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ABSTRACT 

Airwriting enables users to write letters or characters in free space using hand or finger 

movements, with potential applications in human-computer interaction, virtual reality, 

augmented reality and development of assistive technologies. Despite advancements in 

gesture recognition technology, dynamic airwriting faces challenges with accuracy and 

often lacks real-time capabilities, limiting its application in non-verbal communication 

and rehabilitation devices. The primary objective of this research is to develop a novel 

real-time deep learning-based framework for airwriting recognition using surface 

electromyography (sEMG). This study presents a technique for real-time identification of 

uppercase English language alphabets written in free space by analyzing the electrical 

activity of forearm muscles involved in writing letters. The proposed framework involves 

sEMG data collection from 16 right handed healthy subjects with no neuromuscular or 

motor impairments, signal preprocessing, feature extraction, classification using 

Convolution neural network (CNN), Deep neural network (DNN) and Recurrent Neural 

Network (RNN).The best performing model was implemented in real-time and it was 

evaluated using performance metrics such as accuracy, precision, recall, F1 score, 

Confusion metrics and latency. Results show that 1 Dimensional (1D) CNN outperforms 

other models (p<0.05) and achieved an offline test accuracy of 89.81 ±0.87% and an 

average real-time test accuracy of 73.71 ±8.46% across subjects. The individual model of 

each subject performed even better, with an accuracy of 90.01 ±2.85% on offline testing 

of data and 75.45 ±1.53 % in real-time alphabet prediction. Thus, this work highlights the 

potential of deep learning models for real-time airwriting detection and provides 

foundations for sEMG-based airwriting applications in healthcare and telemedicine.  

Keywords: : Electromyography (EMG), Airwriting, Deep learning, Convolution 

neural network (CNN), Human Computer Interaction 



 1 

CHAPTER 1: INTRODUCTION 

1.1 Brief overview of electromyography (EMG) 

Electromyography (EMG) is a technique used to measure the electrical activity of 

skeletal muscles. It detects the electrical potentials generated by muscle cells, when these cells 

are electrically or neurologically stimulated [1]. It can be recorded using two main types: surface 

electromyography (sEMG) and intramuscular EMG. sEMG does not require penetration of the 

skin and involves placing electrodes directly on the skin surface to record activity of muscles and 

tendons from underneath the skin. Intramuscular EMG on the other hand utilizes thin needle 

electrodes that are inserted into the muscles and is mainly applied clinically and gives more 

localized information. EMG is suitable for application in clinical practices and research studies. 

In the clinical settings, it is used to detect diseases like carpal tunnel syndrome, muscular 

dystrophy and motor neuron diseases among others. It has been applied in a variety of research 

fields, including kinesiology, sports science, human-computer interaction[2], rehabilitation, and 

prosthesis control [3]. It offers insightful information on how muscles operate.   

 

 

 

 

 

 

 

Figure 1.1: Electromyography (EMG) Technique for Monitoring Muscle and Nerve Activity 
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In general, EMG is a general and effective technique for analyzing the muscle contraction 

pattern, for diagnosing various neuromuscular disorders and for investigating new paradigms of 

operating devices based on muscle signals. Figure 1.1 illustrates an EMG test where electrodes 

are placed on the skin surface to record electrical activity from the muscles and nerves in the 

arm. The needle represents intramuscular EMG, used for more precise measurement of muscle 

activity, while surface electrodes capture signals from the skin. The monitor displays nerve 

(blue) and muscle (red) electrical signals, used to evaluate neuromuscular function. 

1.2 Concept of airwriting 

Airwriting is the process of writing words or characters in the free space using hand or 

finger movements [4]. This technology holds great promise for hands-free and touchless 

interaction since it allows users to input text without making physical contact with a surface. 

Airwriting recognition algorithms attempt to interpret and translate these motions into digital text 

for use in augmented reality (AR), virtual reality (VR), and assistive technologies for people with 

impairments [5]. Figure 1.2 shows the framework of airwriting recognition using sEMG. 

Figure 1.2: Framework of airwriting recognition using surface Electromyography 

1.3  Limitations in current airwriting recognition systems 

The first and main problem of airwriting recognition is the differentiation of complicated 

and changing hand gestures in real-time data. In contrast to conventional writing that is done on 
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a surface, which limits hand movements and serves as a reference point, airwriting does not have 

a spatial and temporal reference for the analysis of hand gestures. The movements involved in 

airwriting gestures may differ from one person to another depending on the speed at which the 

person writes, the size of the hand, and the amount of energy the person uses while airwriting. 

These variations and the problem of maintaining accurate character classification still prove to be 

quite challenging to catch. One of the primary challenges in airwriting recognition is accurately 

analyzing the complex and fluctuating sEMG signals generated during the airwriting process. 

These signals are influenced by numerous factors, including muscle fatigue, electrode placement, 

and individual variations in anatomy of muscles. Character recognition in existing airwriting 

recognition systems is generally inaccurate due to substantial variability in sEMG signals. 

Furthermore, a lot of the existing techniques rely on manually created features and conventional 

machine learning techniques, which might not adequately capture the complex patterns in sEMG 

data. sEMG-based airwriting recognition systems 

1.4 Problem Statement 

Despite the advancement in gesture recognition, most of the work has shifted towards 

working with static gestures with little or no work done on dynamic gestures such as airwriting. 

Some of the few systems, which try to detect airwriting gestures, often do not possess the real-

time characteristic, which is essential in most real-life applications including the HCI. This gap 

in real time recognition hinders the growth of assistive technologies and nonverbal 

communication mechanisms that are essential to people with speech impediments or those with 

prosthetics. The lack of accurate and real time systems presents an important challenge to the 

further development of air writing as a viable and efficient method of text input. Hence, deep 

learning in combination with surface electromyography (sEMG) signals has the potential to 

eliminate these drawbacks and allow accurate real-time identification of airwriting and improve 

the usability of such systems in multiple contexts. 

1.5 Aims and Objectives 

The main objective of this research is to develop a deep learning-based framework for 

airwriting recognition using sEMG signals. The work in this paper uses Neural Networks 

(DNNs) for the realization of automatic learning and extraction from sEMG signals to develop 
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meaningful features that are expected to boost the recognition accuracy of airwriting. Advanced 

signal processing techniques and a robust deep learning model would be used to address the 

problem identified by developing a framework with the potential to handle and reduce the sEMG 

signal variability, hence improving overall airwriting recognition system performance. The 

following are some of the ways that the proposed framework can address the identified problems 

and limitations. First, sEMG sensors are used allowing the system to record the electrical 

muscles’ activity, which are engaged in the movements characterizing airwriting. This is much 

more accurate and detailed than other movements such as motion sensors for instance 

accelerometers or gyroscopes. By using sEMG it eliminates the need for spatial tracking and the 

adverse impacts of noise thus enhancing the accuracy in recognizing the characters. Second, the 

framework uses deep neural networks (DNNs) that can make predictions about non-linear and 

high-dimensional features, such as the fluctuations in muscle signals during airwriting. DNNs as 

opposed to other conventional algorithms, does not require feature engineering from raw data 

since it independently extracts features. This is for a purpose to improve the generalization 

across the different users; ensuring that variations in the writing speed, style and muscle mass are 

well addressed by the model. Training the network by exposing it with different data sets can 

also explain the variation between persons and enhance the general classification ability of the 

system. In addition, the framework is a real-time one and enables characters to be recognized as 

soon as the airwriting gesture required has been performed. This is attained through the signal 

preprocessing I have described and by attaining a short inference time in the deep learning 

model. The real time aspect of the system makes it very useful for such applications as 

interactive applications that involve virtual reality, augmented reality and even assistive 

technologies that require instantaneous feedback. 

1.6 Research related to surface electromyography-based systems and airwriting 

recognition 

The latest studies have also tried to expand the methods based on sEMG to dynamics, 

including air writing. For instance, Maier-Hein et al. in 2012 described an airwriting system in 

which inertial sensors fused with sEMG the characters written in the air[6]. While their system 

worked well it did not perform well in real-time and failed to stay consistent with users. 

Likewise, Li et al. (2019) worked on airwriting recognition using surface electromyography 
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(sEMG) employing time domain features with k-nearest neighbor (KNN) classification [7]. 

Although there was an enhancement in the system, there was still an issue of consistency of 

writing speed and muscle fatigue as it reduced the rate of recognition. Gesture and airwriting 

recognition using sEMG-based interfaces has been targeted for research for a long time. The 

conventional procedure often includes feature extraction, usually followed by classification using 

machine learning algorithms like support vector machine (SVM) [8] and k-nearest neighbors 

(KNN) [9]. However, the methods did, in fact, call for high domain knowledge towards feature 

engineering and do not serve as general solutions for different kinds of users and conditions. 

