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Introduction

Many problems of mathematical physics arising in applications are not well-posed in
the sense of Hadamard [26, 27], i. e., they do not satisfy the three conditions of well-
posedness: the existence of a solution, the solution uniqueness, and the solution con-
tinuous dependence on the initial data. Therefore, traditional methods, reduced to the
inversion of the problem operator, cannot be used to solve such problems, which have
been called ill-posed problems. For a long time mathematicians have been taking little
interest in these problems, denying their practical value.

The practical value of such problems was for the first time pointed out by A. N. Tik-
honov in his well-known paper [96]. In addition, in the mentioned paper Tikhonov
formulated the concept of a conditionally well-posed problem, which played an im-
portant role in the development of the theory of such problems and their applications.

The issues of posing ill-posed problems and developing special methods for their
solutions were also addressed in papers, such as those by A.N. Tikhonov [96-98],
M. M. Lavrentiev [41-44], and V. K. Ivanov [29-32], that fundamentally contributed to
this field of research. This theory was further developed by A. N. Tikhonov, M. M. Lav-
rentiev, and V.K. Ivanov, as well as their students and followers V.Ya. Arsenin,
A.L. Ageev, A. B. Bakushinskii, A. L. Buhgeim, G. M. Vainikko, F. P. Vasiliev, V. V. Va-
sin, V. A. Vinokurov, A.V. Goncharskii, V.B. Glasko, A.R. Danilin, A. M. Denisov,
E. V. Zakharov, V. 1. Dmitriev, S.I. Kabanikhin, A. S. Leonov, O. A. Liskovets, I. V. Mel-
nikova, L.D. Menikhes, V. A. Morozov, A.I. Prilepko, V. G. Romanov, V. N. Strakhov,
V. P.Tanana, A. M. Fedotov, G. V. Khromova, A. V. Chechkin, and A. G. Yagola and many
other mathematicians [1-11, 102-113], [13-17, 23-25, 114-117], [46-49], [55, 56, 58—63],
[20, 67-87, 89-95, 99-101, 118], and [38]. To date the theory of ill-posed problems has
become one of the main trends in modern applied mathematics. It is widely used in a
constantly growing number of new technological applications.

The current state of the theory of ill-posed problems is described in the well-
known monographs by M. M. Lavrentiev [43], A. N. Tikhonov and V. Ya. Arsenin [99],
R. Lattes and J. L. Lions [40], V. K. Ivanov, V. V. Vasin, and V. P. Tanana [28], V. A. Mo-
rozov [62], M. M. Lavrentiev, V. G. Romanov, and S. P. Shishatskii [45], O. A. Liskovets
[51], V. P. Tanana [80, 95], V. V. Vasin and A.L. Ageev [111], G. M. Vainikko [103], A.S.
Leonov [48], A.N. Tikhonov, A.S. Leonov, and A. G. Yagola [101], A. M. Fedotov [20],
A.N. Tikhonov, A.V. Goncharskii, V. V. Stepanov, and A.G. Yagola [100], S.I. Ka-
banikhin [34-37], and many other researchers. A large number of monographs show
the maturity of this branch of mathematics. Abroad a significant contribution to this
theory has been made by the following mathematicians: J. N. Franklin [22], ]. Gullum
[12], K. Miller [57], D. L. Phillips [64], A. Melkman and C. Micchelli [54], R. Lattes and
J. L. Lions [40], H. W. Engl, M. Hanke, and A. Neubauer [19], and many others.

Among the important characteristics of the methods for solving ill-posed prob-
lems, one can name their accuracy, which is controlled by error estimates for these
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VI —— Introduction

methods. These estimates allow for comparing different methods, as well as develop-
ing optimal and near-optimal methods.

The issues related to the development and studies of optimal methods for solving
ill-posed problems were investigated by V. K. Ivanov, V. V. Vasin, and V. P. Tanana [28],
V. P. Tanana [80], and V. P. Tanana, M. A. Rekant, and S. I. Yanchenko [95]. As this the-
ory has been rapidly developing over the recent decades and new important facts and
applications of the theory to the solution of practical problems have been revealed, a
new book to cover this gap was to be written.

It should be noted that, in dealing with the existence and uniqueness of the clas-
sical solutions for the direct heat conduction problem addressed in Section 5.1.1, we
could have just referred to the great books by Arsenin [7] and Vladimirov [117]. How-
ever, to ensure a complete and smooth narration these issues are considered in detail
in the corresponding sections of the current book. The obtained formulas are further
used to study the solution methods of the direct problem for t — co.

This book is based on lecture notes covering the course on the theory of ill-posed
problems that has been delivered by the authors to the students majoring in Applied
Mathematics and Informatics within the master program at the Chelyabinsk State Uni-
versity and South Ural State University over the past decade.
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1 Modulus of continuity of the inverse operator and
methods for solving ill-posed problems

1.1 Modulus of continuity and its properties

1.1.1 Problem posing

Let U, IF, and V be Banach spaces, let A be an injective linear bounded operator that
maps U into F and has an unbounded inverse operator, let B be a linear bounded
operator that maps V into U, M, = B§,, where §, ={v:v eV, l|v| < r}, and let
N, = AM,. Consider the following operator equation:

Au=f, uel,feF. (11)

Definition 1.1. A set M, is called the class of correctness for equation (1.1), if the re-
striction A,"\,} of the operator A~ to the set N, is uniformly continuous on N,.

Lemma 1.1. In order for the set M, to be the class of correctness of equation (1.1), it is
necessary and sufficient for the restriction Ag,i of the operator A™* to the set N, to be
continuous at zero.

Proof. The necessity is obvious.
Sufficiency. Since A;,} is continuous at zero, for any € > 0 there is § > 0 such that
for any f € N, and ||f| < 6 it follows that

1 &
rg <

Hence, for any f; and f, € N, such that ||f; — f,|| < & it follows that

—f, €N, fl;fz eN, and % <6,
whence
HA*(’%) <% and Jalf-A <e
The lemma is thereby proved. O

Now following [33], define functions w,(t,r) and w(7, r) as follows:

wy(t,1) = sup {lu; — w,ll : uy, uy € M, |Au; — Aw,| < 7}, (1.2)
w(t,r) =sup{lul : u e M,, |Au| < 1}, (1.3)

wherer > 0and 7 > 0.

https://doi.org/10.1515/9783110577211-001



2 —— 1 Modulus of continuity of the inverse operator

Corollary 1.1. Ifw(t,r) — O for T — O, then the set M, is the class of correctness.
It follows from (1.3) by Lemma 1.1.

Lemma 1.2. Let the functions w,(t,r) and w(1,r) be defined by formulas (1.2) and (1.3).
Then they are related as follows:

wy(1,1) = w(T,2r).
Proof. Let u; and u, belong to the set M, and let
[Au; — Awy|| < 7. (1.4)
Then u; — u, € M,, and from (1.4) it follows that
luy — wsll < w(T,2r). (1.5)
From (1.5) we have
w,(1,1) < W(T,2r). (1.6)
In the reverse direction, let u € M,, and ||Au| < t. Then assuming
u;=u/2 and u,=-u/2,
we deduce that u; and u, belong to the set M, and ||Au; — Au,|| < 7. Thus,
w(1,7) = W(T,2r). 1.7)

The proof of the lemma follows from (1.6) and (1.7). O

Lemma 1.3. Let k > 0. Then the following equation holds:
w(kt, kr) = kw(T,T1).

Proof. For k = 0 the lemma is obvious. Let k > 0 and T > r||AB|. Then kt > kr||AB|.
From (1.3) it follows that

w(t,r) =r|AB| (1.8)
and
w(kt, kr) = kr|AB|. (1.9)

From (1.8) and (1.9) it follows that w(krt, kr) = kw(t,r).
Letk > 0 and 7 < r|AB|. Then from u € M, and |Au| < 7 it follows that ku € M,
and ||A(ku)| < kt. Thus,

kw(t,r) < w(kt, kr). (1.10)



1.1 Modulus of continuity and its properties =—— 3

In the reverse direction, let u € M, and [|Au| < kr. Then u/k € M, and [|A(u/k)| < T,
that is,

%w(k—r, kr) < w(t,1)
or
w(kt, kr) < kw(t,1). (1.11)
The assertion of the lemma follows from (1.10) and (1.11). O
We formulate an obvious lemma.

Lemma 1.4. The function w(t,r) does not decreaseon t and r.

Lemma 1.5. If M, = BS, is the class of correctness for equation (1.1), then for any r > 0
the set M, = BS, is the class of correctness for equation (1.1).

Proof. The case where r = 0 is obvious. Assume that r > 0. Then it follows from
Lemma 1.2 that

w(T,1+71) = w(T,2 +2r).
It follows from Lemma 1.4 that
w(T,2+2r) <w((1+1)T1,2+2r) (1.12)
and it follows from Lemma 1.3 that
w((1+nT1,2+2r) = (1+nw(t,2). (1.13)

Since w;(7,1) — 0 for T — 0, by Lemma 1.2, (1.12), and (1.13) the assertion of the
lemma is proved. O

Lemma 1.6. Iftheset M, = B§1 is the class of correctness for equation (1.1), then w(t,r) €
C([0, 00) x [0, 00)).

Proof. Assume that 7, » T andr, — r, where7 > O and r > 0. Let us introduce the
numbers

k, = max(c,,d,), k; =min(c,,d,),

where

T+|[T,—T T—-|T,—T
SO L R L1 (1.14)

n > n
T

and

_ =l -l
= . .

(1.15)
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Then it follows from Lemmas 1.3 and 1.4 and from (1.14) and (1.15) that
K w(T, 1) < W(Ty 1) < kyw(T,7). (1.16)
Since
. T I
nlLIgO kn - J}Lrlolo k" =1

the assertion of the lemma for 7 > 0 and r > 0 follows from (1.16).
If r = 0, then it follows from (1.3) that w(t,r) = 0.
Let

r,—0, 17,—>71, T=20.
Then from (1.3) it follows that
wW(Tp, 1y) < 1y|IBI| (117)
and from (1.17) it follows that
w(ty, 1) —» 0 forn — oo.
Now, let
7,—0 and

—-r, r=0.

n
Then there exists a number r > 0 such that for any n

r, <T. (1.18)
For any n we introduce a set M,,, defined as follows:
M, = {u:u e BS;, |Aul < 1,}, (1.19)
where

Sr={v:veV, vl <7}

Since for any n the set M,, defined by formula (1.19) is bounded, there exists an
element u, € M, such that

_ 1 —
lu,l = > sup {llull : u € M,}. (1.20)
It follows from Lemma 1.5 and (1.19) that

Au, - 0 forn— oo. (1.21)
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It follows from (1.21) and Lemmas 1.1 and 1.5 that
u, -0 forn—- oo (1.22)
and it follows from (1.20) and (1.22) that
sup{lul :u e M,} -0 atn— oo. (1.23)
Since
sup {lull : u € M,)} = w(t,, ),
it follows from Lemma 1.4 and (1.18) that
W(Tpy, 1) < W(Ty, 7). (1.24)

Then it follows from (1.23) and (1.24) that w(t,,,1,,) — 0 atn — co.
The lemma is thereby proved. O

Definition 1.2. The bounded linear operator Q, mapping the Hilbert space H into it-
self, is called isometric if for any u € H

1Qull = flul.

Definition 1.3. The isometric operator Q is called unitary if its range of values R(Q)
coincides with H.

Lemma 1.7. If Ais aninjective bounded linear operator mapping the space H into itself
and its range of values R(A) is everywhere dense on H, then we have a polar decompo-
sition for A as follows:

A=0QA,

where Q is a unitary operator, A* is the conjugated operator A, and A = VA*A.
Proof. The proof follows from the theorem formulated in [66] on p. 325. O

Assume that the injective bounded linear operators A and B have the everywhere
dense ranges of values R(A) and R(B), where the ranges of values R(4) and R(B) are
everywhere dense on H. Then by Lemma 1.7 for the operators A and B there exist polar
decompositions A = QA and B = BP, where Q and P are unitary operators, A = VA*A4,
and B = VBB*. In addition, assume that the spectrum Sp(4) of the operator A coin-
cides with the interval [0, |A|] and B = G(A), where G(0) is a strictly increasing and
continuous function on the interval [0, | A|] such that G(0) = 0. Consider the following
equation:

rG(o)a =1, o €[0,]Al]. (1.25)



6 —— 1 Modulus of continuity of the inverse operator

It follows from (1.25) that, if 0 < T < rG(||A|)|All, then this equation has a unique
solution o(7) = l/)(%), where 1(x) is the inverse function of G(o0)o. It follows from the

inverse function theorem that i € C[0, G(||A|)||Al]] and (0) = O. Thus,

o(t) -0 fort— 0.
Denote by w(7, r) the function defined by the formula
w(t,r) = sup{|lull : u € BS,, |Au] < 1}.
Lemma 1.8. Under the above-formulated conditions, we have
w(t, 1) = w(t,71).
Proof. Letu € M, and |Au| < 7. Then there exists v € H such that
u=Bv and |v|<r.
Since B = BP, there exists an element v; € H such that v = Pv;. Thus,
u =By,
where ||v,|| < r. It follows from A = QA that
lAull = Q" Au| < |Q”'|lAul = |Au] < 7.
From (1.28) and (1.29) it follows that

w(t,r) < w(T,T).

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

In the reverse direction, it follows from u ¢ ES, that there exists an element v ¢ H

such that |[v|| < r and u = Bv. Since
|[Aul <t and A=0Q4,
we have
lAull = |QAul < |QIlIAull = |Aul < 7.
Thus, it follows from (1.31) that

w(T,1) < w(T,7).

The assertion of the lemma follows from inequalities (1.30) and (1.32).

(1.31)

(1.32)



1.1 Modulus of continuity and its properties = 7

Lemma1.9. Let
A=QA and B=BP, whereA= VA*A, B= VBB*,
and P and Q are unitary operators. In addition,
B =G(4),

where G(0) is a strictly increasing function continuous over the interval [0, |A|] such that
G(0) = 0. Also, T < r|A| - |B|l. Then we have w(t,r) = rG[o(T)], where a(T) is the solution
of equation (1.25).

Proof. Letebeasufficiently small positive number and let 6(7) be the solution of equa-
tion (1.25). Then select a natural number n, such that

ng—-1_

rGlo(1)] - rG[ - o(n)| <e (1.33)
0
and consider the space H, defined by the formula
HO = EE(T)H - ELAE(T)H, (1.34)
no

where {E, : 0 < 0 < ||A|} is a partition of unity generated by the operator A [52] (p. 336).
Let M, = BS,, v, € Hy, and

Ivoll =r. (1.35)
Then it follows from (1.35) that
uy, = Bvy € M,. (1.36)
Since u, € Hy, from (1.33)-(1.35) we deduce
lugll = rGo(1)] - €. (1.37)

As uO,ZuO € H,, and the function G(0) strictly increases, it follows from (1.33) and
(1.34) that

lAugll < rG[o(t)]a(1) = T. (1.38)
From (1.36) and (1.38) it follows that
luoll < w(z, 1) (1.39)
and from (1.37) and (1.39) it follows that

w(t,1) 2 1G[o(T)] - €.
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Due to the arbitrariness of € we have
w(t,r) 2 rG[a(T)]. (1.40)

Let us prove the inequality in the reverse direction. For this purpose, represent the
space H as the orthogonal sum

H= I[_Il + Hz (1.41)
of the subspaces
H‘Il = EE(T)H and Hz = (E - EE(T))H

The theorem proved in [52] (p. 336) shows that the subspaces H; and H, are in-
variant for the operators A and B. It follows from the notions that u, € M, and

lAull < T (1.42)
that there exists an element v, € H, such that
Ivoll <1 (1.43)
and
U, = B, (1.44)
Using (1.41), represent the element v, as the orthogonal sum
Vo =Vt Vs, (1.45)

where v; = pr(vy, H;), i = 1,2. Let r; = |v4| and r, = |[v, . Then from (1.43) and (1.45) it
follows that

rern<r. (1.46)

From the invariance of the spaces H; and H, for the operator B and (1.44) it follows
that uy = u; + u, and

u=Bv;eH, i=12 (1.47)
From the invariance of the spaces H, and H, for the operator 4 it follows that
Au;eH;, i=12 (1.48)
From (1.42), (1.47), and (1.48) it follows that

— T; .
Ayl < 7’1, i=12 (1.49)
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Since G(0) is strictly increasing, it follows from (1.47) that
luyll < G[o(1)]

and it follows from (1.49) that

T
ro(t)’

luall <
Since
r,G[e(@)]o(r) = %r,
it follows from (1.51) and (1.52) that
lu,ll < r,Gla(T)].
From (1.46), (1.47), (1.50), and (1.53) it follows that
luoll < rGla(T)].
Due to the arbitrariness of u, on (1.42)—(1.44) and (1.54), it follows that
w(t,r) < rGlo(T)]
and from (1.40) and (1.55) it follows that
w(t,r) = rG[o(T)].

The assertion of the lemma follows from Lemma 1.8 and (1.56).

— 9

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

O

Lemma 1.10. Under the conditions to be met by the operators A and B, formulated in

Lemma 1.9, the set M, = BS, is the class of correctness for equation (1.1).

Proof. Since G ¢ C[0,]A]], as (1.26) 7,(t) — 0 for T — 0, where 0,(7) is the solution of

the equation 2rG(o)o = 7, we have
G(oy(1)) >0 fort — 0.
From (1.57) and Lemma 1.9, it follows that
w(t,2r) - 0 fort — 0.
It follows from (1.58) and Lemma 1.4 that
wy(t,r) > 0 fort — 0.

The assertion of the lemma follows from (1.59) and Corollary 1.1.

(1.57)

(1.58)

(1.59)
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Let us strengthen Lemma 1.4.

Lemma1.11. Let B = G(A), where the function G(c) € C[0, |A|] is strictly increasing
over this interval, and let G(0) = 0. Then, if 0 < T < r||AB||, the function w(t,r) is strictly
increasingont andr.

Proof. It follows from Lemma 1.9 that
w(t, 1) = 1G[0(1)], (1.60)

where 0 = (1/r) and (x) is the inverse function of G(o)o.

It follows from the inverse function theorem that the function o(t) strictly in-
creases on T and, consequently, by (1.60) w(, r) strictly increases on 7.

To prove that the function w(t, r) is strictly increasing on r, we write

1

M

From (1.60) and (1.61) it follows that

TGl ¢
GOW@) ~ Y@
Since the function y( ;) strictly decreases on r, it follows from (1.62) that the func-

tion w(t, r) strictly increases on r.
The lemma is thereby proved. O

w(T,1) (1.62)

Note that long before the paper [33] was published, in his famous monograph [43]
M. M. Lavrent’ev introduced the concept of the modulus of continuity w(7) and used it
to estimate the errors of the methods for solving operator equations of the first kind.

Since the concept of the modulus of continuity defined by M. M. Lavrent’ev dif-
fered from the concept of the modulus of continuity w(z,r), used by V. K. Ivanov, it
is appropriate to compare these concepts. The following definition of the modulus of
continuity is given in [43] (p. 11).

Let M = BS,;, where Bis alinear completely continuous operator mapping a Hilbert
space H into itself.

Further the function w(t) is introduced that satisfies the following conditions:
1. w(1)is a continuous non-decreasing function and w(0) = 0;
2. foranyu e M satisfying the inequality |Au|| < T, we have the following inequality:

lull < w(7). (1.63)

From Lemma 1.4 and Lemma 1.6 and from the fact that M, is the class of correctness it
follows that the function w(t, 1) defined by formula (1.3) is a special case of the func-
tion w(t) suggested by M. M. Lavrent’ev.

Compare the following functions.
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Lemma 1.12. Let w(t,r) be defined by formula (1.3) and let w(t) be defined by for-
mula (1.63). Then for any T > O the following relation holds:

w(1,1) < w(T).

Proof. The case where T = 0 is obvious, since w(0,1) = w(0) = 0.
Let 7 > 0. Assume the contrary, i. e., there exists 7, > 0 such that

w(Ty, 1) > w(Ty). (1.64)

Denote the difference w(ty,1) — w(ty) by d. Then it follows from (1.3) and (1.64)
that there exists an element u, € BS, such that Ay, < T and

d d
lugll > w(ty,1) - 3 > w(Ty) + 7 > w(Ty),

which contradicts (1.63).
The lemma is thereby proved. O

It follows from Lemma 1.12 that the function w(t, 1) is minimal among all possible
functions w(1), i. e., for any 7 > 0 it follows that w(t,1) < w(T).
Now find the connection between the functions w(t,1) and w(t,r), wherer > 0.

Lemma 1.13. If the functions w(t,1) and w(t,r) are defined by formula (1.3) andr > 0,
then the following equation holds:

w(T, 1) =rw(t/r,1).

