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Abstract

In an era marked by a rising prevalence of health issues, the significance of a reliable and efficient

system for disease detection is a need. With the successful integration of Transformer models in

computer vision, researchers are increasingly delving into their application in medical image seg-

mentation. Particularly, there’s a growing exploration of combining Transformers with convolu-

tional neural networks featuring coding-decoding architectures. The fusion has demonstrated re-

markable achievements in medical image segmentation. In this research, the main goal is to create

advanced algorithms that can match or even surpass the accuracies achieved by currently established

models when applied to particular datasets. Involving pushing the boundaries of existing method-

ologies and techniques to enhance the performance of the segmentation process in medical imag-

ing. The focus will be on innovating novel approaches that can handle various challenges present in

medical image segmentation tasks, such as noise, variability in anatomy, and imaging modalities.

By developing state-of-the-art algorithms, the aim is to contribute to the advancement of the field

and potentially improve diagnostic and analytical capabilities in clinical settings. By incorporating

diverse datasets representative of different medical conditions, this research attempts to enhance the

effectiveness and generalizability of our findings. The aim is to enhance medical image segmen-

tation techniques and to develop robust algorithms and methodologies for accurate medical image

analysis and segmentation.
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Chapter 1

Introduction and Motivation

1.1 Background

Image segmentation is an important component of quantitative medical imaging analysis, often serv-

ing as the initial step for examining anatomical structures [1]. Since the advancements in deep learn-

ing, Fully Convolutional Neural Networks (FCNNs), particularly "U-shaped" encoder-decoder ar-

chitectures [2, 3, 4], have delivered state-of-the-art performance in various medical segmentation

tasks [5, 6, 7] . In the classic U-Net architecture, the encoder’s role is to learn global contextual rep-

resentations by progressively down sampling the features extracted [1]. Conversely, the decoder side

up samples these features back to the input resolution to achieve pixel wise semantic prediction. Ad-

ditionally, skip connections integrate the encoder’s output with the decoder at different resolutions,

helping to restore spatial information lost during down sampling.

Although FCNN based approaches exhibit strong representation of learning capabilities, their ability

to learn long-range dependencies is constrained by their localized receptive fields [8, 9]. This con-

straint in acquiring multi-scale information leads to less effective segmentation of structures with

diverse shapes and sizes. To address this issue, some studies have employed atrous convolutional

layers to expand the receptive fields [10, 11]. However, the inherent locality of convolutional lay-

ers still restricts their learning capacity to relatively small regions. To enhance non-local modeling

capability, integrating self-attention modules with convolutional layers has been proposed [12, 13].
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The Fully Convolutional Neural Network (FCN) [14] was among the pioneering deep learing mod-

els used to aid image segmentation. Later more advancement was made to this architecture to create

U-Net, which achieved notable segmentation results by leveraging the availability of large training

datasets [15].U-Net’s architecture is built on an encoding and decoding pathway. In the encoding

pathway, numerous feature maps are derived from the input data, with dimensionality progressively

reduced.. The decoding path then produces segmentation maps (matching the input size) through

up-convolutions.Various adaptations of U-Net have been introduced [16, 17], with many focusing on

changes to the skip connections. In certain U-Net extensions, the feature maps within skip connec-

tions go through an additional processing phase, such as attention gates [17], before concatenation.

A key limitation of these designs is that the processing step is performed independently on each set

of feature maps, which are simply concatenated afterward.

Following the development of U-shaped architectures, models like ResUNet [18] and Attention

R2UNet [19] emerged. However, these architectures frequently face challenges in capturing and

leveraging multi-scale contextual features within a single stage, which is critical in medical imaging,

where the target region often closely resembles surrounding areas. Integrating multi-scale contextual

information helps provide context around the target and reduce ambiguity in decision-making [20].

Recent methods, including DeepLabV3 [21], PoolNet [22], PSPNet [23], and CE-Net [24], have

been designed to incorporate multi-scale features. Yet, these methods primarily emphasize high-

level feature extraction, often overlooking the valuable spatial details found in lower-level features.

Methods based on CNN are effective at feature extraction yet struggle with capturing long ranged

dependencies which is because of limitations associated with convolution process. As a result, these

methods may perform sub optimally when targeting regions with significant variations in texture,

size, and shape. To address this, some researchers have incorporated attention mechanisms with

CNNs [25, 26, 27]. Moreover, the success of Transformers in computer vision has opened up addi-

tional approaches [28, 29]. Transformers, operating as sequence to sequence models, avoid convo-

lution and instead utilize self-attention mechanisms to derive image feature information and capture

long-range relationships.

Transformers have surpassed state of the art performance in various tasks related to vision . While

they are god at modelling global context of input image, Transformers have limitations when cap-
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turing fine grained details, especially in medical images, due to a lack of spatial induction bias when

modelling local information. Moreover, Transformer-based network structures generally require

large datasets to perform effectively [28]. This is where CNN architectures can compensate well, as

they are more effective with smaller datasets.

Recent studies have investigated the integration of CNNs and Transformers for medical segmenta-

tion tasks. Approaches like TransUNet [30] and related models [31, 32, 33] employ CNNs as foun-

dational networks, while Transformers are utilized to capture long range dependencies within the

high level feature representations. However, these methods often fail to find the rich spatial details

present in the shallow layers, focusing instead on single-scale context modeling and failing to ad-

dress cross-scale dependencies and consistency. Furthermore, [34] suggests that employing only

one or two Transformer layers may not be sufficient to effectively merge the long-range features

extracted by CNNs.

1.2 Research Problem

U-Nets have demonstrated powerful performance in medical image segmentation but are often lim-

ited in capturing global context due to their reliance on convolutional operations. Vision Transform-

ers offer improved performance through self-attention mechanisms but are susceptible to overfitting.

Hybrid models that combine Transformers and U-Nets present a promising innovation in medical

image segmentation. However, challenges remain in optimizing these hybrid architectures to effec-

tively leverage both local and global contextual information while managing computational com-

plexity.

Existing segmentation methods also had low segmentation accuracy on medical images since there

is a large variance in noise, artifacts and contrast of medical images. These imperfections might be

sensitive to current solutions thereby affecting their robustness and reliability for clinical practices.

Further, the specialized models trained and validated on specific datasets may not necessarily gen-

eralize well on new, unseen data. The diversity of medical images necessitates strong generalizable

segmentation algorithms.

For binary class medical image segmentation tasks (e.g., presence or absence of a condition), com-
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plex and computationally heavy networks are commonly used. Nevertheless, deep networks are not

always appropriate, effective, powerful, or necessary via diverse datasets especially in the case of

accurate,true binary segmentation. Exploring and fine-tuning architecture with careful considera-

tion of balance among model complexity, computational efficiency and high-quality segmentation

performance.

1.3 Problem Statement

In modern healthcare, the accurate segmentation of medical images is of immense importance since

accurate segmentation facilitates diagnosis, treatment planning, and disease monitoring. The deep

learning techniques applied to medical image segmentation have seen continuous development, but

we still need to find ways to enhance their effectiveness and efficiency. Moreover, there are many

types of medical images, and corresponding representations are highly varied because of differences

in shape, size and appearance, which compounds this challenge. Confronting the complexities are

needed to improve clinical decision-making and ultimately patient outcomes.

1.4 Solution Statement

To address these challenges in medical image segmentation, this thesis proposes the development of

advanced algorithms that integrate Transformer models with convolutional neural networks (CNNs)

in an encoding-decoding architecture. The primary goal is to enhance the accuracy and versatility of

segmentation across various medical conditions and imaging modalities, thereby alleviating work-

load and improving diagnostic accuracy.

Thus, this thesis be emphasis on a hybrid architecture, combining the Transformer model with a U-

Net. The proposed architecture is a hybrid model that takes advantage of both Transformers (which

are known to capture long-range dependencies through self-attention mechanisms) and U-Nets

(which are strong in preserving fine spatial details in medical images). The model is then able to

outperform the segmentation accuracy of classical CNN-based methods by merging these architec-

tures. Through implementation, evaluation, and potential integration of this hybrid approach, the

thesis can provide novel perspectives and set methods on medical image segmentation.
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1.5 Thesis Organization

1.5.1 Research Objectives

The focus of this research is to contribute towards development of medical imaging within this field

of image segmentation through new deep learning approaches that cater specifically for medical

imaging. Image segmentation has become a necessity for precise diagnosis and therapy in many

branches of medicine to determine areas in images which are the most significant and need detailed

study. Therefore, this project aims at developing new deep learning structures and methods to in-

crease the precision and performance of segmentation algorithms resulting in better diagnosis and

patient care.

While investigating new deep learning architectures, this work will analyze the role of attention

mechanisms as feature augmentation tools in image segmentation. Attention mechanisms have been

very beneficial across a number of tasks in computer vision by enabling the model to concentrate on

the pertinent aspects while disregarding a significant amount of irrelevant information. Therefore,

this research aims at employing attention mechanisms to the segmentation processes to enhance fea-

ture quality and consequently the segmentation accuracy. Particular emphasis will be placed on the

effectiveness of self-attention and spatial attention mechanisms in providing focus on salient fea-

tures in medical images.

