business valuation
courses teach DCF, not discount net income. Nevertheless, in the real world, as we
decline in firm size, client budgets, and personal discipline, cash flow often goes by
the wayside, and many of the smaller valuation firms end up discounting forecast
net income, gross cash flow (net income + depreciation + amortization), EBIT,
or EBITDA—and that is always inconsistent. Discounting forecast net income or

Adapted from Abrams (2003) and Abrams (1994). The author wishes to thank Roger J.
Grabowski, Business Valuation Review's referee, for his insightful comments and helpful
suggestions, as well as other anonymous referees.

IThis applies equally as well for those using an ex ante approach, such as the Merrill-Lynch
dividend discount model. The point is that we are still being consistent by using expected
returns on cash flows (as opposed to realized historical returns—but nevertheless still on
cash flows) to discount cash flows.

31
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any of the other abovementioned measures of earning power normally leads to a
guaranteed overvaluation.

Gilbert (1990) states that if you discount net income or some larger number
such as gross cash flows, then you must add a premium to the discount rate,
and the premium has to increase with the degree to which the measure of eco-
nomic earning power exceeds net cash flows. In my opinion, he is absolutely
right.

There are two problems with adding the premiums. The first problem is that
almost nobody does it, even though it is common to discount forecast net income.
The second problem is that there is no empirical evidence of the appropriate mag-
nitude of the premium. In my opinion, this is reason enough to state that we should
never discount forecast net income, gross cash flows, EBIT, EBITDA, or any other
measure of economic earning power other than net cash flows. This brings us right
back to the DCF and the need to forecast cash flows.

Purpose of This Chapter

The main purpose of this chapter is to provide the mathematics that will sim-
plify the mechanics of forecasting cash flow in many situations, thus making the
DCF easier to do and reducing the temptation to take the shortcuts that lead to
overvaluations.

The Mathematics

In the main part of this chapter, we will use the following symbols in our mathe-
matics:

Cap Exp = CE = Capital Expenditures.

CF = Cash Flow, the increase or decrease in cash from one accounting period
to another.

Depr = D = Depreciation expense.

A = “Delta,” meaning “the change in” a balance sheet account over time.

LTD = Long-Term Debt.

NWC = Net Working Capital. It is the increase (or decrease) in NWC that is a cash

flow item, not the absolute amount of NWC. This should include the
amount of cash that the business needs to maintain to pay its bills
adequately, and it should exclude excess cash that could be paid to
shareholders as dividends without impairing the operations of the
business.

POR = Payout Ratio = CF/NI; that is, the payout ratio is the percentage of net
income that the company can pay to shareholders in dividends, whether
directly or disguised. Disguised dividends are excess compensation (i.e.,
above arm’s length) paid to owners. POR = 1 — RR; that is, out of total net
income, the percentage the owners retain for reinvestment back into the
business is the retention ratio, and the remaining percentage is the payout
ratio.

PPSE = Property, Plant, and Equipment.

RR = Retention Ratio.
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The Cash Flow Equation
Let's begin with the complete cash flow equation:?

Cash Flow = Net Income — Gain on Sale of Assets + Depreciation — A
Required Net Working Capital — Capital Expenditures 4+ Cash Received for
Sale of Fixed Assets + A Long — Term Debt 4 Sale of Stock — Purchase of
Treasury Stock — Dividends Paid — Additional Equity Transactions. 2.D

Equation (2.1) contains many terms that are unusual items or immaterial in
amount. The stock transactions generally are rare, as are dividends in private firms.?
The cash proceeds from and the accounting gain or loss on the sale of fixed assets
generally are small and can be ignored in most situations for forecasting cash flows.
For practical purposes, let's work with the terms that are material and ordinary.

The one item that is regular and material, but can be treated as in or out of the
cash flow equation, is increases in long-term debt. Some valuators prefer to value
the firm debt-free, and one can always add in a premium for the tax-shield value of
the debt afterward. In the mathematics that follows, we will keep it in the equation,
but it is easy to back it out at the end. Thus, the shortcut cash flow equation is:

CF = NI + Depr — Cap Exp — ANWC + ALTD. (2.2)

Another way of looking at equation (2.2) is to split the latter four terms into
two pairs, each set off in parentheses, as in equation (2.2a). Also, the order of
depreciation and capital expenditures is reversed, as is the sign in front of the
parentheses.

CF = NI — (Cap Exp — Depr) — (ANWC — ALTD). (2.22)

Capital expenditures and depreciation is a logical unit of analysis. Today’s de-
preciation results from capital expenditures that we made over the past several
years. The amount by which capital expenditures exceeds depreciation is a subtrac-
tion from cash flow, as is the amount by which the increase in net working capital
exceeds the increase in long-term debt. Another way of looking at the terms in
parentheses in equation (2.2a) is that the first set deals with changes in fixed assets,
which is a use of cash, while the second set deals with the changes in current assets
net of current liabilities and long-term debt, which is also a use of cash.

Defining Cash Flow through the Payout Ratio

We can derive cash flow from net income in an alternative format, that is, as a
percentage adjustment to net income. It will turn out that normally this will be a much
easier calculation than forecasting all the elements of cash flow, that is, depreciation,
capital expenditures, and changes in net working capital and long-term debt. For

2See Chapter 1 for a detailed mathematical derivation. For an earlier version of the mathemat-
ics, see “Cash Flow: A Mathematical Derivation,” Valuation, January 1994. To download, go
to www.abramsvaluation.com, select “Articles,” then “Articles in .PDF.”

3Also, since we are trying to forecast the maximum dividends the firm can pay without
impairing its operations, the dividends actually paid do not matter in a DCF at the company
level. They do matter in a discounted dividends model.
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valuation purposes, the payout ratio (POR) is the portion of net income that can be
distributed to owners without impairing operations.* The portion of net income that
is required for operating and growing the business is called the retention ratio (RR),
which equals one minus the payout ratio.

In this chapter, we will develop an exact set of formulas, equations (2.8) and
(2.9) for the payout ratio and the retention ratio, respectively, that relate back to
equation (2.2) for the definition of cash flow. Unfortunately, equations (2.8) and
(2.9) are computationally intensive, as they require forecasting capital expenditures,
depreciation, and the increase in required net working capital. This gives rise to the
need for easier equations to use. Thus, the second goal is to develop an accurate
formula to estimate the payout ratio.

Payout Ratios—Exact Equations

In this series of equations, we develop an exact formula for the payout ratio. Equation
(2.3) is the definition of the payout ratio:

CF = NI x POR. (2.3)

Since the left-hand sides of equations (2.2) and (2.3) are equal, their right-hand
sides also must be equal. We state this in equation (2.4):

NI + Depr — Cap Exp — ANWC + ALTD = NI x POR. (2.4)

Next, we subtract N/ from both sides of the equation and factor NI on the
right-hand side:

Depr — Cap Exp — ANWC + ALTD = NI(POR — 1). (2.5)
Dividing through by NI, we get:
Depr — Cap Exp — ANWC + ALTD
NI
Adding 1 to both sides of the equation leads to:

= POR — 1. (2.6)

n Depr — Cap Exp — ANWC + ALTD
NI
Finally, we change the plus sign on the left-hand side of the equation to a minus
sign, reverse the signs of the variables in the numerator, and switch the two sides
of the equation to arrive at our final solution in (2.8):
(Cap Exp — Depr) + (ANWC — ALTD)
NI '

= POR. Q.7

POR =1 2.8

The net income should be a normalized net income (i.e., a long-term income
base). As mentioned earlier, the retention ratio is one minus the payout ratio.

In calculating the payout ratio historically, it is simply dividends paid divided by net income,
regardless of whether the owner impaired operations by paying out too much in dividends.
However, for valuation purposes, in forecasting ahead we consider only the dividends that
can be paid without impairing operations.
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Thus the retention ratio in equation (2.9) equals one minus equation (2.8):

RE — (Cap Exp — Depr) + (ANWC — ALTD)

N 2.9

Equation (2.9) is intuitively appealing, as the greater the amount by which our
capital expenditures, which is current investment, exceeds depreciation, which is
our past investment, and the greater our investment in new net working capital in
excess of long-term debt financing, the higher is the retention ratio.

Developing an Estimation Formula for POR

In this section, we do the following:

1. Discuss benchmarks for payout ratios of publicly and privately held firms.

2. Develop an alternative formula for the payout ratio to make estimation easier.

3. Analyze tables that use the alternative formula to demonstrate its accuracy and
to provide the specific percentage by which capital expenditures exceeds de-
preciation for a variety of different growth rates and equipment lives.

4. Discuss the curveballs that occur in using the alternative formula.

BENCHMARKS FOR THE PAYOUT RATIO  We look at two different benchmarks for
payout ratios. The first is the historical average payout ratios of publicly held firms,
and the second is the Moskowitz-Vissing-Jorgensen (2002) (MV]) guesstimate for
privately held firms.

Ibbotson and Chen (2002) state that the dividend payout ratio for publicly
held firms was 47% at the beginning of 1926 and decreased to 32% by the end
of 2000. Thus, publicly traded firms now retain on average 68% of their income
for cash flow and growth. Over the past 75 years, publicly held firms experienced
an average growth of approximately 7% to 8%, which is much faster than private
firms—-certainly due to their much larger retention ratio and greater business op-
portunities.’

MV]J guesstimate an average 60% payout ratio for privately held C corporations
and 80% for privately held S corporations and other non-tax entities. If you have
difficulty using the payout ratio formula later in equation (2.24), then it would
make sense to use their guesstimate as a benchmark. However, your clients’ payout
ratios may vary from 60% to 80%. MV] emphasize that external financing is more
expensive for privately held C corporations than it is for publicly held C corporations,
because of their smaller size. They further wrote that the non-tax entities tend to
be smaller yet, and external financing should be even more expensive for them
than for the larger, privately owned C corporations. However, counterbalancing
this is the likelihood that the smaller, non-tax entities probably have fewer growth

>According to Ibbotson and Chen (cited above), page 5, equation (6), geometric average
capital gains in the public equity markets from 1926 to 2000 were 3.02% in real terms and
approximately 6.2% in nominal terms. Arithmetic returns are always higher than geometric
returns, and the former is the correct measure for valuation purposes. Thus, I estimate nominal
capital gains of approximately 7% to 8%. Income returns were 4.28%.



36 Forecasting Cash Flow

opportunities than the larger firms, which is their reasoning for assuming lower
retention.

It is clear from reading between the lines in their article and logically that the
main determinants in the earnings retention decision are size and cost of external
financing, not the form of organization. Thus, a one-person C corporation should
retain as little—and, thus, pay out as much—as a sole proprietorship with no
employees. I have valued no-growth clients with historical payout ratios as high as
99.8%. It is important to use common sense. The bottom line is that the higher your
forecast growth rate, the lower your payout ratio should be, and vice versa.

We now proceed with the mathematics necessary to develop the alternative
POR formula. There are two steps necessary to accomplish this. The first step is
to develop an expression for the excess of capital expenditures over depreciation,
and the second step is to develop the mathematics for the increase in net working
capital and long-term debt.

THE MATHEMATICS OF CAPITAL EXPENDITURES OVER DEPRECIATION  For simplicity, we
will begin by assuming that property, plant, and equipment (PP&E) has an average
five-year life. Later we will relax that assumption. We will assume the company has
five machines and uses straight-line depreciation. It buys its first machine at the
beginning of year 1, its second machine at the beginning of year 2, its third machine
at the beginning of year 3, its fourth machine at the beginning of year 4, and its fifth
machine at the beginning of year 5. At the beginning of year 6, the company retires
machine #1 and buys a replacement machine for it. From then on, it always runs
five machines, replacing the oldest one at the beginning of the next year.

Thus, year 5 is the first year that the company reaches a constant status; that
is, there is no real growth afterward. During year 5, one-fifth of the equipment was
bought at the beginning of years 1, 2, 3, 4, and 5. We will assume that the equipment
cost $1,000 at the beginning of year 1, and prices increase at a rate of g each year.
We will for the moment assume a stagnant industry, which means it has inflationary
but no real growth. Later, we will modify that assumption. Since inflation in the
United States has been approximately 3% per year, we will assume g = 3%.

Our procedure will be first to develop a mathematical expression for capital
expenditures at the beginning of year 6. Then we will develop an expression for
depreciation in year 5. Finally, we will divide the former by the latter, which will
give us a ratio of the two. Later we will be able to use that to our practical advantage.

In this simple model, from year 5 and on, capital expenditures differ from the
previous year’s depreciation by a multiplicative factor, CE; = (1 + k) Ds, where
normally 0 < & < 200% and is typically between 6% and 20% for most businesses.
Therefore, CEs — D5 = (1 + k) Ds — Ds = k Ds. The percentage by which capital
expenditures in year 6 exceeds depreciation expense in year 5 (or, more generally,
in year t + 1 versus year 1) is the ratio of the two minus 1, that is:

Eg

C
% Difference = 5 —1. (2.10)

Pl

Capital expenditures in year 6 will be the original purchase price in year 1 of
$1,000 multiplied by 1 plus the growth rate to the fifth power, or:

CEg = $1,000(1 + g)° . (2.11)
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A [ 8 [ ¢ T o ] E [ Fo] G
! Table 2.1
g Analysis of Depreciation and Capital Expenditures
4 1 2 3 4 5 6
5 _|Purchase Price of Equipment [1] 1000| 1030| 1060.9| 1092.727 [1125.50881 | 1159.2741
6 __|Depreciation of Equipment Bought Year 1 200 200 200 200 200.000
7__|Depreciation of Equipment Bought Year 2 206 206 206 206.000
8 |Depreciation of Equipment Bought Year 3 212.18 212.18 212.180
9 [Depreciation of Equipment Bought Year 4 218.5454 218.545
10 _[Depreciation of Equipment Bought Year 5 225.102
11 _|Total Depreciation 1061.827
12
13 | Growth Rate—Price of Equipment = g | 3%|
14
15 [Purchase of New Equipment—Year 6 (G5) 1159.2741
16_|Divide by Depreciation—Year 5 (F11) 1061.8272
17 _|Ratio (B15/B16) 1.092
18 [Difference = Ratio Minus 1 = CapEquipment — Depreciation 9.2%
19 _|Equation [2.18]: [5% g (1 + g)°/(1 + g)>~1)] -1 9.2%
20
21 _|Sensitivity Analysis: How the Difference Varies with Changes in the Growth Rate
22
23 1% 3.0%
24 2% 6.1%
25 3% 9.2%
26 4% 12.3%
27 5% 15.5%
28 6% 18.7%
29 7% 21.9%
30 8% 25.2%
31 9% 28.5%
32 10% 31.9%
33
34 _|[1] We assume we buy equipment at the beginning of each year. Thus, we replace the first piece at
35 the beginning of year 6.

That was easy. Next we proceed to develop an expression for depreciation in
year 5, which, again, generalizes to year t. It will be helpful to look at Table 2.1 to
understand the depreciation patterns.

Depreciation Pattern in Table 2.1 ~ The first piece of equipment cost $1,000 (BS) at
the beginning of year 1. Its depreciation will be $200 per year in years 1 through 5,
which appears in B6 through F6. Since we are assuming a 3% (B13) inflation-only
growth rate in the price of equipment, the second piece of equipment cost $1,030
(C5). Depreciation on it is $206 per year, which you can see in row 7.° Depreciation
on the third piece of equipment is $212.18 per year (row 8), and so forth.

Now, let’s look down column F—year 5. Depreciation in year 5 is $200 (F6) on
the equipment bought at the beginning of year 1, $206 (F7) on the equipment bought
at the beginning of year 2,..., and $225.102 (F10) on the equipment bought at the
beginning of year 5. Total depreciation expense is $1,061.827 (F11). Depreciation
on the equipment bought at the beginning of year ¢ is $200(1 + g'~!. Now, we
return back to the mathematics to develop an alternative POR formula.

Equation (2.12) is the depreciation expense for year 5:

Ds=$200[1+ 1+ +A+g*+1+g°+1+g7]. (2.12)

Table 2.1 does not show depreciation expense after year 5, even though it does continue for
the second through the fifth pieces of equipment.



38 Forecasting Cash Flow

Multiplying equation (2.12) by (1 4+ g) on both sides, every term on the right-hand
side of the equation increments by 1 in its exponent, and we get:

A+9Ds=$200{A++A+2*+1+g*+A+2'+(1+9°]. (213

Subtracting (2.13) from (2.12), on the right-hand side, all the intermediate terms drop
out, and we get:

[1-04+9]Ds=$200[1-1+g)’]. (2.14)
This simplifies to:
—gDs = $200[1— (1 +2)]. (2.15)

Multiplying through by —(1/g), we get:

(2.10)

Ds = $200 [(Hi#} .

Substituting equations (2.11) and (2.16) into (2.10), the percentage by which
capital expenditures in year 6 exceeds depreciation in year 5 is:

% —1= $170010 a —:g) N — 1. .17
K $200 [%]

This simplifies to:
G, _5ed+e’
Ds (1+g7 -1

We can generalize the formula for any equipment life. Letting 7 = average years
of equipment life, the general formula is:

Cri1 1= ng (149"

(2.18)

Dy A+9"-1 (219
ANALYSIS OF TABLE 2.1  Table 2.1 shows the calculation of the difference by brute
force, that is, the long way, and the short way using equation (2.18), which is the
same as equation (2.19), with 7 = 5. Let’s look first at the brute force method.

We transfer the purchase price of the equipment at the beginning of year 6
of $1,159.274 from G5 to B15. Then we add the depreciation in year 5 coming
from each individual piece of equipment, which is in F6 through F10, and totals
$1,061.827 in F11. We transfer that to B16. In B17, we divide B15 by B16; that is, we
divide the cost of new equipment in year 6 by depreciation in year 5, to calculate the
ratio of 1.092. Subtracting 1 from that, the difference between capital expenditures
in year 6 and depreciation expense in year 5 is 9.2% (B18).

Now we can confirm the accuracy of equation (2.18), because we use it in B19,
which also equals 9.2%—the same result as the brute force method. The advantage
of the formula, though, is that we can perform sensitivity analysis and see how the
difference varies as the growth rate in the price of equipment varies.

Rows 23 through 32 show that sensitivity analysis. We can see that the difference
of capital expenditures and the previous year’s depreciation expense is 3.0% (B23)
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A [ B | ¢ | o | e | FF | & [ H
1 Table 2.2
2 How Capital Expenditures Exceeds Depreciation [1]
3
4 Avg Annual Growth in Avg Equip Life (Yrs)
5 Equipment Prices [2] 3 5 7 10 15 20 25
6 1% 2.0% 3.0% 4.0% 5.6% 8.2% 10.8% 13.5%
7 2% 4.0% 6.1% 8.2% 11.3% 16.7% 22.3% 28.1%
8 3% 6.1% 9.2% 12.4% 17.2% 25.6% 34.4% 43.6%
9 4% 8.1% 12.3% 16.6% 23.3% 34.9% 47.2% 60.0%
10 5% 10.2% 15.5% 21.0% 29.5% 44.5% 60.5% 77.4%
11 6% 12.2% 18.7% 25.4% 35.9% 54.4% 74.4% 95.6%
12 7% 14.3% 21.9% 29.9% 42.4% 64.7% 88.8% 114.5%
13 8% 16.4% 25.2% 34.5% 49.0% 75.2% 108.7% 134.2%
14 9% 18.5% 28.5% 39.1% 55.8% 86.1% 119.1% 154.5%
15 10% 20.6% 31.9% 43.8% 62.7% 97.2% 134.9% 175.4%
16
17 |[1] CE... —Depr, = k x Depr, and k is the factor in the table above. The formula is from equation
18 (2.19).
19
20 |[2] You should add in real growth in your business. For example, if equipment prices increase
21 an average 5% per year and you expect your sales to increase at 6%, which is 3% real growth
22 above expected inflation, you should use the annual growth of 5% + 3% = 8%, that is, row 13 in the
23 above table.

for a 1% growth rate, 6.1% (B24) for a 2% growth rate, 9.2% (B25 = B19),” and
generally grows 3.2% for each additional percentage in the growth rate.®

TABLE 2.2: HOW CAPITAL EXPENDITURES EXCEEDS DEPRECIATION  Table 2.2 shows the
results of the general formula in equation (2.19) for a variety of assumptions of
average equipment life and annual growth in equipment prices. Note that the results
in column C are identical with the sensitivity analysis in Table 2.1. Also note that
the percentage by which capital expenditures in year ¢ + 1 exceeds depreciation in
year ¢ increases as we move southeast in the table (i.e., as average equipment life
and annual growth increase).

The Meaning of the Results ~ Let’s take a minute to understand the meaning of the
results in Table 2.2. Let’s start with the assumption that most businesses have an
average equipment life of five years, which is a reasonable assumption. Assuming
for the moment that this is true, the difference for a 3% growth rate, which is
inflationary only, is 9.2% (C8). This means that in a stagnant business, we can forecast
the difference between capital expenditures and depreciation expense as being
9.2% x depreciation expense. This result was a surprise to me! I always thought that
a stagnant business would have capital expenditures exceeding depreciation only
by inflation itself, or 3%. However, there is no substitute for rigorous analysis.

It is reasonable to expect that many businesses face real growth in their prices,
not just inflation only. Thus, 5% to 7% growth in equipment prices is fairly common.
At 5% annual price growth, the difference of capital expenditures and depreciation
expense for an average five-year equipment life is 15.5% (C10), whereas at 7% it is
21.9% (C12). Therefore, the differences in the two can be substantial.

"This equality shows the accuracy of the sensitivity analysis and is why row 25 is in bold.
8The difference begins to accelerate at higher growth rates. Thus, the difference is 3.3% for g
= 8% and 9% and 3.4% for g = 10%.
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The differences are even more pronounced for longer-lived equipment. For an
average seven-year equipment life, the differences are higher—and all the more
so the higher is the growth rate in equipment prices. A 3% inflationary-only price
growth implies a 12.4% (D8) difference, while 5% and 7% annual price increases
imply differences of 21.0% (D10) and 29.9% (D12).

Some manufacturing firms may have heavy equipment with very long
lives—perhaps much longer than seven years. Therefore, it is necessary to adjust
the analysis to the realities of the subject company.

HANDLING THE CURVEBALLS ~ There are a few curveballs that can arise in estimating
the excess of capital expenditures over depreciation. The first one is the existence of
fully depreciated assets, which arises when depreciable life is less than the economic
life of the asset. For example, suppose your client has a large piece of equipment
that cost $1 million, which has a 10-year life, and he or she depreciated it over
5 years. In years 6 through 10, depreciation expense will be zero. We are doing
our valuation as of the beginning of year 11. In this case, equation (2.19) will
underestimate capital expenditures, because it will totally miss the replacement of
this expensive machine. Assuming a 5% annual growth in equipment costs, we
would be underestimating capital expenditures by $1.6 million in year 11. For very
expensive, long-lived equipment, it may be necessary to consider its cash flow
separately from the ordinary cash flows of the business, and add its effect into the
valuation separately.

The second curveball is more apparent than real. It occurs when the client uses
accelerated depreciation. This causes depreciation to be higher in the earlier years
and lower in the later years than straight-line depreciation.

Table 2.3: Analysis of MACRS versus Straight-line Depreciation ~ For example, let’s analyze
Table 2.3, which shows five-year MACRS and straight-line depreciation for the same
assets that appear in Table 2.1, row 5. In year 1, we buy the first piece of equipment
for $1,000 (B5). Straight-line depreciation is $200 per year (row 8). Five-year MACRS
depreciation is 150% declining balance, with a switch to straight-line in year 3, when
straight-line is higher than declining balance. Year 1 MACRS is 150% x 20%° = 30%
of the tax basis of the asset, or 30% x $1,000 = $300 (B6).

We subtract that from the $1,000 purchase price, which leaves a depreciable
basis of $700 (B7) at the end of year 1. In year 1, MACRS depreciation is $300/$200
= 150% (B9) of straight-line. In year 2, depreciation is 30% x $700 (the depreciable
basis in B7) = $210 (C6). The depreciable basis at the end of the year is $700 — $210
= 490 (B7 — C6 = C7). The 150% declining balance in year 3 would be 30% x $490
= $147; however, from this point on, straight-line depreciation at $490/3 = $163.33
(D7-F7) is higher, and we use that.

Now, let’s proceed to the equipment bought in year 2. It costs $1,030 (C5).
Five-year straight-line depreciation is $206 (row 13) per year. MACRS depreciation
in year 2 for the year 2—purchased equipment is 30% x $1,030 = 309 (C11). The
depreciable basis at the end of the year is $1,030 — $309 = $721 (C5 — C11 = C12).
MACRS depreciation in year 3 will be 30% x $721 = $216.3 (D11). After that, we use
straight-line depreciation for years 4 through 6 at $168.2333 (E11, F11). (Note, we

9Straight-line depreciation is 20% per year for five years, so 150% DB is always 30% for
five-year equipment.



Forecasting Cash Flow 41

A [ B Jc] o] E |J F Ja
1 Table 2.3
2 Analysis of Depreciation and Capital Expenditures
3
4 1 2 3 4 5| Total
5 |Purchase Price of Equipment 1000{ 1030 1060.9| 1092.727|1125.5088
6 |MACRS Depreciation—Equipment Bought Year 1 300| 210]163.3333| 163.33333|163.33333| 1000
7 _|Depreciable Basis—End of Year 700 490(163.3333| 163.33333|163.33333
8 |S-L Depr.—Equipment Bought Year 1 200| 200 200 200 200( 1000
9 |MACRS Depreciation/Straight-Line 150%| NM NM NM NM
10
11 [MACRS Depreciation—Equipment Bought Year 2 309| 216.3|168.23333]168.23333
12 |Depreciable Basis—End of Year 721| 504.7 | 336.46667 |168.23333
13 |S-L Depreciation of Equip. Bought Year 2 206 206 206[ 206.000
14 [Total MACRS Depreciation—Equipment Bought Years 1 and 2 300 519[379.633| 331.56667 |331.56667
15 _|Total S-L Depreciation—Equipment Bought Years 1 and 2 200| 406 406 406 406
16 _|MACRS Depreciation/Straight-Line 150%| 128% NM NM NM
17
18 |MACRS Depreciation—Equipment Bought Year 3 318.27| 222.789[173.28033
19 |Depreciable Basis—End of Year 742.63| 519.841346.56067
20 |S-L Depreciation of Equipment Bought Yr 3 212.18 212.18] 212.180
21 [Total MACRS Depreciation—Equipment Bought Years 1-3 300| 519|697.903)|554.35567 | 504.847
22 |Total S-L Depreciation—Equipment Bought Years 1-3 200| 406| 618.18 618.18 618.18
23 [MACRS Depreciation/Straight-Line 150%| 128%| 113% NM NM
24
25 |MACRS Depreciation—Equipment Bought Year 4 327.8181[229.47267
26 [Depreciable Basis—End of Year 764.9089 |535.43623
27 |S-L Depreciation of Equipment Bought Yr 4 218.5454| 218.545
28 |Total MACRS Depreciation—Equipment Bought Years 1-4 300 519[697.903|882.17377|734.31967
29 |Total S-L Depreciation—Equipment Bought Years 1-4 200| 406| 618.18| 836.7254| 836.7254
30 |MACRS Depreciation/Straight-Line 150%| 128%| 113% 105% NM
31
32 [MACRS Depreciation—Equipment Bought Year 5 337.65264
33 [Depreciable Basis—End of Year 787.85617
34 [S-L Depreciation of Equipment Bought Yr 5 225.102
35 [Total MACRS Depreciation—Equipment Bought Years 1—4 300 519[697.903|882.17377|1071.9723
36 [Total S-L Depreciation—Equipment Bought Years 1—4 200| 406| 618.18| 836.7254|1061.8272
37 [MACRS Depreciation/Straight-Line 150%| 128%| 113% 105% 101%
38
39 [Growth Rate—Price of Equipment = g [ 3%

stop in this analysis at year 5, even though depreciation on the equipment bought
in year 2 goes on to year 6.)

We subtotal straight-line depreciation in row 13 for equipment bought in years
1 and 2, and we do the same for MACRS depreciation in row 14. MACRS depreciation
in year 2 is $519 (C6 + C11 = C14), and straight-line depreciation is $406 (C8 +
C13 = C15). Thus, whereas MACRS depreciation is 150% (B9, B16) of straight-line
in year 1, it is only 128% (C16) in year 2.

The analysis rolls forward in the same fashion for years 3 through 5. The final
result in year 5 is that MACRS depreciation is only 1% higher than straight-line,
that is, 101% (F37) of it. Thus, equation (2.19) normally should do a good job of
forecasting depreciation when the firm is either stagnant or growing slowly in real
terms; that is, it has reached a reasonable steady-state in its base of fixed assets.

The third curveball, which also is more apparent than real, is the effect of the
policy of taking a half-year depreciation in the year of purchase and one-half year in
the year of sale or retirement. The effects of this policy should average out over the
long run to be the same as taking depreciation according to the month of placement
in service, although it can distort the calculation for a particular year for an expensive
piece of equipment. In such cases, you might have to make an adjustment to correct
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the distortion. Once the company has reached steady state—in this example, year
6 and on—that should not be a material issue.

The Mathematics of the Increase in Required Net Working Capital and LT Debt
Now let’s turn to the increase in required net working capital (NWC) and long-term

debt (LTD). Let’s make some simplifying assumptions:

® Sales grows at a constant rate, g.
B NWC and LTD grow as a constant percentage of sales.

The formula for the increase in NWC is:
ANWC = NWC, — NWCy, (2.20)

where NWC), is last year’s net working capital and NWC is the first forecast year.
However, NWC' grows at the rate g;. Therefore, we can substitute that into (2.20),
which results in:

ANWC = [NWCy(1 + gs) — NWCol = NWCol(1 + g5) — 11. (2.2D
This expression simplifies to:
ANWC = NWCy X gs. (2.22)

The mathematics of the change in long-term debt is identical to that of net
working capital, although its effect on cash flow is the opposite. While an increase
in net working capital is a use of cash, an increase in long-term debt is a source of
cash. Thus, the only difference is that the sign in the payout ratio formula for ALTD
is the opposite of the one for ANWC'. The formula for the change in long-term debt
is in equation (2.23):

ALTD = LTDy X g;. (2.23)

The Estimation Formula for the Payout Ratio
Substituting equations (2.19), (2.22), and (2.23) into (2.8), we get:

ng(1+g)"

—————— — 1| Depry + [NWCy — LTDy) g,
S :| pro + [ ) P

POR=1— [ (2.24)

NI

Note that depreciation, net working capital, and long-term debt are historical
amounts, with appropriate adjustments, as discussed earlier, while net income is a
normalized amount. This means that if you forecast net income to be unusually high
or low next year, because of a specific item that is a one-time event, it is best to
calculate the payout ratio as if that item did not exist, value the firm accordingly,
and then make an adjustment to the valuation at the end of the process. Otherwise,
a one-year anomaly becomes forever enshrined in the valuation, causing a valuation
error. Also note that net income must be positive and material in amount for this
formula to work.
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Assuming a reasonable 5% annual growth in equipment costs and sales and a

five-year life, this simplifies to:
(15.5% x Depry) + (NWCy — LTDy) x 5%
NI ’

POR=1— (2.25)

where the 15.5% comes from Table 2.2, C10. This is a much easier calculation
than equation (2.8), as it is not necessary to do the detailed forecast of capital
expenditures, depreciation, and net working capital.

Let’s do an example. If depreciation last year was $50,000, required net working
capital was $250,000, long-term debt was $50,000, and net income is $100,000, then
our estimate of the payout ratio would be:

(15.5% x 50,000) 4 (250,000 — $50,000) x 5%

$100,000 (2.26)
= 82.25%.

POR =1—

7,750 + 10,000
~ 100,000
Equation (2.26) has several very specific assumptions behind it, so it is important

to modify the formula if there are any of the following four significant deviations in
your fact pattern:

1. Average equipment life is not 5 years.

2. The growth rate in equipment prices (combined with real growth in the subject
company) or in sales significantly differs from 5%.

3. You do not expect sales to grow at a constant rate.

4. You do not expect net working capital or long-term debt to grow as a constant
percentage of sales.

Even when the immediate facts differ from these assumptions, it is still quite
possible that equations (2.24) through (2.26) may be a reasonable long-term esti-
mate. Actual cash flow frequently rises and falls in extremes from one year to the
next. Therefore, historical cash flow often is not a viable basis from which to forecast
a future payout ratio. If we view equations (2.24) through (2.26) as norms, they be-
come more reasonable. While actual cash flows may vary considerably year-to-year
from the average, it is reasonable to forecast the average payout ratio—unless you
are able to be more accurate and forecast exact cash flows year-by-year, which
is equivalent to varying the payout ratio annually according to your more specific
forecast.

Forecasting Gross Cash Flow Is Incorrect

Lerch (2001) argues for capitalizing gross cash flow. Clearly, there is a problem
with that. In light of equation (2.19) and Table 2.2 in this chapter, we can see that
the author’s assumption (on p. 33) that depreciation equals capital expenditures is
unrealistic even for a stagnant firm. Such an assumption is appropriate only for a
firm in severe decline.

Imagine a firm with zero net cash flow. Such a firm would never generate any
cash to pay its shareholders dividends. It is logical that this firm should have a zero
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fair market value—at least on an income approach. Yet capitalizing or discounting
gross cash flow (or net income, for that matter) would lead to a positive valuation.
Thus, net cash flow is the appropriate measure of economic earning power to
capitalize or discount.

Conclusion

In this chapter, we have developed an exact expression for the payout ratio in
equation (2.8) and a good approximation formula in equation (2.24), the latter of
which should be much easier to use in forecasting cash flows. This should not only
save time, but increase valuation accuracy by breaking the bad habit of discounting
net income (or other similar measures of economic earning power). Also, we have
covered why net cash flow is the appropriate measure of economic earning power
for capitalization or discounting.
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CHAPTER 3

Using Regression Analysis

Introduction

Regression analysis is a statistical technique that estimates the mathematical rela-
tionship between causal variables, known as independent variables, and a depen-
dent variable. The most common uses of regression analysis in business valuation
are:

B Forecasting sales in a discounted cash flow analysis.

B Forecasting costs and expenses in a discounted cash flow analysis.

® Measuring the relationship between market capitalization (fair market value) as
the dependent variable and several possible independent variables for a publicly
traded guideline company valuation approach. Typical independent variables
that are candidates to affect the fair market value are net income (including
nonlinear transformations such as its square, square root, and logarithm), book
value, the debt-to-equity ratio, and so on.

While we review some highlights of statistical theory, we are primarily focused
on how to apply regression analysis to real-life appraisal assignments using stan-
dard spreadsheet regression tools. We have not attempted to provide a rigorous,
exhaustive treatment on statistics and have put as much of the technical background
discussion as possible into the end-of-chapter appendix to keep the body of the
chapter as simple as possible. Those who want a comprehensive refresher should
consult a statistics text, such as Bhattacharyya and Johnson (1977) and Wonnacott
and Wonnacott (1981). We present only bits and pieces of statistics that are necessary
to facilitate our discussion of the important practical issues.

To preserve readability we avoid advanced issues, as they are likely to be
beyond the training of most professional business appraisers. Our focus is on the
practical application of regression in business valuation, not statistics as an extreme
science or an art form.

Even though you may not be familiar with the use of regression analysis, let
alone nonlinear transformations of the data, the material in this chapter is not that
difficult and can be very useful in your day-to-day valuation practice. We will explain
all the basics you need to use this very important tool on a daily basis and will lead
you step-by-step through an example, so you can use this chapter as a guide to get
hands-on experience.

47
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For those who are unfamiliar with the mechanical procedures to perform re-
gression analysis using spreadsheets, we explain that step-by-step in the section on
using regression to forecast sales.

Forecasting Costs and Expenses

In performing a discounted cash flow analysis, an analyst forecasts sales, expenses,
and changes in balance sheet accounts that affect cash flows. Frequently, analysts
base their forecasts of future costs on historical averages of, or trends in, the ratio
of costs as a percentage of sales.

One significant weakness of this methodology is that it ignores fixed costs,
leading to undervaluation in good times and possible overvaluation in bad times. If
the analyst treats all costs as variable, in good times when he or she forecasts rapid
sales growth, the fixed costs should stay constant (or possibly increase with inflation,
depending on the nature of the costs), but the analyst will forecast those fixed costs
to rise in proportion to sales. That leads to forecasting expenses too high and income
too low, which ultimately causes an undervaluation of the firm. In bad times, if one
forecasts sales to be flat, then costs will be accidentally forecast correctly. If one
expects sales to decline, then treating all costs as variable will lead to forecasting
expenses too low and net income too high, resulting in an overvaluation.

Ordinary least squares (OLS) regression analysis is an excellent tool to forecast
adjusted costs and expenses (which, for simplicity, we will call adjusted costs or costs)
based on their historical relationship to sales. OLS produces a statistical estimate of
both fixed and variable costs, which is useful in planning as well as in forecasting.
Furthermore, the regression statistics produce feedback used to judge the robustness
and reliability of the relationship between sales and costs.

Adjustments to Expenses

Prior to performing regression analysis, we should analyze historical income state-
ments to ascertain whether various expenses have maintained a consistent pattern
or whether there has been a shift in the structure of a particular expense. When past
data are not likely to be representative of future expectations, we make pro forma
adjustments to historical results to model how the company would have looked if
its operations in the past had conformed to the way we expect them to behave in
the future. The purpose of these adjustments is to examine longstanding financial
trends without the interference of obsolete information from the past.

For example, if the cost of advertising was 8% of sales for the first two years of
our historical analysis, decreased to 5% for the next five years, and is expected to
remain at 5% in the future, we may add back the excess 3% to net income in the
first two years to reflect our future expectations. We may make similar adjustments
to other expenses that have changed during the historical period or that we expect
to change in the future to arrive at adjusted net income. Of course, we would have
to tax affect these adjustments to calculate adjusted net income after taxes. It is also
possible that it might be necessary to make incremental cash flow adjustments.

Table 3.1A: Calculating Adjusted Costs and Expenses

Table 3.1A shows summary income statements for the years 1998 to 2007. Adjust-
ments to pretax net income appear in rows 15 through 20. The first adjustment,
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which appears in rows 15 and 18, converts actual salary paid—along with bonuses
and pension payments—to an arm’s-length salary.

The second type of adjustment is for a one-time event that is unlikely to repeat
in the future. In our example, the company wrote off $55,000 for a discontinued
operation in 2004. As such, we add back the write-off (H19) to pretax income,
because it is not expected to recur in the future.

The third type of adjustment is for a periodic expense. We use a company move
as an example, since we expect a move to occur about every 10 years.! In our
example, the company moved in 2003, four years ago. We add back the $20,000
cost of the move in the adjustment section (G20) and treat the cost separately as a
periodic perpetuity.

In Chapter 4, we develop two periodic perpetuity factors (PPF)? for periodic
cash flows occurring every j years growing at a constant rate of g, discounted to
present value at the rate », with the last cash flow having occurred b years ago.
Those formulas are:

1

PPF = , ,
A+r/ —0+g)

x (147" PPF—end-of-year; (3.12)

V147

b .
PPF = T+r —(+g) x (1 +7r)” PPF—midyear. (3.1b)

The next forecast cash flow will be the prior cash flow x(1 + g)/. We assume
the move occurs at the end of the year and use equation (3.1a), the end-of-year PPF.
We also assume a discount rate of » = 20%, moves occur every j = 10 years, the
last move occurred b = 4 years ago, and the cost of moving grows at g = 5% per
year. The cost of the next move, which is forecast at the end of year 6, is $20,000 x
(1 + 5%)' = $20,000 x 1.62889 = $32,578. We multiply this by the PPF, which
is: PPF = 12%21'0310 = 0.45445 (see Chapter 4, Table 4.10, A20), which results in a
present value of $14,805.

Assuming a 40% tax rate, the after-tax present value of moving costs is
$14,805 x (1 — 40%) = $8,883. Since this is an expense, we must remember to
subtract it from—not add it to—the FMV of the firm before moving expenses. For
example, if we calculate a marketable minority interest FMV of $1,008,883 before
moving expenses, then the marketable minority FMV would be $1 million after
moving expenses. In this example, we are not adjusting from net income to cash
flow, which is probably reasonable. If the period income or expense would have
an impact on the balance sheet and/or capital expenditures, then we should also
include that impact on the calculation if it is material.

The other possible treatment for the periodic expense, which is slightly less
accurate but avoids the PPF, is to allocate the periodic expense over the applicable

Losses from litigation are another type of expense that often has a periodic pattern.

>This is my invention to calculate the present value of a periodic cash flow that runs in
perpetuity. As we mention in Chapter 4, it is a generalized Gordon model for a periodic cash
flow. When sales occur every year, j = 1 and the left-hand terms in equations (3.1a) and
(3.1b) and formulas (4.18a) and (4.19a) simplify to the familiar Gordon model multiples. The
right-hand term adjusts the present value to account for the cash flow occurring b years earlier
than year ;.
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years—10 in this example. The appraiser who chooses this method must allocate
expenses from the prior move to the years before 2003. This approach causes the
regression R* to be artificially high, as the appraiser has artificially created what
appears to be a perfect fixed cost. For example, suppose we allocated $2,000 per-
year moving costs to the years 2003 through 2008. If we run a regression of costs
and expenses as a function of sales on those years only, R* will be overstated, as the
perfect fixed cost of $2,000 per year is merely an allocation, not the real cash flow.
This approach exaggerates other regression measures. If the allocated numbers are
small, however, the overstatement is also likely to be small.

Adjusted pretax income appears in row 21. Note that as a result of these adjust-
ments, the adjusted pretax profit margin in row 22 is substantially higher than the
unadjusted pretax margin in row 13.

We repeat sales (row 7) in row 25 and adjusted pretax income (row 21) in row
20. Subtracting row 26 from row 25, we arrive at adjusted costs and expenses in
row 27. We use these adjusted costs and expenses in forecasting future costs and
expenses using regression analysis.

Performing Regression Analysis

Ordinary least squares regression analysis measures the linear relationship be-
tween a dependent variable and an independent variable. Its mathematical form is
Yy =a + B x, where:

y =the dependent variable (in this case, adjusted costs).

x =the independent variable (in this case, sales).

a =the true (and unobservable) y-intercept value, that is, fixed costs.

B =the true (and unobservable) slope of the line, that is, variable costs.

Both o« and B, the true fixed and variable costs of the company, are unobserv-
able. In performing the regression, we are estimating o and B from our historical
analysis, and we will call our estimates:

a=the estimated y-intercept value (estimated fixed costs).
b=the estimated slope of the line (estimated variable costs).?

OLS estimates fixed and variable costs (the y-intercept and slope) by calculating
the best-fit line through the data points.* In our case, the dependent variable (y) is

3The regression parameters a and b are often shown in statistical literature as « and 8 with a
circumflex (*) over each letter.

“The interested reader should consult a statistics text for the multivariate calculus involved in
calculating a and b. Mathematically, OLS calculates the line that minimizes S = the sum of
the squared deviations between the actual data points, ¥;, and the regression estimates, ;.
(Note that S in this expression is not the same as the S we use later as the standard error of
the y-estimate.) This expression becomes S = > (Y; — a — bx;)*. One computes a and b in
single-variable OLS by taking the partial derivatives of § with respect to a and b, setting those
expressions to zero, and solving.



52 Forecasting Cash Flow

adjusted costs, and the independent variable (x) is sales. Sales, which is in Table
3.1A, row 7, appears in Table 3.1B as B6 to B15. Adjusted costs and expenses, Table
3.1A, row 27, appears in Table 3.1B as C6 to C15. Table 3.1B shows the regression
analysis of these variables using all 10 years of data. The resulting regression yields
an intercept value of $56,770 (B33) and a (rounded) slope coefficient of 0.80 (B34).
Using these results, the equation of the line becomes:

Adjusted Costs and Expenses = $506,770 + (0.80 x Sales).

The y-intercept, $56,770, represents the regression’s estimate of fixed costs,
which is the cost of operating the business at a zero sales volume. The slope
coefficient, 0.80, is the regression’s estimate of variable cost per dollar of sales. This
means that for every dollar of sales, there are directly related costs and expenses of
$0.80. We show this relationship graphically in Figure 3.1. The diamonds are actual
data points, and the line passing through them is the regression estimate. Note how
close all of the data points are to the regression line, which indicates there is a strong
relationship between sales and costs.’

We can use this regression equation to calculate future costs once we generate
a future sales forecast. Of course, to be useful, the regression equation should make
common sense. For example, a negative y-intercept in this context would imply
negative fixed costs, which makes no sense whatsoever (although in regressions
involving other variables it may well make sense). Normally one should not use a
result like that, despite otherwise impressive regression statistics. Instead it probably
makes more sense to assume zero fixed costs, which means all costs are variable.
This is the same as using the ratio of total costs to sales to forecast costs.

If the regression forecasts variable costs above $1.00, one should be suspicious.
If true, either the company must anticipate a significant decrease in its cost structure
in the near future—which would invalidate applicability of the regression analysis
to the future—or the company soon will be out of business. The analyst should
also consider the possibility that the regression failed, perhaps because of either
insufficient or incorrect data, and it may be unwise to use the results in the valuation.

Use of Regression Statistics to Test the Robustness of the Relationship

Having determined the equation of the line, we use regression statistics to determine
the strength of the relationship between the dependent and independent variable(s).
We give only a brief verbal description of regression statistics here. For a more in-
depth explanation, the reader should refer to a statistics book.

In an OLS regression, the goodness of fit of the line is measured by the degree
of correlation between the dependent and independent variable, referred to as
the » value.® An r value of 1 indicates a perfect direct relationship, where the
independent variable explains all of the variation of the dependent variable. A value
of —1 indicates a perfect inverse relationship. Most # values fall between 1 and —1,
but the closer to 1 (or —1), the better the relationship. An r value of zero indicates
no relationship between the variables.

>We will discuss the second part of Table 3.1B later in the chapter.
%In statistics literature, the » may be either uppercase or lowercase.
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A | B | Cc D | E F G
1 Table 3.1B
2 Regression Analysis 1998-2007
3
4 Actual
5 Year Sales = X[1] | Adj. Costs = Y[2]
6 1998 $250,000 $242,015
7 1999 $500,000 $458,916
8 2000 $750,000 $696,461
9 2001 $1,000,000 $863,159
10 2002 $1,060,000 $891,517
11 2003 $1,123,600 $965,043
12 2004 $1,191,016 $1,012,745
13 2005 $1,262,477 $1,072,633
14 2006 $1,338,226 $1,122,714
15 2007 $1,415,000 $1,199,000
16
17 _|SUMMARY OUTPUT
18
19 Regression Statistics
20 |Multiple R 99.88%
21 |R Square 99.75%
22 |Adjusted R Square 99.72%
23 |Standard Error 16,014
24 |Observations 10
25
26 |ANOVA
27 df SS MS F Signif F
28 |Regression 1 8.31E+11| 8.31E+11| 3.24E+03 1.00E-11
29 |Residual 8 2.05E+09| 2.56E+08
30 |Total 9 8.33E+11
31
32 Coef Std Err t Stat P-value | Lower 95% | Upper 95%
33 |Intercept [3] 56,770 14,863 3.82 0.005 22,496 91,045
34 |[Sales [4] 0.8045 0.014 56.94 0.000 0.772 0.837
35
36 |[1] From Table 3.1A row 7.
37
38 |[[2] From Table 3.1A row 27.
39
40 |[3] Regression estimate of fixed costs.
41
42 |[4] Regression estimate of variable costs.
43
3‘5‘ Figure 3.1
26 Adjusted Costs and Expenses as a Function of Sales
27 $1,400,000
28 || $1.200,000 y =0.8045x + 56770
| R2= 0.9975 /
50 || $1.000,000 /
51 11 $800,000
52 /
Costs
53 $600,000 :
= o
55 $400,000 /
56 $200,000
57
58 $0
$0 $400,000 $800,000 $1,200,000 $1,600,000
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In a multivariable regression equation, the multiple R measures how well the
dependent variable is correlated to all of the independent variables in the regression
equation. Multiple R measures the total amount of variation in the dependent variable
that is explained by the independent variables. In our case, the value of 99.88%
(B20) is very close to 1, indicating that almost all of the variation in adjusted costs
is explained by sales.”

The square of the single or multiple R value, referred to as R-square, R-squared,
or R?, measures the percentage of the variation in the dependent variable explained
by the independent variable. It is the main measure of the goodness of fit. We obtain
an R? of 99.75% (B21), which means that sales explain 99.75% of the variation in
adjusted costs.

Adding more independent variables to the regression equation usually adds
to R?, even when there is no true causality. In statistics, this is called spurious
correlation. The adjusted R?, which is 99.72% (B22) in our example, removes the
expected spurious correlation in the “gross” R*:

k n—1
AdjR* = [ R* — :
/ ( n—l)(n—/e—l)

where 7 is the number of observations and k& is the number of independent variables
(also known as regressors).

Although the data in Table 3.1A are fictitious, in practice I have found that
regressions of adjusted costs versus sales usually give rise to R? values of 90% or
more.®

Standard Error of the y-Estimate

The standard error of the y-estimate is another important regression statistic that
gives us information about the reliability of the regression estimate. Its formula
appears later in the chapter as equation (3.7a). We can multiply the standard error
of $16,014 (B23) by 2 to calculate the 95% confidence interval for the regression
estimate. Thus, we are 95% sure that the true adjusted costs are within £ $32,028 of
the regression estimate of total adjusted costs for the firms in the sample.” Dividing
$32,000 (rounded) by the mean of adjusted costs (approximately $1 million) leads
to a 95% confidence interval that varies by about & 3%, or a 6% total range. Later in
the chapter, we will calculate precise confidence intervals.

The Mean of @ and b

Because a and b are specific numbers that we calculate in a regression analysis, it
is easy to lose sight of the fact that they are not simply numbers, but rather random
variables. Remember that we are trying to estimate « and B, the true fixed and
variable costs, which we will never know. If we had 20 years of financial history

7Although the spreadsheet labels this statistic Multiple R, because our example is an OLS
regression, it is simply R.

8This obviously does not apply to start-ups.

9This is true at the sample mean of X, and the confidence interval widens with the distance
from the mean.
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for our subject company, we could take any number of combinations of years for
our regression analysis. Suppose we had data for 1988—2007. We could use only the
last five years, 2003—2007, or choose 2002—2005 and 2007, still keeping five years
of data, but excluding 2006—although there is no good reason to do so. We could
use 5, 6, 7, or more years of data. There are a large number of different samples we
can draw out of 20 years of data. Each different sample would lead to a different
calculation of @ and b in our attempt to estimate o and §, which is one reason why
a and b are random variables.!® Of course, we will never be exactly correct in our
estimate, and even if we were, there would be no way to know it!

Equations (3.2a) and (3.2b) state that @ and b are unbiased estimators of « and
B, which means that their expected values equal o and B. The capital E is the
expected value operator:

E(a) =a The mean of a is alpha. (3.22)

E(b) = B The mean of b is beta. (3.2b)

The Variance of @ and b

We want to do everything we can to minimize the variances of a and b in order
to improve their reliability as estimators of o and B. If their variances are high, we
cannot place much reliability on our regression estimate of costs—something we
would like to avoid.

Equations (3.3) and (3.4) for the variance of a and b give us important insights
into deciding how many years of financial data to gather and analyze. Common
practice is that an appraisal should encompass five years of data. Most appraisers
consider anything older than five years to be stale data, and anything less than five
years insufficient. You will see that the common practice may be wrong.

The mathematical definition for the variance of a is:

2
var(a) = ., (3.3)
n

where o2 is the true and unobservable population variance around the true regres-
sion line and 7 = number of observations.!!

Therefore, the variance of our estimate of fixed costs decreases with 7, the
number of years of data. If n = 10, the variance of our estimate of « is one-half of its
variance if we use a sample of five years of data, and the standard deviation of our
estimate is lz = 71% of the five-year standard deviation. Thus, doubling the number
of years of data reduces the standard deviation of a by 1 —71% = 29%. Thus, having
more years of data may increase the reliability of our statistical estimate of fixed
costs if the data are not stale, that is, out of date due to changes in the business, all
else being constant.

19Another reason is that Y; are random variables.
UTechnically this is true only when the y-axis is placed through the mean of x. The following
arguments are valid, however, in either case.
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A B | C ] D ] E [ F
1] Table 3.2
2| OLS Regression
3| Example of Deviation from Mean
4
5| Variable
16 | Y X X X
7 Deviation| Squared Dev.
8 |Observation |Year Expenses Sales from Mean from Mean
9 1 2005/ $ 80,000 | $ 100,000 | ¢ (66,667)| 4,444,444,444
10 2 2006| $ 115,000 | $ 150,000 | $ (16,667) 277,777,778
11 3 2007| $ 195,000 | $ 250,000 | $ 83,333 6,944,444,444
12 Total $ 500,000 | $ -| 11,666,666,667
13 Average $ 166,667

The variance of b is equal to the population variance divided by the sum of the
squared deviations from the mean of the independent variable, or:

O_Z

Var (b) = , 3.4

2
X

M=

1

where x; = X; — X, the deviation of the independent variable of each observation,
X;, from the mean, X, of all its observations.

In this context, it is each year’s sales minus the average of sales in the period
of analysis. Since we have no control over the numerator—indeed we cannot even
know it—the denominator is the only portion where we can affect the variance of
b. Let’s take a further look at the denominator.

Table 3.2 is a simple example to illustrate the meaning of x versus X.

Expenses (column C) is our Y (dependent) variable, and sales (column D) is our
X (independent) variable. The three years sales total $500,000 (D12), which averages
to $166,667 (D13) per year, which is X. Column E shows x, the deviation of each
X observation from the sample mean, X, of $166,667. In 2005, x; = $100,000 —
$166,067 = —$66,667 (E9). In 2006, x, = $150,000 — $166,667 = —$16,667 (E10).
Finally in 2007, x5 = $250,000 — $166,667 = $83,333 (E11). The sum of all deviations

3
is always zero, or > x; = 0 (E12).
i=1
Finally, column F shows x?, the square of column E. The sum of the squared

3
deviations, > &7, equals $11,666,666,667.
i=1

This squared term appears in several OLS formulas and is particularly important
in calculating the variance of b.

When we use relatively fewer years of data, there tends to be less variation
in sales. If sales are confined to a fairly narrow range, the squared deviations in
the denominator of equation (3.4) are relatively small, which makes the variance
of b large. The opposite is true when we use more years of data. A countervailing
consideration is that using more years of data may lead to a higher sample variance,
which is the regression estimate of o2, Thus, it is difficult to say in advance how
many years of data are optimal.
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This means that the common practice in the industry of using only five years of
data so as not to corrupt our analysis with stale data may be incorrect if there are
no significant structural changes in the business and competitive environment. The
number of years of available data that gives the best overall statistical output for
the regression equation is the most desirable. Ideally, the analyst should experiment
with different numbers of years of data and let the regression statistics—the adjusted
R?, t-statistics, and standard error of the y-estimate—provide the feedback to making
the optimal choice of how many years of data to use.

Sometimes, prior data can truly be stale. For example, if the number of competi-
tors in the company’s geographic area doubles, this will tend to drive down prices,
resulting in a decreased contribution ratio and an increase in variable costs per dol-
lar of sales. In this case, using the old data without adjustment would distort the
regression results. Nevertheless, it may be advisable in some circumstances to use
some of the old data—with adjustments—in order to have enough data points for
analysis. In the example of more competition in later years, it is possible to reduce
the sales in the years prior to the competitive change on a pro forma basis, keeping
the costs the same. The regression on this adjusted data may be more accurate than
“winging it” with only two or three years of fresh data if the proper adjustments
are clear.

