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ABSTRACT 

Discrete Fourier Transform (DFT) attack is a latest cryptanalytic technique to 

recover the initial state of a keystream generator by reducing the number of unknowns 

in the system of linear equations to the minimum, by a corresponding increase in 

complexity of pre-computation and substitution. The complexity increase is a trade 

off with reduced unknowns and numbers of the required consecutive bits of the 

keystream sequence equal to the linear span of the sequence. This attack has been 

categorized in two versions. One version requires the captured keystream sequence 

equal to linear span of the cipher for recovering the initial state/key. The second 

version of this attack reduces the requirement of keystream by lowering the linear 

span by multiplying the sequence by another sequence having the linear span less than 

the linear span of the original sequence to recover the key. The DFT attack results in 

an efficient attack than Fast Algebraic Attack (FAA).  

This research explores the possibility of the application of the DFT attack on practical 

symmetric cipher structure. It includes all versions of DFT attack (Ronjom et al. New 

Attack, Selective and Fast Selective) and has been tried against different structures 

including block ciphers, stream ciphers with filtering sequence generators and clock 

controlled ciphers. The attack has been applied on practical stream cipher Welch 

Gong (WG)-7. WG-7 is a lightweight, hardware oriented stream cipher that uses a 

word oriented linear feedback shift register (LFSR) and a nonlinear WG 

transformation that acts on the LFSR output word. The research aims at faster 

recovery of keystream than predicted complexity of the DFT attack by the designers.
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C h a p t e r  1  

 

1 Introduction 

1.1 Overview 

Cryptanalysis is the field which has a long history similar to cryptography. It 

may be regarded as an essential part for the design of cryptographic algorithm. The 

techniques range from simple frequency analysis to generic methods like correlation, 

differential, linear, algebraic and many other attacks. The diverse nature of these 

methods is due to growing complexity and sophistication of ciphers. New 

cryptanalytic techniques are in a continuous evolving phase to counter this growing 

complexity and to ensure trust worthiness of these ciphers.  

Algebraic and Fast Algebraic attacks have received a great attention in the 

cryptology community in the last decade. Algebraic cryptanalysis converts the 

problem of breaking the cipher into the system of equation and their subsequent 

solution to retrieve initial state. One can be sure of the security of the cipher if one is 

unable to solve the system of equation in the polynomial time. To counter the threat of 

Algebraic/Fast algebraic attacks, cryptographers are designing ciphers with better 

algebraic immunity (AI).  

In order to improve upon the existing method of algebraic/fast algebraic attacks, 

researchers have found the Discrete Fourier Transform (DFT) attack. It is a latest 

cryptanalytic technique to recover the initial state of a keystream generator by 

reducing the number of unknowns in the system of linear equations to the minimum, 

by a corresponding increase in complexity of pre-computation and substitution. The 

complexity increase is by forming a system of equations over Galois field (GF) with 

less unknowns and reduction in the number of the required consecutive bits of the 
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keystream sequence equal to the linear span of the sequence. This attack has been 

categorized in two versions. One version requires the captured keystream sequence 

equal to linear span of the cipher for recovering the initial state/key. Then the shift 

equivalent version of the sequence is developed and related with the captured 

keystream using DFT to recover the shift for finding the key.  This version works well 

for the case where linear complexity is small enough to carry out computations in a 

polynomial time. The second version of this attack reduces the requirement of 

keystream by lowering the linear span by multiplying the sequence by another 

sequence having the linear span less than the linear span of the original sequence to 

recover the key. The attack version is known as the fast selective DFT attack. The fast 

selective DFT attack results in an efficient attack than Fast Algebraic Attack (FAA). It 

can also work where the number of the known consecutive bits of the keystream is too 

small to apply FAA. Moreover, the fast selective DFT attack will work where the 

employed Boolean functions have high algebraic immunity. 

The DFT attack has been mainly tested against filter generators and LFSR 

combiner generator ciphers due their structure. Among them, WG [16] and E0 [17] 

Cipher has been assessed for DFT attack by Helleseth et al. [2] and Wang et al. [8] 

respectively. Moreover, WG variants like WG-7[9], WG-8[27] and WG-16[28] have 

been assessed during their design phase against DFT attack. Beside this, no further 

attempts have been made to launch this attack for cryptanalysis of practical ciphers. 

Moreover, limited research is available on application of this attack on block ciphers 

and none available against clock controlled ciphers. 

This research aims at applying the DFT attack on symmetric cipher structure to 

evaluate the dimensions of the attack including block ciphers, stream ciphers 

including filtering sequence generators, combination sequence generators and 
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irregular clocked ciphers. All the previous work in literature has been carried out on 

filter generators and combiner generators with encouraging results. WG and its 

variants are word oriented stream cipher based on filter generator design. WG-7 has 

been selected for further investigation by fast selective DFT Attack due to discovery 

of annihilator against the cipher [10].  

WG-7[9] is a lightweight, hardware oriented stream cipher that uses a word 

oriented LFSR and a nonlinear WG transformation that acts on the LFSR output word. 

The cipher is designed for RFID tags, mobile and other resource constrained 

applications. The research aims at faster recovery of keystream than predicted 

complexity of the DFT attack by the designers [9] and algebraic attack [10]. Trace 

polynomials which can relate the internal states of the cipher and the output bits as a 

result of Boolean function will be developed in this work. These polynomials will be 

analyzed in terms of their characteristics field and using Annihilators to recover the 

keybits. Annihilators tend to reduce the requirement of keystream bits and lower 

linear complexity which helps to efficiently solve the system of equations to recover 

the internal state/key.  

The goal of this work is to analyze the application of Discrete Fourier 

Transform attack against symmetric ciphers with a view to improve the efficiency by 

reducing complexity in terms of reduced computations/keystream bits.  

1.2 Problem Statement 

There is a need to test the symmetric ciphers against the DFT attack as it is an 

emerging threat. Most of the ciphers can be vulnerable to the DFT attack, which 

include block cipher and clock controlled ciphers. Moreover, practical cipher 

structures like Welch Gong (WG-7) also need to be tested against DFT attack with a 

view to reduce its complexity. 
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1.3 Objectives 

The objectives of this thesis are to develop and implement DFT attack on 

vulnerable symmetric ciphers. To improve the efficiency of already applied DFT 

attack against WG family of ciphers. Represent a cipher output by its equivalent 

polynomial representation for evaluation of its algebraic structure/spectrum. Finding 

low degree annihilators for applying fast selective DFT attack and represent them in 

an equivalent polynomial form. To use annihilators in Fast Selective DFT attack to 

recover the initial state/key.  

1.4 Research Methodology and Achieved Goals 

The research work has been divided into three main phases. In the first phase, 

detailed study and literature review has been carried out related to the DFT attack. A 

strong theoretical concept has been built regarding the working of the DFT attack. In 

the second phase, the implementation of the DFT attack has been carried out and WG-

7 has been thoroughly investigated with new modified methods proposed as well. 

MAPLE has been used for the testing because it was found suitable for the 

development of the thesis. In the last phase, DFT attack has been tested against Toy 

Block Cipher, Alternating Step Generator and Shrinking Generator. 

WG-7 Cipher has been found vulnerable against DFT attack after application of 

an annihilator. WG-8 and WG-16 Cipher have been found secure due to non 

availability of annihilator. However, the Toy Block Cipher, Alternating Step 

Generator and Shrinking Generator have been found secure against DFT attack. 

1.5 Thesis Organization 

The thesis is organized as follows. Chapter 1 introduces the topic with the 

problem statement and objectives of thesis. Chapter 2 reviews the literature on DFT 

Attack. Chapter 3 describes the DFT attack versions with examples. Chapter 4 give 
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details regarding the application of the attack on non-linear filtered sequence 

generator ciphers. Chapter 5 give details regarding the application of the attack on 

clock controlled ciphers and block ciphers. Chapter 6 concludes the thesis with 

objectives achieved and proposed future work. 
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C h a p t e r  2  

 

2 Literature Review 

2.1 Introduction 

In this chapter evolution of DFT attack and its variations/improvement has been 

discussed in detail. Variations of DFT attack developed so far have also been 

compared. Moreover, DFT attack complexity on stream ciphers such as variants of 

Welch Gong (WG) cipher and Bluetooth cipher has been reviewed as well.  

The chapter has been divided into five sections. Section 2.2  gives an account of 

stream cipher cryptanalysis. Section 2.3 briefly illustrates algebraic attack. Section 2.4 

describes evolution of the DFT attack. Section 2.5 discusses spectral Immunity and 

relation with algebraic attack. 

2.2 Stream Cipher Cryptanalysis  

Linear feedback shift register (LFSR) sequences are widely used as basic 

functional blocks in key stream generators in stream cipher models due to their fast 

implementation in hardware as well as in software in some cases. Examples include 

filtering sequence generators, combinatorial sequence generators, clock controlled 

sequence generators, and shrinking generators. For an LFSR based stream cipher, the 

initial state of the LFSR serve as a cryptographic key in each communication session. 

The goal of an attack is to recover the key from some known bits of the keystream. 

Consequently, the remaining bits of the keystream used in that session can be 

recovered and can be used in subsequent communication by only changing the known 

IV each time. There are many proposed attacks on LFSR based stream ciphers in the 

literature. The assumption taken for DFT attack is always known plain-text attack. 

The attacker has always access to keystreams generated by the cipher for analyzing 
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the output. There are broadly two types of attack which can be performed by the 

attacker. These are key recovery attacks and distinguishing attack. The key recovery 

attacks tries to recover the key or initial state whereas the distinguishing attack tries to 

distinguish the keystream from the random one. This attack is applicable where the 

Boolean function used in the cipher is imbalanced.  

2.3 Algebraic Attacks 

Algebraic attacks have received a great attention in the cryptology community 

in the last decade. Algebraic cryptanalysis converts the problem of breaking the 

cipher into the system of equation and their subsequent solution to retrieve initial state. 

One can be sure of the security of the cipher if one is unable to solve the system of 

equation in the polynomial time. The algebraic attack relates the secret key and the 

output of the cipher. The system of equation carries all the information regarding the 

cipher and analyzing the system of these equations gives strong way for evaluating 

the cipher. There is huge potential for analysis just by seeing the published results by 

various authors [19][20][21][22][23][24]. These attacks consist of three steps: 

precomputation step to generate variable degree equations, substitution for 

establishing a system of low-degree equations from captured keystream bits and 

solving the system of equation to recover initial state. 

2.4 Evolution of DFT Attack 

The DFT attack evolved as an improvement of fast algebraic attack and 

algebraic attack. In 2003, Courtois [21] proposed the fast algebraic attack (FAA) on 

stream ciphers to step up the algebraic attack by determining the linear relations 

among the key stream bits. As compared to Algebraic attack that solves a system of 

equations by linearization and Gaussian elimination, the fast algebraic attack lessens 

the solving complexity by decreasing the total degree of the equation system. As a 
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result, it thus reduces the number of monomials in the system and the essential 

number of keystream bits. The effectiveness of the pre-computation and replacement 

in the fast algebraic attack is further improved upon by Hawkes and Rose [23] for 

filtering sequence generators and Armknecht [22] for combination sequence 

generators with or without memory, respectively. Armknecht and Ars [24] introduced 

a variant of the FAA which minimized the number of required consecutive bits of the 

key stream, but the number of unknowns remains unchanged.  

2.4.1 Rønjom-Helleseth New Attack 

Rønjom and Helleseth [1] introduced the new attack, to recover the initial state 

of a filtering sequence generator.  The attack is more efficient than the original 

algebraic attack and fast algebraic attack, but needs more keystream when evaluated 

against fast algebraic attack. They have proven the assumption that filter generator 

associated equation system behaviour is completely deterministic. An equation system 

is related to certain coefficient sequences and their minimal polynomial completely 

determines the linear structure of equation generated. Also it is proven that roots of 

the minimal polynomials have hamming weight found from the monomials degree in 

the filter function. The same degree monomials in consecutive equations generate the 

same polynomial. Then another polynomial can be computed that annihilates the 

coefficient sequence of nonlinear monomials. As a result, linear system of equation in 

n variables for initial states is generated which can be solved inconsequentially. The 

attack utilizes the properties of the coefficient sequences associated with the 

multivariate polynomial representation. The complexity of the pre-computation phase 

is O(E(log2(E))3), while the online complexity of the attack is O(E) with data 

complexity of E keystream bits. This attack is most valuable in terms of the number of 
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monomials in the equation system and normally linear in the linear complexity of the 

keystream.  

Given {Dk}, the DFT of LFSR sequence {d} and assuming that l (consecutive) bits of 

b(b0, b1… bl−1) are known. Since b = dt+𝜏.Then DFT of b can be found, since Bk 

=𝛽𝑘Dk, β ∈ F2
n, it is enough to find 𝛽.  Recovering a key in the filtering sequence is to 

recover an initial state in the LFSR, which is equal to recover β. For the selective case, 

by applying h(x) to d, the nonzero DFT spectra of the resulting sequence is equal to a 

subset of the nonzero DFT spectra of d. Thus the linear complexity of yt = h(𝛼
𝑘)Dk 

is less than or equal to the linear complexity of d. For required number of consecutive 

bits = LS(b). h(x) is the quotient of the minimal polynomial of b and the minimal 

polynomial of α. So, h(L) removes all DFT spectra except for D1. It works if D1≠ 0. 