Proof. The assertion of this lemma follows from Lemma 1.3. O

Thus, the function w(t,1) is a special case of the function w(t) suggested by
M. M. Lavrent’ev and is minimal of all possible variants of the function w(r).

1.2 The concept of the method for solving an ill-posed problem

As in Section 1.1, U, FF, and V are Banach spaces, A is an injective bounded linear
operator mapping the space U into FF that has an unlimited inverse operator, B is a
bounded linear operator mapping V into U, and M, = B§,. We formulate the ill-
posed problem of finding an approximate solution to equation (1.1) as follows.
Assume that for f = f;, there exists an exact solution u, of equation (1.1), which
belongs to the set M,, but the exact value of the right-hand side f; is unknown. Instead,
a certain approximation f5 € IF and error level § > O are given such that |f5 — f,| < 6.
Using the initial data M,, f, 6 of the problem, it is required to find the approximate
solution ug of equation (1.1) and estimate its deviation from the exact solution u,.
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Definition 1.4. We will call the family of operators {Tj : O < § < §,} an approximate so-
lution method for equation (1.1) over the set M,, if for any § € (0, §,] the operator Ty
continuously maps the space F into U and Tsfs — u, for 8 — 0 is uniform over the set
M, if ||fs — Augl < 6.

Let M, be the class of correctness and let {T5 : 0 < § < §,} be an approximate
solution method for equation (1.1) on this class. Then for any 6§ € (0, §,] introduce a
quantitative characteristic of the accuracy of this method over the set M,. We have

AslTs] = sup {llu — Tsfsll : u € M,, ||Au - f5| < 6}. (1.65)

ufs

Lemma1.14. Let {Ts : O < § < 8y} be an approximate solution method for equa-
tion (1.1) and let w(8,r) be the modulus of continuity of the inverse operator at zero de-
fined by formula (1.3). Then the following estimate holds:

A5[T5] > (U((s, r).

Proof. Letebe asufficiently small positive number. Then from (1.2) it follows that there
exist elements u;, u, € M, such that

lu; — wll = wy(26,7) — € (1.66)
and
lAu; - Aw, || < 26. (1.67)
If
fs = (Auy + Awy)/2,
it follows from (1.67) that
lAu, - fsl <6 and [|Au, - fsl < 6. (1.68)

From (1.68) it follows that

lus - w

max {luy - Tof gl luy = Tofsll} = = (1.69)
From (1.66) and (1.69) it follows that
max {lu, ~ Tl It -~ Tof} = 50,(28,1) - (1.70)
and from (1.65) it follows that
Ag[Ts] > max {|uy — Tsfsll, luy — Tsfsll}. (1.71)

The assertion of the lemma follows from Lemma 1.2, (1.70), and (1.71). O
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Denote by C[F, U] the set of all operators continuously mapping the space FF into
U and denote by A%pt the quantity defined by

AP = inf{A5(P) : P € C[F, U]},
where

Ag= sufp{||u - Pfsll : u e M,, |Ifs — Au| < 6}.
Wfs

Definition 1.5. The method {T;™ : 0 < 6 < 8,} will be called optimal on the class M,,
if for any 6 € (0, ;]

AT = AP

Definition 1.6. The method {T; : 0 < § < 6,} will be called optimal-by-order on the
class M,, if there exists a number K > 1 such that for any 6 € (0, 6,]

As[Ts) < KA.
It follows from Lemma 1.14 that for any 6 € (0, §;]

AP > w(b,r). (1.72)






2 Lavrent’ev methods for constructing approximate
solutions of linear operator equations of the first
kind

2.1 On the accuracy of the Lavrent’ev method with
the regularization parameter chosen based on the Strakhov
scheme

This method is borrowed from [43]. It is based on substituting the operator equation
(1.1) by the family of operator equations of the second kind, depending on the param-
eter a > 0. By applying different schemes to choose the regularization parameter a,
we will get different methods. Below we present the optimal Lavrent’ev method.

Let

Z=F=C=H,

where H is a Hilbert space, operators A and B are injective, and the ranges of values
R(A) and R(B) of the operators A and B are everywhere dense on H. Then by Lemma 1.7
for the operators A and B there exist polar decompositions

A=QA and B-=BP,
where P and Q are unitary operators,
A=+vVA*A, and B= VBB*.

In addition, assume that the spectrum Sp(A) of the operator A coincides with the seg-
ment [0, |Al]] and

B =G(A), 2.1)
where the function
G(0) € C[0, JAI] N C'(0, JAI),  G(0) =0,
and for any o € (0, |A])
G'(0) > 0.
Assume that the class of correctness M, is of the form
M, = BS,, 2.2)

https://doi.org/10.1515/9783110577211-002
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where
S, ={v:veH, vl <r}

From Lemmas 1.8 and 1.9, it follows that the set M,, defined by formulas (2.1) and
(2.2), is the class of correctness for equation (1.1) and the modulus of continuity w(t, )
of the inverse operator 4 on the set N, = AM, is calculated by the formula

w(t,r) =rG[a()], T <r|All|B, (2.3)
where 0(7) is a solution of the equation
rG(o)o = T. (2.4)

Using Lemma 1.7, equation (1.1) can be substituted with the following equivalent
equation:

Au=g, (2.5)
where
A=+VA*A, g=Qf,

and the set of M, is defined by formulas (2.1) and (2.2).

Assume that for g = g, € H there exists the exact solution u, of equation (2.5),
which belongs to the set M,, but the exact value of the right-hand side g, is not known.
Instead, a certain approximation g5z € H and error level § > 0 are given, such that

lgs — 8oll < 8.

Using the initial data M,, g5, and § it is required to find the approximate solution
us of equation (2.5) and estimate its deviation from the exact solution.

The Lavrent’ev method described in [43] (p. 14) uses the regularizing family of op-
erators {R, : 0 < a < ay}, acting from H into H and defined by the formula

R,=B(C+aE)™", aec(0,a], (2.6)

where C = AB.
Define the approximate solution u§ by the formula

us = Rygs. @7)

We will now estimate the deviation ||u§ — u,|| of the approximate solution uj§ from
the exact solution u,. We have

lus — uo| < sup{|lug — ug|l : uo € M;, llgs — Augll < 8}
+ supf|lug — uo| : uy € M,}, (2.8)
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where
Up = Rago-
From (2.8) it follows that
g — uo|| < IR416 + sup [IRxCvq — Bvgl. (2.9)
Iolir

We will then define the value of the regularization parameter a(6) in formula (2.7)
by the method of V. N. Strakhov [72], from the condition

inf{IIRyI6 + sup IR,Cvo - Bvyll}. (2.10)

Ivollr

Lemma 2.1. For any a > 0, the operator R,, defined by formula (2.6), is bounded and

IR.J = max -9
a 0<0<||A|| Go)o +a’
Proof. As
IR, I* = sup IIRagII (2.11)
llgl<1
and
1R8I = (R, R,8), 2.12)

keeping in mind that R, is a self-adjoint operator, it follows from (2.11) and (2.12) that

IR|I* = sup(R2g.g). 13)
llgli<1

From (2.6) and (2.13) it follows that

—2 — _
IR, = sup(B[C + aE]’g, g). (2.14)
llgll<1

Let {E, : 0 < o < | A|} be the spectral decomposition of the unity E, generated by the
operator A. Then from (2.6) it follows that

Al

2 G*(0)
“© J [Gloy + a2 215
and from (2.14) and (2.15) it follows that
W 2
2 _
R, = sup j [G(a)a+a]2d(E"g’g)' (2.16)

<1
lgl<1 &
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Given (2.16), we get

1Al

IR I* < sup L)z sup J d(E,8.8) (2.17)
o<o<la] [G(0)0 +a]* g1 3

and from (2.17) it follows that

2
||R,,(||2 < OSSULLII?AII %. (2.18)
Since the function
G*(0)
[G(o)o + a]?
is continuous on [0, ||A|], there exists the value ¢ € [0, ||A]|] such that
G’(0) G*(0) 2.19)

(G@)T +al?  o<ozja) [G(0)o +a]?’

From relations (2.18) and (2.19) and from the fact that ¢ is a point on the spectrum
of the operator A it follows that the lemma is proved. O

Lemma 2.2. For any a > 0 and r > 0 we have the following relation:

||SV1||15 IR,Cv - Bv| = ra omax %.
Proof. As
B(C + aE) 'Cv - Bv = —-aB(C + aE) v, (2.20)
from (2.6) and (2.20) it follows that
IR,Cv - Bv|| = a| B(C + aE) V. (2.21)
If v # 0, then from (2.21) it follows that
IR,Cv - Bv| = a||[v|||B(C + aE)_lﬁ“. (2.22)

Since

sup |R,Cv - Bvl = a sup |B(C+aE) ™,

[lvil<r o<|vlsr

from (2.22) it follows that

sup [|R,Cv - Bl < ra sup |B(C + aE) 'w|. (2.23)
lwl<1

Ivilsr
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From (2.6) and (2.23) it follows that

sup |R,Cv — Bv|| = ra||R,|. (2.24)
lvii<r
From (2.24) and Lemma 2.1 it follows that the lemma is proved. O

From the relation (2.9) and Lemmas 2.1 and 2.2 it follows that

G(0)

-R < [ _— 2.2
lup — Ra8sll < (rat + )Oggﬁi” Go)o 1 a (2.25)
Now consider the equation
rG(o)o = 6. (2.26)

From the properties of the function G(0), it follows that, if § < rG(||A])|All, equa-
tion (2.26) has the unique solution (5).

Theorem 2.1. Let the function
G(0) € C[0, 1] n C'(0, IAll),
where for any g € (0, |Al),
G'(0) > 0,

G*(0)/G' (0) increases, let G(0) = 0, § < rG(JA|DIAll, 7(8) be the solution of equation
(2.26), and let

_ GX(a(6))

ab) = G'(@(6))

Then
A 5(Ry(s)) < 1G(0(5)).
Proof. Let ug be an arbitrary element of the set M, and let
lgs — Augll < 6.

Then from formula (2.25) it follows that

_ G(o)
lug — Ry(5)85ll < (ra(8) + 6) oggﬁin GO0 +30) (2.27)

We will now calculate

Glo)
max{m :0<0< "A"}
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To do this, we differentiate the function

__6@
G(o)o +a(b)’
We have
Glo) 1 @&&)G (o) -G o)
Go)o+ald)]  [Go)o+ald)]? (2.28)

To determine the maximum, it is sufficient to investigate the behavior of the nu-
merator on the right-hand side of equality (2.28). We thus find that for o < 6(6)

G*(@(9)) 2
G’(5(5))G (0) - G*(0) > 0. (2.29)
For o = 0(6),
G*(@(9)) 2
55,5 @ F@=0 (2.30)
and for o > 0(6),
G*(@(9)) 2
WG (U)—G (0) < 0. (2.31)
From relations (2.29)-(2.31), it follows that
G(o) _ G(a(5))
oo G(0)o + @(B) _ G@(8))3(8) + ad) @232
and from (2.26), (2.27), and (2.32), it follows that
||u0 - Ra(&)gﬁ || < rG(E(a)) (2.33)

Due to the arbitrariness of the elements u, and gz, the assertion of the theorem
follows from relation (2.33). O

Corollary 2.1. Let, for any o € (0, |Al),
G (o) > 0,

G%(0)/G'(0) increase, let § < rG(|A|))||All, and let G(5) be the solution of equation (2.26).
Let

a(8) = G*(3(6))/G' (5 (5)).
Then the method
{Ra(ﬁ) :0<6< 50}

defined by formula (2.6) is optimal on the set M,.
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This result was published in [88].
Corollary 2.2. Let, for any o € (0, | All),

G'(0) > 0,

G*(0)/G'(0) increase and let G(8) be the solution of equation (2.26). Then for any 6 €
(0, rG(lAIDIATL

AP = rG(5(6)).
Now consider the method
{Ras) : 0 < 6 < 85}
on the class of correctness M,, defined by the function
Go)=d”, p>o.
Corollary 2.3. IfG(0) = ®, p > O, then

5\

o(6) = <—> o ad) = ﬁ and A%pt — rpig,
r pr

2.2 On the accuracy of the Lavrent’ev method with the choice of
the regularization parameter based on the Lavrent’ev scheme

This method is described in [42]. It uses the regularizing family of operators {R, : a > 0}
defined by formula (2.6) and it differs from the method described in the previous
section of this chapter in that the value of the regularization parameter a(6) in for-
mula (2.7) is defined by

IR,II6 = sup [IR,Cvy — Bygll. (2.34)

lIvoll<r

In what follows we assume that the operators A and B satisfy the conditions given
in Section 2.1.

Lemma 2.3. If &(6) is defined by equation (2.34), then

&(8) = g
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Proof. From Lemmas 2.1 and 2.2 it follows that

G(0)

R, | = B 2.
IR og;gll)illl 0G(0) + (2.35)
and
- = G(o)
sup |R,Cv - Bv| =ra max ————. 2.36
||V||g IR : o<o<jAl 0G(0) + a (2.36)
Thus, the assertion of the lemma follows from formulas (2.34)-(2.36). O

From Lemma 2.3 and Corollary 2.3 it follows that the methods
{Rﬁ(ﬁ) :0<6< 60} and {R&(ﬁ) :0<6< 60})

described in the first and second sections of the current chapter, are, generally speak-
ing, different. In more detail, for

Go)=0", p>0,
we have
Rzs) = Rasy atp=1
and
Rzs) # Rasy atp # 1.
We will now estimate from above the accuracy of the method
{Ras) : 0 < 6 < 65}

and we will prove that the method is optimal-by-order.
As defined in the previous paragraph,

R,g=B(C+aE)'g, ac(0,a)), and C=A-B, &®)= g
Thus, the approximate solution ug of equation (1.1) is defined by
ug“” = Ry(5)85-
We will now estimate the accuracy of the method

{R&(&) :0<6< 60}

on the class M,. For this we need to prove two lemmas.
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Lemma 2.4. If the regularizing family of the operators {R, : a > 0O} is defined by for-
mula (2.6) and a; < (0,a,), then

IRy, | > IRy, I

Proof. Since by Lemma 2.1

G(o)
R = AN 2.
IRal ogc}gu)fau 0G(0) + a (2.37)

from a; < a, it follows that for any o € (0, || Al|]

G(o) . G(o)
0G(o) +a; ~ 0G(0) +ay

(2.38)

The assertion of the lemma follows from (2.37) and (2.38). O

Lemma 2.5. Let G(o) € C[0, |A|l] n CX(0, J|A|) and

_aG(o)
©0,a) = Go)o +a

Then for any o € [0, |A|] the function ®(0, a) is a-non-decreasing.
This result was published in [72].

Proof. To prove the lemma we calculate the a-derivative ®'(g,a) of the function
@(0, ). We have

%wm:E§§%ﬁ. (2.39)
From (2.39) it follows that for any ¢ € [0, |A|]
@/ (0,a) > 0.

The lemma is thereby proved. O

Lemma 2.6. Let
G(0) € C[o, 14l n C'(0, | Al)
and for any g € (0, |All)
G'(0)>0, G(0)=0,

let G(0)/G' (0) increase, and let a; € (0, a,].
Then

@, max _Go) _6@
Yo<o<ial 0G(0) + &y 2 o0<o<iAl 0G(0) + y”
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Proof. Since the function ®(o, a) is o-continuous on [0, |A|] for « > O, forany a > O
there exists o(a) € [0, |Al|] such that

O(d(a),a) = max @(o,a). (2.40)

O<o<||A|

Thus, from (2.40) and by Lemma 2.4, we have

max ®(o,a;) = ®(0(ay), a;) < O(0(ay), &) < max D(0,a,) (2.41)
o<o<|Al o<|Al
and the assertion of the lemma follows from (2.41) . O

Theorem 2.2. Let the function
G(o) € C[0, Al n C'(0, IAI),
let for all o € (0, ||Al]),
G'(0)>0

G*(0)/G'(0) increase, let G(0) = 0, § < rG(|A])|A], let 5(5) be the solution of equa-
tion (2.26), and let &(8) be the solution of equation (2.34). Then

Proof. Let u, be an arbitrary element from the set M, and |gs — Au,| < 6. Then, if
uo = EVO

o — Racs)85l < IRss)I6 + sup [Rys)Cvo — Bvoll. (2.42)

lvollsr
Since from formulas (2.35) and (2.36) it follows that
G(o)

IRso)ll = 0<a<||A|| G(o)o + a(8)
and
G(o)
R C Bv|| = ra(6 _
"SVIE " v Byl = rad )O<0<||A|| G(o)o + a(b)’
by formula (2.42) we get
G(o) . G(0)
A5(Ras) < 0 0<o<|\A|| G(0)o + a(d) ra(6) og}gﬁiu G(0)o + a(6) (243)

Consider the value of the parameter a(6) defined by the formula

G*(G(6))
G'(@(5))’

where 0(8) is the solution of equation (2.26). We consider three cases.

a(b) =
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First case: a(d) = a(d)
Then from formula (2.43) it follows that

_ G(o)
Bo(Rae) = (r(®) +8) max o a0

and by Theorem 2.1 and formula (2.44) we get

Second case: @(d) < a(d)
Then from (2.36) it follows that

ra(6) max G(o) a G(o)

o<o<lAl G(0)o + &(b) =ra Osaglftlll G(o)o + a(8)

From formula (2.32) it follows that

B 6o - G@G(6))
rad) max Gowrad) GG 06)06) +ad)

From (2.26) it follows that

G(0(6))a(6)

==
Since

a(d) <
S/r+a6)

from (2.47) and (2.48) it follows that

max —G(U)
o=o<|Al G(o)o + a(6)

<rG(a(8))
and from (2.46) and (2.49) it follows that
A 5(Rys)) < 2rG(a(9)).
Third case: @(d) > a(d)
Then from Lemma 2.4 it follows that
Rzl < IRg(s)ll-

Since from (2.35) it follows that

G(o)
Rae)ll = A —
IRzl og}gi{qu G(0)o + &(6)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)
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from (2.27), (2.51), and (2.52) it follows that

G(o) _
oMK oo+ ad) = eed®) (2.53)

and from (2.34), (2.43), and (2.51) we have

The theorem is thereby proved. O

Corollary 2.4. Let the function
G(0) € C[0,141] n C'(0, I,
let for any o € (0, |A]),
G'(0) > 0,

G*(0)/G' (0) increase, let G(0) = 0, 8 < rG(|A|A|, and let &(8) be the solution of equa-
tion (2.34). Then the Lavrent’ev method

{Rﬁl(é) :0<6< 50}

defined by formulas (2.34) and (2.6) is optimal-by-order on the class M, and we have the
following estimate:

A 5(Ry(8)) < 2A%".

Proof. The proof of the corollary follows from Theorem 2.2 and Lemma 2.2. O

2.3 Application of the method to the solution of the inverse
Cauchy problem for the heat conduction equation

2.3.1 Posing the direct Cauchy problem for the heat conduction equation

Consider the equation

qu(x,t) _ d%u(x, t)

= 2 —00<Xx<o00,t€(0,T], T>O. (2.55)
X

Assume that the solution u(x, t) € C{(-0o0, 00) x [0, T]} for any ¢ € (0, T] and

UG ), W, (x, 1), Uy (x,t) € Li(~00,00) N Ly(~00, 00).
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There exists a function y(x) € L;(—0co, co) such that almost for any ¢ € (0, T]
|up (x, )] < x (0.
In addition, fort = 0

u(x, 0) = vy(x), (2.56)

Vo(x) € WE(~00, 00) N Wi(~00, 00).

Then the existence and uniqueness of the generalized solution of problem (2.55),
(2.56), which can be found using the Fourier transform, follows from [39] (p. 407).

2.3.2 Posing the inverse Cauchy problem for the heat conduction equation

Consider equation (2.55) and assume that
u(x, T) = f(x), (2.57)

where f(x) € C(—00,00) N Ly(—00, 00).
In addition, for

fx) =fo(x)
there exists
Vo(X) € W3(~00, 00) N W (~c0, 00), ||vo(x)||L2 <r,

for which there exists the generalized solution u(x, t) of problem (2.55), (2.56), such
that

u(x, T) = fo(x). (2.58)
However, f,(x) is unknown. Instead, we know f5(x) € L,(—00, c0) and § > 0 such that
Ifs ~foll, < 6. (2.59)

It is required to find the function ug(x) € L,(—00,00) and estimate its deviation
lus — upll L from the function uy(x), using the initial data f5, §, and r. We have

Uuy(x) = ulx, ty), toe(0,T).

