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ABSTRACT 

DETECTION OF FLOODING DISTRIBUTED 
DENIAL OF SERVICE ATTACKS IN RULE-BASED 
NETWORK INTRUSION DETECTION SYSTEMS 

 

by 

 

Amtul Saboor 

Distributed Denial of Service (DDoS) attack is launched by sending huge network traffic to a 

victim system, using multiple systems resulting in unavailability of services to legitimate users. 

Detecting such attacks has gained much attention in current literature. Studies have shown that 

flow-based anomaly detection mechanisms give promising results as compared to typical 

signature based attack detection mechanisms, which have not been able to detect such attacks 

effectively.  

The thesis starts with an investigation of the detection techniques used by Rule-Based Network 

Intrusion Detection Systems for detecting flooding DDoS attacks. A variety of flow-based DDoS 

detection algorithms have been put forward for detection of flooding DDoS. The flow-based 

DDoS attack detection techniques have been divided broadly into two categories: Packet Based 

and Mathematical Formulation Based. Analyses has been done on two recent techniques one 

belonging to first category; IP Address Feature Value  (IAFV) and the other belonging to second; 

Correlation of IP addresses.  



In order to analyze the algorithms under study effectively, two different test benches have been 

established, one using real systems and the other using DETERlab. Both of the algorithms have 

been analyzed under several normal and flooding DDoS attack scenarios and evaluation has 

been done with respect to their detection capability and accuracy. The correlation technique 

has been found to outperform the rest of the techniques and has been finally chosen for further 

improvements by introducing multiple sliding time window intervals and calculating correlation 

coefficient for each of them. A comparison of correlation coefficient values over multiple sliding 

window time intervals leads to better decision making. The proposed technique was then 

implemented and integrated with the de-facto rule-based network intrusion detection system, 

Snort. The effects of the algorithms integrated with Snort were evaluated and results were 

generated to see the impact of the proposed technique. Finally, an analyses of the proposed 

technique has been conducted with respect to false alarms. It has been found that the proposed 

multiple sliding window correlation technique outperforms the old correlation technique and 

Snort's default flooding DDoS attack detection mechanism. 
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C h a p t e r  1  

Introduction 

 

1.1 Introduction 

Computer networks play substantial role in today's information technology oriented 

world. Recent statistics show that number of computer users in Pakistan is rising with 

time. Right now over 30 million people in Pakistan use internet[1]. According to the 

report, internet penetration in the country has reached 16%. Nearly all organizations 

use communication methods like computers, laptops, handheld devices and routers etc. 

This is to ensure that users can remotely gain fast and easy access to programs and 

databases within or outside the enterprise's network. An organization's performance is 

directly proportional to the fact that the necessary information is available at times 

when needed. Thus it can be concluded that the availability of required information is 

an essential aspect for progress of any environment. In this context, the major and the 

most destructive network attack in today's world is distributed denial-of-service (DDoS). 

This is an attack where multiple compromised hosts are used to target a single victim 

causing denial of service on that system. Such attack overwhelms all network servers 

and devices and service becomes unavailable. Detection of DDoS attacks is the primary 

focused subject of this thesis.  
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This chapter gives an overview of the basic concepts underlying behind this research 

such as DDoS attacks, flooding DDoS attacks, network intrusion detection systems 

(NIDS) and their types, explanation and limitations of rule-based NIDS and a brief 

overview of flaws in existing flooding DDoS attack detection schemes.  After delivering 

the prerequisite knowledge and concepts, the aim, motivation, scope and contributions 

have been explained. Finally organization of rest of the thesis is given. 

1.2. DDoS Attacks 

The impact of a DDoS attack is directly on the availability of the information that is 

requested by the user. The information can be of any type e.g. web pages, online 

services like gaming or network bandwidth. Significance of availability of information is 

felt when it becomes unavailable even for a short time. This leaves a bad impression 

about the enterprises' reputation and many times results in business loss. The very first 

large scale and deliberate DoS attack occurred at the University of Minnesota in August 

1999 that used bots collectively to flood victim machines. The attacks with similar effect 

still exist and are increasing day by day exponentially[2]. From last 2 years DDos Attacks 

have been among top 10 network attack techniques [3]. In 2013, a massive 300 Gbps 

DDoS attack was launched against Spamhaus' website. Later, in 2014, a 400 Gbps DDoS 

attack was launched against US and EU based servers [4]. 

1.2.1 Classification of DDoS Attacks 

Since DDoS attack is a very generic terminology, various studies have classified the DDoS 

attacks into 3 broad categories[5][7][8]. 
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1.2.1.1 Bandwidth-Depletion DDoS attacks: The main target of such attacks is 

consumptions of network bandwidth or resources and their depletion before a 

legitimate users might be able to use them, thus causing unavailability of the required 

bandwidth.  Such attacks involve sending huge amount of data to network devices like 

routers, servers or firewalls to overload the network and cause denial of their services.  

1.2.1.2 Volume Based/Flooding DDoS Attacks: This class of DDoS attacks is the most 

common and difficult to detect. It involves sending huge legitimate requests to victim 

servers, either by original or forged source addresses. In this way, the legitimate users 

cannot access the required services since the servers are busy in responding to the 

packets sent by attackers. Common attack traffic in such cases includes TCP, UDP and 

ICMP packets.   

1.2.1.3 Application based DDoS Attacks: The main target of such attacks is the 

application layer which is the 7th layer in OSI model [9]. This is done by exploiting a 

known or zero day vulnerability in an application (most commonly in operating 

systems). A full TCP connection is established by the attacker just like legitimate user. 

Since an attack is launched after establishing a legitimate connection, such an attack is 

relatively difficult to detect but they are easy to defend against once detected [81].  

 1.2.2 Criticality of Flooding DDoS attacks 

The criticality of detecting flooding DDoS attacks relies on the fact that anyone can use 

simple and easy to use free DDoS traffic generating tools available. Also, the packets 

that are part of the attacks do not contain any specific payload that can be matched 
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with pre-existing signatures. Few of the main target industries are media and 

entertainment, software and technology, security, financial services and gaming [10]. 

Besides, cyber statistics have shown that there has been 47% increase in total DDoS 

attacks over last year and 39% increase in average bandwidth of the attack in [11][12].  

Among the various types of DDoS attacks, flooding DDoS attacks occur with highest 

percentage. The cyber statistics [97][98] show that there has been 718% increase in 

DDoS over 2013. According to the annual report about DDoS attack vectors and their 

distribution in 2014, the highest occurring attacks are of the flooding type that mainly 

included ICMP (9.82%) , Syn (17.69%) and UDP (10.36%) floods [10]. 

1.3 Network Intrusion Detection System 

Network Intrusion detection system is a hardware or software that monitors network 

activities for malicious activities or policy violations and produces reports to a 

management station. 

1.3.1. Types of NIDS 

Various types of intrusion detection systems are there. They can be categorized broadly 

as rule-based (signature based), anomaly based (behavior based) and hybrid. 

1.3.1.1  Rule-based detection:  

Such intrusion detection systems compare incoming attack traffic to previously stored 

attack signatures derived on the basis of set of rules or attack patterns to identify 

occurrence of attack traffic. Rule-based intrusion detecting systems are able to detect 

known and commonly occurring DDoS attacks whose signatures are already present in 



5 
  

their database. An alarm is raised whenever a match is discovered. NSM, Bro, and Snort 

are the examples of rule based intrusion detection systems [6][18][22] . As compared to 

anomaly based systems, such a NIDS gives lesser false alarms but is unable to identify 

unseen and novel attacks like flooding DDoS attacks. This will be discussed in detail in 

Chapter 2.  

1.3.1.2  Anomaly-based detection:  

This type of network intrusion detection system collects data related to normal or 

legitimate users for a certain time period. Later on, alarm is generated whenever the 

incoming traffic is not matching with the normal behavior data set already collected. An 

example of such a detection system is MULTOPS [44], it uses heuristics to measure 

behavior deviation by looking at different incoming packet rates. PAYL and MCPAD are 

other examples of anomaly based NIDS [95] [96]. Such NIDS is a step ahead of signature 

based network intrusion detection systems in the sense that it has the ability to detect 

new attacks whose signatures or rules have not been known before. However, they 

have a higher chance of occurrence of false alarms. There are many ways to fine tune 

the results for reducing false alarm rates.  

1.3.1.3  Hybrid Detection: 

An intrusion detection system that involves using qualities both of an anomaly based 

and signature based system is known as hybrid NIDS. After examining different positive 

features of different anomaly based and signature based systems, this approach 

combines benefits of different NIDS belonging to both types. Studies indicate that this is  
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found to be a better approach as compared to both of them separately since it covers 

limitations of both.  

1.4  Motivation and Problem Statement 

Probability of occurrence of flooding DDoS attack incidents is rising with time and 

causing damage to individuals, websites, servers and network daily[10][97][98]. It has 

been used by hackers, hacktivists and cyber-terrorists because of limited detection 

mechanisms against it. Highly sophisticated and deceptive flooding DDoS attacks can 

bypass firewalls easily. 

Rule-based detection is the most commonly used methodology  to detect flooding DDoS 

attacks. The de-facto intrusion detection system, Snort is also based on the rule-based 

detection[75]. Unfortunately, it suffers from limitations as it cannot monitor traffic flow 

[94] and thus cannot detect flooding DDoS attacks efficiently as discussed in  

[13][14][15][16][17] .Literature has shown that most commonly used NIDS are short of 

detecting flooding DDoS attacks if used exclusively because they lack intelligent traffic 

analysis. 

Since, rule-based NIDS, Snort is open-source and most commonly used, finding an 

appropriate countermeasure for flooding DDoS attacks and integrating it with Snort 

poses a great challenge for organizations worldwide. It is utmost need of today’s 

growing dependence on internet to detect such attacks timely, accurately and 

efficiently. The problem statement is "There is a need to explore and analyze the 

detection capability of flooding DDoS attacks in rule-based NIDS with the analyses of 
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the extent to which existing techniques detect those attacks and introduce a flooding 

DDoS attack detection technique that outperforms the existing detection methods". 

1.5  Flow Based DDoS Detection Techniques 

Flow based detection technique is new enhancement to DDoS protection. A flow is a 

unidirectional data stream where all packets share some or all of these characteristics: 

IP source and destination address, source and destination port number and protocol 

value [20][62]. The idea of this technique is basically to use only a part of information 

from headers of incoming packets and analyze this header information by grouping the 

incoming packets in the form of flows. Studies indicate that flow detection is much more 

scalable than a solution relying on rule based signature database. Such a mechanism 

tracks all packets thus consuming memory resources much more that flow based 

mechanism [21]. Flow detection techniques consume lesser resources as they track only 

header information from the incoming packets . Also they have the ability to detect 

novel DDoS attacks better than payload based detection mechanisms 

[13][14][15][16][17][60]. Integrating such a method with Rule Based NIDS before its 

detection engine will make it much more proficient. 

1.6  Aims & Objectives  

This thesis aims primarily at achieving the following goals: 

1. Analysis of existing flooding DDoS attack detections techniques that detect such 

accurately and reliably.  

2. Development of efficient flooding DDoS attack detection method.  
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3. Integration of flow based DDoS detection techniques with rule-based NIDS, the 

flooding DDoS attacks that are missed by other means are targeted to be 

identified by adding the proposed capability. 

4. Analysis of proposed method with respect to traditional detection technique 

used by rule-based NIDS generally is to be presented.  

1.7  Thesis Contributions 

This section explains the 4 major contributions from this thesis. 

1.7.1  Evaluation of Snort Against DDoS Attacks under Different Hardware 

Configurations 

During the experimental test bench set up phase, effort has been made to gauge Rule-

based NIDS in terms of performance (packet handling) and detection accuracy against 

Flooding Distributed Denial of Service attack. The evaluation has been done using a 

sophisticated test-bench under different hardware configurations. Experimental results 

have shown significant improvement in packet handling capability by using better 

hardware. However; detection capability of Rule-based NIDS is not improved by 

improving hardware and is dependent upon its internal architecture (signature database 

and rate filtration). This research outcome led to the following publication: 

"A. Saboor,  M. Akhlaq,  B.Aslam, "Experimental evaluation of Snort against DDoS 

attacks under different hardware configurations", In Proceedings of  2nd National 

Conference on Information Assurance (2013)" 
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1.7.2  Categorization of Various Flooding Based DDoS Attack Detection Techniques 

While investigating various DDoS attack detection techniques, recent flooding based 

schemes have been studied in detail. The 2nd contribution of this thesis is the 

categorization of these schemes into two broad categories namely, packet header based 

and mathematical formulation based techniques. Chapter 2 explains each category 

along with the schemes belonging to each category as well as their limitations. 

