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Preface

In writing this Solution Manual I have learned a very important lesson. As a
student, I thought that the best way to master a subject was to go to a superb
university and study with an established expert. Later, I realized instead that the
best way was to teach a course on the subject. Yet later, I was convinced that the
best way was to write a detailed and extensive textbook. Now I know that all these
years I have been wrong: in fact the best way to master a subject is to write the
Solution Manual.

In solving the problems for this Manual I have been forced to confront myriad
technical details that might have tripped up the unsuspecting student. Students and
teachers can thank me for simplifying or screening out problems that required pages of
unenlightening calculations. Occasionally I had to go back to the text and delete the
word “easily” from problem references that read “it can easily be shown (Problem ...).”
Throughout, I have tried to choose data or problem conditions that are particularly
instructive. In solving these problems, I have found errors in early drafts of this text
(as well as errors in books by other authors and even in classic refereed papers), and
thus the accompanying text has been improved for the writing of this Manual.

I have tried to make the problem solutions self-contained and self-explanatory. I
have gone to great lengths to ensure that the solutions are correct and clearly presented
— many have been reviewed by students in several classes. Surely there are errors and
typos in this manuscript, but rather than editing and rechecking these solutions over
months or even years, I thought it best to distribute the Manual, however flawed,
as early as possible. I accept responsibility for these inevitable errors, and humbly
ask anyone finding them to contact me directly. (Please, however, do not ask me to
explain a solution or help you solve a problem!) It should be a small matter to change
the Manual for future printings, and you should contact the publisher to check that
you have the most recent version. Notice, too, that this Manual contains a list of
known typos and errata in the text which you might wish to photocopy and distribute
to students.

I have tried to be thorough in order to help students, even to the occassional fault of
verbosity. You will notice that several problems have the simple “explain your answer
in words” and “graph your results.” These were added for students to gain intuition
and a deeper understanding. Graphing per se is hardly an intellectual challenge, but
if the student graphs functions, he or she will develop intuition and remember the
problem and its results better. Furthermore, when the student later sees graphs of
data from dissertation or research work, the link to the homework problem and the
material in the text will be more readily apparent. Note that due to the vagaries
of automatic typesetting, figures may appear on pages after their reference in this
Manual; be sure to consult the full solution to any problem.

I have also included worked examples and so sample final exams with solutions to
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cover material in text. I distribute a list of important equations (without descriptions)
with the exam so students can focus understanding and using equations, rather than
memorizing them. I also include on every final exam one problem verbatim from a
homework, taken from the book. I find this motivates students to review carefully
their homework assignments, and allows somewhat more difficult problems to be in-
cluded. These will be updated and expanded; thus if you have exam questions you
find particularly appropriate, and would like to share them, please send a copy (with
solutions) to me.

It should be noted, too, that a set of overhead transparency masters of the figures
from the text are available to faculty adopters. I have found these to be invaluable
for lecturing, and I put a set on reserve in the library for students. The files can be
accessed through a standard web browser or an ftp client program at the Wiley STM
ftp area at:

ftp://ftp.wiley.com/public/sci tech med/pattern/
or from a link on the Wiley Electrical Engineering software supplements page at:

http://www.wiley.com/products/subject/engineering/electrical/
software supplem elec eng.html

I have taught from the text (in various stages of completion) at the University
of California at Berkeley (Extension Division) and in three Departments at Stan-
ford University: Electrical Engineering, Statistics and Computer Science. Numerous
students and colleagues have made suggestions. Especially noteworthy in this re-
gard are Sudeshna Adak, Jian An, Sung-Hyuk Cha, Koichi Ejiri, Rick Guadette,
John Heumann, Travis Kopp, Yaxin Liu, Yunqian Ma, Sayan Mukherjee, Hirobumi
Nishida, Erhan Oztop, Steven Rogers, Charles Roosen, Sergio Bermejo Sanchez, God-
fried Toussaint, Namrata Vaswani, Mohammed Yousuf and Yu Zhong. Thanks too
go to Dick Duda who gave several excellent suggestions.

I would greatly appreciate notices of any errors in this Manual or the text itself. I
would be especially grateful for solutions to problems not yet solved. Please send any
such information to me at the below address. I will incorporate them into subsequent
releases of this Manual.

This Manual is for the use of educators and must not be distributed in bulk to
students in any form. Short excerpts may be photocopied and distributed, but only
in conjunction with the use of Pattern Classification (2nd ed.).

I wish you all the best of luck in teaching and research.

Ricoh Innovations, Inc. David G. Stork
2882 Sand Hill Road Suite 115
Menlo Park, CA 94025-7022 USA
stork@rii.ricoh.com



Contents

Preface

1 Introduction 5

2 Bayesian decision theory 7
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Maximum likelihood and Bayesian parameter estimation 77
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4 Nonparametric techniques 131
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5 Linear discriminant functions 177
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6 Multilayer neural networks 219
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7 Stochastic methods 255
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8 Nonmetric methods 277
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

9 Algorithm-independent machine learning 295
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

10 Unsupervised learning and clustering 305
Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Computer Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Sample final exams and solutions 357

3



4 CONTENTS

Worked examples 415

Errata and ammendations in the text 417
First and second printings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Fifth printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



Chapter 1

Introduction

Problem Solutions

There are neither problems nor computer exercises in Chapter 1.
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Chapter 2

Bayesian decision theory

Problem Solutions

Section 2.1

1. Equation 7 in the text states

P (error|x) = min[P (ω1|x), P (ω2|x)].

(a) We assume, without loss of generality, that for a given particular x we have
P (ω2|x) ≥ P (ω1|x), and thus P (error|x) = P (ω1|x). We have, moreover, the
normalization condition P (ω1|x) = 1−P (ω2|x). Together these imply P (ω2|x) >
1/2 or 2P (ω2|x) > 1 and

2P (ω2|x)P (ω1|x) > P (ω1|x) = P (error|x).

This is true at every x, and hence the integrals obey∫
2P (ω2|x)P (ω1|x)dx ≥

∫
P (error|x)dx.

In short, 2P (ω2|x)P (ω1|x) provides an upper bound for P (error|x).

(b) From part (a), we have that P (ω2|x) > 1/2, but in the current conditions not
greater than 1/α for α < 2. Take as an example, α = 4/3 and P (ω1|x) = 0.4
and hence P (ω2|x) = 0.6. In this case, P (error|x) = 0.4. Moreover, we have

αP (ω1|x)P (ω2|x) = 4/3 × 0.6 × 0.4 < P (error|x).

This does not provide an upper bound for all values of P (ω1|x).

(c) Let P (error|x) = P (ω1|x). In that case, for all x we have

P (ω2|x)P (ω1|x) < P (ω1|x)P (error|x)∫
P (ω2|x)P (ω1|x)dx <

∫
P (ω1|x)P (error|x)dx,

and we have a lower bound.
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8 CHAPTER 2. BAYESIAN DECISION THEORY

(d) The solution to part (b) also applies here.

Section 2.2

2. We are given that the density is of the form p(x|ωi) = ke−|x−ai|/bi .

(a) We seek k so that the function is normalized, as required by a true density. We
integrate this function, set it to 1.0,

k

⎡⎣ ai∫
−∞

exp[(x − ai)/bi]dx +

∞∫
ai

exp[−(x − ai)/bi]dx

⎤⎦ = 1,

which yields 2bik = 1 or k = 1/(2bi). Note that the normalization is independent
of ai, which corresponds to a shift along the axis and is hence indeed irrelevant
to normalization. The distribution is therefore written

p(x|ωi) =
1

2bi
e−|x−ai|/bi .

(b) The likelihood ratio can be written directly:

p(x|ω1)
p(x|ω2)

=
b2

b1
exp

[
−|x − a1|

b1
+

|x − a2|
b2

]
.

(c) For the case a1 = 0, a2 = 1, b1 = 1 and b2 = 2, we have the likelihood ratio is

p(x|ω2)
p(x|ω1)

=

⎧⎨⎩
2e(x+1)/2 x ≤ 0

2e(1−3x)/2 0 < x ≤ 1
2e(−x−1)/2 x > 1,

as shown in the figure.

-2 -1 1 2

0.5

1

1.5

2

2.5

3

3.5

4

0 x

p(x|ω1)
p(x|ω2)

Section 2.3

3. We are are to use the standard zero-one classification cost, that is λ11 = λ22 = 0
and λ12 = λ21 = 1.



PROBLEM SOLUTIONS 9

(a) We have the priors P (ω1) and P (ω2) = 1 − P (ω1). The Bayes risk is given by
Eqs. 12 and 13 in the text:

R(P (ω1)) = P (ω1)
∫
R2

p(x|ω1)dx + (1 − P (ω1))
∫
R1

p(x|ω2)dx.

To obtain the prior with the minimum risk, we take the derivative with respect
to P (ω1) and set it to 0, that is

d

dP (ω1)
R(P (ω1)) =

∫
R2

p(x|ω1)dx −
∫
R1

p(x|ω2)dx = 0,

which gives the desired result:∫
R2

p(x|ω1)dx =
∫
R1

p(x|ω2)dx.

(b) This solution is not always unique, as shown in this simple counterexample. Let
P (ω1) = P (ω2) = 0.5 and

p(x|ω1) =
{

1 −0.5 ≤ x ≤ 0.5
0 otherwise

p(x|ω2) =
{

1 0 ≤ x ≤ 1
0 otherwise.

It is easy to verify that the decision regions R1 = [−0.5, 0.25] and R1 = [0, 0.5]
satisfy the equations in part (a); thus the solution is not unique.

4. Consider the minimax criterion for a two-category classification problem.

(a) The total risk is the integral over the two regions Ri of the posteriors times
their costs:

R =
∫
R1

[λ11P (ω1)p(x|ω1) + λ12P (ω2)p(x|ω2)] dx

+
∫
R2

[λ21P (ω1)p(x|ω1) + λ22P (ω2)p(x|ω2)] dx.

We use
∫
R2

p(x|ω2) dx = 1 − ∫
R1

p(x|ω2) dx and P (ω2) = 1 − P (ω1), regroup to

find:

R = λ22 + λ12

∫
R1

p(x|ω2) dx − λ22

∫
R1

p(x|ω2) dx

+ P (ω1)

[
(λ11 − λ22) + λ11

∫
R2

p(x|ω1) dx − λ12

∫
R1

p(x|ω2) dx

+ λ21

∫
R2

p(x|ω1) dx + λ22

∫
R1

p(x|ω2) dx

]
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= λ22 + (λ12 − λ22)
∫
R1

p(x|ω2) dx

+P (ω1)

[
(λ11 − λ22) + (λ11 + λ21)

∫
R2

p(x|ω1) dx

+ (λ22 − λ12)
∫
R1

p(x|ω2) dx

]
.

(b) Consider an arbitrary prior 0 < P ∗(ω1) < 1, and assume the decision boundary
has been set so as to achieve the minimal (Bayes) error for that prior. If one holds
the same decision boundary, but changes the prior probabilities (i.e., P (ω1) in
the figure), then the error changes linearly, as given by the formula in part (a).
The true Bayes error, however, must be less than or equal to that (linearly
bounded) value, since one has the freedom to change the decision boundary at
each value of P (ω1). Moreover, we note that the Bayes error is 0 at P (ω1) = 0
and at P (ω1) = 1, since the Bayes decision rule under those conditions is to
always decide ω2 or ω1, respectively, and this gives zero error. Thus the curve
of Bayes error rate is concave down for all prior probabilities.

P*(ω1) 0.5 1
P(ω1)

0.1

0.2

E(P(ω1))

(c) According to the general minimax equation in part (a), for our case (i.e., λ11 =
λ22 = 0 and λ12 = λ21 = 1) the decision boundary is chosen to satisfy∫

R2

p(x|ω1) dx =
∫
R1

p(x|ω2) dx.

We assume that a single decision point suffices, and thus we seek to find x∗ such
that

x∗∫
−∞

N(μ1, σ
2
1) dx =

∞∫
x∗

N(μ2, σ
2
2) dx,

where, as usual, N(μi, σ
2
i ) denotes a Gaussian. We assume for definiteness and

without loss of generality that μ2 > μ1, and that the single decision point lies
between the means. Recall the definition of an error function, given by Eq. 96
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in the Appendix of the text, that is,

erf(x) =
2√
π

x∫
0

e−t2dt.

We can rewrite the above as

erf[(x∗ − μ1)/σ1] = erf[(x∗ − μ2)/σ2].

If the values of the error function are equal, then their corresponding arguments
must be equal, that is

(x∗ − μ1)/σ1 = (x∗ − μ2)/σ2

and solving for x∗ gives the value of the decision point

x∗ =
(

μ2σ1 + μ1σ2

σ1 + σ2

)
.

(d) Because the mimimax error rate is independent of the prior probabilities, we can
choose a particularly simple case to evaluate the error, for instance, P (ω1) = 0.
In that case our error becomes

E = 1/2 − erf[(x∗ − μ1)/σ1] = 1/2 − erf
[
μ2σ1 − μ1σ2

σ1(σ1 + σ2)

]
.

(e) We substitute the values given in the problem into the formula in part (c) and
find

x∗ =
μ2σ1 + μ1σ2

σ1 + σ2
=

1/2 + 0
1 + 1/2

= 1/3.

The error from part (d) is then

E = 1/2 − erf
[
1/3 − 0
1 + 0

]
= 1/2 − erf[1/3] = 0.1374.

(f) Note that the distributions have the same form (in particular, the same vari-
ance). Thus, by symmetry the Bayes error for P (ω1) = P ∗ (for some value
P ∗) must be the same as for P (ω2) = P ∗. Because P (ω2) = 1 − P (ω1), we
know that the curve, analogous to the one in part (b), is symmetric around the
point P (ω1) = 0.5. Because the curve is concave down, therefore it must peak
at P (ω1) = 0.5, that is, equal priors. The tangent to the graph of the error
versus P (ω1) is thus horizontal at P (ω1) = 0.5. For this case of equal priors,
the Bayes decision point for this problem can be stated simply: it is the point
midway between the means of the two distributions, that is, x∗ = 5.5.

5. We seek to generalize the notion of minimax criteria to the case where two inde-
pendent prior probabilities are set.
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xμ1 μ2 μ3

δ1 δ2

δ3

x2
*x1

*

p(x|ω1)P(ω1)
p(x|ω3)P(ω3)

p(x|ωi)P(ωi)
p(x|ω2)P(ω2)

(a) We use the triangle distributions and conventions in the figure. We solve for the
decision points as follows (being sure to keep the signs correct, and assuming
that the decision boundary consists of just two points):

P (ω1)
(

δ1 − (x∗
1 − μ1)

δ2
1

)
= P (ω2)

(
δ2 − (μ2 − x∗

1)
δ2
2

)
,

which has solution

x∗
1 =

P (ω1)δ2
2δ1 + P (ω1)δ2

2μ1 − P (ω2)δ2
1δ2 + P (ω2)μ2δ

2
1

P (ω1)δ2
2 + P (ω2)δ2

1

.

An analogous derivation for the other decision point gives:

P (ω2)
(

δ2 − (x∗
2 − μ2)

δ2
2

)
= P (ω3)

(
δ3 − (x∗

2 − μ3)
δ2
3

)
,

which has solution

x∗
2 =

−P (ω2)δ2
3μ2 + P (ω2)δ2

3δ2 + P (ω3)δ2
2δ3 + P (ω3)δ2

2μ3

P (ω2)δ2
3 + P (ω3)δ2

2

.

(b) Note that from our normalization condition,
3∑

i=1

P (ωi) = 1, we can express all

priors in terms of just two independent ones, which we choose to be P (ω1) and
P (ω2). We could substitute the values for x∗

i and integrate, but it is just a bit
simpler to go directly to the calculation of the error, E, as a function of priors
P (ω1) and P (ω2) by considering the four contributions:

E = P (ω1)
1

2δ2
1

[μ1 + δ1 − x∗
1]

2

+P (ω2)
1

2δ2
2

[δ2 − μ2 + x∗
1]

2

+P (ω2)
1

2δ2
2

[μ2 + δ2 − x∗
2]

2

+
[
1 − P (ω1) − P (ω2)︸ ︷︷ ︸

P (ω3)

] 1
2δ2

3

[δ3 − μ3 + x∗
2]

2
.
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To obtain the minimax solution, we take the two partial and set them to zero.
The first of the derivative equations,

∂E

∂P (ω1)
= 0,

yields the equation(
μ1 + δ1 − x∗

1

δ1

)2

=
(

δ3 − μ3 + x∗
2

δ3

)2

or

μ1 + δ1 − x∗
1

δ1
=

δ3 − μ3 + x∗
2

δ3
.

Likewise, the second of the derivative equations,

∂E

∂P (ω2)
= 0,

yields the equation(
δ2 − μ2 + x∗

1

δ2

)2

+
(

μ2 + δ2 − x∗
2

δ2

)2

=
(

δ3 − μ3 + x∗
2

δ3

)2

.

These simultaneous quadratic equations have solutions of the general form:

x∗
i =

bi +
√

ci

ai
i = 1, 2.

After a straightforward, but very tedious calculation, we find that:

a1 = δ2
1 − δ2

2 + δ2
3 ,

b1 = −δ2
1δ2 − δ1 δ2

2 − δ1δ2 δ3 − δ2
2μ1 + δ2

3μ1 + δ2
1μ2 − δ1δ3μ2 + δ1δ3μ3,

c1 = δ2
1

(
2δ1δ

3
2 + 2δ4

2 + 2δ1δ
2
2δ3 + 2δ3

2δ3 + δ1δ
2
2μ1 + 2δ3

2μ1

+2 δ1 δ2 δ3 μ1 − 2 δ2 δ3
2 μ1 + δ2

2 μ1
2 − δ3

2 μ1
2 − 2 δ1

2 δ2 μ2 − 2 δ1 δ2
2 μ2

+2 δ2
2 δ3 μ2 + 2 δ2 δ3

2 μ2 − 2 δ2
2 μ1 μ2 + 2 δ1 δ3 μ1 μ2 + 2 δ3

2 μ1 μ2

−δ1
2 μ2

2 + 2 δ2
2 μ2

2 − 2 δ1 δ3 μ2
2 − δ3

2 μ2
2 + 2 δ1

2 δ2 μ3 − 2 δ2
3 μ3

−2 δ1 δ2 δ3 μ3 − 2 δ2
2 δ3 μ3 − 2 δ1 δ3 μ1 μ3 + 2 δ1

2 μ2 μ3 − 2 δ2
2 μ2 μ3

+2 δ1 δ3 μ2 μ3 − δ1
2 μ3

2 + δ2
2 μ3

2
)
.

An analogous calculation gives:

a2 = δ2
1 − δ2

2 + δ2
3 ,

b2 = δ1 δ2 δ3 + δ2
2 δ3 + 2 δ2 δ2

3 + δ1 δ3 μ1 − δ1 δ3 μ2 + δ2
3 μ2 + δ2

1 μ3 − δ2
2 μ3,

c2 =
(
δ2
1 − δ2

2 + δ2
3

) ×(
δ2
2 δ2

3 + 2 δ2 δ2
3 μ1 + δ2

3 μ2
1 − 2 δ2

3 μ1 μ2 + 2 δ2
3 μ2

2 + 2 δ1 δ2 δ3 μ3

+ 2 δ2
2 δ3 μ3 + 2 δ1 δ3 μ1 μ3 − 2 δ1 δ3 μ2 μ3 + δ2

1 μ2
3 − δ2

2 μ2
3

)
.

(c) For {μi, δi} = {0, 1}, {.5, .5}, {1, 1}, for i = 1, 2, 3, respectively, we substitute
into the above equations to find x∗

1 = 0.2612 and x∗
2 = 0.7388. It is a simple

matter to confirm that indeed these two decision points suffice for the classifi-
cation problem, that is, that no more than two points are needed.
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-2 -1 1 2x*0

E1

p(x|ω1)P(ω1) p(x|ω2)P(ω2)

μ1 μ2

x

p(x|ωi)P(ωi)

6. We let x∗ denote our decision boundary and μ2 > μ1, as shown in the figure.

(a) The error for classifying a pattern that is actually in ω1 as if it were in ω2 is:∫
R2

p(x|ω1)P (ω1) dx =
1
2

∞∫
x∗

N(μ1, σ
2
1) dx ≤ E1.

Our problem demands that this error be less than or equal to E1. Thus the
bound on x∗ is a function of E1, and could be obtained by tables of cumulative
normal distributions, or simple numerical integration.

(b) Likewise, the error for categorizing a pattern that is in ω2 as if it were in ω1 is:

E2 =
∫
R1

p(x|ω2)P (ω2) dx =
1
2

x∗∫
−∞

N(μ2, σ
2
2) dx.

(c) The total error is simply the sum of these two contributions:

E = E1 + E2

=
1
2

∞∫
x∗

N(μ1, σ
2
1) dx +

1
2

x∗∫
−∞

N(μ2, σ
2
2) dx.

(d) For p(x|ω1) ∼ N(−1/2, 1) and p(x|ω2) ∼ N(1/2, 1) and E1 = 0.05, we have (by
simple numerical integration) x∗ = 0.2815, and thus

E = 0.05 +
1
2

0.2815∫
−∞

N(μ2, σ
2
2) dx

= 0.05 +
1
2

0.2815∫
−∞

1√
2π0.05

exp
[
− (x − 0.5)2

2(0.5)2

]
dx

= 0.168.

(e) The decision boundary for the (minimum error) Bayes case is clearly at x∗ = 0.
The Bayes error for this problem is:

EB = 2

∞∫
0

1
2
N(μ1, σ

2
1) dx
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=

∞∫
0

N(1, 1) dx = erf[1] = 0.159,

which of course is lower than the error for the Neyman-Pearson criterion case.
Note that if the Bayes error were lower than 2× 0.05 = 0.1 in this problem, we
would use the Bayes decision point for the Neyman-Pearson case, since it too
would ensure that the Neyman-Pearson criteria were obeyed and would give the
lowest total error.

7. We proceed as in Problem 6, with the figure below.

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25

0.3

0 x*

E1

p(x|ω1)P(ω1) p(x|ω2)P(ω2)

x

p(x|ωi)P(ωi)

(a) Recall that the Cauchy density is

p(x|ωi) =
1
πb

1

1 +
(

x−ai

b

)2 .

If we denote our (single) decision boundary point as x∗, and note that P (ωi) =
1/2, then the error for misclassifying a ω1 pattern as ω2 is:

E1 =

∞∫
x∗

p(x|ω1)P (ω1) dx

=
1
2

∞∫
x∗

1
πb

1

1 +
(

x−a1
b

)2 dx.

We substitute (x − a1)/b = y, and sin θ = 1/
√

1 + y2 to get:

E1 =
1
2π

θ=0∫
θ=θ̃

dθ

=
1
2π

sin−1

[
b√

b2 + (x∗ − a1)2

]
,

where θ̃ = sin−1

[
b√

b2+(x∗−a1)2

]
. Solving for the decision point gives

x∗ = a1 + b

√
1

sin2[2πE1]
− 1 = a1 + b/tan[2πE1].



16 CHAPTER 2. BAYESIAN DECISION THEORY

(b) The error for the converse case is found similarly:

E2 =
1
πb

x∗∫
−∞

1

1 +
(

x−a2
b

)2 P (ω2) dx

=
1
2π

θ=θ̃∫
θ=−π

dθ

=
1
2π

{
sin−1

[
b√

b2 + (x∗ − a2)2

]
+ π

}

=
1
2

+
1
π

sin−1

[
b√

b2 + (x∗ − a2)2

]
,

where θ̃ is defined in part (a).

(c) The total error is merely the sum of the component errors:

E = E1 + E2 = E1 +
1
2

+
1
π

sin−1

[
b√

b2 + (x∗ − a2)2

]
,

where the numerical value of the decision point is

x∗ = a1 + b/tan[2πE1] = 0.376.

(d) We add the errors (for b = 1) and find

E = 0.1 +
1
2

+
1
π

sin−1

[
b√

b2 + (x∗ − a2)2

]
= 0.2607.

(e) For the Bayes case, the decision point is midway between the peaks of the two
distributions, i.e., at x∗ = 0 (cf. Problem 6). The Bayes error is then

EB = 2

∞∫
0

1

1 +
(

x−a
b

)2 P (ω2) dx = 0.2489.

This is indeed lower than for the Neyman-Pearson case, as it must be. Note
that if the Bayes error were lower than 2× 0.1 = 0.2 in this problem, we would
use the Bayes decision point for the Neyman-Pearson case, since it too would
ensure that the Neyman-Pearson criteria were obeyed and would give the lowest
total error.

8. Consider the Cauchy distribution.

(a) We let k denote the integral of p(x|ωi), and check the normalization condition,
that is, whether k = 1:

k =

∞∫
−∞

p(x|ωi) dx =
1
πb

∞∫
−∞

1

1 +
(

x−ai

b

)2 dx.
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We substitute (x − ai)/b = y into the above and get

k =
1
π

∞∫
−∞

1
1 + y2

dy,

and use the trigonometric substition 1/
√

1 + y2 = sin θ, and hence dy =
dθ/sin2θ to find

k =
1
π

θ=0∫
θ=−π

sin2θ

sin2θ
dθ = 1.

Indeed, k = 1, and the distribution is normalized.

(b) We let x∗ denote the decision boundary (a single point) and find its value by
setting p(x∗|ω1)P (ω1) = p(x∗|ω2)P (ω2). We have then

1
πb

1

1 +
(

x∗−a1
b

)2

1
2

=
1
πb

1

1 +
(

x∗−a2
b

)2

1
2
,

or (x∗ − a1) = ±(x∗ − a2). For a1 �= a2, this implies that x∗ = (a1 + a2)/2, that
is, the decision boundary is midway between the means of the two distributions.

(c) For the values a1 = 3, a2 = 5 and b = 1, we get the graph shown in the figure.

-4 -2 0 2 4 6 8 10
x

0.2

0.4

0.6

0.8

1

P(ω1|x)

(d) We substitute the form of P (ωi|x) and p(x|ωi) and find

lim
x→∞P (ωi|x) = lim

x→∞

1
2

[
1
πb

1

1+( x−ai
b )2

]
[

1
2

[
1
πb

1

1+( x−a1
b )2

]
+ 1

2

[
1
πb

1

1+( x−a2
b )2

]]
= lim

x→∞
b2 + (x − ai)2

b2 + (x − a1)2 + b2 + (x − a2)2
=

1
2
,

and likewise, lim
x→−∞P (ωi|x) = 1/2, as can be confirmed in the figure.

9. We follow the terminology in Section 2.3 in the text.
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(a) Without loss of generality, we assume that a2 > a1, note that the decision
boundary is at (a1 + a2)/2. The probability of error is given by

P (error) =

(a1+a2)/2∫
−∞

p(ω2|x)dx +

∞∫
(a1+a2)/2

p(ω1|x)dx

=
1
πb

(a1+a2)/2∫
−∞

1/2

1 +
(

x−a2
b

)2 dx +
1
πb

∞∫
(a1+a2)/2

1/2

1 +
(

x−a1
b

)2 dx

=
1
πb

(a1−a2)/2∫
−∞

1

1 +
(

x−a2
b

)2 dx =
1
π

(a1−a2)/2∫
−∞

1
1 + y2

dy,

where for the last step we have used the trigonometric substitution y = (x−a2)/b
as in Problem 8. The integral is a standard form for tan−1y and thus our solution
is:

P (error) =
1
π

[
tan−1

∣∣∣a1 − a2

2b

∣∣∣ − tan−1[−∞]
]

=
1
2
− 1

π
tan−1

∣∣∣a2 − a1

2b

∣∣∣.
(b) See figure.

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

P(error) 

|a2 - a1|/(2b) 

(c) The maximum value of the probability of error is Pmax(a2−a1
2b ) = 1/2, which

occurs for |a2−a1
2b | = 0. This occurs when either the two distributions are the

same, which can happen because a1 = a2, or even if a1 �= a2 because b = ∞ and
both distributions are flat.

10. We use the fact that the conditional error is

P (error|x) =

{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1.

(a) Thus the decision as stated leads to:

P (error) =

∞∫
−∞

P (error|x)p(x)dx.
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Thus we can write the probability of error as

P (error) = P (x < θ and ω1 is the true state)
+P (x > θ and ω2 is the true state)

= P (x < θ|ω1)P (ω1) + P (x > θ|ω2)P (ω2)

= P (ω1)

θ∫
−∞

p(x|ω1) dx + P (ω2)

∞∫
θ

p(x|ω2) dx.

(b) We take a derivative with respect to θ and set it to zero to find an extremum,
that is,

dP (error)
dθ

= P (ω1)p(θ|ω1) − P (ω2)p(θ|ω2) = 0,

which yields the condition

P (ω1)p(θ|ω1) = P (ω2)p(θ|ω2),

where we have used the fact that p(x|ωi) = 0 at x → ±∞.

(c) No, this condition does not uniquely define θ.

1. If P (ω1)p(θ|ω1) = P (ω2)p(θ|ω2) over a range of θ, then θ would be unspec-
ified throughout such a range.

2. There can easily be multiple values of x for which the condition hold, for
instance if the distributions have the appropriate multiple peaks.

(d) If p(x|ω1) ∼ N(1, 1) and p(x|ω2) ∼ N(−1, 1) with P (ω1) = P (ω2) = 1/2, then
we have a maximum for the error at θ = 0.

11. The deterministic risk is given by Bayes’ Rule and Eq. 20 in the text

R =
∫

R(αi(x)|x) dx.

(a) In a random decision rule, we have the probability P (αi|x) of deciding to take
action αi. Thus in order to compute the full probabilistic or randomized risk,
Rran, we must integrate over all the conditional risks weighted by their proba-
bilities, i.e.,

Rran =
∫ [

a∑
i=1

R(αi(x)|x)P (αi|x)

]
p(x) dx.

(b) Consider a fixed point x and note that the (deterministic) Bayes minimum risk
decision at that point obeys

R(αi(x)|x) ≥ R(αmax(x)|x).
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Therefore we have the risk in the randomized case

Rran =
∫ [

a∑
i=1

R(αi(x)|x)P (αi|x)

]
p(x)dx

≥
∫

R(αmax|x)

[
a∑

i=1

P (αi|x)

]
p(x)dx

=
∫

R(αmax|x)p(x)dx

= RB ,

the Bayes risk. Equality holds if and only if P (αmax(x)|x) = 1.

12. We first note the normalization condition
c∑

i=1

P (ωi|x) = 1

for all x.

(a) If P (ωi|x) = P (ωj |x) for all i and j, then P (ωi|x) = 1/c and hence P (ωmax|x) =
1/c. If one of the P (ωi|x) < 1/c, then by our normalization condition we must
have that P (ωmax|x) > 1/c.

(b) The probability of error is simply 1.0 minus the probability of being correct,
that is,

P (error) = 1 −
∫

P (ωmax|x)p(x) dx.

(c) We simply substitute the limit from part (a) to get

P (error) = 1 −
∫

P (ωmax|x)︸ ︷︷ ︸
=g≥1/c

p(x) dx

= 1 − g

∫
p(x) dx = 1 − g.

Therefore, we have P (error) ≤ 1 − 1/c = (c − 1)/c.

(d) All categories have the same prior probability and each distribution has the
same form, in other words, the distributions are indistinguishable.

Section 2.4

13. If we choose the category ωmax that has the maximum posterior probability, our
risk at a point x is:

λs

∑
j �=max

P (ωj |x) = λs[1 − P (ωmax|x)],

whereas if we reject, our risk is λr. If we choose a non-maximal category ωk (where
k �= max), then our risk is

λs

∑
j �=k

P (ωj |x) = λs[1 − P (ωk|x)] ≥ λs[1 − P (ωmax|x)].
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This last inequality shows that we should never decide on a category other than the
one that has the maximum posterior probability, as we know from our Bayes analysis.
Consequently, we should either choose ωmax or we should reject, depending upon
which is smaller: λs[1− P (ωmax|x)] or λr. We reject if λr ≤ λs[1− P (ωmax|x)], that
is, if P (ωmax|x) ≥ 1 − λr/λs.
14. Consider the classification problem with rejection option.

(a) The minimum-risk decision rule is given by:

Choose ωi if P (ωi|x) ≥ P (ωj |x), for all j

and if P (ωi|x) ≥ 1 − λr

λs
.

This rule is equivalent to

Choose ωi if p(x|ωi)P (ωi) ≥ p(x|ωj)P (ωj) for all j

and if p(x|ωi)P (ωi) ≥
(

1 − λr

λs

)
p(x),

where by Bayes’ formula

p(ωi|x) =
p(x|ωi)P (ωi)

p(x)
.

The optimal discriminant function for this problem is given by

Choose ωi if gi(x) ≥ gj(x) for all i = 1, . . . , c, and j = 1, . . . , c + 1.

Thus the discriminant functions are:

gi(x) =

{
p(x|ωi)P (ωi), i = 1, . . . , c(

λs−λr

λs

)
p(x), i = c + 1,

=

⎧⎨⎩
p(x|ωi)P (ωi), i = 1, . . . , c

λs−λr

λs

c∑
j=1

p(x|ωj)P (ωj), i = c + 1.

(b) Consider the case p(x|ω1) ∼ N(1, 1), p(x|ω2) ∼ N(−1, 1), P (ω1) = P (ω2) = 1/2
and λr/λs = 1/4. In this case the discriminant functions in part (a) give

g1(x) = p(x|ω1)P (ω1) =
1
2

e−(x−1)2/2

√
2π

g2(x) = p(x|ω2)P (ω2) =
1
2

e−(x+1)2/2

√
2π

g3(x) =
(

1 − λr

λs

)
[p(x|ω1)P (ω1) + p(x|ω2)P (ω2)]

=
(

1 − 1
4

) [
1
2

e−(x−1)2/2

√
2π

+
1
2

e−(x+1)2/2

√
2π

]

=
3

8
√

2π

[
e−(x−1)2/2 + e−(x+1)2/2

]
=

3
4
[g1(x) + g2(x)].

as shown in the figure.



22 CHAPTER 2. BAYESIAN DECISION THEORY
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(c) If λr/λs = 0, there is no cost in rejecting as unrecognizable. Furthermore,
P (ωi|x) ≥ 1 − λr/λs is never satisfied if λr/λs = 0. In that case, the decision
rule will always reject as unrecognizable. On the other hand, as λr/λs →
1, P (ωi|x) ≥ 1−λr/λs is always satisfied (there is a high cost of not recognizing)
and hence the decision rule is the Bayes decision rule of choosing the class ωi

that maximizes the posterior probability P (ωi|x).

(d) Consider the case p(x|ω1) ∼ N(1, 1), p(x|ω2) ∼ N(0, 1/4), P (ω1) = 1/3, P (ω2) =
2/3 and λr/λs = 1/2. In this case, the discriminant functions of part (a) give

g1(x) = p(x|ω1)P (ω1) =
2
3

e−(x−1)2/2

√
2π

g2(x) = p(x|ω2)P (ω2) =
1
3

2e−2x2

√
2π

g3(x) =
(

1 − λr

λs

)
[p(x|ω1)P (ω1) + p(x|ω2)P (ω2)]

=
1
2
· 2
3

[
e−(x−1)2/2

√
2π

+
e−2x2

√
2π

]

=
1

3
√

2π

[
e−(x−1)2/2 + e−2x2

]
=

1
2
[g1(x) + g2(x)].

Note from the figure that for this problem we should never reject.
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Section 2.5

15. We consider the volume of a d-dimensional hypersphere of radius 1.0, and more
generally radius x, as shown in the figure.

x

z

dz

Vd xd

1

1
x

z

1

(a) We use Eq. 47 in the text for d = odd, that is, Vd = 2dπ(d−1)/2(d−1
2 )!/d!. When

applied to d = 1 (a line) we have V1 = 21π01 = 2. Indeed, a line segment
−1 ≤ x ≤ +1 has generalized volume (length) of 2. More generally, a line of
“radius” x has volume of 2x.

(b) We use Eq. 47 in the text for d = even, that is, Vd = π(d/2)/(d/2)!. When
applied to d = 2 (a disk), we have V2 = π1/1! = π. Indeed, a disk of radius
1 has generalized volume (area) of π. More generally, a disk of radius x has
volume of πx2.

(c) Given the volume of a line in d = 1, we can derive the volume of a disk by
straightforward integration. As shown in the figure, we have

V2 = 2

1∫
0

√
1 − z2 dz = π,

as we saw in part (a).

(d) As can be seen in the figure, to find the volume of a generalized hypersphere in
d + 1 dimensions, we merely integrate along the z (new) dimension the volume
of a generalized hypersphere in the d-dimensional space, with proper factors and
limits. Thus we have:

Vd+1 = 2

1∫
0

Vd(1 − z2)d/2dz =
Vd

√
πΓ(d/2 + 1)

Γ(d/2 + 3/2)
,

where for integer k the gamma function obeys

Γ(k + 1) = k! and Γ(k + 1/2) = 2−2k+1
√

π(2k − 1)!/(k − 1)!.

(e) Using this formula for d = 2k even, and Vd given for even dimensions, we get
that for the next higher (odd) dimension d∗:

Vd∗ = Vd+1 =
2πd/2

(d/2)!

[√
π

2
(d/2)!

Γ(d/2 + 3/2)

]
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=
πd/2 k! 22k+1

(2k + 1)!

=
π(d∗−1)/2(d∗−1

2 )! 2d∗

(d∗)!
,

where we have used 2k = d for some integer k and d∗ = d + 1. This confirms
Eq. 47 for odd dimension given in the text.

(f) We repeat the above steps, but now use Vd for d odd, in order to derive the
volume of the hypersphere in an even dimension:

Vd+1 = Vd

√
π

2
Γ(d

2 + 1)
Γ(d

2 + 3
2 )

=
2d π(d−1)/2 (d−1

2 )!
d!

√
π

2
Γ((k + 1) + 1

2 )
(k + 1)!

=
πd∗/2

(d∗/2)!
,

where we have used that for odd dimension d = 2k + 1 for some integer k, and
d∗ = d+1 is the (even) dimension of the higher space. This confirms Eq. 47 for
even dimension given in the text.

16. We approach the problem analogously to problem 15, and use the same figure.

x

z

dz

Vd xd

1

1
x

z

1

(a) The “volume” of a line from −1 ≤ x ≤ 1 is indeed V1 = 2.

(b) Integrating once for the general case (according to the figure) gives

Vd+1 = 2

1∫
0

Vd(1 − z2)d/2dz =
Vd

√
πΓ(d/2 + 1)

Γ(d/2 + 3/2)
,

where for integer k the gamma function obeys

Γ(k + 1) = k! and Γ(k + 1/2) = 2−2k+1
√

π(2k − 1)!/(k − 1)!.

Integrating again thus gives:

Vd+2 = Vd

[√
πΓ(d/2 + 1)

Γ(d/2 + 3/2)

]
︸ ︷︷ ︸

Vd+1

[√
πΓ((d + 1)/2 + 1)

Γ((d + 1)/2 + 3/2)

]



PROBLEM SOLUTIONS 25

= Vdπ
Γ(d/2 + 1)

Γ((d + 1)/2 + 3/2)

= Vd
πΓ(d/2 + 1)

(d/2 + 1)Γ(d/2 + 1)
= Vd

π

d/2 + 1
.

This is the central result we will use below.

(c) For d odd, we rewrite π/(d/2 + 1) as 2π/(d + 2). Thus we have

Vd = Vd−2

[
2π

(d − 2) + 2

]
= Vd−4

[
2π

(d − 4) + 2

] [
2π

(d − 2) + 2

]
= · · ·

= V1

[
2π

(d − (d − 1)) + 2

] [
2π

(d − (d − 3)) + 2

]
× · · · ×

[
2π

(d − 4) + 2

] [
2π

(d − 2) + 2

]
︸ ︷︷ ︸

(d−1)/2 terms

= π(d−1)/22(d+1)/2

[
1
3

] [
1
5

]
× · · · ×

[
1

d − 2

] [
1
d

]
= π(d−1)/22(d+1)/2

[
1
d!!

]
=

π(d−1)/22d

d!
.

We have used the fact that V1 = 2, from part (a), and the notation d!! =
d × (d − 2) × (d − 4) × · · ·, read “d double factorial.”

(d) Analogously to part (c), for d even we have

Vd = Vd−2

[
π

(d − 2)/2 + 1

]
= Vd−4

[
π

(d − 4)/2 + 1

] [
π

(d − 2)/2 + 1

]
= · · ·

=

V2=π︷ ︸︸ ︷[
π

(d − d)/2 + 1

] [
π

(d − (d − 2))/2 + 1

]
× · · · ×

[
π

(d − 4)/2 + 1

] [
π

(d − 2)/2 + 1

]
︸ ︷︷ ︸

d/2 terms

= πd/2

[
1
1

] [
1
2

]
× · · · ×

[
1

d/2 − 1

] [
1

d/2

]
=

πd/2

(d/2)!
.

(e) The central mathematical reason that we express the formulas separately for
even and for odd dimensions comes from the gamma function, which has different
expressions as factorials depending upon whether the argument is integer valued,
or half-integer valued. One could express the volume of hyperspheres in all
dimensions by using gamma functions, but that would be computationally a bit
less elegant.

17. Consider the minimal rectangular bounding box in d dimensions that contains
the hyperellipsoid, as shown in the figure. We can work in a coordinate system
in which the principal axes of the ellipsoid are parallel to the box axes, that is,
the covariance matrix is diagonal (Σ̃ = diag[1/σ2

1 , 1/σ2
2 , . . . , 1/σ2

d]). The squared
Mahalanobis distance from the origin to the surface of the ellipsoid is given by r2,
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σ3

σ2

σ1

that is, points x that satisfy

r2 = xtΣ̃x

= xt

⎛⎜⎜⎜⎝
1/σ2

1 0 . . . 0
0 1/σ2

2 . . . 0
...

...
. . .

...
0 0 . . . 1/σ2

d

⎞⎟⎟⎟⎠x.

Thus, along each of the principal axes, the distance obeys x2
i = σ2

i r2. Because the
distance across the rectangular volume is twice that amount, the volume of the rect-
angular bounding box is

Vrect = (2x1)(2x2) · · · (2xd) = 2drd
d∏

i=1

σi = 2drd|Σ̃|1/2.

We let V be the (unknown) volume of the hyperellipsoid, Vd the volume of the unit
hypersphere in d dimension, and Vcube be the volume of the d-dimensional cube having
length 2 on each side. Then we have the following relation:

V

Vrect
=

Vd

Vcube
.

We note that the volume of the hypercube is Vcube = 2d, and substitute the above to
find that

V =
VrectVd

Vcube
= rd|Σ̃|1/2Vd,

where Vd is given by Eq. 47 in the text. Recall that the determinant of a matrix is
unchanged by rotation of axes (|Σ̃|1/2 = |Σ|1/2), and thus the value can be written
as

V = rd|Σ|1/2Vd.

18. Let X1, . . . , Xn be a random sample of size n from N(μ1, σ
2
1) and let Y1, . . . , Ym

be a random sample of size m from N(μ2, σ
2
2).

(a) Let Z = (X1 + · · · + Xn) + (Y1 + · · · + Ym). Our goal is to show that Z is also
normally distributed. From the discussion in the text, if Xd×1 ∼ N(μd×1,Σd×d)
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and A is a k × d matrix, then AtX ∼ N(Atμ,AtΣA). Here, we take

X(n+m)×1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

...
Xn

Y1

Y2

...
Ym

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, clearly X is normally distributed in (n+m)×1 dimensions. We can write
Z as a particular matrix At operating on X:

Z = X1 + · · · + Xn + Y1 + · · · + Ym = 1tX,

where 1 denotes a vector of length n + m consisting solely of 1’s. By the above
fact, it follows that Z has a univariate normal distribution.

(b) We let μ3 be the mean of the new distribution. Then, we have

μ3 = E(Z)
= E [(X1 + · · · + Xn) + (Y1 + · · · + Ym)]
= E(X1) + · · · + E(Xn) + E(Y1) + · · · + E(Ym)

(since X1, . . . , Xn, Y1, . . . , Ym are independent)
= nμ1 + mμ2.

(c) We let σ2
3 be the variance of the new distribution. Then, we have

σ2
3 = Var(Z)

= Var(X1) + · · · + Var(Xn) + Var(Y1) + · · · + Var(Ym)
(since X1, . . . , Xn, Y1, . . . , Ym are independent)

= nσ2
1 + mσ2

2

(d) Define a column vector of the samples, as:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

...
Xn

Y1

...
Ym

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, clearly X is [(nd+md)×1]-dimensional random variable that is normally
distributed. Consider the linear projection operator A defined by

At = (Id×d Id×d · · · Id×d︸ ︷︷ ︸
(n+m) times

).
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Then we have

Z = AtX = X1 + · · · + Xn + Y1 + · · · + Ym,

which must therefore be normally distributed. Furthermore, the mean and
variance of the distribution are

μ3 = E(Z) = E(X1) + · · · + E(Xn) + E(Y1) + · · · + E(Ym)
= nμ1 + mμ2.

Σ3 = Var(Z) = Var(X1) + · · · + Var(Xn) + Var(Y1) + · · · + Var(Ym)
= nΣ1 + mΣ2.

19. The entropy is given by Eq. 37 in the text:

H(p(x)) = −
∫

p(x) lnp(x)dx

with constraints ∫
bk(x)p(x)dx = ak for k = 1, . . . , q.

(a) We use Lagrange factors and find

Hs =
∫

p(x)lnp(x)dx +
q∑

k=1

[∫
bk(x)p(x)dx − ak

]

= −
∫

p(x)

[
lnp(x) −

q∑
k=0

λkbk(x)

]
−

q∑
k=0

akλk.

From the normalization condition
∫

p(x)dx = 1, we know that a0 = b0 = 1 for
all x.

(b) In order to find the maximum or minimum value for H (having constraints), we
take the derivative of Hs (having no constraints) with respect to p(x) and set it
to zero:

∂Hs

∂p(x)
= −

∫ [
lnp(x) −

q∑
k=0

λkbk(x) + 1

]
dx = 0.

The argument of the integral must vanish, and thus

lnp(x) =
q∑

k=0

λkbk(x) − 1.

We exponentiate both sides and find

p(x) = exp

[
q∑

k=0

λkbk(x) − 1

]
,

where the q + 1 parameters are determined by the constraint equations.
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20. We make use of the result of Problem 19, that is, the maximum-entropy distri-
bution p(x) having constraints of the form∫

bk(x)p(x)dx = ak

for k = 1, . . . , q is

p(x) = exp

[
q∑

k=0

λkbk(x) − 1

]
.

(a) In the current case, the normalization constraint is

xh∫
xl

p(x)dx = 1,

and thus

p(x) = exp

[
q∑

k=0

λkbk(x) − 1

]
= exp(λ0 − 1).

In order to satisfy this constraint equation, we demand

xh∫
xl

p(x)dx = exp(λ0 − 1)(xu − xl) = 1,

and thus the distribution is uniform,

p(x) =
{

1/|xu − xl| xl ≤ x ≤ xu

0 otherwise.

(b) Here the constraint equations are

∞∫
0

p(x)dx = 1

∞∫
0

xp(x)dx = μ.

Thus, using the above result, the density is of the form

p(x) = exp[λ0 + λ1x − 1]

and we need to solve for λ0 and λ1. The normalization constraint gives

∞∫
0

exp[λ0 + λ1x − 1]dx = eλ0−1 eλ1x

λ1

∣∣∣∞
0

= eλ0−1

(
− 1

λ1

)
= 1.
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Likewise, the mean constraint gives

∞∫
0

eλ1eλ0−1xdx = eλ0−1

(
1
λ2

1

)
= μ.

Hence λ1 = −1/μ and λ0 = 1 − lnμ, and the density is

p(x) =
{

(1/μ)e−x/μ x ≥ 0
0 otherwise.

(c) Here the density has three free parameters, and is of the general form

p(x) = exp[λ0 − 1 + λ1x + λ2x
2],

and the constraint equations are

∞∫
−∞

p(x)dx = 1 (∗)

∞∫
−∞

xp(x)dx = μ (∗∗)

∞∫
−∞

x2p(x)dx = σ2. (∗ ∗ ∗)

We first substitute the general form of p(x) into (∗) and find

1√−λ2

√
π

2
eλ0−1−λ2

1/(4λ2)erf
[√

−λ2x − λ1

2
√−λ2

] ∣∣∣∣∞
−∞

= 1.

Since λ2 < 0, erf(∞) = 1 and erf(−∞) = −1, we have

√
πexp[λ0 − 1 − λ2

1/(4λ2)]√−λ2

= 1.

Likewise, next substitute the general form of p(x) into (∗∗) and find

−λ1
√

πexp[λ0 − 1 − λ2
1/(4λ2)]

4λ2

√−λ2

erf
[√

−λ2x − λ2/(2
√
−λ2)

] ∣∣∣∣∞
−∞

= μ,

which can be simplified to yield

λ1
√

π

2λ2

√−λ2

exp[λ0 − 1 − λ2
1/(4λ2)] = −μ.

Finally, we substitute the general form of p(x) into (∗ ∗ ∗) and find
√

π

2λ2

√−λ2

exp[λ0 − 1 − λ2
1/(4λ2)] = −σ2.
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We combine these three results to find the constants:

λ0 = 1 − μ2

2σ2
+ ln[1/(

√
2πσ)]

λ1 = μ/σ2

λ2 = −1/(2σ2).

We substitute these values back into the general form of the density and find

p(x) =
1√
2πσ

exp
[−(x − μ)2

2σ2

]
,

that is, a Gaussian.

21. A Gaussian centered at x = 0 is of the form

p(x) =
1√
2πσ

exp[−x2/(2σ2)].

The entropy for this distribution is given by Eq. 37 in the text:

H(p(x)) = −
∞∫

−∞
p(x)lnp(x)dx

= −
∞∫

−∞

1√
2πσ

exp[−x2/(2σ2)]ln
[

1√
2πσ

exp[−x2/(2σ2)]
]

dx

= ln[
√

2πσ] + 1/2 = ln[
√

2πeσ].

For the uniform distribution, the entropy is

H(p(x)) = −
xu∫

xl

1
|xu − xl| ln

[
1

|xu − xl|
]

dx = −ln
[

1
|xu − xl|

]
= ln[xu − xl].

Since we are given that the mean of the distribution is 0, we know that xu = −xl.
Further, we are told that the variance is σ2, that is

xh∫
xl

x2p(x)dx = σ2

which, after integration, implies

x2
u + xuxl + x2

l = 3σ2.

We put these results together and find for the uniform distribution H(p(x)) = ln[2
√

3σ].
We are told that the variance of the triangle distribution centered on 0 having

half-width w is σ2, and this implies

w∫
−w

x2 w − |x|
w2

dx =

w∫
0

x2 w − x

w2
dx +

0∫
−w

x2 w + x

w2
dx = w2/6 = σ2.
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The entropy of the triangle distribution is then

H(p(x)) = −
w∫

−w

w − |x|
w2

ln
[
w − |x|

w2

]
dx

=

w∫
0

w − x

w2
ln

[
w − x

w2

]
dx −

0∫
−w

w + x

w2
ln

[
w + x

w2

]
dx

= lnw + 1/2 = ln[
√

6σ] + 1/2 = ln[
√

6eσ],

where we used the result w =
√

6σ from the variance condition.
Thus, in order of decreasing entropy, these equal-variance distributions are Gaus-

sian, uniform then triangle, as illustrated in the figure, where each has the same
variance σ2.

-3σ -2σ -σ σ 2σ 3σ

0.1/σ

0.2/σ

0.3/σ

0.4/σ

p(x)

x

22. As usual, we denote our multidimensional Gaussian distribution by p(x) ∼
N(μ,Σ), or

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]
.

According to Eq. 37 in the text, the entropy is

H(p(x)) = −
∫

p(x)lnp(x)dx

= −
∫

p(x)

⎡⎢⎢⎣−1
2
(x − μ)tΣ−1(x − μ) − ln

[
(2π)d/2|Σ|1/2

]
︸ ︷︷ ︸

indep. of x

⎤⎥⎥⎦ dx

=
1
2

∫ ⎡⎣ d∑
i=1

d∑
j=1

(xi − μi)[Σ−1]ij(xj − μj)

⎤⎦ dx +
1
2
ln[(2π)d|Σ|]

=
1
2

d∑
i=1

d∑
j=1

∫
(xj − μj)(xi − μi) [Σ−1]ij︸ ︷︷ ︸

indep. of x

dx +
1
2
ln[(2π)d|Σ|]

=
1
2

d∑
i=1

d∑
j=1

[Σ]ji[Σ−1]ij +
1
2
ln[(2π)d|Σ|]

=
1
2

d∑
j=1

[ΣΣ−1]jj +
1
2
ln[(2π)d|Σ|]
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=
1
2

d∑
j=1

[I]jj︸ ︷︷ ︸
d

+
1
2
ln[(2π)d|Σ|]

=
d

2
+

1
2
ln[(2π)d|Σ|]

=
1
2
ln[(2πe)d|Σ|],

where we used our common notation of I for the d-by-d identity matrix.
23. We have p(x|ω) ∼ N(μ,Σ), where

μ =

⎛⎝ 1
2
2

⎞⎠ and Σ =

⎛⎝ 1 0 0
0 5 2
0 2 5

⎞⎠ .

(a) The density at a test point xo is

p(xo|ω) =
1

(2π)3/2|Σ|1/2
exp

[
−1

2
(xo − μ)tΣ−1(xo − μ)

]
.

For this case we have

|Σ| =

∣∣∣∣∣∣
1 0 0
0 5 2
0 2 5

∣∣∣∣∣∣ = 1
∣∣∣∣ 5 2

2 5

∣∣∣∣ = 21,

Σ−1 =

⎛⎝ 1 0 0
0 5 2
0 2 5

⎞⎠−1

=

⎛⎝ 1 0 0
0
0

(
5
2

2
5

)−1

⎞⎠ =

⎛⎝ 1 0 0
0 5/21 −2/21
0 −2/21 5/21

⎞⎠ ,

and the squared Mahalanobis distance from the mean to xo = (.5, 0, 1)t is

(xo − μ)tΣ−1(xo − μ)

=

⎡⎣⎛⎝ .5
0
1

⎞⎠ −
⎛⎝ 1

2
2

⎞⎠⎤⎦t ⎛⎝ 1 0 0
0 5/21 −2/21
0 −2/21 5/21

⎞⎠−1 ⎡⎣⎛⎝ .5
0
1

⎞⎠ −
⎛⎝ 1

2
2

⎞⎠⎤⎦
=

⎡⎣ −0.5
−8/21
−1/21

⎤⎦t ⎡⎣ −0.5
−2
−1

⎤⎦ = 0.25 +
16
21

+
1
21

= 1.06.

We substitute these values to find that the density at xo is:

p(xo|ω) =
1

(2π)3/2(21)1/2
exp

[
−1

2
(1.06)

]
= 8.16 × 10−3.

(b) Recall from Eq. 44 in the text that Aw = ΦΛ−1/2, where Φ contains the
normalized eigenvectors of Σ and Λ is the diagonal matrix of eigenvalues. The
characteristic equation, |Σ − λI| = 0, in this case is∣∣∣∣∣∣

1 − λ 0 0
0 5 − λ 2
0 2 5 − λ

∣∣∣∣∣∣ = (1 − λ)
[
(5 − λ)2 − 4

]
= (1 − λ)(3 − λ)(7 − λ) = 0.
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The three eigenvalues are then λ = 1, 3, 7 can be read immediately from the
factors. The (diagonal) Λ matrix of eigenvalues is thus

Λ =

⎛⎝ 1 0 0
0 3 0
0 0 7

⎞⎠ .

To find the eigenvectors, we solve Σx = λix for (i = 1, 2, 3):

Σx =

⎛⎝ 1 0 0
0 5 2
0 2 5

⎞⎠x =

⎛⎝ x1

5x2 + 2x3

2x2 + 5x3

⎞⎠ = λi

⎛⎝ x1

x2

x3

⎞⎠ i = 1, 2, 3.

The three eigenvectors are given by:

λ1 = 1 :

⎛⎝ x1

5x2 + 2x3

2x2 + 5x3

⎞⎠ =

⎛⎝ x1

x2

x3

⎞⎠ ⇒ φ1 =

⎛⎝ 1
0
0

⎞⎠ ,

λ2 = 3 :

⎛⎝ x1

5x2 + 2x3

2x2 + 5x3

⎞⎠ =

⎛⎝ 3x1

3x2

3x3

⎞⎠ ⇒ φ2 =

⎛⎝ 0
1/
√

2
−1/

√
2

⎞⎠ ,

λ3 = 7 :

⎛⎝ x1

5x2 + 2x3

2x2 + 5x3

⎞⎠ =

⎛⎝ 7x1

7x2

7x3

⎞⎠ ⇒ φ3 =

⎛⎝ 0
1/

√
2

1/
√

2

⎞⎠ .

Thus our final Φ and Aw matrices are:

Φ =

⎛⎝ 1 0 0
0 1/

√
2 1/

√
2

0 −1/
√

2 1/
√

2

⎞⎠
and

Aw = ΦΛ−1/2 =

⎛⎝ 1 0 0
0 1/

√
2 1/

√
2

0 −1/
√

2 1/
√

2

⎞⎠ ⎛⎝ 1 0 0
0 3 0
0 0 7

⎞⎠
=

⎛⎝ 1 0 0
0 1/

√
6 1/

√
14

0 −1/
√

6 1/
√

14

⎞⎠ .

We have then, Y = At
w(x − μ) ∼ N(0, I).

(c) The transformed point is found by applying A, that is,

xw = At
w(xo − μ)

=

⎛⎝ 1 0 0
0 1/

√
6 1/

√
14

0 −1/
√

6 1/
√

14

⎞⎠ ⎛⎝ −0.5
−2
−1

⎞⎠ =

⎛⎝ −0.5
−1/

√
6

−3/
√

14

⎞⎠ .

(d) From part (a), we have that the squared Mahalanobis distance from xo to μ in
the original coordinates is r2 = (xo −μ)tΣ−1(xo −μ) = 1.06. The Mahalanobis
distance from xw to 0 in the transformed coordinates is xt

wxw = (0.5)2 + 1/6 +
3/14 = 1.06. The two distances are the same, as they must be under any linear
transformation.
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(e) A Gaussian distribution is written as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]
.

Under a general linear transformation T, we have that x′ = Ttx. The trans-
formed mean is

μ′ =
n∑

k=1

x′
k =

n∑
k=1

Ttxk = Tt
n∑

k=1

xk = Ttμ.

Likewise, the transformed covariance matrix is

Σ′ =
n∑

k=1

(x′
k − μ′)(x′

k − μ′)t

= Tt

[
n∑

k=1

(xk − μ)(xk − μ)

]
T

= TtΣT.

We note that |Σ′| = |TtΣT| = |Σ| for transformations such as translation and
rotation, and thus

p(xo|N(μ,Σ)) = p(Ttxo|N(Ttμ,TtΣT)).

The volume element is proportial to |T| and for transformations such as scaling,
the transformed covariance is proportional to |T|2, so the transformed normal-
ization contant contains 1/|T|, which exactly compensates for the change in
volume.

(f) Recall the definition of a whitening transformation given by Eq. 44 in the text:
Aw = ΦΛ−1/2. In this case we have

y = At
wx ∼ N(At

wμ,At
wΣAw),

and this implies that

Var(y) = At
w(x − μ)(x − μ)tAw

= At
wΣA

= (ΦΛ−1/2)tΦΛΦt(ΦΛ−1/2)

= Λ−1/2ΦtΦΛΦtΦΛ−1/2

= Λ−1/2ΛΛ−1/2

= I,

the identity matrix.

24. Recall that the general multivariate normal density in d-dimensions is:

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]
.



36 CHAPTER 2. BAYESIAN DECISION THEORY

(a) Thus we have if σij = 0 and σii = σ2
i , then

Σ = diag(σ2
1 , . . . , σ2

d)

=

⎛⎜⎝ σ2
1 · · · 0
...

. . .
...

0 · · · σ2
d

⎞⎟⎠ .

Thus the determinant and inverse matrix are particularly simple:

|Σ| =
d∏

i=1

σ2
i ,

Σ−1 = diag(1/σ2
1 , . . . , 1/σ2

d).

This leads to the density being expressed as:

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)t

[
diag(1/σ2

1 , . . . , 1/σ2
d)

]
(x − μ)

]
=

1
d∏

i=1

√
2πσi

exp

[
−1

2

d∑
i=1

(
xi − μi

σi

)2
]

.

(b) The contours of constant density are concentric ellipses in d dimensions whose
centers are at (μ1, . . . , μd)t = μ, and whose axes in the ith direction are of
length 2σi

√
c for the density p(x) held constant at

e−c/2

d∏
i=1

√
2πσi

.

The axes of the ellipses are parallel to the coordinate axes. The plot in 2
dimensions (d = 2) is shown:

x1

x2

(μ1 , σ2)

2σ1 c1/2

2σ
2 

c1
/2

(c) The squared Mahalanobis distance from x to μ is:

(x − μ)tΣ−1(x − μ) = (x − μ)t

⎛⎜⎝ 1/σ2
1 · · · 0

...
. . .

...
0 · · · 1/σ2

d

⎞⎟⎠ (x − μ)

=
d∑

i=1

(
xi − μi

σi

)2

.
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Section 2.6

25. A useful discriminant function for Gaussians is given by Eq. 52 in the text,

gi(x) = −1
2
(x − μi)

tΣ−1(x − μi) + ln P (ωi).

We expand to get

gi(x) = −1
2

[
xtΣ−1x − μt

iΣ
−1x − xtΣ−1μi + μt

iΣ
−1μi

]
+ ln P (ωi)

= −1
2

[
xtΣ−1x︸ ︷︷ ︸
indep. of i

−2μt
iΣ

−1x + μt
iΣ

−1μi

]
+ ln P (ωi).

We drop the term that is independent of i, and this yields the equivalent discriminant
function:

gi(x) = μt
iΣ

−1x − 1
2
μt

iΣ
−1μi + ln P (ωi)

= wt
ix + wio,

where

wi = Σ−1μi

wio = −1
2
μt

iΣ
−1μi + ln P (ωi).

The decision boundary for two Gaussians is given by gi(x) = gj(x) or

μt
iΣ

−1x − 1
2
μt

iΣ
−1μi + ln P (ωi) = μt

jΣ
−1x − 1

2
μt

jΣ
−1μj + ln P (ωj).

We collect terms so as to rewrite this as:

(μi − μj)
tΣ−1x − 1

2
μt

iΣ
−1μi +

1
2
μt

jΣ
−1μj + ln

P (ωi)
P (ωj)

= 0

(μi − μj)
tΣ−1

[
x − 1

2
(μi − μj) +

ln [P (ωi)/P (ωj)](μi − μj)

(μi − μj)tΣ−1μi − μj)

]

−1
2
μt

jΣ
−1μi +

1
2
μt

iΣ
−1μj︸ ︷︷ ︸

=0

= 0.

This is the form of a linear discriminant

wt(x − xo) = 0,

where the weight and bias (offset) are

w = Σ−1(μi − μj)

and

xo =
1
2
(μi + μj) −

ln [P (ωi)/P (ωj)](μi − μj)

(μi − μj)tΣ−1(μi − μj)
,
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respectively.
26. The densities and Mahalanobis distances for our two distributions with the same
covarance obey

p(x|ωi) ∼ N(μi,Σ),
r2
i = (x − μi)

tΣ−1(x − μi)

for i = 1, 2.

(a) Our goal is to show that ∇r2
i = 2Σ−1(x − μi). Here ∇r2

i is the gradient of r2
i ,

that is, the (column) vector in d-dimensions given by:⎛⎜⎜⎝
∂r2

i

∂x1
...

∂r2
i

∂xd

⎞⎟⎟⎠ .

We carefully write out the components of ∇r2
i for j = 1, . . . , d, and have:

∂r2
i

∂xj
=

∂

∂xj

[
(x − μi)

tΣ−1(x − μi)
]

=
∂

∂xj

[
xΣ−1x − 2μt

iΣ
−1x + μt

iΣ
−1μi︸ ︷︷ ︸

indep. of x

]

=
∂

∂xj

[
d∑

k=1

d∑
l=1

xkxlξkl − 2
d∑

k=1

d∑
l=1

μi,kξklxl

]
(where Σ−1 = [ξkl]d×d)

=
∂

∂xj

⎡⎢⎣ d∑
k=1

x2
kξkk +

d∑
k=1

d∑
l=1
k �=l

xkxlξkl − 2
d∑

k=1

μi,k

d∑
l=1

xlξkl

⎤⎥⎦
= 2xjξjj +

d∑
k=1
k �=j

xkξkj +
d∑

l=1
l �=j

xlξjl − 2
d∑

k=1

μi,kξkj

= 2

⎡⎢⎣xjξjj +
d∑

k=1
k �=j

xkξkj − 2
d∑

k=1

μi,kξkj

⎤⎥⎦ (note that Σ−1 is symmetric)

= 2

[
d∑

k=1

(xk − μi,k)ξkj

]
= 2 × jth component of Σ−1(x − μi).

Since this is true for each component j, we have

∇r2
i = 2Σ−1(x − μi).

(b) From part (a) we know that ∇r2
i = 2Σ−1(x−μ). We can work in the translated

frame of reference where the mean is at the origin. This does not change the
derivatives. Moreover, since we are dealing with a single Gaussian, we can
dispense with the needless subscript indicating the category. For notational
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x1

x2

at x
 =

 b

simplicity, we set the constant matrix Σ−1 = A. In this translated frame, the
derivative is then ∇r2 = 2Ax. For points along a line through the origin, we
have atx = b for some contant vector a, which specifies the direction. Different
points have different offsets, b. Thus for all points x on the line, we can write

x =
ba

‖a‖2
.

Thus our derivative is

∇r2 = 2Ax = 2A
ba

‖a‖2
.

We are interested in the direction of this derivative vector, not its magnitude.
Thus we now normalize the vector to find a unit vector:

2A ba
‖a‖2√

[2Ax]t[2Ax]
=

A ba
‖a‖2√(

ba
‖a‖2

)t

AtA ba
‖a‖2

=
Aa

atAtAa
.

Note especially that this normalized vector is independent of b, and thus in-
dependent of the point x on the line. Note too that in the very special case
where the Gaussian in hyperspherical (i.e., Σ = qI, the identity matrix and q
a scalar), then Aa = 1/qIa = 1/qa, and AtA = 1/q2ItI = 1/q2I. In this case,
the derivative depends only upon a and the scalar q.

(c) We seek now to show that ∇r2
1 and ∇r2

2 point in opposite direction along the
line from μ1 to μ2. As we saw above, ∇r2

i points in the same direction along
any line. Hence it is enough to show that ∇r2

1 and ∇r2
2 point in the opposite

directions at the point μ1 or μ2. From above we know that μ1 and μ2 are
parallel to each other along the line from μ1 to μ2. Also, ∇r2

i points in the
same direction along any line through μ1 and μ2. Thus, ∇r2

1 points in the same
direction along a line through μ1 as ∇r2

2 along a line through μ2. Thus ∇r2
1

points in the same direction along the line from μ1 to μ2 as ∇r2
2 along the line

from μ2 to μ1. Therefore ∇r2
1 and ∇r2

2 point in opposite directions along the
line from μ1 to μ2.

(d) From Eqs. 60 and 62 the text, we know that the separating hyperplane has
normal vector w = Σ−1(μ1 −μ2). We shall show that the vector perpendicular
to surfaces of constant probabilities is in the same direction, w, at the point of
intersecton of the line connecting μ1 and μ2 and the discriminanting hyperplane.
(This point is denoted xo.)
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As we saw in part (a), the gradient obeys ∇r2
1 = 2Σ−1(xo −μ1), Thus, because

of the relationship between the Mahalanobis distance and probability density
in a Gaussian, this vector is also in the direction normal to surfaces of constant
density. Equation 65 in the text states

xo =
1
2
(μ1 + μ2) −

ln [P (ω1)/P (ω2)]
(μ1 − μ2)tΣ−1(μ1 − μ2)

(μ1 − μ2).

Thus ∇r2
1 evaluated at xo is:

∇r2
1

∣∣∣
x=x0

= 2Σ−1(xo − μ1)

= 2Σ−1

[
1
2
(μ1 + μ2) −

ln [P (ω1)/P (ω2)](μ1 − μ2)
(μ1 − μ2)tΣ−1(μ1 − μ2)

]
= Σ−1(μ2 − μ1)

[
1 − 2ln [P (ω1)/P (ω2)]

(μ1 − μ2)tΣ−1(μ1 − μ2)

]
︸ ︷︷ ︸

=scalar constant

∝ 2Σ−1(μ2 − μ1)
= w.

Indeed, these two vectors are in the same direction.

(e) True. We are given that P (ω1) = P (ω2) = 1/2. As described in the text, for
these conditions the Bayes decision boundary is given by:

wt(x − xo) = 0

where

w = Σ−1(μ1 − μ2)

and

xo =
1
2
(μ1 + μ2) −

=0︷ ︸︸ ︷
ln [P (ω1)/P (ω2)]

(μ1 − μ2)tΣ−1(μ1 − μ2)
(μ1 − μ2)

=
1
2
(μ1 + μ2).

Therefore, we have

(μ1 − μ2)
tΣ−1x =

1
2
(μ1 − μ2)

tΣ−1(μ1 − μ2)

=
1
2

⎡⎣μt
1Σ

−1μ1 − μt
2Σ

−1μ2 + μt
1Σ

−1μ2 − μt
2Σ

−1μ1︸ ︷︷ ︸
=0

⎤⎦ .

Consequently the Bayes decision boundary is the set of points x that satisfy the
following equation:

(μ1 − μ2)
tΣ−1x =

1
2

[
μt

1Σ
−1μ1 − μt

2Σ
−1μ2

]
.
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Equal squared Mahalanobis distances imply the following equivalent equations:

r2
1 = r2

2

(x − μ1)
tΣ−1(x − μ1) = (x − μ2)

tΣ−1(x − μ2)
xtΣ−1x + μt

1Σ
−1μ1 − 2μt

1Σ
−1x = xtΣ−1x + μt

2Σ
−1μ2 − 2μt

2Σ
−1x

μt
1Σ

−1μ1 − μt
2Σ

−1μ2 = 2(μ1 − μ2)
tΣ−1x

(μ1 − μ2)
tΣ−1x =

1
2
(μt

1Σ
−1μ1 − μt

2Σ
−1μ2).

From these results it follows that the Bayes decision boundary consists of points
of equal Mahalanobis distance.

27. Our Gaussian distributions are p(x|ωi) ∼ N(μi,Σi) and prior probabilities are
P (ωi). The Bayes decision boundary for this problem is linear, given by Eqs. 63–65
in the text wt(x − xo) = 0, where

w = Σ−1(μ1 − μ2)

xo =
1
2
(μ1 − μ2) −

ln [P (ω1)/P (ω2)]
(μ1 − μ2)tΣ−1(μ1 − μ2)

(μ1 − μ2).

The Bayes decision boundary does not pass between the two means, μ1 and μ2 if and
only if wt(μ1 − xo) and wt(μ2 − xo) have the same sign, that is, either

wt(μ1 − xo) > 0 and wt(μ2 − xo) > 0

or

wt(μ1 − xo) < 0 and wt(μ2 − xo) < 0.

These conditions are equivalent to

wt(μ1 − xo) = (μ1 − μ2)
tΣ−1

(
μ1 −

1
2
(μ1 + μ2)

)
− ln

[
P (ω1)
P (ω2)

]
=

1
2
(μ1 − μ2)

tΣ−1(μ1 − μ2) − ln
[
P (ω1)
P (ω2)

]
wt(μ2 − xo) = (μ1 − μ2)

tΣ−1

(
μ1 −

1
2
(μ1 + μ2)

)
− ln

[
P (ω1)
P (ω2)

]
= −1

2
(μ1 − μ2)

tΣ−1(μ1 − μ2) − ln
[
P (ω1)
P (ω2)

]
,

and therefore we have:

wt(μ1 − xo) > 0 and wt(μ2 − xo) > 0.

This last equation implies

(μ1 − μ2)
tΣ−1(μ1 − μ2) > 2 ln

[
P (ω1)
P (ω2)

]

and

(μ1 − μ2)
tΣ−1(μ1 − μ2) < −2 ln

[
P (ω1)
P (ω2)

]
.
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Likewise, the conditions can be written as:

wt(μ1 − xo) < 0 and wt(μ2 − xo) < 0

or

(μ1 − μ2)
tΣ−1(μ1 − μ2) < 2 ln

[
P (ω1)
P (ω2)

]
and

(μ1 − μ2)
tΣ−1(μ1 − μ2) > −2 ln

[
P (ω1)
P (ω2)

]
.

In sum, the condition that the Bayes decision boundary does not pass between the
two means can be stated as follows:

Case 1 : P (ω1) ≤ P (ω2). Condition: (μ1 − μ2)tΣ−1(μ1 − μ2) < 2 ln
[

P (ω1)
P (ω2)

]
and

this ensures wt(μ1 − xo) > 0 and wt(μ2 − xo) > 0.

Case 2 : P (ω1) > P (ω2). Condition: (μ1 − μ2)tΣ−1(μ1 − μ2) < 2 ln
[

P (ω1)
P (ω2)

]
and

this ensures wt(μ1 − xo) < 0 and wt(μ2 − xo) < 0.

28. We use Eqs. 42 and 43 in the text for the mean and covariance.

(a) The covariance obeys:

σ2
ij = E [(xi − μi)(xj − μj)]

=

∞∫
−∞

∞∫
−∞

p(xi, xj)︸ ︷︷ ︸
=p(xi)p(xj)

by indep.

(xi − μi)(xj − μj)dxidxj

=

∞∫
−∞

(xi − μi)p(xi)dxi

∞∫
−∞

(xj − μj)p(xj)dxj

= 0,

where we have used the fact that
∞∫

−∞
xip(xi)dxi = μi and

∞∫
−∞

p(xi)dxi = 1.

(b) Suppose we had a two-dimensional Gaussian distribution, that is,(
x1

x2

)
∼ N

((
μ1

μ2

)
,

(
σ2

1 σ12

σ21 σ2
2

))
,

where σ12 = E [(x1 −μ1)(x2 −μ2)]. Furthermore, we have that the joint density
is Gaussian, that is,

p(x1, x2) =
1

2π|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]
.

If σ12 = 0, then |Σ| = |σ2
1σ2

2 | and the inverse covariance matrix is diagonal, that
is,

Σ−1 =
(

1/σ2
1 0

0 1/σ2
2

)
.
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In this case, we can write

p(x1, x2) =
1

2πσ1σ2
exp

[
−1

2

{(
x1 − μ1

σ1

)2

+
(

x2 − μ2

σ2

)2
}]

=
1√

2πσ1

exp

[
−1

2

(
x1 − μ1

σ1

)2
]
· 1√

2πσ2

exp

[
−1

2

(
x2 − μ2

σ2

)2
]

= p(x1)p(x2).

Although we have derived this for the special case of two dimensions and σ12 = 0,
the same method applies to the fully general case in d dimensions and two
arbitrary coordinates i and j.

(c) Consider the following discrete distribution:

x1 =
{

+1 with probability 1/2
−1 with probability 1/2,

and a random variable x2 conditioned on x1 by

If x1 = +1, x2 =
{

+1/2 with probability 1/2
−1/2 with probability 1/2.

If x1 = −1, x2 = 0 with probability 1.

It is simple to verify that μ1 = E(x1) = 0; we use that fact in the following
calculation:

Cov(x1, x2) = E [(x1 − μ1)(x2 − μ2)]
= E [x1x2] − μ2E [x1] − μ1E [x2] − E [μ1μ2]
= E [x1x2] − μ1μ2

=
1
2
P (x1 = +1, x2 = +1/2) +

(
−1

2

)
P (x1 = +1, x2 = −1/2)

+0 · P (x1 = −1)
= 0.

Now we consider

Pr(x1 = +1, x2 = +1/2) = Pr(x1 = 1, x2 = −1/2)
= Pr(x2 = +1/2|x1 = 1)Pr(x1 = 1)

=
1
2
· 1
2

=
1
4
.

However, we also have

Pr(x2 = +1/2) = Pr(x + 2 = +1/2|x1 = 1)Pr(x1 = 1) = 1/4.

Thus we note the inequality

Pr(x1 = 1, x2 = +1/2) = 1/4 �= Pr(x1 = 1)Pr(x2 = +1/2) = 1/8,

which verifies that the features are independent. This inequality shows that
even if the covariance is zero, the features need not be independent.
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29. Figure 2.15 in the text shows a decision region that is a mere line in three di-
mensions. We can understand that unusual by analogy to a one-dimensional problem
that has a decision region consisting of a single point, as follows.

(a) Suppose we have two one-dimensional Gaussians, of possibly different means
and variances. The posteriors are also Gaussian, and the priors P (ωi) can be
adjusted so that the posteriors are equal at a single point, as shown in the figure.
That is to say, the Bayes decision rule is to choose ω1 except at a single point,
where we should choose ω2, as shown in the figure.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

0

P(ωi|x)

x

ω1

ω2

R1 R1R2

(b) Likewise, in the three-dimensional case of Fig. 2.15, the priors can be adjusted
so that the decision region is a single line segment.

30. Recall that the decision boundary is given by Eq. 66 in the text, i.e., g1(x) =
g2(x).

(a) The most general case of a hyperquadric can be written as

xtW1x + wt
1x + w10 = xtW2x + wt

2x + w20

where Wi are positive definite d-by-d matrices, wi are arbitrary vectors in d
dimensions, and wi0 scalar offsets. The above equation can be written in the
form

1
2
xt(Σ−1

1 − Σ−1
2 )x + (Σ−1

1 μ1 − Σ−1
2 μ2)x + (w10 − w20) = 0.

If we have p(x|ωi) ∼ N(μi,Σi) and P (ωi), then we can always choose Σi for
the distribution to be Σi for the classifier, and choose a mean μi such that
Σiμi = wi.

(b) We can still assign these values if P (ω1) = P (ω2).

Section 2.7

31. Recall that from the Bayes rule, to minimize the probability of error, the decision
boundary is given according to:

Choose ω1 if P (ω1|x) > P (ω2|x); otherwise choose ω2.
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(a) In this case, since P (ω1) = P (ω2) = 1/2, we have P (ω1|x) ∝ p(x|ω1); and since
the prior distributions p(x|ωi) have the same σ, therefore the decision boundary
is:

Choose ω1 if |x − μ1| < |x − μ2|, otherwise choose ω2.

Without loss of generality, we assume μ1 < μ2, and thus:

P (error) = P (|x − μ1| > |x − μ2| |ω1)P (ω1) + P (|x − μ2| > |x − μ1| |ω2)P (ω2)

=
1√
2π

∞∫
a

e−u2/2du

where a = |μ2 − μ1|/(2σ).

(b) We note that a Gaussian decay overcomes an inverse function for sufficiently
large argument, that is,

lim
a→∞

1√
2πa

e−a2/2 = 0

and

Pe =
1√
2π

∞∫
a

e−u2/2du

≤ 1√
2π

∞∫
a

u

a
e−u2/2du

=
1√
2πa

e−a2/2.

With these results we can conclude that Pe goes to 0 as a = |μ2 − μ1|/σ goes
to infinity.

32. We note first that the categories have equal priors, P (ω1) = P (ω2) = 1/2, and
spherical normal distributions, that is,

p(x|ωi) ∼ N(μi, σ
2I).

(a) The Bayes decision rule for this problem is given by:

Choose ω1 if p(ω1|x) > p(ω2|x); otherwise choose ω2.

Equal priors, P (ω1) = P (ω2) = 1/2, imply P (ωi|x) ∝ p(x|ωi) for i = 1, 2.
So the decision rule is given by choosing ω1 in any of the below functionally
equivalent conditions:

p(x|ω1) > p(x|ω2)
exp

[−1/2(x − μ1)t(σ2I)−1(x − μ1)
]

(2π)d/2|σ2I|d/2
>

exp
[−1/2(x − μ2)t(σ2I)−1(x − μ2)

]
(2π)d/2|σ2I|d/2

(x − μ1)
t(x − μ1) < (x − μ2)

t(x − μ2)
xtx − 2μt

1x + μt
1μ1 < xtx − 2μt

2x + μt
2μ2

(μ2 − μ1)
tx <

1
2
(−μt

1μ1 + μt
2μ2),
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and otherwise choose ω2.

The minimum probability of error Pe can be computed directly from the Bayes
decision rule, but an easier way of computing Pe is as follows: Since the Bayes
decision rule for the d-dimensional problem is determined by the one-dimensional
random variable Y = (μ2 − μ1)tX, it is sufficient to consider the two-category
one-dimensional problem:

P (Y|ωi) ∼ N(μ̃i, σ̃
2),

with P (ω1) = P (ω2) = 1/2. In this case, the mean and variance are

μ̃i = E(Y|ωi) = (μ2 − μ1)
tμi

σ̃2 = Var(Y|ωi) = (μ2 − μ1)
tσ2I(μ2 − μ1)

t

= σ2‖μ2 − μ1‖2.

As shown in Problem 31, it follows that

Pe =
1√
2π

∞∫
a

e−u2/2du,

where

a =
|μ̃2 − μ̃1|

2σ̃
=

|(μ2 − μ1)tμ2 − (μ2 − μ1)tμ1|
2σ‖μ2 − μ1‖

=
(μ2 − μ1)t(μ2 − μ1)

2σ‖μ2 − μ1‖
=

‖μ2 − μ1‖2

2σ‖μ2 − μ1‖
=

‖μ2 − μ1‖
2σ

.

(b) We work in a translated coordinate system in which μ1 = 0 and μ2 = (μ1, . . . , μd)t.
We use the result

Pe ≤ 1√
2πa

e−a2/2 → 0 if a → ∞,

where for this case we have

a =
‖μ2 − μ1‖

2σ
=

‖μ2 − 0‖
2σ

=
1
2σ

(
d∑

i=1

μ2
i

)1/2

.

We conclude, then, that Pe → 0 if
d∑

i=1

μ2
i → ∞ as d → ∞.

(c) We have Pe → ∞ as d → ∞, provided
d∑

i=1

μ2
i → ∞. This implies that as d → ∞,

the two points μ1,μ2 in d-dimensions become well separated (unless
∞∑

i=1

μ2
i < ∞

implies μi → 0 as i → ∞). Consequently, with increasing d, μ1 and μ2 can be
easily distinguished and Pe → 0.



PROBLEM SOLUTIONS 47

33. Consider a line in d dimensions that is projected down to a line in the lower
dimension space.

(a) The conditional error in d dimensions is

Ed =
∫

line

min[P (ω1)p(x|ω1), P (ω2)p(x|ω2)] dx

=
∫
Γ1

P (ω1)p(x|ω1) dx +
∫
Γ2

P (ω2)p(x|ω2) dx,

where Γ1 and Γ2 are the disjoint segments where the posterior probabilities of
each of the distributions are minimum.

In the lower dimension space we have

Ed−1 =
∫

line

min
[
P (ω1)p(x|ω1) dx, P (ω2)p(x|ω2)

]
dx.

Let us suppose for definiteness that∫
line

P (ω1)p(x|ω1) dx <

∫
line

P (ω2)p(x|ω2) dx,

and thus

Ed−1 =
∫

line

P (ω1)p(x|ω1) dx.

If we let Γ1 + Γ2 denote the full line, we have

Ed−1 =
∫

Γ1+Γ2

P (ω1)p(x|ω1) dx

=
∫
Γ1

P (ω1)p(x|ω1) dx +
∫
Γ2

P (ω1)p(x|ω1) dx

=
∫
Γ1

P (ω1)p(x|ω1) dx +
∫
Γ2

[P (ω2)p(x|ω2) + |f(x)|] dx

= Ed +
∫
Γ2

|f(x)| dx

≥ Ed,

where we have used the fact that P (ω1)p(x|ω1) = P (ω2)p(x|ω2) + |f(x)| in Γ2

for some unknown function f .

(b) In actual pattern recognition problems we rarely have the true distributions,
but have instead just estimates. The above derivation does not hold if the
distributions used are merely estimates.
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Section 2.8

34. Consider the Bhattacharyya and Chernoff bounds for μ1 = −μ2 = μ and σ2
1 =

σ2
2 = μ2.

(a) In this case, the Chernoff bound for the one-dimensional problem is given by
Eqs. 73–75 in the text,

k(β) =
β(1 − β)

2
2μ[βμ2 + (1 − β)μ2]−12μ +

1
2
ln

μ2

μ2

= 2β(1 − β).

We set the derivative to zero,

∂k(β)
∂β

= 2(1 − β) − 2β = 0,

to find the value of β that leads to the extreme value of this error. This op-
timizing value is β∗ = 0.5, which gives k(β∗) = 0.5. The Chernoff bound is
thus

PCher(error) ≤
√

P (ω1)P (ω2)e−1/2.

In this case, the Bhattacharyya bound is the same as the Chernoff bound:

PBhat(error) ≤
√

P (ω1)P (ω2)e−1/2.

(b) Recall the Bayes error given by Eqs. 5 and 7 in the text:

P (error) = P (x ∈ R2|ω1)P (ω1) + P (x ∈ R1|ω2)P (ω2))

=
∫
R2

p(x|ω2)P (ω1)dx +
∫
R1

p(x|ω1)P (ω2)dx.

In order to find the decision point, we set p(x|ω1)P (ω1) = p(x|ω2)P (ω2) and
find

1√
2πσ

exp[−(x − μ)2/(2σ2)]P (ω2) =
1√
2πσ

exp[−(x + μ)2/(2σ2)]P (ω1),

and thus

lnP (ω2) − (x − μ)2

2σ2
= lnP (ω1) − (x + μ)2

2σ2
.

The Bayes value xB that satisfies this equation is

xB =
σ2

2μ
ln

P (ω1)
P (ω2)

.

We substitute xB into the equation for the probability of error and find

P (error) =

xB∫
−∞

p(x|ω2)P (ω2)dx +

∞∫
xB

p(x|ω1)P (ω1)dx
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=

xB∫
−∞

P (ω2)
1√
2πσ

exp[−(x − μ)2/(2σ2)]dx +

∞∫
xB

P (ω1)
1√
2πσ

exp[−(x + μ)2/(2σ2)]dx

= 1 − erf[(xB − μ)/σ)]P (ω2) + erf[(xB + μ)/σ]P (ω1)

= 1 + (P (ω1) − P (ω2))erf
[

σ

2μ
ln

P (ω1)
P (ω2)

− μ

σ

]
.

(c) Problem not yet solved

(d) Problem not yet solved

35. We let Pd(P (ω1),μ1,Σ1, P (ω2),μ2,Σ2), or simply Pd, denote the Bhattacharyya
error bound if we consider the distributions restricted to d dimensions.

(a) We seek to show that k(1/2) must increase as we go from d to d + 1 dimen-
sions. Let μ1,Σ1,μ2,Σ2, k(1/2) be the relevant quantities in (d+1) dimensions.
Equation 75 in the text gives us:

k̃(1/2) =
1
8
(μ̃2 − μ̃1)

t

[
Σ̃1 + Σ̃2

2

]−1

(μ̃2 − μ̃1) +
1
2
ln

∣∣∣∣ ˜Σ1+
˜Σ2

2

∣∣∣∣√
|Σ̃1||Σ̃2|

.

We make the following definitions:

A =
Σ1 + Σ2

2

Ã =
Σ̃1 + Σ̃2

2

=
[

Ad×d ud×1

ut
1×d c1×1

]
μ̃2 − μ̃1 =

[
θd×1

φ1×1

]
, where θ = μ2 − μ1.

Substituting, we then have

(μ̃2 − μ̃1)
t

[
Σ̃1 + Σ̃2

2

]−1

(μ̃2 − μ̃1) = (θt φ)
[

A u
ut c

]−1 (
θt

φ

)
.

Note that A = (Σ1 + Σ2)/2 is invertible and Ã = (Σ̃1 + Σ̃2)/2 is the average
of the appropriate covariance matrices,

Ã−1 =
[

A u
ut c

]−1

=
[

xA−1 + αA−1uutA−1 −αA−1u
−αutA−1 α

]
,

where α = c − utA−1u. Thus, we have the following:

(μ̃2 − μ̃1)

(
Σ̃1 + Σ̃2

2

)−1

(μ̃2 − μ̃1)

= (θt φ)
[

xA−1 + αA−1uutA−1 −αA−1u
−αutA−1 α

] (
θ
φ

)
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= θtA−1θ + αθtA−1uutA−1θ − φαutA−1θ − φαθtA−1u + φ2α

= θtA−1θ + α(φ − θtA−1u)2

≥ θtA−1θ

as α = c − utA−1u =
|Ã|
|A| > 0 (and Ã and A are positive definite)

= (μ2 − μ1)
t

(
Σ1 + Σ2

2

)−1

(μ2 − μ1).

Consequently, we have

(μ̃2 − μ̃1)

(
Σ̃1 + Σ̃2

2

)−1

(μ̃2 − μ̃1) ≥ (μ2 − μ1)
t

(
Σ1 + Σ2

2

)−1

(μ2 − μ1),

where equality holds if an only if φ = θtAA−1u. Now we let

Σ̃i =
[

Σi ui

ut
i ci

]
, i = 1, 2.

Then |Σ̃i| = αi|Σi|, where αi = ci − ut
iΣ

−1
i ui. We have

|Ã| =

∣∣∣∣∣Σ̃1 + Σ̃2

2

∣∣∣∣∣ =
∣∣∣∣Σ1 + Σ2

2

∣∣∣∣ · α = |A|α

where α = c − uA−1u. Now, we also expand our definition of Ã:

Ã =
Σ̃1 + Σ̃2

2
=

[
Σ1 + Σ2

2

]
=

[
Σ1+Σ2

2
u1+u2

2
ut

1+ut
2

2
c1+c2

2

]
=

[
A u
ut c

]
.

Thus, u = (u1 + u2)/2 and c = (c1 + c2)/2. We substitute these values into the
above equations and find

ln

⎛⎝ | ˜Σ1+
˜Σ2

2 |√
|Σ̃1||Σ̃2|

⎞⎠ = ln

(
|Σ1+Σ2

2 |α√|Σ1α1||Σ2α2|

)

= ln

(
|Σ1+Σ2

2 |√|Σ1||Σ2|

)
+ ln

α√
α1α2

If Xi ∼ N(μi,Σi), and X̃i = (Xi, Xi,d+1) ∼ N(μ̃i, Σ̃i) for i = 1, 2, then the
conditional variance of Xi,d+1 given Xi is:

αi = Var(Xi,d+1|Xi), i = 1, 2.

Y =
X1 + X2√

2

Ỹ = (Y, Yd+1) =
X̃1 + X̃2√

2
,

and thus α = Var(Yd+1|Y). Assume now that X1 and X2 are independent. In
that case we have

α = Var(Yd+1|Y) = Var(1/
√

2 (X1,d+1 + X2,d+1)|X1,X2)
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=
1
2

[Var(X1,d+1X1) + Var(X2,d+1|X2)]

=
1
2
(α1 + α2).

We substitute these values and find

ln

⎛⎜⎝
∣∣∣ ˜Σ1+

˜Σ2
2

∣∣∣√
˜∣∣Σ

1

∣∣ ∣∣Σ̃2

∣∣
⎞⎟⎠

d+1

= ln

⎛⎜⎝
∣∣∣ ˜Σ1+

˜Σ2
2

∣∣∣√
˜∣∣Σ

1

∣∣ ∣∣Σ̃2

∣∣
⎞⎟⎠

d

+ ln
α1+α2

2√
α1α2︸ ︷︷ ︸

≥0 since
α1+α2

2 ≥√
α1α2

and thus

ln

⎛⎜⎝
∣∣∣ ˜Σ1+

˜Σ2
2

∣∣∣√
˜∣∣Σ

1

∣∣ ∣∣Σ̃2

∣∣
⎞⎟⎠

d+1

≥ ln

⎛⎜⎝
∣∣∣ ˜Σ1+

˜Σ2
2

∣∣∣√
˜∣∣Σ

1

∣∣ ∣∣Σ̃2

∣∣
⎞⎟⎠

d

,

where equality holds if and only if (α1 + α2)/2 =
√

α1α2, or equivalently if
α1 = α2.

We put these results together and find that k̃(1/2) ≥ k(1/2). This implies

Pd+1 =
√

P (ω1)P (ω2)e−k̃(1/2) ≤
√

P (ω1)P (ω2)e−k(1/2) = Pd.

That is, Pd+1 ≤ Pd, as desired.

(b) The above result was derived adding the (d + 1)th dimension and does not
depend on which dimension is added. This is because, by a permutation of
the coordinates, any dimension that is added can be designated as the (d+1)th

dimension. This gives a permutation of the coordinates of μ̃i, Σ̃i,μi,Σi, i = 1, 2,
but does not change the error bound.

(c) The “pathological case” where equality holds (that is, Pd+1 = Pd) is when:

φ = θtA−1u

α1 = α2,

where

θ = μ2 − μ1

A =
(

Σ1 + Σ2

2

)
Ã =

(
Σ̃1 + Σ̃2

2

)
=

[
A u
ut c

]
φ = μ2,d+1 − μ1,d+1

αi = ci − ut
iΣ

−1
i ui.

For exmple, the condition of equality is satisfied if μ̃1 = μ̃2 and Σ̃1 = Σ̃2.

(d) No, the true error can never increase as we go to a higher dimension, as illus-
trated in Fig. 3.3 in the text.
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(e) For non-pathological distributions, Pd ∝ e−k(1/2) goes to zero as d → ∞. This
is because k(1/2) → ∞ for d → ∞.

(f) No. First note that

Pd(error) ≤ Pd =
√

P (ω1)P (ω2)e−k(1/2)

Pd+1(error) ≤ Pd+1 =
√

P (ω1)P (ω2)e−k̃(1/2).

But, there is no clear relation between Pd+1(error) and Pd =
√

P (ω1)(P (ω2)e−k(1/2).
So, even if k̃(1/2) > k(1/2), it is not guaranteed that Pd+1(error) < Pd(error).

36. First note the definition of k(β) given by Eq. 75 in the text:

k(β) =
β(1 − β)

2
(μ2 − μ1)

t(βΣ2 + (1 − β)Σ1)−1(μ2 − μ1)

+
1
2
ln

[ |βΣ2 + (1 − β)Σ1|
|Σ2|β |Σ1|1−β

]
.

(a) Recall from Eq. 74 we have

e−k(β) =
∫

pβ(x|ω1)p1−β(x|ω2) dx

=
∫ [

exp
[
−β

2 μtΣ−1
1 μ1 − (1−β)

2 μtΣ−1
2 μ2

]
|Σ1|β/2|Σ2|β/2

×exp
[− 1

2{xt(βΣ−1
1 + (1 − β)Σ−1

2 )x − 2xt(βΣ−1
1 + (1 − β)Σ−1

2 )}]
(2π)d/2

]
dx

(b) Again from Eq. 74 we have

e−k(β) =
exp

[−β/2 μt
1Σ

−1
1 μ1 − (1 − β)/2 μt

2Σ
−1
2 μ2

]
|Σ1|β/2|Σ2|(1−β)/2

×
∫

exp
[− 1

2{xtA−1x − 2xA−1θ}]
(2π)d/2

dx

where

A =
(
βΣ−1

1 + (1 − β)Σ−1
2

)−1

and

A−1θ = βΣ−1
1 μ1 + (1 − β)Σ−1

2 μ2.

Thus we conclude that the vector θ is

θ = A(βΣ−1
1 μ1 + (1 − β)Σ−1

2 μ2).

(c) For the conditions given, we have∫
exp

[
1
2
(xtA−1x − 2xtA−1θ)

]
dx = e

1
2θ

t
A−1θ

∫
exp

[
−1

2
(x − θ)tA−1(x − θ)

]
dx

= (2π)d/2e1/2θt
A−1θ|A|1/2
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since

g(x) =
e−

1
2 (x−θ)tA−1(x−θ)

(2π)d/2|A|1/2
,

where g(x) has the form of a d-dimensional Gaussian density. So it follows that

e−k(β) = exp
[
−1

2
{−θA−1θ + βμt

1Σ
−1
1 μ + (1 − β)μt

2Σ
−1
2 μ2}

]
×

|A|1/2

|Σ1|β/2|Σ2|(1−β)/2
· []

Problem not yet solved

37. We are given that P (ω1) = P (ω2) = 0.5 and

p(x|ω1) ∼ N(0, I)
p(x|ω2) ∼ N (1, I)

where 1 is a two-component vector of 1s.

(a) The inverse matrices are simple in this case:

Σ−1
1 = Σ−1

2 =
(

1 0
0 1

)
.

We substitute these into Eqs. 53–55 in the text and find

g1(x) = wt
1x + w10

= 0t

(
x1

x2

)
+ 0 + ln(1/2)

= ln(1/2)

and

g2(x) = wt
2x + w20

= (1, 1)
(

x1

x2

)
− 1

2
(1, 1)

(
1
1

)
+ ln(1/2)

= x1 + x2 − 1 + ln(1/2).

We set g1(x) = g2(x) and find the decision boundardy is x1 + x2 = 1, which
passes through the midpoint of the two means, that is, at

(μ1 + μ2)/2 =
(

0.5
0.5

)
.

This result makes sense because these two categories have the same prior and
conditional distributions except for their means.

(b) We use Eqs. 76 in the text and substitute the values given to find

k(1/2) =
1
8

((
1
1

)
−

(
0
0

))t
[(

1 0
0 1

)
+

(
1 0
0 1

)
2

]−1 ((
1
1

)
−

(
0
0

))
+

1
2
ln

∣∣∣ (1 0
0 1)+(1 0

0 1)
2

∣∣∣√∣∣(1 0
0 1

)∣∣∣∣(1 0
0 1

)∣∣
=

1
8

(
1
1

)t(1 0
0 1

)(
1
1

)
+

1
2
ln

1
1

= 1/4.
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Equation 77 in the text gives the Bhatacharyya bound as

P (error) ≤
√

P (ω1)P (ω2)e−k(1/2) =
√

0.5 · 0.5e−1/4 = 0.3894.

(c) Here we have P (ω1) = P (ω2) = 0.5 and

μ1 =
(

0
0

)
, Σ1 =

(
2 0.5
0.5 2

)
μ2 =

(
1
1

)
, Σ2 =

(
5 4
4 5

)
.

The inverse matrices are

Σ−1
1 =

(
8/5 − 2/15

−2/15 8/15

)
Σ−1

2 =
(

5/9 − 4/9
−4/9 5/9

)
.

We use Eqs. 66–69 and find

g1(x) = −1
2

(
x1

x2

)t( 8/5 − 2/15
−2/15 8/15

)(
x1

x2

)
+

((
8/5 − 2/15

−2/15 8/15

)(
0
0

))t (
x1

x2

)
−1

2

(
0
0

)t( 8/5 − 2/15
−2/15 8/15

)(
0
0

)
− 1

2
ln

∣∣∣∣∣
(

2 0.5
0.5 2

)∣∣∣∣∣ + ln
1
2

= − 4
15

x2
1 +

2
15

x1x2 − 4
15

x2
2 − 0.66 + ln

1
2
,

and

g2(x) = −1
2

(
x1

x2

)t( 5/9 − 4/9
−4/9 5/9

)(
x1

x2

)
+

((
5/9 − 4/9

−4/9 5/9

)(
1
1

))t (
x1

x2

)
−1

2

(
1
1

)t( 5/9 − 4/9
−4/9 5/9

)(
1
1

)
− 1

2
ln

∣∣∣∣∣
(

5 4
4 5

)∣∣∣∣∣ + ln
1
2

= − 5
18

x2
1 +

8
18

x1x2 − 5
18

x2
2 +

1
9
x1 +

1
9
x2 − 1

9
− 1.1 + ln

1
2
.

The Bayes decision boundary is the solution to g1(x) = g2(x) or

x2
1 + x2

2 − 28x1x2 − 10x1 − 10x2 + 50 = 0,

which consists of two hyperbolas, as shown in the figure.