Rønjom and Helleseth [2] have extended the same attack from [1] to the case of 

filter generators over finite fields Fm where m = 2n, consisting of a primitive feedback 

polynomial over Fm generating a sequence that is filtered through a nonlinear Boolean 

function. The coefficient sequences are generated similar to the binary case; however, 

there are some basic distinctions. It is shown that filter generators over Fm for which 

only one word from the LFSR is chosen as input to a Boolean function, produce 

heavily disintegrated sequences and only a fraction of linear complexity is achieved 

from generation of these sequences. The first application on practical cipher structure 

has been against WG cipher. WG cipher has been introduced by Yasir et al.[16] as 

candidate of eSTREAM Project. The Cipher keystream generator consists of 11 stages 

LFSR over F2
29. The feedback polynomial of the LFSR is primitive over F2

29 and 

produces a maximal length sequence over F2
29. This m-sequence is filtered by a 

nonlinear WG transformationF229 → F2 . With a pre-computation of 282, the fast 

algebraic attack on WG has complexity 286 with access to approximately 270 bits of 
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keystream. The linear complexity of WG Cipher has been found by the designer as 

245.0415. The initial state in the WG Cipher can be found with a keybits requirement 

equivalent to 245.0415.  The pre-computation complexity is O(262) for generation of 

polynomial corresponding to the coefficient sequence of degree 2 and above. One 

interesting observation is made regarding flaw in design of WG Cipher for smaller 

linear complexity as Boolean function acts on bits in a single word. If all bits are 

utilized in the Boolean function the linear complexity is much higher to avoid any 

DFT attack. However, the designer [16] has restricted the keybits on a particular key 

to 245 to avoid the attack and introduce a guess of keybits to launch DFT attack. In 

this case, the results presented prove that DFT attack is exceptionally fast in 

comparison to fast algebraic attacks. 

Rønjom et al. [3] generalized the new attack by forming a system of linear 

equations over F2
n instead of F2. Instead of using coefficient sequences, filtered 

sequences with their respective trace representation have been utilized.  The attacks 

widen the degree of choice when attacking combiner and filter generators and covers 

special cases in which the original attack might fail. It works better in the unlikely 

cases when the original attack needed some modifications. The complexity of the 

attack is fundamentally unchanged. Now h(x) is the quotient of the minimal 

polynomial of b and the minimal polynomial of α𝑘. So, h(L) removes all DFT spectra 

except for Dk for some k with Dk≠0 and gcd(k,N) = 1. 

Rønjom et al. [5] described the attack exclusively in terms of matrices and 

linear algebra. Also is shown that any cipher based on a linear state machine can be 

attacked using this attack technique. Further, it has been proven that the binary filter 

generator can be represented in terms of recurring vector spaces with respect to an 

invariant matrix W. The matrix W is derived by enlarging the companion matrix of 
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the LFSR and it is revealed that it represents the coefficient sequences. It is proved 

that the attack can be described entirely in terms of linear algebra and thus harmonize 

analysis in terms of the trace-representation over F2
m. 

Rønjom et al. [18] mentioned the same attack on the combiner generator. The 

subspace annihilator’s polynomials are not restricted to ground field and polynomials 

over the extension field are utilized for efficiency. This attack is applied to combiner 

generators consisting of LFSRs with relative prime periods. The attack always 

remains linear in the linear complexity of keystream sequence. 

Yiyuan Luo et al. have applied the DFT attack while designing stream cipher 

WG-7[9]. The attack version applied for the attack is Ronjom and Helleseth new 

attack on binary filtering generators over F2
m. The complexity of the attack has been 

found out to be 229.5 keystream bits after a pre-computation with a complexity of 

O(239.5). If the attacker obtains the keybits less than 225, the attacker has to guess 223.5 

unknown bits to launch the DFT attack. The authors have concluded that best attack 

against the WG-7 is the exhaustive search as attacker cannot obtain 224 consecutive 

keystream bits.  

WG-8 is a lightweight variant of the well-known Welch-Gong (WG) stream 

cipher family with 80-bit secret key and 80-bit initial vector (IV), which can be 

regarded as a nonlinear filter generator over finite field F2
8. The stream cipher WG-8 

consists of a 20-stage LFSR with the feedback polynomial l(x) followed by a WG-8 

transformation module with decimation d = 19, and operates in two phases, namely an 

initialization phase and a running phase. Xinxin Fan et al. have applied the DFT 

attack while designing stream cipher WG-8[27]. The attack version applied for the 

attack is Ronjom and Helleseth new algebraic attack on binary filtering generators 

over F2
m. The complexity of the attack has been found out to be 233.32 keystream bits 
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after a pre-computation with a complexity of O(248.49). They concluded that best 

against the WG-7 is the exhaustive search as attacker cannot obtain 233.32 consecutive 

keystream bits due to exchange 32-bits random information.  

WG-16 is an efficient variant of the well-known Welch-Gong (WG) stream 

cipher family with 128-bit secret key and 128-bit initial vector (IV). The stream 

cipher WG-16 consists of a 32-stage LFSR with the feedback polynomial l(x) 

followed by a WG-16 transformation module with decimation d = 1057. Therefore, it 

can be regarded as a nonlinear filter generator over finite field F2
16. WG-16 operates 

in two phases, including an initialization phase and a running phase. Xinxin et. al. [28] 

has applied the DFT attack while designing stream cipher WG-16. The attack version 

applied for the attack is Ronjom and Helleseth new algebraic attack on binary filtering 

generators over F2
m. The complexity of the attack has been found out to be 279.046 

keystream bits after a pre-computation with a complexity of O(297.96). They concluded 

that best against the WG-7 is the exhaustive search as attacker cannot obtain 279.046 

consecutive keystream bits due to exchange of information in 4G-LTE network.  

2.4.2 Selective DFT Attack 

Gong [7] showed a fast computation of DFT using the selective DFT algorithm. 

The same is helpful in simplifying selective DFT attack by fast calculation of any 

desired cosets DFT without going through the whole sequence DFT. Gong also 

introduced reference pairs to relate and simplify the application of selective DFT 

attacks.  The selective DFT attack presented in [7] is the final version. Moreover, 

Gong alongwith Bo-Zhu also presented a method for application of DFT attack 

against Block Cipher and Hash Functions. The same concept has been tested on Toy 

cipher in Chapter 5. 
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2.4.3 Fast Selective DFT Attack 

A new variation is introduced known as the fast selective DFT attack by Gong 

et. al. [6]. It is strongly related to the fast algebraic attacks in the literature. However, 

the variation is more efficient than other known methods for the case when the 

captured number of consecutive bits of a filter generator is less than the linear 

complexity of the sequence. The new attack version imposes a new condition for the 

design of cryptographic well-built Boolean functions, known as the spectral immunity 

of the sequence/Boolean function. 

DFT attack has been applied to a version of Bluetooth encryption algorithm E0 

by Jingjing Wang et al.[8]. The keystream generator E0 is part of the Bluetooth 

specifications [17] for wireless communications and consists of 4 regularly clocked 

LFSRs of lengths 25, 31, 33 and 39, respectively, yielding key bits of 128 bits. The 

attack operates by shifting and adding sequences to replace computations in higher 

order field. The attack is an improvement of the original attack launched by Helleseth 

et al. [1] due to requirement of the pseudorandom sequence succession and growing 

of complexity with the degree of the finite field where the discrete Fourier transform 

is done by solving equations in the finite field of some high degree with shifting and 

adding sequences. The attack complexity computation bases on the method mentioned 

in [1]. The results published in Chinese language for Shanghai Jiaotong University 

Journal in 2012. Moreover, success probability of the DFT attack [8][26] is described 

as 1 − 2−𝜑(2
𝑛−1) which is better than Ronjom-Helleseth attack[1] with 1 − 2−𝑛. 

Wang et al. [25] studied both the annihilator and the spectral immunity found the 

essential and ample condition for the spectral immunity which is lowest spectral 

weight of the annihilator of the sequence, measurement of the security of the cipher 

against DFT attack. They concluded that decision for existence of low spectral weight 
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relations is difficult for DFT attack than Algebraic attack and cannot be a periodic 

sequence as annihilator for another sequence. Moreover, spectral immunity is 

bounded by one half period of the sequence for recovering any keystream. The 

evolution of the attack has been summarized in table 2.1. 

Table 2.1 Summary of DFT Attack Evolution  

Attack 

Evolution 

# required 

consecutive 

bits 

# unknowns 

in 

equations 

Degree(h) Solvable 

Rønjom-

Helleseth (06) 

 

LS(b) 

 

v 

LS(b) − v  

not applicable if 

D1 = 0 

Solves a system of 

equations over F2 in v 

unknowns, solve for all v 

unknowns 

Rønjom-Gong-

Helleseth (07) 

 

LS(b) 

 

v 

LS(b) − v   

not applicable if 

gcd(k,N) ≠ 1 

Solves a system of 

equations over F2
n
 in v 

unknowns, obtaining one 

unknown is sufficient 

New Case of 

Selective DFT 

 

LS(b) 

 

v 

LS(b) − v   

not applicable if  

|Ck | ≠ v 

Solves a system of 

equations over F2
n
 in v 

unknowns, obtaining one 

unknown is sufficient 

 

2.5 Spectral Immunity and relation with Algebraic Attack 

In this section spectral immunity has been defined which is analogous to 

Algebraic immunity. A relation with algebraic/Fast Algebraic attack is also discussed 

in this section.  
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2.5.1 Spectral Immunity 

The algebraic immunity of a Boolean function has received an enormous 

interest in research on the efficiency of algebraic cryptanalysis. The spectral immunity 

of binary periodic sequences originally defined by Gong et. al.[6]. The spectral 

immunity is similar to the algebraic immunity, but instead of investigating the degree 

of the algebraic normal form (ANF) of a particular function, the spectral immunity 

depends on the linear complexity of the function. Hence, while algebraic immunity is 

a basic property of a Boolean function, the spectral immunity depends on the 

combination of a particular function with a basis generator. Various research has been 

carried out to ascertain the upper bound on Spectral Immunity [25][29][30]. Mostly 

proven fact is that spectral immunity is upper bounded by one half of the period of the 

cipher. From the bounds it is in need of attention that a univariate DFT attack involves 

fewer unknowns than in the multivariate case. In particular, the univariate 

representation provides a more natural origin for analyzing stream ciphers defined on 

a primary cyclic group. 

2.5.2 Relation with Algebraic/Fast Algebraic Attacks 

The selective DFT attack is always efficient than FAA in terms of requirement 

of successive key stream bits and the number of keystream bits. Moreover, it will 

work where the employed Boolean functions have high algebraic immunity. Selective 

DFT Attack works by multiplying boolean sequence bt by a sequence, e = {et}, having 

the linear span less than the linear span of the sequence b0, b1,... to recover the key 

from the relation gt = btet, t = 0, 1, . . .... The complexity of FAA is to solve a system 

of linear equations over F2. DFT Algorithm 2 needs to solve a system of linear 

equations over F2
n which can be converted into a system of linear equations over F2 
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with fewer variables. The number of nonzero DFT spectra of {et} remains constant 

always for all the shifts, which is in turn the linear complexity of e. In comparison to 

Algebraic attack, DFT attack always flourishes due to requirement of less number of 

key bits than Algebraic attack.  

2.6 Summary 

DFT attack is more successful on ciphers having a Non-linear filter function 

design in place. The evolution of DFT attack has been discussed in detail which gives 

account of various improvements made so far by the designer’s. A detailed review of 

the stream ciphers that have been tested and evaluated against the DFT attack is given 

in the chapter. The chapter also includes some important implementations of the DFT 

attack. 
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C h a p t e r  3  

 

3 Discrete Fourier Transform Attack 

 

3.1 Introduction 

The DFT attack is a key recovery attack in which recovers an initial state in a 

filtering sequence generator by reducing the number of unknowns in the system of 

linear equations to the degree of LFSR by an increase in complexity in 

precomputation/offline phase. The major complexity is in terms of forming a system 

of linear equations over F2
n with n unknowns instead of linear equations over F2, 

where n is the degree of the LFSR. It subsequently reduces the number of the required 

consecutive bits of the filtering sequence to the linear complexity of the sequence. 

The required algebraic relations are converted into DFT form (Trace form) and then 

using captured bits equal to linear span of the cipher and associated variables initial 

state is recovered. The attack can also be performed when captured bits are less than 

linear span of the cipher using annihilators.  

The Chapter 3 is divided into 3 sections. Section 3.2 contains the terminologies. 

Section 3.3 explains the theory of DFT attack including both types of DFT attacks 

alongwith their complexity calculations. 

3.2 Terminologies 

Following definitions are derived from work by Guang Gong [7]. All the work 

has been carried out in field based on characteristics of 2. 
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3.2.1 Definition 3.1 

Let  𝑐𝑗 = (𝑐0, 𝑐1, … . , 𝑐𝑁−1)  , where 𝑐𝑗 ∈ 𝐹2 and represent binary sequence of 

length N. Since 𝑐𝑗 is discrete, its Fourier transform is called discrete Fourier transform 

(DFT). It is also defined in terms of a finite field 𝐺𝐹(2𝑛), denoted as F2
n, where n is 

the smallest number such that N│2n - 1. Let α be an element in F2
n with order N. The 

Discrete Fourier Transform (DFT) of {cj} is defined by 

𝐶𝑘 = ∑ 𝑐𝑗
𝑁−1
𝑗=0 𝛼−𝑗𝑘 , 𝑘 = 0,1… .𝑁 − 1                                (3.1) 

The inverse DFT, denoted as IDFT, is given by 

𝑐𝑗 = ∑ 𝐶𝑘
𝑁−1
𝑘=0 𝛼𝑗𝑘, 𝑗 = 0,1…𝑁 − 1                                    (3.2) 

The sequence {Ck} is called a DFT spectral sequence of 𝑐 (with respect to α) or DFT 

spectra in short. The DFT spectral value Ck, in general, is an element in the extension 

field F2
n, while {cj} is a binary sequence.  