Of course, the company’s management has its view of the future. It is important
for the appraiser to understand that view and consider it in his or her statistical
work.

Confidence Intervals

Constructing confidence intervals around the regression estimates a and b is another
important step in using regression analysis. We would like to be able to make a
statement that we are 95% sure that the true population coefficient (either @ or 8)
is within a specific range of numbers, with our regression estimate (a or b) at the
midpoint. To calculate the range, we must use the Student’s ¢-distribution, which we
define in equation (3.6).

We begin with a standardized normal (2) distribution. A standardized normal
distribution of b—our estimate of f—is constructed by subtracting the mean of b,
which is 8, and dividing by its standard deviation.

b —
Z= il 3.5

0//%.

THE #-DISTRIBUTION  Since we do not know o, the population standard deviation,
the best we can do is estimate it with s, the sample standard deviation. The re-
sult is the Student’s ¢-distribution, or simply the ¢-distribution. Figure 3.2 shows a
z-distribution and a #-distribution. The #-distribution is very similar to the normal ()
distribution, with ¢ being slightly more spread out. The equation for the ¢-distribution
is:

= ———, (3.6)
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FIGURE 3.2 Z-Distribution versus #-Distribution

where the denominator is the standard error of b, commonly denoted as s, (the
standard error of a is s,).

Since B is unobservable, we have to make an assumption about it in order to
calculate a ¢-distribution for it. The usual procedure is to test for the probability that,
regardless of the regression’s estimate of f—which is our b—the true B is really
zero. In statistics, this is known as the null bypothesis. The magnitude of the #-statistic
is indicative of our ability to reject the null hypothesis for an individual variable in
the regression equation. When we reject the null hypothesis, we are saying that our
regression estimate of B is statistically significant.

We do this by substituting in zero for B in equation (3.6) and using s, for the
denominator. This results in equation (3.6a).

= ?T—Statistic to test the null hypothesis that the true g = 0. (3.6a)
b

The intuition behind equation (3.6a) is as follows. Our worry is that even though
the regression provides us with a positive (or negative) estimate of the slope (the
x-coefficient), in reality it is possible that there is no relationship and the true g is
zero. We test that with the #-statistic. The larger the absolute value of the #-statistic,
the less likely it is that the null hypothesis is true, which means it is more likely that
our measurement of b is statistically meaningful and reliable.

The #-statistic increases with an increase in the numerator and a decrease in the
denominator. A large numerator means that the regression estimate of 8, b, is large;
that is, the regression line has a steep slope. This means that the steeper the slope
of the regression line, the less worried we are that the line really should have been
horizontal (i.e., a zero slope). Also the lower the standard error of b, the less worried
we are that our results are meaningless (i.e., false).

In our example in Table 3.1B, the regression estimates variable costs, b, at $0.80
(B34) per dollar of sales. With the #-statistic we are now asking the question, “What
is the probability that variable costs are really zero?,” that is, that there really is no
relationship between sales and total costs.

We can construct 95% confidence intervals around our estimate,
b, of the unknown B. This means that we are 95% sure the correct value of 8
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FIGURE 3.3 T-Distribution of 95% Confidence Interval of 8 around the Estimate b

is in the interval described in equation (3.7).
B = b= y025 s, Formula for 95% confidence interval for the slope. 3.7

Figure 3.3 shows a graph of the confidence interval. The graph is a ¢-distribution,
with its center at b, our regression estimate of 8. The markings on the x-axis are the
number of standard errors below or above b. As mentioned before, we denote the
standard error of b as s;,. The lower boundary of the 95% confidence interval, B;ouer,
is b — too2s Sp, and the upper boundary of the 95% confidence interval, Bypper, is
b + o025 Sp. We will explain the term £y 25 in the following.

The ¢-distribution is a standard table in most statistics books. It is very important
to use the 0.025 probability column in the tables for a 95% confidence interval, not
the 0.05 column. The 0.025 column tells us that for the given degrees of freedom
there is a 2.5% probability that the true and unobservable B is higher than the
upper end of the 95% confidence interval and a 2.5% probability that the true and
unobservable B is lower than the lower end of the 95% confidence interval (see
Figure 3.3).12 We call that term 75, which means that value in the ¢-distribution at
which there is a 2.5% probability for 7 degrees of freedom that g is larger than the
upper end of our 95% confidence interval.

DEGREES OF FREEDOM  The degrees of freedom is equal to n — & — 1, where 7 is
the number of observations and & is the number of independent variables. Let’s try
to understand this. The degrees of freedom tell us how many observations are free
to take on any value, given that we have a specific measure.

We will start with a very simple example. Suppose that we have n = 3 observa-
tions, x; = 4, x, = 6, and x3 = 8. The sum is 18, and the mean is 6. The mean has
n — 1 = 2 degrees of freedom. This is because if we fix the sum at 18, once we have
the first two observations, the last one is already determined. In other words, given

121t is important to be careful, as different texts will show either a one-tailed or two-tailed

distribution.
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that the mean is 6, only two of the three observations can vary. In this example,
once we know the first two, 4 and 6, the last one must be 8 for the mean to be 6.
Now let’s move on to understanding degrees of freedom in regression analysis.

In Table 3.1B, we have 10 observations and one independent variable, that is,
n = 10 and k = 1. The standard error of b (sales) is 0.014 (C34). According to
equation (3.6), in order to calculate this standard error we have to calculate the
standard error of the y-estimate, s. In order to calculate s = $16,014 (B23), we have
to determine the y-intercept and the slope (x-coefficient) of the line. Since two
points determine the line, there is no variance or standard deviation until we have
at least three points (i.e., we lost two degrees of freedom). If we hold the standard
error to be equal to $16,014, only 8 points are free to take on any value. Once we
“allow” those 8 points to take on any value, if we are trying to reverse engineer
s = $16,014, the last two points must take on specific values in order to end up with
our result that s = $16,014.

Similarly, we lose a degree of freedom for each additional regressor. If there are
two independent variables, then instead of fitting a regression line through points
in 2-space, we fit a regression plane through points in 3-space. There is no variance
or standard error until we have 3 points to fit a plane. Only when we have at least 4
points can we calculate variance for two independent variables. In general, we must
have at least & 4+ 1 points to calculate variance. Subtracting that from 7 observations,
we have n — k& — 1 degrees of freedom.

TABLE 3.3: AN ABBREVIATED TABLE OF #-STATISTICS ~ Table 3.3 is an excerpt from
a t-distribution table. We use the 0.025 column for a 95% confidence interval. To
select the appropriate row in the table, we need to know the number of degrees
of freedom. Assuming # = 10 observations and k& = one independent variable,
there are eight degrees of freedom (10 — 1 — 1). The #-statistic in Table 3.3 is
2.306 (C7). That means that we must go 2.306 standard errors below and above
our regression estimate to achieve a 95% confidence interval for 8. The regression
itself will provide us with the standard error of 8. As 7, the number of observations,
goes to infinity, the ¢-distribution becomes a z-distribution. When 7 is large—over
100—the #-distribution is very close to a standardized normal distribution. You can

A | B | ¢ [ D
1 Table 3.3
2 Abbreviated Table of t-Statistics
3
4 Selected t-statistics
5 d.f.\Pr. 0.050 0.025 0.010
6 3 2.353 3.182 4.541
7 8 1.860 2.306 2.896
8 12 1.782 2.179 2.681
9 120 1.658 1.980 2.358
10 Infinity 1.645 1.960 2.326

12 | Note: We select the t-statistic for 8 degrees of freedom and
13 a 95% single-tailed distribution.
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see this in Table 3.3 in that the standard errors in row 9 are very close to those in
row 10, the latter of which is equal to a standardized normal distribution.

BACK TO TABLE 3.1B The t-statistics for our regression in Table 3.1B are 3.82
(D33) and 56.94 (D34). The p-value, also known as the probability (or prob) value,
represents the level at which we can reject the null hypothesis, which in this context
is that the true and unknowable y-intercept and x-coefficient(s) are zero. In statistical
hypothesis testing, the p-value is the probability of obtaining a result at least as
extreme as the one that was actually observed, assuming that the null hypothesis is
true. The lower the p-value, the less likely the result, assuming the null hypothesis,
so the more “significant” the result, in the sense of statistical significance—one often
uses p-values of 0.05 or 0.01, corresponding to a 5% chance or 1% of an outcome
that extreme, given the null hypothesis that the true y-intercepts and x-coefficients
are zero.

One minus the p-value is the level of statistical significance of the y-intercept
and independent variable(s). The p-values of 0.005 (E33) and 0.000 (E34) mean that
the y-intercept and slope coefficients are significant at the 99.5% and 99.9%+ levels,
respectively, which means we are 99.5% sure that the true y-intercept is not zero
and 99.9% sure that the true slope is not zero.!?

The F-test is another method of testing the null hypothesis. In multivariable
regressions, the F-statistic measures whether the independent variables as a group
explain a statistically significant portion of the variation in Y. The F-statistic is 3.24 x
103 (E28) = 3,240 (rounded), which is significant at the 99.9% (1 — F28) level.

We interpret the confidence intervals as follows: There is a 95% probability that
true fixed costs (the y-intercept) fall between $22,496 (F33) and $91,045 (G33). This
equals $56,770 (B33) + (2.306 x $14,863), where 2.306 is ¢ g5 and $14,863 is the
standard error of the y-intercept in C33. Similarly, there is a 95% probability that the
true variable cost (the slope coefficient) falls between $0.77 (F34) and $0.84 (G34)
of each dollar of sales, which is $0.8045 (B34) &+ (2.306 standard errors x 0.014
(C34)).

The denominator of equation (3.0) is called the standard error of b, or s,. It is
s, the standard error of the Y-estimate—defined in equation (3.7a)—divided by the
square root of the average squared deviations of x, with the average determined by
dividing by the degrees of freedom.

(3.72)

Equation (3.7a) is the standard error of the y-estimate, where ¥; are the forecast
(regression fitted) costs, Y; are the historical actual costs, and n — 2 = 8 is the
degrees of freedom. The standard error of the y-estimate is $16,014 (B23). We will
see the components of this calculation in detail later in Appendix Table A3.1, B25
and Table 3.1B, B23. The larger the amount of scatter of the points around the
regression line, the greater the standard error.

3For spreadsheets that do not provide p-values, another way of calculating the statistical
significance is to look up the #-statistics in a Student’s ¢-distribution table and find the level
of statistical significance that corresponds to the #-statistic obtained in the regression.
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CONFIDENCE INTERVALS FOR A SPECIFIC FORECAST OF X, We have shown the variance
of a and b and the confidence interval around b in equation (3.7). Additionally,
equation (3.7a) is the formula for the standard error of the y-estimate, which quan-
tifies the variation of sample data. In this section, we show the confidence intervals
for our forecast of any particular value of x, say xy. In other words, while the pre-
vious formulas give us information about the regression sample and results, which
are critical, it may be helpful to have confidence intervals for any application of our
regression to the subject company.

Equation (3.8) is the formula for a 95% confidence interval for the mean pg, =
a + (b x xy), and equation (3.9) is the formula for a 95% confidence interval for an
individual Y.

1 2
+ty0058. [— + goxz 95% confidence interval for the mean forecast; (3.8
\ 7 i

1 x2
+lo2sS. [— + == +1 95% confidence interval for a specific year’s forecast.

2

N

3.9

Note that x(, which is the deviation of a particular x observation from the mean,
causes the confidence interval to increase the further the X, is from the mean.

Academic articles generally do not provide the measures in equations (3.8)
and (3.9), as finance and economics professors are not interested in reporting how
reliable a regression equation is for a particular choice of xy. Instead, they are
interested in showing how well the regression equation explains the sample data.

Selecting the Data Set and Regression Equation

Table 3.4 is otherwise identical to Table 3.1B, except that instead of all 10 years of
data, it contains only the last five years. The regression equation for the five years
of data is: Adjusted Costs = $71,252 + ($0.79 x Sales) (Table 3.4, B27 and B28).

Examining the regression statistics, we find that the adjusted R? is 99.44% (B16),
still indicating an excellent relationship. We do see a difference in the -statistics for
the two regressions.

The ¢-statistic for the intercept is now 1.89 (D27), indicating it is no longer
significant at the 95% level, whereas it was 3.82 in Table 3.1B. Another effect of
fewer data is that the 95% confidence interval for the intercept value is —$48,485
(F27) to $190,989 (G27), a range of $239,475. In addition, the #-statistic for the slope
coefficient—while still significant—nhas fallen from 56.94 (Table 3.1B, D34) to 26.75
(D28). The 95% confidence interval for the slope now becomes $0.70 (F28) to $0.89
(G28), a range that is 3!/, times greater than that in Table 3.1B and indicates much
more uncertainty in the variable cost than we obtain using 10 years of data.

The standard error of the Y-estimate, however, decreases from $16,014 (Table
3.1B, B23) to $6,840 (B17). This indicates that decreasing the number of data points
improves the Y-estimate, an opposite result from all of the preceding. Why?

Earlier we pointed out that using only a small range for the independent variable

leads to a small denominator in the variance of b, that is, -7—, which leads to larger

X
i=1
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confidence intervals. However, larger data sets (using more years of data) tend
to lead to a larger standard error of the y-estimate, s. As we mentioned earlier,

1

n
— > (Y; = Y)?, where Y; are the forecast (regression fitted) costs, Y; are

i=1
the historical costs, and 7 is the number of observations. Thus we often have a
trade-off in deciding how many years of data to include in the regression. More
years of data lead to better confidence intervals of b, but fewer years may lead to
smaller standard errors of the y-estimate.

Table 3.4 demonstrates that you should evaluate all of the regression statistics
carefully to determine whether the relationship is sufficiently strong to merit using
it and which data set is best to use. Simply looking at the adjusted R* value is
insufficient; all the regression statistics should be evaluated in their entirety, as
an improvement in one may be counterbalanced by a deterioration in another.
Therefore, if time and budget permit, it is best to test different data sets and compare
all of the regression statistics to select the regression equation that represents the
best overall relationship between the variables. Figure 3.4 at the bottom of Table 3.4
is a graph of the regression.

S =

Problems with Regression Analysis for Forecasting Costs

Although regression analysis is a powerful tool, its blind application can lead to
serious errors. One can encounter various problems and should be cognizant of
the limitations of this technique. Aside from the obvious problems of poor fit and
insufficient or missing data, structural changes in the company can also invalidate
the historical relationship of sales and costs.

Insufficient or Missing Data

Insufficient data leads to wider confidence intervals in the regression and our fore-
casts. As mentioned previously, to optimize the regression equation it is best to
examine overlapping data sets to determine which gives the best results. The fewer
the observations available, the fewer degrees of freedom, which means we can have
fewer independent variables.

Missing data often presents challenges, especially when working with transac-
tional databases such as Pratt’s Stats or the IBA database or with the Partnership
Profiles database. Some transactions are missing data. When this occurs, there are
two strategies, and it is usually best to use both. The first strategy we can take
is to use the maximum number of observations, which requires using only those
independent variables for which we have data for all observations. The second strat-
egy is to maximize the number of independent variables that the analyst thinks are
relevant. This requires the analyst to delete all observations that have data miss-
ing from any of the independent variables that he or she is testing. Of course if
a particular independent variable proves to be statistically insignificant, then the
analyst can restore observations that were deleted for lack of this independent
variable.
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A B [ C [ D [ E ] F [ G
1 Table 3.4
2 Regression Analysis 2003-2007
3
4 Year Sales| Adjusted Costs
5 2003 $1,123,600 $965,043
6 2004 $1,191,016 $1,012,745
7 2005 $1,262,477 1,072,633
8 2006 $1,338,226 1,122,714
9 2007 $1,415,000 1,199,000
10
11_|SUMMARY OUTPUT
12
13 Regression Statistics
14 |Multiple R 99.79%
15 |R Square 99.58%
16 _|Adjusted R Square 99.44%
17 |Standard Error 6,840
18 [Observations 5
19
20 [ANOVA
21 df SS MS F Signif F
22 |Regression 1 3.35E+10 3.35E+10 716 1.15E-04
23 |Residual 3 1.40E+08 4.68E+07
24 |Total 4 3.36E+10
25
26 Coef Std Err t Stat P-value | Lower 95% | Upper 95%
27 |Intercept [1] 71,252 37,624 1.89 0.15 (48,485) 190,989
28 |Sales [2] 0.79 0.03 26.75 0.00 0.70 0.89
29

30 _|[1] This is the regression estimate of fixed costs.

32 _|[2] This is the regression estimate of variable costs.

33
34
35 Figure 3.4
gs $1.400,000 Adjusted Costs and Expenses as a Function of Sales
38 y=0.7924x + 71252
39 $1,200,000 e y
40 $1,000,000 o
2; $800,000 @ Adjusted Costs
43 $600,000 = Linear (Adjusted Costs)
44
$400,000
45
46 $200,000
47 $0 : :
28 $0 $500,000 $1,000,000 $1,500,000
50

Substantial Changes in Competition or Product/Service

Although regression analysis is applicable in most situations, substantial structural
changes in a business may render it inappropriate. As mentioned previously, the
appraiser can often compensate for changes in the competitive environment by
making pro forma adjustments to historical sales, keeping costs the same. However,
when a company changes its business, the past is less likely to be a good indicator
of what may occur in the future, depending on the significance of the change.

Using Regression Analysis to Forecast Sales

Table 3.5 is an example of using regression techniques to forecast sales. In order
to do this, it must be reasonable to assume that past performance should be an
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A ] B | c | D | E | F | G
1 Table 3.5
2 Regression Analysis of Sales as a Function of GDP [1]
3
4 Year GDP| GDP? Sales
5 1988 5,049.6 25,498,460.2 $1,000,000
6 1989 5,438.7 29,579,457.7 $1,090,000
7 1990 5,743.0 32,982,049.0 $1,177,200
8 1991 5,916.7 35,007,338.9 $1,259,604
9 1992 6,244.4 38,992,531.4 $1,341,478
10 1993 6,558.1 43,008,675.6 $1,442,089
11 1994 6,947.0 48,260,809.0 $1,528,614
12 1995 7,269.6 52,847,084.2 $1,617,274
13 1996 7,661.6 58,700,114.6 $1,706,224
14 1997 8,110.9 65,786,698.8 $1,812,010
15 1998 8,510.7 72,432,014.5 $1,929,791
16
17 |SUMMARY OUTPUT
18
19 Regression Statistics
20 |Multiple R 0.999
21 |R Square 0.998
22 |Adjusted R Square 0.998
23 |[Standard Error 13,894
24 |Observations 11
25
26 |ANOVA
27 df SS MS F Signif F
28 [Regression 2 9.139E+11 4.570E+11 2.367E+03 8.097E-12
29 [Residual 8 1,544,303,643 193,037,955
30 |Total 10 9.15482E+11
31
32 Coef Std Err t Stat P-value  Lower 95%  Upper 95%
33 [Intercept  (824,833) 182,214 -4.527 0.002 (1,245,019) (404,647)
34 |GDP 412.837 54.653 7.554 0.000 287 539
35 |GDP? -0.011 0.004 -2.645 0.029 -0.020 -0.001
36
37 |[1] GDP, gross domestic product, is in billions of dollars. GDP is a proxy for the overall economy.

accurate indicator of future expectations. If there are fundamental changes in the
industry that render the past a poor indicator of the future, it may or may not be
possible to handle that within the regression framework.

One possibility is the analyst may be able to insert a dummy variable to handle
the change. For example, if there was a major change in 2006, the analyst could use a
dummy variable equal to 0 for years prior to 2006 and equal to 1 for years after 2005.
Another possibility is to make logical pro forma adjustments to the data. If neither of
these options is possible, then regression may be useless and even quite misleading.
As cautioned by Pratt, Reilly, and Schweihs (1996), blind application of regression,
where past performance is the sole indicator of future sales, can be misleading and
incorrect. Instead, careful analysis is required to determine whether past income-
generating forces will be duplicated in the future. Nevertheless, regression analysis
is often useful as a benchmark in forecasting.

In our example in Table 3.5, the primary independent variable is gross domestic
product (GDP), which we show for the years 1988—1998 in billions of dollars in
B5:B15 (cell references separated by a colon will be our way of indicating contigu-
ous spreadsheet ranges). In range C5:C15, we show the square of GDP in billions
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of dollars, which is our second potential independent variable.!* Our dependent
variable is sales, which appears in D5:D15.

Spreadsheet Procedures to Perform Regression

It is mandatory to put the variables in columns and the time periods in rows.
Electronic spreadsheets will not permit you to perform regression analysis with time
in columns and the variables in rows. In other words, we cannot transpose the data
in Table 3.5, cells in range A4:D15, and still perform a regression analysis.

Another requirement is that all cells must contain numeric data. You cannot
perform regression with blank cells or cells with alphanumeric data in them. Also,
you will receive an error message if one of your independent variables is a multiple
of another. For example, if each cell in range C5:C15 is three times the correspond-
ing cell in B5:B15, then the x variables are perfectly collinear and the regression
produces an error message.

In Microsoft Excel, the procedure to perform the regression analysis is as fol-
lows:

1. Select “Tools | Data Analysis | Regression.” This will bring up a dialog box and
automatically place the cursor in “Input ¥ Range.”!®

2. For the Y range (which is the dependent variable, sales in our example), click on
the range icon with the red arrow immediately to the right. Doing so minimizes
the dialog box and enables you to highlight the cell range D4:D15 with your
mouse (you can also select the range without clicking on the range icon).'® Note
that we have included the label “Sales” in D4 in this range. Click again on the
range icon again to return to the dialog box.

3. For the X range, which are the independent variables GDP and GDP? in our
case, repeat the procedure in step 2 and highlight the range B4:C15.

4. Click on the box “Labels,” which will put a checkmark in the box.

5. Click on “Output Range.” Click on the box to the right, click on the range icon
with the red arrow, and then click on A17. This tells the spreadsheet to begin
the regression output at A17.

6. Click “OK.”

Excel now calculates the regression and outputs the data as shown in the bottom
half of Table 3.5.
The instructions for Lotus 123 are almost identical. The only differences are:

1. The command is “Range | Analyze | Regression.”

2. The ranges for the dependent and independent variables should not include the
label in row 4. Thus they are D5:D15 and B5:C15, respectively.

3. Lotus 123 does not compute f-statistics for you. To get the t-statistic, you will
have to compute it manually by creating a formula. Divide the regression

Y Another variation of this procedure is to substitute the square root of GDP for its square.
5If Data Analysis is not yet enabled in Excel, you must select add-ins and then select Analysis
| ToolPak.

19Excel actually shows the range with dollar signs (e.g., $D$4:$D$15).
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coefficient by its standard error. Unfortunately, Lotus 123 does not calculate
the p-values either. If you want them, you will have to look up your results in
a standard table of 7-statistics. We will cover that later.

Examining the Regression Statistics

Once again, we look at the statistical measures resulting from the regression to
determine the strength of the relationship between sales and GDP. Adjusted R? is
99.8% (B22), a near-perfect relationship. The ¢-statistics for the independent vari-
ables, GDP and GDP?, are 7.55 (D34) and —2.65 (D35), both statistically significant.
The easiest way to determine the level of statistical significance is through the
p-value. One minus the p-value is the level of statistical significance. For GDP,
the p-value is 0.000 (E34), which is less than 0.1%. Thus GDP is statistically
significant at a level greater than 100% — 0.1% = 99.9%. The square of GDP
has a p-value of 0.029 (E35), which indicates statistical significance at the 97.1%
level. We normally accept any regressor with significance greater than or equal to
95%, and we may consider accepting a regressor that is significant at the 90% to
95% level.

The standard error of the y-estimate (i.e., sales) is $13,894 (B23). Our approx-
imate 95% confidence interval is & two standard errors = £$27,788, which is less
than +2% of the mean of sales.

In actual practice, adjusted R? for a regression of sales of mature firms is often
above 90% and frequently around 98%.

Adding Industry-Specific Independent Variables

One should also consider adding industry-specific independent variables. For exam-
ple, when valuing a jeweler, we should try adding the price of gold and silver (and
the nonlinear transformations, for example, squares, square roots, and logarithms)
as independent variables. When valuing a firm in the oil industry, we should try
using the price of a barrel of oil (and its nonlinear transformations).

When valuing a coffee producer, we would want to have not only the average
price of coffee as an independent variable, but also the price of tea and perhaps
even sugar. The analyst should look to the prices of the product itself, complements,
and substitutes.

Once again, it is important to examine the statistical validity of the relation-
ship and use professional judgment to determine the usefulness of the equation.
Sales forecasts obtained from regression analysis can serve as a benchmark from
which adjustments can be made based on qualitative factors that may influence
future sales.

One should also keep in mind that just because a less quantitative method of
forecasting sales does not have an embarrassingly low R? staring the analyst in the
face does not mean that it is superior to the regression. It means we have no clue
as to the reliability of the forecast. We should always be uncomfortable with our
ignorance.
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Try Combinations of Potential Independent Variables

It is important to try as many logical combinations of independent variables as
practically possible. With a statistics package, this is done automatically in using
automated forward or backward regression. However, statistics packages have their
drawbacks. They are not very user-friendly in communicating with spreadsheet
programs, which most appraisers use in valuation analysis. Most appraisers will find
the spreadsheet regression capabilities more than adequate. Nevertheless, it is often
ideal to use a statistics package first to allow the automated regression to locate the
best combination of independent variables and then use that combination in Excel
for more attractive output and easier interface to the rest of the valuation process.

When using a spreadsheet exclusively for regression, it is important to try many
combinations of logical potential independent variables in the regression process.
For example, in regressing sales against both GDP and GDP?, it is not unusual to
find both independent variables statistically insignificant when regressed together,
that is, p-values greater than 0.05. However, they still may be statistically significant
when regressed individually. So it is important to regress sales against GDP and
perform a second regression against GDP2. This process becomes more complicated
and time-consuming with additional candidates for independent variables.

It is also important to recognize that stretching too far in trying independent
variables may yield spurious (apparently good but actually false) regressions. For
example, it is possible that tea production in India by dumb luck might appear to
produce statistically significant results in explaining adjusted costs and expenses,
but the wise analyst will refrain from trying out independent variables that make
no sense.

There is another important caveat. It has been the author’s experience that using
extreme!” nonlinear independent variables such an the inverse or square can lead
to erratic results—and all the more so when even one independent variable in
the subject company is materially outside of the range of those in the sample. For
example, our firm performs a regression of the Partnership Profiles database every
year. We usually find that some combination of prior-year cash yields is statistically
significant in explaining discounts from net asset value. We also often find that
adding inverses of yields, that is, (1/yield), is statistically significant in the sample
and improves the adjusted R? of the regression.!® However, using inverses tends to
lead to extreme results when applying the regression to our subject companies.

For example, the inverse of a 1% yield is 1/0.01 = 100, while the inverse of a 2% yield is
1/0.02 = 50, which is a large absolute difference (although the same percentage difference).
In contrast, In(0.01) = —4.6, while In(0.02) = —3.9. The percentage difference with natural
logarithms between the two yields is only about 15%. Thus, logarithms tend to minimize
differences and are stable nonlinear variables, while it has been the author’s experience that
inverses and squares are more problematic if the subject company’s measure is materially
outside the sample range. That does not mean that inverses and squares are always inappro-
priate. It is a warning to be careful about using them. One conservative way to incorporate
them is to use the appropriate maximum or minimum value in the sample range for the
subject company.

8Since the natural log of zero is undefined, when the yield is zero, we assume it was 0.001.
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Autocorrelation in Time Series Analysis

So far, both types of regression that we have discussed so far—regression of the
company’s costs as a function of sales and regression of sales as a function of GDP,
and so forth—are time series regressions. In time series there can be problems
with autocorrelation (a.k.a. serial correlation), which means the regression errors
are correlated over time. Ideally there should be no autocorrelation, which means
the regression errors are completely random. If there is autocorrelation, then the
size of the regression error in one year should enable us to predict the regression
error in another year.

The test for autocorrelation in the error term is the Durbin-Watson test.! If
the Durbin-Watson indicates the presence of autocorrelation, dealing with it is very
sophisticated business—beyond the scope of this chapter.

Application of Regression Analysis to
the Guideline Company (GC) Methods

Unlike the previous two applications of time series regression, regression using GCs
is cross-sectional and does not have issues with autocorrelation. At its simplest level,
the GC method involves the use of ratios of stock price to earnings (PE multiples),
cash flow (P/CF, P/EBIT, or P/EBITDA multiples), book value (P/BV multiples),
sales (P/Sales), or other measures of income, cash flow, or value.

There are two basic sources of GCs: publicly traded firms and privately traded
firms, with data for the latter being available in Pratt’s Stats, Done Deals, the IBA
database, and BizComps. The two submethods are known as the guideline public
company method (GPCM) and the guideline MGA method (GMAM). In both cases, we
are looking to GCs in the same or similar business as the company. We are therefore
considering what informed investors are willing to pay, adjusted for the specific
circumstances of the company being valued. While the use of ratios is common
in valuation, regression analysis is more sophisticated and informative, because it
provides us with statistical feedback on the strength of the relationship. Pratt, Reilly,
and Schweihs (1996) present a comprehensive chapter on use of the guideline
company method, so we will discuss it only within the context of regression analysis.

Table 3.6: Regression Analysis of Guideline Companies

Table 3.6 shows data from an actual guideline company analysis, with the company
names disguised in column A. Column B contains the fair market values (FMVs)
(market capitalization) for 11 companies, ranging from slightly over $3 million (B5)
to over $150 million (B15). The average FMV is $41.3 million (B16), with a standard
deviation of $44.6 million (B17). Net income (column C) averages about $5.1 million
(C16), with a range of $600,000 to $16.9 million. We had to exclude companies A
and B, which were outliers with price/earnings (PE) ratios over 60.

First we will briefly describe the regression results for the regression of FMV
against net income (not shown in the table). The regression yields an adjusted R*

YThe Durbin-Watson test is not valid for autocorrelation in the dependent variable.
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A | B | (o] | D | E | F | G | H
1 Table 3.6
2 Regression Analysis of Guideline Companies
3
4 |Company FMV| Net Income In FMV| In Nﬂ 1/g g | PE Ratio
5 |C 3,165,958 602,465 14.9680 13.3088 20.0000 0.0500 5.2550
6 [D 6,250,000 659,931 15.6481 13.3999 10.0000 0.1000 9.4707
7 _|E 12,698,131 1,375,000 16.3570 14.1340 10.5263 0.0950 9.2350
8 |F 24,062,948 2,325,000 16.9962 14.6592 9.0909 0.1100 10.3497
9 |G 23,210,578 2,673,415 16.9601 14.7989 12.1951 0.0820 8.6820
10 |[H 16,683,567 2,982,582 16.6299 14.9083 20.0000 0.0500 5.5937
11 | 37,545,523 4,369,808 17.4411 15.2902 12.5000 0.0800 8.5920
12 [J 46,314,262 4,438,000 17.6510 15.3057 9.3023 0.1075 10.4358
13 [K 36,068,550 7,384,000 17.4009 15.8148 20.8333 0.0480 4.8847
14 |L 97,482,000 | 12,679,000 18.3952 16.3555 9.5238 0.1050 7.6885
15 |M 150,388,518 | 16,865,443 18.8287 16.6408 9.0909 0.1100 8.9170
16 [Average 41,260,912 5,123,149 17.0251 14.9651 13.0057 0.0852 8.1004
17 [Standard Deviation 44,558,275 5,233,919 1.1212 1.0814 4.8135 0.0252 1.9954
18
19
20 |SUMMARY OUTPUT
21
22 Regression Statistics
23 [Multiple R 0.998
24 |R Square 0.996
25 |Adjusted R Square 0.995
26 _|Standard Error 0.083
27 |Observations 11
28
29 |ANOVA
30 df SS MS F Signif F
31 _[Regression 2 12.517 6.259 914.637 0.000
32 |Residual 8 0.055 0.007
33 [Total 10 12.572
34
35 Coef Std Err t Stat P-value Lower 95%  Upper 95%
36 _[Intercept 3.431 0.390 8.794 0.000 2.531 4.331
37 |[In NI 0.957 0.025 38.818 0.000 0.900 1.014
38 |1/g -0.056 0.006 -10.114 0.000 -0.069 -0.043
39
40 |Valuation
41 [NI 100,000 200,000 300,000 400,000 500,000 1,000,000
42 |In NI 11.5129 12.2061 12.6115 12.8992 13.1224 13.8155
43 | X Coefficient—NI 0.957 0.957 0.957 0.957, 0.957 0.957
44 |In NI x X Coefficient 11.019 11.682 12.070 12.346 12.559 13.223
45 |g 0.05 0.055 0.06 0.065 0.07 0.1
46 |1/g 20.000 18.182 16.667 15.385 14.286 10.000
47 | X Coefficient—1/g -0.056 -0.056 -0.056 -0.056 -0.056 -0.056
48 |1/g x X Coefficient -1.120 -1.019 -0.934 -0.862 -0.800 -0.560
49 |Add Intercept 3.431 3.431 3.431 3.431 3.431 3.431
50 |Total = In FMV 13.329 14.095 14.567 14.915 15.190 16.093
51 [FMV $614,928 $1,321,816] $2,121,136| $3,001,492| $3,952,067| $9,754,515
52 |PE Ratio 6.149 6.609 7.070 7.504 7.904 9.755
53
54 |95% Confidence Intervals
55 |2 Standard Errors 0.165
56 &St 1.180
57 972 Std Err 0848

of 94.6% and a #-statistic for the x-coefficient of 12.4, which seems to indicate a
successful regression. The regression equation obtained for the complete data set is:

FMV = —$1,272,335 4 (8.3 x Net Income).

If we were to use the regression to value a firm with net income of $100,000, it
would produce a value of —$442,000. Something is wrong!
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HETEROSCEDASTICITY  The problem is that the full regression equation is:
FMV; = a+ b x Net Income + 1, (3.10)

where u; is an error term, assumed to be normally distributed with an expected
value of zero. Our specific regression equation is:

—$1,272,335 + (8.3 x Net Income) + ;. (3.1D)

The problem is that this error term is additive and likely to be correlated to the
size of the firm. When that occurs, we have a problem called heteroscedasticity.*
There are three possible solutions to the problem:

1. Use weighted least squares (WLS) instead of ordinary least squares regression.
In WLS, we weight the extreme values less than the more mainstream values.
This usually will not produce a usable solution for a privately held firm that is
much smaller than the publicly traded guideline companies.

2. Use a log-log specification, that is, taking the log of both sides.

3. Use a scaled variable as the y-variable. Typical examples of this are the price-to-
sales (PS) multiple or the price/earnings (PE) multiple. This is usually the most
practical solution.

In using the log-log specification, we regress the natural logarithm of market
capitalization as a function of the natural logarithm of net income. Its form is:

In FMV; =a+ b In NI +u;, i = guideline company 1,2, 3,...n. (3.12)
When we take antilogs, the original equation is:
FMV; = ANI'v;, (3.13)

where A = ¢”, v; = e" e is Euler’s constant, and the expected value of v; = 1.

In equation (3.13), the regression equation x-coefficient, b, from equation (3.12)
for net income becomes an exponent to net income. If » = 1, then size has no scaling
effect on the FMV, and we would expect price/earnings ratios to be uncorrelated
to size, all other things being constant. If b > 1, then the price/earnings multiple
should rise with net income, and the opposite is true of b < 1. Relating this to the
log size model in Chapter 5, we would thus expect to find b > 1 because, over long
periods of time, large firms have lower discount rates than small firms, which mean
larger values relative to earnings.

Using equation (3.13), consider two identical errors of 20% for firms i and j,
where firm ¢ has net income of $100,000 and firm j has net income of $200,000. In
other words, the error terms ¢; and ¢; are both 1.2.2! For simplicity, suppose that
b =1 for both firms. The same statistical error in the log of the fair market value of
both firms produces an error in fair market value that is twice as large in firm j as in
firm 4. This is a desirable property, as it corresponds to our intuition that large firms
will tend to have larger absolute deviations from the regression-determined values.
Thus, this form of regression is likely to be more successful than equation (3.10) for
valuing small firms.

This is also spelled heteroskedasticity.
I This means the error terms u; and u; in equation (3.12) are equal to In (1.2) = 0.182.



72 Forecasting Cash Flow

Equation (3.10) is probably fine for valuing firms of the same size as the guideline
companies. When we apply equation (3.10) to various levels of net income, we find
the forecast FMVs are —$442,000, $0 (rounded), $2.9 million, and $7.0 million for net
incomes of $100,000, $154,000, $500,000, and $1 million. Obviously equation (3.10)
works poorly at the low end. We would also have a similar, but opposite, scaling
problem forecasting value for a firm with net income of $5 billion. The additive error
term restricts the applicability of equation (3.10) to subject companies of similar size
to the guideline companies.

Including forecast growth as an independent variable is an important potential
enhancement to the regression equation. The Internet makes it easier to obtain
growth forecasts, although frequently there are no such estimates for smaller publicly
traded firms.

A midyear Gordon model is the proper valuation equation for a firm with
constant forecast growth:

FMV = CFy4q vitr (3.14)
r—g

In Chapter 5, we show that NYSE/AMEX/NASDAQ returns are negatively related
to the natural logarithm of market capitalization (which can also be referred to as fair
market value or size), which means that there is a nonlinear relationship between
return and size. Therefore, the discount rate, r, in equation (3.14) impounds a
nonlinear size effect. To the extent that there is a nonlinear size effect in equation
(3.13), we should hopefully pick that up in the b coefficient.

Note that in equation (3.14) there is a growth term, g, which appears in the
denominator of the Gordon model multiple. Thus, it is reasonable to try 1/g as an
additional independent variable in equation (3.13).

Continuing our description of Table 3.6, column C is net income, and columns
D and E are the natural logarithms of FMV and net income. These are actual data
from a real valuation. Column G is a made-up growth rate. It is not based on actual
data, which were unavailable. (However, we will perform a regression using the
growth rates as if they are I/B/E/S estimates.) Column F is the inverse of column G,
that is, 1/g. Thus, column D is our dependent variable, and columns E and F are
our independent variables.?

The adjusted R? is 99.5% (B25), an excellent result. The standard error of the
y-estimate is 0.083 (B26). The y-intercept is 3.43 (B36), and the x-coefficients for In
NI and 1/g are 0.95708 and —0.05602 (B37, B38), respectively.

In the valuation section of Table 3.6, we show valuations for subject companies
with differing levels of net income and expected growth. Row 41 shows firms with
net incomes ranging from $100,000 to $1 million. Row 42 is the natural log of net
income.?® We multiply that by the x-coefficient for net income in row 43, which
produces a subtotal in row 44.

Row 45 contains our forecast of constant growth for the various subject compa-
nies. We are assuming growth of 5% per year for the $100,000 net income firm in

%Electronic spreadsheets require that the independent variables be in contiguous columns.
BThe Excel formula for B42, for example, is =In(B41). The Lotus 123 formula would be
@In(B41D).
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column B, and we increase the growth estimate by 0.5% for each firm. Row 46 is 1
divided by forecast growth.

In row 47, we repeat the x-coefficient for 1/g from the regression, and row 46 x
row 47 = row 48, which is another subtotal.

In row 49, we repeat the y-intercept from the regression. In row 50, we add
rows 44, 48, and 49, the sum of which equals the natural logarithm of the forecast
FMV (at the marketable minority interest level). We must then exponentiate that
result (i.e., take the antilog). The Excel formula for B51 is =EXP(B50). Finally, we
calculate the PE ratio in row 52 as row 51 divided by row 41.

The PE ratio rises because of the increase in the forecast growth rate across the
columns. If all cells in row 45 were equal to 0.05, then the PE ratios in row 52 would
actually decline going to the right across the columns. The reason for this is that the
x-coefficient for In NI, 0.95708 (B37), is < 1. This is contrary to our expectations. If
B38 were greater than 1, then PE ratios would rise with firm size, holding forecast
growth constant. Does this disprove the log size model? No; while all the rest of the
data are real, these growth rates are not. They are made up. Also, one small sample
of one industry at one point in time does not generalize to all firms at all times.

In the absence of the made-up growth rates, the actual regression yielded an
adjusted R* of 93.3% and a standard error of 0.2896 (not shown).

NINETY-FIVE PERCENT CONFIDENCE INTERVALS ~ We multiply the standard error in B26
by 2 = 0.165 (B55).?* To convert the standard error of In FMV to the standard
error of FMV, we have to exponentiate the two standard errors. In B56, we raise
e, Euler’s constant, to the power of B55. Thus, 9% = 1.1799, which means the
high side of our 95% confidence interval is 18% higher than our estimate.®® To
calculate the low side of our 95% confidence interval, we raise e to the power of
two standard errors below the regression estimate. Thus B57 = e~ 105% = 0.8475,
which is approximately 15% below the regression estimate. Thus our 95% confidence
interval is the regression estimate +18% and —15%. Using only the actual data that
were available at the time, the same regression without 1/g yielded confidence
intervals of the regression estimate +78% and —56%. Obviously, growth can make a
huge difference. Also, without growth, the x-coefficient for In NI was slightly above
1, indicating increasing PE multiples with size.

We eventually intend to cover the third method of dealing with heteroscedastic-
ity, using scaled variables, in the workbook that should accompany the third edition
of this text. Until then, look for material on our Web site.

Summary

Regression analysis is a powerful tool for use in forecasting future costs, expenses,
and sales and estimating fair market value. We should take care in evaluating and
selecting the input data, however, to arrive at a meaningful answer. Similarly, we
should carefully scrutinize the regression output to determine the significance of the

241t is 0.16544 to five decimal points.
BThe Excel formula for B56 is =EXP(B55), and the Lotus 123 formula is @EXP(B55). Similarly,
the Excel formula for B57 is =EXP(—B55), and the Lotus 123 formula is @ EXP(—B55).



74 Forecasting Cash Flow

variables and the amount of error in the Y-estimate to determine whether the overall
relationship is meaningful.
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APPENDIX 3 A

The ANOVA Table
(Table A3.1, Rows 28—32)

We have already discussed the importance of variance in regression analysis. The
center section of Table A3.1, which is an extension of Table 3.1B, contains an
analysis of variance (ANOVA), automatically generated by the spreadsheet. We
calculate the components of ANOVA in the top portion of the table to “open up the
black box” and show the reader the source of the numbers.

In D7 to D16, we calculate the regression estimate of adjusted costs using the
regression equation:

Costs = $56,770 + (0.80 x Sales) [B35 + (B36 x column B)].

Next, we subtract the average actual adjusted cost of $852,420 (C18) from the re-
gression calculated costs in column D to arrive at the deviation from the mean in
column E. In standard statistical notation, this is ¥ — Y. Note that the sum of the
deviations is zero in E17, as it must be.
In column F, we square each deviation term in column E and total them in
F17. This is Y (¥; — Y)%. The total, 8.31 x 10", is known as the sum of squares of
1

the regression and measures the amount of variation explained by the regression.
In the absence of a regression, our best estimate of costs for any year during the
1998-2007 period is Y, the mean cost. The difference between the historical mean
and the regression estimate (column E) is the deviation explained by the regression
and its square (column F) is the regression sum of squares (5S). This term appears
in C30.

In column G we calculate the difference between the actual cost (Y) and the
calculated cost (the regression estimate, Y) by subtracting the values in column D
from column C. Again, the sum of the deviations is zero. We square the deviations
and sum them, > (Y; — ¥)?, to arrive at a value of 2.05 x 10° (H17). This second

1
sum of squares, which appears in the ANOVA table in C31, is the unexplained
variation, known as the residual sum of squares. We calculate the corresponding
mean square error term in column I by dividing the values in column H by 8 (B31),
the number of degrees of freedom of the residual. The sum is 2.56 x 10% (117),
which appears in the ANOVA table in D31. Finally, we calculate the F-statistic
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The ANOVA Table (Table A3.1, Rows 28-32) 77

of 3.42 x 10° = 3,242 (E30) by dividing the mean squared error (MS)*® of the
regression by the MS of the residual (E30 = D30/D3D).

The mean squared error is the sum of squares divided by the degrees of freedom.
For the regression there is only one (B30) degree of freedom, as we have only one
independent variable. Thus, D30 = C30/B30. The residual mean square equals
(2.05 x 107) / 8 = 2.56 x 10°® (C31/B31 = D31).

The F-statistic is the regression MS divided by the residual MS, or D30/D31 =
E30 = 3.24 x 10°.

The explained variation plus the unexplained variation equals the total varia-
tion. The correlation coefficient, R? = Zpiained Variation of ¥ 1y 11 case, the explained

Total Variation of 'Y
variation (C30) divided by the total variation (C32) is equal to 99.8%, as seen in B23.

%We explain MS in the next paragraph.
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CHAPTER 4

Annuity Discount Factors
and the Gordon Model

Introduction

This chapter describes the derivation of annuity discount factors (ADFs) and the
Gordon model (Gordon and Shapiro 1956).! The ADF is the present value of a
finite stream of cash flows (CFs) with constant or zero growth, assuming the first
cash flow equals $1.00. Thus, the actual first year’s cash flow times the ADF is the
present value, as of time zero, of the stream of cash flows from years 1 to 7. Growth
rates in cash flows may be positive, zero, or negative, the latter being a decline in
cash flows.

The Gordon model is identical to the ADF, except that it produces the present
value of perpetuity for each $1.00 of initial cash flow. The resulting present value is
known as the Gordon model mulitiple. When using the Gordon model multiple, the
discount rate must be larger than the constant growth rate, which is not true of the
ADF.

There are several varieties of ADFs, depending on whether the cash flows:

Are constant or grow/decline.

Occur midyear or at the end of the year.

Begin in the first year or at some other time.
Occur every year or at regular, skipped intervals.
Finish on a whole year or a fractional year.

This chapter begins with the derivation of the ADF, and later shows that the
Gordon model, which is the present value of a perpetual annuity with constant
growth, is simply a special case of the ADF. We will demonstrate that an ADF is
actually the difference of two perpetuities.

There are several uses of ADFs, including:

B Calculating the present value of annuities. This application has become far more
important because the quantitative marketability discount model (Mercer, 1997)
requires an ADF with growth (see Chapter 8). While Mercer’s book has an

!Gordon and Shapiro were preceded by Williams (1938). See also Gordon (1962).
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approximation of the ADF on page 276 that appears to be fairly accurate, this
chapter contains the exact formulas.

® Valuing periodic cash flows such as moving expenses, losses from lawsuits,
and so on. This requires a specialized ADF called a periodic perpetuity factor
(PPF), which we develop later in the chapter. Additionally, PPFs are useful
for decisions in buying new versus used income-producing equipment (such
as airplanes, ships, fleets of trucks, taxicabs, MRIs, and CT scanners) and for
calculating the value of used equipment.?

® Calculating loan payments.

® Calculating loan principal amortization.

® Calculating the present value of a loan. This is important in calculating the
correct selling price of a business, as seller financing typically takes place at less-
than-market rates. The present value of a loan is also important in Employee
Stock Ownership Plan (ESOP) valuation.

At first glance, this chapter appears mathematically very intensive and daunting
in its use of geometric sequences. However, the primary concepts appear in equa-
tions (4.1) through (4.9), and once you understand those equations the remainder
are merely special cases or slight variations on the original theme and can be easily
comprehended. While the formulas look complex, we decompose them into units
that behave as modular “building blocks,” each of which has an intuitive explana-
tion. You will benefit from understanding the math in the body of the chapter, as
this material is useful in several areas of business valuation. Additionally, you will
gain a much better understanding of the Gordon model, which appraisers often use
in discounted future net income or discounted cash flow valuation.

ADFs are an area that many practitioners find difficult, leading to many mistakes.
Timing errors in ADFs frequently result from the fact that the guideline company
method uses the most recent historical earnings for calculating price/earnings (PE)
multiples, whereas the Gordon model uses the first future period’s forecast cash flow
as its earnings base. Many practitioners confuse the two and use historical rather
than forecast earnings as their base in a discounted cash flow or discounted future
net income approach. Another common error is the use of end-of-year multiples
when midyear Gordon model multiples are appropriate.

The ADF formulas given within the chapter apply only to cash flow streams that
have a whole number of years associated with them. If the cash flow stream ends
in a fractional year, you should use the formulas in Appendix A for ADFs with stub
periods.

Unless otherwise specified, all ADF formulas are for cash flows with constant
growth. At specific points in the chapter, we make the simplifying assumption that
growth is zero and clearly state when that is the case. Otherwise, the reader may
assume growth is constant and non-zero.

Definitions

Let us initially consider an ADF with constant growth in cash flows, where the last
cash flow occurs in period 7. We will use the following definitions:

2CFO magazine wrote an article about this formula, “A Beautiful Find,” April 2002, p. 18.
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r =discount rate.
g=annual growth rate in cash flows.
ADF=annuity discount factor.
PV = present value.
CF = cash flow.
LHS = left-hand side of the equation.
RHS =right-hand side of the equation.
N =terminal year of the cash flows.
T =time (which can refer to a point in time or to a year).

Denoting Time

Timing is frequently a source of confusion. Time ¢ denotes the time period under
discussion. It generally refers to a specific year.? Time ¢ refers to the entire year,
except for two contexts that we discuss in the next paragraph. Thus, time ¢ is a span
of time, not a point in time.

There are two contexts in which time ¢ means a point in time. The first occurs
with the statement ¢ = 0, which means the beginning of the period ¢t = 1, that is,
usually the beginning of the first year of cash flows. For example, if # = 1 represents
the calendar year 2000, then f = 0 means January 1, 2000, the first day of ¢ = 1.
Usually, but not always, + = 0 is the valuation date. The other context in which
! means a point in time is when we specify either the beginning, midpoint, or
end of t.

In business valuation, we generally assume that cash flows occur approximately
evenly throughout time ¢. In present value (PV) terms, that is approximately equiva-
lent to assuming they occur at the midpoint of time £ Occasionally it is appropriate
to assume that cash flows occur at the end of the year, which can be the case
with annuities, royalties, and so on. The former is commonly known as the midyear
assumption, while the latter is known as the end-of-year (or end-year) assumption.

Another important concept related to time that can be confusing is the valuation
date, the point in time to which we discount the cash flows. The valuation date is
rarely the same as the first cash flow. The most common valuation date in this chapter
is as of time zero (i.e., = 0). The cash flows usually—but not always—either begin
during year 1 or occur at the end of year 1.

ADF with End-of-Year Cash Flows

The ADF is the present value of a series of cash flows over 7 years with constant
growth, beginning with $1 of cash flow in year 1. We multiply the first year’s forecast
cash flow by the ADF to arrive at the PV of the cash flow stream. For example, if
the ADF is 9.367 and the first year’s cash flow is $10,000, then the PV of the annuity
is 9.367 x $10,000 = $93,670.

We begin the calculation of the ADF by defining the timing and amounts of
the cash flows and discounting them to their present value. Initially, for simplicity,

3In the context of loan amortization, periods are usually months.
“We cover the exact formulas at the end of this chapter.
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we assume end-of-year cash flows. The PV of an annuity of $1, paid at the end of
the year for each of n years is:

$1 $1x(1+9 $1x (14"t
PV = et 4.1
1+t A +r? A +rm @D
Factoring out the $1:
_ 1 1+9 1+ ! )
PV =51 [(1+r)1 Tare T A } 1)

The ADF is the PV of the constant growth cash flows per $1 of starting year
cash flow. Dividing both sides of equation (4.1a) by $1, the left-hand side becomes
%, which equals the ADF. Thus, equation (4.1a) simplifies to:

1 a+go , Q +9"!
A+ A +r? A+rn

ADF = (4.1b)

The numerators in equation (4.1b) are the forecast cash flows themselves, and
the denominators are the present value factors for each cash flow. As mentioned
previously, the first year’s cash flow in an ADF calculation is always defined as $1.
With constant growth in cash flow, each successive year is (1 4+ g) times the previous
year’s cash flow, which means that the cash flow in period 7 is (1 + g)"'. The cash
flow is not (1 4+ @", because the first year’s cash flow is $1.00, not 1 4+ g. For
example, if g = 10%, the first year’s cash flow is, by definition, $1.00. The second
year’s cash flow is 1.1 x $1.00 = $1.10. The third year’s cash flow is 1.1 x $1.10 =
1.12 x $1.00 = 1.21. The fourth year’s cash flow is 1.1> x $1.00 = $1.331, and so
on. The denominators in equation (4.1b) discount the cash flows in the numerator
to their present value.

Next, we begin a series of algebraic manipulations that will ultimately enable us

to solve for the ADF and specify it in a formula. Multiplying equation (4.1b) by %,
we get:
a+g A+g A+ A+g"
F = . (4.2)
A+ A +r? A+rm A+t

Notice that most of the terms in equation (4.2) are identical to equation (4.1b).
We next subtract equation (4.2) from equation (4.1b). All of the terms in the middle
of the equation are identical and thus drop out. The only terms that remain on the
RHS after the subtraction are the first term on the RHS of equation (4.1b) and the
last term on the RHS of equation (4.2).

1+g 1 aQ+9"

ADF — ADF = — . 4.
147 14+r A+t “4.3)
Next, we wish to simplify only the left-hand side of equation (4.3):
1 1
ADF — * 8 app — aprF [1 _1te ] . (4.32)
147 147
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1+r

Multiplying the 1 in the square brackets on the RHS of the equation by {77, we get:
1 1 1 1 -1 —
ADF |1 — 8 — ADF 1+r _1+g :ADFM:ADFQ.
147 14+r 147 147 1+7r

(4.3b)

Substituting the last expression of equation (4.3b) into the left-hand side of equation
(4.3), we get:

r—g 1 149"
br N : 4.4
T+n [(1+r) (1_4_,,)n+1] (4.9
Multiplying both sides of the equation by . we obtain:
A+ 1 ¢! +g)”
ADF = B ‘ .
r—g [(1 +r A+ r)n+1] (4.5)

After canceling out the (1 + 7), this simplifies to:

1 1+g\" 1
ADF = = [( “) —} (4.6)
r—g 14+r) r—g
ADF with growth and end-of-year cash flows.
There are three alternative ways to regroup the terms in equation (4.6) that
will prove useful, which we label as equations (4.6a), (4.6b), and (4.6¢). In the first

alternative expression for equation (4.6), we split up the first term in the square
brackets into two separate terms, placing the denominator at the far right:

1 1

1
ADF = —— — |+ @)'—— ———
g [( + 98— g axrr

:| First alternative expression for (4.6).

(4.62)

We derive the second alternative expression by simply factoring out the ﬁ
from equation (4.6) and restate the equation as equation (4.6b). It has the advantage

of being more compact than equation (4.6):

ADF = [1— (Hg) } (4.6b)
r—g 147

Second alternative expression for (4.6).

After we develop some additional results, we will be able to explain equations
(4.6) through (4.6b) intuitively. In the meantime, we will make some substitutions
in equation (4.6b) that will greatly simplify its form and eventually make the ADF
much more intuitive.

