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Preface

The peculiar multiplicity of formulation and reformulation of the basic thermodynamic
formalism is responsible for the apparent complexity of a subject that in its naked form
is quite simple.—H.B. Callen[1, p85]

T HERMODYNAMICS and statistical mechanics are core components of physics curricula. Sta-
tistical mechanics, together with quantum mechanics, provides a framework for relating the

macroscopic properties of large collections of atoms (such as in a solid) to the microscopic prop-
erties of their constituents. The term macroscopic is difficult to define because samples of matter
barely discernible to human senses contain enormous numbers of atoms. Statistical mechanics uses
probability to make predictions in the face of incomplete information. Predictions are theoretically
possible when the state of every atom in a system is known. The trouble is, such information is not
available for the enormous number of atoms comprising macroscopic systems, and we must resort
to probabilistic methods. Historically, statistical mechanics was developed to account for the results
of thermodynamics, a phenomenological theory that presupposes no knowledge of the microscopic
components of matter, and instead makes use of concepts such as temperature and entropy. The
relation between the two subjects exemplifies a common theme in physics: The role of microscopic
theory is to explain the results of macroscopic theory.

In years past, thermodynamics and statistical mechanics were taught separately. With the in-
variable compression of curricula (squeeze more content into time-constrained curricula), there has
been a movement to combine the subjects under the rubric of thermal physics. Students can find
themselves on shaky ground when thermodynamic ideas are introduced as an outgrowth of the sta-
tistical approach, because they’re not familiar with thermodynamics. Thermodynamics is a difficult
subject that takes time to learn. It’s difficult because of its generality. The application of general
theories to specific instances taxes a student’s understanding of the entire theory; it takes time to
become proficient in thermodynamics, to learn its scope and methods.

I have undertaken to write a relatively brief, yet in-depth review of thermodynamics, a précis,
with emphasis on the structure of the theory. The heart of thermodynamics is entropy—students
must learn from the outset that thermodynamics mainly is about entropy.1 To that end, Chapter 1,
Concepts of Thermodynamics, has been written with the goal of introducing everything that can
be said using only the first law of thermodynamics. The rest of the book therefore is about entropy
in some way or form. Entropy, which was discovered in the analysis of steam engines, pertains to
all forms of matter (solid, liquid, gas) but also to such disparate systems as information and black
holes: Entropy is a universal feature of the physical world. Like anything genuinely new, it cannot be
reduced to concepts gained through prior experience. Entropy in my opinion should be learned first
from the phenomenological perspective. When later it’s stated that the statistical theory of entropy
is in accord with the results of thermodynamics, consistency requires that the latter stand in its own
right. While thermodynamics is firmly rooted in classical physics, there are a number of instances
where thermodynamics uncannily anticipates the existence of quantum mechanics (noted through-
out the book). This book is offered against the backdrop of the corpus of physical theory to which
the student is unabashedly assumed to have been exposed. There are works on thermodynamics that

1Maxwell wrote, “The touchstone of a treatise on thermodynamics is what is called the second law.”[2, p667]
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x � Preface

try to keep the subject in a “walled-off garden”; this isn’t one of them. I don’t pretend that other
parts of physics don’t exist and will readily point out parallels with other branches of physics.

Still, thermodynamics is a “dead” subject, right? That might have been a valid observation at
one time, but it’s not the case today. Several developments at the forefront of science require that
one hone one’s understanding of entropy: information theory, the physics of computation, and black
hole physics. The book consists of two parts. Part I, Thermodynamics Basics, covers the essential
background in thermodynamics required for a study of statistical mechanics. Part II, Additional
Topics in Thermodynamics, covers modern yet more specialized applications.

We develop the subject from the beginning, but at a level and pace of advanced undergradu-
ate/beginning graduate students. Sprinkled throughout Part I are sections on mathematical topics
(indicated with asterisks); these are “just-in-time” reviews of selected areas of mathematics of par-
ticular utility to thermodynamics. I note here the sign convention adopted in this book: Heat and
work are treated as positive if they represent energy transfers to the system: ∆U = Q+W .

Throughout the book I’ve reproduced passages from the writings of Gibbs, Clausius, Maxwell,
Planck, and others. In my opinion, it’s instructive for students to see how the founders of thermo-
dynamics grappled with very subject they are encountering. No attempt has been made to offer a
history of thermodynamics.

I thank my colleagues Brett Borden for being my LATEX guru and David Ford for loaning me his
laptop that I took on a backpacking trip to Spain. That laptop went into the backpack and followed
me around; I would work on this book sipping una caña. I thank my colleague Andrès Larraza
who, without knowing it, would catalyze sudden insights into thermodynamics with his offhand
remarks. I thank Ted Jacobson for useful discussions on black hole thermodynamics. I thank Blake
McCracken for comments on the manuscript, and Evelyn Helminen for making the figures. I thank
the editorial staff at CRC Press, in particular Francesca McGowan and Rebecca Davies. I thank my
family, for they have seen me too often buried in a computer. To their queries, “How’s it coming?”
came the usual reply: slow, glacially slow. My wife Lisa I thank for her encouragement and con-
summate advice on how not to mangle the English language. Finally, to the students of the Naval
Postgraduate School, I have learned from you, more than you know. Keep in mind that science is a
“work in progress”; more is unknown than known.

James Luscombe

Monterey, California
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C H A P T E R 1

Concepts of
thermodynamics
Equilibrium, energy, and irreversibility

T HERMODYNAMICS is a science of matter presupposing no knowledge of the constitution of
matter! As far as thermodynamics is concerned, matter could equally well be a sack of ham-

mers as a box of atoms. For that reason, a high level of confidence is accorded to the results of
thermodynamics: Our concepts of matter may change, but conclusions reached by means of ther-
modynamics will not. While nothing prevents us from using our knowledge of the microscopic
nature of matter to augment the understanding achieved by thermodynamics, the central concepts of
thermodynamics—energy and entropy—were formulated without a picture of the internal constitu-
tion of matter. That, in a nutshell, is the strength of thermodynamics: independence of the details of
physical systems. Entropy, discovered in the analysis of heat engines, has nothing specifically to do
with steam engines and is a universal feature of the physical world that scientists and engineers must
get to know. The purpose of this chapter is to introduce the concepts of thermodynamics, its basic
vocabulary, and the first law of thermodynamics—conservation of energy. Entropy is a consequence
of the second law of thermodynamics, the direction of heat flow, which is introduced in Chapter 2.

1.1 THE MANY AND THE FEW
The language of thermodynamics is couched in the measurable properties of macroscopic systems.
A definition of macroscopic is elusive, as well as its correlative microscopic. A representative figure
for the number of atoms in macroscopic samples of matter is provided by Avogadro’s number,
NA ≡ 6.022 × 1023. What Avogadro’s number counts is discussed below; the point is that even
minute amounts of matter contain enormous numbers of atoms and can be considered macroscopic.1

That’s the many.
What we can say about macroscopic systems is what we can measure. That’s the few. The

number of quantities that can be measured is minuscule in comparison to the number of atoms
in macroscopic matter. Thermodynamics is a phenomenological theory: It describes interrelations
among measurable quantities, but in a strict sense does not explain anything.2 The subject of sta-
tistical mechanics, which builds on thermodynamics, is an explanatory framework for relating the
physical properties of macroscopic collections of atoms to the microscopic properties of their parts.

1A cube of solid matter 1 µm on a side, barely visible to the human eye, contains on the order of 1010 atoms.
2Class assignment: Discuss the difference between description and explanation.

3



4 � Thermodynamics

Thermodynamics deals with a special yet ubiquitous state of matter, that of thermodynamic
equilibrium (defined in Section 1.2). Remarkably, systems having enormous numbers of micro-
scopic degrees of freedom can, in equilibrium, be described by just a few macroscopic quantities
called state variables, those that characterize the state of equilibrium.3 Quantum mechanics pertains
at the microscopic level, yet the methods of quantum mechanics can practically be applied only to
systems with just a few degrees of freedom, say4 N ∼ 10. Whatever the size of systems that can
be treated quantum mechanically, a microscopic description is impossible5 for N ∼ NA. Not only
is it impossible, it’s pointless. Even if one could solve for the wave function of NA particles, what
would you do with that information? Wouldn’t you immediately seek to reduce the complexity of
the data through some type of averaging procedure? Thermodynamics is concerned with the average
properties of macroscopic systems in thermal equilibrium.

Sidebar discussion: What does Avogadro’s number count? NA is defined such that the mass of a
mole of an element equals the element’s atomic weight, in grams. That such a number is possible is
because 1) the mass of an atom is almost entirely that of its nucleus and 2) nuclei contain integer
numbers of essentially identical units, nucleons (protons or neutrons). In free space protons have
mass mp = 1.6726×10−24 g and neutrons mn = 1.6749×10−24 g. In nuclei their mass is smaller
because of the nuclear binding energy. By the equivalence of mass and energy (E = mc2), the mass
of a bound object is less than the mass it has as a free object. The atomic mass unit, u, is defined as
one twelfth the mass of a 12C atom, 1 u ≡ 1

12 m(12C) = 1.6605× 10−24g (which is less than mp or
mn). Avogadro’s number is defined so that the mass of one mole of 12C is exactly 12 g,

NA ·m(12C) = NA · 12 · 1
12m(12C) = 12NA · 1.6605× 10−24 g ≡ 12 g ,

implying that NA = (1.6605 × 10−24)−1 = 6.022 × 1023. How many molecules are in 1 cm3 of
water? The mass density of water is about 1 gm/cm3. The molar mass of H2O is 18.015 g; call it 18
g. One gram of H2O is then 1

18 of a mole, implying 1
18NA ≈ 3.3× 1022 molecules.

1.2 EQUILIBRIUM AND TIMELESSNESS
A macroscopic system is said to be in equilibrium when none of its properties appear to be changing
in time. The state of equilibrium is specified by the values of its state variables, which are what we
can measure. In contrast to the enormous number of microscopic degrees of freedom possessed
by macroscopic systems, there are only a handful of state variables. Thermodynamics therefore
represents a huge reduction in the complexity of description. How is such a simplification achieved?
The signals produced by measuring instruments represent time averages of microscopic processes
occurring on time scales far shorter than that over which instruments can typically report data. A
pressure gauge, for example, reports the average force per area produced by numerous molecular
impacts. Thermal equilibrium is the state where, to quote Richard Feynman, “all the ‘fast’ things
have happened and all the ‘slow’ things not.”[6, p1] We know for example that in 5 billion years
the sun will run out of hydrogen and possibly explode, disastrously affecting thermal equilibrium
on Earth. All systems change in the course of time; it’s a matter of time scales.6 Equilibrium is the

3The term state variable is due to J. Willard Gibbs:[3, p2] “The quantities V , P , T , U , and S are determined when the
state of the body is given, and it may be permitted to call them functions of the state of the body.”

4Microscopic descriptions are not possible with the usual methods of quantum mechanics when the number of particles
exceeds a small number. Non-classical correlations arise called entanglement, making the wave function a complicated object
to deal with analytically. Computers can simulate the quantum physics of approximately 40 particles.[4] Walter Kohn argued
in his Nobel lecture that the many-particle wave function ψ(r1, · · · , rN ) is not a legitimate scientific concept for N > N0,
where N0 ≈ 103.[5] For N ∼ NA, one seeks averages provided by thermodynamics and statistical mechanics.

5Even if one could conceive a computer large enough to solve for the dynamical evolution of NA particles, where would
one get the initial data with sufficient precision to permit such calculations?

6If it seems we’re being needlessly fussy over the definition of equilibrium, the question of what constitutes an equilibrium
state has an impact on the third law of thermodynamics, Chapter 8.
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macroscopically quiescent state where the system ceases changing over the time it takes to complete
experiments; it’s effectively a timeless state described by variables that are independent of time.7

While time does not appear explicitly in the state variables of thermodynamics, it occurs implicitly
in the direction of time! As we’ll see, irreversibility prescribes the order of states as they occur in
natural processes, giving an interpretation to the direction of time (Section 1.7). Time is implicit in
thermodynamics with its emphasis on processes, which occur in time.8

A thermodynamic description would not be possible if the equilibrium properties of systems
were not reproducible. It’s a fact of experience that systems in equilibrium can be reproducibly
specified by just a few conditions.9 Equilibrium is characterized by the values of state variables,
not by how they have come to have their values. In equilibrium, any memory is lost of how the
system came to be in equilibrium. In saying that a sample of water has a certain temperature, one
has no knowledge of how many times in the past week it has frozen and thawed out. There are
systems where this feature does not hold: Imagine a paperclip you’ve been bending back and forth
so many times that it’s just about to break. The present state of that system is dependent on its
history. History-dependent substances are outside the scope of classical thermodynamics, although
it could be said that such systems are not in equilibrium. Examples of state variables are pressure P ,
volume V , and temperature T ; these three show up in most thermodynamic descriptions.10 Other
examples are magnetizationM , chemical potential µ, and entropy S.

State variables can be classified as intensive and extensive. Intensive quantities have the same
values at different spatial locations of the system (P , T , and µ) and are independent of the size of
the system. Extensive quantities are proportional to the number of particles in the system and are
characteristic of the system as a whole (S, V , and M ); extensive quantities are additive over inde-
pendent subsystems.11 Mass is extensive: Doubling the mass while maintaining the density fixed,
doubles the volume. We’ll see that intensive quantities occur in the theory as partial derivatives
of one extensive variable with respect to another; intensive quantities are proportionality factors
between extensive quantities under precisely defined conditions.

Thermodynamic state space (or simply state space) is a mathematical space of the values of
state variables (which by definition are their equilibrium values). A state of equilibrium is therefore
represented by a point in this space.12 Thermodynamics, however, is not concerned solely with
systems in equilibrium, but with transitions between equilibrium states. Between any two points of
state space, a possible change of state is implied. There are an unlimited number of possible “paths”

7We say effectively timeless because systems remain in equilibrium until the environment changes. The distinction be-
tween a system and its environment is discussed in Section 1.4.

8It’s sometimes said that thermodynamics should be called thermostatics because of the timeless nature of the equilibrium
state. If all there was to thermodynamics was the first law (defined shortly), there would be merit to this idea. The second
law, however (Chapter 2), a recognition of the existence of irreversibility, prescribes a time order to the states of systems
as they occur in natural processes. The term “thermostatics” would completely hide the past-and-future relation of states in
irreversible processes, arguably the central result of the theory of thermodynamics.

9One can ask just how reproducible equilibrium states are. Fluctuations in the values of state variables due to the ran-
domness of molecular motions are treated in statistical mechanics. Fluctuations are difficult to motivate in thermodynamics
because state variables are presumed to have fixed values in equilibrium. See the discussions in Sections 3.10 and 12.3.

10We could “go Dirac” and label an equilibrium state as a list of the values of its state variables, such as |PV T 〉.
11Intensivity and extensivity hold strictly for systems that are infinite in size; the concept would not apply for systems that

are so small as to be dominated by surface effects.[7, p10]
12To quote Gibbs, “Now the relation between the volume, entropy, and energy may be represented by a surface, most

simply if the rectangular coordinates of the various points of the surface are made equal to the volume, entropy, and energy
of the body in its various states.”[3, p33] Gibbs added a footnote: “Professor J. Thomson has proposed and used a surface in
which the coordinates are proportional to the volume, pressure, and temperature of the body. It is evident, however, that the
relation between the pressure, volume, and temperature affords a less complete knowledge of the properties of the body than
the relation between volume, entropy, and energy. For, while the former relation is entirely determined by the latter, and can
be derived from it by differentiation, the latter relation is by no means determined by the former.” Gibbs is saying that it’s
“better” to represent the equilibrium state in terms of extensive variables rather than intensive because intensive variables can
be uniquely expressed as derivatives between extensive variables. We’ll see in Chapter 4 that through the use of Legendre
transformations, intensive variables can be used as independent variables.
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between the same endpoints in state space. Because the values of state variables are independent of
the history of the system, changes in state variables must be described independently of the manner
by which change is brought about. This type of path independence is ensured mathematically by
requiring differentials of state variables to be exact differentials.

1.3 EXACT DIFFERENTIALS*
We begin our series on the mathematics of thermodynamics (indicated with an asterisk) in which
we pause to review mathematical topics of particular utility to thermodynamics. The differential of
a function f(x, y) is, from calculus,

df =
(
∂f

∂x

)
y

dx+
(
∂f

∂y

)
x

dy .

In thermodynamics it pays to be fastidious about indicating which variables are held fixed in par-
tial derivatives, and we’ll adhere to that practice. Functions usually (but not always) have contin-
uous mixed second partial derivatives, ∂2f/∂y∂x = ∂2f/∂x∂y. In the notation where we indi-
cate what we’re holding fixed, equality of mixed partials would be written (∂/∂y (∂f/∂x)y)x =
(∂/∂x (∂f/∂y)x)y .

Suppose you’re given an expression involving the differentials of two independent variables,
P (x, y)dx+Q(x, y)dy, what’s known as a Pfaffian differential form.13 A question we must answer
is, is a Pfaffian the differential of a function? That is, is there a function, call it g(x, y), such that
dg = P (x, y)dx + Q(x, y)dy, so that dg can be integrated? For a Pfaffian to be the differential of
an integrable function, the integrability condition must be satisfied:(

∂P

∂y

)
x

=
(
∂Q

∂x

)
y

. (1.1)

If P (x, y) and Q(x, y) satisfy Eq. (1.1), dg is said to be an exact differential. The issue of integra-
bility is fundamental to thermodynamics; we consider it again in Chapter 10.

