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Preface

Stability of a structure exposed to acting forces is a key concept in engineering design
and has been extensively studied for a long time. The studies have focussed on the
single components, from which the structure is composed, and given engineering
formulae and charts for the stability limits for, e.g., beam and plate objects.

The methods for most stability investigations have been semi-analytical
approaches, where, e.g., series solutions are used to describe a potential equilib-
rium state characterizing an instability. Based on an assumed deflection, picturesque
terms like ‘lateral-torsional buckling’ of beams are introduced and handled by a
safety factor philosophy. In structural engineering, design codes more or less explic-
itly define which situations need be considered, but with limited applicability for
more complex structures.

The traditional views on component stability do not always fitwell into themodern
design process, where large-scale numerical simulation tools, such as finite element
software, are used in the design analyses. Neither the deflected equilibrium view nor
the classification of instabilities is easily introduced in this context. The numerical
simulations, however, give new possibilities to find, evaluate and interpret instability
situations even for cases where they are not expected.

The present treatise has the aim to discuss structural stability in terms suited
for computational modelling and analysis. The text is based on an extensive set
of previous research publications on topics within the general scope of the book.
The focus is set on the ‘ab initio’ treatment of the stability of static equilibrium
for a numerical structural model. With a primary focus on conservative situations,
a discussion is given on different classes of exterior forcing and their effects on the
stability conclusions.

Throughout the text, an energy viewpoint is applied, where the kinetic and strain
energies within a loaded structure are related to the potential of acting external forces,
with some comments also on non-conservative situations. In particular, incremental
and virtual changes to the energy and potential are formulated. The key motivation
for this approach is that a consistent view can be established and applied to several
situations. Without introduction of completely new terms, the treatment sets the
equilibrium and stability issues in a new context, suited for systematic computations.
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vi Preface

After a review in Chap. 1 of common situations of stability investigations in engi-
neering design, a brief account of relevant solid mechanics is given in Chap. 2, where
energy, potential and mechanical work are the main aspects. The approximations and
interpolations in finite element-based structural modelling are discussed in Chap. 3.
Based on these tools, Chap. 4 gives a rather extensive discussion on the numer-
ical solution methods needed to handle the equilibrium systems formulated. Finally,
Chap. 5 discusses a number of more complex stability investigations, where previous
research has shown that a deep problem understanding is needed for the formula-
tion and correct interpretation of computational results; these show the potential of
computational stability modelling for complex structures, but are also a memento
against unreflected trust in computational results.

The reader of this book is expected to have some familiarity with engineering
problems and at least the basic concepts of numerical techniques. The presentation
also assumes that the reader has some experience from at least linear finite element
simulations and access to some general commercial software for structural analysis.

Although not primarily conceived as a textbook for course usage, a small set of
exercises, or rather projects, are related to each of the chapters in the book. These
can serve as check-out questions to the reader, or as a basis for academic exercises
in a text book context.

As noted above, this book is based on a long period of research on the subtopics
considered. Many parts of the underlying work have been performed by a long
row of Ph.D. students at the Royal Institute of Technology, KTH. While all of our
students have made important contributions to engineering science, the present book
in particular relies on the work by Costin Pacoste, Torbjörn Lidström, Tomomi Yagi,
Karin Forsell, Aleksandar Filipovski, Jean-MarcBattini, Gunnar Tibert, Nasseradeen
Ashwear, Amit Patil, and Yang Zhou, and we are most grateful for their efforts. The
first author also expresses the gratitude to the memory of Per-Olof Thomasson,
supervisor and mentor, who initiated the interest in structural stability.

Stockholm, Sweden
March 2023

Anders Eriksson
Arne Nordmark
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Chapter 1
Engineering Stability Evaluations

This Chapter discusses some common engineering approaches to stability
problems, of which at least a few should be well-known to a reader. The
objectives are to set the basis for the following treatment, and to add aspects
to the common methods, where more general approaches can provide fur-
ther information. The demonstration examples primarily give expressions for
limit and buckling states, often interpreted as maximum forcing levels for the
considered structure, even if secondary equilibrium states may exist. As the
present book will promote a view on stability, which differs from many com-
mon approaches, the engineering examples will be accompanied by analyses
where dynamic aspects of stability are in focus. An energy view on structural
equilibrium will thereby allow the unification of common static and dynamic
stability criteria. Thepresent treatisewill also emphasize that stability is param-
eter dependent property of one particular state, and not just a limit for a certain
qualitative response of the structure. This view is introduced in loose terms
already in this Chapter, and will be a theme for coming Chapters, where more
comprehensive settings are introduced.

Brief Objective of this Chapter

This Chapter demonstrates common engineering views on structural stability, intro-
duces and discusses important concepts, and prepares for the coming more general
and detailed treatment of parametric structural stability.
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2 1 Engineering Stability Evaluations

1.1 Stability and Instability

Stability is a fundamental requirement on any kind of structure subjected to exte-
rior forcing.1 Even if this statement seems obvious to anyone, the concept is often
mis-interpreted as the necessity for integrity of the structure, i.e., the avoidance of
any kind of failure. In more precise terms, stability is a qualified concept, relat-
ing to specific kinds of failures, and demanding the structure to keep qualitatively its
intendedmethod of action. Stability implies that small disturbances to an equilibrium
configuration will not lead to other equilibrium states or to vibrations of increasing
amplitude. For the typical engineering context, with some forcing level parame-
ter, stability is typically interpreted as a demand for a unique and monotonously
increasing response to increased forcing, limited deformations, and no increasing or
persisting unintended vibrations. Instability is thereby, as a general term, the oppo-
site to this situation, but is commonly used rather for the critical situations, where
stability is lost, and a transition between stable and unstable solutions appears.

In engineering, lack of stability has often been considered as a problem and a fail-
ure mechanism, but the phenomena are now increasingly studied from other view-
points. Better analysis methods have made it possible to design structures which will
use post-critical modes of response for improved structural efficiency. According to
Reis (2015), ‘bucklifobia’, the fear of buckling, has in many contexts been modified
into new possibilities. Champneys et al. (2019) formulate this as “…buckling insta-
bilities, rather than to be avoided at all costs, can, in principle, be beneficial happy
catastrophes”. As one example, airplanewings can be allowed to buckle locally under
at least extreme operational conditions. Non-unique solutions can also lead to new
engineering solutions, for instance in so-called morphing structures, for which the
existence of multi-stable equilibrium solutions is the main advantage, and buckling
is rather an asset than a problem. As other examples, architected cellular materials
can be used for creating auxetic materials, for controlling the propagation of elas-
tic waves, and for creating efficient energy absorbers, cf. Bertoldi (2017). All the
mentioned applications are related to sophisticated analyses of large configuration-
changing displacements, instabilities and post-critical responses of structures.

The notion of stability investigations is frequently used in engineering analyses,
for a broad spectrum of situations, but it has been noted that “the precise notion of
stability, always tacitly assumed essentially static in nature, is in fact, left undefined”,
cf. Como and Grimaldi (1995, p. 5). Studies of structural stability commonly take
their starting points in treatments of its opposite, i.e., the critical situation, when a
structure loses the intended function. This Chapter discusses to some depth a set
of examples and their possible instabilities, where typically the structure responds
to forcing in an unintended direction, or loses its monotonic response to increased
forcing.

1 This treatise will use this term as a generic term for any kind of exterior action on the structure. It
is thereby used as a rather loose term, with a set of force combinations as, perhaps, the most typical
situation.
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The following Chapters of this treatise will take as their fundamental basis that
stability is a dynamic concept. For a structure under forcing, stability thereby is
a capacity to remain close to an equilibrium situation after a minor disturbance.
This view is related to the stability criterion criterion by Liapunov (1966), where a
dynamic process starting near an equilibrium state stays close to it. In practice, this
means that any damping existing in the system will eventually bring the structure
back to the static equilibrium. The criteria and implications will be further discussed
in Sects. 2.9 and 3.7.

The concept of stability thereby refers to one particular equilibrium state, with
geometry, forces and other parameters fixed, and is a property of this frozen parameter
state. Quantities defining stability can thereby be fully evaluated from this. In this
presentation, energy-based criteria will be the main tools for such evaluations.

Even if stability is a property of one equilibrium state, the typical engineering
viewpoint focuses interest on how and when stability is lost (or in some cases estab-
lished) when tracing a parametric forcing regime. Common methods thereby study
critical states, by seeking the forcing magnitude at which the corresponding equi-
librium state changes between stable and unstable. The procedures, more or less
explicitly, rely on solutions to the equilibrium states for a parametric forcing, and
an evaluation of the stability for these states. Commonly, in both analytical and
software-based methods, the stability judgement is based on a ‘static stability’ cri-
terion, demanding for stability a minimum potential energy at the equilibrium state,
even if classical works like the treatise by Timoshenko and Gere (1961) do not for-
mulate this explicitly. In the dynamic setting employed in this treatise, this view
implicitly uses a simplified formulation of kinetic energy and inertia. The axiomatic
definition of stability from the potential energy is discussed by Godoy (2000), who
notes that this has been in many cases an issue of “faith”, but that the definition has
been “of great value to improve our understanding of the buckling and postbuckling
of structures”. As further discussed in coming Chapters, the static and dynamic views
on stability are not as different as they might initially seem.

As this Chapter describes a set of examples, common in engineering practice,
the descriptions uses the notation common in the field, whereas coming Chapters
adopt a more formal notation for the quantities involved in the theories, e.g., full 3D
formulations for geometry and displacement and tensor-based interior quantities.

1.2 Spring-Supported Rigid Link

A simple model problem serves as a first introduction to stability investigations.
Although of limited practical importance in itself, it demonstrates several important
terms for the sequel of this book. The problem is a compressed ideal rigid link,
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Fig. 1.1 Spring-supported
compressed rigid link: model
and assumed deflection

where the rigidity refers to bending.2 The link is attached to a hinge at one end, and
supported by an elastic spring at the other, according to Fig. 1.1. The parameters of
the problem are the length of the link L , the acting vertical force F , the axial stiffness
of the link E A, and the spring stiffness k. The problem is here described by three
successively more accurate and complex models.

A basic equilibrium solution is that force F just acts straight through the link,
without any sideways movement. This thereby implies a length change of the link

dL = − FL

E A
(1.1)

as the only result from the force. For the further work in this treatise, it also noted
that the stored elastic strain energy in the link at force F is

�p = 1

2
σεV = 1

2

F2L

E A
, (1.2)

with common notation (ε, σ ) for strain and stress, and V the volume of the link.
Within linear theory, the above expressions are valid for any value of F . The

stability question is whether this solution is unique, and investigates an assumed
tilted configuration, described by one degree of freedom, the angle ϑ . Whether this
deflected equilibrium configuration can exist is the question.

By a moment equilibrium equation, or by simple visual inspection, it is obvious
that the reactive force R from the spring3 and the force F must give a resulting force
directed along the link, through the hinge.

2 the idealizations being that the link is not bending, that the hinge is frictionless, that the force is
perfectly vertical, and that the spring is always horizontal, and acting linearly for all lengths, with
its slack length when the link is perfectly vertical
3 The force is directed as in the figure, for the assumed positive angle ϑ , which gives a compressed
spring.
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The simplest model for this case is that the link is axially very stiff, and also
that the angle ϑ is small. Then, the top end only moves horizontally, a distance
L sin ϑ ≈ Lϑ . The spring force is then expressed as R = k · Lϑ , and this can be
related through geometry to F as

k · Lϑ = ϑL

L
F. (1.3)

A deflected equilibrium, within this model, thus exists for a critical force

Fcr = k L (1.4)

for any angle ϑ . It is easy to verify that the same expression holds for negative ϑ .
The conclusion is that for an exact critical equilibriumwith the acting force F = Fcr,
the link will stay in an introduced disturbed position. The vertical force has created
a mechanism, without horizontal stiffness. The vertical position is thereby not the
only possible solution for this force. As the configuration for this force is arbitrary,
the common engineering interpretation is that—given a high E A, and fixed L and
k—there exists a maximum force Fcr, which the structure can carry.

As this model is only valid for small angles ϑ , it can be improved. Keeping
the axial rigidity of the link, but introducing more correct trigonometric expressions
leads to a vertical position of the top end L cosϑ , and a horizontal movement L sin ϑ ,
giving the compression of the spring. If the spring is so long that it can be assumed
to be horizontal for any ϑ , the relation between acting forces is then

k · L sin ϑ = F tan ϑ, (1.5)

or
F(ϑ) = k L cosϑ. (1.6)

This expression agrees with the critical force in Eq. (1.4) for ϑ = 0, but allows
deflected equilibrium at other force values, lower than Fcr.

The results above can be interpreted graphically, and show two classes of possible
equilibrium states, Fig. 1.2. As long as nomaterial capacity is introduced, the vertical
primary equilibrium branch can exist for any value of the force F . The deflected
secondary equilibrium4 states follow either Eq. (1.4) or Eq. (1.6), depending on the
assumed model.

The possible equilibria are just the indicated lines, not the regions between them.
The crossing of primary and secondary equilibrium branches is a critical equilibrium
state, where structural response qualitatively changes. In particular, it is a bifurcation
state, where the ‘bi’ is related to a lacking uniqueness: two or more branches cross
in one point. A brief discussion of this concept and its relation to the mathematical
bifurcation analysis is given in Sect. 3.7.5.

4 or post-critical equilibrium
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Fig. 1.2 Primary and
secondary response for
compressed rigid link in
Fig. 1.1, with secondary
response evaluated for three
different structural models

This problem was trivially solved through a visual equilibrium. In order to intro-
duce a more general setting, the energy in the system is formulated. In a deflected
static equilibrium, this consists of one term related to the shortening of the link, one
term related to the length change of the spring and one term describing the loss of
potential energy for the force. Based on Eq. (1.2), the first can be neglected if E A is
assumed as large. The total potential, cf. Sect. 2.6.5, considered is thereby

�(ϑ) = �p + �t = 1

2
k (L sin ϑ)2 + FL cosϑ ≈ 1

2
kL2ϑ2 + FL

(
1 − ϑ2

2

)
,

(1.7)
identifying the shortening of the spring and the vertical level of the acting force, and
introducing low order approximations for the trigonometric functions. Equilibrium
demands stationarity of the first derivative; for the first expression this gives

d�

dϑ
= kL2 sin ϑ cosϑ − FL sin ϑ = L sin ϑ (kL cosϑ − F) = 0, (1.8)

which gives as solutions both ϑ = 0 (for any F), and F = kL cosϑ (for any ϑ). The
latter expression agrees with Eq. (1.6), while a differentiation of the truncated form
in Eq. (1.7) similarly gives Eq. (1.4).

Turning from possible equilibrium to stability of the studied system, a naive view
on the stability of the equilibrium solutions is based on Fig. 1.1. With an assumed
deflected configuration ϑ , giving a reactive force R, and an arbitrary force F , it is
qualitatively obvious that a too large force F will dominate R; the angle will tend to
increase. A small F will be dominated by R, and the angle will tend to decrease. In
loose terms, this defines stability as a tendency for an introduced deflection to dis-
appear, while an unstable state will lead to a growing deflection; critical equilibrium
is the borderline case.

The stability analysis can be formalized. One more differentiation of the total
potential energy � gives



1.2 Spring-Supported Rigid Link 7

d2�

dϑ2
= kL2

(
cos2 ϑ − sin2 ϑ

) − FL cosϑ = {ϑ → 0} = kL2 − FL , (1.9)

where the final member evaluates the second differential at ϑ = 0.
When this quantity is positive for a solution to Eq. (1.8), the energy is at a min-

imum, which can be interpreted as a stable equilibrium. With further discussion in
Sect. 2.9, the criterion implies that more energy must be introduced into the system
in order to deflect it from this equilibrium. A stability coefficient5 for the primary
equilibrium solution is

�(L , k, F) = kL2 − FL , (1.10)

where � is a function of the relevant parameters in the model. The coefficient is
positive for zero force, but decreases with increasing F , becomes zero at the critical
force Fcr, and is negative above this, where the structure is unstable. The stability
properties regarding the primary equilibrium states are introduced in Fig. 1.2. The
concept of stable, unstable and critical (or neutral) equilibrium are further discussed
in Sect. 3.7.

The stability coefficient for equilibria on the secondary, deflected, branch are
similarly derived from Eq. (1.9), when introducing the force relation F = kL cosϑ

obtained from Eq. (1.8) for ϑ �= 0. This gives

�(L , k, ϑ) = −kL2 sin2 ϑ ≡ −1

k
(kL − F)(kL + F) (1.11)

which is always negative for ϑ �= 0, and such equilibria are unstable. This corre-
sponds, in this case, to the decreasing force values with increasing magnitude of the
angle ϑ .

The stability coefficient in Eq. (1.10) is a stiffness relating to the rotation angle.
One interpretation is that—for fixed L and F—a sufficiently high spring constant k
is needed to avoid loss of stability. Lack of stability does not necessarily come from
an excessive forcing; it may also come from a too flexible spring!

Still another viewpoint can be applied, if the problem is described in a context
of dynamics. At an assumed deflected configuration described by ϑ , the two forces
give a moment around the hinge, parallel to the angle ϑ

Mϑ = FL sin ϑ − RL cosϑ = (
FL − kL2 cosϑ

)
sin ϑ. (1.12)

This moment gives an angular acceleration, which, for small ϑ , is

Iϑ ϑ̈ = Mϑ ⇒ Iϑ ϑ̈ + (
kL2 − FL

)
ϑ = 0, (1.13)

5 which, in this case of one degree of freedom, is the second derivative of the potential energy with
respect to the single displacement component, but in general is an eigenvalue
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Fig. 1.3 Effects of
imperfect spring in rigid link
example. The imperfection
x0 is seen as the crossing
with the horizontal axis

where a superposed dot denotes time differentiation, and Iϑ is the rotational inertia
of the link around the hinge.6 The solution to this differential equation is a harmonic
vibration7 with calculable frequency for a positive �(L , k, F), with the stability
coefficient in Eq. (1.10); otherwise, exponential divergentmovementwill appear. The
exact vibrations are described by initial conditions for position and velocity, which
constitute perturbations from the vertical position. It is noted that this conclusion is
not dependent on an exact value for the inertia, as long as it is positive. This is an
important observation for the discussion on different stability criteria in Sect. 2.9.

Both the two models employed above are idealized views on the structure, and
practical modellingmust also consider possible imperfections—in the structure itself
or in its representation. This can, for instance, be related to a spring of incorrect
length. Considering the first formulation above, and assuming that the spring is
unstrained when the link top is horizontally deflected by x = x0, gives a spring force
R = k(ϑL − x0). Similar calculations as above then give

F = kL

(
1 − x0

L

1

ϑ

)
, (1.14)

which is identical to Eq. (1.4) when x0 = 0. This shows that equilibrium exists for
F = 0 at ϑ = ϑ0 = x0

L . For x0 > 0 and larger angles ϑ , the force F will yield a
graph with a horizontal asymptote at F = kL . The result is strongly dependent on
the imperfectionmagnitude x0

L , cf. Fig. 1.3. The expressions also shows that the result
is no longer symmetric in the angle ϑ , as a case with x0 > 0 and ϑ < x0

L gives very
different results.8

6 which is Iϑ = mL3

3 for a link with uniform mass distribution m
7 which, in a real situation, will be damped out with time
8 ϑ = 0 is obviously no longer a solution
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Fig. 1.4 More accurate
description of displacement
of compressed rigid link in
Fig. 1.1

If the spring is given a limited length Ls , the spring is no longer acting horizontally,
cf. Fig. 1.4. An assumption of Ls = L , still assuming an axially rigid link, gives—
after some not trivial algebra—the force F in a deflected equilibrium ϑ as

F = kL
1 − √

3 − 2 cosϑ − 2 sin ϑ√
3 − 2 cosϑ − 2 sin ϑ

(
cosϑ

sin ϑ
− 1

)
. (1.15)

The primary equilibrium and the critical F are the same as above, but the force
expression is not symmetric in ϑ , as the recruited horizontal spring force component
is accompanied by a downwards force for ϑ > 0 but an upwards one for ϑ < 0. The
secondary equilibrium branch is shown in Fig. 1.2.

Considering also the shortening of the link gives a more intricate geometry, but
qualitatively similar results, even if the bifurcation state disappears, and is replaced
by relations asymptotic to the graphs in the figure. The clear-cut situation comes from
the idealization. The main lesson from this is that stability conclusions are related to
a particular model of a structure.

1.3 Plane 2-Bar Truss

A second simple example can show another form of lacking stability. The plane truss
in Fig. 1.5 shows two identical bars of length L , modelled as ideal springs of axial
stiffness E A,9 symmetrically connected as a structure of height H and attached to
two supports by ideal hinges; it is affected by the downwards force F . The bars
are assumed to be always straight, but otherwise freely deformable. The problem

9 with a linear relation between force and strain, and unlimited stretch capacity
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Fig. 1.5 Geometry and schematic deflected shape for plane truss

is defined by the parameters (L , H, E A, F), and is discussed in many treatises of
structural non-linearity; it is treated numerically by Eriksson and Nordmark (2019),
with the same assumptions but with another notation for geometry parameters and
another strain measure.10

A symmetric deformation under F is described by only the current height h,
which is the vertical coordinate for the top joint. Geometry and algebra together with
common assumptions gives the current length of each bar � = √

L2 − H 2 + h2, with
normal forces N = E A �−L

L , and the acting force

F = −2 N
h

L
= 2E A

h

L

(
L√

h2 − H 2 + L2
− 1

)
, (1.16)

which allows an interpretation F = F(v) after introduction of the downwards depres-
sion v = H − h. This relates downwards force to downwards depression, and gives
a force-displacement graph expression. Evaluation of Eq. (1.16) shows that F = 0
for h = H , but also for h = 0 and h = −H , the latter being the truss inverted, with
what was the top joint now below the supports.

For consistency with the main theme of this treatise, a total potential of the for-
mulated model is

� = 2 · 1
2

E A

L
(� − L)2 − Fv, (1.17)

from which expression all results can be obtained, after some non-trivial algebra.
The shape of the relation F = F(v) is shown in Fig. 1.6 for a case where E A =

1, H = 1.5 and L =
√

13
4 in consistent units. For small depressions v, the force

monotonously increases with the deflection, but around v ≈ 0.53H , a maximum F is
reached.After this state, the force canbe reducedwhile depression still increases.11 At
v = H , the normal forces N are very high, due to he severely shortened bars, but the
forces are completely horizontal, and thereby F = 0. For depressions H < v < 2H ,

10 Green-Lagrange deformation, cf. Eqs. (2.16)–(2.18) and the accompanying discussion
11 due to the more shallowly acting—but increasing—normal forces in the bars. This would clearly
demand a very special setting to allow physical experimental verification
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Fig. 1.6 Force-depression
graph for plane truss

the force F must be negative, i.e., upwards to keep a certain depression. A new
extreme (negative) F is passed on the branch. At the inverted shape v = 2H , F = 0
as initial bar lengths are restored. When v > 2H , F must increase to overcome
tensile forces in the bars in the inverted shape. The equilibrium is unstable between
the maximum and minimum states for F , but stable otherwise.

The critical force for the maximum force state above is

Flim = 2E A

L

((
L3 − H 2 L

)2/3 + H 2 − L2
)3/2

L2 − H 2
, (1.18)

while the force at the minimum force point is −Flim. The extremum force points are
limit states, i.e., states with—at least locally—extreme forcing F , and are the most
common situations where a structure loses, or re-gains, stability.

The example is somewhat confusing to anyone used to think about common engi-
neering structures, where deformations need be kept small, and force is proportional
to deflection, with the relation derived from the initial geometry. Similar situations
as in the snap-through behaviour of this example are sometimes technically utilized,
for instance in toggle-type switches.

The behaviour of this structure is, however, even richer if the structure is high
enough. If the assumption of symmetry in response is disregarded, a sequence of
deformed shapes can exist, when the exterior forcing is carried by one compressive
and one tensile normal force in the bars, as indicated in Fig. 1.7.12 Analysis of such
equilibria must include two degrees of freedom: the v from above, and a quantity u
for the horizontal movement of the top joint. More extensive algebra shows that this

situation can only exist if H >

√
23
27 L ≈ 0.923L .

The critical force for this bifurcation state, very similar to the example in Sect.
1.2, is evaluated as the analytical expression

12 or by its mirror image
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Fig. 1.7 Snapshots of
secondary solutions for plane
truss. Dashed graph connects
positions of top joint

Fbif = 2E A

L

√
�3 + 6 H 2 − 4 L2

�3 + 2 L2

(
L −

√
�3 + 2 L2

√
6

)
, (1.19)

after introduction of the short hand notations

�1 =
√
L4

(
L2 − H 2

)3 (
23 L2 − 27 H 2

)
,

�2 = 3

√
−36 H 2 L4 + 27 H 4 L2 + 3

√
3�1 + 11 L6,

�3 =22/3�2 + 2 3
√
2

(
6 H 2 L2 − 5 L4

)
�2

,

(1.20)

which all are different powers of lengths.
Two stability coefficients for the primary equilibrium solutions are now described

as

�lim(L , H, E A, v) =2E A

L

(
H 2 L − L3

�4
+ 1

)
,

�bif(L , H, E A, v) =2E A

L

−H 2L + �4 + 2 HLv − Lv2

�4
,

(1.21)

with an auxiliary variable involving the deflection, as

�4 = (
v(v − 2H) + L2

)3/2
. (1.22)

These are essentially of the same form as in the previous example, but there
are two of them and these are more complex. One of the stability coefficients will
become zero for the critical states expressed by Eqs. (1.18) or (1.19). It is noted
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that the stability coefficient expressions are not explicitly dependent on the acting
force F , as was the case in Sect. 1.2, but are evaluated for the state variables and
parameters; the acting force is also directly calculable from these.13 If a practical
situation were considered, the lower of the critical forces, obtained for vanishing
�lim or�bif, dependent on geometry H/L , is the maximum capacity of the structure.

A main restriction introduced in the analyses is that the problem is considered
as plane. Compared to Sect. 1.2, the bars now deform axially—but not in bending,
and are assumed to carry any normal forces. When H is rather large, these are very
high, which demands that the material has a high elasticity limit, so that forces are
always directly related to strain. It is also assumed that the bars do not buckle under
the acting compressive forces. The treatment of buckling in compressed members
will be the topic of the next section.

1.4 Compressed Beam

Beams in the structural context are slender mechanical components carrying forces
primarily through bending. The forcing is typically acting transversally to the beam
length direction. In 2D or 3D frames, combinations of axial and bending forces are
used to transmit exterior forcing to the supports.

The combinations of axial force and bending in a plane beam is probably the most
common stability problem studied. The typical cases are those of Euler buckling,
differing in their boundary conditions. The fundamental case is a simply supported
beam, acted upon by a compressive force, as in Fig. 1.8.14,15

Fig. 1.8 Model and assumed deflected equilibrium configuration for compressed simply supported
plane beam. M(x) is interior moment in a fictitious section cut at x

13 The force F could be introduced as parameter, but then any of the others could be eliminated, as
they are connected through Eq. (1.16)
14 Compared to the bending case for a transversal forcing, one support must allow a horizontal
movement; this would be of no importance for the transversal forcing.
15 The beam is here, uncommonly, drawn as horizontal, which is of no importance since self-weight
is anyhow neglected.
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The analysis uses the equation of the elastica—or the beam equation—for an
assumed deflected equilibrium, roughly similar to the drawn shape between the sup-
ports. On the part to the left of a virtual section at coordinate x , a driving interior
moment

M f (x) = F y(x), (1.23)

is acting, the magnitude varying along the beam length. The expression respects that
the transversal deflection is no longer assumed as infinitesimally small.

The resisting interior moment Mr is

Mr (x) = E I y′′(x), (1.24)

from the elastica equation, and with E I the bending rigidity of the beam.16 The
primes here denote derivatives with respect to the x coordinate.

Equating the moments as Mr + M f = 0 for the existence of a deflected equilib-
rium, gives a homogeneous differential equation

E I y′′ + F y = 0. (1.25)

With the essential boundary conditions y(0) = y(L) = 0 for the case considered
in Fig. 1.8, the equation has solutions of the form

y(x) = dn sin
nπx

L
(1.26)

for any positive integer n, with arbitrary amplitudes dn , and for a critical force

Fcr,n = n2 π2

L2
E I. (1.27)

The same result is obtained from the first differential with respect to dn of the
total potential, which is

� = E I

2

L∫
0

(y′′)2dx + F

⎛
⎝L −

L∫
0

(
1 + 1

2
(y′)2

)
dx

⎞
⎠ , (1.28)

as an alternative to Eq. (1.25), when y′′(0) = y′′(L) = 0. The first part here comes
from bending strains, and the second from an approximation to the horizontal short-
ening of the bent inextensible beam due to bowing.17

16 Note that both y′′ and M(x) are negative in the figure
17 The integrand in the last integral of Eq. (1.28) is an approximation to

√
1 + (y′)2 > 1.
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The result in Eq. (1.27) exists for one specific compressive force, exactly as for the
rigid link in Sect. 1.2. Here, many deflected shapes are possible, but the n2 factor in
the critical force Fcr,n shows that only n = 1 is normally of any practical relevance.
The higher critical forcing levels are practically impossible to reach without very
special measures. Compared to Fig. 1.2, several critical states and several secondary
equilibrium graphs could be drawn, but all primary states for forces above Fcr,1 are
unstable.

Similarly as in the previous section, stability coefficients are introduced for the
compressed simply supported beam. In this case, one stability coefficient can be
defined for each mode, i.e., integer numbers of sinusoidal half-waves. Some algebra
on the results above shows that the stability coefficient for the n half-wave mode is

�n(E I, L , F) = d2�

d d2
n

=
(
n2π2E I

L2
− F

)
, (1.29)

showing that stability coefficients for higher n vanish for much higher compressive
forces. Like in Sect. 1.2, but contrary to Sect. 1.3, the acting force F can not be
eliminated as parameter, as it does not act directly on the critical mode direction.

Euler buckling for beams is typically presented as four (or five) clear-cut situations
of boundary conditions. As the homogeneous Eq. (1.25) is always the basis, the
solutions will be similar to Eq. (1.26), which is one sinusoidal half-wave over a
representative beam length. The buckling length for a particular case is dependent on
the support conditions, and can be both longer and shorter than the physical beam.18

A visual inspection of the possible buckling shapes can often give a sufficiently
accurate guess for less clear-cut cases. The main idea is thereby to introduce an
estimated buckling length L∗ in the denominator of Eq. (1.27)—and, of course,
n = 1. Solved cases and general methods to decide the buckling length in different
situations are available in engineering handbooks.

When no tabulated solutions can be found, an iterativemethod is available through
theVianellomethod, also often namedStodola-Vianellomethod. Thismethod,which
is an instance of power iterations for a matrix eigenvalue problem, is intuitive and
easily implemented also in spreadsheet software. A brief example, dealing with a
compressed cantilever of variable bending stiffness, is given in Fig. 1.9 showing a
systematic tabular calculation for a deflected equilibrium, i.e., a critical equilibrium
state, where columns are successively built from left to right.

A deflected shape for the cantilever is represented by a number of discrete deflec-
tion values, at points 0–8 in the example, i.e., the beam length is divided into 8
parts. A rough assumed deflected equilibrium shape is guessed,19 and introduced
in the second column20 yi . From the assumed deflections, the corresponding inte-

18 e.g., twice the physical length for a compressed cantilever, half the physical length for a double-
sided clamped beam
19 which here does not even fulfil the clamped condition at i = 0
20 Everything is scalable, so the deflections are represented as fractions of L to see the dimensions
of each column.
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Fig. 1.9 Evaluation of critical forcingmagnitude for variable-section cantilever beam, byVianello’s
method

rior moments are calculated, as Mi = F(y8 − yi ), and then—through the point-wise
bending stiffnesses—the curvatures y′′

i . By introducing half-way points i + 1
2 , these

are integrated first to slopes y′
i and then to deflections yi (res) by forward stepping,

through successive additions of the table values. For simplicity, the step length L/8
is considered in the multipliers below each column.

The condition for a deflected equilibrium is that the resulting column shape agrees
with the assumed. This means that for a perfect guess, there should be an equality,
e.g., 8L ≡ 95.67 FL3

64 E I0
for i = 8. To consider all points, the best fit comes from an

evaluation from the average ratio

Fcr =
∑

i (yguess,i yguess,i )∑
i (yguess,i yres,i )

64 E I0
L2

, (1.30)
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where the sums use the numerical values in the table, and the final factor takes care
of the columnmultipliers. In this case, the very crude guess gives the ratio of sums as
204/2017.67, and the critical Fcr = 6.47 E I0

L2 . Feeding the numbers from the resulting
y column into the column for guessed y, a much better approximation is obtained,
with the leading multiplier as 4.39. With more iterations, a convergent value with
multiplier 4.18 is reached. This is very close to an analytical value, even if the
discretization of the beam through nine discrete values gives a small approximation
error.21

The same approach can be used for many classes of beam buckling problems,
if no more sophisticated software is available. For some boundary conditions, the
table will need two similar schemes, where an extra scheme considers an unknown
reactive force. The resulting two columns are matched to fulfil a specific boundary
condition.

Formany structures, combinations of axial and transversal forces affect the beams.
The situation shown in Fig. 1.10 is a typical case. This is commonly analysed bywhat
is known as a second order,22 a beam-column, or a P−	 method. The terms are
not uniquely defined, but always indicate that axial forces give bending deforma-
tions through a considered finite transversal deflection. The homogeneous differen-
tial equation (1.25) for compressed beam deflection is thereby complemented by a
right hand side according to

E I y′′ + F y = −M f,q(x), (1.31)

where M f,q(x) describes the forcing moment from the transversal forces at section
x . The potential loss under the transversal force intensity is also easily added to the
total potential in Eq. (1.28), allowing an energy-based treatment.

For the uniformly distributed force intensity q in Fig. 1.10, M f,q = q
2 x(L − x)

and some non-trivial algebra is needed to reach the solution. This solution is, with
increasing values of the compressive force F , dominated by a term which includes

a factor 1/ cos( L
2

√
F
E I ), which goes towards infinity when F approaches the critical

force for n = 1 in Eq. (1.27).
A clearer view on the effect from the compressive force is obtained by introducing

the sinusoidal force intensity distribution in Fig. 1.10. Without going into details,
this is the dominating term in a series expansion of the uniform force intensity
q in trigonometric functions if q1 = 4

π
q. With the corresponding forcing moment

M f,q = q1 L2

π2 sin π x
L in Eq. (1.31), the solution for the deflection y is

21 An analytical solution gives the critical Fcr = 4.135 E I0
L2 , which lies between the values π2

4
E I0
L2

and π2

4
2·E I0
L2 valid for constant bending stiffnesses; the result is closer to the higher one, as an

increase of bending stiffness is more ‘useful’ at the clamped end.
22 The ‘second order’ term has no mathematical meaning; it seems to just reflect that this approach
is somewhat improved from a linear first-order approach.
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Fig. 1.10 Deflected
equilibrium configuration for
column with compressive
force and uniform distributed
forcing q. Left: first term q1
of trigonometric series
expansion of q

y(x) = q1 L4

π4E I
sin

π x

L
· 1

1 − F/Fcr
. (1.32)

The first part in the expression is the deflection without the axial force, while the
final ratio is amagnification factor expressing the nearness to the critical compressive
force.23

The intention of the second order methods is to introduce the coupling between
axial and bending behaviour in the beam, where an axial force magnifies or reduces
both deflection and interior bending moment from transversal forces. The method
is commonly available in specialized design software for structural analysis, and is
recommended or demanded in design codes.

The second order methods, as described here, are similar—but not identical—to
the linear pre-buckling (LPB) approaches to be further discussed in Sect. 4.1.3.

The approach, however, has limitations, and must be used with care. The main
drawback is that the coupling is uni-directional in the sense that axial forces affect
calculated bending response, but not the opposite; the axial stiffness is not at all
affected by the extensive bending.24 This can be a major drawback, for instance, in
statically indeterminate frame structures where the force distribution is decided by
the relative stiffnesses of the members. Better models for beam and frame analyses
are discussed in Chap. 3, the main ingredient being a correct and more complete
coupling between axial and bending responses. The second order methods can only
be considered as reasonably valid as long as axial forces are well below the critical.

23 The derivation is equally valid for a tensile force, here denoted F < 0, in which case the final
factor is a reduction < 1.
24 It is easily shown by experiments that a compressed beam of length a fewmeters can be calculated
to have deflections of several meters, with a shortening of just a few millimeters, if the compressive
force is close to the buckling force.
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Further discussion on assumed plane conditions, and on imperfections could be
motivated by this example, but such comments are made already in previous exam-
ples.

1.5 System Stability

Building structures are large and complex systems, normally with a rather clear
differentiation of mechanical components for different aspects of forcing. Even if
the main challenge for most building structures is to carry vertical gravity effects,
also horizontal forces can be of considerable magnitudes.

A typical multi-storey building is schematically shown in Fig. 1.11, where a few
stiff components in shearwalls and staircases are themain contributors to the carrying
of horizontal forces, while a set of more slender hinged columns just carry vertical
forces. The floor slabs are typically built as—and are assumed to be—rigid in both
bending and in-plane senses, so that they are not deformed to any appreciablemeasure
during any mechanical action considered on them. The stiff vertical components are
typically continuous from the ground upwards, and must be arranged with a clear
strategy, in order to give stiffness in the 3D space. The columns act only between
two floors.

The term stabilization of a building is commonly referring to the case of horizontal
forces, i.e., the existence of force transmission pathways from the points of attack
to the ground supports. This gives primarily a need for sufficient capacity of the
affected components to resist themagnitudes of the design forcing cases; the building
becoming amechanism25 is avoided, cf. Sect. 3.7. By considering also acting vertical
forces, the problem comes closer to the main topics in this treatise.

Fig. 1.11 Schematic view on multi-storey building system

25 which lacks stiffness in, at least, some particular movement direction
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Fig. 1.12 Simplified example of structural system stability involving several components. aModel.
c Hinged column analysis. d First level analysis model. b Second level model

A simple two-storey structure of total height 2·H is shown in Fig. 1.12a. It con-
sists of two infinitely rigid floors, which are vertically supported by beam-like com-
ponents of relevant bending stiffness E I and a number of hinged column elements,
without any particular properties.26 For the calculations, the order of the components
is arbitrary, and their horizontal spacing is of no importance.

The forcing of the structure is represented by equal floor force resultants F on
the beam and columns, and two horizontal forces F1 and F2 on the floor levels. The
requirement is that the effects from the horizontal forcing on the vertical beam are
well within bending capacity. A stability investigation then considers how the vertical
forces affect the response through a deflected equilibrium view, cf. Sect. 1.2.

Figure1.12d shows how floor number 1 is assumed to be horizontally moved the
distance d1 from its original position. With the assumption that the beam is rigidly
connected to ground and the floor, the force needed to move the top is 12 E I

H 3 d1. The
contributions from the columns are then given by Fig. 1.12c. Equilibrium for one
link of height H affected by a compressive force of 2F demands a horizontal force
of magnitude 2F d1

H . The force components active in the horizontal displacement are
shown symbolically in Fig. 1.12d.

26 The floors are rigid with respect to both bending and axial behaviour, the columns have sufficient
compressive capacity to resist the vertical forcing, the floors are assumed as rigidly connected to
the vertical beam, while the hinged connections are perfectly friction-free.
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Further, assuming that the second floor just follows in a rigid translation, such that
its horizontal displacement is d2 = d1, the horizontal force to create this displacement
can be expressed as

F1(d1, d2 = d1) = 12
E I

H 3
d1 − 3 · 2F d1

H
=

(
12

E I

H 3
− 6

F

H

)
d1, (1.33)

where vertical forces tend to reduce the bending stiffness.
Figure1.12b studies the second level of components. As this figure focusses on

the difference in horizontal displacement (d2 − d1), the horizontal forces are

F2(d1, d2) =
(
12

E I

H 3
− 3

F

H

)
(d2 − d1) = −F1(d1, d2), (1.34)

when the first floor must give a reaction.
Summing the two cases, for an arbitrary horizontal deflection configuration

(d1, d2) gives

F1 =
(
24

E I

H 3
− 9

F

H

)
d1 +

(
−12

E I

H 3
+ 3

F

H

)
d2,

F2 =
(

−12
E I

H 3
+ 3

F

H

)
d1 +

(
12

E I

H 3
− 3

F

H

)
d2.

(1.35)

In matrix form, this is a stiffness relation for the deflected configuration

(
F1

F2

)
=

(
E I

H 3

(
24 −12

−12 12

)
− F

H

(
9 −3

−3 3

)) (
d1
d2

)
, (1.36)

where the first matrix is recognized as the linear stiffness of the beam, while the
second term shows the geometric stiffness from compressed columns.27

Solving Eq. (1.35) with known parameters and known forces F, F1, F2 gives the
horizontal displacements of the two floors (d1, d2), and then all relevant interior
forces. The result quantities are magnified by the vertical forces, as in Sect. 1.4.

With respect to stability, the expressions define an eigenvalue problem, the results
of which can be shown by simple demonstration. Assuming—seemingly without
particular reason—that d1 = 0, Eq. (1.35)2 give

F2 =
(
12

E I

H 3
− 3

F

H

)
d2 = −F1. (1.37)

This implies that a horizontal displacement d2 �= 0 can exist with zero horizontal
forces28 if the vertical forces are

27 which is here negative, i.e., de-stabilizing
28 and, thereby, any horizontal force will create infinite movement
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F = Fcr,2 = 4
E I

H 2
. (1.38)

Similarly, a horizontal displacement described by d2 = d1 �= 0 exists without
horizontal forces, according to Eq. (1.33), for

F = Fcr,1 = 2
E I

H 2
, (1.39)

with F2 = 0. This critical force is lower than the one from Eq. (1.38), and thereby
the deciding one.

The results obtained can be expressed through two stability coefficients

�1(E I, H, F) =12
E I

H 3
− 6

F

H
,

�2(E I, H, F) =12
E I

H 3
− 3

F

H
.

(1.40)

where, the force F can not be eliminated, as it is orthogonal to the critical deflection.
Being initially positive, both � values will decrease with increasing value of F , and
a critical state is reached when either of them becomes zero,29 and the stability is
lost.

It is obvious from the above treatment that the stability is only dependent on
the vertical forces in this case, not on any particular horizontal force. In reality, the
modelled structure would, before reaching the critical vertical force, have lost its
integrity due to some material failure when the response to any existing horizontal
force was magnified by the nearness to the critical force.

The treatment above considered a very simple plane system, where each floor was
described by just its horizontal displacement, i.e., a discretization by one degree of
freedom per storey. A full 3D building structure can be modelled, if three degrees of
freedom are introduced for each storey: two in-plane translations and a floor rotation.
As the manual work to create the stiffness expressions for all degrees of freedom is
overwhelming, and thereby extremely error-prone, a systematic algorithm is needed
for this analysis.

In a systematic investigation, the stability coefficients can be used to evaluate a
safety factor against loss of stability of the system,30 related to a chosen design level
of F . As the loss of stability is a catastrophic failure, this safety margin must be very
high. Such a safety factor is immediately obtained from a linear pre-buckling setting
in Sect. 4.1.3, but the shortcomings of such approaches must be noted.

The analysis here is another example of a second order formulation, when effects
from finite deformations are included in a bending formulation. Compared to the
compressed beam analysis in Sect. 1.4, the present example leads to a case of system

29 as any, however small, horizontal force would meet no resisting force stiffness
30 but note the difference between the safety factor and the stability coefficients
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stability in the sense that several components are acting together, with some of them
stabilizing and some de-stabilizing the considered structure.

This example uses several simplifications in the modelling, in particular that the
floor slabs are supposed to be infinitely stiff in bending as well as in in-plane action.
This over-estimated stiffness in the system will lead to an over-estimation of the
critical forcing for the structure.31 This gives further arguments for aiming at very
high safety factors in this simplified modelling, or for using more elaborate analyses.

1.6 Plate Buckling

In the engineering terminology, a plate is a thin flat structure, often but not always
horizontally arranged. Plates exist in pure form as floor slabs in buildings, but are
otherwise most often components in more complex structures, for instance in welded
beams, cf. Sects. 1.7 and 5.2. The fact that plates are thin implies that they have a
thickness which is significantly smaller than the in-plane measures. They are also
often of rather simple in-plane shape. Depending on the situation and context, the
plates can have awide variety of support conditions along their circumferential edges.

Only ideally elastic response of the thin plate is considered here. The basic analysis
further assumes that the plate is situated in the x − y-plane, with a thickness attribute
parameter h, and a force intensity q(x, y) in the z direction, cf. Fig. 1.13.

According to the Kirchhoff plate theory, the response to the transversal force
intensity q is just a vertical deflectionw(x, y) of the platemidplane. The assumptions
are similar to the common Euler-Bernoulli beam theory, as further discussed in
Sect. 3.4.2.

Under these assumptions, the differential plate equation for a thin, transversally
forced isotropic and ideally elastic plate is obtained as

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
= q, (1.41)

with the so called plate stiffness quantity (at a point)

Fig. 1.13 Basic figure for
plate carrying transversal
force intensity, showing
section moment resultants

31 As an illustration, the terms 12 E I
H3 in the expressions will have a lower numerical factor, if the

end conditions are not completely rigid.
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D = Eh3

12(1 − ν2)
, (1.42)

resembling a beam section of height h and width 1 unit, and involving the elastic
parameters (E, ν) for the plate material. Compared to the equation of the elastica, the
resistance to forcing is split between the two directions. The interior force resultants
are three moment intensities,32 obtained as

mx = −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
, my = −D

(
ν
∂2w

∂x2
+ ∂2w

∂y2

)
,

mxy = myx = D(1 − ν)
∂2w

∂x∂y
,

(1.43)

when it is noted that the indices commonly refer to the corresponding stress com-
ponent, and do not reflect the axis around which the moment acts. The moments are
converted to the corresponding stress components (σx , σy, τxy) by handling them as
in a beam section of unit width. Some care must be taken in evaluating the signs of
the stresses in relation to the general form in Chap. 2.

The most difficult part of plate analysis is often to decide and describe the support
conditions for the considered region. Common situations are free edges, with all edge
forces zero, clamped edges with zero deflection and no rotation around the edge, or
simply supported edges with no deflection and no moment around a vector along the
edge.33 These issues are discussed, for a numerical solution method by Ghali et al.
(2003). Largely independent of these conditions, the solution for the plate under any
distributed downwards force intensity is more or less in the form of a hanging mat.

Although not within themost generic definition of a plate, a thin region can also be
affectedby forceswithin its plane.34 Constant stresses in the x − y-directions are inte-
grated over the thickness at a point (x, y) to normal force intensities, cf. Fig. 1.1435

nx (x, y) = σx h; ny(x, y) = σy h;
nxy(x, y) = nyx = τxy h,

(1.44)

where (σx , σy, τxy = τyx ) are the common linear stress components in the plane.
Equilibrium without body forces gives two equations as, cf. Sect. 2.5.1,

∂nx

∂x
+ ∂nxy

∂y
= 0,

∂ny

∂y
+ ∂nyx

∂x
= 0.

(1.45)

32 typically of the dimension Nm/m
33 which is somewhat complicated by the Poisson effect
34 Formally, the problem should then be analyzed as a ‘membrane’ or a ‘plane-stress’ structure. If
both in-plane and transversal force are present, the problem is really a ‘shell’
35 Note the somewhat unusual indexing of shear stress and shear stress resultant used here.
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Fig. 1.14 In-plane force
components in plate

Fig. 1.15 In-plane force
creating transversal plate
force intensity. The quantity
dy is the measure normal to
the figure, which is just a
multiplier for ‘unit width’

Like the beam in Sect. 1.4, a plate compressed in its plane can deflect in the
transversal direction, but general solutions to the plate buckling problem are very
complex. Assuming a finite, but small, deflection w(x, y) of the plate, and the in-
plane force intensities in Eq. (1.45), Fig. 1.15 can be used to visualize that the force
intensity nx will give a transversal component of force

Qx ≡ qx · dxdy = nx d

(
∂w

∂x

)
dy = nx

∂2w

∂x2
· dxdy (1.46)

to a dx dy element of the midplane surface, when dy is a (small) width perpendicular
to the figure plane.

With similar figures, the total transversal force intensity component from the
in-plane force intensities is

q = nx
∂2w

∂x2
+ ny

∂2w

∂y2
+ 2nxy

∂2w

∂x∂y
, (1.47)

which can be introduced in Eq. (1.41). A deflected equilibrium situation can be solved
for, where boundary conditions for both the combined cases must be fulfilled.

The only reasonably simple cases to handle analytically are constant levels for
any of the in-plane resultants. For ny = nxy = nyx = 0, and nx a constant resultant
force intensity36,37 in a rectangular region ab in the (x, y) plane, Eq. (1.41) becomes

36 assuming that the in-plane boundary conditions allow this uniform and uni-axial stress state
37 Many treatises of this case define the in-plane force intensity as positive for compression, the
only interesting case. This just gives a change of sign in Eq. (1.48).



26 1 Engineering Stability Evaluations

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

)
− nx

∂2w

∂x2
= 0, (1.48)

which can be compared to a twice differentiated Eq. (1.25).
With simply supported edges with respect to transversal deflection, the boundary

value problem lends itself to solutions of the form

w(x, y) = wmn sin
mπx

a
sin

nπy

b
(1.49)

for any positive m and n. Introducing an arbitrary term in Eq. (1.48) gives

[
D

(
m4π4

a4
+ 2

m2n2π4

a2b2
+ n4π4

b4

)
+ nx

m2π2

a2

]
sin

mπx

a
sin

nπy

b
= 0. (1.50)

The solution to this equation gives an expression for the intensity nx in relation
to D and as functions of m and n, with given a and b. The solution is often given as

nx,cr = −π2D

b2
· k, (1.51)

where k = (
mb
a + a

mb

)2
, when it is observed that n = 1 always gives the smallest

value. The minimum value k = 4 appears for m = 1 and a square plate a = b. For
other ratios (a/b), higherm might give the lowest values for k. In general, minimum
buckling force intensity occurs when a/m and b give an approximate square, as in
Fig. 1.16. With a/b = 2.8 in the figure, k = 4.02 form = 3 and k = 4.47 form = 2.

Another interpretation of the results, closer to the beam case in Sect. 1.4, is to
evaluate the total compressive force in the deflected equilibrium state

− (nxb)cr = π2D b

a2

(
m + 1

m

(a
b

)2
)2

, (1.52)

where the product D b is resembling E I for a beam.The parenthesis approaches unity
for m = 1, and a wide plate b 
 a, when the transverse bending effects disappear.
For narrow plate strips with b < a, m > 1 might give the lowest critical force.

Fig. 1.16 Buckling pattern
for long plate
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Plate buckling under compressive forces differs from beam buckling in its higher
degree of parameter dependence, for instance the aspect ratio of the edges. The lowest
critical buckling force can therefore be related to different buckling modes, and two
different modes can give the same critical intensity; a/b = √

2 in Eq. (1.51) gives
k = 4.5 for both m = 1 and m = 2. In the vicinity of this aspect ratio, the two m
values will give almost equal buckling forces, but for two different modes. Cases
where two critical situations (almost) coincide are always more problematic from
several viewpoints.38

As opposed to the beam case, the plate also gives a significant secondary capacity
in a buckled configuration, with a stiffness to further forcing after buckling about
40%of the initial stiffness. Post-critical capacity is often calculated through ‘effective
width’ or ‘effective thickness’ approaches. In addition, the secondary solutions are
strongly dependent on the transversal and in-plane boundary conditions.

1.7 Thin-Walled Column

One application of the plate buckling analysis above is in the design of thin-walled
beams. An example is the compressed thin-walled hollow square section column in
Fig. 1.17. The section has a thickness h, and a mid-surface width b; the length of the
column is L . An elastic material described by (E, ν) is assumed.

Fig. 1.17 Compressed
thin-walled hollow square
section column

38 This will, for instance, happenwhen a structure ismathematically optimized for amaximal lowest
critical magnitude, which often means that the two lowest magnitudes will tend to coincide.
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Assuming first that L 
 b, the sides of the column will buckle synchronously,
with buckles of approximate length b.39 UsingEq. (1.51) for the circumference length
4b gives a total compressive force at buckling

Floc = 4b · 4π2 D

b2
≈ 14.5Ebh

(
h

b

)2

(1.53)

with ν = 0.3 introduced in the final member. At this compressive force, the column
will undergo local buckling in a repetitive pattern on all sides, as sketchily indicated
by the figure.

Recalling Sect. 1.4, a compressed column can also be affected by Euler buckling
over the whole column length. Assuming end conditions which can be represented
by hinged supports, so that L will be the buckling length,40 global buckling will
result. As the area moment of inertia of the section can be approximated as

I ≈ 2

3
b3h, (1.54)

the Euler buckling force for the column is, according to Eq. (1.27) with n = 1,

Fglob ≈ 6.58Ebh

(
b

L

)2

. (1.55)

As the two expressions contain different parameters, it can not be stated generally
which critical force is the lowest, i.e., the deciding force. For a thin-walled section
with

h < 0.67
b2

L
(1.56)

the local buckling will be the first to appear; otherwise, the Euler buckling will come
first. For parametric cases where the two members of Eq. (1.56) are approximately
equal, the stability conclusions are often very complex, as the two critical responses
interact: a mode interaction situation, which is further discussed in Sect. 5.2. Such
designs will also be extremely sensitive to imperfections in the structure. Similar
to this example, a compressed thin-walled cylinder is a well-known case of very
complex stability behaviour.

As a final comment on this example, the symmetry of the square beam section will
make the column susceptible to global buckling in any direction, unless the support
condition restraints are asymmetric.

39 or, to be precise, the L divided by an integer number, close to b
40 which would not be practically trivial for the 3D beam in uniform compression
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1.8 Pressurized Sphere

Sofar, all examples in this Chapter have dealt with stability related to geometric
non-linearities, assuming a linear elastic material description. The present case deals
with a non-linear material model.

A thin spherical membrane, of unstretched radius R and thickness h, is subjected
to an interior over-pressure p, Fig. 1.18. Thematerial follows a two-parameter incom-
pressible Mooney-Rivlin material model, with two constitutive parameters (c1, c2),
and defining k = c2

c1
. It is formulated from the two first invariants of the Green defor-

mation tensor C, cf. Sects. 2.3 and 2.4.2.
The problem is one-dimensional in the sense that the primary response is a uniform

spherical expansion, described by the current radius r . This will give an equi-biaxial
strain state, where C11 = C22 = (

r
R

)2
, and C33 = (

R
r

)4
from the incompressibility;

all shear strains vanish. From this, and the (local) plane stress condition, the compo-
nents of the relevant 2nd Piola-Kirchhoff stress tensor S are

S11 = S22 = 2c1

(
1 − 1

C3
11

)
(1 + kC11) ; (1.57)

The stress approaches an asymptote S11 = 2c1(1 + kC11) for increasing C11 and
can therefore even reach a maximum value, if k < 0.

The stress is related to interior over-pressure through

πr2 p = 2πrhS11 (1.58)

where it is noted that the used stress tensor is related to initial geometry, when the
over-pressure p is a conservative but not displacement-independent forcing, cf. Sect.
2.6.3. Some algebra shows that the over-pressure is related to the radius by

p

c1

R

h
= 4

(
1 + kλ2

) (
λ6 − 1

)
λ7

(1.59)

Fig. 1.18 Pressurized
spherical membrane. R and r
refer to mid-surface
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Fig. 1.19 Radial expansion of pressurized spherical membrane. a Over-pressure p. b Stress S11,
normalized to geometry and material parameters. Note the different horizontal axis labels

where the circumferential stretch λ = r
R is introduced.41

Results from the above expressions are shown by Fig. 1.19 for a few different
values of the ratio parameter k. Subfigure (a) shows that, depending on the value for
k, zero, one or two limit pressure states can exist in the response, as marked in the
figure. The situation of a maximum pressure being passed in the process is easily
identified from the inflation of toy balloons.42 More sophisticated analysis methods
can reveal at exactly which value of k the limit state disappears, cf. the treatise by
Eriksson and Nordmark (2020). Further analyses also show that a bifurcation into a
non-spherical mode can exist for this problem.

Figure1.19b shows that the stress approaches the asymptotic linear relation fol-
lowing from Eq. (1.57), with, e.g., S11 = 2c1 for k = 0. The stress also eventually
becomes negative when k < 0, which is a failure of the sphere. The marked maxi-
mum value for stress does obviously not correspond to the maximum pressure state
shown in subfigure (a).

1.9 Spinning Rigid Object

The examples above have all referred to the stability of static equilibrium cases,
but stability can also be of importance for dynamically moving structures. A simple
example will be given, even if the treatment of such problems is not the main topic
of the present treatise.

41 The pressure-stretch relation is most easily derived from a formulation of the total potential for
the system, cf. Sect. 2.6.5.
42 Even if more air must be introduced, the resistance is reduced after a while.
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Fig. 1.20 Rigid spinning
link, with successive
configurations from rotation
description

The example has some similarities to the problem in Sect. 1.2, and consists of a
rigid link spinning freely around a ball joint at the lower end, Fig. 1.20. The link has
an axi-symmetrically distributed mass, which is represented by a summed massm at
a distance L from the hinge, and gives mass moments of inertia quantified by J1 and
J3 around any arbitrary axis in the horizontal plane, and the link axis, respectively.

The position of the free end is described by two Euler angles describing the
orientation of the link, compared to the vertical: first an angle ϑ1 around the x
axis and then ϑ2 around the new orientation y1 of the original y axis; the figure
schematically shows the successive configurations 0, 1, 2 and the axes appearing
after the rotation steps. An angle ϕ then describes the spinning motion of the link
around its own inclined axis. The fundamental stability question is if the link can
balance in an essentially vertical position, stabilized by its rotation.

From the position of the end point

x = L sin ϑ2, y = −L sin ϑ1 cosϑ2, z = L cosϑ1 cosϑ2, (1.60)

a Lagrangian43 is formulated from the difference between kinetic and potential
energy, as

L = J1
2

(
cos2 ϑ2ϑ̇

2
1 + ϑ̇2

2

) + J3
2

(
sin ϑ2ϑ̇1 + ϕ̇

)2 − mgL cosϑ1 cosϑ2 (1.61)

where the superposed dot represents a time differentiation of the quantity.
As the rotation variable ϕ is a cyclic variable, it is possible to introduce a constant

for the angular momentum

43 which can be used to derive the dynamic response
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pϕ = ∂L

∂ϕ̇
= J3

(
sin ϑ2ϑ̇1 + ϕ̇

)
. (1.62)

By removing the spinning velocity ϕ̇, the constant is introduced to reduce the
Lagrangian to

L1 = L − pϕϕ̇ = J1
2

(
cos2 ϑ2ϑ̇

2
1 + ϑ̇2

2

) + pϕ sin ϑ2ϑ̇1 − p2ϕ
2J3

− mgL cosϑ1 cosϑ2.

(1.63)
From this function, the dynamic response is decided by the Lagrange equations

for the two position variables

d

dt

(
∂L1

∂ϑ̇1

)
− ∂L1

∂ϑ1
= J1 cos

2 ϑ2ϑ̈1 − 2J1 sin ϑ2 cosϑ2ϑ̇1ϑ̇2

+ pϕ cosϑ2ϑ̇2 − mgL sin ϑ1 cosϑ2 = 0,

d

dt

(
∂L1

∂ϑ̇2

)
− ∂L1

∂ϑ2
= J1ϑ̈2 + J1 sin ϑ2 cosϑ2ϑ̇

2
1

− pϕ cosϑ2ϑ̇1 − mgL cosϑ1 sin ϑ2 = 0,

(1.64)

which is a basis for tracing a movement from an assumed initial state.
The stability question posed is answered by a linearization of the equations of

motion around the relative equilibrium with

ϑ1(t) = 0, ϑ2(t) = 0, pϕ = J3 ω. (1.65)

This gives the equations of motion, in matrix form, as

J1

(
1 0
0 1

) (
ϑ̈1

ϑ̈2

)
+ pϕ

(
0 1

−1 0

) (
ϑ̇1

ϑ̇2

)
− mgL

(
1 0
0 1

)(
ϑ1

ϑ2

)
=

(
0
0

)
, (1.66)

or in common notation for discretized structural dynamics

M d̈ + C ḋ + K d = 0, d =
(

ϑ1

ϑ2

)
(1.67)

with mass and stiffness matrices M and K symmetric, but with an antisymmetric
matrix C replacing the damping matrix. Although the mass matrix still represents
inertia, the matrix resembling stiffness is here notably negative definite, as it reflects
the gravity force trying to make the link fall; it is thereby de-stabilizing. The matrix
C also deviates from the common situation, as it is not dissipating energy, due to its

antisymmetry44; it is in this case potentially stabilizing.

44 with zeroes on the main diagonal
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An ansatz is made for the dynamic motion from a configuration d0, which is a
deviation from the vertical equilibrium, as

d(t) = eλt d0, (1.68)

whence stability in the movement then demands that all four eigenvalues, which are
evaluated from the fourth order polynomial of the characteristic equation

det
(
λ2M + λC + K

)
= 0, (1.69)

have non-positive real parts, so that the initial deviation is non-increasing with time.
Solving the eigenvalue problem shows that this demands that the magnitude of the
angular velocity ω fulfils

|ω| > 2

√
J1mgL

J3
. (1.70)

The conclusion from the analysis is that the spinning link is stable in a vertical
configuration—where the potential energy is now a maximum—if it is spinning with
a high enough angular velocity around its axis.

It should be obvious from this very simple example that stability of dynamic
motions can lead to many types of responses and analyses. As these problems are
outside the main scope of the present treatise, they will only be briefly mentioned in
Sect. 2.9.2.

Conclusions from this Chapter

One conclusion from this Chapter is that stability issues are common in many engi-
neering branches, and that they are often fundamentally important for the response
of the structure in its operational context. Another conclusion is that the used view-
points on structural stability evaluations are manifold, and based on very different
approaches and contexts. All of these approaches, more or less clearly, see the exis-
tence of unstable equilibria as unexpected deviations from the intended primary
function of the structure or component. This can mean that a structure loses its car-
rying capacity at a limit state, from which forcing must be reduced in order to avoid
failure. The stability can also be lost in connection with a bifurcation state, where
the response mode changes, and alternative equilibrium sequences appear.

Even if loss of stability is often considered as catastrophic for the structure, the
secondary response aspects demand more complex45 analysis models than the com-
monly used ones. These aspects often include some form of non-linearity in the
description of structural response, and in the analysis models. With this increased

45 where the word is used to denote wider, not necessarily more difficult
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complexity in the formulation, secondary equilibrium configurations may exist and
be fully functional, albeit often at the expense of rather large deformations.

The methods described in this Chapter are based on three different viewpoints on
stability. These are related to the existence of a deflected equilibrium, the minimum
of the potential or the existence of vibration frequencies. These viewpoints will in
the following Chapters be brought together, and will be shown to be different views
on the same fundamental situation. The understanding of the relation between these
viewpoints is of major importance for more systematic analyses of the stability of
structural response.