We use Eqs. 76 and 77 in the text and find

k(1/2) =
1
8

((
1
1

)
−

(
0
0

))t
[(

2 0.5
0.5 2

)
+

(
5 4
4 5

)
2

]−1 ((
1
1

)
−

(
0
0

))
+ ln

∣∣∣ (2 0.5
0.5 2)+(5 4

4 5)
2

∣∣∣√∣∣(2 0.5
0.5 2

)∣∣∣∣(5 4
4 5

)∣∣
=

1
8

(
1
1

)t(3.5 2.25
2.25 3.5

)−1(1
1

)
+

1
2
ln

7.1875
5.8095

= 0.1499.
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Equation 77 in the text gives the Bhatacharyya bound as

P (error) ≤
√

P (ω1)P (ω2)e−k(1/2) =
√

0.5 · 0.5e−1.5439 = 0.4304.

38. We derive the Bhattacharyya error bound without first examining the Chernoff
bound as follows.

(a) We wish to show that min[a, b] ≤ √
ab. We suppose without loss of generality

that a ≤ b, or equivalently b ≤ a+δ for δ > 0. Thus
√

ab =
√

a(a + δ) ≥
√

a2 =
a = min[a, b].

(b) Using the above result and the formula for the probability of error given by
Eq. 7 in the text, we have:

P (error) =
∫

min [P (ω1)p(x|ω1), P (ω2)p(x|ω2)] dx

≤
√

P (ω1)P (ω2)︸ ︷︷ ︸
≤1/2

∫ √
p(x|ω1)p(x|ω2) dx︸ ︷︷ ︸

=ρ

≤ ρ/2,

where for the last step we have used the fact that min[P (ω1), P (ω2)] ≤ 1/2,
which follows from the normalization condition P (ω1) + P (ω2) = 1.

39. We assume the underlying distributions are Gaussian.

(a) Based on the Gaussian assumption, we can calculate (x∗ − μ2)/σ2 from the hit
rate Phit = P (x > x∗|x ∈ ω2). We can also calculate (x∗−μ1)/σ1 from the false
alarm rate Pfalse = P (x > x∗|x ∈ ω1). Since σ1 = σ2 = σ, the discriminability
is simply

d′ =
∣∣∣μ2 − μ1

σ

∣∣∣ =
∣∣∣x∗ − μ1

σ1
− x∗ − μ2

σ2

∣∣∣.
(b) Recall the error function from Eq. 96 in the Appendix of the text:

erf[u] =
2√
π

u∫
0

e−x2
dx.
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We can express the probability of a Gaussian distribution in terms of the error
function as:

P (x > x∗) = 1/2 − erf
[
x∗ − μ

σ

]
and thus

x∗ − μ

σ
= erf−1 [1/2 − P (x > x∗)] .

We let Phit = P (x > x∗|x ∈ ω2) and Pfalse = P (x > x∗|x ∈ ω1). The
discriminability can be written as

d′ =
μ2 − μ1

σ
=

x∗ − μ1

σ
− x∗ − μ2

σ
= erf−1[1/2 − Pfalse] − erf−1[1/2 − Phit].

We substitute the values for this problem and find

d′1 = erf−1[0.2] − erf−1[−0.3] = 0.52 + 0.84 = 1.36
d′2 = erf−1[0.1] − erf−1[−0.2] = 0.26 + 0.52 = 0.78.

(c) According to Eq. 70 in the text, we have

Case 1 : P (error) =
1
2
[0.3 + (1 − 0.8)] = 0.25

Case 2 : P (error) =
1
2
[0.4 + (1 − 0.7)] = 0.35.

(d) Because of the symmetry property of the ROC curve, the point (Phit, Pfalse) and
the point (1−Phit, 1−Pfalse) will go through the same curve corresponding to
some fixed d′. For case B, (0.1, 0.3) is also a point on ROC curve that (0.9, 0.7)
lies. We can compare this point with case A, going through (0.8, 0.3) and the
help of Fig. 2.20 in the text, we can see that case A has a higher discriminability
d′.

40. We are to assume that the two Gaussians underlying the ROC curve have different
variances.

(a) From the hit rate Phit = P (x > x∗|x ∈ ω2) we can calculate (x∗−μ2)/σ2. From
the false alarm rate Pfalse = P (x > x∗|x ∈ ω1) we can calculate (x∗ − μ1)/σ1.
Let us denote the ratio of the standard deviations as σ1/σ2 = K. Then we can
write the discriminability in this case as

d′a =
∣∣∣μ2 − μ1√

σ1σ2

∣∣∣ =
∣∣∣μ2 − x∗
√

σ1σ2
− x∗ − μ1√

σ1σ2

∣∣∣ =
∣∣∣x∗ − μ2

σ2/K
− x∗ − μ1

Kσ1

∣∣∣.
Because we cannot determine K from (μ2−x∗)/σ2 and (x∗−μ1)/σ1, we cannot
determine d′ uniquely with only Phit = P (x > x∗|x ∈ ω2) and Pfalse = P (x >
x∗|x ∈ ω1).

(b) Suppose we are given the following four experimental rates:

Phit1 = P (x > x∗
1|ω2) Pfalse1 = P (x > x∗

1|ω1)
Phit2 = P (x > x∗

2|ω2) Pfalse2 = P (x > x∗
2|ω1).
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Then we can calculate the four quantities

a1 =
x∗

1 − μ2

σ2
= erf−1[1/2 − Phit1] b1 =

x∗
1 − μ1

σ1
= erf−1[1/2 − Pfalse1] for x∗

1

a2 =
x∗

2 − μ2

σ2
= erf−1[1/2 − Phit2] b2 =

x∗
2 − μ1

σ1
= erf−1[1/2 − Pfalse2] for x∗

2.

Then we have the following relations:

a1 − a2 =
x∗

1 − x∗
2

σ2

b1 − b2 =
x∗

1 − x∗
2

σ1

K =
a1 − a2

b1 − b2
=

σ1

σ2
.

Thus, with K we can calculate d′a as

d′a =
∣∣∣μ2 − μ1√

σ1σ2

∣∣∣ =
∣∣∣μ2 − x∗

1

σ2/K
− x∗

1 − μ1

Kσ1

∣∣∣
=

∣∣∣ − (a1 − a2)a1

b1 − b2
− (b1 − b2)b1

a1 − a2

∣∣∣.
(c) For all those x∗

1 and x∗
2 that satisfy

x∗
1 − μ2

σ2
= −x∗

2 − μ2

σ2

or

x∗
1 − μ1

σ1
= −x∗

2 − μ1

σ1
.

That is, the two different thresholds do not provide any additional information
and conveys the same information as only one observation. As explained in
part (a), this kind of result would not allow us to determine d′a.

(d) See figure.
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41. We use the notation shown in the figure.
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δ
μ1 μ2

p(x|ωi)

x*

ω1 ω2

(a) Here our triangle distribution is

T (μ, δ) =
{

δ−|x−μ|
δ2 |x − μ| ≤ δ

0 otherwise.

We assume without loss of generality that μ2 ≥ μ1 and then define d′T = (μ2 −
μ1)/δ. We then limit our considerations to overlapping distributions, that is,
0 ≤ dT ≤ 2. There are two cases to consider:

• 1 ≤ d′T ≤ 2, where the decision boundary x∗ is confined to the region of
overlap, as shown in the figure.

• 0 ≤ d′T ≤ 1 where the decision boundary x∗ can be in one of three regions,
as shown in the figure.

We denote the hit rate H =
∫

P (x > x∗|ω2)dx, false alarm rate F =
∫

P (x >
x∗|ω1)dx, and miss rate M = 1 − F . The hit rate is

H = 1 −
x∗∫

μ2−δ

T (μ2, δ)dx = 1 − (x∗ − μ2 + δ)2

2δ2

F =

μ1+δ∫
x∗

T (μ1, δ)dx =
(μ1 + δ − x∗)2

2δ2

d′T = 1 −
√

2F −
√

2(1 − H)

H = 1 − (2 − d′T −√
2F )2

2

which is valid for 0 ≤ F ≤ (2 − d′T )2/2.

For the second case μ2 − δ ≤ x∗ < μ1, that is, 0 ≤ d∗T ≤ 1, we have

H = 1 − (x∗ − μ1 + δ)2

2δ2

F = 1 − (x∗ − μ1 + δ)2

2δ2

d′T =
√

2(1 − F ) −
√

2(1 − H)

H = 1 − (
√

2(1 − F ) − d′T )2

2
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which is valid for 1/2 ≤ F ≤ 1 − d′2T /2.

For the third case, μ2 ≤ x∗ ≤ μ1 + δ and 0 ≤ d′T ≤ 1 we have

F =
(μ1 + δ − x∗)2

2δ2

H =
(μ2 + δ − x∗)2

2δ2

d′T =
√

2H −
√

2F ,

valid for 0 ≤ F ≤ (1 − d′T )2/2.

(b) If d′T = 2.0, then the two densities do not overlap. If x∗ is closer to the mean
of ω1 than to the mean of ω2, then the modified ROC curve goes through
P (x > x∗|x ∈ ω1) = 1, P (x > x∗|x ∈ ω2) = 0. Alternatively, if x∗ is closer to
the mean of ω2 than to the mean of ω1, then we get the converse. In short,
there is no meaningful value of d′T greater than 2.0.
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0.7

0.8
0.9

dT'=1.0

P(x<x*|x ε ω2)

P
(x

<
x*

|x
 ε

 ω
1)

0.0

(c) For H = 0.4 and F = 0.2, we can rule out case I because H < 0.5. We can
rule out Case II-i because F < 0.5. Can rule out Case II-ii because H < 0.5.
Thus d′T =

√
2H − √

2F = 0.262. We assume P (ω1) = P (ω2) = 0.5, then
by symmetry, x∗ = μ1 + 0.131δ = μ2 − 0.131δ. The Bayes optimal is then
P ∗

E = 1/2(0.378 + 0.378) = 0.378.

(d) Here x∗ = μ1 + (d′T /2)δ = μ2 − (d′T /2)δ.

(e) Here H = 0.9 and F = 0.3. Case I: d′T = 2 − √
2F − √

2(1 − H) = 0.778.
This is not valide because d′T < 1. Cannot be case II-i since F < 0.5. Cannot
be case II-iii since H > 0.5. Thus it is case II-ii and d′T = 0.778. Thus x∗ =
μ1 + 0.389δ = μ2 − 0.389δ. Also, F = M = 0.187, and the Bayes error is
P ∗

E = 0.187.

42. We consider bounds on min[p, 1 − p], where p = p(x|ω1).

(a) Here the candidate lower bound is

bL(p) =
1
β

ln
[

1 + e−β

e−βp + e−β(1−p)

]
with β > 0. First, note that bL(p) is symmetry with respect to the interchange
p ↔ (1−p), and thus it is symmetric with respect to the value p = 0.5. We need
consider only the range 0 ≤ p ≤ 1/2 as the limit properties we prove there will
also hold for 1/2 ≤ p ≤ 1. In the range 0 ≤ p ≤ 1/2, we have min[p, 1 − p] = p.
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The simplest way to prove that bL(p) is a lower bound for p in the range 0 ≤
p ≤ 1/2 is to note that bL(0) = 0, and the derivative is always less than the
derivative of min[p, 1 − p]. Indeed, at p = 0 we have

bL(0) =
1
β

ln
[
1 + e−β

1 + e−β

]
=

1
β

ln[1] = 0.

Moreover the derivative is

∂

∂p
bL(p) =

eβ − e2βp

eβ + e2βp

< 1 =
∂

∂p
min[p, 1 − p]

in the range 0 ≤ p ≤ 1/2 for β < ∞.

(b) To show that bL(p) is an arbitrarily tight bound, we need show only that in the
limit β → ∞, the derivative, ∂bL(p)/∂p approaches 1, the same as

∂

∂p
min[p, 1 − p]

in this range. Using the results from part (a) we find

lim
β→∞

∂

∂p
bL(p) = lim

β→∞
eβ − e2βp

eβ + e2βp
= 1

in the range 0 ≤ p < 1/2.

(c) Our candidate upper bound is specified by

bU (p) = bL(p) + [1 − 2bL(0.5)]bG(p),

where gU (p) obeys several simple conditions, restated in part (d) below. We let
bL(p) = p− θ(p), where from part (a) we know that θ(p) is non-negative and in
fact is at least linear in p. By the conditions given, we can write bG(p) = p+φ(p),
where φ(p) is non-negative and φ(0) = φ(1/2) = 0. Then our candidate upper
limit obeys

bU (p) = p − θ(p) + [1 − 2(1/2 − θ(1/2))](p + φ(p))
= p − θ(p) + θ(1/2)(p + φ(p)).

We show that this is an upper bound by calculating the difference between this
bound and the Bayes limit (which is min[p, 1−p] = p in the range 0 ≤ p ≤ 1/2).
Thus we have

bU (p) − p = −θ(p) + pθ(1/2) + θ(1/2)φ(p)
> 0.

(d) We seek to confirm that bG(p) = 1/2sin[πp] has the following four properties:

• bG(p) ≥ min[p, 1−p]: Indeed, 1/2 sin[πp] ≥ p for 0 ≤ p ≤ 1/2, with equality
holding at the extremes of the interval (that is, at p = 0 and p = 1/2). By
symmetry (see below), the relation holds for the interval 1/2 ≤ p ≤ 1.
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• bG(p) = bG(1− p): Indeed, the sine function is symmetric about the point
π/2, that is, 1/2 sin[π/2 + θ] = 1/2 sin[π/2 − θ]. Hence by a simple
substitution we see that 1/2 sin[πp] = 1/2 sin[π(1 − p)].

• bG(0) = bG(1) = 0: Indeed, 1/2 sin[π · 0] = 1/2 sin[π · 1] = 0 — a special
case of the fact bG(p) = bG(1 − p), as shown immediately above.

• bG(0.5) = 0.5: Indeed, 1/2 sin[π0.5] = 1/2 · 1 = 0.5.

(e) See figure.
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Section 2.9

43. Here the components of the vector x = (x1, . . . , xd)t are binary-valued (0 or 1),
and

pij = Pr[xi = 1|ωj ]
i = 1, . . . , d
j = 1, . . . , c.

(a) Thus pij is simply the probability we get a 1 in feature xi given that the category
is ωj . This is the kind of probability structure we find when each category has
a set of independent binary features (or even real-valued features, thresholded
in the form “yi > yi0?”).

(b) The discriminant functions are then

gj(x) = ln p(x|ωj) + ln P (ωj).

The components of x are statistically independent for all x in ωj , then we can
write the density as a product:

p(x|ωj) = p((x1, . . . , xd)t|ωj)

=
d∏

i=1

p(xi|ωj) =
d∏

i=1

pxi
ij (1 − pij)1−xi .

Thus, we have the discriminant function

gj(x) =
d∑

i=1

[xi ln pij + (1 − xi) ln (1 − pij)] + ln P (ωj)

=
d∑

i=1

xi ln
pij

1 − pij
+

d∑
i=1

ln (1 − pij) + ln P (ωj).
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44. The minimum probability of error is achieved by the following decision rule:

Choose ωk if gk(x) ≥ gj(x) for all j �= k,

where here we will use the discriminant function

gj(x) = ln p(x|ωj) + ln P (ωj).

The components of x are statistically independent for all x in ωj , and therefore,

p(x|ωj) = p((x1, . . . , xd)t|ωj) =
d∏

i=1

p(xi|ωj),

where

pij = Pr[xi = 1 |ωj ],
qij = Pr[xi = 0 |ωj ],
rij = Pr[xi = −1 |ωj ].

As in Sect. 2.9.1 in the text, we use exponents to “select” the proper probability,
that is, exponents that have value 1.0 when xi has the value corresponding to the
particular probability and value 0.0 for the other values of xi. For instance, for the
pij term, we seek an exponent that has value 1.0 when xi = +1 but is 0.0 when xi = 0
and when xi = −1. The simplest such exponent is 1

2xi + 1
2x2

i . For the qij term, the
simplest exponent is 1−x2

i , and so on. Thus we write the class-conditional probability
for a single component xi as:

p(xi|ωj) = p
1
2 xi+

1
2 x2

i

ij q
1−x2

i
ij r

− 1
2 xi+

1
2 x2

i

ij

i = 1, . . . , d
j = 1, . . . , c

and thus for the full vector x the conditional probability is

p(x|ωj) =
d∏

i=1

p
1
2 xi+

1
2 x2

i

ij q
1−x2

i
ij r

− 1
2 xi+

1
2 x2

i

ij .

Thus the discriminant functions can be written as

gj(x) = ln p(x|ωj) + ln P (ωj)

=
d∑

i=1

[(
1
2
xi +

1
2
x2

i

)
ln pij + (1 − x2

i )ln qij +
(
−1

2
xi +

1
2
x2

i ln rij

)]
+ ln P (ωj)

=
d∑

i=1

x2
i ln

√
pijrij

qij
+

1
2

d∑
i=1

xiln
pij

rij
+

d∑
i+1

ln qij + ln P (ωj),

which are quadratic functions of the components xi.
45. We are given that P (ω1) = P (ω2) = 1/2 and

pi1 = p > 1/2
pi2 = 1 − p i = 1, . . . , d,

where d is the dimension, or number of features.
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(a) The minimum error decision rule is

Choose ω1 if
d∑

i=1

xiln p
1−p +

d∑
i=1

ln (1 − p) + ln 1
2

>
d∑

i=1

xiln 1−p
p +

d∑
i=1

ln p + ln 1
2 .

This rule can be expressed as(
d∑

i=1

xi

)[
ln

p

1 − p
− ln

1 − p

p

]
> d ln p − d ln (1 − p)(

d∑
i=1

xi

)(
ln

p

1 − p

)
× 2 > d ln

p

1 − p

or simply

d∑
i=1

xi > d/2.

(b) We denote the minimum probability of error as Pe(d, p). Then we have:

Pe(d, p) = P (error|ω1)P (ω1) + P (error|ω2)P (ω2)

= P

(
d∑

i=1

xi ≤ d/2
∣∣ω1

)
× 1/2 + P

(
d∑

i=1

xi > d/2
∣∣ω1

)
× 1/2.

As d is odd, and
d∑

i=1

is an integer, we have

Pe(d, p) = P

(
d∑

i=1

xi ≤ d − 1
2

∣∣∣∣∣ω1

)
× 1/2 + P

(
d∑

i=1

xi ≥ d + 1
2

∣∣∣∣∣ω2

)
× 1/2

= 1/2
(d−1)/2∑

k=0

(
d

k

)
pk(1 − p)d−k + 1/2

d∑
k=(d+1)/2

(
d

k

)
(1 − p)kpk.

We substitute k′ = d − k in the second summation, use the fact that
(

d
k′

)
=(

d
d−k′

)
, and find

Pe(d, p) = 1/2
(d−1)/2∑

k=0

(
d

k

)
pk(1 − p)d−k + 1/2

(d−1)/2∑
k′=0

(
d

k′

)
pk′

(1 − p)d−k′

=
(d−1)/2∑

k=0

(
d

k

)
pk(1 − p)d−k.

(c) We seek the limit for p → 1/2 of Pe(d, p). Formally, we write

lim
p→1/2

Pe(d, p) =
(d−1)/2∑

k=0

(
d

k

)
lim

p→1/2
pk(1 − p)d−k
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=
(d−1)/2∑

k=0

(
d

k

) (
1
2

)d

=
(

1
2

)d (d−1)/2∑
k=0

(
d

k

)

=
(

1
2

)d 1
2

[
d∑

k=0

(
d

k

)]
=

(
1
2

)d

× 2d

2
=

1
2
.

Indeed, in the case p → 1/2, the probability of error will be 1/2.

(d) Note that as d → ∞, the binomial probability
(

d
k

)
pk(1 − p)d−k can be approxi-

mated by the normal density with mean dp and variance dp q. Thus we have

lim
d→∞

Pe(d, p) = lim
d→∞

(d−1)/2∑
k=0

(
d

k

)
pk(1 − p)d−k

= lim
d→∞

P (0 ≤ X ≤ (d − 1)/2) where X ∼ N(dp, dp q)

= lim
d→∞

P

( −dp√
dp q

≤ Z ≤ (d − 1)/2 − dp√
dp q

)
where Z ∼ N(0, 1)

= lim
d→∞

P

(
−

√
dp q ≤ Z ≤

√
z(1/2 − p) − d/2√

dp q

)
.

As P > 1/2, lim
d→∞

−√
dp q = −∞ and lim

d→∞
√

d (1/2 − p) = −∞. Thus in the

limit of very large dimension, we have

lim
d→∞

Pe(d, p) = Pr(−∞ ≤ Z ≤ −∞) = 0.

46. The general minimum-risk discriminant rule is given by Eq. 16 in the text:

Choose ω1 if (λ11 − λ21)p(x|ω1)P (ω1) < (λ22 − λ12)p(x|ω2)P (ω2); otherwise choose ω2.

Under the assumption λ21 > λ11 and λ12 > λ22, we thus have

Choose ω1 if
(λ21 − λ11)p(x|ω1)P (ω1)
(λ12 − λ22)p(x|ω2)P (ω2)

> 1,

or

Choose ω1 if ln
p(x|ω1)
p(x|ω2)

+ ln
P (ω1)
P (ω2)

+ ln
λ21 − λ11

λ12 − λ22
> 0.

Thus the discriminant function for minimum risk, derived by taking logarithms in
Eq. 17 in the text, is:

g(x) = ln
p(x|ω1)
p(x|ω2)

+ ln
P (ω1)
P (ω2)

+ ln
λ21 − λ11

λ12 − λ22
.

For the case of independent features given in this problem, we have

ln
p(x|ω1)
p(x|ω2)

=
d∑

i=1

wixi +
d∑

i=1

ln
1 − pi

1 − qi
,

where

wi = ln
pi(1 − qi)
qi(1 − pi)

, i = 1, . . . , d.



PROBLEM SOLUTIONS 65

Therefore, the discriminant function can be written as:

g(x) =
d∑

i=1

wixi +
d∑

i=1

ln
1 − pi

1 − qi
+ ln

P (ω1)
P (ω2)

+ ln
λ21 − λ11

λ12 − λ22

= wtx + w0.

47. Recall the Poisson distribution for a discrete variable x = 0, 1, 2, . . ., is given by

P (x|λ) = e−λ λx

x!
.

(a) The mean, or expectation of this distribution is defined as

E [x] =
∞∑

x=0

xP (x|λ) =
∞∑

x=0

xe−λ λx

x!
= λe−λ

∞∑
x=1

λx−1

(x − 1)!
= λe−λeλ = λ.

(b) The variance of this distribution is

Var[x] = E [(x − E [x])2] = E [x2] − (E [x])2︸ ︷︷ ︸
λ2

.

To evaluate this variance, we need E [x2]:

E [x2] = E [x(x − 1) + x] = E [x(x − 1)] + E [x]

=
∞∑

x=0

(x(x − 1)e−λ λx

x!
+ λ

= λ2e−λ
∞∑

x=2

λx−2

(x − 2)!
+ λ

= λ2e−λ
∞∑

x′=0

λx′

x′!
+ λ

= λ2e−λeλ + λ

= λ2 + λ,

where we made the substitution x′ ← (x − 2) in the fourth step. We put the
above results together and find

Var[x] = E [(x − E [x])2] = E [x2] − (E [x])2 = λ2 + λ − λ2 = λ.

(c) First recall the notation �λ�, read “floor of λ,” indicates the greatest integer less
than λ. For all x < �λ� ≤ λ, then, we have

λx

x!
=

λx−1

(x − 1)!
λ

x︸︷︷︸
>1

>
λx−1

(x − 1)!
.

That is, for x < �λ� ≤ λ, the probability increases as x increases. Conversely,
for x > λ ≥ �λ� we have

λx

x!
=

λx−1

(x − 1)!
λ

x︸︷︷︸
<1

>
λx−1

(x − 1)!
.
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That is, for x > λ ≥ �λ�, the probability decreases as x increases. Thus, the
probability is maximized for integers x ∈ [�λ�, λ]. In short, if λ is not an integer,
then x = �λ� is the mode; if λ is an integer, then both �λ� and λ are modes.

(d) We denote the two distributions

P (x|λi) = e−λi
λx

i

x!

for i = 1, 2, and by assumption λ1 > λ2. The likelihood ratio is

P (x|λ1)
P (x|λ2)

=
e−λ1λx

1

e−λ2λx
2

= eλ2−λ1

(
λ1

λ2

)x

.

Thus the Bayes decision rule is

Choose ω2 if eλ2−λ1

(
λ1

λ2

)x

> 1,

or equivalently if x <
(λ2 − λ1)

ln[λ1] − ln[λ2]
;

otherwise choose ω1,

as illustrated in the figure (where the actual x values are discrete).
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(e) The conditional Bayes error rate is

P (error|x) = min
[
e−λ1

λx
1

x!
, e−λ2

λx
2

x!

]
.

The Bayes error, given the decision rule in part (d) is

PB(error) =
x∗∑

x=0

eλ2
λx

2

x!
+

∞∑
x=x∗

e−λ1
λx

1

x!
,

where x∗ = �(λ2 − λ1)/(ln[λ1] − ln[λ2])�.

Section 2.10

48. In two dimensions, the Gaussian distribution is

p(x|ωi) =
1

2π|Σi|1/2
exp

[
−1

2
(x − μi)

tΣ−1
i (x − μi)

]
.
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(a) By direct calculation using the densities stated in the problem, we find that for
x =

(
.3
.3

)
that p(x|ω1)P (ω1) = 0.04849, p(x|ω2)P (ω2) = 0.03250 and p(x|ω3)P (ω3) =

0.04437, and thus the pattern should be classified as category ω1.

(b) To classify
(∗
.3

)
, that is, a vector whose first component is missing and its second

component is 0.3, we need to marginalize over the unknown feature. Thus we
compute numerically

P (ωi)p
((∗

.3

)∣∣∣ωi

)
= P (ωi)

∞∫
−∞

p

((
x

.3

)∣∣∣ωi

)
dx

and find that P (ω1)p((∗, .3)t|ω1) = 0.12713, P (ω1)p((∗, .3)t|ω2) = 0.10409, and
P (ω1)p((∗, .3)t|ω3) = 0.13035. Thus the pattern should be categorized as ω3.

(c) As in part (a), we calculate numerically

P (ωi)p̃
((

.3
∗
)∣∣∣ωi

)
= P (ωi)

∞∫
−∞

p

((
.3
y

)∣∣∣ωi

)
dy

and find that P (ω1)p((.3, ∗)t|ω1) = 0.12713, P (ω1)p((.3, ∗)t|ω2) = 0.10409, and
P (ω1)p((.3, ∗)t|ω3) = 0.11346. Thus the pattern should be categorized as ω1.

(d) We follow the procedure in part (c) above:

x = (.2, .6)t

• P (ω1)p(x|ω1) = 0.04344.
• P (ω2)p(x|ω2) = 0.03556.
• P (ω3)p(x|ω3) = 0.04589.

Thus x = (.2, .6)t should be categorized as ω3.

x = (∗, .6)t

• P (ω1)p(x|ω1) = 0.11108.
• P (ω2)p(x|ω2) = 0.12276.
• P (ω3)p(x|ω3) = 0.13232.

Thus x = (∗, .6)t should be categorized as ω3.

x = (.2, ∗)t

• P (ω1)p(x|ω1) = 0.11108.
• P (ω2)p(x|ω2) = 0.12276.
• P (ω3)p(x|ω3) = 0.10247.

Thus x = (∗, .6)t should be categorized as ω2.

49. Equation 95 in the text states

P (ωi|xg,xb) =
∫

gi(x)p(x)p(xb|xt)dxt∫
p(x)p(xb|xt)dxt

.

We are given that the “true” features, xt, are corrupted by Gaussian noise to give us
the measured “bad” data, that is,

p(xb|xt) =
1

(2π)d/2|Σ|exp
[
−1

2
(xt − μi)

tΣ−1(xt − μi)
]

.
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We drop the needless subscript i indicating category membership and substitute this
Gaussian form into the above. The constant terms, (2π)d/2|Σ|, cancel, and we then
find that the probability of the category given the good and the measured bad data
is

P (ω|xg,xb) =

∫
g(x)p(x)exp[− 1

2 (xt − μ)tΣ−1(xt − μ)]dxt∫
p(x)exp[− 1

2 (xt − μ)tΣ−1(xt − μ)]dxt]dxt

.

After integration, this gives us the final answer,

P (ω|xg,xb) =
P (ω)p(xg,xb|ω)

p(xg,xb)
,

which is the result from standard Bayesian considerations.

Section 2.11

50. We use the values from Example 4 in the text.

(a) For this case, the probabilities are:

P (a1) = P (a4) = 0.5
P (a2) = P (a3) = 0
P (b1) = 1
P (b2) = 0
P (d1) = 0
P (d2) = 1.

Then using Eq. 99 in the text we have

PP(x1) ∼ P (x1|a1, b1)P (a1)P (b1) + 0 + 0 + 0 + 0 + 0 + P (x1|a4, b1)P (a4)P (b1) + 0

=
0.9 · 0.65

0.9 · 0.65 + 0.1 · 0.35
· 0.5 · 1 +

0.8 · 0.65
0.8 · 0.65 + 0.2 · 0.35

0.5 · 1
= 0.472 + 0.441
= 0.913.

A similar calculation gives

PP(x2) ∼ P (x2|a1, b1)P (a1)P (b1) + 0 + 0 + 0 + 0 + 0 + P (x2|a4, b1)P (a4)P (b1) + 0

=
0.35 · 0.1

0.9 · 0.65 + 0.1 · 0.35
0.5 · 1 +

0.2 · 0.35
0.8 · 0.65 + 0.2 · 0.35

0.5 · 1
= 0.87.

Since the lightness is not measured, we can consider only thickness

PC(x1) ∼ P (eD|x2)
= P (eD|d1)P (d1|x1) + P (eD|d2)P (d2|x1)
= 0 · 0.4 + 1 · 0.6
= 0.6.
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We normalize these and find

P (x1|e) =
0.913 · 0.6

0.913 · 0.6 + 0.087 · 0.05
= 0.992

P (x2|e) =
0.087 · 0.05

0.913 · 0.6 + 0.087 · 0.05
= 0.008.

Thus, given all the evidence e throughout the belief net, the most probable
outcome is x1, that is, salmon. The expected error is the probability of finding
a sea bass, that is, 0.008.

(b) Here we are given that the fish is thin and medium lightness, which implies

P (eD|d1) = 0, P (eD|d2) = 1
P (eC |c1) = 0, P (eC |c2) = 1, P (eC |c3) = 0.

and as in part (a) we have

PC(x1) ∼ P (eC |x1)P (eD|x1)
= [P (eC |c1)P (c1|x1) + P (eC |c2)P (c2|x1) + P (eC |c3)P (c3|x1)]

×[P (eD|d1)P (d1|x1) + P (eD|d2)P (d2|x1)]
= [0 + 1 · 0.33 + 0][0 + 1 · 0.6]
= 0.198.

Likewise we have

PC(x2) ∼ P (eC |x2)P (eD|x2)
= [P (eC |c1)P (c2|x2) + P (eC |c2)P (c2|x2) + P (eC |c3)P (c3|x2)]

×[P (eD|d1)P (d1|x2) + P (eD|d2)P (d2|x2)]
= [0 + 1 · 0.1 + 0][0 + 1 · 0.05]
= 0.005.

We normalize and find

P (x1|eC,D) =
0.198

0.198 + 0.005
= 0.975

P (x2|eC,D) =
0.005

0.198 + 0.005
= 0.025.

Thus, from the evidence of the children nodes, we classify the fish as x1, that
is, salmon.

Now we infer the probability P (ai|x1). We have P (a1) = P (a2) = P (a3) =
P (a4) = 1/4. Then we normalize and find

P (a1|x1) =
P (x1|a1)P (a1)

P (x1|a1) · P (a1) + P (x1|a2) · P (a2) + P (x1|a3)P (a3) + P (x1|a4)P (a4)

=
0.9 · 0.25

0.9 · 0.25 + 0.3 · 0.25 + 0.4 · 0.25 + 0.8 · 0.25
= 0.375.
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We also have

P (a2|x1) = 0.125
P (a3|x1) = 0.167
P (a4|x1) = 0.333.

Thus the most probable season is a1, winter. The probability of being correct
is

P (x1|eC,D)P (a1|x1) = 0.975 · 0.375 = 0.367.

(c) Fish is thin and medium lightness, so from part (b) we have

P (x1|eC,D) = 0.975, P (x2|eC,D) = 0.025,

and we classify the fish as salmon.

For the fish caught in the north Atlantic, we have P (b1|eB) = 1 and P (b2|eB) =
0.

P (a1|x1, b1) ∼ P (x1|a1)P (x1|b1)P (a1)P (b1)
= 0.9 · 0.65 · 0.25· = 0.146

P (a2|x1, b1) ∼ P (x1|a2)P (x1|b1)P (a2)P (b1)
= 0.3 · 0.65 · 0.25· = 0.049

P (a3|x1, b1) ∼ P (x1|a3)P (x1|b1)P (a3)P (b1)
= 0.4 · 0.65 · 0.25· = 0.065

P (a4|x1, b1) ∼ P (x1|a4)P (x1|b1)P (a4)P (b1)
= 0.8 · 0.65 · 0.25· = 0.13.

So the most probable season is a1, winter. The probability of being correct is

P (x1|eC,D)P (a1|x1) = 0.975 · 0.375 = 0.367.

51. Problem not yet solved

Section 2.12

52. We have the priors P (ω1) = 1/2 and P (ω2) = P (ω3) = 1/4, and the Gaussian
densities p(x|ω1) ∼ N(0, 1), p(x|ω2) ∼ N(0.5, 1), and p(x|ω3) ∼ N(1, 1). We use the
general form of a Gaussian, and by straightforward calculation find:

x p(x|ω1) p(x|ω2) p(x|ω3)
0.6 0.333225 0.396953 0.368270
0.1 0.396953 0.368270 0.266085
0.9 0.266085 0.368270 0.396953
1.1 0.217852 0.333225 0.396953

We denote X = (x1, x2, x3, x4) and ω = (ω(1), ω(2), ω(3), ω(4)). Using the notation
in Section 2.12, we have n = 4 and c = 3, and thus there are cn = 34 = 81 possible
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values of ω, such as

(ω1, ω1, ω1, ω1), (ω1, ω1, ω1, ω2), (ω1, ω1, ω1, ω3),
(ω1, ω1, ω2, ω1), (ω1, ω1, ω2, ω2), (ω1, ω1, ω2, ω3),
(ω1, ω1, ω3, ω1), (ω1, ω1, ω3, ω2), (ω1, ω1, ω3, ω3),

...
...

...
(ω3, ω3, ω3, ω1), (ω3, ω3, ω3, ω2), (ω3, ω3, ω3, ω3)

For each possible value of ω, we calculate P (ω) and p(X|ω) using the following, which
assume the independences of xi and ω(i):

p(X|ω) =
4∏

i=1

p(xi|ω(i))

P (ω) =
4∏

i=1

P (ω(i)).

For example, if ω = (ω1, ω3, ω3, ω2) and X = (0.6, 0.1, 0.9, 1.1), then we have

p(X|ω) = p((0.6, 0.1, 0.9, 1.1)|(ω1, ω3, ω3, ω2))
= p(0.6|ω1)p(0.1|ω3)p(0.9|ω3)p(1.1|ω2)
= 0.333225 × 0.266085 × 0.396953 × 0.333225
= 0.01173

and

P (ω) = P (ω1)P (ω3)P (ω3)P (ω2)

=
1
2
× 1

4
× 1

4
× 1

4

=
1

128
= 0.0078125.

(a) Here we have X = (0.6, 0.1, 0.9, 1.1) and ω = (ω1, ω3, ω3, ω2). Thus, we have

p(X) = p(x1 = 0.6, x2 = 0.1, x3 = 0.9, x4 = 1.1)

=
∑
ω

p(x1 = 0.6, x2 = 0.1, x3 = 0.9, x4 = 1.1|ω)P (ω)

= p((x1 = 0.6, x2 = 0.1, x3 = 0.9, x4 = 1.1)|(ω1, ω1, ω1, ω1))P (ω1, ω1, ω1, ω1)
+p((x1 = 0.6, x2 = 0.1, x3 = 0.9, x4 = 1.1)|(ω1, ω1, ω1, ω2))P (ω1, ω1, ω1, ω2)
...
+p((x1 = 0.6, x2 = 0.1, x3 = 0.9, x4 = 1.1)|(ω3, ω3, ω3, ω3))P (ω3, ω3, ω3, ω3)

= p(0.6|ω1)p(0.1|ω1)p(0.9|ω1)p(1.1|ω1)P (ω1)P (ω1)P (ω1)P (ω1)
+p(0.6|ω1)p(0.1|ω1)p(0.9|ω1)p(1.1|ω2)P (ω1)P (ω1)P (ω1)P (ω2)
...
+p(0.6|ω3)p(0.1|ω3)p(0.9|ω3)p(1.1|ω3)P (ω3)P (ω3)P (ω3)P (ω3)

= 0.012083,
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where the sum of the 81 terms can be computed by a simple program, or some-
what tediously by hand. We also have

p(X|ω) = p(0.6, 0.1, 0.9, 1.1|ω1, ω3, ω3, ω2) = p(0.6|ω1)p(0.1|ω3)p(0.9|ω3)p(1.1|ω2)
= 0.33325 × 0.266085 × 0.396953 × 0.333225
= 0.01173.

Also we have

P (ω) = P (ω1)P (ω3)P (ω3)P (ω2)

=
1
2
× 1

4
× 1

4
× 1

4

=
1

128
= 0.0078125.

According to Eq. 103 in the text, we have

P (ω|X) = P (ω1, ω3, ω3, ω2|0.6, 0.1, 0.9, 1.1)

=
p(0.6, 0.1, 0.8, 1.1|ω1, ω3, ω3, ω2)P (ω1, ω3, ω3, ω2)

p(X)

=
0.01173 · 0.0078125

0.012083
= 0.007584.

(b) We follow the procedure in part (a), with the values X = (0.6, 0.1, 0.9, 1.1) and
ω = (ω1, ω2, ω2, ω3). We have

p(X|ω) = p(0.6, 0.1, 0.9, 1.1|ω1, ω2, ω2, ω3)
= p(0.6|ω1)p(0.1|ω2)p(0.9|ω2)p(1.1|ω3)
= 0.33225 × 0.368270 × 0.368270 × 0.396953 = 0.01794.

Likewise, we have

P (ω) = P (ω1)P (ω2)P (ω2)P (ω3)

=
1
2
× 1

4
× 1

4
× 1

4

=
1

128
= 0.0078125.

Thus

P (ω|X) = P (ω1, ω2, ω2, ω3|0.6, 0.1, 0.9, 1.1)

=
p(0.6, 0.1, 0.9, 1.1|ω1, ω2, ω2, ω3)P (ω1, ω2, ω2, ω3)

P (X)

=
0.01794 · 0.0078125

0.012083
= 0.01160.

(c) Here we have X = (0.6, 0.1, 0.9, 1.1) and ω = (ω(1), ω(2), ω(3), ω(4)). According
to Eq. 103 in the text, the sequence ω that maximizes p(X|ω)P (ω) has the
maximum probability, since p(X) is fixed for a given observed X. With the
simplifications above, we have

p(X|ω)P (ω) = p(x1|ω(1))p(x2|ω(2))p(x3|ω(3))p(x4|ω(4))P (ω(1))P (ω(2))P (ω(3))P (ω(4)).
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For X = (0.6, 0.1, 0.9, 1.1), we have

max [p(0.6|ω1)P (ω1), p(0.6|ω2)P (ω2), p(0.6|ω3)P (ω3)]
= max [0.333225 × 0.5, 0.396953 × 0.25, 0.368270 × 0.25]
= 0.333225 × 0.5
= 0.1666125.

Likewise, for the second step we have

max [p(0.1|ω1)P (ω1), p(0.1|ω2)P (ω2), p(0.1|ω3)P (ω3)]
= max [0.396953 × 0.5, 0.368270 × 0.25, 0.266085 × 0.25]
= 0.396953 × 0.5
= 0.1984765.

For the third step we have

max [p(0.9|ω1)P (ω1), p(0.9|ω2)P (ω2), p(0.9|ω3)P (ω3)]
= max [0.266085 × 0.5, 0.368270 × 0.25, 0.396953 × 0.25]
= 0.266085 × 0.5
= 0.133042.

For the final step we have

max [p(1.1|ω1)P (ω1), p(1.1|ω2)P (ω2), p(1.1|ω3)P (ω3)]
= max [0.217852 × 0.5, 0.333225 × 0.25, 0.396953 × 0.25]
= 0.217852 × 0.5
= 0.108926.

Thus the sequence ω = (ω1, ω1, ω1, ω1) has the maximum probability to observe
X = (0.6, 0.1, 0.9, 1.1). This maximum probability is

0.166625 × 0.1984765 × 0.133042 × 0.108926 × 1
0.012083

= 0.03966.
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Computer Exercises

Section 2.5

1. Computer exercise not yet solved

2.

1 MATLAB program
2 load samples.mat; the data
3 [n,m] = size(samples);
4 for i=1:3
5 mu{i} = mean(samples(:, (i-1)*3+1;i*3))’;
6 sigma{i} = zeros(3);
7 for j=1:n
8 sigma{i} = sigma{i} + ... The ... continues the line
9 (samples(j,(i-1)*3+1:i*3)’ - mu{i}) ...

10 * (samples(j,(i-1)*3+1;i*3)’ - mu{i})’;
11 end
12 sigma{i} = sigma{i}./n;
13 end
14 s = [1 2 1; 5 3 2; 0 0 0; 1 0 0]’
15 for j=1:size(s,2)
16 for i=1;3
17 d = sqrt((s:,j)-mu{i})’*inv(sigma{i})*(s(:,j)-mu{i}));
18 fprintf(’Mahal. dist. for class %d and point %d: %: %f\n’, i, j, d);
19 end
20 end
21 pw(1:) =[1/3 0.8];
22 pw(2:) =[1/3 0.1];
23 pw(3:) =[1/3 0.1];
24 for p=1:2
25 fprintf(’\n\n\n\n’);
26 for j=1:size(s,2)
27 class = 0; max gi = -1000000;
28 for i=1:3
29 d i = (s(:,j)-mu{i})’*inv(sigma{i})*(s(:,j)-mu{i});
30 g i = -0.5*d i - 1.5*log(2*pi) - 0.5*log(det(sigma{i})) + log(pw(i,p));
31 if gi > max gi,
32 max gi = gi;
33 class = i;
34 end
35 end
36 fprintf(’Point %d classified in category %d\n’, j, class);
37 end
38 end

Output
Mahal. dist. for class 1 and point 1: 1.069873
Mahal. dist. for class 2 and point 1: 0.904465
Mahal. dist. for class 3 and point 1: 2.819441
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Mahal. dist. for class 1 and point 2: 1.641368
Mahal. dist. for class 2 and point 2: 1.850650
Mahal. dist. for class 3 and point 2: 0.682007
Mahal. dist. for class 1 and point 3: 0.516465
Mahal. dist. for class 2 and point 3: 0.282953
Mahal. dist. for class 3 and point 3: 2.362750
Mahal. dist. for class 1 and point 4: 0.513593
Mahal. dist. for class 2 and point 4: 0.476275
Mahal. dist. for class 3 and point 4: 1.541438

Point 1 classified in category 2
Point 2 classified in category 3
Point 3 classified in category 1
Point 4 classified in category 1

Point 1 classified in category 1
Point 2 classified in category 1
Point 3 classified in category 1
Point 4 classified in category 1

3. Computer exercise not yet solved

4. Computer exercise not yet solved

5. Computer exercise not yet solved

Section 2.8

6. Computer exercise not yet solved

7. Computer exercise not yet solved

8. Computer exercise not yet solved

Section 2.11

9. Computer exercise not yet solved
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Chapter 3

Maximum likelihood and
Bayesian parameter
estimation

Problem Solutions

Section 3.2

1. Our exponential function is:

p(x|θ) =
{

θe−θx x ≥ 0
0 otherwise.

(a) See Figure. Note that p(x = 2|θ) is not maximized when θ = 2 but instead
for a value less than 1.0.

1 2 3

0.5

1

1 2 3 4 5

0.1

0 0

p(x|θ =1)

x

p(x=2|θ )

θ 

0.2

θ̂ =1 (part c)

(b) The log-likelihood function is

l(θ) =
n∑

k=1

ln p(xk|θ) =
n∑

k=1

[ln θ − θxk] = nln θ − θ

n∑
k=1

xk.

77
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We solve ∇θl(θ) = 0 to find θ̂ as

∇θl(θ) =
∂

∂θ

[
n ln θ − θ

n∑
k=1

xk

]

=
n

θ
−

n∑
k=1

xk = 0.

Thus the maximum-likelihood solution is

θ̂ =
1

1
n

n∑
k=1

xk

.

(c) Here we approximate the mean

1
n

n∑
k=1

xn

by the integral
∞∫
0

xp(x)dx,

which is valid in the large n limit. Noting that
∞∫
0

xe−xdx = 1,

we put these results together and see that θ̂ = 1, as shown on the figure in
part (a).

2. Our (normalized) distribution function is

p(x|θ) =
{

1/θ 0 ≤ x ≤ θ
0 otherwise.

(a) We will use the notation of an indicator function I(·), whose value is equal to
1.0 if the logical value of its argument is true, and 0.0 otherwise. We can write
the likelihood function using I(·) as

p(D|θ) =
n∏

k=1

p(xk|θ)

=
n∏

k=1

1
θ
I (0 ≤ xk ≤ θ)

=
1
θn

I

(
θ ≥ max

k
xk

)
I

(
min

k
xk ≥ 0

)
.

We note that 1/θn decreases monotonically as θ increases but also that I(θ ≥
max

k
xk) is 0.0 if θ is less than the maximum value of xk. Therefore, our likelihood

function is maximized at θ̂ = max
k

xk.



PROBLEM SOLUTIONS 79

0.2 0.4 0.6 0.8 1
θ 

2

4

6

8

10

12

p(D|θ )

(b) See Figure.

3. We are given that

zik =
{

1 if the state of nature for the kth sample is ωi

0 otherwise.

(a) The samples are drawn by successive independent selection of a state of nature
ωi with probability P (ωi). We have then

Pr[zik = 1|P (ωi)] = P (ωi)

and

Pr[zik = 0|P (ωi)] = 1 − P (ωi).

These two equations can be unified as

P (zik|P (ωi)) = [P (ωi)]zik [1 − P (ωi)]1−zik .

By the independence of the successive selections, we have

P (zi1, · · · , zin|P (ωi)) =
n∏

k=1

P (zik|P (ωi))

=
n∏

k=1

[P (ωi)]zik [1 − P (ωi)]1−zik .

(b) The log-likelihood as a function of P (ωi) is

l(P (ωi)) = ln P (zi1, · · · , zin|P (ωi))

= ln

[
n∏

k=1

[P (ωi)]zik [1 − P (ωi)]1−zik

]

=
n∑

k=1

[
zik ln P (ωi) + (1 − zik) ln (1 − P (ωi))

]
.

Therefore, the maximum-likelihood values for the P (ωi) must satisfy

∇P (ωi)l(P (ωi)) =
1

P (ωi)

n∑
k=1

zik − 1
1 − P (ωi)

n∑
k=1

(1 − zik) = 0.
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We solve this equation and find

(1 − P̂ (ωi))
n∑

k=1

zik = P̂ (ωi)
n∑

k=1

(1 − zik),

which can be rewritten as
n∑

k=1

zik = P̂ (ωi)
n∑

k=1

zik + nP̂ (ωi) − P̂ (ωi)
n∑

k=1

zik.

The final solution is then

P̂ (ωi) =
1
n

n∑
k=1

zik.

That is, the estimate of the probability of category ωi is merely the probability
of obtaining its indicatory value in the training data, just as we would expect.

4. We have n samples {x1, . . . ,xn} from the discrete distribution

P (x|θ) =
d∏

i=1

θxi
i (1 − θi)1−xi .

The likelihood for a particular sequence of n samples is

P (x1, . . . ,xn|θ) =
n∏

k=1

d∏
i=1

θxki
i (1 − θi)1−xki ,

and the log-likelihood function is then

l(θ) =
n∑

k=1

d∑
i=1

xki ln θi + (1 − xki) ln (1 − θi).

To find the maximum of l(θ), we set ∇θl(θ) = 0 and evaluate component by compo-
nent (i = 1, . . . , d) and get

[∇θl(θ)]
i

= ∇θi
l(θ)

=
1
θi

n∑
k=1

− 1
1 − θi

n∑
k=1

(1 − xki)

= 0.

This implies that for any i

1

θ̂i

n∑
k=1

xki =
1

1 − θ̂i

n∑
k=1

(1 − xki),

which can be rewritten as

(1 − θ̂i)
n∑

k=1

xki = θ̂i

(
n −

n∑
k=1

xki

)
.
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The final solution is then

θ̂i =
1
n

n∑
k=1

xki.

Since this result is valid for all i = 1, . . . , d, we can write this last equation in vector
form as

θ̂ =
1
n

n∑
k=1

xk.

Thus the maximum-likelihood value of θ is merely the sample mean, just as we would
expect.
5. The probability of finding feature xi to be 1.0 in category ω1 is denoted p:

p(xi = 1|ω1) = 1 − p(xi = 0|ω1) = pi1 = p >
1
2
,

for i = 1, . . . , d. Moreover, the normalization condition gives pi2 = p(xi|ω2) = 1−pi1.

(a) A single observation x = (x1, . . . , xd) is drawn from class ω1, and thus have

p(x|ω1) =
d∏

i=1

p(xi|ω1) =
d∏

i=1

pxi(1 − p)1−xi ,

and the log-likelihood function for p is

l(p) = ln p(x|ω1) =
d∑

i=1

[xiln p + (1 − xi) ln (1 − p)].

Thus the derivative is

∇pl(p) =
1
p

d∑
i=1

xi − 1
(1 − p)

d∑
i=1

(1 − xi).

We set this derivative to zero, which gives

1
p̂

d∑
i=1

xi =
1

1 − p̂

d∑
i=1

(1 − xi),

which after simple rearrangement gives

(1 − p̂)
d∑

i=1

xi = p̂

(
d −

d∑
i=1

xi

)
.

Thus our final solution is

p̂ =
1
d

d∑
i=1

xi.

That is, the maximum-likelihood estimate of the probability of obtaining a 1 in
any position is simply the ratio of the number of 1’s in a single sample divided
by the total number of features, given that the number of features is large.
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(b) We define T = (1/d)
d∑

i=1

xi to be the proportion of 1’s in a single observation x.

As the number of dimensions d approaches infinity, we have

T =
1
d

d∑
i=1

E(xi|ω1) = [1 × p + 0 × (1 − p)] = p.

Likewise, the variance of T , given that we’re considering just one class, ω1, is

Var(T |ω1) =
1
d

d∑
i=1

Var(xi|ω1)

=
1
d2

d∑
i=1

[12 × p + 02 × (1 − p) − p × p]

=
p(1 − p)

d
,

which vanishes as d → ∞. Clearly, for minimum error, we choose ω1 if T >
T ∗ = 1/2 for p > 1/2. Since the variance vanishes for large d, the probability
of error is zero for a single sample having a sufficiently large d.

(c) See figure.

0.2 0.4 0.6 0.8 1
T

P(T|ωi)

d = 11

d = 111

ω1ω2

T*

6. The d-dimensional multivariate normal density is given by

p(x|μ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]
.

We choose x1,x2, . . . ,xn independent observations from p(x|μ,Σ). The joint density
is

p(x1,x2, . . . ,xn|μ,Σ) =
1

(2π)n/2|Σ|n/2
exp

[
−1

2

n∑
k=1

(xk − μ)tΣ−1(xk − μ)

]
.

The log-likelihood function of μ and Σ is

l(μ,Σ) = −n

2
ln (2π) − n

2
ln |Σ| − 1

2

n∑
k=1

(xk − μ)tΣ−1(xk − μ)

= −n

2
ln (2π) − n

2
ln |Σ| − 1

2

[
n∑

k=1

xt
kxk − 2μtΣ−1xk + nμtΣ−1μ

]
.



PROBLEM SOLUTIONS 83

We set the derivative of the log-likelihood to zero, that is,

∂l(μ,Σ)
∂μ

= −1
2

[
−2Σ−1

n∑
k=1

xk + n2Σ−1μ

]
= 0,

and find that

Σ̂
−1

n∑
k=1

xk = nΣ̂
−1

μ̂.

This gives the maximum-likelihood solution,

μ̂ =
1
n

n∑
k=1

xk,

as expected. In order to simplify our calculation of Σ̂, we temporarily substitute
A = Σ−1, and thus have

l(μ,Σ) = −n

2
ln (2π) +

n

2
ln |A| − 1

2

n∑
k=1

(xk − μ)tA(xk − μ).

We use the above results and seek the solution to

∂l(μ,Σ)
∂A

=
n

2
A−1 − 1

2

n∑
k=1

(xk − μ)(xk − μ)t = 0.

We now replace A by Σ−1 and find that

n

2
Σ̂ =

1
2

n∑
k=1

(xk − μ̂)(xk − μ̂)t,

and then multiply both sides by 2/n and find our solution:

Σ̂ =
1
n

n∑
k=1

(xk − μ̂)(xk − μ̂)t.

As we would expect, the maximum-likelihood estimate of the covariance matrix is
merely the covariance of the samples actually found.
7. The figure shows the model for ω1, the incorrect model for ω2, that is, p(x|ω2) ∼
N(0, 1) and the true model for ω2 (dashed, and scaled by 30000 for visibility).

(a) According to Eq. 18 in the text, the maximum-likelihood estimate of the mean
(for the incorrect model) is merely the sample mean of the data from the true
model. In this case, then, we have μ̂ = 1.0.

(b) Given two equal-variance Gaussians and equal priors, the decision boundary
point is midway between the two means, here, x∗ = 0.5.

(c) For the incorrect case, according to part (b), we have R1 is the line segment
x < 0.5 and for R2 the line segment x > 0.5. For the correct case, we must
solve numerically

1
2π

√
1
exp[−x2/2] =

1
2π

√
106

exp[−1(x − 1)2/(2 · 106)],

which gives the values x = ±3.717. The Bayesian decision boundaries and
regions are shown along the bottom of the figure above.
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(d) For the poor model, which has equal variances for the two Gaussians, the only
decision boundary possible is a single point, as was illustrated in part (a). The
best we can do with the incorrect model is to adjust the mean μ so as to match
the rightmost of the decision boundaries given in part (c), that is, x∗ = 3.717.
This decision point is midway between the means of the two Gaussians — that
is, at 0 and at μ. As such, we need to choose μ such that (0 + μ)/2 = 3.717.
This leads directly to the solution, μ = 7.43.

(e) The maximum-likelihood solution in the incorrect model — here p(x|ω2) ∼
N(μ, 1) — does not yield the minimum classification error. A different value
of the parameter (here, μ = 7.43) approximates the Bayes decision boundary
better and gives a lower error than the maximum-likelihood solution in the
incorrect model. As such, the faulty prior information about the model, which
did not permit the true model to be expressed, could not be overcome with even
an infinite amount of training data.

8. Consider a case in which the maximum-likelihood solution gives the worst possible
classifier.

(a) In this case, the symmetry operation x ↔ −x takes p(x|ω1) ↔ p(x|ω2), and
thus we are assured that the estimated distributions have this same symmetry
property. For that reason, we are guaranteed that these distribution have the
same value at x = 0, and thus x∗ = 0 is a decision boundary. Since the Gaussian
estimates must have the same variance, we are assured that there will be only
a single intersection, and hence a single decision point, at x∗ = 0.

(b) See Figure.

(c) We have the estimate of the mean as

μ̂1 =
∫

p(x|ω1)dx = (1 − k)1 + k(−X) = 1 − k(1 + X).

We are asked to “switch” the mean, that is, have μ̂1 < 0 and μ̂2 > 0. This can
be assured if X > (1 − k)/k. (We get the symmetric answer for ω2.)

(d) Since the decision boundary is at x∗ = 0, the error is 1− k, that is, the value of
the distribution spikes on the “wrong” side of the decision boundary.
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(e) Thus for the error to approach 1, we must have k → 0, and this, in turn, requires
X to become arbitrarily large, that is, X → (1− k)/k → ∞. In this way, a tiny
“spike” in density sufficiently far away from the origin is sufficient to “switch”
the estimated mean and give error equal 100%.

(f) There is no substantive difference in the above discussion if we constrain the
variances to have a fixed value, since they will always be equal to each other, that
is, σ̂2

1 = σ̂2
2 . The equality of variances preserves the property that the decision

point remains at x∗ = 0; it consequently also ensures that for sufficiently small
k and large X the error will be 100%.

(g) All the maximum-likelihood methods demand that the optimal solution exists
in the model space. If the optimal solution does not lie in the solution space,
then the proofs do not hold. This is actually a very strong restriction. Note
that obtaining the error equal 100% solution is not dependent upon limited
data, or getting caught in a local minimum — it arises because of the error in
assuming that the optimal solution lies in the solution set. This is model error,
as described on page 101 of the text.

9. The standard maximum-likelihood solution is

θ̂ = arg max
θ

p(x|θ).

Now consider a mapping x → τ(x) where τ(·) is continuous. Then we can write
p(τ |θ)dτ = p(x|θ)dx, and

p(τ |θ) =
p(x|θ)
dτ/dx

.

Then we find the value of θ maximizing p(τ(x)|θ) as

arg max
θ

p(τ(x)|θ) = arg max
θ

p(x|θ)
dτ/dx

= arg max
θ

p(x|θ)
= θ̂,
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where we have assumed dτ/dx �= 0 at θ = θ̂. In short, then, the maximum-likelihood
value of τ(θ) is indeed θ̂. In practice, however, we must check whether the value of
θ̂ derived this way gives a maximum or a minimum (or possibly inflection point) for
p(τ |θ).
10. Consider the novel method of estimating the mean of a set of points as taking its
first value, which we denote M = x1.

(a) Clearly, this unusual estimator of the mean is unbiased, that is, the expected
value of this statistic is equal to the true value. In other words, if we repeat the
selection of the first point of a data set we have

bias = E [M] − μ = lim
K→∞

1
K

K∑
k=1

M(k) − μ = 0,

where M(k) is the first point in data set k drawn from the given distribution.

(b) While the unusual method for estimating the mean may indeed be unbiased, it
will generally have large variance, and this is an undesirable property. Note that
E [(xi − μ)2] = σ2, and the RMS error, σ, is independent of n. This undesirable
behavior is quite different from that of the measurement of

x̄ =
1
n

n∑
i=1

xi,

where we see

E [(x̄ − μ)2] = E
⎡⎣(

1
n

n∑
i=1

xi − μ

)2
⎤⎦

=
1
n2

n∑
i=1

[E [(xi − μ)2]
]

=
σ2

n
.

Thus the RMS error, σ/
√

n, approches 0 as 1/
√

n. Note that there are many
superior methods for estimating the mean, for instance the sample mean. (In
Chapter 9 we shall see other techniques — ones based on resampling — such as
the so-called “bootstrap” and “jackknife” methods.)

11. We assume p2(x) ≡ p(x|ω2) ∼ N(μ,Σ) but that p1(x) ≡ p(x|ω1) is arbitrary.
The Kullback-Leibler divergence from p1(x) to p2(x) is

DKL(p1, p2) =
∫

p1(x)lnp1(x)dx +
1
2

∫
p1(x)

[
dln(2π) + ln|Σ| + (x − μ)tΣ−1(x − μ)

]
dx,

where we used the fact that p2 is a Gaussian, that is,

p2(x) =
1

(2π)d/2|Σ|1/2
exp

[
− (x − μ)tΣ−1(x − μ)

2

]
.

We now seek μ and Σ to minimize this “distance.” We set the derivative to zero and
find

∂

∂μ
DKL(p1, p2) = −

∫
Σ−1(x − μ)p1(x)dx = 0,
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and this implies

Σ−1

∫
p1(x)(x − μ)dx = 0.

We assume Σ is non-singular, and hence this equation implies∫
p1(x)(x − μ)dx = E1[x − μ] = 0,

or simply, E1[x] = μ. In short, the mean of the second distribution should be the
same as that of the Gaussian.

Now we turn to the covariance of the second distribution. Here for notational
convenience we denote A = Σ. Again, we take a derivative of the Kullback-Leibler
divergence and find:

∂

∂A
DKL(p1, p2) = 0 =

∫
p1(x)

[−A−1 + (x − μ)(x − μ)t
]
dx,

and thus

E1

[
Σ − (x − μ)(x − μ)t

]
,

or

E1

[
(x − μ)(x − μ)t

]
= Σ.

In short, the covariance of the second distribution should indeed match that of the
Gaussian.

Note that above, in taking the derivative above,

∂|A|
∂A

= |A|A−1

we relied on the fact that A = Σ−1 is symmetric since Σ is a covariance matrix. More
generally, for an arbitrary non-singular matrix we would use

∂|M|
∂M

= |M|(M−1)t.

Section 3.3

12. In the text we saw the following results:

1. The posterior density can be computed as

p(x) =
∫

p(x,θ|D) dθ.

2. p(x,θ|D) = p(x|θ,D)p(θ|D)).

3. p(x|θ,D) = p(x|θ), that is, the distribution of x is known completely once we
know the value of the parameter vector, regardless of the data D.

4. p(x|D) =
∫

p(x|θ)p(θ|D) dθ.
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These are justified as follows:

1. This statement reflects the conceptual difference between the maximum-likelihood
estimator and Bayesian estimator. The Bayesian learning method considers the
parameter vector θ to be a random variable rather than a fixed value, as in
maximum-likelihood estimation. The posterior density p(x|D) also depends
upon the probability density p(θ) distributed over the entire θ space instead of
a single value. Therefore, the p(x|D) is the integration of p(x,θ|D) over the
entire parameter space. The maximum-likelihood estimator can be regarded as
a special case of Bayesian estimator, where p(θ) is uniformly distributed so that
its effect disappears after the integration.

2. The p(x,θ|D) implies two steps in computation. One is the computation of
the probability density θ given the data set D, that is, p(θ|D). The other is
the computation of the probability density of x given θ, that is, p(x|θ,D). The
above two steps are independent of each other, and thus p(x,θ|D) is the product
of the results of the two steps.

3. As mentioned in the text, the selection of x and that of the training samples
D is done independently, that is, the selection of x does not depend upont D.
Therefore we have p(x|θ,D) = p(x|θ).

4. We substitute the above relations into Eq. 24 in the text and get Eq. 25.

Section 3.4

13. We seek a novel approach for finding the maximum-likelihood estimate for Σ.

(a) We first inspect the forms of a general vector a and matrix A:

a =

⎛⎜⎜⎜⎝
a1

a2

...
an

⎞⎟⎟⎟⎠ and A =

⎛⎜⎝ A11 . . . A1n

...
. . .

...
An1 . . . Ann

⎞⎟⎠ .

Consider the scalar

atAa =
n∑

i=1

n∑
j=1

ajAijaj .

The (i, i)th element of this scalar is
n∑

j=1

Aijajai, and the trace of Aaat is the

sum of these diagonal elements, that is,

tr (Aaat) =
n∑

i=1

n∑
j=1

Aijajai = atAa.

(b) We seek to show that the likelihood function can be written as

p(x1, . . . ,xn|Σ) =
1

(2π)nd/2|Σ−1|n/2
exp

[
−1

2
tr

(
Σ−1

n∑
k=1

(xk − μ)(xk − μ)t

)]
.
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We note that p(x|Σ) ∼ N(μ,Σ) where μ is known and x1, . . . ,xn are indepen-
dent observations from p(x|Σ). Therefore the likelihood is

p(x1, . . . ,xn|Σ) =
n∏

k=1

1
(2π)d/2|Σ−1|1/2

exp
[
−1

2
(xk − μ)tΣ−1(xk − μ)

]

=
|Σ|−n/2

(2π)nd/2
exp

[
−1

2

n∑
k=1

(xk − μ)tΣ−1(xk − μ)

]
.

From the results in part (a), with a = xk − μ and |A| = |Σ−1|, we have

p(x1, . . . ,xn|Σ) =
|Σ|−n/2

(2π)nd/2
exp

[
−1

2

n∑
k=1

tr
(
Σ−1(xk − μ)(xk − μ)t

)]

=
|Σ−1|−n/2

(2π)nd/2
exp

[
−1

2
tr

(
Σ−1

n∑
k=1

(xk − μ)(xk − μ)t

)]
,

where we used
n∑

k=1

tr (Ak) = tr
(

n∑
k=1

Ak

)
and |Σ−1| = |Σ|−1.

(c) Recall our definition of the sample covariance matrix:

Σ̂ =
1
n

n∑
k=1

(xk − μ)(xk − μ)t.

Here we let A = Σ−1Σ̂, which easily leads to the following equalities

Σ−1 = AΣ̂
−1

,

|Σ−1| = |AΣ̂
−1| = |A||Σ̂−1|

= |A||Σ̂|−1 =
|A|
|Σ̂|

=
λ1λ2 · · ·λd

|Σ̂| ,

where λ1, . . . , λn are the eigenvalues of A. We substitute these into our result
in part (b) to get

p(x1, . . . ,xn|Σ) =
|Σ−1|n/2

(2π)nd/2
exp

[
−1

2
tr

(
Σ−1

n∑
k=1

(xk − μ)(xk − μ)t

)]

=
(λ1 . . . λn)n/2

(2π)nd/2|Σ̂|n/2
exp

[
−1

2
tr

(
nΣ−1Σ̂

)]
.

Note, however, that tr[nΣ−1Σ̂] = n[tr (A)] = n(λ1 + · · · + λd), and thus we
have

p(x1, . . . ,xn|Σ) =
(λ1 . . . λn)n/2

(2π)nd/2|Σ̂|n/2
exp

[
−n

2
(λ1 + · · · + λd)

]
.
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(d) The expression for p(x1, · · · ,xn|Σ) in part (c) depends on Σ only through
λ1, · · · , λd, the eigenvalues of A = Σ−1Σ̂. We can write our likelihood, then, as

p(x1, . . . ,xn|Σ) =
1

(2π)nd/2|Σ̂|n/2

[
d∏

i=1

λie
−λi

]n/2

.

Maximizing p(x1, . . . ,xn|Σ) with respect to Σ is equivalent to maximizing
λie

−λi with respect to λi. We do this by setting the derivative to zero, that is,

∂[λie
−λi ]

∂λi
= e−λi + λi(−e−λi) = 0,

which has solution λi = 1. In short, p(x1, . . . ,xn|Σ) is maximized by choosing
λ1 = λ2 = · · · = λn = 1. This means that A = Σ−1Σ̂, or Σ̂ = Σ, as expected.

14. First we note that p(x|μi,Σ, ωi) ∼ N(μi,Σ). We have also lk = i if the state of
nature for xk was ωi.

(a) From Bayes’ Rule we can write

p(x1, . . . ,xn, l1, . . . , ln|μ1, . . . ,μc,Σ) = p(x1, . . . ,xn|μ1, . . . ,μc, l1, . . . , ln,Σ)p(l1, . . . , ln).

Because the distribution of l1, . . . , ln does not depend on μ1, . . . ,μc or Σ, we
can write

p(x1, . . . ,xn|μ1, . . . ,μc,Σ, l1, . . . , ln)

=
n∏

k=1

p(xk|μ1, . . . ,μc,Σ, lk)

=
n∏

k=1

1
(2π)d/2|Σ|1/2

exp
[
−1

2
(xk − μlk

)tΣ−1(xk − μlk
)
]

.

The li are independent, and thus the probability density of the ls is a product,

p(l1, . . . , ln) =
n∏

k=1

p(lk) =
n∏

k=1

p(ωlk).

We combine the above equations and get

p(x1, . . . ,xn, l1, . . . , ln|μ1, . . . ,μc,Σ)

=

n∏
k=1

P (ωlk)

(2π)nd/2|Σ|n/2
exp

[
−1

2

n∑
k=1

(xk − μlk
)tΣ−1(xk − μlk

)

]
.

(b) We sum the result of part (a) over n samples to find

n∑
k=1

(xk − μlk
)tΣ−1(xk − μlk

) =
l∑

i=1

∑
lk=1

(xk − μi)
tΣ−1(xk − μi).
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The likelihood function for μi is

l(μi) =

n∏
k=1

P (ωi)

(2π)nd/2|Σ|n/2
exp

⎡⎣−1
2

c∑
j=1

∑
k:lk=j

(xk − μi)
tΣ−1(xk − μi)

⎤⎦
∝ exp

[
−1

2

∑
lk=i

(xk − μi)
tΣ−1(xk − μi)

]
.

Thus, the maximum-likelihood estimate of μi is a function of xk restricted to
lk = i. But these xk’s are from an independent identically distributed (i.i.d.)
sample from N(μi,Σ). Thus, by the result for samples drawn from a single
normal population, it follows that

μ̂i =
1
ni

∑
lk=i

xk,

where ni = {xk : lk = i} =
∑

lk=i

1. Therefore, our solution is

μ̂i =

∑
lk=i

xk∑
lk=i

1
.

We also know that if we have a maximum-likelihood estimate for μ, then the
maximum-likelihood estimate for Σ is

Σ̂ =
1
n

n∑
k=1

(xk − μ̂)(xk − μ̂)t.

But the maximum-likelihood estimate μ̂ corresponds to the distribution of xk

is μ̂lk
. Thus, we have the estimate

Σ̂ =
1
n

n∑
k=1

(xk − μ̂lk
)(xk − μ̂lk

)t.

15. Consider the problem of learning the mean of a univariate normal distribution.

(a) From Eqs. 34 and 35 in the text, we have

μn =
nσ2

o

nσ2
o + σ2

mn +
σ2

nσ2
o + σ2

μo,

and

σ2
n =

σ2
oσ2

nσ2
o + σ2

,

where the sample mean is

mn =
1
n

n∑
k=1

xk.
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Here μo is formed by averaging no fictitious samples xk for k = −no + 1,−no +
2, . . . , 0. Thus we can write

μo =
1
no

0∑
k=−no+1

xk,

and

μn =

n∑
k=1

xk

n + σ2/σ2
o

+
σ2/σ2

o

σ2/σ2
o + n

1
no

0∑
k=−no+1

xk

=

n∑
k=1

xk

n + no
+

no

n + no

1
no

0∑
k=1−no

xk.

We can use the fact that no = σ2/σ2
o to write

μn =
1

n + no

n∑
k=−no+1

xk.

Likewise, we have

σ2
n =

σ2σ2
o

nσ2
o + σ2

=
σ2

n + σ2/σ2
o

=
σ2

n + no
.

(b) The result of part (a) can be interpreted as follows: For a suitable choice of
the prior density p(μ) ∼ N(μo, σ

2
o), maximum-likelihood inference on the “full”

sample on n+no observations coincides with Bayesian inference on the “second
sample” of n observations. Thus, by suitable choice of prior, Bayesian learning
can be interpreted as maximum-likelihood learning and here the suitable choice
of prior in Bayesian learning is

μo =
1
no

0∑
k=−no+1

xk,

σ2
o =

σ2

no
.

Here μo is the sample mean of the first no observations and σ2
o is the variance

based on those no observations.

16. We assume that A and B are non-singular matrices of the same order.

(a) Consider Eq. 44 in the text. We write

A(A + B)−1B = A[(A + B)−1(B−1)−1] = A[B−1(A + B)]−1

= A[B−1A + I]−1 = (A−1)−1(B−1A + I)−1

= [(B−1A + I)A−1]−1 = (B−1 + A−1)−1.
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We interchange the roles of A and B in this equation to get our desired answer:

B(A + B)−1A = (A−1 + B−1)−1.

(b) Recall Eqs. 41 and 42 in the text:

Σ−1
n = nΣ−1 + Σ−1

o

Σ−1
n μn = nΣ−1μn + Σ−1

o μo.

We have solutions

μn = Σo

(
Σo +

1
n
Σ

)
μn +

1
n
Σ

(
Σo +

1
n
Σ

)−1

μo,

and

Σn = Σo

(
Σo +

1
n
Σ

)−1 1
n
Σ.

Taking the inverse on both sides of Eq. 41 in the text gives

Σn =
(
nΣ−1 + Σ−1

o

)−1
.

We use the result from part (a), letting A = 1
nΣ and B = Σo to get

Σn =
1
n
Σ

(
1
n
Σ + Σo

)−1

Σo = Σo

(
Σo +

1
n
Σ

)−1

Σ,

which proves Eqs. 41 and 42 in the text. We also compute the mean as

μn = Σn(nΣ−1mn + Σ−1
o μo)

= ΣnnΣ−1mn + ΣnΣ−1
o μo

= Σo

(
Σo +

1
n
Σ

)−1 1
n
ΣnΣ−1mn +

1
n
Σ

(
Σo +

1
n
Σ

)−1

ΣoΣ−1
o μo

= Σo

(
Σo +

1
n
Σ

)−1

mn +
1
n
Σ

(
Σo +

1
n
Σ

)−1

μo.

Section 3.5

17. The Bernoulli distribution is written

p(x|θ) =
d∏

i=1

θxi
i (1 − θi)1−xi .

Let D be a set of n samples x1, . . . ,xn independently drawn according to p(x|θ).
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(a) We denote s = (s1, · · · , sd)t as the sum of the n samples. If we denote xk =

(xk1, · · · , xkd)t for k = 1, . . . , n, then si =
n∑

k=1

xki, i = 1, . . . , d, and the likelihood

is

P (D|θ) = P (x1, . . . ,xn|θ) =
n∏

k=1

P (xk|θ)︸ ︷︷ ︸
xk are indep.

=
n∏

k=1

d∏
i=1

θxki
i (1 − θi)1−xki

=
d∏

i=1

θ

∑n

k=1
xki

i (1 − θi)
∑n

k=1
(1−xki)

=
d∏

i=1

θsi
i (1 − θi)n−si .

(b) We assume an (unnormalized) uniform prior for θ, that is, p(θ) = 1 for 0 ≤
θi ≤ 1 for i = 1, · · · , d, and have by Bayes’ Theorem

p(θ|D) =
p(D|θ)p(θ)

p(D)
.

From part (a), we know that p(D|θ) =
d∏

i=1

θsi
i (1 − θ)n−si , and therefore the

probability density of obtaining data set D is

p(D) =
∫

p(D|θ)p(θ)dθ =
∫ d∏

i=1

θsi
i (1 − θi)n−sidθ

=

1∫
0

· · ·
1∫

0

d∏
i=1

θsi
i (1 − θi)n−sidθ1dθ2 · · · dθd

=
d∏

i=1

1∫
0

θsi
i (1 − θi)n−sidθi.

Now si =
n∑

k=1

xki takes values in the set {0, 1, . . . , n} for i = 1, . . . , d, and if we

use the identity

1∫
0

θm(1 − θ)ndθ =
m!n!

(m + n + 1)!
,

and substitute into the above equation, we get

p(D) =
d∏

i=1

1∫
0

θsi
i (1 − θi)n−sidθi =

d∏
i=1

si!(n − si)!
(n + 1)!

.
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We consolidate these partial results and find

p(θ|D) =
p(D|θ)p(θ)

p(D)

=

d∏
i=1

θsi
i (1 − θi)n−si

d∏
i=1

si!(n − si)!/(n + 1)!

=
d∏

i=1

(n + 1)!
si!(n − si)!

θsi
i (1 − θi)n−si .

(c) We have d = 1, n = 1, and thus

p(θ1|D) =
2!

s1!(n − s1)!
θs1
1 (1 − θ1)n−s1 =

2
s1!(1 − s1)!

θs1
1 (1 − θ1)1−s1 .

Note that s1 takes the discrete values 0 and 1. Thus the densities are of the
form

s1 = 0 : p(θ1|D) = 2(1 − θ1)
s1 = 1 : p(θ1|D) = 2θ1,

for 0 ≤ θ1 ≤ 1, as shown in the figure.

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

s
1 =0

s 1
=1

p(θ1|D)

θ1

18. Consider how knowledge of an invariance can guide our choice of priors.

(a) We are given that s is actually the number of times that x = 1 in the first n tests.
Consider the (n + 1)st test. If again x = 1, then there are

(
n+1
s+1

)
permutations

of 0s and 1s in the (n+1) tests, in which the number of 1s is (s+1). Given the
assumption of invariance of exchangeablility (that is, all permutations have the
same chance to appear), the probability of each permutation is

Pinstance =
1(

n+1
s+1

) .

Therefore, the probability of x = 1 after n tests is the product of two probabil-
ities: one is the probability of having (s + 1) number of 1s, and the other is the
probability for a particular instance with (s + 1) number of 1s, that is,

Pr[xn+1 = 1|Dn] = Pr[x1 + · · · + xn = s + 1] · Pinstance =
p(s + 1)(

n+1
s+1

) .



96CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

The same analysis yields

P (xn+1 = 0|Dn) =
p(s)(
n+1

s

) .

Therefore, the ratio can be written as

Pr[xn+1 = 1|Dn]
Pr[xn+1 = 0|Dn]

=
p(s + 1)/

(
n+1
s+1

)
p(s)/

(
n+1

s

) .

(b) Given p(s) � p(s + 1) for large s, we have

p(s + 1)/
(
n+1
s+1

)
p(s)/

(
n+1

s

) �
(
n+1

s

)(
n+1
s+1

) =
(n + 1)!

s!(n + 1 − s)!
(s + 1)!(n + 1 − s − 1)!

(n + 1)!

=
(s + 1)!(n + 1 − s − 1)!

s!(n + 1 − s)!
=

s!(s + 1)(n + 1 − s − 1)!
s!(n + 1 − s − 1)!(n + 1 − s)

=
s + 1

n + 1 − s
.

We can see that for some n, the ratio will be small if s is small, and that the ratio
will be large if s is large. This implies that with n increasing, if x is unlikely
to be 1 in the first n tests (i.e., small s), it would be unlikely to be 1 in the
(n + 1)st test, and thus s remains small. On the contrary, if there are more 1s
than 0s in the first n tests (i.e., large s), it is very likely that in the (n + 1)st
test the x remains 1, and thus retains s large.

(c) If p(θ) ∼ U(0, 1) for some n, then p(θ) is a constant, which we call c. Thus

p(s) =

1∫
0

θs(1 − θ)n−sp(θ)dθ

= c

(
n

s

) 1∫
0

θs(1 − θ)n−sdθ

= c

(
n

s

) (
− θs+1

s + 1
(1 − θ)n−s+1

n − s + 1

) ∣∣∣∣∣
1

0

= 0,

which of course does not depend upon s.

19. Consider MAP estimators, that is, ones that maximize l(θ)p(θ).

(a) In this problem, the parameter needed to be estimated is μ. Given the training
data, we have

l(μ)p(μ) = ln[p(D|μ)p(μ)]

where for the Gaussian

ln[p(D|μ)] = ln

(
n∏

k=1

p(xk|μ)

)
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=
n∑

k=1

ln[p(xk|μ)]

= −n

2
ln

[
(2π)d|Σ|] − n∑

k=1

1
2
(xk − μ)tΣ−1(xk − μ)

and

p(μ) =
1

(2π)d/2|Σ0|1/2
exp

[
−1

2
(μ − m0)tΣ−1

o (μ − m0)
]

.

The MAP estimator for the mean is then

μ̂ = arg max
μ

{ [
−n

2
ln

[
(2π)d|Σ|] − n∑

k=1

1
2
(xk − μ)tΣ−1(xk − μ)

]

×
[

1
(2π)d/2|Σ0|1/2

exp
[
−1

2
(μ − m0)tΣ−1

o (μ − m0)
]]}

.

(b) After the linear transform governed by the matrix A, we have

μ′ = E [x′] = E [Ax] = AE [x] = Aμ,

and

Σ′ = E [(x′ − μ′)(x′ − μ′)t]
= E [(Ax′ − Aμ′)(Ax′ − Aμ′)t]
= E [A(x′ − μ′)(x′ − μ′)tAt]
= AE [(x′ − μ′)(x′ − μ′)t]At

= AΣAt.

Thus we have the log-likelihood

ln[p(D′|μ′)] = ln

(
n∏

k=1

p(x′
k|μ′)

)

= ln

(
n∏

k=1

p(Axk|Aμ)

)

=
n∑

k=1

ln[p(Axk|Aμ)]

= −n

2
ln

[
(2π)d|AΣAt|] − n∑

k=1

1
2
(Axk − Aμ)t(AΣAt)−1(Axk − Aμ)

= −n

2
ln

[
(2π)d|AΣAt|] − n∑

k=1

1
2
((x − μ)tAt)((A−1)tΣ−1A−1)(A(xk − μ))

= −n

2
ln

[
(2π)d|AΣAt|] − n∑

k=1

1
2
(xk − μ)t(At(A−1)t)Σ−1(A−1A)(xk − μ)

= −n

2
ln

[
(2π)d|AΣAt|] − n∑

k=1

1
2
(xk − μ)tΣ−1(xk − μ).
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Likewise we have that the density of μ′ is a Gaussian of the form

p(μ′) =
1

(2π)d/2|Σ′
0|1/2

exp
[
−1

2
(μ′ − m0)tΣ−1

0 (μ′ − m0)
]

=
1

(2π)d/2|Σ′
0|1/2

exp
[
−1

2
(Aμ − Am0)t(AΣ0At)−1(Aμ − Am0)

]
=

1
(2π)d/2|Σ′

0|1/2
exp

[
−1

2
(μ − m0)tAt(A−1)tΣ−1

0 A−1A(μ − m0)
]

=
1

(2π)d/2|Σ′
0|1/2

exp
[
−1

2
(μ − m0)tΣ−1

0 (μ − m0)
]

.

Thus the new MAP estimator is

μ̂′ = arg max
μ

{
− n

2
ln

[
(2π)d|AΣAt|]

−
n∑

k=1

1
2
(xk − μ)tΣ−1(xk − μ)

[
1

(2π)d/2|Σ′
0|1/2

exp
[
−1

2
(μ − m0)tΣ−1

0 (μ − m0)
]]}

.

We compare μ̂ and see that the two equations are the same, up to a constant.
Therefore the estimator gives the appropriate estimate for the transformed mean
μ̂′.

20. Consider the problem of noninformative priors.

(a) Assume that σ̃ has a uniform distribution, that is, p̃(σ̃) = c, where c is a
constant. We make the correspondence σ̃ = lnσ and thus σ = exp[σ̃] = f(σ̃),
for some f(·). Since p̃(σ̃) = c, we have

p(σ) = p̃(f−1(σ))
df−1(σ)

dσ

= p̃(σ̃)
dln(σ)

dσ

=
c

σ
.

For the case c = 1, we have p(σ) = 1/σ.

(b) The noninformative priors here are very simple,

p(θ0) =
1

2π − 0
=

1
2π

p(σθ) = 1/σθ.

21. Note that 0 ≤ p(θ|D) ≤ 1. In order to converge while n → ∞, it must be true
that

lim
n→∞ p(θ|D) = lim

n→∞
p(xk|θ)p(θ|Dn−1)∫
p(xk|θ)p(θ|Dn−1)dθ

= lim
n→∞ p(θ|Dn−1).

Note that lim
n→∞ p(θ|Dn) → p(θ). We assume lim

n→∞ p(θ|D) → p(θ) �= 0 and lim
n→∞xn →

x∗. Then the above equation implies

p(x∗|θ) = lim
n→∞ p(xn|θ)
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= lim
n→∞

∫
p(xn|θ)p(θ)dθ

=
∫

lim
n→∞ p(xn|θ)p(θ)dθ

=
∫

p(x∗|θ)p(θ)dθ

= p(x∗).

In summary, we have the conditions:

• lim
n→∞ p(θ|Dn) → p(θ) �= 0

• lim
n→∞xn → x∗

• p(x∗|θ) = p(x∗), that is, p(x∗|θ) is independent of θ.

22. Consider the Gibbs algorithm.

(a) Note that p(x|ω2, μ) �= 0 for |x− μ| < 1 and this implies x− 1 < μ < x + 1 and
p(μ) �= 0 for 0 ≤ μ ≤ 2. We have the following cases:

• x − 1 > 2 and thus x > 3 or x + 1 < 0 and thus x < −1.
• 0 ≤ x − 1 ≤ 2 and thus 1 ≤ x ≤ 3. In that case,

p(x|ω2) =

2∫
x−1

p(x|ω2, μ)p(μ)dμ =

2∫
x−1

1
2

1
2
dμ =

3 − x

4
.

• 0 ≤ x + 1 ≤ 2 and thus −1 ≤ x ≤ 1. In that case,

p(x|ω2) =

x+1∫
0

p(x|ω2, μ)p(μ)dμ =

x+1∫
0

1
2

1
2
dμ =

x + 1
4

.

Therefore, the class-conditional density is:

p(x|ω2) =

⎧⎪⎪⎨⎪⎪⎩
0 x < −1

(x + 1)/4 −1 ≤ x ≤ 1
(3 − x)/4 1 ≤ x ≤ 3

0 x > 3.

(b) The decision point is at

x∗ = arg
x

[p(x|ω1)p(ω1) = p(x|ω2)p(ω2)].

(c) We let P ≡ P (ω1) and note the normalization condition P (ω1) + P (ω2) = 1.
There are two cases:

• (1 + x)P ≥ (x + 1)/4 · (1 − P ) and thus 1/5 ≤ P ≤ 1, as shown in the
figure.
In this case, (1 − x∗)P = (x∗ + 1)/4 · (1 − P ) and this implies x∗ =
(5P − 1)/(3P + 1), and the error is

P (error) =

x∗∫
−1

p(x|ω2)P (ω2)dx +

1∫
x∗

p(x|ω1)P (ω1)dx =
24P 3 + 8P 2

(3P + 1)2
.
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• 0 ≤ P ≤ 1/5, as shown in the figure.
The error is

P (error) =

1∫
−1

p(x|ω1)P (ω1)dx = P.

(d) Again, we are considering p(x|ω1)P (ω1) and p(x|ω2)P (ω2), but this time, we
first use a single value of μ as the true one, that is, p(μ) = 1. There are two
cases for different relationships between P and μ.

• p(x|ω1)P (ω1) ≤ p(x|ω2, μ)P (ω2) which implies P ≤ 1/2 · (1 − P ) or 0 ≤
P ≤ 1/3. This case can be further divided into two sub-cases:
subcase 1: 0 ≤ μ ≤ 1

The error is

P (error) =

1∫
0

1
2
(1 − (−1)) ·

(
P − μ2

2

)
dμ = P − P/6 = 5P/6.

subcase 2: 1 < μ ≤ 2
The error is

P2(error) =

2∫
1

(2 − μ)2

2
Pdμ = P/6

and the total error for this case is

PGibbs(error) = P1(error) + P2(error) =
5P

6
+

P

6
= P.

• Other case: 1/3 ≤ P ≤ 1. This case can be further subdivided into three
subcases.
subcase 1: 0 ≤ μ ≤ (1 − P )/(2P ) as shown in the figure.

The error is

P1(error) =

(1−P )/(2P )∫
0

[
1 − P

4

(
9
2
− 2μ − 1

2P

)

− 1
2

((
1 − P

2
− Pμ

) (
1 − 3P

2P
− μ + 1

)) ]
dμ

=
(1 − P )2(31P − 7)

48P 2
.
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subcase 2: (1 − P )/(2P ) ≤ μ ≤ (5P − 1)/(2P ), as shown in the figure.
The error is

P2(error) =

(5P−1)/(2P )∫
(1−P )/(2P )

1 − P

4

(
9
2
− 2μ − 1

2P

)
dμ

=
(5P − 1)(1 − P )(3P − 1)

8P 2
.

subcase 3: (5P − 1)/(2P ) ≤ μ ≤ 2, as shown in the figure.
The error is

P3(error) =

2∫
(5P−1)/(2P )

P

2
(2 − μ)2dμ

=
P

6

(
1 − P

2P

)3

.

Thus the probability of error under Gibbs sampling is

PGibbs(error) = P1(error) + P2(error) + P3(error)

= −5P 2 − 6P + 1
4P

(e) It can be easily confirmed that PGibbs(error) < 2PBayes(error).

Section 3.6

23. Let s be a sufficient statistic for which p(θ|s,D) = p(θ|s); we assume p(θ|s) �= 0.
In that case, we can write Bayes’ law

p(D|s,θ) =
p(θ|s,D)p(D|s)

p(θ|s)
as

p(D|s,θ) =
p(D, s,θ)
p(s,θ)

=
p(θ|s,D)P (D, s)

p(θ|s)p(s)
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=
p(θ|s,D)p(D|s)p(s)

p(θ|s)p(s)

=
p(θ|s,D)p(D|s)

p(θ|s) .

Note that the probability density of the parameter θ is fully specified by the sufficient
statistic; the data gives no further information, and this implies

p(θ|s,D) = p(θ|s).

Since p(θ|s) �= 0, we can write

p(D|s,θ) =
p(θ|s,D)p(D|s)

p(θ|s)
=

p(θ|s)p(D|s)
p(θ|s)

= p(D|s),

which does not involve θ. Thus, p(D|s,θ) is indeed independent of θ.
24. To obtain the maximum-likelihood estimate, we must maximize the likelihood
function p(D|θ) = p(x1, . . . ,xn|θ) with respect to θ. However, by the Factorization
Theorem (Theorem 3.1) in the text, we have

p(D|θ) = g(s,θ)h(D),

where s is a sufficient statistic for θ. Thus, if we maximize g(s,θ) or equivalently
[g(s,θ)]1/n, we will have the maximum-likelihoood solution we seek.

For the Rayleigh distribution, we have from Table 3.1 in the text,

[g(s, θ)]1/n = θe−θs

for θ > 0, where

s =
1
n

n∑
k=1

x2
k.

Then, we take the derivative with respect to θ and find

∇θ[g(s, θ)]1/n = e−θs − sθe−θs.
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We set this to 0 and solve to get

e−θ̂s = sθ̂e−θ̂s,

which gives the maximum-likelihood solution,

θ̂ =
1
s

=

(
1
n

n∑
k=1

x2
k

)−1

.

We next evaluate the second derivative at this value of θ̂ to see if the solution represents
a maximum, a minimum, or possibly an inflection point:

∇2
θ[g(s, θ)]1/n

∣∣∣
θ=θ̂

= −se−θs − se−θs + s2θe−θs
∣∣∣
θ=θ̂

= e−θ̂s(s2θ̂ − 2s) = −se−1 < 0.

Thus θ̂ indeed gives a maximum (and not a minimum or an inflection point).
25. The maximum-likelihood solution is obtained by maximizing [g(s, θ)]1/n. From
Table 3.1 in the text, we have for a Maxwell distribution

[g(s, θ)]1/n = θ3/2e−θs

where s = 1
n

n∑
k=1

x2
k. The derivative is

∇θ[g(s, θ)]1/n =
3
2
θ1/2e−θs − sθ3/2e−θs.

We set this to zero to obtain

3
2
θ1/2e−θs = sθ3/2e−θs,

and thus the maximum-likelihood solution is

θ̂ =
3/2
s

=
3
2

(
1
n

n∑
k=1

x2
k

)−1

.

We next evaluate the second derivative at this value of θ̂ to see if the solution represents
a maximum, a minimum, or possibly an inflection point:

∇2
θ[g(s, θ)]1/n

∣∣∣
θ=θ̂

=
3
2

1
2
θ1/2e−θs − 3

2
θ1/2se−θs − 3

2
θ1/2se−θs + s2θ3/2e−θs

∣∣∣
θ=θ̂
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=
3
4
θ̂−1/2e−θ̂s − 3sθ̂1/2e−θ̂s + s2θ̂3/2e−θ̂s

= e−3/2

(
3
4
− 3

3
2

+
9
4

)
θ̂−1/2 = −3

2
θ̂−1/2e−3/2 < 0.

Thus θ̂ indeed gives a maximum (and not a minimum or an inflection point).
26. We fine the maximum-likelihood solution by maximizing [g(s, θ)]1/n. In this case,
we have

[g(s, θ)]1/n =
d∏

i=1

θsi
i

and

s = (s1, . . . , sd)t =
1
n

n∑
k=1

xk.

Our goal is to maximize [g(s, θ)]1/n with respect to θ over the set 0 < θi < 1, i =

1, . . . , d subject to the constraint
d∑

i=1

θi = 1. We set up the objective function

l(θ, λ|s) = ln [g(s, θ)]1/n + λ

(
d∑

i=1

θi − 1

)

=
d∑

i=1

siln θi + λ

(
d∑

i=1

θi − 1

)
.

The derivative is thus

(∇θl)i =
δl

δθi
=

si

θi
+ λ

for i = 1, . . . , d. We set this derivative to zero and get

si

θ̂i

= −λ,

which yields our intermediate solution:

θ̂i = −si

λ
.
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We impose the normalization condition,
d∑

i=1

θ̂i = 1, to find λ, which leads to our final

solution

θ̂i =
sj

d∑
i=1

si

for j = 1, . . . , d.
27. Consider the notion that sufficiency is an integral concept.

(a) Using Eq. 51 in the text, we have

p(D|θ) =
n∏

k=1

p(x|θ)

=
n∏

k=1

1√
2πσ

exp
[
− 1

2σ2
(xk − μ)2

]

=
(

1√
2πσ

)n

exp

[
1

2σ2

n∑
k=1

(
x2

k − 2μxk + μ2
)2

]

=
(

1√
2πσ

)n

exp

[
− 1

2σ2

(
n∑

k=1

x2
k − 2μ

n∑
k=1

xk +
n∑

k=1

μ2

)]

=
(

1√
2πσ

)n

exp
[
− 1

2σ2

(
ns2 − 2ns1 + nμ2

)]
.

Now let g(s,θ) be a Gaussian of the form

g(s,θ) =
(

1√
2πσ

)n

exp
[
− 1

2σ2
(ns2 − 2μns1 + nμ2)

]
and h(D) = 1. Then we can write

p(D|θ) = g(s,θ)h(D).

According to Theorem 3.1 in the text, the statistic s is indeed sufficient for θ.

(b) We apply the result from part (a) to the case of g(s1, μ, σ2), that is,

g(s1, μ, σ2) =
(

1√
2πσ

)n

exp
[

1
2σ2

(−2μns1 + nμ2)
]
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and

h(D, σ2) = exp
[

1
2σ2

ns2

]
.

In the general case, the g(s1, μ, σ2) and h(D, σ2) are dependent on σ2, that is,
there is o way to have p(D|μ, σ2) = g(s1, μ)h(D). Thus according to Theorem 3.1
in the text, s1 is not sufficient for μ. However, if σ2 is known, then g(s1, μ, σ2) =
g(s1, μ) and h(D, σ2) = h(D). Then we indeed have p(D|μ) = g(s1, μ)h(D), and
thus s1 is sufficient for μ.

(c) As in part (b), we let

g(s2, μ, σ2) =
(

1√
2πσ

)n

exp
[

1
2σ2

(ns2 − 2μns1 + nμ2)
]

and h(D) = 1. In the general case, the g(s2, μ, σ2) is dependent upon μ, that
is, there is no way to have p(D|μ, σ2) = g(s2, σ

2)h(D). Thus according to
Theorem 3.1 in the text, s2 is not sufficient for σ2. However, if μ is known, then
g(s2, μ, σ2) = g(s2, σ

2). Then we have p(D|σ2) = g(s2, σ
2)h(D), and thus s2 is

sufficient for σ2.

28. We are to suppose that s is a statistic for which p(θ|x,D) = p(θ|s), that is, that
s does not depend upon the data set D.

(a) Let s be a sufficient statistic for which p(θ|s,D) = p(θ|s); we assume p(θ|s) �= 0.
In that case, we can write Bayes’ law

p(D|s,θ) =
p(θ|s,D)p(D|s)

p(θ|s)
as

p(D|s,θ) =
p(D, s,θ)
p(s,θ)

=
p(θ|s,D)P (D, s)

p(θ|s)p(s)

=
p(θ|s,D)p(D|s)p(s)

p(θ|s)p(s)

=
p(θ|s,D)p(D|s)

p(θ|s) .
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Note that the probability density of the parameter θ is fully specified by the
sufficient statistic; the data gives no further information, and this implies

p(θ|s,D) = p(θ|s).

Since p(θ|s) �= 0, we can write

p(D|s,θ) =
p(θ|s,D)p(D|s)

p(θ|s)
=

p(θ|s)p(D|s)
p(θ|s)

= p(D|s),

which does not involve θ. Thus, p(D|s,θ) is indeed independent of θ.

(b) Assume the variable x comes from a uniform distribution, p(x) ∼ U(μ, 1). Let

s = 1
n

n∑
k=1

xk be a statistic of a sample data set D of x, that is, s is the sample

mean of D. Now assume that we estimate μ = μ0 = 0, but from a particular
sample data set D0 we have s0 = 5. Note that we estimate p(x) ∼ U(0, 1), we
have p(μ0|s0,D) = p(μ0|s0) = 0, that is, it is impossible that given the data set
D0 whose mean is s0 = 5 that the distribution is p(x) ∼ U(0, 1). Therefore, if
given μ = μ0 = 0 and s0 = 5, there does not exist a data set D0 whose mean
is s0 = 5 but whose elements are distributed according to p(x) ∼ U(0, 1). Said
another way, we have p(D0|s0, μ0) = 0 for these particular values of s0 and μ0.
However, p(D0|s0) is not necessarily zero. It is easy to set up a data set whose
mean is s0, giving p(D0|s0, μ0) �= p(D0|s0). Therefore, p(θ|s) �= 0, as required
for the proof.

29. Recall the Cauchy distribution,

p(x) =
1
πb

· 1

1 +
(

x−a
b

)2 .

(a) We integrate p(x) over all x, and have

∞∫
−∞

p(x)dx =
1
πb

∞∫
−∞

1

1 +
(

x−a
b

)2 dx.

We substitute y = (x − a)/b and dx = b dy and find

1
πb

∞∫
−∞

1

1 +
(

x−a
b

)2 dx =
1
π

∞∫
−∞

1
1 + y2

dy =
1
π

tan−1[y]
∣∣∞
−∞ =

1
π

(π

2
−

(
−π

2

))
= 1.

We find, then, that indeed p(x) is normalized.

(b) According to the definition of the mean, we have

μ =

∞∫
−∞

xp(x)dx =
1
πb

x

1 +
(

x−a
b

)2 dx.
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As in part (a), we let y = (x − a)/b and dx = b dy. Then the mean is

μ =
1
πb

∞∫
−∞

by + a

1 + y2
b dy

=
1
π

⎛⎜⎜⎜⎜⎜⎝b

∞∫
−∞

y

1 + y2
dy

︸ ︷︷ ︸
0

+a

∞∫
−∞

1
1 + y2

b dy

⎞⎟⎟⎟⎟⎟⎠ .

Note that f(y) = y/(1 + y2) is an odd function, and thus the first integral
vanishes. We substitute our result from part (a) and find

μ =
a

π

∞∫
−∞

1
1 + y2

b dy = a.

This conclusion is satisfying, since when x = a, the distribution has its maxi-
mum; moreover, the distribution dies symmetrically around this peak.

According to the definition of the standard deviation,

σ2 =

∞∫
−∞

x2p(x)dx − μ2

=
1
πb

∞∫
−∞

x2 1

1 +
(

x−a
b

)2 dx − μ2.

We substitute y = (x − a)/b and dx = bdy, and have

σ2 =
1
πb

∞∫
−∞

b2y2 + 2aby + a2

1 + y2
b dy − μ2

=
1
π

⎡⎣ ∞∫
−∞

b2dy + 2ab

∞∫
−∞

y

1 + y2
dy + (a2 − b2)

∞∫
−∞

1
1 + y2

dy

⎤⎦ − μ2

=
1
π

[∞ + 2ab · 0 + (a2 − b2)π
] − μ2

= ∞.

This result is again as we would expect, since according to the above calculation,
E [(x − μ)2] = ∞.

(c) Since we know θ = (μ ∞)t = (a ∞)t, for any defined s = (s1, . . . , sn), si < ∞,
it is impossible to have p(D|s, (a ∞)t) = p(D|s). Thus the Cauchy distribution
has no sufficient statistics for the mean and standard deviation.