The function u(x, t) is the generalized solution of the direct problem (2.55), (2.56). To
solve this problem, we will use the Fourier transform, defined by the formula

Flu(x, t)] = J ute, e ™dx = (A t), AeR. (2.60)

(0]

1
Vi
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The operator A, defined by equality (2.60), maps the space L,(-00,00) N L;(—c0, co)
into L,(—00, 00) and because the Plancherel theorem [39] is isometric, that is, after the
application of the Fourier transform to equation (2.55), the equality

\Full, = ul,

will be reduced to the ordinary differential equation

d“g}’ D _ a6, -co<A<oo,te(0T] 2.61)
From (2.56) it follows that
u(A,0)=v(A), AeR, (2.62)

where v(A) = Flu(x, 0)]. From (2.57) it follows that
a(A,T) =f(), AeR, (2.63)

where f(A) = F[f(x)].
The function

a(A) = aA, )

must be found.
Thus, from (2.61)—(2.63) it follows that

Aa) = e M TGy = FA), AeR, (2.64)
@A) = Bi(A) = eV . 5(1). (2.65)

Applying the Lavrent’ev method to problem (2.64), (2.65), we define its approxi-
mate solution by the formula

——fs1), a>o0. (2.66)
+

Note that the function G(o) defining the operator B = G(A) is defined parametri-
cally as follows:

_ N (T-t)
o=e 5
{ (2.67)

G(o) = e,
From (2.67) it follows that

G(o) = O‘T%O. (2.68)
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Then from Lemma 2.3 it follows that

8ty

w0 =TT

(2.69)

and

— N T—t t
sup{i§® — o] : &t € BS,, |Aitg ~ f3l < 8} =1 T 67 (2.70)

Uo.fs

Applying the inverse Fourier transform F~* to the function ag“”(/o, we obtain the
solution of problem (2.55)-(2.59)

us(x) = Re[F '3 ® )],

for which, from formula (2.70) and by the Plancherel theorem, we have the following
estimate:

Ug(x) — ug(x) srT%S%
6 0 L,






3 Tikhonov regularization method

This method was proposed and justified in the well-known papers by A. N. Tikhonov
in 1963 [97, 98] that drew attention of mathematicians to this direction of research and
caused the intensive development of the theory of ill-posed problems.

3.1 Alinear version of the Tikhonov regularization method

Let U, FF, and V be Hilbert spaces, let A be a linear, injective and bounded operator
mapping U into IF, and let B be a linear bounded operator mapping V into U.
Consider the operator equation (1.1) and

Au=f, ueU,fel.

Assume that for f = f; there exists an accurate solution u, of equation (1.1) that
belongs to the range of values R(B) of the operator B though f, is not known. Instead,
given are an element f5 € IF and error level § > O such that

Ifs — foll < 6. (3.0

It is required to find the approximate solution us € U of equation (1.1) using the initial
data (f5, 0) and estimate the value |us — uy |, assuming uy € M, = B§,. The Tikhonov
regularization method consists of reducing the problem of the approximate solution
of operator equation (1.1) to the variational problem

inf{|Cv - f5II” + allv]* : v € V}, 3.2)

where a > 0, C = AB.
Lemma 3.1. For any values a > 0 and f5 € T the variational problem (3.2) is solvable.

Proof. Consider a minimizing sequence {v,,} ¢ V such that forn — oo
ICv,, — f5I? + allv, > — inf{|ICv - f5I* + allv|® : v € V}. (3.3)

The boundedness of the sequence {v,} follows from (3.3) and the weak precompact-
ness of this sequence follows from its boundedness. Thus, there exists a subsequence
{vp, } such that

ne

Vp, — Vv fork — oo. (3.4)
It follows from (3.4) that
Cvy, —f5 > CV~f5 fork — co. (3.5)

https://doi.org/10.1515/9783110577211-003
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From (3.4) and (3.5) according to the property of weak limit norm we obtain

~112 . 2
alv|” < lim allv,, |
k—00

and

ICo - f5I* < lim [|Cv,,, - 5l

k—00

By the termwise summation of (3.6) and (3.7) and using (3.3) we obtain
ICV — f511* + allv]1® < inf{|ICv - f5l)* + allv]® : v € V}.
Since this cannot be smaller, it follows from (3.8) that

ICV — f51” + allvl” = inf{lCv — f5l)* + allvl® : v € V},

(3.6)

(3.7)

(3.8)

and v belongs to the solutions of the variational problem (3.2). The lemma is thereby

proved.

O

Note. In [28] it is shown that Lemma 3.1 is true under the condition of reflexivity of

the space V.

Lemma 3.2. The solution of the variation problem (3.2) is unique.

Proof. Assume the contrary, i. e., that there exist two points ¥;, 7, € V such thatv; # 7,

and
1Co — 5l + el |I* = ICV, ~ f3ll* + alv, | = inf{ICv — f51” + alvI}.
It follows from (3.9) that, if we assume

Vi +V,
2

V= ,
then
ICV - flI” + allo)?
< S01CH = foP + alinlP) + 5167, ~ 17 + alial?)
Since by (3.9) this cannot be smaller, it follows from (3.10) that
1€V~ f5I* + all7l?
= 20T~ foP + alinlP) + 5167, ~ 17 + ).
As spaces V and F are Hilbert spaces we get

a2 ns 2
[Vell® + IV,

~n2
alvl* < a >

(3.9

(3.10)

(3.11)

(312
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and
. 2 1 2 1. 2
ICV - fsl” < §||CV1—f5II +§||Cv2—f5||. (3.13)

Taking into account (3.11)—(3.13) we obtain

LZRY R G o (3.14)
2 2
Since
nenl e, L G.15)
2 A D '
it follows from (3.14) and (3.15) that
2001, 7) = 71 + 19,1 (3.16)
It follows from (3.16) that
191 = D07 = 1907 + 19,0 = 29, 95) = 0,
i.e., ¥, = ¥,, which contradicts the assumption. The lemma is thereby proved. O

Note. It is shown in [28] that Lemma 3.2 is true under the condition of reflexivity and
strict convexity of the space V. Let P, be an operator acting from IF into V mapping
the element f5 € F into the solution f/g of the variational problem (3.2).

Lemma 3.3. Let P, be an operator mapping a space T into V and defined as above.
Then for any a > O the operator P, is continuous over the space T.

Proof. Assume the contrary. Then there could be found a number g, > 0, element
fs € F, and sequence {f5(n)} c F, such that

fs(n) = fs forn — co
and for any n
[75() - ¥ = &, (3.17)

where f/g is the solution of the variational problem (3.2) and f/g‘ is the solution of the
variational problem

. 2
inf{||Cv - fs(n)||” + alv?:v e v} (3.18)
It follows from (3.18) that for any n the relation

Icosm - fso0l” + oo’ < €75 - fom]” + g’ (319)
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is true. Without loss of generality it will follow from relation (3.19) that

Jim €58 — fym” + algml’ < |67 -l + aiE)” (3.20)
and it follows from (3.18) that

1o = £ + a9 = inf{[Cv - fs()| + alvI? : v € V). (3.21)

Thus, the boundedness of the sequence {Vg(n)} follows from (3.20) and the weak pre-
compactness of this sequence follows from its boundedness. Without loss of general-
ity, we say that

7(n) =57 forn — co. (3.22)
Since the operator C is linear and bounded, from (3.22) it follows that
CVe(n) - f5(n) —> CV - f5 forn — co. (3.23)

Without loss of generality, from (3.22) and (3.23) it follows that

VIl < nlLH.}O Ilf/g | (3.24)
and
IC7 - f5l < lim [75(m) - f5(). (3.25)

From (3.24) and (3.25) it follows that
ICo = f517 + allol? < || Co% - fs(m)| + a9 (3.26)
Since there cannot be less than the infimum, from (3.21) and (3.26) it follows that
ICV — f517 + allv]l® = inf{|Cv - f* + aflv]|* : v € V}. (3.27)
From relations (3.21) and (3.27), by Lemma 3.2 it follows that
V=5 (3.28)
and it follows from (3.22), (3.23), and (3.28) that
V) = 08 (3.29)
and

CVE(n) - fs(n) —> CV% — f5.
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It follows from (3.24), (3.25), and (3.28) that

a75)” < 1im 73| (3.30)
and
[cvs - f5]* < lim [[Co5(m) - o] (3.31)

Summing termwise (3.30) and (3.31) we obtain
s~ foll” + ¥ < Jim {[Ci§n) - f5m]” + g o)) (3.32)

n—oo

It follows from (3.20) and (3.32) that
lcv £l + alvg]” = lim {ICv5 0 - fol + o). (333)
From (3.30), (3.31), and (3.33) it follows that
~ _ . ~Q
%] = Jim |50 (3:34)

and
ICV —f5ll = lim {[CV5(n) - f5(m)]
Since space V is Hilbert space, it follows from (3.29) and (3.34) that
v5(n) - 5 forn — co. (3:35)

Relation (3.35) contradicts (3.17) and proves the lemma. O

It follows from Lemmas 3.1-3.3 that the variational problem (3.2) is well-posed ac-
cording to Hadamard. We further define the approximate solution us of equation (1.1)
by the formulas

u = 152, (3.36)
where
~a(6) _ psa(b)
us = Bv5 ,
V4 is the solution of the variational problem (3.2), and
ab = 6. (3.37)

It follows from Lemmas 3.1-3.3 that, if T is the operator acting from the space F into U
and it is defined by formulas (3.36) and (3.37), then, if it maps the problem initial data
(fs, 6) into the approximate solution ug of equation (1.1), by Lemma 3.3 the operator T
is continuous over the space F. Estimate the error A 5[Ts] of the operator Ty.
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Theorem 3.1. Assume that M, = BS,, u, € M,, and u is defined by formulas (3.36) and
(3.37). Then the following estimate is true:

2V1+riw(8,r)  forr =1,
llug — uoll <

241+ (%)Zw(é‘, r) forr<1

Proof. Since u, € M,, there exists v, € V such that u, = Bvy and vyl < 7.
Thus, it follows from (3.20) and (3.32) that

1

Ivsl® < 521Cvo — f5l? + Ivoll%, (3.38)

where v5 = B 'ug. It follows from
ICvo ~f5l* = lAug ~ f5I° < 6% voll* <12,
and (3.38) that
Vgl < V1412, (339)
It follows from (3.2) that

ICvs — f5I1° < 8% + 82 voll* < 6°(1+ 1),

i.e.,
ICvs — f5ll < 6V1+ 12 (3.40)
It follows from (3.40) that
lAug - Aug| < 26V1+ 12 (3.41)
and it follows from (3.39) that
Us, Ug € BS . (3.42)

Thus, it follows from (1.2), (3.41), and (3.42) that

lus — uoll < w(26V1 +712, V1 +1?) (3.43)
and it follows from Lemma 1.2 and (3.43) that
lus — uoll < w(26V1 +12,2V1 +12). (3.44)

It follows from Lemma 1.3 and (3.44) that
lus — upll < 2V1 + rPw(6,1) (3.45)

and the assertion of the theorem follows from (3.45). O
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Since in Theorem 3.1 u,, is any element from M, and f; is any element from FF such
that

Ifs — Augll < 6,
it follows from (1.65) and (3.29) that for any 6 € (0, §,] the following relation is true:
AslTs] < 2V1+rPw(8,1). (3.46)

The following theorem follows from Lemma 1.14 and estimate (3.46).

Theorem 3.2. Assume that all conditions of Theorem 3.1 are satisfied and a set M, = BS,
is the correctness class for equation (1.1). Then the method {T5 : O < § < 6} is optimal-
by-order for the class M, and for any 6 € (0, 8] the following estimate is true:

2
1
Ag[Ts] < 2\1+ [max(r,;)] AP

The proof of this theorem follows from Lemma 1.14 and Theorem 3.1.

Note that the optimality-by-order for the method {T5 : 0 < § < §,} and the error
estimate (3.46) for this method, unlike for other methods, have been obtained without
the assumption of commutativity of the operators A and B, where

A=+VA*A and B-= VBB*.

3.2 A study of the variational problem (3.2) with a parameter a
selected based on the residual principle

The application of the residual principle for the selection of the regularization param-
eter when using the Tikhonov method was first justified for differential-operator equa-
tions in the paper by I. N. Dombrovskaya [18] in 1964. A more substantial justification
of this principle as related to solving operator equations of the first kind was done in
the papers by V. A. Morozov [59] and V. K. Ivanov [31] in 1966. Assume that all condi-
tions of Lemma 3.3 are satisfied, i. e., U, IF, and V are Hilbert spaces, A is an injective
linear unbounded operator mapping U into F with the set of values R(A) which is
dense everywhere in IF, and B is a linear bounded operator mapping the space FF into
U with the set of values R(B) which is dense everywhere in U. Consider the variational
problem (3.2). We write

inf{|lCv - f* + allv])* : v € V},

where a > 0 and C = AB.
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Select aregularization parameter a = a(fs, 6) for the variational problem (3.2) from
the equation

|Ccvs - £ = 62, (3.47)

where f/g is the solution of the variational problem (3.2). Introduce a function @4(a),
defined by the formula

. 2

ps(@) = |CVs —fs],  a <€ (0,00), (3.48)

where f5 € F and 7§ is the solution of problem (1.2). We now get down to the justifica-
tion of the residual principle (3.47).

Lemma 3.4. Let a > 0 and {a,} c (0,00) and let v§ and f/g" be the solutions of prob-
lem (3.2) for a and a,, respectively. Then

~q 0
vg' — Vs fora, — a.
Proof. Assume the contrary. Then there exist a number £, > 0 and a subsequence

{ank}, such that for any k

I3 - 73] = & (3.49)
It follows from the definition of the solution f/g"k that for any k
Q& 2 Q112 . 2 a2
lCog™ ~Fll + 175 I < 6% ~ fol + a 551 (350)

It follows from (3.50) that

T ~ 0y 2 A 12 N 2 ~anl
T (175 ~fol” + 195 ') < €35 £+ ] (351

and the boundedness of the sequence {f/g"" } follows from (3.51). Thus, the sequence

{f/;"k } is weakly precompact. Without loss of generality we say that

7 259 fork — oo (3.52)

and, due to the linearity and boundedness of the operator C,

n

coy 5 cv fork — oo. (3.53)

By the property of the weak limit norm, it follows from (3.52) and (3.53) that

€7~ fol? + all? < Tim {]C73™ —fo]" + gy 75 ). (3.54)

k—o0
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It follows from (3.51) and (3.54) that

IC7 — f3l1? + a7l < o — fi]* + a9

(3.55)

Since f/g is the solution of problem (3.2), the left-hand side of (3.55) cannot be smaller

and, therefore, it follows from (3.55) that

IC7 ~ f3l12 + alvl? = o — fi]* + a9

(3.56)

Due to the uniqueness of the solution of problem (3.2), by Lemma 3.2, it follows from

(3.56) that

>

<t
1]
SR~

It follows from (3.52) and (3.57) that

S0y, me g
Vs — Vs

and it follows from (3.51) and (3.54) that

N 2 N . s 2 .
Ic5 - ol + 5] = tim (JC7" — ol + a7
It follows from (3.58) that

N . N
V5]l < lim |5
k—o00

and without loss of generality it follows from (3.59) and (3.60) that
55 — ¥4 fork — co.

Thus, it follows from (3.58) and (3.61) that

Oy

V5" — V5, fork — oo,

which contradicts (3.49) and proves the lemma.

2}.

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

O

It follows from Lemma 3.4 that the function pg(a) defined by (3.48) is continuous

for any value a > 0.

Lemma 3.5. Let all the conditions of this paragraph be satisfied. Then

ali_r)no Ps(@) =0 and  lim @g(a) = If11%.
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Proof. Since
R(C)=F, foranye>0
there could be found a point ¥, € V, such that
ICv=foll < 5.
Then having selected the value a > 0, such as
o’ < 3,
for any a < a it will follow from relations (3.62) and (3.63) that
P5(@) = €75 5l < ICTo ~ f3I7 + vl < &,
i.e.,
ps(a) — 0 fora — 0.
We will now prove that
Qs — |[f5||2 fora — oo.
Since for any a > 0 it follows from
cv -+ al 751" < 1CO - f5IP + alOIP = £l
that
a7 < 151,
for any € > 0O there exists a value a = 'U;&—ZHZ such that for a > a
[vsl <.
It follows from (3.64) that
78 —0 fora —co and @ga) — IIfsl’.

The lemma is thereby proved.

(3.62)

(3.63)

(3.64)

O

It follows from Lemmas 3.4 and 3.5 that, if |f5]| > 6, then there exists such value

a(f5, 8), for which the solution f/g(fﬁ’a)

Ic7 %2 £l = 8"

of problem (3.2) satisfies the equation

(3.65)
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3.3 Residual method

The residual method was first used by Phillips [64] in 1962 to solve applied problems.
Then this method was further developed in the well-known paper by V. K. Ivanov [32]
in 1966. In 1972 V. V. Vasin found in [108] a connection between the residual method
and Tikhonov’s regularization method.

Let U, F, and V be Hilbert spaces, let A be a linear injective and bounded opera-
tor mapping U into IF, and let B be a linear bounded operator mapping V into U. In
addition assume that the set of values R(A) of the operator A is everywhere dense in F
and the set of values R(B) of the operator B is everywhere dense in U.

Like in the first paragraph, assume that for f = f,, there exists an exact solution
u, of equation (1.1), which belongs to the set R(B) though f; is unknown. Instead, an
element f5 € IF and an error level § > 0 are given such that

Ifs - foll < 6. (3.66)

It is required to find an approximate solution us € U of equation (1.1) by the initial
data (f;, 8) and, assuming that u, € M, = BS,, estimate the value [lus — u||.

The residual method consists of reducing the given problem to the variational
problem

inf{|vI*: v € V, |Cv - f5]l < 8}, (3.67)

where C = AB.
Lemma 3.6. For any values § > 0 and f € F, the variational problem (3.67) is solvable.

Proof. Let
Qs={v:veV,|Cv-fs] <6}
Then it follows from 6 > 0 and R(C) = F that
Qs + 0.
Thus, the numerical set
Ks = {IvI* : v € Qg}

is non-empty and bounded from below by the number O.

If |f5ll < 6, then O € Qg is the unique solution of the variational problem (3.67).

If s > &, then from the boundedness from below of the set Kj it follows that the
lower bound exists.

We have

inf{|[v|®: v € V, [ICv - f5l < 8}.
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By the definition of the lower bound it follows that there exists a minimizing se-
quence {v,} c Qg such that

v, ll> — inf{|[v]® : v € Qs} forn — oco. (3.68)

The boundedness of the sequence {v,} follows from (3.68) and its weak precompact-
ness follows from the Hilbertness of the space V.
Thus, there exists a subsequence {v,, } such that

Vi, 259 fork — oo, (3.69)

where v € V.
Since C is a linear bounded operator, it follows from (3.69) that

Cvp, 2 ¢v fork — oo (3.70)
and it follows from (3.70) that
CVy, —fs > CV~f5 fork — co. G.71)
From (3.71), by the property of the weak limit norm, we get

IC7 ~ fll < lim |Cv,, — f 372

k—o0

and, due to the fact that for any k, V, € Qs, and, consequently,
ICvy, = f5ll < 6,
according to (3.72), we obtain
Ve Qs. (3.73)
By the property of the weak limit norm it follows from relation (3.69) that

1717 < lim flv,, I (3.74)
k—oo

It follows from relations (3.68), (3.73), and (3.74) that v is the solution of prob-
lem (3.67).
The lemma is thereby proved. O

Note. This lemma is proved in [28] under the condition that the space V is reflexive
and that U and F are Banach spaces.

In addition to problem (3.67), consider the problem

inf{|v|*: v € V, |ICv - f3]| = 6}. (3.75)
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Lemma 3.7. If||f5ll > 8, then problems (3.67) and (3.75) are equivalent.

Proof. In order not to check the resolvability of problem (3.75), let us prove that any of
the solutions of problem (3.67) is a solution of problem (3.75).

Assume the contrary, i. e., that there exists a point ¥ € V such that [|CV - f]| < §
and

V17 = inf{|v]® : v € Qg} (3.76)
and consider the numerical function ¢(A) defined by the formula
p) =||CAv) -f5], A=o0. (3.77)
It follows from (3.77) that the function ¢(A) is continuous and that
o(1) = CV - f]l < 6. (378)

Then it follows from (3.78) that there exists &, > 0 such that, for any value A satis-
fying the condition |A - 1| < &, the following inequality is true:

o) < 6. (3.79)

Thus, it follows from (3.79) that

o) K- )5
(-3 e

2

€0\ 1on2 _ a2
1-— vIF < IVl
(1-2) 1w <

which contradicts the fact that v is the solution of problem (3.67).

Thus, |CV~f5| = 6 and ¥ is the solution of problem (3.75). The fact that the solution
of problem (3.75) is the solution of problem (3.67) is proved in the same way.

The lemma is thereby proved. O

<6

and, consequently,

and

Lemma 3.8. If |fsl > 6, then the solution of the variational problem (3.67) is unique.