An important conclusion from this Chapter is related to the parametric view on
the considered structural model. Common engineering approaches always tend to
consider the magnitude of forcing as the only parameter, and see loss of stability as
a critical value for this. A more expanded view on stability in a parameter space will
be further utilized in coming Chapters, and give further information on stability and
its sensitivity to assumptions and parameters, which is. for instance, necessary when
structural optimization is attempted.

Tasks for this Chapter

1. Study the same problem as in Sect. 1.2, but with the translational stiffness k in
Fig. 1.1 replaced by a rotational spring of stiffness c (with typical unit Nm/rad.)
resisting the inclination angle at the lower end. Evaluate the critical force Fcr, and
the secondary response. Consider whether there are several models also here.

2. Each of the columns number 3–7 in the example in Fig. 1.9 can be expressed as a
matrix operating on the previous column, and thereby the whole transformation
of yguess to yres as amatrix product. First, find all thesematrices and their product.
Second, use this matrix to perform several iterations to improve the estimate for
the buckling force. Third, re-formulate the matrices to the case with the length
divided into L/16, using the systematic contents. Fourth, formulate another beam
buckling problem along the same ideas.

3. In a software which offers ‘second order’ beam analysis: study a vertical beam of
chosen section—as a plane case—when subjected to a transversal force intensity
of fixed, rather small, magnitude and a variable compressive force. Test a number
of cases and study the shortening and some measure of transversal deflection
as functions of the compressive force. It may be a good start to first evaluate
the Euler buckling force for the column, in order to get some feeling for the
magnitude of interesting compressive forces.

4. Evaluate the critical buckling stress for an ideally elastic thin plate affected by
pure shear along the same lines as for the normal stress in Sect. 1.4. Neglect
the difficulties in practically arranging this, and assume that the shear stress
resultants nxy = nyx are constant over a rectanglewith side lengths a and b = 2a.
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5. Formulate the problem in Sect. 1.2 with consideration of the changing length
of the link, i.e., by adding the term from Eq. (1.2) into Eq. (1.7). Pick a few
different ratios for (E A/kL), and evaluate the response. Note that this model
must be described by two displacement components. Show what happens to the
bifurcation if E A �= ∞.
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Chapter 2
Underlying Theories

This Chapter discusses the necessary theoretical background for more system-
atic treatment of structural stability, and has a focus on the relations between
kinematics, kinetics and energy. These aspects are considered in a sufficiently
wide context for the subsequent computations, and are consistently based on a
displacement form. The treatment is primarily aimed at the approach common
in commercial software for structural analysis, i.e., a Lagrangian reference
frame, the Green-Lagrange strain and the 2nd Piola-Kirchhoff stress, which
give a consistent view when used with the initial structural volume. Full con-
tinuum formulation is used in this Chapter, but the presentation is aimed at
the discretized formulations in the next Chapter. The setting of an engineering
problem in relation to a general continuum is discussed. As stability issues
are most relevant for thin structures, the dimensional reduction from the 3D
continuum to 1D and 2D analysis models is considered. For systematic stabil-
ity investigations based on the Liapunov criterion, the formulation of a strain
energy density in the structural model is a key quantity, together with an almost
trivial kinetic energy; these constitute the basis for the stability criteria used,
and the effects from exterior forcing.

Brief objective of this Chapter

The Chapter discusses kinematic, kinetic and energy concepts needed for the defini-
tion of stability in a 3D continuum setting, aiming at discretized numerical models
for systematic stability investigations in engineering structures.
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2.1 Reference Frame

The previous Chapter describes several cases of engineering stability investigations.
These show that the stability evaluations need more complex formulations than the
linear analyses, as new aspects come into action. These are always, more or less
clearly, connected to displacement in the structure, and very often to secondary
directions ofmovement. Rather than following the basic engineering approachwhere
exterior forcing is the source of all response, with stress in the components as main
result, systematic stability investigations demand descriptions of the displacement
field in the model used.

This Chapter beginswith a brief discussion of continuummechanics. The assump-
tion for this is that a sufficiently macroscopic view can be used for the mechanics of a
structure, in essence averaging the microscopic, atomic events to a scale relevant for
the structural model. The presentation is also aiming at the discretized settings used
in the next Chapter. For wider and deeper descriptions of other aspects of continuum
mechanics, the reader is referred to the vast literature available, e.g., the books by
Malvern (1969) or Gurtin (1982). The notation from the excellent book by Holzapfel
(2000) is almost completely adopted here.

The presentation in this Chapter uses a Lagrangian formulation, as this is almost
exclusively used in structural mechanics software. The implementation of this term is
not absolutely unique,1 but is always based on amaterial reference state: an unstrained
geometry of the structure. All quantities are referred to this reference configuration,
implying for instance that integrated quantities are evaluated over the defined geome-
try, not the deformedone.This also has effects on, e.g., the stress quantities calculated,
which are expressed as force per initial area. This form is also the most tractable one,
when a complex structure is to be defined.

The term unstrained geometry needs some discussion, as this is not necessarily
the same as an unloaded configuration. A counter-example is a balloon, which might
be unstrained for a spherical shape of some radius, but takes another shape when
not pressurized.2 The continuum macroscopic approach also assumes a continuity
of material within the defined reference configuration.

The time dimension is a key aspect in all treatments of mechanics. In the present
treatise, the symbol t always refers to a physical time, with time t = 0 connected to
the reference state, and increasing time to a changing configuration. All problems can
thereby be treated as dynamic, and a time-dependent motion sought for a prescribed
time variation of exterior forcing, given the initial conditions for the model. A special
case is when the forcing is constant over time, and the structure is assumed to be
stationary for this forcing. If the structure is resting at this state, no dynamic effects
are present and the structural model is defined to be in an equilibrium state, which
can be solved. Equilibrium may also be an asymptotic state, in which a constantly
forced structure eventually comes to rest, due to the always present damping. As

1 as it allows both so called Total Lagrangian and Co-rotational discretized forms
2 as the small self-weight introduces some small strain in an equilibrium before the forcing is
introduced
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further elaborated below, the distinction betweenmotion and equilibrium refers to the
physical model considered, but solution methods can also be classified as belonging
to either class.

With assumptions and solution methods clearly defined for the two situations, a
term quasi-static equilibrium is sometimes used, but with different meanings. One
interpretation of the term is a dynamic solution for a time-dependent forcing, but
found through neglecting the dynamic terms of the governing equations.3 The time
is then just a parametric description of the forcing, and the solution a sequence of
equilibrium configurations. Here, a pseudo-time τ is introduced for this parametric
equilibrium setting, where τ is just a measure for the progress along a result graph.
This setting is generalized, and used as the basis for the treatment of solutionmethods
in Chap. 4.

The expressions formulated below are always referred to a Euclidean system,
i.e., a time-independent Cartesian coordinate system, where the mutually orthogonal
unit vectors (e1, e2, e3) form a right-hand system at a fixed origin. This means that
the distinction between covariant and contravariant components is of no interest,
and the metric trivial. A physical vector is in this Chapter always of dimension
3-by-1, containing the components in the Cartesian coordinate directions. This also
implies that the second-order tensor quantities below are always represented by
3-by-3 matrices. Physical vectors are here denoted by bold letters, x, while matrices
representing tensors are denoted by a sans serif font, E.

While Chap. 1 uses a common simplified engineering notation, a systematic and
more formalized notation for all mechanical quantities is used from this Chapter
onwards.

2.2 Kinematics

In order to obtain the necessary quantities in a continuum formulation of a struc-
ture, a description of kinematics is needed for the movement of each point.4 For
the present applications—without cracking or other discontinuities—a point can be
uniquely labelled by its coordinates in the reference configuration, which implies
that functional descriptions are intended with point X as argument.

Figure2.1 shows that an arbitrary point of coordinate X in the reference con-
figuration t = 0 appears at the point x(t) in the current configuration, at time t .
Similar drawings could be made for any point X. For fixed t , this description gives
information on the current configuration, and the complete movement up to this con-
figuration is described as a function of t . The displacement field describes similarly
the displacement of every point X within a region �, and thereby defines the whole
situation also at time t , when referred to its reference configuration.

3 This may be a more or less realistic assumption of ‘slow’ time scales in the forcing
4 where a point denotes a differential amount of material, suitably averaged from the microscopic
scale



40 2 Underlying Theories

Fig. 2.1 Displacement of
one material point X in
reference configuration to its
position x(t) in the current.
� is the considered region,
with � its boundary

The current position of the point—in the same coordinate system—is thereby a
function of its reference coordinates, according to

x = x(X, t), (2.1)

where the definition implies that x(X, 0) = X.
As comments to Fig. 2.1 and the expressions, it is noted that upper-case sym-

bols are consistently used to denote quantities related to the reference configura-
tion, and lower-case ones for the current. It is also noted that the coordinates are
position vectors withX = (X1, X2, X3)

T (or, very commonly,X = (X,Y, Z)T), and
x = (x1, x2, x3)T (or x = (x, y, z)T). The index notation is used in the sequel.

The mechanics developed below can be formulated in terms of current positions
x, but for compatibility with small displacement theory, it is natural to define the dis-
placement. From Fig. 2.1, this is the movement a point has undergone up to time t , as
the difference between its current and reference positions. A point-wise displacement
vector

U(X, t) = x(X, t) − X (2.2)

is written as a function of the reference position X, with U = (U1,U2,U3)
T (or

U = (U, V,W )T, or U = (u, v, w)T). Without argument, U is used to describe the
whole displacement field over the considered region. At a specific t , it does not say
anything about the route taken, but the notion of U as a function of time t implies
that the movement path from the reference to the current position of any point X is
traced, and the current velocity ẋ of the point calculable as

ẋ = ∂x
∂t

(2.3)

for fixed material point X. For the considered region, the velocity field gives the
velocities of all points X. Similarly, the acceleration field can be obtained from one
further time differentiation.
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2.3 Deformation and Strain

Even if the displacement fieldU, including all pointsX in the reference configuration,
can collectively be denoted a deformation of the considered structure, this term is
here specialized to refer to the change of shape. In particular, deformation refers to
the change of a differential volume element around the point X, i.e., a local quantity.

Figure2.2 schematically shows how the neighbourhood of a point X in the refer-
ence configuration is changed into its shape around the point x in the current config-
uration. The arbitrary differential vector dX emanating at X is thereby mapped to dx
at x valid at time t . The figure indicates that the region around the point X in general
is subjected to stretching, shearing, translation and rotation.

Based on the continuity, the local relation between the two vectors can be written

dx = F dX, (2.4)

where the components of F are

Fi j = ∂xi
∂X j

, (2.5)

and vary with X.
The operator F is the deformation gradient tensor, from F = gradX x, with respect

to reference coordinates X, and defines the relation between the vectors dx and dX.
This matrix is obviously of dimension 3-by-3, and is, in general, unsymmetric. Using
Eq. (2.2) to obtain F = gradX (X + U), the components of F are also obtained as

Fi j = ∂Ui

∂X j
+ δi j , (2.6)

with δi j the Kronecker delta operator.5

Fig. 2.2 Deformation of
surroundings to point in the
reference configuration to
the current, cf. Fig. 2.1

5 which is = 1 for i = j , zero otherwise. Here, it just adds a +1 to the diagonal components of
gradX U
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From the, at least in principle, measurable displacement quantities within the
structure, the continued treatment demands quantifiable measures for the interior
effects. Several measures for the deformation are introduced in different contexts.

The perhapsmost obvious effect from the vector dX beingmapped to dx in Fig. 2.2
is that it may change its length. With the Euclidean norm as length measure in the
used coordinate system, the local stretch of a vector dX at point X is written as

�(dX) = ‖dx‖
‖dX‖ ≈ ‖F dX‖

‖dX‖ , (2.7)

where a first-order approximation to the change of length is the commonly used
expression for stretch; it is dependent on the choice of a particular dX.

The deformation gradient F has a major role in describing transformations
between the reference and current states. One particular aspect of this is described
by the Jacobian determinant of the deformation gradient

J = det(F) (2.8)

which describes how a differential volume in the reference state dV = dX1 dX2 dX3

at pointX is magnified into its current volume dv = dx1 dx2 dx3. The Jacobian deter-
minant thereby becomes a scaling factor in several integrated quantities.6

Mechanical effects of the deformation gradient are shown by a polar decomposi-
tion

F = �F′ (2.9)

where � is a local orthogonal rotation matrix, F′ is a symmetric positive definite
matrix, and the latter describes the change of shape of a small volume around a point
X. The simple example in Fig. 2.3 shows how a deformation gradient tensor

F =
⎛
⎝
0.78 −0.24 0
0.96 0.82 0
0 0 1

⎞
⎠ =

⎛
⎝
0.8 −0.6 0
0.6 0.8 0
0 0 1

⎞
⎠

⎛
⎝
1.2 0.3 0
0.3 0.8 0
0 0 1

⎞
⎠ , (2.10)

operating on the initial unit square, is split into a re-scaling and shearing, followed
by a rigid rotation in the plane.7

The tensor F′ contains all the essential information on the deformation of the
material at the considered point, and would give a very convenient strain measure as

E′ = F′ − 1, (2.11)

6 This Jacobian term should not be confused with the Jacobian matrix appearing in the treatment of
non-linear sets of equations in Chap. 4
7 as a second transformation, i.e., written in front of the shape-changing operation
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Fig. 2.3 Polar
decomposition of
deformation gradient tensor
into deformation (re-scaling
and shearing) and rotation.
Arrows indicate the
successive steps as in
Eq. (2.9)

with 1 the identity tensor, which compares the deformed configuration to the unde-
formed.8 Even if F′ is formally obtained as F′ = √

FTF, the evaluation is demanding
the solution of a high order polynomial equation, or a non-linear set of equations.

When used as measure for the deformation at a point, the principal stretches
(�1,�2,�3), which are the eigenvalues of F′, are most commonly used. As physical
lengths are the basis, stretch must always be strictly positive, �i > 0. The � values,
however, say nothing about the direction of the stretches.

Not least for computational convenience, other measures of deformation are more
common. The deformation of any small line element dX emanating at the point X
can also be quantified by the square of the stretches, according to

�2(dX) = ‖dx‖2
‖dX‖2 = dXT (FTF) dX

‖dX‖2 (2.12)

where the tensor product in the numerator is the Green deformation tensor

C = FTF (2.13)

at a specific point and time. The components of C are derived from the components
of F as, with the summation convention for repeated indices,

Ci j = Fki Fkj , (2.14)

This matrix is symmetric, and can always be expressed from the equations above
through Eq. (2.6). It has eigenvalues being the squares of those of F′, i.e., it is
always positive definite. For any rigid translation of the object,9 F, F′ andC give unit

8 with zero representing no deformation
9 with no translation as a special case
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matrices, while for a rigid rotation—or an arbitrary combination of rigid rotations
and translations—F is represented by an orthogonal matrix, while F′ and C remain
unit matrices. The choice ofC as deformation measure is a compromise between the
accurate strain measure in F′ and the algebraic convenience of C.

The above deformation descriptions through F′ or C express the deformation
through scaling measures, where identity represents no deformation. Due to the
orthogonality of �, Eqs. (2.9) and (2.13) show that the Green deformation can also
be written10 C = F′ F′. Equation (2.11) then gives, noting the symmetry of F′ and
E′, that

C = (E′ + 1)(E′ + 1) = 1 + 2E′ + E′ E′. (2.15)

The commonly used Green-Lagrange deformation

E = 1

2

(
FTF − 1

) = 1

2
(C − 1) (2.16)

agrees to first order with the E′ tensor above. It is thereby a relevant measure for the
local deformation, with the interpretation that a zero tensor is no deformation.

The components of E are obtained from Eq. (2.14) as

Ei j = 1

2

(
Fki Fkj − δi j

)
, (2.17)

from which two sample components are

E11 = 1

2

(
2
∂U1

∂X1
+

(
∂U1

∂X1

)2

+
(

∂U2

∂X1

)2

+
(

∂U3

∂X1

)2
)

,

E12 = E21 = 1

2

(
∂U1

∂X2
+ ∂U2

∂X1
+ ∂U1

∂X1

∂U1

∂X2
+ ∂U2

∂X1

∂U2

∂X2
+ ∂U3

∂X1

∂U3

∂X2

)
.

(2.18)

The first and the two first terms, respectively, are the common linear strain expres-
sions.11 The shallow beam bending12 expressions are also recognized in E11, which
in common engineering notation is εx = du

dx + 1
2

(
dw
dx

)2
, with some disregarded

quadratic terms. Selective inclusion of terms from the full tensor has effects on
the resulting expressions, like the missing coupling in Sect. 1.4.

From Eq. (2.16), it is obvious that E shares principal directions, i.e., eigenvectors
with C. The eigenvalues of E are, however, not necessarily positive. The tensor is
easily evaluated, as the discretized setting discussed in Chap. 3 is normally based
on a description of the point-wise displacement. Using Eq. (2.17), the components

10 as F′ is symmetric
11 noting that both the equal E12 and E21 are parts of the shear deformation, often denoted γ12 in
the (e1, e2) plane
12 or the theory of moderate deflection beam bending
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of E are then immediately evaluated. If requested, the components of C follow. The
principal values of C, and the corresponding directions, are obtained from a small
eigenvalue problem.

2.4 Strain Energy

The deformation measures discussed above can serve as main quantities in mechan-
ical formulations. In order for them to do so, the defining descriptions of the con-
stituent material must be based on experiments, where the same measures are used
as parameters. The connection between experimental setups and simulations is often
the strain energy stored in a structure, as this can be equated to the mechanical work
performed by exterior forcing in the clear-cut testing situation.

The strain energy in the deformed structure is thereby a key quantity in analyses.
The total strain energy 
p in the current configuration of a structure is evaluated as
an integral over the whole structural reference volume �, as


p =
∫

�

πp dV (2.19)

where the energy density πp is a point-wise scalar quantity. With the above deforma-
tion quantities, strain energy density can (with a slight abuse of notation) be expressed
as

πp ≡ πC(C) ≡ πE (E), (2.20)

where arguments emphasize that either of the deformation measures are used. One
requirement on the strain energy density is that it is non-negative,with zero value only
when the point and its surrounding is at the reference state or any rigidly displaced
version of this. A set of constitutive constants is implicitly considered in the forms;
these are denoted � below. These parameters, and even the strain density function
itself, may vary with X. Often this is related to subregions of the whole structure,
cf. Sect. 2.5.

A few different constitutive equations for hyper-elastic materials are discussed
below, but many more are used in literature. No complete review is given here, but
an interesting approach tomaterialmodelling is given byCrespo et al. (2017).Models
for biological materials are given by Fung (1993) and Holzapfel et al. (2000).

2.4.1 Stress

A strain energy density for the strained material is here the defining constitutive
relation. When defining the strain energy density, a stress measure follows automat-
ically from the requirement that stress, i.e., an expression for interior force must be
a conjugated quantity to the used deformation measure.
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Of particular interest in the present applications to stability of elastic structures—
where continuity in the material deformation is assumed—is to express the stress as
a 2nd Piola-Kirchhoff stress, described by the tensor or matrix S. This stress can be
obtained in a straight-forward manner from the strain energy density expressions as
either of the two forms

S = 2
dπC(C)

dC
or S = dπE (E)

dE
. (2.21)

The derivatives of the strain energy density expressions are evaluated formally with
respect to the components of the respective deformation tensor.

The main argument for using the 2nd Piola-Kirchhoff stress tensor as local force
intensity measure in computations is that this stress is energy conjugate to the defor-
mation tensors C and E, which were in Sect. 2.3 argued to be convenient in com-
putations; this defines a natural connection between these tensors. The symmetry
properties ofC and E, as well as of S, are also favorable for the numerical treatment.

From the viewpoint introduced, stress comes out as a consequence of the constitu-
tive material description, rather than as the quantities causing the interior behaviour
of the material. In several formulations of the mechanical problem, the stress under
forcing is not even interesting except in the introduction of boundary traction on
the structure, cf. Sect. 2.5.2. Whichever view is adopted, the 2nd Piola-Kirchhoff
stress components are measured as force per unit of reference configuration area.
The force intensities are also given in relation to initial coordinate directions, even
if the geometry is extensively deformed by the forcing. For many—but, definitely
not all—common engineering settings, this stress measure is also easily related to
the methods used for description of exterior forcing, one reason being the relation to
initial, undeformed geometry.

With the approach in Eq. (2.21), the stress components have another notation than
in large parts of engineering literature. According to Fig. 2.4, the stress components
have as their first index the direction of force, and as second the plane they are acting
on13; other conventions are used in many engineering treatises. The figure shows the
stress components acting on an (e1, e2) plane section of the continuum, and the stress
components are represented as arrows at the mid-sides of the area. It is well-known
that shear stress components must be pair-wise equal, e.g., S21 = S12, or the volume
is not in moment equilibrium; S is therefore symmetric. This also implies a need for
a certain symmetry of πp.

Other stress measures, like the Cauchy stress tensor σ—by definition given as
force per unit of deformed area14—are related to other measures of strain, but can
always be evaluated from a transformation of the components of S, as the two stress
tensors at a point are related by

S = J F−1σ F−T. (2.22)

13 with the plane defined by its normal direction
14 Cauchy stress is by Nguyen (2000) described as a generalized pressure, in the sense that it can
give the interior force intensity for any plane through the considered point
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Fig. 2.4 Positive stress
components on plane
projection of continuum,
with component indexing
according to Holzapfel
(2000), deviating from
common engineering
notation

Incremental stress relation

For the further development, Eq. (2.21) implies that increments in strain energy
density during a small increment in strain is

dπC = 1

2
S:dC or dπE = S:dE (2.23)

where the double contraction symbol : for the two tensors is used to denote an addition
of all products of the corresponding components. In the further development, an
important quantity is also the differential constitutive tensor in, e.g.,

dS = K dE, (2.24)

which is derived from the strain energy, and whereK is a fourth order tensor, relating
increments in stress and strain. Except for linearly elastic materials, the tensor is
dependent on the current strain state.

Isotropic stress formulation

With respect to the intended applications below, an assumption of—not only a contin-
uous, but also—an isotropic material reflects the primary interest. That the material
has the sameproperties in all directions gives implications on the strain energydensity
πp, which must be possible to formulate from the three invariants of the deformation.
These are the polynomial coefficients of κ in the determinant of the tensor (E − κ1)

for the Green-Lagrange strain E. The invariants are expanded as

I1(E) = E11 + E22 + E33

I2(E) = E11E22 + E22E33 + E33E11 − E12E21 − E23E32 − E31E13

I3(E) = E11(E22E33 − E23E32) + E12(E23E31 − E21E33)

+ E13(E21E32 − E22E31).

(2.25)
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With an assumption of isotropy, it is also possible to define the strain energy as a
function of the stretches, i.e.,

πp ≡ π�(�1,�2,�3), (2.26)

in addition to the two forms in Eq. (2.20).
The conclusion from this section is that stress at any point of the considered region

can always be expressed from the displacement. The stress is evaluated through the
chosen strain measure and a (matching) constitutive strain energy density function.

2.4.2 Hyper-Elastic Materials

Many different classes of material descriptions are used in engineering. The present
treatise consistently uses a strain energy density as the constitutive material model,
i.e., deals with hyper-elastic materials.15 The definition through a strain energy den-
sity implies that the materials are history-independent, as the energy is completely
defined by current strains.

Linearly elastic material

A St Venant-Kirchhoff material is a linearly elastic model, with strain energy density
stated from the Green-Lagrange deformation as

πE (E) = λ

2
(I1(E))

2 − μ
(
2I2(E) − (I1(E))2

)
(2.27)

The two constitutive parameters are the Lamé constants (λ, μ), which are connected
to the common elastic parameters (Em, νm) through

λ = Emνm

(1 + νm)(1 − 2νm)
, μ = Em

2(1 + νm)
. (2.28)

Formal differentiation of πE (E) with respect to the components of E gives 2nd
Piola-Kirchhoff stress in S, with the examples

S11 =λ(E11 + E22 + E33) + 2μE11,

S12 =2μE12,
(2.29)

15 albeit not necessarily linearly elastic
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noting that16 E21 = E12. The expressions for the other seven components are obvi-
ously similar in form, due to the isotropic and symmetric assumptions.

Introducing a simple free 1D stress state,17 for which S22 = S33 = 0, and all shear
components of E zero, gives

S11 = Em E11,
dS11
dE11

|E11=0 = Em . (2.30)

One also finds from Eq. (2.29)2 that

dS12
dE12

|E12=0 = 2μ (2.31)

agreeing with common expressions for initial (linear) strain. The expressions in
Eq. (2.29) are valid for any level of strain, even if the strain is no longer necessarily
linear in the physical elongations, due to the quadratic terms in Eq. (2.18).

Incompressible Mooney-Rivlin material

A common Mooney-Rivlin material model uses two constitutive constants and the
invariants of the Green deformation C in a strain energy density

πC(C) = c1 (I1(C) − 3) + c2 (I2(C) − 3) (2.32)

with two constitutive parameters (c1, c2). An incompressibility assumption is often
enforced through a Lagrange multiplier p, which is interpreted as a hydrostatic pres-
sure, to be conjugated to I3. The augmented strain energy expression to differentiate
is

LC(C) = πC(C) − p

2
(I3 − 1). (2.33)

A formal differentiation of this LC with respect to the components of C and p, and
a specialization to the same one-component cases as above gives, for instance,

S11 = 2

(
C3/2
11 − 1

) (
c1

√
C11 + c2

)

C2
11

(2.34)

where S22 = S33 = 0 have been introduced as restrictions to the general expressions,
and all shear strain components equal zero. The expression is non-linear, i.e., stress

16 and that common engineering views relate the shear stress to the shear angle, which is γ12 =
E12 + E21, through the shear modulus G = μ
17 which gives the orthogonal normal strain components E22 = E33 = −νE11
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Fig. 2.5 Examples of 1D
stress, evaluated for
incompressible
Mooney-Rivlin material
model

is not proportional to strain. Figure2.5 gives examples of evaluations of the stress
component S11 as function of the strain component C11 for three parametric cases
(c1, c2). The effects of the non-linearity is also obvious from, e.g., the example in
Sect. 1.8, where an equi-biaxial situation C11 = C22, S33 = 0 is analysed.

Differentiation of Eq. (2.34) leads to an initial stiffness for 1D strain as

dS11
dC11

|C11=1 = 3(c1 + c2), (2.35)

or, noting that dC11 = 2dE11, and that C11 = 1 corresponds to E11 = 0,

dS11
dE11

|E11=0 = 6(c1 + c2). (2.36)

Similar treatment of the shear component C12, with the restrictions C21 = C12,
and Cii = 1 for all i , gives, around C12 = 0,

dS12
dE12

|E12=0 = 2
dS12
dC12

|C12=0 = 4(c1 + c2), (2.37)

identifying the initial shear stiffness of the material model as μ = 2(c1 + c2).
The expressions for axial and shear stress in the twomaterial models above are not

completely comparable, as they are based on different assumptions. The expressions
for initial stiffness, however, show that the incompressibility condition inEqs. (2.35)–
(2.37) corresponds to νm = 1

2 in Eqs. (2.29)–(2.31). This is, however, not a general
relation between the two formulations.

Compared to the StVenant-Kirchhoffmaterial, theMooney-Rivlinmaterialmodel
can, at least with some choices of the constitutive parameters, give an asymptotic
relation between the stress and strain, discussed in relation to Eq. (1.57). The model
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can also give unexpected and non-intuitive results for special strain situations, as
shown by Eriksson and Nordmark (2014).

Other material models

A more limited version of the Mooney-Rivlin model is the one-parameter neo-
Hookean material model, which contains only the first term of Eq. (2.32), and thus
uses c1 = μ

2 , with μ the linearized shear modulus at small strain; the model is not
identical to a linearly elastic model when strain is not small.

Many other hyper-elastic material models have also been developed for more or
less particular applications. A highly general model is the Ogden material model,
which can be adjusted by a large number of parameters. The model uses the principal
stretches, and is thereby only useful within isotropic assumptions. Comparisons
between different models in different contexts are frequent in literature.

2.5 Continuum Mechanics Problems

The continuum mechanical problem setting is commonly shown by the simplified
schematic Fig. 2.6, where the arbitrary shape is indicating the generality of the for-
mulation. This section discusses how general problems can be formulated in terms
of interior force residual and boundary conditions. How the general forms can be
specialized to structural problems is further elaborated in the context of discretized
settings in Chap. 3.

Figure2.6 shows in its top part a region � in its reference configuration, with
the boundary �. The interior of the region is affected by a body force field B. The
boundary is divided into two distinct, but not necessarily continuous, parts, where

Fig. 2.6 Continuum
equilibrium, with region and
boundary parts, body force,
traction and displacement
boundary conditions.
Differential volume for
residual force expressions



52 2 Underlying Theories

the displacement U is known on part �U , and the traction T is known on part �T .18

Together they form the whole of �. The important conclusion is that traction is
unknown in�U where displacement is prescribed,while the displacement is unknown
on �T , where traction is prescribed.19 The boundary conditions are further discussed
in Sect. 2.5.2.

It is noted that, although drawn in Fig. 2.6 as a plane arbitrary figure, the region is
always a region of 3D space, and the boundary—shown as a circumferential line—
consists of a surface. In general, the setting needs an adaptation to the structure
considered in an engineering problem. This is the topic of Sect. 2.5.5.

2.5.1 Interior Forces

Within the region �, there exists a body force20 with an intensity vector field B, as
shown by the bottom part of Fig. 2.6. This is expressed as dependent on the reference
coordinates, and can come from different sources. A common case in engineering
problems is related to gravity, in which case the material density ρX

21 and the gravity
acceleration define the body force intensity and direction.

Formally, this is a very general setting of the forcing within the region, the limita-
tion being that no point couple intensities are considered. The interior of the boundary
value problem studies the differential volume dV , where stress components around
it must relate to the body force intensity.

Even if the problem setting from Fig. 2.6 is the desired final form, the fundamental
basis for the mechanical formulations is more easily described in the current configu-
ration. All appearing quantities are then transformed into their forms in the reference
configuration, essentially by using the gradient F and the Jacobian determinant J .

The conservation of mass leads to the conditions that a density ρx in the current
configuration must fulfil

ρx dv = ρX dV or ρx = 1

J
ρX (2.38)

in relation to the reference density ρX and the corresponding volume dV , when J is
the Jacobian determinant from Eq. (2.8).

For interior force, i.e., stress, an (x1, x2) plane projection of the volume dv =
dx1dx2dx3 is shown in Fig. 2.7, with the visible Cauchy stress components, marked
as representative arrows, and the stress component indices from Fig. 2.4. With the

18 The term ‘traction’ is here only used for the situations at the boundary of the region, i.e., ‘boundary
traction’.
19 with zero boundary traction, a free boundary, as a very common special case
20 which is, as stated above, seen as an exterior forcing, although it acts within the region
21 Subindex X is used to denote a quantity related to the reference configuration.
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Fig. 2.7 Current view of
continuum equilibrium. The
rectangle has an
out-of-drawing thickness
dx3. Arrows represent stress
value at side midpoint and
body force intensity at area
midpoint

body force22 represented by the mid-point intensity,23 this figure fully defines the
interior mechanical situation.

No direct coupling exists between the indicated volume elements dV and dv in
Figs. 2.6 and 2.7, respectively. Both are regular hexahedra in their respective config-
urations, and they contain, respectively, a material point X and its current position
x, but otherwise the volumes are not related. Careful transformations of all relevant
quantities must therefore be introduced between the views, cf. Eq. (2.22).

The conservation of linear momentum introduces the interior forces for the con-
sidered volume dv, and relates this to the velocity of the point currently at the position
x. Consideration of the e1 components of force, which are the only ones denoted in
Fig. 2.7, shows that contributions come from the body force intensity, but also the
differences in stress on opposite sides of the area. Considering the area on which the
stress components act, the total force in the x1 direction come from dσ11 · dx2dx3 and
dσ12 · dx1dx3, but also similarly from the out-of-plane component as dσ13 · dx1dx2.
The body force contribution to the x1 component of force is b1 · dx1dx2dx3.

When introducing for the stress differentials the derivatives

dσ11 = ∂σ11

∂x1
· dx1, dσ12 = ∂σ12

∂x2
· dx2, dσ13 = ∂σ13

∂x3
· dx3, (2.39)

which are correct to first order, the summed force component in the x1 direction
acting in and on the volume dv can be written as a residual force intensity

r1 = dv

(
b1 + ∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3

)
. (2.40)

The e2 and e3 components of resultant force on dv are obtained similarly. The
three component equations, together given as

r = (b + divxσ) dv, (2.41)

22 considered as an exterior forcing, but part of the interior force residual
23 correct to first order for a continuously variable intensity
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describe the full mechanical situation in the differential current volume, and give a
general basis for equilibrium or motion in Sect. 2.8 below. The divergence is here
related to the spatial coordinates x.

The same plane figure is used to study the shear stress relation. With origin in the
area midpoint, the linear body force variations

bx = bx0 + bx1x + bx2y and by = by0 + by1x + by2y (2.42)

give an equation for moment equilibrium of the area element as

(∫ ∫ (
byx − bx y

) · dx1dx2 − σ12dx1 · dx2 + σ21dx2 · dx1
)

· dx3 = 0. (2.43)

As the contribution from thebody force is oneorder lower in the differentialmeasures,
the symmetry in shear stress σ21 = σ12 must be valid also in this case.

Although most easily visualized in the current configuration as in Fig. 2.7, it is for
the present purpose favourable to express the point-wise interior forces in quantities
referring to the initial reference configuration. Transformation of the quantities in
Eq. (2.41) verifies that a residual force field is defined by

R = (B + divX (FS)) dV, (2.44)

where the body force B and the 2nd Piola-Kirchhoff stress tensor S at a point X
are related to a differential volume dV at point X and time t . In Eq. (2.44), the
subindex on the divergence operator refers to the reference coordinate components.
The expression in Eq. (2.44) is used in the further treatment.

In the transformation, F transforms the stress in S to the global coordinate direc-
tions,24 in which the body force is defined, while the body force intensities in refer-
ence and current configurations are related by

b = 1

J
B. (2.45)

2.5.2 Boundary Traction

At the boundary of the considered region, the interior stress state becomes a bound-
ary traction. At each point of the boundary, the traction intensity is a general 3D
vector, which can be resolved into one component normal to the boundary, and two
orthogonal tangential components.

24 The tensor product FS is the 1st Piola-Kirchhoff stress tensor P, often used in formulations but
not trivial to work with, as it does not match any attractive conjugate strain measure.



2.5 Continuum Mechanics Problems 55

A boundary traction vector is obtained from the Cauchy stress as

t(n) = σ n (2.46)

giving t as a vector connected to the boundary point x, when n is the outwards
unit normal vector, defining the current boundary. For the 2nd Piola-Kirchhoff stress
tensor S, a similar transformation gives

T(N) = (FS)N (2.47)

where N is the outwards unit normal vector to the boundary point X. As the nor-
mals are variable along the boundary, traction is a function of positions x and X, or
symbolically

t ≡ t(x), T ≡ T(X), (2.48)

with the implicit definition of n = n(x) and N = N(X).
The traction in T is measured in the global axis directions, and related to one

unit of initial area. The traction vectors t and T share the same direction, but are
differently scaled, with the condition da t = dAT, where

da = J ‖ F−TN ‖ dA (2.49)

with da or dA used in any boundary integral.

Two examples

The example inFig. 2.8a uses the deformationgradientF fromEq. (2.10) to operate on
a unit square; the Jacobian determinant is evaluated as J = 0.87. For any point on the
edge with normal N = (1, 0, 0)T, the single stress component S11 = 2 corresponds
to a force intensity vector f1 = SN = (2, 0, 0)T in relation to the undeformed con-
figuration, and a traction vector T1 = F f1 = (1.56, 1.92, 0)T on the corresponding
deformed edge. This traction vector is not normal to the edge. A single stress compo-
nent S21 = 1 at the same point corresponds to a vector f2 in relation to the material
configuration, and a traction vector T2 = (−0.24, 0.82, 0)T, which acts along the
deformed edge. The resulting traction vectors from the two stress components are
no longer orthogonal (as f1 and f2 are), due to the shearing involved in F. If the
stress components are constant on the whole edge, their resultant forces are obtained
through a multiplication by the area of the edge in the reference configuration. One
also calculates that the relation between initial and deformed areas for this edge are
da = 0.8544 dA, which can be used to evaluate the traction in deformed coordinates.

Figure2.8b similarly shows how a stress component S11 represents a horizontal
force intensity vector f3 in an initially horizontal bar, but also can give a vertical com-
ponent in the traction vector T3 , when the bar undergoes a finite vertical deflection.
With the quantities
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Fig. 2.8 Traction component from 2nd Piola-Kirchhoff stress components. a Two stress compo-
nents in example from Fig. 2.3. b Axial stress in finite deflection of bar

S =
⎛
⎝
S11 0 0
0 0 0
0 0 0

⎞
⎠ , F =

⎛
⎝

1 0 0
δ/L 1 0
0 0 1

⎞
⎠ , N =

⎛
⎝
1
0
0

⎞
⎠ , (2.50)

the traction vector at the right end is

T3 = (S11 , S11δ/L , 0)T , (2.51)

which is to be multiplied by the reference area to yield the axial force resultant. With
the axial strain component25 E11 = 1

2 (δ/L)2, the vertical force component at the
right end is related to ≈ (δ/L)3, if the constitutive relation is approximately linear.

2.5.3 Boundary Conditions

While the above expressions define the interior behaviour of the region, the problem
setting also needs boundary conditions. Primarily, the stress has to be matched to the
traction boundary conditions on the boundary part �T in Fig. 2.6. These prescribe
either of the traction vectors to

t − t = 0, or T − T = 0, (2.52)

where t or T defines the condition, expressed point-wise in relation to current or
initial configurations. The over-bar is here used to denote a prescribed quantity. A
zero prescribed traction on parts of �T , i.e., a stress-free boundary part is a common

25 immediately calculable from F through Eq. (2.16)
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special case. Through Eq. (2.52), the traction boundary conditions can be interpreted
as indirect boundary conditions for U on the boundary part �T .

An example

An initially horizontal bar in Fig. 2.9a, with reference length L and transversal width
w, is affected by forcing, and deformed to a current configuration described by δ,
cf. Fig. 2.8b. Dependent on the origin of the forcing, the representation as body force
and boundary traction in relation to the reference configuration needs consideration.
Key aspects are whether the forcing is constant in direction, or follows the displace-
ment of the component, and whether it is measured in relation to the reference or
deformed geometry. The subfigures show typical cases of forcing to the left, and
their representations in the reference configuration to the right.

If the body force comes from gravity effects (downwards), as in subfigure (a), the
total vertical force at all times is given by the intensity multiplied by the volume of
the bar, as the forcing direction is well-defined. The body force intensity, constant
over the region is

B = (0,−ρX g, 0)
T, (2.53)

based on material density ρX measured in the reference volume,26 and the grav-
ity acceleration. The total vertical force is obtained by multiplication by reference
volume. If the body force has another origin, this may lead to other relations.

Fig. 2.9 Schematic example
of exterior forcing for 2D
model, and its representation
in relation to reference
volume. a Body force
intensity from gravity. b
Traction prescribed in
reference configuration. c
Pressure prescribed in
current configuration

26 but denoted to the left as the density ρx , in relation to current volume
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The forcing in subfigure (b) implies that the forcing on the top surface is always
acting downwards, and is rather measured as a total force F ; this typically corre-
sponds to the case when the structure carries gravity forces from some supported
objects. The total force is distributed as a traction27 for this case

T(b) = (0,− F

wL
, 0)T, (2.54)

It is obvious that the total traction force, after integration over the reference top
surface area becomes the expected F .

Subfigure (c) shows a prescribed pressure p acting on the bar. The pressure is
normal to the bar direction, and acting on the deformed length. Acting on a boundary
surface with reference normal direction N = e2, the corresponding traction vector
can be described as

T(c) = −pJF−TN, (2.55)

where J measures the overall deformation, and F−TN is the vector to which the
reference configuration unit vector e2 is deformed; it is no longer a unit vector. The
transformation in the second component can be re-written as

JF−TN =
(

∂x
∂X3

× ∂x
∂X1

)
. (2.56)

For the case in Fig. 2.8b, this implies that the pressure forcing is represented as a
prescribed traction with

T(c) = p

(
δ

L
,−1, 0

)T

. (2.57)

The total force is also here obtained fromamultiplicationwith the initial upper surface
area Lw. In numbers, with L = 3m, δ = 0.2m, p = 4 kPa, the results become J =
1,F−Te2 = (−0.067, 1, 0)T,T(c) = (0.267,−4, 0)T kPa.Multiplied by the initial top
surface area Lw, the total force acting is w · (0.8,−12, 0)T kN/m, with components
obtained from the pressure multiplied by the exposed areas in the three coordinate
planes, respectively.

A final comment on subfigure (c) is that the deflection δ is assumed as known, and
not a response to the pressure. This implies that some form of iteration is commonly
needed for pressure forcing.

27 It is assumed that the top surface width does not change from deformation
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2.5.4 Displacement Basis

The discussion sofar has only considered interior stress and boundary traction. For
instance, a static equilibrium state is identified from Eq. (2.44) with R = 0 for any
point in the region. Even if this problem might seem solvable from interior equi-
librium and boundary traction, a coupling always exists between the two fields dis-
placement and stress. The displacement field U is therefore also part of a solution.

The stress is always possible to express from the displacement, through a defor-
mation measure and the form of the strain energy density. This implies that the stress
tensor S can be evaluated for any pointX within the region, from E, which is depen-
dent on U, and a set of constitutive parameters �, which are inherently connected to
the strain energy density form. The opposite is not necessarily true, due to the possi-
bility for rigid body motions under identical stress. It is also obvious that boundary
traction can be evaluated from Eq. (2.47), with F and S coming from the displace-
ment field U, the constitutive parameters � and the normal direction N for all points
X on the boundary of the region.

This implies that it is possible to build a problem definition on the displacement
field only. This is the sole method promoted here, although other, e.g., mixed formu-
lations are sometimes used to advantage.

2.5.5 Structural Regions

In relation to any engineering problem, the above setting needs some comments and
clarifications. The more practical setting can be described by Fig. 2.10, which is a
still schematic but elaborated version of Fig. 2.6. The figuremust again be interpreted
as a general 3D region, but it is drawn to emphasize that a considered structure28 is
normally composed of several distinct parts �e, each with an intended function and
a specific shape. The figure also aims to emphasize that the subregions of the whole
may—ormight not—consist of differentmaterials, with their respective descriptions.
Holes in the structure lead to new segments of boundary, which contribute to �T or
�U . For each differential volume dV , the expressions above are fully valid.

The composition of several subregions �e to one whole focusses additional inter-
est on the boundaries between the subregions. As the discussion above has assumed
that the region is continuous, without cracks, overlaps or other localized effects, the
displacement field must be continuous across the subregion boundaries. This is a
foundation for the discretized structural models discussed in Chap. 3. Regarding the
stress, the traction must also be continuous over these subregion boundaries, but
stress components in their tangential plane may be discontinuous.

28 “A structure is an arrangement and organization of interrelated elements in a material object or
system, or the object or system so organized”, https://en.wikipedia.org/wiki/Structure as of 2021-
08-02 (Giving a quote to OED)

https://en.wikipedia.org/wiki/Structure
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Fig. 2.10 Structural
equilibrium

2.5.6 Dimensional Reduction

From the general descriptions of a 3D solid region, structural problems are often
modelled through a dimensional reduction, where the geometry of the region or the
considered forcing allow simplified forms. Typically, this means that the geometry
is of lower dimension: the models are approximations of the real region with one
or two material dimensions approaching zero. This is further discussed in Sect. 3.4,
in relation to discretized analysis models, where an important distinction is whether
the dimensions are small but finite—in shells and beams, when interior force has a
simple variation over the small dimension(s)—or can be assumed to be vanishing—in
membranes and bars, when interior force is constant over the small dimensions.

When using these reduced views, like bar, beam or plate models, quantities are
evaluated in integral form over omitted spatial dimensions. From this follows that
the models use resultants of the interior stress, e.g., as normal force resultants or
moment resultants as main problem variables.29 For a straight beam, where two size
parameters are significantly smaller than the length direction, the stress on a fictitious
section of the beam can be integrated to three force and three moment resultants.30

Also, boundary traction is affected when the problem is reduced by one or two
dimensions. The distribution of the traction component over the integrated directions
is thereby based on some assumptions. For instance, a downwards pressure on a
horizontal beam is implicitly integrated over the top surface width—and the gravity
intensity over the beam section area—to a force intensity per length unit.

The integral forms of the fundamental equations for the general 3D solid also
affect the defining equations for the problem setting. In particular, this means that
point forces and point supports can be introduced in the simplified models, even if
such conditions can not exist in the analytical continuum descriptions; only force
intensities and boundary segments of finite areas with prescribed displacement are
legal in the full form.This also has implications in the interpretation of traction bound-
ary conditions, evaluated fromsingle or double integrals over the reduceddimensions.

29 corresponding to translations and rotations
30 for the 3D case; in 2D, there are two force and one moment components
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2.6 Energy, Work and Power

Section 2.4 gives a rather broad discussion on the strain energy, which describes the
interior response to forcing. This is defined as a density for small volume elements,
and utilizes the local deformation and a constitutive expression, which implicitly
defines the interior stress from the strain. The strain energy is a potential in the
sense that it represents energy stored in the structure. The present section discusses
other forms of energy, potential, work and power in and on the structure. These are
necessary to consider in the equilibrium and stability analyses in coming sections.
For these, the identification of the problem region in Sect. 2.5 is a pre-requisite, in
particular the meanings of the region and its boundary.

2.6.1 Kinetic Energy

When movements occur in the structure, not only the strain energy but also the
kinetic energy must be considered. This is formulated from each differential volume
element dV of the region, cf. Fig. 2.6, and uses the current velocity of the element.
Based on the reference configuration, the velocity at a point is U̇ = dU

dt , i.e., a vector
in Cartesian space, with the superposed dot denoting a time differentiation.31 The
velocity field is dependent on X and t .

Corresponding to the kinetic energy in a particle ofmassm, i.e.,
k = 1
2mv2, with

v the speed32 of the particle, the general expression for the kinetic energy density in
a unit volume at point X is

πk = 1

2
ρX U̇ • U̇, (2.58)

where the current velocity field U̇ and the densityρX are related to the initial reference
configuration. The full dot denotes a scalar product of the two vectors. The total
kinetic energy is integrated over the whole reference region


k =
∫

�

πk dV, (2.59)

and is obviously non-negative.

31 It could equally well be stated in ẋ = U̇, due to the constant X in Eq. (2.2).
32 Speed is here used to denote the magnitude, or norm, of the velocity vector.



62 2 Underlying Theories

Mechanical energy

In motion problems, the mechanical energy is the sum of kinetic and strain energies,
or


m = 
k + 
p, (2.60)

and is considered a fundament in many analysis models. The energy may—as in
the oscillation of a linear springed mass without exterior forcing—change between
kinetic and strain energy, but the sum


m = const. or
d

dt

(

k + 
p

) = 0. (2.61)

The latter part of Eq. (2.61) can be re-organized, using Eqs. (2.58)–(2.59), as

d

dt

k =

∫

�

ρX U̇ • Ü dV = − d

dt

p = Pp, (2.62)

relating the time rate of kinetic energy to the interior strain power Pp, which is also
the time derivative of released strain energy.

For a small time increment dt , this gives the increment in kinetic energy as

d
k =
∫

�

ρX Ü • dU dV = Pp dt = dWp = −d
p, (2.63)

when dU = dt U̇ for the small increment, and shows that incremental positive strain
work dWp gives an increment to 
k at the cost of a decreasing 
p. This statement
is based on the assumption that no exterior force affects the system.33

2.6.2 Strain Energy

In Eq. (2.62), the strain power Pp is the negative of the time rate of strain energy,
which, according to Eqs. (2.19) and (2.23), can be written

Pp = − d

dt

p = −

∫

�

S : Ė dV, (2.64)

when a strain energy 
p is defined, Ė is the strain rate, i.e., the time differential
of the Green-Lagrange deformation tensor, and S the current 2nd Piola-Kirchhoff

33 noting carefully that the mass appearing in the oscillation equation is the inertia, not related to a
gravity force; thus, no exterior force affects the system.
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stress tensor.34 The strain rate is here related to the velocity field U̇, but also the
displacement field U.

The strain work during a small incremental displacement dU,35 which creates
strain increments dE in time dt is

dWp = −
∫

�

S:dE dV . (2.65)

Even if the basis for this expression was taken in the strain energy in Eq. (2.64),
the expression in Eq. (2.65) is always valid as long as current stress tensor S can be
evaluated, with or without history dependence, i.e., also for non-elastic situations.

From strain energy density πp, which makes S derivable from the strain E, a
positive work done by the stress corresponds to a loss of strain energy, according to

dWp = −d
p = −
∫

�

gradUπp • dU dV, (2.66)

where gradU differentiates point-wise with respect to the displacement.

2.6.3 Exterior Forcing

A simplistic view on a structure identifies the interior stress and velocity fields in the
region as effects of the exterior forcing through body force intensity and boundary
traction. A fundamental aspect of forcing is whether it can be considered as con-
servative, in which case it can be described through an exterior potential.36 This is
here handled as a contribution to the total energy, even if the potential terms are
somewhat debatable in a thermomechanics setting. The discussion below also treats
non-conservative forcing,which is not possible to represent by a potential expression.

An example

The basic expressions are demonstrated by a special case of conservative forcing: the
potential37 of a massm lifted a distance dy = h in a gravitational field of acceleration
g, well-known as

34 Equation (2.64) could equally well have been written with any other energy-conjugated pair of
strain rate and stress
35 and at a current configuration U, this distinction only being necessary when the strain measure
is not linear in displacement
36 even if this might not be the preferable way for describing it
37 This treatise uses the term potential for energy terms related to exterior forcing, even if the term
potential energy is frequently used.
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Fig. 2.11 Force potential
and work. a Mass particle in
a gravitational field. b Area
boundary element affected
by boundary traction. c
Volume element with body
force


con = −Fy and d
con = −Fdy = mgh. (2.67)

where the subindex emphasizes the conservative case. The gravity forcing is here
measured in the direction of positive y, cf. Fig. 2.11a. With an arbitrary zero level,
the expression is given as an increment of potential

dWcon = F dy = −d
con. (2.68)

with the work positive when amovement follows the acting force, corresponding to a
loss of potential.Although suggesting a small additional displacement, the expression
is valid for any dy in this particular case.

The exterior power from the forcing is the time derivative of work, or

Pcon = F ẏ = − d

dt

con, (2.69)

The close relationship between power, work and potential is based on the con-
servative force system and displacement-independent gravity force. The relations
shown by the simple example have wide generality for conservative problems.

General forcing

When acting force can not be assumed as conservative, the incremental work and
power from forcing can still be formulated for small displacement increments dU =
dt U̇. Then, work is performed by the exterior boundary traction acting on the region,
according to Fig. 2.11b.38 A differential area dA at point X on the boundary part �T

is affected by a traction T, implicitly using that the normalN is unique at a boundary
point X,39 cf. Eq. (2.47). At a displacement U, the incremental work done by the
traction during an increment dU gives the total traction work increment

38 where it is again noted that the plane figure represents a volume, and the circumference thereby
denotes a surface
39 but possibly discontinuous at a corner point
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dWt =
∫

�T

T • dU dA, (2.70)

effectively considering the part of the boundary where neither dU nor T is zero.
Exterior forcing in the form of body force intensity is shown by Fig. 2.11c. With

a differential volume dV around point X affected by a body force intensity B, the
work during a small displacement dU is

dWb =
∫

�

B • dU dV . (2.71)

The total exterior work affecting the considered region during a small incremental
displacement field dU from a configurationwithU is the sum of the two contributions

dWext = dWt + dWb. (2.72)

Consequently, the exterior power is

Pext = Pt + Pb =
∫

�T

T • U̇ dA +
∫

�

B • U̇ dV, (2.73)

which is an instantaneous expression, valid at time t .
The expressions in Eqs. (2.72) and (2.73) are valid for any exterior forcing, but can

sometimes be more easily handled for conservative forcing.40 The work and power
terms are then split into two parts

dWext = dWcon + dWnon and Pext = Pcon + Pnon (2.74)

With both conservative and non-conservative forcing in a structuralmodel, bound-
ary traction and body force are expressed as

T = Tcon + Tnon; B = Bcon + Bnon, (2.75)

and incremental work and power are expressed as

Pext =Pcon +
∫

�T

Tnon • U̇ dA +
∫

�

Bnon • U̇ dV

dWext =dWcon +
∫

�T

Tnon • dU dA +
∫

�

Bnon • dU dV .

(2.76)

40 which is a very common situation in structural analyses
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Conservative forcing

Systems affected by conservative forcing are important special cases of structural
mechanics, for which forcing is41 expressed by a potential. This implies that the
work done by a force during a movement is only dependent on its initial and final
positions. The corresponding displacement of the acting force is measured by the
displacement field U.

A potential for the conservative exterior forcing is often described as


con =
∫

�T

πtdA +
∫

�

πbdV, (2.77)

where the densities represent the contributions to the potential at relevant points X.
The exterior potential contributions on dA and dV allow arbitrary expressions, but
these are often rather simple forms involvingU,T andB. A potential also sometimes
gives a convenient method to express more global forcing classes. As an example,
an interiorly pressurized object gives a potential according to


con = pV, (2.78)

with p the over-pressure and V the current volume.
The exterior work from conservative forcing is

dWcon = −d
con = −
∫

�T

gradUπt • dU dA −
∫

�

gradUπb • dU dV (2.79)

during a small incremental displacement dU, while the exterior power is

Pcon = − d

dt

con = −

∫

�T

gradUπt • U̇ dA −
∫

�

gradUπb • U̇ dV (2.80)

—special cases of the general Eqs. (2.72) and (2.73).

Displacement-independent forcing

A further, very common, specialization of the conservative system is when the acting
forcing is displacement-independent, i.e., when the potential 
con of exterior force
is linear in the displacement. This appears for forcing which is fixed in orientation
and material region of action. The typical case is when a mechanical structure is

41 or, can be
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designed to be essentially geometrically unchanged under forcing. The assumption
is not valid for, e.g., pressure acting on the spatial configuration of a deformed object.

In this special case, the exterior potential of the boundary traction in Fig. 2.11b and
the body force intensity in Fig. 2.11c is thereby, with a generalization of Eq. (2.67),


con = −
∫

�T

T • U dA −
∫

�

B • U dV, (2.81)

where dA is a differential area on the boundary, dV a differential volume, T the pre-
scribed boundary traction, and B the body force intensity, with the forcing quantities
independent of displacement U.

The incremental work and power during a differential displacement dU = dtU̇
are

dWcon =
∫

�T

T • dU dA +
∫

�

B • dU dV . and Pcon =
∫

�T

T • U̇ dA +
∫

�

B • U̇dV

(2.82)
—special cases of Eqs. (2.79)–(2.80), and thereby of Eqs. (2.72)–(2.73).

Considerations

The three situations treated in Sect. 2.6.3 formulate the incremental work during a
differential displacement, with or without energy and potential as the basis. This is a
common, idealized description of a structure from several viewpoints. The simplifica-
tions involved are related to assumptions for the forcing and to neglecting dissipative
material effects from, e.g., material damping, plasticity or visco-elasticity.

Aspects of dissipation can occur in a structure due to several reasons, but normally
implies a loss of mechanical energy in the model, and typically giving heat. One
example is when the stress at a point is not obtained from a strain energy density
function πp as above, but other contributions appear. Formally, this means that a
stress tensor Snon need be added to the expressions in Eq. (2.21). As has been noted
in connectionwith Eq. (2.65), the incremental strainwork should always be evaluated
for the total stress, which is now

S = Scon + Snon, (2.83)

with the first term from the chosen strain energy density. Dissipation can also bemod-
elled as non-conservative contributions to boundary traction or body force, according
to the discussion above.
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2.6.4 Power and Work

While Eq. (2.63) is valid when no exterior forcing is present, a general view must
consider that mechanical energy changes due to exterior work in and on the region.
The mechanical energy balance can then be given in incremental work and power
form as

d
k = dWp + dWext and
d

dt

k = Pp + Pext, (2.84)

with expressions, for general and special cases, given above.
Incremental exterior work, together with changing strain energy, thereby lead to

changes in kinetic energy 
k . Equation (2.84) is valid for any velocity variation U̇
over the region, with its corresponding displacement dU = dt U̇. All quantities U,
U̇, T and B are functions of X and t , and the expressions are instantaneous.

Equation (2.84) is fundamental for the coming treatment of equilibrium and
motion. It should be noted that the energy, work and power expressions above are
global quantities, in the sense that they integrate effects over the whole considered
system. No specific assumptions are made on the nature of acting traction and body
force in Eq. (2.84), but dWext and Pext may be simplified if a potential for the forcing
is available and more attractive.

2.6.5 Conservative Systems

For a conservative system, when strain energy and exterior potential are available,
the energy equations in Eq. (2.84) are simplified to

d
tot = 0 and
d

dt

tot = 0, (2.85)

where a total mechanical energy is defined as


tot = 
k + 
p + 
con (2.86)

The energy and potential terms in Eq. (2.86) are dependent on the displacement
and velocity fields within the considered region at time t . Equation (2.85) states that
the total mechanical energy is constant in a mechanically conservative system, when
the potential of exterior forcing is considered.

Although the potential expression is valid and can be considered as a general
fundament, it is not, as noted by Holzapfel (2000), a mechanical principle in itself;
it just follows as a consequence of the balance of linear momentum.

In the absence of dynamical contributions, i.e., in equilibrium, the total potential
for the conservative system is the sum
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 = 
p + 
con, (2.87)

where the notation without indices is chosen due to the fact that conservative forc-
ing together with strain energy is an important case of equilibrium in engineering
analyses. The total potential in Eq. (2.87) is also a key quantity in judging stability
of equilibrium, cf. Sect. 2.9.1.

2.7 Physical and Virtual Displacement Increments

The previous sections develop several aspects of work increment and power related
to a small incremental displacement dU corresponding to a velocity field dU = dt U̇
and a small time increment dt . Equation (2.84) is valid for any mechanical state
for the considered region, be it stationary or transient. The displacement increments
considered are thereby physical, and part of a process. For the solution to the problem,
the increments must fulfill all the boundary conditions, and can thereby be non-zero
on all boundaries, if U changes with time, cf. Sect. 2.5.

When formulating the fundamental equations for mechanical response in the fol-
lowing section, also virtual displacements are needed. These are arbitrary (small)
displacement fields around a current state U, but need to vanish on the boundary
part �U , where displacement is prescribed, even when this condition is dependent on
time. The virtual displacement field, denoted DU over the whole region including
boundary is thereby restricted compared to the full displacement field U.

As the virtual displacement fieldDU is included in the more general field dU, all
the expressions derived above are valid also for the virtual displacement. In particular,
virtual work terms DW can be derived from above, with a correspondence to the
terms in Eq. (2.84)1, as

D
k =
∫

�

ρX Ü • DU dV, (2.88)

DWp = −
∫

�

S:DE dV, (2.89)

and

DWext =
∫

�T

T • DU dA +
∫

�

B • DU dV (2.90)

which are immediately found from Eqs. (2.63), (2.65) and (2.70)–(2.72). Equa-
tion (2.89) gives the possibility for non-conservative stress contributions represent-
ing dissipation, cf. Eq. (2.83), but the expression DWp = −D
p is valid only in
a conservative setting. Equation (2.90) can, in order to allow both conservative and
non-conservative forcing, be expanded as
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DWext = −D
con +
∫

�T

Tnon • DU dA +
∫

�

Bnon • DU dA. (2.91)

The energy balance for an arbitrary virtual displacement DU can thus be formu-
lated from currentU, Ü,S,T andB, when region and boundary are known. The strain
incrementDEmust correspond toDU, and the stress S evaluated for the strain E at
displacement U.

2.8 Fundamental Relations

Very general basic formulations for the analysis of mechanically affected structures,
Figs. 2.6 and 2.10, define the setting within a region � with boundary �. For the
interior, Eq. (2.44) defines the residual force on a differential interior element. The
boundary is divided into two parts, where boundary conditions are defined in the
forms of either defined traction42 or displacement.43 It is emphasized in Sect. 2.5.4
that a complete description of the mechanical response can be built on the displace-
ment field U, if the local material response is defined. Here, this is done through a
strain energy density function, rather than a stress–strain constitutive relation. The
prescribed boundary traction gives indirect constraints on the displacement at the
boundaries, while the displacement boundary conditions are more direct. With this
setting, the displacement field within the whole region, including boundaries, is the
only variable to solve for.

In full agreement with this basic view, mechanical energy, potential and work
expressions are given above; power and incremental work are consistently closely
related. These formulate the energy balance as integrals over the considered region,
and include the displacement and velocity fields. The energy expressions, and, in
particular, the virtual work forms in Sect. 2.7, are used as basis for solution methods,
and for quantitative descriptions of the state of the structure.

It must in this context again be emphasized that, even if the setting above is
described as complete, the treatment is based on models of the real structures. The
relevance, completeness and accuracy of these models are determinants for the reli-
ability of the results obtained, and the conclusions from those.

2.8.1 General Equation

The previous section discusses the mechanical problem in an energy context, where
power and incremental work represent interior and exterior actions on the region.

42 in engineering interpreted as driving force
43 in engineering interpreted as supports, with needed reactive force
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Using Eq. (2.84) togetherwith the expressions for virtual work in Sect. 2.7, the virtual
energy balance equation gives the very general mechanics equation

∫

�

ρX
(
Ü • DU

)
dV + D
p + D
con =

∫

�T

Tnon • DU dA +
∫

�

Bnon • DU dV

(2.92)
expressing how the total mechanical energy during the virtual displacement is
changed by the virtual work done by non-conservative exterior forcing. The equation
is related to a virtual displacement increment DU from the displacement field U.

One interpretation of Eq. (2.92) is that the acceleration field Ü is decided by the
displacement fieldU at each particular time instance t . The equation is obtained from
an energy balance formulated by introduction of an arbitrary virtual displacement
DU. In the continuum case, this must be valid for any legal virtual displacement
increment.44 The same equation is used for subsets of possible increments in the
discretized settings of Chap. 3. This usage of the fundamental relations is the main
argument for the chosen format of Eq. (2.92).

Onemain limitation of the stated equation is that an elastic situation is considered,
where interior stress is derived from a strain energy density. A consideration of also
interior dissipation, according to Sect. 2.6.3, needs45 modifications to also the right
hand side with respect to non-elastic stress Snon.

2.8.2 The Time Dimension

In addition to themodelling assumptions regarding the geometry,material and bound-
ary conditions, a fundamental assumption is related to time. Although forcing and
response aspects are in reality always time-dependent, it is many times relevant to
disregard the dynamics of the processes, and consider the problem in a stationary,
time-independent, configuration, where no velocities, and thereby no accelerations,
are present. This implies that geometry, material models and boundary conditions,
with all their defining parameters, are fixed; this is a common assumption in many
engineering analyses.46

The distinction between different settings of the mechanical problem is briefly
mentioned in the introduction to this Chapter, cf. Sect. 2.1.

