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Introduction

Many problems of mathematical physics arising in applications are not well-posed in
the sense of Hadamard [26, 27], i. e., they do not satisfy the three conditions of well-
posedness: the existence of a solution, the solution uniqueness, and the solution con-
tinuous dependence on the initial data. Therefore, traditionalmethods, reduced to the
inversion of the problem operator, cannot be used to solve such problems, which have
been called ill-posed problems. For a long timemathematicians have been taking little
interest in these problems, denying their practical value.

The practical value of such problemswas for the first time pointed out byA. N. Tik-
honov in his well-known paper [96]. In addition, in the mentioned paper Tikhonov
formulated the concept of a conditionally well-posed problem, which played an im-
portant role in the development of the theory of such problems and their applications.

The issues of posing ill-posed problems and developing special methods for their
solutions were also addressed in papers, such as those by A. N. Tikhonov [96–98],
M.M. Lavrentiev [41–44], and V. K. Ivanov [29–32], that fundamentally contributed to
this field of research. This theory was further developed by A.N. Tikhonov, M.M. Lav-
rentiev, and V. K. Ivanov, as well as their students and followers V. Ya. Arsenin,
A. L. Ageev, A. B. Bakushinskii, A. L. Buhgeim, G.M. Vainikko, F. P. Vasiliev, V. V. Va-
sin, V. A. Vinokurov, A. V. Goncharskii, V. B. Glasko, A. R. Danilin, A.M. Denisov,
E. V. Zakharov, V. I. Dmitriev, S. I. Kabanikhin, A. S. Leonov, O. A. Liskovets, I. V. Mel-
nikova, L. D. Menikhes, V. A. Morozov, A. I. Prilepko, V. G. Romanov, V. N. Strakhov,
V. P. Tanana,A.M. Fedotov,G. V.Khromova,A. V. Chechkin, andA. G. Yagola andmany
othermathematicians [1–11, 102–113], [13–17, 23–25, 114–117], [46–49], [55, 56, 58–63],
[20, 67–87, 89–95, 99–101, 118], and [38]. To date the theory of ill-posed problems has
become one of the main trends in modern applied mathematics. It is widely used in a
constantly growing number of new technological applications.

The current state of the theory of ill-posed problems is described in the well-
known monographs by M.M. Lavrentiev [43], A. N. Tikhonov and V. Ya. Arsenin [99],
R. Lattes and J. L. Lions [40], V. K. Ivanov, V. V. Vasin, and V. P. Tanana [28], V. A. Mo-
rozov [62], M.M. Lavrentiev, V. G. Romanov, and S. P. Shishatskii [45], O. A. Liskovets
[51], V. P. Tanana [80, 95], V. V. Vasin and A.L. Ageev [111], G.M. Vainikko [103], A. S.
Leonov [48], A. N. Tikhonov, A. S. Leonov, and A. G. Yagola [101], A.M. Fedotov [20],
A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola [100], S. I. Ka-
banikhin [34–37], and many other researchers. A large number of monographs show
the maturity of this branch of mathematics. Abroad a significant contribution to this
theory has been made by the following mathematicians: J. N. Franklin [22], J. Gullum
[12], K. Miller [57], D. L. Phillips [64], A. Melkman and C. Micchelli [54], R. Lattes and
J. L. Lions [40], H.W. Engl, M. Hanke, and A. Neubauer [19], and many others.

Among the important characteristics of the methods for solving ill-posed prob-
lems, one can name their accuracy, which is controlled by error estimates for these
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VI | Introduction

methods. These estimates allow for comparing different methods, as well as develop-
ing optimal and near-optimal methods.

The issues related to the development and studies of optimal methods for solving
ill-posed problemswere investigated by V. K. Ivanov, V. V. Vasin, and V. P. Tanana [28],
V. P. Tanana [80], and V. P. Tanana, M. A. Rekant, and S. I. Yanchenko [95]. As this the-
ory has been rapidly developing over the recent decades and new important facts and
applications of the theory to the solution of practical problems have been revealed, a
new book to cover this gap was to be written.

It should be noted that, in dealing with the existence and uniqueness of the clas-
sical solutions for the direct heat conduction problem addressed in Section 5.1.1, we
could have just referred to the great books by Arsenin [7] and Vladimirov [117]. How-
ever, to ensure a complete and smooth narration these issues are considered in detail
in the corresponding sections of the current book. The obtained formulas are further
used to study the solution methods of the direct problem for t →∞.

This book is based on lecture notes covering the course on the theory of ill-posed
problems that has been delivered by the authors to the students majoring in Applied
Mathematics and Informaticswithin themaster programat the Chelyabinsk State Uni-
versity and South Ural State University over the past decade.
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1 Modulus of continuity of the inverse operator and
methods for solving ill-posed problems

1.1 Modulus of continuity and its properties

1.1.1 Problem posing

Let𝕌, 𝔽, and 𝕍 be Banach spaces, let A be an injective linear bounded operator that
maps 𝕌 into 𝔽 and has an unbounded inverse operator, let B be a linear bounded
operator that maps 𝕍 into 𝕌, Mr = BSr, where Sr = {v : v ∈ 𝕍, ‖v‖ ≤ r}, and let
Nr = AMr . Consider the following operator equation:

Au = f , u ∈ 𝕌, f ∈ 𝔽. (1.1)

Definition 1.1. A set Mr is called the class of correctness for equation (1.1), if the re-
striction A−1Nr

of the operator A−1 to the set Nr is uniformly continuous on Nr .

Lemma 1.1. In order for the set Mr to be the class of correctness of equation (1.1), it is
necessary and sufficient for the restriction A−1Nr

of the operator A−1 to the set Nr to be
continuous at zero.

Proof. The necessity is obvious.
Sufficiency. Since A−1Nr

is continuous at zero, for any ε > 0 there is δ > 0 such that
for any f ∈ Nr and ‖f ‖ < δ it follows that

󵄩󵄩󵄩󵄩A
−1f 󵄩󵄩󵄩󵄩 <

ε
2
.

Hence, for any f1 and f2 ∈ Nr such that ‖f1 − f2‖ < δ it follows that

−f2 ∈ Nr ,
f1 − f2

2
∈ Nr and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

f1 − f2
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< δ,

whence
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
A−1( f1 − f2

2
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
<

ε
2

and 󵄩󵄩󵄩󵄩A
−1f1 − A−1f2

󵄩󵄩󵄩󵄩 < ε.

The lemma is thereby proved.

Now following [33], define functions ω1(τ, r) and ω(τ, r) as follows:

ω1(τ, r) = sup {‖u1 − u2‖ : u1, u2 ∈ Mr , ‖Au1 − Au2‖ ≤ τ}, (1.2)
ω(τ, r) = sup {‖u‖ : u ∈ Mr , ‖Au‖ ≤ τ}, (1.3)

where r > 0 and τ > 0.

https://doi.org/10.1515/9783110577211-001



2 | 1 Modulus of continuity of the inverse operator

Corollary 1.1. If ω(τ, r) → 0 for τ → 0, then the set Mr is the class of correctness.

It follows from (1.3) by Lemma 1.1.

Lemma 1.2. Let the functions ω1(τ, r) and ω(τ, r) be defined by formulas (1.2) and (1.3).
Then they are related as follows:

ω1(τ, r) = ω(τ, 2r).

Proof. Let u1 and u2 belong to the set Mr and let

󵄩󵄩󵄩󵄩Au1 − Au2
󵄩󵄩󵄩󵄩 ≤ τ. (1.4)

Then u1 − u2 ∈ M2r and from (1.4) it follows that

‖u1 − u2‖ ≤ ω(τ, 2r). (1.5)

From (1.5) we have

ω1(τ, r) ≤ ω(τ, 2r). (1.6)

In the reverse direction, let u ∈ M2r and ‖Au‖ ≤ τ. Then assuming

u1 = u/2 and u2 = −u/2,

we deduce that u1 and u2 belong to the set Mr and ‖Au1 − Au2‖ ≤ τ. Thus,

ω1(τ, r) ≥ ω(τ, 2r). (1.7)

The proof of the lemma follows from (1.6) and (1.7).

Lemma 1.3. Let k ≥ 0. Then the following equation holds:

ω(kτ, kr) = kω(τ, r).

Proof. For k = 0 the lemma is obvious. Let k > 0 and τ ≥ r‖AB‖. Then kτ ≥ kr‖AB‖.
From (1.3) it follows that

ω(τ, r) = r‖AB‖ (1.8)

and

ω(kτ, kr) = kr‖AB‖. (1.9)

From (1.8) and (1.9) it follows that ω(kτ, kr) = kω(τ, r).
Let k > 0 and τ < r‖AB‖. Then from u ∈ Mr and ‖Au‖ ≤ τ it follows that ku ∈ Mkr

and ‖A(ku)‖ ≤ kτ. Thus,

kω(τ, r) ≤ ω(kτ, kr). (1.10)
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In the reverse direction, let u ∈ Mkr and ‖Au‖ ≤ kτ. Then u/k ∈ Mr and ‖A(u/k)‖ ≤ τ,
that is,

1
k

ω(kτ, kr) ≤ ω(τ, r)

or

ω(kτ, kr) ≤ kω(τ, r). (1.11)

The assertion of the lemma follows from (1.10) and (1.11).

We formulate an obvious lemma.

Lemma 1.4. The function ω(τ, r) does not decrease on τ and r.

Lemma 1.5. If M1 = BS1 is the class of correctness for equation (1.1), then for any r ≥ 0
the set Mr = BSr is the class of correctness for equation (1.1).

Proof. The case where r = 0 is obvious. Assume that r > 0. Then it follows from
Lemma 1.2 that

ω1(τ, 1 + r) = ω(τ, 2 + 2r).

It follows from Lemma 1.4 that

ω(τ, 2 + 2r) ≤ ω((1 + r)τ, 2 + 2r) (1.12)

and it follows from Lemma 1.3 that

ω((1 + r)τ, 2 + 2r) = (1 + r)ω(τ, 2). (1.13)

Since ω1(τ, 1) 󳨀→ 0 for τ 󳨀→ 0, by Lemma 1.2, (1.12), and (1.13) the assertion of the
lemma is proved.

Lemma 1.6. If the set M1 = BS1 is the class of correctness for equation (1.1), then ω(τ, r) ∈
C([0,∞) × [0,∞)).

Proof. Assume that τn → τ and rn → r, where τ > 0 and r > 0. Let us introduce the
numbers

kn = max(cn, dn), k󸀠n = min(c󸀠n, d
󸀠
n),

where

cn =
τ + |τn − τ|

τ
, c󸀠n =

τ − |τn − τ|
τ

(1.14)

and

dn =
r + |rn − r|

r
, d󸀠n =

r − |rn − r|
r
. (1.15)
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Then it follows from Lemmas 1.3 and 1.4 and from (1.14) and (1.15) that

k󸀠nω(τ, r) ≤ ω(τn, rn) ≤ knω(τ, r). (1.16)

Since

lim
n→∞

kn = lim
n→∞

k󸀠n = 1,

the assertion of the lemma for τ > 0 and r > 0 follows from (1.16).
If r = 0, then it follows from (1.3) that ω(τ, r) = 0.
Let

rn → 0, τn → τ, τ ≥ 0.

Then from (1.3) it follows that

ω(τn, rn) ≤ rn‖B‖ (1.17)

and from (1.17) it follows that

ω(τn, rn) → 0 for n→∞.

Now, let

τn → 0 and rn → r, r ≥ 0.

Then there exists a number r ≥ 0 such that for any n

rn ≤ r. (1.18)

For any n we introduce a set Mn, defined as follows:

Mn = {u : u ∈ BSr , ‖Au‖ ≤ τn}, (1.19)

where

Sr = {v : v ∈ 𝕍, ‖v‖ ≤ r}.

Since for any n the set Mn defined by formula (1.19) is bounded, there exists an
element un ∈ Mn such that

‖un‖ ≥
1
2

sup {‖u‖ : u ∈ Mn}. (1.20)

It follows from Lemma 1.5 and (1.19) that

Aun → 0 for n→∞. (1.21)
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It follows from (1.21) and Lemmas 1.1 and 1.5 that

un → 0 for n→∞ (1.22)

and it follows from (1.20) and (1.22) that

sup{‖u‖ : u ∈ Mn} → 0 at n→∞. (1.23)

Since

sup {‖u‖ : u ∈ Mn} = ω(τn, r),

it follows from Lemma 1.4 and (1.18) that

ω(τn, rn) ≤ ω(τn, r). (1.24)

Then it follows from (1.23) and (1.24) that ω(τn, rn) → 0 at n→∞.
The lemma is thereby proved.

Definition 1.2. The bounded linear operator Q, mapping the Hilbert space ℍ into it-
self, is called isometric if for any u ∈ ℍ

‖Qu‖ = ‖u‖.

Definition 1.3. The isometric operator Q is called unitary if its range of values R(Q)
coincides withℍ.

Lemma 1.7. If A is an injective bounded linear operator mapping the spaceℍ into itself
and its range of values R(A) is everywhere dense onℍ, then we have a polar decompo-
sition for A as follows:

A = QA,

where Q is a unitary operator, A∗ is the conjugated operator A, and A = √A∗A.

Proof. The proof follows from the theorem formulated in [66] on p. 325.

Assume that the injective bounded linear operators A and B have the everywhere
dense ranges of values R(A) and R(B), where the ranges of values R(A) and R(B) are
everywhere dense onℍ. Then by Lemma 1.7 for the operators A and B there exist polar
decompositions A = QA and B = BP, where Q and P are unitary operators, A = √A∗A,
and B = √BB∗. In addition, assume that the spectrum Sp(A) of the operator A coin-
cides with the interval [0, ‖A‖] and B = G(A), where G(σ) is a strictly increasing and
continuous function on the interval [0, ‖A‖] such that G(0) = 0. Consider the following
equation:

rG(σ)σ = τ, σ ∈ [0, ‖A‖]. (1.25)
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It follows from (1.25) that, if 0 < τ < rG(‖A‖)‖A‖, then this equation has a unique
solution σ(τ) = ψ( τr ), where ψ(x) is the inverse function of G(σ)σ. It follows from the
inverse function theorem that ψ ∈ C[0,G(‖A‖)‖A‖] and ψ(0) = 0. Thus,

σ(τ) → 0 for τ → 0. (1.26)

Denote by ω(τ, r) the function defined by the formula

ω(τ, r) = sup {‖u‖ : u ∈ B Sr , ‖Au‖ ≤ τ}. (1.27)

Lemma 1.8. Under the above-formulated conditions, we have

ω(τ, r) = ω(τ, r).

Proof. Let u ∈ Mr and ‖Au‖ ≤ τ. Then there exists v ∈ ℍ such that

u = Bv and ‖v‖ ≤ r.

Since B = BP, there exists an element v1 ∈ ℍ such that v = Pv1. Thus,

u = Bv1, (1.28)

where ‖v1‖ ≤ r. It follows from A = QA that

‖Au‖ = 󵄩󵄩󵄩󵄩Q
−1Au󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩Q
−1󵄩󵄩󵄩󵄩‖Au‖ = ‖Au‖ ≤ τ. (1.29)

From (1.28) and (1.29) it follows that

ω(τ, r) ≤ ω(τ, r). (1.30)

In the reverse direction, it follows from u ∈ BSr that there exists an element v ∈ ℍ
such that ‖v‖ ≤ r and u = Bv. Since

‖Au‖ ≤ τ and A = Q−1A,

we have

‖Au‖ = ‖QAu‖ ≤ ‖Q‖‖Au‖ = ‖Au‖ ≤ τ. (1.31)

Thus, it follows from (1.31) that

ω(τ, r) ≤ ω(τ, r). (1.32)

The assertion of the lemma follows from inequalities (1.30) and (1.32).
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Lemma 1.9. Let

A = QA and B = BP, where A = √A∗A, B = √BB∗,

and P and Q are unitary operators. In addition,

B = G(A),

where G(σ) is a strictly increasing function continuous over the interval [0, ‖A‖] such that
G(0) = 0. Also, τ < r‖A‖ ⋅ ‖B‖. Then we have ω(τ, r) = rG[σ(τ)], where σ(τ) is the solution
of equation (1.25).

Proof. Let ε be a sufficiently small positive number and let σ(τ)be the solution of equa-
tion (1.25). Then select a natural number n0 such that

rG[σ(τ)] − rG[n0 − 1
n0

σ(τ)] < ε (1.33)

and consider the spaceℍ0 defined by the formula

ℍ0 = Eσ(τ)ℍ − E n0−1
n0

σ(τ)ℍ, (1.34)

where {Eσ : 0 ≤ σ ≤ ‖A‖} is a partition of unity generated by the operator A [52] (p. 336).
Let Mr = B Sr, v0 ∈ ℍ0, and

‖v0‖ = r. (1.35)

Then it follows from (1.35) that

u0 = Bv0 ∈ Mr . (1.36)

Since u0 ∈ H0, from (1.33)–(1.35) we deduce

‖u0‖ ≥ rG[σ(τ)] − ε. (1.37)

As u0,Au0 ∈ ℍ0 and the function G(σ) strictly increases, it follows from (1.33) and
(1.34) that

‖Au0‖ ≤ rG[σ(τ)]σ(τ) = τ. (1.38)

From (1.36) and (1.38) it follows that

‖u0‖ ≤ ω(τ, r) (1.39)

and from (1.37) and (1.39) it follows that

ω(τ, r) ≥ rG[σ(τ)] − ε.
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Due to the arbitrariness of ε we have

ω(τ, r) ≥ rG[σ(τ)]. (1.40)

Let us prove the inequality in the reverse direction. For this purpose, represent the
spaceℍ as the orthogonal sum

ℍ = ℍ1 + ℍ2 (1.41)

of the subspaces

ℍ1 = Eσ(τ)ℍ and ℍ2 = (E − Eσ(τ))ℍ.

The theorem proved in [52] (p. 336) shows that the subspaces ℍ1 and ℍ2 are in-
variant for the operators A and B. It follows from the notions that u0 ∈ Mr and

‖Au0‖ ≤ τ (1.42)

that there exists an element v0 ∈ ℍ, such that

‖v0‖ ≤ r (1.43)

and

u0 = Bv0. (1.44)

Using (1.41), represent the element v0 as the orthogonal sum

v0 = v1 + v2, (1.45)

where vi = pr(v0,ℍi), i = 1, 2. Let r1 = ‖v1‖ and r2 = ‖v2‖. Then from (1.43) and (1.45) it
follows that

r2
1 + r2

1 ≤ r2. (1.46)

From the invariance of the spaces ℍ1 and ℍ2 for the operator B and (1.44) it follows
that u0 = u1 + u2 and

ui = Bvi ∈ ℍ, i = 1, 2. (1.47)

From the invariance of the spacesℍ1 andℍ2 for the operator A it follows that

Aui ∈ ℍi, i = 1, 2. (1.48)

From (1.42), (1.47), and (1.48) it follows that

‖Aui‖ ≤
ri
r

τ, i = 1, 2. (1.49)
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Since G(σ) is strictly increasing, it follows from (1.47) that

‖u1‖ ≤ r1G[σ(τ)] (1.50)

and it follows from (1.49) that

‖u2‖ ≤
r2τ

rσ(τ)
. (1.51)

Since

r2G[σ(τ)]σ(τ) = r2
r

τ, (1.52)

it follows from (1.51) and (1.52) that

‖u2‖ ≤ r2G[σ(τ)]. (1.53)

From (1.46), (1.47), (1.50), and (1.53) it follows that

‖u0‖ ≤ rG[σ(τ)]. (1.54)

Due to the arbitrariness of u0 on (1.42)–(1.44) and (1.54), it follows that

ω(τ, r) ≤ rG[σ(τ)] (1.55)

and from (1.40) and (1.55) it follows that

ω(τ, r) = rG[σ(τ)]. (1.56)

The assertion of the lemma follows from Lemma 1.8 and (1.56).

Lemma 1.10. Under the conditions to be met by the operators A and B, formulated in
Lemma 1.9, the set Mr = BSr is the class of correctness for equation (1.1).

Proof. Since G ∈ C[0, |A|], as (1.26) σ1(τ) → 0 for τ → 0, where σ1(τ) is the solution of
the equation 2rG(σ)σ = τ, we have

G(σ1(τ)) → 0 for τ → 0. (1.57)

From (1.57) and Lemma 1.9, it follows that

ω(τ, 2r) → 0 for τ → 0. (1.58)

It follows from (1.58) and Lemma 1.4 that

ω1(τ, r) → 0 for τ → 0. (1.59)

The assertion of the lemma follows from (1.59) and Corollary 1.1.
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Let us strengthen Lemma 1.4.

Lemma 1.11. Let B = G(A), where the function G(σ) ∈ C[0, ‖A‖] is strictly increasing
over this interval, and let G(0) = 0. Then, if 0 < τ < r‖AB‖, the function ω(τ, r) is strictly
increasing on τ and r.

Proof. It follows from Lemma 1.9 that

ω(τ, r) = rG[σ(τ)], (1.60)

where σ = ψ(τ/r) and ψ(x) is the inverse function of G(σ)σ.
It follows from the inverse function theorem that the function σ(τ) strictly in-

creases on τ and, consequently, by (1.60) ω(τ, r) strictly increases on τ.
To prove that the function ω(τ, r) is strictly increasing on r, we write

r = τr
τ
= [G[ψ(τ

r
)]ψ(τ

r
)]
−1

τ. (1.61)

From (1.60) and (1.61) it follows that

ω(τ, r) =
τG[ψ( τr )]

G[ψ( τr )]ψ(
τ
r )
=

τ
ψ( τr )
. (1.62)

Since the function ψ( τr ) strictly decreases on r, it follows from (1.62) that the func-
tion ω(τ, r) strictly increases on r.

The lemma is thereby proved.

Note that long before the paper [33] was published, in his famous monograph [43]
M. M. Lavrent’ev introduced the concept of the modulus of continuity ω(τ) and used it
to estimate the errors of the methods for solving operator equations of the first kind.

Since the concept of the modulus of continuity defined by M. M. Lavrent’ev dif-
fered from the concept of the modulus of continuity ω(τ, r), used by V. K. Ivanov, it
is appropriate to compare these concepts. The following definition of the modulus of
continuity is given in [43] (p. 11).

Let M = BS1, where B is a linear completely continuous operator mapping a Hilbert
spaceℍ into itself.

Further the function ω(τ) is introduced that satisfies the following conditions:
1. ω(τ) is a continuous non-decreasing function and ω(0) = 0;
2. for any u ∈ M satisfying the inequality ‖Au‖ ≤ τ, we have the following inequality:

‖u‖ ≤ ω(τ). (1.63)

From Lemma 1.4 and Lemma 1.6 and from the fact that M1 is the class of correctness it
follows that the function ω(τ, 1) defined by formula (1.3) is a special case of the func-
tion ω(τ) suggested by M. M. Lavrent’ev.

Compare the following functions.
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Lemma 1.12. Let ω(τ, r) be defined by formula (1.3) and let ω(τ) be defined by for-
mula (1.63). Then for any τ ≥ 0 the following relation holds:

ω(τ, 1) ≤ ω(τ).

Proof. The case where τ = 0 is obvious, since ω(0, 1) = ω(0) = 0.
Let τ > 0. Assume the contrary, i. e., there exists τ0 > 0 such that

ω(τ0, 1) > ω(τ0). (1.64)

Denote the difference ω(τ0, 1) − ω(τ0) by d. Then it follows from (1.3) and (1.64)
that there exists an element u0 ∈ BS1 such that ‖Au0‖ ≤ τ and

‖u0‖ > ω(τ0, 1) −
d
4
≥ ω(τ0) +

d
4
> ω(τ0),

which contradicts (1.63).
The lemma is thereby proved.

It follows from Lemma 1.12 that the function ω(τ, 1) is minimal among all possible
functions ω(τ), i. e., for any τ ≥ 0 it follows that ω(τ, 1) ≤ ω(τ).

Now find the connection between the functions ω(τ, 1) and ω(τ, r), where r > 0.

Lemma 1.13. If the functions ω(τ, 1) and ω(τ, r) are defined by formula (1.3) and r > 0,
then the following equation holds:

ω(τ, r) = rω(τ/r, 1).

Proof. The assertion of this lemma follows from Lemma 1.3.

Thus, the function ω(τ, 1) is a special case of the function ω(τ) suggested by
M. M. Lavrent’ev and is minimal of all possible variants of the function ω(τ).

1.2 The concept of the method for solving an ill-posed problem

As in Section 1.1, 𝕌, 𝔽, and 𝕍 are Banach spaces, A is an injective bounded linear
operator mapping the space 𝕌 into 𝔽 that has an unlimited inverse operator, B is a
bounded linear operator mapping 𝕍 into 𝕌, and Mr = BSr . We formulate the ill-
posed problem of finding an approximate solution to equation (1.1) as follows.

Assume that for f = f0 there exists an exact solution u0 of equation (1.1), which
belongs to the set Mr, but the exact value of the right-hand side f0 is unknown. Instead,
a certain approximation fδ ∈ 𝔽 and error level δ > 0 are given such that ‖fδ − f0‖ ≤ δ.
Using the initial data Mr, fδ, δ of the problem, it is required to find the approximate
solution uδ of equation (1.1) and estimate its deviation from the exact solution u0.
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Definition 1.4. We will call the family of operators {Tδ : 0 < δ ≤ δ0}an approximate so-
lution method for equation (1.1) over the set Mr, if for any δ ∈ (0, δ0] the operator Tδ
continuously maps the space 𝔽 into𝕌 and Tδfδ → u0 for δ → 0 is uniform over the set
Mr if ‖fδ − Au0‖ ≤ δ.

Let Mr be the class of correctness and let {Tδ : 0 < δ ≤ δ0} be an approximate
solution method for equation (1.1) on this class. Then for any δ ∈ (0, δ0] introduce a
quantitative characteristic of the accuracy of this method over the set Mr . We have

Δ δ[Tδ] = sup
u,fδ

{‖u − Tδfδ‖ : u ∈ Mr , ‖Au − fδ‖ ≤ δ}. (1.65)

Lemma 1.14. Let {Tδ : 0 < δ ≤ δ0} be an approximate solution method for equa-
tion (1.1) and let ω(δ, r) be the modulus of continuity of the inverse operator at zero de-
fined by formula (1.3). Then the following estimate holds:

Δ δ[Tδ] ≥ ω(δ, r).

Proof. Let ε be a sufficiently small positive number. Then from (1.2) it follows that there
exist elements u1, u2 ∈ Mr such that

‖u1 − u2‖ ≥ ω1(2δ, r) − ε (1.66)

and

‖Au1 − Au2‖ ≤ 2δ. (1.67)

If

f δ = (Au1 + Au2)/2,

it follows from (1.67) that

‖Au1 − f δ‖ ≤ δ and ‖Au2 − f δ‖ ≤ δ. (1.68)

From (1.68) it follows that

max {‖u1 − Tδf δ‖, ‖u2 − Tδf δ‖} ≥
‖u1 − u2‖

2
. (1.69)

From (1.66) and (1.69) it follows that

max {‖u1 − Tδf δ‖, ‖u2 − Tδf δ‖} ≥
1
2

ω1(2δ, r) − ε (1.70)

and from (1.65) it follows that

Δ δ[Tδ] ≥ max {‖u1 − Tδf δ‖, ‖u2 − Tδf δ‖}. (1.71)

The assertion of the lemma follows from Lemma 1.2, (1.70), and (1.71).
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Denote by C[𝔽,𝕌] the set of all operators continuously mapping the space 𝔽 into
𝕌 and denote by Δopt

δ the quantity defined by

Δopt
δ = inf{Δ δ(P) : P ∈ C[𝔽,𝕌]},

where

Δ δ = sup
u,fδ

{‖u − Pfδ‖ : u ∈ Mr , ‖fδ − Au‖ ≤ δ}.

Definition 1.5. The method {Topt
δ : 0 < δ ≤ δ0} will be called optimal on the class Mr,

if for any δ ∈ (0, δ0]

Δ δ[T
opt
δ ] = Δ

opt
δ .

Definition 1.6. The method {Tδ : 0 < δ ≤ δ0} will be called optimal-by-order on the
class Mr, if there exists a number K > 1 such that for any δ ∈ (0, δ0]

Δ δ[Tδ] ≤ KΔopt
δ .

It follows from Lemma 1.14 that for any δ ∈ (0, δ0]

Δopt
δ ≥ ω(δ, r). (1.72)





2 Lavrent’ev methods for constructing approximate
solutions of linear operator equations of the first
kind

2.1 On the accuracy of the Lavrent’ev method with
the regularization parameter chosen based on the Strakhov
scheme

This method is borrowed from [43]. It is based on substituting the operator equation
(1.1) by the family of operator equations of the second kind, depending on the param-
eter α > 0. By applying different schemes to choose the regularization parameter α,
we will get different methods. Below we present the optimal Lavrent’ev method.