Additionally, the research involves a performance comparison with the existing segmentation tech-

niques in order to test the proposed deep learning methods. The purpose of the study is to assess

the new techniques’ segmentation results against the best available methodologies, demonstrating

the defects and advantages of the novel methods, thus pointing to the directions where more work

is needed. It is essential to perform Out-of-Distribution (OOD) data tests to assess the generaliza-

tion properties of the developed models. The outcome of this evaluation should have implications in

relation to their robustness and the extent to which the models can cope in real-life situations.

Lastly, the research aims to ensure model adaptability through domain shift training and testing,

maintaining consistent performance across diverse data domains and clinical environments. Through

comprehensive evaluation methodologies, this study seeks to validate the effectiveness and applica-
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bility of the developed image segmentation techniques in clinical practice. The main objectives of

the thesis are outlined below:

• Develop a novel deep learning model for enhanced image segmentation for medical imaging.

• Optimize encoder-decoder block interconnections to preserve feature integrity across various

scales.

• Create attention mechanisms as feature enhancement tools to improve the features quality in

the skip connections of the model.

• Enhance bottleneck features using transformer-based attention for superior segmentation per-

formance.

• Validate the robustness and effectiveness of the model in medical image segmentation through

thorough comparisons with current methodologies.

1.5.2 Research Contributions

This work introduces an innovative network structure, referred to as the proposed model, designed

for medical image segmentation. The model utilizes a well-established encoder-decoder framework

and integrates several important improvements to enhance the extraction of relevant features. These

improvements consist of a booster architecture, local-global feature enhancement, skip connections

based on normalized focal modulation, and transformer-based attention mechanisms at the bottle-

neck. The primary motivation is to enhance the extraction of critical features, hence improving the

accuracy and effectiveness of medical segmentation tasks.

Proposed model features a backbone made up of CNNs with two branches in parallel with a booster

architecture integrated into it. While the multiscale feature information is extracted using CNNs,

the booster simultaneously captures global context of the information to model longe range depen-

dencies. By effectively maximizing the retention of spatial information within low-level semantic

features—due to their lower computational cost and importance—the model seeks to enhance com-

putational efficiency without sacrificing segmentation quality.

In the decoding part, the encoder structure is reused, and a Transformer Attention (TFA) mechanism

is incorporated at skip connection from the encoder booster to the decoder booster. Retrieval of both

6



global and local information in the decoding stage is enhanced due to addition of TFA in skip con-

nections. Moreover, TFA, combined with Attention In Attention (ANA), is utilized at the bottleneck

to strengthen the connections between the decoder blocks, creating dense links which help feature

retention throughout the up sampling process.

Main contributions of this thesis can be summarized as follows:

1. Novel Architecture : The proposed model utilizes a parallel booster design for both the en-

coder and decoder, due to which versatile feature sets are extracted improving segmentation

performance.

2. Dense Interconnections : Strong interconnections between decoder blocks, establishing

dense links that preserve improved features during the crucial upsampling process, contribut-

ing to maintaining feature integrity across different scales.

3. Enhanced Feature Information: By applying TFA attention at the skip connections, the

model improves its ability to capture contextual information and intricate details .

4. Transformer-Based Attention: Strategically integrated at the bottleneck, enhances feature

representation. This method, along with improvements to local and global characteristics,

guarantees that crucial information must be preserved and effectively utilized throughout the

segmentation process.

5. Validation and Comparison: Robustness and generalizability of the proposed model are

validated through comprehensive comparisons with current state-of-the-art methods. This

analysis highlights the model’s efficacy and competitive performance in medical image seg-

mentation.

1.5.3 Overview

Throughout this introductory chapter, we have highlighted the pressing need for improved method-

ologies in field of image segmentation. In the upcoming chapters, we will carefully navigate the

landscape of research in this domain, with each section serving as a crucial step toward our overar-

ching goal.

Chapter 2 will provide a comprehensive literature review, tracing the evolution of methodologies
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and insights gained by the research community over time. Building on this foundational understand-

ing, Chapter 3 will introduce our meticulously crafted methodology, designed to tackle the complex

challenges associated with image segmentation. This will naturally lead into Chapter 4, where we

will present the empirical results obtained from our methodological approach, offering clear insights

into their effectiveness and applicability.

In Chapter 5, we will engage in a thoughtful discussion that examines the implications of our find-

ings, situating them within the broader context of image segmentation research. Chapter 6 will sum-

marize the conclusions drawn from our study, synthesizing key insights and their implications. Fi-

nally, in Chapter 7, we will distill our findings into actionable recommendations aimed at informing

clinical practice and guiding future research efforts.

Through this cohesive framework, our goal is not only to advance the field of medical image seg-

mentation but also to empower both clinicians and researchers in their quest for improved diagnostic

accuracy and patient care.
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Chapter 2

Literature Review

2.1 Medical Image Segmentation

Medical image segmentation employs computer image processing techniques to analyze and pro-

cess both 2D and 3D images. The goal of this process is to achieve segmentation, extraction, three-

dimensional reconstruction, and visualization of human organs, soft tissues, and pathological areas.

It divides an image into various regions based on the similarities or differences within those areas.

This approach enables physicians to conduct qualitative and quantitative analyses of lesions and

other areas of interest, greatly improving the accuracy and reliability of medical diagnoses. Cur-

rently, various tissues and organs are identified within the image cells as focal points of analysis.

Image segmentation has become a prominent topic in computer vision and image understanding re-

search. It involves dividing an image into disjoint regions based on characteristics like grayscale,

color, spatial texture, and geometric shapes. The goal is to ensure consistency or similarity within

regions and distinct differences between them. Image segmentation can be categorized into semantic

segmentation, instance segmentation, and panoramic segmentation, based on the level of granularity.

Medical image segmentation is generally regarded as a semantic segmentation task. Currently, there

is a growing number of research domains within image segmentation, including satellite image seg-

mentation, medical image segmentation, and applications in autonomous driving [35, 36]." The con-

tinual development of new network structures has progressively improved segmentation methods,
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resulting in increasingly accurate outcomes. However, no single algorithm is universally applicable

to all types of segmentation tasks.

Although traditional image segmentation techniques are simpler and quicker, they often do not

match the accuracy of deep learning-based methods. Prominent traditional approaches include threshold-

based segmentation [37], region-based segmentation [38], and edge detection-based segmentation

[39]. These methods utilize concepts from digital image processing and mathematics for image

segmentation but may lack precision in detail. While they offer fast calculation and segmentation

speeds, they do not consistently ensure accuracy in the finer aspects of segmentation.

Deep learning has revolutionized image segmentation, with methods such as the fully convolutional

network (FCN) leading the way. FCNs were among the first to successfully apply deep learning to

image semantic segmentation. This pioneering work marked a significant advancement in using

convolutional neural networks for this purpose. Deep learning based methods have since achieved

remarkable accuracy, surpassing traditional segmentation techniques [40, 41, 42].

2.2 Deep Learning Architectures for Segmentation

The structure of segmentation networks in CNNs has evolved significantly. Initially, the modifica-

tion involved replacing the last two fully connected layers in classification networks with convolu-

tional layers. The foundation of medical image segmentation networks relies on deep structures like

encoder-decoder architecture.

LeNet and AlexNet are foundational network models, both recognized as relatively shallow archi-

tectures. AlexNet, with a higher number of parameters than LeNet, introduced the innovative con-

cept of applying a pooling layer after each convolutional layer, a technique that remains widely used

today. VGG further advanced AlexNet by increasing the depth of the network, using several con-

secutive 3 × 3 convolutional filters instead of larger ones. This approach preserved the receptive

field size while improving network depth and feature extraction. VGG’s structure is notable for its

straightforward design, featuring consistent convolution and pooling layer sizes, highlighting how

deeper networks can enhance performance. However, increasing the network’s depth can sometimes

result in challenges like overfitting and vanishing gradient issues.
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To address these issues, GoogleNet [43] introduced a modular approach with the Inception structure,

increasing the network’s depth and width while reducing the number of parameters.The Inception

module utilizes convolutional filters of various sizes along with pooling layers, merging the outputs

to create a network with a depth of 22 layers. CNN architectures have evolved from AlexNet’s seven

layers to VGG’s 19 layers, and further to GoogleNet’s 22 layers. However, beyond a certain depth,

further increases do not always improve performance and can slow network convergence.

ResNet proposed by He et al. [44], a 152-layer network, to train deeper networks effectively. ResNet

addresses depth-related issues with shortcuts comprising of residual blocks. In the each module in

ResNet it composed of multiple layers and a shortcut that connects the module’s input and output,

adding them before ReLU activation. The resulting output is then passed through ReLU to generate

the final output of the block [45].