Amotion problem, where the qualification ‘dynamic’ is redundant,47 considers all
terms in the mechanics equation, and is necessary when the time dependence of the

44 where ‘legal’ here implies that DU = 0 on the boundary part �U , as the prescribed value is
introduced in U, and no further variation is allowed.
45 formally rather obvious, but implementation-wise possibly more complex
46 In the numerical setting of comingChapters, fixed aspects are denoted ‘hard-coded’ in the problem
definition.
47 The common term ‘dynamic equilibrium’ is avoided in this treatise, as it can be considered a
contradiction in terms
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setting can not be neglected. The response is traced in physical time, possibly under
time-varying boundary conditions. An equilibrium case, where also the term ‘static’
is redundant is time-independent and can be solved as one stationary configuration,48

with all its response quantities. A parametric equilibrium problem seeks a set of
equilibrium solutions for a fictitious, non-physical, time-scale

2.8.3 Time-Dependent Motion

When the setting of the problem is time-dependent in some aspect, a motion problem
is solved, and the complete Eq. (2.92) is needed. The interior force residual function
in Eq. (2.44) then leads to acceleration within the region. As the residual is referring
to a volume element dV of the initial reference configuration, where the density is
ρX , the residual force in Eq. (2.44) gives the strong form of the equation of motion,
which is written as a balance

ρX Ü = B + divX (FS) , (2.93)

with the body force B defined at each point X, and the deformation gradient F as
well as the 2nd Piola-Kirchhoff stress S consequences of the current displacement
field U, with the constitutive parameters �, cf. Sect. 2.5.4. On the left hand side, Ü
is the acceleration field, evaluated at point X and time t , as are the quantities B, F
and S, which are truly dependent on physical time49; the acceleration field is thereby
also a time-dependent quantity. As also the boundary conditions in Sect. 2.5.3 are
possibly dependent on t , these conditions use

T ≡ T(X, t) and U ≡ U(X, t), (2.94)

for their respective boundary surface parts.
The problem is thereby an initial boundary value problem,where initial conditions

for the displacement and velocity fields are needed for all X, as

U(t = 0) ≡ U0 and U̇(t = 0) ≡ U̇0. (2.95)

From the initial conditions, and Eq. (2.93), the time-dependent displacement field
is integrated. It is implicitly assumed that the initial conditions fulfill also the bound-

ary conditions, U0 = U(X) and U̇0 = d
dtU(X) for all points X in �U .

48 even if several configurations can be possible for the same problem setting
49 This is a necessary consequence of the assumed velocity for F andS, but is less common forB, as
this often represents the gravity of the material; inclusion of centrifugal-type force is one exception.
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2.8.4 Time-Independent Equilibrium

Time-independent solutions under constant boundary conditions is a common setting
in analyses of the mechanics of engineering structures. This is the case of equilib-
rium: a stationary situation, in which a configuration remains constant over time if
introduced in a time-dependent treatment as an initial condition, together with zero
velocity.

Equilibrium can also be an asymptotic state, when all time-dependent effects
have been damped out, after a transient introduction or modification to exterior
forcing. This solution can be obtained with a motion setting, if exterior and interior
parameters are subsequently held constant over time, and some amount of damping
is introduced in the system. This corresponds to the dynamic relaxation approach
mentioned in Sect. 4.3.1 as one method to solve an equilibrium state. It is noted that
not all equilibria can be reached with this approach; a basic requirement is that the
equilibrium is stable.

While equilibrium demands that one configuration can bemaintained by the struc-
ture under constant boundary conditions, stability of the equilibrium state demands
even more. Focus is set on neighboring configurations, and motions introduced from
these. Stability demands that the deviations from the equilibrium state are limited
over time, if a disturbance—in displacement or velocity—to the state is introduced
as an initial condition for a motion; all parameters for the problem are frozen. It
must also be possible to limit the deviations to any low magnitude by limiting the
magnitude of disturbance. Referring to the damping mentioned, the deviation will
be decreasing in magnitude, and thereby converge to the equilibrium.

The assumption of stationary conditions allows a simplified solution method,
where the stationarity is utilized, and velocity and acceleration are recognized as zero.
When the solution to an equilibrium problem is sought, all inertia effects are ignored,
and the solution is described by the general Eq. (2.92), with the first term removed. In
the balance of linear momentum, Eq. (2.93), this corresponds to the right-hand side
vanishing at every point, as any non-zero residual creates acceleration. The defining
equation for interior force is then the strong form of the equation of equilibrium

B + divX (FS) = 0, (2.96)

with body force B defined for every X within �. The deformation gradient F and
the 2nd Piola-Kirchhoff stress S are dependent on the displacement field U and the
constitutive parameters in �. Boundary conditions are defined, according to Sect.
2.5.3, as

T(X) = T(X) and U(X) = U(X), (2.97)

on �T and �U , respectively.
Equations (2.96) and (2.97), together with a constitutive relation, e.g., the used

strain energy density expression, define equilibrium as the solution to a strong form



74 2 Underlying Theories

boundary value problem for the displacement field U. All quantities are referred to
the initial reference configuration.

A weak form of the stationary boundary value problem demands that a weighted
and integrated residual over the region, rather than the point-wise Eq. (2.96), must
vanish. Introducing a vector-valued weight function field ω over the region, this
approach evaluates a scalar functional, evaluated from integrals over the initial region
and boundary. Starting from

∫

�

(B + divX (FS)) • ω dV = 0, (2.98)

the functional, after some algebra, can be re-written as

F(ω) =
∫

�

(
(FS) : gradXω − B • ω

)
dV −

∫

�T

T • ω dA = 0, (2.99)

where both F andS are dependent on the displacement fieldU. The equation must be
fulfilled for any fieldωwhich respects the essential boundary conditions by vanishing
on �U .

With the weight functions chosen as ω = DU(X), i.e., the virtual displacement
field in Sect. 2.7, the equations can be interpreted as the principle of virtual work,
with Eq. (2.99) identified as the work balance

F(DU) = DWp(DU) + DWext(DU) = 0, (2.100)

which is the expression in Eq. (2.92). The virtual displacement field DU is here
related to the equilibrium configuration U.

Equation (2.100) describes the balance between the work done by acting interior
stress S, body force B and prescribed boundary traction T during a virtual displace-
mentDU. The virtual strainDE is the increment in strain when adding the increment
DU to the current displacement field U.

For a conservative exterior forcing, the two terms of Eq. (2.100) are obtained from
virtual analogues to Eqs. (2.65) and (2.79), respectively. Also, the right hand side of
Eq. (2.92) vanishes, and equilibrium can be interpreted as a demand for a stationary
total potential
, cf. Eq. (2.87). Any (legal) small disturbanceDU to the equilibrium
displacement field U must conserve 
. Fulfilling this for any DU demands that

gradU
 = 0. (2.101)

The expressions are further simplified if the forcing is displacement-independent.
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2.8.5 Parametric Equilibrium

Thediscussion above considers an equilibriumproblem,where the setting andparam-
eters are hard-coded, and one solution in most cases can be obtained. In connection
with non-linear structural problems and stability analyses, there is always an implicit
need to evaluate the parametric dependence of solutions. A sequence of equilibrium
configurations is then solved, with the assumption that the sequence sufficiently well
describes the parametric dependence. The primary usage of this parametric equilib-
rium setting is to step-wise solve equilibrium for an increasing forcing, but the same
basis can be utilized in other parametric or optimization contexts, cf. Sect. 4.4.

Step-wise solutions in the form of displacement fields U = Ui are obtained as
equilibria related to a fictitious time, here denoted by τ .50 Reflecting the usage, the
parameter τ is in Chap. 4 used as a fictitious increment measure, often focussing
on the graphical presentation of results. Each step i in the sequence is individually
solved as above so that Ui ≡ U(τi ), the difference being that either the body force,
the boundary conditions, or, possibly, the material parameters are dependent on τ :

B = B(τ ), T = T(τ ), U = U(τ ), or � = �(τ). (2.102)

No differentials with respect to τ are relevant in a mechanics interpretation.
Solving the parametric sequence gives a set of equilibrium states, which can

be evaluated and interpreted individually, as no time or history is considered. The
engineering force-displacement graphs are a typical example, when forcing is suc-
cessively introduced, but methods for the introduction of general parameters, in a
discretized setting, are extensively discussed in Chap. 4.

2.9 Stability

The previous section discusses the fundamental equations for equilibrium and
motion. The developed expressions are set within a context of energy, potential,
power and work; they emphasize the differences in form due to the assumed form of
the acting exterior forcing.

Stability is a key concept for the solutions. The term can be interpreted—and
the corresponding quantitative measures evaluated—in different ways dependent on
context, but in loose terms implies an insensitivity to small deviations. The funda-
mental stability criterion used here is the one by Liapunov (1966), which states that
stability demands that a small disturbance to a configuration of a mechanical system
keeps limited with time; it must not grow. Referring to the cases in Chap. 1, where
deflected equilibria are analyzed, these show that neighboring equilibria exist, and
thereby that an additional displacement in this direction will not disappear.

50 to distinguish it clearly from physical time t
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In essence, and avoiding some technical details, theLiapunov criterion for stability
can be described through a bound for possible disturbances to a state or process,which
do not significantly modify the response. The criterion for stability states that for any
bound ε on the resulting deviation, however small, there exists a bound γ for the
magnitude of an initial disturbance from which the resulting deviation will always
be limited by ε. The magnitudes ε and γ are some norms of the deviations. This, in
general, causes problems in the continuous case, but these are limited in an energy
context.

This section discusses some basic aspects of stability in a continuum context,
while the more detailed analyses are discussed in the discretized setting of Chap. 3.
The discussion here primarily handles stability of equilibrium, which is the primary
focus, and also gives some comments on stability in connection with motion.

2.9.1 Stability of Equilibrium

Equilibrium can, in the general case, be defined through the boundary value problem
in Eq. (2.92) with the first term of the left-hand side vanishing. This equation states
that, for any virtual displacement increment DU, the exterior work DWext from
acting traction and body force creates an increase in strain energy. The exterior work
is simplified by Eq. (2.79) for conservative forcing, and evenmore to Eq. (2.82) when
it is displacement-independent. Within the general setting of Eq. (2.92), equilibrium
for a conservative problem is defined by Eq. (2.101).

Investigations of the stability of equilibrium traditionally have focussed on cases
with conservative forcing, demanding for equilibrium a stationarity of the total poten-
tial 
, defined by Eq. (2.87). With all forcing and parameters fixed, this demands
that 
 must be constant for virtual changes DU to the displacement field U in the
region.

The common static stability criterion for equilibrium demands that the total poten-
tial
 is at a local minimum for the current state, i.e., is positive definite. Aminimum
total potential at the equilibrium state is identified from the second variation of 
.
The picturesque interpretation, often shown in literature, is that a ball does not sig-
nificantly leave the bottom of a bowl when slightly disturbed from its equilibrium,
while it rolls off from a hilltop, even if it can be in equilibrium at the precise top. The
more mechanical interpretation is that additional positive work from exterior forcing
is required for the system to leave the stable equilibrium.

The analogy to a ball in a bowl shows some important properties of the stability of
equilibrium. Imagining that the ball is placed, without velocity, at any point within
the bowl,51 the ball will start rolling towards the lowest point, possibly oscillate
within the bowl, but can not leave it unless the rim of the bowl is somewhere lower
than the position from which the ball was released; with any degree of mechanical
damping, the ball will come to rest at the bottom. Depending on the local shape of

51 which must be higher than the minimum
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the bowl, the possible initial disturbed position of the bowl is restricted, but at least
a small region must exist around the minimum. Larger disturbances may, however,
lead to a departure from the local minimum, and possibly an arrival in another bowl
with even lower minimum level. This shows that static stability is a local minimum
of the potential. The interpretation of stability is further discussed, for a discretized
setting, in Sect. 3.7.

As most treatises on stability of equilibrium discuss cases with displacement-
independent exterior forcing, the minimum of the total potential is dependent on
the strain energy only, due to the linearity of the exterior potential on U. The same
approach is, however, also valid for any conservative problem, when the incremental
work dWext is obtained from an exterior potential, according to Eq. (2.79). This
quantity is a function of B, T and U, but in general not linear in U. This implies that
terms related to exterior forcing also enter the expressions deciding stability.

With stability demanding a minimum, an unstable equilibrium corresponds to a
localmaximumof the total potential along, at least, somedirection of virtual displace-
mentDU; the total potential function resembles a saddle around the equilibrium. The
borderline critical equilibrium case, with a neutral energy variation is often the situ-
ation sought in investigations. This, primarily, demands an evaluation of the second
differential of the energy along any additional displacement from the equilibrium
state, but can, in more exotic cases (for which this is zero) demand studies of also
higher differentials.

The minimum of the total potential at an equilibrium state can also be interpreted
in a dynamic context, where stability demands that the configuration of the structure
must stay in a close vicinity to the static equilibrium state if a small disturbance
to it is introduced as an initial condition for a motion setting, cf. Sect. 2.8.4. This
demand can be studied by considering the total mechanical energy
tot in Eq. (2.86),
which is evaluated for any displacement and velocity fields as 
tot = 
 + 
k , with

 the total potential in Eq. (2.87), and 
k the kinetic energy, coming from current
velocity. After an introduction of a disturbance to displacement and velocity, the
configuration contains a total energy 
∗

tot. As the kinetic energy 
k can never be
negative, this means that the subsequent motion is bounded by the region in (U, U̇)

space where 
 ≤ 
∗
tot. Since this region is containing the equilibrium studied, the

motion necessarily occurs in the vicinity of the equilibrium. If, further, the region
can be made smaller, still containing the equilibrium, by reducing the magnitude
of the disturbance, the equilibrium is stable, and is a state of (local) minimum total
potential. Any disturbance will then, due to damping, return to the equilibrium. A
large enough disturbancemay still allow the configuration to escape from the vicinity,
and possibly, to arrive at another equilibrium state.

The dynamic viewpoint can also be used in another setting, based on the conser-
vation of 
tot in Eq. (2.86). With a non-zero velocity, and a constant total energy,
the movement must lead to a constant exchange of the forms of energy. For stability,
the disturbance to initial conditions must therefore lead to a movement around the
equilibrium, being an overlay of the harmonic oscillations of the structure. The basis
for these oscillations are the eigenmodes of the model, evaluated at the equilibrium.
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As further discussed in the context of discretized models, cf. Sect. 3.7, the mini-
mum of total potential or the existence of vibrational eigenmodes are two criteria for
the stability of a conservative equilibrium. These are similar, but different in their
consideration of structural mass. The conclusions regarding stability are, however,
in general the same.

Asmentioned above, stability is a property of an equilibrium state, for fixedmodel
and parameters of geometry, material and forcing. This implies that the stability con-
clusion can varywith any of these parameters, not only the level of forcing. Typically,
a certain parameter range corresponds to stable equilibria, while other ranges are
unstable. In the general situation, where several parameters are considered, more or
less exotic instability situations can exist for specific parameter combinations. Such
situations are discussed within catastrophe theory, cf. Gilmore (1981) or Thompson
and Hunt (1984), but do not occur for practical problems.52 The nearness in para-
metric space and interaction between different instability phenomena can, however,
significantly affect the response of a structural model around the instability states.

Quantitatively, judging stability for a continuous formulation has some inherent
technical problems regarding norms, as discussed by Como and Grimaldi (1995).
With the clear aim set at discretized models, the further discussion on static stability
is postponed until Chap. 3.

Non-conservative systems

For structural models where the exterior forcing is non-conservative, and therefore
no total potential exists, the investigation of stability of equilibrium is considerably
more complex, and no general statements are easily available. The evaluation for a
particular situation must therefore always go back to the fundamental definition of
Liapunov stability, and investigate the outcome from an arbitrary disturbance to the
configuration.

2.9.2 Stability of Motion

Also for a motion, stability is an important aspect. The concept is, however, not
unique and can refer to several situations. One instability situation, which is similar
to the static stability consideration above, is when a periodic motion is left by a
disturbance, and the motion either enters another periodic motion,53 or diverges
into an exponential motion. This instability can occur for disturbances to any of the
problem parameters.

52 unless, e.g., a structural optimization demanding a high lowest value of particular response
quantities has given a coincidence between two phenomena (which is a common outcome of such
procedures)
53 typically, with another frequency
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The stability criterion from Liapunov (1966) is still, in essence, applicable, but
needs some minor modification, where the definition of disturbance must be re-
considered, and related to the orbit of the movement, rather than to the position at
each specific time. With such a problem-dependent adaptation, the basic criterion
is still valid and useful. In the rather simple example of the rotational movement of
a rigid body in Sect. 1.9, with a symmetric body spinning around an axis, stability
exists if the axis of the body stays (close to) vertical, regardless of the rotational
position of the body.

The problem of stability of motion is not further considered in the present treatise,
but the problem is considered in literature.

2.10 Modelling of Reality

The sections of this Chapter develop a general view on structuralmechanics problems
based on energy and work concepts, leading up to the general mechanics equation
in Eq. (2.92). This equation describes the momentum balance in a solution.

The equation is written in order to show the mechanical aspects of different
assumptions as clearly as possible. The two main aspects underlying the formulation
are the consideration of the dynamics of the region and the properties of the exterior
forcing affecting it. The forcing is thereby divided into boundary traction and body
force intensity. Both classes of forcing can also be divided into conservative and non-
conservative actions. An important class of forcing for the engineering applications
consists of displacement-independent cases.

These aspects reflect the assumptions made in engineering analyses, when a phys-
ical object or structure is represented by a mathematical or numerical model. This
modelling necessarily needs simplifications of the real situation in order to facili-
tate the needed treatment. A first step is the determination of the physical model of
the object, which decides the aspects to consider, as a preparation for the choice of
mathematical (and, probably, numerical) models needed for evaluation. The physical
model thereby has to be comprehensive enough to cover all relevant responses, but
still simplified as far as possible, in order to avoid irrelevant details and excessive
calculations. A balance between the details and accuracies of the assumptions made
is a key aspect in good structural modelling.

The description above focusses on the modelling of reality in a few aspects.
One important aspect is the identification of the relevant region, and—often in
engineering—subregions, to describe in a model. The breaking up of complex reality
into smaller problems possible to handle has always been a key competence among
engineers.

The decision on whether consideration of dynamics, i.e., inertia effects, can be
neglected is an important choice, where the inclusion of dynamics normally leads
to considerably more demanding analyses. The above general mechanics equation
allows the consideration of dynamics, by including the kinetic energy term, but does
not include damping and other dissipative terms. Such effects can, with some efforts,
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be included as energy losses if a relevant model of the dissipation is available, and
possible to express in terms of the displacement and velocity fields.

The representation of acting exterior forcing is also a key aspect in the physical
modelling. As clearly seen in the general equation, the treatment of conservative exte-
rior forcing, for which potentials can be formulated, is essentially straight-forward
in a physical modelling, while non-conservative contributions are always adding to
complexity. As most engineering objects are designed to suffer only limited defor-
mation, the distinction is often of limited importance, and forcing can in the majority
of cases be represented as conservative, and even displacement-independent. Excep-
tions are, e.g., pressure-affected deformable structures, and rotating structures where
centrifugal effects need be considered.

Afinal key aspect in the physicalmodelling of an object is related to the description
of the material used. Although different materials can give very different responses
to forcing, the treatment above is limited to elastic materials, for which a strain
energy can be formulated. This implies a path-independence of thematerial response.
Within the elastic material descriptions, the developed formulation is, however, very
general and allows many common engineering material models, each with several
constitutive parameters.

Conclusions from this Chapter

The main conclusion from this Chapter is that full stability evaluations for structural
models have to be based on complete and general description of the region kine-
matics, and the derivations above are thereby completely displacement-based. The
formulationsmust also include non-linear terms in displacement and strain. Although
other forms of continuum mechanics formulations are possible and sometimes used,
the Chapter proposes a consistent set of strain, stress and energy as the basis for inves-
tigations; all are based on the displacement field of the considered region and on the
initial, unstrained, reference configuration. The discussed approaches are explicitly
aimed at the discretized forms of analysis, being the topics of coming Chapters.

With a strain energy density as the definition of material properties, hyper-elastic
materialmodels fit verywell into this approach, and some commonmodels are briefly
discussed. The strain energy density replaces themore common constitutive relations
where stress is defined as a function of strain54; stress comes out as a derived quantity
here.

The total mechanical energy of a structural model consists of the kinetic and
strain energies within the considered region, and it is shown how this energy can be
modified bymechanical work from exterior forcing: the energy balance is formulated
for increments in displacement, and a distinction ismade betweenphysical and virtual
increments.

54 often as a linear constitutive operator
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In the setting of energy, potential and work, exterior forcing can be described in
different ways. Conservative components, which can be described in the energy form
allow somewhat simplified formulations, and more systematic solution approaches.
Displacement-independent exterior forcing, which is a common assumption in engi-
neering analyses, allows further simplification of the formulation.

The virtual work balance leads to a general equation for mechanics, which is
stated in weak, integrated form. From the general equation, conditions for equilib-
rium and motion are obtained. Stability is discussed, in general terms, in relation to
these expressions. All concepts are further discussed for a discretized setting in the
following Chapter.

Tasks for this Chapter

1. A unit cube is defined as 0 ≤ (X1, X2, X3) ≤ 1. It is deformed according to:
x1 = 0.8X1 + 0.2X2, x2 = −0.1X1 + 1.1X2 + 0.1X3, x3 = 0.1X1 − 0.1X2 +
1.1X3. What are the maximum and minimum values of all 2nd Piola-Kirchhoff
stress components, if the cube is assumed to follow a Mooney-Rivlin mate-
rial model with c1 = 1MPa, c2 = 0.2MPa. Verify first that the deformation is
incompressible.

2. For the example case in Fig. 2.8 (based on Fig. 2.3), evaluate for three cases
the traction vectors T for the displaced area, corresponding to all sides of the
initial square, with their respective normal vectors N. From these, evaluate also
the traction vectors t on all edges, and related to the deformed area. The three
cases are S11 = 1, S12 = S21 = 1 and S22 = 1, respectively, with all other stress
components zero.

3. Develop, in energy terms, an analyticalmodel for the pressurized sphericalmem-
brane in Sect. 1.8, for a linearly elastic material with (Em, νm) as parameters,
assuming a local plane stress situation. Describe the displacement field by just
the current radius r , with r = R the unstrained configuration. Document neces-
sary and reasonable assumptions in the derivation of equilibrium and stability
conditions.
Hint: the exterior potential from an interior over-pressure is given on page 66.

4. A typical engineering model for a plane beam problem is visualized by a figure
below. Give one reasonable and complete set of boundary conditions for the
same problem, but modelled as an L × h × w continuum problem, identifying
the meanings of �T and �U as parts of the total boundary �. Use the more gen-
eral notation for coordinates and components.
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5. Evaluate for the region in the figure below, which is of constant thickness w,
the total potential of the problem, if the displacement field and the prescribed
boundary traction on the indicated edge are (with a and t the parameters)

U =
⎛
⎝

−2aX1X2

aX2
1

0

⎞
⎠ , T =

⎛
⎝

−t X2

0
0

⎞
⎠ .

The material of the region is linearly elastic with constants (Em, νm). Use the
potential to find the relation between a and t , within these assumptions. Note
that this is not a solution to a stated problem, but there is still some reason for
the assumptions. Which, and to what extent does it make sense?
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Chapter 3
Discretization of Structural Models

This Chapter discusses the discretized settings of non-linear and instability-
affected structures. The discretization uses a finite set of numerical values
to describe the state of the physical model. A key aspect is the introduction
of sufficiently wide kinematics in the continuum setting from the previous
Chapter.

The discretization is developed as an approximation, with best-fit criteria
coming from the governing equation. Several approximation techniques are
adopted for the solution of the general mechanics equation. The localized uni-
form interpolation used in most finite element formulations is developed as an
important special case; finite elements are today the main tools for discretiza-
tion of complex structures. Isogeometric approximation is a recent develop-
ment with strong potential, and the derivations are equally applicable for this
setting. Thin structures, which are particularly sensitive to loss of stability are
preferably treated by dimensionally reduced models.

Necessary numerical settings are developed. A special aspect in this is
the handling of boundary conditions for the structural problem, as are dis-
cretization aspects of symmetry in a problem. The introduction of mechanical
constraints for the model is treated. The Chapter also develops the basic forms
for evaluation of static stability in discretized models.

Brief Objective of this Chapter

TheChapter discusses, in a general form, efficient and reliable discretizationmethods
for structural mechanics, their basic formulations, constraints and properties, and
their capacity to describe stability properties.
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3.1 General Discretization

The previous Chapter develops a consistent set of theoretical concepts and expres-
sions for the treatment of stability-affected structures, or—to be precise—physical
models of such structures. The fundamental formulations are stated in an analyti-
cal continuum form, based on the consideration of energy and potential terms, and
the relations of these to power and work during real and virtual displacement. The
main result is a rather general energy-based equation for mechanics, Eq. (2.92), from
which solutions are obtained.

The key ingredient in the equation is the displacement field, given asU ≡ U(X, t),
i.e., a function of the material point reference position X and the current time t .
All relevant quantities are based on this displacement, with U, as well as X, mea-
sured in a fixed 3D Cartesian coordinate space. The formulation is thus completely
displacement-based; all relevant quantities are derived from U and a set � of mate-
rial, or constitutive, parameters, and related to a known initial unstretched reference
configuration.

In the formulation developed, a differential or incremental virtual displacement
DU ≡ DU(X) is introduced. This is of similar form as the displacement U, but is
demanded to vanish at the part �U of the region boundary, where U is prescribed.

As both the displacement and its virtual counterpart are described as functions
of material coordinates X, the solution space for the defining equations is of infinite
dimension. Analytical solutions to the equations are thereby only available in special
cases of clear-cut problems with regular geometries and forcing conditions.

The formulations are based on the geometrical definitions of a region, and, thereby,
its boundary. Although the development in Chap. 2 is performed for the full 3D con-
tinuum, Sect. 2.5 described how engineering objects can often be described as dimen-
sionally reduced to 2D or 1D regions, with consequent modifications to boundaries,
forces and results; this is further discussed below. Even with this simplification,
engineering objects are, more often than not, geometrically complex.

The infinite-dimensional displacement description, together with the complex
geometries, make analytical solutions impossible, or at least extremely demanding,
and some approximation technique is necessary.

Approximations to the analytical solutions can be obtained in several ways, but in
order tomakemaximumuse of computers, discretization techniques are the preferred
approach. In particular, methods with high degree of generality, in the sense of
a maximally wide range of tractable problems, are sought. A few different basic
methods are discussed below,with displacement-based finite element (‘FE’)methods
presently considered most relevant for systematic stability investigations.

The fundamental step in the discretization is to replace an analytical function
of some arguments1 with a set of numerical values, the discrete variables, which
are used to evaluate the function at needed argument values through some inherent
expressions. The discrete variables are collected as a set of Nd values in a numerical

1 which, in this treatise, are almost exclusively the Cartesian coordinates for the material points in
the region
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vector d, which is not a physical vector (as in Chap. 2), but a column matrix of
dimension Nd -by-12. The notation for such vectors is the underlined variable name, x ,
with a double underlining to denote the corresponding matrices, A. Related to the set
of discrete variables, a functional representation is chosen for the representation of the
solutionfield. Through necessary conditions on the representation, the approximation
is often a necessary—or, at least strongly suggested—consequence from the choice
of discretization variables. Even if other choices are available, the description here
starts with considering interpolation descriptions, where function values at a specific
set of points are used as discrete variables; this is the situation for (most) finite element
methods, but not for isogeometric analysis approximations, for which control point
values are the discrete variables.

3.1.1 Interpolation and Curve-Fitting

Discretization can be partly explained as an interpolation or a curve-fitting procedure.
Figure3.1a shows a sine half-wave function f (t) = sin π t , approximated by a set
of Nd = 10 function values at equidistant points in the interval 0 ≤ t ≤ 1. With an
assumed linear interpolation between these values, denoted as fd(t) with a subindex
‘d’ used to denote the approximate function, the function is reasonably approxi-
mated3. Figure3.1b shows a square wave function f (t) = 1 over a limited interval
0.3 ≤ t ≤ 0.9, and its approximation fd(t) by a sum of Nd = 64 sine functions,
where amplitudes are the discrete variables, which are chosen for best fit through
a least-square criterion. The two examples show the difference between local and
global representattion of functions, to be further discussed below. The example also
shows the difference in discretization variables: in (a), the variables are the function
values at specific arguments, while they are amplitudes without immediate interpre-
tation in (b).

One comment for the further development concerns the interpolation approach.
As the discrete points used are all placed on the correct function values, this implies
that the approximate function is always on the same side of the correct one for a case
with constant sign of curvature. The average error could therefore have been reduced
by choosing slightly different discrete values; these could have been obtained through
another criterion for best approximation, e.g., a least-squares demand.

The examples also show a few other aspects of discretization. First. it should
be obvious that, for both cases, a systematically increased number Nd of discrete
variables—within some basic form of approximation—will always give more accu-
rate results; this must be considered as a demand on any useful discretization strat-
egy. Second, the subfigures (c) and (d), which show the first derivatives of the two

2 Nd is often very large in structural problems
3 Rather few points are used, to show the difference, which would in this case visibly disappear
with higher Nd .
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Fig. 3.1 Discretization of known functions. a Local approximation by discrete values. b Global
approximation by function amplitudes. c, d First derivatives of a and b, respectively. Dashed lines
for function f (t), solid for discretized fd (t). Superposed dot is time differential

approximate functions, illustrate how the accuracy in relation to the correct functions
deteriorates significantly when the approximate function is operated upon.

Two important comments must be made regarding the examples. First, when
solving a mechanics problem, the solution is not known as in the figures, but defined
by an equation. The fitting or interpolation thereby relates to this equation rather than
to the solution. Regarding Fig. 3.1a, the problem could be which discrete function
values at the Nd = 10 points give the best approximation to the unknown solution
of a defining equation. To solve this, a choice must be made of functions using the
discrete variables. Second, a criterion is also needed for how the ‘best’ approximation
is defined and evaluated. The obtained result is sometimes strongly affected by these
choices.

The basic method of discretized solution, based on local interpolation, can be
demonstrated by a simple 1D problem example, seeking a function fd(t) over an
interval 0 ≤ t ≤ 1, as in Fig. 3.2. Equidistant argument positions ti , (1 ≤ i ≤ Nd)

are chosen, and the unknown discrete variables are the function values di = fd(ti ),
which fully define the sought approximate solution.
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Fig. 3.2 Schematic example
of discretized, linearly
interpolated, function in 1D.
Function values di are used
as discrete variables to
represent approximations to
fi = fd (ti )

If the strongly suggested linear interpolation is chosen together with the discrete
variables, the solution can be described as a sum of a set of functions over one
subinterval each, according to

fd(t) = di + t − ti
ti+1 − ti

(di+1 − di ) = di
ti+1 − t

ti+1 − ti
︸ ︷︷ ︸

Ni (t)

+di+1
t − ti

ti+1 − ti
︸ ︷︷ ︸

Ni+1(t)

, (3.1)

for (ti ≤ t ≤ ti+1).
The final member in the equation emphasizes that each discrete variable gives

a distinct contribution to the resulting solution, when it acts on a local function
within the interval; these are the shape functions in FE terminology; here the term is
restricted to cases where all considered variables4 are uniformly interpolated from
their nodal values. The derivative of the local approximation is thereby obtained as

d fd
dt

= di+1 − di
ti+1 − ti

. (3.2)

for (ti < t < ti+1). This is a constant square wave function within the subinterval,
but it is discontinuous at the interval ends; this also applies to the full fd .

Equation (3.1) is defined only on the interval ti ≤ t ≤ ti+1. Similar expressions
can be formulated for 1 ≤ i ≤ Nd − 1,with a function continuity at the discretization
points5. These function values are the only unknown quantities in the result, as the
chosen interpolation is well-defined; at once the discrete variable values are decided,
the approximate function, and all its properties are fully known.

4 which is here just one
5 With a continuous function, but discontinuous derivatives, the approximate function is said to be
C0 continuous.
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3.1.2 Differential Equation

The approximation above is general for the 1D case—in the sense that no problem
is yet formulated—when a linear interpolation between each pair of two points is
defined. To solve for the discrete variables, the expressions is used together with a
specific equation, e.g., the ordinary first order differential equation

d fd
dt

= π cos(π t), (3.3)

which obviously has a relation to Fig. 3.1a. As the right-hand side of Eq. (3.3) is
continuously varying, while Eq. (3.2) is piece-wise constant, perfect matching of
the approximation to the equation is impossible. It is, however, possible to demand
equality in the midpoint of each subinterval, i.e.,

di+1 − di
ti+1 − ti

= π cos

(

π
ti + ti+1

2

)

for (1 ≤ i ≤ Nd − 1); (3.4)

this is a collocation approach6. As each equation connects two of the unknowns, and
Eq. (3.4) states Nd − 1 equations in the Nd unknowns, the set of equations is solvable
when one solution value, e.g., d1 = fd(0) = 0 is defined as a boundary condition7.
The solution to the example problem is shown in Fig. 3.3, where the dotted lines
show the contributions from each point to the approximate solution. The discrete
variables are here not exactly on the correct solution, as when the function was itself
approximated in Fig. 3.1a, but are visibly very close to it, and represent it well, on
average.

In the figure is emphasized how each discrete variable contributes by a triangular
function with local support on the two subintervals neighboring its argument point.
The sum of the triangles gives the final function.

Fig. 3.3 Solution by
midpoint collocation to the
example
d f
dt = π cos(π t), f (0) = 0,
obtained by 10 equidistant
discrete variables and linear
interpolation. Dashed
triangles show contribution
from each discrete variable,
and solid line the final
approximate function

6 which is easily understood, but may be not optimal with respect to accuracy
7 Of course, this matches the order of the differential equation
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It is noted that the choice of criterion for solving the discrete variables in Eq. (3.4)
is just one of many reasonable ones. A more natural alternative choice is the least-
squares solution,whichminimizes the integral, over thewhole interval, of the squared
residual between the derivative of the discretized function and the defining equation.
This gives other values for the discrete variables. even if the solutions are very close
in this particular example. Also, the argument points are equidistantly spread over the
interval here. This is not necessary, as Eq. (3.1) is equally valid for other sets of ti . In
more realistic problems, such choices of arguments could have been more favorable,
for instance, with denser nodes in high curvature intervals. Different methods for
evaluating (or estimating) the error in the solution can be used to develop systematic
adaptation strategies.

The method suggested by the example shows a rather general approach, but is
only applicable when the ordinary differential equation is of order one. In cases with
higher order equations, the interpolation described by Fig. 3.2 is not sufficient, as
all higher order derivatives of the approximate function are then identically zero.
A discretization allowing sufficiently high derivatives is therefore needed. As just
one example, sequences of three consecutive argument point could be the basis for
quadratic function interpolation, thereby giving meaningful second derivatives in the
approximate function. The interpolation and shape functions in general FE methods
are extensively discussed in literature, and will be somewhat further discussed below
in connection with the mechanical problems.

The basic technique used to solve discretized problems in the examples above
will in coming sections be directed towards the mechanical problems of Chap. 2,
where the displacement field in a continuum is the basic variable.

3.2 Discretized Balance

When solving mechanics problem, a very general fundamental equation is given in
Eq. (2.92); this equation is repeated here as

∫

�

ρX
(

Ü • DU
)

dV + D�p + D�con =
∫

�T

Tnon • DU dA +
∫

�

Bnon • DU dV

︸ ︷︷ ︸

DWnon

.

Here, the left-hand side expresses the increment in the total mechanical energy,
cf. Sect. 2.6.5, coming from virtual work done by the non-conservative exterior forc-
ing on the right-hand side; if this is zero, the energy in the problem is constant during
the virtual displacement. All terms in the equation are related to (small) increments
DU ≡ DU(X), and to the current displacement field U ≡ U(X, t), with its deriva-
tives, over thewhole regionX ∈ � and for any time t . The arguments to displacement
and other fields are omitted below, unless they are of particular interest in an expres-
sion.
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The first term uses the acceleration, being the second time derivative of U, while
the differentials of the strain energy and exterior force potential terms can be replaced
by the negatives of the corresponding incremental work forms. The incrementD�p

to the strain energy in Eq. (2.19)—which is formulated from a chosen strainmeasure,
directly from the displacement—is formulated in differential work form inEq. (2.89).
Increments in potential from conservative exterior force are also given in incremental
work as parts of Eq. (2.91). The right-hand side of the equation uses the explicitly
formulated non-conservative exterior force together with the virtual displacement
field, cf. Eq. (2.91).

A discretized solution method for the mechanics problem must thereby be based
on an approximate description of the displacement field Ud through a set of discrete
variables d , The discrete variables can be dependent on time, as further discussed
below. The displacement approximation can thus be time-differentiated for the accel-
eration field approximation.

3.2.1 Continuum Displacement

Compared to the 1D example in Fig. 3.2, the displacement approximation introduces
two complexities. According to Fig. 3.4a, the displacement field U is expressed by
three components in the Cartesian coordinate directions, but it is also variable with
the three point coordinates8. A discretized displacement field in a region, with linear
variation of displacement components is thereby

Ud =
⎛

⎝

U1

U2

U3

⎞

⎠ =
⎛

⎝

α1 + α2X1 + α3X2 + α4X3

α5 + α6X1 + α7X2 + α8X3

α9 + α10X1 + α11X2 + α12X3

⎞

⎠ , (3.5)

where the three displacement components in Ud are independent, and the twelve
variables αi in a discrete vector d are polynomial coefficients; note their different
dimensions.

When the expression in Eq. (3.5) is adopted for a general tetrahedron with four
vertices in space, cf. Fig. 3.4b, the displacement is formulated as an interpolation
between nodal displacement components. Following the idea from Eq. (3.1), this is
written

Ud =
4

∑

j=1

N j (X)U j , (3.6)

8 All expressions in this Chapter use a Lagrangian form, with all quantities expressed in the initial
reference coordinates for the points in the region. All quantities are also related to the sameCartesian
coordinate system, cf. Sect. 2.1



3.2 Discretized Balance 93

Fig. 3.4 Discretized displacement in 3D space. a Principle. b Interpolation in tetrahedron

where U j is a 3-by-1 discrete vector of displacement components

U j =
⎛

⎝

U1(X j )

U2(X j )

U3(X j )

⎞

⎠ . (3.7)

with the notation Uk(X j ) used for the displacement component in direction ek at
node j with initial reference coordinates X j . With a uniform interpolation of the
displacement components from their nodal values, the four interpolating scalar shape
functions N j (X) are implicitly related to one node each, in the sense that N j (X	) =
δ j	, the Kronecker delta function. The form emphasizes the connection between
nodal displacement components and the shape functions, and is common in many
discretization efforts, such as the finite elements for continuum problems.

When not necessarily demanding that discrete variables are displacement com-
ponents at specific points in the region, a more general form of the displacement
approximation is

Ud = N d, (3.8)

whereN is a displacement operator taking a set of discrete variables into the displace-
ment field; the operator varies with pointX. The symbol for this operator emphasizes
that the result is (the approximation to) a physical vector, but coming from discrete
variables, hence the bold font combined with underlining. The operator should be
interpreted as a 1-by-Nd rowmatrix of basis vector fieldsNi for the displacement rep-
resentation9. These are multiplied by the corresponding discrete variables and added.
Although not necessary until later, the expression is given in component form as

Ud α = Nαi di (3.9)

9 each with value dependent on X
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where Greek letters are used for components related to material coordinates, and
lower-case Arabic letters to components in the discrete variables, with a summation
over repeated indices implied. The component form resolves any ambiguity in the
use of matrices and vectors.

Specifically for the uniformly interpolated tetrahedron example, this formalism
uses twelve basis vectors for the displacement field

N = (N1(X)e1, N1(X)e2, N1(X)e3, N2(X)e1, . . . , N4(X)e3), (3.10)

and twelve discrete variables in

d =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U1(X1)

U2(X1)

U3(X1)

U1(X2)
...

U3(X4)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.11)

The dots in the expressions emphasize the identical repetitions for the considered
nodes. It must also be noted that the indices on N do not agree between Eqs. (3.9)
and (3.10). The components in Eq. (3.9) can here be identified from the shape func-
tions in Eq. (3.6) as

N11 = N22 = N33 = N1(X) ; N14 = N25 = N36 = N2(X);
N17 = N28 = N39 = N3(X) ; N1 10 = N2 11 = N3 12 = N4(X),

(3.12)

with all other components zero. This is a consequence from the uniform interpolation
of the three displacement components in the example. For other representations,
e.g., the cases in Sect. 3.4.2 below, nodal quantities have different meanings and are
not identically approximated. These cases are still described by Eq. (3.8), but not
necessarily similar to the simple structure of shape functions multiplied by axis unit
vectors as in Eq. (3.10).

The example form above is obviously not good enough for the full representation
of a solution to any interesting problem consisting of just a tetrahedron-shaped struc-
ture. Forms of higher complexity can be formulated from the same logic as above by
introducing more nodes, and interpolating from these, i.e., in the form in Eq. (3.6),
cf. Sect. 3.3.1.

Leaving the example, the general displacement interpolation defined inEq. (3.8)—
which is the basis for further development below—allows much more freedom in
the choice of discrete variables and corresponding approximations; the connection
to displacement components at nodes is not necessary. The key requirement in the
expression is the linearity in the discrete variables.
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In contrast to the example above, a non-uniform treatment of the three displace-
ment components in Eq. (3.5) is also sometimes preferable. This can imply different
orders of interpolation in the three directions, or other types of variables for the
displacement description, e.g., rotations. Other strategies for approximation, like in
isogeometric analysis methods introduce specificmeanings of discrete variables and,
thereby, corresponding basis vector fields in the approximation. All these cases fit
formally well into Eq. (3.8), but special properties of a chosen approximation may
strongly affect the algorithmic handling of resulting expressions.

3.2.2 Derivatives and Differentials

The previous section discusses a discretized representation of the displacement field
in a 3D continuum, expressed in the general form of Eq. (3.8), with a set of basis
vector fields, which are combined through the set of discrete variables. For the solu-
tion to specific problems, the setting can be further clarified by emphasizing the
dependencies of the parts as

Ud ≡ Ud(X, t) = N(X) d(t), (3.13)

where the scalar functions used for creation of the basis fields N are representing the
interior geometry of the initial reference configuration,while thewhole description of
a current configuration lies in the discrete variables d . This form is relevant whether
or not a real time-dependence is implied by t .

For any discretized continuum, the operatorN is of dimension 3-by-Nd , when the
vector d contains Nd variables. In the interpolated tetrahedron example (with Nn = 4
nodes), the number Nd = 3Nn = 12., but Nd need not be connected to a number of
nodes in other approximation approaches.

As the approximation, regardless of which approach is used, is required to be
linear in the discrete variables, this implies that

Ud + dUd = N
(

d + dd
) = N d + N dd, (3.14)

when any incremental displacement is described by the same basis fields, and a set
of corresponding discrete components. This must be considered a fundamental—
and very natural—requirement on the choice of approximation, and gives the virtual
displacement field as

DUd = NDd (3.15)

withDd a numerical vector representing an arbitrary discretized virtual displacement
field.

That the current and virtual displacement fields are given identical descriptions
does not utilize that the virtual displacement field is more restricted and does not
allow any virtual displacement in the boundary part�U . This restriction is introduced
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as constraints at a later stage of the treatment. It is also noted that the virtual term
included in Eq. (3.15) is completely arbitrarywithin the displacement approximation,
but is still only a subset of the displacement fields possible in the continuum view.

The linearity and the separation in Eq. (3.13) also imply that the time differentials
of the approximate displacement field are easily obtained as the velocity field

U̇d = N ḋ, (3.16)

and the acceleration field
Üd = N d̈, (3.17)

with ḋ and d̈ the successive time differentials of the discrete variables.
In themechanics equation, first derivatives of the displacement fieldUwith respect

to the reference coordinates X frequently occur. Related to the approximate defor-
mation gradient Fd , a displacement gradient is expressed as a tensor

Dd = gradXUd = Fd − 1 = NF d, (3.18)

where NF is a displacement gradient operator, being formally a 1-by-Nd row matrix
of basis tensor fields, and gives the requested displacement gradient when combined
through the discrete variables in d . In component form, Eq. (3.18) is expressed as

Dd αβ = NF αβi di , (3.19)

using the summation convention.
The operator NF is a structure with three dimensions, where two are residing in

the physical space, and one in the discrete variable vector, hence the notation with
sans serif font and one underline. It is described by the components

NF αβi = ∂

∂Xβ

Nαi , (3.20)

which are the derivatives of the expressions in Eq. (3.8) with respect to the material
coordinates. It is obvious that large parts of the operator are identically zero, as only
a limited number of discrete variables affect each of the displacement components.
The displacement gradient operator can be evaluated at any point X.

Returning to the tetrahedron example, the uniform interpolation of the displace-
ment field components simplifies the formulation of the operator NF .

The expressions in Eqs. (3.13)–(3.17) are systematically introduced in Eq. (2.92),
after some algebra on the terms included. The displacement gradient in Eq. (3.18)
is used in the development of differentials to the residual equation, needed in the
treatment of the problems. The results from these expressions are discussed in the
next section.
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3.2.3 Virtual Work Terms

A general form of displacement approximation is introduced by Eq. (3.8), and the
consequent approximations to other displacement-related quantities are derived in
the previous section. These are here introduced in the general mechanics Eq. (2.92),
in order to allow discretized solutions. The result is a general discretized mechanics
equation, which is consistently based on Eq. (3.8).

Kinetic energy

The first term in Eq. (2.92) is related to the acceleration and inertia, and comes from
the increment in kinetic energy, according to Eqs. (2.63) and (2.88). UsingEqs. (3.15)
and (3.17) for the discretized form, the term can be written

D�k =
∫

�

ρX
(

(NDd) • (N d̈)
)

dV = Ddi

⎛

⎝

∫

�

ρX Nαi Nα j dV

⎞

⎠ d̈ j

=DdTM d̈.

(3.21)

where the component form in the third member—which is a triple sum—is used to
more clearly demonstrate the contents. In the final member, M is the mass matrix
for the discretized structural model region.

The component form shows that themassmatrix is related to the discrete variables
from both sides, and thereby is of dimension Nd -by-Nd . From the formulation, it
is also ascertained to be symmetric and positive-definite10, i.e., non-singular, and
defined completely by the geometry and material.

With N interpreted as a 3-by-Nd matrix, the mass matrix is expressed as

M =
∫

�

ρX NTN dV . (3.22)

where the N operator is dependent on X; it is straight-forwardly evaluated when the
displacement approximation is developed from Eq. (3.8)

Strain energy

The virtual term D�p in Eq. (2.92) is a bit more complex. The contraction of the
two tensors S and DE in Eq. (2.89) is not easily and clearly set in linear algebra
form, without re-formulation of its contents.

10 given that density is positive everywhere
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A common treatment is based on the so-called Voigt form, where the symmetric
stress tensor S is handled through a 6-by-1 vector. With a slight abuse of notation,
S is symbolically expressed as a column vector

S = (S11, S22, S33, S23 = S32, S31 = S13, S12 = S21)
T , (3.23)

with components related to the physical vector space. Correspondingly, the Green-
Lagrange strain tensor is expressed as a vector

E = (E11, E22, E33, E23 + E32, E31 + E13, E12 + E21)
T , (3.24)

with a virtual counterpart DE. In the Voigt form, the virtual strain energy in the
continuum case can be expressed as a scalar product of these vectors

D�p =
∫

�

DE • S dV (3.25)

againwith a simplified notation, and noting that stress and virtual strain are point-wise
values, i.e., dependent on X, but also related to time t .

In the virtual strain energy term, S and S contain the current stress at the solution,
independent of how it is calculated. The virtual strain must consider the non-linearity
in the strain-displacement relation; this is further discussed below.

While Eq. (3.25) can be used after a modification of the stress and strain tensors,
a formulation more consistent with the form of Eq. (3.8) is developed and used here.

Based on the component form of the Green-Lagrange strain tensor E as, cf.
Eq. (2.17),

Eαβ = 1

2

(

∂Uα

∂Xβ

+ ∂Uβ

∂Xα

+ ∂Uγ

∂Xα

∂Uγ

∂Xβ

)

, (3.26)

the components of the discretized strain can be written

Ed αβ = 1

2

(

NF αβi di + NF βαi di + d j NF γα j NF γβi di
)

, (3.27)

and the approximate strain tensor is evaluated from a discretized strain operator

Ed =
(

B0 + dTB1

)

d, (3.28)

giving the strain tensor—at a pointX—fromcurrent discrete variables d . The notation
with a strain operator named ‘B’ is very common, and kept here. This should not
cause any confusion with the body force, denoted as the vector B.

The operators in Eq. (3.28) are, respectively, a row vector and a matrix of tensors,
i.e., structures of dimensions three and four. The notation is chosen to reflect that
the operators B0 and B1 take one and two discrete vectors to create a tensor. This
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emphasizes the property of this particular strain tensor to consist of one part linear and
one quadratic in the displacement. As with the operators defined above, these need
be re-formulated for the algorithmic implementation, where typically only linear
algebra tools are immediately available.

The two operators needed to define the discretized strain tensor are component-
wise defined as

B0 αβi = 1

2

(

NF αβi + NF βαi
)

, (3.29)

and

B1αβi j = 1

2
NF γα j NF γβi , (3.30)

which are completely defined by the chosen approximation. With a current displace-
ment, described by d, the current strain can be evaluated by Eqs. (3.28)–(3.30) for
any point X.

A discretized virtual strain operator—giving DEd from a virtual displacement
increment Dd at a displacement defined by d—is formally derived based on
Eq. (3.28). Noting the quadratic term, this becomes

DEd =
(

B0 + dTB2

)

Dd = B(d)Dd, (3.31)

where the components of B2 are

B2αβi j = 1

2

(

NF γα j NF γβi + NF γαi NF γβ j
) ≡ B1αβi j + B1αβ j i , (3.32)

which indicates a degree of symmetry in expressions. The operator B is a non-linear
basis tensor field for virtual strains.

The strain components in Eq. (2.17) agree with Eq. (3.26) for (α, β) = (1, 1), and
(1, 2), respectively. Equation (3.28) gives for the discretized strain components

Ed 11 =∂Ud 1

∂X1
+ 1

2

∂Ud γ

∂X1

∂Ud γ

∂X1
,

Ed 12 =1

2

(

∂Ud 1

∂X2
+ ∂Ud 2

∂X1
+ ∂Ud γ

∂X1

∂Ud γ

∂X2

)

,

(3.33)

The corresponding virtual strain increments are, according to Eq. (3.31),

DEd 11 =∂DUd 1

∂X1
+ ∂Ud γ

∂X1

∂DUd γ

∂X1
,

DEd 12 =1

2

(

∂DUd 1

∂X2
+ ∂DUd 2

∂X1
+ ∂Ud γ

∂X1

∂DUd γ

∂X2
+ ∂Ud γ

∂X2

∂DUd γ

∂X1

)

.

(3.34)
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As formulated here, it is obvious that the common linear virtual strain terms are
obtained for small—or zero— displacement, when all ∂Ud α

∂Xβ
≈ 0. The linear strain

operator B0 at any point X is thereby independent of the current displacement. The
operatorB2 is also in itself independent, but is multiplied by a specific d in the virtual
strain operator B.

The current discretized stress tensor Sd at any pointX is evaluated from the strain
coming from Eq. (3.28) at a specific d , and is thereby also non-linearly dependent
on current displacement. This follows from the assumption of an elastic11 material
model.

The virtual strain work term in Eq. (2.92), following the above expressions, is
evaluated from Eqs. (2.64), (2.65) and (2.89) as

D�p =
∫

�

Sd :DEd dV ≡
∫

�

DEd :Sd dV =

=DdT

⎛

⎝

∫

�

B :Sd dV

⎞

⎠

T

,

(3.35)

with a contraction of the virtual strain operator and the current stress tensor. The
seemingly unnecessary transposition of the factors is performed in order to obtain all
terms in the final equations as column vectors. After this, a discrete internal force12

vector of dimension Nd -by-1 is defined as

p =
⎛

⎝

∫

�

B :Sd dV

⎞

⎠

T

, (3.36)

Derived here from a virtual energy term, the expression is more general, and allows
also non-conservative stress formulations, according to Eq. (2.83). This is not a main
consideration in the sequel.

As a special case, the strain operator is B ≡ B0 for linear strain assumptions, or
for small initial displacement. If also the constitutive relation is linear, then Eq. (2.24)
givesSd = KEd for any strain, with a constitutive tensorK. The virtual work expres-
sion is then further simplified into

D�p = DdTK d or p = K d, (3.37)

11 but not necessarily linearly elastic
12 where internal is used for the representation of the interior forces in the form of stresses, in a
vector form conjugated to the discrete variables used,
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with a constant, linear stiffness matrix, of which the components are

Ki j =
∫

�

(

B0 αβiKαβγ δB0 γ δ j
)

dV, (3.38)

which is symmetric in i and j , following from geometry andmaterial. The expression
is recognized from common linear finite element forms.

Without the linearity assumptions, no stiffnessmatrix can be formulated to give the
virtual strain work immediately from the discretized displacement, and the discrete
internal force must be evaluated through Eq. (3.36).

Exterior forcing

The exterior forcing of a structural model gives rise to one term on the left-hand side
of Eq. (2.92), and two terms on the right-hand side. Conservative forcing is described
through a variation of the potential�con, while non-conservative ones are introduced
more directly through their incremental work during a virtual displacement.

In a general case, all forcing is introduced—in a form conjugated to the discrete
displacement variables—as a discrete external force vector13

f = f con + f non. (3.39)

The conservative exterior force is obtained from the virtual work expression

DWcon = −D�con = DdT f con, (3.40)

where the force vectors are obtained as14

f con =
⎛

⎝

∫

�T

N • gradUπt dA +
∫

�

N • gradUπb dV

⎞

⎠

T

. (3.41)

The non-conservative terms can similarly be collected and re-written as

f non =
⎛

⎝

∫

�T

N • Tnon dA +
∫

�

N • Bnon dV

⎞

⎠

T

. (3.42)

13 where a notational distinction is made between the exterior forcing in the form of boundary
tractions and body force, and the external force vector being conjugated to the discrete variables in
d.
14 using Eq. (2.79) and its virtual counterpart together with Eq. (3.15)



102 3 Discretization of Structural Models

The expressions above transform the exterior traction and the body force to a
discrete external equivalent force vector of dimension Nd -by-1. In most cases, the
exterior force expressions Tnon and Bnon are dependent on the current displacement
Ud , i.e., on the discrete components in d.

For a conservative setting, only f con is left as the representation of exterior forcing.
It is noted that also conservative forcing can be evaluated through the more general
Eq. (3.42) if this is considered a more attractive form than Eq. (3.41).

It is obvious from the notation, which brings discrete variables into vector space
displacement, that the discrete representation of the exterior forcing is inherently
related to the chosen discrete variables and the corresponding approximation func-
tions for the structural model. The ‘equivalent’ reflects this relation to the specific
displacement representation.

When the force is displacement-independent, Eq. (3.41) is further simplified,
by the linearity of the exterior force potential in the displacement, according to
Sect. 2.6.3, and

f
con

= −
⎛

⎝

∫

�T

N • T dA +
∫

�

N • B dV

⎞

⎠

T

, (3.43)

where the forcing quantities T and B are constant fields15. This is a very common
situation in engineering analysis, when the expressions for the forcing can be of
arbitrary complexity, as long as they are independent of the displacement. This is the
case when exterior forcing is defined through directions and positions in relation to
the material configuration. A computational advantage is that the discrete external
force vector need be evaluated just once.

3.2.4 Discretized Mechanics Equation

The previous section develops the virtual work terms in the general Eq. (2.92) with
respect to the discretized displacement representation inEq. (3.8),with its consequent
expressions in Eqs. (3.15) and (3.17). Collecting all the resulting terms gives the
discretized mechanics equation

DdT
(

Md̈ + p − f con
)

= DdT
(

f non
)

, (3.44)

which must be valid for any legal virtual discretized displacement increment Dd.16

With a problem definition through a constitutive expression, and expressions for the

15 This is the key difference in relation to the more general Eq.3.42, which formally looks very
similar, but allows arbitrary descriptions of exterior forcing.
16 fulfilling the essential boundary conditions, as discussed in Sect. 3.5, but this is neglected at this
stage



3.2 Discretized Balance 103

exterior forcing, the equation is only dependent on the operator N, which reflects
the geometry and the chosen discrete variables. The equation is straight-forwardly
adapted to any specific setting.

The expression in Eq. (3.44) is a very general formulation for a mechanical prob-
lem, including dynamics, but without damping; consideration of this aspect would
include terms related to velocity. In the most general form, it includes conservative
and non-conservative contributions to the external force vector. Non-conservative
stress, as in Eq. (2.83), is included in the internal force in Eq. (3.36), but is not
further considered here.

3.2.5 Discretized Equilibrium

The first term in Eq. (3.44) vanishes when studying equilibrium, and the remainder
can be written, noting the arbitrariness ofDd, as the discretized equilibrium equation

p = f or r ≡ p − f = 0, (3.45)

with r a discrete residual force vector expressed in relation to the discrete variables,
and representing a balance between internal force p and external force f . The latter
may contain conservative as well as non-conservative contributions.

Regarding the discrete internal force p in Eq. (3.45), this is derived from the
incremental strain energy or workD�p ≡ −DWp in Eq. (3.35). The simplification
of this term in Eq. (3.37)—as a stiffness matrix K multiplied with the total discrete
vector d—is, however, normally not relevant in any stability problem; some non-
linearity must be present in the problem. This non-linearity is very seldom present
only in f , and such cases are not further considered.

When equilibrium is defined by either of the forms in Eq. (3.45), this defines a set
of non-linear equations in the discrete variables. It must be noted that the equation is
expressed as the full set of equilibrium equations, where no consideration is given to
the displacement boundary conditions on the boundary part�U . The equations should
thereby be read in such a way that either these boundary conditions are introduced at
a later stage, or that the two force vectors are already condensed such that only forces
conjugate to ‘free’ or unrestricted displacement variables remain, cf. the discussion
in Sect. 4.1.

Problem classes

The discretized equilibriumequation inEq. (3.45) is quite general, and can be adapted
to many problem classes. A few special settings are common in engineering, and are
considered here, as a background to the solution methods in Chap. 4. The cases are
distinguished through the arguments to the force vectors.
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The least complex form of non-linear equilibrium function is

r(d) = p(d) − f , (3.46)

with a fixed, displacement-independent, external force17. The discrete vector d is
solved for equilibrium using, e.g., the methods in Sect. 4.1.5.

Commonly, non-linear problems consider a parametric exterior forcing, giving18

r(d, λ) = p(d) − λ f ′, (3.47)

where the prime denotes a constant ‘force pattern’ f ′ ≡ f ,λ, and the forcing level is
defined through λ. The force is displacement-independent, thus conservative. A set
of equilibrium states for variable λ is solved in this case, e.g., according to Sect. 4.1.6.

For more complex situations, the forcing is dependent also on displacement, and
the equilibrium equation is

r(d, λ) = p(d) − f (d, λ), (3.48)

where the forcing level is described by λ and the displacement-dependence coming
from, e.g., pressure on a structure undergoing finite displacement.When also internal
force is affected by some parameter, the defining form is

r(d, λ) = p(d, λ) − f (d, λ). (3.49)

The two latter forms are best treated by methods in Sect. 4.4. They also allow
non-conservative forcing situations.

Depending on the problem at hand, the non-linearity is more or less pronounced,
and demands versions of iterative solution methods, as discussed in Chap.4.

3.2.6 Differential of Equilibrium

Equation (3.45) expresses equilibrium for a discretized model, by demanding work
balance for an arbitrary virtual displacement from the state. For full investigation of
the equilibrium, it is also necessary to express how increments to exterior forcing
relate to increments in displacement.

The most general expression considered for the residual force in Eq. (3.49) gives
that the full differential of the residual force is

dr = r ,d dd + r ,λ dλ, (3.50)

17 evaluated from the exterior forcing, through the reference geometry
18 It is conceivable, but uncommon, to introduce the force description through a general function
f ≡ f (λ)
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where the comma index notation denotes a differentiation with respect to the index
variable. Repeated differentiation of the equation gives expressions for higher order
relations between differential increments in discrete displacement variables d and
forcing parameter λ.

Starting from an equilibrium with r = 0, and setting dr = 0 in Eq. (3.50) gives
requirements on first-order increments in λ and d to keep the zero residual. The first
term expresses how residual force changes with discrete variables d ,

r ,d = p,d − f ,d , (3.51)

where the expression defines an Nd -by-Nd matrix.Referring toEqs. (3.45) and (3.39),
the matrix is written as

r ,d = p,d − f con,d − f non,d = K t + Ke + K non (3.52)

Here, K t is the tangential stiffness matrix, which comes from strain energy incre-
ments,

K t = �p,d,d (3.53)

and an expression for the variation of strain energy with respect to the displacement
variables

d2�p =
∑

i

∑

j

∂2�p

∂di ∂d j
ddi dd j = dTK td. (3.54)

Similarly, the internal force comes from the first variation,

p = (

�p, d
)T

, (3.55)

which is an alternative form for Eq. (3.36), when only conservative stress is consid-
ered.

After some algebra, the tangential stiffness matrix components are expressed as

K t
i j =

∫

�

(

BαβiKαβγ δBγ δ j + NF γαi Sd αβNF γβ j
)

dV, (3.56)

where Kαβγ δ are the components of the fourth order tensor in Eq. (2.24), and Sd

the current stress tensor; the result is obtained by using the symmetry of Sd . The
terms reflect the change in stress and strain, respectively, in a displacement increment
from the current state. The operators B and NF come from Eqs. (3.31) and (3.19),
respectively. In the expression, the incremental strain operator B and the stress S are
dependent on the current displacement, while NF is not so, and the constitutive K
might be.
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Similarly, the conservative force stiffness matrix Ke is related to the second vari-
ation of the exterior potential, and is expressed as

Ke = �con,d,d , (3.57)

which gives an expression for the variation of the external potential as

d2�con =
∑

i

∑

j

∂2�con

∂di∂d j
ddi dd j = dTKed (3.58)

while the conservative external force is, cf. Eq. (3.41),

f con = − (

�con, d
)T

. (3.59)

For displacement-independent exterior forcing, which gives a potential linear in
displacement, the force stiffness disappears.

From the definition of the total potential � in Eq. (2.87), the above expressions
show that the differential is

d2� = dT
(

K t + Ke
)

d = dT K i d, (3.60)

which defines an incremental stiffness; this matrix relates—for a conservative
system—increments in discrete residual force to increments in discrete variables
according to

dr = K i dd or r ,d = K i . (3.61)

This matrix is of major importance in the solution of non-linear equilibrium equa-
tions, and in describing properties of an equilibrium state, cf. Chap. 4.

The third part of Eq. (3.52) refers to non-conservative forcing, and is not possible
to express in any other form. In general, this differential matrix is unsymmetric.
Addition of this term to the differential expression may be an important part in
the solution of non-conservative equilibrium problems. but the expression is not
obviously useful for property evaluation, and is not denoted a stiffness matrix here.
A similar modification to the differential matrix is needed if interior dissipation is
considered, as in Eq. (2.83). The solution methods in Chap. 4 are almost exclusively
discussing conservative settings.