3.2.2 Definition 3.2 

Let 𝐶(𝑥) = ∑ 𝐶𝑘
𝑁−1
𝑘=0 𝑥𝑘 .Then cj = C(αj). C(x) can be written as 

𝐶(𝑥) = ∑ 𝑇𝑟1
𝑛𝑘(𝐶𝑘𝑥

𝑘)𝑘    &  

𝑐𝑗 = ∑ 𝑇𝑟1
𝑛𝑘(𝐶𝑘𝛼

𝑗𝑘), 𝑗 = 0,1, … . . , 𝑁 − 1𝑘                         (3.3) 

Where the k’s are coset leaders modulo N, nk | n is the size of Ck, and 𝑇𝑟1
𝑛𝑘(𝑥) is a 

trace function from F2
n

k to 𝐹2. This is termed as a trace representation of {cj}. 

3.3 Theory of DFT Attack 

In this section, the basic concept of DFT attack is described for two situations. 

In one situation, captured data bits are equal to linear complexity of the cipher and in 

second, captured data bits are less than the linear complexity of the cipher. Both the 

situations have been described in Algorithms 1 and 2 respectively. 
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3.3.1 Algorithm 1 (Selective DFT Attack Algorithm) m=l(u) 

This section describes the selective DFT attack algorithm. g(x) will be 

referenced as the characteristic polynomial of the LFSR which is also primitive. f(x) 

will be a boolean function in n variables, 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑛−1) . Let {bt} be an output 

sequence of the LFSR and {ut} be the output of the filter function f(x) ,whose 

elements are given by ut=f(bt), bt= (bt, bt+1, bt+2,……., bt+n-1), t = 0,1,............,2n-2.   

3.3.1.1 Off-line computation 

In offline computation first step is to compute the reference pair (o,s): Let {ot} 

be generated with the initial state, ot=Tr(αt), t=0,1,2,3……., where Tr(x) =

  𝑥 + 𝑥2 +⋯+ 𝑥2
n−2

. . Then generate st = f(ot), ot = (ot, ot+1, ot+2,…., ot+n-1); t = 0, 1, 

…… ,n-1. The second step is to compute the selective filter d(x) which involves the 

computation of g(x), the minimal polynomial of s. The same can be obtained by 

running the BM algorithm to {st}, we get the minimal polynomial  

g(x) = c0x
L+cL-1 x

L-1+…. +cLx0                                            (3.4) 

Next step is to find the first k such that gcd (k, 2n-1) = 1 and g(αk) = 0, and compute  

k-1 mod 2n -1. k are the cyclotomic cosets leaders of the LFSR period. For this k, ct = 

otk is computed, where t = 0,1,….., 2n - 1. Applying the BM algorithm to {ct}, gk(x) is 

generated which helps to find d(x) as per equation 3.5:  

𝑑(𝑥) =
𝑔(𝑥)

𝑔𝑘(𝑥)
= ∑ 𝑐𝑖𝑥

𝑖𝑙
𝑖=0                                                     (3.5) 

Where 𝑙 =L-m, L is the linear span and m=captured data bits.                                  

Fourth step is to compute Sk by the selective DFT algorithm in that set M =

(

𝑐0 ⋯ 𝑐n−1
⋮ ⋱ ⋮

𝑐n−1 ⋯ 𝑐2n−2
). This matrix is called a circulant matrix generated by {ct} and 

computes the time convolution of d(x) and {st}: 
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𝑣𝑡 = ∑ 𝑑𝑖𝑠𝑖+𝑡, 𝑡 = 0,1, … . . , 𝑛 − 1
𝑙
𝑖=0                                  (3.6) 

Fifth step is to solve the following system of m linear equations in n 

variables(𝑥0, 𝑥1, … , 𝑥𝑛−1) and calculate V and Sk: 

M (

𝑥0
𝑥1
⋮

𝑥𝑛−1

) = (

𝑣0
𝑣1
⋮

𝑣𝑛−1

)                                                       (3.7) 

V = ∑ 𝑥𝑖𝛼
𝑖𝑘 𝑛−1

𝑖=0                                                                  (3.8) 

Sk = V (d (αk))-1                                                                   (3.9) 

3.3.1.2 On-line computation 

With the same {ct}, M, and d(x) as those for computing Sk, Uk is computed in 

the online computation. Equation 3.10 computes the time convolution of d(x) and 

{ut}: 

 wt = ∑ 𝑑𝑖𝑢𝑖+𝑡, 𝑡 = 0,1, … . . , 𝑛 − 1
𝑙
𝑖=0                              (3.10) 

Then system is solved for the unknowns (𝑥0, 𝑥1, … , 𝑥𝑛−1) in the system of the linear 

equations by equation 3.11: 

M(

𝑥0
𝑥1
⋮

𝑥𝑛−1

) = (

𝑤0
𝑤1
⋮

𝑤𝑛−1

)                                                     (3.11) 

W = ∑ 𝑥𝑖𝛼
𝑖𝑘 𝑛−1

𝑖=0                                                               (3.12) 

Uk = W*d(αk)-1                                                                  (3.13) 

β = (𝑆𝑘
−1 𝑈𝑘)

𝑘−1                                                              (3.14) 

Finally the initial state is computed by using β calculated in equation 3.14 as  

bt = Tr(βαt), t = 0, 1, ….., n-1                                            (3.15) 
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3.3.1.3 Selective DFT Attack Example 

The LFSR shown in Figure 3.1 has 5 stages and characteristic polynomial is 

𝑥5 + 𝑥3 + 1 defined over 𝐹2
5. Let 𝛼 ∊ 𝐹2

5  satisfy 𝛼5 + 𝛼3 + 1 = 0  and filter function 

is defined as: 

𝑓 = 𝑥0 + 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥1𝑥2 + 𝑥3 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥4 +

𝑥0𝑥4 + 𝑥1𝑥4 + 𝑥0𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥0𝑥2𝑥4 + 𝑥1𝑥2𝑥4 + 𝑥0𝑥3𝑥4                  (3.16) 

 

Figure 3.1 LFSR with Non-Linear Filter Generator 

The 20 bits captured by the adversary to perform DFT attack are ui: 

11000100000001000000. 

In offline computation, the reference pair (o,s) with {ot} is generated by 

characteristic polynomial with initial state as  

𝑜𝑡 = 𝑇𝑟(𝛼
𝑡) , 𝑡 = 0,1,2,3,4⇒ (𝑜0, 𝑜1, 𝑜2, 𝑜3, 𝑜4) = (1,0,0,0,0) . Keeping this initial 

state of the LFSR, values generated for sequence {ot} and {st} are:                                                                    

1000010101110110001111100110100 and 1110000101100010000000100000000 

respectively.  

Selective filter d(x) is calculated next. There is a need to find g(x) the minimal 

polynomial of s. BM algorithm is run to {st} to get the equation 3.17 with a linear 

span of 20 owing to degree of the equation: 

𝑔(𝑥) = 𝑥20 + 𝑥16 + 𝑥15 + 𝑥13 + 𝑥10 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 1    (3.17) 



22 

The coset leaders 1, 3, 5, 7, 11 and 15 are relatively prime with 31, so upon 

checking  𝑔(𝛼) ≠ 0 𝑎𝑛𝑑 𝑔(𝛼3) = 0 . So the selected value of k = 3. Then 

computation of ct is carried out by decimation of sequence ot: 𝑐𝑡 = 𝑜3𝑡, 𝑡 =

0,1, … 2𝑛 − 1, where n=5 and 𝑐0, … . , 𝑐9 = (1001001100). Applying BM algorithm to 

ct, equation 3.18 generates: 

 𝑔3(𝑥) = 𝑥
5 + 𝑥3 + 𝑥2 + 𝑥 + 1                                      (3.18) 

Selective filter is computed by using equation 3.5, equation 3.17 and 3.18 as: 

𝑑(𝑥) = 𝑥15 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥9 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 + 1       (3.19) 

𝑑(𝛼3) = 𝛼18𝑎𝑛𝑑 𝑇 = (𝑑(𝛼3))−1 = 𝛼13                        (3.20) 

DFT coefficient for S3 is calculated by generation of circulant Matrix M from ct 

as:  

𝑀 =

(

 
 

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5
𝑐2 𝑐3 𝑐4 𝑐5 𝑐6
𝑐3 𝑐4 𝑐5 𝑐6 𝑐7
𝑐4 𝑐5 𝑐6 𝑐7 𝑐8)

 
 
=

(

 
 

1 0 0 1 0
0 0 1 0 0
0 1 0 0 1
1 0 0 1 1
0 0 1 1 0)

 
 

                 (3.21) 

Time convolution of d(x) and {st} is calculated using equation 3.6 as 

(𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4) = (0,0,0,1,0). Solving the system of equation in accordance with 

equation 3.7 computes the value of xi as (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0,1,0,0,1). The value 

of V is computed using equation 3.8 as 𝛼27 and the value of S3 is computed using 

equation 3.9 as 𝛼9.  

U3 is calculated online by first computing time convolution of d(x) and {st} 

using equation 3.10 as (𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4) = (0,1,0,0,0) . Solving the system of 

equation in accordance with equation 3.11 computes the value as(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4) =

(1,0,1,1,0). The value of W is computed by using equation 3.12 is 𝛼23 and the value 

of U3 is computed by using equation 3.13 is 𝛼5. β is calculated using equation 3.14 as  
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𝛽 = (𝛼22. 𝛼5)3
−1𝑚𝑜𝑑 31 = 𝛼9. The initial state of the LFSR using equation 3.15 is 

recovered as (1, 0, 1, 1, 1). 

3.3.1.4 Complexity Calculations 

The preprocessing phase is a one-time effort and its complexity 

is  𝑂(𝑙(𝑠)[𝑛 (log 𝑛)2 + (log 𝑙(𝑠))3 + 𝜂(𝑛)]) and  𝜂(𝑛) = 𝑛 log2 𝑛 log2 log2 𝑛 . Where 

l(s) is linear span of the captured bits and n is the cryptosystem initial state bits. The 

complexity for the online phase of the attack is calculated as  𝑂(𝑙(𝑠) +

𝑛𝑘 log(𝑛𝑘)𝜂(𝑛𝑘)) . The Preprocessing or precomputations phase complexity for 

section 3.3.1.3 example is O(28.5). The complexity for online phase is O(24.7).   

3.3.2 Algorithm 2 Fast Selective DFT Method for m < l(u) 

This algorithm recovers the scalar factor β where the number of observed 

consecutive bits of a filter generator is less than the linear complexity of the sequence. 

The fast selective method is used in DFT attack to extract the shift β to recover the 

initial state of the cipher. The bits where the output sequence output one are filtered 

and their relative positions used to develop the system of equations. It is used to 

replace β with the initial state of the cipher in terms of polynomial to develop the 

systems of equations for solution. The trace is also carried out to find the elements of 

subfield F2 from F2
n. Then the value of variables is found to recover β to recover 

initial state. 

3.3.2.1 Off-line computation 

Select a sequence g = {gt} and h = {ut.gt} which satisfy the following condition:  

|Dg U Dh| < l(u). Where Dg = {k |Gk≠0, k is a coset leader mod D}. Then compute 

p(x) from the known keystream bits u using BM Algorithm. Then compute the 

following polynomials:  
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q(x)  = ∏ 𝑝𝑘(𝑥)𝑘∈𝐷ℎ\ 𝐷𝑔                                                   (3.22) 

q(𝛼𝑘) = ∏ 𝑝𝑘(𝛼
𝑘)𝑘∈𝐷ℎ\ 𝐷𝑔                                                (3.23) 

Denoting q(x) by equation 3.24 

𝑞(𝑥) = ∑ 𝑐𝑖𝑥
𝑖  𝑟

𝑖=0                                                               (3.24) 

3.3.2.2 On-line computation 

For 𝑡 = 0,1, … . , 𝑙(𝑔) − 1, using the known bits u0,……., um−1, compute ft(α
k) 

for k∈Dg, where  

𝑓𝑡(𝑥) = ∑ 𝑐𝑖𝑢𝑖+𝑡𝑥
𝑖𝑟

𝑖=0                                                        (3.25) 

Then applying q(L) to h results in equation 3.26:  

∑ 𝑇𝑟(𝑘∈Dg 𝛽𝑘(𝐺𝑘𝑓𝑡(𝛼
𝑘) + 𝐻𝑘𝑞(𝛼

𝑘))𝛼𝑡𝑘) = 0               (3.26) 

𝑧𝑡 = ∑ 𝑇𝑟(𝑘∈Dg 𝛽𝑘𝐺𝑘𝑓𝑡(𝛼
𝑘)𝛼𝑡𝑘) = 0                             (3.27) 

Thereafter the coefficient matrix is computed by replacing Gkα
k with 

Gkα
k = x0 +x1α+x2α

2 +…….+ xn-1α
n-1                              (3.28) 

A =  (

𝑧0 ⋯ 𝑧𝑛−1
⋮ ⋱ ⋮

𝑧𝑙(𝑔)−1 ⋯ 𝑧(𝑛−1)(𝑙(𝑔)−1)
)                                (3.29) 

A(

𝑥0
𝑥1
⋮

𝑥𝑛−1

) = (

0
0
⋮
0

)                                                           (3.30) 

The independent system of equations is generated which produces a unique solution. 