Recent advances in deep learning have brought closer the possibility of outdoing these 

limitations. Neural networks with CNNs have been found useful for the classification of sEMG 

signals and outperformed traditional methods. The automatic learning capability in CNNs has 

been strongly proven by different studies for learning relevant features from raw sEMG signals 

[10], [11], [12], hence reducing the need for manual feature extraction. However, there lies a 

further gap to be explored in CNN architectures, and new steps toward their optimization are 

absolutely needed to enhance robustness against signal variability. More advanced techniques 

known as ‘deep learning’ have in the recent past been incorporated in enhancing airwriting 

recognition systems. In a study [13], the authors used the CNN for classification of the airwriting 

characters based on the sEMG signals acquired from the hand. To enhance the spatial and 

temporal characteristics of muscle activities, the CNNs were incorporated in the model. 

However, the use of real-time processing and computing encountered limitations because of the 

computational issues concerning deep learning and its performances varied across subjects. In 

the same regard, another limitation witnessed is the need for massive training data to get 

desirable accuracy levels. 

1.7 Importance of airwriting recognition by sEMG and DNNs 

The further potential from this study resides in the contributions of airwriting recognition 

by utilizing surface electromyography (sEMG) and deep neural networks (DNNs). As airwriting 

recognition will have vast utility in low-proper HCI, assistive technologies, and AR, a system 

that comprises high recognition rate real-time airwriting recognition will highly boost uses of 

such technologies. This research also fills the existing knowledge gap which has been a subject 
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of debate, especially due to the shortcomings of current systems in recognizing dynamic gestures 

in real time, that is, in the development of smart and efficient user interfaces. The above 

theoretical framework is especially significant when it comes to developing new assistive 

technologies, which could enrich the lives of people with speech or physical disabilities. Because 

airwriting allows real-time and non-verbal interaction, it can be useful for those who have 

mobility or speaking difficulties in navigating technology. Moreover, the prosthetic devices’ 

users might benefit from the more sensitive and accurate signal especially when interacting with 

the environment, thus meaning an increase of their daily usability of the system. 

The value of this research is a potential breakthrough in airwriting recognition and its 

applications. This contribution brought to light a deep learning-based framework to handle 

critical limitations in current airwriting recognition systems that are sensitive to signal variability 

and rely on manual feature extraction. The devised strategy has the end goal to enhance the 

robustness and accuracy of airwriting recognition to guarantee real-world application reliability. 

Improved airwriting recognition will create, through improved human-computer interaction, the 

ability for the use of digital devices to be conducted seamlessly and without physical contact. 

This will be especially important in environments such as AR and VR. It could be of help to the 

disabled for intuitive and efficient ways of communication, therefore granting greater 

independence and a higher quality of life.  

The methods developed in this research could also apply to other areas of sEMG signal 

analysis such as monitoring muscle activity in rehabilitation programs or controlling prosthetic 

devices with better precision. It contributes to the development of novel input methods beyond 

traditional keyboards and touchscreens, assisting in new paradigms of user interaction with 

technology. This research develops new capabilities for sEMG-based applications by addressing 

most of the limitations and enhancing the performance of airwriting recognition systems. To this 

end, this work provides a solution that helps to overcome several of the difficulties with previous 

airwriting systems. 

 First, it improves accuracy compared to previous methods such as surface 

electromyography (sEMG) and deep neural networks (DNNs) capture detailed patterns of 

contraction and relaxation of the muscles in airwriting gestures. Due to the ability of deep 
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learning models to handle large number of features in dataset, models derived from this approach 

provide better classification results as compared to conventional machine learning algorithms. 

Second, the proposed framework is aimed to be a real-time recognition schema that is possible 

by the signal preprocessing pipeline’s optimization and the use of efficient deep learning 

architectures. This real-time capability is clearly superior to many other systems that gather data 

offline, resulting in a suitability for interactive systems used in augmented reality (AR), virtual 

reality (VR), and human-computer interaction (HCI). Third, the flexibility of the proposed deep 

learning models allows for the system to be able to deal with different user’s writing patterns and 

speeds, as well as the different muscular inputs required to carry out the writing. This makes it 

possible to improve reliability and accuracy for various users of the result. Finally, in comparison 

with other frameworks, ours considers both opportunities for real-time performance during the 

experiment and the possibility of using it in practice, therefore its usability was higher. The 

system is designed to be implemented in wearable gadgets, AR terminals and support 

applications so that the result is as natural airwriting as possible for the user. 

Thus, the present work presents a proposed framework as a solution to the major issues 

associated with current air writing recognition systems, which include efficiency, speed, 

flexibility, and ease of use. The proposed approach utilizes the surface electromyography 

(sEMG) signal and deep neural networks to analyze airwriting gestures at a muscle level that 

increases the accuracy of classification. Real-time performance and the ability to learn from one 

user and perform well with others makes it possible for the system to be applied in many 

practical applications such as human computer interaction, augmented reality and in assistive 

technologies. Overall, this thesis advances the topic of airwriting recognition and helps to outline 

a steadier and more manageable course of development for the proposed type of interface, which 

will be beneficial for users with different disabilities. 
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CHAPTER 2: LITERATURE REVIEW 

Airwriting recognition includes the identification of characters or digits traced in the air 

with the hands, by the individual involved. I conducted a systematic search across established 

databases (e.g., PubMed, ACM Digital Library, IEEE, Xplore,) using related keywords such as 

"airwriting," "sEMG," "gesture recognition," "machine learning," and "deep learning."  

Table 2.1: Overview of the current state of research in real-time airwriting recognition using 

sEMG and deep neural networks 

# Title Key Findings Methodology Limitations 

1 
SurfMyoAir: A 

Surface 

Electromyography-

Based Framework 

for Airwriting 

Recognition [14] 

Achieved 78.50% 

accuracy in user-

dependent and 62.19% 

in user-independent 

airwriting recognition 

using short-time Fourier 

transform and deep 

learning. 

EMG signal 

recording, feature 

extraction, deep 

learning for 

classification 

Limited 

vocabulary 

(English 

uppercase 

alphabets) 

2 Hand gesture 

classification using 

time–frequency 

images and transfer 

learning based on 

CNN [15] 

Demonstrated 

feasibility of real-time 

airwriting recognition 

with 86.2% accuracy 

using online EMG 

processing and CNNs. 

Online EMG signal 

processing, CNN 

classification 

High 

computational 

cost, limited 

dataset 

3 SCLAiR: Supervised 

Contrastive Learning 

for User and Device 

Independent 

Achieved high user and 

device-independent 

airwriting recognition 

(78.50% user-

Supervised 

contrastive learning 

with CNNs, two-

stage classification 

Requires labeled 

data, 

computationally 

expensive 
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Airwriting 

Recognition [16] 

dependent, 62.19% 

user-independent) using 

supervised contrastive 

learning with raw 

motion sensor data. 

4 ImAiR: Airwriting 

Recognition 

Framework Using 

Image 

Representation of 

IMU Signals [17] 

Achieved high accuracy 

in airwriting 

recognition (89.20%) 

using 2D images 

generated from IMU 

data and CNN 

classification. 

CNN classification 

with 2D IMU 

image 

representation 

Limited user and 

device 

independence, 2D 

representation 

might lose 

information 

5 Deep Learning 

Based Air-Writing 

Recognition with the 

Choice of Proper 

Interpolation 

Technique[18] 

Proposed a hybrid 

model using multi-

channel EMG and 

RNNs to achieve 91.3% 

accuracy in alphabet 

recognition and 76.4% 

in word recognition. 

Multi-channel 

EMG recording, 

RNN for gesture 

decoding 

Complex model 

requires 

substantial 

training data 

6 Multi-Stroke 

handwriting 

character recognition 

based on sEMG 

using CNNs [19] 

Utilized transfer 

learning from pre-

trained CNNs for EMG 

signals, reaching 87.1% 

accuracy in character 

recognition. 

Transfer learning 

with pre-trained 

CNNs, EMG 

feature extraction 

Potential lack of 

domain-specific 

adaptation 

7 EMG-Based 

Airwriting on 

Virtual Keyboards: 

Evaluated different 

feature extraction 

methods for EMG 

EMG feature 

extraction 

comparison, virtual 

Limited focus on 

letter shape 

recognition 
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A Comparative 

Study of Feature 

Extraction 

Techniques [20] 

signals in virtual 

keyboard airwriting, 

achieving up to 92.5% 

accuracy with Mel-

Frequency Cepstral 

Coefficients. 

keyboard 

application 

8 On the Use of 

Temporal and 

Spectral Central 

Moments of Forearm 

Surface EMG for 

Finger Gesture 

Classification [21] 

Developed a system 

using wrist-worn EMG 

for handwriting, 

demonstrating its 

viability for users with 

limited hand mobility. 