The second term in Eq. (3.50) describes the effects on the residual from a dif-
ferential increment to the parameter λ. In equilibrium formulations like Eqs. (3.47)
or (3.48), the result is of a type resembling a discrete force vector, while the simi-
larity can be more distant for the case in Eq. (3.49), if other types of parameters are
introduced. This term is non-existing in the form of Eq. (3.46).
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3.2.7 Discretized Motion

The previous section considers equilibrium, where inertia effects are neglected. The
first term in Eq. (3.44) is therefore omitted, which leads to the discretized equilibrium
equation inEq (3.45).When this assumption is not relevant, another formofEq. (3.44)
must be used to solve the discretized motion problem.

Re-organizing Eq. (3.44) with respect to the discretized acceleration, again con-
sidering that virtual displacement is arbitrary, gives

M d̈ = f con + f non − p (3.62)

or, comparing this to the expressions in Eq. (3.45)

d̈ = M−1
(

f − p
)

= −M−1r , (3.63)

where the mass matrix in Eq. (3.21) is non-singular and the residual r ≡ r(t), mea-
sured in relation to the discrete variables, is introduced. The equation states that
an unbalance between current external and internal force gives an acceleration,
cf. Sect. 2.8.3.

Identification of the terms shows that the right-hand side is dependent on the
current displacement d ≡ d(t), and the exterior forcing, which is possibly time-
dependent19 T = T(t) and B ≡ B(t). At a time instance t , with a displacement mea-
sured by d , the equation thus gives an acceleration. The second-order differential
equation

d̈ = −M−1 r(d, t) (3.64)

gives a time-dependent solution d(t), if initial discrete displacement and velocity
vectors d(t = 0) and ḋ(t = 0), are provided. The solution need be traced in time t
by some time evolution procedure.

Reliable and efficient general methods for this time evolution of the solution over
a prescribed interval is a technically demanding issue, and several basic methods—
with many variations—are available in literature and software implementations. A
basic description of some available classes of methods is given in Sect. 4.2, but the
topic is not pursued to any greater depth in this treatise.

With respect to the more limited aspect of stability of equilibrium, the dynamic
setting of major interest is related to free vibrations around the equilibrium state, i.e.,
the vibrations possible at frozen parameters for model and exterior forcing. Utilizing
a known equilibrium state, where r = 0 and d̈ = 0, a linearization of the residual in
a conservative system gives a dynamic equation

M dd̈ = −dr = −K i dd, (3.65)

19 suppressing the dependence on X, which is considered through the spatial integration
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with frozen exterior forcing. This gives a discretized harmonic differential equation

M dd̈ + K i dd = 0, (3.66)

for which eigenmodes d0 and eigenvalues � can be solved, through the exponential
ansatz

dd = dd0 exp(�t). (3.67)

This free vibration setting as a tool for stability investigations is further discussed
in Sects. 3.7, 4.2.1 and 4.5.2.

3.2.8 Conclusions from Sect. 3.2

The aspects covered in this section show how a discretizedmechanics problem is sys-
tematically modelled, based on a choice of discrete variables and an approximation
to the displacement field, according to Eq. (3.8). The expressions can be used in dif-
ferent contexts, with global or local approximation bases, not least in finite element
forms. The coming section discusses the possibilities, requirements and limitations
for a variety of approaches.

The implementation of the developed expressions in an algorithm needs a method
for the handling—and in particular the integration—of terms coming from a set
of operators, which are not trivially handled in most computing environments; the
complications come from three-and four-index operators, but also from the abundant
number of zeroes in them.

With the explicit expressions for many quantities involved in the equations, an
attractive method for treatment is in many cases an analytical development in a com-
puter algebra software for large parts of the equations, allowing parametric descrip-
tion of a problem or a problem class. For instance, many element expressions in finite
element methods can be given in closed parametric forms, replacing the common
numerical integration approach.

3.3 Approaches to Discretization

The derivation of the discretizedmechanics equation in Sect. 3.2 starts from an exam-
ple situation of a general tetrahedron solid region in Fig. 3.4. It uses an approxi-
mation of the displacement field as a uniform interpolation between vertex nodal
values, based on nodal shape functions. The dependence on this specific setting
is, however, very limited. The number of nodes, Nn = 4, and the number of dis-
crete variables20, Nd = 12 are essentially only affecting the sizes of the variables in

20 or, the number of degrees of freedom
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Eqs. (3.10) and (3.11), which is emphasized by the . . . notation for repetitive nodes.
The key aspect of this approximation is the uniform interpolations of the Cartesian
displacement components in Ud from the displacement variables in d . This allows
approximations through shape functions N j (X), which are only dependent on the
Cartesian coordinates of the nodes defining the region.

The example is thereby only a background for the very general Eq. (3.8) when
this is used for other models of a solid continuum region. Such approximations may
use an arbitrary number of discrete variables, and any approximation using these.
This section discusses other approximation possibilities for solid regions, starting
from some general requirements.

When, as in the example, the approximation is in the form of an interpolation
such as Eq. (3.6), some requirements are obvious. The first requirement on an inter-
polation is that it must give the correct displacement components at the nodes, for
any displacement state. Each displacement component must therefore be completely
determined by the discrete variable corresponding to this component at the node.
This is a demand on the components of the displacement operatorN(X) at the nodes,
according to

Nα j (X	) = δ j	 (α = 1, 2, 3) (3.68)

for all related ( j, 	). This demand is directly related to the approximation being an
interpolation, and simplifies the form of N in Eq. (3.8).

Another demand is that a rigid translation must be correctly reproduced. With
equal displacement of all nodes, any point within the region must have the same
displacement, which requires that

Nd
∑

j=1

Nα j ≡ 1 (3.69)

for (α = 1, . . . , 3) and at any X.21 This demand is related to any description where
the discrete variables are the displacement components at a set of points, and is valid
also for non-uniform approximations. With other choices of variables22, this demand
is not valid.

3.3.1 Global Approximation

Other approximations, and thereby other discrete variables, are fully possible, and
most of the derivations in Sect. 3.2 can still be used. An obvious choice is to introduce
more nodes in the region, e.g., on its edges, but still describe an interpolation between

21 the basis vectors must together give a ‘partition of unity’ for all three components.
22 such as polynomial coefficients
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nodal values. The corresponding global approximation through shape functions then
becomes of increasingly high order.

As an example, introduction of one additional node at the midpoint of each edge
in the tetrahedron in Fig. 3.4b gives a total of ten nodes, which matches the number
of coefficients of a complete quadratic polynomial for each component. The shape
functions, related to each node, can be formulated by matching ansatz polynomials
successively to the coordinates of the used nodes, such that Eq. (3.68) is fulfilled. This
can be done algorithmically, when nodal coordinates are known, either explicitly for
all nodes, or by defining just the vertices and automatically place also midpoints.
If the number of nodes introduced does not match the number of coefficients in a
complete polynomial of a certain order, a choice of terms will be necessary.

With increased number of nodes, any general interpolation technique is still pos-
sible, but the shape functions will get more expansive. The addition of nodes, and
the increased polynomial degree, will improve the approximation, but also make the
formulation less numerically well-conditioned. This refinement strategy is thereby
normally not useful for high accuracy. Similar aspects are discussed in relation to
finite element settings in Sect. 3.3.3.

Approximations not based on nodal interpolation are fully possible, and a global
approximation based on trigonometric series functions is assumed in many stability
problems. The amplitudes of the series terms are then used as the discrete variables.
This is not an interpolation, andEq. (3.68) is not relevant. As the discrete variables are
not displacement components, Eq. (3.69) is also not relevant. As the approximation
still can be written as in Eq. (3.8), most of the expressions in Sect. 3.2 are, however,
still valid. The expressions also need obvious modifications when the displacement
components are differently approximated. This approach is very common for semi-
analytical treatment of beam, plate and shell stability, cf. Chap. 1, but is not suited
for general approximation in a 3D region. The approach is much more relevant for
the cases of dimensionally reduced models in Sect. 3.4, with a more individualized
treatment of the displacement components.

Trigonometric functions are also an important ingredient in finite strip models,
which are sometimes used for long prismatic structural components. The approxima-
tion is global-local with a product of global trigonometric functions for longitudinal
behavior and local simple polynomial functions in the transversal.

Boundary element methods and field-consistent approaches fall into the category
of global shape functions, but are of limited applicability in general cases.

3.3.2 Local Approximation

While global shape functions have significant drawbacks for general 3D regions,
the discretized mechanics equation in Eq. (3.62)—which is based on expressions
developed in Sect. 3.2—points to other possibilities. With the terms of the equation
formulated as integrals of discretized field variables over the region and its boundary,
a possibility is to use a sum of local approximations, where each is non-zero only over
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Fig. 3.5 2D regionwith one shape function. Template subregion around one node. The contribution
from a value at point 18 linearly decreases to zero at points 13, 17, 19 and 23 and on the edges
connecting these

a limited subregion. With functions identically zero—and, thereby, also vanishing
derivatives—outside the respective subregions, the integrals for each basis field need
only be evaluated for a limited part of the whole, the support region for each func-
tion23. For a 1D region, Fig. 3.3 illustrates this approach, while Fig. 3.5 shows the
same for a 2D region, where the area is divided into regular triangles. For simplicity,
a single scalar variable z is indicated in the figure, with nodal values z j = z(X j ).
Figure3.5 shows how a discrete variable z j at node j only gives a contribution to the
approximate function zd = zd(X1, X2) in a set of four triangular subregions attached
to the argument point24. Conversely, the function zd at any interior point in a subre-
gion is the sum of contributions from just the nodes defining it. A point on an edge
between triangles, necessarily gives the same value from all connected subregions.

With a linear interpolation of the quantity z in the neighboring triangles, the first
derivatives of it are well-defined, and constant in each triangle, but discontinuous at
all triangle edges. Higher derivatives vanish identically at all points within a subre-
gion, but are giving infinite spike values at edges. The form would not be useful in
connection with physical equations demanding these derivatives. A general demand
on an approximation in a discretized setting is that derivatives are available to a
sufficient order for the integrals, with the order decided by the physics equation
modelled.

For the 3D continuum setting discussed above, an illustration is troublesome, but
a general region can always be divided into tetrahedron-shaped subregions25. The

23 or, even the common support regions for two shape functions appearing in product integrals
24 but also that other discrete variables would affect subregions of up to eight triangles in this figure;
in general, the number can be higher.
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Fig. 3.6 Tetrahedron region
with four marked subregions,
from each initial vertex,
which leaves an interior
octahedron hole, which is
not possible to fill regularly.
More nodes might be needed
for complete definition of
subregions

variables are typically three displacement components at each nodal point X j , and
a uniform interpolation through nodal shape functions is assumed. Each variable
appears in a number26 of tetrahedron subregions, and there gives a contribution to
the final approximate displacement.

For the present problem class, first order derivatives of displacement are needed.
This demands an approximate function with (at least) complete linear variation. The
demand that first order derivatives of the approximate function must be finite implies
a demand for continuity of the function itself. This has strong implications on the
functions used for the approximation.

A conceptual challenge is illustrated by Fig. 3.6, which should be compared to
Fig. 3.4b. Figure3.6 attempts to visualize what happens if the solid tetrahedron is
divided into a set of smaller tetrahedra. This subdivision is more complex than might
be initially assumed, and no simple symmetric pattern exists; this may affect results,
cf. Sect. 3.5.1. In general, however, tetrahedra of variable shapes can geometrically fill
any region, even if symmetry is lost. After the division into subregions, the local shape
functions are chosen such that the weighted sum of these define a linear interpolation
between nodal values of the components for the subset of nodes. Compared to the
approach with several nodes, and higher order polynomials mentioned above, the
local interpolation is now piece-wise linear.

It is important to note that the complete linear polynomial over the 3D solid
subregion implies that the variation of it is also linear (in two local variables) on
each face of the tetrahedron, and linear (in one local variable) along any of its edges.
As the values of variables at the three nodes on any face, and at the two on each
edge, define these interpolations uniquely, subregions meeting at a face or an edge
will share interpolation and give a continuity of the approximated variable. This is a
fundamental requirement on any local approximation.

Figures3.5 and 3.6 indicate that many subregions—but also the surroundings of
many nodes—are identical in shape and size. In the interior of the rectangular region
in Fig. 3.5, only two different node types, and four different triangles appear. In a
linear setting, this can be utilized for increased efficiency in the needed integrations,

25 with some level of approximation to curved region edges
26 often rather few, but in principle unbounded when a sphere is modelled by tetrahedra using the
center point as one vertex, and three point on the sphere surface as the others
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but this is not trivial in a general context, where expressions are supported on, and
use individual surroundings and sets of discrete variables. A general approach must
therefore treat each subregion individually, and this is the basis for finite element
approximations.

3.3.3 Finite Elements for 3D Continuum

Among local interpolation methods for structural analysis, the finite element (FE)
techniques have been the clearly dominant choices in engineering for at least 50years,
and are expected to remain so for a foreseeable future due to the enormous investments
in knowledge and implementations. A vast literature exists on these methods, with
key references toZienkiewicz andTaylor (2000) andBathe (2014).Only a fewaspects
are discussed here, with a focus on the modeling of stability problems, and based
on the energy viewpoints promoted in this treatise. This section focusses on FE-
based formulation for 3D continuum situations27, while more application-oriented
dimensionally reduced situations are discussed in Sect. 3.4.

The description of discretized models above is, in its assumptions and concepts,
fully valid for the displacement-based finite elements in common use. In particular,
the usage of the displacement components at a set of nodes as the discrete variables
is introduced, with a corresponding uniform polynomial interpolation through nodal
shape functions. With some care in the choice of interpolation, the displacement
field is C0 continuous between elements, which is a requirement for the integration
of constituent quantities. This choice has aminor advantage in its direct interpretation
of some important result variables28. The philosophy of the techniques is, however,
somewhat different here than in most engineering literature.

Element-wise integration

The description above is focussed on the influence on the solution from one node (and
its related discrete variables) through integrals over the subregions surrounding the
node, cf. Fig. 3.5. The traditional engineering view sees each subregion, i.e., element
as an—almost physical—building block. The integration of the contributions to the
relevant discrete vectors and matrices is therefore performed one element at the
time, considering all integrands with support within the element, i.e., those using
the variables at nodes connected to the element. Figure3.7a attempts to illustrate
this for a plane case with one approximated variable, as a contrast to subfigure (b),
which is essentially reproducing a part of Fig. 3.5, where matrices and vectors are
built column- and component-wise, respectively, based on the contribution from one
discrete variable at the time.

27 even if this not the most common situations where stability is an issue
28 like the point-wise deflection under an acting force
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Fig. 3.7 Visualization of the
difference between
integration of contributions:
a Element-based. b
Node-based

The engineering approach also commonly uses the basic mechanical quantities,
e.g., strain and stress, to evaluate the element interior equilibrium. The element
quantities are block-wise added to the complete structural matrices and vectors. This
approach is here replaced by the expressions from Sect. 3.2. The final quantities, and
therefore the results, are identical for the same choices of discrete variables, shape
functions and mechanical formulation.

The integration is now performed as if the element subregions were instead con-
sidered as individual regions. This can be done by an ‘extract-and-assemble’ strategy,
where the complete region is broken down into elements. The information for these
is calculated and processed, whereafter the results are assembled as contributions to
the whole. This approach thereby successively focusses on one of the triangles in
Fig. 3.5 or one of the tetrahedra in Fig. 3.6, and performs the integrations over these.

The extraction part formally uses a displacement extraction operator for the ele-
ment to withdraw all its displacement variables from the full set, according to

de = Le d, (3.70)

where de are displacement components for the relevant element e, and Le an extrac-
tion matrix, typically consisting of just N	 unit values in an N	-by-Nd matrix, when
N	 is the number of displacement components affecting the subregion29.

With this approach, each element can be considered through the expressions in the
tetrahedron example above, giving contributions to internal and external force, but
also to the mass and stiffness matrices. Primarily, a mass matrix Me, internal force
pe and an incremental stiffness matrix K i

e are evaluated from the displacement de,
combined with material and geometry data for the element. Commonly, also element
external force f e is evaluated.

Noting that all the expressions for structural mechanics come from integrals over
the whole region, but are evaluated for a subregion element, it is obvious that the
element expressions are contributions to the whole. The full expressions are the
assembled sums from the elements, considering their subregion definitions. The
summation of force contributions is thereby

29 which is N	 = 3 for the interpolation of z in one triangle of Fig. 3.5, and N	 = 12 for one solid
tetrahedron element in Fig. 3.6
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p =
Ne

∑

e=1

LT
e pe and f =

Ne
∑

e=1

LT
e f e, (3.71)

with Ne the number of elements in the structural model. Similarly, the contribution
to matrix quantities are assembled as

K i =
Ne

∑

e=1

LT
e K

i
e Le and M =

Ne
∑

e=1

LT
e Me Le. (3.72)

Being a fundamental part of finite element techniques, these summations are often
symbolically described by an assembly operator, e.g., as

p = Ape; f = A f e; K i = AK i
e; M = AMe, (3.73)

being a short-hand notation for the full expressions above, and implicitly using the
element extraction operators for the Ne elements in the model.

The needed information for the integral contributions is conveniently given as
topology information, in the format of a translation of the discrete variable numbers
in a template form of the element integrals to the numbers of the complete region
model. With the same number of components for each node, this can be defined as
node numbers. In Fig. 3.5a, element areas are defined by the numbers: (13, 17, 18),
(17, 23, 18), (23, 19, 18) and (19, 13, 18) in the hatched subregion30. The integration
region is easily handled algorithmically when the positions of all nodes are known.

Numerical or Gauss integration, which is optimally accurate for polynomial inte-
grands31, are extensively described in all text books on finite element techniques. The
method evaluates the integrand quantity at a set of points within the element, and
refers a part of the element volume to this. The weighted sum is an approximation to
the integral. In several contexts, pre-integrations of terms can also be utilized, when
developing a formulation for a specific setting.

Element types

Many elements for structural continuumanalyses are available through literature or in
commercial software. On the surface, these differ in their geometries and node place-
ments, but they may also differ in their interior approximations. They may also differ
in their possibilities to model different materials. As results from FE-based stability
investigations can be rather strongly affected by the elements used, it is important
to understand their underlying assumptions. For the present discussion, the geomet-

30 Imagining three discrete variables per node for the plane problem, the first triangle relates to
variables 37, 38, 39, 49, 50, 51, 52, 53, 54
31 but uses coordinates and weights with rather irregular numerical values—which can not be too
much rounded
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ric and interpolation properties are of particular interest. A basic understanding of
element assumptions and capabilities is therefore needed, even—or, in particular—
when general software is used for the analyses. For non-linear and stability analyses
based on energy concepts, some convergence-enhancing and locking-reducing mod-
ifications to the fundamental element descriptions—which are sometimes introduced
in software implementations—can make conclusion less clear.

The basic geometrical shapes for 3D structural FE analysis are the tetrahedron,
which is discussed above, and a regular hexahedron brick; these have four and eight
vertex nodes, respectively, Fig. 3.8a–b. The tetrahedron element allows arbitrary
shapes through the definition of the coordinates of the vertices, and can give good
results even for rather irregular shapes. The brick element, on the other hand, is basi-
cally defined by its lengths in the coordinate directions. Through an iso-parametric
mapping of the coordinates, the brick can be transformed into an arbitrary solid region
with eight defining vertex nodes as in Fig. 3.8c, giving twelve straight edges and six
surfaces; these are not necessarily plane, but fully compatible between adjacent ele-
ments. While this mapping can reliably handle changes of the element orientation in
3D space, the distortion of the basic brick shape must be kept within certain limits
to be legal, and within even stricter limits to give a well-behaving element32. The
limits are typically given as maximum aspect ratios for side lengths and limits for
the distortion of right corner angles.

The term iso-parametric here refers to the identical representations of the reference
point and the displacement. In the terminology of Chap. 2, this means that X and
U—and, consequentially also x—are completely consistent, in the sense that they all
are described from a set of normalized local coordinates, and thereby allow constant
strain conditions within the element. This implies that, e.g., a straight element edge
in the material configuration will keep straight when deformed, if based on a linear
interpolation. Higher order displacement variations are needed for curved edges, but
demand a higher number of nodes.

Both the basic types of element also demand that vertex nodes are given in an
order prescribed by the implementation33; this information must be obtained from
the software documentation. The elements should be objective with respect to the
coordinate directions, but incorrect node number ordering in the element definition
may lead to incorrect results. The geometrical aspects of element definition are
normally handled and safe-guarded by a commercial software.

With respect to the possibilities to handle complex region geometries, sets of
tetrahedron elements can be combined to reliably represent any shape, with the only
restriction that curved edges and faces are represented by sets of straight lines and
flat surfaces34. The element sizes are also easily gradually changed within the region.
The brick elements are, even with the iso-parametric approach, less flexible in this
respect; as an example, the modelling of a solid sphere through a set of reasonably

32 as finite element methds are fundamentally aproximate, and therefore can be of different qualities
33 or the volume will be calculated as negative, with disastrous results
34 and, consequently, also gives too small areas and volumes, if defining vertices are placed on the
exact geometry of a convex region



3.3 Approaches to Discretization 117

Fig. 3.8 Typical low order
finite element types for 3D
continuum structural
simulations. a Tetrahedron
element. b Regular
hexahedral brick element. c
Iso-parametrically
transformed brick element

shaped hexahedra is impossible. For any element type, it is always advantageous to
use elements of similar measures in the coordinate directions.

While the geometric definition of elements in a region can be more or less auto-
matically handled by a software, a choice is often needed for the interpolation, and
implementations may offer several possibilities, through named element types with
different assumptions, or by switches given as input.

Improved interpolation

In the tetrahedron representation above, the four vertex nodes allow an interpolation
based on a complete linear polynomial, cf. Eq. (3.5). The eight vertex nodes of the
basic brick element can be used in different interpolations, all fulfilling the demands
inEqs. (3.68) and (3.69), but the eight nodes are not sufficient for a complete quadratic
polynomial. As isotropy of an element formulation with respect to axis directions
is a highly desired quality, the uniform interpolation is often chosen as the product
form

Nα j (X) = (a1 + a2X1) (a3 + a4X2) (a5 + a6X3) (3.74)

for (α = 1, . . . , 3) in the regular brick, with a consequent modification for the iso-
parametric transformation35. This gives a complete linear polynomial for each com-
ponent, with addition of three quadratic terms and one cubic, i.e., a slight improve-
ment of the tetrahedron interpolation.

35 where the interpolation of both geometry and displacement is written based on three local coor-
dinates, instead
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Fig. 3.9 Higher order finite
element types, as
improvements, through
addition of mid-edge nodes,
to the elements in Fig. 3.8. a
Tetrahedron element. b
Iso-parametrically
transformed brick element.
Only the visible nodes are
marked

(a) (b)

The interpolation in Eq. (3.74) can be assured to fulfil the needed C0 conti-
nuity over element boundaries. Considering one face of the regular brick (e.g.,
X1 = const.), the interpolation gives an incomplete quadratic function, which is
fully defined by the four corner nodes of the face. On any edge, the interpolation
is linear, and defined by the two end nodes. This uniqueness ensures the continuity
of displacement between adjoining elements; no gaps or overlaps between elements
will appear. The same reasoning shows that first derivatives are not continuous.

Higher order interpolation infinite elementmodels, and thereby smoother results36,
demands elements with higher numbers of nodes than in the basic elements in
Fig. 3.837. Systematic procedures for this add nodes on all element edges, on all
surfaces or as a regular grid within the element. The choice of polynomial terms
which match the nodes available is not always unique, and may be difficult, due to
the continuity demands on faces and edges.

The first step of improvement of the basic tetrahedron element is in this context
straight-forward, when six new nodes at the midpoints of each edge are added to
the four vertex nodes, Fig. 3.9a. The midpoint nodes allow curved edges and faces
of the refined tetrahedron. Having ten nodes, the element perfectly fits a choice of a
complete quadratic polynomial. It is noted that ‘midpoints’ here is not necessarily
the geometric midpoint of the edge; any placement rather near this is fully useful.
This choice satisfies the continuity requirements.

A further improvement with only edge nodes is not obvious, as two nodes on each
edge gives a total of 16 nodes, while a complete cubic polynomial has 20 terms.
Placement of nodes also at the midpoints of the four element faces is a possible
solution to this, and this form observes the continuity demands. For even higher
order elements based on the tetrahedron, a similarity to the Pascal triangle shows that
complete polynomials can always be obtained, but that these will demand interior
nodes within the element volume.

For the basic brick element, adding one node at all edge midpoints as in Fig. 3.9b
gives a total of 20 nodes. Seemingly, this would allow a cubic polynomial in three
coordinates. Such a choice would, however, not uniquely define the approximation
on a face, as only eight nodes are available, and ten terms exist in the polynomial for

36 for the same number of elements, at least
37 Other possibilities exist, such as non-node variables, but these are outside the present scope
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a constant value of one coordinate. The same conclusion is valid for the edges of the
brick, where three available nodes can not uniquely define a cubic function.

Auseful element based on the nodes in Fig. 3.9b is the so called 20-node ‘serendip-
ity element’. This interpolates geometry and displacement by an incomplete fourth-
order polynomial. The next element in this group has 32 nodes, all on element edges.
Another group of elements is the Lagrange elements which are based on products of
functions in the coordinates, and has a regular grid of—also interior—nodes.

Not least due to the extensive geometry handling, only the simplest versions of
the elements are possible choices for self-made implementations. In commercial FE
software, a set of tested element types are available38. The documentation of these
should describe the underlying interpolations, the restrictions on usage, and the input
needed for the division of a region into set of elements. For high-order elements, this
meshing needs assistance from an automatic procedure; ideally, the user should just
define the region and the requested order of interpolation by the elements.

Regarding the choice of element most suited for a specific analysis, this has
been a constant discussion in literature for several decades, but still without firm
conclusion. Without any ambition to settle the issue, it is just noted that the non-
linear formulations needed here tend tomove themain computational burden from the
solution of sets of equations towards the repetitive evaluation of element quantities.
This would thereby be an argument for lower order element types, with less complex
element expressions, at the cost of higher numbers of discrete variables for equal
accuracy in results. This conclusion is then primarily valid for practical engineering
simulations, while high-order interpolations are invaluable for high-accuracy results,
if computational demands are not major issues.

3.3.4 Isogeometric Analysis

Isogeometric analysis (‘IGA’) is a more recently developed technique for numerical
modelling and analysis of structures. The approach has major potential, but is yet
not as developed as the FE techniques; this implies that general commercial software
is sofar more rare. The main references for the method are works by Hughes et al.
(2005) and Cottrell et al. (2009).

The isogeometric analysis models share some properties with FE models, but
also include some important differences, which demand a good understanding of the
methods and results.BasedonFEknowledge, IGAwasdevelopedwith anobjective to
bridge the conceptual and implementation-related gaps between design and analysis
software. This ambition, but also a demand for analysis formulation with higher
smoothness than the basically C0 continuous finite elements, have been stated as
main motivations for the IGA development.

38 even if the element testing is perhaps not always directed towards the element performance in
stability analyses
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Fig. 3.10 Schematic
comparison of main
differences between
approximate functions fd (x)
as obtained from FEM
interpolation (bottom) and
IGA approximation (top).
The figure shows two
fictitious and unrelated cases

In relation to the descriptions above, the IGA modeling of a 3D continuum uses
the form of Eq. (3.8), with basis fields and discrete variables, and uses uniform
approximation for the displacement components. The approximate displacement is
in IGA described through non-uniform rational B-spline (NURBS) functions—the
same for each component—which are a further development of theB-spline functions
commonly used as the basis in constructive solid geometry (CSG)39. These are not
interpolating, as the discrete variables relate to the displacement at a set of control
points not attached to the physical region. As shown by the simplified 1D comparison
in Fig. 3.10, the control points in IGA are rather ‘attractors’ to the displacement
variations in the region than the nodal values used in FEM.

The main advantage of the IGA modeling for structural analyses is the higher
degree of continuity inherent in the form, and obtained with fewer discrete values,
even if this does not necessarily imply a lower computational cost. The continuity
improves the smoothness of both the geometric model and the calculated results,
as IGA is fundamentally iso-parametric. The continuity is described through knot
vectors40, which give very good possibilities to model complex geometries from few
data. The knot vectors describe patches of the complete model, which in the FE
context could be described as super-elements, which are divided into elements for
numerical treatment.

The higher degree of continuity obtained by the NURBS functions is a desir-
able quality in stability analyses, and comes from the wider support regions for the
functions. The increased smoothness adds some complexity to, e.g., the algorith-
mic integration of the constituent terms in the needed equations. The less localized
approximation on the other hand makes the introduction of several classes of bound-
ary conditions less straight-forward. As the approximation is not interpolatory, all
results from IGA also need some degree of post-processing prior to interpretation.

Although considered as having a very interesting potential in stability investi-
gations of structures, the IGA methods are not further discussed here. Their basic

39 B-splines are, in turn, developments of the spline functions, being the mathematical expressions
for the engineering spline tool, a flexible ruler used to connect a set of points in a drawing by a
smooth graph
40 which are really tensor-like products of knot vectors for each spatial dimension of the model
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features, however, fit well with the description in earlier parts of this Chapter and in
the solution methods of Chap. 4.

3.3.5 Mesh-Free Methods

Another potentially interesting possibility for the discretized approximation of the
displacement in a structural model lies in the mesh-free methods. The basic idea in
these methods is to avoid the creation of artifact geometry and topology information
for the algorithmic definition of the model, like nodes, elements and patches. The
method therefore only operates by a set of nodal points more or less uniformly spread
over the region. The possibilities to adaptively change this node set is an interesting
feature of the method.

The approximation within the modeled region is interpolatory, in the sense that
point source functions are attached to each node, however, not in general fulfilling
the partition of unity quality in Eq. (3.69). Commonly, radial functions around the
nodes are used. With the limited geometric information about the model utilized,
the definition of model edges and the corresponding boundary conditions become
considerably more complicated than for FEM or IGA formulations.

As very few commercial implementations of the mesh-less methods are avail-
able, and a self-made implementation demands the solutions to several complicated
numerical problems, related to, e.g., numerical well-posedness, the mesh-less meth-
ods are not further discussed here. With strategies for the placement of nodes, and
choices of source functions, a successful implementation can be based on most of
the expressions in this and the following Chapter.

3.4 Dimensionally Reduced Models

The previous sections of this Chapter discuss discretization methods for 3D con-
tinuum regions, representing general solids and structures. The discretization, based
on finite elements or through other approaches, is then isotropic in the sense that all
directions are treated identically. The developed elements for the analyses are also
assumed to be similar in all directions.

Stability problems are on the other hand primarily relevant for other classes of
slender structures, which are thin in one or two dimensions. Methods for treatment of
such problems are needed. Even if the methods from above can be used, they become
impossibly unattractive, due to the very large numbers of—roughly cube-shaped—
elements needed; a beam of length 4m, with a rectangular section of 0.1 × 0.2m2

needs 80 × 2 × 4 elements of side lengths 5 cm for a reasonable representation41.

41 in order to have at least two elements in each direction; non-rectangular sections are even worse



122 3 Discretization of Structural Models

This section gives a brief overview of methods for the modeling of slender struc-
tures, i.e., structural components where at least one material dimension is consider-
ably smaller. In addition to the slenderness of the components, this also introduces
the concept of component orientation, when the components, although 1D or 2D in
their individual response, are normally combined into a 3D structure.

The description below is related to finite element discretizations, but similar
approaches can be developed in other contexts. The description is brief, just pointing
to some aspects of these elements, which are relevant to stability investigations. For
a more complete description, the reader is referred to more comprehensive finite
element texts.

3.4.1 Membranes and Trusses

Flat membrane elements and straight truss elements are assumed to be very thin in
one and two dimensions, respectively. They are thereby represented as a geometrical
surface or line. Figure3.11 shows the simplest possible, linearly interpolated, ele-
ments of the two classes. More complex elements—curved or with higher numbers
of nodes—are possible, but need extensive algebra, based on more complex assump-
tions. In the figure, the elements are shown in a local coordinate system adapted for
their basic geometries, with the membrane arbitrarily situated in an (X1′ , X2′) plane,
and the truss on the X1′ axis. The prime superindex here denotes a local coordinate,
adapted to the element initial position.

The elements possess thickness and sectional area, respectively, even if they are
thin in their geometry definition. These quantities are therefore defined as just proper-
ties of the elements, without geometric implications. The key assumption underlying
the description is that interior quantities are constant over the neglected dimensions.

Fig. 3.11 Linear finite elements, represented in local coordinate systems. a Membrane element. b
Truss element



3.4 Dimensionally Reduced Models 123

The integral of this quantity thereby corresponds to just a multiplication by the thick-
ness or sectional area. Consequently, the same applies to the boundary conditions:
prescribed displacement and traction are valid for (points on) the mid-surface and
mid-line, respectively, with traction components often integrated to resultants.

Neglecting the behaviour in the transversal directions makes it impossible to con-
sider deformation normal to the defined geometry, i.e., bending effects. Transversal
traction is therefore effectively considered as resultants at the nodes. This is indicated
by the dashed arrows in Fig. 3.11. The presentation is chosen in order to be compati-
ble with element descriptions using the full three displacement components. The ele-
ment displacement is then measured in the local system as U j = (Uj1′ ,Uj2′ ,Uj3′)T

for each node j . A uniform interpolation through nodal shape functions is implied;
the element remains flat or straight.

In order to utilize the general expressions for these classes of elements, expres-
sions for the neglected transversal deformation components are developed. They are
thereby evaluated from the in-plane displacement components, and from interior
relations, e.g., stress relations.

For the membrane element with local plane-stress assumptions, the full strain
state is introduced through an unknown normal strain component42 E3′3′ in the local
X3′ -direction. This is solved—within the used constitutive relation—such that the
corresponding stress component S3′3′ = 0. For an incompressible constitutive mate-
rial, e.g., the Mooney-Rivlin material model in Sect. 2.4.2, the incompressibility
constraint must also be fulfilled, with an unknown p calculated from the strain com-
ponents, such that the invariant I3(E) = 1.

Together with the in-plane strain from the interpolated displacement, these ficti-
tious variables allow the evaluation of all relevant quantities. Necessary integrations
thereby must be performed also over the real thickness, based on the assumption of
constant values through the neglected dimensions.

For the truss element in Fig. 3.11, the two normal strains in the (arbitrarily chosen)
directions orthogonal to the axial direction X1′ are handled in the same way by an
introduction of fictitious normal strain components; these are chosen to give zero
transversal stresses, and, possibly, incompressibility.

The internal force for either of the elements can be evaluated with the proce-
dures described above, seeing the element as a complete structure, with its interior
interpolation. The result is a local element internal force vector43

p′
e = p′

e(d
′
e) (3.75)

completely calculable from the local element displacement variables. The simple
geometrical forms of the element types allow extensive pre-calculation of the expres-

42 ‘unknown’ since it is not evaluated from a deformation gradient; shear strain components are
here irrelevant
43 Subindex e denotes the isolated element, the prime that force is described in the local coordinate
directions
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sions for this force. Thismakes it straight-forward to introduce parametric definitions
of geometry and material.

When transversal traction is introduced for the triangular membrane element, the
total transversal force is distributed as external force components in the 3′ direction
for the nodes, in an element external force vector f ′

e, which also considers body-
force contributions. For the truss element, exterior traction and body force similarly
contributes to nodal external force components in the X2′ and X3′ directions. For
uniform intensities, these are equally distributed to the nodes.

Accounting for element orientation

Equation (3.75) gives a symbolic expression for the internal force in a membrane
or truss element as a function of its current displacement, all measured in local
coordinates. The expression is used for each element, when it is part of a complete
3D structure subjected to stability investigation44. For this, it is important to note
that the overall mechanics equations are based on integrals of certain quantities over
the full region, and that the individual element is considered as a subregion for these
integrations; the total is the sum of the parts.

Integrating the expressions as above thereby leads to contributions to the needed
(global) discrete vectors and matrices. After consideration of the above restrictions
on transversal components, internal and external force contributions as well as incre-
mental stiffness and mass matrices are obtained in the local element coordinate
system. Similarly as in Eq. (3.75), also f ′

e, K
′
e, and M ′

e may be dependent on d ′
e and

local geometry.
Even if the expressions give correct values to the fundamental scalar quantities,

the addition of the element quantities demands that all contributions refer to the
same global displacement components, when differentials of energy are needed. A
geometric transformation is thus needed for the element displacement components
in d ′

e, which are individual for the element described by the (e1′ , e2′ , e3′) orthonor-
mal coordinate axes. Referring to Fig. 3.12, an orientation operator is introduced to
define the orientation of local axes. This operator, in physical vector form, has the
components

�e i j = e j ′ • ei , (3.76)

where ei are the unit vectors of the global coordinate system. This operator has an
obvious interpretation as an element orientation matrix �e.

Equation (3.76) allows a projection of the global displacement components de on
the local ones d ′

e according to

d ′
e =

⌈

�T
e

⌋

de. (3.77)

44 For the truss element, also a plane, 2D structure can be relevant with respect to stability
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Fig. 3.12 Membrane
element in its own local
coordinate system, and basis
for transformation of local to
global quantities

where the schematic notation implies that the orientation matrix is repeated on the
diagonal for each node in the element, i.e., three times for the membrane element,
two for the truss element.

After this transformation of the extracted nodal displacement, the 3′ nodal dis-
placement components for the membrane element and the 2′ and 3′ components for
the truss element are describing displacements transversal to the initial plane and line,
respectively45. It is noted that all local nodal displacement components are normally
non-zero, when the element is part of a 3D structure.

The calculated element quantities must also be transformed into the global com-
ponent directions before addition; this is obvious going back to the basic equations,
where the virtual displacement components (in the global directions) were on the
left-hand side of all terms. A transformation of these to the local system is needed.
This implies that element quantities must be pre-multiplied by the inverse orientation
transformation, according to

pe =
⌈

�e

⌋

p′
e f e =

⌈

�e

⌋

f ′
e

K i
e =

⌈

�e

⌋

K i ′
e

⌈

�T
e

⌋

Me =
⌈

�e

⌋

M ′
e

⌈

�T
e

⌋ (3.78)

before assembling their contributions to the whole46. The right-hand transformation
for the stiffness and mass matrices is needed as they operate on local displacement
components from both sides.

After the orientation transformation, the element contribution to the whole is
described through the extraction operator in Eq. (3.70), which decribes the topology
of the element in relation to the structural model.

45 which does not, in the non-linear context, imply that they are not affecting the interior response
46 even if the transformation of the mass matrix is often not necessary, as the element gives the same
node contributions in all directions
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3.4.2 Shells and Frames

Shell and frame elements share some aspects with membranes and trusses, but are
considerably more complex from several viewpoints. In fact, accurate, reliable and
efficient shell elements are still a research challenge, even if the TRIC elements as
described by Argyris et al. (1997), and the MITC group of elements discussed by.
e.g., Ko et al. (2017) are highly reliable for most purposes.

Regarding terminology, a shell element is here considered as a combination of a
membrane and a plate element, while a frame element is similarly a combination of
a truss and a beam element. The formulation problems primarily relate to the plate
and beam parts, where bending must be considered. As many treatises exist on these
situations, the description here is brief, even if stability problems often relate to these
response aspects and to models based on such elements.

Essentially, the formulation and usage of plate and beam elements adds two com-
plexities to the descriptions above, and these can be well described already for the
simplest situation, namely a straight plane beam element. This setting is used for
demonstration, and is similar to Fig. 3.11b: a line element, which is directed along a
local X1′ axis, and represents the beam element midline. It has a small beam section
height measured in the X2′ direction, while the width in the X3′ direction is arbitrary,
without variation of the strain and stress47.

In analogy to the membrane and truss elements above, plates and beams also
have one and two dimensions, respectively, that are small. They are, however, not
as small as above, implying that quantities like interior stress can not be considered
constant over the smaller dimensions. For a beam element in the (X1′ , X2′) plane,
according to Fig. 3.13a, this implies that both displacement components U1′ and U2′

need be described. Obviously, this can be done, with similar approximations as in
the membrane case in Fig. 3.11a, using the corner node displacement components
indicated in the figure, but the result would be of low accuracy due to the very
anisotropic aspect ratio of the region.

In order to describe the beamelement by just its 1Dmidline, the commonapproach
introduces a rotation variable, here around the X3′ axis. The variations of ϑ3′ =
ϑ3′(X1′) and the transversal displacement U2′ = U2′(X1′) along the beam axis are
used to describe the beam element kinematics, with the description related to the
straight initial element midline, i.e., the X1′ axis.

If also the axial truss action is included, in order to create a plane frame element,
the axial displacement approximation U1′ = U1′(X1′) is also considered.

When introducing also rotations as variables, these allowdifferent kinematic inter-
pretations, and consequent assumptions for the interior response of the beam sub-
region. In either case, rotations are assumed to be small, as the treatment of large
rotations is not linear. Figure3.13b interprets the rotation as the change of orien-
tation of the initial X2′ axis. Together with the axial and transversal displacement
components U1′ and U2′ , this gives a kinematic approximation, according to

47 It just enters in the integration as the area and area moment of inertia in the integrals, and the
treatment of non-rectangular sections is thereby almost trivial.
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Fig. 3.13 Element
assumptions for plane beam
element. a General view,
with small but not infinitely
small transversal measure. b
Timoshenko beam theory
assumption with rotation as
section orientation. c
Euler-Bernoulli beam theory
assumption with rotation as
both section and midline
orientation

U′
d =

⎛

⎝

U1′(X1′) − X2′ ϑ3′(X1′)

U2′(X1′)

0

⎞

⎠ . (3.79)

where the point coordinate along the X2′ axis appears together with the displacement
components.48

Introducing three variables at each element end node, and using a linear variation
for each variable, the N operator in Eq. (3.8) is obtained as

N =
⎛

⎝

N1 0 −X2′ N1 N2 0 −X2′ N2

0 N1 0 0 N2 0
0 0 0 0 0 0

⎞

⎠ . (3.80)

The functions N1 and N2—both functions of the local axial coordinate X1′—are
the shape functions interpolating linearly between two nodes, cf. Eq. (3.1). This
interpolation relates to the element discrete displacement variables as

de = (U11′ , U12′ , ϑ13′ , U21′ , U22′ , ϑ23′)T (3.81)

The kinematic description of Eq. (3.79) is commonly, and naturally, used together
with the so-called Timoshenko beam theory, which considers the shear strain origi-
nating in the difference between the section orientation (as described by the rotation
variable ϑ3′ ) and the slope of the beam midline described by the derivative of the
transversal deflectionU2′, X1′ , where the comma subindex denotes a derivative of the
approximation functions with respect to the local axial coordinate X1′ .

The element integrals are evaluated after an introduction of the same conditions
on strains in the neglected directions as in the previous section. Compared to the 3D
solid case above, the appearance of a coordinate multiplied with the shape functions

48 TheU3′ component is obviously not reallymeaningful, but included for consistencewith Eq. (3.8)
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is noted49; this represents a simplification of the kinematics in the X2′ axis direction
not described in detail50, ensuring that the beam section remains plane, although not
necessarily normal to the midline.

The linear and independent interpolation of the three nodal variables makes the
usage of this approach straight-forward.

Another approach, commonly connected to the Euler-Bernoulli beam theory,
uses the same nodal displacement variables, but interprets them in another way,
cf. Fig. 3.13c. While the rotation, as above, is used to describe the changing direction
of the midline normal, it now also describes the slope of the beam midline itself.
This implies that the beam section is always plane and normal to the midline, and
shear strain is thereby defined to vanish. A non-uniform approximation is used as

U1′ =N1U11′ + N2U21′

U2′ =N3U12′ + N4ϑ13′ + N5U22′ + N6ϑ23′

U3′ =0

(3.82)

adding four third-degree polynomial functions51 in the local axial coordinate X1′ for
U2′ ; the functions are available in any treatise of finite elements. The key aspect of
the form, compared to the situations above, is that two nodal variables52 are merged
together in one approximation.

The approximation leads to an expression for the element midline slope, which
is now the rotation ϑ3′ as

ϑ3′ = U2′, X1′ = N3,X ′
1
U12′ + N4,X ′

1
ϑ13′ + N5,X ′

1
U22′ + N6,X ′

1
ϑ23′ , (3.83)

The total approximation in the form of Eq. (3.8) then uses

N =
⎛

⎝

N1 −X2′ N3,X ′
1

−X2′ N4,X ′
1

N2 −X2′ N5,X ′
1
−X2′ N6,X ′

1

0 N3 N4 0 N5 N6

0 0 0 0 0 0

⎞

⎠ (3.84)

to represent Eq. (3.82) with the same element discrete variables as in Eq. (3.81).
The two forms of kinematic assumptions for the 2-node plane frame element in

Eqs. (3.80) and (3.84), based on nodal displacement components in Eq. (3.81), can be
used to develop finite elements following the general procedures above. The discus-
sion below will show that the obtained elements are not necessarily optimal. Before
considering possible improvements, three comments are given on the formulations
above.

49 With a symmetric beam section, this will only appear in squared form, leading to the bending
stiffness of the beam section, in the final expressions.
50 The X3′ direction is neglected through the ‘plane’ assumption
51 not denoted shape functions here, due to the non-uniform approximation
52 which are also of different kinds
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The first comment relates to the introduction of rotation variables, in the plane
beam case the rotation ϑ3′ , which is of another type than the translation components
used in the 3D solid models. Obviously, this rotation is of another unit (e.g., [rad.]
instead of [m]), but this difference in unit also implies that the conjugated quantity
appearing in the element internal force p′

e is not a force, but a moment quantity.
That this will come automatically is seen from the X2′ coordinate in the kinematic
descriptions, which will propagate to strain and stress expressions. The different
types of quantities appearing in p′

e
—and thereby also in f ′

e
—is one of the reasons

for the notational distinction between, e.g., exterior forcing and external force vector.
The second comment concerns only the Euler-Bernoulli model, where the rotation

variable is used for an improved description of the transversal displacement. The
higher order of approximation will give, but its treatment also demands, a higher
degree of continuity in the displacement description. This has some implications on
the possibilities to connect elements, but will normally not give any major problems.

Third, the introduction of exterior forcing will demand some extra care for the
frame element, and does not lead to just equal nodal external force components at
both ends. A consistent equivalent external force representing boundary traction and
body-force must consider the corresponding displacement, as defined by the adopted
kinematic assumptions. This comment is particularly valid for the Euler-Bernoulli
beam element, with its high order approximation and mixed types of variables.

A straight space frame element, intended for 3D situations can be developed
along the same lines, when displacement in the X3′ direction is described by the U3′

translation and the rotation ϑ2′ . Torsion is linearly interpolated from the nodal values
for the rotation ϑ1′ .

Thin and thick situations

The two kinematic models for a plane frame element above are both suited for
implementations. They will, however, give elements with different capacities and
properties. Practical recommendations typically suggest element of Timoshenko type
for ‘thick’ beams and those of Euler-Bernoulli type for ‘thin’ ones, reflecting the
dominant shear and bending deformations typically occurring.

While the Euler-Bernoulli element will give a somewhat over-stiff response for
thick beams, due to the neglected shear deformation, the Timoshenko element—
which has some desirable advantages in implementations—can give extremely over-
stiff results for thin beams, due to locking phenomena. Such effects occur in elements
due to inconsistencies in kinematic approximations, and are here related to the shear
angle. In a problem where bending should dominate response, accompanying shear
stress will become excessively high in the approximation, and thereby consume
almost all work introduced by exterior forcing; the resulting deflection can be orders
of magnitude too low53.

53 An example cantilever of height 1/1000 of length, gives a deflection under uniform transversal
load on the order of 10−5 times the correct, when using the form of Eq. (3.79).
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The problem can be remedied, and a frame element useful for all thicknesses
developed, by a modification to the strain expression, still keeping the energy-based
formulation favoured here. Within the MITC (‘mixed integration of tensor compo-
nents’) approach, promoted by Bucalem and Bathe (1993), Ko et al. (2017), and
many authors, the in-plane shear strain, which comes from the linearly varying rota-
tion ϑ3′ and the constant midline slope angle, can instead use the average value for
rotation 1

2 (ϑ13′ + ϑ23′) for the whole length; this is a modification to the kinematic
description used for the strain expressions. This removes the excessive shear variation
over the element length, and thereby the locking, and givesmuch improved results for
thin beams, without any noticeable effect on thick ones. Even if the form is slightly
inconsistent in relation to the continuum formulations, the results are predictable and
more well-behaving than for other methods of locking removal.

Also other forms of locking, due to inconsistencies in kinematics, may occur in
beam elements, but these are in most cases less severe.

Plates and shells

For plate and shell elements and structures, essentially the same aspects appear.
Rotation variables are used to represent the kinematic situation over the small but
not infinitesimal thickness. For a flat plate element, these are the rotations around the
in-plane local axes,which are connected to the transversal displacement, the direction
of the normal to the surface, or both these. Corresponding to the Timoshenko beam
theory, the Mindlin plate (or thick-plate) theory uses rotations as orientations of the
normal, while the Euler-Bernoulli beam theory corresponds to the Kirchhoff plate
(or thin-plate) theory. Related to the discussion above, the two theories are more or
less suited for problems of different thicknesses: the Mindlin theory considers the
shear stiffness coming from a relatively thick situation, while the Kirchhoff theory
only considers bending deformations. As with the beam models, the former thereby
considers shear effects on the transversal displacement, at the cost of a less precise
representation of the plate bending.

As with the frame elements discussed above, the kinematic assumptions for the
two models can lead to locking effects when an element type is used outside its
intended scope. Different methods are used to remedy these problems in general
software, where ‘tuning’ efforts modify the clear-cut derivations in order to give
optimal properties for a chosen set of test problems. Again, the MITC approach is
preferred, as it is well-defined in relation to the energy-based approaches promoted
in this treatise. As the class of shell problems ia always potentially troublesome,
critical testing of an element type is recommended for increased credibility in results.
Published results are valuable guides, but need be evaluated as conclusions are highly
problem related.
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Assemblies of elements

Like themembrane and truss elements, the shell and frame elements need a geometric
transformation from the local geometry used in their derivation to the global geometry
used for the complete structural model. This first demands that the element is trivially
re-written to relate to a complete set of nodal components

U j = (

Uj1′ ,Uj2′ ,Uj3′ , ϑ j1′ , ϑ j2′ , ϑ j3′
)T

, (3.85)

for node j , and relating to the three local axes.
The transformation of the three translation components is identical to the previous

description, but the rotation components need care, at least if a 3Dmodel is employed.
Only when rotations are small, the three components can be considered a vector,
and handled in the same way as translations. For large rotations in space, this is not
possible, and othermeasures andmethodsmust be introduced. These are transformed
to their local counterparts for the element evaluations.

For the representation of large space rotations, several approaches are available,
e.g., Euler angles and the rotation vector. All methods have some advantages in
handling or generality, but also some limitations. Related to the representation of the
rotations, the differential rotation expressions needed in the element transformations
can be derived. The full treatment of this is outside the present scope.

The discussion of total and differential rotations is not least valid in the context
of co-rotational element types. Such element formulations are rather frequently dis-
cussed in literature today, but are based on older concepts of ‘adapted’ and ‘ghost’
reference configurations. The method can be described as a removal of (large) rigid
displacement, and in particular the rotation, from the deformation.When the resulting
deformation is considered as small and treated as linear, but only then, the approach
leads to simplifications in the element expressions. As the formulations are still based
on a Lagrangian formulation with an unstretched initial reference state, cf. Sect. 2.1,
the co-rotational formulations fit well into the setting described above.

3.5 Displacement Boundary Conditions

The boundary conditions in the form of tractions on the boundary part �T are exten-
sively discussed above within the treatment of exterior forcing. Also displacement
boundary conditions on the boundary part �U must be considered, when using a
discretized modelling of a structure. Essentially, these only appear in relation to the
virtual displacement field used in the derivation of the mechanics equations. These
must fulfil the essential boundary conditions thatDU = 0 on boundary part�U , when
prescribed displacement conditions are introduced as part of the frozen parameter
setting.
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Although it is very common in engineering problems that the displacement bound-
ary conditions demand that the displacement componentsUi (X, t) = const., or even
= 0 on (part of) the part�U , it is fully possible to specify the components as any func-
tion of X and t . In an interpolating approximation, like a finite element model, this
must be represented by the discrete displacement variables, and the shape functions
used, which sets some limits to what can be represented. After an introduction of
fixed values to a set of discrete variables in the solution, the interpolation defines the
displacement variation between the nodal points; the variationwill therefore be linear
with a linear element interpolation, which is the natural situation in most engineering
problems. Higher order elements have more edge nodes, and prescribed values for
the displacement gives corresponding interpolation along the boundary; if boundary
conditions are more rapidly varying than the shape functions can reproduce, they
will be approximately satisfied.

Even if the identification and introduction of prescribed displacement compo-
nents is in most cases very natural—when some boundary nodal points are given
prescribed displacement components—a few situations exist where the identifica-
tion can be misleading. The most prominent one is related to prescribed transversal
deflections for plate (and shell) models, when rotation nodal variables are included
in the approximation. Whether to include a prescribed rotation around the plate edge
normal is debatable, and related to the used element type54. With hard boundary
conditions, this rotation is typically set to zero when the edge should undergo a con-
stant (often zero) transversal deflection. This many times leads to a kind of locking
response, with significantly over-stiff results as a consequence. Soft boundary con-
ditions, which allow unphysical rotations around an edge normal, are often more
appropriate for a good approximation, given that a not too low number of elements
are used in modelling; the results, however, may appear somewhat strange.

When some displacement variables are prescribed for the analysis of the structural
model, reactive force components appear in the conjugate internal force components;
these are the forces needed to enforce the displacement condition. The solution
method is described for linear cases in Sect. 4.1.1, and is in essence the same also
for non-linear situations. A more elaborate treatment of boundary conditions as
mechanical constraints is given in Sect. 3.6 below.

3.5.1 Symmetry Modelling

Nature shows many aspects of symmetry, and engineering often uses geometrical
symmetry and repetition of structural components for aesthetical as well as mechan-
ical reasons. From the computational viewpoint, the identification of symmetries
was also a necessity in early days of numerical analyses, due to limited resources.
Creating or identifying such aspects is also well in line with the engineering ideals

54 Note also the discussion on the notation for moment components in Sect. 1.6.
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Fig. 3.14 Macro-symmetry in two simple plane examples

of reducing a problem to relevant and tractable pieces, but this section shows that
this intuition is mis-leading in some cases.

From themodelling viewpoint, symmetry can be considered from two viewpoints.
The previous paragraph primarily relates to a macro-symmetry, where the symmetry
is related to the structural problem at hand. A symmetry in geometry and boundary
conditions is then assumed to lead to a symmetry in response. Two simple but illustra-
tive plane examples are given in Fig. 3.14. For these, symmetry is often introduced in
the modelling. Micro-symmetry, which relates to the interior approximation—e.g.,
through finite elements—is discussed below. Both aspects of symmetry are further
discussed in Sect. 5.3.

Considering macro-symmetry, the square region in subfigure (a) has only bound-
ary traction conditions, even if some of the traction intensities are defined to zero.
i.e., all boundaries belong to �T , cf. Fig. 2.655. Any arbitrary rigid translation or
rotation is thereby fully possible. In a computational model for equilibrium, which
demands some displacement constraints, this situation is not trivially described, but
the treatment in Sect. 3.6.3 gives a reliable method.

A common engineering approach for modelling this case is shown in Fig. 3.14b.
This identifies two reflection planes and a 180◦ rotation as the symmetries of the
problem. For equilibrium analyses, the two mirror planes are replaced by displace-
ment boundary conditions, in the component normal to the reflection plane, i.e., a

55 except that the reduction to a plane problem implies that the midplane of the model is assumed
to stay in the (X1, X2) plane, which is a displacement boundary condition for the U3 component



134 3 Discretization of Structural Models

new boundary part in �U . The other component on these edges belongs to �T , with
necessarily zero traction components parallel to the symmetry edges. The isolation
of the quarter part thereby removes the rigid displacement possibilities, by fixing the
center point and the edge orientations.

The conclusion on symmetry for the problem is related to both the structure and the
forcing. For an alternative case, with a forcing consisting of identical traction also on
the horizontal boundaries X2 = const., the symmetry of the structure is even higher,
with four obvious reflection planes56, and 90◦ rotations as symmetry operations. In
fact, the symmetry is even higher, due to the up-down symmetry in relation to the
plane of the structure. The representative subregion is then a one-eighth part of the
square region, as further discussed in Sect. 5.3.

Figure3.14c shows a simple plane frame with symmetric shape and forcing. The
support conditions are unsymmetric, but express that the lower column ends are
moment-free, and not connected by any horizontal coupling57. The left support thus
moves left-wards under this forcing. With respect to interior force, the response is,
however, symmetric, and Fig. 3.14d shows a possible analysis model, with new—
and one removed—displacement boundary conditions. With Ui and Fi denoting
the displacement and integrated force components in the axis directions, boundary
conditions must reflect that the frame bottom can change its length under forcing;
the displacement conditions for the right-hand support must allow this, and change
the condition for component U1

58.
It has been emphasized for both examples that symmetry considerations are

common—and useful—for equilibrium analyses, i.e., static settings. In neither of
the two cases, symmetry should, however, be introduced in a dynamic analysis,
as the introduction of displacement boundary conditions removes or distorts some
vibration modes59. A full structural model without any fictitious conditions is always
recommended, when (the correct number of) rigid body modes showing zero eigen-
frequencies can be easily disregarded when interpreting simulation results.

The present topic of stability is closely related to dynamic response, and the same
recommendation is given. This is further motivated by the discussion in Sect. 3.7,
which shows that buckling, or bifurcation, is fundamentally symmetry-breaking.
This implies that the problem symmetry must be fully respected in the initial model.
The same recommendation is obtained from the plate buckling analysis in Sect. 1.6,
where it is shown that the buckling response modes are different, dependent on the
geometric relations of the region considered.

56 i.e., also through the diagonals
57 which is in most cases a necessary, albeit not necessarily a fully correct, assumption in order to
isolate the model from its surroundings
58 Note that already the plane frame assumption introduces a restriction to the full 3D response,
prescribing U3 = 0
59 Note, for instance, the much smaller mass active in a horizontal mode vibration in cases (d)
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Fig. 3.15 (Coarse) meshing
of the representative
subregion of a problem with
higher symmetry than the
case in Fig. 3.14a. The
one-eighth mesh must be
repeated in two versions for
a quarter model and eight
versions for a complete
model

Discretization symmetry

When considering the discretization of a structural model, micro-symmetry demands
that the approximation does not destroy the symmetry existing in the original prob-
lem. For the example in Fig. 3.14a this means that a finite element mesh must be
identical—with the obvious reflections—for all quarters of the complete structure,
or results will be more or less incorrect. As the subregion in Fig. 3.14b already
has introduced all symmetries present in the problem, this subregion model can be
described by any element mesh without negative effects (in this respect).

For the alternative case discussed above, where equal tractions act on all four
edges of the model in Fig. 3.14a, the higher degree of symmetry demands further
consideration. Figure3.15 show how the repetitive subregion of one-eighth of the
structure can be arbitrarily approximated by elements, but that thismust be identically
repeated over the full considered region, twice for a quarter model and eight times for
the complete region. The key aspect of this, which is further demonstrated in Sect. 5.3,
is that a discretized model must keep, and must not destroy, any symmetry existing
in the original problem, if reliable results are requested for dynamic or stability
problems. The demands are thereby higher than for a linear equilibrium analysis,
where symmetric forcing on a symmetric structure will always lead to symmetry in
results.

One further aspect in the treatment of symmetry is that adopted finite elements
must be objective in the sense that their formulation is not dependent on any particular
coordinate axis directions. Without this, even a visibly symmetric element mesh can
give unsymmetric results.

3.5.2 Coupling of Subregions

The approximation of the displacement on a boundary surface of a model is also
of fundamental importance, when a structure is divided into components, like the
schematic discussion in Sect. 2.5.5. The regions are then either included in the same
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simulation model, with definitions of their respective geometries and properties
together with the coupling information, or they are separately and successively ana-
lyzed with a transfer of boundary data between the simulations.

In either case, the continuity of the approximate representation of displacement
across the boundary between the subregions need be carefully considered. The prob-
lem lies in the appearance of gaps between the interpolated subregion surfaces (or
edges), which are a major source of inaccuracy, due to the work done by interface
stresses over the gap. This is often a major challenge, when different element types
are used for the regions60, or when the meeting regions are independently meshed
with non-regular element shapes and sizes.

3.6 Mechanical Constraints

In almost every relevant engineering problem, the structural equilibrium solutions
must fulfil additionalmechanical constraints. These are oneway to define the supports
for the structure, but constraints can also be used to restrain rigid body movements
with an objective method, e.g., for a thin sphere when conventional point supports
are not suited. The same idea is also used to prescribe more general displacement
relations, such as symmetry conditions.

Several kinds of constraints, e.g., support conditions in the form of prescribed
displacement variables, can be trivially introduced by straight-forward modifications
to the established equilibrium equations. A more systematic approach can handle
also other forms of constraints. This section will discuss constraint equations of
rather general form in relation to the discretized form of Eq. (3.45), i.e., as residual
functions of the problem variables. The constraints are considered as passive, i.e.,
enforced by the structure itself, as opposed to active ones, when externally supplied
energy modifies the response following some strategy.

The introduction of a set of Nc constraints on the equilibrium solution demands
a corresponding set of Nc constraint-enforcing variables C . Being fundamental
mechanical quantities, these are included in the solution variables, together with
discrete displacement variables d.

3.6.1 Energy Form

Following the energy-based formulation from Eq. (2.87), which is valid for conser-
vative problems, the total potential � is augmented by the two terms

�constr = CT
	 R	(d) + �′

constr(d,Cc), (3.86)

60 which can be, e.g., beam-plate connections, or elements of the same class but with different
orders of approximation
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reflecting common engineering settings of constraints; each set can consist of several
terms. The terms are implicitly dependent on problem parameters. The second set of
terms is the more general form, and is based on constraint variables Cc, in addition
to the displacements; these may appear non-linearly in Eq. (3.86).

Thefirst type of terms inEq. (3.86) is a special case of the second, and is introduced
as it is commonlyuseful in engineeringproblems.This typeusesLagrangemultipliers
C	 to enforce residual equations R	 = 0, and is simpler to handle as long as the
functions in R	 are linear in the components of d . The corresponding Lagrange
multipliers are often physically meaningful results, e.g., discrete support forces.
As a special case, hard contact conditions can be handled based on this approach,
cf. Sect. 3.6.4.

The twovectors of constraint variables are collectively denoted asC = (CT
	 ,CT

c )
T.

These variables are typically independent, in the sense that each individual term of
�constr only contains one of them.

With the terminology used, a total constrained potential is defined for the con-
strained conservative problem setting, as

�c = �p + �con + �constr (3.87)

The constraints affect the discrete residual of equilibrium, giving an Nd -by-1
constrained residual force

rc = �c,d ≡ r0(d) + (R	,d)
TC	 + �′

constr,d . (3.88)

where r0 is the equilibrium residual discussed in Sect. 3.2.5, without the constraints,
and the final term contains Cc. The assumption about linearity of R	 simplifies the
handling of the second term, and R	,d is often only a set of constants.