To recover bits after initialization stage, above system of 𝑙(𝑔) − 1 linear equations 

over F2 with 𝑙(𝑔) − 1 variables are required to be solved. 

If h=0, then this is the same case as Algebraic attack. All k are replaced with t 

where keystream ut is equal to 1. Then there is no need to calculate ft(x). Function g is 

used to perform the rest of the process. 

𝑧𝑡 = ∑ 𝑇𝑟(𝑘∈Dg 𝐺𝑘𝑥) = 0, 𝑥 = 𝛼
𝑘𝛽                                (3.31) 
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If there is a k∈Dg with gcd (k,D) = 1, then return β = (βk)k’ , where                   

k’ = k−1 (mod D),otherwise, return {βk | k∈Dg}. In Algorithm 2, the number of 

required consecutive bits from u is at the most l(h) + l(g).  

3.3.2.3 Fast Selective DFT Attack Example 

The LFSR shown in Figure 3.2 has 5 stages and generating polynomial for 𝐹2
5 is 

𝑥5 + 𝑥3 + 1. Let 𝛼 ∊ 𝐹2
5  satisfy 𝛼5 + 𝛼3 + 1 = 0  , and filter function is defined as: 

𝑓 = 𝑥0 + 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥1𝑥2 + 𝑥3 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥4 + 𝑥0𝑥4 +

𝑥1𝑥4 + 𝑥0𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥0𝑥2𝑥4 + 𝑥1𝑥2𝑥4 + 𝑥0𝑥3𝑥4                                          (3.32) 

 

Figure 3.2 LFSR with Non-Linear Filter Generator 

The bits captured by the adversary to perform fast selective DFT attack are ui: 

1100010000000100000000111. The initial state of the LFSR is:  

𝑤0 = 𝑇𝑟(𝛽) ,  𝑤1 = 𝑇𝑟(𝛼𝛽) , 𝑤2 = 𝑇𝑟(𝛼
2𝛽) , 𝑤3 = 𝑇𝑟(𝛼

3𝛽) , 𝑤4 = 𝑇𝑟(𝛼
4𝛽)  (3.33) 

The trace representation of {ui} is 

𝑈(𝑥) = 𝑇𝑟(𝛼27𝑥 + 𝛼9𝑥3 + 𝛼14𝑥7 + 𝛼7𝑥11)                 (3.34) 

To launch this attack there is need to find the relation that satisfies this condition of    

U(x). G(x) = 0. From computer search, annihilator found is mentioned in equation 

3.35 as: 

𝑔 = 𝑥2 + 𝑥0𝑥2 + 𝑥1𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥3𝑥4   (3.35) 

The trace form of the annihilator is: 
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𝐺(𝑥) = 𝑇𝑟(𝛼29𝑥5)                                                          (3.36) 

To find out the initial state, β needs to be found. For this purpose captured keystream 

bits are being utilized. Because u5= u13= u22= u23= u24=1, 𝑇𝑟(𝛼29𝑥5) = 0 for 𝑥 =

𝛼5𝛽, 𝛼13𝛽, 𝛼22𝛽, 𝛼23𝛽, 𝛼24𝛽.  

(

  
 

𝑇𝑟(𝛼23𝛽5)

𝑇𝑟(𝛼𝛽5)

𝑇𝑟(𝛼15𝛽5)

𝑇𝑟(𝛼20𝛽5)

𝑇𝑟(𝛼25𝛽5))

  
 
=

(

 
 

0
0
0
0
0)

 
 

                                                    (3.37) 

𝛽5 is replaced as 

𝛽5 = 𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4                          (3.38) 

System of equation is generated using equation 3.38 as: 

(

  
 

𝑇𝑟(𝛼23(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4))

𝑇𝑟(𝛼(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4))

𝑇𝑟(𝛼15(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4))

𝑇𝑟(𝛼20(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4))

𝑇𝑟(𝛼25(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4)))

  
 
=

(

 
 

0
0
0
0
0)

 
 

       (3.39) 

From the linearity of the trace function, following system of equation is developed: 

(

  
 

𝑇𝑟(𝛼23) 𝑇𝑟(𝛼24) 𝑇𝑟(𝛼25) 𝑇𝑟(𝛼26) 𝑇𝑟(𝛼27)

𝑇𝑟(𝛼) 𝑇𝑟(𝛼2) 𝑇𝑟(𝛼3) 𝑇𝑟(𝛼4) 𝑇𝑟(𝛼5)

𝑇𝑟(𝛼15) 𝑇𝑟(𝛼16) 𝑇𝑟(𝛼17) 𝑇𝑟(𝛼18) 𝑇𝑟(𝛼19)

𝑇𝑟(𝛼20) 𝑇𝑟(𝛼21) 𝑇𝑟(𝛼22) 𝑇𝑟(𝛼23) 𝑇𝑟(𝛼24)

𝑇𝑟(𝛼25) 𝑇𝑟(𝛼26) 𝑇𝑟(𝛼27) 𝑇𝑟(𝛼28) 𝑇𝑟(𝛼29))

  
 

(

 
 

𝑥0
𝑥1
𝑥2
𝑥3
𝑥4)

 
 
=

(

 
 

0
0
0
0
0)

 
 

 

By evaluation of the trace function, system is solved with following variables as  

(

 
 

0 0) 1 1 0
0 0 0 0 1
0 0 0 1 1
1 1 1 0 0
1 1 0 1 0)

 
 

(

 
 

𝑥0
𝑥1
𝑥2
𝑥3
𝑥4)

 
 
=

(

 
 

0
0
0
0
0)

 
 

 

The non zero solution is  
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(

 
 

𝑥0
𝑥1
𝑥2
𝑥3
𝑥4)

 
 
=

(

 
 

1
1
0
0
0)

 
 

 

Substituting the value in equation 3.38, value of the β is attained. Which is
 
 

𝛽 = 𝛼14 

Hence, the recovered initial state from equation 3.33 is w0=1, w1=1, w2=1, w3=0, 

w4=1. 

3.3.2.4 Complexity Calculations 

The preprocessing phase is a one-time effort like Algebraic Attack or Fast 

Algebraic Attack. The complexity for the online phase of the attack is calculated for 

case where product of original function sequence and Annihilator sequence is equal to 

zero. Then computation of 𝛽𝑘𝐺𝑘𝛼
𝑡𝑘  has a complexity of 𝑂(2𝜂(𝑛 − 1)) exclusive-OR 

operations in F2.  The system of equations can be efficiently solved with complexity 

of 𝑙(𝑐) log(𝑙(𝑐) 𝜂𝑙(𝑐)).The total complexity is 𝑂(2𝜂(𝑛 − 1) + 𝑙(𝑐) log 𝑙(𝑐) 𝜂(𝑙(𝑐)))). 

The section 3.3.2.3 example total complexity is O(26.5).  It requires 9 keystream bits 

for solving 5 independent equations to recover the initial state.   

3.4 Summary 

In this chapter the DFT attack description and methodology has been described. 

The DFT attack complete process has been followed by taking examples for both 

algorithms for better understanding.  The actual procedure has been carried out by 

going through algorithms and example. At the end, the complexity of the DFT attack 

is calculated with a brief description. 
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C h a p t e r  4  

 

4 Discrete Fourier Transform Attack on WG-7 

4.1 Introduction 

In this chapter, details of DFT attack on WG-7 are included. The maple version 

15 has been used to generate the results as per DFT attack methods mentioned in the 

literature [6][7]. DFT attack has not been carried out on WG-7 cipher except 

comments made on complexity of DFT attack by the designer’s [9]. The complexity 

calculation has been based on the algorithm specified in [2]. 

This section is organized as following: In Section 4.2, specification of WG-7 

has been described in detail. Section 4.3 gives a small account of algebraic and fast 

algebraic attack against WG-7. Section 4.4 contains the results of the DFT attack 

against WG-7 and Section 4.5 contains the modified DFT attack methods against 

WG-7. 

4.2 WG-7  

WG-7 is a synchronous stream cipher, designed by Yiyuan Luo, Qi Chai, 

Guang Gong  and Xuejia Lai in 2010[9]. The cipher has two steps: the initialization 

step and the keystream generation step. WG-7 has 80-bit key and 81-bit initial value 

(IV). The cipher is designed as light weight cipher for RFID tags application.  

4.2.1 Specifications 

WG-7 is designed to generate up to 224 bits of key stream from an 80-bit key 

length and an 81-bit initialization vector. The parameters are shown in Table 4.1. The 

internal state of 161 bits [𝑠1, … , 𝑠161]  is divided into one LFSRs of length 23, 

containing 7 bit word each. The cipher consists of a 23 stage LFSR over 𝐹27 and a 
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WG linear transformation. The finite field is defined by primitive 

polynomial   𝑔(𝑥) = 𝑥7 + 𝑥 + 1. The characteristic polynomial is primitive over 𝐹27 

and is given by f(x) =  𝑥23 +  𝑥11 + 𝛼 , where 𝛼 is root of g(x). It has the ideal two-

level autocorrelation property and offers better security against algebraic attack. The 

non-linear transformation is defined by equation 4.1:- 

WG7(x) = Tr(𝑥3 + 𝑥9 + 𝑥21 + 𝑥57 + 𝑥87), 𝑥 ∊  𝐹27       (4.1) 

Table 4.1 Parameters of WG-7 

Key Length IV Length Internal State 

80-bit 81-bit 161-bit 

 

The structure of the cipher is shown in Figure 4.1. 

 

Figure 4.1 WG-7 

4.3 Application of Algebraic and Fast Algebraic Attack on WG-7 

Mohammad Ali Orumiehchiha et. al.[9] launched algebraic attack and fast 

algebraic attacks to recover the initial state of the cipher. The degree of the filter 

function has been reduced by the introduction of annihilators for both algebraic and 

fast algebraic attack.  The algebraic attack has been predicted with time complexity of 

254.36 and memory complexity of 219.38. Fast algebraic attack has been predicted with 

time complexity of 226.73, data complexity of 219.38, memory complexity of 214.66 and 

pre-computation of 226.87. 
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4.4 Application of Discrete Fourier Transform Attack on WG-7 

This section presents various versions of the DFT attack launched against WG-7 

to check their efficacy. 

4.4.1 Application of Selective DFT Attack on WG-7 

Selective DFT attack cannot be applied on practical ciphers as linear complexity 

is equal to complete period of the cipher. The WG-7 cipher has the period equal to 

2161. Although the linear complexity has reduced due to the design of cipher by a 

factor as mentioned in Ronjom et al. [2], still it is enough to restrict the selective DFT 

attack.   

4.4.2 Application of Helleseth et al. [2] New Attack on the Cipher  

Ronjom and Helleseth [2] proposed a variation of algebraic attack on binary 

filter generators. The attack make use of E keystream bits with a complexity O(E), 

where E is linear complexity of the keystream 𝐸 = ∑ (𝑛
𝑗
)𝑒

𝑗=1  and e is the degree of the 

boolean function f. The pre-computation complexity of the attack is 𝑂(𝐸(𝐿𝑜𝑔2𝐸)
3). 

For WG-7, the attack requires 225.5 keystream bits with a complexity of 𝑂(225.5) with 

a precomputations complexity of 𝑂(239.5). If the length of keystream captured is less 

than 225 then the rest of bits 225.5 − 225 > 223 have to be guessed by the attacker to 

launch this attack. The DFT attack has been rejected in the last assessment made in [9] 

that attacker cannot obtain cannot obtain 224 bits in succession thereby it is expensive 

than brute force attack. Ronjom et. al.[2] new attack cannot be applied using the 

annihilator due to requirement of keybits in succession and only 1’s in captured 

stream can be converted into 0. The 0’s in the stream have to be guessed for two 

possible values (0 or 1). This guess work adds more complexity in the DFT attack. 
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4.4.3 Application of Fast Selective DFT Attack using Annihilator 

The DFT attack mentioned in [6] has been extended to WG-7 Cipher using the 

annihilator discovered in [10]. The annihilator is discovered for launching of the 

algebraic attack against the cipher with an algebraic immunity of 3. The algebraic 

normal form (ANF) of the filter function is mentioned as equation 4.2: 

g(y1,...,y7) = y1 + y1y3 + y2y3 + y4 + y1y4 + y2y4 + y1y2y4 + y3y4 + y1y3y4 + y1y2y3y4 + 

y1y3y5 + y4y5 + y1y2y4y5 + y1y2y3y4y5 + y6 + y2y6 + y1y2y6 + y1y2y3y6 + y1y2y4y6 + 

y1y2y3y4y6 + y1y5y6 + y3y5y6 + y1y4y5y6 + y3y4y5y6 + y7 + y2y7 + y1y2y7 + y2y3y7 + 

y1y4y7 + y1y2y4y7 + y1y2y3y4y7 + y5y7 + y1y5y7 + y1y3y5y7 + y1y2y3y5y7 + y2y4y5y7 + 

y2y3y4y5y7 + y6y7 + y1y2y6y7 + y1y3y6y7 + y1y2y3y6y7 + y2y4y6y7 + y1y3y4y6y7 + 

y2y3y4y6y7 + y5y6y7 + y2y5y6y7 + y1y2y5y6y7  + y2y3y5y6y7  + y1y4y5y6y7  + y3y4y5y6y7. 