30. We consider the univariate case. Let μ and σ2 denote the mean and variance of
the Gaussian, Cauchy and binomial distributions and μ̂ = 1/n

∑n
i=1 xi be the sample

mean of the data points xi, for i = 1, . . . , n.
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(a) According to Eq. 21 in the text, we have

σ2
n = E

[
1

n − 1

n∑
i=1

(xi − μ̂)2
]

=
1

n − 1
E

[
n∑

i=1

((xi − μ) − (μ̂ − μ))2
]

=
1

n − 1
E

[
n∑

i=1

(
(xi − μ)2 − 2(xi − μ)(μ̂ − μ) + (μ̂ − μ)2

)]

=
1

n − 1

n∑
i=1

[E [(xi − μ)2] − 2E [(xi − μ)(μ̂ − μ)] + E [(μ̂ − μ)2]
]
.

Note that

E [(xi − μ)(μ̂ − μ)] = E
⎡⎣(xi − μ)

⎛⎝ 1
n

n∑
j=1

xj − μ

⎞⎠⎤⎦
= E

⎡⎣(xi − μ)

⎛⎝xi − μ

n
+

1
n

n∑
k=1; k �=i

xk − μ

⎞⎠⎤⎦
= E

[
1
n

(xi − μ)2
]

+ E
⎡⎣ 1

n
(xi − μ)

⎛⎝ n∑
k=1; k �=i

xk − (n − 1)μ

⎞⎠⎤⎦
=

1
n

σ2 + 0 = σ2/n.

Similarly, we have the variance,

E [(μ̂ − μ)2] = σ2/n,

and furthermore

σ2
n =

1
n − 1

n∑
i=1

(
σ2 − 2

n
σ2 +

1
n

σ2

)
=

n − 1
n − 1

σ2 = σ2.

Thus indeed the estimator in Eq. 21 in the text is unbiased.

(b) The result in part (a) applies to a Cauchy distribution.

(c) The result in part (a) applies to a Binomial distribution.

(d) From Eq. 20 in the text, we have

lim
n→∞

n − 1
n

σ2 = σ2,

that is, asymptotically unbiased.
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Section 3.7

31. We assume that a and b are positive constants and n a variable. Recall the
definition on page 633 in the text that

O(g(x)) = {f(x) : There exist positive constants c and x0 such that
0 ≤ f(x) ≤ cg(x) for all x ≥ x0}.

(a) Is an+1 = O(an)? Yes. If let c = a and x0 = 1, then c · an = an+1 ≥ an+1 for
x ≥ 1.

(b) Is abn = O(an)? No. No matter what constant c we choose, we can always find
a value n for which abn > c · an.

(c) Is an+b = O(an)? Yes. If choose c = ab and x0 = 1, then c · an = an+b ≤ an+b

for x > 1.

(d) Clearly f(n) = O(f(n)). To prove this, we let c = 1 and x0 = 0. Then of course
f(x) ≥ f(x) for x ≥ 0. (In fact, we have f(n) = f(n).)

32. We seek to evaluate f(x) =
∑n−1

i=0 aix
i at a point x where the n coefficients ai

are given.

(a) A straightforward Θ(n2) algorithm is:

Algorithm 0 (Basic polynomial evaluation)

1 begin initialize x, ai for i = 1, . . . , n − 1
2 f ← a0

3 i ← 0
4 for i ← i + 1
5 x0 ← 1
6 j ← 0
7 for j ← j + 1
8 xj ← xj−1x
9 until j = i

10 f ← f + aixi

11 until i = n − 1
12 end

(b) A Θ(n) algorithm that takes advantage of Horner’s rule is:

Algorithm 0 (Horner evaluation)

1 begin initialize x, ai for i = 1, . . . , n − 1
2 f ← an−1

3 i ← n
4 for i ← i − 1
5 f ← fx + ai−1

6 until i = 1
7 end

33. The complexities are as follows:



PROBLEM SOLUTIONS 111

(a) O(N)

(b) O(N)

(c) O(J(I + K))

34. We assume that the uniprocessor can perform one operation per nanosecond
(10−9 second). There are 3600 seconds in an hour, 24 × 3600 = 86, 400 seconds in
a day, and 31, 557, 600 seconds in a year. Given one operation per nanosecond, the
total number of basic operations in the periods are: 109 in one second; 3.6 × 1012 in
one hour; 8.64× 1013 in one day; 3.156× 1016 in one year. Thus, for the table below,
we find n such that f(n) is equal to these total number of operations. For instance,
for the “1 day” entry in the nlog2n row, we solve for n such that nlog2n = 8.64×1013.

f(n) 1 sec 1 hour 1 day 1 year
operations: 109 3.6 × 1012 8.64 × 1013 3.156 × 1016

log2n
2109


4.6×10301029995
23.6×1012


101012
28.64×1013


101013
23.156×1016


101016√
n (109)2 = 1018 (3.6×1012)2


1.3×1025
(8.64×1013)2


7.46×1027
(3.156×1016)2


9.96×1032

n 109 3.6 × 1012 8.64 × 1013 3.156 × 1016

nlog2n * 3.9 × 107 9.86 × 1010 2.11 × 1012 6.41 × 1014

n2
√

109 � 3.16 × 104
√

3.6×1012


1.9×106

√
8.64×1013


9.3×106

√
3.156×1016


1.78×108

n3 3
√

109 = 103
3√3.6×1012


1.53×104

3√8.64×1013


4.42×104

3√3.156×1016


3.16×105

2n log2109 = 29.90 log2(3.6×1012)

41.71

log2(8.64×1013)

46.30

log2(3.156×1016)

54.81

en ln109 = 10.72 ln(3.6×1012)

28.91

ln(8.64×1013)

32.09

ln(3.156×1016)

38.0

n! ** 13.1 16.1 17.8 19.3

* For entries in this row, we solve numerically for n such that, for instance, nlog2n =
3.9 × 107, and so on.
** For entries in this row, we use Stirling’s approximation — n! � (n/e)n for large n
— and solve numerically.
35. Recall first the sample mean and sample covariance based on n samples:

mn =
1
n

n∑
k=1

xk

Cn =
1

n − 1

n∑
k=1

(xk − mn)(xk − mn)t.

(a) The computational complexity for mn is O(dn), and for Cn is O(dn2).

(b) We can express the sample mean for n + 1 observations as

mn+1 =
1

n + 1

n+1∑
k=1

xk =
1

n + 1

[
n∑

k=1

xk + xn+1

]

=
1

n + 1
[nmn + xn+1]

= mn − 1
n + 1

mn +
1

n + 1
xn+1

= mn +
1

n + 1
(xn+1 − mn).
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For the sample covariance, we have

Cn+1 =
1
n

n+1∑
k=1

(xk − mn+1)(xk − mn+1)t

=
1
n

[
n∑

k=1

(xk − mn+1)(xk − mn+1)t + (xn+1 − mn+1)(xn+1 − mn+1)t

]

=
1
n

[ n∑
k=1

(xk − mn)(xk − mn)t − 1
(n + 1)

(xn+1 − mn)
n∑

k=1

(xk − mn)t

− 1
n + 1

(
n∑

k=1

(xk − mn)

)
(xn+1 − mn)t +

1
(n + 1)2

n∑
k=1

(xn+1 − mn)(xn+1 − mn)t
]

+
1
n

(
(xn+1 − mn) − 1

n + 1
(xn+1 − mn)

) (
(xn+1 − mn) − 1

n + 1
(xn+1 − mn)

)t

=
1
n

[
(n − 1)Cn +

n

(n + 1)2
(xn+1 − mn)(xn+1 − mn)t

]
+

1
n

((
n

n + 1

)2

(xn+1 − mn)(xn+1 − mn)t

)

=
n − 1

n
Cn +

(
1

(n + 1)2
+

n

(n + 1)2

)
(xn+1 − mn)(xn+1 − bfmn)t

=
n − 1

n
Cn +

1
n + 1

(xn+1 − mn)(xn+1 − mn)t.

(c) To compute mn from scratch, requires O(dn) operations. To update mn ac-
cording to

mn+1 = mn +
1

n + 1
(xn+1 − mn)

requires O(d) operations, one for each component.

To update Cn according to

Cn+1 =
n − 1

n
Cn +

1
(n + 1)

(xn+1 − mn)(xn+1 − mn)t

given Cn,mn and xn requires O(d) operations for computing xn+1 − mn; and
O(d2) operations for computing (xn+1 − mn)(xn+1 − mn)t. Thus, Cn+1 is
computed in O(d2) operations, given Cn,mn and xn. If we must compute
Cn+1 from scratch, then we need O(dn2) operations.

(d) The recursive method is on-line, and the classifier can be used as the data
is coming in. One possible advantage of the non-recursive method is that it
might avoid compounding roundoff errors in the successive additions of new
information from samples, and hence be more accurate.

36. We seek a recursive method for computing C−1
n+1.

(a) We first seek to show

(A + xxt)−1 = A−1 A−1xxtA−1

1 + xtA−1x
.
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We prove this most simply by verifying the inverse as:

(A + xxt)
(
A−1 − A−1xxtA−1

1 + xtA−1x

)
= AA−1 − AA−1xxtA−1

1 + xtA−1x
+ xxtA−1 − xxtA−1xxtA−1

1 + xtA−1x

= I − xxtA−1

1 + xtA−1x︸ ︷︷ ︸
a scalar

+ xxtA−1 − xtA−1x
xxtA−1

1 + xtA−1x︸ ︷︷ ︸
a scalar

= I + xtxA−1

(
1 − 1

1 + xtA−1x
− xtA−1x

1 + xtA−1x

)
= I + xtxA−1 · 0
= I.

Note the left-hand-side and the right-hand-side of this equation and see

(A + xtx)−1 = A−1 − A−1xxtA−1

1 + xtA−1x
.

(b) We apply the result in part (a) to the result discussed in Problem 35 and see
that

Cn+1 =
n − 1

n
Cn +

1
n + 1

(xn+1 − mn)(xn+1 − mn)t

=
n − 1

n

[
Cn +

n

n2 − 1
(xn+1 − mn)(xn+1 − mn)t

]
=

n − 1
n

(A + xxt).

We set A = Cn and x =
√

n
n2−1 (xn+1 − mn) and substitute to get

C−1
n+1 =

[
n − 1

n
(A + xxt)

]−1

=
n

n − 1
(A + xxt)−1

=
n

n + 1

[
A−1 − A−1xxtA−1

1 + xtA−1x

]

=
n

n + 1

⎡⎣C−1
n −

C−1
n

√
n

n2−1 (xn+1 − mn)
√

n
n2−1 (xn+1 − mn)tC−1

n

1 +
√

n
n2−1 (xn+1 − mn)tC−1

n

√
n

n2−1 (xn+1 − mn)

⎤⎦
=

n

n − 1

[
C−1

n − C−1
n (xn+1 − mn)(xn+1 − mn)tC−1

n
n2−1

n + (xn+1 − mn)tC−1
n (xn+1 − mn)

]
,

where we used our result from part (a).

(c) We determine the computational complexity as follows. Consider the formula
for C−1

n+1:

C−1
n+1 =

n

n − 1

[
C−1

n − uut

n2−1
n + ut(xn+1 − mn)

]
,
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where u = C−1
n (xn+1 − mn) is of O(d2) complexity, given that C−1

n ,xn+1 and
mn are known. Hence, clearly C−1

n can be computed from C−1
n−1 in O(d2) oper-

ations, as uut,ut(xn+1−mn) is computed in O(d2) operations. The complexity
associated with determining C−1

n is O(nd2).

37. We assume the symmetric non-negative covariance matrix is of otherwise general
form:

Σ =

⎛⎜⎜⎜⎝
σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn

⎞⎟⎟⎟⎠ .

To employ shrinkage of an assumed common covariance toward the identity matrix,
then Eq. 77 requires

Σ(β) = (1 − β)Σ + βI = I,

and this implies (1 − β)σii + β · 1 = 1, and thus

σii =
1 − β

1 − β
= 1

for all 0 < β < 1. Therefore, we must first normalize the data to have unit variance.

Section 3.8

38. Note that in this problem our densities need not be normal.

(a) Here we have the criterion function

J1(w) =
(μ1 − μ2)2

σ2
1 + σ2

2

.

We make use of the following facts for i = 1, 2:

y = wtx

μi =
1
ni

∑
y∈Yi

y =
1
ni

∑
x∈Di

wtx = wtμi

σ2
i =

∑
y∈Yi

(y − μi)2 = wt

[ ∑
x∈Di

(x − μi)(x − μi)
t

]
w

Σi =
∑
x∈Di

(x − μi)(x − μi)
t.

We define the within- and between-scatter matrices to be

SW = Σ1 + Σ2

SB = (μ1 − μ2)(μ1 − μ2)
t.

Then we can write

σ2
1 + σ2

2 = wtSW w

(μ1 − μ2)2 = wtSBw.
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The criterion function can be written as

J1(w) =
wtSBw
wtSW w

.

For the same reason Eq. 103 in the text is maximized, we have that J1(w)
is maximized at wS−1

W (μ1 − μ2). In sum, that J1(w) is maximized at w =
(Σ1 + Σ2)−1(μ1 − μ2).

(b) Consider the criterion function

J2(w) =
(μ1 − μ2)2

P (ω1)σ2
1 + P (ω2)σ2

2

.

Except for letting SW = P (ω1)Σ1 + P (ω2)Σ2, we retain all the notations in
part (a). Then we write the criterion function as a Rayleigh quotient

J2(w) =
wtSBw
wtSW w

.

For the same reason Eq. 103 is maximized, we have that J2(w) is maximized at

w = (P (ω1)Σ1 + P (ω2)Σ2)
−1 (μ1 − μ2).

(c) Equation 96 of the text is more closely related to the criterion function in part (a)
above. In Eq. 96 in the text, we let m̃i = μi, and s̃2

i = σ2
i and the statistical

meanings are unchanged. Then we see the exact correspondence between J(w)
and J1(w).

39. The expression for the criterion function

J1 =
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

(yi − yj)2

clearly measures the total within-group scatter.

(a) We can rewrite J1 by expanding

J1 =
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

[(yi − m1) − (yj − m2) + (m1 − m2)]2

=
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

[
(yi − m1)2 + (yj − m2)2 + (m1 − m2)2

+2(yi − m1)(yj − m2) + 2(yi − m1)(m1 − m2) + 2(yj − m2)(m1 − m2)
]

=
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

(yi − m1)2 +
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

(yj − m2)2 + (m1 − m2)2

+
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

2(yi − m1)(yj − m2) +
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

2(yi − m1)(m1 − m2)

+
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

2(yj − m2)(m1 − m2)

=
1
n1

s2
1 +

1
n2

s2
2 + (m1 − m2)2,
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where

m1 =
∑

yi∈Y1

yi

m2 =
∑

yj∈Y2

yj

s2
1 =

∑
yi∈Y1

(yi − m1)2

s2
2 =

∑
yj∈Y2

(yj − m2)2.

(b) The prior probability of class one is P (ω1) = 1/n1, and likewise the prior prob-
ability of class two is P (ω2) = 1/n2. Thus the total within-class scatter is

J2 = P (ω1)s2
1 + P (ω2)s2

2 =
1
n1

s2
1 +

1
n2

s2
2.

(c) We write the criterion function as

J(w) =
(m1 − m2)2 + 1

n1
s2
1 + 1

n2
s2
2

1
n1

s2
1 + 1

n2
s2
2

=
(m1 − m2)2
1

n1
s2
1 + 1

n2
s2
2

+ 1,

then J(w) = J1/J2. Thus optimizing J1 subject to the constraint J2 = 1 is
equivalent to optimizing J(w), except that the optimal solution of the latter is
not unique. We let y = wtx, and this implies

(m1 − m2)2 = wt(m1 − m2)(m1 − m2)tw

J2 =
1
n1

s2
1 +

1
n2

s2
2 = wt

[
1
n1

S1 +
1
n2

S2

]
w

where the mean and scatter matrices are

mi =
1
ni

∑
x∈Di

x

Si =
∑
x∈Di

(x − mi)(x − mi)t,

respectively. Thus the criterion function is

J(w) =
wt(m1 − m2)(m1 − m2)tw

wt
[

1
n1

S1 + 1
n2

S2

]
w

+ 1.

For the same reason Eq. 103 in the text is optimized, we have that J(w) is
maximized at

w = λ

[
1
n1

S1 +
1
n2

S2

]−1

(m1 − m2).

We need to guarantee J2 = 1, and this requires

wt

[
1
n1

S1 +
1
n2

S2

]
w = 1,
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which in turn requires

λ2(m1 − m2)t

[
1
n1

S1 +
1
n2

S2

]−1

(m1 − m2) = 1.

This equation implies that the parameter λ has the value

λ =

[
(m1 − m2)t

[
1
n1

S1 +
1
n2

S2

]−1

(m1 − m2)

]1/2

.

40. In the below, W is a d-by-n matrix whose columns correspond to n distinct
eigenvectors.

(a) Suppose that the set {ei} are normalized eigenvectors, then we have

et
iSBej = λiδij

et
iSW ej = λiδij ,

where δij is the Kronecker symbol. We denote the matrix consisting of eigen-
vectors as W = [e1 e2 . . . en]. Then we can write the within scatter matrix
in the new representation as

S̃W = WtSW W =

⎛⎜⎜⎜⎝
et
1

et
2
...

et
n

⎞⎟⎟⎟⎠SW (e1 e2 · · · en)

=

⎛⎜⎝ et
1SW e1 · · · et

1SW en

...
. . .

...
et

nSW e1 · · · et
nSW en

⎞⎟⎠ = I.

Likewise we can write the between scatter matrix in the new representation as

S̃B = WtSBW =

⎛⎜⎜⎜⎝
et
1

et
2
...

et
n

⎞⎟⎟⎟⎠SB(e1 e2 · · · en)

=

⎛⎜⎝ et
1SBe1 · · · et

1SBen

...
. . .

...
et

nSBe1 · · · et
nSBen

⎞⎟⎠ =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞⎟⎟⎟⎠ .

Thus S̃W is an n-by-n matrix and S̃B is a diagonal matrix whose elements are
the corresponding eigenvalues.

(b) Here we have the determinant of the transformed between-scatter matrix is just
the product of the eigenvalues, that is,

|S̃B | = λ1λ2 · · ·λn,

and |S̃W | = 1. Then the criterion function is simply J = λ1λ2 · · ·λn.
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(c) We make the following definitions:

W̃t = QDWt˜̃SW = W̃tSW W̃ = QDWtSW WDQt.

Then we have
∣∣˜̃SW

∣∣ = |D|2 and

˜̃SB = W̃tSBW̃ = QDWtSBWDQt = QDS̃BDQt,

then
∣∣˜̃SB

∣∣ = |D|2λ1λ2 · · ·λn. This implies that the criterion function obeys

J =

∣∣˜̃SB

∣∣∣∣˜̃SW

∣∣ ,
and thus J is invariant to this transformation.

41. Our two Gaussian distributions are p(x|ωi) ∼ N(μi,Σ) for i = 1, 2. We denote
the samples after projection as D̃i and the distributions

p(y|θ̃i) =
1√
2πs̃

exp[−(y − μ̃)2/(2s̃2)],

and θ̃i =
(
μ̃i

s̃

)
for i = 1, 2. The log-likelihood ratio is

r =
lnp(D̃|θ̃1)
lnp(D̃|θ̃2)

=
ln

[
n∏

k=1

p(yk|θ̃1)
]

ln
[

n∏
k=1

p(yk|θ̃2)
]

=

n∑
k=1

ln
[

1√
2πs̃

exp
[

(yk−μ̃1)
2

2s̃2

]]
n∑

k=1

ln
[

1√
2πs̃

exp
[

(yk−μ̃2)2

2s̃2

]] =

n∑
k=1

ln
[

1√
2πs̃

]
+

n∑
k=1

(yk−μ̃1)
2

2s̃2

n∑
k=1

ln
[

1√
2πs̃

]
+

n∑
k=1

(yk−μ̃2)2

2s̃2

=
c1 +

∑
yk∈D1

(yk−μ̃1)
2

2s̃2 +
∑

yk∈D2

(yk−μ̃1)
2

2s̃2

c1 +
∑

yk∈D1

(yk−μ̃2)2

2s̃2 +
∑

yk∈D2

(yk−μ̃2)2

2s̃2

=
c1 + 1

2 +
∑

yk∈D2

(yk−μ̃1)
2

2s̃2

c1 + 1
2 +

∑
yk∈D2

(yk−μ̃2)2

2s̃2

=
c1 + 1

2 +
∑

yk∈D2

(yk−μ̃2)+(μ̃2−μ̃1))
2

2s̃2

c1 + 1
2 +

∑
yk∈D1

(yk−μ̃2)+(μ̃2−μ̃1))2

2s̃2

=

c1 + 1
2 + 1

2s̃2

∑
yk∈D̃2

(
(yk − μ̃2)2 + (μ̃2 − μ̃1)2 + 2(yk − μ̃2)(μ̃2 − μ̃1)

)
c1 + 1

2 + 1
2s̃2

∑
yk∈D̃1

((yk − μ̃1)2 + (μ̃1 − μ̃2)2 + 2(yk − μ̃1)(μ̃1 − μ̃2))

=
c1 + 1 + 1

2s̃2 n2(μ̃2 − μ̃1)2

c1 + 1 + 1
2s̃2 n1(μ̃1 − μ̃2)2

=
c + n2J(w)
c + n1J(w)

.

Thus we can write the criterion function as

J(w) =
rc − c

n2 − rn1
.
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This implies that the Fisher linear discriminant can be derived from the negative of
the log-likelihood ratio.
42. Consider the criterion function J(w) required for the Fisher linear discriminant.

(a) We are given Eqs. 96, 97, and 98 in the text:

J1(w) =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2

(96)

Si =
∑
x∈D

(x − mi)(x − mi)t (97)

SW = S1 + S2 (98)

where y = wtx, m̃i = 1/ni

∑
y∈Yi

y = wtmi. From these we can write Eq. 99 in

the text, that is,

s̃2
i =

∑
y∈Yi

(y − m̃i)2

=
∑
x∈D

(wtx − wtmi)2

=
∑
x∈D

wt(x − mi)(x − mi)tw

= wtSiw.

Therefore, the sum of the scatter matrixes can be written as

s̃2
1 + s̃2

2 = wtSW w (100)
(m̃1 − m̃2)2 = (wtm1 − wtm2)2 (101)

= wt(m1 − m2)(m1 − m2)tw

= wtSBw,

where SB = (m1 − m2)(m1 − m2)t, as given by Eq. 102 in the text. Putting
these together we get Eq. 103 in the text,

J(w) =
wtSBw
wtSW w

. (103)

(b) Part (a) gave us Eq. 103. It is easy to see that the w that optimizes Eq. 103
is not unique. Here we optimize J1(w) = wtSBw subject to the constraint
that J2(w) = wtSW w = 1. We use the method of Lagrange undetermined
multipliers and form the functional

g(w, λ) = J1(w) − λ(J2(w) − 1).

We set its derivative to zero, that is,

∂g(w, λ)
∂wi

=
(
ut

iSBw + wtSBui

) − λ
(
ut

iSW w + wtSwui

)
= 2ut

i(SBw − λSW w) = 0,

where ui = (0 0 · · · 1 · · · 0 0)t is the n-dimensional unit vector in the ith
direction. This equation implies

SBw = λSW w.
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(c) We assume that J(w) reaches the extremum at w and that Δw is a small
deviation. Then we can expand the criterion function around w as

J(w + Δw) =
(w + Δw)tSB(w + Δw)
(w + Δw)tSW (w + Δw)

.

From J(w) = J(w + Δw) = λ, to first order we have

λ =
wtSBw
wtSW w

=
wtSBw + 2ΔwtSBw
wtSW w + 2ΔwtSW w

,

that is,

λ =
ΔwtSBw
ΔwtSW w

.

Therefore the following equation holds:

Δwt(SBw − λSW w) = 0.

Because Δw is arbitrary, we conclude that SBw = λSW w.

43. Here we have the between-scatter matrix is

SB =
c∑

i=1

ni(mi − m)(mi − m)t,

where the group and full means are

mi =
1
ni

∑
x∈Di

x

m =
∑
x∈D

x =
1
n

c∑
i=1

nimi,

and for this case of equal covariances,

SW =
c∑

i=1

∑
x∈D

(x − mi)(x − mi)t =
c∑

i=1

Σ = cΣ.

In order to maximize

J(W) =
|WtSBW|
|WtSW W| ,

the columns of an optimal W must be generalized eigenvectors that correspond to
the largest eigenvalues in

SBwi = λiSW wi = cλiΣwi,

with W = [w1 w2 · · · wc−1] in terms of Σ and d-dimensional mean vectors.

Section 3.9

44. Consider the convergence of the expectation-maximization algorithm, where as
usual Db and Dg are the “bad”and the “good” data, as described in the text.



PROBLEM SOLUTIONS 121

(a) The expected value of θ as determined in the primed coordinates is

E ′(θ; Dg) =
∫

l(θ; Dg)p(Db|Dg; θ′)dDb

=
∫

(lnp(Dg,Dg; θ) − lnp(Db|Dg; θ)) p(Db|Dg; θ′)dDb

=
∫ (

lnp(Dg,Db; θ)p(Db|Dg; θ′)
)
dDb −

∫
lnp(Db|Dg; θ)p(Db|Dg; θ′)dDb

= EDb
[lnp(Dg,Db; θ)|Dg; θ′] − E ′

Db
[lnp(Db : Dg; θ)]

= Q(θ; θ′) − E ′
Db

[lnp(Db : Dg; θ)].

(b) If we define φ(Db) = p(Db|Dg; θ)/p(Db|Dg; θ′), then

E ′[φ(Db)] − 1 =
∫

p(Db)|Dg; θ)
p(Db|Dg; θ′ p(Db)|Dg; θ)dDb − 1

=
∫

p(Db|Dg; θ)dDb − 1

= 1 − 1 = 0.

According to Jensen’s inequality for this case — E ′[ln(·)] ≤ E ′[·] − 1. Thus we
have in our particular case E ′[lnφ(Db)] ≤ E ′[φ(Db)] − 1 = 0.

(c) The expected value of the log-likelihood at step t + 1 and at step t are

E [l(θt+1; Dg)] = Q(θt+1; θt) − Et
Db

[lnp(Db|Dg; θt+1)]

E [l(θt; Dg)] = Q(θt; θt) − Et
Db

[lnp(Db|Dg; θt)],

respectively. We take the difference and find

E [l(θt+1; Dg)] − E [l(θt; Dg)] =
[
Q(θt+1; θt) − Q(θt; θt)

]
− [Et

Db
[lnp(Db|Dg; θt+1)] − Et

Db
[lnp(Db|Dg; θt)]

]
=

[
Q(θt+1; θt) − Q(θt; θt)

] − Et
Db

[
ln

p(Db|Dg; θt+1)
p(Db|Dg; θt)

]
.

From part (b), we have

Et
Db

[
ln

p(Db|Dg; θt+1)
p(Db|Dg; θt

]
= Et

Db
[lnφ(Db)] < 0,

and thus −Et
Db

[lnφ(Db)] > 0 . Given the fact that Q(θt+1; θt) > Q(θt; θt) and
that E [l(θt+1; Dg)] − E [l(θt; Dg)] > 0, we conclude

E [l(θt+1; Dg)] > E [l(θt; Dg)],

and thus

l(θt+1; Dg) > l(θt; Dg)

for increasing t. In short, the log-likelihood increases through the application of
the expectation-maximization algorithm.
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45. We consider an iterative algorithm in which the maximum-likelihood value of
missing values is calculated, then assumed to be correct for the purposes of re-
estimating θ and the process iterated.

(a) This is a generalized expectation-maximization algorithm, but not necessarily a
full expectation-maximization algorithm because there is no guarantee that the
optimal likelihood value is achieved on each step.

(b) We have Q(θ; θi) = EDb
[lnp(Db; θ)|Dg; θi)].

46. Recall first a special case Jensen’s inequality, that is

E [lnx] < ln[E [x]].

Our data set is D = {(2
3

)
,
(
3
1

)
,
(
5
4

)
,
(
4
∗
)
,
(
8
6

)} sampled from a two-dimensional uniform
distribution bounded by xl1 ≤ x1 ≤ xu1 and xl2 ≤ x2 ≤ xl2.

(a) According to the definition of Q(θ,θ0) of Eq. 129 in the text, we have

Q(θ; θ0) = Ex42x51 [lnp(xg,xb; θ|θ0; Dg)]

=

∞∫
−∞

∞∫
−∞

[(
3∑

k=1

lnp(xk|θ)

)
+ lnp(x4|θ) + lnp(x5|θ)

]

×p(x42|θ0; x41 = 4)p(x51|θ0; x52 = 6)dx42dx51

=
3∑

k=1

lnp(xk|θ) +

∞∫
−∞

lnp(x4|θ)p(x42|θ0; x41 = 4)dx42

︸ ︷︷ ︸
≡K

+

∞∫
−∞

p(x5|θ)p(x51|θ0; x52 = 6)dx51

︸ ︷︷ ︸
≡L

.

We now calculate the second term, K:

K =

∞∫
−∞

lnp(x4|θ)p(x42|θ0; x41 = 4)dx42

=

∞∫
−∞

lnp

((
4

x42

)∣∣∣∣∣θ
)

p
((

4
x42

)∣∣∣θ0
)

∞∫
−∞

p
((

4
x′
42

)∣∣∣θ0
)

dx′
42

dx42

=

∞∫
−∞

ln

((
4

x42

)∣∣∣∣∣θ
)

p
((

4
x42

)∣∣∣θ0
)

10∫
0

1
10×10dx′

42

dx42

= 10

∞∫
−∞

lnp

((
4

x42

)∣∣∣∣∣θ
)

p

((
4

x42

)∣∣∣∣∣θ0

)
dx42.

There are four cases we must consider when calculating K:
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1. 0 ≤ xl2 < xu2 ≤ 10 and xl1 ≤ 4 ≤ xu1, which gives:

K = 10

xu2∫
xl2

lnp

((
4

x42

)∣∣∣θ)
1

10 × 10
dx42

=
1
10

∞∫
−∞

(xu2 − xl2)ln
1

|xu1 − xl1| · |xu2 − xl2| .

2. xl2 ≤ 0 < xu2 ≤ 10 and xl1 ≤ 4 ≤ xu1:

K = 10

xu2∫
0

lnp

((
4

x42

)∣∣∣θ)
1

10 × 10
dx42

=
1
10

xu2ln
1

|xu1 − xl1| · |xu2 − xl2| .

3. 0 ≤ xl2 < 10 ≤ xu2 and xl1 ≤ 4 ≤ xu1:

K = 10

10∫
xu1

lnp

((
4

x42

)∣∣∣θ)
1

10 × 10
dx42

=
1
10

(10 − xu1)ln
1

|xu1 − xl1| · |xu2 − xl2| .

4. Otherwise, K = 0.

Similarly, there are four cases we must consider when calculating L:

1. xl1 < xu1 ≤ 0 < 10 or 0 < 10 ≤ xl1 < xu1 or 6 ≤ xl2 or xu2 ≤ 6: then L = 0.
2. 0 ≤ xl1 < xu1 ≤ 10 and xl2 ≤ 6 ≤ xu2, then

L = 10

xu1∫
xl1

lnp

((
x41

6

)∣∣∣θ)
1

10 × 10
dx41

=
1
10

(xu1 − xl1)ln
1

|xu1 − xl1| · |xu2 − xl2| .

3. xl1 ≤ 0 < xu1 ≤ 10 and xl2 ≤ 6 ≤ xu2, then

L = 10

xu1∫
0

lnp

((
x41

6

)∣∣∣θ)
1

10 × 10
dx41

=
1
10

xu1ln
1

|xu1 − xl1| · |xu2 − xl2| .

4. 0 ≤ xl1 < 10 ≤ xu1 and xl2 ≤ 6 ≤ xu2:

L = 10

10∫
xl1

lnp

((
x41

6

)∣∣∣θ)
1

10 × 10
dx41

=
1
10

(10 − xl1)ln
1

|xu1 − xl1| · |xu2 − xl2| .
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Therefore Q(θ; θ0) =
3∑

k=1

lnp(xk|θ)+K +L has different forms depending upon

the different values of θ, as shown above.

(b) Here we have θ = (2 1 5 6)t.

(c) See figure.
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(d) Here we have θ = (2 1 5 6)t.

47. Our data set is D =
{(

1
1

)
,
(
3
3

)
,
(
2
∗
)}

, where ∗ represents an unknown value for the
x2 component of the third data point.

(a) For the E step we have:

Q(θ; θ0) = Ex32

[
lnp(xg,xb; θ)|θ0,Dg

]
=

∞∫
−∞

(lnp(x1|θ) + lnp(x2|θ) + lnp(x3|θ)) p(x32|θ0, x31 = 2)dx32

= lnp(x1|θ) + lnp(x2|θ) +

∞∫
−∞

lnp(x3|θ) · p(x32|θ0, x31 = 2)dx32

= lnp(x1|θ) + lnp(x2|θ) +

∞∫
−∞

p

((
2

x32

)∣∣∣θ)
·

p
((

2
x32

)∣∣∣θ0
)

∞∫
−∞

p

((
2

x′
32

)∣∣∣θ0

)
d′32︸ ︷︷ ︸

1/(2e)

dx32

= lnp(x1|θ) + lnp(x2|θ) + 2e

∞∫
−∞

lnp

((
2

x32

)∣∣∣θ)
· p

((
2

x32

)∣∣∣θ0

)
dx32

= lnp(x1|θ) + lnp(x2|θ) + K.

There are three cases for K:

1. 3 ≤ θ2 ≤ 4:

K =
1
4

θ2∫
0

ln
(

1
θ1

e−2θ1
1
θ2

)
dx32
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=
1
4
θ2ln

(
1
θ1

e−2θ1
1
θ2

)
.

2. θ2 ≥ 4:

K =
1
4

4∫
0

ln
(

1
θ1

e−2θ1
1
θ2

)
dx32

=
1
4
4ln

(
1
θ1

e−2θ1
1
θ2

)
= ln

(
1
θ1

e−2θ1
1
θ2

)
.

3. Otherwise K = 0.

Thus we have

Q(θ; θ0) = lnp(x1|θ) + lnp(x2|θ) + K

= ln
(

1
θ1

e−θ1
1
θ2

)
+ ln

(
1
θ1

e−3θ1
1
θ2

)
+ K

= −θ1 − ln(θ1θ2) − 3θ1 − ln(θ1θ2) + K

= −4θ1 − 2ln(θ1θ2) + K,

according to the different cases of θ2. Note the normalization condition
∞∫

−∞
p(x1)dx1 =

1, or

∞∫
−∞

1
θ1

e−θ1x1dx1 = 1.

This equation yields the solution θ1 = 1.

(b) There are two cases:

1. 3 ≤ θ2 ≤ 4:

Q(θ; θ0) = −4 −
(

2lnθ2 +
1
4
θ2(2 + lnθ2)

)
.

Note that this is a monotonic function and that arg maxθ2 Q(θ; θ0) = 3,
which leads to max Q(θ; θ0) � −8.5212.

2. θ2 ≥ 4: In this case Q(θ; θ0) = −6 − 3lnθ2. Note that this is a monotomic
function and that arg maxθ2 Q(θ; θ0) = 4, which leads to maxQ(θ; θ0) �
−10.1589.

In short, then, θ = (1 3)t.

(c) See figure.

48. Our data set is D =
{(

1
1

)
.
(
3
3

)
,
(∗
2

)}
.
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θ0  = (2   4)
t

θ  = (1  3)
t

x1

x2
p(x1 , x2)p(x1 , x2)

x1

x2

(a) The E step is:

Q(θ; θ0) = Ex31

[
lnp(xg,xb; θ)|θ0,Dg

]
=

∞∫
−∞

(lnp(x1|θ) + lnp(x2|θ) + lnp(x3|θ)) p(x31|θ0, x32 = 2)dx31

= lnp(x1|θ) + lnp(x2|θ) +

∞∫
−∞

lnp

((
x31

2

)∣∣∣θ)
·

p
((

x31
2

)∣∣∣θ0
)

∞∫
−∞

p

((
x′

31

2

)∣∣∣θ0

)
dx′

31︸ ︷︷ ︸
1/16

dx31

= lnp(x1|θ) + lnp(x2|θ) + 16

∞∫
−∞

lnp

((
x31

2

)∣∣∣θ)
· p

((
x31

2

)∣∣∣θ0

)
dx31

= lnp(x1|θ) + lnp(x2|θ) + K.

There are two cases for K:

1. θ2 ≥ 2:

K =

∞∫
0

2e−2x31 ln
(

1
θ1

e−θ1x31
1
θ2

)
dx31

=

∞∫
0

2e−2x31(−θ1x31 − ln(θ1θ2))dx31

= −ln(θ1θ2)

∞∫
0

2e−2x31dx31 − 2θ1

∞∫
0

x31e
−2x31dx31

= −ln(θ1θ2) − 2θ1
1
4

=
1
2
θ1 − ln(θ1θ2).

2. Otherwise K = 0.

Therefore we have

Q(θ; θ0) = lnp(x1|θ) + lnp(x2|θ) + K



PROBLEM SOLUTIONS 127

= ln
(

1
θ1

e−θ1
1
θ2

)
+ ln

(
1
θ1

e−3θ1
1
θ2

)
+ K

= −θ1 − ln(θ1θ2) − 3θ1 − ln(θ1θ2) + K

= −4θ1 − 2ln(θ1θ2) + K,

according to the cases for K, directly above. Note that
∞∫

−∞
p(x1)dx1 = 1, and

thus
∞∫

−∞

1
θ1

e−θ1xdx1 = 1,

and thus θ1 = 1. The above results can be simplified.

(b) When θ2 ≥ 2, we have

Q(θ; θ0) = −4 − 2lnθ2 +
1
2
− lnθ2

= −7
2
− 3lnθ2.

Note that this is a monotonic function, and thus arg maxθ2 Q(θ; θ0) = 2. Thus
the parameter vector is θ = (1 2)t.

(c) See figure.
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θ0  = (2   4)
t

θ  = (1  2)
t

x1

x2 p(x1 , x2)p(x1 , x2)

x1

x2

Section 3.10

49. A single revision of âij ’s and b̂ij ’s involves computing (via Eqs. ?? – ??)

âij =

T∑
t=1

γij(t)

T∑
t=1

∑
k

γik(t)

b̂ij =

??∑
??

γij

T∑
t=1

γij(t)

γij(t) =
αi(t − 1)aijbijβi(t)

P (V T |M)
.
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αi(t)’s and P (V T |M) are computed by the Forward Algorithm, which requires O(c2T )
operations. The βi(t)’s can be computed recursively as follows:

For t=T to 1 (by -1)
For i=1 to c
βi(t) =

∑
j aijbjkv(t + 1)βj(t + 1)

End

This requires O(c2T ) operations.
Similarly, γij’s can be computed by O(c2T ) operations given αi(t)’s, aij ’s, bij ’s,

βi(t)’s and P (V T |M). So, γij(t)’s are computed by

O(c2T )︸ ︷︷ ︸
αi(t)’s

+O(c2T )︸ ︷︷ ︸
βi(t)’s

+O(c2T )︸ ︷︷ ︸
γij(t)’s

= O(c2T )operations.

Then, given γ̂ij(t)’s, the âij ’s can be computed by O(c2T ) operations and b̂ij ’s by
O(c2T ) operations. Therefore, a single revision requires O(c2T ) operations.
50. The standard method for calculating the probability of a sequence in a given
HMM is to use the forward probabilities αi(t).

(a) In the forward algorithm, for t = 0, 1, . . . , T , we have

αj(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t = 0 and j �= initial status
1 t = 0 and j = initial status

c∑
i=1

αi(t − 1)aijbjkv(t) otherwise.

In the backward algorithm, we use for t = T, T − 1, . . . , 0,

βj(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t = T and j �= final status
1 t = T and j = final status

c∑
i=1

βi(t + 1)aijbjkv(t + 1) otherwise.

Thus in the forward algorithm, if we first reverse the observed sequence VT

(that is, set bjkv(t) = bjk(T + 1 − t) and then set βj(t) = αj(T − t), we can
obtain the backward algorithm.

(b) Consider splitting the sequence VT into two parts — V1 and V2 — before,
during, and after each time step T ′ where T ′ < T . We know that αi(T ′)
represents the probability that the HMM is in hidden state ωi at step T ′, having
generated the firt T ′ elements of VT , that is V1. Likewise, βi(T ′) represents
the probability that the HMM given that it is in ωi at step T ′ generates the
remaining elements of VT , that is, V2. Hence, for the complete sequence we
have

P (VT ) = P (V1,V2) =
c∑

i=1

P (V1,V2,hidden state ωi at step T ′)

=
c∑

i=1

P (V1,hidden state ωi at step T ′)P (V2|hidden state ωi at step T ′)

=
c∑

i=1

αi(T ′)βi(T ′).
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(c) At T ′ = 0, the above reduces to P (VT ) =
c∑

i=1

αi(0)βi(0) = βj(0), where j is

the known initial state. This is the same as line 5 in Algorithm 3. Likewise, at

T ′ = T , the above reduces to P (VT ) =
c∑

i=1

αi(T )βi(T ) = αj(T ), where j is the

known final state. This is the same as line 5 in Algorithm 2.

51. From the learning algorithm in the text, we have for a giveen HMM with model
parameters θ:

γij(t) =
αi(t − 1)aijbjkv(t)βj(t)

P (VT |θ)
(∗)

âij =

T∑
t=1

γij(t)

T∑
t=1

c∑
k=1

γik(t)
. (∗∗)

For a new HMM with ai′j′ = 0, from (∗) we have γi′j′ = 0 for all t. Substituting
γi′j′(t) into (∗∗), we have âi′j′ = 0. Therefore, keeping this substitution throughout
the iterations in the learning algorithm, we see that âi′j′ = 0 remains unchanged.
52. Consider the decoding algorithm (Algorithm 4).

(a) the algorithm is:

Algorithm 0 (Modified decoding)

1 begin initialize Path ← {}, t ← 0
2 for t ← t + 1
3 j ← 0; δ0 ← 0
4 for j ← j + 1
5 δj(t) ← min

1≤i≤c
[δi(t − 1) − ln(aij)] − ln[bjkv(t)]

6 until j = c
7 j′ ← arg min

j
[δj(t)]

8 Append ωj′ to Path
9 until t = T

10 return Path
11 end

(b) Taking the logarithm is an O(c2) computation since we only need to calculate
lnaij for all i, j = 1, 2, . . . , c, and ln[bjkv(t)] for j = 1, 2, . . . , c. Then, the whole
complexity of this algorithm is O(c2T ).
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Computer Exercises

Section 3.2

1. Computer exercise not yet solved

Section 3.3

2. Computer exercise not yet solved

Section 3.4

3. Computer exercise not yet solved

Section 3.5

4. Computer exercise not yet solved

Section 3.6

5. Computer exercise not yet solved

Section 3.7

6. Computer exercise not yet solved

7. Computer exercise not yet solved

8. Computer exercise not yet solved

Section 3.8

9. Computer exercise not yet solved

10. Computer exercise not yet solved

Section 3.9

11. Computer exercise not yet solved

12. Computer exercise not yet solved

Section 3.10

13. Computer exercise not yet solved



Chapter 4

Nonparametric techniques

Problem Solutions

Section 4.3

1. Our goal is to show that Eqs. 19–22 are sufficient to assure convergence of Eqs. 17
and 18. We first need to show that lim

n→∞ p̄n(x) = p(x), and this requires us to show
that

lim
n→∞

1
Vn

ϕ

(
x − V

hn

)
= δn(x − V) → δ(x − V).

Without loss of generality, we set V = 0 and write

1
Vn

ϕ

(
x
hn

)
=

1
d∏

i=1

xi

d∏
i=1

xi

hn
ϕ

(
x

hn

)
= δn(x),

where we used the fact that Vn = hd
n. We also see that δn(x) → 0 if x �= 0, with

normalization ∫
δn(x)dx = 1.

Thus we have in the limit n → ∞, δn(x) → δ(x) as required.
We substitute our definition of p̄n(x) and get

lim
n→∞ p̄n(x) = E [p̄(x)] =

∫
δ(x − V)p(V)dV = p(x).

Furthermore, the variance is

σ2
n(x) =

1
nVn

∫
1
Vn

ϕ2

(
x − V

hn

)
p(V)dv − 1

n
[p̄n(x)]2

131
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≤ 1
nVn

∫
1
Vn

ϕ2

(
x − V

hn

)
p(V)dV

≤ Sup(ϕ)
nVn

∫
1
Vn

ϕ

(
x − V

hn

)
p(V)dV

≤ Sup(ϕ)p̄n(x)
nVn

.

We note that Sup(ϕ) < ∞ and that in the limit n → ∞ we have p̄n(x) → p(x) and
nVn → ∞. We put these results together to conclude that

lim
n→∞σ2

n(x) = 0,

for all x.
2. Our normal distribution is p(x) ∼ N(μ, σ2) and our Parzen window is ϕ(x) ∼
N(0, 1), or more explicitly,

ϕ(x) =
1√
2π

e−x2/2,

and our estimate is

pn(x) =
1

nhn

n∑
i=1

ϕ

(
x − xi

hn

)
.

(a) The expected value of the probability at x, based on a window width parameter
hn, is

p̄n(x) = E [pn(x)] =
1

nhn

n∑
i=1

E
[
ϕ

(
x − xi

hn

)]

=
1
hn

∞∫
−∞

ϕ

(
x − v

hn

)
p(v)dv

=
1
hn

∞∫
−∞

1√
2π

exp

[
−1

2

(
x − v

hn

)2
]

1√
2πσ

exp

[
−1

2

(
v − μ

σ

)2
]

dv

=
1

2πhnσ
exp

[
−1

2

(
x2

h2
n

+
μ2

σ2

)] ∞∫
−∞

exp
[
−1

2
v2

(
1
h2

n

+
1
σ2

)
− 2v

(
x

h2
n

+
μ

σ2

)]
dv

=
1

2πhnσ
exp

[
−1

2

(
x2

h2
n

+
μ2

σ2

)
+

1
2

α2

θ2

] ∞∫
−∞

exp

[
−1

2

(
v − α

θ

)2
]

dv,

where we have defined

θ2 =
1

1/h2
n + 1/σ2

=
h2

nσ2

h2
n + σ2

and

α = θ2

(
x

h2
n

+
μ

σ2

)
.
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We perform the integration and find

p̄n(x) =
√

2πθ

2πhnσ
exp

[
−1

2

(
x2

h2
n

+
μ2

σ2

)
+

1
2

α2

θ2

]
=

1√
2πhnσ

hnσ√
h2

n + σ2
exp

[
−1

2

(
x2

h2
n

+
μ2

σ2
− α2

θ2

)]
.

The argument of the exponentiation can be expressed as follows

x2

h2
n

+
μ2

σ2
− α2

θ2
=

x2

h2
n

+
μ2

σ2
− θ4

θ2

(
x

h2
n

+
μ

σ2

)2

=
x2h2

n

(h2
n + σ2)h2

n

+
μ2σ2

(h2
n + σ2)σ2

− 2xμ

h2
n + σ2

=
(x − μ)2

h2
n + σ2

.

We substitute this back to find

p̄n(x) =
1√

2π
√

h2
n + σ2

exp
[
−1

2
(x − μ)2

h2
n + σ2

]
,

which is the form of a Gaussian, denoted

p̄n(x) ∼ N(μ, h2
n + σ2).

(b) We calculate the variance as follows:

Var[pn(x)] = Var

[
1

nhn

n∑
i=1

ϕ

(
x − xi

hn

)]

=
1

n2h2
n

n∑
i=1

Var
[
ϕ

(
x − xi

hn

)]
=

1
nh2

n

Var
[
ϕ

(
x − v

hn

)]
=

1
nh2

n

{
E

[
ϕ2

(
x − v

hn

)]
−

(
E

[
ϕ

(
x − v

hn

)])2
}

,

where in the first step we used the fact that x1, . . . ,xn are independent samples
drawn according to p(x). We thus now need to calculate the expected value of
the square of the kernel function

E
[
ϕ2

(
x − v

hn

)]
=

∫
ϕ2

(
x − v

hn

)
p(v)dv

=

∞∫
−∞

1
2π

exp

[
−

(
x − v

hn

)2
]

exp

[
−1

2

(
v − μ

σ

)2
]

1√
2πσ

dv

=
1√
2π

∞∫
−∞

1√
2π

exp

[
−1

2

(
x − v

hn/
√

2

)2
]

exp

[
−1

2

(
v − μ

σ

)2
]

1√
2πσ

dv.
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From part (a) by a similar argument with hn/
√

2 replacing hn, we have

1
hn/

√
2

∞∫
−∞

1√
2π

exp

[
−1

2

(
x − v

hn/
√

2

)2
]

exp

[
−1

2

(
v − μ

σ

)2
]

1√
2πσ

dv

=
1√

2π
√

h2
n/2 + σ2

exp
[
−1

2
(x − μ)2

h2
n/2 + σ2

]
.

We make the substitution and find

E
[
ϕ2

(
x − v

hn

)]
=

hn/
√

2
2π

√
h2

n/2 + σ2
exp

[
−1

2
(x − μ)2

h2
n/2 + σ2

]
,

and thus conclude

1
nh2

n

E
[
ϕ2

(
x − v

hn

)]
=

1
nhn

1
2
√

π

1√
2π

√
h2

n/2 + σ2
exp

[
−1

2
(x − μ)2

h2
n/2 + σ2

]
.

For small hn,
√

h2
n/2 + σ2 � σ, and thus the above equation can be approxi-

mated as

1
nh2

n

E
[
ϕ2

(
x − v

hn

)]
� 1

nhn2
√

π

1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2
]

=
1

2nhn
√

π
p(x). (∗)

Similarly, we have

1
nh2

n

{
E

[
ϕ

(
x − v

hn

)]}2

=
1

nh2
n

h2
n

1√
2π

√
h2

n + σ2
exp

[
−1

2
(x − μ)2

h2
n + σ2

]
=

hn

nhn

1√
2π

√
h2

n + σ2
exp

[
−1

2
(x − μ)2

h2
n + σ2

]
� hn

nhn

1√
2πσ

exp
[
−1

2
(x − μ)2

σ2

]
� 0, (∗∗)

valid for small hn. From (∗) and (∗∗) we have, (still for small hn)

Var[Pn(x)] � p(x)
2nhn

√
π

.

(c) We write the bias as

p(x) − p̄n(x) =
1√
2πσ

exp
[
−1

2
(x − μ)2

σ2

]
− 1√

2π
√

h2
n + σ2

exp
[
−1

2
(x − μ)2

h2
n + σ2

]

=
1√
2πσ

exp
[
−1

2
(x − μ)2

h2
n + σ2

]{
1 − σ√

h2
n + σ2

exp
[
−1

2
(x − μ)2

h2
n + σ2

+
1
2

(x − μ)2

σ2

]}

= p(x)

{
1 − 1√

1 + (hn/σ)2
exp

[
− (x − μ)2

2

{ 1
h2

n + σ2
− 1

σ2

}] }

= p(x)

{
1 − 1√

1 + (hn/σ)2
exp

[
1
2

h2
n(x − μ)2

h2
n + σ2

]}
.
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For small hn we expand to second order:

1√
1 + (hn

σ )2
� 1 − 1

2
(hn/σ)2

and

exp
[

h2
n

2σ2

(x − μ)2

h2
n + σ2

]
� 1 +

h2
n

2σ2

(x − μ)2

h2
n + σ2

.

We ignore terms of order higher than h2
n and find

p(x) − p̄n(x) � p(x)

{
1 −

(
1 − 1

2

(
hn

σ

)2
)(

1 +
h2

n

2σ2

(x − μ)2

h2
n + σ2

) }

� p(x)

{
1 − 1 +

1
2

h2
n

σ2
− h2

n

2σ2

(x − μ)2

h2
n + σ2

}

� 1
2

(
hn

σ

)2 [
1 − (x − μ)2

h2
n + σ2

]
p(x)

� 1
2

(
hn

σ

)2
[
1 −

(
x − μ

σ

)2
]

p(x).

3. Our (normalized) distribution is

p(x) =
{

1/a 0 ≤ x ≤ a
0 otherwise,

and our Parzen window is

ϕ(x) =
{

e−x x ≥ 0
0 x < 0.

(a) The expected value of the Parzen window estimate is

p̄n(x) = E
[

1
nhn

n∑
i=1

ϕ

(
x − xi

hn

)]
=

1
hn

∫
ϕ

(
x − v

hn

)
p(v)dv

=
1
hn

∫
x≥v

e−
(x−v)

hn p(v)dv

=
exp[−x/hn]

hn

∫
x≥v,

0<v<a

1
a
exp[v/hn]dv

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < 0

e−x/hn

ahn

x∫
0

ev/hndv if 0 ≤ x ≤ a

e−x/hn

ahn

a∫
0

ev/hndv if x ≥ a
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=

⎧⎨⎩
0 if x < 0
1
a (1 − e−x/hn) if 0 ≤ x ≤ a
1
a (ea/hn − 1)e−x/hn if x ≥ a,

where in the first step we used the fact that x1, . . . , xn are independent samples
drawn according to p(v).

(b) For the case a = 1, we have

p̄n(x) =

⎧⎨⎩
0 x < 0
1 − e−x/hn 0 ≤ x ≤ 1
(e1/hn − 1)e−x/hn x > 1,

as shown in the figure.

0.5 1 1.5 2 2.5 3
x
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0.4

0.6

0.8

1

p(x)

hn = 1/16

hn = 1

hn = 1/4

¯

(c) The bias is

p(x) − p̄n(x) =

⎧⎨⎩
0 if x < 0
1
a − 1

a (1 − e−x/hn) if 0 ≤ x ≤ a
0 − 1

a (ea/hn − 1)e−x/hn if x ≥ a

=

⎧⎨⎩
0 if x < 0
1
ae−x/hn if 0 ≤ x ≤ a
− 1

a (ea/hn − 1)e−x/hn if x ≥ a.

Formally, a bias lower than 1% over 99% of the range 0 < x < a, means that

p(x) − p̄(x)
p(x)

≤ 0.01

over 99% of the range 0 < x < a. This, in turn, implies

1/ae−x/hn

1/a
≤ 0.01 over 99% of 0 < x < a or

hn ≤ 0.01a

ln (100)
.

For the case a = 1, we have that hn ≤ 0.01/(ln100) = 0.0022, as shown in
the figure. Notice that the estimate is within 1% of p(x) = 1/a = 1.0 above
x ∼ 0.01, fulfilling the conditions of the problem.
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4. We have from Algorithm 2 in the text that the discriminant functions of the PNN
classifier are given by

gi(x) =
ni∑

k=1

exp
[
wt

kx − 1
σ2

]
aki i = 1, . . . , c

where ‖wk‖ = ‖x‖ = 1, ni is the number of training patterns belonging to ωi and

aki =
{

1 if wk ∈ ωi

0 otherwise.

(a) Since ‖wk‖ = ‖x‖ = 1, gi(x) can be written as

gi(x) =
ni∑

i=1

exp
[
−‖x − wk‖2

2σ2

]
aki

.

Note that gi(x)/ni is a radial Gaussian based kernel estimate, pn(x|ωi), of
p(x|ωi). If we use ni/n as the estimate of the prior class probability P (ωi),
then gi(x) can be rewritten as

gi(x) = nPn(ωi)p(x|ωi).

Thus gi(x) properly accounts for the class priors.

(b) The optimal classification rule for unequal costs is given by

Choose ωk if g∗k = min
i≤c

g∗i ,

where the λij represent the costs and

g∗i (x) =
c∑

j=1

λijP (ωj |x) =
c∑

j=1

P (ωj)p(x|ωj

p(x)
.

This discriminant function can be written simply as

g∗i (x) =
c∑

j=1

λijP (ωj)p(x|ωj).

Consequently, the PNN classifier must estimate g∗i (x). From part (a) we have
that gi = nPn(ωj)p(x|ωj). Thus the new discriminant functions are simply

ĝi(x) =
1
n

c∑
j=1

λijgj(x),



138 CHAPTER 4. NONPARAMETRIC TECHNIQUES

where gi(x) are the discriminant functions of the PNN classifier previously de-
fined. An equivalent discriminant function is

ĝi(x) =
c∑

j=1

λijgj(x).

(c) The training algorithm as defined is unaffected since it only performs a normal-
ization of the training patterns. However the PNN classification algorithm must
be rewritten as:

Algorithm 0 (PNN with costs)

1 begin initialize x ← test pattern, gi ← 0, g′i ← 0, λij

2 k ← 0
3 do k ← k + 1
4 netk ← wt

kx
5 if aki

= 1 then g′i ← g′i + exp[(netk − 1)/σ2]
6 until k = n
7 k ← 0
8 do k ← k + 1
9 gi ← gi + λikg′k

10 until k = n
11 return class ← arg max

i
gi(x)

12 end

Section 4.4

5. Our goal is to show that pn(x) converges in probability to p(x) given the below
conditions:

lim
n→∞ kn → ∞ (condition 1)

lim
n→∞ kn/n → 0 (condition 2)

As we know from probability theory, when pn(x) converges in the rth mean (r ≥ 1)
to p(x) — that is, E [|pn(x) − p(x)|r] → 0 as n → 0 — then p(x) also converges in
probability to p(x).

It is simple to show for r = 2 that

E [(pn(x) − p(x))2] = Var[pn(x)] + bias2[pn(x)],

where

Var[pn(x)] = E[
pn(x) − E [pn(x)]

]
bias2[pn(x)] = E [pn(x) − p(x)].

Consequently, pn(x) converges in probability to p(x) if and only if

Var[pn(x)] → 0 as n → ∞ (condition 3)
E [pn(x)] = p(x) as n → ∞ (condition 4).
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Note that the k-nearest-neighbor estimate pn(x) = kn/n
Vn

can be rewritten as a kernel
estimate according to Eq. 11 in the text:

pn(x) =
1
n

n∑
i=1

1
Vn

ϕ

(
x − xi

hn

)
,

where hn denotes here the radius of a ball which includes the kn prototypes nearest
to x, Vn is the volume of the ball, and

ϕ

(
x − xi

hn

)
=

{
1 if ‖x − xi‖ ≤ hn

0 otherwise.

Hence we can apply the results of page 167 in the text. According to Eq. 23 in the
text,

E [pn(x)] = p(x) as n → ∞ if and only if
1
Vn

ϕ

(
x
hn

)
= δ(x) as n → ∞,

where δ(x) is the delta function.
Given a test pattern x (see figure), we will have a very small ball (or more precisely,

have Vn → 0) as n → ∞, since we can get k prototypes arbitrarily close to x due to
condition 2. If Vn → 0, hn → 0 and therefore

ϕ

(
x
hn

)
=

{
1 if x = 0
0 otherwise.

Consequently, 1
Vn

ϕ(x/hn) = δ(x) and hence condition 4 is fulfilled.

x2x4

xkn

x3

x1

x5

x

h n

We can compute lim
n→∞Var[pn(x)] using Eq. 24 as follows:

lim
n→∞Var[pn(x)] = lim

n→∞
1

nVn

∫
1
Vn

ϕ2

(
x − u

hn

)
p(u)du

=

∫
lim

n→∞

[
1

Vn
ϕ2

(
x−u
hn

)]
p(u)du

lim
n→∞nVn

=
∫

δ(x − u)p(u)du
lim

n→∞nVn

=
p(x)

lim
n→∞nVn

.

Since lim
n→∞

kn

nVn
= P (x) in probability and condition 1 is met, then lim

n→∞nVn = ∞.

Thus Var[p(x)] → 0 as n → 0.
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6. We are given that P (ω1) = P (ω2) = 1/2, and that

P (ω1|x) =
{

1 if ||x|| ≤ 1
0 otherwise

P (ω2|x) =
{

1 if ||x − a|| ≤ 1
0 otherwise,

where we have assumed, without loss of generality, that category ω1 is centered on
the origin 0, and category ω2 is centered on a, a point other than the origin.

(a) We denote by Pn(e) the average probability of error based on n points.

Pn(e) = Pr[true category is ω1 while ω2 is most frequently labeled]
+Pr[true category is ω2 while ω1 is most frequently labeled]

= 2Pr[true category is ω1 while ω2 is most frequently labeled]
= 2P (ω1)Pr[label of ω1 for fewer than (k − 1)/2points, and the rest labeled ω2]

= 2
1
2

(k−1)/2∑
j=0

Pr[j of n chosen points are labeled ω1, the rest ω2]

=
(k−1)/2∑

j=0

(
n

j

)
1
2j

1
2(n−j)

=
1
2n

(k−1)/2∑
j=0

(
n

j

)
.

(b) We make explicit the k dependence on the probability by writing Pn(e) =
Pn(e; k) and have

Pn(e; 1) =
1
2n

< Pn(e; k) =
1
2n

(k−1)/2∑
j=0

(
n

j

)
︸ ︷︷ ︸
>0 for k>1

.

(c) We have in this case

Pn(e) =
1
2n

(k−1)/2∑
j=0

(
n

j

)
= Pr [B(n, 1/2) ≤ (k − 1)/2]

= Pr
[
Y1 + · · · + Yn ≤ k − 1

2

]
,

where Y1, · · · , Yn are independent, B(·, ·) is a binomial distribution and Pr[Yi =
1] = Pr[Yi = 0] = 1/2. If k is allowed to increase with n, but is restricted by
k < a/

√
n, then we have

Pn(e) ≤ Pr
(

Y1 + · · · + Yn ≤ a/
√

n − 1
2

)
= Pr(Y1 + · · · + Yn ≤ 0) for n sufficiently large
= 0,

and this guarantees Pn(e) → 0 as n → ∞.
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Section 4.5

7. Our goal is to show that Voronoi cells induced by the nearest-neighbor algorithm
are convex, that is, given any two points in the cell, the line connecting them also
lies in the cell. We let x∗ be the labeled sample point in the Voronoi cell, and y be

x* x(λ)

x(0)

x(1)

y

any other labeled sample point. A unique hyperplane separates the space into those
that are closer to x∗ than to y, as shown in the figure. Consider any two points
x(0) and x(1) inside the Voronoi cell of x∗; these points are surely on the side of the
hyperplane nearest x∗. Now consider the line connecting those points, parameterized
as x(λ) = (1 − λ)x(0) + λx(1) for 0 ≤ λ ≤ 1. Because the half-space defined by
the hyperplane is convex, all the points x(λ) lie nearer to x∗ than to y. This is true
for every pair of points x(0) and x(1) in the Voronoi cell. Furthermore, the result
holds for every other sample point yi. Thus x(λ) remains closer to x∗ than any other
labeled point. By our definition of convexity, we have, then, that the Voronoi cell is
convex.
8. It is indeed possible to have the nearest-neighbor error rate P equal to the Bayes
error rate P ∗ for non-trivial distributions.

(a) Consider uniform priors over c categories, that is, P (ωi) = 1/c, and one-
dimensional distributions

p(x|ωi) =

⎧⎨⎩
1 0 ≤ x ≤ cr

c−1

1 i ≤ x ≤ i + 1 − cr
c−1

0 elsewhere.

The evidence is

p(x) =
c∑

i=1

p(x|ωi)P (ωi) =

⎧⎨⎩
1 0 ≤ x ≤ cr

c−1

1/c i ≤ x ≤ (i + 1) − cr
c−1

0 elsewhere.

Note that this automatically imposes the restriction

0 ≤ cr

c − 1
≤ 1.
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Because the P (ωi)’s are constant, we have P (ωi|x) ∝ p(x|ωi) and thus

P (ωi|x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (ωi)
p(x) = 1/c

p(x) 0 ≤ x ≤ cr
c−1

0 if i �= j
1 if i = j

}
j ≤ x ≤ j + 1 − cr

c−1

0 otherwise,

as shown in the figure for c = 3 and r = 0.1.
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The conditional Bayesian probability of error at a point x is

P ∗(e|x) = 1 − P (ωmax|x)

=

{
1 − 1/c

p(x) if 0 ≤ x ≤ cr
c−1

1 − 1 = 0 if i ≤ x ≤ i + 1 − cr
c−1 ,

and to calculate the full Bayes probability of error, we integrate as

P ∗ =
∫

P ∗(e|x)p(x)dx

=

cr/(c−1)∫
0

[
1 − 1/c

p(x)

]
p(x)dx

=
(

1 − 1
c

)
cr

c − 1
= r.

(b) The nearest-neighbor error rate is

P =
∫ [

1 −
c∑

i=1

P 2(ωi|x)

]
p(x)dx

=

cr/(c−1)∫
0

[
1 − c( 1

c )2

p2(x)

]
p(x)dx +

c∑
j=1

j+1− cr
c−1∫

j

[1 − 1] p(x)dx

︸ ︷︷ ︸
0
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=

cr/(c−1)∫
0

(
1 − 1/c

p2(x)

)
p(x)dx

=

cr/(c−1)∫
0

(
1 − 1

c

)
dx =

(
1 − 1

c

)
cr

c − 1
= r.

Thus we have demonstrated that P ∗ = P = r in this nontrivial case.

9. Our data are given in the table.

ω1 ω2 ω3

(10,0) (5,10) (2,8)
(0,-10) (0,5) (-5,2)
(5,-2) (5,5) (10,-4)

Throughout the figures below, we let dark gray represent category ω1, white represent
category ω2 and light gray represent category ω3. The data points are labeled by their
category numbers, the means are shown as small black dots, and the dashed straight
lines separate the means.
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10. The Voronoi diagram of n points in d-dimensional space is the same as the
convex hull of those same points projected orthogonally to a hyperboloid in (d + 1)-
dimensional space. So the editing algorithm can be solved either with a Voronoi
diagram algorithm in d-space or a convex hull algorithm in (d+1)-dimensional space.
Now there are scores of algorithms available for both problems all with different
complexities.

A theorem in the book by Preparata and Shamos refers to the complexity of
the Voronoi diagram itself, which is of course a lower bound on the complexity of
computing it. This complexity was solved by Victor Klee, “On the complexity of
d-dimensional Voronoi diagrams,” Archiv. de Mathematik., vol. 34, 1980, pp. 75-
80. The complexity formula given in this problem is the complexity of the convex
hull algorithm of Raimund Seidel, “Constructing higher dimensional convex hulls at
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logarithmic cost per face,” Proc. 18th ACM Conf. on the Theory of Computing, 1986,
pp. 404-413.

So here d is one bigger than for Voronoi diagrams. If we substitute d in the
formula in this problem with (d − 1) we get the complexity of Seidel’s algorithm
for Voronoi diagrams, as discussed in A. Okabe, B. Boots and K. Sugihara, Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley,
1992.
11. Consider the “curse of dimensionality” and its relation to the separation of points
randomly selected in a high-dimensional space.

(a) The sampling density goes as n1/d, and thus if we need n1 samples in d = 1
dimensions, an “equivalent” number samples in d dimensions is nd

1. Thus if we
needed 100 points in a line (i.e., n1 = 100), then for d = 20, we would need
n20 = (100)20 = 1040 points — roughly the number of atoms in the universe.

(b) We assume roughly uniform distribution, and thus the typical inter-point Eu-
clidean (i.e., L2) distance δ goes as δd ∼ volume, or δ ∼ (volume)1/d.

(c) Consider points uniformly distributed in the unit interval 0 ≤ x ≤ 1. The length
containing fraction p of all the points is of course p. In d dimensions, the width
of a hypercube containing fraction p of points is ld(p) = p1/d. Thus we have

l5(0.01) = (0.01)1/5 = 0.3910
l5(0.1) = (0.1)1/5 = 0.7248

l20(0.01) = (0.01)1/20 = 0.8609
l20(0.1) = (0.1)1/20 = 0.8609.

(d) The L∞ distance between two points in d-dimensional space is given by Eq. 57
in the text, with k → ∞:

L∞(x,y) = lim
k→∞

1/k

√√√√ d∑
i=1

|xi − yi|k

= max[|x1 − y1|, |x2 − y2|, . . . , |xd − yd|]
= max

i
|xi − yi|.

In other words, consider each axis separately, i = 1, . . . , d. There is a separation
between two points x and y along each individual direction i, that is, |xi − yi|.
One of these distances is the greatest. The L∞ distance between two points is
merely this maximum distance.

Informally we can see that for two points randomly selected in the unit d-
dimensional hypercube [0, 1]d, this L∞ distance approaches 1.0 as we can nearly
always find an axis i for which the separation is large. In contrast, the L∞
distance to the closest of the faces of the hypercube approaches 0.0, because
we can nearly always find an axis for which the distance to a face is small.
Thus, nearly every point is closer to a face than to another randomly selected
point. In short, nearly every point is on the “outside” (that is, on the “convex
hull”) of the set of points in a high-dimensional space — nearly every point is
an “outlier.”

We now demonstrate this result formally. Of course, x is always closer to a
wall than 0.5 — even for d = 1 — and thus we consider distances l∗ in the
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range 0 ≤ l∗ < 0.5. The figure at the left shows the xi and yi coordinates
plotted in a unit square. There are d points, one corresponding to each axis in
the hypercube. The probability that a particular single coordinate i will have
|xi − yi| ≤ l∗ is equal to 1.0 minus the area in the small triangles, that is,

Pr[|xi − yi| ≥ l∗ for a particular i] = (1 − l∗)2.

The probability that all of the d points will have |xi − yi| ≥ l∗ is then

Pr[|xi − yi| ≥ l∗ for all i] = (1 − (1 − l∗)2)d.

The probability that at least one coordinate has separation less than l∗ is just
1.0 minus the above, that is,

Pr[at least one coordinate is closer than l∗] = 1 − (1 − (1 − l∗)2)d.

Now consider the distance of a point x to the faces of the hypercube. The figure

xi

0 0.5 1
0

0.5

1

yi d points

|x i 
- y

i| 
= 0.

4
|x i 

- y
i| 
= 0.

4

l*

l*

xi

0 0.5 1

l*

L-infinity distance between x and y L-infinity distance between x 
and any hypercube face

1-l*

at the right shows d points corresponding to the coordinates of x. The prob-
ability that a single particular coordinate value xi is closer to a corresponding
face (0 or 1) than a distance l∗ is clearly 2l∗ since the position of xi is uniformly
distributed in the unit interval. The probability that any of the coordinates is
closer to a face than l∗ is

Pr[at least one coordinate is closer to a face than l∗] = 1 − (1 − 2l∗)d.

We put these two results together to find that for a given l∗ and d, the probability
that x is closer to a wall than l∗ and that L∞(x,y) ≤ l∗ is the product of the
two independent probabilities, that is,

[1 − (1 − 2l∗)d][1 − (1 − l∗)2d],

which approaches 1.0 quickly as a function of d, as shown in the graph (for the
case l∗ = 0.4). As shown in Fig. 4.19 in the text, the unit “hypersphere” in
the L∞ distance always encloses the unit hypersphere in the L2 or Euclidean
metric. Therefore, our discussion above is “pessimistic,” that is, if x is closer to
a face than to point y according to the L∞ metric, than it is “even closer” to
the wall than to a face in the L2 metric. Thus our conclusion above holds for
the Euclidean metric too. Consequently in high dimensions, we generally must
extrapolate from sample points, rather than interpolate between them.
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12. The “curse of dimensionality” can be “overcome” if we know the form of the
target function.

(a) Our target function is linear,

f(x) =
d∑

j=1

ajxj = atx,

and y = f(x) + N(0, σ2), that is, we have Gaussian noise. The approximation

is f̂(x) =
d∑

j=1

âjxj , where

âj = arg min
aj

n∑
i=1

⎡⎣yi −
d∑

j=1

ajxij

⎤⎦2

,

where xij is the jth component of point i, for j = 1, . . . , d and i = 1, . . . , n.
In short, these are the best fit coefficients in a sum-squared-error sense. The
expected value (over the data set) of the difference between the target and fit
functions (squared) is

E [f(x) − f̂(x)]2 = E

⎡⎢⎣ d∑
j=1

ajxj −
d∑

j=1

⎛⎜⎝arg min
aj

n∑
i=1

⎡⎣yi −
d∑

j=1

ajxij

⎤⎦2
⎞⎟⎠ xj

⎤⎥⎦
2

.

For some set of sample points xi, we let yi be the corresponding sample values
yi = f(xi) + N(0, σ2). Consider the n-by-d matrix X = [xij ] where xij is the
jth component of xi, that is

X =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦

where xi is a d-dimensional vector. As stated above, we have f(x) =
d∑

j=1

ajxj .
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We define the weight vector

a =

⎡⎢⎢⎢⎣
a1

a2

...
an

⎤⎥⎥⎥⎦
then we can write

Xa =

⎡⎢⎢⎢⎣
f(x1)
f(x2)

...
f(xn)

⎤⎥⎥⎥⎦
and hence y = Xa + N(0, σ2)n where

y =

⎡⎢⎢⎢⎣
y1

y2

...
yn

⎤⎥⎥⎥⎦ .

We approximate f(x) with f̂(x) =
d∑

j=1

âjxj where the âj are chosen to minimize

n∑
i=1

⎡⎣yi −
d∑

j=1

âjxij

⎤⎦2

= ‖y − Xâ‖2

where the definition of â is self-evident. Thus we choose â such that Xâ is as
close to y as possible. However, Xâ is in CX, the column space of X, that is,
the d-dimensional subspace of Rn spanned by the columns of X. (Of course, we
assume n > d.)
It is clear that we wish to choose â such that Xâ is the projection of y onto CX,
which we denote ProjCX

y. Now y is distributed according to an n-dimensional
Gaussian distribution with mean Xn. Projecting an n-dimensional Gaussian
onto a d-dimensional subspace yields a d-dimensional Gaussian, that is,

Xâ = ProjCX
y = ProjCX

[Xn + N(0, σ2)n] = Xa + N(0, σ2)d,

where N(0, σ2)d is rotated to lie in CX. Thus we have

E [‖Xâ − Xa‖2
]

= Var
[
N(0, σ2)d

]
= dσ2.

But ‖Xâ − Xa‖2 =
n∑

i=1

(f̂(xi) − f(xi))2. Since the terms (f̂(xi) − f(xi))2 are

independent for each i, we have

E [‖Xâ − Xa‖2
]

= nE
[
(f̂(x) − f(x))2

]
= dσ2,

and thus

E
[
(f(x) − f̂(x))2

]
=

dσ2

n
.

In short, the squared error increases linearly with the dimension d, not expo-
nentially as we might expect from the general curse of dimension.
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(b) We follow the logic of part (a). Now our target function is f(x) =
d∑

i=1

aiBi(x)

where each member in the basis set of M basis functions Bi(x) is a function of
the d-component vector x. The approximation function is

f̂(x) =
M∑

m=1

âmBm(x),

and, as before, the coefficients are least-squares estimates

âi = arg min
ai

n∑
i=1

[
yi −

q∑
m=1

amBm(x)

]2

and yi = f(xi)+N(0, σ2). Now y will be approximated by Bâ, the projection of
y onto the column space of Bj , that is, the subspace spanned by the M vectors⎡⎢⎢⎢⎣

Bi(x1)
Bi(x2)

...
Bi(xn)

⎤⎥⎥⎥⎦ .

As in part (a), we have

E [(f(x) − f̂(x))2] =
Mσ2

n
,

which is independent of d, the dimensionality of the original space.

13. We assume P (ω1) = P (ω2) = 0.5 and the distributions are as given in the figure.

x
0 0.5 1

0

1

2

p(x|ωi)

ω1ω2

x1x2

x*

(a) Clearly, by the symmetry of the problem, the Bayes decision boundary is x∗ =
0.5. The error is then the area of the dark shading in the figure, divided by the
total possible area, that is

P ∗ =

1∫
0

min[P (ω1)p(x|ω1), P (ω2)p(x|ω2)] dx
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= P (ω1)

0.5∫
0

2x dx + P (ω2)

1∫
0.5

(2 − 2x) dx

= 0.5
1
4

+ 0.5
1
4

= 0.25.

(b) Suppose a point is randomly selected from ω1 according to p(x|ω1) and another
point from ω2 according to p(x|ω2). We have that the error is

1∫
0

dx1 p(x1|ω1)

1∫
0

dx2 p(x2|ω2)

1∫
(x1−x2)/2

dx p(x|ω2)

(x1−x2)/2∫
0

dx p(x|ω1).

(c) From part (d), below, we have for the special case n = 2,

P2(e) =
1
3

+
1

(2 + 1)(2 + 3)
+

1
2(2 + 2)(2 + 3)

=
51
120

= 0.425.

(d) By symmetry, we may assume that the test point belongs to category ω2. Then
the chance of error is the chance that the nearest sample point ot the test point
is in ω1. Thus the probability of error is

Pn(e) =

1∫
0

P (x|ω2)Pr[nearest yi to x is in ω1]dx

=

1∫
0

P (x|ω2)
n∑

i=1

Pr[yi ∈ ω1 and yi is closer to x than yj ,∀j �= i]dx.

By symmetry the summands are the same for all i, and thus we can write

Pn(e) =

1∫
0

P (x|ω2)nPr[y1 ∈ ω1 and |y1 − x| > |yi − x|,∀i > 1]dx

=

1∫
0

P (x|ω2)n

1∫
0

P (ω1|y1)Pr[|yi − x| > |y1 − x|,∀i > 1]dy1 dx

=

1∫
0

P (x|ω2)n

1∫
0

P (ω1|y1)Pr[|y2 − x| > |y1 − x|]n−1dy dx,

where the last step again relies on the symmetry of the problem.

To evalute Pr[|y2 −x| > |y1 −x|], we divide the integral into six cases, as shown
in the figure.

We substitute these values into the above integral, and break the integral into
the six cases as

Pn(e) =

1/2∫
0

P (x|ω2)n

[ x∫
0

P (ω1|y1)(1 + 2y1 − 2x)n−1dy1
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y1

0 11/2

Pr[|y2-x|>|y1-x|] = 1 + 2y1 - 2x

x 2x-y1

Case 1.1:     x ε [0,1/2]      0 < y1 < x

y1

0 11/2

Pr[|y2-x|>|y1-x|] = y1

x
Case 2.1:     x ε [1/2,1]      0 < y1 < 2x - 1

2x-y1

0 11/2

Pr[|y2-x|>|y1-x|] = 1 + 2x - 2y1

x y1

Case 1.2:     x ε [0,1/2]    x < y1 < 2x

y1

0 11/2

Pr[|y2-x|>|y1-x|] = 1 + 2y1 - 2x

x 2x-y1

Case 2.2:     x ε [1/2,1]      2x-1 < y1 < x

0 11/2

Pr[|y2-x|>|y1-x|] = 1 - y1

x y1

Case 1.3:     x ε [0,1/2]      2x < y1 < 1

2x-y1

0 11/2

Pr[|y2-x|>|y1-x|] = 1 + 2x - 2y1

x y1

Case 2.3:     x ε [1/2,1]      x < y1 < 1

denotes possible locations
of y2 with |y2-x|>|y1-x|

+

2x∫
x

P (ω1|y1)(1 + 2x − 2y1)n−1dy1

+

1∫
2x

P (ω1|y1)(1 − y1)n−1dy1

]
dx

+

1∫
1/2

P (x|ω2)n

[ 2x−1∫
0

P (ω1|y1)yn−1
1 dy1

+

x∫
2x−1

P (ω1|y1)(1 + 2y1 − 2x)n−1dy1

+

1∫
x

P (ω1|y1)(1 + 2x − 2y1)n−1dy1

]
dx.

Our density and posterior are given as p(x|ω2) = 2(1 − x) and P (ω1|y) = y for
x ∈ [0, 1] and y ∈ [0, 1]. We substitute these forms into the above large integral
and find

Pn(e) =

1/2∫
0

2n(1 − x)

[ x∫
0

y1(1 + 2y1 − 2x)n−1dy1

2x∫
x

y1(1 + 2x − 2y1)n−1dy1

1∫
2x

y1(1 − y1)n−1dy1

]
dx
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+

1∫
1/2

2n(1 − x)

[ 2x−1∫
0

yn
1 dy1

x∫
2x−1

y1(1 + 2y1 − 2x)n−1dy1

1∫
x

y1(1 + 2x − 2y1)n−1dy1

]
dx.

There are two integrals we must do twice with different bounds. The first is:

b∫
a

y1(1 + 2y1 − 2x)n−1dy1.

We define the function u(y1) = 1 + 2y1 − 2x, and thus y1 = (u + 2x − 1)/2 and
dy1 = du/2. Then the integral is

b∫
a

y(1 + 2y1 − 2x)n−1dy1 =
1
4

u(b)∫
u(a)

(u + 2x − 1)un−1du

=
1
4

[
2x − 1

n
un +

1
n + 1

un+1

]u(b)

u(a)

.

The second general integral is:

b∫
a

y1(1 + 2x − 2y1)n−1dy1.

We define the function u(y1) = 1 + 2x − 2y1, and thus y1 = (1 + 2x − u)/2 and
dy1 = −du/2. Then the integral is

b∫
a

y1(1 + 2x − 2y1)n−1dy1 = −1
4

u(b)∫
u(a)

(1 + 2x + u)un−1du

= −1
4

[
2x + 1

n
un − 1

n + 1
un+1

]u(b)

u(a)

.

We use these general forms to evaluate three of the six components of our full
integral for Pn(e):

x∫
0

y1(1 + 2y1 − 2x)n−1dy1 =
1
4

[
2x − 1

n
un − 1

n + 1
un+1

]1−2x=u(0)

1=u(x)

=
1
4

(
2x + 1

n
+

1
n + 1

)
+

1
4
(1 − 2x)n+1

(
1
n
− 1

n + 1

)
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2x∫
x

y1(1 + 2x − 2y1)n−1dy1 = −1
4

[
2x + 1

n
un − 1

n + 1
un+1

]1−2x=u(2x)

1=u(x)

=
1
4

(
2x + 1

n
− 1

n + 1

)
− 1

2n
(1 − 2x)n +

1
4
(1 − 2x)n+1

(
1
n

+
1

n + 1

)
1∫

2x

y1(1 − y1)n−1dy1 =

1−2x∫
0

(1 − u)un−1du =
[

1
n

un − 1
n + 1

un+1

]1−2x

0

=
1
n

(1 − 2x)n − 1
n + 1

(1 − 2x)n+1.

We add these three integrals together and find, after a straightforward calcula-
tion that the sum is

x

n
+

1
2n

(1 − 2x)n +
(

1
2n

− 1
n + 1

)
(1 − 2x)n+1. (∗)

We next turn to the three remaining three of the six components of our full
integral for Pn(e):

2x−1∫
0

yn
1 dy1 =

1
n + 1

(2x − 1)n+1

x∫
2x−1

y1(1 + 2y1 − 2x)n−1dy1 =
1
4

[
2x − 1

n
un +

1
n + 1

un+1

]1=u(x)

2x−1=u(2x−1)

=
1
4

(
2x − 1

n
+

1
n + 1

)
− 1

4
(2x − 1)n+1

(
1
n

+
1

n + 1

)
1∫

x

y1(1 + 2x − 2y1)n−1dy1 = −1
4

[
2x + 1

n
un − 1

n + 1
un+1

]2x−1=u(1)

1=u(x)

=
1
4

(
2x + 1

n
− 1

n + 1

)
− 1

2n
(2x − 1)n − 1

4
(2x − 1)n+1

(
1
n
− 1

n + 1

)
The sum of these latter three terms is

x

n
− 1

2n
(2x − 1)n −

(
1
2n

− 1
n + 1

)
(2x − 1)n+1. (∗∗)

Thus the sum of the three Case 1 terms is

1/2∫
0

2n(1 − x)

[ x∫
0

y1(1 + 2y1 − 2x)n−1dy1

+

2x∫
x

y1(1 + 2x − 2y1)n−1dy1

+

1∫
2x

y1(1 − y1)n−1dy1

]
dx
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=

1/2∫
0

2n(1 − x)
[
x

n
+

1
2n

(1 − 2x)n + (1 − 2x)n+1

(
1
2n

− 1
n + 1

)]
dx

=

1∫
0

n

(
1 + u

2

) [
1 − u

2n
+

1
2n

un +
(

1
2n

− 1
n + 1

)
un+1

]
du,

where we used the substitution u = 1 − 2x, and thus x = (1 − u)/2, and
dx = −du/2 and 1 − x = (1 + u)/2.

Likewise, we have for the three Case 2 terms

1∫
1/2

2n(1 − x)

[ 2x−1∫
0

yn
1 dy1

+

x∫
2x−1

y1(1 + 2y1 − 2x)n−1dy1

+

1∫
x

y1(1 + 2x − 2y1)n−1dy1

]
dx

=

1∫
1/2

2n(1 − x)
[
x

n
− 1

2n
(2x − 1)n − (2x − 1)n+1

(
1
2n

− 1
n + 1

)]
dx

=

1∫
0

n

(
1 − u

2

) [
1 + u

2n
− 1

2n
un −

(
1
2n

− 1
n + 1

)
un+1

]
du,

where we used the substitution u = 2x−1, and thus x = (1+u)/2 and dx = du/2
and 1 − x = (1 − u)/2.

Now we are ready to put all these results together:

Pn(e) =

1∫
0

n

(
1 + u

2

) [
1 − u

2n
+

1
2n

un +
(

1
2n

− 1
n + 1

)
un+1

]
du

+

1∫
0

n

(
1 − u

2

) [
1 + u

2n
− 1

2n
un −

(
1
2n

− 1
n + 1

)
un+1

]
du

= n

1∫
0

[
1
2n

(1 − u2) +
1
2n

un+1 +
(

1
2n

− 1
n + 1

)
un+2

]
du

= n

[
1
2n

(
u − u3

3

)
1

2n(n + 2
un+2 +

1
n + 3

(
1
2n

− 1
n + 1

)
un+3

]1

0

= n

[
1
2n

2
3

+
1

2n(n + 2)
+

1
n + 3

(
1 − n

2n(n + 1)

)]
=

1
3

+
(n + 1)(n + 3) − (n − 1)(n + 2)

2(n + 1)(n + 2)(n + 3)
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=
1
3

+
3n + 5

2(n + 1)(n + 2)(n + 3)

=
1
3

+
1

(n + 1)(n + 3)
+

1
2(n + 2)(n + 3)

,

which decays as 1/n2, as shown in the figure.

2 4 6 8 10

0.2

0.4
0.5

Pn(e)

n

1/3

We may check this result for the case n = 1 where there is only one sample. Of
course, the error in that case is P1(e) = 1/2, since the true label on the test
point may either match or mismatch that of the single sample point with equal
probability. The above formula above confirms this

P1(e) =
1
3

+
1

(1 + 1)(1 + 3)
+

1
2(1 + 2)(1 + 3)

=
1
3

+
1
8

+
1
24

=
1
2
.

(e) The limit for infinite data is simply

lim
n→∞Pn(e) =

1
3
,

which is larger than the Bayes error, as indeed it must be. In fact, this solution
also illustrates the bounds of Eq. 52 in the text:

P ∗ ≤ P ≤ P ∗(2 − 2P ∗)
1
4

≤ 1
3
≤ 3

8
.

14. We assume P (ω1) = P (ω2) = 0.5 and the distributions are as given in the figure.

x
0 0.5 1

0

1

p(x|ωi)

ω2
ω1

x2x1 x*

(a) This is a somewhat unusual problem in that the Bayes decision can be any point
1/3 ≤ x∗ ≤ 2/3. For simplicity, we can take x∗ = 1/3. Then the Bayes error is
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then simply

P ∗ =

1∫
0

min[P (ω1)p(x|ω1), P (ω2)p(x|ω2)]dx

=

2/3∫
1/3

P (ω1)p(x|ω1)dx

= 0.5(1/3)(3/2) = 0.25.

(b) The shaded area in the figure shows the possible (and equally likely) values of
a point x1 chosen from p(x|ω1) and a point x2 chosen from p(x|ω2).

0 1
0

1

x1

x2

1/3

1/3

2/3

2/3 1

2

There are two functionally separate cases, as numbered, corresponding to the
position of the decision boundary x∗ = (x1 + x2)/2. (Note that we will also
have to consider which is larger, x1 or x2. We now turn to the decision rule and
probability of error in the single nearest-neighbor classifier in these two cases:

case 1 : x2 ≥ x1 and 1/3 ≤ (x1 + x2)/2 ≤ 2/3: Here the decision point x∗

is between 1/3 and 2/3, with R2 at large values of x. This is just the
Bayes case described in part (a) and the error rate is thus 0.25, as we saw.
The relative probability of case 2 occuring is the relative area of the gray
region, that is, 7/8.

case 2 : x1 ≥ x2 and 1/3 ≤ (x1 + x2)/2 ≤ 2/3: Here the decision boundary
is between 1/3 and 2/3 (in the Bayes region) but note especially that R1

is for large values of x, that is, the decision is the opposite of the Bayes
decision. Thus the error is 1.0 minus the Bayes error, or 0.75. The relative
probability of case 2 occuring is the relative area of the gray region, that
is, 1/8.

We calculate the average error rate in the case of one point from each category
by merely adding the probability of occurrence of each of the three cases (pro-
portional to the area in the figure), times the expected error given that case,
that is,

P1 =
7
8
0.25 +

1
8
0.75 =

5
16

= 0.3125,

which is of course greater than the Bayes error.
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(c) Problem not yet solved

(d) Problem not yet solved

(e) In the limit n → ∞, every test point x in the range 0 ≤ x ≤ 1/3 will be properly
classified as ω1 and every point in the range 2/3 ≤ x ≤ 1 will be properly
classified as ω2. Test points in the range 1/3 ≤ x ≤ 2/3 will be misclassified
half of the time, of course. Thus the expected error in the n → ∞ case is

P∞ = P (ω1)Pr[0 ≤ x ≤ 1/3|ω1] · 0 + P (ω1)Pr[1/3 ≤ x ≤ 2/3|ω1] · 0.5
+P (ω2)Pr[1/3 ≤ x ≤ 2/3|ω2] · 0.5 + P (ω2)Pr[2/3 ≤ x ≤ 1|ω2] · 0

= 0.5 0.5 0.5 + 0.5 0.5 0.5 = 0.25.

Note that this is the same as the Bayes rate. This problem is closely related to
the “zero information” case, where the posterior probabilities of the two cate-
gories are equal over a range of x. If the problem specified that the distributions
were equal throughout the full range of x, then the Bayes error and the P∞ errors
would equal 0.5.

15. An faster version of Algorithm 3 in the text deletes prototypes as follows:

Algorithm 0 (Faster nearest-neighbor)

1 begin initialize j ← 0,D, n = number of prototypes
2 Construct the full Voronoi diagram of D
3 do j ← j + 1 (for each prototype x′

j)
4 if x′

j is not marked then find the Voronoi neighbors of x′
j

5 if any neighbor is not from thex′
jclass then mark x′

j and its neighbors in other classes
6 until j = n
7 Discard all unmarked prototypes
8 returnVoronoi diagram of the remaining (marked) prototypes
9 end

If we have k Voronoi neighbors on average of any point x′
j , then the probability that

i out of these k neighbors are not from the same class as x′
j is given by the binomial

law:

P (i) =
(

k

i

)
(1 − 1/c)k(1/c)k−1,

where we have assumed that all the classes have the same prior probability. Then the
expected number of neighbors of any point x′

j belonging to different class is

E(i) = k(1 − 1/c).

Since each time we find a prototype to delete we will remove k(1−1/c) more prototypes
on average, we will be able to speed up the search by a factor k(1 − 1/c).
16. Consider Algorithm 3 in the text.

(a) In the figure, the training points (black for ω1, white for ω2) are constrained
to the intersections of a two-dimensional grid. Note that prototype f does not
contribute to the class boundary due to the existence of points e and d. Hence
f should be removed from the set of prototypes by the editing algorithm (Al-
gorithm 3 in the text). However, this algorithm detects that f has a prototype
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from another class (prototype c) as a neighbor, and thus f is retained according
to step 5 in the algorithm. Consequently, the editing algorithm does not only
select the points a, b, c, d and e which are are the minimum set of points, but
it also retains the “useless” prototype f .

a

b

c

d

e f

l

R1 R2

(b) A sequential editing algorithm in which each point is considered in turn and
retained or rejected before the next point is considered is as follows:

Algorithm 0 (Sequential editing)

1 begin initialize j ← 0,D, n = number of prototypes
2 do j ← j + 1
3 Remove x′

j from D
4 if x′

j is not well classified by D, then restore x′
j to D

5 until J = n
6 return D
7 end

This sequential editing algorithm picks up one training sample and checks
whether it can be correctly classified with the remaining prototypes. If an error
is detected, the prototype under consideration must be kept, since it may con-
tribute to the class boundaries. Otherwise it may be removed. This procedure
is repeated for all the training patterns.

Given a set of training points, the solution computed by the sequential editing
algorithm is not unique, since it clearly depends upon the order in which the data
are presented. This can be seen in the following simple example in the figure,
where black points are in ω1, and white points in ω2. If d is the first point

a c e

db f

presented to the editing algorithm, then it will be removed, since its nearest-
neighbor is f so d can be correctly classified. Then, the other points are kept,
except e, which can be removed since f is also its nearest neighbor. Suppose
now that the first point to be considered is f . Then, f will be removed since
d is its nearest neighbor. However, point e will not be deleted once f has been
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removed, due to c, which will be its nearest neighbor. According to the above
considerations, the algorithm will return points a, b, c, f in the first ordering,
and will return points a, b, c, d, e for the second ordering.

17. We have that P (ωi) = 1/c and p(x|ωi) = p(x) for i = 1, . . . , c. Thus the
probability density of finding x is

p(x) =
c∑

i=1

p(x|ωi)P (ωi) =
c∑

i=1

p(x|ω)
1
c

= p(x|ω),

and accordingly

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
=

p(x|ω)1/c

p(x|ω)
=

1
c
. (∗)

We use (∗) in Eq. 45 in the text to find that the asymptotic nearest-neighbor error
rate is

P = lim
n→∞Pn(e)

=
∫ [

1 −
c∑

i=1

P 2(ωi|x)

]
p(x)dx

=
∫ [

1 −
c∑

i=1

1
c2

]
p(x)dx

=
(

1 − 1
c

) ∫
p(x)dx = 1 − 1

c
.

On the other hand, the Bayes error is

P ∗ =
∫

P ∗(error|x)p(x)dx

=
c∑

i=1

∫
Ri

[1 − P (ωi|x)]p(x)dx, (∗∗)

where Ri denotes the Bayes decision regions for class ωi. We now substitute (∗) into
(∗∗) and find

P ∗ =
c∑

i=1

∫
Ri

(
1 − 1

c

)
p(x)dx =

(
1 − 1

c

) ∫
p(x)dx = 1 − 1

c
.

Thus we have P = P ∗, which agrees with the upper bound P ∗(2− c
c−1P ∗) = 1− 1/c

in this “no information” case.
18. The probability of error of a classifier, and the k-nearest-neighbor classifier in
particular, is

P (e) =
∫

p(e|x)dx.

In a two-class case, where P (ω1|x) + P (ω2|x) = 1, we have

P (e|x) = P (e|x, ω1)P (ω1|x) + P (e|x, ω2)P (ω2|x).



PROBLEM SOLUTIONS 159

The probability of error given a pattern x which belongs to class ω1 can be computed
as the probability that the number of nearest neighbors which belong to ω1 (which
we denote by a) is less than k/2 for k odd. Thus we have

P (e|x, ω1) = Pr[a ≤ (k − 1)/2].

The above probability is the sum of the probabilities of finding a = 0 to a = (k−1)/2,
that is,

Pr[a ≤ (k − 1)/2] =
(k−1)/2∑

i=0

Pr[a = i].

The probability of finding i nearest prototopyes which belong to ωi among k is
P (ω1|x)iP (ω2|x)k−i multiplied by the number of possible combinations,

(
k
i

)
; that

is,

P (e|x, ω1) =
(k−1)/2∑

i=0

(
k

i

)
P (ω1|x)iP (ω2|x)k−i.

By a simple interchange ω1 ↔ ω2, we find

P (e|x, ω2) =
(k−1)/2∑

i=0

(
k

i

)
P (ω2|x)iP (ω1|x)k−i.

We put these results together and find

P (e|x) =
(k−1)/2∑

i=0

(
k

i

) [
P (ω1|x)i+1[1 − P (ω1|x)]k−i + P (ω1|x)k−i[1 − P (ω1|x)]i+1

]
.

Recall that the conditional Bayes error rate is

P ∗(e|x) = min[P (ω1|x), P (ω2|x)].

Hence we can write P (e|x) as

P (e|x) =
(k−1)/2∑

i=0

(
k

i

) [
P ∗(e|x)i+1[1 − P ∗(e|x))]k−i + P ∗(e|x)k−i[1 − P ∗(e|x)]i+1

]
= fk[P (e|x)],

where we have defined fk to show the dependency upon k. This is Eq. 54 in the text.
Now we denote Ck[P ∗(e|x)] as the smallest concave function of P ∗(e|x) greater

than fk[P ∗(e|x)], that is,

fk[P ∗(e|x)] ≤ Ck[P ∗(e|x)].

Since this is true at any x, we can integrate and find

P (e) =
∫

fk[P ∗(e|x)]p(x)dx ≤
∫

Ck[P ∗(e|x)]p(x)dx.
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Jensen’s inequality here states that under very broad conditions, Ex[u(x)] ≤ u[E [x]].
We apply Jensen’s inequality to the expression for P (e) and find

P (e) ≤
∫

Ck[P ∗(e|x)]p(x)dx ≤ Ck

[∫
P ∗(e|x)p(x)dx

]
= Ck[P ∗],

where again P ∗ is the Bayes error. In short, we see P (e) ≤ Ck[P ∗], and from above
fk[P ∗] ≤ Ck[P ∗].

Section 4.6

19. We must show that the use of the distance measure

D(a,b) =

√√√√ d∑
k=1

αk(ak − bk)2

for αk > 0 generates a metric space. This happens if and only if D(a,b) is a metric.
Thus we first check whether D obeys the properties of a metric. First, D must be
non-negative, that is, D(a,b) ≥ 0, which indeed holds because the sum of squares
is non-negative. Next we consider reflexivity, that is, D(a,b) = 0 if and only if
a = b. Clearly, D = 0 if and only if each term in the sum vanishes, and thus
indeed a = b. Conversely, if a = b, then D = 0. Next we consider symmetry, that
is, D(a,b) = D(b,a) for all a and b. We can alter the order of the elements in
the squared sum without affecting its value, that is, (ak − bk)2 = (bk − ak)2. Thus
symmetry holds. The last property is the triangle inequality, that is,

D(a,b) + D(b, c) ≥ D(a, c)

for all a, b, and c. Note that D can be written

D(a,b) = ‖A(a − b)‖2

where A = diag[α1, . . . , αd]. We let x = a − c and y = c − b, and then the triangle
inequality test can be written

‖Ax‖2 + ‖Ay‖2 ≥ ‖A(x + y)‖2.

We denote x′ = Ax and y′ = Ay, as the feature vectors computed using the matrix
A from the input space. Then, the above inequality gives

‖x′‖2 + ‖y′‖2 ≥ ‖x′ + y′‖2.

We can square both sides of this equation and see

(‖x′‖2 + ‖y′‖2)
2 = ‖x′‖2

2 + ‖y′‖2
2 + 2‖x′‖2‖y′‖2 ≥ ‖x′‖2

2 + ‖y′‖2
2 + 2

d∑
i=1

x′
iy

′
i = ‖x′ + y′‖2,

which is equivalent to the simple test

‖x′‖2‖y′‖2 ≥
d∑

i=1

x′
iy

′
i.
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Observe that the above inequality if fulfilled, since the Cauchy-Schwarz inequality
states that

‖x′‖2‖y′‖2 ≥
∣∣∣∣∣

d∑
i=1

x′
iy

′
i

∣∣∣∣∣.
If we work with metric spaces in the nearest-neighbor method, we can ensure the
existence of best approximations in this space. In other words, there will always be a
stored prototype p of minimum distance from an input pattern x∗. Let

δ = min
x

D(p,x),

where x belongs to a set S of the metric space which is compact. (A subset S is said
to be compact if every sequence of points in S has a sequence that converges to a
point in S.) Suppse we define a sequence of points {x1,x2, . . .xn} with the property

D(p,xn) → δ as n → ∞,

where xn → x∗ using the compactness of S. By the triangle inequality, we have that

D(p,xn) + D(xn,x∗) ≥ D(p,x∗).