Let

ℤ = 𝔽 = ℂ = ℍ,

whereℍ is a Hilbert space, operators A and B are injective, and the ranges of values
R(A) andR(B) of the operatorsA andB are everywhere dense onH. Then by Lemma 1.7
for the operators A and B there exist polar decompositions

A = QA and B = BP,

where P and Q are unitary operators,

A = √A∗A, and B = √BB∗.
In addition, assume that the spectrum Sp(A) of the operator A coincides with the seg-
ment [0, ‖A‖] and

B = G(A), (2.1)

where the function

G(σ) ∈ C[0, ‖A‖] ∩ C1(0, ‖A‖), G(0) = 0,

and for any σ ∈ (0, ‖A‖)

G󸀠(σ) > 0.

Assume that the class of correctness Mr is of the form

Mr = B Sr , (2.2)

https://doi.org/10.1515/9783110577211-002
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where

Sr = {v : v ∈ ℍ, ‖v‖ ≤ r}.

From Lemmas 1.8 and 1.9, it follows that the set Mr, defined by formulas (2.1) and
(2.2), is the class of correctness for equation (1.1) and the modulus of continuityω(τ, r)
of the inverse operator A−1 on the set Nr = AMr is calculated by the formula

ω(τ, r) = rG[σ(τ)], τ < r‖A‖‖B‖, (2.3)

where σ(τ) is a solution of the equation

rG(σ)σ = τ. (2.4)

Using Lemma 1.7, equation (1.1) can be substituted with the following equivalent
equation:

Au = g, (2.5)

where

A = √A∗A, g = Q∗f ,
and the set of Mr is defined by formulas (2.1) and (2.2).

Assume that for g = g0 ∈ ℍ there exists the exact solution u0 of equation (2.5),
which belongs to the setMr, but the exact value of the right-hand side g0 is not known.
Instead, a certain approximation gδ ∈ ℍ and error level δ > 0 are given, such that

‖gδ − g0‖ ≤ δ.

Using the initial data Mr, gδ, and δ it is required to find the approximate solution
uδ of equation (2.5) and estimate its deviation from the exact solution.

The Lavrent’ev method described in [43] (p. 14) uses the regularizing family of op-
erators {Rα : 0 < α ≤ α0}, acting fromℍ intoℍ and defined by the formula

Rα = B(C + αE)
−1, α ∈ (0, α0], (2.6)

where C = AB.
Define the approximate solution uαδ by the formula

uαδ = Rαgδ. (2.7)

We will now estimate the deviation ‖uαδ − u0‖ of the approximate solution uαδ from
the exact solution u0. We have

󵄩󵄩󵄩󵄩u
α
δ − u0
󵄩󵄩󵄩󵄩 ≤ sup{󵄩󵄩󵄩󵄩u

α
δ − u

α
0
󵄩󵄩󵄩󵄩 : u0 ∈ Mr , ‖gδ − Au0‖ ≤ δ}

+ sup{󵄩󵄩󵄩󵄩u
α
0 − u0
󵄩󵄩󵄩󵄩 : u0 ∈ Mr}, (2.8)
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where

uα0 = Rαg0.

From (2.8) it follows that

󵄩󵄩󵄩󵄩u
α
δ − u0
󵄩󵄩󵄩󵄩 ≤ ‖Rα‖δ + sup‖v0‖≤r ‖RαCv0 − Bv0‖. (2.9)

We will then define the value of the regularization parameter α(δ) in formula (2.7)
by the method of V. N. Strakhov [72], from the condition

inf{‖Rα‖δ + sup‖v0‖≤r ‖RαCv0 − Bv0‖}. (2.10)

Lemma 2.1. For any α > 0, the operator Rα, defined by formula (2.6), is bounded and

‖Rα‖ = max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α
.

Proof. As

‖Rα‖
2 = sup‖g‖≤1 ‖Rαg‖2 (2.11)

and

‖Rαg‖
2 = (Rαg,Rαg), (2.12)

keeping in mind that Rα is a self-adjoint operator, it follows from (2.11) and (2.12) that

‖Rα‖
2 = sup‖g‖≤1(R2

αg, g). (2.13)

From (2.6) and (2.13) it follows that

‖Rα‖
2 = sup‖g‖≤1(B2

[C + αE]−2g, g). (2.14)

Let {Eσ : 0 ≤ σ ≤ ‖A‖} be the spectral decomposition of the unity E, generated by the
operator A. Then from (2.6) it follows that

R2
αg =
‖A‖
∫
0

G2(σ)
[G(σ)σ + α]2

dEσg (2.15)

and from (2.14) and (2.15) it follows that

‖Rα‖
2 = sup‖g‖≤1

‖A‖
∫
0

G2(σ)
[G(σ)σ + α]2

d(Eσg, g). (2.16)
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Given (2.16), we get

‖Rα‖
2 ≤ sup

0≤σ≤‖A‖ G2(σ)
[G(σ)σ + α]2

sup‖g‖≤1
‖A‖
∫
0

d(Eσg, g) (2.17)

and from (2.17) it follows that

‖Rα‖
2 ≤ sup

0≤σ≤‖A‖ G2(σ)
[G(σ)σ + α]2

. (2.18)

Since the function

G2(σ)
[G(σ)σ + α]2

is continuous on [0, ‖A‖], there exists the value σ ∈ [0, ‖A‖] such that

G2(σ)
[G(σ)σ + α]2

= sup
0≤σ≤‖A‖ G2(σ)
[G(σ)σ + α]2

. (2.19)

From relations (2.18) and (2.19) and from the fact that σ is a point on the spectrum
of the operator A it follows that the lemma is proved.

Lemma 2.2. For any α > 0 and r > 0 we have the following relation:

sup‖v‖≤r ‖RαCv − Bv‖ = rα max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α
.

Proof. As

B(C + αE)−1Cv − Bv = −αB(C + αE)−1v, (2.20)

from (2.6) and (2.20) it follows that

‖RαCv − Bv‖ = α
󵄩󵄩󵄩󵄩B(C + αE)

−1v󵄩󵄩󵄩󵄩. (2.21)

If v ̸= 0, then from (2.21) it follows that

‖RαCv − Bv‖ = α‖v‖
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
B(C + αE)−1 v

‖v‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
. (2.22)

Since

sup‖v‖≤r ‖RαCv − Bv‖ = α sup
0<‖v‖≤r 󵄩󵄩󵄩󵄩B(C + αE)−1v󵄩󵄩󵄩󵄩,

from (2.22) it follows that

sup‖v‖≤r ‖RαCv − Bv‖ ≤ rα sup‖w‖≤1 󵄩󵄩󵄩󵄩B(C + αE)−1w󵄩󵄩󵄩󵄩. (2.23)
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From (2.6) and (2.23) it follows that

sup‖v‖≤r ‖RαCv − Bv‖ = rα‖Rα‖. (2.24)

From (2.24) and Lemma 2.1 it follows that the lemma is proved.

From the relation (2.9) and Lemmas 2.1 and 2.2 it follows that

‖u0 − Rαgδ‖ ≤ (rα + δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α
. (2.25)

Now consider the equation

rG(σ)σ = δ. (2.26)

From the properties of the function G(σ), it follows that, if δ < rG(‖A‖)‖A‖, equa-
tion (2.26) has the unique solution σ(δ).

Theorem 2.1. Let the function

G(σ) ∈ C[0, ‖A‖] ∩ C1(0, ‖A‖),

where for any σ ∈ (0, ‖A‖),

G󸀠(σ) > 0,

G2(σ)/G󸀠(σ) increases, let G(0) = 0, δ < rG(‖A‖)‖A‖, σ(δ) be the solution of equation
(2.26), and let

α(δ) = G
2(σ(δ))

G󸀠(σ(δ)) .
Then

Δ δ(Rα(δ)) ≤ rG(σ(δ)).
Proof. Let u0 be an arbitrary element of the set Mr and let

‖gδ − Au0‖ ≤ δ.

Then from formula (2.25) it follows that

‖u0 − Rα(δ)gδ‖ ≤ (rα(δ) + δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α(δ)
. (2.27)

We will now calculate

max{ G(σ)
G(σ)σ + α(δ)

: 0 ≤ σ ≤ ‖A‖}.
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To do this, we differentiate the function

G(σ)
G(σ)σ + α(δ)

.

We have

[
G(σ)

G(σ)σ + α(δ)
]
󸀠
=
α(δ)G󸀠(σ) − G2(σ)
[G(σ)σ + α(δ)]2

. (2.28)

To determine the maximum, it is sufficient to investigate the behavior of the nu-
merator on the right-hand side of equality (2.28). We thus find that for σ < σ(δ)

G2(σ(δ))
G󸀠(σ(δ))G󸀠(σ) − G2(σ) > 0. (2.29)

For σ = σ(δ),

G2(σ(δ))
G󸀠(σ(δ))G󸀠(σ) − G2(σ) = 0 (2.30)

and for σ > σ(δ),

G2(σ(δ))
G󸀠(σ(δ))G󸀠(σ) − G2(σ) < 0. (2.31)

From relations (2.29)–(2.31), it follows that

max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α(δ)
=

G(σ(δ))
G(σ(δ))σ(δ) + α(δ)

(2.32)

and from (2.26), (2.27), and (2.32), it follows that

‖u0 − Rα(δ)gδ‖ ≤ rG(σ(δ)). (2.33)

Due to the arbitrariness of the elements u0 and gδ, the assertion of the theorem
follows from relation (2.33).

Corollary 2.1. Let, for any σ ∈ (0, ‖A‖),

G󸀠(σ) > 0,

G2(σ)/G󸀠(σ) increase, let δ < rG(‖A‖)‖A‖, and let σ(δ) be the solution of equation (2.26).
Let

α(δ) = G2(σ(δ))/G󸀠(σ(δ)).
Then the method

{Rα(δ) : 0 < δ ≤ δ0}

defined by formula (2.6) is optimal on the set Mr .
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This result was published in [88].

Corollary 2.2. Let, for any σ ∈ (0, ‖A‖),

G󸀠(σ) > 0,

G2(σ)/G󸀠(σ) increase and let σ(δ) be the solution of equation (2.26). Then for any δ ∈
(0, rG(‖A‖)‖A‖)

Δopt
δ = rG(σ(δ)).

Now consider the method

{Rα(δ) : 0 < δ ≤ δ0}

on the class of correctness Mr, defined by the function

G(σ) = σp, p > 0.

Corollary 2.3. If G(σ) = σp, p > 0, then

σ(δ) = (δ
r
)

1
p+1
, α(δ) = δ

pr
, and Δopt

δ = r
1

p+1 δ p
p+1 .

2.2 On the accuracy of the Lavrent’ev method with the choice of
the regularization parameter based on the Lavrent’ev scheme

This method is described in [42]. It uses the regularizing family of operators {Rα : α > 0}
defined by formula (2.6) and it differs from the method described in the previous
section of this chapter in that the value of the regularization parameter α̂(δ) in for-
mula (2.7) is defined by

‖Rα‖δ = sup‖v0‖≤r ‖RαCv0 − Bv0‖. (2.34)

In what follows we assume that the operatorsA and B satisfy the conditions given
in Section 2.1.

Lemma 2.3. If α̂(δ) is defined by equation (2.34), then

α̂(δ) = δ
r
.
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Proof. From Lemmas 2.1 and 2.2 it follows that

‖Rα‖ = max
0≤σ≤‖A‖ G(σ)

σG(σ) + α
(2.35)

and

sup‖v‖≤r ‖RαCv − Bv‖ = rα max
0≤σ≤‖A‖ G(σ)

σG(σ) + α
. (2.36)

Thus, the assertion of the lemma follows from formulas (2.34)–(2.36).

From Lemma 2.3 and Corollary 2.3 it follows that the methods

{Rα(δ) : 0 < δ ≤ δ0} and {Rα̂(δ) : 0 < δ ≤ δ0},

described in the first and second sections of the current chapter, are, generally speak-
ing, different. In more detail, for

G(σ) = σp, p > 0,

we have

Rα(δ) = Rα̂(δ) at p = 1

and

Rα(δ) ̸= Rα̂(δ) at p ̸= 1.

We will now estimate from above the accuracy of the method

{Rα̂(δ) : 0 < δ ≤ δ0}

and we will prove that the method is optimal-by-order.
As defined in the previous paragraph,

Rαg = B(C + αE)
−1g, α ∈ (0, α0], and C = A ⋅ B, α̂(δ) = δ

r
.

Thus, the approximate solution uδ of equation (1.1) is defined by

uα̂(δ)δ = Rα̂(δ)gδ.
We will now estimate the accuracy of the method

{Rα̂(δ) : 0 < δ ≤ δ0}

on the class Mr . For this we need to prove two lemmas.
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Lemma 2.4. If the regularizing family of the operators {Rα : α > 0} is defined by for-
mula (2.6) and α1 ∈ (0, α2), then

‖Rα1
‖ > ‖Rα2

‖.

Proof. Since by Lemma 2.1

‖Rα‖ = max
0≤σ≤‖A‖ G(σ)

σG(σ) + α
, (2.37)

from α1 < α2 it follows that for any σ ∈ (0, ‖A‖]

G(σ)
σG(σ) + α1

>
G(σ)

σG(σ) + α2
. (2.38)

The assertion of the lemma follows from (2.37) and (2.38).

Lemma 2.5. Let G(σ) ∈ C[0, ‖A‖] ∩ C1(0, ‖A‖) and

Φ(σ, α) = αG(σ)
G(σ)σ + α

.

Then for any σ ∈ [0, ‖A‖] the functionΦ(σ, α) is α-non-decreasing.

This result was published in [72].

Proof. To prove the lemma we calculate the α-derivative Φ󸀠(σ, α) of the function
Φ(σ, α). We have

Φ󸀠α(σ, α) = σG2(σ)
[σG(σ) + α]2

. (2.39)

From (2.39) it follows that for any σ ∈ [0, ‖A‖]

Φ󸀠α(σ, α) ≥ 0.

The lemma is thereby proved.

Lemma 2.6. Let

G(σ) ∈ C[0, ‖A‖] ∩ C1(0, ‖A‖)

and for any σ ∈ (0, ‖A‖)

G󸀠(σ) > 0, G(0) = 0,

let G2(σ)/G󸀠(σ) increase, and let α1 ∈ (0, α2].
Then

α1 max
0≤σ≤‖A‖ G(σ)

σG(σ) + α1
≤ α2 max

0≤σ≤‖A‖ G(σ)
σG(σ) + α2

.
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Proof. Since the function Φ(σ, α) is σ-continuous on [0, ‖A‖] for α > 0, for any α > 0
there exists σ(α) ∈ [0, ‖A‖] such that

Φ(σ(α), α) = max
0≤σ≤‖A‖Φ(σ, α). (2.40)

Thus, from (2.40) and by Lemma 2.4, we have

max
0≤σ≤‖A‖Φ(σ, α1) = Φ(σ(α1), α1) ≤ Φ(σ(α1), α2) ≤ max

0≤σ≤‖A‖Φ(σ, α2) (2.41)

and the assertion of the lemma follows from (2.41) .

Theorem 2.2. Let the function

G(σ) ∈ C[0, ‖A‖] ∩ C1(0, ‖A‖),

let for all σ ∈ (0, ‖A‖),

G󸀠(σ) > 0,

G2(σ)/G󸀠(σ) increase, let G(0) = 0, δ < rG(‖A‖)‖A‖, let σ(δ) be the solution of equa-
tion (2.26), and let α̂(δ) be the solution of equation (2.34). Then

Δ δ(Rα̂(δ)) ≤ 2rG(σ(δ)).

Proof. Let u0 be an arbitrary element from the set Mr and ‖gδ − Au0‖ ≤ δ. Then, if
u0 = Bv0

‖u0 − Rα̂(δ)gδ‖ ≤ ‖Rα̂(δ)‖δ + sup‖v0‖≤r ‖Rα̂(δ)Cv0 − Bv0‖. (2.42)

Since from formulas (2.35) and (2.36) it follows that

‖Rα̂(δ)‖ = max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α̂(δ)

and

sup‖v‖≤r ‖Rα̂(δ)Cv − Bv‖ = rα̂(δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α̂(δ)
,

by formula (2.42) we get

Δ δ(Rα̂(δ)) ≤ δ max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α̂(δ)
+ rα̂(δ) max

0≤σ≤‖A‖ G(σ)
G(σ)σ + α̂(δ)

. (2.43)

Consider the value of the parameter α(δ) defined by the formula

α(δ) = G
2(σ(δ))

G󸀠(σ(δ)) ,
where σ(δ) is the solution of equation (2.26). We consider three cases.



2.2 On the accuracy of the Lavrent’ev method with the choice | 25

First case: α̂(δ) = α(δ)
Then from formula (2.43) it follows that

Δ δ(Rα̂(δ)) ≤ (rα(δ) + δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α(δ)
(2.44)

and by Theorem 2.1 and formula (2.44) we get

Δ δ(Rα̂(δ)) ≤ rG(σ(δ)). (2.45)

Second case: α̂(δ) < α(δ)
Then from (2.36) it follows that

rα̂(δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α̂(δ)
≤ rα(δ) max

0≤σ≤‖A‖ G(σ)
G(σ)σ + α(δ)

. (2.46)

From formula (2.32) it follows that

rα(δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α(δ)
= rα(δ) G(σ(δ))

G(σ(δ))σ(δ) + α(δ)
. (2.47)

From (2.26) it follows that

G(σ(δ))σ(δ) = δ
r
. (2.48)

Since

α(δ)
δ/r + α(δ)

< 1,

from (2.47) and (2.48) it follows that

rα(δ) max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α(δ)
≤ rG(σ(δ)) (2.49)

and from (2.46) and (2.49) it follows that

Δ δ(Rα̂(δ)) ≤ 2rG(σ(δ)). (2.50)

Third case: α̂(δ) > α(δ)
Then from Lemma 2.4 it follows that

‖Rα̂(δ)‖ ≤ ‖Rα(δ)‖. (2.51)

Since from (2.35) it follows that

‖Rα̂(δ)‖ = max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α̂(δ)
, (2.52)
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from (2.27), (2.51), and (2.52) it follows that

δ max
0≤σ≤‖A‖ G(σ)

G(σ)σ + α̂(δ)
≤ rG(σ(δ)) (2.53)

and from (2.34), (2.43), and (2.51) we have

Δ δ(Rα̂(δ)) ≤ 2rG(σ(δ)). (2.54)

The theorem is thereby proved.

Corollary 2.4. Let the function

G(σ) ∈ C[0, ‖A‖] ∩ C1(0, ‖A‖),

let for any σ ∈ (0, ‖A‖),

G󸀠(σ) > 0,

G2(σ)/G󸀠(σ) increase, let G(0) = 0, δ < rG(‖A‖)‖A‖, and let α̂(δ) be the solution of equa-
tion (2.34). Then the Lavrent’ev method

{Rα̂(δ) : 0 < δ ≤ δ0}

defined by formulas (2.34) and (2.6) is optimal-by-order on the class Mr and we have the
following estimate:

Δ δ(Rα̂(δ)) ≤ 2Δopt
δ .

Proof. The proof of the corollary follows from Theorem 2.2 and Lemma 2.2.

2.3 Application of the method to the solution of the inverse
Cauchy problem for the heat conduction equation

2.3.1 Posing the direct Cauchy problem for the heat conduction equation

Consider the equation

𝜕u(x, t)
𝜕t
=
𝜕2u(x, t)
𝜕x2 , −∞ < x < ∞, t ∈ (0,T], T > 0. (2.55)

Assume that the solution u(x, t) ∈ C{(−∞,∞) × [0,T]} for any t ∈ (0,T] and

u(x, t), u󸀠x(x, t), u󸀠󸀠xx(x, t) ∈ L1(−∞,∞) ∩ L2(−∞,∞).
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There exists a function χ(x) ∈ L1(−∞,∞) such that almost for any t ∈ (0,T]

󵄨󵄨󵄨󵄨u
󸀠
t(x, t)
󵄨󵄨󵄨󵄨 ≤ χ(x).

In addition, for t = 0

u(x,0) = v0(x), (2.56)
v0(x) ∈ W

2
2 (−∞,∞) ∩W

2
1 (−∞,∞).

Then the existence and uniqueness of the generalized solution of problem (2.55),
(2.56), which can be found using the Fourier transform, follows from [39] (p. 407).

2.3.2 Posing the inverse Cauchy problem for the heat conduction equation

Consider equation (2.55) and assume that

u(x,T) = f (x), (2.57)

where f (x) ∈ C(−∞,∞) ∩ L2(−∞,∞).
In addition, for

f (x) = f0(x)

there exists

v0(x) ∈ W
2
2 (−∞,∞) ∩W

1
2 (−∞,∞),

󵄩󵄩󵄩󵄩v0(x)
󵄩󵄩󵄩󵄩L2
≤ r,

for which there exists the generalized solution u(x, t) of problem (2.55), (2.56), such
that

u(x,T) = f0(x). (2.58)

However, f0(x) is unknown. Instead, we know fδ(x) ∈ L2(−∞,∞) and δ > 0 such that

‖fδ − f0‖L2
≤ δ. (2.59)

It is required to find the function uδ(x) ∈ L2(−∞,∞) and estimate its deviation
‖uδ − u0‖L2

from the function u0(x), using the initial data fδ, δ, and r. We have

u0(x) = u(x, t0), t0 ∈ (0,T).

The function u(x, t) is the generalized solution of the direct problem (2.55), (2.56). To
solve this problem, we will use the Fourier transform, defined by the formula

F[u(x, t)] = 1
√2π

∞
∫−∞ u(x, t)e−iλxdx = û(λ, t), λ ∈ ℝ. (2.60)
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The operator A, defined by equality (2.60), maps the space L2(−∞,∞) ∩ L1(−∞,∞)
into L2(−∞,∞) and because the Plancherel theorem [39] is isometric, that is, after the
application of the Fourier transform to equation (2.55), the equality

‖Fu‖L2
= ‖u‖L2

will be reduced to the ordinary differential equation

dû(λ, t)
dt
= −λ2û(λ, t), −∞ < λ < ∞, t ∈ (0,T]. (2.61)

From (2.56) it follows that

û(λ,0) = v̂(λ), λ ∈ ℝ, (2.62)

where v̂(λ) = F[u(x,0)]. From (2.57) it follows that

û(λ,T) = ̂f (λ), λ ∈ ℝ, (2.63)

where ̂f (λ) = F[f (x)].
The function

û(λ) = û(λ, t0)

must be found.
Thus, from (2.61)–(2.63) it follows that

Aû(λ) = e−λ2(T−t0)û(λ) = ̂f (λ), λ ∈ ℝ, (2.64)
û(λ) = Bv̂(λ) = e−λ2t0 ⋅ v̂(λ). (2.65)

Applying the Lavrent’ev method to problem (2.64), (2.65), we define its approxi-
mate solution by the formula

ûαδ(λ) =
e−λ2t0

e−λ2T + α
̂fδ(λ), α > 0. (2.66)

Note that the function G(σ) defining the operator B = G(A) is defined parametri-
cally as follows:

{
σ = e−λ2(T−t0),
G(σ) = e−λ2t0 .

(2.67)

From (2.67) it follows that

G(σ) = σ
t0

T−t0 . (2.68)
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Then from Lemma 2.3 it follows that

α(δ) = δt0
r[T − t0]

(2.69)

and

sup
û0 , ̂fδ{󵄩󵄩󵄩󵄩ûα(δ)δ − û0

󵄩󵄩󵄩󵄩 : û ∈ BSr , ‖Aû0 − ̂fδ‖ ≤ δ} = r
T−t0
T δ

t0
T . (2.70)

Applying the inverse Fourier transform F−1 to the function ûα(δ)δ (λ), we obtain the
solution of problem (2.55)–(2.59)

uδ(x) = Re[F−1[ûα(δ)δ (λ)]],

for which, from formula (2.70) and by the Plancherel theorem, we have the following
estimate:

󵄩󵄩󵄩󵄩uδ(x) − u0(x)
󵄩󵄩󵄩󵄩L2
≤ r

T−t0
T δ

t0
T .





3 Tikhonov regularization method
This method was proposed and justified in the well-known papers by A. N. Tikhonov
in 1963 [97, 98] that drew attention of mathematicians to this direction of research and
caused the intensive development of the theory of ill-posed problems.

3.1 A linear version of the Tikhonov regularization method

Let 𝕌, 𝔽, and 𝕍 be Hilbert spaces, let A be a linear, injective and bounded operator
mapping𝕌 into 𝔽, and let B be a linear bounded operator mapping𝕍 into𝕌.

Consider the operator equation (1.1) and

Au = f , u ∈ 𝕌, f ∈ 𝔽.

Assume that for f = f0 there exists an accurate solution u0 of equation (1.1) that
belongs to the range of values R(B) of the operator B though f0 is not known. Instead,
given are an element fδ ∈ 𝔽 and error level δ > 0 such that

‖fδ − f0‖ ≤ δ. (3.1)

It is required to find the approximate solution uδ ∈ 𝕌 of equation (1.1) using the initial
data (fδ, δ) and estimate the value ‖uδ − u0‖, assuming u0 ∈ Mr = BSr . The Tikhonov
regularization method consists of reducing the problem of the approximate solution
of operator equation (1.1) to the variational problem

inf{‖Cv − fδ‖
2 + α‖v‖2 : v ∈ 𝕍}, (3.2)

where α > 0, C = AB.

Lemma 3.1. For any values α > 0 and fδ ∈ 𝔽 the variational problem (3.2) is solvable.

Proof. Consider a minimizing sequence {vn} ⊂ 𝕍 such that for n 󳨀→ ∞

‖Cvn − fδ‖
2 + α‖vn‖

2 󳨀→ inf{‖Cv − fδ‖
2 + α‖v‖2 : v ∈ 𝕍}. (3.3)

The boundedness of the sequence {vn} follows from (3.3) and the weak precompact-
ness of this sequence follows from its boundedness. Thus, there exists a subsequence
{vnk } such that

vnk
ne
󳨀→ v̂ for k 󳨀→ ∞. (3.4)

It follows from (3.4) that

Cvnk − fδ
ne
󳨀→ Cv̂ − fδ for k 󳨀→ ∞. (3.5)

https://doi.org/10.1515/9783110577211-003
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From (3.4) and (3.5) according to the property of weak limit norm we obtain

α‖v̂‖2 ≤ lim
k→∞

α‖vnk ‖
2 (3.6)

and

‖Cv̂ − fδ‖
2 ≤ lim

k→∞
‖Cvnk − fδ‖

2. (3.7)

By the termwise summation of (3.6) and (3.7) and using (3.3) we obtain

‖Cv̂ − fδ‖
2 + α‖v̂‖2 ≤ inf{‖Cv − fδ‖

2 + α‖v‖2 : v ∈ 𝕍}. (3.8)

Since this cannot be smaller, it follows from (3.8) that

‖Cv̂ − fδ‖
2 + α‖v̂‖2 = inf{‖Cv − fδ‖

2 + α‖v‖2 : v ∈ 𝕍},

and v̂ belongs to the solutions of the variational problem (3.2). The lemma is thereby
proved.

Note. In [28] it is shown that Lemma 3.1 is true under the condition of reflexivity of
the space𝕍.

Lemma 3.2. The solution of the variation problem (3.2) is unique.

Proof. Assume the contrary, i. e., that there exist two points v̂1, v̂2 ∈ 𝕍 such that v̂1 ̸= v̂2
and

‖Cv̂1 − fδ‖
2 + α‖v̂1‖

2 = ‖Cv̂2 − fδ‖
2 + α‖v̂2‖

2 = inf
v∈𝕍
{‖Cv − fδ‖

2 + α‖v‖2}. (3.9)

It follows from (3.9) that, if we assume

v̂ = v̂1 + v̂2
2
,

then

‖Cv̂ − fδ‖
2 + α‖v̂‖2

≤
1
2
(‖Cv̂1 − fδ‖

2 + α‖v̂1‖
2) +

1
2
(‖Cv̂2 − fδ‖

2 + α‖v̂2‖
2). (3.10)

Since by (3.9) this cannot be smaller, it follows from (3.10) that

‖Cv̂ − fδ‖
2 + α‖v̂‖2

=
1
2
(‖Cv̂1 − fδ‖

2 + α‖v̂1‖
2) +

1
2
(‖Cv̂2 − fδ‖

2 + α‖v̂2‖
2). (3.11)

As spaces𝕍 and 𝔽 are Hilbert spaces we get

α‖v̂‖2 ≤ α ‖v̂1‖
2 + ‖v̂2‖

2

2
(3.12)
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and

‖Cv̂ − fδ‖
2 ≤

1
2
‖Cv̂1 − fδ‖

2 +
1
2
‖Cv̂2 − fδ‖

2. (3.13)

Taking into account (3.11)–(3.13) we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

v̂1 + v̂2
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
=
‖v̂1‖

2 + ‖v̂2‖
2

2
. (3.14)

Since

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

v̂1 + v̂2
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
=

1
4
‖v̂1‖

2 +
1
4
‖v̂2‖

2 +
1
2
(v̂1, v̂2), (3.15)

it follows from (3.14) and (3.15) that

2(v̂1, v̂2) = ‖v̂1‖
2 + ‖v̂2‖

2. (3.16)

It follows from (3.16) that

‖v̂1 − v̂2‖
2 = ‖v̂1‖

2 + ‖v̂2‖
2 − 2(v̂1, v̂2) = 0,

i. e., v̂1 = v̂2, which contradicts the assumption. The lemma is thereby proved.