Example. Is (x2 + y)dx + xdy an exact differential? Applying Eq. (1.1), P (x, y) = x2 + y and
Q(x, y) = x. Thus, ∂P/∂y = 1 = ∂Q/∂x. Yes, it’s an exact differential.

Exact differentials are well suited to serve as the differentials of state variables. It is necessary
and sufficient for the integral of a Pfaffian to be independent of the path of integration that it be
exact.[9, p353] In such a case,∫ B

A

(P (x, y)dx+Q(x, y)dy) =
∫ B

A

dg = g(B)− g(A) . (1.2)

If a Pfaffian P (x, y)dx + Q(x, y)dy is exact, the function g(x, y) (that it represents the
differential of) can be found by integration (up to a constant), g(x, y) = g(x0, y0) +∫ x,y
x0,y0

(P (x′, y′)dx′ +Q(x′, y′)dy′). For example, (x2 +y)dx+xdy is the differential of g(x, y) =
g0 + 1

3x
3 + xy, where g0 is a constant. It follows from Eq. (1.2) that the integral of an exact differ-

ential around a closed path is zero,∮
(P (x, y)dx+Q(x, y)dy) =

∮
dg = 0 . (1.3)

13See for example [8, p18]. The term “Pfaffian” is old fashioned; today a linear differential form would be referred to as a
“1-form.” For this book, Pffafian will suffice.
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Equation (1.3) is an important, oft-used property of state variables.
Notice how knowledge of P (x, y)dx + Q(x, y)dy differs from the usual problem in calculus

where for a given function you’re asked to find its differential. Here you are given a differential
expression and are asked, first, is it the differential of a function, and, second, what is that function?
Only when you have answered the first question can the second be answered. Don’t all differentials
represent the differential of a function? No. Take the above example and modify it slightly: Is (x2 +
2y)dx+xdy exact? No, because ∂(x2+2y)/∂y 6= ∂(x)/∂x. There is no function in this case, call it
h(x, y), such that dh = (x2 + 2y)dx+xdy. Differential forms that are not exact are called inexact.
Are inexact differentials “useless”? The subject of thermodynamics is loaded with them! A special
notation is used to indicate inexact differentials: d̄. Thus we can write d̄h = (x2 + 2y)dx + xdy;
d̄h is notation, shorthand for the inexact Pfaffian (x2 + 2y)dx + xdy. Can inexact differentials be
integrated? Certainly, but here’s the crucial difference: The value of the integral depends on the path
of integration. That’s why the integral of an inexact differential does not represent a function in the
usual sense. What meaning can be given to an expression like h(x, y) =

∫ x,yd̄h when the value
assigned to the integral is different for every path of integration? The “function” defined this way
depends not just on (x, y) but on “how you get there,” or in the language of thermodynamics, on the
process.

An integrating factor is a function that, when multiplied by an inexact differential, becomes
exact. Example: Let d̄h = (3xy + y2)dx + (x2 + xy)dy. Is it exact? (No—Check it!) But if we
multiply by x, xd̄h = (3x2y + xy2)dx + (x3 + x2y)dy, which is exact. (Check it!) In this case
the variable x is an integrating factor and we can write xd̄h = df where df = (3x2y + xy2)dx+
(x3 + x2y)dy. In general, an integrating factor λ(x, y) is that which produces an exact differential
when multiplied by an inexact differential: df = λ(x, y)d̄h. The existence of integrating factors is
a topic of fundamental importance to thermodynamics, something we return to in Chapter 10.

1.4 INTERNAL ENERGY: WORK, HEAT, AND BOUNDARIES

Figure 1.1 The boundary separates a system from its surroundings

We’ve been somewhat cavalier in our use of the word “system.” Obviously, to apply a theory
one must know what the theory is being applied to! Yet, a frequent source of difficulty in applying
thermodynamics comes from confusion over what comprises the system. As shown in Fig. 1.1, it
should be possible to draw a boundary around that little part of the universe we consider to be
of interest—the system. There must be a demarcation between the system and its environment or
surroundings: One can’t model the entire universe.14 The boundary is not simply a mental construct,

14Or can we? Cosmology is the study of the universe, and thermodynamical ideas feature in that subject. While we’re on
the topic, expositions on thermodynamics have a tendency to invoke the universe (“entropy change of the universe”). It’s
true that what’s not the system is everything else, and thus logically not-system = universe, but such an inference cannot
be taken literally. Only bodies external to a system reasonably within its vicinity can be expected to be in relation with
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it’s an actual physical boundary, not part of the system. In thermodynamics, what something is is
what it does, and the behavior of systems is selected by the nature of the boundaries.15

At this point we distinguish two kinds of boundaries (or walls or partitions): diathermic and
adiabatic, those that do and do not conduct heat.16 Adiabatic boundaries allow a system to interact
with its surroundings through mechanical means only (no flow of heat or matter). Adiabatic walls
are an idealization, but they can be so well approximated in practice, as in a vacuum flask, that it’s
not much of a stretch to posit the existence of perfectly heat-insulating walls. Systems enclosed by
adiabatic walls are said to be adiabatically isolated. Diathermic walls allow heat transport; systems
separated by diathermic walls are said to be in thermal contact. Walls can be moveable. The two
types of boundary allow us to distinguish two types of energy transfer between the system and its
environment: work and heat.

Through much experimentation (starting in the 1840s with the independent work of James Joule
and Robert Mayer), it’s been established that in the performance of adiabatic work, Wad (work on
adiabatically isolated systems), the transition i → f it produces between reproducible equilibrium
states (i, f ), depends only on the amount of work and not on how it’s performed. For a fluid system,
part of the work could come from compression and part could come from stirring. Regardless of
how the proportions of the types of work are varied, the same total amount of adiabatic work results
in the same transition i → f . This discovery is of fundamental importance. If the transition i → f
is independent of the means by which it’s brought about, it can only depend on the initial and
final states. It implies the existence of a physical quantity associated with equilibrium states that
“couples” to adiabatic work, the internal energy U that depends only on the state of the system,
such that17

∆U = Uf − Ui = Wad . (1.4)

Internal energy is a state variable. Adiabatic work done on the system increases its internal energy,
and is taken as a positive quantity. Adiabatic work done by the system (somewhere in the environ-
ment a weight is higher, a spring is compressed) is accompanied by a decrease in internal energy,
and is taken as a negative quantity. Changes in internal energy come at the expense of adiabatic
work done on or by the system. Equation (1.4) expresses conservation of energy: If we don’t let heat
escape, work performed on a system is stored in its internal energy, energy that can be recovered
by letting the system do adiabatic work on the environment. Internal energy is the storehouse of
adiabatic work.

Now let workW be performed under nonadiabatic conditions. It’s found, for the same transition
i→ f produced byWad, thatW 6= ∆U . The energy of mechanical work is not conserved in systems
with diathermic boundaries. Conservation of energy, however, is one of the sacred principles of
physics and we don’t want to let go of it. The principle can be restored by recognizing different
forms of energy.18 The heat absorbed by the system, Q, is defined as the difference in work

Q ≡ ∆U −W (1.5)

the original system. What goes on elsewhere is immaterial. One can’t generalize physical laws based on local phenomena
(thermodynamics) to cosmological distances. The large-scale structure of the universe is described by the general theory of
relativity, wherein the concept of energy is conceived differently than in thermodynamics (scalar vs. tensor).

15As with any boundary value problem (studied in mathematical physics), what systems do is determined by boundary
conditions, the specification of how the system interacts with its environment.

16We’ll introduce a third kind of boundary in Section 3.5 that allows the passage of particles into the system: permeable
boundaries. We introduce in Section 3.3 the concept of an isolated system—no interactions of any kind.

17So, we have the almighty equal sign, our first equality between physical quantities. An equation A = B should not be
read simply as A “equals” B, but rather A is the same thing as B. In writing Eq. (1.4), ∆U = Wad, we’re saying that the
change in a physical quantity, the internal energy U , is the same as the amount of adiabatic work done on the system. If that’s
all there was to the internal energy, Eq. (1.4) would simply be a change of variables. But there is more to internal energy
than Wad. There are different forms of energy, with ∆U the sum of the work done on the system and the heat transferred to
it, Eq. (1.5). The equal sign in Eq. (1.4) is a physical equality that defines the internal energy.

18Neutrinos were invented for the purpose of preserving energy conservation in nuclear beta decay.
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that effects the same change in state on systems with the two types of boundaries, Q = Wad−W . If
it takes more workW to produce the same change of state as that under adiabatic conditions,Q < 0:
heat leaves the system by flowing through the boundary; Q > 0 corresponds to heat entering the
system.19 Equation (1.5) is the first law of thermodynamics. In Section 3.5 we allow a third type of
wall (a permeable boundary) that permits the flow of particles. There we introduce another kind of
work (chemical work), the energy required to change the amount of matter in the system. The point
here is that the nature of the boundaries allows us to classify different types of energy.

Three types of systems can be distinguished by the nature of their boundaries and the interactions
they permit with the environment (summarized in Table 1.1). Adiabatically isolated systems are
enclosed by adiabatic walls; they interact with the environment through mechanical means only.
Closed systems interact with the environment thermally and have a fixed amount of matter. Open
systems allow the flow of energy and matter.

Table 1.1 Systems, boundaries, and interactions
System Boundaries Interaction with environment

Adiabatically isolated Adiabatic Mechanical (adiabatic work only)

Closed Diathermic Thermal (flow of heat, mass fixed)

Open Permeable Permits flow of energy and matter

Sidebar discussion: Internal vs. mechanical energy
Internal energy is analogous to, but not the same as mechanical energy. The mechanical work done

Figure 1.2 Mechanical work is independent of path for conservative forces (left); adiabatic
work is independent of process (right)

by a force F on a particle of mass m in producing an infinitesimal displacement dr is F · dr =
m (dv/dt) · dr = m (dv/dt) · vdt = 1

2md(v2). Over a finite displacement Wif =
∫
C
F · dr =

1
2m(v2

f − v2
i ) ≡ ∆K, where C is a path connecting ri with rf (see Fig. 1.2). Thus we have the

19We have adopted a consistent sign convention: Q and W are positive if they represent energy transfers to the system. In
other books, positive work is work done on the environment. That sign convention (what we don’t use) derives from what we
want in an engineering sense from heat engines: work output as a result of heat input. I prefer to treat the sign conventions
for Q and W on equal footing—energy transfers to the system (in the form of work or heat) are considered positive.
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work-energy theorem: The change in kinetic energy ∆K equals the work done on the particle,
∆K = Wif . The theorem requires that we know the trajectory of the particle: We need to know
everything about the motion before we can apply the theorem! For conservative forces, Wif is
independent of path and depends only on the endpoints. A force is conservative if the vector field
F (r) is derivable from the gradient of a scalar field V (r) (the potential energy function), F (r) =
−∇V (r). In that case, Wif =

∫
C
F · dr = −

∫
C
∇V · dr = −

∫
C

dV = −(Vf − Vi) ≡ −∆V ;
Wif is the same for any path between the endpoints in physical space. For conservative forces,
therefore, Kf + Vf = Ki + Vi: Mechanical energy E ≡ K + V is invariant; it’s conserved along
the trajectory. Work can appear as kinetic or potential energy, interconvertible forms of energy with
∆E = 0. In thermodynamics, adiabatic work Wad performed on the system induces the same
transition i → f between equilibrium states (i, f ) regardless of how the work is done (the “path”).
There is a quantity, internal energy, that depends only on the endpoints in state space such that
∆Uif = Wad. Internal energy is analogous to mechanical energy, except that U is on the “potential”
side of the ledger (internal energy excludes the kinetic energy of the system as a whole). Internal
energy is recoverable (conserved) by letting the system perform adiabatic work on the environment.
For systems with diathermic boundaries, mechanical energy is not conserved: The energy content of
the system cannot be accounted for solely in terms of adiabatic work; energy is passed to the system
in another form, heat. Heat can be quantified as the difference in work Q ≡ Wad −W that brings
about the same change in state i → f when the system has the two types of boundaries. Internal
energy thus pertains to mechanically non-conservative systems with ∆U = W +Q.

The division of internal energy into work and heat lines up with the distinction between macro-
scopic and non-macroscopic, i.e., microscopic. Work is defined in thermodynamics more broadly
than in mechanics as a generalized displacement dX of an extensive quantity X multiplied by its
conjugate generalized force Y , an intensive quantity such that the product Y X has the dimension
of energy (Section 1.9). Work is associated with changes in observable macroscopic quantities.
What’s not work is heat, which is energy transferred to microscopic degrees of freedom. One of the
consequences of the second law of thermodynamics is the existence of new extensive state vari-
able, entropy S, such that a small quantity of heat d̄Q transferred to a system is associated with a
generalized displacement, d̄Q = TdS (Chapter 3).20 We’ll see (Chapter 7) that entropy is a quan-
titative measure of the number of microscopic configurations of the system (“microstates”) that are
consistent with an equilibrium state specified by given values of the state variables.

We can write the first law in differential form (compare with Eq. (1.5)),

dU = d̄Q+ d̄W . (1.6)

A small change in internal energy dU can be produced by transferring to the system a small quan-
tity of heat d̄Q and/or performing on the system a small amount of work d̄W . The Joule-Mayer
experiments established that a definite, reproducible amount of work would raise the temperature of
a sample of water the same as a known quantity of heat, and thus heat and work are interchangeable
forms of energy.21 The number of combinations of d̄Q and d̄W that affect the same change dU is
obviously unlimited. The notation of Eq. (1.6) tells the story. The left side indicates that dU depends
only on the initial and final equilibrium states (because it’s exact), and that there is a physical quan-
tity U , internal energy, of which dU represents a small change. The right side of Eq. (1.6) indicates
that there do not exist substances Q and W of which d̄Q and d̄W represent small changes; d̄Q and
d̄W represent modes of infinitesimal energy transfer to the system. Work is not a substance; neither
is heat. Both are forms of energy. An early (obsolete) idea was that there’s a substance called caloric

20Thus, dS = d̄Q/T ; T−1 is the integrating factor for d̄Q.
21The mechanical equivalent of heat, 4.184 J/cal (a calorie is a non-SI unit of energy, that is required to raise the temper-

ature of one gram of water by one degree Celcius), is recognized today as the specific heat of water. Specific heat is defined
in Section 1.11.
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in every body that cannot be created, only transferred.22 Today our view is that heat is something
that happens as changes are made to a system. Heat is transferred between objects in processes, but
is not something pre-existing in an object. When you “fry” electronic components in the laboratory,
the joke is that you “let the smoke out.” Was the smoke already contained in that diode, or did it
occur as a result of what you did to it?23 The same is true of heat: a process-related quantity, not
something pre-existing; heat has no independent existence. We have in the first law that the sum of
two inexact differentials is exact, which is the mathematical expression of the physical content of
Eq. (1.6), that energy can be transformed from one form to another. For finite changes, Eq. (1.6) is
written as in Eq. (1.5), ∆U = W +Q.

The laws of thermodynamics
We will continually be referring to the laws of thermodynamics, and it’s useful to gather them in
one location together with succinct summaries, even though we can’t do them justice here.

• Zeroth law (Section 1.5): Temperature exists as a property of equilibrium systems as does an
equation of state, a functional relation among state variables.

• First law (Section 1.4): Internal energy U is established as a state variable. Internal energy is
conserved; work and heat are interconvertible forms of energy.

• Second law (Chapter 2): Heat flows spontaneously from hot to cold, never the reverse. The
existence of a new state variable, entropy S is established (Chapter 3), as well as absolute
temperature T (Section 2.4).

• Third law (Chapter 8): Changes in entropy vanish as T approaches absolute zero. It’s not
possible to achieve absolute zero temperature.

1.5 EMPIRICAL TEMPERATURE AND EQUATION OF STATE

A

B

C

Figure 1.3 System A in equilibrium with B and C, implies equilibrium between B and C

Equilibrium is transitive: If system A is in equilibrium with B and B is in equilibrium with C,
then A is in equilibrium with C (see Fig. 1.3). This fact of experience is known as the zeroth law of
thermodynamics which, as we now show, implies the existence of an intensive state variable known
as temperature.24

22Joule discovered in 1840 that the flow of current I in a resistance R is accompanied by the development of heat propor-
tional to I2R (Joule heating). Joule concluded from his experiments that caloric (heat) is created, which cannot be if caloric
is a conserved substance transmitted between bodies. Objections to Joule’s findings centered on the fact because current is
caused by chemical reactions (in a battery), such reactions are the source of caloric, which is somehow redistributed to the
resistor. Joule then produced currents using electromagnetic induction, which also led to the production of heat in a resistor.
Critics countered that caloric somehow leaked out of the magnets used to produce induced currents. Joule concluded that
because the method of producing currents turns out to be irrelevant, caloric is created rather than displaced between objects.
Established theories shown to be wrong often die slow deaths.

23Analogously, neutrinos are created in the process of beta decay; they’re not pre-existing in the nucleus.
24The name “zeroth law” (to reflect its logically prior status to the first law) entered the physics lexicon in 1939[10, p56]:

“This postulate of the ‘Existence of temperature’ could with advantage be known as the zeroth law of thermodynamics.” The
principle, however, had long before been recognized. It appeared in Planck’s work as early as 1897.[11, p2]
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A simple fluid (composed of a single chemical species) is characterized by two state variables, P
and V . Two simple fluids, A and B, are thus described by four variables, PA, VA, PB , VB . Placing
the fluids in thermal contact, there will be a relation between the four equilibrium values of these
variables F (PA, VA, PB , VB) = 0, where the function F depends on the fluids (water, alcohol, etc).
We show that F = 0 occurs in the form φA(PA, VA)− φB(PB , VB) = 0, i.e., F (a function of four
variables) separates into functions φA, φB , each a function of the individual system variables.

