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FOREWORD

The Institute for Mathematical Sciences at the National University of

Singapore was established on 1 July 2000. Its mission is to foster mathemat-

ical research, both fundamental and multidisciplinary, particularly research

that links mathematics to other disciplines, to nurture the growth of mathe-

matical expertise among research scientists, to train talent for research in

the mathematical sciences, and to serve as a platform for research inter-

action between the scientific community in Singapore and the wider inter-

national community.

The Institute organizes thematic programs which last from one month

to six months. The theme or themes of a program will generally be of

a multidisciplinary nature, chosen from areas at the forefront of current

research in the mathematical sciences and their applications.

Generally, for each program there will be tutorial lectures followed by

workshops at research level. Notes on these lectures are usually made avail-

able to the participants for their immediate benefit during the program. The

main objective of the Institute’s Lecture Notes Series is to bring these lec-

tures to a wider audience. Occasionally, the Series may also include the pro-

ceedings of workshops and expository lectures organized by the Institute.

The World Scientific Publishing Company has kindly agreed to publish

the Lecture Notes Series. This Volume, “Random Matrix Theory and Its

Applications: Multivariate Statistics and Wireless Communications”, is the

eighteenth of this Series. We hope that through the regular publication

of these lecture notes the Institute will achieve, in part, its objective of

promoting research in the mathematical sciences and their applications.

February 2009 Louis H. Y. Chen

Ser Peow Tan

Series Editors
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PREFACE

Random matrices first appeared in multivariate statistics with the work of

Wishart, Hsu and others in the 1930s and enjoyed tremendous impetus in

the 1950s and 1960s due to the important contribution of Dyson, Gaudin,

Mehta and Wigner.

The 1990s and beyond saw a resurgent random matrix theory because

of the rapid development in low-dimensional string theory.

The next high-water mark involves the discovery of probability laws

of the extreme eigenvalues of certain families of large random matrices

made by Tracy and Widom. These turned out to be particular solutions

of Painlevé equations building on the work of Jimbo, Miwa, Mori, Sato,

Mehta, Korepin, Its and others.

The current volume in the IMS series resulting from a workshop held at

the Institute for Mathematical Science of the National University of Singa-

pore in 2006 has five extensive lectures on various aspect of random matrix

theory and its applications to statistics and wireless communications.

Chapter 1 by Jack Silverstein studies the eigenvalue, in particular, the

eigenvalue density of a general class of random matrices — only mild con-

ditions were imposed on the entries — using the Stieltjes transform. This

is followed by Chapter 2 of Peter Forrester which deals with those class

random matrices where there is an explicit joint probability density of the

eigenvalues and the “symmetry” parameter β which describe the logarith-

mic repulsion between the eigenvalues takes on general values. Chapter 3

by Zhidong Bai is a survey of the future in statistics taking into account

of the impact modern high speed computing facilities and storage space. In

the next two chapters, one finds applications of random matrix theory to

wireless communications typified in the multi-input multi-output situation

commonly found, for example, in mobile phones. Chapter 4 by Antonia

Tulino uses the Shannon transform — intimately related to the Stieltjes

ix
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x Preface

transform discussed in Chapter 1 — to compute quantities of interest in

wireless communication. In the last chapter, Ralf Muller made use of the

Replica Methods developed by Edwards and Anderson in their investigation

of spin-glasses to tackle multiuser problems in wireless communications.

February 2009 Zhidong Bai

National University of Singapore, Singapore

& Northeast Normal University, P. R. China

Yang Chen

Imperial College London, UK

Ying-Chang Liang

Institute of Infocomm Research, Singapore

Editors



May 5, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 01-Silverstein

THE STIELTJES TRANSFORM AND ITS ROLE IN
EIGENVALUE BEHAVIOR OF LARGE DIMENSIONAL

RANDOM MATRICES

Jack W. Silverstein

Department of Mathematics
North Carolina State University

Box 8205, Raleigh, North Carolina 27695-8205, USA
E-mail: jack@math.ncsu.edu

These lectures introduce the concept of the Stieltjes transform of a mea-
sure, an analytic function which uniquely chacterizes the measure, and
its importance to spectral behavior of random matrices.

1. Introduction

Let M(R) denote the collection of all subprobability distribution func-
tions on R. We say for {Fn} ⊂ M(R), Fn converges vaguely to F ∈
M(R) (written Fn

v−→ F ) if for all [a, b], a, b continuity points of F ,
limn→∞ Fn{[a, b]} = F{[a, b]}. We write Fn

D−→ F , when Fn, F are prob-
ability distribution functions (equivalent to limn→∞ Fn(a) = F (a) for all
continuity points a of F ).

For F ∈ M(R),

mF (z) ≡
∫

1
x − z

dF (x), z ∈ C
+ ≡ {z ∈ C : �z > 0}

is defined as the Stieltjes transform of F .
Below are some fundamental properties of Stieltjes transforms:

(1) mF is an analytic function on C+.
(2) �mF (z) > 0.

(3) |mF (z)| ≤ 1
�z .

1
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2 J. W. Silverstein

(4) For continuity points a < b of F

F{[a, b]} =
1
π

lim
η→0+

∫ b

a

�mF (ξ + iη)dξ,

since the right hand side

=
1
π

lim
η→0+

∫ b

a

∫
η

(x − ξ)2 + η2
dF (x)dξ

=
1
π

lim
η→0+

∫ ∫ b

a

η

(x − ξ)2 + η2
dξdF (x)

=
1
π

lim
η→0+

∫ [
Tan−1

(
b − x

η

)
− Tan−1

(
a − x

η

)]
dF (x)

=
∫

I[a,b]dF (x) = F{[a, b]}.

(5) If, for x0 ∈ R, �mF (x0) ≡ limz∈C+→x0 �mF (z) exists, then F is differ-
entiable at x0 with value ( 1

π )�mF (x0) ([9]).

Let S ⊂ C+ be countable with a cluster point in C+. Using ([4]), the
fact that Fn

v−→ F is equivalent to∫
fn(x)dFn(x) →

∫
f(x)dF (x)

for all continuous f vanishing at ±∞, and the fact that an analytic function
defined on C+ is uniquely determined by the values it takes on S, we have

Fn
v−→ F ⇐⇒ mFn(z) → mF (z) for all z ∈ S.

The fundamental connection to random matrices is:

For any Hermitian n × n matrix A, we let FA denote the empirical
distribution function (e.d.f.) of its eigenvalues:

FA(x) =
1
n

(number of eigenvalues of A ≤ x).

Then

mF A(z) =
1
n

tr (A − zI)−1.
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So, if we have a sequence {An} of Hermitian random matrices, to show,
with probability one, FAn

v−→ F for some F ∈ M(R), it is equivalent to
show for any z ∈ C+

1
n

tr (An − zI)−1 → mF (z) a.s.

The main goal of the lectures is to show the importance of the Stielt-
jes transform to limiting behavior of certain classes of random matrices.
We will begin with an attempt at providing a systematic way to show a.s.
convergence of the e.d.f.’s of the eigenvalues of three classes of large di-
mensional random matrices via the Stieltjes transform approach. Essential
properties involved will be emphasized in order to better understand where
randomness comes in and where basic properties of matrices are used.

Then it will be shown, via the Stieltjes transform, how the limiting dis-
tribution can be numerically constructed, how it can explicitly (mathemat-
ically) be derived in some cases, and, in general, how important qualitative
information can be inferred. Other results will be reviewed, namely the
exact separation properties of eigenvalues, and distributional behavior of
linear spectral statistics.

It is hoped that with this knowledge other ensembles can be explored
for possible limiting behavior.

Each theorem below corresponds to a matrix ensemble. For each one
the random quantities are defined on a common probability space. They all
assume:

For n = 1, 2, . . . Xn = (Xn
ij), n×N , Xn

ij ∈ C, i.d. for all n, i, j, independent
across i, j for each n, E|X1

1 1−EX1
1 1|2 = 1, and N = N(n) with n/N → c > 0

as n → ∞.

Theorem 1.1. ([6], [8]). Assume:

(a) Tn = diag(tn1 , . . . , tnn), tni ∈ R, and the e.d.f. of {tn1 , . . . , tnn} converges
weakly, with probability one, to a nonrandom probability distribution
function H as n → ∞.

(b) An is a random N ×N Hermitian random matrix for which FAn
v−→ A

where A is nonrandom (possibly defective).
(c) Xn, Tn, and An are independent.

Let Bn = An + (1/N)X∗
nTnXn. Then, with probability one, FBn

v−→ F̂ as
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n → ∞ where for each z ∈ C+ m = mF̂ (z) satisfies

m = mA

(
z − c

∫
t

1 + tm
dH(t)

)
. (1.1)

It is the only solution to (1.1) with positive imaginary part.

Theorem 1.2. ([10], [7]). Assume:
Tn n × n is random Hermitian non-negative definite, independent of Xn

with FTn
D−→ H a.s. as n → ∞, H nonrandom.

Let T
1/2
n denote any Hermitian square root of Tn, and define Bn =

(1/N)T 1/2
n XX∗T 1/2

n . Then, with probability one, FBn
D−→ F as n → ∞

where for each z ∈ C+ m = mF (z) satisfies

m =
∫

1
t(1 − c − czm) − z

dH(t). (1.2)

It is the only solution to (1.2) in the set {m ∈ C : −(1− c)/z + cm ∈ C+}.
Theorem 1.3. ([3]). Assume:
Rn n × N is random, independent of Xn, with F (1/N)RnR∗

n
D−→ H a.s. as

n → ∞, H nonrandom.
Let Bn = (1/N)(Rn + σXn)(Rn + σXn)∗ where σ > 0, nonrandom.

Then, with probability one, FBn
D−→ F as n → ∞ where for each z ∈ C+

m = mF (z) satisfies

m =
∫

1
t

1+σ2cm − (1 + σ2cm)z + σ2(1 − c)
dH(t) . (1.3)

It is the only solution to (1.3) in the set {m ∈ C+ : �(mz) ≥ 0}.
Remark 1.4. In Theorem 1.1, if An = 0 for all n large, then mA(z) = −1/z

and we find that mF has an inverse

z = − 1
m

+ c

∫
t

1 + tm
dH(t). (1.4)

Since

F (1/N)X∗
nTnXn =

(
1 − n

N

)
I[0,∞) +

n

N
F (1/N)T 1/2

n XnX∗
nT 1/2

n

we have

mF (1/N)X∗
nTnXn (z) = −1 − n/N

z
+

n

N
m

F (1/N)T1/2
n XnX∗

nT
1/2
n

(z) z ∈ C
+,

(1.5)
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so we have

mF̂ (z) = −1 − c

z
+ cmF (z). (1.6)

Using this identity, it is easy to see that (1.2) and (1.4) are equivalent.

2. Why These Theorems are True

We begin with three facts which account for most of why the limiting results
are true, and the appearance of the limiting equations for the Stieltjes
transforms.

Lemma 2.1. For n×n A, q ∈ Cn, and t ∈ C with A and A+tqq∗ invertible,
we have

q∗(A + tqq∗)−1 =
1

1 + tq∗A−1q
q∗A−1

(since q∗A−1(A + tqq∗) = (1 + tq∗A−1q)q∗).

Corollary 2.1. For q = a + b, t = 1 we have

a∗(A + (a + b)(a + b)∗)−1 = a∗A−1 − a∗A−1(a + b)
1 + (a + b)∗A−1(a + b)

(a + b)∗A−1

=
1 + b∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
a∗A−1 − a∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
b∗A−1.

Proof. Using Lemma 2.1, we have

(A+(a+ b)(a+ b)∗)−1 −A−1 = −(A+(a+ b)(a+ b)∗)−1(a+ b)(a+ b)∗A−1

= − 1
1 + (a + b)∗A−1(a + b)

A−1(a + b)(a + b)∗A−1 .

Multiplying both sides on the left by a∗ gives the result.

Lemma 2.2. For n × n A and B, with B Hermitian, z ∈ C+, t ∈ R, and
q ∈ Cn, we have

|tr [(B−zI)−1−(B+tqq∗−zI)−1]A|=
∣∣∣∣tq∗(B−zI)−1A((B−zI)−1q

1+tq∗(B−zI)−1q

∣∣∣∣≤ ‖A‖
�z

.
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Proof. The identity follows from Lemma 2.1. We have∣∣∣∣tq∗(B − zI)−1A((B − zI)−1q

1 + tq∗(B − zI)−1q

∣∣∣∣ ≤ ‖A‖|t| ‖(B − zI)−1q‖2

|1 + tq∗(B − zI)−1q| .

Write B =
∑

i λieie
∗
i , its spectral decomposition. Then

‖(B − zI)−1q‖2 =
∑

i

|e∗i q|2
|λi − z|2

and

|1 + tq∗(B − zI)−1q| ≥ |t|�(q∗(B − zI)−1q) = |t|�z
∑

i

|e∗i q|2
|λi − z|2 .

Lemma 2.3. For X = (X1, . . . , Xn)T i.i.d. standardized entries, C n× n,
we have for any p ≥ 2

E|X∗CX − trC|p ≤ Kp

((
E|X1|4trCC∗)p/2 + E|X1|2ptr (CC∗)p/2

)
where the constant Kp does not depend on n, C, nor on the distribution of
X1. (Proof given in [1].)

From these properties, roughly speaking, we can make observations like
the following: for n × n Hermitian A, q = (1/

√
n)(X1, . . . , Xn)T , with Xi

i.i.d. standardized and independent of A, and z ∈ C+, t ∈ R

tq∗(A + tqq∗ − zI)−1q =
tq∗(A − zI)−1q

1 + tq∗(A − zI)−1q

= 1 − 1
1 + tq∗(A − zI)−1q

≈ 1 − 1
1 + t(1/n)tr (A − zI)−1

≈ 1 − 1
1 + t mA+tqq∗(z)

.

Making this and other observations rigorous requires technical consid-
erations, the first being truncation and centralization of the elements of
Xn, and truncation of the eigenvalues of Tn in Theorem 1.2 (not needed
in Theorem 1.1) and (1/n)RnR∗

n in Theorem 1.3, all at a rate slower than
n (a ln n for some positive a is sufficient). The truncation and centraliza-
tion steps will be outlined later. We are at this stage able to go through
algebraic manipulations, keeping in mind the above three lemmas, and in-
tuitively derive the equations appearing in each of the three theorems. At
the same time we can see what technical details need to be worked out.
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Before continuing, two more basic properties of matrices are included
here.

Lemma 2.4. Let z1, z2 ∈ C+ with max(� z1,� z2) ≥ v > 0, A and B n×n

with A Hermitian, and q ∈ CCn. Then

|trB((A − z1I)−1 − (A − z2I)−1)| ≤ |z2 − z1|N‖B‖ 1
v2

, and

|q∗B(A − z1I)−1q − q∗B(A − z2I)−1q| ≤ |z2 − z1| ‖q‖2‖B‖ 1
v2

.

Consider first the Bn in Theorem 1.1. Let qi denote 1/
√

N times the
ith column of X∗

n. Then

(1/N)X∗
nTnXn =

n∑
i=1

tiqiq
∗
i .

Let B(i) = Bn − tiqiq
∗
i . For any z ∈ C+ and x ∈ C we write

Bn − zI = An − (z − x)I + (1/N)X∗
nTnXn − xI.

Taking inverses we have

(An − (z − x)I)−1

= (Bn − zI)−1 + (An − (z − x)I)−1((1/N)X∗
nTnXn − xI)(Bn − zI)−1.

Dividing by N , taking traces and using Lemma 2.1 we find

mF An (z − x) − mF Bn (z)

= (1/N)tr (An − (z − x)I)−1

(
n∑

i=1

tiqiq
∗
i − xI

)
(Bn − zI)−1

= (1/N)
n∑

i=1

tiq
∗
i (B(i) − zI)−1(An − (z − x)I)−1qi

1 + tiq∗i (B(i) − zI)−1qi

− x(1/N)tr (Bn − zI)−1(An − (z − x)I)−1.

Notice when x and qi are independent, Lemmas 2.2, 2.3 give us

q∗i (B(i)−zI)−1(An−(z−x)I)−1qi ≈ (1/N)tr (Bn−zI)−1(An−(z−x)I)−1.

Letting

x = xn = (1/N)
n∑

i=1

ti
1 + timF Bn (z)
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we have

mF An (z − xn) − mF Bn (z) = (1/N)
n∑

i=1

ti
1 + timF Bn (z)

di (2.1)

where

di =
1 + timF Bn (z)

1 + tiq∗i (B(i) − zI)−1qi
q∗i (B(i) − zI)−1(An − (z − xn)I)−1qi

− (1/N)tr (Bn − zI)−1(An − (z − xn)I)−1 .

In order to use Lemma 2.3, for each i, xn is replaced by

x(i) = (1/N)
n∑

j=1

tj
1 + tjmF

B(i) (z)
.

An outline of the remainder of the proof is given. It is easy to argue that
if A is the zero measure on R (that is, almost surely, only o(N) eigenvalues
of An remain bounded), then the Stieltjes transforms of FAn and FBn

converge a.s. to zero, the limits obviously satisfying (1.1). So we assume A
is not the zero measure. One can then show

δ = inf
n

�(mF Bn (z))

is positive almost surely.
Using Lemma 2.3 (p = 6 is sufficient) and the fact that all matrix in-

verses encountered are bounded in spectral norm by 1/�z we have from
standard arguments using Boole’s and Chebyshev’s inequalities, almost
surely

max
i≤n

max[| ‖qi‖2 − 1|, |q∗i (B(i) − zI)−1qi − m
F

B(i) (z)|, (2.2)

|q∗i (B(i)−zI)−1(An−(z−x(i))I)−1qi− 1
N

tr (B(i)−zI)−1(An−(z−x(i))I)−1|]

→ 0 as n → ∞.

Consider now a realization for which (2.2) holds, δ > 0, FTn
D−→ H , and

FAn
v−→ A. From Lemma 2.2 and (2.2) we have

max
i≤n

max[|mF Bn (z)−m
F

B(i) (z)|, |mF Bn (z)−q∗i (B(i)−zI)−1qi|] → 0, (2.3)

and subsequently

max
i≤n

max
[∣∣∣∣ 1 + timF Bn (z)

1 + tiq∗i (B(i) − zI)−1qi
− 1
∣∣∣∣ , |x − x(i)|

]
→ 0. (2.4)
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Therefore, from Lemmas 2.2, 2.4, and (2.2)-(2.4), we get maxi≤n di → 0,
and since ∣∣∣∣ ti

1 + timF Bn (z)

∣∣∣∣ ≤ 1
δ
,

we conclude from (2.1) that

mF An (z − xn) − mF Bn (z) → 0.

Consider a subsequence {ni} on which mF Bni
(z) converges to a number

m. It follows that

xni → c

∫
t

1 + tm
dH(t).

Therefore, m satisfies (1.1). Uniqueness (to be discussed later) gives us, for
this realization mF Bn (z) → m. This event occurs with probability one.

3. The Other Equations

Let us now derive the equation for the matrix Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n ,

after the truncation steps have been taken. Let cn = n/N , qj = (1/
√

n)X·j
(the jth column of Xn), rj = (1/

√
N)T 1/2

n X·j, and B(j) = Bn − rjr
∗
j . Fix

z ∈ C
+ and let mn(z) = mF Bn (z), mn(z) = mF (1/N)X∗

nTnXn (z). By (1.5)
we have

mn(z) = −1 − cn

z
+ cnmn. (3.1)

We first derive an identity for mn(z). Write

Bn − zI + zI =
N∑

j=1

rjr
∗
j .

Taking the inverse of Bn − zI on the right on both sides and using
Lemma 2.1, we find

I + z(Bn − zI)−1 =
N∑

j=1

1
1 + r∗j (B(j) − zI)−1rj

rjr
∗
j (B(j) − zI)−1.

Taking the trace on both sides and dividing by N we have

cn + zcnmn =
1
N

N∑
j=1

r∗j (B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

= 1 − 1
N

N∑
j=1

1
1 + r∗j (B(j) − zI)−1rj

.
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Therefore

mn(z) = − 1
N

N∑
j=1

1
z(1 + r∗j (B(j) − zI)−1rj)

. (3.2)

Write Bn − zI − (−zmn(z)Tn − zI
)

=
∑N

j=1 rjr
∗
j − (−zmn(z))Tn. Taking

inverses and using Lemma 2.1, (3.2) we have

(−zmn(z)Tn − zI)−1 − (Bn − zI)−1

= (−zmn(z)Tn − zI)−1

[
N∑

j=1

rjr
∗
j − (−zmn(z))Tn

]
(Bn − zI)−1

=
N∑

j=1

−1
z(1 + r∗j (B(j) − zI)−1rj)

[
(mn(z)Tn + I)−1rjr

∗
j (B(j) − zI)−1

− (1/N)(mn(z)Tn + I)−1Tn(Bn − zI)−1
]
.

Taking the trace and dividing by n we find

(1/n)tr (−zmn(z)Tn − zI)−1 − mn(z) =
1
N

N∑
j=1

−1
z(1 + r∗j (B(j)− zI)−1rj)

dj

where

dj = q∗j T 1/2
n (B(j) − zI)−1(mn(z)Tn + I)−1T 1/2

n qj

− (1/n)tr (mn(z)Tn + I)−1Tn(Bn − zI)−1.

The derivation for Theorem 1.3 will proceed in a constructive way. Here
we let xj and rj denote, respectively, the jth columns of Xn and Rn (after
truncation). As before mn = mF Bn , and let

mn(z) = mF (1/N)(Rn+σXn)∗(Rn+σXn)(z).

We have again the relationship (3.1). Notice then equation (1.3) can be
written

m =
∫

1
t

1+σ2cm − σ2zm− z
dH(t) (3.3)

where

m = −1 − c

z
+ cm.

Let B(j) = Bn − (1/N)(rj + σxj)(rj + σxj)∗. Then, as in (3.2) we have

mn(z) = − 1
N

N∑
j=1

1
z(1 + (1/N)(rj + σxj)∗(B(j) − zI)−1(rj + σxj))

. (3.4)
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Pick z ∈ C+. For any n × n Yn we write

Bn − zI − (Yn − zI) =
1
N

N∑
j=1

(rj + σxj)(rj + σxj)∗ − Yn.

Taking inverses, dividing by n and using Lemma 2.1 we get

(1/n)tr (Yn − zI)−1 − mn(z)

=
1
N

N∑
j=1

(1/n)(rj + σxj)∗(B(j) − zI)−1(Yn − zI)−1(rj + σxj)
1 + (1/N)(rj + σxj)∗(B(j) − zI)−1(rj + σxj)

− (1/n)tr (Yn − zI)−1Yn(Bn − zI)−1.

The goal is to determine Yn so that each term goes to zero. Notice first that

(1/n)x∗
j (B(j) − zI)−1(Yn − zI)−1xj ≈ (1/n)tr (Bn − zI)−1(Yn − zI)−1,

so from (3.4) we see that Yn should have a term

−σ2zmn(z)I.

Since for any n × n C bounded in norm

|(1/n)x∗
jCrj |2 = (1/n2)x∗

jCrjr
∗
j C∗xj

we have from Lemma 2.3

|(1/n)x∗
jCrj |2 ≈ (1/n2)trCrjr

∗
j C∗ = (1/n2)r∗j C∗Crj = o(1) (3.5)

(from truncation (1/N)‖rj‖2 ≤ ln n), so the cross terms are negligible.
This leaves us (1/n)r∗j (B(j) − zI)−1(Yn − zI)−1rj . Recall Corollary 2.1:

a∗(A + (a + b)(a + b)∗)−1

=
1 + b∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
a∗A−1 − a∗A−1(a + b)

1 + (a + b)∗A−1(a + b)
b∗A−1.

Identify a with (1/
√

N)rj , b with (1/
√

N)σxj , and A with B(j). Using
Lemmas 2.2, 2.3 and (3.5), we have

(1/n)r∗j (Bn − zI)−1(Yn − zI)−1rj

≈ 1 + σ2cnmn(z)
1+ 1

N (rj+σxj)∗(B(j)−zI)−1(rj+σxj)
1
n

r∗j (B(j)−zI)−1(Yn−zI)−1rj .
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Therefore

1
N

N∑
j=1

(1/n)r∗j (B(j) − zI)−1(Yn − zI)−1rj

1 + 1
N (rj + σxj)∗(B(j) − zI)−1(rj + σxj)

≈ 1
N

N∑
j=1

(1/n)r∗j (Bn − zI)−1(Yn − zI)−1rj

1 + σ2cnmn(z)

= (1/n)
1

1 + σ2cnmn(z)
tr (1/N)RnR∗

n(Bn − zI)−1(Yn − zI)−1.

So we should take

Yn =
1

1 + σ2cnmn(z)
(1/N)RnR∗

n − σ2zmn(z)I.

Then (1/n)tr (Yn − zI)−1 will approach the right hand side of (3.3).

4. Proof of Uniqueness of (1.1)

For m ∈ C
+ satisfying (1.1) with z ∈ C

+ we have

m =
∫

1

τ −
(
z − c

∫
t

1+tmdH(t)
)dA(τ)

=
∫

1

τ −�
(
z − c

∫
t

1+tmdH(t)
)
− i
(
�z + c

∫
t2�m

|1+tm|2 dH(t)
)dA(τ) .

Therefore

�m =
(
�z + c

∫
t2�m

|1 + tm|2 dH(t)
)∫

1∣∣∣τ − z + c
∫

t
1+tmdH(t)

∣∣∣2 dA(τ) .

(4.1)
Suppose m ∈ C+ also satisfies (1.1). Then

m − m = c

∫ [∫
t

1+tm − t
1+tm

]
dH(t)(

τ − z + c
∫

t
1+tmdH(t)

)(
τ − z + c

∫
t

1+tmdH(t)
)dA(τ)

× (m − m)c
∫

t2

(1 + tm)(1 + tm)
dH(t) (4.2)
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×
∫

1(
τ − z + c

∫
t

1+tm dH(t)

)(
τ − z + c

∫
t

1+tm dH(t)

)dA(τ).

Using Cauchy-Schwarz and (4.1) we have

∣∣∣∣c ∫ t2

(1 + tm)(1 + tm)
dH(t)

×
∫

1(
τ − z + c

∫
t

1+tm dH(t)

)(
τ − z + c

∫
t

1+tm dH(t)

)dA(τ)
∣∣∣∣

≤

c

∫
t2

|1 + tm|2 dH(t)
∫

1∣∣∣τ − z + c
∫

t
1+tm dH(t)

∣∣∣2 dA(τ)


1/2

×

c

∫
t2

|1 + tm|2 dH(t)
∫

1∣∣∣τ − z + c
∫

t
1+tmdH(t)

∣∣∣2 dA(τ)


1/2

=

c

∫
t2

|1 + tm|2 dH(t)
�m(

�z + c
∫

t2�m
|1+tm|2 dH(t)

)
1/2

×
c

∫
t2

|1 + tm|2 dH(t)
�m(

�z + c
∫

t2�m
|1+tm|2 dH(t)

)
1/2

< 1.

Therefore, from (4.2) we must have m = m.

5. Truncation and Centralization

We outline here the steps taken to enable us to assume in the proof of
Theorem 1.1, for each n, the Xij ’s are bounded by a multiple of lnn. The
following lemmas are needed.

Lemma 5.1. Let X1, . . . , Xn be i.i.d. Bernoulli with p = P(X1 = 1) < 1/2.
Then for any ε > 0 such that p + ε ≤ 1/2 we have

P

(
1
n

n∑
i=1

Xi − p ≥ ε

)
≤ e−

nε2
2(p+ε) .
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Lemma 5.2. Let A be N ×N Hermitian, Q, Q both n×N , and T , T both
n × n Hermitian. Then

(a) ‖FA+Q∗TQ − FA+Q
∗
TQ‖ ≤ 2

N
rank(Q − Q)

and

(b) ‖FA+Q∗TQ − FA+Q∗TQ‖ ≤ 1
N

rank(T − T ).

Lemma 5.3. For rectangular A, rank(A) ≤ the number of nonzero entries
of A.

Lemma 5.4. For Hermitian N × N matrices A, B

N∑
i=1

(λA
i − λB

i )2 ≤ tr (A − B)2.

Lemma 5.5. Let {fi} be an enumeration of all continuous functions that
take a constant 1

m value (m a positive integer) on [a, b], where a, b are
rational, 0 on (−∞, a − 1

m ] ∪ [b + 1
m ,∞), and linear on each of [a − 1

m , a],
[b, b + 1

m ]. Then

(a) for F1, F2 ∈ M(R)

D(F1, F2) ≡
∞∑

i=1

∣∣∣∣∫ fidF1 −
∫

fidF2

∣∣∣∣ 2−i

is a metric on M(R) inducing the topology of vague convergence.
(b) For FN , GN ∈ M(R)

lim
N→∞

‖FN − GN‖ = 0 =⇒ lim
N→∞

D(FN , GN ) = 0.

(c) For empirical distribution functions F, G on the (respective) sets
{x1, . . . , xN}, {y1, . . . , yN}

D2(F, G) ≤
 1

N

N∑
j=1

|xj − yj |
2

≤ 1
N

N∑
j=1

(xj − yj)2.

Let pn = P(|X11| ≥ √
n). Since the second moment of X11 is finite we

have

npn = o(1). (5.1)



May 5, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 01-Silverstein

Stieltjes Transform and Random Matrices 15

Let X̂ij = XijI(|Xij |<√
n) and B̂n = An +(1/N)X̂∗

nTnX̂n, where X̂ = (X̂ij).
Then from Lemmas 5.2(a), 5.3, for any positive ε

P(‖FBn − F B̂n‖ ≥ ε) ≤ P

(
2
N

∑
ij

I(|Xij |≥√
n) ≥ ε

)

= P

(
1

Nn

∑
ij

I(|Xij |≥√
n) − pn ≥ ε

2n
− pn

)
.

Then by Lemma 5.1, for all n large

P(‖FBn − F B̂n‖ ≥ ε) ≤ e−
Nε
16 ,

which is summable. Therefore

‖FBn − F B̂n‖ a.s.−→ 0.

Let B̃n = An + (1/N)X̃nTnX̃∗
n where X̃n = X̂n − EX̂n. Since

rank(EX̂n) ≤ 1, we have from Lemma 5.2(a)

‖F B̂n − F B̃n‖ −→ 0.

For α > 0 define Tα = diag(tn1 I(|tn
1 |≤α), . . . , t

n
nI(|tn

n|≤α)), and let Q be
any n × N matrix. If α and −α are continuity points of H , we have by
Lemma 5.2(b)

‖FAn+Q∗TnQ − FAn+Q∗TαQ‖

≤ 1
N

rank(Tn − Tα) =
1
N

n∑
i=1

I(|tn
i |>α)

a.s.−→ cH{[−α, α]c}.

It follows that if α = αn → ∞ then

‖FAn+Q∗TnQ − FAn+Q∗TαQ‖ a.s.−→ 0.

Let Xij = X̃ijI(|Xij |<lnn) − EX̃ijI(|Xij |<lnn), Xn = ((1/
√

N)Xij),

Xij = X̃ij − X ij , and Xn = ((1/
√

N)Xij). Then, from Lemmas 5.5(c)
and 5.4 and simple applications of Cauchy-Schwarz we have

D2(FAn+X̃nTαX̃∗
n , FA+XnTαXn

∗
) ≤ 1

N
tr (X̃nTαX̃∗

n − XnTαXn
∗
)2

≤ 1
N

[tr (XnTαX
∗
n)2 + 4tr (XnTαX

∗
nXnTαX

∗
n)

+ 4(tr (XnTαX
∗
nXnTαX

∗
n)tr (XnTαX

∗
n)2)1/2].
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We have

tr (XnTαX
∗
n)2 ≤ α2tr (X X

∗
)2

and

tr (XnTαX
∗
nXTαX

∗
) ≤ (α4tr (X X

∗
)2tr (X X

∗
)2)1/2.

Therefore, to verify

D(FA+X̃TαX̃ ∗
, FA+XTαX ∗

) a.s.−→ 0

it is sufficient to find a sequence {αn} increasing to ∞ so that

α4
n

1
N

tr (X X
∗
)2 a.s.−→ 0 and

1
N

tr (X X
∗
)2 = O(1) a.s.

The details are omitted.
Notice the matrix diag(E|X1 1|2tn1 , . . . , E|X1 1|2tnn) also satisfies assump-

tion (a) of Theorem 1.1. Just substitute this matrix for Tn, and replace Xn

by (1/
√

E|X1 1|2)Xn. Therefore we may assume

(1) Xij are i.i.d. for fixed n,
(2) |X11| ≤ a lnn for some positive a,
(3) EX11 = 0, E|X11|2 = 1.

6. The Limiting Distributions

The Stieltjes transform provides a great deal of information to the nature
of the limiting distribution F̂ when An = 0 in Theorem 1.1, and F in
Theorems 1.2, 1.3. For the first two

z = − 1
m

+ c

∫
t

1 + tm
dH(t)

is the inverse of m = mF̂ (z), the limiting Stieltjes transform of
F (1/N)X∗

nTnXn . Recall, when Tn is nonnegative definite, the relationships
between F , the limit of F (1/N)T 1/2

n XnX∗
nT 1/2

n and F̂

F̂ (x) = 1 − cI[0,∞)(x) + cF (x),

and mF and mF̂

mF̂ (z) = −1 − c

z
+ cmF (z).

Based solely on the inverse of mF̂ the following is shown in [9]: (1) For all
x ∈ R, x �= 0

lim
z∈C+→x

mF̂ (z) ≡ m0(x)
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exists. The function m0 is continuous on R − {0}. Consequently, by prop-
erty (5) of Stieltjes transforms, F̂ has a continuous derivative f on R−{0}
given by f̂(x) = 1

π�m0(x) (F subsequently has derivative f = 1
c f̂). The

density f̂ is analytic (possess a power series expansion) for every x �= 0 for
which f(x) > 0. Moreover, for these x, πf(x) is the imaginary part of the
unique m ∈ C+ satisfying

x = − 1
m

+ c

∫
t

1 + tm
dH(t).

(2) Let xF̂ denote the above function of m. It is defined and analytic
on B ≡ {m ∈ R : m �= 0,−m−1 ∈ Sc

H} (Sc
G denoting the complement of

the support of distribution G). Then if x ∈ Sc
F̂

we have m = m0(x) ∈ B

and x′
F̂

(m) > 0. Conversely, if m ∈ B and x = x′
F̂

(m) > 0, then x ∈ Sc
F̂
.

We see then a systematic way of determining the support of F̂ : Plot
xF̂ (m) for m ∈ B. Remove all intervals on the vertical axis corresponding
to places where xF̂ is increasing. What remains is SF̂ , the support of F̂ .

Let us look at an example where H places mass at 1, 3, and 10, with
respective probabilities .2, .4, and .4, and c = .1. Figure (b) on the next
page is the graph of

xF̂ (m) = − 1
m

+ .1
(

.2
1

1 + m
+ .4

3
1 + 3m

+ .4
10

1 + 10m

)
.

We see the support boundaries occur at relative extreme values. These
values were estimated and for values of x ∈ SF̂ , f(x) = 1

cπ�m0(x) was
computed using Newton’s method on x = xF̂ (m), resulting in figure (a).

