
DEFENSE AGAINST INSIDER ATTACKS (SYBIL ATTACK)

USING CODE TESTING

by

Imran Makhdoom

A thesis submitted to the faculty of Information Security Department Military College
of Signals, National University of Sciences and Technology Rawalpindi in partial

fulfillment of the requirements for the degree of MS in Information Security

 APRIL 2015

SUPERVISOR CERTIFICATE

It is to certify that Final Copy of Thesis has been evaluated by me, found as per

specified format and error free.

Dated___________ ________________________
(Dr Mehreen Afzal)

ABSTRACT

Wireless Sensor Networks (WSN) due to their distributed nature are vulnerable

to various external and insider attacks. Classic cryptographic measures do protect

against external attacks to some extent but they fail to defend against insider attacks

involving node compromise. A compromised node can be used to launch various

attacksof which Sybil Attack is the most prominent. Existing security protocols in

WSN fail to provide protection against all the dimensions of Sybil Attack. Code

attestation is considered to be the only potent defense against node compromise and

related integrity attacks including Sybil Attack launched by change in the code of the

end device. Various code attestation protocols do exist but they are either vulnerable

to network attacks being challenge-response based or they are in-efficient with respect

to performance and security aspects. One Way Memory Attestation Protocol (OMAP)

is one of them. OMAP claims 90% detection rate in case 20% of the end device’s

memory is modified, but with increased time overhead.

A detailed review and analysis of various defenses proposed against Sybil

Attack has been carried out. Their strengths and weaknesses have been identified and

ultimately a novel One Way Code Attestation Protocol (OWCAP) for wireless sensors

networks is proposed, which is an economical and a secure code attestation scheme

that protects not only against Sybil Attack but also against majority of the insider

attacks involving node compromise.It detects the modified memory of an end device

with 100% detection rate when only 0.8 % memory is changed. The performance

analysis of the proposed scheme OWCAP is carried out in detail by implementation in

Dev C++ and Code Composer.

iii

DEDICATION

All praise and thanks to almighty Allah, the most Gracious and the most

Compassionate, Master of the Day of Judgment.

I dedicate my work to my parents, my wife and my teachers who have been a constant

source of encouragement, guidance and payers for me, throughout my work.

iv

ACKNOWLEDGEMENT

First of all, I would like to thank to Almighty Allah, who has blessed me with

intellect and strength, Who increased my knowledge and made me able to

successfully go through this phase and complete my work.

The first and the foremost person who I would like to acknowledge is my

supervisor Dr. Mehreen Afzal. Despite of her busy schedule, she was always available

for discussions and queries. She continuously kept me in the right direction by giving

valuable suggestions. She used to ask for my progress time to time and after

understanding my advancements, gave me appreciated ideas and recommendations.

Without her constant support, help and encouragement, timely completion of my

research work would have been impossible.

I am also immensely thankful to my guidance committee members

Lt Col Dr. Imran Rashid, Lt Col Dr. Monis Akhlaq and Lec Mian Muhammad

Waseem for their persistent support and inspiration.

 I would also like to thank Dongwon Seo, one of the authors of OMAP, who

helpedme in understanding OMAP, answered all my queries and encouraged me for

the development of OWCAP.

 I am also thankful to my Head of Department Lt Col Dr. Babar Aslam and his

team for administrative help and support.

 I am immeasurably thankful to my family members who took care of me

throughout my MS studies.

v

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Overview .. 1

1.2 Need for Research .. 3

1.3 Problem Statement ... 4

1.4 Objectives ... 4

1.5 Research Methodology and Achieved Goals ... 5

1.6 Thesis Organization .. 5

2 Literature Review ... 6

2.1 Introduction ... 6

2.2 Threats to WSN .. 6

2.2.1 Eavesdropping .. 6

2.2.2 Replay ... 7

2.2.3 Fabricated Message .. 7

2.2.4 Interruption ... 8

2.2.5 Selective Forwarding Attack .. 8

2.2.6 Worm Hole Attack ... 9

2.2.7 Hello Flood Attack ... 9

2.2.8 Sybil Attack .. 10

2.3 Taxonomy of Sybil Attack ... 11

2.3.1 Dimension -1 Direct or Indirect Communication ..12

2.3.2 Dimension -2 Fabricated or Stolen Identites .. 12

2.3.3 Dimension -3 Simultaneous or Non Simultaneous ...12

2.4 Existing Security Protcols in WSN .. 13

vi

2.4.1 SPINS…………………………………………………………………………13

2.4.2 TinySec……………………………………………………………………..…13

2.4.3 MiniSec…………………………………………………………………….….14

2.4.4 ZigBee…………………………………………………………………………14

2.4.5 LEAP+……………………………………………………………………...…14

2.5 Existing Defenses Against Sybil Attack .. 15

2.5.1 Radio Resource Testing .. 15

2.5.2 Key Pool ... 15

2.5.3 Multi Space Pair wise Key Distribution ... 15

2.5.4 Position Verification ... 16

2.5.5 Trusted Certification ... 16

2.5.6 Code Attestation ... 16

2.6 Summary .. 17

3 Code Attestation ... 18

3.1 Introduction .. 18

3.2 Review and Analysis of Code Attestation Scheme ... 18

3.2.1 Software Based Attestation for Embedded Devices (SWATT) 19

3.2.1.1 SWATT Alogorithm ... 19

3.2.1.2 Pros and Cons of SWATT .. 20

3.2.2 Distributed Software Based Attestation .. 22

3.2.2.1 Basic Threshold Secret Sharing Scheme 1 ... 22

3.2.2.2 Majority Voting Based Attestation Scheme - 2 .. 23

3.2.3 OMAP - One Way Memory Attestation Protocol .. 24

3.2.3.1 OMAP Algorithm ... 25

3.2.3.2 Observations on OMAP ..26

vii

3.3 Summary ... 31

4 One Way Code Attestation Protocol (OWCAP) .. 32

4.1 Introduction .. 32

4.2 Objectives of OWCAP ..32

4.3 Assumptions ..33

4.4 OWCAP Algorithm ...33

4.4.1 Seed Generation ...34

4.4.2 Pseudo Random Memory Traversal...34

4.4.3 Message Construction ..35

4.4.4 Verification ..36

4.4.5 Recovery and Revocation ... 36

4.5 Improving Upon the Observations of OMAP .. 36

4.5.1 Implicit Initiation of Attestation Procedure .. 36

4.5.2 Seed Generation and Time Synchronization .. 37

4.5.3 Execution Time of Checksum Computation .. 37

4.5.4 Range of Addresses .. 38

4.5.5 Number of Extracted Contents ... 38

4.5.6 OWCAP Message Transmission .. 39

4.6 Performance Analysis of OWCAP ... 40

4.6.1 OWCAP Execution Time Measurements ... 41

4.6.2 Memory Detection Rate ... 42

4.6.2.1 Memory Detection Rate of OWCAP Using RC-4 ... 42

4.6.2.2 Memory Detection Rate of OWCAP Using RC-5 ... 43

4.6.2.3 Memory Detection Rate of OWCAP Using Skipjack 44

viii

4.6.2.4 Memory Detection Rate of OWCAP Using SHA-2 ... 45

4.7 Efficiency of OWCAP .. 46

4.7.1 Energy Consumption of OWCAP .. 47

4.7.2 OWCAP Battery Backup .. 52

4.8 Summary .. 53

5 Comparative Analysis .. 54

5.1 Introduction ... 54

5.2 Computational Cost .. 54

5.3 Number of Messages Transmitted .. 55

5.4 Storege Requirement .. 56

5.5 Code Attestation Initialted by Whom and When ... 57

5.6 Security Aspects ... 58

5.7 Bandwidth (BW) Utilization ... 59

5.8 Summary .. 60

6 Conclusion and Future Work .. 62

6.1 Introduction .. 62

6.2 Conclusion .. 62

6.3 Future Work ... 62

6.4 Summary…………………………………………………………………........62

ix

Appendix-A DEV C++ CODE OF OWCAP (RC-4) FOR SENSOR NODE 64

Appendix-B DEV C++ CODE OF OWCAP (RC-4) FOR VERIFIER 68

Appendix-C DEV C++ CODE OF OWCAP (RC-5) FOR SENSOR NODE 73

Appendix-D DEV C++ CODE OF OWCAP (RC-5) FOR VERIFIER 79

Appendix-E DEV C++ CODE OF OWCAP (SKIPJACK) FOR SENSOR NODE 86

Appendix-F DEV C++ CODE OF OWCAP (SKIPJACK) FOR VERIFIER 93

Appendix-G DEV C++ CODE OF OWCAP (SHA-2) FOR SENSOR NODE 101

Appendix-H DEV C++ CODE OF OWCAP (SHA-2) FOR VERIFIER 105

Appendix-J MS VISUAL STUDIO CODE FOR FILE GENERATION 110

Appendix-KCODE COMPOSER CODE FOR OWCAP using RC-5 112

BIBLIOGRAPHY ... 123

x

LIST OF FIGURES

Figure Number Page

2.1 Eavesdropping ... 7

2.2 Replay Attack.. 7

2.3 Fabricated Messages. .. 8

2.4 Interruption ... 8

2.5 Selective Forwarding .. 9

2.6 Worm Hole Attack ... 9

2.7 Hello Flood Attack .. 10

2.8 Sybil Attack .. 11

3.1 Rainbow Attack ... 21

3.2 Interference Attack... 22

3.3 OMAP-Time Measurement of First Execution…………………………………27

3.4 OMAP-Time Measurement of Second Execution………………………………28

3.5 OMAP-Execution Time………………………………………………………...28

3.6 Range of 16 Bit Memory Addresses……………………………………………29

3.7 Size of Extracted Memory Contents……………………………………………30

4.1 Reduced Execution Time of OWCAP .. 37

4.2 OWCAP Range of Addresses ... 38

4.3 Size of Memory contents extracted by OWCAP .. 39

4.4 OWCAP Message Transmission... 39

4.5 Comparison of Average Execution Time ... 42

4.6 Detection Rate of Modified Memory .. 46

4.7 Number Of CPU Cycles for OWCAP Execution ... 48

xi

4.8 TMS320C6424 Processors’ Execution Time.. 49

4.9 TMS320C6424 Processors’ Energy Consumption .. 50

4.10 TMS320C6424 Processors’ Energy Consumption Vs Execution Time 50

4.11 Memory Size Vs Battery Backup…………………………………………….... 51

4.11 Memory Size Vs Battery Backup……………………………………………….51

4.13 Battery Life Vs Update Period ... 53

5.1 Comparison of Message Transmission………………………………………...56

5.2 Storage Requirement of Code Attestation Schemes …….……………………57

5.3 BW Utilization of Code Attestation Schemes………………………………...59

5.4 Attacks on challenge Response Protocols…..………………………….……...60

xii

LIST OF TABLES

Table Number Page

4.1 Number of Memory Accesses .. 40

4.2 Execution Time of All Variants of OWCAP .. 41

4.3 Memory Detection Rate of OWCAP using RC-4 ... 42

4.4 Memory Detection Rate of OWCAP using RC-5 ... 43

4.5 Memory Detection Rate of OWCAP using Skipjack ... 44

4.6 Memory Detection Rate of OWCAP using SHA-2……………………………..45

4.7 Simulation Parameters…………………………………………………………..47

4.8 Time and Energy Consumption of TMS320C6424 Family ……………..……..48

5.1 WSN scenario for comprative analysis …………………. ……………..……..54

xiii

KEY TO ABBREVIATIONS

WSN Wireless Sensors Network

OWCAP One Way Code Attestation Protocol

OMAP One Way Memory Attestation Protocol

ICS Industrial Control System

PLC Programmable Logic Controller

DoS Denial of Service

XOR Exclusive OR Operation

TOCTTOU Time of Check to Time of Use

BS Base Station

PKI Public Key Infrastructure

SCADA Supervisory Control and Data Acquisition

SWATT Software based Attestations

BTSS Basic Threshold Secret Sharing Scheme

MVBS Majority Voting Based Scheme

ISA Instruction Set Architecture

PRG Pseudo Random Generator

MPU Micro Processor Unit

MCU Micro Controller Unit

SN Serial Number

AMI Advanced Metering Infrastructure

BIOS Basic Input Output System

xiv

DRM Digital Rights Management

MAC Message Authentication Code

HMAC Hash Message Authentication Code

ACK Acknowledgement

SHA Secure Hash Algorithm

ROP Return Oriented Programming

BW Bandwidth

1

 C h a p t e r 1

3 Introduction

1.1 Overview

The Stuxnet worm that hit the industrial world with a bang had specifically

targeted the Programmable Logic Controllers (PLCs) of Supervisory Control and Data

Acquisition (SCADA) system and modified the executable code of PLCs so that they are

deviated from their expected behavior [1], [2]. Stuxnet was developed to be a self-

directed smart code that could independently communicate, update, target and spread. It

had the capability to impersonate the normal behavior of PLC by stealthily surviving in a

large scale system. It faked the PLC readings until a physical damage to the Industrial

Control System was done. Any Network Management System (NMS) was failed to

identify any malfunction in the routine operation of PLCs[3].In similarity to other worms,

Stuxnet spread erratically in the computer network, but the quality that makes it different

from its predecessors is its capability to unleash its payload at a PLC of a specific

Industrial Control System (ICS) that matched the characteristics of ICS installed at Iran’s

nuclear enrichment facility at Natanz. Subsequently Stuxnet altered the codeof the PLC

that controlled the thousands of centrifuges, thus ultimately disrupting the Uranium

enrichment by damaging almost all the centrifuges [4][5].The successful malicious

execution of Stuxnet motivated various other attackers to develop different software

based attacks like Boden, Flame and Doqu that also targeted ICS [6].Stuxnet is not the

end, there is a continuous effort put in by the attackers to acquire requisite knowledge,

skills and tools to attack different components or segments of ICS[7].Wireless Sensors

Network is also one of them.

2

The wireless sensors are low cost, low power, self organizing and easy to deploy which

makes them an ideal candidate for distributed monitoring of a prescribed area. However

the distributed nature of deployment on one side is beneficial but on the other side due to

the lack of physical protection they are prone to external and insider attacks. The insider

attacks launched as a result of physical compromise of a sensor node are the hardest to

protect against. In external attack, an attacker can easily intercept, modify, replay or

inject fabricated messages [8]. Different cryptographic schemes have been proposed to

protect against threats to confidentiality and authentication but the insider attacks are not

preventable with only classic cryptographic techniques [9][10][11] and [13]. The worst

aspect of node compromise is that an adversary can install malicious program in the

compromised node and can play havoc with the legitimate functioning of the WSN by

launching various attacks including, selective forwarding attack, worm hole attack, hello

flood attack [14], DoS attack [15] and above all a multi-dimensional Sybil Attack [16].

WSN has a constrained environment in terms of limited memory, storage and

processor capabilities along with stern energy limitations [17]. These constraints make it

very challenging to design new security protocols to protect against Sybil Attack,

launched as a result of a node compromise. The key idea here is that the code running on

a compromised node is different than the legitimate node and it is the malicious code

which enables the particular node to launch the Sybil Attack or other attacks mentioned

earlier. Various defense techniques and protocols [16], including SPINS [36],

TinySec[39], MiniSec [45], ZigBee [46] and LEAP+ [47]have already been developed

and implemented in Wireless Sensors Networks but they all have some residual

weaknesses. Either they do not protect against all the dimensions of Sybil Attack or they

fail to identify a compromised node.

3

Code Attestation is the only technique that is considered to be a potent defense not

only against Sybil Attack [16] but also provides implicit protection against other insider

attacks that involve a change of code as a result of a node compromise. Different types

of Code Attestation Protocols have already been proposed [22], [23] and [24], but they

have some blatant weaknesses. The major problems in all the existing Code Attestation

Schemes are, difference in Time of Check to Time of Use (TOCTTOU) [25], elusive

start of code test procedure, and independence of code test procedure to routine

application running on a wireless sensor node. The difference in TOCTTOU can render

protection provided by any code attestation scheme ineffective, in case attacker exploits

this time gap and make any modification in the code just before the wireless sensor is

suppose to send its scheduled updates to base station or sink node. The independent code

attestation procedures result in excessive bit transmission over and above bits transmitted

for sensor reading updates. This excessive bit transmission exhausts the available energy

on a sensor node thus reduces its lifetime.

1.2 Need forResearch

The use of wireless Sensor Networks is becoming ubiquitous in battle field

surveillance, ICS / process controls / automation, traffic management systems,

environmental monitoring, smart grids, nuclear power plants, smart houses, pipe line

monitoring and etc. But with the advent of attacks like Stuxnet, the integrity of

information travelling between PLCs and the sensors is of utmost importance. A slight

change in the code of a sensor mote or a PLC can now cause an

irreparable physical damage to the ICS. The integrity of information is of vital

importance in case the sensors are employed in a sensitive control systems environment

like nuclear power plants, gas pipe line monitoring or battle field surveillance. Due to

the distributed nature of deployment, wireless sensors are prone to physical compromise

4

and as a result multiple insider attacks can be launched by altering the code of the sensor

motes. Code attestation is considered to be the most effective defense against insider

attacks, if efficiently performed it can identify a malicious or altered code with 100

percent accuracy. At present there are various code attestation schemes already proposed

/ published but they are either vulnerable to network attacks or fail to abstain an attacker

to violate the integrity of messages passed over wireless sensors networks. Therefore

there is a need to develop an efficient and secure code attestation scheme.

1.3 Problem Statement

The existing Code Attestation Protocols [22], [23] are challenge response based

so they are prone to network attacks like rainbow attack, interference attack and other

Man-in-the-Middle (MITM) attacks. The protocol mentioned in [24] is although a One

Way Memory Attestation Protocol (OMAP) but in addition to its specific weaknesses the

common weakness that it shares with its predecessors is the difference in TOCTTOU.

The gap in TOCTTOU always put a question mark on the integrity of data / message

being transmitted over the wireless sensors network. OMAP has its other specific

weaknesses that include, poor time synchronization, more computation time, limited

memory address traversal, and the most critical is low detection rate of malicious code.

Moreover the independent code attestation procedures result in excessive bit

transmission over and above bits transmitted for sensor reading updates. This excessive

bit transmission exhausts the available energy on a sensor node thus reduces its lifetime.

In order to address the issues of security, transmission overhead and energy consumption

there is a need to develop an efficient and a secure code attestation protocol.

1.4 Objectives

1. To Carryout an analysis of existing Code/Memory Attestation Protocols.

5

2. Developing an efficient and a secure Code Attestation Protocol for WSN

with implicit Data Authentication.

3. Carryout the performance analysis of the proposed scheme w.r.t

computation time, detection rate, and calculating time interval of sensor

response update depending upon available energy.

1.5 Research Methodology and Achieved Goals

The research work has been divided into three main phases. In the first phase,

detailed study and literature review has been carried out related to the Sybil Attack. A

strong theoretical concept has been built regarding the dimensions of Sybil Attack,

insider attacks and defense against such attacks using Code Attestation. In the second

phase, the development of a Code Attestation Algorithm using various specifications has

been investigated. Dev C++has been used for the initial testing because it was found

suitable for the initial development of the project. The proposed OWCAP Algorithmhas

been implemented in Dev C++ for the comparative analysis of multiple variants of this

scheme. After thorough testing, the code has been implemented in Code Composer to

analyze the performance of the code in the microcontroller environment.

1.6 Thesis Organization

The thesis report has been divided into 6 chapters. In Chapter 2various defenses

proposed against Sybil Attack are discussed in detail. Chapter 3 presents a critical

analysis of some popular code attestation schemes. Chapter 4 introduces an economical

and a secure One-Way Code Attestation Protocol (OWCAP). Chapter 5 carries out a

unique comparative analysis of various code attestation schemes and Chapter 6concludes

the thesis report by giving the scope of future work.

6

C h a p t e r 2

4 Literature Review

2.1 Introduction

In this chapter an overview of threats to WSN is given along with various known

defenses proposed against Sybil Attack are reviewed.These defense techniques are

evaluated based upon their ability to defend against all the dimensions of Sybil Attack

and also to protect against a Sybil Attack launched from a compromised node with

malicious code modification.

2.2 Threats to WSN

Due to the distributed nature of deployment of sensor nodes in WSN many

attacks are possible. These attacks fall under one of the following categories [15], attacks

on secrecy and authentication, attacks on network availability and stealthy attack against

service integrity.Based upon attacker’s access to the WSN the attacks can be classified as

external and internal (insider) attacks. The external attacks are launched by an attacker,

who does not belong to the network and the internal attacks are launched by an adversary

who has the access of the network or they know the cryptographic keys, thus they form

part of the network and then launch various attacks. Insider attacks that are launched

from a compromised node are much harder to detect. Few examples of external and

internal / insider attacks are:-

2.2.1 Eavesdropping

Due to broadcast nature of wireless communication in WSN, an attacker can

easily sniff the traffic of the WSN.