Consider three simple fluids, A, B, and C. For A and B in equilibrium, there’s a functional
relation between the variables

F1(PA, VA, PB , VB) = 0 . (1.7)

Similarly, forB in equilibrium with C and C in equilibrium withA we have the functional relations

F2(PB , VB , PC , VC) = 0 F3(PC , VC , PA, VA) = 0 . (1.8)

The two equations in Eq. (1.8) can be solved for PC : PC = f2(PB , VB , VC) and PC =
f3(PA, VA, VC). Thus,

f2(PB , VB , VC) = f3(PA, VA, VC) . (1.9)

By the zeroth law, for A and B separately in equilibrium with C, A and B are in equilibrium.
Equation (1.9) must therefore be equivalent to Eq. (1.7). But Eq. (1.7) is independent of VC . The
functions f2, f3 must be such that VC cancels out of Eq. (1.9). The most general form that would
permit this is (for functions α and β)

f2(PB , VB , VC) =φ2(PB , VB)α(VC) + β(VC)
f3(PA, VA, VC) =φ1(PA, VA)α(VC) + β(VC) .

Substituting these equations into Eq. (1.9), we have that φ1(PA, VA) = φ2(PB , VB). QED.
Repeating the analysis for (B,C) in equilibrium with A and (C,A) in equilibrium with B, we

arrive at the equalities φ1(PA, VA) = φ2(PB , VB) = φ3(PC , VC). There’s something the same
about systems in equilibrium, what’s called the temperature. If we consider a single system to be
composed of a network of sub-systems, all in thermal contact, then the state of equilibrium is char-
acterized by a single temperature, the same at all points of the system (an intensive quantity). The
functions φ1, φ2, and φ3 of the state variables of systems A, B, and C are equations of state, with
their common value (in equilibrium) the empirical temperature, θ:

φ(P, V ) = θ . (1.10)

The temperature θ is called empirical because it’s determined by a thermometric property of partic-
ular substances (a property that changes with temperature, such as the height of a column of mer-
cury). The θ-temperature of an object can be measured by placing it in contact with a thermometer
(literally thermo-meter) constructed from the particular substance.

In establishing Eq. (1.10) we considered the simplest system, with equilibrium described by two
state variables. The argument can be repeated for substances having equilibrium characterized by
any set of variables {Xi}ni=1, and we’d arrive at an equation of state and empirical temperature,25

φ(X1, · · · , Xn) = θ. The set of all states having the property φ(X1, · · · , Xn) = θ0 for a fixed
value of θ0 is referred to as an isotherm.26

25A thermodynamic description must involve at least two state variables. Equilibrium is characterized by temperature
(that’s one). In adiabatic processes, non-thermal energy is imparted to the system by changes in at least one other variable
(that’s two), what in Section 1.9 we term a deformation coordinate. There must be a non-deformation or thermal coordinate,
together with at least one deformation coordinate.

26An isotherm is technically a hypersurface in state space. Our familiar notion of surface (such as the surface of an orange)
is a two-dimensional manifold embedded in three dimensional space; a hypersurface is an (n − 1)-dimensional manifold
embedded in n-dimensional space. For simplicity we’ll refer to hypersurfaces as surfaces.



Concepts of thermodynamics � 13

Temperature correlates with our physiological sensations of hot and cold,27 but should not be
confused with heat. Heat is a mode of energy transfer (Section 1.4); it has no independent existence.
Temperature is a state variable. We show in Chapter 2 that an absolute temperature T can be defined
that’s independent of the thermometric properties of substances. In what follows we’ll use T exclu-
sively to denote absolute temperature, reserving θ for empirical temperature. Almost all formulas in
thermodynamics involve the absolute temperature T .

Note what’s happened here: We’ve discovered a state variable (temperature) associated with
equilibrium itself ; temperature is not a property of the microscopic constituents of the system, it’s
a property possessed by a system in equilibrium. We’ll see that entropy has the same quality of not
being a microscopic property of matter, and is a property of the equilibrium state.

1.6 EQUATION OF STATE FOR GASES
State variables do not have to be independent of each other, and they usually aren’t. Much of the
mathematical “apparatus” of thermodynamics is devoted to exposing interrelations among state
variables. We’re aided in this task through the existence of equations of state, functional relations
among state variables. In this section we focus on the equation of state for gases.

The quantity PV has the dimension of energy.28 (Check it!) Given the emphasis on internal
energy as a state variable, let’s guess an equation of state in the form PV = ψ, where ψ is a
characteristic of equilibrium having the dimension of energy. Indeed, the constant-volume gas ther-
mometer uses P as the thermometric property.29 It’s found experimentally that for n moles of any
gas the quantity PV/(nT ) approaches the same value R = 8.314 J (K mole)−1, the gas constant,
at low pressures.30 The gas constant is one of the fundamental constants of nature.

The ideal gas is a fictional substance defined as having the equation of state PV = nRT for
all pressures—the ideal gas law. The ideal gas law can be derived assuming non-interacting atoms,
and hence is an idealization. All gases become ideal at sufficiently low pressure. The ideal gas law is
also written PV = NkBT , where N is the number of particles and kB ≡ R/NA = 1.381× 10−23

J K−1 is Boltzmann’s constant. The gas constant (or Boltzmann’s constant) is one of the few places
where experimental data enters the theory of thermodynamics.

For a mixture of ideal gases, each with its own mole number ni (n =
∑
i ni), Dalton’s law is

that the pressure P of the mixture is equal to the sum of the partial pressures Pi ≡ niRT/V that
each component would exert were it the only gas present, with P =

∑
i Pi. Ideal gases contained

in the same volume are not “aware” of each other; they exert their own pressure independent of
whether other gases are present. The ratio Pi/P = ni/n ≡ xi is called the mole fraction.

One way to characterize deviations from the ideal gas law is through the virial expansion, an
expansion in powers of the density of the gas,

P = nRT

V

[
1 + n

V
B2(T ) +

( n
V

)2
B3(T ) + · · ·

]
. (1.11)

The quantities Bn(T ), the virial coefficients, can be measured and they can be calculated using
the methods of statistical mechanics. The virial coefficients depend on the strength of inter-particle
interactions.

27That is, increasing empirical temperature—derived from the thermal behavior of materials—generally correlates with
our experience of increasing hotness.

28Pressure therefore is an energy density.
29See any book on thermodynamics (except this one) for a discussion of thermometers and temperature scales, for example

Zemansky.[12]
30Absolute temperature naturally has the dimension of energy (see Section 2.4). By measuring T in Kelvin (a non-

dimensional unit), we need a conversion factor between energy and degrees Kelvin—what’s supplied by the gas constant, i.e.
RT has the dimension of energy. The ratio Z ≡ PV/(nRT ) is termed the compressibility factor. It’s found for all gases
that Z → 1 at sufficiently low pressures.[13].
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The van der Waals equation of state attempts to take into account deviations from the ideal
gas by introducing the effects of 1) the finite size of atoms and 2) their interactions. Johannes van
der Waals reasoned that the volume available to the atoms of a gas is reduced from the volume of
the container V by the volume occupied by atoms. Thus, he modified the ideal gas law, purely on
phenomenological grounds, to

P = nRT

V − nb
,

where b > 0 is an experimentally determined quantity for each type of gas. Clearly, the more moles
of the gas, the greater the excluded volume. Van der Waals further reasoned that the pressure would
be reduced by attractive interactions between atoms. The decrease in pressure is proportional to the
probability that two atoms interact; this, in turn is proportional to the square of the particle density,
(n/V )2. In this way, van der Waals wrote down

P = nRT

V − nb
− a

( n
V

)2
,

where a > 0 is another material-specific parameter to be determined from experiment. The van der
Waals equation of state is usually written in the form(

P + a
( n
V

)2
)

(V − nb) = nRT . (1.12)

One can show that Eq. (1.12) yields an expression for the second virial coefficient in terms of the
van der Waals parameters,

BVW2 = b− a

RT
. (1.13)

This expression predicts that B2(T ) should be negative at low temperatures and positive at high
temperatures, what’s observed for many gases. The van der Waals equation of state is a reasonably
successful model of the thermodynamic properties of gases. While it does not predict all properties
of real gases, it predicts enough of them for us to take the model seriously.31

1.7 IRREVERSIBILITY: TIME REARS ITS HEAD
We introduce the distinction between reversible and irreversible processes. A process is reversible
if it can be exactly reversed through infinitesimal changes in the environment. In a reversible process
the system and the environment are restored to their original conditions, a tall order! By this defi-
nition, in an irreversible process the system cannot be restored to its original state without leaving
changes in the environment.32

A change of state can occur reversibly only if the forces between the system and the surround-
ings are essentially balanced at all steps of the process, and heat exchanges occur with essentially
no temperature differences between system and surroundings. A process is termed quasistatic if
it’s performed slowly (so the system does not appreciably deviate from equilibrium) and work is
performed only by forces conjugate to generalized displacements, i.e., forces of friction have been

31Van der Waals received the 1910 Nobel Prize in Physics.
32It’s instructive to quote from Maxwell,[2, p642] as the notion of reversibility extends back to the beginnings of the

subject: “A physical process is said to be reversible when the material system can be made to return from the final state to the
original state under conditions which at every stage of the reverse process differ only infinitesimally from the conditions at
the corresponding stage of the direct process. All other processes are called irreversible. Thus the passage of heat from one
body to another is a reversible process if the temperature of the first body exceeds that of the second only by an infinitesimal
quantity, because by changing the temperature of either of the bodies by an infinitesimal quantity, the heat may be made to
flow back again from the second body to the first. But if the temperature of the first body is higher than that of the second by
a finite quantity, the passage of heat from the first body to the second is not a reversible process, for the temperature of one
or both of the bodies must be altered by a finite quantity before the heat can be made to flow back again.”
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eliminated. Reversible processes are quasistatic, but not all quasistatic processes are reversible (as
we show below). Because the points of state space represent equilibrium states, quasistatic pro-
cesses can be plotted in state space. Non-quasistatic processes (what can’t be plotted in state space)
are termed non-static.33

The concept of reversibility is problematic because it conceives of the reversal of processes in
time. Strictly speaking, reversible processes are idealizations that don’t exist: Equilibrium states do
not involve change (time), yet reversible processes are taken to proceed through a sequence of equi-
librium states. Real changes in state occur at a finite rate, so the intermediate states cannot strictly be
equilibrium states. Practically speaking, there will be some small yet finite rate at which processes
occur such that disequilibrium has no observable consequences within experimental uncertainties.
All processes are irreversible therefore; some processes, however, can be idealized as reversible in
limiting cases.34 Reversible processes are highly useful idealizations, akin to adiabatic boundaries,
and we’ll refer to them frequently.

Example. Consider a gas confined to a cylinder with a movable piston. If the volume increases
by dV against an external pressure P ′, the work done by the system is P ′dV , and thus the
work done on the system is −P ′dV . If the expansion is done slowly and without friction—a
quasistatic process—the gas pressure P will equal the external pressure, P = P ′. The work
done in a quasistatic isothermal expansion of an ideal gas from volume Vi to volume Vf is thus
W = −

∫ Vf
Vi

PdV = −nRT
∫ Vf
Vi

dV/V = −nRT ln (Vf/Vi), which depends on the initial and
final states. The work is still process dependent, however—it applies for an isothermal process.

Example. At normal pressure (P = 1 atm) ice is in equilibrium with water at T = 273.15 K. Ice can
be melted reversibly at T = 273.15 K by applying heat from a reservoir35 for which the temperature
only slightly exceeds T = 273.15 K. A slight lowering of the temperature is then sufficient to
reverse the direction of the process. If ice is placed in water at room temperature (T ≈ 293 K), the
melting process is irreversible.

Example. Chemical reactions can be controlled with electrochemical cells (Chapter 6). The reaction
CuSO4 + Zn � ZnSO4 + Cu can be reversibly controlled by applying an opposing voltage to the
cell slightly less than the electromotive force (emf) E of the cell. A small increase in the voltage is
sufficient to reverse the direction of the reaction.

While some real processes can be idealized as reversible, other processes are intrinsically ir-
reversible. That there are “un-reversible,” i.e., irreversible processes lies at the heart of thermody-
namics. The free expansion (described in Section 3.3 and analyzed in Section 4.9) is a non-static,
irreversible process. In a free expansion, the gas in an isolated system is allowed to spontaneously
expand into an evacuated chamber; such a system cannot be restored to its initial state leaving the
environment unchanged. A more subtle example is as follows. Consider a gas enclosed by adiabatic
boundaries at pressure and volume (P0, V ), and perform work on the system in the form of stirring,

33Non-static processes i→ f cannot be represented as a continuous set of points (or curve) in state space connecting the
equilibrium states (i, f ). The process “leaves” state space at the initial state i and returns at the final state f . In that sense, the
concept of a non-static process evokes the Heisenberg formulation of quantum mechanics, where all we can know is what
we can observe.

34Planck wrote:[11, p85] “Whether reversible processes exist in nature or not, is not a priori evident or demonstrable.
There is, however, no purely logical objection to imagining that a means may some day be found of completely reversing
some process hitherto considered irreversible: one, for example, in which friction or heat conduction plays a part.”

35Heat reservoirs are defined in Section 2.2.
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holding V fixed. As a result P will increase to a value P1 > P0. Can this process be reversed,
can P be reduced from P1 → P0? Stirring the “other way” will only increase P further. With V
fixed, there’s no way to lower P for this adiabatically isolated system; the process is irreversible.
Irreversibility reveals the existence of an important attribute of equilibrium states: inaccessibility.
In this example, the state of a system, call it K0, characterized by the values of its state variables
(P0, V ) cannot be attained by means of adiabatic work from any of its states (P, V ), denoted K,
with P > P0. The states K and K0 do not stand in an equivalent relation to each other. All states
K are attainable (accessible) from K0, symbolized K0 → K, but K0 is inaccessible from any state
K, K 6→ K0. Processes un-reversible in time therefore imply a direction in time for the occurrence
of states linked by irreversible processes. ForK0 inaccessible fromK, if the system is inK0 at time
t and K at t′, then t′ > t. We can obviously label the states time ordered by irreversible processes
using the times at which such states occur. Besides time, however, another way to characterize the
succession of states in irreversible processes is with the values of a state function, entropy, which
stand in correspondence with the time order established by irreversibility (Chapter 3). (We’ll show
that the entropy of isolated systems only increases, never decreases.) While the first law of ther-
modynamics is a statement about energy conservation (regardless of the issue of reversibility), the
second law (from which entropy follows) codifies our experience of irreversibility. Irreversibility is
an intrinsic aspect of the macroscopic world.

1.8 CONSTRAINTS AND STATE VARIABLES

Figure 1.4 Movable partition separating compartments constrained by locking mechanism

An important concept is that of constraints. A constraint is the restriction of a state variable
to certain values. Every state of equilibrium is, by definition, one of constrained equilibrium, in
which state variables have their equilibrium values. Processes occur in which state variables are
constrained, such as T in an isothermal expansion. It’s a subtle concept, but constraints are as-
sociated with the existence of state variables. Basically, if something can be constrained, there’s
something to be constrained. There’s a one-to-one correspondence between constraints and state
variables. If a macroscopic quantity can be constrained, it implies the existence of a state variable
as a descriptor of a macroscopic system. Consider gases in two compartments, separated by a mov-
able adiabatic boundary. The system as a whole is held at a fixed temperature. Initially the partition
is held in place by some locking mechanism (see Fig. 1.4). The state of this system is described by
three variables, which could be chosen as T and the pressures P1 and P2, where P1 6= P2. Alter-
natively, the state variables could be chosen as T , P1, and the volume of one of the compartments,
say V1. The constraints on this system are the fixed temperature, the fixed volume V = V1 + V2,
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and the location of the partition. Now remove the locking mechanism on the partition, which will
move until the pressures equalize,36 P2 = P1. At this point, the system is described by two inde-
pendent variables, say T and P1. The removal of a constraint results in the loss of an independent
state variable. Conversely, the addition of a constraint implies the creation of a new independent
state variable.37 To restore the partition to its previous location work must be done on the system.
Thus, eliminating constraints is an irreversible process. We discuss in Section 3.3 how removal of
constraints, irreversibility, and the increase in entropy are connected.

1.9 THE MANY FACES OF WORK
The work done on a system in an infinitesimal reversible expansion is −PdV . While −PdV is the
most well-known expression for d̄W , there are others. Consider a length L of wire under tension
J . The work done in stretching the wire reversibly by dL is JdL. The work done in reversibly
expanding the surface area of a film by an amount dA is σdA, where σ is the surface tension.
These examples involve the extension or deformation of the boundaries of the system: volume,
length, area. More generally, work involves any change of macroscopically observable properties,
not necessarily involving the boundaries of the system. The latter entails system interactions with
externally imposed fields. The work done in reversibly changing the magnetization M of a sample
by dM in a field H is µ0H · dM (see below). The work done in reversibly changing the electric
polarization P by dP in electric field E is E · dP .