The encoder-decoder architecture, which combines a CNN-based encoder with a decoder, forms the

foundation of semantic segmentation networks. The encoder, often a CNN used for the classification

tasks, help to extracts and compacts features from images, producing a feature map of low resolu-

tion. Decoder then maps this low resolution feature map to a high resolution pixel space, enabling

pixel wise category labeling. SegNet [46] is a classic example of an encoder-decoder structure, with

its encoder and decoder corresponding one-to-one in spatial size and number of channels. Innova-

tions in semantic segmentation networks primarily focus on optimizing the encoder-decoder struc-

ture and improving efficiency, particularly the decoder’s impact on the overall segmentation results.

2.3 FCN Based Segmentation

In the realm of CNN-based image segmentation, significant advancements have been made through

successive iterations of models aimed at overcoming inherent challenges. The evolution began with

introduction of (FCN), which replaced fully connected layers with convolutional layers to enable

pixel-wise classification, addressing the limitation of one-dimensional classification output [47].

Building upon FCN, DeepLab v1 [48], refined segmentation by reducing pooling stride and padding

size, introducing atrous convolution for larger receptive fields, and integrating Conditional Random

Fields (CRF) for improved boundary delineation. DeepLab v2 [49] expanded on these concepts with
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atrous spatial pyramid pooling (ASPP), leveraging ResNet-101 for deeper feature extraction and

eliminating downsampling to preserve spatial resolution.

DeepLab v3 [50] further enhanced multi-scale context capture through cascaded atrous convolution

modules and ASPP, achieving notable improvements in segmentation accuracy over its predeces-

sors. DeepLab v3+ [51] extended this progress by introducing a decoder module for finer segmenta-

tion along boundaries and employing the Xception model for enhanced speed and robustness. Each

iteration addressed specific drawbacks, such as detail loss and scalability issues, resulting in more

precise and context-aware segmentation models. These advancements have significantly contributed

to the field of semantic segmentation, enhancing capabilities across various domains of image analy-

sis and medical diagnostics.

2.4 UNet Based Segmentation

U-Net [52] is a CNN architecture designed around an encoder-decoder framework. The encoder,

known as the contracting path, consists of successive convolutional layers with 3x3 filters followed

by Rectified Linear Unit (ReLU) activations, forming what is termed a convolution block (conv-

relu-conv-relu). To decrease the spatial dimensions of feature maps while progressively increasing

the number of feature maps Max Pooling layers are used. This technique helps compress the infor-

mation into a lower dimensional latent representation. The decoder, or expanding path, mirrors the

encoder structure but replaces Max Pooling with up-convolution or transpose convolution to restore

spatial dimensions. Here, the number of feature maps decreases progressively. This facilitates the

passage of semantic information crucial for accurate segmentation. In this architecture, at the final

layer, a softmax function is applied to classify the pixels in the segmentation map. The U-Net is

said to have learned segmentation tasks efficiently because it is optimized end-to-end with a cross-

entropy loss.

An improvement of the U-net architecture which adds recursively nested and densely connected

skip pathways is U-Net++ [53]. Inspired by dense connections, these connections prevent the gra-

dient cells from vanishing which results to better propagation of features across layers due to their

reusability. The nested design also utilizes the encoders well by transferring adequate semantic in-
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formation to the decoders which is important in performing medical image segmentation (MIS) ac-

curately. U-Net++ also incorporates collecting segmentation maps around the intermediate layers to

ensure deep supervision which enables learning features across different scales. In contrast to clas-

sical U-Net, this approach uses convolutional layers in skip pathways and Dense skip connections to

facilitate gradient flow in the network while also using dense connections in the network to improve

segmentation accuracy.

R2U-Net [54] is a variant of the U-Net architecture that combines residual and recurrent techniques

to address the challenges of gradient propagation in deep convolutional networks. While deep net-

works are effective for many computer vision tasks, they often encounter issues such as vanishing

gradients, which can hinder training. To mitigate this, R2U-Net introduces skip or identity connec-

tions, where outputs from previous blocks are directly fed into subsequent blocks, thus bypassing

the current block operations. This concept draws inspiration from ResNets [55], which pioneered

the use of such skip connections to enable training of very deep networks. Recurrent networks, tra-

ditionally used for sequential data like natural language and speech signals, also play a crucial role

in R2U-Net. Unlike traditional U-Net’s crop and copy approach, R2U-Net employs simpler fea-

ture concatenation from the encoder to the decoder. This modification maintains a similar parameter

count while significantly enhancing performance in various segmentation tasks such as blood vessel,

skin lesion, and lung lesion segmentation. Empirical studies demonstrate that R2U-Net consistently

outperforms standard U-Net architectures in these applications.

2.5 Attention Unet Based Segmentation

Attention U-Net [56] introduces attention gates within its skip pathways, making it a hybrid archi-

tecture aimed at enhancing the precision of segmentation maps. These attention gates selectively

pass crucial features to the decoder while suppressing redundant information. Initially employed in

language tasks with great success, the concept of attention mechanisms has been adapted for visual

tasks to improve the learning of local context. There are two types of attention gates: soft attention,

which computes a weighted combination of inputs using differentiable functions with weights be-

tween 0 and 1, and hard attention, which makes discrete decisions. Attention U-Net utilizes soft at-

tention gates in its skip pathways to enhance feature selection and focus on regions of interest (RoI),
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which is beneficial when datasets exhibit significant variations in RoI shapes and sizes. Addition-

ally, residual and dense connections between the encoder and decoder components contribute to fea-

ture reuse and gradient flow, as observed in previous architectural enhancements. Although attention

gates introduce additional computational overhead, they effectively elevate segmentation accuracy

by highlighting salient features and refining the focus on relevant RoIs.

Furthermore, hybrid models like BCDU-Net [57] and CPF-Net [58] combine attention mechanisms

with convolutional architectures to capture advanced temporal dependencies and inte- grate higher-

level semantic data. While BCDU-Net achieves improved accuracy and robustness through the fu-

sion of feature maps. Despite poten- tial drawbacks such as increased computational complexity and

heavy parameters, these models represent promising avenues for enhancing medical image segmen-

tation.

2.6 Transformer Based Segmentation

Trans U-Net [59] is an innovative architecture that integrates visual transformers (ViT) into the tra-

ditional U-Net framework to address the limitations of fully convolutional networks (FCNs) when

handling significant variations in shape and size across datasets. Visual transformers have demon-

strated remarkable success in sequence-to-sequence prediction tasks such as language and speech

translation by leveraging multi-head self-attention mechanisms for capturing global dependencies.

However, U-Net alone struggles with global spatial dependencies, while transformers may overlook

low-level details crucial for precise segmentation. Trans U-Net combines the strengths of both ar-

chitectures: it uses transformers to encode patch-wise image features into global representations,

while maintaining local details with CNN-based feature extraction in the encoder. The encoded fea-

tures from both CNN and transformer paths are appropriately concatenated before feeding into the

decoder, which upsamples these features to the original image dimensions. This hybrid approach

enhances localization accuracy of regions of interest (RoI) by aggregating features at multiple levels

through skip connections. Consequently, Trans U-Net mitigates issues of under-segmentation and

over-segmentation, improves global context awareness, and enhances semantic information extrac-

tion for more accurate image segmentation tasks.
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Following the groundbreaking success of the Vision Transformer (ViT), there has been significant

progress in vision-related tasks. DeiT [60], for example, concentrated on refining training meth-

ods for ViT architectures, which enhanced performance. The Pyramid Vision Transformer [61]

which introduces a pyramid based architecture incorporating Shifted Relative Attention mecha-

nisms, which lowered computational complexity without compromising performance. The Swin

Transformer [62] made another important advancement by employing a window-based attention

mechanism to enhance feature locality, addressing some of the limitations previously seen in trans-

former models. Transformers have also been adapted for specific tasks in computer vision. SETR

(Semantic Segmentation Transformer) applies transformers to semantic segmentation tasks, with

ViT serving as its core architecture. Xie et al. [63] developed SegFormer, which offers a simplified

and efficient transformer-based model for semantic segmentation. Additionally, Wang et al. [64]

proposed a U-shaped transformer known as Uformer, model designed for image restoration, demon-

strating the flexibility and effectiveness of transformers across various applications in computer vi-

sion.

2.7 Hybrid Transformers and Unet based Segmentation

Transformers have become a highly effective tool in computer vision, especially in medical image

segmentation, attracting significant interest from researchers due to their impressive performance.

TransUNet [65] stands out as a pioneering approach in this field by integrating Transformer archi-

tecture with the traditional UNet encoder. This innovative fusion diverges from conventional meth-

ods by operating on high-level features, effectively capturing intricate spatial dependencies within

medical images. By leveraging the hierarchical representations of UNet and the attention mecha-

nisms of Transformers, TransUNet significantly enhances segmentation performance, setting a new

standard in medical image analysis.