It is possible for a support boundary to occur at a boundary of the
support of B, which would only happen for a nondiscrete H . However, we
have

(3) Suppose support boundary a is such that mF̂ (a) ∈ B, and is a
left-endpoint in the support of F̂ . Then for x > a and near a

f(x) =
(∫ x

a

g(t)dt

)1/2

where g(a) > 0 (analogous statement holds for a a right-endpoint in the
support of F̂ ). Thus, near support boundaries, f and the square root func-
tion share common features, as can be seen in figure (a).
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It is remarked here that similar results have been obtained for the ma-
trices in Theorem 1.3. See [4].

Explicit solutions can be derived in a few cases. Consider the Mařcenko-
Pastur distribution, where Tn = I. Then m = m0(x) solves

x = − 1
m

+ c
1

1 + m
,

resulting in the quadratic equation

xm2 + m(x + 1 − c) + 1 = 0

with solution

m =
−(x + 1 − c) ±√(x + 1 − c)2 − 4x

2x
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=
−(x + 1 − c) ±√x2 − 2x(1 + c) + (1 − c)2

2x

=
−(x + 1 − c) ±

√
(x − (1 −√

c)2)(x − (1 +
√

c)2)
2x

.

We see the imaginary part of m is zero when x lies outside the interval
[(1 −√

c)2, (1 +
√

c)2], and we conclude that

f(x) =


√

(x−(1−√
c)2)((1+

√
c)2−x)

2πcx x ∈ ((1 −√
c)2, (1 +

√
c)2)

0 otherwise.

The Stieltjes transform in the multivariate F matrix case, that is, when
Tn = ((1/N ′)XnX∗

n)−1, Xn n × N ′ containing i.i.d. standardized entries,
n/N ′ → c′ ∈ (0, 1), also satisfies a quadratic equation. Indeed, H now is
the distribution of the reciprocal of a Marčenko-Pastur distributed random
variable which we’ll denote by Xc′ , the Stieltjes transform of its distribution
denoted by mXc′ . We have

x = − 1
m

+ cE

( 1
Xc′

1 + 1
Xc′

m

)
= − 1

m
+ cE

(
1

Xc′ + m

)

= − 1
m

+ cmXc′ (−m).

From above we have

mXc′ (z) =
1 − c′

c′z
+

−(z + 1 − c) +
√

(z + 1 − c)2 − 4z

2zc′

=
−z + 1 − c′ +

√
(z + 1 − c′)2 − 4z

2zc′

(the square root defined so that the expression is a Stieltjes transform) so
that m = m0(x) satisfies

x = − 1
m

+ c

(
m + 1 − c +

√
(−m + 1 − c)2 + 4m
−2mc′

)
.

It follows that m satisfies

m2(c′x2 + cx) + m(2c′x − c2 + c + cx(1 − c′)) + c′ + c(1 − c′) = 0.
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Solving for m we conclude that, with

b1 =
(

1 −√1 − (1 − c)(1 − c′)
1 − c′

)2

b2 =
(

1 −√1 − (1 − c)(1 − c′)
1 − c′

)2

f(x) =


(1−c′)

√
(x−b1)(b2−x)

2πx(xc′+c) b1 < x < b2

0 otherwise.

7. Other Uses of the Stieltjes Transform

We conclude these lectures with two results requiring Stieltjes transforms.
The first concerns the eigenvalues of matrices in Theorem 1.2 outside the

support of the limiting distribution. The results mentioned so far clearly say
nothing about the possibility of some eigenvalues lingering in this region.
Consider this example with Tn given earlier, but now c = .05. Below is a
scatterplot of the eigenvalues from a simulation with n = 200 (N = 4000),
superimposed on the limiting density.

 0  2  4  6  8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

........................................ ................................................................................ ................................................................................

 1    3   10
.2   .4   .4
c=.05  n=200

Here the entries of Xn are N(0, 1). All the eigenvalues appear to stay close
to the limiting support. Such simulations were the prime motivation to
prove
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Theorem 7.1. ([1]). Let, for any d > 0 and d.f. G, F̂ d,G denote the lim-
iting e.d.f. of (1/N)X∗

nTnXn corresponding to limiting ratio d and limiting
FTnG.

Assume in addition to the previous assumptions:

(a) EX11 = 0, E|X11|2 = 1, and E|X11|4 < ∞.
(b) Tn is nonrandom and ‖Tn‖ is bounded in n.
(c) The interval [a, b] with a > 0 lies in an open interval outside the support

of F̂ cn,Hn for all large n, where Hn = FTn .

Then

P(no eigenvalue of Bn appears in [a, b] for all large n) = 1.

Steps in proof: (1) Let Bn = (1/N)X∗
nTnXn mn = mF Bn and m0

n =

mF̂ cn,Hn . Then for z = x + ivn

sup
x∈[a,b]

|mn(z) − m0
n(z)| = o(1/Nvn) a.s.

when vn = N−1/68.
(2) The proof of (1) allows (1) to hold for Im(z) =

√
2vn,

√
3vn, . . . ,√

34vn. Then almost surely

max
k∈{1,...,34}

sup
x∈[a,b]

|mn(x + i
√

kvn) − m0
n(x + i

√
kvn)| = o(v67

n ).

We take the imaginary part of these Stieltjes transforms and get

max
k∈{1,2...,34}

sup
x∈[a,b]

∣∣∣∣∫ d(FBn(λ) − F̂ cn,Hn(λ))
(x − λ)2 + kv2

n

∣∣∣∣ = o(v66
n ) a.s.

Upon taking differences we find with probability one

max
k1 
=k2

sup
x∈[a,b]

∣∣∣∣∫ v2
n d(FBn(λ) − F̂ cn,Hn(λ))

((x − λ)2 + k1v2
n)((x − λ)2 + k2v2

n)

∣∣∣∣ = o(v66
n )

max
k1,k2,k3
distinct

sup
x∈[a,b]

∣∣∣∣∫ (v2
n)2 d(FBn(λ) − F̂ cn,Hn(λ))

((x−λ)2+k1v2
n)((x−λ)2+k2v2

n)((x−λ)2+k3v2
n)

∣∣∣∣=o(v66
n )

...

sup
x∈[a,b]

∣∣∣∣∫ (v2
n)33 d(FBn(λ) − F̂ cn,Hn(λ))

((x−λ)2+v2
n)((x−λ)2+2v2

n) · · · ((x−λ)2+34v2
n)

∣∣∣∣=o(v66
n ).
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Thus with probability one

sup
x∈[a,b]

∣∣∣∣∫ d(FBn(λ) − F̂ cn,Hn(λ))
((x − λ)2 + v2

n)((x − λ)2 + 2v2
n) · · · ((x − λ)2 + 34v2

n)

∣∣∣∣ = o(1) .

Let 0 < a′ < a, b′ > b be such that [a′, b′] is also in the open interval
outside the support of F̂ cn,Hn for all large n. We split up the integral and
get with probability one

sup
x∈[a,b]

∣∣∣∣∫ I[a′,b′]c(λ) d(FBn(λ) − F̂ cn,Hn(λ))
((x − λ)2 + v2

n)((x − λ)2 + 2v2
n) · · · ((x − λ)2 + 34v2

n)

+
∑

λj∈[a′,b′]

v68
n

((x−λj)2+v2
n)((x−λj)2+2v2

n) · · · ((x−λj)2+34v2
n)

∣∣∣∣=o(1).

Now if, for each term in a subsequence satisfying the above, there is
at least one eigenvalue contained in [a, b], then the sum, with x evaluated
at these eigenvalues, will be uniformly bounded away from 0. Thus, at
these same x values, the integral must also stay uniformly bounded away
from 0. But the integral MUST converge to zero a.s. since the integrand is
bounded and with probability one, both FBn and F̂ cn,Hn converge weakly
to the same limit having no mass on {a′, b′}. Contradiction!

The last result is on the rate of convergence of linear statistics of the
eigenvalues of Bn, that is, quantities of the form∫

f(x)dFBn(x) =
1
n

n∑
i=1

f(λi)

where f is a function defined on [0,∞), and the λi’s are the eigenvalues of
Bn. The result establishes the rate to be 1/n for analytic f . It considers
integrals of functions with respect to

Gn(x) = n[FBn(x) − F cn,Hn(x)]

where for any d > 0 and d.f. G, F d,G is the limiting e.d.f. of Bn =
(1/N)T 1/2

n XnX∗
nT

1/2
n corresponding to limiting ratio d and limiting FTn

G.

Theorem 7.2. ([2]). Under the assumptions in Theorem 7.1, Let f1, . . . , fr

be C1 functions on R with bounded derivatives, and analytic on an open
interval containing

[lim inf
n

λTn

minI(0,1)(c)(1 −√
c)2, lim sup

n
λTn

max(1 +
√

c)2].
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Let m = mF̂ . Then

(1) the random vector(∫
f1(x) dGn(x), . . . ,

∫
fr(x) dGn(x)

)
(7.1)

forms a tight sequence in n.
(2) If X11 and Tn are real and E(X4

11) = 3, then (7.1) converges weakly to
a Gaussian vector (Xf1 , . . . , Xfr), with means

EXf = − 1
2πi

∫
f(z)

c
∫ m(z)3t2dH(t)

(1+tm(z))3(
1 − c

∫ m(z)2t2dH(t)
(1+tm(z))2

)2 dz (7.2)

and covariance function

Cov(Xf , Xg) = − 1
2π2

∫∫
f(z1)g(z2)

(m(z1) − m(z2))2
d

dz1
m(z1)

d

dz2
m(z2)dz1dz2

(7.3)
(f, g ∈ {f1, . . . , fr}). The contours in (7.2) and (7.3) (two in (7.3)
which we may assume to be non-overlapping) are closed and are taken
in the positive direction in the complex plane, each enclosing the support
of F c,H.

(3) If X11 is complex with E(X2
11) = 0 and E(|X11|4) = 2, then (2) also

holds, except the means are zero and the covariance function is 1/2 the
function given in (7.3).

(4) If the assumptions in (2) or (3) were to hold, then Gn, considered as
a random element in D[0,∞) (the space of functions on [0,∞) right-
continuous with left-hand limits, together with the Skorohod metric)
cannot form a tight sequence in D[0,∞).

The proof relies on the identity∫
f(x)dG(x) = − 1

2πi

∫
f(z)mG(z)dz

(f analytic on the support of G, contour positively oriented around the
support), and establishes the following results on

Mn(z) = n[mF Bn (z) − mF cn,Hn (z)].

(a) {Mn(z)} forms a tight sequence for z in a sufficiently large contour
about the origin.
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(b) If X11 is complex with E(X2
11) = 0 and E(X4

11) = 2, then for z1, . . . , zr

with nonzero imaginary parts,

(Re Mn(z1), Im Mn(z1), . . . , Re Mn(zr), Im Mn(zr))

converges weakly to a mean zero Gaussian vector. It follows that Mn,
viewed as a random element in the metric space of continuous R2-
valued functions with domain restricted to a contour in the complex
plane, converges weakly to a (2 dimensional) Gaussian process M . The
limiting covariance function can be derived from the formula

E(M(z1)M(z2)) =
m′(z1)m′(z2)

(m(z1) − m(z2))2
− 1

(z1 − z2)2
.

(c) If X11 is real and E(X4
11) = 3 then (b) still holds, except the limiting

mean can be derived from

EM(z) =
c
∫ m3t2dH(t)

(1+tm)3(
1 − c

∫ m2t2dH(t)
(1+tm)2

)2

and “covariance function” is twice that of the above function.

The difference between (2) and (3), and the difficulty in extending beyond
these two cases, arise from

E(X∗
·1AX·1 − trA)(X∗

·1BX·1 − trB)

= (E(|X11|4) − |E(X2
11)|2 − 2)

∑
i

aiibii + |E(X2
11)|2trABT + trAB,

valid for square matrices A and B.
One can show

(7.2) =
1
2π

∫
f ′(x) arg

(
1 − c

∫
t2m2(x)

(1 + tm(x))2
dH(t)

)
dx

and

(7.3) =
1
π2

∫∫
f ′(x)g′(y) ln

∣∣∣∣m(x) − m(y)
m(x) − m(y)

∣∣∣∣ dxdy

=
1

2π2

∫∫
f ′(x)g′(y) ln

(
1 + 4

mi(x)mi(y)
|m(x) − m(y)|2

)
dxdy

where mi = �m.
For case (2) with H = I[1,∞) we have for f(x) = ln x and c ∈ (0, 1)

EXln =
1
2

ln(1 − c) and VarXln = −2 ln(1 − c).
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Also, for c > 0

EXxr =
1
4
((1 −√

c)2r + (1 +
√

c)2r) − 1
2

r∑
j=0

(
r

j

)2

c j

and

Cov(Xxr1 , Xxr2 ) = 2cr1+r2

r1−1∑
k1=0

r2∑
k2=0

(
r1

k1

)(
r2

k2

)(
1 − c

c

)k1+k2

×
r1−k1∑
�=1




(
2r1 − 1 − (k1 + 
)

r1 − 1

)(
2r2 − 1 − k2 + 


r2 − 1

)
.

(see [5]).
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In applications of random matrix theory to physics, time reversal sym-
metry implies one of three exponents β = 1, 2 or 4 for the repulsion sβ

between eigenvalues at spacing s, s → 0. However, in the corresponding
eigenvalue probability density functions (p.d.f.’s), β is a natural positive
real variable. The general β p.d.f.’s have alternative physical interpre-
tations in terms of certain classical log-potential Coulomb systems and
quantum many body systems. Each of these topics is reviewed, along
with the problem of computing correlation functions for general β. There
are also random matrix constructions which give rise to these general β
p.d.f.’s. An inductive approach to the latter topic using explicit formulas
for the zeros of certain random rational functions is given.

1. Introduction

1.1. Log-gas systems

In equilibrium classical statistical mechanics, the control variables are the

absolute temperature T and the particle density ρ. The state of a system can

be calculated by postulating that the probability density function (p.d.f.)

for the event that the particles are at positions ~r1, . . . , ~rN is proportional to

the Boltzmann factor e
−βU(~r1,...,~rN ). Here U(~r1, . . . , ~rN ) denotes the total

potential energy of the system, while β := 1/kBT with kB denoting Boltz-

mann’s constant is essentially the inverse temperature. Then for the system

confined to a domain Ω, the canonical average of any function f(~r1, . . . , ~rN )

(for example the energy itself) is given by

〈f〉 :=
1

ẐN

∫

Ω

d~r1 · · ·
∫

Ω

d~rN f(~r1, . . . , ~rN )e−βU(~r1,...,~rN )
,

27
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where

ẐN =

∫

I

d~r1 · · ·
∫

I

d~rNe
−βU(r1,...,rN )

. (1.1)

In the so called thermodynamic limit, N, |Ω| → ∞, N/|Ω| = ρ fixed,

such averages can display non-analytic behavior indicative of a phase tran-

sition.

The most common situation is when the potential energy U consists of

a sum of one body and two body terms,

U(~r1, . . . , ~rN ) =

N∑

j=1

V1(~rj) +
∑

1≤j<k≤N

V2(|~rk − ~rj |).

Our interest is when the pair potential V2 is logarithmic,

V2(|~rk − ~rj |) = − log |~rk − ~rj |.
Physically this is the law of repulsion between two infinitely long wires,

which can be thought of as two-dimensional charges. Because the charges

are of the same sign, with strength taken to be unity, without the presence

of a confining potential they would repel to infinity. Indeed, well defined

thermodynamics requires that the system be overall charge neutral. This

can be achieved by immersing the charges in a smeared out neutralizing

density. In particular, let this density have profile ρb(~r). It is thus required

that
∫

Ω

ρb(~r) d~r = −N

while the one body potential V1 is calculated according to

V1(~r) =

∫

Ω

log |~r − ~rj |ρb(~r) d~r. (1.2)

Consider first some specific log-potential systems (log-gases for short)

confined to one-dimensional domains. Four distinct examples are relevant.

These are the system on the real line, with the neutralizing background

having profile

ρb(x) =

√
2N

π

√

1 − x2

2N
, |x| <

√
2N ; (1.3)

the system on a half line with image charges of the same sign in x <

0, a fixed charge of strength (a − 1)/2 at the origin, and a neutralizing

background charge density in x > 0 with profile

ρb(x) =

√
4N

π

√

1 − x2

4N
, 0 < x < 2

√
N ; (1.4)
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the system on the unit interval [−1, 1] with fixed charges of strengths (a−
1)/2 + 1/β and (b − 1)/2 + 1/β at y = 1 and y = −1 respectively and a

neutralizing background

ρb(x) =
N

π

√
1− x2

, |x| < 1; (1.5)

and the system on a unit circle with a uniform neutralizing background

density.

Physically one expects charged systems to be locally charge neutral.

Accepting this, the particle densities must then, to leading order, coincide

with the background densities. In the above examples, this implies that in

the bulk of the system the particle densities are dependent on N , which in

turn means that there is not yet a well defined thermodynamic limit. To

overcome this, note the special property of the logarithmic potential that it

is unchanged, up to an additive constant, by the scaling of the coordinates

xj 7→ cxj . Effectively the density is therefore not a control variable, as it

determines only the length scale in the logarithmic potential.

Making use of (1.2), for the four systems the total energy of the system

can readily be computed (see [13] for details) to give the corresponding

Boltzmann factors. They are proportional to

N∏

j=1

e
−(β/2)x2

j

∏

1≤j<k≤N

|xk − xj |β (1.6)

N∏

j=1

|xj |βα
e
−βx2

j/2
∏

1≤j<k≤N

|x2
k − x

2
j |β (1.7)

N∏

j=1

(1 − xj)
aβ/2(1 + xj)

bβ/2
∏

1≤j<k≤N

|xk − xj |β (1.8)

∏

1≤j<k≤N

|eiθk − e
iθj |β (1.9)

respectively. We remark that changing variables xj = cos θj , 0 < θj < π in

(1.8) the Boltzmann factor becomes proportional to

N∏

j=1

(sin θj/2)(a−1/2)β+1/2(cos θj/2)(b−1/2)β+1/2(sin θj)
β/2

×
∏

1≤j<k≤N

| sin((θk − θj)/2) sin((θk + θj)/2)|β . (1.10)
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This corresponds to the log-gas on a half circle 0 ≤ θj ≤ π, with image

charges of the same sign at 2π− θj , a charge of strength (a− 1/2)+1/β at

θ = 0, and a charge of strength (b − 1/2) + 1/β at θ = π.

1.2. Quantum many body systems

The setting of Section 1.1 was equilibrium statistical mechanics. As a gen-

eralization, let us suppose now that there are dynamics due to Brownian

motion in a (fictitious) viscous fluid with friction coefficient γ. The evolu-

tion of the p.d.f. pτ (x1, . . . , xN ) for the joint density of the particles is given

by the solution of the Fokker-Planck equation (see e.g. [32])

γ
∂pτ

∂τ
= Lpτ where L =

N∑

j=1

∂

∂λj

(
∂U

∂λj
+ β

−1 ∂

∂λj

)

. (1.11)

In general the steady state solution of this equation is the Boltzmann factor

e
−βU ,

Le
−βU = 0. (1.12)

Another general property is the operator identity

e
βU/2Le

−βU/2 =

N∑

j=1

( 1

β

∂
2

∂x
2
j

− β

4

(
∂U

∂xj

)2

+
1

2

∂
2
U

∂x
2
j

)

, (1.13)

relating L to an Hermitian operator.

For the potentials implied by the Boltzmann factors (1.6), (1.7), (1.9)

and (1.10) the conjugation (1.13) gives

−e
βU/2Le

−βU/2 = (H − E0)/β (1.14)

where H is a Schrödinger operator consisting of one and two body terms

only,

H = −
N∑

j=1

∂
2

∂x
2
j

+

N∑

j=1

v1(xj) +
∑

1≤j<k≤N

v2(xj , xk).
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Explicitly, one finds [2]

H = H
(H) := −

N∑

j=1

∂
2

∂x
2
j

+
β

2

4

N∑

j=1

x
2
j + β(β/2 − 1)

∑

1≤j<k≤N

1

(xj − xk)2
(1.15)

H = H
(L) := −

N∑

j=1

∂
2

∂x
2
j

+

N∑

j=1

(

βa
′

2

(
βa

′

2
− 1
) 1

x
2
j

− β
2

4
x

2
j

)

+ β(β/2 − 1)
∑

1≤j<k≤N

(
1

(xk − xj)2
+

1

(xk + xj)2

)

(1.16)

H = H
(C) := −

N∑

j=1

∂
2

∂θ
2
j

+ (β/4)(β/2 − 1)
∑

1≤j<k≤N

1

sin2((θk − θj)/2)
(1.17)

H = H
(J) := −

N∑

j=1

∂
2

∂φ
2
j

+

N∑

j=1

(
a
′
β

2

(
a
′
β

2
− 1
) 1

sin2
φj

+
b
′
β

2

(
b
′
β

2
− 1
) 1

cos2 φj

)

+ β(β/2 − 1)
∑

1≤j<k≤N

(
1

sin2(φj − φk)
+

1

sin2(φj + φk)

)

(1.18)

where a
′ = a+1/β, b′ = b+1/β. Thus all the pair potentials are proportional

to 1/r
2, where r is the separation between particles or between particles

and their images. Such quantum many body systems were first studied by

Calogero [5] and Sutherland [35].

It follows from (1.12) and (1.14) that e
−βU/2 is an eigenfunction of

H with eigenvalue E0. Since e
−βU/2 is non-negative, it must in fact be the

ground state. This suggests considering a conjugation of the Schrödinger op-

erators with respect to this eigenfunction. Consider for definiteness (1.17).

A direct computation gives

H̃
(C) := e

βU/2(H(C) − E0)e
−βU/2

=

N∑

j=1

(

zj
∂

∂zj

)2

+
N − 1

α
+

2

α

∑

1≤j<k≤N

zjzk

zj − zk

(
∂

∂zj
− ∂

∂zk

)

(1.19)
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where zj := e
ixj and α = 2/β. This operator admits a complete set of

symmetric polynomial eigenfunctions Pκ(z) = Pκ(z1, . . . , zN ; α) labeled by

partitions κ := (κ1, . . . , κN ), κ1 ≥ · · · ≥ κN ≥ 0, known as the symmetric

Jack polynomials [27, 13]. These polynomials have the structure

Pκ(z) = mκ +
∑

σ<κ

bκσmσ

where mκ denotes the monomial symmetric function in the variables

z1, . . . , zN associated with the partition κ (for example, with κ = 21 and

N = 2, m21 = z
2
1z2 + z1z

2
2), < denotes the dominance ordering for parti-

tions, and the coefficients bκσ are independent of N .

1.3. Selberg correlation integrals

The symmetric Jack polynomials can be used as a basis to define a class of

generalized hypergeometric functions, which in turn have direct relevance

to the calculation of correlation functions in the log-gas. To set up the

definition of the former, introduce the generalized factorial function

[u](α)
κ :=

N∏

j=1

Γ(u − 1
α (j − 1) + κj)

Γ(u − 1
α (j − 1))

, (1.20)

the quantity

d
′
κ :=

∏

(i,j)∈κ

(

α(κi − j + 1) + (κ′
j − i)

)

(1.21)

(here κ
′
j denotes the length of column j in the diagram of κ), and the

renormalized Jack polynomial

C
(α)
κ (x) :=

α
|κ||κ|!
d′κ

Pκ(x; α). (1.22)

In terms of these quantities, the generalized hypergeometric functions pF
(α)
q

are specified by

pF
(α)
q (a1, . . . , ap, b1, . . . , bq; x1, . . . , xm)

:=
∑

κ

1

|κ|!
[a1]

(α)
κ · · · [ap]

(α)
κ

[b1]
(α)
κ · · · [bq ]

(α)
κ

C
(α)
κ (x1, . . . , xm). (1.23)

Since in the one-variable case we have κ = k, C
(α)
k (x) = x

k and [u]
(α)
k =

(u)k, we see that with m = 1 the generalized hypergeometric function pF
(α)
q

reduces to the classical hypergeometric function pFq .
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There are two cases in which pF
(α)
q can be expressed in terms of ele-

mentary functions [24, 37]. These are the generalized binomial theorem

1F
(α)
0 (a; x1, . . . , xm) =

m∏

j=1

(1 − xj)
−a (1.24)

and its limiting form

0F
(α)
0 (x1, . . . , xm) = e

x1+···+xm . (1.25)

The latter can be deduced from the confluence relation

lim
ap→∞ pF

(α)
q (a1, . . . , ap; b1, . . . , bq; x1/ap, . . . , xm/ap)

= p−1F
(α)
q (a1, . . . , ap−1; b1, . . . , bq; x1, . . . , xm), (1.26)

which follows from the explicit form (1.20) of [ap]
(α)
κ and the fact that

C
(α)
κ (x) is homogeneous of degree |κ|.

We will now relate 2F
(α)
1 to a generalization of the Selberg integral

referred to as a Selberg correlation integral. First we recall that the Selberg

integral is the multidimensional generalization of the beta integral

SN (λ1, λ2, λ) :=

∫ 1

0

dx1 · · ·
∫ 1

0

dxN

N∏

l=1

x
λ1

l (1 − xl)
λ2

∏

1≤j<k≤N

|xk − xj |2λ
.

This can be transformed to the trigonometric form

MN (a, b, λ) :=

∫ 1/2

−1/2

dθ1 · · ·
∫ 1/2

−1/2

dθN

N∏

l=1

e
πiθl(a−b)|1 + e

2πiθl |a+b

×
∏

1≤j<k≤N

|e2πiθk − e
2πiθj |2λ

known as the Morris integral. The Selberg correlation integral refers to the

generalizations

SN (t1, . . . , tm; λ1, λ2, 1/α) :=
1

SN (λ1, λ2, 1/α)

∫ 1

0

dx1 · · ·
∫ 1

0

dxN

×
N∏

l=1

x
λ1

l (1 − xl)
λ2

m∏

l′=1

(1 − tl′xl)
∏

j<k

|xj − xk|2/α
,

S̃N (t1, . . . , tm; λ1, λ2, 1/α) :=
1

SN (λ1 + m, λ2, 1/α)

∫ 1

0

dx1 · · ·
∫ 1

0

dxN

×
N∏

l=1

x
λ1

l (1 − xl)
λ2

m∏

l′=1

(tl′ − xl)
∏

j<k

|xj − xk|2/α
,
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and its trigonometric form

MN (t1, . . . , tm; a, b, 1/α) :=
1

MN (a, b, 1/α)

∫ 1/2

−1/2

dx1 · · ·
∫ 1/2

−1/2

dxN

×
N∏

l=1

e
πixl(a−b)|1 + e

2πixl |a+b
m∏

l′=1

(1 + tl′e
2πixl)

∏

j<k

|e2πixk − e
2πixj |2/α

.

These have the generalized hypergeometric function evaluations [24, 14]

SN(t1, . . . , tm; λ1, λ2, 1/α) = 2F
(1/α)
1 (−N,−(N − 1) − α(λ1 + 1);

− 2(N − 1) − α(λ1 + λ2 + 2); t1, . . . , tm), (1.27)

S̃N (t1, . . . , tm; λ1, λ2, 1/α) = 2F
(1/α)
1 (−N,

(N − 1) + α(λ1 + λ2 + m + 1); α(λ1 + m); t1, . . . , tm), (1.28)

and

MN (t1, . . . , tm; a, b, 1/α) = 2F
(1/α)
1 (−N, αb;−(N−1)−α(1+a); t1, . . . , tm).

(1.29)

On the other hand, the generalized binomial expansion allows the gen-

eralized hypergeometric function 2F
(α)
1 in m variables to be expressed as

an m-dimensional integral, provided all the arguments are equal. Thus we

have [18, 15]

1

MN (a, b, 1/α)

∫ 1/2

−1/2

dx1 · · ·
∫ 1/2

−1/2

dxN

N∏

l=1

e
πixl(a−b)|1 + e

2πixl |a+b

× (1 + te
2πixl)−r

∏

1≤j<k≤N

|e2πixk − e
2πixj |2/α

= 2F
(α)
1 (r,−b;

1

α
(N − 1) + a + 1; t1, . . . , tN)

∣
∣
∣
t1=···=tN=t

, (1.30)

1

SN(λ1, λ2, 1/α)

∫ 1

0

dx1 · · ·
∫ 1

0

dxN

N∏

l=1

x
λ1

l (1 − xl)
λ2(1 − txl)

−r

∏

j<k

|xj − xk|2/α
= 2F

(α)
1 (r,

1

α
(N − 1) + λ1 + 1;

2

α
(N − 1) + λ1 + λ2 + 2; t1, . . . , tN )

∣
∣
∣
t1=···=tN=t

. (1.31)

In using (1.30) and (1.31) in (1.27) and (1.29) it may happen that the

parameters are such that the former are divergent. To overcome this, use can
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be made of certain transformation formulas satisfied by the 2F
(α)
1 . One such

formula, which is restricted to cases in which the series (1.23) terminates,

is [14]

2F
(α)
1 (a, b; c; t1, . . . , tm)

= 2F
(α)
1 (a, b; a + b + 1 + (m − 1)/α − c; 1 − t1, . . . , 1− tm)

2F
(α)
1 (a, b; a + b + 1 + (m − 1)/α − c; t1, . . . , tm)

∣
∣
∣
t1=···=tm=1

. (1.32)

Another, which generalizes one of the classical Kummer relations, reads [37]

2F
(α)
1 (a, b; c; t1, . . . , tm)

=

m∏

j=1

(1 − tj)
−a

2F
(α)
1

(

a, c − b; c;− t1

1 − t1
, . . . ,− tm

1 − tm

)

. (1.33)

1.4. Correlation functions

For a one-dimensional statistical mechanical system with Boltzmann factor

e
−βU confined to a domain I , the n-particle correlation function is defined

by

ρ(n)(~r1, . . . , ~rn) =
N(N − 1) · · · (N − n + 1)

ẐN

∫

I
drn+1 · · ·

∫

I
drN e−βU(r1,...,rN )

(1.34)

where ẐN is specified by (1.1). In the case of the log-gas systems specified in

Section 1.1 with even β, the Selberg correlation integral evaluations (1.28),

(1.29) allows this to be expressed in terms of generalized hypergeometric

functions.

Consider first the Boltzmann factor (1.8), but with the change of vari-

ables xj 7→ 1 − 2xj so that now 0 < xj < 1. Further set aβ/2 = λ1 and

bβ/2 = λ2. The resulting p.d.f. is said to define the Jacobi β-ensemble. Ac-

cording to (1.34), with N+n particles the corresponding n-point correlation

is given by

ρ(n)(r1, . . . , rn) :=
(N + n)n

SN+n(λ1, λ2, β/2)

n∏

k=1

r
λ1

k (1 − rk)λ2

n∏

j<k

|rk − rj |β

×
∫

[0,1]N
dx1 . . . dxN

N∏

j=1

(

x
λ1

j (1 − xj)
λ2

n∏

k=1

|xj − rk|β
)

∏

1≤j<k≤N

|xk − xj |β .

(1.35)
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In the case β even, the factor |xj − rk |β is a polynomial. Making use of

(1.28) it follows that

ρ(n)(r1, . . . , rn)

= (N + n)n
SN (λ1 + nβ, λ2, β/2)

SN+n(λ1, λ2, β/2)

n∏

k=1

t
λ1

k (1 − tk)λ2

n∏

j<k

|tk − tj |β

× 2F
(β/2)
1 (−N, 2(λ1 + λ2 + m + 1)/β + N − 1; 2(λ1 + m)/β; t1, . . . , tβn)

(1.36)

where

tk = rj for k = 1 + (j − 1)β, . . . , jβ (j = 1, . . . , n). (1.37)

For n = 1 the arguments (1.37) are equal, and we have available the

β-dimensional integral representation (1.30). The get a convergent integral

we must first apply the Kummer type transformation (1.33). Doing this

gives [13]

ρ(1)(r) = (N + 1)
SN(λ1 + β, λ2, β/2)

SN+1(λ1, λ2, β/2)

× r
λ1 (1 − r)λ2

Mβ(2(λ1 + 1)/β − 1, 2(λ2 + 1)/β + N − 1; 2/β)

×
∫ 1/2

−1/2

dx1 · · ·
∫ 1/2

−1/2

dxβ

β
∏

l=1

e
πixl(2(λ1−λ2)/β)|1 + e

2πixl |2(λ1+λ2+2)/β+N−1

× (e−πixl − r

1 − r
e

πixl)N
∏

1≤j<k≤β

|e2πixk − e
2πixj |4/β

. (1.38)

The Boltzmann factor (1.7) with the change of variable x
2
j 7→ xj , and

αβ = aβ + 1 is said to specify the Laguerre β-ensemble. It can be ob-

tained from the Jacobi β-ensemble by the change of variables and limiting

procedure

xj 7→ xj/L, λ2 7→ Lβ/2, λ1 7→ aβ/2, L → ∞. (1.39)
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The confluence (1.26) allows the same limiting procedure to be applied to

(1.36). Thus we obtain

ρ(n)(r1, . . . , rn) =
(N + n)n

Wa,β,N+n

(
n∏

j=1

r
aβ/2
j e

−βrj/2

)
∏

1≤j<k≤n

|rk − rj |β

×
∫

(0,∞)N

dx1 · · · dxN

N∏

j=1

(

x
aβ/2
j e

−βxj/2
n∏

k=1

|rk − xj |β
)

×
∏

j<k

|xk − xj |β, (1.40)

where

Wa,β,N =

∫ ∞

0

dx1 · · ·
∫ ∞

0

dxN

N∏

j=1

x
βa/2
j e

−βxj/2
∏

j<k

|xk − xj |β .

Applying the limiting procedure to (1.38) gives for the one-point correlation

(i.e. the particle density) with β even the β-dimensional integral represen-

tation

ρ(1)(r) = (N + 1)
Wa,β,N

Wa+2,β,N+1

r
aβ/2

e
−βr/2

Mβ(2/β − 1, N, β/2)

∫ 1/2

−1/2

dx1 · · ·
∫ 1/2

−1/2

dxβ

×
β
∏

l=1

e
πixl(2/β−1−N)|1 + e

2πixl |N+2/β−1
e
−re2πixl

×
β
∏

j<k

|e2πixk − e
2πixj |4/β

. (1.41)

For the Laguerre β-ensemble, in addition to the correlations at even β

being expressible in terms of the confluent hypergeometric function, one

can give similar evaluations of the probability E
(N)
β ((0, s)) that the interval

(0, s) is particle free,

E
(N)
β (0; (0, s))

=
1

Wa,β,N

∫ ∞

s

dx1 · · ·
∫ ∞

s

dxN

N∏

j=1

e
−βxj/2

x
βa/2
j

∏

j<k

|xk − xj |β

=
e
−Nβs/2

Wa,β,N

∫ ∞

0

dx1 · · ·
∫ ∞

0

dxN

N∏

j=1

e
−βxj/2(xj + s)βa/2

∏

j<k

|xk − xj |β

(1.42)
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where the second equality follows by the change of variables xj 7→ xj + s.