                                                                                                                                  (4.2)                                                                                                                                

4.4.3.1 Transformation of Annihilator into DFT Form 

The Annihilator is transformed from Polynomial form into DFT form by using 

maple platform. The algebraic form obtained from [10] is mentioned as equation 4.3: 

h(y1,...,y7) = 1 + y1 + y3 + y1y2y3 + y4 + y1y4 + y2y4 + y1y2y4 + y3y4 + y1y3y4 + y2y3y4 + 

y1y3y5 + y4y5 + y1y4y5 + y3y4y5 + y6 + y1y6 + y2y6 + y1y2y6 + y3y6 + y2y3y6 + y7 + y3y7 

+ y1y3y7 + y2y3y7 + y4y7 + y2y4y7 + y3y4y7 + y3y5y7 + y4y5y7 + y6y7 + y1y6y7 + y2y6y7 + 

y3y6y7.                                                                                                                        (4.3) 

The DFT form of annihilator has been obtained by using the method mentioned in [3]. 

The same is repeated here for clarity by using the example.  

Example 1: A filter generator consisting of an m-sequence v = {vt} has been designed 

which is produced by 

 ℎ(𝑥) = 𝑥3 + 𝑥 + 1 ∊ 𝐹2                                                   (4.4) 

and filtered through this boolean function  
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𝑓(𝑥0, 𝑥2) = 𝑥0𝑥2                                                               (4.5) 

with deg(f) = 2. Let (e0,e1) = (0,2) are the tapping positions from the register such that 

the keystream sequence at is given by 

𝑎𝑡 = 𝑓𝑡(𝑠0, 𝑠1, 𝑠2) = 𝑓(𝑠𝑡+𝑒0 , 𝑠𝑡+𝑒1) = 𝑠𝑡𝑠𝑡+2                  (4.6) 

The cyclotomic cosets modulo 3 are 

C1 = {1, 2, 4} 

C3 = {3, 6, 5} 

Now {Bk} is computed for k= {1,3}. For k = 1, value of v = (v0, v1, v2) is required 

that satisfies the condition ∑ 𝑣𝑖2
𝑖 ≡  1(mod 7)2

𝑖=0  and ∑ 𝑣𝑖 =  2
2
𝑖=0 . There is only one 

v that satisfies these conditions, which is v = (0, 0, 2), so Equation 4.7 is computed:- 

B1 = α4e0+4e1                                                                                                       (4.7) 

B1 = α8 = α 

For k = 3, value of v = (v0, v1, v2) is required that satisfies the condition ∑ 𝑣𝑖2
𝑖 ≡2

𝑖=0

 3(mod 7) and ∑ 𝑣𝑖 =  2
2
𝑖=0 . There is only one v that satisfies these conditions, which 

is v = (1, 1, 0), so Equation 4.8 is computed:- 

B3 = αe0+2e1 + α2e0+e1                                                                                (4.8) 

B3 = α4 + α2 = α 

The sequence can be written as 

𝑎𝑡 = ∑ 𝑇𝑟1
𝑛𝑘(Bk𝑥

𝑘)𝑘∈𝑇(2)                                                  (4.9) 

𝑎𝑡 = 𝑇𝑟1
3(B1𝑥 + B3𝑥

3)                                                      

𝑎𝑡 = 𝑇𝑟1
3(𝛼𝑥 + 𝛼𝑥3)                                                          

The method is automated by using the Maple code mentioned in CD attached with the 

thesis. Each degree relations has been evaluated separately and generated by 𝒙𝟕 + 𝒙 +

𝟏 as the base polynomial is represented using cyclotomic cosets of 𝐺𝐹(27) . The 
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cyclotomic cosets of 𝐺𝐹(27) are 1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 27, 29, 31, 43, 47, 

55 and 63: 

𝐵1 = α
97 + α96 + α69 + α67 + α66 + α65 + α35 + α33 + α6 + α5 + α4 + α3 + 1  

(4.10) 

𝐵3 = α
76 + α75 + α73 + α72 + α69 + α68 + α66 + α65 + α17 + α16 + α15 +

α14 + α12 + α11 + α10 + α7 + α6 + α5 + α3 + α2                                        (4.11) 

𝐵5 = α
89 + α87 + α85 + α82 + α81 + α79 + α71 + α67 + α66 + α65 + α29 +

α27 + α26 + α25 + α23 + α18 + α17 + α16 + α15 + α11 + α10 + α6 + α3 + α2                

(4.12) 

𝐵7 = α
36 + α32 + α29 + α28 + α26 + α25 + α22 + α21 + α20 + α18 + α14 +

α13 + α10 + α8 + α6 + α4                                                                              (4.13) 

𝐵9 = α
113 + α107 + α105 + α104 + α100 + α98 + α97 + α91 + α89 + α88 + α85 +

α84 + α81 + α80 + α77 + α76 + α75 + α73 + α69 + α67 + α66 + α65 + α53 +

α51 + α49 + α45 + α41 + α38 + α33 + α32 + α31 + α30 + α29 + α28 + α20 +

α18 + α17 + α15 + α12 + α9 + α7 + α6 + α5 + α4 + α3 + α2                       (4.14) 

𝐵11 = α
60 + α58 + α57 + α55 + α54 + α52 + α48 + α47 + α45 + α41 + α39 +

α38 + α37 + α36 + α35 + α34 + α33 + α32 + α31 + α30 + α28 + α26 + α24 +

α23 + α22 + α21 + α20 + α19 + α18 + α17 + α15 + α13 + α12 + α11 + α7 + α4                         

(4.15) 

𝐵13 = α
70 + α69 + α68 + α67 + α65 + α62 + α60 + α58 + α56 + α55 + α53 +

α52 + α46 + α45 + α44 + α40 + α36 + α35 + α34 + α33 + α32 + α26 + α23 +

α22 + α20 + α19 + α18 + α17 + α12 + α10 + α7 + α6                                   (4.16) 

𝐵19 = α
108 + α106 + α105 + α103 + α101 + α98 + α94 + α93 + α92 + α90 +

α88 + α86 + α85 + α84 + α82 + α81 + α79 + α78 + α76 + α74 + α72 + α71 +

α70 + α68 + α67 + α66 + α64 + α61 + α56 + α53 + α52 + α47 + α46 + α45 +
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α42 + α37 + α36 + α35 + α34 + α32 + α31 + α30 + α25 + α24 + α23 + α22 +

α21 + α20 + α19 + α18 + α17 + α16 + α14 + α10 + α7 + α4                         (4.17) 

𝐵21 = α
118 + α117 + α116 + α115 + α114 + α112 + α110 + α108 + α107 + α106 +

α105 + α103 + α102 + α101 + α98 + α94 + α91 + α89 + α84 + α82 + α81 + α75 +

α74 + α73 + α72 + α70 + α67 + α64 + α62 + α61 + α59 + α53 + α51 + α49 +

α44 + α43 + α42 + α41 + α39 + α36 + α35 + α34 + α33 + α28 + α27 + α24 +

α16 + α13 + α12 + α11 + α7 + α6                                                                  (4.18) 

Combining all the cyclotomic cosets to represent the sequence using equation 4.9 for 

T=127, the DFT form for Annihilator of WG-7 is mentioned in Equation 4.19 as: 

𝑔 = 𝛼3𝑥 + 𝛼10𝑥3 + 𝛼30𝑥5 + 𝛼78𝑥7 + 𝛼113𝑥9 + 𝛼19𝑥11 + 𝛼31𝑥13 + 𝛼33𝑥19 +

𝛼97𝑥21                                                                                                            (4.19) 

4.4.3.2 Results of the Discrete Fourier Transform Attack 

Applying the attack mentioned in [6] and section 3.3.2 with the use of Equation 

4.19 annihilator recovers 7 bits of keybits out of 161 bits by solving independent 

relations. The method is automated by using the Maple code mentioned in CD 

attached with the thesis. The independent relations are mentioned in Table 4.2:  

Table 4.2  Equations Generated for Fast Selective DFT Attack on WG-7 

Indexes Equation 

4 
α

3
β+α

10
β

3
+α

30
β

5
+α

78
β

7
+α

113
β

9
+α

19
β

11
+α

31
β

13
+α

33
β

19
+α

97
β

21
+1 

7 
α

6
β+α

19
β

3
+α

45
β

5
+α

99
β

7
+α

13
β

9
+α

52
β

11
+α

70
β

13
+α

90
β

19
+α

33
β

21
+1 

10 
α

9
β+α

28
β

3
+α

60
β

5
+α

120
β

7
+α

40
β

9
+α

85
β

11
+α

109
β

13
+α

20
β

19
+α

96
β

21
+1 

11 
α

10
β+α

31
β

3
+α

65
β

5
+β

7
+α

49
β

9
+α

96
β

11
+α

122
β

13
+α

39
β

19
+α

117
β

21
+1 

15 
α

11
β+α

34
β

3
+α

70
β

5
+α

7
β

7
+α

58
β

9
+α

107
β

11
+α

8
β

13
+α

58
β

19
+α

11
β

21
+1 

17 
α

9
β+α

28
β

3
+α

60
β

5
+α

120
β

7
+α

40
β

9
+α

85
β

11
+α

109
β

13
+α

20
β

19
+α

96
β

21
+1 
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21 
α

12
β+α

37
β

3
+α

75
β

5
+α

14
β

7
+α

67
β

9
+α

118
β

11
+α

21
β

13
+α

77
β

19
+α

32
β

21
+1 

23 
α

16
β+α

49
β

3
+α

95
β

5
+α

42
β

7
+α

103
β

9
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For rest of the key bits (154) the recovery method mentioned in [2] will be used. 

The same will have a negligible impact in terms of decreasing the requirement of 

keybits. The complexity calculations are appended in the section below:  The keybits 

requirement is 225.10  for online phase. The preprocessing phase requires 

keybits  239.15  and storage on the order of 225.10  with complexity on the order 

of 225.10.  
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4.4.3.3 Complexity of the attack 

The comparisons of complexity of the attack in [9] and Combination of DFT 

attack and Fast Selective DFT Attack is appended in the Table 4.3. It is evident that 

this combinational attack is costly than attack complexity presented by Yiyuan et al. 

[9]. 

Table 4.3  Complexities Comparisons of Fast Selective DFT Attack with Earlier Version 

 

4.5 Modification in Application of Fast Selective DFT Attack on 

WG-7 

The application of Fast Selective DFT attack [6] on WG-7 cipher doesn’t 

achieve considerable decrease in complexity of the attack due to structure of the 

cipher (WG-7). As the structure of the word oriented cipher hinders in computation of 

the DFT for the complete period (2161 -1) and absence of the polynomial which 

completely defines the period.  

To address the issue of significant decrease in complexity of the DFT attack, a 

primitive polynomial will be derived to define the complete period of the WG-7 

cipher before application of filter function.  The polynomial derived as a result will be 

used to calculate DFT form of the annihilator and original function for subsequent use 

Complexity DFT Attack[9] Combination of Helleseth New 

attack and Fast Selective DFT 

Attack   

Pre-Computation(Offline) O(239.5) O(239.15) 

Data 225.5 225.10 

Storage 239.51 239.16 

Computational(Online) O(229.5) O(229.10) 
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in two methods. Method-1 will use annihilator function to recover the initial keybits 

of the cipher. Method-2 will use original filter function for application of the fast 

selective DFT attack. To further illustrate this procedure, a simulated cipher similar in 

structure to WG-7 has been used. The methods are explained in detail in subsequent 

sections:-  

4.5.1 Fast Selective DFT Attack using Annihilator 

Two phases of the attack will be utilized to perform this method, offline and 

online. The relevant details of these methods are as following: 

4.5.1.1 Precomputation (Offline) Phase 

In precomputations phase, polynomial form of the WG-7 cipher without filter 

generator will be computed. For this purpose, two outputs of the cipher will be taken 

simultaneously cipher one without filter function and second with annihilator from 

equation 4.3. The cipher will be run with initial state set as (0, 0,…..,α128). The bits for 

complete period (2161) of the cipher will be generated. The bits generated without 

filter function (equation 4.1) will be XORed to calculate the primitive polynomial of 

the cipher using known BM algorithm. The polynomial will be primitive in GF (2n) 

where n= 161.   

The primitive polynomial will then be used to compute DFT coefficients (Trace 

form) of the annihilator by using the fast algorithm of computing DFT (FDFT) [7]. 

The output of the cipher with annihilator will be utilized for the purpose. Cyclotomic 

cosets leaders for the GF(2161) will be identified to represent the trace form of the 

annihilator.  The trace form will then be used in online phase for launching fast 

selective DFT attack as described by Gong et. al.[6] and in section 3.3.2. The 

requirement of storage will increase on the O(2162). The major computation of the 

attack will be carried out in this phase and it is a onetime effort. 
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4.5.1.2 Online Computation Phase 

Significant decrease in linear span of the cipher will be achieved by the 

introduction of the annihilator which also reduces requirement of linear independent 

equations. The system of equation for the captured bits will be generated by the 

method as mentioned in section 3.3.2.3 to recover the initial state of the filter 

generator (WG-7). The system of equation will be solved as already discussed in 

section 3.3.2.2 for recovering initial state of the cipher. Complexity of the attack is 

mentioned in the Table 4.5. 