Note that the first term on the right-hand side of equation (4.6b) is the classical
Gordon model multiple, ﬁ Let's denote it GM. The next substitution that will

1+g
14+r

simplify the expression is to let x = . Then we can restate equation (4.6b) as:
ADF = GM(1 — x™) (4.60)

Third alternative expression for (4.6).
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A B [ ¢ T o JT E T F T & [ HJ T

1 Table 4.1

2 ADFs for n = 3 Years

3

4 Disc Rate = r| Growth Rate =

5 -3% 2% 1% 0% 1% 2% 3% 4% 5%
6 10% 2.4177| 2.4406| 2.4636] 2.4869] 2.5102| 2.5337| 2.5574| 2.5812] 2.6052
7 11%) 2.3762| 2.3985| 2.4210| 2.4437| 2.4665| 2.4895| 2.5126| 2.5358| 2.5592
8 12% 2.3358| 2.3577| 2.3797| 2.4018| 2.4241| 2.4465| 2.4691| 2.4918| 2.5146
9 13% 2.2967| 2.3180] 2.3395| 2.3612| 2.3829| 2.4048| 2.4269| 2.4490| 2.4713
10 14% 2.2587| 2.2795| 2.3005] 2.3216] 2.3429] 2.3643| 2.3858| 2.4075] 2.4293
11 15% 2.2217| 2.2421| 2.2626] 2.2832] 2.3040| 2.3249| 2.3460| 2.3671| 2.3884
12 16% 21857 2.2057| 2.2257| 2.2459| 2.2662| 2.2866| 2.3072| 2.3279| 2.3487
13 17% 21508 2.1702 2.1899| 2.2096| 2.2294| 2.2494| 2.2695| 2.2898| 2.3101
14 18% 2.1168] 2.1358| 2.1550( 2.1743| 2.1937| 2.2132] 2.2329| 2.2527 2.2726
15 19% 2.0837| 2.1023[ 2.1210] 2.1399] 2.1589] 2.1780| 2.1972[ 2.2166] 2.2361
16 20% 2.0514] 2.0697| 2.0880] 2.1065] 2.1251| 2.1438] 2.1626] 2.1815] 2.2005
17 21% 2.0201[ 2.0379] 2.0559| 2.0739| 2.0921| 2.1104| 2.1288| 2.1473| 2.1659
18 22% 1.9895| 2.0070| 2.0246] 2.0422| 2.0600| 2.0779| 2.0959| 2.1141] 2.1323
19 23% 1.9598] 1.9769] 1.9941 2.0114[ 2.0288| 2.0463] 2.0639] 2.0817| 2.0995
20 24% 1.9308] 1.9475| 1.9644| 1.9813[ 1.9983| 2.0155| 2.0328| 2.0501[ 2.0676
21 25% 1.9025] 1.9189| 1.9354] 1.9520] 1.9687| 1.9855| 2.0024| 2.0194| 2.0365
22

23 |Growth Rate = g 5%

24 |Discount Rate = r 20%

25 |x=(1+g)/(1+r) 0.875

26 [n=#Yrs 3

27 |GM=1/(r-g) 6.6667

28 |ADF = GM*(1-x"n) 2.2005

Behavior of the ADF with Growth

The ADF is inversely related to » and directly related to g; that is, an increase in
the discount rate decreases the ADF—and vice versa—while an increase in the
growth rate causes an increase in the ADF—and vice versa. Rather than take partial
derivatives, we will look into the intuition of why this is so.

Let's break it into its components. Looking at equation (4.6b), the first term is
the Gordon model multiple. That term obviously declines with an increase in » and
rises with an increase in g.

The second term, however, behaves the opposite. An increase in g causes an
increase in x and x™ and a decrease in 1 — x". An increase in r has the opposite
effect. Thus, g and r behave in an opposite fashion in the second than they do in the
first term of equation (4.6¢). The opposite effect of the second term is smaller when
n is large than when it is small because as n approaches infinity, x approaches zero.
Thus we would expect to a greater difference between the largest and smallest ADF
when 7 is large than when it is small.

We can see this in Table 4.1. Our starting assumptions are g = 5% (B23), r =
20% (B24), and n = 3 years (B26). Our intermediate calculation x = 1.05/1.20 =
0.875 (B25). Our Gordon model multiple GM = 1/(0.20 — 0.05) = 6.6667 (B27), and
the ADF = GM (1 — x™) = 6.6667 x 0.33078 = 2.2005 (B28). The body of the table
is a sensitivity analysis showing the ADF for different combinations of » and g. Note
that J16 also equals 2.2005, which demonstrates the accuracy of the formula.

Table 4.1A is identical to Table 4.1, with the only difference being that we set
n = 20 years. The ADF is now 6.2053 (B28, J10).

You can see by scanning down the columns and across the rows that the ADF
is negatively related to » and positively related to g; that is, the ADF decreases
going down the columns and increases going right across the rows. The differences
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A [ B [ c T o T E T F T ¢ T H T 1 T
1 Table 4.1A
2 ADFs for n= 20 Years
3
4 Disc Rate = r Growth Rate =
5 -3% -2% -1% 0% 1% 2% 3% 4% 5%
6 10% 7.0705| 7.5064| 7.9857| 8.5136[ 9.0959( 9.7390f10.4505]11.2384]12.1121
7 11% 6.6611| 7.0553| 7.4879| 7.9633| 8.4866| 9.0632| 9.6998(10.4032|11.1817
8 12% 6.2908| 6.6485 7.0401| 7.4694| 7.9410{ 8.4596[ 9.0307| 9.6607[10.3563
9 13% 5.9551| 6.2804| 6.6359| 7.0248| 7.4509| 7.9186| 8.4326| 8.9983| 9.6218
10 14% 5.6496| 5.9464| 6.2699| 6.6231| 7.0094| 7.4323| 7.8962| 8.4057| 8.9660
11 15% 5.3710] 5.6424] 5.9377| 6.2593| 6.6103| 6.9939| 7.4137| 7.8738| 8.3788
12 16% 5.1161] 5.3650] 5.6351] 5.9288| 6.2487| 6.5975| 6.9784| 7.3951| 7.8514
13 17% 4.8823] 5.1111] 5.3589] 5.6278| 5.9199| 6.2379| 6.5845| 6.9628| 7.3764
14 18% 4.6674| 4.8781| 5.1060f 5.3527| 5.6203| 5.9110| 6.2271| 6.5715| 6.9472
15 19% 4.4692| 4.6639] 4.8739[ 5.1009| 5.3465| 5.6128| 5.9019| 6.2162| 6.5584
16 20% 4.2862| 4.4663| 4.6603| 4.8696| 5.0956| 5.3402| 5.6052| 5.8928| 6.2053
17 21% 4.1166| 4.2837| 4.4633| 4.6567| 4.8652| 5.0904| 5.3339| 5.5976| 5.8836
18 22% 3.9592| 4.1145| 4.2812 4.4603| 4.6530| 4.8608| 5.0850| 5.3274| 5.5898
19 23% 3.8129| 3.9575] 4.1124] 4.2786| 4.4572| 4.6493| 4.8562| 5.0796| 5.3209
20 24% 3.6764| 3.8114| 3.9557| 4.1103] 4.2760| 4.4540| 4.6455| 4.8517| 5.0741
21 25% 3.5490| 3.6752| 3.8099| 3.9539| 4.1081| 4.2733| 4.4508| 4.6416| 4.8470
22
23 |Growth Rate = g 5%
24 |Discount Rate = r 20%
25 |x=(1+g9)/(1+n 0.875
26 |[n=1#Yrs 20
27 |GM = 1/(r—g) 6.6667
28 | ADF = GM*(1—x"\n) 6.2053

between the high and low numbers are greater in Table 4.1A, because as 7 increases,
the contrary effect of » and g in the second term of the equation diminish toward
zero, and we are left with the unambiguous relationship that the GM multiple is
negatively related to » and positively related to g, and so is the ADF.

Special Case of ADF When g = 0: The Ordinary Annuity

When g = 0, there is no growth in cash flows, and equation (4.6) simplifies to
equation (4.6d), the formula for an ordinary annuity.

1

1 1 1 1——
ADF = = — ——— = or ADF = —— 14" (4.6d)
r A4+ r r

1 is the PV of a perpetuity that is constant in nominal dollars, or a Gordon model

with g = 0.

Special Case When # — oo and r > g: The Gordon Model

The Gordon model is a financial formula that every business appraiser knows—at
least in the end-of-year form. It is the formula necessary to calculate the present
value of the perpetuity with constant growth in cash flows in the terminal period
(also known as the residual or reversion period), that is, from years n + 1 to infinity
(after discounting the first 7 years of cash flows or net income). To be valid, the
growth rate must be less than the discount rate.
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What few practitioners know, however, is that the Gordon model is merely a
special case of the ADF. The Gordon model contains two additional assumptions
that the ADF in equation (4.6) does not have:

1. The time horizon is infinite, which means that we assume that cash flows will
grow at the constant rate of g forever. This means that 7, the terminal year of
the cash flows, equals infinity.

2. The discount rate is greater than the growth rate, that is, r > g.

Since r > g, (11%‘5)” goes to zero as n goes to infinity. Therefore, the entire term

in square brackets in equation (4.6) goes to zero, which simplifies to:

ADF = “4.7)

r—8
Gordon model multiple, end-of-year cash flows.
Equation (4.7) is the end-of-year Gordon model multiple. In other words, the
Gordon model multiple is just a special case of the ADF when 7 equals infinity.
Using this multiple, we obtain the Gordon model, with end-of-year cash flows:

CF
PV = . (4.8)
r—g
Another way of expressing equation (4.8) is rewriting it as:
PV:CFX|: ] 4.9
r—g

Thus, the present value of a perpetuity with growth contains two terms concep-
tually:

1. CF, the starting year’s forecast cash flow’
2. ﬁ, the Gordon model multiple, which when multiplied by the first year’s
forecast cash flow gives us the present value of the perpetuity

Intuitively Understanding Equations (4.6) and (4.6a)

Now that we understand the Gordon model, we can gain deeper insight into equa-
tion (4.6). The ADF is the difference of two perpetuities. The first term, i, is the
PV as of t = 0 of a perpetuity with cash flows starting at $1.00 going from ¢ = 1 to
infinity. The second term is the PV as of ¢ = 0 of a perpetuity going from t = n + 1
to infinity, which is explained in the next paragraph. The difference of the two is
the PV as of ¢t = 0 of the annuity from ¢ = 1 to n.

Let’s give an intuitive explanation of equation (4.6a). The (1 + g)" is the forecast
cash flow® for year (n 4+ 1), which we then multiply by r%g, our familiar Gordon
model multiple. The result is the PV as of ¢+ = n of the forecast cash flows from n
+ 1 to infinity. Dividing by (1 4+ »)" transforms the PV as of ¢ = n to the PV as of

5Note that you do not use historical cash flow (or earnings).
The first year’s cash flow is 1, or (1 4 g)°. The second year’s cash flow is (1 + @)'. In general,
cash flow in year t = (1 + @)1
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P Gordon, .,
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P Gordon .,
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ADF l—>n
1 n ntl oo

FIGURE 4.1 Timeline of the ADF and the Gordon Model

t = 0. We subtract this from 1/(r — g), which is the PV of the perpetuity at t = 0, to
yield the ADF.

Relationship between the ADF and the Gordon Model

The relationship between the ADF and the Gordon model is so intimate that we can
derive the Gordon model from the ADF and vice versa. The ADF is the difference
between two Gordon models, as illustrated graphically in Figure 4.1.

In graphical terms, the top line in the figure represents the Gordon model with
cash flows from ¢ = 1 to infinity (our valuation date is actually time zero, which
is not shown on the graph). The cash flows in the second Gordon model begin at
t = n + 1 and continue to infinity. The difference between these two Gordon models
is simply the ADF from ¢ = 1 to n.

Table 4.2: Demonstrating ADF Equations (4.6) through (4.6¢)

Table 4.2 is the valuation of a 10-year annuity, with a discount rate of 15% and an
annual growth rate of 5.1%. All assumptions appear in F24 to F28. Recall that we
define x = %} = 0.8750 (F27). If this were a perpetuity, the Gordon model multiple
would be 10.101010 (F28).

We begin with a cash flow of $1.00 at the end of year 1 (B5). Column C shows
the annual growth in cash flows at 5.1%.” The cash flow in column B is always equal
to the previous cash flow plus the growth in the current period, where Cash Flow, =
Cash Flow, 1 + Growth,. Column D replicates the cash flow in column B using the
formula, Cash Flow = (1 + g)'"!, which thus provides us with a general formula for
the cash flows. We multiply the cash flows in column D by the end-of-year present
value factor in column E to arrive at the present value of the cash flows in column
F. The sum of the present values of the 10 years of cash flows is 5.99506 (F15). This
is the brute force method of calculating the annuity.

As we will demonstrate, equation (4.6) is a more compact and elegant solution.
B20 contains the end-of-year Gordon multiple results of the first term in equation
(4.6), which equals F28. This is the present value of the perpetuity of $1.00 growing
at a constant 5.1% from year 1 to infinity. In C20, we subtract the present value of

"We can use the same formulas for other time periods (e.g., months instead of years). Then
we must use the monthly growth rate of 5.1%/12 = 0.425% instead of the annual.
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A [ B [ C [ D [ E [ F

1 Table 4.2

| 2 | ADF: End-of-Year Formula
3
4 t(Yrs)| Cash Flow (CF) Growth in CF (1+g) ™" PV Factor NPV
5 1 1.00000 0.00000 1.00000 0.86957 0.86957
6 2 1.05100 0.05100 1.05100 0.75614 0.79471
7 3 1.10460 0.05360 1.10460 0.65752 0.72629
8 4 1.16094 0.05633 1.16094 0.57175 0.66377
9 5 1.22014 0.05921 1.22014 0.49718 0.60663
10 6 1.28237 0.06223 1.28237 0.43233 0.55440
11 7 1.34777 0.06540 1.34777 0.37594 0.50668
12 8 1.41651 0.06874 1.41651 0.32690 0.46306
13 9 1.48875 0.07224 1.48875 0.28426 0.42320
14 10 1.56468 0.07593 1.56468 0.24718 0.38676
15 Totals 5.99506

| 16|

| 17 [Calculation of NPV by Formulas:

18 Grand

19 [Time 1 to Infinity| —(n+1) to Infinity =1ton Total

20 [INPV 10.10101 -4.10595 5.99506 5.99506

| 22| Assumptions:

23

24 |n = Number of Years of Cash Flows 10
25 [r = Discount Rate 15.0%
26 |g = Growth Rate in Net Inc/Cash Flow 5.1%
27 [ x = (1+g)/(1+r) 0.9139
28 |Gordon Model Multiple = GM = 1/(r-g) 10.101010
29

30 |Spreadsheet Formulas:
31

32 [B20: GM =1/(r-g)

33[C20: — GM*x\n

34|D20 B20+C20

35|E20 GM * (1-x*n)  This is equation (4.6c)

the perpetuity from year n + 1 to infinity, which equals 4.10595 and is the term in
equation (4.6) in square brackets. The difference of the two perpetuities is 5.99506
(D20), which equals F15, our brute force solution. Finally, E20 is the formula for the
entire equation, which equals the same 5.99506 calculated in D20 and F15, proving
the validity of equation (4.6), including its components. We show the formulas for
row 20 at the bottom of Table 4.2. Note that the formula in E20 is equation (4.6¢).

A Brief Summary

To help you decide whether you should read on, let’s take a look at what we have
covered so far, what we will cover in the remainder of the chapter, and how difficult
the material will be. We have thus far derived the end-of-year ADF, examined its
special cases (the Gordon model and the no-growth formula), explained the intimate
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relationship between the ADF and the Gordon model, explained the intuition behind
the components of the ADF model, and demonstrated the accuracy of the ADF
formulas with an example.

The reader now should understand the principles of ADFs and Gordon models.
If you are having difficulty with the mathematics, you may wish to skip to the sections
on periodic perpetuity factors (PPFs) and the relationship of the Gordon model to the
price/earnings ratio, which are of practical significance to most readers. However,
you now should understand almost everything you will need to easily comprehend
the rest of the chapter. The rest of the chapter is primarily simple variations on the
derivations we have done thus far.

In the remainder of the chapter, we cover:

® The midyear version of the ADF (with the same special cases of the Gordon
model and g = 0).

B Starting periods for the cash flows that are different from year 1—which is of
practical significance in discounted cash flow analysis in the calculation of the
PV of the reversion.

® Calculating PPFs, which are a variation of the Gordon model for periodic ex-
penses such as moving expense and losses from lawsuits. Additionally, PPFs are
useful for decisions in buying new versus used income-producing equipment
(such as airplanes, ships, fleets of trucks, taxicabs, MRIs, and CT scanners) and
for calculating the value of used equipment.

® Calculating loan payments.

B Calculating the present value of loans.

® The relationship of the Gordon model to the PE multiple, the misunderstanding
of which may well be the single most common source of technical error in
business valuation.

Midyear Cash Flows

Most businesses have cash flows that occur more or less evenly throughout the year.
In a present value sense, this is approximately equivalent to having all cash flows
occur midway through the year. Thus, in valuing most businesses, it is appropriate
to use midyear cash flows rather than end-of-year cash flows.

Midyear cash flows occur six months (one half-year) earlier than end-of-year
cash flows. We derive this formula in exactly the same fashion as equation (4.6). We
start with equation (4.1b); however the denominators, which are the time periods
by which we discount the cash flows, are one half-year less than those in equation
(4.1b). We adjust for this difference by multiplying every numerator by /147,
which has the same effect as reducing the denominators by 0.5 years. We then
factor the +/1 4+ rout of the sequence, resulting in the midyear ADF, which equals
A1+ r times the end-of-year ADF.

V141 1+g\"V/1+r
r—g 14r r—g

ADF = (4.10)

Midyear ADF.
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We interpret equation (4.10) in exactly the same fashion as equation (4.6). We
can factor out the Gordon model multiple as before and restate equation (4.10) as
equations (4.10a) and (4.10b). Note that equations (4.10a) and (4.10b) are identical
to equations (4.6b) and (4.6¢), respectively, except that the Gordon model multiple
is midyear instead of end-of-year.

V1 1 "
Apr = Y1 1! [1 - ( +g> } (4.100)
r—g 147
Alternative expression for (4.10).
ADF = GM(1 — x™) (4.10b)

Second alternative expression for (4.10).

Table 4.3: Example of Equations (4.10) through (4.10b)

Table 4.3 is identical to Table 4.2, except that here we use the midyear rather than
end-of-year ADF. Note that the Gordon model multiple (GM) in B20 and F28 is
10.83213 versus 10.101010 in Table 4.2. The GM in Table 4.3 is exactly +/1+ 7
times the GM in Table 4.2, that is, 10.1010 +/1.15 = 10.83213. This demonstrates the
validity of equations (4.10) through (4.10b), the midyear ADF.

Special Cases for Midyear Cash Flows: No Growth, g = 0

Letting g = 0 in equation (4.10), we obtain the following ADF for midyear cash flows
with no growth:

1+7r 1 1+7r

ADF = -
r a+nrn r

(4.100)

Midyear ADF, no growth.

This follows the same type of logic as equation (4.6), with modification for
growth being zero. The first and third terms on the RHS of equation (4.10c) are
midyear Gordon models for a constant $1 cash flow. Since there is no growth of
cash flows in this special case, the (1 + ©" in equation (4.10) simplifies to 1 and
drops out of the equation. The ﬁ discounts the second Gordon model term from
t = n back to ¢t = 0; that is, it reduces the PV of the perpetuity to time zero. Again,
the ADF is the difference of two perpetuities: the first one with cash flows from
years 1 to infinity, less the second one with cash flows from »n + 1 to infinity, the

difference being cash flows from years 1 to n.

We can rewrite equation (4.10¢) as equation (4.10d) by factoring out the —Vlr”:
1+7r 1

ADF = 1-— 4.10d

r |: a+ r)”i| ( )

Alternate expression for (4.10c), midyear, no growth.
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A [ B [ C [ D [ E [ F

| Table 4.3

| 2 | ADF: Midyear Formula
3
4 t(Yrs) Cash Flow Growth in CF (1+g] 1| PV Factor NPV
5 1 1.00000 0.00000 1.00000 0.93250 0.93250
6 2 1.05100 0.05100 1.05100 0.81087 0.85223
7 3 1.10460 0.05360 1.10460 0.70511 0.77886
8 4 1.16094 0.05633 1.16094 0.61314 0.71181
9 5 1.22014 0.05921 1.22014 0.53316 0.65053
10 6 1.28237 0.06223 1.28237 0.46362 0.59453
11 7 1.34777 0.06540 1.34777 0.40315 0.54335
12 8 1.41651 0.06874 1.41651 0.35056 0.49658
13 9 1.48875 0.07224 1.48875 0.30484 0.45383
14 10 1.56468 0.07593 1.56468 0.26508 0.41476
15 Totals 6.42899

16

| 17_|Calculation of NPV by Formulas:
18 Grand
19 |Time 1 to Infinity| —(n+1) to Infinity =1ton Total
20 [NPV 10.83213 -4.40314 6.42899 6.42899

22 |Assumptions:

24 |n = Number of Years of Cash Flows 10
25 |r= Discount Rate 15.0%
26 |g = Growth Rate in Net Inc/Cash Flow 5.1%
27 |x=(1+g)/(1+r) 0.9139
28 |Gordon Model Multiple = GM = SQRT(1+)/(r-g) 10.83213

30 |Spreadsheet Formulas:

32 |B20: GM = SQRT(1+n/(r-g)

33 |C20: - GM*x"n

34 |D20 B20+C20

35 |E20 GM*(1-x”n) This is equation (4.10b)
Gordon Model
Letting 7 — oo in equation (4.10) leads us to the Gordon model:

V147
PV =CF——— (4.10e)
r—§8

Gordon model—midyear.

This can be split into the following terms: CF X [—Vrl_:r] The first term is the
forecast net income for the first year, and the second term is the Gordon model

multiple for a midyear cash flow.

Starting Periods Other Than Year 1

When cash flows begin in any year other than 1, it is necessary to use a more general
(and complicated) ADF formula. We will present formulas for both the end-of-year
and midyear cash flows when this occurs.
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End-of-Year Formulas

In the following equations, S is the starting year of the cash flows. The end-of-year

ADF is:
1 1 n—S+1 1 1
ADF = — (8 411
r—g 1+7r r—g | Q+rs-t

Generalized end-of-year ADF.

Note that when § =1, n — § + 1 = n, and equation (4.11) reduces to equation
(4.6).

The intuition behind this formula is that if we are standing at point t = § —
1 looking at the cash flows that begin at § and end at 7, they would appear the
same as if we were at t = 0 looking at a normal series of 7 cash flows that begin
at t = 1. The only difference is that there are n cash flows in the latter case and
n—(E — 1 =n— S8+ 1 cash flows in the former case.

The term in the square brackets is the ADF in dollars as of year § — 1, and the
term to the right of the square brackets is the PV factor to bring it into £ = 0 dollars.

Thus the term in square brackets, which is the PV of the cash flows at t = § — 1,
is the usual ADF formula, except that the exponent of the second term in square
brackets changes from n in equation (4.6) to n — S + 1 in equation (4.11). If the
cash flows begin in a year later than year 1, § > 1 and there are fewer years of cash
flows from S to 7 than there are from 1 to 7.8 From the end of year S — 1 to the
end of year n, there are n — (§ — 1) =n — § + 1 years.

In order to calculate the PV as of ¢ = 0, it is necessary to discount the cash flows
S — 1 years using the term m Note that at § = 1, the term at the right—outside
the brackets—becomes 1 and effectively drops out of the equation. The exponent
within the square brackets, 7 — § + 1, simplifies to 7, and equation (4.11) simplifies
to equation (4.0).

An alternative form of equation (4.11) with the Gordon model specifically fac-

tored out is:
1 1 n—S+1 1
ADF = 1-— ts _— (4.11a)
r—g 1+7r 1 +rs-1

Generalized end-of-year ADF—alternative form.

Valuation Date £ 0

If the valuation date is different from ¢ = 0, then we do not discount by § — 1 years.
Letting the valuation date = v, then we discount back to t = § — v — 1, the reason
being that normally we discount § — 1 years, but in this case we will discount to v,
not to zero. Therefore, we discount § — 1 — v years, which we restate as § — v — 1.
For example, if we want to value cash flows from ¢ = 23 months to 34 months
as of t = 10 months,’ then we discount 23 — 10 — 1 = 12 months, or 1 year.

8The converse is true for cash flows beginning in the past, where S is less than 1.
We actually do this in Table A4.3 in Appendix A. In the context of loan payments, cash
flows are fixed, which means g = 0. Also, with loan payments we generally deal with time
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This formula is important in calculating the reduction in principal for an amortizing
loan. The formula is:

1 1 n—S+1 1 1
ADF = [ — ( +g> } (4.11b)

r—g 147 r—g | A4St

Generalized ADF—EOY—Val date = v.

Note that the # — § 4 1 in the brackets remains unchanged, because there is
still the same number of cash flows. (We demonstrate the accuracy of this formula
in sections 2 and 3 of Table A4.3 in Appendix A.)

Table 4.4: Example of Equation (4.11)

In Table 4.4, we begin with $1 of cash flows (C7) at ¢ = 3.25 years, that is, § = 3.25
(G40). The discount rate is 15% (G42), and cash flows grow at 5.1% (G43). In year
4.25, cash flow grows 5.1% x $1.00 = $0.051 (B8 = G43 x C7), and is equal to the
prior-year cash flow of $1.00 in C7 plus the growth in the current year in B8, for a
total of $1.051 in C8. We continue in the same fashion to calculate growth in cash
flows and the actual cash flows through the last year, n = 22.25.

In column D, we use the formula Cash Flow = (1 + g)'~5, which duplicates the
results in column C. Thus, the formula in column D is a general formula for cash
flow in any period.!°

Next, we discount the cash flows to present value. In this table, we show both
a two-step and a single-step discounting process.

First, we demonstrate two-step discounting in columns E and F. Column E
contains the present value (PV) factors to discount the cash flows to t = § — 1,
the formula for which is (1+7)+3“ Column F is the PV as of t = 2.25 years. The
present value of the cash flows totals $8.43199 (F27). F28 is the PV factor, 0.73018,
to discount that result back to ¢+ = 0 by multiplying it by F27, or $8.43199 x 0.73018
= $6.15687 (F29).

In columns G and H, we perform the same procedures, the only difference
being that column G contains the PV factors to discount back to ¢t = 0. Column H is
the PV of the cash flows, which totals the same $6.15687 (H27), which is the same
result as F29. This demonstrates that the two-step and the one-step present value
calculation lead to the same results, as long as they are done properly.

B34 contains the Gordon model multiple 10.10101 for cash flows from ¢ = §
(3.25) to infinity, which we can see calculated in G45. C34 is the present value as of
1 =S — 1 of the perpetuity from year n — S + 1 to infinity. It equals 1.66902 and
is the term in equation (4.11) in square brackets after the minus sign. Subtracting
C34 from B34, we get the cash flows as of t = § — 1 from S to n in D34, or
$8.43199, which also equals F27, our brute force solution. Row 35 is the PV factor
0.73018 (from t = S — 1 to t = 0), and row 34 x row 35 = row 306, the PV as

measured in months, not years. To remain consistent, the discount rates must also be monthly,
not annual.

1%Note that when cash flows begin at ¢ = 1, then (1 + @)~ = (1 + @'}, which is the formula
that describes the cash flows in column D in Tables 4.2 and 4.3. Thus, (1 + 25 is truly a
general formula for the cash flow.
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A B [ C [ D [ E [ F G [ H

] Table 4.4

| 2 | ADF with Cash Flows Starting in Year 3.25

| 3 | End-of-Year Formula
4

[ 5 | Cash Flow T= 51 =0
6 t(Yrs) Growth Cash Flow (1+9)"° PV Factor PV PV Factor PV
7 3.25 NA 1.00000 1.00000 0.86957 0.86957 0.63494| 0.63494
8 4.25 0.05100 1.05100 1.05100 0.75614 0.79471 0.55212| 0.58028
9 5.25 0.05360 1.10460 1.10460 0.65752 0.72629 0.48011] 0.53032
10 6.25 0.05633 1.16094 1.16094 0.57175 0.66377 0.41748| 0.48467
11 7.25 0.05921 1.22014 1.22014 0.49718 0.60663 0.36303] 0.44295
12 8.25 0.06223 1.28237 1.28237 0.43233 0.55440 0.31568| 0.40481
13 9.25 0.06540 1.34777 1.34777 0.37594 0.50668 0.27450| 0.36997
14 10.25 0.06874 1.41651 1.41651 0.32690 0.46306 0.23870| 0.33812
15 11.25 0.07224 1.48875 1.48875 0.28426 0.42320 0.20756| 0.30901
16 12.25 0.07593 1.56468 1.56468 0.24718 0.38676 0.18049| 0.28241
17 13.25 0.07980 1.64447 1.64447 0.21494 0.35347 0.15695| 0.25810
18 14.25 0.08387 1.72834 1.72834 0.18691 0.32304 0.13648| 0.23588
19 15.25 0.08815 1.81649 1.81649 0.16253 0.29523 0.11867| 0.21557
20 16.25 0.09264 1.90913 1.90913 0.14133 0.26981 0.10320| 0.19701
21 17.25 0.09737 2.00649 2.00649 0.12289 0.24659 0.08974| 0.18005
22 18.25 0.10233 2.10883 2.10883 0.10686 0.22536 0.07803| 0.16455
23 19.25 0.10755 2.21638 2.21638 0.09293 0.20596 0.06785| 0.15039
24 20.25 0.11304 2.32941 2.32941 0.08081 0.18823 0.05900) 0.13744
25 21.25 0.11880 2.44821 2.44821 0.07027 0.17202 0.05131| 0.12561
26 22.25 0.12486 2.57307 2.57307 0.06110 0.15722 0.04461| 0.11480
27 |Pres. Value (t = 2.25 for Column G, t = 0 for Column I) 8.43199 6.15687
28 |Pres. Value Factor—Discount from S—1 (t=2.25)to 0 0.73018
29 |Present Value (f=0) 6.15687

| 0 |

| 31 |Calculation of PV by Formulas:
32 Grand
33 |Time S to Infinity [ —(n+1) to Infinity =Ston Total
34 [t=8-1 10.10101 -1.66902 8.43199 8.43199
35 |PV Factor 0.73018 0.73018 0.73018 0.73018
36 |t=0 7.37555 -1.21869 6.15687 6.15687

38 |[Assumptions:

40 | S = Beginning Year of Cash Flows (valuation at t =2.25) 3.25
41 |n = Ending Year of Cash Flows 22.25
42 |r= Discount Rate 15.0%
43 |g = Growth Rate in Net Inc/Cash Flow 5.1%
44 |x=(1+g)/(1+n) 0.913913
45 |Gordon Model Multiple = GM = [1/(r—g)] 10.101010

47 |Spreadsheet Formulas:

49 |B34: GM Gordon Model for Years 3.25 to Infinity as of = 2.25

50 |C34: —GM*(x*(n—S+1)) Gordon Model for Years 23.25 to Infinity as of t=2.25
51 (D34: B34 + C34

52 |E34: GM*(1-x"(n—S+1)) Grand Total as of t= S—1 = 2.25 Years

53 [Row 35: 1/(1+)*(S—-1) Present Value Factor from t= S-1to t=0

54 |Row 36: Row 34 * Row 35

of + = 0. The PV of cash flows from § = 3.25 to n, as of + = 0, appears in D36
as $6.15087.

In E34, we show the grand total cash flows, as per equation (4.11). The spread-
sheet formula for E34 is in A52, where GM is the Gordon model multiple. The
$8.43199 (E34) is the total of the cash flows from 3.25 to 22.25 as of + = 2.25 and
corresponds to the term in equation (4.11) in square brackets. The PV factor 0.73018
(E35) is the term in equation (4.11) to the right of the square brackets, and the one
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A [ B [ C [ D [ E [ F G [ H

] Table 4.5

| 2 | ADF with Cash Flows Starting in Year —2.00

| 3 | End-of-Year Formula
4

[ 5 | Cash Flow T= 51 T=0
6 t(Yrs) Growth Cash Flow (1+9)"° PV Factor PV PV Factor PV
7 -2.00 NA 1.00000 1.00000 0.86957 0.86957 1.32250 1.32250
8 -1.00 0.05100 1.05100 1.05100 0.75614 0.79471 1.15000 1.20865
9 0.00 0.05360 1.10460 1.10460 0.65752 0.72629 1.00000 1.10460
10 1.00 0.05633 1.16094 1.16094 0.57175 0.66377 0.86957 1.00951
11 2.00 0.05921 1.22014 1.22014 0.49718 0.60663 0.75614 0.92260
12 3.00 0.06223 1.28237 1.28237 0.43233 0.55440 0.65752 0.84318
13 4.00 0.06540 1.34777 1.34777 0.37594 0.50668 0.57175 0.77059
14 5.00 0.06874 1.41651 1.41651 0.32690 0.46306 0.49718 0.70425
15 6.00 0.07224 1.48875 1.48875 0.28426 0.42320 0.43233 0.64363
16 7.00 0.07593 1.56468 1.56468 0.24718 0.38676 0.37594 0.58822
17 8.00 0.07980 1.64447|  1.64447 0.21494 0.35347 0.32690 0.53758
18 9.00 0.08387 1.72834| 1.72834 0.18691 0.32304 0.28426 0.49130
19 10.00 0.08815 1.81649| 1.81649 0.16253 0.29523 0.24718 0.44901
20 11.00 0.09264 1.90913] 1.90913 0.14133 0.26981 0.21494 0.41035
21 12.00 0.09737 2.00649| 2.00649 0.12289 0.24659 0.18691 0.37503
22 13.00 0.10233 2.10883| 2.10883 0.10686 0.22536 0.16253 0.34274
23 14.00 0.10755 2.21638| 2.21638 0.09293 0.20596 0.14133 0.31324
24 15.00 0.11304 2.32941 2.32941 0.08081 0.18823 0.12289 0.28627
25 16.00 0.11880 2.44821 2.44821 0.07027 0.17202 0.10686 0.26163
26 17.00 0.12486 2.57307 2.57307 0.06110 0.15722 0.09293 0.23910
27 |Pres. Value (t = 2.25 for Column G, t = 0 for Column I) 8.43199 12.82400
28 |Pres. Value Factor—Discount from S—1 (t=-3.00) to 0 1.52088
29 |Present Value (t = 0) 12.82400
30

| 31 |Calculation of PV by Formulas:
32 Grand
33 |Time Sto Infinity | — (n + 1) to Infinity] = Sto n| Total
34 [t=8S-1 10.10101 -1.66902 8.43199 8.43199
35 [PV Factor 1.52088 1.52088 1.52088 1.52088
36 [t=0 15.36237 -2.53838| 12.82400 12.82400
37

| 38 |Assumptions:
39
40 | S = Beginning Year of Cash Flows (valuation at ¢ =-3.00) -2.00
41 |n = Ending Year of Cash Flows 17.00
42 |r= Discount Rate 15.0%
43 |g = Growth Rate in Net Inc/Cash Flow 5.1%
44 | x=(1+g)/(1+0) 0.913913
45 |Gordon Model Multiple = GM = [1/(r-g)] 10.101010

IS
ke

Spreadsheet Formulas:

49 |B34:

GM Gordon Model for Years —2.00 to Infinity as of ¢=-3.00

50 |C34:

—-GM*(x*(n—S+1)) Gordon Model for Years 18.00 to Infinity as of t=—3.00

51 |D34:

B34 + C34

52 |E34:

GM*(1-x*(n-S + 1)) Grand Total as of t= S—1 =-3.00 Years

I3
@

Row 35: 1/(1+1)*(S-1) Present Value Factor from t=S-1to t=0

54 |Row 36: Row 34 * Row 35

multiplied by the other (in E36) is the entirety of equation (4.11). Note that E36 =
D36 = F29 = H27, which demonstrates the validity of equation (4.11).

Tables 4.5 through 4.7: Variations of Table 4.4 with § < 0, Negative Growth,
andr<g

Tables 4.5 through 4.7 are identical to Table 4.4. The only difference is that Tables 4.5
through 4.7 have cash flows that begin in year —2, (§ = —2.00 in G40). Additionally,
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A B C D [ E [ F G [ H

|1 Table 4.6

| 2 | ADF with Cash Flows Starting in Year —2.00 with Negative Growth

| 3 | End-of-Year Formula
4

[ 5 | Cash Flow t= 51 t=0
6 t(Yrs) Growth Cash Flow| (1+9)"° PV Factor PV PV Factor PV
7 -2.00 NA 1.00000{ 1.00000 0.86957 0.86957 1.32250 1.32250
8 -1.00 -0.05100 0.94900| 0.94900 0.75614 0.71758 1.15000 1.09135
9 0.00 -0.04840 0.90060| 0.90060 0.65752 0.59216 1.00000 0.90060
10 1.00 -0.04593 0.85467| 0.85467 0.57175 0.48866 0.86957 0.74319
11 2.00 -0.04359 0.81108 0.81108| 0.49718 0.40325 0.75614 0.61329
12 3.00 -0.04137 0.76972| 0.76972 0.43233 0.33277 0.65752 0.50610
13 4.00 -0.03926 0.73046| 0.73046 0.37594 0.27461 0.57175 0.41764
14 5.00 -0.03725 0.69321] 0.69321 0.32690 0.22661 0.49718 0.34465
15 6.00 -0.03535 0.65785| 0.65785 0.28426 0.18700 0.43233 0.28441
16 7.00 -0.03355 0.62430| 0.62430 0.24718 0.15432 0.37594 0.23470
17 8.00 -0.03184 0.59246| 0.59246 0.21494 0.12735 0.32690 0.19368
18 9.00 -0.03022 0.56225| 0.56225 0.18691 0.10509 0.28426 0.15983
19 10.00 -0.02867 0.53357| 0.53357 0.16253 0.08672 0.24718 0.13189
20 11.00 -0.02721 0.50636| 0.50636 0.14133 0.07156 0.21494 0.10884
21 12.00 -0.02582 0.48054| 0.48054 0.12289 0.05906 0.18691 0.08982
22 13.00 -0.02451 0.45603| 0.45603 0.10686 0.04873 0.16253 0.07412
23 14.00 -0.02326 0.43277| 0.43277 0.09293 0.04022 0.14133 0.06116
24 15.00 -0.02207 0.41070| 0.41070 0.08081 0.03319 0.12289 0.05047
25 16.00 -0.02095 0.38976| 0.38976 0.07027 0.02739 0.10686 0.04165
26 17.00 -0.01988 0.36988| 0.36988 0.06110) 0.02260 0.09293 0.03437
27 |Pres. Value (t = 2.25 for Column G, t = 0 for Column I) 4.86842 7.40426
28 |Pres. Value Factor—Discount from S—1 (= -3.00) to 0 1.52088
29 |Present Value (= 0) 7.40426

| 30|

| 31 |Calculation of PV by Formulas:
32 Grand
33 |Time Sto Infinity| —(n+1) to Infinity| = Sto n| Total
34 |t=8-1 4.97512 -0.10670| 4.86842 4.86842
35 |PV Factor 1.52088 1.52088| 1.52088 1.52088
36 [t=0 7.56654 -0.16228| 7.40426 7.40426

| a7 |

| 38 [Assumptions:
39
40 |S = Beginning Year of Cash Flows (valuation at t = —3.00) -2.00
41 _|n = Ending Year of Cash Flows 17.00
42 |r= Discount Rate 15.0%
43 |g = Growth Rate in Net Inc/Cash Flow -5.1%
44 [x=(1+g)/(1+9) 0.825217
45 |Gordon Model Multiple = GM = [1/(r-g)] 4.975124

47 |Spreadsheet Formulas:

49 |B34: GM Gordon Model for Years —2.00 to Infinity as of t=-3.00

50 |C34: —GM*(x"(n—-S+1)) Gordon Model for Years 18.00 to Infinity as of t=-3.00

51 |D34: B34 + C34

52 |E34: GM*(1- x*(n—S+1)) Grand Total as of t = S—1 =-3.00 Years

53 |Row 35: 1/(1+r)*(S—1) Present Value Factor from t= S—1to t=0

54 |Row 36: Row 34 * Row 35

in Table 4.6 growth is a negative 5.1% (G43), instead of the usual positive 5.1% in
the other tables.

In Table 4.7, r < g, so the discount rate is less than the growth rate, which
is impossible for a perpetuity but acceptable for a finite annuity. Note that the
Gordon model multiple is —20 (B34 and G45), which by itself would be a nonsense
result. Nevertheless, it still works for a finite annuity, as the term for the cash flows
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A [ B [ C [ D [ E [ F G [ H

1] Table 4.7

2 | ADF with Cash Flows Starting in Year —2.00 with g > r

| 3 | End-of-Year Formula
4

5 | Cash Flow =5 1 =0
6 t(Yrs) Growth Cash Flow| (1+g)~° PV Factor PV PV Factor PV
7 -2.00 NA 1.00000 1.00000 0.86957 0.86957 1.32250 1.32250
8 -1.00 0.20000 1.20000 1.20000 0.75614 0.90737 1.15000 1.38000
9 0.00 0.24000 1.44000 1.44000 0.65752 0.94682 1.00000 1.44000
10 1.00 0.28800 1.72800 1.72800 0.57175 0.98799 0.86957 1.50261
11 2.00 0.34560 2.07360 2.07360 0.49718 1.03095 0.75614 1.56794
12 3.00 0.41472 2.48832 2.48832 0.43233 1.07577 0.65752 1.63611
13 4.00 0.49766 2.98598 2.98598 0.37594 1.12254 0.57175 1.70725
14 5.00 0.59720 3.58318 3.58318 0.32690 1.17135 0.49718 1.78147
15 6.00 0.71664 4.29982 4.29982 0.28426 1.22228 0.43233 1.85893
16 7.00 0.85996 5.15978 5.15978 0.24718 1.27542 0.37594 1.93975
17 8.00 1.03196 6.19174| 6.19174 0.21494 1.33087 0.32690 2.02409
18 9.00 1.23835 7.43008|  7.43008 0.18691 1.38874 0.28426 2.11209
19 10.00 1.48602 8.91610 8.91610 0.16253 1.44912 0.24718 2.20392
20 11.00 1.78322 10.69932| 10.69932 0.14133 1.51212 0.21494 2.29975
21 12.00 2.13986 12.83918| 12.83918 0.12289 1.57786 0.18691 2.39974
22 13.00 2.56784 15.40702| 15.40702 0.10686 1.64647 0.16253 2.50407
23 14.00 3.08140 18.48843| 18.48843 0.09293 1.71805 0.14133 2.61294
24 15.00 3.69769 22.18611| 22.18611 0.08081 1.79275 0.12289 2.72655
25 16.00 4.43722 26.62333| 26.62333 0.07027 1.87070 0.10686 2.84510
26 17.00 5.32467 31.94800| 31.94800 0.06110 1.95203 0.09293 2.96880
27 |Pres. Value (t=-3.00 for Column G, t = 0 for Column I) 26.84876 40.83361
28 |Pres. Value Factor—Discount from S—1 (¢=-3.00) to 0 1.52088
29 |Present Value (t = 0) 40.83361
30

| 31 |Calculation of PV by Formulas:
32 Grand
33 |Time StoInfinity| —(n+1) toInfinity) =Ston Total
34 [t=81 -20.00000 46.84876| 26.84876 26.84876
35 [PV Factor 1.52088 1.52088 1.52088 1.52088
36 [t=0 -30.41750 71.25111] 40.83361 40.83361
37

| 38 |Assumptions:
39
40 | S = Beginning Year of Cash Flows (valuation at ¢ =-3.00) -2.00
41 |n = Ending Year of Cash Flows 17.00
42 |r= Discount Rate 15.0%
43 |g = Growth Rate in Net Inc/Cash Flow 20.0%
44 |x= (1+g)[(1+D 1.043478
45 |Gordon Model Multiple = GM = [1/(r-g)] -20.000000

Spreadsheet Formulas:

IS
ke

49 |B34: GM Gordon Model for Years —2.00 to Infinity as of t = -3.00

50 |C34: —GM*(x*(n—S+1)) Gordon Model for Years 18.00 to Infinity as of t = -3.00

51 |D34: B34 + C34

52 |E34: GM*(1—-x*(n—S+1)) Grand Total as of t = S—1 = -3.00 Years

I3
@

Row 35: 1/(1+nN*(S—1) Present Value Factor from t=S-1to t=0

54 |Row 36: Row 34 * Row 35

from n + 1 to infinity is positive and greater than the negative Gordon model

multiple.!

In all cases, equation (4.11) performs perfectly, with D36 = E36 = F29 = H27.

1+g

"This is so because (3£)"> 1, so when we multiply that term by the GM—which is

1+r

negative—the resulting term is negative and of greater magnitude than the GM itself. Since
we are subtracting a larger negative from the negative GM, the overall result is a positive

number.
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Special Case: No Growth, g = 0

Setting g = 0, equation (4.11) reduces to:

ADF 1 1 1 1 1 1 1 1
- |:,, (1 4 pyn—S+1 ,,i| A+rs-1 7 » |: a1+ 7-)71—54—1:| 1+ r)s-1
(4.110)
ADF: no growth.
This formula is useful in calculating loan amortization, as the reader can see in
the loan amortization section of Appendix A to this chapter.

Generalized Gordon Model

If we start with cash flows at any year other than year 1, then we have to use
a generalized Gordon model. Letting 7 — oo in equation (4.11), the end-of-year
formula is:

1 1

PV =CF o G (4.11d)

This is the formula for the PV of the reversion (the cash flows from t = n + 1
to infinity) that every appraiser uses in every discounted cash flow analysis. This is
exactly what appraisers do in calculating the PV of the reversion, that is, the infinity
of time that follows the discounted cash flow forecasts for the first n years. For
example, suppose we do a five-year forecast of cash flows in a discounted cash flow
analysis and calculate its PV. We must then calculate the PV of the reversion, which
is the sixth-year cash flow multiplied by the Gordon model and then discounted five
years to t = 0, or:

1 1
PV = CFg——

The reason we discount five years and not six is that after discounting the first
five years’ cash flows to PV, we are standing at the end of year 5 looking at the
infinity of cash flows that we forecast to occur beginning with year 6. The Gordon
model requires us to use the first forecast year’s cash flow, which is why we use
CF4 and not CFs, but we still must discount the cash flows from the end of year 5,
or five years. The first two terms on the right-hand side of equation (4.11d) give us
the formula for the PV of the cash flows from years 6 to infinity as of the end of
year 5, and the final term on the right discounts that back to ¢ = 0.

Midyear Formula

When the starting period is not £ = 0, the midyear ADF formula is:

JIE7 (1 +g)”5+1 m] 1

r—g 147 r—g | A4St

_ Vit [1 - (1 +g>””1} 1

r—g 147 (14 rs-1

ADF=|:

(4.12)
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Note that at § = 1, the term at the right—outside the brackets—becomes 1 and
effectively drops out of the equation and the exponent inside the brackets becomes
n, which renders equation (4.12) equivalent to equation (4.10). The midyear ADF
in equation (4.12) is identical to the end-of-year ADF in equation (4.11), except that
we replace the two Gordon model /1 + 7 terms with the value 1 in the latter.

Periodic Perpetuity Factors (PPFs): Perpetuities for Periodic Cash Flows

Thus far, all ADFs and Gordon model perpetuities have been for contiguous cash
flows. In this section, we develop an equation for perpetuities with periodic cash
flows that occur only at regular intervals or cycles. To my knowledge, these formulas
are my own creation, and I call them periodic perpetuity factors (PPFs). The PPF is
a generalized Gordon model multiple for periodic cash flows that may or may not
be contiguous.

The example we use here arose in Chapter 3 in dealing with moving expenses.
Every small-to-midsize company that is growing in real terms moves periodically.
We will assume a move occurs every 10 years, although we will derive formulas
that can handle any periodicity. To further simplify the initial mathematics, we will
assume the last move occurred in the last historical year of analysis. Later, we will
relax that assumption to handle different timing of the cash flows.

Suppose our subject company moved last year, and the move cost $20,000. We
expect to move every 10 years, and moving costs increase at ¢ = 5% per year.
The PPFs are the present values of these periodic cash flows for both midyear and
end-of-year assumptions.

The Mathematical Formulas

For every $1.00 of forecast moving costs in year 10, the PV of the lifetime expected
moving costs would be as follows in equation (4.13):

1 a+9v A+9*

Earoe tarme Y ar s

(4.13)

The $1.00 grows at rate g for 10 years, and we discount it back to PV for 10 years.
We follow the same pattern at 20 years, 30 years, and so on to infinity. Multiplying

equation (4.13) by (%)107 we get:

<1+g>“’ _ U+ a4* A +9% @19

147 TAEN T A+ T A

Subtracting equation (4.14) from equation (4.13), we get:

1+g\"| 1
[1—<1+V) }Pv_m. (4.15)
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AN —1+)"
A+m1o

we come to:

The left-hand side of equation (4.15) simplifies to

A+n)'°
) (1+r)]()_(1+g)]() )

PV . Multiplying
both sides of equation (4.15) by the inverse

a+n' 1
PV = 4.16
A+ P10 — 1+ O A+ P (10
Canceling out (1 + »'? in the numerator and denominator, the solution is:
1
PV (4.17)

T A+ - A+

We can generalize this formula to other periods of cash flows by letting cash
flows occur every j years. The PV of the cash flows is the same, except that we
replace each 10 in equation (4.17) with a j in equation (4.18). Additionally, we
rename the term PV as PPF, the periodic perpetuity factor. Therefore, the PPF for
$1 of payment, first occurring in year j, is:

1

PPF = A .
A+n/ —=A+g)V

PPF—end-of-year. (4.18)

The midyear PPF is again our familiar result of /1 + r times the end-of-year
PPF, or:

V147

PPF = PPF—mid . 4.1
A+ —(+g) midyear 419

Note that for j = 1, equations (4.18) and (4.19) reduce to the Gordon model. As
you will see further, the above two formulas work only if the last cash flow occurred
in the immediately prior year (i.e., t = —1). In the section on other starting years, we
generalize these two formulas to equations (4.18a) and (4.192) to be able to handle
different starting times.

Tables 4.8 and 4.9: Examples of Equations (4.18) and (4.19)

We begin in Table 4.8 with $1.00 (B5) of moving expenses'? that we forecast to
occur in the next move, 10 years from now. The second move, which we ex-
pect to occur in 20 years, should cost (1 + @)Y = $1.62889 (B6), assuming a 5%
(D26) constant growth rate (g) in the cost. We discount cash flows at a 20% (D25)
discount rate.

Column A shows time in 10-year increments going up to 100 years. B5 to B14
contain the forecast cash flows and are equal to (1 + ), where ¢t = 10, 20, 30,
..., 100 years, g = 5.0%, and j = 10. Actually, time should continue to t = oo, but
at a 20% discount rate and 5% growth rate, the present value factors nullify all cash

12 Another common periodic expense that is less predictable than moving expenses is losses
from lawsuits. Rather than use the actual loss from the last lawsuit, one should use a base-level,
long-run average loss, which will grow at a rate of g.
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A B [ [ [ D [ E [ F
1 Table 4.8
2 Periodic Perpetuity Factor (PPF)—End-of-Year Formula
3
4 t(Yrs) Cash Flow = (1+g)*/ PV Factor = 1/(1+1)! PV % PV| Cum % PV
5 10 1.00000 0.16151 0.16151 74% 74%
6 20 1.62889 0.02608 0.04249 19% 93%
7 30 2.65330 0.00421 0.01118 5% 98%
8 40 4.32194 0.00068 0.00294 1% 100%
9 50 7.03999 0.00011 0.00077 0% 100%
10 60 11.46740 0.00002 0.00020 0% 100%
11 70 18.67919 0.00000 0.00005 0% 100%
12 80 30.42643 0.00000 0.00001 0% 100%
13 90 49.56144 0.00000 0.00000 0% 100%
14 100 80.73037 0.00000 0.00000 0% 100%
15 Totals 0.21916 100%
16
17 |Calculation of PPF by Formula:
18
19 PPF|
20 0.21916]
21
22 |Assumptions:
23
24 |j= Number of Years between Moves 10
25 |r= Discount Rate 20.0%
26 | g = Growth Rate in Moving Costs 5.0%
27
28 |Spreadsheet Formulas:
29
30 |A20: =1/((1+n"j—(1+g)"j) Equation (4.18)

A [ B [ C [ D [ E F

1] Table 4.9

2 Periodic Perpetuity Factor (PPF)—Midyear Formula
3
4 t(Yrs) Cash Flow = (1+g)*/| PV Factor = 1/(1+r)(0-5) PV % PV| Cum % PV
5 10 1.00000 0.17692 0.17692 74% 74%
6 20 1.62889 0.02857 0.04654 19% 93%
7 30 2.65330 0.00461 0.01224 5% 98%
8 40 4.32194 0.00075 0.00322 1% 100%
9 50 7.03999 0.00012 0.00085 0% 100%
10 60 11.46740 0.00002 0.00022 0% 100%
11 70 18.67919 0.00000 0.00006 0% 100%
12 80 30.42643 0.00000 0.00002 0% 100%
13 90 49.56144 0.00000 0.00000 0% 100%
14 100 80.73037 0.00000 0.00000 0% 100%
15 Totals 0.24008 100%
16
17_|Calculation of PPF by Formula:
18
19 PPF]|
20 0.24008|
21
22 |Assumptions:
23
24 |j = Number of Years between Moves 10
25 |r= Discount Rate 20.0%
26 _|g = Growth Rate in Moving Costs 5.0%
27
28 |Spreadsheet Formulas:
29
30 |A20: =SQRT(1+n/(1+N"j—(1+g)*j) Equation (4.19)
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flows after year 40.'3 Column C contains a standard present value factor, where

1
V=—""
aQ+nr

Column D, the present value of the cash flows, equals column B x column C.
D15, the total PV, equals $0.21916 for every $1.00 of moving expenses in the next
move. This is the final result using the brute force method of scheduling all the cash
flows and discounting them to PV. A20 contains the formula for equation (4.18), and
the result is $0.21916, which demonstrates the accuracy of the formula. Note that
the formula for A20 appears in A30.

So far we have computed only the PPF. To calculate the PV of $20,000 of the
previous year’s moving expense growing at 5% per year and occurring every 10
years, we forecast the cost of the next move by multiplying the $20,000 by 1.05%°
= $32,577.89. We then multiply the cost of the next move by the PPF, that is,
$32,577.89 x 0.21916 (A20) = $7,139.83 before corporate taxes. Assuming a 40% tax
rate, that rounds to $4,284 after tax. Since this is an expense, we must remember to
subtract it from—not add it to—the value we calculated before moving expenses. '
For example, suppose we calculated a marketable minority interest fair market value
(FMV) of $1,004,284 before moving expenses. The final marketable minority FMV
would be $1 million.

Column E shows the percentage of the PV contributed by each move. Seventy-
four percent (E5) of the PV comes from the first move (year 10), and 19% (E6) from
the second move (year 20). Column F shows the cumulative PV. The first two moves
cumulatively account for 93% (F6) of the entire PV generated by all moves, and the
first three moves account for 98% (F7) of the PV. Thus, in most circumstances, we
need not worry about the argument that after attaining a certain size, a company
tends to not move anymore. As long as it moves at least twice, the PPF will be
sufficiently accurate.

Table 4.9 is identical to Table 4.8, except that it is testing equation (4.19), the
midyear formula, instead of the end-of-year formula, equation (4.18). Again C20 =
D15, which verifies the formula.

Other Starting Years

Another question to address is what happens when the periodic expense occurred
before the prior year. Using our moving-expense-every-10-years example, suppose
the subject company last moved 4 years ago. It will be another 6 years, not 10 years,
to the next move. The easiest way to handle this situation is first to value the cash
flows from a point in time where we can use the ADF equations in (4.18) and (4.19)
and then adjust. Thus, if we choose ¢ = —4 as our temporary valuation date, all cash
flows will be spaced every 10 years, and ADF formulas (4.18) and (4.19) apply. We
then roll forward to ¢ = 0 by multiplying the preliminary PPF by (1 + »)?, where b

BOf course, at a higher growth rate and the same discount rate, it will take longer for the
present value factors to nullify the growth. The converse is also true.