Analyzed sEMG 

signals from three 

forearm sensors 

positioned in an 

armband 

configuration.  
 

 Relatively small 

dataset (20 

participants).Limi

ted gesture 

vocabulary (seven 

gestures).  Not 

evaluated for real-

time applications 

2.1 Methodological Approaches 

2.1.1 Surface Electromyography 

sEMG might be able to capture the electrical signal that represents muscle contractions, 

thus offering a non-invasive gesture recognition technique. It is indeed more appropriate for 

dynamic gestures like airwriting because conventional methods fail when reference points are 

fixed. From existing literature, it can be determined that sEMG can successfully recognize air-

written characters by combining activity patterns of their muscles with different gestures[22]. 

sEMG has found extensive application in gesture recognition, rehabilitation, prosthetics, and 

human-computer interaction due to its non-invasive nature. sEMG records electrical activity 

generated by skeletal muscles during movement, and its sensitivity to recognize subtle hand 

and wrist movements makes it preferable for the recognition of airwriting applications. Studies 

proved that sEMG could catch complex muscle signals corresponding to fine motor tasks, such 

as writing, further supporting the use of the gesture-based systems [23]. sEMG yields high-

resolution information about muscle activity. Hence, the specific contractions related to writing 

tasks can be decoded that cannot be caught by vision-based systems. It has identified how 



 11 

muscle activities that track writing motions can be captured using sEMG electrodes on the 

forearm [24], which means that special activation patterns in forearm muscles are prompted by 

specific alphabetic gestures and allow for accurate characterization of air written characters. 

2.1.2 Deep Learning Techniques 

Convolutional Neural Networks (CNNs) also find applications in gesture recognition since it 

can learn spatial hierarchies of features[25]. Experimentations illustrate that CNNs outperform in 

high accuracy of airwriting gesture recognition on using data from cameras or sensors[4]. Long 

Short-Term Memory (LSTM) networks along with CNNs are also studied to consider the 

temporal dependencies in the data to improve performance. DNNs, particularly CNNs and 

RNNs, have already been largely applied for the analysis of sEMG data in gesture and airwriting 

recognition[26].  

CNNs are good at capturing spatial dependencies in the sEMG signals, while LSTMs are 

skilled at modelling the temporal aspects. Unlike the traditional methods of machine learning, 

which rely on hand-crafted features, DNNs can autonomously extract hierarchical 

representations from raw sEMG data. CNN-LSTM hybrid model was successfully applied to 

time-series sEMG data for recognizing dynamic gestures[27]. In airwriting, Liu et al. (2020) 

demonstrated that CNNs learn local features such as muscle activation intensity and LSTMs 

learn the temporal sequence of movements corresponding to different alphabets[28]. 

2.1.3 Recognition of Real-Time Airwriting Characters 

Low latency sEMG signal processing and accurate classification are also required for real-

time airwriting recognition[29]. In fact, the processing speed of real-time sEMG-based systems 

should not be at the cost of accuracy; thus, DNNs are apt as they can classify complex patterns 

while keeping latency low. Real-time feedback is highly essential for an airwriting system, 

particularly in the context of certain applications, such as HCI and rehabilitation [30]. Instant 

recognition is needed to ensure seamless interaction between users and devices. Optimized 

architectures of neural networks and efficient signal preprocessing techniques, such as low pass 

filtering and denoising, are important. Yang et al. showed a system achieved real time by 

reducing the computational complexity while keeping high accuracy with lightweight CNNs[31]. 
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Table 2.2: Basic key points of Airwriting Recognition System 

Modality Approach Key points 

Custom glove 

with 

sensors[32] 

Hidden Markov 

Models + Language 

Model 

This method uses a specially designed glove with 

sensors to capture hand movements, followed by 

Hidden Markov Models for character recognition 

and a language model to improve accuracy. 

Wifi 

remote[33] 

Hidden Markov 

Model 

This approach relies on a Wi-Fi remote control as 

the input device, with Hidden Markov Models for 

gesture recognition. 

Wrist-worn 

inertial 

sensor[34] 

Convolutional 

Neural Network 

This method employs a wrist-worn sensor to 

measure hand motion and utilizes a Convolutional 

Neural Network for gesture classification. 

Wrist-worn 

inertial 

sensor[16] 

Supervised 

Contrastive Loss 

This approach features a wrist-worn sensor and 

leverages a supervised contrastive loss function 

for improved gesture recognition accuracy. 

Wrist-worn 

inertial 

sensor[17] 

Image representation 

of signals 

This method converts the sensor data into images 

and then uses image-based recognition techniques, 

such as CNNs, for gesture classification. 

Computer 

vision[35] 

Spatio-temporal 

residual architecture 

This method uses computer vision techniques with 

specific neural network architecture (spatio-

temporal residual) to recognize gestures based on 

video recordings. 

Computer 

vision[36] 

Region-based CNN This approach relies on computer vision and 

Region-based Convolutional Neural Networks to 

identify gestures from video data. 
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2.2 Theoretical Framework 

2.2.1 Temporal Trajectory Analysis 

This approach bases its interest on tracking the trajectory of hand movement across the three-

dimensional space while a user writes in air[37]. It argues that unless the traces of such were 

known, it would be impossible to identify characters since such traces differ significantly 

compared to static writing styles. The theory emphasizes the fact that in the design of such 

recognition systems, there is a high demand for the ability of algorithms to change according to 

the varied writing styles and the speed of different users[38]. 

2.2.2 Multi-Loss Minimization Framework 

Some recent studies develop frameworks that minimize several loss functions simultaneously 

while training the model[39]. Such a framework is targeted for enhancing feature embedding and 

classification accuracy in sEMG-based airwriting recognition systems[40]. Optimization of 

several aspects of the model simultaneously has helped researchers achieve some better 

performance metrics compared to traditional single-loss models[41]. 

2.3 Harmonizing Approach 

2.3.1 Integration of Various Technologies 

Combining sEMG with other sensing technologies, such as radar or inertial sensors, has been 

proposed to enrich the accuracy of recognition and the user experience[42]. An alternative 

possibility for the use of radar is to detect hand movements without physical contact, which 

provides an intuitive interface for users[43]. The harmonization of various methods allows for 

better strategies for data capture and processing and leads to better real-time performance. 

2.3.2 User-cantered design 

Most of the papers focus on designing systems in ways that accommodate individual user 

differences in writing styles and preferences[44]. The aim of such an approach to the user is both 

to improve accuracy and to please and involve the user with the technology. In ensuring effective 

airwriting systems, it is critical to align the sEMG acquisition with deep learning models. The 
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real-time airwriting systems require the right balance between signal processing, neural network 

computation, and user comfort[45]. Poor integration may produce high latencies or errors in 

recognition while thereby reducing user experience. Optimization of preprocessing steps and 

selection of lightweight DNN architectures, such as shallow CNNs, ensures that the airwriting 

system remains responsive while at the same time providing high classification accuracy[46]. 

2.4 User Variability and Generalization 

One of the most significant problems with airwriting recognition, however, is its user 

dependency in terms of writing as data augmentation techniques enhance generalizability across 

different users[47]. Writing styles can differ dramatically between people, and an individual even 

writes letters differently under different contexts. Generalization across users ensures that the 

system can be applied to a wide range of individuals. Variability has largely been approached 

with data augmentation and transfer learning. Transfer learning is used to port models that were 

trained from one class of users to the target unseen ones and argued that if it were adapted 

well[48], it could greatly improve performance in sEMG-based air-writing recognition. I also 

investigated citations of key papers and explored related conference proceedings. Studies were 

included if they were focusing on airwriting recognition using sEMG signals. Quantitative 

results for character or gesture recognition accuracy are reported  

Table 2.3: Inclusion/Exclusion Criteria and Literature Search 

Sr Database Inclusion Criteria Exclusion Criteria 

1 PubMed Focused on airwriting recognition 

using sEMG signals. Reported 

quantitative results for character or 

gesture recognition accuracy.  

Employed a clear methodology with 

details on data acquisition, feature 

extraction, model selection, and 

evaluation techniques. Published 

Relied solely on modalities other than 

sEMG (e.g., vision, motion tracking).  

Used simulated or synthetic data 

without validation on real user data.  

Did not report quantitative results for 

airwriting recognition. Focused on 

static gesture recognition. 



 15 

within the last five years. 

2 IEEE 

Xplore 

Focused on machine learning or deep 

learning approaches for airwriting 

recognition using sEMG .Reported 

results on real-time or online 

recognition systems (preferred). 

Relied solely on traditional signal 

processing techniques 

Focused on offline analysis or pre-

recorded data. 