7

Figure 2.1 Eavesdropping

2.2.2 Replay

A message transmitted by a legitimate node at a time T0 is retransmitted /

replayed at a later time T4 by a malicious node.

Figure 2.2 Replay Attack

2.2.3 Fabricated Message

A malicious node injects false messages in the network, hence attacking the

authentication of the messages being relayed in the network.

8

Figure 2.3 Fabricated Messages

2.2.4 Interruption

It is one of the DoS attacks, which makes the network unavailable by causing

interruption to transmission of messages. Such an interruption can be achieved by

jamming, collision or misdirection.

Figure 2.4 Interruption

2.2.5 Selective Forwarding Attack

In this attack a malicious node (made after compromising a legitimate node)

routes packets from selective nodes only and drop packets from others thus rendering

affected nodes to DoS.

9

Figure 2.5 Selective Forwarding

2.2.6 Worm Hole Attack

In this attack a malicious node receives messages at one pt in the network and

tunnels them at another point, thus drastically affecting the routing protocols. The attack

can be launched in-spite of the various network security measures to include

confidentiality and authenticity and also without any information about cryptographic

keys.

Figure 2.6 Worm Hole Attack

2.2.7 Hello Flood Attack

In order to disrupt the routing protocol and network topology a laptop class

attacker, broadcasts “Hello” messages with high power to distant nodes, so that the

10

nodes once receive hello message consider the malicious node as their immediate node

and try to route messages to BS via malicious node. This will not only affect the routing

table of a particular node but will also drain the precious battery power of the node by

continuously forwarding messages to the malicious node and not receiving any

acknowledgement.

Figure 2.7 Hello Flood Attack

2.2.8Sybil Attack

In this attack a malicious node illegitimately takes on multiple identities. The

additional identities are called the Sybil Nodes. The malicious node can fabricate or steal

the identities of the legitimate nodes. Sybil Attack adversely affects the normal

functioning of the sensor network such as distributed storage, dispersion and multipath

routing.

11

Figure 2.8 Sybil Attack

2.3 Taxonomy of Sybil Attack

This section discuss the Sybil Attack in detail with some brief history that it is an

attack in which a malicious node/entity illicitly take multiple pseudonyms to deceive

others, thus harnessing detrimental effects on computer and network security. It was

initially termed as “Pseudo Spoofing” before 2002 but later it was named “Sybil” after

the subject of a book, which was about a woman with “Multiple Personality Disorder” i.e

one person under the control of two distinct identities[48]. A malicious node pretendsto

be multiple nodes at a same time using a single physical device. Attacker can have

multiple identities by stealing identities of other nodes, forging false identities,

generatingrandomnumberofnew identities, stealing or modifying cryptographic

primitives by physically compromising the sensor nodes and physically compromising

sensor nodes, and installing malicious code.Sybil Attack in Wireless Sensor Networks

poses a potent threat to, data aggregation, routing mechanism, distributed storage and fair

resource allocation.The attack platform can be static or mobile. In case the attacker

launching the Sybil Attack is static and the key point here is that illegitimate multiple

identities are generated from the same location. Therefore any protection scheme that

incorporates the physical location of each node, can easily detect that multiple identities

12

are being generated from the same location. Contrary if the attacker launching the Sybil

Attack is mobile and presents multiple identities from different locations then it is

difficult to detect the Sybil Identities.An attacker launching a Sybil Attack may operate

in one of the following dimensions[16]:-

2.3.1 Dimension-1 Direct or Indirect Communication

In direct communication, Sybil Nodes directly communicate with legitimate

nodes. If a legitimate node sends a message to a Sybil Node, it is actually received by

one of the malicious node. And in indirect communication, legitimate nodes cannot

communicate directly with Sybil Nodes, rather one or more malicious nodes route

messages to / from the Sybil Nodes.

2.3.2 Dimension-2 Fabricated or Stolen Identities

Attacker can generate random new identities but if there is an identity

management mechanism in WSN network, then generating new identities may be

difficult for the attacker. Now the only viable option left with attacker is to steal the

identities of legitimate nodes. This can get even worse if the attacker physically

compromise sensor motes.

2.3.3 Dimension-3 Simultaneous or Non-Simultaneous

The attacker tries to make all the Sybil Nodes appear simultaneously in the

network. He can do so by cycling through these identities one by one.Attacker may

resort to introducing multiple physical devices in the network. These multiple physical

devices switch identities at different time intervals, a particular identity may only be used

once.

13

2.4 Existing Security Protocols in WSN

Since 2000 various forms of cryptographic defense mechanisms against various

attacks in WSN have been developed or proposed. Most of the security protocols have

compromised on security in order to achieve efficiency in a constrained environment.

None of these security suits address the issue of Sybil attack in totality. Some of these

defense mechanisms are discussed in the following sections.

2.4.1 SPINS[36] a suite of security building blocks optimized for resource

constrained environments and wireless communication was presented in 2001. SPINS

has two secure building blocks: SNEP and µTESLA. SNEP provides data confidentiality,

two-party data authentication, and weak data freshness. µTESLA is a new protocol

which provides authenticated broadcast for severely resource-constrained environments.

SNEP uses RC-5 CTR for encryption and µTESLA uses CBC-MAC for authentication.

It is a conventional 2 pass encryption and authentication technique which provides only

weak freshness. RC-5 is a simple cipher but does have weaknesses [37]. Distributed.net

has brute-forced RC5 messages encrypted with 56-bit and 64-bit keys, and is working on

cracking a 72-bit key; as of Dec 2012, 2.671 % of the key space has been searched [38].

SPINS does not provide protection against insider attacks including Sybil Attack[40].

2.4.2 TinySec[39] introduced in 2004 was implemented in TinyOS as a link layer

security protocol. It provides authenticated encryption using Skipjack in CBC mode for

encryption and CBC-MAC for authentication. However CBC-MAC is secure for fixed

length messages only and not for variable length messages [44]. TinySec does not

protect against replay attacks [40]. Eli Biham and Adi Shamir discovered an attack

against 16 of the 32 rounds of Skipjack, within one day of declassification, and (with

Alex Biryukov) extended this to 31 of the 32 rounds (but with an attack only slightly

14

faster than exhaustive search) within months using impossible differential cryptanalysis.

A truncated differential attack was also published against 28 rounds of Skipjack

cipher.This was later complemented by a slide attack on all 32 rounds [41]. According to

the claims of RSA Security Labs, 80-bit keys are not secure after 2010 [42][43]. In

TinySec the MAC protects the entire packet, including the destination address, AM type

(active message handler), length, source address and counter (if present), and the data

(whether encrypted or not). It does not prevent insider attacks as a result of node

compromise.

2.4.3 MiniSec[45] published in 2007. It is a network layer security protocol that

provides authenticated encryption but does not provide exclusive protection against

insider attacks including Sybil Attack.

2.4.4 ZigBee[46]is a low-cost, low-power, wireless mesh network standard which was

made publicly available in 2005. It usesAEAD_AES_128_CCM mode for authenticated

encryption, the algorithm works as specified in [CCM], using AES-128 as the block

cipher, by providing the key, nonce, associated data, and plaintext to that mode of

operation. It does not provide exclusive protection against insider attacks as a result of

node compromise.

2.4.5 LEAP+[47] introduced in 2006 is a key management protocol for sensor

networks that is designed to support in-network processing, while at the same time

restricting the security impact of a node compromise to the immediate network

neighborhood of the compromised node. It uses RC-5 Cipher for encryption and CBC-

MAC. It does provide data integrity but no protection against Sybil Attack.

15

2.5 Existing Defenses Against Sybil Attack

2.5.1 Radio Resource Testing

Radio Resource Testing is a form of resource testing with considerable

weaknesses [16]. Firstly, the probability of detecting a Sybil Node is very low in case we

have less number of channels than the neighboring nodes. Secondly, it does not protect

against an attacker which physically compromise a node and modify its program to

launch a Sybil Attack. Thirdly, it also does not protect against an attacker, who does not

present all the Sybil Identities simultaneously.

2.5.2 Key Pool

Key Pool is another such scheme in which random keys are assigned to each

node from a pool of X keys [16]. One of its weaknesses is that during validation sensor

nodes consume a lot of energy. Secondly, during validation especially full validation,

channel bandwidth is reduced for control and sensor messages. Thirdly, node to node

authentication is not possible because during random distribution of keys, keys can be

issued multiple times out of the key pool. Fourthly, if an attacker compromises sufficient

nodes, he can use the stolen identities.

2.5.3 Multi-Space Pair wise Key Distribution

In Multi-Space Pairwise Key Distribution Scheme, the setup server randomly

generates a pool of m key spaces and each sensor node is assigned p out of the m key

spaces [16]. This scheme consumes precious memory space, as every node is required to

store pair wise keys with its neighbors. Although the attacker cannot generate new IDs

until a threshold of captured nodes is met, yet he can use the limited number of IDs he

has captured from compromised nodes to send false sensor responses. The pair wise key

16

distribution also does not protect against other integrity attacks, in which code of the

compromised node has been tampered with.

2.5.4 Position Verification

 Position verification is considered to be a potent defense against Sybil Attack.

The solutions proposed consider that the network is static, thus verifying the positions of

all the nodes and detecting Sybil Nodes that appear to be at the same physical location

[19],[20] and [21]. The drastic weakness in these solutions is that, they do not protect

against a mobile attacker. Location verification also does not protect against other

integrity attacks, in which a compromised node has been tampered with. Moreover the

positions of the end nodes are required to be unique for each identity.

2.5.5 Trusted Certification

 Trusted Certification is another promising scheme that has the potential to protect

against Sybil Attacks, provided there is a trusted central authority [12], [18].There is no

method for ensuring uniqueness of certificates, and practically it has to be done by a

manual setup. Whereas this manual setup can be costly, and also causes performance

degradation. Moreover, the process of issuing and managing certificates is computation

intensive. Related to trusted certification, we have another scheme called Asymmetric

Encryption in which Public Key Infrastructure (PKI) is used as a defense against Sybil

Attack. The key distribution may be easier as compared to symmetric keys but the length

of the keys outweighs the memory resource available at each node.

2.5.6 Code Attestation

 Code Attestation protects against all the dimensions of a Sybil Attack [16]. It also

protects against almost all the attacks involving change of code. Although this scheme is

17

considered to have high computation requirement compared to pairwise key distribution

schemes yet many such schemes have been proposed [22],[23] and [24].

2.6 Summary

Sybil attack has multiple dimensions, thus development of a defensive scheme

like code attestation that protects against all the dimensions of Sybil Attack has inherent

advantage of protecting against all the other insider attacks involving node compromise.

Any attack launched from a compromised node with change in program code can be

detected by code attestation. Therefore code attestation is not only a suitable defense for

embedded devices but also for all other con systems as well, that have distributed nature

of sensor deployment like SCADA systems.

18

C h a p t e r 3

CODE ATTESTATION

3.1 Introduction

Many different cryptographic schemes have been proposed to protect against

threats to confidentiality and authentication but the inside attacks are not preventable

with only the classic cryptographic techniques. These attacks mainly include node

compromise which is another major problem for WSN security. The worst aspect of

node compromise is that an adversary can install malicious program in the compromised

nodes and can play havoc with the legitimate functioning of the WSN. The only efficient

and economical protection against such an attack is code attestation.

Code attestation is of two types, hardware based attestation and software based

attestation. An example of hardware based attestation is a Trusted Platform Module

(TPM) developed by Trusted Computing Group (TCG) [28], which is the tamper-evident

chip that performs the attestation and ensures that initial information stored by the

manufacturer in the memory is not modified. But such an arrangement is not feasible for

sensor motes since TPM cannot update its software very often which is one of the basic

requirements of a sensor mote. Moreover limitations of processing power, memory,

power and cost does not allow deployment of TPM on sensor motes[32]. Whereas,

software based attestation does not require an additional hardware and performs the

attestation over a device entirely in software [33].

3.2 Review and Analysis of Code Attestation Schemes

 As discussed in previous section that there are both, hardware and software based

code attestation schemes, but considering the cost effect in setting up a large scale WSN,

software based schemes are the ideal solution that can be implemented not only on latest

19

but also on legacy sensor devices. Therefore in this chapter the focus will only be on the

software based schemes.

3.2.1 Software Based Attestation for Embedded Devices (SWATT)

SWATT (Software Based Attestation) is a challenge-response based code

attestation scheme [22], implemented on 8 Bit Harvard architectureAtmel AT-Mega

163L microcontroller with 16 KB program memory and 1 KB of data memory. The

protocol is based on certain assumptions:Verifier has a correct view of the end device’s

hardware, i.e Clock Speed, ISA (Instruction Set Architecture), Memory architecture of

the microcontroller on device and Size of device’s memories, attacker does not change

the device’s hardware i.e processor. In SWATT the end device contains a memory

content verification procedure at the time of deployment and the verifier remotely

activates the verification procedure by sending a random challenge. SWATT was

developed to accomplish following objectives: External verifier can detect with high

probability, if a single byte of the memory deviates from expected value, verification is

software based and there is no need of extra hardware, so SWATT can be used on legacy

systems.SWATT verifies contents of program memory.

3.2.1.1 SWATT Algorithm

Verifier sends (Random Seed and m)to the sensor node

// m is the number of iterations or number of accesses to be made to the

memory addresses.It is sent by the verifier to the attested device.

Value of “m” depends upon the size of the attested device’s memory

and is calculated based upon Coupon Collector’s Problem, which states

that if “s” is the size of the memory then the iterations or accesses to be

made to the memory such that each memory location is accessed at least

once. m = (s ln s)

// Random Seed : is the input to the Pseudo Random Generator (PRG) RC4

// Output : 64 bit checksum of the device’s program memory.

20

 For i = 1 to m

{

Do

 // construct address for memory read

 Ai = (RC4i << 8) + c [(j-1) mod 8]

 16 bit value of 8 x bits of RC4 Output 8 x bits of current checksum

memory address

 // Update Checksum Byte

Cj = Cj + (mem [Aj] ⊕ C (j-2)mod8 + RC4

Cj = rotate left 1 bit

 // Update checksum index

j = (j+1) mod 8

return C

3.2.1.2 Pros and Cons of SWATT

The strong points of SWATT include:The use of random challenge avoidspre-

computation and replay attack, memory addresses depend on the output of PRG, so the

attacker does notknow beforehand as to which memory address will be verified, each

byte of checksum (each iteration of for loop) depends upon the previous byte of

checksum, so the checksum computation cannot be parallelized.

SWATT is considered to be weak in certain aspects which include: It is not

hardware specific i.e the attestation of code does not include information about the

hardware, the protocol has to be initiated by the Verifier on suspicion, it does not provide

implicit protection for every response sent by the Sensor Node, TOCTTOU (Time of

Check to Time of Use) is different so the attacker can change the memory contents of the

sensor node after the verification and before the time of use, and lastly due to

transmission of challenge and then the response on the network, the verification

procedure is subject to Rainbow and Interference Attack.

21

In a Rainbow Attack an attacker intercepts the challenge and response messages

transmitted between the verifier and a sensor node[49]. The interception of these

messages can infer the attestation information like length of the challenge to the attacker.

Hence the attacker then sends fake challenges to the sensor nodes and can build up a

lookup table consisting of challenges and their respective responses, which can be later

used for false attestation.

Figure-3.1 Rainbow Attack

Whereas in an Interference Attack, the attacker’s aim is to induce the sensor node

to send mis-calculated responses [16].

22

Figure-3.2 Interference Attack

3.2.2 Distributed Software Based Attestation

 Distributed Software Based Attestation for Node Compromise. It is also a

challenge response protocol, which proposes two different schemes [23]. Scheme-1: A

Basic Threshold Secret Sharing Scheme (BTSS), and Scheme-2: Majority Voting Based

Attestation Scheme (MVBS).

3.2.2.1Basic Threshold Secret Sharing Scheme-1

This scheme consists of three steps. Step-1 is noise generation in which before

deployment, empty memory space of each sensor node say ‘s’, is filled with random

noise using a PRG. Step-2 is about secret share distribution. In this step, after

deployment sensor node discovers its neighbors by sending “Hello” message and starts a

timer which expires after “tmin
“. It establishespair wise key with each neighbor and then

splits noise generation seed “Su” into multiple shares and send a separate share to each

of its neighbors.When the timer” tmin” expires it removes “Su” from its memory. In Step-

3attestation is triggered if more than “half” of neighbors detect the abnormal behavior of

23

say node”u”. Then all the neighbors select a cluster head Vh.An authentication challenge

‘Rn’ is sent by Vh to node’u’.While node u computes challenge “C” over its memory

using ‘Rn’, the cluster head Vh collects ‘K’ secret shares from neighbors of ‘u’ and

recovers the noise generation secret seed Su.The secret share Su recovered, is verified by

taking hash and comparing with H(Su) received earlier from node u.If the recovered Su is

not verified then the cluster head collect another k shares which does impose a

computation overhead.After the matched Su, the cluster head Vh computes the expected

response Cexp from Rn and receives the response from the node u and compare the both.

In this scheme, cluster head needs to be a trusted party, which performs the code

attestation of end nodes. A compromised neighbor may contribute a false share so

cluster head will need to select another k shares from the sensor nodes in order to recover

the correct seed. In this case additional energy will be consumed. To counter this each

node should store a copy of hash of each share also. But it will consume extra memory

for each sensor node.Attestation is based on random challenge so another node cannot

pre-compute the response. Attacker has to obtain $>$= k shares to recover the secret seed.

The time at which end node is tested is different than the time when it is used.

3.2.2.2 Majority Voting Based Attestation Scheme -2

It is also a challenge response based scheme that consists of 3 steps. Step-1 is

information distribution. In this step, before deployment each node is pre-loaded with

Pseudo random noise, and also with n tuples of (Ci,Ri) (where n is number of expected

neighbors and (Ci,Ri) is the challenge and corresponding response pairs).Each tuple is

generated by an offline server and after deploymentevery node say u discovers its

neighbors. Securely delivers each neighbor a randomly picked tuple of (Ci,Ri) within

time tmin and erases all the tuples from its memory after tmin.

24

Step-2 is about attestation. If half of the neighbors agree to attest node u, they do

it in a sequence.Finally if the number of neighbors with negative opinions exceed

(n+1)/2 i.e more than half, Node’u’ will be identified as a compromised node.In step-

3the attested node computes the response to the challenge by making it (Number of

iterations) = (m ln m) / bn accesses to the memory. The point in question is why we

have bn in the denominator ? it is because we have Ci distinct challenges so all the

neighbors may corporately traverse each memory cell of node’u’ at least once.

Due to majority voting this scheme is vulnerable to good mouth and bad mouth

attacks [26], in case we already have some compromised nodes among the immediate

neighbors of an attested node. The time at which end node is tested is different than the

time when it is used. Code attestation is initiated when more than half of the neighbors

detect a suspicious behavior of any node, which is totally subtle and will have an adverse

effect on energy consumption as well as the bandwidth utilization, whenever a code test

procedure is initiated.If in scheme 2, it = (m ln m)/b, then the computation cost in node’u’

will be n times the cost of scheme 1, as in scheme 2, node u has to compute Rn responses

to Cnchallenges.

3.2.3OMAP-One Way Memory Attestation Protocol

 This software based one way attestation protocol was implemented on a 8 bit MPU

based smart meter for remote code attestation [24]. The smart meter had 64 KB flash

memory and 5 KB RAM.The protocol is based upon certain assumptions about the

verifier, smart meter and the attacker. The assumptions about the verifier include:

verifier knows, the exact specifications of end device’s hardware, exact configuration of

remote device memory, verifier maintains an exact copy of the memory of remote device

and lastly verifier cannot be compromised by the attacker.Similarly the assumptions

about the smart meter include: Smart Meter utilizes the Serial Number (SN) for

25

attestation, attacker cannot modify, or forge the SN and every smart meter has a unique

SN. The assumptions for the attacker are that, he can modify the memory contents,

can eavesdrop all data transmitted over the Advance Metering Network (AMI), cannot

replace smart meter hardware i.ecannot change BIOS of smart meter,cannot add a

memory,cannot change memory access timing andcannot increase clock speed of the

processor.

3.2.3.1 OMAP Algorithm

Seed Generation (Wk)

It is achieved by taking hash of time tkand secure serial number (SN) of the smart

meter. The time parameter is used to avoid replay and checksum pre-computation attacks.