Thus it follows by applying the limiting procedure (1.39) to (1.36) that for

βa/2 =: m ∈ Z≥0 [17]

E
(N)
β (0; (0, s)) = e

−βNs/2
1F

(β/2)
1 (−N ; 2m/β; x1, . . . , xm)

∣
∣
∣
xj=−s

. (1.43)

A closely related quantity is the distribution of the particle closest to

the origin,

p
(N)
β (0; s) = − d

ds
E

(N)
β (0; (0, s))

=
Ne

−Nβs/2

Wa,β,N
s

βa/2

∫ ∞

0

dx1 · · ·
∫ ∞

0

dxN−1

×
N−1∏

j=1

x
β
j e

−βxj/2(xj + s)βa/2
∏

j<k

|xk − xj |β (1.44)

where the second equality follows by differentiating the first equality in

(1.42) and then changing variables xj 7→ xj + s. This multidimensional

integral can be evaluated in an analogous way to that in (1.42) to give [17]

p
(N)
β (0; s) = Ns

m
e
−βNs/2 Wa+2,β,N−1

Wa,β,N

× 1F
(β/2)
1 (−N + 1; 2m/β + 2; x1, . . . , xm)

∣
∣
∣
xj=−s

. (1.45)

For the Gaussian β-ensemble with N + n particles

ρ(n)(r1, . . . , rn) =
(N + n)n

Gβ,N

n∏

j=1

e
−βr2

j /2
∏

1≤j<k≤N

|rk − rj |β

×
∫

(−∞,∞)N

dx1 · · · dxN

N∏

j=1

(

e
−βx2

j/2
n∏

k=1

|rk − xj |β
)
∏

j<k

|xk − xj |β

where

Gβ,N =

∫

(−∞,∞)N

dx1 · · · dxN

N∏

j=1

e
−βx2

j/2
∏

j<k

|xk − xj |β.

The Gaussian β-ensemble can be obtained from the Jacobi β-ensemble on

[0, 1] through the change of variables

xj 7→ 1

2

(

1 −
√

β

2

xj

L

)

, λ1 = λ2 = L
2



May 5, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 02-Forrester

Beta Random Matrix Ensembles 39

and taking the limit L → ∞. Applying this to (1.38) gives for the one-point

density [2]

ρ(1)(r) = (N + 1)
Gβ,N

Gβ,N+1

e
−βr2/2

G̃β

∫

(−∞,∞)β

du1 · · · duβ

×
β
∏

j=1

(iuj + r)N
e
−u2

j

∏

1≤j<k≤β

|uk − uj |4/β (1.46)

where

G̃β =

∫

(−∞,∞)β

dx1 · · · dxβ

β
∏

j=1

e
−x2

j

∏

j<k

|xk − xj |4/β
.

The last case to consider is the circular β-ensemble. With N+n particles

the n-point correlation function is given by

ρ(n)(r1, . . . , rn) =
(N + n)n

Ln

((β/2)!)N+n

(β(N + n)/2)!

×
∏

1≤j<k≤n

|e2πirk/L − e
2πirj/L|βIN,n(β; r1, . . . , rn)

(1.47)

where

IN,n(β; r1, . . . , rn) :=

∫

[0,1]N
dx1 · · · dxN

N∏

j=1

n∏

k=1

|1 − e
2πi(xj−rk/L)|β

×
∏

1≤j<k≤N

|e2πixk − e
2πixj |β , (1.48)

and the angles have been scaled so that the circumference length of the

circle is equal to L. Use of (1.29) and the transformation formula (1.32)

shows [14] that for β even

ρ(n)(r1, . . . , rn) =
(N + n)n

Ln

((β/2)!)N+n

(β(N + n)/2)!

∏

1≤j<k≤n

|e2πirk/L − e
2πirj/L|β

× MN(nβ/2, nβ/2, β/2)

n∏

k=2

e
πiNβ(rk−r1)/L

× 2F
(β/2)
1 (−N, n; 2n; 1− t1, . . . , 1 − t(n−1)β) (1.49)

where

tk := e
−2πi(rj−r1)/L

, k = 1 + (j − 2)β, . . . , (j − 1)β (j = 2, . . . , n).

(1.50)
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For the circular ensemble the one-point function is a constant, due to

translation invariance. The two-point function is therefore a function of

the single variable r2 − r1 as is clear from (1.50). Moreover, use of (1.31)

allows the generalized hypergeometric function in (1.49) to be written as a

β-dimensional integral [15]

ρ(2)(r1, r2)

=
(N + 2)(N + 1)

L2

(βN/2)!((β/2)!)N+2

(β(N + 2)/2)!

MN (nβ/2, nβ/2, β/2)

Sβ(1 − 2/β, 1− 2/β, 2/β)

× (2 sinπ(r1 − r2)/L)β
e
−πiβN(r1−r2)/L

∫

[0,1]β
du1 · · · duβ

β
∏

j=1

× (1 − (1 − e
2πi(r1−r2)/L)uj)

N
u
−1+2/β
j (1 − uj)

−1+2/β
∏

j<k

|uk − uj |4/β
.

(1.51)

1.5. Scaled limits

As remarked in Section 1.1, the log-gas picture predicts the leading or-

der form of the density profile for the Jacobi, Laguerre and Gaussian β-

ensembles. It must then be that these same functional forms are the leading

asymptotic form of the corresponding multidimensional integrals, appropri-

ately scaled, in (1.38), (1.41), (1.46). Saddle point analysis undertaken in

[16, 2] has verified that this is indeed the case. The analysis has been ex-

tended for the Gaussian and Laguerre β-ensembles in [7] to the calculation

of correction terms. In particular, for the Gaussian β-ensemble it is found

that
√

2

N
ρ(1)(

√
2Nx) ∼ ρW(x) − 2

π

Γ(1 + 2/β)

(πρW(x))6/β−1

1

N2/β

× cos
(

2πNPW(x) + (1 − 2/β)Arcsinx

)

+ O
(

min
( 1

N
,

1

N8/β

))

(1.52)

where ρW(x) := 2
π

√
1 − x2 and

PW(x) =

∫ x

−1

ρW(t) dt = 1 +
x

2
ρW(x) − 1

π
Arccosx.

The expansion (1.52) is an example of a global asymptotic form, in which

the expansion parameter varies macroscopically relative to the inter-particle
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spacing. In contrast local asymptotic expansions fix the inter-particle spac-

ing to be order unity. In the circular β-ensemble defined on a circle of

circumference length L as assumed in (1.47), this is achieved by taking the

limit N, L → ∞ with N/L = ρ fixed. This limiting procedure applied to

(1.49) gives [14]

ρ
bulk
(n) (r1, . . . , rn) := lim

N,L→∞

N/L=ρ

ρ(n)(r1, . . . , rn)

= ρ
n
cn(β)

∏

1≤j<k≤n

|2πρ(rk − rj)|β
n∏

k=2

e
πiρβ(rk−r1)

×1F
(β/2)
1 (n, 2n;−2πiρ(r2 − r1), . . . ,−2πiρ(rn − r1))

where in the argument of 1F
(β/2)
1 each −2πiρ(rj − r1) (j = 2, . . . , n) occurs

β times, and

cn(β) = (β/2)βn(n−1)/2((β/2)!)n
n−1∏

k=0

Γ(βk/2 + 1)

Γ(β(n + k)/2 + 1)
.

For the 2-point function, applying the limit to (1.51) gives [15]

ρ
bulk
(2) (r1, r2) = ρ

2(β/2)β ((β/2)!)3

β!(3β/2)!

e
−πiβρ(r1−r2)(2πρ(r1 − r2))

β

Sβ(−1 + 2/β,−1 + 2/β, 2/β)

×
∫

[0,1]β
du1 · · · duβ

β
∏

j=1

e
2πiρ(r1−r2)uj u

−1+2/β
j (1.53)

× (1 − uj)
−1+2/β

∏

j<k

|uk − uj |4/β
. (1.54)

Local expansions can also be performed in the neighborhood of the edge

of the support. There are two distinct cases: the spectrum edge when the

support is strictly zero in one direction as near x = 0 in the Laguerre β-

ensemble or at both edges of the support of the Jacobi β-ensemble, and the

spectrum edge when the support is non-zero in both directions about the

edge. These are referred to as the hard and soft edges respectively.
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For the hard edge the necessary scaling is x 7→ X/4N . We see from

(1.40) and (1.26) that

ρ
hard
(n) (X1, . . . , Xn) = lim

N→∞

( 1

4N

)n

ρ(n)(X1/4N, . . . , Xn/4N)

= An(β)

n∏

j=1

X
βa/2
j

∏

1≤j<k≤n

|Xk − Xj |β

× 0F
(β/2)
1 (a + 2n; Y1, . . . , Ynβ)

∣
∣
∣
{Yj}7→{−Xj/4}

(1.55)

where

An(β) = 2−n(2+aβ+β(n−1))(β/2)n(1+aβ+β(n−1))

× (Γ(1 + β/2))n

2n∏

j=1

Γ(1 + aβ/2 + β(j − 1)/2)

.

With n = 1, and a = c− 2/β, c a positive integer, the generalized hyperge-

ometric function 0F
(β/2)
1 can be written as a β-dimensional integral to give

[17]

ρ(1)(X) = a(c, β)Xβ/2−1

∫

[−π,π]β

β
∏

j=1

e
iX1/2 cos θj e

i(c−1)θj

×
∏

1≤j<k≤β

|eiθk − e
iθj |4/β

dθ1 · · · dθβ (1.56)

where

a(c, β) = (−1)(c−1)β/2(2π)−β 1

2

(
β

4

)β (Γ(1 + 2/β))β

Γ(β)
.

Similarly the hard edge scaled limits can be taken in the evaluations of

the distributions (1.43) and (1.45). Thus one finds [16]

Eβ(0; (0, s)) = e
−βs/8

0F
(β/2)
1 (2m/β; x1, . . . , xm)

∣
∣
∣
xj=−s/4

pβ(0; s) = Am,βs
m

e
−βs/8

0F
(β/2)
1 (2m/β + 2; ; x1, . . . , xm)

∣
∣
∣
xj=−s/4

where

Am,β = 4−(m+1)(β/2)2m+1 Γ(1 + β/2)

Γ(1 + m)Γ(1 + m + β/2)
.

Note the similarity with (1.55) in the case n = 1. In particular we have

available m-dimensional integral representations.
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At the soft edge the appropriate scaling is x 7→
√

2N + x√
2N1/3

. Starting

with the formula (1.46) one can show [7]

1√
2N1/3

ρ(1)

(√
2N +

x√
2N1/3

)

∼ Γ(1 + β/2)

2π

(4π

β

)β/2
β
∏

j=1

Γ(1 + 2/β)

Γ(1 + 2j/β)
Kβ,β(x) + O(N−1/3) (1.57)

where

Kn,β(x) := − 1

(2πi)n

∫ i∞

−i∞
dv1 · · ·

∫ i∞

−i∞
dvn

n∏

j=1

e
v3

j /3−xvj

∏

1≤k<l≤n

(vk−vj)
4/β

.

2. Physical Random Matrix Ensembles

2.1. Heavy nuclei and quantum mechanics

Random matrices were introduced into theoretical physics in the 1950’s by

Wigner as a model of a random matrix approximation to the Hamiltonian

determining the highly excited states of heavy nuclei (see [30] for a collection

of many early works in the field). At the time it was thought that the com-

plex structure of heavy nuclei meant that in any basis the matrix elements

for the Hamiltonian determining the highly excited states would effectively

be random. (Subsequently [3] it has been learnt that a random matrix hy-

pothesis applies equally well to certain single particle quantum systems;

what is essential is that the underlying classical mechanics is chaotic.) One

crucial point was the understanding that the (global) time reversal sym-

metry exhibited by complex nuclei implied that the elements of the matrix

could be chosen to be symmetric, which since Hamiltonians are Hermitian

implied the relevant class of matrices to be real symmetric. Another crucial

point was the hypothesis of there being no preferential basis, in the sense

that the joint probability distribution of the independent elements of the

random matrix X should be independent of the basis vectors used to con-

struct the matrix in the first place. This effectively requires that the joint

probability distribution be unchanged upon the conjugation X 7→ O
T
XO

where O is a real orthogonal matrix. Distributions with this property are

said to be orthogonally invariant, a typical example being

1

C
e
−Tr(V (X)) (2.1)
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where C denotes the normalization, and V (x) is a polynomial in x of even

degree with positive leading coefficient. It is a well-known result that if one

should require that the independent elements be independently distributed,

and that the distribution be orthogonally invariant, then the distribution

is necessarily of the form (2.1) with

V (x) = ax
2 + bx. (2.2)

Random matrix theory applied to quantum systems without time re-

versal symmetry (typically due to the presence of a magnetic field) gives

the relevant class of matrices as being complex Hermitian. In this case the

hypothesis of there being no preferential basis requires invariance of the

joint probability distribution under the conjugation X 7→ U
†
XU where U

is a unitary matrix. Distributions with this property are said to be uni-

tary invariant, and again (2.1) is a typical example, with X now a complex

Hermitian rather than real symmetric matrix.

Theoretically a time reversal operator T is any anti-unitary operator.

However physical considerations further restricts their form (see e.g. [23]),

requiring that for an even number or no spin 1/2 particles T
2 = 1 (a familiar

example being T = K where K denotes complex conjugation), while for a

finite dimensional system with an odd number of spin 1/2 particles T
2 = −1

where T = Z2NK, with

Z2N = 1N ⊗
[

0 −1

1 0

]

.

For a quantum system which commutes with T of this latter form, the

2N × 2N matrix X modelling the Hamiltonian must, in addition to being

Hermitian, have the property

X = Z2N X̄Z
−1
2N .

This means that X can be viewed as the 2N × 2N complex matrix formed

from an N × N matrix with the elements consisting of 2 × 2 blocks of the

form

[
0 −1

1 0

]

, (2.3)

which is the matrix representation of a real quaternion. For no preferential

basis one requires that the probability density function for X be invariant
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under the conjugation X 7→ S
†
XS where S is the 2N × 2N unitary matrix

formed out of an N × N unitary matrix with real quaternian blocks (2.3).

2.2. Dirac operators and QCD

Random Hermitian matrices with a special block structure occurred in Ver-

baarschot’s introduction [36] of a random matrix theory of massless Dirac

operators, in the context of quantum chromodynamics (QCD). Generally

the non-zero eigenvalues of the massless Dirac operator occur in pairs ±λ.

Furthermore, in the so called chiral basis, all basis elements are eigenfunc-

tions of the γ-matrix iγ5 with eigenvalues +1 or −1, and matrix elements

between states with the same eigenvalue of γ5 must vanish, leaving a block

structure with non-zero elements in the upper-right and lower-left blocks

only. Noting too that the application to QCD requires that the Dirac op-

erator has a given number, ν say, of zero eigenvalues, implies the structure
[

0n×n X

X
† 0m×m

]

(2.4)

where X is an n×m (n ≥ m) matrix with n−m = ν. Moreover the positive

eigenvalues are given by the positive square root of the eigenvalues of X
†
X .

As in the application to chaotic quantum systems, the elements of X

in (2.4) must be real, complex or real quaternion according to there being

a time reversal symmetry with T
2 = 1, no time reversal symmetry, or

a time reversal symmetry with T
2 = −1 respectively. And due to their

origin in studying the Dirac equation with a chiral basis, the corresponding

ensembles are referred to as chiral random matrices.

2.3. Random scattering matrices

Problems in quantum physics also give rise to random unitary matrices. One

such problem is the scattering of plane waves within an irregular shaped

domain, or one containing random scattering impurities. The wave guide

connecting to the cavity is assumed to permit N distinct plane wave states,

and the corresponding amplitudes are denoted ~I for the ingoing states and
~O for the outgoing states. By definition the scattering matrix S relates ~I

and ~O,

S~I = ~O.

The flux conservation requirement |~I |2 = | ~O|2 implies that S must be uni-

tary. For scattering matrices in quantum mechanics, or more generally evo-
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lution operators, time reversal symmetry requires that

T
−1

ST = S
†
.

For T
2 = 1 this implies

S = S
T (2.5)

while for T
2 = −1,

S = Z2NS
T

Z
−1
2N =: S

D
. (2.6)

With UN ∈ U(N) a general N × N unitary matrix note that

S = UNU
T
N , S = U2NU

D
2N (2.7)

respectively have the properties (2.5) and (2.6).

For random scattering matrices it is hypothesized that the statistical

properties of S are determined soley by the global time reversal symmetry,

and are invariant under the same conjugations as the corresponding Hamil-

tonians. In fact the measure on U(N) which is unchanged by both left and

right multiplication by another unitary matrix is unique. It is called the

Haar measure dHU , and its volume form is

(dHU) = (U †
dU). (2.8)

Similarly, for the symmetric and self dual quaternion unitary matrices in

(2.8) we have

(dHS) = ((UT
N )†dS U

†) (dHS) = ((UT
N )†dS U

†) (2.9)

which are invariant under the mappings

S 7→ V
T
N SVN , S 7→ V

D
2NSV2N

for general unitary matrices V .

2.4. Quantum conductance problems

In the above problem of scattering within a cavity the incoming and out-

going wave is unchanged along the lead. A related setting is a quasi one-

dimensional conductor (lead) which contains internal scattering impurities

(see e.g. [34]). One supposes that there are n available scattering channels

at the left hand edge, m at the right hand edge, and that at each end there

is a reservoir which causes a current to flow.

The n-component vector ~I and m-component vector ~I
′ is used to denote

the amplitudes of the plane wave states traveling into the left and right sides
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of the wire respectively, while the n-component vector ~O and m-component

vector ~O
′ denotes the amplitudes of the plane wave states traveling out of

the left and right sides of the wire. The (n+m)× (n+m) scattering matrix

S now relates the flux traveling into the conductor to the flux traveling out,

S

[
~I

~I
′

]

=

[
~O

~O
′

]

.

The scattering matrix is further decomposed in terms of reflection and

transmission matrices by

S =

[
rn×n t

′
n×m

tm×n r
′
m×m

]

. (2.10)

According to the Landauer scattering theory of electronic conduction,

the conductance G is given in terms of the transmission matrix tm×n by

G/G0 = Tr(t†t)

where G0 = 2e
2
/h is twice the fundamental quantum unit of conductance.

Thus of interest is the distribution of t
†
t in the case S is a random unitary

matrix (no time reversal symmetry), a symmetric unitary matrix (time

reversal symmetry T
2 = 1), or has the self dual property (2.6) (time reversal

symmetry T
2 = −1).

2.5. Eigenvalue p.d.f.’s for Hermitian matrices

Let X = [xjk ]j,k=1,...,N be a real symmetric matrix. The diagonal and upper

triangular entries are independent variables. We know that real symmetric

matrices can be diagonalized according to

X = OLO
T

where L = diag(λ1, . . . , λN ) is the diagonal matrix of the eigenvalues (a to-

tal of N independent variables), while O is a real orthogonal matrix formed

out of the eigenvectors (a total of N(N − 1)/2 independent variables). We

seek the Jacobian for the change of variables from the independent ele-

ments of X , to the eigenvalues λ1, . . . , λN and the N(N − 1)/2 linearly

independent variables formed out of linear combinations of the elements

of O.

To calculate the Jacobian, it is useful to be familiar with the notion of

the wedge product,

du1 ∧ · · · ∧ dun := det[dui(~rj)]i,j=1,...,n. (2.11)
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Now, when changing variables from {u1, . . . , un} to {v1, . . . , vn}, since

dui =

n∑

l=1

∂ui

∂vl
dvl

and
[

n∑

l=1

∂ui

∂vl
dvl(~rj)

]

i,j=1,...,n

=
[
∂ui

∂vj

]

i,j=1,...,n
[dvi(~rj)]i,j=1,...,n

it follows from (2.11) that

du1 ∧ · · · ∧ dun = det
[
∂ui

∂vj

]

i,j=1,...,n
dv1 ∧ · · · ∧ dvn

thus allowing the Jacobian to be read off.

Denote by dH denote the matrix of differentials of H . We have

dH = dO LO
T + OdL O

T + OLdO
T
.

Noting from O
T
O = 1N that dO

T
O = −O

T
dO it follows from this that

O
T
dH O = O

T
dO L − LO

T
dO + dL

=










dλ1 (λ2 − λ1)~o
T
1 · d~o2 · · · (λN − λ1)~o

T
1 · d~oN

(λ2 − λ1)~o
T
1 · d~o2 dλ2 · · · (λN − λ2)~o

T
2 · d~oN

...
...

...

(λN − λ1)~o
T
1 · d~oN (λN − λ2)~o

T
2 · d~oN · · · dλN










where ~ok denotes the kth column of O.

For H Hermitian, let (dH) denote (up to a sign) the wedge product of

all the independent elements, real and imaginary parts separately, of H . To

compute the wedge product on the left hand side, the following result is

required (see e.g. [13]).

Proposition 2.1. Let A and M be N × N matrices, where A is non-

singular. For A real (β = 1), complex (β = 2) or real quaternion (β = 4),

and M real symmetric (β = 1), complex Hermitian (β = 2) or quaternion

real Hermitian (β = 4)

(A†
dM A) =

(

det A
†
A

)β(N−1)/2+1

(dM).

Making use of this result with β = 1 we see immediately that

(dH) =
∏

1≤j<k≤N

(λk − λj)

N∧

j=1

dλj(O
T
dO). (2.12)
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A simple scaling argument can be used to predict the structure of (2.12).

Since there are N(N + 1)/2 independent differentials in (dH), we see that

for c a scalar

(dcH) = c
N(N+1)/2(dH).

But cH = OcLO
T , so we conclude that (dcH) is a homogeneous polynomial

of degree N(N −1)/2 in {λj} (note that dλ1 · · · dλN contributes degree N).

Furthermore, because the probability of repeated eigenvalues occurs with

zero probability (dX) must vanish for λj = λk. These two facts together

tell us that the dependence in the eigenvalues is precisely as in (2.12).

The analogue of (2.12) for complex Hermitian matrices is

(dH) =
∏

1≤j<k≤N

(λk − λj)
2

N∧

j=1

dλj(U
†
dU) (2.13)

while for Hermitian matrices with real quaternion entries it is

(dH) =
∏

1≤j<k≤N

(λk − λj)
4

N∧

j=1

dλj(S
†
dS). (2.14)

It is of interest to understand (2.13) and (2.14) from the viewpoint of scal-

ing. Consider for definiteness (2.13) (the case of (2.14) is similar). Recalling

that for H complex Hermitian (dH) consists of the product of differentials of

the independent real and imaginary parts, it follows that (dcH) = c
N2

(dH).

This tells us that the polynomial in {λj} in (2.13) is of degree N
2−N , and

we know from the argument in the case of (2.12) that it contains a factor

of
∏

j<k(λk − λj). We want to deduce that in fact this factor is repeated

twice. For this we use the fact that the N × N complex Hermitian matrix

[xjk + iyjk]j,k=1,...,N has the same eigenvalues as the 2N × 2N real matrix
[

xjk yjk

−yjk xjk

]

j,k=1,...,N

(2.15)

but with each eigenvalue doubly degenerate, due to the isomorphism be-

tween the complex numbers and the 2×2 matrices exhibited in (2.15). From

this viewpoint the second factor then corresponds to a double degeneracy.

As a consequence of (2.12), (2.13), (2.14) it follows that the eigenvalue

p.d.f. for ensembles of Hermitian matrices weighted by (2.1) and with real

(β = 1), complex (β = 2) and real quaternion (β = 4) elements is

1

C
e
−∑N

j=1
V (λj)

∏

1≤j<k≤N

|λk − λj |β.
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2.6. Eigenvalue p.d.f.’s for Wishart matrices

For X a random n × m rectangular matrix (n ≥ m), the positive definite

matrix A := X
†
X is referred to as a Wishart matrix, after the application of

such matrices in multi-variate statistics (see e.g. [28]). In the latter setting

there are m variables x1, . . . , xm, each measured n times, to give an array

of data [x
(j)
k ] j=1,...,n

k=1,...,m
which is thus naturally represented as a matrix. Then

X
T
X =

[
n∑

j=1

x
(j)
k1

x
(j)
k2

]

k1,k2=1,...,m

is essentially an empirical approximation to the covariance matrix for the

data.

Fundamental to the computation of the eigenvalue p.d.f. for Wishart

matrices is the following result relating the Jacobian for changing variables

from the elements of X to the elements of A (and other associated variables

not explicitly stated).

Proposition 2.2. Let the n × m matrix X have real (β = 1), complex

(β = 2) or real quaternion (β = 4) elements, and suppose it has p.d.f. of

the form F (X†
X). The p.d.f. of A := X

†
X is then proportional to

F (A)
(

det A

)(β/2)(n−m+1−2/β)

.

Proof. We follow [29]. The p.d.f. of A must be equal to

F (A)h(A)

for some h. Write A = B
†
V B where V is positive definite. Making use of

the result of Proposition 2.1 tells us that the p.d.f. of V is then

F (B†
V B)h(B†

V B) det(B†
B)(β/2)(m−1+2/β)

. (2.16)

Now let X = Y B, where Y is such that V = Y
†
Y . Noting that for ~x

T =

~y
T
B, the Jacobian is (det B

†
B)β/2, it follows that

(dX) = (det B
†
B)βn/2(dY )

and hence the p.d.f. of Y is

F (B†
Y

†
Y B)(det B

†
B)βn/2

.

This is a function of Y
†
Y , so the p.d.f. of V = Y

†
Y is

F (B†
V B)(det B

†
B)βn/2

h(V ). (2.17)
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Equating (2.16) and (2.17) gives

h(B†
V B) = h(V )(det B

†
B)(β/2)(n−m+1−2/β)

.

Setting V = 1m and noting h(1m) = c for some constant c implies the

sought result.

Suppose that, analogous to (2.1), the matrix X in (2.4) is distributed

according to

1

C
e
−Tr(V (X†X))

where V (x) is a polynomial in x with positive leading term. Then as a

consequence of Proposition 2.2 and (2.12)–(2.14) the eigenvalue p.d.f. of

A = X
†
X is equal to

1

C
e
−∑m

j=1
V (λj )

m∏

j=1

λ
(β/2)(n−m+1−2/β)
j

∏

1≤j<k≤m

|λk − λj |β (2.18)

where 0 ≤ λj < ∞ (j = 1, . . . , N). Because the eigenvalues of (2.4), {xj}
say, are related to the eigenvalues {λj} by x

2
j = λj , it follows that the {xj}

have p.d.f.

1

C
e
−∑m

j=1
V (x2

j )
m∏

j=1

|xj |β(n−m+1−2/β)+1
∏

1≤j<k≤m

|x2
k − x

2
j |β . (2.19)

2.7. Eigenvalue p.d.f.’s for unitary matrices

We now take up the problem of computing the Haar volume form (2.8) and

its analogues (2.9) for symmetric and self dual quaternion unitary matrices.

There are a number of possible approaches (see e.g. [13]). Here use will be

made of the Cayley transform

H = i
1N − U

1N + U
(2.20)

which maps a unitary matrix U to an Hermitian matrix H . From this the

volume form (U †
dU) can be computed in terms of (dH), and the decom-

position of the latter in terms of its eigenvalues and eigenvectors is already

known. To begin we invert (2.20) so it reads

U =
1N + iH

1N − iH
.
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Making use of the general operator identity

d

da
(1 − K)−1 = (1 − K)−1 dK

da
(1 − K)−1

,

where K is assumed to be a smooth function of a, we deduce from this that

U
†
dU = 2i(1N + iH)−1

dH(1N − iH)−1
. (2.21)

To be consistent with (2.7), (2.9) for U symmetric or self dual quaternion

we introduce the decompositions

U = V
T
V, U = V

D
V

for V ∈ U(N), V ∈ U(2N) respectively, and use (2.21) to calculate δU :=

V U
†
dU V

†. This gives

δU =
i

2
(V φ + V

†)φ
dH(V φ + V

†)

where φ = T (β = 1), φ = D (β = 4). Observe that the elements of V
φ +V

†

are real for φ = T , real quaternion for φ = D. This tells us that Proposition

2.1 can be applied to the right hand side of (2.21) with appropriate β and

thus

(δU) = 2N(β(N−1)/2+1)
(

det(1N + H
2)
)−β(N−1)/2−1

(dH). (2.22)

Let {λj} denote the eigenvalues of H and {eiθj} denote the corresponding

eigenvalues of U , with H and U related by (2.20). Then

e
iθ =

1 + iλ

1 − iλ
. (2.23)

From (2.22) the corresponding eigenvalues p.d.f. of {λj} is

1

C

N∏

l=1

1

(1 + λ
2
l )

β(N−1)/2+1

∏

j<k

|λk − λj |β. (2.24)

Changing variables according to (2.23) gives for the eigenvalue p.d.f. of

{eiθj}

1

C

∏

j<k

|eiθk − e
iθj |β. (2.25)
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2.8. Eigenvalue p.d.f.’s for blocks of unitary matrices

We seek the distribution of the non-zero eigenvalues of t
†
t in the decompo-

sition (2.10). To compute this distribution, one approach is to consider the

singular value decomposition of each of the individual blocks, for example

tm×n = UtΛtV
†
t , where Λt is a rectangular diagonal matrix with diagonal

entries consisting of the square roots of the non-zero eigenvalues of t
†
t,

and Ut and Vt are m × m and n × n unitary matrices. In terms of such

decompositions it is possible to parametrize (2.10) as

S =

[
Ur 0

0 Ur′

]

L

[
V

†
r 0

0 V
†
r′

]

(2.26)

where

L =

[√

1 − ΛtΛ
T
t iΛt

iΛT
t

√

1 − ΛT
t Λt

]

.

In the case that S is symmetric, it is further required that

V
†
r = U

T
r , V

†
r′ = U

T
r′ , (2.27)

while for S self dual quaternion

V
†
r = U

D
r , V

†
r′ = U

D
r′ . (2.28)

From (2.26) the method of wedge products can be used to derive that

the non-zero elements of Λt have the distribution

m∏

j=1

λ
βα
j

∏

1≤j<k≤m

|λ2
k − λ

2
j |β , α = n − m + 1 − 2/β (2.29)

where 0 < λj < 1 (j = 1, . . . , m). But it turns out that the details of

the calculation are quite tedious [13, 19]. In the case β = 2 some alternative

derivations are possible [33, 6, 19], and a more general result can be derived.

Proposition 2.3. Let U be an N ×N random unitary matrix chosen with

Haar measure. Decompose U into blocks

U =

[
An1×n2

Cn1×(N−n2)

B(N−n1)×n2
D(N−n1)×(N−n2)

]

(2.30)

where n1 ≥ n2. The eigenvalue p.d.f. of Y := A
†
A is proportional to

n2∏

j=1

y
(n1−n2)
j (1 − yj)

(N−n1−n2)
n2∏

j<k

(yk − yj)
2
. (2.31)
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Proof. We will use the matrix integral [22]
∫

e
(i/2)Tr(HQ)

(

det(H − µ1m)
)−n

(dH) ∝ (det Q)(n−m)
e
(i/2)µTrQ

, (2.32)

valid for Q Hermitian and Im(µ) > 0, and the integration is over the space

of m × m Hermitian matrices. In (2.30) the fact that U is unitary tells us

that

AA
† + CC

† = 1n1
. (2.33)

Following an idea of [38], we regard (2.33) as a constraint in the space of

general n1 × n2 and n1 × (N − n2) complex rectangular matrices A and C,

which allows the distribution of A to be given by
∫

δ(AA
† + CC

† − 1n2
)(dC). (2.34)

The delta function in (2.34) is a product of scalar delta functions, which in

turn is proportional to the matrix integral
∫

e
−iTr(H(AA†+CC†−1n2

))(dH), (2.35)

where the integration is over the space of n2 × n2 Hermitian matrices.

Substituting (2.35) and (2.34) and changing the order of integration,

the integration over C is a Gaussian integral and so can be computed im-

mediately. However for the resulting function of H to be integrable around

H = 0, the replacement H 7→ H − iµIn in the exponent of (2.35) must be

made. Doing this we are able to deduce (2.34) to be proportional to

lim
µ→0+

∫

(det(H − iµ1n1
))−(N−n2)e

iTr(H(1n1
−AA†)(dH) (2.36)

which in turn is proportional to

(det(1n1
− AA

†))(N−n1−n2) (2.37)

where (2.37) follows from (2.36) using (2.32). Because the non-zero eigen-

values of AA
† and A

†
A are the same, we can replace AA

† 7→ A
†
A in (2.37).

Now using Proposition 2.2 in the case β = 2 gives that the distribution of

A is proportional to

(det Y )(n1−n2)(det(1n2
− Y ))(N−n1−n2)

. (2.38)

Changing variables now to the eigenvalues and eigenvectors using (2.13)

gives the stated result.

The eigenvalue p.d.f. (2.31) reclaims (2.30) in the case β = 2 by setting

n1 = n2 = m, N = n + m and changing variables 1 − yj = λ
2
j .
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2.9. Classical random matrix ensembles

Let β = 1, 2 or 4 according to the elements being real, complex or quater-

nion real respectively. In the case of Hermitian matrices, the eigenvalue

p.d.f.’s derived above all have the general form

1

C

N∏

l=1

g(xl)
∏

1≤j<k≤N

|xk − xj |β .

Choosing the entries of the matrices to be independent Gaussians, when

there is a choice, the form of g(x) is, up to scaling xl 7→ cxl,

g(x) =







e
−x2

, Gaussian

x
a
e
−x (x > 0) Laguerre

x
a(1 − x)b (0 < x < 1) Jacobi

(1 + x
2)−α Cauchy.

These are the four classical weight functions from orthogonal polynomial

theory, which can be characterized by the property that

d

dx
log g(x) =

a(x)

b(x)

where

degreea(x) ≤ 1, degree b(x) ≤ 2.

Recall that stereographic projection of the Cauchy weight for a certain

α gives the circular ensemble, as noted in (2.23)–(2.25). Thus these are

essentially the same p.d.f.’s encountered in the log-gas systems of Section

1.1, and the quantum many body systems of Section 1.2, except that β is

restricted to one of three values.

It is our objective in the rest of these notes to explore some eigenvalue

problems which relate to the Gaussian and Laguerre β ensembles for general

β > 0.

3. β-Ensembles of Random Matrices

3.1. Gaussian β ensemble

We will base our construction on an inductive procedure. Let a be a scalar

chosen from a particular probability distribution, and let ~w be a N × 1

column vector with each component drawn from a particular probability
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density. Inductively define a sequence of matrices {Mj}j=1,2,... by M1 = a

and

MN+1 =

[
DN ~w

~w
T

a

]

(3.1)

where DN = diag(a1, . . . , aN ) with {aj} denoting the eigenvalues of MN .

For example, suppose a ∈ N[0, 1] and wj ∈ N[0, 1/

√
2] (j = 1, . . . , N).

Let ON be the real orthogonal matrix which diagonalizes MN , so that

MN = ONDNO
T
N , and observe

[
ON

~0
~0 T 1

][
MN ~w

~w
T

a

][
ON

~0
~0 T 1

]T

∼
[
DN ~w

~w
T

a

]

.