The right-hand side of the inequality does not depend on n, and the left side approches
δ as n → ∞. Thus we have δ ≥ D(p,x∗). Nevertheless, we also have D(p,x∗) ≥ δ
because x∗ belongs to S. Hence we have that D(p,x∗) = δ.

The import of this property for nearest-neighbor classifiers is that given enough
prototypes, we can find a prototype p very close to an input pattern x∗. Then, a good
approximation of the posterior class probability of the input pattern can be achieved
with that of the stored prototype, that is, p � x∗ implies

P (ωi|p) � P (ωi|x∗).

20. We must prove for

Lk(a,b) =

(
d∑

i=1

|ai − bi|k
)1/k

= ‖a − b‖k

the four properties a metric are obeyed.

• The first states that Lk must be positive definite. Since |ai − bi| ≥ 0 for all i,
Lk(a,b) ≥ 0.

• The second states that Lk(a,b) = 0 if and only if a = b. If a = b, then each
term of the sum |ai − bi| is 0, and Lk(a,b) = 0. Conversely, if Lk(a,b) = 0,
then each term |ai − bi| must be 0, and thus ai = bi for all i, that is, a = b.

• The third condition is symmetry, that is Lk(a,b) = Lk(b,a). This follows
directly from the fact

|ai − bi| = | − (bi − ai)| = | − 1| |bi − ai| = |bi − ai| for i = 1, . . . , d.
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• The last property is the triangle inequality, that is

Lk(a,b) + Lk(b, c) ≥ Lk(a, c)

or

‖a − b‖k + ‖b − c‖k ≥ ‖a − c‖k (∗)

for arbitrary a, b and c. We define a − b = x and b − c = y, then (∗) can be
written

‖x‖k + ‖y‖k ≥ ‖x + y‖k. (∗∗)

We exponentiate both sides and find an equivalent condition

(‖x‖k + ‖y‖k)k ≥ (‖x + y‖k)k (∗ ∗ ∗)

for k > 1. We expand the left-hand side of (∗ ∗ ∗) to find

(‖x‖k + ‖y‖k)k =
d∑

i=1

|xi|k +
d∑

i=1

|yi|k +
k−1∑
j=1

(
k

j

)
‖x‖k−j

k · ‖y‖j
k,

and the right-hand side to find

‖x + y‖k
k =

d∑
i=1

|xi|k +
d∑

i=1

|bi|k +
k−1∑
j=1

(
k

j

) d∑
i=1

|xi|k−j |bi|j .

In short, then (∗ ∗ ∗) can be written as

‖x‖k−j
k · ‖y‖j

k ≥
d∑

i=1

|xi|k−j |bi|j j = 1, . . . , k − 1.

Note that

‖x‖k−j
k ≥

d∑
i=1

|xi|k−j and ‖y‖j
k ≥

d∑
i=1

|yi|j

because (∑
a
)q

≥
∑

aq for a > 0.

Then we have for the above special case

‖x‖k−j
k ‖y‖j

k ≥
(

d∑
i=1

|xi|k−j

) (
d∑

i=1

|yi|j
)

.

Since (∑
i

ai

) (∑
i

bi

)
≥

∑
i

aibi for ai, bi > 0,
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we have

‖x‖k−j
k ‖y‖j

k ≥
(

d∑
i=1

|xi|k−j

) (
d∑

i=1

|yi|j
)

≥
d∑

i=1

|xi|k−j |bi|j .

We replace x = a − b and y = b − c and conclude

Lk(a,b) + Lk(b, c) ≥ Lk(a, c),

and hence the triangle inequality is obeyed.

21. Problem not yet solved

22. Problem not yet solved

23. Problem not yet solved

24. Problem not yet solved

25. Consider the computational complexity of calculating distances under different
metrics.

(a) The Euclidean distance between two prototypes is given by

‖x′′ − x′‖2 =
d∑

i=1

(x′′
i − x′

i)
2,

where x′′ denotes the transformed image, x′ is a stored prototype, and d is
the number of pixels in the handwritten digit. As we can see, d subtractions,
d multiplications and d additions are needed. Consequently, this is an O(d)
process.

(b) Given a text sample x and a prototype x′, we must compute r non-linear trans-
forms, which depend on a set of parameters subject to optimization. If an itera-
tive algorithm is used for optimizing these parameters, we will have to compute
the Euclidean distance of the transformed image and the stored prototype x′ for
each step. Since the computation of the transformed image invlves r non-linear
transformations (with aik

2 operations per transform), the number of operations
required is

aik
2r + 3k2 = (air + 3)k2.

(c) For each prototype, we will have to perform A searches, and this implies (air + 3)k2A
operations. Accordingly, the total number of operations is

(air + 3)k2An.

(d) If n = 106, r = 6, ai � 10, A � 5, and basic operations on our computer require
10−9 second, then the classification of a single point is performed in

(10 · 6 + 3)k2 · 5 · 106operations · 10−9 seconds

operation
= 0.315k2seconds.

Suppose that k = 64. Then a test sample will be classified in 21 minutes and
30 seconds.
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26. Explore the effect of r on the accuracy of nearest-neighbor search based on partial
distance.

(a) We make some simplifications, specifically that points are uniformly distributed
in a d-dimensional unit hypercube. The closest point to a given test point in, on
average, enclosed in a small hypercube whose volume is 1/n times the volume of
the full space. The length of a side of such a hypercube is thus 1/n1/d. Consider
a single dimension. The probability that any point falls within the projection
of the hypercube is thus 1/n1/d. Now in r ≤ d dimensions, the probability of
falling inside the projection of the small hypercube onto r-dimensional subspace
is 1/nr/d, i.e., the product of r indpendendent events, each having probability
1/n1/d. So, for each point the probability it will not fall inside the volume in
the r-dimensional space is 1− 1/nr/d. Since we have n indpendent such points,
the probability that the partial distance in r dimensions will give us the true
nearest neighbor is

Pr[nearest neighbor in d−dim. is found in r < d dim.] =
(

1 − 1
nr/d

)n

,

as shown in the figure for 0 < r ≤ d = 10 and n = 5, 10 and 100.

2 4 6 8 10

0.2

0.4

0.6

0.8

1
n=5100

n=10

P

r

(b) The Bayes decision boundary in one dimenion is clearly x∗
1 = 0.5. In two

dimensions it is the line x∗
2 = 1− x1. In three dimension the boundardy occurs

when

x1x2x3 = (1 − x1)(1 − x2)(1 − x3)

which implies

x∗
3 =

(x1 − 1) (x2 − 1)
1 − x1 − x2 + 2x1x2

,

as shown in the figure.

(c) The Bayes error in one dimension is clearly

EB =

1∫
0

Min[P (ω1)p(x|ω1), P (ω2)p(x|ω2)]p(x) dx
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d = 2 d = 3

R1 R2

R1

R2

R1

R2

= 2 · 0.5

x∗=0.5∫
0

(1 − x) dx

= 0.1875.

The Bayes error in two dimensions is

EB = 2 · 0.5

1∫
x1=0

dx1

x∗
2=1−x1∫

0

dx2(1 − x1)(1 − x2)

= 0.104167.

The Bayes error in three dimensions is

EB =

1∫
0

dx1

1∫
0

dx2

x∗
3(x1,x2)∫

0

dx3 (1 − x1)(1 − x2)(1 − x3)

= 0.0551969,

where x∗
3(x1, x2) is the position of the decision boundary, found by solving

x1x2x3 = (1 − x1)(1 − x2)(1 − x3)

for x3, that is,

x∗
3(x1, x2) =

(x1 − 1) (x2 − 1)
1 − x1 − x2 + 2x1x2

.

The general decision boundary in d dimensions comes from solving

d∏
i=1

xi =
d∏

i=1

(1 − xi)

or

xd

d−1∏
i=1

xi = (1 − xd)
d−1∏
i=1

(1 − xi)
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for xd, which has solution

x∗
d(x1, x2, . . . , xd−1) =

d−1∏
i=1

(1 − xi)

d−1∏
j=1

(1 − xj) +
d−1∏
k=1

xk

.

The Bayes error is

EB =

1∫
0

dx1

1∫
0

dx2 · · ·
1∫

0

dxd−1

x∗
d(x1,...,xd−1)∫

0

dxd

︸ ︷︷ ︸
d integrals

d∏
j=1

(1 − xi).

We first compute the integral(x[1] - 1)) over xd, since it has the other variables
implicit. This integral I is

I =

x∗
d(x1,...,xd−1)∫

0

(1 − xd) dxd = xd‖x∗
d

0 − 1
2

[
x2

d

]x∗
d

0

= x∗
d − 1

2
(x∗

d)
2.

Substituting x∗
d from above we have

I =

[
d−1∏
i=1

(1 − xi)
][

d−1∏
j=1

(1 − xj) +
d−1∏
k=1

xk − 1/2
d−1∏
i=1

(1 − xi)

]
[

d−1∏
j=1

(1 − xj) +
d−1∏
k=1

xk

]2

=
1/2

d−1∏
i=1

(1 − xi)2 +
d−1∏
i=1

xi(1 − xi)[
d−1∏
j=1

(1 − xj) +
d−1∏
k=1

xk

]2 .

(d) Problem not yet solved

(e) Problem not yet solved

27. Consider the Tanimoto metric described by Eq. 58 in the text.

(a) The Tanimoto metric measures the distance between two sets A and B, accord-
ing to

DTanimoto(A,B) =
na + nb − 2nab

na + nb − nab

where na and nb are the sizes of the two sets, and nab is the number of elements
common to both sets.
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We must check whether the four properties of a metric are always fulfilled. The
first property is non-negativity, that is,

DTanimoto(A,B) =
na + nb − 2nab

na + nb − nab
≥ 0.

Since the sum of the elements in A and B is always greater than their common
elements, we can write

na + nb − nab > 0.

Furthermore, the term na + nb − 2nab gives account of the number of different
elements in sets A and B, and thus

na + nb − 2nab ≥ 0.

Consequently, DTanimoto(A,B) ≥ 0.

The second property, reflexivity, states that

DTanimoto(A,B) = 0 if and only if A = B.

From the definition of the Tanimoto measure above, we see that DTanimoto(A,B)
will be 0 if and only if na + nb − 2nab = 0. This numerator is the number of
different elements in A and B, so it will yield 0 only when A and B have no
different elements, that is, when A = B. Conversely, if A = B, then na + nb −
2nab = 0, and hence DTanimoto(A,B) = 0.

The third property is symmetry, or

DTanimoto(A,B) = DTanimoto(B,A)

for all A and B. Since the terms na and nb appear in the numerator and
denominator in the same way, only the term nab can affect the fulfilment of this
property. However, nab and nba give the same measure: the number of elements
common to both A and B. Thus the Tanimoto metric is indeed symmetric.

The final property is the triangle inequality:

DTanimoto(A,B) + DTanimoto(B, C) ≥ DTanimoto(A, C). (∗)
We substitute (∗) into the definition of the Tanimoto metric and find

na + nb − 2nab

na + nb − nab
+

nb + nc − 2nbc

nb + nc − nbc
≥ na + nc − 2nac

na + nc − nac
.

After some simple manipulation, the inequality can be expressed as

3BDE − 2ADE − 2BCE + ACE − 2BDF + ADF + BCF ≥ 0,

where

A = na + nb

B = nab

C = nb + nc

D = nbc

E = na + nc

F = nac.
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We factor to find

E[C(A − 2B) + D(3B − 2A)] + F [D(A − 2B) + BC] ≥ 0.

Since A − 2B is the number of different elements in A and B and hence non-
negative, the triangle inequality is fulfilled if some of the below conditions are
met:

3B − 2A = 3nab − 2(na + nb) ≥ 0 (∗∗)
D = nbc = 0 (∗ ∗ ∗)

C(A − 2B) + D(3B − 2A) ≥ 0.

This last condition can be rewritten after some arrangment as

DT ≥ nbc

nb + nc − nbc
.

On the other hand, if we take other common factors in the above equation, we
have

B[E(3D − 2C) + F (C − 2D)] + A[E(C − 2D) + DF ] ≥ 0.

The term C−2D is the number of different elements in C and D, so it is greater
than zero. Accordingly, the triangle inequality can be also fulfilled if some of
the below additional conditions are met:

3D − 2C = 3nbc − 2(nb + nc) ≥ 0
E = nb + na = 0

E(3D − 2C) + F (C − 2D) ≥ 0.

After some rearrangements, this last inequality can be written as

DTanimoto(B, C) ≥ nb + nc

nbc − (nb + nc)
.

Since the denominator of the right-hand side is always negative, the inequality
is met. Thus we can conclude that the Tanimoto metric also obeys the triangle
inequality.

(b) Since the Tanimoto metric is symmetric, we consider here only 15 out of the 30
possible pairings.

A B na nb nab DTanimoto(a, b) rank
pattern pat 7 3 3 0.57 2
pattern pots 7 4 2 0.77 7
pattern stop 7 4 2 0.77 7
pattern taxonomy 7 8 3 0.75 6
pattern elementary 7 10 5 0.58 3
pat pots 3 4 2 0.6 4
pat stop 3 4 2 0.6 4
pat taxonomy 3 8 2 0.77 7
pat elementary 3 10 2 0.81 9
pots stop 4 4 4 0 1
pots taxonomy 4 8 2 0.8 8
pots elementary 4 10 1 0.92 9
stop taxonomy 4 8 2 0.8 8
stop elementary 4 10 1 0.92 9
taxonomy elementary 8 10 5 0.61 5
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(c) Yes, the Tanimoto metric fulfills the triangle inequality for all possible sets given
above.

Section 4.7

28. As shown in Fig. 23 in the text, there is a big difference between “categories”
of a feature and the (true) categories or classes for the patterns. For this problem
there is a fuzzy feature that we can call “temperature,” and a class named “hot.”
Given a pattern, e.g., a cup, we can observe a degree of membership of this object
onto the fuzzy feature “temperature,” for instance, “temperature = warm.” However
“temperature = warm” does not necessarily imply that the membership to the “hot”
class is less than 1.0 due to we could argue that the fuzzy feature “temperature” is
not very hot but warm. We could reasonably suppose that if the “hot” class has
something to do with temperature then it would have into account the fuzzy feature
“temperature” for its membership function. Accordingly, values of “temperature”
such as “warm” or “hot” might be active in some degree for the class “hot” though
the exact dependence between them is unknown for us without more information
aboute the problem.
29. Consider “fuzzy” classification.

(a) We first fit the designer’s subjective feelings into fuzzy features, as suggested by
the below table.

Feature designer’s feelings fuzzy feature
lightness medium-light light

medium-dark dark
dark dark

length short short
long large

If we use Min[a, b] as the conjunction rule between fuzzy sets a and b, then the
discriminant functions can be written as:

d1 = Min[ĉ(length, 13, 5), ĉ(lightness, 70, 30)]
d2 = Min[ĉ′(length, 5, 5), ĉ′(lightness, 30, 30)]
d1 = Min[ĉ(length, 13, 5), ĉ′(lightness, 30, 30)]

where

ĉ(x, μ, δ) =

⎧⎨⎩
1 x > μ

1 + (x − μ)/δ μ − δ ≤ x ≤ μ
0 otherwise

ĉ′(x, μ, δ) =

⎧⎨⎩
0 x > μ + δ

1 + (μ − x)/δ μ ≤ x ≤ μ + δ
1 otherwise.

(b) If every “category membership function” were rescaled by a constant α, the
discriminant functions would be

d1 = Min[αĉ(length, 13, 5), αĉ(lightness, 70, 30)]
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d2 = Min[αĉ(length, 5, 5), αĉ′(lightness, 30, 30)]
d3 = Min[αĉ(length, 13, 5), αĉ′(lightness, 30, 30)]

Since Min[αf1, αf2] = αMin[f1, f2], the above functions can be written

d1 = αMin[ĉ(length, 13, 5), ĉ(lightness, 70, 30)]
d2 = αMin[ĉ′(length, 13, 5), ĉ′(lightness, 70, 30)]
d3 = αMin[ĉ(length, 13, 5), ĉ′(lightness, 70, 30)].

Hence, the classification borders would be unaffected, since all the discriminant
functions would be rescaled by the same constant α, and we would have

arg max
di

(αd1, αd2, αd3) = α arg max
di

(d1, d2, d3) = arg max
di

(d1, d2, d3).

(c) Given the pattern x = (7.5, 60)t and the above equations, the value of the
discriminant functions can be computed as follows:

d1 = Min[ĉ(7.5, 13, 5), ĉ(60, 70, 30)] = Min[0, 0.66] = 0
d2 = Min[ĉ′(7.5, 5, 5), ĉ′(60, 30, 30)] = Min[0.5, 0] = 0
d3 = Min[ĉ(7.5, 13, 5), ĉ′(60, 30, 30)] = Min[0, 0] = 0.

Since all the discriminant functions are equal to zero, the classifier cannot assign
the input pattern to any of the existing classes.

(d) In this problem we deal with a handcrafted classifier. The designer has selected
lightness and length as features that characterize the problem and has devined
several membership functions for them without any theoretical or empirical
justification. Moreover, the conjunction rule that fuses membership functions
of the features to define the true discriminant functions is also imposed without
any principle. Consequently, we cannot know where the sources of error come
from.

30. Problem not yet solved

Section 4.8

31. If all the radii have been reduced to a value less than λm, Algorithm 4 in the text
can be rewritten as:

Algorithm 0 (Modified RCE)

1 begin initialize j ← 0, n ← number of patterns, ε ← small parameter
2 do j ← j + 1
3 wji ← xji for i = 1, . . . , d
4 x̂ ← arg min

x∈ωi

D(x,xj)

5 λj ← D(x̂,xj)
6 λj ← D(x̂,xj) − ε
7 if xj ∈ ωk, then ajk ← 1 for k = 1, . . . c
8 until j = n
9 end
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According to Algorithm 5 in the text, the decision boundaries of the RCE classifier
depend on λj ; an input pattern x is assigned to a class if and only if all its near-
est prototypes belong to the same class, where these prototypes fulfill the condition
D(x,wj), λj . Since λj = D(x̂,wj), where x̂ is the nearest training sample to wj be-
longing to another class, we will have different class boundaries when we use different
training points.

Section 4.9

32. We seek a Taylor series expansion for

pn(x) =
1

nhn

n∑
i=1

ϕ

(
x − xi

hn

)
.

(a) If the Parzen window is of the form ϕ(x) ∼ N(0, 1), or

p(x) =
1√
2π

e−x2/2,

we can then write the estimate as

pn(x) =
1

nhn

n∑
i=1

ϕ

(
x − x1

hn

)

=
1

nhn

n∑
i=1

1√
2π

exp

[
−1

2

(
x − x1

hn

)2
]

=
1√

2πhn

1
n

n∑
i=1

exp
[
−1

2

(
x2

h2
n

+
x2

i

h2
n

− 2xxi

h2
n

)]

=
exp

[
− 1

2
x2

h2
n

]
√

2πhn

1
n

n∑
i=1

exp
[
xxi

h2
n

]
exp

[
−1

2
x2

i

h2
n

]
.

We express this result in terms of the normalized variables u = x/hn and ui =
xi/hn as

pn(x) =
e−u2/2

√
2πhn

1
n

n∑
i=1

e−u2
i /2euui .

We expand exxi/h2
n = euui about the origin,

euui =
∞∑

j=0

ujuj
i

j!
,

and therefore our density can be written as

pn(x) =
e−u2/2

√
2πhn

1
n

n∑
i=1

∞∑
j=0

ujuj
i

j!
e−u2

i /2

=
e−u2/2

√
2πhn

∞∑
j=0

(
1
n

n∑
i=1

uj
ie

−u2
i /2

j!

)
uj
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=
e−u2/2

√
2πhn

∞∑
j=0

bju
j

= lim
m→∞ pnm(x),

where we have defined

bj =
1
n

n∑
i=1

1
j!

uj
ie

−u2
i /2.

Thus we can express pnm(x) as the m-term approximation as

pnm(x) =
e−u2/2

√
2πhn

m−1∑
j=0

bju
j .

(b) If the n samples are extremely tightly clustered about u = uo (i.e., ui � uo) for
i = 1, . . . , n, then the two-term approximation is

pn2(x) =
e−u2/2

√
2πhn

(bo + b1u),

where

bo =
1
n

n∑
i=1

e−u2
i /2 � e−u2

o/2

and

b1 =
1
n

n∑
i=1

uie
−u2

i /2 � uoe
−u2

o/2.

The peak of pn2(x) is given by the solution of ∇upn2 = 0, that is

∇upn2(x) =
−ue−u2/2(bo + b1u)√

2πhn

+
b1e

−u2/2

√
2πhn

= 0.

This equation then gives

0 = −u(bo + b1u) + b1

= u(e−u2
o/2 + uoe

−u2
o/2u) − uoe

−u2
o/2

= u2uo + u − uo = 0

= u2 +
u

uo
− 1.

Thus the peaks of pn2(x) are the solutions of u2 + u/uo − 1 = 0.

(c) We have from part (b) that u is the solution to u2 + u/uo − 1 = 0, and thus the
solution is

u =
−1/uo ±

√
1/u2

o + 4
2

.
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In the case uo � 1, the square root can be approximated as
√

1/u2
0 + 4 � 1/u0,

and thus

u =
−1 ± √

1 + 4u2
o

2uo

� −1 ± (1 + 1
24u2

o)
2uo

,

and this implies that one of the peaks of the probability is at

u � −1 + (1 + 2u2
o)

2uo
= uo.

In the case uo � 1, we have

u =
−1/uo ±

√
1/u2

o + 4
2

=
−1/uo ± 2

√
1/(4u2

o) + 1
2

� −1/uo ± 2(1 + 1
21/(4u2

o))
2

.

Thus, one of the peaks occurs at

u � −1/uo + 2(1 + 1/(8u2
o))

2
� 2

2
= 1.

(d) In these conditions, we find

pn2(u) =
e−u2/2

√
2πhn

(bo + b1u)

where

bo � e−u2
o/2, and b1 � uoe

−u2
o/2,

as is shown in the figure. (The curves have been rescaled so that their structure
is apparent.) Indeed, as our calculation above showed, for small uo, pn2(u)
peaks near u = 0, and for large uo, it peaks near u = 1.

1 2 3 4
u

0.1

0.2

0.3

0.4

~pn2(u)

u
o  =

 .01
u

o  =
 10

u
o  =

 1
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Computer Exercises

Section 4.2

1. Computer exercise not yet solved

Section 4.3

2. Computer exercise not yet solved

Section 4.4

3. Computer exercise not yet solved

Section 4.5

4. xxx

11 MATLAB program
12 x = [0.58 0.27 0.0055 0.53 0.47 0.69 0.55 0.61 0.49 0.054]’;
13 mu = mean(x);
14 delta = std(x);
15 mu arr = linspace(min(x), max(x), 100);
16 delta arr = linspace(2*(min(x)-mu), 8*(max(x)-mu), 100);
17 [M, D] = meshgrid(mu arr, delta arr);
18 p D theta = zeros(size(M));
19 for i=1:size(M,2)
20 for j=1:size(M,2)
21 x minus mu = abs(x - M(i,j));
22 if max(x minus mu) > D(i,j)
23 p D theta(i,j) = 0;
24 else;
25 a = (D(i,j) - x minus mu)/D(i,j)^2;
26 p D theta(i,j) = prod(a);
27 end
28 end
29 end
30 p D theta = p D theta./(sum(p D theta(:))/...
31 ((mu arr(2) - mu arr(1))*(delta arr(2)-delta arr(1))));
32 p theta D = p D theta;
33 ind = find(p D theta>0);
34 x vect = linspace(min(x)-10*delta, max(x)+10*delta, 100);
35 post = zeros(size(x vect));
36 for i=1:length(x vect)
37 for k=1:length(ind)
38 if abs(x vect(i) - M(ind(k))) < D(ind(k)),
39 p x theta = (D(ind(k)) - abs(x vect(i) - M(ind(k))))./D(ind(k)).^2;
40 else
41 p x theta = 0;
42 end
43 post(i) = post(i) + p x theta*p theta D(ind(k));
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44 end
45 end
46 post = post./sum(post);
47 figure;
48 plot(x vect, post, ’-b’);
49 hold on;
50 plot([mu mu], [min(post) max(post)], ’-r’);
51 plot(x, zeros(size(x)), ’*m’);
52 grid;
53 hold off;

[[FIGURE TO BE INSERTED]]

5. Computer exercise not yet solved

Section 4.6

6. Computer exercise not yet solved

7. Computer exercise not yet solved

8. Computer exercise not yet solved

Section 4.7

9. Computer exercise not yet solved

Section 4.8

10. Computer exercise not yet solved

Section 4.9

11. Computer exercise not yet solved
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Chapter 5

Linear discriminant functions

Problem Solutions

Section 5.2

1. Consider the problem of linear discriminants with unimodal and multimodal dis-
tributions.

(a) The figure shows two bimodal distributions that obey reflective symmetry about
a vertical axis. Thus their densities have the same value along this vertical
line, and as a result this is the Bayesian decision boundary, giving minimum
classification error.

ω2ω1

R2R1

(b) Of course, if two unimodal distributions overlap significantly, the Bayes error will
be high. As shown in Figs 2.14 and 2.5 in Chapter 2, the (unimodal) Gaussian
case generally has quadratic (rather than linear) Bayes decision boundaries.
Moreover, the two unimodal distributions shown in the figure below would be
better classified using a curved boundary than the straight one shown.

(c) Suppose we have Gaussians of different variances, σ2
1 �= σ2

2 and for definiteness
(and without loss of generality) σ2 > σ1. Then at large distances from the
means, the density P (ω2|x) > P (ω1|x). Moreover, the position of the mean of
ω1, that is, μ1, will always be categorized as ω1. No (single) straight line can
separate the position of μ1 from all distant points; thus, the optimal decision

177
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ω1

R2R1

ω2

boundary cannot be a straight line. In fact, for the case shown, the optimal
boundary is a circle.

ω2ω1

R1

R2

R2

μ1

μ2

2. Consider a linear machine for c categories with discriminant functions gi(x) =
wt

ix + ωi0 for i = 1, . . . , c. Our goal is to show that the decision regions are convex,
that is, if x(1) and x(0) are in ωi, then λx(1) + (1 − λ)x(0) is also in ωi, for all
0 ≤ λ ≤ 1. The fact that x(1) and x(0) are in ωi implies

max
j

gj(x(1)) = gi(x(1)) = wt
ix(1) + wi0

and

max
j

gj(x(0)) = gi(x(0)) = wt
ix(0) + wi0.

For any j and for 0 ≤ λ ≤ 1, the above imply

wt
j [λx(1) + (1 − λ)x(0)] + wj0 = λ[wt

jx(1) + wj0] + (1 − λ)[wt
jx(0) + wj0]

≤ λ[wt
ix(1) + wi0] + (1 − λ)[wt

ix(0) + wi0].

We next determine the category of a point between x(0) and x(1) by finding the
maximum discriminant function:

max
j

[
wt

j [λx(1) + (1 − λ)x(0)] + wj0

]
= λ max

j
[wjtx(1) + wj0] + (1 − λ) max

j
[wjtx(1) + wj0]

= λ[wt
ix(1) + wi0] + (1 − λ)[wt

ix(1) + wi0]
= wt

i [λx(1) + (1 − λ)x(0)] + wi0.

This shows that the point λx(1) + (1− λ)x(0) is in ωi. Thus any point between x(0)
and x(1) is also in category ωi; and since this is true for any two points in ωi, the
region is convex. Furthermore, it is true for any category ωj — all that is required in
the proof is that x(1) and x(0) be in the category region of interest, ωj . Thus every
decision region is convex.
3. A counterexample will serve as proof that the decision regions need not be convex.
In the example below, there are c = 5 classes and

(
c
2

)
= 10 hyperplanes separating
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the pairs of classes; here Hij means the hyperplane separating class ωi from class ωj .
To show the non-convexity of the solution retion for class ω1, we take points A and
B, as shown in the figure.

H12

ω4 ω3

ω1

ω2 ω5

H35

H25
H23

H34
H45

H13

H15

H14 H24

A

B

C

The table below summarizes the voting results. Each row lists a hyperplane Hij ,
used to disginguish category ωi from ωj . Each entry under a point states the category
decision according to that hyperplane. For instance, hyperplane H12 would place A in
ω2, point B in ω1, and point C in ω2. The underlining indicates the winning votes in
the full classifier system. Thus point A gets three ω1 votes, only one ω2 vote, two ω3

votes, and so forth. The bottom row shows the final voting result of the full classifier
system. Thus points A and B are classified as category ω1, while point C (on the
line between A and B) is category ω2. Thus the solution region for ω1 is not convex.

hyperplane A B C
H12 ω2 ω1 ω2

H13 ω1 ω1 ω3

H14 ω1 ω1 ω1

H15 ω1 ω1 ω1

H23 ω3 ω2 ω2

H24 ω2 ω2 ω2

H25 ω5 ω2 ω2

H34 ω3 ω4 ω3

H35 ω5 ω3 ω5

H45 ω4 ω4 ω4

Vote result: ω1 ω1 ω2

4. Consider the hyperplane used for discriminant functions.

(a) In order to minimize ‖x− xa‖2 subject to the constraint g(x) = 0, we form the
objective function

f(x, λ) = ‖x − xa‖2 + 2λ[g(x)],

where λ is a Lagrange undetermined multiplier; the point xa is fixed while x
varies on the hyperplane. We expand f(·) and find

f(x, λ) = ‖x − xa‖2 + 2λ[wtx + w0]
= (x − xa)t(x − xa) + 2λ(wtx + w0)
= xtx − 2xtxa + xt

axa + 2λ(xtw + w0).
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We set the derivatives of f(x, λ) to zero and find

∂f(x, λ)
∂x

= x − xa + λw = 0

∂f(x, λ)
∂λ

= wtx + w0 = 0,

and these equations imply

x = xa − λw,

and

wtx + w0 = wt(xa − λw) + w0

= wtxa + w0 − λwtw

= 0.

These can be solved for λ as

λwtw = wtxa + w0

or (so long as w �= 0)

λ =
wtxa + w0

wtw
.

The value of x is then

x = xa − λw

=

{
xa −

[
wtxa+w0

wtw

]
w if w �= 0

xa if w = 0.

The minimum value of the distance is obtained by substituting the value of x
into the distance:

‖x − xa‖ =

∥∥∥∥∥xa −
[
wtxa + w0

wtw

]
w − xa

∥∥∥∥∥
=

∥∥∥∥∥
(

wtxa + w0

wtw

)
w

∥∥∥∥∥
=

|g(xa)|‖w‖
‖w‖2

=
|g(xa)|
‖w‖ .

(b) From part (a) we have that the minimum distance from the hyperplane to the
point x is attained uniquely at the point x = xa −λw on the hyperplane. Thus
the projection of xa onto the hyperplane is

xo = xa − λw

= xa − g(xa)
‖w‖2

w,

where

λ =
wtxa + w0

wtw
=

g(xa)
‖w‖2

.
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5. Consider the three category linear machine with discriminant functions gi(x) =
wt

ix − wio, for i = 1, 2, 3.

(a) The decision boundaries are obtained when wt
ix = wt

jx or equivalently (wi −
wj)tx = 0. Thus, the relevant decision boundaries are the lines through the
origin that are orthogonal to the vectors w1 − w2,w1 − w3 and w2 − w3, and
illustrated by the lines marked ωi ↔ ωj in the figure.

-4 -2 2 4
x1

-4

-2

2

4

x2

w1

w2

w3

ω
1 ↔ ω

3

ω
2 ↔

 ω
3 ω

1 
↔

 ω
2

(b) If a constant vector c is added to the weight vectors, w1,w2 and w3, then the
decision boundaries are given by [(wi + c) − (wj + c)]tx = (wi − wj)tx = 0,
just as in part (a); thus the decision boundaries do not change. Of course, the
triangle formed by joining the heads of w1,w2, and w3 changes, as shown in
the figure.

-4 -2 2 4

-4

-2

2

4

x1

x2

w1

w2

w3

ω
1 ↔ ω

3

ω
2 ↔

 ω
3

ω
1 

↔
 ω

2

c

w 1 +
 c

w2 + c

w3 + c

6. We first show that totally linearly separable samples must be linearly separable.
For samples that are totally linearly separable, for each i there exists a hyperplane
gi(x) = 0 that separates ωi samples from the rest, that is,

gi(x) ≥ 0 for x ∈ ωi

gi(x) < 0 for x �∈ ωi.

The set of discriminant functions gi(x) form a linear machine that classifies correctly;
the samples are linearly separable and each category can be separated from each of
the others.

We shall show that by an example that, conversely, linearly separable samples
need not be totally linearly separable. Consider three categories in two dimensions
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specified by

ω1 = {x : x1 < −1}
ω2 = {x : −1 ≤ x1 < 1}
ω3 = {x : x1 > 1}.

Clearly, these categories are linearly separable by vertical lines, but not totally linearly
separable since there can be no linear function g2(x) that separates the category ω2

samples from the rest.
7. Consider the four categories in two dimensions corresponding to the quadrants of
the Euclidean plane:

ω1 = {x : x1 > 0, x2 > 0}
ω2 = {x : x1 > 0, x2 < 0}
ω3 = {x : x1 < 0, x2 < 0}
ω4 = {x : x1 < 0, x2 > 0}.

Clearly, these are pairwise linearly separable but not totally linearly separable.
8. We employ proof by contradiction. Suppose there were two distinct minimum
length solution vectors a1 and a2 with at

1y > b and at
2y > b. Then necessarily we

would have ‖a1‖ = ‖a2‖ (otherwise the longer of the two vectors would not be a
minimum length solution). Next consider the average vector ao = 1

2 (a1 + a2). We
note that

at
oyi =

1
2
(a1 + a2)tyi =

1
2
at

1yi +
1
2
at

2yi ≥ b,

and thus ao is indeed a solution vector. Its length is

‖ao‖ = ‖1/2(a1 + a2)‖ = 1/2‖a1 + a2‖ ≤ 1/2(‖a1‖ + ‖a2‖) = ‖a1‖ = ‖a2‖,
where we used the triangle inequality for the Euclidean metric. Thus ao is a solution
vector such that ‖ao‖ ≤ ‖a1‖ = ‖a2‖. But by our hypothesis, a1 and a2 are minimum
length solution vectors. Thus we must have ‖ao‖ = ‖a1‖ = ‖a2‖, and thus

1
2
‖a1 + a2‖ = ‖a1‖ = ‖a2‖.

We square both sides of this equation and find

1
4
‖a1 + a2‖2 = ‖a1‖2

or

1
4
(‖a1‖2 + ‖a2‖2 + 2at

1a2) = ‖a1‖2.

We regroup and find

0 = ‖a1‖2 + ‖a2‖2 − 2at
1a2

= ‖a1 − a2‖2,

and thus a1 = a2, contradicting our hypothesis. Therefore, the minimum-length
solution vector is unique.
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9. Let the two sets of vectors be S1 = {x1, . . . ,xn} and S2 = {y1, . . . ,ym}. We
assume S1 and S2 are linearly seperable, that is, there exists a linear discriminant
function g(x) = wtx + w0 such that

g(x) > 0 implies x ∈ S1 and
g(x) < 0 implies x ∈ S2.

Consider a point x in the convex hull of S1, or

x =
n∑

i=1

αixi,

where the αi’s are non-negative and sum to 1. The discriminant function evaluated
at x is

g(x) = wtx + w0

= wt

(
n∑

i=1

αixi

)
+ w0

=
n∑

i=1

αi(wtxi + w0)

> 0,

where we used the fact that wtxi + w0 > 0 for 1 ≤ i ≤ n and
n∑

i=1

αi = 1.

Now let us assume that our point x is also in the convex hull of S2, or

x =
m∑

j=1

βjyj ,

where the βj ’s are non-negative and sum to 1. We follow the approach immediately
above and find

g(x) = wtx + w0

= wt

⎛⎝ m∑
j=1

βjyj

⎞⎠ + w0

=
m∑

j=1

βj (wtyj + w0)︸ ︷︷ ︸
g(yj)<0

< 0,

where the last step comes from the realization that g(yj) = wtyj + w0 < 0 for each
yi, since they are each in S2. Thus, we have a contradiction: g(x) > 0 and g(x) < 0,
and hence clearly the intersection is empty. In short, either two sets of vectors are
either linearly separable or their convex hulls intersects.
10. Consider a piecewise linear machine.

(a) The discriminiant functions have the form

gi(x) = max
j=1,...,ni

gij(x),
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where the components are linear

gij(x) = wt
ijx + wij0,

and the decision rule is to classify x in category ωi, if

max
k

gk(x) = gi(x),

for j = 1, . . . , c. We can expand this discriminant function as

max
k

gk(x) = max
k

max
j=1,...,nk

gkj(x),

where gkj(x) = wt
kjx+wkjo, are linear functions. Thus our decision rule implies

max
k

max
j=1,...,nk

gkj(x) = max
1≤j≤ni

gij(x) = gij(i)(x).

Therefore, the piecewise linear machine can be viewed as a linear machine for
classifying subclasses of patterns, as follows: Classify x in category ωi if

max
k

max
j=1,...,nk

gkj(x) = gij(x).

(b) Consider the following two categories in one dimension:

ω1 = {x : |x| > 1},
ω2 = {x : |x| < 1}

which clearly are not linearly separable. However, a classifier that is a piecewise
linear machine with the following discriminant functions

g11(x) = 1 − x

g12(x) = 1 + x

g1(x) = max
j=1,2

g1j(x)

g2(x) = 2

can indeed classify the patterns, as shown in the figure.

-2 -1 1 2
x

-1

1

2

3

g(x)

g2(x)
g11(x) g12(x)

11. We denote the number of non-zero components in a vector by b. We let the d
components of x be either 0 or 1 and the categories given by

ω1 = {x : b is odd}
ω2 = {x : b is even}.
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(a) Our goal is to show that ω1 and ω2 are not linearly separable if d > 1. We prove
this by contradiction. Suppose that there exists a linear discriminant function

g(x) = wtx + w0

such that

g(x) ≥ 0 for x ∈ ω1 and
g(x) < 0 for x ∈ ω2.

Consider the unique point having b = 0, i.e., x = 0 = (0, 0, . . . , 0)t. This pattern
is in ω2 and hence clearly g(0) = wt0 + w0 = w0 < 0. Next consider patterns
in ω1 having b = 1. Such patterns are of the general form

x = (0, . . . , 0, 1, 0, . . . , 0),

and thus

g(x) = wi + w0 > 0

for any i = 1, . . . , d. Next consider patterns with b = 2, for instance

x = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

Because such patterns are in ω2 we have

g(x) = wi + wj + w0 < 0

for i �= j.

We summarize our results up to here as three equations:

w0 < 0
wi + w0 > 0

wi + wj + w0 < 0,

for i �= j. The first two of these imply

(wi + w0)︸ ︷︷ ︸
>0

+ (wj + w0)︸ ︷︷ ︸
>0

+ (−w0)︸ ︷︷ ︸
>0

> 0,

or wi + wj + w0 > 0,

which contradicts the third equation. Thus our premise is false, and we have
proven that ω1, ω2 are not linearly separable if d > 1.

(b) Consider the discriminant functions

g1(x) = max
j

g1j(x) and

g2(x) = max
j

g2j(x),

where

gij(x) = αij(1, . . . , 1)tx + wijo

= αijb + wijo,
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and, as in part (a), we let b denote the number of non-zero components of x.
We can set

α1j = j + 1/2
α2j = j

wijo = −j2 − j − 1/4
w2jo = −j2,

for j = 0, 1, . . . , d + 1 and hence write our discriminant function as

g1(x) = (j + 1/2)b − j2 − j − 1/4
g2(x) = jb − j2.

We now verify that these discriminant functions indeed solve the problem. Sup-
pose x is in ω1; then the number of non-zero components of x is b = 2m+1, 0 ≤
m ≤ (d − 1)/2 for m an integer. The discriminant function is

g1j(x) = (j + 1/2) (2m + 1) − j2 − j − 1/4
= j(2m + 1) − j2 − j + 1/2(2m + 1) − 1/4
= j(2m) − j2 + 1/2(2m + 1) − 1/4
= j(2m − j) + 1/2(2m + 1) − 1/4.

For patterns in ω2, we have b = 2m, and thus

g2j(x) = j(2m + 1) − j2

= j(2m + 1 − j).

It is a simple matter to verify that j(2m − j) is maximized at j = m and that
j(2m + 1 − j) is maximized at j = m + 1/2. But note that j is an integer and
the maximum occurs at j = m and j = m + 1. Thus we have

g1(x) = max
j

g1j(x)

= max
j

[j(2m − j)] + 1/2(2m + 1) − 1/4

= m(2m − m) + m + 1/2 − 1/4
= m2 + m + 1/4
= m(m + 1) + 1/4, and

g2(x) = max
j

g2j(x)

= max
j

j(2m + 1 − j)

= m(m + 1).

Thus if x ∈ ω1 and the number of non-zero components of x is b = 2m + 1 (i.e.,
odd), we have

g1(x) = m(m + 1) + 1/4 > m(m + 1) = g2(x),

that is, g1(x) > g2(x), as desired. Conversely, if x is in ω2, then the number
of non-zero components of x is b = 2m, 0 ≤ m ≤ d/2 where m is an integer.
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Following the above logic, we have

g1j(x) = (j + 1/2)(2m) − j2 − j − 1/4
= j(2m − 1) − j2 + m − 1/4
= j(2m − j − 1) + m − 1/4

which is maximized at j = m. Likewise, we have

g2j(x) = j(2m) − j2

= j(2m − j)

which is maximized at j = m. Thus our discriminant functions are

g1(x) = max
j

g1j(x)

= max
j

j(2m − 1 − j) + m − 1/4

= m(m − 1) + m − 1/4 = m2 − 1/4,

g2(x) = max
j

g2j(x) = max
j

j(2m − j) = m2.

Indeed, if x is in ω2 and the number of non-zero components of x is b = 2m
(i.e., even), we have

g1(x) = m2 − 1/4 < g2(x) = m2,

or g1(x) < g2(x), and hence our piecewise linear machine solves the problem.

Section 5.3

12. Consider the quadratic discriminant function given by Eq. 4 in the text:

g1(x) − g2(x) = g(x) = w0 +
d∑

i=1

wixi +
d∑

i=1

d∑
i=1

wijxixj ,

which for convenience we write in vector and matrix form as

g(x) = w0 + wtx + xtWx.

In this two-category case, the decision boundary is the set of x for which g(x) = 0.
If we did not have the wtx term, we could easily describe the boundary in the form
xW0x = k where k is some constant. We can, in fact, eliminate the wtx terms with
a proper translation of axes. We seek a translation, described by a vector m, that
eliminates the linear term. Thus we have

g(x − m) = w0 + wt(x − m) + (x − m)tW(x − m) (∗)
= (w0 − wtm + mtWm) + (wt − mtWt − mW)x + xtWx,

where we used the fact that W is symmetric (i.e., Wij = Wji) and that taking the
transpose of a scalar does not change its value. We can solve for m by setting the
coefficients of x to zero, that is,

0 = wt − mtW − mW = wt − 2mtW.
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This implies mtW = wt/2 or m = W−1wt/2.
Now we substitute this translation vector into the right-hand side of (∗) and find

g(x − m) = w0 − wt(W−1w/2) + wtW−1/2 · W · W−1w/2 + xtWx

= w0 − wtW−1w/4 + xtWx. (∗∗)
The decision boundary is given by g(x − m) = 0, and then (∗∗) implies

xt W
wtW−1w − 4w0

x = xtWx = 1/4,

and thus the matrix

W =
W

wtW−1w − 4w0

shows the basic character of the decision boundary.

(a) If W = I, the identity matrix, then xtIx = k/4 is the equation of the decision

boundary, where k is some constant. Then we have
d∑

i=1

x2
i = k/4, which defines

a hypersphere of radius
√

k/2.

(b) Since W is non-singular and symmetric, we can write W in terms of ΦΛΦt,
where Φ is the matrix formed by the (linearly independent) eigenvectors of W
and Λ is the diagonal matrix formed by the eigenvalues of W. In this way,
xtWx = 1/4 can be written as xtΦΛΦtx = 1/4. We let yt = xtΦ; then we get
ytΛy = 1/4, or

∑
i λiy

2
i = 1/4 where the eigenvalues λi > 0 when W is positive

definite, which it will be for non-pathological data distributions. Because the
eigenvalues are positive and not necessarily all equal to each other, in this case
the decision boundary is a hyperellipsoid.

(c) With an argument following that of part (b), we can represent the characteristics

of the decision boundary with
d∑

i=1

λiy
2
i = 1/4. Since, in this case we have at

least one λi < 0, the geometric shape defined is a hyperhyperboloid.

(d) Our matrix and vector in this case are

W =

⎛⎝ 1 2 0
2 5 1
0 1 −3

⎞⎠ ; w =

⎛⎝ 5
2
−3

⎞⎠ .

Thus we have

W−1 =

⎛⎝ 16 −6 −2
−6 3 1
−2 1 −1

⎞⎠ · 1
4
; wtW−1w = 82.75

and

W =
W

82.75
=

⎛⎝ 0.0121 0.0242 0
0.0242 0.0604 0.0121

0 0.0121 −0.0363

⎞⎠
The eigenvalues are {λ1, λ2, λ3} = {0.0026, 0.0716,−0.0379}. Because there is
a negative eigenvalue, the decision boundary is a hyperhyperboloid.
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(e) Our matrix and vector in this case are

W =

⎛⎝ 1 2 3
2 0 4
3 4 −5

⎞⎠ ; w =

⎛⎝ 2
−1
3

⎞⎠ .

Thus we have

W−1 =

⎛⎝ −0.3077 0.4231 0.1538
0.4231 −0.2692 0.0385
0.1538 0.0385 −0.0769

⎞⎠ ; wtW−1w = −2.2692

and

W =
W

−2.2692
=

⎛⎝ −0.4407 −0.8814 −1.3220
−0.8814 0 −1.7627
−1.3220 −1.7627 2.2034

⎞⎠
The eigenvalues are {λ1, λ2, λ3} = {0.6091,−2.1869, 3.3405}. Because of a neg-
tative eigenvalue, the decision boundary is a hyperhyperboloid.

Section 5.4

13. We use a second-order Taylor series expansion of the criterion function at the
point a(k):

J(a) � J(a(k)) + ∇J t(a(k))(a − a(k)) +
1
2
(a − a(k))tH(a(k))(a − a(k)),

where ∇J(a(k)) is the derivative and H(a(k)) the Hessian matrix evaluated at the
current point.

The update rule is

a(k + 1) = a(k) − η(k)∇J(a(k)).

We use the expansion to write the criterion function as

J(a(k + 1) � J(a(k)) + ∇J t(a(k)[η(k)∇J(a(k)] +
1
2
[η(k)∇J t(a(k))]H(a(k))[η(k)∇J(a(k))].

We minimize this with respect to η(k) and find

0 = −∇J t(a(k))∇J(a(k)) + η(k)∇J t(a(k))H(a(k))∇J(a(k))

which has solution

η(k) =
‖J(a(k))‖2

∇J t(a(k))H(a(k))∇J(a(k))
.

We must, however, verify that this is indeed a minimum, and that η(k) > 0. We
calculate the second derivative

∂2J

∂η2
= (∇J)tH(∇J).
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If a is in a neighborhood of a local minimum of J(a), the H will be positive definite
and hence (∇J)tH(∇J) > 0. Thus J indeed attains minima at the optimal η(k) and
η(k) > 0 because (∇J)tH∇J > 0.
14. We are given samples from ω1:(

1
5

)
,

(
2
9

)
,

(−5
−3

)
and from ω2: (

2
−3

)
,

(−1
−4

)
,

(
0
2

)
.

Augmenting the samples with an extra dimension, and inverting the sign of the sam-
ples from ω2 define

Y =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 5
1 2 9
1 −5 −3

−1 −2 3
−1 1 4
−1 0 −2

⎞⎟⎟⎟⎟⎟⎟⎠ a =

⎛⎝ a1

a2

a3

⎞⎠ b =

⎛⎜⎜⎜⎜⎜⎜⎝
b
b
b
b
b
b

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the sum-of-squares error criterion is

Js(a) =
1
2

n∑
i=1

(
atyi − b

)2 =
(Ya − b)t (Ya − b)

2
.

(a) We differentiate the criterion function and find

∇Js(a) = Y t (Ya − b) =

⎛⎝ 6a1 − a2 + 6a3 + 0
−a1 + 35a2 + 36a3 + 3b
6a1 + 36a2 + 144a3 − 16b

⎞⎠
and

H = YtY =

⎛⎝ 6 −1 6
−1 35 36
6 36 144

⎞⎠ .

Notice that for this criterion, the Hessian is not a function of a since we assume
a quadratic form throughout.

(b) The optimal step size varies with a, that is,

η =
[∇Js(a)]t∇Js(a)

[∇Js(a)]tH∇Js(a)
.

The range of optimal step sizes, however, will vary from the inverse of the largest
eigenvalue of H to the inverse of the smallest eigenvalue of H. By solving the
characteristic equation or using singular value decomposition, the eigenvalues of
H are found to be 5.417, 24.57, and 155.0, so 0.006452 ≤ η ≤ 0.1846.
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Section 5.5

15. We consider the Perceptron procedure (Algorithm 5.3 and Theorem 5.1 in the
text).

(a) Equation 20 in the text gives the update rule

a(1) = arbitrary
a(k + 1) = a(k) + yk, k ≥ 1.

It has been shown in the convergence proof in the text that

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 − 2αν + β2,

where a(k) is the kth iterate, â is a solution vector, α is a scale factor and β2

and ν are specified by Eqs. 21 and 22 in the text:

β2 = max
i

‖yi‖2

ν = min
i

âtyi > 0.

Thus we have

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 − (2αν − β2).

Because α > β2/ν, we have the following inequality:

2αν − β22β2 − β2 = β2 > 0.

Thus ‖a(k)−αâ‖2 decreases (strictly) by an amount (2αν−β2) at each iteration,
and this implies

‖a(k + 1) − αâ‖2 ≤ ‖a(1) − αâ‖2 − k(2αν − β)2.

We denote the maximum number of correction convergence by ko, we have

0 ≤ ‖a(k) − αâ‖2 ≤ ‖a(1) − αâ‖2 − k(2αν − β2),

and thus

k ≤ ‖a(1) − αâ‖2

2αν − β2
,

and thus the maximum number of corrections is

ko =
‖a(1) − αâ‖2

2αν − β2
.

(b) If we start out with a zero weight vector, that is, a(1) = 0, we have

ko =
‖a(1) − αâ‖2

2αν − β2

=
‖αâ‖2

2αν − β2

=
α2‖â‖2

2αν − β2

=
α2

2αν − β2
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In order to find the maximum of k0 with respect to α, we set ∂
∂αko(α) to 0,

∂

∂α
ko(α) =

(2αν − β2)2α‖â‖2 − α2‖â‖22ν

(2αν − β2)2

= α2(4ν‖â‖2 − 2ν‖â‖2) − 2αβ2‖â‖2

= 0,

and this implies

α
[
α2ν‖â‖2 − 2β2‖â‖2

]
= 0.

We note that α > β2/ν > 0, which minimizes ko if a(1) = 0. We assume b ≥ 0,
and therefore

ν = min
i

[âtyi] > b ≥ 0,

and ν > 0. We next use the fact that 0 < ηa ≤ ηk ≤ ηb < ∞, and k ≥ 1 to find

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 + η2
bβ2 + 2ηbb − 2ηaαν.

We choose the scale factor α to be

α =
η2

bβ2 + 2ηbb

ηaν

and find

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 − (η2
bβ2 + 2ηbb),

where η2
bβ2 + 2ηbb > 0. This means the difference between the weight vector at

iteration k + 1 and αâ obeys:

‖a(k + 1) − αâ‖2 ≤ ‖a(1) − αâ‖2 − k(η2
bβ2 + 2ηbb).

Since a squared distance cannot become negative, it follows that the procedure
must converge after almost ko iterations where

ko =
‖a(1) − αâ‖2

η2
bβ2 + 2ηbb

.

In the case b < 0 there is no guarantee that ν > 0 and thus there is no guarantee
of convergence of the algorithm.

16. Our algorithm is given by Eq. 27 in the text:

a(1) = arbitrary
a(k + 1) = a(k) + ηkyk

where in this case at(k)yk ≤ b, for all k. The ηk’s are bounded by 0 < ηa ≤ ηk ≤
ηb < ∞, for k ≥ 1. We shall modify the proof in the text to prove convergence given
the above conditions.

Let â be a solution vector. Then âtyi > b, for all i. For a scale factor α we have

a(k + 1) − αâ = a(k) + ηkyk − αâ

= (a(k) − αâ) + ηkyk,
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and thus

‖a(k + 1) − αâ‖2 = ‖(a(k) − αâ) + ηkyk‖2

= ‖a(k) − αâ‖2 + ‖ηkyk‖2 + 2ηk(a(k) − αâ)tyk

= ‖a(k) − αâ‖2 + η2
k‖yk‖2 + 2ηkat

ky
k − 2ηkαâtyk

≤ ‖a(k) − αâ‖2 + η2
k‖yk‖2 + 2ηkb − 2ηkαâtyk.

As yk was misclassified, at(k)yk ≤ b, for all k. Now we let

β2 = max
i

‖yi‖2,

ν = min
i

[âtyi] > b,

since â is a solution vector. Thus we substitute into the above

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 + η2
kβ2 + 2ηkb − 2ηkαν,

and convergence is assured.
17. If y1,y2, . . . ,yn are linearly separable then by definition there exists a separating
hyperplane

g(x) = wtx + w0

such that

g(yi) > 0 if yi ∈ ω1

g(yi) < 0 if yi ∈ ω2.

We augment every yi by 1, that is,

ỹi =
(

1
yi

)
, i = 1, . . . , n

and augment the weight vector by appending a bias weight w0, written as

w̃ =
(

w0

w

)
.

Then our linear descriminant function can be written as

w̃tỹi > 0 if yi ∈ ω1

w̃tỹi < 0 if yi ∈ ω2.

We multiply ỹi by −1 if yi ∈ ω2, and thus there exists a vector w̃ such that w̃tỹi > 0
for all i.

We use the logic of the Perceptron convergence to find such an w̃ which requires
at most ko operations for convergence, where

ko =
‖a(1) − αw̃‖2

β2
,

where w̃ is the first iterate and

α =
β2

ν

β2 = max
i

‖yi‖2

ν = min
i

ãtỹi > 0.
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The remainder follows from the Perceptron convergence Theorem (Theorem 5.1) in
the text.
18. Our criterion function is

Jq(a) =
∑

y∈Y(a)

(aty − b)2,

where Y(a) is the set of samples for which aty ≤ b.
Suppose y1 is the only sample in Y(a(k)). Then we have

Jq(a(k)) = (at(k)y1 − b)2 = (at(k)y1)2 + b2 − 2bat(k)y1

=

⎛⎝ d∑
j=1

akjy1j

⎞⎠2

+ b2 − 2b

d∑
j=1

akjy1j .

The derivative of the criterion function with respect to the components of a is

∂Jq(a(k))
∂aki

= 2

⎛⎝ d∑
j=1

akjy1j

⎞⎠ y1i − 2by1i

= 2(aty1 − b)y1i,

for i = 1, . . . , d. Thus we have

∇Jq(a(k)) =
∂Jq(a(k))

∂a(k)
= 2(aty1 − b)y1

Dii′ =
∂2Jq(a(k))
∂aki′∂aki

=
∂

∂aki′

⎡⎣2

⎛⎝ d∑
j=1

akjy1j

⎞⎠ y1i − 2by1i

⎤⎦
= 2y1i′y1i

for i, i′ = 1, . . . , d. This implies

D = 2y1yt
i .

From Eq. 34 in the text, we have that the basic gradient descent algorithm is given
by

a(1) = arbitrary

a(k + 1) = a(k) + ηk

∑
y∈Y(a(k))

b − at(k)y
‖y‖2

y1,

and thus

Y(a(k)) = {y1},
which implies

a(k + 1) = a(k) + ηk
b − at(k)y

‖y‖2
y1.
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We also have

at(k + 1)y1 − b = (1 − ηk)(at(k)y1 − b).

If we choose ηk = 1, then a(k+1) is moved exactly to the hyperplane aty1 = b. Thus,
if we optimally choose ηk = 1, we have Eq. 35 in the text:

a(k + 1) = a(k) +
b − at(k)y

‖y‖2
y1.

19. We begin by following the central equation and proof of Perceptron Convergence
given in the text:

‖a(k + 1) − αâ‖2 = ‖a(k) − αâ‖2 + 2(a(k) − αâ)tηyk + η2‖yk‖2,

where yk is the kth training presentation. (We suppress the k dependence of η for
clarity.) An update occurs when yk is misclassified, that is, when at(k)yk ≤ b. We
define β2 = max

i
‖yi‖2 and γ = min

i
[âtyi] > b > 0. Then we can write

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 + 2(b − αγ)η + η2β2,

where α is a positive free parameter. We can define

α(k) =
1
γ

(
m−1∑
k=1

η(k) + b

)

at the mth update. Then we have

‖a(k + 1) − αâ‖2 ≤ ‖a(k) − αâ‖2 − 2η(k)
m−1∑
l=1

η(l) + η2β2.

Summing all such equations for the mth update gives

‖a(k + 1) − α(k)â‖2 ≤ ‖a(0) − α(0)â‖2 − 2
m∑

k=1

η(k)
k∑

l=1

η(l) +
m∑

k=1

η2(k)β2,

or equivalently

‖a(k + 1) − α(k)â‖2 ≤ ‖a(0) − α(0)â‖2 − 2
m∑

k,l �=k

η(k)η(l) + β2
m∑

k=1

η2(k). (∗)

On the other hand, we are given that

lim
m→∞

m∑
k=1

η2

(
m∑

k=1

η(k)
)2 = 0

and we note (
m∑

k=1

η(k)

)2

=
m∑

k=1

η2(k) + 2
m∑

(kl)

η(k)η(l).
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We also have

lim
m→∞

1(
m∑

k=1

η(k)
)2

⎡⎣ m∑
k=1

η2(k) + 2
m∑

(kl)

η(k)η(l) − 2
m∑

(kl)

η(k)η(l)

⎤⎦ = 0

which implies

lim
m→∞

⎡⎢⎢⎢⎣1 −
2

m∑
(kl)

η(k)η(l)(
m∑

k=1

η(k)
)2

⎤⎥⎥⎥⎦ = 0

or

lim
m→∞

2
m∑

(kl)

η(k)η(l)(
m∑

k=1

η(k)
)2 = 1. (∗∗)

Now we can reconsider (∗):

‖a(k + 1) − α(k)â‖2

≤ ‖a(0) − α(0)â‖2 −
(

m∑
k=1

η(k)
)2

⎡⎢⎢⎣
2

m∑
(kl)

η(k)η(l)(
m∑

k=1

η(k)

)2 − β2

n∑
k=1

η2(k)(
n∑

k=1

η(k)

)2

⎤⎥⎥⎦ .

But we know from (∗∗) that the first term in the brackets goes to 1 and the coefficient
of β2 goes to 0, and all the η(k) terms (and their sum) are positive. Moreover, the

corrections will never cease, since
M∑

k=1

η(k) → ∞, as long as there are incorrectly

classified samples. But the distance term on the left cannot be negative, and thus we
conclude that the corrections must cease. This implies that all the samples will be
classified correctly.

Section 5.6

20. As shown in the figure, in this case the initial weight vector is marked 0, and
after the successive updates 1,2, . . .12, where the updates cease. The sequence of
presentations is y1, y2, y3, y1, y2, y3, y1, y3, y1, y3, y2, and y1.

Section 5.7

21. From Eq. 54 in the text we have the weight vector

w = αnS−1
w (m1 − m2),

where w satisfies[
1
n
Sw +

n1n2

n2
(m1 − m2)(m1 − m2)t

]
w = m1 − m2.
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We substitute w into the above and find[
1
n
Sw +

n1n2

n2
(m1 − m2)(m1 − m2)t

]
αnS−1

w (m1 − m2) = m1 − m2,

which in turn implies

α
[
m1 − m2 +

n1n2

n2
(m1 − m2)(m1 − m2)tS−1

w (m1 − m2)
]

= m1 − m2.

Thus we have

αθ(m1 − m2) = m1 − m2

where

θ = 1 +
n1n2

n2
(m1 − m2)tS−1

w (m1 − m2).

This equation is valid for all vectors m1 and m2, and therefore we have αθ = 1, or

α =
[
1 +

n1n2

n2
(m1 − m2)tS−1

w (m1 − m2)
]−1

.

22. We define the discriminant function

g0(x) = (λ21 − λ11)P (ω1|x) − (λ12 − λ22)P (ω2|x).

Our goal is to show that the vector a that minimizes

J ′
s(a) =

∑
y∈Y1

(aty − (λ21 − λ11))2 +
∑
y∈Y2

(aty + (λ12 − λ22))2

is asymptotically equivalent to the vector a that minimizes

ε2 =
∫

[aty − go(x)]2p(x)dx,
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as given in Eq. 57 in the text. We proceed by calculating the criterion function

J ′
s(a) =

∑
y∈Y1

(
aty − (λ21 − λ11)

)2 +
∑
y∈Y2

(
aty − (λ12 − λ22)

)2

= n

⎡⎣n1

n

1
n

∑
y∈Y1

(
aty − (λ21 − λ11)

)2 +
n2

n

1
n

∑
y∈Y2

(
aty + (λ12 − λ22)

)2

⎤⎦ .

By the law of large numbers, as n → ∞ we have with probability 1

lim
n→∞

1
n

J ′
s(a) = J ′(a)

= P (ω1)E1

[
(aty − (λ21 − λ11))2

]
+ P (ω2)E2

[
(aty + (λ12 − λ22))2

]
.

We expand the terms involving expectations as

E1

[
(aty − (λ21 − λ11))2

]
=

∫ (
aty − (λ21 − λ11)

)2
p(x|ω1)dx,

E2

[
(aty + (λ21 − λ11))2

]
=

∫
(aty + (λ12 − λ22))2p(x|ω2)dx.

We substitute these into the above equations and find that our criterion function is

J ′(a) =
∫ (

aty − (λ21 − λ11)
)2

p(x|ω1)dx

+
∫ (

aty + (λ12 − λ22)
)2

p(x|ω2)dx

=
∫ (

aty − (λ21 − λ11)
)2

p(x, ω1)dx

+
∫ (

aty + (λ12 − λ22)
)2

p(x, ω2)dx

=
∫ (

aty
)2 [p(x, ω1) + p(x, ω2)]dx

−2
∫

aty [(λ21 − λ11)p(x, ω1) + (λ12 − λ22)p(x, ω2)] dx

+(λ21 − λ11)2
∫

p(x, ω1)dx + (λ12 − λ22)2
∫

p(x, ω2)dx

=
∫

(aty)2p(x)dx + 2
∫

atyg0(x)p(x)dx

+(λ21 − λ11)2P (ω1) + (λ12 − λ22)2P (ω2),

where we have used the fact that

p(x) = p(x, ω1) + p(x, ω2)

and

(λ21 − λ11)p(x, ω1) + (λ12 − λ22)p(x, ω2) = (λ21 − λ11)p(x|ω1) + (λ12 − λ22)p(x|ω2)
= g0(x)p(x).

Furthermore, the probability of finding a particular category ωi is simply

P (ωi) =
∫

p(x, ωi)dx,
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and thus our criterior function can be written

J ′(a) =
∫ [

aty − go(x)
]2

p(x)dx

+
∫

[(λ21 − λ11)2P (ω1) + (λ12 − λ22)2P (ω2) − g2
o(x)]p(x)dx︸ ︷︷ ︸

independent of a

.

Since the second term in the above expression is independent of a, minimizing J ′(a)
with respect to a is equivalent to minimizing

ε2 =
∫

[aty − g0(x)]2p(x)dx.

In summary, the vector a that minimizes J ′
s(a) provides asymptotically a minimum

mean-square error approximation to the Bayes discriminant function g0(x).
23. Given Eqs. 66 and 67 in the text,

a(k + 1) = a(k) + η(k)[θ(k) − at(k)yk]yk

â = E [yyt]−1E [θy]

we need to show

lim
n→∞ E [‖a(k) − â‖2] = 0

given the two conditions
∞∑

k=1

η(k) = ∞
∞∑

k=1

η2(k) < ∞.

We write ‖a − â‖2 using Eq. 67 as

‖a(k + 1) − â‖2 = ‖a − â + η(k)(θ(k) − at(k)yk)yk‖2

= ‖a − â‖2 + η2(k)‖(θ(k) − at(k)yk)yk‖2

+2η(k)(a(k) − â)t(θk − at(k)yk)yk.

We take the expected value of both sides and find

E [‖a(k + 1) − â‖2] = E [‖a(k) − â‖2]︸ ︷︷ ︸
ε1

+η2(k) E [(θk − at(k)yk)yk]︸ ︷︷ ︸
ε2

+2η(k) E [(a(k) − â)t(θ(k) − at(k)yk)yk]︸ ︷︷ ︸
ε3

.

Note that ε1 ≥ 0 and ε2 ≥ 0. If we can show that ε3 < 0 for all k > M for some finite
M , then we will have proved our needed result. This is because that the update rule

must reduce E [‖a(k + 1) − â‖2] for k > R for some finite R since
∞∑

k=1

η2(k) is finite

whereas
∞∑

k=1

η(k) is infinite. We know that E [‖a(k + 1) − â‖2] ≥ 0, and thus

lim
k→∞

E [‖a(k + 1) − â‖2]
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must vanish.
Now we seek to show that indeed ε3 < 0. We find

ε3 = E [(a(k) − â)t(θ(k) − at(k)y)yk]
= E [at(k)θ(k)yk] − E [(at(k)yk)2] − E [θ(k)âtyk] + E [âtykatyk]
= E [θ(k)at(k)yk] + E [âtykatyk] − E [(at(k)yk)2] − E [(atyk)2]
= −E [(atyk)2 + (âtyk)2 − 2at(k)ykâtyk]
= −E [(at(k)yk − âtyk)2]
= −E [(at(k)yk − âtyk)2] ≤ 0.

In the above, we used the fact that y1,y2, . . . ,yk is determined, so we can con-
sider at(k) as a non-random variable. This enables us to write E [θ(k)at(k)yk] as
E [at(k)ykyt

kâ].
Thus we have proved our claim that ε3 < 0, and hence the full proof is complete.

24. Our criterion function here is

Jm(a) = E [(aty − z)2].

(a) We expand this criterion function as

Jm(a) = E [(aty − z)2]
= E [{(aty − go(x)) − (z − go(x))}2]
= E [(aty − go(x))2 − 2(aty − go(x))(z − go(x)) + (z − go(x))2]
= E [(aty − go(x))2] − 2E [(aty − go(x))(z − go(x))] + E [(z − go(x))2].

(b) We use the fact that E [z|x] = go(x) to note that

E [(aty − go(x))(z − go(x))] = E [(aty(x) − go(x))(z − go(x))].

This leads to

E{E [(aty − go(x))(z − go(x))|x]} = E{(aty − go(x))E [(z − go(x))|x]},

since conditioned on x,aty(x) − go(x) is a constant. Thus we have

E{(aty − go(x))[E(z|x) − go(x)]} = 0

as E [z|x] = go(x). We put these results together to get

Jm(a) = E [(aty − go(x))2] + E [(z − go(x))2]︸ ︷︷ ︸
independent of a

,

where the second term in the expression does not depend on a. Thus the vector
a that minimizes Jm also minimizes E [(aty − go(x))2].

25. We are given that

η−1
k+1 = η−1

k + y2
k.
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(a) We solve for η−1
k as

η−1
k = η−1

k−1 + y2
k−1

= η−1
k−2 + y2

k−2 + y2
k−1

= η−1
1 + y2

1 + y2
2 + . . . + y2

k−1

=
1 + η1

k−1∑
i=1

y2
i

η1
,

and thus

ηk =
η1

1 + η1

k−1∑
i=1

y2
i

for η1 > 0 and 0 < a ≤ y2
i ≤ b.

(b) With these ranges we have

a(k − 1) ≤
k−1∑
i=1

y2
i ≤ b(k − 1),

which implies

ηk =
η1

1 + η1

k−1∑
i=1

y2
i

≤ η1

1 + a(k − 1)

≥ η1

1 + b(k − 1)
.

This is true for each k, so we can sum to find∑
k

ηk ≥
∑

k

η1

1 + b(k − 1)
→ ∞

as
∞∑

k=1

1
k

= ∞ and b > 0.

Moreover, we have∑
k

η2
k ≤

∑
k

η2
1

[1 + a(k − 1)]2
→ L1 < ∞

as
∞∑

k=1

1
k2

< ∞ and a > 0.

Consequently, the learning rates obey∑
k

ηk → ∞ and
∑

k

η2
k → L < ∞.
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26. We rewrite the LMS rule using the following notation:

Y =

⎛⎜⎜⎜⎝
yt

1

yt
2
...

yt
n

⎞⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎝
b1

b2

...
bn

⎞⎟⎟⎟⎠ .

Then the LMS rule before Eq. 61 in the text is

a(1) arbitrary

a(k + 1) = a(k) + η(k)
n∑

i=1

yi(bi − at
kyi).

Note that the condition we are looking for the limiting vector â now reads

n∑
i=1

yi(yt
i â − bi) = 0,

or equivalently

n∑
i=1

yi(âtyi) =
n∑

i=1

yibi.

Now we consider how the distance between a(k) and â changes during an update:

‖a(k + 1) − â‖2 = ‖a(k) − â‖2 +
η2(1)
k2

∥∥∥∥∥
n∑

i=1

yi(bi − at(k)yi)

∥∥∥∥∥
2

︸ ︷︷ ︸
Ck

+
2η(1)

k
(a(k) − â)t

n∑
i=1

yi(bi − at(k)yi)︸ ︷︷ ︸
Dk

= ‖a(k) − â‖2 +
η2(1)
k2

Ck +
2η(1)

k
Dk,

where for convenience we have defined Ck and Dk. Clearly Ck ≥ 0 as it is the sum of
non-negative values. Consider now Dk, which we expand as

Dk =
n∑

i=1

[−at(k)yiat(k)yi + at(k)yibi + âtyiat(k)yi − âtyibi

]
We can substitute

n∑
i=1

yibi with
n∑

i=1

yiâtyi, from our definition of â. Then Dk can be

written

Dk = −
n∑

i=1

(at(k)yi)2 −
n∑

i=1

(ât(k)yi)2 + at(k)
n∑

i=1

yibi + ât
n∑

i=1

yiat(k)yi

=
n∑

i=1

[−(at(k)yi)2 − (âtyi)2 + at(k)yiâtyi + âtyiat(k)yi

]
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and thus

Dk = −
n∑

i=1

(at(k)yi − âtyi)2 ≤ 0.

Adding the m update equations for the LMS rule we find

‖a(m + 1) − â‖2 = ‖a(1) − â‖2 + η2(1)
m∑

k=1

Ck

k2
+ 2η(1)

m∑
k=1

Dk

k
.

Now we take the limit m → ∞ for both sides:

lim
m→∞ ‖a(m + 1) − â‖2 = ‖a(1) − â‖2 + η2(1)

∞∑
k=1

Ck

k2
+ 2η(1)

∞∑
k=1

Dk

k

= ‖a(1) − â‖2 + η2(1)CL + 2η(1)
∞∑

k=1

Dk

k
,

where if Ck is bounded we have

CL =
∞∑

k=1

Ck

k2
< ∞.

We also know that if Dk < 0
∞∑

k=1

Dk

k
→ −∞

for all k. But Dk < 0 cannot be true for all k (except for finite occassions), otherwise
the right-hand side of the equation will be negative while the left-hand side will be
non-negative. Thus Dk must be arbitrarily close to zero for some choice N , for all
k > N . This tells us that

lim
k→∞

at(k)yk
i = âtyk

i

for i = 1, 2, . . . , N .
To see this, we start with arbitrarily smally positive λ. Then, we know |Dk| < λ

for all k > N for some integer N . This implies

|Dk| =
n∑

i=1

(at(k)yi − âtyi)2 ≤ λ,

in particular |at(k)yi − âtyi| ≤
√

λ will also be true. Now we let

v(k) =
n∑

i=1

yi(bi − yt
ia(k))

=
n∑

i=1

yi(bi − [âtyi ∓
√

λi])

=
n∑

i=1

yi(bi − âtyi) ∓ yi

√
λi

=
n∑

i=1

∓yi

√
λi
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where
√

λi = |at(k)yi − âtyi|.
Since λ was arbitrarily close to zero and |λi| ≤ |λ|, we have

lim
k→∞

v(k) = 0,

proving that a(k) satisfies the limit condition.

Section 5.9

27. The six points are shown in the figure, labeled by their category membership.

ω1

-4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

ω1

ω1

ω2

ω2

ω2

(a) By inspecting the plot of the points, we see that ω1 and ω2 are not linearly
separable, that is, there is no line that can separate all the ω1 points from all
the ω2 points.

(b) Equation 85 in the text shows how much the ‖e‖2 value is reduced from step k
to step k + 1. For faster convergence we want the maximum possible reduction.
We can find an expression for the learning rate η by solving the maxima problem
for the right-hand side of Eq. 85,

1
4

(‖e(k)‖2 − ‖e(k + 1)‖2
)

= η(1 − η)‖e+(k)‖2 + η2e+t(k)YY†e+(k). (∗)

We take the derivative with respect to η of the right-hand side, set it to zero
and solve:

‖e+(k)‖2 − 2η‖e+(k)‖2 + 2ηe+(k)YYte+(k) = 0,

which gives the optimal learning rate

ηopt(k) =
‖e‖2

2 [‖e+(k)‖2 − e+(k)YYte+(k)]
.

The maximum eigenvalue of YtY is λmax = 66.4787. Since all the η values be-
tween 0 and 2/λmax ensure convergence to take the largest step in each iteration
we should choose η as large as possible. That is, since 0 < η < 2/66.4787, we
can choose ηopt = 0.0301 − ε, where ε is an arbitrarily small positive constant.

However, (∗) is not suitable for fixed learning rate Ho-Kashyap algorithms. To
get a fixed optimal η, be proceed as discussed in pages 254–255 in the text: If
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we use the algorithm expressed in Eq. 90,

b(1) > 0 but otherwise arbitrary
a(1) arbitrary

b(k + 1) = b(k) + (e(k) + |e(k)|)
a(k + 1) = a(k) + ηRYt|e(k)|,

where R is arbitrary positive definite. As discussed on page 255 of the text,
if R = I, then A = 2ηI − η2YtY will be positive definite, thereby ensuring
convergence if 0 < η < 2/λmax, where λmax is the largest eigenvalue of YtY.
For our case, we have

Y =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 2
1 2 −4
1 −3 −1

−1 −2 −4
−1 1 5
−1 −5 0

⎤⎥⎥⎥⎥⎥⎥⎦ and YtY =

⎡⎣ 6 6 −4
6 44 10

−4 10 62

⎤⎦ .

The eigenvalues of YtY are {4.5331, 40.9882, 66.4787}.

Section 5.10

28. The linear programming problem on pages 256–257 in the text involved finding

min {t : t ≥ 0,atyi + t > bi for all i}.

Our goal here is to show that the resulting weight vector a minimizes the criterion
function

Jt(a) = max
i:atyi≤bi

(bi − atyi).

There are two cases to consider: linearly separable and non-linearly separable.
Case 1: Suppose the samples are linearly separable. Then there exists a vector, say
ao, such that

at
oyi = bi.

Then clearly at
oyi + t > bi, for any t > 0 and for all i. Thus we have for all i

0 ≤ min{t : t ≥ 0,atyi + t > bi}
≤ min{t : t ≥ 0,atyi + t > bi} = 0.

Therefore, we have

min{t : t ≥ 0,atyi + t > bi} = 0,

and the resulting weight vector is ao. The fact that Jt(a) ≥ 0 for all a and Jt(ao) = 0
implies

arg min
a

Jt(a) = ao.
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This proves that the a minimizes Jt(a) is the same as the one for solving the modified
variable problem.
Case 2: If the samples are not linearly separable, then there is no vector ao such that

at
oyi = bi.

This means that for all i

min
t,a

{t : t ≥ 0,atyi + t > bi} = min
t,a

{t : t ≥ 0, t > bi − atyi}
= min

t,a
{t : t ≥ 0, t > max

i
(bi − atyi)}

= min
t,a

{t : t > max
i:atyi≤bi

(bi − atyi)}
= min

a
{ max

i:atyi≤bi

(bi − atyi)}
= min

a
Jt(a).

Section 5.11

29. Given n patterns xk, in d-dimensional space, we associate zk where

If xk ∈ ω1, then zk = 1
If xk ∈ ω2, then zk = −1.

We also define a mapping φ : Rd → Rd+1 as

φ(x) = (xk, zk)

where

xk = arg min
xk

(‖xk − x‖).

In other words, φ returns the nearest-neighbor prototype xk. Then clearly φ(x) =
(x, 0) represents a separating hyperplane with normal

a = (0, 0, . . . , 0︸ ︷︷ ︸
d zeros

, 1)

We verify this by considering any pattern in ω1. For such a pattern

atφ(xk) = (0, 0, . . . , 0, 1)t(xk, zk) = zk = +1.

Conversely, for any pattern in ω2, we have

atφ(xk) = (0, 0, . . . , 0, 1)t(xk, zk) = zk = −1.

Intuitively speaking, this construction tells us that if we can label the samples unam-
biguously, then we can always find a mapping to transform class ω1 and class ω2 to
points into the half spaces.
30. The points are mapped to

ω1 : (1,
√

2,
√

2,
√

2, 1, 1)t, (1,−
√

2,−
√

2,
√

2, 1, 1)t

ω2 : (1,
√

2,−
√

2,−
√

2, 1, 1)t, (1,−
√

2,
√

2,−
√

2, 1, 1)t
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√2

√2

√2-

√2-

√2-

√2-

√2- √2

√2

√2

z1 =       x1√2

z2 =       x2√2

z1 =       x1√2

z1 =       x1√2

z1 =       x1x2√2

z2 = x1
2

z2 = x1
2

z2 = x2
2

g=-1

g=-1

g=-1

g=-1

g=1

g=-1

g=1

g=1
g=-1
g=1

as shown in the figure.
The margins are not the same, simply because the real margin is the distance of the
support vectors to the optimal hyperplane in R6 space, and their projection to lower
dimensional subspaces does not necessarily preserve the margin.
31. The Support Vector Machine algorithm can be written:

Algorithm 0 (SVM)

1 begin initialize a; worst1 ← ∞; worst2 ← ∞; b ← ∞
2 i ← 0
3 do i ← i + 1
4 if zi = −1 and atyizi < worst1, then worst1 ← atyizi; kworst1 ← k
5 if zi = 1 and atyizi < worst2, then worst2 ← atyizi; kworst2 ← k
6 until i = n
7 a ← a + ykworst2 − ykworst1

8 a0 ← at(ykworst2 + ykworst1)/2
9 oldb ← b; b ← atykworst1/ ‖ a ‖

10 until | b − oldb |< ε
11 return a0,a
12 end

Note that the algorithm picks the worst classified patterns from each class and adjusts
a such that the hyperplane moves toward the center of the worst patterns and rotates
so that the angle between the hyperplane and the vector connecting the worst points
increases. Once the hyperplane separates the classes, all the updates will involve
support vectors, since the if statements can only pick the vectors with the smallest
|atyi|.
32. Consider Support Vector Machines for classification.

(a) We are given the following six points in two categories:

ω1 : x1 =
(

1
1

)
,x2 =

(
2
2

)
,x3 =

(
2
0

)
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ω2 : x4 =
(

0
0

)
,x5 =

(
1
0

)
,x6 =

(
0
1

)
with z1 = z2 = z3 = −1 and z4 = z5 = z6 = +1.

1 20
y1

y2

1

2

x1

x2

x3
x4

x5

x6

/4√2

y
1 +y

2 =3/2

The optimal hyperplane is y1 + y2 = 3/2, or (3/2 − 1 − 1)t(1 y1 y2) = 0. To
ensure zkaty ≥ 1, we have to scale (3/2 − 1 − 1)t by 2, and thus the weight
vector is (3 − 2 − 2)t. The optimal margin is the shortest distance from the
patterns to the optimal hyperplane, which is

√
2/4, as can be seen in the figure.

(b) Support vectors are the samples on the margin, that is, the ones with the shortest
distance to the separating hyperplane. In this case, the support vectors are
{x1,x3,x5,x6} = {(1, 1)t, (2, 0)t, (1, 0)t, (0, 1)t}.

(c) We seek to maximize the criterion given in Eq. 109 in the text,

L(α) =
n∑

k=1

αk − 1
2

n∑
k,j

αkαjzkzjyt
jyk

subject to the constraints

n∑
k=1

zkαk = 0

for αk ≥ 0. Using the constraint, we can substitute α6 = α1 +α2 +α3−α4−α5

in the expression for L(α). Then we can get a system of linear equations by
setting the partial derivatives, ∂L/∂αi to zero. This yields:⎡⎢⎢⎢⎢⎣

−1 −2 −2 0 1
−2 −5 2 −1 1
−2 2 −5 1 1
0 −1 1 −1 −1
1 1 3 −1 −2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

α1

α2

α3

α4

α5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−2
−2
−2
0
0

⎤⎥⎥⎥⎥⎦ .

Unfortunately, this is an inconsistent set of equations. Therefore, the maxima
must be achieved on the boundary (where some αi vanish). We try each αi = 0
and solve ∂L/∂αi = 0:

∂L(0, α2, α3, α4, α5)
∂αi

= 0
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implies α = 1/5(0,−2 − 2 8 − 8 − 4)t, which violates the constraint αi ≥ 0.
Next, both of the following vanishing derivatives,

∂L(α1, 0, α3, α4, α5)
∂αi

=
∂L(α1, α2, 0, α4, α5)

∂αi
= 0

lead to inconsistent equations. Then the derivative

∂L(α1, α2, α3, 0, α5)
∂αi

= 0

implies α = 1/5(16 0 4 0 14 6)t, which does not violate the constraint αi ≥ 0.
In this case the criterion function is L(α) = 4. Finally, we have

∂L(α1, α2, α3, α4, 0)
∂αi

= 0

which implies α = 1/5(2 2 2 0 0 6)t, and the constraint αi ≥ 0 is obeyed. In
this case the criterion function is L(α) = 1.2.

Thus α = 1/5(16 0 4 0 14 6)t is where the criterion function L reaches its
maximum within the constraints. Now we seek the weight vector a. We seek to
minimize L(a,α) of Eq. 108 in the text,

L(a,α) =
1
2
‖a‖2 −

n∑
k=1

αk[zkatyk − 1],

with respect to a. We take the derivative of the criterion function,

∂L

∂a
= a −

n∑
k=1

αkzkyk = 0,

which for the αk found above has solution

a = −(16/5)y1 − 0y2 − 4/5y3 + 0y4 + 14/5y5 + 6/5y6

=

⎛⎝ 0
−2
−2

⎞⎠ .

Note that ∂L/∂a = 0 here is not sufficient to allow us to find the bias a0 directly
since the ‖a‖2 term does not include the augmented vector a and

∑
k αkzk = 0.

We determine a0, then, by using one of the support vectors, for instance y1 =
(1 1 1)t. Since y1 is a support vector, aty1z1 = 1 holds, and thus

−
⎛⎝ 0

−2
−2

⎞⎠ (1 1 1) = −a0 + 4 = 1.

This, then, means a0 = 3, and the full weight vector is a = (3 − 2 − 2)t.

33. Consider the Kuhn-Tucker theorem and the conversion of a constrained optimiza-
tion problem for support vector machines to an unconstrained one.
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(a) Here the relevant functional is given by Eq. 108 in the text, that is,

L(a,α) =
1
2
‖a‖2 −

n∑
k=1

αk[zkatyk − 1].

We seek to maximize L with respect to α to guarantee that all the patterns are
correctly classified, that is zkatyk ≥ 1, and we want to minimize L with respect
to the (un-augmented) a. This will give us the optimal hyperplane. This solution
corresponds to a saddle point in α–a space, as shown in the figure.

L

a

α

saddle
point

(b) We write the augmented vector a as (a0 ar)t, where a0 is the augmented bias.
Then we have

L(ar,α, a0) =
1
2
‖ar‖2 −

n∑
k=1

αk[zkat
ryk + zka0 − 1].

At the saddle point, ∂L/∂a0 = 0 and ∂L/∂ar = 0. The first of these derivative
vanishing implies

n∑
k=1

α∗
kzk = 0.

(c) The second derivative vanishing implies

∂L

∂ar
= ar −

n∑
k=1

α∗
kzkyk

and thus

ar =
n∑

k=1

α∗
kzkyk.

Since
n∑

k=1

αkzk = 0, we can thus write the solution in augmented form as

a =
n∑

k=1

α∗
kzkyk.
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(d) If α∗
k(zka∗tyk − 1) = 0 and if zka∗tyk �= 0, then α∗

k must be zero. Respectively,
call the predicates as h, NOTp and q, then the above states h AND NOT p → q,
which is equivalent to h AND NOT q → p. In other words, given the expression

α∗
k(zka∗ty − 1) = 0,

then α∗ is non-zero if and only if zka∗tyk = 1.

(e) Here we have

L̄ =
1
2

∥∥∥ n∑
k=1

αkzkyk

∥∥∥2

−
n∑

k=1

αk

[
zk

(
n∑

l=1

αlzlyl

)
yk − 1

]

=
1
2

(
n∑

k=1

αkzkyk

)t (
n∑

k=1

αkzkyk

)
−

n∑
kl

αkαlzkzlyt
kyl +

n∑
k=1

αk.

Thus we have

L̄ =
n∑

k=1

αk − 1
2

∑
kl

αkαlzkzlyt
kyl.

(f) See part (e).

34. We repeat Example 2 in the text but with the following four points:

y1 = (1
√

2 5
√

2 5
√

2 1 25)t, y2 = (1 − 2
√

2 − 4
√

2 8
√

2 4 16)t, z1 = z2 = −1

y3 = (1
√

2 3
√

2 6
√

2 4 9)t, y4 = (1 − 2
√

2 5
√

2 − 5
√

2 1 25)t, z3 = z4 = +1

We seek the optimal hyperplane, and thus want to maximize the functional given by
Eq. 109 in the text:

L(α) = α1 + α2 + α3 + α4 − 1
2

4∑
kl

αlαkzkzlyt
kyl,

with constraints α1 + α2 = α3 + α4 and α1 ≥ 0. We substitute α4 = α1 + α2 − α3

into L(α) and take the partial derivatives with respect to α1, α2 and α3 and set the
derivatives to zero:

∂L

∂α1
= 2 − 208α1 − 256α2 + 232α3 = 0

∂L

∂α2
= 2 − 256α1 − 592α2 + 496α3 = 0

∂L

∂α3
= 232α1 + 496α2 − 533α3 = 0.

The solution to these equations — α1 = 0.0154, α2 = 0.0067, α3 = 0.0126 — indeed
satisfy the constraint αi ≥ 0, as required.

Now we compute a using Eq. 108 in the text:

∂L

∂a
= a −

4∑
k=1

αkzkyk = 0,
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which has solution

a = 0.0154(−y1) + 0.0067(−y2) + 0.01261y3 + 0.095y4

= (0 0.0194 0.0496 − 0.145 0.0177 − 0.1413)t.

Note that this process cannot determine the bias term, a0 directly; we can use a
support vector for this in the following way: We note that atykzk = 1 must hold for
each support vector. We pick y1 and then

−(a0 0.0194 0.0496 − 0.145 0.0177 − 0.1413) · y1 = 1,

which gives a0 = 3.1614, and thus the full weight vector is a = (3.1614 0.0194 0.0496 −
0.145 0.0177 − 0.1413)t.

Now we plot the discriminant function in x1–x2 space:

g(x1, x2) = at(1
√

2x1

√
2x2

√
2x1x2 x2

1 x2
2)

= 0.0272x1 + 0.0699x2 − 0.2054x1x2 + 0.1776x2
1 − 0.1415x2

2 + 3.17.

The figure shows the hyperbola corresponding to g(x1, x2) = 0 as well as the margins,
g(x1, x2) = ±1, along with the three support vectors y2, y3 and y4.
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Section 5.12

35. Consider the LMS algorithm and Eq. 61 in the text.

(a) The LMS algorithm minimizes Js(a) = ‖Ya−b‖2 and we are given the problem

Js(a) =

∥∥∥∥∥
[

1n Y1

1n Y1

] [
a0

ar

]
−

[
b1

b2

] ∥∥∥∥∥
2

We assume we have 2n data points. Moreover, we let bi = (b1
i b2

i . . . bn
i )t for

i = 1, 2 be arbitrary margin vectors of size n each, and Y1 is an n-by-2 matrix
containing the data points as the rows, and a = (a0, a1, a2)t = (a0,ar)t. Then
we have

Js(a) =
∥∥∥ a01n + Y1ar − b1

−a01n + Y1ar − b1

∥∥∥2
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=
n∑

i=1

(a0 + yt
iar − bi

1)
2 +

n∑
i=1

(−a0 + yt
iar − bi

2)
2

=
n∑

i=1

(a0 − bi
1)

2 +
n∑

i=1

(−a0 − bi
2)

2 + 2
n∑

i=1

yt
iar(a0 − bi

1 − a0 − bi
2)

=
n∑

i=1

(a0 − bi
1)

2 +
n∑

i=1

(a0 + bi
2)

2 − 2
n∑

i=1

yt
iar(bi

1 + bi
2).

Thus ∂Js/∂a0 = 0 implies a0 = 0 and the minimum of J must be at (0,ar)t for
some ar. Hence we showed that a0 = 0 which tells us that the separating plane
must go through the origin.

(b) We know from part (a) that the LMS hyperplane must pass through the origin.
Thus ω1 samples must lie on the same side of a separating hyperplane in order
to ensure ω2 samples lie in the other half space. This is guaranteed in the shaded
(union) region. We are asked to define the region where there is no shading.
We can state this as: if y ∈ {(x1, x2)t|2x1 < |x2|}, then the LMS solution to
separate ω1 and ω2 will not give a separating hyperplane, where

ω1 :
(

1
2

)
,

(
2
−4

)
, y

ω2 :
(−1
−2

)
,

(−2
4

)
,−y

as shown in the figure.

(c) Part (b) can be generalized by noting that the feasible region for y (so that LMS
will give a separating hyperplane) is the union of the half spaces Hi determined
by yi as:

H1 = {half space induced by the separating hyperplane y1 and containing y2}
H2 = {half space induced by the separating hyperplane y2 and containing y1}.

The LMS will give separating hyperplanes if and only if y3 ∈ H1∪H2. Thus, to
ensure that the LMS solution not to separate {y1,y2,y3} from {−y1,−y2,−y3},
we must have y3 ∈ H̄1 ∩ H̄2.

36. The algorithm is as follows:

Algorithm 0 (Fixed increment multicategory Perceptron)

1 begin initialize ai k ← 0, n ← number of samples, c ← number of classes
2 do k ← (k + 1)modn
3 i ← class of yk

4 do j ← j + 1; (j �= i)
5 until at

iy
k < at

jy
k ∨ j > c

6 if j ≤ c then ai ← ai + yk

7 aj ← aj − yk

8 until no more misclassifications
9 return a1,a2, . . . ,ac

10 end
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x1

x2

x 2 
=

2x
1

x
2 =

-2x
1

y1

y2

Some of the advantages are that the algorithm is simple and admits a simple
parallel implementation. Some of the disadvantages are that there may be numerical
instability and that the search is not particularly efficient.
37. Equation 122 in the text gives the Bayes discriminant function as

g0i = −
c∑

j=1

λijP (ωi|x).

The definition of λij from Eq. 121 in the text ensures that for a given i only one λij

will be non-zero. Thus we have g0i = P (ωi|x). We apply Bayes rule to find

p(x)g0i(x) = p(x|ωi)P (ωi). (∗)
On the other hand, analogous to Eq. 58 in the text, the criterion function Js1i can be
written as

Js1i(a) =
∑
y∈Yi

(at
iy − 1)2 +

∑
y/∈Yi

(at
iy)2

= n

⎡⎣n1

n

1
n1

∑
y∈Yi

(at
iy − 1)2 +

n2

n

1
n2

∑
y/∈Yi

(at
iy)2

⎤⎦ .

By the law of large numbers, as n → ∞, we have that 1/nJs1i(ai) approaches J̄i(ai)
with probability 1, where J̄i(ai) is given by

J̄i(ai) = P (ωi)Ei[(at
iy − 1)2] + P (NOT ωi)E2[(at

iy)2],

where

E1[(at
iy − 1)2] =

∫
(at

iy − 1)2p(x|ωi)dx

E2[(at
iy)2] =

∫
(at

iy)2p(x|NOT ωi)dx.

Thus we have

J̄i(ai) =
∫

(at
iy − 1)2p(x, ωi)dx +

∫
(at

iy)2p(x, NOT ωi)dx.
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We expand the square to find:

J̄(ai) =
∫

(at
iy)2p(x, ωi)dx − 2

∫
(at

iy)p(x, ωi)dx +
∫

p(x, ωi)dx +
∫

(at
iy)2p(x, NOT ωi)dx.

We collect the terms containing (at
iy)2 and find

J̄(ai) =
∫

(at
iy)2p(x)dx − 2

∫
(at

iy)p(x, ωi)dx +
∫

p(x, ωi)dx.

We use the fact that p(x)g0i(x) = p(x, ωi) from (∗), above, we find

J̄(ai) =
∫

(at
iy)2p(x)dx − 2

∫
(aty)p(x)g0i(x)dx +

∫
p(x, ωi)dx,

which can be written as

J̄(ai) =
∫

[at
iy − g0i(x)]2p(xdx)︸ ︷︷ ︸

ε2
i
,the mean−squared approx. error

−
∫

[g2
0i(x)p(x) − g0i(x)p(x)]dx︸ ︷︷ ︸

independent of ai

.

The second term in the sum is independent of weight vector ai. Hence the ai that
minimizes Js1i also minimizes ε2i . Thus the MSE solution A = YtB (where A =
ai a2 ac and Y = [Y1 Y2 · · ·Yc]t, and B is defined by Eq. 119 in the text) for
the multiclass case yields discriminant functions at

iy that provide a minimum-mean-
square error approximation to the Bayes discriminant functions g0i.
38. We are given the multi-category classification problem with sets Y1,Y2, . . . ,Yc

to be classified as ω1, ω2, . . . , ωc, respectively. The aim is to find a1,a2, . . . ,ac such
that if y ∈ Yi, then at

iy ≥ at
jy for all j �= i. We transform this problem into a binary

classification problem using Kesler’s construction. We define G = G1 ∪ G2 ∪ · · ·Gc

where

Gi = {ηij |y ∈ Yi, j �= i}
and ηij is as given in Eq. 115 in the text. Moreover we define

α = (at
1 a2 · · · at

c)
t.

Perceptron case We wish to show what the Fixed-increment single sample Percep-
tron algorithm given in Eq. 20 in the text does to our transformed problem. We
rewrite Eq. 20 as

α(1) = arbitrary
α(k + 1) = α(k) + gk

where gk is misclassified. The condition gk being misclassified at step k implies
αt(k)gk ≤ 0. Since the Gis are disjoint, gk must belong to one and only one
of the Gi. We shall use a subscript to denote which Gi that gk belongs to; for
instance, gk

i is in Gi. Given this notation, the inequality αt(k)gk
i ≤ 0 implies

at
iy−at

jy ≤ 0 for some j �= i. Thus there is an equivalence between αt(k)gk
i ≤ 0

and at
i(k)y ≤ at

j(k)y.

Consider the update rule α(k +1) = α(k)+gk
i . At once we see the equivalence:
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Multi-category Two-category

α(k + 1) = α(k) + gk
i ⇔ ai(k + 1) = ai(k) + yk

i

aj(k + 1) = aj(k) − yk
j ,

where, as defined above, α is the concatenation of as.

Relaxation rule case The single sample relaxation rule becomes

α(1) = arbitrary

α(k + 1) = α(k) + η
b − αtgk

‖gk‖2
gk,

where b is the margin. An update takes place when the sample gk is incorrectly
classified, that is, when αt(k)gk < b. We use the same definition of g as in the
Perceptron case above, and can then write

αt(k)ηij < b ⇔ (at
i(k)y − at

j(k)y) < b.

In the update rule, α can be decomposed into its sub-component as, yielding
the following equivalence:

Multi-category Two-category

α(k + 1) = α(k) + η b−αt(k)gk

‖gk‖2 gk ⇔ ai(k + 1) = ai(k) + b−(at
i(k)−at

j(k))yk

2‖yk‖2 yk

aj(k + 1) = aj(k) + b−(at
i(k)−at

j(k))yk

2‖yk‖2 yk .
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Computer Exercises

Section 5.4

1. Computer exercise not yet solved

Section 5.5

2. Computer exercise not yet solved

3. Computer exercise not yet solved

4. Computer exercise not yet solved

5. Computer exercise not yet solved

6. Computer exercise not yet solved

Section 5.6

7. Computer exercise not yet solved

Section 5.8

8. Computer exercise not yet solved

Section 5.9

9. Computer exercise not yet solved

Section 5.10

10. Computer exercise not yet solved

Section 5.11

11. Computer exercise not yet solved

Section 5.12

12. Computer exercise not yet solved
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Chapter 6

Multilayer neural networks

Problem Solutions

Section 6.2

1. Consider a three-layer network with linear units throughout, having input vector
x, vector at the hidden units y, and output vector z. For such a linear system we
have y = W1x and z = W2y for two matrices W1 and W2. Thus we can write the
output as

z = W2y = W2W1x

= W3x

for some matrix W3 = W2W1. But this equation is the same as that of a two-layer
network having connection matrix W3. Thus a three-layer network with linear units
throughout can be implemented by a two-layer network with appropriately chosen
connections.

Clearly, a non-linearly separable problem cannot be solved by a three-layer neu-
ral network with linear hidden units. To see this, suppose a non-linearly separable
problem can be solved by a three-layer neural network with hidden units. Then, equiv-
alently, it can be solved by a two-layer neural network. Then clearly the problem is
linearly separable. But, by assumption the problem is only non-linearly separable.
Hence there is a contradiction and the above conclusion holds true.
2. Fourier’s theorem shows that a three-layer neural network with sigmoidal hidden
units can act as a universal approximator. Consider a two-dimensional input and a
single output z(x1, x2) = z(x). Fourier’s theorem states

z(x) �
∑
f1

∑
f2

Af1f2cos(f1x1)cos(f2x2).

(a) Fourier’s theorem, as stated above, can be rewritten with the trigonometric
identity:

cos(α)cos(β) =
1
2
cos(α + β) +

1
2
cos(α − β),

219
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to give

z(x1, x2) �
∑
f1

∑
f2

Af1f2

z2
[cos(f1x1 + f2x2) + cos(f1x1 − f2x2)] .

(b) We want to show that cos(x), or indeed any continuous function, can be ap-
proximated by the following linear combination

f(x) � f(x0) +
n∑

i=0

[f(xi+1 − f(xi)]
[
Sgn[x − xi]

2

]
.

The Fourier series of a function f(x) at a point x0 converges to f(x0) if f(x)
is of bounded variation in some interval (x0 − h, x0 + h) centered on x0. A
function of bounded variation is a follows, given a partition on the interval
a = x0 < x1 < x2 < . . . < xn−1 < xn = b form the sum

n∑
k=1

|f(xk) − f(xk−1)|.