Whereas k is the number of accesses to be made to the program memory. For the

analysis purpose the author has implemented k for 20 iterations.

Wk = H (tk , SN)

Address Generation

In order to ensure that the contents are extracted from a random portion of the

memory, a Pseudo Random Generator is used in the form of RC-4 Cipher. It takes 32

bits as an input and also gives out 32 bits output. Ak is the 16 bit memory address.

 Ak = (RC4 (Wk))

Content Extraction

The function Fn extracts contents from the 16 bit memory address. In 20

iterations 40 bytes of contents are extracted i.e 80 Hexa Decimal Numbers.

Qk = Fn (Ak)

26

Message Construction

Message m is constructed by concatenating contents extracted in each iteration.

 m = Q1 // Q2 // Q3 // Q4 //…………// QN

Checksum Transmission

The message that is transmitted by the smart meter to the base station / controller

consists of Hash of message H(m) and the time tk.

 Send {H(m),tk)}

Checksum Verification

The base station / controller is the verifier for the code attestation of smart meter.

The verifier takes the time tk from the received message and using the image of the

memory of the smart meter, computes the checksum H’(m) and compares it with the

received H(m).

3.2.3.2 Observations on OMAP

The positive aspects of OMAP include: attacker cannot forge a message, because

of use of secret SN and time tk.Attacker cannot compute all the iterations i.e from 1 to N,

in parallel because of time tk.OMAP is not a challenge – response protocol so it avoids

network attacks like, Rainbow Attack and Interference Attack.In order to check the

efficacy of OMAP, the algorithm with two components, a verifier and a smart meter

were implemented on a single computer; Intel Core 2 Duo T5550 1.8 GHz, with the

simulation of memory size of 128KB.

Although OMAP is claimed it to be a novel, remote, and one way code attestation

procedure that avoids network attacks, yet it fails to present a distinct initiation of code

attestation procedure. Such a severe weakness can put a tag of inefficiency and

vulnerability to any algorithm irrespective of its computational efficacy and security.

27

The major observation on OMAP Algorithm is the use of time tk for seed

generation in each iteration. The verifier also uses the same time for seed generation

while computing the checksum for verification. Such a dependence on time requires very

efficient time synchronization, which is very difficult to achieve in practice. The OMAP

Algorithm was implemented in Dev C++ and it was observed that even on a single

system the execution time for each iteration of algorithm was not consistent. The screen

shots of time measurements shown in Figure-3.3 and Figure-3.4 clearly indicate that

there is a sound difference and inconsistency in time taken by each iteration of the

algorithm which ultimately leads to a checksum mismatch at the verifier.

Figure-3.3OMAP-Time measurement of first execution

28

Figure-3.4OMAP-Time measurement of second execution

The OMAP Algorithm performs code attestation independent of routine smart

meter application therefore in order to ensure integrity of program memory it extracts

contents from the program memory by accessing the memory 20 times.A screen shot of

execution time for checksum computation is shown in figure-3.5. The long execution

time is due to the fact that attestation protocol is independent to routine sensor update

and is not performed at run time, therefore the physical memory of the sensor mote is

being accessed for 20 times. Resultantly the computation time of the protocol algorithm

is around 1.7 seconds.

Figure-3.5OMAP-Execution time

29

The 32 bit output of RC-4 Cipher (PRG) is used to construct two 16 bit memory

addresses for content extraction. The use of 16 bit address limits the memory address

range to ffff thus restricting the random access to memory of size not exceeding 65535

Bytes (Approximately 64KB). Figure 3.6 shows the screen shot of range of 16 bit

memory addresses.

Figure-3.6 Range of 16 Bit Memory Addresses

The generation of two addresses in each iteration limits the number of extracted

contents to 2 bytes and the total number of extracted memory contents is 40 Bytes

(Figure-3.7). Which if compare to the execution time of checksum computation is very

less. It will be shown in later analysis that detection rate of modified code is directly

30

proportional to the number of extracted contents. The more are the extracted memory

contents the more is the probability of detection of modified memory.

Figure-3.7 Size of Extracted Memory Contents

 Dongwon Seo claims in [24] that OMAP detects a 20% modified memory with a

95% probability. Considering the optimized size of malware now a days and a memory

size of 128 K Bytes, even 15% modified memory is enough to keep a malware.

Therefore detection rate of 95% for a 20% modified memory is quite low. Moreover, if

end device’s Serial Number is exposed to an attacker, he can compute acorrect checksum

and can impersonate a device and send false readings.Another major weakness is that the

time at which end node is tested is different than the time when it is used.

3.3 Summary

Code Attestation is considered to be the most potent defense against insider

attacks including all dimensions of Sybil Attack. Code Attestation can be based upon a

31

challenge response or a one way attestation protocol. However the challenge – response

protocol is susceptible to network attacks. The other weaknesses found in existing code

attestation schemes are difference in TOCTTOU, elusive start of code test procedure,

and independence of code test procedure to routine application running on a wireless

sensor node. The difference in TOCTTOU can render protection provided by any code

attestation scheme ineffective, in case attacker exploits this time gap and make any

modification in the code just before the wireless sensor is suppose to send its scheduled

updates to base station or sink node. The independent code attestation procedures result

in excessive bit transmission over and above bits transmitted for sensor reading updates.

This excessive bit transmission exhausts the available energy on a sensor node thus

reduces its lifetime. These flaws make it necessary to develop an efficient and a secure

code attestation scheme.

32

Chapter 4

One Way Code Attestation Protocol (OWCAP)

4.1 Introduction

 OWCAP an extension of OMAP (explained in previous chapter) is the product of

this research. It has been developed to improve upon the weaknesses of existing

noteworthy code attestation protocols. It is not only an efficient code attestation protocol

but also provide requisite security against insider / integrity attacks. Although in this

research the main focus is on code attestation in WSN, but the same technique can be

exported to any ICS that relies on information sharing between sensors, actuators and the

controllers. In this chapter a comprehensive explanation of OWCAP algorithm is given,

followed by the progress it has made to improve upon the observations of OMAP and in

the end a detailed analysis of OWCAP is carried out covering both, the performance and

the security aspects.

4.2 Objectives of OWCAP

 The weaknesses in OMAP and previously discussed challenge response protocols

led to achieve certain objectives for the development of OWCAP.

1. Tangible start of code attestation procedure.

2. Efficient and reliable seed generation.

3. Minimal execution time of checksum computation.

4. Increased detection rate of modified memory.

5. Prevent pre-computation and parallel computation of memory checksum.

6. Message Integrity.

7. Implicit code attestation.

8. Minimal transmission overhead.

33

9. Diminish TOCTTOU gap.

10. Avoid network attacks like rainbow, interference, message modification

and impersonation attacks.

11. Minimal energy consumption.

4.3 Assumptions

OWCAP Protocol is based on certain assumptions. For an attested sensor node

the assumptions include: The serial number of a sensor node is secret, which cannot be

disclosed or forged even upon physical compromise of the sensor node[24]. OWCAP

utilizes the serial number in seed generation for pseudo random memory traversal. The

assumptions for the verifier are that; Base station or the sink node is in clear picture of

the attested node's memory size and processing power. The verifier also keeps the

memory images of its respected end nodes, in order to utilize these during code

attestation process. In the end the assumptions for the attacker are that; Attacker can

read and write into the memory (containing code) of a sensor node. Thus an attacker is

capable of injecting a malicious code into empty area of sensor node's memory. The

attacker can also eavesdrop and modify the messages transmitted over the wireless

sensors networks.

4.4 OWCAP Algorithm

OWCAP is developed to improve upon the weaknesses of OMAP and further

increase the reliability, effectiveness and efficiency of the Code Attestation Protocol. In

order to ensure seamless code attestation and to avoid TOCTTOU Attack, OWCAP

provides implicit code attestation along with routine transmission of sensor reading.

34

4.4.1 Seed Generation

 The attested sensor node computes the seed for the PRG (Pseudo Random

number Generator) by taking hash of current time and the secret serial number of the

node. The use of current time, act as a nonce and avoids replay attacks. Whereas the use

of serial number avoids impersonation attacks. The serial number can be kept secure

using white box cryptography already being researched upon extensively for digital

rights management (DRM). The algorithm of seed generation is as under:-

 Initialize integer j;

 Ts; //Time stampindicating starting time of the algorithm used as a Nonce

to avoid replay and pre-computation attacks.

Fp; //Image of the present program memory.

Counter; //Its value is same as k below, to provide randomness of

 the seed.

k=1 to 20; // The memory is accessed 20 times same as OMAP

W_k = H(Ts, S_N, Counter) // S_N is the secure hardware serial number of

 the sensor node.

 // W_k is the seed for PRG.

4.4.2 Pseudo Random Memory Traversal

The seed generated in first step is the input of PRG, which can be an RC4, RC5

or Skipjack Cipher. These ciphers are selected based on the performance analysis of

various block and stream ciphers in [29] and [30], but the use of RC-5 and Skipjack

cipher is recommended since they have already been implemented in Tinysec [39]for

message encryption and message authentication code. Therefore using the same cipher as

a PRG saves upon precious code size. The pseudo random memory traverse prevents

pre-computation and parallel computation of checksum by XORing last round's value of

35

memory contents with the current round's value.

 [A_0,A_1,……A_31] = RC4(W_k);

 // [A_0-A_31] are the memory addressesgenerated as the output of

 PRG which can be RC4, RC5 and Skipjack Cipher or simple SHA2

Q_k = Mem(A_0), Mem(A_1), Mem(A_2)……Mem(A_31)];

 Q = Q0 // Q1 // Q2 //……………………// Q19

 Q carries memory contents.

4.4.3 Message Construction

 This is the most important part of OWCAP. The initial message P is constructed

by appending sensor update 16 bit value of sensor reading SR with the

extracted memory contents (for memory size of 128 KB). An HMAC is then computed

over P. The message to be sent to the verifier is [HMAC(P), SR, Ts]. The HMAC

computed over message P, not only provides integrity of sensor update SR but also

provides implicit code attestation. In normal condition the message sent to the verifier is

MAC(SR) and SR, so the only increase in transmission overhead in case of OWCAP (in

plain mode) is time Ts which is required by the verifier for seed generation.

P = [Q // S_R // Ts];

 Checksum = MAC (P);

Message Send = [MAC(P), S_R, t_k];

//MAC is Message Authentication Code which takes an arbitrary number of input

36

4.4.4Verification

After receiving the message [MAC(P), S_R, Ts] from attested node, the verifier,

using the time Ts, SR and the already stored serial number S_N of the respected end

node, computes the expected message authentication code. The verifier then compares

both the message authentication codes for verification. In this step, OWCAP provides

implicit code attestation along with the integrity check of sensor update SR thus

eliminating TOCTTOU gap.

 MAC'(P) = MAC(P)

4.4.5 Recovery and Revocation

 In case the expected MAC'(P) does not match the received MAC(P), the verifier

increments a counter value for respective node until it reaches its maximum threshold of

3. Threshold is set to 3 to avoid false rejection rate at the very first instance. As soon as

the counter value for an end node reaches 4 the node is immediately black listed and no

further messages are accepted from or sent to this node. The node revocation is

immediately followed by an end node code update procedure. This can be done

remotely; if possible, otherwise a physical end node code update procedure is performed.

4.5 Improving Upon the Observations of OMAP

4.5.1 Implicit Initiation of Attestation Procedure

In order to circumvent the threats and vulnerabilities like TOCTTOU attack, ROP

and vague initiation of code attestation, OWCAP provides implicit code attestation with

each sensor update. Such a protocol completely evades the question of when to initiate

the code attestation procedure. A detailed comparative analysis of all the code

attestation schemes will be presented in the next chapter.

37

4.5.2 Seed Generation and Time Synchronization

In order to avoid problems related to time synchronization during seed generation

at the sensor node as well as at the verifier end, the algorithm is improved to achieve

seamless seed generation. Only the time of start of code attestation, procedure Ts is used

in the seed generation to prevent replay and checksum pre computation attacks, and to

achieve randomness of seed, a counter value is used and incremented for all the iterations

of seed generation.

4.5.3 Execution Time of Checksum Computation

In difference to OMAP which took a considerable time to access the memory for

just 20 iterations, OWCAP is developed to save upon the precious time by a very large

factor. A screen shot of execution time for checksum computation using RC4 Cipher is

shown in figure-4.1. It is achieved by altering the code attestation protocol from explicit

to implicit attestation during a routine sensor application. Each time at the start of code

attestation procedure the image of program memory of the sensor node is taken and

stored in a buffer at runtime then in each iteration the contents of the memory are

acquired randomly from the buffer rather than physically reading the memory every time.

Whereas same technique is not possible to implement in OMAP or previous code

attestation schemes due to TOCTTOU gap.

Figure-4.1 Reduced Execution Time of OWCAP

38

4.5.4 Range of Addresses

OWCAP is developed to overcome the problem of small range of memory

addresses and it can now access a memory size of up to 16.77 MB. In order to limit the

generated memory index (address) within the maximum size of the file, a prime modulus

operation is introduced. For example, for a memory size of 128 KB the mod of a prime

number (127997) closest to 128 K is taken. A glimpse of range of addresses generated

before and after the modulus operation is shown in figure -4.2.

Figure-4.2 OWCAP Range of addresses

4.5.5 Number of Extracted Contents

39

OWCAP not only provides computational efficiency but has also increased the

detection rate by taking checksum of 5 times more memory contents than in OMAP. In

OMAP the detection of memory modification is based on a checksum of 80 Bytes of

contents whereas in a considerably less time OWCAP provides better detection rate by

computing checksum over 307 Bytes (Figure -4.3) of memory contents. There can be

max 320 Bytes of extracted contents.

Figure-4.3 Size of memory contents extracted by OWCAP

4.5.6OWCAP Message Transmission

 The sequence and number of messages to be sent in OWCAP are shown in

figure-4.4

40

Figure-4.4 OWCAP Message Transmission

4.6 Performance Analysis of OWCAP

OWCAP is implemented in Dev C++ with few variants in order to gauge its

efficiency and effectiveness by measuring execution time and code modification

detection rate. Different options of using various stream and block ciphers including

RC-4, Skipjack and RC-5 as PRG like were exploited. The exec time is measured for

different memory sizes including 256 KB, 128 KB, 64 KB and 32 KB. In order to

simulate a memory size, files of different sizes as mentioned above were created in

Visual Studio 2008. The code for each variant of OWCAP and file creation is mentioned

at Appendix A, B, C, D, E, F, G and H respectively. The execution time and the

detection rate is inversely and directly proportional respectively to the number of

accesses to the program memory. As per Coupon Collector’s Problem the code

attestation procedure does m * ln (m) accesses to the memory in order to access each

memory location at least once, where m is size of the memory. The actual number of the

memory accesses required vis a vis the memory accesses implemented in the simulation

are as shown in Table 4.1.

Table 4.1 Number of Memory Accesses

Ser Memory Size Actual Number of
Memory Accesses
Required as per
m*ln(m)

Number of Memory Accesses
Simulated

1. 256 KB 31,87,951 40

2. 128 KB 15,05,253 20

3. 64 KB 7,08,265 10

4. 32 KB 3,31,952 5

41

4.6.1 OWCAP Execution Time Measurements

The time measurements of all the variants of OWCAP are taken as per simulated

number of memory accesses mentioned in Table 4.1. The time measurements clearly

show that OWCAP variant using SHA-2 hash function as a PRG has the least time for all

memory sizes. As per [34] we can use a Hash function as a DRNG (Deterministic

Random Number Generator), and also as per [35] different gambling services also use

Hash functions for selecting a random winner. The graphical representation of average

execution time comparison IRO all the variants of OWCAP is shown in figure-4.5 and

detailed results are shown below:-

Table 4.2 Execution Time

S
e
r

Type of
PRG

Memory
Size

Execution Time
(msec / Iteration for 20 Memory Accesses)

Avg
Time

(msec)
1 2 3 4 5 6 7 8 9 10

1 SHA-256 256 KB 2.704 2.550 2.817 2.570 2.576 2.503 2.573 2.571 2.636 2.513 2.601

128 KB 2.106 2.106 2.056 2.254 1.927 1.917 2.243 2.754 2.135 2.057 2.155

64 KB 1.387 1.355 1.366 1.346 1.345 1.364 1.387 1.333 1.395 1.376 1.365

32 KB 1.128 1.131 1.152 1.134 1.157 1.158 1.163 1.138 1.134 1.255 1.155

2 RC-4 256 KB 4.847 4.634 3.870 5.589 3.480 2.959 4.672 2.969 3.210 3.031 3.926

128 KB 2.206 2.165 2.134 2.113 2.170 4.925 2.132 2.290 2.167 7.045 2.934

64 KB 1.835 1.539 1.512 1.497 1.579 1.735 1.724 1.679 1.732 1.528 1.640

32 KB 1.298 1.248 1.252 1.264 1.334 1.332 1.341 1.296 1.287 1.577 1.322

3 RC-5 256 KB 2.931 4.921 3.012 3.027 2.978 2.919 3.117 3.046 3.297 3.213 3.246

128 KB 2.944 2.204 2.267 2.341 2.247 2.518 2.872 2.200 2.213 2.493 2.429

64 KB 1.616 1.703 1.677 1.696 1.605 1.680 1.630 1.920 1.691 1.840 1.706

32 KB 1.391 1.388 1.417 1.406 1.587 1.346 1.526 1.446 1.565 1.426 1.450

4 Skipjack 256 KB 2.895 2.807 2.814 2.816 3.047 3.052 2.966 2.814 2.878 2.925 2.901

128 KB 2.486 2.376 2.435 2.522 2.636 2.461 2.494 2.505 2.429 2.342 2.468

64 KB 1.563 1.472 1.470 1.460 1.521 1.530 1.551 1.691 1.542 1.479 1.527

32 KB 1.436 1.138 1.207 1.198 1.243 1.160 1.160 1.238 1.182 1.229 1.219

42

Figure-4.5 Comparison of average execution time

4.6.2 Memory Detection Rate

Detection rate of modified memory was measured at various sizes of malicious

memory for all the variants of OWCAP. The memory size was fixed to 128 KB and the

size of modified memory was varied from 5 Bytes to 10 % of 128 KB. The detection

rate is measured for 10 iterations. The graphical representation of modified memory

detection rate IRO all the variants of OWCAP is shown in figure-4.6 and detailed results

are in successive paras.