4.5.1.3 Application of DFT Attack on Simulated Filter Generator   

A filter generator has been introduced to simulate the proposed method in 

section 4.5.1. The relevant details are given subsequently:- 

4.5.1.3.1 Specification of Filter Generator 

Filter generator is designed to generate up to 210-1 bits of key stream from a 10 

bit key length. The internal state of 10 bits [𝑠1, … , 𝑠10] is divided into one LFSRs of 

length 2, containing 5 bit word each. The cipher consists of a 2 stage LFSR over 𝐹25 

and a linear transformation. The finite field is defined by primitive 

polynomial   𝑔(𝑥) = 𝑥5 + 𝑥3 + 1. The characteristic polynomial is primitive over 𝐹25 

and is given by  f(x) =  𝑥2 +  𝑥 + 𝛼7 , where 𝛼  is root of g(x). The non-linear 

transformation is defined by equation 4.20:- 

ℎ = 𝑥0 + 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥0𝑥1𝑥2 + 𝑥3 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥1𝑥2𝑥3 + 𝑥4 + 𝑥0𝑥4 +

𝑥1𝑥4 + 𝑥0𝑥1𝑥4 + 𝑥2𝑥4 + 𝑥0𝑥2𝑥4 + 𝑥1𝑥2𝑥4 + 𝑥0𝑥3𝑥4                                   (4.20) 

4.5.1.3.2 Offline Mode Computation 
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In offline mode, two outputs of the word oriented LFSR is taken. The period of 

the cipher is 210-1=1023, where n=mk=10, m=5 and k=2. One output is without its 

output filter function for the complete period. The other is with the use of annihilator 

mentioned as equation 4.21. Both the outputs are stored with a storage requirement of 

211.  

𝑘 = 𝑥2 + 𝑥0𝑥2 + 𝑥1𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥3𝑥4                  (4.21) 

The output of the LFSR word is XORed in order to convert it from F2
5 to F2. If all the 

bits can be represented as [𝑥0, … , 𝑥9], then XORed function is performed on the bits 

as 𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4. Then it is used as input to BM algorithm to generate the 

primitive polynomial as equation 4.22: 

    𝑙(𝑥) = 𝑥10 + 𝑥9 + 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1                                  (4.22) 

After this step, the DFT form or trace form for the annihilator is generated as per 

algorithm specified in Section 4.4.3.1. The same can be re-verified by using the 

output of the cipher with annihilator and calculating DFT for their cyclotomic cosets 

leaders: 

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 

49, 51, 53, 55, 57, 59, 61, 63, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 99, 101, 

103, 105, 107, 109, 111, 115, 117, 119, 121, 123, 125, 127, 147, 149, 151, 155, 157, 

159, 165, 167, 171, 173, 175, 179, 181, 183, 187, 189, 191, 205, 207, 213, 215, 219, 

221, 223, 231, 235, 237, 239, 245, 247, 251, 253, 255, 341, 343, 347, 351, 363, 367, 

375, 379, 383, 439, 447, 479, 495, 511] 

The final trace form of the annihilator is mentioned as equation 4.23: 

K(x) = Tr(𝛼66𝑥 + 𝛼858𝑥3 + 𝛼693𝑥5 + 𝛼429𝑥9 + 𝛼429𝑥17), 𝑥 ∊  𝐹210        (4.23) 

4.5.1.3.3   Online Mode Computation 
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In online computation, the equation 4.23 will be used to recover the initial state 

or bits of the cipher. The bits captured by the adversary are now used to perform fast 

selective DFT attack. The initial state of the LFSR can be represented as:  

𝑤0 = 𝑇𝑟(𝛽) ,  𝑤1 = 𝑇𝑟(𝛼𝛽) , 𝑤2 = 𝑇𝑟(𝛼
2𝛽) , 𝑤3 = 𝑇𝑟(𝛼

3𝛽) , 𝑤4 = 𝑇𝑟(𝛼
4𝛽),𝑤5 =

𝑇𝑟(𝛼5𝛽) ,  𝑤6 = 𝑇𝑟(𝛼
6𝛽) , 𝑤7 = 𝑇𝑟(𝛼

7𝛽) , 𝑤8 = 𝑇𝑟(𝛼
8𝛽) , 𝑤9 = 𝑇𝑟(𝛼

9𝛽)      (4.24) 

To find out the initial state, β needs to be computed and captured keystream bits will 

be utilized for the purpose. All bits index ‘i’ where bits value is 1 will be used to form 

system of equation on F2
10. The equation 4.23 will be substituted for 𝑥 = 𝛼𝑖𝛽 to form 

equation as 

𝑇𝑟(𝛼66𝛼𝑖𝛽 + 𝛼858𝛼3𝑖𝛽3 + 𝛼693𝛼5𝑖𝛽5 + 𝛼429𝛼9𝑖𝛽9 + 𝛼429𝛼17𝑖𝛽17) = 0   (4.25) 

Then all corresponding 𝛽𝑛 is replaced as 

𝛽𝑛 = 𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4 + 𝛼

5𝑥5 + 𝛼
6𝑥6 + 𝛼

7𝑥7 + 𝛼
8𝑥8 +

𝛼9𝑥9                                                                                                                              (4.26)                      

System of equation is generated using equation 4.26 as: 

𝑇𝑟(𝛼66𝛼𝑖(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4 + 𝛼

5𝑥5 + 𝛼
6𝑥6 + 𝛼

7𝑥7 + 𝛼
8𝑥8 +

𝛼9𝑥9)) +  𝑇𝑟(𝛼858𝛼3𝑖(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4 + 𝛼

5𝑥5 + 𝛼
6𝑥6 + 𝛼

7𝑥7 +

𝛼8𝑥8 + 𝛼
9𝑥9)) + 𝑇𝑟(𝛼693𝛼5𝑖(𝑥0 + 𝛼𝑥1 + 𝛼

2𝑥2 + 𝛼
3𝑥3 + 𝛼

4𝑥4 + 𝛼
5𝑥5 + 𝛼

6𝑥6 +

𝛼7𝑥7 + 𝛼
8𝑥8 + 𝛼

9𝑥9)) + 𝑇𝑟(𝛼429𝛼9𝑖(𝑥0 + 𝛼𝑥1 + 𝛼
2𝑥2 + 𝛼

3𝑥3 + 𝛼
4𝑥4 + 𝛼

5𝑥5 +

𝛼6𝑥6 + 𝛼
7𝑥7 + 𝛼

8𝑥8 + 𝛼
9𝑥9)) + 𝑇𝑟 (𝛼429𝛼17𝑖(𝑥0 + 𝛼𝑥1 + 𝛼

2𝑥2 + 𝛼
3𝑥3 + 𝛼

4𝑥4 +

𝛼5𝑥5 + 𝛼
6𝑥6 + 𝛼

7𝑥7 + 𝛼
8𝑥8 + 𝛼

9𝑥9)) = 0                                                         (4.27)                                 

From the linearity of the trace function, system of equation is solved to extract values 

of {x0,..x9}. Which is finally substituted to get value of  β to recover the initial state. 

The complexity of attack is mentioned in Table 4.4. 
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4.5.2 Fast Selective DFT Attack with Original Function 

Two phases of the attack will be utilized to perform this method, offline and 

online. The relevant details of these methods are as following: 

4.5.2.1 Precomputations (Offline) Phase  

In precomputations phase, polynomial form of the WG-7 cipher without filter 

generator will be computed. For this purpose, two outputs of the cipher will be taken 

simultaneously cipher one without filter function and other with filter function from 

equation 4.2. The cipher will be run with initial state set as (0, 0,…..,α128). The bits for 

complete period (2161-1) of the cipher will be generated. The bits generated without 

filter function will be XORed to calculate the primitive polynomial of the cipher using 

known BM algorithm. The polynomial will be primitive in GF (2n) where n= 161.   

The primitive polynomial will then be used to compute DFT coefficients (Trace form) 

of the annihilator by using the fast algorithm of computing DFT (FDFT) [7]. The 

output of the cipher with original function will be utilized for the purpose. Cyclotomic 

cosets leaders for the F2
161 will be identified to represent the trace form of the original 

function.  The trace form will then be used in online phase for launching fast selective 

DFT attack as described by Gong et. al.[6] and section 3.3.2. The requirement of 

storage will increase 2162. The major computation of the attack will be carried out in 

this phase and it is a onetime effort. 

4.5.2.2 Online Computation Phase 

The system of equation for the captured bits will be generated by the method as 

mentioned in section 3.3.2.2 to recover the initial state of the filter generator (WG-7). 

The system of equation will be solved as already discussed in section 3.3.2.2 for 
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recovering initial state of the cipher. The complexity of the attack is mentioned in 

Table 4.5. 

4.5.2.3 Application of DFT Attack on Simulated Filter Generator   

The filter generator introduced in the section 4.5.1.3 has been used to simulate 

the proposed method in section 4.5.2. The trace representation of {hi} is: 

𝐻(𝑥) = 𝑇𝑟(𝛼462𝑥 + 𝛼858𝑥3 + 𝛼330𝑥5 + 𝛼363𝑥7 + 𝛼594𝑥9 + 𝛼528𝑥11 + 𝛼66𝑥13 +

𝛼429𝑥17 + 𝛼693𝑥19 + 𝛼264𝑥21 + 𝛼858𝑥25 + 𝛼363𝑥69 + 𝛼528𝑥73)                   (4.28)                                                                                                       

The method will remain the same as mentioned in 4.5.1.3 with exception of using 

equation 4.28 instead of equation 4.23 to recover the initial state. The complexity of 

attack is mentioned in Table 4.4. 

Table 4.4  Comparisons of Key Recovery Attacks on Simulated Filter Generator 

4.6 Comparison of Key Recovery Attacks on WG-7  

This table compares the various key recovery attack complexity results of 

predicted DFT attack by Yiyuan et. al.[9], Algebraic/FAA attack by Orumiehchiha et. 

al.[10] and proposed fast selective DFT attack with or without annihilator. It is 

evident by comparison of the complexities that proposed fast selective DFT attack 

with annihilator (method-1) is efficient in online phase and keybits requirement than 

Yiyuan et. al. [9] predicted DFT attack, however, precomputation phase and storage is 

Complexity DFT Method Algebraic 

Attack   

Fast Selective 

DFT method-1  

Fast Selective 

DFT method-2  

Pre-Computation(Offline) O(216.15) - O(216.8) O(218.6) 

Data 27.48 25.79 25 27.2 

Computational(Online) O(211.25) O(212.752) O(29.3) O(211.15) 
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costly than the former. The method-1 is also efficient in online phase and keybits 

requirement than Algebraic/FAA attack but costly in precomputation and storage. The 

DFT attack without annihilator (method-2) is of the same complexity as the Yiyuan et. 

al. [9] predicted DFT attack except the precomputation phase which is costly for the 

method-2. 

Table 4.5  Comparisons of Key Recovery Attacks on WG-7 

4.7 Summary 

In this chapter, new results of Discrete Fourier Transform attack against the 

stream cipher WG-7 have been presented which is an improvement over the previous 

attack. First a method has been presented which recovers few bits of the initial value. 

After this method two more methods have been presented which display significant 

improvement over the previous methods. 

 

 

 

 

 

 

Complexity DFT 

Method[9] 

Algebraic 

Attack  [10] 

Fast 

Algebraic 

attack[10] 

Fast 

Selective 

DFT 

method-1  

Fast 

Selective 

DFT 

method-2  

Pre-Computation(Offline) O(239.5) - 226.87 O(241) O(245) 

Data 225.5 219.38 219.38 218 225.15 

Computational(Online) O(229.5) 254.36 226.73 O(223.5) O(229.75) 
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C h a p t e r  5  

5 Discrete Fourier Transform Attack on Clock Controlled 

and Block Cipher 

5.1 Introduction 

In this chapter, DFT attacks are launched against clock controlled and block 

cipher to check its efficacy. This evaluation has never been carried out since inception 

of the attack; however, a brief method in literature is available in [7]. For clock 

controlled cipher evaluation is carried out against Alternating Step Generator and 

Shrinking Generator. For block cipher evaluation Toy cipher is used. The main reason 

to employ the small structures for the development of the attack is to first check the 

applicability of the attack with encouraging results and later develop the attack on 

similar practical structure of stream/block cipher. 

Section 5.2 describes the construction of Alternating step generator and the 

evaluation of the generator against DFT attack. Section 5.3 describes the construction 

of Shrinking generator and the evaluation of the generator against DFT attack and 

Section 5.4 describes the construction of CTC and the evaluation of the cipher against 

DFT attack.  

5.2 DFT Attack against the Alternating Step Generator 

Alternating Step Generator, a stream cipher introduced in [13]. It is shown in 

Figure 5.1. 
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Figure 5.1 Alternating Step Generator 

5.2.1 Specifications 

To simulate attack on the alternating Step Generator a three LFSR of different 

lengths relatively prime to each other are used. The parameters are summarized in 

Table 5.1. 