Note. It is shown in [28] that Lemma 3.2 is true under the condition of reflexivity and
strict convexity of the space 𝕍. Let Pα be an operator acting from 𝔽 into 𝕍 mapping
the element fδ ∈ 𝔽 into the solution v̂αδ of the variational problem (3.2).

Lemma 3.3. Let Pα be an operator mapping a space 𝔽 into 𝕍 and defined as above.
Then for any α > 0 the operator Pα is continuous over the space 𝔽.

Proof. Assume the contrary. Then there could be found a number ε0 > 0, element
fδ ∈ 𝔽, and sequence {fδ(n)} ⊂ 𝔽, such that

fδ(n) → fδ for n→∞

and for any n

󵄩󵄩󵄩󵄩v̂
α
δ (n) − v̂

α
δ
󵄩󵄩󵄩󵄩 ≥ ε0, (3.17)

where v̂αδ is the solution of the variational problem (3.2) and v̂αδ is the solution of the
variational problem

inf{󵄩󵄩󵄩󵄩Cv − fδ(n)
󵄩󵄩󵄩󵄩

2
+ α‖v‖2 : v ∈ 𝕍}. (3.18)

It follows from (3.18) that for any n the relation

󵄩󵄩󵄩󵄩Cv̂
α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩

2
≤ 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2 (3.19)
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is true. Without loss of generality it will follow from relation (3.19) that

lim
n→∞
󵄩󵄩󵄩󵄩Cv̂

α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩

2
≤ 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2 (3.20)

and it follows from (3.18) that

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
= inf{󵄩󵄩󵄩󵄩Cv − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α‖v‖2 : v ∈ 𝕍}. (3.21)

Thus, the boundedness of the sequence {v̂αδ (n)} follows from (3.20) and the weak pre-
compactness of this sequence follows from its boundedness. Without loss of general-
ity, we say that

v̂αδ (n)
ne
󳨀→ v̂ for n→∞. (3.22)

Since the operator C is linear and bounded, from (3.22) it follows that

Cv̂αδ (n) − fδ(n)
ne
󳨀→ Cv̂ − fδ for n→∞. (3.23)

Without loss of generality, from (3.22) and (3.23) it follows that

‖v̂‖ ≤ lim
n→∞
󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩 (3.24)

and

‖Cv̂ − fδ‖ ≤ lim
n→∞
󵄩󵄩󵄩󵄩v̂

α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩. (3.25)

From (3.24) and (3.25) it follows that

‖Cv̂ − fδ‖
2 + α‖v̂‖2 ≤ 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
. (3.26)

Since there cannot be less than the infimum, from (3.21) and (3.26) it follows that

‖Cv̂ − fδ‖
2 + α‖v̂‖2 = inf{‖Cv − fδ‖

2 + α‖v‖2 : v ∈ 𝕍}. (3.27)

From relations (3.21) and (3.27), by Lemma 3.2 it follows that

v̂ = v̂αδ (3.28)

and it follows from (3.22), (3.23), and (3.28) that

v̂αδ (n)
ne
󳨀→ v̂αδ (3.29)

and

Cv̂αδ (n) − fδ(n)
ne
󳨀→ Cv̂αδ − fδ.
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It follows from (3.24), (3.25), and (3.28) that

α󵄩󵄩󵄩󵄩v̂
α
δ
󵄩󵄩󵄩󵄩

2
≤ lim

n→∞
α󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩

2 (3.30)

and

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
≤ lim

n→∞
󵄩󵄩󵄩󵄩Cv̂

α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩
2
. (3.31)

Summing termwise (3.30) and (3.31) we obtain

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
≤ lim

n→∞
{󵄩󵄩󵄩󵄩Cv̂

α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩

2
}. (3.32)

It follows from (3.20) and (3.32) that

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
= lim

n→∞
{󵄩󵄩󵄩󵄩Cv̂

α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩
2
+ α󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩

2
}. (3.33)

From (3.30), (3.31), and (3.33) it follows that

󵄩󵄩󵄩󵄩v̂
α
δ
󵄩󵄩󵄩󵄩 = lim

n→∞
󵄩󵄩󵄩󵄩v̂

α
δ (n)
󵄩󵄩󵄩󵄩 (3.34)

and

‖Cv̂ − fδ‖ = lim
n→∞
󵄩󵄩󵄩󵄩Cv̂

α
δ (n) − fδ(n)

󵄩󵄩󵄩󵄩.

Since space𝕍 is Hilbert space, it follows from (3.29) and (3.34) that

v̂αδ (n) → v̂αδ for n→∞. (3.35)

Relation (3.35) contradicts (3.17) and proves the lemma.

It follows from Lemmas 3.1–3.3 that the variational problem (3.2) is well-posed ac-
cording to Hadamard. We further define the approximate solution uδ of equation (1.1)
by the formulas

uδ = û
α(δ)
δ , (3.36)

where

ûα(δ)δ = Bv̂
α(δ)
δ ,

v̂αδ is the solution of the variational problem (3.2), and

αδ = δ2. (3.37)

It follows from Lemmas 3.1–3.3 that, if Tδ is the operator acting from the space𝔽 into𝕌
and it is defined by formulas (3.36) and (3.37), then, if it maps the problem initial data
(fδ, δ) into the approximate solution uδ of equation (1.1), by Lemma 3.3 the operator Tδ
is continuous over the space 𝔽. Estimate the error Δ δ[Tδ] of the operator Tδ.
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Theorem 3.1. Assume that Mr = BSr , u0 ∈ Mr , and uδ is defined by formulas (3.36) and
(3.37). Then the following estimate is true:

‖uδ − u0‖ ≤
{
{
{

2√1 + r2ω(δ, r) for r ≥ 1,
2√1 + ( 1r )

2ω(δ, r) for r < 1.

Proof. Since u0 ∈ Mr, there exists v0 ∈ 𝕍 such that u0 = Bv0 and ‖v0‖ ≤ r.
Thus, it follows from (3.20) and (3.32) that

‖vδ‖
2 ≤

1
δ2 ‖Cv0 − fδ‖

2 + ‖v0‖
2, (3.38)

where vδ = B−1uδ. It follows from

‖Cv0 − fδ‖
2 = ‖Au0 − fδ‖

2 ≤ δ2, ‖v0‖
2 ≤ r2,

and (3.38) that

‖vδ‖ ≤ √1 + r2. (3.39)

It follows from (3.2) that

‖Cvδ − fδ‖
2 ≤ δ2 + δ2‖v0‖

2 ≤ δ2(1 + r2),

i. e.,

‖Cvδ − fδ‖ ≤ δ√1 + r2. (3.40)

It follows from (3.40) that

‖Auδ − Au0‖ ≤ 2δ√1 + r2 (3.41)

and it follows from (3.39) that

uδ, u0 ∈ BS√1+r2 . (3.42)

Thus, it follows from (1.2), (3.41), and (3.42) that

‖uδ − u0‖ ≤ ω1(2δ√1 + r2, √1 + r2) (3.43)

and it follows from Lemma 1.2 and (3.43) that

‖uδ − u0‖ ≤ ω(2δ√1 + r2, 2√1 + r2). (3.44)

It follows from Lemma 1.3 and (3.44) that

‖uδ − u0‖ ≤ 2√1 + r2ω(δ, 1) (3.45)

and the assertion of the theorem follows from (3.45).
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Since in Theorem 3.1 u0 is any element from Mr and fδ is any element from 𝔽 such
that

‖fδ − Au0‖ ≤ δ,

it follows from (1.65) and (3.29) that for any δ ∈ (0, δ0] the following relation is true:

Δ δ[Tδ] ≤ 2√1 + r2ω(δ, 1). (3.46)

The following theorem follows from Lemma 1.14 and estimate (3.46).

Theorem 3.2. Assume that all conditions of Theorem 3.1 are satisfied and a setMr = BSr
is the correctness class for equation (1.1). Then the method {Tδ : 0 < δ ≤ δ0} is optimal-
by-order for the class Mr and for any δ ∈ (0, δ0] the following estimate is true:

Δ δ[Tδ] ≤ 2√1 + [max(r, 1
r
)]

2
Δopt
δ .

The proof of this theorem follows from Lemma 1.14 and Theorem 3.1.
Note that the optimality-by-order for the method {Tδ : 0 < δ ≤ δ0} and the error

estimate (3.46) for this method, unlike for other methods, have been obtained without
the assumption of commutativity of the operators A and B, where

A = √A∗A and B = √BB∗.

3.2 A study of the variational problem (3.2) with a parameter α
selected based on the residual principle

The application of the residual principle for the selection of the regularization param-
eter when using the Tikhonov method was first justified for differential-operator equa-
tions in the paper by I. N. Dombrovskaya [18] in 1964. A more substantial justification
of this principle as related to solving operator equations of the first kind was done in
the papers by V. A. Morozov [59] and V. K. Ivanov [31] in 1966. Assume that all condi-
tions of Lemma 3.3 are satisfied, i. e.,𝕌, 𝔽, and𝕍 are Hilbert spaces, A is an injective
linear unbounded operator mapping 𝕌 into 𝔽 with the set of values R(A) which is
dense everywhere in 𝔽, and B is a linear bounded operator mapping the space 𝔽 into
𝕌with the set of valuesR(B)which is dense everywhere in𝕌. Consider the variational
problem (3.2). We write

inf{‖Cv − fδ‖
2 + α‖v‖2 : v ∈ 𝕍},

where α > 0 and C = AB.
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Select a regularization parameterα = α(fδ, δ) for the variational problem (3.2) from
the equation

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
= δ2, (3.47)

where v̂αδ is the solution of the variational problem (3.2). Introduce a function φδ(α),
defined by the formula

φδ(α) =
󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
, α ∈ (0,∞), (3.48)

where fδ ∈ F and v̂αδ is the solution of problem (1.2). We now get down to the justifica-
tion of the residual principle (3.47).

Lemma 3.4. Let α > 0 and {αn} ⊂ (0,∞) and let v̂αδ and v̂αnδ be the solutions of prob-
lem (3.2) for α and αn respectively. Then

v̂αnδ 󳨀→ v̂αδ for αn 󳨀→ α.

Proof. Assume the contrary. Then there exist a number ε0 > 0 and a subsequence
{αnk }, such that for any k

󵄩󵄩󵄩󵄩v̂
αnk
δ − v̂

α
δ
󵄩󵄩󵄩󵄩 ≥ ε0. (3.49)

It follows from the definition of the solution v̂
αnk
δ that for any k

󵄩󵄩󵄩󵄩Cv̂
αnk
δ − fδ
󵄩󵄩󵄩󵄩

2
+ αnk
󵄩󵄩󵄩󵄩v̂

αnk
δ
󵄩󵄩󵄩󵄩

2
≤ 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ αnk
󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
. (3.50)

It follows from (3.50) that

lim
k󳨀→∞
{󵄩󵄩󵄩󵄩Cv̂

αnk
δ − fδ
󵄩󵄩󵄩󵄩

2
+ αnk
󵄩󵄩󵄩󵄩v̂

αnk
δ
󵄩󵄩󵄩󵄩

2
} ≤ 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2 (3.51)

and the boundedness of the sequence {v̂
αnk
δ } follows from (3.51). Thus, the sequence

{v̂
αnk
δ } is weakly precompact. Without loss of generality we say that

v̂
αnk
δ

ne
󳨀→ ṽ for k 󳨀→ ∞ (3.52)

and, due to the linearity and boundedness of the operator C,

Cv̂
αnk
δ

ne
󳨀→ Cṽ for k 󳨀→ ∞. (3.53)

By the property of the weak limit norm, it follows from (3.52) and (3.53) that

‖Cṽ − fδ‖
2 + α‖ṽ‖2 ≤ lim

k→∞
{󵄩󵄩󵄩󵄩Cv̂

αnk
δ − fδ
󵄩󵄩󵄩󵄩

2
+ αnk
󵄩󵄩󵄩󵄩v̂

αnk
δ
󵄩󵄩󵄩󵄩

2
}. (3.54)
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It follows from (3.51) and (3.54) that

‖Cṽ − fδ‖
2 + α‖ṽ‖2 ≤ 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
. (3.55)

Since v̂αδ is the solution of problem (3.2), the left-hand side of (3.55) cannot be smaller
and, therefore, it follows from (3.55) that

‖Cṽ − fδ‖
2 + α‖ṽ‖2 = 󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
. (3.56)

Due to the uniqueness of the solution of problem (3.2), by Lemma 3.2, it follows from
(3.56) that

ṽ = v̂αδ . (3.57)

It follows from (3.52) and (3.57) that

v̂
αnk
δ

ne
󳨀→ v̂αδ (3.58)

and it follows from (3.51) and (3.54) that

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩 = lim

k󳨀→∞
{󵄩󵄩󵄩󵄩Cv̂

αnk
δ − fδ
󵄩󵄩󵄩󵄩

2
+ αnk
󵄩󵄩󵄩󵄩v̂

αnk
δ
󵄩󵄩󵄩󵄩

2
}. (3.59)

It follows from (3.58) that

󵄩󵄩󵄩󵄩v̂
α
δ
󵄩󵄩󵄩󵄩 ≤ lim

k→∞

󵄩󵄩󵄩󵄩v̂
αnk
δ
󵄩󵄩󵄩󵄩 (3.60)

and without loss of generality it follows from (3.59) and (3.60) that

󵄩󵄩󵄩󵄩v̂
αnk
δ
󵄩󵄩󵄩󵄩 󳨀→
󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩, for k 󳨀→ ∞. (3.61)

Thus, it follows from (3.58) and (3.61) that

v̂
αnk
δ 󳨀→ v̂αδ , for k 󳨀→ ∞,

which contradicts (3.49) and proves the lemma.

It follows from Lemma 3.4 that the function φδ(α) defined by (3.48) is continuous
for any value α > 0.

Lemma 3.5. Let all the conditions of this paragraph be satisfied. Then

lim
α󳨀→0

φδ(α) = 0 and lim
α󳨀→∞

φδ(α) = ‖fδ‖
2.
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Proof. Since

R(C) = F, for any ε > 0

there could be found a point v̄0 ∈ 𝕍, such that

‖Cv̄ − fδ‖
2 <

ε
2
. (3.62)

Then having selected the value α > 0, such as

ᾱ‖v̄0‖
2 <

ε
2
, (3.63)

for any α ≤ α it will follow from relations (3.62) and (3.63) that

φδ(α) =
󵄩󵄩󵄩󵄩Cv̂

α
δ − fδ
󵄩󵄩󵄩󵄩

2
≤ ‖Cv̄0 − fδ‖

2 + α‖v̄0‖
2 < ε,

i. e.,

φδ(α) 󳨀→ 0 for α 󳨀→ 0.

We will now prove that

φδ 󳨀→ ‖fδ‖
2 for α 󳨀→ ∞.

Since for any α > 0 it follows from

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α󵄩󵄩󵄩󵄩v̂

α
δ
󵄩󵄩󵄩󵄩

2
≤ ‖C0 − fδ‖

2 + α‖0‖2 = ‖fδ‖
2

that

α󵄩󵄩󵄩󵄩v̂
α
δ
󵄩󵄩󵄩󵄩

2
≤ ‖fδ‖

2,

for any ε > 0 there exists a value α = ‖fδ‖
2

ε2 such that for α > α

󵄩󵄩󵄩󵄩v
α
δ
󵄩󵄩󵄩󵄩 < ε. (3.64)

It follows from (3.64) that

v̂αδ 󳨀→ 0 for α 󳨀→ ∞ and φδ(α) 󳨀→ ‖fδ‖
2.

The lemma is thereby proved.

It follows from Lemmas 3.4 and 3.5 that, if ‖fδ‖ > δ, then there exists such value
α(fδ, δ), for which the solution v̂α(fδ ,δ)δ of problem (3.2) satisfies the equation

󵄩󵄩󵄩󵄩Cv̂
α(fδ ,δ)
δ − fδ

󵄩󵄩󵄩󵄩
2
= δ2. (3.65)
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3.3 Residual method

The residual method was first used by Phillips [64] in 1962 to solve applied problems.
Then this method was further developed in the well-known paper by V. K. Ivanov [32]
in 1966. In 1972 V. V. Vasin found in [108] a connection between the residual method
and Tikhonov’s regularization method.

Let𝕌, 𝔽, and 𝕍 be Hilbert spaces, let A be a linear injective and bounded opera-
tor mapping 𝕌 into 𝔽, and let B be a linear bounded operator mapping 𝕍 into 𝕌. In
addition assume that the set of values R(A) of the operator A is everywhere dense in 𝔽
and the set of values R(B) of the operator B is everywhere dense in𝕌.

Like in the first paragraph, assume that for f = f0 there exists an exact solution
u0 of equation (1.1), which belongs to the set R(B) though f0 is unknown. Instead, an
element fδ ∈ 𝔽 and an error level δ > 0 are given such that

‖fδ − f0‖ ≤ δ. (3.66)

It is required to find an approximate solution uδ ∈ 𝕌 of equation (1.1) by the initial
data (fδ, δ) and, assuming that u0 ∈ Mr = BSr, estimate the value ‖uδ − u0‖.

The residual method consists of reducing the given problem to the variational
problem

inf{‖v‖2 : v ∈ 𝕍, ‖Cv − fδ‖ ≤ δ}, (3.67)

where C = AB.

Lemma 3.6. For any values δ > 0 and fδ ∈ 𝔽, the variational problem (3.67) is solvable.

Proof. Let

Ωδ = {v : v ∈ 𝕍, ‖Cv − fδ‖ ≤ δ}.

Then it follows from δ > 0 and R(C) = F that

Ωδ ̸= Ø.

Thus, the numerical set

Kδ = {‖v‖
2 : v ∈ Ωδ}

is non-empty and bounded from below by the number 0.
If ‖fδ‖ ≤ δ, then 0 ∈ Ωδ is the unique solution of the variational problem (3.67).
If ‖fδ‖ > δ, then from the boundedness from below of the set Kδ it follows that the

lower bound exists.
We have

inf{‖v‖2 : v ∈ 𝕍, ‖Cv − fδ‖ ≤ δ}.
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By the definition of the lower bound it follows that there exists a minimizing se-
quence {vn} ⊂ Ωδ such that

‖vn‖
2 󳨀→ inf{‖v‖2 : v ∈ Ωδ} for n 󳨀→ ∞. (3.68)

The boundedness of the sequence {vn} follows from (3.68) and its weak precompact-
ness follows from the Hilbertness of the space𝕍.

Thus, there exists a subsequence {vnk } such that

vnk
ne
󳨀→ v̂ for k 󳨀→ ∞, (3.69)

where v̂ ∈ 𝕍.
Since C is a linear bounded operator, it follows from (3.69) that

Cvnk
ne
󳨀→ Cv̂ for k 󳨀→ ∞ (3.70)

and it follows from (3.70) that

Cvnk − fδ
ne
󳨀→ Cv̂ − fδ for k 󳨀→ ∞. (3.71)

From (3.71), by the property of the weak limit norm, we get

‖Cv̂ − fδ‖ ≤ lim
k→∞
‖Cvnk − fδ‖ (3.72)

and, due to the fact that for any k, vnk ∈ Ωδ, and, consequently,

‖Cvnk − fδ‖ ≤ δ,

according to (3.72), we obtain

v̂ ∈ Ωδ. (3.73)

By the property of the weak limit norm it follows from relation (3.69) that

‖v̂‖2 ≤ lim
k→∞
‖vnk ‖

2. (3.74)

It follows from relations (3.68), (3.73), and (3.74) that v̂ is the solution of prob-
lem (3.67).

The lemma is thereby proved.

Note. This lemma is proved in [28] under the condition that the space 𝕍 is reflexive
and that𝕌 and 𝔽 are Banach spaces.

In addition to problem (3.67), consider the problem

inf{‖v‖2 : v ∈ 𝕍, ‖Cv − fδ‖ = δ}. (3.75)
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Lemma 3.7. If ‖fδ‖ > δ, then problems (3.67) and (3.75) are equivalent.

Proof. In order not to check the resolvability of problem (3.75), let us prove that any of
the solutions of problem (3.67) is a solution of problem (3.75).

Assume the contrary, i. e., that there exists a point v̂ ∈ 𝕍 such that ‖Cv̂ − fδ‖ < δ
and

‖v̂‖2 = inf{‖v‖2 : v ∈ Ωδ} (3.76)

and consider the numerical function φ(λ) defined by the formula

φ(λ) = 󵄩󵄩󵄩󵄩C(λv̂) − fδ
󵄩󵄩󵄩󵄩, λ ≥ 0. (3.77)

It follows from (3.77) that the function φ(λ) is continuous and that

φ(1) = ‖Cv̂ − fδ‖ < δ. (3.78)

Then it follows from (3.78) that there exists ε0 > 0 such that, for any value λ satis-
fying the condition |λ − 1| < ε0, the following inequality is true:

φ(λ) < δ. (3.79)

Thus, it follows from (3.79) that

φ(1 − ε0
2
) =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
C[(1 − ε0

2
)v̂] − fδ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< δ

and, consequently,

(1 − ε0
2
)v̂ ∈ Ωδ

and

(1 − ε0
2
)

2
‖v̂‖2 < ‖v̂‖2,

which contradicts the fact that v̂ is the solution of problem (3.67).
Thus, ‖Cv̂−fδ‖ = δ and v̂ is the solution of problem (3.75). The fact that the solution

of problem (3.75) is the solution of problem (3.67) is proved in the same way.
The lemma is thereby proved.

Lemma 3.8. If ‖fδ‖ > δ, then the solution of the variational problem (3.67) is unique.

Proof. Assume the contrary. Then there exist points v̂1 and v̂2 ∈ Ωδ such that v̂1 ̸= v̂2
and

‖v̂1‖
2 = ‖v̂2‖

2 = inf{‖v‖2 : v ∈ Ωδ}. (3.80)
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Let

v̂ = v̂1 + v̂2
2
.

Then it follows from relation (3.80) that

‖v̂‖2 ≤ inf{‖v‖2 : v ∈ Ωδ}. (3.81)

Since it follows from Lemma 3.7 that

‖Cv̂1 − fδ‖ = δ and ‖Cv̂2 − fδ‖ = δ,

by strict convexity of the Hilbert space 𝔽 it follows that

‖Cv̂ − fδ‖ < δ. (3.82)

It follows from (3.82) that there exists a number ε0 > 0 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
C[(1 − ε0

2
)v̂] − fδ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< δ

and, consequently,

(1 − ε0
2
)v̂ ∈ Ωδ. (3.83)

Then from (3.81) and (3.83) it follows that

(1 − ε0
2
)

2
‖v̂‖2 < inf{‖v‖2 : v ∈ Ωδ}. (3.84)

Relation (3.84) contradicts the assumption about the existence of two different
solutions of problem (3.67) and thus proves the lemma.

Note. In [28], Lemma 3.8 is proved under the condition of reflexivity and strict con-
vexity of the space𝕍 and the condition that𝕌 are 𝔽 Banach spaces.

We further denote the solution of problem (3.67) by vδ and, simultaneously with
problem (3.67), consider the problem

inf{‖v‖2 : v ∈ 𝕍, 󵄩󵄩󵄩󵄩Cv − fδ(n)
󵄩󵄩󵄩󵄩 ≤ δ}, (3.85)

where

fδ(n) ∈ 𝔽 and 󵄩󵄩󵄩󵄩fδ(n)
󵄩󵄩󵄩󵄩 > δ.

From Lemmas 3.6–3.8 it follows that there exists a unique solution vδ(n) of prob-
lem (3.85) and that the condition

󵄩󵄩󵄩󵄩Cvδ(n) − fδ(n)
󵄩󵄩󵄩󵄩 = δ (3.86)

is satisfied.
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Lemma 3.9. If ‖fδ‖ > δ and for any n

󵄩󵄩󵄩󵄩fδ(n)
󵄩󵄩󵄩󵄩 > δ while fδ(n) 󳨀→ fδ for n 󳨀→ ∞,

then

vδ(n) 󳨀→ vδ for n 󳨀→ ∞.

Proof. Assume the contrary, i. e., vδ(n) does not converge to vδ for n 󳨀→ ∞. Then there
exist a number ε0 > 0 and subsequence {nk} such that for any k

󵄩󵄩󵄩󵄩vδ(nk) − vδ
󵄩󵄩󵄩󵄩 ≥ ε0. (3.87)

Since R(C) = 𝔽, there exists a point v0 ∈ 𝕍 such that

‖Cv0 − fδ‖ ≤
δ
2
. (3.88)

It follows from

fδ(nk) 󳨀→ fδ for k 󳨀→ ∞

that there exists a number k1 such that for any k ≥ k1

󵄩󵄩󵄩󵄩fδ(nk) − fδ
󵄩󵄩󵄩󵄩 <

δ
2
. (3.89)

Let f0 = Cv0. Then for any k ≥ k1, by (3.89), it follows that

󵄩󵄩󵄩󵄩f0 − fδ(nk)
󵄩󵄩󵄩󵄩 ≤ ‖f0 − fδ‖ +

󵄩󵄩󵄩󵄩fδ − fδ(nk)
󵄩󵄩󵄩󵄩 ≤ δ. (3.90)

It follows from (3.90) that for any k ≥ k1

󵄩󵄩󵄩󵄩Cv0 − fδ(nk)
󵄩󵄩󵄩󵄩 ≤ δ (3.91)

and it follows from (3.91) that for any k ≥ k1

󵄩󵄩󵄩󵄩vδ(nk)
󵄩󵄩󵄩󵄩 ≤ ‖v0‖. (3.92)

It follows from (3.92) that the sequence {vδ(nk)} is weakly precompact and one can
select its subsequence {vδ(nkl )} such that

vδ(nkl )
ne
󳨀→ v̂ for l 󳨀→ ∞. (3.93)

It follows from (3.93) that

Cvδ(nkl ) − fδ
ne
󳨀→ Cv̂ − fδ for l 󳨀→ ∞ (3.94)
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and it follows from (3.94), by the property of the weak limit norm, that

‖Cv̂ − fδ‖ ≤ lim
l→∞

󵄩󵄩󵄩󵄩Cvδ(nkl ) − fδ
󵄩󵄩󵄩󵄩.

Taking into account that for any l

󵄩󵄩󵄩󵄩Cvδ(nkl ) − fδ
󵄩󵄩󵄩󵄩 ≤ δ +
󵄩󵄩󵄩󵄩fδ(nkl ) − fδ

󵄩󵄩󵄩󵄩,

where

󵄩󵄩󵄩󵄩fδ(nkl ) − fδ
󵄩󵄩󵄩󵄩 󳨀→ 0 for n 󳨀→ ∞,

we obtain

‖Cv̂ − fδ‖ ≤ δ. (3.95)

It follows from (3.95) that

‖v̂‖ ≥ ‖vδ‖. (3.96)

Introduce a sequence {v̂l}, defined by the formula

v̂l = γlv̂ + (1 − γl)v0, (3.97)

where γl ∈ [0, 1], and satisfying the condition

‖Cv̂l − fδ‖ = δ −
󵄩󵄩󵄩󵄩fδ(nkl ) − fδ

󵄩󵄩󵄩󵄩. (3.98)

It follows from (3.97) and (3.98) that for any l

‖Cv̂l − fδ‖ ≤ γl‖Cv̂ − fδ‖ + (1 − γl)‖Cv0 − fδ‖

≤ γlδ + (1 − γl)
δ
2
= (1 + γl)

δ
2
. (3.99)

Since

󵄩󵄩󵄩󵄩fδ(nkl ) − fδ
󵄩󵄩󵄩󵄩 󳨀→ 0 for l 󳨀→ ∞,

it follows from (3.98) and (3.99) that γl → 1 and it follows from (3.97) that

v̂l 󳨀→ v̂ for l 󳨀→ ∞. (3.100)

It follows from (3.100) that

‖v̂l‖ 󳨀→ ‖v̂‖ for l 󳨀→ ∞ (3.101)
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and it follows from the definition of vδ(nkl ) and Lemma 3.7 that for any l

󵄩󵄩󵄩󵄩Cvδ(nkl ) − fδ
󵄩󵄩󵄩󵄩 ≥ δ −
󵄩󵄩󵄩󵄩fδ(nkl ) − fδ

󵄩󵄩󵄩󵄩. (3.102)

It follows from relations (3.98) and (3.102) that for any l

󵄩󵄩󵄩󵄩vδ(nkl )
󵄩󵄩󵄩󵄩 ≤ ‖v̂l‖. (3.103)

It follows from (3.101) and (3.103) that

‖v̂‖ ≥ lim
l󳨀→∞
󵄩󵄩󵄩󵄩vδ(nkl )
󵄩󵄩󵄩󵄩 (3.104)

and it follows from (3.93) that

‖v̂‖ ≤ lim
l→∞

󵄩󵄩󵄩󵄩vδ(nkl )
󵄩󵄩󵄩󵄩. (3.105)

It follows from (3.96), (3.104), and (3.105) that

‖v̂‖ = ‖vδ‖ (3.106)

and it follows from (3.95) and (3.106), by Lemma 3.8, that

vδ = v̂. (3.107)

Thus, it follows from (3.93) and (3.107) that

vδ(nkl )
ne
󳨀→ vδ for l 󳨀→ ∞ (3.108)

and it follows from (3.104)–(3.106) that

󵄩󵄩󵄩󵄩vδ(nkl )
󵄩󵄩󵄩󵄩 󳨀→ ‖vδ‖ for l 󳨀→ ∞. (3.109)

It follows from (3.108) and (3.109) that

vδ(nkl ) 󳨀→ vδ for l 󳨀→ ∞,

which contradicts (3.87) and thereby proves the lemma.