The least upper bound of these sums is called the total variation. For a point
f(x) in the neighborhood of f(x0), we can rewrite the variation as

n∑
i=1

[f(xi+1 − f(xi)]
[
Sgn[x − xi]

2

]
,

which sets the interval to be (x, x + 2h). Note the function has to be either
continuous at f(x0) or have a discontinuity of the first kind.

x

f(x)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

approximation

function

(c) As the effective width of the sigmoid vanishes, i.e., as σ → 0, the sigmoids
become step functions. Then the functions cos(f1x1+f2x2) and cos(f1x1−f2x2)
can be approximated as

cos(f1x1 + f2x2) � cos(f1x10 + f2x20)

+

(
n∑

i=0

[cos(x1i+1f1 + x2i+1f2) − cos(x1if1 + x2if2)]

×
[
Sgn[x1 − x1i]Sgn[x2 − x2i]

2

])
,

and similarly for cos[f1x1 − f2x2].
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(d) The construction does not necessarily guarantee that the derivative is approx-
imated, since there might be discontinuities of the first order, that is, non-
continuous first derivative. Nevertheless, the one-sided limits of f(x0 + 0) and
f(x0 − 0) will exist.

Section 6.3

3. Consider a d − nH − c network trained with n patterns for me epochs.

(a) Consider the space complexity of this problem. The total number of adjustable
weights is dnH + nHc. The amount of storage for the n patterns is nd.

(b) In stochastic mode we choose pattern randomly and compute

w(t + 1) = w(t) + Δw(t).

until stopping criterion is met. Each iteration involves computing Δw(t) and
then adding it to w(t). From Eq. 17 in the text, for hidden-to-output unit
weights we have

Δwjk = η(tk − zk)f ′(netk)yj ,

where netk =
nH∑
j=1

wjkyj is computed by nH multiplications and nH additions.

So, Δwjk is computed with c(2nH + 1) operations.

From Eq. 17 in the text, for input-to-hidden unit weights we have

Δwji = ηxif
′(netk)

c∑
k=1

wkjδk

where, netj is computed in 2d operations. Moreover,
∑
k

wjkδk is computed in

2c operations. Thus we have wij ’s are computed in [2d + 2c]nH time.

Thus, the time for one iteration is the time to compute Δw plus the time to
add w to Δw, that is,

T = c(2nH + 10 + 2(d + c + 1)nH + (dnH + nHc)
= 3dnH + 5nHc + c + 2nH .

In summary, the time complexity is (3dnH + 5nHc + c + 2nH)me.

(c) Here, the number of iterations = nme and thus the time complexity is (3dnH +
5nHc + c + 2nH)n me.

4. Equation 20 in the text gives the sensitivity at a hidden unit

δj = f ′(netj)
c∑

k=1

wkjδk.

For a four-layer or higher-layer neural network, the sensitivity of a hidden unit is
likewise given by

δj ≡ − ∂E

∂netj
= −

[
∂E

∂oj

∂Oj

∂netj

]
.
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By the chain rule we have

δj = −f ′(netj)
∑

k

∂E

∂netk

∂netk
∂oj

.

Now, for a unit k in the next higher layer

netk =
∑
j′

wj′koj′ =
∑
j′

wj′koj′ + wjkoj ,

where

δnetk
δoj

= wjk.

Thus we have

δj = f ′(netj)
c∑

k=1

wjk

[
− ∂E

∂netk

]
︸ ︷︷ ︸

δk

= f ′(netj)
c∑

k=1

wjkδk.

5. From Eq. 21 in the text, the backpropagation rule for training input-to-hidden
weights is given by

Δwji = ηxif
′(netj)

∑
k=1

wkjδk = ηxiδj .

For a fixed hidden unit j, Δwji’s are determined by xi. The larger the magnitude of
xi, the larger the weight change. If xi = 0, then there is no input from the ith unit and
hence no change in wji. On the other hand, for a fixed input unit i, Δwji ∝ δj , the
sensitivity of unit j. Change in weight wji determined how the overall error changes
with the activation of unit j. For a large magnitude of δj (i.e., large sensitivity),
Δwji is large. Also note that the sensitivities of the subsequent layers propagate to
the layer j through weighted sum of sensitivities.
6. There is no reason to expect that the backpropagation rules should be inversely
related to f ′(net). Note, the backpropagation rules are defined to provide an algorithm
that minimizes

J =
1
2

c∑
k=1

(tk − zk)2,

where zk = f(netk). Now, the weights are chosen to minimize J . Clearly, a large
change in weight should occur only to significantly decrease J , to ensure convergence
in the algorithm, small changes in weight should correspond to small changes in J .
But J can be significantly decreased only by a large change in the output ok. So, large
changes in weight should occur where the output varies the most and least where the
output varies the least. Thus a change in weight should not be inversely related to
f ′(net).
7. In a three-layer neural network with bias, the output can be written

zk = f

⎛⎝∑
j

wjkf

(∑
i

wjixi

)⎞⎠
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can be equivalently expressed as

zk = f

⎛⎝∑
j

wkjf

(∑
i

wjixi

)⎞⎠
by increasing the number of input units by 1 and the number of hidden inputs by 1,

xo = 1, ωoj = αj , j �= o, ωio = 0,

and fh is adjusted such that obias = fh(o) = 1 and wok = αk.
8. We denote the number of input units as d, the number of hidden units as nH and
the number of category (output) units as c. There is a single bias unit.

(a) The number of weights is dnH + (nH + 1)c, where the first term is the number
of input-to-hidden weights and the second term the number of hidden-to-output
weights, including the bias unit.

(b) The output at output node k is given by Eq. 7 in the text:

zk =
nH∑
j=1

f

(
wkjf

(
d∑

i=1

wjixi + wj0

)
+ wk0

)
.

We assume that the activation function f(·) is odd or antisymmetric, giving

f

⎛⎝ d∑
j=1

−wjixi

⎞⎠ ↔ −f

⎛⎝ d∑
j=1

wjixi

⎞⎠ ,

but since the weighting on this summation also flips, we have

(−wkj)

⎡⎣−f

⎛⎝ d∑
j=1

wjixi

⎞⎠⎤⎦ = (wkj)

⎡⎣f

⎛⎝ d∑
j=1

wjixi

⎞⎠⎤⎦ ,

and the original output is unchanged.

(c) The hidden units can be exchanged along with corresponding weights and this
can leave the network unaffected. The number of subsets that can be constructed
over the set nH is of course 2nH . Now, because the corresponding weights for
each subset nH different weight orderings can be constructed, so the total hidden
unit symmetry is nH !2nH . For the case nH = 10, this is a factor of 3,715,891,200.

9. The on-line version of the backpropagation algorithm is as follows:

Algorithm 0 (On-line backpropagation)

1 begin initialize nH ,w, η
2 do
3 x ← next input pattern
4 wji ← wji + ηδjxi; wkj ← wkj + ηδkyi

5 until no more patterns available
6 return w
7 end
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10. We express the derivative of a sigmoid in terms of the sigmoid itself for positive
constants a and b for the following cases.

(a) For f(net) = 1/(1 + ea net), the derivative is

df(net)
d net

= −a

(
1

1 + ea net

)2

ea net

= −af(net)(1 − f(net)).

(b) For f(net) = atanh(b net), the derivative is

df(net)
d net

= −2b2atanh(b net)(1 − tanh2(b net)).

11. We use the following notation: The activations at the first (input), second, third,
and fourth (output) layers are xi, yj , vl, and zk, respectively, and the indexes are
clear from usage. The number of units in the first hidden layer is nH1 and the number
in the second hidden layer is nH2 .

x1 x2 xi xd

y1 y2 yj yjmax

x

y

v1 v2 vl

z1 z2 zq zc

v

z

input

output

vlmax

Algorithm 0 (Four-layer backpropagation)

1 begin initialize xxx
2 xxx
3 xxx
4 return xxx
5 end

Section 6.4

12. Suppose the input to hidden weights are set equal to the same value, say wo,
then wij = wo. Then we have

netj = f(netj) =
d∑

i=1

wjixi = wo

∑
i

xi = wox.
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This means that oj = f(netj) is constant, say yo. Clearly, whatever the topology of
the original network, setting the wji to be a constant is equivalent to changing the
topology so that there is only a single input unit, whose input to the next layer is xo.
As, a result of this loss of one-layer and number of input units in the next layer, the
network will not train well.
13. If the labels on the two hidden units are exchanged, the shape of the error surface
is unaffected. Consider a d − nH − c three-layer network. From Problem 8 part (c),
we know that there are nH !2nH equivalent relabelings of the hidden units that do not
affect the network output. One can also flip weights for each of these configurations,
Thus there should be nH !2nH+1 possible relabelings and weight changes that leave
the error surface unaffected.
14. Consider a simple 2− 1 network with bias. Suppose the training data come from
two Gaussians, p(x|ω1) ∼ N(−0.5, 1) and p(x|ω2) ∼ N(0.5, 1). The teaching values
are ±1.

(a) The error is a sum over the n patterns as a function of the transfer function f(·)
as

J(w) =
n∑

k=1

(tk − f(wtxk + w0))2,

where tk is the teaching signal and w0 the bias weight.

(b) We differentiate twice with respect to the weights to compute the Hessian ma-
trix, which has components

Hij =
∂2J(w)
∂wi∂wj

.

We use the outer product approximation of the Hessian and find

Hij =
n∑

k=1

f ′(wtxk + w0)xkif
′(wtxk + w0)xkj

where xkj is the jth component of sample xk.

(c) Consider two data sets drawn from p(x|ω1) ∼ N(ui, I). The Hessian matrix
then has components

Hij = n2(μ1i + μ2i)(μ1j + μ2j),

where μ1i is the ith element of the mean fector of class 1, and analogously for
class 2.

(d) Problem not yet solved

(e) Problem not yet solved

(f) Problem not yet solved

15. We assume that the error function can be well described by a Hessian matrix H
having d eigenvalues and where λmax and λmin are the maximum and minimum of
these eigenvalues.
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(a) The optimimum rate is η < 2/λmax.

(b) The convergence criterion is |1 − ηλi| < 1 for all eigenvalues i = 1, . . . , d.

(c) The time for the system to meet the convergence criterion θ is

θ = (1 − ηλi)T

where T is the total number of steps. This factor is dominated by the smallest
eigenvalue, so we seek the value T such that

θ = (1 − ηλmin)T .

This, in turn, implies that

T =
lnθ

ln(1 − ηλ)
.

16. Assume the criterion function J(w) is well described to second order by a Hessian
matrix H.

(a) Stepping along the gradient gives at step T

αT
i = (1 − ηλi)T α0

i .

To get a local minimum, we need |1 − ηi| < 1, and this implies η < 2/λmax.

(b) Consider (1− (2/λmax)λi). More steps will be required along the direction cor-
responding to the smallest eigenvalue λi, and thus the learning rate is governed
by

1 − 2λmin

λmax
.

Standardization helps reduce the learning time by making the ratio λmax/λmin =
1.

(c) Standardization is, in essence, a whitening transform.

Section 6.6

17. From Eq. 25 in the text, we have

J(w) = n

⎡⎣nk

n

1
nk

∑
x∈ωk

[gk(x,w) − 1]2 +
n − nk

n

1
n − nk

∑
x�∈ωk

gk(x,w)2

⎤⎦ .

As n → ∞, the proportion of all samples that are in ωk approaches P (ωk). By the
law of large numbers, then,

1
nk

∑
x∈ωk

[gk(x,w) − 1]2

approaches

E([gk(x,w) − 1]2|x ∈ ωk) =
∫

[gk(x,w) − 1]2p(x|ωk)dx.
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Likewise, we have

1
n − nk

∑
x�∈ωk

[Fk(x, ω)]2,

which approaches

E([gk(x,w)]2|x ∈ ωi �=k) =
∫

[gk(x,w)]2p(x|ωi �=k)dx.

Thus we see, in the limit of infinite data

J(w) = P (ωk)
∫

[gk(x,w) − 1]2p(x|ωk)dx + P (ωi �=k)
∫

[gk(x,w)]2p(x|ωi �=k)dx

=
∫

[gk(x,w) − 1]2p(x, ωk)dx +
∫

[gk(x,w)]2p(x|ωi �=k)dx

=
∫

[g2
k(x,w) + 1 − 2gk(x,w)]p(x,w)]p(x, ωk)dx +

∫
[gk(x,w)]2p(x|ωi �=k)dx

=
∫

[gk(x,w) − P (ωk|x)]2p(x)dx +
∫

P (ωk|x)[1 − P (ωk|x)]p(x)dx

=
∫

[gk(x,w) − P (ωk|x)]2p(x)dx +
∫

P (ωk|x)P (ωi �=k|x)p(x)dx.

18. Consider how one of the solutions to the minimum-squared-error condition indeed
yields outputs that are estimates of posterior probabilities.

(a) From Eq. 25 in the text, we have

J(w) =
∫

g2
k(x,w)p(x)dx − 2

∫
gk(x,w)p(x, ωk)dx +

∫
p(x, ωk)

∂J(w)
∂w

= 2
∫

gk(x,w)
∂gk(x,w)

∂w
p(x)dx − 2

∫
∂gk(x,w)

∂w
p(x, ωk)dx.

We set ∂J(w)
∂w = 0 and find∫

Fk(x, ω)
∂Fk(x,ω)

∂ω
p(x)dx =

∫
∂Fk(x,ω)

∂ω
p(x, ωk)dx

Clearly, w∗ ≡ w∗(p(x)), the solution of the above equation, depends on the
choice of p(x). But, for all p(x), we have∫

gk(x,w∗(p(x))
∂gk(x,w)

∂w

∣∣∣
w=w∗(p(x))

p(x)dx =
∫

∂gk(x,w)
∂w

∣∣∣
w=w∗(p(x))

p(x, ωk)dx.

Thus we have

gk(x,w∗(p(x)))p(x) = p(x, ωk)

with probability 1 on the set of x : p(x, ωk) > 0. This implies

gk(x,w∗) =
p(x, ωk)

p(x)
= P (ωk|x).
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(b) Already shown above.

19. The assumption that the network can represent the underlying true distribution is
not used before Eq. 28 in the text. For Eq. 29, however, we invoke gk(x; w) � p(ωk|x),
which is used for

c∑
k=1

∫
[gk(x; w) − P (ωk|x)] p(x)dx = 0.

This is true only when the above assumption is met. If the assumption is not met, the
gradient descent procedure yields the closest projection to the posterior probability
in the class spanned by the network.
20. Recall the equation

p(y|ωk) = eA(w̃k)+B(y,φ)+w̃ty.

(a) Given p(y|ωk), we use Bayes’ Theorem to write the posterior as

p(ωk|y) =
p(y|ωk)P (ωk)

p(y)
.

(b) We interpret A(·), w̃k and φ as follows:

P (ωk) = e−A(w̃k)

p(ωk|y) =
exp [A(w̃k) + B(y, φ) + w̃t

ky]P (ωk)
c∑

m=1
exp [A(w̃m) + B(y, φ) + w̃t

my]P (ωm)

=
netk

c∑
m=1

enetm

,

where netk = b(y, φ) + w̃ty. Thus, B(y, φ) is the bias, w̃ is the weight vector
describing the separating plane, and e−A(w̃k) is P (ωk).

21. Backpropagation with softmax is done in the usual manner; all that must be
evaluated differently are the sensitivities at the output and hidden layer units, that
is,

zh =
eneth∑

h

eneth
and

∂zh

∂neth
= zh(1 − zh).

(a) We are given the following terms:

netj =
d∑

i=1

wjixi

netk =
nH∑
j=1

wkjyj

yj = f(netj)

zk =
enetk

c∑
m=1

enetm

,
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and the error function

J =
1
2

c∑
k=1

(tk − zk)2.

To derive the learning rule we have to compute ∂J/∂wkj and ∂J/∂wji. We start
with the former:

∂J

∂wkj
=

∂J

netk

∂netk
∂wkj

.

We next compute

∂J

∂netk
=

c∑
s=1

∂J

∂zs

∂zs

∂netk
.

We also have

∂zs

∂netk
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

enets (−1)enetk(
c∑

m=1

enetm

)2 = −zszk if s �= k

enets(
c∑

m=1

enetm

) + (−1) enets enets(
c∑

m=1

enetm

)2 = zk − z2
k if s = k

and finally

∂J

∂zs
= (−1)(ts − zs).

Putting these together we get

∂J

∂netk
=

c∑
s �=k

(−1)(ts − zs)(−zszk) + (−1)(tk − zk)(zk − z2
k).

We use ∂netk/∂wkj = yj and obtain

∂J

∂wkj
= yj

c∑
s �=k

(ts − zs)(zszk) − yj(tk − zk)(zk − z2
k).

Now we have to find input-to-hidden weight contribution to J . By the chain
rule we have

∂J

∂wji
=

∂J

∂yj

∂yj

∂netj

∂netj
∂wji

.

We can at once find out the last two partial derivatives.

∂yj

∂netj
= f ′(netj) and

∂netj
∂wji

= xi.

Now we also have

∂J

∂yj
=

c∑
s=1

∂J

∂zs

∂zs

∂yj
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= −
c∑

s=1

(ts − zs)
∂zs

∂yj

= −
c∑

s=1

(ts − zs)

[
c∑

r=1

∂zs

∂netr

∂netr
∂yj

]

= −
c∑

s=1

(ts − zs)

⎡⎢⎢⎢⎣ ∂zs

∂nets︸ ︷︷ ︸
zs−z2

s

∂nets
∂yj︸ ︷︷ ︸
wsj

+
c∑

r �=s

∂zs

∂netr︸ ︷︷ ︸
−zszr

∂netr
∂yj︸ ︷︷ ︸
wrj

⎤⎥⎥⎥⎦
= −

c∑
s=1

(ts − zs)(zs − z2
s)wsj +

c∑
s=1

c∑
r �=s

zszrwrj(ts − zs).

We put all this together and find

∂J

∂wji
= xif

′(netj)
c∑

s=1

(ts − zs)
c∑

r �=s

wrjzszr

−xif
′(netj)

c∑
s=1

(ts − zs)wsj(zs − z2
s).

Of course, the learning rule is then

Δwji = −η
∂J

∂wji

Δwkj = −η
∂J

∂wkj
,

where the derivatives are as given above.

(b) We are given the cross-entropy criterion function

JCE =
c∑

k=1

tkln
tk
zk

.

The learning rule derivation is the same as in part (a) except that we need to
replace ∂J/∂z with ∂Jce/∂z. Note that for the cross-entropy criterion we have
∂Jce/∂zk = −tk/zk. Then, following the steps in part (a), we have

∂Jce

∂wkj
= yj

c∑
s �=k

tk
zk

zszk − yj
tk
zk

(zk − z2
k)

= yj

c∑
s �=k

tkzk − yjtk(1 − zk).

Similarly, we have

∂Jce

∂wji
= xif

′(netj)
c∑

s=1

ts
zs

c∑
r �=x

wrjzszr

−xif
′(netj)

c∑
s=1

ts
zs

wsj(zs − z2
s).



PROBLEM SOLUTIONS 231

Thus we find

∂Jce

∂wji
= xif

′(netj)
c∑

s=1

ts

c∑
r �=s

wrjzr

−xif
′(netj)

c∑
s=1

tswsj(1 − zs).

Of course, the learning rule is then

Δwji = −η
∂Jce

∂wji

Δwkj = −η
∂Jce

∂wkj
,

where the derivatives are as given above.

22. In the two-category case, if g1 � P (ω1|x), then 1 − g1 � P (ω2|x), since we
can assume the categories are mutually exclusive and exhaustive. But 1 − g1 can
be computed by a network with input-to-hidden weights identical to those used to
compute g1. From Eq. 27 in the text, we know∑

k1

∫
[gk1(x,w) − P (ωk1 |x)]2 dx +

∑
k2

∫
[gk2(x,w) − P (ωk2 |x)] dx

is a minimum. this implies that every term in the above equation is minimized.

Section 6.7

23. Consider the weight update rules given by Eqs. 12 and 23 in the text.

(a) The weight updates are have the factor ηf ′(net). If we take the sigmoid fb(h) =
tanh(bh), we have

f ′
b(h) = 2b

e−bh

(1 + e−bh)2
− 1 = 2b

1
ebh + e−bh + 2︸ ︷︷ ︸

D

− 1 = 2bD = 1.

Clearly, 0 < D < 0.25 for all b and h. If we assume D is constant, then clearly
the product η/γf ′

γb(h) will be equal to ηf ′
b(h), which tells us the increment

in the weight values will be the same, preserving the convergence time. The
assumption will be approximately true as long as |bh| is very small or kept
constant in spite of the change in b.

(b) If the input data is scaled by 1/α, then the increment of weights at each step
will be exactly the same. That is,

η

γ
f ′

γb(h/γ) = ηf ′(h).

Therefore the convergence time will be kept the same. (However, if the network
is a multi-layer one, the input scaling should be applied to the hidden units’
outputs as well.)
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24. A general additive model is given by Eq. 32 in the text:

zk = f

⎛⎝ d∑
j=1

fk
j (xj) + wk

o

⎞⎠ .

The functions fk act on single components, namely the xi. This actually restricts
the additive models. To have the full power of three-layer neural networks we must
assume that fi is multivariate function of the inputs. In this case the model will
become:

zk = f

⎛⎝ d∑
j=1

fk
j (x1, x2, . . . , xd) + w0

⎞⎠ .

With this modification it is trivial to implement any three-layer neural network. We
let

fk
j = wkjg

⎛⎝ d∑
j=1

wjixi + wj0

⎞⎠
and wk

0 = wk0, where g, wkj , wji, wj0, wk0 are defined as in Eq. 32 in the text. We
substitute fk

j into the above equation and at once arrive at the three-layer neural
network function shown in Eq. 7 in the text.
25. Let px(x) and py(y) be probability density functions of x and y, respectively.

(a) From the definition of entropy given by Eq. 37 in Chapter 1 of the text (or
Eq. 118 in Section A.7.1 in the Appendix), and the one-dimensional Gaussian,

px(x) =
1√
2π

exp
[
− x2

2σ2

]
.

we have the entropy

H(px(x)) = −
∞∫

−∞
px(x)logpx(x)dx =

1
2

+ log
√

2πσ � 1.447782 + logσ bits.

(b) From Sect. 6.8.2 in the text, if a = 2/(3σ), then we have f ′(x) � 1 for −σ <
x < σ.

(c) Suppose y = f(x). If there exists a unique inverse mapping x = f−1(y), then
py(y)dy = f ′(x)dx. Thus we have

H(py(y)) = −
∞∫

−∞
py(y)logpy(y)dy

= −
∞∫

−∞
px(x)logpx(x)dx +

∞∫
−∞

px(x)log|f ′(x)|dx

= H(px(x)) + log2ab − 2

∞∫
−∞

1√
2πσ

exp
[
− x2

2σ2

]
log[1 + exp(−bx)]dx

= 1.418939 + logσ bits.
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(d) We define the function

y = f(x) =
{

a if x = 0
0 otherwise.

then we have py(y) = δ(y) because

Pr[Y = y] =

⎧⎨⎩
1 if y = 0
0 if y = a
0 otherwise.

his gives our entropy to be H(y) = −∞.

(e) Information possessed by the original data is transmitted with litle loss through
sigmoid functions, whereas it is completely lost through through a Diract delta
function.

26. The transfer function is given by Eq. 34 in the text:

f(net) =
2a

1 + e−b net
− a.

(a) We calculate the derivative as

f ′(net) =
2a

(1 + e−b net)2
be−b net

=
[

2a

1 + e−b net

]
be−b net

1 + e−b net

= b
2a

1 + e−b net

[
1 − 1

1 + e−b net

]
=

b

2a
[a2 − (f(net))2].

(b) Note that f ′′(net) = −b
a f(net)f ′(net), where b > 0. At net = ∞, we have

f(∞) =
2a

1 + e−b net
− a = 2a − a = a

f ′(∞) =
b

2a
[a2 − (f(net))2] =

b

2a
(a2 − a2) = 0

f ′′(∞) = − b

a
f(net)f ′(net) = 0.

At net = 0, we have

f(0) =
2a

1 + e−b net
− a =

2a

a
− a = 0

f ′(0) =
b

2a
(a2 − (f(net))2) =

b

2a
a2 =

ab

2
f ′′(0) = 0.

At net = −∞, we have

f(−∞) =
2a

1 + e−b net
− a = 0 − a = −a

f ′(−∞) =
b

2a
(a2 − (f(net))2) =

b

2a
(a2 − a2) = 0

f ′′(−∞) = 0.
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27. We consider the computational burden for standardizing data, as described in
the text.

(a) The data should be shifted and scaled to ensure zero mean and unit variance
(standardization). To compute the mean, the variance we need 2nd steps, and
thus the complexity is thus O(nd).

(b) A full forward pass of the network activations requires nHd + nHc steps. A
backpropagation of the error requires nHd + nHdc steps. The first term is for
the output-to-hidden and the second term is for hidden-to-input weights. The
extra c factor comes from the backpropagation formula given in Eq. 21 in the
text. Thus nd epochs of training require

(nd)n[nhd + nHc + nHc + nHdc]

steps. Assuming a single output netowrk we can set c = 1 and use the approx-
imation given in Sec. 6.8.7 to get n/10 = nHd + nH . We use this result in the
above and find

n2d[n/10 + n/10] =
n3d

5
,

and thus is O(n3d) complexity.

(c) We use the results of parts (a) and (b) above and see that the ratio of steps can
be approximated as

nd

n3d/5
=

5
n2

.

This tells us that the burden of standardizing data gets negligible as n geets
larger.

28. The Minkowski error per pattern is defined by

J =
c∑

k=1

|zk − tk|R =
c∑

k=1

|tk − zk|R.

We proceed as in page 290 of the text for the usual sum-square-error function:

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

where zk = f

(
nH∑
j=1

wkjyj

)
. We also have

∂J

∂netk
= −R|tk − zk|R−1f ′(netk)Sgn(tk − zk),

where the signum function can be written Sgn(x) = x/|x|. We also have

∂netk
∂wkj

= yj .



PROBLEM SOLUTIONS 235

Thus we have

∂J

∂wkj
= −R|tk − zk|R−1f ′(netk)yjSgn(tk − zk),

and so the update rule for wkj is

Δwkj = η|tk − zk|R−1f ′(netk)yjSgn(tk − zk).

Now we compute ∂J/∂wji by the chain rule:

∂J

∂wji
=

∂J

∂yj

∂yj

∂netj

∂netj
∂wji

.

The first term on the right-hand side is

∂J

∂yj
=

c∑
k=1

∂J

∂zk

∂zk

∂yj

=
c∑

k=1

−R|tk − zk|R−1f ′(netk)wkjSgn(tk − zk).

The second term is simply ∂yj/∂netj = f ′(netj). The third term is ∂netj/∂wji = xi.
We put all this together and find

∂J

∂wji
= −

[
c∑

k=1

R|tk − zk|R−1Sgn(tk − zk)f ′(netk)wkj

]
f ′(netj)xi.

and thus the weight update rule is

Δwji = η

[
c∑

k=1

wkjf
′(netk)Sgn(tk − zk)R|tk − zk|R−1

]
f ′(netj)xi.

For the Euclidean distance measure, we let R = 2 and obtain Eqs. 17 and 21 in the
text, if we note the identity

Sgn(tk − zk) · |tk − zk| = tk − zk.

29. Consider a d−nH − c three-layer neural network whose input units are liner and
output units are sigmoidal but each hidden unit implements a particular polynomial
function, trained on a sum-square error criterion. Here the output of hidden unit j is
given by

oj = wjixi + wjmxm + qjxixm

for two prespecified inputs, i and m �= i.

(a) We write the network function as

zk = f

⎛⎝ nH∑
j=1

wkjoj(x)

⎞⎠
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where oj(x) is

oj(x) = wjij
xij

+ wjmjxmj
+ qjxij

wmj
.

Since each hidden unit has prespecified inputs i and m, we use a subscript on i
and m to denote their relation to the hidden unit. The criterion function is

J =
c∑

k=1

(tk − zk)2.

Now we calculate the derivatives:

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

= −(tk − zk)f ′(netk)oj(x).

Likewise we have

∂J

∂wji
=

∂J

∂oj

∂oj

∂wji
=

[
c∑

k=1

∂J

∂zk

∂zk

∂oj

]
︸ ︷︷ ︸

∂J/∂oj

∂oj

∂wji

= −
[

c∑
k=1

(tk − zk)f ′(netk)wkj

]
∂oj

∂wji
.

Now we turn to the second term:

∂oj

∂wji
=

⎧⎨⎩
xi + qjxmj if i = ij
xi + qjxij

if i = mj

0 otherwise.

Now we can write ∂J/∂wji for the weights connecting inputs to the hidden layer.
Remember that each hidden unit j has three weights or parameters for the two
specified input units ij and mj , namely wjij

, wjmj
, and qj . Thus we have

∂J

∂wjij

= −
[

c∑
k=1

(tk − zk)f ′(netk)wkj

]
(xij

+ qjxmj
)

∂J

∂wjmj

= −
[

c∑
k=1

(tk − zk)f ′(netk)wkj

]
(xim + qjxim)

∂J

∂wjr
= 0 for r �= ij and r �= mj .

We must also compute

∂J

∂qj
=

∂J

∂oj

∂oj

∂qj
,

where ∂J/∂qj = xij xmj and

∂J

∂oj
= −

c∑
k=1

(tk − zk)f ′(netk)wkj .



PROBLEM SOLUTIONS 237

Thus we have

∂J

∂qj
= −

[
c∑

k=1

(tk − zk)f ′(netk)wkj

]
xij

xmj
.

Thus the gradient descent rule for the input-to-hidden weights is

Δwjij
= η

[
c∑

k=1

(tk − zk)f ′(netk)wkj

]
(xij

+ qjxmj
)

Δwjmj = η

[
c∑

k=1

(tk − zk)f ′(netk)wkj

]
(xim + qjxij )

Δqj = η

[
c∑

k=1

(tk − zk)f ′(netk)wkj

]
xij xmj .

(b) We observe that yi = oi, from part (a) we see that the hidden-to-output weight
update rule is the same as the standard backpropagation rule.

(c) The most obvious weakness is that the “receptive fields” of the network are
a mere two units. Another weakness is that the hidden layer outputs are not
bounded anymore and hence create problems in convergence and numerical sta-
bility. A key fundamental weakness is that the network is no more a universal
approximator/classifier, because the function space F that the hidden units
span is merely a subset of all polynomials of degree two and less. Consider a
classification task. In essence the network does a linear classification followed
by a sigmoidal non-linearity at the output. In order for the network to be able
to perform the task, the hidden unit outputs must be linearly separable in the
F space. However, this cannot be guaranteed; in general we need a much larger
function space to ensure the linear separability.

The primary advantage of this scheme is due to the task domain. If the task
domain is known to be solvable with such a network, the convergence will be
faster and the computational load will be much less than a standard backprop-
agation learning network, since the number of input-to-hidden unit weights is
3nH compared to dnH of standard backpropagation.

30. The solution to Problem 28 gives the backpropagation learning rule for the
Minkowski error. In this problem we will derive the learning rule for the Manhattan
metric directly. The error per pattern is given by

J =
c∑

k=1

|tk − zk|.

We proceed as in page 290 of the text for the sum-squared error criterion function:

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

∂J

∂netk
= −f ′(netk)Sgn(tk − zk),
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where Sgn(x) = x/|x|. Finally, we have ∂netk/∂wkj = yj . Thus we have

∂J

∂wkj
= −f ′(netk)yjSgn(tk − zk),

and so the update rule for wkj is:

Δwkj = ηf ′(netk)yjSgn(tk − zk).

Now we turn to ∂J/∂wji. By the chain rule we have

∂J

∂wji
=

∂J

∂yj

∂yj

∂netj

∂netj
∂wji

.

We compute each of the three factors on the right-hand-side of the equation:

∂J

∂yj
=

c∑
k=1

∂J

∂zk

∂zk

∂yj

=
c∑

k=1

−f ′(netk)wkjSgn(tk − zk)

∂yj

∂netj
= f ′(netj)

∂netj
∂wji

= xi.

Thus we put this together and find

∂J

∂wji
= −

[
c∑

k=1

Sgn(tk − zk)f ′(netk)wkj

]
f ′(netj)xi.

Thus the weight update rule for wji is:

Δwji = η

[
c∑

k=1

wkjf
′(netk)Sgn(tk − zk)

]
f ′(netj)xi.

The above learning rules define the backpropagation learning rule with the Manhattan
metric. Note that the Manhattan metric uses the direction (signum) of tk−zk instead
of the actual tk − zk as in the sum-squared-error criterion.

Section 6.9

31. We are given the criterion function

J =
1
2

n∑
m=1

(tm − zm)2.

The Hessian matrix is then

∂2J

∂wji∂wlk
=

1
2

⎡⎢⎢⎢⎢⎣
n∑

m=1

∂zm

∂wji

∂zm

∂wlk
+

n∑
m=1

(zm − tm)
∂2zm

∂wji∂wlk︸ ︷︷ ︸

0

⎤⎥⎥⎥⎥⎦ .
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We drop the last term in the outer-product approximation, as given in Eq. 45 in the
text. Let Wj be any hidden-to-output weight in a single output network. Then we
have ∂z/∂Wj = f ′(net)yj . Now we let wji be any input-to-hidden weight. Then since

z = f

⎛⎝∑
j

Wjf
( ∑

i

wjixi

)⎞⎠ ,

the derivative is

∂z

∂wji
= f ′(net)Wjf

′(netj)xi.

Thus the derivatives with respect to the hidden-to-output weights are:

Xt
v = (f ′(net)y1, . . . , f

′(net)ynH
),

as in Eq. 47 in the text. Further, the derivatives with respect to the intput-to-hidden
weights are

Xt
u = (f ′(net)f ′(netj)W1x1, . . . , f

′(net)f ′(netnH
)WnH

x1,

f ′(net)f ′(net1)W1xd, . . . , f
′(net)f ′(netnH

)WnH
xd).

32. We are given that JCE =
c∑

k=1

tkln(tk/zk). For the calculation of the Hessian

matrix, we need to find the expressions for the second derivatives:

∂2JCE

∂wji∂wlk
=

∂
[

∂JCE

∂wji

]
∂wlk

=
∂

[
− tk

zk

∂z
∂wji

]
∂wlk

=
tk
z2
k

[
∂zk

∂wji

∂zk

∂wlk
− zk

∂2zk

∂wji∂wlk

]
.

We arrive at the outer product approximation by dropping the second-order terms.
We compare the above formula to Eq. 44 in the text and see that the Hessian matrix,
HCE differs from the Hessian matrix in the traditional sum-squared error case in
Eq. 45 by a scale factor of tk/z2

k. Thus, for a d−nH − 1 network, the Hessian matrix
can be approximated by

HCE =
1
n

n∑
m=1

t1
z2
1

X[m]tX[m],

where X[m] is defined by Eqs. 46, 47 and 48 in the text, as well as in Problem 31.
33. We assume that the current weight value is w(n − 1) and we are doing a line
search.

(a) The next w according to the line search will be found via

w(n) = w(n − 1) + λ∇J(w(n − 1))

by minimizing J(w) using only λ. Since we are given that the Hessian matrix is
proportional to the identity, H ∝ I, the Taylor expansion of J(w) up to second
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degree will give an exact representation of J . We expand around w(n − 1) and
find

J(w) = J(w(n − 1)) + (w − w(n − 1))t∇J(w(n − 1))
+1/2(w − w(n − 1))tH(w − w(n − 1)).

We know that H = kI for some scalar k. Further, we can write w−w(n− 1) =
λ∇J(w(n − 1)), which can be plugged into the expression for J(w) to give

J(w) = J(w(n − 1)) + λ∇J t(w(n − 1))∇J(w(n − 1))
+(k/2)λ2∇J t(w(n − 1))∇J(w(n − 1))

= J(w(n − 1)) +
(

λ +
k

2
λ2)

)
‖∇J(w(n − 1))‖2.

Now we see the result of the line search in J by solving ∂J/∂λ = 0 for λ, that
is,

∂J

∂λ
= ‖∇J(w(n − 1))‖2(1 + kλ) = 0,

which has solution λ = −1/k. Thus the next w after the line search will be

w(n) = w(n − 1) − 1/k∇J(w(n − 1)).

We can also rearrange terms and find

w(n) − w(n − 1) = Δw(n − 1) = −1
k
∇J(w(n − 1)).

Using the Taylor expansion for ∇J(w(n) around w(n − 1) we can write

∇J(w(n)) = ∇J(w(n − 1)) + k(w(n) − w(n − 1)),

then substitute w(n) − w(n − 1) from above into the right-hand-side and find

∇J(w(n)) = ∇J(w(n − 1)) + k(−1/k∇J(w(n − 1))) = 0.

Indeed, Eqs. 56 and 57 in the text give βn = 0, given that ∇J(wn) = 0,
as shown. Equation 56 in the text is trivially satisfied since the numerator is
‖∇J(w(n))‖2, and thus the Fletcher-Reeves equation gives βn = 0. Equation 57
also vanishes because the numerator is the inner product of two vectors, one of
which is ∇J(w(n)) = 0, and thus the Polak-Ribiere equation gives βn = 0.

(b) The above proves that application of a line search reult with w(n− 1) takes us
to the minimum of J , and hence no further weight update is necessary.

34. Problem not yet solved

35. The Quickprop algorithm assumes the weights are independent and the error
surface is quadratic. Whith these assumptions, ∂J/∂w is linear. The graph shows
∂J/∂w versus w and a possible error minimization step. For finding a minimum in
the criterion function, we search for ∂J/∂w = 0. That is the value w where the line
crosses the w axis.
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We can easilty compute the intercept in this one-dimensional illustration. The equa-
tion of the line passing through (x0, y0 and x1, y1) is (x−x1)/(x1−x0) = (y−y1)/(y1−
y0). The x axis crossing is found by setting y = 0 and solving for x, that is

x − x1 = (x1 − x0)
−y1

y1 − y0
= (x1 − x0)

y1

y0 − y1
.

Now we can plug in our point shown on the graph, with x0 = wn−1, y0 = ∂J/∂w|n−1,
x1 = wn, y1 = ∂J/∂w|n, and by noting Δw(m) = (x1−x0) and Δw(n+1) = (x−x1).
The final result is

Δw(n + 1) =
∂J/∂w|n

∂J/∂w|n−1 − ∂J/∂w|n Δw(n).

Section 6.10

36. Consider the matched filter described by Eq. 66 in the text.

(a) The trial weight function w(t) = w∗(t) + h(t) constrained of Eq. 63 must be
obeyed:

∞∫
−∞

w2(t)dt =

∞∫
−∞

w∗2(t)dt,

and we expand to find
∞∫

−∞
w∗2dt +

∞∫
−∞

h2(t)dt + 2

∞∫
−∞

w∗(t)h(t)dt =

∞∫
−∞

w∗2(t)dt

and this implies

−2

∞∫
−∞

h(t)w∗(t)dt =

∞∫
−∞

h2(t)dt ≥ 0.

(b) We have
∞∫

−∞
x(t)w(t)dt =

∞∫
−∞

x(t)w∗(t)dt

︸ ︷︷ ︸
output z∗

+

∞∫
−∞

x(t)h(t)dt.
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From Eq. 66 in the text we know that w∗(t) = −λ/2x(t), and thus x(t) =
2w∗(t)/(−λ). We plug this form of x(t) into the right-hand side of the above
equation and find

∞∫
−∞

x(t)w(t)dt =

∞∫
−∞

x(t)[w∗(t) + h(t)]dt = z∗ +
2
−λ

∞∫
−∞

w∗(t)h(t)dt.

From part (a) we can substitute

2

∞∫
−∞

w∗(t)h(t)dt = −
∞∫

−∞
h2(t)dt,

and thus the output z of the matched filter is given by:

z =

∞∫
−∞

x(t)w(t)dt = z∗ − 1
−λ

∞∫
−∞

h2(t)dt.

(c) Plugging the above into Eq. 66 in the text,

z∗ =

∞∫
−∞

w∗(t)x(t)dt,

we get

z∗ =

∞∫
−∞

−λ

2
x(t)x(t)dt.

Now we check on the value of λz∗:

λz∗ = −λ2

2

∞∫
−∞

x2(t)dt < 0.

Thus z∗ and λ have opposite signs.

(d) Part (b) ensures z = z∗ if and only if

1
λ

∞∫
−∞

h2(t)dt = 0,

which occurs if and only if h(t) = 0 for all t. That is, w∗(t) ensures the maximum
output. Assume w1(t) also assures maximum output z∗ as well, that is

∞∫
−∞

x(t)w∗(t)dt = z∗

∞∫
−∞

x(t)w1(t)dt = z∗.
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We subtract both sides and find
∞∫

−∞
x(t)[w1(t) − w∗(t)]dt = 0.

Now we can let h(t) = w1(t) − w∗(t). We have just seen that given the trial
weight function w1(t) = w∗(t) + h(t), that h(t) = 0 for all t. This tells us that
w1(t) − w∗(t) = 0 for all t, or equivalently w1(t) = w∗(t) for all t.

37. Consider OBS and OBD algorithms.

(a) We have from Eq. 49 in the text

δJ =
(

∂J

∂w

)t

· δw︸ ︷︷ ︸

0

+
1
2
δwt · ∂2J

∂w2
· δw + O(‖δw3‖)︸ ︷︷ ︸


0

=
1
2
δwtHδw.

So, it is required to minimize δwtHδw, subject to the constraint of deleting one
weight, say weight q. Let uq be the unit vector along the qth direction in weight
space. Then, pre- and post-operating “picks out” the qq entry of a matrix, in
particular,

ut
qH

−1uq = [H−1]qq.

Now we turn to the problem of minimizing 1
2δwtHδw subject to δwtuq = −wq.

By the method of Lagrangian multipliers, this is equivalent to minimizing

f(δw) =
1
2
δwtHδw − λ (δwtuq + wq)︸ ︷︷ ︸

0

.

This in turn implies

∂f

∂δw
= Hδw − λ(uq) = 0.

Now since the derivative of matrix products obey

∂

∂x
xtAx = 2Ax

and

∂

∂x
xtb = b,

we have

δw = +λH−1uq.

To solve for λ we compute

δf

δλ
= 0,
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and this implies

δwtuq + wq = 0.

This implies

λut
qH

−1uq = −ωq,

which in turn gives the value of the Lagrange undetermined multiplier,

λ =
−wq

ut
qH−1uq

=
−wq

[H−1]qq
.

So, we have

δw = +λH−1uq = − wq

[H−1]qq
H−1uq.

Moreover, we have the saliency of weight q is

Lq =
1
2
[− wq

[H−1]qq
H−1uq]tH[− wq

[H−1]qq
H−1uq]

=
1
2

w2
q

([H−1]qq)2
ut

qH
−1HH−1uq

=
1
2

w2
q

(H−1)2qq

ut
qH

−1uq =
1
2

wqq

([H−1]qq)2
[H−1]qq

=
1
2

w2
q

[H−1]qq
.

(b) If H is diagonal, then

[H−1]qq =
1

Hqq
.

So, from part (a), the saliency of weight q for OBD is

Lq =
1
2

w2
q

[H−1]qq
=

1
2
w2

qHqq.

38. The three-layer radial basis function network is characterized by Eq. 61 in the
text:

zk = f

⎛⎝ nH∑
j=0

wkjϕj(x)

⎞⎠ ,

where we can let yj = ϕ(x). The quadratic error function we use is

J =
1
2

c∑
k=1

(tk − zk)2.

We begin by finding the contribution of the hidden-to-output weights to the error:

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

,
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where

∂J

∂netk
=

∂J

∂zk

∂zk

∂netk
= −(tk − zk)f ′(netk).

We put these together and find

∂J

∂wkj
= −(tk − zk)f ′(netk)ϕj(x).

Now we turn to the update rule for μj and bj . Here we take

ϕj(x) = e−bj‖x−μj‖2
.

Note that μj is a vector which can be written μ1j , μ2j , . . . , μdj . We now compute
∂J/∂μij :

∂J

∂μij
=

∂J

∂yj

∂yj

∂μij
.

We look at the first term and find

∂J

∂yj
=

c∑
k=1

−(tk − zk)
∂zk

∂netk

∂netk
∂yj

= −
c∑

k=1

(tk − zk)f ′(netk)wkj .

The second term is

∂yj

∂μji
= e−b‖x−μj‖2

(−1)(−1)2(xi − μij)

= 2ϕ(x).

We put all this together to find

∂J

∂μji
= −2ϕ(x)(xi − μij)

c∑
k=1

(tk − zk)f ′(netk)wkj .

Finally, we find ∂J/∂bj such that the size of the spherical Gaussians be adaptive:

∂J

∂bj
=

∂J

∂yj

∂yj

∂bj
.

While the first term is given above, the second can be calculated directly:

∂yj

∂bj
=

∂ϕ(x)
∂bj

= e−b‖x−μj‖2‖x − μj‖2(−1)

= −ϕ(x)‖x − μj‖2.

Thus the final derivative is

∂J

∂bj
= −ϕ(x)‖x − μj‖2

c∑
k=1

(tk − zk)f ′(netk)wkj .
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Now it is a simple matter to write the learning rules:

Δwkj = −η
∂J

∂wkj

Δμij = −η
∂J

∂μij

Δbj = −η
∂J

∂bj
,

with the derivatives as given above.

Section 6.11

39. Consider a general d-by-d matrix K and variable d-dimensional vector x.

(a) We write in component form:

xtKx =
d∑

j=1

d∑
i=1

xiKijxj

=
d∑

i=1

x2
i Kii +

d∑
i �=j

xixjKij .

The derivatives are, then,

d

dxr
xtKx =

d

dxr

⎡⎣ d∑
i=1

x2
i Kii +

d∑
i �=j

xixjKij

⎤⎦
=

d

dxr

[ ∑
i �=r

x2
i Kii + x2

rKrr

+
d∑
i

d∑
j

xixjKij + xr

∑
j �=r

xjKrj + xr

∑
i �=r

xiKir

]

= 0 + 2xrKrr + 0 +
d∑

j �=r

xjKrj +
d∑

i �=r

xiKir

=
d∑

j=1

xjKrj +
d∑

i=1

xiKir

= (Kx)
rth element + (Ktx)

tth element

This implies

d

dx
xtKx = Kx + Ktx = (K + Kt)x.

(b) So, when K is symmetric, we have

d

dx
xtKx = (K + Kt)x = 2Kx.



PROBLEM SOLUTIONS 247

40. Consider weight decay and regularization.

(a) We note that the error can be written

E = Epat + γ
∑
ij

w2
ij .

Then, gradient descent in the error function is

wnew
ij = wold

ij − η
δE

δwij

where η is the learning rate. We also have

∂E

∂wij
=

∂

∂wij

⎡⎣Epat + γ
∑
ij

w2
ij

⎤⎦
= γ2wij .

This implies

wnew
ij = wold

ij − 2γηwold
ij

= wold
ij (1 − 2γη).

(b) In this case we have wnew
ij = wold

ij (1 − ξ) where ξ is a weight decay constant.
Thus

wnew
ij = wold

ij (1 − 2γη)

from part (a). This implies 2γη = ξ or

γ =
ξ

2η
.

(c) Here we have the error function

E = Epat +
γw2

ij

1 + w2
ij

= Epat + γ

[
1 − 1

1 + w2
ij

]
∂E

∂wij
=

∂Epat

∂wij
+ γ

∂

∂wij

[
1 − 1

1 + w2
ij

]
= 0 +

γ2wij

(1 + w2
ij)

2

=
2γwij

(1 + w2
ij)

2 .

The gradient descent procedure gives

wnew
ij = wold

ij − η
∂E

∂wij
= wold

ij − η
2γwold

ij

(1 + w2
ij)

2

= wold
ij

[
1 − 2γη

(1 + w2
ij)

2

]
= wold

ij (1 − ξij)
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where

ξij =
2γη

(1 + w2
ij)

2 .

This implies

γ =
ξij(1 + w2

ij)
2

2η
.

(d) Now consider a network with a wide range of magnitudes for weights. Then, the
constant weight decay method wnew

ij = wold
ij (1−ξ) is equivalent to regularization

via a penalty on
∑
ij

ω2
ij . Thus, large magnitude weights are penalized and will

be pruned to a greater degree than weights of small magnitude. On the other
hand, the variable weight decay method wnew

ij = wold
ij (1 − ξij) penalized on∑

ij

[
1 − 1

1+w2
ij

]
, which is less susceptible to large weights. Therefore the pruning

will not be as severe on large magnitude weights as in the first case.

41. Suppose that the error Epat is the negative log-likelihood up to a constant, that
is,

Epat = −lnp(x|w) + constant.

Then we have

p(x|w) ∝ e−Epat .

Consider the following prior distribution over weights

p(ω) ∝ e
−λ

∑
i,j

w2
ij

where λ > 0 is some parameter. Clearly this prior favors small weights, that is, p(w)
is large if

∑
ij

w2
ij is small. The joint density of x,w is

p(x,w) = p(x|w)p(w) ∝ exp

⎡⎣−Epat − λ
∑
ij

w2
ij

⎤⎦ .

The posterior density is

p(w|x) =
p(x,w)
p(x)

∝ exp

⎡⎣−Epat − λ
∑
ij

w2
ij

⎤⎦ .

So, maximizing the posterior density is equivalnet to minimizing

E = Epat + λ
∑
ij

w2
ij ,

which is the E of Eq. 41 in the text.
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42. Given the definition of the criterion function

Jef = J(w) +
ε

2η
wtw,

we can compute the derivative ∂Jef/∂wi, and thus determine the learning rule. This
derivative is

∂Jef

∂wi
=

∂J

∂wi
+

ε

η
wi

for any wi. Thus the learning rule is

wi(k + 1) = wi(k) − η
∂J

∂wi

∣∣∣∣∣
wi(k)

− εwi(k)

= −η
∂J

∂wi

∣∣∣∣∣
wi(k)

+ (1 − ε)wi(k).

This can be written in two steps as

wnew
i (k) = wold

i (k)(1 − ε)

wold
i (k + 1) = −η

∂J

∂wi

∣∣∣∣∣
wold

i
(k)

+ wnew
i (k).

Continuing with the next update we have

wnew
i (k + 1) = wold

i (k + 1)(1 − ε)

wold
i (k + 2) = −η

∂J

∂wi

∣∣∣∣∣
wold

i
(k+1)

+ wnew
i (k + 1).

The above corresponds to the description of weight decay, that is, the weights are
updated by the standard learning rule and then shrunk by a factor, as according to
Eq. 38 in the text.
43. Equation 70 in the text computes the inverse of (H + αI) when H is initialized
to αI. When the value of α is chosen small, this serves as a good approximation

[H + αI]−1 � H−1.

We write the Taylor expansion of the error function around w∗ up to second order.
The approximation will be exact if the error function is quadratic:

J(w) � J(w∗) +
(

∂J

∂w

∣∣∣∣
w∗

)t

(w − w∗) + (w − w∗)tH(w − w∗).

We plug in H + αI for H and get

J ′(w) � J(w∗) +
(

∂J

∂w

∣∣∣∣
w∗

)t

(w − w∗) + (w − w∗)tH(w − w∗)︸ ︷︷ ︸
J(w)

+ · · · + (w − w∗)tαI(w − w∗).
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Thus we have

J ′(w) = J(w) + αwtw − αw∗tw∗︸ ︷︷ ︸
constant

.

Thus our calculation of H modifies the error function to be

J ′(w) = J(w) + α‖w‖2 − constant.

This constant is irrelevant for minimization, and thus our error function is equivalent
to

J ′′(w) + α‖w‖2,

which is equivalent to a criterion leading to weight decay.
44. The predicted functional increase in the error for a weight change δw is given by
Eq. 68 in the text:

δJ � 1
2
δwtHδw.

We want to find which component of w to set to zero that will lead to the smallest
increase in the training error. If we choose the qth component, then δw must satisfy
ut

qδw + wq = 0, where uq is the unit vector parallel to the qth axis. Since we want to
minimize δJ with the constraint above, we write the Lagrangian

L(w, λ) =
1
2
δwtHδw + λ (ut

qδw + wq)︸ ︷︷ ︸
0

,

and then solve the system of equations

∂L

δλ
= 0,

∂L

∂w
= 0.

These become

∂L

∂λ
= ut

qδw + wq = 0

∂L

∂wj
=

∑
k

Hkjδwk for j �= i

∂L

∂wj
=

∑
k

Hijδwk + λ for j = i.

These latter equations imply Hδw = −λuq. Thus δw = H−1(−λ)uq. We substitute
this result into the above and solve for the undetermined multiplier λ:

ut
qH

−1uq + wq = 0

which yields

λ =
−wq

[H−1]qq
.
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Putting these results together gives us Eq. 69 in the text:

δw = − wq

[H−1]qq
H−1uq.

For the second part of Eq. 69, we just need to substitute the expression for δw we
just found for the expression for δJ given in Eq. 68 in the text:

Lq =
1
2

[
− wq

[H−1]qq
H−1uq

]t

H
[
− wq

[H−1]qq
H−1uq

]

=
1
2

⎛⎝ wq

[H−1]qq
ut

q HH−1︸ ︷︷ ︸
I

wq

[H−1]qq
H−1uq

⎞⎠
=

1
2

w2
q

[H−1]qq
.

45. Consider a simple 2-1 network with bias. First let w = (w1, w2)t be the weights
and x = (x1, x2)t be the inputs, and w0 the bias.

(a) Here the error is

E =
n∑

p=1

Ep =
n∑

p=1

[tp(x) − zp(x)]2

where p indexes the patterns, and tp is the teaching or desired output and zp

the actual output. We can rewrite this error as

E =
∑
x∈D1

[f(w1x1 + w2x2 + w0) − 1]2 +
∑
x∈D2

[f(w1x1 + w2x2 + w0) + 1]2.

(b) To compute the Hessian matrix H = ∂2E
∂w2 , we proceed as follows:

∂E

∂wi
=

∑
x∈ω1

2
[
f(w1x1 + w2x2 + w0) − 1]f ′(w1x1 + w2x2 + w0)xi

+
∑
x∈ω2

2[f(w1x1 + w2x2 + w0) + 1]f ′(w1x1 + w2x2 + w0)xi, i = 1, 2

∂E

∂wj∂wi
= 2

[ ∑
x∈ω1

{f ′(w1x1 + w2x2 + w0)}2xjxi

+
∑
x∈ω1

[f(w1x1 + w2x2 + w0) − 1]f ′′(w1x1 + w2x2 + w0)xjxi

+
∑
x∈ω2

{f ′(w1x1 + w2x2 + w0)}2xjxi

+
∑
x∈ω2

[f(w1x1 + w2x2 + w0) + 1]f ′′(w1x1 + w2x2 + w0)xjxi

]
.

We let the net activation at the output unit be denoted

net = w1x1 + w2x2 + w0 = (w0 w1 w2)

⎛⎝ 1
x1

x2

⎞⎠ = w̃tx̃ = wtx + w0.
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Then we have

∂2E

∂wj∂wi
= 2

∑
x∈ω1

[(f ′(net))2 + (f(net)1)f ′′(net)]xjxi

+2
∑
x∈ω2

[(f ′(net))2 + (f(net) + 1)f ′′(net)]xjxi

=
∑
bfx

u(x)xixj

where

u(x) =
{

(f ′(net))2 + (f(net) − 1)f ′′(net) if x ∈ ω1

(f ′(net))2 + (f(net) + 1)f ′′(net) if x ∈ ω2

So, we have

H =

⎛⎝ ∑
x

u(x)x2
1

∑
x

u(x)x1x2∑
x

u(x)x1x2

∑
x

u(x)x2
2

⎞⎠ .

(c) Consider two data sets N(x|ωi) ∼ N(μi, 1), i = 1, 2. Then, H in terms of μ1, μ2

is H = ((Hij))2×2 where,

Hij = 2[(f ′(net1)2) + (f(net1) − 1)f ′′(net1)]μ1iμ1j

+2[(f ′(net2)2) + (f(net2) + 1)f ′′(net2)]μ2iμ2j

for i, j = 1, 2, where net1 = wtμ1 + w0 and net2 = wtμ2 + w0. Clearly, the
Hessian matrix is symmetric, that is, H12 = H21.

(d) We have the Hessian matrix

H =
(

H11 H12

H12 H22

)
.

Then, the two eigenvalues of H are the roots of |H − λI| = 0, that is,∣∣∣ h11 − λ h12

h12 h22 − λ

∣∣∣ = 0.

Now we have

(H11 − λ)(H22 − λ) − H2
12 = 0

and

λ2 − λ(H11 + H22) + H11H22 − H2
12 = 0,

and this implies the eigenvalue is

λ =
H11 + H22 ±

√
(H11 + H22)2 − 4(H11H22 − H2

12)
2

=
H11 + H22 ±

√
(H11 − H22)2 + 4H2

12

2
.
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Thus the minimum and maximum eigenvalues are

λmin =
H11 + H22 −

√
(H11 − H22)2 + 4H2

12

2

λmax =
H11 + H22 +

√
(H11 − H22)2 + 4H2

12

2
.

(e) Suppose μ1 = (1, 0) and μ2 = (0, 1). Then from part (c) we have

H12 = 0
H11 = 2[(f ′(w1 + w0))2 + (f(w1 + w0) − 1)f ′′(w1 + w0)]
H22 = 2[(f ′(w2 + w0))2 + (f(w2 + w0) + 1)f ′′(w2 + w0)].

From part (d) we have

λmin =
H11 + H22 − |H11 − H22|

2

λmax =
H11 + H22 + |H11 − H22|

2

and therefore in this case the minimum and maximum eigenvalues are

λmin = min(H11, H22)
λmax = max(H11, H22),

and thus their ratio is

λmax

λmin
=

max(H11, H22)
min(H11, H22)

=
H11

H22
or

H22

H11
.
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Computer Exercises

Section 6.2

1. Computer exercise not yet solved

Section 6.3

2. Computer exercise not yet solved

3. Computer exercise not yet solved

4. Computer exercise not yet solved

5. Computer exercise not yet solved

6. Computer exercise not yet solved

7. Computer exercise not yet solved

Section 6.4

8. Computer exercise not yet solved

Section 6.5

9. Computer exercise not yet solved

Section 6.6

10. Computer exercise not yet solved

Section 6.7

11. Computer exercise not yet solved

Section 6.8

12. Computer exercise not yet solved



Chapter 7

Stochastic methods

Problem Solutions

Section 7.1

1. First, the total number of typed characters in the play is approximately

m = 50 pages × 80
lines

page
× 40

characters

line
= 160000 characters.

We assume that each character has an equal chance of being typed. Thus, the prob-
ability of typing a specific charactor is r = 1/30.

We assume that the typing of each character is an independent event, and thus
the probability of typing any particular string of length m is rm. Therefore, a rough
estimate of the length of the total string that must be typed before one copy of
Hamlet appears is 1

rm = 30160000 � 2.52 × 10236339. One year is

365.25 days × 24
hours

day
× 60

minutes

hour
× 60

seconds

minute
= 31557600 seconds.

We are given that the monkey types two characters per second. Hence the expected
time needed to type Hamlet under these circumstances is

2.52 × 10236339characters × 1
2

second

character
× 1

31557600
year

seconds
� 4 × 10236331years,

which is much larger than 1010 years, the age of the universe.

Section 7.2

2. Assume we have an optimization problem with a non-symmetric connection matrix,
W, where wij �= wji.

E =
1
2
(2E) =

1
2

⎛⎝−1
2

N∑
i,j=1

wijsisj − 1
2

N∑
i,j=1

wjisisj

⎞⎠
255
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= −1
2

N∑
i,j=1

1
2
(wij + wji)sisj

We define a new weight matrix

ŵij =
wij + wji

2
,

which has the property ŵij = ŵji. So the original optimization problem is equivalent
to an optimization problem with a symmetric connection matrix, Ŵ.
3. Consider Fig. 7.2 in the text.

(a) In the discrete optimization problem, the variables only take the values ±1,
yielding isolated points in the space. Therefore, the energy is only defined on
these points, and there is no continuous landscape as shown in Fig. 7.2 in the
text.

(b) In the discrete space, all variables take ±1 values. In other words, all of the
feasible solutions are at the corners of a hypercube, and are of equal distance to
the “middle” (the center) of the cube. Their distance from the center is

√
N .

(c) Along any “cut” in the feature space parallel to one of the axes the energy will
be monotonic; in fact, it will be linear. This is because all other features are held
constant, and the energy depends monotonically on a single feature. However,
for cuts not parallel to a single axis (that is, when two or more features are
varied), the energy need not be monotonic, as shown in Fig. 7.6.

4. First, we recall each variable can take two values, ±1. The total number of
configurations is therefore 2N . An exhaustive search must calculate energy for all
configurations. For N = 100, the time for exhaustive search is

2100 configurations × 10−8second

configuration
� 1.27 × 1022seconds.

We can express this time as

1.27 × 1022seconds × 1 minute

60 seconds
× 1 hour

60 minutes
× 1 day

24 hours
× 1 year

365 days
� 4.0 × 1014years,

which is ten thousand times larger than 1010 years, the age of the universe. For
N = 1000, a simliar argument gives the time as 3.4 × 10285 years.
5. We are to suppose that it takes 10−10 seconds to perform a single multiply-
accumulate.

(a) Suppose the network is fully connected. Since the connection matrix is sym-
metric and wii = 0, we can compute E as − ∑

i>j

wijsisj and thus the number

of multiply-accumulate operations needed for calculating E for a single config-
uration is N(N − 1)/2. We also know that the total number of configurations
is 2N for a network of N binary units. Therefore, the total time t(N) for an
exhaustive search on a network of size N (in seconds) can be expressed as

t(N) = 10−10 second

operation
× N(N − 1)

2
× operations

configuration
× 2Nconfigurations

= 10−10N(N − 1)2N−1seconds.
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log[N]

log[t]

(b) See figure.

(c) We need to find the largest possible N such that the total time is less than or
equal to the specified time. Unfortunately, we cannot solve the inverse of t(N)
in a closed form. However, since t(N) is monotonically increasing with respect
to N , a simple search can be used to solve the problem; we merely increase
N until the corresponding time exceeds the specified time. A straightforward
calculation for a reasonable N would overflow on most computers if no special
software is used. So instead we use the logarithm of the expression, specifically

t(N) = 10log10−10N(N−1)2(N−1)
= 10(N−1)log2+logN+log(N−1)−10.

A day is 86400 seconds, within which an exhaustive search can solve a network
of size 20 (because 5.69 × 104 � t(20) < 86400 < t(21) � 6.22 × 105). A year is
31557600 � 3.16 × 107 seconds, within which an exhaustive search can solve a
network of size 22 (because 7.00×106 � t(22) < 3.16×107 < t(23) � 8.10×107).
A century is 3155760000 � 3.16×109 seconds, within which an exhaustive search
can solve a network of size 24 (because 9.65×108 � t(24) < 3.16×109 < t(25) �
1.18 × 1010).

6. Notice that for any configuration γ, Eγ does not change with T . It is sufficient to
show that for any pair of configurations γ and γ′, the ratio of the probabilities P (γ)
and P (γ′) goes to 1 as T goes to infinity:

lim
T→∞

P (γ)
P (γ′)

= lim
T→∞

e−Eγ/T

e−Eγ′/T
= lim

T→∞
e(Eγ′−Eγ)/T

Since the energy of a configuration does not change with T , Eγ and Eγ′ are constants,
so we have:

lim
T→∞

(Eγ′ − Eγ)
T

= 0

lim
T→∞

e(Eγ′−Eγ)/T = 1,

which means the probabilities of being in different configurations are the same if T is
sufficiently high.
7. Let kN

u denote the number pointing up in the subsystem of N magnets and kN
d

denote the number down.
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(a) The number of configurations is given by the number of ways of selecting kN
u

magnets out of N and letting them point up, that is,

K(N, EN ) =
(

N

kN
u

)
We immediately have the following set of equations for kN

u and kN
d :

kN
u + kN

d = N

kN
u − kN

d = EN

The solution is given by kN
u = 1

2 (N + EN ) and kN
d = 1

2 (N −EN ). Therefore we
have

K(N, EN ) =
(

N

kN
u

)
=

(
N

1
2 (N + EN )

)
.

(b) We follow the approach in part (a), and find

K(N, EM ) =
(

M

kM
u

)
=

(
M

1
2 (M + EM )

)
.

(c) Problem not yet solved

(d) Problem not yet solved

(e) Problem not yet solved

8. Consider a single magnet in an applied field.

(a) The two states γ′ = 0 and γ′ = 1 correspond to the two states of the binary
magnet, s = +1 and s = −1, respectively. For γ′ = 0 or s = +1, Eγ′ = E0; for
γ′ = 1 or s = −1, Eγ′ = −E0. Therefore, according to Eq. 3 in the text, the
partition function is

Z(T ) = e−E0/T + e−(−E0)/T = e−E0/T + eE0/T .

(b) According to Eq. 2 in the text, the probability of the magnet pointing up and
pointing down are

P (s = +1) =
e−E0/T

Z(T )
, P (s = −1) =

eE0/T

Z(T )

respectively. We use the partition function obtained in part (a) to calculate the
expected value of the state of the magnet, that is,

E [s] = P (s = +1) − P (s = −1) =
e−E0/T − eE0/T

e−E0/T + eE0/T
= tanh(−E0/T ),

which is indeed in the form of Eq. 5 in the text.
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(c) We want to calculate the expected value of the state, E [s]. We assume the other
N −1 magnets produce an average magnetic field. In another word, we consider
the magnet in question, i, as if it is in an external magnetic field of the same
strength as the average field. Therefore, we can calculate the probabilities in a
similar way to that in part (b). First, we need to calculate the energy associated
with the states of i. Consider the states of the other N−1 magnets are fixed. Let
γ+

i and γ−
i denote the configuration in which si = +1 and si = −1, respectively,

while the other N −1 magnets take the fixed state values. Therefore, the energy
for configuration γ+

i is

Eγ+
i

= −1
2

N∑
j,k=1

wjksjsk = −1
2

⎡⎣ ∑
k,j �=i

wkjsjsk +
N∑

k=1

wkisk +
N∑

j=1

wijsj

⎤⎦
since si = +1. Recall that the weight matrix is symmetric, that is, wki = wik,
and thus we can write

N∑
k=1

wkisk =
N∑

k=1

wiksk =
N∑

j=1

wijsj ,

where the last equality is by renaming dummy summation indices. Therefore
the energy is

Eγ+
i

= −
N∑

j=1

wijsj − 1
2

∑
j,k �=i

wjksjsk = −li + C,

where, as given by Eq. 5 in the text, li =
∑
j

wijsj , and C = − 1
2

∑
j,k �=i

wjksjsk is

a constant independent of i. Similarly, we can obtain

Eγ−
i

=
N∑

j=1

wijsj − 1
2

∑
j,k �=i

wjksjsk = li + C

Next, we can apply the results from parts (a) and (b). The partition function
is thus

Z(T ) = e
−E

γ
+
i

/T
+ e

−E
γ
−
i

/T
= e(li−C)/T + e(−li−C)/T = (eli/T + e−li/T )/EC/T .

Therefore, according to Eq. 2 in the text, the expected value of the state of
magnet i in the average field is

E [si] = Pr(si = +1)(+1) + Pr(si = −1)(−1) =
e
−E

γ
+
i

/T − e
−E

γ
−
i

/T

Z(T )

=
e(li−C)/T − e(−li−C)/T

(eli/T + e−li/T )/EC/T
=

eli/T − e−li/T

eli/T + e−li/T
= tanh(li/T ).

9. The two input nodes are indexed as 1 and 2, as shown in the figure. Since the input
units are supposed to have fixed state values, we can ignore the connection between
the two input nodes. For this assignment, we use a version of Boltzmann networks
with biases, in another word, there is a node with constant value +1 in the network.
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Suppose the constant node is numbered as 0. The representation power of Boltzmann
networks with biases is the same as those without biases. This can be shown as follows.
First, each network without the constant unit can be converted to a network with the
constant unit by including the constant node 0 and assigning the connection weights
w0j a zero value. Second, each network with the constant unit can also be converted
to a network without the constant unit by replacing the constant unit with a pair
of units, numbered −1 and −2. Node −1 assumes the same connection weights to
other units as the constant unit 0, while node −2 is only connected to node −1. The
connection weights between nodes −1 and −2 are a vary large positive number M . In
this way, the nodes −1 and −2 are forced to have the same value in the configurations
with the lowest energy, one of which requires the value be +1.

1 2

3 3

1 2

4

3

5

1 2

4

Next, we are going to determine the set of connection weights between pairs of
units. In the follows, we use a vector of state values of all units to indicate the
corresponding configuration.

(a) For the exclusive-OR problem, the input-output relationship is as follows:

Input 1 Input 2 Output (3)
+1 +1 −1
+1 −1 +1
−1 +1 +1
−1 −1 −1

Since the Boltzmann network always converges to a minimum energy configura-
tion, it solves the exclusive-OR problem if and only if the following inequalities
hold:

E{+1,+1,−1} < E{+1,+1,+1}
E{+1,−1,+1} < E{+1,−1,−1}
E{−1,+1,+1} < E{−1,+1,−1}
E{−1,−1,−1} < E{−1,−1,+1}.

Note that the energy of the three-unit system can be written as

E{s1,s2,s3} = −w13s1s3 − w23s2s3 − w03s3

The above set of inequalities reduce to

+w13 + w23 + w03 < −w13 − w23 − w03

−w13 + w23 − w03 < +w13 − w23 + w03

+w13 − w23 − w03 < −w13 + w23 + w03

−w13 − w23 + w03 < +w13 + w23 − w03



PROBLEM SOLUTIONS 261

or equivalently,

w13 + w23 + w03 < 0 (1)
w23 < w13 + w03 (2)
w13 < w23 + w03 (3)
w03 < w13 + w23 (4)

From (1) + (4), we have w03 < 0, and from (2) + (3), we have 0 < w03, which
is a contradiction. Therefore, a network of the specified form cannot solve the
exclusive-OR problem.

(b) For the two-output network, the input-output relationship is as follows:

Input 1 Input 2 Output 3 Output 4
+1 +1 −1 +1
+1 −1 +1 −1
−1 +1 +1 −1
−1 −1 −1 +1

This network solves the exclusive-OR problem if and only if

E{+1,+1,−1,+1} < E{+1,+1,−1,−1}
E{+1,+1,−1,+1} < E{+1,+1,+1,−1}
E{+1,+1,−1,+1} < E{+1,+1,+1,+1}
E{+1,−1,+1,−1} < E{+1,−1,−1,−1}
E{+1,−1,+1,−1} < E{+1,−1,−1,+1}
E{+1,−1,+1,−1} < E{+1,−1,+1,+1}
E{−1,+1,+1,−1} < E{−1,+1,−1,−1}
E{−1,+1,+1,−1} < E{−1,+1,−1,+1}
E{−1,+1,+1,−1} < E{−1,+1,+1,+1}
E{−1,−1,−1,+1} < E{−1,−1,−1,−1}
E{−1,−1,−1,+1} < E{−1,−1,+1,−1}
E{−1,−1,−1,+1} < E{−1,−1,+1,+1}.

Recall the energy for the four-unit network:

E{s1,s2,s3,s4} = −w13s1s3 − w14s1s4 − w23s2s3 − w24s2s4 − w34s3s4 − w03s3 − w04s4.

The above set of inequalities reduce to:

+w13 − w14 + w23 − w24 + w34 + w03 − w04 < +w13 + w14 + w23 + w24 − w34 + w03 + w04

+w13 − w14 + w23 − w24 + w34 + w03 − w04 < −w13 + w14 − w23 + w24 + w34 − w03 + w04

+w13 − w14 + w23 − w24 + w34 + w03 − w04 < −w13 − w14 − w23 − w24 − w34 − w03 − w04

−w13 + w14 + w23 − w24 + w34 − w03 + w04 < +w13 + w14 − w23 − w24 − w34 + w03 + w04

−w13 + w14 + w23 − w24 + w34 − w03 + w04 < +w13 − w14 − w23 + w24 + w34 + w03 − w04

−w13 + w14 + w23 − w24 + w34 − w03 + w04 < −w13 − w14 + w23 + w24 − w34 − w03 − w04

+w13 − w14 − w23 + w24 + w34 − w03 + w04 < −w13 − w14 + w23 + w24 − w34 + w03 + w04

+w13 − w14 − w23 + w24 + w34 − w03 + w04 < −w13 + w14 + w23 − w24 + w34 + w03 − w04
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+w13 − w14 − w23 + w24 + w34 − w03 + w04 < +w13 + w14 − w23 − w24 − w34 − w03 − w04

−w13 + w14 − w23 + w24 + w34 + w03 − w04 < −w13 − w14 − w23 − w24 − w34 + w03 + w04

−w13 + w14 − w23 + w24 + w34 + w03 − w04 < +w13 − w14 + w23 − w24 + w34 − w03 + w04

−w13 + w14 − w23 + w24 + w34 + w03 − w04 < +w13 + w14 + w23 + w24 − w34 − w03 − w04

or equivalently

w34 < w14 + w24 + w04 (1)
w13 + w23 + w03 < w14 + w24 + w04 (2)

w13 + w23 + w34 + w03 < 0 (3)
w23 + w34 < w13 + w03 (4)

w14 + w23 + w04 < w13 + w24 + w03 (5)
w14 + w34 + w04 < w24 (6)

w13 + w34 < w23 + w03 (7)
w13 + w24 + w04 < w14 + w23 + w03 (8)
w24 + w34 + w04 < w14 (9)
w14 + w24 + w34 < w04 (10)
w14 + w24 + w03 < w13 + w23 + w04 (11)

w34 + w03 < w13 + w23. (12)

From (2) + (11), we have the constraint w03 < w04, and from (5) + (8), we
have w04 < w03. These two inequalities form a contradiction and therefore the
network cannot solve the exclusive-OR problem.

(c) We consider the assignments as follows:

Input 1 Input 2 Output 3 Output 4 Hidden 5
+1 +1 −1 +1 +1
+1 −1 +1 −1 −1
−1 +1 +1 −1 −1
−1 −1 −1 +1 −1

For the network to solve the exclusive-OR problem, it must be the case that

E{+1,+1,−1,+1,+1} ≤ E{+1,+1,−1,+1,−1}
E{+1,+1,−1,+1,+1} < E{+1,+1,−1,−1,±1}
E{+1,+1,−1,+1,+1} < E{+1,+1,+1,−1,±1}
E{+1,+1,−1,+1,+1} < E{+1,+1,+1,+1,±1}
E{+1,−1,+1,−1,−1} ≤ E{+1,−1,+1,−1,+1}
E{+1,−1,+1,−1,−1} < E{+1,−1,−1,−1,±1}
E{+1,−1,+1,−1,−1} < E{+1,−1,−1,+1,±1}
E{+1,−1,+1,−1,−1} < E{+1,−1,+1,+1,±1}
E{−1,+1,+1,−1,−1} ≤ E{−1,+1,+1,−1,+1}
E{−1,+1,+1,−1,−1} < E{−1,+1,−1,−1,±1}
E{−1,+1,+1,−1,−1} < E{−1,+1,−1,+1,±1}
E{−1,+1,+1,−1,−1} < E{−1,+1,+1,+1,±1}
E{−1,−1,−1,+1,−1} ≤ E{−1,−1,−1,+1,+1}
E{−1,−1,−1,+1,−1} < E{−1,−1,−1,−1,±1}
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E{−1,−1,−1,+1,−1} < E{−1,−1,+1,−1,±1}
E{−1,−1,−1,+1,−1} < E{−1,−1,+1,+1,±1}

The set of inequalities can be simplified as follows

w35 ≤ w05 + w15 + w25 + w45 (1)
w34 < w04 + w14 + w24 + w45 (2)

w34 + w35 < w04 + w05 + w14 + w15 + w24 + w25 (3)
w03 + w13 + w23 + w35 < w04 + w14 + w24 + w45 (4)

w03 + w13 + w23 < w04 + w05 + w14 + w15 + w24 + w25 (5)
w03 + w13 + w23 + w34 + w35 < 0 (6)

w03 + w13 + w23 + w34 < w05 + w15 + w25 + w45 (7)
w05 + w15 + w35 ≤ w25 + w45 (8)

w05 + w15 + w23 + w34 < w03 + w13 + w25 + w45 (9)
w23 + w34 + w35 < w03 + w13 (10)

w04 + w05 + w14 + w15 + w23 < w03 + w13 + w24 + w25 (11)
w04 + w14 + w23 + w35 < w03 + w13 + w24 + w45 (12)

w04 + w05 + w14 + w15 + w34 + w35 < w24 + w25 (13)
w04 + w14 + w34 < w24 + w45 (14)
w05 + w25 + w35 ≤ w15 + w45 (15)

w05 + w13 + w25 + w34 < w03 + w15 + w23 + w45 (16)
w13 + w34 + w35 < w03 + w23 (17)

w04 + w05 + w13 + w24 + w25 < w03 + w14 + w15 + w23 (18)
w04 + w13 + w24 + w35 < w03 + w14 + w23 + w45 (19)

w04 + w05 + w24 + w25 + w34 + w35 < w14 + w15 (20)
w04 + w24 + w34 < w14 + w45 (21)

w05 + w45 ≤ w15 + w25 + w35 (22)
w05 + w14 + w24 + w34 < w04 + w15 + w25 + w35 (23)
w14 + w24 + w34 + w45 < w04 (24)
w03 + w05 + w14 + w24 < w04 + w13 + w15 + w23 + w25 (25)
w03 + w14 + w24 + w45 < w04 + w13 + w23 + w35 (26)
w03 + w05 + w34 + w45 < w13 + w15 + w23 + w25 (27)

w03 + w34 < w13 + w23 + w35 (28)

Consider the set of weights w05 = w35 = −1, w15 = w25 = 1, w03 = −1/2, w13 =
w23 = w45 = 1/2, w14 = w24 = −1/4, w04 = 1/4, w34 = 0. The above set of
inequalities reduce to

−1 ≤ 3/2 (1) 0 < 1/4 (2) −1 < 3/4 (3)
−1/2 < 1/4 (4) 1/2 < 3/4 (5) −1/2 < 0 (6)

1/2 < 3/2 (7) −1 ≤ 3/2 (8) 1/2 < 3/2 (9)
−1/2 < 0 (10) 1/2 < 3/4 (11) −1/2 < 1/4 (12)
−1 < 3/4 (13) 0 < 1/4 (14) −1 ≤ 3/2 (15)
1/2 < 3/2 (16) −1/2 < 0 (17) 1/2 < 3/4 (18)

−1/2 < 1/4 (19) −2 < 3/4 (20) 0 < 1/4 (21)
−1/2 ≤ 1 (22) −3/2 < 5/4 (23) 0 < 1/4 (24)
−2 < 13/4 (25) −1/2 < 1/4 (26) −1 < 3 (27)

−1/2 < 0 (28)
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Since all these inequalities hold, the network can indeed implement the exclusive-
OR problem.

10. As with the solution to Problem 9, we consider networks with biases (that is, a
constant unit). The two input nodes are indexed as 1 and 2, the output is 4, and the
hidden unit is 3, as shown in the figure.

1 2

4

3

We consider the assignments of all nodes as follows:

Input 1 Input 2 Hidden (3) Output (4)
+1 +1 +1 −1
+1 −1 −1 +1
−1 +1 −1 +1
−1 −1 −1 −1

For the network to solve the exclusive-OR problem, it must be the case that

E{+1,+1,+1,−1} ≤ E{+1,+1,−1,−1}
E{+1,+1,+1,−1} < E{+1,+1,+1,+1}
E{+1,+1,+1,−1} < E{+1,+1,−1,+1}
E{+1,−1,−1,+1} ≤ E{+1,−1,+1,+1}
E{+1,−1,−1,+1} < E{+1,−1,+1,−1}
E{+1,−1,−1,+1} < E{+1,−1,−1,−1}
E{−1,+1,−1,+1} ≤ E{−1,+1,+1,+1}
E{−1,+1,−1,+1} < E{−1,+1,+1,−1}
E{−1,+1,−1,+1} < E{−1,+1,−1,−1}
E{−1,−1,−1,−1} ≤ E{−1,−1,+1,−1}
E{−1,−1,−1,−1} < E{−1,−1,+1,+1}
E{−1,−1,−1,−1} < E{−1,−1,−1,+1}

Consider the set of weights w03 = w34 = −1, w13 = w23 = 1, w04 = −1/2, and
w14 = w24 = 1/2. The energies involved in the above set of inequalities are

E{+1,+1,+1,−1} = −3
2

E{+1,+1,−1,−1} = +
5
2

E{+1,+1,+1,+1} = −1
2

E{+1,+1,−1,+1} = −1
2

E{+1,−1,−1,+1} = −3
2
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E{+1,−1,+1,+1} = +
5
2

E{+1,−1,+1,−1} = −1
2

E{+1,−1,−1,−1} = −1
2

E{−1,+1,−1,+1} = −3
2

E{−1,+1,+1,+1} = +
5
2

E{−1,+1,+1,−1} = −1
2

E{−1,+1,−1,−1} = −1
2

E{−1,−1,−1,−1} = −7
2

E{−1,−1,+1,−1} = +
1
2

E{−1,−1,+1,+1} = +
11
2

E{−1,−1,−1,+1} = −5
2

So, the set of inequalities hold, and the network can indeed implement the solution
to the exclusive-OR problem.

Section 7.3

11. We use the definition of Kullback-Leibler divergence from Eq. 12 in the text as
follows:

DKL(Q(αo|αi), P (αo|αi)) =
∑
αi

Q(αi)
∑
αo

Q(αo|αi) log
Q(αo|αi)
P (αo|αi)

.

Recall that from Bayes’ rule, we have

Q(αo|αi) =
Q(αo, αi)

Q(αi)
and P (αo|αi) =

P (αo, αi)
P (αi)

.

Thus the Kullback-Leibler divergence in this case can be written

DKL(Q(αo|αi), P (αo|αi))

=
∑
αi

Q(αi)
∑
αo

Q(αo|αi) log
Q(αo|αi)
P (αo|αi)

=
∑
αi

Q(αi)
∑
αo

Q(αo|αi) log
Q(αo, αi)P (αi)
P (αo, αi)Q(αi)

=
∑
αi

Q(αi)
∑
αo

Q(αo|αi)
(

log
Q(αo, αi)
P (αo, αi)

− log
Q(αi)
P (αi)

)

=
∑
αi

∑
αo

Q(αi)Q(αo|αi) log
Q(αo, αi)
P (αo, αi)

−
∑
αi

Q(αi) log
Q(αi)
P (αi)

∑
αo

Q(αo|αi)
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=
∑

αi,αo

Q(αo, αi) log
Q(αo, αi)
P (αo, αi)

−
∑
αi

Q(αi) log
Q(αi)
P (αi)

.

Using the definition of DKL in Eq. 7 in the text, we have

DKL(Q(αo|αi), P (αo|αi)) = DKL(Q(αo, αi), P (αo, αi)) − DKL(Q(αi), P (αi))

According to Eq. 13 in the text, the learning rule is given by

Δwij = −η
∂DKL(Q(αo|αi), P (αo|αi))

∂wij

= −η

[
∂DKL(Q(αo, αi), P (αo, αi))

∂wij
− ∂DKL(Q(αi), P (αi))

∂wij

]
Then we can use Eqs. 8, 9 and 10 in the text to get the learning rule as follows:

Δwij =
η

T

[
(EQ[sisj ]αiαo clamped − E [sisj ]free) − (EQ[sisj ]αi clamped − E [sisj ]free)

]
=

η

T

[EQ[sisj ]αiαo clamped − EQ[sisj ]αi clamped

]
which is indeed in the form of Eq. 14 in the text.
12. Let the constant factor in Eq. 15 in the text be 1. We have that, if i �= j,

wij =
1
K

K∑
k=1

si(xk)sj(xk).

Here, we have K = 3. The weight matrix can be calculated as

W =
1
3

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 3 −1 −1 −3

−1 0 −1 −1 −1 1
3 −1 0 −1 −1 −3

−1 −1 −1 0 −1 1
−1 −1 −1 −1 0 1
−3 1 −3 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(a) First, we determine the energy change due to the perturbation. Let xk
l denote

the pattern obtained by perturbing unit l in the pattern xk. According to Eq. 1,
the energy change is

ΔE(xk, l) = Exk
l
− Exk

= −1
2

∑
ij

wijsi(xk
l )sj(xk

l ) +
1
2

∑
ij

wijsi(xk)sj(xk)

= −1
2

∑
ij

wij(si(xk
l )sj(xk

l ) − si(xk)sj(xk))

Since each unit only takes 2 possible values ±1, we have sl(xk
l ) = −sl(xk). We

also have si(xk
l ) = si(xk) if i �= l since we only perturb one unit at a time. So,

we can cancel most of the terms in the above summation.
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Also noting wij = wji, we have

ΔE(xk, l) = −
∑
i �=l

wil(si(xk
l )sl(xk

l ) − si(xk)sl(xk))

= −
∑
i �=l

wilsi(xk)(−sl(xk) − sl(xk))

= 2sl(xk)
∑
i �=l

wilsi(xk)

Therefore, the change in energy obeys

ΔE(xk, l) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

x1 14
3

−2
3

14
3

2 2
14
3

x2 14
3

2
14
3

2 −2
3

14
3

x3 14
3

2
14
3

−2
3

2
14
3

Therefore, none of the three patterns give local minima in energy.

(b) Let x̂ denote the pattern in which si(x̂) = −si(x). We have

Ex̂ = −1
2

∑
ij

wijsi(x̂)sj(x̂) = −1
2

∑
ij

wij(−si(x))(−sj(x)) = −1
2

∑
ij

wijsi(x)sj(x) = Ex

Therefore, if x gives a local minimum in energy, x̂ also gives a local minimum
in energy.

13. As in Problem 12, the symmetric connection matrix is

W =
1
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 3 1 −1 −3 1 −1
−1 0 −1 −3 −1 1 −3 3

3 −1 0 1 −1 −3 1 −1
1 −3 1 0 1 −1 3 −3

−1 −1 −1 1 0 1 1 −1
−3 1 −3 −1 1 0 −1 1

1 −3 1 3 1 −1 0 −3
−1 3 −1 −3 −1 1 −3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We thus need merely to check whether the patterns give local minima in energy. We
have

ΔE(xk, l) l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8

x1 2
14
3

2
14
3

14
3

2
14
3

14
3

x2 6
26
3

6
26
3

2
3

6
26
3

26
3

x3 26
3

22
3

26
3

22
3

−2
3

26
3

22
3

22
3
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Therefore, x1 and x2 give local minima in energy, but x3 does not.
14. For simplicity, we consider there is only one pattern with a single missing feature.
Suppose the deficient input pattern is αd, the missing feature is represented by sk,
and a pattern of the hidden units is β. If after annealing with clamped input pattern
αd, the values of sk and β are s∗k and β∗, respectively. We need to show that P (sk =
s∗k|αd) > P (sk = −s∗k|αd). We consider the ratio of the two probabilities

P (sk = s∗k|αd)
P (sk = −s∗k|αd)

=

∑
β

P (sk = s∗k, β|αd)∑
β

P (sk = −s∗k, β|αd)
=

∑
β

P (αd, sk = s∗k, β|αd)∑
β

P (αd, sk = −s∗k, β|αd)
.

Since the pattern {αd, sk = s∗k, β∗} gives the minimal energy due to annealing, sup-
posing there is only one global minimal corresponding to clamped αd, we have for any
β, that

E{αd,sk=s∗
k
,β∗} < E{αd,sk=s∗

k
,β �=β∗} and E{αd,sk=s∗

k
,β∗} < E{αd,sk=−s∗

k
,β}.

Since for any configuration γ including αd as a subpattern, it holds that

P (γ|αd) =
e−Eγ/T∑

sk,β e
−E{αd,sk,β}/T

.

Therefore, the following three limits hold:

lim
T→0

P (αd, sk = s∗k, β∗|αd) = 1

lim
T→0

P (αd, sk = s∗k, β �= β∗|αd) = 0

lim
T→0

P (αd, sk = −s∗k, β|αd) = 0.

So, for any 0 < ε < 1/2, there exists a temperature T0, such that if T < T0,

P (αd, sk = s∗k, β∗|αd) > 1 − ε.

Therefore, under the same conditions we have the two inequalities:∑
β �=β∗

P (αd, sk = s∗k, β|αd) < ε

∑
β

P (αd, sk = −s∗k, β|αd) < ε.

Therefore the ratio of the probability of sk = s∗k to that for sk = −s∗k, all given the
deficient information αd, is

P (sk = s∗k|αd)
P (sk = −s∗k|αd)

=

∑
β

P (αd, sk = s∗k, β|αd)∑
β

P (αd, sk = −s∗k, β|αd)

=

P (αd, sk = s∗k, β∗|αd) +
∑

β �=β∗
P (αd, sk = s∗k, β|αd)∑

β

P (αd, sk = −s∗k, β|αd)

>
1 − ε

ε
> 1.
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So s∗k is the most probable value given αd.
15. Assume the correct category is represented by sk, the input pattern is αi, and
the known incorrect catagory is represented by sj , sj = −1, j �= k. We consider the
ratio between probabilities P (sk = +1|αi, sj = −1) and P (sk = +1|αi):

P (sk = +1|αi, sj = −1)
P (sk = +1|αi)

=
P (sk = +1, αi, sj = −1)

P (sk = +1, αi)
P (αi)

P (αi, sj = −1)

For a successfully trained network for classification, sk = +1 implies sj = −1. There-
fore, P (sk = +1, αi, sj = −1) = P (sk = +1, αi), and

P (sk = +1|αi, sj = −1)
P (sk = +1|αi)

=
P (αi)

P (αi, sj = −1)
=

1
P (sj = −1|αi)

≥ 1,

and hence the claim is verified.
16. Problem not yet solved

17. Here we have the variance in response to the force is

Var[li] = Var

⎡⎣ N∑
j=1

wijsj

⎤⎦ =
N∑

j=1

Var[wijsj ] = NVar[wijsj ].

Since Var[x] = E [x2] − (E [x])2, we can write

Var[wijsj ] = E [w2
ijs

2
j ] − (E [wijsj ])2 = E [w2

ij ]E [s2
j ] − (E [wij ]E [sj ])2.

Since P (sj = +1) = P (sj = −1) = 0.5, the expected value of sj is E [sj ] = 0, and
s2

j = 1. Therefore, we have

Var[wijsj ] = E [w2
ij ],

and thus

Var[li] = NE [w2
ij ].

We seek to have the variance of the response to be 1, that is Var[li] = 1. which implies
E [w2

ij ] = 1/N . If we randomly initialize wij according to a uniform distribution from
[−h, h], we have

E [w2
ij ] =

∫ h

−h

1
2h

t2dt =
1
2h

t3

3

∣∣∣∣h
−h

=
h2

3
.

Under these conditions, then,

1
N

=
h2

3
, h =

√
3/N

So, the weights are initialized uniformly in the range −√
3/N < wij < +

√
3/N .

18. We consider the problem of setting the learning rate for a Boltzmann network
having N units.

(a) In the solution to Problem 11, we showed that the Kullback-Leibler divergence
obeyed

DKL(Q(αo|αi), P (αo|αi)) = DKL(Q(αi, αo), P (αi, αo)) − DKL(Q(αi), P (αi)).
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As such, we need merely derive the result for DKL. From Eq. 7 in the text, we
obtain

DKL(Q(α), P (α)) =
∑
α

Q(α)log
Q(α)
P (α)

=
∑
α

Q(α)logQ(α) −
∑
α

Q(α)logP (α).

Therefore, we have

∂DKL(Q(α), P (α))
∂wuv

= −
∑
α

Q(α)
P (α)

∂P (α)
∂wuv

,

which yields the Hessian matrix as

H =
∂2DKL(Q(α), P (α))

∂wij∂wuv

=
∑
α

Q(α)
P (α)2

∂P (α)
∂wij

∂P (α)
∂wuv

−
∑
α

Q(α)
P (α)

∂2P (α)
∂wij∂wuv

.

If the network has sufficient parameters, as the number of training examples goes
to infinity, the weights converge to the optimal one, w∗, where P (α) = Q(α).
At this limit, the second term in the above expression can be omitted, because

∑
α

Q(α)
P (α)

∂2P (α)
∂wij∂wuv

=
∑
α

∂2P (α)
∂wij∂wuv

=
∂2

∂wij∂wuv

(∑
α

P (α)

)

=
∂21

∂wij∂wuv
= 0.

Therefore, the Hessian is simply

H �
∑
α

Q(α)
P (α)2

∂P (α)
∂wij

∂P (α)
∂wuv

From Eq. 9, we have

1
P (α)

∂P (α)
∂wij

=
1
T

⎡⎣∑
β

si(αβ)sj(αβ)P (β|α) − E [sisj ]

⎤⎦ ,

and thus we can write the Hessian as

H �
∑
α

Q(α)
P (α)2

∂P (α)
∂wij

=
1

T 2

∑
α

Q(α)

⎡⎣∑
β

si(αβ)sj(αβ)P (β|α) − E [sisj ]

⎤⎦⎡⎣∑
β′

su(αβ′)sv(αβ′)P (β′|α) − E [susv]

⎤⎦
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=
1

T 2

[ ∑
α

Q(α)
∑

β

si(αβ)sj(αβ)P (β|α)
∑
β′

su(αβ′)sv(αβ′)P (β′|α)

−EQ[sisj ]αE [susv] − E [sisj ]EQ[susv]α + E [sisj ]E [susv]

]

=
1

T 2

[ ∑
α

Q(α)
∑
β,β′

si(αβ)sj(αβ)su(αβ′)sv(αβ′)P (β, β′|α)

−EQ[sisj ]αE [susv] − E [sisj ]EQ[susv]α + E [sisj ]E [susv]

]

=
1

T 2

[EQ[sisjsusv]α − EQ[sisj ]αE [susv] − E [sisj ]EQ[susv]α + E [sisj ]E [susv]
]
,

where EQ[·]α indicates the expected value with clamped α averaged according
to Q. We can further simplify the above expression by noticing that when the
weights converge to w∗, P (α) = Q(α). Thus, the Hessian is

H � 1
T 2

[EQ[sisjsusv]α − EQ[sisj ]αE [susv] − E [sisj ]EQ[susv]α + E [sisj ]E [susv]
]

� 1
T 2

[E [sisjsusv] − E [sisj ]E [susv] − E [sisj ]E [susv] + E [sisj ]E [susv]
]

� 1
T 2

[E [sisjsusv] − E [sisj ]E [susv]
]
.

Recall that under general conditions

E [xy] − E [x]E [y] = E [(x − E [x])(y − E [y])].

In this case, then, the Hessian matrix is

H =
1

T 2
Σ,

where Σ is the covariance matrix of the random vector s� = {sisj}.

(b) We calculate the curvature as

wtHw =
1

T 2
wtΣw =

1
T 2

wtE [(s� − E [s�])(s� − E [s�])t]w

=
1

T 2
E [wt(s� − E [s�])(s� − E [s�])tw]

=
1

T 2
E [(w · (s� − E [s�]))2] =

1
T 2

E [(w · s� − w · E [s�])2]

=
1

T 2
E [(w · s�)2 − 2(w · s�)(w · E [s�]) + (w · E [s�])2]

=
1

T 2

[E [(w · s�)2] − 2E [(w · s�)(w · E [s�])] + E [(w · E [s�])2]
]

=
1

T 2

[E [(w · s�)2] − 2(w · E [s�])2 + (w · E [s�])2
]

=
1

T 2

[E [(w · s�)2] − (w · E [s�])2
]
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≤ 1
T 2

E [(w · s�)2] =
1

T 2
E

⎡⎢⎣
⎛⎝∑

ij

wijsisj

⎞⎠2
⎤⎥⎦

≤ 1
T 2

E

⎡⎢⎣
⎛⎝∑

ij

|wij |
⎞⎠2

⎤⎥⎦ =
1

T 2

⎛⎝∑
ij

|wij |
⎞⎠2

(c) According to the inequality(
a1 + a2 + · · · + an

n

)2

≤ a2
1 + a2

2 + · · · + a2
n

n
,

we can write ( ∑
ij |wij |

N(N − 1)

)2

≤
∑

ij |wij |2
N(N − 1)

=
1

N(N − 1)⎛⎝∑
ij

|wij |
⎞⎠2

≤ N(N − 1).

Therefore, the curvature is bounded by

wtHw ≤ N(N − 1)
T 2

.

(d) The optimal learning rate, η, is inverse to the curvature, and hence

η =
1

wtHw
≥ T 2

N(N − 1)
.

Section 7.4

19. It is sufficient to show that Aij and Bij do not have a property which can be
translated into the constraint that the probabilities sum to 1. For the transition
probalities aij and bjk in HMM, we have∑

j

aij = 1,
∑

k

bjk = 1

According to Eq. 23, we have

aij = eAij/T , bjk = eBjk/T

Therefore, if there exists a HMM equivalent for any Boltzmann chain, Aij and Bjk

must satisfy the constraints∑
j

eAij/T = 1,
∑

k

eBjk/T = 1,

which are not required for a general Boltzmann chain.
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20. Since at each time step, there are exactly one hidden unit and one visible unit
which are on, the number of configurations for each time step is ck, and total number
of legal paths is (ck)Tf .
21. With a known initial (t = 1) hidden unit, the Boltzmann chain is annealed with
all visible units and the known initial hidden units clamped to +1, and other initial
hidden units clamped to 0. If the initial hidden unit is unknown, we can hypothetically
add an “always-on” hidden unit at t = 0, and connect it to all hidden units at t = 1,
and the connection weights are Ci. Since in a Boltzmann chain exactly one hidden
unit and one visible unit can be on, it follows that exactly one initial (t = 1) hidden
unit will be on, which is consistent to the semantics of Hidden Markov Models. The
generalized energy then is

EωV = E[ωTf ,VTf ] = −Ci −
Tf−1∑
t=1

Aij −
Tf∑
t=1

Bjk,

where Ci indicates the connection weight between the constant unit and the initial
hidden unit which is on.
22. In a Boltzmann zipper, the hidden units are clustered into “cells.” For example,
in the one shown in Fig. 7.12 in the text, the “fast” hidden units at the first two
time steps for the “fast” chain and the “slow” hidden units at the first time step for
the “slow” chain are interconnected through E, forming a “cell” consisting of three
groups of hidden units. Since we require that exactly one hidden unit is on in each
chain. In a “cell,” three units are on after annealing, one in each group, and they are
all interconnected. Therefore, the connection matrix E cannot be simply related to
transition probabilities for two reasons. First, since each chain represents behavior
at different time scales, there is no time ordering between the on-unit in the “slow”
chain and the two on-units in the “fast” chain in the same “cell” (otherwise the “slow”
chain can be “squeezed” into the “fast” chain and forming a single chain). However,
it is necessary to have explicit time ordering for a state transition interpretation to
make sense. Second, even though we can exert a time ordering for the on-units, the
first on-unit in the ordering is connected to two other on-units, which cannot have a
state transition interpretation where only a single successor state is allowed.

As an extreme case, an all-zero E means the two chains are not correlated. This
is completely meaningful, and E is not normalized. The weights in E can also be
negative to indicate a negative or suppressive correlation.

Section 7.5

23. We address the problem of a population of size L of N -bit chromosomes.

(a) The total number of different N -bit chromosomes is 2N . So the number of
different populations of size L is the number of different ways of selecting L
chromosomes out of 2N possible choices, allowing repetition. Since the number
of combinations of selection n items out of m types (n < m) with repetition is(
m+n−1

n

)
, we have the number of different populations of size L is(

2N + L − 1
L

)
=

(
L + 2N − 1

2N − 1

)
.

Next, we show that the number of combinations of selection n items out of m
types (n < m) with repetition is

(
m+n−1

n

)
. Denote the number as A(m, n).
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Suppose there are k distinctive types in the result, 1 ≤ k ≤ n. The number of
ways of choosing the types is

(
m
k

)
, and the number of ways of choosing n items

of exactly k types is
(
m
k

)
B(n, k), where B(n, k) is the number of ways of parition

n into k positive integers. Thus the total number of ways of choosing n items
out of m types (n < m) is the sum of the above number over k

n∑
k=1

(
m

k

)
B(n, k).