It follows that the construction (3.1) gives real symmetric matrices MN

with distribution proportional to

e
−Tr(M2

N )/2

and we know the corresponding eigenvalue p.d.f. is

1

C

N∏

l=1

e
−a2

j/2
∏

1≤j<k≤N

|ak − aj |. (3.2)

Given the eigenvalues {aj}j=1,...,N of MN we would like to compute the

eigenvalues {λj}j=1,...,N+1 of MN+1. Now

det(λ1N+1 − MN+1) = det

[
λ1N − DN −~w

−~w
T

λ − a

]

= det

[
λ1N − DN −~w

~0 T
λ − a − ~w

T (λ1N − DN )−1
~w

]

= pN(λ)(λ − a − ~w
T (λ1N − DN )−1

~w)

where pN (λ) is the characteristic polynomial for MN . But λ1N − DN is

diagonal, so its inverse is also diagonal, allowing us to conclude

pN+1(λ)

pN (λ)
= λ − a −

N∑

i=1

qi

λ − ai
, qi := w

2
i . (3.3)

The eigenvalues of MN+1 are thus given by the zeros of the rational

function in (3.3). The corresponding p.d.f. can be computed for a certain

choice of the distribution of the qi [12, 20].
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Proposition 3.1. Let w
2
i ∼ Γ[β/2, 1] where Γ[s, σ] refers to the gamma

distribution, specified by the p.d.f. σ
−s

x
s−1

e
−x/σ

/Γ(s) (x > 0). Given

a1 > a2 > · · · > aN

the p.d.f. for the zeros of the random rational function

λ − a −
N∑

i=1

qi

λ − ai

is equal to

e
a2/2

(Γ(β/2))N

∏

1≤j<k≤N+1

(λj − λk)

∏

1≤j<k≤N

(aj − ak)β−1

N+1∏

j=1

N∏

p=1

|λj − ap|β/2−1

× exp

(

− 1

2

(
N+1∑

j=1

λ
2
j −

N∑

j=1

a
2
j

))

(3.4)

where

∞ > λ1 > a1 > λ2 > · · · > aN > λN+1 > −∞ (3.5)

and
N+1∑

j=1

λj =

N∑

j=1

aj + a. (3.6)

Proof. Because the qi are positive, graphical considerations imply the

interlacing condition. Note too that the summation constraint is equiva-

lent to the statement that TrMN+1 = Tr DN + a, while the translations

λj 7→ λj − a, aj 7→ aj − a shows it suffices to consider the case a = 0.

With a = 0 we have

λ −
N∑

i=1

qi

λ − ai
=

N+1∏

j=1

(λ − λj)

N∏

l=1

(λ − al)

.

From the residue at λ = ai it follows

N+1∏

j=1

(ai − λj)

∏

l=1,l6=i

(ai − al)
= −qi. (3.7)
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We want to compute the change of variables from {qi}i=1,...,N to

{λj}j=1,...,N . It follows immediately from (3.7) that up to a sign

N∧

j=1

dqi =

N∏

j=1

qj det
[ 1

ai − λj

] N∧

j=1

dλj . (3.8)

Hence after making use of the Cauchy double alternant identity the sought

Jacobian is seen to be equal to

N∏

j=1

qj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1≤i<j≤N

(ai − aj)(λi − λj)

N∏

i,j=1

(ai − λj)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.9)

But the distribution of {wj} is equal to

1

(Γ(β/2))N

N∏

j=1

q
β/2−1
j e

−
∑N

j=1
qj

. (3.10)

We must multiply (3.9) and (3.10), and write {qj} in terms of {ai, λj}. By

equating the coefficients of 1/λ on both sides of (3.3) and using (3.6) with

a = 0 we see

N∑

j=1

qj =
1

2

(
N+1∑

j=1

λ
2
j −

N∑

j=1

µ
2
j

)

.

Further, we can read off
∏N

i=1 qi from (3.7). Substituting we deduce (3.4).

Suppose now that

a ∼ N[0, 1]. (3.11)

Then we see from Proposition 3.1 that the (conditional) eigenvalue p.d.f. of

{λj} is given by (3.4) with e
a2/2 replaced by the constant 1√

2π
, and

the constraint (3.6) no longer present. Let this conditional eigenvalue

p.d.f. be denoted GN ({λj}, {ak}), and denote its domain of support

(3.5) by RN . Let {aj} have p.d.f. pN (a1, . . . , aN ), and let {λj} have

p.d.f. pN+1(λ1, . . . , λN+1). With this notation, we read off from (3.4) that

pN+1(λ1, . . . , λN+1) =

∫

R

da1 · · · daN GN (({λj}, {ak})pN (a1, . . . , aN ) .

(3.12)

We seek the solution of this recurrence with p0 = 1.
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When β = 1 we know that the solution of (3.12) is given by (3.2). To

obtain its solution for general β, we begin by noting that with µi denoting

the top entry of the normalized eigenvector corresponding to the eigenvalue

λi of MN we have

N∑

j=1

µ
2
j

λ − λj
=
(

(λ1N − MN )−1
)

11
=

pN−1(λ)

pN (λ)
. (3.13)

Here the first equality follows from the spectral decomposition, while the

second follows from Cramer’s rule. Because the matrix (3.1) is real sym-

metric and thus orthogonally diagonalizable, we must have

N∑

j=1

µ
2
i = 1

which is consistent with (3.13).

In the case β = 1 the matrix MN is orthogonally invariant and so we

have

µ
2
i ∼ w

2
i

w
2
1 + · · · + w

2
N

=: ρi

where each w
2
i ∼ Γ[1/2, 1]. Generally, if

w
2
i ∼ Γ[β/2, 1] (3.14)

then the p.d.f. of ρ1, . . . , ρN is equal to the Dirichlet distribution

Γ(Nβ/2)

(Γ(β/2))N

N∏

j=1

ρ
β/2−1
j (3.15)

where each ρj is positive and
∑N

j=1 ρj = 1.

Let us then consider the distribution of the roots of (3.13) implied by

the µ
2
i having the Dirichlet distribution implied by (3.15) [8, 1].

Proposition 3.2. Let {ρi} have the Dirichlet distribution

Γ(Nβ/2)

(Γ(β/2))N

N∏

j=1

ρ
β/2−1
j

and let {bj} be given. The roots of the random rational function

N∑

j=1

ρj

x − bj
,
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denoted {x1, . . . , xN−1} say, have the p.d.f.

Γ(Nβ/2)

(Γ(β/2))N

∏

1≤j<k≤N−1

(xj − xk)

∏

1≤j<k≤N

(bj − bk)β−1

N−1∏

j=1

N∏

p=1

|xj − bp|β/2−1 (3.16)

where

x1 > b1 > x2 > b2 > · · · > xN−1 > bN . (3.17)

Proof. As is consistent with (3.13) write

N∑

j=1

ρj

x − bj
=

N−1∏

l=1

(x − xl)

N∏

l=1

(x − bl)

.

For a particular j, taking the limit x → bj shows

ρj =

N−1∏

l=1

(bj − xl)

N∏

l=1,l6=j

(bj − bl)

. (3.18)

Our task is to change variables from {ρj}j=1,...,N−1 to {xj}j=1,...,N−1. Anal-

ogous to (3.8) we have, up to a sign

N−1∧

j=1

dρj =

N−1∏

j=1

ρj det
[ 1

bj − xk

]

j,k=1,...,N−1

N−1∧

j=1

dxj

and thus the corresponding Jacobian is equal to

N−1∏

j=1

ρj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∏

1≤j<k≤N−1

(bk − bj)(xk − xj)

N−1∏

j,k=1

(bj − xk)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.19)

The result now follows immediately upon multiplying (3.19) with (3.9), and

substituting for ρj using (3.18).
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Because, with respect to {xj}, (3.16) is a p.d.f., integrating over the

region (3.17) (R′
N−1 say) must give unity, and so we have the integration

formula
∫

R′
N−1

dx1 · · · dxN−1

∏

1≤j<k≤N−1

(xj − xk)

N−1∏

j=1

N∏

p=1

|xj − bp|β/2−1

=
(Γ(β/2))N

Γ(Nβ/2)

∏

1≤j<k≤N

(bj − bk)β−1
. (3.20)

This allows us to verify the solution of the recurrence (3.12).

Proposition 3.3. The solution of the recurrence (3.12) is given by

pN (x1, . . . , xN ) =
1

mN (β)

N∏

j=1

e
−x2

j/2
∏

1≤j<k≤N

|xk − xj |β (3.21)

where

N !mN (β) = (2π)N/2
N−1∏

j=0

Γ(1 + (j + 1)β/2)

Γ(1 + β/2)
.

Proof. Substituting (3.21) in the r.h.s. of (3.12) gives

1√
2π

1

(Γ(β/2))N

1

mN(β)
e
− 1

2

∑N+1

j=1
λ2

j

∏

1≤j<k≤N+1

(λj − λk)

×
∫

RN

da1 · · · daN

∏

1≤j<k≤N

(aj − ak)

N+1∏

j=1

N∏

p=1

|λj − ap|β/2−1
.

The integral is precisely the N 7→ N + 1 case of (3.20). Substituting its

value we obtain pN+1 as specified by (3.21).

3.2. Three term recurrence and tridiagonal matrices

According to the working of the previous section, the characteristic poly-

nomial pN(x) :=
∏N

l=1(x − xl), where {xj} is distributed according to the

Gaussian β-ensemble , satisfies the recurrence relation

pN−1(x)

pN(x)
=

N∑

j=1

ρj

x − xj

where

ρj ∼ w
2
j /(w2

1 + · · · + w
2
N ), w

2
j ∼ Γ[β/2, 1],
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as well as the further recurrence relation

pN+1(x)

pN (x)
= x − a −

N∑

j=1

w
2
j

x − xj
, a ∈ N[0, 1].

The two recurrences together give the random coefficient three term recur-

rence

pN+1(x) = (x − a)pN (x) − b
2
NpN (x). (3.22)

The three term recurrence (3.22) occurs in the study of tridiagonal ma-

trices. Thus consider a general real symmetric tridiagonal matrix

Tn =










a1 b1

b1 a2 b2

b2 a3

... bn−1

bn−1 an










. (3.23)

By forming λ1n−Tn and expanding the determinant along the bottom row

one sees

det(λ1n − Tn) = (λ − an) det(λ1n−1 − Tn−1) − b
2
n−1 det(λ1n−2 − Tn−2).

Comparison with (3.22) shows the Gaussian β-ensemble is realized by the

eigenvalue p.d.f. of random tridiagonal matrices with

aj ∼ N[0, 1] b
2
j ∼ Γ[jβ/2, 1]. (3.24)

This result was first obtained using different methods in [9]. The present

derivation is a refinement of the approach in [20].

4. Laguerre β Ensemble

A recursive construction of the Hermite β ensemble was motivated by con-

sideration of a recursive structure inherent in the GOE. Likewise, to moti-

vate a recursive construction of the Laguerre β ensemble we first examine

the case of the LOE. As noted in Section 2.6 this is realized by matrices

X
T
(n)X(n) where X(n) is an n×N rectangular matrix with Gaussian entries

N[0, 1]. Such matrices satisfy the recurrence

X
T
(n+1)X(n+1) = X

T
(n)X(n) + ~x(1)~x

T
(1). (4.1)

This suggests inductively defining a sequence of N × N positive definite

matrices indexed by (n) according to

A(n+1) = diag A(n) + ~x(1)~x
T
(1) (4.2)
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where diag A(n) refers to the diagonal form of A(n) and A(0) = [0]N×N .

Noting that A(n) will have N −n zero eigenvalues, it is therefore necessary

to study the eigenvalues of the N × N matrix

Y := diag(a1, . . . , an, an+1, . . . , an+1
︸ ︷︷ ︸

N−n

) + ~x~x
T

.

Since

det(λ1N − Y ) = det(λ1N − A) det(1N − (λ1N − A)−1
~x~x

T )

it follows

det(λ1N − Y )

det(λ1N − A)
= 1 −

n∑

j=1

x
2
j

λ − aj
−

N∑

j=n+1

x
2
j

λ − an+1
. (4.3)

One is thus led to ask about the density of zeros of the random rational

function

1 −
n+1∑

j=1

w
2
j

λ − aj
, (4.4)

where, since the sum of squares of Gaussian distributed variables are gamma

distributed variables,

w
2
j ∼ Γ[sj , 1]. (4.5)

Proposition 4.1. The zeros of the rational function (4.4) have p.d.f.

1

Γ(s1) · · ·Γ(sn+1)
e
−
∑n+1

j=1
(λj−aj)

×
∏

1≤i<j≤n+1

(λi − λj)

(ai − aj)si+sj−1

n+1∏

i,j=1

|λi − aj |sj−1 (4.6)

where

λ1 > a1 > λ2 > · · · > λn+1 > an+1.

This result can be proved [20] by following the general strategy used to

establish Propositions 3.1 and 3.2.

The case of interest is

s1 = · · · = sn = β/2, sn+1 = (N − n)β/2, an+1 = 0. (4.7)

Let us denote (4.6) with these parameters by

G({λj}j=1,...,n+1; {aj}j=1,...,n) .
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Let the p.d.f. of {λj}j=1,...,n+1 be denoted pn+1({aj}). For n < N the

recursive construction of {A(n)} gives that

pn+1({λj}) =

∫

λ1>a1>···>λn+1>0

da1 · · · dan

× G({λj}j=1,...,n+1; {aj}j=1,...,n)pn({aj}) (4.8)

subject to the initial condition p0 = 1.

With β = 1 the LOE recursion (4.1) tells us that the recurrence (4.8) is

satisfied by the eigenvalue p.d.f. for the non-zero eigenvalues of the Wishart

matrices X
T
(n)X(n). This in turn is equal to the eigenvalue p.d.f. of the full

rank matrices X(n)X
T
(n), which according to (2.18) is given by

pn({λj}) =
1

Cn

n∏

l=1

λ
(N−n−1)/2
l e

−λl

∏

1≤j<k≤n

|λk − λj | (4.9)

(here the choice V (x) = x in (2.18) has been introduced to account for the

scale factor σ = 1 in the distribution Γ[sj , σ] used in (4.4)).

For general β > 0, we want to check that (4.8) has as its solution

pn({λj}) =
1

Cn,β

n∏

l=1

λ
(N−n+1)β/2−1
l e

−λl

∏

1≤j<k≤n

|λk − λj |β . (4.10)

Since

G({λj}j=1,...,n+1; {aj}j=1,...,n)

=
1

(Γ(β/2))nΓ((N − n)β/2)
e
−
∑n

j=1
(λj−aj)−λn+1

n+1∏

i<j

(λi − λj)

n∏

i<j

(ai − aj)
β−1

×

n+1∏

i=1

λ
(N−n)β/2+1
i

a
(N−n+1)β/2−1
i

n∏

i,j=1

|λi − aj |β/2−1

we see we need to evaluate
∫

λ1>a1>···>λn+1>0

da1 · · · dan

n∏

i<j

(ai − aj)

n∏

i,j=1

|λi − aj |β/2−1
.

This is precisely the integral (3.20) with N 7→ n + 1, and so is equal to

(Γ(β/2))n+1

Γ((n + 1)β/2)

∏

1≤j<k≤n+1

(λj − λk)β−1
,
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leaving us with

Cn+1,β

Cn,β

Γ(β/2)

Γ((n + 1)β/2)Γ((N − n)/β/2)
pn+1({λj}).

Thus (4.9) with

Cn,β =

n∏

k=0

Γ((k + 1)β/2)Γ((N − k)/β/2)

Γ(β/2)
(4.11)

is indeed the solution of the recurrence (4.8).

Let pn(λ) =
∏n

l=1(λ − xl), where {xl} have the p.d.f. (4.10). We see

from (4.3)–(4.5) and (4.7) that pn satisfies the recurrence

pn+1(λ)

pn(λ)
= 1 −

n∑

j=1

w
2
j

λ − xj
− w

2
n+1

λ
(4.12)

where

w
2
j ∼ Γ[β/2, 1] (j = 1, . . . , n), w

2
n+1 ∼ Γ[(N − n)β/2, 1].

In addition, as for the matrix MN introduced in (3.1), the matrix A(n) in

(4.2) must satisfy the first equality in (3.13), thus implying the companion

recurrence

pn−1(λ)

pn(λ)
=

n∑

j=1

ρj

λ − xj
(4.13)

where

ρj ∼ w
2
j /(w2

1 + · · · + w
2
n).

Comparing (4.12) and (4.13) gives the three term recurrence with random

coefficients [20]

λpn+1(λ) = (λ − w
2
n+1)pn(λ) − bnλpn−1(λ) (4.14)

where

w
2
n+1 ∼ Γ[(N − n)β/2, 1], bn ∼ Γ[nβ/2, 1].

5. Recent Developments

The whole topic of explicit constructions of β-random ensembles is recent,

with the first paper on the subject appearing in 2002 [9]. In that work the

motivation came from considerations in numerical linear algebra, whereby

the form of a GOE matrix after the application of Householder transfor-

mations to tridiagonal form was sought. In the case of unitary matrices,
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the viewpoint of numerical linear algebra suggests seeking the Hessenberg

form. Doing this [25] leads to a random matrix construction of the circu-

lar β-ensemble. Similarly, seeking the Hessenberg form of real orthogonal

matrices from O
+(N) leads to a random matrix construction of the Ja-

cobi β-ensemble [25]. An alternative approach to the latter involves the

cosine-sine block decomposition of unitary matrices [10].

Recurrence relations with random coefficients for the characteristic poly-

nomials of the circular and Jacobi β-ensembles following from the underly-

ing Hessenberg matrices are given in [25]. Using methods similar to those

presented in Sections 3.1 and 4 for the Gaussian and Laguerre β-ensembles,

different three term recurrences with random coefficients for the Jacobi β-

ensemble and the circular β-ensemble have been given [20, 21].

Most recently [31, 11, 26] the continuum limit of various of the recur-

rences has been shown to be given by certain differential operators with

random noise terms. In the case of the Gaussian β-ensemble this can be

anticipated by viewing the corresponding tridiagonal matrix (3.23) as the

discretization of a certain random Schrödinger operator [4]. This allows the

scaled distributions of the particles to be described in terms of the eigen-

values of the corresponding random differential operator.
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With the rapid development of modern computer science, large dimen-
sional data analysis has become more and more important and has there-
fore received increasing attention from statisticians. In this note, we
shall illustrate the difference between large dimensional data analysis
and classical data analysis by means of some examples, and we show
the importance of random matrix theory and its applications to large
dimensional data analysis.

1. Introduction

What are the future aspects of modern statistics and in which direction

will it develop? To answer this, we shall have a look at what has influenced

statistical research in recent decades. We strongly believe that, in every

discipline, the most impacting factor has been — and still is — the rapid

development and wide application of computer technology and computing

sciences. It has become possible to collect, store and analyze huge amounts

of data of large dimensionality. As a result, more and more measurements

are collected with large dimension, e.g. data in curves, images and movies,

and statisticians have to face the task of analyzing these data. But com-

puter technology also offers big advantages. We are now in a position to do

many things that were not possible 20 years ago, such as making spectral

decompositions of a matrix of order 1000 × 1000, searching patterns in a

DNA sequences and much more. However, it also confronts us with the big

69
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challenge that classical limit theorems are no longer suitable to deal with

large dimensional data and we have to develop new limit theorems to cope

with this. As a result, many statisticians have now become interested in

this research topic.

Typically, large dimensional problems involve a “large” dimension p and

a “small” sample size n. However, in a real problem, they both are given

integers. It is then natural to ask for which size the dimension p has to be

taken as fixed or tending to infinity and what we should do if we cannot

justify “p is fixed”. Is it reasonable to claim “p is fixed” if the ratio of

dimension and sample size p/n is small, say, less than 0.001? If we cannot

say “p is fixed”, can any limit theorems be used for large dimensional data

analysis?

To discuss these questions, we shall provide some examples of multi-

variate analysis. We illustrate the difference between traditional tests and

the new approaches of large dimensional data by considering tests on the

difference of two population means and tests on the equality of a popula-

tion covariance matrix and a given matrix. By means of simulations, we

will show how the new approaches are superior to the traditional ones.

At present, large dimensional random matrix theory (RMT) is the only

systematic theory which is applicable to large dimensional problems. The

RMT is different from the classical limit theories because it is built on

the assumption that p/n → y > 0 regardless what y is, provided where

it is applicable, say y ∈ (0, 1) for T
2 statistic. The RMT shows that the

classical limit theories behave very poorly or are even inapplicable to large-

dimensional problems, especially when the dimension is growing propor-

tionally with the sample size [see Dempster (1958), Bai (1993a,b, 1999),

Bai and Saranadasa (1996), Bai and Silverstein (2004, 2006), Bai and Yin

(1993), Bai, Yin and Krishnaiah (1988)]. In this paper, we will show how

to deal with large dimensional problems with the help of RMT, especially

the CLT of Bai and Silverstein (2004).

2. A Multivariate Two-Sample Problem

In this section, we revisit the T
2 test for the two-sample problem. Suppose

that xi,j ∼ Np(µi, Σ), j = 1, . . . , Ni, i = 1, 2, are two independent samples.

To test the hypotheses H0 : µ1 = µ2 vs H1 : µ1 6= µ2, traditionally one

uses Hotelling’s famous T
2-test which is defined by

T
2 = η(x̄1 − x̄2)

′
A

−1(x̄1 − x̄2), (2.1)



May 5, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 03-BaiZhidong

Future of Statistics 71

where x̄i = 1
Ni

∑Ni

j=1 xi,j , i = 1, 2, A =
∑2

i=1

∑Ni

j=1(xi,j − x̄i)(xi,j − x̄i)
′

and η = n
N1N2

N1+N2
with n = N1+N2−2. It is well known that, under the null

hypothesis, the T
2 statistic has an F distribution with degrees of freedom

p and n − p + 1.

The advantages of the T
2-test include the properties that it is invariant

under affine transformations, has an exact known null distribution, and is

most powerful when the dimension of data is sufficiently small compared

to its sample size. However, Hotelling’s test has the serious defect that the

T
2 statistic is undefined when the dimension of data is greater than the

sample degrees of freedom. Looking for remedies, Chung and Fraser (1958)

proposed a nonparametric test and Dempster (1958, 1960) discussed the

so-called “non-exact” significance test (NET). Dempster (1960) also con-

sidered the so-called randomization test. Not only being a remedy when

the T
2 is undefined, Bai and Saranadasa (1996) also found that, even if

T
2 is well defined, the NET is more powerful than the T

2 test when the

dimension is “close to” the sample degrees of freedom. Both, the T
2 test

and Dempster’s NET, strongly rely on the normality assumption. Moreover,

Dempster’s non-exact test statistic involves a complicated estimation of r,

the degrees of freedom for the chi-square approximation. To simplify the

testing procedure, a new method, the Asymptotic Normality Test (ANT), is

proposed in Bai and Sarahadasa (1996). It is proven there that the asymp-

totic power of ANT is equivalent to that of Dempster’s NET. Simulation

results further show that the new approach is slightly more powerful than

Dempster’s NET. We believe that the estimation of r and its rounding to

an integer in Dempster’s procedure may cause an error of order O(1/n).

This might indicate that the new approach is superior to Dempster’s test in

the second order term in some Edgeworth-type expansions (see Babu and

Bai (1993) and Bai and Rao (1991) for reference of Edgeworth expansions).

2.1. Asymptotic power of T 2 test

The purpose of this section is to investigate the asymptotic power of

Hotelling’s test when p/n → y ∈ (0, 1) and to compare it with other NETs

given in later sections. To derive the asymptotic power of Hotelling’s test,

we first derive an asymptotic expression for the threshold of the test. It is

well known that under the null hypothesis, n−p+1
np T

2 has an F -distribution

with degrees of freedom p and n − p + 1. Let the significance level be cho-

sen as α and the threshold be denoted by Fα(p, n − p + 1). By elementary

calculations, we can prove the following.
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Lemma 1. We have p
n−p+1Fα(p, n− p + 1) = yn

1−yn
+
√

2y/(1− y)3nzα +

o(1/
√

n), where yn = p/n, limn→∞ yn = y ∈ (0, 1) and zα is the 1 − α

quantile of the standard normal distribution.

Now, to describe the asymptotic behavior of the T
2 statistic under the

alternative hypothesis H1, one can easily show that the distribution of the

T
2 statistic is the same as of

(w + τ
−1/2δ)′U−1(w + τ

−1/2δ), (2.2)

where δ = Σ−1/2(µ1 − µ2), U =
∑n

i=1 uiu
′
i, w = (w1, . . . , wp)

′ and

ui, i = 1, . . . , n are i.i.d. N(0, Ip) random vectors and τ = N1+N2

N1N2
, and Σ is

covariance matrix of the riginal population. Denote the spectral decompo-

sition of U
−1 by Odiag[d1, . . . , dp]O

′ with eigenvalues d1 ≥ · · · ≥ dp > 0.

Then, (2.2) becomes

(Ow + τ
−1/2‖δ‖v)′diag[d1, . . . , dp](Ow + τ

−1/2‖δ‖v), (2.3)

where v = Oδ/‖δ‖. Since U has the Wishart distribution W (n, Ip), the

orthogonal matrix O has the Haar distribution on the group of all orthogo-

nal p-matrices, and hence the vector v is uniformly distributed on the unit

p-sphere. Note that the conditional distribution of Ow given O is N(0, Ip),

the same as that of w, which is independent of O. This shows that Ow is

independent of v. Therefore, replacing Ow in (2.3) by w does not change

the joint distribution of Ow, v and the di’s. Consequently, T
2 has the same

distribution as

Ωn =

p
∑

i=1

(w2
i + 2wiviτ

−1/2‖δ‖ + τ
−1‖δ‖2

v
2
i )di, (2.4)

where v = (v1, . . . , vp)
′ is uniformly distributed on the unit sphere of R

p

and is independent of w and the di’s.

Lemma 2. Using the above notation, we have
√

n

(
∑p

i=1 di − yn

1−yn

)

→ 0,

and n
∑p

i=1 d
2
i → y

(1−y)3 in probability.

Now we are in a position to express the approximation of the power

function of Hotelling’s test.

Theorem 3. If yn = p/n → y ∈ (0, 1), N1/(N1 + N2) → κ ∈ (0, 1) and

‖δ‖ = o(1), then

βH(δ) − Φ

(

−zα +

√

n(1 − y)

2y
κ(1 − κ)‖δ‖2

)

→ 0, (2.5)
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where βH(δ) is the power function of Hotelling’s test and Φ is the distribu-

tion function of standard normal random variable.

Remark 4. If the alternative hypothesis is considered in limit theorems,

it is typically assumed that
√

n‖δ‖2 → a > 0. Under this additional as-

sumption, it follows from (2.5) that the limiting power of Hotelling’s test

is given by βH(δ) − Φ(−zα +

√
(1−y)

2y κ(1 − κ)a). This formula shows that

the limiting power of Hotelling’s test is slowly increasing for y close to 1 as

the non-central parameter a increases.

2.2. Dempster’s NET

Dempster (1958, 1960) proposed a non-exact test for the hypothesis H0

with the dimension of data possibly greater than the sample degrees

of freedom. Let us briefly describe his test. Denote N = N1 + N2,

X
′ = (x11,x12, . . . ,x1N1

;x21, . . . ,x2N2
) and by H

′ = ( 1√
N

JN , (
√

N2

N1N J
′
N1

,

−
√

N1

N2N J
′
N2

)′,h3, . . . ,hN ) a suitably chosen orthogonal matrix, where Jd

is a d-dimensional column vector of 1’s. Let Y = HX = (y1, . . . ,yN )′.
Then, the vectors y1, . . . ,yN are independent normal random vectors with

E(y1) = (N1µ1 + N2µ2)/
√

N , E(y2) = τ
−1/2(µ1 − µ2), E(yj) = 0, for

3 ≤ j ≤ N , Cov(yj) = Σ, 1 ≤ j ≤ N . Dempster proposed the NET

statistic F = Q2/(
∑N

i=3 Qi)/n, where Qi = y
′
iyi, n = N − 2. He used

the so-called χ
2-approximation technique, assuming Qi is approximately

distributed as mχ
2
r, where the parameters m and r may be found by the

method of moments. Then, the distribution of F is approximately Fr,nr.

But generally the parameter r (its explicit form is given in (2.8) below) is

unknown. Dempster estimated r by either of the following two ways.

Approach 1: r̂ is the solution of the equation

t =






1

r̂1
+

1 +
1

n

3r̂
2
1




 (n − 1). (2.6)

Approach 2: r̂ is the solution of the equation

t + w =






1

r̂2
+

1 +
1

n

3r̂
2
2




 (n − 1) +

(
1

r̂2
+

3

2r̂
2
2

)(
n

2

)

, (2.7)
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where t = n[ln( 1
n

∑N
i=3 Qi)] −

∑N
i=3 ln Qi, w = −∑3≤i<j≤N ln sin2

θij and

θij is the angle between the vectors of yi, yj , 3 ≤ i < j ≤ N . Dempster’s

test is then to reject H0 if F > Fα(r̂, nr̂).

By elementary calculus, we have

r =
(tr(Σ))2

tr(Σ2)
and m =

tr(Σ2)

trΣ
. (2.8)

From (2.8) and the Cauchy-Schwarz inequality, it follows that r ≤ p. On the

other hand, under regular conditions, both tr(Σ) and tr(Σ2) are of the order

O(n), and hence, r is of the same order. Under wider conditions (2.12) and

(2.13) given in Theorem 6 below, it can be proven that r → ∞. Further, we

may prove that t ∼ (n/r)N(1,
1√
n
) and w ∼ n(n−1)

2r N(1,
4

n(n−1) + 8
nr ). From

these estimates, one may conclude that both r̂1 and r̂2 are ratio-consistent

(in the sense that r̂/r → 1). Therefore, the solutions of equations (2.6) and

(2.7) should satisfy

r̂1 =
n

t
+ O(1) (2.9)

and

r̂2 =
1

w

(
n

2

)

+ O(1), (2.10)

respectively. Since the random effect may cause an error of order O(1), one

may simply choose the estimates of r as n
t or 1

w

(
n
2

)
.

To describe the asymptotic power function of Dempster’s NET, we as-

sume that p/n → y > 0, N1/N → κ ∈ (0, 1) and that the parameter r is

known. The reader should note that the limiting ratio y is allowed to be

greater than one in this case. When r is unknown, substituting r by the

estimators r̂1 or r̂2 may cause an error of high order smallness in the ap-

proximation of the power function of Dempster’s NET. Similar to Lemma 1

one may show the following.

Lemma 5. When n, r → ∞,

Fα(r, nr) = 1 +
√

2/rzα + o(1/
√

r). (2.11)

Then we have the following approximation of the power function of Demp-

ster’s NET.

Theorem 6. If

µ′Σµ = o(τ tr Σ2), (2.12)

λmax = o(
√

trΣ2), (2.13)
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and r is known, then

βD(µ) − Φ
(

− zα +
nκ(1− κ)‖µ‖2

√
tr Σ2

)

→ 0, (2.14)

where µ = µ1 − µ2.

Remark 7. In usual cases when considering the asymptotic power of

Dempster’s test, the quantity ‖µ‖2 is typically assumed to have the same

order as 1/
√

n and tr(Σ2) to have the order n. Thus, the quantities

n‖µ‖2
/

√
trΣ2 and

√
n‖δ‖2 are both bounded away from zero and infin-

ity. The expression of the asymptotic power of Hotelling’s test involves a

factor
√

1 − y which disappears in the expression of the asymptotic power

of Dempster’s test. This reveals the reason why the power of the Hotelling

test increases much slower than that of the Dempster test as the non-central

parameter increases if y is close to one.

2.3. Bai and Saranadasa’s ANT

In this section, we describe the results for Bai and Saranadasa’s ANT. We

shall not assume the normality of the underlying distributions. We assume:

(a) xij = Γzij +µi; j = 1, . . . , Ni, i = 1, 2, where Γ is a p×m matrix (m ≤
∞) with ΓΓ′ = Σ and zij are i.i.d. random m-vectors with independent

components satisfying Ezij = 0, Var(zij) = Im, Ez
4
ijk = 3 + ∆ < ∞

and E
∏m

k=1 z
νk

ijk = 0 (and 1) when there is at least one νk = 1 (there

are two νk’s equal to 2, correspondingly), whenever ν1 + · · · + νm = 4.

(b) p/n → y > 0 and N1/N → κ ∈ (0, 1).

(c) (2.12) and (2.13) are true.

Here and later, it should be noted that all random variables and param-

eters depend on n. For simplicity we omit the subscript n from all random

variables except those statistics defined later.

Now, we begin to construct the ANT proposed in Bai and Saranadasa

(1996). Consider the statistic

Mn = (x̄1 − x̄2)
′(x̄1 − x̄2) − τ trSn, (2.15)

where Sn = 1
nA, x̄1, x̄2 and A are defined in previous sections. Under H0,

we have EMn = 0. If Conditions (a)–(c) hold, it can be proven that, under

H0,

Zn =
Mn√

Var Mn

→ N(0, 1), as n → ∞. (2.16)
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If the underlying distributions are normal, then, again under H0, we have

σ
2
M := VarMn = 2r

2

(

1 +
1

n

)

tr Σ2
. (2.17)

If the underlying distributions are not normal but satisfy Conditions (a)–

(c), one may show that

VarMn = σ
2
M (1 + o(1)). (2.18)

Hence (2.16) is still true if the denominator of Zn is replaced by σM . There-

fore, to complete the construction of the ANT statistic, we only need to find

a ratio-consistent estimator of tr(Σ2) and substitute it into the denominator

of Zn. It seems that a natural estimator of trΣ2 should be tr S
2
n. However,

unlike the case where p is fixed, trS
2
n is generally neither unbiased nor

ratio-consistent even under the normality assumption. If nSn ∼ Wp(n, Σ),

it is routine to verify that

B
2
n =

n
2

(n + 2)(n − 1)

(

tr S
2
n − 1

n
(tr Sn)2

)

is an unbiased and ratio-consistent estimator of tr Σ2. Here, it should be

noted that tr S
2
n − 1

n (tr Sn)2 ≥ 0, by the Cauchy-Schwarz inequality. It is

not difficult to prove that B
2
n is also a ratio-consistent estimator of tr Σ2

under Conditions(a)–(c). Replacing tr Σ2 in (2.17) by the ratio-consistent

estimator B
2
n, we obtain the ANT statistic

Z =
(x̄1 − x̄2)

′(x̄1 − x̄2) − τ tr Sn

τ

√

2(n + 1)n

(n + 2)(n − 1)

(

tr S2
n − n−1(tr Sn)2

)

=

N1N2

N
(x̄1 − x̄2)

′(x̄1 − x̄2) − trSn

√

2(n + 1)

n
Bn

→ N(0, 1). (2.19)

Due to (2.19) the test rejects H0 if Z > zα. Regarding the asymptotic power

of our new test, we have the following theorem.

Theorem 8. Under Conditions (a)–(c),

βBS(µ) − Φ

(

−zα +
nκ(1 − κ)‖µ‖2

√
2 trΣ2

)

→ 0. (2.20)
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2.4. Conclusions and simulations

Comparing Theorems 3, 6 and 8, we find that, from the point of view of

large sample theory, Hotelling’s test is less powerful than the other two tests

when y is close to one and that the latter two tests have the same asymptotic

power function. Our simulation results show that even for moderate sample

and dimension sizes, Hotelling’s test is still less powerful than the other two

tests when the underlying covariance structure is reasonably regular (i.e.

the structure of Σ does not cause too large a difference between µ′Σ−1µ

and
√

n‖µ‖2
/

√

tr(Σ2)), whereas the Type I error does not change much in

the latter two tests. It would not be hard to see that, using the approach of

this paper, one may easily derive similar results for the one-sample problem,

namely, Hotelling’s test is less powerful than NET and ANT, when the

dimension of data is large. Now, let us shed some light on this phenomenon.