Proof. Assume the contrary. Then there exist points ¥; and V, € Qg such that v; # v,
and

011> = [19,01° = inf{IvI’* : v € Qg}. (3.80)
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Let
gty
2
Then it follows from relation (3.80) that
1% < inf{lv]® : v € Q). (3.81)

Since it follows from Lemma 3.7 that
ICV —fsll =6 and [Cv,-f5ll =6,
by strict convexity of the Hilbert space F it follows that
ICv - f5ll < 6. (3.82)

It follows from (3.82) that there exists a number g, > O such that

”C[(l - £—°>17 APy
2
and, consequently,
&\
1- ? Ve Q&. (3.83)
Then from (3.81) and (3.83) it follows that
2
<1 - %) 1012 < inf{Jvi?: v € Qgh. (3.84)

Relation (3.84) contradicts the assumption about the existence of two different
solutions of problem (3.67) and thus proves the lemma. O

Note. In [28], Lemma 3.8 is proved under the condition of reflexivity and strict con-
vexity of the space V and the condition that U are IF Banach spaces.

We further denote the solution of problem (3.67) by v5 and, simultaneously with
problem (3.67), consider the problem

inf{|v|® : v e V, |[Cv - fs(n)| < 8}, (3.85)
where
fs(m) e F and |fs(n)| > 6.

From Lemmas 3.6-3.8 it follows that there exists a unique solution vs(n) of prob-
lem (3.85) and that the condition

[Cvs(n) - fs(n)|| = 6 (3.86)

is satisfied.
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Lemma 3.9. If|fsl > 6 and for any n

Ifs(m)| > & whilefs(n) — f5 forn — oo,

then

vg(n) — vg forn — oo.

Proof. Assume the contrary, i. e., vg(n) does not converge to v4 forn — co. Then there

exist a number g, > 0 and subsequence {n,} such that for any k

Vs(ry) = v| = &
Since R(C) = F, there exists a point v, € V such that
1)
Cvy—f5ll < =.
ICvo ~foll < 5
It follows from
fs(m) — fs fork — oo

that there exists a number k; such that for any k > k;

)
5o =1l < 5

Let f = Cv,. Then for any k > k;, by (3.89), it follows that

Ifo = fs()| < Ifo — fsll + ||fs — fs ()| < 6.

It follows from (3.90) that for any k > k;
[Cvo - fs(my)| < 6
and it follows from (3.91) that for any k > I

Vsl < Ivoll.

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

It follows from (3.92) that the sequence {vs(n;)} is weakly precompact and one can

select its subsequence {vs(ny,)} such that

Vs(ny,) 29 forl — oo.
It follows from (3.93) that

Cvs(my) —fs — CV—f5 forl — co

(3.93)

(3.94)
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and it follows from (3.94), by the property of the weak limit norm, that
ICV —f5ll < lim [[Cvs(ny,) - f5]-
>0
Taking into account that for any

>

[Cvs(ny) — S5 < 6 + |[fs(r,) = f5]

where
Ifs(u) - f5] — 0 forn — oo,
we obtain
ICv —f5ll < 6. (3.95)
It follows from (3.95) that
VIl > llvsll. (3.96)

Introduce a sequence {v,;}, defined by the formula
Vp=y v+ (1 -yvos (.97
where y; € [0, 1], and satisfying the condition
IV, ~ foll = 8 — fs(ru) — f5- (3.98)
It follows from (3.97) and (3.98) that for any [

1€V = fsl < yillCV = fsll + (L= yp)lICvg — fll
6 )
<y6+(1- }’1)5 =1+ Y1)§~ (3.99)

Since
|Lf5(nk1) ~fs] — 0 forl — oo,
it follows from (3.98) and (3.99) that y; — 1 and it follows from (3.97) that
vy — v forl — oo. (3.100)
It follows from (3.100) that

IVl — vl forl — oo (3.101)
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and it follows from the definition of vé(nkl) and Lemma 3.7 that for any [
ICvs(n,) —fsll = 6= fs(n) = fo.
It follows from relations (3.98) and (3.102) that for any [
[vs ()|l < 171,
It follows from (3.101) and (3.103) that
V]l = lim ||v5(nk1)||
l—o00

and it follows from (3.93) that

IVl < lim [Jvs(ny,)|-
—00

It follows from (3.96), (3.104), and (3.105) that
VIl = lvsl
and it follows from (3.95) and (3.106), by Lemma 3.8, that
vg=V.
Thus, it follows from (3.93) and (3.107) that
vs(ny,) =, vsg forl — oo
and it follows from (3.104)-(3.106) that
||v5(nkl)|| — |vsl forl — oo.
It follows from (3.108) and (3.109) that
vs(ny,) — vs forl — oo,

which contradicts (3.87) and thereby proves the lemma.

Lemma 3.10. If
Ifsl <6 and fs(n) — fs forn— oo,
then

vg(n) — vs forn — oo.
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(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

Proof. As was mentioned above, if ||f;| < 8, then problem (3.67) has the unique solu-

tion vg = 0. We consider two cases.
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First case
Assume that

Ifsl <6 and fs(n) — f5 forn — co.
Then there exists a number N such that for any n > N we have the inequality

Ifstm] < 8.

Thus, for any n > N, v4(n) = 0 and for this case the lemma is proved.

Second case
Assume that ||f5]| = 6 and assume for any n

Ifs(| =6 and fs(n) —f5 forn— co.

Without loss of generality, we take for any n, ||f5(n)|| > 8. Then for any n the corre-

sponding solution of problem (3.85) is v5(n) # O.
Since

fs(n) — fs forn — oo,

there exists a number N; such that for any n > N;
6
Ifs(m) —f5]| < 5
It follows from R(C) = I that there exists a number v, € V such that
6
Cvy - —.
ICvo ~foll < 5
Introduce a sequence {v,(n)} defined by the formula
Vo(n) = AHVO’
where for any n, A, > 0 and

[Cvom) ~fol| = & — [|fs(n) - 5]

Without loss of generality we set n > Nj.
It follows from (3.112) and (3.113) that for any n

6 6
[Cvo(n) - f5] < 5+ (1 —/\n)z

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)
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and it follows from (3.113) and (3.114) that

g i —An)g > &~ ) - fi (3.115)

where for any n
Ay >0 and |fs(n)-f5] — 0 forn — co.
Thus, it follows from (3.115) that A, — 0 for n — oo, whence
Vo(n) — 0 forn — oo. (3.116)
Since for any n
[Cvs(n) - f5]| = 6 - |fs(m) - f5], (3.117)
it follows from (3.113), (3.117), and (3.85) that for any n
[vsm)| < [[vo(m]- (3.118)
It follows from (3.116) and (3.118) that
vs(n) — 0 forn — oo.

The lemma is thereby proved. O

It follows from Lemmas 3.6-3.10 that the variational problem (3.67) is well-posed
according to Hadamard.

Theorem 3.3. Let

R(C)=F and |fsl > 6.

Then the variational problem (3.67) is equivalent to the variational problem (3.2) with
the regularization parameter a satisfying equation (3.47).

Proof. Let f/g(f‘*"s) be a solution of problem (3.2), (3.47). Then
|cole? _ gi|1? = 62 (3.119)
and

~ 2 ~ 2
|75~ f5[*+ afs, 6)] 75
=8+ alfy, O3
< inf{6” + a(fs, O)IVI* : v € V, ICv - fll = 6}. (3.120)
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Since it follows from Lemma 3.7 that
inf{vl® : v € V, lICv - fsll = 8} = s,
where v is a solution of the variational problem (3.67), it follows from (3.120) that
Ivell < 7392, (3.121)

If we assume that [vs|l < IIf/g(fﬁ’& I, then

Icvs = f5I? + afs, &)Ivol? = 8 + alfs, &)lvsI < 6 + a(f, &)|72%2 |

which contradicts the definition of the solution 172(’(5’6)

for a = a(fs, 6).
Thus,

of the variational problem (3.2)

Ivell = 7597 (3.122)

and it follows from (3.119), (3.122), and Lemmas 3.7, and 3.8 that v5 = Vg(f‘s"”.
We move on to the inverse direction. Let v5 be a solution of problem (3.67), let
a(fs, 8) be a solution of equation (3.47), and let va(f"’ ) be a solution of problem (3.2) for

a = alfs, 6).
Then it follows from Lemma 3.7 that

Ivsll* = inf{Iv* : v € V, [ICv - f5]| = 8}
and it follows from (3.119) that
lcv5 ™ - f5)) = 6
Thus,
Ivsl < 75,
Assume that
Ivsll < 757,

Then

ICvs — f512 + alfs, O)Vol? = 6 + a(fs, &)5l < 62 + a(fs, &)/

which contradicts the definition of the solution v "“(f&

for a = a(f;, 6).

of the variational problem (3.2)
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Consequently,

sl = 757

and

ICvs - f5I7 + a(fs, &)lvgll® = 8 + a(fs, &) Ivsll*
= coi%D P 4 alfy OO (R123)

Since it follows from Lemma 3.2 that problem (3.2) has a unique solution, it follows
from (3.123) that v = f/g(f‘s’&).
The theorem is thereby proved. O

The residual method is defined by the operator family {Tj : 0 < § < §,} mapping
FF into U and defined by the formula

T&f& = BV5, f5 e, BV§ e U, (3.124)

where v; is the solution of problem (3.67).

If follows from Lemmas 3.6 and 3.8-3.10 that for any § € (0, §,] the operator Ty
continuously maps the space F into U.

Define the approximate solution ug of equation (1.1) by the formula ug = Tsf5.

We will now estimate the accuracy of the residual method A 4[T}]

{T§ :0<6< 50}
over the set M, = BS_, defined by formula (1.65) for any § € (0, §,]. We have

AslTs] = sup {lu— Tsfsll : u € M,, |Au - f5|l < 6}.

ufs

For this purpose, estimate the deviation |lug — uyl| of the approximate solution ugz of
equation (1.1) from the accurate solution u.

Theorem 3.4. Letu, € M,,
Ifs —Augll <6, and ug = Tsfs.
Then
lus — upll < 2w(8,1).
Proof. Since uy € M,, there exists vy € V such that

Ivoll < 7. (3.125)
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By us = Bvg, where vy is the solution of problem (3.67), it follows that
Ivsll < lIvoll (3.126)
and
lAus - f5ll = 6. (3.127)
It follows from (3.125) and (3.126) that
us € M, (3.128)
and it follows from (3.127) that
lAug — Aug| < 26. (3.129)
It follows from (3.128) and (3.129) that
lus — ugl < w26, 1). (3.130)
It follows from (3.130) and Lemmas 1.2 and 1.3 that
lus — uoll < 2w(8, 7).

The theorem is thereby proved. O

It follows from Theorem 3.4 that for any 6 € (0, §;]
AglTs] < 2w(8,7). (3.131)

The following theorem follows from Lemma 1.14 and formula (3.131).

Theorem 3.5. The residual method {Tg : O < 6 < 8} is optimal-by-order on the class of
solutions M, and for any 6 € (0, §,] the following estimate holds true

AslTs) < 24

3.4 The error estimate for the Tikhonov regularization method
with parameter a, selected by the residual principle

Assume that all conditions of Lemma 3.3 are satisfied in this paragraph, i. e., U, FF, and
V are Hilbert spaces, A is an injective linear operator mapping U into IF with the set
of values R(A) everywhere dense in IF, and B is a linear bounded operator mapping V
into U with the set R(B) everywhere dense in U.
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Theorem 3.6. Let O < § < ||f5ll. Then there exists a unique value of the parameter a that
satisfies equation (3.47).

Proof. 1t follows from Lemmas 3.4 and 3.5 that there exists a value of the parameter
a(fs, 6) satisfying the equation

|cva?e® £ = 62, (3132)

where vg is a solution of the variational problem (3.2).

We now move on to the proof of the solution uniqueness for equation (3.47). For
this purpose, consider the contrary. Then we find two different solutions &; and a, of
equation (3.47). Denote the solutions of problem (3.2) for these values by \7?‘ and 17?2.

Let v5 be a solution of problem (3.67). Then it follows from Theorem 3.3 that

i.e.,
=95, (3.133)
It follows from (3.133), Lemma 3.7, and Theorem 3.3 that

8 +a2||A“2|| = mm ||/\C“"2 f5|| +0(2}l2||‘a2 [} (3.134)
and

& + &V | = min{|Acv: - 5| + @’ ). (3.135)

In formulas (3.134) and (3.135) the minimum is achieved for A = 1.
Since

Incog: - fl° + A% e’
= R CV2|* - 2A(CP2. f5) + s> + BA2 |92 (3.136)

and

Acvg: ol + @]
= Ao | - 20(CO2, f5) + Ifsl2 + BAZ |02

I, (3.137)

having A-differentiated expressions (3.136) and (3.137) and having set the values of the
derivatives for A = 1 to be zero, we obtain

ICV% | - (CV%, f5) + @A 02| = 0 (3.138)



54 —— 3 Tikhonov regularization method

and

T 112 a o2
ICv? | - (Cogf5) + a2 || = . (3.139)
By subtracting termwise equality (3.139) from (3.138) we obtain

@, - a|v|’ = o. (3.140)

Since @; # aj, it follows from (3.140) that \7(;iz = 0 and, due to Theorem 3.3 and
vs = 0, this contradicts the condition § < |f3].
The theorem is thereby proved. O

It follows from Lemma 3.3 and Theorem 3.3 that, if
V=V and F'=F,
then the Tikhonov regularization method with the parameter a, selected by the resid-

ual principle (3.2), is defined by the equation

* “1pr=
_ 13[(; C+alfs, O)EI'C*f5 forllfsll > 6, (3.141)

T =
=14 for |Ifsl < &,

where C = AB, C* is the operator adjoint with C, a(fs,6) is the solution of equa-
tion (3.47),

N 2
ICvs - f5]” = 67,
and
98 = [C*C + a(f5, O)E]) ' C*f.

Let A 5[T5] be the accuracy estimate for the method {T; : 0 < § < 8,}, defined by
(3.75). Then

AslTs] = su;p{nu ~Tefsl : u e My, |Au—fsl},
Ufs

where
Mr = Bgr) §r = {V (Ve V’ "V“ = r}’

and w(8,r) is the modulus of continuity at zero of the inverse operator A on the set
N, = AM,. It follows from Theorems 3.3 and 3.4.

Theorem 3.7. Under the conditions defined above, for the method {75 :0 <8 <6y,
defined by formula (3.141), the following estimate is true:

A5[T6] < 2(1)(6, r).
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3.5 On solving an inverse problem in solid state physics with
the Tikhonov regularization method

Following [50], note that, at sufficiently low temperatures, many macroscopic systems
behave thermodynamically as an ideal gas of certain “quasi-particles” (elementary ex-
citations), obeying Bose statistics. The energy spectrum of such a system is determined
by the spectrum of quasi-particles, i. e., by the number of quasi-particles levels n(e)de
on the energy interval de.

Recovering the phonon density of states n(e), it is important to find the character-
istic structure, since it is this structure that defines many physical properties of crys-
tals.

3.5.1 Setting of the problem

The relationship between the energy spectrum of a Bose system and its temperature-
dependent heat capacity is described by the integral equation of the first kind [50]

Sn(e) = Js<5>fn(s)@ O hchcoo (.142)
0)6" e " o
0
where
2
S = — X,
) 2sinh’(3)

C(0) is the heat capacity of the system 8 = kT, T is the absolute temperature, k is a
constant defined by the system, and n(¢) is the spectral density (see [4]).

Denote by H a real space of the functions f (x) measurable on [0, co) with the norm
defined by the formula

2dx

=. (3.143)
X

ool = [ ool

0

Note that the integral in formula (3.143) is understood in the sense of Lebesgue.
Assume that for

o) _ Gl

— H
0 0

there exists an exact solution ny(¢) € H of equation (3.142), which is unique and sat-
isfies the relation

ny(e) € G, (3.144)
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where

T ne)
&

G, = ‘n(e) :n(e) € H, J de + J[n'(e)]zede < rz}, (3.145)
0 0

where 1’ (¢) is the derivative of the function n(¢), but instead of the exact value of the
right-hand side C°9<9) of equation (3.142) we know a certain approximation 65(9) eH
and an error level 6 > 0 such that

|50 _ S0 G.146)

It is required to find the solution ng(€) € H of problem (3.142)-(3.146) and estimate
its deviation |ng(e) — ny(€)lly from the exact solution n,(g) of equation (3.142) in the
metrics of the space H.

If we assume that %9) and n(e) € H, then equation (3.142) becomes an ill-
posed problem.

3.5.2 Tikhonov regularization method

The Tikhonov regularization method (see [97]) for the approximate solution of equa-
tion (3.142) consists of reducing it to the variational problem

inf«““S(e/O)— ()g-%] %
0-0

+ajn—(£)ds+a
) £

‘—.‘8

[n'(e)]2 -&de < n(e) € HY[O, oo)}», (3.147)
0

where H![0, co) is a Hilbert space defined by the norm

||”(3)||2H1[o,oo) = J (e) ——de+ J[n'(e)]z-eds, a>0.
0 0

It follows from Lemmas 3.1 and 3.2 that for any function £ ¢ H there exists a
unique solution n§ of the variational problem (3.147).
To find the value of the regularization parameter a in the problem (3.147), we use

the residual principle (3.47) that is reduced to the solution of the equation

0O 00 2
e\ € 4,..de Cs0)| dO

0

with respect to a.
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It follows from Lemmas 3.4 and 3.5 that, if the condition

Cs(0) ] 2
> 6
[y
0
is satisfied, then equation (3.148) has the unique solution a(Cg, 6).
Define the approximate solution ng(€) of equation (3.142) by the formula
ns(e) = iy >%(e)
and define the corresponding regularization method by the family of operators {R; :

0 < 6 < 6y} continuously mapping H into H, defined by the formula

c5<9)] = {”5(5)> 12 0 > 6. (3.149)

Ao
4 I PR T T

3.5.3 Error estimation for the method {R; : 0 < & < J,} defined by (3.149) on
the class of solutions G,

Define the error estimate for the method {Rs : O < § < 8} by the family of functionals
{As(Rs) : 0 < 8 < 6,} defined by formula (1.65) as follows:

Cs(0 C(0
5(R5)—sup{'lR6< 5 )>_no(s) 5 ny(e) - 8¢ )” }

(3.150)

:ny(e) € Gy,
H

Denote by w(8, r) the modulus of continuity at zero of the operator S™! on the set
S[G,] as follows:

w(8,1) = supf||n(e)| : n(e) € G,, ||Sn(e)| < 611} (3.151)
For the quantities A 5(Rs) and w(8, r) in Theorem 3.7 we obtain the estimate
As(Rg) <2w(b,1), 0<6<8, (3.152)

where w(6, 1) is defined by (3.151) and A 5(R;) is defined by formula (3.150).

3.5.4 Estimation of the modulus of continuity w(d, r) defined by formula (3.151)

Make the following substitution of variables in (3.142):

e=¢" and H=¢€", —co<t, T< oo (3.153)
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Then the operator S is reduced to the convolution-type operator A. We have

Au(t) = J K(t - tiu(t)dt, -oo<t, 1< o0, (3.154)
—3x
e
u(t) =n(e'), «x =
€) 2sinh*(%")

In addition, u(t) and Au(t) € L,(—00, 00).
Note that after the substitution (3.153) the class of correctness G, defined by for-
mula (3.145) will move towards M,. We have

(o) (o)

M, = {||u(t)||L2  u(t) € W(—co, 00), J W(e)dt + J ' (&)t < rz}. (3.155)

Now define the modulus of continuity at zero of the operator A™' on the set N, =
AM, by

w(8,1) = sup{[u(®)], : u(t) € M,, [Au(®)],, < 6}. (3.156)

Lemma 3.11. Let w(8,r) be defined by formula (3.151) and let w(6,r) be defined by for-
mula (3.156). Then the following equality is true:

w(6,r) = w(d,r).

3.5.5 Estimation of the modulus of continuity w(d, r) defined by formula (3.156)

Assuming that u(t) € L;(—00,00) N L,(—00, c0) and define the Fourier transform F as
follows:

o0

Flu(t)] = \/% J u(t)e'dt. (3.157)

It follows from the Plancherel theorem that the transform F is isometric on the
space L,(—o0,00). To distinguish a complex space from a real space, denote it by
Zz(—oo, 0).

Thus, the operator F, defined by formula (3.157), will isometrically map the set
L,(-00,00) N Ly(-00, 00) into the space L,(—0co, co) in the metrics Zz(—oo, 00).

Since the space L;(—00, 00) is dense in L,(-c0, 00), extend the operator F by con-
tinuity onto the whole space L,(—c0, 0co). Denote this extension by F.