TransFuse [66], which introduces a novel perspective by concurrently bridging CNNs and Trans-

formers. A BiFusion fusion module is fitted to the core of this approach, which combines shallow

features from the encoders with features extracted by Transformers. This integrated approach en-

hances the overall understanding of the input data, utilizing both architectures to boost segmentation

accuracy.
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Figure 2.1: Literature Review Flowchart for Medical Segmentation.

On the other hand, TransAttunet [67] presents the Self-Aware Attention (SAA) module, which inte-

grates Transformer Self-Attention (TSA) with Global Spatial Attention (GSA) to capture non-local

interactions between encoder features.This enriches the segmentation process by enhancing feature

integration across multiple scales. However, challenges remain in effectively amalgamating spatial

and channel details crucial for precise segmentation tasks.

The integration of attention mechanisms has undoubtedly propelled advancements in medical im-

age segmentation. Yet, early methodologies often face challenges in balancing spatial and channel

information, potentially limiting segmentation precision. Future research endeavors will continue

to explore hybrid CNN-Transformer architectures to optimize feature representation and further en-

hance the efficacy of medical image segmentation techniques.
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2.8 Thyroid Nodule Segmentation

The thyroid gland, located in the anterior region of the neck beneath the thyroid cartilage, plays a

crucial role in metabolic regulation by producing thyroid hormone [68]. Thyroid nodules are com-

mon and vary widely in their characteristics, ranging from well-defined to irregular shapes. These

nodules can appear solid, cystic, or a combination of both. While approximately 4% to 7% of thy-

roid nodules are palpable, a much larger percentage, between 19% and 67%, is incidentally detected

during ultrasound exams. Thyroid nodules are classified based on echogenicity into hypoechoic,

isoechoic, or hyperechoic types. Studies suggest that hypoechoic nodules with irregular borders

have a higher likelihood of being malignant. The incidence rate of malignant thyroid nodules is esti-

mated to be between 0.1% to 0.2%.

Understanding the characteristics of thyroid nodules and their potential for malignancy is essential

in clinical practice [69]. The variability in nodule presentation, ranging from well-defined shapes

to irregular forms, highlights the need for comprehensive examination and diagnostic evaluation.

Many people have nodules that’re quite common, among the general populace; however the greater

prevalence of nodules found during ultrasound scans is worth noting. Moreover analyzing thyroid

nodules according to their echogenicity provides information about their characteristics, which can

help with evaluating risks and determining treatment plans. Considering the likelihood of cancer

for hypo echoic nodules with uneven edges making precise diagnoses and implementing effective

treatment approaches are essential for ensuring the best outcomes, for patients.

2.9 Breast Cancer Segmentation

It is of global concern to identify breast cancer at the earliest possible stage, as this would help in-

crease patient survival rates [70]. Thanks to mammograms, the disease can be detected early enough

for a relatively low cost. The accurate diagnosis of breast cancer is made possible through efficient

segmentation in the lesion, which is vital for performing various image analysis tasks like detection,

feature extraction, segmentation, and treatment planning. Once a breast image has been segmented

and the tumor regions accurately delineated, the amount of tissue and the volume of the breasts can

be accurately evaluated, aiding in the development of tailored treatment strategies to suit the needs
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of the individual patient.

It is a matter of concern globally as breast cancer kills many women and should be detected at the

earliest. Through mammograms, the patient can be identified early enough, resulting in huge cost

savings for patients diagnosed with cancer in its early form. The effective diagnosis of breast cancer

is largely dependent on the effective segmentation which is the cornerstone of many important tasks

of image analysis such as detection, feature extraction, segmentation, and treatment planning. By

accurately delineating tumour areas within breast images [69], segmentation empowers healthcare

providers to precisely evaluate tissue volume, enabling the development of personalized treatment

plans tailored to meet the specific needs of individual patients.
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Chapter 3

Proposed Methodology

Integrating advanced segmentation techniques within diagnostic systems marks a significant ad-

vancement in AI-driven disease detection. By enabling precise segmentation of anatomical struc-

tures, these systems provide critical information for accurate diagnosis and treatment planning.

Through the segmentation of medical images, healthcare professionals can assess structural ab-

normalities and variations, which aid in identifying disease patterns and selecting optimal treat-

ment strategies. This integration improves both the efficiency and accuracy of diagnostic workflows,

leading to enhanced patient care and clinical outcomes 3.1 illustrates the overview of the proposed

computer-aided diagnostic system, highlighting its segmentation capabilities and its role in support-

ing disease detection.

3.1 Proposed Model Architecture

In this section we present the proposed model architecture. The figure 1 shows the block diagram of

the model with several key components. Starting with the Unet encoder decoder type architecture

proven best for medical image classification tasks we introduce a novel parallel booster architecture

along with the already prove unet encoder decoder architecture. Idea is to provide with more than

one path with different kernel sizes This allows the network to adjust for the limitations of different

methods of simulating a kernel. Using multiple kernel sizes helps in identifying the general region

of the target while accurately detecting the edges. The model focuses on preserving boundary de-
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Figure 3.1: Encoder-Decoder Model for Computer-Aided Diagnosis.

tails and minimizing the use of pooling layers, as these layers often reduce the dimensions of feature

maps and can lead to a loss of spatial information.

Further, we have also deployed skip connections which traditionally carry low level features such as

edges texture and fine details from the encoder directly to corresponding layer of decoder and, so as

to keep the complexity low and also fitted a transformer attention layer in skip connection so when it

passes on information global context is also considered.

The Bottle neck enhancement is where the model captures the most abstract and global feature be-

fore moving on to the decoder stage. It acts as a bridge between encoder and decoder ensuring the

model can capture deep representations of the input. This models adds TFA( transformer atten-

tion block) and ANA(attention in attention block) attention block to bottle neck. With in the (TFA)

There are position encoding attention (PE) and Scaled Dot product Attention (SDP) Transformers

are inherently good at capturing relationships between different parts of data but don’t have a built-

in sense of order or spatial structure (which is crucial for images). The position encoding is added to

provide information about where each pixel is located in the input. This helps the model understand

not only the features of the image but also their spatial relationships, which is essential for medi-

cal image segmentation where location is key (e.g., the boundaries of an organ). One the other hand
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Scaled Dot-Product Attention mechanism works by calculating the relationship (attention score)

between each pixel (or feature) and every other pixel. In segmentation, this means that the model

can capture long-range dependencies, i.e., understanding how a pixel in one region of an image re-

lates to another pixel in a distant region. This can help in identifying if the target region is present in

more than one instance in the input image.

Figure 3.2: Block diagram of the proposed model.

The other important ANA Attention Block within the bottle neck builds upon the traditional atten-

tion mechanism but goes a step further by applying attention within the attention scores themselves.

In simpler terms, it refines the attention process by allowing the model to focus even more selec-

tively on important areas of the image. Finally, but not least, we have addressed the problem of class

imbalance by using a Dice loss in the pixel classification layer.

In our implementation, we utilize a structure with four encoder and four decoder blocks with dense

inter connections. Let ln×n be the n× n convolution operation f n×n following a by batch normalisa-

tion (βn) and ReLU (ℜ) operations for any given input (In) as defined by (Eq. 3.1.1).
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ln×n = ℜ
(

f n×n (In)
)

(3.1.1)

The initial skip connection (so) are calculated by applying the l3×3 operation to the input of the net-

work (Xin) as shown in (Eq. 3.3.2).

so = l3×3(Xin) (3.1.2)

Similarly, the output of the initial encoder block denoted by (Eo) is computed as (Eq. 3.3.3).

Eo = mp

(

l3×3
(

l3×3 (so)
)

)

(3.1.3)

where (mp) defines maxpooling operation. The output of the kth encoder block (Ek) is computed by

(Eq. 3.3.4).

Ek = mp
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l3×3 (Ek−1)
)
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(3.1.4)

where (sk) is the kth skip connection and is computed as given in (Eq. 3.3.5).

sk = l3×3(Ek−1) (3.1.5)

After the encoder block extracts information, two consecutive attention blocks called TFA (Trans-

former Attention) help in refining the extracted information. This is followed by an ANA (Attention

in Attention) block, which enhances local contextual information by integrating it with global spa-

tial information. The enhanced and refined feature information is then passed to the decoder stage,

which reconstructs the spatial feature maps. Let (Do).(Eq. 3.1.6).

Do = ANA(Ek)©TFA(Ek) (3.1.6)

Concatenation operation here is denoted by ©.We then apply TFA to skip connections and incorpo-

rate this information by performing the (l3×3) operation on the input from the kth decoder block, as

defined in (Eq. 3.1.7)
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ℑk = TFA(sk)+ l3×3(up(Dk−1)) (3.1.7)

Here, up represents the upsampling operation, which expands the spatial dimensions of the feature

maps. The output of the kth decoder block is computed as shown in (Eq. 3.1.8).