The reason Hotelling’s test being less powerful is the “inaccuracy” of the

estimator of the covariance matrix. Let x1, . . . ,xn be i.i.d. random p-vectors

of mean 0 and variance-covariance matrix Ip. By the law of large numbers,

the sample covariance matrix Sn = n
−1
∑n

i=1 xix
′
i should be “close” to the

identity Ip with an error of the order Op(1/
√

n) when p is fixed. However,

when p is proportional to n (say p/n → y ∈ (0, 1)), the ratio of the largest

and the smallest eigenvalues of Sn tends to (1+
√

y)2/(1−√
y)2 (see e.g. Bai,

Silverstein and Yin (1988), Bai and Yin (1993), Geman (1980), Silverstein

(1985) and Yin, Bai and Krishnaiah (1988)). More precisely, in the theory of

spectral analysis of large dimensional random matrices, it has been proven

that the empirical distribution of the eigenvalues of Sn tends to a limiting

distribution spreading over [(1 − √
y)2, (1 +

√
y)2] as n → ∞. (see e.g.

Jonsson (1982), Wachter (1978), Yin (1986) and Yin, Bai and Krishnaiah

(1983)). This implies that Sn is not close to Ip. Especially when y is “close”

to one, then Sn has many small eigenvalues and hence S
−1
n has many huge

eigenvalues. This will cause the deficiency of the T
2 test. We believe that in

many other multivariate statistical inferences with an inverse of a sample

covariance matrix involved the same phenomenon should exist (as another

example, see Saranadasa (1993)). Let us now explain our quotation-marked

“close” to one. Note that the limiting ratio between the largest and smallest

eigenvalues of Sn tends to (1+
√

y)2/(1−√
y)2. For our simulation example,

y = 0.93 and the ratio of the extreme eigenvalues is about 3039. This is

very serious. Even for y as small as 0.1 or 0.01, the ratio can be as large

as 3.705 and 1.494, which shows that it is not even necessary to require

the dimension of data to be very close to the degrees of freedom to make
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the effect of high dimension visible. In fact, this has been shown by our

simulation for p = 4.

Dempster’s test statistic depends on the choice of vectors h3,h4, . . . ,hN

because different choices of these vectors would result in different estimates

of the parameter r. On the other hand, the estimation of r and the round-

ing of the estimates may cause an error (probably an error of second order

smallness) in Dempster’s test. Thus, we conjecture that our new test can be

more powerful than Dempster’s in their second terms of an Edgeworth type

expansion of their power functions. This conjecture was strongly supported

by our simulation results. Because our test statistic is mathematically sim-

ple, it is not difficult to get an Edgeworth expansion by using the results

obtain in Babu and Bai (1993), Bai and Rao (1991) or Bhattacharya and

Ghosh (1978). It seems difficult to get a similar expansion for Dempster’s

test due to his complicated estimation of r.

We conducted a simulation study to compare the powers of the three

tests for both normal and non-normal cases with the dimensions N1 = 25,

N2 = 20, and p = 40. For the non-normal case, observations were generated

by the following moving average model. Let {Uijk} be a set of independent

gamma variables with shape parameter 4 and scale parameter 1. Define

xijk = Uijk + ρUi,j+1,k + εjk; (k = 1, . . . , p, j = 1, . . . , Ni, i = 1, 2),

where ρ and the µ’s are constants. Under this model, Σ = (σij) with

σii = 4(1 + ρ
2), σi,i+1 = 4 and σij = 0 for |i− j| > 1. For the normal case,

the covariance matrices were chosen to be Σ = Ip and Σ = (1− ρ)Ip + ρJp,

with ρ = 0.5, where J is a p × p matrix with all entries 1. A simulation

was also conducted for small p (chosen as p = 4). The tests were made for

size α = 0.05 with 1000 repetitions. The power was evaluated at standard

parameter η = ‖µ1 − µ2‖2
/

√
trΣ2. The simulation for the non-normality

case was conducted for ρ = 0, 0.3, 0.6 and 0.9 (Figure 1). All three tests

have almost the same significance level. Under the alternative hypothesis,

the power curves of Dempster’s test and our test are rather close but that

of our test is always higher than Dempster’s test. Theoretically, the power

function for Hotelling’s test should increase very slowly when the noncentral

parameter increases. This is also demonstrated by our simulation results.

The reader should note that there are only 1000 repetitions for each value

of the noncentral parameter in our simulation which may cause an error

of 1/

√
1000 = 0.0316 by the Central Limit Theorem. Hence, it is not sur-

prising that the simulated power function of the Hotelling’s test, whose

magnitude is only around 0.05, seems not to be increasing at some points



May 5, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 03-BaiZhidong

Future of Statistics 79

Fig. 1. Simulated powers of the three tests with multivariate Gamma distributions.

of the noncentral parameter. Similar tables are presented for the normal

case (Figure 2). For higher dimension cases the power functions of Demp-

ster’s test and our test are almost the same, and our method is not worse

than Hotelling’s test even for p = 4.

3. A Likelihood Ratio Test on Covariance Matrix

In multivariate analysis, the second important test is about the covariance

matrix. Assume that xi = (x1i, . . . , xpi)
′

is a sample from a multivariate

normal population with mean vector 0p and variance-covariance matrix

Σp×p for i = 1, . . . , n. Now, consider the hypotheses

H0 : Σ = Ip×p v.s. H1 : Σ 6= Ip×p. (3.1)

3.1. Classical tests

It is known that the sufficient and complete statistic for Σ is the sample

covariance matrix which is defined by

Sn =
1

n

n∑

i=1

xix
′

i. (3.2)
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Fig. 2. Simulated powers of the three tests with multivariate normal distributions.

A classical test statistic is the log-determinant of Sn,

T1 = log(|Sn|). (3.3)

Another important test is the likelihood ratio test (LRT) whose test statistic

is given by

T2 = n(tr(Sn) − log(|Sn|) − p) (3.4)

(see Anderson 1984). To test H0, we have the following limiting theorem.

Theorem 9. Under null hypothesis, for any fixed p, as n → ∞,
√

n

2p
T1

D−→ N(0, 1),

T2
D−→ χ

2
p(p+1)/2.

The limiting distributions of T1 and T2 in Theorem 9 are valid even without

the normality assumption under existence of the 4th moment. It only needs

the assumption of fixed dimension, or even weaker, p/n → 0. However, both

p and n are given numbers in a real testing problem. How could one justify

the assumption p/n → 0? That is, for what pairs of (p, n) can Theorem 9

be applied to the tests?
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For large-dimensional problems, the approximation of T1 and T2 by their

respective asymptotic limits can cause severe errors. Let us have a look

at the following simulation results given in the following table in which

empirical Type I errors are listed with significance level α = 5% and 40 000

simulations.

Type I errors

n = 500

p 5 10 50 100 300

T1 0.0567 0.0903 1.0 1.0 1.0

T2 0.0253 0.0273 0.1434 0.9523 1.0

n = 1000

p 5 10 50 100 300

T1 0.0530 0.0666 0.9830 1.0 1.0

T2 0.0255 0.0266 0.0678 0.4221 1.0

p/n = 0.05

(n, p) (250, 12) (500, 25) (1000, 50) (2000, 100) (6000,300)

T1 0.1835 0.5511 0.9830 1.0 1.0

T2 0.0306 0.0417 0.0678 0.1366 0.7186

The simulation results show that Type I errors for the classical methods T1

and T2 are close to 1 as p/n → y ∈ (0, 1) or p/n is large. It shows that the

classical methods T1 and T2 behave very poorly and are even inapplicable

for the testing problems with large dimension or dimension increasing with

sample size.

Bai and Silverstein (2004) have revealed the reason of the above phe-

nomenon. They show that, with probability 1,

T1 =

√
n

2p
· log(|Sn|) → −∞ as p/n → y ∈ (0, 1). (3.5)

We can similarly show that

T2 = n · (tr(Sn) − log(|Sn|) − p) → −∞ as p/n → y ∈ (0, 1). (3.6)

These two results show that Theorem 9 is not applicable when p is large

and we have to seek for new limit theorems to test the Hypothesis 3.1.
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3.2. Random matrix theory

In this section, we shall cite some important results of RMT related to our

work. For more details on RMT, the reader is referred to Bai (1999), Bai

and Silverstein (1998, 2004), Bai, Yin and Krishnaiah (1983), Marčenko

and Pastur (1967).

Before dealing with the large-dimensional testing problem (3.1), we first

introduce some basic concepts, notations and present some well-known re-

sults. To begin with, suppose that {xij , i, j = 1, 2, . . . } is a double array

of i.i.d. complex random variables with mean zero and variance 1. Write

xk = (x1k , . . . , xpk)
′

for k = 1, . . . , n and

Bp = T
1/2
p

(

1

n

n∑

k=1

xkx
∗
k

)

T
1/2
p ,

where Ex11 = 0, E|x11|2 = 1, T
1/2
p is p × p random non-negative definite

Hermitian with (x1, . . . ,xn) and T
1/2
p being independent. Let F

A denote

the empirical spectral distribution (ESD) of the eigenvalues of the square

matrix A, that is, if A is p × p, then

F
A(x) =

(number of eigenvalues of A ≤ x)

p
.

Silverstein (1995) proved that under certain conditions, with probability 1,

F
Bp tends to a limiting distribution, called the limiting spectral distribution

(LSD). To describe his result, we define the Stieltjes transform for the c.d.f.

G by

mG(z) ≡
∫

1

λ − z
dG(λ), z ∈ C

+ = {z : z ∈ C,=(z) > 0}. (3.7)

Let Hp = F
Tp and H denote the ESD and limiting spectral distribution

(LSD) of Tp, respectively. Also, let F
{y,H} denote the LSD of F

Bp . Further,

let F
{yp.Hp} denote the LSD F

{y,H} with y = yp and H = Hp.

Let m(·) and mF {yp,Hp}(·) denote the Stieltjes transforms of the c.d.f.s

F
{y,H} ≡ (1 − y)I[0,+∞) + yF

{y,H} and F
{yp,Hp} ≡ (1 − yp)I[0,+∞) +

ypF
{yp,Hp}, respectively. Clearly, F

Bp = (1 − yp)I[0,+∞) + ypF
Bp is the

ESD of the matrix

Bp =
1

n

(

x
∗
j Txk

)n

j,k=1
.

Therefore, F
{y.H} and m are the LSD of F

Bp and its Stieltjes transform

and F
{yp.Hp} and mF{yp.Hp} are the corresponding versions with y = yp

and H = Hp. Silverstein (1995) proved
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Theorem 10. If Hp → H and H is a proper probability distribution, then

with probability 1, the ESD of Bp tends to a LSD for which the Stieltjes

transform m is the unique solution to the equation

z = − 1

m(z)
+ y

∫
t

1 + t · m(z)
dH(t) (3.8)

on the upper half plane m ∈ C
+.

When Hp = 1[1,∞), that is Tp = Ip, a special of Theorem 10 is due to

Marčenko and Pastur. For this special case, the LSD is called the MP law

whose explicit form is given by

F
′
y(x) =







1

2πxy

√

(b − x)(x − a) if a < x < b,

0 otherwise,

(3.9)

where a, b = (1 ∓ √
y)2. If y > 1, there is a point mass 1 − 1/y at 0. The

Stieltjes transform for the MP law is given by

m(z) = −1 + z − y −
√

(1 − z + y)2 − 4z

2z
. (3.10)

Next, we introduce the central limit theorem (CLT) of linear spectral statis-

tics (LSS) due to Bai and Silverstein (2004). Suppose we are concerned with

a parameter θ =
∫

f(x)dF (x). As an estimator of θ, one may employ the

integral

θ̂ =

∫

f(x)dFn(x),

which will be called a LSS, where Fn(x) is the ESD of the random matrix

computed from data and F (x) is the limiting spectral distribution (LSD)

of Fn
D→ F .

Bai and Silverstein (2004) established the following theorem.

Theorem 11. Assume:

(a) For each n, x
(n)
ij , i ≤ p, j ≤ n are independent and for all n, i, j, they

are identically distributed and Ex11 = 0, E|x11|2 = 1, E|x4
11| < ∞;

(b) yp = p/n → y;

(c) Tp is p × p non-random Hermitian nonnegative definite with spectral

norm bounded in p, with F
Tp

D−→ H, a proper c.d.f. where D denotes

the convergence in distribution.
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(d) The function f1, . . . , fk are analytic on an open region of C containing

the real interval
[

lim inf
p

λ
Tp

min · I(0,1)(y) · (1 −√
y)2, lim sup

p
λ

Tp
max · (1 +

√
y)2
]

.

Then

(i) the random vector

(∫

f1(x)dGp(x), . . . ,

∫

fk(x)dGp(x)

)

(3.11)

forms a tight sequence in p, where Gp(x) = p[F Bp(x) − F
{yp,Hp}(x)].

(ii) If x11 is real and E(x4
11) = 3, then (3.11) converges weakly to a Gaus-

sian vector (Xf1
, . . . , Xfk

) with means

EXf = − 1

2πi

∮

f(z)

y

∫

m(z)3 · t2 · (1 + tm(z))−3
dH(t)

[

1 − y

∫

m(z)2 · t2 · (1 + tm(z))−2
dH(t)

]2 dz

(3.12)

and covariance function

Cov(Xf , Xg)= − 1

2π2

∮ ∮
f(z1)g(z2)

(m(z1)−m(z2))2
d

dz1
m(z1)

d

dz2
m(z2)dz1dz2

(3.13)

(f, g ∈ {f1, . . . , fk}). The contours in (3.12) and (3.13) (two in (3.13),

which we may assume to be nonoverlapping) are closed and are taken in

the positive direction in the complex plane, each enclosing the support

of F
c,H .

(iii) If X11 is complex with E(X2
11) and E(|X4

11|) = 2, then (ii) also holds,

except the means are zero and the covariance function is 1
2 of the func-

tion given in (3.13).

In the following, we consider the special case of Tp = Ip×p, that is,

Sp = Bp =
1

n

n∑

k=1

XkX
∗
k;

then the ESD or LSD Hp(t) = H(t) of F
Tp is a degenerate distribution

in 1. Applying the theorem of Bai and Silverstein (2004), we obtain the

following theorem.
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Theorem 12. If Tp is a p × p identity matrix Ip×p, then the results in

Theorem 11 may be changed to

∫

f(x)dF
yp,Hp(x) =

b(yp)∫

a(yp)

f(x)

2πypx

√

(b(yp) − x)(x − a(yp))dx,

EXf =
f(a(y)) + f(b(y))

4
− 1

2π

b(y)∫

a(y)

f(x)
√

4y − (x − 1 − y)2
dx

and

Cov(Xf , Xg) = − 1

2π2

∮ ∮
f(z(m1)) · g(z(m2))

(m1 − m2)
2

dm1dm2,

where

yp = p/n → y ∈ (0, 1),

z(mi) = − 1

mi

+
y

1 + mi

for i = 1, 2,

a(yp) = (1 −√
yp)

2
, b(yp) = (1 +

√
yp)

2

and the m1, m2 contours, nonintersecting and both taken in the positive

direction, enclose 1/(yp − 1) and −1.

3.3. Testing based on RMT limiting CLT

In this section, we present a new testing method for the hypothesis H0 by

renormalizing T1 and T2 using the CLT for LSS of large sample covariance

matrices. We would like to point out to the reader that our new approach

applies to both cases of large dimension and small dimension, provided p ≥
5. From simulation comparisons, one can see that, when classical methods

work well, our new approach is not only as good as the classical ones, but

also performs well when the classical methods fail.

Based on the MP law (see Theorem 2.5 in Bai (1999)), we have the

following lemma.

Lemma 13. As yp = y/p → y ∈ (0, 1), with probability 1, we have

tr(Sn) − log(|Sn|) − p

p
→ d2(y) under H0,
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where

d2(y) =

b∫

a

x − log(x) − 1

2πyx

√

(b(y) − x)(x − a(y))dx

= 1 − y − 1

y
log(1 − y) < 0.

The proof is routine and omitted.

This limit theoretically confirms our findings that the classical methods

of using T1 and T2 will lead to a very serious error in large-dimensional

testing problems (3.1), that is, the Type I errors is almost 1. It suggests

that one has to find a new normalization of the statistics T1 and T2 such

that the hypothesis H0 can be tested by the newly normalized versions of

T1 and T2.

Applying Theorem 12 to T1 and T2, we have the following theorem.

Theorem 14. When yp = p/n → y ∈ (0, 1), we have

T3 =
log(|Sn|) − p · d1(yp) − µ1(y)

σ1(y)

D−→ N(0, 1)

T4 =
tr(Sn) − log(|Sn|) − p − p · d2(yp) − µ2(yp)

σ2(yp)

D−→ N(0, 1)

where

d1(yp) =
yp − 1

yp
log(1 − yp) − 1,

µ1(yp) =
log(1 − yp)

2
,

σ
2
1(yp) = −2 log(1 − yp),

d2(yp) = 1 − yp − 1

yp
log(1 − yp),

µ2(yp) = − log(1 − yp)

2
,

σ
2
2(yp) = −2 log(1 − yp) − 2yp.

The proof of the theorem is a simple application of of Theorem 12 and

hence is omitted. We just present some simulation results to demonstrate

how the new approach performs better than the original approaches.
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3.4. Simulation results

In this section we present the simulation results for T1, T2, T3 and T4.

We first investigate whether the Type I errors of the four methods can be

controlled by the significance level. Then we investigate which of the four

methods has the largest power. The purpose of this section is to show that

the new hypothesis testing method T4 provides a useful tool for both small

and large dimensional problems (3.1)

H0 : Σp×p = Ip×p v.s. H1 : Σp×p 6= Ip×p.

Let us first give some detailed explanations. Firstly, we introduce the

four simulated testing statistics with their respective approximations







T1 =

√
n

2p
· log(|Sn|) D∼ N(0, 1), under H0,

T2 = n · (tr(Sn) − log(|Sn|) − p)
D∼ χ

2
p(p+1)/2, under H0,

T3 =
log(|Sn|) − p · d1(yp) − µ1(yp)

σ1(yp)

D∼ N(0, 1), under H0,

T4 =
tr(Sn) − log(|Sn|) − p − p · d2(yp) − µ2(yp)

σ2(yp)

D∼ N(0, 1), under H0.

Secondly, in order to illustrate detailed behaviors of the four statistics T1–

T4, we not only use the two-sided rejection regions, but we also use the

one-sided rejection regions in our simulation study.

Method 1







T1 =

√
n

2p
· | log(|Sn|)| ≥ α0.975 (two-sided)

T1 =

√
n

2p
· log(|Sn|) ≤ α0.05 (reject left)

T1 =

√
n

2p
· log(|Sn|) ≥ α0.95 (reject right)

Method 2







T2=n · (tr(Sn)− log(|Sn|)−p)≥β0.975 or ≤β0.025 (two sided)

T2 = n · (tr(Sn) − log(|Sn|) − p) ≤ β0.05 (reject left)

T2 = n · (tr(Sn) − log(|Sn|) − p) ≥ β0.95 (reject right)
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Method 3







T3 =
| log(|Sn|) − p · d1(yp) − µ1(yp)|

σ1(yp)
≥ α0.975 (two-sided)

T3 =
(log(|Sn|) − p · d1(yp) − µ1(yp))

σ1(yp)
≤ α0.05 (reject left)

T3 =
(log(|Sn|) − p · d1(yp) − µ1(yp))

σ1(yp)
≥ α0.95 (reject right)

Method 4







T4 =
| tr(Sn) − log(|Sn|) − p − p · d2(yp) − µ2(yp)|

σ2(yp)
≥ α0.975

(two-sided)

T4 =
(tr(Sn) − log(|Sn|) − p − p · d2(yp) − µ2(yp))

σ2(yp)
≤ α0.05

(reject left)

T4 =
(tr(Sn) − log(|Sn|) − p − p · d2(yp) − µ2(yp))

σ2(yp)
≥ α0.95

(reject right)

where α0.975, α0.05 and α0.95 are the 97.5%, 5% and 95% quantiles of

N(0, 1); β0.975, β0.05 and β0.95 are the 97.5%, 5% and 95% quantiles of

χ
2
p(p+1)/2.

Thirdly, samples X1, . . . , Xn are drawn from the population

N(0p, Σp×p). To compute Type I errors, we draw samples X1, . . . , Xn from

N(0p, Ip×p), and, to compute powers, we take samples X1, . . . , Xn from

N(0p,Σp×p) where Σ = (σij)p×p

σij =

{

1, i = j

0.05, i 6= j

for i, j = 1, . . . , p. The sample size n is taken values 500 or 1000. The

dimension of data p is taken values 5, 10, 50, 100 or 300. We also consider the

case that the dimension p increases with the sample size n. The parameter

setups are (n, p) = (6000, 300), (2000, 100), (1000, 50), (500, 25), (250, 12)

with p/n = 0.05.

The results of the 40 000 simulations are summarized in the following

three tables.
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Table 1. Type I errors and powers.

(n = 500, p = 300)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 1.0 0.0 1.0 1.0 0.0 1.0

Method 3 0.0513 0.0508 0.0528 1.0 1.0 0.0

Method 4 0.0507 0.0521 0.0486 1.0 0.0 1.0

(n = 500, p = 100)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 0.9523 0.0 0.9753 1.0 0.0 1.0

Method 3 0.0516 0.0514 0.0499 0.9969 1.0 0.0

Method 4 0.0516 0.0488 0.0521 1.0 0.0 1.0

(n = 500, p = 50)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 0.1484 0.0064 0.2252 1.0 0.0 1.0

Method 3 0.0488 0.0471 0.0504 0.7850 0.8660 0.0

Method 4 0.0515 0.0494 0.0548 1.0 0.0 1.0

(n = 500, p = 10)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.0903 0.1406 0.0136 0.1712 0.2610 0.0023

Method 2 0.0546 0.0458 0.0538 0.8985 0.0 0.9391

Method 3 0.0507 0.0524 0.0489 0.0732 0.1169 0.0168

Method 4 0.0585 0.0441 0.0668 0.9252 0.0 0.9470

(n = 500, p = 5)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.0567 0.0777 0.0309 0.0651 0.1038 0.0190

Method 2 0.0506 0.0489 0.0511 0.4169 0.0014 0.5188

Method 3 0.0507 0.0517 0.0497 0.0502 0.0695 0.0331

Method 4 0.0625 0.0368 0.0807 0.5237 0.0007 0.5940

From the simulation results, one can see the following:

(1) Under all setups of (n, p), the simulated Type I errors of testing

Methods 3 and 4 are close to the significance level α = 0.05 while those of

the testing Methods 1 and 2 are not. Moreover, when the ratio of dimension

to sample size p/n is large, Type I errors of Methods 1 and 2 are close to 1.
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Table 2. Type I errors and powers.

(n = 1000, p = 300)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 1.0 0.0 1.0 1.0 0.0 1.0

Method 3 0.0496 0.0496 0.0493 1.0 1.0 0.0

Method 4 0.0512 0.0492 0.0499 1.0 0.0 1.0

(n = 1000, p = 100)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 0.4221 0.0003 0.5473 1.0 0.0 1.0

Method 3 0.0508 0.0509 0.0515 1.0 1.0 0.0

Method 4 0.0522 0.0492 0.0535 1.0 0.0 1.0

(n = 1000, p = 50)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.9830 0.9915 0.0 1.0 1.0 0.0

Method 2 0.0778 0.0179 0.1166 1.0 0.0 1.0

Method 3 0.0471 0.0495 0.0499 0.9779 0.9886 0.0

Method 4 0.0524 0.0473 0.0575 1.0 0.0 1.0

(n = 1000, p = 10)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.0666 0.1067 0.0209 0.1801 0.2623 0.0037

Method 2 0.0532 0.0470 0.0517 0.9994 0.0 0.9995

Method 3 0.0506 0.0498 0.0504 0.0969 0.1591 0.0116

Method 4 0.0582 0.0440 0.0669 0.9994 0.0 0.9996

(n = 1000, p = 5)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.0530 0.0696 0.0360 0.0664 0.1040 0.0203

Method 2 0.0510 0.0491 0.0498 0.8086 0.0 0.8736

Method 3 0.0508 0.0530 0.0494 0.0542 0.0784 0.0288

Method 4 0.0622 0.0356 0.0790 0.8780 0.0 0.9114

Furthermore, when the ratio p/n → y ∈ (0, 1), even if y is very small,

Type I errors of testing Methods 1 and 2 still tend to 1 as the sample size

is becoming large.

(2) Under all choices of (n, p), powers of testing Methods 2 and 4 are

much higher than those of testing Methods 1 and 3, respectively. Moreover,

almost all powers of testing Method 4 are higher than others.
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Table 3. Type I errors and powers.

(n = 6000, p = 300)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 0.7186 0.0 0.8131 1.0 0.0 1.0

Method 3 0.0476 0.0465 0.0469 1.0 1.0 0.0

Method 4 0.0505 0.0525 0.0466 1.0 0.0 1.0

(n = 2000, p = 100)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 1.0 1.0 0.0 1.0 1.0 0.0

Method 2 0.1366 0.0062 0.2144 1.0 0.0 1.0

Method 3 0.0501 0.0506 0.0515 1.0 1.0 0.0

Method 4 0.0525 0.0505 0.0531 1.0 0.0 1.0

(n = 1000, p = 50)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.9830 0.9915 0.0 1.0 1.0 0.0

Method 2 0.0778 0.0179 0.1166 1.0 0.0 1.0

Method 3 0.0471 0.0495 0.0499 0.9779 0.9886 0.0

Method 4 0.0524 0.0473 0.0575 1.0 0.0 1.0

(n = 500, p = 25)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.5511 0.6653 0.0 0.9338 0.9656 0.0

Method 2 0.0817 0.0313 0.0765 1.0 0.0 1.0

Method 3 0.0518 0.0539 0.0506 0.2824 0.3948 0.0013

Method 4 0.0552 0.0472 0.0558 1.0 0.0 1.0

(n = 250, p = 12)

Type I error Power

Two-sided Reject left Reject right Two-sided Reject left Reject right

Method 1 0.1835 0.2729 0.0033 0.3040 0.4151 0.0006

Method 2 0.0612 0.0442 0.0606 0.6129 0.0002 0.7141

Method 3 0.0483 0.0499 0.0486 0.0670 0.1089 0.0183

Method 4 0.0574 0.0507 0.0617 0.6369 0.0003 0.7192

(3) Comparing the Type I errors and powers for all choices of (n, p),

the testing Method 4 has better Type I errors and higher powers. Al-

though Method 2 has higher powers, its Type I errors are almost 1. Al-

though Method 3 has lower Type I errors, its powers are lower than those

of Method 4.
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In conclusion, our simulation results show that T1 and T2 are inappli-

cable for large-dimensional problems or small-dimensional problems whose

sample size is large. Although both statistics, T3 and T4, can be applied

to the large-dimensional problem (3.1), T4 is better than T3 from the view

point of powers under the same significance level. It shows that T4 provides

a robust test for both, large-dimensional or small-dimensional problems.

4. Conclusions

In this paper, both theoretically and by simulation, we have shown that

classical approaches to hypothesis testing do not apply to large-dimensional

problems and that the newly proposed methods perform much better than

the classical ones. It is interesting that the new methods do not perform

much worse than the classical methods for small dimensional cases. There-

fore, we would strongly recommend the new approaches even for moderately

large dimensional cases provided that p ≥ 4 or 5, REGARDLESS of the

ratio between dimension and data size.

We would also like to emphasize that the large dimension of data may

cause low efficiency of classical inference methods. In such cases, we would

strongly recommend non-exact procedures with high efficiency rather than

those classical ones with low efficiency, such as Dempster’s NET and Bai

and Saranadasa’s ANT.
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The landmark contributions to the theory of random matrices of Wishart
(1928), Wigner (1955), and Marc̆enko-Pastur (1967), were motivated to
a large extent by their applications. In this paper, we report on two
transforms motivated by the application of random matrices to various
problems in the information theory of noisy communication channels: η
and Shannon transforms. Originally introduced in [1, 2], their applica-
tions to random matrix theory and engineering applications have been
developed in [3]. In this paper, we give a summary of their main prop-
erties and applications in random matrix theory.

1. Introduction

The first studies of random matrices stemmed from the multivariate statis-
tical analysis at the end of the 1920s, primarily with the work of Wishart
(1928) on fixed-size matrices with Gaussian entries. After a slow start, the
subject gained prominence when Wigner introduced the concept of statis-
tical distribution of nuclear energy levels in 1950. In the past half century,
classical random matrix theory has been developed, widely and deeply, into
a huge body, effectively used in many branches of physics and mathematics.
Of late, random matrices have attracted great interest in the engineering
community because of their applications in the context of information the-
ory and signal processing, which include among others: wireless communica-
tions channels, learning and neural networks, capacity of ad hoc networks,
direction of arrival estimation in sensor arrays, etc.

The earliest applications to wireless communication were the pioneering
works of Foschini and Telatar in the mid-90s on characterizing the capacity

95
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of multi-antenna channels. With works like [4–6] which, initially, called at-
tention to the effectiveness of asymptotic random matrix theory in wireless
communication theory, interest in the study of random matrices began and
the singular-value densities of random matrices and their asymptotics, as
the matrix size tends to infinity, became an active research area in infor-
mation/communication theory. In the last few years a considerable body of
results on the fundamental information-theoretic limits of various wireless
communication channels that makes substantial use of asymptotic random
matrix theory, has emerged in the communications and information theory
literature. For an extended survey on contributions on this results see [3].

In the same way that the original contributions of Wishart and Wigner
were motivated by their applications, such is also the driving force behind
the efforts by information-theoreticians and engineers. The Shannon and
the η transforms, introduced for the first time in [1,2], are prime examples:
these transforms which were motivated by the application of random ma-
trix theory to various problems in the information theory of noisy commu-
nication channels [3], characterize the spectrum of a random matrix while
providing direct engineering insight.

In this paper, using the η and Shannon transforms of the singular-value
distributions of large dimensional random matrices, we characterize for both
ergodic and non-ergodic regime the fundamental limits of a general class of
noisy multi-input multi-output (MIMO) wireless channels which are char-
acterized by random matrices that admit various statistical descriptions
depending on the actual application. For these channels, a number of ex-
amples and asymptotic closed-form expressions of their fundamental limits
are provided. For both the ergodic and non-ergodic regimes, we illustrate
the power of random matrix results in the derivation of the fundamental
limits of wireless channels and we show the applicability of our results to
real-world problems, where the asymptotic behaviors are shown to be ex-
cellent approximations of the behavior of actual systems with very modest
numbers of antennas.

2. Wireless Communication Channels

A typical wireless communication channel is described by the usual linear
vector memoryless channel:

y = Hx + n (2.1)

where x is the K-dimensional vector of the signal input, y is the N -
dimensional vector of the signal output, and the N -dimensional vector n is
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the additive Gaussian noise, whose components are independent complex
Gaussian random variables with zero mean and independent real and imag-
inary parts with the same variance σ2/2 (i.e., circularly distributed). H, in
turn, is the N × K complex random matrix describing the channel.

Model (2.1) encompasses a variety of channels of interest in wire-
less communications such as multi-access channels, linear channels with
frequency-selective and/or frequency-dispersive fading, multidimensional
channels (multi-sensor reception, multi-cellular system with cooperative de-
tection, etc), crosstalk in digital subscriber lines, signal space diversity, etc.
In each of these cases, N , K and H take different meanings. For example, K

and N may indicate the number of transmit and receive antennas while H
describes the fading between each pair of transmit and receive antennas, or
the spreading gain and the number of users while H the signature matrix,
or they may both represent time/frequency slots while H the tone matrix.

In Section 5 we detail some of the more representative wireless chan-
nels described by (2.1) that capture various features of interest in wireless
communications and we demonstrate how random matrix results — along
with the η and Shannon transforms — have been used to characterize the
fundamental limits of the various channels that arise in wireless communi-
cations.

3. Why Asymptotic Random Matrix Theory?

In section we illustrate the role of random matrices and their singular values
in wireless communication through the derivation of some key performance
measures, which are determined by the distribution of the singular values
of the channel matrix.

The empirical cumulative distribution function (c.d.f) of the eigenvalues
(also referred to as the empirical spectral distribution (ESD)) of an N ×N

Hermitian matrix A is defined as

FN
A(x) =

1
N

N∑
i=1

1{λi(A) ≤ x} (3.1)

where λ1(A), . . . , λN (A) are the eigenvalues of A and 1{·} is the indica-
tor function. If FN

A(·) converges almost surely (a.s) as N → ∞, then the
corresponding limit (asymptotic ESD) is denoted by FA(·).

The first performance measure that we are going to consider is the mu-
tual information. The mutual information, first introduced by Shannon in
1948, determines the maximum amount of data per unit bandwidth (in
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bits/s/Hz) that can be transmitted reliably over a specific channel realiza-
tion H. If the channel is known by the receiver, and the input x is Gaussian
with independent and identically distributed (i.i.d.) entries, the normalized
mutual information in (2.1) conditioned on H is given by [7, 8]

I(SNR) =
1
N

I(x;y|H) (3.2)

=
1
N

log det
(
I + SNRHH†) (3.3)

=
1
N

N∑
i=1

log
(
1 + SNR λi(HH†)

)
(3.4)

=
∫ ∞

0

log (1 + SNR x) dFN
HH†(x) (3.5)

with the transmitted signal-to-noise ratio (SNR)

SNR =
NE[||x||2]
KE[||n||2] , (3.6)

and λi(HΦH†) equal to the ith squared singular value of H.
If the channel is known at the receiver and its variation over time is

stationary and ergodic, then the expectation of (3.2) over the distribution
of H is the ergodic mutual information (normalized to the number of receive
antennas or the number of degrees of freedom per symbol in the CDMA
channel).

For SNR → ∞, a regime of interest in short-range applications, the nor-
malized mutual information admits the following affine expansion [9, 10]

I(SNR) = S∞ (log SNR +L∞) + o(1) (3.7)

where the key measures are the high-SNR slope

S∞ = lim
SNR→∞

I(SNR)
log SNR

(3.8)

which for most channels gives S∞ = min
{

K
N , 1

}
, and the power offset

L∞ = lim
SNR→∞

log SNR−I(SNR)
S∞

(3.9)

which essentially boils down to log det(HH†) or log det(H†H) depending
on whether K > N or K < N .
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Another important performance measure for (2.1) is the minimum
mean-square-error (MMSE) achieved by a linear receiver, which deter-
mines the maximum achievable output signal-to-interference-and-noise ra-
tio (SINR). For an i.i.d. input, the arithmetic mean over the users (or transmit
antennas) of the MMSE is given, as a function of H, by [4]

MMSE(SNR) =
1
K

min
M∈CK×N

E
[||x − My||2] (3.10)

=
1
K

tr
{(

I + SNR H†H
)−1

}
(3.11)

=
1
K

K∑
i=1

1
1 + SNR λi(H†H)

(3.12)

=
∫ ∞

0

1
1 + SNR x

dFK
H†H(x)

=
N

K

∫ ∞

0

1
1 + SNR x

dFN
HH†(x) − N − K

K

(3.13)

where the expectation in (3.10) is over x and n while (3.13) follows from

NFN
HH†(x) − Nu(x) = KFK

H†H(x) − Ku(x) (3.14)

where u(x) is the unit-step function (u(x) = 0, x ≤ 0; u(x) = 1, x > 0).
Note, incidentally, that both performance measures as a function of SNR are
coupled through

d

d SNR
loge det

(
I + SNRHH†) =

K − tr
{(

I + SNRH†H
)−1

}
SNR

.