Expressions for work occur in the form d̄W = Y dX , generalized work, the product of intensive
quantities Y (generalized forces: −P, J, σ, µ0H,E), with the differentials of extensible quantities,
dX (generalized displacements: dV,dL,dA,dM ,dP ). An extensible quantity is (as the name sug-
gests) one that can be extended, the change in an extensive variable. The infinitesimal work done
on a system is the sum of the individual differentials, d̄W =

∑
i YidXi. The first law can therefore

be written dU = d̄Q +
∑
i YidXi. The quantities Xi are known as the deformation coordinates

of the system. Energy transfers effected through changes in deformation coordinates are referred to
as extensible work. Systems, however, must possess one non-deformation (or thermal) coordinate
because work can be done on a system keeping deformation coordinates fixed. In stirring the fluid in
an adiabatic enclosure, work is done on the system, but the deformation coordinates don’t change.

Magnetic work

Because of the maxim that “the B-field does no work,” we calculate the work done in reversibly
changing the magnetization of an object. Energy is conveyed in the process of magnetization, and
unless that energy is in the form of heat, work is done by a magnetic field.

Consider a solenoid of length L with N turns and cross-sectional area A carrying a current I
(supplied by a battery) that contains a material of magnetization M . The magnetic intensity H =
NI/L couples to the current, independent of the material in the solenoid. The customary expression
from electromagnetic theory for the magnetic field is B = µ0(H + M). In this familiar formula
M is the magnetization density; B = µ0(H + M) is a relation among intensive quantities. The
paradigm in thermodynamics, however, is that an infinitesimal amount of work is the product of
an intensive quantity (a parameter set by the environment, H), and the differential of an extensible
quantity. For our use here we take M to be the total magnetic moment of the system. In terms of the

36We show in Section 3.10 that equilibrium is characterized by the equality of intensive variables between a system and
its surroundings, those associated with conserved quantities that can be exchanged between system and environment.

37That adding or removing constraints increases or decreases the number of state variables is reminiscent of creation
and annihilation operators in the quantum theory of many particle systems. Adding or removing constraints is formally
a mapping between thermodynamic state spaces of different dimensions, just as creation and annihilation operators are
mappings between Hilbert spaces of differing dimensions corresponding to the number of identical particles.
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“thermodynamic M ,” B is related to M by

B = µ0

(
NI

L
+ M

AL

)
.

In this expression N and L are extensive quantities; the current is intensive. If for fixed current the
magnetization changes, dB = (µ0/AL) dM . A change in B produces a change in flux Φ = NAB,
inducing a back emf,

E = −dΦ
dt = −NAdB

dt = −µ0
N

L

dM
dt .

To maintain constant current, the battery must do work to overcome the induced emf. In passing a
charge dq through the circuit, the battery does work (on the system)

d̄W = |E |dq = µ0
N

L

dM
dt dq = µ0

N

L

dq
dt dM = µ0

NI

L
dM = µ0HdM .

We have assumed thatM is aligned withH . If not, the work generalizes to

d̄W = µ0H · dM . (1.14)

The system in this case is the magnetized sample; the H field is a constant parameter characterizing
the environment, just as temperature is a parameter set by the environment. Should we enlarge
the scope of the system, we would need to include the energy of the field (1

2
∫
B ·HdV ) in our

definition of internal energy.

1.10 CYCLIC RELATION*
Consider three variables connected through a functional relation, f(x, y, z) = 0. Any two can
be taken as independent, and each can be considered a function of the other two: x = x(y, z),
z = z(x, y), or y = y(x, z). We can form the differential of x in terms of the differentials of y and
z,

dx =
(
∂x

∂y

)
z

dy +
(
∂x

∂z

)
y

dz , (1.15)

or we can take the differential of z in terms of x and y,

dz =
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy . (1.16)

Combine Eq. (1.16) with Eq. (1.15):

0 =
[(

∂x

∂z

)
y

(
∂z

∂x

)
y

− 1
]

dx+
[(

∂x

∂y

)
z

+
(
∂x

∂z

)
y

(
∂z

∂y

)
x

]
dy . (1.17)

For Eq. (1.17) to be valid for independent dx and dy, we conclude that

1 =
(
∂x

∂z

)
y

(
∂z

∂x

)
y

(1.18)

−1 =
(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

. (1.19)

Equation (1.18) is called the reciprocity relation and Eq. (1.19) the cyclic relation. These relations
are used frequently in the theory of thermodynamics. (See also Eq. (3.48).)
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1.11 RESPONSE FUNCTIONS
The seemingly quiescent equilibrium state (specified by the values of state variables) is associated
(at the microscopic level) with incessant and rapid transitions among the microscopic configura-
tions of a system—its microstates. In the time over which measurements are made, macroscopic
systems “pass” through a large number of microstates. Measurements represent time averages over
the microstates that are consistent with system constraints (fixed volume, fixed energy, etc.). In
statistical mechanics averages are calculated from the microscopic energies of such states.38 In
thermodynamics, however, relatively few quantities are actually calculated. What thermodynamics
does (spectacularly) is to reveal interrelations between measurable quantities. The mathematical
theory of thermodynamics is a “consistency machine” that relates known information about a sys-
tem to other quantities that might be difficult to measure. To make the machine useful it must be
fed information. Response functions, what we introduce now, are quantities readily accessible to
experimental measurement. These are derivatives that measure, under controlled conditions, how
measurable thermodynamic quantities vary with respect to each other.

Expansivity and compressibility

The thermal expansivity and isothermal compressibility are by definition

α ≡ 1
V

(
∂V

∂T

)
P

β ≡ − 1
V

(
∂V

∂P

)
T

. (1.20)

These measure the fractional change in volume that occur with changes in T and P . We’ll show in
a later chapter that β is always positive, Eq. (3.51); whereas α has no definite sign. What about the
third derivative from this trio of variables, (∂P/∂T )V ? Is it given its own definition as a response
function? Nope, no need. Using Eq. (1.19),(

∂P

∂T

)
V

= −
(∂V/∂T )P
(∂V/∂P )T

= α

β
. (1.21)

Knowing α and β, we know the derivative on the left of Eq. (1.21). We’re free to assume that V , T ,
and P are connected by an equation of state V = V (T, P ). Thus,

dV =
(
∂V

∂T

)
P

dT +
(
∂V

∂P

)
T

dP = αV dT − βV dP . (1.22)

With measurements of α and β, Eq. (1.22) can be integrated to experimentally determine the equa-
tion of state. Equation (1.22) demonstrates the “differentiate-then-integrate” strategy: The laws of
thermodynamics typically give us information about the differentials of various quantities, which
can then be integrated to find the equation of state or the internal energy function.

Heat capacity

The heat capacity,CX ≡ (d̄Q/dT )X , measures the heat absorbed per change in temperature, where
X signifies what’s held fixed in the process. Typically measured are CP and CV . Heat capacities are
tabulated as specific heats, the heat capacity per mole or per gram of material.39 What does a large
heat capacity signify? For a small temperature change ∆T , say one degree, ∆Q = CX∆T , i.e.,
the heat capacity is the heat required to change the temperature of an object by one degree (from
T → T + ∆T ). A system characterized by a large heat capacity requires a relatively large amount

38In statistical mechanics, time averages are replaced with ensemble averages.
39A useful mnemonic is “heat capacity of a penny, specific heat of copper.”



20 � Thermodynamics

of heat to change its temperature, larger than for systems with a small heat capacity, for which the
same temperature change can be accomplished with a smaller amount of heat transferred.40

There’s an important connection between CP and CV , Eq. (1.29), that we now derive. Assume
that41 U = U(T, V ). Then,

dU =
(
∂U

∂T

)
V

dT +
(
∂U

∂V

)
T

dV = d̄Q− PdV , (1.23)

where the second equality is the first law of thermodynamics. Thus

d̄Q
dT =

(
∂U

∂T

)
V

+
[
P +

(
∂U

∂V

)
T

]
dV
dT . (1.24)

By holding V fixed, we have from Eq. (1.24)

CV =
(

d̄Q
dT

)
V

=
(
∂U

∂T

)
V

. (1.25)

Equation (1.25) is very useful, and is an example of a thermodynamic identity, one of many that
we’ll derive: A measurement of CV is a measurement of (∂U/∂T )V . From Eq. (1.23) therefore,
[dU ]V = CV dT , where the notation indicates that V is held fixed. Holding P fixed in Eq. (1.24),

CP =
(

d̄Q
dT

)
P

= CV +
[
P +

(
∂U

∂V

)
T

](
∂V

∂T

)
P

, (1.26)

where we’ve used Eq. (1.25). Turning Eq. (1.26) around, and using Eq. (1.20),(
∂U

∂V

)
T

= CP − CV
αV

− P . (1.27)

Equation (1.27) relates the derivative (∂U/∂V )T (which is not easily measured) to quantities that
are more readily measured. Once entropy is introduced as a state variable, together with the theo-
retical device of Maxwell relations (Section 4.5), we’ll discover considerable leeway in evaluating
derivatives like (∂U/∂V )T . It’s shown in Exercise 4.6 that(

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P = T
α

β
− P , (1.28)

another connection between a derivative and measurable quantities.42 With measurements ofCV , α,
and β, we have the derivatives (∂U/∂T )V and (∂U/∂V )T (Eq. (1.25) and Eq. (1.28)), from which
U(T, V ) can be obtained through integration. Equating Eqs. (1.28) and (1.27), we have the desired
relation:

CP − CV = α2

β
TV . (1.29)

Because β > 0 (Section 3.10), Eq. (1.29) implies that CP > CV , one of the key predictions of
thermodynamics.43 It’s shown in Section 3.10 that CV > 0, Eq. (3.51).

40The definition of heat capacity is analogous to the definition of electrical capacitance, Q = CV . A large capacitor
requires a large amount of charge to raise the voltage by one volt, ∆Q = C∆V .

41We’re free to take U to be a function of whatever independent variables we choose.
42It turns out that Eq. (1.28) is one of the most important equations of thermodynamics from a theoretical perspective; see

Chapter 10. The group of terms
[
P + (∂U/∂V )T

]
(∂T/∂P )V serves as a proxy for temperature, what systems in mutual

equilibrium have in common.
43Heat added at constant volume causes the temperature to rise (CV > 0). Heat added keeping the pressure fixed (for

the same amount of a substance) could be done by allowing the volume to increase, and thus the system would do work on
the environment. More heat at constant P would have to be supplied for the same temperature increase as for constant V ,
CP > CV .
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For the ideal gas, we have the special results (see Exercise 1.6),

CP − CV = nR , (1.30)

and (
∂U

∂V

)
T

= 0 . (1.31)

Equation (1.31), known as Joule’s law, can be taken as an alternate definition of the ideal gas: A gas
whose internal energy is a function of temperature only, U = U(T ). The ideal gas ignores inter-
particle interactions; its internal energy is independent of the volume. The heat capacity CV for the
noble gases (He, Ne, Ar, Kr, and Xe) has the measured value 1.50nR for moderate temperatures
(temperatures not so low that the gas liquefies). For the ideal gas, CV is exactly 3

2nR for all tem-
peratures (see Eq. (7.34)); noble gases thus approximate ideal gases for moderate temperatures. The
internal energy function of the ideal gas thus has the simple form (using CV = (∂U/∂T )V = 3

2nR
and Eq. (1.31)),

U = 3
2nRT = 3

2NkBT . (1.32)

Equation (1.32) shows that the gas constant (or Boltzmann’s constant) is related to the average
kinetic energy of the molecules of an ideal gas.44 Because all gases become ideal at sufficiently low
pressure, the gas constant measures a universal property of gaseous matter at temperature T .

The temperature dependence of CV (T ) is a probe of how matter absorbs energy at the micro-
scopic level; the full power of statistical mechanics is required to understand its behavior. At low
temperatures gases condense into liquids and eventually solidify. The heat capacity of many solids
is 3nR, the law of Dulong and Petit.45 At very low temperatures, the law of Dulong and Petit breaks
down and heat capacities vanish, as the third law of thermodynamics indicates must happen (Chapter
8). It’s found that the heat capacity of many solids vanishes like T 3 as T → 0.

CHAPTER SUMMARY
This (lengthier than most) chapter has presented the foundations of thermodynamics organized
around three concepts: equilibrium, internal energy, and irreversibility. Many definitions have been
introduced which form the basic vocabulary of the subject. If there wasn’t something called entropy
out there, this chapter would be just about all one needs to know about thermodynamics. As it is,
however, and as we’ll see, thermodynamics is all about entropy.

• Thermodynamics is the study of macroscopic systems in equilibrium, together with the pro-
cesses that drive transitions between them.46 Equilibrium is the quiescent state where nothing
appears to be happening, where all the fast things have happened and the slow things not.

• States of equilibrium are specified by the values of state variables, measurable properties of
equilibrium systems. State variables are independent of time and of the history by which
equilibrium has been established. Differentials of state variables are exact differentials.

• Thermodynamics achieves a huge reduction in the complexity of description, from an enor-
mous number of microscopic degrees of freedom to just a few state variables. In the time
required to make measurements, macroscopic systems pass through a large number of mi-
crostates; macroscopically measurable quantities represent averages over microstates com-
patible with system constraints.

44The average in this case is established by dividing the total energy U by N , U/N = 3
2kBT .

45In statistical mechanics, a useful result is derived, the equipartition theorem that accounts for the classical heat capacities.
46A more learned definition of thermodynamics is offered on page 146.
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• Thermodynamic state space is the mathematical space of all values of state variables. Every
point in state space represents a possible equilibrium state.

• State variables are classified as extensive or intensive, those that do and do not scale with the
size of the system. Intensive variables have the same values at different spatial locations of
the system. The values of state variables are connected either through equations of state or by
the laws of thermodynamics.

• The thermal behavior of macroscopic systems is determined by the nature of the boundaries
separating the system from the environment. Boundaries control the types of interactions a
system is allowed to have with its environment.

• Thermodynamics distinguishes three types of boundaries: adiabatic, diathermic, and perme-
able. Adiabatic boundaries allow a system to interact with its environment through mechanical
means only (no interchange of matter or heat with the surroundings). Diathermic boundaries
allow thermal interactions with the environment. Permeable walls allow the system to ex-
change matter and energy with the environment.

• The different types of boundary enable the formulation of the zeroth and first laws of thermo-
dynamics. Diathermic boundaries allow thermal energy exchange between systems, implying
the existence of temperature as a state variable, what systems in equilibrium have in com-
mon, as well as the existence of equations of state, functional relations among state variables.
The Joule-Mayer experiments demonstrate, on adiabatically isolated systems, the existence
of internal energy as a state variable, the storehouse of adiabatic work.

• Adiabatically isolated systems conserve energy in that the energy of mechanical work (an in-
teraction of the system with an external agency) is stored in the internal energy of the system,
∆U = Wad, energy that can be recovered by letting the system perform adiabatic work on the
environment. The same total amount of adiabatic work induces the same transition between
reproducible equilibrium states (i, f ), independent of the kind of work performed. This type
of path independence indicates that U is a state variable with ∆U = Uf − Ui.

• Mechanical energy is not conserved, however, for systems enclosed by diathermic boundaries.
Heat is the difference in work required to induce the same transition i → f for the system
enclosed by the two types of boundary: Q ≡Wad −W .

• The first law of thermodynamics dU = d̄W + d̄Q has that a small change dU in internal
energy can be affected by the transference of a small quantity of heat d̄Q and/or the per-
formance of a small amount of work d̄W . Work and heat are not substances; they represent
the effects of thermodynamic processes. The notation d̄W and d̄Q indicates that these are
process-dependent (inexact) differentials, whereas dU (exact differential) indicates a small
difference in a physical quantity, energy. Energy is stored in a system, but not work or heat,
which are modes of affecting the transfer of energy in and out of a system. For finite changes,
the first law is written ∆U = Q+W .

• Extensible work is the energy
∑
i YidXi required to change the values of the deformation co-

ordinates of the systemXi, those that represent changes in observable macroscopic properties,
where each generalized displacement dXi is multiplied by a conjugate intensive quantity, the
generalized force Yi. Systems must have one non-deformation (thermal) coordinate because
work can be done on systems keeping deformation coordinates fixed.

• Reversible processes can be exactly reversed, restoring system and environment to their origi-
nal states. In irreversible processes, the original state of the system cannot be restored without
leaving changes in the environment. Reversible processes are carried out slowly so that state
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variables have well defined values at every step of the process. Irreversible processes (literally
un-reversible) imply an order in time by which the states in such processes occur. The time
ordering implied by irreversibility intimates the existence of a state function (entropy) as a
way to characterize the equilibrium states linked by irreversible processes.

• Response functions are derivatives of thermodynamic variables measured under controlled
conditions. Thermodynamic derivatives that cannot be easily measured can invariably be ex-
pressed in terms of response functions. Much of the “art” of thermodynamics consists of
deriving thermodynamic identities.

• The heat capacity at constant volume CV = (d̄Q/dT )V of the ideal gas has the value 3
2nR

where the gas constant R is a fundamental constant of nature. The ideal gas is defined by the
equation of state PV = nRT for all temperatures; real gases become ideal at sufficiently
low pressures. For an ideal gas (∂U/∂V )T = 0, i.e., U is a function only of the temperature,
U = U(T ) = 3

2nRT . The ideal gas ignores inter-particle interactions and the internal energy
is independent of the volume.

EXERCISES
1.1 How many atoms of silicon are in a cube 1 µm on a side? The mass of a mole of silicon is

approximately 28 grams, and the density of silicon is approximately 2.3 g cm−3.

1.2 Integrate the differential (x2 +y)dx+xdy from (0,0) to (1,1) along two paths: first from (0,0)
to (1,0) to (1,1), and then from (0,0) to (0,1) to (1,1). Is the value of the integral the same?
Now repeat this exercise with the differential (x2 + 2y)dx+ xdy.