Dk = ℜ



 f 3×3

(

l3×3
(

l3×3
(

up (Dk−1)
)

)

)

+βn

(

f 3×3

(

βn

(

f 3×3 (ℑk)
)

)

)



 (3.1.8)

The model’s output, (Xout) is obtained by first applying the l3×3 operation, followed by a ( f 1×1) con-

volution and the sigmoid function (σ ), as illustrated in (Eq. 3.1.9

Xout = σ( f 1×1(l3×(ℑk))) (3.1.9)

The final binary prediction mask is generated by applying a Dice pixel classification layer to the

model’s output.

3.2 TFA (Transformer Attention)

This transformer attention layer TFA function incorporates key ideas from Transformer models,

particularly positional encoding and scaled dot-product attention, to enhance the network’s ability to

capture long-range dependencies and contextual information across spatial dimensions.

Figure 3.3: Schematic diagram of Transformer based Attention(TFA).
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Positional Encoding: In traditional Transformer models, positional encoding is used to inject spa-

tial information into the input, as they lack an inherent sense of position due to the self-attention

mechanism. The function Position Encoding generates a matrix that encodes the position of each

pixel/element in the spatial dimensions (H, W). This encoding adds information about the spatial lo-

cation to the input tensor. The positional encoding (PE) is added to the input tensor, which now has

both feature and spatial position information. The height dimension (H) gets a positional embedding

using h embedding layer. The positions (from 0 to H-1) are fed into the height embedding layer as

shown in equation 3.2.1:

hembedding = Embedding(hrange), hrange = {0,1,2, . . . ,H −1} (3.2.1)

Similarly, the width dimension (W) gets a positional embedding using w embedding layer as shown

in equation 3.2.2:

wembedding = Embedding(wrange), wrange = {0,1,2, . . . ,W −1} (3.2.2)

The height embedding is expanded along the width dimension (W) and repeated for every width

position Similarly, the width embedding is expanded along the height dimension (H) and repeated

for every height position. The positional encoding from both the height and width dimensions are

concatenated along the last axis.

The overall position encoding function can be written as shown in equation 3.2.3, where Eh(i) is

the embedding vector for position i in the height dimension, and Ew( j) is the embedding vector for

position j in the width dimension. Here, i ∈ {0, . . . ,H −1} and j ∈ {0, . . . ,W −1}.

PEi, j = [Eh(i),Ew( j)] (3.2.3)

Further more the embeddings are learned and initialized using the HeUniform initialization method.

This ensures the weights are initialized in a suitable range, improving model convergence during

training.

Scaled dot product Attention: The Scaled Dot-Product Attention mechanism is an essential com-
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ponent in contemporary neural network architectures, such as the Transformer. This mechanism

enables the network to attend to various parts of an input sequence by calculating attention scores.

By using scaled dot-product attention, the transformer layer helps the model capture global context

important for medical images where certain patterns or structures might span over different parts

of the image. In segmentation tasks, capturing relationships between distant regions can improve

the accuracy of boundary detection, reducing issues like incorrect segmentations of overlapping or

complex structures.

Let: x∈R
B×H×W×C, where B is the batch size, H and W are the height and width of the feature map,

and C is the number of channels. Then, the input feature map is reshaped into 2D spatial maps using

the following equations:

• Query:

Q = reshape(x;B,H ×W,C) and then permute to Q ∈ R
B×(H×W )×C (3.2.4)

• Key:

K = reshape(x;B,H ×W,C) and then permute to K ∈ R
B×(H×W )×C (3.2.5)

• Value:

V = reshape(x;B,H ×W,C) and then permute to V ∈ R
B×(H×W )×C (3.2.6)

The attention score is calculated as the dot product between the query Q and the key K, followed by

scaling by 1√
dk

, where dk is the temperature scaling factor, a hyperparameter controlling the scaling

(which is typically the dimensionality of the key).

energy = Q ·K⊤ ∈ R
B×C×C (3.2.7)

Then scaling factor is applied as shown in equation 3.2.8:

Attention score =
energy√

dk

=
Q ·K⊤
√

dk

(3.2.8)
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SoftMax is applied to the attention score to convert it into probabilities as shown in equation in

3.2.9:

Attention = SoftMax

(

Q ·K⊤
√

dk

)

∈ R
B×C×C (3.2.9)

Further more to prevent overfitting and regularize dropout is applied. The attention-weighted values

are computed as the dot product between the value V and the normalized attention probabilities:

output = V ·Attention dropout ∈ R
B×(H×W )×C (3.2.10)

Finally, the output is reshaped back to match the original spatial dimensions, which is the same as

the input shape R
B×(H×W )×C.

3.3 ANA (Attention-in-Attention) Attention Block

This custom ANA attention block is used for enhancing feature representations. The purpose of this

block is to leverage attention mechanisms to enhance key features in the input while reducing ir-

relevant or redundant information. ANA helps the model not only focus on relevant areas but also

refine its understanding of the semantic importance of different features. This is especially useful

in medical images where small, intricate features need to be captured, and where misclassification

could lead to incorrect diagnosis. Instead of a single pass of attention computation, ANA applies

nested attention mechanisms, where the model first learns a coarse attention map and then refines it

further with another layer of attention. This means that the model can gradually refine its focus on

key regions of the image, particularly useful for detecting fine-grained details in medical images like

small tumors or subtle changes in tissue.

The process starts with an input tensor I with dimensions H ×W ×C, where H, W , and C are the

height, width, and channels of the input on which operations are applied. Let BN(.) denote batch

normalization, σ(.) denote ReLU activation, and Conv2D(.) represent 2D convolution. The output

of the convolution and normalization is the feature map F1 as shown in equation 3.3.1, where K is

the number of filters per class and nclasses is the number of output classes.
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Figure 3.4: Schematic diagram of Attention in Attention(ANA).

F1 = σ
(

BN
(

Conv2D(I,k ·nclasses,3×3)
)

)

(3.3.1)

Then the pooling operation generates two summary statistics from the feature map F2 = F1, which

are x1 = GlobalMaxPooling(F2) and x2 = GlobalAveragePooling(F2). GlobalMaxPooling(F2) takes

the maximum value across spatial dimensions for each channel, whereas GlobalAveragePooling(F2)

takes the mean value across spatial dimensions for each channel. Then, element-wise multiplication

of the pooling outputs is performed; this way, the pooled outputs are combined as shown in equation

3.3.2.

x = x1 ⊙ x2 (3.3.2)

Further, the pooled feature vector x is reshaped and averaged along the last dimension to obtain the

attention map S. In equation S = µ(x,axis = −1), µ denotes the mean operation along the last di-

mension (which corresponds to k, the number of filters per class). This results in the attention map

S, which indicates the importance of each class across the spatial dimensions.

The feature maps F1 are reshaped to apply the attention map as shown in equation 3.3.3

x = Reshape(F1,(H,W,nclasses,k)) (3.3.3)
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Afterward, the mean is computed along the last dimension again to collapse the channel dimension:

x= µ(x,axis=−1). This operation reduces the feature maps from a higher-dimensional space to the

attention space. The attention map S is applied to the feature maps by element wise multiplication as

shown in equation 3.3.4:

x = S⊙ x (3.3.4)

The resulting map x is averaged along the last dimension to obtain the final attention map M. The

final output is obtained by element-wise multiplication between the input I and the attention map M.

as shown in equation 3.3.5.

semantic = I ⊙M (3.3.5)
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Chapter 4

Experimental Setup

In this section, we first we provide a thorough overview of the datasets used in this thesis research

on medical image segmentation, followed by an in-depth examination of the experimental method-

ology applied to assess the proposed algorithm.

4.1 Datasets

The efficacy of the proposed model was evaluated using a diverse set of publicly accessible datasets,

consisting of both dermoscopic and ultrasound images. Four benchmark datasets were utilized,

with two datasets containing skin images and two containing ultrasound images. The ISIC chal-

lenge includes three primary tasks which are localization and detection of visual features/patterns,

lesion segmentation and disease classification. Although these tasks collectively aim to automate

melanoma diagnosis from dermoscopic images, the primary focus of this research lies in the seg-

mentation task. Lesion segmentation is essential for precisely outlining the boundaries of skin le-

sions, forming the foundation for further analysis.

Description in a detaile of each dataset is provided below, with their distribution summarized in Ta-

ble 4.1. This table offers information about the datasets used to assess the performance of proposed

model, including the number of images in the training, validation, and test sets, as well as image res-

olution. The "Segmentation Masks" column highlights whether segmentation masks are available
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Datasets
Number of Images

Resolution Segmentation Masks

Train Validation Test

BUSI [69] 780 N.A 80 500×500 Available

DDTI [71] 637 N.A N.A 245×360 - 560×360 Available

ISIC2017 [73] 2000 N.A 600 679×453 - 6748×4499 Available

ISIC2016 [72] 900 N.A 379 679×453 - 6748×4499 Available

PH 2 [75] 200 N.A N.A 768×560 Available

Table 4.1. Medical Image Segmentation Dataset’s Description for the proposed model’s evaluation.

for each dataset. Only datasets that included segmentation masks were used for segmentation tasks

in this evaluation. The BUSI [69], DDTI [71], ISIC2016 [72], ISIC2017 [73] ISIC2018 [74] and

PH2 [75] datasets all contain segmentation masks, making them suitable for segmentation evalua-

tions.