Table 5.1 Parameters of Alternating Step Generator 

Parameters LFSR A LFSR B LFSR C 

Lengths 2 3 5 

Polynomial 𝑥2 + 𝑥 + 1 𝑥3 + 𝑥 + 1 𝑥5 + 𝑥3 + 1 

5.2.2 Keystream Generation 

LFSR A is controlling the clocking of the other two LFSR. When the output of 

LFSR A is one it triggers LFSR B and when the output of LFSR A is zero it triggers 

the LFSR C. The output is taken as XOR of the LFSR B and C registers. The system 

output can be represented by the equation: 

𝑧𝑡 = 𝐵𝑡
𝑚 + 𝐶𝑡

𝑛                                                                     (5.1) 

Where m is the length of LFSR B and n is the length of LFSR C. The period of the 

Alternating step generator is defined as 

𝑝𝑑 = (2𝑙 − 1)(2𝑚 − 1)(2𝑛 − 1)                                       (5.2) 
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Which comes out to be 651 for l=2, m=3 and n=5. The system of equation to relate all 

the LFSR’s as defined in [11] are: 

𝑧𝑡⊕𝑧𝑡+1 = (𝐵𝑚
𝑡 ⊕𝐵𝑚−1

𝑡 )𝐴𝑙
𝑡 + (𝐶𝑛

𝑡 ⊕𝐶𝑛−1
𝑡 )(𝐴𝑙

𝑡⊕1)  (5.3)    

Multiplying both sides of the equation 5.3 with (𝐴𝑙
𝑡 + 1) gives 

(𝑧𝑡⊕ 𝑧𝑡+1)(𝐴𝑙
𝑡⊕1) = (𝐶𝑛

𝑡 ⊕𝐶𝑛−1
𝑡 )(𝐴𝑙

𝑡⊕1)                (5.4)   

Multiplying both sides of the equation 5.3 with 𝐴𝑙
𝑡 gives 

(𝑧𝑡⊕ 𝑧𝑡+1)𝐴𝑙
𝑡 = (𝐵𝑚

𝑡 ⊕𝐵𝑚−1
𝑡 )𝐴𝑙

𝑡                                    (5.5)         

5.2.3 Application of Fast Selective DFT Attack 

Fast Selective DFT Attack has been performed on Alternate Step Generator 

using the method by Gong et. al. in [6]. The attack is launched in Galois extension 

field to carryout computations of the multivariate variables generated from the 

equations given by Al-Hinai et al. in [11]. The implementation is carried out on maple 

version 15. The maple code to automate the process is mentioned in CD attached with 

the thesis. Each LFSR is represented by its trace representation and substituting the 

same trace form in Equation 5.5 gives following equation:  

𝑇𝑟1
2(𝑥)(𝑇𝑟1

3(𝑥 + 𝛼𝑥) ⊕ 1) = 0                                         (5.6)         

Equation 5.6 is applicable where output bits are all one for 𝑧𝑡⊕𝑧𝑡+1 = 1.  Now 𝑥 is 

replaced with 𝛼𝑣𝛽 for 𝑇𝑟1
2(𝑥), where v is the index position of t when 𝑧𝑡⊕ 𝑧𝑡+1 =

1.   Then 𝛽  is replaced with  𝑥0 + 𝛼𝑥1 . Similarly, 𝑥  is be replaced with  𝛼𝑣𝛾  for 

𝑇𝑟1
3(𝑥), where v is the index position of t when 𝑧𝑡⊕ 𝑧𝑡+1 = 1.   Then 𝛾 is replaced 

with  𝑦0 + 𝛼𝑦1 + 𝛼
2𝑦2. The trace form is transformed to find the elements of subfield 

F2 from F2
n.The equations mentioned in Table 5.2 have been generated for 128 

captured bits and evaluated to find the initial state: 
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Table 5.2  Equation for Alternating Step Generator 
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The multivariate equations developed as result of Fast selective DFT attack is solved 

by guessing values of 𝑥0 𝑎𝑛𝑑 𝑥1 to find the value of 𝑦0 , 𝑦1 𝑎𝑛𝑑 𝑦2 . These values 

have been used to extract the shift β and 𝛾 to recover the initial state of the Alternating 

Step Generator. There are total four guess values due to polynomial 𝑥2 + 𝑥 + 1 being 

used to generate the states of LFSR.  

The results are not so much encouraging for the further development of attack 

because no unique solution is possible of the equation system. Guess work is required 

which adds complexity to extract the shift β and 𝛾 to recover the initial state of the 

Alternating Step Generator. The cost and complexity is more than the known generic 

methods like algebraic attack and correlation attack described in [11]. The difficulty 

being experienced is to separate linear and non-linear part of the cipher to accomplish 

successful results in application of DFT attack.  

5.2.4 Application of Selective DFT Attack 

Selective DFT Attack has been performed on Alternate Step Generator using 

the method by Gong in [7] and Section 3.3.1. The implementation carried out on 

maple version 15. The maple code to automate the process is mentioned in CD 

attached with the thesis. The minimal polynomial is formed as following with a linear 

span of 49:  

𝑔(𝑥) = 𝑥49 + 𝑥42 + 𝑥21 + 𝑥14 + 1                                  (5.7) 
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However, the issue which arises is to find the root of the Equation 5.7 and has been 

checked on all values relatively prime to period of Alternative Step Generator. No 

value which is relatively prime to 651 is found as root or zero of equation 5.7 which 

renders this attack useless against clock controlled ciphers of this pattern. The further 

development of Selective DFT attack is stopped due to this impediment. 

5.3 DFT Attack against the Shrinking Generator 

Shrinking Generator, a stream cipher introduced in [15]. It is shown in Figure 

5.2. 

 

Figure 5.2  Shrinking Generator 

5.3.1 Specifications 

The Shrinking Generator used here has two LFSR of lengths relatively prime to 

each other. The parameters are summarized in Table 5.3. 

Table 5.3  Parameters of Shrinking Generator 

Parameters LFSR R1 LFSR R2 

Lengths 2 3 

Polynomial 𝑥2 + 𝑥 + 1 𝑥3 + 𝑥 + 1 
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5.3.2 Keystream Generation 

LFSR R1 is controlling the output of a second LFSR R2.  Registers R1 and R2 

are clocked. If the output of R1 is 1, the output bit of R2 forms part of the keystream. 

If the output of R1 is 0, the output bit of R2 is discarded. Where m is the length of 

LFSR R1 and n is the length of LFSR R2. The period of the Shrinking generator is 

defined as 

𝑝𝑑 = 2(2𝑛 − 1)                                                                  (5.8) 

Which comes out to be 14 for m=2 and n=3.          

5.3.3 Application of Selective DFT Attack 

Selective DFT Attack has been performed on Shrinking Generator using the 

method by Gong in [7] and Section 3.3.1. The implementation carried out on maple 

version 15. The maple code to automate the process is mentioned in CD attached with 

the thesis. The minimal polynomial of s is formed with a linear span of 6:  

𝑔(𝑥) = 𝑥6 + 𝑥4 + 1                                                          (5.9) 

However, the issue which arises is to find the root of the Equation 5.9 and has been 

checked on all values relatively prime to period of Shrinking Generator. No value 

which is relatively prime to 14 has been found as root or zero of Equation 5.9 which 

renders this attack useless against clock controlled ciphers of this pattern. The further 

development of Selective DFT attack is stopped due to this impediment. 

5.3.4 Application of Helleseth et al. New Attack 

Helleseth et al. new attack [1] has been performed on Shrinking Generator to 

check its efficacy after failure of selective DFT attack. The implementation carried 

out on maple version 15. The maple code to automate the process is mentioned in CD 

attached with the thesis. The minimal polynomial is taken from Equation 5.9. 
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However, the problem posed by the equation 5.9 that it generates all the monomials of 

degree one as output of LFSR R2. Equation 5.9 eliminates all degree one relations and 

hence renders this attack useless against clock controlled ciphers of this pattern. The 

further development of the attack is stopped due to this impediment. In other words it 

can be said that the difficulty of launching Helleseth et al. New Attack [1] against 

Shrinking Generator is the non availability of polynomial for generating monomials 

of degree 2 and higher. 

5.3.5 Application of Fast Selective DFT Attack 

Fast Selective DFT Attack has been performed on Shrinking Generator using the 

method by Gong et. al. in [6] and Section 3.3.2. The attack is launched where the 

Galois extension field has been employed to carryout computations of the multivariate 

variables. The variables have been generated from the following the system of 

equation to relate all the LFSR’s: 

𝑧𝑡 = (𝐵𝑚
𝑡 )𝐴𝑙

𝑡                                                                     (5.10) 

The implementation carried out on maple version 15. The maple code to 

automate the process is mentioned in CD attached with the thesis. Each LFSR is 

represented by its trace representation and substituting the same trace form in 

Equation 5.10 gives Equation 5.11:  

𝑇𝑟1
2(𝑥)𝑇𝑟1

3(𝑥) = 𝑧𝑡                                                          (5.11)         

Equation 5.11 will be applicable where 𝑇𝑟1
2(𝑥)  is equal to one. Now 𝑥  will be 

replaced with 𝛼𝑣𝛽 for 𝑇𝑟(𝑥), where v is the index position of t when 𝑇𝑟1
2(𝑥) = 1.   

Then 𝛽 will be replaced with  𝑥0 + 𝛼𝑥1. Similarly, 𝑥 will be replaced with 𝛼𝑣𝛾 for 

𝑇𝑟1
3(𝑥), where v is the index position of t when 𝑇𝑟1

2(𝑥) = 1.   Then 𝛾 will be replaced 

with  𝑦0 + 𝛼𝑦1 + 𝛼
2𝑦2. The trace form is transformed to find the elements of subfield 
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F2 from F2
n.The equations mentioned in Table 5.4 have been generated for 7 captured 

bits and evaluated to find the initial state: 

Table 5.4  Equation for Shrinking Generator 

Indexes Equation 

1 𝑥1𝑦0=0 

3 𝑥0𝑦1=1 

4 𝑥1(𝑦0 + 𝑦2)=1 

6 𝑥0(𝑦0 + 𝑦1 + 𝑦2)=0 

7 𝑥1(𝑦0 + 𝑦1)=1 

9 𝑥0𝑦2=1 

10 𝑥1𝑦1=1 

The multivariate equations developed as result of Fast selective DFT attack is solved 

by guessing values of 𝑥0 𝑎𝑛𝑑 𝑥1 to find the value of 𝑦0 , 𝑦1 𝑎𝑛𝑑 𝑦2. These values are 

then used to extract the shift 𝛾 to recover the initial state of the Shrinking Generator. 

There are total three guess values due to polynomial 𝑥2 + 𝑥 + 1  being used to 

generate the states of LFSR.  

The results are not so much encouraging for the further development of attack 

because of more complexity than the known generic methods like algebraic attacks 

due to guess work involved.  The difficulty being experienced is to separate linear and 

non-linear part of the cipher to accomplish successful results in application of DFT 

attack. Also the base polynomial selection for calculation of DFT of the sequence is 

difficult due to presence of 2 x LFSRs primitive polynomials.  

5.4 DFT Attack against the Toy Block Cipher 

The toy block cipher considered for the purpose of evaluation of DFT attack is 

a basic Substitution-Permutation Network (SPN). A simplified structure is being 

evaluated to get a firsthand knowledge on the applicability of the DFT Attack. If the 
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applicability of DFT attack is proved on Toy cipher then practical cipher can be 

considered for finding vulnerability against this attack. 

5.4.1 TC: A Toy Block Cipher 

The Toy Cipher takes a 16-bit input block and the block is processed by 

repeating the basic operations of round four times. Each round consists of 

substitution, a transposition of the bits (permutation of the bit positions), and key 

mixing. The basic structure is presented by Feistel in 1973[14] and these basic 

properties also found in AES and DES as well. It is shown in Figure 5.3. The maple 

code to automate the process is mentioned in CD attached with the thesis. 

 

Figure 5.3  Substitution-Permutation Network 
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5.4.2 Specifications 

The Toy Cipher has a Feistel structure having a block size of 16-bit, subkey 

length of 16-bit and 4 rounds. The parameters are summarized in Table 5.5. 

Table 5.5  Parameters of Toy Cipher 

Block Size Key Length 
Number of 

Rounds 

16-bit 64-bit 4 

5.4.3 S-Box Representation 

In this cipher, the 16-bit data block is split into four 4-bit sub-blocks. Each sub-

block forms an input to a 4×4 S-box (a substitution with 4 input and 4 output bits), 

which can be easily implemented with a table lookup of sixteen 4-bit values, indexed 

by the integer represented by the 4 input bits as shown in Table 5.6. The most 

fundamental property of an S-box is that it is a nonlinear mapping, i.e., the output bits 

cannot be represented as a linear operation on the input bits.   

Table 5.6  S-box Representation 

 

5.4.4 P-Box Representation 

Each S-box output is combined to make sixteen input bits. The these bits are 

permuted to get sixteen output bits, which can be easily implemented with a table 

lookup of sixteen bit values, indexed by the position represented by each input bit as 

shown in Table 5.7. In round 4 there is no permutation after substitution. 
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Table 5.7  P-box Representation 

 

5.4.4.1 Round Function 𝑭 

Figure 5.3 illustrates the round function 𝐹  in detail consisting of an XOR 

operation followed by a Substitution and Permutation Network. The function 𝐹  is 

defined as under: 

:        (𝑋, 𝐾𝑖)        →         𝐶 = 𝑃(𝑆(𝑋 ⊕ 𝐾𝑖)) 

The last round doesnot has permutation after substitution. The output of S-Box is 

taken as Cipher text. 

5.4.5 Key Scheduling 

Key scheduling for the purpose of evaluation of DFT is considered to be an 

independent key generation for creation of each round subkey. Each round subkey 

distribution is shown below: 

𝐾 ← [𝑘0, … , 𝑘63] 

𝐾1 ← [𝑘0, … , 𝑘15] 

𝐾2 ← [𝑘16, … , 𝑘31] 

𝐾3 ← [𝑘32, … , 𝑘47] 

𝐾4 ← [𝑘48, … , 𝑘63] 

5.4.6 Decryption Algorithm 

Decryption algorithm is simply the inverse of encryption algorithm and subkeys 

used in the reverse order. There is no need to further explain the decryption algorithm 

here as it is not used in the DFT attack [7]. 
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5.4.7 Application of DFT on Toy Cipher 

The attack described in [7] is applied on the toy cipher for recovery of Key K. 