1.7.3  Traffic Generation  

Network traffic generating tools have been used to generate and deploy flooding DDoS 

attack traffic and normal traffic that closely resemble real-world scenarios. A realistic 

traffic generation framework has been co-operatively developed as a part of this 

research in order to synthetically generate and deploy different attack and normal 

traffic scenarios. The framework makes use of modest hardware and exploits the 

random IP generation feature of various attack generating tools, which is used for 

sending network packets with multiple distinct IP addresses from a single source 

machine to a single destination machine.  

1.7.4  Test-Bed I & II Formulation  

In order to analyze the algorithms under study effectively, two different test benches 

have been established, one using real systems and the other using DETERlab. The main 

goal behind testing the algorithms using two distinct test-beds was to analyze the effect 

of change in test-beds in the performance of the algorithms and packet handling 

capacity of Snort. 
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1.7.5  Implementation of Improved Correlation Technique to Detect DDoS Attacks 

The 3rd contribution of the thesis is the design and a proof-of-concept implementation 

of a DDoS attack detection technique based on correlation of the incoming packets over 

multiple sliding window time intervals. The proposed technique is an extension of the 

previous research conducted in this direction and has helped to minimize false negatives 

and false positives that are faced in the old scheme [55]. 

1.7.6  Integration of Improved Correlation Technique With De-Facto Network 

Intrusion Detection System  

The proposed technique is integrated with the de-facto rule-based NIDS as a dynamic 

preprocessor. To the best of our knowledge, to date, no similar technique has been 

introduced within the chosen rule-based NIDS for detection of flooding DDoS attack.  

1.7.7  Analysis of Improved Correlation Technique  

Analysis of the proposed technique has been conducted with respect to false positive 

and false negative alarms. It has been seen that the proposed correlation outperforms 

the old correlation technique and Snort shows much better results in terms of detecting 

flooding DDoS attacks when the improved correlation algorithm is integrated with it. 

1.8   Thesis Organization 

The rest of the thesis is organized as follows: 

In Chapter 2, mechanism for detecting flooding DDoS attacks incorporated in rule based 

NIDS is evaluated and their limitation has been discussed. Then the solutions to detect 



11 
  

distributed denial of service attacks in general and flooding DDoS attacks in particular, 

as proposed by other authors, will be presented and discussed.  

In Chapter 3, flow based techniques explained in Chapter 2 have been classified into two 

categories namely, packet header based and mathematical formulation based. Then the 

two chosen flow based techniques, IAFV and Correlation techniques are explained in 

detail along-with mathematical explanations of both algorithms. 

In Chapter 4, design of flooding DDoS attack detection technique based on improved 

correlation technique is presented. The proposed technique extends the previous work 

done in this direction by [55]. They analyzed correlation coefficient of incoming network 

packets per two consecutive intervals and observed that the value of correlation 

coefficient is abnormally reduced during attack conditions; since there will be larger set of 

unique source IP addresses per unit time. We propose multiple sliding window time 

interval correlation analyses using correlations of 4 consecutive sliding windows, in 

order to reliably determine if the current incoming network traffic represents attack 

condition or not. 

In Chapter 5, the test scenarios, test-beds and implementation details have been 

explained. Snort has been chosen as the subject NIDS as it has achieved the position of 

de-facto standard among all the NIDS. Two test benches have been used, one 

comprising of physical systems called Test-bed 1 while the other is emulation based on 

DeterLab called Test-bed 2. While keeping the packet per second range steady, 

variations in the uniqueness of source IP addresses has been tested against both 
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algorithms and for both test-beds; 1 and 2. Tests have been done on attack traffic as 

well as on normal traffic. 

In Chapter 6, results have been presented. It has been shown from results that the 

proposed correlation algorithm successfully identified the attack instances in all the 

attacks scenarios with very low rate of false negatives and no legitimate traffic was 

detected as attack traffic, hence, there were no false positives at all. Therefore, the 

proposed correlation technique outperforms the rest of the techniques.  

In Chapter 7, concluding remarks have been given. The achieved objectives have been 

explained in detail. Besides, the limitation and future directions have been discussed.  

1.9   Conclusion 

In this chapter the basics of DoS and DDoS have been covered along with their types. 

Criticality of detecting flooding based DDoS attack has been thrown light upon. Then, 

types of NIDS have been discussed and the current status of rule-based NIDS in terms of 

detecting flooding based DDoS attacks has been explained. The main objectives, 

motivation, problem statement and scope of the thesis have been explained. In the end 

the organization of the rest of the thesis was described. 
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C h a p t e r  2  

Literature Review 

2.1   Introduction 

In this chapter, mechanism for detecting flooding DDoS attacks incorporated in rule 

based NIDS is evaluated and their limitation has been discussed in Section 2.2. Then the 

solutions to detect distributed denial of service attacks in general and flooding DDoS 

attacks in particular, as proposed by other authors, will be presented and discussed. The 

proposed solutions have been divided into three broad categories as depicted in Figure 

2.1. In neural network based DDoS detecting schemes, the system under attack is 

trained using various techniques mainly Linear Vector Quantization, Radial Basis 

Function, Back Propagation  and Resilient Back Propagation. Such a system has needs to 

be trained well for attack scenarios which in turn requires huge memory and CPU 

consumption as discussed. Trace back schemes mainly emphasize on finding that DDoS 

attack is occurring and then tracing the attack backwards with the aim of pinpointing 

the attacking source. Several recent schemes have been discussed along with their 

limitations. Statistical DDoS detection techniques aim at detecting attack packets by 

various statistical measurements or metrics of the composition of the traffic. Flow based 

detection is a type of statistical detection technique. Various latest flow based detection 

schemes have been explained along with shortcomings of these respectively. At the end, 

a summary of flow based schemes has been given in the form of table. 
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2.2   Flooding DDoS Detection Solutions In Rule-Based NIDS 

In this section, solutions provided by rule based NIDS as a detection mechanism for 

flooding DDoS attacks are presented along with their shortcomings and limitations. 

Typical rule-based NIDS introduce a mechanism generically called rate filtration. At first, 

this seems to be a good way of detecting and limiting packets and thus, controlling 

DDoS attacks but a closer observation results in failure of this feature when the number 

of packets sent by attacker IP addresses are within the limits of its parameters. Typical 

rate_filter parameters of a famous rule based network intrusion detection system Snort 

is as follows [94]:  

 

 

 

The above parameter asks to raise an alert if a network packet is received towards 

same destination IP with a rate of 25 packet per second and keep alerting for 30 

seconds if the condition persists. If "count" parameter is further decreased to 10 or 

5 per 60 seconds, there is a strong possibility of facing a high false negative rate as it 

treats legitimate packets as attack packets and drops them. Hence, it is very easy to 

bypass this feature which is the only feature in Snort to defend against flooding 

DDoS attacks. This has been shown in Chapter 6. 

rate_filter \ gen_id 1, sig_id 469, \ 

 track by_dst, \ 

 count 25, seconds 60, \ 

 new_action drop, timeout 30 
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Cearns introduced a flooding DDoS detection preprocessor in an open source rule 

based NIDS that basically limited incoming packet rates. Later in 2002 Snort 

developer team included a rate filter parameter within its rules but it drops even 

legitimate packets after the rate exceeds a defined threshold [91].  

Uyar et al. suggested that In order to detect DDoS attacks of various types, under 

various circumstances, signature-based and anomaly-based IDS should be hybridized 

[92] so that every type of attack is detected efficiently because all attacks cannot be 

detected using either of the algorithms exclusively. 

Evaluation of rule based NIDS has been done against Low Orbit Ion Cannon (LOIC) 

attack in 2010. LOIC [82] is a network stressing and denial of service attack launching 

tool. It was found that the NIDS has not been effectively mitigating even this well 

known attack, although signature against LOIC is present. This is because the attack 

signature needs to be learned and provided to the NIDS in advance while the attack 

has thousands of participants. Every attacker may have specified its own content 

string, making this method not very effective. Rate filtering based on threshold does 

not distinguish between legitimate and attack traffic and thus, drops all packets [93]. 

In 2011, a  rule based NIDS has been evaluated using realistic attack traffic with four 

DDoS attacks and results showed that at lower rate attack , NIDS performed  



16 
  

effectively but it completely failed when incoming packet rate was higher than 6000 

packets per second [74]. 

2.3   Recent Flooding DDoS Detection Solutions 

This section explains the major recent DDoS detection solutions that claim to detect 

flooding DDoS attacks. Broad categories of solutions are illustrated in Figure 2.1. 

2.3.1 Overview of Neural Networks Based Solutions 

Neural networks are designed to operate like a human brain. Neural network systems 

are set of programs that handle large number of procedures in parallel. Every single 

procedure has its own memory unit and knowledge base. System based on neural 

network is trained with huge data based on several principles and rules; that makes it 

able to behave spontaneously in case of real time novel situations.  

2.3.1.1    Solutions Based on Neural Networks 

Gavrilis and Dermatas in [23] proposed a DDoS detecting scheme in public networks 

using estimated statistical features and Radial Basis Function (RBF) neural networks for 

precise classification of the attacks 



17 
  

 

Figure 2.1: Taxonomy representing categories of solutions proposed for Flooding DDoS Detection 

Linear Vector Quantization (LVQ) model of neural networks is also used to detect DDoS 

attacks by Li, Liu, and Gu in[24]. In [25], Karimazad and Faraahi proposed Radial Basis 

Function (RBF) neural networks were used to detect DDoS packets from network traffic.  

An ensemble of classifiers has been used by Kumar and Selvakumaar in[26]. As a base 

classifier they chose Resilient Back Propagation (RBP) neural network. Various studies 

have proposed back propagation (BP) neural networks for detecting DDoS attacks. 

Agarwal and Gupta proposed back propagation  scheme in [27] where various sets of 

traffic are fed as input and number of zombies are measured as output. Neural 

networks are trained with normal and attack traffics. Various traffics are fed as input 

and strength of each traffic with respect to DDoS attack is measured. A technique for 

real time estimation of DDoS attack strength and number of zombies involved is 

proposed in [28][29], the authors have used the BP model of neural networks for this.   
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2.3.1.2   Limitations of Neural Networks 

The neural network schemes have many limitations. Overall, in order to understand 

underlying network structure sufficiently, a neural network has to be fed with large 

training data set. The limitation of these schemes lies in the fact that with the increase 

of training data,  more computational and implementation cost is required, thus making 

these schemes inapplicable in real time large network scenarios [30]. 

2.3.2 Overview of Trace-back / Attacker Pinpoint Methodologies 

John and Sivakumar in [83] gave survey of various trace-back schemes and explained the 

general characteristics that an ideal trace-back methodology should possess. They can 

be summarized as: It should be able to pinpoint attacker using single packet with least 

memory consumption and internet service providers involvement. Besides, such scheme 

should not reveal the identity of the tracing machine. Such schemes must be able to 

trace-back the attacker no matter whatsoever transformations have been applied to the 

attack packet. 

2.3.2.1   Solutions Based on Trace-back / Attacker Pinpoint Methodologies 

Lipson in [31] proposed a trace-back scheme where ICMP massage was sent with traffic, 

in order to know the information of the path contained in the ICMP message. This was 

called ICMP messaging scheme. This ICMP messaging scheme relies on the assumption 

that the percentage of attack packets is more than legitimate packets but this may not 

be the case always specially when low rate DDoS attacks are launched. Hop by hop 

trace-back was proposed by Kumar, Sangal and Bhandari in [32] in which the process of 
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attacker identification was carried out iteratively  on the routers closest to the victim 

system towards the attack source until the attacker's source is fully traced.  

Some other trace back schemes include deterministic packet marking (DPM) in which a 

packet belonging to a network is marked with a unique information like the first ingress 

edge router or sometimes the complete route. The router embeds its IP address 

deterministically into the IP packets. The scheme [33] was introduced to overcome 

some drawbacks of probabilistic packet marking (PBM) as it has simple implementation 

and requires less computational overhead on intermediate routers.  