3 Research 

gate 

Relevant to airwriting recognition 

research (e.g., studies on similar 

tasks like handwriting recognition 

Not focused on sEMG or motor 

control aspects Primarily review 

papers or theoretical work. 
 

4 Google 

Scholar 

Broader search to identify potential 

studies not indexed in other 

databases. Focused on the 

development of user-friendly and 

accessible airwriting interfaces. 

Duplicate entries from previous 

searches. Primarily engineering-

oriented studies without strong 

evaluation of recognition accuracy. 
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CHAPTER 3: METHODOLOGY 

The surface electromyography (sEMG) signals used in the proposed system for airwriting 

identification involve multiple crucial steps, including data preparation, signal preprocessing, 

feature extraction using a CNN, and classification. These steps are described in Figure 3.1. 

Figure 3.1:  Process involve in developing and implementing Real-Time airwriting recognition 

system 
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The system's overall performance depends on each of these phases. The details of the 

methodology adopted for developing and implementing this proposed system will be discussed 

in the succeeding chapter. This research aims to design an alphabet recognition system using 

real-time sEMG and deep learning models. The chapter deals with the steps taken from data 

acquisition, preprocessing, and feature extraction up to the training, testing, and validation 

phases of the machine learning models. Figure 3.2 shows a block diagram of proposed 

framework. A thorough explanation of the process is provided below. 

Figure 3.2: Block Diagram of proposed system for airwriting identification 

3.1 Data Collection 

Data collection is an integral part of research because it provides the basic sEMG signals 

required for training and testing the deep neural network for airwriting recognition in real time. 

The following are the structures of how I use participants, devices, tasks, and storage protocols in 

my research. 
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3.1.1 Participant Recruitment 

In this study, 16 healthy individuals; 6 male and 10 female aged between 20 and 35 years 

participated. The participants were screened for pre-existing neuromuscular or motor 

impairments. Therefore, all participants were guaranteed to be free of such impairments leading 

to a homogeneous sample that would allow the collection of accurate sEMG signals during 

airwriting tasks. 

3.1.2 Device Setup 

sEMG signals were recorded from the forearm muscles of participants with the Delsys 

Trigno wireless sEMG system; this system was chosen because it has high precision and is 

wireless, thus in no way limiting participants' freedom of airwriting while at the same time 

affixing cables to physical bodies. 

Figure 3.3: Trigno Base Station(left), EMG electrodes (Right) 

3.1.3 Electrode Placement 

sEMG electrodes were placed over the flexor and extensor muscles of the forearm. Since 

these muscles mostly control the movements of the hand and fingers as needed for writing, their 

activities have been adequately captured during the task of airwriting on the part of the 

participant. 
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Figure 3.4: Configuration of electrode placement on the muscles of the participant 

3.1.4 Airwriting Experiment 

Participants had to write out uppercase English alphabets (A–Z) in a controlled setting. Each 

of the participants performed the task twice for every letter, so in total, there would be 52 

samples per participant (2 trials for each letter). This scheme allows changes between trials to 

occur, in effect increasing the amount of information gotten from the dataset. Each experiment 

was conducted for 2 to 4 seconds based on how complex the word written might be. The 

experimenter allowed for as much time as necessary to ensure the writing movements to be 

smooth and not impeded. The sEMG signals of the airwriting experiments were in `. npy` format, 

since such multidimensional time series data are very efficiently stored in this format, which is 

beneficial for further processing. 

3.1.5 Data Storage 

The obtained data was systematically structured with a folder structure. Each participant's 

folder got assigned a folder, labelled by participant number (e.g., `Participant_1`, `Participant_2`, 

etc.). Inside each of these participant folders, the trials were saved under a standardized naming 

convention based on the letter and trial number (e.g., `A_TRIAL_1.npy`, `A_TRIAL_2.npy`, 

etc.). The `. npy` files contained raw sEMG signals sampled at a high sampling rate of 2000 Hz, 

which would help in having an accurate fine temporal resolution of muscle activity during the 
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execution of each airwriting task. This offered very rich data capture that adequately helped in 

creating a robust dataset for the subsequent stages of preprocessing, feature extraction, and 

development of deep learning models. 

3.2 Data Collection Protocol 

Through the GUI developed from the use of the Tkinter  library in Python, the process of data 

collection is made easier and automated for the sEMG signals. The GUI was, therefore, designed 

to aid subjects in providing trials related to the collection of muscle signals corresponding to 

hand gestures of writing alphabet characters. The system is integrated with the Delsys Trigno 

EMG system for the recording of surface electromyography from the muscles of the forearm. 

This stage primarily involved recording sEMG signals while subjects were writing capital 

English alphabets from A to Z. The application transmitted on the GUI screen instructions that 

flashed one character at a time with 2 s of muscle contraction and 1 s of relaxation. This type of 

pattern ensured that the same data is recorded uniformly among the trials.  

3.2.1 GUI Design and Features 

The features that emerged on the GUI were as follows: 

• Character Display: The GUI displayed every character in a large readable format where 

the subject managed to write during the trial. Once the muscle contraction phase ended, it 

automatically transitioned into the rest phase. 

• Timer: A timer came out as a countdown which provided the visual cues on the 

remainder of time left for each trial. 

• Progress Bar: A progress bar was added to update the user on the completion status of 

the trial sequence.  

• Auto Saving of Data: For each trial after its completion, the data is saved automatically in 

`.npy` format to store multidimensional EMG signals in an optimal fashion. 

The Delsys Trigno EMG system was connected to the application, continuously acquiring 

sEMG signals with a sampling rate of 2000 samples per second. Signal acquisition employed 

5 channels, processing data in real-time. For each subject, 52 samples were collected, as two 
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trials were conducted for every one of the 26 characters. For every trial, the system recorded 

EMG signals from the active forearm muscles during both contraction and rest phases. 

 

 

 

 

 

Figure 3.5: GUI Protocol for data collection showing displaying character for 2sec and then 

rest of 1sec 

3.3 Data Preprocessing 

3.3.1 Noise Removal 

There are two main methods used in the removal of unwanted noise or artifacts from the raw 

sEMG signals: band-pass filtering and wavelet denoising. 

3.3.1.1 Band-pass filtering 

A band-pass filtering operation picks out a specific range of frequencies in the signal. For 

sEMG data, this is between 20–450 Hz. The lower frequency range below 20 Hz contains mostly 

motion artifacts and low-frequency noise while the higher frequency range above 450 Hz may 

contain high-frequency noise such as electrical interference. The signal is filtered so that only the 

retained data corresponds to actual muscle activity, which occurs in that frequency range. 

3.3.1.2 Wavelet Denoising:  

This method uses DWT in the sEMG signal into multiple components of frequency 

referred to as wavelets. Depending upon the application of thresholding to wavelet coefficients, 
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desirable or essential noise reduction could be achieved without losing the fundamental 

properties of the signal significantly. Importantly, wavelet denoising captures the nonstationary 

signals such as sEMG quite well because noise can be separated from muscle activity with 

various frequency scales that conventional filtering techniques may not do very easily. Wavelet 

denoising is one of the best signal quality improvement techniques[49], [50]. All these steps, 

combined in the process, can be summarized mathematically as follows: Select the wavelet 

function (for instance, Daubechies), and the level of decomposition N, Compute the wavelet 

decomposition of the noisy EMG signal s, 

𝑠 = ∑ 𝐴𝑗 + ∑ 𝐷𝑗

𝑁

𝑗=1

𝑁

𝑗=0

                                                                          (3. 1) 

where Aj are the approximation coefficients and Dj are the detail coefficients. 

Apply a threshold T to the detail coefficients for noise suppression. The most used 

techniques are:  Soft Thresholding, hard thresholding 

𝐷𝑗
𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝑠𝑔𝑛(𝐷𝑗). max(|𝐷𝑗| − 𝑇, 0)                                    ( 3. 2) 

𝐷𝑗
𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = {

𝐷𝑗        𝑖𝑓 |𝐷𝑗| > 𝑇

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                   ( 3.3) 

𝑠𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = ∑ 𝐴𝑗
𝑁
𝑗=0 + ∑ 𝐷𝑗

𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑𝑁
𝑗=1                  (3.4) 

3.3.2 Normalization 

To make the data comparable from one participant to another participant and from one 

trial to another trial, Z-score normalization is applied on sEMG signals. In brief, normalization is 

a way to rescale the data having zero mean and unit standard deviation. 

3.3.2.1 Z-score normalization 

It is the technique that standardizes the amplitude of the signals. Following the 

subtraction of the mean, it divides the signals by the standard deviation of the data. In that 
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regard, differences in muscle force, electrode placement, and the physical attributes of the human 

body were considered such that all signal values fall within a similar scale across all subjects and 

trials. This is particularly crucial in gesture recognition by sEMG as the variance of muscle 

activities between different subjects tends to have an impact on the performance of the model. 