4.6.2.1 Memory Detection Rate of OWCAP Using RC-4

Table 4.3 Memory Detection Rate Using RC-4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

256 128 64 32

Ti
m

e
(m

s)

Memory Size (KB)

SHA-2

RC-4

RC-5

SJ

Ser Memory Size Modified Memory No of
Iterations

Memory Detection
Percentage

1. 128 KB 10 % 10 100 %

2. 128 KB 5 % 10 100 %

3. 128 KB 1 % 10 100 %

4. 128 KB 0.9 % 10 100 %

43

4.6.2.2Memory Detection Rate of OWCAP Using RC-5

Table 4.4 Memory Detection Rate Using RC-5

5. 128 KB 0.8 % 10 100 %

6. 128 KB 0.5 % 10 90 %

7. 128 KB 0.1 % 10 30 %

8. 128 KB 60 Bytes 10 30 %

9. 128 KB 50 Bytes 10 30 %

10. 128 KB 40 Bytes 10 30 %

11. 128 KB 30 Bytes 10 10 %

12. 128 KB 20 Bytes 10 10 %

13. 128 KB 10 Bytes 10 10 %

14. 128 KB 8 Bytes 10 0 %

15. 128 KB 5 Bytes 10 0 %

Ser Memory Size Modified
Memory No of Iterations

Memory
Detection

Percentage
1. 128 KB 10 % 10 100%

2. 128 KB 5 % 10 100 %

3. 128 KB 1 % 10 100 %

4. 128 KB 0.9 % 10 80 %

5. 128 KB 0.8 % 10 80 %

6. 128 KB 0.5 % 10 40 %

7. 128 KB 0.1 % 10 40 %

8. 128 KB 60 Bytes 10 40 %

9. 128 KB 50 Bytes 10 40 %

44

4.6.2.3 Memory Detection Rate of OWCAP Using Skipjack

Table 4.5 Memory Detection Rate Using Skipjack

10. 128 KB 40 Bytes 10 40 %

11. 128 KB 30 Bytes 10 40 %

12. 128 KB 20 Bytes 10 30 %

13. 128 KB 10 Bytes 10 0 %

14. 128 KB 8 Bytes 10 0 %

15. 128 KB 5 Bytes 10 0 %

Ser Memory Size Modified
Memory No of Iterations

Memory
Detection

Percentage
1. 128 KB 10 % 10 100 %

2. 128 KB 5 % 10 100 %

3. 128 KB 1 % 10 100 %

4. 128 KB 0.9 % 10 80 %

5. 128 KB 0.8 % 10 80 %

6. 128 KB 0.5 % 10 50 %

7. 128 KB 0.1 % 10 40 %

8. 128 KB 60 Bytes 10 40 %

9. 128 KB 50 Bytes 10 30 %

10. 128 KB 40 Bytes 10 10 %

11. 128 KB 30 Bytes 10 0 %

12. 128 KB 20 Bytes 10 0 %

13. 128 KB 10 Bytes 10 0 %

14. 128 KB 8 Bytes 10 0 %

45

4.6.2.4 Memory Detection Rate of OWCAP Using SHA-2

Table 4.6 Memory Detection Rate Using SHA-2

15. 128 KB 5 Bytes 10 0 %

Ser Memory Size Modified
Memory No of Iterations

Memory
Detection

Percentage
1. 128 KB 10 % 10 100 %

2. 128 KB 5 % 10 100 %

3. 128 KB 1 % 10 100 %

4. 128 KB 0.9 % 10 20 %

5. 128 KB 0.8 % 10 10 %

6. 128 KB 0.5 % 10 10 %

7. 128 KB 0.1 % 10 10%

8. 128 KB 60 Bytes 10 0 %

9. 128 KB 50 Bytes 10 0 %

10. 128 KB 40 Bytes 10 0 %

11. 128 KB 30 Bytes 10 0 %

12. 128 KB 20 Bytes 10 0 %

13. 128 KB 10 Bytes 10 0 %

14. 128 KB 8 Bytes 10 0 %

15. 128 KB 5 Bytes 10 0 %

46

Figure-4.6 Detection rate of modified memory

4.7 Efficiency of OWCAP
The comparison of execution time and the modified memory detection rate

(figure-4.6) shows that OWCAP is an efficient and a secure code attestation scheme that

detects a code modification even if 0.8% of memory is modified as compare to OMAP

which detects a 20 % modified memory with 95% probability. The execution time of

OWCAP is also reduced to 2.1 m sec from 1.7 Sec of OMAP. If 1% memory

modification is set as a base line and efficiency is also required then OWCAP SHA-2

version without encryption is the best choice otherwise if more emphasis is on security

then OWCAP version of RC-4 is best suited since it detects a 0.8% memory modification

with 100% probability, and if a more moderate solution is required that is economical as

well as secure, then OWCAP version of RC-5 is recommended.

But here the question arises of energy efficiency of the proposed protocol.

Therefore, in order to compute energy consumption of code attestation protocol, the

RC-5 version of OWCAP is implemented in Code Composer Studio, which is the

simulation / emulation software for Texas Instruments’ microcontrollers. The simulation

parameters are mentioned in Table 4.7 and the source code of OWCAP is mentioned at

Appendix-K.

0

20

40

60

80

100

120

5B 10B 30B 50B 0.10% 0.50% 0.80% 0.90% 1% 5% 10%

De
te

ct
io

n
Ra

te
 %

Size of Modified Memory

RC-4

RC-5

Skipjack

SHA-2

47

Table-4.7 Simulation Parameters
1. Simulation Software Code Composer version 5.2.1.00018

2.
Code Attestation Application

Size
19 KB

3.
Microcontroller Family

Simulated
TMS320C6424

4.

Features of TMS320C6424

a. RAM 240 KB

b. Flash Memory 64 KB

c. CPU Frequency 700/600/500/400 MHz

d. Operating Voltage 1.2 V

e. Current Consumption 597 mA per cycle for700 MHz processor

4.7.1 Energy Consumption of OWCAP

Energy consumption has been calculated based upon parameters mentioned in

Table-4.7, of a single execution of OWCAP for TMS320C6424 family of

microcontrollers, in Code Composer Studio. Once the OWCAP application is compiled

in Code Composer with target device set as TMS320C6424, the code is compiled and

builds as per the target microcontroller environment. Before the application code is built,

the no of CPU Cycles can be measured by enabling the clock parameter before the code

is run / debugged. The no of CPU cycles taken to build the OWCAP application are

91,01,738 (Figure-4.7).

48

Figure-4.7 Number of CPU Cycles for OWCAP Execution

The clock frequency of target microcontroller is 700 MHz, therefore the

execution time of OWCAP is CPU Cycles divided by Clock Frequency, which comes to

13 msec. The operating voltage of 700 MHz microcontroller is 1.2 V and current

consumption is 597 mA per sec, hence the power consumption of device is = VI =

0.7164 Watt per second. Similarly the power consumption of the device for 13 msec is =

9.31 mWatt. The energy in Joules can be defined as the amount of power consumed for

a particular period of time. In case of OWCAP the energy consumption is

ECT = 9.31 mWatt x 13 msec = 0.121mJ. Correspondingly the execution time and energy

consumption of other microprocessors of the same family with different processing

speed are also measured for single execution of OWCAP in Code Composer Studio;

Details are mentioned in Table-4.8.

Table-4.8 Time and Energy Consumption of TMS320C6424 Family

TMS320C6424
Processor Speed

(MHz)

Execution Time
(m sec)

Energy Consumption
(m Joules)

700 13 0.121
600 15.16 0.164
500 18.20 0.237
400 22.75 0.370

49

The graphical representation of comparison of execution time and energy

consumption in respect of four different processors of target device is shown in Figure-

4.8 and Figure-4.9 respectively. Moreover the relationship between execution time and

energy consumption is shown in Figure-4.10. It can be clearly seen that the device with

high speed processor gives most efficient performance in terms of execution time and the

energy required to complete a single execution of OWCAP protocol. The more the clock

speed of the processor of microcontroller, the less time it will take to execute the

OWCAP protocol at runtime and resultantly will consume less energy as compared to

slow processor devices.

Figure-4.8 TMS320C6424 Processors’ Execution Time

0

5

10

15

20

25

700 MHz 600 MHz 500 MHz 400 MHz

13
15.16

18.2

22.75

Ex
ec

ut
io

n
Ti

m
e

m
 se

c

TMS320C6424 Processors

50

Figure-4.9 TMS320C6424 Processors’ Energy Consumption

Figure-4.10 TMS320C6424 Processors’ Energy Consumption Vs Execution Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

700 MHz 600 MHz 500 MHz 400 MHz

0.121

0.164

0.237

0.37

En
er

gy
 C

O
ns

um
pt

io
n

m
 J

TMS320C6424 Processors

0

5

10

15

20

25

0.121 0.164 0.237 0.37

Ex
ec

ut
io

n
Ti

m
e

(m
 se

c)

Energy Consumption (m J)

Energy Vs Time

51

Figure 4.11 Memory Size Vs Battery Backup

Figure 4.12 Memory Size Vs Battery Backup

0

5

10

15

20

25

128 KB 64 KB 32 KB

4

11

23

Ba
tt

er
y

Ba
ck

up
 in

 D
ay

s

Memory Sizes

Memory Vs Battery Backup (1 Min Sensor Update Interval)

0

200

400

600

800

1000

1200

1400

1600

128 KB 64 KB 32 KB

216

689

1412

Ba
tt

er
y

Ba
ck

up
 in

 D
ay

s

Memory Sizes

Memory Vs Battery Backup (Hourly update Interval)

52

4.7.2 OWCAP Battery Backup

Merely developing a security protocol is not enough. The security has to be

evaluated again and again against other important parameters like performance, and

efficiency. In case of wireless sensor networks and other SCADA networks the priorities

are different, for a wireless sensor network, energy conservation is as important as

security, because if a security protocol consumes a lot of energy, the battery will be

drained in quick time, thus causing a hassle of replacing the battery of the sensor mote or

remotely deploying a new mote. Considering a 700 MHz processor on board of a

TMS320C6424 microcontroller the energy consumption for a single execution of

OWCAP protocol is 0.121 m J. A typical battery installed on a wireless sensor has on

average 2 J of on board energy. Hence there can be total 16529 executions of OWCAP

protocol at runtime alongwith each sensor update. In an ICS environment,if a sensor

update is deemed necessary at an hour interval, then in 24 hours there would be 24

executions of the proposed protocol. Cognizance to above rate the battery would require

to be replaced after 1773 days in a star topology network, but in a mesh network the

sensor node would require to relay messages from distant neighbours to the BS in this

case the battery life will subsequently reduce. A comparison of battery life at different

update periods is shown in Figure-4.11. The smaller the time between each sensor update

the lesser is the battery life.

53

Figure-4.13 Battery Life Vs Update Period

4.8 Summary

OWCAP claims to provide maximum security for any ICS data network by

performing code attestation of the sensor device at run time with each sensor update.

Such a protocol is assumed to be computationally and power intensive. However the

results achieved by OWCAP so far evidently show that with an intelligent selection of a

microcontroller the energy consumption can be controlled, thus providing a longer

battery backup time. Energy is considered to be a vital entity in case of wireless sensors,

which have very limited resources in terms of on board processing power and battery

backup. But similarly for a security hungry organization like nuclear power plants, smart

grids, irrigation control system, and traffic control systems, requirement of security has

an edge over other parameters; it is therefore a tradeoff between security and efficiency

as per requirements of the organizations / ICS.

60

30

15

7 3 1
0

10

20

30

40

50

60

70

689 344 172 81 34 11

Se
ns

or
 U

pd
at

e
Pe

rio
d

in
 m

in
s

Battery Life in Days

Battery Life Vs Update Period

54

 C h a p t e r 5

5 Comparative Analysis

5.1 Introduction

In order to determine that OWCAP is an economical and a secure scheme as

compared to all other code attestation schemes discussed in chapter 3, a detailed and a

unique comparative analysis of all the schemes is done. The comparison is based on

parameters extracted from sensors' data sheet and the algorithms mentioned in all the

schemes. Some details concerning our scenario for comparative analysis are shown in

Table-5.1.

Table-5.1 WSN scenario for comparative analysis

Type of Mote Mica2

Size of Program Flash
Memory

128 Kbytes

Size of Code Test Application
Binary

12 Kbytes

Nodes of Neighborhood 9 (Including BS)

Size of Hash Output 8 Bytes

Size of secret share 8 Bytes

Size of Challenge and

Response

8 Bytes each

Symmetric Key 8 Bytes

5.2 Computational Cost

 It is calculated for a single challenge response procedure in respect of all the

schemes discussed before. In case of SWATT, attested node and verifier access memory

55

for 1502.253K times and there are 1505.253K calls to RC-4 Cipher. Whereas in Basic

Threshold Secret Sharing Scheme (BTSS), each node generates 116 KB of noise and

make 116 K/ 8 = 15 K calls to RC-5cipher during noise generation. Each node does a (5-

1) degree polynomial interpolation and evaluation. Each node computes the hash of the

secret share. The verifier computes hash of recovered seed and noise for 116 KB

memory size. Attested Node and verifier traverse memory for 376.313 K times and

RC-5 cipher is called 376.313 K times for memory traversal. Considering Majority

Voting Based Scheme (MVBS), each node generates 116 KB of noise. Attested node

computes 8 responses to challenges sent by its 8 neighbors and access memory for

1505.253 K / 32 = 47 K times. Talking about OMAP, attested node and verifier make

1505.253 K/ 6 = 250.87 K accesses to memory for 20 percent memory modification. RC-

4 cipher is called 1505.253 K/ 6 = 250.87K times. Attested node and verifier perform 2

hash computations each.Finally in case of proposed OWCAP, attested node and verifier

make 376.313K accesses to memory in which RC-5 cipher is called 376.313K times.

Attested node and verifier perform 1 hash and 1 MAC computation each.

5.3 Number of Messages Transmitted

It is also calculated for a single challenge response procedure. In case of

SWATT, there is a challenge message from verifier to attested node and a response

message from attested node to the verifier. Whereas in Basic Threshold Secret Sharing

Scheme the node discovery and key establishment by all 9 nodes result into: 9 hello +

72reply + 72 key establishment + 72 ack = 297 Messages. Secret share distribution by

each node requires72 messages. The cluster head nomination by 8 neighboring nodes

requires8 messages. Cluster Head issues the challenge message to attested node. For

secret Share collection minimum 5 messages (in case threshold for secret share is 5) are

required and finally the attested node send response message to cluster head. The

56

Majority Voting Based Scheme require 72 messages for distributing challenge-response

tuples, 8 challenge messages, 8 response messages and 8 vote messages. In case of

OMAP we need to send a query message from verifier to attested node and a checksum

response message from attested node to the verifier. Finally our Proposed OWCAP

requires a sensor reading update message with implicit MAC for code attestation and an

ack message from the verifier to the attested node in case of a successful verification of

MAC. A graphical comparison of number of messages transmitted in each scheme is as

shown in figure 5.1.

Figure 5.1 Comparison of Message Transmission

5.4 Storage Requirement

 It is also calculated for a single challenge response procedure. In SWATT,

verifier has to store memory images of 8 nodes i.e 8*128K = 1024K Byte. Whereas in

Basic Threshold Secret Sharing Scheme, each node stores, pairwise keys with its

0

50

100

150

200

250

300

350

400

SWATT BTSS
MVBS

OMAP
OWCAP

2

384

96

2 2

M
es

sa
ge

s T
x

Code Attestation Scheme

57

neighbours,8 secret shares and 8 hashes. As the role of cluster-head is rotated for every

attestation so each node stores memory image of 8 nodes i.e 8*128K = 1024K Bytes. In

case of Majority Voting Based Scheme, each node stores 8 challenge-response pairs but

the verifier does not need to store the memory image of the attested node as it does not

locally computes the checksum at the verifier end. In OMAP, verifier stores memory

image of 8 nodes i.e 8*128K = 1024 K Bytes. OMAP does not talk about any security

measure related to confidentiality of the message or the integrity of the sender. In case of

OWCAP, verifier (BS) stores memory image of 8 nodes i.e 8*128K = 1024K Bytes and

also the key files containing secret keys for computing MAC in respect of 8 nodes linked

with it (64 Bytes). Each node stores the key file containing secret keys shared with the

verifier (BS) for computing HMAC (8 Bytes).

Figure-5.2 Storage Requirement of Code Attestation Schemes

5.5 Code Attestation Initiated by Whom and When

In SWATT, the verifier initiates the code attestation procedure on suspicion of

abnormal behavior by an end node. In Basic Threshold Secret Sharing Scheme, if more

than half neighbors detect abnormal behavior by an end node, then code attestation

0

200

400

600

800

1000

1200

SWATT BTSS MVBS OMAP OWCAP

0

1024.192

0.128 0 0.008

1024 1024.192

0.128

1024 1024.128

St
or

ag
e

Re
qu

ire
m

en
t i

n
K

By
te

s

Code Attestation Scheme

Sensor Node

Verifier

58

procedure is initiated. In Majority Voting Based Scheme also, If more than half

neighbors detect abnormal behavior then code attestation procedure is initiated. Whereas

in OMAP it is not mentioned clearly but verifier may send a query to attested node

asking for the memory checksum. In case of our proposed OWCAP no explicit initiation

is required, as the code attestation is implicit to each sensor reading update.

5.6 Security Aspects

Only OWCAP provides implicit code attestation integrated with routine

application running on a sensor node. All other schemes perform code attestation as a

separate application. OWCAP also diminishes the TOCTTOU gap by providing sensor

update and the code attestation at the same time. Whereas all other schemes are

vulnerable to attacks between TOCTTOU. Proposed OWCAP provides message

integrity and message authentication using RC-5 cipher, already implemented in Tinysec

[11] a security protocol for TinyOS-1.x. Whereas, SWATT [22] does not discuss about

any such protection. The Basic Threshold Secret Sharing Scheme and Majority Voting

Based Scheme [23], provide message confidentiality and message authentication but they

do not specifically talk about integrity of challenge-response messages. Majority Voting

Based Scheme has a drastic vulnerability in which the verifier does compute the memory

checksum for the attested node and just compares the response received from the attested

node with the expected response, hence any attacker compromising a legitimate node can

send fake challenge response tuples and get verified / attested. OMAP also does not

discuss at all about any such message protection measure. Being a challenge-response

based scheme SWATT, Basic Threshold Secret Sharing and Majority Voting Based

Schemes are vulnerable to network attacks like rainbow, interference and message

fabrication attacks. The Basic Threshold Secret Sharing Scheme is also vulnerable to

message modifications by compromised nodes and MITM (Man In The Middle) attacks

59

during secret share collection procedure. Such a modification results into increased

energy consumption and ultimately a DoS attack. Due to non availability of any message

protection mechanism, OMAP is vulnerable to message modification and message

forging attacks. Proposed OWCAP avoids network attacks like rainbow and interference

attacks due to one way code attestation procedure and it also protects against message

integrity attacks like message forging and message alteration. Unlike other schemes,

OWCAP does provide a sensor node revocation and recovery procedure.

5.7 Bandwidth (BW) Utilization

It is based upon the number of messages transmitted for a single challenge-

response procedure for code attestation scheme. Along with SWATT and OMAP,

OWCAP has low bandwidth utilization as compared to Basic Threshold Secret Sharing

Scheme and Majority Voting Based Scheme. Suppose each message transmission

requires 3 ms of air time, then the comparative BW utilization for a single challenge-

response protocol is as shown in figure 5.3.

Figure-5.3 BW Utilization of Code Attestation Schemes

0

200

400

600

800

1000

1200

SWATT BTSS MVBS OMAP OWCAP

6

1152

288

6 6

Ai
r T

im
e

in
 m

s

Code Attestation Scheme

60

5.8 Summary

Being a one way code attestation protocol, OWCAP avoids network attacks like

Rainbow and Interference Attacks. It provides message authentication and integrity with

optional confidentiality. Most importantly it avoids attacks within TOCTTOU gap by

integrating code attestation with routine sensor updates, thus providing an ideal solution

for the networks demanding high level of security with an acceptable compromise on

computational cost for every sensor update. As OWCAP performs code attestation at the

time of sensor update, it successfully avoids a root kit based return oriented

programming attack [27], which all previously discussed code attestation schemes fail to

protect against. Some of the attacks on challenge response protocols and OMAP are

shown in figure-5.4.

Figure-5.4Attacks on Challenge Response Protocols

Although OWCAP seems to be computationally more intensive than OMAP, yet

it saves upon the precious energy by cutting down the need to transmit separate messages

for code attestation and sensor updates. The use of secret serial number stored in an un-

forgeable area of memory, binds the hardware to the verification procedure, so it is not

possible for the attacker to change the hardware and send a correct memory checksum

61

[24]. The scheme also provides a much needed, node recovery and revocation procedure,

which is initiated for a node with modified code upon reaching a certain threshold, thus

reducing the probability of false initiation of recovery procedure and also reduce the

probability of false revocation.

62

C h a p t e r 6

Conclusion and Future Work

6.1 Introduction

In this chapter, the thesis has been concluded. Some possible enhancements of the

work have been given in Section 6.3.

6.2 Conclusion

OWCAP is a technique that provides implicit protection against not only Sybil

Attack but also other insider attacks that involve a sensor node with a malicious code.

Based upon the efficient and secure performance of OWCAP discussed in Chapter 4 and

comparative analysis explicated in chapter 5 it is establishedthat OWCAP provides

maximum security by keeping the computation, transmission and storage overheads to a

minimum level. It therefore substantiates the claim that OWCAP is an economical code

attestation scheme with no compromise on security.

6.3 Future Work

 At the moment OWCAP is restricted to star network topology in which only a

cluster head has the responsibility of attestation and verifying a sensor node. The same

scheme can be optimized for use in a heterogeneous network where all the neighboring

nodes should be able to attest and verify its respective neighbors.The implementation of

OWCAP on physical sensor motes will certainly give more precise results and help in

pragmatic performance analysis.

6.4 Summary

The contribution of the thesis is the development of a novel code attestation

scheme that is to be used not only in sensor networks but is applicable to any type of

63

ICS,where integrity of data and the sender is of utmost importance. Such secure sensing

systems can be used for battle field surveillance, industrial control systems, process

control / automation, traffic management systems, environmental monitoring, smart grids,

nuclear power plants and smart houses.A one way code attestation was considered to be

a computationally and energy intensive protocol but the proposed OWCAP has proved

that for security starved organizations, a runtime code attestation is very much possible.

It not only protects the critical / sensitive infrastructure from any malicious cyber attack

involving code modification, but also prevent the control systems from ultimate failure.