Lemma 3.10. If

‖fδ‖ ≤ δ and fδ(n) 󳨀→ fδ for n 󳨀→ ∞,

then

vδ(n) 󳨀→ vδ for n 󳨀→ ∞.

Proof. As was mentioned above, if ‖fδ‖ ≤ δ, then problem (3.67) has the unique solu-
tion vδ = 0. We consider two cases.
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First case
Assume that

‖fδ‖ < δ and fδ(n) 󳨀→ fδ for n 󳨀→ ∞.

Then there exists a number N such that for any n ≥ N we have the inequality

󵄩󵄩󵄩󵄩fδ(n)
󵄩󵄩󵄩󵄩 < δ.

Thus, for any n ≥ N, vδ(n) = 0 and for this case the lemma is proved.

Second case
Assume that ‖fδ‖ = δ and assume for any n

󵄩󵄩󵄩󵄩fδ(n)
󵄩󵄩󵄩󵄩 ≥ δ and fδ(n) 󳨀→ fδ for n 󳨀→ ∞.

Without loss of generality, we take for any n, ‖fδ(n)‖ > δ. Then for any n the corre-
sponding solution of problem (3.85) is vδ(n) ̸= 0.

Since

fδ(n) 󳨀→ fδ for n 󳨀→ ∞,

there exists a number N1 such that for any n ≥ N1

󵄩󵄩󵄩󵄩fδ(n) − fδ
󵄩󵄩󵄩󵄩 <

δ
2
. (3.110)

It follows from R(C) = 𝔽 that there exists a number v0 ∈ 𝕍 such that

‖Cv0 − fδ‖ <
δ
2
. (3.111)

Introduce a sequence {v0(n)} defined by the formula

v0(n) = λnv0, (3.112)

where for any n, λn > 0 and

󵄩󵄩󵄩󵄩Cv0(n) − fδ
󵄩󵄩󵄩󵄩 = δ −
󵄩󵄩󵄩󵄩fδ(n) − fδ

󵄩󵄩󵄩󵄩. (3.113)

Without loss of generality we set n ≥ N1.
It follows from (3.112) and (3.113) that for any n

󵄩󵄩󵄩󵄩Cv0(n) − fδ
󵄩󵄩󵄩󵄩 ≤

δ
2
+ (1 − λn)

δ
2

(3.114)
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and it follows from (3.113) and (3.114) that

δ
2
+ (1 − λn)

δ
2
≥ δ − 󵄩󵄩󵄩󵄩fδ(n) − fδ

󵄩󵄩󵄩󵄩, (3.115)

where for any n

λn > 0 and 󵄩󵄩󵄩󵄩fδ(n) − fδ
󵄩󵄩󵄩󵄩 󳨀→ 0 for n 󳨀→ ∞.

Thus, it follows from (3.115) that λn 󳨀→ 0 for n 󳨀→ ∞, whence

v0(n) 󳨀→ 0 for n 󳨀→ ∞. (3.116)

Since for any n

󵄩󵄩󵄩󵄩Cvδ(n) − fδ
󵄩󵄩󵄩󵄩 ≥ δ −
󵄩󵄩󵄩󵄩fδ(n) − fδ

󵄩󵄩󵄩󵄩, (3.117)

it follows from (3.113), (3.117), and (3.85) that for any n

󵄩󵄩󵄩󵄩vδ(n)
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩v0(n)
󵄩󵄩󵄩󵄩. (3.118)

It follows from (3.116) and (3.118) that

vδ(n) 󳨀→ 0 for n 󳨀→ ∞.

The lemma is thereby proved.

It follows from Lemmas 3.6–3.10 that the variational problem (3.67) is well-posed
according to Hadamard.

Theorem 3.3. Let

R(C) = 𝔽 and ‖fδ‖ > δ.

Then the variational problem (3.67) is equivalent to the variational problem (3.2) with
the regularization parameter α satisfying equation (3.47).

Proof. Let v̂α(fδ ,δ)δ be a solution of problem (3.2), (3.47). Then

󵄩󵄩󵄩󵄩Cv̂
α(fδ ,δ)
δ − fδ

󵄩󵄩󵄩󵄩
2
= δ2 (3.119)

and

󵄩󵄩󵄩󵄩Cv̂
α(fδ ,δ)
δ − fδ

󵄩󵄩󵄩󵄩
2
+ α(fδ, δ)

󵄩󵄩󵄩󵄩v̂
α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩

2

= δ2 + α(fδ, δ)
󵄩󵄩󵄩󵄩v̂

α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩

2

≤ inf
v
{δ2 + α(fδ, δ)‖v‖

2 : v ∈ 𝕍, ‖Cv − fδ‖ = δ}. (3.120)
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Since it follows from Lemma 3.7 that

inf{‖v‖2 : v ∈ 𝕍, ‖Cv − fδ‖ = δ} = ‖vδ‖
2,

where vδ is a solution of the variational problem (3.67), it follows from (3.120) that

‖vδ‖ ≤
󵄩󵄩󵄩󵄩v̂

α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩. (3.121)

If we assume that ‖vδ‖ < ‖v̂
α(fδ ,δ)
δ ‖, then

‖Cvδ − fδ‖
2 + α(fδ, δ)‖vδ‖

2 = δ2 + α(fδ, δ)‖vδ‖
2 < δ2 + α(fδ, δ)

󵄩󵄩󵄩󵄩v̂
α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩

2
,

which contradicts the definition of the solution v̂α(fδ ,δ)δ of the variational problem (3.2)
for α = α(fδ, δ).

Thus,

‖vδ‖ =
󵄩󵄩󵄩󵄩v̂

α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩 (3.122)

and it follows from (3.119), (3.122), and Lemmas 3.7, and 3.8 that vδ = v̂
α(fδ ,δ)
δ .

We move on to the inverse direction. Let vδ be a solution of problem (3.67), let
α(fδ, δ) be a solution of equation (3.47), and let v̂α(fδ ,δ)δ be a solution of problem (3.2) for
α = α(fδ, δ).

Then it follows from Lemma 3.7 that

‖vδ‖
2 = inf{‖v‖2 : v ∈ 𝕍, ‖Cv − fδ‖ = δ}

and it follows from (3.119) that

󵄩󵄩󵄩󵄩Cv̂
α(fδ ,δ)
δ − fδ

󵄩󵄩󵄩󵄩 = δ.

Thus,

‖vδ‖ ≤
󵄩󵄩󵄩󵄩v̂

α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩.

Assume that

‖vδ‖ <
󵄩󵄩󵄩󵄩v̂

α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩.

Then

‖Cvδ − fδ‖
2 + α(fδ, δ)‖vδ‖

2 = δ2 + α(fδ, δ)‖vδ‖
2 < δ2 + α(fδ, δ)

󵄩󵄩󵄩󵄩v̂
α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩

2
,

which contradicts the definition of the solution v̂α(fδ ,δ)δ of the variational problem (3.2)
for α = α(fδ, δ).
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Consequently,

‖vδ‖ =
󵄩󵄩󵄩󵄩v̂

α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩

and

‖Cvδ − fδ‖
2 + α(fδ, δ)‖vδ‖

2 = δ2 + α(fδ, δ)‖vδ‖
2

= 󵄩󵄩󵄩󵄩Cv̂
α(fδ ,δ)
δ − fδ

󵄩󵄩󵄩󵄩
2
+ α(fδ, δ)

󵄩󵄩󵄩󵄩v̂
α(fδ ,δ)
δ
󵄩󵄩󵄩󵄩

2
. (3.123)

Since it follows from Lemma 3.2 that problem (3.2) has a unique solution, it follows
from (3.123) that vδ = v̂

α(fδ ,δ)
δ .

The theorem is thereby proved.

The residual method is defined by the operator family {Tδ : 0 < δ ≤ δ0}mapping
𝔽 into𝕌 and defined by the formula

Tδfδ = Bvδ, fδ ∈ 𝔽, Bvδ ∈ 𝕌, (3.124)

where vδ is the solution of problem (3.67).
If follows from Lemmas 3.6 and 3.8–3.10 that for any δ ∈ (0, δ0] the operator Tδ

continuously maps the space 𝔽 into𝕌.
Define the approximate solution uδ of equation (1.1) by the formula uδ = Tδfδ.
We will now estimate the accuracy of the residual method Δ δ[Tδ]

{Tδ : 0 < δ ≤ δ0}

over the set Mr = BSr defined by formula (1.65) for any δ ∈ (0, δ0]. We have

Δ δ[Tδ] = sup
u,fδ
{‖u − Tδfδ‖ : u ∈ Mr , ‖Au − fδ‖ ≤ δ}.

For this purpose, estimate the deviation ‖uδ − u0‖ of the approximate solution uδ of
equation (1.1) from the accurate solution u0.

Theorem 3.4. Let u0 ∈ Mr ,

‖fδ − Au0‖ ≤ δ, and uδ = Tδfδ.

Then

‖uδ − u0‖ ≤ 2ω(δ, r).

Proof. Since u0 ∈ Mr, there exists v0 ∈ 𝕍 such that

‖v0‖ ≤ r. (3.125)
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By uδ = Bvδ, where vδ is the solution of problem (3.67), it follows that

‖vδ‖ ≤ ‖v0‖ (3.126)

and

‖Auδ − fδ‖ = δ. (3.127)

It follows from (3.125) and (3.126) that

uδ ∈ Mr (3.128)

and it follows from (3.127) that

‖Au0 − Auδ‖ ≤ 2δ. (3.129)

It follows from (3.128) and (3.129) that

‖uδ − u0‖ ≤ ω1(2δ, r). (3.130)

It follows from (3.130) and Lemmas 1.2 and 1.3 that

‖uδ − u0‖ ≤ 2ω(δ, r).

The theorem is thereby proved.

It follows from Theorem 3.4 that for any δ ∈ (0, δ0]

Δ δ[Tδ] ≤ 2ω(δ, r). (3.131)

The following theorem follows from Lemma 1.14 and formula (3.131).

Theorem 3.5. The residual method {Tδ : 0 < δ ≤ δ0} is optimal-by-order on the class of
solutions Mr and for any δ ∈ (0, δ0] the following estimate holds true

Δ δ[Tδ] ≤ 2Δopt
δ

3.4 The error estimate for the Tikhonov regularization method
with parameter α, selected by the residual principle

Assume that all conditions of Lemma 3.3 are satisfied in this paragraph, i. e.,𝕌,𝔽, and
𝕍 are Hilbert spaces, A is an injective linear operator mapping 𝕌 into 𝔽 with the set
of values R(A) everywhere dense in 𝔽, and B is a linear bounded operator mapping𝕍
into𝕌 with the set R(B) everywhere dense in𝕌.
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Theorem 3.6. Let 0 < δ < ‖fδ‖. Then there exists a unique value of the parameter α that
satisfies equation (3.47).

Proof. It follows from Lemmas 3.4 and 3.5 that there exists a value of the parameter
α(fδ, δ) satisfying the equation

󵄩󵄩󵄩󵄩Cv̂
α(fδ ,δ)
δ − fδ

󵄩󵄩󵄩󵄩 = δ
2, (3.132)

where vαδ is a solution of the variational problem (3.2).
We now move on to the proof of the solution uniqueness for equation (3.47). For

this purpose, consider the contrary. Then we find two different solutions α1 and α2 of
equation (3.47). Denote the solutions of problem (3.2) for these values by v̂α1

δ and v̂α2
δ .

Let vδ be a solution of problem (3.67). Then it follows from Theorem 3.3 that

v̂α1
δ = vδ and v̂α2

δ = vδ,

i. e.,

v̂α1
δ = v̂

α2
δ . (3.133)

It follows from (3.133), Lemma 3.7, and Theorem 3.3 that

δ2 + α2
󵄩󵄩󵄩󵄩v̂

α2
δ
󵄩󵄩󵄩󵄩

2
= min

λ
{󵄩󵄩󵄩󵄩λCv̂

α2
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α2λ

2󵄩󵄩󵄩󵄩v̂
α2
δ
󵄩󵄩󵄩󵄩

2
} (3.134)

and

δ2 + α1
󵄩󵄩󵄩󵄩v̂

α1
δ
󵄩󵄩󵄩󵄩

2
= min

λ
{󵄩󵄩󵄩󵄩λCv̂

α2
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α1λ

2󵄩󵄩󵄩󵄩v̂
α2
δ
󵄩󵄩󵄩󵄩

2
}. (3.135)

In formulas (3.134) and (3.135) the minimum is achieved for λ = 1.
Since

󵄩󵄩󵄩󵄩λCv̂
α2
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α2λ

2󵄩󵄩󵄩󵄩v̂
α2
δ
󵄩󵄩󵄩󵄩

2

= λ2󵄩󵄩󵄩󵄩Cv̂
α2
δ
󵄩󵄩󵄩󵄩

2
− 2λ(Cv̂α2

δ , fδ) + ‖fδ‖
2 + α2λ

2󵄩󵄩󵄩󵄩v̂
α2
δ
󵄩󵄩󵄩󵄩

2 (3.136)

and

󵄩󵄩󵄩󵄩λCv̂
α2
δ − fδ
󵄩󵄩󵄩󵄩

2
+ α1λ

2󵄩󵄩󵄩󵄩v̂
α2
δ
󵄩󵄩󵄩󵄩

2

= λ2󵄩󵄩󵄩󵄩Cv̂
α2
δ
󵄩󵄩󵄩󵄩

2
− 2λ(Cv̂α2

δ , fδ) + ‖fδ‖
2 + α1λ

2󵄩󵄩󵄩󵄩v̂
α2
δ
󵄩󵄩󵄩󵄩

2
, (3.137)

having λ-differentiated expressions (3.136) and (3.137) and having set the values of the
derivatives for λ = 1 to be zero, we obtain

󵄩󵄩󵄩󵄩Cv̂
α2
δ
󵄩󵄩󵄩󵄩

2
− (Cv̂α2

δ , fδ) + α2λ
2󵄩󵄩󵄩󵄩v̂

α2
δ
󵄩󵄩󵄩󵄩

2
= 0 (3.138)
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and

󵄩󵄩󵄩󵄩Cv̂
α2
δ
󵄩󵄩󵄩󵄩

2
− (Cv̂α2

δ , fδ) + α1λ
2󵄩󵄩󵄩󵄩v̂

α2
δ
󵄩󵄩󵄩󵄩

2
= 0. (3.139)

By subtracting termwise equality (3.139) from (3.138) we obtain

(α2 − α1)
󵄩󵄩󵄩󵄩v̂

α2
δ
󵄩󵄩󵄩󵄩

2
= 0. (3.140)

Since α1 ̸= α2, it follows from (3.140) that v̂α2
δ = 0 and, due to Theorem 3.3 and

vδ = 0, this contradicts the condition δ < ‖fδ‖.
The theorem is thereby proved.

It follows from Lemma 3.3 and Theorem 3.3 that, if

𝕍∗ = 𝕍 and 𝔽∗ = 𝔽,

then the Tikhonov regularization method with the parameter α, selected by the resid-
ual principle (3.2), is defined by the equation

Tδfδ = {
B[C∗C + α(fδ, δ)E]−1C∗fδ for ‖fδ‖ > δ,
0 for ‖fδ‖ ≤ δ,

(3.141)

where C = AB, C∗ is the operator adjoint with C, α(fδ, δ) is the solution of equa-
tion (3.47),

󵄩󵄩󵄩󵄩Cv̂
α
δ − fδ
󵄩󵄩󵄩󵄩

2
= δ2,

and

v̂αδ = [C
∗C + α(fδ, δ)E]

−1C∗fδ.

Let Δ δ[Tδ] be the accuracy estimate for the method {Tδ : 0 < δ ≤ δ0}, defined by
(3.75). Then

Δ δ[Tδ] = sup
u,fδ
{‖u − Tδfδ‖ : u ∈ Mr , ‖Au − fδ‖},

where

Mr = BSr , Sr = {v : v ∈ 𝕍, ‖v‖ ≤ r},

and ω(δ, r) is the modulus of continuity at zero of the inverse operator A−1 on the set
Nr = AMr . It follows from Theorems 3.3 and 3.4.

Theorem 3.7. Under the conditions defined above, for the method {Tδ : 0 < δ ≤ δ0},
defined by formula (3.141), the following estimate is true:

Δ δ[Tδ] ≤ 2ω(δ, r).
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3.5 On solving an inverse problem in solid state physics with
the Tikhonov regularization method

Following [50], note that, at sufficiently low temperatures, many macroscopic systems
behave thermodynamically as an ideal gas of certain “quasi-particles” (elementary ex-
citations), obeying Bose statistics. The energy spectrum of such a system is determined
by the spectrum of quasi-particles, i. e., by the number of quasi-particles levels n(ε)dε
on the energy interval dε.

Recovering the phonon density of states n(ε), it is important to find the character-
istic structure, since it is this structure that defines many physical properties of crys-
tals.

3.5.1 Setting of the problem

The relationship between the energy spectrum of a Bose system and its temperature-
dependent heat capacity is described by the integral equation of the first kind [50]

Sn(ε) =
∞

∫
0

S( ε
θ
)
ε
θ
n(ε)dε

ε
=
C(θ)
θ
, 0 ≤ θ < ∞, (3.142)

where

S(x) = x2

2 sinh2( x2 )
,

C(θ) is the heat capacity of the system θ = kT, T is the absolute temperature, k is a
constant defined by the system, and n(ε) is the spectral density (see [4]).

Denote byℍ a real space of the functions f (x)measurable on [0,∞)with the norm
defined by the formula

󵄩󵄩󵄩󵄩f (x)
󵄩󵄩󵄩󵄩

2
ℍ =
∞

∫
0

󵄨󵄨󵄨󵄨f (x)
󵄨󵄨󵄨󵄨
2 dx
x
. (3.143)

Note that the integral in formula (3.143) is understood in the sense of Lebesgue.
Assume that for

C(θ)
θ
=
C0(θ)
θ
∈ ℍ

there exists an exact solution n0(ε) ∈ ℍ of equation (3.142), which is unique and sat-
isfies the relation

n0(ε) ∈ Gr , (3.144)
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where

Gr = {n(ε) : n(ε) ∈ ℍ,
∞

∫
0

n2(ε)
ε

dε +
∞

∫
0

[n󸀠(ε)]2εdε ≤ r2}, (3.145)

where n󸀠(ε) is the derivative of the function n(ε), but instead of the exact value of the
right-hand side C0(θ)

θ of equation (3.142) we know a certain approximation Cδ(θ)
θ ∈ ℍ

and an error level δ > 0 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Cδ(θ)
θ
−
C0(θ)
θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℍ
≤ δ. (3.146)

It is required to find the solution nδ(ε) ∈ ℍ of problem (3.142)–(3.146) and estimate
its deviation ‖nδ(ε) − n0(ε)‖ℍ from the exact solution n0(ε) of equation (3.142) in the
metrics of the spaceℍ.

If we assume that C(θ)
θ and n(ε) ∈ ℍ, then equation (3.142) becomes an ill-

posed problem.

3.5.2 Tikhonov regularization method

The Tikhonov regularization method (see [97]) for the approximate solution of equa-
tion (3.142) consists of reducing it to the variational problem

inf{
∞

∫
0

[
∞

∫
0

S(ε/θ) ε
θ
n(ε)dε

ε
−
Cδ(θ)
θ
]

2
dθ
θ

+ α
∞

∫
0

n2(ε)
ε

dε + α
∞

∫
0

[n󸀠(ε)]2 ⋅ εdε : n(ε) ∈ ℍ1[0,∞)}, (3.147)

whereℍ1[0,∞) is a Hilbert space defined by the norm

󵄩󵄩󵄩󵄩n(ε)
󵄩󵄩󵄩󵄩

2
ℍ1[0,∞) =

∞

∫
0

n2(ε)
ε

dε +
∞

∫
0

[n󸀠(ε)]2 ⋅ εdε, α > 0.

It follows from Lemmas 3.1 and 3.2 that for any function C(θ)
θ ∈ ℍ there exists a

unique solution nαδ of the variational problem (3.147).
To find the value of the regularization parameter α in the problem (3.147), we use

the residual principle (3.47) that is reduced to the solution of the equation

∞

∫
0

[
∞

∫
0

S( ε
θ
) ⋅

ε
θ
⋅ nαδ(ε)

dε
ε
−
Cδ(θ)
θ
]

2
dθ
θ
= δ2 (3.148)

with respect to α.
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It follows from Lemmas 3.4 and 3.5 that, if the condition

∞

∫
0

[
Cδ(θ)
θ
]

2 dθ
θ
> δ2

is satisfied, then equation (3.148) has the unique solution α(Cδ, δ).
Define the approximate solution nδ(ε) of equation (3.142) by the formula

nδ(ε) = n
α(Cδ ,δ)
δ (ε)

and define the corresponding regularization method by the family of operators {Rδ :
0 < δ ≤ δ0} continuously mappingℍ intoℍ, defined by the formula

Rδ[
Cδ(θ)
θ
] = {

nδ(ε),
󵄩󵄩󵄩󵄩
Cδ(θ)
θ
󵄩󵄩󵄩󵄩ℍ > δ,

0, 󵄩󵄩󵄩󵄩
Cδ(θ)
θ
󵄩󵄩󵄩󵄩ℍ ≤ δ.

(3.149)

3.5.3 Error estimation for the method {Rδ : 0 < δ ≤ δ0} defined by (3.149) on
the class of solutions Gr

Define the error estimate for the method {Rδ : 0 < δ ≤ δ0} by the family of functionals
{Δ δ(Rδ) : 0 < δ ≤ δ0} defined by formula (1.65) as follows:

Δ δ(Rδ) = sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Rδ(

Cδ(θ)
θ
) − n0(ε)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℍ
: n0(ε) ∈ Gr ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
S ⋅ n0(ε) −

Cδ(θ)
θ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℍ
≤ δ}.

(3.150)

Denote by ω(δ, r) the modulus of continuity at zero of the operator S−1 on the set
S[Gr] as follows:

ω(δ, r) = sup{󵄩󵄩󵄩󵄩n(ε)
󵄩󵄩󵄩󵄩 : n(ε) ∈ Gr ,

󵄩󵄩󵄩󵄩Sn(ε)
󵄩󵄩󵄩󵄩 ≤ δ‖}. (3.151)

For the quantities Δ δ(Rδ) and ω(δ, r) in Theorem 3.7 we obtain the estimate

Δ δ(Rδ) ≤ 2ω(δ, r), 0 < δ ≤ δ0, (3.152)

where ω(δ, r) is defined by (3.151) and Δ δ(Rδ) is defined by formula (3.150).

3.5.4 Estimation of the modulus of continuity ω(δ, r) defined by formula (3.151)
Make the following substitution of variables in (3.142):

ε = et and θ = eτ, −∞ < t, τ < ∞. (3.153)



58 | 3 Tikhonov regularization method

Then the operator S is reduced to the convolution-type operator A. We have

Au(t) =
∞

∫
−∞

K(τ − t)u(t)dt, −∞ < t, τ < ∞, (3.154)

u(t) = n(et), κ(x) = e−3x

2 sinh2( e
−x
2 )
.

In addition, u(t) and Au(t) ∈ L2(−∞,∞).
Note that after the substitution (3.153) the class of correctness Gr defined by for-

mula (3.145) will move towards Mr . We have

Mr = {
󵄩󵄩󵄩󵄩u(t)
󵄩󵄩󵄩󵄩L2
: u(t) ∈ W 1

2 (−∞,∞),
∞

∫
−∞

u2(t)dt +
∞

∫
−∞

󵄨󵄨󵄨󵄨u
󸀠(t)󵄨󵄨󵄨󵄨

2dt ≤ r2}. (3.155)

Now define the modulus of continuity at zero of the operator A−1 on the set Nr =
AMr by

ω(δ, r) = sup{󵄩󵄩󵄩󵄩u(t)
󵄩󵄩󵄩󵄩L2
: u(t) ∈ Mr ,

󵄩󵄩󵄩󵄩Au(t)
󵄩󵄩󵄩󵄩L2
≤ δ}. (3.156)

Lemma 3.11. Let ω(δ, r) be defined by formula (3.151) and let ω(δ, r) be defined by for-
mula (3.156). Then the following equality is true:

ω(δ, r) = ω(δ, r).

3.5.5 Estimation of the modulus of continuity ω(δ, r) defined by formula (3.156)
Assuming that u(t) ∈ L1(−∞,∞) ∩ L2(−∞,∞) and define the Fourier transform F as
follows:

F[u(t)] = 1
√2π

∞

∫
−∞

u(t)eiptdt. (3.157)

It follows from the Plancherel theorem that the transform F is isometric on the
space L2(−∞,∞). To distinguish a complex space from a real space, denote it by
L2(−∞,∞).

Thus, the operator F, defined by formula (3.157), will isometrically map the set
L1(−∞,∞) ∩ L2(−∞,∞) into the space L2(−∞,∞) in the metrics L2(−∞,∞).

Since the space L1(−∞,∞) is dense in L2(−∞,∞), extend the operator F by con-
tinuity onto the whole space L2(−∞,∞). Denote this extension by F.

Now the operator F maps isometrically the space L2(−∞,∞) into L2(−∞,∞). We
will further denote the image of the operator F by Y and note that Y will be the sub-
space L2(−∞,∞).
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After the transformation F the operator A will be reduced to the following:

Âû(p) = K̂(p)û(p), û(p) ∈ Y , Âû(p) ∈ L2(−∞,∞), (3.158)

where

û(p) = F[u(t)].

Since K(x) ∈ L1(−∞,∞),

K̂(p) = 1
√2π

∞

∫
−∞

K(x)eixpdx

and from the form of the function K(x) it will follow that

K̂(p) = 1
√2π

∞

∫
−∞

e−(2−ip)x ⋅ e−x

(coth(e−x) − 1)
dx = −√ 2

π

∞

∫
−∞

e−(2−ip)x ⋅ ee
−x

(ee−x − 1)2
d(e−x).

Substituting z = e−x in the last expression, we obtain

K̂(p) = −√ 2
π

0

∫
∞

z(2−ip) ⋅ ez

(ez − 1)2
dz = √ 2

π

∞

∫
0

z(2−ip) ⋅ ez

(ez − 1)2
dz.

Partially integrating the last expression we obtain

K̂(p) = (2 − ip)
√2
√π

∞

∫
0

z(2−ip)−1

ez − 1
dz.