2.3.2.2    Limitations of Trace-back / Attacker Pinpoint Methodologies 

The trace-back schemes have their own limitations. If flooding DDoS attacks consume 

the whole network bandwidth, the ICMP packets might be dropped thus making it 

difficult to trace back the attacker. In this way the whole scheme might fail. The 

complexity and computational cost limitations lie with hop by hop trace back 

methodology. 

The deterministic packet marking also comes with several drawbacks. The unique 

information stored as a mark is only at the first edge router, reconstruction of the route 

requires more packets. This makes it difficult and mostly impossible to trace the true 

attacker source. Besides posing computational overhead with such schemes, in case of 

reflector attacks, the traced source IP will be of the innocent machines and not the 

original attacker.  
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While each scheme has its own limitations, some of the major ones are various 

assumptions that do not map onto real network scenarios, chances of false negatives 

and large computational power requirements [34]. 

 2.3.3 Overview of Statistical Techniques 

Statistical techniques are often applied for the detailed study of a given data. It collects 

and organizes data in an interpretable way. This procedure is called sampling. The next 

procedure that the statistical technique undergoes is data analyses, interpretation and 

presentation of results. Any aspect of data can be handled using statistical techniques.  

2.3.3.1  Solutions Based on Statistical Techniques 

In [38] and [39] a principal component analysis (PCA) techniques has been proposed. 

But studies indicate that PCA methodology used cannot detect anomalies effectively 

since inadequate methods are used to tune principal component analysis[40][41].  

A stable profile maintenance idea was proposed in [42] that can detect sudden changes 

in network packets. Monitoring 15 packet attributed with use of relational analysis and 

decision trees was proposed in [43]. The metrics used were types of protocols, packet 

flag options, time to live and packet size.  

Two statistical tests are proposed for detecting flooding DDoS Attacks. Firstly, it 

compares the differences involving the overall means of the incoming traffic arrival rate 

and the normal traffic arrival rate. If the difference is significant, it concludes that the 

traffic may include flooding attack packets [71]. 



21 
  

A heuristic data structure was proposed to detect DDoS attacks called as MULTOPS [44]. 

The assumption was that during a normal scenario, the traffic between given two nodes 

is proportional. This leads to false alarms since any disproportional traffic will be 

detected as attack traffic which is not the case every time.  

2.3.3.2    Limitations of Statistical Detection Techniques 

Adjustment and fine tuning of PCA detection metrics used is a difficult task to 

accomplish[40][41]. MULTOPS leads to false alarms since any disproportional traffic will 

be detected as attack traffic which is not the case every time. Besides, the authors 

pointed out some failure points of MULTOPS when attack is launched from spoofed IPs 

since in that case, the assumption will never become true[64][65]. in [71] low rate DoS 

attacks cannot be detected because the tests only produce alarm when huge incoming 

traffic is seen. Profile maintenance idea came up with an assumption. Their assumption 

was that these four metrics are enough to detect instability in network traffic but the 

chosen metrics were not directly related to denial of service attacks and therefore, large 

amount of false alarms were faced in the technique [63]. 

2.3.4   Flow-Based Detection Techniques 

We have classified the schemes into two categories as indicated in figure 2.1. i.e. 

Mathematical Formulation Based and Packet Header Feature Extraction Based 

Classification. We shall discuss about the classification in detail in Chapter 3. Following 

are the most significant works done in the area of flow based flooding DDoS detection: 

 

 



22 
  

2.3.4.1     Principal component analyses (PCA) based approaches 

Principal component analyses (PCA) based approaches include studies in [48] and [49]. 

Network DDoS attacks were proposed to be detected by traffic decomposition to 

normal and abnormal divisions. The division were called the sub spaces. Studies have 

indicated that PCA based schemes are not practically efficient to be adopted because 

difficulty is faced during adjustment and fine tuning of the metrics used for attack 

detection [40][41][69]. 

2.3.4.2     D-WARD 

D-WARD was proposed in [70] that acted as a linking channel between the internet and 

the victim network. A complete record of two way traffic, i.e. each flow record between 

the internet and victim network had to be kept in order to identify the attacks. The 

record is compared with previously stored normal network statistics. A rate limitation is 

applied to the identified attack traffic. Studies show that D-WARD consumes more 

memory space than other network based detection mechanisms [72]. 

2.3.4.3    Spatial & Temporal Correlation 

A network wide DDoS attack detection technique was proposed in [46] in which the 

authors claimed to detect attacks efficiently using spatial correlation for feature 

extraction and temporal correlation for attack detection. This study has its own 

limitation because it can only detect attacks launched from spoofed IP addresses. While 

this is the most commonly occurring DDoS scenario, there might be real machines 

launching the attack with true source IP addresses [47]. 
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2.3.4.4   Time Series Analysis Using HVM 

A structural approach towards developing flow based intrusion detection system and 

automatic parameter tuning was proposed in [17]. A flow based time series analyses has 

been done for intrusion detection. For presenting the time series analysis, the authors 

have used Hidden Markov Models (HMMs). Unfortunately, their work has an 

unacceptable ratio of false positives . 

2.3.4.5    IP Address Feature Value 

In [59] Cheng, Yin, Liu et. al. gave a formula for IP Address Feature Value (IAFV) to detect 

DDoS attacks in a given flow of incoming packets. They gave a unique idea that a 

network flow F can be analyzed efficiently by classifying the incoming packets of the flow 

by source and destination IP address. The classification of packets was such  that packets 

of one class (flow) will contain same source and destination IP addresses. 

2.3.4.6    Congestion Participation Rate 

 In [50] flow level network traffic is used and through CPR (Congestion Participation 

Rate) , low rate DoS (LDDoS) attacks were proposed to be detected. Unfortunately, 

there scheme can only detect a small range of DoS attacks that makes it insufficient to 

implement in real time networks. 

2.3.4.7    Profile Based NfSen Plugin 

In [51] a flow based SSH dictionary attacks detection mechanism is demonstrated which 

they implemented as a plugin for NfSen tool. The proposed algorithm defined rules set 

for attacks. A profile was maintained for the incoming packets based on the rule set and  
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the packets were monitored in the form of flow, i.e. packets per flow per minute. The 

accuracy of their algorithm is yet needed to be investigated since the rules used to 

maintain profile need to be changed depending on the size of SSH attacks.  

2.3.4.8    Flow Record Table Based Approaches 

In [54] pattern of flow is recorded using flow table through which data is extracted and 

detection is made based upon already learnt pattern of DDoS flow like average packets 

per flow per unit time. However , the average will not give accurate results since some 

packets will have higher number of occurrences than the others. A blacklist is 

maintained for the detected packets , which in real scenarios is of no use since DDoS 

occurs from unique source IPs. Similar techniques are used in some other studies like in 

[56], per source IP table or a per flow table is  maintained for detection. Maintaining 

table for each flow not only poses a scalability issue but also detecting the flows causing 

DDoS specially in case of flooding attacks arriving from spoofed IP packets becomes 

challenging. 

2.3.4.9   Traffic Behavior Correlation Analyses 

Using flow between attack and victim nodes, detection of DDoS attacks proactively was 

the technique proposed by [52]. Correlation of traffic behavior between attacker and 

victim machines was calculated. A normal profile is maintained in order to compare the 

incoming packets with that profile. The main limitation of this technique is the attack 

methodology and attack tool used in their scheme does not map today's complex 

attacks. In reality, more sophisticated attacks are encountered [53]. 
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2.3.4.10  EWMA 

In [37], the authors applied exponentially-weighted moving average (EWMA) algorithm 

to detect changes in incoming traffic. If the intensity of the network traffic increases 

with time, an alarm is raised. The main issue with such techniques is that the change 

point detection occurs at one time series. This might result in false alarms because in 

some cases flash crowd events might raise the network traffic to abnormal level for 

particular time[65].  

2.3.4.11  Chi-Square 

Assumption that during an attack the distribution of traffic is uniform gave rise to 

approach of [73]. They used Chi-Square statistics whose value increases during an 

attack.  For every network and different type of attacks, the underlying baseline needs 

to be set for this algorithm exclusively. This process puts a burden on the detecting 

device and thus makes it unsuitable for real life attack scenarios. 

2.3.4.12   HiFIND 

Another effort done to detect flooding attacks and port scans using flow based 

approach was proposed in [58]. The technique was names as HiFIND (high-speed flow-

level intrusion detection). They claimed to detect the attacks efficiently but studies have 

shown that their scheme was prone to huge false negatives and was unable to 

differentiate the attack events from flash events or network congestions[56].  

2.3.4.13   Change Point Detection CUSUM Technique 

Change point detection is a very well known and much researched technique used to 

detect flooding DDoS attacks. Many studies have proposed change point detection 
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algorithms. Some of them are improvements of the previous work done. Change point 

detection works on time series where the algorithm is applied to certain time series of 

the network traffic. A change detecting algorithm CUSUM was first pointed out in [24]. 

In [35] and [36], CUSUM was used to detect SYN flooding DDoS attacks. However, for 

detecting DDoS, a CUSUM based approach is quite complex and resource intensive. Also 

it requires different window size selection with respect to different datasets which 

makes it less applicable in real world where detection has to be done in real time [65]. In 

various studies, CUSUM is argued to be unsuitable for accurately detecting a DDoS 

attack when used alone. Also it gives high rate of false alarms as indicated in [68]. The 

CUSUM technique compares the incoming packets (or a particular feature of the 

incoming packet) with a threshold given to it. The CUSUM technique can only detect 

flooding events when there is a high frequency of incoming packets. This is one of the 

main but not the only feature that needs to be analyzed in order to mark an incoming 

packet as attack packet. Hence, it is insufficient to detect general DDoS attacks [66][67]. 

2.3.4.14  Correlation of Incoming IP Addresses  

Zhongmin and Xinsheng in [55] mapped the formula of correlation coefficient on to 

network traffic. Their main idea was that normally the frequency of IP addresses to a 

destination is in a stable range but in DDoS the source IP addresses frequency becomes 

unstable and random since network packets belonging to random and unique IP 

addresses are used to attack a single target system in DDoS attack. They analyzed 

correlation coefficient of incoming network packets per two consecutive intervals and 

observed that the value of correlation coefficient is abnormally reduced during attack 
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conditions; since there will be larger set of unique source IP addresses per unit time. 

Hence, the determination of attack is based upon the values of correlation coefficient 

per two consecutive time periods, called as sliding window by the authors. 

2.4   Summary of Flow Based Techniques 

Based on reviewed literature, the existing solutions were grouped into three main 

categories. To date, no comprehensive solution has been proposed to detect flooding 

distributed denial of service attacks. Major flow-based DDoS detecting solutions along 

with their limitations are tabulated in Table 2.1. 

2.5   Conclusion 

This chapter highlights all the recent solutions proposed for flooding DDoS detection 

that are implemented within rule-based  NIDS or exclusively along with their 

shortcomings. Each approach has its own limitations. There is a lack of comprehensive 

Table 2.1: Summary of Flow-Based Solutions  

Sr. No Major Flow Based Proposed 
Scheme 

Limitations 

1 PCA Based Approaches[48][49] not practical to be adopted in today's 
network scenario 

2 D-WARD[70] not memory efficient 

3 Temporal Correlation[46] only for spoofed attack IPs 

4 Time series analyses based on HVM[17] high false positives 

5 CPR[50] insufficient for real time implementation 

6 Flow Table[54] high false alarms, not scalable 

7 EWMA [37] cannot differentiate attack from flash 
events 

8 Chi-Square[73] not memory efficient 

9 HiFIND[58] high false negatives 

10 
 

Change Point Detectors 
[24][35][36] 

high false alarms, complex, not memory 
efficient 

11 NfSen plugin[51] need to change profile for different 
attack data sets 

12 Traffic Behavior Correlation Analyses[52] insufficient for real time implementation 

13 IP Address Feature Value [59] refer to Chapter 3 and 6 

14 Correlation of IP Addresses [55] refer to Chapter 3 and 6 
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solution that should be adaptable to wide network range, accurate in detection, gives 

least false alarms and effective against today's flooding DDoS attack launching tools. 
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C h a p t e r  3  

Classification of Flow-Based Techniques 

3.1  Introduction 

In this chapter, the flow based techniques have been classified into two categories; 

packet header based category and mathematical formulation based category. Two flow 

based techniques are chosen belonging to each category. They have been chosen for 

their simplicity, scalability and less complexity in terms of implementation. Both of them 

have been explained along with their mathematical notations, algorithms and 

mathematical explanation. 