Normalization of data allows the algorithm to focus more on what patterns to recognize that are 

associated with an airwriting activity rather than the differences in individuals. 

3.3.3 Segmentation 

The method after filtering and normalization of the signals of sEMG is to divide it into smaller 

time domains for further analysis. It is known as windowing.  

3.3.3.1 Overlapping windowing 

The continuous sEMG signal is divided into continuous, overlapping windows of fixed 

length, a duration of 200 ms with 50% overlap. That is, the signal is divided into 200 ms 

intervals and each interval is considered separately for further processing. A window size of 200 

ms is widely accepted in gesture recognition tasks as it is large enough to capture all the relevant 

muscle activity for writing motions but not that large to lose the temporal resolution between the 

movement and differentiate between different letters. Data within those windows, the model 

should be able to discern patterns compatible with gestures or movements to recognize what 

letter one is airwriting.  

The formula used for the sliding window is as follows: 

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 =
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 × 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒(𝑚𝑠)

1000
                                  (3. 5) 

This resulted in the production of a great number of windows per signal; it would depend on the 

overall length of the signal. 

3.4 Feature Extraction Process 

The research applies feature extraction on raw EMG signals to convert them into 

meaningful representations which will be used as inputs for machine learning models in 
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recognizing alphabets. This will comprise the time-domain, frequency-domain, and time-

frequency domains in the extraction process through applying the sliding window technique in 

segmenting the data. 

3.4.1 Time-Domain Features 

Time domain features were computed directly from the EMG signals in each window. They 

represent the basic statistical and morphological characteristics of the signal, such as amplitude, 

variance, and energy. Some of the most important extracted features are listed hereunder: 

3.4.1.1 Mean 

It is the average value that the signal has taken over the window. 

𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1       (3.6) 

Where, N= number of samples in the window , Xi = Amplitude of the i-th sample 

3.4.1.2 Standard Deviation 

This represents the estimate of the variability of the signal values around their mean. 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

                                   (3. 7) 

Where, μ = Mean of Window 

3.4.1.3 Root Mean Square (RMS) 

 RMS is the magnitude of the signal. 

𝑅𝑀𝑆 = √
1

𝑁
∑(𝑥𝑖)2

𝑁

𝑖=1

                                                              (3. 8) 
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3.4.1.4 Mean Absolute Deviation (MAD):  

Mean Absolute Deviation (MAD) is the average absolute deviation of the signal from its mean. 

𝑀𝐴𝐷 =
1

𝑁
∑ |𝑥𝑖 − 𝜇|𝑁

𝑖=1                                             (3.9) 

3.4.1.5 Skewness 

Skewness is a way of measuring how asymmetric the distribution of the signal is.  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁
∑(

𝑥𝑖 − 𝜇

𝜎
)3

𝑁

𝑖=1

                                              (3. 10) 

Where, σ =standard deviation. 

3.4.1.6 Kurtosis 

Kurtosis is a way of measuring how pointed the distribution of the signal is. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑ (

𝑥𝑖−𝜇

𝜎
)4𝑁

𝑖=1       (3.11) 

3.4.1.7 Autocorrelation 

Autocorrelation denotes similarity of the signal with a lag of one sample to capture time 

dependencies. 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑙𝑎𝑔1 =
1

𝑁 − 𝑙
∑(𝑥𝑖 − 𝜇)(𝑥𝑖+1 − 𝜇)

𝑁

𝑖=1

                                  (3. 12) 

Where, l=Lag=1 

3.4.1.8 Zero and Mean Crossings 

Zero and Mean Crossings count the number of zero or mean crossings of the signal to have an 

idea about how oscillatory the signal is.  
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𝑍𝐶 = ∑ 1(𝑥𝑖. 𝑥𝑖+1 < 0)

𝑁−1

𝐼=1

                                                     (3. 13) 

 1 =indicator function =1,  if the condition is true. 

These time-domain features can capture the shape and behaviour of the signal as well, which 

is very crucial in the differentiation between the letters written in terms of sEMG signals. 

3.4.2  Frequency-Domain Features 

To analyze the spectral properties of the signal, frequency-domain features were extracted 

using the FFT. FFT transforms a signal from its time domain to its frequency components; 

hence, it reveals information on the periodicity and oscillations of the signal. The formula for 

FFT is: 

𝑋(𝑘) = ∑ 𝑥(𝑛). 𝑒−𝑗
2𝜋

𝑁
𝑘𝑛  𝑁−1

𝑛=0 , k=0,1, ………,N-1          (3.14) 

Some of the key frequency-domain features feature are: 

3.4.2.1 FFT Energy 

Total power in the signal across all its frequency components. 

𝐹𝐹𝑇 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑|𝑋(𝑘)|2

𝑁

𝑘=1

                                                       (3. 15) 

3.4.2.2 Maximum Power Frequency 

It is the highest frequency at which the highest power value of the signal will come. 

𝑀𝑎𝑥 𝑝𝑜𝑤𝑒𝑟 𝐹𝑟𝑒𝑞 = arg max |𝑋(𝑘)|                                       (3. 16) 

3.4.2.3 Mean and Median Power Frequencies 

This gives insight into the distribution of power across different values of frequency. 
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𝑀𝑒𝑎𝑛 𝐹𝑟𝑒𝑞 =
∑ 𝑘. |𝑋(𝑘)|2𝑁

𝑘=1

∑ |𝑋(𝑘)|2𝑁
𝑘=1

                                                 (3. 17) 

3.4.2.4 Spectral Band Powers 

 It is the power of the signal within those different bands of frequencies, delta, theta, alpha, beta, 

and gamma bands, respectively, which are very important while analyzing the specific 

physiological or cognitive sEMG process. 

𝐵𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 = ∑ |𝑋(𝑘)|2

𝑘2

𝑘=𝑘1

                                                            (3. 18) 

Where, k1 and k2 = Frequency range for each band. 

As can be seen, these frequency domain features are indeed useful, regarding capturing the 

frequency content, of muscular movements, just like the time domain features. 

3.4.3 Time-Frequency Domain Features 

Besides the characteristics in the time and frequency domains, time-frequency 

representations were used to grasp properties that account for both temporal and spectral 

information simultaneously. STFT was applied to each window. The time-frequency map 

described how the temporal behaviour of the signal varies over frequencies. It basically defines 

the average and spread of the magnitude of the signal in the time-frequency domain.  

𝑆𝑇𝐹𝑇{𝑥(𝑡)}(𝑛, 𝑓) = ∑ 𝑥(𝑚)𝑤(𝑛 − 𝑚)𝑒−𝑗2𝜋𝑓𝑚

∞

𝑚=−∞

                                    (3. 19) 

w(n) =window function (Hann). 

Some features that could be derived from the STFT are as follows: 

3.4.3.1 STFT Entropy 

This is the measure of randomness of the signal in the time frequency domain.  
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             𝑆𝑇𝐹𝑇 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ |𝑍(𝑛, 𝑓)|log (|𝑍(𝑛, 𝑓)| + 𝜖)𝑁
𝑛=1                       (3.20) 

3.4.3.2 STFT Mean Frequency and Phase 

These capture the mean frequency and phase information of the signal as time evolves. 

𝑆𝑇𝐹𝑇 𝑀𝑒𝑎𝑛 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =
1

𝑁
∑ |𝑍(𝑛, 𝑓)|𝑁

𝑛=1             (3.21) 

These signals sEMG can then be accounted to their non-stationary nature using time-frequency 

domain features, whereby the signal frequency components change dynamically with the 

variation in different hand movements. 

3.5 Recursive Feature Elimination 

Recursive feature elimination is a feature selection method, by recursively employing any 

learner to select a smaller subset of features. It works in an iterative form of training a model-

with an example given on the Random Forest-and removing the worst feature at each iteration 

until a few desired features are reached. It was done through the method of Random Forest 

Feature Importance since this technique had shown potential in calculating the relevance of 

features in ensemble learning models as it measures how much of a reduction in impurity occurs 

for a feature on an ensemble of decision trees. 

The Random Forest classifier was trained on the 26 letters of the alphabet based on features 

obtained from time-domain, frequency-domain, and time-frequency domain analyses of the voice 

signals. At training time, each feature was calculated as the reduction in Gini impurity if that 

feature were used to split at some point in a decision tree. The importance score for each feature 

during the testing phase, time information about the system was recorded. For the entire dataset, 

the mean importance score was found, and the ranking of the top 10 features was done in 

descending order. 