Now the operator F maps isometrically the space L,(—co, c0) into fz(—oo, 00). We
will further denote the image of the operator F by Y and note that ¥ will be the sub-
space L,(—co, 00).
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After the transformation F the operator A will be reduced to the following:
Au(p) =K(p)i(p), up) €Y, Ai(p) € Ly(~c0,00), (3.158)

where

u(p) = Flu(®)].

Since K(x) € Li(—00, 00),

RN U (O
K(p) = N JK(X)e dx

and from the form of the function K(x) it will follow that

%) - 1 T’ o~ 2-iDx  pox 5 Te—(z—imx.ee“
2n (e¢ —1)2

) (coth(e™) — 1)dX “\x B

d(e™).

Substituting z = e in the last expression, we obtain

0 . 0 .
. 2 [ z(27WP) o7 2 [ 7P, o7
Kp)=-\\-|"——dz=\= | ——dz.
) \/ni @1 dz \”J = dz

Partially integrating the last expression we obtain

K(p) = Z.

zp)\/_oozz"’)1
S
0

Using the properties of gamma and zeta functions [118] (p. 79),

|
I = [ Z—dz.
0

we obtain

K@) = \/%(2 - ip)I2-ip){(2-ip) = \EFG - ip){(2-ip), (3.159)

where I'(z) is the Euler gamma function and {(z) is the Riemann zeta function.
To estimate from below the function

|K(p)| forp — oo,
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we will give some well-known properties of the gamma function formulated in [118]
(pp. 16 and 19). We write

I'(z +1) = zT(2), (3.160)
T(z) =T(2), (3.161)

where T(z) is conjugated with I'(z), Z is conjugated with z, and

M@I1-2) = = :nz' (3.162)

It thus follows from (3.160) that

T3 -ip)| = \p? + 1\p? + 4T (1 - ip)| (3.163)

and it follows from (3.161) and (3.162) that

. b117)
- = q|—. 1
| ( 1p)| sinh ip (3.164)

It follows from (3.163) and (3.164) that for any p > 2 the following estimate is true:
IFG - ip)| = V2re 2P, (3.165)

We will now estimate from below the modulus of the Riemann zeta function |{(2—
ip)|. Since

S 1
{(s)=) —, (3.166)
n=1 n
it follows from (3.166) that
oo iplnn
(@-ip)=} — (3.167)
n=1
Taking into account that [e?'™"| = 1, from (3.167) we obtain
. <1 1
K@-ip)|<1-) 5> =. (3.168)
o 3

Thus, from (3.165) and (3.168) it follows that for p > 2 the following estimate from
below is true:

k()| = ;ﬁP. (3.169)
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Now consider the extension Al of the operator A, defined by formula (3.158), onto
the whole space L,(-co, co). We have

Aj(p) = Kp)a(p), (), Ai(p) € Ly(~00,00). (3.170)

Consider a set M, ¢ L,(-co, co) defined by the formula

M, = {a(p) 2 U(p), pit € Ly(~00, 00), j 1+ p)|ap)|dp < rz]». (3.171)
From (3.155) and (3.171) it follows that
F[M,] c M,. (3.172)

Consider moduli of continuity at zero defined by the formulas

@(8,1) = sup{|a@)|z, : up) € FIM,], |Aap)|, < 6}, (3.173)
@(8,7) = sup{ap)|z, : &) € FIM,), [Aap)|, < 6}. (3.174)

It follows from the unitary transformation F and formulas (3.154), (3.156), (3.158),
and (3.173) that

w(,r) = w(d,r). (3.175)
It follows from (3.158), (3.170), and (3.172)—(3.174) that
@,(6,7) = w(6,7). (3.176)
Thus, it follows from (3.175) and (3.176) that
@(8,r) < @,(6,7). (3.177)

For the sake of convenience substitute the operator A, defined by formula (3.170)
by the inverse operator A; !, which we denote by T;. We have

Tfp) = A]'f (), f) € RA,), Tif () € L, (3.178)

where R(A,) is the value range of the operator 4,.
Define the set Mr defined by formula (3.172) with the operator B as follows:

Bi(p) = \1+p2i(p), u(p), Bu(p) € Ly(~00, c0), (3.179)
M, =B'S,, (3.180)
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where
S, = {i(p) : a(p) € Ly(~o0o0,c0), ||, <}
On the set L,(—oo0, co) introduce the set N, defined by the formula
N} = T, (). (3.181)
Then it follows from (3.171), (3.174), and (3.178)—(3.181) that

(8,1 = sup{|TF @) : f(p) € Ny, [F @), < 6}. (3.182)

We continue with the estimation of the modulus of continuity @,(6, r) defined by
(3.182).

For this purpose consider the operator T acting from L,(~co, 00) into L,(—c0, co)
defined by the formula

f(p) = sF ), (3.183)

where

8(p) € C(-00,00), g(-p)=g(P), g(0)>0,
lim g(p) = 00, and g(p)increases on [0, co). (3.184)

p—0co0

Define by @,(8,r) the modulus of continuity at zero of the operator T on the set
N, = T"}(M,) and let M, be defined by (3.180). Then consider the equation

r

If g(0)6 < r, then equation (3.185) has a unique positive root p.
It follows from Lemma 1.11 that

=g(p)é. (3.185)

W,(6,1) = (3.186)

1+1_92

Assume that the operator Tl is defined by formulas (3.170) and (3.178). In addition
T is defined by formula (3.183).
Then the following lemma is true.

Lemma 3.12. Ifg(p) satisfies (3.184) and there exists p, > O such that for any p > p, we
have

k@)™ < g),
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then, if

the following estimate is true:
W1(6,1) < W,(6,7).

We will now use Lemma 3.12 to estimate the accuracy of the method {Rs: 0 < § <
6o} It follows from (3.169) that for p > 2

T 2eip, (3.187)

Thus, it follows from (3.152), (3.175), (3.176), (3.186), and (3.187) and from Lem-
ma 3.12 that, if

2re”

N

for the method {Rs : 0 < § < §,}, then by (3.152) and (3.177) the following estimate is
true:

8o

2r
As(Rs) =

1+ %lnz(g—g)






4 Projection-regularization method

4.1 Posing of the problem of unbounded operator values and
the projection-regularization method

4.1.1 Posing of the problem

Let U, IF, and V be Hilbert spaces, let T be a closed linear operator with the domain
D(T) c Fand therange R(T) c U, and let B be an injective linear unbounded operator
with the domain D(B) ¢ U and the range R(B) ¢ V. Assume that the set D(T) is dense
in IF, R(B) is dense in V, and R(T) n D(B) is dense in U.

Denote by M, the set defined by the formula

M, ={u:u e R(T)nD(B), |Bul| <r}. (4.1)

Consider the problem of finding the value Tf,, of the operator T at the point f, € D(T),
where

Tf = u. (4.2

Assume that for f = f;, the element u, = Tf,, belongs to the set M,, but the exact value
of fy is unknown. Instead, the element f; € IF and the error level § > 0 are given, such
that

Ifs —foll < 6. (4.3)

Using the a priori information f, §, and M, it is required to find the approximate
solution us € U of problem (4.2) and estimate its deviation [lus — u,| from the exact
solution u.

4.1.2 Basic notions
Definition 4.1. A set M, is called the class of correctness for problem (4.2), if the re-
striction of the operator T on the set T’l(M,) is uniformly continuous.

Following [44] we will call the problem of finding the unbounded operator T a
conditionally well-posed problem if we know the class of correctness M,, to which the
exact value u,, of the operator T belongs.

Definition 4.2. A family {T5 : 0 < § < §,} of linear bounded operators T5, mapping
the space F into U, is called the linear method of solving problem (4.2) if

A&[T&]—)O f0r5—>0,

https://doi.org/10.1515/9783110577211-004
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where

A5[T5] = sup{ITsfs — Tfoll : fo € T (M,), Ifs —foll < 8} [84].

One of the ways of posing the linear method consists of using the regularizing
family of the operators {T, : « > 0}.

Definition 4.3. A family {T, : 0 < a < @} of linear bounded operators T,, mapping a
space IF into U, is called a family regularizing the operator T if for any f € D(T)

T,f — If fora — a,.

Definition 4.4. Aregularizing family {T, : O < a < a,} is called a family uniformly reg-
ularizing the operator T over the set M,, if

w(@) — 0 fora — ay,
where
w(a) = sup {ITfo - Tfol : Ify € M,} [94].
Consider the equation
w(a) = IT4ll6. (4.4)
In [94] it is proved that, if

w(@) € C[0,ap), |IT,ll € C[0,a0), @(@),||Tll™! — 0 ata— O,
6€(0,60], and w(0) > [T,l6,
then equation (4.4) has a solution @ = a(8). If equation (4.4) has multiple solutions,
then any of the solutions can be used.
Consider the linear method {Ts : 0 < § < §,} of solving problem (4.2) and a func-

tion A(6) : 6 € (0, 8,] such that A(6) — 0 for 6 — 0.
Assume that there exists a number b > 0 such that for any § € (0, §,] the relation

Ag[Ts] < bA(S) (4.5)

is true.
Then the value bA(8) is called the error estimate for the method {T 5:0<6<6y}
on the set M,. If there exists a number b; > 0 such that for any 6 € (0, 5]

A5[T5] 2 bA(6),

then the error estimate (4.5) is called accurate-by-order.
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We will now consider a family of linear bounded operators {T, : 0 < a < ag}
uniformly regularizing the operator T over the set M, and define the function u(6) as
follows:

U(8) = inf{A4[T,]: 0 < a < ap),
where
Ag[T,] = sup{lITufs - Tfoll : fo € TXM,), |Ifs — foll < 6).

Then we will call the dependence a = a(8) quasi-optimal if there exists a number
b, > 0 such that for any & € (0, 8]

A sl Tyes)] < bou(d).

Denote by B[FF in U] a space of linear bounded operators mapping IF into U and by
A%pt the value

AP" = inf{A4[P] : P € B[F, U]},
where
AglP] = sup{lITfy - Pfsll : fo € T (M,), Iifs - foll < 6}.

Definition 4.5. A method {T;™ : 0 < 6 < 6,} is called optimal on a class M,, if for any
6 €(0,60]
Ag[TPP] = AP

Definition 4.6. A method {T; : 0 < 6 < 8,} is called optimal-by-order on a class M,, if
there exists a number k such that for any 6 € (0, ;]

A&[T&] < KAOEpt.

Following [33] we define the modulus of continuity at zero of the operator T re-
striction on the set T‘l(Mr) as follows:

w(r,r) = sup{ITfll : f € T'(M,), IIfIl < }.

It is known [28] that A%pt > w(6,7).
Let

U=F=V=H,

where H is a Hilbert space and T and B are injective closed linear operators in H,
satisfying the following properties:

D(T) =D(B) =R(T) =R(B) = H, (4.6)



68 —— 4 Projection-regularization method

where D(T), D(B) are closures in H of the corresponding domains D(T) and D(B) of the
operators T and B, while R(T) and R(B) are the closures of the corresponding value
ranges of said operators.

From the theorem proved in [66] (p. 325) it follows that for the operators T and B
there hold polar decompositions, where

B=BP and T=QT,

where

while P and Q are unitary operators.
In addition let

B=G(T), (4.7)
where the spectrum
Sp(T) = [a, c0),
G(o) € Cl[a, 00), and for any ¢ € [a, c0)
G'(0) > 0, Jlim G(0) = co.
Consider the equation
0G(0) = . (4.8)

that has the unique solution o(t, r) if % > aG(a). From [72] it follows that under the
above conditions

opt

r
m, A6 :(U(T,r).

w(t,1) =

4.1.3 Projection-regularization method

Assume that the function G(0) in formula (4.7) where G(0) is strictly increasing is con-
tinuous over [a, o) such that

lim G(o) = co.
0—00

Then the problem of finding the values of the operator T, (4.2), can be substituted
by the equivalent problem

Tg =u, (4.9)
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where g = Q*f, and the set M, can be defined by the formula
M, = {u:u e D(B), |Bul <r}. (4.10)

Assume that it is required to define the value of Tg, that belongs to M,, but the
exact value g is not known. Instead, we have a certain approximation g5 € H and
error level 6 > 0 such that

lgs — 8ol < 6.

Using the initial data of M,, g5, and § it is required to define the approximate value
of ug for problem (4.9) and to estimate the deviation ug from u.

The projection-regularization method [28] uses a regularizing set of operators
{T, : a < a < oo}, acting from H into H defined by the formula

a
T,8 = JadEgg, a € [a,00), (4.11)
a

where {E;; : a < 0 < oo} is the spectral decomposition of the unit E, generated by the
operator T.
We will define the approximate solution of problem (4.9) by the formula

uj = To8s- (4.12)

Now select the parameter « = a(6) in formula (4.12).
For this purpose consider

I = uo| = I ug5 - ol (4.13)
It follows from (4.13) that
ul — o * = e ) + [l — o + 20l - S — wo), (4.14)

P
where ug = T8,
Since

H=H, +H,, whereH,=E,H,
and since it follows from (4.11) and (4.12) that uf — ug € Hy, u§ — uj € Hy, we have
(g — U U — Ug) = 0.
Thus, it follows from (4.14) that

2 2 2
[us — oll” = lus — uoll” + g — wo™ (4.15)
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Now we introduce the following quantities:

= = =-1
A((X, 6) = SUP{"Tag[i - TgO” 180 € T (Mr)’ "g6 _g0|| < 6}’ (4-16)
= = =-1
Aq(a) =sup{lT,80 — Tgoll : 8o € T ~(M,)}, (4.17)
and
= = =-1
Ay(@,8) = sup{lITogs — Togoll : 8o € T (M,), llgs — goll < 6}. (4.18)

Then it follows from (4.15)-(4.18) that
N (a,8) < A(a) + A5(a, ). (4.19)
It follows from (4.18) that
Ay(a,8) < | T,|6. (4.20)
It follows from (4.19) and (4.20) that
N (a,8) < N(@) + I T,I*8°. (4.21)

Lemma 4.1. We have the equality IITall =a.

Proof. It follows from (4.11) that || T, < &, but since a belongs to the spectrum Sp(T,)
of the operator T,, we have | T,| = a. O

Lemma 4.2. We have the equality

r
A = —.
(@) G@)
Proof. Tt follows from (4.17) that
(o)
N(@) = sup“ G A(0)d(Eyvo, Vo) : IVoll < r}. (4.22)
Vo
a

It follows from (4.22) and from the properties of the function G(o) that
® 2

Azl(a) < G+m sup J d(E,vy,vp) < Gzr—m). (4.23)

Since G2 € Cla, 0o), for any € > 0 there exists y > 0 such that, for any ¢ such that
0 <0 —a <y, wehave

0<67@-67(0) < . (4.24)
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It follows from (4.24) that there exists an element v, € (E, . E,)H such that
[Voll = rand

2
—-1_ 2 r
“B VO“ > Gz_@ —&. (4.25)

Since ||1_3_170||2 < A%(a), it follows from (4.25) that A%(a) > Gz’—;) — ¢ and due to the
arbitrariness of €

r2

A(@) 2 @ (4.26)
From relations (4.23) and (4.26) it follows that the lemma is proved. O
Thus, it follows from (4.21) and Lemmas 4.1 and 4.2 that
A(a, 8) < i + 8%’ (4.27)
GX(a)

We will now obtain a reverse inequality. For this purpose we will use the fact that
G%(0) € C[a,o0) and 0° € C[a, o0), whence for any € > O there exists p; > 0 such that
for any o satisfying the condition 0 < ¢ — a < p; it follows that

0<67@)-G60) < —. (4.28)
2r
Similarly, for any o such that 0 < a — 0 < y; it follows that

@ -0’ < % (4.29)

It follows from (4.28) that there exists an element
Vo € (Eqyy, —E)H and [vgl =7
such that for the element
Uy=B%, and =TT B 7,
we have the relation

— — 2 r2 &
”ug - UO“ > GZ_@ - 5 (4.30)

Similarly, there exists an element 6g € (E, — E, y)H and l6g]l = 6 such that for the
elements

5:T_ﬁ0+5§ and ﬁgZTagg
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we have the following relation:
s - ) > o267 - ; “.31)

It follows from (4.15), (4.30), and (4.31) that

—a — r
Il — 1”2 e 5o’ - ¢ (4.32)
and it follows from (4.16) and (4.32) that
2 r’ 2 2
A (a,6) > 2@ +6°a° —¢. (4.33)

Due to the arbitrariness of ¢ it follows from (4.33) that

2

A(a,8) > 2@ + 8% (4.34)
and it follows from (4.27) and (4.34) that
2 r’ 2 2
A (a, 6) = @ +6%a°. (4.35)

We will define the regularization parameter a = a(6§) from the equation
aG(a) = %- (4.36)

It follows from the properties of the function G(a) that for % > aG(a) equa-
tion (4.36) has the unique solution a(8).

Thus, the regularizing family {Ta : a > a} of the linear bounded operators Ta,
defined by formula (4.11), and the dependence a = a(6), defined by equation (4.36),
give the method {Ta(ﬁ) : 0 < 6 < r/aG(a)} of projection regularization and for this
method we have the exact error estimate

V2r

As[Pgs)] =

Theorem 4.1. If G(0) € C'[a, o), for any o € [a, c0)
G'(0)>0 and G(o) > oo foro — oo,

then, if % > aG(a), the projection-regularization method {Ta(g) : 0 < 6 < r/aG(a)},
defined by formulas (4.11) and (4.36), is optimal-by-order with the constant V2 and for
this method we have the exact error estimate

el t
A5[Tg] = V2aP.

The proof of the theorem follows from relations (4.8), (4.36), and (4.37).
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4.2 Isometry of the Fourier transform on the space L, [0, co)

Let f(t) € L;(—00, 00). Then the Fourier transform f (1) is defined by the formula

Fr) = FIf0)] = —— J fihe™dt, TeR (4.38)
2 S
It is well known that
F(0) € Co(-co,00) and [f(1)] < j IF(0)|dt.

Thus, the operator F, defined by formula (4.38), is a linear bounded operator map-
ping the space L;(—00, 0c0) into Cy(—00, 00). In addition, the inverse operator F “1is de-
fined by the formula

(o0}

J f(r)edr

1

ft) = F'[f(1)] T

and is a linear unbounded operator acting from the space Cy(—c0, c0) into L;(—0c0, 00).
If the function f(t) € L,(—00, 0), then the Fourier transform F of this function in
the sense of definition (4.38) generally speaking is meaningless. Using the well-known
Plancherel theorem (see [39] (p. 412)), it is possible to extend the Fourier transform F
to the space L,(—00, 00).
Let L,(—00, c0) be a complex space.

Theorem 4.2 (Plancherel). For any function f(t) € L,(—00, 00) for any N the integral

N

_L —itt
g(T) = vEjﬂt)e dt

belongs to the space L,(—c0, 00). For N — oo the sequence of the functions gy (1) con-
verges in the metrics of the space L,(—o0, 00) to a certain limit g(t) and

lg()fdr = j Fodt.

—00

g—38

This function g(t) is called the Fourier transform of the function f(t) € L,(-00, 00).
If the function f (t) also belongs to L,(—0c0, 00), then the corresponding function g(t) co-
incides with the Fourier transform of the function f (t) in the sense of definition (4.38).

Thus, from the Plancherel theorem it follows that the Fourier transform of F, ex-
tended onto the space L,(-c0, c0), maps this space into the space L,(-c0, c0), in the
isometric way.
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Let
H = L,[0, 00) +iL,[0, c0)

over the field of complex numbers and let L,[0,c0) be a real space. Assume that
f(t) € L,[0,00) N L{ [0, co) and define the Fourier transform of F, acting from the space
L,[0, c0) into H, by the formula

(o0}

1 J fhe™dt, T30, (4.39)

f(r) = F[f(0)] = 7
0

Lemma 4.3. The operator F, defined by formula (4.39) and acting from the space
L,[0, 00) into H, is isometric.

Proof. Let f(t) € L,[0,00) N L;[0,00). Extend this function to the negative semi-axis
assuming that

f(H)=0 att<O. (4.40)

Thus, f(t) € Ly(—00,00) N L;(—00, c0). Denote by f(r) the Fourier transform of the
following function f(t):

SN T (PO
f(t)= 2ﬂ(!f(t)e dr, -00<T < 00. (4.41)

It follows from the Plancherel theorem that

"f(T)”LZ(—oo,oo) =|f )"Lz[O,oo)' (4.42)

It follows from (4.40) and (4.41) that

Fr) \/LT" [ feat, =0, 543)
\% _[gof(t)eitlrldt, 7<0. '

It follows from (4.43) that

PNz o000 = J Fo)'dr + J f(0)dr. (4.44)

0 0

where% is a function conjugate with f(7).
Since forany 7 > 0

FoP = F@l
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we obtain from (4.44) that

PO ccoe =2 [ et

0

It follows from (4.42) that

O 000y = IFOIL ooy

and it follows from (4.39), (4.41), and (4.45) that

FOIL ooroer = IFON 000y

The assertion of the lemma follows from (4.46) and (4.47).