1.3 Is x2y4dx + x3y3dy an exact differential? Can you find an integrating factor? Integrating
factors are not unique.

1.4 Derive Eq. (1.13), the second virial coefficient obtained from the van der Waals equation of
state.

1.5 Verify the cyclic relation Eq. (1.19) using (P, V, T ) for (x, y, z) and the ideal gas equation of
state.

1.6 Show that for the ideal gas, α = T−1 and β = P−1.

1.7 Take U = U(T, P ) and V = V (T, P ).

a. Show that

d̄Q
dT =

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

+
[(

∂U

∂P

)
T

+ P

(
∂V

∂P

)
T

]
dP
dT .

b. Show that this result implies another set of thermodynamic identities

CP =
(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

(
∂U

∂P

)
T

= −β
α

(CP − CV ) + PβV .

1.8 From the results of Exercise 1.7, and Eqs. (1.28), (1.29), and (1.20) show that the first law
can be written in either of the two ways

d̄Q = CV dT + Tα

β
dV d̄Q = CPdT − αV TdP .
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1.9 Using the results of Exercise 1.8,

a. Show that under adiabatic conditions(
dP
dV

)
adiabatic

= − γ

βV
,

where γ ≡ CP /CV is the ratio of the heat capacities. Equation (1.29) implies that γ > 1.
The locus of points in state space reachable by a process in which d̄Q = 0 is known as an
adiabat.

b. Show that under isothermal conditions(
dP
dV

)
isothermal

= − 1
βV

.

Hence we have the result (
dP
dV

)
adiabatic

= γ

(
dP
dV

)
isothermal

.

Because γ > 1, dP/dV on adiabats is always larger in magnitude than dP/dV along
isotherms.

1.10 For an adiabatic process involving the ideal gas, show that either PV γ = constant or
TV γ−1 = constant. Use the result of Exercise 1.9 applied to the ideal gas.

1.11 Show for the ideal gas that (∂U/∂P )T = 0. Hint: One could simply apply the chain rule
to Eq. (1.31), or one could use the result derived in Exercise 4.6. The internal energy of the
ideal gas is a function only of the temperature—Joule’s law. Joule discovered this result by
allowing gases to expand into a vacuum under adiabatic conditions (Section 4.9). An ideal is
such that PV = nRT with the proviso that U = U(T ).

1.12 The isothermal bulk modulus is defined as

BT ≡ −V
(
∂P

∂V

)
T

.

Show that
(
∂P

∂T

)
V

= αBT , where α is the thermal expansivity.

1.13 a. Show for an adiabatic transformation of the ideal gas that the first law can be written

CV
T

dT + nR

V
dV = 0 .

Does this expression represent an exact differential? If so, is there is a quantity f(T, V )
that’s constant in an adiabatic process? Hint: Use the value of CV for the ideal gas.

b. Show that for a general transformation of an ideal gas

d̄Q = CV dT + nRT

V
dV .

Is this an exact differential? Is there a quantity Q(T, V ) stored in the system?

c. Is there an integrating factor that would turn d̄Q into an exact differential?
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Second law of
thermodynamics
Direction of heat flow

T HE first law of thermodynamics places restrictions on the possible changes of state a system
may undergo, namely those that conserve energy. There are processes, however, that while

conceivable as energy conserving, are never observed. An ice cube melts into a puddle of water, but
a puddle never gathers itself into an ice cube. What distinguishes naturally-occurring processes is
the direction of heat flow. The second law of thermodynamics codifies our experience that heat does
not spontaneously flow from cold to hot. The directionality of spontaneous heat flows has numerous
implications in accounting for which processes are observed to occur in nature.

2.1 THERMODYNAMICS OF CYCLES: SYSTEM AS A BLACK BOX
A cyclic process returns a system to its initial state. After one cycle, ∆U = 0 (U is a state variable),
and thus ∆U = 0 = Q + W . The work done by a system in a cycle, −W , is therefore equal to
the net heat absorbed by the system, −W = Q, “energy out equals energy in,” the conversion of
heat into work. A heat engine converts heat into work. A heat engine run backwards can act as a
refrigerator or as a heat pump, depending on whether the primary goal is to remove heat from a
cold object or deliver heat to a hot object.

At various points of a cycle, heat is either absorbed from, or expelled to, the environment, so
that the net heat transferred to the system Q ≡ Qin +Qout, where by our sign convention Qout < 0.
The efficiency η of a heat engine is defined as the work produced per heat absorbed,

η ≡ −W
Qin

= Qin +Qout

Qin
= 1− |Qout|

Qin
, (2.1)

Can η = 1? Nothing in the first law would preclude that, yet we know from experience that 100%
efficiency doesn’t sound right. We’ll show as a consequence of the second law that there’s a maxi-
mum efficiency, ηmax, with η ≤ ηmax < 1. There must be heat expelled, or waste heat, |Qout| 6= 0.
The second law teaches us that it takes energy to transform energy.1

1The second law is sometimes called the law of the transmutability of energy. If energy did spontaneously flow from
cold to hot, inequalities in temperature would be created that could be used to perform useful work with a heat engine. Free
energy! Real refrigerators require work to create temperature inequalities.
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Aside from their practicality as heat engines or refrigerators, cyclic processes are an ingenious
theoretical device that allow us to formulate concepts without reference to the properties of mat-
ter. Through the use of cycles we can treat systems as “black boxes” where their properties are
eliminated in favor of what’s observed external to the system.

2.2 CLAUSIUS AND KELVIN STATEMENTS OF THE SECOND LAW
There are two equivalent ways of stating the second law—the Clausius and the Kelvin versions—
and you need to be aware of both.2 The Clausius form of the second law states that:

It is impossible to devise a process that produces no effect other than the transfer of
heat from a colder to a hotter object.

Note the emphasis on producing no other effect, what we’ll refer to as the “sole-result clause.” In
other wordings of the Clausius and Kelvin statements, emphasis is placed on working in a cycle.
Cyclical processes are useful in ensuring a system is returned to its starting point, allowing the sole-
result clause to be more readily tested, but they’re not strictly necessary.3 Work performed on the
system (as in a refrigerator) violates the sole-result clause. Only if all we have effected is a transfer
of heat from cold to hot, can a violation of the second law be claimed.

Example. Let a cylinder of gas be in thermal contact with a cold object. Expand the gas so that
it absorbs heat from the cold object. Now isolate the gas—surround it with adiabatic walls. Allow
the gas to come to equilibrium with a hot object. Compress the gas so that heat is delivered to the
hot object. We’ve delivered heat from cold to hot, yet there’s no violation of the second law, which
forbids processes whose sole result is the transfer of heat from cold to hot.

The Kelvin form of the second law states that:

It is impossible to devise a process that produces no effect other than the extraction of
heat from a single reservoir and the performance of an equal amount of work.

A heat reservoir is an object with a large heat capacity, so large that it’s capable of absorbing
or rejecting heat without undergoing appreciable changes in temperature.4 The Kelvin statement
implies there must be waste heat, Qout 6= 0; a 100% efficient heat engine is impossible. One cannot
extract heat from a single reservoir (read single temperature) and convert it entirely into work; there
must be at least two reservoirs (temperatures) involved. Note the emphasis on converting heat into
work; there are no restrictions on converting work into heat.5

The two forms of the second law are equivalent: The falsity of one implies the falsity of the
other. To show that, it helps to have a symbolic diagram as a representation of heat engines (a heat
engine diagram). The left portion of Fig. 2.1 shows a circle (heat engine working in a cycle—“black
box”) that absorbs heat Q1 from the reservoir at temperature T1 and expels Q2 to the reservoir at
temperature T2, where T1 > T2. In the process, work is done on the environment with Q1 =
|Q2|+ |W |; energy in equals energy out.

Assume, contrary to the Clausius statement, that we can devise an engine whose sole effect is
to deliver heat from cold to hot. By having this hypothetical engine work in conjunction with a
normal heat engine, the combined engine violates the Kelvin statement. The middle portion of Fig.
2.1 shows an engine that (in violation of the Clausius statement) absorbs Q0 from a cold reservoir

2Knowing the Clausius and Kelvin statements of the second law is highly useful in eliminating spurious arguments; they
should be considered part of the “intellectual toolbox” of physical scientists.

3Look ahead to Chapter 12. Maxwell’s demon was invented in order to effect a non-cyclical violation of the second law.
4Throw an ice cube in the ocean; does the temperature of the ocean change?
5You can rub your hands together all day, converting work into heat.
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Figure 2.1 A violation of the Clausius statement implies a violation of the Kelvin statement

and deliversQ0 to a hot reservoir, with no work involved. The other engine absorbsQ1 from the hot
reservoir and deliversQ0 to the cold reservoir. Either the size of the normal engine can be adjusted to
deliverQ0 in one cycle, or the rate at which it operates can be adjusted to deliverQ0 in the same time
that the first engine absorbs Q0. The net effect of these engines working in combination is shown in
the right part of the figure—a composite engine that absorbs Q1 − Q0 from a single reservoir and
delivers the same amount of work to the environment, in violation of the Kelvin statement.

The left part of Fig. 2.2 shows a refrigeration cycle that absorbs heat QC at the cold reservoir
and delivers QH to the hot reservoir, as a result of the work W performed on the system. Energy
conservation requires that |QH | = W + QC . The middle portion of Fig. 2.2 shows an engine that
violates the Kelvin statement by absorbing heatQ1 from a single reservoir and turning it completely
into work. The work produced by this engine is used to drive a refrigerator. The net effect is an
engine that delivers heat from a cold object to a hot object with no other effect, in violation of the
Clausius statement.

Figure 2.2 A violation of the Kelvin statement implies a violation of the Clausius statement

The negation of one statement implies the negation of the other, what we can indicate symbol-
ically as C ⇒ K and K ⇒ C. By the rules of logic, the two statements are equivalent, C ⇔ K.
Note that we have not proved either statement, merely that they are equivalent; one cannot prove the
second law any more than one can prove the first law—both are codifications of experience. One
can neither prove nor disprove phenomenological laws; one can only report violations of them to
your local physics authority.
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2.3 CARNOT THEOREM: UNIQUENESS OF ADIABATS

Carnot cycle

A Carnot cycle (shown in Fig. 2.3) is one that operates reversibly along two isotherms and two
adiabats (or isentropes). The slope dP/dV is steeper for adiabats than for isotherms (Exercise 1.9).
A reversible cycle specified as exchanging heat only along isotherms is automatically a Carnot cycle
because those parts of the cycle not involving heat transfer must necessarily be (reversible) adiabats.

Figure 2.3 Carnot cycle (left). Adiabats must be unique (right).

A key point is the uniqueness of adiabats. Suppose two adiabats connect pointB in Fig. 2.3 with
the isotherm at temperature T2. One could then extract heat from a single reservoir and, operating
in a cycle, convert it entirely into work, in violation of the Kelvin statement. The uniqueness of
adiabats can readily be demonstrated for a system with two independent variables. With d̄Q = 0 in
the first law, and with U = U(P, V ),(

dP
dV

)
adiabat

= −
(
∂U

∂P

)−1

V

[
P +

(
∂U

∂V

)
P

]
. (2.2)

The gradient of an adiabat is thus specified by Eq. (2.2) at every point in the P -V plane. Through
integration, Eq. (2.2) will produce a unique adiabat starting from a given point.6 For systems hav-
ing three or more variables, the uniqueness of adiabats (required by the second law) needs further
analysis and is the subject of Chapter 10.

Carnot theorem: η ≤ ηR

Carnot’s theorem states:

All reversible engines operating between the same reservoirs have the same efficiency,
which exceeds that of any non-reversible engine.

To prove the assertion, envision a Carnot cycle operating in conjunction with an assumed more-
efficient engine, and show that we’re led to a violation of the second law. In the left portion of
Fig. 2.4, Carnot engine C operates between reservoirs at temperatures T1 and T2 with T1 > T2.
Operating between the same reservoirs is a hypothetical engine7 H having greater efficiency than
C. By assumption therefore

ηH = |WH |
QH1

> ηC = |WC |
QC1

. (2.3)

6The solutions of first-order differential equations are unique under very general conditions.[14, p22]
7H and C in Fig. 2.4 do not mean hot and cold!
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Figure 2.4 Proof of the Carnot theorem

Use the work output ofH to run C backwards (C is reversible). Adjust C so that it absorbs the work
produced by8 H , |WC | = |WH |. From the inequality (2.3) therefore

QH1 < QC1 , (2.4)

i.e., the more-efficient engine absorbs less heat for the same work output. Apply the first law to the
middle diagram in Fig. 2.4. Because for the composite engine W = 0, we have for the net heats
|Qout| = Qin, or thatQC2 +QH1 = |QC1 |+ |QH2 |. Thus,QC2−|QH2 | = |QC1 |−QH1 > 0, where
from (2.4) QH1 < |QC1 |. The composite engine therefore works as drawn in the right portion of
Fig. 2.4, in violation of the Clausius statement.

The assumption ηH > ηC thus leads to a violation of the second law, and we conclude that
ηH ≤ ηC . Proof seemingly over. You could ask, however, what properties of C were used in the
proof? The only feature is that it’s reversible. Because no properties of H were invoked either, what
if H is reversible, call it R? By what we’ve just shown, ηC ≥ ηR. But now interchange the roles
of the engines: Assume that C is more efficient than R, ηC > ηR, and use it to run R backwards.
Repeating the argument we would be led to a violation of the second law, implying ηR ≥ ηC .
Consistency requires that ηR = ηC . All reversible engines operating between the same reservoirs
are equally efficient. Because C is reversible, we conclude that

η ≤ ηR . (2.5)

This inequality is Carnot’s theorem: The efficiency cannot exceed that of a reversible engine. We
show in Chapter 3 that the inequality (2.5) leads directly to the existence of entropy.

2.4 ABSOLUTE TEMPERATURE
Carnot’s theorem implies that ηR cannot depend on any specific property of an engine (the work-
ing substance of the engine), because it’s the same for all reversible engines. The quantity ηR can
only depend on the reservoirs—it’s all that remains—and the equilibrium state of reservoirs is char-
acterized by its temperature (zeroth law). Empirical temperature, however, is measured using the
thermometric properties of substances which we are free to choose (Section 1.5). How can ηR
be universal when the reservoir temperatures depend on arbitrary substances? The universality of
Carnot’s theorem implies that temperature can be formulated in a universal manner.

8From Fig. 2.3 the location of the adiabats can be adjusted so that the area enclosed by the cycle (work performed) has
any prescribed value.
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For the efficiency ηR to depend only on the reservoirs (Carnot’s theorem), let’s posit an “effi-
ciency function” f of the reservoir temperatures,

f(θ1, θ2) = Q2/Q1 , (2.6)

where we revert to the empirical temperature notation θ (Section 1.5), and we’ve made use of Eq.
(2.1). For convenience all occurrences of the symbol Q in this section represent absolute magni-
tudes, minus signs having been relegated9 to Eq. (2.1). We first show that f(θ1, θ2) occurs as a ratio
of functions of a single variable, φ(θ2)/φ(θ1) (see Eq. (2.9)).

Figure 2.5 Derivation of the absolute temperature

Figure 2.5 shows a Carnot engine C1 operating between reservoirs at temperatures θ1 and θ2,
and a second Carnot engine10 C2 operating between θ2 and θ3. Engine C1 absorbs heatQ1 at θ1 and
expels Q2 at θ2. Adjust the size of C2 so that it absorbs Q2 at θ2 and expels Q3 at θ3. The net effect
is a single engine C3 that absorbs Q1 at θ1 and expels Q3 at θ3. Apply Eq. (2.6) to each engine:

Q2

Q1
= f(θ1, θ2) Q3

Q2
= f(θ2, θ3) Q3

Q1
= f(θ1, θ3) . (2.7)

Equation (2.7) implies the functional relation satisfied by f

f(θ1, θ2)f(θ2, θ3) = f(θ1, θ3) . (2.8)

To satisfy Eq. (2.8), f(θ1, θ2) must have the form

f(θ1, θ2) = φ(θ2)/φ(θ1) . (2.9)

With f(θ1, θ2) in the form of Eq. (2.9), we have “passed the buck” onto an unknown function φ(θ)
that depends on the temperature of a single reservoir.

9The heats Q in equation Eq. (2.6) refer to reversible heat transfers.
10These engines do work on the environment; we’re just not showing it in Fig. 2.5.
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Combining Eq. (2.9) with Eq. (2.6), we have that the ratio of the heats reversibly expelled to and
absorbed from reservoirs has the property that it equals the ratio of a function of θ evaluated at the
reservoir temperatures no matter what empirical temperature is used for each reservoir,

Q2

Q1
= φ(θ2)
φ(θ1) . (2.10)

That’s a tall order. We appear to require a “universal decoder function” φ that enforces Eq. (2.10)
for any θ. The only way Eq. (2.10) can apply for any empirical temperature is if φ is a property of
heat reservoirs that’s independent of material composition. We assert the existence of a universal
property of reversible heat flows—absolute temperature T—defined such that the ratio of absolute
temperatures is the same as the ratio of heats reversibly drawn from or expelled to the reservoirs,

T2

T1
≡
(
Q2

Q1

)
reversible

. (2.11)

Equation (2.11) implies an invariant for reversible cycles, which we’ll see is the entropy:(
Q1

T1

)
rev

=
(
Q2

T2

)
rev

. (2.12)

The efficiency of a reversible engine can thus be given in terms of absolute temperatures. Com-
bining Eq. (2.11) with Eq. (2.1), we have that the maximum efficiency of a cycle operating between
hot and cold reservoirs with absolute temperatures Th and Tc is

ηR = 1− Tc
Th

. (2.13)

Note that Eq. (2.13) has been obtained without relying on a particular equation of state (such as
the ideal gas). It’s shown in Exercise 2.4 that the efficiency of a Carnot cycle using the ideal gas
as the working substance is the same as Eq. (2.13). While such a result is demanded by the Carnot
theorem, it’s “nice” to show it explicitly.