In contrast, the ISIC2019 [76] and ISIC2020 [77] datasets, commonly utilized in dermatology for

skin lesion analysis, do not provide segmentation masks for the lesions. Segmentation masks are

crucial for tasks like boundary delineation and pixel-level classification. As a result, these datasets

were excluded from the segmentation evaluation and only used for detection tasks. Despite the ab-

sence of segmentation masks [78], the ISIC2019 and ISIC2020 datasets remain valuable for other

tasks, such as lesion classification, where the goal is to differentiate between benign and malignant

lesions based on their visual and clinical characteristics. These datasets contribute to the broader ob-

jective of enhancing the diagnosis and treatment of skin lesions through computer-aided analysis.

However, challenges such as class imbalance in multi-detection and image duplication issues in the

ISIC2020 dataset 78, resulting from the merging of multiple datasets for detection tasks, were also

noted

BUSI: The BUSI dataset [69] contains 780 images of breast ultrasound collected from women aged

25 to 75. These images are provided in PNG format with an average resolution of 500×500 pixels,

and for uniformity, images are of size 256×256 pixels. This dataset includes ground truth annota-

tions across three categories: normal, benign, and malignant. A three-fold cross-validation approach
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is implemented to assess the performance of segmentation algorithms.

Breast cancer is a leading cause of death among women globally, highlighting the critical need for

early detection to improve survival rates. The BUSI dataset provides essential data for the diagno-

sis of breast cancer through ultrasound imaging. With its categorization into normal, benign, and

malignant classes, the dataset supports various tasks such as classification, detection, and segmenta-

tion of breast cancer. By utilizing this dataset, researchers can develop and refine machine learning

algorithms to enhance breast cancer diagnosis and ultimately improve patient outcomes.

Figure 4.1: BUSI Dataset images.

DDTI: The DDTI dataset [71] includes 637 ultrasound images of thyroid nodules in PNG format.

To maintain consistency in image size, images in the dataset have been resized to 256×256 pixels.

The dataset is organized into training, validation, and test sets, using an 80%, 10%, and 10% split.

Additionally, a three-fold cross-validation approach is applied to ensure a robust and reliable evalua-

tion of the segmentation algorithm.

This online collection of thyroid ultrasound pictures is provided by the collaboration, between the

National University of Colombia and IDIME (Medical Diagnostic Institute Colombia) offering an

asset for researchers in the field of science and medicine to utilize for work on computer assisted

detection (CAD) systems designed for assessing thyroid nodules efficiently and effectively in medi-

cal imaging analysis tasks like this. Not only does it support algorithm development but also serves

as a valuable resource for educating and training new radiologists with a wide range of thyroid ul-

trasound images, at their disposal. By ensuring that this information is readily available, to all par-

ties the dataset fosters the advancement of studies and cooperation, in scrutinizing thyroid nodules

which in turn enhances the precision of diagnoses and the quality of healthcare provided to patients.
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Figure 4.2: DDTI Dataset images.

ISIC 2016: ISIC 2016 dataset [72] consists of 900 dermoscopic images allocated for training, along

with 379 images reserved for testing. Each image is accompanied by ground truth masks, which

provide critical annotations for assessing segmentation performance. Dermoscopic images present

significant challenges due to the inherent complexity in their structure. These images often display

irregular boundaries, diverse shapes, contrasting textures, and may include scars or artifacts, all of

which make accurate segmentation difficult. Additionally, the dataset include a variety of skin le-

sions, such as melanoma, nevi, and other benign or malignant conditions, each with distinct features

that add to the segmentation complexity.

Addressing these challenges requires sophisticated segmentation algorithms capable of accurately

identifying and delineating lesion boundaries, despite irregularities and the presence of artifacts.

The varying shapes, textures, and boundaries, combined with factors like inconsistent lighting con-

ditions, image quality differences, and patient demographic diversity, heighten the complexity of the

dataset. Advanced segmentation techniques are essential for overcoming these obstacles and pro-

ducing reliable results.

Furthermore, rigorous evaluation and validation methodologies are necessary to effectively gauge

the performance of segmentation algorithms in handling such complex data. The robustness of seg-

mentation models must be assessed thoroughly to ensure their applicability in real-world clinical

environments. The ISIC 2016 dataset, with its comprehensive annotations and challenging image

characteristics, provides an ideal platform for training and testing medical image segmentation mod-

els, ensuring they perform effectively in clinical practice.

ISIC 2017: The ISIC 2017 dataset [73] comprises 2000 dermoscopic images, providing a substan-
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Figure 4.3: ISIC 2016 Dataset images.

tial amount of data for the development and training of segmentation models. In addition, it includes

150 images reserved for validation and 600 images specifically allocated for testing and perfor-

mance evaluation. This dataset serves as an important resource for both researchers and clinicians

in dermatology, offering a diverse and well-annotated collection of images for advancing the devel-

opment of medical image segmentation frameworks.

One of the key challenges in skin lesion segmentation lies within the ISIC 2017 Skin Lesion dataset,

particularly in its focus on melanoma detection. This dataset is considered one of the most difficult

among the ISIC challenges, including ISIC 2016 and ISIC 2018, due to the complexity and vari-

ability of the lesions present in the images. The ISIC 2017 challenge has become a benchmark for

evaluating the effectiveness of segmentation models on real-world dermoscopic images, pushing the

limits of algorithm development and validation.

The diverse range of lesions, including those with irregular shapes, varying sizes, and textures,

makes it a valuable tool for testing segmentation algorithms in real-world clinical conditions. Re-

searchers commonly use this dataset to assess the performance of their models, taking advantage of

the extensive annotations and variety of lesion types[79]. By providing such a challenging dataset,

the ISIC 2017 challenge plays a crucial role in fostering the development of segmentation algo-

rithms that can accurately delineate lesion boundaries, thereby improving diagnostic accuracy and

patient outcomes in clinical settings.

PH2: The PH2 dataset [75] consists of a carefully curated set of 200 dermoscopic images, each

paired with corresponding ground truth masks. This dataset provides an important resource for de-

veloping and assessing skin lesion segmentation models. Its diverse representation of lesion types,
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Figure 4.4: ISIC 2017 Dataset images.

including various benign and malignant conditions, enables comprehensive analysis. The inclusion

of high-quality annotations ensures that models trained on this dataset can be rigorously evaluated

for accuracy in boundary delineation and pixel-wise classification, making it highly valuable for re-

search in dermatological image analysis.

Figure 4.5: PH2 Dataset images.

4.2 Model Bench-marking

Benchmarking of medical image segmentation models has a pivotal role in evaluating their perfor-

mance and guiding future research efforts. In this study, we adhered to well-established method-

ologies presented by frameworks like Ms Red [80], FTN Network [81], and DconnNet [82], which

provide a standardized approach for assessing segmentation algorithms. These guidelines ensure

uniformity, enabling fair comparisons across different studies and models.

For our benchmarking analysis, we thoughtfully chose a varied collection of state-of-the-art models

known for their outstanding effectiveness in medical image segmentation. We structured our train-

ing setup following the approaches outlined in works such as Ms Red [80] and ARU-GD [83]. The

models chosen for evaluation include Swin-Unet [84], U-Net [52], ARU-GD [83], Att-UNet [85],
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UNet++ [86], DuckNet [105], and Meta-Poly [87], selected for their innovative architectures and

proven results in previous research.

Once these models were trained on relevant datasets, we rigorously evaluated their segmentation

outputs. Our analysis focused on key performance metrics like accuracy, sensitivity, specificity, and

the Dice similarity coefficient [80], providing a detailed view of each model’s strengths and areas

for improvement. These insights enabled us to make well-informed decisions regarding which mod-

els are best suited for particular clinical applications.

To ensure a thorough comparison, we also reviewed and integrated benchmarking data from previ-

ous studies on skin lesion segmentation. Models like Ms Red [80], FAT-Net [88], and AS Net [89]

have been tested on widely-used datasets such as ISIC 2016, ISIC 2017, ISIC 2018, and PH2. These

datasets, when used as out-of-distribution benchmarks, helped us evaluate the generalization capa-

bility and robustness of the models across varying data distributions.

By comparing our selected models against these established results, we gained a deeper understand-

ing of the models’ relative strengths in different scenarios. This comprehensive benchmarking con-

tributes to the broader domain of medical image analysis and AI-driven diagnostic tools

4.3 Performance measure

The evaluation of our model’s performance utilizes five metrics: Accuracy, Specificity, Jaccard in-

dex (IOU), Dice coefficient and Sensitivity . These metrics provide a well-rounded evaluation of the

model’s ability to accurately segment skin lesions. This allows a comprehensive assessment of the

model’s accuracy and effectiveness in various segmentation scenarios.