This method mainly revolves around the assumption that plaintext is formed in such a 

way that it can be regarded as output of LFSR. The attacker has the liberty to generate 

as many ciphertexts as he wants using the same key K for initial captured ciphertext. 

Attacker has obtained two ciphertexts and obtained plaintext corresponding to one of 

the ciphertext. The key remains same for both sets of ciphertexts. The plaintext are 

generated by LFSRs and padded by zero to complete the required input bits. The 

plaintexts/ciphertexts are shift equivalent of each other. The unknown plaintext will 

be found from two ciphertexts and one plaintext However, the unknown is the key K 

which will be recovered using captured and further generated ciphertexts in DFT 

attack. The method is repeated here for completeness: 

All two sequences {at} and {bt} are generated by LFSR. The LFSR sequence is 

selected such as its characteristic polynomial degree is less than length of m bits key 

K.  The Encryption process EK(x) is regarded as filtering function for a filter generator. 

Using EK(x), st=EK(at,0), at=(at,at+1,…,at+n-1), ut=EK(bt,0), bt=(bt,bt+1,…,bt+n-1) are 

generated. Where 0 is the zero vector of dimensional m-n by padding m-n bits to both 

sequences {at} and {bt}. Then 𝑢𝑡 = 𝑠𝑡+𝜏 , and 𝑈𝑘 = 𝛼
𝑘𝜏𝑆𝑘 , where {st} and {ut} 

represent the corresponding component sequences in their respective output vector 

sequences. As 𝑏𝑡 = 𝑎𝑡+𝜏, the Key K will be recovered from the DFT of {Sk} and {Uk} 

as each component is a function of K. 

5.4.8 Test Vectors 

Test vectors for Toy Cipher in binary notation with the corresponding key are 

shown in Table 5.8.  
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Table 5.8  Test Vectors  

PT CT Key-1 

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0,0,1,1,0,1,1,0,0,0,0,0,1,1,1,0 

K1:1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0 

K2:1,1,0,0,0,1,0,1,0,0,1,1,1,1,0,1 

K3:0,0,0,1,1,1,0,0,1,0,0,1,0,1,1,0 

K4:1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1 

Cosets-Leaders DFT  

0 1  

1 1  

3 α + α2  

5 0  

7 1+α3  

5.5 Results of the DFT Attack 

The selective DFT attack as mentioned in Section 3.3.1 and by Gong [7] is 

developed and implemented on the cipher. The maple code to automate the process is 

mentioned in CD attached with the thesis. The degree of selected LFSR is 4 and the 

polynomial selected as 𝑥4 + 𝑥 + 1 . Value of chosen plaintext {at} and {bt} with 

corresponding ciphertexts {st} and {ut} respectively generated by the Encryption 

function EK(x) is shown in Table 5.9. DFT Spectra for Sk and Uk are shown in Table 

5.10 and Table 5.11  respectively.  

The results are not encouraging as it doesn’t retrieve the keybits from the cipher yet 

the method devised to retrieves the plaintext from the ciphertext if the plaintext 

becomes the shifted version of the LFSR output. The limitation of retrieving the 

plaintext is that it must be generated by a linear feedback shift register and arranged in 

the output of LFSR and rest padded by the zero bits. The result proved to be not of 
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great interest as is formatted in an unrealistic way and lots of unrealistic assumptions 

required to carry out the DFT attack.  

The suggested attack against block cipher is not effective due to recovery of plaintext 

bits on unrealistic assumption about the target plaintext format. The block cipher DFT 

attack doesn’t target the symmetric key which is the aim in stream cipher version of 

the DFT attack.   

Table 5.9  LFSR Sequences for Toy Cipher 

at bt Key 

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0 

 

 

 

 

 

 

 

 

K1:1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0 

K2:1,1,0,0,0,1,0,1,0,0,1,1,1,1,0,1 

K3:0,0,0,1,1,1,0,0,1,0,0,1,0,1,1,0 

K4:1,1,1,0,1,1,0,0,1,1,0,1,0,1,0,1 

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 

1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 

1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 

1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0 1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 

1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0 0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0 

0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 

1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0 1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0 

1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 

1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0 

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

st ut 

0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1 

1+x16 

1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1 

1+x16 

0,0,0,0,1,0,1,1,0,0,1,0,0,0,1,1 0,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0 
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x14+x12+x10+x8+x6+x4+x2+1 1+x16 

0,1,1,0,0,1,0,0,1,0,0,0,1,1,1,0 

1+x16 

0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1 

1+x16 

1,0,1,1,1,0,0,1,0,1,0,1,1,1,0,0 

1+x16 

 

0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1 

x15+x14+x13+x12+x11+x10+x9+x8+

x7+ 

x6+ x5+x4+ x3+x2+x+1 

1,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1 

1+x16 

0,0,1,1,0,1,1,0,0,0,0,0,1,1,1,0 

1+x16 

0,0,1,1,0,0,0,1,0,1,0,1,1,1,0,0 

1+x16 

0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1 

1+x16 

0,0,1,0,1,0,0,0,0,1,1,1,1,1,0,1 

x10+x8+ x2+1 

0,0,0,0,1,0,1,1,0,0,1,0,0,0,1,1 

x14+x12+x10+x8+x6+x4+x2+1 

0,0,1,0,0,1,0,1,1,1,1,1,0,1,0,0 

x15+x14+x13+x12+x11+x10+x9+x8

+ 

x7+x6+ x5+x4+ x3+x2+x+1 

0,1,1,0,0,1,0,0,1,0,0,0,1,1,1,0 

1+x16 

0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1 

1+x16 

1,0,1,1,1,0,0,1,0,1,0,1,1,1,0,0 

1+x16 

0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,1 

1+x16 

1,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1 

1+x16 

1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1 

1+x16 

0,0,1,1,0,0,0,1,0,1,0,1,1,1,0,0 

1+x16 

0,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0 

1+x16 

0,0,1,0,1,0,0,0,0,1,1,1,1,1,0,1 

x10+x8+ x2+1 

0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1 

1+x16 

0,0,1,0,0,1,0,1,1,1,1,1,0,1,0,0 

x15+x14+x13+x12+x11+x10+x9+x8+

x7+ 

x6+ x5+x4+ x3+x2+x+1 

0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1 0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1 
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x15+x14+x13+x12+x11+x10+x9+x8

+ 

x7+x6+ x5+x4+ x3+x2+x+1 

1+x16 

0,0,1,1,0,1,1,0,0,0,0,0,1,1,1,0 

1+x16 

0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,1 

1+x16 

1,1,0,1,0,1,1,0,1,0,0,0,1,0,0,0 

1+x16 

Table 5.10  DFT Spectra Sk 

st 0 1 3 5 7 

0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1 1 α + α2 + α3 1+α + α2 + α3 α + α2 1+α3 

0,0,0,0,1,0,1,1,0,0,1,0,0,0,1,1 0 α2 1 + α2 1 α + α2 + α3 

0,1,1,0,0,1,0,0,1,0,0,0,1,1,1,0 1 α + α2 α + α2 1 1 + α2 + α3 

1,0,1,1,1,0,0,1,0,1,0,1,1,1,0,0 1 1 + α + α3 α2 1 + α + α2 α2 

1,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1 1 1(0) 1 + α2 0 1 + α3 

0,0,1,1,0,0,0,1,0,1,0,1,1,1,0,0 1 α2 1 + α2 + α3 1 1 

0,0,1,0,1,0,0,0,0,1,1,1,1,1,0,1 0 1 + α + α2 1+α α + α2 α + α2 

0,0,1,0,0,1,0,1,1,1,1,1,0,1,0,0 0 1+α3 1 + α + α2 α + α2 1 + α2 

0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1 1 α + α3 α + α2 1 + α + α2 α2 

0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,1 1 α + α2 α3 1 α + α3 

1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1 1 α + α3 1 α + α2 α + α3 

0,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0 1 α + α3 1+α3 1 α3 

0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1 1 α 1 0 1 + α + α2 

0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1 0 α + α3 1+α + α2 + α3 α + α2 1+α 

0,0,1,1,0,1,1,0,0,0,0,0,1,1,1,0 1 1 α + α2 0 1+α3 

Table 5.11  DFT Spectra Uk 

ut 0 1 3 5 7 

1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1 1 α + α3 1 α + α2 α + α3 
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0,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0 1 α + α3 1 + α3 1 α3 

0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,1 1 α 1 0 1 + α + α2 

0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1 0 α + α3 1+α + α2 + α3 α + α2 1 + α 

0,0,1,1,0,1,1,0,0,0,0,0,1,1,1,0 1 1 α + α2 0 1 + α3 

0,0,0,0,0,0,1,1,0,1,1,0,1,0,1,1 1 α + α2 + α3 1+α + α2 + α3 α + α2 1 + α3 

0,0,0,0,1,0,1,1,0,0,1,0,0,0,1,1 0 α2 1 + α2 1 α + α2 + α3 

0,1,1,0,0,1,0,0,1,0,0,0,1,1,1,0 1 α + α2 α + α2 1 1 + α2 + α3 

1,0,1,1,1,0,0,1,0,1,0,1,1,1,0,0 1 1 + α + α3 α2 1 + α + α2 α2 

1,1,1,0,0,1,0,0,1,0,0,1,1,0,1,1 1 1 1+α2 0 1 + α3 

0,0,1,1,0,0,0,1,0,1,0,1,1,1,0,0 1 α2 1 + α2 + α3 1 1 

0,0,1,0,1,0,0,0,0,1,1,1,1,1,0,1 0 1 + α + α2 1+α α + α2 α + α2 

0,0,1,0,0,1,0,1,1,1,1,1,0,1,0,0 0 1 + α3 1 + α + α2 α + α2 1 + α2 

0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1 1 α + α3 α + α2 1 + α + α2 α2 

0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,1 1 α + α2 α3 1 α + α3 

5.6 Attack Complexities 

The attack complexities for the Toy Cipher are calculated in Table 5.12. 

Table 5.12  DFT Attack Complexities for Toy Cipher 

                                    Cipher 

Complexity 
Same Key Different Key 

Offline Phase 216 216.5 

Online Phase 28 29 

Total Complexity 217 217.25 
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5.7 Summary 

In this chapter, the structure of Clock Controlled Ciphers i.e., Alternating Step 

and Shrinking Generator has been explained with low degree polynomials. Then DFT 

attack variations have been launched to determine their efficacy. Then structure of 

Toy Cipher has been explained and two DFT attacks carried out using same and 

different keys to check practical significance of the attack. 
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C h a p t e r  6  

 

6 Conclusion and Future Work 

6.1 Introduction 

In this chapter, the thesis has been concluded and possible way forward for the 

future is defined with regard to Application of DFT Attack.  

6.2 Conclusion 

DFT Attack is a relatively newer technique of cryptanalysis and its application 

on different new ciphers is important in terms of its efficacy. DFT attack has been 

tested on Alternate Step Generator [13], Shrinking Generator [15], Toy Block cipher 

[14] and practical cipher WG-7[9]. This thesis has thoroughly investigated the 

security of the practical stream cipher WG-7 by applying the Helleseth et al. New 

Attack [1], [2], selective and fast selective DFT attack [6], [7]. A proposed fast 

selective DFT attack using annihilator has been applied to considerably reduce the 

complexity of DFT attack on the cipher. 

The predicted key recovery attack employing Yiyuan Luo et al. DFT attack [9] 

recovers the key with keybits requirements of about 225.5 and online computation of 

about O(229.5). Whereas the key recovery attack employing proposed fast selective 

DFT attack recovers the keys with keybits requirements of about 218 and online 

computation of about O(223.5). The presented results indicate that WG-7 stream cipher 

is not secure against DFT attack. The offline computation is high as it requires 

generation and storage of bits in O(2161). The proposed DFT attack has also been 

compared against Algebraic and FAA attack [10] and found more efficient in terms of 

keybits and online computation. Algebraic attack requires keybits of about 220 and 
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online computation of about O(254.36), whereas FAA requires keybits of about 219.38 

and online computation of about O(226.73). Also WG-7 cipher is found vulnerable 

mainly due to structure of the cipher. The cipher spectral immunity can be increased 

by using words from other registers to act as input to nonlinear filter function rather 

than using single word input.  

This thesis establishes the fact on the basis of application of DFT attack against 

alternate step generator, shrinking generator and toy block cipher that these structures 

are not vulnerable. This can be interpreted more clearly that all clock controlled 

stream cipher and block cipher structures are secure against DFT Attacks. The DFT 

attack can only work efficiently on Non-linear filter generators and LFSR combiner 

generator ciphers, which are relatively easy to attack because of their structure. 

6.3 Future Work 

There is a need to develop software to calculate linear complexity of the cipher. 

The software should test each cipher to find its linear complexity and can be easily 

used by cryptographers and researchers for testing and evaluation purposes. Moreover, 

there is need to improve the DFT calculation method [7] to make the DFT attack more 

efficient. WG-8 and WG-16 cipher security needs to be tested like WG-7 as they 

belong to the same cipher family and their design may be vulnerable to DFT attack 

with the use of the annihilator.  

6.4 Summary 

In this chapter, the thesis has been concluded and future work is proposed 

which mainly focuses on effectiveness of DFT attacks against all type of symmetric 

ciphers. 
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