Carnot’s theorem thus implies the existence of absolute temperature. To make it useful, we must
adopt a unit of absolute temperature. The Kelvin scale conventionally assigns the value 273.16 K to
the triple point of water, a reproducible state. The triple point is the unique combination of (T, P )
at which the solid, liquid, and gas phases of a single substance coexist in equilibrium (Chapter
6). When heat Qtp is reversibly transferred from a reservoir held at the triple point of H2O, the
temperature T (in Kelvin) of another reservoir at which heat Q is reversibly transferred, is

T = 273.16 (Q/Qtp) K . (2.14)

Equation (2.14) gives an operational sense of what it means to say that one temperature is twice as
large as another. Conversely, the smaller Q is, the smaller is the value of T , indicating that T → 0
is possible.11 Whether T = 0 is experimentally achievable is another matter (the province of the
third law of thermodynamics, Chapter 8); the larger point is that absolute temperature provides a
framework in which zero temperature can be discussed.12 As practically necessary as the Kelvin
scale is, it’s something of a red herring. There’s no dimension embodied in the Kelvin or any other
temperature scale. There is nothing fundamental about the Kelvin temperature scale. We see from
Eq. (2.11) that absolute temperature naturally has the dimension of energy. We need a conversion
factor between the unit of energy, Joule, and the unit of temperature, Kelvin; this is supplied by
Boltzmann’s constant, kB = 1.38× 10−23 J K−1.

11Thermometers based on empirical temperatures cannot be used for arbitrarily low temperatures; substances undergo
phase transitions, altering their thermometric properties.

12Which is a colder day: 0 ◦C or 0 ◦F? Using empirical temperature scales one cannot unambiguously compare the
coldness or hotness of objects.
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CHAPTER SUMMARY
This chapter introduced the second law of thermodynamics, that heat does not spontaneously flow
from cold to hot. The Carnot theorem, consistent with the second law, states that the efficiency of
heat engines cannot exceed that of reversible engines operating between the same reservoirs. The
universality of Carnot ’s theorem implies that temperature can be formulated in an equally universal
manner, independent of the thermometric properties of materials, the absolute temperature T .

• The Clausius form of the second law is that heat does not flow from cold to hot with no
other effect. The Kelvin form is that heat cannot be entirely converted to work at a single
temperature. The two are equivalent and imply each other.

• The ratio of absolute temperatures T1 and T2 is the ratio of the absolute values of the heats
reversibly transferred with two reservoirs at those temperatures, Q1/Q2 = T1/T2.

• There is an upper bound on the efficiency of a heat engine, η = 1− |Qout| /Qin ≤ 1−Tc/Th,
where T is the absolute temperature (Carnot’s theorem).

EXERCISES
2.1 Referring to the right portion of Fig. 2.2, show that heat QC is delivered to the hot reservoir.

2.2 Derive Eq. (2.2). Assume that the internal energy is given in the form U = U(P, V ).

2.3 Referring to the left portion of Fig. 2.2, the coefficient of performance ω of a refrigerator is
defined as the heat removed from the cold object per work input, ω ≡ QC/W . Show that

ω = QC
|QH | −QC

.

The coefficient of performance of a heat pump ωHP is defined as the heat delivered to a hot
object per work input, ωHP ≡ QH/W . Show that ωHP = 1 + ω.

2.4 Show explicitly that the efficiency of a Carnot cycle using the ideal gas as the working sub-
stance is given by η = 1− Tc/Th. Use the results of Exercise 1.10.

2.5 You’ve been brought in to consult on the development of a new engine, with the possibility
that your “sweat equity” would count towards acquiring stock in the company. Should you
get involved with this project? The design requirements are:

a. It must deliver a power of 21 kW at the operating frequency of 600 rpm;

b. It must, operating in a cycle between heat reservoirs at 500 K and 350 K, extract 6000 J
of heat from the high-temperature reservoir while expelling 3900 J to the low-temperature
reservoir.

2.6 The Stirling cycle consists of four steps: an isothermal expansion at a temperature Th, a
step where heat is removed at constant volume (isochoric), an isothermal compression at
temperature Tc, and a step where heat is added at constant volume. Assume the ideal gas as
the working substance.

a. On a P -V diagram, indicate where heat enters and leaves the system.

b. Calculate the heat delivered to and expelled from the system in the isochoric steps. As-
sume that the heat capacity is constant over the range of temperatures involve. What is the
net heat transferred to the system in these steps?

c. Derive an expression for the efficiency of the Stirling cycle. Compare with ηR.
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Entropy

On the other hand, a method involving the notion of entropy, the very existence of
which depends on the second law of thermodynamics, will doubtless seem to many
far-fetched, and may repel beginners as obscure and difficult of comprehension.
—J.W. Gibbs, 1873[3, p11]

3.1 CLAUSIUS INEQUALITY

S TARTING from Carnot’s theorem η ≤ ηR, we have from Eqs. (2.1) and (2.13),

1− |Q2|
Q1
≤ 1− T2

T1
,

where T1 > T2, and thus we have the inequality

|Q2| ≥ Q1
T2

T1
,

where equality holds for reversible cycles. For fixed values of Q1, T1, and T2, the greater the ineffi-
ciency of the engine (and hence the less the work done), the greater is the heat expelled at the lower
temperature, |Q2|. The inequality can be written (because Q2 < 0):

0 ≥ −|Q2|
T2

+ Q1

T1
= Q2

T2
+ Q1

T1
.

This inequality (which applies to a cycle operating between two reservoirs) can be generalized
by noting that an arbitrary cycle can be realized out of multiple infinitesimal cycles each operating
between two reservoirs (see Fig. 3.1).1 Applying the basic inequality to each of them,∑

i

d̄Qi/Ti ≤ 0 , (3.1)

where d̄Qi is the infinitesimal heat added to, or expelled from, the system at the reservoir tempera-
ture Ti. The sum in (3.1) is non-positive because Q/T for heats expelled at the lower temperatures
(negative quantities) exceed in magnitude Q/T for heats absorbed at the higher temperatures. Pass-
ing to the limit, we have the Clausius inequality, that for any cycle[15, p133]∮

d̄Q/T ≤ 0 . (3.2)

1The P -V plane can be covered by a non-orthogonal coordinate system of adiabats and isotherms where a given point
sits at the intersection of an isotherm and an adiabat. The uniqueness of adiabats is therefore a key issue in the theory of
thermodynamics, what we touched on in Section 2.3. It’s a central issue in the Carathéodory formulation of the second law,
Chapter 10.
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Figure 3.1 An arbitrary cycle is the resultant of multiple infinitesimal cycles

3.2 THE BIRTH OF ENTROPY
Although the necessity of this theorem admits of strict mathematical proof . . . it nev-
ertheless retains an abstract form, in which it is with difficulty embraced by the mind,
and we feel compelled to seek for the precise physical cause, of which this theorem is
a consequence.—R. Clausius, 1862[15, p219]

For reversible cycles (the case of equality in (3.2)), we have the fundamental result:∮
(d̄Q)rev /T = 0 . (3.3)

Because the closed-loop integral vanishes, the quantity (d̄Q)rev /T is an exact differential, and hence
represents the differential of a state variable. Voilà! We have a new state variable called entropy, S,
defined such that2

dS ≡ (d̄Q)rev /T . (3.4)

The word entropy was intentionally chosen by Rudolf Clausius to be close to the word energy.3 As a
state variable, entropy is defined only in equilibrium. The difference in entropy between equilibrium
states is obtained by integrating its differential

S(B)− S(A) =
∫ B

A

(d̄Q)rev /T (3.5)

for any process connectingA andB such that heat is transferred reversibly to the system at all steps
of the process.4 The quantity T appearing in Eq. (3.5) is the absolute temperature at which heat is
transferred into or out of the system. The inverse temperature T−1 is therefore an integrating factor
for the inexact differential (d̄Q)rev. Note that, with Eq. (3.5), we are no longer referring to cycles,
but with processes connecting discrete points in state space.

2Entropy makes its entrance onto the stage of physics in the form of a differential. We know what dS is, but do we know
what S is? Stay tuned.

3“But as I hold it to be better to borrow terms for important magnitudes from the ancient languages, so that they may be
adopted unchanged in all modern languages, I propose to call the magnitude S the entropy of the body, from the Greek word
τρoπὴ, transformation. I have intentionally formed the word entropy so as to be as similar as possible to the word energy;
for the two magnitudes to be denoted by these words are so nearly allied in their physical meanings, that a certain similarity
in designation appears to be desirable.”[15, p357]

4The quantity of heat
∫ B
A

d̄Q required to bring a system from state A to state B is not uniquely defined; it depends on
the path betweenA andB (Section 1.4). The question of how much heat is contained in the system is therefore meaningless.
We now have a quantity closely related to heat transfer which is defined by the state of the system. For a system brought
from A to B, the quantity

∫ B
A

(d̄Q)rev /T has a value independent of path, so long as the path is reversible.
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We have been led mathematically to the existence of entropy, yet we have no idea what it is.5

Insight can be had by examining its dimension, energy divided by absolute temperature. As noted
in Section 2.4, absolute temperature naturally has the dimension of energy; the Kelvin is a non-
dimensional unit. Entropy is naturally a dimensionless quantity, a fact obscured by quoting its value6

in SI units, J/K. That’s why formulas for the entropy always contain as a prefactor the conversion
between Joules and Kelvin, the Boltzmann constant or the gas constant. Knowing that S/kB is a
dimensionless characterization of equilibrium suggests that entropy has a qualitative aspect to it,
in addition to quantitative. We discuss in this chapter some of the properties of entropy and its
consequences. We return in Chapter 7 to its meaning.

3.3 ENTROPY, IRREVERSIBILITY, AND DISORGANIZATION

Figure 3.2 Irreversible process from A→ B, reversible process from B → A

Consider, as in Fig. 3.2, a cycle consisting of an irreversible process from point A in state space
to point B, followed by a reversible process from B to A. The irreversible process is indicated as
a dashed line because it cannot be represented in state space (Section 1.7). From the Clausius in-
equality, therefore,

∫ B
A

d̄Q/T +
∫ A
B

(d̄Q)rev /T ≤ 0. Because the process from B to A is reversible,
however, we have

∫ B
A

d̄Q/T −
∫ B
A

(d̄Q)rev /T ≤ 0, or∫ B

A

(d̄Q)rev /T ≡
∫ B

A

dS ≥
∫ B

A

d̄Q/T ,

from which we arrive at the Clausius inequality in differential form (becauseA andB are arbitrarily
chosen states):

dS ≥ d̄Q/T . (3.6)

The quantity d̄Q in (3.6) is not restricted to a reversible heat transfer (which applies in the case of
equality). The closed-loop integral of the inequality (3.6) reproduces the inequality (3.2).

The inequality (3.6) informs us that d̄Q/T does not account for all contributions to dS. There
must be another type of entropy to close the gap between d̄Q/T and dS. Define the difference7

d̄Si ≡ dS − d̄Q/T . (3.7)

Combining Eq. (3.7) with (3.6), we have an equivalent form of the Clausius inequality

d̄Si ≥ 0 . (3.8)

5It’s a natural question to ask, but try not to become obsessed with it. The question presumes that it can be answered in
terms of familiar concepts. What if entropy is something new, not reducible to concepts gained through prior experience?
Get to know its properties; then you’ll know what it is. How does it change with temperature under constant pressure? How
does it change with volume at constant temperature? If we know how it behaves, we know a great deal about what it is.

6Entropy is often quoted in the non-SI unit e.u. for “entropy unit.” One e.u. is one calorie per Kelvin per mole, or 4.184
Joules per Kelvin per mole.

7Clausius termed d̄Si the uncompensated transformation, the transformation of a system not “compensated” (caused by)
by heat transfers from the environment.[15, p363]
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Figure 3.3 Entropy transport to and from environment, entropy creation from irreversibility

Heat transfers occur through system boundaries, which can be positive, negative, or zero. Only for
reversible heat transfers is ∆S =

∫
(d̄Q)rev /T . There is an additional, positive contribution to the

entropy produced by irreversible processes internal to the system, ∆Si > 0. Entropy can vary for
two reasons, and two reasons only: either from entropy transport8 to or from the surroundings by
means of heat exchanges, or by the creation of entropy inside the system from irreversible changes
in state, which is always positive (see Fig. 3.3.) Irreversible processes create entropy.

Equation (3.7) exhibits the same logic as the first law, Eq. (1.5), in that whereas the heat trans-
ferred to the system is the difference between the change in internal energy and the work done,
Q = ∆U −W , the entropy created through irreversibility is the difference between the change in
entropy and that due to heat transfers, ∆Si = ∆S −

∫
d̄Q/T .

Figure 3.4 Free expansion through a ruptured membrane

Thus, there are processes between equilibrium states that produce entropy changes not due to
heat exchanges with external reservoirs. The classic example is the free expansion (see Fig. 3.4),
the flow of gas through a ruptured membrane that separates a gas from a vacuum chamber in an
otherwise isolated system: Even for no heat transfer with the environment, there’s an increase in
entropy. (We return to the free expansion in Section 4.9.) An isolated system is one that cannot
exchange energy or matter with the environment. With d̄Q = 0, we have from Eq. (3.6),

dS ≥ 0 . (3.9)

This is a remarkable state of affairs. For systems not interacting with the environment (isolated), one
may still affect changes between equilibrium states! The “interaction” in a free expansion consists
of rupturing a membrane or opening a valve, acts that can be accomplished without transferring
energy to the system, if only because the valve and the walls are not part of the system. That transi-
tions between equilibrium states can be induced without transferring energy indicates there must be
another state variable to describe macroscopic systems.9 Entropy is that new state variable.

8Entropy can flow, just like energy. See Section 3.11.
9That is, there’s more to the description of equilibrium states than internal energy and temperature, what one would infer

from the first law of thermodynamics.
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The inequality (3.9) is one of the most far-reaching results of physics: The entropy of an isolated
system can never decrease. As an isolated system comes to equilibrium, therefore, entropy achieves
a maximum value.10 It’s instructive to trace the steps leading to (3.9): It’s a consequence of the
Clausius inequality (3.6), which derives from the inequality established by Carnot’s theorem, (2.5),
which in turn obeys the second law of thermodynamics. The directionality of spontaneous heat flows
implies the inequality (3.9), which prescribes the time order of spontaneously occurring events,
those for which entropy increases. In Section 1.7 we discussed the ordering in time of states linked
by irreversible processes. Now we have a state variable S, the values of which can be put into
correspondence with the time order established by irreversibility. The laws of physics are usually
equalities (F = ma, E = mc2, ∆U = Q + W ), whereas (3.9) is an inequality. Therein lies
its universality! The second law is not an equality, A = B. It specifies the time progression of
spontaneous processes regardless of the system.

In the free expansion, the rupturing of the membrane is the removal of a constraint. With the
system initially constrained to the volume V1, by rupturing the membrane the constraint is removed
and the system evolves to occupy a new volume, V1 +V2. Macroscopic systems naturally “explore”
all available possibilities, which is associated with an increase in entropy. The removal of constraints
is irreversible (Section 1.8). Once removed, constraints cannot be put back, at least not without
the performance of work, implying irreversibility. Entropy can thus be seen as a measure of the
degree of constraint: The second law captures the tendency of systems to spontaneously evolve
from states of more to less constraint. Because the entropy of isolated systems can only increase,
states can be classified according to the order in which they occur in a process of progressively
removing constraints. Constraints restrict the possibilities available to systems, and in that sense
they organize them. A system undergoing a sequence of changes brought about by the removal of
constraints becomes increasingly less organized. There must be a connection between entropy and
disorganization. We return to that idea in Chapter 7.

The time ordering of states linked by irreversible processes is a distinctive feature of thermo-
dynamics, unlike any other in physics. The equations of Newtonian dynamics are time-reversal
invariant, in which the role played by past and future occur in a symmetric manner;11 processes
proceed the same if the sense of time is reversed, t → −t. That symmetry is broken at the macro-
scopic level where there’s a privileged direction of time, an inevitable order to the sequence of
spontaneous events, the arrow of time.12 Why microscopic theories are time-reversal invariant while
the macroscopic world is not, we cannot say. One answer is that macroscopic systems involve so
many microscopic constituents, the application of Newton’s laws must involve approximations that
break time-reversal symmetry, yet what we observe in the macro-world knows nothing of our ap-
proximations. And Newtonian dynamics has been superseded by quantum mechanics and relativity,
theories that are also time-reversal symmetric. The arrow of time reflects there not being equilib-
rium: As long as disequilibrium exists, entropy will increase. The second law cannot be derived
from microscopic laws of motion; it’s a separate principle. Irreversibility is an undeniable feature
of the macroscopic world, our experience of which is codified in the second law.13

Let’s summarize the laws of thermodynamics developed so far. The zeroth law establishes tem-
perature as a state variable, what systems in equilibrium have in common. The first law establishes
internal energy as a state variable and places restrictions on the possible states that can be connected
by transitions, namely those that conserve energy. The second law establishes entropy as a state
variable that determines the order of states as they occur in spontaneous processes. Whether the
transition A→ B is possible in an isolated system is determined by whether S(A) < S(B).