64

APPENDICES

Appendix-A

DEV C++ CODE OF OWCAP (RC-4) FOR SENSOR NODE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <openssl/sha.h>
#include <openssl/rc4.h>
#include <openssl/bio.h>
#include <openssl/hmac.h>
#include <conio.h>
#include <windows.h>
long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 /* Get the amount of 100 nano seconds intervals elapsed since January
1, 1601 (UTC) and copy it
 * to a LARGE_INTEGER structure. */
 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL;

 return ret;

}
main()
{
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];
 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}

65

 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 printf("\nt_stamp: %s\n",t_stamp);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned int sensor_reading=ptm->tm_sec%10+1;
 char s_reading[2];
 sprintf(s_reading,"%d",sensor_reading);

 printf("time: %d\n",time_stamp);

 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[400] = {0x00};

 FILE *fp;
 char * buffer = 0;
 long length;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;

66

 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);
 int i;

 RC4_KEY key;

 static unsigned char key_data[64] =
{0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef};
 char* data_to_encrypt = hashString;
 unsigned char ciphertext[64];

 RC4_set_key(&key, 8, key_data);
 RC4(&key,strlen(data_to_encrypt), data_to_encrypt, ciphertext);
 end_rc5=clock();
 time_spent_rc5+= (double)(end_rc5 - begin_rc5);
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)ciphertext[l]); if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;

67

 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }

 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }

 if(found == 0)
 printf("");
 }
 }
 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];
 sprintf(content,"%s%d",content,sensor_reading);

 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned int)digest[h]);
 }
 printf("\nmdString: %s,t_stamp: %s,sensor_reading:
%s",mdString,t_stamp,s_reading);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;
 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);
 FILE *fh = fopen("out.dat", "w");
 fprintf(fh,"%s,%s,%s\n",mdString,t_stamp,s_reading);
 close(fh);
 getch(); }

68

Appendix-B

DEV C++ CODE OF OWCAP (RC-4) FOR VERIFIER

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <openssl/sha.h>
#include <openssl/rc4.h>
#include <openssl/bio.h>
#include <openssl/hmac.h>
#include <conio.h>
#include <windows.h>
long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 /* Get the amount of 100 nano seconds intervals elapsed since January
1, 1601 (UTC) and copy it
 * to a LARGE_INTEGER structure. */
 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL; /* Convert from file time to UNIX epoch
time. */
 //ret /= 10000; /* From 100 nano seconds (10^-7) to 1 millisecond
(10^-3) intervals */

 return ret;

}
main()
{
/* Reading the output file: Receiving the packet from network node 1 */
 char * rx_data = 0;
 long length;
 FILE * fp = fopen ("out.dat", "rb");

 if (fp)
 {
 fseek (fp, 0, SEEK_END);
 length = ftell (fp);
 fseek (fp, 0, SEEK_SET);
 rx_data = malloc (length);
 if (rx_data)
 {
 fread (rx_data, 1, length, fp);
 }
 fclose (fp);
 }
 char * msg_digest;
 char * time_n1;
 char * snsr1_reading;
 int snsr1_reading_i;
 /* Segregating the information from the received data */

69

 msg_digest = strtok(rx_data, ",");
 time_n1 = strtok(NULL, ",");
 snsr1_reading = strtok(NULL, ",");

 snsr1_reading = strtok(snsr1_reading, "\n");

 printf("\nReceived data\nMsg Digest n1: %s", msg_digest);
 printf("\nTime n1:%s", time_n1);
 printf("\nSensor reading n1: %s\n", snsr1_reading);
 snsr1_reading_i=atoi(snsr1_reading);
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];

 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned long time_stamp_n1=atoi(time_n1);
 printf("current time:%d",time_stamp);
 int time_difference=time_stamp-time_stamp_n1;
 printf("\ntime difference: %d",time_difference);
 if(time_difference<10)
 {
 printf("\nTime difference is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }

70

 else if(snsr1_reading_i<=0 || snsr1_reading_i>10)
 {
 printf("\nSensor range is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }
 else
 {
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[400] = {0x00};

 char * buffer = 0;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp_n1;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned
int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);

71

 int i;
 RC4_KEY key;

 static unsigned char key_data[64] =
 {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef};
 char* data_to_encrypt = hashString;
 unsigned char ciphertext[64];

 RC4_set_key(&key, 8, key_data);
 RC4(&key,strlen(data_to_encrypt), data_to_encrypt, ciphertext);
 end_rc5=clock();
 time_spent_rc5+= (double)(end_rc5 - begin_rc5);
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)ciphertext[l]);
 if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;
 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }
 file_counter+=1;
 int found = 0;
 char chartest[300] = {0x00};

72

 if(decimal<125000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }

 if(found == 0)
 printf("");
 }

 }
 int h;

 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];

 sprintf(content,"%s%d",content,snsr1_reading_i);
 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned
int)digest[h]);
 }
 int ret=strncmp(mdString,msg_digest,40);
 if(ret==0)
 {
 printf("\n\nDigest match.\n");
 }
 else
 {
 printf("\n\nDigest does not match. Packet dropped.\nPress
any key to continue..\n");
 }
 printf("\nmdString: %s",mdString);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;

 printf("\nThe Execution Time in nano seconds is %d ",t1-
 t0);

 }
 getche();
}

73

Appendix-C

DEV C++ CODE OF OWCAP (RC-5) FOR SENSOR NODE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include<conio.h>
#include <openssl/sha.h>
#include <openssl/bio.h>
#include <openssl/hmac.h>
#include <windows.h>
typedef unsigned long int u32;
typedef unsigned char u16;

#define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1)))))
#define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1)))))
void RC5_encrypt(u32 *data);
void RC5_decrypt(u32 *data);
void key_setup(unsigned char *K);
#define w 32
#define r 1
#define b 16
#define c_no 4
#define t 26
u32 S[t];
u32 P = 0xb7e15163, Q = 0x9e3779b9;

void rc5_encrypt(u16 *data)
{
 u32 in[2]={0,0};
 u32 i,A,B;
 in[0] = ((u32)data[0]<<24) ^ ((u32)data[1]<<16) ^
((u32)data[2]<<8) ^ (u32)data[3];
 in[1] = ((u32)data[4]<<24) ^ ((u32)data[5]<<16) ^
((u32)data[6]<<8) ^ (u32)data[7];
 A=in[0]+S[0];
 B=in[1]+S[1];
 for(i=1; i<=r; i++)
 {
 A = ROTL(A^B, B) + S[2*i];
 B = ROTL(B^A, A) + S[2*i+1];
 }
 in[0] = A;
 in[1] = B;

 data[0] = (u16)((in[0]>>24) &0x000000ff);
 data[1] = (u16)((in[0]>>16) &0x000000ff);
 data[2] = (u16)((in[0]>>8) &0x000000ff);
 data[3] = (u16)(in[0] &0x000000ff);
 data[4] = (u16)((in[1]>>24) &0x000000ff);
 data[5] = (u16)((in[1]>>16) &0x000000ff);
 data[6] = (u16)((in[1]>>8) &0x000000ff);
 data[7] = (u16)(in[1] &0x000000ff);

}

74

void rc5_decrypt(u16 *data)
{
 u32 in[2]={0,0};
 u32 i,B,A;
 in[0] = ((u32)data[0]<<24) ^ ((u32)data[1]<<16) ^
((u32)data[2]<<8) ^ (u32)data[3];
 in[1] = ((u32)data[4]<<24) ^ ((u32)data[5]<<16) ^
((u32)data[6]<<8) ^ (u32)data[7];
 B=in[1];
 A=in[0];
 for(i=r; i>0; i--)
 {
 B = ROTR(B-S[2*i+1], A) ^ A;
 A = ROTR(A-S[2*i], B) ^ B;
 }
 in[1] = B - S[1];
 in[0] = A - S[0];

 data[0] = (u16)((in[0]>>24) &0x000000ff);
 data[1] = (u16)((in[0]>>16) &0x000000ff);
 data[2] = (u16)((in[0]>>8) &0x000000ff);
 data[3] = (u16)(in[0] &0x000000ff);
 data[4] = (u16)((in[1]>>24) &0x000000ff);
 data[5] = (u16)((in[1]>>16) &0x000000ff);
 data[6] = (u16)((in[1]>>8) &0x000000ff);
 data[7] = (u16)(in[1] &0x000000ff);
}

void rc5_key_setup(u16 *K)
{
 u32 i,j,k,u=w/8,A,B,L[c_no];
 for(i=b-1,L[c_no-1]=0; i!=-1; i--)
 {
 L[i/u] = (L[i/u]<<8) + K[i];
 }
 for(S[0]=P,i=1; i<t; i++)
 {
 S[i] = S[i-1] + Q;
 }
 for(A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c_no)
 {
 A = S[i] = ROTL(S[i]+(A+B), 3);
 B = L[j] = ROTL(L[j]+(A+B), (A+B));
 }
}
 double startTimeInMicroSec;
 double endTimeInMicroSec;
 int stopped;
 LARGE_INTEGER frequency;
 LARGE_INTEGER startCount;
 LARGE_INTEGER endCount;
double getElapsedTime()
{
 if(!stopped)
 QueryPerformanceCounter(&endCount);
 startTimeInMicroSec = startCount.QuadPart * (1000000.0 /
frequency.QuadPart);
 endTimeInMicroSec = endCount.QuadPart * (1000000.0 /
frequency.QuadPart);
printf("\nValue of start in micro: %f\n",startTimeInMicroSec);

75

 return endTimeInMicroSec - startTimeInMicroSec;
}
#include <windows.h>
long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 /* Get the amount of 100 nano seconds intervals elapsed since January
1, 1601 (UTC) and copy it
 * to a LARGE_INTEGER structure. */
 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL;

 return ret;

}
main()
{
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];
 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);

76

 printf("\nt_stamp: %s\n",t_stamp);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned int sensor_reading=ptm->tm_sec%10+1;
 char s_reading[2];
 sprintf(s_reading,"%d",sensor_reading);

 printf("time: %d\n",time_stamp);
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[400] = {0x00};

 FILE *fp;
 char * buffer = 0;
 long length;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }

 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);

77

 int i;
 unsigned char key[b] =
 {
 0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x80,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
 };
 begin_rc5=clock();
 rc5_key_setup(key);
 rc5_encrypt(hashString);
 end_rc5=clock();
 time_spent_rc5+= (double)(end_rc5 - begin_rc5);
 for (l=0;l<sizeof(hashString);l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)hashString[l]); if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;
 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }

 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)
 {

78

 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }

 if(found == 0)
 printf("");
 }

 }
 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];
 sprintf(content,"%s%d",content,sensor_reading);
 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned int)digest[h]);
 }
 printf("\nmdString: %s,t_stamp: %s,sensor_reading:
%s",mdString,t_stamp,s_reading);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;
 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);
 FILE *fh = fopen("out.dat", "w");
 fprintf(fh,"%s,%s,%s\n",mdString,t_stamp,s_reading);
 close(fh);
 getch();
}

79

Appendix-D

DEV C++ CODE OF OWCAP (RC-5) FOR VERIFIER

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include<conio.h>
#include <openssl/sha.h>
#include <openssl/bio.h>
#include <openssl/hmac.h>
#include <windows.h>
typedef unsigned long int u32;
typedef unsigned char u16;
#define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1)))))
#define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1)))))
void RC5_encrypt(u32 *data);
void RC5_decrypt(u32 *data);
void key_setup(unsigned char *K);
#define w 32
#define r 1
#define b 16
#define c_no 4
#define t 26
u32 S[t];
u32 P = 0xb7e15163, Q = 0x9e3779b9;

void rc5_encrypt(u16 *data)
{
 u32 in[2]={0,0};
 u32 i,A,B;
 in[0] = ((u32)data[0]<<24) ^ ((u32)data[1]<<16) ^
((u32)data[2]<<8) ^ (u32)data[3];
 in[1] = ((u32)data[4]<<24) ^ ((u32)data[5]<<16) ^
((u32)data[6]<<8) ^ (u32)data[7];
 A=in[0]+S[0];
 B=in[1]+S[1];
 for(i=1; i<=r; i++)
 {
 A = ROTL(A^B, B) + S[2*i];
 B = ROTL(B^A, A) + S[2*i+1];
 }
 in[0] = A;
 in[1] = B;

 data[0] = (u16)((in[0]>>24) &0x000000ff);
 data[1] = (u16)((in[0]>>16) &0x000000ff);
 data[2] = (u16)((in[0]>>8) &0x000000ff);
 data[3] = (u16)(in[0] &0x000000ff);
 data[4] = (u16)((in[1]>>24) &0x000000ff);
 data[5] = (u16)((in[1]>>16) &0x000000ff);
 data[6] = (u16)((in[1]>>8) &0x000000ff);
 data[7] = (u16)(in[1] &0x000000ff);

}

void rc5_decrypt(u16 *data)

80

{
 u32 in[2]={0,0};
 u32 i,B,A;
 in[0] = ((u32)data[0]<<24) ^ ((u32)data[1]<<16) ^
((u32)data[2]<<8) ^ (u32)data[3];
 in[1] = ((u32)data[4]<<24) ^ ((u32)data[5]<<16) ^
((u32)data[6]<<8) ^ (u32)data[7];
 B=in[1];
 A=in[0];
 for(i=r; i>0; i--)
 {
 B = ROTR(B-S[2*i+1], A) ^ A;
 A = ROTR(A-S[2*i], B) ^ B;
 }
 in[1] = B - S[1];
 in[0] = A - S[0];

 data[0] = (u16)((in[0]>>24) &0x000000ff);
 data[1] = (u16)((in[0]>>16) &0x000000ff);
 data[2] = (u16)((in[0]>>8) &0x000000ff);
 data[3] = (u16)(in[0] &0x000000ff);
 data[4] = (u16)((in[1]>>24) &0x000000ff);
 data[5] = (u16)((in[1]>>16) &0x000000ff);
 data[6] = (u16)((in[1]>>8) &0x000000ff);
 data[7] = (u16)(in[1] &0x000000ff);
}

void rc5_key_setup(u16 *K)
{
 u32 i,j,k,u=w/8,A,B,L[c_no];
 for(i=b-1,L[c_no-1]=0; i!=-1; i--)
 {
 L[i/u] = (L[i/u]<<8) + K[i];
 }
 for(S[0]=P,i=1; i<t; i++)
 {
 S[i] = S[i-1] + Q;
 }
 for(A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c_no)
 {
 A = S[i] = ROTL(S[i]+(A+B), 3);
 B = L[j] = ROTL(L[j]+(A+B), (A+B));
 }
}
 double startTimeInMicroSec;
 double endTimeInMicroSec;
 int stopped;
 LARGE_INTEGER frequency;
 LARGE_INTEGER startCount;
 LARGE_INTEGER endCount;

double getElapsedTime()
{
 if(!stopped)
 QueryPerformanceCounter(&endCount);

 startTimeInMicroSec = startCount.QuadPart * (1000000.0 /
frequency.QuadPart);
 endTimeInMicroSec = endCount.QuadPart * (1000000.0 /
frequency.QuadPart);
printf("\nValue of start in micro: %f\n",startTimeInMicroSec);

81

 return endTimeInMicroSec - startTimeInMicroSec;
}
#include <windows.h>

long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 /* Get the amount of 100 nano seconds intervals elapsed since January
1, 1601 (UTC) and copy it
 * to a LARGE_INTEGER structure. */
 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL; /* Convert from file time to UNIX epoch
time. */
 //ret /= 10000; /* From 100 nano seconds (10^-7) to 1 millisecond
(10^-3) intervals */

 return ret;

}
main()
{
/* Reading the output file: Receiving the packet from network node 1 */
 char * rx_data = 0;
 long length;
 FILE * fp = fopen ("out.dat", "rb");

 if (fp)
 {
 fseek (fp, 0, SEEK_END);
 length = ftell (fp);
 fseek (fp, 0, SEEK_SET);
 rx_data = malloc (length);
 if (rx_data)
 {
 fread (rx_data, 1, length, fp);
 }
 fclose (fp);
 }
 char * msg_digest;
 char * time_n1;
 char * snsr1_reading;
int snsr1_reading_i;
 /* Segregating the information from the received data */
 msg_digest = strtok(rx_data, ",");
 time_n1 = strtok(NULL, ",");
 snsr1_reading = strtok(NULL, ",");

 snsr1_reading = strtok(snsr1_reading, "\n");

 printf("\nReceived data\nMsg Digest n1: %s", msg_digest);
 printf("\nTime n1:%s", time_n1);
 printf("\nSensor reading n1: %s\n", snsr1_reading);
 snsr1_reading_i=atoi(snsr1_reading);
 long t0 = GetTimeMs64();
 time_t now;

82

 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];

 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned long time_stamp_n1=atoi(time_n1);
 printf("current time:%d",time_stamp);
 int time_difference=time_stamp-time_stamp_n1;
 printf("\ntime difference: %d",time_difference);
 if(time_difference<10)
 {
 printf("\nTime difference is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }
 else if(snsr1_reading_i<=0 || snsr1_reading_i>10)
 {
 printf("\nSensor range is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }
 else
 {
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;

83

 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[400] = {0x00};

 char * buffer = 0;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp_n1;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned
int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);
 int i;
 unsigned char key[b] =
 {
 0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x80,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
 };

 begin_rc5=clock();
 rc5_key_setup(key);
 rc5_encrypt(hashString);
 end_rc5=clock();
 time_spent_rc5+= (double)(end_rc5 - begin_rc5);

84

 for (l=0;l<sizeof(hashString);l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)hashString[l]); if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;
 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }
 file_counter+=1;
 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }
 if(found == 0)
 printf("");
 }

 }

85

 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];
 sprintf(content,"%s%d",content,snsr1_reading_i);
 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned
int)digest[h]);
 }
 int ret=strncmp(mdString,msg_digest,40);
 if(ret==0)
 {
 printf("\n\nDigest match.\n");
 }
 else
 {
 printf("\n\nDigest does not match. Packet dropped.\nPress
any key to continue..\n");
 }
 printf("\nmdString: %s",mdString);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;

 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);

 }
 getche();
}

86

Appendix-E

DEV C++ CODE OF OWCAP (SKIPJACK) FOR

SENSOR NODE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <windows.h>
typedef unsigned char byte;
typedef unsigned int word32;

static const byte fTable[256] = {
 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0
xb1,0xaf,0xf9,
 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0
x38,0x44,0x28,
 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0
xfa,0x3d,0x53,
 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0
x16,0x6a,0xa2,
 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0
x91,0x2f,0xb8,
 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0
x0b,0xd8,0x90,
 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0
x98,0x9b,0x76,
 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0
x47,0x4a,0x1d,
 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0
xc7,0x67,0x18,
 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0
x5c,0x31,0xa4,
 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0
x7d,0x03,0x40,
 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0
x3e,0x5b,0xa5,
 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0
x8c,0x0e,0xe2,
 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0
x86,0x10,0xe8,
 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0
xa6,0xbb,0xac,
 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0
x59,0x2a,0x46
};

#define g(tab, w, i, j, k, l) \
{ \
 w ^= (word32)tab[i][w & 0xff] << 8; \
 w ^= (word32)tab[j][w >> 8]; \
 w ^= (word32)tab[k][w & 0xff] << 8; \
 w ^= (word32)tab[l][w >> 8]; \
}

#define g0(tab, w) g(tab, w, 0, 1, 2, 3)
#define g1(tab, w) g(tab, w, 4, 5, 6, 7)

87

#define g2(tab, w) g(tab, w, 8, 9, 0, 1)
#define g3(tab, w) g(tab, w, 2, 3, 4, 5)
#define g4(tab, w) g(tab, w, 6, 7, 8, 9)

/**
 * The inverse of the G permutation.
 */
#define h(tab, w, i, j, k, l) \
{ \
 w ^= (word32)tab[l][w >> 8]; \
 w ^= (word32)tab[k][w & 0xff] << 8; \
 w ^= (word32)tab[j][w >> 8]; \
 w ^= (word32)tab[i][w & 0xff] << 8; \
}

#define h0(tab, w) h(tab, w, 0, 1, 2, 3)
#define h1(tab, w) h(tab, w, 4, 5, 6, 7)
#define h2(tab, w) h(tab, w, 8, 9, 0, 1)
#define h3(tab, w) h(tab, w, 2, 3, 4, 5)
#define h4(tab, w) h(tab, w, 6, 7, 8, 9)

void makeKey(byte key[10], byte tab[10][256]) {
 int i;
 for (i = 0; i < 10; i++) {
 byte *t = tab[i], k = key[i];
 int c;
 for (c = 0; c < 256; c++) {
 t[c] = fTable[c ^ k];
 }
 }
}

void encrypt(byte tab[10][256], byte in[8], byte out[8]) {
 word32 w1, w2, w3, w4;
//getch();
 w1 = (in[0] << 8) + in[1];
 w2 = (in[2] << 8) + in[3];
 w3 = (in[4] << 8) + in[5];
 w4 = (in[6] << 8) + in[7];