Differentiating the potential expression in Eq. (3.87) with respect to the compo-
nents in C , gives a set of constraint functions

Rc = �c,C , (3.89)

which must vanish at a constrained equilibrium. The functions in Rc depend on the
discrete variables d , the constraint-enforcing variables C , and problem parameters.
Due to the assumed independence, each variable in C gives one constraint function.
For Lagrange multipliers according to the first part of Eq. (3.86), Rc ≡ R	, but the
term�′

constr demands a formal differentiation. The final Rc in Eq. (3.89) may contain
functions of both types.

As the residual equation together with the physical constraints define the problem
at hand, the setting demands solutions to a constrained equilibrium equation

R ≡
(

rc
Rc

)

≡
(

�c,d

�c,C

)

= 0, (3.90)
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being Nd + Nc equations in the Nd + Nc state space variables, collectively denoted
as

D ≡
(

d
C

)

; (3.91)

these are the fundamental variables of the constrained problem.
A constrained stiffness matrix

Kc =
(

K i rc,C
Rc,d Rc,C

)

, (3.92)

relates differential increments in the constrained residual to increments in the vari-
ables. Thismatrix is fundamental to the constrainedmechanical problem, and needed
for the stability conclusions, cf. Sect. 3.7.

It is important for implementations of the described setting to note that Eq. (3.90)
establishes a set of Nd + Nc equations, which represents a problem with only
Nd − Nc free variables. Elimination approaches, where some variables in d are con-
densed out from the set of equations by using Rc = 0 lead to a smaller set, but
normally demand more specific problem knowledge and information, in particular
if constraints are non-linear. The existence of the 2Nc additional variables and equa-
tions is of importance, e.g., in the evaluation of eigensolutions for the constrained
system, cf. Sects. 3.7 and 4.5.2.

As one non-trivial example, the treatment of a closed membrane pressurized
by internal over-pressure can—under some assumptions—enforce a specific gas
amount, according to a constraint potential term

�constr = A ln
C1 + p0

p0
− C1V, (3.93)

where A is a parameter representing gas amount, and p0 the hard-coded ambient
pressure, while C1 is the single constraint-enforcing variable, the over-pressure. The
volume V is calculated from current displacement d . The seemingly complicated
form is demanded in order to obtain the relation in a form resembling energy. The
residual function from this energy term is Rc = A/(C1 + p0) − V (d), when differ-
entiated with respect to C1

61. When differentiated with respect to the displacement
variables in d, the potential term gives

�constr,d = −C1V,d , (3.94)

which is the external force term representing the internal over-pressure on the struc-
ture, and part of the residual function rc in Eq. (3.90).

61 Demanding Rc to vanish implies that A = pV , with p the total pressure and V the volume, and
represents the general gas law under isotheral conditions.
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The over-pressure is just a forcing parameter when no constraints are considered,
but changes role with the introduction of the constraint. It here reflects a fundamental
mechanical requirement, which must be considered in a stability evaluation. When
this gas amount is not constrained, but only a convenient alternative expression for
the forcing, a similar expression is used as a parametric selector function in Sect. 4.4.

3.6.2 Supports

Structural supports are displacement boundary conditions belonging to the boundary
part�U in Sect. 2.5, as discussed in Sect. 3.5. In the discretized setting, these lead to a
set of prescribed discrete variables in the solution. This implies that the representation
of the boundary tractions as equivalent reactive forces is unknown, and part of the
equilibrium solution. The engineering interpretation is that of support point reactions.

In common finite element equilibrium simulations, the introduction of displace-
ment constraints is considered as a necessity in order to remove rigid body motions
from the solution. The basic method to remove this singularity is to remove rows and
columns corresponding to prescribed displacement components in the residual and
stiffness matrix, cf. Sect. 4.1.1.

As an alternative to this approach, the prescribed solution components are intro-
duced through constraint functions augmenting the residual expression.Being of very
simple form, these are formulated as functions R	(d) in Eq. (3.86), in which case
the reactive force components appear in the solution as the corresponding Lagrange
multipliers C	. They are parts of the external force on the structure, but can also,
after convergence to equilibrium, be found as parts of the resisting internal force p,
when applied force f is subtracted from it.

As noted above, the addition of support conditions expands the equilibrium equa-
tions by a set of constraint equations, rather than condensing it. This approach leads
to a system with an increased number of unknowns, but it also has several advan-
tages. One example is when non-localized support conditions can avoid the localized
effects created by point-wise supports, another the generality in problem modelling.

3.6.3 Symmetry Conditions

Although not recommended in Sect. 3.5.1 for problems of dynamics and stability,
many structural problems are analyzed with an assumed macro-symmetry. Such an
approach uses a model of a part of the whole structure. Symmetry planes are thereby
typically replaced by displacement conditions related to the plane; these are well
described by displacement constraints, as in Sect. 3.6.2. In this case, the constraint
equations are normally of very simple form, e.g., specifying one displacement vari-
able to zero, or the sum of (or difference between) two axis components vanishing;
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this is the situation on the diagonal of the one-eighth subregion in Fig. 3.15, and fits
well as functions R	(d) in Eq. (3.86).

Similar approaches can also be used for other relations between displacement
components, with an obvious one being the modeling of anti-symmetries. Such anti-
symmetries are noted to be valid only in linear and linearized settings. A discussion
on how symmetries and anti-symmetries can be used for a complete investigation of
structural stability, based on a minimal representative subregion is given by Eriksson
and Nordmark (2016).

3.6.4 Hard Contacts

As a special case of constrained equilibrium setting, this method is used to include
mechanical contact conditions, assumed as hard, frictionless and exact. The descrip-
tion is focussed on contacts in chosen discretized nodes of a finite element model, but
can be modified to other displacement-based models. It is similar to the introduction
of supports and prescribed displacements. If Nz nodes are known to be in contact,
the form is through a potential contribution from each contact node, summed as

�constr =
Nz

∑

j=1

C j (z j − z j ) (3.95)

where a nodal position coordinate denoted z j is constrained to be a prescribed value z j
in the solution62, and C j is a corresponding contact force component in the direction
of z, ensuring the exact fulfilment of the contact condition. In the sense of Eq. (3.86),
the contact situation can be described as a contribution

�constr = C T
	

(

T z(Xd + d) − z
)

, (3.96)

independent from any non-contact prescribed function values. In the equation, the
vector (Xd + d) represents the current nodal position, when Xd gives the reference
nodal coordinates in a form compatible to d, and z a corresponding description of the
contact surface coordinates. The transformation operator T z is a constant Nz-by-Nd

matrix independent of d and C , but in general dependent on problem parameters.
Each row in T z expresses one displacement constraint, and transforms the current
point coordinate to the surface normal direction.

The Nz constraint functions are parts of the complete Rc in Eq. (3.89), and are
related to contributions (T T

z C	) to the residual force rc in Eq. (3.88).

62 with z a general coordinate normal to the contact surface, which does not need to be in the same
direction for all nodes
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The formulation assumes that the active constraints are known, when solving for
an equilibrium state. The constraints are introduced in the sameway as the supports63.
With this setting, it is straight-forward to obtain an equilibrium solution in which
displacement conditions are exactly fulfilled at all supports, but also at the defined
set of contacts.

When a sequence of equilibrium states is obtained for a pre-defined active set of
constraints, a solution is illegalwhen it contains contact forces of the incorrect sign, or
if any node outside the active set has crossed the contact surface. The algorithmmust
signal such incorrect solutions, and modify the set of contacting nodes when they
appear.When tracing an equilibrium sequence, this is a case of transition equilibrium
state, as discussed in Sect. 4.5.6, and shown by an example in Sect. 5.4.

3.7 Discretized Stability

Stability has been discussed for a continuum setting in Chap. 2. While the reasoning
is strictly not valid in continuous cases, as described by Como and Grimaldi (1995),
theories for discrete systems can be defined, and are discussed here.

The treatment is primarily related to the consideration of static stability, i.e.,
stability of an equilibrium configuration. The structural models can be mechanically
constrained, i.e., completely described by Eq. (3.90), but affected by conservative
forcing only.

The basic view on stability, based on the work by Liapunov (1966), is formulated
in Chap. 2. This defines static stability as the capacity of the structure, or rather the
model used for it, to stay close to the equilibrium state after a small perturbation. An
asymptotic stability, where the effects from a perturbation are gradually decreasing to
zero, is then ensured for any structure possessing some damping. Within the present
setting, stability thereby refers to one equilibrium state for a structure, and discusses
this stability property from two different starting points.

For models without constraints, common views demand for static stability a min-
imum total potential energy at the equilibrium state, as discussed by Koiter (1970),
and Thompson and Hunt (1973), among others. For a discretized problem without
constraints, this is a sufficient condition, and corresponds to positive definiteness of
the incremental stiffness matrix, which describes the second variation of the total
potential around the equilibrium, as defined by Eqs. (3.53) and (3.60). This is also
the differential of the residual force in Eq. (3.61), for the expression evaluated at a
particular equilibrium state, with all parameters fixed. Using the incremental stiffness
matrix allows all classes of conservative forcing.

63 A support can be treated in the same way, as an always existing row of T z .
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The positive definiteness of K i is defined from all eigenvalues �K
	 being positive

in the one-matrix eigenvalue problem (no summation)

K i ϕK
	 = �K

	 ϕK
	 . (3.97)

with eigenvalues �K
	 and corresponding eigenvectors ϕK

	 for (	 = 1, . . . , Nd). The
symmetry of the matrix ensures the existence of a complete set of orthonormal
eigenvectors, spanning the Nd -dimensional discrete displacement space.

As an alternative view on static stability, closer to the basic Liapunov definition,
a perturbation must not lead to divergence, but to a movement composed of the
harmonic vibration modes around the equilibrium. These are evaluated from an
equation for undamped free vibration, as in Eqs. (3.65)–(3.67), in the form of a
two-matrix eigenvalue problem (no summation)

K i ϕ	 = �	M ϕ	. (3.98)

with M the mass matrix, cf. Sect. 3.2.3, and again for (	 = 1, . . . , Nd). The problem
gives a full set of eigenvectors, as both matrices are symmetric.

Given that all �	 are positive, the solutions are free vibration modes ϕ	 and
frequencies

√
�	 in small linearized vibrations around the equilibrium state. With

any�	 ≤ 0, non-vibration responses exist, which can lead to divergence, if triggered
by the perturbation. Stability is thereby judgedby the sign spectrumof the eigenvalues
�	, demanding all �	 > 0 for stability.

It is noted that the results fromEqs. (3.97) and (3.98) give different eigenvalues and
eigenvectors, with only the sign spectra of eigenvalues the same. The simpler notation
for quantities in Eq. (3.98)—without a super-index—reflects that the eigenvalues
from Eq. (3.98) are the preferred ones.

3.7.1 Constrained Stability

As discussed above, stability of an unconstrained equilibrium state demands a local
minimum of the total potential at the calculated solution. With constraints included
as energy-like terms, stationarity is sought for equilibrium, and the second variation
of the constrained total potential in Eq. (3.87) is studied for stability conclusions.
This can be written as a second variation of constrained potential

d2�c = dDT Kc dD, (3.99)

with Kc the constrained stiffness matrix, cf. Eq. (3.92). It is noted that the displace-
ment and constraint-enforcing variables must be allowed to vary together.

While twomethods for evaluation of stability are discussed above, and considered
as equivalent, the difference between the approaches ismore significant in connection
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with constrained equilibrium settings. It is here only appropriate to judge stability
from the existence of vibration frequencies, i.e., the eigenvalues �	 corresponding
to eigenvectors ϕ	, solved from the two-matrix problem (no summation)

Kc ϕ	 = �	 M
c ϕ	 (3.100)

with stability demanding all eigenvalues �	 to be positive, cf. Eq. (3.98). The con-
strained stiffness Kc is defined in Eq. (3.92). As the constraints are mass-less, the
constrained mass matrix to use in Eq. (3.100) is of the form

Mc =
(

M 0
0 0

)

(3.101)

with M the structural mass matrix—or any relevant simplification of it. With this
setting, vibration modes around the studied equilibrium and their corresponding
frequencies are estimated.

When only the eigenvalue sign spectrum is needed for the stability conclusions,
any relevant structural mass representation can be used, as long as it is positive
definite. A simple version is to use a diagonal matrix of equal nodal masses M =
1Nd . With this choice, neither the stability coefficients �	 nor the corresponding
eigenvectors have any physical meaning. In a sequence of evaluated equilibria, the
variations of the calculated eigenvalues along the sequence, however, can have some
predictive capacity for approaching critical situations, where any �	 = 0, somewhat
similar to—but more powerful than—the LPB ideas of Sect. 4.1.3.

Numerical treatment of the eigenproblem in Eq. (3.100) is discussed in Sect. 4.5.2.

3.7.2 Comparison of Criteria

The stiffness and mass expressions in the eigenvalue settings above are evaluated at
a particular configuration, and express differential relations, linearized around this
configuration. They are thereby only valid for infinitesimal variations to the state,
and this must be considered when interpreting results. This is illustrated already in
Sect. 1.2, e.g., by Fig. 1.2, which shows a secondary equilibrium branch graph at
the critical state. The graphs are initially horizontal, but deviate from this at finite
deflections, at least for the more refined models.

The two seemingly very different views on the stability of an equilibrium state
above reflect the basic criteria. The positive definiteness of the incremental stiffness
matrix, corresponding to the eigenvalue problem in Eq. (3.97), shows that the total
potential has to be increased, and additional energy supplied for the structure to leave
the equilibrium. Stability demands that small changes to acting forces lead to only
small changes to the equilibrium configuration. The eigenmodes obtained from the
equation are further discussed below.
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The vibration viewpoint, as expressed by the eigenvalue problems in Eq. (3.98)
and (3.100), focusses on whether the structure will be able to sustain small linearized
vibrations around the current equilibrium state, if an initial disturbance is introduced
as an initial condition to amotion. Positive values for�	 give real values for

√
�	, and

these correspond to frequencies in a vibration-type response,which continueswithout
any additional exterior action64. With a zero eigenvalue, introduction of a small
disturbance in the corresponding eigenvector direction will not lead to vibration.
The existence of a negative eigenvalue indicates a possibility for an exponentially
growing magnitude of the disturbance.

Either of the twoviews clearly shows that only the sign spectrumof the eigenvalues
is of importance for the stability conclusion, not the precise values. The eigenvalues
are evaluated for one particular equilibrium state, where displacements in d—and
constraint-enforcing variables inC , if included—are in equilibrium at frozen param-
eters. This implies that interior stress and exterior forcing for this particular state
are affecting the incremental (or constrained) stiffness matrix through the non-linear
formulation.

For the common engineering setting, where a fixed structural model is consid-
ered when affected by some exterior forcing described by a single parameter λ,
cf. Sect. 4.1.6, the non-linear response evaluation commonly interprets equilibrium
variables as functions of this single parameter. The stability conclusions for the eval-
uated equilibria are thereby also related to the parameter λ. As most simulations of
this type start from an unforced stable initial state, successively increases forcing, and
focusses on finding the first critical equilibrium state for the model65, the view is typ-
ically that the used force parameter is the one causing the loss of stability. Although
fundamentally debatable, this is a reasonable view for this particular setting.

In the more general setting of Chap. 4, with several parameters for the model
and forcing, and possibly parameters of very different kinds, the view on a forcing
creating unstable response is no longer relevant, and other causal relations must be
considered. The basic definition of stability for one particular equilibrium state—
with all parameters frozen—must be used, disregarding any parameterization which
has been used in finding this state. The notion of a particular parameter causing the
loss of stability is thereby in general incorrect, cf. the discussion already around
Eqs. (1.10)–(1.11). Along a parametric sequence of equilibrium states, stability con-
clusions thereby relate to certain parametric regions, which are delimited by critical
states, where the stability properties change.

It is again emphasized that the constraint-enforcing variables in C are not param-
eters in this discussion, but are fundamental physical quantities included in the equi-
librium solutions and in the eigenvectors evaluated. The effects of the expanded
system in Sect. 3.6 must therefore be considered in the evaluation and interpretation
of eigensolutions, cf. Sect. 4.5.2.

64 but is eventually reduced by the ever-existing damping
65 even if it is conceivable that a structure becomes stable with increasing force
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Role of mass matrix

The two common eigenvalue settings for unconstrained problems in Eqs. (3.97)
and (3.98) come from different criteria, and may demand different methods for their
evaluation. With a stiffness matrix K i , and a mass matrix M coming from the used
discretization of the structural model, the matrices are easily evaluated, but eigen-
value extraction is a computationally demanding task, always66 based on iterative
techniques, cf. the works by Wilkinson (1988) and Bathe (2014). Knowledge about
the characteristics of the matrices involved can improve efficiency and reliability of
the algorithms.

When comparing the formulations for eigenvalues, it is noted that the one-matrix
problem in Eq. (3.97) can be written as (no summation)

K iϕK
	 = �K

	 1Nd ϕK
	 . (3.102)

where an identity matrix is introduced on the right-hand side. It is obvious that this
equation is a variation of Eq. (3.98) with a much simplified uniform mass matrix.
This refers equal masses to all discrete displacement components, and avoids all
mass-coupling components existing in the mass matrix built consistently from the
discretization through Eq. (3.21). The identity is thereby even more simplified than
so-called lumped mass matrices. The form in Eq. (3.102) shows that the eigenvectors
obtained are unphysical, as a re-scaling of the variables in the discretized setting will
change the results. The eigenvectors obtained from Eq. (3.102), and thereby from
Eq. (3.97), can not be used for any conclusions on the vibration modes of the model.

It is, however, shown by Strang (1988) that the sign spectra for the eigenvalues
from the two forms must be identical, as both M and 1Nd are positive definite matri-
ces. As only the signs of the eigenvalues are interesting, the two formulations are
equivalent, in this particular respect. This reasoning also shows that both eigenvalue
formulations identically show critical equilibria, with zero eigenvalues, which is of
major interest in stability investigations.

The issue of a relevant mass matrix representation is an important aspect in the
treatment of constrained problem settings, andwill be further discussed in Sect. 4.5.2.
A two-matrix eigenvalue problem is used for the formulation, but this can be re-
written for efficiency in the treatment.

Interpretation of modes

For problem settings without constraints, the eigenvalues obtained from Eq. (3.97)
are unphysical—as shown by the form in Eq. (3.102)—in contrast to the vibration
properties obtained from Eq. (3.98). The magnitudes of the eigenvalues give no
information on the stability properties of an equilibrium. The signs of the eigenvalues
from both settings, however, provide this information.

66 for models of interesting size
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The same comments refer to the eigenvectors. With a consistent mass matrix, the
eigenvectors from Eq. (3.98) define modes, which allow free vibrations at a specific
frequencywhen the corresponding eigenvalue is positive.While these do not give any
immediate information on the stability of equilibrium, they are, however, of major
importance in connection with critical situations, as discussed in Sect. 4.6.

The set of eigenvectors in this case has the property that they diagonalize both
stiffness and mass matrices, creating scalar equations, symbolically written as (no
summation)

k	 ϕ	 = �	 m	 ϕ	, (3.103)

where k	 and m	 are the diagonalized stiffness and mass components67. These are
interesting from the vibration viewpoint, as the set of eigenvalues is obtained by
�	 = k	/m	. The diagonalization de-couples the discretized system into a set of
single degree of freedom systems, on which the incremental force can be projected,
and the response evaluated. This can be of major interest, when dealing with critical
equilibrium states, in which case the eigenvectors are preferably mass-normalized
so that ϕT

	 M ϕ	 = 1.
Further, as bothmatrices are symmetric68, the eigenvectors are spanning thewhole

Nd -dimensional discrete displacement space. This implies that any increment to the
state variables69 can be written as a sum of contributions parallel to the eigenvectors,
according to

dd =
Nd
∑

	

α	ϕ	, (3.104)

where the amplitude α	 measures the contribution from eigenvector ϕ	.
Although the evaluated eigenvectors constitute a basis for any displacement vector

of the problem at a particular equilibrium state, the diagonalization is only mean-
ingful at this particular state. It is also noted that the eigenvectors in general are
global, affecting large parts of a structural model, and not localized to a particular
structural component, as is commonly—and necessarily—done in manual stability
investigations.

Modes for constrained problem

The previous discussion was concerned with problem settings without constraints,
where the displacement variables d are the only unknowns, and define the configura-
tion in state space.When constraints are included in the problem formulation, several
aspects change. When (Nd + Nc) state variables are introduced to define the con-
figuration, as in the collected vector D in Eq. (3.91), and the corresponding residual

67 emphasizing that � does not denote a sum, but an eigenvalue
68 but the incremental stiffness matrix not necessarily positive definite for the non-linear situation
69 which are now just d
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equations in Eq. (3.90), the differential is given in Eq. (3.92), and the corresponding
mass matrix by Eq. (3.101). Compared to the unconstrained case, a main difference
lies in the just semi-definite mass matrix, with zero rows and columns.

Although the eigenvalues problem for this setting, given by Eq. (3.100) is of
dimension (Nd + Nc), the problem has only (Nd − Nc) free variables, and only this
number of eigenvectors exist. This demands specific algorithms for their solution.

The (Nd − Nc) eigenvectors obtained are linearly independent, and thereby give
a basis for the solutions in the constrained state space. Implicit in these solutions
are the relations between increments in displacements d and constraint-enforcing
variables C . As in the unconstrained case, the obtained eigenvectors diagonalize the
constrained stiffness and mass matrices.

Algorithms for eigenvalue extraction handle the semi-definite mass matrix in dif-
ferent ways70. If they allow such problem forms, theymay add fictitious eigenvectors,
which correspond to the zero mass part. As an example, the softwareMatlab71, being
more or less industry standard for numerical linear algebra procedures, adds 2 Nc

eigenvectors, with non-zero components only in the C part of D, and gives eigen-
values marked as infinite for these vectors.

The numerical treatment in Sect. 4.5.2 replaces the zero masses for constrains by
very small positive values, transforming the infinite eigenvalues to very high ones,
which are easily discarded in the algorithm, when their very small norms of the d
part of ϕ	 are noted.

3.7.3 Unstable Equilibrium

In the treatment above, stability of a structural model—at a particular parametric
instance—is characterized by a complete set of positive eigenvalues for either the
operative stiffness matrix itself72—representing the second differential of a total
potential—or the combination of it and amassmatrix for themodel—representing the
vibration properties. The treatment thereby presupposes a consistent representation
for both matrices, coming from the general displacement-based approximation in
Eq. (3.8). With other basic formulations, the criteria may need a re-formulation.

Instability, interpreted as a lack of stability is thereby the opposite, and implies that
a certain perturbation from the equilibrium releases energy or results in a divergent
motion. It is important to note that unstable response is normally described by one,
or a very low number of negative eigenvalues73; the remaining ones are positive. This
means that unstable response is always related to a particular direction, or a space

70 even when the problem is within their capacity
71 Release R2017b, MathWorks, Inc., Natick, MA.
72 where ‘operative’ is ‘tangential’, ‘incremental’ or ‘constrained’, depending on context
73 The matrix formulation is thereby not negative definite, as written in many research papers, as
this would imply that all eigenvalues are negative
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spanned by a low number of base vectors. The situation is thereby best visualized as
a saddle surface in the energy space, and not through a mountain-top maximum.

It is noted that—at least in theory—equilibrium states can be maintained for per-
fect structures with perfect forcing even if the equilibrium is unstable. One example
is the Euler buckling case in Sect. 1.4, which can carry compressive forces well above
the critical forcing, as long as no imperfections appear. Due to their nature, unstable
equilibrium states are, however, often of limited interest to engineering objects, but
note the initial discussion in Sect. 1.1. They, however, can provide some qualitative
information on phenomena in structural response, when they appear as solutions in
an analysis. It is thereby sometimes of interest to evaluate also unstable equilibria,
and to trace them in a parametric space; this is further discussed in connection with
multi-parametric solution methods in Sect. 4.4.

3.7.4 Critical Equilibrium

While stability and unstable equilibrium (with respect to certain perturbation direc-
tions) are conclusions related to a calculated equilibrium state, a main focus in struc-
tural investigations is set on critical equilibrium states, being the intermediate case74.

Critical equilibrium states are thereby the states where one or a few eigenvalues
of the formulations in Eqs. (3.97), (3.98) or (3.100) vanish. In the interpretation of
the total potential, this implies a structural situation, where the configuration can
be perturbed, at least a small distance, at constant energy, or without any force
creating or resisting it. The simple examples described by Eqs. (1.3) and (1.25)
illustrate how a deflected shape of anymagnitude can exist for some forcing; a neutral
equilibrium appears. In many complex models, similar situations occur, but then for
particular eigenvectors, representing critical—or, buckling—modes. Typically, most
eigenvalues are still positive, while one or a few vanish75.

The critical situation implies that a mechanism is formed, i.e., a state where no
stiffness exists and the linearized relation implies that additional displacement can
be created by an infinitely small force, in a particular mode direction. This mech-
anism is infinitesimal, in the sense that only small movements can appear without
force. The critical equilibrium reflects a ‘forced mechanism’ as it is existing only
at a particular exterior forcing, cf. Fig. 3.16. This is the situation reproduced by the
deflected equilibrium used in several analyses in Chap. 1. It is noted that this reason-
ing is mainly an attempt to visualize the effects of critical equilibrium, and that the
reasoning is based purely on a linearized stiffness viewpoint; introducing gravity or
mass properties can change the view.

74 very often termed the instability forcing magnitude, when adopting the view of this as the loss
of stability in an increasing forcing scenario
75 even if a critical equilibrium also exists, e.g., between parametric regions of five- and six-fold
unstable response
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Fig. 3.16 Forced
mechanism as an illustration
of critical equilibrium, with
zero horizontal stiffness
indicated for the linearized
setting

While most engineering approaches seek the critical states as a particular forcing
level, a wider view, further discussed in Chap. 4, identifies the critical states as
borderline cases between regions giving equilibria of different stability properties.

With more than one vanishing eigenvalue, the set of orthogonal critical eigenvec-
tors define a subspace of critical response. This situation will occur for structural
models possessing symmetry, and occasionally for structures where parameters have
been optimized, cf. the work by Ashwear et al. (2016).

In the most common engineering setting, critical equilibria can be of two dif-
ferent kinds76. The discussion takes its starting point in Eq. (3.50), which—for an
unconstrained problem—formulates the differential of the residual equation from
differentials in discrete variables and in the single parameter λ. Evaluated at an equi-
librium state, this differential describes neighboring equilibria, on an equilibrium
branch imagined for the parametric variation. When the incremental stiffness matrix
has no vanishing eigenvalues, the equation is invertible, and a vanishing differential
of the residual

dr = K i dd + dλ r ,λ = 0, (3.105)

leads to

dd = −dλ
(

K i
)−1

r ,λ. (3.106)

This is an expression for the only tangent vector, on which neighboring equilibria can
exist. This expression is valid as written for the cases in Eqs. (3.48) and (3.49). For
the case in Eq. (3.47) the tangent expression is somewhat simplified from r ,λ ≡ − f ,λ

and K i ≡ K t ; the criteria below are often stated in these more restricted terms. The
tangent vector is discussed in a more general context in Sect. 4.5.4.

When mechanical constraints are included in the formulation together with one
parametric external force, Eq. (3.92) expresses the same relation between the residual
components and the variables considered, giving the tangent vector as

dR = KcdD + dλ R,λ, (3.107)

with the collective terms from Eqs. (3.90) and (3.91).

76 even if more complex situations can appear for very specific parametric combinations, as dis-
cussed by catastrophe theory
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A non-critical increment along the equilibrium branch demands that the matrix
Kc is invertible, and the connected variations of all fundamental variables can be
written

dD = −dλ
(

Kc
)−1

R,λ (3.108)

with R,λ the differential of the exterior forcing representation.
It is obvious that the case without constraints in Eq. (3.106) is a special case

of the more general Eq. (3.108). The following is therefore considering the more
general case, and introduces the operative stiffness matrix K , which—depending on

context—is Kc, K i or even K t .
At a critical equilibrium, the matrix K is singular, i.e., has at least one zero

eigenvalue. One or more critical eigenvectors then exist, for which

K ϕcr = 0 ϕcr, (3.109)

where ϕcr is evaluated from Eq. (3.100) in the general case. If more than one eigen-
value vanishes at a critical equilibrium state, the corresponding eigenvectors are
collected as an orthonormalized set �cr.

The implication of Eq. (3.109) is that any non-zero right-hand side, which is not
orthogonal to ϕcr, creates infinite displacement increments. It is noted that an eigen-
vector ϕcr contains displacement variables, and—if included—constraint-enforcing
variables.

Referring to Eq. (3.109), this implies that only dλ = 0 is possible for a case when
R,λ, i.e., the λ derivative of the residual vector, has any component in the direction
of (any of the) ϕcr. This can be evaluated through a demand on the projection of this
derivative on the critical eigenvector(s). With one critical eigenvector, the criterion
is evaluated from

ϕT
cr R,λ 	= 0. (3.110)

If this is true, a limit state exists, where the only incremental equilibrium solution is
an additional displacement in the direction of the ϕcr together with a zero increment
to the parameter.

With several critical eigenvectors77 the same criterion can be used for all the crit-
ical vectors, and evaluates whether the current parameter differential of the residual
vector is out of the range of the current incremental stiffness. Limit states are rather
easily handled in computations, even if they normally need a displacement stepping
approach, cf. Sect. 4.3.2.

The opposite case is when the parameter differential of the residual R,λ is com-
pletely within the range of the operative stiffness, i.e., has no component in the
direction of any of the critical eigenvectors. A bifurcation state exists when, at a
particular equilibrium,

ϕT
cr R,λ = 0, (3.111)

77 assumed as orthonormalized with respect to the mass matrix
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for all the critical eigenvectors in �cr at the critical state. Thus, non-zero stiffness
exists for this increment, and an increment dD⊥ is formally solved from the two
simultaneous equations78

K dD⊥ = −1 · R,λ,

(ϕcr)
T M dD⊥ = 0

(3.112)

where the notation is intended to emphasize that this displacement increment is
orthogonal to the critical eigenvector(s).

In addition to this orthogonal increment, the critical eigenvectors are also solu-
tions, as any of them dD = αϕcr, together with dλ = 0 also fulfills the differential
residual Eq. (3.107). This equation can thereby be fulfilled by any increment of the
form

dD = dλ dD⊥ + �cr α, (3.113)

for arbitrary vectors α of dimension matching that of the critical eigenvectors space.
Higher order differentials, however, show that only a specificnumber of branches—

defined by combinations (dλ, α)—are possible; these are solved from an algebraic
bifurcation equation. At a bifurcation state, with just one vanishing stability coeffi-
cient, two crossing branches exist, and a common situation is that possible branches
are defined by α = 0 and dλ = 0, respectively79. Other situations, where other com-
binations are solved, give unsymmetric bifurcations. Solution of the equation gives
important information on the properties of the secondary equilibrium branch, includ-
ing the stability of solutions on it and the imperfection sensitivity around the critical
state. The numerical treatment is discussed in Sect. 4.5.3.

While limit states with respect to the parameter normally appear as critical
equilibria with one vanishing eigenvalue and one equilibrium branch, bifurcation
states demand handling of—at least—two possibilities and are more algorithmically
demanding. This is further discussed in Chap. 4.

A general conclusion is also that the critical eigenvector at a limit state has the
same symmetry as the equilibrium solution, while a bifurcation state give modes of
lower symmetry. The existence of critical eigenvectors with another symmetry than
the equilibrium solution is thereby an alternative criterion for a bifurcation state; this
is rather easily noted for a particular problem.

As bifurcations are always symmetry-breaking in the response, they demandmod-
els where a chosen discretization is considered in the light of symmetry aspects,
cf. Sect. 3.5.1, the work by Eriksson and Nordmark (2016) and the example in
Sect. 5.3.Macro-symmetries in models also often give (at least) two eigenvalues van-
ishing at the same state. The solution of secondary equilibrium branches is somewhat
complicated, and needs tools not commonly available in general analysis software.

78 even if this demands some specialized algorithmic implementation
79 This is the situation atwhat is commonly called a symmetric bifurcation state in structural stability
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An example

A fictitious but relevant simple example of total potential for a structure modelled
with two discrete displacement components, d = (d1, d2)T is

� = 1

2
d2
1 + 1

2
d2
2 + 1

3
d3
2 + 1

2
d2
1d2 − λ(

1

2
d2
1 + d2), (3.114)

where the terms containing λ may be seen as representing the driving force, and the
others the resisting force. An identity matrix is assumed for the mass matrix M . The
problem is also treated from several viewpoints in Sect. 4.6.

The system is symmetric under the transformation d1 → −d1, d2 → d2.
From the total potential, residual force and incremental stiffness are

r = �,d =
(

d1 + d1d2 − λd1
1
2d

2
1 + d2 + d2

2 − λ

)

, K i = �,d,d =
(

1 + d2 − λ d1
d1 1 + 2d2

)

,

(3.115)
and the parameter derivative of driving force

− r ,λ =
(

d1
1

)

. (3.116)

The residual equation allows two classes of equilibrium solutions, where the
primary one is symmetric of the form

d = (0, τ )T for λ = τ(1 + τ), (3.117)

and one is unsymmetric of the form

d = (
√
2 cos τ, sin τ)T for λ = (1 + sin τ) (3.118)

Regarding the solutions, it is obvious that symmetric solutions exist for λ ≥ − 1
4 ,

while the unsymmetric solutions exist for 0 ≤ λ ≤ 2, and that d = (0, 0)T is a sym-
metric solution for λ = 0.

On the symmetric solution where d1 = 0, the incremental stiffness is

K i =
(

1 − τ 2 0
0 1 + 2τ

)

. (3.119)

Critical situations with a singular K i exist at three states, for d2 = −1,− 1
2 , 1,

and λ = 0,− 1
4 , 2, respectively. For τ = − 1

2 , the critical eigenvector is ϕcr = (0, 1)T,
which keeps the symmetry from the primary solution, and also givesϕT

cr r ,λ 	= 0; both
criteria indicate a limit state at this solution.
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Fig. 3.17 Solution to example in two projections

The critical solutions at τ = ±1 give a critical eigenvector ϕcr = (1, 0)T, which
does not keep the symmetry from the primary solution, and also gives ϕT

cr r ,λ = 0;
these are symmetry-breaking bifurcation states.

On the primary solution branch, where the incremental stiffness is diagonal,
the eigenvectors are always of the two forms above, and the diagonal reveals the
eigenvalues. It is obvious that the eigenvalue corresponding to the symmetric mode
ϕ = (0, 1)T is positive when τ > − 1

2 , and the one corresponding to the unsymmetric
mode ϕ = (1, 0)T when |τ | < 1. The stable region of the primary branch, with two
positive eigenvalues, is thereby − 1

2 < τ < 1.
Similar investigations of the incremental stiffness on the unsymmetric solution

branch show one positive and one negative eigenvalue for all solutions where d1 	= 0.
The solution to the example problem is summarized in Fig. 3.17

3.7.5 Classification of Critical States

The simple example above shows the two most common critical situations occurring
for elastic structural equilibrium evaluations. Both situations are characterized by a
change of stability for the equilibria on the branch. The situations are, however, still
fundamentally different.

The simplest, and most common, type of critical state on an equilibrium branch
is the limit state, commonly appearing as an extremum for the forcing parameter, λ
in the example. The limit state is found for d2 = − 1

2 , λ = − 1
4 , cf. Fig. 3.17a. The

limit state exists on the symmetric primary branch with d1 = 0. The neighboring
equilibria are unstable for lower d2 and stable for higher80. The limit state can be

80 This corresponds to the common structural situation that stability corresponds to increasing
forcing parameter for increasing displacement, but this is not necessarily true in a more general
case.
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interpreted as two branches of different properties meeting at the critical state, even
if only one continuous branch exists through the state.

The other common class of critical state is the bifurcation state, and two such
states exist at d2 = ±1 in Fig. 3.17a. Subfigure (b) shows that symmetry-breaking
secondary equilibrium branches emanate at these states81; the continuation is thereby
not unique through the state. The bifurcation states lead to changes of the stability of
the states on the connected branch segments. In the example case, the primary branch
changes from giving stable equilibrium for just below d2 = 1 to unstable above this
state. Equilibria are also one-fold unstable for d2 just above−1, and changing to two-
fold unstable for lower d2. The secondary branch loop consists of one-fold unstable
equilibria. In general, bifurcations always lead to changes of stability.

Obviously, both types of critical equilibrium states are characterized by vanishing
eigenvalues of the operative stiffness matrix valid for the model. The correspond-
ing eigenvectors give contributions to the possible equilibrium branches passing
through the critical state, as discussed above. Even if the two classes are funda-
mentally different from several aspects, they both consist of connections between
solution branches with different properties. They are special cases of the general
cases discussed within catastrophe theory, singularity theory or the mathematical
branch of bifurcation analysis, where the bifurcation concept has a wider meaning
than in the structural buckling cases discussed in the present treatise.

Bifurcation analysis in general can loosely be described as investigating whether
variations to the parameters of a dynamical system can lead to qualitative changes
in the dynamics of the systems. Qualitative changes include, but are not limited to,
changes in the number of equilibrium points and/or changes to their stability. For
systems where small parameter variations can change the qualitative dynamics, the
goal of bifurcation analysis is also to predict the changes. This setting of bifurcation
theory is described by, e.g., Strogatz (2019).

Mostly as a curiosity in the present context, ‘structural stability’ in the mathemat-
ical context refers to systems which are not sensitive to small parameter variations,
and a system that is not ‘structural stable’ is at a ‘bifurcation point’, and the latter
includes systems with limit points.

3.8 Model Creation

The present Chapter gives a general basic formulation for discretized non-linear
structural mechanics, based on a consistent displacement-based form. Although not
complete in its details, the objective is to create an understanding of the underlying

81 In this example problem, the secondary branch is a loop between the bifurcation states, but this
is not generally true, cf., e.g., the results in Sect. 5.3



3.8 Model Creation 155

formulations in general analysis software. When using such tools for analyses of
equilibrium and stability investigations, the following aspects need be considered82:

• the physical model i.e., the choice of continuum, frame or shell representation;
• the geometry, often through a set of defining measures or point coordinates;
• the topology, defining connections in the model;
• the material as material models and corresponding parameters;
• the support conditions, and other displacement constraints or connections;
• the forcing considered;
• the results requested;
• the sensitivity of the result, e.g., response to perturbations or variations;
• the stability properties of solutions.

Depending on the software used, the aspects may—or, may not—be available to
some extent. The software documentation must be consulted for this, and also on
how the different features are introduced; in professional software, there are often
many different possibilities available for the definition of a model.

In relation to the completely consistent treatment above, formulations in available
software often introduce modifications in order to avoid, e.g., locking problems or to
enhance convergence in the solutions. These modifications are also described in the
documentation, andmust be judged in relation to the problem at hand: even if they are
normally improving the discretized model, they sometimes affect, e.g., the stability
conclusions. Different modifications to the pure displacement-based formulations
are extensively discussed in literature.

Commercial finite element software also offer different possibilities for creating
a mesh for a structural region. While the creation of the mesh, with nodes and
element topologies, is today often more or less automatic from minimal geometric
information, two aspects are commonly needed as input. The first relates to the order
of the element, and thereby the number of nodes in the element definition. This affects
the capabilities of the elements to accurately represent the boundary geometry of the
model. The choice of suitable element type is strongly context dependent, but rather
simple elements83 can be slightly recommended in many engineering applications,
due to a more robust behavior, while higher order elements may be more interesting
for detailed academic investigations.

The other meshing choice refers to the fineness of the mesh, and thereby the
number of elements. This choice is also supported by user information regarding
the software, in some more or less obvious way. With an element type chosen, the
number of elements gives the accuracy obtainable in results. This choice is evenmore
context dependent with respect to application type and need for accurate results, and
no general indications can be given, especially since convergence results obtained
for linear analysis are no longer necessarily relevant when non-linear and stability
analyses are concerned. The best recommendation is to perform the analysis with a

82 and should in some way be defined for an analysis model, even if the software input can be
defined in other categories
83 and thereby a higher number of them
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rather coarse model, then refine it uniformly and compare results between the two
analyses; the differences in important results can give hints on how much meshing
should be refined for a desired accuracy.

Some aspects which need particular care and consideration, not least regarding
symmetry of a problem, are mentioned in Sect. 5.5.

Conclusions from this Chapter

The starting point and the motivation for the Chapter is that numerical analyses in
most cases are necessary for the full stability investigation of complex structures. The
numerical treatment demands a discrete form, where continuous functional represen-
tations are replaced by a set of discrete variables, and accompanying approximative
functions. The Chapter proposes the use of finite element techniques for the simula-
tions, even if other locally based discretizations are also possible. The finite element
approach is supported by a wide range of available commercial software.

Any approximation of the displacement field in a stability-affected structure need
be based on functions with sufficient kinematic complexity to capture the potential
loss of stability. The numerical representation must also be based on sufficiently
detailed assumptions regarding strain and energy, in order to allow the necessary
consideration of non-linear effects

Even if finite element techniques are the primary target for the development,
a consistent treatment is given on non-linear discretized mechanical formulations,
based on approximations to the displacement field over the region, or a subregion.
Within this general form, any discretization can be developed, the only requirement
being that the chosen discrete variables are appearing linearly in the approximation.
Based on this form, all virtual work terms can be systematically derived. An imple-
mentation needs to find efficient representations of developed operators. For several
classes of assumptions on the exterior forcing of the structure, important concepts—
like internal and external force representations, mass and different types of stiffness
matrices—are derived and related to a problem setting.

The Chapter discusses constraints on the equilibrium solutions, which are pre-
sented as a systematic method capable of handling support conditions, avoiding rigid
bodymodes, enforcing symmetry andmodelling hard, frictionless contact conditions.
The treatment shows how such constraints are a fundamental part of the mechanical
problem, with effects on the quantitative evaluation of stability.

In addition to the formulations for equilibrium and motion, the main quantities
developed are key indicators for the evaluation of stability for an equilibrium, where
the treatment only considers conservative systems. Stability of the discretized struc-
tural model is shown to be decided by the signs, even if not the magnitudes, of
the eigenvalues to either of two settings. The corresponding eigenvectors allow an
approximate evaluation of unstable modes or vibration components. From the basic
expressions developed here, solution methods for the stated problem are the topic of
the next Chapter.
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Tasks for this Chapter

1. Solve the same problem as in Eq. (3.3) using the same discrete values as in Fig. 3.3,
but with cubic, third-order, functions fd(t) for ti ≤ t ≤ ti+3, (i = 1, 4, 7). Use the
same collocation criterion as in the text, demanding perfect match at the points
ti+ti+1

2 for all i . Assume that the argument points ti are uniformly distributed over
the interval, when writing the three local functions.

2. For a tetrahedron with nodes in X1 = (1, 2, 2)T, X2 = (3, 0,−1)T, X3 =
(−1, 1,−1)T and X4 = (1, 5, 0)T (all measures in consistent units), evaluate the
shape functions Ni (X), (i = 1, . . . , 4). Then evaluate their sum

∑4
i=1 Ni (X), and

consider the result. Also, evaluate the shape functions for the barycenter of the
tetrahedron84. If these results do not come out as something slightly remarkable,
the solution is not correct.

3. Investigate the properties of Gauss integration through a test problem. For sim-
plicity, a 2D region 1 ≤ X1 ≤ 3, −1 ≤ X2 ≤ 2 is considered. First, evaluate and
list the coordinates and weights for 2 × 2 and 3 × 3 integration in this region
(and, possibly, also 4 × 4). Then, use this information to integrate functions of
the form f (X1, X2) = (1 + (X1)

m) (1 + (X2)
n) for m, n = 1, . . .. Compare the

results to analytical values, and find the limits form and n at which the numerical
integration is still (very close to) correct. As an extra study, investigate the effects
of rounding of the (rather boring) numbers in the quadrature formulae.

4. In an available general FE-based software, investigate which element types and
variations of these are provided for non-linear 3D continuum analyses. List their
properties with respect to generality in geometry (with restrictions and/or rec-
ommendations) and interpolation. Note any ‘special numerical tricks’ which are
used. Write down how useful they would be for modelling of massive (or hol-
low) cube and sphere regions, possibly by automatic routines in the software. If
possible, create and visualize examples of these models.

5. For a rectangular region in 2D: 0 ≤ X1 ≤ a, 0 ≤ X2 ≤ b, it could be tempting to
use an interpolation for, e.g., the displacement component U1 as

U1 =U11 cos

(

πX1

2a

)

cos

(

πX2

2b

)

+U21 sin

(

πX1

2a

)

cos

(

πX2

2b

)

+

+U31 sin

(

πX1

2a

)

sin

(

πX2

2b

)

+U41 cos

(

πX1

2a

)

sin

(

πX2

2b

)

,

84 which is the center of gravity, if a constant density is assumed
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based on the four corner points, andwithUj1 the displacement component at node
j . Discuss the advantages and disadvantageswith this approach: is it useful?Draw
a figure to explain the geometry.

6. Consider a structure according to the figure, which is a 3D generalization of the
example in Sect. 1.3. The basic structure is symmetric in the (X1, X2)-plane, but
has two different length measures; the sectional properties E A are equal for all
bars. It is affected by a downwards vertical force. Formulate the total potential
based on three displacement components of the top vertex. Differentiate once
for equilibrium, and twice for stability. Find critical vertical force magnitudes.
Investigate the case when L = w.

F, v

X
3

X
1

X
2

w

w

h

L

L

7. In an available general FE-based software, model a 4m simply supported pris-
matic beam of section 20 × 10 cm2, when affected by a central point force by
continuum elements (of chosen type). Solve the problem, and compare the results
to a solution based on elementary beam theory. In particular, note all modelling
choices needed for the continuummodel. Additionally, test with different meshes,
and different force magnitudes (if a non-linear setting is available).

8. Assuming a system described by two variables (X1, X2), and a total potential
� = aX2

1 + bX2
2 − c(X1 − X2)

2, decide the limits for stability around (0, 0), and
the lowest mode of critical response in terms of the parameters a, b, c. Use some
software to create and plot the potential surface for some interesting parameter
values, including a critical combination.
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Chapter 4
Solution Algorithms

This Chapter discusses non-linear settings of discretized equilibrium and
motion problems, with a focus on the former. Basic solution methods for
these are presented. With a parametric setting of the problem, for instance of
the forcing, it is necessary to solve for a sequence of equilibria, describing
the response of the structure in more detail. Choosing a sequence of states
is a challenge in itself, when maximum information is desired with limited
computations. The Chapter proposes a setting of the parametric non-linear
equilibrium problem, which is suited for an incremental and iterative solution
algorithm. A generalized sequence-tracing algorithm is presented, which can
handle any parameters for the problem modelled. The algorithm uses Newton
iteration to find each solution point, but Dynamic relaxation approaches are
mentioned as an alternative. Methods for evaluation of the stability properties
of equilibria are discussed. For complete stability investigations in a paramet-
ric structural model, the generalized algorithm gives wide possibilities to trace
the parametric space with different selections of solutions. The dependence of
critical states on structural parameters, and the sensitivity to imperfections are
main objectives. Such investigations are of major interest in the design phase,
but also relevant in structural optimization.

Brief Objective of this Chapter

The development in this Chapter facilitates solution of the response of a parametric
structural model with full quantitative information on its stability properties under
diverse forcing situations.
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4.1 Discretized Equilibrium Analyses

This Chapter discusses how stability problems for structures can be solved in a
computational discretized setting. The key ingredient in such an approach is that the
structuralmodel created is sufficiently comprehensive to admit the treatment of unsta-
ble equilibria. Commonly, this implies a need for a more complex description of the
displacement: a bar becomes a beam, a plate becomes a shell, et cetera. This is a rea-
son why displacement-based forms are preferred for the analyses. The computational
modelling also needs some aspect of non-linearity in the formulation, as the response
to forcing level is no longer proportional. As demonstrated in previous Chapters, the
discretization of a structuralmodel can take several forms, from the series solutions in
traditional semi-analytical methods, via finite difference (‘FD’) approximations to
systematic finite elementmethods (‘FEM’), and isogeometric analysis (‘IGA’).

All the mentioned approaches are potentially useful for structural stability analy-
ses, and share many common aspects. The main focus here is on FEM formulations,
as these are easily available in commercial software, and also systematic enough for
self-developed algorithms in special application settings. Most aspects covered in
the FEM terminology below can also be used for the other settings.

The Chapter has a main focus on the treatment of structural time-independent
equilibrium for conservative systems, but some aspects will be given concerning
non-conservative equilibrium and time-dependent situations.

As many aspects of modular FEM procedures can be used also in the context of
stability investigations, the description starts from the linear FEM setting, and then
progressively develops this into the non-linear form needed for parameter-dependent
forcing, which is the basis for stability investigations. Due to the non-linearity of the
formulations, some iterative method must be used to reach solutions.

Introducing parameters in the problem, it is also necessary to solve for several such
equilibria; this is a parametric approach, with a fictitious time scale, cf. Sect. 2.8.5.
A non-linear formulation is used in an incremental and iterative solution algorithm,
where a sequenceof equilibria is solved. For complete stability investigations in
a parametric structural model, the generalized algorithm gives wide possibilities
to consider the solution space from many different viewpoints. It is thereby fully
possible to seek out, for instance, critical parameter and force combinations. In the
design phase of a structure, such investigations can be of major interest. They are
also highly relevant in mathematical structural optimization. The properties of these
equilibria with respect to stability can be evaluated, and stable parametric regions
isolated.

For the solution of each equilibrium, it is proposed to use Newton iteration, but
Dynamic relaxation approaches are discussed as an alternative with some advantages
for certain classes of problem settings. The choice of states to solve for is a chal-
lenge in itself, when maximum information is desired with minimum computational
effort. This shows that the non-linear form is considerably more demanding than a
corresponding linear problem.
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The discussion in the Chapter also allows the inclusion of physical constraints for
the possible solutions. As discussed in Sect. 3.6, these constraints can be of several
types,where simple ones describe the supports or themacro-symmetries of themodel,
while more complex ones refer to potential contact situations. The constraints affect
the obtained solutions themselves, not least regarding stability conclusions. Their
usage also has significant impact on the possibilities and setting of the solution
algorithm used.

The notation in this Chapter is heavily relying on concepts from numerical linear
algebra. As in Chap.3, vectors, denoted as x , are column matrices of dimension
n-by-1, while matrices, denoted as A are of dimension m-by-n.

4.1.1 Linear Stiffness

The linear form of FEM equilibrium analysis has at its core the solution of a linear
set of equations in the discrete variables1, K � d = f . This is here, aiming at the
development in the sequel, stated in the equivalent residual form

r(d) = K � d − f = 0 (4.1)

which is a special case of Eq. (3.46), with a linear internal force p = K � d in the
structure, and the equivalent conservative external force f , both expressed as conju-
gate variables to the chosen discrete variables.An alternative viewpoint defines the
solution to the equilibrium as the minimization of the norm of this residual.

The form chosen is based on equilibrium being a stationary state of the total
potential2 �, with respect to a set of discrete variables in d . The inclusion of these
as arguments to r emphasizes that these are the unknowns.

The system matrix K � in Eq. (4.1) is systematically built on the constituent Ne

elements in the model, according to

K � = AK �
e (4.2)

with A used for the assembly operator, cf. Sect. 3.3.3: an index-based summation
of element contributions3. Dependent on precise algorithmic implementation, the
assembly procedure contains an identification of model topology, and, possibly, the
space orientations of elements, cf. Chap. 3.

An important observation is that Eq. (4.1) cannot, in general, be used in the natural
view that the external force f immediately gives the resulting d . This comes from a

1 As this treatise has more ambitious objectives, the linear stiffness is considered a special case, and
gets a qualifying index.
2 which contains the strain energy in the structural region, and the potential for acting conservative
forcing, cf. Sect. 2.6.3.
3 implicitly using a set of element extraction operators Le and a number of elements Ne.
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singularity of K �, reflecting rigid motion modes of the model. Boundary conditions
for prescribed displacement components, e.g., supports are introduced through a
modified system

K �
free d free = f free (4.3)

where the subindex ‘free’ refers to the discrete variables with known forcing4 on the
boundary part �T of the model5. Formally, the procedure implied is a part-inversion
of Eq. (4.1), utilizing the boundary condition for each discrete variable. A more
generalized view on constraints on solutions is introduced in Sect. 3.6, and is used
in the general formulations below.

When also the prescribed discrete variables are introduced through dpresc, which
reflects the conditions on boundary part�U , the full displacement field approximation
is known, and the complete acting force, including reactions, is evaluated from the
internal force p = K � d . All relevant response aspects and results are then easily
obtained from the full set of discrete variables.

After providing information on geometry, topology,material, supports and forcing
for a specific model, the algorithm for solving a FEM problem within a class of
structures is highly modular. Procedures for the needed substeps are given in all
text books on basic FEM techniques, and can be easily programmed. In addition to
this straight-forward method, advanced software normally provide several refined
methods for result presentation.

Linear equations

For linear FE-based problems, the dominating task is to solve the set of linear equa-
tions in Eq. (4.3), and this can put severe demands on computer capacity for large-
scale problems with millions of discrete variables. These demands can sometimes be
mediated by algorithms making full use of the properties of the established stiffness
matrix K �, primarily that it is symmetric and positive definite, due to the energy and
displacement-based form. Thematrix is also, in particular for large problems, sparse.
Earlier FEM implementations often used elaborate strategies to reduce a bandwidth
or skyline measure for K �, but this is no longer of major interest.

Direct solution methods do not lend themselves favorably to parallelization, but
some efforts have been directed to iterative methods within this approach. For in-
house specialized software development, only direct methodsare reasonable choices.

In engineering practice, many cases of forcing are commonly considered on a
structural model. If possible, efficiency can be improved by defining all cases at
once, and then treating them in parallel. It is also noted that superposition of cases
is always possible for linear cases, a fact which also ensures proportionality. None
of the comments in this section is of major importance for users of general software.
The comments are also less relevant to non-linear formulations, which are the main
interests in stability investigations.

4 and, thereby, unknown displacement.
5 Refer to the discussion in Sect. 2.5 on the relation between boundary parts with prescribed traction
or prescribed displacement.
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4.1.2 Secant Stiffness

For mildly non-linear structural equilibrium problems, secant stiffnessmethods are
sometimes used. Examples of application are for some total deformation material
descriptions, or when joints change their stiffness during deformation. The approach,
which should seldombeafirst-hand choice, is formulated forfixed external equivalent
force f , as

r(d) = Ks(d) d − f = 0, (4.4)

where the structural secant stiffness matrix Ks is again assembled from element
contributions, all possibly affected by the non-linearity. The equation, which is of the
form in Eq. (3.46), differs from Eq. (4.1) in the dependence of the stiffness matrix
on the discrete variables. As these are also the solution to the problem, iteration
procedures must be used, hoping that the solution converges to equilibrium with a
low residual norm.

Iterative solution

The equilibrium equation in Eq. (4.4) is solved by an iteration technique, with suc-
cessive solutions to problems of the same type as Eq. (4.3).With supports considered,
the solution is thereby obtained through a process

d j+1
free =

(
Ks

free(d
j )

)−1
f free, (4.5)

where the superindex is the iteration counter, and d0, d1, . . . are successive approx-
imations to the equilibrium state. Without any prior knowledge about the solution,
d0
free = 0 is normally a reasonable assumption. The iterations must be safe-guarded

against divergence, and are continued until some norm of the residual r(d j+1) is
acceptably low6, and d = d j+1 is accepted as the solution.

The calculations of reactive and interior force are similar to the linear case above,
based on the secant stiffness expressions p = Ks d. The exception is that superposi-
tion of cases is no longer possible; all interesting cases must be successively iterated
to convergence7.

Problems of this type can preferably be treated as fully non-linear problems
instead, cf. Sect. 4.1.4.

6 where acceptable should normally demand a norm considerably lower than what is initially
planned, perhaps of the order 10−10 of the norm of the internal force p.
7 even if good initial approximations can often be found from neighboring cases.
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4.1.3 Geometric Stiffness

Another common form for simplified treatment of non-linear structural equilibrium
is through the inclusion of a geometric stiffness term. The residual equation, through
a secant stiffness expression, is thereby given as

r(d) =
(
K � + Kg(d)

)
d − f = 0, (4.6)

where K � is the linear stiffness matrix, and Kg is a geometric stiffness matrix,
which is based on the interior forces, i.e., stress existing at discrete variables d.
Typical examples are the effects from axial stress on the bending stiffness for beams,
cf. the examples in Sects. 1.4 and 1.5. It should be noted that this splitting of the
secant stiffness matrix is not the same as the splitting of the incremental stiffness in
Eq. (3.60): the geometric stiffness is not identical to the force stiffness.

In most cases, compressive interior force will—in loose terms—lead to negative,
de-stabilizing contributions from Kg , while tensile forces tend to stabilize the model.
The geometric stiffness is linear in the interior forces.

In the second order treatment in Sect. 1.4, the inclusion of Kg in some respects
improves the description of non-linear response, but this approach still lacks some
non-linear terms8. The one-way coupling potentially leads to strange results, and
the approach is only useful for classes of problems, where response is linear and
geometric distortion under forcing is limited.

In order to solve Eq. (4.6), the expression is a special case of Eq. (4.4), and
the same iterative approach used. Due to the necessary restriction of the method to
problems with small deformations, only one iteration is often applied9, which can
give mis-leading results for statically indeterminate systems.

Linear pre-buckling prediction

Variants of the formulation in Eq. (4.6) are often used for estimation of instabili-
ties through linear pre-buckling (‘LPB’) analyses. This approach is available in most
commercial software, as it is efficient in implementation, and results are easily inter-
preted, cf. the example in Sect. 5.2. Although not identical, the approach is closely
related to second order methods, and several deflected equilibriummethods.

8 In the example Sect. 1.4, the omission is related to the shortening of the beam due to bowing.
9 in some software without even questioning the convergence.
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Fig. 4.1 Plane beam model,
where a compressive axial
force gives a vanishing
transversal stiffness

The software implementations may differ, but the method always uses for repre-
sentation of exterior forcing a unit vector f ′. This ismultiplied by a smallmultiplier10

λ, i.e., f = λ f ′ in the form of Eq. (3.47) with f ′ here a constant force vector. The
equivalent force evaluated from traction and body force at the undeformed state,
suitably scaled, is a common choice for f ′. Solving d1 linearly from f ′ gives the
geometric stiffness Kg(d1) corresponding to f ′.

The assumption of linearity in all response aspects implies that the secant stiffness
matrix at force λ f ′ is

K 0 + Kg(λd1) = K 0 + λKg(d1). (4.7)

Using this stiffness in Eq. (4.6) gives the solution for external force f = λ f ′.
The linear pre-buckling approach uses Eq. (4.7) to evaluate an LPB estimator for

the critical force multiplier λcr from

(
K 0 + λcrK

g(d1)
)

ϕcr = 0, (4.8)

which makes the secant stiffness matrix singular. The eigenvector ϕcr describes the
critical mode, for which a displacement increment dd = αϕcr is possible without
additional forcing; a forced mechanism is formed, cf. Sect. 3.7.4. This critical direc-
tion is normally not in the direction of the forcing. The critical external force is
f cr = λcr f

′.
The situation is very schematically described for a compressed plane beammodel

in Fig. 4.1. Given that the problem is well formulated, the interesting eigenvalue is
the lowest positive one, while higher ones are in general practically unreachable11,
and negative ones normally point to irrelevant inverted solutions. The same approach
can be used also for much more complex structures, when effects from compressed
components may affect the structural response.

The method is well correlated with engineering procedures, in the sense that the
eigenvalue gives a safety factor against critical (buckling) response of the structural
model for the specific caseof forcingdefinedby f ′. In general, themode is a combined
displacement for the whole structural model, and does not allow the characterization
of a particular type of instability, as is done with semi-analytical and design code
instabilities.

10 where both ‘unit’ and ‘small’ must be read as flexible terms.
11 unless they are very close to the lowest one, which can create numerical as well as mechanical
problems.
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The LPB formulation described here does not formally agree with the general
discussion on discretized stability in Sect. 3.7, as the latter derives the stability con-
clusion from the tangential, rather than the secant, stiffness matrix. From a practical
viewpoint, the conclusions are in many—but, definitely, not all—contexts compat-
ible. The usage of LPB approaches demands good problem knowledge, as they are
highly unreliable in general cases.

It should also be noted that the eigenvalue λ in the above equations is not related
to the stability coefficients � used elsewhere in this treatise, even if those are also
eigenvalues, cf. Sect. 3.7. The eigenvalues λ here are positive multipliers, which
predict the forcing level at which a stability coefficient �� = 0.

4.1.4 Non-linear Equilibrium

The previous sections describe the solution of equilibrium problems, where the mod-
els are linear or close to linear. For more general non-linear equilibrium problems,
the equations above are no longer relevant, and the formulation must take its basis in
Sect. 3.2.5, where the equilibrium is defined by the residual form in Eq. (3.45), with
some different common setings defined by Eqs. (3.46)–(3.49). All cases express a
requirement for balance between internal force p and external force f , both being
equivalent force vectors coming from the virtual interior and exterior work, accord-
ing to Eq. (3.44). The equilibrium residual force vector, in an FE context, is evaluated
according to

r ≡ p − f = Ape −A f e, (4.9)

with pe and f e evaluated for current element discrete variables de, and assembled
according to Sect. 3.3.312.

In a general case, the differential of the residual related to differentials in the
discrete variables is given by Eq. (3.52), which considers non-conservative forcing.
Also this matrix is evaluated from element contributions, similar to Eq. (3.72).

Restricting the discussion to conservative cases without constraints, the residual
is obtained from

r = �,d , (4.10)

ordered as a column vector. The differential of the equilibrium residual is described
by an incremental stiffnessmatrix K i defined by Eq. (3.60), (3.53) and (3.57), and
coming from

K i = �,d,d (4.11)

with the convention that the index variables create one row and one column index
in the matrix13. As discussed in Sect. 3.2.6, the incremental stiffness is the sum of

12 even if external force is often created more easily through a direct definition of components.
13 and the matrix is obviously symmetric.
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the tangential stiffness and the force stiffnessmatrices—corresponding to the strain
energy �p and the external potential �con, respectively14.

A few important special cases of conservative systemswere expressed inSect. 3.2.5.
In Eq. (3.46), for a displacement-independent forcing, f is just a constant vector,
evaluated at the reference configuration. When such a forcing is magnified by a
forcing parameterλ, this case is described by Eq. (3.47). For conservative, but not
displacement-independent, forcing, f is also dependent on d as in Eq. (3.48), and

follows from definitions of tractionT and body forceB. When parameters affect also
the internal force vector p, Eq. (3.49) defines the setting.

The incremental stiffness matrix need be evaluated for the different cases, noting
their dependencies on displacement variables d. Thematrix is needed for the solution
of the non-linear equilibrium based on the residual in Eq. (4.9). It is also an important
property indicator for the obtained equilibria, not least related to stability aspects.
This is further discussed in Sect. 4.5.