10Because processes occur in time, with dS ≥ 0 for an isolated system, time implicitly sneaks into the theory. The entropy
of an isolated system keeps increasing until it attains the maximum value it can attain subject to constraints on the system.

11Maxwell’s equations of electrodynamics are also time-reversal symmetric.
12The term arrow of time (actually time’s arrow) was introduced by Eddington.[16, p69]
13Said differently, the second law is the explicit recognition in the pantheon of physical laws of the existence of irre-

versibility.
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3.4 OPENING THE BLACK BOX: GIBBSIAN THERMODYNAMICS
It is an inference naturally suggested by the general increase of entropy which accom-
panies the changes occurring in any isolated material system that when the entropy of
the system has reached maximum, the system will be in a state of equilibrium. Although
this principle has by no means escaped the attention of physicists, its importance does
not appear to have been duly appreciated. Little has been done to develop the principle
as a foundation for the general theory of thermodynamic equilibrium.
—J.W. Gibbs, 1878[3, p354]

How does our newly-found state variable fit in with the structure of thermodynamics? It was the
great contribution of Gibbs to recognize that entropy and energy allow one to analytically charac-
terize the thermodynamic properties of materials. Focusing on the state of equilibrium rather than
on processes is called Gibbsian thermodynamics. In the Clausius-Kelvin form of thermodynamics,
the system is considered a “black box” with all relevant information derived from observable prop-
erties of the system’s interaction with the environment. Gibbs in essence opened the black box.14

Much of what we consider today to be thermodynamics can be traced to the work of Gibbs.
With (d̄Q)rev = TdS and d̄W = −PdV we have from Eq. (1.6)

dU = TdS − PdV (3.10)

when it’s understood that all infinitesimal changes are reversible. With Eq. (3.10) we have the first
law expressed in terms of exact differentials. Equation (3.10) can be integrated to find ∆U for any
reversible process connecting the initial and final states. A little reflection, however, shows that Eq.
(3.10) is holds for any change of state, however accomplished, as long as there is a conceivable
reversible path connecting the initial and final equilibrium states. From now on, we’ll refer to Eq.
(3.10) (and its generalization in Eq. (3.16)) as the first law of thermodynamics.15

As an example, consider an ideal gas that escapes into an evacuated chamber, doubling its vol-
ume in the process. The change in entropy can be calculated if we can conceive a hypothetical re-
versible process that connects the initial and final states. The system is adiabatically isolated; no heat
flows to the system. The energy of an ideal gas is independent of volume, Eq. (1.31), and thus the
temperature does not change. Imagine that the volume is slowly expanded, keeping the temperature
fixed. With dU = 0 in Eq. (3.10), we have dS = (P/T )dV = NkBdV/V . Thus, ∆S = NkB ln 2.
Note that ∆S > 0; the actual process connecting initial and final states is irreversible.

This example is paradigmatic of processes involving spontaneous increases in entropy. What
has changed in the system as a result of the process? Not the energy, nor the number of particles.
What has changed is the number of ways particles can be located in the increased volume relative
to the number of ways they can be located in the original volume. We’ll return to this important
example in Chapter 7 where we introduce the microscopic interpretation of entropy.

We infer from Eq. (3.10) that U is naturally a function of S and V ; U = U(S, V ). We’re
free, however, to take U and S to be functions of any other variables, whatever is convenient for a
particular calculation. Let U = U(T, V ) and S = S(T, V ). With that assumption, the following
identities follow from Eq. (3.10):

T

(
∂S

∂T

)
V

=
(
∂U

∂T

)
V

= CV (3.11)

T

(
∂S

∂V

)
T

=
(
∂U

∂V

)
T

+ P , (3.12)

14Gibbs emphasized the properties of material systems in equilibrium rather than the “motive power of heat.” In this
approach, energy and entropy (state functions) take precedence over quantities that depend on process (work and heat).

15Equation (3.10) is sometimes called the “entropy form” of the first law, or the “combined first and second laws” of ther-
modynamics. I prefer just to call it the first law; it’s the first law become exact, that is, written in terms of exact differentials.
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where we’ve used Eq. (1.25) in Eq. (3.11). Likewise, assuming U = U(T, P ), S = S(T, P ), and
V = V (T, P ), it’s straightforward to show from Eq. (3.10) that

T

(
∂S

∂T

)
P

=
(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

= CP (3.13)

T

(
∂S

∂P

)
T

=
(
∂U

∂P

)
T

+ P

(
∂V

∂P

)
T

= −TαV . (3.14)

3.5 CHEMICAL POTENTIAL AND OPEN SYSTEMS
As advertised in Section 1.4, energy is required to change the amount of matter in a system, chemical
work. Open systems are enclosed by permeable boundaries that allow for the flow of matter as well
as energy (Table 1.1). Following Gibbs, we take the first law16 for open systems to be

dU = TdS − PdV + µdN , (3.15)

where N is the number of particles and µ ≡ (∂U/∂N)S,V is the chemical potential, the energy to
add another particle at fixed entropy and volume.17 The extra term in Eq. (3.15) is not simply the
energy to change total particle numbers, but that to change the number of particles having chemical
potential µ, i.e., µ is specific to a chemical species. For a system with distinct chemical species (a
multicomponent system), each has its own chemical potential µj and Eq. (3.15) generalizes to

dU = TdS − PdV +
∑
j

µjdNj . (3.16)

Chemical potential is often a negative quantity. Consider that even if it were possible to add a
particle at zero energy cost, the energy U of the system would be shared among N + 1 particles.
Increasing the number of ways to distribute the energy increases the entropy. To keep the entropy
fixed upon adding another particle (the definition of µ), the energy must be decreased slightly. Only
if the interactions between particles are sufficiently repulsive does µ become positive. The Fermi
energy in semiconductors is an example; the repulsive interaction in this case is the requirement
of the Pauli exclusion principle. That entropy plays a primary role in determining µ can be seen
from the fact that the ideal gas, which has no inter-particle interactions, nevertheless has a nonzero
chemical potential (Section 4.6).

3.6 HOMOGENEOUS FUNCTIONS*
A function F of k variables having the scaling property

F (λx1, · · · , λxk) = λpF (x1, · · · , xk) (3.17)

is called a homogeneous function of order p. There is a simple theorem on homogeneous functions
due to Euler. Differentiate Eq. (3.17) with respect to λ:

pλp−1F (x1, · · · , xk) = dF
dλ =

k∑
j=1

∂F

∂(λxj)
∂(λxj)
∂λ

=
k∑
j=1

∂F

∂(λxj)
xj . (3.18)

16Equation (3.15) is sometimes called Gibbs’s equation.
17Chemical potential is an energy, and thus calling it a potential is confusing. We’ll see that matter flows from regions of

higher µ to regions of lower µ (Section 3.11), justifying the use of the term potential. We show in Section 4.6 that µ is also
the energy to add a particle at constant T and P .
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Now set λ = 1 in Eq. (3.18) and we have Euler’s theorem:

pF (x1, · · · , xk) =
k∑
j=1

(∂F/∂xj)xj . (3.19)

Take for example F (x) = x2; clearly 2x2 = (∂F/∂x)x.

3.7 EXTENSIVITY OF ENTROPY
Can the entropy of the ideal gas be calculated, the simplest macroscopic system? The standard
answers are either 1) it is not possible or 2) what we can calculate has deficiencies that can only be
fixed with quantum mechanics. Let’s see how far we can get using the methods at hand.

Adopt the “differentiate-then-integrate” strategy (Section 1.11), where we integrate the differ-
ential of S that we have at our disposal. Taking T , V , and N as the independent variables, we have
for a process in which N does not change,

S(T2, V2, N)− S(T1, V1, N) =
∫ 2

1
[dS]N =

∫ 2

1

[(
∂S

∂T

)
V,N

dT +
(
∂S

∂V

)
T,N

dV
]

=
∫ 2

1

[
CV

dT
T

+
(
∂P

∂T

)
V,N

dV
]
,

where [dS]N denotes the variation of S with N held fixed, and where we’ve used Eq. (3.11) and a
Maxwell relation (developed in Section 4.5). For the ideal gas,

S(T2,V2, N)− S(T1, V1, N) =
∫ 2

1

[
3
2NkB

dT
T

+NkB
dV
V

]
= 3

2NkB ln
(
T2

T1

)
+NkB ln

(
V2

V1

)
= NkB ln

[
V2

V1

(
T2

T1

)3/2
]
. (3.20)

Equation (3.20) is satisfied by an entropy function of the form

S(T, V,N) = NkB ln
(
T 3/2V

)
+ kBφ(N) , (3.21)

where φ(N) is an unknown function. Generally one should beware of equations like Eq. (3.21)
in which logarithms of dimensional quantities appear. The logarithm, like all transcendental func-
tions, can only be a function of dimensionless quantities. Yet, equations like Eq. (3.21), featuring
logarithms of dimensional quantities, are common in science and engineering. The only way such
equations can be valid is if there are other terms in the equation (perhaps not displayed) that lead
to logarithms of dimensionless arguments. What physics can we draw upon to determine φ(N)?
The Clausius definition of entropy, Eq. (3.5), involving heat transfers from the environment, applies
to closed systems only. We show in Chapter 14 that for open systems there is a contribution to the
entropy from the flow of matter not accounted for by the Clausius definition. As noted by Edwin
Jaynes: “As a matter of elementary logic, no theory can determine the dependence of entropy on the
size N of a system unless it makes some statement about a process where N changes.”[17]

Our “statement” (à la Jaynes) is that entropy is extensive, as is the internal energy. By scaling
extensive variables such as V and N by a factor λ, while keeping intensive variables fixed, the
entropy should scale by the same factor of λ. We require that S satisfy the scaling law (for λ > 0)

S(T, λV, λN) = λS(T, V,N) . (3.22)
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The extensivity of S is not part of the Clausius definition,18 which pertains to closed systems.
Imposing Eq. (3.22) on Eq. (3.21), we require that φ(N) be such that

φ(λN) = λφ(N)−Nλ lnλ . (3.23)

Differentiate Eq. (3.23) with respect to λ and then set λ = 1:

Nφ′ = φ−N . (3.24)

The solution of Eq. (3.24) is
φ(N) = φ(1)N −N lnN , (3.25)

where φ(1) is an undetermined constant. Combining Eq. (3.25) with Eq. (3.21),

S = NkB ln
(
V

N
T 3/2

)
+NkBφ(1) .

This expression is indeed extensive (it satisfies Eq. (3.22)), but we still have the problem of a
logarithm of a dimensional quantity. We can fix that by suitably defining the constant φ(1). Let
φ(1) = ln

(
Ck

3/2
B

)
where C is another constant,

S = NkB ln
(
V

N
(kBT )3/2C

)
. (3.26)

The constant C must be such that V (kBT )3/2C is dimensionless; C therefore has the dimensions
(L2E)−3/2 (E is energy, L is length). Now, L2E has dimensions of (action)2/(mass); thus C has
the dimensions (mass)3/2/(action)3. We can then write Eq. (3.26) as

S = NkB ln
[
V

N

(
mkBT

ξ2

)3/2
]

= NkB ln
(
V

N

1
Λ3

)
, (3.27)

where m is a characteristic mass, ξ is a quantity having dimension of action, and Λ ≡ ξ/
√
mkBT

is an equivalent length.
Equation (3.27) is the best we can do with the tools we have at present. The unknown quantity

ξ of course turns out to be Planck’s constant, something outside the subject of thermodynamics.
In trying to calculate the entropy of the ideal gas, we’ve arrived at a limitation of the theory of
thermodynamics. We’ll return to this important topic in Chapter 7, where we’ll see that with the
derivation of the Sackur-Tetrode formula, Eq. (7.52), there’s more to the story. We have, however,
learned some lessons. Extensivity must be imposed as a separate requirement; it’s not a consequence
of the Clausius definition. The Clausius definition is incomplete in specifying the entropy. Herbert
Callen in his axiomatic formulation of thermodynamics raised the extensivity of entropy to the status
of a postulate.19 The extensivity of S is not as obvious as the extensivity of U : Whereas internal

18It could be said that extensivity of entropy is implicit in dS = dQ/T because the heat added to a system (to raise T by
a fixed amount ∆T ) scales with the size of the system: The heat capacity is mass-dependent.

19Callen[1] presented thermodynamics based on four postulates. Postulate I (corresponding to the first law) asserts the
existence of equilibrium states that are characterized by a function U called internal energy. Postulate II (in correspondence
with the second law) asserts the existence of a function S called entropy that takes on a maximum value in equilibrium.
Postulate III is that entropy is extensive and a monotonically increasing function of energy. (We’ll see in Chapter 11 that there
are systems which violate the latter proviso.) Postulate IV is that the entropy vanishes at zero temperature, which corresponds
loosely with the third law of thermodynamics (we’ll see in Chapter 8 that the status of the third law is not as secure as the
other laws of thermodynamics, and there are systems for which S(T → 0) 6= 0). While the postulational approach cleanly
features the logical structure of the theory, and may be of great value to those already initiated into thermodynamics, it
usually proves bewildering to the beginner. The inductive approach we adopt is more instructive as to the options that were
faced in developing the theory.
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energy is related to a microscopic property of matter, and thus scales with the amount of mass in
the system, entropy is not a microscopic property of matter; it’s a property of the equilibrium state
specified by the values of macroscopic state variables.20

3.8 GIBBS-DUHEM EQUATION
Thus, we require entropy to be extensive. We infer from Eq. (3.15) that S is naturally a function of
the extensive variables (U, V,N). By the scaling relation Eq. (3.22),

S(λU, λV, λN) = λS(U, V,N) . (3.28)

To visualize what’s implied by extensivity, consider a system symbolically represented by the rect-
angle in Fig. 3.5. Imagine the system arbitrarily divided into nine subsystems. Extensive quantities
are additive over subsystems. In this example, V = 9Vsubsystem. We require the same be true for U ,
S, andN (when the equilibrium values of intensive variables are held fixed). Extensive variables are
thus first-order homogeneous functions to which we can apply Euler’s theorem. Intensive variables
are zero-order homogeneous functions, as in T (λS, λV, λN) = T (S, V,N).

Figure 3.5 The idea behind extensivity: Divide the system into subsystems

Applying Euler’s theorem, Eq. (3.19), to S(U, V,N) which satisfies Eq. (3.28),

S =
(
∂S

∂U

)
V,N

U +
(
∂S

∂V

)
U,N

V +
(
∂S

∂N

)
U,V

N . (3.29)

Note the structure of Eq. (3.29): S is expressed as a sum of products of extensive quantities (U ,
V , N ) with intensive quantities (that are obtained from the derivatives of S with respect to these
variables). The required derivatives in Eq. (3.29) can be obtained from Eq. (3.15) written in the form
dS = (1/T ) dU + (P/T ) dV − (µ/T ) dN . Thus,(

∂S

∂U

)
V,N

= 1
T

(
∂S

∂V

)
U,N

= P

T

(
∂S

∂N

)
U,V

= −µ
T
. (3.30)

Combining Eq. (3.30) with Eq. (3.29), we have as a consequence of Euler’s theorem,

TS = U + PV − µN . (3.31)

Equation (3.31) is a remarkable result—it relates seven thermodynamic quantities, without any con-
stants of integration. We’ll refer to Eq. (3.31) as the Euler relation.

Now differentiate Eq. (3.31) and combine the result with Eq. (3.15); we obtain

Ndµ = −SdT + V dP , (3.32)

20Extensivity implies that properties of the system are additive over the properties of independent subsystems (Section
1.2). What makes subsystems independent, however? Correlations can arise between parts of a system that would preclude
dividing it into independent parts. As long as the length over which correlations exist is microscopic, additivity should apply.
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the Gibbs-Duhem equation.21 The first law of thermodynamics is expressed in terms of intensive
quantities multiplied by the differentials of extensive variables, (intensive) × d(extensive). The
Gibbs-Duhem equation has the converse structure, of extensive quantities multiplied by the differen-
tials of intensive variables, (extensive) × d(intensive). From Eq. (3.32), we infer that µ = µ(T, P )
and moreover that (

∂µ

∂T

)
P

= − S
N

(
∂µ

∂P

)
T

= V

N
. (3.33)

Note that with the two results in Eq. (3.33) we have derivatives of one intensive variable with respect
to another. The right side of the equalities in Eq. (3.33) present another kind of intensive variable,
what are referred to as densities (volume per particle, entropy per particle). We’ll reserve the term
intensive variable to be the derivative of one extensive variable with respect to another, as in Eq.
(3.30). Equation (3.33) is used in the analysis superfluid helium; see Eq. (15.23).