 /* stepping rule A: */
 g0(tab, w1); w4 ^= w1 ^ 1;
 g1(tab, w4); w3 ^= w4 ^ 2;
 g2(tab, w3); w2 ^= w3 ^ 3;
 g3(tab, w2); w1 ^= w2 ^ 4;
 g4(tab, w1); w4 ^= w1 ^ 5;
 g0(tab, w4); w3 ^= w4 ^ 6;
 g1(tab, w3); w2 ^= w3 ^ 7;
 g2(tab, w2); w1 ^= w2 ^ 8;

 /* stepping rule B: */
 w2 ^= w1 ^ 9; g3(tab, w1);
 w1 ^= w4 ^ 10; g4(tab, w4);
 w4 ^= w3 ^ 11; g0(tab, w3);
 w3 ^= w2 ^ 12; g1(tab, w2);
 w2 ^= w1 ^ 13; g2(tab, w1);
 w1 ^= w4 ^ 14; g3(tab, w4);
 w4 ^= w3 ^ 15; g4(tab, w3);
 w3 ^= w2 ^ 16; g0(tab, w2);

 /* stepping rule A: */

88

 g1(tab, w1); w4 ^= w1 ^ 17;
 g2(tab, w4); w3 ^= w4 ^ 18;
 g3(tab, w3); w2 ^= w3 ^ 19;
 g4(tab, w2); w1 ^= w2 ^ 20;
 g0(tab, w1); w4 ^= w1 ^ 21;
 g1(tab, w4); w3 ^= w4 ^ 22;
 g2(tab, w3); w2 ^= w3 ^ 23;
 g3(tab, w2); w1 ^= w2 ^ 24;

 /* stepping rule B: */
 w2 ^= w1 ^ 25; g4(tab, w1);
 w1 ^= w4 ^ 26; g0(tab, w4);
 w4 ^= w3 ^ 27; g1(tab, w3);
 w3 ^= w2 ^ 28; g2(tab, w2);
 w2 ^= w1 ^ 29; g3(tab, w1);
 w1 ^= w4 ^ 30; g4(tab, w4);
 w4 ^= w3 ^ 31; g0(tab, w3);
 w3 ^= w2 ^ 32; g1(tab, w2);

 out[0] = (byte)(w1 >> 8); out[1] = (byte)w1;
 out[2] = (byte)(w2 >> 8); out[3] = (byte)w2;
 out[4] = (byte)(w3 >> 8); out[5] = (byte)w3;
 out[6] = (byte)(w4 >> 8); out[7] = (byte)w4;

}

void decrypt(byte tab[10][256], byte in[8], byte out[8]) {
 word32 w1, w2, w3, w4;

 w1 = (in[0] << 8) + in[1];
 w2 = (in[2] << 8) + in[3];
 w3 = (in[4] << 8) + in[5];
 w4 = (in[6] << 8) + in[7];

 /* stepping rule A: */
 h1(tab, w2); w3 ^= w2 ^ 32;
 h0(tab, w3); w4 ^= w3 ^ 31;
 h4(tab, w4); w1 ^= w4 ^ 30;
 h3(tab, w1); w2 ^= w1 ^ 29;
 h2(tab, w2); w3 ^= w2 ^ 28;
 h1(tab, w3); w4 ^= w3 ^ 27;
 h0(tab, w4); w1 ^= w4 ^ 26;
 h4(tab, w1); w2 ^= w1 ^ 25;

 /* stepping rule B: */
 w1 ^= w2 ^ 24; h3(tab, w2);
 w2 ^= w3 ^ 23; h2(tab, w3);
 w3 ^= w4 ^ 22; h1(tab, w4);
 w4 ^= w1 ^ 21; h0(tab, w1);
 w1 ^= w2 ^ 20; h4(tab, w2);
 w2 ^= w3 ^ 19; h3(tab, w3);
 w3 ^= w4 ^ 18; h2(tab, w4);
 w4 ^= w1 ^ 17; h1(tab, w1);

 /* stepping rule A: */
 h0(tab, w2); w3 ^= w2 ^ 16;
 h4(tab, w3); w4 ^= w3 ^ 15;
 h3(tab, w4); w1 ^= w4 ^ 14;
 h2(tab, w1); w2 ^= w1 ^ 13;
 h1(tab, w2); w3 ^= w2 ^ 12;
 h0(tab, w3); w4 ^= w3 ^ 11;

89

 h4(tab, w4); w1 ^= w4 ^ 10;
 h3(tab, w1); w2 ^= w1 ^ 9;

 /* stepping rule B: */
 w1 ^= w2 ^ 8; h2(tab, w2);
 w2 ^= w3 ^ 7; h1(tab, w3);
 w3 ^= w4 ^ 6; h0(tab, w4);
 w4 ^= w1 ^ 5; h4(tab, w1);
 w1 ^= w2 ^ 4; h3(tab, w2);
 w2 ^= w3 ^ 3; h2(tab, w3);
 w3 ^= w4 ^ 2; h1(tab, w4);
 w4 ^= w1 ^ 1; h0(tab, w1);

 out[0] = (byte)(w1 >> 8); out[1] = (byte)w1;
 out[2] = (byte)(w2 >> 8); out[3] = (byte)w2;
 out[4] = (byte)(w3 >> 8); out[5] = (byte)w3;
 out[6] = (byte)(w4 >> 8); out[7] = (byte)w4;

}

long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 /* Get the amount of 100 nano seconds intervals elapsed since January
1, 1601 (UTC) and copy it
 * to a LARGE_INTEGER structure. */
 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL;
 return ret;

}
main()
{
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];
 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}

90

 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 printf("\nt_stamp: %s\n",t_stamp);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned int sensor_reading=ptm->tm_sec%10+1;
 char s_reading[2];
 sprintf(s_reading,"%d",sensor_reading);

 printf("time: %d\n",time_stamp);
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[300] = {0x00};

 FILE *fp;
 char * buffer = 0;
 long length;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;

91

 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);
 int i;
 byte inp[16] = { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb,
0xaa,0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa };
 byte key[10] = { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33,
0x22, 0x11 };
 byte enc[16], dec[8];
 byte chk[8] = { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00
};
 byte tab[10][256];
 makeKey(key, tab);

 encrypt(tab, hashString, hashString);
 end_rc5=clock();
 time_spent_rc5+= (double)(end_rc5 - begin_rc5);
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)hashString[l]);
 if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;

92

 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }

 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }
 if(found == 0)
 printf("");
 }

 }
 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];
 strcat(content,s_reading);
 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned int)digest[h]);
 }
 printf("\nmdString: %s,t_stamp: %s,sensor_reading:
%s",mdString,t_stamp,s_reading);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;
 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);
 FILE *fh = fopen("out.dat", "w");
 fprintf(fh,"%s,%s,%s\n",mdString,t_stamp,s_reading);
 close(fh);
 getch();
}

93

Appendix-F

DEV C++ CODE OF OWCAP (SKIPJACK) FOR

VERIFIER
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <windows.h>
typedef unsigned char byte;
typedef unsigned int word32;

static const byte fTable[256] = {
 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0
xb1,0xaf,0xf9,
 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0
x38,0x44,0x28,
 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0
xfa,0x3d,0x53,
 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0
x16,0x6a,0xa2,
 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0
x91,0x2f,0xb8,
 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0
x0b,0xd8,0x90,
 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0
x98,0x9b,0x76,
 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0
x47,0x4a,0x1d,
 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0
xc7,0x67,0x18,
 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0
x5c,0x31,0xa4,
 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0
x7d,0x03,0x40,
 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0
x3e,0x5b,0xa5,
 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0
x8c,0x0e,0xe2,
 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0
x86,0x10,0xe8,
 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0
xa6,0xbb,0xac,
 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0
x59,0x2a,0x46
};

/**
 * The key-dependent permutation G on V^16 is a four-round Feistel
network.
 * The round function is a fixed byte-substitution table (permutation
on V^8),
 * the F-table. */
#define g(tab, w, i, j, k, l) \
{ \
 w ^= (word32)tab[i][w & 0xff] << 8; \
 w ^= (word32)tab[j][w >> 8]; \

94

 w ^= (word32)tab[k][w & 0xff] << 8; \
 w ^= (word32)tab[l][w >> 8]; \
}

#define g0(tab, w) g(tab, w, 0, 1, 2, 3)
#define g1(tab, w) g(tab, w, 4, 5, 6, 7)
#define g2(tab, w) g(tab, w, 8, 9, 0, 1)
#define g3(tab, w) g(tab, w, 2, 3, 4, 5)
#define g4(tab, w) g(tab, w, 6, 7, 8, 9)

/**
 * The inverse of the G permutation.
 */
#define h(tab, w, i, j, k, l) \
{ \
 w ^= (word32)tab[l][w >> 8]; \
 w ^= (word32)tab[k][w & 0xff] << 8; \
 w ^= (word32)tab[j][w >> 8]; \
 w ^= (word32)tab[i][w & 0xff] << 8; \
}

#define h0(tab, w) h(tab, w, 0, 1, 2, 3)
#define h1(tab, w) h(tab, w, 4, 5, 6, 7)
#define h2(tab, w) h(tab, w, 8, 9, 0, 1)
#define h3(tab, w) h(tab, w, 2, 3, 4, 5)
#define h4(tab, w) h(tab, w, 6, 7, 8, 9)

void makeKey(byte key[10], byte tab[10][256]) {
 /* tab[i][c] = fTable[c ^ key[i]] */
 int i;
 for (i = 0; i < 10; i++) {
 byte *t = tab[i], k = key[i];
 int c;
 for (c = 0; c < 256; c++) {
 t[c] = fTable[c ^ k];
 }
 }
}

void encrypt(byte tab[10][256], byte in[8], byte out[8]) {
 word32 w1, w2, w3, w4;
//getch();
 w1 = (in[0] << 8) + in[1];
 w2 = (in[2] << 8) + in[3];
 w3 = (in[4] << 8) + in[5];
 w4 = (in[6] << 8) + in[7];

 /* stepping rule A: */
 g0(tab, w1); w4 ^= w1 ^ 1;
 g1(tab, w4); w3 ^= w4 ^ 2;
 g2(tab, w3); w2 ^= w3 ^ 3;
 g3(tab, w2); w1 ^= w2 ^ 4;
 g4(tab, w1); w4 ^= w1 ^ 5;
 g0(tab, w4); w3 ^= w4 ^ 6;
 g1(tab, w3); w2 ^= w3 ^ 7;
 g2(tab, w2); w1 ^= w2 ^ 8;

 /* stepping rule B: */
 w2 ^= w1 ^ 9; g3(tab, w1);
 w1 ^= w4 ^ 10; g4(tab, w4);
 w4 ^= w3 ^ 11; g0(tab, w3);

95

 w3 ^= w2 ^ 12; g1(tab, w2);
 w2 ^= w1 ^ 13; g2(tab, w1);
 w1 ^= w4 ^ 14; g3(tab, w4);
 w4 ^= w3 ^ 15; g4(tab, w3);
 w3 ^= w2 ^ 16; g0(tab, w2);

 /* stepping rule A: */
 g1(tab, w1); w4 ^= w1 ^ 17;
 g2(tab, w4); w3 ^= w4 ^ 18;
 g3(tab, w3); w2 ^= w3 ^ 19;
 g4(tab, w2); w1 ^= w2 ^ 20;
 g0(tab, w1); w4 ^= w1 ^ 21;
 g1(tab, w4); w3 ^= w4 ^ 22;
 g2(tab, w3); w2 ^= w3 ^ 23;
 g3(tab, w2); w1 ^= w2 ^ 24;

 /* stepping rule B: */
 w2 ^= w1 ^ 25; g4(tab, w1);
 w1 ^= w4 ^ 26; g0(tab, w4);
 w4 ^= w3 ^ 27; g1(tab, w3);
 w3 ^= w2 ^ 28; g2(tab, w2);
 w2 ^= w1 ^ 29; g3(tab, w1);
 w1 ^= w4 ^ 30; g4(tab, w4);
 w4 ^= w3 ^ 31; g0(tab, w3);
 w3 ^= w2 ^ 32; g1(tab, w2);

 out[0] = (byte)(w1 >> 8); out[1] = (byte)w1;
 out[2] = (byte)(w2 >> 8); out[3] = (byte)w2;
 out[4] = (byte)(w3 >> 8); out[5] = (byte)w3;
 out[6] = (byte)(w4 >> 8); out[7] = (byte)w4;

}

void decrypt(byte tab[10][256], byte in[8], byte out[8]) {
 word32 w1, w2, w3, w4;

 w1 = (in[0] << 8) + in[1];
 w2 = (in[2] << 8) + in[3];
 w3 = (in[4] << 8) + in[5];
 w4 = (in[6] << 8) + in[7];

 /* stepping rule A: */
 h1(tab, w2); w3 ^= w2 ^ 32;
 h0(tab, w3); w4 ^= w3 ^ 31;
 h4(tab, w4); w1 ^= w4 ^ 30;
 h3(tab, w1); w2 ^= w1 ^ 29;
 h2(tab, w2); w3 ^= w2 ^ 28;
 h1(tab, w3); w4 ^= w3 ^ 27;
 h0(tab, w4); w1 ^= w4 ^ 26;
 h4(tab, w1); w2 ^= w1 ^ 25;

 /* stepping rule B: */
 w1 ^= w2 ^ 24; h3(tab, w2);
 w2 ^= w3 ^ 23; h2(tab, w3);
 w3 ^= w4 ^ 22; h1(tab, w4);
 w4 ^= w1 ^ 21; h0(tab, w1);
 w1 ^= w2 ^ 20; h4(tab, w2);
 w2 ^= w3 ^ 19; h3(tab, w3);
 w3 ^= w4 ^ 18; h2(tab, w4);
 w4 ^= w1 ^ 17; h1(tab, w1);

96

 /* stepping rule A: */
 h0(tab, w2); w3 ^= w2 ^ 16;
 h4(tab, w3); w4 ^= w3 ^ 15;
 h3(tab, w4); w1 ^= w4 ^ 14;
 h2(tab, w1); w2 ^= w1 ^ 13;
 h1(tab, w2); w3 ^= w2 ^ 12;
 h0(tab, w3); w4 ^= w3 ^ 11;
 h4(tab, w4); w1 ^= w4 ^ 10;
 h3(tab, w1); w2 ^= w1 ^ 9;

 /* stepping rule B: */
 w1 ^= w2 ^ 8; h2(tab, w2);
 w2 ^= w3 ^ 7; h1(tab, w3);
 w3 ^= w4 ^ 6; h0(tab, w4);
 w4 ^= w1 ^ 5; h4(tab, w1);
 w1 ^= w2 ^ 4; h3(tab, w2);
 w2 ^= w3 ^ 3; h2(tab, w3);
 w3 ^= w4 ^ 2; h1(tab, w4);
 w4 ^= w1 ^ 1; h0(tab, w1);

 out[0] = (byte)(w1 >> 8); out[1] = (byte)w1;
 out[2] = (byte)(w2 >> 8); out[3] = (byte)w2;
 out[4] = (byte)(w3 >> 8); out[5] = (byte)w3;
 out[6] = (byte)(w4 >> 8); out[7] = (byte)w4;

}

long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 /* Get the amount of 100 nano seconds intervals elapsed since January
1, 1601 (UTC) and copy it
 * to a LARGE_INTEGER structure. */
 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL;
 return ret;

}
main()
{
 char * rx_data = 0;
 long length;
 FILE * fp = fopen ("out.dat", "rb");

 if (fp)
 {
 fseek (fp, 0, SEEK_END);
 length = ftell (fp);
 fseek (fp, 0, SEEK_SET);
 rx_data = malloc (length);
 if (rx_data)
 {
 fread (rx_data, 1, length, fp);
 }
 fclose (fp);

97

 }
 char * msg_digest;
 char * time_n1;
 char * snsr1_reading;
int snsr1_reading_i;
 msg_digest = strtok(rx_data, ",");
 time_n1 = strtok(NULL, ",");
 snsr1_reading = strtok(NULL, ",");

 snsr1_reading = strtok(snsr1_reading, "\n");

 printf("\nReceived data\nMsg Digest n1: %s", msg_digest);
 printf("\nTime n1:%s", time_n1);
 printf("\nSensor reading n1: %s\n", snsr1_reading);
 snsr1_reading_i=atoi(snsr1_reading);
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];

 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned long time_stamp_n1=atoi(time_n1);
 printf("current time:%d",time_stamp);
 int time_difference=time_stamp-time_stamp_n1;
 printf("\ntime different: %d",time_difference);
 if(time_difference<10)
 {

98

 printf("\nTime difference is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }
 else if(snsr1_reading_i<=0 || snsr1_reading_i>10)
 {
 printf("\nSensor range is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }
 else
 {
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[300] = {0x00};

 char * buffer = 0;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp_n1;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned
int)obuf[j]);

99

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);
 int i;
 byte inp[16] = { 0x33, 0x22, 0x11, 0x00, 0xdd,
0xcc, 0xbb, 0xaa,0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa };
 byte key[10] = { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55,
0x44, 0x33, 0x22, 0x11 };
 byte enc[16], dec[8];
 byte chk[8] = { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12,
0xd3, 0x00 };
 byte tab[10][256];
 makeKey(key, tab);

 encrypt(tab, hashString, hashString);
 end_rc5=clock();
 time_spent_rc5+= (double)(end_rc5 - begin_rc5);
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)hashString[l]);
 if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;
 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;

100

 }
 y--;
 k++;
 }
 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }
 if(found == 0)
 printf("");
 }

 }
 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];
 sprintf(content,"%s%d",content,snsr1_reading_i);
 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);
 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned
int)digest[h]);
 }
 int ret=strncmp(mdString,msg_digest,40);
 if(ret==0)
 {
 printf("\n\nDigest match.\n");
 }
 else
 {
 printf("\n\nDigest does not match. Packet dropped.\nPress
any key to continue..\n");
 }
 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;
 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);

 }
 getche();
}

101

Appendix-G

DEV C++ CODE OF OWCAP (SHA-2) FOR

SENSOR NODE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <openssl/sha.h>
#include <openssl/rc4.h>
#include <openssl/bio.h>
#include <openssl/hmac.h>
#include <conio.h>
#include <windows.h>
long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;
GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL;

 return ret;

}
main()
{
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];
 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}

102

 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 printf("\nt_stamp: %s\n",t_stamp);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned int sensor_reading=ptm->tm_sec%10+1;
 char s_reading[2];
 sprintf(s_reading,"%d",sensor_reading);

 printf("time: %d\n",time_stamp);
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[400] = {0x00};

 FILE *fp;
 char * buffer = 0;
 long length;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();

103

 long combo = i + srno+time_stamp;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);
 int i;
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x", (unsigned
int)hashString[l]);
 if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;
 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }

 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)

104

 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }

 if(found == 0)
 printf("");
 }

 }
 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;
 char mdString[40];
 sprintf(content,"%s%d",content,sensor_reading);

 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned int)digest[h]);

 }
 printf("\nmdString: %s,t_stamp: %s,sensor_reading:
%s",mdString,t_stamp,s_reading);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);
 // hmac ends here
 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;
 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);
 FILE *fh = fopen("out.dat", "w");
 fprintf(fh,"%s,%s,%s\n",mdString,t_stamp,s_reading);
 close(fh);
 getch();
}

105

Appendix-H

DEV C++ CODE OF OWCAP (SHA-2) FOR

VERIFIER
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <openssl/sha.h>
#include <openssl/rc4.h>
#include <openssl/bio.h>
#include <openssl/hmac.h>
#include <conio.h>
#include <windows.h>
long GetTimeMs64()
{
 FILETIME ft;
 LARGE_INTEGER li;

 GetSystemTimeAsFileTime(&ft);
 li.LowPart = ft.dwLowDateTime;
 li.HighPart = ft.dwHighDateTime;

 long ret = li.QuadPart;
 ret -= 116444736000000000LL;

 return ret;

}
main()
{
 char * rx_data = 0;
 long length;
 FILE * fp = fopen ("out.dat", "rb");

 if (fp)
 {
 fseek (fp, 0, SEEK_END);
 length = ftell (fp);
 fseek (fp, 0, SEEK_SET);
 rx_data = malloc (length);
 if (rx_data)
 {
 fread (rx_data, 1, length, fp);
 }
 fclose (fp);
 }
 char * msg_digest;
 char * time_n1;
 char * snsr1_reading;
int snsr1_reading_i;
 msg_digest = strtok(rx_data, ",");
 time_n1 = strtok(NULL, ",");
 snsr1_reading = strtok(NULL, ",");

 snsr1_reading = strtok(snsr1_reading, "\n");