4.1.5 Basic Solution Method for Non-linear Equilibrium

For non-linear formulations, neither Eq. (4.1) nor Eq. (4.4) is useful, since no total
stiffness matrix is available, and iterative methods based on the residual Eq. (3.45)
and its differential in Eq. (3.52)—or Eq. (3.61), for conservative cases—must be
used.

As an introduction, this section develops a solution method for the simplest case,
where a displacement-independent, thereby conservative, problem setting without
mechanical constraints is formulated. From this setting, a general numerical formu-
lation is established, the solution of which is discussed in coming sections. This gen-
eral setting will allow the introduction of multi-parametric formulations and classes
of mechanical constraints, discussed in Sect. 3.6, within the same basic format.

Fixed exterior forcing

The solution method is first discussed for the case in Eq. (3.46) where a non-linear
structural model is affected by a specified external force f . For such cases, the

incremental stiffness matrix K i ≡ K t . The treatment also assumes that displacement
boundary conditions, in the form of prescribed values for a set of displacement
variables, are the only mechanical constraints on the equilibrium; this implies that a
treatment as above, with ‘free’ and ‘prescribed’ displacement variables is relevant.

For this setting, Newton iteration15 is considered the first-hand choice. For fixed
force f , and a predictor to the discrete solution d0, the residual can be assumed to
be reduced by a repetitive update to the discrete variables through correctors

14 noting that the latter vanishes for displacement-independent exterior forcing.
15 often denoted a Newton-Raphson method.
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d j+1 = d j + δd j , (4.12)

with δ a forward difference operator, and the superindex denoting the iteration cycle.
The iterative correctors are evaluated from the solution to a linear set of equations

δd j
free = −

(
K i

free(d
j )

)−1
r free with r ≡ r(d j ) = p(d j ) − f . (4.13)

A common choice for the predictor is d0 = 0, and the iteration continues until the
norms of both the corrector δd j and the residual r free(d j+1) are small enough; this
is noted for some j = ĵ , which gives the solution as d = d ĵ+1.

The same treatment of free and prescribed displacement components as above
is used. If the prescribed displacement variables are introduced in the predictor d0,
the further iterations give zero corrections to these. The equilibrium residual should
be assumed to be reduced with each iteration, and should normally give a quadratic
convergence to very low norm with increasing j .

Difficulties in the procedure can be related to very large deformations, to nearness
to critical states (where K i

free is close to singular), or to the existence of several
nearby equilibrium states. The iterations should be aiming at very low residual norms,
perhaps on the order of 10−10 times the norm of current internal force p16. It should
also be noted that convergence, in some cases of more significant non-linearities, can
occur to equilibria not on the primary branch, demanding a careful interpretation of
the obtained result.

A solution algorithmbased on this clear-cutNewton iteration scheme is very easily
created, when algorithmic formulations are available for the evaluation of residual
and consistent incremental stiffness from current discrete variables.

Stability evaluation

When convergence is reached through Eqs. (4.12)–(4.13) to an equilibrium state
d = d ĵ+1, evaluation of the residual shows vanishing values for the free components,
while the prescribed components describe the reaction forces needed to enforce the
displacement boundary conditions.

The obtained equilibrium state can be evaluated with respect to its properties and
stability. Referring to Sect. 3.7, the stability coefficients�� of the equilibrium are
obtained from either a one-matrix eigenvalue problem with the incremental stiffness
matrix K i or a two-matrix problem with also a mass matrix; these settings will
give the same sign spectra of eigenvalues, cf. Sect. 3.7. Stability demands that all
coefficients ��, (� = 1, . . . , Nd) are strictly positive, while any negative stability
coefficient indicates that equilibrium is unstable, and zero ones identify a critical
state.

16 For the further developed settings below, this can be of major importance, in order to avoid a
build-up of deviations from the correct solutions.
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To be precise, the eigenvalue extraction is based on the free components of the
matrix, which may need the same condensationof the full matrix as in the iterations.
For the full incremental stiffness matrix, a precise and predictable number of zero
eigenvalues related to rigid body modes appear in the extraction.

Methods for obtaining a relevant subset of the Nd eigenvalues for the problem
are discussed in Sect. 4.5.2. In particular, simple methods to evaluate the number
of negative eigenvalues exist. When the eigenvalue analysis indicates a stability
coefficient close to zero, the equilibrium is a critical state.Such states are more
algorithmically demanding, but are also more interesting, as further discussed below.

A final comment in this section is that the iteration procedure described above
normally converges equally well to both stable and unstable equilibria, so no conclu-
sion on stability can be drawn from the iteration progress. Nearness to a critical state
can, however, create convergence problems, due to the singular tangential stiffness.

4.1.6 One-Parametric Forcing

The treatment above used the setting of the non-linear problem fromEq. (3.46),where
a fixed external force f is defined, and the corresponding displacement state solved.
Even with this state evaluated, together with corresponding reaction force compo-
nents and (signs of) stability coefficients, the information on the non-linear response
is limited. In order to obtain further information, the solution is normally defined
through some problem parameter, most commonly a scalar forcing parameter λ as
in Eq. (3.47). The parameter λ is here a special case of the fictitious time parameter
τ in Sect. 2.8.5, but it must be noted that no dynamical aspects are considered.

The objective of the parametric form is to solve the equilibrium branch, on which
the solution is situated; this provides important information on, e.g., the sensitivity
of the solution. Noting in Fig. 4.2, that one obtained equilibrium can be situated on
branches of many shapes; it is seen that just one state gives limited information. In
the figure, d∗ is a relevant discrete displacement component in the solution, e.g., the
deflection under a concentrated exterior point force.

Fig. 4.2 One converged
non-linear equilibrium state
gives limited information
about the branch on which it
is situated
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A sequence of equilibria is then requested, aimed to reflect the dependence of
the response—primarily the displacement vector d—on λ. In an engineering inter-
pretation, the analysis is aiming at a force-displacementgraph with the parameter
λ as abscissa, cf. Fig. 4.2. The sequence of equilibrium states aims to represent an
equilibrium branch.

Equilibria are sought for a set of parameters λi (i = 1, . . .), chosen to represent
the full response to desired accuracy17, and solutions di ≡ d(λi ) are obtained from

r(di ) = p(di ) − λi f
′ = 0, (4.14)

where f ′ is a unit external force vector, representing the pattern of exterior forcing
as in Sect. 4.1.3. Each solution is obtained iteratively—for fixed λi—by Eqs. (4.12)–
(4.13), which now become

d j+1
i = d j

i + δd j
i with δd j

i = −
(
K i (d j

i )
)−1

r(d j
i ) (4.15)

neglecting the notation for the free displacement variables, and with prescribed dis-
placements introduced in the predictor d0

i for each parameter increment.
As the stepping parameter λ has no fundamental meaning to the equilibrium,

each converged equilibrium solution di can be evaluated as in the previous section,
including reactions and (signs of) stability coefficients. After reaching converged
equilibria for all intended forcing levels λi , the results can be visualized by some
suitable presentation.

One important aspect for an interpretation is the non-linearity in displacement
response, which can have important functional implications for the structure. From
the stability viewpoint, the evolution of the stability coefficients as functions of
λ are of major importance, as a vanishing �� indicates a critical situation, where
stability is lost. If all stability coefficients are positive for all the equilibria found, an
extrapolationof the lowest�� to zeromaygive an estimate for the critical forcing level
λcr, where stability can be lost; this is an improvement compared to the LPB approach
in Sect. 4.1.3. An important conclusion is, however, that the parameter λ does not
affect the stability evaluation in any direct way; it is just a selector function for the
cases to investigate, and also a measure for the forcing.

The setting and method is rather general for the treatment of cases without a too
pronouncednon-linearity.Amajor limitation lies in the assumption that equilibria can
be successively solved for increasing λ, i.e., for increased forcing, which demands
that no limit state in the force is present. Methods to trace also such equilibrium
states, and to continue on the unstable branch of decreasing forcing are discussed
from Sect. 4.3 onwards.

17 With f ′ representing the practical design forcing, the parameters might be, e.g., �i =
0.1, 0.2, . . . , 2 in order to describe the response, but also the sensitivity of the solution.
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Other forms of one-parametric forcing

When the force in the structural model is conservative, but not displacement-
independent, some modifications will appear in the expressions above. These are,
primarily, that f is dependent on the current discrete vector d j

i , through the defini-

tions of T and B. The differential of the potential in Eq. (3.59) gives the equilibrium
expression in Eq. (3.48) and employs the full incremental stiffness matrix K i . Intro-

ducing the dependence of f on d j
i , the procedure defined by Eq. (4.15) is still valid.

For general forcing, with non-conservative terms, the basic Eqs. (4.14)–(4.15)
are still valid, if the internal18 and external force vectors are correctly evaluated.
The incremental stiffness matrix must also be replaced by the differential matrix in
Eq. (3.52) for the forcing and a similar modification related to internal dissipation.
In a non-conservative setting, this matrix is normally unsymmetric, which has some
effects on the numerical implementation. This would also demand the treatment of
complex eigensolutions; this problem is not further considered here.

Problem formulations including mechanical constraints could be modified to fit
into the form used above, but are better treated within the more general setting below.

4.2 Discretized Motion Analyses

As the main focus of this treatise is set on equilibrium states, only a brief account
will be given of motion problems. Extensive specialized literature on the topic is
available, e.g., the books by Géradin and Rixen (1997) and Bathe (2014).

Several solution methods for dynamic problems are developed for different set-
tings and objectives, and some of these are relevant in connection with stability
investigations for equilibria. So is the extraction of eigensolutions a fundamental
tool in stability analyses, and this is discussed in Sect. 4.5.2. While spectral response
formulations are out of the present topic, mode superposition is related to branch-
switching, cf. Sect. 4.6. A very brief account of the basis for direct time evolution of
dynamic processes is given in this section.

4.2.1 Dynamic Solution Methods

Without mechanical constraints, the basic equation for treatment of discretized struc-
tural dynamics is Eq. (3.63). Inclusion of mechanical constraints in more general
forms needs a careful consideration of the method, as briefly noted below.

Equation (3.63) gives an expression for the discrete acceleration at time t through
the mass matrix and the current residual. The mass matrix is evaluated from the

18 only modified if internal dissipation is included.
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chosen approximation, cf. Eq. (3.21), only using information from the reference
configuration. The residual force expresses the unbalance between current external
and internal force. When the internal force is dependent on displacement, and the
external force is time dependent, Eq. (3.63) expresses the acceleration from the
current state in an assumed time evolution.

The present treatise does not to any depth consider damping in the structural
model, even if dissipation is mentioned in Sect. 2.6.3 and Sect. 3.2.6. With a con-
sideration of viscous damping, additional terms are added to Eq. (3.63), typically
involving the discrete velocity ḋ.

The most basic dynamics problem, which seeks eigenfrequencies and their cor-
responding mode vectors for a conservative model is discussed in Sect. 3.2.7, with
the defining Eq. (3.66), when the small harmonic vibration dd around an equilibrium
state is governed by the mass matrix, which is constant, and the incremental stiffness
matrix, which is dependent on the current state, typically evaluated as in Sect. 3.2.6.
Compared to the most common setting of harmonic analysis, the form considers both
the non-linear response, and a distribution of internal and external force. This is the
reason why the smallness of vibration is emphasized, as large non-linear vibrations
demand more specialized methods. The treatment of harmonic vibrations around an
equilibrium, and the relation of this to stability, is given in Sect. 4.5.2.

In the treatment of structural response to general dynamic forcing, the properties
of the forcing affect the choice of method. With a more extensive discussion in the
referenced literature, a loose distinction can be made between quick, i.e., explosive
forcing primarily as localized force impulses, and slower, perhaps also repetitive,
events with more extensive effects on the structure. The time scale is thereby related
to the eigenspectrum, or dynamic signature, of the model. As a general rule of thumb,
literature commonly states that explicit methods are preferred for the quicker pro-
cesses, while implicit methods are recommended for the slower.

For the detailed analyses needed in connection with stability affected structural
models, the implicit methods are often the most appropriate, even if catastrophic
rapid events can be the results of instability. The implicit methods also have a stronger
connection to the solutionmethod for parametric equilibriumdiscussed in Sect. 4.1.6,
and several time evolution methods for this task are discussed by Eriksson (1991).

4.2.2 Stability and Accuracy

As extensively discussed in reference and research literature, the time evolution
methods have significantly different properties, and need a careful choice for a par-
ticular problem. The first choice is whether an explicit or an implicit method should
be used, the next one selects the specific method within the class, and its governing
parameters. This and the following sections gives a brief review of arguments for
these choices.
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Both basic settings involve a time sequence of steps valid at time t0, t1, . . ., often
with uniform intervals19. For this, the space and time variations of T and B are
known, together with an initial state, described by discrete displacement d(t = 0)
and velocity ḋ(t = 0). The result consists of the discrete solutions at the time steps,
di ≡ d(ti ) and ḋ i ≡ ḋ(ti ), which allow the evaluation of also the corresponding
current discrete acceleration d̈ i ≡ d̈(ti ) from the basic equation.

The difference between explicit and implicit time evolution methods20 is whether
a new solution (di+1, ḋ i+1) is calculated from just information related to the time
t < ti+1, or if the solution at t = ti+1 is used iteratively. As a general rule, the explicit
methods are less algorithmically demanding, and this in particular when lumped
massdescriptions are introduced. As the implicit methods are not affected by numer-
ical stability issues in the same way as the explicit ones, they allow longer, and
thereby fewer, time steps for a given time duration. The same aspect also implies
that they do not have to reduce time step length when an element model is spatially
refined.

Discussions of the numerical time evolution methods are commonly related to
their stability and accuracy properties. This is related to the aspect that the time
evolution methods introduce a discretization of time, in addition to the spatial dis-
cretization extensively discussed in Chap.3. This includes some assumptions for the
response between the discrete time stations ti . This implies that solutions to a motion
problem are to some degree always affected by the time history. The accuracy and
stability of the time evolution is thereby discussed in relation to the spatially dis-
cretized models, disregarding the approximations existing in these in relation to the
physical reality.

Numerical stability of a time evolution method is a necessary demand on its
properties. Although completely different from the structural stability aspects being
the main theme of this treatise, there are some similarities, in the sense that stability
demands that small deviations must not growwith time: the effects from unavoidable
numerical errors introduced in one time step must be limited in the coming steps.

The stability properties of the numerical time evolution method is investigated by
expressing the solution at one time instance in the results from preceding steps. For a
homogeneous problem and a linear structural model without damping, the new solu-
tion can be expressed as an operator equation. Stability demands that this operator
must have eigenvalues of magnitude not greater than one, or some deviations may be
amplified by the operator. The conclusion from the investigation is that a method is
un-conditionally or conditionally stable21, where the latter implies that the method
is only stable for time steps shorter than a certain value. This time step limit is com-
monly dependent on the properties of the structural model, and often implies that
time steps need be shorter for more finely spatially discretized models22. This aspect
increases computational complexity quickly when using accurate models. Commer-
cial software sometimes evaluate, or even enforce, the critical time step limits.

19 and this is now physical time.
20 There exist many proposed variations of each class.
21 Unstable time evolution methods are not useful.
22 e.g., related to the wave speed in the material.
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While numerical stability is a necessary demand on a used time evolution method,
it does not necessarily imply accuracy in obtained results. Even if the used method is
un-conditionally stable, results may be inaccurate—or even irrelevant—if long time
steps are used. The inaccuracies from the time evolution methods are essentially of
two types, where amplitude errors correspond to an un-physical increase of energy
in the system with time. Periodicity errors relate to an inaccurate representation of
the harmonic free vibration frequencies of the structural model23.

One further aspect of numerical time evolution methods is commonly discussed
in comparison of methods. Numerical damping of higher vibration modes is often a
desired property of a time evolution method, and such damping is often introduced
by the numerical method. This damping is often advantageous, as it focusses the
computed dynamical motion response on the major phenomena, removing small-
scale high-frequent vibration effects; as these in most structural contexts contain
rather small portions of the total kinetic energy, their removal is of little importance.
Several time evolutionmethods can be providedwith selectable parameters to control
this numerical damping.

For non-linear problems, or problems with rapidly changing exterior forcing, the
strict stability investigations can not be performed, and problem-specific tests must
be performed to evaluate the reliability of results.

4.2.3 Explicit Algorithms

Given that d(ti ) and ḋ(ti ) are known, and d̈(ti ) thereby calculable, it is a tempting
approach to introduce a series expansion around ti for a time increment
ti = ti+1 −
ti in order to find d(ti+1) and ḋ(ti+1). This straight-forward setting of an explicit
method is, however, seldom used, and many explicit time evolution methods use a
re-formulation of the second order initial value problem into a first order form

d

dt

(
d
ḋ

)
=

(
ḋ
d̈

)
=

(
ḋ

−M−1r

)
, (4.16)

with a doubled number of discrete variables. As the right-hand side exists and can be
evaluated for a solution at time instance ti , any general method for time evolution of
a first order problem can be used as described by Dahlquist and Björk (1974). One
option is the forward Eulermethod, which is expressed according to

(
d
ḋ

)

i+1

=
(
d
ḋ

)

i

+ 
ti

(
ḋ

−M−1r

)

i

. (4.17)

For rapidly changing structural forcing and response, the time steps are often required
to be very short for relevant solutions.

23 as evaluated for the discretized, not the physical model.
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More elaborate, but still explicit, methods can be devised using intermediate
configurations for some ti < t < ti+1. A simple, but not optimal, method takes half
the forward Euler step in Eq. (4.17), evaluates the derivative at the configuration valid
at t = ti + 
ti/2, and uses this for the whole step 
ti . In the same basic approach,
e.g., systematic Runge-Kuttamethods can be used for the setting in Eq. (4.16), with
improved accuracy, but with a higher computational cost per time step; the hope is
that this can facilitate the use of fewer, longer time steps. For the present setting,
without severe discontinuities in the response, the more elaborate methods are often
preferable.

Explicit methods are not easily adapted to problem settings including mechanical
constraints, unless these are of a form such that they can be immediately condensed
out from the setting.

4.2.4 Implicit Algorithms

Onemain drawback of the explicit time evolutionmethods is that they do not consider
the acceleration d̈ i+1 at the new time instance ti+1 in the calculation: this can be
loosely interpreted as an unbalanced residual at the end of the taken time step, if the
integrated di+1 and ḋ i+1 do not match the derivative of the process leading up to
this state. The implicit methods for time evolution aim to reduce this shortcoming
by an iterative method, where d̈ i+1—calculated from provisional di+1 and ḋ i+1—is
used in the time evolution of d and ḋ over the time interval ti ≤ t ≤ ti+1. Several
different algorithms are proposed in literature, differing in basic ideas and algorithmic
parameters, cf. the type of discussion by Noh and Bathe (2019). The new solution
is iteratively improved to give force balance at the new time instance, but also to
maximally utilize the information at both ends of the time interval. Noting that some
approximations are introduced for the variations of the discrete variables during the
time step, all methods will tend to accumulate inaccuracies during the time sequence;
the order of the inaccuracy is predictable from the method definition.

Implicit time evolution methods allow the introduction of general mechanical
constraints in the structural model, and can be adapted to handle particular forms of
these. The issue is discussed by, e.g., Noh and Bathe (2023).

Efficient implicit methods of high accuracy have been presented in recent research
literature, and are introduced in some advanced simulation codes. General com-
mercial software, however, commonly use, e.g., the Newmark and Hilber-Hughes-
Taylor (‘HHT’) implicit time evolution procedures, each with a few algorithmic
parameter choices. Thesemethods, with default parameters, are generally reasonably
reliable for many, not too complicated, problems in structural motion analyses.
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4.3 Parametric Equilibrium Analyses

The treatment of a non-linear equilibrium problem in Sect. 4.1.6 considers a one-
parametric forcing on a structure,where a force pattern is hard-coded in themodel, but
its magnitude variable. The solution method evaluates a sequence of equilibria, each
valid for a specific value of the forcing parameter λ. The solution method assumes a
monotonously increasing forcing. As presented, it can only handle trivial constraints
on the equilibrium, in the form of specified values for displacement variables. In
order to remove the limitations mentioned, this section develops a more general
setting, from which the case above is a special case. The following sections describe
a number of algorithmic aspects of such a general setting. A schematic description
of an implementation is given in Sect. 4.7 and Fig. 4.11; an example of usage for
stability investigations of a simple model is given in Sect. 4.6.

The generalized form of the equilibrium problem is here stated as a non-linear set
of N equations

Ry(y) = 0 (4.18)

in N variables y.
The N functions in the extended residual Ry are all set in a residual form, so

that a vanishing value is required in a solution. The discrete vector y contains all
variables for the problem. These are always the Nd discrete displacement variables
d and a set of Np parameters P24. If mechanical constraints are introduced, Nc

constraint-enforcing variables C are also included, cf. Sect. 3.6.
In the general case, the relevant vectors of variables and functions are thereby

y =
(
D
P

)
≡

⎛
⎝

d
C
P

⎞
⎠ and Ry =

(
R
Rx

)
≡

⎛
⎝

rc
Rc

Rx

⎞
⎠ . (4.19)

where the subsets of fundamental state space variables D and corresponding residual
functions R from Eqs. (3.90) and (3.91) are augmented by a set of parameters P and
a set of selector functions Rx . The further elaboration will be based on the fact that
displacements and contact-enforcing variables are fundamental to the mechanical
problem, and are strongly connected to equilibrium and constraint equations, while
parameters and selectors are much more loosely—if at all—connected. The latter
fact is the reason why the index on Rx is not ‘p’.

With the exception of cases where constraints represent hard contact conditions,
cf. Sect. 3.6.4, the solution to the constrained equilibrium problem is well-defined
and allows solution methods discussed below. With hard contacts introduced, the
solution of equilibrium has to be based on an assumption concerning the contact
status at the equilibrium, and methods included in the algorithm for handling of
changing status, cf. Sect. 4.5.5.

24 with Np = 1 and P = λ in the mentioned example.
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The parametric setting focusses on diverse forms of parameters in P , while the
basic structural model and the constraints are considered as specified; this includes
all hard-coded parameters. The form emphasizes the parametric dependence in the
equilibrium states. A special focus is often set on investigations of parametric regions
where equilibria give the same stability conclusions25, and the boundaries for these,
which are the critical states. The main tool is a general algorithm for parametric
traces26 in the solution space.

As one example, the problem in Eq. (4.14)—without constraints, and with just
one parameter—is in the generalized form defined as

Ry(y) ≡
(
r(d, λ)

λ − τ

)
with y ≡

(
d
λ

)
(4.20)

adding to the demand for a vanishing force residual a request for a specific forcing
parameter value through a prescribed fictitious time τ . This is a selector equation of
the form Rx = 0 related to the parameter λ, which is part of the solution vector y,
but does not affect the stability conclusions.

With the general setting of the extended residual in Eq. (4.18), the solution is
again obtained through Newton iteration, where an incremental-iterative algorithm
uses a two-level loop. For every increment i in a sequence, a cycle of iterations j is
evaluated according to

y0i+1 =yi + 
y0i

y j+1
i+1 =y j

i+1 + δy j
i+1 for j = 0, . . . , ĵ

yi+1 =y ĵ+1
i+1 .

(4.21)

In the iteration scheme,
y0i is a chosenpredictor to the increment, and the iterative

correctors are repeated until iterate ĵ , decided by small enough δy ĵ

i+1 and Ry(y
ĵ+1
i+1 ).

Here, ‘small’ is below a low tolerance, as discussed above. The iterative correctors
in the increment are calculated from

δy j
i+1 = −J−1Ry(y

j
i+1), (4.22)

where the Jacobian of the system

J = Ry,y (4.23)

is the derivative of all the functions Ry with respect to all variables y, and evaluated
at a particular y. In the most general case, the Jacobian is of the form

25 interpreted as the same sign spectra of stability coefficients, i.e., eigenvalues.
26 or ‘sequences’ or ‘curves’, which are often, but not always, representing ‘branches’.
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Fig. 4.3 Schematic
illustration of one step of
Newton iteration for a scalar
problem R(y) = 0. The
slope at the current iterate y j

is used to find an improved
iterate y j+1. The prime is
here the differential with
respect to y

J =
⎛
⎝ K

(
rc,P
Rc,P

)

(
Rx,d Rx,C

)
Rx,P

⎞
⎠ , (4.24)

with simplifications for specific cases. In particular, the operative stiffnessmatrix K

is equal to K i—or even K t—if no mechanical constraints are considered, and equal
to Kc if they are. Without constraints, Rc,P and Rx,C are not present.

In the example case above, the Jacobian is

J ≡
(
K t − f ′

0T 1

)
(4.25)

when the external force is f = λ f ′, cf. Eq. (3.47), and K ≡ K t , the tangential
stiffness.

One step of the Newton iteration can be schematically described for a scalar
problem R(y) = 0 by Fig. 4.3; the working for a set of equations is analogous. The
current derivative of the function is used to improve the approximate solution. In the
case of the figure, one more iterate will come very close to the correct solution.

Referring again to the example problem in Eq. (4.20), the final equation plays a
special role. Without any mechanical meaning, it is an algorithmic increment selec-
tor function controlling the evolution of the solution sequence. In this case, it is
specifying the forcing parameter values for which solutions are sought. The selector
equation is kept in its form, but modified by a new value τ i for each new increment.

This force steppingprocedure is the most basic form for a non-linear equilibrium
trace in the context of conservative one-parametric forcing, and is in general highly
reliable for many classes of problems as long as no limit states appear on the solution
branch. It must be noted that λ is just a parameter, and not a state variable in the
stability investigation.

As the choice of the form of increment selector function, and the updating of
it, are both of major importance for the success of the numerical simulations, more
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reliable and general methods are discussed below in Sect. 4.3.2. These aspects affect
the number and classes of variables in P and equations in Rx (y), and thereby also
the contents of J , albeit not the operative stiffness K , which decides stability for the
equilibria solved.

The forms of residual and Jacobian given by Eqs. (4.19) and (4.24), and the solu-
tion method defined by Eqs. (4.21)–(4.22) are consistently used in coming sections,
when the settings introduce new aspects of the equilibrium problem.

4.3.1 Variations to the Newton Iteration

Several variations of the Newton iteration procedure described by Eqs. (4.21)–
(4.22) are employed for diverse cases in literature, in particular for cases with one-
parametric forcing. These may be motivated for particular problem settings, but are
often made necessary from incorrect or incomplete forms of the Jacobian matrix,
when this is inconsistent with the residual or increment selector expressions.

One modification, particularly used in early implementations with more limited
computational resources, is the modified Newton iterationmethod, which evaluates
the iterative corrections in Eq. (4.22) as

δy j
i+1 = −

(
J (y0i+1)

)−1
Ry(y

j
i+1) (4.26)

with only one evaluation of J at the predictor y0i+1 for each new increment. Other

implementations evaluate J at, e.g., every third iteration27. The gain from fewer
evaluations of J is counteracted by the often significantly higher number of iterations
needed, in particular when the tolerance is set low.

Other commonmodifications emanate from descent methods in optimization, and
interpret the correction calculated by Eq. (4.22) as a search direction. A line search is
then added to Eq. (4.21)2, giving

y j+1
i+1 = y j

i+1 + α
j
i+1 δy j

i+1 (4.27)

with δd j evaluated from Eq. (4.22), and α
j
i+1 a scalar chosen from some criterion. As

the Newton iteration step gives both direction and magnitude for the correction, not
even ‘slack’ line searches are normally improving overall efficiency of the process, if
accurate differential expressions are used. Factors α

j
i+1 < 1 may, however, be useful

as safe-guards in the first few correctors in an increment if the predictor is rough.

27 or when convergence is deemed to be too slow, based on some criterion.
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Dynamic relaxation

A fundamentally different approach to solving a conservative equilibrium state, and
primarily used in form-finding methods is through Dynamic relaxation (‘DR’). The
problem is then solved in a pseudo-dynamic setting, with more or less fictitious mass
and damping matrices. A time evolution of the thereby stated problem is assumed to
eventually—through the introduced damping—lead to an equilibrium, when residual
force, and acceleration, is brought to zero. The damping is a necessary requirement
for this convergence, and efficient formulations are discussed in literature; as the
damping is completely fictitious, the choice is non-trivial.

Even if more elaborate and efficient methods for handling motion problems are
briefly discussed in Sect. 4.2. the fictitious time evolution in the DR context can be
performed with simpler methods.

Two main drawbacks of this method are related to the significant difficulties in
choosing sufficiently good mass and damping descriptions without deep prior prob-
lem knowledge, and the low accuracy achievable without very long time sequences
simulated. Experiences from tests within the present problem class show pro-
hibitively high numbers of iterations needed for acceptably low residual norms.
One of the few problem classes where this method has proven useful is described
by Nakashino et al. (2020), dealing with a problem where different localized wrin-
kling patterns of a structure allow many similar and nearby solutions. For such
cases, the Newton iteration approach tends to give convergence problems, due to
near-singularity, while the dynamic relaxation can converge to one—essentially
arbitrary—of the neighboring equilibria. When the engineering view is interested
only in the occurrence of wrinkles, but not the exact location of them, this result is
fully relevant. A hybrid approach starting the iterationwith a number ofDR steps—to
localize an approximate equilibrium—and ending with Newton iteration—for high
accuracy—can be an interesting choice for special problem settings.

4.3.2 Stepping Procedures

The most common parameter in a non-linear equilibrium problem is related to the
representation of exterior forcing, and takes the form of Eq. (3.47), where a param-
eter λ magnifies a fixed external force pattern vector f ′. The structural model is
here completely fixed with hard-codedgeometry, sectional properties and material.
In Sect. 4.1.6, the problem is solved through a force stepping strategy, where equi-
librium is sought and evaluated for successively introduced prescribed values for
λ. The same approach is useful for solving a case according to Eq. (3.48), if the
displacement dependence in external force is introduced.

An implicit assumption in the method is that closely placed equilibria are ana-
lyzed, so that they can be assumed to represent a continuous equilibrium branch,
or important response aspects can be missed. This aspect is closely related to the
complexity of the equilibrium branch.
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Fig. 4.4 Schematic
equilibrium branches for
structures under
one-parametric forcing.
Horizontal lines indicate
levels for force stepping,
defining the equilibrium
states solved as the crossings
of paths and levels

Figure4.4, which is an elaboration of Fig. 4.2, shows a few possible classes of
results, where force stepping is not well-suited, and other approaches must be intro-
duced. The figure shows equilibrium branches, where a characteristic displacement
value d∗ is related to the forcing parameter λ, i.e., as a force-displacement graph28.
The graphs in the figure are the true equilibrium branches for the model, while the
horizontal lines indicate a set of fixed forcing parameters, for which the equilibria
could be evaluated. The result from the simulation would thereby be just the points of
the crossings, needing an interpolation between these formore complete results. Even
with several equilibrium states evaluated, the question remains whether the solved
equilibria represent all relevant aspects of the equilibrium branch, but it should be
noted that each state is a correct equilibrium in itself; the question is whether the
imagined connection lines between solved states are representative.

In the figure, branch I shows amildly non-linear graph, describing a first softening,
then stiffening response. This branch can be rather well represented by states with
uniform increments in the forcing parameter, if these are not too large. Branch II,
which is monotonous but more varying in stiffness, is more difficult to describe by
uniform forcing increments, due to the almost horizontal projection over a significant
(and interesting) interval. Branch III where a ‘snap-through’ response is showing two
limit points, and branch IV showing one, are obviously not suited for force stepping
increments. Branch V with a ‘snap-back’ response is even more challenging. At
least the tracing of branches II–V needs other methods, in particular since the more
dramatic responseaspects are of major engineering interest.

Several strategies for increment stepping have been proposed, and are set in a
common form by Eriksson (1989). The under-determined set of non-linear equations

28 in the typical engineering projection, with the forcing parameter vertical and the displacement
component horizontal.
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reflected by Eq. (4.14), with Nd equations in Nd + 1 variables is then transformed
into a solvable system, by adding an increment selector equation, as in Eq. (4.20).

The most obvious remedy to problems in the force stepping is to introduce dis-
placement stepping for the choice of successive equilibrium states. All the branches
I–IV can be well described by equilibria uniformly distributed along the horizontal
axis d∗ in the graph instead, with the fictitious time variable τ = d∗. In the general
form of Eq. (4.19), this means that the increment selector equation added to the
equilibrium residual equation is

Rx ≡ d∗ − τ = 0, (4.28)

which gives a row matrix with just one unit component in Rx,d . Also, Rx,P = 0 , as
no parameter is involved in Eq. (4.28). The operative stiffness is the same as before,
so the stability conclusions for an equilibrium state are the same, disregarding the
stepping strategy.

Another common and popular choice, which potentially handles the tracing of
equilibrium branch V, is commonly attributed to Riks (1979) and Crisfield (1981).
The basic idea is to define a branch length, commonly denoted an arc length, as the
fictitious evolution time τ , and to introduce increments in this quantity for evolution
of the equilibria in the sequence. The method can be interpreted as a curve stepping
strategy, as the measure focusses more on the presentation than on the physical
response itself.

With variations in the specific implementation, one step along the branch is typi-
cally described by the secant length between equilibrium states, which for an incre-
mental step, starting at state i , is


τi =
√(


di
)T (


di
) + (β 
λi )

2, (4.29)

where
di and
λi refer to the increments in the displacement and forcing parameter
during step i , respectively. The arc length measures the radius of a hyper-sphere in
(Nd + 1)-dimensional space centered at the state y

i
= (dT

i , λ
T
i )

T. This is best set
in the form of Eq. (4.19) through a consistent, and easily differentiable, selector
function

Rx (y) ≡ (
d − di

)T (
d − di

) + β2 (λ − λi )
2 − (


τ i
)2

, (4.30)

with 
τ i a requested increment in the evolution parameter. A basic increment step-
ping strategy is to find equilibria with uniform increments in 
τi for i = 0, 1, . . .,
but the increment lengths can be variable in the sequence, as further discussed in
Sect. 4.4.3.

The first two terms of this Rx (y) expression can be evaluated as 
yTi S
yi , with
S a diagonal scaling for the components of y. This expression can be generalized for
specific needs, and can be used also for more complex settings than one with just d
and λ as variables, cf. below.
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Although attractive from the graphical viewpoint, the curve stepping method
needs care. One non-trivial, but manageable, aspect relates to the square root in
Eq. (4.29)29—and an accompanying choice of sign—but the main problem lies in
the different dimensions of the involved variables, when force, moment, translation
and rotation variables might be involved; the β factor cannot remove this problem. If
a ‘spherical’ arc length increment is requested, the constant β must be chosen such
that the two first terms of Rx (y) are—on average—reasonably similar in magnitude.

Several other strategies based on similar ideas have been published in order to
distribute solution states for maximum information about equilibrium response with
minimum computational effort. Experiences frommany different problem areas indi-
cate that themost efficient and reliable stepping strategy is highly problemdependent,
and can not always be predicted before starting the analyses of a particular problem.

Some form of increment selection and control is available for parametric forcing
in most professional software30. They are also rather easily introduced in self-made
non-linear solution algorithms.

The increment selector function is needed to facilitate the solution of a new equi-
librium in a sequence. In many cases, it also improves the condition number for the
Jacobian matrix J used in the iterations, but it has some potential computational
drawbacks. These come from the structure of J , when the augmenting final row
leads to a large fill-in during factorization. A direct solution of the complete set of
equations is suggested, if sufficiently efficient algorithms are available for this task.

A new equilibrium state in the sequence can also be obtained from a two-term
process, even if this is occasionally less numerically well-conditioned. For the form
in Eq. (4.15)31, the procedure is based on a re-writing of the equations, expressing
the iterative correction to the displacement variables as

δd j
i+1 = − (K i )−1r︸ ︷︷ ︸

δdr

+ δλ
j
i+1 (K i )−1 f ′

︸ ︷︷ ︸
δd f

, (4.31)

in the example setting. The ‘free’ subindex is again omitted, and K i , r and f ′ all
evaluated for the iterate (d j

i+1, λ
j
i+1). After solving the two systems of equations,

with the same system matrix, an iterative correction to the force parameter δλ
j
i+1 is

chosen such that the new iterate

d j+1
i+1 = d j

i+1 + δd j
i+1 , λ

j+1
i+1 = λ

j
i+1 + δλ

j
i+1 (4.32)

29 but this is essentially removed by using Eq. (4.30).
30 often under names such as ‘arc length’ or ‘Riks’ strategies with different implementations and
specifications.
31 Note that the increment index is changed to the one used here.
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Fig. 4.5 Example of increment stepping methods in forced plane beam structure

satisfies the selector equation,whichmayuse anyof the increment stepping functions.
It is noted that this approach uses the incremental stiffness matrix, which is close to
singular around critical equilibria.

Comparison of increment selectors

Although the discussion above solves the same problem—but with different
methods—the different approaches tend to change the view on results, as illustrated
by Fig. 4.5. For the problem in subfigure (a), with a concentrated force F of fixed
direction applied to a material point, the problem can be solved with a parametric
forcing, i.e., force stepping, as long as no snap-through response occurs; the corre-
sponding deflection d∗ is a result. Alternatively, the same problem can be solved by a
displacement stepping, using d∗ as the fictitious time, and obtaining the acting force
F as a reactive force result. For the distributed traction forcing in subfigure (b), the
forcing can be described by a forcing parameter λ, and the solution force stepped in
λ, or displacement stepped in d∗; the forcing parameter λwill be a result and give the
traction corresponding to the d∗ parameter. Both problems can be solved by curve
stepping according to Eq. (4.30), if a forcing parameter λ is defined, and a suitable
scaling parameter β selected.

Note, regarding the example, that the increment selector introduced is not a con-
straint on the equilibrium, but just acts to pick a set of solutions with a combination of
displacements d and forcing parameter λ. The increment selector is thereby outside
the operative stiffness K .

4.4 Multi-parametric Equilibrium

Common engineering analyses of non-linear equilibrium focus on the form in
Sect. 4.1.6, where a hard-coded structural model is affected by a one-parametric
forcing, i.e., a case with Np = 1 in Eq. (4.19). The examples in Chap. 1 show that
structural response, and not least stability, can be strongly dependent on other param-
eters, e.g., geometric, material or imperfection data. For improved understanding of
mechanical response, it can thus be advantageous to investigate the dependence of
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response on also other parameters. Parametric equilibrium solutions are therefore a
main interest. This is the basis for the introduction of Np parameters in the general
form of the non-linear equilibrium problem in Eq. (4.19). This section discusses how
equilibrium and stability can be studied in such a context. The parameters available
in the part P of the discrete vector y allow variations to the model or the forcing,
while the selector equations in Rx are used to define the cases for which equilib-
ria are sought. The selection of cases gives wide possibilities to focus on specific
investigations. As noted above, the fundamental variables d and C are very strongly
connected to the functions rc and Rc, while parameters P and selectors Rx have no
necessary connection.

The combination of parameters and selectors thereby reflect the analysis objective.
The setting andmethod below has similar objectives as the work by Cox et al. (2018),
while the numerical implementation essentially follows theworks byEriksson (1998)
andGroh andPirrera (2018).Thebasis for algorithmsperformingparametric analyses
is well discussed by Rheinboldt (1986).

The coming sections discuss settings where Nd and Nc can be high numbers,
while Np is typically rather low. The primary interest here is focused on cases with
Np ≥ 2. The more general setting also allows, as one special case, settings where
Np = 1, but with the parameter not related to the exterior forcing. In addition to the
explicitly introduced parameters in P , a large number of structural parameters are
still implicitly considered as hard-coded in the simulation model.

Without mechanical constraints, the common one-parameter discretized setting
in Sect. 4.1.6 is defined by Nd equilibrium residual equations in the Nd + 1 discrete
variables, thus an under-determined system,with states on branch segments as the
general solution. The solution for one particular equilibrium state demands the addi-
tion of an increment selector function, e.g., one of the stepping functions discussed
in Sect. 4.3.2. For reasonable choices of function and increment length, convergence
can be assumed to occur to a new state on the equilibrium branch. The equilibrium
sequence is obtained when this selector function is updated between the increments
in the solution process.

Constraints on the mechanical equilibrium enter through new variables in C and
functions in Rc in Eq. (4.19). These are equal in number and strongly related; they
form the constrained residual equations in Eq. (3.90) with its constrained stiffness in
Eq. (3.92). The expressions show that parameters enter in the same way, whether or
not constraints are introduced. This is even more clearly seen from Eq. (4.24), where
the operative stiffness K relates to all state variables together. A multi-parametric
setting is thereby equally valid and relevant also for this case.

When the number of parameters is increased to Np, the constrained equilibrium
residual in Eq. (3.90), being also the two upper sets of Ry in Eq. (4.19), gives
Nd + Nc equations in the Nd + Nc + Np variables. The full equilibrium solution
thereby consists of Np-dimensional submanifolds, whichmay be difficult to visualize
and interpret if Np > 1. The linearized parametric response around an equilibrium
state is described by the tangent space, as discussed in Sect. 4.5.3.

Lower dimensions of the solution space are reached by adding selector func-
tions Rx , where each reasonable function reduces the dimension by one. Introduction
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of Np selector functions thereby—under some assumptions—gives the solution as
one state, and is necessary for the Newton iteration in one increment, as defined by
Eqs. (4.21)–(4.22).

The selector functions can refer to any or all of the variables in y, and have no
necessary connections to the parameter introduced. The multi-parametric problem
setting and parametric traces givewide possibilities to investigate structural response,
and in particular stability properties. The coming subsections discuss some interest-
ing classes of selectors and typical parameters briefly. It is noted that some of the
selector functions discussed below are rather easily formulated as residual functions,
but their derivatives with respect to problem variables may be more demanding,
which strongly suggests a numerical differentiation. In any case, the formulations
are highly specific for the problem setting.

Even if Sect. 4.4.4 briefly discusses two-dimensional solution surfaces, engineer-
ing typically views results as one-dimensional relations, i.e., graphs, which are easily
presented and interpreted. This aspect is further discussed in Sect. 4.4.2

4.4.1 Selectors and Parameters

Selectors and parameters can be used in many different ways, dependent on simula-
tion purpose. This section will discuss a few classes, where in most cases selectors
and parameters are related.

Convenience parameters

An addition of further parameters in P and related functions in Rx can be used for
transformations between variables. This is easily used for, e.g., summation of some
displacement or reactive force components32, intended for post-processing of results,
or for convenience in interpretation. As one example, several papers by the authors
use this method to connect gas pressure and included volume in a closed membrane
to a gas amount quantity, allowing two different views on the forcing. The selector
function is then of the type

Rx (d, P) ≡ (P1 + p0) V (d) − P2, (4.33)

with P1 the internal over-pressure, which is considered as the main forcing parameter
(and related to ambient pressure p0), P2 a scaled measure for the gas amount33, and
the volume V calculated from displacement variables d. Effectively, a passive param-
eter P2 is included, demanding a minor extra computational effort, but simplifying

32 A parameter is introduced for the summed quantity, and a selector function equates this to a sum
of the discrete variables, or of some calculated quantities.
33 through the ideal gas law, under iso-thermal conditions.
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interpretation. With an added increment selector function successively updated, a
sequence of equilibria is obtained, with pressure and amount immediately available
in the solution vector; both are relevant in an inflation process.

The selector function in Eq. (4.33) reflects the same relation between variables
as the constraint in Eq. (3.93), and leads to the same equilibria, but yields differ-
ent stability conclusions. As the two variables P1 and P2 are both parameters here,
they are frozen in a stability evaluation, and thereby have no effect on the result-
ing conclusions. The formulation of convenience transformation functions and their
differentials is often straight-forward for a specific problem.

Response quantities

Geometric or material parameters for the considered structural model can be intro-
duced by P , thereby allowing variations. This is used, e.g., for evaluation of sensitiv-
ities, cf. Sect. 4.5.3. Examples are lengths or angles, thicknesses or section properties
and constitutive parameters.

Such parameters are primarily used together with response quantities for the
obtained equilibria. These can be one of the primary variables, e.g., a discrete dis-
placement component, or a post-processed one, e.g., a stress component at a specified
point34. As each state in the sequence is a complete equilibrium, any such property
is easily evaluated.

As an example, if one geometric and one forcing parameter are introduced, a
selector function can be used to fix a certain stress component in the model. The
equilibrium sequence will then show for which forcing level this stress is reached
under variation of the geometric parameter.

In an optimizationcontext, this setting can be used to find parametric combinations
for which a response quantity takes a specific value for specified forcing. Eriksson
(1997) gives an example, sketchily shown in Fig. 4.6,where the plane frame is defined
from the parameters angle β and sectional height h, together with all other data hard-
coded. Equilibrium sequence No. 1 shows for which parametric combinations an
interesting stress component takes a specified value for this forcing. Sequence No. 2
showsparameter combinations forwhich the equilibrium is critical for a chosen safety
factor times the same forcing. The sequences together give the feasibility region for
the structure under these optimization constraints35. The objective function is easily
evaluated for all solutions in the sequences36.

The response functions are often easily formulated for a specific problem, but
their differentials may need a numerical differentiation.

34 The maximum stress anywhere in the model can be used, but is more complicated, due to the
discontinuity if the maximum point varies over the sequence.
35 limiting stress under forcing and demanding a safety against loss of stability.
36 assuming that the optimum solution will always have one optimization constraint activated.
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Fig. 4.6 Simplified result from an example of parametric response. Schematically re-drawn from
Eriksson (1997). Curves show parametric combinations which give a particular response property

Forcing

The most common parameter for forcing is a force multiplier affecting f ′ or T
and B, as in Sect. 4.1.6. Several contributions to forcing can be described by a set
of parameters. For modelling imperfections, an inclined force component can be
described by an added parameter, which is either an orthogonal force component or
an orientation angle added to the main force parameter. The same basic idea is used
when modelling the combined effect of a pre-forcing and a main forcing. This is
typically combined with a response selector function for some important response
quantity, e.g., deflection or stress.

Multi-parametric descriptions can also introduce a perturbation force component
in a critical direction. A selector equation prescribing a specific secant distance
from an isolated critical state defines a hyper-circle, revealing secondary equilibrium
sequences through a vanishing perturbation force. This demands a reliable algorith-
mic treatment, which isolates states with a vanishing parameter, cf. Sect. 4.5.6.

Critical states

States of critical equilibrium,where the stability changes, are characterized by van-
ishing stability coefficients37, cf. Sect. 3.7, and uses a function

Rx ≡ �crit

(
K

)
, (4.34)

the lowest magnitude eigenvalue of the operative stiffness matrix38; this is normally
rather easily found through, e.g., inverse power iterations, at least if the critical state
shows only one vanishing stability coefficient.

37 very commonly just one, but symmetry may lead to two or more.
38 with or without constraints, with our without force stiffness.
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In a one-parametric setting, this function replaces the increment stepping func-
tion, solving then one critical equilibrium state for a hard-coded structure and the
parametric forcing. In an optimization context, the critical selector function seeks,
e.g., a model parameter, for which the critical force has a hard-coded value. The
result for these settings is one state, not a sequence.

In multi-parametric settings, this function is one of the selectors when seeking a
sequence of critical equilibrium states.With one parameter for forcing and one for the
model geometry (or material), the critical state with its forcing is solved as function
of the other parameter. This is thereby a more systematic, but similar, method as the
one used by Li and Healey (2016).

Parameter combinations can also be sought, where a specific forcing level gives a
critical equilibrium. This is the situation for graph No. 2 in Fig. 4.6, for which three
parameters—one related to forcing and two to geometry—are used.With one selector
function specifying the forcing, one defining a critical state and one successively
updated increment selector, this gives a sequence as result.

The search for critical states based on a criticality function such as Eq. (4.34)
is limited to cases where a single vanishing eigenvalue of the operational stiffness
vanishes. This is due to the implicit need for the eigenvector corresponding to the
critical mode in the formation of the gradient of the eigenvalue with respect to state
variables.

States of multiply critical equilibria with more than one vanishing eigenvalue are
sometimes of interest. Under certain circumstances39, the critical selector condition
in Eq. (4.34) can be replaced by the function

Rx ≡
N0∑
c=1

(�c − �ε) (4.35)

where the �c are the N0 lowest magnitude eigenvalues of the operative stiffness
K , when a sequence of N0-fold criticality is traced40, and �ε a positive numerical
tolerance for a vanishing eigenvalue. A sequence traced with this selector follows a
border line for the zone of critical equilibriumstates,which is known to be on themore
stable side of them. This approach is useful also with just one vanishing eigenvalue
in a sequence of bifurcations with stable secondary branching. A (small) positive �ε

leads to stable equilibrium states, very close to becoming unstable, without a need
to converge to the precise singular state.

Symmetry preservation

As further presented and discussed by Eriksson and Nordmark (2019), the tracing of
critical equilibrium sequences is not always a robust procedure if based on Eq. (4.34).

39 which exist for, e.g., the critical sequences of bifurcation states, forwhich the emanating secondary
equilibrium paths are stable.
40 where N0 must be defined as a hard-coded input to the analysis.
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Fig. 4.7 Grazing contact,
when a node is in perfect
contact with constraint
surface, but no contact force
has yet been established

This is the case when the iterations tend to deviate to nearby adjoint secondary
sequences, on which symmetry is broken; this deviation will typically grow with
each step, regardless of very low residual tolerances. In order to keep the solutions
on a specific sequence, selector functions are introduced. These express the desired
symmetry, typically through a prescribed value for one displacement component. The
addition of one selector equation demands also an additional parameter. In several
cases analyzed, this has been a force related to the prescribed displacement, which
will vanish at the solution, due to the nature of the problem setting. The inclusion
of such equations decrease the condition number of the iteration matrix, but will not
affect the equilibrium state. It is noted that this is not a constraint in the sense of
Sect. 3.6, as the function does not appear in the fundamental residual expression R.
A demonstration example is given in Sect. 4.6.3.

Grazing contacts

Mechanical constraints introduced for the modelling of hard contact conditions are
discussed in Sect. 3.6.4. The discrete contact condition at a model node is schemat-
ically described by Fig. 4.7, where a gap dz between a structural node and a hard
constraining surface is reduced to zero distance, and a constraint-enforcing contact
forceC appears. The transition between non-contact and contact conditions has some
similarities to a critical equilibrium state, as it immediately changes aspects of struc-
tural response41. The grazing contact condition is relevant to investigate; an example
is given in Sect. 5.4.

In the present setting, the grazing contact condition for a node allows two different
formulations. These give two different situations and two independent stability con-
clusions.As one alternative, the node in question is considered as already constrained,
giving a corresponding constraint function in Rc. A selector function demands the
constraint-enforcing variable in C to vanish as the grazing condition; the node is
in contact, but with zero contact force. With respect to stability, this implies that
the increased stiffness from the active contact will appear in the current operative
stiffness K .

41 Note that this is partly due to the discretized setting.
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The second alternative is to consider the node as still free, but to introduce a
selector equation prescribing the node to be on the contact surface, i.e., a selector
based on one displacement variable; the node is not in contact, but the gap closed. In
this approach, the grazing contact condition will not affect the operative stiffness.

Either of the two formulations can be used for the equilibrium. They are relevant
for tracing a grazing contact sequence in parametric space. The solutions obtained
are the same with respect to displacement and force, but stability coefficients are
different. In general, the constrained case is evaluated as more stable. A particularly
interesting situation is when, for a particular node in a grazing contact state, the two
settings give different sign spectra for the eigenvalues.

The handling of contact conditions very clearly emphasizes the ever-present prob-
lem to define numerical equality and vanishing values in numerical simulations; rel-
evant tolerances must always be introduced.

4.4.2 Sequence Definition

The previous section deals with some ideas for different classes of selector functions
for a structural problem, and relevant parameters in relations to these selectors. The
selector functions are all related to physical aspects of a structure. Obviously, many
parameters in a structural design affect these response aspects. This makes them
interesting to include in an investigation of the design. The present setting allows a
number of such parameters to be included.

The investigation of the parametric solutions can focus on the sensitivity of a
particular equilibrium state to small variations of the parameters around the present
case. This linearized response is described by the tangent space, which is a local
property of the particular state, and is further discussed below in Sect. 4.5.3. For
more extensive investigations of the parametric response aspects, low-order subsets
of the possible parametric equilibrium states need be studied. In this context, the first
and foremost parameter is almost exclusively a parameter for the exterior forcing
level.

With a set of Np parameters included in P , the constrained equilibrium equa-
tions in Eq. (3.90) lead to solution manifoldsof dimension Np, connected at critical
states. When introducing Ns selector functions, the dimensions of the manifolds are
reduced to Np − Ns . For convenient handling and interpretation, the introduction of
Ns = Np − 1 selector functions leads to one-dimensional state sequences, and this
is the main setting for the solution of structural equilibrium, even if two-dimensional
equilibrium surfaces are briefly mentioned in Sect. 4.4.4. The sequences are repre-
sented in discretized form by parametric traces in the equilibrium space.

The Ns selector functions may be an arbitrary combination of the selectors dis-
cussed above. In order to allow introduction of many parameters in a common for-
mulation, subsets of the parameters can be de-activated in a particular simulation run,
by the introduction of selector functions prescribing them to particular values. This
adds a few almost dummy equations to the system, at marginal computational cost.
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With a focus on obtaining one-dimensional equilibrium sequences42, one selector
function in Rp is chosen as an increment selector function. In the present algorithm,
this selector is always placed last in the set Rp of functions, and automatically updated
by the algorithm from strategy rules, discussed below.

4.4.3 Increment Selection

In order to produce one-dimensional solution sequences, the set of Np selector equa-
tions need be successively modified between increments. In the present algorithm,
the increment selector function is kept in basic form but updated by a constant, which
can be interpreted as a fictitious time variable. This is also the case in Eq. (4.20),
where τ is modified after convergence in one increment.

The increment selector function is similar to the stepping strategies for paramet-
ric forcing in Sect. 4.1.5, but can now relate to any of the problem variables, e.g.,
forcing, displacement or some geometric parameter. It gives one way to find a set of
equilibrium states on what is really a continuous sequence, cf. the discussion around
Fig. 4.4. In most settings of the multi-parametric equilibrium tracing, one—but, only
one—of the selectors is such an increment stepping function, even if more complex
combinations are fully possible for specific needs.

In the present version of the algorithm, an increment selector strategy based on
step-wise increments along one of the problem variables is the main alternative. In
each incremental step, either a displacement component or one of the parameters is
held fixed during iterations43. The variable to use is decided based on the previous
increment44. The basis for the choice is an evaluation of the most rapidly changing
component, in the sense of the relative deviation from the predicted step increment.
Only a set of the variables with largest increments is considered. An alternative, very
commonly adopted in performed simulations, is to use the same specified variable for
a whole sequence. The arc length curve stepping is not recommended, for the reasons
above. With almost the same scaling problems, a hyperplane approach is, however,
sometimes used, where all corrections δy j

i+1 in increment i + 1 are orthogonal to the
prediction 
y0i .

A choice is thus needed for the class of increment selector function to use, but
the algorithm also needs a strategy for the increment magnitudes in the overall evo-
lution. In the general context, there is no reason why solutions should be placed
uniformly along an equilibrium sequence, as measured by the incremental time
parameter adopted. Several methods are published for choosing the parameter incre-

42 which may—or may not—be equilibrium branches in the traditional sense of force-displacement
relations.
43 Stepping in any of the constraint-enforcing variable is fully possible, but considered rather unnat-
ural in most cases.
44 It is prescribed as input in the first increment.
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ments automatically along the solution sequence. The problem is discussed, e.g., by
Eriksson and Kouhia (1995).

An automatic regulation of increment step lengths in the present algorithm is based
on the number of iterations needed in the previous step. The increment size is reduced
when convergence is slow, and expanded when the tolerance is easily reached45. A
fixed step length, rather than the algorithmicmodification. is a commonlyusedoption.

For the complex problems at hand, an important aspect is a re-start option, so that
a full simulation can be performed in a sequence of limited trace intervals, allowing
an inspection and re-direction of the simulation if this is deemed relevant; this is also
useful for branch selectionat bifurcation states.

As a very general comment on increment stepping strategies, the efficiency and
reliability of any method implemented is highly problem-dependent, and no general
answer on optimal strategies should be expected.

4.4.4 Equilibrium Surfaces

Even if engineering practice often prefers to see parameter dependence in a structure
as graphs for the response, the multi-parametric problem setting also allows other
means for obtaining and presenting the results. Eriksson and Pacoste (2001) develop
methods for solving two-dimensional equilibrium surfaces in a multi-parametric
space. The work is focussed on conservative stability problems, and the possibil-
ities to visualize response aspects in terms of catastrophe theory.

One example of result in the reference shows a 3D surface, which illustrates the
magnitude of a vertical point force at the apex of a clamped toggle frame as function
of both the height of the frame and the vertical deflection under the force. A color
scale is used to show the degree of instability for the model at the solutions. The
drawing gives considerably more information on the phenomenological response
than a set of parametric force-displacement graphs for fixed heights.

The solution method is a rather natural extension of the one-dimensional equilib-
rium sequence evaluation, but puts a focus on themeasuring of the solutionmanifolds
in the parametric space, i.e., the two-dimensional counterpart to the increment step-
ping in Sect. 4.4.3. The basis chosen for this is the two-dimensional tangent spaceat
a solved equilibrium, which defines a local coordinate system. The tangent space of
a multi-parametric equilibrium formulation is further discussed in Sect. 4.5.3. The
solution manifold is successively expanded by a simplex mapping in the parametric
space. Several technical aspects need be solved for a successful implementation of
the idea, but results can show new information, not least from a phenomenological
viewpoint.

45 This happens when the number of iterations in the increment is < Nw − 1 or > Nw + 1, with
Nw an algorithmic parameter for the desired number.
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4.5 Equilibrium Properties

The solutions to the parametric constrained equilibrium problem in Eqs. (4.18)–
(4.19), which are obtained from the incremental-iterative procedure in Eqs. (4.21)–
(4.22), are complete equilibrium configurations. They can therefore be evaluated
with respect to their equilibrium properties, exactly as the results from the more
specialized setting in Sect. 4.1.5. All included parameters, and not only the forcing
parameter, are now frozen, when stability of the equilibrium state is evaluated. In a
parametric setting, the parameter variables in a solution are the results from the set
of selector equations used, and thereby not necessarily equidistant.

The primary results are the discrete variables d, which describe the displacement
of the model, and constraint-enforcing variablesC . The parameters P are also imme-
diately found from the solution vector y, with very commonly at least one forcing
parameter included. Convenience transformations related to P are discussed as a
means for producing further interesting quantities for the state, cf. Sect. 4.4.1.

Other main results for the equilibrium state, like point-wise stress or section
resultants, need a post-processingof the result within the discretization used. As
indicated in Sect. 3.1.1, all such derived results should be considered to be of—at
least somewhat—lower accuracy than the primary results.

4.5.1 Operative Stiffness

The abovementioned properties of an equilibrium state are all local in nature, but also
several global quantities are important properties of the equilibrium. Not least, this
is the case for the energy aspects deciding stability. From Eq. (3.90), a constrained
equilibrium is defined by the stationarity of �c, with respect to displacement d and
constraint-enforcing parameters C . This implies that d and C are the fundamental
state variables for the equilibrium state, with frozen parameters.

Dependent on the specific setting of the problem, the fundamental equilibrium
equations are connected to the fundamental variables according to Eqs. (3.90)
and (3.92), or, in compact form, Eq. (4.18). The operative stiffnessmatrix K in
the top-left part of the Jacobian matrix J ≡ Ry,y in Eq. (4.24), can represent either

of K t , K i , or Kc, depending on forcing class and the introduction of constraints.
The operative stiffness is symmetric if the constraints are expressed by �c in

Eq. (3.87). This is the reason for the seemingly over-complicated form of the gas
relation in Eq. (3.93)—in particular if this is compared to the more obvious conve-
nience selector function for the same relation in Eq. (4.33)46.

46 noting the fundamental difference between a constraint and a selector.
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4.5.2 Stability Properties

For the stability investigations, the treatment in Sect. 3.7 gives basic expressions,
with two formulations for cases with or without constraints. The discussion below
treats a general case, based on the operative stiffness K , which is formally simplified
if no constraints are introduced.

Eigenvalue extraction

A problem setting without constraints allows two eigenvalue formulations according
to Eqs. (3.97) or (3.98) giving identical stability conclusions. A constrained model
must consider that the constraints are mass-less. In order to cover all cases, the two-
matrix eigenvalue problem in Eqs. (3.100)–(3.101) is more relevant than the form in
Eq. (3.97), and will be discussed here. The positive semi-definite constrained mass
matrix in Eq. (3.101) makes the solution more complicated, and out of scope for
many standard matrix algebra algorithms. The setting with such a mass matrix is
extensively discussed by Eriksson and Nordmark (2019), where methods are given
for its treatment. Without constraints, the choice of method offers other options,
but this situation is covered by the treatment below, just introducing Nc = 0 and
Mc ≡ M .

The setting is characterized by symmetric matrices, normally sparse, and a semi-
definite mass matrix47. The problem class also often shows clusters of identical or
very close eigenvalues, sometimes also situations where several eigenvalues coin-
cide due to symmetries in the model. It is noted that, depending on the phase of the
algorithm, several situations occur, demanding often only a limited number of eigen-
values, sometimes only their signs, sometimes their exact values and sometimes also
the corresponding eigenvectors. A special case is when the criticality is part of the
problem setting, in the form of a critical selector function, according to Eq. (4.34)
or Eq. (4.35). In this case, also the differential of the critical eigenvalue with respect
to fundamental variables is needed.

An analysis of the setting shows that suitablemethods for the eigenvalue extraction
inEq. (3.100) are strongly dependent on the structure and components of the operative
stiffness K in Eq. (4.24), and in particular on whether the submatrix Rc,C in its lower
right part is zero, singular or has full rank, cf. Eq. (3.92).

When evaluating eigenvalues without too high demands on precision, a strategy
basedon aSturmsequence, cf. the bookbyStrang (1988), canpreferably beused.This
employs an LDL-factorization of the operative stiffnessmatrix shifted by amultiplier
of the relevant mass matrix. This method is in the present implementation used to
decide the numbers of negative eigenvalues (below a certain tolerance −γ ) and of
zero ones (within 0 ± γ ), but also to give a coarse estimate to the eigenvalue closest
to zero in non-critical situations, as this can be used for predictions of approaching

47 which is also diagonal if M is a unit or lumped matrix.
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critical states. A systematic usage of the same method in a bisection strategy can
give also the eigenvalues, but is inefficient for an accurate determination.

A numerically feasible method for approximate, but potentially very accurate,
solution to the eigenvalue problem described by Eq. (3.100) is based on an introduc-
tion of small fictitious masses for the constraints. Replacing the mass matrix Mc in
Eq. (3.101) by a matrix of the form

Mε =
(
1Nd 0
0 ε2 1Nc

)
, (4.36)

with ε a small value48, the square root of the diagonal matrix M̃
ε
can be used to

transform the original problem to a one-matrix form for the matrix

K ε =
(
1Nd 0
0 (1/ε)1Nc

)
Kc

(
1Nd 0
0 (1/ε)1Nc

)
(4.37)

where the left- and right-hand operators are (
√
Mε)−1, which operates on both K

and Mε, yielding the latter as an identity matrix. The resulting matrix K ε is symmet-
ric and, for wide ranges of ε, well-conditioned for the eigenvalue extraction. Stan-
dard matrix algebra algorithms give a chosen set—or range—of eigenvalues with
selectable precision, and the corresponding eigenvectors. If needed, the obtained

eigenvectors are multiplied by (
√
Mε)−1 to give the eigenvectors for the original

problem. In the present algorithm, eigenvectors are only extracted when eigenval-
ues are numerically zero, giving a set �cr of critical eigenvectors ϕcr, for which
K ϕcr ≈ 0Mcϕcr, with the approximate equality representing the tolerance for a zero
eigenvalue.