1\We accomplish this by removing moving expenses from historical costs before developing
our forecast of expenses (see Chapter 3).
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is the number of years before ¢ = 0 that the last periodic cash flow occurred. In this
case, b = 4.
The generalized PPF formulas are:
_ 1
T A+ —(tg)

PPF x (147" Generalized PPF—end-of-year. (4.18a)

The midyear generalized PPF is again our familiar result of 4/1 4 7 times the
end-of-year generalized PPF, or:

NiET: ,
PPF = - - x (1+7r)” Generalized PPF—midyear. (4.192)
A+ri—(+g) 4

Note that for j = 1 the left-hand side of equations (4.18a) and (4.19a) reduces to
the Gordon model, while the right-hand term is the adjustment for the next flow
occurring b years earlier than year j., that is, in year b — j instead of year j. When j
= 1 and b = 0, the entire formula simplifies to the Gordon model.

It is important to roll forward the cash flow properly. With the $20,000 move
occurring 4 years ago, our forecast of the next move is still $20,000 x 1.05'° =
$32,578. Whether the last move occurred 4 years ago or yesterday, the forecast cost
of the next move is the same 10 years’ growth. The present value, and therefore the
PPF, is different for the two different moves, and that is captured in the numerator
of the PPF, as we have already discussed.

Table 4.10 is identical to Table 4.8, except that the expenses occur in years 6,
16, ... instead of 10, 20, ... . The nominal cash flows are identical to Table 4.8, but
the formula that generates them is different. In Table 4.8, the cash flows are equal to
(1 + @', In Table 4.10, the cash flows are equal to (1 + )" 7*” because the cash
flows still grow at the rate g for 10 years from the last move, not just the 6 years to the
next move.'> However, the cash flows in Table 4.10 are discounted 6 years instead
of 10 years. The PPF is $0.45445. The calculation by formula in A20 matches the
brute force calculation in D15, which demonstrates the validity of equation (4.18a).

Modifying the moving expense example in Table 4.8, the PV of all moving costs
throughout time equals $20,000 x 1.62889 x $0.45445 = $14,805.14. Assuming a
40% tax rate, the after-tax present value of the perpetuity of moving costs is $8,883,
compared to the $4,284 we calculated in the discussion of Table 4.8. The present
value of moving costs is higher in this example, because the first cash flow occurs
in year 6 instead of year 10.

PPFs in New-versus-Used Equipment Decisions

Another important use of PPFs is in new-versus-used equipment decisions and in
valuing used income-producing equipment. Let’s use a taxicab as an example. The
cab company can buy a new car or a used car. Suppose a new car would last six
years. It costs $20,000 to buy a new one today, and we can model the cash flows
for its six-year expected life.

BOf course, we could consider the formula in Table 4.8 to be (1+g)"7**, with b = 0.
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A [ B [ C [ D [ E [ F

] Table 4.10

| 2 | Periodic Perpetuity Factor (PPF)—End-of-Year—Cash Flows Begin Year 6
3
4 t(Yrs) Cash Flow = (1+g) t-#b PV Factor = 1/(1+1) ! PV % PV| Cum % PV
5 6 1.00000 0.33490 0.33490 74% 74%
6 16 1.62889 0.05409 0.08810 19% 93%
7 26 2.65330 0.00874 0.02318 5% 98%
8 36 4.32194 0.00141 0.00610 1% 100%
9 46 7.03999 0.00023 0.00160 0% 100%
10 56 11.46740 0.00004 0.00042 0% 100%
11 66 18.67919 0.00001 0.00011 0% 100%
12 76 30.42643 0.00000 0.00003 0% 100%
13 86 49.56144 0.00000 0.00001 0% 100%
14 96 80.73037 0.00000 0.00000 0% 100%
15 Totals 0.45445 100%

17_|Calculation of PPF by Formula:

19 PPF|
20 0.45445|

22 [Assumptions:

24 |j = Number of Years between Moves [1] 10
25 |r= Discount Rate 20.0%
g = Growth Rate in Net Inc/Cash Flow 5.0%
b = Number of Years from Last Cash Flow 4

Spreadsheet Formulas:

A20: =(1+r)"bl((1+r)"j~(1+g)"j) Equation (4.18a)

Notes:

[1] As jdecreases, the PV factors and the PV increase. It is possible that you will have to add
additional rows above Row 15 to capture all the PV of the cash flows. Otherwise, the
PV in C20 will appear to be higher than the total of the cash flows in D15.

@ [ [w|w|w|w|w|w|w|r N[
(N[ | |R|R|N|=[S|0|o|N|o

The cash flows will consist of the purchase of the cab, income, gasoline, main-
tenance, insurance, and so forth. Each expense category has its own pattern. Gas
consumption is a variable expense that increases in dollars over time with the rate
of increase in gas prices. Maintenance is probably low for the first two years and
then begins increasing rapidly in year 3 or 4.

We can then take the NPV of the cash flows, and that represents the NPV of
operating a new cab for six years. It would be nice to compare that with the NPV of
operating a one-year-old cab for five years (or any other term desired). The problem
is that these are different time periods. We could use the lowest common multiple of
30 years (6 years X 5 years) and run the new cab cash flows five times and the used
cab cycle six times, but that is a lot of work. It is a far more elegant solution to use
a PPF for the new and the used equipment. The result of those computations will
be the present value of keeping one new cab and one used cab in service forever.
We can then choose the one with the superior NPV.

Even though the cash flows are contiguous, which is not true in the periodic
expense example, the cycle and the NPV of the cash flows are periodic. Every six
years the operator buys a new cab. We can measure the NPV of the first cab as
of t = 0. The operator buys the second cab and uses it from years 7 through 12.
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Its NPV as of the end of year 6 (t = 6) should be the same as the NPV at t = 0
of the first six years’ cash flows, with a growth rate for the rise in prices. If there
are substantial differences in the growth rates of income versus expenses or of
the different categories of expenses, then we can break the expenses into two or
more subcategories and apply a PPF to each subcategory, and then add the NPVs
together. Buying a new cab every six years would then generate a series of NPVs
with constant growth at # = 0, 6, 12, ... . That repeating pattern is what enables us
to use a PPF to value the cash flows.

We could perform this procedure for each different vintage of used equipment,
for example, buying one-year-old cabs, two-year-old cabs, and so forth. Our final
comparison would be the NPV of buying and operating a single cab of each age
(a new cab, one year old, two years old, etc.) forever. We then simply choose the
cab life with the highest NPV.

If equipment is not income producing, we can still use the PPF to value the
periodic costs in perpetuity. Then the NPV would be negative.

ADFs in Loan Mathematics

There are four related topics that ideally all should be together with using ADFs
in loan mathematics to create formulas to calculate the following: loan payments,
principal amortization, the after-tax cost of a loan, and the PV of a loan when the
nominal and market rates differ. We will deal with the first and the last topics in this
section. Calculating the amortization of principal is mathematically very complex.
To maintain readability, it will be explained, along with the related problem of
calculating the after-tax cost of a loan, in Appendix A.

Calculating Loan Payments

We can use our earlier ADF results to easily create a formula to calculate loan
payments. We know that in the case of a fixed-rate amortizing loan, the principal
must be equal to the PV of the payments when discounted by the nominal rate of
the loan. We can calculate the PV of the payments using equation (4.6d) and the
following definitions:

ADFnominai = ADF at the nominal interest rate of the loan.
ADF,,; = ADF at the market interest rate of the loan.

The nominal ADF is simply an end-of-year ADF with no growth. Repeating
equation (4.6d), the ADF is:

1

1—- —
a+4n"
r 9

ADEF Nominal =

where 7 in this case is the nominal interest of the loan. If we use the market
interest rate instead of the nominal rate, we get ADFyy,. We know that the loan
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payment multiplied by the nominal ADF equals the principal of the loan. Stating that
as an equation:

Loan Payment X ADF nomina = Principal. (4.20)

Dividing both sides of the equation by ADFyomina, We get:

Principal o
Loan Payment = —————— = Principal x

_ (4.2D
ADF Nominal ADF Nominal

Present Value of a Loan
By definition, the PV of a loan is the loan payment times the market rate ADF:
PV = Loan Payment x ADF y;. (4.22)

From equation (4.21), the loan payment is the principal divided by the nominal ADF.
Substituting this into equation (4.22) gives us:

ADF yipy

_— 4.2
ADF Nominal ( 3)

PV of Loan = Principal x
The intuition behind this is that the Principal x 5 DF\II — is the amount of the
loan payment. When we then multiply that by the ADF,y,, this gives us the PV of
the loan.

TABLE 4.11: EXAMPLE OF EQUATION (4.23)  Table 4.11 is an example of calculating
the present value of a loan. The assumptions appear in Table 4.11 in E77 to E82. We
assume a $1 million principal on a five-year loan. The loan payment, calculated using
Excel’s spreadsheet function, is $20,276.39 (E78) for 60 months. The annual loan rate
is 8% (E79), and the monthly rate is 8%/12 months = 0.667% (E80 = E79/12). The
annual market rate of interest (the discount rate) on this loan is assumed at 14%
(E81), and the monthly market interest rate is 1.167% (ES82 = E81/12).

Column A shows the 60 months of payments. Column B shows the monthly
payment of $20,276.39 for 60 months. Columns C and D show the PV factor and the
PV of each month’s payment at the nominal 8% annual interest rate (0.667% monthly
rate), while columns E and F show the same calculations at the market rate of 14%
(1.167% monthly rate).

The present value factors in C6 to C65 total 49.31843 (C66), and present value
factors in E6 to EG65 total 42.97702 (E66). Note also that the PV of the loan at the
nominal interest rate equals the $1 million principal (D66), as it should.

E70 is the ADF at 8% according to equation (4.6d). We show the spreadsheet
formula for E70 in A86. E71 is m = $0.02027639, the amount of loan payment
for each $1 of principal. We mﬁltiply that by the $1 million principal to obtain
the loan payment of $20,276.39 in F71, which matches E78, as it should. In E72,
we calculate the ADF at the market rate of interest, the formula for which is also
equation (4.6d), merely using the 1.167% monthly interest rate in the formula, which
we show in A88. In E73, we calculate the ratio of the market ADF to the nominal
ADF, which is E72 divided by E70 and equals 0.871419. In F73, we multiply E73 by
the $1 million principal to obtain the present value of the loan of $871,419. Note
that this matches our brute force calculation in F66, as it should.
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1 Table 4.11

2 PV of Loan with Market Rate > Nominal Rate: ADF, End-of-Year

3

4 r=8% r=14%

5 Month Cash Flow PV Factor Present Value PV Factor Present Value
6 1 $20,276.39 0.99338| $ 20,142 0.98847| $ 20,043
7 2 $20,276.39 0.98680| $ 20,009 0.97707| $ 19,811
8 3 $20,276.39 0.98026| $ 19,876 0.96580| $ 19,583
9 4 $20,276.39 0.97377| $ 19,745 0.95466| $ 19,357
10 5 $20,276.39 0.96732| $ 19,614 0.94365| $ 19,134
11 6 $20,276.39 0.96092| $ 19,484 0.93277| $ 18,913
12 7 $20,276.39 0.95455| $ 19,355 0.92201| $ 18,695
13 8 $20,276.39 0.94823| $ 19,227 0.91138| $ 18,480
14 9 $20,276.39 0.94195| $ 19,099 0.90087| $ 18,266
15 10 $20,276.39 0.93571| $ 18,973 0.89048| $ 18,056
16 11 $20,276.39 0.92952| $ 18,847 0.88021| $ 17,848
17 12 $20,276.39 0.92336| $ 18,722 0.87006| $ 17,642
18 13 $20,276.39 0.91725| $ 18,598 0.86003| $ 17,438
19 14 $20,276.39 0.91117| $ 18,475 0.85011| $ 17,237
20 15 $20,276.39 0.90514| $ 18,353 0.84031| $ 17,038
21 16 $20,276.39 0.89914| $ 18,231 0.83062| $ 16,842
22 17 $20,276.39 0.89319| $ 18,111 0.82104| $ 16,648
23 18 $20,276.39 0.88727| $ 17,991 0.81157| $ 16,456
24 19 $20,276.39 0.88140| $ 17,872 0.80221| $ 16,266
25 20 $20,276.39 0.87556| $ 17,753 0.79296| $ 16,078
26 21 $20,276.39 0.86976| $ 17,636 0.78382| $ 15,893
27 22 $20,276.39 0.86400| $ 17,519 0.77478| $ 15,710
28 23 $20,276.39 0.85828| $ 17,403 0.76584| $ 15,529
29 24 $20,276.39 0.85260| $ 17,288 0.75701| $ 15,349
30 25 $20,276.39 0.84695| $ 17,173 0.74828| $ 15,172
31 26 $20,276.39 0.84134| $ 17,059 0.73965| $ 14,997
32 27 $20,276.39 0.83577| $ 16,946 0.73112| $ 14,824
33 28 $20,276.39 0.83023| $ 16,834 0.72269| $ 14,654
34 29 $20,276.39 0.82474| $ 16,723 0.71436| $ 14,485
35 30 $20,276.39 0.81927| $ 16,612 0.70612] $ 14,318
36 31 $20,276.39 0.81385| $ 16,502 0.69797| $ 14,152
37 32 $20,276.39 0.80846| $ 16,393 0.68993| $ 13,989
38 33 $20,276.39 0.80310| $ 16,284 0.68197| $ 13,828
39 34 $20,276.39 0.79779| $ 16,176 0.67410| $ 13,668
40 35 $20,276.39 0.79250| $ 16,069 0.66633| $ 13,511
41 36 $20,276.39 0.78725| $ 15,963 0.65865| $ 13,355
42 37 $20,276.39 0.78204| $ 15,857 0.65105| $ 13,201
43 38 $20,276.39 0.77686| $ 15,752 0.64354| $ 13,049
44 39 $20,276.39 0.77172| $ 15,648 0.63612] $ 12,898
45 40 $20,276.39 0.76661| $ 15,544 0.62879| $ 12,749
46 M $20,276.39 0.76153| $ 15,441 0.62153| $ 12,602
47 42 $20,276.39 0.75649| $ 15,339 0.61437| $ 12,457
48 43 $20,276.39 0.75148| $ 15,237 0.60728| $ 12,313
49 44 $20,276.39 0.74650] $ 15,136 0.60028| $ 12,171
50 45 $20,276.39 0.74156| $ 15,036 0.59336| $ 12,031

(continued)
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A B [ C [ D [ E [ F
! Table 4.11 (cont.)
2
3
4 r=28% r=14%
5 Month Cash Flow PV Factor Present Value PV Factor Present Value
51 46 $20,276.39 0.73665| $ 14,937 0.58651| $ 11,892
52 47 $20,276.39 0.73177| $ 14,838 0.57975| $ 11,755
53 48 $20,276.39 0.72692| $ 14,739 0.57306| $ 11,620
54 49 $20,276.39 0.72211| $ 14,642 0.56645| $ 11,486
55 50 $20,276.39 0.71732| $ 14,545 0.55992| $ 11,353
56 51 $20,276.39 0.71257| $ 14,448 0.55347| $ 11,222
57 52 $20,276.39 0.70785| $ 14,353 0.54708| $ 11,093
58 53 $20,276.39 0.70317| $ 14,258 0.54077| $ 10,965
59 54 $20,276.39 0.69851| $ 14,163 0.53454| $ 10,838
60 55 $20,276.39 0.69388| $ 14,069 0.52837| $ 10,714
61 56 $20,276.39 0.68929| $ 13,976 0.52228| $ 10,590
62 57 $20,276.39 0.68472] $ 13,884 0.51626| $ 10,468
63 58 $20,276.39 0.68019] $ 13,792 0.51030] $ 10,347
64 59 $20,276.39 0.67569| $ 13,700 0.50442| $ 10,228
65 60 $20,276.39 0.67121| $ 13,610 0.49860| $ 10,110
66 Totals| $ 1,216,584 49.31843| $ 1,000,000 42.97702| $ 871,419
67
68 x Principal
69 Per $1 of $1 Million
70 |ADF @ 8% = C66 49.318433
71 _|Formula for Payment = 1/ADF 0.02027639 | $ 20,276.39
72 |ADF @ 14% = E66 42.977016
73 |ADF @ 14% / ADF @ 8% = F66 0.871419 | $ 871,419
74
75 |Assumptions:
76
77 _|Principal $ 1,000,000
78 |Loan Payment $20,276.39
79 |r=Nominal Discount Rate—Annual 8.0%
80 |r; = Nominal Discount Rate—Monthly 0.667%
81 |r, = Market Discount Rate 14.0%
82 |r; = Market Discount Rate 1.167%
83
84 |Spreadsheet Formulas:
85
86 |E70: =(1-1/(1+E80)"60)/E80
87 |E71: =1/E70
88 |E72: =(1-1/(1+E82)"60)/E82
89 |E73: =E72/E70

Relationship of the Gordon Model to the Price/Earnings
and Price/Sales Ratios

In this section, we will mathematically derive the relationship between the
price/earnings (PE) ratio, price/sales (PS) multiple, and the Gordon model. The
confusion between them leads to possibly more mistakes by appraisers than any
other single source of mistakes. I have seen numerous reports in which the ap-
praiser used the wrong earnings base. Understanding this section should clear the
potential confusion that exists. First, we will begin with some definitions that will
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aid in developing the mathematics. All other definitions retain their same meaning
as in the rest of the chapter.

Definitions

P, =stock price at time £.
E; ; = bistorical earnings in the prior year (usually the prior 12 months).
E,;; = forecast earnings in the upcoming year.'°
g7 =one-year forecast growth rate in earnings, that is, % -1
PE = price/earnings ratio = %.
POR = payout ratio = 1 — retention ratio.
PS = price/earnings ratio = %
RR = earnings retention ratio. Thus cash flow to shareholders equals (1 — RR)

x earnings, where 1 — RR = POR.

Mathematical Derivation of the PE Multiple

We begin with the statement that the market capitalization of a publicly held firm
is its fair market value, and that is equal to its PE ratio times the previous year’s
bistorical earnings:

I

MV = X E;_q. (4.249)

t—1

We repeat equation (4.10e) as equation (4.25), with one change. We will assume
that forecast cash flow to shareholders, CF;.1, is equal to POR x E;; 1, where RR is the
earnings retention ratio.!” The retention ratio is the sum total of all the reconciling
items between net income and cash flow (see Chapters 1 and 2).

It is important to distinguish between the amount of cash that a company could
pay its shareholders and the amount that it does pay its shareholders (i.e., dividends).
With publicly traded firms, it generally applies to dividends. Most privately held
firms—especially C corporations—do not pay dividends explicitly. However, they
may pay implicit dividends in the form of excess compensation. In the absence of
implicit or explicit dividends, it is important to be careful to keep our assumptions
reasonable and consistent. For example, if the company sales and cash flow grew
at a rate of 20% per year for 10 years while not paying any explicit or implicit
dividends, we cannot naively assume that the company will continue to grow at a
20% rate with an 80% payout ratio. Obviously, if we assume the owners will start
removing significant amounts of cash out of the company, then it is unrealistic to
assume that the 20% growth rate will continue.

1%Here we are considering # = 0 to be the present—a point in time, while £ — 1 and # + 1
each represent a span of time, that is, the past year and the first forecast year.
7T wish to thank Larry Kasper for pointing out the need for this.
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Now we have an expression for the FMV of the firm!® according to the midyear
Gordon model:

V1
FMV = POR x Et+1(—+§. (4.25)
r—g

Midyear Gordon model.
Substituting E1 = E;; (1 + g1) into equation (4.25), we come to:

ViF+r
r—go°

MV = POR x E¢,1(1 +g1) (426)

The left-hand sides of equations (4.24) and (4.26) are the same. Therefore, we
can equate the right-hand sides of those equations:
P V147

X El—l = POR x E,_l(l +g1)

. 4.27
. -2 (4.27)

E,_; cancels out on both sides of the equation. Additionally, we use the simpler
notation PE for the price/earnings multiple. Thus, equation (4.27) reduces to:

JTET

r—§8

PE = POR x (1 + g1) (4.28)

Relationship of PE to Gordon model multiple.

The left-hand term is the price/earnings multiple, and the right-hand term is the
payout ratio times 1 plus the one-year growth rate times the midyear Gordon model
multiple. In reality, investors do not expect constant growth to perpetuity. They
usually have expectations of uneven growth for a few years and a vague, long-run
expectation of growth thereafter that they approximate as being constant. Therefore,
we should look at g, the perpetual growth rate in cash flow, as an average growth
rate over the infinite period of time that we are modeling.

The PE ratio is a function of growth (g) and risk (»). High-growth, low-risk firms
will have high PE ratios, and low-growth, high-risk firms will have low PE ratios.
The payout ratio is also part of the equation, but it is less of a valuation driver
than would appear on the surface. The reason for this is that POR is essentially
a dividends issue, and we know from Miller and Modigliani that as a first order,
dividends don’t matter. Yes, there are academic articles that dispute this, but these
effects are more secondary. The equation looks simple enough. Why not just increase
the payout ratio to a very high percentage? The answer is that increasing the payout
ratio lowers growth. So there is no magic formula to manipulate the PE multiple to
the shareholders’ delight. Otherwise, all firms would pay out at least 99% of their
earnings, and we do not see this in the marketplace. I have seen estimates of the
payout ratio for public firms ranging from one-third to 55%.

It is extremely important to be very clear that the earnings bases in the PE
multiple and the Gordon model are different. The former is the immediate prior
year and the latter is the first forecast year. When an appraiser develops PE multiples
from guideline companies, whether publicly or privately owned, he should multiply

8Assuming the present value of the cash flows of the firm is its FMV. This ignores valuation
discounts, an acceptable simplification in this limited context.
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the PE multiple from the guideline companies (after appropriate adjustments) by the
subject company’s prior-year earnings. When using a discounted cash flow method
to determine a PE, the appraiser should multiply the Gordon model by POR by the
first forecast year’s earnings. Using the wrong earnings will cause an error in the
valuation by a factor of 1 plus the forecast one-year growth rate.

Mathematical Derivation of the PS Multiple

In this section we will derive the price-to-sales (PS) multiple. This equation applies
precisely only for a firm with no fixed costs and that has constant forecast growth
perpetually. Of course, real firms in the real world differ from this theoretical con-
struct, but the equation nevertheless is important in identifying the valuation drivers
of this multiple.

We repeat equation (4.26) as equation (4.28a); however, we rename FMV as P
(price), and instead of prior-year earnings we substitute prior-year sales times the
profit margin.

V147

P =POR x S;—1 x PM x (1 + g1) . (4.28a)
r—g
Dividing by prior year sales, we get:
V1
PS = POR x PM x (1+ g1) +r (4.28b)

r—go

Formula for the PS multiple.

Thus, the PS multiple is a function of the profit margin, growth, and risk, with
the payout ratio mechanically part of the equation but with the same comments
applying here as in the PE multiple formula. This formula and (4.28) are significant
in providing us with theoretical models for performing regression analysis. They tell
us which independent variables to use in our regressions. Of course, we should also
look to nonlinear transformations of these variables as well, that is, their squares,
logarithms, and so forth.

The Bias in Annual (versus Monthly) Discounting Is Immaterial

In his (2001) article, Dr. Robert Trout stated that midyear discounting of annual cash
flows creates a bias in the present values vis-a-vis monthly discounting. Dobner
(2002) demonstrated that this is incorrect. This section of the chapter presents a
discussion of the validity of using the midyear convention. Although our conclusions
are similar to Dobner’s, our analysis is very different. We develop exact formulas
for annuity discount factors with growth for both monthly and daily cash flows.
These can be useful tools for the valuation community when that level of precision
is important.

The flaw in Dr. Trout’s analysis is that, given compound interest, the monthly
interest rate is not equal to the annual discount rate divided by 12. Dr. Trout used
12% annual interest and assumed that 1% monthly interest is equivalent. However,
it is not.
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Using 7 as the periodic interest rate (monthly for equations (4.29) through (4.36),
daily for equations (4.37) and (4.38)) and r as the annual rate, we begin in equation
(4.29) with the statement that 12 months of compounding at the equivalent monthly
rate will yield the same result as the annual rate, or:

A+D2=1+r (4.29)

Next we take the 12th root of both sides of the equation:

A+ =004rm. (4.30)

Subtracting 1 from each side of the equation, we come to a general formula to
convert any annual interest rate into a monthly interest rate:

i=4+re—1. (4.31)
Now let’s use Dr. Trout’s numbers and substitute 7 = 12% and solve for i:
i=1.121 — 1 = 0.9489%. (4.32)

Therefore, using 1% per month as the discount rate will discount the cash flows
by too high of a discount rate and understate the present value of the monthly
cash flows. That would cause us to come to the incorrect result that to match the
monthly cash flow, we should have to discount the annual cash flows by more than
one-half year.

Dr. Trout also assumed end-of-month cash flows, which puts the average timing
of cash flows at 6.5 months into each year, further lowering the present value. A
more accurate approximation of continuous cash flows is to assume midmonth cash
flows. For proof, we merely add up the timing of end-of-month cash flows from
1 month through 12 months = sum(1,2,3,4 ... 12) months = 78 months. 78 months
divided by 12 equals an average timing of 6.5 months. To calculate the average
timing of midmonth cash flows, we sum (0.5 months, 1.5 months, ... 11.5 months)
= 72 months. Dividing by 12, we arrive an average timing of 6 months into the year.

Monthly Annuity Discount Factor Formula

In Appendix B, we develop formulas for the present value of monthly cash flows
for n years, with the cash flows arriving midmonth. We call these monthly annuity
discount factors, ADF,,. First we present equation (B4.14) as equation (4.33):

1 0s r 1 1+g\”
ADF,, = —(1 +r)n . [1 — ( ) } (4.33)
12 A+rnz—-17r—g 147

PV of midmonth cash flows.
There are five terms in equation (4.33):

1. The first term, 1/12, is the first month’s forecast cash flow, that is, 1/12 of $1.00.

2. The second term is the midmonth correction factor. This is analogous to adding
(1 + m°5 in the numerator of the Gordon model to convert it from end-of-year
cash flows to midyear cash flows. If we were assuming end-of-month cash flows
instead of midmonth, we would delete this term from the formula.
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3. The denominator of the third term is equal to 7 from equation (4.31), the correct
monthly interest rate. Thus, the third term is #/7, which is the ratio of the annual
rate to the present value equivalent monthly interest rate. In our case, this is
12%/0.9489% = 12.6465. If we incorrectly used i = 12%/12 = 1%, then this ratio
would be 12, which is just the number of months. The ratio adjusts the ADF,,
upward.

4. The fourth term is the end-of-year Gordon model formula.

5. The fourth term multiplied by the fifth term is the annual end-of-year ADF. The
last term—the one in square brackets—converts the perpetuity of the Gordon
model to a finite series of cash flows.

Table 4.12: Present Values of Monthly Cash Flows

ROWS1-42  Table 4.12 contains a 36-month series of cash flows and a 3-year annual
cash flow to test the accuracy of equation (4.33) and illustrate how it works. Our
basic assumptions are a 12% (F47) annual discount rate () and a 6% (F49) growth
rate (g) in cash flows. In months 1 through 12, we begin with cash flow of 1/12 of
$1.00, or $0.08333 per month (B6-B17). The monthly present value factor is 1/(1 +
1206)((Month-0.5/12) " Eor example, the present value factor (PVF) for month 1 is 1/(1
+ 1296)*12 = 0.99529 (C6). The PVF for month 2 is 1/(1 + 12%)151? = 0.98593
(C7), and so forth . The NPV of the cash flow is column B x column C = column D.

The sum of the first 12 months’ cash flows is $1.00 (E17), as it should be, while
the present value of those cash flows is $0.94541 (F17). The next 12 months’ cash
flows grow by 6% (F49) to $0.08833 (B18-B29) per month and sum to $1.06 (E29).
The present value of those cash flows is $0.89477 (F29). The third year’s cash flows
sum to $1.1236 (E41), and their present value is $0.84683 (F41). The sum of the three
years’ cash flows and present values are $3.1836 (B42, E42) and $2.68701 (D42, F42),
respectively.

ROWS 51-63: CALCULATIONS FOR THEADF,, FORMULA  Let’s look at the calculations for
the ADF,, formula. We begin with the end-of-year Gordon model formula, 1/(r —
Q@ = 1/(0.12 — 0.06) = 1/0.06 = 16.66667 (F52). This is the fourth term in equation
(4.33). We next calculate the term that converts from a perpetuity to a finite stream
of cash flows. That is the last term in equation (4.33), that is, the one in square

brackets, [1 - (]1%)”]' With ¢ = 6% (F49), r = 12% (F47), and n = 3 years (F53),

this term equals 0.152258 (F54). Multiplying 16.66667 x 0.152258 = 2.53764 (F55),
the annual ADF.

Next we multiply the first term in equation (4.33) by the third term. Also note that
the denominator of the third term equals 7 from equation (4.31). Thus, multiplying

those two terms together results in 4 x = -L =1.05387 (F56).7
X ok

Next we calculate the second term in equation (4.33), the midmonth correction
factor, ADF,, = (1 + MT = 1.00473 (F57). To calculate ADF,,, we multiply 2.53764
x 1.05387 x 1.00473 = 2.68701 (F55 x F56 x F57 = F58). Note that our calculation
by formula in F58 agrees with the brute force calculations in D42 and F42.

YNote that if we were using simple instead of compound interest, i would equal 1%, and
r/12i would equal 1.00.
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A B C D E F [ G [ H I
Lt Table 4.12
2 | Present Values of Cash Flows: r=12%, g = 6%
3
4 | Monthly Cash Flows Annual Cash Flows
5 |t(Mos.)| Cash Flow (CF) PV Factor NPV Sum CF| Sum NPV CF PVF PV CF
6 1 0.08333 0.99529 0.08294 1.00000 0.94491| 0.94491
7 2 0.08333 0.98593 0.08216 1.06000 0.84367| 0.89429
8 3 0.08333 0.97667 0.08139 1.12360 0.75328| 0.84638
9 4 0.08333 0.96749 0.08062 3.18360| 2.54186| 2.68558
10 5 0.08333 0.95839 0.07987
11 6 0.08333 0.94938 0.07912
12 7 0.08333 0.94046 0.07837
13 8 0.08333 0.93162 0.07763
14 9 0.08333 0.92286 0.07691
15 10 0.08333 0.91419 0.07618
16 1 0.08333 0.90560 0.07547
17 12 0.08333 0.89708 0.07476 1.00000 0.94541
18 13 0.08833 0.88865 0.07850
19 14 0.08833 0.88030 0.07776
20 15 0.08833 0.87202 0.07703
21 16 0.08833 0.86383 0.07630
22 17 0.08833 0.85571 0.07559
23 18 0.08833 0.84766 0.07488
24 19 0.08833 0.83970 0.07417
25 20 0.08833 0.83180 0.07348
26 21 0.08833 0.82398 0.07279
27 22 0.08833 0.81624 0.07210
28 23 0.08833 0.80857 0.07142
29 24 0.08833 0.80097 0.07075 1.06000 0.89477
30 25 0.09363 0.79344 0.07429
31 26 0.09363 0.78598 0.07359
32 27 0.09363 0.77859 0.07290
33 28 0.09363 0.77127 0.07222
34 29 0.09363 0.76402 0.07154
35 30 0.09363 0.75684 0.07087
36 31 0.09363 0.74973 0.07020
37 32 0.09363 0.74268 0.06954
38 33 0.09363 0.73570 0.06889
39 34 0.09363 0.72879 0.06824
40 35 0.09363 0.72194 0.06760
4 36 0.09363 0.71515 0.06696 1.12360 0.84683
42 | Totals 3.18360 2.68701 3.18360 2.68701
43 |
| 44 |Assumptions:
45
46 |p = # Periods per Year 12
47 |r= Annual Discount Rate 12.0%
48 [i=(1+N"(1/p)—1 = Periodic Interest Rate 0.9489%
49 |g = Growth Rate in Net Inc (or Cash Flow) 6.0%

PV OF MIDMONTH CASH FLOWS—ALTERNATIVE EXPRESSION
(B4.14a), which is an alternative expression for (B4.14), as (4.33a):

ADF ,, = Midmonth Correction Factor X ADF guqyear X

We present equation

r
126

(4.33a2)

In F59, we calculate a midyear annuity discount factor, using equation (4.10a),
repeated as equation (4.34).

ADF =

=1

r—§8

=

]

1+7r

(4.39)



Annuity Discount Factors and the Gordon Model 117

A ] B | C | D | E | F [ G ] H [ 1
] Table 4.12 (cont.)
2
EN
50
51 |Calculations for Monthly Annuity Discount Factor Formula
52 |Gordon Model—Endyear = 1/(r-g) 16.66667
53 [n 3
54 |Conversion from Perpetuity to ADF: 1—((1+g)/(1+n)"n 0.152258
55 | ADF—Annual (F52 x F54) 2.53764
56 |M12i 1.05387
57 |(1+0*(0.5/12) 1.00473
58 | ADF—Monthly (F55 x F56 x F57) 2.68701
59 |ADF—Midyear = SQRT(1+r)/(r—g) x F54 2.68558
60 |Ratio of Midmonth ADF/MidyearADF (F58/F59) 1.00053
61
62 |Ratio of Monthly to AnnualADF—By Formula
63 [rl(12xi)x(1+n*(-5.5/12) Equation (4.35) [ 1.00053 |
| 64 |
65

Sensitivity Analysis: How the Ratio Varies with Changes in the Discount Rate

[ Disc Rate | Ratio|

12% | 1.00053
14% | 1.00071
16% | 1.00091
18% | 1.00113
20% | 1.00138
22% | 1.00164
24% | 1.00192
26% | 1.00221
28% | 1.00252
30% | 1.00285

Summary of Each Year's PVs: Monthly versus Annual Cash Flows

@|[o|@|o || |OININ(NINININ[NIN(NYN|o[o|o |[o
oA IN|= OO (N[D|O|A[WIN|[=|O|O|0|N |0

PV Monthly| PV Annual Ratio
Year| Cash Flows| Cash Flows| Mo/Annual
1 0.94541 0.94491 1.00053
2 0.89477 0.89429 1.00053
87 3 0.84683 0.84638 1.00053
88
89 |Note: The ratio of monthly-to-annual cash flows is the same every year.

In our example, using equation (4.34), we compute the midyear ADF as 2.68558
(F59). Dividing ADF,, by ADF, the ratio is 1.00053 (F60). This shows that, under the
previous assumptions, using the monthly instead of the annual ADF would increase
the present value of cash flows by only 0.05%—an amount we can ignore.

We can develop a formula for the ratio of present values of the monthly ADF
versus the annual ADF as equation (4.33) divided by equation (4.34), or:?

ADF ~ 12i J1+7r

Note that since ¢ is strictly a function of 7, the ratio of monthly-to-annual ADF is
strictly a function of r, the discount rate.

ADF,, r A4+mE

- éu + ) =1.00053 (F63 = F60). (4.35)

2In this division, we make use of the fact that as defined in equation (4.31), i = (1 + »/1?

-1.
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SENSITIVITY ANALYSIS—HOW THE RATIO VARIES WITH CHANGESIN#  In rows 70 through
79, we see how the ratio of monthly-to-annual ADFs varies with changes in the
discount rate. The ratio increases with increases in the discount rate, but that ratio
is very small at all levels. Even at venture capital-type discount rates of 30%, using
monthly-versus-annual cash flows merely increases the value by less than 0.3%; that
is, the ratio is 1.00285 (F79).

PRESENT VALUE OF MONTHLY CASH FLOWS COMPARED TO PV OF ANNUAL CASH FLOWS ~ We
transfer the present value of the sum of each year’s monthly cash flows to B85-B87,
that is, we transfer F17 to B85, F29 to B86, and F41 to B87.

In G6 through G8, respectively, we present the annual cash flows of $1.00,
$1.06, and $1.1236, which match the annual summary of the monthly cash flows
in E17, E29, and E41, respectively. We compute the annual midyear present value
factors of 1/(1 + 0.12)%5 = 0.94491 (HG), 1/(1 + 0.12)'> = 0.84367 (H7), and 1/(1 +
0.12)*° = 0.75328 (H8). We multiply the annual cash flows by the annual midyear
PVFs to compute the PV of the cash flows, which are 0.94491 (16), 0.89429 (17), and
0.84638 (I18). We transfer 16-18 to C85-C87, respectively.

We then divide the annual sums of the monthly present values by the annual
present values to calculate the ratio of present values year-by-year; that is, B85/C85
= 1.00053 (D85); B86/C86 = 1.00053 (D86); and B87/C87 = 1.00053 (D87). Note
that the ratio in D85-D87 equals F60 and F63. Also, note that the ratio is the
same every year—and it has to be so—as equation (4.35) tells us that the ratio is
independent of time (and growth). The ratio depends only on the discount rate.
Since this is independent of time, this also means that we would have come to the
same conclusion using perpetuities, that is, the Gordon model, rather than ADFs.

END-OF-MONTH ADF,,  The end-of-month ADF,, is identical to the midmonth ADF
without the midmonth conversion term. Thus, our end-of-month ADF,,s are:

1 1 1 "
ADF,, = — "~ [1 —( +g) } (4.36)
2Q4+prnue—-17r—g I+r

PV—end-of-month cash flows.

r
ADFm = E X ADFEndyear (4363)

PV—end-of-month cash flows—alternative expression.

DAILY CASH FLOWS  For daily cash flows, it is most reasonable to assume bank
deposits occur at the end of the day, not midday. Therefore, unlike monthly cash
flows, daily cash flows do not carry with them a midday correction. If we replace
every instance of the number 12 in equations (4.36) and (4.36a) with 365 and
recognize that now 7, the periodic interest rate, means the daily interest rate in this
context rather than the monthly interest rate in the earlier part of this section, the
ADF,, formulas convert to daily ADF formulas as follows:

1 r 1 1+g\”"
ADFpainy = —— : 1— 437
paly 365(1+r)%<—17—g[ <1+7’>] @37
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PV—daily cash flows.

% X ADFEndyear (4373)

PV—daily cash flows—alternative expression.
The ratio of the daily ADF to the midyear annual ADF is equal to equation
(4.37a) divided by equation (4.34), the midyear annual ADF, or:

r % ADFEndyear _ r
3651 ADFMidyeur 5651 X A/ 1+ 7’.

Table 4.13 shows the same summary calculations for daily cash flows as Table
4.12 shows for monthly cash flows. The daily ADF equals 2.68660 (F17), while the
midyear annual ADF equals 2.68558 (F18). The ratio of the two is 1.00038 (F17/F18
= F19). The formula in F22 is equation (4.38), and it also equals 1.00038. Finally, the
sensitivity analysis in F28 through F37 shows that the ratios of daily-to-annual ADFs
are very slightly lower than the ratio of monthly-to-annual ADFs. The difference
comes from using end-of-day rather than midday calculations.?! In any case, the
difference is negligible, and in all practicality, our results for daily cash flows are
virtually identical to our results for monthly cash flows.

ADF py =

ADF/)m‘[y = (4 . 58)

Conclusion to Midyear Bias

Annual cash flows with midyear present value factors do not introduce any material
bias in the cash flows vis-a-vis daily, weekly, or monthly cash flows. We should
continue using our standard midyear present values.

Conclusions

We can see that there is a family of annuity discount factors (ADFs), from the simplest
case of an ordinary annuity to the most complicated case of an annuity with stub
periods (fractional years), as discussed in Appendix A. The elements that determine
which formula to use are:

® Whether the cash flows are midyear versus end-of-year.

® When the cash flows begin (year 1 versus any other time).

= Whether they occur every year, at regular, skipped intervals, or have repeating
cycles.

® Whether the constant growth is zero.

® Whether there is a stub period.

For cash flows without a stub period, the ADF is the difference of two Gordon
model perpetuities. The first term is the perpetuity from S to infinity, where S is the
starting year of the cash flow. The second term is the perpetuity starting at 7 + 1
(where 7 is the final cash flow in the annuity) going to infinity. For cash flows with

2IWe have verified the accuracy of the daily formulas and results with a spreadsheet with 730
days (2 years) of cash flows, which we have not shown in this chapter for reasons of space.
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A ] B | c | D | E | F
1 Table 4.13
2 Present Values of Daily Cash Flows
3
4 |Assumptions:
5
6 |p = # Periods per Year 365
7 |r= Annual Discount Rate 12.0%
8 |i=(1+N"(1/p)-1 = Periodic Interest Rate 0.0311%
9 |g= Growth Rate in Net Inc (or Cash Flow) 6.0%
10
11 |Calculations
12 |Gordon Model—Endyear = 1/(r-g) 16.66667
13 |n 3
14 |Conversion from Perpetuity to ADF: 1—((1+g)/(1+n)*n 0.152258
15 |ADF—Annual (F12 x F14) 2.53764
16 |npi 1.05870
17 |ADF—Daily (F15 % F16) 2.68660
18 |ADF—Midyear = SQRT(1+1/(r-g) x F14 2.68558
19 |Ratio of Daily ADF/Midyear ADF (F17/F18) 1.00038
20
21 |Ratio of Daily to Annual ADF—By Formula
22 |=r((p*i)*SQRT(1+r) This is equation (4.38). | 1.00038
23
24 Sensitivity Analysis: How the Ratio Varies
25 with Changes in the Discount Rate
26 | Disc Rate]| Ratio
27
28 12% 1.00038
29 14% 1.00054
30 16% 1.00071
31 18% 1.00091
32 20% 1.00114
33 22% 1.00138
34 24% 1.00163
35 26% 1.00191
36 28% 1.00220
37 30% 1.00251

a stub period, the preceding statement is true with the addition of a third term for
the single cash flow of the stub period itself, discounted to PV.

While this chapter contains some complicated algebra, the focus has been on the
intuitive explanation of each ADF. The most difficult mathematics have been moved
to Appendix A, which contains the formulas for ADFs with stub periods and some
advanced material on the use of ADFs in calculating loan amortization. ADFs are also
used for practical applications in Chris Mercer’s quantitative marketability discount
model (see Chapter 8), periodic expenses such as moving costs and losses from
lawsuits, ESOP valuation, in reducing a seller-subsidized loan to its cash equivalent
price in Chapter 9 (Table 9.3), and to calculate loan payments.
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A | B | C | D | E
1 Table 4.14
g Table of ADF Equation Numbers
4 With Growth No Growth
5 |Formulas in the Chapter End-of-Year Midyear End-of-Year Midyear
6 [Ordinary ADF (4.6) to (4.6(c)) |(4.10) to (4.10b) | (4.6(d)) (4.10c) & (4.10d)
7 |Gordon Model (4.7) (4.10(e))
8 |[Starting Cash Flow not t= 1 (4.11) & (4.11a) [(4.12) (4.11¢)
9 |Valuation Date = v (4.11b)
10 [Gordon Model for Starting CF not = 1 |(4.11d)
11 _|Periodic Expenses (4.18) (4.19)
12 |Periodic Expenses—Flexible Timing |(4.18a) (4.19a)
13 |Loan Payment (4.21)
14 |Relationship of Gordon Model to PE (4.28)
15 |Relationship of Gordon Model to PS (4.28b)
16 _[Monthly ADF [1] (4.36), (4.36a) [(4.33), (4.333)
17 [Daily ADF [2] (4.37), (4.37a)
18
19
20 |Formulas in the Appendix
21
22 |ADF with Stub Period (A4.4) (A4.3)
23 |Amortization of Loan Principal (A4.10)
24 |PV of Loan After-Tax (A4.24) & (A4.29)
25
26 |[1] For this ADF, read row 5 as End-of-Month and Mid-Month.
27 |[2] For this ADF, read row 5 as End-of-Day. Midday has no practical meaning in this context.

We have performed a rigorous derivation of the PE multiple and the Gordon
model. This derivation demonstrates that the PE multiple equals 1 minus the earnings
retention rate times 1 plus the one-year growth rate times the midyear Gordon model
multiple. Further, we showed how the former uses the prior year’s earnings, while
the latter uses the first forecast year’s earnings. Many appraisers have found that
confusing, and hopefully this section of the chapter will do much to eliminate that
confusion.

We also have demonstrated that the annual present value factors are substantially
accurate and do not introduce a material bias vis-a-vis monthly or daily present value
factors (or ADFs).

Because there are so many ADFs for different purposes and assumptions, we
include Table 4.14 to point the reader to the correct ADF equations.
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APPENDIX 4A

Mathematical Appendix

Introduction

This appendix is an extension of the material developed in the chapter. The topics
that we cover are:

® Developing ADFs for cash flows that end on a fractional year (stub period)
® Developing ADFs for loan mathematics, consisting of calculating the amortiza-
tion of principal in loans and the net after-tax cost of a loan

This appendix is truly for the mathematically brave. The topics covered and
formulas developed are esoteric and less practically useful than the formulas in the
chapter, though the formula for the after-tax cost of a loan may be useful to some
practitioners. The material in this appendix is included primarily for reference and
for the mathematical gourmets and “Dirty Harrys.” Nevertheless, even those not
completely comfortable with the difficult mathematics can benefit from focusing on
the verbal explanations before the equations and the development of the first one or
two equations in the derivation of each of the formulas. The rest is just the tedious
math, which can be skipped.

The ADF with Stub Periods (Fractional Years)

We will now develop a formula to handle annuities that have stub periods, constant
growth in cash flows, and cash flows that start at any time. To the best of my
knowledge, T invented this formula. In this section we will assume midyear cash
flows and later present the formula for end-of-year cash flows.

Let’s begin with constructing a timeline of the cash flows in Figure A4.1, using
the following definitions and assumptions.

Definitions

S =time (in years) until the first cash flow for end-of-year cash flows. For midyear
cash flows, § = end of the year in which the first cash flow occurs. In this

123
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Row \ Col. | B C D E F G H
1 Year (numeric) 325 | 4.25 525 ... 12.25 12.60
2 Year (symbolic) S| S+1 S+2 | ... n z
3 Growth (in $) 0 g | g+g) | ... | givg)™ T NA
4 Cash Flow 1| 1+¢g| a+o°] ... (1+9)"" | p(1+g)™"

FIGURE A4.1 Timeline of Cash Flows

midyear-cash-flow example, the cash flows begin at ¢ = 2.25, and S equals
3.25 because it is the end of the year that began at ¢ = 2.25. We assume
the cash flow occurs in the middle of the year, orat § — 0.5 = 3.25 — 0.5
= 2.75 years.

n=end of the last whole year’s cash flows = 12.25 years in this example.

z=-end of the stub period = 12.60 years.

p=rproportion of a full year represented by the stub period = z — n = 12.60
— 12.25 = 0.35 years.

g =constant growth rate in cash flows = 5.1%.

1 = point in time—measured in years.

The Cash Flows

We assume the cash flows occur evenly throughout each year. Thus the first cash
flow of $1.00 (Figure A4.1, C4) occurs throughout year §,* which spans from ¢ =
2.25 to t = 3.25 years. For simplicity, we denote that the cash flow is for the year
ending at ¢ = 3.25 years (C1). Note that for year 3.25, there is no growth in the cash
flow (i.e., C3 = 0).

The following year is 4.25 (D1), or § + 1 (D2). The $1.00 grows at a rate of g
(D3), so the ending cash flow is 1 4+ g (D4). Note that the ending cash flow is equal
to (1 + g)t—S — (1 + g)4.25—5.25'

For year 5.25, or § + 2 (E2), growth in cash flows is g times the prior year’s
cash flow of (1 + @) (D4), or g (1 + @) (E3), which leads to a cash flow equal to the
prior year’s cash flow plus this year’s growth, or (1 + 29 + g1 +9 =0+ 9 (1
+ 9 = (1 + ©? (E4). Again, the cash flow equals (1 + g)'~5 = (1 + g)>%3%,

For the year 6.25, or S + 3, which is not shown in Figure A4.1, cash flows grow
by g (1 + g? socash flowsare (1 +g? +g(1+@*°=0+2* 0+ =0+
g)ﬁ =1+ g)z—S =1+ g)6.25v3.25'

We continue in this fashion through the last whole year of cash flows, which
we call year # (column G). In our example, n = 12.25 years (G1). The cash flows
during year n are equal to (1 + 2)"~5 (G4).

Had we completed one more full year, the cash flows would have extended
to year 13.25, or year n + 1. If so, the cash flow would have been (1 + g)"~5T!.
However, since the stub year’s cash flow is for only a partial year, the ending cash
flow is multiplied by p—the fractional portion of the year—leading to an ending
cash flow of p(1 + g)*=5+1:23

228 is for starting cash flow.
BThis formula assumes growth happens annually but not continuously throughout the year.
The latter would require a different formula.
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It is important to recognize that there may be other ways of specifying how the
partial year affects the cash flows. For example, it is possible, but very unlikely, that
the cash flows can be based on a legal document that specifies that only the growth
rate itself will be fractional, but the corpus of the cash flow will not diminish for the
partial year. We could calculate a solution to the ADF based on that assumption—but
we will not, as it is very unlikely to be of any practical use, and we have already
demonstrated how to model the most likely method of splitting the cash flows in the
fractional year. The point is that modeling the fractional year’s cash flows depends
on the agreement and/or the underlying scenario, and one should not blindly charge
off into the sunset applying a formula that was developed under an assumption that
does not apply in a given case.

Discounting Periods

The first cash flow occurs during the year that spans from ¢ = 2.25 to t = 3.25.
As mentioned previously, we assume that the cash flows occur evenly throughout
the year. This is tantamount to assuming all cash flows occur on average halfway
through the year, that is, at year 2.75. Therefore, as of time zero, defined as ¢t = 0,
the first $1 cash flow has a present value of a +1)2_-,; =g +r1)5,0_;‘

We will be discounting the cash flows in two stages because that will later enable
us to provide a more intuitive explanation of our results. Our first discounting of
cash flows will be to t = § — 1, the beginning of the first year of cash flows. The
first year’s cash flow then receives a discount of the second year’s cash flows

1
aA+r05>
receive a discount of ﬁ, and so on. Thus, the denominators here are identical
to those for cash flows that would begin in year 1 instead of §.

The Equations
The PV of our series of cash flows as of t = § — 1 is:
1 5 5)—S n—S+1
v ad+e ., A+  pd+"
(1 + 7-)0.5 (1 + 7)1.5 (1 + ,-)n—5+0.> (1 + ,.)n—S+1+0.>p

Note that the exponent in the denominator of the last term (the fractional year) is
equal to the one before it (the last whole year) plus 4 year, to bring us to the end
of year n, plus Y, of the fractional year, thus maintaining a midyear assumption.

We already have a solution to the PV of the whole years in the body of the
chapter—equation (4.10). Thus, the PV of the entire series of cash flows as of ¢ =
S — 1 is equation (4.10) plus the final term in equation (A4.1), or:

VItr  [(1+g\" T VT+r SRS U
r—g 1+7r r—g (1 4 7)n=S+1+05p :

The next step is to discount the PV from t = § — 1 to t+ = 0. We do this by
multiplying by W The result is our annuity discount factor for midyear cash
flows with a stub period:

m_<1+g>"5+1¢1—“ P14 gyt } 1

NPV = (A4.2)

ADF = - —.
{ r—g 147 r—g 1+ r)n—S-‘rl-‘rO.‘Sp a+ 7)5—1

(A4.3)
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The ADF formula for end-of-year cash flows with a stub period is:

- <1 ~|—g>"_5+1 g bl i ! (A4.4)

ADE = ! r—g 147 r—g  (A4+nrESt [ Q451

The individual terms in equation (A4.4) have the same meaning as in the midyear
cash flows of equation (A4.3). To easily see the derivation of the end-of-year (EOY)
model from the midyear, note that an EOY model in equation (A4.1) would require
the exponent in each denominator to be 0.5 years larger, which changes the /1 + r
term in equation (A4.3) to 1. rig is the EOY Gordon model formula. The only other
difference is the discount factor in the rightmost term in the braces of equations
(A4.3) and (A4.4).** In the former, we discount the stub period cash flow by (1 +
)" SHIH05P while in the latter we discount by (1 + )%~ 5+,

Tables A4.1 and A4.2: Example of Equations (A4.3) and (A4.4)

Table A4.1 is an example of the midyear ADF with a fractional year cash flow, and
Table A4.2 is an example using end-of-year cash flows. Table A4.2 has the identical
structure and meaning as Table A4.1—merely using end-of-year formulas rather
than midyear. Therefore, we will explain only Table A4.1.

In the first part of Table A4.1, we will use a brute force method of scheduling
out the cash flows, calculating their present values, and then summing them. Later,
we will directly test the formulas and demonstrate that they produce the same result
as the brute force method.

BRUTE FORCE METHOD OF CALCULATING PV OF CASH FLOWS  Rows 7 through 17 in
Table A4.1 are a detailed listing of the cash flows and their present values each year.
The first cash flows begin in row 7 at year 2.25 and finish at t = 3.25, with year 2.75
as the midpoint from which we discount. We will refer to the years by the ending
year; that is, the cash flow in row 7 is for the year ending at t = 3.25. Assumptions
of the model begin in row 33.

We begin with $1.00 of cash flow for the year ending at ¢t = 3.25 (C7). Column
B shows the growth in cash flows and is equal to g = 5.1% (G37) multiplied by the
previous period’s cash flow. In B8, the calculation is $1.00 x 5.1% = $0.051 (C7 x
G37 = B8). The cash flow in C8 is C7 + B8, or $1.00 4+ $0.051 = $1.051. We repeat
this pattern through row 16, the last whole year’s cash flow.

Column D replicates column C using the formula cash flow = (1 + @)'~5 for all
cells except D17, which is the fractional year cash flow. The formula for that cell
is p(1 + "' where multiplying by p = 0.35 (G38) years converts what would
have been the cash flow for the whole year # + 1 (and would have been $1.64447)
into the fractional year cash flow of $0.57557.%° Note that in that formula, 7 = 12.25
years, the last whole year.