𝐼(𝑓𝑗) = ∑ ∑ ∆𝐼𝑛(𝑓𝑗)
𝑁𝑡
𝑛=1

𝑇
𝑡=1        (3.22) 

where:  T = Number of decision trees in the forest, Nt = Number of nodes for each tree t, 



 29 

∆𝐼𝑛(𝑓𝑗) = Reduction of Gini impurity on node ( n) when splitting based on the feature ( fj)  

The normalized scores of importance ranked features by relevance. Therefore, the higher the 

score of the features, the more influential they were for the increase in accuracy of classification, 

and the lower the score, the lesser the contribution, and because of that, they were considered for 

possible exclusion from the model to streamline it. I had to employ Random Forest Feature 

Importance, whereby I could extract the most significant features for consideration and even 

eliminate less useful or redundant ones while further optimizing performance in the model. That 

was improving efficiency and accuracy regarding a classification model while minimizing the 

dimension of data representation, focusing on important features that would indeed cause effects 

on an airwriting recognition task. 

3.6 Deep Learning Architecture 

At the heart of the deep learning structure was a multi-layered architecture that captures the 

complexity of the patterns in the EMG signals. They included various layers: 

3.6.1 Convolutional Neural Network (CNN) Layers 

Convolutional layers were used for the automatic extraction of local patterns and spatial 

hierarchies from the input data. CNN layers can be thought of as feature detectors that are able to 

capture both low-level and high-level information in the data. The architecture is built from the 

layers of CNN, learning the spatial patterns of EMG signals. The preprocessing layer of the 

EMG data automatically detects both low-level and high-level features in them. 

3.6.1.1 Input Shape 

 The input shape for the pre-processed EMG signal fed into the 3D CNN as arrays where each 

input represents a time-frequency representation after STFT for a specific channel of EMG 

signals. 

3.6.1.2 Convolution Operation  

The convolution application places spatial filters over the input data, producing feature maps. In 

mathematical terms, this operation is described as: 
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𝑆(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛). 𝑊(𝑚, 𝑛) + 𝑏𝑁
𝑛=1

𝑀
𝑚=1      (3.23) 

Where,  X =  Input EMG signal, W= learned filter, 

S(i, j) = Resulting feature map, b = bias term. 

Max-pooling was applied after the convolution operation for dimensionality reduction with all 

the features needed. 

3.6.2 Training Process 

The framework utilized a labeled EMG signal dataset corresponding to alphabet letters, 

splitting the dataset into three sets: training set, validation set, and test set. Since the cross-

entropy loss function is going to be used in model training. Adam optimizer with learning rate 

adjustment based on moment estimates was used to optimize the deep learning model. Dropout 

regularization was further added by randomly deactivating a proportion of neurons in the training 

to account for overfitting. 

3.6.3  Evaluation Metrics 

Accuracy, precision, recall, and F1-score values were used to validate the model on the test 

dataset. Moreover, confusion matrices were calculated in order to evaluate classification errors 

for all cases of different alphabet letters. 

3.7 Real Time Alphabet Prediction 

Real-time classification is the capacity of a trained deep learning model to classify incoming 

EMG signals immediately when they are acquired. Usually, such ability requires multiple critical 

stages. 

3.7.1 Signal Acquisition and preprocessing 

The consecutive collection of EMG data from sensors or devices in real time. Such data is 

typically streamed into a processing unit (such as a computer or microcontroller).Incoming 

signals apply to the same preprocessing as in the training phase, such as: 
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• Normalization 

• Filtering techniques are used as a denoising process 

• Resample to a specified shape as expected from the input by the model. 

3.7.2 Feature Extraction 

It involves extracting the relevant features from the preprocessed signals, often using 

techniques such as STFT or wavelet transforms, thus transforming time-domain signals into 

frequency domain representations. 

3.7.3 Model Classification and Output Display  

The pre-processed feature-extracted data is passed to the trained deep learning model. As a 

result of its training, the model now outputs each class's probability. In this experiment, the class 

that obtained the highest probability is the class used as the output by the model. One would 

always want to see the output in the real-time sense. This could be done with visual displays: a 

text changing within a certain range, lighting effects once it has been recognized, etc. 

3.7.4 System Architecture 

To classify, a CNN-based deep learning model was developed to develop the real-time 

prediction model. For signal acquisition, Delsys Trigno EMG was used in combination with 8 

channels at 2000 samples per second. As preprocessing techniques before applying the trained 

model for prediction, bandpass filtering was conducted at 20-450 Hz, and notch filtering 

removed the powerline interference of 50 Hz, while wavelet denoising ensured the improvement 

of the signal-to-noise ratio and removal of artifacts from the signals. These preprocessed signals 

were then formatted for the model's prediction. 

3.7.5 Real-Time Prediction Procedure 

The screen displayed the character of an alphabet that the participants tried to write. This 

process was accompanied by the collection of sEMG signals. The real-time prediction was based 

on them. There is a 2-second delay between each character when the deep learning model 
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predicts based on the most recent batch of EMG data. The target and predicted characters are 

then presented to the user immediately afterward on the system's screen. 

3.8 GUI Design for Real-Time Prediction 

A good GUI in real-time prediction should mainly be intuitive, responsive, and presentable. 

The following are some basic GUI elements for real-time EMG signal prediction: 

3.8.1 Layout 

The interface should present a clean and organized layout of real-time information, 

predicted letters, and status indicators provide plots or graphs of the real-time EMG signal 

waveforms, to be viewed by the user in displaying their own signals' waveforms. 

Figure 3.6: GUI Workflow 

3.8.2 Input Controls and Output Displays 

A button by which the user may start and stop the data acquisition. Offers the user an opportunity 

to reset prediction state, if desired. A prominent text area that shows the most recently predicted 

letter. optionally, print the confidence score of the prediction, like the probability of the predicted 

class. 

3.9 Performance Matrix 

In deep learning, basically, the performance matrix often refers to the collection or table of 

multiple performance metrics for evaluating the effectiveness of a model. The values include 

• Opening of the GUI 
initializes the 
communication link 
with the EMG device 
and readies the system 
for data acquisition

Initialization

• The time when the start 
button is clicked, the 
system starts gathering 
EMG data that will be 
preprocessed and 
classified in real time.

Start Data 
Acquisition • The output in the display 

screen is updated with 
the predicted letter in a 
real-time scenario. This 
will enable the user to see 
what the prediction will 
be.

Prediction 
Outcome

• The data acquisition 
can be stopped at any 
time during the process 
by the user and reset so 
the program can run 
with another session.

Stop and Reset
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accuracy, precision, recall, F1 score, specificity, among others, all derived from the confusion 

matrix. The matrix also serves as a structured way in comparison with the performance of 

various models on multiple metrics. 

• Interpretation of the results. It tries to point out inadequacies in the models. For example, 

too few positives are missed by the model if recall is too low. 

• Optimizing Models. This can be used to tune in terms of specific priorities-for example 

improved precision at the cost of decreased recall if some types of errors are more 

expensive than others. 

3.9.1 Accuracy 

The most intuitive of performance measures is that of accuracy, and it is defined as the 

number of correct predictions divided by all predictions. However, accuracy can sometimes give 

a false sense of great performance in an imbalanced dataset where one class occurs much more 

frequently than others. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝑻𝑷)+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔(𝑻𝑵)

𝑻𝒐𝒕𝒂𝒍 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
    (3.24) 

                        =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
      (3.25) 

3.9.2 Precision 

Precision is also referred to as Positive Predictive Value. It measures the number of correct 

positive predictions the model is making. This metric is useful when there is a significant cost for 

false positives. High precision is where the model correctly classifies positive. Precision is 

especially useful when there exist examples like a medical test where a false positive entails 

unnecessary additional tests. 

TP (True Positives): The model correctly predicted the positive class. 

TN (True Negatives): The model correctly predicted the negative class.  

FP (False Positives): The model wrongly predicted the positive class.  
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FN (False Negatives): The model wrongly predicted the class to be negative.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                ( 3. 26) 

3.9.3 Recall 

Recall, also known as Sensitivity or True Positive Rate, illustrates how good the model is in 

classifying positive cases. It can be useful when the cost of missing positive cases, which is false 

negatives, is high for example, in fraud detection or in medical diagnostics. High recall means 

the model accurately predicts most of the actual positive cases. Recall is useful when a false 

negative has serious implications. 

   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                          (3. 27)                

3.9.4 F1 Score 

The F1 Score is the harmonic mean of precision and recall; hence it means making a balance 

between both values. Where there are imbalanced datasets, it proves useful to create a trade-off 

between precision and recall. 

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                       (3. 28) 

3.9.5 Confusion Matrix 

A Confusion Matrix is a tabular representation which provides a great idea of how well a 

model is performing. The same reports give the number of true positives, true negatives, false 

positives, and false negatives, which are all crucial in the calculation of the other metrics. 
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CHAPTER 4: RESULTS 

The aim of this research work was to build and test an air written English alphabet 

recognition system in which that has been achieved through the representation of the sEMG 

signals from the muscles of the forearm. This is done by using deep learning for classification 

without any error. It has results associated with the effectiveness of preprocessing techniques, 

feature extraction methods, and performances associated with different deep models for 

recognizing air written characters with accuracy, besides the effect of signal variations across 

participants and different writing styles. 