Due to the re-formulation of the problem discussed in Sect. 3.6.1, where con-
straints increase the number of residual equations rather than decrease it, the
described procedures give 2 Nc spurious eigenvalues of large magnitude. As these
correspond to eigenvectors with low values in all displacement components, the irrel-
evant eigensolutions are easily discarded. This removal reduces the complete set of
(Nd + Nc) eigenvalues to the correct number, i.e., (Nd − Nc).

The eigenvalues and their corresponding mode vectors are providing essential
information on the properties of the equilibrium state investigated, and a stable equi-
librium shows positive eigenvalues only. When the number of negative eigenvalues
changes between the states in the sequence, this defines a transition equilibriumstate,
cf. Sect. 4.5.6.

Regarding the mass matrix in Eq. (4.36), it is noted from Sect. 3.7 that the usage
of an identity structural mass matrix is unphysical, and does not allow any interpre-
tation of neither eigenvectors nor eigenvalues, beyond the signs of the latter. This is
particularly true if discrete displacement variables are of different types, e.g., both

48 In applications of the method, ε ≈ 10−7 has often been used, when constraint equations are
reasonably scaled in comparison to the equilibrium equations.
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translations and rotations. For vanishing eigenvalues, i.e., at critical equilibria, the
critical mode vectors are, however, independent of the mass assumptions, and results
obtained with the mass matrix from Eq. (4.36) are thereby reliable and useful for the
adopted discrete model.

4.5.3 Tangent Space

The multi-parametric setting of stability problems discussed here is primarily moti-
vated by the possibilities to find the parameter dependence of phenomena. Examples
are the parametric regions of stable responses, with parameters being related to, e.g.,
geometry or material. Similar arguments can also be used to motivate investigations
of the sensitivity of equilibrium states, in the sense of effects from small variations to
given parameters. This gives measures for the potential effects from imperfections,
where a high sensitivity implies that small variations in parameters lead to large
effects in response. While the parameter dependence in qualitative response reflects
a global parameter variation, the sensitivity is a local property valid at a particular
state. It is emphasized that the sensitivity is thereby only expressed in relation to
the parameters introduced; the sensitivity to other variables can be much more pro-
nounced. In such cases, additional hard-coded parameters may be transferred to be
parts of P , cf. the discussion in Sect. 4.4.2.

The discussion of sensitivity of equilibrium takes its starting point in a prob-
lem definition using (Nd + Nc) fundamental displacement and constraint-enforcing
variables, but also Np parameters defining a particular instance49. As this gives
(Nd + Nc) constrained equilibrium equations, according to Eq. (4.19), the solutions
to the non-linear equations consist ofmanifolds or hyper-surfaces of dimension Np in
the (Nd + Nc + Np)-dimensional variable space. Such manifolds can be connected
at different kinds of critical states, marking a non-smooth change of the solutions.

The sensitivity analysis investigates the linearized manifold around a solved equi-
librium, which is defined by the local tangent space. The space is a property of the
equilibrium state, in the sense that it describes important aspects of its surroundings.
The differential of the constrained equilibrium equations from this state is written as

dR = K dD + J pdP (4.38)

using the combined state space variables and the corresponding residual function
from Eq. (4.19). In the expression, the differential operator

J p = R,P ≡
(
rc,P
Rc,P

)
. (4.39)

49 In the simplest case of Sect. 4.3, this is just one forcing parameter.
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This matrix is part of the total Jacobian in Eq. (4.24), and is an (Nd + Nc)-by-Np

matrix.
The tangent space describes all possible increments to variables and parameters

which let the linearized equilibrium differential in Eq. (4.38) vanish. The result is a
matrix T y , which satisfies the equation

(
K J p

)
T y = 0. (4.40)

The columns of the matrix T y thus belong to the null spaceof the matrix (K J p).
The algorithm evaluates and makes use of a good basis for this null space.

In the one-parametric forcing situation of Sect. 4.1.6, the tangent space essentially
describes the current differential displacement response to a unit increment of the
forcing parameter, at least at a non-critical state. For a parametric displacement-
independent forcing component, the corresponding column of J p is related to the
(negative of the) external force. Other parameters lead to other forms, but always
resembling a discrete force vector.

When several kinds of parameters are allowed, the columns of J p may be more

or less similar, in the sense of a co-linearity in the (Nd + Nc)-dimensional space50.
Almost parallel columns are normally uninteresting or reflecting trivial design rela-
tions, and can also cause numerical and algorithmic complications. It is here assumed
that the columns are reasonably separated.

If the equilibrium is regular, as opposed to critical, with a non-singular operative
stiffness, the positions of new equilibria, in the vicinity of the studied state, are
indicated by the condition from Eq. (4.38). Demanding a zero increment dR, this is
written

dD = −K−1 J p dP, (4.41)

where an increment in D is expressed as a consequence of variations in the parameters
P through an (Nd + Nc)-by-Np matrix. Expressed in relation to the solution vector
y, neighboring equilibrium states are reached through an arbitrary combination of
the columns in the matrix

T y =
(−K−1 J p

1Np

)
, (4.42)

spanning the possible variations. This matrix—to first order—shows the solution
manifold around a non-critical equilibrium state. Even if particular choices of param-
eters can make the matrix less well-defined, this does not normally create severe
numerical problems. If the process shows a dependence between the parameters, as
mentioned above, some specialized handling is needed to effectively remove one of
the parameter columns.

50 This happens, for instance, when two geometric parameters introduced affect the equilibrium in
rather similar ways.
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Depending on purpose, the matrix for the tangent space basis can be modified
in different ways, e.g., orthonormalized in connection with equilibrium surfaces,
cf. Sect. 4.4.4. Such procedures also allow further investigations of parametric intra-
dependence. A normalization can also be motivated by the scaling of the parameters.

At a critical equilibrium state, with a singular operative stiffness, the null space
of the operative stiffness matrix contains vectors of the form

T� =
(

�cr

0

)
(4.43)

with columns consisting of orthonormal eigenvectors corresponding to vanishing
eigenvalues of K , and showing possible differential increments to the fundamental
variables at frozen parameters, i.e., no variation to P . This is closely related to the
discussion in Sect. 3.7, noting that the critical eigenvectors in general involve all
state variables in D, i.e., displacements and constraint-enforcing variables.

In the numerical treatment, the singularity of the operative stiffness is related to a
tolerance for a zero eigenvalue. The implementation must define this tolerance, and
formulate the used methods accordingly, cf. also Sect. 4.6.

With a numerically singular operative stiffness, it is not possible to use Eq. (4.42)
as written. With an adapted numerical technique, it is, however, possible to solve
the components of these basis vectors by making the columns of J p effectively
orthogonal to all columns of the (Nd + Nc)-by-N�-dimensional matrix of critical
eigenvectors �cr. This can be done in several ways, depending on the properties of
the system. A very general approach is given here.

With N� the number of orthonormal critical eigenvectors in �cr, an orthogonal
part is obtained from a stabilized system according to

(
K Mc �cr

�T
cr M

c 0

) (
T⊥
X

)
=

(−J p N p

0

)
, (4.44)

where thematrix N p is a representation of the null space of the (small)matrix product

(�T
cr J p). The multiplication by the null space matrix combines columns in J p in

such a way that the resulting columns are all orthogonal to the critical eigenvectors.
In the equation, X is an auxiliary matrix, which comes out as numerically zero and
is discarded. The useful result is thereby a matrix T⊥, also with columns orthogonal
to all critical eigenvectors.

With this formulation, it is obvious that different situations appear, depending
on the relation between the number of parameters Np and the number of critical
eigenvectors N�. The dimension of the null space decides the number of columns in
the right-hand side of Eq. (4.44), and thereby also the number of columns in T⊥.With
N� < Np, the number will be at least Np − N�, but can be higher. With N� > Np,
on the other hand, the null space can be empty, and the right-hand side will disappear.
This is also the case when N� = Np, and the product (�T

cr J p) does not have a null
space; this typically happens if the matrix consists of non-zero numbers. Special
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situations appear when the matrix (�T
cr J p) contains a mixture of zeros and non-zero

values. The number of columns in T⊥ must always be ≤ Np, as the matrix N p can
not expand the dimension of J p. Note that it has been assumed that all Np parameters
are reasonably independent, so columns do not degenerate.

For the common case of one-parametric forcing, i.e., Np = 1, critical states with
N� = 1 or 2 commonly appear. If the scalar product(s) of critical eigenvector(s) and
the single column of J p is non-zero, no null space exists, and T⊥ is empty. If the
scalar product(s) is zero, the null space is non-empty and T⊥ can be evaluated as
above.

Based on Eqs. (4.43) and (4.44), which give two different types of tangent space
base vactors, a description of the total tangent space is obtained as

T y =
(
T⊥ �cr

N p 0

)
, (4.45)

where the right part is always, present, but the left part may be empty. When this is
the case, only the critical eigenvector(s) remain in the tangent space.

The conclusion from the discussion is that the dimension of the matrix T y is
N -by-N ∗

p , where N = Nd + Nc + Np and N ∗
p the number of columns; the notation

is chosen to emphasize that N ∗
p ≥ Np, with N ∗

p > Np only for particular states. The
situation is easily evaluated from the matrix product (�T

cr J p), noting that this must
be performed at the particular state considered.

The tangent space as discussed above only considers the constrained equilib-
rium equations according to Eq. (3.90), irrespective of the number of parameters
introduced in the formulation; no selector equations are introduced, and the solution
manifold spanned by the columns of the tangent space basis matrix T y considers all
possible linearized variations to the parameters. As discussed above, the matrix can
be orthogonalized and normalized for special purposes.

For the common limit state with one critical eigenvector for a one-parametric
forcing, a limit state is characterized by Eq. (3.110), which implies that also the
product (�T

cr J p) is non-zero, and thereby has no null space. This reduces the tangent
space in Eq. (4.45) to just the right-hand part, i.e., the critical eigenvector for zero
forcing parameter increment. If, on the other hand, (�T

cr J p) = 0, also the orthogonal
part remains, which creates a bifurcation state.

As noted in the introduction to this section, the tangent space has a clear relation
to the sensitivity of results to parametric variations around an equilibrium state. With
the procedure described, the columns show the sensitivity to the parameters in P; the
columns may be rotated, in order to emphasize the sensitivity to specific parameters
For special purposes, this can be valuable information in the design process, and it
can even be an aspect in an optimization setting.
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4.5.4 Tangent Vector

The description above gives a basis for the tangent space, i.e., all linearized vari-
ations to state variables and parameters fulfilling differential equilibrium around a
considered state with vanishing residual R. The tangent space considers free and
independent variations to all parameters in P , and is a linear space tangential to the
equilibrium manifold.

With the present focus on one-dimensional generalized equilibrium sequences,
the selector equations define subsets of equilibria on the total manifold. The selector
equations thereby reduce the tangent space.With an addition of Ns selector functions
in Rx to the system in Eq. (3.90), which consists of the constrained equilibrium
equations, the dimension of the tangent space basis matrix T y is normally reduced
by Ns . The tangent space is contracted, by the demand for a non-trivial solution to
the Ns equations in N ∗

p unknowns stated as

Rx,y T y dP
∗ = 0, (4.46)

with dP∗ describing a basis for the null space to the combined matrix (Rx,y T y).
This demands that a tangential direction must also fulfil the set of selector equations.
The reduced tangent space is then obtained as

T s = T y dP
∗. (4.47)

The form shows that, in general, the parameter-based columns of the tangent space
matrix will be combined in order to solve also the selector equations.

When a one-dimensional equilibrium sequence is the objective of the simulation,
the necessary number of relevant selector equations is Ns = Np − 1, as discussed
in Sect. 4.4.2. With this choice, Eq. (4.46) is under-determined, and will always give
at least one vector dP∗ as solution. Any column of T s includes all variables and
parameters, and points to directions in y space in which linearized equilibrium is
fulfilled. The tangent vectors define the possible evolution directions for equilibrium
states on the sequence, which is defined by a set of selector functions. This agrees
with the comments above that a number of physically relevant selectors is augmented
by increment selector functions, which are just related to the numerical evaluation,
giving a total of Np selectors to fix one solution state.

At a non-critical equilibrium or a limit state, the evaluation of Eq. (4.47) gives
a tangent vector in y space (if Np−Ns = 1), for the problem at the current state.
The vector shows the only linearized direction of neighboring equilibrium states51.
This thereby gives a good predictor for a new increment in the sequence tracing,
after a choice of increment length. With a reasonable increment along a tangent
vector, convergence can be assumed to be rapid. This approach is used in the present
algorithm.

51 with the current selector functions, which puts demands on the selector around a limit state.
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At a bifurcation state, where the expression in Eq. (4.46) is under-determined by at
least two equations, a basis for the space of incremental solutions can also be obtained
through the matrix dP∗, with columns defining the basis. This basis, which now con-
tains at least two columns can be transformed, dependent on the purpose and setting
of the problem. For the most common case of one-dimensional sequence tracing in
a problem setting with one main forcing parameter, the suitable form for tangent
vectors at a bifurcation state with just one critical eigenvector, is an orthonormal
matrix rotated such that the second vector has a vanishing component for the main
forcing parameter. This gives the first column as the primary response direction. For
more complex settings, other criteria for a suitable expression for the tangent vector
matrix need be considered; a reasonable approach is to transform the basis vectors
into a form where each of the parameters in P—as far as possible—dominates one
column, even if this may be difficult dependent on the selector equations used; a
method can be based on a QR factorization of the P part of T s .

The tangent vector matrix is therefore important for the choice of predictor in
a new incremental step in the algorithm described by Eqs. (4.21)–(4.22). For the
interpretation of analysis results, the magnitudes of the parameter components in
the tangent vectors, and even more their signs, give important information on the
qualitative aspects of equilibria. When the sign of any of the parameter components
in the tangent vector changes, this is considered a transition equilibriumstate, as
further discussed in Sect. 4.5.6.

4.5.5 Contact Status

When hard contact conditions are considered in a problem formulation, according
to Sect. 3.6.4, the contact status at each equilibrium is an important property of the
state. In an FE context, this status shows which nodal points are in active contact.

As discussed in Sect. 3.6.4, the iteration within a certain step increment is in
the present algorithm performed under an assumption of a specific set of active
constraints. These are handled analogously as the boundary conditions represent-
ing structural supports, i.e., with prescribed displacement components, each defined
through one constraint equation in the set Rc(y) = 0. In the converged solution, this
condition is fulfilled through a corresponding Lagrange multiplier, being part of C
in the solution y.

A provisional new equilibrium state is found from the iterations in the increment,
using the contacts valid from the previous accepted state. Before accepting this as a
new solution in the sequence, a conclusion must be reached whether the provisional
state fulfills the contact conditions.

The conclusion is based on the contact status list for the provisional equilibrium.
This list contains all nodes being at the contact surface, and having a contact force of
the correct sign52, but also any node penetrating the contact surface. Nodes included

52 physically outwards from the surface, but related to the definition of the constraint equation.
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as contacts in the increment, but showing a contact force of incorrect sign at the
provisional state are excluded from the contact status list.

If the contact status list for the provisional state agrees with the contact status
used during the increment, the new state can be accepted as a solution, and all other
interesting results evaluated. If not, a change of contact status has occurred and the
provisional state is discarded. A transition equilibrium state is identified and sought
within the increment, as further discussed in Sect. 4.5.6. Based on the results from
this procedure, the incremental-iterative procedure is continued.

It is noted that the solution is based on a set of approximations, and obtained
through an iterative procedure with a specified tolerance for convergence. The inves-
tigation of contact status must therefore also allow for some tolerances for defining
the sign of the contact force, and for the penetration of the contact surface.

When contacts are modelled as soft, i.e., as one-sided contact penalty functions
or springs, the treatment does not need any handling of a contact status list for the
workings of the algorithm. If linear springs are used, this will, however, create prob-
lems in the interpretation of stability, due to their inherent discontinuity. Therefore,
third order springs are preferred. For book-keeping reasons, it can still be interest-
ing to investigate the contact status for each equilibrium state, in order to find the
exact state where a particular contact is activated. Comparisons of contact modelling
approaches are shown in Sect. 5.4.

4.5.6 Transition Equilibrium States

Stability investigations as presented in this treatise are to high degree focussed on
the transitions between stable and unstable equilibrium states in some parametric
description. This objective sets the focus on the critical situations of neutral equilibria.
These are in engineering treatments often denoted as states of instability53, giving in
many cases an absolute maximum capacity of a structure to exterior forcing.

Being of fundamental importance to structural capacity, the evaluation of critical
states demands high reliability. Accurate methods are thereby needed, not only in
academic treatments of stability phenomena. The algorithmic treatment of transitions
between parametric regions of different properties need to be reliable, and—as far
as possible—efficient.

The treatment of transitions can be developed in several different ways dependent
on scope and purpose of the analyses, but in the present context, where parametric
incremental-iterative procedures are proposed as the main tool54, it is natural to
include the handling of transitions in the algorithm. This is based on a continuous
monitoring of a set of important status quantities in the sequence. The main idea is
to find, and isolate to desired accuracy, transition equilibrium states in the sequence.
Dependent on the problem formulation, this can equally well be the forcing level at

53 even if the term should rather be the creation of a forced mechanism, cf. Sect. 3.7.4.
54 noting that not only forcing parameters are considered.



206 4 Solution Algorithms

which equilibrium for a structure is no longer stable, the geometric parameter giving
the highest buckling force, the thickness of a plate from which a specific traction can
be carried in a stable configuration, or the length of a compressed plate, where the
buckling mode of lowest critical forcing changes55.

The equilibrium properties evaluated and collected at each converged equilibrium
state, include—in addition to displacement variables—all parameters and reactive
constraint-enforcing forces. Different signs of parameters at two successive states
indicate a zero-crossing transition in the interval between them. Similarly, the tangent
vectorparameter components along the equilibrium sequence are of interest, with a
zero-crossing indicating some kind of turning state situation.

The eigenvalues of the operative stiffness at an equilibrium state are, as is obvious
from the treatment above, themain indicators of stability, and need be followed along
the sequence. As the full and accurate evaluation of the eigenvalues is a computa-
tionally expensive operation, the Sturm sequence method mentioned in Sect. 4.5.2
is employed for each new state, giving the numbers of negative and zero eigenval-
ues as two integer values. A tolerance for ‘almost zero’ values must be defined in
relation to the current problem setting, as further discussed in Sect. 4.5.2, leading to
the numbers of negative, positive and zero eigenvalues. A change to the number of
negative eigenvalues is a change of stability.

When hard contacts are considered with the method described in Sect. 4.5.5, the
contact status for each equilibrium is recorded. If the contact status of the provisional
state changes from the previous solution state, this is noted as a transition between
the two states.

Dependent on the specific problem setting, some or all of these aspects are of
interest. Also other equilibrium properties, where a transition is of importance to the
qualitative interpretation of the results, can be considered and handled by similar
approaches.

Isolation of transition states

The equilibrium properties discussed above are of different kinds, with continuous
variable variations, integer value jumps or a changing list of numbers demonstrating
a transition in the provisional increment. Although more efficient methods can be
developed if only one kind is considered, a common method is used in the present
algorithm. The key is thereby just that any—or several—of the equilibrium prop-
erties under observation changed between the previous equilibrium state yi and the
provisional new yi+1. The new state is not accepted until the transition state is han-
dled.

The procedure used for isolationof such equilibrium states is schematically shown
in Fig. 4.8 for the continuous case of a variable q changing sign, here from positive
to negative in an increment described by a characteristic component y∗.

55 which is a case when two critical situations coincide.
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Fig. 4.8 Isolation of
transition equilibrium state,
with a transition between
qualitatively different
solution properties

Although secant or ‘regula falsi’ types of method could be used in this case,
the general method uses a bracketing. The basic approach is essentially a bisection
method where a bracket holds two solution states of different properties56, and this
bracket is successively reduced until a satisfactorily well isolated transition state
is reached. Each new bisection point is iterated until equilibrium, using the same
increment selector function57 as in the provisional step. The very good predictions
available normally make convergence fast.

The result from the procedure is thereby two new equilibrium states. One of these
is ascertained to have the same properties as the previous accepted state, and can be
included as a new state in the sequence, while the other has different properties, and
may need some further treatment.

For a transition state involving signs of eigenvalues, the isolation gives two bor-
dering states with different numbers of negative eigenvalues. Compared to Fig. 4.8,
this implies that the bracketing solutions for a critical state will not meet, but indi-
cate a range, delimited by states where the interesting eigenvalue is +ε and −ε,
respectively, with ε a numerical tolerance for an ‘almost zero’ eigenvalue. It is a
valuable aspect of this treatment of critical states, that it handles multiple vanishing
eigenvalues without extra measures.

In the cases of changing sign of a parameter or its tangent vector component,
where properties can be assumed to vary continuously, both the second bracket state
and the provisional state can be accepted, if these state share the same properties;
otherwise a new isolation between these is started. The exact transition state can be
well approximated by the midpoint of the bracket, if needed. This type of isolation
is not always of interest, and can be turned off in the implementation.

For a transition state concerned with the contact conditions, the first bracket state
has the same contact status as the previous state, while the second state is illegal.
A new iteration must be started, with a new assumed active set of contacts. As an
equilibrium state is known just before the changing contacts, the prediction of a new
contact state is normally very good. The provisional solution state is normally useless

56 with the diverse view on ‘properties’ from above.
57 but, with a changed constant.
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in this case, and is replaced by a new incremental step, based on the new contact
status. Even then, the discarded provisional state may be a good predictor.

Occasionally, if long increments are attempted in the tracing of a sequence, it
may happen that the provisional solution state is not situated on the same branch as
the previous one. If these states differ in any of the observed quantities, an isolation
will be initiated, but the bracketing will then break down when trying to find new
midpoint solution states.

Another special situation, in cases where hard contact is considered, appears in
the isolation of states beyond which no legal equilibria exist for the used increment
selection, cf. Sect. 5.4. In such cases, a re-start with a more extensive identification
of the grazing contact state is needed.

4.6 Critical States

As is obvious from the previous Chapters of this treatise, the handling of critical equi-
libriumstates is a significant part of all stability investigations. This is obvious from
the engineering viewpoint, where critical equilibrium is commonly interpreted as a
loss of stability, or a structural instability58. It is also obvious from the treatment above
that the critical equilibrium states lead to singular matrices and, thereby, potential
numerical problems in a simulation. An important part of any stability investigation
is therefore to find any critical equilibrium states for the problem setting at hand.

4.6.1 Identification

A critical equilibrium is here interpreted as any state on a parametrically traced
equilibrium sequence, where the stability properties change. This may be states on
an equilibrium branch of parametric forcing, which is the more traditional setting. It
may also be a state on a sequence of a parametric geometry where the response to
a particular forcing changes between stable and unstable equilibria. Cases are also
included where a critical equilibrium sequence is traced, and the number of negative
eigenvalues changes. This indicates the existence of a higher order critical state59.
The more general view on critical states is thereby a state where the number of
negative eigenvalues of the operative stiffness changes along a specified sequence.

On a trace of parametric forcing, a critical equilibrium state is first detected by
a change of the number of negative eigenvalues in the provisional converged equi-
librium, as compared to the previous accepted state. In the most basic case, this
means a change from zero to one (or two, for problems of some symmetry), but more

58 in common terminology, even if this term has been avoided here.
59 which has probability zero to appear in a problem, unless it is specifically sought by the setting;
normally, more than one problem parameter must be variable in order to find such states.
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advanced settings of parametric tracing can show any increase or decrease of the
number, as detected by a Sturm sequence method, according to Sect. 4.5.2.

When the existence of a critical equilibrium is detected in a new increment, two
methods are realistic for finding the critical state more precisely. One method is to
replace the increment selector function by the critical selector equations in Eq. (4.34)
(or, for certain problems, the one in Eq. (4.35)). Continued iteration with this new
selector included will with high probability lead to the critical state; the midpoint
between the previous and the provisional state is normally a good predictor for this
step. This demands an accurate evaluation of at least some eigenvalues around zero
for each iterate, and expressions for their gradients with respect to the fundamental
variables. The gradients normally need a numerical evaluation.

The other method—used in the present implementation, due to high generality in
diverse problem settings—is based on the isolation of a transition equilibrium state,
according to Sect. 4.5.6. The simple method for eigenvalue sign spectrum is still
useful. After the solution of a sequence of new equilibria around the critical state,
the bracketing is accurate, and the midpoint of the bracket interval can be assumed
to be a good approximation to the critical state. The numerical tolerance for a zero
eigenvalue, and the number of bisection steps used, need be decided for a particular
problem. The tolerance is also involved in the evaluation of the tangent space and
vector described in Sect. 4.5.3.

With the first strategy mentioned, the eigenvector60 corresponding to low magni-
tude eigenvalues at the critical state is evaluated as part of the algorithm for isolation
of the critical state. Using the bracketing strategy, the obtained estimate to the critical
state need be further evaluated, in order to obtain the critical eigenvector(s). Either
method relies on the continuity of all aspects of structural response, which excludes
some problem settings.

The eigenvectors at critical states are important in the evaluation of the tangent
space, as discussed in Sect. 4.5.3. They immediately give a basis for the discrimina-
tion between limit and bifurcation states, indicating the possible branch continuations
from the critical state. The eigenvectors are also an important basis for further inves-
tigations of the properties of the critical state.

A special case appears when a critical equilibrium sequence is traced, as further
discussed below. A critical eigensolution is then involved as a selector function in
the problem setting. In addition to the critical zero eigenvalue, a certain number of
eigenvalues are negative along the sequence. If this number changes in an increment,
a state with higher criticality exists within the increment. This can be isolated by
the method above, leading to a state with several critical eigenvalues, which may
demand some special measures for the solution of equilibrium.

As discussed in Sect. 3.7, the eigenproblem at an equilibrium state gives the lin-
earized response around the state. In particular, the eigenvector(s) corresponding to
zero eigenvalue(s) span(s) a space of linearized equilibrium states around the equilib-
rium. This space can be investigated by the so called ‘asymptotic methods’, in which
higher differential forms of the equilibrium equations are introduced. Catastrophe

60 or eigenvectors, if a multiply critical state is sought.
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theory discusses the interpretation of these results, which can be of particular inter-
est in specific instances of multi-parametric formulations. Already for states with
one critical eigenvalue, these methods can be used to distinguish between supercrit-
ical (stable) and subcritical (unstable) bifurcations. The higher order differentials
also similarly give the basis for the algebraic bifurcation equation,which gives the
possible branches at a bifurcation state.

An example

The small demonstration problem from Sect. 3.7 is used here for a description of
the treatment of multi-parametric discrtized problems in the setting of the algorithm
implementation described in Sect. 4.7. The formulation is somewhat generalized by
the introduction of an extra parameter c, which is assumed to be variable, but with
an initial reference value of c = 0; c is considered a finite parameter, not just a
perturbation. The formulation is thereby based on the total potential
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2
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with c affecting the part resembling exterior forcing. With the notation from the
present Chapter, this means that

y =
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D
P

)
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)
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)
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as no constraints are considered. The residual force is thereby
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(
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the operative stiffness is

K = �,D,D =
(
1 + d2 − λ d1

d1 1 + d2(2 − 6cλ)

)
, (4.51)

and the parameter derivative of the residual is

R,P =
( −d1 0

−1 − 3cd2
2 −3λd2

2

)
. (4.52)

Hard-coding the parameter c to a specific value gives three problem variables,
and just needs an increment selector function to specify the one-parametric problem
according to Sect. 4.1.6. If several investigations are planned for the problem, it may
be convenient to use the full P , and use two selector equations, for instance,
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Rx (y) =
(

c − 0
d2 − τ

)
, (4.53)

giving a four-component residual Ry . In the algorithm, τ is step-wise updated. The
parameter derivatives Rx,D and Rx,P for Eq. (4.24) are easily found, giving the
Jacobian J for a particular increment61.

A start from a tentative equilibrium state y = (0, 0, 0, 0)T allows step-wise New-
ton iterations for increasing d2. All equilibria are evaluated as stable until d2 > 1,
when one eigenvalue of K becomes negative. An isolation of the transition is per-
formed, giving two closely situated equilibria with different eigenvalue sign spectra.
For a performed simulation with fixed increments 
d2 = 0.15, the seventh incre-
ment gave a statewith one negative eigenvalue. From this provisional state, 5 isolation
steps revealed that 0.9984 < d2 cr < 1.0031; the critical eigenvalues are 0.0031 and
−0.0063, respectively, to be compared to the non-critical eigenvalue of around 3.
The midpoint of the bracketing states gave the best approximation to the critical
state d2 cr ≈ 1.0008, λcr ≈ 2.0094 with a critical eigenvalue of −0.0016. The isola-
tion could have been continued for better approximation of the critical state.

From the same starting state, d2 was also decreased in another simulation, and
the two sequences combined into one. The decreasing part gave two critical states:
one limit state with minimum λ, and the bifurcation state at d2 = −1, cf. Figs. 3.17a
and 4.9. These states were isolated and identified with the same method as above.

4.6.2 Secondary Branches

Although engineering interest is often primarily directed towards the evaluation of
the first critical equilibrium state under increasing forcing, the existence of post-
critical branches is of interest. The interest is related to the response after the passage
of a limit point, or to the existence of buckled configurations on a secondary equi-
libriumbranch emanating at a bifurcation state. Both situations play important roles
in the investigation of the sensitivity to imperfections.Methods for treatment of such
equilibrium branches are thereby needed.

The existence of post-critical branches is indicated by the tangent vector matrix
evaluated at the critical state, according to Sect. 4.5.4. At a limit state in a one-
parametric description of exterior forcing, the tangent vector indicates the single
branch passing through it, and the continued tracing of the branch just may need a
change of the increment selector, cf. Sect. 4.3.2.

At a bifurcation state for the same problem setting, the tangent space is (at least)
two-dimensional, consisting of a primary, non-critical, tangent vector corresponding
to a parameter increment62, and the critical eigenvector(s), corresponding to zero
parameter increments, cf. Eq. (4.45). Neither of these necessarily indicates even an

61 Note that the Jacobian contains the increment selector equation.
62 orthogonal to the critical eigenvector(s).
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infinitesimal equilibrium sequence, but they often do so. In general, the algebraic
bifurcation equation gives combinations for the columns of the matrix in Eq. (4.45),
for which a sequence can be initiated.

Traces along secondary equilibrium branches from a bifurcation on a primary
branch typically are initiated as a re-start from the critical state. The first continuation
increment is solved, introducing a predictor and a selector function reflecting this.
Using the critical eigenvector, scaled by a chosen constant, and a selector function
fixing an increment to the displacement component of largest magnitude in it, is
very often a good choice. After convergence for this first increment on the secondary
branch, the general strategy for tangent vector evaluation is normally useful again. A
new increment is thus performed with a tangent vector predictor, iterative correctors
and property evaluation.

When a more complete stability investigation is performed, and several critical
states detected on the primary branch, as in Sect. 5.3, a new re-start is needed at each
isolated critical state.

Different forms of critical states may appear somewhere on the secondary
branches, cf. the bifurcation tree in Fig. 5.7. The same procedures are followed
also for these. Not least the treatment of critical states appearing on the secondary
branches also may need careful considerations of the symmetry properties of solu-
tions and modes.

In an application-oriented analysis of critical states for a parametrically forced
model, the critical state effects may be more relevant than a very accurate isolation
of their parametric position. For such situations, and in particular for bifurcation
problems, the treatment can be simplified without significant loss of information, by
the introduction of an imperfection to the studied model. The imperfection can be
a (small) distortion of the model geometry, or a (small) disturbance force added to
the parametric exterior forcing; the latter approach is often preferred, and is used
in Sect. 5.2 for a case of buckling mode interaction.

If the distortion or disturbance is somewhat related to the critical mode at the
first critical state, the distinct bifurcation branch crossings is replaced by a gradual
transition from the primary to the secondary branch, triggered by the imperfection.
The situation is schematically illustrated by a comparison of Figs. 1.2 and 1.3, where
it is obvious that a larger imperfection reduces the more dramatic response effects
close to the bifurcation.

After an introduction of the imperfection, the single equilibrium branch can be
traced by standardmethods, even if a smaller imperfection leads to sharper curvatures
of the branch and a need for careful increment selector strategies. When using this
approach, without any physical motivation for the magnitude of the imperfection,
the smallest value of it, which still allows an uncomplicated numerical treatment, is
chosen.
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Fig. 4.9 Primary and
secondary equilibrium
sequences evaluated for
example problem with c = 0.
Critical states are marked

The example continued

The example in Sect. 4.6.1 is continued. The main results in the simulation were a
provisional unstable equilibrium for d2 = 1.05, and the approximate critical state at
d2 = 1.0008. As the provisional state is in equilibrium, it is accepted, and the primary
path could be continued from it using the same method; the unstable states for larger
d2 do not lead to any problems for the Newton iterations.

The treatment of the critical state can be continued, preferably after a re-start from
the interval midpoint. The tangent space is evaluated at the approximate critical state.
If this is sufficiently well isolated, the critical eigenvalue is below the tolerance for
what is considered as vanishing, and the tangent space is two-dimensional, containing
the primary tangent and the critical eigenvector63. In the example problem, which is
very well-defined, the normed basis vectors were evaluated as (0, 0.316, 0.949, 0)T

and (1, 0, 0, 0)T, respectively, for the setting used, with parameter c = 0 fixed.
The critical eigenvector was used to initiate the secondary equilibrium branch, by

selecting the appropriate vector in the tangent space. A parameterization was chosen
to reflect the secondary path direction, and a suitable increment length gave the
predictor for a new step. From this, iterations were performed with exactly the same
formulation as used for the evaluation of the primary sequence, with the exception
that the second function in Eq. (4.53) was modified—not only by changing the
constant τ , but also in form. In the example case, an increment 
d1 = 0.1 from the
approximate critical statewas introduced as selector.With avariable parameterization
along the sequence, the sequence followed the complete ’un-symmetric’ branch of
Fig. 3.17 in 61 increments64; all the states were identified as unstable with one
negative eigenvalue65. Projections of the primary and secondary sequences evaluated
for c = 0 are shown in Fig. 4.9.

63 both evaluated to good accuracy, if tolerances are set appropriately for the problem.
64 Fewer longer increments still converged, but gave a bad representation of the branch.
65 even if this is very close to zero at the two connections to the primary sequence.
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4.6.3 Critical Parameter Traces

The previous section has its main focus on the stability properties of a structure
subjected to a one-parametric forcing, which is the most basic engineering setting
of a stability problem. This section is considering other forms of multi-parametric
settings, and systematic stability investigations in this context.

Whilemany classes of problems can be based on Eq. (4.19)with parameters P and
selector functions Rx , the focus is here on critical equilibrium sequences, where one
selector function is of the type in Eq. (4.34), or some similar function expressing the
critical state66. As an increment selector is needed for a sequence, and the forcing
parameter is always of interest, the basic critical sequence evaluation allows one
more parameter.

The typical setting of a critical sequence is therefore to use one, e.g., geometry
parameter in the model, and to solve the relation between this and the critical forcing
parameter. As this type of parameter normally affects the internal force vector, the
problem setting is of the form inEq. (3.49), which fitswell into themethods discussed
in Sect. 4.4. If the added parameter is used for the forcing, the same basic form is
still applicable, even if internal force is not affected.

The increment selector can use any—or several—of the variables, and is not
necessarily connected to the added parameter, even if this in many cases is natural.
The properties of each converged equilibrium state are evaluated with all parameters
in P , as well as all hard-coded ones, frozen.

A variation of this setting is the one shown by graph No. 2 in Fig. 4.6b, where the
forcing parameter is hard-coded and two geometry parameters introduced. With the
criticality and increment selector functions, parametric combinations are sought, for
which the critical state appears at the hard-coded forcing level.

As the sequences discussed here more or less explicitly use the eigenmodes in
the formulation of the problem, they trace a sequence where the critical modes are
similar between the successive states solved. The solutions thereby must show the
same number of negative eigenvalues, which verifies67 that the intended sequence
is traced. If this number has changed for a provisional new state, an isolation of the
transition equilibrium state can be performed, according to Sect. 4.5.6. The isolated
equilibrium state is then critical of higher degree, i.e., shows a higher number of zero
eigenvalues. This happens, for instance, when a limit and bifurcation state merge into
a hilltop branching state for a particular parameter combination. The same situation
also appears when two buckling modes change the order in which they appear under
a parameter variation, e.g., the plate buckling modes in Sect. 1.6, under the variation
of the length to width ration a/b in Eq. (1.52).

The solution process for the critical sequence evaluations operates close to states
with a singular operative stiffness. It is obvious that the simulation is more sensitive
to both mechanical and numerical aspects than the more robust evaluation of sta-

66 Another form is to use the whole critical eigenvector ϕcr as parameters, and K ϕcr as selector
functions, adding also a selector equation ‖ ϕcr ‖ −1 = 0.
67 or at least strongly suggests.
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ble primary equilibrium sequences. Specially developed and tested algorithms are
thereby needed. Commercial software do not normally offer this type of sequence
tracing.

The mentioned sensitivity of the sequence and the states also indicate that knowl-
edge about the problem investigated is valuable for efficient and reliable simulations.
For particular problems studied, the alternative formulation of criticality inEq. (4.35),
and the symmetry preservation approach also discussed in Sect. 4.4.1 have proven
useful to improve algorithmic performance.

When a critical state with multiple critical eigenvectors is handled, and the sec-
ondary branches around it sought, the hyper-circle method briefly discussed in
Sect. 4.4.1 can help in finding them. The basic idea is to introduce an additional—well
chosen—disturbance force, and a selector function defining a radius from the critical
state. Following the resulting sequence shows all outgoing branches through a van-
ishing disturbing force; this method was denoted as branch-connecting by Eriksson
(1998).

The example continued

The example in Sects. 4.6.1 and 4.6.2 is continued. Two symmetry-breaking critical
states were found on the primary path for c = 0. These can be used as starting states
for the evaluation of critical sequences, where the dependence on the parameter c
is investigated. A critical selector equation from Sect. 4.4.1 is then replacing the
equation fixing c in Eq. (4.53). For numerical stability, an equation fixing the critical
state to be on the primary path is also introduced.

In an experiment, the setting was defined by an augmented potential, according
to

�+ = �(Eq.(4.48)) − μ(d1 − 0), (4.54)

and an augmented parameter set, cf. Eq. (4.49)
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The residual then is

R = R(Eq.(4.50)) +
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)
, (4.56)

while the operative stiffness K remains, and the parameter derivatives of the residual
is expanded into
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Using the method from Eq. (4.35), which seeks states with a very low positive
eigenvalue, the selector equations were written as

Rx =
⎛
⎝

�cr − �

−(d1 − 0)
c − τ

⎞
⎠ , (4.58)

where the final—increment selector—function was step-wise updated; the results
show that c cannot be used as sequence parameter for all steps.

The critical—lowest magnitude—eigenvalue �cr is easily evaluated for any y in
this small-size problem68. Its derivatives with respect to displacement variables D
and parameters P are obtained analytically or by numerical differentiation69. The
remaining parts of J are trivially found from Rx .

In the numerical tests, a low critical eigenvalue � = 10−5 was used.
The tangent space at all solutions in the sequence is two-dimensional, as the critical

eigenvector together with zero parameter increments satisfies the tangent conditions.
The evaluation of the critical sequence must use the other tangent space basis vector.
In the example case, starting from the bifurcation state70 around y = (0, 1, 2, 0, 0)T,
the tangent vector has the components (0, 0.6904, 0.6904, 0.2161, 0)T, showing the
local dependence of the critical state on the parameter c. Starting instead from the
lower symmetry-breaking critical state, the tangent will just be a c increment, as this
critical state exists for any c. The two critical equilibrium sequences are shown in
Fig. 4.10a. All solutions included d1 = 0 and μ = 0 to machine precision.

The upper critical sequence in subfigure (a) shows a turning state in the c param-
eter, indicating a change of qualitative response of the model; the turning state is
isolated at c = 0.0833, and can be analytically verified to appear at c = 1/12. The
first observation is that this critical situation does not exist for higher c, the second is
that two such states exist for (at least a range of) lower c values. The situations can be
interpreted from the properties of the equilibria on the critical sequence, but are most
clearly shown by performing primary and secondary branch evaluations for values
of c around the turning state value. Figure4.10b–d show the results from sequence
simulations with c = 0.075 and c = 0.085, respectively. The three bifurcation states
existing for the lower c, with one closed and one open secondary branch are replaced
by just one for the higher c. In addition, subfigures (c)–(d) show that a maximum
state for the λ parameter exists on the primary branch; this can also be traced by the
same method71, giving another critical sequence for the parameterized problem.

For this, rather academic, example problem, also other qualitatively different
responses exist for other parameter ranges.

68 as the critical eigenvector is ϕcr = (1, 0)T for the bifurcation states, and thereby �cr equal to the
(1, 1) component of K .
69 In amore complex problem, it is obtained from a numerical evaluation of the directional derivative
of the residual, cf. Eriksson (1998).
70 and including μ = 0 as a fifth variable in y.
71 but with a critical eigenvector being just a d2 component.
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Fig. 4.10 Results from evaluation of critical sequences for example problem. a Critical forcing
levels as function of parameter c. b Primary and secondary equilibrium sequences for two different
c. c, d Projections of sequences for these values

4.6.4 Grazing Contacts

Equilibrium states with grazing contacts in a discretized setting have several simi-
larities with the critical states discussed in the previous section, and they are tran-
sition states in the sense of Sect. 4.5.6. Sequences of grazing discretized contacts
can thereby be evaluated by similar sequence tracing simulations. As for the critical
sequences, a particular grazing state is traced in parametric space, which implies that
a specific set of contact conditions are active, while another specified set of grazing
contacts are present.

Again, an exterior forcing parameter is often relevant, and is introduced together
with the increment selector function. The numbers of additional parameters and other
selector functions must therefore match in the problem definition.

Referring to Sect. 4.4.1, a grazing state can be defined by two different settings,
introducing constraint and selector functions. As constraint equations bring in an
implicit constraint variable, either setting demands one selector function for each
grazing contact point. This selector is acting on either the constraint-enforcing vari-
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able inC or on a displacement component in d . The problemdefinitionmust therefore
add a number of parameters equal to the number of points in grazing contact. This
does not imply that parameters must have an immediate connection.

An example of a grazing equilibrium sequence is a problem setting according to
Sect. 5.4, and described by Fig. 5.10. A simple structure is affected by a pressure
p, and constrained by a rigid surface at level H . Assuming that it is obvious which
node will first make contact with the surface72, a setting can be formulated where
the pressure needed for first contact is solved as dependent on H .

A more complex setting of grazing contact is also shown for the same example,
when a branching from the primary symmetric contact for a pressurized membrane
is investigated. This setting illustrates that very good problem knowledge, probably
based on several preliminary simulations, is needed for this kind of equilibrium
sequence tracing.

4.7 Algorithmic Implementation

A prototype implementationof the solution method for parametric equilibrium prob-
lems has been developed, and used in several investigations of structural stability.
Based on the descriptions of several algorithmic methods in this Chapter, a very
coarse description of the prototype implementation is shown in Fig. 4.11.

The description needs a few comments, in addition to those given already in the
Chapter. First, the (re-)start state is not necessarily in equilibrium, and an initial step
is performed to ensure starting conditions. For this and coming steps, the choice
of increment parameter and its step length is variable between the steps, dependent
on the progress and the previous increment73. It may also be changed when no
convergence is reached in theNewton iterations after a defined number of iterations74.
Also, the number of re-starts of the iterations after non-convergence in a step is limited
by an iteration parameter.

The properties of the evaluated equilibrium states, which are evaluated and mon-
itored in a simulation, are selected dependent on the problem at hand. They may be
the signs of parameters and their corresponding components in the tangent vector,
the eigenvalue sign spectrum and the contact status. Changes to these may lead to an
isolation of the transition state at which the change occurs.

The ‘isolation loop’ indicated in the figure consists of rather extensive numerical
treatment, where a number of new equilibrium states are solved by an almost identical
procedure as used for the evaluation of the provisional equilibrium state, i.e., a
parameterization of the interval between previous and provisional states75, Newton
iteration and a property evaluation. Based on the properties of the intermediate state,

72 whichever H is chosen.
73 even if they are often, as discussed in Sect. 4.4.3, are kept throughout the simulation run.
74 typically chosen as around 10 for reasonably well-behaved problems.
75 typically keeping the parameter, and adjusting the increment length, cf. Fig. 4.8.
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Fig. 4.11 Main steps of algorithm implementation
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Fig. 4.12 Implementation
structure

either of the bracketing states is updated. For accurate isolation and identification of
the transition state, the number of bisection states may be high, and the computation
demanding; the work is somewhat reduced by the normally very good predictions
available for the new states.

After an isolation of a transition state, at least one new state is stored as an
equilibrium solution. As further discussed in Sect. 4.5.6, depending on the class of
transition identified, also the second bracketing state and the provisional state may
be valid equilibria, and are then stored as results. In the cases when they are not valid,
they may serve as good predictions for a coming step in the overall process.

As is obvious from the treatment in this Chapter, not least several of the selector
functions suggested for particular investigations are rather highly problem specific,
and not easily described in the common form of commercial software, where the
simulation settings are chosen by keywords and option flags. The structure of the
prototype implementation is thereby according to Fig. 4.12, where the main program
code is fixed and independent of the specifics of a problem and investigation. Essen-
tially, the code expects evaluations of the residual vector Ry and the Jacobian J
as functions of a current approximation to the solution variables y. Based on this,
the main code executes a parametric trace, according to some provided governing
algorithmic parameters.

The ‘problem’ code is developed for a particular investigation, and includes the
evaluation of the structural model, but also the selector equations for the investigation
at hand; a primary equilibrium branch evaluation does not have the same problem
code as, e.g., a critical sequence evaluation for the same structural model76.

The problem code responds to a set of requests from themain code during different
stages of the simulation. This mechanism is used to set the algorithmic parameters,
to initiate (a re-start of) the simulation, to evaluate the residual and Jacobian from
current solution variables, and to perform different aspects of result presentation.
Contact formulations also demand some specialized parts.

76 but, obviously, with many parts in common.
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The problem code is built modularly based on a set of service functions, for, e.g.,
all element-related quantities and the assembly functions.

Conclusions from this Chapter

The Chapter has discussed how sophisticated solution methods can be used for the
simulation of stability aspects in structures. The main issues complicating the sim-
ulations are the inherent non-linearity in the formulations, and the need to solve for
a sequence of equilibrium states. The sequence is needed in order to fully describe
the structural response, and in particular the transitions between stable and unstable
equilibria. Although special situations can motivate other approaches, incremental-
iterative algorithms based on a selector equation approach together with Newton iter-
ation are proposed for the treatment of these problems. Primarily in order to describe
the properties of problems with non-unique responses, a contrasting dynamic relax-
ation method is discussed in passing. Methods based on secant stiffness forms, but
also methods based on so-called linear pre-buckling approaches are shown to be
highly unreliable except for limited classes of problems.

The generalized settings allow the investigations of how the stability properties
of a structural model depend on a general set of parameters introduced. These can be
related to the forcing or to the model itself, and the solution method makes possible
parametric traces in any parameter. The parametric view on stability is emphasized,
where the stability conclusion for an equilibrium state is a property of the current
situation, when all implicit and explicit parameters—and not only a single forcing
parameter—are frozen.

The Chapter sets the structural equilibrium problem in a general context, with or
without mechanical constraints on the equilibrium solution. This is shown to lead to
three different classes of operative stiffness for themodel, where a common treatment
is described for problems defined by a tangential, incremental or constrained stiffness
matrix. Amain difference in the treatment relates to the mass matrix in the extraction
of the eigenvalues, i.e., the stability coefficients. General methods suggested can be
simplified for particular problem settings.

Being of particular interest to engineering simulations, a focus is set on the treat-
ment of critical states of neutral equilibrium, commonly interpreted as the point
of loss of stability for an increasing forcing, but here with a more generic mean-
ing. When such an equilibrium state is found in a simulation, the parametric setting
allows the investigation of its sensitivity to the parameters considered, and methods
are shown for studying properties of secondary equilibrium branches, but also for
the parametric dependence of the critical state.

With a focus on one-dimensional parametric equilibrium sequences, an algorithm
can be created for automatic tracing of a wide variation of problem settings. For
specific problem classes, a fine-tuning of methods and algorithmic parameters can
increase efficiency in computations; no algorithmic setting can be assumed to be
optimal for all problems. A particular aspect of this is related to problems or states
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where the tangent vector is not unique. A method and strategy for re-starts in simu-
lations, including possibilities to choose among sequence segments connected to the
state, is an important part of an algorithm.

The Chapter has described the needed algorithm for this generalized sequence-
tracing method in rather deep details, facilitating the implementation of similar func-
tions in any general structural simulation software.

Tasks for this Chapter

1. Study the effects from different step choice algorithms, for a scalar problemwith
p = 1 − cos d + 0.05d2, f = λ · 1 in a region roughly delimited by 0 ≤ d ≤ 8,
0 ≤ λ ≤ 5. Test force, displacement and curve stepping, with different choices
of increments in fictitious time τ . Then, change the definition of external force
to f = λ · 10, with a correspondingly decreased interval for λ, and perform
similar experiments. Document all results, and formulate conclusions; at least
one non-trivial observation should be reached

2. Model the plane beam structure in Fig. 4.5 in a general FE software, with forcing
described by some relevant formulation. Investigate which solution evolution
strategies are available in the software, and test what happens with different
choices of strategies and control parameters. Test, in particular, a case where
geometric, material and forcing parameters are chosen such that a snap-through
response will appear.

3. Consider a thin-walled spherical object, free-floating but subjected to interior
over- or under-pressure. In an available software, create a model of this object,
for linear or non-linear analysis. Model the whole sphere, but use a mesh with as
high symmetry as possible. Use the available methods in the software to intro-
duce necessary—but not more—displacement conditions to allow the analysis.
Check the symmetry of the solution, and discuss alternative assumptions and/or
methods.Hint: If a very thin sphere is modelled, and non-linear effects allowed,
then external over-pressure can easily give stability problems in the calculation,
which is not the idea of this task (but is, anyhow, interesting).

4. For a toggle frame, similar to Fig. 1.5, introduce hard-coded parameters E A and
L , and variable parameters H and F , but also a constraint-enforcing variable C ,
which ensures that u = 0 in a 2d.o.f. model (u, v). Formulate the constrained
total potential, the residual force, the constraint equation and the tangent space.
Perform some investigations to demonstrate the meanings of the introduced
concepts and quantities.
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Chapter 5
A Wider View

This Chapter discusses a few special aspects related to numerical investiga-
tions of structural stability. While the problem settings can be very diverse,
dependent on problem class and objective of investigation, a sound under-
standing of the stability phenomena can guide numerical analyses. While the
most basic aspects of structural and forcing modeling are covered in the pre-
vious Chapters, three important general aspects are considered here. These
are emphasized by illustrative small examples, where the structural modeling
through finite elements is straight-forward, but some aspects in the response
need special care. The reported examples are verified to show the same types
of behaviour also for very finely discretized models.

The problems considered are the interaction of several mechanisms for
loss of stability in a hollow column, the effects from symmetries in a prob-
lem setting, and the effects from contact conditions, which affect the stability
conclusions. In addition to these reported cases, some general comments on
material and forcing assumptions are given. Which aspects can be modelled,
and how they are specified in a particular software need careful investigations.

Brief Objective of this Chapter

This Chapter shows a set of situations where more advanced methods for stabil-
ity investigations are needed, illustrating the diversity of stability issues, thereby
emphasizing the need for a thorough understanding of the phenomena, but also
demonstrating the requirements on sufficiently competent software tools.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Modelling, Computational Methods in Engineering & the Sciences,
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5.1 Special Situations

This Chapter will focus on some particular aspects of stability investigations for
structures. While previous Chapters have given the basic theories, discussed the
discretization necessary for complex structures, and shown an algorithmic setting
for complete stability mappings of parametric structural models, a wide variety of
special issues may arise in particular cases. A number of such issues have been dealt
with in previous research articles by the authors, and a few will be further elaborated
here.

A common denominator of the aspects handled in the present Chapter is that they
all relate to aspects which are not always covered even by the general approaches
discussed in previous Chapters, and therefore need some special treatment. They are
also examples of issues where available commercial software might offer options for
their treatment, but where the interpretation needs a very clear view on the meaning
of results obtained. This, for instance, relates to some material models, which can
lead to unexpected results in certain structural models, but also to discretization
models lacking some important parts of needed kinematics. The necessity to correctly
introduce the boundary conditions for the model is emphasized.

Most treatises on stability, not least the simplified engineering analysis schemes,
tend to focus on one clear-cut stability aspect at the time, but the discussion above
has emphasized the parameter dependence in all response aspects, and the present
Chapter gives a first example, where parameters for a problem are chosen such that
unstable response modes tend to interact.

As also discussed in previous Chapters, one issue of major importance for sta-
bility investigations is related to symmetries of a structure. Whereas utilization of
symmetry and repetitions is normally problem-free for linear cases—and in earlier
computational approaches was often necessary due to limited resources—this is not
the case in relation to modern computational treatment of stability. The treatment
below focusses on a problem with high symmetry, and shows how lacking consid-
eration of this leads to incorrect, or at least inaccurate, results. The example also
emphasizes the sensitivity of results to assumptions concerning, e.g., boundary con-
ditions.

A third aspect where stability conclusions can be strongly affected by the numer-
ical structural modeling is in relation to constraints, and in particular contact condi-
tions in the model. The previous Chapters give basic formulations for the modelling
of hard smooth contact conditions, and an example here gives an illustration of how
discretized contact conditions in a structural model lead to artifact bifurcations.

The Chapter ends with a short description of some situations where care must be
directed towards the choice of models for material, forcing and boundary conditions,
when using commercial general simulation software.
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5.2 Critical Mode Interaction

Traditional engineering stability investigations focus on individual components, and
on specific critical modes, often with picturesque naming. These clear-cut situations
do not necessarily exist and appear in more general simulation approaches. This
section deals with a simple structure, for which stability can be lost in several ways.
An interaction between these phenomena is potentially of relevance, at least for
someparametric instances. The problem is the one shown already in Sect. 1.7,where a
compressed thin-walled beam is analyzed by two different simple methods for global
and local buckling; a geometric relation gave the parametric borderline between the
two possibilities.

The problem was here analyzed by the general FE software COMSOL Multi-
physics1, which is a very powerful simulation tool, allowing an extensive flexibility
in problem settings. The basic idea of the example was to showwhat can be expected
for a problem, when no initial assumptions are made regarding the results. An objec-
tive was also to investigate how the analytical assumptions on, e.g., boundary con-
ditions can be modelled, considering that the analytical assumptions often deviate
from what can be believed to be the practical conditions in a structure.

5.2.1 Model Setup

The problem studied is described by Fig. 5.1, and refers to the compression of a
prismatic aluminium beam of square thin-walled section, with a central compressive
forcing. The beam geometry is defined by length L , outside width B, and wall
thickness h. The material is assumed as linearly elastic, cf. Sect. 2.4.2, with material
parameters (Em, νm), but also a density ρX used in the mass matrix; self-weight was
not considered as an exterior forcing. Themodel was set up as completely parametric.
Geometrical non-linearity was considered.

For all experiments shown here, data were defined as B = 100mm, h = 2mm,
Em = 70GPa, νm = 0.3, and ρX = 2800 kg/m3. Length L was varied between cases
below. For any length2, local buckling is calculated by the simple expressions in
Sect. 1.7 to occur at a compressive force Floc = 82.9 kN with present data, while
global Euler-type buckling appears at Fglob(L) = 867 kNm2/L2. The length of equal
buckling loads, when Fglob = Floc is approximately L = 3.24m. Two beam lengths
were primarily considered below, and are denoted as: L = 2.5m for case ‘S’, and
L = 4.0m for case ‘L’.

The basic model used shell elements with quadratic internal interpolation, where
the midsurface widths of all sides were set to b = B − h, cf. Figs. 5.1 and 1.17. The
models were rather finely meshed, using the built-in meshing method, giving models

1 version 6.0, Comsol AB, Stockholm, Sweden
2 which is longer than a few times the section width
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Fig. 5.1 Hollow rectangular
compressed column.
Geometry, forcing and
relevant points. Point C is at
the midpoint of the side; a
point D was situated
opposite to C. Main loading
was along the X3 axis, while
disturbance force acts along
X1. b is the width between
side-plate midsurfaces

of around 12,000 degrees of freedom. It was noted in experiments that rather fine
meshes were needed to resolve the local buckling modes.

In order to avoid severe local deformation effects, and to allow a central com-
pressive force resultant, end plates were added to both ends of the beam. These
were, after some initial testing, created to be 5 times thicker than the beam walls,
and have a fictitious elastic modulus of 10 Em , with a zero Poisson ratio. The end
plates were thereby considerably—but not extremely—more stiff than the structure
itself. This choice led to an almost uniformly distributed compressive stress at the
end sections, with only small local deformations. An alternative approach—using
more elaborate methods available in the software—is possible, but not trivial and not
easily reproduced in other software.

The center point of the lower end plate was restrained from all translations, while
the center of the top end plate was restrained from horizontal translation, with a com-
pressive force acting in the vertical direction. For equilibrium analyses, a fictitious
support against rotation was introduced in point A of Fig. 5.1.

The simulations were imagined to be performed ‘ab initio’, with no initial knowl-
edge of the response, and in particular the possiblemodes of lost stability, The created
model was affected by an increasing parametric compressive force. One result eval-
uated for each state in the solution was a prediction of the lowest critical force level,
from an LPB approach, cf. Sect. 4.1.3. With respect to an applied force F , the LPB
gave a force multiplier λcr leading to an estimate for the critical compressive force as
Fcr = λcrF . The possibility in the software to visualize the predicted critical mode
was used to interpret these results.
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Table 5.1 Main results from simulations for column case ‘L’

F Fcr Natural frequencies

1 53.8 19 ∗ 2 77 ∗ 2 165 170 ∗ 2 271 278 288 ∗ 2 290 300 344

10 53.8 18 ∗ 2 76 ∗ 2 165 168 ∗ 2 272 278 286 ∗ 2 290 299 343

20 53.8 16 ∗ 2 74 ∗ 2 165 166 ∗ 2 271 278 284 ∗ 2 290 298 341

30 53.8 13 ∗ 2 72 ∗ 2 164 ∗ 2 165 271 276 282 ∗ 2 290 297 339

40 53.8 9.9 ∗ 2 70 ∗ 2 162 ∗ 2 165 271 276 280 ∗ 2 290 295 337

50 53.8 5.2 ∗ 2 68 ∗ 2 160 ∗ 2 165 270 275 278 ∗ 2 290 295 335

53 53.8 2.4 ∗ 2 67 ∗ 2 160 ∗ 2 165 270 275 278 ∗ 2 290 294 334

kN kN Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz

The notation ‘*2’ shows doublemodes at the same frequency, and an interpretation as global bending
modes

For each applied compressive force F , also a set of the lowest natural frequencies
of the forced model were calculated. The consistent mass distribution of the software
was introduced. Vibration modes corresponding to the frequencies were visualized
and interpreted.

Concerning the global buckling, a slight complication in simulations lies in the
square section, which will lead to equal buckling force for modes of any transversal
direction; coinciding eigenvalues were expected. The appearance of double eigen-
values was interpreted as related to global phenomena.

5.2.2 Basic Results

Results from the simulations for the long column, case ‘L’, are given in Table5.1.
The applied force levels were chosen manually, starting from (what was assumed to
be) a small force F , and then manually choosing a set of steps from the initial LPB
prediction of critical force; the aim was to solve equilibrium as close to the critical
state as possible.

As the provisional analytical treatment in Sect. 1.7 evaluates the critical force,
which is the global buckling force for this case, as Fcr = Fglob = 54.2 kN, the LPB
prediction here is consistent and very accurate, already from F = 1 kN. This is
common when the deformation of the structure is linear—and very small, compared
to structural dimensions—before the critical state.

Vibration frequencies are in most cases double, indicating global ‘Euler type’
sinus-wave modes, and the first row gives almost exactly the ratios 1:4:9 as expected
for these. The frequency at 165Hz corresponds to a torsional mode, the single one
at around 290Hz an axial mode, while the other frequencies have modes which are
visually identified as breathingmodes. Only the latter group ofmodes slightly resem-
ble local buckling modes. It is noted that no modes obtained from these simulations
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are exactly corresponding to the analytically derived clear-cut situations, but contain
at least small contributions from other modes.

The table shows how the frequencies for all modes tend to be reduced with
increased compression, but only the lowest bending mode tended to zero, and this
clearly shows the approaching global buckling. A final calculation with F = 53.7 kN
gave the lowest double frequency at 0.9Hz, with all other frequencies identical to
the final row in the table. No particular convergence or other problems were noted
for this case of almost clear-cut global buckling.

Similar results for the short column, case ‘S’, are given in Table5.2. The same
methodwas used to find suitable forcingmagnitudes. In addition to the double, global
buckling modes, and the torsional and axial modes—now with frequencies 261 and
446Hz, respectively3—a large number of local vibration modes were found in this
case. An attempt to connect frequencies for the same modes for increasing forcing,
and an extrapolation of these to zero frequency was difficult, but tended to show that
a local buckling mode will become critical first. The situation with lost stability is,
however, very numerically sensitive, and could not be reached.

The results show that the LPBprediction is consistently convergingwith increased
forcing, and rather clearly points to a critical force Fcr ≈ 81 kN; the mode shown for
the predicted loss of stability is visually the same for all force levels: a local buckling
with around 25 half sine-wave shapes4, but with amplitudes of the local buckling
higher in themiddle part of the column: an effect of the bending type global buckling.
The double vibration frequency corresponding to a one half-wave bending mode (the
first frequency column) is reduced with forcing, but is still rather far from zero at
the final reported forcing level. Analyzing the table shows how many frequencies
corresponding to local modes are decreasing quickly, and will be decisive for the loss
of stability. At the final state in Table5.2, the frequency 106Hz is visually identified
as a mode, where the beam sides buckle in 24 half-waves, but affected by the global
buckling shape. The physical interpretation is that the local buckling reduces the
bending stiffness of the beam section, leading to a lower interacting local-global
buckling phenomenon.

The two potential sources for loss of stability—of which the local buckling offers
several closely neighboring cases, with modes of different numbers of half-waves—
obviously interact for moderately long beams. The interaction is difficult to find with
the approaches above, but other methods will give clearer results.