Here B(n, k) can be calculated recursively as follows:

B(n, 1) = 1
B(n, n) = 1

B(n, k) =
n−k+1∑

i=1

B(n − i, k − 1).

The first two equations are obvious. The third one is due to the fact that the
last element can take values ranging from 1 to n − (k − 1) and thus

B(n, k) =
n−k+1∑

i=1

B(n − i, k − 1)

= B(n − 1, k − 1) +
n−k+1∑

i=2

B(n − i, k − 1)

= B(n − 1, k − 1) +
n−k∑
j=1

B(n − 1 − j, k − 1)

= B(n − 1, k − 1) + B(n − 1, k).

Recall the following relations:(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
(

n

0

)
=

(
n

n

)
= 1.

Using these relations we can now prove B(n, k) =
(
n−1
k−1

)
by induction. If k = 1

or k = n, the result holds trivially. Suppose B(n − 1, k − 1) =
(
n−2
k−2

)
and

B(n − 1, k) =
(
n−2
k−1

)
. Then we have

B(n, k) = B(n − 1, k − 1) + B(n − 1, k) =
(

n − 2
k − 2

)
+

(
n − 2
k − 1

)
=

(
n − 1
k − 1

)
.

Therefore we have
n∑

k=1

(
m

k

)
B(n, k) =

n∑
k=1

(
m

k

)(
n − 1
k − 1

)

=
n∑

k=1

(
m

k

)(
n − 1
n − k

)
=

(
m + n − 1

n

)
,

as desired, and the proof is complete.
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(b) Assume each chromosome has a distinctive fitness score. Since chromosomes
with the highest Ls fitness scores are selected as parents, the number of all
possible sets of parents is equivalent to the number of ways of selection Ls

chromosomes from all possible chromosomes excluding those with the lowest
L − Ls fitness scores. Therefore, the number is(

Ls + (2N − (L − Ls)) − 1
(2N − (L − Ls)) − 1

)
=

(
2N − L + 2Ls − 1
2N − L + Ls − 1

)
.

(c) If Ls = L, the above expression is simply(
2N + L − 1

2N − 1

)
,

the same as the result in part (a).

(d) If Ls = 1, the expression is(
2N − L + 1

2N − L

)
=

(
2N − L + 1

1

)
= 2N − L + 1.

Section 7.6

24. See figure.

+ SQRT

*

a)

X4 X8 5 X0

*

SQRT

+

X4 X8

b)

- X8

*

SIN *

X0 TAN SQRT

3.4 X4

c) d)

/ -

*

X0 + X5

X4

SQRT

5X8

(a) (* (+ X4 X8) (SQRT 5))

(b) (SQRT (* X0 (+ X4 X8)))

(c) (* (- (SIN X0) (* (TAN 3.4) (SQRT X4))) X8).

(d) (* (/ X0 (+ X4 X8)) (- X5 (SQRT 5))).

(e) Constants and variables {X3, X0, 5.5, X5, -4.5, 2.7}, binary operators {+,
NOR, *, /, -, OR}, and unary operators {+, SQRT, SIN, -, NOT, TAN}. Note
+ and - can act as both binary and unary operators.
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Computer Exercises

Section 7.2

1. Computer exercise not yet solved

2. Computer exercise not yet solved

3. Computer exercise not yet solved

Section 7.3

4. Computer exercise not yet solved

5. Computer exercise not yet solved

6. Computer exercise not yet solved

Section 7.4

7. Computer exercise not yet solved

Section 7.5

8. Computer exercise not yet solved

Section 7.6

9. Computer exercise not yet solved



Chapter 8

Nonmetric methods

Problem Solutions

Section 8.2

1. Assume a particular query occurs more than once along some path through a given
tree. The branch taken through the uppermost (closest to the root) occurence of this
query must also be taken in all subsequent occurences along this path. As a result,
branch(es) not taken in the uppermost instance of the query may be pruned from
lower occurences of that query along the path without altering the classification of
any pattern. After such pruning, the lower occurences of the query are left with only
a single child node. At this point, these queries serve no purpose and may be deleted
by directly connecting their parent node to their child.

By repeatedly applying the above algorithm to every possible path through a tree
and to every query which is duplicated along a path, we can convert any given tree
to an equivalent tree in which each path consists of distinct queries.

Section 8.3

2. Consider a non-binary tree, where the number of branches at nodes can vary
throughout the tree.

(a) Suppose our tree has root node R, with (local) branching ratio B. Each of the
B children is itself a root of a subtree having arbitrary depth. If we can prove
that we can replace the root node with binary nodes, then by induction we can
do it for its children — the roots of the subtrees. In this way, an arbitrary tree
can be expressed as a binary tree.

We represent a tree with a root node R and B children nodes as {R, (a1, a2, . . . aB)}.
B = 2 This is a binary tree.

B = 3 The tree {R, (a1, a2, a3)} can be represented as a binary tree {R, (a1, R2)}
where the subtree is {R2, (a2, a3)}.

277
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B = k ≥ 3 We can keep replacing each root of the subtree as follows: the first
{R, (a1, a2, . . . , ak)} becomes {R, (a1, R2)}, with subtree {R2, (a2, R3)},
. . ., {Rk−1, (ak−1, ak)}. By induction, then, any tree can be replaced by
an equivalent binary tree.

While the above shows that any node with B ≥ 2 can be replaced by a node
with binary decisions, we can apply this to all nodes in the expanded tree, and
thereby make the entire tree binary.

(b) The number of levels depends on the number of classes. If the number of classes
is 2, then the functionally equivalent tree is of course 2 levels in depth. If the
number of categories is c, we can create a tree with c levels though this is not
needed. Instead we can split the root node sending c/2 categories to the left,
and c/2 categories to the right. Likewise, each of these can send c/4 to the left
and c/4 to the right. Thus a tight upper bound is �logc�.

(c) The lower bound is 3 and the upper bound is 2B − 1.

3. Problem not yet solved

4. Problem not yet solved

5. We use the entropy impurity given in Eq. 1,

i(N) = −
∑

i

P (ωi) log2 (P (ωi)) = H(ωi).

(a) After splitting on a binary feature F ∈ {R, L}, the weighted impurity at the
two child nodes is

P (L)i(L) + P (R)i(R) = −P (L)
∑

i

P (ωi|L) log2 (P (ωi|L))

−P (R)
∑

i

P (ωi|R) log2 (P (ωi|R))

= −
∑

i

P (ωi, L) log2

(
P (ωi, L)

P (L)

)
−

∑
i

P (ωi, R) log2

(
P (ωi, R)

P (R)

)
= −

∑
i,F

P (ωi, F ) log2 (P (ωi, F ))

+P (L) log2 (P (L)) + P (R) log2 (P (R))
= H(ω, F ) − H(F ).

Therefore, the drop in impurity is

Δi(N) = H(ω) − H(ω, F ) + H(F ).

But H(ω) ≤ H(ω, F ) ≤ H(ω) + H(F ), and therefore we have

0 ≤ Δi(N) ≤ H(F ) ≤ 1 bit.

(b) At each node, the weighted impurity at the child nodes will be less than that at
the parent, even though individual descendandant may have a greater impurity
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than their parent. For example at the (x2 < 0.61) node in the upper tree of
example 1, the impurity is 0.65, while that at the left child is 0.0, and that at
the right is 1.0. The left branch is taken 2

3 of the time, however, so the weighted
impurity at the children is 2

3 × 0 + 1
3 × 1 = 0.33. Similarly, at the (x1 < 0.6)

node of the lower tree, the right child has higher impurity (0.92) than the parent
(0.76), but the weighted average at the children is 2

3 × 0 + 1
3 × 0.92 = 0.304. In

each case, the reduction in impurity is between 0 and 1 bit, as required.

(c) For B-way branches, we have 0 ≤ Δi(N) ≤ log2(B) bits.

6. Problem not yet solved

7. Problem not yet solved

8. There are four attributes, {a1, a2, a3, a4} to be used in our decision tree.

(a) To select the query at the root node, we investigate queries on each of the four
attributes. The following shows the number of patterns sent to the “left” and
“right” for each value, and the entropy at the resulting children nodes:

query sent left left entropy sent right right entropy
a1 2ω1, 2ω2 1 2ω1, 2ω2 1
a2 2ω1, 2ω2 1 2ω1, 2ω2 1
a3 0ω1, 2ω2 0 4ω1, 2ω2 0.9183
a4 2ω1, 3ω2 0.9710 2ω1, 1ω2 0.9183

Because query a3 leads to the greatest weighted reduction in impurity, a3 should
be the query at the root node. We continue and grow the tree shown in the
figure.

a3

0 1

ω2 a1

0 1

ω1 a2

0 1

a4

0 1

ω2

a4

0 1

ω1 ω2 ω1

(b) We can expand the tree into rules as

ω1 = (a3 AND NOTa1) OR (a3 AND a1 AND NOT a2 AND NOT a4)
OR (a3 AND a1 AND a2 AND a4)

= a3 AND (NOT a1 OR a1 AND (NOT a2 AND NOT a4) OR (a2 AND a4)).
ω2 = NOT a3 OR (a3AND a1 AND NOT a2 AND a4)

OR (a3 AND a1 AND a2 AND NOT a4)
= NOT a3OR(a3 AND a1) AND ((NOT a2 AND a4) OR (a2 AND NOT a4)).

9. Problem not yet solved

10. Problem not yet solved

11. Problem not yet solved
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12. Problem not yet solved

13. Problem not yet solved

14. Problem not yet solved

15. Problem not yet solved

16. The four attributes are denoted {a1, a2, a3, a4}.
(a) To select the query at the root node, we investigate queries on each of the four

attributes. The following shows the number of patterns sent to the “left” and
“right” for each value, and the entropy at the resulting children nodes:

query sent left left entropy sent right right entropy
a1 2ω1, 1ω2 0.9183 2ω1, 3ω2 0.9710
a2 3ω1, 0ω2 0 1ω1, 4ω2 0.7219
a3 2ω1, 1ω2 0.9183 2ω1, 3ω2 0.9710
a4 3ω1, 2ω2 0.9710 1ω1, 2ω2 0.9183

Because query a2 leads to the greatest weighted reduction in impurity, a2 should
be the query at the root node. We continue and grow the tree shown in the
figure, where the “?” denotes the leaf having equal number of ω1 and ω2 patterns.

a2

0 1

ω1 a1

0 1

ω2 a4

0 1

a3

0 1

? ω2

ω2

(b) To select the query at the root node, we investigate queries on each of the four
attributes. The following shows the number of patterns sent to the “left” and
“right” for each value, and the entropy at the resulting children nodes:

query sent left left entropy sent right right entropy
a1 4ω1, 1ω2 0.7219 4ω1, 3ω2 0.9852
a2 6ω1, 0ω2 0 2ω1, 4ω2 0.9183
a3 4ω1, 1ω2 0.7219 4ω1, 3ω2 0.9852
a4 6ω1, 2ω2 0.8113 2ω1, 2ω2 1

Because query a2 leads to the greatest weighted reduction in impurity, a2 should
be the query at the root node. We continue and grow the tree shown in the
figure.

Section 8.4

17. Problem not yet solved

Section 8.5
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a2

0 1

ω1 a3

0 1

ω1 ω2

18. Problem not yet solved

19. Here our strings are composed of letters in the alphabet A = {a, b, c}.
(a) Consider the following string (and shift positions)

“a c a c c a c b a c”
1 2 3 4 5 6 7 8 9 10

The last-occurence function gives F(a) = 9, F(b) = 8, F(c) = 10, and 0 other-
wise. Likewise, the good-suffix function gives G(c) = 7, G(ac) = 6, G(bac) = 0,
and 0 otherwise.

(b) Consider the following string (and shift positions)

“a b a b a b c b c b a a a b c b a a”
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The last-occurence function gives F(a) = 18, F(b) = 16, F(c) = 15 and 0
otherwise. Likewise, the good-suffix function gives G(a) = 17, G(aa) = 12,
G(baa) = 10, G(cbaa) = 9, G(bcbaa) = 8, G(abcbaa) = 0, and 0 otherwise.

(c) Consider the following string (and shift positions)

“c c c a a a b a b a c c c”
1 2 3 4 5 6 7 8 9 10 11 12 13

The last-occurence function gives F(a) = 10, F(b) = 9, F(c) = 13, and 0
otherwise. Likewise, G(c) = 12, G(cc) = 11, G(ccc) = 1, G(accc) = 0, and 0
otherwise.

(d) Consider the following string (and shift positions)

“a b b a b b a b b c b b a b b c b b a”
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

The last-occurence function gives F(a) = 19, F(b) = 18, F(c) = 16, and 0
otherwise. Likewise, G(a) = 13, G(ba) = 12, G(bba) = 11, G(cbba) = 10,
G(bcbba) = 9, G(bbcbba) = 8, G(abbcbba) = 7, G(babbcbba) = 6, G(bbabbcbba) =
5, and 0 otherwise.

20. We use the information from Fig. 8.8 in the text.

(a) The string and the number of comparisons at each shift are:

“p r o b a b i l i t i e s f o r e s t i m a t e s”
1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9

The sum is the total number of character comparisons: 28.
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(b) The test string and index positions are

“e s t i m a t e s”
1 2 3 4 5 6 7 8 9

Here the last-occurence function gives F(s) = 9, F(e) = 8, F(t) = 7, F(a) = 6,
F(m) = 5, F(i) = 4, and 0 otherwise. Likewise, the good-suffix function gives
G(s) = 2, G(es) = 1, and 0 otherwise.

(c) The four relevant shifts are shown below, the number of letter comparison is
shown in bold at the right.

“p r o b a b i l i t i e s f o r e s t i m a t e s”
e s t i m a t e s 1

e s t i m a t e s 1
e s t i m a t e s 1

e s t i m a t e s 9
12

The first shift is 9 − F(i) = 5. The second shift is 9 − F( ) = 9, and the last
shift is 9−F(m) = 4. The total number of character comparisons is 12, as shown
at the lower right.

21. Here the test string is “abcca”.

(a) Naive string-matching progresses left-to-right. Each letter comparison is indi-
cated by an underline, and the total number of such comparisons at each shift
is shown at the right. The naive string-matching algorithm requires 20 letter
comparisons in this case.

“a b c c c d a b a c a b b c a”
a b c c a 5

a b c c a 1
a b c c a 1

a b c c a 1
a b c c a 1

a b c c a 1
a b c c a 3

a b c c a 1
a b c c a 2

a b c c a 1
a b c c a 3

20

The Boyer-Moore string-matching algorithm requires 9 letter comparisons, in
this case.

“a b c c c d a b a c a b b c a”
a b c c a 1

a b c c a 2
a b c c a 3

a b c c a 3
9
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(b) By an analysis similar to that in part (a), we find that the naive string-matching
algorithm requires 16 letter comparisons in this case.

The Boyer-Moore string-matching algorithm requires 5 letter comparisons in
this case.

“d a d a d a d a d a d a d a d”
a b c c a 1

a b c c a 2
a b c c a 2

5

(c) By an analysis similar to that in part (a), we find that the naive string-matching
algorithm requires 19 letter comparisons in this case.

The Boyer-Moore string-matching algorithm requires 7 letter comparisons in
this case.

“a b c b c a b c a b c a b c”
a b c c a 1

a b c c a 3
a b c c a 1

a b c c a 1
a b c c a 1

7

(d) By an analysis similar to that in part (a), we find that the naive string-matching
algorithm requires 18 letter comparisons in this case.

The Boyer-Moore string-matching algorithm requires 4 letter comparisons in
this case.

“a c c a b c a b a b a c c a”
a b c c a 1

a b c c a 1
a b c c a 2

4

(e) By an analysis similar to that in part (a), we find that the naive string-matching
algorithm requires 14 letter comparisons in this case.

The Boyer-Moore string-matching algorithm requires 18 letter comparisons in
this case. Note that in this unusual case, the naive string-matching algorithm
is more efficient than Boyer-Moore algorithm.

“b b c c a c b c c a b b c c a”
a b c c a 5

a b c c a 1
a b c c a 1

a b c c a 5
a b c c a 1

a b c c a 1
a b c c a 5

18
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22. Here is pseudocode for the last-occurrence function.

Algorithm 0 (Last-occurrence)

1 begin initialize F(x)
2 i ← m + 1
3 do i ← i − 1
4 if [F [x(i)] = 0] then F [x(i)] ← i
5 until i = 1
6 end

(a) The time complexity in this serial implementation is based on the sum of the d
computations for initializing F , and the m calculations of F , that is, O(d + m).

(b) The space complexity is O(m) since we need to store the final m values.

(c) For “bonbon” the number of comparisons is 26 + 6 = 32. For “marmalade” the
number of comparisons is 26 + 9 = 35. For “abcdabdabcaabcda” the number
of comparisons is 26 + 16 = 42.

23. Here the class is determined by the minimum edit distance to any pattern in a
category.

(a) By straightforward edit distance calculation, we find that the edit distance d
from the test pattern x = “abacc” to each of the patterns in the categories are
as shown in the table.

ω1 d ω2 d ω3 d
aabbc 3 bccba 4 caaaa 4
ababcc 1 bbbca 3 cbcaab 4
babbcc 2 cbbaaaa 5 baaca 3

The minimum distance, 1, occurs for the second pattern in ω1, and thus we the
test pattern should be assigned to ω1.

(b) As in part (a), the table shows the edit distance d from the test x = “abca” to
each of the nine patterns.

ω1 d ω2 d ω3 d
aabbc 3 bccba 3 caaaa 3
ababcc 3 bbbca 2 cbcaab 3
babbcc 3 cbbaaaa 5 baaca 2

The minimum distance, 2, occurs for patterns in two categories. Hence, here
there is a tie between cateogories ω2 and ω3.

(c) As in part (a), the table shows the edit distance d from the test x = “ccbba”
to each of the nine patterns.

ω1 d ω2 d ω3 d
aabbc 3 bccba 2 caaaa 3
ababcc 5 bbbca 3 cbcaab 4
babbcc 4 cbbaaaa 4 baaca 4
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Here the minimum distance, 2, occurs for the first pattern in ω2, and thus the
test pattern should be assigned to cateogory ω2.

(d) As in part (a), the table shows the edit distance d from the test x = “bbaaac”
to each of the nine patterns.

ω1 d ω2 d ω3 d
aabbc 4 bccba 4 caaaa 3
ababcc 3 bbbca 3 cbcaab 3
babbcc 4 cbbaaaa 2 baaca 3

Here the minimum distance, 2, occurs for the third pattern in ω2, and thus the
test pattern should be assigned to category ω2.

24. Here the class is determined by the minimum edit distance to any pattern in a
category.

(a) By straightforward edit distance calculation, we find that the edit distance d
from the test pattern x = “ccab” to each of the patterns in the categories are
as shown in the table.

ω1 d ω2 d ω3 d
aabbc 4 bccba 3 caaaa 3
ababcc 4 bbbca 4 cbcaab 2
babbcc 5 cbbaaaa 5 baaca 4

Here the minimum distance, 2, occurs for the second pattern in ω3, and thus
the test pattern should be assigned to ω3.

(b) As in part (a), the table shows the edit distance d from the test x = “abdca”
to each of the nine patterns.

ω1 d ω2 d ω3 d
aabbc 3 bccba 3 caaaa 4
ababcc 3 bbbca 2 cbcaab 4
babbcc 3 cbbaaaa 5 baaca 3

Here the minimum distance, 2, occurs for the second pattern in ω2, and thus we
assign the test pattern to ω2.

(c) As in part (a), the table shows the edit distance d from the test x = “abc” to
each of the nine patterns.

ω1 d ω2 d ω3 d
aabbc 2 bccba 4 caaaa 4
ababcc 3 bbbca 3 cbcaab 4
babbcc 3 cbbaaaa 6 baaca 3

Here the minimum distance, 2, occurs for the first pattern in ω1, and thus we
assign the test pattern to ω1.
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(d) As in part (a), the table shows the edit distance d from the test x = “bacaca”
to each of the nine patterns.

ω1 d ω2 d ω3 d
aabbc 4 bccba 3 caaaa 3
ababcc 4 bbbca 3 cbcaab 4
babbcc 3 cbbaaaa 4 baaca 1

Here the minimum distance, 1, occurs for the third pattern in ω3, and thus we
assign the test pattern to ω3.

25. Here the class is determined by the minimum cost edit distance dc to any pattern
in a category, where we assume interchange is twice as costly as an insertion or a
deletion.

(a) By straightforward cost-based edit distance calculation, we find that the edit
distance dc from the test pattern x = “abacc” to each of the patterns in the
categories are as shown in the table.

ω1 dc ω2 dc ω3 dc

aabbc 4 bccba 4 caaaa 6
ababcc 1 bbbca 6 cbcaab 7
babbcc 3 cbbaaaa 8 baaca 4

The final categorization corresponds to the minimum of these cost-based dis-
tances, i.e, the distance = 1 to the second pattern in ω1. Thus we assign the
test pattern to ω1.

(b) As in part (a), the table shows the cost-based edit distance dc from the test x
= “abca” to each of the nine patterns.

ω1 dc ω2 dc ω3 dc

aabbc 3 bccba 3 caaaa 5
ababcc 4 bbbca 3 cbcaab 4
babbcc 4 cbbaaaa 7 baaca 3

The minimum cost distance is 3, which occurs for four patterns. There is a
three-way tie between the cateogories ω1, ω2 and ω3. (In the event of a tie, in
practice we often consider the next close pattern; in this case this would lead us
to classify the test pattern as ω2.)

(c) As in part (a), the table shows the cost-based edit distance dc from the test x
= “ccbba” to each of the nine patterns.

ω1 dc ω2 dc ω3 dc

aabbc 6 bccba 2 caaaa 6
ababcc 7 bbbca 4 cbcaab 5
babbcc 7 cbbaaaa 4 baaca 6

Hence x should be classified as ω2.
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(d) As in part (a), the table shows the cost-based edit distance dc from the test x
= “bbaaac” to each of the nine patterns.

ω1 dc ω2 dc ω3 dc

aabbc 4 bccba 4 caaaa 3
ababcc 3 bbbca 3 cbcaab 3
babbcc 4 cbbaaaa 2 baaca 3

Hence x should be classified as ω2.

26. We assume the costs are all positive.

(a) Non-negativity is always guaranteed because all entries for computing edit dis-
tance are non-negative. Reflexivity and symmetry are also guaranteed. The
triangle inequality is not guaranteed, however.

(b) Example: Suppose the costs for insertion and deletion are 1 and the cost for
substitution is 5. Consider the three patterns x1 = “aba,” x2 = “aab,” and x3 =
“aac.” In this case, the cost-based distances dc are as shown in the matrix

⎛⎝
x1 x2 x3

x1 0 2 2
x2 5 0 5
x3 2 2 0

⎞⎠.

Note that dc(x2,x3) > dc(x1,x2) + dc(x1,x3), violating the triangle inequality.

27. Problem not yet solved

28. Problem not yet solved

29. Problem not yet solved

Section 8.6

30. Recall that Lisp expressions are of the general form (operation operand1

operand2). (More generally, for some operations, such as multiplication, *, and ad-
dition, +, there can be an arbitrary number of operands.)

(a) Here the alphabet is A = {0, 1, 2, . . . , 9, plus, minus, quotient, (, )}, the set of
intermediate symbols is I = {A, B}, the starting symbol is S = S, and the
productions are

P =

⎧⎪⎪⎨⎪⎪⎩
p1 : S → (ABB)
p2 : A → plus|difference|times|quotient
p3 : B → 0|1| . . . |9
p4 : B → (ABB)

(b) An advanced Lisp parser could eliminate “excess” parentheses, but for the gram-
mar above, three of the five expressions are ungrammatical:

• (times (plus (difference 5 9)(times 3 8))(quotient 2 6)) can be
expressed in this grammar (see figure).

• (7 difference 2) cannot be expressed in this grammar.
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S

times (  A     B     B     )

(  A                 B                   B     )

(ABB)(ABB)

(ABB)

plus quotient 2 6

difference 5 9 times 3 8

• (quotient (7 plus 2)(plus 6 3)) cannot be expressed in this gram-
mar.

• ((plus)(6 2)) cannot be expressed in this grammar.

• (difference (plus 5 9)(difference 6 8)) can be expressed in this gram-
mar (see figure).

S

difference ( A   B   B  )( A   B   B  )

(  A                 B                   B     )

plus 5  9 difference 6 8

31. Here the language is L(G) = {anb|n ≥ 1}.
(a) The alphabet is A = {a, b}, the intermediate symbol is I = {A}, the starting

symbol is S = S, and the productions are

P =

⎧⎨⎩
p1 S → Ab
p2 A → Aa
p3 A → a

⎫⎬⎭
(b) See figure.

S

A

a

b

S

A b

A a

A a

A a

aA

a
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32. Here the language G has alphabet A = {a, b, c}, intermediate symbols I =
{A, B}, starting symbol S = S, and the productions are

P =

⎧⎪⎪⎨⎪⎪⎩
p1 S → cAb
p2 A → aBa
p3 B → aBa
p4 B → cb

⎫⎪⎪⎬⎪⎪⎭
(a) We consider the rules in turn:

• S → cAb: type 3 (of the form α → zβ)

• A → aBa: type 3 (of the form α → zβ)

• B → aBa: type 3 (of the form α → zβ)

• B → cb: type 2 (of the form I → x) and type 3 (of the form α → z)

Thus G is type 3 or regular grammar.

(b) We now prove by induction that the language generated by G is L(G) =
{cancbanb|n ≥ 1}. Note that for n = 1, cacbab can be generated by G:
S → cAb → caBab → cacbab.

Now suppose that cancbanb is generated by G. Now can+1cban+1b = caancbanab.
Given the above, we know that S → cÃb, where Ã = ancban can be generated
by G. When we parse caancbanab using G, we find S → cAb → caBab, and
thus B = Ã. Thus can+1cban+1b is generated by G.

(c) See figure.

c      A       b

a      B       a

a      B       a

c      B       b

S

cb

c      A       b

a      B       a

S

cb

33. A palindrome is a string that reads the same forward as backward.

(a) Here the grammar G has the English alphabet and the null character, A =
{a, b, . . . , z, ε}, the single internal symbol I = A, and starting symbol S = S.
The null symbol is needed for generating palindromes having an even number
of letters. The productions are of the form:

P =

⎧⎨⎩
p1 S → A
p2 A → a|b| . . . |z|ε
p3 A → aAa|bAb| . . . |zAz

⎫⎬⎭
See figure.
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A

n      A       n

o      A       o

S

ε

A

b      A       b

S

i

(b) The grammar is of type 3 because every rewrite rule is of the form α → zβ or
α → z.

(c) Here the grammar G has the English alphabet and the null character, A =
{a, b, . . . , z, ε}, the single internal symbol I = A and starting symbol S = S.
The null symbol is needed for generating palindromes having an even number
of letters. The productions are of the form:

P =

⎧⎨⎩
p1 S → aA|bA| . . . zA
p2 A → a|b| . . . |z|ε
p3 A → aAa|bAb| . . . |zAz

⎫⎬⎭
See figure.

S

p       A

i

S

t      A

o      A       o

ε

S

s      A

t      A       t

ε

34. Consider the numbers 1, 2, . . . , 999.

(a) Here the productions are of the form:

P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p1 digits6 → digits3
p2 digits3 → digit1 hundred digits2
p3 digits3 → digit1 hundred
p4 digits3 → digits2
p5 digits2 → teens|tys|tys digit1|digit1
p6 digit1 → 1|2| . . . |9

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Thus there are 9 possible derivations for digit1, 10 possible derivations for teens,
8 possible derivations for tys. Thus there are (10 + 8 + 8× 9 + 9) = 99 possible
derivations for digits2. Thus there are (9× 99 + 9 + 99) possible derivations for
digits3. So there are 999 possible derivations for digits6 under these restrictive
conditions.
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(b) For the numbers 1, 2, . . . , 999, 999 we have

P =

⎧⎨⎩
p1 digits6 → digits3 thousand digits3
p2 digits6 → digits3 thousand
p3 digits6 → digits3

⎫⎬⎭
We know from part (a) that |digits3| = 999. Thus |digits6| = 999×999+999+
999 = 999, 999 — indeed, one for each number.

(c) The grammar does not allow any pronunciation in more than one way because
there are only 999,999 numbers and there are only 999,999 possible pronuncia-
tions and these are in a one-to-one correspondence. In English, however, there
is usually more than one way to pronounce a single number. For instance, 2000
can be pronounced two thousand or twenty hundred, however the grammar
above does not allow this second pronunciation.

35. Problem not yet solved

36. Consider grammars and the Chomsky normal form.

(a) Here, most of the rewrite rules in G are not in Chomsky normal form:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S → bA not CNF
S → aB not CNF

A → bAA not CNF
A → aS not CNF

A → a CNF
...

...

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
We need only one rule to violate the conditions of being in Chomsky normal
form for the entire grammar to be not in CNF. Thus this grammar is not in
CNF.

(b) Here the rewrite rules of G′ are

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rewrite rule CNF?
S → CbA yes A → BC
S → CaB yes A → BC
A → CaS yes A → BC
A → CbD1 yes A → BC
A → a yes A → z
B → CbS yes A → BC
B → CaD2 yes A → BC
B → b yes A → z
D1 → AA yes A → BC
D2 → BB yes A → BC
Ca → a yes A → z
Cb → b yes A → z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, indeed all the rewrite rules are of the form A → BC or A → z, and the
grammar G is in CNF.

(c) Theorem: Any context-free language without the null symbol ε can be generated
by a grammar G1 in which the rewrite rules are of the form A → BC or A → z.
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Proof: First, if a production ends in a string containing just a single terminal
symbol, then that production is in acceptable CNF form (i.e., A → z). Now
consider a production of the form A → Z1Z2 · · ·Zn, where n ≥ 2. If Zi is a
terminal symbol a, we introduce a new internal variable Ca and the production
Ca → a, which is in the permissible form. Now we expand our intermediate
variables to include this new Ca, and the rewrite rules accordingly to form G2.
Thus, L(G1) ⊆ L(G2).

Next we use induction on the number of steps in a derivation that if G2 give
a derivation A → z, then G1 does as well. If so that if G2 generates a final
string, then G1 does as well. This result is obvious for final strings of length
1. Suppose now that it is true for derivations requiring k steps. Let D1 be a
derivation in G2 requiring k + 1 steps. The first must be of the general form
A → B1B2 · · ·Bm for m ≥ 2. Then we can write Z = Z1Z2 · · ·Zm where in
grammar G2 we have that Bi derives Zi.

If Bi is the same as Cai for some terminal ai, then Bi must be Zi. By our
construction, there exists a production A → Z1Z2 · · ·Zn where Zi = Bi. For
those Bi we know that the derivation in G1 requires no more than k steps, so
by induction hypothesis Zi leads to Bi.

Thus we see that any context-free language can be generated by a grammar
where every production is of the form A → z or A → Z1Z2 · · ·Zn for n ≥ 2.

(d) The string “aabab” cannot be derived in either G or G′.

37. [[state that this problem requires the pumping Lemma in Chapter 6 of Intro-
duction to Automata Theory by Hopcroft and Ullman.]]
38. Problem not yet solved

39. The first three numbers can be derived, but the last two cannot.

(a) See figure.

(b) See figure.

(c) See figure.

digits3 thousand

digit1 hundred digits2

tys digit1

forty two

three teens

fourteen

digits3

digit1 hundred digits2

six

digits6

digits3 thousand

342,619 900,000

nine

digits6

teens

thirteen

digits3

digits2

digits6

13

digits1 hundred

(d) two thousand six hundred thousand five cannot be derived.

(e) one hundred sixty eleven cannot be derived.
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Section 8.7

40. Here D1 = {ab, abb, abbb} and D2 = {ba, aba, babb} are positive examples from
grammars G1 and G2, respectively.

(a) Some candidate rewrite rules for G1 and G2, are

P1 =

⎧⎨⎩
p1 S → A
p2 A → ab
p3 A → Ab

⎫⎬⎭ P2 =

⎧⎪⎪⎨⎪⎪⎩
p1 S → A
p2 A → ba
p3 A → aA
p4 A → Ab

⎫⎪⎪⎬⎪⎪⎭
(b) Here we infer G1, being sure not to include rules that would yield strings in D2.

i x+
i P P produces D2 ?

1 ab
S → A
S → ab

No

2 abb
S → A
A → ab
A → Ab

No

3 abbb
S → A
A → ab
A → Ab

No

(c) Here we infer G2, being sure not to include rules that would yield strings in D1.

i x+
i P P produces D1 ?

1 ba
S → A
A → ba

No

2 aba
S → A
A → ba
A → aA

No

3 babb

S → A
A → ba
A → aA
A → Ab

No

(d) Two of the strings are ambiguous, and one each is in L(G1) and L(G2):

• bba is ambiguous

• abab ∈ L(G2): S → A → aA → aAb → abab

• bbb is ambiguous

• abbbb ∈ L(G1): S → A → Ab → Abb → Abbb → abbbb.

Section 8.8

41. Problem not yet solved
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Computer Exercises

Section 8.3

1. Computer exercise not yet solved

2. Computer exercise not yet solved

Section 8.4

3. Computer exercise not yet solved

4. Computer exercise not yet solved

5. Computer exercise not yet solved

Section 8.5

6. Computer exercise not yet solved

7. Computer exercise not yet solved

8. Computer exercise not yet solved

Section 8.6

9. Computer exercise not yet solved

10. Computer exercise not yet solved

Section 8.7

11. Computer exercise not yet solved
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Section 9.2

1. Problem not yet solved

2. Problem not yet solved

3. Problem not yet solved

4. Problem not yet solved

5. Problem not yet solved

6. Problem not yet solved

7. Problem not yet solved

8. Problem not yet solved

9. We seek to prove the relation

2n =
n∑

r=0

(
n

r

)
two different ways.

(a) Recall that the polynomial expression is

(x + y)n =
n∑

r=0

(
n

r

)
xn−ryr.

We substitute x = y = 1 and find the desired result directly, as shown in Eq. 5
in the text:

(1 + 1)n = 2n =
n∑

r=0

(
n

r

)
.

295
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(b) We define

K(n) =
n∑

r=0

(
n

r

)
and proceed by induction. Clearly, by simple substitution, K(1) = 1+1 = 21 =
2n. We seek to show that in general K(n + 1) = 2K(n) = 2 · 2n = 2n+1. We
write this explicitly

K(n + 1) =
n+1∑
r=0

(
n + 1

r

)

=
(

n

0

)
+

n∑
r=1

(
n + 1

r

)
+

(
n

n

)

=
(

n

0

)
+

n∑
r=1

(n + 1)!
r!(n + 1 − r)!

+
(

n

n

)

=
(

n

0

)
+

n∑
r=1

n!(n − r + 1 + r)!
r!(n + 1 − r)!

+
(

n

n

)

=
(

n

0

)
+

n∑
r=1

(
n!(n − r + 1)
r!(n + 1 − r)!

+
n!r

r!(n + 1 − r)!

)
+

(
n

n

)

=
(

n

0

)
+

n∑
r=1

(
n!

r!(n − r)!
+

n!
(r − 1)!(n + 1 − r)!

)
+

(
n

n

)

=
(

n

0

)
+

n∑
r=1

((
n

r

)
+

(
n

r − 1

))
+

(
n

n

)

=
n∑

r=0

((
n

r

)
+

(
n

r

))

= 2
n∑

r=0

(
n

r

)
= 2K(n) = 2n+1.

10. Problem not yet solved

11. Consider the Ugly Duckling Theorem (Theorem 9.2).

(a) If a classification problem has constraints placed on the features, the number of
patterns will be less than that of an unconstrained problem. However, the total
number o predicates depends only on the number of patterns, not the number
of features, and so is still

d∑
r=0

(
d

r

)
= 2d,

where d is the number of distinct possible patterns. The total number of predi-
cates shared by two patterns remains

d∑
r=2

(
d − 2
r − 2

)
= 2d−2.
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In short, there are no changes to the derivation of the Ugly Duckling Theorem.

(b) Since there are only three different types of cars seen, we have three different
patterns, x1, x2 and x3, with features:

x1 : f1 AND f2 AND f4 AND NOT f5 AND NOT f6

x2 : f1 AND f2 AND f3 AND NOT f4 AND f5 AND NOT f6

x3 : NOT[f1OR f2 OR f3 OR f4 OR f5] AND f6,

where f1 respresents a car model similar to car A, f2 represents an engine similar
to car A, f3 represents a four-door car, f4 represents a red car, f5 represents a
green car, f6 represents a blue car.

To determine similarity, we count the number of predicates shared by two cars.
With car A and car B, the predicates are x1 OR x2, and x1 OR x2 OR x3.
With car B and car C, the predicates are x2 OR x3, and x1 OR x2 OR x3.
Since the number of predicates is the same the patterns are “equally similar,”
according to the definition given in the text.

In effect, we could have described the three patterns with three features, with
f1 representing a four-door car model/engine similar to car C, f2 representing
a red car, f3 representing a green car. In this framework, the patters would be:

x1 : NOT f1AND f2 AND NOT f3

x2 : NOT f1 AND NOT f2 AND f3

x3 : f1 AND NOT f2 AND NOT f3.

The result is that the three patterns being different from one another by only
one feature, and hence cars A and B are equally similar as cars B and C.

12. Problem not yet solved

13. Consider the Kolmogorov complexity of different sequences.

(a) 010110111011110 . . .. This sequence is made up of m sequences of 0 and l 1s,
where l = 1 . . . m. Therefore the complexity is O(log2m).

(b) 000 . . . 100 . . . 000, a sequence made up of m 0s, a single 1, and (n − m − 1) 0s.
The complexity is just that needed to specify m, i.e., O(log2m).

(c) e = 10.10110111111000010 . . .2, The complexity of this constant is O(1).

(d) 2e = 101.0110111111000010 . . .2, The complexity of this constant is O(1).

(e) The binary digits of π, but where every 100th digit is changed to the numeral
1. The constant π has a complexity of O(1); it is a simple matter to wrap
a program around this to change each 100th digit. This does not change the
complexity, and the answer is O(1).

(f) As in part (e), but now we must specify n, with has complexity O(log2n).

14. Problem not yet solved

15. For two binary strings x1 and x2, the Kolmogorov complexity of the pair can
be at worst K(x1, x2) = K(x1) + K(x2), as we can easily write concatenate two
programs, one for computing x1 and one for x2. If the two strings share information,



298CHAPTER 9. ALGORITHM-INDEPENDENT MACHINE LEARNING

the Kolmogorov complexity will be less than K(x1) + K(x2), since some information
from one of the strings can be used in the generatation of the other string.
16. Problem not yet solved

17. The definition “the least number that cannot be defined in less than twenty words”
is already a definition of less than twenty words. The definition of the Kolmogorov
complexity is the length of the shortest program to describe a string. From the above
paradoxical statement, we can see that it is possible that we are not “clever” enough
to determine the shortest program length for a string, and thus we will not be able
to determine easily the complexity.

Section 9.3

18. The mean-square error is

ED[(g(x; D) − F (x)2] = ED[g2(x; D) − 2g(x; D)F (x) + F 2(x)]
= ED[g2(x; D] − ED[2g(x; DF (x)] + ED[F 2(x)]
= ED[g2(x; D)] − 2F (x)ED[g(x; D)] + F 2(x).

Note, however, that

ED[(g(x; D) − ED[g(x; D)])2] = ED[g2(x; D) − 2g(x; D)ED[g(x; D)] + [ED[g(x; D)]]2]
= ED[g2(x; D)] − ED[2g(x; D)ED[g(x; D)]] + ED[(ED[g(x; D)])2]
= ED[g2(x; D)] − 2ED[g(x; D)]ED[g(x; D)] + (ED[g(x; D)])2

= ED[g2(x; D)] − (ED[g(x; D)])2.

We put these two results together and find

ED[g2(x; D)] = ED[(g(x; D) − ED[g(x; D)])2] + (ED[g(x; D)])2.

We now apply this result to the function g(x) − F (x) and obtain

ED[(g(x; D) − F (x))2] = ED[g2(x; D)] − 2F (x)ED[g(x; D)] + F 2(x)
= ED[(g(x; D − ED[g(x; D)]))2] + (ED[g(x; D)])2

−2F (x)ED[g(x; D)] + F 2(x)
= ED[(g(x; D) − ED[g(x; D)])2] + (ED[g(x; D) − F (x)])2

= (ED[g(x; D) − F (x)])2︸ ︷︷ ︸
bias2

+ ED[(g(x; D) − ED[g(x; D)])2]︸ ︷︷ ︸
variance

.

Since the estimate can be more or less than the function F (x), the bias can be negative.
The variance cannot be negative, as it is the expected value of a squared number.
19. For a given data set D, if g(x; D) agrees with the Bayes classifier, the expected
error rate will be Min[F (x, 1 − F (x)]; otherwise it will be Max[F (x, 1 − F (x)]. Thus
we have

Pr[g(x; D) �= y] = Min[F (x), 1 − F (x)]Pr[g(x; D) = yB ]
+Max[F (x), 1 − F (x)]Pr[g(x; D) �= yB ].

However, under these conditions we can write

Max[F (x), 1 − F (x)] = Min[F (x), 1 − F (x)] + Max[F (x), 1 − F (x)] − Min[F (x), 1 − F (x)]︸ ︷︷ ︸
|2F (x)−1

.
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Thus we conclude

Pr[g(x; D) �= y = |2F (x) − 1|Pr[g(x; D) �= yB ]
+Min[F (x), 1 − F (x)](Pr[g(x; D) �= yB ] + Pr[g(x; D) = yB ])

= |2F (x) − 1|Pr[g(x; D) �= yB ] + Min[F (x), 1 − F (x)].

20. If we make the convenient assumption that p(g(x; D)) is a Gaussian, that is,

p(g(x; D)) =
1√
2πσ

exp[−(g − μ)2/(2σ2)]

where μ = ED[g(x; D)] and σ2 = Var[g(x; D)]. From Eq. 19 in the text, then, for
F (x) < 1/2 we have

Pr[g(x; D) �= yB ] =

∞∫
1/2

p(g(x; D))dg

=

∞∫
1/2

1√
2πσ

exp[−(g − μ)2/(2σ2)]dg

=
1√
2π

∞∫
(1/2−μ)/σ

exp[−u2/2]du,

where u = (g−μ)/σ and du = dg/σ. For the other case, that is, F (x) ≥ 1/2, we have

Pr[g(x; D) �= yB ] =

1/2∫
−∞

p(g(x; D))dg

=

1/2∫
−∞

1√
2πσ

exp[−(g − μ)2/(2σ2)]dg

=
1√
2π

∞∫
−(1/2−μ)/σ

exp[−u2/2]du,

where u = −(g − μ)/σ and du = −dg/σ. Therefore, we have

Pr[g(x; D)] =

⎧⎪⎪⎨⎪⎪⎩
1√
2π

∞∫
(1/2−μ)/σ

exp[−u2/2]du if F (x) < 1/2

1√
2π

∫
−(1/2−μ)/σ

exp[−u2/2]du if F (x) ≥ 1/2

=
1√
2π

∞∫
t

exp[−u2/2]du =
1
2

[
1 − erf[t/

√
2]

]
= Φ(t),

where

t =

{
1/2−μ

σ if F (x) < 1/2
− 1/2−μ

σ if F (x) ≥ 1/2.
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Thus, we can write

Pr[g(x; D)] = sgn[F (x) − 1/2]
μ − 1/2

σ

= sgn[F (x) − 1/2]
ED[g(x; D) − 1/2]√

Var[g(x; D)]

= sgn[F (x) − 1/2][ED[g(x; D)] − 1/2]︸ ︷︷ ︸
boundary bias

Var[g(x; D)]−1/2︸ ︷︷ ︸
variance

.

21. Problem not yet solved

22. Problem not yet solved

Section 9.4

23. The jackknife estimate of the mean is given by Eq. 25 in the text:

μ(·) =
1
n

n∑
i=1

μ(i)

=
1
n

n∑
i=1

⎡⎣ 1
n − 1

∑
j �=i

xj

⎤⎦
=

1
n(n − 1)

n∑
i=1

⎡⎣ n∑
j=1

xj − xi

⎤⎦
=

1
n(n − 1)

n∑
i=1

[nμ̂ − xi]

=
n

n − 1
μ̂ − 1

n(n − 1)

n∑
i=1

xi

=
n

n − 1
μ̂ − 1

n − 1
μ̂

= μ̂.

24. Problem not yet solved

25. Problem not yet solved

26. We must verify that Eq. 26 in the text for the jackknife estimate of the variance
of the mean is formally equivalent to the variance estimate given by Eq. 23 in the
text. From Eq. 26 we have

Var[μ̂] =
n − 1

n

n∑
i=1

(μ(i) − μ(·))2

=
n − 1

n

n∑
i=1

((
nx̄ − xi

n − 1

)
− μ(·)

)2

=
n − 1

n

n∑
i=1

(
nx̄ − xi

n − 1
− n − 1

n − 1
x̄

)2

=
n − 1

n

n∑
i=1

(
nx̄ − xi − (n − 1)x̄

n − 1

)2
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=
n − 1

n

n∑
i=1

(
x̄ − xi

n − 1

)2

=
1

n(n − 1)

n∑
i=1

(xi − x̄)2,

which is Eq. 23 in the text.
27. Consider the computational complexity of different statistics based on resampling.

(a) The jackknife estimate of the mean is

θ(·) =
1
n

n∑
i=1

θ(i),

which requires n summations, and thus has a complexity O(n).

(b) The jackknife estimate of the median has complexity just that required for the
sorting operation, which is O(nlogn).

(c) The jackknife estimate of the standard deviation is

√
Var[θ̂] =

√√√√n − 1
n

n∑
i=1

(
θ(i) − θ(·)

)2

=

√√√√√n − 1
n

⎡⎣ n∑
i=1

θ2
(i) −

(
1
n

n∑
i=1

θ(i)

)2
⎤⎦,

which requires 2n summations, and thus has a complexity O(n).

(d) The bootstrap estimate of the mean is

θ̂∗(·) =
1
B

B∑
b=1

θ̂∗(b),

which requires B summations, and thus has a complexity O(B).

(e) The bootstrap estimate of the medium has complexity the same as that as the
sorting operation, which is O(BlogB).

(f) The bootstrap estimate of the standard deviation is

√
VarBoot[θ] =

√√√√ 1
B

n∑
i=1

(
θ̂∗(b) − θ̂∗(·)

)2

=

√√√√√ 1
B

⎡⎣ B∑
b=1

(θ̂∗(b))2 −
(

1
B

B∑
b′=1

θ̂∗(b′)
)2

⎤⎦,

which requires 2B summations, and thus has a complexity O(B).
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28. Problem not yet solved

Section 9.5

29. Problem not yet solved

30. In boosting, if none of the patterns in D2 are correctly classified by C1, then
the classifier to be trained, C2, will not have good accuracy on the patterns correctly
classified by C1. This means that C1 and C2 will disagree on most of the patterns,
and this means that C3 will dominate the full ensemble classifier. Paradoxically, if
C2 classifies none of the patterns in D1 correctly, then C2 actually shares a great deal
of information with C1. In a c-category problem, (1 − 1/c) of the patterns should be
misclassified in a “most informative” set as this will complement C1 on its slightly
bettern than chance, 1/c of a correct classification.
31. There are a number of algorithms that are acceptable here. One approach is to
perform a simple binary search over the line between x1 and x2, as

Algorithm 0 (Basic binary line search)

1 begin initialize x1,x2, ε
2 while (true)
3 x ← (x1 + x2)/2
4 if ‖g1(x) − g2(x)‖ < ε then return x
5 if g1(x) < g2(x) then x2 ← x
6 end

Another version uses the discriminant functions g1(x) and g2(x) to heuristically guide
the search for the boundary. As the two points under consideration, x1 and x2 become
closer together, the true discriminant functions can be approximated linearly. In the
following, x3 is the point along the line from x1 to x2 where g1 and g2 cross in the
linear approaximation.

Algorithm 0 (Binary search)

1 begin initialize x1,x2, ε
2 while (true)
3 g(x1) ← g2(x1) − g2(x2)
4 g(x2) ← g1(x2) − g2(x2)
5 x3 ← x1 + (x2 − x1)/[‖g(x1)‖ − ‖g(x2)‖]
6 if g(x3) ≥ 0 then x1 ← x3 else x2 ← x3

7 if ‖g(x3)‖ < ε then return x3

8 end

32. Problem not yet solved

Section 9.6

33. Problem not yet solved

34. Our data come from either a uniform distribution or a Gaussian.

(a) Clearly, the maximum-likelhood values for the limits of the uniform distribution
are the lower and upper limits within the data set: xl = 0.2 and xu = 0.9.

(b) The maximum-likelihood values of the mean and standard deviation are just
those statistics of the data set, which turn out to be μ = 0.5143 and σ = 0.2231,
respectively.
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(c) It is necessary to integrate over a region Δx about a given data point to convert
from probability density to probability. The probability of the data given a
particular model is then the product of the probability of each data point given
the model (uniform θU or Gaussian θG), that is,

P (D|θU ) = 12.1427(Δx)7

P (D|θG) = 1.7626(Δx)7,

and thus a uniform distribution is a better model for this data.

35. Problem not yet solved

36. Problem not yet solved

37. Problem not yet solved

38. Problem not yet solved

39. Problem not yet solved

40. Problem not yet solved

41. Problem not yet solved

42. Problem not yet solved

43. Problem not yet solved

Section 9.7

44. Problem not yet solved

45. Problem not yet solved
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Computer Exercises

Section 9.2

1. Computer exercise not yet solved

Section 9.3

2. Computer exercise not yet solved

Section 9.4

3. Computer exercise not yet solved

Section 9.5

4. Computer exercise not yet solved

5. Computer exercise not yet solved

6. Computer exercise not yet solved

Section 9.6

7. Computer exercise not yet solved

8. Computer exercise not yet solved

9. Computer exercise not yet solved

Section 9.7

10. Computer exercise not yet solved



Chapter 10

Unsupervised learning and
clustering

Problem Solutions

Section 10.2

1. We are given that x can assume values 0, 1, . . . , m and that the priors P (ωj) are
known.

(a) The likelihood is given by

P (x|θ) =
c∑

j=1

(
m

x

)
θx

j (1 − θj)m−xP (ωj),

with normalization constraint
m∑

x=0
P (x|θ) = 1, for all θ. Thus P (x|θ) repre-

sents m independent equations in the c unknowns θ1, . . . , θc; there are multiple
solutions if c > m and we do not have identifiability.

(b) On page 519 in the text, the case of m = 1, c = 2 was shown to be completely
unidentifiable but that the sum θ1 + θ2 could be identified. In the present case,
too, an m-dimensional subspace of (θ1, . . . , θc) is identifiable. Whether it is
completely identifiable or not depends on the actual values for P (x|θ) that are
observed. For example, when m = 1, c = 2 if P (x = 1|θ) = 1, then θ1 + θ2 = 2
and thus θ1 = θ2 = 1, and we have complete identifiability. Thus, in general,
nothing can be said about the complete identifiability of (θ1, . . . , θc), though an
m-dimensional subspace will be completely identifiable.

(c) Suppose now that the priors P (ωj) are unknown. Then, there are a total of
c+(c−1) = 2c−1 unknown parameters — c of them the unknowns θ1, . . . , θc and

305
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c − 1 them the unknown P (ωj) reduced by the single constraint
c∑

j=1

P (ωj) = 1.

Thus, the problem is not identifiable if 2c − 1 > m.

2. Problem not yet solved

3. We are given the mixture density

P (x|θ) = P (ω1)
1√

2πσ1

e−x2/(2σ2
1) + (1 − P (ω1))

1√
2πσ2

e−x2/(2σ2
2).

(a) When σ1 = σ2, then P (ω1) can take any value in the range [0, 1], leaving the
same mixture density. Thus the density is completely unidentifiable.

(b) If P (ω1) is fixed (and known) but not P (ω1) = 0, 0.5, or 1.0, then the model
is identifiable. For those three values of P (ω1), we cannot recover parameters
for the first distribution. If P (ω1) = 1, we cannot recover parameters for the
second distribution. If P (ω1) = 0.5, the parameters of the two distributions are
interchangeable.

(c) If σ1 = σ2, then P (ω1) cannot be identified because P (ω1) and P (ω2) are
interchangeable. If σ1 �= σ2, then P (ω1) can be determined uniquely.

Section 10.3

4. We are given that x is a binary vector and that P (x|θ) is a mixture of c multivariate
Bernoulli distributions:

P (x|θ) =
c∑

i=1

P (x|ωi,θ)P (ωi),

where

P (x|ωi,θi) =
d∏

j=1

θ
xij

ij (1 − θij)1−xij .

(a) We consider the log-likelihood

ln P (x|ωi,θi) =
d∑

j=1

[xij ln θij + (1 − xij)ln (1 − θij)] ,

and take the derivative
∂ln P (x|ωi,θi)

∂θij
=

xij

θij
− 1 − xij

1 − θij

=
xij(1 − θij) − θij(1 − xij)

θij(1 − θij)

=
xij − xijθij − θij + θijxij

θij(1 − θij)

=
xij − θij

θij(1 − θij)
.

We set this to zero, which can be expressed in a more compact form as
n∑

k=1

P̂ (ωi|xk, θ̂i)
xk − θ̂i

θ̂i(1 − θ̂i)
= 0.
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(b) Equation 7 in the text shows that the maximum-likelihood estimate θ̂i must
satisfy

n∑
k=1

P̂ (ωi|xk, θ̂i)∇θi
ln P (xk|ωi, θ̂i) = 0.

We can write the equation from part (a) in component form as

∇θi
ln P (xk|ωi, θ̂i) =

xkθ̂i

θ̂i(1 − θ̂i)
,

and therefore we have
n∑

k=1

P̂ (ωi|xk, θ̂i)
xk − θ̂i

θ̂i(1 − θ̂i)
= 0.

We assume θ̂i ∈ (0, 1), and thus we have

n∑
k=1

P̂ (ωi|xk, θ̂i)(xk − θ̂i) = 0,

which gives the solution

θ̂i =

n∑
k=1

P̂ (ωi|xk, θ̂i)xk

n∑
k=1

P̂ (ωi|xk, θ̂i)
.

(c) Thus θ̂i, the maximum-likelihood estimate of θi, is a weighted average of the
xk’s, with the weights being the posteriori probabilities of the mixing weights
P̂ (ωi|xk, θ̂i) for k = 1, . . . , n.

5. We have a c-component mixture of Gaussians with each component of the form

p(x|ωi,θi) ∼ N(μi, σ
2
i I),

or more explicitly,

p(x|ωi,θi) =
1

(2π)d/2σd
i

exp
[
− 1

2σ2
i

(x − μi)
t(x − μi)

]
.

We take the logarithm and find

ln p(x|ωi,θi) = −d

2
ln (2π) − d

2
ln σ2

i − 1
2σ2

i

(x − μi)
t(x − μi),

and the derivative with respect to the variance is

∂ln p(x|ωi,θi)
∂σ2

i

= − d

2σ2
i

+
1

2σ4
i

(x − μi)
t(x − μi)

=
1

2σ4
i

(−dσ2
i + ‖x − μi‖2).
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The maximum-likelihood estimate θ̂i must satisfy Eq. 12 in the text, that is,

n∑
k=1

P̂ (ωi|xk, θ̂i)∇θi
ln p(xk|ωi, θ̂i) = 0.

We set the derivative with respect to σ2
i to zero, that is,

n∑
k=1

P̂ (ωi|xk, θ̂i)
∂ln p(xk|ωi, θ̂i)

∂σ2
i

=

n∑
k=1

P̂ (ωi|xk, θ̂i)
1

2σ̂4
i

(−dσ̂2
i + ‖xk − μ̂i‖2) = 0,

rearrange, and find

dσ̂2
i

n∑
k=1

P̂ (ωi|xk, θ̂i) =
n∑

k=1

P̂ (ωi|xk, θ̂i)‖xk − μ̂i‖2.

The solution is

σ̂2
i =

1
d

n∑
k=1

P̂ (ωi|xk, θ̂i)‖xk − μ̂i‖2

n∑
k=1

P̂ (ωi|xk, θ̂i)
,

where μ̂i and P̂ (ωi|xk, θ̂i), the maximum-likelihood estimates of μi and P (ωi|xk,θi),
are given by Eqs. 11–13 in the text.
6. Our c-component normal mixture is

p(x|α) =
c∑

j=1

p(x|ωj , α)P (ωj),

and the sample log-likelihood function is

l =
n∑

k=1

ln p(xk|α).

We take the derivative with respect to α and find

∂l

∂α
=

n∑
k=1

∂ln p(xk|α)
∂α

=
n∑

k=1

1
p(xk, α)

∂p(xk, α)
∂α

=
n∑

k=1

1
p(xk, α)

∂

∂α

c∑
l=1

p(xk|ωj , α)P (ωj)

=
n∑

k=1

c∑
j=1

p(xk|ωj , α)P (ωj)
p(xk, α)

∂

∂α
ln p(xk|ωj , α)

=
n∑

k=1

c∑
j=1

P (ωj |xk, α)
∂ln p(xk|ωj , α)

∂α
,
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where by Bayes’ Theorem we used

P (ωj |xk, α) =
p(xk|ωj , α)P (ωj)

p(xk|α)
.

7. Our c-component normal mixture is

p(x|α) =
c∑

j=1

p(x|ωj , α)P (ωj),

and the sample log-likelihood function is

l =
n∑

k=1

ln p(xk|α).

We take the derivative with respect to α and find

∂l

∂α
=

n∑
k=1

∂ln p(xk|α)
∂α

=
n∑

k=1

1
p(xk, α)

∂p(xk, α)
∂α

=
n∑

k=1

1
p(xk, α)

∂

∂α

c∑
l=1

p(xk|ωj , α)P (ωj)

=
n∑

k=1

c∑
j=1

p(xk|ωj , α)P (ωj)
p(xk, α)

∂

∂α
ln p(xk|ωj , α)

=
n∑

k=1

c∑
j=1

P (ωj |xk, α)
∂ln p(xk|ωj , α)

∂α
,

where by Bayes’ Theorem we used

P (ωj |xk, α) =
p(xk|ωj , α)P (ωj)

p(xk|α)
.

8. We are given that θ1 and θ2 are statistically independent, that is, p(θ1, θ2) =
p(θ1)p(θ2).

(a) We use this assumption to derive

p(θ1, θ2|x1) =
p(θ1, θ2, x1)

p(x1)
=

p(x1|θ1, θ2)p(θ1, θ2)
p(x1)

=
p(x1|θ1, θ2)p(θ1)p(θ2)

p(x1)

= [p(x1|ω1, θ1, θ2)P (ω1) + p(x1|ω2, θ1, θ2)P (ω2)]
p(θ1)p(θ2)

p(x1)

= [p(x1|ω1, θ1)P (ω1) + p(x1|ω2, θ2)P (ω2)]
p(θ1)p(θ2)

p(x1)
.

Therefore, p(θ1, θ2|x1) can be factored as p(θ1|x1)p(θ2|x1) if and only if

p(x1|ω1, θ1)P (ω1) + p(x1|ω2, θ2)P (ω2)
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can be written as a product of two terms, one involving only θ1 and the other
involving θ2. Now, for any choice of P (ω1), we have P (ω2) = 1 − P (ω1). This
then implies that

p(x1|ω1, θ1)P (ω1) + p(x1|ω2, θ2)P (ω2)

can be factored in terms of θ1 and θ2 if and only if p(x1|ωi, θi) is constant in θi.
This, in turn, implies that p(θ1, θ2|x1) cannot be factored if

∂ln p(x1|ωi, θi)
∂θi

�= 0

for i = 1, 2.

(b) Posteriors of parameters need not be independent even if the priors are assumed
independent (unless of course the mixture component densities are parameter
free). To see this, we first note 0 < P (ωj) < 1 and nj/n � P (ωj) as n → ∞,
and in that case we have

max
μ1,...,μc

1
n

ln p(x1, . . . , xn|μ1, . . . , μc)

�
c∑

j=1

P (ωj)ln P (ωj) − 1
2
ln (2πσ2) − 1

2σ2

c∑
j=1

P (ωj)σ2

=
c∑

j=1

P (ωj)ln P (ωj) − 1
2
ln (2πσ2) − 1

2

=
c∑

j=1

P (ωj)ln P (ωj) − 1
2
ln (2πσ2e).

9. Problem not yet solved

10. We consider the log-likelihood function for data set D,

l = ln p(D|θ)

= ln
n∏

k=1

p(xk|θ)

=
n∑

k=1

ln p(xk|θ),

where

p(xk|θ) =
c∑

j=1

p(xk|ωj ,θj)P (ωj).

We seek to maximize l with respect to θ and P (ωi), subject to the constraints that

P (ωi) ≥ 0 and
c∑

j=1

P (ωj) = 1.
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We use the method of Lagrange undetermined multipliers, and define the objective
function (to be maximized) as

f(θ, P (ω1), . . . , P (ωc)) = l + λo

(
c∑

i=1

P (ωi) − 1

)
.

This form of objective function guarantees that the normalization constraint is obeyed.
We thus demand that at θ = θ̂

∂f(θ, P (ω1), . . . , P (ωc))
∂θi

= 0

for i = 1, . . . , c. Furthermore, the derivative obeys

∂f

∂θi
=

∂l

∂θi
= ∇θi

l =
n∑

k=1

∂

∂θi
ln p(xk|θ)

=
n∑

k=1

1
p(xk|θ)

∂

∂θi
p(xk|θ)

=
n∑

k=1

1
p(xk|θ)

∂

∂θi

⎡⎣ c∑
j=1

p(xk|ωj ,θj)P (ωj)

⎤⎦
=

n∑
k=1

1
p(xk,θ)

[
∂

∂θi
p(xk|ωi,θi)

]
P (ωi)

=
n∑

k=1

p(xk|ωi,θi)P (ωi)
p(xk,θ)

1
p(xk|ωi,θi)

∂

∂θi
p(xk|ωi,θi)

=
n∑

k=1

P (ωi|xk,θ)
∂

∂θ
ln p(xk|ωi,θi).

Thus at θ = θ̂ the derivative obeys ∇θi
f = 0, or equivalently

n∑
k=1

P̂ (ωi|xk, θ̂)∇θi
ln p(xk|ωi, θ̂i) = 0,

where

P̂ (ωi|xk, θ̂) =
p(xk|ωi, θ̂i)P̂ (ωi)

p(xk|θ̂)

=
p(xk|ωi, θ̂i)P̂ (ωi)

c∑
j=1

p(xk|ωj , θ̂j)P̂ (ωj)
,

as given by Eq. 13 in the text.
We continue with the derivative with respect to the priors

∂f

∂P (ωi)
=

∂

∂P (ωi)

[
n∑

k=1

ln p(xk|θ) + λo

(
c∑

i=1

P (ωi) − 1

)]
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=
n∑

k=1

1
p(xk|θ)

∂

∂P (ωi)

c∑
j=1

p(xk|ωj ,θj)P (ωj) + λo

=
n∑

k=1

1
p(xk|θ)

p(xk|ωi,θi) + λo.

We evaluate this at θ = θ̂ and P (ωi) = P̂ (ωi) and find

∂f

∂P (ωi)
=

n∑
k=1

p(xk|ωi, θ̂i)

p(xk|θ̂)
+ λo

=

n∑
k=1

P̂ (ωi|xk, θ̂)

P̂ (ωi)
+ λo = 0.

This implies

P̂ (ωi) = − 1
λo

n∑
k=1

P̂ (ωi|xk, θ̂),

and since
c∑

i=1

P̂ (ωi) = 1 we have

− 1
λo

n∑
k=1

c∑
i=1

P̂ (ωi|xk, θ̂) = 1,

or λo = −n where

P̂ (ωi) =
1
n

n∑
k=1

P̂ (ωi|xk, θ̂).

Section 10.4

11. Our Gaussian densities are of the form p(x|ωi,θi) ∼ N(μi,Σ), and we use the
following terminology:

σpq = pqth element of Σ

σpq = pqth element of Σ−1

xp(k) = pth element of xk

μp(i) = pth element of μi.

(a) We write the class-conditional density as a Gaussian,

p(xk|ωi,θi) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(xk − μi)

tΣ−1(xk − μi)
]

.

The log-likelihood is

ln p(xk|ωi,θi) = −d

2
ln (2π) − 1

2
ln |Σ| − 1

2
(xk − μi)

tΣ−1(xk − μi),



PROBLEM SOLUTIONS 313

as given by Eq. 21 in the text. We take the derivative and find

∂ln p(xk|ωi,θi)
∂σpq

= ∂
∂σpq

[
− d

2 ln (2π) + 1
2 ln |Σ−1|

− 1
2 (xk − μi)tΣ−1(xk − μi)

]
. (∗)

Now we also have that the squared Mahalanobis distance is

(xk − μi)
tΣ−1(xk − μi) =

d∑
p′=1

d∑
q′=1

(xp′(k) − μp′(i))σp′q′
(xq′(k) − μq′(i)) ,

and its derivative is

∂
[
(xk − μi)tΣ−1(xk − μi)

]
∂σpq

=

⎧⎪⎪⎨⎪⎪⎩
(xp(k) − μp(i))(xq(k) − μq(i))
+(xq(k) − μq(i))(xp(k) − μp(i)) if p �= q

(xp(k) − μp(i))2 if p = q

=
{

2(xp(k) − μp(i))(xq(k) − μq(i)) if p �= q
(xp(k) − μ(i))2 if p = q.

(∗∗)

In component form, the derivative of the determinant of the inverse covariance
is

∂ln |Σ−1|
∂σpq

=
1

|Σ−1|
∂|Σ−1|
∂σpq

=
1

|Σ−1|
[|(Σ−1)pq| + |(Σ−1)qp|

]
,

where we have used the fact that σpq = σqp (i.e., both Σ and Σ−1 are symmet-
ric), and the notation (Σ−1)ij = (i, j)th minors of Σ−1 with ith row and jth
column deleted. We can use the above results and

∣∣Σ−1
∣∣ =

d∑
q′=1

σpq′ ∣∣(Σ−1)pq′
∣∣

to write

∂ln
∣∣Σ−1

∣∣
∂σpq

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣(Σ−1)
pq

∣∣∣∣Σ−1
∣∣ +

∣∣(Σ−1)
qp

∣∣∣∣Σ−1
∣∣ if p �= q

∣∣(Σ−1)
pq

∣∣∣∣Σ−1
∣∣ if p = q

=
{

2σpq if p �= q
σpq if p = q.

(∗ ∗ ∗)

We substitute (∗∗) and (∗ ∗ ∗) into (∗) and find

∂ln p(xk|ωi,θi)
∂σpq

=
{

σpq − (xp(k) − μp(i))(xq(k) − μq(i)) if p �= q
1
2 [σpq − (xp(k) − μp(i))(xq(k) − μq(i))] if p = q
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=
(

1 − δpq

2

)
[σpq − (xp(k) − μp(i))(xq(k) − μq(i))] ,

where δpq =
{

1 if p = q
0 if p �= q

is the Kronecker symbol.

(b) The derivatives of the log-likelihood function are

∂l

∂α
=

n∑
k=1

c∑
j=1

P (ωj |xk, α)
∂ln p(xk|ωj , α)

∂α

and

∂l

∂σpq
=

n∑
k=1

c∑
j=1

P (ωj |xk,μj ,Σ)
∂ln p(xk|ωj ,μj ,Σ)

∂σpq

=
n∑

k=1

c∑
j=1

P (ωj |xk,θj)
(

1 − δpq

2

)
[σpq − (xp(k) − μp(j))(xq(k) − μq(j))] .

At the maximum-likelihood estimate θ̂j of θj , we have ∂l/∂σpq = 0, and there-
fore

(
1 − δpq

2

)
σ̂pq =

(
1 − δpq

2

) n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)(xp(k) − μ̂p(j))(xq(k) − μ̂q(j))

n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)
,

which yields the maximum-likelihood estimate of the pq-entry to the covariance
matrix, that is,

σ̂pq =

n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)(xp(k) − μ̂p(j))(xq(k) − μ̂q(j))

n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)
.

In vector and matrix form, this result can be written just a bit more compactly
as

Σ̂ =

n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)(xk − μ̂j)(xk − μ̂j)t

n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)
,

where we used Eq. 13 in the text,

P̂ (ωj |xk, θ̂j) =
P (xk|ωj , θ̂j)P̂ (ωj)
c∑

i=1

p(xk|ωi, θ̂i)P̂ (ωi)
,

and the normalization constraint
c∑

j=1

P̂ (ωj |xk, θ̂j) = 1.
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We can also write
c∑

j=1

P̂ (ωj |xk, θ̂j)(xk − μ̂j)(xk − μ̂j)
t

= xkxt
k

c∑
j=1

P̂ (ωj |xk, θ̂j) − xkj

c∑
j=1

P̂ (ωj |xk, θ̂j)μ̂
t
j

−
⎡⎣ c∑

j=1

P̂ (ωj |xk, θ̂j)μ̂j

⎤⎦xt
k +

c∑
j=1

P̂ (ωj |xk, θ̂j)μjμ
t
j

= xkxt
k − xk

c∑
j=1

P̂ (ωj |xk, θ̂j)μt
j −

⎡⎣ c∑
j=1

P̂ (ωj |xk, θ̂j)μj

⎤⎦xt
k

+
c∑

j=1

P̂ (ωj |xk, θ̂j)μjμ
t
j

=
n∑

k=1

xkxt
k −

c∑
j=1

[
n∑

k=1

P̂ (ωj |xk, θ̂j)xk

]
μt

j

−
c∑

j=1

μj

[
n∑

k=1

P̂ (ωj |xk, θ̂j)xt
k

]
+

c∑
j=1

[
n∑

k=1

P̂ (ωj |xk, θ̂j)xk

]
μjμ

t
j

=
n∑

k=1

xkxt
k −

c∑
j=1

nP̂ (ωj)μjμ
t
j −

c∑
j=1

nP̂ (ωj)μjμ
t
j +

c∑
j=1

P̂ (ωj)μjμ
t
j

=
n∑

k=1

xkxt
k − n

c∑
j=1

P̂ (ωj)μjμ
t
j .

We rearrange this result, substitute it above and find that the maximum-
likelihood estimate of the covariance matrix is

Σ̂ =
1
n

n∑
k=1

xkxt
k −

c∑
j=1

P̂ (ωj)μjμ
t
j .

12. We are told that the distributions are normal with parameters given by p(x|ω1) ∼
N(0, 1) and p(x|ω2) ∼ N(0, 1/2). Thus the evidence is

p(x) =
P (ω1)√

2π
e−x2/2 +

1 − P (ω1)√
π

e−x2
.

(a) If one sample x1 is observed, the likelihood function is then

l = p(x1) =
P (ω1)√

2π
e−x2

1/2 +
1 − P (ω1)√

π
e−x2

1

=

[
e−x2

1/2

√
2π

− e−x2
1√

π

]
P (ω1) +

e−x2
1√

π
.

Thus l is indeed linear in P (ω1), and hence must be extremal at one of the
limiting values of P (ω1), that is at either P (ω1) = 0 or P (ω1) = 1. (We ignore
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the case where l is independent of P (ω1).) Thus l is maximized at P (ω1) = 0
if the slope of l is negative, i.e., if

1√
2π

e−x2
1/2 − 1√

π
e−x2

1 < 0.

This is equivalent to the inequality

1√
2π

e−x2
1/2 <

1√
π

e−x2
1 ,

or simply x2
1 < ln 2. Thus if x2

1 < ln 2 the maximum-likelihood estimate of
P (ω1) is P̂ (ω1) = 0.

(b) If the slope of l is positive, then l is maximized at P (ω1) = 1. A positive slope
implies

e−x2
1/2

√
2π

− e−x2
1√

π
> 0,

or simply x2
1 > ln 2. Thus if x2

1 > ln 2, the maximum-likelihood estimate of
P (ω1) is P̂ (ω1) = 1.

(c) If there is a single sample, we are forced to infer that the maximum-likelihood
estimate for the prior of one of the categories is 1.0, and the other is 0.0, de-
pending upon which density is greater at the sampled point.

13. We assume that ther real line R1 can be divided into c non-overlapping intervals
Ω1, . . . ,Ωc such that

⋃c
j=1 Ωj = R1 (the real line) and Ωj

⋂
Ωj′ = ∅ for j �= j′. We

are given that at any point x, only one of the Gaussian functions differs significantly
from zero, and thus

p(x|μ1, . . . , μc) � P (ωj)√
2πσ

exp
[
− 1

2σ2
(x − μj)2

]
.

We thus have for some particular j that depends upon x

1
n

ln p(x1, . . . , xn|μ1, . . . , μc) =
1
n

n∑
k=1

ln p(xk|μ1, . . . , μc)

=
1
n

c∑
j=1

∑
k:xk∈Ωj

ln p(xk|μ1, . . . , μc)

� 1
n

c∑
j=1

∑
k:xk∈Ωj

ln
[
P (ωj)√

2πσ
e−(xk−μj)

2/(2σ2)

]
.

We take logarithms on the right-hand side, rearrange, and find

1
n

ln p(x1, . . . , xn|μ1, . . . , μc) � 1
n

c∑
j=1

∑
k:xk∈Ωj

[
ln P (ωj) − 1

2
ln (2πσ2) − 1

2σ2
(xk − μj)2

]

=
1
n

c∑
j=1

ln P (ωj)
∑

k:xk∈Ωj

1 − 1
n

1
2
ln (2πσ2)

c∑
j=1

∑
k:xk∈Ωj

1
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− 1
n

c∑
j=1

∑
k:xk∈Ωj

1
2σ2

(xk − μj)2

=
1
n

c∑
j=1

P (ωj)nj − 1
2
ln (2πσ2) − 1

n

c∑
j=1

∑
k:xk∈Ωj

(xk − μj)2,

where nj =
∑

k:xk∈Ωj

1 is the number of points in the interval Ωj . The result above implies

max
μ1,...,μc

1
n

ln p(x1, . . . , xn|μ1, . . . , μc)

� 1
n

c∑
j=1

nj ln P (ωj) − 1
2
ln (2πσ2) +

1
n

c∑
j=1

max
μj

∑
k:xk∈Ωj

[−(xk − μj)2].

However, we note the fact that

max
μj

∑
k:xk∈Ωj

[−(xk − μj)2]

occurs at

μ̂j =

∑
k:xk∈Ωj

xk∑
k:xk∈Ωj

1

=

∑
k:xk∈Ωj

xk

nj

= x̄j ,

for some interval, j say, and thus we have

max
μ1,...,μc

1
n

p(x1, . . . , xn|μ1, . . . , μc)

� 1
n

n∑
j=1

nj ln P (ωj) − 1
2
ln (2πσ2) − 1

2σ2

1
n

c∑
j=1

∑
k:xk∈Ωj

(xk − x̄j)2

=
1
n

c∑
j=1

nj ln P (ωj) − 1
2
ln (2πσ2) − 1

2σ2

1
n

c∑
j=1

nj
1
nj

∑
k′:xk∈Ωj

(xk − x̄j)2.

Thus if n → ∞ (i.e., the number of independently drawn samples is very large), we
have nj/n = the proportion of total samples which fall in Ωj , and this implies (by
the law of large numbers) that we obtain P (ωj).
14. We let the mean value be denoted

x̄ =
1
n

n∑
k=1

xk.

Then we have

1
n

n∑
k=1

(xk − x)tΣ−1(xk − x) =
1
n

n∑
k=1

(xk − x̄ + x̄ − x)tΣ−1(xk − x̄ + x̄ − x)
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=
1
n

[ n∑
k=1

(xk − x̄)tΣ−1(xk − x̄)

+2(x̄ − x)tΣ−1
n∑

k=1

(xk − x̄) + n(x̄ − x)tΣ−1)(x̄ − x)
]

=
1
n

n∑
k=1

(xkx̄)tΣ−1(xkx̄) + (x̄ − x)tΣ−1(x̄ − x)

≥ 1
n

n∑
k=1

(xk − x̄)tΣ−1(xk − x̄),

where we used

n∑
k=1

(xk − x̄) =
n∑

k=1

xk − nx̄ = nx̄ − nx̄ = 0.

Since Σ is positive definite, we have

(x̄ − x)tΣ−1(x̄ − x) ≥ 0,

with strict inequality holding if and only if x �= x̄. Thus

1
n

n∑
k=1

(xk − x)tΣ−1(xk − x)

is minimized at x = x̄, that is, at

x = x̄ =
1
n

n∑
k=1

xk.

15. Problem not yet solved

16. The basic operation of the algorithm is the computation of the distance between
a sample and the center of a cluster which takes O(d) time since each dimension needs
to be compared seperately. During each iteration of the algorithm, we have to classify
each sample with respect to each cluster center, which amounts to a total number of
O(nc) distance computations for a total complexity O(ncd). Each cluster center than
needs to be updated, which takes O(cd) time for each cluster, therefore the update
step takes O(cd) time. Since we have T iterations of the classification and update
step, the total time complexity of the algorithm is O(Tncd).
17. We derive the equations as follows.

(a) From Eq. 14 in the text, we have

ln p(xk|ωi,θi) = ln
|Σ−1

i |1/2

(2π)d/2
− 1

2
(xk − μi)

tΣ−1
i (xk − μi).

It was shown in Problem 11 that

∂ln p(xk|ωi,θi)
∂σpq(i)

=
(

1 − δpq

2

)
[σpq(i) − (xp(k) − μp(i))(xq(k) − μq(i))].
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We write the squared Mahalanobis distance as

(xk − μi)
tΣ−1

i (xk − μi) =
d∑

p=1

(xp′(k) − μp′(i))2σp′p′
(i)

+
d∑

p′=1

d∑
q′=1
p�=q

(xp′(k) − μp′(i))σp′q′
(i)(xq′(k) − μq′(i)).

The derivative of the likelihood with respect to the pth coordinate of the ith
mean is

∂ln p(xk|ωi,θi)
∂μp(i)

=
∂

∂μp(i)

[
− 1

2

d∑
p′=1

(xp′(k) − μp′(i))2σp′p′
(i)

−1
2

d∑
p′=1

d∑
q′=1
p�=q

(xp′(k) − μp′(i))σp′q′
(i)(xq′ − μq′(i))

]

= −1
2
2(xp(k) − μp(i))(−1)σpp(i)

−1
2

d∑
q′=1
q′ �=p

(xq′(k) − μq′(i))σpq′
(i)(−1)

−1
2

d∑
p′=1
p′ �=p

(xp′(k) − μp′(i))σpq′
(i)(−1)

=
d∑

q=1

(xq(k) − μq(i))σpq(i).

From Eq. xxx in the text, we know that P̂ (ωi) and θ̂i must satisfy

P̂ (ωi) =
1
n

n∑
k=1

P̂ (ωi|xk, θ̂i)

and

n∑
k=1

P̂ (ωi|xk, θ̂i)∇θi
ln p(xk|ωi, θ̂i) = 0

or

n∑
k=1

P̂ (ωi|xk, θ̂i)
∂ln p(xk|ωi,θi)

∂μp(i)

∣∣∣
θi=

ˆθi

= 0.

We evaluate the derivative, as given above, and find

n∑
k=1

P̂ (ωi|xk, θ̂i)
d∑

q=1

(xq(k) − μ̂q(i))σ̂pq(i) = 0,
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which implies

n∑
k=1

P̂ (ωi|xk, θ̂i)Σ−1
i (xk − μ̂i) = 0.

We solve for μ̂i and find

μ̂i =
∑n

k=1 P̂ (ωi|xk, θ̂i)xk∑n
k=1 P̂ (ωi|xk, θ̂i)

.

Furthermore, we have

n∑
k=1

P̂ (ωi|xk, θ̂i)
∂ln p(xk|ωi,θi)

∂σpq

∣∣∣
θi=

ˆθi

= 0,

and this gives

n∑
k=1

P̂ (ωi|xk, θ̂i)
(

1 − δpq

2

)
[σ̂pq(i) − (xp(k) − μ̂p(i))(xq(k) − μ̂q(i))] = 0.

We solve for σ̂pq(i) and find

σ̂pq(i) =
∑n

k=1 P̂ (ωi|xk, θ̂i)[(xp(k) − μ̂p(i))(xq(k) − μ̂q(i))]∑n
k=1 P̂ (ωi|xk, θ̂i)

and thus

Σ̂i =
∑n

k=1 P̂ (ωi|xk, θ̂i)(xk − μ̂i)(xk − μ̂i)t∑n
k=1 P̂ (ωi|xk, θ̂i)

.

(b) For the conditions of this part, we have σi = σ2
i I and thus

ln p(xk|ωi,θi) = ln
1

(2πσ2
i )

d
2
− 1

2σ2
i

(xk − μi)
t(xk − μi),

and thus it is easy to verify that

∇μi
ln p(xk|ωi,θi) =

1
σ2

i

(xk − μi).

and hence
n∑

k=1

P̂ (ωi|xk, θ̂i)
1
σ2

i

(xk − μ̂i) = 0.

Thus the mean

μ̂i =
∑n

k=1 P̂ (ωi|xk, θ̂i)xk∑n
k=1 P̂ (ωi|xk, θ̂i)

does not change. This implies

∂ln p(xk|ωi, θi)
∂σ2

i

= − d

2σ2
i

+
1

2σ4
i

||xk − μi||2.
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We have, moreover,

n∑
k=1

P̂ (ωi|xk, θ̂i)
[
∂ln p(xk|ωi,θi)

∂σ2
i

∣∣∣
θi=

ˆθi

]
= 0

and thus

n∑
k=1

P̂ (ωi|xk, θ̂i)

[
− d

2σ̂2
i

+
1

2σ̂4
i ||xk − μ̂i||2

]
= 0

and this gives

σ̂2
i =

1
d

∑n
k=1 P̂ (ωi|xk, θ̂i)||xk − μ̂i||2∑n

k=1 P̂ (ωi|xk, θ̂i)
.

(c) In this case, the covariances are equal: Σ1 = Σ2 = · · · = Σc = Σ. Clearly the
maximum-likelihood estimate of μi, which does not depend on the choice of Σi,
will remain the same. Therefore, we have

μ̂i =
∑n

k=1 P̂ (ωi|xk, θ̂i)xk∑n
k=1 P̂ (ωi|xk, θ̂i)

.

The log-likelihood function is

l =
n∑

k=1

ln p(xk|θ)

=
n∑

k=1

ln

⎡⎣ c∑
j=1

p(xk|ωj ,θj)P (ωj)

⎤⎦
=

n∑
k=1

ln

⎡⎣ c∑
j=1

P (ωj)
|Σ−1|1/2

(2π)d/2
exp

[
−1

2
(xk − μj)

tΣ−1(xk − μj)
]⎤⎦

and hence the derivative is

∂l

∂σpq
=

n∑
k=1

∂ln p(xk|θ)
∂σpq

=
n∑

k=1

1
p(xk|θ)

∂

∂σpq
p(xk|θ)

=
n∑

k=1

1
p(xk|θ)

c∑
j=1

P (ωj)
∂

∂σpq
p(xk|ωj ,θj)

=
n∑

k=1

1
p(xk|θ)

c∑
j=1

P (ωj)p(xk|ωj ,θj)
∂

∂σpq
ln p(xk|ωj ,θj)

However, we have from Problem 17,

∂ln p(xk|ωj ,θj)
∂σpq

=
(

1 − δpq

2

)
[σpq − (xp(k) − μp(j))(xq(k) − μq(j))] .
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We take derivatives and set

∂l

∂σpq

∣∣∣
θ=

ˆθ
= 0

and consequently

n∑
k=1

1

p(xk|θ̂)

c∑
j=1

P (ωj)p(xk|ωj , θ̂)
(

1 − δpq

2

)
[σ̂pq − (xp(k) − μ̂p(j))(xq(k) − μ̂q(j))] = 0.

This gives the equation

σ̂pq

n∑
k=1

1

p(xk|θ̂)

c∑
j=1

P (ωj)p(xk|ωj , θ̂j)

=
n∑

k=1

1

p(xk|θ̂)

c∑
j=1

P (ωj)p(xk|ωj , θ̂) [(xp(k) − μ̂p(i))(xq(k) − μ̂q(i))] .

We have, therefore, σ̂pq =
∑n

k=1 1, since

c∑
j=1

P (ωj)p(xk|ωj , θ̂) = p(xk, θ̂)

=
n∑

k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)[(xp(k) − μ̂q(i))(xq(k) − μ̂q(i))]

and this implies that the estimated covariance matrix is

Σ̂ =
1
n

n∑
k=1

c∑
j=1

P̂ (ωj |xk, θ̂j)(xk − μ̂j)(xk − μ̂j)
t.

Section 10.5

18. We shall make use of the following figure, where the largest circle represents
all possible assignments of n points to c clusters, and the smaller circle labeled C1

represents assignments of the n points that do not have points in cluster C1, and
likewise for C2 up through Cc (the case c = 4 is shown). The gray region represents
those assigments that are valid, that is, assignments in which none of the Ci are
empty. Our goal is then to compute the number of such valid assignments, that is the
cardinality of the gray region.

(a) First we find the cardinality of invalid assigments, that is the number of assign-
ments in the white region:

c∑
i=1

|Ci| −
c∑

i �=j

|Ci ∩ Cj | +
c∑

i �=j �=k

|Ci ∩ Cj ∩ Ck| − · · · ±
∑

i �=j �=k...

|Ci ∩ Cj ∩ Ck · · ·Cq|︸ ︷︷ ︸
c terms

=
(

c

1

)
N1 −

(
c

2

)
N2 +

(
c

3

)
N3 − · · · ±

(
c

c

)
Nc

=
c∑

i=1

(
c

i

)
(−1)c−i+1Ni,
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C1 C2

C3 C4

S
assignments that
leave no points in C1

valid assignments:
ones that have points 
in every Ci

where we define Ni to be the number of distinct assignments of n points that
leave exactly i (labeled) clusters empty. Since each of the n points can be
assigned to one of i−1 clusters, we have Ni = (i−1)n. We put these intermediate
results together and find that the number of invalid assignments (where the
clusters are labeled) is

c∑
i=1

(
c

i

)
(−1)c−i+1(i − 1)n.

But the above assumed that the clusters were labeled, that is, that we could
distinguish between C1 and C2, for instance. In clustering, no such labeling is
given. Thus the above overcounts by the number of ways we can assign c labels
to c clusters, that is, by c!. Therefore, the cardinality of the white area in the
figure (the number of invalid assignments) is the above result divided by c!, that
is

1
c!

c∑
i=1

(
c

i

)
(−1)c−i+1(i − 1)n.

The number of valid assignments (the gray region in the figure) is thus the
total number of assignments (indicated by S in the figure) minus the number of
invalid assignments (the white region). This total number is

(
c
c

)
in. To find the

total number of valid assignments, we subtract:(
c

c

)
in −

c∑
i=1

(
c

i

)
(−1)c−i+1(i − 1)n.

We perform a substitution i ← i − 1 and regroup to obtain our final answer:

1
c!

c∑
i=1

(−1)c−iin.

(b) For the case c = 5 and n = 100 the number of clusterings is

1
5!

5∑
i=1

(
5
i

)
(−1)5−ii100

=
1
5!

[
5 · 1100 + 10 · 2100 + 10 · 3100 + 5 · 4100 + 1 · 5100

]
= 65738408701461898606895733752711432902699495364788241645840659777500
� 6.57 × 1067.
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(c) As given in part (a), the number of distinct clusterings of 1000 points into 10
clusters is

1
10!

10∑
i=1

(
10
i

)
(−1)10−ii1000.

Clearly, the term that dominates this is the case i = 10, since the 101000 is larger
than any other in the sum. We use Stirling’s aproximation, x! � xxe−x

√
2πx,

which is valid for large x. Thus we approximate

1
10!

101000 =
1010

10!
10990

� e10

√
2π10

10990

� 2778 × 10990

� 2.778 × 10993.

Incidentally, this result approximates quite well the exact number of clusterings,

275573192239858906525573192239858906525573191758192446064084102276
241562179050768703410910649475589239352323968422047450227142883275
301297357171703073190953229159974914411337998286379384317700201827
699064518600319141893664588014724019101677001433584368575734051087
113663733326712187988280471413114695165527579301182484298326671957
439022946882788124670680940407335115534788347130729348996760498628
758235529529402633330738877542418150010768061269819155260960497017
554445992771571146217248438955456445157253665923558069493011112420
464236085383593253820076193214110122361976285829108747907328896777
952841254396283166368113062488965007972641703840376938569647263827
074806164568508170940144906053094712298457248498509382914917294439
593494891086897486875200023401927187173021322921939534128573207161
833932493327072510378264000407671043730179941023044697448254863059
191921920705755612206303581672239643950713829187681748502794419033
667715959241433673878199302318614319865690114473540589262344989397
5880
� 2.756 × 10993.

Section 10.6

19. We show that the ranking of distances between samples is invariant to any
monotonic transformation of the dissimilarity values.

(a) We define the value vk at level k to be min δ(Di,Dj), where δ(Di,Dj) is the
dissimilarity between pairs of clusters Di and Dj . Recall too that by definition
in hierarchical clustering if two clusters are joined at some level (say k), they
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remain joined for all subsequent levels. (Below, we assume that only two clusters
are merged at any level.)

Suppose at level k that two clusters, D and D′ are merged into D∗ at level k+1.
Then we have

vk+1 = min
Di,Dj

distinct at k

[δ(Di,Dj)]

= min

[
min

Di,Dj �=D∗
distinct at k

[δ(Di,Dj)], min
Di �=D∗

is cluster at k

[δ(Di,Dj)]

]

= min

⎡⎣ min
Di,Dj �=D,D′

are distinct at k−1

[δ(Di,Dj)], min
Di �=D,D′

is cluster at k−1

[δ(Di,D ∪D′)]

⎤⎦ .

If δ = δmin, then we have

min
Di �=D,D′

is cluster at k−1

[δ(Di,D ∪D′)] = min
Di �=D,D′

is cluster at k−1

min
x∈Di

x′∈D∪D′
δ(x,x′)

= min
Di �=D,D′

is cluster at k−1

min

[
min
x∈Di
x′∈D

δ(x,x′), min
x∈Di
x′∈D′

δ(x,x′)

]
= min

Di �=D,D′
is cluster at k−1

min[δ(Di,D), δ(Di,D′)]

≥ min
Di,Dj

are distance at k−1

[δ(Di,Dj ] .

Therefore we can conclude that

vk+1 = min

⎡⎣ min
Di,Dj �=D,D′

are distinct at k−1

[δ(Di,Dj), δ(Di,D), δ(Di,D′)]

⎤⎦
≥ vk

and thus vk+1 ≥ vk for all k. A similar argument goes through for δ = δmax.

(b) From part (a) we have vk+1 ≥ vk for all k, and thus

0 = v1 ≤ v2 ≤ v3 ≤ · · · ≤ vn,

so the similarity values retain their ordering.

Section 10.7

20. It is sufficient to derive the equation for one single cluster, which allows us to
drop the cluster index. We have∑
x∈D

‖x − m‖2 =
∑
x∈D

∥∥∥x − 1
n

∑
x′∈D

x′
∥∥∥2

=
∑
x∈D

∥∥∥ 1
n

∑
x′∈D

x − x′
∥∥∥2
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=
1
n2

∑
x∈D

∥∥∥ ∑
x′∈D

x − x′
∥∥∥2

=
1
n2

∑
x∈D

∑
x′∈D

∑
x′′∈D

(x − x′)t(x − x′′)

=
1
n2

1
2

[ ∑
x∈D

∑
x′∈D

∑
x′′∈D

(x − x′)t(x − x′′)

+
∑
x∈D

∑
x′∈D

∑
x′′∈D

(x − x′)t[(x − x′) + (x′ − x′′)]
]

=
1
n2

1
2

[ ∑
x∈D

∑
x′∈D

∑
x′′∈D

(x − x′)t(x − x′′)

+
∑
x∈D

∑
x′∈D

∑
x′′∈D

‖x − x′‖2 + (x − x′)t(x′ − x′′)
]

=
1
n2

1
2

∑
x∈D

∑
x′∈D

∑
x′′∈D

‖x − x′‖2

+
1
n2

1
2

[∑
x∈D

∑
x′∈D

∑
x′′∈D

(x − x′)t(x − x′′) −
∑
x∈D

∑
x′∈D

∑
x′′∈D

(x′ − x)t(x′ − x′′)

]
︸ ︷︷ ︸

=0

=
1
2
n

1
n2

∑
x∈D

∑
x′∈D

‖x − x′‖2

=
1
2
ns̄.

21. We employ proof by contradiction. From Problem 14 with Σ = I, we know that
for a non-empty set of samples Di that∑

x∈Di

‖x − αi‖2

is minimized at x = mi, the mean of the points in Di. Now our criterion function is

Je =
∑
Di �=φ

∑
x∈Di

‖x − mi‖2.

Suppose that the partition minimizing Je has an empty subset. Then n ≥ c and there
must exist at least one subset in the partition containing two or more samples; we
call that subset Dj . We write this as

Dj = Dj1

⋃
Dj2,

where Dj1 and Dj2 are disjoint and non-empty. Then we conclude that

Je =
∑
Di �=φ

∑
x∈Di

‖x − mi‖2

can be written as

Je = A +
∑
x∈Dj

‖x − mj‖2,
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where A is some constant. However, we also have∑
x∈Dj

‖x − mj‖2 =
∑

x∈Dj1

‖x − mj‖2 +
∑

x∈Dj2

‖x − mj‖2

>
∑

x∈Dj1

‖x − mj1‖2 +
∑

x∈Dj2

‖x − mj2‖2.

Thus, replacing Dj by Dj1 and Dj2 and removing the empty subset yields a partition
into c disjoint subsets that reduces Je. But by assumption the partition chosen mini-
mized Je, and hence we have a contradiction. Thus there can be no empty subsets in
a partition that minimizes Je (if n ≥ c). In short, we should partition into as many
subsets are allowed, since fewer subsets means larger dispersion within subsets.
22. The figure shows our data and terminology.

-2 -1 1 2
x

0 a

k k

1

Partition 1

Partition 2

D11 D12

D21 D22

(a) We have n = 2k + 1 points to be placed in c = 2 clusters and of course the
clusters should be non-empty. Thus the only two cases to consider are those
shown in the figure above.

In Partition 1, we have

m11 =
−2k + 0 · k

2k
= −1,

m12 = a,

and thus the value of our cluster criterion function is

Je1 =
∑

x∈D11

(x − m11)2 +
∑

x∈D12

(x − m12)2

=
k∑

i=1

(−2 + 1)2 +
k∑

i=1

(0 + 1)2 + (a − a)2

= k + k + 0 = 2k.

In Partition 2, we have

m21 = −2,

m22 =
k · 0 + a

k + 1
=

a

k + 1
,

and thus the value of our cluster criterion function is

Je2 =
∑

x∈D21

(x − m21)2 +
∑

x∈D22

(x − m22)2
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=
∑

x∈D21

(−2 + 2)2 +
k∑

i=1

(
0 − a

k + 1

)2

+
(

a − a

k + 1

)2

= 0 +
a2

(k + 1)2
k +

a2k2

(k + 1)2

=
a2k(k + 1)
(k + 1)2

=
a2k

k + 1
.

Thus if Je2 < Je1, that is, if a2/(k + 1) < 2k or equivalently a2 < 2(k + 1), then
the partition that minimizes Je is Partition 2, which groups the k samples at
x = 0 with the one sample at x = a.

(b) If Je1 < Je2, i.e., 2k < a2/(k+1) or equivalently 2(k+1) > a2, then the partition
that minimzes Je is Partition 1, which groups the k-samples at x = −2 with the
k samples at x = 0.

23. Our sum-of-square (scatter) criterion is tr[SW ]. We thus need to calculate SW ,
that is,

SW =
c∑

i=1

∑
x∈Di

(x − mi)(x − mi)t

=
c∑

i=1

∑
x∈Di

[xxt − mixt − xmt
i + mimt]

=
c∑

i=1

∑
x∈Di

xxt −
c∑

i=1

m1nimt
i −

c∑
i=1

nimimt
i +

c∑
i=1

nimimt
i

=
4∑

k=1

xkxt
k −

c∑
i=1

nimimt
i,

where ni is the number of samples in Di and

mi =
1
ni

∑
x∈Di

x.

For the data given in the problem we have the following:

4∑
k=1

xkxt
k =

(
4
5

)
(4 5)

+
(

1
4

)
(1 4)

+
(

0
1

)
(0 1)

+
(

5
0

)
(5 0)

=
(

16 20
20 25

)
+

(
1 4
4 16

)
+

(
0 0
0 1

)
+

(
25 0
0 0

)
=

(
42 24
24 42

)
.

Partition 1: Our means are

m1 =
1
2

((
4
5

)
+

(
1
4

))
=

(
5/2
9/2

)
,

m2 =
1
2

((
0
1

)
+

(
5
0

))
=

(
5/2
1/2

)
,
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and thus the matrix products are

m1mt
1 =

(
25/4 45/4
45/4 81/4

)
and m2mt

2 =
(

25/4 5/4
5/4 1/4

)
.

Our scatter matrix is therefore

SW =
(

42 24
24 42

)
− 2

(
25/4 45/4
45/4 81/4

)
− 2

(
25/4 5/4
5/4 1/4

)
=

(
17 − 1
−1 1

)
,

and thus our criterion values are the trace

tr[SW ] = tr
(

17 − 1
− 1 1

)
= 17 + 1 = 18,

and the determinant

|SW | = 17 · 1 − (−1) · (−1) = 16.

Partition 2: Our means are

m1 =
1
2

((
4
5

)
+

(
5
0

))
=

(
9/2
5/2

)
,

m2 =
1
2

((
1
4

)
+

(
0
1

))
=

(
1/2
5/2

)
,

and thus our matrix products are

m1mt
1 =

(
81/4 45/4
45/4 25/4

)
and m2mt

2 =
(

1/4 5/4
5/4 25/4

)
.

Our scatter matrix is therefore

SW =
(

42 24
24 42

)
− 2

(
81/4 45/4
45/4 25/4

)
− 2

(
1/4 5/4
5/4 25/4

)
=

(
1 − 1
−1 17

)
,

and thus our criterion values are the trace

tr[SW ] = tr
(

17 − 1
−1 1

)
= 1 + 17 = 18,

and the determinant

|SW | = 1 · 17 − (−1) · (−1) = 16.

Partition 3: Our means are

m1 =
1
3

((
4
5

)
+

(
1
4

)
+

(
0
1

))
=

(
5/3
3

)
,

m2 =
(

5
0

)
.

and thus our matrix products are

m1mt
1 =

(
25/9 5
5 9

)
and m2mt

2 =
(

25 0
0 0

)
.
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Our scatter matrix is therefore

SW =
(

42 24
24 42

)
− 3

(
25/9 5
5 9

)
− 1

(
25 0
0 0

)
=

(
26/3 22/3
22/3 26/3

)
,

and thus our criterion values are

tr SW = tr
(

17 − 1
−1 1

)
= 26/3 + 26/3 = 17.33,

and

|SW | = 26/3 · 26/3 − 22/3 · 22/3 = 21.33.

We summarize our results as

Partition tr[SW ] |SW |
1 18 16
2 18 16
3 17.33 21.33

Thus for the tr[SW ] criterion Partition 3 is favored; for the |SW | criterion Partitions
1 and 2 are equal, and are to be favored over Partition 3.
24. Problem not yet solved

25. Consider a non-singular transformation of the feature space: y = Ax where A is
a d-by-d non-singular matrix.

(a) If we let D̃i = {Ax : x ∈ Di} denote the data set transformed to the new space,
then the scatter matrix in the transformed domain can be written as

Sy
W =

c∑
i=1

∑
y∈D̃i

(y − my
i )(y − my

i )t

=
c∑

i=1

∑
y∈D̃i

(Ax − Ami)(Ax − Ami)t

= A
c∑

i=1

∑
y∈D̃i

(x − mi)(x − mi)t

where At = ASW At. We also have the between-scatter matrix

Sy
B =

c∑
i=1

ni(m
y
i − my)(mi − my)t

=
c∑

i=1

ni(Ami − Am)(Ami − Am)t

= A

[
c∑

i=1

ni(mi − m)(mi − m)t

]
At

= ASBAt.
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The product of the inverse matrices is

[Sy
W ]−1[Sy

B ]−1 = (ASW At)−1(ASBAt)
= (At)−1S−1

W A−1ASBAt

= (At)−1S−1
W SBAt.