— 75

(4.45)

(4.46)

(4.47)

O

It follows from Lemma 4.3 that the transformation of F can be expanded by con-
tinuity over the whole of the space L,[0, co). It will then isometrically map the space

L,[0,00) into H.






5 Inverse heat exchange problems

5.1 A study of the inverse boundary-value problem for the heat

conduction equation with a constant coefficient

5.1.1 Problem posing

Let a thermal process be described by the equation

quxt) du(x, t)

Y FRER O0<x<1,t>0,
X

(5.1)

where the solution u(x, t) € C([0,1] x[0, 00))NC>1((0, 1) x (0, c0)) satisfies the following

initial and boundary conditions:

u(x,00=0, 0<x<l,
u(0,t) = h(t), t=0,

and

w +xu(l,t)=0, xk>0,t>0,
where

h(t) € C*[0,00), h(0) = h'(0) = 0.

Also, let there exist a number ¢, > 0 such that for any t > ¢,

h(t) = 0.

5.1.2 A study of the smoothness of the function u(x, t)
Let us make the substitution
K
v(x, t) = u(x, t) + [—x - l]h(t).
Kk+1

Then
vix,t)  dv(xt)
ot ox?
v(x,0)=0, 0<x<l,
v(0,t)=0, t=0,
vi(Lt)+xv(L,t)=0, ¢>0.

+[ X x—1]h'(t), 0<x<1,t>0,
K+1

https://doi.org/10.1515/9783110577211-005

(5.2)
(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
(5.10)
(5.11)



78 —— 5 Inverse heat exchange problems

The solution of problem (5.8)-(5.11) is as follows:

vix,t) = Oivn(t) sinA,x, (5.12)

n=1

where A, are positive solutions of the equation

tanA = —/—1, (5.13)
K
1 .
J sin’ Apxdx = M’ (5.14)
44,
0
and
t
v,(t) = 2b,, J e MEDY (pyar, (5.15)
0
where
4
bn = —m. (516)

By partially integrating the right-hand side of equation (5.15) and taking into ac-
count (5.5), we obtain

t
Vp(t) = % [h’(t) - Je"ﬁ“”h”(r)dr]. (5.17)
n 0

Lemma5.1. Let u(x,t) be a solution of problem (5.1)-(5.4), defined by formulas
(5.12)-(5.16). Then

u(x,t) >0 fort—0
is uniform over the interval [0,1].

Proof. Let us denote by r; the number defined by the formula

rn= tg{l&)j}(]h(tﬂ + [0 @)] + " @©))). (5.18)

The following estimate is true for the general term of series (5.12):
[V (8) sin Ayx| < [V (8))]. (5.19)

It follows from (5.16) and (5.17) that

t

v (0] < /ﬁ |n' (&) + max e Ma(t=D) J |h"(‘r)|d‘r]. (5.20)

(0]
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Since

—_ 2 —
max e (D <1,
o<r<t

it follows from (5.18) and (5.20) that

161t

B < =———m. 5.21
|Vn( )l A%(Mn _ 1) ( )

If follows from (5.13) that for any n

2n+1
A, = —5 Tt Hn (5.22)
where

U, — +0 forn — co. (5.23)

It follows from (5.22) and (5.23) that there exist numbers ¢; and ¢, > 0 such that for
any n

agn+1) <A, <c(n+1). (5.24)
It follows from (5.19), (5.21), and (5.24) that there is a number c; > 0 such that for any n

. C
|Vn(t) Sll’lAnxl < m (5.25)

Since the series Y%, (n+1)> converges, according to the Weierstrass criterion se-
ries (5.12) converges uniformly over the band [0, 1] x [0, co). Thus, it follows from the
theorem on passage to the limit under the series sign that

v(x,t) >0 att— 0 (uniformlyin [0,1]) (5.26)

and the assertion of the lemma follows from (5.7) and (5.25). O

It follows from Lemma 5.1 and relations (5.7), (5.12), (5.25), and (5.26) that
u(x, t) € C([0,1] x [0, c0)). (5.27)

In order to study the continuity of the function v, (x, t), consider the series com-
posed of the first-order derivatives of the summands of series (5.12). We write

D AVn(t) cos Ayx. (5.28)

n=1
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It follows from (5.19), (5.20), and (5.24) that there is a number ¢, > 0 such that for any
values of x € [0,1],t > 0,and n

(5.29)

¢y
AV (t) cos x| < T

From the convergence of the series ZZL(” +1)72 and relation (5.29), by the Weierstrass
criterion it follows that series (5.28) converges uniformly over the band [0, 1] x [0, c0).

Thus, it follows from Theorem 7, proved in [21] (p. 476), that for any values of x ¢
[0,1] and t > O the following equation is true:

V(1) = ) Agvp(t) cos A,x.

n=1

Note that the function v, (x, t) is extendable by continuity to the interval ¢ = 0, so
we have

Vi (x, t) € C([0,1] x [0, 00)). (5.30)
It follows from (5.7) and (5.30) that
. (x, 1) € C([0,1] x [0,00)), (5.31)
where foranyt >0and 0 <x <1
U, (x, t) = u,(x, ).

Consider the series composed of the second-order derivatives of the summands of
series (5.12). We write

(o)
= Y vy (t) sinAyx. (5.32)
n=1
It follows from (5.24) and (5.29) that there is a number ¢; > 0 such that for any values

ofx € [0,1],t > 0,and n

|A2v,,(£) sin Ax| < (5.33)

Cs
+1

It follows from (5.33) that for any ¢ > O series (5.32) converges in the metric of the
space L,[0,1].

Since the operator defined on the class of functions

d 529
D={p(x):0,¢",¢" € L,[0,1], p(0) = ¢'(1) + k(1) = 0},

is closed in the space L,[0, 1], it follows from the uniform convergence of series (5.28)
and the convergence of series (5.32) in the space L,[0, 1] that for any t > 0

d v(x, t)

e z /12 vp(t)sinA,x almost everywhere. (5.34)
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It follows from (5.7) and (5.34) that for any t > 0

w! (x,t) € L,[0,1].

(5.35)

Let us get down to a more detailed study of the continuity of the function u), (x,t) on

the band (0, 1] x (0, co). We prove the following lemma for this purpose.

Lemma 5.2. For any € > O the series

2 3,

converges uniformly over the interval [g,1].

sinA,x
—-sin2A,

Proof. First, transform equation (5.13) as follows:

sinA + %cos/l =0.

It follows from (5.36) that

Let us denote

Given that A > 0 and tgA < 0, from (5.39) it follows that

1
2\":
(1+A—2> -sinA + &<
I K

2y
sina = <1+ —)
K2

It follows from (5.37) and (5.38) that

and cosa= A(
K

1+A—

K2

cos(A —a) =

m
A—a=—=+nn.

From (5.38) and (5.40) it follows that

where

s, (T m)] < (1
<7‘[

A

n

2

= +7n
2

>+C¥n

2\7:
) -cosA =0.

1+ —

AZ
X2

)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)
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and, given (5.13),

a, » +0 atn — oo.

From (5.37), (5.41), and (5.42) it follows that for any n

. 1
sina, < —.
K7n

It follows from (5.41)—(5.43) that

. . (T . a 2
sinA,x — sm(— + rm)x <2sin 2 < —,
2 2 K7n
sinA,x sinA,x < sinA,x sinA,x )
= =+ — 5
22, —sin 24, 2A 2\, —sin 24, 2A

n n

and

sin(3 +m)x  sin(3 + n)x

1
24, -sin24, 24,

< .
A (A, = 1)

Let us denote

P (x) = <sin)lnx - sin(g + ﬂn>x>

and
_ sin(Z + m)x  sin(Z + )x
l)bn(x) = < 2 . - 2 >'
21, - sin 2, 27,
Then
sind,x  sin(3 +mn)x Pn(0) -
A, —sinah, - &, o —sman, " ¥

and the assertion of the lemma follows from (5.44)—(5.46).

Lemma 5.3. For any € > O the series

Z )lflvn(t) sinA,x

n=1
converges uniformly over the band [g,1] x [0, c0).
Proof. The following estimate follows from (5.6) and (5.18):

t

j e—/\ﬁ(t—T)hH (T)dT
0

r

1

< —
5
n

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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It follows from (5.24) and (5.47) that the series

t
o —/\g(t—‘l’)hll d Sin AYIX 8
HZ_;L)[ e (1) T:| A, —sin2h, (5.48)

converges uniformly over the band [0, 1] x [0, co).
Since from (5.16) and (5.17) it follows that for any n

t
. 8h'(t)sinA, x Rt sinA, x
Aflvn(t) sinA,x= ————2— -8 Je At T)h”(T)dT m» (5.49)

2\, —sin 24,

it follows from Lemma 5.2 and relations (5.48) and (5.49) that the series

3

Alv,(t) sin A,x
1

=
I

converges uniformly over the band [g, 1] x [0, c0).
The lemma is thereby proved. O

From Lemma 5.3 it follows that for any x € (0,1) and ¢t > O
o0
Ve ==Y Aavy(t) sinA,x. (5.50)
n=1

In addition, from Lemma 5.3 and (5.50) it follows that v/, (x, t) is extendable by conti-
nuity up to t = 0. Let us denote this extension by V.., (x, t).
Then

v (x,t) € C((0,1] x [0, 00)) (5.51)
and it follows from (5.7) and (5.51) that
u, (x,t) € C((0,1] x [0, 00)), (5.52)
where forany ¢t > 0and 0 < x < 1
(6 t) = ul (xb).

Note that the proof of formulas (5.27), (5.31), and (5.52) can be obtained from a
corollary of the theorems given in [7] and [117].

Lett; > ty and @(t) € C[O, t;].

Then from (5.31) and (5.52) it follows that

4
j u (x, Ho(t)dt = 9 “ u(x, Yo (t)dt
] 0x

4
(5.53)

0
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and
t 4
P
ox )

> : (5.54)
0

For the complete justification of the applicability of the Fourier transform with respect
to t over the half-line [0, co) it is necessary to extend formulas (5.53) and (5.54) to the
case where t; = co. For this purpose let us study the decrease rate of the functions

u(xt), w,(t) and ul(x,t) fort — co.
5.1.3 A study of the decrease rate of the functions u(x, t), u,’((x, t) and u,’&(x, t)
fort — oo

Consider an auxiliary problem that uses the condition of (5.6). We have

ou(x,t)  0%u(x,t)

o 2 0<x<1,t>ty (5.55)
u(x, ty) =upx), 0<x<l, (5.56)
u(0,0)=0, t>ty, (5.57)
and
aug(, D =0, t>t (5.58)

It follows from (5.6), (5.27), (5.31), and (5.35) that
Ug(x) € W2[0,1], uy(0) =0, up(1) +Kuy(1) = 0. (5.59)

The solution of problem (5.55)—(5.58) is as follows:
) 2
u(x, t) = Z u,e (0 gin A x, (5.60)
n=1
where A, are defined by formula (5.13) and

1
J Ug (x) sin A, xdx. (5.61)
0

4

U= —+—
" 2M,-sin24,

By partially integrating the right-hand side of equation (5.61), we obtain

1
4 .
U = @A sin 2y J (oS o



5.1 A study of the inverse boundary-value problem for the heat conduction equation =—— 85

It follows from (5.59) and (5.62) that there exists a number ¢, > 0 such that for any n

Ce
lu,| < —=. (5.63)
n A%

It follows from (5.60) and (5.63) that for any ¢ > ¢, + 1

) 2
[utx, t)] < cg Z A;Ze*""“*t"), (5.64)
n=1
O 41 A2
|u, (6, )] < ¢ Z Ale o), (5.65)
n=1
and
(o) AZ
i (6, 0] < 6 Y e, (5.66)
n=1
Since
e Mlt-to) _ oA | o Aalt=to=D) (5.67)

and it follows from (5.24) that
e < [e“‘f]_n, (5.68)

it follows from (5.55) and (5.64)—(5.68) that there exists a number ¢; > 0 such that for
any t >ty +2

up 6]} < ce (™D, (5.69)

sup {JuCe )|, Juy(x, )], [uy(x, £)
x€[0,1]

From (5.31), (5.52)—(5.54), and (5.69) by the theorem proved in [119] (p. 417) the
following theorem arises.

Theorem 5.1. Let ®(t) € C[0,00) and let ®(t) be limited over this half-line. Then the
following relations are true:

j ul(x, )o(t)dt = 3[
] 0x

o3

u(x, t)CD(t)dt]

and

u(x, t)o(t)dt

[ &
J U, (x, H)D(t)dt = @[
0

o—3
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Lemma 5.4. Let u(x, t) be a solution of problem (5.1)—(5.4). Then the following relations
are true:

lim J juc, ) ~ ROt = lim [ Jute )~ u@t )de
X— X—
0

= lin} [uy (x, ) — i (1, 8)|dt = 0.
xX—

O——g o——3g

Proof. It follows from (5.27) and (5.31) that forany t > 0

lim,_,qu(x,t) =h(t), lim, ;u(x,t)=u(l,t), and
lim,_; u,(x,t) = u(1,t). (5.70)

Let the number cg > O be defined by the formula
cg = max{[u(x, )] + U (x, )] : 0 < x <1, 0 <t <ty +2}.

Then let us denote by g(t) the function defined by the formula

B Cg» O0<t<ty+2,
g =
coe oDt 4 2,

Since
J lg(®)]dt < co
0

and forany t > 0
luGe,t)| <g(t), |up(x, )| < g(t),

given (5.70), by the Lebesgue theorem on the passage to the limit under the integral
sign, the assertion of the lemma is proved. O

5.2 On the accuracy estimation of the approximate solution
of an inverse boundary-value problem for a heat conduction
equation with a constant coefficient

5.2.1 Posing of the inverse problem

Let the thermal process be described by the equation

ou(x,t)  %u(x,t)
ot ox?

, O0<x<1,t>0, (5.71)
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where the solution u(x, t) € C([0, 1] x [0, 00))NC>1((0, 1) x (0, 00)) satisfies the following
initial and boundary conditions:

uix,0)=0, 0<x<l, (5.72)
u(0,t) = h(t), t=0, (5.73)
and
@ +xu(l,t)=0, k>0,t>0, (5.74)
where
h(t) € C*[0,00), h(0) = K'(0) = 0, (5.75)

and there exists a number ¢, > 0 such that for any t > ¢,
h(t) = 0. (5.76)

Assume that the function h(t) is unknown and should be defined and that the temper-
ature f(t) of the rod corresponding to this process is measured at the point x; € (0,1).
We have

u(xy,t) =f(t), t=0. (5.77)

5.2.2 Reducing problem (5.71)-(5.73), (5.77) to the problem of calculating
unbounded operator values

Let the set M, be defined by the formula

(o)

M, = {h(t) : h(t) € L,[0, co), j Ih(e)dt + J I (&) dt < rz}, (5.78)
0 0

where H'(t) is the derivative of the function h(t) and r is a known positive number.
Then assume that for f(t) = f,(t), from condition of (5.77), there exists a function h(t)
belonging to the set M,, but the exact value of the function f;(¢) is unknown. Instead,
a certain approximating function f5(t) € L,[0, co) N L;[0, co) and a number § > 0 such
that

Ifs —foll, <6 (5.79)

are given. It is required to find an approximate solution hg(t) of problem (5.71)-(5.73),
(5.77) and to estimate the deviation || hs — hg|| L of the approximate solution hg from the
exact solution h, using f5, 6, and M,.
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Let
H = L,[0, 00) +iL,[0, c0)

over the field of complex numbers and let F be an operator mapping L, [0, co) into H
defined by the formula

F[h(t)] =

% J h(e ™dt, T 0. (5.80)

If follows from Theorem 5.1 and Lemma 4.3 that the transformation F is applicable
for the solution of equation (5.71). Thus, reduce equation (5.71) to the equation

N
9 ‘gx"z D _irior), x€(0,1), 720, (5.81)

where
u(x,7) = Flu(x, t)].

It follows from (5.74) and (5.77) that

ou, 7) +xu(l,7)=0, T=0, (5.82)
ox
and
0, 7) =f), 120, (5.83)
where

f(r) = F[f(@)].

It follows from Lemma 5.4 that the solution #(x, T) of problem (5.81)—(5.83) is con-
tinuous over the band [0, 1] x [0, co). The solution of problem (5.81) is as follows:

a(x, ) = A1)V 4 B(r)e P VT, (5.84)
where
Ho = %(1 +1)

and A(t) and B(t) are arbitrary functions. It follows from (5.82)—(5.84) that
B cosh py VT + (Mg vT) k sinh HoVT
— cosh po(1 - X)) VT + (U VT) "Lk sinh g (1 - X)) VT

Let us denote the denominator of the right-hand side of formula (5.85) by (7). We
write

(0,7) f(1), 1>0. (5.85)

Y(T) = cosh py(1 — X)) VT + (o VT) 'k sinh pg (1 - x;) VT
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Lemma 5.5. Let k < 5. Then there exists a number ¢, > 0 such that for any T > 0

Proof. Since

Re[y(r)] = {COS a —X1)\j§[\/27$25mh(1 xl)\/§+ coth(1 —xl)\/g]

[(D)| = c;.

2
+ 2% coth(1 - xl)\/gsin(l - xl)\/g]»,

m[Y(1)] = {sin 1- xl)\/g[\ 271(2 cosh(1 - X1)\j§ + sinh(1 - xl)\/g]

%2 T T
“\ 7 sinh(1 - xl)\/;cos(l - X1)\j;},

it follows from (5.86) that,

if

T T T 1
OS(l—Xl)\/;S §, COS(]—)(l)\/;Z5
|¢(T)| > cos(1 - X1)\Ecoth(1 _ XO\E S

T T 7
—<(1- — < —, then sin(1-
3 ( Xl)\/z 5 (1-x)

and

If

and from (5.86) it follows

()| > \’? sin(1 - xl)\/gcoth(l - Xl)\jg > @ coth 2

If

that

b1 T 3m . T
—<(A-x)\=<—, sin(1- —
2 ( 1)\j; 4 (1-x) 2

It follows from (5.86) that

If

()| = a

<(1- xl)\f<n —cos(1 - x|~

T
- 2>

2

1
22

2
2

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)
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It follows from (5.87) that

(1"‘1)‘/§xs' 31
2

[(D)| = inh 7 (5.91)

Thus, it follows from (5.88)—(5.91) that there exists a number ¢, > 0 such that, for any
[ > (1 X, )2 ]’
[Y(D)] = c,.

Since

=
IN
NI =

|(1)| > |coshuy(1 - x)) V7| - %|Sinhy0(1 - x) V1|,

it is easy to verify the existence of a number ¢; > 0 such that forany 7 > 5 XZ)Z
(@] = c5. (5.92)

The assertion of the lemma follows from (5.88) and (5.92). O
Since the functions
cosh o VT + (4o VT) 'k sinh o VT
and
cosh o (1 - X;) VT + (o VT) 'k sinh g (1 - x,)VT
are continuous over [0, co), the function continuity follows from Lemma 5.5. We have

cosh i VT + (U VT) 'k sinh uy VT
cosh po(1 — x)VT + (Mo VT) Ik sinh puy (1 - x;) VT

over this half-line. Thus, for any T > 0 there is a number ¢z > 0 such that € [0,7] and

coth o VT + (o VD)~ 'k sinh o VT

cosh (1 - x7) VT + (Uo VT) Mk sinh (1 - x) VT =¢ (.93)
Let us denote @(0, T) by h(t) and transform formula (5.85) as follows:
o) < _ F cosh VT + \/7 sinh py VT . 590
T cosh py(1 - x)VT + \/7 sinh py(1 - x)) VT
T > 0. Let B(1) be defined by the formula
sinh (1) = ——~ (5.95)

UoNT + K2
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It follows from the features of the function Arsh proved in [65] (pp. 84—86) that this
function maps the complex plane C, from which therays1 <y < coand —co <y < -1

have been removed into the band —% <V < % Thus, it follows from (5.95) that there
exists a function B(t) that satisfies relation (5.95). Besides, it follows from (5.95) that

B(t) -0 fort — co (5.96)
and it follows from (5.94) that
h() = cosh(po VT + B(T)] - cosh™ [y (1 - x))VT + B(D)]f (7). (5.97)
Let us define the operator (5.97), using the formula T, assuming that
Tf (1) = cosh[ug VT + B(1)] - cosh™ [y (1 - x)VT + B(D)|f (1) (5.98)
and
D(T) = {f(t) : f(1) € H and Tf(1) € H}. (5.99)

It follows from (5.98) and (5.99) that the operator T is linear, unbounded, and closed.
We have

Tf (1) = h(1). (5.100)
Let
ho(0) = Tho(@), fo@) = Flfo(®)],  fo(t) = F[f5(0)]-
Then it follows from formula (5.79) that
Ifs — follz < 6. (5.101)

Let us denote by M, a set from H such that M, > F[M,] and

M, = {fz(r) :h(t) € H, J(l + TZ)|fl(T)|2dT < rz}. (5.102)
0

It follows from h,(t) € M, that

hy(1) € M,. (5.103)
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5.2.3 Solving problem (5.100)-(5.103)

Lemma 5.6. For any € > O there exists a number 1, > 0 such that forany 7 > 1,

I Y LT P
<1 4+€>e = TcoshipoI—xpvr+pO) =\ are ) G109

Proof. Since

B(T) = Bi(T) +iBy(7),

we have

|cosh[uy VT + B(D)]| = \/cosh2 [ \E +B1(r)] - sinz[\/g +ﬁ2(r)]

and

|cosh[po(1 - x) VT + B(D)]| = \]Sinhz[(l - X1)\/§ +B1(T)] + cosz[(l - X1)\j§ +ﬂ2(T)].