Using the properties of gamma and zeta functions [118] (p. 79),

Γ(s)ζ (s) =
∞

∫
0

zs−1

ez − 1
dz,

we obtain

K̂(p) = √ 2
π
(2 − ip)Γ(2 − ip)ζ (2 − ip) = √ 2

π
Γ(3 − ip)ζ (2 − ip), (3.159)

where Γ(z) is the Euler gamma function and ζ (z) is the Riemann zeta function.
To estimate from below the function

󵄨󵄨󵄨󵄨K̂(p)
󵄨󵄨󵄨󵄨 for p 󳨀→ ∞,
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we will give some well-known properties of the gamma function formulated in [118]
(pp. 16 and 19). We write

Γ(z + 1) = zΓ(z), (3.160)
Γ(z) = Γ(z), (3.161)

where Γ(z) is conjugated with Γ(z), z is conjugated with z, and

Γ(z)Γ(1 − z) = π
sinπz
. (3.162)

It thus follows from (3.160) that

󵄨󵄨󵄨󵄨Γ(3 − ip)
󵄨󵄨󵄨󵄨 = √p2 + 1√p2 + 4󵄨󵄨󵄨󵄨Γ(1 − ip)

󵄨󵄨󵄨󵄨 (3.163)

and it follows from (3.161) and (3.162) that

󵄨󵄨󵄨󵄨Γ(1 − ip)
󵄨󵄨󵄨󵄨 = √

πp
sinhπp

. (3.164)

It follows from (3.163) and (3.164) that for any p ≥ 2 the following estimate is true:

󵄨󵄨󵄨󵄨Γ(3 − ip)
󵄨󵄨󵄨󵄨 ≥ √2πe−

π
2 p. (3.165)

We will now estimate from below the modulus of the Riemann zeta function |ζ (2−
ip)|. Since

ζ (s) =
∞

∑
n=1

1
ns
, (3.166)

it follows from (3.166) that

ζ (2 − ip) =
∞

∑
n=1

eip ln n

n2 . (3.167)

Taking into account that |eip ln n| = 1, from (3.167) we obtain

󵄨󵄨󵄨󵄨ζ (2 − ip)
󵄨󵄨󵄨󵄨 ≤ 1 −

∞

∑
n=2

1
n2 ≥

1
3
. (3.168)

Thus, from (3.165) and (3.168) it follows that for p ≥ 2 the following estimate from
below is true:

󵄨󵄨󵄨󵄨K̂(p)
󵄨󵄨󵄨󵄨 ≥

2
3
e−

π
2 p. (3.169)
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Now consider the extension Â1 of the operator Â, defined by formula (3.158), onto
the whole space L2(−∞,∞). We have

Â1û(p) = K̂(p)û(p), û(p), Â1û(p) ∈ L2(−∞,∞). (3.170)

Consider a set M̂r ⊂ L2(−∞,∞) defined by the formula

M̂r = {û(p) : û(p), pû ∈ L2(−∞,∞),
∞

∫
−∞

(1 + p2)󵄨󵄨󵄨󵄨û(p)
󵄨󵄨󵄨󵄨
2dp ≤ r2}. (3.171)

From (3.155) and (3.171) it follows that

F[Mr] ⊂ M̂r . (3.172)

Consider moduli of continuity at zero defined by the formulas

ω̂(δ, r) = sup{󵄩󵄩󵄩󵄩û(p)
󵄩󵄩󵄩󵄩L2
: û(p) ∈ F[Mr],

󵄩󵄩󵄩󵄩Âû(p)
󵄩󵄩󵄩󵄩L2
≤ δ}, (3.173)

ω̂1(δ, r) = sup{󵄩󵄩󵄩󵄩û(p)
󵄩󵄩󵄩󵄩L2
: û(p) ∈ F[Mr],

󵄩󵄩󵄩󵄩Â1û(p)
󵄩󵄩󵄩󵄩L2
≤ δ}. (3.174)

It follows from the unitary transformation F and formulas (3.154), (3.156), (3.158),
and (3.173) that

ω̂(δ, r) = ω(δ, r). (3.175)

It follows from (3.158), (3.170), and (3.172)–(3.174) that

ω̂1(δ, r) ≥ ω̂(δ, r). (3.176)

Thus, it follows from (3.175) and (3.176) that

ω̂(δ, r) ≤ ω̂1(δ, r). (3.177)

For the sake of convenience substitute the operator Â1 defined by formula (3.170)
by the inverse operator Â−11 , which we denote by T̂1. We have

T̂1
̂f (p) = Â−11

̂f (p), ̂f (p) ∈ R(Â1), T̂1
̂f (p) ∈ L2, (3.178)

where R(Â1) is the value range of the operator Â1.
Define the set M̂r defined by formula (3.172) with the operator B as follows:

Bû(p) = √1 + p2û(p), û(p),Bû(p) ∈ L2(−∞,∞), (3.179)

M̂r = B−1Sr , (3.180)
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where

Sr = {û(p) : û(p) ∈ L2(−∞,∞),
󵄩󵄩󵄩󵄩û(p)
󵄩󵄩󵄩󵄩L2
≤ r}.

On the set L2(−∞,∞) introduce the set N̂r defined by the formula

N̂1
r = T
−1
1 (M̂r). (3.181)

Then it follows from (3.171), (3.174), and (3.178)–(3.181) that

ω̂1(δ, r) = sup{󵄩󵄩󵄩󵄩T̂1
̂f (p)󵄩󵄩󵄩󵄩 : ̂f (p) ∈ N̂

1
r ,
󵄩󵄩󵄩󵄩
̂f (p)󵄩󵄩󵄩󵄩L2
≤ δ}. (3.182)

We continue with the estimation of the modulus of continuity ω̂1(δ, r) defined by
(3.182).

For this purpose consider the operator T̂ acting from L2(−∞,∞) into L2(−∞,∞)
defined by the formula

T̂ ̂f (p) = g(p) ̂f (p), (3.183)

where

g(p) ∈ C(−∞,∞), g(−p) = g(p), g(0) > 0,
lim
p→∞

g(p) = ∞, and g(p) increases on [0,∞). (3.184)

Define by ω̂2(δ, r) the modulus of continuity at zero of the operator T̂ on the set
N̂r = T̂−1(M̂r) and let M̂r be defined by (3.180). Then consider the equation

r
√1 + p2

= g(p)δ. (3.185)

If g(0)δ < r, then equation (3.185) has a unique positive root p.
It follows from Lemma 1.11 that

ω̂2(δ, r) =
r
√1 + p2

. (3.186)

Assume that the operator T̂1 is defined by formulas (3.170) and (3.178). In addition
T̂ is defined by formula (3.183).

Then the following lemma is true.

Lemma 3.12. If g(p) satisfies (3.184) and there exists p0 ≥ 0 such that for any p ≥ p0 we
have

󵄨󵄨󵄨󵄨K̂(p)
󵄨󵄨󵄨󵄨
−1
≤ g(p),
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then, if

g(p0)δ <
r
√1 + p2

0

,

the following estimate is true:

ω̂1(δ, r) ≤ ω̂2(δ, r).

We will now use Lemma 3.12 to estimate the accuracy of the method {Rδ : 0 < δ ≤
δ0}. It follows from (3.169) that for p ≥ 2

󵄨󵄨󵄨󵄨K̂(p)
󵄨󵄨󵄨󵄨
−1
≤

3
2
e

π
2 p. (3.187)

Thus, it follows from (3.152), (3.175), (3.176), (3.186), and (3.187) and from Lem-
ma 3.12 that, if

δ0 =
2re−π

3√5

for the method {Rδ : 0 < δ ≤ δ0}, then by (3.152) and (3.177) the following estimate is
true:

Δ δ(Rδ) =
2r

√1 + 1
π2 ln2( 2r3δ )

.





4 Projection-regularization method

4.1 Posing of the problem of unbounded operator values and
the projection-regularization method

4.1.1 Posing of the problem

Let 𝕌, 𝔽, and 𝕍 be Hilbert spaces, let T be a closed linear operator with the domain
D(T) ⊂ 𝔽 and the range R(T) ⊂ 𝕌, and let B be an injective linear unbounded operator
with the domain D(B) ⊂ 𝕌 and the range R(B) ⊂ 𝕍. Assume that the set D(T) is dense
in 𝔽, R(B) is dense in𝕍, and R(T) ∩ D(B) is dense in𝕌.

Denote by Mr the set defined by the formula

Mr = {u : u ∈ R(T) ∩ D(B), ‖Bu‖ ⩽ r}. (4.1)

Consider the problem of finding the value Tf0 of the operator T at the point f0 ∈ D(T),
where

Tf = u. (4.2)

Assume that for f = f0 the element u0 = Tf0 belongs to the set Mr, but the exact value
of f0 is unknown. Instead, the element fδ ∈ 𝔽 and the error level δ > 0 are given, such
that

‖fδ − f0‖ ≤ δ. (4.3)

Using the a priori information fδ, δ, and Mr it is required to find the approximate
solution uδ ∈ 𝕌 of problem (4.2) and estimate its deviation ‖uδ − u0‖ from the exact
solution u0.

4.1.2 Basic notions

Definition 4.1. A set Mr is called the class of correctness for problem (4.2), if the re-
striction of the operator T on the set T−1(Mr) is uniformly continuous.

Following [44] we will call the problem of finding the unbounded operator T a
conditionally well-posed problem if we know the class of correctness Mr, to which the
exact value u0 of the operator T belongs.

Definition 4.2. A family {Tδ : 0 < δ ≤ δ0} of linear bounded operators Tδ, mapping
the space 𝔽 into𝕌, is called the linear method of solving problem (4.2) if

Δ δ[Tδ] → 0 for δ → 0,

https://doi.org/10.1515/9783110577211-004
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where

Δ δ[Tδ] = sup{‖Tδfδ − Tf0‖ : f0 ∈ T
−1(Mr), ‖fδ − f0‖ ≤ δ} [84].

One of the ways of posing the linear method consists of using the regularizing
family of the operators {Tα : α > 0}.

Definition 4.3. A family {Tα : 0 ≤ α < α0} of linear bounded operators Tα, mapping a
space 𝔽 into𝕌, is called a family regularizing the operator T if for any f ∈ D(T)

Tαf 󳨀→ Tf for α 󳨀→ α0.

Definition 4.4. A regularizing family {Tα : 0 ≤ α < α0} is called a family uniformly reg-
ularizing the operator T over the set Mr, if

ω(α) 󳨀→ 0 for α 󳨀→ α0,

where

ω(α) = sup {‖Tαf0 − Tf0‖ : Tf0 ∈ Mr} [94].

Consider the equation

ω(α) = ‖Tα‖δ. (4.4)

In [94] it is proved that, if

ω(α) ∈ C[0, α0), ‖Tα‖ ∈ C[0, α0), ω(α), ‖Tα‖−1 󳨀→ 0 at α 󳨀→ 0,
δ ∈ (0, δ0], and ω(0) > ‖T0‖δ0,

then equation (4.4) has a solution α = α(δ). If equation (4.4) has multiple solutions,
then any of the solutions can be used.

Consider the linear method {Tδ : 0 < δ ≤ δ0} of solving problem (4.2) and a func-
tion Δ(δ) : δ ∈ (0, δ0] such that Δ(δ) → 0 for δ → 0.

Assume that there exists a number b > 0 such that for any δ ∈ (0, δ0] the relation

Δ δ[Tδ] ≤ bΔ(δ) (4.5)

is true.
Then the value bΔ(δ) is called the error estimate for the method {Tδ : 0 < δ ≤ δ0}

on the set Mr . If there exists a number b1 > 0 such that for any δ ∈ (0, δ0]

Δ δ[Tδ] ≥ b1Δ(δ),

then the error estimate (4.5) is called accurate-by-order.
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We will now consider a family of linear bounded operators {Tα : 0 ≤ α < α0}
uniformly regularizing the operator T over the set Mr and define the function μ(δ) as
follows:

μ(δ) = inf{Δ δ[Tα] : 0 ≤ α < α0},

where

Δ δ[Tα] = sup{‖Tαfδ − Tf0‖ : f0 ∈ T
−1(Mr), ‖fδ − f0‖ ≤ δ}.

Then we will call the dependence α = α(δ) quasi-optimal if there exists a number
b2 > 0 such that for any δ ∈ (0, δ0]

Δ δ[Tα(δ)] ≤ b2μ(δ).

Denote by B[𝔽 in 𝕌] a space of linear bounded operators mapping 𝔽 into 𝕌 and by
Δopt
δ the value

Δopt
δ = inf{Δ δ[P] : P ∈ B[𝔽,𝕌]},

where

Δ δ[P] = sup{‖Tf0 − Pfδ‖ : f0 ∈ T
−1(Mr), ‖fδ − f0‖ ≤ δ}.

Definition 4.5. A method {Topt
δ : 0 < δ ≤ δ0} is called optimal on a class Mr, if for any

δ ∈ (0, δ0]

Δ δ[T
opt
δ ] = Δ

opt
δ .

Definition 4.6. A method {Tδ : 0 < δ ≤ δ0} is called optimal-by-order on a class Mr, if
there exists a number κ such that for any δ ∈ (0, δ0]

Δ δ[Tδ] ≤ κΔ
opt
δ .

Following [33] we define the modulus of continuity at zero of the operator T re-
striction on the set T−1(Mr) as follows:

ω(τ, r) = sup{‖Tf ‖ : f ∈ T−1(Mr), ‖f ‖ ≤ τ}.

It is known [28] that Δopt
δ ≥ ω(δ, r).

Let

𝕌 = 𝔽 = 𝕍 = ℍ,

where ℍ is a Hilbert space and T and B are injective closed linear operators in ℍ,
satisfying the following properties:

D(T) = D(B) = R(T) = R(B) = ℍ, (4.6)
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whereD(T),D(B) are closures inℍ of the corresponding domainsD(T) andD(B) of the
operators T and B, while R(T) and R(B) are the closures of the corresponding value
ranges of said operators.

From the theorem proved in [66] (p. 325) it follows that for the operators T and B
there hold polar decompositions, where

B = BP and T = QT ,

where

B = √BB∗, T = √T∗T ,

while P and Q are unitary operators.
In addition let

B = G(T), (4.7)

where the spectrum

Sp(T) = [a,∞),

G(σ) ∈ C1[a,∞), and for any σ ∈ [a,∞)

G󸀠(σ) > 0, lim
σ→∞

G(σ) = ∞.

Consider the equation

σG(σ) = r
τ
, (4.8)

that has the unique solution σ(τ, r) if r
τ > aG(a). From [72] it follows that under the

above conditions

ω(τ, r) = r
G(σ(τ, r))

, Δopt
δ = ω(τ, r).

4.1.3 Projection-regularization method

Assume that the function G(σ) in formula (4.7) whereG(σ) is strictly increasing is con-
tinuous over [a,∞) such that

lim
σ→∞

G(σ) = ∞.

Then the problem of finding the values of the operator T, (4.2), can be substituted
by the equivalent problem

Tg = u, (4.9)
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where g = Q∗f , and the set Mr can be defined by the formula

Mr = {u : u ∈ D(B), ‖Bu‖ ≤ r}. (4.10)

Assume that it is required to define the value of Tg0 that belongs to Mr, but the
exact value g0 is not known. Instead, we have a certain approximation gδ ∈ ℍ and
error level δ > 0 such that

‖gδ − g0‖ ≤ δ.

Using the initial data ofMr, gδ, and δ it is required to define the approximate value
of uδ for problem (4.9) and to estimate the deviation uδ from u0.

The projection-regularization method [28] uses a regularizing set of operators
{Tα : a ≤ α < ∞}, acting fromℍ intoℍ defined by the formula

Tαg =
α

∫
a

σdEσg, α ∈ [a,∞), (4.11)

where {Eσ : a ≤ σ < ∞} is the spectral decomposition of the unit E, generated by the
operator T.

We will define the approximate solution of problem (4.9) by the formula

uαδ = Tαgδ. (4.12)

Now select the parameter α = α(δ) in formula (4.12).
For this purpose consider

󵄩󵄩󵄩󵄩u
α
δ − u0
󵄩󵄩󵄩󵄩

2
= ‖Tαgδ − u0‖

2. (4.13)

It follows from (4.13) that

󵄩󵄩󵄩󵄩u
α
δ − u0
󵄩󵄩󵄩󵄩

2
= 󵄩󵄩󵄩󵄩u

α
δ − u

α
0
󵄩󵄩󵄩󵄩

2
+ 󵄩󵄩󵄩󵄩u

α
0 − u0
󵄩󵄩󵄩󵄩

2
+ 2(uαδ − u

α
0, u

α
0 − u0), (4.14)

where uα0 = Tαg0.
Since

ℍ = ℍα + ℍ
⊥
α , whereℍα = Eαℍ,

and since it follows from (4.11) and (4.12) that uα0 − u0 ∈ ℍα, uαδ − u
α
0 ∈ ℍ

⊥
α , we have

(uαδ − u
α
0, u

α
0 − u0) = 0.

Thus, it follows from (4.14) that

󵄩󵄩󵄩󵄩u
α
δ − u0
󵄩󵄩󵄩󵄩

2
= 󵄩󵄩󵄩󵄩u

α
δ − u

α
0
󵄩󵄩󵄩󵄩

2
+ 󵄩󵄩󵄩󵄩u

α
0 − u0
󵄩󵄩󵄩󵄩

2
. (4.15)
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Now we introduce the following quantities:

Δ(α, δ) = sup{‖Tαgδ − Tg0‖ : g0 ∈ T
−1
(Mr), ‖gδ − g0‖ ≤ δ}, (4.16)

Δ 1(α) = sup{‖Tαg0 − Tg0‖ : g0 ∈ T
−1
(Mr)}, (4.17)

and

Δ 2(α, δ) = sup{‖Tαgδ − Tαg0‖ : g0 ∈ T
−1
(Mr), ‖gδ − g0‖ ≤ δ}. (4.18)

Then it follows from (4.15)–(4.18) that

Δ2(α, δ) ≤ Δ2
1(α) + Δ

2
2(α, δ). (4.19)

It follows from (4.18) that

Δ 2(α, δ) ≤ ‖Tα‖δ. (4.20)

It follows from (4.19) and (4.20) that

Δ2(α, δ) ≤ Δ2
1(α) + ‖Tα‖

2δ2. (4.21)

Lemma 4.1. We have the equality ‖Tα‖ = α.

Proof. It follows from (4.11) that ‖Tα‖ ≤ α, but since α belongs to the spectrum Sp(Tα)
of the operator Tα, we have ‖Tα‖ = α.

Lemma 4.2. We have the equality

Δ 1(α) =
r

G(α)
.

Proof. It follows from (4.17) that

Δ2
1(α) = sup

v0
{
∞

∫
α

G−2(σ)d(Eσv0, v0) : ‖v0‖ ≤ r}. (4.22)

It follows from (4.22) and from the properties of the function G(σ) that

Δ2
1(α) ≤

1
G2(α)

sup
∞

∫
α

d(Eσv0, v0) ≤
r2

G2(α)
. (4.23)

Since G−2 ∈ C[α,∞), for any ε > 0 there exists μ > 0 such that, for any σ such that
0 ≤ σ − α ≤ μ, we have

0 ≤ G−2(α) − G−2(σ) ≤ ε
r2 . (4.24)
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It follows from (4.24) that there exists an element v0 ∈ (Eα+μ − Eα)H such that
‖v0‖ = r and

󵄩󵄩󵄩󵄩B
−1v0
󵄩󵄩󵄩󵄩

2
≥

r2

G2(α)
− ε. (4.25)

Since ‖B−1v0‖
2 ≤ Δ2

1(α), it follows from (4.25) that Δ2
1(α) ≥

r2

G2(α) − ε and due to the
arbitrariness of ε

Δ2
1(α) ≥

r2

G2(α)
. (4.26)

From relations (4.23) and (4.26) it follows that the lemma is proved.

Thus, it follows from (4.21) and Lemmas 4.1 and 4.2 that

Δ2(α, δ) ≤ r2

G2(α)
+ δ2α2. (4.27)

We will now obtain a reverse inequality. For this purpose we will use the fact that
G−2(σ) ∈ C[a,∞) and σ2 ∈ C[a,∞), whence for any ε > 0 there exists μ1 > 0 such that
for any σ satisfying the condition 0 ≤ σ − α ≤ μ1 it follows that

0 ≤ G−2(α) − G−2(σ) ≤ ε
2r2 . (4.28)

Similarly, for any σ such that 0 ≤ α − σ ≤ μ1 it follows that

α2 − σ2 ≤
ε
δ2 . (4.29)

It follows from (4.28) that there exists an element

v0 ∈ (Eα+μ1
− Eα)H and ‖v0‖ = r

such that for the element

u0 = B
−1v0 and uα0 = T

αT −1B−1v0

we have the relation

󵄩󵄩󵄩󵄩u
α
0 − u0
󵄩󵄩󵄩󵄩

2
≥

r2

G2(α)
−
ε
2
. (4.30)

Similarly, there exists an element δg ∈ (Eα − Eα−μ1
)H and ‖δg‖ = δ such that for the

elements

gδ = T
−1u0 + δg and uαδ = Tαgδ
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we have the following relation:

󵄩󵄩󵄩󵄩u
α
δ − u

α
0
󵄩󵄩󵄩󵄩

2
≥ α2δ2 −

ε
2
. (4.31)

It follows from (4.15), (4.30), and (4.31) that

‖uαδ − u0‖
2 ≥

r2

G2(α)
+ δ2α2 − ε (4.32)

and it follows from (4.16) and (4.32) that

Δ2(α, δ) ≥ r2

G2(α)
+ δ2α2 − ε. (4.33)

Due to the arbitrariness of ε it follows from (4.33) that

Δ2(α, δ) ≥ r2

G2(α)
+ δ2α2 (4.34)

and it follows from (4.27) and (4.34) that

Δ2(α, δ) = r2

G2(α)
+ δ2α2. (4.35)

We will define the regularization parameter α = α(δ) from the equation

αG(α) = r
δ
. (4.36)

It follows from the properties of the function G(α) that for r
δ > aG(a) equa-

tion (4.36) has the unique solution α(δ).
Thus, the regularizing family {Tα : α ≥ a} of the linear bounded operators Tα,

defined by formula (4.11), and the dependence α = α(δ), defined by equation (4.36),
give the method {Tα(δ) : 0 < δ < r/aG(a)} of projection regularization and for this
method we have the exact error estimate

Δ δ[Pα(δ)] =
√2r

G(α(δ))
. (4.37)

Theorem 4.1. If G(σ) ∈ C1[a,∞), for any σ ∈ [a,∞)

G󸀠(σ) > 0 and G(σ) → ∞ for σ →∞,

then, if r
δ > aG(a), the projection-regularization method {Tα(δ) : 0 < δ < r/aG(a)},

defined by formulas (4.11) and (4.36), is optimal-by-order with the constant √2 and for
this method we have the exact error estimate

Δ δ[Tαδ ] = √2Δopt
δ .

The proof of the theorem follows from relations (4.8), (4.36), and (4.37).
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4.2 Isometry of the Fourier transform on the space L2[0, ∞)

Let f (t) ∈ L1(−∞,∞). Then the Fourier transform ̂f (τ) is defined by the formula

̂f (τ) = F[f (t)] = 1
√2π

∞

∫
−∞

f (t)e−iτtdt, τ ∈ ℝ. (4.38)

It is well known that

̂f (τ) ∈ C0(−∞,∞) and 󵄨󵄨󵄨󵄨 ̂f (τ)
󵄨󵄨󵄨󵄨 ≤
∞

∫
−∞

󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨dt.

Thus, the operator F, defined by formula (4.38), is a linear bounded operator map-
ping the space L1(−∞,∞) into C0(−∞,∞). In addition, the inverse operator F−1 is de-
fined by the formula

f (t) = F−1[ ̂f (τ)] = 1
√2π

∞

∫
−∞

f (τ)eitτdτ

and is a linear unbounded operator acting from the space C0(−∞,∞) into L1(−∞,∞).
If the function f (t) ∈ L2(−∞,∞), then the Fourier transform F of this function in

the sense of definition (4.38) generally speaking is meaningless. Using the well-known
Plancherel theorem (see [39] (p. 412)), it is possible to extend the Fourier transform F
to the space L2(−∞,∞).

Let L2(−∞,∞) be a complex space.

Theorem 4.2 (Plancherel). For any function f (t) ∈ L2(−∞,∞) for any N the integral

gN (τ) =
1
√2π

N

∫
−N

f (t)e−itτdt

belongs to the space L2(−∞,∞). For N 󳨀→ ∞ the sequence of the functions gN (τ) con-
verges in the metrics of the space L2(−∞,∞) to a certain limit g(τ) and

∞

∫
−∞

󵄨󵄨󵄨󵄨g(τ)
󵄨󵄨󵄨󵄨
2dτ =

∞

∫
−∞

󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨
2dt.

This function g(τ) is called the Fourier transform of the function f (t) ∈ L2(−∞,∞).
If the function f (t) also belongs to L1(−∞,∞), then the corresponding function g(τ) co-
incides with the Fourier transform of the function f (t) in the sense of definition (4.38).

Thus, from the Plancherel theorem it follows that the Fourier transform of F, ex-
tended onto the space L2(−∞,∞), maps this space into the space L2(−∞,∞), in the
isometric way.
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Let

H = L2[0,∞) + iL2[0,∞)

over the field of complex numbers and let L2[0,∞) be a real space. Assume that
f (t) ∈ L2[0,∞) ∩ L1[0,∞) and define the Fourier transform of F, acting from the space
L2[0,∞) into H, by the formula

̂f (τ) = F[f (t)] = 1
√π

∞

∫
0

f (t)e−iτtdt, τ ≥ 0. (4.39)

Lemma 4.3. The operator F, defined by formula (4.39) and acting from the space
L2[0,∞) into H, is isometric.

Proof. Let f (t) ∈ L2[0,∞) ∩ L1[0,∞). Extend this function to the negative semi-axis
assuming that

f (t) = 0 at t < 0. (4.40)

Thus, f (t) ∈ L2(−∞,∞) ∩ L1(−∞,∞). Denote by f (τ) the Fourier transform of the
following function f (t):

f (t) = 1
√2π

∞

∫
0

f (t)e−itτdτ, −∞ < τ < ∞. (4.41)

It follows from the Plancherel theorem that

󵄩󵄩󵄩󵄩f (τ)
󵄩󵄩󵄩󵄩L2(−∞,∞)

= 󵄩󵄩󵄩󵄩f (t)
󵄩󵄩󵄩󵄩L2[0,∞). (4.42)

It follows from (4.40) and (4.41) that

f (τ) =
{
{
{

1
√2π ∫
∞
0 f (t)e−itτdt, τ ≥ 0,

1
√2π ∫
∞
0 f (t)eit|τ|dt, τ < 0.

(4.43)

It follows from (4.43) that

󵄩󵄩󵄩󵄩f (τ)
󵄩󵄩󵄩󵄩

2
L2(−∞,∞)

=
∞

∫
0

󵄨󵄨󵄨󵄨f (τ)
󵄨󵄨󵄨󵄨
2dτ +

∞

∫
0

󵄨󵄨󵄨󵄨f (τ)
󵄨󵄨󵄨󵄨
2dτ, (4.44)

where f (τ) is a function conjugate with f (τ).
Since for any τ ≥ 0

󵄨󵄨󵄨󵄨f (τ)
󵄨󵄨󵄨󵄨
2 = 󵄨󵄨󵄨󵄨f (τ)

󵄨󵄨󵄨󵄨
2
,
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we obtain from (4.44) that

󵄩󵄩󵄩󵄩f (τ)
󵄩󵄩󵄩󵄩

2
L2(−∞,∞)

= 2
∞

∫
0

󵄨󵄨󵄨󵄨f (τ)
󵄨󵄨󵄨󵄨
2dτ. (4.45)

It follows from (4.42) that

󵄩󵄩󵄩󵄩f (t)
󵄩󵄩󵄩󵄩

2
L2[0,∞) =

󵄩󵄩󵄩󵄩f (τ)
󵄩󵄩󵄩󵄩

2
L2(−∞,∞)

(4.46)

and it follows from (4.39), (4.41), and (4.45) that

󵄩󵄩󵄩󵄩f (τ)
󵄩󵄩󵄩󵄩

2
L2(−∞,∞)

= 󵄩󵄩󵄩󵄩
̂f (τ)󵄩󵄩󵄩󵄩

2
L2[0,∞). (4.47)

The assertion of the lemma follows from (4.46) and (4.47).

It follows from Lemma 4.3 that the transformation of F can be expanded by con-
tinuity over the whole of the space L2[0,∞). It will then isometrically map the space
L2[0,∞) into H.





5 Inverse heat exchange problems

5.1 A study of the inverse boundary-value problem for the heat
conduction equation with a constant coefficient

5.1.1 Problem posing

Let a thermal process be described by the equation

𝜕u(x, t)
𝜕t
= 𝜕

2u(x, t)
𝜕x2 , 0 < x < 1, t > 0, (5.1)

where the solution u(x, t) ∈ C([0, 1]×[0,∞))∩C2,1((0, 1)×(0,∞)) satisfies the following
initial and boundary conditions:

u(x,0) = 0, 0 ≤ x ≤ 1, (5.2)
u(0, t) = h(t), t ≥ 0, (5.3)

and

𝜕u(1, t)
𝜕x
+ κu(1, t) = 0, κ > 0, t ≥ 0, (5.4)

where

h(t) ∈ C2[0,∞), h(0) = h󸀠(0) = 0. (5.5)

Also, let there exist a number t0 > 0 such that for any t ≥ t0

h(t) = 0. (5.6)

5.1.2 A study of the smoothness of the function u(x , t)
Let us make the substitution

v(x, t) = u(x, t) + [ κ
κ + 1

x − 1]h(t). (5.7)

Then

𝜕v(x, t)
𝜕t
= 𝜕

2v(x, t)
𝜕x2 + [

κ
κ + 1

x − 1]h󸀠(t), 0 < x < 1, t > 0, (5.8)

v(x,0) = 0, 0 ≤ x ≤ 1, (5.9)
v(0, t) = 0, t ≥ 0, (5.10)

v󸀠x(1, t) + κv(1, t) = 0, t ≥ 0. (5.11)

https://doi.org/10.1515/9783110577211-005
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The solution of problem (5.8)–(5.11) is as follows:

v(x, t) =
∞

∑
n=1

vn(t) sin λnx, (5.12)

where λn are positive solutions of the equation

tan λ = −λ
κ
, (5.13)

1

∫
0

sin2 λnxdx =
2λn − sin 2λn

4λn
, (5.14)

and

vn(t) = 2bn

t

∫
0

e−λ
2
n(t−τ)h󸀠(τ)dτ, (5.15)

where

bn = −
4

2λn − sin 2λn
. (5.16)

By partially integrating the right-hand side of equation (5.15) and taking into ac-
count (5.5), we obtain

vn(t) =
2bn
λ2
n
[h󸀠(t) −

t

∫
0

e−λ
2
n(t−τ)h󸀠󸀠(τ)dτ]. (5.17)

Lemma 5.1. Let u(x, t) be a solution of problem (5.1)–(5.4), defined by formulas
(5.12)–(5.16). Then

u(x, t) → 0 for t → 0

is uniform over the interval [0, 1].