5.2.3 Trigger Force

For structures where the loss of stability is not easily predicted in initial design con-
sideration, an alternative approach can often be used. The basic ideas is to introduce

3 agreeing well with the corresponding results for case ‘L’, as these frequencies should be approx-
imately proportional to 1/L
4 Very similar estimates are obtained for a number of modes of approximately the samewavelengths
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Table 5.2 Main results from simulations for column case ‘S’

F Fcr Natural frequencies

1 79.2 50 ∗ 2 192 ∗ 2 261 284 321 394 ∗ 2 418 446 486 488

10 79.2 48 ∗ 2 190 ∗ 2 261 284 320 392 ∗ 2 417 446 486 487

40 79.3 42 ∗ 2 184 ∗ 2 261 283 316 386 ∗ 2 411 445 484 485

60 79.1 37 ∗ 2 180 ∗ 2 261 282 314 381 ∗ 2 406 406 408 410

70 79.1 35 ∗ 2 178 ∗ 2 261 282 301 304 309 310 310 312

80 81.0 28 ∗ 2 106 124 151 166 ∗ 2 176 185 190 212 220

kN kN Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz

The notation ‘*2’ shows doublemodes at the same frequency, and an interpretation as global bending
modes

an imperfection to the structural model, which can replace the bifurcation at buckling
by something resembling a limit point; one version of the idea is shown already in
Fig. 1.3. The imperfection can be introduced in several ways, but for the present case,
a disturbance force in point C of Fig. 5.1 is added to the main forcing. The position
and direction of the force are chosen such that it can initiate both a global and a local
buckling situation.

The disturbance force is either small and constant, while a successively increasing
force F is applied, or a small proportion of the applied forcing. With Uc and Ud

denoting the displacements at points C and D in the direction of the disturbance
force, results can be interpreted, based on a reasoning. Without the disturbance and
for small F , the pointsC andDwould move outwards, i.e., get (small) displacements
of equal magnitude but opposite signs, due to the Poisson effect in the compressed
column. For local buckling, recognizing the synchronous buckling on all four sides,
the displacements are also of different signs but of the same magnitude—larger than
from just Poisson effects. For a global buckling situation, the column buckles as a
whole in the transversal direction, and the displacements of the two points are of
very similar magnitudes and of the same sign. When different modes are close to
loss of stability, the displacements will be some mixture of these cases.

For case ‘L’, a constant force of just Fdisturb = 1N was applied, the main force
F was gradually increased. equilibrium solved, and the displacements Uc and Ud

recorded. The results are shown in Fig. 5.2a. The two displacements are indistinguish-
able in the diagram, increase with the main force magnitude, and go towards very
large deflections for F ≈ 53.6 kN, above which level convergence is not reached.
The similar deflections show that this is a global buckling situation, where beam
bending is clearly dominant. No local buckling is seen, at least not at pointsC andD.

For case ‘S’, the alternative approach with Fdisturb = 0.001F was used, but other-
wise the same method. Results are shown in Fig. 5.2b. The local buckling in this case
makes the deflections become initially different, but the reduced bending stiffness
from this buckling finally makes the column buckle globally, with the deflections
almost equal, at a forcing F ≈ 87.6 kN. Subfigure (c) shows a magnified displace-
ment view of the column at a force close to this case; both the local buckling and the
global bending deflection are obvious.
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Fig. 5.2 Results from
simulation with compressed
column, disturbed by
transversal force. a
Deflections of points C and
D, case ‘L’. b Deflections for
case ‘S’. c Magnified
deflection at high
compressive force for case
‘S’

As the global buckling phenomenon is clearly present in subfigure (c)—for a
forcing considerably lower than the Fglob = 139 kN evaluated for this length—an
interaction takes place between the two modes for loss of stability. This makes
the analytical expressions unreliable. The practical semi-analytical handling of this
interaction is based on the concepts of effective thickness orwidth,where the stiffness
of plate fields is reduced when affected by the compressive stresses, and thereby also
the overall bending stiffness entering the expressions for global buckling. Numerical
simulations of the whole structural model, without any assumptions on probable
response, give a picture of this interaction.
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5.2.4 Comments to the Problem

One conclusion from the performed simulations is that the local buckling modes are
of small scale compared to global dimensions. This implies that results are rather
strongly affected by the discretization mesh in the simulations. An unexpectedly fine
element mesh was needed for the situations where local buckling is of importance
for the response.

It is also noted that the square beam section used in the example is a special case.
In a general parametric modelling, a rectangular section would rather be defined,
and the results obtained for the parameters defining the rectangle. Such cases would
not show the double eigenvalues, due to the different bending stiffnesses in the two
section axis directions. The parametric equilibrium tracing methods discussed in
Chap. 4 could trace either of the critical states5 in the parametric space, evaluating
the critical force as function of the parameters. Such a procedure would find the
square section as a special case, where two critical modes meet at a common forcing
level.

5.3 Symmetry in Modeling

The importance of symmetry in a structuralmodel and its forcing has beenmentioned
several times in previous Chapters. The key aspect is that a discretized model must
neither add nor remove symmetry aspects in relation to the real physical object. The
discussion in Sect. 3.5.1 focusses on two aspects of symmetry: a macro-symmetry
inherent in the problem at hand, and a micro-symmetry, which is an effect of its
discretization. The present section shows results from experiments with a simple but
highly symmetric problem, i.e., a square thin plate which is compressed by uniform
edge tractions from all sides, Fig. 5.3. This is a case with high symmetry, as also
forcing is symmetric. Although the case is somewhat uncommon, it is phenomeno-
logically related to engineering buckling problems, where a primary equilibrium
branch in a reduced dimensional space, cf. Sect. 2.5.6, loses stability through bifur-
cation with a secondary response out of this space. This is one reason for the need
for complete kinematic descriptions in Chap. 3.

Fig. 5.3 Highly symmetric
problem, where forcing gives
a primary response in the
plane, and secondary
branches out of plane

5 e.g., global buckling in one of the directions
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In the figure, and results, compressive edge traction is denoted as positive. In simu-
lations, the plate was assumed as free-flying. As this problem setting is unstable, with
three negative eigenvalues for any non-zero compressive traction6, the displacement
boundary conditions needed care. The free-flying condition implies that no setting
of these can be considered fully correct, but the chosen setting aimed at minimum
constraints on the response. With ‘mid’ denoting the midpoint of the plate, and � its
boundary, the displacement boundary conditions were applied as

U1mid = U2mid = U3mid = 0,∮

�

X2U3 =
∮

�

−X1U3 =
∮

�

X1U2 − X2U1 = 0, (5.1)

where, according to Chap. 2, the Xi and Ui are components of initial position and
current displacement, respectively, and X3 ≡ 0 for all points in the plate. These
expressions are in general rather easily formulated and adopted for discretized mod-
els.

A somewhat similar problem is described by Eriksson and Nordmark (2016),
when stability is studied for a square horizontal membrane affected by a hydro-static
pressure from below, leading to bifurcation behavior. An analytical treatment of this
case showed the symmetry aspects existing in a set of computational models, and
the effects from these on the results from numerical simulations.

Even if the structural models are very similar, the present case is of even higher
symmetry, due to its up-down reflection symmetry. While the reference analyzes the
C4v symmetry group of a square pyramid, the present case belongs to the group D4h

of square prisms. The presentation here uses the Schönflies notation from Cotton
(1990), but also other notations for symmetry aspects exist, e.g., the one used in the
book by Conway et al. (2008). The two groups have several aspects in common, and
the treatment in the reference is useful also for the present problem.

5.3.1 Group-Theoretical Background

The analysis is performed by using group theory concepts, cf. the work by Ikeda
et al. (1991) and Zingoni (2014). A symmetry group is a group where each element
is an isometric transformation of 3D space or fields in the 3D space. For a finite
sized object, the symmetry group is a point group, where each transformation leaves
a common point, e.g., the origin, fixed. The symmetry group is thereby defined by
a set of basic distance-preserving operations, which map a field onto itself. The C4v

group has eight such operations, while the present D4h group has 16, due to the up-
down symmetry. The relevant operations are of four classes: reflections, rotations,
inversions and rotary reflections.

6 and three zero eigenvalues, corresponding to rigid body translations
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For a specific problem setting, a well-defined symmetry exists and can be deduced
from the operations possible. The symmetry aspects are most easily visualized from
finite element meshes, showing an initial geometry of a model. The symmetry can
then somewhat loosely be described as the set of operations on the mesh, for which
the results are visually identical to the starting mesh. A set of meshes of the full
square are given in Fig. 5.6 connected to the numerical simulations. These meshes
have varying symmetry properties, as denoted by the labeling of the meshes. The
reflection symmetries in planes orthogonal to the plate and rotations around the
normal axis are rather obvious, while rotations around in-plane axes, and inversions
through the origin are more intricate.

TheSchönflies notation gives information about the types andnumbers of different
distance-preserving operations. For example, in D4h the subscript 4 indicates a main
X3-axis with four-fold (quarter-turn) rotation symmetry, while it together with the D
indicates two-fold rotation symmetry along four different axes orthogonal to themain
one, including the secondary X1-axis. Finally, the subscript h indicates a reflection
symmetry in a plane orthogonal to the main axis. This implicitly leads to a number
of other operations, like reflection in four planes containing the main axis, four-fold
rotary reflection symmetry along the main axis, and inversion.

The symmetry group D4h has 13 different kinds of subgroups, with a total of 34
subgroups differing in their axis orientations. Only a few these can appear as sec-
ondary equilibrium branches in the present problem, losing just one of the symmetry
aspects of the initial group.

A notation is introduced for the orientation of the relevant subgroups. Some of
the subgroups of D4h come out in non-standard orientation, where for example the
secondary axis could be different from the X1 -axis. Denoting the X1- and X2-axes
by σ1 and σ2, and the diagonal axes pointing to the right- and left-hand sides of the
X2-axis as δ1 and δ2, the following extra suffixes are used to denote non-standard
orientations:

Subgroup Main axis Secondary axis
D2d (δ), C2v(δ), D2h(δ) X3 δ1
C2v(σi ), C2h(σi ), C2(σi ), Cs(σi ) σi X3
C2v(δi ), C2h(δi ), C2(δi ), Cs(δi ) δi X3

For consistency, also the following are used even though the subgroups are in
standard orientation: D2d(σ ), C2v(σ ), D2h(σ ).

Solutions to an equilibrium problem can be classified in the same way, essentially
by studying the deformed mesh in the same terms. In general, there is no reason to
believe that solutions will fulfil the symmetry of the region, and it must be expected
that solutions normally do not show the full symmetry. For the present case, where
both region and forcing fulfil the D4h symmetry, the primary equilibrium branch can
be defined as consisting of the solutions which keep this symmetry. On the other
hand, all secondary branches leave the symmetry, and the response may then be
characterized by any subgroup, down to the completely unsymmetric C1.
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While the above is valid for the solutions to the equilibrium problem, the analysis
of critical states demand some further concepts. The stability of an equilibrium solu-
tion is determined by a linearized analysis of deviations from the equilibrium state.
The space of linearized deviations is spanned by the set of the Nd − Nc eigenvectors
for the discretized model at the equilibrium solution, cf. Sect. 3.7. It is there shown
that, for a critical state with vanishing eigenvalues, the corresponding eigenvectors
are independent of the way mass is introduced.

Group representation theory is used to conclude that the eigenspace of a problem
can be separated into types of eigenmodes sharing the same symmetry properties.
This splitting is valid at any equilibriumstate: stable, unstable or critical. The practical
conclusion is that the Nd − Nc eigenvectors of the fully symmetric equilibrium each
shows a particular symmetry, but that many share symmetry properties, as shown by
a numerical investigation in Sect. 5.3.4. It is noted that the eigenvectors stay in the
same group, but are not constant when following an equilibrium branch. They can
therefore never be meaningfully evaluated just at the unforced reference equilibrium
state, as in a mode superposition approach.

As more deeply described and discussed in the above reference, although for a
different case, the critical eigenspace for a problem with finite symmetry group can
be written as a direct sum of finite-dimensional spaces. Finding these representations
is a non-trivial task, but the general result is known for the D4h group. This shows
that critical modes for a basic problem of D4h symmetry must belong to either of
ten types7. Two of these mode types are displacement fields based on arbitrary linear
combinations of two eigenvectors—which are related—while the other eight are
defined by one eigenvector each. The symmetry properties for these eigenvectors are
given by the analyses.

For the present case, with primary branch equilibria respecting the full D4h

symmetry, the critical modes are most easily described by some numerical results
obtainedwith a fully symmetricmesh denotedm1(512) below. This simulation shows
that seven critical states exist for the present case for tractions lower than T = 1MPa,
but continued simulation towards higher tractions give new critical states. Themodes
of the seven critical states are visualized in Fig. 5.4, with a gray-scale shading repre-
senting the transversal deflection in the mode8.

In the figure, the critical situation with lowest traction is related to mode 1 of
type B2u . The obvious symmetry consists of reflections in two planes containing
one of the in-plane axes, and a half-turn rotation around the normal axis, but also
other symmetry transformations are fulfilled: half-turn rotations around the diagonal
axes, and quarter-turn rotary reflections around the normal axis. For the remaining
transformations of D4h , this mode is instead anti-symmetric. While the concept of
anti-symmetry can not be meaningfully transferred to an equilibrium branch, the
symmetries of the mode are kept for secondary branches created in the bifurcation,
which will thus be of symmetry D2d(δ).

7 compared to only five for the C4v symmetry group
8 In-plane displacements in modes are numerically zero, even if in-plane displacement from traction
is non-zero
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Fig. 5.4 Critical modes at successive bifurcations, in order of increasing traction. Gray-scale indi-
cates transversal deflection in the modes. Traction values at bifurcations are given in Tables below

The second critical state gives mode 2 of type B1u , with an eigenvector belonging
to the D2d(σ ) symmetry group, and (among others) symmetry planes through the
in-plane diagonals. Mode 3 is of type A2u , with a ‘bubble shape’ buckling. As this
is no longer up-down symmetric, the symmetry group of the eigenvector is C4v .

The fourth bifurcation is of mode type Eg , with two vanishing eigenvalues; its
critical mode space is spanned by two orthogonal eigenvectors, which can be arbi-
trarily chosen. In the figure, the basis vectors denoted 4a and 4b are chosen to belong
to the symmetry groups C2h(σi ) for (i = 2, 1), respectively. These are obviously
related through a quarter-turn rotation around the normal axis. The basis vectors
could equally well have been chosen to belong to the groups C2h(δi ).

Mode 5 is of type A1u , with the obvious symmetry of quarter turns around the
normal axis, and belonging to symmetry group D4. The sixth and seventh modes are
new instances of mode types already seen.

Five types of criticalmodes from the subgroups of D4h are thus represented already
at rather low tractions. The other five mode types (Eu , B2g , B1g , A1g and A2g) are
in-plane modes and correspond to considerably higher eigenvalues. For the primary
branch for the case denoted m1(512) below, an investigation showed that the lowest
eigenvalues for the latter modes are at least two orders of magnitude higher than the
lowest ones for the former group at low traction levels. They also become critical at
much high traction levels.

Increasing traction will successively give critical modes of all types, with increas-
ingly more complex shapes, but still belonging to the ten mode types.

Two further comments are given on the analysis of the critical modes and their
symmetry properties. The first is that the symmetry properties discussed above refer
to the mode at the critical state, and to the critical eigenvectors at this. The symmetry
properties of a branch emanating at a bifurcation state are not these, but analyses of
the critical states show the possible symmetries of all branches.
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The second comment is that the analysis of modes discussed above is exclusively
connected to the case of a branchwhere equilibriumsolutions fulfil the D4h symmetry.
For other situations, e.g., a case with lower symmetry, such as the one in Fig. 3.14a
with traction on just two sides, the mode analysis must be separately developed. As
will be further shown below, this implies that bifurcations on secondary branches
need a consideration of the symmetry of the branch.

The outcome of a simulation, and in particular the stability conclusions based on
this, depends on to what degree a particular simulation model can represent solutions
and eigenmodes of different symmetry properties. With the classification above, a
chosen discretization of the displacement field can be immediately evaluated. A
lacking capacity of a model implies that a particular critical state is either completely
missed or badly represented, as shown by numerical examples below.

5.3.2 Numerical Tests

Numerical tests were performed for the square thin plate under uniform compressive
traction. The main test was a parametric trace, where an increasing traction was
introduced by a forcing parameter λ, cf. Sect. 4.1.6. All transition states along the
primary equilibrium branch—which is linear in this case—were isolated to high
accuracy. The critical eigenvectors at these were calculated, and referred to one of
the mode types above, based on the symmetry in the discretized critical eigenvectors.

For the numerical tests, measures were arbitrarily chosen as a plane area of
200 × 200mm2, with a thickness of 1mm. The plate was assumed as linearly elastic,
based on plane-stress and the St Venant Kirchhoff material model from Sect. 2.4.2,
with Em = 10000MPa, νm = 0.3. Simulations were performed with a well tested
triangular plane shell element based on the TRIC form, cf. the paper by Eriksson and
Pacoste (2002). Uniform traction on all four sides of the square was introduced by
equivalent external nodal force components.

Simulations were performed with rather coarse versions9 of a set of basic meshes,
in order to show the effects from the lacking symmetries in the models. Results from
a simulation with a refined version of a mesh with high symmetry (the m1(8192)
mesh, cf. below) is considered as a converged solution.

Macro-symmetry models

Simulations were performed for a set of macro-symmetry models, an approach
assumed to be closely related to common engineering approaches. These simula-
tions gave solutions for a representative subregion, where displacement boundary
conditions were introduced to describe the relation of this subregion to the whole.
The matching symmetry subgroups can be used to trivially reconstruct a solution on
the full region. The reconstructed solution will necessarily show at least the symme-

9 with a few hundreds of degrees of freedom
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Fig. 5.5 Macro-symmetry basicmeshes, based on parts of the full geometry, withmirror reflections
assumed for symmetry considerations. Basic meshes were systematically refined to computational
meshes. Neither solutions nor modes can be found with symmetry lower than: Cs(σ2) for mH,
Cs(δ2) for mD, C2v(σ ) for mQ, C2v(δ) for mT and C4v for mO

try of the subgroup used in reconstruction, which means that equilibrium solution
branches of lower symmetry are unreachable.While this is perfectly valid for a linear
equilibrium solution10, it is in general not sufficient for the stability analyses, with
potential symmetry-breaking in critical modes.

A set ofmacro-symmetry representations are shown in Fig. 5.5, with their symme-
try group in the figure caption. Thesewere used together with reflection displacement
boundary conditions only, even if other symmetry representations are possible, such
as half-turn rotations of the mH mesh around a normal or in-plane axis. The basic
meshes were refined systematically by a division of each triangle into four new ones,
with nodes on the midpoints of the existing edges. The used meshes are denoted by
the ‘mX’ notation for a particular basic mesh, and a number of triangular elements
in the mesh within parentheses11; this means that the symmetry introduced by the
basic mesh is kept in the refinement. Relevant displacement boundary conditions for
the respective meshes are obtained rather easily, even if care is needed in order to
avoid over-constraining the model12.

In these experiments, similar meshes were considered in the sense that models
of half the structure used half the number of elements as the full model. Therefore,
the solutions for the different meshes are identical as long as a solution or a mode
is requested, which fulfills the full symmetry of the basic problem. Less symmetric
solutions will possibly be unreachable for some of the meshes.

10 where symmetric forcing of a symmetric structure will give symmetric results
11 For instance, the mH(256) mesh has undergone three such refinements from the basic mH(4)
mesh
12 which will always tend to increase stiffness and thereby can over-estimate critical forcing
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Table 5.3 Number of critical eigenvectors found for set of macro-symmetry models, according to
Fig. 5.5

Mesh. 1. (B2u) 2. (B1u) 3. (A2u) 4. (Eg) 5. (A1u) 6. (Eg) 7. (A2u)

m1 (512) 1 1 1 2 1 2 1

mH (256) 1 - 1 1 - 1 1

mQ (128) 1 - 1 - - - 1

mD (256) - 1 1 1 - 1 1

mO (64) - - 1 - - - 1

Converged 1 1 1 2 1 2 1

A minus sign indicates that the critical state was not found. Values for the critical states are given
in Table5.4

Results from a few simulations are shown in Table5.3. The numbers for the dif-
ferent meshes and the seven critical (bifurcation) states show how many critical
eigenvectors were found in the experiments. The comparison should be made to the
final row, which shows the correct numbers, obtained with the ‘Converged’ solu-
tion of full symmetry, and full capacity to represent eigenvectors of any symmetry
property. The numerical results for critical tractions are given for the m1(512) mesh
in Table5.4; identical values were obtained for the other meshes in Table5.3 if the
critical state was at all found.

Minus signs in the table imply that the critical state is not seen at all13, and cannot
be represented by the model. When the mH mesh enforces a reflection symmetry
over a plane through the horizontal in-plane axis, it is incapable to show, e.g., mode
2 in Fig. 5.4. For the same reason, it is also incapable to show mode 4b; this reduces
this bifurcation to have just one critical eigenvector: mode 4a.

ThemOmesh, which is a minimal representation of the linear equilibrium, cannot
represent most of the bifurcations for the present problem, when only using reflection
symmetry conditions on the edges. When introducing also other types of conditions
for the modes, all the bifurcations can be captured by individual treatment of each
class of symmetry.

It is also clearly seen from the table, that the capacity of a certain mesh to show
the critical states is related to the mode type; the Table columns for modes 3 and 7,
but also those for modes 4 and 6 are identical.

13 and not just inaccurately described
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Fig. 5.6 Micro-symmetry basic meshes, based on the full geometry. Meshes represent different
symmetry groups, as noted for each mesh. Meshes re-drawn from study by Eriksson and Nordmark
(2016)

Micro-symmetry models

Micro-symmetry aspects in the modeling are shown by models of the whole region,
where degrees of symmetry are introduced by the element mesh. Eight basic models
are given in Fig. 5.6. The symmetry groups of the meshes are given together with
the basic mesh names in the figure. It is noted that the meshes in the figure represent
all possible classes of mesh symmetry for the present problem, even if some of the
meshes have companions created by rotations in the plane; this is obvious for, e.g.,
the m2 mesh.

Simulations with instances of all the different mesh classes verified that all critical
states were found for all meshes, but with very different accuracies. Table5.4 shows
the critical traction values obtained for a set of meshes, where each evaluated critical
mode is referred to the converged mode it most resembles14. In particular for coarse
meshes, bifurcation states were found, where themode could not be clearly identified
in relation to the converged solution, and was a mixture of several basic modes.

One general comment on the results is that the coarse meshes tend to bring out
the two first critical situations in the wrong order. This is also the case for the most
symmetricm1meshes15, emphasizing that bothmesh symmetry andmesh refinement
are of importance for the accuracy of results. It is also notable that meshes of type
m4 are the only ones, in addition to the m1 meshes, which find the double modes in
the Eg cases.

14 which demands a manual, visual, identification of mode shapes for the irregular meshes
15 for even coarser meshes than the ones in the table
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Table 5.4 Critical traction levels for a set of micro-symmetry meshes
Mesh 1.(B2u ) 2.(B1u ) 3.(A2u ) 4.(Eg ) 5. (A1u ) 6.(Eg ) 7. (A2u )

m1 (128) 0.1691 0.1776 0.2777 0.4191 0.8601 0.9329 0.9426

m1 (512) 0.1675 0.1814 0.2760 0.4229 0.8383 0.9047 0.9780

m2 (96) 0.1704 0.1694 0.2738 0.3895 0.4116 0.8318 0.8941 0.9029 0.8566

m2 (384) 0.1680 0.1784 0.2750 0.4125 0.4214 0.8313 0.8995 0.8978 0.9521

m4 (64) 0.1737 0.1663 0.2735 0.3971 0.8575 0.9318 0.8865

m4 (256) 0.1685 0.1774 0.2750 0.4155 0.8436 0.9071 0.9474

m5 (56) 0.1854 0.1488 0.2662 0.4130 0.3343 0.7549 0.8559 1.1230 0.8453

m5 (224) 0.1723 0.1738 0.2735 0.4245 0.4058 0.8912 0.9062 0.9656 0.9314

m8 (144) 0.1707 0.1744 0.2787 0.4184 0.4265 0.8844 0.9593 0.9324 0.9921

m8 (576) 0.1680 0.1806 0.2762 0.4256 0.4232 0.8478 0.9111 0.9151 0.9882

Converged 0.1670 0.1834 0.2755 0.4258 0.8347 0.8959 0.9937

Modes are visually identified to those of converged solution

Further experiments showed that the shortcomings existing in a basicmesh remain,
but are reduced by more refined versions. That all critical states were found for all
mesh types is a difference to the macro-symmetry models above, for which some
critical states totally disappeared. The result also deviates from the work referenced
above, where bifurcations were replaced by limit states for several mesh types.

5.3.3 Secondary Branches

The previous discussion has been concerned with the isolation and identification of
critical states on the primary equilibrium branch, and showed that obtained results
are strongly dependent on the discretizationmesh. For amesh of sufficient symmetry,
all existing equilibrium branches can be traced with the methods from Chap. 4, and
classified by their symmetry group.

The existing symmetry in a discretization mesh affects the representation of sec-
ondary branches to a higher degree, as these branches belong to lower symmetry
groups. The possible critical states, i.e., primarily bifurcation states demand an anal-
ysis of the subgroups of the D4h symmetry group.

Critical states can also be identifiedwith respect to their mode types, and solutions
with respect to their symmetry groups. The result is a tree structure of equilibrium
branches, as shown in Fig. 5.7. The branches were evaluated by tracing sequences of
equilibria emanating at the bifurcation states above. All equilibria in all sequences
were numerically analyzed with respect to symmetry, and classified as belonging to
a particular symmetry group.

This tree is schematic, in the sense that branches are just pointing upwards or
downwards, depending on the initial derivative of the traction value along the branch.
Only three levels of branches are also shown;most of the outer branches pass through
new critical states when following them far enough. In the figure, branches with
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Fig. 5.7 Bifurcation tree for
the example. Primary,
secondary and ternary
equilibrium branches.
Branches are marked by their
symmetry group, and the
number of negative
eigenvalues for all states.
Bifurcation states are marked
by mode type

Fig. 5.8 Stable equilibriumsolutions,with color shading showing transversal deflection.aSituation
on D2d (δ) path at bifurcation of mode B2. b Situation far out on branch C2v(σ )

symmetry group names including (δi ) or (σi ) are representing two cases, each with
two directions (i.e., four additional branches emanating at the bifurcation), while all
other branches represent one case, with two directions.

The equilibrium branch tree shows that one stable solution sequence—marked by
zeroes in the figure—exists for the problem. This sequence passes two bifurcations
of mode types B2u (for D4h) and B2 (for D2d(δ)) to come to a branch where solutions
belong to the C2v(σ ) symmetry group. This solution branch can be followed very
far out, without new critical states. Equilibrium states at the B2 bifurcation state
and far out on the C2v(σ ) branch are shown in Fig. 5.8, with a color shading for the
transversal deflection16.

16 In-plane displacement is considered in plotting the figure, but is not visible.
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Table 5.5 Numbers of modes in different types for m1 meshes

Mode types

Mesh Nd − Nc A1g A2g B1g B2g Eg A1u A2u B1u B2u Eu

m1(128) 486 − 6 = 480 26 34 30 30 60 26 34 30 30 60

m1(512) 1734 − 6 = 1728 100 116 108 108 216 100 116 108 108 216

Valid at all equilibrium states

The figure shows that the final buckled shape is cylindrical, of symmetry C2v(σ ),
which is mirror symmetric over both axis planes. To reach this stable state from the
initial plane configuration, the structure must pass through stable equilibrium states
of symmetry D2d(δ), which have two mirror planes, but also are symmetric for a
half-turn rotation around the diagonals.

5.3.4 Comments to the Problem

Mostly out of curiosity, all modes were evaluated for all equilibria found on the
primary equilibrium sequence for some of the discretized models above. These eval-
uations confirmed that a particular discretizedmodel implicitly leads to sets of eigen-
modes of the different types. For two of the m1meshes, results are given in Table5.5.
The distribution on mode types is kept for the whole sequence.

Previous work shows that eigenvalues for mode vectors of different symmetry
groups cross independently along a one-parametric forcing sequence, while eigen-
values within the same group never do so; the phenomenon of mode veering appears,
in which the modes are smoothly mixed without crossing. When adding the total
number of modes, it must be noted that the Eg and Eu mode types contain two
eigenvectors each, leading to the correct numbers of free displacement components.

Also out of curiosity, a verificationwas performed to show that amacro-symmetry
meshing of the full region is unable to reproduce all critical states. The bifurcation
tree in Fig. 5.9 shows the results obtained by an mH(256) model in the same format
as the correct tree in Fig. 5.7.

The symmetry of the problem also suggests other approaches to solving it. While
utilization of symmetry in a problem was a necessity in early days of numerical
simulations, it can still seem tempting to reduce the computational burden by not
reproducing many numbers in a solution. A computational model of any of the forms
in Fig. 5.5 can allow this, but needs care in formulation of boundary conditions. All
transformations within the symmetry group must be considered, and several models
used, equipped with different sets of conditions for modes of different types. A
particular aspect of this is that the primary equilibrium solution and the extraction
of eigenvectors are not to be performed with the same conditions.
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Fig. 5.9 Bifurcation tree for
the example, when modelled
by an mH(512) mesh, and
boundary conditions
representing a reflection over
a plane parallel to the
horizontal in-plane axis of
Fig. 5.3. Figure is
emphasized as a subset of
Fig. 5.7, by leaving small
stumps of non-existing
branches

5.4 Stability Under Contact

Inmany relevant structural simulation, the object is affected by some external restric-
tion where contacts will be established during forcing; one example is the buckling
of a confined beam under compression; another is related to piles buckling against an
elastic foundation. Contact conditions in a discretized mechanical model always lead
to complex modelling issues, in particular when frictional contact forces are present,
due to history-dependence and non-conservative effects. Even for smooth contacts
without friction, the interaction between contact and stability is of interest, and this
case will be discussed here; the basic formulation is the constrained equilibrium
model in Sect. 3.6.4.

The example shows how the discretized model, regardless of fineness in the rep-
resentation, creates artifact critical situations in addition to those having a physical
meaning. The description, for clarity, discusses a simple 2D model which clearly
shows this interaction.

The structure is a strip of an infinitely long pressurized membrane, cf. Fig. 5.10a,
made of a linearly elastic St Venant-Kirchhoff material defined in Sect. 2.4.2. The
membrane is stress-free in a sectorial shape with radius R0 and a circumference
corresponding to an angle 2(π − β). The membrane is expanded towards a rigid
friction-less flat surface at a specified height H .
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Fig. 5.10 Example problem. Numerical experiments performed with R0 = 100mm, β = 30◦, t =
0.5mm, and width 1mm. Material described by E∗ = Em

1−ν2m
= 1.69MPa. a Model with main

parameters. b Calculated equilibrium for p = 50.2 kPa

The structure was computationally modelled by 24 linearly interpolated bar ele-
ments, with transversal uniform pressure. Coordinates (xT , yT ) define current posi-
tion of the initial top point, (xc, H) the current mid-contact position17. Subfigure (b)
shows a relevant solution having seven nodes in contact, revealing that the model
was rather coarse18.

5.4.1 Primary Branch

The primary equilibrium branch for this problem gives an increasing volume for
increasing over-pressure, together with an increasing number of nodes in contact;
the equilibria are symmetric with respect to the (y, z) plane. The nodes in contact
are described as [n1, n2], indicating the intervals of nodes in contact, with zero for
the initial top point; the solution in Fig. 5.10b is denoted [−3, 3].

Figure5.11a shows three kinematic result variables for a case with H = 2.5R0;
these are rather obvious, as the contact length increases both in jumps when new
nodes go into contact and continuously with the expansion. Subfigure (b) shows
the lowest eigenvalue of the operative, constrained, stiffness19, considering the cur-
rent contact condition. The eigenvalue gradually decreases within each interval of
identical contact status, but is immediately increased when a new node comes into
contact, as constraints tend to increase stiffness. The dashed graph in (b) shows that
the eigenvalue for an unconstrainedmodel ismonotonously increasingwith pressure;
no contact exists, and the primary equilibrium sequence is then always stable.

17 which, together with the current contact length 2
c is the main parameters in an analytical
treatment
18 With a rigid contact surface, the membrane is straight in the contact region.
19 normalized to the lowest eigenvalue at a solution with a top deflection of 1mm
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Fig. 5.11 Primary equilibrium sequence for the example with H = 2.5R0. a Geometric results. b
Normalized lowest eigenvalue of operative stiffness

A change of stability, i.e., a changing number of negative eigenvalues, is obtained
twice on the continuous branch segments of constant contact status, and once at a
discontinuity where a new (symmetric) contact pair appears.

The two continuous zero-crossings are easily isolatedwith the bracketingmethods
in Sect. 4.5.6, and are interpreted as bifurcation states, where sideways movement of
the structure can be initiated. An analytical treatment of a sideways deflected state20

shows that the continuous structure has a single bifurcation state. One of the critical
states from the discretized model is thereby an artifact.

In general, formost parametric cases, two, but notmore, continuous zero-crossings
will be recorded in a simulation for increasing forcing, but only one bifurcation occurs
for small intervals of H ; for the example parameters, this happens for, e.g., H =
4.2R0. These are here denoted ‘symmetric bifurcation’ states. For all bifurcations,
higher order differentials of total energy give positive contributions when tracing the
secondary sequence out from the critical state: the bifurcation states are super-critical,
i.e., with stable secondary branches emanating from them. In the engineering context,
the secondary branches tend to turn upwards in a common force-displacement graph.

20 which is not too difficult to obtain, as the deformed model always consists of one straight and
two circular segments
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Fig. 5.12 Notation for
contact evolution description
in the example. Sequence of
contact states for a
monotonous inflation of the
structure against a
frictionless rigid surface. The
large ellipse implies that all
these contact states can be
valid immediately
neighboring the grazing
solution state, and thereby
give different stability
conclusions

5.4.2 Contact Evolution

The discontinuous crossing of the critical eigenvalue in Fig. 5.11b corresponds to a
change of contact status; two new symmetrically placed nodes come into contact,
and the stiffness thereby increases. This change of stability is also detected by the
bracketing procedure on the primary branch, but not as a critical state in the sense of
a singular constrained stiffness. The situation must instead be analyzed by a study
of the grazing contact state, cf. Sect. 4.4.

Figure5.12 shows the development of contact along a primary sequence, with a
fixed contact height H . Open circles and curved parentheses indicate a grazing state
for a point, where new nodes are in contact, but still without contact force. With the
exception of first contact, each grazing state offers three different continuations to
the increased expansion, where one keeps the symmetric contact states by adding
two contact nodes, while the other two are unsymmetric, and just add a contact
node on one side21. Due to the discretized setting, this does not imply that any
node simultaneously must lose contact, and thus, the new contact will add stiffness.
Whether any equilibriumstatewith this contact state exists close to the state of grazing
contact is not certain; if such a state exists, also the mirror contact state exists. These
situations can lead to secondary sequences, even if no zero eigenvalue is present, and
the grazing states are here denoted ‘symmetric branching’ states, the term denoting
that similar branches exist with the structure moving in either direction.

The algorithm described in Sect. 4.5.6 finds and isolates not just bifurcations, but
also the changes of contact status. After an evaluation of the bracketing states, the
sequence is then continued with an updated contact status.

21 This demands a sideways movement
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Focussing on the encircled part of Fig. 5.12, with a grazing contact (−2, 2), the
four contact states [−1, 1], [−2, 2], [−2, 1] and [−1, 2] are all valid for immediately
neighboring situations, but none of them is valid for the state (2, 2).

Each considered hard contact node essentially introduces one extra structural
support. The incremental stiffness—which is independent of contacts and identical
for all the contact statesmeeting at the grazing state—as part of the operative stiffness
in Eq. (3.92) is thereby extended by, respectively, 3, 5, 4 and 4 constraint rows
for the four neighboring situations. These constrained stiffnesses can be evaluated,
regardless of whether the unsymmetric cases lead to equilibrium sequences, and give
different eigenspectra for the four cases. A systematic investigation of the four cases
reveals the properties of this grazing contact state.

Symmetric branching states are in some sense similar to bifurcation states, even
if they do not correspond to a vanishing eigenvalue for the operative stiffness. Both
situations allow unsymmetric secondary displacement states in either direction. For
instance, the contact state [−1, 2] can only exist if all the contacting nodes move
to the right in Fig. 5.12. From the numerical viewpoint, the symmetric bifurcation
and branching states differ in the sense that the former lead to continuous branches
through the critical state, while the latter give two different branches meeting at the
grazing state.

The grazing contact states are obviously of major importance in describing struc-
tural response. Even if they are singular points on a parametric loading sequence
for a particular fixed structure, they can be traced as graphs in multi-parametric
formulations, and then delimit different qualitative response regions for a structure,
cf. below.

5.4.3 Secondary Branches

Each of the two continuous and one discontinuous zero crossings for the critical
eigenvalue of the operative stiffness in Fig. 5.11b can initiate a secondary, unsym-
metric equilibrium branch for the model. Once initiated, this displacement can be
traced with methods from Sect. 4.1.6. Results are shown for two contact height cases
in Fig. 5.13, expressed as the over-pressure related to the horizontal position xT of
the initial top node. Contact states can be deduced for points on the graph segments
by noting the discontinuities and their effects. The primary equilibrium branch is
shown by the vertical central line. The far-reaching secondary branch clearly shows
the changes of contact states as discontinuous slopes, and contains unstable parts,
where the pressure is reduced for increasing displacement.

For subfigure (a), the first secondary sequence emanates at a [−1, 1] bifurcation,
and can be traced far out for unsymmetric solutions, with continuous subsequences
of equilibria with 3 or 4 contact nodes. The equilibrium states on the sequence are
unstable for just a short part between xT ≈ 0.65R0 and xT ≈ 0.83R0 for contact state
[−2, 0], otherwise stable. This is the discrete representation of the analytical case.
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Fig. 5.13 Secondary equilibrium sequences for example, shown as horizontal displacement xT of
initial top node versus over-pressure. a H = 2.5R0. b H = 2R0. Note the different vertical scales

The upper secondary equilibrium sequence emanates at a [−2, 2] bifurcation,
and solutions are all stable. This sequence only exists for a rather short interval,
delimited by two branches—[−2, 1] and [−1, 2]—which are both connected to the
primary equilibrium branch at grazing contact state (−2, 2). Figure5.13b shows a
rather different outcome, even if the same phenomena appear on the primary branch.
The symmetric branching state is indirectly connected to the lower bifurcation state,
and large parts of the far-reaching secondary branch are unstable.

Comparison of the two cases in Fig. 5.13, shows that the correct and the artifact
bifurcations can come in any order on the primary path; the distance—measured
in forcing parameter—can also be substantial22. Further experiments show that the
difference is reduced with finer discretizations, but the phenomenon of artifact situ-
ations does not disappear. The precise stability behaviour is very strongly parameter
dependent.

5.4.4 Parametric Investigations

The two classes of eigenvalue zero-crossings, discussed in connection with Fig. 5.11,
i.e., the symmetric bifurcation and branching states, are further investigated with
the generalized equilibrium approaches from Sects. 4.4 and 4.6.3. As one example,
the parameters considered are the forcing pressure p and the contact height H ,
cf. Fig. 5.10.

Critical equilibrium states with symmetric bifurcations were evaluated through
parametric critical sequences in the (H, p) space. Two selector functions are needed
for this: one criticality selector from Eq. (4.34), and one increment selector function
from Sect. 4.4.3, the choice of which is of minor importance here. For reliable con-
vergence along this sequence, a further equation xT = 0 was introduced in order to

22 even if this partly is due to a not too well refined computational model



5.4 Stability Under Contact 251

Fig. 5.14 Parametric dependence of eigenvalue zero crossings for example. a Symmetric bifurca-
tion states. b Symmetric branching states. Note the different vertical scales, and that the (−3, 3)
graph in b is closed (outside the figure)

ensure only symmetric equilibria23. This selector was enforced by a horizontal force
fxT , which vanishes for all solutions; note that the sequence follows bifurcation states
on the primary branch.

As each sequence of bifurcation states in the parametric space corresponds to
a particular contact state, simulations need be started at a selection of bifurcation
states, found for particular primary cases24. The end of such a graph is defined by a
transition equilibrium state beyond which no legal continuation exists.

Results from such simulations are shown in Fig. 5.14a, one critical equilibrium
sequence for each symmetric contact condition. The [−4, 4], [−3, 3] and [−2, 2]
critical sequences gave distinct upper end points, while the [0] and [−1, 1] sequences
continued to at least H = 100 R0. At the lower end, all graphs except the [0] and
[−1, 1] critical sequences exist down to p = 0. It is noted that H < R0 implies that
the contact height is lower than the unstretched height of the structure, so equilibrium
will imply at least one contact.

Similar simulations were performed for the grazing contact states, where a sym-
metric branching can be initiated on the primary branch. Parametric equilibrium
sequences thereby evaluated combinations of surface height H and over-pressure p,
for which a specific grazing contact state exists on a primary equilibrium sequence.
The constraints and selectors were set according to Sects. 3.6.4 and 4.4. Results are
given in Fig. 5.14b.

Figure5.14b deserves a special comment. As discussed in Sect. 4.4, and for this
particular problem25, a symmetric grazing state situation on the primary branch can
be expressed in two ways. First, the situation may be defined by established contact
constraints for nodes −Nc + 1, . . . , Nc − 1 together with displacement conditions

23 or the sequence will easily deviate a little bit to solutions on the secondary branches
24 Two of them were found from the primary solution depicted in Fig. 5.11b
25 In particular, the 1D form and the pressure forcing, together with a structure without bending
stiffness, does not allow any contact to leave the contact surface when forcing is increased
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for the nodes −Nc and Nc. This defines the outer nodes to be touching the contact
surface, but without contact forces. While the established contacts give 2Nc − 1
constraint equations in the operative stiffness, the displacement conditions give two
selector equations; the situation is denoted a ‘displacement form’ below.

Second, the nodes −Nc, . . . , Nc are defined as constrained, and affecting the
operative stiffness. The grazing contact state then corresponds to the contact forces
in nodes−Nc and Nc existing, but vanishing. These force conditions are thereby two
selector equations added to the 2Nc + 1 constraint equations included; the situation
is denoted a ‘force form’ below.

The two forms give identical equilibrium solutions but different stability con-
clusions. As the force form introduces more constraints, it will always give higher
stability coefficients. This implies that regions may exist, where the same equilib-
rium solution is stable in the force form but unstable in the displacement form.
Figure5.14b gives results from both settings, but the stability conclusions were also
obtained from simulations. From these, with very accurate isolations, the equilibria
on the (−2, 2) graph are stable for H < 1.85R0 based on the displacement condi-
tion, and for H < 4.17R0 for the force condition. The (−1, 1) and (0) graphs are
always stable with a force condition, whereas both the (−3, 3) and (−4, 4) have
regions of stability for the force conditions, while they are always unstable with the
displacement conditions.

The three graphsmarked (0), (−1, 1) and (−2, 2) seem to continuemonotonously
even for very high H , while the graphs for (−3, 3) and (−4, 4) indicate that the
number of contacting nodes will again decrease with increasing pressure p for low
H . This implies that a multi-contact state will be established already for very low
pressures. Bringing together all the results from Fig. 5.14 shows that the symmetric
bifurcation graphs in (a) connect the states of changing stability on the graphs in (b),
but these results are beyond the scope of this treatise.

5.4.5 Soft Contact Modelling

As an alternative to the hard contactmodeling above,with strict constraints on contact
nodes, soft contact modelling was introduced for all nodes where y j >H , according
to the third-order penalty form

Fj = k j (y j − H)3 ,

where the penalty constant was chosen in relation to the number of elements along
the unstretched circumference. The third-order form avoids a discontinuity in the
incremental stiffness.

Results are shown in Fig. 5.15, for two different choices of the penalty coefficient
k j , differing by a factor of 100. Subfigure (a) should be compared to Fig. 5.11b, and
subfigure (b) to Fig. 5.13a, which both were evaluated for hard contacts. It is noted
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Fig. 5.15 Results from the example, evaluated with soft rather than hard contact formulation, and
with two different penalty constants. a Eigenvalue variation. b Secondary sequences. Note the
difference in vertical scale, and that the ‘low k’ case does not reach the zero line more than once
(even if it is very close)

that the ‘low’ case only shows one zero-crossing for the eigenvalue26, and thereby
only one secondary branch.

Comparing to the hard contact case, the single zero-crossing for the ‘low’ case
appears at a pressure about 30% higher than the analytical value; subfigure (b) shows
that the single secondary sequence from this state deviates strongly from all other
cases presented. The ‘high’ case gives three bifurcations, with continuous zero cross-
ings for the lowest eigenvalue, as also the intermediate one is possible to isolate. The
secondary sequences are then similar to the hard contact case, but without disconti-
nuities. All simulations with soft contacts give results that more or less significantly
penetrate the contact surface.

5.4.6 Comments to the Problem

The simulation model reported above was rather coarse, in order to show the phe-
nomenon of artifact criticalities. Other simulations were also performed with finer
meshes for the same problem. Even if the gap between the two appearing bifurca-
tions is reduced with a finer mesh, the phenomenon remains. As one comparison, the
model above (24 elements) gave the critical pressures as p = 5.60 and 8.60 times
E∗/1000, respectively, with the physical bifurcation as the first one. For a finer mesh
with 192 elements, the multipliers of the critical pressures were obtained as 6.04 and
6.34, respectively, with the artifact bifurcation now as the first one. The bifurcation
appeared for the [−1, 1] and [−2, 2] contact conditions for 24 elements, and for
[−10, 10] and [−11, 11] contact conditions for 192 elements.

26 even if it comes very close at a lower pressure
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From the algorithmic viewpoint, it is noted that the soft contact modeling gives a
somewhat smaller operative stiffness matrix, and that the changes of the number of
contacts is only needed for presentation of results. Linear and third-order forms are
almost identical in handling. The discontinuity in the operative stiffness appearing
for the linear form gives some, but limited, effects on the convergence of equilibrium
iterations around states where new nodes start penetrating the contact surface.

The same treatment can be used also for other problem classes, where for instance
contact conditions for membranes and shells are a tempting possibility. It is expected
that similar problems with artifact critical states will appear also for such problems.
Not least the symmetric branching states will be more demanding for these problem
classes due to the high numbers of possible changes to contact conditions at a grazing
state. When a problem with bending stiffness is analyzed, the contact patterns can
also be different, with, e.g., nodes leaving the contact.

5.5 Final Comments

This chapter has to some depth discussed three aspects of computational modelling
which can be of importance for the practical numerical treatment of stability-affected
structures under exterior forcing. Obviously, these only represent a small subset of
the possible settings of the problem class, but they have hopefully given some ideas
on suitable treatment of also other types of problems. This final section will very
briefly point to a few areas, where a numerical modelling always needs extra care
when adopted for an engineering problem.

One important aspect is concerned with the material modelling. Although the
majority of stability investigations are probably performed using ideally elasticmate-
rials, other material models, such as the Mooney-Rivlin model in Sect. 2.4.2, can be
highly relevant. It is also important to consider the limits for elastic behavior in a
material. Related to the example in Sect. 5.2, where interaction between global and
local buckling was considered under elastic conditions, the possibilities for plastifi-
cation can be an aspect in the solution and in the stability conclusions. Also, time-
dependent material descriptions such as visco-elastic effects can be of relevance,
even when only equilibrium is considered.

Some material models can also give rise to stability issues, at least for particular
forcing situations. Previous work by the authors has shown how an incompressible
Mooney-Rivlin material model can lead to unstable solutions under a specific stress
situation. Also other non-linear material models can lead to unstable situations.

Even if not strictly an issue of material modelling, a constitutive model can cause
other types of difficult stability issues. One case is in the wrinkling, appearing typ-
ically in thin membrane or shell problems. This reduces the carrying capacity of
the material in the directions of principal compression. Numerical handling of this
phenomenon is often based on so called tension field models, where stiffness is
reduced or removed in critical directions. In certain situations, this can lead to local
instabilities, which are affecting the whole response, as shown by Patil et al. (2016).
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Another main aspect in the analysis of stability-affected structures is related to
the description of the exterior forcing, which affects its computational modelling.
Several aspects must be considered, when the structure and forcing need be described
as non-linear in displacements and deformations. This needs care in describing the
positions and directions of the exterior forcing components, as discussed in, e.g.,
Sect. 2.6.4.

The forcing not least needs special care when representing other classes of forcing
than gravity forces from the structure itself or from some supported objects. In this
respect, forcing from gas or other fluids need careful description and quantification.
So can gas included in a closed structure be modelled as either an over-pressure
(acting on a deformable structure) or as a gas amount. This topic was discussed in
relation to constrained equilibrium settings above, and the difference in viewpoint
was shown to have significant effects on the stability evaluation. Forcing from liquids,
in the form of hydro-static pressures, can also be described in different ways, in a
parametric context; the parameter used can be of importance for both the problem
relevance and diverse computational aspects.

While the forcing is one aspect of boundary conditions for a structural model, and
acting on the boundary part�T of a region, the displacement conditions on�U are also
of major importance for the outcome of the simulations, and in particular the stability
conclusions. As noted already from the analysis of the Euler beam buckling cases
in Sect. 1.4, the assumed boundary conditions are fundamental to the calculations,
even if the structural models in themselves are identical between cases. At least two
aspects of displacement boundary conditions are of major importance, and both were
considered in Sect. 5.2.

The first aspect concerns the relation to reality, and in particular to the assumptions
used for traditional analytical approaches. In a computational model, it is desirable
to describe the physical situation for the modelled structure as accurately as possible:
without going into all the smallest details of support (and also forcing) arrangements;
important aspects should be considered in the modelling. The key question is often
to which degree supports should be seen as points or as distributed—where point
conditions are common in most analytical treatments, but non-existing in reality. As
noted in connectionwith the example in Sect. 5.2, the difference between the common
analytical conditions and a more realistic representation can be of significance for
results: the description of an ideal hinge is not always trivial in a computational
model.Abasic aimwith the numericalmodels is also always related tomodel balance,
interpreted as equally refined descriptions of all aspects of a model.

In connection with boundary conditions, it is also necessary to introduce these
in such a way that both global and local views are represented. Connected to the
previous paragraph, point-wise force applications or supports tend to give localized
effects due to the singularity in the model, with local phenomena over-shadowing
the, perhaps more interesting, macroscopic response. In particular if material non-
linearities are considered, local stress concentrations can lead to local instability
around the point source, a problem which may be restrained by the real physical
conditions. In this context, it is always interesting to consider whether the realistic
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support is bestmodelled as a contact condition, even if this does not affect the stability
situation as clearly as in the example in Sect. 5.4.

The final comment is concerned with structural optimization, where stability
aspects on a structural model are not trivially included. As has been very briefly
mentioned in Sect. 4.4.1, the parametric view on structural modelling promoted in
this treatise can be very interesting in the context of mathematical structural opti-
mization. The main idea in this is to easily and clearly define the boundaries of
the feasible region coming from stability constraints on the solution. Several other
classes of constraints can also be introduced through the parametric solutionmethods
discussed in Chap. 4.

Conclusions from this Chapter

The Chapter has shown a set of special situations, where stability investigations are
possible, but when these have to be handled with extra care. The implicit view is that
some commercial software is used to evaluate the structural response to forcing. A
main message is that, although the software might be competent to set up the desired
situation and present its results, these may be difficult to interpret without a deep
insight into both the mechanical problem modeled and the exact numerical imple-
mentations. TheChapter thereby has had as one objective to show also drawbacks and
potential pitfalls when using general software for structural stability investigations.

In addition to pointing to some far from trivial problem areas, where care must
be taken in simulations, the Chapter has tried to show how the general approaches
from the previous Chapters can be used to fully reveal the stability properties of a
parametric structural model. Some of the approaches discussed in Chap. 4 can be
utilized for this mapping in general software, but some of the approaches need more
elaborate solution methods not commonly available. This not least relates to more
integrated design processes, where the structural stability analysis is part of a wider
view, for instance when integrated design or mathematical optimization procedures
are used.

Task for this Chapter

1. Pick any of the problems discussed in theChapter, or any interesting variation of it.
Analyze it in an available software. First, aim at the closest possible reproduction
of the results given here, and discuss similarities and differences. Then, try to
improve the modeling in order to approach a relevant representation of (some)
reality. Comment on results and interpretation.
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Notation

General Symbols

Symbols Explanation
A Physical vector, represented by its three coordinates
A Second-order tensor, represented by 3-by-3 matrix
A Fourth-order tensor
A Numerical vector, i.e., a column matrix
A Numerical matrix
• Row matrix of quantities, operated on by numerical vector
• Matrix of quantities, operated on by two numerical vectors
m-by-n Dimension of a matrix (n = 1 for a numerical vector)
1 Identity tensor in vector space
1• Identity matrix of indicated order
(•)T Transpose of a matrix or tensor
x • y Scalar product of two physical vectors: sum of component products
A:B Contraction of two tensors: sum of component products
aTb Scalar product of two numerical vectors
‖ · ‖ Euclidean norm of (physical or numerical) vector
∂(·)
∂(·) Partial derivative
d(·)
d(·) Total derivative
(•),a, (•),a Derivative of quantity w.r.t. scalar and vector
˙(•) Time derivative of quantity
grad(•)(•) Gradient w.r.t. indexed physical vector
div(•) Divergence of vector or tensor quantity
d(•) Differential quantity
D(•) Virtual quantity
�(•)i Forward difference in increments
δ(•) j Forward difference in iterations
δi j Kronecker delta operator, being = 1 for i = j , zero otherwise
(•) Prescribed quantity
(•)cr Critical quantity
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Mechanical Quantities

Symbols Explanation
e1, e2, e3 Base unit vectors for fixed Cartesian system
t Physical time
τ Fictitious (non-physical) time
�,�, �T , �U Region and its boundary, with parts
X Reference position of a point
x Current position of a point
U Displacement of a point
N,n Boundary normal vectors in reference and current configuration
T, t Boundary traction in reference and current configuration
B,b Body force intensity in reference and current configuration
R, r Residual force intensity in reference and current configuration
(•)con, (•)non Conservative and non-conservative parts of quantity
� Set of parameters for constitutive material model
ρX , ρx Material density in relation to reference and current volume
F,F′ Deformation gradient tensors
C Green deformation tensor
E,E′ Green-Lagrange deformation tensors

• Principal stretch components
S 2nd Piola-Kirchhoff stress tensor
σ Cauchy stress tensor
K Tangent constitutive relation (fourth-order tensor)
�,�

e
Orientation or rotation tensor and (element) matrix

π• Energy density quantities of different kinds
�• Integrated energy quantities of different kinds
W• Work quantities of different kinds
P• Power quantities of different kinds
d Discretized displacement vector
C Discretized vector of constraint-enforcing variables
D State variable vector, with d and C
N Displacement basis vectors
B• Strain basis tensors of different kinds
p, f , r Discretized force vectors: internal, external, residual
R Constrained residual vector
K • Discretized stiffness matrices of various kinds
M• Discretized mass matrices of various kinds
ϕ,� Discrete eigenvector and set of such
�• Stability coefficient or eigenvalue
(•)e Element contribution to quantity

A Assembly operator for FE models
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Engineering Parameters

Symbols Explanation
L , b, h, R, H Geometrical parameters, explained in relation to example
Em , νm Young’s modulus and Poisson ratio for ideally elastic material
c1, c2 Constitutive constants for Mooney–Rivlin material model
μ Linearized initial shear modulus
ρ Material density in reference geometry = ρX
g Acceleration from gravity
A Area for beam section
I Area moment of inertia for plane beam bending
Ji Mass moment of inertia around coordinate axis
E A Axial stiffness for bar or beam
E I Bending stiffness for beam
D (Elastic) plate stiffness
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Equilibrium surface, 195
Equivalent force, 102
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Euler-Bernoulli beam, 128
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Evolution direction, 203
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Exterior forcing, 63, 101, 255
Exterior work, 65
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F
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Fictitious time, 75
Field

acceleration, 40
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velocity, 40, 61

Finite difference, 162
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Finite strip, 110
Force
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external, 101
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reactive, 139
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Forced mechanism, 148, 167
Force stepping, 180, 182
Force stiffness, 106, 169
Forcing, 2
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displacement-independent, 66
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Forcing parameter, 169, 171, 190
Forward Euler, 176
Frame, 13

element, 126
Free-flying, 234
Free vibration, 142
Frozen parameter, 73, 131, 196
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Fundamental relation, 70

G
Gauss integration, 115
Geometric stiffness, 21, 166
Geometric transformation, 124, 131
Global approximation, 110
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Green deformation, 43
Green-Lagrange deformation, 44
Green-Lagrange strain, 98
Group representation, 236
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I
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Implementation, 218
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Iteration, 165

two-loop, 179

J
Jacobian, 179
Jacobian determinant, 42

K
Kinematics, 39
Kinetic energy, 61, 97
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Knot vector, 120

L
Lagrange element, 119
Lagrange multiplier, 137
Lagrangian formulation, 38, 131
Liapunov criterion, 3, 76, 141
Limit state, 11, 150, 153
Linear equations, 164
Linear interpolation, 89
Linearity, 94
Linearized variation, 202
Linearly elastic material, 48
Linear prebuckling, 18, 166
Linear stiffness, 101
Line search, 181
Local approximation, 89, 110
Local buckling, 229, 231
Local coordinate, 122
Locking, 129
LPB, 166
Lumped mass, 145, 175

M
Macro-symmetry, 133, 139, 238
Magnification factor, 18
Mass matrix, 97
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lumped, 175

Material
elastic, 80
hyper-elastic, 48
linearly elastic, 48
model, 45, 48
Mooney-Rivlin, 29, 49
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Material reference, 38
Matrix, 87
Matrix, diagonalized, 146
Matrix representation, 39
Mechanical constraint, 136
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Mechanics equation, 71
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Membrane element, 122
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Mesh-free, 121
Micro-symmetry, 133, 241
Mindlin plate, 130
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Mode veering, 244
Modified Newton iteration, 181
Moment intensity, 24
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Motion, 38, 72

discretized, 107, 173
Motion stability, 79
Multi-parametric, 186
Multiply critical, 191

N
Neutral equilibrium, 148
Newmark, 177
Newton iteration, 169, 179

modified, 181
Non-conservative forcing, 106
Non-linear equation, 103
Non-linear equilibrium, 168
Notation, 259
Null space, 200
Numerical damping, 176
Numerical sensitivity, 214
Numerical tolerance, 209
Numerical vector, 87
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Objective function, 189
Operative stiffness, 147, 150, 180, 196
Optimization, 189
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Over-pressure, 29

P
Parallelization, 164
Parameter, 75, 178, 188
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sign, 206

Parameter dependence, 199
Parametric equilibrium, 75, 187
Parametric forcing, 104, 171, 190
Parametric trace, 179, 193
Pascal triangle, 118
P-� method, 17
Penalty constant, 252

Periodicity error, 176
Perturbation, 190
Physical vector, 39
Piola-Kirchhoff stress, 46

1st, 54
2nd, 37

Plane frame element, 126
Plastification, 254
Plate

buckling, 23, 25
element, 126
equation, 23
hard boundary, 132
Kirchhoff, 23
stiffenss, 23

Point condition, 255
Point source, 121
Polar decomposition, 42
Polynomial, 92, 110, 113
Post-critical equilibrium, 211
Post-processing, 196
Potential, 61, 66

exterior, 63, 66
total, 6, 68
total constrained, 137

Power, 61
Power iteration, 15, 190
Predictor, 169, 179, 204
Pressurized sphere, 29
Primary equilibrium, 5, 233, 246
Principal stretch, 43
Principle of virtual work, 74
Property, 3

equilibrium, 169
Provisional equilibrium, 204
Pseudo-time, 39

Q
Quadratic convergence, 170
Quarter model, 135
Quasi-static, 39

R
Reactive force, 139
Reality, 79
Reference frame, 38
Reflection plane, 133
Region, 51
Representative subregion, 134
Residual force, 103

constrained, 137
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Residual form, 163, 178
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Restart, 195
Rotation variable, 126, 129
Rotation vector, 131
Runge-Kutta, 177

S
Safety factor, 22, 167, 189
Schönflies notation, 234
Secant stiffness, 165
Secondary equilibrium, 5, 211, 242, 249
Second order, 17, 22, 166
Selector function, 172, 178, 187
Sensitivity, 189, 199, 211

numerical, 214
Sequence, 162
Serendipity element, 119
Series solutions, 162
Shallow beam, 44
Shape function, 89, 93, 113
Shell element, 126
Simplified geometry, 60
Simulation model, 108
Singularity theory, 154
Slender structure, 121
Snap-back, 183
Snap-through, 11, 183
Soft boundary, 132
Soft contact, 205, 252
Solution manifold, 193
Space frame element, 129
Spinning motion, 30
Square prism, 234
Stability, 73, 75

change, 206
condition, 175
continuum, 75
criterion, 3, 75
equilibrium, 76, 107
investigation, 197, 212
motion, 79
static, 76, 141
system, 19
time evolution, 175

Stability coefficient, 7, 15, 170, 172, 190
Stabilization, 19
State space, 138

variable, 178
Static stability, 141
Stepping procedure, 182

Stiffness
constrained, 138, 142
force, 106, 169
geometric, 21, 166
incremental, 106, 168
linear, 101
operative, 150, 180, 196
secant, 165
tangential, 105, 169

Strain
operator, 98
rate, 62

Strain energy, 4, 45, 61, 97
Strain work, 62
Stress, 45
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Stretch, 42
principal, 43

Strong form, 72, 73
Structural model, 186
Structural stability, 154
Structure, 2, 59
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slender, 121

Subregion, 59, 112, 135, 136
Summation, 94
Support, 139
Support region, 111
Symbols, 259
Symmetry, 11, 132, 139, 191, 233

discretization, 135
System stability, 19

T
Tangential stiffness, 105, 169
Tangent space, 195, 199
Tangent vector, 149, 203, 206
Tension field, 254
Tensor, 39
Tetrahedron element, 116
Thin-walled column, 27, 227
Third order spring, 205, 252
Time, 38, 71

fictitious, 75
Time evolution, 107, 174

explicit, 176
implicit, 177

Timoshenko beam, 127
Tolerance, 201, 205, 207

numerical, 209
Topology, 115
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Total mechanical energy, 68, 71
Total potential, 6, 10, 68
Traction

boundary, 55
transversal, 124

Transformation
geometric, 124

Transition equilibrium, 141, 198, 204, 205
Transversal deformation, 123
Transversal traction, 124
Trigger force, 230
Trigonometric series, 110
Truss element, 122
Two-loop iteration, 179

U
Un-conditional stability, 175
Under-determined system, 187
Uniform interpolation, 93
Uniform mass, 145
Unstable equilibrium, 148
Unstrained geometry, 38

V
Vanishing value, 193

Variable, 138
constraint-enforcing, 136
discrete, 86

Vector
numerical, 87
physical, 39

Velocity, 96
Velocity field, 40, 61
Vianello method, 15
Virtual displacement, 69, 95
Virtual energy balance, 71
Virtual strain operator, 99
Virtual work, 69, 97

principle, 74
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W
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