Hence
jcoshipio Ve + Bl _ oshy3 + A 5109
|cosh(po(1 - x)VT + B ™ sinh[a - XD\E 1 By(D)] '
and
cosh[+/% (1)) S+Bu(T) —VIT-2B, (1)
Vi e I (5.106)

sinh[(1 - xl)\E + B1(1)] e(l”‘l)\gwl(” [1 4 e~ (1-)V2r-28,(1))
Since it follows from (5.96) that
B(t) > 0 fort — oo,

it follows from (5.105) and (5.106) that for any u > O there is 7; > O such that for any
2T

sup{e” V2r-25,(0), e*(lfxl)ﬁfzﬁl(r)} <. (5.107)

It follows from (5.107) that

N | —

T1=

==
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Thus, it follows from (5.105)-(5.107) that for any 7 > 1,

|coshipo VT +BOI  _ 1+ Kooy

< (5.108)
lcosh[po(1 - x)VT+B(D]| ~ 1-H
Similarly to (5.105) it can be shown that
|cosh[uy VT + B(1)]] sinh| \E +B1(1)]
> (5.109)
|cosh{po(1=x)VT +BOIl ~ cosh[(1 - Xl)\/g +By(@)]
and
sinh[/3 + B,(7)] VB o VE-20) 110)
= . 5.110
cosh[(1 - xl)\g +B,(1)] e(l—xl)\gﬂﬁ(r) [1+ e~ (-x)V2r-28,(1)]
It follows from (5.107), (5.109), and (5.110) that for any 7 > 74
|cosh[uo VT + B(T)]I S LoH s (5.110)
lcosh[po(1 - x)VT +B(D] 1+
It is easy to show that, if we assume
R
=53¢
then the assertion of the lemma follows from (5.108) and (5.111). O

Consider two complex-valued functions ¥, (r) and ¥,(1) € C[a, o) such that
[;(7)] > 00 fort — 0o, i=1,2.

Let us introduce operators T; and T,, acting from the complex space L,[a, co) into
themselves and defined by the formulas

Tf (r) = (Df (1), i=12 (5.112)

Let M, be the class of correctness on L,[a, 00), defined by formula (4.1). We further
assume that T; are injective and we denote by w'(8,r) the corresponding moduli of
continuity of the operators T; on the class of correctness M,. We write

w'(8,7) = sup{ITf : f € T; *(M,), IIf]l < 6}. (5.113)

Lemma 5.7. Let T; be the operators defined by formulas (5.112) and (5.113) and for any
T € [a,0)

|1/11(T)| < |¢2(T)|-

Then w'(8,1) < w*(8, 7).
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The assertion of the lemma directly follows from the definition of the modulus of
continuity w'(8, r) (see (5.113)). To study and solve problem (5.100)—(5.103) let us split
it into two problems. The first of these problems is well-posed while the operator of
the second problem satisfies conditions (5.104). Thus, the first of the problems is as
follows:

cosh[ug VT + B(7)]
cosh(pg(1 - x;) VT + B(7)]

where 7, is described in Lemma 5.6,

T'f (1) = flo)=h'tr), o<ts<t, (5.114)

fl(‘r) =f(‘r) foro<t<r,,
and
h'(t) =h(r) givenO<T<T,.
It follows from Lemma 5.5 and relations (5.94)—(5.96) that for k < % the function

cosh[py VT + B(1)]
cosh[ug(1 - x) VT + B(7)]

is continuous over the interval [0, 7,]. It follows from (5.114) that the operator T i
bounded on the space

H, = L,[0,7,] +iL,[0, 7]
and there exists a number c, > 0 such that
|7 < c.. (5.115)

The second problem is a problem of calculating the values of the unbounded operator
T? defined by the formula

cosh[py VT + B(1)]

o
coshipo(l—x)vz+ g ) =@ (5.116)

T’f(1) =

where 7 > 7,

fz(‘r) :f(‘r) given 17 > 1,
and

h*(t) = h(t) givenT > 1,
over the space

H, = L,[1,,00) + iL,[T,, 00).
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To solve problem (5.116) let us use the family of operators {Ti : a > 1.} defined by the
formula

. T’fX(1), t,<T<a,
T2f(1) = { r@, (5.117)
0, T>a.
Define the approximate value flé’“(‘r) of problem (5.116) by the formula
R2T) = Tofs (1), 127, (5.118)

To select the regularization parameter @ = a(8,r) in formula (5.118), let us use the
condition

3 (1) e M2, (5.119)

where
M? = {flz(‘r) : J(l + Tz)|f12(r)|2dr < rz}. (5.120)

It follows from (4.35) and (5.116)—(5.119) that
sup{| 72/ (0 - TR @I : 3 € [T (7). If; - Fgl = 6)
= A2 (a) + | T2 8%, (5.121)
where [T?]7! is the inverse of the operator T? and
Aq(@) = sup{| Tafa (1) - T*fo(@)| : fo(r) € (127 (412)}. (5.122)
Let us now move on to estimating || Tﬁll.

Lemma 5.8. Under the above-formulated conditions the following relations are true:

<1_L>exl a2 < |12 < <1+L>exl a2 a>t,.
4+eg 4+e

Proof. By the definition of the operator norm we have

|cosh[p VT + B(D)]|

T?| = su . 5.123
I7a] Tssrlg)a |cosh[pg(1 - x;) VT + B(T)]| ( )
The assertion of the lemma follows from (5.123) and Lemma 5.6. O

Let

w*(@) = sup{ j R (1) Mf}. (5.124)
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Then it follows from (5.120), (5.122), and (5.124) that
N(@) = w*(a). (5.125)

It follows from (5.120) that, if h3(t) € M?, then

J(l + Tz)|fzé(‘r)|2d‘r <r. (5.126)

Te

It follows from (5.124) and (5.126) that

(5.127)
Since
8s[T2] = sup{|Tof3 @) - TR : f3 ) € [T°) (), IF3 - ol < 6}, (5.128)
it follows from (4.35) and (5.128) that
212 r2 212 o2
AT, = I+ + || T 767, (5.129)

while it follows from Lemma 5.8 and (5.129) that

2 2
r +62<1 € ) 92X1\/072

1+a? C4+e

2 2
< A4[T2) < 1+ra2 + 52<1 + ﬁ) e2aVal2 (5.130)

Choose the regularization parameter a = a(6, r) in formula (5.118) from the condition

r X, Va2
— = 6. (5.131)
V1 + a?

Let us denote by a = a(8,r) the value of the regularization parameter taken from the
equation

r
v IT2|8. (5.132)

To obtain the final error estimate of the approximate value, let us introduce two more
values of the regularization parameter

a, =a,(8,r) and @, =a,(5,7),

selected respectively from the equations

r (., & a2
m_<1 4+€)e1 . (5133)
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r — L le
Vvl <1 + 4 +S>e 6. (5.134)

It follows from 5.8 and (5.128)—(5.134) that there exists §, > O such that
,(6,,7) = a,
and consequently for any 6 < &,

,(6,r) <a(8,r) <0y (6,7), (5.135)
,(6,1) < a(8,r) < (6, 71). (5.136)

It follows from (4.37), (5.129), and (5.132) that
[ a8, r>] = \/_“ ad,r) 6. (5.137)

Similarly, it follows from Lemma 5.8 and relations (5.131)—(5.134) that for any 6 < &,

£\ y . [a00 ) £\ . 200
\/§6<1 - m)@ ! 2 < A&[Ta(&r)] < \/§5<1 + m)(? ! 2 (5.138)

and

I o 8D £ Xl\/@
\/55(1 _4+£> < AT, (5,)] \/§6<1+—4+£>e 7. (5.139)

Theorem 5.2. For any § € (0, 6,) the following relations are true:

&€
(15 )aolT2 0] < AolT25) < (14 5 )olT200)
Proof. We have
Aol Tasn] < 8s[Tz 0] + 185 Taen] — A6l Ta ]l (5.140)
and

Ag[Tasn] 2 As[T2 (6r)] |A5[Tasn] — AslTa (6r)]| (5.141)

It follows from (5.140) and (5.141) that to prove the theorem it is sufficient to estimate
1A 6[T35,)] = A6l T2 5,1 1t follows from (5.133), (5.134), and (5.135) that

|A5(T2 2en] — A [Tél(ﬁr 1l

<\/'<1+—> W g \/_<1——> 592 (5.142)
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and it follows from (5.135) and (5.142) that

2
|As[T2 a6n] = As[Ta 60 ]l

ay(8,r) ag(8,r)
< \/5(1 + L)e"lVflz 5- ﬁ<1 - L)leflz 8. (5.143)
4b+e 4b+e

It follows from (5.143) that

& [E (6,r)
|86 Ta6)] = As[Tz 6]l < ﬁie)q H (5.144)
The proof of the theorem follows from (5.140), (5.141), and (5.144). O

Theorem 5.3. For the method {Té(&r) : 0 < 6 < 6.}, defined by formulas (5.117) and
(5.131), the following accurate-by-order error estimate is true:

8,1 a(6,r
\/_<1——> ‘/T5<A a(sr)]<\/_<1+2>" agn e

Proof. It follows from Theorem 5.2 and relations (5.129) and (5.135) that for any § €
(0,6,]

2
2 1m2 r €\ 26490 o
A5[Ta(§)r)] < m + <1 + 5)6 1 6 (5.145)
and
2072 1> LG (1 - f)ez"l i (5.146)
Boltaon T 1+@(6,7) 2 '

It follows from (5.131), (5.134), (5.145), and (5.146) that

2
A% a(5r)]<<1+ ) X\ g2 ( > 20|37 52 (5.147)

and

a

2
a1(5r a3 (61
Ny[Tasn] 2 <1— -> VT8 <1— g) PN (5.148)

It follows from (5.135) that

ab,r) ay(6,r)
Pl Pl (5.149)

and from (5.147) and (5.149) that
2 a6 2 15
[T2(5r | < <1 + ;) VT <1 + g) 20\ 937 52, (5.150)

The assertion of the theorem follows from (5.148) and (5.150). O
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Theorem 5.4. The solution method {Té( sr 0 <8< 6.}, for problem (5.116), defined by

formulas (5.117) and (5.131), is optimal-by-order on the class M,Z and for this method the
following error estimate is true:

As[Tasn] < V2(1+e)AP"
Proof. It follows from Lemmas 5.6 and 5.7 that
@'(6,1) < W*(5,7), (5.151)
where
W'6,r) = sup{| TP : (o) € [T (), o) < 8}

and

-1

w'S,r) = sup{”(l - L>e"1‘/§f2(‘r) FA1) € <1 - L) e_x“g(lf/[,z),
4+¢€ 4te

IF>@)| < 5}. (5.152)

It follows from (4.16), (5.102), and (5.152) that

_r
\1+@(6,7)

where a;(6, 1) is defined by equation (5.133). It follows from (5.133) and (5.153) that

W (6,r) = (5.153)

ay(6,)

W' (6,r) = <1 - L)e"l 6. (5.154)
4+e

Since
AP > w'(8,7), (5.155)

from (5.151), (5.154), and (5.155) we have

ay(8,r)
AP > (1 - %)exlv ey (5.156)

+&

The assertion of the lemma follows from Theorem 5.3 and relation (5.156). O

Since it follows from relation (5.133) that

a1 (6r)
N5 = <1+ E>; (5.157)

\1+@(5,7)
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it follows from Theorem 5.3 that for § < §,

As[Tapp] < V2 (1+§>2;. (5.158)

V1+ &5(6, r)

In order to find the asymptotics of estimate (5.158), consider the following two equa-
tions:

N (5.159)
5
and
2\s - %. (5.160)

Let us denote by (5.159) and (5.160) the solutions of equations &, (6, r) and &,(6, r). Then
it follows from (5.133), (5.159), and (5.160) that for sufficiently low values of § the fol-
lowing relations are true:

a,(8,r) <ay(6,1) < a,(8,7). (5.161)
It follows from (5.159) and (5.160) that

r r
a1(6 r) X_% n2 3 and a2(5 r) —% n2 5
and it follows from (5.161) that
®,(6,r) ~In’6 given§ — 0. (5.162)

From ratio (5.162) the following theorem arises.

Theorem 5.5. For any r > O there exist numbers
(), c(r) >0 and 6, €(0,8,)
such that for any 6 € (0, 6,) the following estimates are true:
(N8 < \1+@(6,r) < o(r) In® 6.
We further denote the solution of problem (5.114) by
hy(1) = T'f5 (7). (5.163)
It follows from (5.115) and (5.163) that

Ihs(1) - ho(D)|| < c.6, (5.164)
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where
ho(1) = T'f5 (@)
Define the solution of problem (5.100)-(5.103) by the formula
hs(t) = Ry(1) + B2*C7 (1), (5.165)

Then it follows from relations (5.158), (5.164), and (5.165) that

2
Ihs(1) = ho(D)] < \/§<1 + f) S S (5.166)

2/ \1+@@n

Note that the function fz5(‘r), defined by formula (5.165), may be defined in a different
way by introducing a family of regularization operators {T, : a > 0}, defined by the
formula

Tf(r) = {Tf M. O<t<a (5.167)
0, T> Q.
Then
hs(T) = T, f5(T). (5.168)

If we select the value of the regularization parameter a(8, r) in formula (5.168) from the
condition

r .
=e"1\2§, (5.169)
V1+a?

then, for the solution fzg(‘m (1) of problem (5.100)-(5.103), the following estimate is
true:

2
Is(t) - ho(D)] < x/§<1 + f) — I ich (5.170)
2 1+ 53(6, r)

It follows from Theorem 5.5 that there is §, < §, such that for any < §,

2
s<V2. 8. T (5.171)

2 \i+@6n

Then the following theorem arises from relations (5.170) and (5.171).
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Theorem 5.6. The solution method {Tys,) : 0 < 6 < 8y} for problem (5.100)~(5.103) is
optimal-by-order on the class M, and the following estimate is true:

r

i+ @6

A6[TE(6,r)] < \/5(1 + & +€2)

This estimate is accurate-by-order.

Now consider a subspace H,, defined by the formula
H, = F[L,[0,00)],
and denote by Fﬁ(r) the element defined by the formula
hs(1) = pr[hg(t); Hy .

Since hy (1) € H,, it follows from (5.170) that

2
||ﬁ5(r) - sz(T)H < \/5(1 + E) — T . 0. (5.172)

1 +Hf(5, r)

Finally, let us define the solution of h4(t) of the inverse problem (5.71)-(5.73), (5.77) by
the formula

11
ho(t) = ][F [hs(T)], t € [0,t), (5173)

0, 0<t t>t,

where F! is the inverse of the operator F. It follows from (5.172) and (5.173) that for
hs(t) the following estimate is true:

2
r

1+ @(6,7)

It follows from (5.174) that there exists a number d > 0 such that for any § € (0, §,) the
following relation is true:

|hs(t) = ho(D)|| < \/5(1 + ;) +¢,6. (5.174)

Ihs(®) = ho(®)]| < d-rIn~? 6.

5.3 A study of the solution to a direct boundary-value problem for
the heat conduction equation with a variable coefficient

5.3.1 Problem posing

Let a(x) € C*[0,1], a(x) < 0, and let a thermal process be described by the equation

ou(x,t)  %u(x,t)
ot o2

+axu(x,t), 0<x<1,t>0, (5.175)
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where the solution u(x, t) € C([0,1]x[0, co))N sz’l([O, 1]x[0, c0)) satisfies the following
initial and boundary conditions:

ux,0)=0, 0<x<1, (5.176)
u(0,t)=0, t>0, (5.177)
u(l,t) = h(t), t=0, (5.178)
where
h(t) € C*[0,00), h(0)=H'(0) =0, (5.179)

and where there exists a number ¢, > 0 such that for any ¢ > ¢,

h(t) = 0. (5.180)

5.3.2 A study of the smoothness for the function u(x, t)

Consider the substitution

v(x,t) = u(x, t) — xh(t). (5.181)
Then
v
NGO _ IVESD | i £) + a(x)xh(t) — xh'(8), (5.182)
ot ox?
x€(0,1), t>0,

v(x,0)=0, 0<x<l, (5.183)

v(0,t) =0, t=0, (5.184)

v(,t)=0, t=0. (5.185)

The solution of problem (5.182)—(5.185) is as follows:

VG 1) = ) va(OPy(0), (5.186)
n=1
where
t t
v, (t) = b, J e""“fr)h(r)dr -c, J eA"(H)h'(T)dT, (5.187)
0 0

{A,} is a sequence of eigenvalues of the corresponding Sturm-Liouville problem, and
{1,,(x)} is the corresponding sequence of eigenfunctions of the following problem:

1
b, = Jxa(x)gbn(x)dx, (5.188)
0
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1
Cp = szpn(x)dx. (5.189)
0
From the theorem posed in [53] (p. 37) it follows that there exist positive numbers
d, and d, such that for any n
—din® <A, < —dyn’ (5.190)

and from the theorem posed in [53] (pp. 15-16) it follows that the system {1, (x)} of
eigenfunctions is orthonormal and complete on the space L, [0, 1].
Thus, from (5.188) and (5.189) it follows that

o0
Y bj < oo, (5.191)
n=1
o
Y ¢ < co. (5.192)
n=1

Partially integrating the right-hand side of equation (5.187) and taking into ac-
count (5.179) we obtain

t t
V(t) = —ﬁ’l—" [h(t) - Je"n(f‘”h’(r)dr] + )Cl—" [h’(t) - jeAn“‘”h”(r)dT]. (5.193)

n n

0 0

Let

ds = tle‘l‘[lgtxl(lh(tﬂ + [0 @®)] + " @®)]). (5.194)

Then, by (5.179), (5.180), and (5.192)—(5.194) for any values of nand T > O the following
relations are true:

T1
2Td3[1 + t,)?
J J V(O (0dxdt < % b2+, (5.195)
00 "
T1
j JAflvﬁ(t)lpﬁ(x)dxdt < 2Td2(1 + to)2[ B2 + 2], (5.196)
00

It follows from (5.186), (5.191), (5.192), (5.195), and (5.196) that

v(x,t) € C([0,1] x [0, T]), (5.197)

v(x, t)
ox2

+a(x)v(x,t) € L,([0,1] x [0, T]). (5.198)
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From (5.197) and (5.198) it follows that

2
ag;”thQmejn (5.199)
Let
N
Un(G ) = ) vty (x). (5.200)
n=1

Then from (5.197), (5.198), and (5.200) it follows that

Uy(x,t) — v(x,t) in the metrics C([0,1] x [0, T]) (5.201)
and

*Uy(x, 1) *v(x,t)

o +a(x)Uy(x, t) — 52 +a(x)v(x, t) (5.202)

in the metrics of the space L,([0,1] x [0, T]).

Lemma5.9. Let ®(t) € C[O, T]. Then the following formula is true:

T " T
J D) [V (x, t) + a(xX)v(x, t)]dt = L j O(t)v(x, t)dt + a(x) J O(t)v(x, t)dt.
0 ox? 0 0

Proof. From (5.200) it follows that

T
Uy (x,t)
(-)[ O(t) [ o + a(x)Uy(x, t)]dx

T
zijmo

T
) O(t)dt + a(x) J Uy (x, t)o(t)dt
0

T T
: [ ]
= —| | Uy, Hot)dt | + a(x) | Uy(x, )O(t)dt. (5.203)

If G(x,t) € L,([0,1] x [0, T]), then the operator B, defined by the formula

T
BG(x, t) = JG(X, t)dt,
0

continuously maps the space L,([0,1] x [0, T]) into L,[0, 1] [83].
Thus, the assertion of the lemma follows from (5.201)—(5.203). O
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5.3.3 Justification of the method of integral transforms with respect to t as applied
to solving problem (5.175)

Lemma 5.10. Let u(x, t) be the solution of problem (5.175)-(5.178). Then for any t > O
u(x, t) € W2[0,1].