Jaccard Index (IoU)

The Jaccard index, also known as Intersection over Union (IoU), quantifies the overlap between two

sets by dividing the size of their intersection by the size of their union. This metric is computed us-

ing 4.3.1, where true positives (TP) indicate correctly identified pixels, false positives (FP) represent

incorrectly identified pixels, and false negatives (FN) are missed pixels. The Jaccard index provides

a reliable measure of similarity between predicted and actual segmentation outputs.
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Jaccard Index (IoU) =
T P

T P+FP+FN
(4.3.1)

Dice Coefficient (Ds)

The Dice coefficient (Ds) is a commonly used metric for assessing similarity in image segmentation

tasks. It quantifies the agreement between the predicted segmentation mask and the ground truth by

calculating twice the size of their intersection, then dividing that by the total number of elements

in both sets combined. The formula, given in 4.3.2, incorporates true positives (TP), false positives

(FP), and false negatives (FN) to assess how well the segmentation aligns with the actual results.

This metric is particularly effective in highlighting the overlap between the two sets.

Dice Coefficient (Ds) =
2×T P

2×T P+FP+FN
(4.3.2)

Accuracy (Acc)

Accuracy (Acc) reflects the percentage of correctly identified instances, including both positive and

negative cases, from the overall dataset. It is computed using Equation 4.3.3, with true positives

(TP) representing correctly classified positive samples, true negatives (TN) for correctly classified

negative samples, and false positives (FP) and false negatives (FN) indicating misclassifications.

This metric provides an overall measure of the model’s ability to make accurate predictions across

all classes.

Accuracy (Acc) =
T P+T N

T P+T N +FP+FN
(4.3.3)

Sensitivity (Sn)

Sensitivity (Sn), also known as recall or the true positive rate, measures the model’s effectiveness

in accurately identifying positive instances among the total number of actual positive cases. It is

calculated using 4.3.4, where true positives (TP) refer to correctly identified positive cases, and false

negatives (FN) indicate positive instances that were missed. This metric assesses how effectively the
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model captures all relevant positive samples

Sensitivity (Sn) =
T P

T P+FN
(4.3.4)

Specificity (Sp)

Specificity (Sp) quantifies the proportion of true negative samples accurately identified as negative

from the total number of actual negative samples. It is determined using Equation 4.3.5, where T N

denotes true negatives and FP signifies false positives.

Specificity (Sp) =
T N

T N +FP
(4.3.5)

4.4 Implementation Details

The preprocessing phase begins by resizing all training images to a uniform dimension of 256×256

before feeding them into the model. For optimization, the Adam optimizer is applied with param-

eters β1 = 0.90 and β2 = 0.999. These values are chosen based on previous research findings, as

highlighted in [90], where these specific parameters have proven effective in medical image segmen-

tation tasks.

To prevent overfitting, an Early Stopping mechanism is introduced, starting from the 10th epoch.

Notably, the proposed loss function is responsive to dynamic weighting, which helps the model min-

imize the loss more effectively. However, in some cases, this can negatively impact the Jaccard in-

dex. To improve performance across diverse datasets, the Jaccard coefficient is manually selected

as the monitoring metric when the Lbl label is in use. Otherwise, the model monitors the validation

loss.

All experiments are run using Google Colab Pro, leveraging a T4 GPU with a batch size 12. The

implementation is carried out in Keras framework, using Python 3.10.12.
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Chapter 5

Result and Discussion

5.1 Ablation Study of Proposed Model

The comprehensive evaluation of the proposed model was done using ISIC 2017 dataset, with the

quantitative results highlighting performance improvements presented in Table 5.1. To evaluate the

impact of various components on enhancing the baseline UNet-based CNN model, a carefully de-

signed ablation study was carried out. Initially, the baseline model was used as a reference, and the

results were computed based on its performance. In the second phase of experimentation, the TFA

(Transformer Attention) module was incorporated into both the skip connections and the bottleneck.

In the third phase, the novel ANA (Attention IN Attention) block was added to the bottleneck in

conjunction with the TFA module. This combination demonstrated a significant boost in overall per-

formance. The synergistic effect of these components proved to be especially effective in enhancing

the model’s capabilities.

This section further presents a performance comparison of the proposed model against recent meth-

ods across various datasets, including BUSI[69], DDTI[71], ISIC 2016 [72], ISIC 2017 [73], and

PH2 [75]. Comparisons in the tables are derived from the cited literature. These findings demon-

strate the generalization capability of the proposed model across diverse datasets, particularly for

ultrasound images: the BUSI dataset for breast cancer segmentation and the DDTI dataset for thy-

roid nodule segmentation. This generalization underscores the model’s adaptability to other medical
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Method

Performance Measures (%)

Jind ↑ Ds ↑ Acc ↑ Sn ↑ Sp ↑

Base Network (BN) 79.74 86.72 94.50 87.17 92.33

BN + TFA 81.76 88.60 95.54 88.65 94.81

BN + TFA + ANA 83.88 89.89 95.95 89.85 95.37

Table 5.1. Ablation study of proposed model on ISIC 2017 dataset.

image segmentation modalities

5.2 Performance Comparison with other models on the BUSI dataset

To evaluate the performance of our model for breast cancer segmenttion A publically avalaible

BUSI dataset [69] is used.Comparisons are made against several state of the art models, such as

U-Net [52], FPN [90], Swin-Unet [84] etc. Table 5.2 provides a detailed statistical comparison be-

tween the proposed model and these methods. The proposed model demonstrates improvement in

the Jaccard index, achieving a higher score on the BUSI dataset [69] compared to other approaches.

Additionally, this model is tested on images related to breast cancer which presents challenges such

as varying sizes and irregular shapes.

5.3 Performance Comparisons with other models on the DDTI dataset

Performance of the model for thyroid nodule segmentation is evaluated using the publicly available

DDTI dataset [71]. Comparison is done with state of the art methods, including U-Net [52], Atten-

tion U-Net [85], Swin-Unet [84] etc.Table 5.3 presents a statistical comparison of proposed model

with these methods. Results in the table show that proposed model achieves a significant improve-

ment in the parameter Jaccard index on the DDTI dataset. The proposed model is also evaluated on

thyroid nodule images that present challenges like irregular shapes and varying sizes.
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Methods Performance Measures (%)

Jind ↑ Ds ↑ Acc ↑ Sn ↑ Sp ↑

ConvEDNet[91] 73.57 82.70 - 85.51 -

U-Net[52] 67.77 76.96 95.48 78.33 96.13

DeeplabV3+[92] 73.48 82.68 - 83.37 -

BCDU-Net[57] 74.49 66.75 94.82 86.85 95.57

UNet++[53] 76.85 76.22 97.97 78.61 98.86

BGM-Net[93] 75.97 83.97 - 83.45 -

Swin-Unet[84] 77.16 84.45 97.55 84.81 98.34

Meta-Poly[87] 77.93 - 97.81 89.17 -

DuckNet[86] 85.63 - 98.69 95.36 -

ARU-GD[83] 77.07 83.64 97.94 83.80 98.78

Our model 87.97 93.36 99.05 93.86 99.41

Table 5.2. Performance comparison of Our model on (BUSI) breast ultrasound images dataset.
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Methods Performance Measures (%)

Jind ↑ Ds ↑ Acc ↑ Sn ↑ Sp ↑

BCDU-Net[57] 57.79 69.49 93.22 78.31 94.34

DuckNet[86] 68.32 - 94.17 77.47 -

MShNet[74] 73.43 75.01 - 82.21 -

U-Net[52] 74.76 84.08 96.55 85.50 97.57

UNet++[53] 74.76 84.08 96.55 85.50 97.57

Meta-Poly[87] 76.64 - 96.35 89.31 -

Swin U Net[84] 75.45 84.87 96.93 86.42 97.98

Attention U-Net[85] 77.37 84.91 - 81.70 -

M-Net[94] 79.38 86.40 - 75.45 -

nnUnet[2] 80.76 88.59 - 85.23 -

ARU-GD[83] 77.07 83.64 97.94 83.80 98.78

DeeplabV3+[92] 82.66 87.72 - 79.54 -

N-Net[94] 88.46 92.67 - 91.94 -

Our model 93.09 96.18 99.16 96.28 99.46

Table 5.3. Performance Comparison of Our model on DDTI Thyroid Nodule Segmentation Dataset.

5.4 Performance Comparison on the ISIC 2016 dataset

A comprehensive analysis is done when evaluating proposed model on ISIC 2016 dataset with other

state of the art models. To ensure fairness, all models were tested in identical computing environ-

ments with consistent data augmentations. The methods included for comparison were Ms RED

[80], Swin-Unet [84], UNet++ [53], CPFNet [58], BCDU-Net [57], DAGAN [95], FAT-Net [88],

ARU-GD [83], U-Net [52], and Hyper-Fusion Net [96]. It’s important to note that, aside from Swin-

Unet, UNet++, BCDU-Net, U-Net, and ARU-GD, the results for other models were taken from their

respective cited papers. The proposed model demonstrated superior performance, with a Jaccard in-

dex improvement ranging from 0.93% to 7.72% compared to other methods. As shown in Table 5.4,
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proposed model consistently surpassed the competing models across all evaluation metrics. These

comparisons highlight proposed models superior performance, particularly in challenging cases in-

volving lesions on skin of varying sizes and irregular shapes, where it consistently delivers the best

segmentation outcomes.