3.2  Flow Based Detection Techniques 

A new enhancement in the field of flooding DDoS detection techniques is introductions 

of flow based detection techniques. The idea of flow based detection is basically to 

analyze only a part of information from headers of incoming packets and analyze the 

header information by grouping the incoming packets in the form of flows. A flow is a 

stream of data where all packets share some or all of these characteristics: IP source 

and destination address, source and destination port number and protocol 

value[20][62]. There are many flows in a normal network traffic since many packets are 

coming in and getting out of the network with various source and destination IP 

addresses and ports respectively.  
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Studies indicate that flow based detection is much more scalable than a solution relying 

on rule based signature database[13][14][15][ [21]. Lesser memory and computational 

resources are consumed by flow detection techniques as compared to packet based 

detection; since they track only header information from the incoming packets . Also 

they have the ability to detect novel DDoS attacks better than payload based detection 

mechanisms[16][17][60]. Integrating such a method with Rule Based NIDS before its 

detection engine will make it much more proficient. 

3.3   Classification of Flow Based Solutions 

To date, many flow based methodologies have been proposed. As already discussed in 

Chapter 2, flow based attack detection schemes are a type of statistical DDoS detection 

technique. We have further classified the flow based detection solutions into two 

categories based on the salient methodology being adopted by these in order to detect 

various DDoS attacks. The classification along with detection solutions and their 

references are given in Figure 3.1 and explained below: 

Packet Header Based: The category includes the solutions in which the detection is 

based on various features such as source IP address, destination IP address or protocol 

extracted from the header of packets.  

Mathematical Formulation Based: The category consists of solutions where the 

detection is based on mapping mathematical concepts into incoming network packets 

belonging to a unique flow. 
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Figure 3.1 : Classification of Flow-based Flooding DDoS attack Detection Solutions 

3.4   Analysis of Flow Based Solutions 

It can be inferred that there is lack of a comprehensive, efficient and less complex flow 

based DDoS detecting solutions that have low false alarms. In search of finding such a 

solution, two important algorithms have been analyzed. One of the algorithm is based 

on IP address feature extraction [59] and belongs to packet header based category. The 

other chosen algorithm is based on very well known concept of probability, i.e. 

correlation [55] and belongs to mathematical formulation based category. 

The work in [55] and [59] demonstrated that in order to detect flooding DDoS attacks, 

there is no need to look into complex features of incoming packet and network. Rather, 

simple analyses of characteristics like source IP address of incoming packets per unit 
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HVM[17], IAFV [59],
Flow Table[54] [56]
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Change Point Detectors 

[24][35][36],
Correlation [55]

Flow-Based  Detection 
Techniques
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time is sufficient in order to detect that a DDoS. Their work not only minimizes the IP 

features that are examined but also reduce memory and CPU utilization of the system 

on which the algorithm will be implemented. This addresses the scalability issue of 

many other proposed techniques that lack this capability [24][35][36][48][49][50][54] 

[56][70][73]. 

3.4.1 IP Address Feature Value Based Algorithm 

Cheng, Yin, Liu et. al. gave a formula for IP Address Feature Value (IAFV) to detect DDoS 

attacks in a given flow of incoming packets [59]. They gave a unique idea that a network 

flow can be analyzed efficiently by classifying the incoming packets of the flow by source 

and destination IP address.  Explanation of symbols for IAFV algorithm is given in Table 

3.1. The classification of packets was such  that packets of one class (flow) will contain 

same source and destination IP addresses. SDDi denotes number of packets arriving at i-

th destination IP address. The formula for IP address feature value is as follows: 

𝐼𝐴𝐹𝑉𝑓 =
1

𝑚
∑(𝑆𝐼𝑃(𝑆𝐷𝐷𝑖) − 𝑚 ) 

𝑚

𝑖=1

 

in which network flow is denoted as f, SIP(SDDi) is the number of different source IP 

addresses in the class SDDi and m is the total number of destination IP addresses.  

Let the threshold for attack be denoted as 𝑆𝑇 such that: 

(i) If 𝐼𝐴𝐹𝑉𝑓 > ST, then it is declared that attack has occurred. 

(ii)  If 𝐼𝐴𝐹𝑉𝑓 ≤ ST, then it is declared that no attack has occurred. 
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3.4.1.1    False Negatives in IAFV 

The IAFV value is the subtraction of number of destinations from the summation of all 

incoming packets with unique source IP addresses from all the destinations. A situation 

can occur if flooding DDoS is launched on single destination, e.g. destination x , but the 

destination y and z are not under attack, and the overall IAFV value is such that such 

that the threshold limit is not exceeded, then no attack alarm will be triggered for any 

of  the destinations. This situation will lead to false negatives since it is unable to 

distinguish between the destination under attack. Figure 3.2 explains the IAFV 

algorithm. 

Let "M" be a unique set of destinations such that: 

 |M| = m  

 where {x, y, z} ∈ M 

Let "A" be a set of all unique source IP addresses: 

 A= { SIP(SDDx), S IP(SDDy), SIP(SDDz)} 

Let   STi =( (SIP(SDDi) -m) 

 And  (∃ x ∈ M): STx >  ST  )  

 (∃ y ∈ M): STy ≤  ST ) 

 (∃ z ∈ M): STz ≤  ST ) 
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Such that:  
1

𝑚
∑ 𝑆𝐼𝑃(𝑆𝐷𝐷𝑖) − 𝑚   ≤   𝑆𝑇
𝑚
𝑖=1  

In this case, since IAFV ≤  ST, no attack will be detected whereas, destination x ∈ M is 

under attack as discussed. 

Table 3.1: Symbols For IAFV Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 : IAFV Algorithm  

Symbols Meanings 

SDDi number of packets arriving at ith destination IP 
address 

SIP(SDDi) number of different source IP addresses  at ith 
destination IP address 

m total number of destinations 

STt threshold for DDoS attack detection 

Input: Packets of Flow F, a sample interval Δt, a criteria to 

stop algorithm 

Q,a source IP address S, a destination IP address D, an IP 

address class set SD, SDS and SDD, an IP address features IAFV. 

Output: IAFV  results. 

1:  Initialize the variables; 

2:  While (Q is not fulfilled) 

3:   Read the T, S and D of an IP packet from F; 

4:  End While 

5: if (time exceeds the decided Δt) 

6:   Add all packets with different destination and same 

source in SDD 

7.   Count m \\m is the number of the elements in SDD. 

8: End if 

9:   calculate IAFV 

10:  return IAFV 
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3.4.1.2   False Positives in IAFV 

A situation may arrive where flooding DDoS is launched on single destination, e.g. 

destination x, but the destination y and z are not under attack, still the overall IAFV 

value is such that such that the threshold limit is exceeded from threshold, then the 

attack alarm will be triggered for all the destinations.  

Let "M" be a unique set of destinations such that: 

 |M| = m  

 where {x, y, z} ∈ M 

Let "A" be a set of all unique source IP addresses: 

 A= { SIP(SDDx), S IP(SDDy), SIP(SDDz)} 

Let   STi =( (SIP(SDDi) -m) 

And  (∃ x ∈ M): STx >  ST  )  

 (∃ y ∈ M): STy ≤  ST  ) 

 (∃ z ∈ M): STz ≤  ST  ) 

Such that:  
1

𝑚
∑ 𝑆𝐼𝑃(𝑆𝐷𝐷𝑖) − 𝑚   ≥   𝑆𝑇
𝑚
𝑖=1  

In this case, since IAFV ≥  ST, attack will be detected at all destinations whereas, 

destination y and z ∈ M are not attack as discussed. 
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3.4.2 Correlation Algorithm 

Zhongmin and Xinsheng mapped the very well known and acknowledged concept of 

probability that is correlation coefficient on to network traffic. For details about correlation 

coefficient please refer to [13] and [14]. Their main idea was that normally the frequency 

of IP addresses to a destination is in a stable range but in DDoS the source IP addresses 

frequency becomes unstable and random since network packets belonging to random and 

unique IP addresses are used to attack a single target system in DDoS attack.  

They analyzed correlation coefficient of incoming network packets per two consecutive 

intervals and observed that range of value of correlation coefficient is steady normally 

while during attack circumstances, the value of correlation coefficient is abnormally 

reduced since there will be a larger set of unique source IP addresses per unit time. 

Hence, the determination of attack relies upon the values of correlation coefficient per 

two consecutive time periods, called as sliding window by the authors. Table 3.2 gives 

explanation of the symbols used in the algorithm.  

3.4.2.1    False Negatives in Correlation Algorithm  

It is possible that the incoming packets belong to attack packets, such that the correlation 

coefficient value  does not exceed than the threshold, then the attack will not be 

detected. This situation will also lead to false negatives. The results verify this proof and 

can be seen in Chapter 6. The following expression will show a condition that leads to 

false negative results. 
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Let the threshold for attack be denoted as  t. 

Let "A" be a set of IP addresses with attack packets. 

(∃ x(n) ∈ A)  |   ≤   t  )----------------------------------(11)   

3.4.2.2   False Positives in Correlation Algorithm 

If a sudden burst of normal incoming packets arrive that actually do not belong to 

attack packets, such that the correlation coefficient value exceeds then the threshold, 

then the traffic will be detected as attack traffic.  

Table 3.2: Symbols For Correlation Algorithm 

Symbols/Formulas Meanings 

M 

 

Number of IP addresses in a 
sliding window time interval 

k Refers to k-th time interval 

n n-th sliding window time 
interval 

 

t1,2 

Refers to the sliding window 
time interval between given 

1st and 2nd second 

 

 

Data sent by the i-th 
packet in n-th sliding 

window 

 

 

The total amount of data 
packets sent by all IP 

addresses in the n-th slide 
window time interval 

 

 

E(x(n)) = 

 

 

Mathematical 
expectation of the number of 

data packets of every IP 
address in a slide window 

time interval 

= 

 
 

 

Correlation Coefficient 
Formula 

𝑋
 𝑖

 ( 𝑛) =  ∑𝑋
 𝑖

 ( 𝑛𝑘)

3

𝑘=1

 

𝑋(𝑛) =  ∑𝑋
 𝑖

 ( 𝑛)

𝑀

𝑖=1

 

∑𝑋 𝑖 ( 𝑛)

𝑀

𝑖=1

 
𝑋 𝑖 ( 𝑛)

𝑋(𝑛)
 

∑ (𝑥𝑖 (𝑛) 𝐸(𝑥(𝑛)))(𝑀
𝑖=1 (𝑥𝑖 (𝑛 + 1) 𝐸(𝑥(𝑛 + 1))) 

 ∑ (𝑥𝑖 (𝑛) 𝐸(𝑥(𝑛)))𝑀
𝑖=𝑖  ∑ (𝑥𝑖 (𝑛 + 1) 𝐸(𝑥(𝑛 + 1)))𝑀

𝑖=1
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The results verify this proof and can be seen in Chapter 6. Figure 3 gives the correlation 

algorithm. 

Let "B" be a set of IP addresses with non-attack packets.  

(∃ x(n) ∈ B)  |   ≥   t  )--------------------------------(12)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 : Correlation Algorithm 

Input: A network data in form of flow F, a sliding window time interval t1,2, 

source IP addresses xi(n), correlation coefficients   

Output: Correlation coefficient values  

1:  For (sliding window time interval t1,2)  

2:   Calculate xi(n) \\ xi(n) is the number of packets of a unique source 

  IP address  

3: End For 

4:  For(all the packets) 

5:   Calculate x(n) \\ Calculate the amount of all data packets in that 

     window time interval 

6: End For 

7:   For (each data packet in sliding window time interval t1,2) 

8:  Calculate E(x(n)) and E(x(n+1) \\ Calculate the mathematical  

  expectation of each IP data packets in that sliding window time  

  interval 

9: End For 

10: For (t1,2)  

11:     Calculate s=s+(xi(n)-E(x(n)))*(xi(n+1)-E(x(n+1))) 

12:   Calculate dx(n)=dx(n)+(xi(n)-E(x(n)))
2
 

13:    Calculate dx(n+1)=dx(n+1)+(xi(n+1)-E(x(n+1)))
2
  

14:    Calculate   =  
𝑆

√𝑑𝑥(𝑛)√𝑑𝑥(𝑛+1)
 \\ correlation coefficient for t1,2 

15:  End For 

16: End For 
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3.5   Conclusion 

In this chapter, main focus has been given on the two chosen flow based flooding DDoS 

detection solutions. Both of the algorithms have been explained in detail. The reason 

behind choosing them is that most of the flow based techniques proposed to detect 

flooding DDoS attacks pose scalability issue and are not memory efficient besides having 

high rate of false alarms. From mathematical explanation of both algorithms in Section 

3.4.1 and 3.4.2, it has been found that in certain scenarios, there are chances of false 

positives and false negatives in both schemes.  
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C h a p t e r 4  

Proposed Solution 

4.1 Introduction 

This chapter attempts to provide a solution to the flooding DDoS attack detection 

problem, and outlines the design of an extended flooding DDoS detection strategy. 