4.1 Data Collection and Pre-processing 

Sixteen subjects were recorded to collect the sEMG signals, each of whom wrote the 26 

alphabets in uppercase English for 10 repetitions in thin air. The muscle activities of the forearm 

were recorded by surface electromyography sensors. Figure 4.1 illustrates the signal for Subject 

1, 'W_TRIAL_1.npy'.  

 

 

 

 

 

 

 

 

Figure 4.1: Superimposed EMG signal of  5 channels for alphabet W 
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It was a preprocessing stage wherein lots were done to reduce the noise and make sure the 

data is like each other. The process of filtering these signals begins with a band-pass filter at 

cutoff frequencies ranging from 20 Hz to 450 Hz to eliminate strong low-frequency noise and 

high-frequency artifacts. Moreover, it incorporates notch filtering to filter out 50 Hz of powerline 

interference. Finally, wavelet denoising techniques are applied further to clean the signals by 

preserving significant patterns and discarding random noise. Finally, it normalized the data to a 

range of 0 to 1 so that the data used in the tests, and the number of subjects, become uniform and 

were subjected to more certain feature extraction as well as the training of the model. Figure 4.2 

illustrates the filtered signal for 'B_TRIAL_1.npy'. 

 

 

 

 

 

 

 

 

Figure 4.2: Superimposed Signal for Raw EMG signal, Bandpass filtration, notch filtration and 

denoised signal for alphabet B 

4.2 Feature Extraction 

This processing results in a wide variety of time-domain, frequency-domain, and time-

frequency features through the sliding window approach feature extraction process. The sliding 

window size was set to 100 ms with an overlap of 50% for each signal, ensuring that all the 

signals analyzed formed a comprehensive representation of the muscle activity captured during 
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airwriting gestures. Figure 4.3 presents all the quantities obtained from the time domain, 

frequency domain and time-frequency domain of the electromyography signals.  

 

 

 

 

 

 

 

 

Figure 4.3: A windowed segment of signal from a single sEMG electrode 

The picture presents all the key characteristics such as mean magnitude, variance of magnitude, 

maximum magnitude indicating overall strength and variability of muscle contractions, the mean 

frequency, and the entropy providing information on preferred frequencies as well as on 

complexity of signal respectively. More insights can be gained about the timing and variability 

of muscle activations from these measures, mean phase, and phase variance. Hence, these 

features become important for analyzing hand movements from EMG signals and further deepen 

knowledge about the dynamics in muscles involved with different tasks. 

4.2.1 Correlation Matrix 

This heatmap correlation matrix provides the abundant context of linear relationships between 

various features extracted from signal data as well as to what extent one feature may be related to 

the target variable. 
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Figure 4.4: Heatmap correlation matrix provides the abundant context of linear relationships 

between various features extracted from signal data 

The key features of correlation matrix show in figure 4 are as follows: 

• Most of Amplitude Features show very good correlations amongst themselves (mean, 

max, min) thereby showing redundancy. 

• Frequency-related metrics like `fft_entropy`, `fft_energy` are strongly and highly 

positively and negatively correlated among them. 

• Total power and energy are very correlated, but their relation to `Signal_Label` is 

different, making them very important feature for your model. 

• Redundant Feature: I drop some of the features that are highly correlated with each other, 

like `mean_abs_0` and `mean`. 
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• Target Relation: `fft_entropy`, `gamma_band_power`, `mean_power_freq` features are 

meaningful in predicting the signal labels since they relate with `Signal_Label`. 

4.3 Recursive Feature Elimination 

The importance of features extracted from the EMG signal dataset was ranked using Recursive 

Feature Elimination by applying RFE with a Random Forest Classifier. This eliminated features 

from being considered less significant in identifying those that highly contribute toward the 

model's predictive accuracy. The top 10 most relevant features that the RFE process derived are: 

stft_phase_var, mean_abs_diff, stft_mean_phase, skewness, stft_max, mean_abs_diff_squared, 

log_abs_mean, median_freq, stft_mean_freq, and min. These were the features that bore the best 

relevance to the model's performance. For instance, stft_phase_var was found at 0.0352 while 

mean_abs_diff and stft_mean_phase came out at 0.0352 and 0.0351, respectively. The 

dominated features that have a crucial role in model performance are stft_phase_var and other 

features. When iteratively removing the least important features, the accuracy remained stable 

until around 60% removal of the least important features. Thereafter, a minimal increase in 

accuracy was observed, hence suggesting a retention of a core set of the top stft domain features 

as the optimal for this classification problem. The RFECV process determines the top 14 features 

ensuring consistent performance for accuracy, as shown in figure 4.5.  

  

 

 

 

 

 

 

Figure 4.5: Optimal Feature selection using Recursive Feature Elimination with cross validation 
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The features selected by RFECV are according to their importance for the classification accuracy 

shown in figure 4.6.  

 

 

 

 

 

 

Figure 4.6: Importance of all features based on random forest mode 

4.4 Deep Learning Framework 

To confirm the feasibility of the proposed alphabet recognition framework using EMG signals, 

5-fold cross-validation experiments have been carried out. A CNN classifier has applied a model 

for classification of upper-case letter classes from preprocessed EMG data for 26 letters: A-Z. 

Results of accuracy for each fold and average accuracy are calculated for this experiment. The 

training and testing of the CNN model for alphabet recognition from surface electromyography 

signals were done with  5-fold cross-validation to avoid any biasing arising from a single train-

test split and ensure a more comprehensive assessment of the generalization capacity of the 

model. For each fold, the dataset was divided into 80% of training data and 20% of testing data, 

with five iterations in total, so that every sample appears exactly once in the testing set. 

It composed two convolutional layers and max-pooling layers. In brief, CNN successfully 

extracted the spatial and temporal features of various letters' sEMG signals. The model input 

consisted of a time-frequency representation of sEMG signals obtained from STFT. Each input 

sample had the shape (79, 101, 5), representing 79 windows, 101 frequency components, and 5 

channels of EMG data. 
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4.4.1 Accuracy of Each Fold 

The accuracy values of the model for all the 5 folds are as  depicted in Figure 4.7. The model 

operated at accuracies of 88% to 90% across all folds with no fluctuation, therefore the 

performance is consistent with very negligible variance. The small inconsistencies observed 

between the folds can be result of the natural variability of the sEMG signal such as muscle 

activation, electrode placement, or the level of noise in the signal. In this experiment, the overall 

average accuracy for the entire five folds was calculated as an average, the alphabet letters from 

the sEMG signals were classified correctly by the model with an 89.65% accuracy, which 

implies good generalization capability towards unseen data. The consistent performance across 

the folds points out to the fact that the model effectively learned the patterns representing 

movements of the different hands associated with the letters of the alphabet. 

 

 

 

 

 

 

 

Figure 4.7: Accuracy of 1DCNN model for all the 5 folds 

4.4.2 Model Training and Early Stopping 

The model was trained using a learning rate of 0.001 for an Adam optimizer and the loss 

function was sparse categorical cross entropy due to the multi-class classification problem with 

26 classes: letters A-Z. The early stopping of the training with validation accuracy stopped 

overfitting by halting training after the validation performance leveled off. This helped prevent 
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overfitting the training data; however, the model achieved a high accuracy over the test data. The 

high accuracy of the model suggests that the CNN architecture is capturing very well the finest 

features in the EMG data, those associated with the fine motor movements assigned to each letter 

of the alphabet. Thus, the time-frequency features derived through the STFT and the spatial 

information through the different EMG channels have yielded a rich representation for the model 

to learn about. 

4.5 Real Time Alphabet Prediction 

A  real-time prediction system of the English alphabet using sEMG signals collected from 

forearm muscles was designed on tkinter. The architecture of the prediction system is based on a 

deep learning model that specifically classifies sEMG signals into 26 categories as used in the 

alphabets from A-Z. The proposed system was tested with participants writing selected alphabets 

using specific forearm muscle movements while the signals were continuously recorded and 

processed in real time. The latency between the signal collection and display of the predicted 

character was a major performance metric. The average observed latency during testing was 

about 60 milliseconds, which is well within an acceptable range for real-time applications.  