Proof. 1t follows from (5.179), (5.180), and (5.193) that there exists a number d, > 0
such that for any values of ¢t > 0 and n

[Avn ()] < dy\b2 + 2. (5.204)

Since the system of eigenfunctions {i,(x)} of the operator dd—; + a(x) is orthonor-
malized on the space L,[0, 1], from (5.186), (5.191), (5.192), and (5.204) it follows that
foranyt >0

azu(x, t)
ox?2

Since u(x, t) € C[0,1], from (5.205) it follows that for any t > 0

+a()u(x, t) € L,[0,1]. (5.205)

ulx, t)

— <Llo1l (5.206)

Taking into account that

X

2
ou(x, t) _ ou(0, t) . J ou(é, t)d{,
ox ox 0&?
by (5.206) we obtain for any t > 0
MO g, 1), (5.207)
ox
Similarly, the assertion of the lemma follows from (5.207). O

Lemma 5.11. Let {y,,(x)} be a system of eigenfunctions of the corresponding Sturm-—
Liouville problem. Then there exists a number ds > 0 such that for any n

2
max [Yn(0)| < dsn”.

Proof. Since from the theorem in [53] it follows that for any n

P00 € C’[0,1] and  ,(0) = P,(1) =0,

there exists a point a,, € [0,1] such that

¥i(ay,) = 0.
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Thus,
X 1 ! %
a, 0 0
From
d*P,(x,
% = a0o|Pn(x) = A, (%)
it follows that
d2
] < I ool

From (5.209) it follows that there exists a number d¢ > 0 such that

% < dgy [0
From
X 1
a0 = | [ a6 < [ ol
0 0
it follows that

[, (0)| < max [, 0)

and the assertion of the lemma follows from (5.208), (5.210), and (5.211).

Now consider an auxiliary problem that uses condition (5.180). We write

ou(x,t) _ d%u(x,t)
ot ox?
ux, ty) = up(x), 0<x<1,

u(0,t) =u(,t)=0, t=t,.

+aux,t), xe€(0,1), t >ty

From Lemma 5.10 it follows that

Uo(x) € W5[0,1],
uO(O) = uo(l) = 0

The solution of problem (5.212)—(5.214) is as follows:

00
u(x, t) = z une/ln(t—to)ll)n(x))
n=1

(5.208)

(5.209)

(5.210)

(5.211)

(5.212)

(5.213)
(5.214)

(5.215)
(5.216)

(5.217)
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where A, and ¥,,(x) have been defined before and

1

u, = Juo(x)l/)n(x)dx. (5.218)
0
Since
1 . 1 1
J Uy (), (x)dx = T “ uo(x)l,b;{(x)dx + J a(x)uo(x)lpn(x)dx], (5.219)
0 n 0

it follows from (5.218) that for any n

_ Pntdn
n = A, > (5.220)
where
1
Pn = Jug’ (Y, ()dx (5.221)
0
and
1
a, = Ja(X)uo(X)llin(X)dx. (5.222)
0

Since the system {1,,(x)} is orthonormalized on the space L,[0,1], from (5.215),
(5.221), and (5.222) it follows that

i(pn +qp)° < co. (5.223)
n=1

It follows from (5.223) that
Pntqy — 0 forn — co. (5.224)

It follows from relation (5.217) that
< I
uCe, t)] < Y Jun(6)]e™ 1, (0| (5.225)
n=1

and

Q%u(x, t)

ok +a(x)u(x,t)

< Y Myl €0, (1)), (5.226)
n=1
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From Lemma 5.11 and relations (5.220) and (5.224) it follows that there exists a number
d; > 0 such that for any n

Nl |0, (00| < dy A€M, (5.227)

Since

Mlt=to) Aalt=to-1)

= éhe
it follows from (5.190) that for t > ¢, + 2

_ Mol et
d; |4, M) < d7%e ht=to=D) (5.228)
e'n

From the convergence of the series

Al
el

18

n=1

and relation (5.228) it follows that there exists a number dg > O such that for any
t>ty+2

o0
d; Y Ayl < dgem 0, (5.229)
n=1
Thus, from (5.226), (5.227), and (5.229) it follows that for ¢ > ¢, + 2

du(x, t)
ox?

+a)u(x, t)| < dse_dz(t_t"_l). (5.230)

x€[0,1]

It follows from (5.225), (5.226), and (5.230) that there exists a number dgy > O such
that for t > o + 2

sup |u(x,t)| < dge‘dz(t"t"_l). (5.231)
x€[0,1]

It follows from (5.230) and (5.231) that there exists a number d;, > O such that for
t>ty+2

Qu(x, t)
ox?

sup < dyge Bt D), (5.232)

x€[0,1]

Since

X

U (x,t) = j wy (&,0)dé, 0<x(t) <1,

Xo(t)
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where
u(xo(t),t) =0, foranyx e [0,1]and t > t,
we obtain

[u, (6, t)] < sup |ul, (x,1)]. (5.233)
x€[0,1]

It follows from (5.232) and (5.233) that for ¢ > ¢, + 2

sup |u,(x,t)| < dge™ (7D, (5.234)
x€[0,1]

Lemma 5.12. Let u(x,t) be a solution of problem (5.175)—(5.178) and let ®(t) be a
bounded function continuous over [t, + 2, 00). Then the following formula is correct:

J () [uy, (1) + a()u(x, t)]dt

to+2

(o]

J O(tu(x, t)dt + a(x) j O(t)u(x, t)dt.

to+2 to+2

az
T2

Proof. 1t follows from (5.199) that the function u/ (x, t) is measurable and from (5.234)
and the notion that

o0
2
J e gt ¢ oo
to+2
it follows that

o0 a [ee]
J (Oux dt = = j ®(t)u(x,t)dt]. (5.235)
ty+2 to+2

From (5.199), (5.232), and (5.235) it follows that

o0 2 [ee]
J o(Ou (x, )dt = % [ j D(Ou(x, t)dt] (5.236)
to+2 to+2
and the assertion of the lemma follows from (5.236). O

From Lemmas 5.9 and 5.12 follows the following theorem.
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Theorem 5.7. Let u(x,t) be the solution of problem (5.175)-(5.178) and let ®(t) be a
bounded function that is continuous over [0, co). Then the following formula is true:

J O(t) [uy, (x, t) + abu(x, t)]dt
0

aZ o [
=2 j (Hulx, t)dt + alx) J D(t)u(x, t)dt.

Lemma 5.13. Let u(x,t) be the solution of problem (5.175)—(5.178). Then the following
relations are correct:

(oe) o0
lim J lux, £)|dt = lim J luCx, £) — h(t)|dt = 0.
x—0 x—1
0 0
Proof. It follows from (5.181) and (5.197) that for any ¢t > 0
lim u(x,t) =0, lim u(x, t) = h(t). (5.237)
x—0 x—1

Denote by g(t) the function defined by the formula

dy;» O0<t<ty+2
8(t) = —dy(t-ty-1)
e e S

Since

lg(t)]|dt < oo

o——3

and forany ¢t > 0

[u(x,t)| < g(t),

the assertion of the lemma will follow by the Lebesgue theorem from (5.237). O

5.4 On estimating the approximate accuracy of a solution to
the inverse boundary-value problem for the heat conduction
equation with a variable coefficient

5.4.1 Problem posing

Let a(x) € C*[0,1], a(x) < 0, and let a thermal process be described by the equation

u(xt) _ *u(x, t)

P 2 +axulx,t), 0<x<1,t>0, (5.238)
X
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where the solution u(x, t) € C([0,1]x[0, co))N sz’l([O, 1]x[0, 00)) satisfies the following
initial and boundary conditions:

u(x,0)0=0, 0<x<l, (5.239)
u(0,t)=0, t=>0, (5.240)
u(l,t) = h(t), t=0, (5.241)
where
h(t) € C*[0,00), h(0) =K' (0) =0, (5.242)

and there exists a number ¢, > 0 such that for any ¢ > ¢,
h(t) = 0. (5.243)

Assume that the function h(t) is unknown and must be defined. Instead, at the
point x; € (0,1) the temperature f(t) of the rod corresponding to this process is mea-
sured, so we have

u(x, t) =f(t), t=0. (5.244)

Let the set M, be defined by the formula

M, = {h(t) : h(D) € L,[0, c0), J Ih(e)Pdt + j I (¢)Pdt < rz}, (5.245)
0 0

where h'(t) is the derivative of the function h(t) and r is a known positive number.
Then assume that for f(t) = f,,(t), being a part of condition (5.244), there exists a func-
tion hy(t), that belongs to the set M,, but the function f,(¢) is unknown. Instead, the
approximate function f5(t) € L,[0, co)nL;[0, co) and number § > O are given such that

Ifs = foll, < 6. (5.246)

Using f5, 6, and M,, it is required to define an approximate solution h4(t) of prob-
lem (5.238)—(5.241), (5.244) and estimate the deviation ||hs — hy|| 1, of the approximate
solution hg from the exact solution hy,.

Let

H = L,[0, 00) +iL,[0, c0)
over the field of complex numbers and let F be an operator mapping L, [0, co) into H,

defined by the formula

F[h(®)] = % J h(t)e"™dt, T >0, h(t) € L,[0,00). (5.247)
0

The proof that the operator F is isometric is given in Lemma 4.3.
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It follows from Lemma 5.13 and Theorem 5.7 that the transformation F is applicable
to solving problem (5.238).
Applying transformation F to equation (5.238) we obtain

Q%u(x, T)
ox2

+al)u(x, 1) = itu(x,7), x€(0,1), T>0, (5.248)

where

u(x,7) = Flu(x, t)].
It follows from (5.241) and (5.244) that

u0,71=0, 17=>0, (5.249)
U(xy, T) = if(t), 1=>0, (5.250)

where

f(@) = F[f(®)].

It follows from (5.197) that the solution &(x, 7) of problem (5.248)-(5.250) is con-
tinuous on the band [0, 1] x [0, o).

From the general solution of the ordinary linear differential equation of the second
order, it follows that the solution i(x, T) of problem (5.248)—(5.250) is defined by the
formula

u(x, ) = l(t)e(x,7), x¢€[0,1], T>0, (5.251)

where I(1) is a certain function and e(x, 7) is the solution of problem (5.248), (5.249),
satisfying the condition

e, (0,7) = 1.
Using the condition (5.250) define the function I(t) by the formula

I(7) = if (1)

e, 1)’

T2>0. (5.252)

By (5.251) and (5.252),
u(1,7) = if(0)e ' (x;, T)e(L,T), T >0. (5.253)

Lemma 5.14. The function I(1) is continuous on the half-line [0, co).

Proof. Since f (1) and e(xy, T) are continuous on the half-line [0, co), to prove the the-
orem it is sufficient to make sure that

e(x;,7)#0 foranyt > 0.
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Assume the contrary, i. e., that there exists a number 7, > 0 such that
e(x;, ) = 0. (5.254)
Then taking into account (5.254), consider the space
Hy = L,[0,x;] +1iL,[0,x;]

over the field of complex numbers and an operator A4;, acting from H,, into H, which
is defined by the formula

d*u(x)

Ajux) = p)

+a(x)u(x), ueDA,), (5.255)
where

D(4A,) = {u: u,Aju € Hy, u(0) = u(x;) = 0}. (5.256)

It follows from (5.255) and (5.256) that the operator 4, is negatively defined and
self-adjoint. Therefore, there exists a number A; < O such that the spectrum

SP(Ay) € (-0, A4].
Since
Aje(x, To) = iTge(x, Ty),
we know
e(x,79) =0 forxe[0,x;] and e} (1,7y) =0,

which contradicts the definition of the function e(x, 7). The lemma is thereby proved.

O
Let
A=+7 and e;(x,A) = e(x, 7).
Then the function e, (x, A) will satisfy the integral equation
X
exto ) = SO [ SERHOC B e g, 1, (5.257)

where

1
=—(1+1i), xe[0,1],A=0.
Ho \/i( ) [0,1]
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Lemma 5.15. Let a(x) € C?[0,1]. Then there exists a number A; > 0 such that for any
A > A, the following inequalities are true:

2 |[sinhpoxA|

|sinhpoxA|
3 A '

4
A < <
<l )l < 3 1

Proof. Let

oA
A) = ————e1(x,A).
exA) sinh yoerl(X )

Then from (5.257) it follows that

1 jf sinh pg(x — &)A sinh pgéd

AN =1-—
xA) sinh ppxA

oA a(&)e(&,N)dé. (5.258)
0

0
Since

sinh pg(x — &)A sinh ppéA
sinh pyxA

‘:1+o(1) forA — oo,

from (5.258) it follows that there exists a number A; > 0 such that for any A > A; the
following inequality is correct:

1 j( sinh p(x — £)A sinh pyéd

UoA ) sinh pgxA

aé)dé| < % (5.259)

We will search for a solution of equation (5.258) in the form of the series
(o)
e = ) &), (5.260)
k=0

where g5(x,A) = 1and

X

1 J sinh pg(x — &)A sinh pgéA
oA sinh pgxA

a)eENdE. (5.261)

Ek+1 xA) =~
0

According to (5.259)—(5.261), for any values of k, A > A;, and x € [0,1]
e, )| < 47, (5.262)

From (5.260)—(5.262) it follows that for any values of x € [0,1] and A > A
23=1-Y 4 <le( )| < Y 47"
k=1 k=0

Thus, for any values of x € [0,1] and A > A; we have

Z |sinh poxA| 4 |sinh poxA|
3 A 3 A '
The lemma is thereby proved. O

< ley(x )| <
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Since

|sinh pgxA| = e%(l +0(1)) atd — oo,

from Lemma 5.15 it follows that there exists a number A, > A; such that for any values
of A > A, and x € [0,1]

XA
< ley(x, )| < §% (5.263)

Denote by L the operator acting from the space H into H defined by the formula

>‘| slx

led
3

w

Li(r) = ;(1 D Fa),

where e(x, T) is defined by formula (5.251).

Further, without changing the notation extend the operator L to the maximum
i. e., assume that

D(IL) = {f(r) f(r)eHandze(( .7) f(r)eH} (5.264)
T
and
o =il fr) 1o (5.265)
e(xy, 1)

From Lemma 5.15 and relations (5.264)—(5.265) it follows that the operator L is linear
and unbounded.

Denote (1, T) by h(t), where

h(t) = F[h(t)].

Write problem (5.253) as a problem of calculating values of the unbounded operator L
as follows:

h(t) = Lf(t), T3>0, f(t) € D(L). (5.266)
Let M, > F[M,], where M, is defined by formula (5.245). Then
= {ﬁ(r) . h(t) € H, J(l + 12)|f1(‘r)|2d1 < rz}. (5.267)
0

Let

fo@ =F[fo(t)] and fs(r) = F[f5(0)].
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Then from condition (5.246) it follows that
Ifs() - ol <6, (5.268)
where
fo(@) € D(L) and hy(T) = Lfy(1)
satisfy the condition
hy (1) € M,. (5.269)
By using the a priori information f,;(/lh), 6 and conditions (5.268) and (5.269) it is
reiquirAed to define the approximate value hg(A) of the operator L and estimate its error
lhs = holl.

5.4.2 Calculation of the approximate values of the operator L

Split problem (5.266)—(5.269) into two problems. The first problem is

R(t)=L'fi(r), 0<t<A, (5.270)
where
hl(t) = h(r) underT € [0,A%],
fl@) =f(r) undert € [0,A3],
and

L'fY (1) = Lf(r) undert € [0,/15].

Since from Lemma 5.14 it follows that the function is continuous on the half-

e(1,1)
e(x;,T)

line [0, c0), there exists a number d;, such that for any 7 € [O,}@]

e(1,7)
e(x;,T)

<d,. (5.271)

Problem (5.270), (5.271) is a problem of calculating values of the bounded operator.
From relation (5.271) it follows that problem (5.271) is well-posed on the space

ITII = Lz[O,/‘%] + iLz[O,A%].

The second problem is a problem of calculating values of the unbounded operator
L? on the space

H, = L,[A3,00) + iL,[A3, 00).
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We have

R(t) = L’f*(1), 12X

(5.272)

To solve problem (5.272) we use the family {L‘ZX > /\%} of linear bounded opera-

tors Lﬁ, mapping the space H, into H, and defined by the formula

szz(‘r), T<a,

0, T> Q.

L2f(1) = {

We define the approximate value fzg’“(r) of the operator L? by the formula

R = Lofi(@), T2 M5

Then

|5 (x) - (0| < [hg*(r) - Bg? (0] + | A57 (1) - Bg (7))

Since

|2%) - o) < J o (D) dr,  ho(T) € M,

a

It follows from (5.267) and (5.269) that

o0 (0]

2
J Iflo(‘r)|2d‘r < 1+1a2 J(l + 12)|f10(‘r)|2d‘r < N r

a

It follows from (5.276) and (5.277) that

r

h2%(t) - 3 (T)|| < .

It follows from (5.268) and (5.274) that
5" (@) - kg (@) < |L;]l6.

Since it follows from (5.270)—(5.273) that

le(1,7)]
[*| = ma ,
el = max st

by (5.275) and (5.278)—(5.280) we obtain

1>
r + 6 max le(, D

h2%(1) - A(7)| < .
" ) (T) O(T)” /_1 P /\§STSD( |€(X1,T)|

+a%

(5.273)

(5.274)

(5.275)

(5.276)

(5.277)

(5.278)

(5.279)

(5.280)

(5.281)
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It follows from (5.263) and (5.280) that

%e“"‘“m < 12| < 16e Va2, (5.282)

Since it follows from relation (5.276) that

sup ||fzf)’“(r) - fzé(r)”z = sup J |f10(r)|2d1,
hoell, hoell,

it follows from (5.277) and (5.278) that

r

sup [ - kgl =

Jup — (5.283)

If the value of the parameter a = a(6) in formula (5.274) is selected from the equa-
tion

1 _
16r - el xl)\/m’ (5.284)
Vita

then it follows from (5.281) and (5.284) that

2r
\1+ @)

Since the functions V1+ a2 and e™Ve2 ¢ ¢ [A2, 00) are strictly increasing, it
follows from Theorem 1 proved in [90] that estimate (5.285) is accurate-by-order, i. e.,
there exists a number d,3 > 0 such that for sufficiently small values of é the following
relation is correct:

|3 — By < (5.285)

sup{||f1§’a(5) - fzé" : fz(z) eM, [f&z —f§|| <8} >ds(1+ &2(6))_5.

It follows from Theorem 2 proved in [90] that the method {Lé( 5 1 0 <8< 60},
defined by formulas (5.273) and (5.284), will be optimal-by-order on the class M,, i. e.,
there exists a number d;, > 0 such that for sufficiently small values of § the following
relation is correct:

2r
\1+a(6)

Now, alongside with equation (5.284), consider the following two equations:

< dy, sup{|L°F°@)|| : || < 6, L°F? € M, }.

1V _ %, (5.286)
R L (5.287)

T 166
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Denote the solution of equations (5.286) and (5.287) by @;(6) and a,(8), respectively.
Then

2 16 1
In? > 2 T

a1(5) = (1 —Xl)z 5 and a2(5) = 2(1_—)(1)2 In 165"

There exists a; > /\% such that for a > a; the following relations will be correct:

10VE < VT gRelVaT2 ¢ 205 (5.288)
Therefore, from (5.284) and (5.286)—(5.288) it will follow that for a > a;
@,(8) < a(6) < @ (6). (5.289)
Thus, it will follow from (5.289) that
a(6) ~In*8 under§ — 0. (5.290)

It follows from (5.290) that there exists a number d;, > 0 such that for sufficiently
small values of § the following estimate is true:

[R2"® ~hj|| < dyy In2 6. (5.291)
We will define the solution of problem (5.270) by the formula
21,y p1fl 2
hg(t) =Lfs(1), O0<t<A. (5.292)
It follows from (5.271) and (5.292) that
Ih5(T) = By (D)|| < dy6. (5.293)
We define the final solution fl,;(r) of problem (5.266)-(5.269) by the formula

. hi(r), 0<t<Al
hs(t) = {.5° (5.294)
o {hé”"@(r), T3,

It follows from (5.291), (5.293), and (5.294) that there exists a number d;5; > O such
that for sufficiently small values of §

|hs(T) — ho(T)|| < d15In 2 6. (5.295)
Now consider the subspace H,,, defined by the formula

H, = F[L,[0, 00)],
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and denote by Ha(‘r) an element defined by the formula
hs(1) = pr(hs(1), Hy).
Since hy(T) € Hy, from (5.295) it follows that
Ihs() = ho(7)|| < dysIn~? 6. (5.296)

Finally, we define the solution hg(t) of the inverse problem (5.238)—(5.240), (5.244)
by the formula

hy(t) = F'[hy(T)]. (5.297)
It follows from (5.296) and (5.297) that

Ihs(6) = ho(®)]| < dysIn~? 6.
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