Flooding distributed denial of service attacks first hit the network almost more than a 

decade ago [45] where a set of compromised nodes/machines were commanded by 

their master (main attacker) to launch high volume of legitimate but unwanted traffic 

towards the victim machine. Within the internet community, the flooding DDoS attack 

detection continues to represent a very hazardous threat as indicated in [81]. The 

problem with the detection of flooding DDoS attack is that the requests sent by the 

compromised bots or the tools used for launching attack are legitimate and hence, it is a 

challenging problem to differentiate between a legitimate request and an attack 

request. In this Chapter, an improved design of flooding DDoS attack detection 

technique based on an existing correlation technique [55] is presented. The existing 

correlation technique is based on of the change in rate of new source IP addresses of 

the incoming packets per two consecutive time intervals while the improved correlation 

technique is based on of the change in rate of new source IP addresses of the incoming 

packets over multiple sliding window time intervals. 
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4.2 Issues in the Existing Correlation Algorithm 

A large number of unsolicited packets originating from unseen or random source IP 

addresses is the main indicator of the onset of a flooding DDoS attack. This was the 

characteristic feature chosen by Correlation algorithm [55].  

The Correlation algorithm used a single sliding window time interval as a time scale to 

analyze the network flow. Although this algorithm solves the scalability issue; since only 

feature needed to be extracted in order to be fed into the system is source IP address of 

the packet, the Correlation technique is prone to false positives and false negatives.  

If a burst of non attack traffic, called flash crowd arrives in that time interval, it raises 

the alarm and produces false positives. Also, if for that certain periods of time, the 

correlation between attack packets is higher than the threshold, no attack will be 

detected and thus produces false negatives.  

4.3 Proposed Correlation Algorithm (MSW-Correlation) 

The proposed technique has been named as Multiple Sliding Window Correlation 

Technique (MSW-Correlation). It extends the previous work done in this direction by 

[55]. They analyzed correlation coefficient of incoming network packets per two 

consecutive intervals and observed that the value of correlation coefficient is abnormally 

reduced during attack conditions; since there will be larger set of unique source IP 

addresses per unit time. Hence, the determination of attack is based upon the values of 

correlation coefficient per two consecutive time periods, called as sliding window. An 

enhancement has been introduced in this technique, where sliding window time interval 

correlation  
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analyses has been calculated using correlations of 4 consecutive sliding windows, in 

order to reliably determine if the current incoming network traffic represents attack 

condition or not. 

4.3.1  Notations Used for MSW-Correlation Technique 

While other notations are the same as described in Chapter 3, the newly introduced 

notations are defined in Table no. 4.1.  

4.3.2 Steps for MSW-Correlation Technique 

The modified algorithm is explained using a flowchart in figure 4.3. Each of the step is 

explained as follows: 

4.3.2.1    Multiple Sliding Window Time Intervals 

As already discussed, in order to reliably determine if the current incoming network 

traffic represents attack condition or not, sliding window time interval correlation 

analyses has been calculated using correlations of 4 consecutive sliding windows. Figure 

4.1. illustrates time slicing of multiple sliding window time intervals that have been used 

in the proposed correlation algorithm along with correlation notations for each sliding 

window time interval. 

Let x and y be any two consecutive time instants such tha y > x. 

 Then:  tx,y denotes x-th and y-th time interval between instants x and y, where 

 y > x  And:   i denotes i-th correlation coefficient 
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Table 4.1: Symbols for MSW-Correlation Algorithm 

Terminology Symbols/Formulas Meaning 

Sliding window 
time intervals 

t1,2 Time interval 
between first and 

second time 
instants 

t1,3 Time interval 
between first and 
thrid time instants 

t1,4 Time interval 
between first and 

fourth time instants 

t1,5     Time interval 
between first and 
fifth time instants 

Mathematical 
expectation of the 

number of data 
packets of every 
IP address in n-
sliding window 

time interval 

E(x(n)) Expectation value of 
packets in first time 

instant 

E(x(n+1)) Expectation value of 
packets in 2nd time  

instant 

E(x(n+2)) Expectation value of 
packets in 3rd time  

instant 

E(x(n+3)) Expectation value of 
packets in 4rth time   

instant 

E(x(n+4) Expectation value of 
packets in 5th time   

instant 

Correlation 
Coefficient 

Formula 
 

 

Correlation 
Coefficient of  First 

and 2nd time  
instants 

 

Correlation 
Coefficient of  First 

and 3rd time  
instants 

 

Correlation 
Coefficient of  First 

and 4rth time  
instants 

 

Correlation 
Coefficient of  First 

and 5th time  
instants 
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4.3.2.2    Packet Count for each Sliding Window Time Interval 

For each sliding window time interval t1,2, t1,3, t1,4 and t1,5, the total number of 

packets coming from all source IP addresses is calculated. This will give clear statistics of 

how many source IP address have been received by victim in each sliding window 

interval. Using this data along with the unique source IP addresses count for each sliding 

window time interval, the expectation values for each sliding window time interval is 

calculated and fed into correlation coefficient formula. 

 

 

Figure 4.1: Time Slicing for MSW-Correlation Algorithm 
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Figure 4.2: MSW-Correlation Algorithm 

The correlation algorithm is as follows:    

Input: A network data in form of flow F, 4 sliding window time intervals t1,2, t2,3, 

t3,4 and t4,5 ,source IP addresses xi(n), correlation coefficients 1, 2, 3, 4   of 

each sliding windows time interval t1,2, t1,3, t1,4 and t1,5. 

Output: Correlation coefficient values  

1:  For (each sliding window time interval t1,2, t1,3, t1,4 and t1,5)  

2:   Calculate xi(n) \\ xi(n) is the number of packets of a unique source 

  IP address in  that particular slide window time interval 

3: End For 

4:  For(all the packets of a particular sliding window time interval ) 

5:   Calculate x(n) \\ Calculate the amount of all data packets in a slide 

  window time interval 

6: End For 

7:   For (each data packet in each sliding window time interval t1,2, t1,3, t1,4 and 

 t1,5.) 

 8:   For (a=0 to 4) 

9:    Calculate E(x(n+a));\\ Calculate the mathematical expectation 

   of each IP data packets in each time interval t1,2, t1,3, t1,4 and 

   t1,5. 

10:  End For 

11: End For 

12:   For (each sliding window time interval t1,2, t1,3, t1,4 and t1,5.)  

13:    For (b=1 to 3) 

14:    Calculate s=s+(xi(n)-E(x(n)))*(xi(n+b)-E(x(n+b))) 

15:   Calculate dx(n)=dx(n)+(xi(n)-E(x(n)))
2
 

16:    Calculate dx(n+1)=dx(n+b)+(xi(n+b)-E(x(n+b)))
2
 //Calculate the 

   values of nominator (s) and denominator (d)  

17:    Calculate 1, 2, 3, 4  \\ correlation coefficient  for four adjacent 

  sliding window time intervals 

18:  End For 

19: End For 

 

  

 



46 
  

 

Figure 4.3: Flow Chart of MSW-Correlation Algorithm 
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4.3.2.3   Unique Source IP Address Count for Each Sliding Window Time Interval 

For each sliding window time interval t1,2, t1,3, t1,4 and t1,5, the number of packets 

coming from unique source IP address is calculated. This will give clear statistics of how 

many unique source IP address have been received by victim in each sliding window 

interval. Using this data along with the total packet count for each sliding window time 

interval, the expectation values for each sliding window time interval is calculated and 

fed into correlation coefficient formula. 

4.3.2.4   Average of Correlation Analyses Over Multiple Time series 

As indicated before, the previously discussed correlation algorithm has used a single 

sliding window time interval as a time scale to analyze the network flow, hence, if a 

burst of non attack traffic arrives in that time interval, it considers that an attack traffic. 

Also sometimes, in a single sliding window time interval, attack traffic does not make a 

noticeable change in the correlation coefficient value.  

Hence, another modification has been done in the algorithm. It is based on the 

observation that in order to correctly determine the presence or absence of an attack, 

multiple sliding window time intervals must be taken. Attack monitoring is done with 

average of every calculated 1, 2 3 and 4. The decision that  an incoming traffic is attack is 

made only if the average value of 1, 2, 3 and 4  is less than or equal to the threshold  t: 

 

1 + 2 +  3 + 4   

4
 ≤   𝑡  
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4.3.3 Flow-Chart for MSW-Correlation Technique 

The flow chart explains the main procedures of the proposed correlation algorithm. The 

total number of packets in each sliding window time interval is calculated, then the 

unique source IP addresses in each sliding window time interval is calculated. 

Correlation coefficient value is calculated for each slinging window time interval. The 

decision is made based on  the average value of 1, 2, 3 and 4  

4.4   Conclusion 

Most of the techniques deployed are insufficient to detect flooding DDoS attacks either 

due to either scalability issue or structural weakness or lack of accurate detection that 

leads to false alarms as discussed in Table 2.1 of Chapter 2. In this chapter, a correlation 

based flooding DDoS detection technique is proposed, which is an extension of the work 

done in [55] and it aims to limit the false positives and false negatives. It does so by 

making use of multiple sliding window time intervals analyses to improve the 

identification of malicious traffic. 
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C h a p t e r  5  

Implementation and Testing 

5.1   Introduction 

Since the main goal of this thesis is to introduce a better flooding DDoS detecting 

mechanism in to rule-based network intrusion detection system, the network intrusion 

detection system Snort has been chosen as the subject NIDS as it has achieved the 

position of de-facto standard among all the NIDS. It is a rule-based NIDS that depends 

mainly on its signature database for attack detection and is famous for being open 

source, lightweight and producing expected results when an attack packet matches with 

any of the rules present in its database [18]. Two test benches have been used, one 

comprising of physical systems called Test-bed 1 while the other is emulation based on 

DeterLab called Test-bed 2. 

5.2   Snort Architecture 

Figure 5.1 shows the system architecture of Snort. In attack detection mode, various 

modules are used to read attack signatures and match them with the incoming traffic, if 

the traffic is found to be legitimate then is passed on to next module else an alert is 

generated and the event is recorded/logged if a rule exists. The main flow of various 

modules of Snort is described in the following sections. 
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Figure 5.1: Snort Overview 

5.2.1   Packet Decoder:  

This module has the responsibility to observe the protocols of the incoming raw packets 

from all TCP/IP layers. All the information about all packets is stored in the form of a 

data structure. Next modules make use of this data structure for their processing.  

5.2.2  Preprocessors:  

From decoder, the packets are then sent to preprocessors. There are numerous 

preprocessors in Snort, each working for a certain attack identification. The order of 

preprocessors through which each packet will be checked can be prioritized and 

changes from Snort configuration file. Main tasks performed by preprocessors are 

packet fragmentation, normalization and stream reassembly. if the traffic is found to be 

legitimate then is passed on to detection engine else an alert is generated and the event 

is recorded/logged if a rule exists.  
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5.2.3    Detection Engine:  

This is the module where actual attack identification and detection is carried out. This is 

done by matching each incoming packet with signature database which has been 

formulated on the basis of previously defined and stored rules. If an attack is suspected, 

the packet is either dropped or passed depending upon the applicable rules. 

5.2.4   Logging and Alerting System:  

This modules takes information from the detection engines and either logs packet(s) or 

generates alerts if attack traffic is found or both. 

5.2.5   Snort Version Installed 

In this thesis, the version of Snort used was 2.9.6.0 installed from [75]. This was found to 

be the latest stable version at the start of experimentation period. No significant 

changes have been introduced in the newer versions of Snort in terms of detecting 

flooding DDoS attacks.  