 

Figure 4.8: Tkinter protocol for real time alphabet prediction 
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The performance of the model was evaluated on grouped data, this analysis examines how 

effectively the model generalizes in real-time when tested on subjects whose data was part of the 

training set. Performance metrics, such as accuracy, precision, F1 Score, and 

recall, were also calculated. This model showed an average accuracy of 73.71% across all tested 

subjects with an excellent generalization toward patterns that it has seen earlier, even under real-

time conditions as shown in figure 4.9 a. A detailed summary of model performance in 

recognizing 26 capital English letters using sEMG data from airwriting movements of 7 subjects 

can be examined in the confusion matrix in Figure 4.9 b. Many letters have good classification 

accuracy, as indicated by the high values along the diagonal. Letters like "A," "B," and "O" have 

significantly high correct predictions.  

Figure 4.9: (a) Average performance metrics of real time alphabet prediction on grouped data (b) 

Confusion matrix representing performance of model for recognizing each of the 26 uppercase English 

alphabets based on surface electromyography data. Each row corresponds to the true labels (actual 

classes) and each column corresponds to the predicted labels (the output from the classifier). Diagonal 

cells are the correct classifications while the off-diagonal cells represent misclassifications. 

The average latency for each alphabet is shown in figure 4.10; it ranges from roughly 0.058 to 

0.066 seconds. Some letters, such as E, M and T, have noticeably higher latency, because their 

shapes are less distinct or complex when written in the air. On the other hand, letters like I and L 

have lower latency, which means the algorithm can identify them more quickly. Figure 4.11 

represents the average error rate for every letter, describing accuracy  challenges in air-writing 
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recognition. Error rates range from 0.15 to 0.37, and letters like G, T, U and V   have higher error 

rates due to similarities in their patterns of air writing with other alphabets. In fact, lower error 

rates for letters like A, B, I, and O also show that these are easier and more likely to be 

recognized as true instances. Letters that are notable with a high error rating need to be identified 

and corrected for better accuracy in the airwriting recognition system. 

 

 

 

 

 

 

 

Figure 4.10:  Average latency in seconds for the classification 

 

 

 

 

 

 

 

Figure 4.11:  Error rate for each alphabet, obtained as the number of misclassified instances of 

a letter divided by the total number of instances of that letter. 
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Real-Time Prediction was also performed on Individual Data in which model performance was 

evaluated on real-time data specific to a single subject, testing adaptability to individual 

characteristics. During the individual-specific testing phase, the accuracy of model using EMG 

data of a single subject was 77%. This degree of accuracy suggests that, even in real-time 

situations, the model was able to adjust to distinct, subject-specific muscle patterns. 

Classification accuracy of model for real time alphabet prediction on individual data for each 

alphabet letter is shown in Figure 6. Significant differences between letters are highlighted by the 

plot, suggesting that some letters like L, I, T, and R, are predicted more accurately than others.  

 

 

 

 

 

 

Figure 4.12: Radar plot of the Accuracy per Alphabet Letter for three different letter sets 

representing accuracy at which each letter was classified correctly, with values closer to 

the edge being more accurate. 

Thus, preprocessing, feature selection, and model architecture play a crucial role in strong 

performance of model in classifying air-written alphabet letters. The best performing model was 

the 1DCNN model, which demonstrated strong generalization with an average real-time 

accuracy of 73.71% across subjects and an accuracy of 89% on training data. Individualized 

models for specific subjects performed even better, with an accuracy of 77% and an accuracy of 

92% on training data. Letters like A, B, I, and O were classified with high accuracy, while letters 

such as G, T, U, and V were misclassified due to their muscle pattern similarities. 
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CHAPTER 5: SUMMARY OF RESEARCH WORK 

The analysis of the processed data showed that the preprocessing techniques significantly 

improved the quality and consistency of sEMG signals across trials and subjects. SNR 

comparison for various wavelet denoising techniques show improved SNR using db9 wavelet. 

Various feature reduction techniques such as PCA, LDA and RFECV were employed to 

determine optimal features. Among them, RFECV provides the best result by maintaining high 

classification accuracy. This technique indicates the most relevant features while preventing 

overfitting by using cross-validation tests at every step of feature elimination. Unlike PCA, 

which focuses on variance, or LDA, which focuses on linear separability, RFECV iteratively 

removes the least impactful features that improve model performance, hence resulting in a very 

optimized set of 14 features. This efficiency improvement is harder to achieve by PCA and LDA 

because they tend to retain more generalized features, which could bring noise or irrelevant 

information into the model. Among various deep learning algorithms, 1DCNN achieves high 

classification accuracy in both offline and real-time alphabet prediction as shown in table 1. 

While LSTM-based DNN and the Fully Connected RNN had considerably lower accuracies at 

71% and 62% respectively. The best performing 1DCNN model was trained and validated to 

deploy in real time alphabet predictions.  

Table 5.1: Performance metrics for the deep learning model across different testing conditions 

Performance 

Metrics 

Offline 

Grouped Data 

Offline 

Individual data 

Real-time 

Grouped Data 

Offline 

Grouped Data 

Accuracy 89.81% 92% 73.71% 77% 

Precision 91.39% 90% 77.57% 81% 

Recall 89.81% 94% 73.71% 76% 

F1 Score 90.06% 92% 73.43% 78% 
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The results highlight that both offline grouped and offline individual settings yield good results 

for the model. Performance measurements for real-time implementations had maintained 

consistency in precision, recall, F1 score, latency and error rate with means of 79.28 ± 1.71 %, 

74.85 ± 1.14 %, and 75.72% ± 2.28%, 0.06 ± 0.01 seconds, 0.22 ± 0.07% respectively, across a 

range of testing situations. Although the accuracy is higher on offline individual data because 

the model had adjusted its recognition to unique signal patterns of each user, lessening the effect 

of inter-subject variability. Grouped data, on the other hand, adds greater unpredictability 

because individual signal patterns vary, which significantly affects performance. It is noted that 

the system shows promising results as most of the alphabets like A, B, and O have predicted 

correctly as shown in figure 6b but there are also significant misclassifications between letters 

such as U was confused with C, E with F, and Q with G because of their similar shapes, different 

writing styles of subjects and overlapping sEMG signal patterns. All the alphabets take different 

time from receiving the EMG signal until the result of the prediction is displayed that is 

calculated as latency. Some letters, such as E, M and T, have noticeably higher latency, because 

their shapes are less distinct or complex when written in the air. On the other hand, letters like I 

and L have lower latency, which means the algorithm can identify them more quickly. The figure 

demonstrates error rate per alphabet that describes the number of misclassified instances of 

a letter divided by the total number of instances of that letter, range from 15 to 27%, and letters 

like G, T, U and V   have higher error rates due to similarities in their patterns of air writing with 

other alphabets. In fact, lower error rates for letters like A, B, I, and O also show that these are 

easier and more likely to be recognized as true instances. Letters that are notable with a high 

error rate need to be identified and corrected for better accuracy in the airwriting recognition 

system. However, the improved accuracy of model in individual-specific testing points to be a 

promising direction for personalized air-writing systems that adapt to the unique characteristics 

of each user, enhancing their potential for real-world applications. Thus, the proposed deep 

learning-based solution outperforms other existing research and airwriting recognition systems in 

terms of accuracy and real-time applicability. Due to its potential for real-time predictions and its 

simplicity of incorporation into assistive technology for people with speech impairments, this 

study promises greater real-world application. It has the potential to be used in assistive 

technology, rehabilitation, and human-computer interaction with further developments in feature 

extraction and model optimization. 
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CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS 

In this paper, an effective framework is proposed for the recognition of 26 uppercase English 

alphabet letters using sEMG-based airwriting by analyzing unique muscle activation pattern. The 

quality of signal was enhanced by using wavelet decomposition for denoising, thus improving 

the strength of the model in identification of muscle activation patterns related to each letter. The 

feature set was optimized using the RFECV technique, which reduced computational complexity 

while maintaining high classification accuracy. 

Among the tested model, the best performing model was the 1DCNN, with an accuracy of 89% 

on training data and an average real-time accuracy of 73.71% across subjects. Individualized 

models for specific subjects performed even better, with an accuracy of 77% in real-time and an 

accuracy of 92% on training data. This system represents a significant improvement over earlier 

sEMG-based airwriting models, which were less accurate and lacked real-time capabilities. By 

achieving high accuracy in both training and real-time settings, this model addresses precision 

and adaptability by presenting a more realistic solution for real-world airwriting applications. 

This study highlights the potential of deep learning models for real-time, user-specific airwriting 

detection and provides foundations for sEMG-based airwriting applications. This method has the 

potential to be used in assistive technology, rehabilitation, and human-computer interaction with 

further developments in feature extraction and model optimization. 

Future research could focus on employing hybrid deep learning models or advanced feature 

extraction techniques to improve model accuracy, especially for letters with comparable muscle 

patterns. For real-world applications, going beyond single-letter recognition to word-level 

recognition is also important requiring a system that can identify continuous letter sequences and 

integrate language models to enhance accuracy. 
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