Method Performance Measures in (%)

Jind ↑ Ds ↑ Acc ↑ Sn ↑ Sp ↑

BCDU-Net[57] 83.43 80.95 91.78 78.11 96.20

ARU-GD[83] 85.12 90.83 94.38 89.86 94.65

CPFNet[58] 83.81 90.23 95.09 92.11 95.91

U-Net[52] 81.38 88.24 93.31 87.28 92.88

Ms RED[80] 87.03 92.66 96.42 - -

UNet++[53] 82.81 89.19 93.88 88.78 93.52

DAGAN[97] 84.42 90.85 95.82 92.28 95.68

DuckNet[86] 85.55 - 95.64 91.40 -

FAT-Net[88] 85.30 91.59 96.04 92.59 96.02

Meta-Poly[87] 85.60 - 96.08 91.72 -

Hyper-Fusion Net[96] 88.17 - 96.64 94.22 96.45

Swin-Unet[84] 84 87.60 88.94 96.00 92.27 95.79

Our model 90.63 94.48 97.45 95.49 96.82

Table 5.4. Performance Comparison of proposed model on ISIC 2016 Dataset.

5.5 Performance Comparisons on the ISIC 2017 dataset

A comprehensive analysis is done when evaluating proposed model on ISIC 2017 dataset with other

state of the art models. All assessments were performed under identical computing conditions with

consistent data augmentation to ensure a fair comparison. The methods included for evaluation were

FAT-Net [88], DAGAN [95], Ms RED [80], U-Net [52], Swin-Unet [84], UNet++ [53], BCDU-
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Net [57], AS-Net [89], SEACU-Net [98], ARU-GD [83], and BA-Net [99]. It is important to note

that, aside from Swin-Unet, UNet++, BCDU-Net, U-Net, and ARU-GD, the performance results for

the remaining models were sourced from their respective published papers. As shown in Table 5.5,

Proposed model outperformed the competing models across most evaluation metrics. The results

consistently highlighted proposed model superior performance, particularly in challenging cases in-

volving lesions over skin of varying sizes and irregular shapes, where the model closely matched the

ground truth in its segmentation outcomes.

Methods Performance Measures (%)

Jind ↑ Ds ↑ Acc ↑ Sn ↑ Sp ↑

AS-Net[89] 80.51 88.07 94.66 89.92 95.72

DAGAN[95] 75.94 84.25 93.26 83.63 97.24

U-Net[52] 75.69 84.12 93.29 84.30 93.41

Meta-Poly[87] 78.31 - 94.15 85.53 -

UNet++[53] 78.58 86.35 93.73 87.13 94.41

FAT-Net[88] 76.53 85.00 93.26 83.92 97.25

Hyper-Fusion Net[96] 83.70 - 95.80 92.33 96.16

SEACU-Net[98] 80.50 89.11 95.35 - -

ARU-GD[83] 80.77 87.89 93.88 88.31 96.31

Ms RED[80] 78.55 86.48 94.10 - -

Swin-Unet[84] 80.89 81.99 94.76 88.06 96.05

BCDU-Net[57] 79.20 78.11 91.63 76.46 97.09

BA-Net 81.00 88.10 94.60 89.70 96.60

DuckNet[86] 82.08 - 95.41 89.03 -

Our model 83.88 89.89 95.95 89.85 95.37

Table 5.5. Performance Comparison of proposed model on ISIC 2017 Dataset..
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5.6 Performance Comparison with other models on the PH2 dataset

At last, generalization capability of our model is evaluated through cross dataset validation. The

model is trained on the ISIC 2016 dataset and tested on the PH2 dataset [75]. The performance of

the proposed model on the PH2 dataset is compared against several state of the art methods, such as

ICLNet [98], DCL-PSI [100], MFCN [101], and AS-Net [89]. Table 5.6 illustrates the performance

comparison between the proposed model and these advanced methods. IN comparison with state

of the art techniques, the Jaccard index for the proposed model shows an improvement of 3.88% to

7.79% on the PH2 dataset [75]

Method

Performance Measures in (%)

Jind ↑ Ds ↑ Acc ↑ Sn ↑ Sp ↑

AS-Net[89] 87.60 93.05 95.20 96.24 94.31

ICL-Net[99] 87.25 92.80 96.32 95.46 97.36

MFCN[101] 83.99 90.66 94.24 94.89 93.98

DCL-PSI[100] 85.90 92.10 95.30 96.23 94.52

Our model 90.08 94.16 96.65 95.51 93.67

Table 5.6. Performance Comparison of Our model on PH2 Dataset.

5.7 Computational Complexity Analysis

With in this subsection, we perform an in-depth evaluation of the computational demands of the pro-

posed model, comparing its requirements to those of current state of the art approaches. The compu-

tational comparison presented in Table 5.7, emphasizes effectiveness of the proposed approach.

The proposed model exhibits exceptional computational efficiency, notably due to its considerably

lower number of learnable parameters. With just 0.68 million parameters, it surpasses other algo-

rithms regarding parameter efficiency. Crucially, this optimization does not compromise the model’s

high performance in medical imaging analysis. It achieves an optimal balance between computa-

tional efficiency and excellent segmentation results. Additionally, it requires just 2.6 billion floating-
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Method

Computational Complexity Analysis

Param (M) ↓ FLOPs (G) ↓ Inference Time (ms) ↓

BCDU-Net [57] 28.8 38.22 28.07

UNet++ [53] 34.9 35.6 31.3

ARU-GD [83] 33.3 33.93 29.49

U-Net [52] 32.9 33.39 28.87

DeepLabv3 [90] 37.9 33.89 29.62

Swin U-Net [84] 29 25.4 25.6

Our model 0.68 2.6 15.4

Table 5.7. Computational Complexity Analysis of proposed model on a spatial dimension of image

256×256.

point operations (FLOPs) and achieves an inference time of only 15.4 milliseconds. This compact

design enhances the practicality of deploying the LSSF-Net method in real clinical environments.

The model’s smaller size makes it both efficient and effective for medical imaging tasks, facilitating

easier integration and real-time use.
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Chapter 6

Conclusion

In conclusion, this thesis research marks a significant leap forward in the domain of medical image

segmentation, presenting effectiveness and efficacy of the proposed architecture. Keeping in view

the limitations of medical image segmentation we develop a hybrid model in order to keep focus

on both global and local features, a CNN based parallel booster encoder decoder to capture long

range dependencies along with feature extraction and novel attention mechanisms at bottleneck and

skip connections in order for extraction of global features which ultimately helped in feature en-

hancement and improved output results. Addition of ANA attention which focus on selectively more

important features and TFA attention whose one of the key purpose is to find patterns those might

span over different parts of an image helped us in achieving excellent results on benchmark datasets,

confirming that the proposed method outperforms existing segmentation approaches.

To assess the versatility and generalization of proposed model, performance comparisons are done

across a range of skin types and lesion characteristics, as well as in breast cancer segmentation and

thyroid nodule segmentation. The results in section 5 showed consistent performance of proposed

model across different types of datasets. These findings contribute significantly to ongoing efforts

aimed at enhancing the precision and efficiency of diagnostic tools in medical image segmentation.

Looking forward, there exists ample opportunity for further exploration and refinement of the pro-

posed model architecture.

In summary, the advancements achieved through this research highlight the promising prospects of
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our model in pushing the boundaries of medical image segmentation, with far-reaching advantages

in enhancing diagnostic accuracy and improving patient care in health care industry.
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Chapter 7

Recommendations

Looking ahead, we advocate for ongoing exploration and refinement of the proposed model archi-

tecture to tackle the evolving challenges in medical image segmentation. This could include investi-

gating innovative techniques for feature extraction and integration, as well as examining alternative

network architectures to further boost the model’s performance. Additionally, incorporating multi-

modal data sources, such as clinical metadata or histopathological images, may provide valuable

supplementary information to enhance segmentation accuracy and reliability.

Moreover, collaboration with dermatologists and other healthcare professionals is crucial to vali-

date the practical applicability of the proposed model in clinical environments. Conducting thorough

validation studies on diverse patient populations and real-world datasets will ensure that the model

meets rigorous standards for diagnostic accuracy and reliability. Fostering interdisciplinary partner-

ships among researchers, clinicians, and industry stakeholders will facilitate the integration of the

proposed model into routine clinical practice. Ultimately, this collaboration will benefit patients by

improving diagnostic outcomes and supporting more effective treatment strategies.
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