5.2.6   Integration of Proposed Algorithm With Rule Based Network Intrusion 

Detection System: 

The main issue with Snort is that it lacks the ability to detect attacks that do not match 

with any of the signatures. As flooding DDoS attacks do not match with any signature in 

particular, they remain undetected. A Rate_filter feature has been added to Snort that 

aims at filtering packet based on the number of incoming packets from a particular 

source or to a particular destination per unit time and was introduced to prevent DDOS 

attacks in Snort. For the purpose of detecting flooding  DDOS attacks and various port 

scans, Snort developers' team added a feature of rate_filter with 2.8.5 version. It limits 
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incoming packets by either source or destination IP address based on number of packets 

received by the machine per second. Limitation is done by dropping further incoming 

packets for a unit of time decided by network administrator. This feature is not very 

effective and often leads to false negatives.  

Both chosen algorithms [55] and [59], as well as the proposed algorithms (refer to 

Chapter 4 for details) have been integrated with Snort as its dynamic preprocessor. 

More detail about dynamic preprocessors of Snort and the methodology of integration 

is given in section 5.3. 

5.2.7   Dynamic Preprocessor for Snort 

It is possible to develop dynamically loadable preprocessors for Snort, which can be run 

outside Snort while using dynamic libraries and certain functions of the Snort source 

code. A dynamic preprocessor module for Snort has been developed based upon the 

proposed correlation technique.   

Snort performs many pre-operations before the network packet is sent to signature 

database inside the detection engine. These pre-operations are accomplished by 

preprocessors. Preprocessors are able to perform complex analysis on packets which are 

otherwise, not possible to do inside rule-based detection engine. There are many 

preprocessors in Snort but as already discussed, are insufficient to detect flooding DDoS 

attacks. Major header file that need to be understood and possibly edited to develop 

the module are: 
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1- SFSnortPacket data structure is the main source of information contained inside an 

incoming packet. It is inside a header file with Snort source code sf_snort_packet.h. This 

header file contains the current data structures of a given network packet. It is major 

header file that is used for development of dynamic preprocessor module of Snort. 

2- DynamicPreprocessor is another important data structure that is used to develop 

dynamic preprocessor module of Snort. It registers the preprocessor, makes it able to 

start, exit, restart and execute the main processing function. It has the functions for 

logging, exceptions, fatal errors and debugging information etc. It is defined in the 

header file sf_dynamic_preprocessor.h. 

3- Another important header file that is needed for development of dynamic 

preprocessor module of Snort is sf_packet_info.h. It contains information like 

preprocessor name, version and main packet processing function of the preprocessor. 

5.3   Traffic Generation Tools  

This section explains the tools that have been used to generate and deploy flooding 

DDoS attack traffic and normal traffic which closely resemble real-world scenarios. It is 

worth mentioning that there is a strong lack of attacks representing current  and novel 

DDoS scenarios in the old data sets as DARPA or KDD Cup 1999 Dataset [78][79][80].  

A realistic traffic generation framework has been co-operatively developed as a part of 

this research in order to synthetically generate and deploy different attack and normal 

traffic scenarios which closely resemble real-world scenarios. The framework makes use 

of modest hardware and exploits the random IP generation feature of various attack 

generating tools, that is used for sending network packets with multiple distinct IP 
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addresses from a single source machine to a single destination machine. Thus, 

synthetically generating normal and anomalous traffic originating from a single machine 

that is able to generate wide range of source IPs using the packet generating tools. The 

tools used for background and attack traffic generation are mentioned in Table 5.1 

5.4   Network Architecture For Attack Scenarios  

For both test-bed 1 and 2, figure 5.3 shows the basic network architecture for the 

experimental setup of attacks. All the machines are connected using a manageable high 

performance switch. The switch also mirrors the victim traffic towards Snort machine 

through SPAN feature so that Snort is able to receive every network packet coming into 

or going to the victim machine. 

5.5   Network Architecture for Normal Traffic  

For both test-bed 1 and 2, figure 5.4 shows the basic network architecture for this 

experimental setup of normal traffic. Apache Web Server is set up at victim system. 

Instead of attacker machine, a large number of legitimate TCP Syn packets are sent 

towards the victim web server . Like in attack traffic scenario, the switch connects all the 

four machines. The switch also mirrors the victim traffic towards Snort machine through 

SPAN feature so that Snort is able to receive every network packet coming into or going 

to the victim machine. 

5.6   Normal Traffic Test Scenarios  

Just like attack scenarios which differ in randomness of incoming source IP addresses of 

the packets, both old and proposed technique have been tested for the degree of false 
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Table 5.1: Tools Details 

 

 

 

 

 

positives they produce under different number of unique source IP addresses. Since 

IAFV algorithm is claimed to be applied on multiple destinations, the test scenarios for 

IAFV algorithms have been explained in separate table, Table 5.4. The total traffic has 

been distributed among 10 destinations with different percentage of attack and normal 

traffic sent to different destinations. Total 9 test scenarios have been created and 

tested. The test scenarios for normal traffic are given in Table 5.2 and 5.4 for Snort, 

Correlation Algorithm and IAFV algorithm respectively.  

5.7   Attack Traffic Test Scenarios  
 

Snort drops packets after a certain limit, mainly due to hardware limitations. Therefore, 

this thesis considers experimenting within the limit of packet rate after which Snort 

begins to drop packets. Therefore, the first step in the evaluation procedure was to 

determine the legitimate rate of incoming traffic that could be handled by Snort [13] 

[74].  

The detection capability of both old and proposed technique have been tested under 

different degree of uniqueness of source IP addresses of the incoming attack packets. 

Machines Tools 

Rule-Based NIDS Snort Version 2.9.6.0 [75] 

Background Traffic 
Generating Machine 

TcpReplay Version 2.3.5 [86] 
,Ostinato Version 0.5.1 [88] 

Attacking Machine Hping3 [87] , Ostinato 
Version 0.5.1 

 
Victim Machine 

Apache Web Server 2.4.10, 
Team viewer 9, Wireshark  

1.12.0 [89] 
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Figure 5.3 Network Architecture For Attack Traffic Test Scenarios  

 

Figure 5.4: Network Architecture For Normal Traffic Test Scenarios 

Since IAFV algorithm is claimed to be applied on multiple destinations, the test scenarios 

for IAFV algorithms have been explained in separate table, Table 5.4. The total traffic 

has been distributed among 10 destinations with different percentage of attack and 

normal traffic sent to different destinations. Total 9 test scenarios have been created 
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and tested. The attack scenarios can also be seen in Table 5.3 and 5.4 for Snort, 

Correlation Algorithm, MSW-Correlation Algorithm and IAFV Algorithm respectively. 

5.8   Test-Bed 1: Design Using Real Systems 
 

The proposed experimental framework makes use of modest hardware. NIDS show 

limited performance when running on virtual platforms as indicated in [76], therefore, 

the test bench comprises of real environment, each including four systems for 

conducting the experiments. It has been shown in [77] that Linux is a better operating 

system as compared to windows operating system in terms of Snort implementation 

hence, Linux has been installed in all systems.The first test-bench has been carefully 

designed according to the requirements of the network under test. Linux operating 

system has been installed on each computer system. The test bench design is very 

simple and it enables to convenient management of systems and construction of 

exclusive flooding DDoS testing facility. The implemented test-bed has been described in 

Table 5.5. The operating system used for each machine is Ubuntu 11.04. The 

experimentation has been carried out in a real environment, which ensures the best 

accuracy.  

5.9   Test-Bed 2: Emulation Using DeterLab 

DETERlab gives researchers the opportunity to conduct repeatable medium-scale 

Internet emulation experiments for a broad range of network security projects. For 

predictable results, realistic large scaled resources play an important role[57]. DETERlab 

is a world class state-of-the-art computing facility by USC/ISI and its abbreviation of 
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"cyber Defense Technology Experimental Research Laboratory". Table 5.6 gives the 

systems details used in the DETERlab experiments. 

Table 5.2: Normal Traffic Test Scenarios for Snort , Correlation and MSW-Correlation  Algorithm 

 

 

 

 

 

Table 5.3: Attack Test Scenarios for Snort , Correlation and MSW-Correlation Algorithm 

 

The script tells which operating systems are to be used and which software needs to be 

installed on each node with boot and link speeds. Each experiment has its own file 

system that can be mounted from the user's experimental nodes.  

 

Sc. 
 No. 

Increase 
in Unique 
Source IP 
Addresses 

For Test-Bed 1 For Test-Bed 2 

Unique Sources 
(Packet per 
second) 

Unique Sources 
(Packet per 
second) 

N-1 20% 1000 240 

N-2 50% 2500 600 

N-3 70% 3500 840 

Sc. 
No  

Unique 
Attack 
Traffic 
(%) 

For Test-Bed 1 For Test-Bed 2 

Attack Packets 
(Packet per second) 

Normal Packets 
(Packets per second) 

Attack Packets 
(Packet per 
second) 

Normal Packets 
(Packets per 
second) 

A-1 20 1000 (each from 
unique source) 

4000, 52 IPs each 
sending 75   

240 (each from 
unique source) 

960, 34 IPs each 
sending 28   

A-2 30 1500(each from 
unique source) 

3500, 46 IPs each 
sending 75  

360(each from 
unique source) 

840, 30 IPs each 
sending 28   

A-3 40 2000(each from 
unique source) 

3000, 39 IPs each 
sending 75   

480(each from 
unique source) 

720, 25 IPs each 
sending 28   

A-4 50 2500(each from 
unique source) 

2500, 33 IPs each 
sending 75   

600(each from 
unique source) 

600, 21 IPs each 
sending 28   

A-5 60 3000(each from 
unique source) 

2000, 26 IPs each 
sending 75   

720(each from 
unique source) 

480, 17 IPs each 
sending 28   

A-6 70 3500(each from 
unique source) 

1500, 20 IPs, each 
sending 75   

840(each from 
unique source) 

360, 13 IPs each 
sending 28   
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Table 5.4: Test Scenarios for IAFV Algorithm 

 

 

 

 

 

 

Table 5.5: Systems Details for Test-Bed 1 

 

 

 

 

 

Each registered user can access his own experimental nodes using SSH. A programmable 

backplane of Ethernet provides network connection to the experimental nodes. Each 

node is connected to that switch through VLANs, which are used to create desired 

network topology for the respective experiments. Besides, each node has at least a 

100Mbs port for downloading various software and controlling the experiment. No node 

has any connection with external internet.  

The DETERlab test-bed uses the Emulab cluster test-bed software developed by the 

University of Utah [85]. A researcher can use systems from a variety of computer 

Scenario 
No. 

Percentage 
of Normal 

Traffic 

Percentage 
of Attack 
Traffic 

 

Number of 
Destinations 

Receiving 
Normal Traffic 

Number of 
Destinations 

Receiving 
Attack Traffic 

1 80 20 5 5  

2 80 20 9 1  

3 80 20 1 9  

4 50 50 5 5 

5 50 50 9 1 

6 50 50 1 9 

7 20 80 5 5 

8 20 80 9 1 

9 20 80 1 9 

Machines Operating 
Systems 

CPU  Memory 

Rule-Based NIDS  
Ubuntu 11.04 
 

Intel Core 
i5, 
3.20 GHZ, 
1600 MHz 

4 Gb 

Background Traffic 
Generating Machine 

2 Gb 

Attacking Machine BackTrack R3 4 Gb 

Victim Machine Ubuntu 11.04 4 Gb 

Switch Cisco Catalyst 2960 Switch (48) 10/100 Ethernet 
ports  [ 90] 
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systems available. To date, more than 3000 experiments have been conducted using 

emulation of DETERlab. The test bed provided by DETERlab is used by hundreds of 

institutions worldwide. The projects based on DETERlab include network  

behavior analyses, worm detection, DDoS attacks detection and launching, encryption 

and pattern detection. For guidance, full documentation including DETERlab usage 

policy and many tutorials on setting DETERlab nodes and NS files has been provided to 

its users.  