As we see in (3.5) and (3.13), both fundamental performance measures (mu-
tual information and MMSE) are dictated by the distribution of the empirical
(squared) singular value distribution of the random channel matrix. It is
thus of paramount importance, in order to evaluate these — and other —
performance measures, to be able to express this empirical distribution.
Since FN

HH† clearly depends on the specific realization of H, so do (3.2) and
(3.10) above. In terms of engineering insight, however, it is crucial to obtain
expressions for the performance measures that do not depend on the single
matrix realization, to which end two approaches are possible:
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• To study the average behaviora by taking an expectation of the perfor-
mance measures over H, which requires assigning a probabilistic structure
to it.

• The second approach is to consider an operative regime where the per-
formance measures (3.2) and (3.10) do not depend on the specific choice
of signatures.

Asymptotic analysis (in the sense of large dimensional systems, i.e
K, N → ∞ withK

N → β) is where both these approaches meet. First, the
computation of the average performance measures simplifies as the dimen-
sions grow to infinity. Second, the asymptotic regime turn out to be the
operative regime where the dependencies of (3.2) and (3.10) on the realiza-
tion of H disappear. Specifically, in most of the cases, asymptotic random
matrix theory guarantees that as the dimensions of H go to infinity but
their ratio is kept constant, its empirical singular-value distribution dis-
plays the following properties, which are key to the applicability to wireless
communication problems:

• Insensitivity of the asymptotic eigenvalue distribution to the probability
density function of the random matrix entries.

• An “ergodic” nature in the sense that — with probability one — the
eigenvalue histogram of any matrix realization converges almost surely
to the asymptotic eigenvalue distribution.

• Fast convergence rate of the empirical singular-value distribution to its
asymptotic limit [11,12], which implies that that even for small values of
the parameters, the asymptotic results come close to the finite-parameter
results (cf. Fig. 1).

All these properties are very attractive in terms of analysis but are also
of paramount importance at the design level. In fact:

• The ergodicity enables the design of a receiver that, when optimized in
the asymptotic regime, has a structure depending weakly or even not
depending at all of the specific realization of H. As a consequence, less
a priori knowledge and a lower level of complexity are required (see [3]
and references therein).

aIt is worth emphasizing that, in many cases, resorting to the expected value of the

mutual information is motivated by the stronger consideration that: in problems such
as aperiodic DS-CDMA or multi-antenna with an ergodic channel, it is precisely the
expected capacity that has real operational meaning.
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Fig. 1. Several realizations of the left hand side of (3.3) are compared to the asymptotic
limit in the right hand side of (4.10) in the case of β = 1 for N = 3, 5, 15, 50.

• The fast convergence ensures that the performance of the asymptotically
designed receiver operating for very small values of the system dimen-
sions, is very close to that of the optimized receiver.

• Finally, the insensitivity property — along with the fast convergence —
leads to receiver structures that, for finite dimensionality, are very robust
to the probability distribution of H. Examples are the cases of DS-CDMA
subject to fading or single-user multiple-antennas link, where the results
do not depend on the fading statistics.

As already mentioned, closely related to the MMSE is the signal-to-
interference-to noise ratio, SINR, achieved at the output of a linear MMSE
receiver. Denote by x̂k the MMSE estimate of the kth component of x and
by MMSEk the corresponding MMSE, such SINR for the kth component is:

SINRk =
E[|x̂k|2] − MMSEk

MMSEk
. (3.15)
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Typically, the estimator sets E[|x̂k|2] = 1 and thus

SINRk =
1 − MMSEk

MMSEk
= SNR h†

k

I + SNR

∑
j �=k

hjh
†
j

−1

hk. (3.16)

with the aid of the matrix inversion lemma. Normalized by the single-
user signal-to-noise ratio (SNR ‖hk‖2), the SINRk gives the so-called MMSE
multiuser efficiency, denoted by ηMMSE

k (SNR) [4]:

ηMMSE
k (SNR) =

SINRk

SNR ‖hk‖2
. (3.17)

For K, N → ∞ with K
N → β, both SINR and MMSE multiuser efficiency can

be written as a function of the asymptotic ESD of HH†.
The ergodic mutual information, obtained by averaging (3.2) over the

channel fading coefficients, represents the fundamental operational limit in
the regime where the fading is such that the statistics of the channel are
revealed to the receiver during the span of a codeword.

Often, however, we may encounter channels that change slowly so that
H is held approximately constant during the transmission of a codeword. In
this case, the average mutual information has no operational significance
and a more suitable performance measure is the so-called outage capac-
ity [13] (cumulative distribution of the mutual information), which coin-
cides with the classical Shannon-theoretic notion of ε-capacity [14], namely
the maximal rate for which block error probability ε is attainable. Un-
der certain conditions, the outage capacity can be obtained through the
probability that the transmission rate R exceeds the input-output mutual
information (conditioned on the channel realization) [15,16,13]. Thus, given
a rate R an outage occurs when the random variable

I = log det(I + SNR HH†) (3.18)

whose distribution is induced by H, falls below R. A central result in ran-
dom matrix theory derived by Bai and Silverstein (2004) [17] establishes a
law of large numbers and a central limit theorem for linear statistics of a
suitable class of Hermitian random matrices. Using this result, in Section 4
the asymptotic normality of the unnormalized mutual information (3.18) is
proved for arbitrary signal-to-noise ratios and fading distributions, allowing
for correlation between either transmit or receive antennas.
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4. η and Shannon Transforms: Theory and Applications

Motivated by the intuition drawn from various applications of random ma-
trices to problems in the information theory of noisy communication chan-
nels, η and Shannon transforms, which are very related to a more classical
transform in random matrix theory, the Stieltjes transform [18], turn out
to be quite helpful at clarifying the exposition as well as the statement of
many results. In particular, the η transform leads to compact definitions
of other transforms used in random matrix theory such as the R and S
transforms [3].

Definition 4.1. Given an N × N nonnegative definite random matrix A
whose ESD converges a.s., its η transform is

ηA(γ) = E

[
1

1 + γX

]
(4.1)

while its Shannon transform is defined as

VA(γ) = E[log(1 + γX)] (4.2)

where X is a nonnegative random variable whose distribution is the asymp-
totic ESD of A while γ is a nonnegative real number.

Then, ηA(γ) can be regarded as a generating function for the asymptotic
moments of A [3]. Furthermore from the definition 0 < ηX(γ) ≤ 1.

For notational convenience, we refer to the transform of a matrix and
the transform of its asymptotic ESD interchangeably.

Lemma 4.2. For any N×K matrix A and K×N matrix B such that AB
is nonnegative definite, for K, N → ∞ with K

N → β, if the spectra converge,

ηAB(γ) = 1 − β + βηBA(γ). (4.3)

As it turns out, the Shannon and η transforms are intimately related to
each other and to the classical Stieltjes transform:

γ

log e

d

dγ
VA(γ) = 1 − 1

γ
SA

(
− 1

γ

)
= 1 − ηA(γ)

where A is N × N Hermitian matrix whose ESD converges a.s. to FA(·)
and SA(·) is its Stieltjes transform defined as [18]:

SA(z) =
∫

1
λ − z

dFA(λ). (4.4)

Before introducing the η and Shannon transforms of various random
matrices, some justification for their relevance to wireless communications



May 21, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 04-Tulino

104 A. M. Tulino

is in order. The rationale for introducing the η and Shannon transforms
can be succinctly explained by considering a hypothetical wireless commu-
nication channel where the random channel matrix H in (2.1) is such that,
as K, N → ∞ with K

N → β, the ESD of HH† converges a.s. to a nonran-
dom limit. Based on Definition 4.1 we immediately recognize from (3.5) and
(3.13) that for an i.i.d. Gaussian input x, as K, N → ∞ with K

N → β the
normalized mutual information and the MMSE of (2.1) are related to η and
Shannon transform of HH† by the following relationships:

I(SNR) → VHH†(SNR) (4.5)

MMSE(SNR) → ηH†H(SNR) (4.6)

= 1 − 1 − ηHH†(SNR)
β

(4.7)

where (4.7) follows from (3.14). It is thus of vital interest in information-
theoretic and signal-processing analysis of the wireless communication chan-
nels of contemporary interest, the evaluation of the η and Shannon trans-
forms of the various random (channel) matrices that arise in the linear
model (2.1).

A classical result in random matrix theory states that

Theorem 4.3 ([5]). If the entries of H are zero-mean i.i.d. with variance
1
N , as K, N → ∞ with K

N → β, the ESD of HH† converges a.s. to the
Marc̆enko-Pastur law whose density function is

f̃β(x) = (1 − β)+ δ(x) +

√
(x − a)+(b − x)+

2πx
(4.8)

where

a = (1 −
√

β)2 b = (1 +
√

β)2.

For this simple statistical structure of H, the η and Shannon transforms
admit the following nice and compact closed-form expressions:

Theorem 4.4 ([5]). The η and Shannon transforms of the Marc̆enko-
Pastur law, whose density function is (4.8), are

ηHH†(γ) = 1 − F(γ, β)
4 γ

(4.9)

and

VHH†(γ) = β log
(

1 + γ − 1
4
F (γ, β)

)
+ log

(
1 + γβ − 1

4
F (γ, β)

)
− log e

4 γ
F (γ, β) (4.10)
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with

F(x, z) =
(√

x(1 +
√

z)2 + 1 −
√

x(1 −√
z)2 + 1

)2

.

However, as is well known since the work of Marc̆enko and Pastur [19],
it is rare the case that the limiting empirical distribution of the squared
singular values of random matrices (whose aspect ratio converges to a con-
stant) admit closed-form expressions. Rather, [19] showed a very general
result where the characterization of the solution is accomplished through
a fixed-point equation involving the Stieltjes transform. Later this result
has been strengthened in [20]. Consistent with our emphasis, this result is
formulated in terms of the η transform rather than the Stieltjes transform
used in [20] as follows:

Theorem 4.5 ([19, 20]). Let S be an N × K matrix whose entries are
i.i.d. complex random variables with zero-mean and variance 1

N . Let T be a
K×K real diagonal random matrix whose empirical eigenvalue distribution
converges a.s. to a nonrandom limit. Let W0 be an N × N Hermitian
complex random matrix with empirical eigenvalue distribution converging
a.s. to a nonrandom distribution. If H, T, and W0 are independent, the
empirical eigenvalue distribution of

W = W0 + STS† (4.11)

converges, as K, N → ∞ with K
N → β, a.s. to a nonrandom limiting distri-

bution whose η transform is the solution of the following pair of equations:

γ η = ϕη0 (ϕ) (4.12)

η = η0 (ϕ) − β (1 − ηT(γ η)) (4.13)

with η0 and ηT the η transforms of W0 and T respectively.

In the following we give some of the more representative results on
the η and Shannon transform, where the Shannon and η transforms lead
to particularly simple solutions for the limiting empirical distribution of
the squared singular values of random matrices with either dependent or
independent entries.

Theorem 4.6 ([3]). Let S be an N × K complex random matrix whose
entries are i.i.d. with variance 1

N . Let T be a K × K nonnegative definite
random matrix, whose ESD converges a.s. to a nonrandom distribution. The
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ESD of STS† converges a.s., as K, N → ∞ with K
N → β, to a distribution

whose η transform satisfies

β =
1 − η

1 − ηT(γη)
(4.14)

where we have compactly abbreviated ηSTS†(γ) = η. The corresponding
Shannon transform is

VSTS†(γ) = βVT(ηγ) + log
1
η

+ (η − 1) log e . (4.15)

Theorem 4.7 ([21]). Define H = CSA where S is an N×K matrix whose
entries are i.i.d. complex random variables with variance 1

N . Let C and A
be, respectively, N×N and K×K random matrices such that the asymptotic
spectra of D = CC† and T = AA† converge a.s. to a nonrandom limit.
If C, A and S are independent, as K, N → ∞ with K

N → β, the Shannon
transform of HH† is given by:

VHH†(γ) = VD(βγd) + βVT(γt) − β
γdγt

γ
log e (4.16)

where
γdγt

γ
= 1 − ηT(γt) β

γdγt

γ
= 1 − ηD(βγd) (4.17)

while the η transform of HH† can be obtained as

ηHH†(γ) = ηD(β γd(γ)) (4.18)

where γd(γ) is the solution to (4.17).
The asymptotic fraction of zero eigenvalues of HH† equals

lim
γ→∞ ηHH†(γ) = 1 − min {β P[T �= 0], P[D �= 0]} .

Moreover, it has been proved in [3] and [21] that:

Theorem 4.8 ([21]). Let H be an N×K matrix defined as in Theorem 4.7
whose jth column is hj. As K, N → ∞, with K

N → β

1
‖hj‖2

h†
j

I + γ
∑
� �=j

h�h
†
�

−1

hj
a.s.→ γt(γ)

γE[D]
(4.19)

with γt(γ) satisfying (4.17).
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According to (4.17), it is easy to verify that γt(γ) is the solution to

γt = E

 γD

1 + γ β DE

[
T

1+T γt

]
 (4.20)

where for simplicity notation we have abbreviated γt(γ) = γt.
Notice that, given a linear memoryless vector channel as in (2.1) with

the channel matrix H defined as in Theorem 4.7, the signal-to-interference-
to-noise ratio SINRk, incurred estimating the kth component of channel input
based on its noisy received observations, is given by

SINRk = SNR h†
j

I + SNR

∑
� �=j

h�h
†
�

−1

hj (4.21)

where SNR represents the transmitted signal-to-noise ratio.
Thus from Theorem 4.8, it follows that the multiuser efficiency of the

kth user achieved by the MMSE receiver, ηMMSE
k (SNR), converges a.s. to:

ηMMSE
k (SNR) =

SINRk

SNR ‖hk‖2
(4.22)

a.s.→ γt(SNR)
SNR E[D]

. (4.23)

A special case of Theorem 4.7 is when H = SA (i.e C = I). Then
according to (4.20) and (4.14), we have that

γt(γ) = γ ηSTS(γ)

and consequently MMSE multiuser efficiency, ηMMSE
k (SNR) of a channel as

in (2.1) with H = SA converges a.s. to the η transform of STS evaluate at
SNR:b

ηMMSE
k (SNR) a.s.→ ηSTS(SNR) . (4.24)

Theorem 4.9 ([21, 22]). Let H be an N×K matrix defined as in Theorem
4.7. Defining

β′ = β
P[T �= 0]
P[D �= 0]

,

lim
γ→∞

(
log(γ β) − VHH†(γ)

min {β P[T �= 0], P[D �= 0]}
)

= L∞ (4.25)

bThe conventional notation for multiuser efficiency is η (cf. [4]); the relationship in (5.6)
is the motivation for the choice of the η transform terminology introduced in this section.
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with

L∞ =



−E

[
log P[T�=0]D′

αβ′e

]
− β′VT′(α) β′ > 1

−E

[
log T′D′

e

]
β′ = 1

−E

[
logΓ∞T′

e

]
− 1

β′VD′
(

P[T�=0]
Γ∞

)
β′ < 1

(4.26)

with α and Γ∞, respectively, solutions to

ηT′(α) = 1 − 1
β′ , ηD′

(
P[T �= 0]

Γ∞

)
= 1 − β′ (4.27)

and with D′ and T′ the restrictions of D and T to the events D �= 0 and
T �= 0.

The foregoing result gives the power offset (3.9) of the linear vector
memoryless channel in (2.1) when H is defined as in Theorem 4.7.

Theorem 4.10. As γ → ∞, we have that

lim
γ→∞

γt(γ)
γ

= β P[T > 0] Γ∞ (4.28)

where γt(γ) is the solution to (4.17) while Γ∞ is the solution to (4.27) for
β′ < 1 and 0 otherwise.

Definition 4.11. An N × K matrix P is asymptotically row-regular if

lim
K→∞

1
K

K∑
j=1

1{Pi,j ≤ α}

is independent of i for all α ∈ R, as K, N → ∞ and the aspect ra-
tio K

N converges to a constant. A matrix whose transpose is asymptot-
ically row-regular is called asymptotically column-regular. A matrix that
is both asymptotically row-regular and asymptotically column-regular is
called asymptotically doubly-regular and satisfies

lim
N→∞

1
N

N∑
i=1

Pi,j = lim
K→∞

1
K

K∑
j=1

Pi,j . (4.29)

If (4.29) is equal to 1, then P is standard asymptotically doubly-regular.
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Theorem 4.12 ([21, 3]). Define an N × K complex random matrix H
whose entries are independent complex random variables (arbitrarily dis-
tributed) with identical means. Let their second moments be

E
[|Hi,j |2

]
=

Pi,j

N
(4.30)

with P an N ×K deterministic standard asymptotically doubly-regular ma-
trix whose entries are uniformly bounded for any N . The asymptotic empir-
ical eigenvalue distribution of HH† converges a.s. to the Marc̆enko-Pastur
distribution whose density is given by (4.8).

Using Lemma 2.6 in [23], Theorem 4.12 can be extended to matrices
whose mean has rank r where r > 1 but such that

lim
N→∞

r

N
= 0 .

Definition 4.13. Consider an N×K random matrix H whose entries have
variances

Var[Hi,j ] =
Pi,j

N
(4.31)

with P an N×K deterministic matrix whose entries are uniformly bounded.
For each N , let

vN : [0, 1) × [0, 1) → R

be the variance profile function given by

vN (x, y) = Pi,j
i − 1
N

≤ x <
i

N
,

j − 1
K

≤ y <
j

K
. (4.32)

Whenever vN (x, y) converges uniformly to a limiting bounded measurable
function, v(x, y), we define this limit as the asymptotic variance profile
of H.

Theorem 4.14 ([24–26]). Let H be an N × K complex random matrix
whose entries are independent zero-mean complex random variables (arbi-
trarily distributed) with variances

E
[|Hi,j |2

]
=

Pi,j

N
(4.33)

where P is an N × K deterministic matrix whose entries are uniformly
bounded and from which the asymptotic variance profile of H, denoted
v(x, y), can be obtained as per Definition 4.13. As K, N → ∞ with K

N → β,
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the empirical eigenvalue distribution of HH† converges a.s. to a limiting
distribution whose η transform is

ηHH†(γ) = E [ ΓHH†(X, γ) ] (4.34)

with ΓHH†(x, γ) satisfying the equations,

ΓHH†(x, γ) =
1

1 + β γE[v(x, Y)ΥHH† (Y, γ)]
(4.35)

ΥHH†(y, γ) =
1

1 + γ E[v(X, y)ΓHH† (X, γ)]
(4.36)

where X and Y are independent random variables uniform on [0, 1].

The zero-mean hypothesis in Theorem 4.14 can be relaxed using Lemma
2.6 in [23]. Specifically, if the rank of E[H] is o(N), then Theorem 4.14 still
holds.

Theorem 4.15 ([21]). Let H be an N ×K matrix defined as in Theorem
4.14. Further define

�
(N)(y, γ) =

1
‖hj‖2

h†
j

I + γ
∑
� �=j

h�h
†
�

−1

hj ,
j − 1
K

≤ y <
j

K
.

As K, N → ∞, �
(N) converges a.s. to �(y,γ)

E[v(X,y)] , with �(y, γ) solution to the
fixed-point equation

�(y, γ) = E

 v(X, y)

1 + γ β E

[
v(X,Y)

1+γ �(Y,γ) |X
]
 y ∈ [0, 1]. (4.37)

The Shannon transform of the asymptotic spectrum of HH† is given by
the following result.

Theorem 4.16 ([27, 3]). Let H be an N × K complex random matrix
defined as in Theorem 4.14. The Shannon transform of the asymptotic spec-
trum of HH† is

VHH†(γ) = β E [log(1 + γ E[v(X, Y)ΓHH† (X, γ)|Y])]

+ E [log(1 + γ β E[v(X, Y)ΥHH† (Y, γ)|X])]

− γ β E [v(X, Y)ΓHH† (X, γ)ΥHH†(Y, γ)] log e (4.38)

with ΓHH†(·, ·) and ΥHH†(·, ·) satisfying (4.35) and (4.36).
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Theorem 4.17 ([21]). Let H be an N×K complex random matrix defined
as in Theorem 4.14. Then, denoting

β′ = β
P[E[v(X, Y)|Y] �= 0]
P[E[v(X, Y)|X] �= 0]

,

we have that

lim
γ→∞

(
log(γβ) − VHH†(γ)

min{βP[E[v(X, Y)|Y] �=0], P[E[v(X, Y)|X] �=0]}
)

= L∞

with

L∞
a.s.→



−E

[
log

(
1
e

E

[
v(X′, Y′)
1 + α(Y′)

|X′

])]
− β′

E [log (1 + α(Y′))] β′ > 1

−E

[
log

v(X′, Y′)
e

]
β′ = 1

−E

[
log

Γ∞(Y′)
e

]
− 1

β′ E
[
log

(
1 + E

[
v(X′, Y′)
Γ∞(Y′)

|X′

])]
β′ < 1

with X′ and Y′ the restrictions of X and Y to the events E[v(X, Y)|X]�=0 and
E[v(X, Y)|Y]�=0, respectively. The function α(·) is the solution, for β′>1, of

α(y) =
1
β′ E

 v(X′, y)

E

[
v(R′, Y′)
1 + α(Y′)

|X′

]
 (4.39)

whereas Γ∞(·) is the solution, for β′<1, of

E

 1

1 + E

[
v(X′, Y′)
Γ∞(Y′)

|X′

]
 = 1 − β′ . (4.40)

As we will see in the next section, Theorems 4.14–4.17 give the MMSE
performance, the mutual information and the power offset of a large class of
vector channel of interest in wireless communications which are described
by random matrices with either correlated or independent entries.

Let STS be an N × N random matrix with S and T be respectively
N ×K and K×K random matrices as stated in Theorem 4.6. We have seen
that the ESD of STS converges a.s. to a nonrandom limit whose Shannon
and η transform satisfy (4.15) and (4.14) respectively.
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From this limiting behavior of the ESD of STS, it follows immediately
that linear spectral statistics of the form:

1
N

N∑
i=1

g(λi) (4.41)

with g(·) a continuous function on the real line with bounded and contin-
uous derivatives, converge a.s. to a nonrandom quantity. A recent central
result in random matrix theory by Bai and Silverstein (2004) [17] shows
their rate of convergence to be 1/N . Moreover, they show that:

Theorem 4.18 ([17]). Let S be an N × K complex matrix defined as in
Theorem 4.6 and such that its (i, j)th entry satisfies:

E[Si,j ] = 0 E[|Si,j |4] =
2

N2
. (4.42)

Let T be a K × K matrix defined as in Theorem 4.6 whose spectral norm
is bounded. Let g(·) be a continuous function on the real line with bounded
and continuous derivatives, analytic on a open set containing the interval c

[lim inf
K

φKmax2{0, 1 −
√

β}, lim sup
K

φ1(1 +
√

β)2]

where φ1 ≥ · · · ≥ φK are the eigenvalues of T. Denoting by λi and FSTS†(·),
respectively, the ith eigenvalue and the asymptotic ESD of STS†, the ran-
dom variable

∆N =
N∑

i=1

g(λi) − N

∫
g(x) dFSTS† (4.43)

converges, as K, N → ∞ with K
N → β, to a zero-mean Gaussian random

variable with variance

E[∆2] = − 1
2π2

∮ ∮
ġ(Z(σ1))g(Z(σ2))

σ2 − σ1
dσ1dσ2 (4.44)

where ġ(x) = d
dxg(x) while

Z(σ) = − 1
σ

(1 − β(1 − ηT(σ))) . (4.45)

In (5.64) the integration variables σ1 and σ2 follow closed contours, which
we may take to be non-overlapping and counterclockwise, such that the cor-
responding contours mapped through Z(σ) enclose the support of FSTS†(·).

cIn [28] this interval contains the spectral support of S†ST.
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Using the foregoing result, we have that

Theorem 4.19 ([29]). Let S be an N × K complex matrix defined as in
Theorem 4.20. Let T be an Hermitian random matrix independent of S
with bounded spectral norm and whose asymptotic ESD converges a.s. to a
nonrandom limit. Denote by VSTS†(γ) the Shannon transform of STS†. As
K, N → ∞ with K

N → β, the random variable

∆N = log det(I + γSTS†) − NVSTS†(γ) (4.46)

is asymptotically zero-mean Gaussian with variance

E[∆2] = − log

(
1 − β E

[(
TγηSTS†(γ)

1 + TγηSTS†(γ)

)2
])

where the expectation is over the nonnegative random variable T whose
distribution is given by the asymptotic ESD of T.

From Jensen’s inequality and (4.14), a tight lower bound for the variance
of ∆ in Theorem 4.19 is given by [3, Eq. 2.239]:

E[∆2] ≥ − log
(

1 − (1 − ηSTS†(γ))2

β

)
(4.47)

with strict equality if T = I. In fact, Theorem 4.19 can be particularized
to the case T = I to obtain:

Theorem 4.20. Let S be an N × K complex as in Theorem 4.19. As
K, N → ∞ with K

N → β, the random variable

∆N = log det(I + γSS†) − NVSS†(γ) (4.48)

is asymptotically zero-mean Gaussian with variance

E[∆2] = − log
(

1 − (1 − ηSS†(γ))2

β

)
(4.49)

where ηSS†(γ) and VHH†(γ) are given in (4.9) and (4.10).

5. Applications to Wireless Communications

In this section we focus our attention on some of the major wireless channels
that are simple yet practically very relevant and able to capture various
features of contemporary interest:

A. Randomly spread Code Division Multiple Access (CDMA) channels sub-
ject to either frequency-flat or frequency-selective fading.

B. Single-user multiantenna channels subject to frequency-flat fading.
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Naturally, random matrices also arise in models that incorporate more
than one of the above features (multiuser, multiantenna, fading, wideband).
Although realistic models do include several (if not all) of the above features
it is conceptually advantageous to start by deconstructing them into their
essential ingredients.

In the next subsections we describe the foregoing scenarios and show
how the distribution of the squared singular values of certain matrices de-
termine communication limits in both the coded regime (Shannon capacity)
and the uncoded regime (probability of error). Each of above channels are
analyzed in the asymptotic regime where K (number of transmit anten-
nas or number of users) and N (number of receive antennas or number
of degrees of freedom per symbol in the CDMA channel) go to infinity
while the ratio goes to a constant. In such regime, for each of these chan-
nels, we derive several performance measures of engineering interest which
are determined by the distribution of the singular values of the channel
matrix.

Unless otherwise stated, the analysis applies to coherent reception and
thus it is presumed that the state of the channel is perfectly tracked by
the receiver. The degree of channel knowledge at the transmitter, on the
other hand, as well as the rapidity of the fading fluctuations (ergodic or
non-ergodic regime) are specified for each individual setting.

5.1. CDMA

An application that is very suitable is the code-division multiple access
channel or CDMA channel, were each user is assigned a signature vector
known at the receiver which can be seen as an element of an N dimensional
signal space. Based on the nature of this signal space we can distinguish
between:

• Direct sequence CDMA used in many current cellular systems (IS-95,
cdma2000, UMTS)

• Multi-carrier CDMA being considered for fourth generation of cellular
systems.

5.1.1. DS-CDMA frequency-flat fading

Concerning the DS-CDMA, we first focus on channels whose response is
flat over the signal bandwidth which implies that the received signature of
each user is just a scaled version of the transmitted one where the scaling
factors are the independent fading coefficients for each user.
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Considering the basic synchronous DS-CDMA [4] with K users and
spreading factor N in a frequency-flat fading environment, the vector x
contains the symbols transmitted by the K users while the role of H is
played by the product of two matrices, S and A, where S is a N × K

matrix whose columns are the spreading sequences

S = [ s1 | . . . |sK ] (5.1)

and A is a K×K diagonal matrix whose kth diagonal entry is the complex
fading coefficient of kth user. The model thus specializes to

y = SAx + n. (5.2)

The standard random signature model [4] assumes that the entries of S,
are chosen independently and equiprobably on {− 1√

N
, 1√

N
}. Moreover, the

random signature model is often generalized to encompass non-binary (e.g.
Gaussian) distributions for the amplitudes that modulate the chip wave-
forms. With that, the randomness in the received sequence can also reflect
the impact of fading. One motivation for modeling the signatures random is
the use of “long sequences” in some commercial CDMA systems, where the
period of the pseudo-random sequence spans many symbols. Another moti-
vation is to provide a baseline of comparison for systems that use signature
waveform families with low cross-correlations.

The arithmetic mean of the MMSE’s for the K users satisfies [4]

1
K

K∑
k=1

MMSEk =
1
K

tr
{
(I + SNR A†S†SA)−1

}
(5.3)

→ ηA†S†SA(SNR) (5.4)

whereas the MMSE multiuser efficiency of the kth user, ηMMSE
k (SNR), given

in (3.17) is:

ηMMSE
k (SNR) = sT

k

I +
∑
i�=k

SNR |Ai|2sisT
i

−1

sk (5.5)

→ ηSAA†S†(SNR) (5.6)

where the limit follows from (4.24). According to Theorem 4.6, the MMSE
multiuser efficiency, abbreviated as

η = ηSAA†S†(SNR), (5.7)
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is the solution to the fixed-point equation

1 − η = β
(
1 − η|A|2(SNR η)

)
, (5.8)

where η|A|2 is the η transform of the asymptotic empirical distribution of
{|A1|2, . . . , |AK |2}.

The capacity of the optimum receiver (normalized by the spreading
factor N) which is given by [4]:

Copt(β SNR) = lim
N→∞

1
N

log det
(
I + SNR SAA†S†) ,

according to Theorem 4.6, equals (4.15).
It has been proved in [30] that in the asymptotic regime the normalized

spectral efficiency of the MMSE receiver converges to

CMMSE(β SNR) = lim
N→∞

1
N

K∑
k=1

E [log (1 + SINRk)] (5.9)

from which it follows using (4.22) that

CMMSE(β SNR) = β E
[
log

(
1 + |A|2 SNR ηSAA†S†(SNR)

)]
. (5.10)

Based on (5.10), the capacity of the optimum receiver can be characterized
in terms of the MMSE spectral efficiency [30]:

Copt(β SNR) = CMMSE(β SNR) + log
1

ηSAA†S†(SNR)
+ (ηSAA†S†(SNR) − 1) log e. (5.11)

The unfaded equal power case is obtained by the the above model assum-
ing A = AI, where A is the transmitted amplitude equal for all users. In this
case, the channel matrix in (5.24) has independent identically distributed
entries and thus, according to Theorem 4.3, its asymptotic ESD converges
to the Marc̆enko-Pastur law. Thus the normalized capacity achieved with
the optimum receiver in the asymptotic regime is (cf. Theorem 4.4):

Copt(β, SNR) = β log
(

1 + SNR−F (SNR, β)
4

)
+ log

(
1 + SNR β − F (SNR, β)

4

)
− F (SNR, β)

4 SNR
log e,

(5.12)
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while the MMSE converges to

1 − F (SNR, β)
4 SNR β

(5.13)

with F(·, ·) defined in (4.11). Using (4.24) and (4.9), the maximum SINR
(achieved by the MMSE linear receiver) converges to [4]

SNR−F (SNR, β)
4

. (5.14)

Let us consider a synchronous DS-CDMA downlink with K active users
employing random spreading codes and operating over a frequency-selective
fading channel. Then H in (2.1) particularizes to

H = CSA (5.15)

where A is a K×K deterministic diagonal matrix containing the amplitudes
of the users and C is an N × N Toeplitz matrix defined as

(C)i,j =
1

Wc
c

(
i − j

Wc

)
(5.16)

with c(·) the impulse response of the channel.
Using Theorem 4.8 and with the aid of an auxiliary function χ(SNR),

abbreviated as χ, we obtain that the MMSE multiuser efficiency of the kth
user, abbreviated as η = ηMMSE(SNR), is the solution to

β η χ =
1 − η|C|2(β χ)

E[|C|2] (5.17)

η χ =
1 − η|A|2(SNR E[|C|2]η)

E[|C|2] (5.18)

where |C|2 and |A|2 are independent random variables with distributions
given by the asymptotic spectra of CC† and AA†, respectively, while
η|C|2(·) and η|A|2(·) represent their respective η transforms. Note that, using
(4.20), instead of (5.18) and (5.17), we may write [31, 32]

η = E

 |C|2

1 + β SNR |C|2E

[ |A|2
1 + SNR |A|2η

]
 . (5.19)
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From Theorem 4.7 and (4.3) we have that:

1
K

K∑
k=1

MMSEk =
1
K

tr
{(

I + SNR H†H
)−1

}
= 1 − 1

β
+

1
β

η|C|2 (βχ(SNR)) (5.20)

with χ(·) solution to (5.18) and (5.17).
The special case of (5.19) for equal-power users was given in [33].
For contributions on the asymptotic analysis of the uplink DS-CDMA

systems in frequency selective fading channels see [3,27,32]. In the context of
CDMA channels the asymptotic random matrix theory find also application
in channel estimation and design of reduced-complexity receivers (see [3]
for tutorial overview of this topic).

5.1.2. Multi-carrier CDMA

If the channel is not flat over the signal bandwidth, then the received sig-
nature of each user is not simply a scaled version of the transmitted one.

In this case, we can insert suitable transmit and receive interfaces and
choose the signature space in such a way that the equivalent channel that
encompasses the actual channel plus the interfaces can be modeled as a
random matrix H given by:

H = C ◦ SA (5.21)

= G ◦ S (5.22)

where ◦ denotes the Hadamard (element-wise) product [34], S is the ran-
dom signature matrix in the frequency domain, while G is an N × K ma-
trix whose columns are independent N -dimensional random vectors whose
(, k)th element is given by

Gi,j = |Ci,j |2 |Aj |2 (5.23)

where Ak indicates the received amplitude of that kth user, which accounts
for its average path loss, and C�,k denotes the fading for the th subcarrier
of the kth user, independent across the users. For this scenario, the linear
model (2.1) specializes to

y = (G ◦ S)x + n. (5.24)
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The SINR at the output of the MMSE receiver is

SINR
MMSE
k = SNR |Ak|2 (ck ◦ sk)†

(
I + SNR HkH

†
k

)−1

(ck ◦ sk)

where Hk indicates the matrix H with the kth column removed.
Let v(·, ·) be the two-dimensional channel profile of G. Using Theorems

4.15 and (4.22), the multiuser efficiency is given by the following result.

Theorem 5.1 ([27]). For 0 ≤ y ≤ 1, the multiuser efficiency of the MMSE
receiver for the 
yK�th user converges a.s., as K, N → ∞ with K

N → β, to

lim
K→∞

ηMMSE
�yK� (SNR) =

Ψ(y, SNR)
E [υ(X, y)]

(5.25)

where Ψ(·, ·) is a positive function solution to

Ψ(y, SNR) = E

 υ(X, y)

1 + SNR βE

[
υ(X, Y)

1 + SNR Ψ(Y, SNR)
|X
]
 (5.26)

and the expectations are with respect to independent random variables X

and Y both uniform on [0,1].