Proof. Let us denote by r1 the number defined by the formula

r1 = max
t∈[0,t0]
(󵄨󵄨󵄨󵄨h(t)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨h
󸀠(t)󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨h
󸀠󸀠(t)󵄨󵄨󵄨󵄨). (5.18)

The following estimate is true for the general term of series (5.12):

󵄨󵄨󵄨󵄨vn(t) sin λnx
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨vn(t)
󵄨󵄨󵄨󵄨. (5.19)

It follows from (5.16) and (5.17) that

󵄨󵄨󵄨󵄨vn(t)
󵄨󵄨󵄨󵄨 ≤

8
λ2
n(2λn − 1)

[󵄨󵄨󵄨󵄨h
󸀠(t)󵄨󵄨󵄨󵄨 + max

0≤τ≤t
e−λ

2
n(t−τ)

t

∫
0

󵄨󵄨󵄨󵄨h
󸀠󸀠(τ)󵄨󵄨󵄨󵄨dτ]. (5.20)
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Since

max
0≤τ≤t

e−λ
2
n(t−τ) ≤ 1,

it follows from (5.18) and (5.20) that

󵄨󵄨󵄨󵄨vn(t)
󵄨󵄨󵄨󵄨 ≤

16r1t0
λ2
n(2λn − 1)

. (5.21)

If follows from (5.13) that for any n

λn =
2n + 1

2
π + μn, (5.22)

where

μn → +0 for n→∞. (5.23)

It follows from (5.22) and (5.23) that there exist numbers c1 and c2 > 0 such that for
any n

c1(n + 1) ≤ λn ≤ c2(n + 1). (5.24)

It follows from (5.19), (5.21), and (5.24) that there is a number c3 > 0 such that for any n

󵄨󵄨󵄨󵄨vn(t) sin λnx
󵄨󵄨󵄨󵄨 ≤

c3
(n + 1)3
. (5.25)

Since the series∑∞n=0(n+ 1)−3 converges, according to the Weierstrass criterion se-
ries (5.12) converges uniformly over the band [0, 1] × [0,∞). Thus, it follows from the
theorem on passage to the limit under the series sign that

v(x, t) → 0 at t → 0 (uniformly in [0, 1]) (5.26)

and the assertion of the lemma follows from (5.7) and (5.25).

It follows from Lemma 5.1 and relations (5.7), (5.12), (5.25), and (5.26) that

u(x, t) ∈ C([0, 1] × [0,∞)). (5.27)

In order to study the continuity of the function v󸀠x(x, t), consider the series com-
posed of the first-order derivatives of the summands of series (5.12). We write

∞

∑
n=1

λnvn(t) cos λnx. (5.28)
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It follows from (5.19), (5.20), and (5.24) that there is a number c4 > 0 such that for any
values of x ∈ [0, 1], t ≥ 0, and n

󵄨󵄨󵄨󵄨λnvn(t) cos λnx
󵄨󵄨󵄨󵄨 ≤

c4
(n + 1)2
. (5.29)

From the convergence of the series∑∞n=1(n+ 1)−2 and relation (5.29), by the Weierstrass
criterion it follows that series (5.28) converges uniformly over the band [0, 1] × [0,∞).

Thus, it follows from Theorem 7, proved in [21] (p. 476), that for any values of x ∈
[0, 1] and t > 0 the following equation is true:

v󸀠x(x, t) =
∞

∑
n=1

λnvn(t) cos λnx.

Note that the function v󸀠x(x, t) is extendable by continuity to the interval t = 0, so
we have

v󸀠x(x, t) ∈ C([0, 1] × [0,∞)). (5.30)

It follows from (5.7) and (5.30) that

u󸀠x(x, t) ∈ C([0, 1] × [0,∞)), (5.31)

where for any t > 0 and 0 < x ≤ 1

u󸀠x(x, t) = u
󸀠
x(x, t).

Consider the series composed of the second-order derivatives of the summands of
series (5.12). We write

−
∞

∑
n=1

λ2
nvn(t) sin λnx. (5.32)

It follows from (5.24) and (5.29) that there is a number c5 > 0 such that for any values
of x ∈ [0, 1], t ≥ 0, and n

󵄨󵄨󵄨󵄨λ
2
nvn(t) sin λnx

󵄨󵄨󵄨󵄨 ≤
c5

n + 1
. (5.33)

It follows from (5.33) that for any t > 0 series (5.32) converges in the metric of the
space L2[0, 1].

Since the operator d2

dx2 , defined on the class of functions

D = {φ(x) : φ,φ󸀠,φ󸀠󸀠 ∈ L2[0, 1], φ(0) = φ
󸀠(1) + κφ(1) = 0},

is closed in the space L2[0, 1], it follows from the uniform convergence of series (5.28)
and the convergence of series (5.32) in the space L2[0, 1] that for any t > 0

𝜕2v(x, t)
𝜕x2 = −

∞

∑
n=1

λ2
nvn(t) sin λnx almost everywhere. (5.34)
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It follows from (5.7) and (5.34) that for any t > 0

u󸀠󸀠xx(x, t) ∈ L2[0, 1]. (5.35)

Let us get down to a more detailed study of the continuity of the function u󸀠󸀠xx(x, t) on
the band (0, 1] × (0,∞). We prove the following lemma for this purpose.

Lemma 5.2. For any ε > 0 the series

∞

∑
n=1

sin λnx
2λn − sin 2λn

converges uniformly over the interval [ε, 1].

Proof. First, transform equation (5.13) as follows:

sin λ + λ
κ

cos λ = 0. (5.36)

It follows from (5.36) that

(1 + λ
2

κ2)
− 1

2

⋅ sin λ + λ
κ
(1 + λ

2

κ2)
− 1

2

⋅ cos λ = 0. (5.37)

Let us denote

sin α = (1 + λ
2

κ2)
− 1

2

and cos α = λ
κ
(1 + λ

2

κ2)
− 1

2

. (5.38)

It follows from (5.37) and (5.38) that

cos(λ − α) = 0. (5.39)

Given that λ > 0 and tg λ < 0, from (5.39) it follows that

λ − α = π
2
+ πn. (5.40)

From (5.38) and (5.40) it follows that

sin[λn − (
π
2
+ πn)] = (1 +

λ2
n
κ2 )
− 1

2

,

where

λn = (
π
2
+ πn) + αn (5.41)
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and, given (5.13),

αn → +0 at n→∞. (5.42)

From (5.37), (5.41), and (5.42) it follows that for any n

sin αn ≤
1

κπn
. (5.43)

It follows from (5.41)–(5.43) that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sin λnx − sin(π

2
+ πn)x
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2 sin αn

2
≤ 2
κπn
, (5.44)

sin λnx
2λn − sin 2λn

=
sin λnx

2λn
+ (

sin λnx
2λn − sin 2λn

−
sin λnx

2λn
),

and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin( π2 + πn)x
2λn − sin 2λn

−
sin( π2 + πn)x

2λn

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1
λn(λn − 1)

. (5.45)

Let us denote

φn(x) = (sin λnx − sin(π
2
+ πn)x)

and

ψn(x) = (
sin( π2 + πn)x
2λn − sin 2λn

−
sin( π2 + πn)x

2λn
).

Then

sin λnx
2λn − sin 2λn

=
sin( π2 + πn)x

2λn
+

φn(x)
2λn − sin 2λn

+ ψn(x) (5.46)

and the assertion of the lemma follows from (5.44)–(5.46).

Lemma 5.3. For any ε > 0 the series

∞

∑
n=1

λ2
nvn(t) sin λnx

converges uniformly over the band [ε, 1] × [0,∞).

Proof. The following estimate follows from (5.6) and (5.18):

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

t

∫
0

e−λ
2
n(t−τ)h󸀠󸀠(τ)dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
r1
λ2
n
. (5.47)
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It follows from (5.24) and (5.47) that the series

∞

∑
n=1
[

t

∫
0

e−λ
2
n(t−τ)h󸀠󸀠(τ)dτ] sin λnx

2λn − sin 2λn
(5.48)

converges uniformly over the band [0, 1] × [0,∞).
Since from (5.16) and (5.17) it follows that for any n

λ2
nvn(t) sin λnx =

8h󸀠(t) sin λnx
2λn − sin 2λn

− 8[
t

∫
0

e−λ
2
n(t−τ)h󸀠󸀠(τ)dτ] sin λnx

2λn − sin 2λn
, (5.49)

it follows from Lemma 5.2 and relations (5.48) and (5.49) that the series

∞

∑
n=1

λ2
nvn(t) sin λnx

converges uniformly over the band [ε, 1] × [0,∞).
The lemma is thereby proved.

From Lemma 5.3 it follows that for any x ∈ (0, 1) and t > 0

v󸀠󸀠xx = −
∞

∑
n=1

λ2
nvn(t) sin λnx. (5.50)

In addition, from Lemma 5.3 and (5.50) it follows that v󸀠󸀠xx(x, t) is extendable by conti-
nuity up to t = 0. Let us denote this extension by v󸀠󸀠xx(x, t).

Then

v󸀠󸀠xx(x, t) ∈ C((0, 1] × [0,∞)) (5.51)

and it follows from (5.7) and (5.51) that

u󸀠󸀠xx(x, t) ∈ C((0, 1] × [0,∞)), (5.52)

where for any t > 0 and 0 < x < 1

u󸀠󸀠xx(x, t) = u
󸀠󸀠
xx(x, t).

Note that the proof of formulas (5.27), (5.31), and (5.52) can be obtained from a
corollary of the theorems given in [7] and [117].

Let t1 ≥ t0 andΦ(t) ∈ C[0, t1].
Then from (5.31) and (5.52) it follows that

t1

∫
0

u󸀠x(x, t)Φ(t)dt =
𝜕
𝜕x
[
t1

∫
0

u(x, t)Φ(t)dt] (5.53)
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and
t1

∫
0

u󸀠󸀠xx(x, t)Φ(t)dt =
𝜕2

𝜕x2[
t1

∫
0

u(x, t)Φ(t)dt]. (5.54)

For the complete justification of the applicability of the Fourier transform with respect
to t over the half-line [0,∞) it is necessary to extend formulas (5.53) and (5.54) to the
case where t1 = ∞. For this purpose let us study the decrease rate of the functions

u(x, t), u󸀠x(x, t) and u󸀠󸀠xx(x, t) for t →∞.

5.1.3 A study of the decrease rate of the functions u(x , t), u󸀠x (x , t) and u󸀠󸀠xx (x , t)
for t → ∞

Consider an auxiliary problem that uses the condition of (5.6). We have

𝜕u(x, t)
𝜕t
= 𝜕

2u(x, t)
𝜕x2 , 0 < x < 1, t ≥ t0, (5.55)

u(x, t0) = u0(x), 0 ≤ x ≤ 1, (5.56)
u(0, t) = 0, t ≥ t0, (5.57)

and

𝜕u(1, t)
𝜕x
+ κu(1, t) = 0, t ≥ t0. (5.58)

It follows from (5.6), (5.27), (5.31), and (5.35) that

u0(x) ∈ W
2
2 [0, 1], u0(0) = 0, u󸀠0(1) + κu0(1) = 0. (5.59)

The solution of problem (5.55)–(5.58) is as follows:

u(x, t) =
∞

∑
n=1

une
−λ2

n(t−t0) sin λnx, (5.60)

where λn are defined by formula (5.13) and

un =
4

2λn − sin 2λn

1

∫
0

u0(x) sin λnxdx. (5.61)

By partially integrating the right-hand side of equation (5.61), we obtain

un = −
4

λn(2λn − sin 2λn)

1

∫
0

u󸀠󸀠0 (x) sin λnxdx. (5.62)
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It follows from (5.59) and (5.62) that there exists a number c6 > 0 such that for any n

|un| ≤
c6
λ2
n
. (5.63)

It follows from (5.60) and (5.63) that for any t ≥ t0 + 1

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤ c6

∞

∑
n=1

λ−2n e−λ
2
n(t−t0), (5.64)

󵄨󵄨󵄨󵄨u
󸀠
x(x, t)
󵄨󵄨󵄨󵄨 ≤ c6

∞

∑
n=1

λ−1n e−λ
2
n(t−t0), (5.65)

and

󵄨󵄨󵄨󵄨u
󸀠󸀠
xx(x, t)
󵄨󵄨󵄨󵄨 ≤ c6

∞

∑
n=1

e−λ
2
n(t−t0). (5.66)

Since

e−λ
2
n(t−t0) = e−λ

2
n ⋅ e−λ

2
n(t−t0−1) (5.67)

and it follows from (5.24) that

e−λ
2
n ≤ [ec

2
1 ]−n, (5.68)

it follows from (5.55) and (5.64)–(5.68) that there exists a number c7 > 0 such that for
any t ≥ t0 + 2

sup
x∈[0,1]
{󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨u
󸀠
x(x, t)
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨u
󸀠
t(x, t)
󵄨󵄨󵄨󵄨,
󵄨󵄨󵄨󵄨u
󸀠󸀠
xx(x, t)
󵄨󵄨󵄨󵄨} ≤ c7e

−(t−t0−1). (5.69)

From (5.31), (5.52)–(5.54), and (5.69) by the theorem proved in [119] (p. 417) the
following theorem arises.

Theorem 5.1. Let Φ(t) ∈ C[0,∞) and let Φ(t) be limited over this half-line. Then the
following relations are true:

∞

∫
0

u󸀠x(x, t)Φ(t)dt =
𝜕
𝜕x
[
∞

∫
0

u(x, t)Φ(t)dt]

and

∞

∫
0

u󸀠󸀠xx(x, t)Φ(t)dt =
𝜕2

𝜕x2[
∞

∫
0

u(x, t)Φ(t)dt].
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Lemma 5.4. Let u(x, t) be a solution of problem (5.1)–(5.4). Then the following relations
are true:

lim
x→0

∞

∫
0

󵄨󵄨󵄨󵄨u(x, t) − h(t)
󵄨󵄨󵄨󵄨dt = lim

x→1

∞

∫
0

󵄨󵄨󵄨󵄨u(x, t) − u(1, t)
󵄨󵄨󵄨󵄨dt

= lim
x→1

∞

∫
0

󵄨󵄨󵄨󵄨u
󸀠
x(x, t) − u

󸀠
x(1, t)
󵄨󵄨󵄨󵄨dt = 0.

Proof. It follows from (5.27) and (5.31) that for any t ≥ 0

limx→0 u(x, t) = h(t), limx→1 u(x, t) = u(1, t), and
limx→1 u󸀠x(x, t) = u

󸀠
x(1, t). (5.70)

Let the number c8 > 0 be defined by the formula

c8 = max{󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨u
󸀠
x(x, t)
󵄨󵄨󵄨󵄨 : 0 ≤ x ≤ 1, 0 ≤ t ≤ t0 + 2}.

Then let us denote by g(t) the function defined by the formula

g(t) = {
c8, 0 ≤ t ≤ t0 + 2,
c7e−(t−t0−1), t > t0 + 2.

Since
∞

∫
0

󵄨󵄨󵄨󵄨g(t)
󵄨󵄨󵄨󵄨dt < ∞

and for any t ≥ 0

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤ g(t),

󵄨󵄨󵄨󵄨u
󸀠
x(x, t)
󵄨󵄨󵄨󵄨 ≤ g(t),

given (5.70), by the Lebesgue theorem on the passage to the limit under the integral
sign, the assertion of the lemma is proved.

5.2 On the accuracy estimation of the approximate solution
of an inverse boundary-value problem for a heat conduction
equation with a constant coefficient

5.2.1 Posing of the inverse problem

Let the thermal process be described by the equation

𝜕u(x, t)
𝜕t
= 𝜕

2u(x, t)
𝜕x2 , 0 < x < 1, t > 0, (5.71)
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where the solution u(x, t) ∈ C([0, 1]×[0,∞))∩C2,1((0, 1)×(0,∞)) satisfies the following
initial and boundary conditions:

u(x,0) = 0, 0 ≤ x ≤ 1, (5.72)
u(0, t) = h(t), t ≥ 0, (5.73)

and

𝜕u(1, t)
𝜕x
+ κu(1, t) = 0, κ > 0, t ≥ 0, (5.74)

where

h(t) ∈ C2[0,∞), h(0) = h󸀠(0) = 0, (5.75)

and there exists a number t0 > 0 such that for any t ≥ t0

h(t) = 0. (5.76)

Assume that the function h(t) is unknown and should be defined and that the temper-
ature f (t) of the rod corresponding to this process is measured at the point x1 ∈ (0, 1).
We have

u(x1, t) = f (t), t ≥ 0. (5.77)

5.2.2 Reducing problem (5.71)–(5.73), (5.77) to the problem of calculating
unbounded operator values

Let the set Mr be defined by the formula

Mr = {h(t) : h(t) ∈ L2[0,∞),
∞

∫
0

󵄨󵄨󵄨󵄨h(t)
󵄨󵄨󵄨󵄨
2dt +

∞

∫
0

󵄨󵄨󵄨󵄨h
󸀠(t)󵄨󵄨󵄨󵄨

2dt ≤ r2}, (5.78)

where h󸀠(t) is the derivative of the function h(t) and r is a known positive number.
Then assume that for f (t) = f0(t), from condition of (5.77), there exists a function h0(t)
belonging to the set Mr, but the exact value of the function f0(t) is unknown. Instead,
a certain approximating function fδ(t) ∈ L2[0,∞) ∩ L1[0,∞) and a number δ > 0 such
that

‖fδ − f0‖L2
≤ δ (5.79)

are given. It is required to find an approximate solution hδ(t) of problem (5.71)–(5.73),
(5.77) and to estimate the deviation ‖hδ −h0‖L2

of the approximate solution hδ from the
exact solution h0, using fδ, δ, and Mr .
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Let

H = L2[0,∞) + iL2[0,∞)

over the field of complex numbers and let F be an operator mapping L2[0,∞) into H
defined by the formula

F[h(t)] = 1
√π

∞

∫
0

h(t)e−iτtdt, τ ≥ 0. (5.80)

If follows from Theorem 5.1 and Lemma 4.3 that the transformation F is applicable
for the solution of equation (5.71). Thus, reduce equation (5.71) to the equation

𝜕2û(x, τ)
𝜕x2 = iτû(x, τ), x ∈ (0, 1), τ ≥ 0, (5.81)

where

û(x, τ) = F[u(x, t)].

It follows from (5.74) and (5.77) that

𝜕û(1, τ)
𝜕x
+ κû(1, τ) = 0, τ ≥ 0, (5.82)

and

û(x1, τ) = ̂f (τ), τ ≥ 0, (5.83)

where

̂f (τ) = F[f (t)].

It follows from Lemma 5.4 that the solution û(x, τ) of problem (5.81)–(5.83) is con-
tinuous over the band [0, 1] × [0,∞). The solution of problem (5.81) is as follows:

û(x, τ) = A(τ)eμ0x√τ + B(τ)e−μ0x√τ, (5.84)

where

μ0 =
1
√2
(1 + i)

and A(τ) and B(τ) are arbitrary functions. It follows from (5.82)–(5.84) that

û(0, τ) = cosh μ0√τ + (μ0√τ)−1κ sinh μ0√τ
cosh μ0(1 − x1)√τ + (μ0√τ)−1κ sinh μ0(1 − x1)√τ

̂f (τ), τ ≥ 0. (5.85)

Let us denote the denominator of the right-hand side of formula (5.85) byψ(τ).We
write

ψ(τ) = cosh μ0(1 − x1)√τ + (μ0√τ)
−1κ sinh μ0(1 − x1)√τ.
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Lemma 5.5. Let κ ≤ 1
2 . Then there exists a number c1 > 0 such that for any τ ≥ 0

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥ c1.

Proof. Since

Re[ψ(τ)] = {cos (1 − x1)√
τ
2
[√2κ2

τ
sinh(1 − x1)√

τ
2
+ coth(1 − x1)√

τ
2
]

+ √2κ2

τ
coth(1 − x1)√

τ
2

sin(1 − x1)√
τ
2
}, (5.86)

Im[ψ(τ)] = {sin (1 − x1)√
τ
2
[√2κ2

τ
cosh(1 − x1)√

τ
2
+ sinh(1 − x1)√

τ
2
]

− √2κ2

τ
sinh(1 − x1)√

τ
2

cos(1 − x1)√
τ
2
}, (5.87)

it follows from (5.86) that, if

0 ≤ (1 − x1)√
τ
2
≤ π

3
, cos(1 − x1)√

τ
2
≥ 1

2

and

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥ cos(1 − x1)√

τ
2

coth(1 − x1)√
τ
2
≥ 1

2
. (5.88)

If

π
3
≤ (1 − x1)√

τ
2
≤ π

2
, then sin(1 − x1)√

τ
2
≥ 1

2

and from (5.86) it follows that

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥ √

2κ2

τ
sin(1 − x1)√

τ
2

coth(1 − x1)√
τ
2
≥
(1 − x1)κ

π
coth π

3
. (5.89)

If

π
2
≤ (1 − x1)√

τ
2
≤ 3π

4
, sin(1 − x1)√

τ
2
≥
√2
2
.

It follows from (5.86) that

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥
(1 − x1)2√2

3π
κ coth π

2
. (5.90)

If

3π
4
≤ (1 − x1)√

τ
2
≤ π, − cos(1 − x1)√

τ
2
≥
√2
2
.
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It follows from (5.87) that

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥
(1 − x1)√2

2π
κ sinh 3π

4
. (5.91)

Thus, it follows from (5.88)–(5.91) that there exists a number c2 > 0 such that, for any
τ ∈ [0, 2π2

(1−x1)2
],

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥ c2.

Since

κ ≤ 1
2

and 󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨coshμ0(1 − x1)√τ

󵄨󵄨󵄨󵄨 −
κ
√τ
󵄨󵄨󵄨󵄨sinhμ0(1 − x1)√τ

󵄨󵄨󵄨󵄨,

it is easy to verify the existence of a number c3 > 0 such that for any τ ≥ 2π2

(1−x1)2

󵄨󵄨󵄨󵄨ψ(τ)
󵄨󵄨󵄨󵄨 ≥ c3. (5.92)

The assertion of the lemma follows from (5.88) and (5.92).

Since the functions

cosh μ0√τ + (μ0√τ)
−1κ sinh μ0√τ

and

cosh μ0(1 − x1)√τ + (μ0√τ)
−1κ sinh μ0(1 − x1)√τ

are continuous over [0,∞), the function continuity follows from Lemma 5.5. We have

cosh μ0√τ + (μ0√τ)−1κ sinh μ0√τ
cosh μ0(1 − x1)√τ + (μ0√τ)−1κ sinh μ0(1 − x1)√τ

over this half-line. Thus, for any τ > 0 there is a number cτ > 0 such that τ ∈ [0, τ] and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
coth μ0√τ + (μ0√τ)−1κ sinh μ0√τ

cosh μ0(1 − x1)√τ + (μ0√τ)−1κ sinh μ0(1 − x1)√τ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ cτ. (5.93)

Let us denote û(0, τ) by ĥ(τ) and transform formula (5.85) as follows:

ĥ(τ) =
√τ
√τ+iκ2 cosh μ0√τ +

κ
μ0√τ+iκ2 sinh μ0√τ

√τ
√τ+iκ2 cosh μ0(1 − x1)√τ +

κ
μ0√τ+iκ2 sinh μ0(1 − x1)√τ

̂f (τ), (5.94)

τ ≥ 0. Let β(τ) be defined by the formula

sinh β(τ) = κ
μ0√τ + iκ2

. (5.95)
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It follows from the features of the function Arsh proved in [65] (pp. 84–86) that this
function maps the complex plane ℂ, from which the rays 1 ≤ y < ∞ and −∞ < y ≤ −1
have been removed into the band − π2 < v <

π
2 . Thus, it follows from (5.95) that there

exists a function β(τ) that satisfies relation (5.95). Besides, it follows from (5.95) that

β(τ) → 0 for τ →∞ (5.96)

and it follows from (5.94) that

ĥ(τ) = cosh[μ0√τ + β(τ)] ⋅ cosh−1[μ0(1 − x1)√τ + β(τ)] ̂f (τ). (5.97)

Let us define the operator (5.97), using the formula T, assuming that

T ̂f (τ) = cosh[μ0√τ + β(τ)] ⋅ cosh−1[μ0(1 − x1)√τ + β(τ)] ̂f (τ) (5.98)

and

D(T) = { ̂f (τ) : ̂f (τ) ∈ H and T ̂f (τ) ∈ H}. (5.99)

It follows from (5.98) and (5.99) that the operator T is linear, unbounded, and closed.
We have

T ̂f (τ) = ĥ(τ). (5.100)

Let

ĥ0(τ) = T ̂f0(τ), ̂f0(τ) = F[f0(t)], ̂fδ(τ) = F[fδ(t)].

Then it follows from formula (5.79) that

‖ ̂fδ − ̂f0‖H ≤ δ. (5.101)

Let us denote by M̂r a set from H such that M̂r ⊃ F[Mr] and

M̂r = {ĥ(τ) : ĥ(τ) ∈ H ,
∞

∫
0

(1 + τ2)󵄨󵄨󵄨󵄨ĥ(τ)
󵄨󵄨󵄨󵄨
2dτ ≤ r2}. (5.102)

It follows from h0(t) ∈ Mr that

ĥ0(τ) ∈ M̂r . (5.103)
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5.2.3 Solving problem (5.100)–(5.103)

Lemma 5.6. For any ε > 0 there exists a number τε > 0 such that for any τ ≥ τε

(1 − ε
4 + ε
)ex1√

τ
2 ≤
|cosh[μ0√τ + β(τ)]|
|cosh[μ0(1 − x1)√τ + β(τ)]|

≤ (1 + ε
4 + ε
)ex1√

τ
2 . (5.104)

Proof. Since

β(τ) = β1(τ) + iβ2(τ),

we have

󵄨󵄨󵄨󵄨cosh[μ0√τ + β(τ)]
󵄨󵄨󵄨󵄨 = √cosh2[√τ

2
+ β1(τ)] − sin2[√τ

2
+ β2(τ)]

and

󵄨󵄨󵄨󵄨cosh[μ0(1 − x1)√τ + β(τ)]
󵄨󵄨󵄨󵄨 = √sinh2[(1 − x1)√

τ
2
+ β1(τ)] + cos2[(1 − x1)√

τ
2
+ β2(τ)].

Hence

|cosh[μ0√τ + β(τ)]|
|cosh[μ0(1 − x1)√τ + β(τ)]|

≤
cosh[√ τ2 + β1(τ)]

sinh[(1 − x1)√
τ
2 + β1(τ)]

(5.105)

and

cosh[√ τ2 + β1(τ)]

sinh[(1 − x1)√
τ
2 + β1(τ)]

= e√
τ
2 +β1(τ)[1 + e−√2τ−2β1(τ)]

e(1−x1)√
τ
2 +β1(τ)[1 + e−(1−x1)√2τ−2β1(τ)]

. (5.106)

Since it follows from (5.96) that

β(τ) → 0 for τ →∞,

it follows from (5.105) and (5.106) that for any μ > 0 there is τ1 > 0 such that for any
τ ≥ τ1

sup{e−√2τ−2β1(τ), e−(1−x1)√2τ−2β1(τ)} < μ. (5.107)

It follows from (5.107) that

τ1 =
1
2

ln2 1
μ
.
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Thus, it follows from (5.105)–(5.107) that for any τ ≥ τ1

|cosh[μ0√τ + β(τ)]|
|cosh[μ0(1 − x1)√τ + β(τ)]|

≤
1 + μ
1 − μ

ex1√
τ
2 . (5.108)

Similarly to (5.105) it can be shown that

|cosh[μ0√τ + β(τ)]|
|cosh[μ0(1 − x1)√τ + β(τ)]|

≥
sinh[√ τ2 + β1(τ)]

cosh[(1 − x1)√
τ
2 + β1(τ)]

(5.109)

and

sinh[√ τ2 + β1(τ)]

cosh[(1 − x1)√
τ
2 + β1(τ)]

= e√
τ
2 +β1(τ)[1 − e−√2τ−2β1(τ)]

e(1−x1)√
τ
2 +β1(τ)[1 + e−(1−x1)√2τ−2β1(τ)]

. (5.110)

It follows from (5.107), (5.109), and (5.110) that for any τ ≥ τ1

|cosh[μ0√τ + β(τ)]|
|cosh[μ0(1 − x1)√τ + β(τ)]|

≥
1 − μ
1 + μ

ex1√
τ
2 . (5.111)

It is easy to show that, if we assume

μ = ε
8 + 3ε
,

then the assertion of the lemma follows from (5.108) and (5.111).