106

 printf("\nReceived data\nMsg Digest n1: %s", msg_digest);
 printf("\nTime n1:%s", time_n1);
 printf("\nSensor reading n1: %s\n", snsr1_reading);
 snsr1_reading_i=atoi(snsr1_reading);
 long t0 = GetTimeMs64();
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];

 char mon1[2];
 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else
 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);
 unsigned long time_stamp=atoi(t_stamp);
 unsigned long time_stamp_n1=atoi(time_n1);
 printf("current time:%d",time_stamp);
 int time_difference=time_stamp-time_stamp_n1;
 printf("\ntime difference: %d",time_difference);
 if(time_difference<10)
 {
 printf("\nTime difference is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;
 }
 else if(snsr1_reading_i<=0 || snsr1_reading_i>10)
 {
 printf("\nSensor range is out of acceptable range. Packet
dropped!\nPress any key to continue..");
 getch();
 return 1;

107

 }
 else
 {
 clock_t begin, end;
 clock_t begin_sha,end_sha;
 clock_t begin_rc5,end_rc5;
 clock_t begin_file,end_file;
 clock_t begin_hmac,end_hmac;
 double time_spent;
 double time_spent_sha=0;
 double time_spent_rc5=0;
 double time_spent_file=0;
 double time_spent_hmac=0;
 begin = clock();
 int j,i,y,k,l,m,decimal;
 int index = 0;
 char content[400] = {0x00};

 char * buffer = 0;
 FILE * f = fopen ("memread.txt", "rb");

 if (f)
 {
 fseek (f, 0, SEEK_END);
 length = ftell (f);
 fseek (f, 0, SEEK_SET);
 buffer = malloc (length);
 if (buffer)
 {
 fread (buffer, 1, length, f);
 }
 fclose (f);
 }
 unsigned char ibuf[32];
 unsigned char obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 for(i = 0; i<20; i++)
 {
 begin_sha=clock();
 long combo = i + srno+time_stamp_n1;
 sprintf(ibuf, "%d", combo);
 SHA256(ibuf,strlen(ibuf),obuf);
 for (j=0;j<32;j++)
 { sprintf (&hashString[j*2],"%02x", (unsigned
int)obuf[j]);

 }

 end_sha=clock();
 time_spent_sha+= (double)(end_sha - begin_sha);
 int i;
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {

108

 sprintf (&cipherString[m*2],"%02x", (unsigned
 int)hashString[l]);
 if (m ==2)
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 decimal = 0;
 k=0;
 int ch;
 while(y-1 != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 else if('A' <= ch && ch <= 'F')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'A')+10;
 }
 else if('a' <= ch && ch <= 'f')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 'a')+10;
 }
 else
 {
 decimal=0;
 break;
 }
 y--;
 k++;
 }
 file_counter+=1;
 int found = 0;
 char chartest[300] = {0x00};
 if(decimal<125000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest == '_')
 {
 content[index++] = buffer[decimal];
 }
 }
 if(found == 0)
 printf("");
 }

 }
 int h;
 begin_hmac=clock();
 char key2[] = "012345678";
 unsigned char* digest;

109

 char mdString[40];
 sprintf(content,"%s%d",content,snsr1_reading_i);
 digest = HMAC(EVP_sha1(), key2, strlen(key2), (unsigned
 char*)content, strlen(content), NULL, NULL);

 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsigned
 int)digest[h]);
 }
 int ret=strncmp(mdString,msg_digest,40);
 if(ret==0)
 {
 printf("\n\nDigest match.\n");
 }
 else
 {
 printf("\n\nDigest does not match. Packet dropped.\nPress
 any key to continue..\n");
 }
 printf("\nmdString: %s",mdString);

 end_hmac=clock();
 time_spent_hmac+= (double)(end_hmac - begin_hmac);

 end = clock();
 time_spent = (double)(end - begin);
 double exectime = time_spent/CLOCKS_PER_SEC;
 long t1 = GetTimeMs64();
 char * f_result=0;

 printf("\nThe Execution Time in nano seconds is %d ",t1-t0);

 }
 getche();
}

110

Appendix-J

MS VISUAL STUDIO CODE FOR FILE GENERATION

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace MemreadConsole
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {

 FileStream fs = new FileStream("memread128.txt",
FileMode.CreateNew);
 fs.Close();

 }
 catch { }

 try
 {
 string content =
File.ReadAllText(@"C:\Users\IMRAM\Documents\Visual Studio
2008\Projects\memread128\memread128\bin\Debug\main.srec");
 File.WriteAllText(@"C:\Users\IMRAM\Documents\Visual
Studio 2008\Projects\memread128\memread128\bin\Debug\memread128.txt",
content);
 }
 catch { }
 try
 {
 string content =
File.ReadAllText(@"C:\Users\IMRAM\Documents\Visual Studio
2008\Projects\memread128\memread128\bin\Debug\main.ihex");
 File.AppendAllText(@"C:\Users\IMRAM\Documents\Visual
Studio 2008\Projects\memread128\memread128\bin\Debug\memread128.txt",
content);

 }
 catch (Exception ex) { ex.Message.ToString(); }
 File.AppendAllText(@"C:\Users\IMRAM\Documents\Visual Studio
2008\Projects\memread128\memread128\bin\Debug\memread128.txt",
DateTime.Now.ToString());
 FileInfo f = new FileInfo(@"C:\Users\IMRAM\Documents\Visual
Studio 2008\Projects\memread128\memread128\bin\Debug\memread128.txt");
 long s1 = f.Length;
 Console.Write(s1.ToString());
 while (s1 <= 128000)
 {

111

 Console.WriteLine("The size of file is bytes: {0}",
f.Length);
 File.AppendAllText(@"C:\Users\IMRAM\Documents\Visual
Studio 2008\Projects\memread128\memread128\bin\Debug\memread128.txt",
DateTime.Now.ToString());
 f = new FileInfo(@"C:\Users\IMRAM\Documents\Visual
Studio 2008\Projects\memread128\memread128\bin\Debug\memread128.txt");
 s1 = f.Length;
 }
 }
 }
}

112

Appendix-K

CODE COMPOSER CODE FOR OWCAP using RC-5

#include<stdio.h>
#include<time.h>
#include<string.h>
typedefunsignedlongint u32; /*Should be 32 bit = 4 bytes*/
typedefunsignedchar u16;
#include<stdio.h>

#define uchar unsignedchar // 8-bit byte
#define uint unsignedint // 32-bit word

// DBL_INT_ADD treats two unsigned int a and b as one 64-bit integer
and adds c to it
#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - (c)) ++b; a += c;
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

typedefstruct {
 uchar data[64];
 uint datalen;
 uint bitlen[2];
 uint state[8];
} SHA256_CTX;

uint k[64] = {

0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923
f82a4,0xab1c5ed5,

0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bd
c06a7,0xc19bf174,

0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb
0a9dc,0x76f988da,

0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06c
a6351,0x14292967,

0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c
2c92e,0x92722c85,

0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40
e3585,0x106aa070,

0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9
cca4f,0x682e6ff3,

113

0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef
9a3f7,0xc67178f2
};

typedefstruct {
 uchar data[64];
 uint datalen;
 uint bitlen[2];
 uint state[5];
 uint k[4];
} SHA1_CTX;

voidsha1_transform(SHA1_CTX *ctx, uchar data[])
{
 uint a,b,c,d,e,i,j,t,m[80];

for (i=0,j=0; i < 16; ++i, j += 4)
 m[i] = (data[j] << 24) + (data[j+1] << 16) + (data[j+2] << 8) +
(data[j+3]);
for (; i < 80; ++i) {
 m[i] = (m[i-3] ^ m[i-8] ^ m[i-14] ^ m[i-16]);
 m[i] = (m[i] << 1) | (m[i] >> 31);
 }

 a = ctx->state[0];
 b = ctx->state[1];
 c = ctx->state[2];
 d = ctx->state[3];
 e = ctx->state[4];

for (i=0; i < 20; ++i) {
 t = ROTLEFT(a,5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
 e = d;
 d = c;
 c = ROTLEFT(b,30);
 b = a;
 a = t;
 }
for (; i < 40; ++i) {
 t = ROTLEFT(a,5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
 e = d;
 d = c;
 c = ROTLEFT(b,30);
 b = a;
 a = t;
 }
for (; i < 60; ++i) {
 t = ROTLEFT(a,5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2]
+ m[i];
 e = d;
 d = c;
 c = ROTLEFT(b,30);
 b = a;
 a = t;
 }
for (; i < 80; ++i) {
 t = ROTLEFT(a,5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
 e = d;
 d = c;
 c = ROTLEFT(b,30);

114

 b = a;
 a = t;
 }

 ctx->state[0] += a;
 ctx->state[1] += b;
 ctx->state[2] += c;
 ctx->state[3] += d;
 ctx->state[4] += e;
}

voidsha1_init(SHA1_CTX *ctx)
{
 ctx->datalen = 0;
 ctx->bitlen[0] = 0;
 ctx->bitlen[1] = 0;
 ctx->state[0] = 0x67452301;
 ctx->state[1] = 0xEFCDAB89;
 ctx->state[2] = 0x98BADCFE;
 ctx->state[3] = 0x10325476;
 ctx->state[4] = 0xc3d2e1f0;
 ctx->k[0] = 0x5a827999;
 ctx->k[1] = 0x6ed9eba1;
 ctx->k[2] = 0x8f1bbcdc;
 ctx->k[3] = 0xca62c1d6;
}

voidsha1_update(SHA1_CTX *ctx, uchar data[], uint len)
{
 uint t,i;

for (i=0; i < len; ++i) {
 ctx->data[ctx->datalen] = data[i];
 ctx->datalen++;
if (ctx->datalen == 64) {
 sha1_transform(ctx,ctx->data);
 DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512);
 ctx->datalen = 0;
 }
 }
}

voidsha1_final(SHA1_CTX *ctx, uchar hash[])
{
 uint i;

 i = ctx->datalen;

 // Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
 ctx->data[i++] = 0x80;
while (i < 56)
 ctx->data[i++] = 0x00;
 }
else {
 ctx->data[i++] = 0x80;
while (i < 64)
 ctx->data[i++] = 0x00;
 sha1_transform(ctx,ctx->data);
memset(ctx->data,0,56);
 }

115

 // Append to the padding the total message's length in bits and
transform.
 DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],8 * ctx->datalen);
 ctx->data[63] = ctx->bitlen[0];
 ctx->data[62] = ctx->bitlen[0] >> 8;
 ctx->data[61] = ctx->bitlen[0] >> 16;
 ctx->data[60] = ctx->bitlen[0] >> 24;
 ctx->data[59] = ctx->bitlen[1];
 ctx->data[58] = ctx->bitlen[1] >> 8;
 ctx->data[57] = ctx->bitlen[1] >> 16;
 ctx->data[56] = ctx->bitlen[1] >> 24;
 sha1_transform(ctx,ctx->data);

 // Since this implementation uses little endian byte ordering and MD
uses big endian,
 // reverse all the bytes when copying the final state to the output
hash.
for (i=0; i < 4; ++i) {
 hash[i] = (ctx->state[0] >> (24-i*8)) & 0x000000ff;
 hash[i+4] = (ctx->state[1] >> (24-i*8)) & 0x000000ff;
 hash[i+8] = (ctx->state[2] >> (24-i*8)) & 0x000000ff;
 hash[i+12] = (ctx->state[3] >> (24-i*8)) & 0x000000ff;
 hash[i+16] = (ctx->state[4] >> (24-i*8)) & 0x000000ff;
 }
}
voidsha256_transform(SHA256_CTX *ctx, uchar data[])
{
 uint a,b,c,d,e,f,g,h,i,j,t1,t2,m[64];

for (i=0,j=0; i < 16; ++i, j += 4)
 m[i] = (data[j] << 24) | (data[j+1] << 16) | (data[j+2] << 8) |
(data[j+3]);
for (; i < 64; ++i)
 m[i] = SIG1(m[i-2]) + m[i-7] + SIG0(m[i-15]) + m[i-16];

 a = ctx->state[0];
 b = ctx->state[1];
 c = ctx->state[2];
 d = ctx->state[3];
 e = ctx->state[4];
 f = ctx->state[5];
 g = ctx->state[6];
 h = ctx->state[7];

for (i = 0; i < 64; ++i) {
 t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
 t2 = EP0(a) + MAJ(a,b,c);
 h = g;
 g = f;
 f = e;
 e = d + t1;
 d = c;
 c = b;
 b = a;
 a = t1 + t2;
 }

 ctx->state[0] += a;
 ctx->state[1] += b;
 ctx->state[2] += c;

116

 ctx->state[3] += d;
 ctx->state[4] += e;
 ctx->state[5] += f;
 ctx->state[6] += g;
 ctx->state[7] += h;
}

voidsha256_init(SHA256_CTX *ctx)
{
 ctx->datalen = 0;
 ctx->bitlen[0] = 0;
 ctx->bitlen[1] = 0;
 ctx->state[0] = 0x6a09e667;
 ctx->state[1] = 0xbb67ae85;
 ctx->state[2] = 0x3c6ef372;
 ctx->state[3] = 0xa54ff53a;
 ctx->state[4] = 0x510e527f;
 ctx->state[5] = 0x9b05688c;
 ctx->state[6] = 0x1f83d9ab;
 ctx->state[7] = 0x5be0cd19;
}

voidsha256_update(SHA256_CTX *ctx, uchar data[], uint len)
{
 uint t,i;

for (i=0; i < len; ++i) {
 ctx->data[ctx->datalen] = data[i];
 ctx->datalen++;
if (ctx->datalen == 64) {
 sha256_transform(ctx,ctx->data);
 DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512);
 ctx->datalen = 0;
 }
 }
}

voidsha256_final(SHA256_CTX *ctx, uchar hash[])
{
 uint i;

 i = ctx->datalen;

 // Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
 ctx->data[i++] = 0x80;
while (i < 56)
 ctx->data[i++] = 0x00;
 }
else {
 ctx->data[i++] = 0x80;
while (i < 64)
 ctx->data[i++] = 0x00;
 sha256_transform(ctx,ctx->data);
memset(ctx->data,0,56);
 }

 // Append to the padding the total message's length in bits and
transform.
 DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],ctx->datalen * 8);
 ctx->data[63] = ctx->bitlen[0];

117

 ctx->data[62] = ctx->bitlen[0] >> 8;
 ctx->data[61] = ctx->bitlen[0] >> 16;
 ctx->data[60] = ctx->bitlen[0] >> 24;
 ctx->data[59] = ctx->bitlen[1];
 ctx->data[58] = ctx->bitlen[1] >> 8;
 ctx->data[57] = ctx->bitlen[1] >> 16;
 ctx->data[56] = ctx->bitlen[1] >> 24;
 sha256_transform(ctx,ctx->data);

 // Since this implementation uses little endian byte ordering and
SHA uses big endian,
 // reverse all the bytes when copying the final state to the output
hash.
for (i=0; i < 4; ++i) {
 hash[i] = (ctx->state[0] >> (24-i*8)) & 0x000000ff;
 hash[i+4] = (ctx->state[1] >> (24-i*8)) & 0x000000ff;
 hash[i+8] = (ctx->state[2] >> (24-i*8)) & 0x000000ff;
 hash[i+12] = (ctx->state[3] >> (24-i*8)) & 0x000000ff;
 hash[i+16] = (ctx->state[4] >> (24-i*8)) & 0x000000ff;
 hash[i+20] = (ctx->state[5] >> (24-i*8)) & 0x000000ff;
 hash[i+24] = (ctx->state[6] >> (24-i*8)) & 0x000000ff;
 hash[i+28] = (ctx->state[7] >> (24-i*8)) & 0x000000ff;
 }
}

/*Rotation operators. x must be unsigned, to get logical right shift*/
#define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1)))))
#define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1)))))
voidRC5_encrypt(u32 *data);
voidRC5_decrypt(u32 *data);
voidkey_setup(unsignedchar *K);
#define w 32 /*u32 size in bits*/
#define r 1 /*number of rounds*/
#define b 16 /*number of bits in key*/
#define c_no 4 /*number of u32 in key, c = max(1, ceil(8*b/w))*/
#define t 26 /*size of tables S = 2*(r+1) u32s*/
u32 S[t]; /*expanded key table*/
u32 P = 0xb7e15163, Q = 0x9e3779b9; /*magic constants*/

voidrc5_encrypt(u16 *data) /*input pt,ouput ct*/
{
 u32 in[2]={0,0};
 u32 i,A,B;
 in[0] = ((u32)data[0]<<24) ^ ((u32)data[1]<<16) ^
((u32)data[2]<<8) ^ (u32)data[3];
 in[1] = ((u32)data[4]<<24) ^ ((u32)data[5]<<16) ^
((u32)data[6]<<8) ^ (u32)data[7];
 A=in[0]+S[0];
 B=in[1]+S[1];
 for(i=1; i<=r; i++)
 {
 A = ROTL(A^B, B) + S[2*i];
 B = ROTL(B^A, A) + S[2*i+1];
 }
 in[0] = A;
 in[1] = B;

 data[0] = (u16)((in[0]>>24) &0x000000ff);
 data[1] = (u16)((in[0]>>16) &0x000000ff);

118

 data[2] = (u16)((in[0]>>8) &0x000000ff);
 data[3] = (u16)(in[0] &0x000000ff);
 data[4] = (u16)((in[1]>>24) &0x000000ff);
 data[5] = (u16)((in[1]>>16) &0x000000ff);
 data[6] = (u16)((in[1]>>8) &0x000000ff);
 data[7] = (u16)(in[1] &0x000000ff);

}

voidrc5_decrypt(u16 *data) /*input ct,ouput pt*/
{
 u32 in[2]={0,0};
 u32 i,B,A;
 in[0] = ((u32)data[0]<<24) ^ ((u32)data[1]<<16) ^
((u32)data[2]<<8) ^ (u32)data[3];
 in[1] = ((u32)data[4]<<24) ^ ((u32)data[5]<<16) ^
((u32)data[6]<<8) ^ (u32)data[7];
 B=in[1];
 A=in[0];
 for(i=r; i>0; i--)
 {
 B = ROTR(B-S[2*i+1], A) ^ A;
 A = ROTR(A-S[2*i], B) ^ B;
 }
 in[1] = B - S[1];
 in[0] = A - S[0];

 data[0] = (u16)((in[0]>>24) &0x000000ff);
 data[1] = (u16)((in[0]>>16) &0x000000ff);
 data[2] = (u16)((in[0]>>8) &0x000000ff);
 data[3] = (u16)(in[0] &0x000000ff);
 data[4] = (u16)((in[1]>>24) &0x000000ff);
 data[5] = (u16)((in[1]>>16) &0x000000ff);
 data[6] = (u16)((in[1]>>8) &0x000000ff);
 data[7] = (u16)(in[1] &0x000000ff);
}

voidrc5_key_setup(u16 *K) /*secret input key K[b]*/
{
 u32 i,j,k,u=w/8,A,B,L[c_no];
/*Initialize L, then S, then mix key into S*/
 for(i=b-1,L[c_no-1]=0; i!=-1; i--)
 {
 L[i/u] = (L[i/u]<<8) + K[i];
 }
 for(S[0]=P,i=1; i<t; i++)
 {
 S[i] = S[i-1] + Q;
 }
 for(A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c_no) /*3*t >
3*c*/
 {
 A = S[i] = ROTL(S[i]+(A+B), 3);
 B = L[j] = ROTL(L[j]+(A+B), (A+B));
 }
}

voidmain(void) {
 char rx_data[100];
 long length;
 char tc;