ZiNote that the term after the brackets remains unchanged, because we discount to the same
starting point, ¢ = 0.
See A45 for the formula in the spreadsheet.
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A [ B c [ D [ E [ E [ G H
1 Table A4.1
| 2 | ADF with Fractional Year
| 3 | Midyear Formula
4
[ 5 | Cash Flows ' t=51 t=0
6 t(Yrs) Growth Cash Flow (+g) & PVF=1/(1+nF 505 PV PVF=1/(1+n)05 PV
7 3.25 NA 1.00000 1.00000 0.93250 0.93250 0.68090 0.68090
8 4.25 0.05100 1.05100 1.05100 0.81087 0.85223 0.59208 0.62228
9 5.25 0.05360 1.10460 1.10460 0.70511 0.77886 0.51486 0.56871
10 6.25 0.05633 1.16094 1.16094 0.61314 0.71181 0.44770 0.51975
11 7.25 0.05921 1.22014 1.22014 0.53316 0.65053 0.38930 0.47501
12 8.25 0.06223 1.28237 1.28237 0.46362 0.59453 0.33853 0.43412
13 9.25 0.06540 1.34777 1.34777 0.40315 0.54335 0.29437 0.39674
14 10.25 0.06874 1.41651 1.41651 0.35056 0.49658 0.25597 0.36259
15 1 .2§| 0.07224 1.48875 1.48875 0.30484 0.45383 0.22259 0.33138
16 12.25] 0.07593 1.56468 1.56468 0.26508 0.41476 0.19355 0.30285
17 12.60] NA 0.57557 0.57557 0.24121 0.13883 0.17613 0.10137
18 |Totals for Whole Years = 3.25 - 12.25 6.42899 4.69432
19 |Add Fractional Year = 12.60 0.13883 0.10137
20 |Grand Total (t= S—1in Column G and t= 0 in Column I) 6.56782 4.79569
21 |Present Value Factor—Discount from S—1 (f=2.25) to 0 0.73018
22 |Grand Total (t= 0) 4.79569
23]
| 24 |Calculation of PV by Formulas:
1 25 | Grand
26 Whole Yrs Frac Yr Total Total |
27 |t=8-1 6.42899 0.13883 6.56782
28 |PV Factor 0.73018 0.73018
29 |t=0 4.69432 0.10137 4.79569 4.79569|
EX
| 31 |Assumptions:
32
33 | S = Beginning Year of Cash Flows ( 1 at t=2.25) 3.25
34 |n = Ending Year of Cash Flows—Whole Year 12.25
35 |z = Ending Year of Cash Flows—Stub Year 12.60
36 _|r= Discount Rate 15.0%
37 |g = Growth Rate in Cash Flow 5.1%
38 _|p = Proportion of Year in the Stub Period 0.35
39 |Midpoint = n + 0.5 p = Midpoint of the fractional year 12.425
40 [x=(1+g)/(1+n 0.913913
41 |Gordon Model Multiple = GM = Sqrt(1+n)/(r-g) 10.832127
42
| 43 |Spreadsheet Formulas:
a4
45 |C17,D17: p*(1+g)"(n—s+1) Stub Period Cash Flow
46 |E17: 1/(1+n"(n-S+1+0.5*p) Stub Period Present Value Factor at t = 2.25
47 |G17: 1/(1+n"(n+0.5"p) Stub Period Present Value Factor for t= 0
48 |B27: GM*(1-x"(n—S+1)) ADF for Years 3.25 to 12.25 at t = 2.25
49 [C27: pr(1+9)"(n-S+1)/(1+N"("-5+1+0.5°p) PV of Stub Period CF at { = 2.25
50 |B28,C28: 1/(1+r)"(S—1) Present Value Factor at t = S-1 =2.25
51 |E29: (GM*(1—x"(n-S+1))+p*(1+g)"(n—-S+1)/(1+n)*(n-5+1+0.5*p))*(1/(1+n)"(5-1))
52 | Note: E29 is the formula for the Grand Total

We show the present value factors (PVFs) and PVs of the cash flows as of t = §
— 1 in columns E and F, respectively, and the PVFs and PVs as of ¢ = 0 in columns
G and H, respectively. The discount rate is 15% (G36).

Column E contains the PVFs, and its formula is?® PVF = W Column
F is column C (or column D, as the results are identical) times column E. The
only exception to the PVF formula is in E17, for the fractional year. Its formula is
PVF = W (in the EOY formula, the exponent is z — § 4+ 1). This formula
appears in the spreadsheet at A46. The total present value at 1 = 2.25 of the cash
flows from ¢ = 3.25 through ¢ = 12.25 is $6.42899 (F18). The present value of

%The intuition behind the exponent is that we are discounting from # to S - 1, which is equal
totr-(S-1) =1t~-S5+ 1 years. Using a midyear convention, we always discount from 1,
year earlier than end-of-year, which reduces the exponent to t — § 4+ 0.5. The 0.5 reverts to 1
in the end-of-year formula.
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A I B c I D I E I E I G [ H
K Table A4.2
| 2 | ADF with Fractional Year
| 3 | End-of-Year Formula
4
5 Cash Flows t=S-1 t=0
6 t(Yrs) Growth Cash Flow (1+9)+s PVF=1/(1+1)t-5+1 PV PVF=1/(1+n)t PV
7 3.25 NA 1.00000 1.00000 0.86957 0.86957 0.63494 0.63494
8 4.25 0.05100 1.05100 1.05100 0.75614 0.79471 0.55212 0.58028
9 5.25 0.05360 1.10460 1.10460 0.65752 0.72629 0.48011 0.53032
10 6.25 0.05633 1.16094 1.16094 0.57175 0.66377 0.41748 0.48467
11 7.25 0.05921 1.22014 1.22014 0.49718 0.60663 0.36303 0.44295
12 .25 0.06223 1.28237 1.28237 0.43233 0.55440 0.31568 0.40481
13 .25 0.06540 1.34777 1.34777 0.37594 0.50668 0.27450 0.36997
14 10.25; 0.06874 1.41651 1.41651 0.32690 0.46306 0.23870 0.33812
15 11.25] 0.07224 1.48875, 1.48875 0.28426 0.42320 0.20756 0.30901
16 12.25] 0.07593 1.56468 1.56468 0.24718 0.38676 0.18049 0.28241
17 12.60] NA! 0.57557 0.57557 0.23538 0.13548 0.17187 0.09892
18 |Totals for Whole Years = 3.25 - 12.25 5.99506 4.37747
19 |Add Fractional Year = 12.60 0.13548 0.09892
20 |Grand Total (t= S—1 in Column F and t= 0 in Column H) 6.13054 4.47640
21 |Present Value Factor—Discount from S-1 (t=2.25) to 0 0.73018|
22 |Grand Total (f = 0) 4.47640|
[23]
| 24 |Calculation of PV by Formulas:
1 25 | Grand
26 Whole Yrs Frac Yr Total Total|
27 |t=8-1 5.99506 0.13548 6.13054
28 |PV Factor 0.73018 0.73018
29 |t=0 4.37747 0.09892 4.47640 4.47640|
EX
| 31 |Assumptions:
32
33 _|S = Beginning Year of Cash Flows (valuation at t = 2.25) 3.25
34 |n = Ending Year of Cash Flows—Whole Year 12.25
35 |z = Ending Year of Cash Flows—Stub Year 12.60;
36 _|r=Discount Rate 15.0%
37 |g = Growth Rate in Cash Flow 5.1%
38 _|p = Proportion of Year in the Stub Period 0.35
39 |This row is not used
40 |x= (1+g)/(1+n) 0.913913
41 |Gordon Model Multiple = GM = 1/(r-g) 10.101010
42
[ 43| Spreadsheet Formulas:
44
45 |C17,D17: p*(1+g)"(n—s+1) Stub Period Cash Flow
46 |E17: 1/(1+r)"(z-S+1) Stub Period Present Value Factor at = 2.25
47 |G17: 1/(1+n”z Stub Period Present Value Factor for t=0
48 |B27: GMP(1—x(n—-5+1)) ADF for Years 3.25 to 12.25 at { = 2.25
49 [C27: pr(1+9) (n-S+1)/(1+N"(z-5+1) PV of Stub Period CF at = 2.25
50 |B28, C28: 1/(1+nN"(S-1) Present Value Factor at t= S-1 = 2.25
51 |E29: (GMF(1-X(n—-5+1))+p (1+9) " (N-S+ )(1+N (Z—S+ 1))(1+N"(5—1)
52 Note: E29 is the formula for the Grand Total

the fractional year cash flow is $0.13883 (F19, transferred from F17), for a total of
$6.56782 (F20). In F21, we show the present value factor of 0.73018 to discount from
t = 2.25 to t = 0.7 Multiplying F20 by F21, we come to the PV of the cash flows in
F22 at t = 0 of $4.79569 for each $1.00 of starting cash flows. Thus, if our annuity
were actually $100,000 at the beginning, with all other assumptions remaining the
same, the PV would be $479,569.

Column G contains the present value factors for t = 0, the formula of which is
the more usual PVF = W When we multiply column D by column G to get
column H, the latter is the PV of the cash flows as of time zero. Note that the final

sum in H20 is identical to F22, as it should be.

Z7This is 1/(1 + M5! = 1/1.15*%° = 0.73018 (see formulas in A50).
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So far we have come to the PV of the cash flows using the brute force method.
In the next section, we will test the formulas in the preceding pages to see whether
they produce the same result.

TESTING EQUATIONS (A4.3) AND (A4.4)  B27 contains the formula for the PV of the
first 10 whole years of cash flows (see A48 for the spreadsheet formula). It is the
same as equation (A4.2) without the rightmost term.?® The result of $6.42899 in B27
matches F18, thereby demonstrating the accuracy of that portion of equation (A4.2).

C27 is calculated using the rightmost term in equation (A4.2) and comes to
$0.13883 (see A49 for the spreadsheet formula), which matches F19, thus prov-
ing that portion of the formula. The sum of the two is $6.56782 (D27), which
matches F20.

In columns B and C, row 29 is the result of multiplying row 27 by row 28, the
latter of which is the present value factor to discount the cash flows from ¢ = 2.25 to
t = 0 (it is the same as F21). We total B29 and C29 to $4.79569 (D29), which matches
F22 and H20. Finally, in E29 we use the complete formula in equation (A4.3)% to
produce the same result of $4.79569 (see A51 for the spreadsheet formula). Thus we
have demonstrated the accuracy of equation (A4.3) as a whole as well as showing
how we can calculate the parts.

Table A4.2 is identical to Table A4.1, except that we use end-of-year present
values, and equation (A4.4) is the relevant ADF formula. The end-of-year formula
gives a grand total of 4.47640 (F22, H20, D29, and E29).

Table A4.3: Loan Amortization

In the chapter, we demonstrated how ADFs are useful in calculating loan payments
and the present value of a loan. This section on loan amortization complements the
material we presented in the chapter.

The amortization of loan principal in any time period is the PV of the loan at
the beginning of the period, less the PV at the end of the period.>® While this is
conceptually easy, it is a cumbersome procedure. Let's develop some preliminary
results that will lead us to a more efficient way to calculate loan amortization.

Section 1: Traditional Loan Amortization Schedule

Table A4.3 is a loan amortization schedule that is divided into three sections. Section
1 is a traditional amortization schedule for a $1 million loan at 10% for 5 years. The
loan begins on February 29, 2008 (B7), and the first payment is on March 31, 2008
(B8). During the calendar year 2008, there will be 10 payments, leaving 50 more.
There will be 12 monthly payments in each of the years 2009-2012, and the final

BThe formulas are the same; however, in the spreadsheet, we have substituted GM (Gordon
multiple) for ‘/m and x for 1+§ . Additionally, we factored out the GM.

PJust as we d1d for equanon (A4 2), in the spreadsheet for equation (A4.3), we factored out
1+&{

30That is, loan amortization rneans the reduction in the principal owed.
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two payments are in the beginning of 2013, with the final payment on February 28,
2013 (B67).

Column A is the payment number. There are 60 months of the loan, hence
60 payments. Columns D and E are the interest and principal, respectively, for the
particular payment, while columns G and H are interest and principal, respectively,
cumulated in calendar-year totals. Because the loan payments begin on March 31,
2008, the first year’s totals in columns G and H are totals for the first 10 payments
only. Column I is the present value factor (PVF) at 10%, and column J is the present
value of each loan payment. Column K is the sum of the present values of the
loan payments by calendar year. Note that the PVs of the loan payments sum to
$1 million (J68).

Section 2: Present Values of Yearly Loan Payment

In section 2, we calculate the present value of each year’s loan payment using the
ADF equation for no-growth, no stub period, and end-of-year cash flows. We could
use equation (4.11b) from the chapter, but first we will simplify it further by setting
g = 0, so equation (4.11b) reduces to:

ADF — 1 B 1 1 1 _ 1 1— 1 1
o (1 + r)n=S+1 ¢ (1 4 r)S—v-1 T 14+ )=+ | (1+ r)S—U—l'
(A4.5)

D77 through D82 list the PVs of the various calendar years’ cash flows discounted
to the inception of the loan, February 29, 2008. Note that these amounts exactly
match those in column K of section 1, and the total is exactly $1 million—the
principal of the loan—as it should be. This demonstrates the accuracy of equation
(A4.5), as all amounts calculated in D77 through D82 use that equation (note that v,
the valuation date in months since the inception of the loan, appears in row 86).

In column E, we are viewing the cash flows from January 1, 2009, that is,
immediately after the last payment in 2008 and one month before the first payment
in 2009. Therefore, the 2008 cash flows drop out entirely, and the PVs of the 2009-
2013 cash flows increase relative to column D, because we discount the cash flows
for 10 months less. The difference between the sum of the 2008 PVs discounted
to February 29, 2008, and the 2009 payments discounted to January 1, 2009%! is
$1 million (D84) — $865,911 (E84) = $134,089 (ES5). We follow the same procedure
each year to calculate the difference in the PVs (row 85) and finally we come to a
total of the reductions in PV of $1 million, in K85, which is identical with the original
principal of the loan.

There are some significant numbers that repeat in southeasterly sloped diagonals
in section 2. The PV of $241,675 appears in E78, F79, G80, and H81. This means
that the 2009 payments as seen from the beginning of 2009 have the same PV as
the 2010 payments as seen from the beginning of 2010, and so on, through 2012.
Similarly, the PV of $218,767 repeats in E79, F80, and G81. The interpretation of this
series is the same as before, except everything is moved back one year; that is, the

3Technically, we discount to the end of December 31, 2008, but in PV terms, it is easier to
think of January 1, 2009.
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0 < B —> 50 60
11 D > 60

3/1/08 1/31/09

APV = PVo(A) —PVio(D)  =PVy(A) - PVy(B) =PV((C)

$134,089 = $1 million — $865,911 = $1 million — $865,911 =$134,089

FIGURE A4.2 Payment Schedule

2010 payments as seen from the beginning of 2009 have the same PV as the 2011
payments as seen from the beginning of 2010 and the 2012 payments as seen from
the beginning of 2011.

This downward-sloping pattern gives us a clue to a more direct formula for
loan amortization. At the start of the loan, we have 60 payments of $21,247. In the
first calendar year, 10 payments will be made, for a total of $212,470. At the end
of the first year, which effectively is the same as January 1, 2009, 50 payments will
remain. The PV of the final 50 payments discounted to January 1, 2009 is the same
as the PV of the first 50 payments discounted to March 1, 2008 (using March 1, 2008
synonymously with February 29, 2008 in a present value sense), because the entire
timeline will have shifted by 10 months (10 payments). Therefore, the first calendar
year’s loan amortization can be represented by the PV of the final 10 payments
discounted to March 1, 2008, as that would comprise the only difference in the two
series of cash flows as perceived from their different points in time. This is illustrated
graphically in Figure A4.2.

Figure A4.2 is a timeline of payments on the five-year (60-month) loan. The top
portion of the figure, labeled A4, graphically represents the entire payment schedule.
In the bottom of the figure the loan is split into several pieces: payments 1 through
10, which are not labeled;*? payments 1 through 50, labeled B; payments 11 through
60, labeled D; and payments 51 through 60, labeled C (1 = 50 is the end of B, not
the beginning of C).

The equation at the bottom of Figure A4.2, which we explain below in listed
items 1-3, is: APV = PV(A) — PVo(D) = PVy(4) — PVo(B) = PV(C). We use the
convention that the subscripts are measured in time from the start of the loan, not
from the start of a period. For example, when we use the subscript 10 in PV1o(D)
we do not mean the 10th month of period D, but rather the 10th month of the entire
loan (i.e., the 10th month of period A). The amortization of the loan principal during
any year is the change in the present value of the loan between years. That is equal
to each of the following three expressions:

1. PVo(4A) — PVo(D): The PV at ¢ = 0 of 4 (all 60 months of the loan) minus the
PV at ¢t = 10 of D, the last 50 payments of the loan. Notice that the valuation

3In all cases, the zero is there only as a valuation date. There are no loan payments (cash
flows) that occur at zero.
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dates are different, t = 0 versus t = 10. The PV at t = 0 of A4 is the principal, $1
million (Table A4.3, section 2, D84). The PV at t = 10 of D is $865,911 (ES4).
The difference of the two is the amortization of $134,089 (E85).

2. PVy(A) — PVy(B): The PV at t = 0 of A4 (all 60 months of the loan), which is
$1 million, minus the PV at ¢ = 0 of the first 50 months of the loan. The latter
calculation does not appear directly in Table A4.3. However, using equation
(4.6d) from the chapter with g = 0, » = 0.83333%, and n = 50 periods leads to
the ADF of 40.75442. Multiplying the ADF by the monthly payment of $21,247.04
gives us the PV of B, which is $865,911. The difference of the two PVs is
$134,089, the same as above. Another way of seeing this is to recognize that
PV1o(D) equals PVy(B), so subtracting either of them from PV (4) will yield the
same result.

3. PVy(C): The PV at t = 0% of C, payments 51-60. This is the most important
of the expressions, because it is the most compact and the easiest to use. The
other expressions are the difference of two formulas, whereas this one requires
only a single formula. It is stated in mathematical terms in equation (A4.10).
The reduction in the principal is the PV of the opposite or “mirror-image” series
of cash flows working backward from the end of the loan. PV,(C) is equal to
PVy(4A) — PVy(B) by definition, because looked at from ¢ = 0, subtracting the
first 50 payments (period B) from the entire loan (Period A) leaves the last 10
payments remaining (period C).

Section 3: A Better Way to Calculate Loan Amortization

In section 3, we calculate the principal reduction using equation (A4.10). Let’s look
first at the 2008 cash flows in row 93. The amortization of principal in 2008 is equal
to the PV at t = 0 of the /ast 10 payments of the loan. Letting 7 (the final payment
period) = 60, we want to calculate the PV of payments 51 through 60, discounted
to month 0. If we let F = finishing month = 10 in calendar year 2008, the formula
n — F + 1 describes, $!3 the starting month in our amortization formula for each
F in D93 through D98. The formula 7 — S + 1 describes, F!, the finishing month
in our amortization formula for each S in C93 through C98. For 2008, S' = 60 — 10
(D93) + 1 =51, and F!' = 60 — 1 (C93) + 1 = 60. Thus our formulas give us the
result that in calendar 2008, the amortization of principal is equal to the PV at t = 0
of payments 51 through 60, which is correct.

For calendar year 2009, S! = 60 — 22 (D94) + 1 = 39, and F! = 60 — 11
(C94) + 1 = 50. The amortization of principal in calendar 2009 is the PV at ¢t = 0 of
payments 39 through 50, which is also correct. Thus, the amortization of principal
in any year is equal to an ADF with no growth and end-of-year cash flows that run
fromn — F + 1ton — S+ 1. We begin the calculation of this loan amortization
ADF in equation (A4.6).

1 1 1

= (1 + V)"*F+1 + 1+ r)n7F+2 + . 4 W (A46)

ADF

B Again, t = 0 does not mean the beginning of period C, but rather the beginning of the loan.
348! and F' should not be confused with S and F. S' and F! are the starting and finishing
months, used in our amortization formulas that correspond to each § and F.
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Multiplying equation (A4.6) by 11?, we get:

1 1 1 1 1
ADF = : : . )
1+7r (1 4 p)n—r+2 + At T + (1 4 r)r—s+1 + (1 + r)rn—s+2
(A4.7)
Subtracting equation (A4.7) from equation (A4.6), we get:
1 ADF = ! ! (A4.8)
1+r A4y (S ‘

The left-hand side of equation (A4.8) simplifies to +—ADF. Multiplying both

1+r
sides of equation (A4.8) by 1, we come to:

1+7r 1 1
ADF = — . A4.
r |:(1 + r)anJrl (1 + 7-)115'+2i| ( 9)

Canceling out the 1 + 7 in the numerator and denominator, we arrive at our final
solution:

1 1 1
G a 1
ADF r [(1 +F A+ r)nSH] (A4.10)

ADF formula for loan amortization.

We show the spreadsheet formulas in column F, rows 93 through 98. Note that
we multiply the ADF in equation (A4.10) by the monthly payment in F93 through
F98 to calculate the PV of the loan amortization. The term 7 is the monthly interest

rate = 10%/12 months = 0.833%, which is equivalent to » in equation (A4.10).
The amortization in 2008 is $134,089 (E93), which equals:

1 1
ADF = — . A4.10
0.008333 [1.00833360‘10 1.00835360‘1“} ( W
The amortization in 2009 is $176,309, as per E94, which equals:
F = ! ! (A4.10b)
~0.008333 | 1.00833360-22  1,00833300-11+1 | '

The principal amortization in E93 through E98 is equal to that in column H of
section 1, which demonstrates the accuracy of equation (A4.10).

The After-Tax Cost of a Loan

In our discussion of Table A4.3, sections 2 and 3, we came to the insight that
principal amortizes in mirror image, and we used that understanding to develop
equation (A4.10) to calculate the principal amortization over any given block of
time. Now it is appropriate to present month-by-month amortization of principal, as
it will enable us to develop formulas to calculate the PV of principal and interest of
a loan. The primary practical application is to calculate the after-tax cost of a loan.

We begin with a month-by-month amortization. In the first month, amortiza-
tion equals the PVF for the last month’s payment. In the second month, amortiza-
tion equals the PVF for the second-to-last month’s payment, and we continue in
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Al B T ¢ [ o [ & [ F [ & [ H ] [ o [ k T i
1 Table A4.3
2 Amortization of Principal with Irregular Starting Point
4
5 Pmi SECTION 1: LOAN AMORTIZATION SCHEDULE NPVI Annual AfTax
6 # Date Pmt Int Prin Bal Int Prin PVF Pymt NPV | Cost-Loan
7 o[ 02/29/0 1,000,000 1.0000
8 03/31/0 47 333 914 987,086 0.9917 1,071 7,766
9 2] 04/30/0 247 ,226 ,021 974,065 0.9835 0,897 7,661
0 05/31/0 247 17 130 960,935 0.9754 0,725 7,558
1 06/30/0 47 008 239 947,696 0.96 0,553 7,455
12 07/31/0 47 897 50 934,346 0.9594 0,383 7,353
3 6] _08/31/0 247 7,786 461 920,885 0.9514 0,215 7,252
4 7|__09/30/0 247 7,674 573 907,312 0.9436 ,048 7,152
5 8] 10/31/0 247 7,56 ,686) 893,626 0.9358 ,882 7,052
16 9]___11/30/0 47 7,447 800 879,826 0.9280 718 6,954
7 0] __12/31/0 247 7,332 ,915) 865.911| 78,381 134,089 0.9204 555 203,048 ,856
8 01/31/0 247 7, 4,031 851,880 0.9128 39 ,759
9 2] 02/28/0 47 7 4,148 837,732 0.9052 23 ,663
20 03/31/0 47 4,261 823,46 0.8977 074 567
21 4] 04/30/0 247 6,862 4,385 809,08 0.8903 917 6,473
22 5[ 05/31/0 ,247] 6,742 4,505 794,57 0.8830 ,760 ,379
23 6] 06/30/0 47 6,621 4,626] 779.95 0.8757 605 86
24 7|__07/31/09 47 6,500 4,747 765,20 0.8684 451 94
25 8 08/31/09 247 6,377 4,870 750,333 0.8612 ,299 102
26 9 09/30/09 247 ,253 4,994 735,339 0.854 ,148 16,01
27 0__10/31/09 247 28 15,11 720,220 0.847 998 921]
28 1] 11/30/09] 47 0021 5.245] 704,974 0.840 7,849 832
29 22 12/31/09 247 875] 372 89,602] 78,656 176,309 0.833 7,701 222,428 744
30 23 01/31/10 247 747 ,500 74,10 0.8262 7,555 ,656
31 24 02/28/10 47, 61| 630 58,47 0.8194 7,410 569
32 25 03/31/10 ,247] 487 760 42,71 0.8126 7,266 5,482
33 2 04/30/10 247 ,356] 891 626,82 0.8059 7,123 ,397
34 2 05/31/10 ,247] ,224 6,024 610,798 0.7993 6,982 312
35 2 06/30/10 47 090 6 5 0.7927 6,842 228
36 2 07/31/10 47 4,955 5 0.7861 6,702 144]
37 30 08/31/10 247 4,820 6, 5 0.7796 64 5,061
38 31___09/30/10 247 4,683 6, 5 0.7732 427 4,979
39 3 0/31/10 47 4,54 6 5 0.7668] 292 4,898|
40 3 1/30/1 247 4,40 6, 0.7604 157 4,817
41 34 2/3171 247 4,26 X 60,194 194,771 0.7542 ,024] 201,345 4,737
42 3 01/31/ 247 4,124 7, 0.7479 891 4,657
43 3§ 02/28/ 47 981 7 0.7417 760 4,57
44 71 03/31/ 24 ,837 7, 0.7356 ,630) 4,50
45 3% 047307 24 69 7, 0.7295 5,500 4,42
46 39 05/31/ % 54 7 0.7235 5372 4,34
47 44 06/30/ 4 3 7 0.7175 5,245 4,270
| 48 4 07/31/ 4 24 7 0.711§ 5,119 4,194
49 44 08/31/ .24 .09 0.7057] 4,994 14,1
0 4 09/30/ .24 94 0.6999 4,870 4,045
1 44 0/31/ 24 , 79 0.6941 4,747 ,971
2 4 1/307 ,24 642 0.6884] 4,626 ,898
3 2 /317 24 48 39,799 215,166 0.6827] 4,505 182,26q 826
4 4 01/31/ 4 331 0.6770 4,385 75
55 4 02/297 4 179 0.6714 4,266 682)
6 4 03/31/ 24 ,014 0.6659 4,148 61
7 50 04/30/ .24 .854 0.6604 4,031 54
8 05/31/ Z 69 0.654 15 3,47
9 2 06/30/ 4 é 9,7 0.649% 00 40
60 07/317 .24 36 9,88 0.6441 86 34
61 4 08/31/ 24 19 0,04 0.638 73 267
62 5% 09/30/ 4 03 0,2 0.633 461 19
63 5 10/31/ 24 864 0.3 0.6289 5 13
64 5 11730/ 24 694 0,55! ,693 0.6231] ,239 066
65 5. 12/317 24 522 0,72 . 17.269 237,697 0.618 130 164,984 001
66 5 01/31/13 4 35 0,89 0.612 3,021 931
67 6 02/28/ 4 17, 1,07 0 525 41,96 0.607 2,914 25,938 871
68 Totals 1,274,82 274,823 1,000,00 | 274,823 1,000,0«% |_1,000,0 1,000,009 907,364

that fashion. Mathematically, amortization is thus equal to:

1 1 1
cee o —— Pymi A4.11
a+nr - 1 +rnt - (A 47— HRR +r] ‘ )

Amort =

Note that this expression is the exact reverse of a simple series of cash flows that
solves to an end-of-year ADF with no growth, that is, equation (4.6d) in the body
of the chapter. Thus the total amortization equals equation (4.6d) x Loan Payment
= Principal of the Loan. This is a rearrangement of equation (4.20). Note that one
should use the nominal interest rate in this calculation.

Next we take the PV of equation (A4.11) at the nominal rate of interest (when
valuing a loan at a discount rate other than the nominal rate of interest, see that
discussion at the end of this chapter).

1 1

1 1
a+n" a+mT G+ I+r
PV(Amort) = e — Pymt. A4.12

o) = G T T G [ A
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Al B [ ¢ | D \ E \ F [ G [ H [ 1 [ o | «
172 | Table A4.3 (cont.)
| 73 | SECTION 2: SCHEDULE OF PRESENT VALUES CALCULATED BY ADF EQUATION (A4.5)
74
75 | As Seen From The Beginning of Year
76 2008 2009 2010 2011 2012 2013 2014 Total
77 |NPV 2008 Payments [1] 203,048
78 |NPV 2009 Payments 222,428 241,675
79 |NPV 2010 Payments 201,345 218,767 241,675
80 |NPV 2011 Payments 182,260 198,031 218,767 241,675
81 |NPV 2012 Payments 164,984 179,260 198,031 218,767 241,675
82 |NPV 2013 Payments 25,935 28,179 31,130 34,390 37,991 41,969
83 [NPV 2014 Payments 0
84 |Sum NPVs—AIl Pymis 1,000,000 865,911 689,602 494,831 279,665 41,969 0 0
85 ion in NPV 134,089 176,309 194,771 215,166 237,697 41,969 1,000,000
86 |Valuation Date = v 0 10 22 34 46 58
87
| 88 | SECTION 3: AMORTIZATION CALCULATED AS THE PYMT x THE ADF in (A4.16)
89
190 | Formulas for Principal Amortization, where:
1 91 | Starting Finishing Prin | /= Monthly Interest = 0.833%, n=60 Months,
92 Month Month Amort | Pymt=$21,247/Month
93 [Calendar 2008 1 10 134,089 PYMT (1/0"((A/(1+NNn-$D93)—(1/(1+N"(n-$C93+1)))
94 | Calendar 2009 11 22 176,300 PYMT(1/0*(/(1+r)Nn=$D94)~(1/(1+)"(n-$C94+1)))
95 [Calendar 2010 23 34 194,771 _PYMT (1/0"((A/(1+r)Nn-$D95)—(1/(1+)N(n-$C95+1)))
|_96 | Calendar 2011 35 46 215,166] PYMT*(1/n*((1/(1+r)\(n-$D96)—(1/(1+r)\(n-$C96+1)))
97 [Calendar 2012 47 58 237,697] PYMT (/7" (1/(1+n)Nn=$D97)~(1/(1+r)N(n-$C97+1)))
| 98 |Calendar 2013 59 60 41,969 PYMT"(1/n)*((1/(1+r)N(n-5D98)~(1/(1+r)\(n-$C98+1)))
|99 |Total 1,000,000
1100 |
1101 |
1102 | Assumptions: After-Tax Cost of the Loan
103
104 |Prin 1,000,000 (1-f) * Prin 0.600000 600,000
105 [Int 10.0000% *n/(1+1)Nn+1)* PYMT 0.307368] 307,368
106 |Int-Mo 0.8333% Total = L68 0.907368 907,368
107 |Years 5
108 [Months = n 60 H106: (1-t) + [*n/(1+r)A(n+1)*PYMT/P] Equation (A4.24a)
109 [Pymt 21,247 1106: (1-t)*P + [t*n/(1+r)A(n+1)*PYMT] Equation (A4.23a)
110 |Form-Prin 1,000,000
111 |Start Month = S 3
112 |y=1/(1+1) [2] 0.9917
118 |[GM =1/r 120
114
1115 | [1] Formula for D77 according to (A4.5): GM*(1-y*($D93-$C93+1))*y"($C93-A$86-1)*PYMT
1116 | n-S+1=#months of cash flow = $D93-$C93+1, which is the ending month — beginning month +1.
1117 | The second exponent of y is S — v— 1, which is the ending month - the valuation date —1; thus it is the
1118 | discounting period. This formula copies both down and across, i.e., it is the formula for all cells from D77 to 182.
1119 | D78 > D77 because there are 10 payments in 2008 and 12 in 2009-2012.
120
1121 | [2] Normally we would use x = (1+g)/(1+r) to calculate the ADF. However, since g=0, x=y.

We can move the second denominator into the first denominator, and equation
(A4.12) simplifies to:

1 1 1

R R S B SRS T B O T
xPymt  [n terms]. (A4.13)

PV(Amort) =

All the bracketed terms in equation (A4.13) are identical. Thus, the PV of the
amortization of principal, P, which we denote in (A4.14) as PV(P), is equal to n X
any one of these terms x the loan payment.

PV(Amort) = PV(P) = L x Pymt PV of principal payments.  (A4.14)
(1 + V)n—&-l

Restating equation (4.21) as equation (A4.15),

P
Pymt = OF where ADF is defined by equation (4.6d). (A4.15)
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A | B | C
Table A4.4
PV of Principal Amortization
r 1%
n 60
PV(P)/Pmt 32.69997718
Pmt/ P $0.0222444
PV(P)/ P $0.7273929
PV(P)/ P $0.7273929

Cell Formulas:

B6: =n/(1+r)(n+1)

B7: =PMT(0.01,60,—1)

B8: =B7*B8

B9: =(n*r)/((1+r)*n-1)*(1+r))

—| ] | ] ] | ] b
00|~ o 0| A ol D] | o] ©| 0| N[O O KW N | =

Substituting equation (A4.15) into equation (A4.14), we get:

n P

PV(P) = :
B= G X aor

(A4.16)

The next section, in which we develop equations (A4.16a) and (A4.16b), is
somewhat of a digression from the previous and the subsequent discussion. We do
not use equations (A4.16a) and (A4.16b) in our subsequent work. However, these
formulas can be useful alternative forms of equation (A4.16). Substituting in the
definition of the ADF, dividing through by the principal, and solving the equation,
another form of equation (A4.16) is:

PV(P) _ n
P [a+n"=1]a+n

(A4.16a)

Table A4.4 verifies the accuracy of this formula, which is my own formula, to
the best of my knowledge. For a five-year (60-month) loan at 12% per year, or
1% per month (A5 and A4, respectively), the present value of the principal divided
by the loan payment is 32.69997718 (B6). The formula for that cell appears in cell
A13, and that formula is equation (A4.14) after dividing both sides of the equation
by the payment. In B7 we show the monthly payment per dollar of loan principal,
which we calculate using a standard spreadsheet financial function for a $1 loan with
60 monthly payments at 1% interest (see A14 for the formula). In B8, we multiply B6
x B7. In B9, we test equation (A4.16a), and it comes to the same answer as BS; that
is, the present value of the principal is $0.7273929 per $1 of principal. That the two
answers are identical demonstrates the accuracy of equation (A4.16a). Of course,

$We do not show the steps to the solution, as we are not using this equation in our subsequent
work.
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the present value of the interest on a pre-tax basis is 1 minus that, or approximately
$0.273 per $1 of principal.
In algebraic terms, the present value of the interest portion of a loan per dollar
of principal on a pre-tax basis is 1 minus equation (A4.16a), or:
PV(nt) _ nr

=1- ) A4.16b
p [A+»"—1]A+n ¢ )

Resuming our discussion after the digression in the last several paragraphs,
the PV of the interest portion of the payments is simply the PV of the loan
payments—which is the principal—minus the PV of the principal portion, or:

Pv(nt) = P — PV(P). (A4.17)

Substituting equation (A4.16) into equation (A4.17), we get:
n P n 1
pPVUIn)=P— —7———=P|1 — ——m———|. A4.18
(nt) (1+ ™1 ADF [ 1+ ADF] (A%.18)

The PV of the after-tax cost of the interest portion is (1 — ) x (A4.18), where ¢ is
the tax rate, or:

n 1
PVUnD pgper—ux =1 —0DP |1 — ———— | . A4.1
Un) aper—rax = ( ) |: (1+7‘)”+1ADFi| (A4.19)
Thus the after-tax cost of the loan, L, is (A4.16) plus (A4.19), or:

n

n 1
L= A5 ADF +A-DP [1 —_— } . (A4.20)

(1 + )"t ADF
Factoring terms, we get:

n P

L= mﬁ [1 -1- f)] +A-0nP, (A4.21)

which simplifies to:

n P
L=t— —— 1—0P. A4.22
(1+r)"+1ADF+( ) ¢ )

Switching terms, our final equation for the after-tax cost of a loan is:

n P
L=>0O-nH°P f—— A4.2
e ey (ad.25)
After-tax cost of a loan.
Alternatively, using equation (A4.15), Loan Payment =
equation (A4.23) as:

Vg y
ADF we can restate

L=0-DHP+ Pymti| (A4.232)

, n
(1 + r)nJrl
Alternative expression—after-tax cost of loan.
Equation (A4.23) gives us the equation for the after-tax cost of a loan in dollars.
We can restate equation (A4.23) to give us the after-tax cost of the loan for each
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$1.00 of loan principal by dividing through by P.

L n 1

After-tax cost of loan per each $1.00 of principal.
Analyzing equation (A4.24), we can see the after-tax cost of the loan is comprised
of two parts:

1. The after-tax cost of the principal, as if the entire loan payment were tax-
deductible, plus
2. The tax rate times the PV of the principal payments on the loan.

In item 1, we temporarily assume that both principal and interest are tax-
deductible. This is actually true for ESOP loans, and the PV of an ESOP loan is
item 1. To adjust item 1 upward for the lack of tax shield on the principal of ordi-
nary loans, in item 2 we add back the tax shield included in item 1 that we do not
really get. Of course, we can substitute the exact expression for ADF in equation
(A4.24) to keep the solution strictly in terms of the variables ¢, 7, and 7.

We can derive an alternative expression for equation (A4.24) by dividing equa-
tion (A4.23a) by P:

L n Pymt
—=0-1 f—— A4.24:
- ( )+[ RN ] ( a)

Alternative expression—after-tax cost of loan/$1 of principal.

We demonstrate the accuracy of equations (A4.23a) and (A4.24a) in Table A4.3.
First we compute the after-tax cost of the loan using a brute force approach. In
section 1, column L is the after-tax cost of each loan payment. It is equal to: [Prin-
cipal (column E) 4+ (1 — Tax Rate) x Interest (column D)] x Present Value Factor
(column I). We assume a 40% tax rate in this table. Thus, L8, the after-tax cost of the
first month’s loan payment, is equal to [$12,914 (E8) + (1 — 40%) x $8,333 (D8)] x
0.9917 (I8) = $17,766. The sum of the after-tax cost of the loan payments is $907,368
(L68).

We now move to section 3, F102 to 1106. As we note in F108, we use equation
(A4.24a) to test whether we get the same answer as the brute force approach in L68.
In 1104, we show the PV of the principal after tax, corresponding to item 1 above,
as $600,000 (H104 is the same, but for each $1.00 of principal). In 1105, we show
the tax shield on the principal that we do not get at $307,368. The sum of the two
is $907,308 (1106), which matches L68 and thus proves equation (A4.24a). Note that
1106, which we calculate according to equation (A4.23a), shown in F109, equals
$0.907368, which is the correct after-tax cost of the loan per each dollar of principal.
When we multiply that by the $1 million principal, we get the correct after-tax cost
of the loan in dollars, as per 1106 and equation (A4.23a).

PRESENT VALUE OF THE PRINCIPAL WHEN THE DISCOUNT RATE IS DIFFERENT FROM THE
NOMINAL RATE ~ When valuing a loan at a discount rate, r1, that is different than the
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nominal rate of interest, r, the present value of principal is as follows:

1 1 1 1
PV(Amort) = [“*”" 4y U L Py,

T+r  A4r?  A4rd 0 A4rpn
(A4.25)
We can move the second denominator into the first to simplify the equation.
PV(A ) ! ! !
emort) = [(1 T arar? T m}
x Pymit. (A4.20)

Multiplying both sides by ]1::1, we get:

LT oy mon ! + ! b —
mort) = 44—
141 A4+r=1A+r)?  A4+»"20+r)3 A+ rprt
x Pymt. (A4.27)

Subtracting equation (A4.27) from equation (A4.26) and simplifying, we get:

=7 1
PV(Amort) = — x Pymt. (A4.28)
" [(1 N TR R mnﬁ} Y
This simplifies to:
1 1
PV(A 1) = — Pymt. A4.2
(dmort) rn—r |:(1 +rr A+ rl)”i| e ( ”

The top portion of Table A4.5 is almost identical to section 1 of Table A4.3.
We use a nominal interest rate of 10% (B73) per year, which is 0.8333% (B74) per
month, and a discount rate of 12% (B75) per year, or 1% (B76) per month.

We discount the principal amortization at 7y, the discount rate of 1%, in column
F, so that column G gives us the present value of the principal (column D), which
totals $730,970 (G68). The Excel formula equivalent for equation (A4.29) appears in
A81, and the result of that formula appears in D81, which matches the brute force
calculation in GG68, thus demonstrating the accuracy of the formula.

Conclusion

In this mathematical appendix to the ADF chapter, we have presented:

ADFs with stub periods (partial years) for both midyear and end-of-year
ADFs to calculate the amortization of principal on a loan

A formula for the after-tax PV of a loan

Tables to demonstrate the accuracy of the various formulas
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A B | c I b [ E F G
1 Table A4.5
2 Present Value of a Loan at Discount Rate
3 Different than Nominal Rate
4
5 Pmt
6 # Pmt Int Prin Bal PVF (r) PV(P)
7 0 1,000,000 1.0000
8 1 21,047 8,333 12,914 987,086 0.9901 12,786
9 2 21,247 8,226 13,021 974,065 0.9803 12,765
0 3 21,247 8,117 13,130 960,935 0.9706 12,744
1 4 21,247 8,008 13,239 947,696 0.9610 12,723
2 5 21,247 7,897 3,350 934,346 0.9515 2,702
3 6 21,247 7,786 3,461 920,885 0.9420 2,681
4 7 21,247 7,674 3,573 907,312 0.9327 2,660
5 8 21,047 7,561 3,686 893,626 0.9235 2,639
6 9 21,047 7,447 3,800 879,826 0.9143 2,618
7 10 21,047 7,332 3,915 865,911 0.9053 2,597
8 11 21,247 7,216 14,031 851,880 0.8963 12,576
9 12 21,247 7,099 14,148 837,732 0.8874 12,556
3 21,247 6,981 4,266 823,466 0.8787 2,535
4 21,247 6,862 4,385 809,081 0.8700 2,514
5 21,247 6,742 4,505 794,576 0.8613 2,494
6 21,247 6,621 4,626 779,951 0.8528 2,473
7 21,247 6,500 4,747 765,203 0.8444 2,452
8 21,047 6,377 4,870 750,333 0.8360 2,432
19 21,247 6,253 14,994 735,339 0.8277 12,411
20 21,247 6,128 15,119 720,220 0.8195 12,391
21 21,247 6,002 5,245 704,974 0.8114 2,370
22 21,247 5,875 5,372 689,602 0.8034 2,350
23 21,247 5,747 5,500 674,102 0.7954 2,330
24 21,047 5,618 5,630 658,472 0.7876 2,309
25 21,247 5,487 5,760 642,712 0.7798 2,289
26 21,047 5,356 5,891 626,821 0.7720 2,269
27 21,247 5,224 16,024 610,798 0.7644 12,248
28 21,247 5,090 16,157 594,641 0.7568 12,228
29 21,247 4,955 16,292 578,349 0.7493 12,208
30 21,247 4,820 6,427 561,922 0.7419 2,188
31 21,247 4,683 6,564 545,357 0.7346 2,168
32 21,247 4,545 6,702 528,655 0.7273 2,148
33 21,247 4,405 6,842 511,813 0.7201 2,128
34 21,247 4,265 16,982 494,831 0.7130 12,108
35 21,247 4,124 17,123 477,708 0.7059 12,088
36 21,247 3,981 17,266 460,442 0.6989 12,068
37 21,247 3,837 17,410 443,032 0.6920 12,048
38 21,247 3,692 17,555 425,476 0.6852 12,028
39 21,247 3,546 7,701 407,775 0.6784 12,008
40 21,047 3,398 7,849 389,926 0.6717 11,988
41 21,247 3,249 7,998 371,928 0.6650 11,968
42 21,247 3,099 18,148 353,781 0.6584 11,949
43 21,247 2,948 18,299 335,482 0.6519 11,929
44 21,247 2,796 18,451 317,031 0.6454 11,909
45 21,247 2,642 18,605 298,425 0.6391 11,890
46 21,247 2,487 18,760 279,665 0.6327 11,870
47 21,247 2,331 8,917 260,749 0.6265 11,850
48 21,247 2,173 9,074 241,675 0.6203 11,831
49 21,247 2,014 9,233 222,442 0.6141 11,811
50 21,247 1,854 19,393 203,048 0.6080 11,792
51 21,247 1,692 19,555 183,493 0.6020 11,772
52 21,247 1,529 19,718 163,775 0.5961 11,753
53 21,247 1,365 19,882 143,893 0.5902 11,734
54 21,247 1,199 20,048 123,845 0.5843 11,714
55 21,247 1,032 20,215 103,630 0.5785 11,695
56 21,247 864 20,383 83,247 0.5728 11,676
57 21,047 694 20,553 62,693 0.5671 11,656
58 21,247 522 20,725 41,969 0.5615 11,637
59 21,247 350 20,897 21,071 0.5560 11,618
60 21,247 176 21,071 0 0.5504 11,599
Total 1,274,823 274,823 1,000,000 730,970
Assumptions:
Prin 1,000,000
Int 10.0000%
Int-Mo = r 0.8333%
Int 12.0000%
Int-Mo = r, 1.0000%
Years 5
Months = n 60
Pymt 21,247
Start Month=8 3
(1/(r=r))*((1/(1+r)*n)—(1/(14+r,)"n))*PYMT 730,970
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Mathematical Appendix: Monthly ADFs

In this appendix, we will develop formulas to calculate the present value of a finite
series of monthly cash flows. The annual equivalent of that is known as an annuity
discount factor (ADF). We could call this a monthly discount factor. However, since
the term ADF is so well known, we will call this the monthly version of the ADF, or
ADEF,,.

In equation (B4.1), we begin with the stream of cash flows for n years. We
define the first year’s cash flow as $1.00. Since we are modeling this in months, the
first 12 months’ cash flows are $1.00/12 = $0.08333 ... per month. At the end of
one year, the cash flow will increase by a constant growth rate of g. Cash flows for
months 13 through 24 will be $0.08333 x (1 + @), and cash flows for months 25
through 36 will be $0.08333 x (1 + g)?, and so on. We discount the cash flows in
the middle of each month. Thus, the present value of the monthly cash flows for #n
years, ADF,,, equals:

1 1 1 1 1
ADF,, = (|: o Tt 11>:|+(1+g)|: oy Tt _)5.5:|
R\La+ne A+nrnn A+nt A+n7T

1 1
+---+(1+g)”‘1[—m+~-+ﬁ]>. (B4.1)
(14t A+ %

We can multiply the numerators and denominators by (1 4 %512 which will
have the effect of increasing the exponent in the denominators by one-half month.
We can then factor out the (1 4 7)%%12 in the numerators, with the following result:

ApF, = LFE ([ T }+(1+ )[—1 U }
" 12 (1_|_,»)% A+t & A4+ (1+7r)?
1
1 (Lt [ I I S— ) B4.2
+04+9 |:(1+r)” + +(1+r)”i|> (B4.2)

By factoring out (1 + 7)'~! from the denominator, where / = year (¢ = 1,
2, 3 ..., we can reduce the terms in each square bracket to identical terms:

(1+nT 1 1 14 1 1
ADF,, = ([ St 1]+ g[ : +---+—1}
12 (1415 a+n I+rLQ+nn aQ+n

1+g ”‘1[ 1 1 ])
e —— ). B4.
+ +(1+r> (1+7)le+ +(1+1’)1 (B4.3)
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Now, we can factor out all the terms in the square brackets.

a+nr 1 1 1+g> <1+g)n_l
ADF,, = — 1+ [+ +
" 12 |:(1+r)12 <1+r>1][ <1+r 1+7

(B4.4)
We will solve for the terms in the square brackets separately. Let’s call the first
one A and the second one B.

1 1
A= — (B4.5)
A+ I+t
We multiply each term by m, which leads to:
1 1 1
(B4.6)

A= s+t
A+ 1+nri aA+ne

Subtracting (B4.6) from (B4.5), on the right-hand side (RHS) of the equation,
only the first term in (B4.5) and the last term in (B4.6) remain.

1 1 1

[1 - : }A = _ . (B4.7)
A+nre A+mne  A+ne

Simplifying the left-hand side (LHS) of (B4.7) leads to:

Atme-1 1 1
1+ r)me A+mne  A4+n

(B4.8)

We multiply by the inverse of the fraction on the LHS to isolate A:

S (1+71)ﬁ [ 1 - 1 H} (B4.9)
A+ —-1LA+rn2  A+n"

We cancel out the (1 + r)ﬁ, which leaves us with:

1 1
A=—— |1- . B4.10
(1+r)u—1[ (1+r)] ¢ )

The term in square brackets equals /(1 4+ 7). Thus, the term A solves to:

1 r
A= ] .
A+ —10+nr

(B4.1D

Now we turn our attention to the term B, which is the rightmost term in (B4.4).
B is a slight variation of a traditional ADF with growth. In the traditional end-of-year
ADF cash flows, the (1 4+ 7) term in the denominator has an exponent that is always
one higher than the (1 4+ g) term in the numerator, because we assume our first
cash flow of $1.00 occurs at the end of the first period. Thus the present values of
the cash flows in the traditional ADF are 1/(1 + ), (1 + g)/(1 + r)?, and so forth.
We can change B into this form by multiplying all denominators in B by (1 + r). Of
course, we will have to multiply all numerators by the same term, and we can factor
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that out of the series. Thus, B is equal to (1 + 7) times the end-of-year ADF, or:®

B— 17 [1—<1+g> } (B4.12)
r—g 147

Note that the numerator in the first term in the RHS of (B4.12) is (1 + r) instead
of 1. Substituting (B4.11) and (B4.12) into (B4.4), we get:

1+m% 1 1 1+g\"
ADFm:( +r . " tr [1—( +(g> } (B4.13)
12 A+ —-1A0+mr—g 1+7r

We can cancel the 1 + 7 terms and simplify to:

1 1 1+2\"
ADF, = —(1 4+ 1% i [1 - ( “) } (B4.14)
12 A+nrnz—17r—8 1+7r

Present value of midmonth cash flows.

There are five terms in (B4.14): The first term, 1/12, is the first month’s forecast
cash flow (i.e., 1/12 of $1.00). The second term is a midmonth correction factor;
that is, the cash flow is that much more valuable than a series of end-of-month
cash flows. In other words, if cash flows were end-of-month instead of midmonth,
the ADF formula would be identical to (B4.14), except that the second term would
disappear. The denominator of the third term is equal to ¢ from equation (4.31), the
correct compound monthly interest rate. The fourth term multiplied by the fifth term
is the annual end-of-year ADF. The fourth term is the end-of-year Gordon model
multiple, and the last term—the one in square brackets—converts the perpetuity of
the Gordon model to a finite series of cash flows.?’

Thus, we can restate (B4.14) as:

’
ADF,, = Midmonth Correction Factor X ADF g, gyear X 5 (B4.14a)
; i

PV of midmonth cash flows—alternative expression.

The intuition behind (B4.14a) is that the monthly annuity discount factor is
primarily equal to the ordinary ADF times the last term (i.e., /127). That term is the
essence of the difference in the monthly ADF and the ordinary ADF. In Dr. Trout’s
example, the annual ADF is 2.53764 (Table 4.12, F55). If we used simple instead of
compound interest, » would be equal to 12i. He used an annual rate of » = 12%,
which is 12 times his monthly rate of 1%. However, using compound interest, 7/12i
= 0.12/(12 x 0.009489) = 1.05387 (Table 4.12, F56). The only other modification is
that we need to multiply that by the midmonth correction factor of 1.00473 (F57),
which leads to a monthly ADF = 2.53764 x 1.05387 x 1.00473 = 2.68701 (F58).

%See equation (4.6b).
37See the section entitled, “Relationship between the ADF and the Gordon Model,” earlier in
this chapter, which further explains the intuition of the ADF.
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Calculating Discount Rates

Introduction

Part IT of this book, consisting of Chapters 5, 6, and 7, deals with calculating discount
rates; discounting cash flows is the second of the four steps in business valuation.

Chapter 5: The Log Size Model

Chapter 5, the log size model, is a long chapter, with a significant amount of empirical
analysis of stock market returns. Our primary finding is that returns are negatively
related to the logarithm of the size of the firm. The most successful measure of
size in explaining returns of publicly held stocks is market capitalization, though
research by Grabowski and King that we present in the chapter shows that many
other measures of size also do a fairly good job of explaining stock market returns.

In their 1999 article, Grabowski and King found the relationship of return to
three underlying variables: operating margin, the logarithm of the coefficient of
variation of operating margin, and the logarithm of the coefficient of variation of
return on equity. This is a very important research result, and it is very important
that professionals read and understand their article. Even so, their methodology is
based on Compustat data, which leaves out the first 37 years of the New York Stock
Exchange data. As a consequence, their standard errors are higher than my log size
model, and appraisers should be familiar with both.

In this chapter, we:

= Develop the mathematics of potential log size equations.

® Analyze the statistical error in the log size equation for different time periods
and determine the optimal time frame.

B Present research by Harrison that shows that the distribution of stock market
returns in the eighteenth century is the same as it is in the twentieth century
and discuss its implications for which twentieth-century data we should use.

® Present research on Growth versus Value stock returns and discuss implications
for valuing privately held firms.

® Develop a series of equations to explain the relationship between the Ibbotson
total returns equation and the Gordon model.

B Give practical examples of using the log size equation.

145



146 Calculating Discount Rates

® Compare log size to the capital asset pricing model (CAPM) for accuracy.
® Discuss industry effects.

Benefit of the Log Size Model

While the log size model used to save much time compared to CAPM, the availability
of industry premia in the SBBI valuation yearbooks! levels the playing field. Log
size is much more accurate for smaller firms than is either CAPM or the buildup
method. Using 1926—2007 data, the log size standard error of the valuation estimate
is only 27 percent as large as CAPM standard error. This means that the CAPM
95 percent confidence intervals are approximately 375 percent of the size of the log
size confidence intervals.

Appendix C: The Shortcut to Log Size

For those who prefer not to read through the research that leads to our conclusions
and simply want to learn how to use the log size model, Appendix C presents
a much shorter, “stripped down” version of Chapter 5. It also serves as a useful
refresher for those who read Chapter 5 in its entirety but periodically wish to refresh
their skills and understanding.

Chapter 6: Arithmetic versus Geometric Mean Returns

There have been many articles in the professional literature arguing whether arith-
metic or geometric mean returns are most appropriate. For valuing small businesses,
the two measures can easily make a 100 percent difference in the valuation, as
geometric returns are always lower than arithmetic returns (as long as returns are
not identical in every period, which, of course, they are not). Most of the arguments
have centered on Professor Ibbotson’s famous two-period example.

The majority of Chapter 6 consists of empirical evidence that arithmetic mean
returns do a better job than geometric means of explaining log size results. Addi-
tionally, we spend some time discussing a very mathematical article by Indro and
Lee that argues for using a time horizon-weighted average of the arithmetic and
geometric means.

Chapter 7: An Iterative Approach for CAPM

For those who use CAPM, whether in a direct equity approach or in an invested
capital approach, there is a trap into which many appraisers fall, which is producing
an answer that is internally inconsistent.

Common practice is to assume a degree of leverage—usually equal to the subject
company’s existing or industry average leverage—assuming book value for equity.
This implies an equity for the firm, which is an ex ante value of equity. The problem

IThis is for the alter ego of CAPM, the Build-Up Model.
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comes when the appraiser stops after obtaining his or her valuation estimate. This
is because the calculated value of equity will almost always be inconsistent with
the value of equity that is implied in the leverage assumed in the calculation of the
CAPM discount rate.

In Chapter 7 we present an iterative method that solves the problem by repeating
the valuation calculations until the assumed and the calculated equity are equal.
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CHAPTER 5

Discount Rates as a Function
of Log Size

Research Included in the First Edition

Historically, small companies! have shown higher rates of return when compared
to large ones? over the past 82 years (Ibbotson Associates 2008). The relationship
between firm size and rate of return was first published by Rolf Banz in 1981 and
is now universally recognized. Accordingly, company size has been included as a
variable in several models used to determine stock market returns.

Jacobs and Levy (1988) examined small firm size as one of 25 variables asso-
ciated with anomalous rates of return on stocks. They found that small size was
statistically significant both in single-variable and multivariate form, although size
effects appear to change over time; that is, they are nonstationary. They found that
the natural logarithm (log) of market capitalization was negatively related to the rate
of return.

Fama and French (1993) found they could explain historical market returns well
with a three-factor multiple regression model using firm size, the ratio of book equity
to market equity (BE/ME), and the overall market factor R,, — Ry, (i.e., the equity
premium). The latter factor explained overall returns to stocks across the board, but
it did not explain differences from one stock to another, or more precisely, from
one portfolio to another.?