Consider two complex-valued functions ψ1(τ) and ψ2(τ) ∈ C[a,∞) such that

󵄨󵄨󵄨󵄨ψi(τ)
󵄨󵄨󵄨󵄨 → ∞ for τ →∞, i = 1, 2.

Let us introduce operators T1 and T2, acting from the complex space L2[a,∞) into
themselves and defined by the formulas

Tif (τ) = ψi(τ)f (τ), i = 1, 2. (5.112)

Let Mr be the class of correctness on L2[a,∞), defined by formula (4.1). We further
assume that Ti are injective and we denote by ωi(δ, r) the corresponding moduli of
continuity of the operators Ti on the class of correctness Mr . We write

ωi(δ, r) = sup{‖Tif ‖ : f ∈ T
−1
i (Mr), ‖f ‖ ≤ δ}. (5.113)

Lemma 5.7. Let Ti be the operators defined by formulas (5.112) and (5.113) and for any
τ ∈ [a,∞)

󵄨󵄨󵄨󵄨ψ1(τ)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨ψ2(τ)
󵄨󵄨󵄨󵄨.

Then ω1(δ, r) ≤ ω2(δ, r).
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The assertion of the lemma directly follows from the definition of the modulus of
continuity ωi(δ, r) (see (5.113)). To study and solve problem (5.100)–(5.103) let us split
it into two problems. The first of these problems is well-posed while the operator of
the second problem satisfies conditions (5.104). Thus, the first of the problems is as
follows:

T1 ̂f 1(τ) = cosh[μ0√τ + β(τ)]
cosh[μ0(1 − x1)√τ + β(τ)]

̂f 1(τ) = ĥ1(τ), 0 ≤ τ ≤ τε, (5.114)

where τε is described in Lemma 5.6,

̂f 1(τ) = ̂f (τ) for 0 ≤ τ ≤ τε,

and

ĥ1(τ) = ĥ(τ) given 0 ≤ τ ≤ τε.

It follows from Lemma 5.5 and relations (5.94)–(5.96) that for κ ≤ 1
2 the function

cosh[μ0√τ + β(τ)]
cosh[μ0(1 − x1)√τ + β(τ)]

is continuous over the interval [0, τε]. It follows from (5.114) that the operator T1 is
bounded on the space

H1 = L2[0, τε] + iL2[0, τε]

and there exists a number cε > 0 such that

󵄩󵄩󵄩󵄩T
1󵄩󵄩󵄩󵄩 ≤ cε. (5.115)

The second problem is a problem of calculating the values of the unbounded operator
T2 defined by the formula

T2 ̂f 2(τ) = cosh[μ0√τ + β(τ)]
cosh[μ0(1 − x1)√τ + β(τ)]

̂f 2(τ) = ĥ2(τ), (5.116)

where τ ≥ τε,

̂f 2(τ) = ̂f (τ) given τ ≥ τε,

and

ĥ2(τ) = ĥ(τ) given τ ≥ τε,

over the space

H2 = L2[τε,∞) + iL2[τε,∞).
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To solve problem (5.116) let us use the family of operators {T2
α : α > τε} defined by the

formula

T2
α
̂f 2(τ) = {

T2 ̂f 2(τ), τε ≤ τ ≤ α,
0, τ > α.

(5.117)

Define the approximate value ĥ2,α
δ (τ) of problem (5.116) by the formula

ĥ2,α
δ (τ) = T

2
α
̂f 2
δ (τ), τ ≥ τε. (5.118)

To select the regularization parameter α = α(δ, r) in formula (5.118), let us use the
condition

ĥ2
0(τ) ∈ M̂

2
r , (5.119)

where

M̂2
r = {ĥ

2(τ) :
∞

∫
τε

(1 + τ2)󵄨󵄨󵄨󵄨ĥ
2(τ)󵄨󵄨󵄨󵄨

2dτ ≤ r2}. (5.120)

It follows from (4.35) and (5.116)–(5.119) that

sup{󵄩󵄩󵄩󵄩T
2
α
̂f 2
δ (τ) − T

2 ̂f 2
0 (τ)
󵄩󵄩󵄩󵄩

2 : ̂f 2
0 (τ) ∈ [T

2]−1(M̂2
r ),
󵄩󵄩󵄩󵄩 ̂f

2
δ − ̂f

2
0
󵄩󵄩󵄩󵄩 ≤ δ}

= Δ2
1(α) +
󵄩󵄩󵄩󵄩T

2
α
󵄩󵄩󵄩󵄩

2δ2, (5.121)

where [T2]−1 is the inverse of the operator T2 and

Δ 1(α) = sup{󵄩󵄩󵄩󵄩T
2
α
̂f 2
0 (τ) − T

2 ̂f 2
0 (τ)
󵄩󵄩󵄩󵄩 : ̂f

2
0 (τ) ∈ [T

2]−1(M̂2
r )}. (5.122)

Let us now move on to estimating ‖T2
α‖.

Lemma 5.8. Under the above-formulated conditions the following relations are true:

(1 − ε
4 + ε
)ex1√α/2 ≤ 󵄩󵄩󵄩󵄩T

2
α
󵄩󵄩󵄩󵄩 ≤ (1 +

ε
4 + ε
)ex1√α/2, α ≥ τε.

Proof. By the definition of the operator norm we have

󵄩󵄩󵄩󵄩T
2
α
󵄩󵄩󵄩󵄩 = sup

τε≤τ≤α

|cosh[μ0√τ + β(τ)]|
|cosh[μ0(1 − x1)√τ + β(τ)]|

. (5.123)

The assertion of the lemma follows from (5.123) and Lemma 5.6.

Let

ω2(α) = sup{
∞

∫
α

󵄨󵄨󵄨󵄨ĥ
2
0(τ)
󵄨󵄨󵄨󵄨
2τ : ĥ2

0(τ) ∈ M̂
2
r}. (5.124)
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Then it follows from (5.120), (5.122), and (5.124) that

Δ2
1(α) = ω

2(α). (5.125)

It follows from (5.120) that, if ĥ2
0(τ) ∈ M̂

2
r , then

∞

∫
τε

(1 + τ2)󵄨󵄨󵄨󵄨ĥ
2
0(τ)
󵄨󵄨󵄨󵄨
2dτ ≤ r2. (5.126)

It follows from (5.124) and (5.126) that

ω2(α) = r2

1 + α2 . (5.127)

Since

Δ δ[T
2
α] = sup{󵄩󵄩󵄩󵄩T

2
α
̂f 2
δ (τ) − T

2 ̂f 2
0 (τ)
󵄩󵄩󵄩󵄩 : ̂f

2
0 (τ) ∈ [T

2]−1(M̂2
r ),
󵄩󵄩󵄩󵄩 ̂f

2
δ − ̂f

2
0
󵄩󵄩󵄩󵄩 ≤ δ}, (5.128)

it follows from (4.35) and (5.128) that

Δ2
δ[T

2
α] =

r2

1 + α2 +
󵄩󵄩󵄩󵄩T

2
α
󵄩󵄩󵄩󵄩

2δ2, (5.129)

while it follows from Lemma 5.8 and (5.129) that

r2

1 + α2 + δ
2(1 − ε

4 + ε
)

2
e2x1√α/2

≤ Δ2
δ[T

2
α] ≤

r2

1 + α2 + δ
2(1 + ε

4 + ε
)

2
e2x1√α/2. (5.130)

Choose the regularization parameter α = α(δ, r) in formula (5.118) from the condition
r
√1 + α2

= ex1√α/2δ. (5.131)

Let us denote by α = α(δ, r) the value of the regularization parameter taken from the
equation

r
√1 + α2

= 󵄩󵄩󵄩󵄩T
2
α
󵄩󵄩󵄩󵄩δ. (5.132)

To obtain the final error estimate of the approximate value, let us introduce two more
values of the regularization parameter

α1 = α1(δ, r) and α2 = α2(δ, r),

selected respectively from the equations

r
√1 + α2

= (1 − ε
4 + ε
)ex1√α/2δ, (5.133)
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r
√1 + α2

= (1 + ε
4 + ε
)ex1√α/2δ. (5.134)

It follows from 5.8 and (5.128)–(5.134) that there exists δε > 0 such that

α2(δε, r) ≥ αε

and consequently for any δ < δε

α2(δ, r) ≤ α(δ, r) ≤ α1(δ, r), (5.135)
α2(δ, r) ≤ α(δ, r) ≤ α1(δ, r). (5.136)

It follows from (4.37), (5.129), and (5.132) that

Δ δ[T
2
α(δ,r)] = √2󵄩󵄩󵄩󵄩T

2
α(δ,r)
󵄩󵄩󵄩󵄩δ. (5.137)

Similarly, it follows from Lemma 5.8 and relations (5.131)–(5.134) that for any δ < δε

√2δ(1 − ε
4 + ε
)ex1√

α1(δ,r)
2 ≤ Δ δ[T

2
α(δ,r)] ≤ √2δ(1 + ε

4 + ε
)ex1√

α2(δ,r)
2 (5.138)

and

√2δ(1 − ε
4 + ε
)ex1√

α1(δ,r)
2 ≤ Δ δ[T

2
α(δ,r)] ≤ √2δ(1 + ε

4 + ε
)ex1√

α2(δ,r)
2 . (5.139)

Theorem 5.2. For any δ ∈ (0, δε) the following relations are true:

(1 − ε
2
)Δ δ[T

2
α1(δ,r)] ≤ Δ δ[T

2
α(δ,r)] ≤ (1 +

ε
2
)Δ δ[T

2
α1(δ,r)].

Proof. We have

Δ δ[T
2
α(δ,r)] ≤ Δ δ[T

2
α1(δ,r)] +

󵄨󵄨󵄨󵄨Δ δ[T
2
α(δ,r)] − Δ δ[T

2
α1(δ,r)]
󵄨󵄨󵄨󵄨 (5.140)

and

Δ δ[T
2
α(δ,r)] ≥ Δ δ[T

2
α1(δ,r)] −

󵄨󵄨󵄨󵄨Δ δ[T
2
α(δ,r)] − Δ δ[T

2
α1(δ,r)]
󵄨󵄨󵄨󵄨. (5.141)

It follows from (5.140) and (5.141) that to prove the theorem it is sufficient to estimate
|Δ δ[T2

α(δ,r)] − Δ δ[T
2
α1(δ,r)]|. It follows from (5.133), (5.134), and (5.135) that

󵄨󵄨󵄨󵄨Δ δ[T
2
α(δ,r)] − Δ δ[T

2
α1(δ,r)]
󵄨󵄨󵄨󵄨

≤ √2(1 + ε
4 + ε
)ex1√

α(δ,r)
2 δ − √2(1 − ε

4 + ε
)ex1√

α1(δ,r)
2 δ (5.142)
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and it follows from (5.135) and (5.142) that

󵄨󵄨󵄨󵄨Δ δ[T
2
α(δ,r)] − Δ δ[T

2
α1(δ,r)]
󵄨󵄨󵄨󵄨

≤ √2(1 + ε
4 + ε
)ex1√

α1(δ,r)
2 δ − √2(1 − ε

4 + ε
)ex1√

α1(δ,r)
2 δ. (5.143)

It follows from (5.143) that

󵄨󵄨󵄨󵄨Δ δ[T
2
α(δ,r)] − Δ δ[T

2
α1(δ,r)]
󵄨󵄨󵄨󵄨 ≤ √2ε

2
ex1√

α1(δ,r)
2 δ. (5.144)

The proof of the theorem follows from (5.140), (5.141), and (5.144).

Theorem 5.3. For the method {T2
α(δ,r) : 0 < δ ≤ δε}, defined by formulas (5.117) and

(5.131), the following accurate-by-order error estimate is true:

√2(1 − ε
2
)ex1√

α1(δ,r)
2 δ ≤ Δ δ[T

2
α(δ,r)] ≤ √2(1 + ε

2
)ex1√

α1(δ,r)
2 δ.

Proof. It follows from Theorem 5.2 and relations (5.129) and (5.135) that for any δ ∈
(0, δε]

Δ2
δ[T

2
α(δ,r)] ≤

r2

1 + α2(δ, r)
+ (1 + ε

2
)e2x1√

α1(δ,r)
2 δ2 (5.145)

and

Δ2
δ[T

2
α(δ,r)] ≥

r2

1 + α2
1(δ, r)
+ (1 − ε

2
)e2x1√

α1(δ,r)
2 δ2. (5.146)

It follows from (5.131), (5.134), (5.145), and (5.146) that

Δ2
δ[T

2
α(δ,r)] ≤ (1 +

ε
2
)

2
e2x1√

α(δ,r)
2 δ2 + (1 + ε

2
)

2
e2x1√

α1(δ,r)
2 δ2 (5.147)

and

Δ2
δ[T

2
α(δ,r)] ≥ (1 −

ε
2
)

2
e2x1√

α1(δ,r)
2 δ2 + (1 − ε

2
)

2
e2x1√

α1(δ,r)
2 δ2. (5.148)

It follows from (5.135) that

e2x1√
α(δ,r)

2 < e2x1√
α1(δ,r)

2 (5.149)

and from (5.147) and (5.149) that

Δ2
δ[T

2
α(δ,r)] ≤ (1 +

ε
2
)

2
e2x1√

α1(δ,r)
2 δ2 + (1 + ε

2
)

2
e2x1√

α1(δ,r)
2 δ2. (5.150)

The assertion of the theorem follows from (5.148) and (5.150).
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Theorem 5.4. The solution method {T2
α(δ,r) : 0 < δ ≤ δε}, for problem (5.116), defined by

formulas (5.117) and (5.131), is optimal-by-order on the class M̂2
r and for this method the

following error estimate is true:

Δ δ[T
2
α(δ,r)] ≤ √2(1 + ε)Δopt

δ .

Proof. It follows from Lemmas 5.6 and 5.7 that

ω1(δ, r) ≤ ω2(δ, r), (5.151)

where

ω2(δ, r) = sup{󵄩󵄩󵄩󵄩T
2 ̂f 2(τ)󵄩󵄩󵄩󵄩 : ̂f

2(τ) ∈ [T2]−1(M̂2
r ),
󵄩󵄩󵄩󵄩 ̂f

2(τ)󵄩󵄩󵄩󵄩 ≤ δ}

and

ω1(δ, r) = sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 − ε

4 + ε
)ex1√

τ
2 ̂f 2(τ)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: ̂f 2(τ) ∈ (1 − ε

4 + ε
)
−1
e−x1√

τ
2 (M̂2

r ),

󵄩󵄩󵄩󵄩 ̂f
2(τ)󵄩󵄩󵄩󵄩 ≤ δ}. (5.152)

It follows from (4.16), (5.102), and (5.152) that

ω2(δ, r) = r
√1 + α2

1(δ, r)
, (5.153)

where α1(δ, r) is defined by equation (5.133). It follows from (5.133) and (5.153) that

ω1(δ, r) = (1 − ε
4 + ε
)ex1√

α1(δ,r)
2 δ. (5.154)

Since

Δopt
δ ≥ ω

1(δ, r), (5.155)

from (5.151), (5.154), and (5.155) we have

Δopt
δ ≥ (1 −

ε
4 + ε
)ex1√

α1(δ,r)
2 δ. (5.156)

The assertion of the lemma follows from Theorem 5.3 and relation (5.156).

Since it follows from relation (5.133) that

ex1√
α1(δ,r)

2 δ = (1 + ε
4
) r
√1 + α2

1(δ, r)
, (5.157)
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it follows from Theorem 5.3 that for δ ≤ δε

Δ δ[T
2
α(δ,r)] ≤ √2(1 + ε

2
)

2 r
√1 + α2

1(δ, r)
. (5.158)

In order to find the asymptotics of estimate (5.158), consider the following two equa-
tions:

ex1√
α
2 = r

δ
(5.159)

and

e2x1√
α
2 = r

δ
. (5.160)

Let us denote by (5.159) and (5.160) the solutions of equations α̂1(δ, r) and α̂2(δ, r). Then
it follows from (5.133), (5.159), and (5.160) that for sufficiently low values of δ the fol-
lowing relations are true:

α̂2(δ, r) ≤ α1(δ, r) ≤ α̂1(δ, r). (5.161)

It follows from (5.159) and (5.160) that

α̂1(δ, r) =
2
x2

1
ln2 r

δ
and α̂2(δ, r) =

1
2x2

1
ln2 r

δ

and it follows from (5.161) that

α1(δ, r) ∼ ln2 δ given δ → 0. (5.162)

From ratio (5.162) the following theorem arises.

Theorem 5.5. For any r > 0 there exist numbers

c1(r), c2(r) > 0 and δ1 ∈ (0, δε)

such that for any δ ∈ (0, δ1) the following estimates are true:

c1(r) ln
2 δ ≤ √1 + α2

1(δ, r) ≤ c2(r) ln
2 δ.

We further denote the solution of problem (5.114) by

h1
δ(τ) = T

1 ̂f 1
δ (τ). (5.163)

It follows from (5.115) and (5.163) that

󵄩󵄩󵄩󵄩ĥ
1
δ(τ) − ĥ

1
0(τ)
󵄩󵄩󵄩󵄩 ≤ cεδ, (5.164)
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where

ĥ1
0(τ) = T

1 ̂f 1
0(τ).

Define the solution of problem (5.100)–(5.103) by the formula

ĥδ(τ) = ĥ
1
δ(τ) + ĥ

2,α(δ,r)
δ (τ). (5.165)

Then it follows from relations (5.158), (5.164), and (5.165) that

󵄩󵄩󵄩󵄩ĥδ(τ) − ĥ0(τ)
󵄩󵄩󵄩󵄩 ≤ √2(1 + ε

2
)

2 r
√1 + α2

1(δ, r)
+ cεδ. (5.166)

Note that the function ĥδ(τ), defined by formula (5.165), may be defined in a different
way by introducing a family of regularization operators {Tα : α > 0}, defined by the
formula

Tα ̂f (τ) = {
T ̂f (τ), 0 ≤ τ ≤ α,
0, τ > α.

(5.167)

Then

ĥδ(τ) = Tα ̂fδ(τ). (5.168)

If we select the value of the regularization parameter α(δ, r) in formula (5.168) from the
condition

r
√1 + α2

= ex1√
α
2 δ, (5.169)

then, for the solution ĥα(δ,r)δ (τ) of problem (5.100)–(5.103), the following estimate is
true:

󵄩󵄩󵄩󵄩ĥδ(τ) − ĥ0(τ)
󵄩󵄩󵄩󵄩 ≤ √2(1 + ε

2
)

2 r
√1 + α2

1(δ, r)
+ cεδ. (5.170)

It follows from Theorem 5.5 that there is δ0 < δε such that for any δ < δ0

cεδ < √2 ⋅ ε
2

2
⋅ r
√1 + α2

1(δ, r)
. (5.171)

Then the following theorem arises from relations (5.170) and (5.171).



102 | 5 Inverse heat exchange problems

Theorem 5.6. The solution method {Tα(δ,r) : 0 < δ < δ0} for problem (5.100)–(5.103) is
optimal-by-order on the class M̂r and the following estimate is true:

Δ δ[Tα(δ,r)] ≤ √2(1 + ε + ε2) r
√1 + α2

1(δ, r)
.

This estimate is accurate-by-order.

Now consider a subspace H0, defined by the formula

H0 = F[L2[0,∞)],

and denote by hδ(τ) the element defined by the formula

hδ(τ) = pr[ĥδ(τ);H0].

Since ĥ0(τ) ∈ H0, it follows from (5.170) that

󵄩󵄩󵄩󵄩hδ(τ) − ĥ0(τ)
󵄩󵄩󵄩󵄩 ≤ √2(1 + ε

2
)

2 r
√1 + α2

1(δ, r)
+ cεδ. (5.172)

Finally, let us define the solution of hδ(t) of the inverse problem (5.71)–(5.73), (5.77) by
the formula

hδ(t) = {
F−1[hδ(τ)], t ∈ [0, t0],
0, 0 < t, t > t0,

(5.173)

where F−1 is the inverse of the operator F. It follows from (5.172) and (5.173) that for
hδ(t) the following estimate is true:

󵄩󵄩󵄩󵄩hδ(t) − h0(t)
󵄩󵄩󵄩󵄩 ≤ √2(1 + ε

2
)

2 r
√1 + α2

1(δ, r)
+ cεδ. (5.174)

It follows from (5.174) that there exists a number d > 0 such that for any δ ∈ (0, δ0) the
following relation is true:

󵄩󵄩󵄩󵄩hδ(t) − h0(t)
󵄩󵄩󵄩󵄩 ≤ d ⋅ r ln−2 δ.

5.3 A study of the solution to a direct boundary-value problem for
the heat conduction equation with a variable coefficient

5.3.1 Problem posing

Let a(x) ∈ C2[0, 1], a(x) ≤ 0, and let a thermal process be described by the equation

𝜕u(x, t)
𝜕t
= 𝜕

2u(x, t)
𝜕x2 + a(x)u(x, t), 0 < x < 1, t > 0, (5.175)
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where the solution u(x, t) ∈ C([0, 1]×[0,∞))∩W2,1
2 ([0, 1]×[0,∞)) satisfies the following

initial and boundary conditions:

u(x,0) = 0, 0 ≤ x ≤ 1, (5.176)
u(0, t) = 0, t ≥ 0, (5.177)
u(1, t) = h(t), t ≥ 0, (5.178)

where

h(t) ∈ C2[0,∞), h(0) = h󸀠(0) = 0, (5.179)

and where there exists a number t0 > 0 such that for any t ≥ t0

h(t) = 0. (5.180)

5.3.2 A study of the smoothness for the function u(x , t)
Consider the substitution

v(x, t) = u(x, t) − xh(t). (5.181)

Then

𝜕v(x, t)
𝜕t
= 𝜕

2v(x, t)
𝜕x2 + a(x)v(x, t) + a(x)xh(t) − xh

󸀠(t), (5.182)

x ∈ (0, 1), t > 0,
v(x,0) = 0, 0 ≤ x ≤ 1, (5.183)
v(0, t) = 0, t ≥ 0, (5.184)
v(1, t) = 0, t ≥ 0. (5.185)

The solution of problem (5.182)–(5.185) is as follows:

v(x, t) =
∞

∑
n=1

vn(t)ψn(x), (5.186)

where

vn(t) = bn

t

∫
0

eλn(t−τ)h(τ)dτ − cn

t

∫
0

eλn(t−τ)h󸀠(τ)dτ, (5.187)

{λn} is a sequence of eigenvalues of the corresponding Sturm–Liouville problem, and
{ψn(x)} is the corresponding sequence of eigenfunctions of the following problem:

bn =
1

∫
0

xa(x)ψn(x)dx, (5.188)
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cn =
1

∫
0

xψn(x)dx. (5.189)

From the theorem posed in [53] (p. 37) it follows that there exist positive numbers
d1 and d2 such that for any n

−d1n
2 ≤ λn ≤ −d2n

2 (5.190)

and from the theorem posed in [53] (pp. 15–16) it follows that the system {ψn(x)} of
eigenfunctions is orthonormal and complete on the space L2[0, 1].

Thus, from (5.188) and (5.189) it follows that

∞

∑
n=1

b2
n < ∞, (5.191)

∞

∑
n=1

c2
n < ∞. (5.192)

Partially integrating the right-hand side of equation (5.187) and taking into ac-
count (5.179) we obtain

vn(t) = −
bn
λn
[h(t) −

t

∫
0

eλn(t−τ)h󸀠(τ)dτ] + cn
λn
[h󸀠(t) −

t

∫
0

eλn(t−τ)h󸀠󸀠(τ)dτ]. (5.193)

Let

d3 = max
t∈[0,t0]
(󵄨󵄨󵄨󵄨h(t)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨h
󸀠(t)󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨h
󸀠󸀠(t)󵄨󵄨󵄨󵄨). (5.194)

Then, by (5.179), (5.180), and (5.192)–(5.194) for any values of n and T > 0 the following
relations are true:

T

∫
0

1

∫
0

v2
n(t)ψ

2
n(x)dxdt ≤

2Td2
3[1 + t0]

2

λ2
n
[b2

n + c
2
n], (5.195)

T

∫
0

1

∫
0

λ2
nv

2
n(t)ψ

2
n(x)dxdt ≤ 2Td2

3(1 + t0)
2[b2

n + c
2
n]. (5.196)

It follows from (5.186), (5.191), (5.192), (5.195), and (5.196) that

v(x, t) ∈ C([0, 1] × [0,T]), (5.197)

𝜕2v(x, t)
𝜕x2 + a(x)v(x, t) ∈ L2([0, 1] × [0,T]). (5.198)
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From (5.197) and (5.198) it follows that

𝜕2v(x, t)
𝜕x2 ∈ L2([0, 1] × [0,T]). (5.199)

Let

UN (x, t) =
N
∑
n=1

vn(t)ψn(x). (5.200)

Then from (5.197), (5.198), and (5.200) it follows that

UN (x, t) 󳨀→ v(x, t) in the metrics C([0, 1] × [0,T]) (5.201)

and

𝜕2UN (x, t)
𝜕x2 + a(x)UN (x, t) 󳨀→

𝜕2v(x, t)
𝜕x2 + a(x)v(x, t) (5.202)

in the metrics of the space L2([0, 1] × [0,T]).

Lemma 5.9. LetΦ(t) ∈ C[0,T]. Then the following formula is true:

T

∫
0

Φ(t)[v󸀠󸀠xx(x, t) + a(x)v(x, t)]dt =
𝜕2

𝜕x2

T

∫
0

Φ(t)v(x, t)dt + a(x)
T

∫
0

Φ(t)v(x, t)dt.

Proof. From (5.200) it follows that

T

∫
0

Φ(t)[𝜕
2UN (x, t)
𝜕x2 + a(x)UN (x, t)]dx

=
T

∫
0

𝜕2UN (x, t)
𝜕x2 Φ(t)dt + a(x)

T

∫
0

UN (x, t)Φ(t)dt

= 𝜕
2

𝜕x2[
T

∫
0

UN (x, t)Φ(t)dt] + a(x)
T

∫
0

UN (x, t)Φ(t)dt. (5.203)

If G(x, t) ∈ L2([0, 1] × [0,T]), then the operator B, defined by the formula

BG(x, t) =
T

∫
0

G(x, t)dt,

continuously maps the space L2([0, 1] × [0,T]) into L2[0, 1] [83].
Thus, the assertion of the lemma follows from (5.201)–(5.203).
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5.3.3 Justification of the method of integral transforms with respect to t as applied
to solving problem (5.175)

Lemma 5.10. Let u(x, t) be the solution of problem (5.175)–(5.178). Then for any t > 0

u(x, t) ∈ W2
2 [0, 1].

Proof. It follows from (5.179), (5.180), and (5.193) that there exists a number d4 > 0
such that for any values of t > 0 and n

󵄨󵄨󵄨󵄨λnvn(t)
󵄨󵄨󵄨󵄨 ≤ d4√b2

n + c2
n. (5.204)

Since the system of eigenfunctions {ψn(x)} of the operator d2

dx2 + a(x) is orthonor-
malized on the space L2[0, 1], from (5.186), (5.191), (5.192), and (5.204) it follows that
for any t > 0

𝜕2u(x, t)
𝜕x2 + a(x)u(x, t) ∈ L2[0, 1]. (5.205)

Since u(x, t) ∈ C[0, 1], from (5.205) it follows that for any t > 0

𝜕2u(x, t)
𝜕x2 ∈ L2[0, 1]. (5.206)

Taking into account that

𝜕u(x, t)
𝜕x
= 𝜕u(0, t)
𝜕x
+

x

∫
0

𝜕2u(ξ , t)
𝜕ξ 2 dξ ,

by (5.206) we obtain for any t > 0

𝜕u(x, t)
𝜕x
∈ W 1

2 [0, 1]. (5.207)

Similarly, the assertion of the lemma follows from (5.207).

Lemma 5.11. Let {ψn(x)} be a system of eigenfunctions of the corresponding Sturm–
Liouville problem. Then there exists a number d5 > 0 such that for any n

max
0≤x≤1
󵄨󵄨󵄨󵄨ψn(x)
󵄨󵄨󵄨󵄨 ≤ d5n

2.