 

 

 

 

 

 

 

 

Figure 5.5 : Schematic of Deter Test-Bed [from 84] 

Table 5.6 Systems Details for Test-Bed 2 

 

 

 

 

 

 

Machines Operating 
Systems 

CPU  Memory 

Rule-Based NIDS  
Kali Linux 1.04 

Intel (R) 
Xeon (TM) 
CPU 
3GHz, 
3600 MHz 

2 Gb 

Background Traffic 
Generating Machine 

2 Gb 

Attacking Machine Kali Linux 1.04 2 Gb 

Victim Machine Kali Linux 1.04 2 Gb 
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Documentation of DETERLab also includes information on available nodes, hardware on 

the nodes, operating system images that can be loaded on the nodes, how to customize 

the operating systems and how to install or transfer data or software to the nodes.  

5.10  Threshold: 

To ensure accurate and real time detection, network data from MIS Cell of Military 

College of Signals has been used as a benchmark for threshold. The data taken from MIS 

Cell comprises over a periods of 12 months from June 2013 to June 2014. On average, 

there are 252 unique users according to the data. Figure 5.6 (a) and (b) illustrates the 

data of MIS Cell. It can be seen that the peak number of packet per second 1445 and the 

2nd highest peak is at 482.  

For test-bed 1, the  average of all the values including the highest peak has been taken 

and used in Snort, Correlation and IAFV Algorithms. For Test-bed 2,the average of all the 

values excluding the highest peak value has been calculated and used in the algorithms. 

The reason of ignoring the highest peak in Test-Bed 2 is that in physical systems (used in 

Test-Bed 1), the maximum number of packets per second that Snort is able to receive is 

5000, while in deter-lab (used in Test-Bed 2), the maximum numbers of packets per 

second that Snort is able to receive is 1200. After these number of packets, Snort begins 

to drop the packets.  
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5.10.1  Threshold for Snort 

Rate filter parameter has already been discussed in Chapter 2. The "count" in the parameter is 

to be changed in order to change the threshold. Values of threshold are gauged in a way to find 

out detection capability in two situations, one with a moderate threshold and the other with a 

higher value of threshold. 

In this way, the effect of changing threshold values on detection capability of Snort has been 

observed. Table gives the two thresholds that have been chosen: 

Table 5.7 Thresholds for Snort 

For Test-Bed 1 For Test-Bed 2 

Threshold 1 Threshold 2 Threshold 1 Threshold 2 

76 1 29 1 

 

5.10.2  Threshold for IAFV Algorithm 

The following threshold value has been calculated for the two test-beds using the data 

of MIS Cell. The value is calculated using the IAFV formula explained in Chapter 3. 

Attack Threshold for IAFV = 252-10/10 =  24.2 

5.10.3  Threshold for Correlation and MSW-Correlation Algorithm 

The correlation coefficient values of the packets per second has been calculated using 

MIS Cell network data. It has been found that correlation coefficient values do not fall 

below 0.003. Hence the threshold for attack is chosen to be 0.0029. 
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Figure 5.6 (a) Packet Per Second With Highest Peak (Ascending Order) (b) Packet Per Second Without Highest Peak (Ascending 

Order) 
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5.11   Conclusion 

The datasets which are publicly available have been created more than a decade ago 

and thus are too old to be relied upon. The latest network trends are towards 

anonymous flooding DDoS attacks which are not reflected by these datasets. 

This poses a limitation on usability of such datasets. A simpler and convenient 

alternative to these datasets is using traffic generator tools 

available. Two test-beds have been used. In test-bed 1, network topology and network 

devices have been arranged physically according to the requirements of different test 

scenarios. In test-bed 2, network topology and network devices have been emulated 

using DETERlab. 

While keeping the packet per second range steady, variations in the uniqueness of 

source IP addresses has been tested against both algorithms and for both test-beds. 

Tests have been done on attack traffic as well as on normal traffic. Based on the 

scenarios, we conducted the analyses with reference to detection capability, false 

negative and false positive ratio of the old and MSW-Correlation technique. 
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C h a p t e r  6  

Results And Analyses 

6.1   Introduction 
 

This chapter explains the results of the experiments conducted. According to the results, 

the proposed MSW-Correlation algorithm successfully identified the attack instances in 

all the attacks scenarios. The results have been shown below using graphs.  

6.2   Results of Test-Bed 1(Design Using Real Systems) 
 

This section explains the results that have been achieved in Test-bed 1 (please refer to 

Chapter 5 for test-beds details). Results for normal traffic scenarios have been explained 

in section 6.4.1 and the results of attack scenarios have been given in section 6.4.2.  

6.2.1    Results of Normal Traffic Test Scenarios 

This section explains the results of normal traffic scenarios belonging to test-bed 1. 

Please refer to Chapter No. 5 to read details about test-beds and traffic scenarios. The 

results of Snort, IAFV Algorithm and old Correlation versus MSW-Correlation technique 

have been given in sections 6.2.1.1, 6.2.1.2 and 6.2.1.3 respectively. 

 6.2.1.1  Results of Snort 

Figure 6.1 shows the results of Snort when it receives normal traffic with different 

degree of unique source IP addresses according to the test scenarios. The x-axis shows 
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the normal test scenario numbers (for more details about scenarios, please refer to 

Table 5.2). Along the y-axis, 1 indicates occurrence of attack and 0 indicates vice-versa.  

 

 

 

 

 

 

 

Figure 6.1: Snort Results For Normal Test Scenarios For Test-Bed 1 (a) When Count is 76 (b) When Count is 1 [Refer to Table 5.2 for 

Normal Test Scenarios] 

6.2.1.2    Results of IAFV Algorithm 

Figure 6.2 shows the detection capability of the IAFV technique. The threshold has been 

indicated using a straight line along the x-axis. Traffic flow with IAFV value greater than 

threshold is indicated as attack traffic (for more details about scenarios, please refer to 

Table 5.4). 

6.2.1.3    Results of Old Correlation Technique Versus MSW-Correlation Technique 

The results of different normal traffic scenarios have been shown in Figure 6.3. The 

mean of T1, T2, T3 and T4 are taken and denoted as "MSW-Correlation Technique". The 
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 Figure 6.2: IAFV Results For Test-Bed 1 (a) For Test Scenarios 1,2 and 3 (b) For Test Scenarios 4,5 and 6 (c) For Test 

Scenarios 7,8 and 9[Refer to Table 5.4 for Test Scenarios] 

x-axis shows the test scenarios and y-axis shows the csorrelation coefficient values 

respectively. The threshold has been indicated using a straight line along the x-axis. 

Traffic flow with correlation coefficient value smaller than threshold is indicated as 

attack traffic. 
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Figure 6.3: Old Correlation and MSW-Correlation Algorithms Results For Normal Test Scenarios for Test-Bed 1 [Refer to Table 5.2 for 

Normal Test Scenarios] 

6.2.2 Results of Attack Traffic Test Scenarios 

This section explains the results of attack scenarios belonging to test-bed 1. Please refer 

to Chapter No. 5 to read details about test-beds and traffic scenarios. The results of 

Snort, IAFV Algorithm and old Correlation versus MSW-Correlation technique have been 

given in sections 6.2.2.1, 6.2.2.2 and 6.2.2.3 respectively. 

6.2.2.1    Results of Snort 
 
Figure 6.4 shows the results for the detection capability of attack test scenarios when 

Snort IDS has been used as standalone flooding DDoS detection mechanism. The 
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decision of Snort whether attack has been launched or not is indicated along the y-axis 

by 0 or 1 respectively. Test scenarios have been mentioned along the x-axis. 

6.2.2.2    Results of IAFV Algorithm 

Figure 6.5 indicates the IAFV time series values. The x-axis shows the test scenarios and 

y-axis shows the IAFV values. The threshold has been indicated using a straight line 

along the x-axis. Traffic flow with IAFV value greater than threshold is indicated as attack 

traffic. 

 

 

 

 

 

 

 

 

Figure 6.4: Snort Results For Attack Test Scenarios For Test-Bed 1(a) When Count is 76 (b) When Count is 1[Refer to Table 5.3 for 

Attack Test Scenarios] 

6.2.2.3    Results of Old Correlation Versus Results of MSW-Correlation Algorithm 

The results of different attack scenarios have been shown in Figure 6.6.  The mean of T1, 

T2, T3 and T4 are taken and denoted as "MSW-Correlation Technique". The x-axis shows 
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Figure 6.5: IAFV Results For Test-Bed 1 (a) For Test Scenarios 1,2 and 3 (b) For Test Scenarios 4,5 and 6 (c) For Test Scenarios 7,8 and 

9[Refer to Table 5.4 for Test Scenarios] 
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Figure 6.6: Old Correlation and MSW-Correlation Algorithm Results For Attack Test Scenarios for Test-Bed 1[Refer to Table 5.3 for 

Attack Test Scenarios] 

the test scenarios and y-axis shows the correlation coefficient values respectively. The 

threshold has been indicated using a straight line along the x-axis. Traffic flow with 

correlation coefficient value smaller than threshold is indicated as attack traffic. 

6.3   Results of Test-Bed 2 (Emulation Using DETERlab) 

 

This section explains the results of both normal and attack traffic scenarios belonging to 

test-bed 2. 
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6.3.1  Results of Normal Traffic Test Scenarios 

This section explains the results of normal traffic scenarios belonging to test-bed 2. 

Please refer to Chapter No. 5 to read details about test-beds and traffic scenarios. The 

results of Snort, IAFV Algorithm and old Correlation versus MSW-Correlation technique 

have been given in sections 6.3.1.1, 6.3.1.2 and 6.3.1.3 respectively.  

6.3.1.1   Results of Snort 

Figure 6.7 shows the results of Snort when it receives normal traffic with different 

degree of unique source IP addresses according to the test scenarios (refer to table 5.2).  

 

 

 

 

 

 

  Figure 6.7: Snort Results For Normal Test Scenarios For Test-Bed 2 (a) When Count is 29 (b) When Count is 1 

[Refer to Table 5.2 for Normal Test Scenarios] 

6.3.1.2    Results of IAFV Algorithm 

Figure 6.8 show the detection capability of the IAFV technique. The x-axis shows the test 

scenarios (refer to Table 5.4) and y-axis gives the IAFV values. The threshold has been 

indicated using a straight line along the x-axis. Traffic flow with IAFV value greater than 

threshold is indicated as attack traffic.  
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Figure 6.8: IAFV Results For Test-Bed 2 (a) For Test Scenarios 1,2 and 3 (b) For Test Scenarios 4,5 and 6 (c) For Test Scenarios 7,8 and 

9[Refer to Table 5.4 for Test Scenarios] 
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6.3.1.3    Results of Correlation Technique Versus MSW-Correlation Technique 

The results of different normal traffic scenarios have been shown in Figure 6.9. The 

mean of T1, T2, T3 and T4 are taken and denoted as "MSW-Correlation Technique". The 

x-axis shows the test scenarios (refer to Table 5.2) and y-axis shows the old and MSW-

Correlation coefficient values respectively. The threshold has been indicated using a 

straight line along the x-axis. Traffic flow with correlation coefficient value smaller than 

threshold is indicated as attack traffic. 

 

 

 

 

 

 

 

 

Figure 6.9: Old Correlation and MSW-Correlation Algorithm Results For Normal Test Scenarios for Test-Bed 2 [Refer to Table 5.2 for 

Normal Test Scenarios] 
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6.3.2 Results of Attack Traffic Test Scenarios 

This section explains the results of attack scenarios belonging to test-bed 2. Please refer 

to Chapter No. 5 to read details about test-beds and traffic scenarios. The results of 

Snort, IAFV Algorithm and old Correlation versus MSW-Correlation technique have been 

given in sections 6.3.2.1, 6.3.2.2 and 6.3.2.3 respectively. 

6.3.2.1   Results of Snort 

Figures 6.10 shows the results for the detection capability of attack test scenarios when 

Snort IDS has been used as standalone flooding DDoS detection mechanism. The 

decision of Snort whether attack has been launched or not is indicated along the y-axis 

by 0 or 1 respectively. 