Most quantities of interest such as the multiuser efficiency and the ca-
pacity approach their asymptotic behaviors very rapidly as K and N grow
large. Hence, we can get an extremely accurate approximation of the mul-
tiuser efficiency and consequently of the capacity with an arbitrary number
of users, K, and a finite processing gain, N , simply by resorting to their
asymptotic approximation with υ(x, y) replaced in Theorem 5.1 by

υ(x, y) ≈ |Ak|2 |C�,k|2  − 1
N

≤ x <


N

k − 1
K

≤ y <
k

K
.

Thus, we have that the multiuser efficiency of uplink MC-CDMA is closely
approximated by

ηMMSE
k (SNR) ≈ ΦN

k (SNR)

1
N

N∑
�=1

|C�,k|2
(5.27)

with

ΦN
k (SNR) =

1
N

N∑
�=1

|C�,k|2

1 + SNR
β

K

K∑
j=1

|Aj |2
1 + SNR ΦN

j (SNR)

. (5.28)
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From (5.9) using Theorem 5.1, the MMSE spectral efficiency converges,
as K, N → ∞, to

CMMSE(β, SNR) = β E [log (1 + SNR Ψ(Y, SNR))] (5.29)

where the function Ψ(·, ·) is the solution of (5.26).
As an application of Theorem 4.16, the capacity of a multicarrier CDMA

channel is obtained.

Theorem 5.2 ([27]). The capacity of the optimum receiver is

Copt(β, SNR) = CMMSE(β, SNR)

+ E [log(1 + SNR β E [υ(X, Y)Υ(Y, SNR)|X]]

− β SNR E [Ψ(Y, SNR)Υ(Y, SNR)] log e (5.30)

with Ψ(·, ·) and Υ(·, ·) satisfying the coupled fixed-point equations

Ψ(y, SNR) = E

[
υ(X, y)

1 + β SNR E[υ(X, Y)Υ(Y, SNR)|X]

]
(5.31)

Υ(y, SNR) =
1

1 + SNR Ψ(y, SNR)
(5.32)

where X and Y are independent random variables uniform on [0, 1].

Note that (5.30) appears as function of quantities with immediate en-
gineering meaning. More precisely, SNR Ψ(y, SNR) is easily recognized from
Theorem 5.1 as the SINR exhibited by the 
yK�th user at the output
of a linear MMSE receiver. In turn Υ(y, SNR) is the corresponding mean-
square error. An alternative characterization of the capacity (inspired by
the optimality by successive cancellation with MMSE protection against
uncancelled users) is given by

Copt(β, SNR) = βE [log(1 + SNR �(Y, SNR))] (5.33)

where

�(y, SNR) = E

 υ(X, y)

1 + SNR β(1 − y)E
[

υ(X, Z)
1 + SNR �(Z, SNR)

|X
]
 (5.34)

where X, and Z are independent random variables uniform on [0, 1] and
[y, 1], respectively.

For the downlink, the structure of the transmitted MC-CDMA signal is
identical to that of the uplink, but the difference with (5.21) is that every
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user experiences the same channel and thus ck = c for all 1 ≤ k ≤ K. As a
result,

H = CSA

with C = diag(c) and A = diag(a). Consequently Theorems 4.7– 4.10 can
be used for the asymptotic analysis of MC-CDMA downlink. For an ex-
tended survey on contributions on the asymptotic analysis of MC-CDMA
channels see [3] and references therein.

5.2. Multi-antenna channels

Let us now consider a single-user channel where the transmitter has nT

antennas and the receiver has nR antennas.
In this case, x contains the symbols transmitted from the nT transmit

antennas and y the symbols received by the nR receive antennas. With
frequency-flat fading, the entries of H represent the fading coefficients be-
tween each transmit and each receive antenna, typically modelled as zero-
mean complex Gaussian and normalized such that

E
[
tr{HH†}] = nR . (5.35)

If all antennas are co-polarized, the entries of H are identically distributed
and thus the resulting variance of each entry is 1

nT
. (See [16, 35] for the

initial contributions on this topic and [36–40] for recent articles of tutorial
nature.)

In contrast with the multiaccess scenarios, in this case the signals trans-
mitted by different antennas can be advantageously correlated and thus the
covariance of x becomes relevant. Normalized by its energy per dimension,
the input covariance is denoted by

Φ =
E[xx†]

1
nT

E[‖x‖2]
(5.36)

where the normalization ensures that E[tr{Φ}] = nT. It is useful to decom-
pose this input covariance in its eigenvectors and eigenvalues, Φ = VPV†.
Each eigenvalue represents the (normalized) power allocated to the cor-
responding signalling eigenvector. Associated with P, we define an input
power profile

P(nR)(t, SNR) = Pj,j
j

nR
≤ t <

j + 1
nR
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supported on t ∈ (0, β]. This profile specifies the power allocation at each
SNR. As the number of antennas is driven to infinity, P(nR)(t, SNR) converges
uniformly to a nonrandom function, P(t, SNR), which we term asymptotic
power profile.

The capacity per receive antenna is given by the maximum over Φ of
the Shannon transform of the averaged empirical distribution of HΦH†, i.e.

C(SNR) = max
Φ:trΦ=nT

VHΦH†(SNR) (5.37)

where

SNR =
E[‖x‖2]
1

nR
E[‖n‖2]

. (5.38)

If full CSI is available at the transmitter, then V should coincide with
the eigenvector matrix of H†H and P should be obtained through a waterfill
process on the eigenvalues of H†H [16, 41–43]. The resulting jth diagonal
entry of P is

Pj,j =
(

ν − 1
SNR λj(H†H)

)+

(5.39)

where ν is such that tr{P} = nT. Then, substituting in (5.37),

C(SNR) =
1

nR
log det(I + SNR PΛ) (5.40)

= β

∫
(log(SNR νλ))+dFnT

H†H(λ) (5.41)

with Λ equal to the diagonal eigenvalue matrix of H†H.
If, instead, only statistical CSI is available, then V should be set, for

all the channels that we will consider, to coincide with the eigenvectors
of E[H†H] while the capacity-achieving power allocation, P, can be found
iteratively [44].

5.3. Separable correlation model

Antenna correlation at the transmitter and at the receiver, that is, between
the columns and between the rows of H, respectively, can be accounted for
through corresponding correlation matrices ΘT and ΘR [45–47]. According
to this model, which is referred to as separable correlation model, an nR×nT

matrix Hw, whose entries are i.i.d. zero-mean with variance 1
nT

, is pre- and
post-multiplied by the square root of deterministic matrices, ΘT and ΘR,
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whose entries represent, respectively, the correlation between the transmit
antennas and between the receive antennas:

H = Θ1/2
R HwΘ1/2

T (5.42)

Implied by this model is that the correlation between two transmit antennas
is the same regardless of the receive antenna at which the observation is
made and vice versa. The validity of this model has been confirmed by
a number of experimental measurements conducted in various scenarios
[48–54].

With full CSI at the transmitter, the asymptotic capacity is [55]

C(SNR) = β

∫ ∞

0

(log(SNR νλ))+dG(λ) (5.43)

where ν satisfies ∫ ∞

0

(
ν − 1

SNR λ

)+

dG(λ) = 1 (5.44)

with G(·) the asymptotic spectrum of H†H whose η transform can be de-
rived using Theorem 4.7 and Lemma 4.2. Invoking Theorem 4.9, the capac-
ity in (5.43) can be evaluated as follows.

Theorem 5.3 ([56]). Let ΛR and ΛT be independent random variables
whose distributions are the asymptotic spectra of the full-rank matrices ΘR

and ΘT respectively. Further define

Λ1 =
{

ΛT β < 1
ΛR β > 1

Λ2 =
{

ΛR β < 1
ΛT β > 1

(5.45)

and let κ be the infimum (excluding any mass point at zero) of the support
of the asymptotic spectrum of H†H. For

SNR ≥ 1
κ
− δE

[
1
Λ1

]
(5.46)

with δ satisfying

ηΛ2(δ) = 1 − min
{

β,
1
β

}
,

the asymptotic capacity of a channel with separable correlations and full
CSI at the transmitter is

C(SNR) =


β E

[
log

ΛT

eϑ

]
+ VΛR

(ϑ) + β log
(

SNR +ϑE

[
1
ΛT

])
β < 1

E

[
log

ΛR

αe

]
+ β VΛT

(α) + log
(

SNR +αE

[
1
ΛR

])
β > 1
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with α and ϑ the solutions to

ηΛT
(α) = 1 − 1

β
ηΛR

(ϑ) = 1 − β.

No asymptotic characterization of the capacity with full CSI at the
transmitter is known for β = 1 and arbitrary SNR.

When the correlation is present only at either the transmit or receive
ends of the link, the solutions in Theorem 5.3 sometimes become explicit:

Corollary 5.4. With correlation at the end of the link with the fewest
antennas, the capacity per antenna with full CSI at the transmitter con-
verges to

C =


β E

[
log

ΛT

e

]
+ log

1
1 − β

+ β log
(

SNR
1 − β

β
+ E

[
1

ΛT

])
β < 1
ΛR = 1

E

[
log

ΛR

e

]
− β log

β − 1
β

+ log
(

SNR(β − 1) + E

[
1
ΛR

])
β > 1

ΛT = 1 .

Finally if all antennas are assumed uncorrelated — a single-user multi-
antenna channel with no correlation (i.e ΘR = ΘT = I) is commonly
refereed to as canonical channel — the capacity per antenna with full CSI
at the transmitter converges to:

Theorem 5.5 ([56]). For

SNR ≥ 2 min{1, β3/2}
|1 −√

β||1 − β| (5.47)

the capacity of the canonical channel with full CSI at the transmitter con-
verges a.s. to

C(SNR) =


β log

(
SNR

β
+

1
1 − β

)
+ (1−β) log

1
1 − β

− β log e β < 1

log
(

β SNR +
β

β − 1

)
+ (β−1) log

β

β − 1
− log e β > 1 .

With statistical CSI at the transmitter, achieving capacity requires that
the eigenvectors of the input covariance, Φ, coincide with those of ΘT

[57, 58]. Consequently, denoting by ΛT and ΛR the diagonal eigenvalue
matrices of ΘT and ΘR, respectively, we have that

C(β, SNR) =
1
N

log det
(
I + SNR Λ1/2

R HwΛ1/2
T PΛ1/2

T H†
wΛ1/2

R

)
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where P is the capacity-achieving power allocation [44]. Applying Theorem
4.7, we obtain:

Theorem 5.6 ([21]). The capacity of a Rayleigh-faded channel with sep-
arable transmit and receive correlation matrices ΘT and ΘR and statistical
CSI at the transmitter converges to

C(β, SNR) = βE [log(1 + SNR ΛΓ(SNR))] + E [log(1 + SNR ΛRΥ(SNR)]

− β SNR Γ(SNR)Υ(SNR) log e (5.48)

where

Γ(SNR) =
1
β

E

[
ΛR

1 + SNR ΛRΥ(SNR)

]
(5.49)

Υ(SNR) = E

[
Λ

1 + SNR ΛΓ(SNR)

]
(5.50)

with expectation over Λ and ΛR whose distributions are given by the asymp-
totic empirical eigenvalue distributions of ΛTP and ΘR, respectively.

If the input is isotropic, the achievable mutual information is easily
found from the foregoing result.

Corollary 5.7 ([59]). Consider a channel defined as in Theorem 5.6 and
an isotropic input. Expression (5.48) yields the mutual information with the
distribution of Λ given by the asymptotic empirical eigenvalue distribution
of ΘT.

This corollary is illustrated in Fig. 2, which depicts the mutual infor-
mation (bits/s/Hz) achieved by an isotropic input for a wide range of SNR.
The channel is Rayleigh-faded with nT = 4 correlated antennas and nR = 2
uncorrelated antennas. The correlation between the ith and jth transmit
antennas is

(ΘT)i,j = e−0.05d2(i−j)2 (5.51)

which corresponds to a uniform linear array with antenna separation d

(wavelengths) exposed to a broadside Gaussian azimuth angular spectrum
with a 2◦ root-mean-square spread [60]. Such angular spread is typical of an
elevated base station in rural or suburban areas. The solid lines depict the
analytical solution obtained by applying Theorem 5.6 with P = I and ΘR =
I and with the expectations over Λ replaced with arithmetic averages over
the eigenvalues of ΘT. The circles, in turn, show the result of Monte-Carlo
simulations. Notice the excellent agreement even for such small numbers of
antennas.
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Fig. 2. Mutual information achieved by an isotropic input on a Rayleigh-faded channel
with nT = 4 and nR = 2. The transmitter is a uniform linear array whose antenna
correlation is given by (5.51) where d is the spacing (wavelengths) between adjacent
antennas. The receive antennas are uncorrelated.

A Ricean term can be incorporated in the model (5.42) through
an additional deterministic matrix H0 containing unit-magnitude entries
[61–63]. With proper weighting of the random and deterministic matrices,
the model particularizes to

y =

(√
1

K + 1
Θ1/2

R HwΘ1/2
T +

√
K

K + 1
H0

)
x + n (5.52)

with Hw an i.i.d. N (0, 1) matrix and with the Ricean K-factor quantify-
ing the ratio between the deterministic (unfaded) and the random (faded)
energies [64].

If we assume that H0 has rank r where r > 1 but such that

lim
N→∞

r

N
= 0 (5.53)
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then all foregoing results can be extended to the ricean channel by simply
replacing ΛR and ΛT with independent random variables whose distribu-
tions are the asymptotic spectra of the full-rank matrices

√
1

K+1ΘR and√
1

K+1ΘT respectively.

5.4. Non-separable correlation model

While the separable correlation model is relatively simple and analytically
appealing, it also has clear limitations, particularly in terms of representing
indoor propagation environments [65]. Also, it does not accommodate di-
versity mechanisms such as polarizationd and radiation pattern diversitye

that are becoming increasingly popular as they enable more compact ar-
rays. The use of different polarizations and/or radiation patterns creates
correlation structures that cannot be represented through the separable
model.

A broader range of correlations can be encompassed, if we model the
channel as

H = URH̃U†
T (5.54)

where UR and UT are unitary while the entries of H̃ are independent zero-
mean Gaussian. This model is advocated and experimentally supported
in [68] and its capacity is characterized asymptotically in [21]. For the more
restrictive case where UR and UT are Fourier matrices, the model (5.54)
was proposed earlier in [69].

Since the spectra of H and H̃ coincide, every result derived for matrices
with independent non-identically distributed entries (cf. Theorems 4.12–
4.17) apply immediately to H.

As it turns out, the asymptotic spectral efficiency of H̃ is fully charac-
terized by the variances of its entries, which we assemble in a matrix G
such that Gi,j = nTE[|Hi,j |2] with∑

ij

Gi,j = nTnR . (5.55)

dPolarization diversity: Antennas with orthogonal polarizations are used to ensure low
levels of correlation with minimum or no antenna spacing [63, 66] and to make the
communication link robust to polarization rotations in the channel [67].
ePattern diversity: Antennas with different radiation patterns or with rotated versions
of the same pattern are used to discriminate different multipath components and reduce
correlation.
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Invoking Definition 4.13, we introduce the variance profile of H̃, which
maps the entries of G onto a two-dimensional piece-wise constant function

G(nR)(r, t) = Gi,j
i

nR
≤ r <

i + 1
nR

,
j

nT
≤ t <

j + 1
nT

(5.56)

supported on r, t ∈ [0, 1]. We can interpret r and t as normalized receive
and transmit antenna indices. It is assumed that, as the number of antennas
grows, G(nR)(r, t) converges uniformly to the asymptotic variance profile,
G(r, t). The normalization condition in (5.55) implies that

E[G(R, T)] = 1 (5.57)

with R and T independent random variables uniform on [0, 1].
With full CSI at the transmitter, the asymptotic capacity is given by

(5.43) and (5.44) with G(·) representing the asymptotic spectrum of H†H.
Using Theorems 4.17, an explicit expression for C(SNR) can be obtained for
sufficiently high SNR.

With statistical CSI at the transmitter, the eigenvectors of the capacity-
achieving input covariance coincide with the columns of UT in (5.54)
[70, 71]. Consequently, the capacity is given by:

C(β, SNR) = lim
N→∞

1
N

log det
(
I + H̃PH̃†

)
. (5.58)

Denote by P(t, SNR) the asymptotic power profile of the capacity achieving
power allocation at each SNR, in order to characterize (5.58), we invoke
Theorem 4.16 to obtain the following.

Theorem 5.8 ([21]). Consider the channel H = URH̃U†
T where UR and

UT are unitary while the entries of H̃ are zero-mean Gaussian and indepen-
dent. Denote by G(r, t) the asymptotic variance profile of H̃. With statistical
CSI at the transmitter, the asymptotic capacity is

C(β, SNR) = β E [log(1 + SNR E [G(R, T)P(T, SNR)Γ(R, SNR)|T])]

+ E [log(1 + E[G(R, T)P(T, SNR)Υ(T, SNR)|R])]

− β E [G(R, T)P(T, SNR)Γ(R, SNR)Υ(T, SNR)] log e

with expectation over the independent random variables R and T uniform
on [0, 1] and with

β Γ(r, SNR) =
1

1 + E[G(r, T)P(T, SNR)Υ(T, SNR)]

Υ(t, SNR) =
SNR

1 + SNR E [G(R, t)P(t, SNR)Γ(R, SNR)]
.
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If there is no correlation but antennas with different polarizations are
used, the entries of H are no longer identically distributed because of the
different power transfer between co-polarized and differently polarized an-
tennas. In this case, we can model the channel matrix as

H = A ◦ Hw (5.59)

where ◦ indicates Hadamard (element-wise) multiplication, Hw is composed
of zero-mean i.i.d. Gaussian entries with variance 1

nT
and A is a determin-

istic matrix containing the square-root of the second-order moment of each
entry of H, which is given by the relative polarization of the corresponding
antenna pair. If all antennas are co-polar, then every entry of A equals 1.

The asymptotic capacity with full CSI at the transmitter can be found,
for sufficiently high SNR, by invoking Theorem 4.17.

Since the entries of H are independent, the input covariance that
achieves capacity with statistical CSI is diagonal [70, 71]. The correspond-
ing asymptotic capacity per antenna equals the one given in Theorem 5.8
with G(r, t) the asymptotic variance profile of H. Furthermore, these solu-
tions do not require that the entries of H be Gaussian but only that their
variances be uniformly bounded.

A common structure for A, arising when the transmit and receive arrays
have an equal number of antennas on each polarization, is that of a doubly-
regular form (cf. Definition 4.11). For such channels, the capacity-achieving
input is not only diagonal but isotropic and, applying Theorem 4.12, the
capacity admits an explicit form.

Theorem 5.9. Consider a channel H = A ◦ Hw where the entries of A
are deterministic and nonnegative while those of Hw are zero-mean and
independent, with variance 1

nT
but not necessarily identically distributed.

If A is doubly-regular (cf. Definition 4.11), the asymptotic capacity per
antenna, with full CSI or with statistical CSI at the transmitter, coincides
with that of the canonical channel, given respectively in Theorem 5.5 and
in Eq. (4.10) with in the latter γ = SNR

β .

A very practical example of the applicability of the above result is given
by the following wireless channel.

Example 5.10. Consider the wireless channel as in Fig. 3 where each
transmitter and receiver have antennas split between two orthogonal polar-
izations. Denoting by σ the gain between copolar antennas different from
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Fig. 3. Laptop computers equipped with a 16-antenna planar array. Two orthogonal
polarizations used.

gain between crosspolar antennas, χ, we can model the channel matrix as
in (5.59), where P = A ◦ A equals:

P =


σ χ σ χ . . .

χ σ χ σ . . .

σ χ σ χ . . .
...

...
...

...
. . .

 (5.60)

which is asymptotically mean doubly regular.

Again the zero-mean multi-antenna channel model analyzed thus far can
be made Ricean by incorporating an additional deterministic component
H̄ [61–63] which leads to the following general model

y =

(√
1

K + 1
H +

√
K

K + 1
H̄

)
x + n (5.61)

with the scalar Ricean factor K quantifying the ratio between the Frobenius
norm of the deterministic (unfaded) component and the expected Frobe-
nius norm of the random (faded) component. Considered individually, each
(i, j)th channel entry has a Ricean factor given by

K
|H̄i,j |2

E[|Hi,j |2] .

Using Lemma 2.6 in [23] the next result follows straightforwardly.

Theorem 5.11. Consider a channel with a Ricean term whose rank is
finite. The asymptotic capacity per antenna, Crice(β, SNR), equals the cor-
responding asymptotic capacity per antenna in the absence of the Ricean
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component, C(β, SNR), with a simple SNR penalty:

Crice(β, SNR) = C
(

β,
SNR

K + 1

)
(5.62)

Note that, while the value of the capacity depends on the degree of CSI
available at the transmitter, (5.62) holds regardless.

5.5. Non-ergodic channels

The results on large random matrices surveyed in Section 4 show that the
mutual information per receive antenna converges a.s. to its expectation as
the number of antennas goes to infinity (with a given ratio of transmit to
receive antennas). Thus, as the number of antennas grows, a self-averaging
mechanism hardens the mutual information to its expected value. However,
the non-normalized mutual information still suffers random fluctuations
that, although small with respect to the mean, are of vital interest in the
study of the outage capacity.

An interesting property of the distribution of the non-normalized mu-
tual information in (3.18) is the fact that, for many of the multi-antenna
channels of interest, it can be approximated as Gaussian as the number of
antennas grows. A number of authors have explored this property. Argu-
ments supporting the normality of the c.d.f (cumulative distribution func-
tion) of the mutual information for large numbers of antennas were given
in [29, 72–74].f Ref. [72] used the replica method from statistical physics
(which has yet to find a rigorous justification), [73] showed the asymptotic
normality only in the asymptotic regimes of low and high signal-to-noise
ratios, while in [74], the normality of the outage capacity is proved for the
canonical channel using [17]. Theorem 4.19 proves the asymptotic normality
of the unnormalized mutual information for arbitrary signal-to-noise ratios
and fading distributions, allowing for correlation between the antennas at
either transmitter or receiver. Theorem 4.20 — a proof of such theorem can
be found in [29] — provides succinct expressions for the asymptotic mean
and variance of the mutual information in terms of the η and Shannon
transforms of the correlation matrix. Using Theorem 4.20 we can get an
extremely accurate approximation of the cumulative distribution of (3.18)
with an arbitrary number of transmit and receive antennas. More specifi-
cally we have that the cumulative distribution of the unnormalized mutual

fFor additional references, see [3].
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information of a MIMO channel with correlation at the transmitter for ar-
bitrary signal-to-noise ratios and fading distributions, is well approximated
by a Gaussian distribution with mean, µ and varaince σ2 given by

µ =
1
N

nT∑
j=1

log (1 + SNRλj(T) η) − log η + (η − 1) log e (5.63)

σ2 = − log

1 − β
1

nT

nT∑
j=1

[(
λj(T) SNR η

1 + λj(T) SNR η

)2
] . (5.64)

In order to illustrate the power of this result with some examples, we
will consider correlated MIMO channels with a transmit correlation matrix
ΘT such that

(ΘT)i,j = e−0.8(i−j)2 (5.65)

which is a typical structure of an elevated base station in suburbia. The
receive antennas are uncorrelated. For the examples, we will compare the
cumulative distributions of the unnormalized mutual information of such
channel with a Gaussian distribution whose mean and variance are given in
(5.63) and (5.64). Figures 4 and 5 compare the 10% point in the cumulative

Gaussian approximation
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Fig. 4. 10%-outage capacity for a Rayleigh-faded channel with nT = nR = 2. The trans-
mit antennas are correlated as per (5.65) while the receive antennas are uncorrelated.
Solid line indicates the corresponding limiting Gaussian distribution.
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.

Gaussian approximation
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Fig. 5. 10%-outage capacity for a Rayleigh-faded channel with nT = 4 and nR =
2. The transmit antennas are correlated as per (5.65) while the receive antennas are
uncorrelated. Solid line indicates the corresponding limiting Gaussian distribution.

distribution of the mutual information for SNR between 0 and 40 dB for
nR = 2 and different number of transmit antennas. The solid line indicates
the simulation while the circles indicate the Gaussian distribution. Notice
the remarkable agreement despite having such a small number of antennas.

For channels with both transmit and receive correlation, the character-
istic function found through the replica method yields to the expression of
E[∆2] given in [72].
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This review paper gives a tutorial overview of the usage of the replica
method in multiuser communications. It introduces the self averag-
ing principle, the free energy and other physical quantities and gives
them a meaning in the context of multiuser communications. The tech-
nical issues of the replica methods are explained to a non-physics
audience. An isomorphism between receiver metrics and the fundamen-
tal laws of physics is drawn. The overview is explained at the example
of detection of code-division multiple-access with random signature
sequences.

1. Introduction

Multiuser communication systems which are driven by Gaussian distributed
signals can be fully characterized by the distribution of the singular values
of the channel matrix in the large user limit. In digital communications,
however, transmitted signals are chosen from finite, often binary, sets. In
those cases, knowledge of the asymptotic spectrum of large random ma-
trices is, in general, not sufficient to get valuable insight into the behavior
of characteristic performance measures such as bit error probabilities and
supported data rate. We will see that the quantized nature of signals gives
rise to the totally unexpected occurrence of phase transitions in multiuser
communications which can, by no means, be inferred from the asymptotic
convergence of eigenvalue spectra of large random matrices.

In order to analyze and design large dimensional communication sys-
tems which cannot be described by eigenvalues and eigenvectors alone, but
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depend on statistics of the transmitted signal, e.g. minimum distances be-
tween signal points, a more powerful machinery than random matrix and
free probability theory is needed. Such a machinery was developed in sta-
tistical physics for the analysis of some particular magnetic materials called
spin glasses and is known as the replica method [1]. Additionally, the replica
method is well-tailored to cope with receivers whose knowledge about chan-
nel and/or input statistics is impaired.

The replica method is able to reproduce many of the results which were
found by means of random matrix and free probability theory, but the
calculations based on the replica method are often much more involved.
Moreover, it is still lacking mathematical rigor in certain respects. How-
ever, due to its success in explaining physical phenomena and its consis-
tency with engineering results from random matrix and free probability the-
ory, we can trust that its predictions in other engineering applications are
correct. Nevertheless, we should always exercise particular care when inter-
preting new results based on the replica method. Establishing a rigorous
mathematical basis for the replica method is a topic of current research in
mathematics and theoretical physics.

2. Self Average

While random matrix theory and recently also free probability theory
[2, 3] prove the (almost sure) convergence of some random variables to
deterministic values in the large matrix limit, statistical physics does not
always do so. It is considered a fundamental principle of statistical physics
that there are microscopic and macroscopic variables. Microscopic variables
are physical properties of microscopically small particles, e.g. the speed of a
gas molecule or the spin of an electron. Macroscopic variables are physical
properties of compound objects that contain many microscopic particles,
e.g. the temperature or pressure of a gas, the radiation of a hot object,
or the magnetic field of a piece of ferromagnetic material. From a physics
point of view, it is clear which variables are macroscopic and which ones are
microscopic. An explicit proof that a particular variable is self-averaging,
i.e. it converges to a deterministic value in the large system limit, is a nice
result, if it is found, but it is not particularly important to the physics
community. When applying the replica method, systems are often only as-
sumed to be self-averaging. The replica method itself must be seen as a tool
to enable the calculation of macroscopic properties by averaging over the
microscopic properties.
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3. Free Energy

The second law of thermodynamics demands the entropy of any physical
system with conserved energy to converge to its maximum as time evolves.
If the system is described by a density pX(x) of states X ∈ R, this means
that in the thermodynamic equilibrium the (differential) entropy

H(X) = −
∫

log pX(x) dPX(x) (3.1)

is maximized while keeping the energy

E(X) =
∫

||x|| dPX(x) (3.2)

constant. Hereby, the energy function ||x|| can be any measure which is
uniformly bounded from below.

The density at thermodynamic equilibrium is easily shown by the
method of Lagrange multipliers to be

pX(x) =
e−

1
T ||x||∫ +∞

−∞
e−

1
T ||x|| dx

(3.3)

and called the Boltzmann distribution. The parameter T is called the tem-
perature of the system and determined by (3.2). For a Euclidean energy
measure, the Boltzmann distribution takes on the form of a Gaussian dis-
tribution which is well known in information theory to maximize entropy
for given average signal power.

A helpful quantity in statistical mechanics is the (normalized) free
energy a defined as

F(X)
�
= E(X) − TH(X) (3.4)

= −T log
(∫ +∞

−∞
e−

1
T ||x|| dx

)
. (3.5)

In the thermodynamic equilibrium, the entropy is maximized and the free
energy is minimized since the energy is constant. The free energy normalized
to the dimension of the system is a self averaging quantity.

As we will see in the next section, the task of receivers in digital com-
munications is to minimize an energy function for a given received signal.
In the terminology of statistical physics, they minimize the energy for a

aThe free energy is not related to freeness in free probability theory.
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given entropy. Formulating this optimization problem in Lagrangian form,
we find that the free energy (3.4) is the object function to be minimized
and the temperature of the system is a Lagrange multiplier. We conclude
that, also from an engineering point of view, the free energy is a natural
quantity to look at.

4. The Meaning of the Energy Function

In statistical physics, the free energy characterizes the energy of a sys-
tem at given entropy via the introduction of a Lagrange multiplier which
is called temperature (3.4). This establishes the usefulness of the free en-
ergy for information theoretic tasks like calculations of channel capacities.
Moreover, the free energy is a tool to analyze various types of multiuser
detectors. In fact, the free energy is such a powerful concept that it needs
not any coding to be involved in the communication system to yield strik-
ing results. The only condition, it requires to be fulfilled, is the existence of
macroscopic variables, microscopic random variables and the existence of
an energy function. For communication systems, this requires, in practice,
nothing more than their size growing above all bounds.

In physics, the energy function is determined by the fundamental forces
of physics. It can represent kinetic energy, energy contained in electric, mag-
netic or nuclear fields. The broad applicability of the statistical mechanics
approach to communication systems stems form the validity of (3.4) for
any definition of the energy function. The energy function can be inter-
preted as the metric of a detector. Thus, any detector parameterized by a
certain metric can be analyzed with the tools of statistical mechanics in
the large system limit. There is no need that the performance measures of
the detectors depend only on the eigenvalues of the channel matrix in the
large system limits. However, there is a practical limit to the applicability
of the statistical mechanics framework to the analysis of large communi-
cation systems: The analytical calculations required to solve the equations
arising from (3.4) are not always feasible. The replica method was intro-
duced to circumvent such difficulties. Some cases, however, have remained
intractable until present time.

Consider a communication channel uniquely characterized by a condi-
tional probability density pY |X(y, x) and a source uniquely characterized
by a prior density pX(x). Consider a detector for the output of this channel
characterized by an assumed channel transition probability p̆Y |X(y, x) and
an assumed prior distribution p̆X(x). Let the detector minimize some kind
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of cost function, e.g. bit error probability, subject to its hypotheses on the
channel transition probability p̆Y |X(y, x) and the prior distribution p̆X(x).
If the assumed distributions equal the true distributions, the detector is op-
timum with respect to its cost function. If the assumed distributions differ
from the true ones, the detector is mismatched in some sense. The mismatch
can arise from insufficient knowledge at the detector due to channel fluctua-
tions or due to detector complexity. If the optimum detector requires an ex-
haustive search to solve an np-complete optimization, approximations to the
true prior distribution often lead to suboptimal detectors with reduced com-
plexity. Many popular detectors can be described within this framework.

The minimization of a cost function subject to some hypothesis on the
channel transition probability and some hypothesis on the prior distribu-
tion defines a metric which is to be optimized. This metric corresponds to
the energy function in thermodynamics and determines the distribution of
the microscopic variables in the thermodynamic equilibrium. In analogy to
(3.3), we find

p̆X|Y(x, y) =
e− 1

T ||x||∫ +∞

−∞
e− 1

T ||x|| dx

(4.1)

where the dependency on y and the assumed prior distribution is implicit
via the definition of the energy function || · ||. The energy function reflects
the properties of the detector. Using Bayes’ law, the appropriate energy
function corresponding to particular hypotheses on the channel transition
function and the prior distribution can be calculated via (4.1). While the en-
ergy function in statistical physics is uniquely defined by the fundamental
forces of physics, the energy function in digital communications charac-
terizes the algorithm run in the detector. Thus, every different algorithm
potentially run in a detector uniquely defines the statistical physics of a cor-
responding imaginary toy universe where the natural forces of physics have
been replaced by some imaginary alternatives characterizing a particular
detection algorithm.

In order to study macroscopic properties of the system, we must calcu-
late the free energy of the system. For that purpose, we make use of the
self-averaging property of the thermodynamic equilibrium and (3.5):

F (X) = E
Y

F (X |Y ) (4.2)

= −T

∫
log

(∫
e− 1

T ||x|| dx

)
dPY(y) . (4.3)
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Note that, inside the logarithm, expectations are taken with respect to the
assumed distribution via the definition of the energy function, while, outside
the logarithm, expectations are taken with respect to the true distribution.

In the case of matched detection, i.e. the assumed distributions equal
the true distributions, the argument of the logarithm in (4.3) becomes pY(y)
up to a normalizing factor. Thus, the free energy becomes the (differential)
entropy of Y up to a scaling factor and an additive constant.

Statistical mechanics provides an excellent framework to study not only
matched, but also mismatched detection. The analysis of mismatched detec-
tion in large communication systems which is purely based on asymptotic
properties of large random matrices and does not exploit the tools pro-
vided by statistical mechanics has been very limited so far. One exception
is the asymptotic SINR of linear MMSE multiuser detectors with erroneous
assumptions on the powers of interfering users in [4].

5. Replica Continuity

The explicit evaluation of the free energy turns out to be very complicated
in many cases of interest. One major obstacle is the occurrence of the ex-
pectation of the logarithm of some function f(·) of a random variable Y

E
Y

log f(Y ) . (5.1)

In order to circumvent this expectation which also appears frequently in
information theory, the following identities are helpful

log Y = lim
n→0

Y n − 1
n

(5.2)

= lim
n→0

∂

∂n
Y n. (5.3)

Under the assumption that limit and expectation can be interchanged, this
gives

E
Y

log f(Y ) = lim
n→0

∂

∂n
E
Y

[f(Y )]n (5.4)

= lim
n→0

∂

∂n
log E

Y
[f(Y )]n (5.5)

and reduces the problem to the calculation of the nth moment of the func-
tion of the random variable Y in the neighborhood of n = 0. Note that
the expectation must be calculated for real-valued variables n in order to
perform the limit operation.
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At this point, it is customary to assume analytic continuity of the func-
tion EY [f(Y )]n. That is, the expectation is calculated for integer n only,
but the resulting formula is trusted to hold for arbitrary real variables n

in the neighborhood of n = 0. Note that analytic continuity is just an
assumption. There is no mathematical theorem which states under which
exact conditions this assumption is true or false. In fact, establishing a
rigorous mathematical fundament for this step in the replica analysis is a
topic of ongoing research. However, in all physical problems where replicas
have been introduced this procedure seems to work and leads to reasonable
solutions [5].