Proof. Since from the theorem in [53] it follows that for any n

ψn(x) ∈ C
2[0, 1] and ψn(0) = ψn(1) = 0,

there exists a point an ∈ [0, 1] such that

ψ󸀠n(an) = 0.
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Thus,

󵄨󵄨󵄨󵄨ψ
󸀠
n(x)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

x

∫
an

ψ󸀠󸀠n (ξ )dξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

∫
0

󵄨󵄨󵄨󵄨ψ
󸀠󸀠
n (ξ )
󵄨󵄨󵄨󵄨dξ ≤ [

1

∫
0

󵄨󵄨󵄨󵄨ψ
󸀠󸀠
n (ξ )
󵄨󵄨󵄨󵄨
2dξ]

1
2

. (5.208)

From

d2ψn(x, t)
dx2 −

󵄨󵄨󵄨󵄨a(x)
󵄨󵄨󵄨󵄨ψn(x) = λnψn(x)

it follows that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d2ψn(x)
dx2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ [|λn| + max

0≤x≤1
󵄨󵄨󵄨󵄨a(x)
󵄨󵄨󵄨󵄨]
󵄨󵄨󵄨󵄨ψn(x)
󵄨󵄨󵄨󵄨. (5.209)

From (5.209) it follows that there exists a number d6 > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d2ψn(x)
dx2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ d6|λn|

󵄨󵄨󵄨󵄨ψn(x)
󵄨󵄨󵄨󵄨. (5.210)

From

󵄨󵄨󵄨󵄨ψn(x)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

x

∫
0

ψ󸀠n(ξ )dξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

∫
0

󵄨󵄨󵄨󵄨ψ
󸀠
n(ξ )
󵄨󵄨󵄨󵄨dξ

it follows that

󵄨󵄨󵄨󵄨ψn(x)
󵄨󵄨󵄨󵄨 ≤ max

0≤x≤1
󵄨󵄨󵄨󵄨ψ
󸀠
n(x)
󵄨󵄨󵄨󵄨 (5.211)

and the assertion of the lemma follows from (5.208), (5.210), and (5.211).

Now consider an auxiliary problem that uses condition (5.180). We write

𝜕u(x, t)
𝜕t
= 𝜕

2u(x, t)
𝜕x2 + a(x)u(x, t), x ∈ (0, 1), t ≥ t0, (5.212)

u(x, t0) = u0(x), 0 ≤ x ≤ 1, (5.213)
u(0, t) = u(1, t) = 0, t ≥ t0. (5.214)

From Lemma 5.10 it follows that

u0(x) ∈ W
2
2 [0, 1], (5.215)

u0(0) = u0(1) = 0. (5.216)

The solution of problem (5.212)–(5.214) is as follows:

u(x, t) =
∞

∑
n=1

une
λn(t−t0)ψn(x), (5.217)
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where λn and ψn(x) have been defined before and

un =
1

∫
0

u0(x)ψn(x)dx. (5.218)

Since

1

∫
0

u0(x)ψn(x)dx =
1
λn
[

1

∫
0

u0(x)ψ
󸀠󸀠
n (x)dx +

1

∫
0

a(x)u0(x)ψn(x)dx], (5.219)

it follows from (5.218) that for any n

un =
pn + qn
λn
, (5.220)

where

pn =
1

∫
0

u󸀠󸀠0 (x)ψn(x)dx (5.221)

and

qn =
1

∫
0

a(x)u0(x)ψn(x)dx. (5.222)

Since the system {ψn(x)} is orthonormalized on the space L2[0, 1], from (5.215),
(5.221), and (5.222) it follows that

∞

∑
n=1
(pn + qn)

2 < ∞. (5.223)

It follows from (5.223) that

pn + qn 󳨀→ 0 for n 󳨀→ ∞. (5.224)

It follows from relation (5.217) that

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤
∞

∑
n=1

󵄨󵄨󵄨󵄨un(t)
󵄨󵄨󵄨󵄨e
λn(t−t0)󵄨󵄨󵄨󵄨ψn(x)

󵄨󵄨󵄨󵄨 (5.225)

and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2u(x, t)
𝜕x2 + a(x)u(x, t)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
∞

∑
n=1
|λn||un|e

λn(t−t0)󵄨󵄨󵄨󵄨ψn(x)
󵄨󵄨󵄨󵄨. (5.226)
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From Lemma 5.11 and relations (5.220) and (5.224) it follows that there exists a number
d7 > 0 such that for any n

|λn||un|e
λn(t−t0)󵄨󵄨󵄨󵄨ψn(x)

󵄨󵄨󵄨󵄨 ≤ d7|λn|e
λn(t−t0). (5.227)

Since

eλn(t−t0) = eλneλn(t−t0−1),

it follows from (5.190) that for t ≥ t0 + 2

d7|λn|e
λn(t−t0) ≤ d7

|λn|
e|λn|

e−d2(t−t0−1). (5.228)

From the convergence of the series

∞

∑
n=1

|λn|
e|λn|

and relation (5.228) it follows that there exists a number d8 > 0 such that for any
t ≥ t0 + 2

d7

∞

∑
n=1
|λn|e

λn(t−t0) ≤ d8e
−d2(t−t0−1). (5.229)

Thus, from (5.226), (5.227), and (5.229) it follows that for t ≥ t0 + 2

sup
x∈[0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2u(x, t)
𝜕x2 + a(x)u(x, t)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ d8e
−d2(t−t0−1). (5.230)

It follows from (5.225), (5.226), and (5.230) that there exists a number d9 > 0 such
that for t ≥ t0 + 2

sup
x∈[0,1]

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤ d9e

−d2(t−t0−1). (5.231)

It follows from (5.230) and (5.231) that there exists a number d10 > 0 such that for
t ≥ t0 + 2

sup
x∈[0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2u(x, t)
𝜕x2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ d10e

−d2(t−t0−1). (5.232)

Since

u󸀠x(x, t) =
x

∫
x0(t)

u󸀠󸀠xx(ξ , t)dξ , 0 ≤ x0(t) ≤ 1,
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where

u󸀠x(x0(t), t) = 0, for any x ∈ [0, 1] and t ≥ t0

we obtain

󵄨󵄨󵄨󵄨u
󸀠
x(x, t)
󵄨󵄨󵄨󵄨 ≤ sup

x∈[0,1]

󵄨󵄨󵄨󵄨u
󸀠󸀠
xx(x, t)
󵄨󵄨󵄨󵄨. (5.233)

It follows from (5.232) and (5.233) that for t ≥ t0 + 2

sup
x∈[0,1]

󵄨󵄨󵄨󵄨u
󸀠
x(x, t)
󵄨󵄨󵄨󵄨 ≤ d8e

−d2(t−t0−1). (5.234)

Lemma 5.12. Let u(x, t) be a solution of problem (5.175)–(5.178) and let Φ(t) be a
bounded function continuous over [t0 + 2,∞). Then the following formula is correct:

∞

∫
t0+2

Φ(t)[u󸀠󸀠xx(x, t) + a(x)u(x, t)]dt

= 𝜕
2

𝜕x2

∞

∫
t0+2

Φ(t)u(x, t)dt + a(x)
∞

∫
t0+2

Φ(t)u(x, t)dt.

Proof. It follows from (5.199) that the function u󸀠x(x, t) is measurable and from (5.234)
and the notion that

∞

∫
t0+2

e−d
2(t−t0−1)dt < ∞

it follows that

∞

∫
t0+2

Φ(t)u󸀠x(x, t)dt =
𝜕
𝜕x
[
∞

∫
t0+2

Φ(t)u(x, t)dt]. (5.235)

From (5.199), (5.232), and (5.235) it follows that

∞

∫
t0+2

Φ(t)u󸀠󸀠xx(x, t)dt =
𝜕2

𝜕x2[
∞

∫
t0+2

Φ(t)u(x, t)dt] (5.236)

and the assertion of the lemma follows from (5.236).

From Lemmas 5.9 and 5.12 follows the following theorem.
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Theorem 5.7. Let u(x, t) be the solution of problem (5.175)–(5.178) and let Φ(t) be a
bounded function that is continuous over [0,∞). Then the following formula is true:

∞

∫
0

Φ(t)[u󸀠󸀠xx(x, t) + a(x)u(x, t)]dt

= 𝜕
2

𝜕x2

∞

∫
0

Φ(t)u(x, t)dt + a(x)
∞

∫
0

Φ(t)u(x, t)dt.

Lemma 5.13. Let u(x, t) be the solution of problem (5.175)–(5.178). Then the following
relations are correct:

lim
x󳨀→0

∞

∫
0

󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨dt = lim

x󳨀→1

∞

∫
0

󵄨󵄨󵄨󵄨u(x, t) − h(t)
󵄨󵄨󵄨󵄨dt = 0.

Proof. It follows from (5.181) and (5.197) that for any t ≥ 0

lim
x󳨀→0

u(x, t) = 0, lim
x󳨀→1

u(x, t) = h(t). (5.237)

Denote by g(t) the function defined by the formula

g(t) = {
d11, 0 ≤ t ≤ t0 + 2,
d9e−d2(t−t0−1), t > t0 + 2.

Since
∞

∫
0

󵄨󵄨󵄨󵄨g(t)
󵄨󵄨󵄨󵄨dt < ∞

and for any t ≥ 0
󵄨󵄨󵄨󵄨u(x, t)
󵄨󵄨󵄨󵄨 ≤ g(t),

the assertion of the lemma will follow by the Lebesgue theorem from (5.237).

5.4 On estimating the approximate accuracy of a solution to
the inverse boundary-value problem for the heat conduction
equation with a variable coefficient

5.4.1 Problem posing

Let a(x) ∈ C2[0, 1], a(x) ≤ 0, and let a thermal process be described by the equation

𝜕u(x, t)
𝜕t
= 𝜕

2u(x, t)
𝜕x2 + a(x)u(x, t), 0 < x < 1, t > 0, (5.238)
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where the solution u(x, t) ∈ C([0, 1]×[0,∞))∩W2,1
2 ([0, 1]×[0,∞)) satisfies the following

initial and boundary conditions:

u(x,0) = 0, 0 ≤ x ≤ 1, (5.239)
u(0, t) = 0, t ≥ 0, (5.240)
u(1, t) = h(t), t ≥ 0, (5.241)

where

h(t) ∈ C2[0,∞), h(0) = h󸀠(0) = 0, (5.242)

and there exists a number t0 > 0 such that for any t ≥ t0

h(t) = 0. (5.243)

Assume that the function h(t) is unknown and must be defined. Instead, at the
point x1 ∈ (0, 1) the temperature f (t) of the rod corresponding to this process is mea-
sured, so we have

u(x1, t) = f (t), t ≥ 0. (5.244)

Let the set Mr be defined by the formula

Mr = {h(t) : h(t) ∈ L2[0,∞),
∞

∫
0

󵄨󵄨󵄨󵄨h(t)
󵄨󵄨󵄨󵄨
2dt +

∞

∫
0

󵄨󵄨󵄨󵄨h
󸀠(t)󵄨󵄨󵄨󵄨

2dt ≤ r2}, (5.245)

where h󸀠(t) is the derivative of the function h(t) and r is a known positive number.
Then assume that for f (t) = f0(t), being a part of condition (5.244), there exists a func-
tion h0(t), that belongs to the set Mr, but the function f0(t) is unknown. Instead, the
approximate function fδ(t) ∈ L2[0,∞)∩L1[0,∞) and number δ > 0 are given such that

‖fδ − f0‖L2
≤ δ. (5.246)

Using fδ, δ, and Mr, it is required to define an approximate solution hδ(t) of prob-
lem (5.238)–(5.241), (5.244) and estimate the deviation ‖hδ − h0‖L2

of the approximate
solution hδ from the exact solution h0.

Let

H = L2[0,∞) + iL2[0,∞)

over the field of complex numbers and let F be an operator mapping L2[0,∞) into H,
defined by the formula

F[h(t)] = 1
√π

∞

∫
0

h(t)e−iτtdt, τ ≥ 0, h(t) ∈ L2[0,∞). (5.247)

The proof that the operator F is isometric is given in Lemma 4.3.
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It follows from Lemma 5.13 and Theorem 5.7 that the transformationF is applicable
to solving problem (5.238).

Applying transformation F to equation (5.238) we obtain

𝜕2û(x, τ)
𝜕x2 + a(x)û(x, τ) = iτû(x, τ), x ∈ (0, 1), τ ≥ 0, (5.248)

where

û(x, τ) = F[u(x, t)].

It follows from (5.241) and (5.244) that

û(0, τ) = 0, τ ≥ 0, (5.249)

û(x1, τ) = i ̂f (τ), τ ≥ 0, (5.250)

where
̂f (τ) = F[f (t)].

It follows from (5.197) that the solution û(x, τ) of problem (5.248)–(5.250) is con-
tinuous on the band [0, 1] × [0,∞).

From the general solution of the ordinary linear differential equation of the second
order, it follows that the solution û(x, τ) of problem (5.248)–(5.250) is defined by the
formula

û(x, τ) = l(τ)e(x, τ), x ∈ [0, 1], τ ≥ 0, (5.251)

where l(τ) is a certain function and e(x, τ) is the solution of problem (5.248), (5.249),
satisfying the condition

e󸀠x(0, τ) = 1.

Using the condition (5.250) define the function l(τ) by the formula

l(τ) = i ̂f (τ)
e(x1, τ)
, τ ≥ 0. (5.252)

By (5.251) and (5.252),

û(1, τ) = i ̂f (τ)e−1(x1, τ)e(1, τ), τ ≥ 0. (5.253)

Lemma 5.14. The function l(τ) is continuous on the half-line [0,∞).

Proof. Since ̂f (τ) and e(x1, τ) are continuous on the half-line [0,∞), to prove the the-
orem it is sufficient to make sure that

e(x1, τ) ̸= 0 for any τ ≥ 0.
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Assume the contrary, i. e., that there exists a number τ0 ≥ 0 such that

e(x1, τ0) = 0. (5.254)

Then taking into account (5.254), consider the space

H0 = L2[0, x1] + iL2[0, x1]

over the field of complex numbers and an operator A1, acting from H0 into H0 which
is defined by the formula

A1u(x) =
d2u(x)
dx2 + a(x)u(x), u ∈ D(A1), (5.255)

where

D(A1) = {u : u,A1u ∈ H0, u(0) = u(x1) = 0}. (5.256)

It follows from (5.255) and (5.256) that the operator A1 is negatively defined and
self-adjoint. Therefore, there exists a number λ1 < 0 such that the spectrum

Sp(A1) ⊂ (−∞, λ1].

Since

A1e(x, τ0) = iτ0e(x, τ0),

we know

e(x, τ0) = 0 for x ∈ [0, x1] and e󸀠x(1, τ0) = 0,

which contradicts the definition of the function e(x, τ). The lemma is thereby proved.

Let

λ = √τ and e1(x, λ) = e(x, τ).

Then the function e1(x, λ) will satisfy the integral equation

e1(x, λ) =
sinh μ0xλ

μ0λ
−

x

∫
0

sinh μ0(x − ξ )λ
μ0λ

a(ξ )e1(ξ , λ)dξ , (5.257)

where

μ0 =
1
√2
(1 + i), x ∈ [0, 1], λ ≥ 0.
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Lemma 5.15. Let a(x) ∈ C2[0, 1]. Then there exists a number λ1 > 0 such that for any
λ ≥ λ1 the following inequalities are true:

2
3
|sinhμ0xλ|

λ
≤ |e1(x, λ)| ≤

4
3
|sinhμ0xλ|

λ
.

Proof. Let

ε(x, λ) = μ0λ
sinh μ0xλ

e1(x, λ).

Then from (5.257) it follows that

ε(x, λ) = 1 − 1
μ0λ

x

∫
0

sinh μ0(x − ξ )λ sinh μ0ξλ
sinh μ0xλ

a(ξ )ε(ξ , λ)dξ . (5.258)

Since
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
sinh μ0(x − ξ )λ sinh μ0ξλ

sinh μ0xλ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1 + o(1) for λ 󳨀→ ∞,

from (5.258) it follows that there exists a number λ1 > 0 such that for any λ ≥ λ1 the
following inequality is correct:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
μ0λ

x

∫
0

sinh μ0(x − ξ )λ sinh μ0ξλ
sinh μ0xλ

a(ξ )dξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1

4
. (5.259)

We will search for a solution of equation (5.258) in the form of the series

ε(x, λ) =
∞

∑
k=0

εk(x, λ), (5.260)

where ε0(x, λ) = 1 and

εk+1(x, λ) = −
1

μ0λ

x

∫
0

sinh μ0(x − ξ )λ sinh μ0ξλ
sinh μ0xλ

a(ξ )εk(ξ , λ)dξ . (5.261)

According to (5.259)–(5.261), for any values of k, λ ≥ λ1, and x ∈ [0, 1]
󵄨󵄨󵄨󵄨εk(x, λ)

󵄨󵄨󵄨󵄨 ≤ 4−k . (5.262)

From (5.260)–(5.262) it follows that for any values of x ∈ [0, 1] and λ ≥ λ1

2/3 = 1 −
∞

∑
k=1

4−k ≤ 󵄨󵄨󵄨󵄨ε(x, λ)
󵄨󵄨󵄨󵄨 ≤
∞

∑
k=0

4−k .

Thus, for any values of x ∈ [0, 1] and λ ≥ λ1 we have

2
3
|sinh μ0xλ|

λ
≤ 󵄨󵄨󵄨󵄨e1(x, λ)

󵄨󵄨󵄨󵄨 ≤
4
3
|sinh μ0xλ|

λ
.

The lemma is thereby proved.
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Since

|sinh μ0xλ| = e
xλ
√2 (1 + o(1)) at λ 󳨀→ ∞,

from Lemma 5.15 it follows that there exists a number λ2 ≥ λ1 such that for any values
of λ ≥ λ2 and x ∈ [0, 1]

1
3
e

xλ
√2

λ
≤ 󵄨󵄨󵄨󵄨e1(x, λ)

󵄨󵄨󵄨󵄨 ≤
8
3
e

xλ
√2

λ
. (5.263)

Denote by L the operator acting from the space H into H defined by the formula

L ̂f (τ) = i e(1, τ)
e(x1, τ)

̂f (τ),

where e(x, τ) is defined by formula (5.251).
Further, without changing the notation extend the operator L to the maximum,

i. e., assume that

D(L) = { ̂f (τ) : ̂f (τ) ∈ H and i e(1, τ)
e(x1, τ)

̂f (τ) ∈ H} (5.264)

and

L ̂f (τ) = i e(1, τ)
e(x1, τ)

̂f (τ), τ ≥ 0. (5.265)

From Lemma 5.15 and relations (5.264)–(5.265) it follows that the operator L is linear
and unbounded.

Denote û(1, τ) by ĥ(τ), where

ĥ(τ) = F[h(t)].

Write problem (5.253) as a problem of calculating values of the unbounded operator L
as follows:

ĥ(τ) = L ̂f (τ), τ ≥ 0, ̂f (τ) ∈ D(L). (5.266)

Let M̂r ⊃ F[Mr], where Mr is defined by formula (5.245). Then

M̂r = {ĥ(τ) : ĥ(τ) ∈ H ,
∞

∫
0

(1 + τ2)󵄨󵄨󵄨󵄨ĥ(τ)
󵄨󵄨󵄨󵄨
2dτ ≤ r2}. (5.267)

Let

̂f0(τ) = F[f0(t)] and ̂fδ(τ) = F[fδ(t)].
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Then from condition (5.246) it follows that

󵄩󵄩󵄩󵄩 ̂fδ(τ) − ̂f0(τ)
󵄩󵄩󵄩󵄩H ≤ δ, (5.268)

where

̂f0(τ) ∈ D(L) and ĥ0(τ) = L ̂f0(τ)

satisfy the condition

ĥ0(τ) ∈ M̂r . (5.269)

By using the a priori information ̂fδ(λ), δ and conditions (5.268) and (5.269) it is
required to define the approximate value ĥδ(λ) of the operator L and estimate its error
‖ĥδ − ĥ0‖.

5.4.2 Calculation of the approximate values of the operator L

Split problem (5.266)–(5.269) into two problems. The first problem is

ĥ1(τ) = L1 ̂f 1(τ), 0 ≤ τ ≤ λ2
2 , (5.270)

where

ĥ1(τ) = ĥ(τ) under τ ∈ [0, λ2
2],

̂f 1(τ) = ̂f (τ) under τ ∈ [0, λ2
2],

and

L1 ̂f 1(τ) = L ̂f (τ) under τ ∈ [0, λ2
2].

Since from Lemma 5.14 it follows that the function e(1,τ)
e(x1 ,τ)

is continuous on the half-
line [0,∞), there exists a number d12 such that for any τ ∈ [0, λ2

2]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
e(1, τ)
e(x1, τ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ d12. (5.271)

Problem (5.270), (5.271) is a problem of calculating values of the bounded operator.
From relation (5.271) it follows that problem (5.271) is well-posed on the space

H1 = L2[0, λ
2
2] + iL2[0, λ

2
2].

The second problem is a problem of calculating values of the unbounded operator
L2 on the space

H2 = L2[λ
2
2 ,∞) + iL2[λ

2
2 ,∞).
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We have

ĥ2(τ) = L2 ̂f 2(τ), τ ≥ λ2
2 . (5.272)

To solve problem (5.272) we use the family {L2
α : α ≥ λ

2
2} of linear bounded opera-

tors L2
α, mapping the space H2 into H2 and defined by the formula

L2
α
̂f 2(τ) = {

L2 ̂f 2(τ), τ ≤ α,
0, τ > α.

(5.273)

We define the approximate value ĥ2,α
δ (τ) of the operator L2 by the formula

ĥ2,α
δ (τ) = L

2
α
̂f 2
δ (τ), τ ≥ λ2

2 . (5.274)

Then

󵄩󵄩󵄩󵄩ĥ
2,α
δ (τ) − ĥ

2
0(τ)
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩ĥ

2,α
δ (τ) − ĥ

2,α
0 (τ)
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ĥ

2,α
0 (τ) − ĥ

2
0(τ)
󵄩󵄩󵄩󵄩. (5.275)

Since

󵄩󵄩󵄩󵄩ĥ
2,α
0 (τ) − ĥ

2
0(τ)
󵄩󵄩󵄩󵄩

2 ≤
∞

∫
α

󵄨󵄨󵄨󵄨ĥ0(τ)
󵄨󵄨󵄨󵄨
2dτ, ĥ0(τ) ∈ M̂r . (5.276)

It follows from (5.267) and (5.269) that

∞

∫
α

󵄨󵄨󵄨󵄨ĥ0(τ)
󵄨󵄨󵄨󵄨
2dτ ≤ 1

1 + α2

∞

∫
α

(1 + τ2)󵄨󵄨󵄨󵄨ĥ0(τ)
󵄨󵄨󵄨󵄨
2dτ ≤ r2

1 + α2 . (5.277)

It follows from (5.276) and (5.277) that

󵄩󵄩󵄩󵄩ĥ
2,α
0 (τ) − ĥ

2
0(τ)
󵄩󵄩󵄩󵄩 ≤

r
√1 + α2

. (5.278)

It follows from (5.268) and (5.274) that

󵄩󵄩󵄩󵄩ĥ
2,α
δ (τ) − ĥ

2,α
0 (τ)
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩L

2
α
󵄩󵄩󵄩󵄩δ. (5.279)

Since it follows from (5.270)–(5.273) that

󵄩󵄩󵄩󵄩L
2
α
󵄩󵄩󵄩󵄩 = max

λ2
2≤τ≤α

|e(1, τ)|
|e(x1, τ)|

, (5.280)

by (5.275) and (5.278)–(5.280) we obtain

󵄩󵄩󵄩󵄩ĥ
2,α
δ (τ) − ĥ

2
0(τ)
󵄩󵄩󵄩󵄩 ≤

r
√1 + α2

+ δ max
λ2

2≤τ≤α

|e(1, τ)|
|e(x1, τ)|

. (5.281)
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It follows from (5.263) and (5.280) that

1
16
e(1−x1)√α/2 ≤ 󵄩󵄩󵄩󵄩L

2
α
󵄩󵄩󵄩󵄩 ≤ 16e(1−x1)√α/2. (5.282)

Since it follows from relation (5.276) that

sup
ĥ0∈M̂r

󵄩󵄩󵄩󵄩ĥ
2,α
0 (τ) − ĥ

2
0(τ)
󵄩󵄩󵄩󵄩

2 = sup
ĥ0∈M̂r

∞

∫
α

󵄨󵄨󵄨󵄨ĥ0(τ)
󵄨󵄨󵄨󵄨
2dτ,

it follows from (5.277) and (5.278) that

sup
ĥ0∈M̂r

󵄩󵄩󵄩󵄩ĥ
2,α
0 − ĥ

2
0
󵄩󵄩󵄩󵄩 =

r
√1 + α2

. (5.283)

If the value of the parameter α = α(δ) in formula (5.274) is selected from the equa-
tion

16r
√1 + α2

= δe(1−x1)√α/2, (5.284)

then it follows from (5.281) and (5.284) that

󵄩󵄩󵄩󵄩ĥ
2,α(δ)
δ − ĥ

2
0
󵄩󵄩󵄩󵄩 ≤

2r
√1 + α2(δ)

. (5.285)

Since the functions √1 + α2 and e(1−x1)√α/2 ∈ C[λ2
2 ,∞) are strictly increasing, it

follows from Theorem 1 proved in [90] that estimate (5.285) is accurate-by-order, i. e.,
there exists a number d13 > 0 such that for sufficiently small values of δ the following
relation is correct:

sup{󵄩󵄩󵄩󵄩ĥ
2,α(δ)
δ − ĥ

2
0
󵄩󵄩󵄩󵄩 : ĥ

2
0 ∈ M̂r ,

󵄩󵄩󵄩󵄩 ̂f
2
δ − ̂f

2
0
󵄩󵄩󵄩󵄩 ≤ δ} ≥ d13(1 + α

2(δ))−
1
2 .

It follows from Theorem 2 proved in [90] that the method {L2
α(δ) : 0 < δ ≤ δ0},

defined by formulas (5.273) and (5.284), will be optimal-by-order on the class M̂r, i. e.,
there exists a number d14 > 0 such that for sufficiently small values of δ the following
relation is correct:

2r
√1 + α2(δ)

≤ d14 sup{󵄩󵄩󵄩󵄩L
2 ̂f 2(τ)󵄩󵄩󵄩󵄩 :

󵄩󵄩󵄩󵄩 ̂f
2󵄩󵄩󵄩󵄩 ≤ δ, L

2 ̂f 2 ∈ M̂r}.

Now, alongside with equation (5.284), consider the following two equations:

e(1−x1)√
α
2 = 16r

δ
, (5.286)

e2(1−x1)√
α
2 = r

16δ
. (5.287)
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Denote the solution of equations (5.286) and (5.287) by α1(δ) and α2(δ), respectively.
Then

α1(δ) =
2
(1 − x1)2

ln2 16r
δ

and α2(δ) =
1

2(1 − x1)2
ln2 r

16δ
.

There exists α1 > λ2
2 such that for α ≥ α1 the following relations will be correct:

e(1−x1)√
α
2 ≤ √1 + α2e(1−x1)√α/2 ≤ e2(1−x1)√

α
2 . (5.288)

Therefore, from (5.284) and (5.286)–(5.288) it will follow that for α ≥ α1

α2(δ) ≤ α(δ) ≤ α1(δ). (5.289)

Thus, it will follow from (5.289) that

α(δ) ∼ ln2 δ under δ 󳨀→ 0. (5.290)

It follows from (5.290) that there exists a number d14 > 0 such that for sufficiently
small values of δ the following estimate is true:

󵄩󵄩󵄩󵄩ĥ
2,α(δ)
δ − ĥ

2
0
󵄩󵄩󵄩󵄩 ≤ d14 ln−2 δ. (5.291)

We will define the solution of problem (5.270) by the formula

ĥ1
δ(τ) = L

1 ̂f 1
δ (τ), 0 ≤ τ ≤ λ2

2 . (5.292)

It follows from (5.271) and (5.292) that

󵄩󵄩󵄩󵄩ĥ
1
δ(τ) − ĥ

1
0(τ)
󵄩󵄩󵄩󵄩 ≤ d12δ. (5.293)

We define the final solution ĥδ(τ) of problem (5.266)–(5.269) by the formula

ĥδ(τ) = {
ĥ1
δ(τ), 0 ≤ τ ≤ λ2

2 ,
ĥ2,α(δ)
δ (τ), τ ≥ λ2

2 .
(5.294)

It follows from (5.291), (5.293), and (5.294) that there exists a number d15 > 0 such
that for sufficiently small values of δ

󵄩󵄩󵄩󵄩ĥδ(τ) − ĥ0(τ)
󵄩󵄩󵄩󵄩 ≤ d15 ln−2 δ. (5.295)

Now consider the subspace H0, defined by the formula

H0 = F[L2[0,∞)],



5.4 On estimating the approximate accuracy of a solution | 121

and denote by hδ(τ) an element defined by the formula

hδ(τ) = pr(ĥδ(τ),H0).

Since ĥ0(τ) ∈ H0, from (5.295) it follows that

󵄩󵄩󵄩󵄩hδ(τ) − ĥ0(τ)
󵄩󵄩󵄩󵄩 ≤ d15 ln−2 δ. (5.296)

Finally, we define the solution hδ(t) of the inverse problem (5.238)–(5.240), (5.244)
by the formula

hδ(t) = F
−1[hδ(τ)]. (5.297)

It follows from (5.296) and (5.297) that

󵄩󵄩󵄩󵄩hδ(t) − h0(t)
󵄩󵄩󵄩󵄩 ≤ d15 ln−2 δ.
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