Adapted and reprinted with permission from Valuation (August 1994): 8—24; and The Valu-
ation Examiner (February/March 1997): 19—21.

From 1926 to 1981, NYSE fifth quintile returns; from January 1982 to March 2001, DFA
U.S. 9-10 Small Company Portfolio; from April 2001 to December 2007, DFA U.S. Micro Cap
Portfolio.

Based on the S&P Composite Index.

3The regression coefficient is essentially beta controlled for size and BE/ME. After controlling
for the other two systematic variables, this beta is very close to 1 and explains only the market
premium overall. It does not explain any differentials in premiums across firms or portfolios, as
the variation was insignificant. In other words, this beta lacks significant explanatory power,
because the major explanatory power lies in the differences in size and financial distress
(growth versus value firms).

151
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The entire variation in portfolio returns was explained by the first two factors.
Fama and French found BE/ME to be the more significant factor in explaining the
cross-sectional difference in returns, with firm size next; however, they consider
both factors as proxies for risk. Furthermore, they state (1993)

Without a theory that specifies the exact form of the state variables or common

Jfactors in returns, the choice of any particular version of the factors is somewhbat
arbitrary. Thus detailed stories for the slopes and average premiums associated
with particular versions of the factors are suggestive, but never definitive.

Abrams (1994) showed strong statistical evidence that returns are linearly related
to the natural logarithm of the value of the firm, as measured by market capitalization.
He used this relationship to determine the appropriate discount rate for privately
held firms. In a follow-up article, Abrams (1997) further simplified the calculations
by relating the natural log of size to total return without splitting the result into the
risk-free rate plus the equity premium.

Grabowski and King (1995) also described the logarithmic relationship between
firm size and market return. They later (Grabowski and King, 1996) demonstrated
that a similar, but weaker, logarithmic relationship exists for other measures of firm
size, including the book value of common equity, five-year average net income,
market value of invested capital, five-year average EBITDA, sales, and number of
employees. In Grabowski and King (1999), they demonstrate a negative logarithmic
relationship between returns and operating margin and a positive logarithmic rela-
tionship between returns and the coefficient of variation of operating margin and
accounting return on equity. Since then, they publish their study annually in the
Duff & Phelps, LLC Risk Premium Report.

The discovery that return (the discount rate) has a negative linear relationship
to the natural logarithm of the value of the firm means that the value of the firm
decays (i.e., decreases) exponentially with increasing rates of return. We will also
show that firm value decays exponentially with the standard deviation of returns.

Table 5.1: Analysis of Historical Stock Returns

Columns A through F in Table 5.1 contain the input data from the Stocks, Bonds,
Bills and Inflation 2008 Classic Yearbook (Ibbotson Associates, 2008) for all of
the regression analyses as well as the regression results. We use the 82-year arith-
metic average returns in both regressions, from 1926 to 2007. Column A lists the
NYSE/AMEX/NASDAQ divided into different groups—known as deciles—based on
market capitalization as a proxy for size, with the largest firms in decile #1 and the
smallest in decile #10.* Columns B through F contain market data for each decile,
which is described in the following.

Note that the 82-year average market return in column B rises with each decile.
The standard deviation of returns (column C) also rises with each decile. Column
D shows the market capitalization of each decile near the end of 2007, with decile

4All of the underlying decile data in Ibbotson originate with the University of Chicago’s Center
for Research in Security Prices (CRSP), which also determines the composition of the deciles.
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#1 containing 167 firms (F8) with a total market capitalization of $10.4 trillion (D8).
Market capitalization, our measure of fair market value (FMV), is the price per share
times the number of shares.

Dividing column D (FMV) by column F (the number of firms in the decile), we
obtain column G, the average capitalization, or the average fair market value of the
firms in each decile. For example, the average company in decile #1 has an FMV of
$62.023 billion (G8), while the average firm in decile #10 has an FMV of $113.637
million (G17).

Column H shows the percentage difference between each successive decile. For
example, the average firm size in decile #9 ($443.9 million; G16) is 290.6% (H16)
larger than the average firm size in decile #10 ($113.6 million; G17).> The average
firm size in decile #8 is 72.6% larger (H15) than that of decile #9, and so on.

The largest gap in absolute dollars and in percentages is between decile #1 and
decile #2, a difference of $48.6 billion (G8 — G9), or 363.7% (HS8). Deciles #9 and
#10 have the second largest difference between them in percentage terms (290.6%,
per H16). Most deciles are 19% to 80% larger than the next smaller one.

The difference in return (column B) between deciles #1 and #2 is 1.8% and
between deciles #9 and #10 is 3.7%,° while the difference between all other deciles
is 1.1% or less. Thus it seems that for fairly regular percentage increases in size we
see a reasonably constant drop in the average returns. This suggests a logarithmic
relationship between size and return, which we investigate later and confirm.

Column T is the natural logarithm of the average FMV. The natural logarithm of
FMV is the number that when used as an exponent to Euler’s constant, e (the natural
exponent from calculus), results in the FMV. Thus, "™V = FMV. The number e,
like pi, is an irrational, transcendental number. Its first digits begin 2.718... .

The natural logarithm operates in the same way as the Richter scale—used
to measure earthquakes—except that the latter works in base 10 logarithms. The
principle, however, is the same. An earthquake of 7 on the Richter scale is 10 times
stronger than an earthquake of 6, 100 times more powerful than an earthquake of
5, 1,000 times more powerful than an earthquake of 4, and so on. The difference
in power between two earthquakes whose Richter scale measurement varies by Ax
is 104%. Thus the latter example comparing two earthquakes with a rating of 7 and
4 is a difference of 3 on the Richter scale, which means the former is 10> = 1,000
times more powerful than the latter. Similarly, the difference in value between firms
whose natural logs of average value differ by Ax is 2.718%%. An increase in the
natural log by 1 means the resulting value (from taking the antilog) will be 2.718
times larger than the value whose natural log is one less. Similarly, an increase in
natural log by 2 is a value 2.718% = 7.4 times larger, and an increase of 3 is 2.718°
= 20.1 times larger than the base value.

For example, the average market capitalization for decile #10 of $113.6 million
(G17) = e!85%5 = 271885485 where the exponent is the natural log in 117. Similarly,
8% = $62.0 billion (G8), where 24.8508 (I8) is the natural log of the decile #1
average market capitalization.

5We measure this as the ratio of market caps minus 1, for example, $443.9 million/$113.6
million = 390.6% — 100% = 290.6% (G16/G17 — 1 = H16).

°SBBI—2009 Classic Edition, p. 61, notes that delisting returns are included in order to
eliminate survivorship bias.
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FIGURE 5.1 1926—2007 Arithmetic Mean Returns as a Function of Standard Deviation

Let’s go through an example of how to generate a natural logarithm on a spread-
sheet. In Microsoft Excel the formula in I8 is = In(G8). In Lotus 123, the formula
would be @In(G8). To take the antilog (i.e., exponentiating), use the formulas:
=exp(I8) in Excel® and @exp(I8) in Lotus 123.

Regression #1: Return versus Standard Deviation of Returns for 1926-2007

Figure 5.1 is a graph of stock market returns as a function of standard deviation of
returns. The nodes numbered 1 to 10 are the actual data points, with the number
being the decile, and the straight line running through the points is the regression
estimate. Note the strong linear relationship of the two. The deciles are in numerical
order, and each successive decile is northeast of the other except for #3 to #4 and #6
to #7, which are both almost parallel. The graph tells us that as the decile number
goes up—which means as size goes down—returns and risk both increase.

Of course, it is an axiom of finance that as risk increases so does return.’
Logically, investors would never deliberately invest in one firm (or portfolio) with
higher risk than another unless the expected return is also higher. It is still a rel-
atively new observation that we can see this relationship in the size of the firms.
Figure 5.1 shows this relationship graphically, and the regressions in Table 5.1 that
follow demonstrate that relationship mathematically.

Regression #1 in Table 5.1 (rows 23—33) is a statistical measurement of return
as a function of standard deviation of returns. The results confirm that a very strong
relationship exists between historical returns and standard deviation. The regression
equation is:

7 = 5.54% + (33.76% x S), G.1D

where 7 = return and S = standard deviation of returns.

’See the “Growth versus Value Stocks” section at the end of this chapter for an apparent
partial exception to this.
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The adjusted R? for equation (5.1) is 97.04% (C27), and the t-statistic of the slope
is 17.2 (C32). The p-value is less than 0.01% (C33), which means the slope coefficient
is statistically significant at the 99.9%+ level. The standard error of the estimate is
0.45% (C25), also indicating a high degree of confidence in the results obtained.
Another important result is that the constant of 5.54% (C23) is the regression estimate
of the long-term risk-free rate, that is, the rate of return for a no-risk (zero standard
deviation) asset. The 82-year arithmetic mean income return from 1926 to 2007 on
long-term government bonds is 5.21% (C24, G63).® Therefore, in addition to the
other robust results, the regression equation does a reasonable job of estimating the
risk-free rate.

KEEPING IN THE ROARING TWENTIES AND THE GREAT DEPRESSION  In the first edition
of this book we also showed regressions with data that began in 1938, as elimi-
nating 1926—1937, which contained much of the Roaring Twenties and the Great
Depression, materially reduced the volatility of returns and improved the regression
results. I had consulted with economists who felt this was preferable, as they did
not expect that kind of volatility to return. Indeed (Voth, 2002) attributed that mag-
nitude of volatility to uncertainty as to whether the capitalist system would survive,
as Communism was a prominent threat in people’s minds. While that was still true
through 2007, the Financial Crisis of 2008 is a reminder that extreme volatility still
can happen, and therefore it is more logical to include all the data, accepting the
higher volatility and lower confidence intervals. Table 5.1A is identical to Table 5.1,
except that it contains stock market results through 2008, that is, it is from Ibbotson’s
2009 yearbook. We consider this topic in more depth in the section, “Which Data to
Choose?”

LIMITATION OF REGRESSION #1 FOR PRIVATELY HELD BUSINESSES ~ Our goal is to calcu-
late a discount rate. The major problem with direct application of this relationship
to the valuation of privately held businesses is coming up with a reliable standard
deviation of returns. Appraisers cannot directly measure the standard deviation of
returns for privately held firms, since there are no objective stock prices. We can
measure the standard deviation of income, and we cover that later in the chapter in
our discussion of Grabowski and King (1999).

Regression #2: Return versus Log Size

Fortunately, there is a much more practical relationship. Notice that the returns are
negatively correlated with the market capitalization, that is, the fair market value of
the firm. The second regression in Table 5.1 (C37 through C46) is the more useful
one for valuing privately held firms. Regression #2 shows return as a function of the
natural logarithm of the FMV of the firm. Regression equation (5.2) comes from C37
and C43 and is as follows:

r = 46.22% — [1.436% x In (FMV)]. 5.2

The adjusted R* is 93.0% (C40), the #-statistic is —11.0 (C45), and the p-value is
less than 0.01% (C46), meaning that these results are statistically robust. The standard

8SBBI Classic 2008, p. 142, uses this measure as the risk-free rate for CAPM.
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A | B | C | D | E | F | G
1] Table 5.1A
| 2 | Regression of Decile Portfolios 1926-2008 [1]
3
I Summary Output: Return as a Function of Std Deviation of Returns 1926-2008
5
6 Regression Statistics
|7 [Multiple R 98.93%
| 8 |R Square 97.87%
|9 |Adjusted R Square 97.61%
| 10 |Standard Error 0.40%
11 |Observations 10
12
13 |[ANOVA
14 df SS MS F Signif F
| 15 |Regression 1 0.58% 0.58% 368.3 0.00%
| 16 |Residual 8 0.01% 0.00%
17 |Total 9 0.60%
18
19 Coef Std Err t Stat P-value Lower 95% Upper 95%
| 20 |Intercept 4.81% 0.53% 9.2 0.00% 3.60% 6.03%
21 |26-08 Std Dev 33.49% 1.75% 19.2 0.00% 29.47% 37.52%
22
E Summary Output: Regression of Return as a Function of In Mkt Cap 1926-2008
24
25 Regression Statistics
| 26 [Multiple R 97.01%
| 27 |R Square 94.12%
| 28 |Adjusted R Square 93.38%
| 29 |Standard Error 0.66%
30 |Observations 10
31 |
32 |ANOVA
33 df SS MS F Signif F
| 34 |Regression 1 0.56% 0.56% 128.0 0.00%
| 35 |Residual 8 0.04% 0.00%
36 |Total 9 0.60%
37
38 Coef Std Err t Stat P-value Lower 95% Upper 95%
| 39 |Intercept 43.78% 2.59% 16.9 0.00% 37.81% 49.75%
40 [Ln Size -1.37% 0.12% -11.3 0.00% -1.65% -1.09%
41
E [1] Derived from SBBI—2009 Classic Yearbook, p. 114, Table 7-5.* Note: The recent market cap
|43 | data in SBBI is too low by a factor of 1,000, according to Morningstar, Inc. According
|44 | to Morningstar, Inc., the column caption should have said "in Millions," not "in Thousands."
|45 | We have made the correction. Also note that the number of companies in the deciles and the
|46 |  recent market cap data are as of 9/30/2008.
47
148 |*  Source: Morningstar, Inc.—2009 Ibbotson®Stocks, Bonds, Bills and Inflation (SBBI) Classic
49| Yearbook.

error of the Y-estimate is 0.70% (C38). As discussed in Chapters 3 and 10, we can
form an approximate 95% confidence interval around the regression estimate by
adding and subtracting two standard errors. Thus, we can be 95% confident that the
regression forecast is approximately accurate to within plus or minus 2 x 0.70% =
1.4%.°

Figure 5.2 is a graph of arithmetic mean returns over the past 82 years
(1926—2007) versus the natural log of FMV. As in Figure 5.1, the numbered nodes

This is true near the mean value of our data. Uncertainty increases gradually as we move
from the mean.
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Regression #2: r = 46.22% — [1.284% X In(FMV)]

FIGURE 5.2 1926—2007 Arithmetic Mean Returns as a Function of In(FMV)

are the actual data for each decile, while the straight line is the regression estimate.
While Figure 5.1 shows that returns are positively related to risk, Figure 5.2 shows
they are negatively related to size.

Regression #3: Return versus Beta

The third regression in Table 5.1 shows the relationship between the decile returns
and the decile betas for the period 1926—2007 (C50 through C59). According to the
capital asset pricing model (CAPM) equation, the y-intercept should be the risk-
free rate, and the x-coefficient should be the long-run equity premium of 7.05%.°
Instead, the y-intercept at —4.33% (C50) is a country mile from the historical risk-free
rate of 5.21%, as is the x-coefficient at 16.60% (C56) from the equity premium of
7.05%, demonstrating the inaccuracy of CAPM.

While the equation we obtain is contrary to the theoretical CAPM, it does con-
stitute an empirical CAPM, which could be used for a firm whose capitalization is
at least as large as a decile #10 firm. Merely select the appropriate decile, use the
beta of that decile, possibly with some adjustment, and use regression equation #3
to generate a discount rate. While it is possible to do this, it is far better to use
regression #2.

We now compare the log size model to CAPM. Columns K and N show the
regression estimated return for each decile using both models—column K for CAPM
and N for log size. We calculated the CAPM expected return as » = Rr + (8 X equity
premium) = 5.21% + (8 x 7.05%) (column K = G63 + (column J x G64)).

Columns L and M show the error and squared error for CAPM, whereas columns
N and O contain the same information for the log size model. Note that the CAPM
standard error of 2.61% (M20) is 375% (P21) larger than the log size standard error
of 0.70% (P20). Also note that our “long-hand” calculation of the log size standard
error of 0.70% in P20 equals Excel’s calculation in B38.

Derived from SBBI Classic 2008, p. 142.
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FIGURE 5.3 Decade Standard Deviation of Returns vs. Avg. FMV per NYSE Company
1935—1995

Table 5.1A: Regression Results through 2008

SBBF—2009 published too late to use its results throughout this book. Thus, all
other references in this book to the log size equation will cover only through 2007
data. However, we report the results here.

It is well known that the financial meltdown of 2008 produced terrible results
in the markets. The decile #1 return for 2008 was —35% with a 19.5% standard
deviation,'! and the decile #10 return was —47% with a 45.0% standard deviation.
The remaining decile results were in between those two extremes. Interestingly, the
adjusted R* increased for both regressions. The 97.61% (B9) for the 1926—2008 data
is an increase over the 97.04% adjusted R? for the 1926—2007 data in regression #1,
and the 93.38% (B28) adjusted R* for the 1926—2008 data is an increase over the
93.02% adjusted R? for the 1926—2007 data in regression #2. Thus the terrible results
in and of themselves do not affect the integrity of the regressions, because it is only
the relative relationships of the results among the deciles that matter.

Market Performance

Regression #1 shows that return is a linear function of risk, as measured by the
standard deviation of returns. Regression #2 shows that return declines linearly with
the logarithm of firm size. The logic behind this is that investors demand and receive
higher returns for higher risk. Smaller firms have more volatile (risky) returns, so
return is therefore negatively related to size.

Figure 5.3 shows the relationship between volatility and size, with the y-axis
being the standard deviation of returns for the value-weighted NYSE and the x-axis
being the average FMV per NYSE company in 1995 constant dollars in successive
decades. The year adjacent to each data point is the final year of the decade;
for example, 1935 encompasses 1926 to 1935. The decade average FMV (in 1995
constant dollars) has increased from slightly over $0.5 billion to over $1.9 billion.
Therefore, we might predict from a theoretical standpoint that the standard deviation
of returns should decline over time—and it seems to have done so.

UFor 1926 through 2008.
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FIGURE 5.4 Decade Standard Deviation of Returns vs. Avg. FMV per NYSE Company
1945—1995

As you can see, the standard deviation of returns per decade declines exponen-
tially from about 33% for the decade ending in 1935 to 13% in the decade ending in
1995, for a range of 21%.!% If we examine the major historical events that took place
over time, the decade ending 1935 includes some of the Roaring Twenties and the
Depression. It is no surprise that it has such a high standard deviation. Figure 5.4
is identical to Figure 5.3, except that we have eliminated the decade ending 1935
in Figure 5.4. Eliminating the most volatile decade flattens out the regression curve.
The fitted curve in Figure 5.4 appears about half as steep as Figure 5.3. The standard
deviation ranges from 13% to 22%, or a range of 10%,'® versus the 21% range of
Figure 5.3 and is much less curved.

However, the inclusion of the decade ending 2005 shows those relationships to
be far less reliable, as we can see in Figures 5.3A and 5.4A. In Figure 5.3A, the R?
(note that this is not adjusted R?) declines from 52% to 23%—merely by adding the
decade ending 2005.

SBBF—2009 Valuation Yearbook Graphs 5-10 and 5-11 also show a general
decline in stock market volatility, which is consistent with the data above. Ibbotson
observes that this may suggest that “we have moved into a new market regime in

12This is not 20% because the 33% and 13% reported are rounded numbers.
3This is not equal to 9%, due to rounding.
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FIGURE 5.4A Decade Standard Deviation of Returns vs. Avg. FMV per NYSE Company
1945—2005

which stocks are less volatile and therefore require a lower risk premium than in
the past.” This is similar to our conclusion in the first edition of this book. However,
Ibbotson continues to present arguments against this observation, which is consistent
with our skepticism now.

Why the dramatic decline in the strength of the relationship? The data source for
the decade ending 2005 is different. The standard deviation and size data through
1995 are NYSE only, while 1996—2005 standard deviation data also include AMEX
and NASDAQ." Additionally, according to the NYSE dataset for 1926—1996, the total
market capitalization in 1996 was $7.3 trillion, while it was $9.2 trillion in the dataset
for 1996—2005. Thus, the data are inconsistent, which reduces our ability to make
inferences.

The relationship between volatility and size when viewing the market as a
whole is somewhat loose, as the data points vary considerably from the fitted curve
in Figure 5.3. The R* = 52% (45% in Figure 5.4). For the decade ending 1945,
standard deviation of returns is about one-third lower than the previous decade (ap-
proximately 22% versus 33%), while average firm size is about the same. Standard
deviation of returns dropped again in the decade ending 1955, with only a small
increase in size. In the decade ending 1965, average firm size more than doubled in
real terms, yet volatility was almost identical (we would have expected a decrease).
In the decade ending 1975, firm size and volatility increased. In the decade ending
1985, both average firm size and volatility decreased significantly, which is coun-
terintuitive, while in the final decade firm size increased from over $1.3 billion to
almost $2 billion, while volatility decreased slightly.

Figure 5.5 shows the relationship of average NYSE firm return and time, with
each data point being a decade.'® The relationship is a very loose one, with R* =
0.03. However, adjusted R? is negative (not shown), and the relationship is statisti-
cally insignificant.

In summary, there appeared to be increasing efficiency of investment over
time—something I described in the first edition of this book as “the same bang for
less buck.” The market as a whole seemed to deliver the same or better performance

4The 2005 FMV data, like the previous FMV data, is only for the NYSE.
BThe 2005 data point is for NYSE/AMEX/NASDAQ.
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as measured by return experienced for risk undertaken. However, the relationship
appears to have deteriorated by adding the decade ending 2005. With the Financial
Crisis of 2008 it is possible that we will find the relationship will disappear, although
this is difficult to say, because of the inconsistency in the data.

Which Data to Choose?

With a total of 82 years of data on the NYSE/AMEX/NASDAQ, we must decide
whether to use all of the data or some subset, and if so, which subset. In making
this choice, we will consider the following sources of information:

1. Tables 5.1 through 5.2A, the statistical results of regression analyses of the dif-
ferent time periods of the U.S. stock markets

2. Eighteenth-century stock market returns
a. A study (Harrison, 1998) that explores the distribution of European stock

market returns

b. Ibbotson and Brinson (1993) 201-year study

3. Ibbotson’s opinion of outliers and the Financial Crisis of 2008

4. Figures 5.3—5.5

5. Academic articles on the declining equity premium

TABLES 5.2 AND 5.2A: REGRESSION RESULTS FOR DIFFERENT TIME PERIODS ~ Nonstationary
data require us to consider the possibility of removing some of the older stock market
data. In Table 5.2, we repeat regressions #1 and #2 from Table 5.1 for the most recent
30, 40, 50, 60, 70, and 82 years of NYSE/AMEX/NASDAQ data. The upper table in
each time period is regression #1 and the lower table is regression #2. For example,
the data for regression #1 for the last 30 years appear in rows 6—8, 40 years in rows
15—17, and so on. Similarly, the data for regression #2 for 30 years appear in rows
10—12, 40 years in rows 19—21, and so on.
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A ] B | C | D | E | F | G | H | |
1 Table 5.2
2 | Regressions of Returns over Standard Deviation
i and Log of Fair Market Value
5 30 Year
6 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 50.60%
7 _|Intercept 11.98% 1.27% 9.46 0.00% 9.06% 14.89% | Adjusted R Square 44.43%
8 |Std Dev 19.57% 6.84% 2.86 2.11% 3.81% 35.34% | Standard Error 0.67%
9
10 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 84.01%
11 |Intercept 25.50% 1.54% 16.57 0.00% 21.95% 29.05% |Adjusted R Square 82.02%
12 [Ln(FMV) -0.462% 0.071% -6.48 0.02% -0.63% -0.30% | Standard Error 0.38%
13
14 40 Year
15 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 65.60%
16 |Intercept 8.81% 1.29% 6.85 0.01% 5.84% 11.77%|Adjusted R Square 61.30%
17 |Stdev 22.72% 5.82% 3.91 0.45% 9.31% 36.14% |Standard Error 0.72%
18
19 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 85.10%
20 [Intercept 26.61% 1.91% 13.94 0.00% 22.21% 31.01% |Adjusted R Square 83.24%
21 |Ln(FMV) -0.597% 0.088% -6.76 0.01% -0.80% -0.39% | Standard Error 0.47%
22
23 50 Year
24 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 83.66%
25 |Intercept 7.75% 1.16% 6.66 0.02% 5.07% 10.43% |Adjusted R Square 81.61%
26 [Std Dev 32.42% 5.07% 6.40 0.02% 20.74% 44.11%|Standard Error 0.75%
27
28 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 96.58%
29 [Intercept 35.89% 1.39% 25.80 0.00% 32.68% 39.10% |Adjusted R Square 96.15%
30 |Ln(FMV) -0.967% 0.064% -15.03 0.00% -1.12% -0.82%|Standard Error 0.34%
31
32 60 Year
33 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 84.91%
34 |Intercept 9.13% 0.90% 10.19 0.00% 7.06% 11.19%|Adjusted R Square 83.03%
35 [Std Dev 26.72% 3.98% 6.71 0.02% 17.54% 35.90% | Standard Error 0.56%
36
37 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 96.96%
38 _|Intercept 31.13% 1.01% 30.77 0.00% 28.79% 33.46% |Adjusted R Square 96.58%
39 [Ln(FMV) -0.747% 0.047% -15.97 0.00% -0.85% -0.64%|Standard Error 0.25%
40
41 70 Year
42 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 93.04%
43 [Intercept 7.81% 0.79% 9.93 0.00% 6.00% 9.62% |Adjusted R Square 92.17%
44 |Std Dev 34.00% 3.29% 10.34 0.00% 26.42% 41.58% |Standard Error 0.59%
45
46 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 99.01%
47 |Intercept 41.06% 0.90% 45.55 0.00% 38.98% 43.14% |Adjusted R Square 98.88%
48 [Ln(FMV) -1.176% 0.042% -28.22 0.00% -1.27% -1.08%|Standard Error 0.22%
49
50 82 Year
51 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%|R Square 97.37%
52 _|Intercept 5.54% 0.58% 9.50 0.00% 4.20% 6.88% |Adjusted R Square 97.04%
53 | Std Dev 33.76% 1.96% 17.20 0.00% 29.23% 38.29% | Standard Error 0.45%
54
55 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%(R Square 93.80%
56 |Intercept 46.22% 2.82% 16.37 0.00% 39.71% 52.74% |Adjusted R Square 93.02%
57 |Ln(FMV) -1.436% 0.131% -11.00 0.00% -1.74% -1.14%|Standard Error 0.70%

Table 5.2, rows 6—12 show regressions #1 and #2 using only the past 30 years of
data (i.e., from 1969 to 1998.1° Regression equation #1 for this period is: = 11.98%
+ (19.57% x S) (B7, B8), and regression equation #2 is = 25.50% — [0.462% X In
(FMV)] (B11 and B12).

Rows 51-53 repeat regression #1 for the same 82 years as Table 5.1. The y-
intercept of 5.54% (B52) and the x-coefficient of 33.76% (B53) in Table 5.2 are

19The time sequence in Table 5.2 differs by two years from that in Figures 5.3 to 5.6. Whereas
the latter show decades ending in 19X5 (e.g., 1945, 1955, etc.) and 2005, Table 5.2’s terminal
year is 2007.
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A ] B [ c [ D | E

1 Table 5.2A
2 Regression Comparison [1]
3
4 Standard Errors
5 Years Regr #1 [2] Regr #2 [3] Total Adj R? (Regr #2) [4]
6 30 0.67% 0.38% 1.05% 82.02%
7 40 0.72% 0.47% 1.19% 83.24%
8 50 0.75% 0.34% 1.09% 96.15%
9 60 0.56% 0.25% 0.80% 96.58%
10 70 0.59% 0.22% 0.81% 98.88%
11 82 0.45% 0.70% 1.15% 93.02%
12

E [1] Summary regression statistics from Table 5.2.
14

[ 15 |[2] Table 5.2: 18, 117, ...

16|

[ 17 |[3] Table 5.2: 112, 121, ...

18
19 |[4] Table 5.2: 111, 120, ...

identical to those appearing in Table 5.1 (C23 and C30, respectively). Rows 55—57
repeat regression #2 for the same period. Once again, the y-intercept in Table 5.2 of
46.22% (B56) and the coefficient of In (FMV) of —1.436% (B57) match those found
in Table 5.1 (C37 and C43, respectively).

Table 5.2A summarizes the key regression feedback from Table 5.2. For the
six different time periods we consider, when looking at the combined standard
errors for regression #1 and regression #2, both the 60-year and 70-year periods are
statistically the winners. The standard error of the y-estimate using 60-year of data
is 0.80% (D9), which is essentially the same as the 70-year standard error, 0.81%
(D10). The standard error of the y-estimate of 1.15% (D11) using all 82 years of data
is larger than these standard errors. After the 70-year standard error, the next-lowest
standard error is 1.05% (D6) for 30 years of data.

Regression #2 is the more important regression for valuing privately held firms,
and the 70-year standard error at 0.22% (C10) is the lowest among the six listed.
The 70-year regression also has the highest adjusted R*—98.88% (E10)—and it has
a relatively low standard error for regression #1. Thus, it appears that the 70-year
data is statistically the winner.

For regression #2, the 95% confidence intervals for the 70 years of data are
smaller than they are for the other candidates. For regression #2 they are between
38.98% and 43.14% (Table 5.2, F47, G47) for the y-intercept—a range of 4.2%—and
—1.27% to —1.08% (F48, G48) for the slope—a range of 0.19%. For 82 years of data,
the range is 13% for the y-intercept (G56 minus F56) and 0.60% (G57 minus F57) for
the slope, which is over three times larger than for the 70-year data. Thus, for the
log size method, the past 70 years of data provide a tighter estimate of stock market
returns than other time periods, as measured by the size of confidence intervals
around the regression estimates for regression #2 and by the adjusted R?.

EIGHTEENTH-CENTURY STOCK MARKET RETURNS Paul Harrison’s article (Harrison,
1998) is a fascinating econometric study that is very advanced and extremely
mathematical. The data for this study came primarily from biweekly Amsterdam
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stock prices published from July 1723 to December 1794 for the Dutch East India
Company and a select group of English stocks that were traded in Amsterdam: the
Bank of England, the English East India Company, and the South Sea Company.
Harrison also examined stock prices from London spanning the eighteenth century.

Harrison found the shape of the distribution of stock price returns in the eigh-
teenth and twentieth centuries to be very similar, although their means and stan-
dard deviations are different. The eighteenth-century returns were lower—but less
volatile—than twentieth-century returns. He found the distributions to be symmetric,
like a normal curve, but leptokurtic (fat tailed), which means there are more extreme
events occurring than would be predicted by a normal curve. The same fundamental
pattern exists in both 1725 and 1995.

Harrison remarks that clearly much has changed over the last 300 years, but,
interestingly, such changes do not seem to matter in his analysis. He comments
that the distribution of prices is not driven by information technology, regulatory
oversight, or by the specialist—none of these existed in the eighteenth-century
markets. However, what did exist in the eighteenth century bears resemblance to
what exists today.

Harrison describes the following as some of the evidence for similarities in the
market:

® Stock traders in the eighteenth century reacted to and affected market prices like
traders today. They competed vigorously for information,'” and the eighteenth-
century markets followed a near-random walk—so much so that an entire pam-
phlet literature sprang up in the early eighteenth century lamenting the unpre-
dictability of the market. Harrison said that unpredictability is a theoretical result
of competition in the market.

= Eighteenth-century stock markets were informationally efficient, as shown
econometrically by Neal (1990).

® The practices of eighteenth-century brokers were sophisticated. Investors early
in the eighteenth century valued stocks according to their discounted stream
of future dividends. Tables were published (such as Hayes, 1726) showing
the appropriate discount for different interest rates and time horizons. Traders
engaged in cash contracts, futures contracts, and options; they sold short, issued
credit, and used “modern” investment strategies, such as forming portfolios,
diversification, and hedging.

Another interesting source of very long-term stock market returns is Ibbotson
and Brinson (1993).1® The authors constructed a stock market total return going back

17 A fascinating story that I remember from an economic history course is that Baron Rothschild,
having placed men with carrier pigeons at the Battle of Waterloo, was the first nonparticipant
to know the results of the battle. He first paid a visit to inform the King of the British victory,
and then he proceeded to the stock market to make £100 million—many billions of dollars
in today’s money—a tidy sum for having insider information. He struck a blow for market
efficiency. Even his method of making a fortune in the market that day is a paradigm of the
extent of market efficiency then. He knew that he was being observed. He began selling, and
others followed him in a panic. Later, he sent his employees to do a huge amount of buying
anonymously. The markets were indeed efficient—at least they were by the end of the day!
BQuoted in SBBE—2009 Valuation Edition, page 71, footnote 5.
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to 1790. Even with some uncertainty about the accuracy of the data before 1850, the
real (inflation-adjusted) returns experienced by investors in three 50-year and one
51-year periods from 1790 to 1990 were statistically similar, and none of the periods
differed from the 201-year average.

To all of the foregoing, I would add an observation by King Solomon, who said,
“There is nothing new under the sun” (Ecclesiastes, 1:9). Also in keeping with the
theme in our chapter, King Solomon became the inventor of portfolio theory when
he wrote, “Divide your wealth into seven, even eight parts, for you cannot know
what misfortune may occur on earth” (Ecclesiastes, 11:2).

IBBOTSON’S OPINION OF OUTLIERS AND THE FINANCIAL CRISIS OF 2008 Ibbotson’s
opinion' is that over the very long run there are very few events that are truly
outliers. The Financial Crisis of 2008 and Paul Harrison’s and Ibbotson and Brinson’s
research seem to corroborate this. It is in the nature of the stock market for there
to be periodic booms and crashes, indicating that we should use all 82 years of the
U.S. stock market data.

IS THE EQUITY PREMIUM DECLINING? ~ Fama and French (2002) forecast that future
returns will be lower than historical returns by approximately 4%. Lettau, Ludvigson,
and Wachter (2008)* find that long-term decline in macroeconomic risk (standard
deviation in growth of nondurables and services and personal consumption expen-
ditures) accounts for a significant portion of the decline in rates of return. They
forecast a 2% decline.

Ibbotson and Chen (2003) use a supply-side model (a.k.a. supply model) to fore-
cast future returns. The supply-side model is based on the idea that the productivity
of corporations in the real economy generates the supply of stock market returns,
and investors should expect that equity returns should be close to the long-run
supply estimate.

SBBF—2008 Valuation Yearbook Graphs 5.13 and 5.14 update that research.
Ibbotson and Chen broke historical returns into five components. Additionally, we
show the SBBF—2009 results in parentheses.

1. CPI inflation of 3.05% (3.01% for SBBF—2009).
2. Growth in real earnings per share of 2.14% (1.58% for SBBF—2009). Note the
large decline for the effects of the Financial Crisis of 2008.
. Income returns of 4.18% (4.15% for SBBI—2009).
. The reinvestment return of 0.23% (0.20% for SBBF—2009).
5. The historical annual PE growth factor using three-year earnings of 0.67% (0.60%
for SBBF—2009).

W9

The result is a geometric supply of equity returns of [(1 + 3.05%) x (1 4 2.14%)
— 1] + 4.18% + 0.23% = 9.7% geometric average forecast returns (9.0% for SBBF—

YSBBE—2009 Classic Edition, p. 29, and SBBI—2009 Valuation Edition, p. 61.

Even though this published in 2008, its copyright is 2007, and was written earlier. It appears
that the data used by the authors stops at about the year 2002, with the majority of it being
before 2000. Thus, it predates the Financial Crisis of 2008.
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2009).*! The only component of historical returns excluded from forecast returns is
the 0.67%% historical annual geometric growth in the PE ratio. In Table 5.3, B32,
we estimate the arithmetic annual growth at 0.80%.% There is no reason to forecast
that it will grow in the future, as today’s PE is the market’s forecast of the future.
Thus, Ibbotson’s supply-side model implies a decline in future arithmetic returns of
0.80%. Of the various articles on the declining equity premium, I found Ibbotson
and Chen’s the most compelling. It has stronger theoretical appeal than Fama and
French and is far simpler and more compelling than Lettau et al. Thus my conclusion
is that it is appropriate to subtract 0.80% from our discount rate calculations, which
we do later in Tables 5.3 and the 5.4 series.

CONCLUSION ON DATASET  After our extensive review of the data and the academic
literature, we need to conclude as to which time period is the best for our discount
rate calculations. The statistical evidence in our analysis of Tables 5.1 through 5.2A
and the declining volatility of returns in Figure 5.3 points to continuing with the
decision we made in the first edition of this book, which is to eliminate 1926—1937
data, as the 70-year results appear the most pristine. However, the Financial Crisis
of 2008 has rocked the country, and it now seems much more questionable and
probably inappropriate to eliminate the volatility of the Roaring Twenties and the
Great Depression.

In a personal conversation in 1998, Paul Harrison said that even with 300 years
of history showing similarity in the distribution of returns, he would be inclined to
label the years in question as an outlier that should probably be excluded from the
regression. However, that was before September 11, 2001, and the Financial Crisis of
2008. 1t is a difficult call to make, but since the publication of the first edition of this
book, the world at large and the financial world are more volatile. Harrison’s findings
of leptokurtic stock returns 300 years ago is a timely reminder now that great and
terrible times are a part of the market and more so than a normal distribution would
lead us to believe. Thus, while we eliminated the years 1926—1937 from the final
regression in the first edition, we leave them in now and use Ibbotson’s full dataset.

Application of the Log Size Model

Equation (5.2) is the most appropriate for calculating current discount rates and
will be used for the remainder of the book. In the next sections, we will use it to
calculate discount rates for various firm sizes and demonstrate its use in a simplified
discounted cash flow analysis.

2This formula works only for geometric returns.

22SBBI—2008 Valuation Yearbook, p. 95.

#This calculation is an estimate based on partial data. It would have been ideal to have the ge-
ometric average annual PE growth for each decile, but the data are unavailable. Furthermore,
it is likely that the arithmetic increase in PE is larger for the small firms. For simplicity, we
make one single subtraction that applies to all deciles. However, it would be more accurate to
calculate the ratio of arithmetic to geometric mean returns for each decile, multiply by 0.67%,
subtract that amount from each decile’s arithmetic mean return, and rerun the regression in
Table 5.1.
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A [ B [ C
1 Table 5.3
2 Table of Discount Rates Based
3 on FMV: 1926-2007 SBBI Data
4
5 Regression Results | Implied Historical| Implied Discount
6 Mktable Min FMV | Arithm Return [1] Rate (R) [2]
7 $10,000,000,000 13.2% 12.4%
8 $1,000,000,000 16.5% 15.7%
9 $100,000,000 19.8% 19.0%
10 $50,000,000 20.8% 20.0%
11 $10,000,000 23.1% 22.3%
12 $5,000,000 24.1% 23.3%)
13 $3,000,000 24.8% 24.0%
14 $1,000,000 26.4% 25.6%
15 $750,000 26.8% 26.0%
16 $500,000 27.4% 26.6%
17 $400,000 27.7% 26.9%)
18 $300,000 28.1% 27.3%
19 $200,000 28.7% 27.9%
20 $150,000 29.1% 28.3%
21 $100,000 29.7% 28.9%
22 $50,000 30.7% 29.9%)
23 $30,000 31.4% 30.6%
24 $10,000 33.0% 32.2%
25 $1,000 36.3% 35.5%
26 $1 46.2% 45.4%
27
28 |Geometric Avg Annual Growth in PE [3] 0.67%
29 |[Arithmetric Mean Returns—Value Wtd Index [4] 12.0%
30 |Geometric Mean Returns—Value Wtd Index [4] 10.1%
31 |Ratio of Arithmetic-to-Geometric Returns (B29/B30) 1.188
32 |Estimated Arithmetic Mean Growth in PE (B28 x B31) [5] 0.80%
33
34 ([1] Based on constant and x-coefficient from Table 5.1, C39 and C45.
35
36 |[2] We subtract the estimated arithmetic average increase in PE of 0.80% in B32.
37
38 |([3] SBBI—2008 Valuation Yearbook, p.95.*
39
40 |[4] SBBI—2008 Classic Yearbook, p.130.**
41
42 |[5] This calculation is an estimate based on partial data. It would have been ideal to have the geometric
43 average annual PE growth for each decile, but the data are unavailable. Furthermore, it is likely that
44 the arithmetic increase in PE is larger for the small firms. For simplicity, we make one single
45 subtraction that applies to all deciles. However, it would be more accurate to calculate the ratio of
46 arithmetic to geometric mean returns for each decile, multiply by 0.67%, subtract that amount from
47 each decile's arithmetic mean return, and rerun the regression in Table 5.1.
48
49 |° Source: Morningstar, Inc.—2008 Ibbotson® Stocks, Bonds, Bills and Inflation (SBBI) Valuation
Yearbook.
50
51
52 | Source: Morningstar, Inc.—2008 Ibbotson® Stocks, Bonds, Bills and Inflation (SBBI) Classic
53 Yearbook.
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Discount Rates Based on the Log Size Model

Table 5.3 shows the implied historical arithmetic rates of return in column B and
the forecast equity discount rates in column C for firms of various sizes using the
log size model equation (5.2). The difference in the two columns is that we subtract
our estimate of the arithmetic mean growth in the PE ratio of 0.80% (B32) from each
number in column B to calculate column C. For example, 13.2% — 0.8% = 12.4%
(B7 — B32 = C7). This is the portion of historical returns that we do not expect to
repeat in the future, per our discussion of Ibbotson’s supply-side model.

Our calculation of the 0.80% begins with the geometric average annual growth
in the PE multiple from 1926 to 2007 of 0.67% (B28). Unfortunately, Ibbotson
does not provide the arithmetic mean annual increase in the PE multiple, so we
must estimate it. The arithmetic mean return for the Value-Weighted Index of
NYSE/AMEX/NASDAQ is 12.0% (B29), and the geometric mean return is 10.1%
(B30). The ratio of the two is 1.188 (B31). When we multiply that by the geomet-
ric average annual growth in the PE multiple of 0.67% (B28), we get an estimated
arithmetic mean annual growth in the PE multiple of 0.80% (B32). We subtract this
number from each entry in column B to calculate column C.

The following discussion is based on column B, but ultimately we use column
C as our final discount rate. The logic behind this is that if we expect the future
to correspond exactly to the past, then column B would be our table of discount
rates. However, our historical rates of return in column B contain a component
measuring 0.80% that we do not expect to repeat in the future. Therefore, the final
table of discount rates is column C. In the meantime, however, we proceed to
explain column B.

The implied (.e., regression calculated) historical arithmetic rate of return for a
$10 billion firm is 13.2% (B7), and for a $3 million firm it is 24.8% (B13), based on
82-year arithmetic average market returns for deciles #1 to #10. The smallest firm in
decile #10b is $2 million in market capitalization,?* which interpolates to an implied
discount rate of 25.6% as the average of B13 and B14. While those values and all
values in between are interpolations based on the model, the discount rates for firm
values below $2 million are extrapolations, as they lie outside the original dataset.

Using equation (5.2), the Excel formula for B7 is: = 0.4622 — (0.01436 = In(A7)).
In Lotus 123, the formula would be: + 0.4622 — (0.01436 * @ In(A7)).

Regression #2 (equation (5.2)) tells us that the discount rate is a constant minus
another constant multiplied by In (FMV). Since In (FMV) has a characteristically
upward-sloping shape, as seen in Figure 5.6, subtracting a curve of that shape from
a constant leads to a discount rate function that is a mirror image of Figure 5.6.
Figure 5.7 is the graph of that relationship, and the reader can see that the result is
a downward-sloping curve. Again, this curve depicts the rate of return, that is, the
discount rate, as a function of the absolute dollar value of the firm. Note that this
is not on a log scale. Since the regression equation is » = 46.22% — [1.436% x In
(FMV)], we begin at the extreme left with a return of 46.22% for a firm worth $1 and
subtract the fraction of the In FMV dictated by the equation.

2#SBBI—2008 Valuation Yearbook, back page.
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FIGURE 5.7 Discount Rates as a Function of FMV

An important property of logarithms is that In xy = In x + In y.?* Since regression
equation #2 has the form » = a + b In FMV, where a = 0.4622 and b = —0.01436,
we can ask how the discount rate varies with differing orders of magnitude in value.
First, however, we will work through some general equations where we vary the
value of the firm by a factor of K.

Let:

r1 =the discount rate for Firm #1, whose value = FMV;.
r, =the discount rate for Firm #2, whose value = FMV, = K FMV;.

r = a+ b ln FMV, Regression equation #2 applied to Firm #1. (5.3
r, =a-+ b1ln(K FMV;) Regression equation #2 applied to Firm #2. 5.4
r,=a-+ blln K 4+ 1n FMV,]. (5.5
rm=a+blnFMV;+bln K. (5.6)
rn=r+blnK. 5.7

In words, the discount rate of a firm K times larger (smaller) than Firm #1 is always
|&] In K smaller (larger) than 7.

That is because ¢° x & = ", Taking logs of both sides of that equation is the proof.
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Let’s illustrate the nature of this relationship with some specific examples. First,
let’s examine what happens with orders of magnitude of 10. Ln 10 = 2.302585, so
b x In 10 = —0.01436 x 2.302585 = —3.3%. This means that if Firm #2 is 10 times
larger (smaller) than Firm #1, its discount rate should be 3.3% lower (higher) than
the Firm #1 discount rate. We can see this result in Table 5.3. The $10 billion firm
has a discount rate of 13.2%, while the $1 billion firm has a discount rate of 16.5%,
which is 3.3% higher, as it should be. The $100 million firm has a discount rate of
19.8%, which is 3.3% higher than the $1 billion firm. Because of the mathematical
properties of logarithms, the same percentage change in FMV will always result in
the same absolute change in the discount rate. This phenomenon is also seen in
graphs containing log scales. Equal distances on a log scale are equal percentage
changes, not absolute changes.

Let’s try one more useful calculation—an order of magnitude 2. Ln 2 = 0.6931,
so that b x In K = —0.01436 x 0.6931 = —1%. Doubling (halving) the value of the
firm reduces (increases) the discount rate by 1%. You can see that in going from a
$100 million firm to a $50 million firm; the discount rate increased from 19.8% to
20.8%, a 1% difference (see Table 5.3, B9 and B10).

Now it is possible to construct your own table. All you need to know is your
starting FMV and discount rate. The rest follows easily from the previous formulas.
Also, we can easily interpolate the table. Suppose you wanted to know the discount
rate for a $25 million firm. Simply start with the $50 million firm, where » = 20.8%,
and add 1% = 21.8%.

NEED FOR ANNUAL UPDATING It is important to update Tables 5.1 through 5.3
annually, as new market data become available. Additionally, it is important to be
careful to match the regression equation to the year of the valuation. If the valuation
assignment is retroactive and the valuation date is 2004, then one should use a
regression equation for 1926—2004.

COMPUTATION OF THE DISCOUNT RATE IS AN ITERATIVE PROCESS In spite of the
straightforwardness of these relationships, we have a problem of circular reasoning
when it comes to computing the discount rate. We need FMV to obtain the discount
rate, which is in turn used to discount cash flows or income to calculate the FMV!
Hence, it is necessary to make sure that our initial estimate of FMV is consistent with
the final result. If it is not, then we have to use the calculated FMV from the end
of iteration #1 as our new assumed FMV in iteration #2. Using either equation (5.2)
or Table 5.3 implies a new discount rate, which we use to value the firm. We keep
repeating the process until the results are consistent.

It is extremely rare to require more than two iterations to achieve consistency
in the ex ante and ex post values. The reason is that even if we guess the value
of the firm incorrectly by a factor of 10, we will be only 3.3% off in our discount
rate. By the time we come to the second iteration, we usually are consistent. The
reason behind this is that the discount rate is based on the logarithm of the value.
As we saw earlier, there is not much difference between the log of $10 billion and
the log of $10 million, and multiplying that by the x-coefficient of —0.01436 further
reduces the effects of an initial incorrect estimate of value. This is a convergent
system 99% of the time with any kind of reasonable initial guess of value and even
most unreasonable guesses.
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The need for iteration arises because of the mathematical properties of the
equations we use in valuing a firm. The simplest type of valuation is that of a firm
with constant growth to perpetuity, where we simply apply the Gordon growth
model (“Gordon model”) to our forecast of cash flow for the coming year. For
simplicity, we will use the end-of-year Gordon model formula, although it is not as
accurate as the midyear formula, and we ignore the subtraction of the arithmetic
average annual increase in the PE ratio.

We use the following definitions:

CF= cash flow (available to equity) in year ¢ + 1 (the first forecast year).
a=0.4622, the regression constant from regression #2.
b= —0.01430, the x-coefficient from regression #2.
V =fair market value (FMV) of the firm.
r=the discount rate.

Using the Gordon model and ignoring valuation discounts and premiums, the
FMV of the firm is:

v - 5.8)
Per equation (5.3), our log size equation for the discount rate is:
r=a+blnV. 6.9
Substituting equation (5.9) into (5.8), we get:
< 5.10)

V=—rr——
a+blnV—g

Equation (5.10) is a transcendental equation with no analytic solution.?® There-
fore, successive approximation is the only method of determining an answer. The
simple iterative procedure in Tables 5.4A, 5.4B, and 5.4C is very easy to use and
works in almost all situations.

Practical Ilustration of the Log Size Model: Discounted Cash Flow Valuations

Let’s illustrate how the iterative process works with a specific example. The assump-
tions, formulas, and method in Tables 5.4A, 5.4B, and 5.4C are identical, except for
the discount rate. Table 5.4A is a very simple discounted cash flow (DCF) analysis of
a hypothetical firm. The basic assumptions appear in B30 through B35. We assume
the firm had $100,000 (B30) cash flow in 2007. We forecast annual growth rates
in row 31, which we use in our calculations in row 5, and long-term growth at
4% (B33), which we use in our 2013 cash flow forecast in B10 and in calculating
the Gordon model multiple in B11.%” In B32 we make an initial and intentionally
incorrect guess of a 23% discount rate.

1 thank my friend William Scott, Jr., a physicist, for the terminology and the definitive word
that there is no analytic solution.
#Note that the formulas in C10 and C11 use g, which is the growth rate to perpetuity.
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A [ B [ ¢ T o [ E T F [ G

1 Table 5.4A

2 DCF Analysis Using 1926-2007 Regression Data—1st Iteration

3

4 |Year 2008 2009 2010 2011 2012 Total
5 [Forecast Cash Flow $112,000 | $123,200 $134,288 $145,031 $155,183
6 | Present Value Factor 0.9017 0.7331 0.5960 0.4845 0.3939
7 _|PV of Cash Flow $100,987 $90,314 $80,034 $70,274 $61,132 [ $402,741
8

9 |Calculation of Fair Market Value: Amount| Formula

10 |Forecast Cash Flow 2013 $161,391 | (1 +9) xF5

11 | Gordon Model Multiple 5.8371| SQRT (1 + 1)/ (r—9g)

12 [PV 2013-Infinity as of 1/1/2013 $942,057 [ B10 x B11

13 |Present Value Factor—5 Years 0.3552| 1/(1 + n)°

14 [PV 2013-Infinity as of 1/1/2008 $334,620 | B12 x B13

15 |Add PV of 2008-2013 Cash Flow 402,741 | G7

16 _|FMV—Marketable Minority $737,360 | B14 + B15

17 | Control Premium 294,944 | B16 x B34

18 |FMV—Marketable Control Interest 1,032,305 | B16 + B17

19 [Disc—Lack of Marketability (361,307)| B18 x B35
20 |Fair Market Value—llliquid Control $670,998 | B18 + B19
21 |Calc of Disc Rate—Regr Eq #2
22 |Ln (FMV—Marketable Minority) 13.5108| Ln(B16)
23 | X-Coefficient (Table 5.1, C43) -0.01436
24 | Product -0.1941| B22 x B23
25 [Constant (Table 5.1, C37) 0.4622| Constant—Regression #2
26 |- Annual Incr PE Ratio (5.3, B32) -0.0080
27 |Discount Rate (Rounded) [1] 26%| Sum of B24 to B26
28
29 |Assumptions:
30 |Base Adjusted Cash Flow $100,000
31 | Growth Rate in Adj Cash Flow 12% 10%] 9%] 8%] 7%]|
32 |Discount Rate = r 23%
33 |Growth Rate to Perpetuity = g 4%
34 | Control Premium 40%
35 | Discount—Lack of Marketability 35%
37 |[1] As the assumed and the calculated discount rates (B32 and B27) are unequal, we must run an additional
38 iteration.

The DCF analysis in rows 5 through 7 is standard and requires little explanation.
The present value factors are midyear, and the value in B16 is a marketable minor-
ity interest.? It is this value, $737,360, which we use to compare the consistency
between the assumed discount rate (the ex ante discount rate) of 23% (B32) and the
calculated discount rate (the ex post discount rate) according to the log size model.
The reason for this is that our regression results in Tables 5.1 and 5.1A are based on
market data of publicly held (marketable) minority interests. To remain consistent in
our comparison of the assumed and the calculated log size discount rate, we must
use the marketable minority FMV for our calculation in B22 through B27.

We begin calculating the discount rate using the log size model in B22, where
we compute In (737,360) = 13.5108. This is the natural log of the initially computed
marketable minority value of the firm. We repeat the x-coefficient of —0.01436 from
Table 5.1, C43 in B23 and multiply B22 x B23 to calculate the product of —0.1941
in B24. To that we add the regression constant of 0.4622 (B25, transferred from
Table 5.1, C37) and subtract the annual increase in the PE ratio of 0.8% (B26) from
Ibbotson’s supply-side model to obtain an implied (ex post) discount rate of 26%
(rounded, B27).

Comparing the two discount rates—assumed and calculated—reveals that we
initially assumed the discount rate too low, which means that we overvalued the firm.

2See Chapter 8 for explanation of the levels of value and valuation discounts and premiums.
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A | B | C | D | E | F | G
1 Table 5.4B
2 DCF Analysis Using 1926-2007 Regression Data—2nd Iteration
3
4 |Year 2008 2009 2010 2011 2012 Total
5 |Forecast Cash Flow $112,000 $123,200 $134,288 $145,031 $155,183
6 [Present Value Factor 0.8909 0.7070 0.5611 0.4454 0.3535
7 _|PV of Cash Flow $99,778 $87,107 $75,355 $64,590 $54,850 $381,680
8
9 |Calculation of Fair Market Value: Amount| Formula
10 _[Forecast Cash Flow $161,391 [ (1 +g) xF5
11_[Gordon Model Multiple 5.1023| SQRT (1 +1n/(r—g)
12_|PV 2013-Infinity as of 1/1/2013 $823,457 | B10 x B11
13 |Present Value Factor—b5 Years 0.3149] 1/(1 + n5
14 _|PV 2013-Infinity as of 1/1/2008 $259,291 | B12 x B13
15 |Add PV of 2008-2013 Cash Flow 381,680 [ G7
16 _|FMV—Marketable Minority $640,971 [ B14 + B15
17 _|Control Premium 256,388 [ B16 x B34
18 |FMV—Marketable Control Interest 897,359 | B16 + B17
19 [Disc—Lack of Marketability (314,076)| B18 x B35
20 |Fair Market Value—llliquid Control $583,284 | B18 + B19
21 |Calc of Disc Rate—Regr Eq. #2
22 |Ln (FMV—Marketable Minority) 13.3707| Ln(B16)
23 | X-Coefficient (Table 5.1, C43) -0.01436
24 |Product -0.1921] B22 x B23
25 |Constant (Table 5.1, C37) 0.4622| Constant—Regression #2
26 |- Annual Incr PE Ratio (5.3, B32) -0.0080
27 |Discount Rate (Rounded) [1] 26% | Sum of B24 to B26
28
29 |Assumptions:
30 |Base Adjusted Cash Flow $100,000
31 _|Growth Rate in Adj Cash Flow 12% 10%] 9% 8%] 7%]
32 |Discount Rate = r 26%
33 |Growth Rate to Perpetuity = g 4%
34 [Control Premium 40%
35 | Discount—Lack of Marketability 35%
36
37 |[1] As the assumed and the calculated discount rates (B32 and B27) are equal, we are consistent and do not
38 need an additional iteration unless we wish to add a company specific adjustment to the discount rate.