We let λi for i = 1, . . . , d denote the eigenvalues of S−1
W SB . There exist vectors

zi, . . . , zd such that

S−1
W SBzi = λizi,

for i = 1, . . . , d, and this in turn implies

(At)−1S−1
W SBAtAt)−1zi = λi(At)−1zi,

or

Sy−1
W Sy

Bui = λiui,

where ui = (At)−1zi. This implies that λ1, . . . , λd are the eigenvalues of
Sy−1

W Sy
B , and finally that λ1, . . . , λd are invariant to non-singular linear trans-

formation of the data.

(b) Our total scatter matrix is ST = SB + SW , and thus

S−1
T SW = (SB + SW )−1SW

= [S−1
W (SB + SW )]−1

= [I + S−1
W SB ]−1.

If λ1, . . . , λd are the eigenvalues of S−1
W SB and the u1, . . . ,ud are the corre-

sponding eigenvectors, then S−1
W SBui = λiui for i = 1, . . . , d and hence

ui + S−1
W SBui = ui + λiui.

This equation implies

[I + S−1
W SB ]ui = (1 + λi)ui.

We multiply both sides of the equation by (1 + λi)−1[I + S−1
W SB ]−1 and find

(1 + λi)−1ui = [I + S−1
W SB ]−1ui

and this implies νi = 1/(1 + λi) are eigenvalues of I + S−1
W SB .

(c) We use our result from part (a) and find

Jd =
|SW |
|ST | = |S−1

T SW | =
d∏

i=1

νi =
d∏

i=1

1
1 + λi

,

which is invariant to non-singular linear transformations described in part (a).
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26. Consider a non-singular transformation of the feature space: y = Ax, where A
is a d-by-d non-singular matrix. We let Di = {Ax : x ∈ Dx}. We have

Sy
W =

c∑
i=1

∑
y∈Di

(y − my)(y − my)t

=
c∑

i=1

∑
x∈Di

(Ax − Amx
i )(Ax − Amx

i )t

= ASx
W At.

In a similar way, we have

Sy
B = ASx

BAt

Sy
t = ASx

t A
t

(Sy
t )−1Sy

W = (At)−1(Sx
t )−1A−1ASx

W At

= (At)−1(Sx
t )−1Sx

W At

(Sy
W )−1Sy

B = (At)−1(Sx
W )−1A−1ASx

BAt

= (At)−1(Sx
W )−1Sx

BAt.

(a) From problem 25 (b), we know that

tr[(Sx
t )−1Sx

W ] =
d∑

i=1

νi

=
d∑

i=1

1
1 + λi

as well as tr[B−1SB], because they have the same eigenvalues so long as B
is non-singular. This is because if Sx = νix, then SBB−1x = νix, then also
B−1SBB−1x = B−1νix = νiB−1x. Thus we have

B−1SB(B−1x) = νi(B−1x).

We put this together and find

tr[(Sy
t )−1Sy

W ] = tr[(At)−1(Sx
t )−1Sx

W At]
= tr[(Sx

t )−1Sx
W ]

=
d∑

i=1

1
1 + λi

.

(b) See Solution to Problem 25 part (c).

(c) Here we have the determinant

|(Sy
W )−1Sy

B | = |(At)−1(Sx
W )−1Sx

BAt|
=

∏
eigenvalues of [(At)−1(Sx

W )−1Sx
BAt]

=
∏

eigenvalues of [(Sx
W )−1Sx

B ]

=
d∏

i=1

λi.
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(d) The typical value of the criterion is zero or close to zero. This is because SB is
often singular, even if samples are not from a subspace. Even when SB is not
singular, some λi is likely to be very small, and this makes the product small.
Hence the criterion is not always useful.

27. Equation 68 in the text defines the criterion Jd = |SW | =
∣∣∣∣ c∑
i=1

Si

∣∣∣∣, where

Si =
∑
x∈Di

(x − mi)(x − mi)t

is the scatter matrix for category ωi, defined in Eq. 61 in the text. We let T be a
non-singular matrix and consider the change of variables x′ = Tx.

(a) From the conditions stated, we have

m′
i =

1
ni

∑
x′∈Di′

x′

where ni is the number of points in category ωi. Thus we have the mean of the
transformed data is

m′
i =

1
ni

∑
x∈Di

Tx = Tmi.

Furthermore, we have the transformed scatter matrix is

S′
i =

∑
x′∈D′

i

(x′ − m′
i)(x

′ − m′
i)

t

=
∑
x∈Di

(Tx − Tmi)(Tx − Tmi)t

= T

[ ∑
x∈Di

(x − mi)(x − mi)t

]
Tt = TSiTt.

(b) From the conditions stated by the problem, the criterion function of the trans-
formed data must obey

J ′
d = |S′

W | =

∣∣∣∣∣
c∑

i=1

S′
i

∣∣∣∣∣ =

∣∣∣∣∣
c∑

i=1

TSiTt

∣∣∣∣∣ =

∣∣∣∣∣T
(

c∑
i=1

Si

)
Tt

∣∣∣∣∣
= |T||Tt|

∣∣∣∣∣
c∑

i=1

Si

∣∣∣∣∣
= |T|2Jd.

Therefore, J ′
d differs from Jd only by an overall non-negative scale factor |T|2.

(c) Since J ′
d differs from Jd only by a scale factor of |T|2 (which does not depend on

the partitioning into clusters) J ′
d and Jd will rank partitions in the same order.

Hence the optimal clustering based on Jd is always the optimal clustering based
on J ′

d. Optimal clustering is invariant to non-singular linear transformations of
the data .
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28. Consider a non-singular transformation of the feature space y = Ax, where A is
a d-by-d non-singular matrix. We let Di = {Ax : x ∈ Dx

i } be the transformed data
set. We then have the within scatter matrix as

Sy
W =

c∑
i=1

∑
y∈Di

(y − my
i )(y − my

i )t

=
c∑

i=1

∑
y∈Di

(Ax − Amx
i )(y − Amx

i )t

= ASx
W At.

In a similar way, we have

Sy
B = ASx

BAt

Sy
t = ASx

t A
t

(Sy
W )−1Sy

B = (At)−1(Sx
W )−1A−1ASx

BAt

= (At)−1(Sx
W )−1Sx

BAt.

If λ is an eigenvalue of (Sx
W )−1Sx

B with corresponding eigenvector x, that is, (Sx
W )−1Sx

Bx =
λx, then we have

(Sx
W )−1Sx

B (At(At)−1)︸ ︷︷ ︸
I

x = λx,

which is equivalent to

(Sx
W )−1Sx

BAt((At)−1x) = λx.

We multiply both sides on the left by (At)−1 and find

(At)−1(Sx
W )−1Sx

BAt((At)−1x) = (At)−1λx,

which yields

(Sy
W )−1Sy

B((At)−1x) = λ((At)−1x).

Thus we see that λ is an eigenvalue of (Sy
W )−1Sy

B with corresponding eigenvector
(At)−1x.
29. We consider the problems that might arise when using the determinant criterion
for clustering.

(a) Here the within-cluster matrix for category i is

Si
W =

∑
x∈Di

(x − mi)(x − mi)t,

and is the sum of ni matrices, each of rank at most 1. Thus rank[Si
W ] ≤ ni.

These matrices are not independent; they satisfy the constraint∑
x∈Di

(x − mi) = 0.

This implies that

rank[SW ] ≤
c∑

i=1

(ni − 1) = n − c.
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(b) Here we have the between scatter matrix

SB =
c∑

i=1

ni(mi − m)(mi − m)t

is the sum of c matrices of rank at most 1, and thus rank[SB ] ≤ c. The matrices
are constrained by

c∑
i=1

ni(mi − m)(mi − m)t = 0,

and thus rank[SB ] ≤ c − 1. The between-cluster scatter matrix, SB , is always
singular if c ≤ d, the dimension of the space. The determinant criterion for clus-
tering is not useful under such conditions because at least one of the eigenvalues
is 0, since as a result the determinant is also 0.

Section 10.8

30. Our generalization of the basic minimum-squared-error criterion function of
Eq. 54 in the text is:

JT =
c∑

i=1

∑
x∈Di

(x − mi)tS−1
T (x − mi).

(a) We consider a non-singular transformation of the feature space of the form
y = Ax, where A is a d-by-d non-singular matrix. We let D̃i = {Ax : x ∈ Di}
denote the transformed data set. Then, we have the criterion in the transformed
space is

Jy
T =

c∑
i=1

∑
y∈D̃i

(y − my
i )tSy−1

T (y − my
i )

=
c∑

i=1

∑
x∈Di

(Ax − Ami)tSy−1
T (Ax − Ami).

As mentioned in the solution to Problem 25, the within- and between-scatter
matrices transform according to:

Sy
W = ASW At and

Sy
B = ASBAt,

respectively. Thus the scatter matrix in the transformed coordinates is

Sy
T = Sy

W + Sy
B = A(SW + SB)At = AST At,

and this implies

[Sy
T ]−1 = (AST At)−1 = (At)−1S−1

T A−1.
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Therefore, we have

Jy
T =

c∑
i=1

∑
x∈Di

∑
(A(x − mi))t(At)−1S−1

T A−1(A(x − mi))

=
c∑

i=1

(x − mi)t(At)(At)−1S−1
T (x − mi)

=
c∑

i=1

(x − mi)S−1
T (x − mi) = JT .

In short, then, JT is invariant to non-singular linear transformation of the data.

(b) We consider sample x̂ being transferred from Di to Dj . Recall that the total
scatter matrix ST =

∑
x(x−m)(x−m)t, given by Eq. 64 in the text, does not

change as a result of changing the partition. Therefore the criterion is

J∗
T =

c∑
k=1

∑
x∈D∗

k

(x − m∗
k)tS−1

T (x − m∗
k),

where

D∗
k =

⎧⎨⎩
Dk if k �= i, j
Di − {x̂} if k = i
Dj + {x̂} if k = j.

We note the following values of the means after transfer of the point:

m∗
k = mk if k �= i, j,

m∗
i =

∑
x∈D∗

i

x∑
x∈D∗

i

1
=

∑
x∈Di

x − x̂

ni − 1

=
nimi − x̂
ni − 1

=
(ni − 1)mi − (x̂ − mi)

ni − 1

= mi − x̂ − mi

ni − 1
,

m∗
j =

∑
x∈Hi

x + x̂

ni + 1

=
njmj + x̂

nj + 1
=

(nj + 1)mj + (x̂ − mj)
nj + 1

= mj +
x̂ − mj

nj + 1
.

Thus our criterion function is

J∗
T =

c∑
k=1,k �=i,j

(x − mk)tS−1
T (x − mk) +

∑
x∈D∗

i

(x − m∗
i )

tS−1
T (x − m∗

i )

+
∑

x∈D∗
j

(x − m∗
j )

tS−1
T (x − mj). (∗)
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We expand the sum:∑
x∈D∗

i

(x − m∗
i )

tS−1
T (x − m∗

i ) +
∑

x∈D∗
j

(x − m∗
j )

tS−1
T (x − m∗

j )

=
∑

x∈D∗
i

xtS−1
T x − n∗

i m
∗t
i +

∑
x∈D∗

j

xtS−1
T x − n∗

jm
∗t
j S−1

T m∗
j

=
∑

x∈D∗
i

xtS−1
T x − x̂S−1

T x̂ − (ni − 1)
(
mi − x̂ − mi

ni − 1

)t

S−1
T

(
mi − x̂ − mi

ni − 1

)

+
∑

x∈D∗
j

xtS−1
T x + x̂S−1

T x̂ − (nj + 1)
(
mj +

x̂ − mj

nj + 1

)t

S−1
T

(
mj +

x̂ − mj

nj + 1

)
=

∑
x∈Di

(x − mi)tS−1
T (x − mi) − x̂tS−1

T x̂ + miS−1
T mi + 2mt

iS
−1
T x̂ − 2mt

iS
−1
T mi

− 1
ni − 1

(x̂ − mi)tS−1
T (x̂ − mi)

+
∑
x∈Dj

(x − mj)tS−1
T (x − mj) + x̂tS−1

T x̂ − mjS−1
T mj + 2mt

jS
−1
T x̂ + 2mt

jS
−1
T mj

− 1
nj + 1

(x̂ − mj)tS−1
T (x̂ − mj)

=
∑
x∈Di

(x − mi)tS−1
T (x − mi) − ni

ni + 1
(x̂ − mi)tS−1

T (x̂ − mi)

+
nj

nj + 1
(x̂ − mj)tS−1

T (x̂ − mj).

We substitute this result in (∗) and find

J∗
T =

c∑
k=1

∑
x∈Dk

(x − mk)tS−1
T (x − mk)

+
[

nj

nj + 1
(x − mj)tS−1

T (x − mj) − ni

ni − 1
(x̂ − mi)tS−1

T (x̂ − mi)
]

= JT +
[

nj

nj + 1
(x̂ − mj)tS−1

T (x̂ − mj) − ni

ni − 1
(x̂ − mi)tS−1

T (x̂ − mi)
]

.

(c) If we let D denote the data set and n the number of points, the algorithm is:

Algorithm 0 (Minimize JT )

1 begin initialize D, c
2 Compute c means m1, . . . ,mc

3 Compute JT

4 do Randomly select a sample; call it x̂
5 Determine closest mean to x̂; call it mj

6 if ni = 1 then go to line 10
7 if j �= i then ρj ← nj

nj+1 (x̂ − mj)tS−1
T (x̂ − mj)

8 if j = 1 then ρj ← ni

ni−1 (x̂ − mi)tS−1
T (x̂ − mi)

9 if ρk ≤ ρj for all j then transfer x̂ to Dk
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10 Update JT ,mi, and mk

11 until JT has not changed in n tries
12 end

31. The total scatter matrix, ST =
n∑

i=1

(xi−m)(xi−m)t, given by Eq. 64 in the text,

does not change. Thus our criterion function is

Je = tr[SW ] = tr[ST − SB ] = tr[ST ] − tr[SB ].

We let J∗
e be the criterion function which results from transferring a sample x̂ from

Di to Dj . Thus we have

J∗
e = tr[ST ] − tr[S∗

B ] (∗)
= tr[ST ] −

∑
k

n∗
k‖m∗

k − m‖2

= tr[ST ] −
∑

k �=i,j

n∗
k‖m∗

k − m‖2 −
∑

k=i,j

n∗
k‖m∗

k − m‖2

= tr[ST ] −
∑

k �=i,j

nk‖mk − m‖2 − n∗
i ‖m∗

i − m‖2 − n∗
j‖m∗

j − m‖2.

Therefore we have

n∗
i ‖m∗

i − m‖2 + n∗
j‖m∗

j − m‖2 = (ni − 1)
∥∥∥mi − x̂ − mi

ni − 1
− m

∥∥∥2

+(nj + 1)
∥∥mj +

x̂ − mj

nj + 1
− m

∥∥2
,

as shown in Problem 30. We thus find that the means change by

m∗
i = mi − x̂ − mi

ni − 1
,

m∗
j = mj +

x̂ − mj

nj + 1
.

We substitute these into (∗) above and find through a straightforward but tedious
calculation:

J∗
e = (ni − 1)

[
‖mi − m‖2 +

1
(ni − 1)2

‖x̂ − mi‖2 − 2
ni − 1

(x̂ − mi)t(mi − m)
]

+(nj − 1)
[
‖mj − m‖2 +

1
(nj + 1)2

‖x̂ − mj‖2 − 2
nj + 1

(x̂ − mj)t(mj − m)
]

= ni‖mi − m‖2 − ‖mi − m‖2 − 2(x̂ − mi)t(mi − m) +
1

ni − 1
‖x̂ − mi‖2

+nj‖mj − m‖2 − ‖mj − m‖2 + 2(x̂ − mj)t(mj − m) +
1

nj + 1
x̂ − mj‖2

= ni‖mi − m‖2 + nj‖mj − m‖2 + ‖x̂ − mi‖2 − ‖x̂ − mj‖2

+
1

ni − 1
||x̂ − mi||2 +

1
nj + 1

||x̂ − mj ||2

= ni‖mi − m‖2 + nj‖mj − m‖2 +
ni

ni − 1
‖x̂ − mi‖2 − nj

nj + 1
‖x̂ − mj‖2.
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Therefore our criterion function is

J∗
e = tr[ST ] − tr[S∗

B ]

= tr[ST ] −
∑

k

nk‖mk − m‖2 − ni

ni − 1
‖x̂ − mi‖2 +

nj

nj + 1
‖x̂ − mj‖2

= Je +
nj

nj + 1
‖x̂ − mj‖2 − ni

ni − 1
‖x̂ − mi‖2.

Section 10.9

32. Our similarity measure is given by Eq. 50 in the text:

s(x,x′) =
xtx′

‖x‖‖x′‖ .

(a) We have that x and x′ are d-dimensional vectors with xi = 1 if x possesses the
ith feature and xi = −1 otherwise. The Euclidean length of the vectors obeys

‖x‖ = ‖x′‖ =

√√√√ d∑
i=1

x2
i =

√√√√ d∑
i=1

1 =
√

d,

and thus we can write

s(x,x′) =
xtx′
√

d
√

d
=

1
d

d∑
i=1

xix
′
i

=
1
d

[number of common features − number of features not common]

=
1
d
[number of common features − (d − number of common features) ]

=
2
d

(number of common features) − 1.

(b) The length of the difference vector is

‖x − x′‖2 = (x − x′)t(x − x′)
= xtx + x′tx′ − 2xtx′

= ‖x‖2 + ‖x′‖2 − 2s(x,x′)‖x‖‖x′‖
= d + d − 2s(x,x′)

√
d
√

d

= 2d[1 − s(x,x′)],

where, from part (a), we used ‖x‖ = ‖x′‖ =
√

d.

33. Consider the following candidates for metrics or pseudometrics.

(a) Squared Euclidean distance:

s(x,x′) = ‖x − x′‖2 =
d∑

i=1

(xi − x′
i)

2.
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Clearly we have

s(x,x′) ≥ 0 (non-negativity)
s(x,x′) = 0 ⇔ x = x′ (uniqueness)
s(x,x′) = s(x′,x) (symmetry).

Now consider the triangle inequality for the particular case d = 1, and x =
0, x′ = 1/2 and x′′ = 1.

s(x,x′′) = (0 − 1)2 = 1
s(x,x′) = (0 − 1/2)2 = 1/4

s(x′,x′′) = (1/2 − 1)2 = 1/4.

Thus we have

s(x,x′) + s(x′,x′′) = 1/2 < s(x,x′′),

and thus s(x,x′′) is not less than or equal to s(x,x′) + s(x′,x′′). In short, the
squared Euclidean distance does not obey the triangle inequality and is not a
metric. Hence it cannot be an ultrametric either.

(b) Euclidean distance:

s(x,x′) = ‖x − x′‖ =

√√√√ d∑
i=1

(xi − x′
i)2.

Clearly symmetry, non-negativity and uniqueness hold, as in part (a); now we
turn to the triangle inequality. First consider two vectors x and x′. We will
need to show that ‖x + x′‖ ≤ ‖x‖ + ‖x′‖; we do this as follows:

‖x + x′‖2 = (x + x′)t(x + x′)
= xtx + x′tx′ + 2x′tx
= ‖x‖2 + ‖x′‖2 + 2xtx′

≤ ‖x‖2 + ‖x′‖2 + 2‖x‖‖x′‖.
We use the Cauchy-Schwarz Inequality (a special case of the Hölder inequality,
see part (c) below), i.e., |xtx′| ≤ ‖x‖‖x′‖, and thus find

‖x + x′‖2 ≤ (‖x‖ + ‖x′‖)2

and thus

‖x + x′‖ ≤ ‖x‖ + ‖x′‖.
We put this together to find

s(x,x′′) = ‖x − x′′‖ = ‖(x − x′) + (x′ − x′′)‖
≤ ‖x − x′‖ + ‖x′ − x′′‖
= s(x,x′) + s(x′,x′′),
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and thus the Euclidean metric is indeed a metric. We use the same sample
points as in the example of part (a) to test whether the Euclidean metric is an
ultrametric:

s(x,x′′) = 1
s(x,x′) = s(x,x′′) = 1/4

so

max[s(x,x′), s(x′,x′′)] = 1/4
< 1 = s(x,x′′).

Thus the Euclidean metric is not an ultrametric.

(c) Minkowski metric:

s(x,x′) =

(
d∑

i=1

|xi − x′
i|q

)1/q

.

It is a simple matter to show that the properties of non-negativity, uniqueness
and symmetry hold for the Minkowski metric. In order to prove that the triangle
inequality also holds, we will first need to prove Hölder’s inequality, that is, for
p and q positive numbers such that 1/p + 1/q = 1

d∑
i=1

|xix
′
i| ≤

(
d∑

i=1

|xi|q
)1/q

·
(

d∑
i=1

|x′
i|p

)1/p

,

with equality holding if and only if⎛⎜⎜⎜⎝ |xj |(
d∑

i=1

xi

)1/p

⎞⎟⎟⎟⎠
1/q

=

⎛⎜⎜⎜⎝ |x′
j |(

d∑
i=1

x′
i

)1/q

⎞⎟⎟⎟⎠
1/p

for all j. The limiting case of p = 1 and q = ∞ can be easily verified directly. We
thus turn to the case 1 < p, q, < ∞. Consider two real, non-negative numbers a
and b, and 0 ≤ λ ≤ 1; we have

aλb(1−λ) ≤ λa + (1 − λ)b,

with equality if and only if a = b. To show this, we consider the function

f(t) = tλ − λt + λ − 1

for t ≥ 0. Thus we have f ′(t) = λ(t(λ−1)−1) ≥ 0. Furthermore, f(t) ≤ f(1) = 0
with equality only for t = 1. Thus we have

tλ ≤ λt + 1 − λ.

We let t = a/b, substitute above and our intermediate inequality is thus proven.
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We apply this inequality to the particular case

a =

⎛⎜⎜⎜⎝ |xj |(
d∑

i=1

|xi|p
)1/p

⎞⎟⎟⎟⎠
p

, b =

⎛⎜⎜⎜⎝ |x′
j |(

d∑
i=1

|x′
i|q

)1/q

⎞⎟⎟⎟⎠
q

with λ = 1/p and 1 − λ = 1/q. Thus for each component j we have

|xjx
′
j |(

d∑
i=1

|xi|p
)1/p (

d∑
i=1

|x′
i|q

)1/q
≤ 1

p

⎛⎜⎜⎜⎝ |xj |(
d∑

i=1

|xi|p
)1/p

⎞⎟⎟⎟⎠
p

+
1
q

⎛⎜⎜⎜⎝ |x′
j |(

d∑
i=1

|x′
i|q

)1/q

⎞⎟⎟⎟⎠
q

.

We sum this inequality over all j = 1, . . . , d and find

d∑
j=1

|xjx
′
j |(

d∑
i=1

|xi|p
)1/p (

d∑
i=1

|x′
i|q

)1/q
≤ 1

p
+

1
q

= 1,

and the Hölder inequality is thereby proven.

We now use the Hölder inequality to prove that the triangle inequality holds for
the Minkowski metric, a result known as Minkowski’s inequality. We follow the
logic above and have

d∑
i=1

|xi + x′
i|p ≤

d∑
i=1

|xi + x′
i|p−1|xi| +

d∑
i=1

|xi + x′
i|p−1|x′

i|.

We apply Hölder’s inequality to each summation on the right hand side and find

d∑
j=1

|xi + x′
i|p ≤

(
d∑

i=1

|xi + x′
i|(p−1)q

)1/q
⎡⎣(

d∑
i=1

|xi|p
)1/p

+

(
d∑

i=1

|x′
i|p

)1/p
⎤⎦

=

(
d∑

i=1

|xi + x′
i|p

)1/q
⎡⎣(

d∑
i=1

|xi|p
)1/p

+

(
d∑

i=1

|x′
i|p

)1/p
⎤⎦ .

We divide both side by
(

d∑
i=1

∣∣xi + x′
i

∣∣p)1/q

, recall that 1 − 1/q = 1/p, and

thereby obtain(
d∑

i=1

|xi + x′
i|p

)1/p

≤
(

d∑
i=1

|xi|p
)1/p

+

(
d∑

i=1

|x′
i|p

)1/p

.

Thus, using the notation of the Minkowski metric above, we have

s(x + x′,0) ≤ s(x,0) + s(x′,0),



PROBLEM SOLUTIONS 343

or with simple substitution and rearrangement

s(x,x′′) ≤ s(x,x′) + s(x′,x′′),

for arbitrary x, x′ and x′′. Thus our triangle inequality is thereby proven and
the Minkowski measure is a true metric.
Ultrametric [[more hereProblem not yet solved]]

(d) Cosine:

s(x,x′) =
xtx′

‖x‖‖x′‖ .

We investigate the condition of uniqueness in the particular case d = 2 and
x =

(
1
1

)
,x′ =

(
1
−1

)
. For these points we have

xtx′ = 1 − 1 = 0,

but note that x �= x′ here. Therefore s(x,x′) does not possess the uniqueness
property, and thus is not a metric and cannot be an ultrametric either.

(e) Dot product:

s(x,x′) = xtx′.

We use the same counterexample as in part (c) to see that the dot product is
neither a metric nor an ultrametric.

(f) One-sided tangent distance:

s(x,x′) = min
α

‖x + αT(x) − x′‖2.

There is no reason why the symmetry property will be obeyed, in general, that
is, s(x,x′) �= s(x′,x), or

min
α1

‖x + α1T1(x) − x′‖2 �= min
α2

‖x′ + α2T2(x′) − x‖2,

and thus the one-sided tangent distance is not not a metric and not an ultra-
metric.

34. Consider merging two clusters Di and Dj and whether various values of the
parameters in the function

dhk = αdhi + αjdhj + βdij + γ|dhi − dhj |
can be used for a range of distance or similarity measures.

(a) We consider dmin defined by

dmin(Di,Dj) = min
x∈Di
x′∈Dj

‖x − x′‖

dhk = min

⎡⎣ min
x∈Di
x′∈Dj

‖x − x′‖, min
x∈Dj

x′∈Dh

‖x − x′‖
⎤⎦

= min (dhi, dhj)

=
1
2
dhi +

1
2
dhj − 1

2
|dhi − dhj |

= αidhi + αjdhj + βdij + γ|dhi − dhj |
for αi = αj = 1/2, β = 0 and γ = −1/2.
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(b) We consider dmax defined by

dmax(Di,Dj) = max
x∈Di
x′∈Dj

‖x − x′‖

dhk = max
x∈Dk
x′∈Dh

‖x − x′‖ = max
x∈Di

⋂
Dj

x′∈Dh

‖x − x′‖

= max

⎡⎣ max
x∈Di
x′∈Dj

‖x − x′‖, max
x∈Dj

x′∈Dh

‖x − x′‖
⎤⎦

= max (dhi, dhj)

=
1
2
dhi +

1
2
dhj +

1
2
|dhi − dhj |

= αidhi + αjdhj + βdij + γ|dhi − dhj |

for αi = dj = 1/2, β = 0 and γ = 1/2.

(c) We consider dave defined by

dave(Di,Dj) =
1

ninj

∑
x∈Di
x′∈Dj

‖x − x′‖

dhk =
1

nhnk

∑
x∈Dk
x′∈Dh

‖x − x′‖

=
1

nh(ni + nj)

∑
x∈Di∩Dj

x′∈Dh

‖x − x′‖

=
1

nh(ni + nj)

⎡⎢⎣ ∑
x∈Di
x′∈Dh

‖x − x′‖ +
∑
x∈Dj
x∈Dh

‖x − x′‖

⎤⎥⎦
=

1
nh(ni + nj)

[nhnidhi + nhnjdhj ]

=
ni

ni + nj
dhi +

nj

ni + nj
dhj

= αidhi + αjdhj + βdij + γ|dhi − dhj |

for αi = ni/(ni + nj), αj = nj/(ni + nj) and β = γ = 0.

(d) We consider d2
mean defined by

d2
mean(Di,Dj) = ‖mi − mj‖2

dhk = ‖mh − mk‖2

mk =

∑
x∈Dk

x∑
x∈Dk

1
=

∑
x∈Di∩Dj

x

ni + nj

=

∑
x∈Di

x +
∑

x∈Dj

x

ni + nj
=

nimi + njmj

ni + nj
,
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dhk =
∥∥mh − ni

ni + nj
mi − nj

ni + nj
mj

∥∥2

=
∥∥ ni

ni + nj
mh − ni

ni + nj
mi +

nj

ni + nj
mh − nj

ni + nj
mj

∥∥2

=
∥∥ ni

ni + nj
(mh − mi)

∥∥2 +
∥∥ nj

ni + nj
(mh − mj)

∥∥2

+2
ni

ni + nj
(mh − mi)t nj

ni + nj
(mh − mj)

=
n2

i + ninj

(ni + nj)2
‖mh − mi‖2 +

n2
j + ninj

(ni + nj)2
‖mh − mj‖2

+
ninj

(ni + nj)2
[(mh − mi)t(mi − mj) − (mh − mj)t(mi − mj)]

=
ni

ni + nj
‖mh − mi‖2 +

nj

ni + nj
‖mh − mj‖2 − ninj

(ni + nj)2
‖mh − mj‖2

= αidhi + αjdhj + βdij + γ|dhi − dhj |,
where

αi =
ni

ni + nj

αj =
nj

ni + nj

β = − ninj

(ni + nj)2
= −αiαj

γ = 0.

35. The sum-of-squared-error criterion is given by Eq. 72 in the text:

Je =
c∑

i′=1

∑
x∈Di′

‖x − mi′‖2

=
c∑

i′=1

⎡⎣ ∑
x∈Di′

xtx − ni′mt
i′mi′

⎤⎦
=

∑
x

xtx −
c∑

i′=1

ni′mt
i′mi.

We merge Di and Dj into Dk and find an increase in the criterion function Je of

Δ ≡ J∗
e − Je =

∑
x

xtx −
c∑

i′=1
i�=k

ni′mt
i′mi′ − nkmt

kmk

−

⎡⎢⎣∑
x

xtx −
c∑

i′=1
i′ �=i<j

ni′mt
i′mi − nimt

imi − njmt
jmj

⎤⎥⎦
= nimt

imi + njmt
jmj − nkmt

kmk,

where

nk = ni + nj
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mk =

∑
x∈Dk

x∑
x∈Dk

1
=

∑
x∈Di

x +
∑

x∈Dj

x

ni + nj
=

nimi + njmj

ni + nj

=
ni

ni + nj
mi +

nj

ni + nj
mj

nnkmt
kmk = (ni + nj)

[
ni

ni + nj
mi +

nj

ni + nj
mj

]t [
ni

ni + nj
mi +

nj

ni + nj
mj

]
=

n2
i

ni + nj
mt

imi +
n2

j

ni + nj
mt

jmj +
2ninj

ni + nj
mt

imj .

thus the difference in criterion function, Δ = J∗
e − Je, is

Δ =
(

ni − n2
i

ni + nj

)
mt

imi +
(

nj − n2
i

ni + nj

)
mt

jmj − 2ninj

ni + nj
mt

imj

=
ninj

ni + nj
mt

jmi +
ninj

ni + nj
mt

jmj − 2ninj

ni + nj
mt

jmj

=
ninj

ni + nj
(mt

imi + mt
jmj − 2mt

imj)

=
ninj

ni + nj
‖mi − mj‖2.

The smallest increase in Je corresponds to the smallest value of Δ, and this arises
from the smallest value of

ninj

ni + nj
‖mi − mj‖2.

36. Problem not yet solved

37. Problem not yet solved

38. Problem not yet solved

39. Given a set of points, we can define a fully connected graph by connecting each
pair of points with an edge that has the distance betyween the end points as its weight.
Assume (without loss of generality) that all the weights are mutually different, that
is w(e) �= w(e′) if e �= e′. The nearest-neighbor cluster algorithm merges at each
iteration the clusters of minimal distance and this corresponds to adding the edge of
least weight that joins two different clusters to the spanning tree. In other words, the
algorithm examines all the edges in the graph in order of increasing weight and adds
them to the spanning tree if the edge joins two disjoint clusters.

To see the optimality of this algorithm with respect to the sum of the edge lengths,
we use reductio ad absurdum: we will assume that there exists a minimum spanning
tree T ′ which has not been constructed by this algorithm and then arrive at a con-
tradiction, thus showing that the algorithm indeed constructs a minimum spanning
tree. We call the tree constructed by the algorithm T and assume that there exists a
tree T ′ �= T with a sum of weights less than that of T . Say the choice of e1, e2, e3, . . .
with w(e1) < w(e2) < w(e3) < . . . leads to the tree T . Sort the edges of T ′ such
that w(e′1) < w(e′2) < w(e′3) < . . .. Now, there must exist a first index j where these
sequences of edges differ, that is ej �= e′j and ei = e′i for all 1 ≤ i < j. Add ej to
T ′. This leads to a circle in the graph T ′. In this circle, there exists an edge e with
w(ej) < w(e) because j was the first index with a difference in the sequences and ej

is in T (and T has been constructed by the nearest-neighbor clustering algorithm).



PROBLEM SOLUTIONS 347

Delete e from T ′. The result is a tree with lower sum of weights. Therefore T ′ was
not a minimal spanning tree. Thus, by contradiction, we have proven that T was
optimal.

Section 10.10

40. Problem not yet solved

41. As given in Problem 35, the change in Je due to the transfer of one point is

Je(2) = Je(1) − n1n2

n1 + n2
‖m1 − m2‖2.

We calculate the expected value of Je(1) as:

E(Je(1)) = E
(∑

x∈D
‖x − m‖2

)

=
d∑

i=1

E
(∑

x∈D
(xi − mi)2

)

=
d∑

i=1

(n − 1)σ2,

where we have used the standard results

S2 =
∑

i

(xi − x)2 ∼ σ2χ2
n−1

and

E(S2) = σ2(n − 1)
= (n − 1)dσ2

� ndσ2 for n large.

We take the expectation of both sides and find

E(Je(2)) = E(Je(1)) − E
[

n1n2

n1 + n2
‖m1 − m2‖2

]
� ndσ2 − E

[
n1n2

n1 + n2
‖m1 − m2‖2

]
.

We now consider only sub-optimal hyperplanes through the sample mean. For n large,
this restriction is equivalent to considering only hyperplanes through the population
mean μ and this, in turn, implies n1/n → 1/2 and n2/n → 1/2, by the weak Law of
Large Numbers.

Consider points x distributed symmetrically in a hypersphere about μ. For such
a configuration, the distribution of Je(2) will not depend on the choice of hyperplane;
in particular, we can consider the hyperplane that divides D into

D1 = {x : x1 > μ1}
D2 = {x : x1 < μ1}.
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Thus we have

E
[

n1n2

n1 + n2
‖m1 − m2‖2

]
=

d∑
i=1

E
[

n1n2

n1 + n2
(m1i − m2i)2

]
� E

[
n1n2

n1 + n2
(m11 − m21)2

]
,

as x comes from a symmetric normal distribution of the form N(μ, σ2I). Thus we
have m1i − m2i � 0 for i �= 1 independent of m11, m21 by the Strong Law of Large
Numbers. Now we have in the limit of large n

m11 → E(x1|x1 > μ1)
m21 → E(x1|x1 < μ1).

Without loss of generality we let μ1 = 0. Then we have p(x1) ∼ N(0, σ2) and thus

E(x1|x1 > 0) =

√
2
π

σ

E(x1|x1 < 0) = −
√

2
π

σ.

Therefore, we have m11 − m21 → 2
√

2
π σ for n large. We also have

E(Je(2)) � ndσ2 − (n/2)(n/2)
(n/2) + (n/2)

(
2

√
2
π

σ

)2

= ndσ2 − n

4
4 × 2

π
σ2

= n

(
d − 2

π

)
σ2.

Thus Je(2) is approximately independent of

Je(1) − Je(2) =
n1n2

n1 + n2
‖m1 − m2‖2.

We write

Je(1) = Je(2) + [Je(1) − Je(2)]

and take the variance of both sides and find

Var[Je(1)] = Var[Je(2)] + Var[Δ],

where

Δ =
n1n2

n1 + n2
‖m1 − m2‖2.

Problem not yet solved

Section 10.11

42. Consider a simple greedy algorithm for creating a spanning tree based on the
Euclidean distance between points.
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(a) The following is known as Kruskal’s minimal spanning tree algorithm.

Algorithm 0 (Kruskal’s minimal spanning tree)

1 begin initialize i ← 0
2 T ← {}
3 do i ← i + 1
4 ci ← xi

5 until i = n
6 eij ← ‖xi − xj‖; sort in non − decreasing order
7 E ← ordered set of eij

8 do for each eij in E in non − decreasing order
9 if xiand xj belong to disjoint clusters

10 then Append eij to T ; Append cj to ci

11 until all eij considered
12 return T
13 end

(b) The space complexity is n(n−1) if we pre-compute all point-to-point distances.
If we compute all distances on demand, we only need to store the spanning treee
T and the clusters, which are both at most of length n.

(c) The time complexity is dominated by the initial sorting step, which takes
O(n2logn) time. We have to examine each edge in the for loop and that means
we have O(n2) iterations where each iteration can be done in O(logn) time as-
suming we store the clusters as disjoint-set-forests where searches and unions can
be done in logarithmic time. Thus the total time complexity of the algorithm
is O(n2logn).

Section 10.12

43. Consider the XOR problem and whether it can be implemented by an ART
network as illustrated in the text.

(a) Learning the XOR problem means that the ART network is supposed to learn
the following input-output relation. We augment all the input vectors and
normalize them to unit weight wo that they lie on the unit sphere in R3. Then
we have

input output
0 0 1 1 (∗)

1/
√

2 0 1/
√

2 0 (∗∗)
0 1/

√
2 1/

√
2 0 (∗ ∗ ∗)

1/
√

3 1/
√

3 1/
√

3 1 (∗ ∗ ∗∗)

Associate the weight vector w0 with cluster 0, and w1 with cluster 1, and the
subscripts with the different dimension. Then we get the following conditions:

x0
3 < w1

3 (∗)
w0

1 + x0
3 > w1

1 + w1
3 or (w0

1 − w1
1) > (w1

3 − w0
3) (∗∗)

w0
2 + w0

3 > w1
2 + w1

3 or (w0
2 − w1

2) > (w1
3 − w0

3) (∗ ∗ ∗)
w0

1 + w0
2 + w0

3 < w1
1 + w1

2 + w1
3. (∗ ∗ ∗∗)
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From (∗ ∗ ∗∗) we see

(w0
1 − w1

1) + (w0
2 − w1

2) < (w1
3 − w0

3).

We combine this with (∗), (∗∗) and (∗ ∗ ∗) and find

0 < 2(w1
3 − w0

3) < (w0
1 − w1

1) + (w0
2 − w1

2) < (w1
3 − w0

3).

This is a contradition. Thus there is no set of weights that the ART network
could converge to that would implement that XOR solution.

(b) Given a weight vector w for cluster C1, the vigilance parameter ρ and two inputs
x1 and x2 such that wtx1 > ρ and wtx2 < ρ, but also (w+μx)tx2 > ρ‖w+μx1‖.
Since the top-down feedback tries to push the input vector to be closer to w,
we can use the angle between w and x1 in this case to make our point, since
we cannot forecast the value of y. If we present x1 before x2, then x1 will
be classified as belonging to cluster C1. The weight vector w is now slightly
adjusted and now also x2 is close enough to w to be classified as belonging to
cluster C1, thus we will not create another cluster. In constrast, if we present x2

before x1, the angle between w and x2 is smaller than ρ, thus we will introduce
a new cluster C2 containing x2. Due to the fixed value of ρ but weights that are
changing in dependence on the input, the number of clusters depends on the
order the samples are presented.

(c) In a stationary environment the ART network is able to classify inputs robustly
because the feedback connections will drive the network into a stable state even
when the input is corrupted by noise. In a non-stationary environment the
feedback mechanism will delay the adaptation to the changing input vectors
because the feedback connections will interpret the changing inputs as noisy
versions of the original input and will try to force the input to stay the same.
Without the feedback the adaptation of the weights would faster account for
changing sample configurations.

Section 10.13

44. Let e be a vector of unit length and x the input vector.

(a) We can write the variance as

σ2 = Ex[a2]
= Ex[(xte)t(xte)]
= Ex[etxxte]
= etEx[xxt]e
= etΣe,

since e is fixed and thus can be taken out of the expectation operator.

(b) We use the Taylor expansion:

σ2(e + δe) = (e + δe)tΣ(e + δe)
= etΣe + 2δetΣe + O(‖δe‖3).



PROBLEM SOLUTIONS 351

If we disregard the cubic term, we see that

(e + δe)tΣ(e + δe) = etΣe

implies (δe)tΣe = 0.

(c) Since δe is perpendicular to e, we have (δe)te = 0. We can now combine this
with the condition from part (b) and get the following equation: (δe)tΣe −
λ(δe)te = 0. This can be rewritten (δe)t(Σe − λe) = 0. For this equation to
hold it is sufficient that Σe = λe for some λ. It is also a necessary condition since
(δe)tΣe must vanish for all δe perpendicular to e, thus Σe is itself perpendicular
to δe or in other words parallel to e. In other words, we have Σe = λe.

(d) We denote the d eigenvalues of the covariance matrix Σ by λi and the corre-
sponding eigenvectors by ei. Since Σ is symmetric and positive semi-definite,
we know that all eigenvalues are real and greater than or equal to zero. Since
the eigenvectors ei can be chosen orthonormal, they span a basis of the d-
dimensional space and we can write each vector x as

d∑
i=1

(et
ix)ei.

We define the error Ek(x) as the sum-squared error between the vector x and
its projection onto a k-dimensional subspace, that is

Ek(x) =

[
x −

k∑
i=1

(et
ix)e

]t [
x −

k∑
i=1

(et
ix)e

]

=

[
d∑

i=k+1

(et
ix)ei

]t [
d∑

i=k+1

(et
ix)ei

]

=
d∑

k=k+1

(et
ix)2,

because ete = δij , where δij is the Kronecker delta which has value 1 if i = j
and 0 otherwise. If we now take the expected value of the error over all x, we
get using the definitions in part (a):

Ex[Ek(x)] =
d∑

i=k+1

Ex[(xtei)t(xtei)]

=
d∑

i=k+1

et
iΣiei

since all ei are eigenvectors of the covariance matrix Σ, we find

d∑
i=k+1

λiet
iei =

d∑
k=k+1

λi.

This then gives us the expected error. Thus to minimize the squared-error
criterion, the k-dimensional subspace should be spanned by the k largest eigen-
vectors, wince the error is the sum of the remaining d − k eigenvalues of the
covariance matrix.
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45. Problem not yet solved

46. Problem not yet solved

47. Problem not yet solved

48. Problem not yet solved

49. Problem not yet solved

Section 10.14

50. Consider the three points x1 =
(
1
0

)
,x2 =

(
0
0

)
, and x3 =

(
0
1

)
. Then we have the

distances

δ12 = ||x1 − x2|| =
√

(1 − 0)2 + (0 − 0)2 = 1

δ13 = ||x1 − x3|| =
√

(1 − 0)2 + (0 − 1)2 =
√

2

δ23 = ||x2 − x3|| =
√

(0 − 0)2 + (0 − 1)2 = 1.

We assume for definiteness, and without loss of generality, that the transformed points
obey 0 = y1 < y2 < y3. We define

y2 = Δ2
1 > 0

y3 = Δ2
1 + Δ2

2 > Δ2
1 = y2,

and therefore we have

d12 = y2 − y1 = Δ2
1 − 0 = Δ2

1

d13 = y3 − y1 = Δ2
1 + Δ2

2 − 0 = Δ2
1 + Δ2

2

d23 = y3 − y2 = Δ2
1 + Δ2

2 − Δ2
1 = Δ2

2.

(a) From the definition in Eq. 107 in the text we have

Jee =

∑
i<j

(dij − δij)2∑
i<j

δ2
ij

=
(Δ2

1 − 1)2 + (Δ2
1 + Δ2

2 −
√

2)2 + (Δ2
2 − 1)2

1 + 1 + 2
.

Therefore, minimizing Jee is equivalent to minimizing

f = (Δ2
1 − 1)2 + (Δ2

2 − 1)2 + (Δ2
1 + Δ2

2 −
√

2)2.

In order to minimize f , we must calculate its derivatives:

∂f

∂Δ1
= 2(Δ2

1 − 1)2Δ1 + 2(Δ2
1 + Δ2

2 −
√

2)2Δ1

∂f

∂Δ2
= 2(Δ2 − 1)2Δ2 + 2(Δ2

1 + Δ2
2 −

√
2)2Δ2.

We set these derivatives to zero and find[
(Δ2

1 − 1) + (Δ2
1 + Δ2

2 −
√

2)
]
4Δ1 = 0[

(Δ2
2 − 1) + (Δ2

1 + Δ2
2 −

√
2)

]
4Δ2 = 0
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Because Δ1,Δ2 �= 0, we have

Δ2
1 − 1 = −(Δ2

1 + Δ2
2 −

√
2) = Δ2

2 − 1,

and thus Δ2
1 = Δ2

2. We have, moreover,

Δ2
1 − 1 + (Δ2

1 + Δ2
2 −

√
2) = 0

and thus 3Δ2
1 = 1 +

√
2, which implies

Δ2
1 = Δ2

2 =
1 +

√
2

3

y2 = Δ2
1 =

1 +
√

2
3

y3 = Δ2
1 + Δ2

2 = 2Δ2
1 = 2y2.

(b) From definition in Eq. 108 in the text we have

Jff =
∑
i<j

(
dij − δij

δij

)2

=
(

Δ2
1 − 1
1

)2

+

(
Δ2

1 + Δ2
2 −

√
2√

2

)2

+
(

Δ2
2 − 1
1

)2

= (Δ2
1 − 1)2 +

1
2
(Δ2

1 + Δ2
2 −

√
2)2 + (Δ2

2 − 1)2,

and thus the derivatives

∂Jff

∂Δ1
= 2(Δ2

1 − 1)2Δ1 +
1
2
2(Δ2

1 + Δ2
2 −

√
2)2Δ1

∂Jff

∂Δ2
= 2(Δ2

2 − 1)2Δ2 +
1
2
2(Δ2

1 + Δ2
2 −

√
2)2Δ2.

We set ∂Jff/∂Δi = 0 and obtain (for Δ1,Δ2 �= 0)

Δ2
1 − 1 = −1

2
(Δ2

1 + δ2
2 −

√
2)

= Δ2
2 − 1

and thus Δ2
1 = Δ2

2. This result implies

Δ2
1 − 1 +

1
2
(Δ2

1 + Δ2
2 −

√
2) = 0,

and thus

Δ2
1 − 1 +

1
2
2Δ2

1 −
1√
2

= 0

2Δ2
1 = 1 +

1√
2

=
√

2 + 1√
2

=
2 +

√
2

2
.

We solve for Δ2
1 and find

Δ2
1 =

2 +
√

2
4
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Using the above relations, we find y2 and y3 to be

y2 = Δ2
1 =

2 +
√

2
4

y3 = Δ2
1 + Δ2

2 = 2Δ2
1 = 2y2.
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Computer Exercises

Section 10.4

1. Computer exercise not yet solved

2. Computer exercise not yet solved

3. Computer exercise not yet solved

4. Computer exercise not yet solved

5. Computer exercise not yet solved

Section 10.5

6. Computer exercise not yet solved

7. Computer exercise not yet solved

Section 10.6

8. Computer exercise not yet solved

Section 10.7

9. Computer exercise not yet solved

Section 10.8

10. Computer exercise not yet solved

Section 10.9

11. Computer exercise not yet solved

12. Computer exercise not yet solved

Section 10.11

13. Computer exercise not yet solved

Section 10.12

14. Computer exercise not yet solved

Section 10.13

15. Computer exercise not yet solved

16. Computer exercise not yet solved

Section 10.14

17. Computer exercise not yet solved
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Sample final exams and
solutions

EXAM 1, three hours, 100 points

1. (10 points total) Consider two categories, each of which is described by a d-
dimensional Gaussian having the same (but arbitrary) covariance, Σ1 = Σ2 =
Σ, arbitrary means, μ1 and μ2, and arbitrary priors, P (ω1) and P (ω2). Show
that the minimum-error decision boundary is a hyperplane, described by wt(x−
x0) = 0. Express w and x0 in terms of the variables given.

2. (20 points total) Consider a one-dimensional two-category classification prob-
lem with equal priors, P (ω1) = P (ω2) = 1/2, where the densities have the
form

p(x|ωi) =

⎧⎪⎨⎪⎩
0 x < 0

2
wi

(
1 − x

wi

)
0 ≤ x ≤ wi

0 otherwise,

where the wi for i = 1, 2, are positive but unknown parameters.

(a) Confirm that the distributions are normalized.

(b) The following data were collected: D1 = {2, 5} and D2 = {3, 9} for ω1 and
ω2, respectively. Find the maximum-likelihood values ŵ1 and ŵ2.

(c) Given your answer to part (b), determine the decision boundary x∗ for
minimum classification error. Be sure to state which category is to right
(higher) values than x∗, and which to the left (lower) values than x∗.

(d) What is the expected error of your classifier in part (b)?

3. (10 points total) Consider a two-dimensional, three-category pattern classifica-
tion problem, with equal priors P (ω1) = P (ω2) = P (ω3) = 1/3. We define
the “disk distribution” D(μ, r) to be uniform inside a circular disc centered on
μ having radius r and elsewhere 0. Suppose we model each distribution as a
“disk” D(μi, ri) and after training our classifier find the following parameters:

ω1 : μ1 =
(

3
2

)
, r1 = 2

357



358 SAMPLE FINAL EXAMS AND SOLUTIONS

ω2 : μ2 =
(

4
1

)
, r2 = 1

ω3 : μ3 =
(

5
4

)
, r3 = 3

(a) (1 pt) Use this information to classify the point x =
(
6
2

)
with minimum

probability of error.

(b) (1 pt) Use this information to classify the point x =
(
3
3

)
.

(c) (8 pts) Use this information to classify the point x =
( ∗
0.5

)
, where ∗ denotes

a missing feature.

4. (10 points total) It is easy to see that the nearest-neighbor error rate P can
equal the Bayes rate P ∗ if P ∗ = 0 (the best possibility) or if P ∗ = (c−1)/c (the
worst possibility). One might ask whether or not there are problems for which
P = P ∗ where P ∗ is between these extremes.

(a) Show that the Bayes rate for the one-dimensional case where P (ωi) = 1/c
and

P (x|ωi) =

⎧⎨⎩
1 0 ≤ x ≤ cr

c−1

1 i ≤ x ≤ i + 1 − cr
c−1

0 elsewhere

is P ∗ = r.

(b) Show that for this case the nearest-neighbor rate is P = P ∗.

5. (10 points total) Consider a d-nH -c three-layer backpropagation network, trained
on the traditional sum-squared error criterion, where the inputs have been “stan-
dardized” to have mean zero and unit variance in each feature. All non-linear
units are sigmoidal, with transfer function

f(net) = atanh(b net) =
2a

1 + e−2b net
− a

where a = 1.716 and b = 2/3, and net is the appropriate net activation at a
unit, as described in the text.

(a) State why when initializing weights in the network we never set them all
to have value zero.

(b) Instead, to speed learning we initialize weights in a range −w̃ ≤ w ≤ +w̃.
For the input-to-hidden weights, what should be this range? That is, what
is a good value of w̃?

(c) Explain what your answer to part (b) achieves. That is, explain as specif-
ically as possible the motivation that leads to your answer in part (b).

6. (15 points total) Consider training a tree-based classifier with the following
eight points of the form

(
x1
x2

)
in two categories

ω1 ω2(
0
4

)
,
(
1
2

)
,
(
6
0

)
,
(
7
3

) (
3
5

)
,
(
4
7

)
,
(
5
6

)
,
(
8
1

)
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using an entropy or information impurity and queries of the form “Is xi ≤ θ?”
(or “Is xi ≥ θ?”).

(a) What is the information impurity at the root node (that is, before any
splitting)?

(b) What is the optimal query at the root node?

(c) What is the information impurity at each of the immediate descendent
nodes (that is, the two nodes at the next level)?

(d) Combine the information impurities of these nodes to determine the impu-
rity at this level. How much is the information impurity reduced by your
decision in part (b)?

(e) Continue splitting to create the full tree with “pure” leaf nodes. Show
your final tree, being sure to indicate the queries and the labels on the leaf
nodes.

7. (10 points total) We define the “20% trimmed mean” of a sample to be the
mean of the data with the top 20% of the data and the bottom 20% of the data
removed. Consider the following six points, D = {0, 4, 5, 9, 14, 15}.
(a) Calculate the jackknife estimate of the 20% trimmed mean of D.

(b) State the formula for the variance of the jackknife estimate.

(c) Calculate the variance of the jackknife estimate of the 20% trimmed mean
of D.

8. (8 points total) In multi-dimensional scaling, we take points x1, . . . ,xn, with
inter-point distances δij in a high-dimensional space and map them to points
y1 . . . ,yn in a low-dimensional space, having inter-point distances dij . One
measure or criterion of quality of such a mapping is

Jee =

n∑
i<j

(dij − δij)2

n∑
i<j

δ2
ij

.

(a) Suppose we had a non-optimal mapping (configuration) and wanted to
adjust the position of one of the points yk so as to reduce the Jee criterion.
Take the derivative ∇yk

Jee to show which direction yk should be moved.

(b) Write pseudocode for an iterative procedure for full multi-dimensional scal-
ing, using your result from part (a).

9. (7 points total) Short answer.

(a) In self-organizing feature maps (Kohonen maps, topologically correct maps),
why is it important to employ a “window function” Λ(|y − y∗|)? What
does y∗ represent in this context?

(b) In backpropagation using sigmoids described in Problem 5 (above), why
do we train with teaching values ±1 rather than ±1.716, the limits of the
output units?
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(c) Of all classifiers that can be described by a parameter vector θ, must the
classifier with maximum-likelihood θ̂ have the smallest error? Explain or
give a simple example.

(d) State in just a few sentences the “Occam’s razor” principle, and informally
what it implies or counsels in pattern recognition.

(e) When creating a three-component classifier system for a c-category problem
through standard boosting, we train the first component classifier C1 on
a subset of the data. We then select another subset data for training the
second component classifier C2. How do we select this next set of points
for training C2? Why this way, and not for instance randomly?

(f) Summarize briefly the No Free Lunch Theorem, referring specifically to the
use of “off training set” data.

(g) State how cross validation is used in the training of a general classifier.
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Important formulas

P (ωi|x) =
p(x|ωi)P (ωi)

c∑
k=1

P (ωk)p(x|ωk)

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]

Σ = E [(x − μ)(x − μ)t]

Σ =
1
n

n∑
i=1

(xi − μ)(xi − μ)t

Σ =
∫

(x − μ)(x − μ)tp(x)dx

P (ωi|xg) =
∫

P (ωi|xg,xb)p(xg,xb)dxb

p(xg)

l(θ) = lnp(D|θ)

θ̂ = arg max
θ

l(θ)

p(x|D) =
∫

p(x|θ)p(θ|D) dθ

Q(θ; θi) = EDb

[
lnp(Dg,Db; θ)|Dg; θi

]

lim
n→∞Pn(e|x) = 1 −

c∑
i=1

P 2(ωi|x)

P ∗ ≤ P ≤ P ∗
(

2 − c

c − 1
P ∗

)

Jp(a) =
∑
y∈Y

(−aty)

a(k + 1) = a(k) + η(k)
∑
y∈Yk

y
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Δwkj = ηδkyj = η(tk − zk)f ′(netk)yj

Δwji = ηδjxi = η

[
c∑

k=1

wkjδk

]
f ′(netj)xi

f(net) = a tanh[b net] =
2a

1 + e−2b net
− a

i(N) = −
∑

j

P (ωj)log2P (ωj)

ED
[
(g(x; D) − F (x))2

]
= (ED [g(x; D) − F (x)])2 + ED

[
g(x; D) − ED[g(x; D)])2

]

θ̂(i) = θ̂(x1, x2, · · · , xi−1, xi+1, · · · , xn)

θ̂(·) =
1
n

n∑
i=1

θ̂(i)
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SOLUTION EXAM 1, three hours
1. (10 points total) Consider two categories, each of which is described by a d-

dimensional Gaussian having the same (but arbitrary) covariance, Σ1 = Σ2 =
Σ, arbitrary means, μ1 and μ2, and arbitrary priors, P (ω1) and P (ω2). Show
that the minimum-error decision boundary is a hyperplane, described by wt(x−
x0) = 0. Express w and x0 in terms of the variables given.

Solution Under the stated conditions, the Gaussian densities are written

p(x|ωi) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μi)

tΣ−1(x − μi)
]

,

and the appropriate discriminant function here is gi(x) = lnp(x|ωi) + lnP (ωi).
In this case, then, we have

gi(x) = −d

2
ln(2π) − 1

2
ln|Σ|︸ ︷︷ ︸

same for both categories

−1
2
(x − μi)

tΣ−1(x − μi) + lnP (ωi).

We expand and cancel the quadratic term xΣ−1x, which is the same for both
categories (and hence can be eliminated), regroup, and find

gi(x) = wt
ix + wi0

where

wi = Σ−1μi

and

wi0 = −1
2
μt

iΣ
−1μi + lnP (ωi),

where we used the symmetry of Σ−1 to rewrite terms such as xtΣ−1μ by
μtΣ−1x and [Σ−1]t by Σ−1.

We now seek the decision boundary, that is, where g1(x) − g2(x) = 0, and this
implies the x-dependent term is merely the difference between the two weights
wi, that is, our equation is wt(x − x0) = 0 where

w = Σ−1(μ1 − μ2).

Now we seek x0. The x-independent term is

wtx0 = −1
2
μt

1Σ
−1μ1 + lnP (ω1) +

1
2
μt

2Σ
−1μ2 − lnP (ω2).

Thus we have

Σ−1(μ1 − μ0)x0 = −1
2
(μ1 − μ2)

tΣ−1(μ1 − μ2) + ln
P (ω1)
P (ω2)

.

We left-multiply both sides by −(1/2)(μ1 −μ2)t, then divide both sides by the
scalar (μ1 − μ2)tΣ−1(μ1 − μ2) and find

x0 =
1
2
(μ1 − μ2) −

lnP (ω1)/P (ω2)
(μ1 − μ2)tΣ−1(μ1 − μ2)

(μ1 − μ2).

(Note, this is effectively the derivation of Eqs. 59–65 on pages 39–40 in the text.)
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2. (20 points total) Consider a one-dimensional two-category classification prob-
lem with equal priors, P (ω1) = P (ω2) = 1/2, where the densities have the
form

p(x|ωi) =

⎧⎪⎨⎪⎩
0 x < 0

2
wi

(
1 − x

wi

)
0 ≤ x ≤ wi

0 otherwise,

where the wi for i = 1, 2, are positive but unknown parameters.

(a) Confirm that the distributions are normalized.

(b) The following data were collected: D1 = {2, 5} and D2 = {3, 9} for ω1 and
ω2, respectively. Find the maximum-likelihood values ŵ1 and ŵ2.

(c) Given your answer to part (b), determine the decision boundary x∗ for
minimum classification error. Be sure to state which category is to right
(higher) values than x∗, and which to the left (lower) values than x∗.

(d) What is the expected error of your classifier in part (b)?

Solution The figure, below, should be consulted.

0 5 10 15
0

0.1

0.2

0.3

p(x|ωi)

ω1

ω2

x

x*

part (d)

w1ˆ w2ˆ

(a) We can ignore subscripts as we check normalization

w∫
0

2
w

(
1 − x

w

)
dx =

[
2x

w
− x2

w2

]w

0

= [(2 − 1) − (0 − 0)] = 1.

(b) The likelihood is

p(D|w) = p(x1|w)p(x2|w) =
2
w

(
1 − x1

w

) 2
w

(
1 − x2

w

)
=

4
w2

[
1 − x1 + x2

w
+

x1x2

w2

]
.

To find the maximum-likelihood solution, we compute

∂p(D|w)
∂w

= 4
[−2w−3 + 3(x1 + x2)w−4 − 4x1x2w

−5
]

= −4w−5
[
2w2 − 3(x1 + x2)w + 4x1x2

]
= 0.
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Clearly, we are not interested in the solutions w = ∞. Thus we use the
quadratic equation to find the solution:

ŵ =
3(x1 + x2) ±

√
9(x1 + x2)2 − 4(2)(4x1x2)

4
.

For category ω1, we substitute x1 = 2 and x2 = 5 and find

ŵ1 =
21 ±√

9 · 49 − 320
4

=
21 ±√

121
4

= 8 or 2.5.

Clearly, the solution 2.5 is invalid, since it is smaller than one of the points
in D1; thus ŵ1 = 8.
Likewise, for ω2, we substitute x1 = 3 and x2 = 9 and find

ŵ2 =
36 ±√

9 · 122 − 864
4

=
36 ±√

432
4

= 14.2 or 3.1.

Clearly, the solution 3.1 is invalid, since it is smaller than one of the points
in D2; thus ŵ1 = 14.2.

(c) We seek the value of x such that the posteriors are equal, that is, where

2
ŵ1

(
1 − x

ŵ1

)
=

2
ŵ2

(
1 − x

ŵ2

)
2
8

(
1 − x

8

)
=

2
14.2

(
1 − x

14.2

)
which has solution

x∗ =
6.2(

14.2
8 − 8

14.2

) = 5.1,

with R1 being points less than x∗ and R2 being points higher than x∗.
(d) The probability of error in this optimal case is

P (e) =
∫

min[P (ω1)p(x|ω1), P (ω2)p(x|ω2)]dx

=

x∗=5.1∫
0

1
2

2
14.2

(
1 − x

14.2

)
dx +

ŵ1=8∫
x∗=5.1

1
2

2
8

(
1 − x

8

)
dx

=
1

14.2
x

∣∣∣∣∣
5.1

0

− x2

2(14.2)2

∣∣∣∣∣
5.1

0

+
1
8
x

∣∣∣∣∣
8

5.1

− x2

2(8)2

∣∣∣∣∣
8

5.1

= 0.360.

A more geometrically inspired approach is to use the area of a triangle,
A = (base ·height)/2 and the figure. If you followed this approach, though,
you had to remember to divide your shaded area by the total area under
the two straight lines, and account for priors.
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3. (10 points total) Consider a two-dimensional, three-category pattern classifica-
tion problem, with equal priors P (ω1) = P (ω2) = P (ω3) = 1/3. We define the
“disk distribution” D(μ, r) to be uniform inside a circular disc centered on μ
having radius r and elsewhere 0. Suppose we model each distribution as such a
“disk” D(μi, ri) and after training our classifier find the following parameters:

ω1 : μ1 =
(

3
2

)
, r1 = 2

ω2 : μ2 =
(

4
1

)
, r2 = 1

ω3 : μ3 =
(

4
4

)
, r3 = 3

(a) (1 pt) Use this information to classify the point x =
(
6
2

)
with minimum

probability of error.

(b) (1 pt) Use this information to classify the point x =
(
3
3

)
.

(c) (8 pts) Use this information to classify the point x =
( ∗
0.5

)
, where ∗ denotes

a missing feature.

Solution

x1

x2

ω1

0 5
0

5

ω2

ω3

x2̂

p(
x g
|ω

2)

p(
x g
|ω

1)

p(
x g
|ω

3)

P(ω1) = P(ω2) = P(ω3) = 1/3.

(a) As is clear from the figure below,
(
6
2

)
should be classified as ω3.

(b) As can be seen from the figure,
(
3
3

)
is in the non-zero range of ω1 and

ω3. Because the density p(x|ω1) > p(x|ω3) at that position, however,
(
3
3

)
should be classified as ω1.

(c) Clearly, the deficient point cannot be in ω3. We must marginalize over the
bad feature, x1, to find the class-conditional densities given the good fea-
ture, x2. But notice that the dashed line goes through a greater percentage
of the diameter of the ω2 disk than the ω1 disk. In short, if we marginalize
the p(x|ω2) distribution over x1 with x2 = 0.5, we get a larger value than if
we perform the same marginalization for p(x|ω1), as graphed in the figure.
Thus we should classify

( ∗
0.5

)
as ω2.

4. (10 points total) It is easy to see that the nearest-neighbor error rate P can
equal the Bayes rate P ∗ if P ∗ = 0 (the best possibility) or if P ∗ = (c−1)/c (the
worst possibility). One might ask whether or not there are problems for which
P = P ∗ where P ∗ is between these extremes.
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(a) Show that the Bayes rate for the one-dimensional case where P (ωi) = 1/c
and

P (x|ωi) =

⎧⎨⎩
1 0 ≤ x ≤ cr

c−1

1 i ≤ x ≤ i + 1 − cr
c−1

0 elsewhere

is P ∗ = r.
(b) Show that for this case the nearest-neighbor rate is P = P ∗.

Solution It is indeed possible to have the nearest-neighbor error rate P equal
to the Bayes error rate P ∗ for non-trivial distributions.

(a) Consider uniform priors over c categories, that is, P (ωi) = 1/c, and one-
dimensional distributions given in the problem statement. The evidence
is

p(x) =
c∑

i=1

p(x|ωi)P (ωi) =

⎧⎨⎩
1 0 ≤ x ≤ cr

c−1

1/c i ≤ x ≤ (i + 1) − cr
c−1

0 elsewhere.

Note that this automatically imposes the restriction

0 ≤ cr

c − 1
≤ 1.

Because the P (ωi)’s are constant, we have P (ωi|x) ∝ p(x|ωi) and thus

P (ωi|x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (ωi)
p(x) = 1/c

p(x) 0 ≤ x ≤ cr
c−1

0 if i �= j
1 if i = j

}
j ≤ x ≤ j + 1 − cr

c−1

0 otherwise,

as shown in the figure for c = 3 and r = 0.1. The conditional Bayesian

1 2 3 4

0.05

0.1

0.15

0.2

0.25

0.3

P(ωi|x)

x

x 
=

 r
 =

 0
.1

 

1/c = 1/3 
ω1 ω2 ω3

ω
1 
, ω

2 
, ω

3

probability of error at a point x is

P ∗(e|x) = 1 − P (ωmax|x)

=

{
1 − 1/c

p(x) if 0 ≤ x ≤ cr
c−1

1 − 1 = 0 if i ≤ x ≤ i + 1 − cr
c−1 ,
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and to calculate the full Bayes probability of error, we integrate as

P ∗ =
∫

P ∗(e|x)p(x)dx

=

cr/(c−1)∫
0

[
1 − 1/c

p(x)

]
p(x)dx

=
(

1 − 1
c

)
cr

c − 1
= r.

(b) The nearest-neighbor error rate is

P =
∫ [

1 −
c∑

i=1

P 2(ωi|x)

]
p(x)dx

=

cr/(c−1)∫
0

[
1 − c( 1

c )2

p2(x)

]
p(x)dx +

c∑
j=1

j+1− cr
c−1∫

j

[1 − 1] p(x)dx

︸ ︷︷ ︸
0

=

cr/(c−1)∫
0

(
1 − 1/c

p2(x)

)
p(x)dx

=

cr/(c−1)∫
0

(
1 − 1

c

)
dx =

(
1 − 1

c

)
cr

c − 1
= r.

Thus we have demonstrated that P ∗ = P = r in this nontrivial case. (Note:
this is Problem 8 from Chapter 4 on your homework.)

5. (10 points total) Consider a d-nH -c three-layer backpropagation network, trained
on the traditional sum-squared error criterion, where the inputs have been “stan-
dardized” to have mean zero and unit variance in each feature. All non-linear
units are sigmoidal, with transfer function

f(net) = atanh(b net) =
2a

1 + e−2b net
− a

where a = 1.716 and b = 2/3, and net is the appropriate net activation at a
unit, as described in the text.

(a) State why when initializing weights in the network we never set them all
to have value zero.

(b) Instead, to speed learning we initialize weights in a range −w̃ ≤ w ≤ +w̃.
For the input-to-hidden weights, what should be this range? That is, what
is a good value of w̃?

(c) Explain what your answer to part (b) achieves. That is, explain as specif-
ically as possible the motivation that leads to your answer in part (b).
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Solution

(a) If all the weights are zero, the net activation netj in all hidden units is zero,
and thus so is their output yj . The weight update for the input-to-hidden
weights would also be zero,

Δwkj = η(tk − zk)f ′(netk) yj︸︷︷︸
=0

.

Likewise, the weight update for the input-to-hidden weights would be zero

Δwji = η

[
c∑

k=1

wkjδk

]
︸ ︷︷ ︸

=0

f ′(netj)xi.

In short, if all the weights were zero, learning could not progress. Moreover,
as described in the text, if all the weights are the same for a given pair of
layers (even if these weights are not zero), then learning cannot progress.

(b) Suppose all the weights had value 1.0. In calculating its net, each hidden
unit is summing d random variables with variance 1.0. The variance of the
value of net would be, then, d. We want, however, for the net activation
to be in roughly the linear range of f(net), that is, −1 < net < +1. Thus
we want our weights to be in the range −1/

√
d < w < +1/

√
d.

(c) We want to use the linear range of the transfer function, f(net), so as
to implement the simple linear model first. If the problem is complex,
the training will change the weights and thus express the nonlinearities, if
necessary.

6. (15 points total) Consider training a tree-based classifier with the following
eight points of the form

(
x1
x2

)
in two categories

ω1 ω2(
0
4

)
,
(
1
2

)
,
(
6
0

)
,
(
7
3

) (
3
5

)
,
(
4
7

)
,
(
5
6

)
,
(
8
1

)
using an entropy or information impurity and queries of the form “Is xi ≤ θ?”
(or “Is xi ≥ θ?”).

(a) What is the information impurity at the root node (that is, before any
splitting)?

(b) What is the optimal query at the root node?

(c) What is the information impurity at each of the immediate descendent
nodes (that is, the two nodes at the next level)?

(d) Combine the information impurities of these nodes to determine the impu-
rity at this level. How much is the information impurity reduced by your
decision in part (b)?

(e) Continue splitting to create the full tree with “pure” leaf nodes. Show
your final tree, being sure to indicate the queries and the labels on the leaf
nodes.
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x1

x2

Is x2 < 4.5?

Is x1 < 7.5?

= ω1 = ω2

ω2

ye
s

0 5
0

5 no

ω1 ω2

ye
s no

R1

R2

R2

Solution

(a) The entropy impurity at the root node is

i(root) = −
2∑

j=1

P (ωj)log2P (ωj)

= −1
2
log2

1
2
− 1

2
log2

1
2

= 1 bit.

(b) As is clear from the figure, the query “Is x2 < 4.5” the optimal split at the
root.

(c) The “left” node contains four ω1 points and one ω2 point. Its impurity is
thus

−4
5
log2

4
5
− 1

5
log2

1
5

= 0.258 + 0.464 = 0.722 bits.

The “right” node is “pure,” containing three ω2 points. It’s impurity is
i(R) = −1log21 − 0log20 = 0 bits.

(d) The impurity at the level beneath the root is just the sum of the impurities
of the two nodes computed in part (b) weighted by the probability any
pattern at the root goes to that node. Thus the impurity at the level is

5
8
0.722 +

3
8
0 = 0.451 bits.

The split at the root thus reduced the information impurity by 1.0−0.451 =
0.549 bits.

(e) As can be seen in the figure, the query at the impure node should be “Is
x1 < 7.5.”

7. (10 points total) We define the “20% trimmed mean” of a sample to be the
mean of the data with the top 20% of the data and the bottom 20% of the data
removed. Consider the following six points, D = {0, 4, 5, 9, 14, 15}.
(a) Calculate the jackknife estimate of the 20% trimmed mean of D.

(b) State the formula for the variance of the jackknife estimate.

(c) Calculate the variance of the jackknife estimate of the 20% trimmed mean
of D.
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Solution The jackknife estimate of a statistic is merely the average of the leave-
one-out estimates. In this case, there are five points, and thus

(a) We delete one point at a time, take the remaining data set, remove the top
20% and bottom 20% (that is, the highest point and the lowest point), and
calculate the mean. We then average these trimmed means. As shown in
the table, the jackknife estimate of the 20% trimmed mean is 8.33.

deleted point trimmed set mean of trimmed set
0 {5, 9, 14} 28/3 (9.33)
4 {5, 9, 14} 28/3 (9.33)
5 {4, 9, 14} 27/3 (9.00)
9 {4, 5, 14} 23/3 (7.66)

14 {4, 5, 9} 18/3 (6.00)
15 {4, 5, 9} 18/3 (6.00)

142/3
6 = 7.89

(b) The variance of the jackknife estimate is

Varjack[θ] =
n − 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2,

though other forms are occassionally used here too.

(c) We perform the standard variance calculation, here consisting of the sum
of six terms, each the square of the difference between the leave-one-out
mean and the jackknife mean:

Varjack[θ] =
5
6
[
(9.33 − 7.89)2 + (9.33 − 7.89)2 + (9.00 − 7.89)2

+(7.66 − 7.89)2 + (6.00 − 7.89)2 + (6.00 − 7.89)2
]

= 0.833 [2.07 + 2.07 + 1.23 + 0.53 + 3.57 + 3.57]
= 10.48.

8. (8 points total) In multi-dimensional scaling, we take points x1, . . . ,xn, with
inter-point distances δij in a high-dimensional space and map them to points
y1 . . . ,yn in a low-dimensional space, having inter-point distances dij . One
measure or criterion of quality of such a mapping is

Jee =

n∑
i<j

(dij − δij)2

n∑
i<j

δ2
ij

.

(a) Suppose we had a non-optimal mapping (configuration) and wanted to
adjust the position of one of the points yk so as to reduce the Jee criterion.
Take the derivative ∇yk

Jee to show which direction yk should be moved.

(b) Write pseudocode for an iterative procedure for full multi-dimensional scal-
ing, using your result from part (a).
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Solution

(a) We can break Jee into terms that depend upon yk, and those that do not:

Jee =
1

n∑
i<j

δ2
ij

⎡⎢⎢⎢⎢⎢⎣
n∑

i �=k,j �=k

(dij − δij)2︸ ︷︷ ︸
does not depend on yk

+
n∑

i �=k

(dik − δik)2

︸ ︷︷ ︸
depends on yk

⎤⎥⎥⎥⎥⎥⎦ .

Thus when we take the derivative, we need only consider the second term.
Thus we have

∇yk
Jee =

1
n∑

i<j

δ2
ij

d

dyk

⎡⎣ n∑
i �=k

(dik − δik)2

⎤⎦

=
1

n∑
i<j

δ2
ij

⎡⎣2
n∑

i �=k

(dik − δik)
d

dyk
dik

⎤⎦ .

We note that

dik =
√

(yk − yi)t(yk − yi)

and thus

d

dyk
dik =

1
2

2(yk − yi)
dik

=
yk − yi

dik
.

We put all these results together and find

∇yk
Jee =

2
n∑

i<j

δ2
ij

n∑
i �=k

(dki − δki)
yk − yi

dki
.

(b) The multi-dimensional scaling algorithm can be written:
1 Initialize η ← learning rate, yi, i = 1, . . . , n
2 Do Randomly select a single yk

3 Compute ∇yk
Jee

4 yk ← yk − η∇yk
Jee

5 Until No change in any yk

6 Return yi, i = 1, . . . n
7 End

9. (7 points total) Short answer.

(a) In self-organizing feature maps (Kohonen maps, topologically correct maps),
why is it important to employ a “window function” Λ(|y − y∗|)? What
does y∗ represent in this context?
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Solution In this context, y∗ is the output unit (in the low-dimensional
space) currently most active. The learning rule updates its weight by
adding to it the current input vector. In this way, subsequent presentations
of the input pattern will lead to an even larger activation in y∗. The
window function Λ(|y − y∗|) is large for |y − y∗| small, and decreases
as |y − y∗| increases. Thus, units near y∗ will be updated by adding to
them the current input vector, though with a slightly smaller magnitude.
In this way, after such learning neighborhoods in the input space map to
neighborhoods in the output space — we have a “topologically correct”
mapping.

(b) In backpropagation using sigmoids described in Problem 5 (above), why
do we train with teaching values ±1 rather than ±1.716, the limits of the
output units?
Solution If we used teaching values ±1.716, learning would be unaccept-
ably long, as weight magnitudes increase and increase so as to ensure net
activations are ±∞. Using teaching values of ±1 keeps weights in bounds
and speeds learning, since no weights are driven to very large magnitude
to obtain an output of 1.716.

(c) Of all classifiers that can be described by a parameter vector θ, must the
classifier with maximum-likelihood θ̂ have the smallest error? Explain or
give a simple example.
Solution No. If the candidate model space does not include the true
model (e.g., distribution), then even the classifier trained by maximum-
likelihood methods need not be the best in this candidate model space. For
instance, suppose in a one-dimensional, two-category classification problem
the true distributions each consists of two spikes, one sufficiently small but
a distant “outlier.” Suppose we fit these distributions with Gaussians. It
is then possible to “switch” the positions of the estimated means and yield
a classifier with error = 100%, even though a classifier with error = 0% is
in the model space. (This was illustrated in Problem 8 in Chapter 3.)

(d) State in just a few sentences the “Occam’s razor” principle, and informally
what it implies or counsels in pattern recognition.
Solution William of Occam (1285–1349) stated that “Entities should not
be multiplied beyond necessity.” (Actually, since he was writing in Latin,
he stated “Entia non sunt multiplicanda praeter necessitatem.”) In pat-
tern classification, this has come to be interpreted as counselling the use of
“simpler” models rather than complex ones, fewer parameters rather than
more, and “smoother” generalizers rather than those that are less smooth.
The mathematical descendents of this philosophical principle of parsimony
appear in minimum-description-length principles, having numerous mani-
festations in learning, for instance regularization, pruning, and overfitting
avoidance.

(e) When creating a three-component classifier system for a c-category problem
through standard boosting, we train the first component classifier C1 on
a subset of the data. We then select another subset data for training the
second component classifier C2. How do we select this next set of points
for training C2? Why this way, and not for instance randomly?
Solution We seek a data set that contains information not already learned
by C1, that is, is not well represented by C1. A data set which C1 classifies
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with 0% accuracy is, paradoxically, not independent of C1. Likewise, a data
set that is classified with 50% accuracy (in the general c-category case) is
also not independent of C1. Thus we seek a data set that C1 correctly
classifies 1/c of the patterns. A simple algorithm is to test all candidate
patterns and place them in two sets: ones correctly classified by C1 (call it
D+) and those incorrectly classified by C1 (call it D−). Then, if our data
set is to have n2 patterns, choose n2/c patterns randomly from D+ and
n2(1 − 1/c) from D−.

(f) Summarize briefly the No Free Lunch Theorem, referring specifically to the
use of “off training set” data.
Solution In the absense of any information about the classification prob-
lem (or target function to be learned), on average no classifier method
or learning algorithm is better than any other method, including random
guessing on points in the “off training set” data, that is, the points not
used for training the classifier.

(g) State how cross-validation is used in the training of a general classifier.
Solution Given a training set D, we randomly remove some portion of the
set, for instance 10%, and keep this as a “validation set.” We train the
classifier on the remaining 90%, and monitor the error on the validation
set as training proceeds. This validation set acts as a representative of
future test patterns that the classifier will classify. We stop training at the
first minimum of the validation error — a heuristic to avoid overfitting and
improve generalization.
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EXAM 2, three hours, 100 points

1. (10 points total) Let the components of the vector x = (x1, . . . , xd)t be ternary
valued (1, 0, or -1) with

pij = Pr[xi = 1|ωj ]
qij = Pr[xi = 0|ωj ]
rij = Pr[xi = −1|ωj ].

and with the components of xi being statistically independent for all x in ωj .
Show that a minimum probability of error decision rule can be derived that
involves discriminant functions gj(x) that are quadratic functions of the com-
ponents xi.

2. (15 points total) Consider a one-dimensional two-category classification prob-
lem with equal priors, P (ω1) = P (ω2) = 1/2, where the densities have the
form

p(x|ωi) =
{

0 x < 0
θie

−θix x ≥ 0,

where the θi for i = 1, 2, are positive but unknown parameters.

(a) (1 pt) Confirm that the distributions are normalized.

(b) (8 pts) The following data were collected: D1 = {1, 5} and D2 = {3, 9} for
ω1 and ω2, respectively. Find the maximum-likelihood values θ̂1 and θ̂2.

(c) (3 pts) Given your answer to part (b), determine the decision boundary
x∗ for minimum classification error. Be sure to state which category is to
right (higher) values than x∗, and which to the left (lower) values than x∗.

(d) (3 pts) What is the expected error of your classifier in part (c)?

3. (10 points total) Consider the application of the k-means clustering algorithm
to the one-dimensional data set D = {0, 1, 5, 8, 14, 16} for c = 3 clusters.

(a) (3 pt) Start with the three cluster means: m1(0) = 2, m2(0) = 6 and
m3(0) = 9. What are the values of the means at the next iteration?

(b) (5 pt) What are the final cluster means, after convergence of the algorithm?

(c) (2 pt) For your final clusterer, to which cluster does the point x = 3
belong? To which cluster does x = 11 belong?
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4. (10 points total) The task is to use Bayesian methods to estimate a one-dimensional
probability density. The fundamental density function is a normalized triangle
distribution T (μ, 1) with center at μ with half-width equal 1, defined by

p(x|μ) ∼ T (μ, 1) =
{

1 − |x − μ| |x − μ| ≤ 1
0 otherwise,

as shown on the left figure. The prior information on the parameter μ is that
it is equally likely to come from any of the three discrete values μ = −1, 0 or 1.
Stated mathematically, the prior consists of three delta functions, i.e.,

p(μ) =
1
3
[δ(x − 1) + δ(x) + δ(x + 1)],

as shown on the figure at the right. (Recall that the delta function has negligible
width and unit integral.)

x

p(x|μ)

μ μ +1μ -1

1

μ

p(μ)

0 1-1

(a) (2 pt) Plot the “estimated density” before any data are collected (which
we denote by D0 = {}). That is, plot p(x|D0). Here and below, be sure to
label and mark your axes and ensure normalization of your final estimated
density.

(b) (4 pts) The single point x = 0.25 was sampled, and thus D1 = {0.25}.
Plot the estimated density p(x|D1).

(c) (4 pts) Next the point x = 0.75 was sampled, and thus the data set is
D2 = {0.25, 0.75}. Plot the estimated density p(x|D2).

5. (5 points total) Construct a cluster dendrogram for the one-dimensional data
D = {2, 3, 5, 10, 13} using the distance measure Dmax(Di,Dj).

6. (10 points total) Consider the use of traditional boosting for building a classifier
for a two-category problem with n training points.

(a) (8 pts) Write pseudocode for traditional boosting, leading to three com-
ponent classifiers.

(b) (2 pts) How are the resulting three component classifiers used to classify
a text pattern?
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7. (5 points total) Consider a standard three-layer neural net as shown. Suppose
the network is to be trained using the novel criterion function

J =
1
4

c∑
k=1

(tk − zk)4.

Derive the learning rule Δwkj for the hidden-to-output weights.

wkj

z1

wji

z2 zk zc... ...

... ...

... ...

... ...

x1 x2 xi xd... ...

output z

x1 x2 xi xd

y1 y2 yj ynH

t1 t2 tk tctarget t

input x

output

hidden

input

8. (10 points total) It is World Cup Soccer season and a researcher has developed
a Bayes belief net that expresses the dependencies among the age of a person
(A), his or her nationality (B), whether he or she likes soccer (C), and how
much he or she watches sports TV during the World Cup season (D). Use the
conditional probability tables to answer the following.

A
age

B
nation-

ality

C
sports

D
watch

TV

a
1
 = 0-30 years

a
2
 = 31-40 years

a
3
 = 41-100 years

b
1
 = American

b
2
 = non-American

c
1
 = likes soccer

c
2
 = doesn't like soccer

d
1
 = a lot

d
2
 = some

d
3
 = none

P(a
1
)    P(a

2
)   P(a

3
) 

  0.3      0.6      0.1

           P(c
1
|a

i
, b

j
)    P(c

2
|a

i
, b

j
)

a
1
, b

1           
0.5                0.5     

a
1
, b

2           
0.7                0.3     

a
2
, b

1           
0.6                0.4     

a
2
, b

2           
0.8                0.2     

a
3
, b

1           
0.4                0.6     

a
3
, b

2           
0.1                0.9    

       P(d
1
|c

k
)    P(d

2
|c

k
)   P(d

3
|c

k
)

c
1         

   0.7          0.2          0.1    
c

2             
0.5          0.3          0.2 

P(a)

P(c|a,b)

P(d|c)

P(b
1
)    P(b

2
) 

  0.2      0.8

P(b)

(a) (2 pts) What is the probability we find a non-American who is younger
than 30 who likes soccer and watches a lot of sports TV?

(b) (4 pts) Suppose we find someone who is an American between 31-40 years
of age who watches “some” sports TV. What is the probability that this
person likes soccer?

(c) (4 pts) Suppose we find someone over 40 years of age who never watches
sports TV. What is the probability that this person likes soccer?
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9. (15 points total) This problem conserns the construction of a binary decision
tree for three categories from the following two-dimensional data:

ω1 ω2 ω3(
1
1

)
,
(
2
8

)
,
(
3
5

) (
4
7

)
,
(
6
2

)
,
(
7
6

) (
5
10

)
,
(
7
4

)
,
(
7
9

)
(a) (3 pts) What is the information impurity at the root node, i.e., before any

splitting?

(b) (4 pts) The query at the root node is: “Is x1 > 3.5?” What is the
information impurity at the next level?

(c) (6 pts) Continue to grow your tree fully. Show the final tree and all queries.

(d) (2 pts) Use your tree to classify the point (7
2 ).

10. (10 points total) Short answer (1 pt each).

(a) Explain using a diagram and a few sentences the technique of “learning
with hints” and why it can improve a neural net pattern classifier.

(b) Use the Boltzmann factor to explain why at a sufficiently high “tempera-
ture” T , all configurations in a Boltzmann network are equally probable.

(c) Explain with a simple figure the “crossover” operation in genetic algo-
rithms.

(d) What is a “surrogate split” and when is one used?

(e) If the cost for any fundamental string operation is 1.0, state the edit dis-
tance between bookkeeper and beekeepers.

(f) Suppose the Bayes error rate for a c = 3 category classification problem is
5%. What are the bounds on the error rate of a nearest-neighbor classifier
trained with an “infinitely large” training set?

(g) What do we mean by the “language induced by grammar G”?

(h) In hidden Markov models, what does the term aij refer to? What does bjk

refer to?
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Important formulas

P (ωi|x) =
p(x|ωi)P (ωi)

c∑
k=1

P (ωk)p(x|ωk)

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]

Σ = E [(x − μ)(x − μ)t]

Σ =
1
n

n∑
i=1

(xi − μ)(xi − μ)t

Σ =
∫

(x − μ)(x − μ)tp(x)dx

P (ωi|xg) =
∫

P (ωi|xg,xb)p(xg,xb)dxb

p(xg)

l(θ) = lnp(D|θ)

θ̂ = arg max
θ

l(θ)

p(x|D) =
∫

p(x|θ)p(θ|D) dθ

Q(θ; θi) = EDb

[
lnp(Dg,Db; θ)|Dg; θi

]

d′ =
|μ2 − μ1|

σ

lim
n→∞Pn(e|x) = 1 −

c∑
i=1

P 2(ωi|x)

P ∗ ≤ P ≤ P ∗
(

2 − c

c − 1
P ∗

)
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Jp(a) =
∑
y∈Y

(−aty)

a(k + 1) = a(k) + η(k)
∑
y∈Yk

y

Δwkj = ηδkyj = η(tk − zk)f ′(netk)yj

Δwji = ηδjxi = η

[
c∑

k=1

wkjδk

]
f ′(netj)xi

f(net) = a tanh[b net] = a

[
e+b net − e−b net

e+b net + e−b net

]

P (γ) =
e−Eγ/T

Z

Z =
∑
γ′

e−Eγ′/T

Δwij =
η

T

⎡⎢⎣EQ[sisj ]αi αo clamped︸ ︷︷ ︸
learning

−E [sisj ]αi clamped︸ ︷︷ ︸
unlearning

⎤⎥⎦

i(N) = −
c∑

j=1

P (ωj)log2P (ωj)

ED
[
(g(x; D) − F (x))2

]
= (ED [g(x; D) − F (x)])2 + ED

[
g(x; D) − ED[g(x; D)])2

]

θ̂(i) = θ̂(x1, x2, · · · , xi−1, xi+1, · · · , xn)

θ̂(·) =
1
n

n∑
i=1

θ̂(i)

Si =
∑
x∈Di

(x − mi)(x − mi)t

SW =
c∑

i=1

Si
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SB =
c∑

i=1

ni(mi − m)(mi − m)t

ST =
∑
x∈D

(x − m)(x − m)t

Je = tr[SW ]

Jd = ‖SW ‖

dmin(Di,Dj) = min
x∈D
x∈D′

‖x − x′‖

dmax(Di,Dj) = max
x∈D
x∈D′

‖x − x′‖

davg(Di,Dj) =
1

ninj

∑
x∈D

∑
x∈D′

‖x − x′‖

dmin(Di,Dj) = ‖mi − mj‖

Jee =

∑
i<j

(dij − δij)2∑
i<j

δ2
ij

Jff =
∑
i<j

(
dij − δij

δij

)2

Jef =
1∑

i<j

δij

∑
i<j

(dij − δij)2

δij

wki(t + 1) = wki(t) + η(t)Λ(|y − y∗|)φi
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EXAM 2 Solutions

1. (10 points total) Let the components of the vector x = (x1, . . . , xd)t be ternary
valued (1, 0, or -1) with

pij = Pr[xi = 1|ωj ]
qij = Pr[xi = 0|ωj ]
rij = Pr[xi = −1|ωj ].

and with the components of xi being statistically independent for all x in ωj .
Show that a minimum probability of error decision rule can be derived that
involves discriminant functions gj(x) that are quadratic functions of the com-
ponents xi.

Solution (Note: This is problem 44 from Chapter 2.)
The minimum probability of error is achieved by the following decision rule:

Choose ωk if gk(x) ≥ gj(x) for all j �= k,

where here we will use the discriminant function

gj(x) = ln p(x|ωj) + ln P (ωj).

The components of x are statistically independent for all x in ωj , and therefore,

p(x|ωj) = p((x1, . . . , xd)t|ωj) =
d∏

i=1

p(xi|ωj),

where

pij = Pr[xi = 1|ωj ]
qij = Pr[xi = 0|ωj ]
rij = Pr[xi = −1|ωj ].

As in Sect. 2.9.1 in the text, we use exponents to “select” the proper probability,
that is, exponents that have value 1.0 when xi has the value corresponding to
the particular probability and value 0.0 for the other values of xi. For instance,
for the pij term, we seek an exponent that has value 1.0 when xi = +1 but is
0.0 when xi = 0 and when xi = −1. The simplest such exponent is 1

2xi + 1
2x2

i .
For the qij term, the simplest exponent is 1− x2

i , and so on. Thus we write the
class-conditional probability for a single component xi as:
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p(xi|ωj) = p
1
2 xi+

1
2 x2

i

ij q
1−x2

i
ij r

− 1
2 xi+

1
2 x2

i

ij

i = 1, . . . , d
j = 1, . . . , c

and thus for the full vector x the conditional probability is

p(x|ωj) =
d∏

i=1

p
1
2 xi+

1
2 x2

i

ij q
1−x2

i
ij r

− 1
2 xi+

1
2 x2

i

ij .

Thus the discriminant functions can be written as

gj(x) = ln p(x|ωj) + ln P (ωj)

=
d∑

i=1

[(
1
2
xi +

1
2
x2

i

)
ln pij + (1 − x2

i )ln qij +
(
−1

2
xi +

1
2
x2

i ln rij

)]
+ ln P (ωj)

=
d∑

i=1

x2
i ln

√
pijrij

qij
+

1
2

d∑
i=1

xiln
pij

rij
+

d∑
i+1

ln qij + ln P (ωj),

which are quadratic functions of the components xi.

2. (15 points total) Consider a one-dimensional two-category classification prob-
lem with equal priors, P (ω1) = P (ω2) = 1/2, where the densities have the
form

p(x|ωi) =
{

0 x < 0
θie

−θix x ≥ 0,

where the θi for i = 1, 2, are positive but unknown parameters.

(a) (1 pt) Confirm that the distributions are normalized.
Solution: We can drop the subscripts and perform the integral

∞∫
0

θe−θxdx =
[−e−θx

]∞
0

= −0 − (−1) = 1.

(b) (8 pts) The following data were collected: D1 = {1, 5} and D2 = {3, 9} for
ω1 and ω2, respectively. Find the maximum-likelihood values θ̂1 and θ̂2.
Solution: We temporarily drop the subscript on θ, denote the two training
points as x1 and x2, and write the likelihood p(D|θ) for any category as

p(x1|θ)p(x2|θ) = θe−θx1θe−θx2

= θ2e−θ(x1+x2).

We take the derivative of this likelihood and set it to zero:

d

dθ

[
θ2e−θ(x1+x2)

]
= 2θe−θ(x1+x2) + θ2(−(x1 + x2))e−θ(x1+x2)

= θe−θ(x1+x2)︸ ︷︷ ︸
�=0

[2 − (x1 + x2)θ]︸ ︷︷ ︸
=0

= 0,

and thus θ̂ = 2/(x1+x2). For our data we have, then, θ̂1 = 2/(1+5) = 1/3,
and θ̂2 = 2/(3 + 9) = 1/6.
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(c) (3 pts) Given your answer to part (b), determine the decision boundary
x∗ for minimum classification error. Be sure to state which category is to
right (higher) values than x∗, and which to the left (lower) values than x∗.
Solution: The decision boundary is at the point x∗ where the two poste-
riors are equal, that is, where

P (ω1)θ̂1e
−θ̂1x∗

= P (ω2)θ̂2e
−θ̂2x∗

,

or 1/3e−1/3x∗
= 1/6e−1/6x∗

. We multiply each side by 6 and take the
natural logarithm to find ln(2) − x∗/3 = −x∗/6, or x∗ = 6ln(2) � 4.159
with R1 corresponding to points less than x∗, and R2 points greater than
x∗.

2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

x
x*

p(x|θ i)

ω1

ω2

R1 R2

(d) (3 pts) What is the expected error of your classifier in part (c)?
Solution: The probability of error (in this case, the Bayes error rate) is

P ∗ =

∞∫
0

Min
[
P (ω1)

1
3
ex/3, P (ω2)

1
6
ex/6

]
dx

= 0.5

⎧⎨⎩
x∗∫
0

1
6
e−x/6dx +

∞∫
x∗

1
3
e−x/3dx

⎫⎬⎭
= 0.5

{
−1

6
6e−x/6

∣∣∣x∗

0
+ −1

3
3e−x/3

∣∣∣∞
x∗

}
= 0.5

{
−e−x∗/6 + 1 − 0 + e−x∗/3

}
= 0.375.
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3. (10 points total) Consider the application of the k-means clustering algorithm
to the one-dimensional data set D = {0, 1, 5, 8, 14, 16} for c = 3 clusters.

(a) (3 pt) Start with the three cluster means: m1(0) = 2, m2(0) = 6 and
m3(0) = 9. What are the values of the means at the next iteration?
Solution: The top of the figure shows the initial state (i.e., at iteration
t = 0). The dashed lines indicate the midpoints between adjacent means,
and thus the cluster boundaries. The two points x = 0 and x = 1 are in
the first cluster, and thus the mean for the cluster 1 in the next iteration
is m1(1) = (0 + 1)/2 = 0.5, as shown. Likewise, initially cluster 2 contains
the single point x = 5, and thus the mean for cluster 2 on the next iteration
is m2(1) = 5/1 = 5. In the same manner, the mean for cluster 3 on the
next iteration is m3(1) = (8 + 14 + 16)/3 = 12.67.

t=0
0 5 10 15 20

t=1
0 5 10 15 20

t=2
0 5 10 15 20

x

x

x

m1 m2 m3

m1 m2 m3

m1 m2 m3

x = 3 
(cluster 1)

x = 11
(cluster 3)

(b) (5 pt) What are the final cluster means, after convergence of the algorithm?
Solution: After one more step of the algorithm, as above, we find m1(2) =
0.5, m2(2) = 6.5 and m3(2) = 15.

(c) (2 pt) For your final clusterer, to which cluster does the point x = 3
belong? To which cluster does x = 11 belong?
Solution: As shown in the bottom figure, x = 3 is in cluster 1, and x = 11
is in cluster 3.

4. (10 points total) The task is to use Bayesian methods to estimate a one-dimensional
probability density. The fundamental density function is a normalized triangle
distribution T (μ, 1) with center at μ with half-width equal 1, defined by

p(x|μ) ∼ T (μ, 1) =
{

1 − |x − μ| |x − μ| ≤ 1
0 otherwise,

as shown on the left figure. The prior information on the parameter μ is that
it is equally likely to come from any of the three discrete values μ = −1, 0 or 1.
Stated mathematically, the prior consists of three delta functions, i.e.,

p(μ) =
1
3
[δ(x − 1) + δ(x) + δ(x + 1)],

as shown on the figure at the right. (Recall that the delta function has negligible
width and unit integral.)
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x

p(x|μ)

μ μ +1μ -1

1

μ

p(μ)

0 1-1

(a) (2 pt) Plot the “estimated density” before any data are collected (which
we denote by D0 = {}). That is, plot p(x|D0). Here and below, be sure to
label and mark your axes and ensure normalization of your final estimated
density.
Solution: In the absense of data, the estimate density is merely the sum
of three triangle densities (of amiplitude 1/3 to ensure normalization), as
shown in the top figure.

0 1 2-1-2
x

p(x|D0)

1 a)

0 1 2-1-2
x

p(x|D1)

1 b)

0 1 2-1-2
x

p(x|D2)

1 c)

(b) (4 pts) The single point x = 0.25 was sampled, and thus D1 = {0.25}.
Plot the estimated density p(x|D1).
Solution: Bayesian density estimation

p(x|D) =
∫

p(x|μ)p(μ|D) dμ

∝
∫

p(x|μ)p(D|μ)p(μ) dμ

where here we do not worry about constants of proportionality as we shall
normalize densities at the end. Because the prior consists of three delta
functions, our final estimated density consists of the sum of three triangle
distributions, centered on x = −1, 0 and 1 — the only challenge is to
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determine the relative weighting of these triangle distributions. For the
single point D = {0.25}, clearly the weighting of the lefthand triangle (i.e.,
the one centered on x = −1) is zero because p(D1|μ = −1) = 0. The
relative weighting of the middle triangle (i.e., the one centered on x = 0) is
0.75 because p(D1|μ = 0) = 0.75. Likewise, the weighting of the righthand
triangle (i.e., centered on x = 1) is 0.25 because p(D1|μ = 1) = 0.25. The
priors are the same for all triangles, and thus our final density is:

p(x|D1) ∼ 0.75T (0, 1) + 0.25T (1, 1),

as shown in the figure.

(c) (4 pts) Next the point x = 0.75 was sampled, and thus the data set is
D2 = {0.25, 0.75}. Plot the estimated density p(x|D2).
Solution: As in part (b), there will be no contribution from the lefthand
triangle because p(D2|μ = −1) = 0. Because the points are placed symmet-
rically between the two other triangle centers, the contributions of these
triangles must be equal, that is,

p(x|D2) ∼ 0.5T (0, 1) + 0.5T (1, 1),

as shown in the figure.