 

 

 

 

 

 

 

 

Figure 6.10: Snort Results For Attack Test Scenarios For Test-Bed 2(a) When Count is 29 (b) When Count is 1[Refer to Table 5.3 for 

Attack Test Scenarios] 
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6.3.2.2    Results of IAFV Algorithm 

Figure 6.11 indicates IAFV time series values. The x-axis shows the test scenarios (refer 

to Table 5.4) and y-axis shows the IAFV values. The threshold has been indicated using a 

straight line along the x-axis. Traffic flow with IAFV value greater than threshold is 

indicated as attack traffic. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: IAFV Results For Test-Bed 2 (a) For Test Scenarios 1,2 and 3 (b) For Test Scenarios 4,5 and 6 (c) For Test Scenarios 7,8 

and 9[Refer to Table 5.4 for Test Scenarios] 
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6.3.2.3   Results of Old Correlation Versus Results of MSW-Correlation Algorithm 

The results of different attack scenarios have been shown in Figure 6.12.  The mean of 

T1, T2, T3 and T4 are taken and denoted as "MSW-Correlation Technique". The x-axis 

shows the test scenarios (refer to Table 5.3) and y-axis shows the old and MSW-

Correlation coefficient values respectively. The threshold has been indicated using a 

straight line along the x-axis. Traffic flow with correlation coefficient value smaller than 

threshold is indicated as attack traffic. 

 

 

 

 

 

 

 

 

Figure 6.12: Old Correlation and MSW-Correlation Algorithm Results For Attack Test Scenarios for Test-Bed 2[Refer to Table 5.3 for 

Attack Test Scenarios] 
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6.4   Analyses 
 

The following section gives a detailed analysis of the results of Test-bed 1 and Test-bed 

2 with all the tested techniques under both attack and normal traffic test scenarios. 

6.4.1 Results of Test-Bed 1 and Test-Bed 2 

The following section gives a detailed analysis of the results of Test-bed 1 and Test-bed 

2 with all the tested techniques under both attack normal traffic scenarios.  

6.4.1.1  Analyses of Results of Snort 

Figure 6.1 shows the detection capability of Snort under all the normal traffic scenarios 

in Test-bed 1 . As indicated in Figure 6.1 (a), Snort correctly detects the normal traffic as 

legitimate in all scenarios, when count is 76. On the other hand, in Figure 6.1 (b), it 

detects every incoming packet as attack in all scenarios, when count is 1.  

Figures 6.4 shows the detection capability of Snort under all the attack scenarios Test-

bed 1. With threshold 76 in Figure 6.4 (a), Snort is unable to detect attacks and it treats 

all packets as legitimate. While Figure 6.4 (b) indicates that when count is 1, Snort 

correctly detects attack packets in all scenarios. In short, if the threshold is chosen to be 

very small, every packet is detected as attack packet and vice versa if the threshold is 

chosen realistically.  

Figure 6.7 shows the detection capability of Snort under all the normal traffic scenarios 

in Test-bed 2 . As indicated in Figure 6.7 (a), Snort correctly detects the normal traffic as 
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legitimate in all scenarios, when count is 29. On the other hand, in Figure 6.7 (b), it 

detects every incoming packet as attack in all scenarios, when count is 1.  

Figures 6.10 shows the detection capability of Snort under all the attack scenarios Test-

bed 2. With threshold 29 in Figure 6.10 (a), Snort is unable to detect attacks and it treats 

all packets as legitimate. While Figure 6.10 (b) indicates that when count is 1, Snort 

correctly detects attack packets in all scenarios. Hence, it can be concluded that Snort is 

unable to correctly differentiate between attack and legitimate traffic by its rate filter 

feature.  

6.4.1.2   Analyses of Results of IAFV Algorithm 

Figure 6.2 and 6.5 show the detection capability of IAFV algorithm under all the traffic 

scenarios in Test-bed 1. Figure 6.8 and 6.11 show the detection capability of IAFV 

algorithm under all the traffic scenarios in Test-bed 2. Figures show that in all the traffic 

scenarios, IAFV is unable to differentiate between the destinations that are under attack 

and that are not under attack. It sums up the unique IP addresses and indicates that all 

the destinations as under attack. Hence, it can be concluded that IAFV time series 

method is unable to correctly differentiate between attack and legitimate traffic 

effectively. 

6.4.1.3   Analyses of Results of Old Correlation Versus Results of MSW-Correlation 

Algorithm 

Figure 6.3 shows the detection capability of old correlation algorithm and MSW-

Correlation algorithm under all the normal traffic scenarios in Test-bed 1. Figure 6.9 
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shows the detection capability of old correlation algorithm and MSW-Correlation 

algorithm under all the normal traffic scenarios in Test-bed 2. The old correlation 

technique is unable to identify legitimate traffic in 2/3 of the scenarios. Although it is 

better than IAFV technique, still there is a room for improvement.  According to the 

results, the MSW-Correlation technique is able to clearly identify the legitimate traffic. 

Hence, it outperforms the old correlation technique in both Test-beds 1 and 2.  

Figure 6.6 and Figure 6.12 show the detection capability of old correlation algorithm 

and MSW-Correlation algorithm under all the attack scenarios in Test-bed 1 and Test-

bed 2 respectively. While it can be seen that the performance of old correlation 

technique is better than rest of the solutions discussed, but in both attack and test 

scenarios, the proposed technique outperforms the rest of the techniques and gives 100 

detection rate. 

6.4.2 Summary of Results For Test-Bed 1 

The success of the proposed technique in Test-bed 1 is also depicted in Table 6.1, 6.2 

and 6.4. It is shown that the MSW-Correlation technique correctly detects all the attack 

and legitimate packets. The crosses in the tables show the false negatives and ticks in 

the tables show true positive.  

6.4.3 Summary of Results For Test-Bed 2 

The results of Test-bed 2 are summarized in Table 6.1, 6.3 and 6.5. It is shown that the 

MSW-Correlation technique correctly detects all the attack and legitimate packets. The 

crosses in the tables show the false negatives and ticks in the tables show true positive.  
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Table 6.1: A summary of test scenarios in IAFV In Test-Beds 1 & 2 (refer to Table 5.4 for scenarios) 

Destinations Scenario Number 

1 2 3 4 5 6 7 8 9 

D1          

D2          

D3          

D4          

D5          

D6          

D7          

D8          

D9          

D10          

 
 

Table 6.2: A summary of normal test scenarios in Snort, old correlation technique and MSW-Correlation 
technique for Test-Bed 1 (refer to Table 5.2 for scenarios) 

 

 

 

 

 

 
Table 6.3: A summary of normal test scenarios in Snort, old correlation technique and MSW-Correlation 

technique for Test-Bed 2 (refer to Table 5.2 for scenarios) 
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Test-Bed 2 

Snort Old 
Correlation 
Technique 

MSW- 
Correlation 
Technique 

Threshold= 29 Threshold= 1 

N-1     

N-2     

N-3     
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Table 6.4: A summary of attack test scenarios in Snort, old correlation technique and MSW-Correlation 
technique for Test-Bed 1 (refer to Table 5.3 for scenarios) 

 
 

 

 

 

 

 

 

Table 6.5: A summary of attack test scenarios in Snort, old correlation technique and MSW-Correlation 
technique for Test-Bed 2(refer to Table 5.3 for scenarios) 

 

 

 

 

6.4.4 False Alarms 

The analyses of all the algorithms has also been done by counting the false alarms each 

algorithm gives. As indicated in previous sections, the MSW-Correlation technique gives 

promising results and can distinguish between attack and normal traffic  most 

effectively. Therefore, it gives least false alarms. This has been shown in Figure 6.13. 
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Figure 6.13: (a) False Positives (b) False Negatives 

6.5 Conclusion  
 

So far the conducted research in the field of detecting DDoS attack has been a 

challenging research problem since these attacks must be detected timely and 

 

 
(a) 

 
(b) 

0

10

20

30

40

50

60

70

80

90

100

Snort Old Correlation 
Technique

MSW-Correlation 
Technique

False positive (%age)

0

10

20

30

40

50

60

70

80

90

100

MSW-Correlation 
Technique

Old Correlation 
Technique

Snort

False negative (%age)



84 
  

accurately. The main issues with most of the DDoS detection schemes has been that 

either they are not scalable or not accurate. The primary contribution of this chapter has 

been the results that are extracted from different attack and normal traffic scenarios. 

The results have been analyzed on the basis of detection accuracy and false alarms.  

A comparison of the IAFV technique, old correlation technique, proposed technique and 

Snort has been given. Results indicate that the rate filter feature of Snort might be 

useful if the attack is launched from single source IP address ,which is generally not the 

case in flooding DDoS attacks. Practically, in the flooding distributed denial of service 

attacks, the attack traffic is generated using random source IP addresses.  Hence, all the 

packets in our scenarios bypassed this feature which is the only feature in Snort to 

defend against flooding DDoS attacks. As indicated by results, the MSW-Correlation 

technique gives promising results and can distinguish between attack and normal traffic 

effectively.  
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C h a p t e r  7  

Conclusion 

7.1   Overview 

Flooding DDoS attacks are the most difficult attacks to detect timely and accurately. 

Unfortunately, to address this problem, the rate filtering technique in the present rule-

based NIDS is insufficient because the packets sent seem to be legitimate. Also, the 

packet data does not match with any of the signatures in the NIDS database. Since the 

sources of flooding DDoS attacks are distributed or have been produced using tools that 

makes the attack look like coming from several thousand unique sources, it is very easy 

to bypass rate filters and limitations. The reason is that a very strict and low value of 

rate filter gives false positives and thus attacks will not be detected accurately. On the 

other hand, a higher value of rate filter will give false negatives and detect even the 

legitimate traffic as attack traffic as discussed previously.  

7.2   Objectives Achieved 

1. The detection techniques used by rule-based NIDS for flooding distributed denial 

of service attacks have been studied. Detection capability of chosen NIDS, Snort 

has been observed and analyzed in details with respect to the normal and attack 

scenarios in terms of false negatives and false positives. It has been seen from 

the experiments that, by keeping a low value of rate filter, the attacks have been 

detected in half of the attack scenarios , but at the same time, the legitimate 
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traffic was detected as attack traffic. While attack detection is the main 

motivation of rate filter, it should not detect normal traffic as attack. This will 

interrupt legitimate clients and cause denial of service. In this way, every 

incoming traffic, whether attack or legitimate, was detected as attack traffic in 

most of the scenarios. Thus, the detection capability of rate filter technique is 

found to be severely insufficient.  

2. To generate effective results, a sophisticated test bench has been utilized. Both 

of the algorithms have been analyzed under several normal and flooding DDoS 

attack scenarios and evaluation has been done with respect to their detection 

accuracy and capability.  

3. It has been observed in various recent studies that in order to detect flooding 

DDoS attacks, flow based techniques give much more promising results than 

packet based detection techniques. A variety of flow-based DDoS detection 

algorithms have been studied. Weaknesses in the present flow based DDoS 

detection techniques have been identified. The flow-based DDoS attack 

detection techniques have been divided broadly into two categories namely, 

Packet Based and Mathematical Formulation Based. Analyses has been done on 

two recent techniques one belonging to first category, IP Address Feature Value  

(IAFV) and the other belonging to second, Correlation of IP addresses.  

4. It was found through experimental results that correlation technique is better 

than IAFV as it gives lesser false alarms. Hence, correlation technique was chosen 



87 
  

for further improvements that were expected be helpful in giving better results 

than both of the algorithms.  

5. The proposed technique was implemented and integrated with a famous rule-

based network intrusion detection system, Snort. The behavior or Snort was 

evaluated and then the effects of the integrated algorithm were evaluated to see 

the impact of the proposed technique. To the best of our knowledge, no flow 

based flooding DDoS detection technique has been integrated with Snort.  

7.3   Limitations 

During the course of the research, few limitations have been observed as follows: 

1. The proposed correlation technique is currently using individual feature of 

packet header, i.e. source IP address.  

2. The proposed technique has been tested on a limited number of real world 

datasets.  

7.5   Future Directions 

1. An obvious step forward would be to take several features and correlate them 

together. In case of multiple features, weights might be assigned to each feature 

and weighted correlation might be performed. This step is expected to increase 

detection capability potentially. 

2. The proposed technique can be applied to a wider range of datasets comprising 

of more complex flooding attack types. This will help to generalize this 

technique. 
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7.6    Concluding Remarks 

In this information technology based society, flooding DDoS attacks pose serious 

challenges to industries like media, entertainment, software, technology, security, 

financial services and gaming industries. Rule-based detection despite being the most 

common method suffers from limitations as it cannot monitor traffic flow and thus 

cannot detect flooding DDoS attacks efficiently. This thesis has made an attempt to 

handle this issue. Results have verified that the proposed technique is effective in 

detecting not only the attack traffic timely but also in reducing false positive rate. The 

technique has been integrated with rule-based NIDS, Snort. The proposed technique 

should be extended to deal with its explained limitations and future directions.  
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