We will correct that problem in Table 5.4B. In the meantime, though, we continue
describing the remaining cells in the spreadsheet.

B17 through B19 contain the control premium and discount for lack of mar-
ketability, which we assume at 40% (B34) and 35% (B35), respectively. These are
simple assumptions with no intent to be as realistic as possible, as we cover these
topics in depth in Chapter 8. Because the assumed and calculated discount rates are
not yet consistent, we ignore the specific numerical results, as they are irrelevant.

THE SECOND ITERATION: TABLE 5.4B  We revise our discount rate to 26% (B32),
which was our calculated discount rate in Table 5.4A, B27. In this case, we arrive at
a marketable minority FMV of $640,971 (B16). When we perform the discount rate
calculation with this value in B22 through B27, we obtain a matching discount rate
of 26%, indicating that no further iterations are necessary.

CONSISTENCY IN LEVELS OF VALUE  In calculating discount rates, it is important to
be consistent in the level of fair market value that we are using. Since the log
size model is based on returns from the NYSE/AMEX/NASDAQ, the corresponding
values generated are on a marketable minority basis. Consequently, it is this level of
value that we should use for the discount rate calculations.

Frequently, however, the marketable minority value is not the ultimate level
of fair market value that we are calculating. Therefore, it is crucial to be aware
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A [ B [ ¢ [ b [ E [ F [ @G
1 Table 5.4C
2 DCF Analysis Using 1926—2007 Regression Data—3rd lteration
3
4 |Year 2008 2009 2010 2011 2012 Total
5 |Forecast Cash Flow $112,000 $123,200 $134,288 $145,031 $155,183
6 [Present Value Factor 0.8839 0.6905 0.5395 0.4215 0.3293
7 _|PV of Cash Flow $98,995 $85,074 $72,446 $61,126 $51,098 $368,738
8
9 [Calculation of Fair Market Value: Amount| Formula
10 [Forecast Cash Flow $161,391 | (1 +g) xF5
11 |Gordon Model Multiple 471401 SQRT (1+n/(r—g)
12 _|PV 2013-Infinity as of 1/1/2013 $760,802 | B10 x B11
13 |Present Value Factor—5 Years 0.2910] 1/(1 + N>
14 [PV 2013-Infinity as of 1/1/2008 $221,423 | B12 x B13
15 |Add PV of 2008-2013 Cash Flow 368,738 | G7
16 [FMV—Marketable Minority $590,161 | B14 + B15
17 |Control Premium 236,064 | B16 x B34
18 |FMV—Marketable Control Interest 826,225 | B16 + B17
19 [Disc—Lack of Marketability (289,179)| B18 x B35
20 |Fair Market Value—llliquid Control $537,046 | B18 + B19
21 _|Calc of Disc Rate-Regr Eq #2
22 |INA NA |NA, as we achieved consistency in Table 5.4B
23
24
25
26
27
28
29 |Assumptions:
30 |Base Adjusted Cash Flow $100,000
31 _|Growth Rate in Adj Cash Flow 12% 10%] 9%| 8%] 7%]
32 |Discount Rate = r[1] 28%
33 |Growth Rate to Perpetuity = g 4%
34 | Control Premium 40%
35 | Discount—Lack of Marketability 35%
36
37 _|[1] We achieved consistency between the assumed and the calculated discount rates in Table 5.4B and add a
38 2% company-specific premium to the discount rate.

of the differing levels of FMV that occur as a result of valuation adjustments. For
example, if our valuation assignment is to calculate an illiquid control interest, we
will add a control premium and subtract a discount for lack of marketability from
the marketable minority value.? Nevertheless, we use only the marketable minority
level of FMV in iterating to the proper discount rate.

TABLE 5.4C: ADDING COMPANY-SPECIFIC ADJUSTMENTS TO THE DCF ANALYSIS ~ The final
step in our DCF analysis is performing company-specific adjustments. Let’s suppose
for illustrative purposes that there is only one owner of this firm. She is 62 years
old and had a heart attack three years ago. The success of the firm depends to a
great extent on her personal relationships with customers, which may not be easily
duplicated by a new owner. Therefore, we decide to add a 2% company-specific
adjustment to the 26% discount rate from Table 5.4B to reflect this situation,® which
leads us to a 28% (B32) discount rate.

#Not all authorities would agree with this statement. There is considerable disagreement on
the levels of value. We cover those controversies in Chapter 8.

A different approach would be to take a discount from the final value, which would be
consistent with key-person-discount literature appearing in a number of articles in Business
Valuation Review (see the BVR index for cites). Another approach is to lower our estimate
of earnings to reflect our weighted average estimate of decline in earnings that would follow
from a change in ownership or the decreased capacity of the existing owner, whichever is
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Prior to adding a company-specific adjustment, it is important to achieve internal
consistency in the ex ante and ex post marketable minority values, as we did in
Table 5.4B. The remainder of the table is identical to its predecessors, except that
we eliminate the ex post calculation of the discount rate in B22 through B27, since
we have already achieved consistency.

It is at this point in the valuation process that the dollar amounts of our control
premium and discount for lack of marketability are meaningful. Our final fair market
value of $537,046 (B20) is on an illiquid control basis.

In a valuation report, it would be unnecessary to show Table 5.4A. One should
show Tables 5.4B and 5.4C only.

The Table 5.4 series of examples still does not consider the material later in the
chapter in the section, “The Wedge between Public and Private Firm Valuations,”
in which we introduce the concept of a private firm premium. Thus, the discount
rate calculations in the Table 5.4 series are not the end of the story. The appraiser
still needs to consider a private firm premium in addition to the company-specific
premium.

Total Return versus Equity Premium

CAPM uses an equity risk premium as one component for calculating return. The

discount rate is calculated by multiplying the equity premium by beta and adding

the risk-free rate. In my first article on the log size model (Abrams, 1994), T also used

an equity premium in the calculation of the discount rate. Similarly, Grabowski and

King (1995) used an equity risk premium in the computation of the discount rate.
The equity premium form of the log size model is:

r = Ry + size-based equity premium. (5.1D

The size-based equity premium is equal to the return, as calculated by the log
size model, minus the historical average risk-free rate:3!

Equity Premium = a + b In FMV — Rp, (5.12)

where Ry is the historical average risk-free rate.

more appropriate, depending on the context of the valuation. In this example, I have already
assumed that we have done that. There are opinions that one should lower earnings estimates
and not increase the discount rate. It is my opinion that we should definitely increase the
discount rate in such a situation, and we should also decrease the earnings estimates if that
has not already been done.

3In CAPM, the latter term is a beta-adjusted equity risk premium, equal to (8 x equity risk

premium). The equity risk premium (ERP) itself is the arithmetic average of the annual market
2007
returns in excess of the risk-free rate. Mathematically, that is ERP = Y [(r — r#,)/82],
1=1926
where r = return, and the subscripts m = market and F = risk-free rate. However, we can
2007
rearrange the equation to ERP = ) [(rm,/82) — (rg;/ 82)] = 7,, — 7. This is appropriate for
1=1926
the market as a whole. To calculate a discount rate for a particular firm, in CAPM we scale the
ERP up or down according to the systematic risk as measured by beta. In log size, we replace
the average return on the market with the size-based return for the firm. There is no alge-

braic scaling, as the log size equation accomplishes the adjustment of the ERP directly by size.
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Substituting equation (5.12) into (5.11), we get:
r=Rp+a+bln FMV — Rp. (5.13)
Rearranging terms, we get:
r=a+bln FMV + (Rp — Rp). (5.14)

Note that the first two terms in equation (5.14) are the sole terms included
in the total return version of the log size model. Therefore, the only difference in
calculation of discount rates between the two models is Ry — R, the last two terms
appearing in equation (5.14). Consequently, the total return of the log size model
will exceed the equity premium version of the model whenever current bond yields
exceed historical average yields and vice versa.

My second article (Abrams, 1997) eliminated the equity premium term in favor
of total return because of the low correlation®® between stock returns and bond
yields for the 60 years prior to 1996, that is, for the data in the 1997 article. The
actual correlation was 6.3%—an amount small enough to ignore. For 1926—2007,
the correlation is down to 3.8% (Table 5.5, C90) for large cap stocks. While CAPM
tells us that the discount rate should change as the risk-free rate changes, the low
correlation between stock returns and bond vyields gives the opposite message—
hence my decision to eliminate the equity premium term and go with the simpler
model form of total returns.

Bond yields were in the 2% to 3% range before 1960, under 5% until 1968,
and over 7% from 1975 to 1993; in 1982 they were as high as 13%. During the
82-year period from 1938 to 2007, the low bond yields prevalent in the 1950s and
1960s are largely balanced by higher subsequent rates, resulting in little difference in
the results obtained using the two models. The 82-year arithmetic mean long-term
bond vyield is 5.21% (Table 5.1, G63), as compared with the December 31, 2007,
20-year Treasury coupon bond yield of approximately 4.5%.3> Thus, current yields
are reasonably close to the 82-year average yields.

Therefore it is reasonable to simplify the procedure of calculating discount rates
and eliminate the bifurcation of the discount rate into the risk-free rate and equity
premium components.

Adjustments to the Discount Rate

Is Table 5.3 the last word in calculating discount rates? No, but it is our starting point
based on the available data. Table 5.3 is an extrapolation of NYSE/AMEX/NASDAQ
data to privately held firms.

Privately held firms are generally owned by people whose investment portfolios
are not well diversified. Table 5.3 was derived from stock portfolios that were

32The correlation of large-cap stock and bond returns is the covariance of the two divided by
the standard deviation of large-cap stock returns times the standard deviation of bond returns.
While the covariance depends on size, dividing by the product of the standard deviations
renders correlation to be a dimensionless measure in percentage terms of the degree of
relation between stock and bond returns.

BSBBI—2008, Valuation Yearbook, back page.
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A [ B | C

1 Table 5.5

2 Correlation of Large Stock Returns

3 and Bond Yields

Z

5 Large Co. LT Government

6 Stocks Bond Income

7 Return [1] Return [2]

8 1926 0.1162 0.0373

9 1927 0.3749 0.0341
10 1928 0.4361 0.0322
11 1929 -0.0842 0.0347
12 1930 -0.2490 0.0332
13 1931 -0.4334 0.0333
14 1932 -0.0819 0.0369
15 1933 0.5399 0.0312
16 1934 -0.0144 0.0318
17 1935 0.4767 0.0281
18 1936 0.3392 0.0277
19 1937 -0.3503 0.0266
20 1938 0.3112 0.0264
21 1939 -0.0041 0.0240
22 1940 -0.0978 0.0223
23 1941 -0.1159 0.0194
24 1942 0.2034 0.0246
25 1943 0.2590 0.0244
26 1944 0.1975 0.0246
27 1945 0.3644 0.0234
28 1946 -0.0807 0.0204
29 1947 0.0571 0.0213
30 1948 0.0550 0.0240
31 1949 0.1879 0.0225
32 1950 0.3171 0.0212
33 1951 0.2402 0.0238
34 1952 0.1837 0.0266
35 1953 -0.0099 0.0284
36 1954 0.5262 0.0279
37 1955 0.3156 0.0275
38 1956 0.0656 0.0299
39 1957 -0.1078 0.0344
40 1958 0.4336 0.0327
41 1959 0.1196 0.0401
42 1960 0.0047 0.0426
43 1961 0.2689 0.0383
44 1962 -0.0873 0.0400
45 1963 0.2280 0.0389
46 1964 0.1648 0.0415
47 1965 0.1245 0.0419
48 1966 -0.1006 0.0449
49 1967 0.2398 0.0459
50 1968 0.1106 0.0550
51 1969 -0.0850 0.0595
52 1970 0.0401 0.0674
53 1971 0.1431 0.0632




Discount Rates as a Function of Log Size

179

A [ B | C

; Table 5.5 (cont.)

3

2

5 Large Co. LT Government

6 Stocks Bond Income

7 Return [1] Return [2]
54 1972 0.1898 0.0587
55 1973 -0.1466 0.0651
56 1974 -0.2647 0.0727
57 1975 0.3720 0.0799
58 1976 0.2384 0.0789
59 1977 -0.0718 0.0714
60 1978 0.0656 0.0790
61 1979 0.1844 0.0886
62 1980 0.3242 0.0997
63 1981 -0.0491 0.1155
64 1982 0.2141 0.1350
65 1983 0.2251 0.1038
66 1984 0.0627 0.1174
67 1985 0.3216 0.1125]
68 1986 0.1847 0.0898
69 1987 0.0523 0.0792
70 1988 0.1681 0.0897
71 1989 0.3149 0.0881
72 1990 -0.0317 0.0819
73 1991 0.3055 0.0822
74 1992 0.0767 0.0726
75 1993 0.0999 0.0717
76 1994 0.0131 0.0659
77 1995 0.3743 0.0760
78 1996 0.2307 0.0618
79 1997 0.3336 0.0664
80 1998 0.2858 0.0583
81 1999 0.2104 0.0557
82 2000 -0.0911 0.0650
83 2001 -0.1188 0.0553
84 2002 -0.2210 0.0559
85 2003 0.2870 0.0480
86 2004 0.1087 0.0502
87 2005 0.0491 0.0469
88 2006 0.1580 0.0468
89 2007 0.0549 0.0486
90 |[Correlation 0.0380
g; 1926-2007 Avg Yields 0.0521
g Z [1] SBBI Classic—2008, pp. 234-235.*
95 |[2] SBBI Classic—2008, pp. 246-247.*
gg * Source: Morningstar, Inc.—2008 Ibbotson® Stocks,
98 Bonds, Bills and Inflation (SBBI) Classic Yearbook.
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diversified in every sense except for size, as size itself was the method of sorting
the deciles. In contrast, the owner of the local bar or dry cleaner is probably not
well diversified, nor is the probable buyer. The appraiser should consider adding
a private firm risk premium to the discount rate implied by Table 5.3 to account
for that. On the other hand, a $100 million FMV firm is likely to be bought by a
well-diversified buyer and may not merit increasing the discount rate.

Warren D. Miller, CFA, ASA, teaches a top-notch course to incorporate un-
systematic risk into our valuations. T asked his permission to quote him in this
book, and after he reviewed the above paragraph he said that the tri-level un-
systematic risk framework (his SPARC system) results in adjustments from —3%
to +35%. He stated that he computes his adjustments empirically and updates
the range annually. He expects several Excel-based templates to accompany his
book, Value Maps: Valuation Tools that Unlock Business Wealth (John Wiley &
Sons). Adjustments of the potential magnitude that he computes deserve the serious
attention of the valuation profession, as these adjustments can dwarf the choice of
the baseline discount rate and almost any other valuation adjustment that we make.
However, that is outside the scope of this book. It is possible that some of his un-
systematic risk is included in the private firm premium that we discuss later in this
chapter.

Another common adjustment to Table 5.3 discount rates would be for the depth
and breadth of management of the subject company compared to other firms of
the same size. In general, Table 5.3 already incorporates the size effect. No one
expects a $100,000 FMV firm to have three Harvard MBAs running it, but there is
still a difference between a complete one-man show and a firm with two talented
people.

In general, this methodology of calculating discount rates will increase the im-
portance of comparing the subject company to its size and industry peers via RMA
Associates or Troy’s Almanac data. Differences in leverage between the subject com-
pany and its RMA peers could well be another common adjustment, although it is
easy to overdo this. If we suspect that an independent variable is statistically sig-
nificant, we could run regressions using data from the guideline public company
method and guideline M&A method to test that variable. If it is statistically signifi-
cant, then it makes sense to adjust for it in a DCF. If not, then it is still possible to
make an adjustment for it, but it is best to be cautious in doing so.

Discounted Cash Flow or Net Income?

Since the market returns are based on the cash dividends and the market price at
which one can sell one’s stock, the discount rates obtained with the log size model
should be properly applied to cash flow, not to net income. We appraisers, however,
sometimes work with clients who want a quick-and-dirty valuation, and we often
don’t want to bother estimating cash flow. I have seen suggestions in Business
Valuation Review (Gilbert, 1990, for example) that we can increase the discount rate
and thereby apply it to net income, and that will often lead to reasonable results.
Nevertheless, it is better to make an adjustment from net income based on judgment
to estimate cash flow to preserve the accuracy of the discount rate. Chapters 1 and
2 cover this topic.
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Discussion of Models and Size Effects

The size effects described by Fama and French (1993), Abrams (1994, 1997), and
Grabowski and King (1995) strongly suggest that the traditional one-factor CAPM
model is obsolete. As Fama and French (1993, p. 54) say,

Many continue to use the one-factor Sharpe-Lintner model to evaluate porifolio
performance and to estimate the cost of capital, despite the lack of evidence that
it is relevant. At a minimum, these results bere and in Fama and French (1992)
should bhelp to break this common habit.

CAPM

Consider the usual way we calculate discount rates using CAPM. We average the
betas of many different firms in the industry, which vary considerably in size, and
apply the resulting beta to a firm that is probably 0.1% to 1% of the industry average,
without correction for size, and hence, risk. Ignoring the size effect corrupts the
CAPM results.

This flaw also applies to the guideline public company method. The usual
approach is to average price earnings multiples (and/or price cash flow multiples,
etc.) for the various firms in the industry without correcting for size and apply the
multiple to a small private firm. A better method is to perform a regression analysis
of PE or the PS multiple with the logarithm of a size variable as part of the regression.

In equation (4.28) the PE multiple of a mature firm is the payout ratio x (1 + g;)
x Gordon model multiple, where g; is the one-year growth rate and g is the long-
term growth rate. Thus the PE multiple should be a function of risk and growth,
as Miller-Modigliani (MM) showed that we cannot affect value by manipulating
the payout ratio, which is dividends.>* We know that risk itself is related to size.
Therefore it makes sense to include a size variable in the regression. I often find
that size variables work best in their logarithmic form, so reasonable candidates are
the logarithm of market capitalization, sales, total assets, book equity, and so on.?®
In equation (4.28b) the PS multiple of a mature firm is the payout ratio x (1 + g;)
x profit margin x Gordon model multiple.

The beta used in CAPM is usually calculated by running a regression of the equity
premium for an individual company versus the market premium. As previously
discussed, the inability of the resulting beta to explain the size effect has called into
question the validity of CAPM. An alternative method of calculating beta has been
proposed that attempts to capture the size effect and better correlate with market
equity returns, possibly ameliorating this problem.

SUM BETA  Ibbotson et al. (Peterson, Kaplan, and Ibbotson, 1997) postulated that
conventional estimates of beta are too low for small stocks due to the higher degree

3*That is true under MM’s assumptions of perfect capital markets, no taxes, and so forth. There
are those who have some degree of disagreement with it. For our purposes, MM’s statement
is sufficiently accurate.

% Unlike the other variables, market capitalization has the disadvantage of being in both sides
of the equation, so it better to use the other variables if they work almost as well.
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of autocorrelation in returns exhibited by smaller firms. They calculated a beta using
a multiple regression model for both the current and the prior period, which they
call sum beta. These adjusted estimates of beta helped to account for the size effect
and showed positive correlation with future returns.

This improved method of calculating betas reduces some of the downward bias
in CAPM discount rates, but it still does not account for the size effect differences
between the large firms in the NYSE/AMEX/NASDAQ—where even the smallest
firms are larger than the majority of privately held firms that many appraisers are
called on to value. Size should be an explicit variable in the model to accomplish
that.

It is possible to combine the models. One could use the log size model to
calculate a size premium over the average market return and add that to a CAPM
calculation of the discount rate using Ibbotson’s sum betas. Effectively we do that
by adding or subtracting the SBBI Valuation Edition industry premia.

The Fama-French Three-Factor Model*®

The Fama-French (FF) cost of equity model is a multivariable regression model that
uses size (“small minus big” premium = SMB) and book-to-market equity (“high
minus low” premium = HML) in addition to beta as variables that affect market
returns. While CAPM has one single factor—beta (covariance of returns divided by
the market variance)—FF has three factors—covariance with the market, size, and
financial distress, as measured by the ratio of book equity divided by market equity
(BE/ME). There has been much research on FF since publication of the first edition
of this book, and it is now a standard method of analysis in academic finance
research, along with CAPM.

Michael Annin (1997) examined the model in detail and found that it does
appear to correct for size, both in the long-term and short-term, over the 30-year
time period tested. The cost of equity model, however, is not easy to use (Annin,
1997), and using it to determine discount rates for privately held firms is particularly
problematic. Market returns are not available for these firms, rendering direct use of
the model impossible.?”

Ibbotson Associates/Morningstar publishes discount rates based on using the
three-factor model in the Cost of Capital Quarterly by industry SIC code, with com-
panies in each industry sorted from highest to lowest. Determining the appropriate
percentile grouping for a privately held firm is a major obstacle, however. The
Fama-French model is a superior model for calculating discount rates of publicly
held firms. Lacking an objective stock price, it is more difficult to use for privately
held firms. However, it is possible to make an adjustment based on the growth-
versus-value-stock literature and data, which immediately follows.

3The precise method of calculating beta, SMB, and HML using the three-factor model, along
with the regression equation, is more fully explained in Ibbotson Associates’ Beta Book. The
SBBI Classic yearbooks also have a chapter on growth and value investing, which is Chapter
9 in the SBBI—2009 yearbook.

¥Based on a conversation with Michael Annin.
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Growth versus Value Stocks

While this section belongs as part of the Fama-French three-factor model, it is large
enough to merit its own section. The growth-versus-value-stock dichotomy is one
that still has not made its way into the mainstream of literature on the valuation of
private firms, yet it should. Ultimately the purpose of this discussion is to conclude
how we should adjust our valuations of private firms for this phenomenon.

DEFINING GROWTH VERSUS VALUE STOCKS ~ Ibbotson’s SBBI*® goes into considerable
length to describe the different ways to measure growth versus value stocks, which
we will not repeat. In short, value stocks are those with high BE/ME ratios. They are
the “dogs” of the market—stocks that have been beaten down and are now relative
bargains. The intuition behind this is that growth stocks are more glamorous and
command higher stock prices than value stocks, which means higher PE multiples
and a higher market-to-book value, which means a lower book-to-market value.

DIFFERENCES IN RETURNS AND VOLATILITY ~ SBBF—2009 Classic Yearbook’s Table 8.1
shows that for 1969—2008 value stocks have higher arithmetic returns (11.4%) and
lower standard deviation of returns (18.2%) than growth stocks (9.8% and 20.2%,
respectively). That statement is true overall as well as in each breakdown of the
market into large, mid, and small cap.

This seems to violate the risk—return trade-off and is somewhat of a puzzle.
I will speculate on answers to the puzzle, but it remains a puzzle. Some of my
speculation draws from the section entitled, “What Causes the Growth versus Value
Phenomenon?” later in the chapter.

Value stocks are distressed, unglamorous firms that investors find unexciting.
They have lower forecast growth than growth firms. The end-of-year Gordon model
multiple (GMM) is 1/(» — g). When g is small, » — g will tend to be large, and the
GMM will be small. An absolute 1% change in a value firm’s forecast growth will
have a much smaller impact on its GMM than that of a growth firm. Thus, it seems to
me that the lower standard deviation of returns of value firms automatically follows
from their lower forecast growth rates.

Since value firms by their nature have lower volatility of returns, aren’t they less
risky than growth firms, and shouldn’t they have lower returns? On the surface, it
would seem so. However, perhaps because they are the dogs of the market they
still are more likely to go under than growth firms and therefore are riskier than
growth firms, despite their lower volatility. In other words, the value firm survivors
have sufficiently lower volatility that, even with a higher percentage of failures, the
portfolio of value firms is still lower volatility than the portfolio of growth firms.

It is possible that skewness may account for this apparent violation of the
risk—return trade-off. Growth firms are skewed right; that is, the majority of them
produce low returns, but a significant minority of them produce spectacular returns.
There could be a lottery effect; that is, investors may be willing to pay more for
growth firms because even though most such investments do worse than invest-
ing in a portfolio of value firms, some of the growth firms offer the investor the
thrill of winning the lottery, and they are willing to pay for their thrills in lower

BSBBE—2009 Classic, Chapter 8.
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expected returns. Perhaps the value firms are the opposite—with returns that are
skewed left. If so, on average they produce higher returns than growth firms—which
the SBBI statistics confirm—but there is a significant minority of failures.

The next article that we discuss shows that the growth-versus-value phe-
nomenon has been with us for a long time, even if we recognized it only recently.

NINETEENTH-CENTURY BRITISH STOCK RETURNS A working paper (Ye, Hickson, and
Turner, 2009) finds that for 1,051 stocks traded in the London Stock Exchange
between 1825 and 1870 value stocks® also have higher average returns than growth
stocks. The value effect was huge. The x-coefficient on dividend yields was 5.46,
which means that a 100% increase in dividend yield implies a 5.46% increase in
monthly stock returns, which is an 89% increase in annual stock returns.

The authors also found a strong size effect. After controlling for the various stock
characteristics through regression, a one-unit increase in the natural log of market
capitalization (i.e., an increase of e, 2.718 times) is associated with 0.21% decrease
in monthly stock returns, which is a 2.5% decrease in annual stock returns.

The result that stock returns in England as far back as 184 years ago demonstrate
the growth-versus-value stock return and size effects is powerful evidence that they
are intrinsic to investing and not a recent anomaly.

WHAT CAUSES THE GROWTH-VERSUS-VALUE PHENOMENON?  There are different theories
as to what causes a firm to be a growth or a value firm. By my review of the
literature they fall into two camps. The majority of articles bear the message that
value firms are those that have been beaten down by the market—too far down—
either by overreaction to bad news (reported by Ibbotson), failure to anticipate
mean reversion in returns (Fama-French), or because smaller firms are more subject
to random noise, that is, temporary deviations of stock prices from their true values
(Arnott, Hsu, Liu, and Markowitz). The other camp is that being a growth (value)
firm is caused by high (low) operating leverage (Garcia-Feijoo and Jorgensen). We
will begin with the articles in the first camp.

The First Camp—Value Firms Are Dogs  Ibbotson cites Cottle, Murray, and Block (1988),
followers of Graham and Dodd’s Security Analysis, first published in 1934, who
would say that value stocks are those that were once undervalued. Several academic
studies have shown that the market overreacts to bad news and underreacts to good
news. Value stocks are more likely to have reported bad news, which means that it
is more likely that they were undervalued and will thus outperform growth stocks.
Fama and French (2007) have a more systematic explanation, even though it
bears some similarity to the previous one. They say it is due to the convergence of
price-to-book ratios (this is the inverse of BE/ME, i.e., ME/BE) due to mean reversion
in profitability and expected returns. The market has judged growth firms as high
profit and growth and value firms as the opposite. However, there are two forces
that tend to erode the high profit and growth: (1) competition; and (2) that some
growth firms have already exercised their most profitable growth options. Each year
some growth firms cease being high profit and growth, with low costs of equity

¥The authors use a high dividend yield as a proxy for a value stock, as book values were
unavailable.



Discount Rates as a Function of Log Size 185

capital (expected stock returns). Therefore, price-to-book ratios of growth portfolios
tend to fall with firm age. Conversely, price-to-book ratios of value portfolios tend to
rise with firm age as some firms restructure, their profitability improves, and they are
rewarded by the market with lower costs of equity capital and higher stock prices.

What is similar about the first two articles is that they say that the higher returns
to value firms is based on market mispricing. Where they differ is that Cottle, Murray,
and Block do not offer a systematic reason for the mispricing, while Fama and French
do. In essence their message is that the market is giving us an opportunity to correct
for our systematic errors in valuation using fundamentals, for example, a DCF. We
tend to forecast that the status quo—good or bad—will continue longer than it
actually does. We tend to forecast that a growth firm will remain golden for a longer
period than it will and that a schlepper® will remain so forever—and neither is true,
on average.

However, there is literature that contradicts Fama-French in part. Loderer and
Waelchli (2009) find that performance declines with firm age. There are theoretical
reasons for this. The authors create a simple and very logical equation to quantify the
expected net benefits of adopting an innovation. The market periodically signals the
need to innovate. The signal may or may not be accurate. The authors assume that
the ability to perceive the signal declines with age, and the cost of developing and
adopting the innovation increases with age, because there are more organizational
rigidities to overcome. Their empirical work bears out their theoretical predictions.
In general, company performance deteriorates with age. Profitability falls, costs in-
crease, and margins decline with corporate age. Performance seems to rebound at
a very old age (47 to 100 years, depending on the measure used), but few firms
survive long enough to experience that, and even then, the rebound is moderate
and does not overcome the robustness of a new powerhouse in the industry. The
overall age effect is stronger for high-tech firms than low tech, but it affects both.
This casts some doubt on Fama-French’s rationale for the higher return of the value
firms, as time is not on their side. However, it is not a complete refutation, as it is
still possible that investors tend to be too optimistic about growth firms and too pes-
simistic about value firms. In fact, the article provides a strong reason why long-term
rosy optimism is probably not justified for growth firms.

The results of Baker and Kennedy (2002), who find the 10-year survival rate for
firms trading on the NYSE and AMEX from 1963 to 1995 to be only 61%, amplify
those of Loderer and Waelchli. In any 10-year period the ratio of firms that traded
all 10 years to the total that traded at all varies from 26% to 49%—basically Y4 to
Y. Of the 3,954 firms that delisted in those years, 66% were taken over and 19%
were delisted due to financial distress. However, the takeover delistings show a
large increase in their stock returns in the year before delisting, regaining more than
the value lost in the previous nine years, while distress delistings exhibit no such
increase. It is quite possible that this revives the “dog” value firms.

Arnott, Hsu, Liu, and Markowitz (2006) find that noise—a random difference
between the stock price and its value—explains the growth-versus-value effect and
well as the size effect. The authors show that stocks with lower prices (or price
ratios) are more likely to have a negative price noise and will thus be undervalued.

A technical term. Actually this is Yiddish, loosely rendered as a dog, the living dead, and so
on.
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They state that their model captures the intuition that value stocks are, on average,
bargains. This is similar to Fama-French, but not identical. It is on the one hand
more mechanical, lacking the story of Fama-French, and on the other hand more
comprehensive, explaining both of the key factors in the Fama-French three-factor
model. Another observation of the authors is they find that markets are efficient on
average but experience transient random inefficiency.

The Second Camp—Operating Leverage as an Explanation =~ Now we discuss the second
camp. Garcia-Feijoo and Jorgensen (2007) provide empirical evidence consistent
with recent theoretical models (Carlson, Fisher, and Giammarino, 2004) that growth
firms have higher operating leverage than value firms. Mandelker and Rhee (1984)
decompose a firm’s systematic risk into the degree of operating leverage (DOL),
degree of financial leverage (DFL), and business risk. DOL measures a firm’s reliance
on fixed costs, DFL measures its reliance on debt, and business risk is the systematic
risk of a firm’s basic operations.

The authors measure operating leverage as the average sensitivity of the per-
centage deviation of EBIT from its trend relative to the percentage deviation of sales
from its trend. Thus firms that are heavily invested in fixed assets—and therefore
have high fixed costs—will tend to be extremely profitable when sales are high and
experience low profitability or even significant losses when sales are low, whereas
firms with low fixed costs will have less fluctuation in profitability.

The authors find a strong positive association between DOL—both at the firm
and portfolio level—and BE/ME and average stock returns. These offer empirical
support of the theoretical models in the articles mentioned earlier. They also find a
positive association between size (ME) and DFL; that is, larger firms are more likely
to use leverage than small firms, and BE/ME and DFL after controlling for ME. They
also find a positive, but weaker association between DFL and subsequent stock
returns. They suggest that if an association between BE/ME and financial distress
exists, it is not a simple one and may explain why some researchers have and others
have not found a positive relation between BE/ME and financial distress.

Overall, the results provide support for a risk-based explanation for the value
premium that is consistent with existing theoretical models. They conclude that
firm-level investment activity accounts for the value premium, that is, the firms with
relatively large investments in fixed assets that are the value firms and command
the value premium. It seems to me that this view is more consistent with modern
portfolio theory than the first camp, as the explanation is consistent with systematic
risk. In other words, in a CAPM framework, where we do not control for differences
in BE/ME, we would expect that the value firms would tend to be high beta, because
they are extremely sensitive to the market. However, high operating leverage causes
high systematic risk, which leads to high discount rates and lower market equity and
thus high BE/ME. Whereas Fama-French introduced BE/ME as a regression variable
in their three-factor model, it seems that by extending the logic in our article the
BE/ME factor now does the heavy lifting that previously was relegated to the market
beta, thus leaving the market beta coefficient close to 1, as it should be.

IMPLICATIONS FOR VALUING PRIVATE FIRMS ~ What should the valuation analyst do
with this information? There are so many models with different explanations for the
same phenomenon, and there is no consensus yet in academic circles.
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It would make sense to make an adjustment to the discount rate if the subject
company or its industry clearly falls into the growth or the value stock category.
Calculating a discount rate for a publicly held firm is easy—just use the three-factor
model. However, we lack the objective stock price in valuing a private firm, so we
can’t do that.

My first thought is that in the valuation of a private firm there is no market
beating down the price of a value stock. In a DCF, we are simply forecasting
cash flows and discounting to present value. The Fama-French mean reversion and
the Loderer-Waelchli discovery of corporate aging certainly are a sobering splash of
cold water that we should keep in mind to guard against making optimistic forecasts.
Using log size to calculate the discount rate would implicitly produce an average
result with respect to growth versus value firms, as the market is full of both. By this
logic T would be disinclined to recommend making an adjustment for growth versus
value.

The first camp’s explanation of the growth firm phenomenon basically is telling
us that the market is making an adjustment for market (and probably analyst) ten-
dencies to overvalue glamour firms and undervalue the downtrodden surviving firms
of yesteryear. Thus, it is telling us to watch out for biases in our cash flow fore-
casting and either to eliminate or to correct for them with a value or growth firm
adjustment. !

I think that the DOL-based explanation gives us the clearest indication of a
potential adjustment to the discount rate. If the subject company has lower (higher)
operating leverage than its competitors, which we could measure in different ways,
then it is likely to be a value (growth) company and it makes sense to add a premium
(subtract from) to the discount rate.

The authors’ primary method to measure DOL is very sophisticated and beyond
the professional level. We could measure operating leverage as gross and/or net
fixed assets as a percentage of total assets. The authors also suggest using total
assets/market equity as a measure of operating leverage, but that does not work for
private firms.

Log Size Model

The log size model is a superior method to CAPM because it better correlates
with historical equity returns. Therefore it enables business appraisers to dispense
with CAPM altogether and use firm size as the basis for deriving a discount rate
before adjustments for qualitative factors different from the norm for similarly sized
companies.

In another study on stock market returns, analysts at an investment banking
firm regressed P/E ratios against long-term growth rate and market capitalization.
The R? values produced by the regressions were 89% for the December 1989 data
and 73% for the November 1990 data. Substituting the natural logarithm of market
capitalization in place of market capitalization, the same data yields an R? value

“The Arnott, Hsu, Liu, and Markowitz article mathematics are extremely difficult, which
makes it more difficult to infer how this applies to privately held firms. Nevertheless, I do
infer that my comments about Fama-French basically apply here, as well, but for statistical
reasons rather than bias in forecasting.
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of 91% for each dataset, a marginal increase in explanatory power for the first
regression, but a significant increase in explanatory power for the second regression.
From Chapter 4, equation (4.28), the PE multiple is as follows:

V147

r—8

PE=(1—RR)(1+g1)

Using a log size model to determine 7, the PE multiple is equal to:

V14 a+ bIn(FMV)
a+bln(FMV) — g’

PE = (1 — RR)(1 + g1) (5.15)
where g; is expected growth in the first forecast year, RR is the retention ratio, a and
b are the log size regression coefficients, and g is the long-term growth rate. Looking
at equation (5.15), we see that In FMV, which is market cap for the publicly traded
firms, appears twice. Thus, it is clear why using the log of market capitalization
improved the R* of the investment bankers’ regression.

GRABOWSKIAND KING ~ Grabowski and King (1995) (GK) applied a finer breakdown
of portfolio returns than was previously used to relate size to equity premiums.
When they performed regressions with 31-year data for 25 and 100 portfolios (as
compared to our 10), they found results similar to the equity premium form of log
size model; the equity premium is a function of the negative of the log of the average
market value of equity, further supporting this relationship.*?

Grabowski and King (1996) in an update article also used other proxies for firm
size to forecast the equity premium in their log size discount rate model, including
sales, five-year average net income, and EBITDA. Following is a summary of their
regression results sorted first by R? in descending order, then by the standard error
of the y-estimate in ascending order. Overall, we are attempting to present their best
results first.

Standard Error

Measure of Size R? of Y-Estimate
1. Mkt cap—common equity 93% 0.862%
2. Five-year average net income 90% 0.868%
3. Market value of invested capital 90% 1.000%
4. Five-year average EBITDA 87% 0.928%
5. Book value—invested capital 87% 0.989%
6. Book value—equity 87% 0.954%
7. Number of employees 83% 0.726%
8. Sales 73% 1.166%

Note that the market value of common equity, that is, market capitalization of
common equity, has the highest ®? of all the measures. This is the measure that we
have used in our log size model. The five-year average net income, with an R? of
90%, is the next best independent variable, superior to the market value of invested
capital by virtue of its lower standard error.

“Grabowski and King used base 10 logarithms instead of natural logarithms.
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This is a very important result. It tells us that the majority of the information
conveyed in the market price of the stock is contained in net income, because both
have such high R?. We can also say that the majority of the information conveyed
in the market price of the stock is contained in the other variables, as they are all
correlated. When we use a log size model based on equity in valuing a privately
held firm, we do not have the benefit of using a market-determined equity. The
value will be determined primarily by the magnitude and timing of the forecast cash
flows, the primary component of which is forecast net income. If we did not know
that the log of net income was the primary causative variable of the log size effect,
it is possible that other variables such as leverage, sales, book value, and so on
could significantly impact the log size effect. If we failed to take those variables into
account and our subject company’s leverage varied materially from the average of
the market (in each decile) as it is impounded into the log size equation, our model
would be inaccurate. Grabowski and King’s research eliminates this problem. Thus,
we can be reasonably confident that the log size model as presented is accurate and
is not missing any significant variable.

Of Grabowski and King’s eight different measures of size, only market capital-
ization (#1) and the market value of invested capital (#3) have the circular-reasoning
problem of our log size model. The other measures of size have the advantage in
a log size model of eliminating the need for iteration since the discount rate equa-
tion does not depend on the market value of equity, the determination of which
is the ultimate purpose of the discount rate calculation. For example, if we were
to use #2, net income, we would simply insert the subject company’s five-year
average net income into Grabowski and King’s regression equation and it would
determine the discount rate. This is problematic, however, for determining discount
rates for high-growth firms due to the inability to adequately capture significant
future growth in sales, net income, and so on. Start-up firms in high-technology
industries frequently have negative net income for the first several years due to their
investment in research and development. Sales may subsequently rise dramatically
once products reach the market. Therefore, five-year averages are not suitable in this
situation.

Another problem with Grabowski and King’s results is that their data begin only
in 1963, when Compustat data were available for all companies. Thus, they are
missing 1926—1962 in their results.

As mentioned in the introduction, in their (1999) article GK demonstrate a neg-
ative logarithmic relationship between returns and operating margin and a positive
logarithmic relationship between returns and the coefficient of variation of operating
margin and accounting return on equity.

This is their most important result so far, because it relates returns to fundamen-
tal measures of risk. Actually, it appears to me that operating margin in itself works
because of its strong correlation of 0.97 to market capitalization (i.e., value). How-
ever, the coefficient of variation (COV) of operating margin and return on equity
seem to be more fundamental measures of risk than size itself. In other words, it ap-
pears that size itself is a proxy for the volatility of operating margin, return on equity,
and possibly other measures. Thus, we must pay serious attention to their results.

Below is a summary of their statistical results. We comment on the use of their
results in the conclusion section that immediately follows the summary of their
statistical results.
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Standard Error

Measure of Risk R? of Y-Estimate
1. Log of five-year operating margin 76% 1.185%
2. Log COV (operating margin) 54% 0.957%
3. Log COV (return on equity) 54% 0.957%

Currently Grabowski and King publish their study annually and sell it to the
valuation profession. Below are the regression statistics in their Duff & Phelps Risk
Premium Report 2008.

Standard Error

Measure of Size R of Y-Estimate
1. Mkt cap—common equity 88% 0.901%
2. Five-year average net income 88% 0.732%
3. Market value of invested capital 88% 0.841%
4. Five-year average EBITDA 78% 0.992%
5. Book value—invested capital Deleted and replaced
with total assets

6. Book value—equity 85% 0.780%
7. Number of employees 74% 0.940%
7A. Total assets* 79% 0.948%
8. Sales 72% 0.925%

Let’s compare GK’s 2008 results with their 1996 results. The R-squares are lower
in 2008, and the standard errors are mixed, with about half of them increasing and
half decreasing. On average, the regression statistics are not as good in 2008 as they
were in 1990.

Now we will compare the regression statistics of the Duff & Phelps 2008 Report
with Table 5.1. The R* in Table 5.1, regression #2 is 94% (C39), which is larger than
Duff & Phelps’ 88%, and the standard error of the y-estimate in Table 5.1, regression
#2 is 0.70% (C38), which is smaller than Duff & Phelps’ 0.901%. Thus, the advantage
of having all 82 years of stock market results outweighs the benefit of having 25
(versus 10) portfolios.

In conclusion, Grabowski and King’'s work is very important in that it demon-
strates that other measures of size can serve as effective proxies for our regression
equation. It is noteworthy that the finer breakdown into 25 portfolios versus Ibbot-
son’s 10 does not appear to have a significant impact on the reliability of the regres-
sion equation, as it did in our first edition. Their timeframe is data for 1963—2007,
which is 44 years. Our 40-year results show R? of 85% (Table 5.2, 119) and our
50-year results show R* of 97% (Table 5.2, 128), for an average of 91%, while their
R* was 88%—3% less.

BSource: Exhibit A-1, A-2, etc. Note this is not adjusted R?.

#This measure did not appear in the earlier articles and replaces total book value of invested
capital. The two are fairly similar numbers, with the only difference being that one subtracts
current liabilities from total assets to equal book value of invested capital.
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Grabowski and King’s (1999) work is even more important. It is the first finding
of the underlying variables for which size is a proxy. If Compustat data went back
to 1926, as do the CRSP data, then I would recommend abandoning log size entirely
in favor of their variables. As time goes on, the effect of missing the first 37 years of
the stock market diminishes.

Eventually it is likely that there will not be a significant advantage to my log size
model over the Duff & Phelps report. Additionally, the Duff & Phelps report has the
advantage of being able to use independent variables to calculate the discount rate
that lack the circularity problem. So, there are some compelling advantages to their
report. However, I do not recommend abandoning my log size yet, as the R? and
standard error of the y-estimate are better in log size in the meantime.

Heteroscedasticity

Schwert and Seguin (1990) also found that stock market returns for small firms
are higher than predicted by CAPM by using a weighted least squares estimation
procedure. They suggest that the inability of beta to correctly predict market returns
for small stocks is partially due to heteroscedasticity in stock returns.

Heteroscedasticity is the term used to describe the statistical condition that the
variance of the error term is not constant. The standard assumption in an ordinary
least squares (OLS) regression is that the errors are normally distributed, have con-
stant variance, and are independent of the x variable(s). When that is not true, it
can bias the results. In the simplest case of heteroscedasticity, the variance of the
error term is linearly related to the independent variable. This means that observa-
tions with the largest x values are generating the largest errors and causing bias to
the results. Using weighted least squares (WLS) instead of OLS will correct for that
problem by weighting the largest observations the least.

In the case of CAPM, the regression is usually done in the form of excess
returns to the firm as a function of excess returns in the market, or (r; — rg) =
&+ B,»(Rm — Rp), where the circumflex indicates the regression-determined estimate
of the true @ and B. Here we are using the historical market returns as our estimate
of future returns. If everything works properly, & should be equal to zero, as that
would leave us with the CAPM equation by adding the risk-free rate to both sides
of the equation. If there is heteroscedasticity, then when excess market returns are
high, the errors will tend to be high. That is what Schwert and Seguin found.

Schwert and Seguin also discovered that after taking heteroscedasticity into
account, the relationship between firm size and risk-adjusted returns is stronger than
previously reported. They also found that the spread between the risk of small and
large stocks was greater during periods of heavier market volatility (e.g., 1929-1933).

Industry Effects

In the first edition of this book, we noted that Jacobs and Levy (1988) examined
rates of return in 38 different industries by including industry as a dummy variable
in their regression analyses. Only one industry (media) showed [excess] returns
different from zero that were significant at the p = 1% level,® which the authors

% This means that, given the data, there is only a 1% probability that the media industry
returns were the same as all other industries.
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speculate was possibly related to the then-recent wave of takeovers. The higher
returns to media would be relevant to a subject company only if it were a serious
candidate for a takeover.

There were seven industries where [excess] returns were different from zero at
the p = 10% level, but this is not persuasive, as the usual level for rejecting the
null hypothesis that industry does not matter in investor returns is p = 5% or less.
Thus, Jacobs and Levy’s results lead to the general conclusion that industry does not
matter in investor returns.

Since publication of the first edition of this book, however, Ibbotson/Morningstar
publishes industry adjustments in its annual SBBI series, both Classic and Valuation
editions, and it is standard to make those adjustments.

The Wedge between Public and Private Firm Valuations

In the world of publicly held firms covered by the SBBI yearbooks, the total returns,
r, is the sum of income returns, which is dividends, plus capital gains. This is
approximately equal to the dividend yield, d, plus the expected growth in the value
of the stock, g, as in equation (5.16):*’

r=d+g. (5.16)

Our rate of return could be either the historical actual rate of return or our
forecast future rate of return. The latter is more relevant for valuation. Therefore it
is the forecast dividend yield rather than the historical yield that is appropriate in
equation (5.16).

Let the dividend yield equal forecast dollar dividends, D;i;, divided by the
current stock price, P;. Substituting this into equation (5.16) results in:

D4
Y = —

. 5.17
7 +g 5.17)
Rearranging terms, we get:
Dy
=r—g. 18
P =8 (5.18)
Taking reciprocals, we get:
PZ 1
= . (5.19)
Diyy r—g

Multiplying both sides by D,;1, we get:

1
P[ = D;+1 X , (520)

“Jacobs and Levy also found an interest-rate-sensitive financial sector. They also found that
macroeconomic events appear to explain some industry returns. Their example was that
precious metals was the most volatile industry, and its returns were closely related to gold
prices. Thus, there may be some—but not many—exceptions to the general rule of industry
insignificance.

4t differs by changes in the PE ratio and the reinvestment yield. Also the equation is exact
for geometric returns only.
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If we rename dividends to cash flow and the stock price as FMV, the equation
becomes:

(5.2D

1
FMV = CF,4; X
-

Thus, Ibbotson’s total return equation is our familiar Gordon model equation in
disguise, albeit the end-of-year version of the Gordon model.*

Private Firm Risk Is the Wedge

It has perplexed me in the past why equation (5.16) applies to public firms but does
not seem to apply to private firms. I believe the reason is simple—private firms are
riskier than public firms.

1. The cash flow terms in equations (5.20) and (5.21) are not identical, nor are
the growth terms, g. In equation (5.20) cash flow (dividends) and growth are
at the individual shareholder level in public firms, which are easy to measure.
Private firms almost never pay formal dividends. It is occasionally possible to
measure implicit dividends as being equal to excess (greater-than-arm’s-length)
compensation, which is difficult to measure, including the payment of personal
expenses through the business, which are often unreported and difficult to
detect—all the more so since valuators are not auditors. Therefore, equation
(5.21) is an adaptation of equation (5.20) to accommodate the lack of explicit
dividends in the private firm due to the informational uncertainties. In a private
firm, much can happen to interfere with firm-level cash flows filtering down to
the level of the individual shareholder. While net income can vary in both public
and private firms, in private firms the retention and payout ratios (required net
working capital changes and capital expenditures) are likely to vary more than
in public firms. The reasons for this are that smooth dividends management is
not the same priority in a private firm, and most private firms lack the easy
access to debt that helps smooth cash flow volatilities. *

2. Public firms strive to be as transparent as possible, while private firms usually
strive for the opposite to preserve competitive advantages and privacy of the
owners. Transparency reduces risk to a buyer, as it promotes trust and reduces
worries about negative surprises. Lack of transparency creates informational
asymmetries, with the seller being knowledgeable about the business and the
buyer having to perform significant due diligence in order to get to know the
business. This raises the buyers’ risk.

3. The quantity of information is much less for private firms.

a. The SEC requires publication of a great deal of information about public firms.
There is no such requirement with private firms.

#We assumed dividends come at the end of the year. If we had instead been more precise
and assumed dividends occur evenly throughout the year, we would end with the midyear
Gordon model.

 Additionally the control shareholder can divert wealth to him- or herself in a private firm,
although we account for this in the discounts for lack of control and marketability. See
Chapter 8.
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. The private firm has no stock analysts following it. Thus the financial and

general presses publish much less about private firms.

. The nature of public ownership creates a public relations (PR) department.

The public firm has an investor relations department. There is no such built-in
PR function in private firms. That would have to be created by specific efforts.

4. The quality of information is generally lower in private firms.

a.
b.
C.

There is no SEC scrutiny.

There is no public embarrassment for having to restate earnings.

Private firms tend to economize on accounting expenditures compared to
public firms.

i. While all public firms must be audited, many private firms are not.

ii. Among those who are, private firms may choose lower-quality auditors.
iii. Even if that is not true, it may be difficult for investors to tell quality

differences in auditors, and that in itself creates risk.

iv. The quality of the VP of finance, CFO, and controller is likely to be lower

in private firms.

5. No objective stock price:

a.

Market feedback operates like a navigating system. The investing public votes
with its dollars, manifested in the stock price, its opinion on company strategy
and policy. That provides valuable feedback to management that the company
is either on course or not and facilitates management to correct its course.
The private firm lacks that important feedback mechanism and thus operates
relatively more in the dark.

. Lacking historical stock prices, it is far more difficult to construct a stock

portfolio with a private firm than public firms. It is thus more difficult and
expensive to diversify away firm-specific risk.

6. Ownership in private firms is more expensive.

a.

Private firms are more difficult and expensive to appraise, thus increasing
transaction costs for mergers, acquisitions, estate planning, gifting, and estate
taxes.

. It is more difficult and expensive to sell one’s stock in a private firm.
. It is more difficult and expensive to diversify one’s position partially out of a

private firm.

. The risk of being a minority shareholder in a private firm is greatly multiplied

over the risk of being a minority shareholder in a public firm or even a control
shareholder of a private firm. There is always the potential for abuse from
the control shareholder, and the shareholder oppression lawsuit remedy for
such abuse is inferior, more expensive, and riskier than those remedies avail-
able to a minority shareholder in a public firm (e.g., inexpensive class-action
lawsuit).

. It is more difficult for privately held firms to get a government bailout in the

event of disaster.

In the face of risks that are specific to being a private firm, equation (5.16)
transforms into equation (5.22).

Tprivate > Aprivate + 8Private- (5.22)
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More specifically, we can restate equation (5.22) as follows:
Tprivate = Aprivate + &private + PFR + CSR, (5.23)

where PFR is a generic private firm risk that incorporates the risk differential between
public firms and all private firms, while CSR is company-specific risk.

For example, suppose that a private firm has an expected dividend yield of 2%
and growth in cash flows® of 5%. It is unrealistic to think that the private firm has
a discount rate of 7%. As a starting point, the discount rate has to be based on the
rate of return an investor could earn for a publicly traded firm of the same risk as
this private firm.>! A decile #2 private firm might have the same risk as, let’s say, a
decile #10 public firm.

Equations (5.22) and (5.23) show that we are using our asset pricing models—
whether log size, CAPM, and so on—to calculate discount rates, not growth rates,
for most privately held firms, because we cannot assume the equality of the discount
rate and the dividend yield plus the growth rate. Thus, the growth rate of a private
firm is rarely equal to the discount rate minus the dividend rate, almost always being
lower.

It is important to keep our measures of » and g consistent. When we use the
arithmetic rate of return, it is important to use an arithmetic forecast growth rate,
not the geometric growth rate. Thus, while we appraisers are fond of calculating the
compound annual rate of growth (CAGR) of sales and net income in our analysis of
historical financial results, we should be using the arithmetic growth rates instead as
our base.

Measuring Private Firm Risk

Now that we have established that private firm risk exists above public firm risk,
we need to measure it. In doing so we are moving into uncharted territory. As
mentioned earlier, it is more difficult to create and balance portfolios with privately
held firms.

We begin with the standard deviation of the 1926—2008 decile #10 portfolio
of 45% (Table 5.1, C17, rounded). A finance text (Bodie, Kane, and Marcus, 1995,
Figure 6.2, p. 135) shows a fully diversified portfolio as having 300 stocks in it,
with a relative standard deviation of 1.00. It shows a one-stock portfolio as having
a relative standard deviation of 2.50, that is, 2!/ times the standard deviation of a
300-stock portfolio. A 10-stock portfolio has a relative standard deviation of 1.26.
Let’s see what we can make out of these benchmarks.

We multiply the 45% standard deviation of the decile #10 portfolio by 2.5 to
calculate the standard deviation of a single stock, which equals 113%. The difference
in standard deviations is 68%. We multiply 68% x 34% = 23%. The 34% is the

*Note that Ibbotson’s definition of growth is growth in the stock price—capital gains—which
is a definition that is unavailable to appraisers of private firms, since we do not have a market-
determined stock price. Thus our next best definition of growth is that of cash flows, and
we often assume that is sales growth combined with an assumed constant profit margin and
retention ratio.

>1The author thanks Scott Deifik for his observations, which I incorporated into this paragraph
and the next two paragraphs.
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rounded x-coefficient from Table 5.1, C30. It is the increases in the discount rate
for each percent increase in the standard deviation of the portfolio. Table 5.1, B17
shows the decile #10 82-year return as 20.98%, and we subtract 0.8% for the average
annual increase in the PE ratio, which results in a rounded return of 20% for a decile
#10 portfolio. If instead the portfolio consists of only one stock, then the required
return should be 20% + 23% = 43%. In other words, a rational investor should be
indifferent between investing in 300 decile #10 stocks with an expected return of
20% and a single public firm with an expected return of 43%.

Instead, if we look at owning a decile #10-size private firm as part of our small
portfolio as being equivalent to owning a 10-stock portfolio instead of a 300-stock
portfolio, the portfolio standard deviation would be 1.26 x 45% = 57%, a 12%
increase in portfolio standard deviation. Multiplying this by the x-coefficient of 34%
we get an increase in required return of 4%. This strikes me as being a reasonable
benchmark increase in the required return for investing in a private firm. This 4%
calculation applies to all private firms; it is the term PFR (private firm risk) in equation
(5.23). Of course, it is not the truth coming from Mt. Sinai, but it is a reasonable
estimate.

It is possible to modify that calculation to include both private firm risk and
company-specific risk. Suppose for a specific subject company we consider it equiv-
alent to owning a 5-stock portfolio. The Bodie-Kane-Marcus table shows the adjust-
ment factor to be 1.40. We calculate the increase as 1.40 x 45% = 63%, an 18%
increase in portfolio standard deviation. Multiplying this by the x-coefficient of 34%
we get an increase in required return of 6%. This implies the subject company’s
discount rate should be 20% + 6% = 26%. Of the 6% increase in the discount rate,
4% is the generic private firm risk and 2% is company-specific risk.