5. (5 points total) Construct a cluster dendrogram for the one-dimensional data
D = {2, 3, 5, 10, 13} using the distance measure Dmax(Di,Dj).
Solution: The closest two points are 2 and 3, with distance Dmax = 2, and thus
they are merged. At Dmax = 3, the point 5 is merged, since the distance is 3.
Likewise, the points 10 and 13 are merged at this level. The two clusters {2, 3, 5}
and {10, 13} are merged at Dmax = 11, the Euclidean separation between 2 and
13.

0 5 10 15
0

5

10

Dmax(Di|Dj)
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6. (10 points total) Consider the use of traditional boosting for building a classifier
for a two-category problem with n training points.

(a) (8 pts) Write pseudocode for traditional boosting, leading to three com-
ponent classifiers.
Solution:
Algorithm[Boosting]
Begin INITIALIZE D = {x1 . . .xn}
Train classifier C1 on D1, i.e., ∼ n/3 patterns chosen from D
Select D2, i.e., roughly n/3 patterns that are “most informative”
Train classifier C2 on D2

Train classifier C3 on D3, i.e., all remaining patterns
End

(b) (2 pts) How are the resulting three component classifiers used to classify
a text pattern?
Solution: Majority vote.

7. (5 points total) Consider a standard three-layer neural net as shown. Suppose
the network is to be trained using the novel criterion function

J =
1
4

c∑
k=1

(tk − zk)4.

Derive the learning rule Δwkj for the hidden-to-output weights.

wkj

z1

wji

z2 zk zc... ...

... ...

... ...

... ...

x1 x2 xi xd... ...

output z

x1 x2 xi xd

y1 y2 yj ynH

t1 t2 tk tctarget t

input x

output

hidden

input

Solution: The derivation is nearly the same as the one in the text. The chain
rule for differentiation gives us:

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

,

and because

J =
1
4

c∑
k=1

(tk − zk)4,

we have
∂J

∂netk
=

∂J

∂zk

∂zk

∂netk

= −(tk − zk)3f ′(netk).
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Recall, too, that

∂netk
∂wkj

= yj .

We put these together, and denote the learning rate by η to find the learning
rule

Δwkj = η(tk − zk)3f ′(netk)yj .

8. (10 points total) It is World Cup Soccer season and a researcher has developed
a Bayes belief net that expresses the dependencies among the age of a person
(A), his or her nationality (B), whether he or she likes soccer (C), and how
much he or she watches sports TV during the World Cup season (D). Use the
conditional probability tables to answer the following.

A
age

B
nation-

ality

C
sports

D
watch

TV

a
1
 = 0-30 years

a
2
 = 31-40 years

a
3
 = 41-100 years

b
1
 = American

b
2
 = non-American

c
1
 = likes soccer

c
2
 = doesn't like soccer

d
1
 = a lot

d
2
 = some

d
3
 = none

P(a
1
)    P(a

2
)   P(a

3
) 

  0.3      0.6      0.1

           P(c
1
|a

i
, b

j
)    P(c

2
|a

i
, b

j
)

a
1
, b

1           
0.5                0.5     

a
1
, b

2           
0.7                0.3     

a
2
, b

1           
0.6                0.4     

a
2
, b

2           
0.8                0.2     

a
3
, b

1           
0.4                0.6     

a
3
, b

2           
0.1                0.9    

       P(d
1
|c

k
)    P(d

2
|c

k
)   P(d

3
|c

k
)

c
1         

   0.7          0.2          0.1    
c

2             
0.5          0.3          0.2 

P(a)

P(c|a,b)

P(d|c)

P(b
1
)    P(b

2
) 

  0.2      0.8

P(b)

(a) (2 pts) What is the probability we find a non-American who is younger
than 30 who likes soccer and watches a lot of sports TV?
Solution: We use the conditional probabilities and compute

P (a1, b2, c1, d1) = P (a1)P (b2)P (c1|a1, b2)P (d1|c1)
= 0.3 · 0.8 · 0.7 · 0.7 = 0.1176.

(b) (4 pts) Suppose we find someone who is an American between 31-40 years
of age who watches “some” sports TV. What is the probability that this
person likes soccer?
Solution: There are several ways to approach this, but perhaps the sim-
plest is to compute

P (c1|a2, b1, d2) =
P (a2, b1, c1, d2)
P (a2, b1, d2)

= αP (a2, b1, c1, d2)

= α P (a2)P (b1)P (c1|a2, b1)P (d2|c1)
= α · 0.6 · 0.2 · 0.6 · 0.2 = α 0.0144.

Likewise we have

P (c2|a2, b1, d2) = αP (a2, b1, c2, d2)
= α P (a2)P (b1)P (cc|a2, b1)P (d2|cc)
= α · 0.6 · 0.2 · 0.4 · 0.3 = α 0.0144.
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Since P (c1|a2, b1, d2) + P (c2|a2, b1, d2) = 1, we fix the normalization and
find

P (c1|a2, b1, d2) =
0.0144

0.0144 + 0.0144
= 0.5.

(c) (4 pts) Suppose we find someone over 40 years of age who never watches
sports TV. What is the probability that this person likes soccer?
Solution: Again, there are several ways to calculate this probability, but
this time we proceed as:

P (c1|a3, d3) ∝
∑
b

P (a3,b, c1, d3)

= αP (a3)P (d3|c1)
∑
b

P (b)P (c1|a3,b)

= αP (a3)P (d3|c1) [P (b1)P (c1|a3, b1) + P (b2)P (c1|a3, b2)]
= α0.1 · 0.1 [0.2 · 0.4 + 0.8 · 0.1] = α 0.0016.

Likewise, we have

P (c2|a3, d3) ∝
∑
b

P (a3,b, c2, d3)

= αP (a3)P (d3|c2)
∑
b

P (b)P (c2|a3,b)

= αP (a3)P (d3|c2) [P (b1)P (c2|a3, b1) + P (b2)P (c2|a3, b2)]
= α0.1 · 0.2 [0.2 · 0.6 + 0.8 · 0.9] = α 0.0168.

Since P (c1|a3, d3) + P (c2|a3, d3) = 1 we normalize our results to find

P (c1|a3, d3) =
0.0016

0.0016 + 0.0168
= 0.087.

9. (15 points total) This problem conserns the construction of a binary decision
tree for three categories from the following two-dimensional data:

ω1 ω2 ω3(
1
1

)
,
(
2
8

)
,
(
3
5

) (
4
7

)
,
(
6
2

)
,
(
7
6

) (
5
10

)
,
(
7
4

)
,
(
7
9

)
(a) (3 pts) What is the information impurity at the root node, i.e., before any

splitting?
Solution: The information impurity at the root (before splitting) is

i(N) = −
c∑

j=1

P (ωj) log2 P (ωj)

= −3
[
1
3

log2

1
3

]
= log2 3 = 1.585 bits.

(b) (4 pts) The query at the root node is: “Is x1 > 3.5?” What is the
information impurity at the next level?
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Solution: The impurity at the right node is 0, as all its points are in a
single category, ω1. The impurity at the left node, NL, is:

i(NL) = −
[
1
2

log2

1
2

+
1
2

log2

1
2

]
= log2 2 = 1.0 bit.

The impurity at this level is the weighted sum of the impurities at the
nodes, i.e.,

PL · 1.0 + (1 − PL)0.0 =
6
9
· 1.0 +

3
9
0.0 = 0.66 bits,

where PL and PR = 1 − PL are the probabilities patterns go to the “left”
and “right,” respectively. Note that the reduction in impurity — 1.585 -
0.66 — is less than 1.0 bits, as it must from the answer to a single yes-no
question.

(c) (6 pts) Continue to grow your tree fully. If two candidate splits are equally
good, prefer the one based on x1 (rather than x2). Show the final tree and
all queries.
Solution: See figure.

x1

x2

0 5 10
0

5

10 x1 > 3.5?

ω1

part d)

x2 > 8?

x2 > 5?

ω2

x1 > 6.5?

ω2

Y N

Y N

ω3

Y N

ω3

Y N

(d) (2 pts) Use your tree to classify the point (7
2 ).

Solution: From the tree or the plot, it is clear that (7
2 ) is classified as ω3.

10. (10 points total) Short answer (1 pt each).

(a) Explain using a diagram and a few sentences the technique of “learning
with hints” and why it can improve a neural net pattern classifier.
Solution: If a neural network is being trained on a particular classifica-
tion problem, we can add to the network output units that correspond to
a subsidiary, but related problem. We train the network on both prob-
lems simultaneously. We discard the hint output units after training. Such
learning with hints can improve classification on the central task because
the hidden units develop better features, relevant to the primary classifi-
caation task.

(b) Use the Boltzmann factor to explain why at a sufficiently high “tempera-
ture” T , all configurations in a Boltzmann network are equally probable.



392 SAMPLE FINAL EXAMS AND SOLUTIONS

ω1 ω2 ω3 ωc h1

...
h2

categories hints

output

hidden

input

Solution: The probability of any configuration γ in a Boltzmann network
is given by

P (γ) =
e−Eγ/T

Z
,

where the numerator is the Boltzmann factor and Z is the partition func-
tion — basically a normalization. If T � Eγ , then the exponent is nearly
0 regardless of γ, and the Boltzmann factor is nearly 1.0 for every state.
Thus the probability of each configuration is roughly the same.

(c) Explain with a simple figure the “crossover” operation in genetic algo-
rithms.
Solution: In genetic algorithms, we represent classifiers by a string of bits.
The crossover operation employs a randomly chosen place along the string,
then takes the left part from sequence A and splices it to the right side of
sequence B, and vice versa, much in analogy with sexual reproduction in
biology. This operation is fundamentally different from random variation
and occassionally leads to particularly good or “fit” classifiers.

1010100001010011101010010100010101111101011100

1110001101100001010011110101000000100100101010

1010100001010001010011110101000000100100101010

1110001101100011101010010100010101111101011100

A
B

parents

offspring

(d) What is a “surrogate split” and when is one used?
Solution: In addition to the traditional or “primary split” in a node in
a decision tree classifier, we may provide “surrogate” splits, to be used
whenever a test pattern is missing the feature queried by the primary split.
The surrogate split is based on a feature other than the one used by the
primary split, and is chosen to best approximate the action of the primary
split, i.e., maximize the “predictive association” with the primary split.

(e) If the cost for any fundamental string operation is 1.0, state the edit dis-
tance between bookkeeper and beekeepers.
Solution: The edit distance is 4, as shown in the table.



EXAM 2 SOLUTION 393

x bookkeeper source string
beokkeeper substitute e for o 1
beekkeeper substitute e for o 2
beekeeper delete k 3

y beekeepers insert s 4

(f) Suppose the Bayes error rate for a c = 3 category classification problem is
5%. What are the bounds on the error rate of a nearest-neighbor classifier
trained with an “infinitely large” training set?
Solution: In the limit of an infinitely large training set, the nearest-
neighbor classifier has a probability of error P bounded as

P ∗ ≤ P ≤ P ∗
(

2 − c

c − 1
P ∗

)

where P ∗ is the Bayes error rate. For the case P ∗ = 0.05 and c = 3, these
limits are then

0.05 ≤ P ≤ 0.05
(

2 − 3
2
0.05

)
= 0.09625.

(g) What do we mean by the “language induced by grammar G”?
Solution: The complete set of strings (possibly infinite in number) that
can be derived from the source symbol S by application of the production
rules in all possible sequences.

(h) In hidden Markov models, what does the term aij refer to? What does bjk

refer to?
Solution: The aij = P (ωj(t + 1)|ωi(t)) denote the transition probability
from hidden state ωi to hidden state ωj in each time step. The bjk =
P (vk(t)|ωj(t)) denote the transition probability that hidden state ωj will
emit visible symbol vk in each time step.
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EXAM 3, three hours, 100 points

1. (15 points total) A Bayes belief net consisting of six nodes and its associated
conditional probability tables are shown below.

A

B C

D

E F

P (a1) P (a2) P (a3) P (c1) P (c2) P (c3)
0.5 0.3 0.2 0.2 0.4 0.4

P (b1|ai) P (b2|ai) P (d1|bi, cj) P (d2|bi, cj)
a1 0.4 0.6 b1, c1 0.3 0.7
a2 0.3 0.7 b1, c2 0.5 0.5
a3 0.5 0.5 b1, c3 0.9 0.1

b2, c1 1.0 0.0
b2, c2 0.4 0.6
b2, c3 0.7 0.3

P (e1|di) P (e2|di) P (f1|di) P (f2|di) P (f3|di)
d1 0.1 0.9 d1 0.1 0.5 0.4
d2 0.8 0.2 d2 0.8 0.0 0.2

(a) (2 pt) Compute the probability P (a3, b2, c3, d1, e2, f1).

(b) (2 pt) Compute the probability P (a2, b2, c2, d2, e1, f2).

(c) (5 pt) Suppose we know the net is in the following (partial) state of evidence
e: a3, b1, c2. What is the probability P (f1|e)? What is the probability
P (e2|e)?

(d) (6 pt) Suppose we know the net is in the following (partial) state of evidence
e: f1, e2, a2. What is the probability P (d1|e)? What is the probability
P (e2|e)?
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2. (15 points total) Consider a one-dimensional two-category classification prob-
lem with unequal priors, P (ω1) = 0.7 and P (ω2) = 0.3, where the densities have
the form form of a half Gaussian “centered” at 0, i.e.,

p(x|ωi) =
{

0 x < 0
θie

−x2/(2σ2
i ) x ≥ 0,

where the θi for i = 1, 2, are positive but unknown parameters.

(a) (1 pt) Find the normalization constant θi as a function of σi.

(b) (8 pts) The following data were collected: D1 = {1, 4} and D2 = {2, 8} for
ω1 and ω2, respectively. Find the maximum-likelihood values σ̂1 and σ̂2.

(c) (3 pts) Given your answer to part (b), determine the decision boundary
for minimum classification error. Be sure to state which category label
applies to each range in x values.

(d) (3 pts) Recall that the standard error function is defind as erf(x) ≡
2√
π

x∫
0

e−z2/2dz. Write a formula for the expected error of your classifier in

part (c) in terms of error functions.

3. (10 points total) Consider the application of the k-means clustering algorithm
to the two-dimensional data set D = {(−5

3

)
,
(−3

1

)
,
(−2

6

)
,
(−1
−7

)
,
(

4
−3

)
,
(

6
−1

)} for c = 3
clusters.

(a) (3 pt) Start with the three cluster means: m1(0) =
(−7

4

)
, m2(0) =

(
7
4

)
,

and m3(0) =
(

2
−5

)
. What are the values of the means at the next iteration?

(b) (5 pt) What are the final cluster means, after convergence of the algorithm?

(c) (2 pt) For your final clusterer, to which cluster does the point x =
(
3
3

)
belong? To which cluster does x =

(−3
−4

)
belong?
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4. (15 points total) The task is to use Bayesian methods to estimate a one-dimensional
probability density. The fundamental density function is a normalized “half cir-
cle” distribution HC(μ, 1) with center at μ with half-width equal 1, defined
by

p(x|μ) ∼ HC(μ, 1) =
{

2
π

√
1 − (x − μ)2 |x − μ| ≤ 1

0 otherwise,

as shown on the left figure. The prior information on the parameter μ is that
it is equally likely to come from either of the two discrete values μ = −0.5 or
+0.5. Stated mathematically, the prior consists of two delta functions, i.e.,

p(μ) =
1
2
[δ(μ − 0.5) + δ(μ + 0.5)],

as shown on the figure at the right. (Recall that the delta function has negligible
width and unit integral.)

x

p(x|μ)

μ μ +1μ -1

2/pi

μ

p(μ)

0 +0.5-0.5

(a) (3 pt) Plot (sketch) the “estimated density” before any data are collected
(which we denote by D0 = {}). That is, plot p(x|D0). Here and below, be
sure to label and mark your axes and ensure normalization of your final
estimated density.

(b) (4 pts) The single point x = 0.25 was sampled, and thus D1 = {0.25}.
Plot the density p(x|D1) estimated by Bayesian methods.

(c) (5 pts) Next the point x = 0.25 was sampled, and thus the data set is
D2 = {0.25, 0.25}. Plot the estimated density p(x|D2).

(d) (3 pts) Suppose a very large number of points were selected and they were
all 0.25, i.e., D = {0.25, 0.25, . . . , 0.25}. Plot the estimated density p(x|D).
(You don’t need to do explicit calculations for this part.)

5. (5 points total) Construct a cluster dendrogram for the one-dimensional data
D = {5, 6, 9, 11, 18, 22} using the distance measure Davg(Di,Dj).

6. (5 points total) Consider learning a grammar from sentences.

(a) (8 pts) Write pseudocode for simple grammatical inference. Define your
terms.

(b) (2 pts) Define D+ and D− and why your algorithm needs both.
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7. (5 points total) Consider a standard three-layer neural net as shown. Suppose
the network is to be trained using the novel criterion function

J =
1
6

c∑
k=1

(tk − zk)6.

Derive the learning rule Δwkj for the hidden-to-output weights.

wkj

z1

wji

z2 zk zc... ...

... ...

... ...

... ...

x1 x2 xi xd... ...

output z

x1 x2 xi xd

y1 y2 yj ynH

t1 t2 tk tctarget t

input x

output

hidden

input

8. (5 points total) Prove that the single best representative pattern x0 for a data
set D = {x1, . . . ,xn} in the sum-squared-error criterion

J0(x0) =
n∑

k=1

‖x0 − xk‖2

is the sample mean m = 1
n

n∑
k=1

xk.

9. (15 points total) This problem concerns the construction of a binary decision
tree for two categories from the following two-dimensional data using queries of
the form “Is xi > x∗

i ?” for i = 1, 2 and the information impurity.

ω1 ω2(
1
5

)
,
(
2
9

)
,
(

4
10

)
,
(
5
7

)
,
(
8
6

) (
3
8

)
,
(
6
4

)
,
(
7
2

)
,
(
9
3

)
(a) (2 pts) What is the information impurity at the root node, i.e., before any

splitting?

(b) (3 pts) What should be the query at the root node?

(c) (3 pts) How much has the impurity been reduced by the query at the root?

(d) (3 pts) Continue constructing your tree fully. (Whenever two candidate
queries lead to the samee reduction in impurity, prefer the query that uses
the x1 feature.) Use your tree to classify x =

(
6
6

)
and x =

(
3
4

)
.

(e) (2 pts) Suppose your tree is to be able to classify deficient patterns. What
should be the first (and only) surrogate split at the root node?
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10. (10 points total) Short answer (1 pt each).

(a) What are the four major components of a grammar G? What do we mean
by the language induced by grammar G, i.e., L(G)?

(b) Use the Boltzmann factor to explain why at a sufficiently high “tempera-
ture” T , all configurations in a Boltzmann network are equally probable.

(c) Use an equation and a few sentences to explain the minimum description
length (MDL) principle.

(d) Use an equation and a few sentences to explain what is the discriminability
in signal detection theory.

(e) If the cost for any fundamental string operation is 1.0, state the edit dis-
tance between streets and scrams.

(f) Suppose the Bayes error rate for a c = 5 category classification problem is
1%. What are the upper and lower bounds on the error rate of a nearest-
neighbor classifier trained with an “infinitely large” training set?

(g) Use a formula and a sentence to explain learning with momentum in back-
propagation.

(h) What is the evaluation problem in hidden Markov models?
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Important formulas

P (ωi|x) =
p(x|ωi)P (ωi)

c∑
k=1

P (ωk)p(x|ωk)

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x − μ)tΣ−1(x − μ)

]

Σ = E [(x − μ)(x − μ)t]

Σ =
1
n

n∑
i=1

(xi − μ)(xi − μ)t

Σ =
∫

(x − μ)(x − μ)tp(x)dx

P (ωi|xg) =
∫

P (ωi|xg,xb)p(xg,xb)dxb

p(xg)

l(θ) = lnp(D|θ)

θ̂ = arg max
θ

l(θ)

p(x|D) =
∫

p(x|θ)p(θ|D) dθ

Q(θ; θi) = EDb

[
lnp(Dg,Db; θ)|Dg; θi

]

d′ =
|μ2 − μ1|

σ

lim
n→∞Pn(e|x) = 1 −

c∑
i=1

P 2(ωi|x)

P ∗ ≤ P ≤ P ∗
(

2 − c

c − 1
P ∗

)
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Jp(a) =
∑
y∈Y

(−aty)

a(k + 1) = a(k) + η(k)
∑
y∈Yk

y

Δwkj = ηδkyj = η(tk − zk)f ′(netk)yj

Δwji = ηδjxi = η

[
c∑

k=1

wkjδk

]
f ′(netj)xi

f(net) = a tanh[b net] = a

[
e+b net − e−b net

e+b net + e−b net

]

P (γ) =
e−Eγ/T

Z

Z =
∑
γ′

e−Eγ′/T

Δwij =
η

T

⎡⎢⎣EQ[sisj ]αi αo clamped︸ ︷︷ ︸
learning

−E [sisj ]αi clamped︸ ︷︷ ︸
unlearning

⎤⎥⎦

i(N) = −
c∑

j=1

P (ωj)log2P (ωj)

ED
[
(g(x; D) − F (x))2

]
= (ED [g(x; D) − F (x)])2 + ED

[
g(x; D) − ED[g(x; D)])2

]

θ̂(i) = θ̂(x1, x2, · · · , xi−1, xi+1, · · · , xn)

θ̂(·) =
1
n

n∑
i=1

θ̂(i)

Si =
∑
x∈Di

(x − mi)(x − mi)t

SW =
c∑

i=1

Si



EXAM 3 401

SB =
c∑

i=1

ni(mi − m)(mi − m)t

ST =
∑
x∈D

(x − m)(x − m)t

Je = tr[SW ]

Jd = ‖SW ‖

dmin(Di,Dj) = min
x∈D
x∈D′

‖x − x′‖

dmax(Di,Dj) = max
x∈D
x∈D′

‖x − x′‖

davg(Di,Dj) =
1

ninj

∑
x∈D

∑
x∈D′

‖x − x′‖

dmin(Di,Dj) = ‖mi − mj‖

Jee =

∑
i<j

(dij − δij)2∑
i<j

δ2
ij

Jff =
∑
i<j

(
dij − δij

δij

)2

Jef =
1∑

i<j

δij

∑
i<j

(dij − δij)2

δij

wki(t + 1) = wki(t) + η(t)Λ(|y − y∗|)φi
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EXAM 3 Solutions
1. (15 points total) A Bayes belief net consisting of six nodes and its associated

conditional probability tables are shown below.

A

B C

D

E F

P (a1) P (a2) P (a3) P (c1) P (c2) P (c3)
0.5 0.3 0.2 0.2 0.4 0.4

P (b1|ai) P (b2|ai) P (d1|bi, cj) P (d2|bi, cj)
a1 0.4 0.6 b1, c1 0.3 0.7
a2 0.3 0.7 b1, c2 0.5 0.5
a3 0.5 0.5 b1, c3 0.9 0.1

b2, c1 1.0 0.0
b2, c2 0.4 0.6
b2, c3 0.7 0.3

P (e1|di) P (e2|di) P (f1|di) P (f2|di) P (f3|di)
d1 0.1 0.9 d1 0.1 0.5 0.4
d2 0.8 0.2 d2 0.8 0.0 0.2

(a) (2 pt) Compute the probability P (a3, b2, c3, d1, e2, f1).
Solution

P (a3, b2, c3, d1, e2, f1) = P (a3)P (b2|a3)P (c3)P (d1|b2, c3)P (e2|d1)P (f1|d1)
= 0.2 · 0.5 · 0.4 · 0.7 · 0.9 · 0.1 = 0.0025.

(b) (2 pt) Compute the probability P (a2, b2, c2, d2, e1, f2).
Solution

P (a2, b2, c2, d2, e1, f2) = P (a2)P (b2|a2)P (c2)P (d2|b2, c2)P (e1|d2)P (f2|d2)
= 0.3 · 0.7 · 0.4 · 0.6 · 0.8 · 0.0 = 0.0.

(c) (5 pt) Suppose we know the net is in the following (partial) state of evidence
e: a3, b1, c2. What is the probability P (f1|e)? What is the probability
P (c2|e)?
Solution

P (f1|e) = P (d1|b1, c2)P (f1|d1) + P (d2|b1, c2)P (f1|d2)
= 0.5 · 0.1 + 0.5 · 0.8 = 0.45.

P (e2|e) = P (d1|b1, c2)P (e2|d1) + P (d2|b1, c2)P (e2|d2)
= 0.5 · 0.9 + 0.5 · 0.2 = 0.55.
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(d) (6 pt) Suppose we know the net is in the following (partial) state of evidence
e: f1, e2, a2. What is the probability P (d1|e)? What is the probability
P (e2|e)?
Solution

P (d1|e) =

∑
b,c P (b, c, d1, a2, e2, f1)∑
b,c,d P (b, c, d, a2, e2, f1)

=

∑
b,c P (a2)P (b|a2)P (c)P (d1|b, c)P (e2|d1)P (f1|d1)∑
b,c,d P (a2)P (b|a2)P (c)P (d|b, c)P (e2|d)P (f1|d)

=
P (e2|d1)P (f1|d1)

∑
b,c P (b|a2)P (c)P (d1|b, c)∑

b,c,d P (b|a2)P (c)P (d|b, c)P (e2|d)P (f1|d)

=
0.9 · 0.1[P (b1|a2)

∑
c P (c)P (d1|b1, c)) + P (b2|a2)

∑
c P (c)P (d1|b2, c)]

P (e2|d1)P (f1|d1)
∑

b,c P (b|a2)P (c)P (d1|b, c) + P (e2|d2)P (f1|d2)
∑

b,c P (b|a2)P (c)P (d2|b, c)

=
0.9 · 0.1[0.3(0.2 · 0.3 + 0.4 · 0.5 + 0.4 · 0.9) + 0.7(0.2 · 1.0 + 0.4 · 0.4 + 0.4 · 0.7)]

P (e2|d1)P (f1|d1)
∑

b,c P (b|a2)P (c)P (d1|b, c) + P (e2|d2)P (f1|d2)
∑

b,c P (b|a2)P (c)P (d2|b, c)
=

0.05706
0.05706 + 0.2 · 0.8(0.3(0.2 · 0.7 + 0.4 · 0.5 + 0.4 · 0.1) + 0.7(0.2 · 0.0 + 0.4 · 0.6 + 0.4 · 0.3))

=
0.05706

0.05706 + 0.05856
≈ 0.4935.

P (c2|e) =

∑
b,d P (b, d, c2, a2, e2, f1)∑
b,c,d P (b, c, d, a2, e2, f1)

=

∑
b,d P (a2)P (b|a2)P (c2)P (d|b, c2)P (e2|d)P (f1|d)∑
b,c,d P (a2)P (b|a2)P (c)P (d|b, c)P (e2|d)P (f1|d)

=
P (c2)

∑
b P (b|a2)

∑
d P (d|b, c2)P (e2|d)P (f1|d)∑

c P (c)
∑

b P (b|a2)
∑

d P (d|b, c)P (e2|d)P (f1|d)

=
0.4(0.3(0.5 · 0.9 · 0.1 + 0.5 · 0.2 · 0.8) + 0.7(0.4 · 0.9 · 0.1 + 0.6 · 0.2 · 0.8))∑

c P (c)
∑

b P (b|a2)
∑

d P (d|b, c)P (e2|d)P (f1|d)

= .05196/

(
.05196 + P (c1)

∑
b

P (b|a2)
∑

d

P (d|b, c1)P (e2|d)P (f1|d)

+ P (c3)
∑

b

P (b|a2)
∑

d

P (d|b, c3)P (e2|d)P (f1|d)

)
= .05196/ (.05196 + 0.2(0.3(0.3 · 0.9 · 0.1 + 0.7 · 0.2 · 0.8) + 0.7(1.0 · 0.9 · 0.1 + 0.0 · 0.2 · 0.8))

+ P (c3)
∑

b

P (b|a2)
∑

d

P (d|b, c3)P (e2|d)P (f1|d)

)
= .05196/(.05196 + .02094

+ 0.4(0.3(0.9 · 0.9 · 0.1 + 0.1 · 0.2 · 0.8) + 0.7(0.7 · 0.9 · 0.1 + 0.3 · 0.2 · 0.8)))

=
.05196

.05196 + .02094 + .04272
≈ 0.4494.
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2. (15 points total) Consider a one-dimensional two-category classification prob-
lem with unequal priors, P (ω1) = 0.7 and P (ω2) = 0.3, where the densities have
the form form of a half Gaussian “centered” at 0, i.e.,

p(x|ωi) =
{

0 x < 0
θie

−x2/(2σ2
i ) x ≥ 0,

where the θi for i = 1, 2, are positive but unknown parameters.

(a) (1 pt) Find the normalization constant θi as a function of σi.
Solution
Because the normalization on a full one-dimensional Gaussian (as given
on the equations on the exam) is 1√

2πσ
, the normalization on a “half”

Gaussian must be twice as large, i.e.,

θi =

√
2
π

1
σi

.

(b) (8 pts) The following data were collected: D1 = {1, 4} and D2 = {2, 8} for
ω1 and ω2, respectively. Find the maximum-likelihood values σ̂1 and σ̂2.
Solution
We drop the subscripts, denote the two training points x1 and x2, and
compute the likelihood:

p(D|σ) = p({x1, x2}|σ) = p(x1|σ)p(x2|σ)

=

√
2
π

1
σ

e−x2
1/2σ2 ·

√
2
π

1
σ

e−x2
2/2σ2

=
2
π

1
σ2

e−(x2
1+x2

2)/2σ2
.

Clearly, because of the exponential we will want to work with the log-
likelihood,

l ≡ ln(2/π) − 2 lnσ − (x2
1 + x2

2)/2σ2.

To find the maximum-likelihood solution, we first take the derivative

dl

dσ
=

−2
σ

− (x2
1 + x2

2)
2

−2
σ−3

,

and set it to zero. Clearly we must ignore the solution σ̂ = ∞. The solution
we seek is

σ̂ =

√
x2

1 + x2
2

2
,

which for the training data given yields

σ̂1 =

√
12 + 42

2
=

√
17
2

σ̂2 =

√
22 + 82

2
=

√
34.
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(c) (3 pts) Given your answer to part (b), determine the decision boundary
for minimum classification error. Be sure to state which category label
applies to each range in x values.
Solution
We set the posteriors equal, yielding

P (ω1)p(x∗|ω1) = P (ω2)p(x∗|ω2)

which gives the following equalities:

0.7

√
2
π

1
σ̂1

e−x∗2/(2σ̂2
1) = 0.3

√
2
π

1
σ̂2

e−x∗2/(2σ̂2
2)

ln
[
0.7
0.3

σ̂1

σ̂2

]
= −x∗2

2

[
1

σ̂2
2 + σ̂2

1

]
or

x∗ =

√√√√√−2 ln
[

0.7
0.3

σ̂1
σ̂2

]
[

1
σ̂2
2+σ̂2

1

] � 5.91,

with R1 for points 0 ≤ x < x∗ and R2 for points x > x∗.
(d) (3 pts) Recall that the standard error function is defind as erf(x) ≡

2√
π

x∫
0

e−z2/2dz. Write a formula for the expected error of your classifier

in part (c) in terms of error functions.
Solution
Consult the figure.

2 4 6 8 10

0.05

0.1

0.15

x

x*

P(ωi|x)

ω1

ω2

We sum the two shaded areas to find the probability of error,

P (error) =
∫

min[P (ω1)p(x|ω1), P (ω2)p(x|ω2)]dx

=

x∗∫
0

P (ω2)

√
2
π

1
σ̂2

e−x2/(2σ̂2
2dx +

∞∫
x∗

P (ω1)

√
2
π

1
σ̂1

e−x2/(2σ̂2
1)dx

= 0.3
1√
2

1
σ̂2

2√
π

x∗/σ̂2∫
0

σ̂2e
−z2/2dz + 0.7

1√
2

1
σ̂1

2√
π

∞∫
x∗/σ̂1

σ̂1e
−z2/2dz

=
0.3√

2
erf[x∗/σ̂2] +

0.7√
2

[1 − erf[x∗/σ̂1]] � 0.237.
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3. (10 points total) Consider the application of the k-means clustering algorithm
to the two-dimensional data set D = {(−5

3

)
,
(−3

1

)
,
(−2

6

)
,
(−1
−7

)
,
(

4
−3

)
,
(

6
−1

)} for c = 3
clusters.

0 0

0

1

1

1

2

2

2

m1 m2

m3

(a) (3 pt) Start with the three cluster means: m1(0) =
(−7

4

)
, m2(0) =

(
7
4

)
,

and m3(0) =
(

2
−5

)
. What are the values of the means at the next iteration?

Solution
The points nearest each mean are as follows:

m1 :
(−5

3

)
,
(−3

1

)
,
(−2

6

)
m2 :

(
6
−1

)
m3 :

(−1
−7

)
,
(

4
−3

)
.

We compute the mean for each of these sets to find the new means, i.e.,

m1(1) =
(−3.33

3

)
, m2(1) =

(
6
−1

)
, m3(1) =

(
1.5
−5

)
.

(b) (5 pt) What are the final cluster means, after convergence of the algorithm?
Solution
On the next iteration, m1 does not change, but the others do:

m1(2) =
(−3.33

3

)
m2(2) =

(
5
−2

)
m3(2) =

(−1
−7

)
,

which is the final state.

(c) (2 pt) For your final clusterer, to which cluster does the point x =
(
3
3

)
belong? To which cluster does x =

(−3
−4

)
belong?

Solution
The point

(
3
3

)
is in cluster 2; the point

(−3
−4

)
is in cluster 3.
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4. (15 points total) The task is to use Bayesian methods to estimate a one-dimensional
probability density. The fundamental density function is a normalized “half cir-
cle” distribution HC(μ, 1) with center at μ with half-width equal 1, defined
by

p(x|μ) ∼ HC(μ, 1) =
{

2
π

√
1 − (x − μ)2 |x − μ| ≤ 1

0 otherwise,

as shown on the left figure. The prior information on the parameter μ is that
it is equally likely to come from either of the two discrete values μ = −0.5 or
+0.5. Stated mathematically, the prior consists of two delta functions, i.e.,

p(μ) =
1
2
[δ(μ − 0.5) + δ(μ + 0.5)],

as shown on the figure at the right. (Recall that the delta function has negligible
width and unit integral.)

x

p(x|μ)

μ μ +1μ -1

2/pi

μ

p(μ)

0 +0.5-0.5

(a) (3 pt) Plot (sketch) the “estimated density” before any data are collected
(which we denote by D0 = {}). That is, plot p(x|D0). Here and below, be
sure to label and mark your axes and ensure normalization of your final
estimated density.
Solution In the absense of training data, our distribution is based merely
on the prior values of the parameters. Written out in full, we have

p(x|D0) =
∫

p(x|μ)p(μ)dμ

=
∫

HC(μ, 1)0.5[δ(μ − 0.5) + δ(μ + 0.5)]dμ

= 0.5 [HC(0.5, 1) + HC(−0.5, 1)] ,

which is just the sum of the two disk distributions, as shown in the figure.

-2 -1 1 2

0.1

0.2

0.3

0.4

0.5

x

p(x|D0)
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(b) (4 pts) The single point x = 0.25 was sampled, and thus D1 = {0.25}.
Plot the density p(x|D1) estimated by Bayesian methods.
Solution
We use recursive Bayesian learning, in particular p(μ|D1) ∝ p(x1|μ)p(μ|D0,
where we defer the normalization.

p(x|μ) =
∫

p(x|μ)p(x1|μ)
1
2

[δ(μ − 0.5) + δ(μ + 0.5)]

The ratio of contributions of the two components is given by the values of
the component densities at x1 = 0.25, i.e.,√

1 − (0.5 − 0.25)2√
1 − (−.5 − 0.25)2

=

√
1 − 1/16
1 − 9/16

=
√

15/7 ≡ α,

where we let α be this ratio. The ratio of contributions is then α/(1+α) for
the HC(0.5, 1) component and 1/(1 + α) for the HC(−0.5, 1) component,
i.e.,

p(x|D1) =
α

1 + α
HC(0.5, 1) +

1
1 + α

HC(−0.5, 1).

-2 -1 1 2

0.1

0.2

0.3

0.4

0.5

x

p(x|D1)

(c) (5 pts) Next the point x = 0.25 was sampled, and thus the data set is
D2 = {0.25, 0.25}. Plot the estimated density p(x|D2).
Solution
We use recursive Bayesian learning, in particular p(μ|D2) ∝ p(x2|μ)p(μ|D1,
where again we defer the normalization. As before, we now have α/(1+α)
for the HC(0.5, 1) component and 1/(1 + α) for the HC(−0.5, 1) compo-
nent, i.e.,

p(x|D1) =
α2

1 + α2
HC(0.5, 1) +

1
1 + α2

HC(−0.5, 1).

-2 -1 1 2

0.1

0.2

0.3

0.4

0.5

p(x|D2)

x

(d) (3 pts) Suppose a very large number of points were selected and they were all 0.25,
i.e., D = {0.25, 0.25, . . . , 0.25}. Plot the estimated density p(x|D). (You don’t need
to do explicit calculations for this part.)
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Solution

Clearly, each subsequent piont x = 0.5 introduces another factor of α into the ratio
of the two components. In the limit of large n, we have

lim
n→∞

αn

1 + αn
→ 1;

lim
n→∞

1
1 + αn

→ 0,

and thus the density consists solely of the component HC(0.5, 1). Incidentally, this
would be the appropriate maximum-likelihood solution too.

-2 -1 1 2

0.1
0.2
0.3
0.4
0.5
0.6

x

p(x|D∞)
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5. (5 points total) Construct a cluster dendrogram for the one-dimensional data D = {5, 6, 9, 11, 18, 22}
using the distance measure davg(Di,Dj).
Solution
See figure. Throughout, we use davg(Di,Dj) = 1

ninj

∑
x∈D

∑
x∈D′

‖x−x′‖. The

distances at each successive levels are: 1, 2, 4, 4.5, 12.25.

50 10 15 20

1

2

4

4.5

12.25

6. (5 points total) Consider learning a grammar from sentences.

(a) (8 pts) Write pseudocode for simple grammatical inference. Define
your terms.
Solution
See Algorithm 5 in Chapter 8.

(b) (2 pts) Define D+ and D− and why your algorithm needs both.
Solution
D+ is a set of sentences known to be derivable in the grammar; D−

is a set of sentences known to be not derivable in the grammar. One
needs both to reduce the number of grammars consistent with training
data and make learning tractable.

7. (5 points total) Consider a standard three-layer neural net as shown. Suppose the network
is to be trained using the novel criterion function

J =
1
6

c∑
k=1

(tk − zk)6.

Derive the learning rule Δwkj for the hidden-to-output weights.

wkj

z1

wji

z2 zk zc... ...

... ...

... ...

... ...

x1 x2 xi xd... ...

output z

x1 x2 xi xd

y1 y2 yj ynH

t1 t2 tk tctarget t

input x

output

hidden

input
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Solution

We have J = 1
6

c∑
k=1

(tk − zk)6, and thus we have the derivative ∂J
∂zk

=

−(tk − zk)5. We use the chain rule and find

Δwkj = −η
∂J

∂wkj
= −η

∂J

∂zk

∂zk

∂netk

∂netk

∂wkj
= η(tk − zk)5f ′(netk)yj .

8. (5 points total) Prove that the single best representative pattern x0 for a data set D =
{x1, . . . ,xn} in the sum-squared-error criterion

J0(x0) =
n∑

k=1

‖x0 − xk‖2

is the sample mean m = 1
n

n∑
k=1

xk.

Solution

Minimizing x0 under the sum-squared-error criterion
n∑

k=1

‖x0 − xk‖2

0 =
∂

∂x0

n∑
k=1

‖x0 − xk‖2 = 2
n∑

k=1

(x0 − xk) = 2

(
n · x0 −

n∑
k=1

xk

)

and thus

x0 =
1
n

n∑
k=1

xk.

9. (15 points total) This problem concerns the construction of a binary decision tree for two
categories from the following two-dimensional data using queries of the
form “Is xi > x∗

i ?” for i = 1, 2 and the information impurity.

ω1 ω2(
1
5

)
,
(
2
9

)
,
(

4
10

)
,
(
5
7

)
,
(
8
6

) (
3
8

)
,
(
6
4

)
,
(
7
2

)
,
(
9
3

)
(a) (2 pts) What is the information impurity at the root node, i.e., before

any splitting?
Solution

i(N) = −
2∑

j=1

P (ωj) log2 P (ωj) = −5
9

log2

5
9

+ −4
9

log2

4
9
≈ 0.9911

(b) (3 pts) What should be the query at the root node?
Solution

By inspection, the first splitting criterion should be x2 = 4.5.
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(c) (3 pts) How much has the impurity been reduced by the query at the
root?
Solution
Trivially, i(NR) = 0.

i(NL) = −1
6

log2

1
6

+ −5
6

log2

5
6
≈ 0.65

The reduction in extropy is

Δi(N) = i(N)−PLi(NL)− (1−PL)i(NR) ≈ 0.99− 6
9
0.65− 0 ≈ 0.56

.

(d) (3 pts) Continue constructing your tree fully. (Whenever two candi-
date queries lead to the same reduction in impurity, prefer the query
that uses the x1 feature.) Use your tree to classify x =

(
6
6

)
and

x =
(
3
4

)
.

Solution

We need to decide whether the second splitting criterion is x1 = 2.5
or x1 = 3.5. The entropy reduction for x1 = 2.5 is

Δi(N) =
(
−1

6
log2

1
6
− 5

6
log2

5
6

)
−4

6

(
−1

4
log2

1
4
− 3

4
log2

3
4

)
≈ 0.11.

The entropy reduction for x1 = 3.5 is

Δi(N) =
(
−1

6
log2

1
6
− 5

6
log2

5
6

)
−3

6

(
−1

3
log2

1
3
− 2

3
log2

2
3

)
≈ 0.19.

So the second split should be x1 = 3.5. The last split is then x1 = 2.5.
Thus the tree is

(e) (2 pts) Suppose your tree is to be able to classify deficient patterns.
What should be the first (and only) surrogate split at the root node?
Solution

x = (6, 6)t ⇒ ω1; x = (3, 4)t ⇒ ω2. The surrogate split tries to
achieve the same partitioning of the samples as the x2 > 4.5 primary
split. By inspection, it is x1 < 5.5.

R1
R1

R2
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10. (10 points total) Short answer (1 pt each).

(a) What are the four major components of a grammar G? What do we mean
by the language induced by grammar G, i.e., L(G)?
Solution
The four major components of a grammar is symbols in the alphabet
A, variables I, root symbol in set S, and productions P. The language
induced by a grammar G is the set of all strings that can be generated by
G.

(b) Use the Boltzmann factor to explain why at a sufficiently high “tempera-
ture” T , all configurations in a Boltzmann network are equally probable.
Solution
At high temperature T , the probability of all states are equal.

lim
T→∞

P (γ)
p(γ′)

= lim
T→∞

e−(Eγ−Eγ′ )/T → 1.

(c) Use an equation and a few sentences to explain the minimum description
length (MDL) principle.
Solution
The MDL principle states that one should seek a model h∗ that minimizes
the sum of the model’s algorithmic complexity and the description of the
training data with respect to that model. That is,

h∗ = arg min
h

K(h, D) = arg min
h

K(h) + K(D using h).

(d) Use an equation and a few sentences to explain what is the discriminabil-
ity in signal detection theory.
Solution
For two normally distributed classes in one dimension (with same vari-
ance), discriminability is a measure of the ease of discriminating the two
classes. It is defined as d′ = |μ2−μ1|

σ .

(e) If the cost for any fundamental string operation is 1.0, state the edit
distance between streets and scrams.
Solution
The cost is 4. streets → screets → scraets → scramts → scrams.

(f) Suppose the Bayes error rate for a c = 5 category classification problem is
1%. What are the upper and lower bounds on the error rate of a nearest-
neighbor classifier trained with an “infinitely large” training set?
Solution
Using the equation given with the exam, P ∗ ≤ P ≤ P ∗(2 − c

c−1P ∗), we
get 0.01 ≤ P ≤ 0.01(2 − 5

5−10.01) = 0.019875 ≈ 0.02.

(g) Use a formula and a sentence to explain learning with momentum in back-
propagation.
Solution
Momentum in neural net learning is a heuristic that weight changes should
tend to keep moving in the same direction. Let Δw(m) = w(m)−w(m−1)
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and wbp(m) be the change in w(m) that would be called for by the back-
propagation algorithm (i.e., −η ∂J

∂w ). Then,

w(m + 1) = w(m) + (1 − α)Δwbp(m) + αΔw(m − 1).

(h) What is the evaluation problem in hidden Markov models?
Solution
The evaluation problem is determining the probability that a particular
sequence of visible states was generated by an HMM model.



Worked examples

Below are worked examples, organized by book section, that may be of use to
students.

[to be written]

415
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Errata and additions in the
text

Below are errata and minor alterations that improve the style or clarify the book.
To see which printing of the book you have, look on the third page of the text itself,
which faces the dedication page. At the bottom you will see:

Printed in the United States of America
10 9 8 7 6 5 4 3 2

The last number at the right gives the number of the printing; thus, as illustrated
here, “2” means that this is the second printing.

First and second printings

Below, “line +7” means the seventh line from the top of the text body (not
including figure or table captions, or other headlines unless otherwise indicated), and
“line -5” means the fifth line from the bottom of the text body. In Algorithms, the
numbering refers to the line numbers within the algorithm itself. Thus Algorithm
4, line 5” means line 5 in Algorithm 4, not the fifth line from the top of the page.

Front matter

page x line +6: Change “4.8 Reduced Coulomb” to “*4.8 Reduced Coulomb”

page xv line -13: Change “A.4.7 The Law of Total Probability and Bayes’ Rule” to
“A.4.7 The Law of Total Probability and Bayes Rule”

page xviii Take the last sentence under Examples, “In addition, in response to
popular demand, a Solutions Manual has been prepared to help instructors
who adopt this book for courses.” and move it to be the final sentence under
Problems, lower on the same page.

page xviii lines -10– -11: Change “and they are generally” to “and they are typi-
cally”

page xix line -15: Change “Ricoh Silicon Valley” to “Ricoh Innovations”

417



418 ERRATA IN THE TEXT

Chapter 1

page 1 line +4: Change “data and taking” to “data and making”

page 4 the only equation on the page: Change “x =
[
x1
x2

]
” to “x =

(
x1
x2

)
”

page 11 line +21: Change “us for practical, rather than” to “us for practical rather
than”

page 14 line -4 in the caption to Figure 1.8: Change “of the data impact both” to
“of the data affect both”

page 19 line +15: Change “is achieved in humans” to “is performed by humans”

Chapter 2

page 21 line -6 in the footnote: Change “should be written as pX(x|ω)” to “should
be written as px(x|ω)”

page 21 line -4 in the footnote: Change “clear that pX(·) and pY (·)” to “clear that
px(·) and py(·)”

page 22 second line after Eq. 3: Change “probability (or posterior) probability” to
“probability (or posterior)”

page 23 second line after Eq. 7: Change “By using Eq. 1, we can” to “By using
Eq. 1 we can”

page 26 first line after Eq. 17: Change “and ω2 otherwise.” to “and otherwise decide
ω2.”

page 28 Equation 23: Change “(λ11−λ22)−(λ21−λ11)” to “(λ11−λ22)+(λ21−λ11)”

page 28 second line after Eq. 24: Change “decision boundary gives” to “decision
boundary then gives”

page 32 second line after Eq. 33: Change “expected values — by these” to “expected
values by these”

page 36 first equation after Eq. 49: Change “Let us examine the discriminant” to
“Let us examine this discriminant”

page 41 Figure 2.13, caption, line +2: Change “unequal variance.” to “unequal
variance, as shown in this case with P (ω1) = P (ω2).”

page 47 Equation 73: Change “for0” to “for 0” (i.e., add space)

page 47 line - 10: Change “substituting the results in Eq. 73” to “substituting this
β into Eq. 73”

page 47 line -2: Change “This result is the so-called” to “This gives the so-called”

page 48 Example 2, line +3: Change “4.11,” to “4.06,”

page 48 Example 2, line +4: Change “0.016382.” to “0.0087.”
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page 50 The x-axis label on Fig. 2.20: Change “P (x < x∗|x ∈ ω2)” to “P (x <
x∗|x ∈ ω1)”

pages 56 – 62 At the time of the release of the first printing, the problem of inference
in Bayes belief nets with loops was not fully solved. Since that time, however,
such a solution has emerged and for this reason Section 2.11 has been rewritten
accordingly. This revision is posted on the Wiley site.

page 66 Problem 2, part (b), line +2: Change “for arbitrary ai and bi.” to “for
arbitrary ai and positive bi.”

page 66 Problem 3, part (a) equation: End the equation with a period (full stop).

page 67 Problem 5, part (d): Change “What is the minimax risk?” to “What is the
minimax risk for part (c)?”

page 67 Problem 6, part (2), line +2: Change “Determine the decision boundary”
to “Determine the single-point decision boundary”

page 69 Move the title “Section 2.4” to the top of the page so that Problem 13 is
now under Section 2.4.

page 71 Problem 20, part (a), line +1: Change “we know only that a distribution
is nonzero in” to “we know solely that a distribution is nonzero only in”

page 71 Problem 20, part (b), line +1: Change “we know only that a distribution
is nonzero for” to “we know solely that a distribution is nonzero only for”

page 71 Problem 23, at the center of the typeset equation, change “andΣ” to “and
Σ” (i.e., add space)

page 72 Problem 24, line +1: Change “normal density for which σij = 0” to “normal
density with mean μ, σij = 0”

page 73 Problem 34, line +6–7: Change “assume the distributions” to “assume
P (ω1) = P (ω2) = 0.5 and the distributions”

page 73 Problem 34, part c), line +4: Change “Bayes error is 0.5.” to “Bayes error
is 0.25.”

page 75 Problem 37, first equation: Change “andP (ω1)” to “and P (ω1)” (i.e., add
space)

page 75 Problem 37, part (c) equation: Change “andp(x|ω2)” to “and p(x|ω2)” (i.e.,
add space)

page 75 Problem 39, line +1: Change “Use the signal detection” to “Use signal
detection”

page 75 Problem 39, part (a), line +1: Change “and P (x < x∗|x ∈ ω2), taken” to
“and P (x > x∗|x ∈ ω1), taken”

page 75 Problem 39, part (b): Replace the last two sentences with “Estimate d′ if
P (x > x∗|x ∈ ω1) = 0.8 and P (x > x∗|x ∈ ω2) = 0.3. Repeat for P (x > x∗|x ∈
ω1) = 0.7 and P (x > x∗|x ∈ ω1) = 0.4.”
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page 75 Problem 39, part (d): Replace the two equation lines with “Case A: P (x >
x∗|x ∈ ω1) = 0.8, P (x > x∗|x ∈ ω2) = 0.3 or
Case B: P (x > x∗|x ∈ ω1), P (x > x∗|x ∈ ω2) = 0.7.”

page 76 Problem 41, first line after the equation: Change “(μ2 − μ1)/δi ” to “(μ2 −
μ1)/δ”

page 76 Problem 41, part (b): Change “d′T = 1.0.” to “d′T = 1.0 and 2.0.”

page 76 Problem 41, part (c): Change “P (x > x∗|x ∈ ω1) = .2.” to “P (x > x∗|x ∈
ω1) = .7.”

page 76 Problem 76, part (e): Change “measure P (x > x∗|x ∈ ω2) = .9 and (x >
x∗|x ∈ ω1) = .3.” to “measure P (x > x∗|x ∈ ω2) = .3 and P (x > x∗|x ∈ ω1) =
.9.”

page 81 Computer exercise 6, part (b), line +1: Change “Consider” to “Consider
the normal distributions”

page 81 Computer exercise 6, part (b), equation: Change “andp(x|ω2)” to “and
p(x|ω2)” (i.e., add space)

page 81 Computer exercise 6, part (b), equation: Move “with P (ω1) = P (ω2) =
1/2.” out of the centered equation, and into the following line of text.

page 83 first column, entry for [21], lines +3 – 4: Change “Silverman edition, 1963.”
to “Silverman, 1963.”

Chapter 3

page 88 Equation 9: Change “∇θμ” to “∇μ”

page 91 Ninth line after Eq. 22: Change “shall consider), the samples” to “shall
consider) the samples”

page 99 Caption to first figure, change “starts our as a flat” to “starts out as a flat”

page 100 line -5: Change “are equivalent to” to “are more similar to”

page 100 line -5 – -4: Change “If there are much data” to “If there is much data”

page 102 line -5: Change “(Computer exercise 22)” to “(Problem 22)”

page 103 line -2: Change “choice of an prior” to “choice of a prior”

page 104 line +6: Change “if” to “only if”

page 104 line +16: Change “only if” to “if”

page 104 Equation 62: Make the usage and style of the summation sign (
∑

) uniform
in this equation. Specifically, in two places put the arguments beneath the
summation sign, that is, change “

∑
D∈D̄” to “

∑
D∈D̄

”

page 105 first line after Eq 63: Change “to this kind of scaling.” to “to such scaling.”
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page 111 lines +9 – 10: Change “constants c0 and x0 such that |f(x)| ≤ c0|h(x)|
for all” to “constants c and x0 such that |f(x)| ≤ c|h(x)| for all”

page 111 line +14: Change “proper choice of c0 and x0.” to “proper choice of c and
x0.”

page 116 Equation 86: Change “λete” to “λ(ete − 1)”

page 125 Algorithm 1, line 1: Change “i = 0” to “i ← 0”

page 126 first line of the equation at the middle of the page: Change

Q(θ; θ0) = Ex41 [lnp(xg,xb; θ|θ0; Dg)]

to

Q(θ; θ0) = Ex41 [lnp(xg,xb; θ)|θ0; Dg]

page 128 line +6, (second line after the Example): Change “the EM algorithm, and
they” to “the EM algorithm as they”

page 129 second line aboove Section 3.10.3: Change “while the ωi are unobservable”
to “while the ωj are unobservable”

page 132 line +3: Change “bkj , and thus” to “bjk, and thus”

page 132 Equation 136: Replace by:

αj(t) =

⎧⎨⎩
0 t = 0 and j �= initial state
1 t = 0 and j = initial state[∑

i αi(t − 1)aij

]
bjkv(t) otherwise.

page 132 third line after Eq. 136: Change “Consequently, αi(t) represents” to “Con-
sequently, αj(t) represents”

page 132 fourth line after Eq. 136: Change “hidden state ωi” to “hidden state ωj”

page 132 Algorithm 2, line 1: Delete “ω(1),”

page 132 Algorithm 2, line 1: Change “t = 0” to “t ← 0”

page 132 Algorithm 2, line 1: Change “α(0) = 1” to “αj(0)”

page 132 Algorithm 2, line 3: Replace entire line by “αj(t) ← bjkv(t)
∑c

i=1 αi(t−
1)aij”

page 132 Algorithm 3: Somehow the line numbering became incorrect. Change
the line number to be sequential, 1, 2, . . . 6.

page 132 Algorithm 3, line 1: Change “ω(t), t = T” to “βj(T ), t ← T”

page 132 Algorithm 3, old line 4, renumbered to be line 3: Replace entire line by
“βi(t) ←

∑c
j=1 βj(t + 1)aijbjkv(t + 1)”

page 132 Algorithm 3, old line 7, renumbered line 5: Change “P (V T )” to “P (VT )”
(i.e., make the “V ” bold)
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page 133 Figure 3.10, change the label on the horizontal arrow from “a12” to “a22”.

page 133 Figure 3.10, caption, line +5: Change “was in state ωj(t = 2)” to “was in
state ωi(t = 2)”

page 133 Figure 3.10, caption, line +6: Change “is αj(2) for j = 1, 2” to “is αi(t)
for i = 1, 2”

page 133 Figure 3.10, caption, line -1: Change “α2(3) = b2k

∑c
j=1 αj(2)aj2” to

“α2(3) = b2k

∑c
i=1 αi(2)ai2”

page 133 line -6: Change “V5 = {v3, v1, v3, v2, v0}” to “V4 = {v1, v3, v2, v0}”
page 133 line -44: Change “is shown above,” to “is shown at the top of the figure”

page 134 Figure in Example 3, caption, line +4: Change “αi(t) — the probability”
to “αj(t) — the probability”

page 134 Figure in Example 3, caption, line +6: Change “and αi(0) = 0 for i �= 1.”
to “and αj(0) = 0 for j �= 1.”

page 134 Figure in Example 3, caption, line +6: Change “calculation of αi(1).” to
“calculation of αj(1).”

page 134 Figure in Example 3, caption, line -6: Change “calculation of αi(1)” to
“calculation of αj(1)”

page 134 igure in Example 3, caption, line -4: Change “contribution to αi(1).”to
“contribution to αj(1).”

page 135 Algorithm 4: somehow the line numbering became incorrect. Change
the line numbering to be sequential, 1, 2, 3, . . ., 11. In the old line 4 (now
renumbered 3): Change “k = 0, α0 = 0” to “j ← −1”

page 135 Algorithm 4 old line 5 (now renumbered 4): Change “k ← k + 1” to
“j ← j + 1”

page 135 Algorithm 4 old line 7 (now renumbered 5): Change “αk(t)” to “αj(t)”

page 135 Algorithm 4, old line 8 (now renumbered 6): Change “k = c” to “j = c”

page 135 Algorithm 4, old line 11 (now renumbered 8): Change “AppendTo Path ωj′”
to “Append ωj′ to Path”

page 135 line -5: Change “The red line” to “The black line”

page 135 line -4: Change “value of αi at each step” to “value of αj at each step”

page 137 Equation 138: Replace equation by

βi(t) =

⎧⎨⎩
0 ωi(t) �= ω0 and t = T
1 ωi(t) = ω0 and t = T∑

j βj(t + 1)aijbjkv(t + 1) otherwise.

page 137 seventh line after Eq. 138: Change “βi(T − 1) =
∑

j aijbijv(T )βi(T ).” to
“βi(T − 1) =

∑
j aijbjkv(T )βj(T ).”
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page 137 fourth line before Eq. 139: Change “probabilities aij and bij” to “proba-
bilities aij and bjk”

page 137 Equation 139: Change “bij” to “bjk”

page 138 line +3: Change “whereas at step t it is” to “whereas the total expected
number of any transitions from ωi is”

page 138 first line after Eq. 140: Change “b̂ij” to “b̂jk”

page 138 Equation 141: Replace equation by:

b̂jk =

T∑
t=1

v(t)=vk

∑
l

γjl(t)

T∑
t=1

∑
l

γjl(t)

page 138 Algorithm 5, line 1: Change “criterion θ”to “criterion θ, z ← 0”

page 143 Problem 11, second and third lines after first equation: Change “p2(x) by
a normal p1(x) ∼ N(μ,Σ)” to “p1(x) by a normal p2(x) ∼ N(μ,Σ)”

page 143 Problem 11: Second equations: Change “E2” to “E1” in two places

page 143 Problem 11, last line: Change “over the density p2(x)” to “over the density
p1(x)”

page 147 Problem 22, line between the two equations: Change “has a uniform” to
“has a uniform distribution”

page 148 Problem 27, part (a), line after the equation: Change “as given in Table
3.1.” to “as in Table 3.1.1.”

page 149 Problem 31, line +1: Change “suppose a and b are constants” to “suppose
a and b are positive constants”

page 149 Problem 32, line +1: Change “where the n coefficients” to “at a point x,
where the n coefficients”

page 150 Problem 34, line +4: Change “the number of operations n” to “the max-
imum size n”

page 151 Problem 38, line +1: Change “px(x|ωi)” to “px(x|ωi)”

page 151 Problem 38 (b) bottom equation on page: Change “(μ1−μ2)2” to “(μ1−
μ2)2”

page 152 line +1: Change “and” to “is maximized by”

page 153 Problem 43, line +4: Change “and the d mean vectors.” to “and the c
mean vectors.”

page 154 Problem 46, (top equation): Change “0 otherwise.” to “ε otherwise.”
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page 154 Problem 46, line +1 (after the equation): Change “missing feature values.”
to “missing feature values and ε is a very small positive constant that can be
neglected when normalizing the density within the above bounds.”

page 154 Problem 46, part (b): Add “You may make some simplifying assump-
tions.”

page 154 Problem 47, first equation: Change “e−θ1x1” to “e−x1/θ1”

page 156 Computer exercise 2, after the equation: Change “calculate a density” to
“calculate the density”

page 156 Computer exercise 2. After “x2 feature of category ω2.” add “Assume your
priors on the parameters are uniform throughout the range of the data.”

page 157 Computer exercise 4, line -3: Change “apply it to the x1 – x2 components”
to “apply it to the x1–x2 components” (i.e., eliminate spaces and note that the
dash is not subtraction sign, but an n-dash)

page 157 Computer exercise 6, part (a), line +2: Change “in the Table above.” to
“in the table above.”

page 159 Computer exercise 13 table, sample 4 under ω1: Change “AD” to “ADB”

Chapter 4

page 172 Figure 4.9, caption, line -1: Change “where I is the d× d idenity matrix.”
to “where I is the d-by-d identity matrix.”

page 173 Algorithm 1, line 1: Change “j = 0” to “j ← 0”

page 173 Algorithm 2, line 1: Change “test pattern,” to “test pattern”

page 178 line +3: Change “Becuase” to “Because”

page 179 Equation 41: Change “
∫
x′∈S” to “

∫
x′∈S

” (i.e., place the limits underneath

the integral sign)

page 184 lines +2 – 3: Keep “k − i > i” on the same line (i.e., do not put a line
break in this equation)

page 186 Algorithm 3, line 1: Change “j = 0,D = data set, n = # prototypes” to
“j ← 0,D ← data set, n ← # prototypes”

page 187 Figure 4.18, caption, line -4: Change “by a factor 1/3” to “by a factor
α = 1/3”

page 188 First margin note: Change “minkowski metric” to “Minkowski met-

ric” (i.e., capitalize the M in Minkowski)

page 188 Second margin note: Change “manhattan distance” to “Manhattan

distance” (i.e., capitalize the M in Manhattan)
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page 188 Third margin note: Change “tanimoto metric” to “Tanimoto met-

ric” (i.e., capitalize the T in Tanimoto)

page 189 line +5: Change “the relative shift is a mere” to “the relative shift s is a
mere”

page 192 Figure 4.23, caption, lines -4– -2: Eliminate the second-to-last sentence.

page 193 Equation 61: Replace the full equation with “μx(x) · μy(y)”

page 194 line +19: Change “beief about memberships” to “belief about member-
ships”

page 195 line +9: Change in the title “4.8 REDUCED COULOMB” to “*4.8
REDUCED COULOMB”

page 196 Algorithm 4, line 1: Change “j = 0, n = # patterns, ε = small parameter, λm =
max radius” to “j ← 0, n ← # patterns, ε ← small parameter, λm ← max radius”

page 197 Algorithm 5, line 1: Change “j = 0, k = 0,x = test pattern,Dt = {}”
to “j ← 0, k ← 0,x ← test pattern,Dt ← {}”

page 199 line -7: Change “prior knowledge.” to “prior beliefs.”

page 202 Problem 6c, first line: Change “increases” to “increase”

page 203 Problem 11, part (d), line +1: Change “close to an edge” to “close to a
face”

page 203 Problem 11, part (d) line +4: Change “closer to an edge” to “closer to a
face”

page 203 Problem 11, part (d), line +5: Change “even though it is easier to calculate
here” to “and happens to be easier to calculate”

page 204 Problem 13 line +1: Change “from the distributions” to “with priors
P (ω1) = P (ω2) = 0.5 and the distributions”

page 205 Problem 21, part (a), line +1: Change “As given in the text, take” to
“Follow the treatment in the text and take”

page 206 Problem 23 part (d) line +2: Change “space, then the b” to “space, then
in the b”

page 206 Problem 26, line +4: Change “and find its nearest” to “and seek its
nearest”

page 207 Problem 26 part (d), first line: change “Calculate the probability” to
“Estimate through simulation the probability”

page 207 Problem 27, part (a) equation: Replace current equation with “DTanimoto(S1,S2) =
n1+n2−2n12
n1+n2−n12

,”

page 207 Problem 29, first equation: Change “δi” to “δ1” in all three places

page 207 Problem 29, second equation: Change “Ĉ(x, μi” to “Ĉ(x; μi”
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page 207 Problem 29 second equation: Change “δi” to “δ2” in all three places

page 207 Problem 29 line -5: Change “we have for the length δi = 5” to “we have
for the length δ1 = 5”

page 207 Problem 29 line -4: Change “and for lightness δj = 30” to “and for the
lightness δ2 = 30”

Chapter 5

page 218 line +6: Change “the problem to c − 1” to “the problem to c”

page 218 Equation 2: Change “wtxi” to “wt
ix”

page 219 second line after the second (unnumbered) equation: Change “is given by
(gi − gj)/‖wi − wj‖” to “is given by (gi(x) − gj(x))/‖wi − wj‖”

page 220 sentence before Eq. 5, Change “this in turn suggest” to “this in turn
suggests”

pages 221–222 (across the page break): Change “mul-tilayer” to “multi-layer” (i.e.,
hyphenate as “multi-layer”)

page 225 Algorithm 1, line 1: Change “k = 0” to “k ← 0”

page 228 Algorithm 3, line 1: Change “k = 0” to “k ← 0”

page 229 line +5: Change “We shall begin our examination” to “We begin our
examination”

page 229 line -3: Change “Thus we shall denote” to “Thus we denote”

page 230 Algorithm 4, line 1: Change “k = 0” to “k ← 0”

page 230 fourth line before Theorem 5.1: Change “correction is clearly moving”
to “correction is hence moving”

page 230 line -2: Change “From Eq. 20,” to “From Eq. 20 we have”

page 232 first line after Eq. 24: Change “Because the squared distance” to “Because
this squared distance”

page 233 Algorithm 5, line 1: Change “k = 0” to “k ← 0”

page 233 Algorithm 6, line 1: Change “k = 0” to “k ← 0”

page 234 line +22 (counting from the end of the Algorithm): Change “that it will
have little effect at all.” to “that it will have little if any effect.”

page 235 lines +3 –4 (counting from the end of the Algorithm): Change “and this
means the “gap,” determined by these two vectors, can never increase in size
for separable data.” to “and this means that for separable data the “gap,”
determined by these two vectors, can never increase in size.”

page 235 second and third lines after the section title 5.6 RELAXATION PRO-
CEDURES: Change “in so-called “relaxation procedures” to include” to “in
so-called “relaxation procedures,” to include”
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page 235 first and second lines after Eq. 32: Change “misclassified by a, as do Jp,
Jq focus attention” to “misclassified by a. Both Jp and Jq focus attention”

page 235 second line after Eq. 32: Change “Its chief difference is that its gradient”
to “The chief difference is that the gradient of Jq is”

page 236 Algorithm 8, line 1: Change “k = 0” to “k ← 0”

page 236 Algorithm 8, line 4: Change “j = 0” to “j ← 0”

page 236 Algorithm 9, line 1: Change “k = 0” to “k ← 0”

page 238 line -5: Change “procedures, because” to “procedures because”

page 242 line -2: Change “We begin by writing Eq. 47” to “We begin by writing
Eq. 45”

page 246 lines +1 – 2: Don’t split the equation by the line break

page 246 first (unnumbered) equation, second line: Change “(Yak−b).” to (Ya(k)−
b).”

page 246 margin note: Change “lms rule” to “LMS rule” (i.e., capitalize “LMS”)

page 246 Equation 61, second line: Change “(bk − a(k)tyk)” to “(b(k) − at(k)yk)”

page 246 Algorithm 10, line 1: Change “k = 0” to “k ← 0”

page 248 second line after Eq. 66: Change “obtain the MSE optimal” to “obtain
the MSE-optimal”

page 250 Equation 79: Co-align vertically the “>” in the top equation with the “=”
in the bottom equation

page 250 Equation 79: Change “a(k)” to “b(k)”

page 251 Algorithm 11, line 5: Change “a” to “b”

page 252 top equation: Change “= 0 =” to “= 0 =” (i.e., de-bold the “0”)

page 253 line -7: Change “requires that e+(k) = 0 for” to “requires that e+(k) = 0
for”

page 254 line after Eq. 90: Change “constant, positive-definite” to “constant, sym-
metric, positive-definite”

page 255 First (unnumbered) equation on page: Change the first term in parentheses
on the right-hand side from “η2YRYtYRY” to “η2YRYtYRYt”

page 255 Eq. 92: Last term on the right-hand-side, change “η2RYtR” to “η2RYtYR”

page 257 Figure 5.18, caption, line +2: Change “form Auβ” to “form Au = β”

page 262 fourth line after Eq. 105: Change “with the largest margin” to “with the
largest margin” (i.e., italicize “largest”)

page 263 fourth line after Eq. 107: Change “equation in Chapter 9,” to “topic in
Chapter 9,”
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page 266 Equation 114: Change “at
i(k)yk ≤ aj(k)tyk.” to “at

i(k)yk ≤ at
j(k)yk.”

page 270 twelfth line under BIBLIOGRAPHICAL AND HISTORICAL RE-
MARKS: Change “error-free case [7] and [11] and” to “error-free case [7,11]
and”

page 270 line -13: Change “support vector machines” to “Support Vector Machines”

page 270 line -8: Change “support vector machines” to “Support Vector Machines”

page 271 Problem 2, line +3: Change “if 0 ≤ λ ≤ 1.” to “for 0 ≤ λ ≤ 1.”

page 272 Problem 8, line +2: Change “if atyi ≥ 0” to “if atyi ≥ b”

page 274 Problem 22, second term on the right-hand side change “(aty − (λ12 −
λ22))2” to “(aty + (λ12 − λ22))2”

page 275 Problem 27, last line: Change “by Eq. 85.” to “by Eq. 95.”

page 277 lines +2 – 3: Change “satisfies zkatyk = 0” to “satisfies zkatyk = 1”

page 277 Problem 38, line -2: Change “procedures Perceptron” to “procedures.
Generalize the Perceptron”

page 278 Problem 1, part (a): change “data in in order” to “data in order”

page 278 Computer exercise 2, part (a): Change “Starting with a = 0,” to “Starting
with a = 0,” (i.e., make bold the “0”)

page 278 First heading after the table: Change “Section 5.4” to “Section 5.5”

page 278 Computer Exercise 1: Change “(Algorithm 1) and Newton’s algorithm
(Algorithm 2) applied” to “(Algorithm 1) and the Perceptron criterion (Eq. 16)”

page 278 Second heading after the table: Delete “Section 5.5”

page 279 line +1: Change “length is greater than the pocket” to “length is greater
than with the pocket”

page 279 Computer exercise 4, part (a), line +2: Change “and μ1 = 0,” to “and
μ1 = 0,” (i.e., make bold the “0”)

Chapter 6

page 286 Equation 5: Change “zk = f(netk).” to “zk = f(netk),”

page 287 line +2: Change “all identical.” to “all the same.”

page 288 line -3: Change “depend on the” to “depends on the”

page 291 Two lines before Eq. 3: Change “hidden-to-output weights, wij” to “hidden-
to-output weights, wkj”

page 292 Equation 19, first line (inside brackets): Change “1/2” to “ 1
2” (i.e., typeset

as a full fraction)

page 292 After Eq. 19, line +3: Change “activiation” to “activation”
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page 293 Figure 6.5: Change “wij” to “wji”

page 294 Algorithm 2, line 3: Change “Δwkj ←” to “Δwkj ← 0”

page 295 line -5: Change “In addition to the use of the training set, here are” to
“In addition to the use of the training set, there are”

page 299 line -1: Change “and can be linearly separable” to “and are linearly sep-
arable”

page 305 line 10: Change “ratio of such priors.” to “ratio of such priors, though this
need not ensure minimal error.”

page 306 sixth and seventh line after Eq. 33: Change “in a sum squared error sense”
to “in a sum-squared-error sense”

page 307 lines +2 – 3: Change “been found useful” to “found to be useful”

page 307 line +6: Change “as continuity of f and its derivative” to “as continuity
of f(·) and its derivative”

page 308 line +10: Change “that is,” to “or is an “odd” function, that is,”

page 308 line +19: Change “values that ensure f ′(0) � 1” to “values that ensure
f ′(0) � 0.5”

page 315 first line after Eq. 38: Change “reducing the criterion” to “reducing the
error”

page 316 Figure 6.19 caption, line -1: Change “trained network.” to “trained net-
work (red).”

page 318 line +8: Change “to compute is nonnegative” to “to compute, is nonneg-
ative”

page 318 margin note: Change “minkowski error” to “Minkowski error” (i.e.,
captialize “M” in “Minkowski”)

page 320 line between Eqs. 50 and 51: Change “The optimimum change” to “There-
fore, the optimum change”

page 319 Equation 48: Change last entry from “f ′(net)ynH
xd” to “f ′(net)f ′(netnH

xd”

page 322 Equation 56: Replace the current equation by

βm =
∇J t(w(m))∇J(w(m))

∇J t(w(m − 1))∇J(w(m − 1))
(56)

page 322 Equation 57: Replace the current equation by

βm =
∇J t(w(m))[∇J(w(m)) −∇J(w(m − 1))]

∇J t(w(m − 1))∇J(w(m − 1))
(57)

page 323 Fourth (unnumbered) equation on the page: Replace the left portion by

β1 =
∇J t(w(1))∇J(w(1))
∇J t(w(0))∇J(w(0))

=
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page 323 Caption to bottom figure, line +2: Change “shown in the contour plot,”
to “shown in the density plot,”

page 325 last line of the section Special Bases: Add “This is very closely related
to model-dependent maximum-likelihood techniques we saw in Chapter 3.”

page 326 first line after Eq. 63: Change “of the filter in analogy” to “of the filter,
in analogy”

page 326 line -5: Add a red margin note “time delay neural network”

page 330 three lines above Eq. 67: Change “write the error as the sum” to “write
the new error as the sum”

page 332 Figure 6.28, caption, line +1: Change “a function of weights, J(w)” to “a
function of weights, J(w),”

page 337 Problem 8, pagt (b) line +2: Change “if the sign if flipped” to “if the sign
is flipped”

page 337 Problem 14, part (c), line +2: Change “the 2× 2 identity” to “the 2-by-2
identity”

page 339 Problem 22, line +4: Add “Are the discriminant functions independent?”

page 341 Problem 31, lines +1 – 2: Change “for a sum squared error criterion” to
“for a sum-square-error criterion”

page 344 Computer exercise 2, line +2: Change “backpropagation to (Algorithm
1)” to “backpropagation (Algorithm 1)”

page 345 Computer exercise 7, line +2: Change “on a random problem.” to “on a
two-dimensional two-category problem with 2k patterns chosen randomly from
the unit square. Estimate k such that the expected error is 25% . Discuss your
results.

page 346 Computer exercise 10, part (c), line +1: Change “Use your network” to
“Use your trained network”

page 347 Column 2, entry for [14], line +5: Change “volume 3. Morgan Kaufmann”
to “volume 3, pages 853–859. Morgan Kaufmann”

page 348 column 2, entry for [43], line +4: Change “2000.” to “2001.”

Chapter 7

page 351 fourteenth line after Eq. 1: Change “of the magnets with the most stable
configuration” to “of the magnets that is the most stable”

page 351 footnote, line -1: Change “in a range of problem domains.” to “in many
problem domains.”

page 352 Figure 7.1, caption, line +7: Change “While our convention” to “While
for neural nets our convention”
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page 352 Figure 7.1, caption, line +8: Change “Boltzmann networks is” to “Boltz-
mann networks here is”

page 352 Caption to Figure 7.1, line -1: Change “0 ≤ α ≤ 210” to “0 ≤ α < 210”

page 353 Figure 7.2, caption, line +3: Change “or “temperature” T to avoid” to
“or “temperature” T , to avoid”

page 357 Figure 7.4, caption, line +3: Change “values e−Eγ /T .” to “values eEγ/T .”

page 360 first line in Section 7.3: Change “will use modify the” to “will use the”

page 360 second line in Section 7.3: Change “to specifically identify” to “and specif-
ically identify”

page 360 second line in Section 7.3: Change “and other units as outputs” to “and
others as outputs”

page 361 fourth line after Eq. 6: Change “possible hidden states.” to “possible hid-
den states consistent with α.”

page 364 at the end of the body of the text: insert “One benefit of such stochas-
tic learning is that if the final error seems to be unacceptably high, we can
merely increase the temperature and anneal — we do not need to re-initialize
the weights and re-start the full anneal.”

page 365 seventh line after the subsection Pattern Completion: Change “compo-
nents of a partial pattern” to “components of the partial pattern”

page 367 line +1: Change “Recall, at the end” to “As mentioned, at the end”

page 373 fourteenth line in Section 7.5: Change “repeated for subsequent” to “re-
peated for the subsequent”

page 373 fifth line above the subsection Genetic Algorithms: Change “In both
cases, a key” to “In both cases a key”

page 374 line +2: Change “used in the algorithm. Below” to “used in the algorithm;
below”

page 374 line +3: Change “Pco and Pmut, respectively, but first we present the
general algorithm:” to “Pco and Pmut.”

page 379 third line in the subsection Representation: Change “Here the syntactic”
to “Whereas the syntactic”

page 381 third line under BIBLIOGRAPHICAL AND HISTORICAL RE-
MARKS: Change “branch-and-bound, A∗” to “branch-and-bound and A∗

page 382 line +28: Change “been fabricated as described” to “been fabricated, as
described”

page 383 Problem 3, part (b), line +1: Change “The figure shows” to “That figure
shows”

page 384 Problem 7, part (c), line +1: Change “magnets, total” to “magnets, the
total”
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page 384 Problem 8, part (b), equation: Change “= P (s = +1)(+1) + P (s =
−1)(−1).” to “= Pr[s = +1](+1) + Pr[s = −1](−1).”

page 385 Problem 12, line +1: Change “Train a six-unit Hopfield network with
the following three patterns using the” to “Determine the weights in a six-unit
Hopfield network trained with the following three patterns. Use the”

page 385 Problem 15 line +1: Change “not be in a set of” to “not be in a subset
of”

page 387 Problem 24: Change “crossover operator” to “crossover operator, and the
multiplication operator, *, and the addition operator, +, can take two or more
operands.”

page 393 column 1, entry for [54], line +3: Change “Evoultions-” to “Evolutions-”

page 393 column 2, entry for [62], line +2: Change “neurobilogical system.” to
“neurobiological systems.”

Chapter 8

page 403 line above Section 8.3.4 Pruning: Change “splitting is stopped.” to
“splitting should be stopped.”

page 405 Table at top, x2 entry in fifth row under ω1, change “.48” to “.44”

page 405 caption to figure, line -2: Change “marked ∗ were instead slightly lower
(marked †),” to “marked ∗ were instead slightly lower (marked †),” (i.e., change
the color of the special symbols to red)

page 414 line +16: Change “©/©/©/ GACTG” to “©/©/©/ GACTG” (i.e., eliminate space)

page 416 Algorithm 2, line 2: Change “F(x)” to “F”

page 416 Algorithm 2, line 3: Change “G(x)” to “G”

page 416 Algorithm 2, line 11: Change “G(0)” to “1”

page 416 line -1: Change “F(x)” to “F”

page 417 lines -9 – -4, Replace last full paragraph by “Consider target string x.
Each location j (for j < m) defines a suffix of x, that is, x[j + 1, . . . , m]. The
good-suffix function G(j) returns the starting location of the right-most instance
of another occurrence of that suffix (if one exists). In the example in Fig. 8.8,
x = estimates and thus j = 8 defines the suffix s. The right-most occurrence
of another s is 2; therefore G(8) = 2. Similarly j = 7 defines the suffix es. The
right-most occurrence of another es is 2; therefore G(7) = 1. No other suffix
appears repeatedly within x, and thus G is undefined for j < 7.”

page 418 fifth line before Algorithm 3: Change “consider interchanges.” to “con-
sider the interchange operation.”

page 418 fourth line before Algorithm 3: Change “be an m×n matrix” to “be an
m-by-n matrix”
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page 422 line -3: Change “specify how to transform” to “specifies how to transform”

page 426 line +1: Change “The grammar takes digit6 and” to “This grammar takes
digits6 and”

page 428 line -1: Change “subsequent characters.” to “subsequent characters, or
instead starting and the last (right) character in the sentence.”

page 429 caption to Figure 8.16, add after the last line: “Such finite-state machines
are sometimes favored because of their clear interpretation and learning methods
based on addition of nodes and links. In Section 8.7, though, we shall see general
methods for grammatical learning that apply to a broader range of grammatical
models.”

page 438 Problem 5, line +2: Change “Eqs. 1 and 5.” to “Eqs. 1 and 5 for the case
of an arbitrary number of categories.”

page 438 Problem 6 after the first set of equations: Replace the i∗(α) equation by
“i ∗ (α) = i(αP a(ω1) + (1 − α)P b(ω1), ..., αP a(ωc) + (1 − α)P b(ωc))”

page 438 Problem 6 last line before part (a): Replace line by “then we have i∗ ≥
αia + (1 − α)ib.”

page 445 Problem 36, part (d), line +1: Change “Give a derivation” to “Attempt
a derivation”

page 445 Problem 40, part (d), line +2: Change “either grammar as” to “either
grammar, or can be parsed in both grammars, as”

page 446 Table, sample 12: Change “D” to “E”

page 447 Computer exercise 3, part b): Change “{C, D, J, L, M}” to “{C, E, J, L,
M}”

Chapter 9

page 455 line -9 – -10: Change “a zero-one loss function, or, more generally, the
cost for a general loss function L(·, ·)” to “a zero-one or other loss function.”

page 460 Table for rank r = 3, third row: Change “x1 OR x3 OR x3” to “x1 OR x3 OR x4”

page 462 line +12: Change “upon a specification method L,” by “upon a specifica-
tion method,”

page 462 line +13: Change “transmitted as y, denoted L(y) = x.” to “transmitted
as y and decoded given some fixed method L, denoted L(y) = x.”

page 462 line +15 – 16: Change “denoted min
|y|

L(y) = x; this minimal...[[to end of

paragraph]]” to “denoted min
y:L(y)=x

|y|.”

page 462 line +17 – 18: Change “by analogy to entropy, where instead of a specifi-
cation method L we consider” to “by analogy to communication, where instead
of a fixed decoding method L, we consider”
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page 462 line +25: Change “and so on. A universal description would” to “and so
on. Such a description would”

page 462 line +26: Change “different binary strings.” to “different binary strings
x1 and x2.”

page 462 third and second line above Eq. 7: Change “the shortest program y (where
the length” to “the shortest program string y (where y’s length”

page 462 Equation 7: Replace the entire equation by:

K(x) = min
y:U(y)=x

|y|,

page 463 line -10: Change “No Free Lunch Theorems.” to “No Free Lunch Theo-
rem.”

page 472 Equation 23: Change “ 1
(n−1)” to “ 1

n(n−1)”

page 472 Equation 24: Change “
∑
j �=i

” to “
n∑

j �=i

” (i.e., place the upper limit n over the

summation sign)

page 472 line -4: Change “jackknife estimate of the variance” to “variance of the
jackknife estimate”

page 479 line +1: Change “in line 4” to “in line 5”

page 485 line -10: Change “good estimates, because” to “good estimates because”

page 488 Caption to Fig. 9.13, line +6: Change “approximated as a k-dimensional”
to “approximated as a p-dimensional”

page 488 line +10 (i.e., second line of the second paragraph of text): Change “is
k-dimensional and the” to “is p-dimensional and the”

page 496 Equation 54: Change “P (r|x,η0)” to “P (r|x,θ0
0)”

page 497 Equation 58: Change μr to θr in two places

page 501 line -15: Change “and learning algorithm was first described” to “and
learning algorithm were first described”

page 502 Problem 6, last line: Change “this way” to “this sense”

page 504 Problem 20, line -2: Change “denoted p(g(x; D)) is a” to “denoted
p(g(x; D)), is a”

page 508 Problem 45, line +1: Change “mixture of experts classifier” to “mixture-
of-experts classifier”

page 512 line -3: Add “Now what is the training error measured using ωA and ωB?”
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Chapter 10

page 524 The second to last equation: Increase the size of the final bracket, “
]
” to

match its mate

page 525 line following Eq. 23: Change “results in Eq. 12” to “results into Eq. 12”

page 529 line +5: Change “P̂ (wj)” to “P̂ (ωj)”

page 529 Algorithm 2: Change “(Fuzzy k-Means Clustering)” to “(Fuzzy k-
Means Clustering)”

page 534 line +2: Change “overlap, thus” to “overlap; thus”

page 535 First equation: move the second, third, and fourth lines so as to co-align
vertically the corresponding terms

page 536 line +19: Change “classification analog of Chapter 3” to “classification
case in Chapter 3”

page 537 line -20: Change “distributed, these statistics” to “distributed these statis-
tics”

page 571 line +1 – +2: Change “mi-crophones” to “micro-phones” (i.e., re-hyphenate)

page 578 Figure 10.31, caption, line +2: Change “space that leads maximally” to
“space that maximally”

page 579 Figure 10.32, caption, line -1: Change “to this center region” to “to this
central region”

page 580 line +15: Change “cluster centers being used to” to “cluster centers being
used to” (i.e., italicize “cluster centers”)

page 580 line +16: Change “with combined features being” to “with combined fea-
tures being” (i.e., italicize “combined features”)

page 582 four lines above BIBLIOGRAPHICAL and HISTORICAL REMARKS:
Change “between points that, too, seeks to preserve neighborhoods” to “between
points that preserves neighborhoods”

page 583 lines +9 – 10: Change “The classificatory foundations of biology, cladistics
(from the Greek klados, branch) provide useful” to “Cladistics, the classifactory
foundation of biology (from the Greek klados, branch), provides useful”

page 583 line +18: Change “analysis, and explained the very close” to “analysis,
and in reference [36] explained the very close”

page 583 line +19: Change “information maximization in reference [36].” to “infor-
mation maximization.”

page 584 Problem 2, equation: Change “(1−|x−μ1|)/(2wi)” to “(wi−|x−μi|)/w2
i ”

page 584 Problem 4 a, right-hand side: Change “xi” to “xj”

page 585 Problem 6, line +1: Change “Consider a c component” to “Consider a
c-component”
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page 587 Problem 13, line +3: Change “that for any observed x, all but one” to
“that for any observed x all but one”

page 589 Problem 24 b, Change “the trace criterion” to “the determinant criterion”

page 591 Problem 41, line +1: Change “null hypothesis in associated” to “null
hypothesis associated”

page 592 Problem 44, part (c), line +3: Change “(δe)tΣλ(δe)te = 0” to “(δe)tΣe−
λ(δe)te = 0”

page 592 Problem 46, line +1: Change “principal componet analysis” to “principal
component analysis”

page 593 Problem 48, line +3: Change “linearity is given by” to “linearity is the
one given by”

page 596 Problem 11, lines +3 – 4: Change “to the date in the table above using
the distance measure indicated” to “to the data in the table above using the
distance measures indicated”

page 597 Problem 13, line +1: Change “a basic competitive learning” to “a basic
Competitive Learning”

page 597 Problem 13, lines +4 – 5: Change “hy-persphere” to “hyper-sphere” (i.e.,
re-hyphenate “hypersphere”)

Appendix

page 608 Section A.2.5 line +5: Change “In this case the absolute value of the
determinant” to “In this case the determinant”

page 609 first line after Eq. 26: Change “the i, j cofactor or” to “the i, j cofactor
or” (i.e., eliminate the space in “i, j”)

page 609 second line after Eq. 26: Change “is the (d − 1) × (d − 1) matrix” to “is
the (d − 1)-by-(d − 1) matrix”

page 609 fourth line after Eq. 26: Change “whose i, j entry is the j, i cofactor”
to “whose i, j entry is the j, i cofactor” (i.e., eliminate the space in “i, j” and
“j, i”)

page 609 line -2: Add “The inverse of the product of two square matrices obeys
[MN]−1 = N−1M−1, as can be verified by multiplying on the right or the left
by MN.”

page 615 line -12 (i.e., just before Section A.4.7): Change “and n11/n
(n01+n11)/n is ap-

proximately” to “and (n01 + n11)/n is approximately”

page 624 Figure A.3, caption, line +2: Change “between −√
2u and

√
2u, that is”

to “between −√
2u and

√
2u; that is”

page 629 line +9: Change “from a distribution” to “from a standarized Gaussian
distribution”



Index 437

page 631 line +9: Change “equally likely is” to “equally likely, is”

page 631 line +12: Change “outcome and H = log223 = 3” to “outcome and H =
−∑7

i=0
1
23 log223 = log223 = 3”

page 631 Equation 118: Change “ln p(x)” to “lnp(x)” (i.e., reduce the space between
“ln” and “p(x)”)

page 631 first line after Eq. 119: Change “For this Dirac function” to “For this Dirac
density”

page 632 Red margin note: Change “Kullback-leibler distance”to “Kullback-

Leibler distance” (i.e., capitalize the “L” in “Leibler”)

page 632 line -2: Change is always larger than” to “is never smaller than”

page 634 line +3: Change “f(x) ≤ c0g(x) for all” to “f(x) ≤ cg(x) for all”

page 634 line +7: Change “proper choice of c0 and x0” to “proper choice of c and
x0”

Index

page 644 column 1, line -14: Insert “Gini impurity, 399, 401”

page 653 column 1, line -3: Change “multi-variate” to “multivariate”
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Third and fourth printings

Chapter 2

page 53 Bottom equation (for w0): Change “= 1.2” to “= -1.75”

page 58 In the figure, the entry for P (c3|x1) should be changed from 0.1 to 0.2.

page 60 Equation 99: Change “X” to “x” in two places

page 73 Problem 34, line +6–7: Change “assume the distributions” to “assume
P (ω1) = P (ω2) = 0.5 and the distributions”

page 73 Problem 34, part c), line +4: Change “Bayes error is 0.5.” to “Bayes error
is 0.25.”

Chapter 3

page 99 Caption to first figure, change “starts our as a flat” to “starts out as a flat”

page 133 Figure 3.10, change the label on the horizontal arrow from “a12” to “a22”

page 143 Problem 11, second and third lines after first equation: Change “p2(x) by
a normal p1(x) ∼ N(μ,Σ)” to “p1(x) by a normal p2(x) ∼ N(μ,Σ)”

page 143 Problem 11: Second equations: Change “E2” to “E1” in two places

page 143 Problem 11, last line: Change “over the density p2(x)” to “over the density
p1(x)”

page 149 Problem 31, line 1: Change “suppose a and b are positive constants and”
to “suppose a and b are constants greater than 1 and”

page 151 Problem 38 (b) bottom equation on page: Change “(μ1−μ2)2” to “(μ1−
μ2)2”

page 156 Computer exercise 2, after the equation: Change “calculate a density” to
“calculate the density”

page 156 Computer exercise 2. After “x2 feature of category ω2.” add “Assume your
priors on the parameters are uniform throughout the range of the data.”

page 159 Computer exercise 13 table, sample 4 under ω1: Change “AD” to “ADB”

Chapter 4

page 178 line +3: Change “Becuase” to “Because”

page 202 Problem 6 part (c), first line: Change “increases” to “increase”

page 207 Problem 26 part (d), first line: change “Calculate the probability” to
“Estimate through simulation the probability”

page 207 Problem 26 delete part (e)
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Chapter 5

page 220 sentence before Eq. 5, Change “this in turn suggest” to “this in turn
suggests”

page 250 Equation 79: Change “a(k)” to “b(k)”

page 251 Algorithm 11, line 5: Change “a” to “b”

page 254 line after Eq. 90: Change “constant, positive-definite” to “constant, sym-
metric, positive-definite”

page 255 First (unnumbered) equation on page: Change the first term in parentheses
on the right-hand side from “η2YRYtYRY” to “η2YRYtYRYt”

page 255 Eq. 92: Last term on the right-hand-side, change “η2RYtR” to “η2RYtYR”

page 274 Problem 22, second term on the right-hand side change “(aty − (λ12 −
λ22))2” to “(aty + (λ12 − λ22))2”

page 275 Problem 27, last line: Change “by Eq. 85.” to “by Eq. 95.”

page 278 Problem 1, part (a), line +1: change “data in in order” to “data in order”

page 278 Problem 1, part (a), line +2: change “use η(k) = 0.1.” to “use η(k) =
0.01.”

page 278 First heading after the table: Change “Section 5.4” to “Section 5.5”

page 278 Computer Exercise 1: Change “(Algorithm 1) and Newton’s algorithm
(Algorithm 2) applied” to “(Algorithm 1) and the Perceptron criterion (Eq. 16)
applied”

page 278 Second heading after the table: Delete “Section 5.5”

page 279 line +1: Change “length is greater than the pocket” to “length is greater
than with the pocket”

Chapter 6

page 291 Two lines before Eq. 3: Change “hidden-to-output weights, wij” to “hidden-
to-output weights, wkj”

page 292 After Eq. 19, line +3: Change “activiation” to “activation”

page 293 Figure 6.5: Change “wij” to “wji”

page 294 Algorithm 2, line 3: Change “Δwkj ←” to “Δwkj ← 0”

page 295 Second paragraph in Section 6.3.3: Change “indpendently selected” to
“independently selected”

page 302 line +3–4: Change “weights merely leads” to “weights merely lead”

page 305 line 10: Change “ratio of such priors.” to “ratio of such priors, though this
need not ensure minimal error.”
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page 314 line +6: Change “weight changes are response” to “weight changes are a
response”

page 330 line -2– -1: Change “While it is natural” to “It is natural”

page 337 Problem 8, pagt (b) line +2: Change “if the sign if flipped” to “if the sign
is flipped”

page 346 Problem 10, part (c), line +3: Change “x5 = (0, 0, 0)t” to “x5 = (0, 0, 1)t”

Chapter 7

page 352 Caption to Figure 7.1, line -1: Change “0 ≤ α ≤ 210” to “0 ≤ α < 210”

Chapter 8

page 405 Table at top, x2 entry in fifth row under ω1, change “.48” to “.44”

page 409 line -7: Change “queries involves” to “queries involve”

page 416 Algorithm 2, line 2: Change “F(x)” to “F”

page 416 Algorithm 2, line 3: Change “G(x)” to “G”

page 416 Algorithm 2, line 11: Change “G(0)” to “1”

page 416 line -1: Change “F(x)” to “F”

page 417 lines -9 – -4, Replace last full paragraph by “Consider target string x.
Each location j (for j < m) defines a suffix of x, that is, x[j + 1, . . . , m]. The
good-suffix function G(j) returns the starting location of the right-most instance
of another occurrence of that suffix (if one exists). In the example in Fig. 8.8,
x = estimates and thus j = 8 defines the suffix s. The right-most occurrence
of another s is 2; therefore G(8) = 2. Similarly j = 7 defines the suffix es. The
right-most occurrence of another es is 2; therefore G(7) = 1. No other suffix
appears repeatedly within x, and thus G is undefined for j < 7.”

page 438 Problem 5, line +2: Change “Eqs. 1 and 5.” to “Eqs. 1 and 5 for the case
of an arbitrary number of categories.”

page 438 Problem 6 after the first set of equations: Replace the i∗(α) equation by
“i ∗ (α) = i(αP a(ω1) + (1 − α)P b(ω1), ..., αP a(ωc) + (1 − α)P b(ωc))”

page 438 Problem 6 last line before part (a): Replace line by “then we have i∗ ≥
αia + (1 − α)ib.”

page 446 Table, sample 12: Change “D” to “E”

page 447 Computer exercise 3, part b): Change “{C, D, J, L, M}” to “{C, E, J, L,
M}”
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Chapter 9

page 460 Table for rank r = 3, third row: Change “x1 OR x3 OR x3” to “x1 OR x3 OR x4”

page 468 Five lines after Eq. 12: Change “regardless the amount” to “regardless of
the amount”

page 474 Caption to Figure: Change “and jackknife estimate” to “and whose jack-
knife estimate”

page 497 Equation 58: Change “μr” to “θr” in two places

page 505 Take the heading “Section 9.4” and move it to the top of the page, i.e.,
between Problems 20 and 21.

page 508 Problem 45, line +2: Change “N(μ,Σ)” to “N(μr,Σr)”

Chapter 10

page 526 line -1 Change “In the absense” to “In the absence”

page 541 line +9: Change “this is a symmetric functions” to “this is a symmetric
function”

page 549 Eq. 76: Change “m” to “mi” on the righthand side.

page 573 Eq. 107: Put the lower limit underneath the summation sign, that is,
change “

∑
i<j” to “

∑
i<j

”

page 573 Eq. 109: Put the lower limit underneath the summation sign, that is,
change “

∑
i<j” to “

∑
i<j

”

page 574 First equation: Put the lower limit underneath the summation sign, that
is, change “

∑
i<j” to “

∑
i<j

”

page 574 Third equation: Put the lower limit underneath the summation sign, that
is, change “

∑
i<j” to “

∑
i<j

”

page 576 Eq. 112: Put the lower limit underneath the summation sign, that is,
change “

∑
i<j” to “

∑
i<j

”

page 558 Last full paragraph, line +1: Change “This result agrees with out state-
ment” to “This result agrees with our statement”

page 584 Problem 4 part (a), right-hand side: Change “xi” to “xj”

page 585 Problem 4 part (b): Change “θ̂i” to “θ̂” in two places only on the right-
hand side of the equation.

page 589 Problem 24 part (b), Change “the trace criterion” to “the determinant
criterion”



442 ERRATA IN THE TEXT

Appendix

page 608 Section A.2.5 line +5: Change “In this case the absolute value of the
determinant” to “In this case the determinant”
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Fifth printing

Chapter 2

page 73 Problem 34, line +6–7: Change “assume the distributions” to “assume
P (ω1) = P (ω2) = 0.5 and the distributions”

page 73 Problem 34, part c), line +4: Change “Bayes error is 0.5.” to “Bayes error
is 0.25.”

Chapter 3

page 143 Problem 11, second and third lines after first equation: Change “p2(x) by
a normal p1(x) ∼ N(μ,Σ)” to “p1(x) by a normal p2(x) ∼ N(μ,Σ)”

page 143 Problem 11: Second equations: Change “E2” to “E1” in two places

page 143 Problem 11, last line: Change “over the density p2(x)” to “over the density
p1(x)”

page 151 Problem 38 (b) bottom equation on page: Change “(μ1−μ2)2” to “(μ1−
μ2)2”

page 159 Computer exercise 13 table, sample 4 under ω1: Change “AD” to “ADB”

Chapter 5

page 250 Equation 79: Change “a(k)” to “b(k)”

page 251 Algorithm 11, line 5: Change “a” to “b”

page 275 Problem 27, last line: Change “by Eq. 85.” to “by Eq. 95.”

Chapter 6

page 294 Algorithm 2, line 3: Change “Δwkj ←” to “Δwkj ← 0”

page 305 line 10: Change “ratio of such priors.” to “ratio of such priors, though this
need not ensure minimal error.”

page 337 Problem 8, pagt (b) line +2: Change “if the sign if flipped” to “if the sign
is flipped”

Chapter 8

page 438 Problem 6 after the first set of equations: Replace the i∗(α) equation by
“i ∗ (α) = i(αP a(ω1) + (1 − α)P b(ω1), ..., αP a(ωc) + (1 − α)P b(ωc))”

page 438 Problem 6 last line before part (a): Replace line by “then we have i∗ ≥
αia + (1 − α)ib.”
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page 446 Table, sample 12: Change “D” to “E”

page 447 Computer exercise 3, part b): Change “{C, D, J, L, M}” to “{C, E, J, L,
M}”

Chapter 9

page 460 Table for rank r = 3, third row: Change “x1 OR x3 OR x3” to “x1 OR x3 OR x4”

page 508 Problem 45, line +2: Change “N(μ,Σ)” to “N(μr,Σr)”

Chapter 10

page 553 line +13–14: Change “each of which is an O(d2) calculation” to “each of
which is an O(d) calculation”

page 553 line +17–18: Change “the complexity is O(n(n − 1)(d2 + 1)) = O(n2d2)”
to “the complexity is O(n(n − 1)(d + 1)) = O(n2d)”

page 553 line +21: Change “complexity is thus O(cn2d2)” to “complexity is thus
O(cn2d)”
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