119

 FILE * fp ;//= fopen ("out.dat", "rb");
int file_index=0;
 if ((fp=fopen("C:\\out.dat","r"))==NULL){
 printf("Error! opening file");
 exit(1);
 }
 else
 {
 while ((tc = fgetc(fp)) != EOF)
 {
 rx_data[file_index++] = (char) tc;
 }
 }
 char * msg_digest;
 char * time_n1;
 char * snsr1_reading;
 int snsr1_reading_i;
 /* Segregating the information from the received data */
 msg_digest = strtok(rx_data, ",");
 time_n1 = strtok(NULL, ",");
 snsr1_reading = strtok(NULL, ",");

 snsr1_reading = strtok(snsr1_reading, "\n");
 snsr1_reading_i=atoi(snsr1_reading);

 char * buffer;
 char c;
 buffer=(char*)malloc(60000);
 long n=0;
 FILE * f ;//= fopen ("memreadmalpt9.txt", "rb");
 if ((f=fopen("C:\\memreadmalpt9.txt","r"))==NULL){
 printf("Error! opening file");
 exit(1);
 }
 else
 {
 while ((c = fgetc(f)) != EOF)
 {
 buffer[n++] = (char) c;
 }
 }
 time_t now;
 struct tm * ptm;
 now = time(NULL);
 ptm = gmtime (&now);
 char t_stamp[10];

 char day[2];
 char hour[2];
 char minutes[2];
 char seconds[2];
 if((ptm->tm_mon+1)<10)
 {
 sprintf(t_stamp,"0%d",ptm->tm_mon+1);
 }
 else
 { sprintf(t_stamp,"%d",ptm->tm_mon+1);}

 if(ptm->tm_mday<10)
 { sprintf(day,"0%d",ptm->tm_mday);}
 else

120

 {sprintf(day,"%d",ptm->tm_mday);}
 strcat(t_stamp,day);
 if((ptm->tm_hour+5)<10)
 {sprintf(hour,"0%d",ptm->tm_hour+5);}
 else
 {sprintf(hour,"%d",ptm->tm_hour+5);}
 strcat(t_stamp,hour);
 if(ptm->tm_min<10)
 {sprintf(minutes,"0%d",ptm->tm_min);}
 else
 {sprintf(minutes,"%d",ptm->tm_min);}
 strcat(t_stamp,minutes);
 if(ptm->tm_sec<10)
 {sprintf(seconds,"0%d",ptm->tm_sec);}
 else
 {sprintf(seconds,"%d",ptm->tm_sec);}
 strcat(t_stamp,seconds);// printf("%s",seconds);
 // printf("\nt_stamp: %s\n",t_stamp);
 unsignedlong time_stamp=atoi(t_stamp);
 unsignedlong time_stamp_n1=atoi(time_n1);
// printf("current time:%d",time_stamp);
 int time_difference=time_stamp-time_stamp_n1;
 unsignedint sensor_reading=ptm->tm_sec%10+1;
 char s_reading[2];
 sprintf(s_reading,"%d",sensor_reading);
 /* int time_difference;
 int t_difference;
 t_difference=atoi(time_n1);
 time_difference=time_stamp-t_;*/
 if(time_difference<10)
 {

 exit(0);
 //return 1;
 }
 elseif(snsr1_reading_i<=0 || snsr1_reading_i>10)
 {

 exit(0);//return 1;
 }

 unsignedchar ibuf[32];
 unsignedchar obuf[64];
 char hashString[64];
 char cipherString[64];
 int hexadecimal;
 int file_counter=0;
 int srno= 65535;
 int loop_saver;
 SHA256_CTX ctx;
 SHA1_CTX ctx_sha1;
 int j,i,y,k,l,m,decimal,h;
 int index=0;
 long combo;
 char ch;
 char content[400] = {0x00};
 for(i = 0; i<20; i++)
 {
 combo =(long) i + srno+time_stamp;
 sprintf(ibuf, "%d", combo);
 sha256_init(&ctx);

121

 sha256_update(&ctx,ibuf,strlen(ibuf));
 sha256_final(&ctx,obuf);
 for (j=0;j<32;j++)
 {
 sprintf (&hashString[j*2],"%02x", (unsignedint)obuf[j]);
 }
 unsignedchar key[b] =
 {
 0x10,0x20,0x30,0x40,0x50,0x60,0x70,0x80,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
 };
 rc5_key_setup(key);
 rc5_encrypt(hashString);
 for (l=0;l<32;l++)
 {
 loop_saver=l;
 for (m=0;m<3;m++)
 {
 sprintf (&cipherString[m*2],"%02x",
(unsignedint)hashString[l]);//writing obuf hex values to hashString,
one byte in each iteration
 if (m ==2)
// total 2 iterations for m =0 and m=1. Breaking the loop at m=1
 {
 cipherString[5]=0;

 l=loop_saver;
 break;
 }
 l=l+1;
 }
 y = (int) strlen(cipherString);
 int decimal = 0;
 k=0;
 int ch;
 }
 while(y != 0)
 {
 ch = cipherString[k];
 if('0' <= ch && ch <= '9')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - '0');
 }
 elseif('A' <= ch && ch <= 'Z')
 {
 decimal = decimal * 16;
 decimal = decimal + (ch - 7);
 }
 elseif('a' <= ch && ch <= 'z')
 {
 decimal = decimal * 16;

 decimal = decimal + (ch -
'a')+10;

 }
 else
 {
 decimal=0;
 break;
 }
 y--;

122

 k++;
 }
 decimal = decimal % 127997;
 int found = 0;
 char chartest[400] = {0x00}; //chartest
 if(decimal<128000)
 {
 chartest[0] = buffer[decimal];
 if (isalnum(*chartest) || *chartest ==
'_')

 {
 content[index++] = buffer[decimal];
//content is a string which saves the filtered chars
 }
 }
 }
 char key2[] = "012345678";

 // The data that we're going to hash using HMAC
 unsignedchar* digest;
 char mdString[40];
 sprintf(content,"%s%d",content,sensor_reading);
 sha1_init(&ctx_sha1);
 sha1_update(&ctx_sha1,content,strlen(content));
 sha1_final(&ctx_sha1,digest);
 //lrad_hmac_sha1((unsigned
char*)content,strlen(content),key2,strlen(key2),digest);
 for(h = 0; h < 20; h++)
 {
 sprintf (&mdString[h*2], "%02x", (unsignedint)digest[h]);
 }
 int ret=strncmp(mdString,msg_digest,40);
 if(ret==0)
 {
 printf("\n\nDigest match.\n");
 }
 else
 {
 printf("\n\nDigest does not match. Packet dropped.\nPress any
key to continue..\n");
 }
 printf("\nmdString: %s,t_stamp: %s,sensor_reading:
%s",mdString,t_stamp,s_reading);
 FILE *fh = fopen("out.dat", "w");
 fprintf(fh,"%s,%s,%s\n",mdString,t_stamp,s_reading);
 close(fh);

 printf("Exit now!");
}

123

BIBLIOGRAPHY
[1] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier,” Symantec, Tech.

Rep., Feb. 2011. [Online].

Available:http://www.symantec.com/content/en/us/enterprise /media

/securityresponse / whitepapers / w32stuxnet dossier.pdf

[2] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho, “Stuxnet under

themicroscope,” eset, Tech. Rep., 2010. [Online]. Available: http://www.

eset.com/resources/white-papers/Stuxnet

[3] S. Karnouskos, "Stuxnet worm impact on industrial cyber-physical system security,

" in IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society.

IEEE, 2011, pp. 4490-4494

[4] Falliere, N.; Murchu, L.O.; Chien, E. W32.Stuxnet Dossier (2012). Available

online: http://www.symantec.com/connect/blogs/updated-w32stuxnet-dossier-

available

[5] Broad, W.J.; Markoff, J.; Sanger, D.E. Israeli test on worm called crucial in Iran

nuclear delay. The New York Times, 15 January 2011. Available

online: http://www.cfr.org/iran/nyt-israeli-test-worm-called-crucial-iran-nuclear-

delay/p23850

[6] R v Boden [2002] QCA 164; Supreme Court of Queensland: Brisbane, Australia,

2002. Available online: http://archive.sclqld.org.au/qjudgment/2002/QCA02-

164.pdf (accessed on 11 July 2012)

[7] http://www.mdpi.com/1999-5903/4/3/672/htm#sthash.hiW7a8Wn.dpuf

[8] D. G. Padmavathi, M. Shanmugapriya et al., “A survey of attacks,Security

mechanisms and challenges in wireless sensor networks,” arXivPreprint arXiv:

0909.0576, 2009

[9]A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. E. Culler, “Spins:Security protocols

for sensor networks,” Wireless networks, vol. 8, no. 5,pp. 521–534, 2002

[10] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security mechanismsfor large-scale

distributed sensor networks,” in Proceedings of the 10thACM conference on

Computer and Communications Security, 2003, pp.62–72

[11] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer securityarchitecture for

wireless sensor networks,” in Proceedings of the 2nd internationalconference on

Embedded Networked Sensor Systems. ACM,2004, pp. 162–175

124

[12] J. R. Douceur. The Sybil attack. In First International Workshop on Peer-to-Peer

Systems (IPTPS ’02), Mar. 2002

[13] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a secure sensornetwork

communication architecture,” in 6th International Symposiumon Information

Processing in Sensor Networks. IEEE, 2007, pp. 479–488

[14] S. K. Singh, M. Singh, and D. Singh, “A survey on network security andattack

defense mechanism for wireless sensor networks,” InternationalJournal of Computer

Trends and Technology, vol. 1, no. 2, pp. 9–17,2011

[15] J. Sen, “A survey on wireless sensor network security,” InternationalJournal of

Communication Networks and Information Security (IJCNIS), vol. 1, no. 2, pp.

55–78, 2009

[16] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensornetworks:

analysis & defenses,” in Proceedings of the 3rd internationalsymposium on

Information Processing in Sensor Networks. ACM, 2004, pp. 259–268

[17] D. Boyle and T. Newe, “Securing wireless sensor networks: securityarchitectures,”

Journal of Networks, vol. 3, no. 1, pp. 65–77, 2008

[18] J. R. Douceur, “The sybil attack,” in Peer-to-peer Systems. Springer,2002, pp. 251–

260

[19] M. Demirbas and Y. Song, “An rssi-based scheme for sybil attackdetection in

wireless sensor networks,” in Proceedings of the 2006International Symposium on

World of Wireless, Mobile and MultimediaNetworks. IEEE Computer Society,

2006, pp. 564–570

[20] J. Wang, G. Yang, Y. Sun, and S. Chen, “Sybil attack detection basedon rssi for

wireless sensor network,” in International Conference onWireless Communications,

Networking and Mobile Computing. IEEE,2007, pp. 2684–2687

[21] S. Lv, X. Wang, X. Zhao, and X. Zhou, “Detecting the sybil attackcooperatively in

wireless sensor networks,” in International Conferenceon Computational

Intelligence and Security, vol. 1. IEEE, 2008, pp.442–446

[22] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt:

Softwarebasedattestation for embedded devices,” in Proceedings of IEEE

Symposiumon Security and Privacy, 2004, pp. 272–282

[23] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-basedattestation for

node compromise detection in sensor networks,” in Proceedings of 26th IEEE

International Symposium on Reliable DistributedSystems, 2007, pp. 219–230

125

[24]K. Song, D. Seo, H. Park, H. Lee, and A. Perrig, “Omap: Oneway memory

attestation protocol for smart meters,” in Ninth IEEE International Symposium on

Parallel and Distributed Processing withApplications Workshops (ISPAW), 2011,

pp. 111–118.

[25] (2013) ”time of check to time of use”. [Online]. Available: http://www.sans.Org/

reading room/whitepapers/securecode/tour-tocttous 1049

[26]I. Chen and Y. Wang, “Reliability analysis of wireless sensor networks with

distributed code attestation,” IEEE Communications Letters,vol. 16, no. 10, pp.

1640–1643, 2012

[27] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the difficultyof

software-based attestation of embedded devices,” in Proceedingsof the 16th ACM

conference on Computer and Communications Security,2009, pp. 400–409

[28] D.Schellekens, B.Wyseur, and B.Preneel, “Remote attestation on legacy operating

systems with trusted platform modules,” Electronic Notes in Theoretical Computer

Science, vol. 197, no. 1, pp. 59–72, 2008

[29] Yee Wei Law, Jeroen Doumen, and Pieter Hartel. 2006. Survey and benchmark of

block ciphers for wireless sensor networks. ACM Trans. Sen. Netw. 2, 1 (February

2006), pp. 65-93

[30]Nicolas Fournel, Marine Minier, and Stéphane Ubéda. 2007. Survey and benchmark

of stream ciphers for wireless sensor networks. In Proceedings of the 1st IFIP TC6

/WG8.8 /WG11.2 international conference on Information security theory and

practices: smart cards, mobile and ubiquitous computing systems (WISTP'07),

Springer-Verlag, Berlin, Heidelberg, 202-214

[31]Javier López, Jianying Zhou, “Wireless Sensor Network Security”, IOS Press, 01-

Jan-2008 – Computers, page 144

[32] H.Khurana, M.Hadley, Ning Lu, and D.A.Frincke, “Smartgrid security issues,”

IEEE Security & Privacy, vol. 8, no. 1, pp. 81–85, 2010

[33]Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote computer

systems. In Proceedingsof the 11th USENIX Security Symposium. USENIX,

August 2003

[34]NIST SP 800-90A dated January 2012. Available at http:// csrc.nist.gov / publications

/ PubsSPs.html

[35]2012, “Using SHA512 hash as random number generator for Gambling

services”. Available at https://bitcointalk.org/index.php?topic=77206.0

https://bitcointalk.org/index.php?topic=77206.0

126

[36] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, J. D. Tygar.SPINS:

Security Protocols for Sensor Networks. In Proceedings of the 7th Annual

International Conference on Mobile Computing and Networks (MOBICOM), July

2001, pp. 189-199.

[37] http://www.cs.gmu.edu/~setia/cs818/lectures/spins.pdf

[38]http://en.wikipedia.org/wiki/RC5

[39] Chris Karlof, Naveen Sastry, and David Wagner, “TinySec: A Link Layer security

Architecture for Wireless Sensor Networks”, ACMSenSys 2004, Nov. 3-5, 2004

[40] David Boyle, Thomas Newe. Securing Wireless Sensor Networks: Security

Architectures : Journal of networks, vol. 3, no. 1, January 2008

[41] http://en.wikipedia.org/wiki/Skipjack_%28cipher%29

[42] Lander Casado and Philippas Tsigas. ContikiSec: A Secure Network Layer for

Wireless Sensor Networks under the Contiki Operating System

[43] http://www.keylength.com/en/4/#Biblio4

[44] http://en.wikipedia.org/wiki/CBC-MAC

[45] Mark Luk, Ghita Mezzour, Adrian Perrig, Virgil Gligor. MiniSec: A Secure

Sensor Network Communication Architecture. IPSN'07, April 25-27, 2007,

Cambridge, Massachusetts, USA

[46] http://en.wikipedia.org/wiki/ZigBee

[47] Sencun Zhu, Sanjeev Setia And Sushil Jajodia, LEAP+: Efficient Security

Mechanisms for Large-Scale Distributed Sensor Networks

[48] http://en.wikipedia.org/wiki/Sybil_attack

[49] W.Stalling and L.Brown, Computer Security, Pearson Education International,

2008

[50] Makhdoom, I.; Afzal, M.; Rashid, I., "A novel code attestation scheme against Sybil

Attack in Wireless Sensor Networks," Software Engineering Conference (NSEC),

2014 National , vol., no., pp.1,6, 11-12 Nov. 2014

[51]Ahmed M., Hunag X., Sharma D., “A Taxonomy of Internal Attacks in Wireless

Sensor Network”, ICIS 2012, Kuala Lumpur, Malaysia 2012.

[52] Murat Dener,”Security Analysis in Wireless Sensor Networks,” International Journal

of Distributed Sensor Networks Volume 2014, Article ID 303501, 9 page

http://dx.doi.org/10.1155/2014/303501

127

[53] Aziz Mohaisen, Joongheon Kim, “The Sybil Attacks and Defenses: A Survey”, Smart

Computing Review, vol. 3, no. 6, pp480-489 December 2013 DOI: 10.6029

[54] Mukul Saini1, Kaushal Kumar2 and Kumar Vaibhav Bhatnagar Efficient and

Feasible Methods to Detect Sybil Attack in VANET International. Journal of

Engineering Research and Technology. ISSN 0974-3154/. Volume 6, Number 4

(2013), pp. 431-440

[55] Pratch Piyawongwisal, Pengye Xia, “Sybil Attack and Defense in P2P Networks”,

2011, available at web.engr.illinois.edu/~pbg/courses/cs538fa11

	Introduction
	The existing Code Attestation Protocols [22], [23] are challenge response based so they are prone to network attacks like rainbow attack, interference attack and other Man-in-the-Middle (MITM) attacks. The protocol mentioned in [24] is although a One ...

	Literature Review
	Attacker can generate random new identities but if there is an identity management mechanism in WSN network, then generating new identities may be difficult for the attacker. Now the only viable option left with attacker is to steal the identities of...
	The attacker tries to make all the Sybil Nodes appear simultaneously in the network. He can do so by cycling through these identities one by one.Attacker may resort to introducing multiple physical devices in the network. These multiple physical devic...

	3.2 Review and Analysis of Code Attestation Schemes
	3.2.1 Software Based Attestation for Embedded Devices (SWATT)
	3.2.3.1 OMAP Algorithm
	3.2.3.2 Observations on OMAP

	3.3 Summary
	Introduction
	OWCAP an extension of OMAP (explained in previous chapter) is the product of this research. It has been developed to improve upon the weaknesses of existing noteworthy code attestation protocols. It is not only an efficient code attestation protocol...
	The weaknesses in OMAP and previously discussed challenge response protocols led to achieve certain objectives for the development of OWCAP.

	Assumptions
	OWCAP Protocol is based on certain assumptions. For an attested sensor node the assumptions include: The serial number of a sensor node is secret, which cannot be disclosed or forged even upon physical compromise of the sensor node[24]. OWCAP utiliz...

	OWCAP Algorithm
	OWCAP is developed to improve upon the weaknesses of OMAP and further increase the reliability, effectiveness and efficiency of the Code Attestation Protocol. In order to ensure seamless code attestation and to avoid TOCTTOU Attack, OWCAP provides im...
	4.4.1 Seed Generation
	4.4.3 Message Construction
	4.4.4Verification
	4.4.5 Recovery and Revocation

	4.5 Improving Upon the Observations of OMAP
	4.5.1 Implicit Initiation of Attestation Procedure
	4.5.2 Seed Generation and Time Synchronization
	4.5.3 Execution Time of Checksum Computation
	4.5.4 Range of Addresses
	4.5.6OWCAP Message Transmission

	4.6 Performance Analysis of OWCAP
	Table 4.1 Number of Memory Accesses
	4.6.1 OWCAP Execution Time Measurements
	4.6.2 Memory Detection Rate
	4.6.2.1 Memory Detection Rate of OWCAP Using RC-4

	Table 4.3 Memory Detection Rate Using RC-4
	4.6.2.2Memory Detection Rate of OWCAP Using RC-5

	Table 4.4 Memory Detection Rate Using RC-5
	4.6.2.3 Memory Detection Rate of OWCAP Using Skipjack

	Table 4.5 Memory Detection Rate Using Skipjack
	4.6.2.4 Memory Detection Rate of OWCAP Using SHA-2

	Table 4.6 Memory Detection Rate Using SHA-2
	Efficiency of OWCAP
	Energy Consumption of OWCAP
	OWCAP Battery Backup
	Summary

	 0 %
	0 %
	Comparative Analysis
	5.1 Introduction
	In order to determine that OWCAP is an economical and a secure scheme as compared to all other code attestation schemes discussed in chapter 3, a detailed and a unique comparative analysis of all the schemes is done. The comparison is based on paramet...

	5.2 Computational Cost
	5.3 Number of Messages Transmitted
	Figure 5.1 Comparison of Message Transmission
	5.4 Storage Requirement
	5.5 Code Attestation Initiated by Whom and When
	5.6 Security Aspects
	5.7 Bandwidth (BW) Utilization
	5.8 Summary
	Conclusion and Future Work
	DEV C++ CODE OF OWCAP (RC-4) FOR SENSOR NODE
	DEV C++ CODE OF OWCAP (RC-4) FOR VERIFIER
	DEV C++ CODE OF OWCAP (RC-5) FOR SENSOR NODE
	DEV C++ CODE OF OWCAP (RC-5) FOR VERIFIER
	DEV C++ CODE OF OWCAP (SKIPJACK) FOR
	SENSOR NODE
	DEV C++ CODE OF OWCAP (SKIPJACK) FOR
	VERIFIER
	DEV C++ CODE OF OWCAP (SHA-2) FOR
	SENSOR NODE
	DEV C++ CODE OF OWCAP (SHA-2) FOR
	VERIFIER
	MS VISUAL STUDIO CODE FOR FILE GENERATION
	CODE COMPOSER CODE FOR OWCAP using RC-5
	BIBLIOGRAPHY
	[31]Javier López, Jianying Zhou, “Wireless Sensor Network Security”, IOS Press, 01-Jan-2008 – Computers, page 144
	[32] H.Khurana, M.Hadley, Ning Lu, and D.A.Frincke, “Smartgrid security issues,” IEEE Security & Privacy, vol. 8, no. 1, pp. 81–85, 2010
	[37] http://www.cs.gmu.edu/~setia/cs818/lectures/spins.pdf
	[38]http://en.wikipedia.org/wiki/RC5
	[46] http://en.wikipedia.org/wiki/ZigBee