Satisfying Revenue Ruling 59-60

Revenue Ruling 59-60 requires that we look at publicly traded stocks in the same
industry as the subject company. In the first edition of this book, I claimed that
our excellent results with the log size model to calculate a discount rate to use in
a discounted cash flow method, combined with Jacobs and Levy’s general finding
of industry insignificance, satisfied the intent of Revenue Ruling 59-60 for small
and medium firms without the need to actually perform a guideline publicly traded
company method. For the moment we will follow that reasoning, and at the end
of this section we will see how things have changed in the approximately 10 years
since publication of the first edition.

Strengths and Weaknesses of DCF and the Market Methods

First, however, it is worthwhile to look at the strengths and weaknesses of each of
the methods that we commonly use. The DCF is an introverted valuation approach.
Its strength is the ability to customize the valuation to our subject company. We do
considerable financial and statistical analysis of our subject, forecast cash flows using
growth rates unique to our subject, and discount them to present value at a market-
determined rate, usually with some company-specific adjustments, and preferably
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with the generic private firm risk adjustment (per our earlier discussion). The only
part of the DCF that is more outward-looking is the calculation of the discount rate.

The market methods—both public and private—are extroverted valuation meth-
ods. The majority of our efforts go to developing the mathematical relationship of
value of the guideline companies to the independent variables that cause value.
Then we apply those relationships to our subject company.

Thus, the DCF is best at being customized to the subject company. However,
because the DCF lacks external feedback, its weakness is that it is easy enough to
value a company improperly using unrealistic forecasts of sales growth, margin, and
payout ratio. It is particularly difficult to value early-stage firms.

The strength of the market methods is that they are based on real valuations of
real companies. Thus they do not suffer from “valuation introversion.” However, they
may suffer from other weaknesses: lack of comparability to the subject company,
insufficient data (too few observations and/or too little information about each
observation),>® bad data,> and inconsistent results due to outliers.

Thus, it is best to use a DCF and both market methods when they apply. How-
ever, it is often just plain wrong to use a guideline public company method (GPCM)
as a valuation method for a small business. Unless the appraiser can eliminate het-
eroscedasticity and control for size and risk differences in the public companies, it
is often best not to use the GPCM.

The Information in a PE Multiple and Applicability to the Subject Company

We repeat equation (4.28) from Chapter 4 to show the relationship of the PE multiple
to the Gordon model.

V1
PE = (1+ g1) x POR x vt (4.28)

r—§8

Relationship of the PE multiple to the Gordon model multiple.

The PE multiple®* of a publicly traded firm gives us information on the one-year
and long-run expected growth rates and the discount rate of that firm—and nothing
else. The PE multiple gives us only a combined relationship of » and g. In order
to derive either 7 or g, we would have to assume a value for the other variable or
calculate it according to a model.

For example, suppose we use the log size model (or any other model) to
determine 7. Then the only new information to come out of a guideline public
company method is the market’s estimate of g,>> the growth rate of the public firm.

>2This is particularly a problem in the guideline M&A method. None of the databases of sales
of privately held firms provide information on historical growth of sales and profitability, let
alone expected growth.

For one of the databases, I once found an observation with a regression standardized
residual of 12 standard errors—the largest by far that I have ever seen. It does not appear in
any table of #-statistics that I have seen. I asked one of my analysts to call the organization to
report it as an error, and the spokesperson for the organization said it did not maintain the
original input forms, and there was no way to verify or check the error.

>#Included in this discussion are the variations of PE (e.g., P/CF, etc.).

>This is under the simplest assumption that g; = g and that the retention ratio will remain
constant.
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There are much easier and less expensive ways to estimate g than to do a GPCM.
When all the market research is finished, the appraiser still must modify g to be
appropriate for the subject company, and its g is often quite different from the
public companies’. So the GPCM wastes much time and accomplishes little.

Because discount rates appropriate for the publicly traded firms are much lower
than are appropriate for smaller, privately held firms, using public PE multiples will
lead to gross overvaluations of small and medium privately held firms. This is true
even after applying a discount, which many appraisers do, typically in the 20% to
40% range—and rarely with any empirical justification.

If the appraiser uses a GPCM, then he or she should use regression analysis
with a scaled variable such as the PE or PS multiple and include the logarithm
of market capitalization as an independent variable. If this yields good results—
a high adjusted R? and low standard error of the estimate—then this will control
for size, and it is reasonable and even desirable to weigh this method heavily in
the final reconciliation of value. If the regression shows the logarithm of various
size measures to be statistically insignificant, then it is again reasonable to use the
GPCM results in the valuation. In the absence of that, it is critical to use only public
guideline companies that are approximately the same size as the subject company,
which is rarely possible. When valuing a very large privately held company, where
the size effect will not confound the results, it is more likely to be worthwhile to do
a guideline public company method.

Changes in the Past 10 Years

Over the past 10 years there is much better availability of data, both of publicly
traded firms and private transactions. Therefore, the market valuation methods are
becoming increasingly important. Whereas I argued for routinely eliminating the
GPCM in the first edition of the book and didn’t even consider the guideline M&A
method a serious method, that is changed now.

It is still a potential danger to inappropriately use the GPCM in the valuation of
a small business, and the valuation analyst must guard against that. Nevertheless, as
the transactional databases continue to grow and improve, the market methods are
increasingly compelling.

Summary and Conclusions

The log size model is more accurate than CAPM for valuing privately held businesses.
In the past it was also much faster and easier to use, requiring no research,® whereas
CAPM often required considerable research of the appropriate guideline companies.
Today, however, CAPM, disguised as the build-up method, is very easy to use, so
the advantage of log size is now the accuracy.

A further danger of CAPM is not fully accounting for size differences. It is very
inaccurate to apply the betas for IBM, Compaq, Apple Computer, and so on to
a small start-up computer firm with $2 million in sales without carefully adjusting

%One needs only a single regression equation for all valuations performed within a single
year.



Discount Rates as a Function of Log Size 199

for size differences, which may or may not be possible. The size effect drowns out
any real information contained in betas, especially applying betas of large firms to
small firms. The 375% (Table 5.1, P21) improvement that we found in the 0.70%
(P20, C38) standard error in the log size equation versus the 2.61% (M20) standard
error from the CAPM applies only to firms of the same magnitude. When applied
to small firms, CAPM vyields even more erroneous results, unless the appraiser com-
pensates by blindly adding another 5% to 10% beyond the typical Ibbotson “small
firm premium” and calling that a company-specific adjustment (CSA). I suspect this
practice is common, but then it is not really a CSA; rather it is an outright attempt to
compensate for a model that has no place being used to value small and medium
firms.

Around 1994, T valued a midsize firm with $25 million in sales, $2 million in
net income after taxes, and very fast growth. T used a guideline public company
method—among others—and found 16 guideline companies with positive earn-
ings in the same SIC Code. I regressed the value of the firm against net income,
with “great” results—99.5% R* and high t-statistics. When T applied the regression
equation to the subject company, the value came to —$91 million!”” T suspect that
much of this scaling problem goes on with CAPM as well; many appraisers seri-
ously overvalue small companies using discount rates appropriate only for large
firms.

When using the log size model, we extrapolate the discount rate to the appropri-
ate level for each firm that we value. There is no further need for a size adjustment.
We merely need to compare our subject company to other companies of its size,
not to IBM. Using Robert Morris Associates or Troy’s Almanac data to compare the
subject company to other firms of its size is appropriate, as those companies are
often far more comparable than publicly traded firms.

Since we have already extrapolated the rate of return through the regression
equation in a manner that appropriately considers the average risk of being any
particular size, the relevant comparison when considering company-specific adjust-
ments is to other companies of the same size. There is a difference between two
firms with $2 million in sales volume when one is a one-man show and the other
has two Harvard MBAs running it. If the former is closer to average management
for a firm of that size, you should probably subtract 1% or 2% from the discount
rate for the latter; if the latter is the norm, it is appropriate to add that much to
the discount rate of the former—or, better yet, use Warren Miller’s SPARC system.
Although company-specific adjustments are subjective, they serve to further refine
the discount rate obtained from discount rate calculations.
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APPENDIX 5 A

Automating Iteration Using
Newton’s Method

This appendix is optional. It is mathematically difficult and is more analytically
interesting than practical. The practical reader can skip this appendix.

In this appendix, we present a numerical method for automatically iterating to
the correct log size discount rate. Isaac Newton invented an iterative procedure using
calculus to provide numerical solutions to equations with no analytic solution. Most
calculus texts will have a section on his method (for example, see Thomas, 1972).
His procedure involves making an initial guess of the solution, then subtracting the
equation itself divided by its own first derivative to provide a second guess. We
repeat the process until we converge to a single answer.

The benefit of Newton’s method is that it will enable us to simply enter as-
sumptions for the cash flow base and the perpetual growth, and the spreadsheet
will automatically calculate the value of the firm without our having to manually go
through the iterations as we did in Tables 5.4A, B, and C. Remember, some iteration
process is necessary when using log size discount rates, because the discount rate
is not independent of size, as it is using other discount rate models.

To use Newton’s procedure, we rewrite equation (5.10) as:

CF
Let f(V) =V — [m} =0. (A5.1)

We take the first derivative of equation (A5.1), which results in:
bCF ]

Via+blnV — g)? (452

f’(V)=1+[

Assuming our initial guess of value is Vy, the formula that defines our next iteration
of value, V1, is:

CF
o (a+blnVy—g)
— _ 0—
Vi=W . ela . (A5.3)

Vola + bl v — g)?

Table A5.1 shows Newton’s iterative process for the simplest valuation. In B22
we enter our initial guess of value of an arbitrary $24,000, our forecast cash flow base
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A | B
1 Table A5.1
2 Gordon Model Valuation
3 Using Newton's Iterative Process
4
5 Iteration Value
6 t V(1)
7 0 24,000
8 1 17,311,063
9 2 594,875
10 3 490,645
11 4 490,080
12 5 490,080
13
14 | Proof of Calculation:
15
16_| Discount Rate 27.40%
17 | Gordon Multiple 4.9008
18 | x CF = FMV $490,080
19
20 | Parameters
21
22 | V(0) 24,000
23 |CF 100,000
24 |g 7%
25 |a (Table 5.1, C37) 46.225%
26 |b (Table 5.1, C43) -1.436%)
27
28
29 Model Sensitivity
30 FMV Initial Guess = W(0)
31 Explodes 300,000,000,000
323 490,080 200,000,000,000
33| 9% 490,080 24,000
34 Explodes 23,000
35
36 _|Formula in Cell B8:
37 |=B7-((B7-(CF/(A+B*LN(B7)-G)))/(1+(B*CF)/(B7*(A+B*LN(B7)-G)"2)))
38
39 | Note: The above formula assumes an end-of-year Gordon model.
40 Newton's method converges for the midyear Gordon model, but
41 too slowly to be of practical use.

of $100,000 (B23), perpetual growth g = 7% (B24), and our regression coefficients
a and b (B25 and B26, which come from Table 5.1, C37 and C43, respectively).

In B7, we see our initial guess of $24,000. The iteration #2 value of $17,311,063
(B8) is the result of the formula for B8, which appears in B37 and is equation
(A5.3).%8 B9 to B12 are simply the formula in B8 copied to the cells below.

Once we have the formula, we can value any firm with constant growth in its
cash flows by simply changing the parameters in B23 to B24. Of course, we update
the regression constant and slope, a and b, annually with the new SBBI yearbook.

8 B22 (repeated in B7), our initial guess, is Vj in equation (A5.3).
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Rows 31 to 34 show the sensitivity of the model to the initial guess. If we guess
poorly enough, the model will explode instead of converging to the right answer.
For this particular set of assumptions, an initial guess of anywhere between $24,000
and $200 billion will converge to the right answer. Assumptions far enough above
$200 billion or below $24,000 explode the model.

Unfortunately, the midyear Gordon model, which is more accurate, has a much
more complex formula. The iterative process does converge, but much too slowly to
be of any practical use. It is better to use the end-of-year Gordon model to converge
to the appropriate discount rate and afterward multiply the discount rate by /1 + 7.






APPENDIX SB

Mathematical Appendix

The purpose of this appendix is to provide the mathematics behind the log size
model that might have hampered many readers had we put it in the body of the
chapter. Additionally, this appendix contains some philosophical analysis of the
mathematics—specifically on the nature of exponential decay function and how that
relates to phenomena in physics as well as our log size model. This is intended
more as intellectual observation than as required information.

We will begin with two definitions:

r=return of a portfolio.
§ =standard deviation of returns of the portfolio.

Equation (B5.1) states that the return on a portfolio of securities (each decile is
a portfolio) varies positively with the risk of the portfolio, or:

7’=6l1+b15. (BSl)

This is a generalization of equation (5.1) in the chapter. This relationship is not
directly observable for privately held firms. Therefore we use the next equation,
which is a generalization of equation (5.2) from the chapter, to calculate expected
return.

In equation (B5.1), the parameter a; is the regression estimate of the risk-free
rate,® while the parameter b; is the regression estimate of the slope, which is
the return for each unit increase of risk undertaken (i.e., the standard deviation of
returns). Thus, b; is the regression estimate of the price of or the reward for taking
on risk:

r=day + bz In FMV, bz < 0. (BSZ)

Equation (B5.2) states that return decreases in a linear fashion with the natural
logarithm of firm value. The parameter a; is the regression estimate of the return for
a $1 firm® —the valueless firm—while the parameter b, is the regression estimate of
the slope, which is the return for each increase in In FMV. Because it is negative, b,
is the regression estimate of the reduction in return investors accept for investing in

A zero risk asset would have no standard deviation of returns. Thus § = 0, and r = a;.
%A firm worth $1 would have In FMV = In $1 = 0. Thus in equation (B5.2), for FEMV = $1, r
= d.

207
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larger firms. The terms a,, a;, by, and b, are all parameters determined in regression
equations (5.1) and (5.2).

Using 1926-2007 stock market data, our regression estimate of a; = 5.54% (Table
5.1, C23), which compares well with the 82-year mean long-term government bond
yield of 5.21% (C24). It would initially appear that regression #1 does a reasonable
job of also providing an estimate of the risk-free return.

Focusing now on equation (B5.2), the log size equation, the 82-year regression
estimate of b, = —1.436% (C43). Since it is negative, the parameter b, is the reduction
in return that comes about from each unit increase in the natural logarithm of
company value. The parameter a; is the y-intercept. It is the return (discount rate)
for a valueless firm—more specifically, a firm with $1 in value—as In($1) = $0.

Equating the right-hand sides of equation (B5.1) and (B5.2) and solving for S,
we see how we are implicitly using the size of the firm as a proxy for risk.

@ by gy, (B5.3)
by by
Since a5 is the rate of return for the valueless (maximum risk) firm and a, is
the regression estimate of the risk-free rate—flawed as it is—the difference between
them, a, — ay, is the equity premium for the maximum-risk firm, that is, a $1.00
or valueless firm. Dividing by b1, the price of risk (or reward) for each increment
of standard deviation, we get - the standard deviation of a $1 firm. 1 We then
reduce our estimate of the standard deviation by the ratio of the relative prices of
risk (the price of risk in log size divided by the price of risk in standard deviation)
and multiply that ratio by the log of the size of the firm. In other words, we start
with the standard deviation of the maximum-risk firm, a $1 firm, and reduce the
standard deviation by the ratio of the regression slopes® times the log of the value
of the firm in order to calculate the standard deviation of the firm.
Rearranging equation (B5.3), we get

(g —a) + b, S

S =

In FMV = ——M8M8M—. (B5.4)
b,
Raising both sides of the equation as powers of e, the natural exponent, we get:
(a1 —ap)+b1 S (aj—ap)  b1S
FMV =e 7 =e 2 ez, (B5.5)
or
LS (a1 —ap) bl
FMV = Ae®™, where A=e 2 | k= < 0. (B5.6)

by

Here we see that the value of the firm or portfolio declines exponentially with
risk (i.e., the standard deviation).

Unfortunately, the standard deviation of most private firms is unobservable,
since there are no reliable market prices. Therefore, we must solve for the value of

1This is the standard deviation of a $1 firm, because when we substitute $1 into the right-hand
term in equation (B5.3), In $1 = 0, and only the first term on the right side of the equation
remains.

92p,/b, is the ratio of the slopes of the regression lines. As b; is positive and b, is negative,
b,/by is also negative. Each unit increase in In FMV reduces our regression estimate of S.
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a private firm another way. Restating equation (B5.2),

r=dad =+ bz ln(FMV) (B57)
Rearranging the equation, we get:
In FMV = (7;—“2). (B5.8)
2

Raising both sides by e, that is, taking the antilog, we get:

(r—ap)

MV =e 2, (B5.9)

or
FMV = Ce™, (B5.10)

where € = ¢ and m = b%.

This shows that the FMV of a firm or portfolio declines exponentially with the
discount rate. This is reminiscent of a continuous time present value formula; in this
case, though, instead of traveling through time we are traveling though expected
rates of return. The same is true of equation (B5.6), where we are traveling through
degree of risk.

What Does the Exponential Relationship Mean?

Let’s try to get an intuitive feel for what an exponential relationship means and why
that makes intuitive sense. Equation (B5.6) shows that the fair market value of the
firm is an exponentially declining function of risk, as measured by the standard
deviation of returns. Repeating equation (B5.6), FMV = A4¢*, k < 0. Because we
find that risk itself is primarily related to the size of the firm, we come to a similar
equation for size. Repeating equation (B5.10), we see that FMV = Ce™", m < 0.

In physics, radioactive minerals such as uranium decay exponentially. That
means that a constant proportion of uranium decays at every moment. As the re-
maining portion of uranium is constantly less over time due to the radioactive decay,
the amount of decay at any moment in time or during any finite time period is always
less than the previous period. A graph of the amount of uranium remaining over
time would be a downward-sloping curve, steep at first and increasingly shallow
over time. Figures 5.3 and 5.7 are shaped like exponential decay curves.®?

It appears the same is true of the value of firms. Instead of decaying over time,
their value decays over risk. Because it turns out that both risk and the rate of return
are so closely related to size, the value also decays exponentially with the market
rate of return (i.e., the discount rate). The graph of exponential decay in value over
risk has the same general shape as the uranium decay curve.

Imagine the largest ship in the world sailing on a moderately stormy ocean.
You as a passenger hardly feel the effects of the storm. If instead you sailed on a
slightly smaller ship, you would feel the storm a bit more. As we keep switching to

%The larger in absolute value the negative decay rate, for example, & in equation (B5.6), the
steeper the curve. If £ = —0.1, the curve decreases faster than if & = —0.5.
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increasingly smaller ships, the storm feels increasingly powerful. The smallest ship
on the NYSE might be akin to a 35-foot cabin cruiser, while appraisers often have to
value little paddleboats, the passengers of which would be in danger of their lives
while the passengers of the General Electric boat would hardly feel the turbulence.

That is my understanding of the principle underlying the size effect. Size offers
diversification of product and service. Size reduces transaction costs in proportion
to the entity; for example, the proceeds of floating a $1 million stock issue after
flotation costs are far less in percentage terms than floating a $100 million stock
issue. Large firms have greater depth and breadth of management, and greater
staying power. Even the chances of surviving bankruptcy increase with firm size.
Remember Chrysler? If it were not a very big business, the government would never
have jumped in to rescue it.** The same is true of the S&Ls. For these and other
reasons, the returns of big businesses fluctuate less than small businesses, which
means that the smaller the business, the greater the risk and the greater the return.

The FMV of a firm or portfolio declining exponentially with increases in the
discount rate/risk is reminiscent of a continuous-time present value formula, where
Present Value = Principal x e™'; in this case, though, instead of traveling through
time we are traveling though expected rates of return/risk.

%41 wrote this in the first edition of this book to mean when Lee Iacocca took over in the 1978,
and here we are again—this time with GM, AIG Insurance, and the whole kit-and-caboodle
of failed giants running into Uncle Sam’s open arms!
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Abbreviated Review and Use

This abbreviated version of the chapter is intended for those who simply wish to
learn the model without the benefit of additional background and explanation, or
those who wish to use it as a quick reference for review.

Introduction

Historically, small companies® have shown higher rates of return when compared to
large ones® over the past 82 years (Ibbotson Associates, 2008). Further investigation
into this phenomenon has led to the discovery that return (the discount rate) strongly
correlates with the natural logarithm of the value of the firm (firm size), which has
the following implications:

® The discount rate is a linear function negatively related to the natural logarithm
of the value of the firm.

® The value of the firm is an exponential decay function, decaying with the
investment rate of return (the discount rate). Consequently, the value also decays
in the same fashion with the standard deviation of returns.

As we have already described regression analysis in Chapter 3, we now apply
these techniques to examine the statistical relationship between market returns, risk
(measured by the standard deviation of returns), and company size.

Regression #1: Return versus Standard Deviation of Returns

Columns A—F in Table 5.1 contain the input data from the Stocks, Bonds, Bills and
Inflation 2008 Classic Yearbook (Ibbotson Associates, 2008) for all of the regression
analyses as well as the regression results. We use 82-year average returns in both
regressions. For simplicity, we have collapsed 820 data points (82 years x 10 deciles)

SFrom 1926 to 1981, NYSE fifth quintile returns; from January 1982 to March 2001, DFA
U.S. 9-10 Small Company Portfolio; from April 2001 to December 2007, DFA U.S. Micro Cap
Portfolio.

%Based upon the S&P Composite Index.
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into 10 data points by using averages. Thus, the regressions are cross-sectional rather
than time series. In column A we list Ibbotson Associates’ (2008) division of the
entire NYSE/AMEX/NASDAQ into 10 different divisions—known as deciles—based
on size, with the largest firms in decile #1 and the smallest in decile #10.°” Columns
B through F contain market data for each decile, which is described in the following.

Note that the 82-year average market return in column B rises with each decile,
as does the standard deviation of returns (column C). Column D shows the market
capitalization, which is the price per share times the number of shares, of each decile
near the end of 2007. It is also the fair market value (FMV).

Dividing column D (FMV) by column F (the number of firms in the decile), we
obtain column G, the average capitalization, or the average fair market value of the
firms in each decile. Column I, the last column in the table titled In (FMV), is the
natural logarithm of the average FMV.

Regression of In (FMV) against standard deviation of returns for the period
1926—2007 (Table 5.1, C23 to C33), gives rise to the equation:

r=5.54% + (33.76% x S), G.D

where r = return and § = standard deviation of returns.

The regression statistics of adjusted R* of 97.04% (C27), a t-statistic of the slope of
17.2 (C32), a p-value of less than 0.01% (C33), and the standard error of the estimate
of 0.45% (C25), all indicate a high degree of confidence in the results obtained. Also,
the constant of 5.54% (C23) is the regression estimate of the long-term risk-free rate,
which compares favorably with the 82-year arithmetic mean income return from
1926 to 2007 on long-term government bonds of 5.21% (C24).%

The major problem with direct application of this relationship to the valuation
of small businesses is coming up with a reliable standard deviation of returns. Ap-
praisers cannot directly measure the standard deviation of returns for privately held
firms, since there is no objective stock price. We can measure the standard deviation
of income, and we covered that in our discussion in the chapter of Grabowski and
King (1999).

Regression #2: Return versus Log Size

Fortunately, there is a much more practical relationship. Notice that the returns are
negatively related to the market capitalization, that is, the fair market value of the
firm. The second regression in Table 5.1 (C37 to C46) is the more useful one for
valuing privately held firms. Regression #2 shows return as a function of the natural
logarithm of the FMV of the firm. The regression equation for the period 1926—2007
is:

r = 46.22% — [1.436% x In (FMV)]. (5.2

97All of the underlying decile data in Ibbotson originate with the University of Chicago’s
Center for Research in Security Prices (CRSP), which also determines the composition of the
deciles.

98SBBI Classic 2008, p. 142, uses this measure as the risk-free rate for CAPM.
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The adjusted R? is 93.02% (C40), the t-statistic is —11.0 (C45), and the p-value is
less than 0.01% (C46), meaning that these results are statistically robust. The standard
error for the Y-estimate is 0.70% (C38), which means that we can be 95% confident

that the regression forecast is approximately accurate to within plus or minus 2 x
0.70% =1.4%.

Need for Annual Updating

Table 5.1 should be updated annually, as the Ibbotson averages change, and new
regression equations should be generated. This becomes more crucial when shorter
time periods are used, because changes will have a greater impact on the average
values. Additionally, it is important to be careful to match the regression equation to
the year of the valuation. If the valuation assignment is retroactive and the valuation
date is 2004, then don’t use the regression equation for 1926—2008. Instead you
should run your own regression on the Ibbotson data or contact the author to
provide the right equation.

Computation of Discount Rate Is an Iterative Process

In spite of the straightforwardness of these relationships, we have a problem of
circular reasoning when it comes to computing the discount rate. We need the FMV
to obtain the discount rate, which is in turn used to discount cash flows or income
to calculate the FMV! Hence, it is necessary to make sure that our initial estimate of
FMV is consistent with the final result. If it is not, then we have to keep repeating the
process until the results are consistent. Fortunately, discount rates remain virtually
constant over large ranges of values, so this should not be much of a problem.

Practical Illustration of the Log Size Model: Discounted Cash Flow Valuations

Let’s illustrate how the iterative process works with a specific example. The assump-
tions in Tables 5.4A, 5.4B and 5.4C are identical, except for the discount rate.

Table 5.4A is a very simple discounted cash flow (DCF) analysis of a hypothetical
firm. The basic assumptions appear in B30—B35. We assume the firm had $100,000
cash flow in 2007. We forecast annual growth through the year 2012 in row 31 and
perpetual growth at 4% (B33) thereafter. In B35 we assume a 23% discount rate.

The DCF analysis in rows 5 through 7 is standard and requires little explanation
other than that the present value factors are midyear, and the value in B16 is a
marketable minority interest. It is this value ($737,360) that we use to compare
the consistency between the assumed discount rate of 23% (in B32) and calculated
discount rate according to the log size model.

We begin calculating the discount rate using the log size model in B22, where
we compute In (737,360) = 13.5108. This is the natural log of the initially computed
marketable minority value of the firm. We repeat the x-coefficient of —0.01436 from
Table 5.1, C43 in B23 and multiply B22 x B23 to calculate the product of —0.1941
in B24. To that we add the regression constant of 0.4622 (B25, transferred from
Table 5.1, C37) and subtract the annual increase in the PE ratio of 0.8% (B26) from
Ibbotson’s supply-side model to obtain an implied (ex-post) discount rate of 26%
(rounded, B27).
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Comparing the two discount rates—assumed and calculated—reveals that we
initially assumed the discount rate too low, which means that we overvalued the
firm. We will correct that problem in Table 5.4B. In the meantime, though, we
continue describing the remaining cells in the spreadsheet.

B17 through B19 contain the control premium and discount for lack of mar-
ketability, which we assume at 40% (B34) and 35% (B35), respectively. These are
simple assumptions with no intent to be as realistic as possible, as we cover these
topics in depth in Chapter 8. Because the assumed and calculated discount rates are
not yet consistent, we ignore the specific numerical results, as they are irrelevant.

THE SECOND ITERATION: TABLE 5.4B We revise our discount rate to 26% (B32),
which was our calculated discount rate in Table 5.4A, B27. In this case, we arrive at
a marketable minority FMV of $640,971 (B16). When we perform the discount rate
calculation with this value in B22 through B27, we obtain a matching discount rate
of 26%, indicating that no further iterations are necessary.

CONSISTENCY IN LEVELS OF VALUE  In calculating discount rates, it is important to
be consistent in the level of fair market value that we are using. Since the log
size model is based on returns from the NYSE/AMEX/NASDAQ, the corresponding
values generated are on a marketable minority basis. Consequently, it is this level of
value that we should use for the discount rate calculations.

Frequently, however, the marketable minority value is not the ultimate level
of fair market value that we are calculating. Therefore, it is crucial to be aware
of the differing levels of FMV that occur as a result of valuation adjustments. For
example, if our valuation assignment is to calculate an illiquid control interest, we
will add a control premium and subtract a discount for lack of marketability from
the marketable minority value.®” Nevertheless, we use only the marketable minority
level of FMV in iterating to the proper discount rate, as we must first maintain
consistency in the calculation of the discount rate.

TABLE 5.4C: ADDING COMPANY-SPECIFIC ADJUSTMENTS TO THE DCF ANALYSIS ~ The final
step in our DCF analysis is performing company-specific adjustments. Let’s suppose
for illustrative purposes that there is only one owner of this firm. She is 62 years
old and had a heart attack three years ago. The success of the firm depends to a
great extent on her personal relationships with customers, which may not be easily
duplicated by a new owner. Therefore, we decide to add a 2% company-specific
adjustment to the 26% discount rate from Table 5.4B to reflect this situation,”® which
leads us to a 28% (B32) discount rate.

%Not all authorities would agree with this statement. There is considerable disagreement on
the levels of value. We cover those controversies in Chapter 8.

70A different approach would be to take a discount from the final value, which would be
consistent with key-person-discount literature appearing in a number of articles in Business
Valuation Review (see the BVR index for cites). Another approach is to lower our estimate
of earnings to reflect our weighted average estimate of decline in earnings that would follow
from a change in ownership or the decreased capacity of the existing owner, whichever is
more appropriate, depending on the context of the valuation. In this example, I have already
assumed that we have done that. There are opinions that one should lower earnings estimates
and not increase the discount rate. It is my opinion that we should definitely increase the
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Prior to adding a company-specific adjustment, it is important to achieve internal
consistency in the ex ante and ex post marketable minority values, as we did in
Table 5.4B. The remainder of the table is identical to its predecessors, except that
we eliminate the ex post calculation of the discount rate in B22 through B27, since
we have already achieved consistency.

It is at this point in the valuation process that the dollar amounts of our control
premium and discount for lack of marketability are meaningful. Our final fair market
value of $537,046 (B20) is on an illiquid control basis.

In a valuation report, it would be unnecessary to show Table 5.4A. One should
show Tables 5.4B and 5.4C only.

The Table 5.4 series of examples still does not consider the material later in the
chapter in the section, “The Wedge between Public and Private Firm Valuations,”
in which we introduce the concept of a private firm premium. Thus, the discount
rate calculations in the Table 5.4 series are not the end of the story. The appraiser
still needs to consider a private firm premium in addition to the company-specific
premium.

Total Return versus Equity Premium

CAPM uses an equity risk premium as one component for calculating return. The
discount rate is calculated by multiplying the equity premium by beta and adding
the risk-free rate. In my first article on the log size model (Abrams, 1994), I also
used an equity premium in the calculation of discount rate. Similarly, Grabowski
and King (1995) used an equity risk premium in the computation of discount rate.

I eliminated the equity premium term in my second article (Abrams, 1997) in
favor of total return because of the low correlation between stock returns and bond
yields for the 60 years prior to 1996, that is, for the data in the 1997 article. The
actual correlation was 6.3%—an amount small enough to ignore. For 1926—2007, the
correlation is down to 3.8% (Table 5.5, C90) for large cap stocks.

Adjustments to the Discount Rate

Privately held firms are generally owned by people whose investment portfolios are
not well diversified. Table 5.3 was derived from stock portfolios that were diversified
in every sense except for size, as size itself was the method of sorting the deciles. In
contrast, the owner of the local bar or dry cleaner is probably not well diversified,
nor is the probable buyer. The appraiser should consider adding a private firm risk
premium to the discount rate implied by Table 5.3 to account for that. On the other
hand, a $100 million FMV firm is likely to be bought by a well-diversified buyer and
may not merit increasing the discount rate.

Warren D. Miller, CFA, ASA, teaches a top-notch course to incorporate nonsys-
tematic risk into our valuations. I asked his permission to quote him in this book, and
after he reviewed the above paragraph he said that his SPARC tri-level unsystematic
risk framework results in adjustments of —3% to +35%. He stated that he computes
his adjustments empirically and updates them annually. Adjustments of the potential

discount rate in such a situation, and we should also decrease the earnings estimates if that
has not already been done.
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magnitude that he computes deserve the serious attention of the valuation profes-
sion, as these adjustments can dwarf the choice of the baseline discount rate and
almost any other valuation adjustment that we make. However, that is outside the
scope of this book.”!

Another common adjustment to Table 5.3 discount rates would be for the depth
and breadth of management of the subject company compared to other firms of the
same size. In general, Table 5.3 already incorporates the size effect. No one expects
a $100,000 FMV firm to have three Harvard MBAs running it, but there is still a
difference between a complete one-man show and a firm with two talented people.

In general, this methodology of calculating discount rates will increase the im-
portance of comparing the subject company to its size and industry peers via RMA
Associates or Troy’s Almanac data. Differences in leverage between the subject com-
pany and its RMA peers could well be another common adjustment, although it is
easy to overdo this. If we suspect that an independent variable is statistically sig-
nificant, we could run regressions using data from the guideline public company
method and guideline M&A method to test that variable. If it is statistically signifi-
cant, then it makes sense to adjust for it in a DCF. If not, then it is still possible to
make an adjustment for it, but it is best to be cautious in doing so.

Discounted Cash Flow or Net Income?

Since the market returns are based on the cash dividends and the market price at
which one can sell one’s stock, the discount rates obtained with the log size model
should be properly applied to cash flow, not to net income. We appraisers, however,
sometimes work with clients who want a quick-and-dirty valuation, and we often
don’t want to bother estimating cash flow. I have seen suggestions in Business
Valuation Review (Gilbert, 1990, for example) that we can increase the discount rate
and thereby apply it to net income, and that will often lead to reasonable results.
Nevertheless, it is better to make an adjustment from net income based on judgment
to estimate cash flow to preserve the accuracy of the discount rate. Chapters 1 and
2 cover this topic.

The Wedge between Public and Private Firm Valuations

In the world of publicly held firms covered by the SBBI yearbooks, the total returns,
r, is the sum of income returns, which is dividends, plus capital gains. This is
approximately equal to the dividend yield, d, plus the expected growth in the value
of the stock, g, as in equation (5.16):72

r=d+g. (5.16)

Our rate of return could be either the historical actual rate of return or our
forecast future rate of return. The latter is more relevant for valuation. Therefore it

71Our discussion of generic private firm risk, however, is within the scope of this book.
721t differs by changes in the PE ratio and the reinvestment yield. Also the equation is exact
for geometric returns only.
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is the forecast dividend yield rather than the historical yield that is appropriate in
equation (5.16).

Let the dividend yield equal forecast dollar dividends, D,;;, divided by the
current stock price, P;. Substituting this into equation (5.16) results in:

Dy
r= +g. 5.17
5 T 5.17)
Rearranging terms, we get:
Dyiq
=7r—g. 5.18
7 g (5.18)
Taking reciprocals, we get:
P, 1
= . (5.19
Dyt r—g
Multiplying both sides by D, we get:
1
P, = D x . (5.20)
r—=8

If we rename dividends to cash flow and the stock price as FMV, the equation
becomes:

FMV =CF 4 x (5.2D

r—g’
Thus, Ibbotson’s total return equation is our familiar Gordon model equation in
disguise, albeit the end-of-year version of the Gordon model.”

Private Firm Risk Is the Wedge

It has perplexed me in the past why equation (5.16) applies to public firms but does
not seem to apply to private firms. I believe the reason is simple—private firms are
riskier than public firms for many reasons.”

In the face of risks that are specific to being a private firm, equation (5.16)
transforms into equation (5.22):

Tprivate > Aprivate + 8Private- (5.22)
More specifically, we can restate equation (5.22) as follows:
Tprivate = Aprivate + &private + PFR + CSR, (5.23)

where PFR is a generic private firm risk that incorporates the risk differential between
public firms and all private firms, while CSR is company-specific risk.

7We assumed dividends come at the end of the year. If we had instead been more precise
and assumed dividends occur evenly throughout the year, we would end with the midyear
Gordon model.

74See the chapter for the details.
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For example, suppose that a private firm has an expected dividend yield of 2%
and growth in cash flows” of 5%. It is unrealistic to think that the private firm has
a discount rate of 7%. As a starting point, the discount rate has to be based on the
rate of return an investor could earn for a publicly traded firm of the same risk as
this private firm. A decile #2 private firm might have the same risk as, let’s say, a
decile #10 public firm.

Equations (5.22) and (5.23) show that we are using our asset pricing models—
whether log size, CAPM, and so on—to calculate discount rates, not growth rates,
for most privately held firms, because we cannot assume the equality of the discount
rate and the dividend yield plus the growth rate. Thus, the growth rate of a private
firm is rarely equal to the discount rate minus the dividend rate, almost always being
lower.

It is important to keep our measures of » and g consistent. When we use the
arithmetic rate of return, it is important to use an arithmetic forecast growth rate,
not the geometric growth rate. Thus, while we appraisers are fond of calculating the
compound annual rate of growth (CAGR) of sales and net income in our analysis of
historical financial results, we should be using the arithmetic growth rates instead as
our base.

Measuring Private Firm Risk

Now that we have established that private firm risk exists above public firm risk,
we need to measure it. In doing so we are moving into uncharted territory. As
mentioned earlier, it is more difficult to create and balance portfolios with privately
held firms.

We begin with the standard deviation of the 1926—2008 decile #10 portfolio
of 45% (Table 5.1, C17, rounded). A finance text (Bodie, Kane, and Marcus, 1995,
Figure 6.2, p. 135) shows a fully diversified portfolio as having 300 stocks in it
with a relative standard deviation of 1.00. It shows a one-stock portfolio as having
a relative standard deviation of 2.50, that is, 2!/ times the standard deviation of a
300-stock portfolio. A 10-stock portfolio has a relative standard deviation of 1.26.
Let’s see what we can make out of these benchmarks.

We multiply the 45% standard deviation of the decile #10 portfolio by 2.5 to
calculate the standard deviation of a single stock, which equals 113%. The difference
in standard deviations is 68%. We multiply 68% x 34% = 23%. The 34% is the
rounded x-coefficient from Table 5.1, C30. It is the increases in the discount rate
for each percent increase in the standard deviation of the portfolio. Table 5.1, B17
shows the decile #10 82-year return as 20.98%, and we subtract 0.8% for the average
annual increase in the PE ratio, which results in a rounded return of 20% for a decile
#10 portfolio. If instead the portfolio consists of only one stock, then the required
return should be 20% + 23% = 43%. In other words, a rational investor should be

75Note that Ibbotson’s definition of growth is growth in the stock price—capital gains—which
is a definition that is unavailable to appraisers of private firms, since we do not have a market-
determined stock price. Thus our next-best definition of growth is that of cash flows, and
we often assume that is sales growth combined with an assumed constant profit margin and
retention ratio.
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indifferent between investing in 300 decile #10 stocks with an expected return of
20% and a single public firm with an expected return of 43%.

Instead, if we look at owning a decile #10-size private firm as part of our small
portfolio as being equivalent to owning a 10-stock portfolio instead of a 300-stock
portfolio, the portfolio standard deviation would be 1.26 x 45% = 57%, a 12%
increase in portfolio standard deviation. Multiplying this by the x-coefficient of 34%
we get an increase in required return of 4%. This strikes me as being a reasonable
benchmark increase in the required return for investing in a private firm. This 4%
calculation applies to all private firms; it is the term PFR (private firm risk) in equation
(5.23). Of course, it is not the truth coming from Mt. Sinai, but it is a reasonable
estimate.

It is possible to modify that calculation to include both private firm risk and
company-specific risk. Suppose for a specific subject company we consider it equiv-
alent to owning a 5-stock portfolio. The Bodie-Kane-Marcus table shows the adjust-
ment factor to be 1.40. We calculate the increase as 1.40 x 45% = 63%, an 18%
increase in portfolio standard deviation. Multiplying this by the x-coefficient of 34%
we get an increase in required return of 6%. This implies the subject company’s
discount rate should be 20% + 6% = 26%. Of the 6% increase in the discount rate,
4% is the generic private firm risk and 2% is company-specific risk.

Satisfying Revenue Ruling 59-60

Revenue Ruling 59-60 requires that we look at publicly traded stocks in the same
industry as the subject company. In the first edition of this book, I claimed that
our excellent results with the log size model to calculate a discount rate to use in
a discounted cash flow method, combined with Jacobs and Levy’s general finding
of industry insignificance, satisfied the intent of Revenue Ruling 59-60 for small
and medium firms without the need to actually perform a guideline publicly traded
company method (GPCM). For the moment we will follow that reasoning, and at
the end of this section we will see how things have changed in the approximately
10 years since publication of the first edition.

Strengths and Weaknesses of DCF and the Market Methods

First, however, it is worthwhile to look at the strengths and weaknesses of each of
the methods that we commonly use. The DCF is an introverted valuation approach.
Its strength is the ability to customize the valuation to our subject company. We do
considerable financial and statistical analysis of our subject, forecast cash flows using
growth rates unique to our subject, and discount them to present value at a market-
determined rate, usually with some company-specific adjustments, and preferably
with the generic private firm risk adjustment (per our earlier discussion). The only
part of the DCF that is more outward-looking is the calculation of the discount rate.

The market methods—both public and private—are extroverted valuation meth-
ods. The majority of our efforts go to developing the mathematical relationship of
value of the guideline companies to the independent variables that cause value.
Then we apply those relationships to our subject company.
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Thus, the DCF is best at being customized to the subject company. However,
because the DCF lacks external feedback, its weakness is that it is easy enough to
value a company improperly using unrealistic forecasts of sales growth, margin, and
payout ratio. It is particularly difficult to value early-stage firms.

The strength of the market methods is that they are based on real valuations of
real companies. Thus they do not suffer from “valuation introversion.” However, they
may suffer from other weaknesses: lack of comparability to the subject company,
insufficient data (too few observations and/or too little information about each
observation),”® bad data,”” and inconsistent results due to outliers.

Thus, it is best to use a DCF and both market methods when they apply.
However, it is often just plain wrong to use a GPCM as a valuation method for a
small business. Unless the appraiser can eliminate heteroscedasticity and control for
size and risk differences in the public companies, it is often best not to use the
GPCM.

The Information in a PE Multiple and Applicability to the Subject Company

We repeat equation (4.28) from Chapter 4 to show the relationship of the PE multiple
to the Gordon model:

V147
r—§8

Relationship of the PE multiple to the Gordon model multiple.

The PE multiple’® of a publicly- traded firm gives us information on the one-year
and long-run expected growth rates and the discount rate of that firm—and nothing
else. The PE multiple gives us only a combined relationship of 7 and g. In order
to derive either » or g, we would have to assume a value for the other variable or
calculate it according to a model.

For example, suppose we use the log size model (or any other modeD to
determine 7. Then the only new information to come out of a guideline public
company method is the market’s estimate of g,” the growth rate of the public firm.
There are much easier and less expensive ways to estimate g than to do a GPCM.
When all the market research is finished, the appraiser still must modify g to be
appropriate for the subject company, and its g is often quite different from the
public companies’. So the GPCM wastes much time and accomplishes little.

Because discount rates appropriate for the publicly traded firms are much lower
than are appropriate for smaller, privately held firms, using public PE multiples will

(4.28)

PE =1+ g1) x POR x

75This is particularly a problem in the guideline M&A method. None of the databases of sales
of privately held firms provide information on historical growth of sales and profitability, let
alone expected growth.

77For one of the databases, 1 once found an observation with a regression standardized
residual of 12 standard errors—the largest by far that I have ever seen. It does not appear in
any table of z-statistics that I have seen. I asked one of my analysts to call the organization to
report it as an error, and the spokesperson for the organization said it did not maintain the
original input forms, and there was no way to verify or check the error.

78Included in this discussion are the variations of PE (e.g., P/CF, etc.).

7This is under the simplest assumption that g; = g and that the retention ratio will remain
constant.
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lead to gross overvaluations of small and medium privately held firms. This is true
even after applying a discount, which many appraisers do, typically in the 20% to
40% range—and rarely with any empirical justification.

If the appraiser is set on using a GPCM, then he or she should use regression
analysis and include the logarithm of market capitalization as an independent vari-
able. This will control for size. In the absence of that, it is critical to use only public
guideline companies that are approximately the same size as the subject company,
which is rarely possible. When valuing a very large privately held company, where
the size effect will not confound the results, it is more likely to be worthwhile to do
a guideline public company method.

Changes in the Past 10 Years

Over the past 10 years there is much better availability of data, both of publicly
traded firms and private transactions. Therefore the market valuation methods are
becoming increasingly important. Whereas I argued for routinely eliminating the
GPCM in the first edition of the book and didn’t even consider the guideline M&A
method a serious method, that is changed now.

It is still a potential danger to inappropriately use the GPCM in the valuation of
a small business, and the valuation analyst must guard against that. Nevertheless, as
the transactional databases continue to grow and improve, the market methods are
increasingly compelling.

Summary and Conclusions

The log size model is more accurate than CAPM for valuing privately held businesses.
In the past it was also much faster and easier to use, requiring no research,?’ whereas
CAPM often required considerable research of the appropriate guideline companies.
Today, however, CAPM, disguised as the build-up method, is very easy to use, so
the advantage of log size is now the accuracy.

A further danger of CAPM is not fully accounting for size differences. It is
very inaccurate to apply the betas for IBM, Compaq, Apple Computer, and so
on to a small start-up computer firm with $2 million in sales without carefully
adjusting for size differences, which may or may not be possible. The size effect
drowns out any real information contained in betas, especially applying betas of
large firms to small firms. The 375% (Table 5.1, P21) improvement that we found
in the 0.70% (P20, C38) standard error in the log size equation versus the 2.61%
(M20) standard error from the CAPM applies only to firms of the same magnitude.
When applied to small firms, CAPM yields even more erroneous results, unless
the appraiser compensates by blindly adding another 5% to 10% beyond the typical
Ibbotson “small firm premium” and calling that a company-specific adjustment (CSA).
I suspect this practice is common, but then it is not really a CSA; rather it is an outright
attempt to compensate for a model that has no place being used to value small and
medium firms.

80ne needs only a single regression equation for all valuations performed within a single
year.
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Around 1994, T valued a midsize firm with $25 million in sales, $2 million in
net income after taxes, and very fast growth. I used a guideline public company
method—among others—and found 16 guideline companies with positive earn-
ings in the same SIC Code. I regressed the value of the firm against net income,
with “great” results—99.5% R? and high t-statistics. When 1 applied the regres-
sion equation to the subject company, the value came to —$91 million!®! T suspect
that much of this scaling problem goes on with CAPM as well, many apprais-
ers seriously overvalue small companies using discount rates appropriate only for
large firms.

When using the log size model, we extrapolate the discount rate to the appropri-
ate level for each firm that we value. There is no further need for a size adjustment.
We merely need to compare our subject company to other companies of its size,
not to IBM. Using Robert Morris Associates or Troy’s Almanac data to compare the
subject company to other firms of its size is appropriate, as those companies are
often far more comparable than publicly traded firms.

Since we have already extrapolated the rate of return through the regression
equation in a manner that appropriately considers the average risk of being any
particular size, the relevant comparison when considering company-specific adjust-
ments is to other companies of the same size. There is a difference between two
firms with $2 million in sales volume when one is a one-man show and the other
has two Harvard MBAs running it. If the former is closer to average management
for a firm of that size, you should probably subtract 1% or 2% from the discount
rate for the latter; if the latter is the norm, it is appropriate to add that much to
the discount rate of the former—or, better yet, use Warren Miller’s SPARC system.
Although company-specific adjustments are subjective, they serve to further refine
the discount rate obtained from discount rate calculations.

81The magnitude problem was solved by regressing the natural log of value against the natural
log of net income. That eliminated the scaling problem and led to reasonable results. That
particular technique is not always the best solution, but it sometimes works beautifully. We
cover this topic in more detail near the end of Chapter 3.
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CHAPTER 6

Arithmetic versus Geometric Means

Empirical Evidence and Theoretical Issues

This chapter compares the attributes of the arithmetic and geometric mean returns
and presents theoretical and empirical evidence why the arithmetic mean is the
proper one for use in valuation.

Introduction

We begin with definitions of arithmetic and geometric means.

Mathematical Definitions of Arithmetic and Geometric Means

We use the following algebraic symbols in this discussion:

n=number of periods.

r4 = arithmetic mean returns.

r¢ = geometric mean returns.
Vy=value at time 0 (beginning value).
V,, =value at time 7 (ending value).

The arithmetic mean is the simple average of the numbers in each series. We
use equation (6.1) to calculate it.

1 n
rqg = ZZ?’}. (61)
t=1

The geometric mean return is the compound rate of return over the period. Its
formula is in equation (6.2).

v,
rg = |:70i| — 1. (62)

225
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Another way to represent the geometric mean return is in equation (6.3).

n

re=|[]a+m| -1 (6.3)

t=1

Difference of Arithmetic and Geometric Means

Ibbotson! states there are several ways to convert from a geometric to an arithmetic
average, and one of them is to assume returns are independently and lognormally
distributed over time, with the following relationship:

2

rqg=7¢g + % (64)

The lognormal assumption is common. Stock returns are unlimited on the pos-
itive side, whereas returns cannot be less than —100%. The distribution of stock
returns is skewed to the right, and the lognormal distribution is a standard assump-
tion to model that. Thus, the arithmetic mean will diverge more from the geometric
mean the greater is the volatility of the stock. This provides the theoretical basis for
our empirical observation later in Table 6.2 that as we increase in the stock mar-
ket decile number, the difference between the arithmetic and the geometric mean
increases.

Prior Literature

There have been a number of articles about the relative merits of using the arithmetic
mean (AM) versus the geometric mean (GM) in valuing businesses for calculating
discount rates. For many years, SBBI has taken the position that the arithmetic mean
is the correct mean to use in valuation. Conversely, Allyn Joyce (1995) initiated argu-
ments for the GM as the correct mean. Previous articles have centered on Professor
Ibbotson’s famous example using a binomial distribution with 50%—50% probabili-
ties of a +30% and —10% return. Ibbotson states, “The arithmetic mean equates the
expected future value with the present value; it is therefore the appropriate discount
rate.”” This is a fundamental theoretical reason for the superiority of AM. The arti-
cles critical of Ibbotson are interesting, but largely incorrect and off on a tangent.
There are both theoretical and empirical reasons why the arithmetic mean is the
correct one.

Theoretical Superiority of the Arithmetic Mean

Rather than argue about Ibbotson’s much-debated example, let’s cite and elucidate
a different quote from his book:

In general, the geometric mean for any time period is less than or equal to the
arithmetic mean. The two means are equal only for a return series that is constant

LSBBI—2008 Valuation Edition, p. 97.
2SBBI—2008 Valuation Edition, p. 79.



Arithmetic versus Geometric Means 227

(i.e., the same return in every period). For a non-constant series, the difference
between the two is positively related to the variability or standard deviation of the
returns. For example, in Table 6.7 [the SBBI table number], the difference between
the aritbmetic and geometric mean is much larger for risky large company stocks
than it is for nearly riskless Treasury bills.?

The GM measures the magnitude of the returns as the investor starts with one
portfolio value and ends with another. It does not measure the variability (volatility)
of the journey, as does the AM.* The GM is backward-looking, while the AM is
forward-looking.> As Mark Twain said, “Forecasting is difficult—especially into the
future.”

Ibbotson® cites another reason for using AM rather than GM, which is that
when using either CAPM or a building-block approach’ it is appropriate to use AM,
because those are additive models, in which the cost of capital is the sum of its
parts.

Table 6.1: Comparison of Two Stock Portfolios

Table 6.1 contains an illustration of two differing stock series.® The first is highly
volatile, with a standard deviation of returns of 65% (C17), while the second has
a zero standard deviation. Although the arithmetic mean differs significantly for
the two, both give rise to an identical geometric mean return. It makes no sense
intuitively that the GM is the correct one for calculating discount rates. That would
imply that both stocks are equally risky, since they have the same GM; yet no one
would really consider stock #2 equally as risky as #1. A risk-averse investor will
always pay less for #1 than for #2.

Empirical Evidence of the Superiority of the Arithmetic Mean

Much of the remainder of this chapter is focused on empirical evidence of the
superiority of the AM using the log size model. The heart of the evidence in favor
of the AM can be found in Chapter 5, Table 5.1, which demonstrates that the
arithmetic mean of stock market portfolio returns correlates very well (97% R*) with

3SBBI—2008 Classic Edition, p. 108.

#Technically it is the difference of the AM and GM that measures the volatility. Put another
way, the AM consists of two components: the GM plus the volatility.

SSBBI 1997. SBBI—2008 Valuation Edition, p. 77 states GM is more appropriate for reporting
past trends, which is backward-looking. On page 79 it states “the arithmetic mean equates
the expected future value with the present value; [which means that it is forward-looking]; it
is therefore the appropriate discount rate.”

$SBBI—_2008 Valuation Edition, p. 77.

"This would include the build-up method, the Fama-French Three-Factor model. While it is
less obvious, it includes log size, as the total return is the risk-free rate plus the equity risk
premium appropriate to the size firm. We simply combine the two because the correlation of
bond and stock returns is very low.

8To be more precise, we should consider these to be portfolios. Otherwise it could be possible
to diversify away some or all of the firm-specific risk.
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A [ B [ C [ D [ E
1 Table 6.1
2| Geometric versus Arithmetic Returns
3 |
4 Stock (or Portfolio) #1 Stock (or Portfolio) #2
5 Year Price Annual Return Price Annual Return
6 0 $100.00 NA $100.00 NA
7 1 $150.00 50.0000% $111.61 11.6123%
8 2 $68.00 -54.6667% $124.57 11.6123%
9 3 $135.00 98.5294% $139.04 11.6123%
10 4 $192.00 42.2222% $155.18 11.6123%
11 5 $130.00 -32.2917% $173.21 11.6123%
12 6 $79.00 -39.2308% $193.32 11.6123%
13 7 $200.00 153.1646% $215.77 11.6123%
14 8 $180.00 -10.0000% $240.82 11.6123%
15 9 $250.00 38.8889% $268.79 11.6123%
16 10 $300.00 20.0000% $300.00 11.6123%
17 |Standard Deviation 64.9139% 0.0000%
18 |Arithmetic Mean 26.6616% 11.6123%
19 |Geometric Mean 11.6123% 11.6123%

the standard deviation of returns (i.e., risk), as well as with the logarithm of firm size,
which is related to risk. We show that the AM correlates better with risk than the GM
does. Also, the dependent variable (AM returns) is consistent with the independent
variable (standard deviation of returns) in the regression. The latter is risk, and the
former is the fully risk-impounded rate of return. In contrast, the GM does not fully
impound risk.

Table 6.2: Regressions of Geometric and Arithmetic Returns for 1926—2007

Table 6.2 contains both the geometric and arithmetic means for the Ibbotson/CRSP
deciles for 1926—2007 data and regressions of those returns against the standard
deviation of returns and the natural logarithm of the average market capitalization
of the firms in each decile. It is a repetition of Table 5.1, with the addition of the
GM data.

The arithmetic mean outperforms’ the geometric mean in regression #1, with
an adjusted R* of 97.04% (C27) versus 79.16% (D27) and a f-statistic of 17.2 (C32)
versus 5.9 (D32). In regression #2 we regress the return as a function of log size;
the arithmetic mean also outperforms the geometric mean in terms of goodness of
fit with the data. Its adjusted R? is 93.02% (C42) compared to 88.42% (D42) for the
geometric mean. The absolute value of its ¢-statistic is 11.0 (C47), compared to 8.3
(D47) for the geometric mean. However, the geometric