Relying on the analytic continuity, let the function

f(Y ) =
∫

e−||x|| dx (5.6)

take the form of a partition function where the dependency on Y is implicit
via the definition of the energy function ||·||. Since the variable of integration
is arbitrary, this implies

E
Y

[f(Y )]n = E
Y

(∫
e−||x|| dx

)n

(5.7)

= E
Y

n∏
a=1

∫
e−||xa|| dxa (5.8)

=
∫

E
Y

e
−

n∑
a=1

||xa|| n∏
a=1

dxa. (5.9)

Thus, instead of calculating the nth power of f(Y ), replicas of x are gen-
erated. These replicated variables xa are arbitrary and can be assigned
helpful properties. Often they are assumed to be independent random vari-
ables. Moreover, the replica trick allowed us to interchange integration and
expectation, although the expectation in (5.7) is to be taken over a nonlin-
ear function of the integral.

6. Saddle Point Integration

Typically, integrals arising from the replica ansatz are solved by saddle
point integration. The general idea of saddle point integration is as follows:
Consider an integral of the form

1
K

log
∫

eKf(x)dx. (6.1)
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Note that we can write this integral as

1
K

log
∫

eKf(x)dx = log
[∫

exp(f(x))Kdx

]1/K

(6.2)

which shows that it is actually the logarithm of the K-norm of the function
exp(f(x)). For K → ∞, we get the maximum norm and thus obtain

lim
K→∞

1
K

log
∫

eKf(x)dx = max
x

f(x). (6.3)

That means, the integral can be solved maximizing the argument of the
exponential function.

Some authors also refer to the saddle point integration as saddle point
approximation and motivate it by a series expansion of the function f(x)
in the exponent. Making use of the identity (5.5) instead of (5.4), we can
argue via the infinity norm and need not study under which conditions of
the function f(x) the saddle point approximation is accurate.

7. Replica Symmetry

If the function in the exponent is multivariate — typically all replicated
random variables are arguments — one would need to find the extremum
of a multivariate function for an arbitrary number of arguments. This can
easily become a hopeless task, unless one can exploit some symmetries of
the optimization problem.

Assuming replica symmetry means that one concludes from the symme-
try of the exponent, e.g. f(x1, x2) = f(x2, x1) for the bi-variate case, that
the extremum appears if all variables take on the same value. Then, the
multivariate optimization problem reduces to a single variate one, e.g.

max
x1,x1

f(x1, x2) = max
x

f(x, x) (7.1)

for the bi-variate case. This is the most critical assumption when applying
the replica method. In fact, it is not always true, even in practically relevant
cases. Figure 1 shows both an example and a counterexample. The general
way to circumvent this trouble is to assume replica symmetry at hand and
proof later, having found a replica symmetric solution, that it is correct.

With the example of Fig. 1 in mind, it might seem that replica sym-
metry is a very odd assumption. However, the functions to be extremized
arise from replication of identical integrals, see (5.9). Given the particular
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Fig. 1. Graph of the function f(x1, x2) = − sin(x1x2) exp(−x2
1 − x2

2). It is totally
symmetric with respect to the exchange of x1 and x2. It shows symmetry with respect
to its minima, but breaks symmetry with respect to its maxima.

structure of the optimization problem

max
x1,...,xn

n∏
a=1

f(xi) (7.2)

it seems rather odd that replica symmetry might not hold. However, writing
our problem in the form of (7.2) assumes that the parameter n is an integer
despite the fact that it is actually a real number in the neighborhood of zero.
Thus, our intuition suggesting not to question replica symmetry cheats on
us. In fact, there are even practically relevant cases without sensible replica
symmetric solutions, e.g. cases were the replica symmetric solution implies
the entropy to be negative. Such phenomena are labeled replica symmetry
breaking and a rich theory in statistical mechanics literature exists to deal
with them [6, 5, 1]. For the introductory character of this work, however,
replica symmetry breaking is a too advanced issue.

8. Example: Analysis of Large CDMA Systems

The replica method was introduced into multiuser communications by the
landmark paper of Tanaka [7] for the purpose of studying the performance of
the maximum a-posteriori detector. Subsequently his work was generalized
and extended other problems in multiuser communications by himself and
Saad [8], Guo and Verdú [9], Müller et al. [10, 11], Caire et al. [4], Tanaka
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and Okada [12], Kabashima [13], Li and Poor [14], Guo [15], and Wen and
Wong [16]. Additionally, the replica method has also been successfully used
for the design and analysis of error correction codes.

Consider a vector-valued real additive white Gaussian noise channel
characterized by the conditional probability distributionb

py|x,H(y, x, H) =
e
− 1

2σ2
0
(y−Hx)T(y−Hx)

(2πσ2
0)

N
2

(8.1)

with x, y, N, σ2
0 , H denoting the channel input, channel output, the lat-

ter’s number of components, the noise variance, and the channel matrix,
respectively. Moreover, let the detector be characterized by the assumed
conditional probability distribution

p̆y|x,H(y, x, H) =
e− 1

2σ2 (y−Hx)T(y−Hx)

(2πσ2)
N
2

(8.2)

and the assumed prior distribution p̆x(x). Let the entries of H be indepen-
dent zero-mean with vanishing odd order moments and variances wck/N for
row c and column k. Moreover, let wck be uniformly bounded from above.
Applying Bayes’ law, we find

p̆x|y,H(x, y, H) =
e− 1

2σ2 (y−Hx)T(y−Hx)+log p̆x(x)∫
e− 1

2σ2 (y−Hx)T(y−Hx) dP̆x(x)
. (8.3)

Since (3.3) holds for any temperature T , we set without loss of generality
T = 1 in (3.3) and find the appropriate energy function to be

||x|| =
1

2σ2
(y − Hx)T (y − Hx) − log p̆x(x) . (8.4)

This choice of the energy function ensures that the thermodynamic equi-
librium models the detector defined by the assumed conditional and prior
distributions.

Let K denote the number of users, that is the dimensionality of the input
vector x. Applying successively (4.3) with (8.1), (5.5), replica continuity

bIn this example, we do not use upper case and lower case notation to distinguish random
variables and their realizations to not mix up vectors and matrices.
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(5.9), and (8.4) we find for the free energy per user

F(x)
K

= − 1
K

E
H

∫ ∫
RN

e
− 1

2σ2
0
(y−Hx)T(y−Hx)

(2πσ2
0)

N
2

log
∫

RK

e−||x||dxdydPx(x)

= − 1
K

lim
n→0

∂

∂n
log E

H

∫ ∫
RN

( ∫
RK

e−||x||dx

)n

× e
− 1

2σ2
0
(y−Hx)T(y−Hx)

(2πσ2
0)

N
2

dydPx(x) (8.5)

= − 1
K

lim
n→0

∂

∂n
log

∫
RN

E
H

n∏
a=0

∫
e
− 1

2σ2
a

(y−Hxa)T(y−Hxa)
dPa(xa) dy

(2πσ2
0)

N
2︸ ︷︷ ︸

�
=Ξn

with σa = σ, ∀a ≥ 1, P0(x) = Px(x), and Pa(x) = P̆x(x) , ∀a ≥ 1.
The following calculations are a generalization of the derivations by

Tanaka [7], Caire et al. [4], and Guo and Verdú [9]. They can also be found
in a recent work of Guo [15]. The integral in (8.5) is given by

Ξn =
N∏

c=1

∫
R

E
H

n∏
a=0

∫
exp

− 1
2σ2

a

(
yc −

K∑
k=1

hckxak

)2
 dPa(xa) dyc

√
2πσ0

, (8.6)

with yc, xak, and hck denoting the cth component of y, the kth component
of xa, and the (c, k)th entry of H, respectively. The integrand depends on
xa only through

vac
�
=

1√
β

K∑
k=1

hckxak, a = 0, . . . , n (8.7)

with the load β being defined as β
�
= K/N . Following [7], the quantities vac

can be regarded, in the limit K → ∞ as jointly Gaussian random variables
with zero mean and covariances

Qab[c] = E
H

vacvbc =
1
K

xa

(c)• xb (8.8)

where we defined the following inner products

xa

(c)• xb
�
=

K∑
k=1

xakxbkwck. (8.9)
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In order to perform the integration in (8.6), the K(n + 1)-dimensional
space spanned by the replicas and the vector x0 is split into subshells

S{Q[·]} �
=
{

x0, . . . , xn

∣∣∣∣xa
(c)• xb = KQab[c]

}
(8.10)

where the inner product of two different vectors xa and xb is constant.c

The splitting of the K(n + 1)-dimensional space is depending on the chip
time c. With this splitting of the space, we findd

Ξn =
∫

RN(n+1)(n+2)/2
eKI{Q[·]}

N∏
c=1

eG{Q[c]} ∏
a≤b

dQab[c], (8.11)

where

eKI{Q[·]} =
∫ ∏

a≤b

N∏
c=1

δ

xa

(c)• xb

N
− βQab[c]

 n∏
a=0

dPa(xa) (8.12)

denotes the probability weight of the subshell and

eG{Q[c]} =
1√

2πσ0

∫
R

E
H

n∏
a=0

exp

[
− β

2σ2
a

(
yc√
β
− vac{Q[c]}

)2
]

dyc. (8.13)

This procedure is a change of integration variables in multiple dimensions
where the integration of an exponential function over the replicas has been
replaced by integration over the variables {Q[·]}. In the following the two
exponential terms in (8.11) are evaluated separately.

First, we turn to the evaluation of the measure eKI{Q[·]}. Since for some
t ∈ R, we have the Fourier expansions of the Dirac measure

δ

xa

(c)• xb

N
− βQab[c]


=

1
2πj

∫
J

exp

Q̃ab[c]

xa

(c)• xb

N
− βQab[c]

 dQ̃ab[c] (8.14)

cThe notation f{Q[·]} expresses the dependency of the function f(·) on all Qab[c],0 ≤
a ≤ b ≤ n, 1 ≤ c ≤ N .
dThe notation

∏
a≤b is used as shortcut for

∏n
a=0

∏n
b=a.
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with J = (t − j∞; t + j∞), the measure eKI{Q[·]} can be expressed as

eKI{Q[·]} =
∫  N∏

c=1

∏
a≤b

∫
J

e
Q̃ab[c]

(
xa

(c)• xb
N −βQab[c]

)
dQ̃ab[c]

2πj

 n∏
a=0

dPa(xa)

(8.15)

=
∫
JN(n+2)(n+1)/2

e
−β

N∑
c=1

∑
a≤b

Q̃ab[c]Qab[c]

×
(

K∏
k=1

Mk

{
Q̃[·]

}) N∏
c=1

∏
a≤b

dQ̃ab[c]
2πj

(8.16)

with

Mk

{
Q̃[·]

}
=
∫

exp

 1
N

∑
a≤b

N∑
c=1

Q̃ab[c]xakxbkwck

 n∏
a=0

dPa(xak). (8.17)

In the limit of K → ∞ one of the exponential terms in (8.11) will dominate
over all others. Thus, only the maximum value of the correlation Qab[c] is
relevant for calculation of the integral, as shown in Section 6.

At this point, we assume that the replicas have a certain symmetry,
as outlined in Section 7. This means, that in order to find the maximum
of the objective function, we consider only a subset of the potential possi-
bilities that the variables Qab[·] could take. Here, we restrict them to the
following four different possibilities Q00[c] = p0c, Q0a[c] = mc, ∀a �= 0,
Qaa[c] = pc, ∀a �= 0, Qab[c] = qc, ∀0 �= a �= b �= 0. One case distinc-
tion has been made, as zero and non-zero replica indices correspond to
the true and the assumed distributions, respectively, and thus will differ,
in general. Another case distinction has been made to distinguish correla-
tions Qab[·] which correspond to correlations between different and iden-
tical replica indices. This gives four cases to consider in total. We ap-
ply the same idea to the correlation variables in the Fourier domain and
set Q̃00[c] = G0c/2, Q̃aa[c] = Gc/2, ∀a �= 0, Q̃0a[c] = Ec, ∀a �= 0, and
Q̃ab[c] = Fc, ∀0 �= a �= b �= 0.

At this point the crucial benefit of the replica method becomes obvious.
Assuming replica continuity, we have managed to reduce the evaluation of
a continuous function to sampling it at integer points. Assuming replica
symmetry we have reduced the task of evaluating infinitely many integer
points to calculating eight different correlations (four in the original and
four in the Fourier domain).
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The assumption of replica symmetry leads to

∑
a≤b

Q̃ab[c]Qab[c] = nEcmc +
n(n − 1)

2
Fcqc +

G0cp0c

2
+

n

2
Gcpc (8.18)

and

Mk{E, F, G, G0}

=
∫

e
1
N

N∑
c=1

wck

(
G0c
2 x2

0k+
n∑

a=1
Ecx0kxak+ Gc

2 x2
ak+

n∑
b=a+1

Fcxakxbk

)
n∏

a=0

dPa(xak)

=
∫

e
G̃0k

2 x2
0k+

n∑
a=1

Ẽkx0kxak+
G̃k
2 x2

ak+
n∑

b=a+1
F̃kxakxbk

n∏
a=0

dPa(xak) (8.19)

where

Ẽk
�
=

1
N

N∑
c=1

Ecwck (8.20)

F̃k
�
=

1
N

N∑
c=1

Fcwck (8.21)

G̃k
�
=

1
N

N∑
c=1

Gcwck (8.22)

G̃0k
�
=

1
N

N∑
c=1

G0cwck. (8.23)

Note that the prior distribution enters the free energy only via the (8.19).
We will focus on this later on after having finished with the other terms.

For the evaluation of eG{Q[c]} in (8.11), we can use the replica symmetry
to construct the correlated Gaussian random variables vac out of indepen-
dent zero-mean, unit-variance Gaussian random variables uc, tc, zac by

v0c = uc

√
p0c − m2

c

qc
− tc

mc√
qc

(8.24)

vac = zac

√
pc − qc − tc

√
qc, a > 0. (8.25)
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With that substitution, we get

eG(mc,qc,pc,p0c) (8.26)

=
1√

2πσ0

∫
R2

∫
R

exp

− β

2σ2
0

(
uc

√
p0c − m2

c

qc
− tcmc√

qc
− yc√

β

)2
Duc

×
[ ∫

R

exp

[
− β

2σ2

(
zc

√
pc − qc − tc

√
qc − yc√

β

)2
]

Dzc

]n

Dtc dyc

=

√√√√ (1 + β
σ2 (pc − qc))1−n

1 + β
σ2 (pc − qc) + n β

σ2

(
σ2
0

β + p0c − 2mc + qc

) (8.27)

with the Gaussian measure Dz = exp(−z2/2) dz/
√

2π. Since the integral in
(8.11) is dominated by the maximum argument of the exponential function,
the derivatives of

1
N

N∑
c=1

G{Q[c]} − β
∑
a≤b

Q̃ab[c]Qab[c]

 (8.28)

with respect to mc, qc, pc and p0c must vanish as N → ∞. Taking derivatives
after plugging (8.18) and (8.27) into (8.28), solving for Ec, Fc, Gc, and G0c

and letting n → 0 yields for all c

Ec =
1

σ2 + β(pc − qc)
(8.29)

Fc =
σ2

0 + β (p0c − 2mc + qc)
[σ2 + β(pc − qc)]2

(8.30)

Gc = Fc − Ec (8.31)

G0c = 0. (8.32)

In the following, the calculations are shown explicitly for Gaussian and
binary priors. Additionally, a general formula for arbitrary priors is given.

8.1. Gaussian prior distribution

Assume a Gaussian prior distribution

pa(xak) =
1√
2π

e−x2
ak/2 ∀a. (8.33)
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Thus, the integration in (8.19) can be performed explicitly and we find with
[7, (87)]

Mk {E, F, G, G0} =

√√√√√√
(
1 + F̃k − G̃k

)1−n

(
1 − G̃0k

)(
1 + F̃k − G̃k − nF̃k

)
− nẼ2

k

. (8.34)

In the large system limit, the integral in (8.16) is also dominated by
that value of the integration variable which maximizes the argument of
the exponential function under some weak conditions on the variances wck.
Thus, partial derivatives of

log
K∏

k=1

Mk{E, F, G, G0} − β

N∑
c=1

nEcmc+
n(n−1)

2
Fcqc+

G0cp0c

2
+

n

2
Gcpc

(8.35)

with respect to Ec, Fc, Gc, G0c must vanish for all c as N → ∞. An explicit
calculation of these derivatives yields

mc =
1
K

K∑
k=1

wck
Ẽk

1 + Ẽk

(8.36)

qc =
1
K

K∑
k=1

wck
Ẽ2

k + F̃k(
1 + Ẽk

)2 (8.37)

pc =
1
K

K∑
k=1

wck
Ẽ2

k + Ẽk + F̃k + 1(
1 + Ẽk

)2 (8.38)

p0c =
1
K

K∑
k=1

wck (8.39)

in the limit n → 0 with (8.31) and (8.32). Surprisingly, if we let the true
prior to be binary and only the replicas to be Gaussian we also find (8.36)
to (8.39). This setting corresponds to linear MMSE detection [17].
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Returning to our initial goal, the evaluation of the free energy, and
collecting our previous results, we find
F(x)
K

= − 1
K

lim
n→0

∂

∂n
log Ξn (8.40)

=
1
K

lim
n→0

∂

∂n

N∑
c=1

[
−G(mc, qc, pc, p0c) +

βn(n − 1)
2

Fcqc

+ βnEcmc +
βn

2
Gcpc

]
−

K∑
k=1

log Mk {E, F, G, 0} (8.41)

=
1

2K
lim
n→0

[
N∑

c=1

log
(

1 +
β

σ2
(pc − qc)

)
+ 2βEcmc + βGcpc

+β(2n − 1)Fcqc +
σ2

0 + β(p0c − 2mc + qc)
σ2 + β(pc − qc) + nσ2

0 + nβ(p0c − 2mc + qc)

]

+
1

2K
lim
n→0

K∑
k=1

log
(
1 + Ẽk

)
− Ẽ2

k + F̃k

1 + Ẽk − nẼ2
k − nF̃k

(8.42)

=
1

2K

[
N∑

c=1

log
(

1 +
β

σ2
(pc − qc)

)
+ 2βEcmc − βFcqc

+βGcpc +
Ec

Fc

]
+

1
2K

K∑
k=1

log
(
1 + Ẽk

)
− Ẽ2

k + F̃k

1 + Ẽk

. (8.43)

This is the final result for the free energy of the mismatched detector as-
suming noise variance σ2 instead of the true noise variance σ2

0 . The six
macroscopic parameters Ec, Fc, Gc, mc, qc, pc are implicitly given by the si-
multaneous solution of the system of equations (8.29) to (8.31) and (8.36) to
(8.38) with the definitions (8.20) to (8.22) for all chip times c. This system
of equations can only be solved numerically.

Specializing our result to the matched detector assuming the true noise
variance by letting σ → σ0, we have Fc → Ec, Gc → G0c, qc → mc,
pc → p0c. This makes the free energy simplify to

F(x)
K

=
1

2K

[
N∑

c=1

σ2
0Ec − log

(
σ2

0Ec

)]
+

1
2K

K∑
k=1

log
(
1 + Ẽk

)
(8.44)

with

Ec =
1

σ2
0 +

β

K

K∑
k=1

wck

1 + Ẽk

. (8.45)
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This result is more compact and it requires only to solve (8.45) numerically
which is conveniently done by fixed-point iteration.

It can be shown that the parameter Ẽk is actually the signal-to-
interference and noise ratio of user k. It has been derived independently by
Hanly and Tse [18] in context of CDMA with macro-diversity using a result
from random matrix theory by Girko [19]. Note that (8.45) and (8.20) are
actually formally equivalent to the result Girko found for random matrices.

The similarity of free energy with the entropy of the channel output
mentioned at the end of Section 4 is expressed by the simple relationship

I(x, y)
K

=
F(x)
K

− 1
2β

(8.46)

between the (normalized) free energy and the (normalized) mutual infor-
mation between channel input signal x and channel output signal y given
the channel matrix H . Assuming that the channel is perfectly known to the
receiver, but totally unknown to the transmitter, (8.46) gives the channel
capacity per user.

8.2. Binary prior distribution

Now, we assume a non-uniform binary prior distribution

pa(xak) =
1 + tk

2
δ(xak − 1) +

1 − tk
2

δ(xak + 1). (8.47)

Plugging the prior distribution into (8.19), we find

Mk{E, F, G, G0}

=

∫
Rn+1

e

G̃0k+nG̃k
2 +

n∑
a=1

Ẽkx0kxak+
n∑

b=a+1
F̃kxakxbk

n∏
a=0

dPa(xak) (8.48)

= e
1
2 (G̃0k+nG̃k)

∑
{xak,a=1,...,n}

{
1 + tk

2
exp

[
n∑

a=1

Ẽkxak +

n∑
b=a+1

F̃kxakxbk

]

+
1 − tk

2
exp

[
n∑

a=1

−Ẽkxak +

n∑
b=a+1

F̃kxakxbk

]}
n∏

a=1

Pr(xak) (8.49)

= e
1
2 (G̃0k+nG̃k−nF̃k)

∑
{xak,a=1,...,n}

{
1 + tk

2
exp

[
F̃k

2

(
n∑

a=1

xak

)2

+ Ẽk

n∑
a=1

xak

]

+
1 − tk

2
exp

[
F̃k

2

(
n∑

a=1

xak

)2

− Ẽk

n∑
a=1

xak

]}
n∏

a=1

Pr(xak) (8.50)



May 5, 2009 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) 05-Muller

The Replica Method in Multiuser Communications 157

where we can use the following property of the Gaussian measure

exp
(

F̃k
S2

2

)
=
∫

exp
(
±
√

F̃kzS

)
Dz ∀S ∈ R (8.51)

which is also called the Hubbard-Stratonovich transform to linearize the
exponents

Mk {E, F, G, G0}

= e
1
2 (G̃0k+nG̃k−nF̃k)

∑
{xak,a=1,...,n}

∫
1 + tk

2
exp

[(
z

√
F̃k + Ẽk

) n∑
a=1

xak

]

+
1 − tk

2
exp

[
−
(

z

√
F̃k + Ẽk

) n∑
a=1

xak

]
Dz

n∏
a=1

Pr(xak). (8.52)

Since

fn
�=

∑
{xka,a=1,...,n}

exp

[(
z

√
F̃k + Ẽk

) n∑
a=1

xka

]
n∏

a=1

Pr(xka) (8.53)

=
∑
xkn

Pr(xkn)fn−1 exp
[(

z

√
F̃k + Ẽk

)
xkn

]
(8.54)

= fn−1

cosh
(
λk/2 + z

√
F̃k + Ẽk

)
cosh (λk/2)

(8.55)

=
coshn

(
λk/2 + z

√
F̃k + Ẽk

)
coshn (λk/2)

(8.56)

with tk
�
= tanh(λk/2), we find

Mk {E, F, G, G0}

=

∫
1+tk

2 coshn
(
z
√

F̃k + Ẽk + λk

2

)
+ 1−tk

2 coshn
(
z
√

F̃k + Ẽk − λk

2

)
Dz

coshn
(

λk

2

)
exp

(
nF̃k−G̃0k−nG̃k

2

) .

(8.57)

In the large system limit, the integral in (8.16) is dominated by that
value of the integration variable which maximizes the argument of the ex-
ponential function under some weak conditions on the variances wck. Thus,
partial derivations of (8.35) with respect to Ec, Fc, Gc, G0c must vanish for
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all c as N → ∞. An explicit calculation of these derivatives gives

mc =
1
K

K∑
k=1

wck

∫
1 + tk

2
tanh

(
z

√
F̃k + Ẽk +

λk

2

)
+

1 − tk
2

tanh
(

z

√
F̃k + Ẽk − λk

2

)
Dz (8.58)

qc =
1
K

K∑
k=1

wck

∫
1 + tk

2
tanh2

(
z

√
F̃k + Ẽk +

λk

2

)
+

1 − tk
2

tanh2

(
z

√
F̃k + Ẽk − λk

2

)
Dz (8.59)

pc = p0c =
1
K

K∑
k=1

wck (8.60)

in the limit n → 0. In order to obtain (8.59), note from (8.50) that the first
order derivative of Mk exp(nF̃k/2) with respect to Fc is identical to half of
the second order derivative of Mk exp(nF̃k/2) with respect to Ec.

Returning to our initial goal, the evaluation of the free energy, and
collecting our previous results, we find

F(x)
K

= − 1
K

lim
n→0

∂

∂n
log Ξn

=
1
K

lim
n→0

∂

∂n

N∑
c=1

[
−G(mc, qc, pc, p0c) + βnEcmc

+
βn(n − 1)

2
Fcqc +

βn

2
Gcpc

]
−

K∑
k=1

log Mk {E, F, G, 0} (8.61)

=
1

2K

N∑
c=1

[
log

(
1 +

β

σ2
(pc−qc)

)

+ βEc(2mc+pc) + βFc(pc−qc) +
Ec

Fc

]

− 1
K

K∑
k=1

∫
1 + tk

2
log cosh

(
z

√
F̃k + Ẽk +

λk

2

)
− Ẽk

2

+
1 − tk

2
log cosh

(
z

√
F̃k + Ẽk − λk

2

)
Dz +

1
2

log
(
1 − t2k

)
.

(8.62)
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This is the final result for the free energy of the mismatched detector as-
suming noise variance σ2 instead of the true noise variance σ2

0 . The five
macroscopic parameters Ec, Fc, mc, qc, pc are implicitly given by the simul-
taneous solution of the system of equations (8.29), (8.30) and (8.58) to
(8.60) with the definitions (8.20) to (8.22) for all chip times c. This system
of equations can only be solved numerically. Moreover, it can have multi-
ple solutions. In case of multiple solutions, the correct solution is that one
which minimizes the free energy, since in the thermodynamic equilibrium
the free energy is always minimized, cf. Section 3.

Specializing our result to the matched detector assuming the true noise
variance by letting σ → σ0, we have Fc → Ec, Gc → G0c, qc → mc which
makes the free energy simplify to

F(x)
K

=
1

2K

N∑
c=1

[
σ2

0Ec − log
(
σ2

0Ec

)]− 1
K

K∑
k=1

1
2

log
(
1 − t2k

)− Ẽk

+
∫

1 + tk
2

log cosh
(

z

√
Ẽk + Ẽk +

λk

2

)
(8.63)

+
1 − tk

2
log cosh

(
z

√
Ẽk + Ẽk − λk

2

)
Dz

where the macroscopic parameters Ec are given by

1
Ec

= σ2
0 +

β

K

K∑
k=1

wck

(
1 − t2k

) ∫ 1 − tanh
(
z
√

Ẽk + Ẽk

)
1 − t2k tanh2

(
z
√

Ẽk + Ẽk

) Dz. (8.64)

Similar to the case of Gaussian priors, Ẽk can be shown to be a kind
of signal-to-interference and noise ratio, in the sense that the bit error
probability of user k is given by

Pr(x̂k �= xk) =
∫ ∞
√

Ẽk

Dz. (8.65)

In fact, it can even be shown that in the large system limit, an equivalent
additive white Gaussian noise channel can be defined to model the mul-
tiuser interference [10, 9]. Constraining the input alphabet of the channel
to follow the non-uniform binary distribution (8.47) and assuming channel
state information being available only at the transmitter, channel capacity
is given by (8.46) with the free energy given in (8.63).
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Large system results for binary prior (even for uniform binary prior)
have not yet been able to be derived by means of rigorous mathematics
despite intense effort to do so. Only for the case of vanishing noise variance
a fully mathematically rigorous result was found by Tse and Verdú [20]
which does not rely on the replica method.

8.3. Arbitrary prior distribution

Consider now an arbitrary prior distribution. As shown by Guo and Verdú
[9], this still allows to reduce the multi-dimensional integration over all repli-
cated random variables to a scalar integration over the prior distribution.
Consider (8.19) giving the only term that involves the prior distribution
and apply the Hubbard-Stratonovich transform (8.51)

Mk{E, F, G, G0}

=
∫

e
G̃0k

2 x2
0k+

n∑
a=1

Ẽkx0kxak+
G̃k
2 x2

ak+
n∑

b=a+1
F̃kxakxbk

n∏
a=0

dPa(xak) (8.66)

=
∫

e
G̃0k

2 x2
0k+

F̃k
2

(
n∑

a=1
xak

)2

+
n∑

a=1
Ẽkx0kxak+

G̃k−F̃k
2 x2

ak

n∏
a=0

dPa(xak) (8.67)

=
∫∫

e
G̃0k

2 x2
0k+

n∑
a=1

Ẽkx0kxak+
√

F̃kzxak+
G̃k−F̃k

2 x2
ak

Dz
n∏

a=0

dPa(xak) (8.68)

=
∫

e
G̃0k

2 x2
k

∫ (∫
eẼkxkx̆k+

√
F̃kzx̆k+

G̃k−F̃k
2 x̆2

kdP̆x̆k
(x̆k)

)n

DzdPxk
(xk) .

(8.69)

In the large system limit, the integral in (8.16) is dominated by that
value of the integration variable which maximizes the argument of the ex-
ponential function under some weak conditions on the variances wck. Thus,
partial derivations of (8.35) with respect to Ec, Fc, Gc, G0c must vanish for
all c as N → ∞. While taking derivatives with respect to Ec, Gc and G0c

straightforwardly lead to suitable results, the derivative with respect to Fc

requires a little trick: Note for the integrand Ik in (8.67), we have

∂

∂Fc
Ik =

1
2x2

0k

∂2

∂E2
c

Ik − ∂

∂Gc
Ik. (8.70)
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With the help of (8.70), an explicit calculation of the four derivatives
gives the following expressions for the macroscopic parameters mc, qc, pc

and p0c

mc =
1
K

K∑
k=1

wck

∫∫
xk

∫
x̆ke

Ẽk

(
xkx̆k− x̆2

k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)∫

e
Ẽk

(
xkx̆k− x̆2

k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)

DzdPxk
(xk)

(8.71)

qc =
1
K

K∑
k=1

wck

∫∫ ∫ x̆ke
Ẽk

(
xkx̆k− x̆2

k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)∫

e
Ẽk

(
xkx̆k− x̆2

k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)


2

DzdPxk
(xk)

(8.72)

pc =
1
K

K∑
k=1

wck

∫∫ ∫
x̆2

ke
Ẽk

(
xkx̆k− x̆2

k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)∫

e
Ẽk

(
xkx̆k−

x̆2
k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)

DzdPxk
(xk)

(8.73)

p0c =
1
K

K∑
k=1

wck

∫
x2

kdPxk
(xk) (8.74)

with (8.31) and (8.32) in the limit n → 0.
Returning to our initial goal, the evaluation of the free energy, and

collecting our previous results, we find

F(x)
K

=
1

2K

N∑
c=1

[
log

(
1+

β

σ2
(pc−qc)

)
+βEc(2mc+pc) + βFc(pc−qc)+

Ec

Fc

]

− 1
K

K∑
k=1

∫∫
log

∫
e
Ẽk

(
xkx̆k− x̆2

k
2

)
+
√

F̃kzx̆k

dP̆x̆k
(x̆k)DzdPxk

(xk) .

(8.75)

This is the final result for the free energy of the mismatched detector as-
suming noise variance σ2 instead of the true noise variance σ2

0 . The five
macroscopic parameters Ec, Fc, mc, qc, pc are implicitly given by the simul-
taneous solution of the system of equations (8.29), (8.30) and (8.58) to
(8.60) with the definitions (8.20) to (8.22) for all chip times c. This system
of equations can only be solved numerically. Moreover, it can have multi-
ple solutions. In case of multiple solutions, the correct solution is that one
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which minimizes the free energy, since in the thermodynamic equilibrium
the free energy is always minimized, cf. Section 3.

9. Phase Transitions

In thermodynamics, the occurrence of phase transitions, i.e. melting ice
becomes water, is a well-known phenomenon. In digital communications,
however, such phenomena are less known, though they do occur. The sim-
ilarity between thermodynamics and multiuser detection pointed out in
Section 4, should be sufficient to convince the reader that phase transitions
in digital communications do occur. Phase transitions in turbo decoding
and detection of CDMA were found in [21] and [7], respectively.

The phase transitions in digital communications are similar to the hys-
teresis in ferro-magnetic materials. They occur if the equations determining
the macroscopic parameters, e.g. Ec determined by (8.64), have multiple
solutions. Then, it is the free energy to decide which of the solution corre-
sponds to the thermodynamic equilibrium. If a system parameter, e.g. the
load or the noise variance, changes, the free energy may shift its favor from
one solution to another one. Since each solution corresponds to a different
macroscopic property of the system, changing the valid solution means that
a phase transition takes place.

In digital communications, a popular macroscopic property is the bit
error probability. It is related to the macroscopic property Ẽk in (8.64) by
(8.65) for the case considered in Section 8. Numerical results are depicted
in Fig. 2. The thick curve shows the bit error probability of the individually
optimum detector as a function of the load. The thin curves show alternative
solutions for the bit error probability corresponding to alternative solutions
to the equations for the macroscopic variable Ẽk. Only for a certain interval
of the load, approximately 1.73 ≤ β ≤ 3.56 in Fig. 2, multiple solutions
coexist. As expected, the bit error probability increases with the load. At
a load of approximately β = 1.986 a phase transition occurs and lets the
bit error probability jump. Unlike to ferromagnetic materials, there is no
hysteresis effect for the bit error probability of the individually optimum
detector, but only a phase transition. This is, as the external magnetic
field corresponds to the channel output observed by the receiver. Unlike
an external magnetic field, the channel output is a statistical variable and
cannot be design to undergo certain trajectories.

In order to observe a hysteresis behavior, we can expand our scope to
neural networks. Consider a Hopfield neural network [22] implementation of
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Fig. 2. Bit error probability for the individually optimum detector with uniform binary
prior distribution versus system load for 10 log10(Es/N0) = 6 dB.

the individually optimum multiuser detector which is an algorithm based
on non-linear gradient search maximizing the energy function associated
with the detector. Its application to the problem of multiuser detection is
discussed in [23]. With appropriate definition of the energy function, such
a detector will achieve the performance of the upper curve in Fig. 2 in the
large system limit. Thus, in the interval 1.73 ≤ β ≤ 1.986 where the free
energy favors the curve with lower bit error probability, the Hopfield neural
network is suboptimum (labeled with a)e. The curve labeled with b can
also be achieved by the Hopfield neural network, but only with the help of
a genie. In order to achieve a point in that area, cancel with the help of a
genie as many interferers as needed to push the load below the area where
multiple solutions occur, i.e. β < 1.73. Then, initialize the Hopfield neural
network with the received vector where the interference has been canceled
and let it converge to the thermodynamic equilibrium. Then, slowly add
one by one the interferers you had canceled with the help of the genie while
the Hopfield neural network remains in the thermodynamic equilibrium
by performing iterations. If all the interference suppressed by the genie
has been added again, the targeted point on the lower curve in area b is

eNote that in a system with a finite number of users, the Hopfield neural network is
suboptimal at any load.
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reached. The Hopfield neural network follows the lower curve, if interference
is added, and it follows the upper line, if it is removed.

It should be remarked that a hysteresis behavior of the Hopfield neural
network detector does not occur for all definitions of the energy function and
all prior distributions of the data to be detected, but additional conditions
on the microscopic configuration of the system need to be fulfilled.
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