3.9 QUADRATIC FORMS*
A quadratic form is a homogeneous quadratic polynomial in any number of variables. In three
variables, ax2 + by2 + cz2 + dxy + exz + fyz is a quadratic form for constants (a, · · · , f). A
quadratic form in N variables can be generated by an N × N symmetric matrix, A, (with matrix
elements Aij):

∑N
ij=1Aijxixj . A positive-definite quadratic form is one that is positive for any

nonzero values of its variables. Sylvester’s criterion for a quadratic form to be positive definite is
that all the determinants associated with the upper-left submatrices of A be positive.[18, p52] For
example, a positive-definite quadratic form in three variables is such that

A11 > 0
∣∣∣∣A11 A12
A21 A22

∣∣∣∣ > 0

∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣ > 0 . (3.34)

3.10 STABILITY OF THE EQUILIBRIUM STATE: FLUCTUATIONS
Entropy has the maximum value it can have consistent with constraints on the system, an extremum
principle characterizing equilibrium (see Section 4.1). Because of the randomness of molecular
motions, fluctuations in state variables occur about their equilibrium values.22 Equilibrium (which
persists in time) must be stable against fluctuations. In this section we develop the theory of stability
of the equilibrium state, the basic ideas of which were introduced by Gibbs.[3, p56]

To do so, we make use of an oft-used theoretical device in thermodynamics, that of the composite
system (see Fig. 3.6) which consists of subsystems A and B, in contact with each other, surrounded
by rigid adiabatic walls. Let A and B be separated by a partition that’s moveable, permeable, and
diathermic. The subsystems can therefore exchange volume, particles, and energy; they’re also as-
sumed to contain the same type of particle. Let V = VA + VB , N = NA + NB , U = UA + UB .
Let there be small variations in the energy, volume, and particle number of each subsystem, δUA,
δUB , δVA, δVB , δNA, δNB . The variations are constrained, however, because these are conserved
quantities: δUA = −δUB , δVA = −δVB , and δNA = −δNB . We consider the change in total
system entropy ∆S under these variations to first and second order in small quantities, what we
denote by ∆S = δS + δ2S, where23 S = SA + SB .

21Equation (3.32) is the Gibbs-Duhem equation for a single chemical species in a single thermodynamic phase. In Chapter
6 we generalize the Gibbs-Duhem equation to multicomponent, multiphase systems.

22The concept of fluctuation is difficult to formulate in thermodynamics, but it can be done (contrary to what’s sometimes
said). By invoking the randomness of molecular motions, we’re giving a nod to the atomic picture of matter. Below we
define thermodynamic fluctuations as virtual variations of the system. Fluctuations are more naturally treated in the subject
of statistical mechanics. We touch again on this topic in Section 12.3.

23Entropy is extensive.
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Figure 3.6 The composite system composed of subsystems A and B

Equilibrium between subsystems, δS = 0
The first-order variation δS is given by

δS =
∑

α=A,B

[(
∂Sα
∂Uα

)
Vα,Nα

δUα +
(
∂Sα
∂Vα

)
Uα,Nα

δVα +
(
∂Sα
∂Nα

)
Uα,Vα

δNα

]

=
∑

α=A,B

[
1
Tα
δUα + Pα

Tα
δVα −

µα
Tα
δNα

]
(3.35)

=
(

1
TA
− 1
TB

)
δUA +

(
PA
TA
− PB
TB

)
δVA −

(
µA
TA
− µB
TB

)
δNA ,

where we’ve used Eq. (3.30) in the second line of Eq. (3.35). The total system is isolated, and hence
the entropy is a maximum. We require stationarity of the entropy, δS = 0. Because δUA, δVA, and
δNA can be varied independently, δS = 0 in Eq. (3.35) requires the equality of subsystem tempera-
tures, pressures, and chemical potentials (the conditions of thermal, mechanical, and compositional
equilibrium):

TA = TB PA = PB µA = µB . (3.36)

A similar analysis could be repeated for a system containing any number of chemical species. As
long as the partition can pass a species, µj,A = µj,B in equilibrium. If, however, the partition cannot
pass species i, δNi,A = δNi,B = 0, and such a species cannot come to equilibrium between the
subsystems, implying there’s no reason for the chemical potentials to be equal,24 µi,A 6= µi,B .

Figure 3.7 Redrawing the composite system so that B surrounds A

We could redraw Fig. 3.6 so that B surrounds A—see Fig. 3.7. In that case, B becomes the
environment for A. In writing TdS = dU + PdV − µdN , U , V , and N are conserved quantities.

24We’ll see in Chapter 5 (cavity radiation, the photon gas), that µ = 0 for photons in equilibrium with matter. Photons are
not conserved; there is no external population of photons that the photons in cavity radiation can come to equilibrium with.
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Equilibrium, as specified by Eq. (3.36), thus requires equality between system and environmental
intensive variables, T , P , and µ, those that are conjugate to conserved quantities. The equilibrium
values of intensive variables are “set” by the environment.

Stability, δ2S < 0
Equilibrium in isolated systems is attained when no further increases in entropy can occur by pro-
cesses consistent with system constraints. As we’ve shown, δS = 0 implies the conditions for
equilibrium, Eq. (3.36). The requirement δS = 0, however, is insufficient to determine whether S
is a maximum. A generic function S(U, V,N) has a maximum at (U0, V0, N0) if S(U0, V0, N0) >
S(U, V,N) for all (U, V,N) in a neighborhood ofU0, V0, N0. This familiar mathematical idea poses
a conceptual problem, however, when applied to entropy. How can we speak of an entropy surface25

associated with a fixed equilibrium state, when entropy is defined only in equilibrium, wherein state
variables are constrained to have their equilibrium values! That is, we can’t venture away from
U0, V0, N0 in state space and have the equilibrium entropy function S(U, V,N) continue to be asso-
ciated with state U0, V0, N0. There is a surface defined by the values of S for all equilibrium states
specified by general values of (U, V,N), but there cannot be a surface associated with a given state
(U0, V0, N0) such that S(U0, V0, N0) > S(U, V,N). The system attains equilibrium at U0, V0, N0
through a series of irreversible processes in which ∆S > 0. We need to find a way to characterize
that S(U0, V0, N0) is locally a maximum when subjected to conceivable variations in state variables
that produce ∆S < 0, even though there are no macroscopic physical processes that drive ∆S < 0
for isolated systems. We define a thermodynamic fluctuation as a virtual variation in the state of the
system that results in ∆S < 0 by conceptually relaxing the condition of isolation.26 Fluctuations
are virtual processes inverse to the real processes that resulted in ∆S > 0 in achieving equilibrium
at U0, V0, N0. Stability of the equilibrium state requires that fluctuations produce entropy decreases,
the stability condition, because otherwise entropy increases imply the evolution of an isolated sys-
tem to a new equilibrium state. We show that the stability condition places restrictions on the sign
of response functions. The main results are Eq. (3.46) and Eq. (3.51).

Consider again the composite system of subsystems A and B separated by a moveable porous,
diathermic membrane (Fig. 3.6). The change in system entropy up to second order in small quantities
is given by the Taylor expansion of a multivariable function:

∆S =
∑

α=A,B

[(
∂Sα
∂Uα

)
Vα,Nα

δUα +
(
∂Sα
∂Vα

)
Uα,Nα

δVα +
(
∂Sα
∂Nα

)
Uα,Vα

δNα

]

+1
2
∑

α=A,B

{(
∂2Sα
∂U2

α

)
(δUα)2 + 2

(
∂2Sα

∂Uα∂Vα

)
δUαδVα + 2

(
∂2Sα

∂Uα∂Nα

)
δUαδNα (3.37)

+
(
∂2Sα
∂V 2

α

)
(δVα)2 + 2

(
∂2Sα

∂Vα∂Nα

)
δVαδNα +

(
∂2Sα
∂N2

α

)
(δNα)2

}
.

The first-order terms in Eq. (3.37) (square brackets) vanish in equilibrium. The form of the
second-order terms are the same for A and B (even when we take into account the constraints
δUA = −δUB , etc), so no need to distinguish the label α. We require that second-order variations

25Technically a hypersurface, defined on page 12.
26The idea of fluctuations as virtual processes is similar to the virtual displacements used in mechanics, “mathematical

experiments” consistent with existing constraints but conceptually occurring at a fixed time. Gibbs did not use the language
of virtual variations, but it’s clear from his writings that’s what he intended; instead he referred to all possible variations.
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be negative for each subsystem,

δ2S =1
2
[
SUU (δU)2 + 2SUV δUδV + 2SUNδUδN

+ SV V (δV )2 + 2SV NδV δN + SNN (δN)2 ]
< 0 , (3.38)

where the notation indicates second derivatives; SUV ≡ ∂2S/∂U∂V . The terms comprising δ2S in
Eq. (3.38) define a quadratic form in three variables which we want to be negative definite for any
nonzero variations δU , δV , δN . We should therefore analyze the determinants in Eq. (3.34), except
require that they be negative. The derivatives involved in this approach are difficult to evaluate and
we take another tack. If we do follow this approach, we find that the second derivatives SUU , SV V ,
SNN are each negative, consistent with S having a maximum.

Rewrite the terms in Eq. (3.38):

δ2S = 1
2

{
δU [SUUδU + SUV δV + SUNδN ]

+δV [SV UδU + SV V δV + SV NδN ]

+ δN [SNUδU + SNV δV + SNNδN ]
}
. (3.39)

The key step is to recognize that each term in square brackets is the first-order variation of a deriva-
tive about its equilibrium value. For example,27

δ

(
∂S

∂U

)
= SUUδU + SUV δV + SUNδN .

Equation (3.39) is therefore equivalent to

δ2S = 1
2

[
δUδ

(
∂S

∂U

)
+ δV δ

(
∂S

∂V

)
+ δNδ

(
∂S

∂N

)]
. (3.40)

Equation (3.40) involves fluctuations of extensive quantities multiplied by fluctuations of intensive
quantities that can be obtained from Eq. (3.30). Thus,

δ2S = 1
2

[
δUδ

(
1
T

)
+ δV δ

(
P

T

)
− δNδ

(µ
T

)]
.

By differentiating and recognizing that TδS = δU + PδV − µδN , we find

δ2S = − 1
2T [δTδS − δPδV + δµδN ] . (3.41)

The criterion for stability of the equilibrium state against fluctuations is thus

δTδS − δPδV + δµδN > 0 . (3.42)

Equation (3.41) follows from an analysis of how S responds to small variations in the three quan-
tities U , V , and N . Yet there are six types of variations in Eq. (3.41), including δS. The variations
δU , δV , and δN account for the variation δS as well as the variations δT , δP , and δµ. The six
fluctuations indicated in Eq. (3.41) are therefore not independent. We can work with any set of three
independent variations as a starting point for a stability analysis.

27We could define a variational derivative δ ≡ δU∂/∂U + δV ∂/∂V + δN∂/∂N , which is a kind of directional
derivative in thermodynamic state space.
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Choose δT, δP, δN as independent variations

With δT , δP , and δN as independent variations, we have for the other variations in Eq. (3.42):

δS =
(
∂S

∂T

)
P,N

δT +
(
∂S

∂P

)
T,N

δP +
(
∂S

∂N

)
T,P

δN

δV =
(
∂V

∂T

)
P,N

δT +
(
∂V

∂P

)
T,N

δP +
(
∂V

∂N

)
T,P

δN

δµ =
(
∂µ

∂T

)
P,N

δT +
(
∂µ

∂P

)
T,N

δP +
(
∂µ

∂N

)
T,P

δN . (3.43)

Using Eq. (3.43), we find

δTδS−δPδV + δµδN =
(
∂S

∂T

)
P,N

(δT )2 + δTδP

[(
∂S

∂P

)
T,N

−
(
∂V

∂T

)
P,N

]

+ δNδT

[(
∂S

∂N

)
T,P

+
(
∂µ

∂T

)
P,N

]
−
(
∂V

∂P

)
T,N

(δP )2 (3.44)

+ δNδP

[(
∂µ

∂P

)
T,N

−
(
∂V

∂N

)
T,P

]
+
(
∂µ

∂N

)
T,P

(δN)2
.

This expression simplifies with the help of some thermodynamic identities. We show in Section 4.5
that28(

∂S

∂P

)
T,N

= −
(
∂V

∂T

)
P,N

(
∂S

∂N

)
T,P

= −
(
∂µ

∂T

)
P,N

(
∂µ

∂P

)
T,N

=
(
∂V

∂N

)
T,P

.

These are the three Maxwell relations associated with the Gibbs energy (Table 4.2). With these
results, as well as Eq. (3.13) and Eq. (1.20), we have from Eq. (3.44):

δ2S = − 1
2T

[
CP
T

(δT )2 − 2αV δTδP + βV (δP )2 +
(
∂µ

∂N

)
T,P

(δN)2

]
. (3.45)

The terms in square brackets in Eq. (3.45) comprise a quadratic form in δT , δP , and δN that we
require to be positive definite. Sylvester’s criterion Eq. (3.34) requires that:

CP > 0 CPβ > α2TV > 0
(
∂µ

∂N

)
T,P

> 0 . (3.46)

Stability thus requires CP > 0, β > 0, and (∂µ/∂N)T,P > 0.

Choose δT, δV, δN as independent variations

We’ve shown that CP > CV , Eq. (1.29), and we’ve just shown that CP > 0, Eq. (3.46). The two
inequalities leave open the possibility that CV < 0, which cannot be right on physical grounds:
A negative heat capacity would imply that with positive heat input, the temperature of the object
would decrease.29 You could make something arbitrarily cold by heating it! It would be “nice” if

28Don’t you hate it when books do that: Make use of results that haven’t been shown yet?
29Such a phenomenon occurs with black holes—see Chapter 13. Black holes gobble up mass (energy, E = mc2),

increasing their size, decreasing their temperature.
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CV > 0 emerged directly from a stability analysis. We can do that if we choose δT , δV , and δN as
the independent variations.

We could “start over” and develop expansions for δS, δP and δµ, analogous to the expansions
in Eq. (3.43). A more direct approach is to first prove the identity(

∂S

∂T

)
P,N

=
(
∂S

∂T

)
V,N

−
(
∂P

∂V

)
T,N

(
∂V

∂T

)2

P,N

, (3.47)

which is the same as Eq. (1.29) (CP = CV + α2TV/β) when combined with Eqs. (3.11), (3.13),
and (1.20). Consider that we have a quantity x that’s a function of y and z, x = x(y, z). As happens
in thermodynamics, assume that x is also a function of y and w, x = x(y, w). (Thus, w = w(y, z).)
Expand first x = x(y, z) and then x = x(y, w),

dx =
(
∂x

∂y

)
z

dy +
(
∂x

∂z

)
y

dz dx =
(
∂x

∂y

)
w

dy +
(
∂x

∂w

)
y

dw .

Divide both equations by dy and equate:(
∂x

∂y

)
z

+
(
∂x

∂z

)
y

dz
dy =

(
∂x

∂y

)
w

+
(
∂x

∂w

)
y

dw
dy .

Now let z be constant. We arrive at the relation between four variables(
∂x

∂y

)
z

=
(
∂x

∂y

)
w

+
(
∂x

∂w

)
y

(
∂w

∂y

)
z

. (3.48)

Let x→ S, y → T , z → P , and w → V in Eq. (3.48):(
∂S

∂T

)
P,N

=
(
∂S

∂T

)
V,N

+
(
∂S

∂V

)
T,N

(
∂V

∂T

)
P,N

.

Now reach for a Maxwell relation, (∂S/∂V )T,N = (∂P/∂T )V,N (Table 4.2),(
∂S

∂T

)
P,N

=
(
∂S

∂T

)
V,N

+
(
∂P

∂T

)
V,N

(
∂V

∂T

)
P,N

.

Make use of Eq. (1.21) in this expression, and we have Eq. (3.47).
Combine Eq. (3.47) (or Eq. (1.29), the same thing) with Eq. (3.45). We obtain

δ2S = − 1
2T

[
CV
T

(δT )2 + 1
βV

[δV ]2N +
(
∂µ

∂N

)
T,P

(δN)2

]
, (3.49)

where

[δV ]N ≡
(
∂V

∂T

)
P,N

δT +
(
∂V

∂P

)
T,N

δP (3.50)

is the change in volume at constant N . Requiring that the terms in square brackets in Eq. (3.49) be
positive definite, we have the stability criteria

CV > 0 β > 0
(
∂µ

∂N

)
T,P

> 0 . (3.51)

The inequalities in Eq. (3.51) are the requirements for thermal stability, mechanical stability, and
compositional stability.
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3.11 DIRECTION OF FLOW IN THERMODYNAMIC PROCESSES
The stability requirements allow us to establish the direction of processes as systems come to equi-
librium.30 Suppose two systems are brought into contact and µA > µB . To establish equilibrium,
the chemical potentials must adjust so that µA decreases and µB increases. Because δµA < 0 and
δµB > 0, to maintain ∂µ/∂N > 0, we must have δNA < 0 and δNB > 0, i.e., to achieve equi-
librium matter leaves regions of higher chemical potential and flows to regions of lower chemical
potential. The term chemical potential is therefore apt: Matter flows from high to low chemical po-
tential. Likewise, if initially TA > TB , we must have δTA < 0 and δTB > 0 to achieve equilibrium.
From ∂S/∂T > 0, we must have δSA < 0 and δSB > 0. Entropy is a quantity that flows (see
Chapter 14): Entropy leaves regions of high temperature and flows to regions of low temperature.
Entropy flows from high to low temperature. Entropy is as real as energy, both are state variables;
if energy can flow, so can entropy. Finally, if initially PA > PB , in reaching equilibrium δPA < 0
and δPB > 0. To maintain ∂P/∂V < 0, we require that δVA > 0 and δVB < 0, which we can
think of as volume being transferred from regions of low pressure to regions of high pressure.

3.12 JACOBIAN DETERMINANTS*
The maze of derivatives encountered in deriving equations such as Eq. (3.47) is daunting. The
process can be systematized using the properties of Jacobian determinants, or simply Jacobians.
Consider functions u, v, · · · , w, that each depend on the variables x, y, · · · , z. The Jacobian is the
determinant of the matrix of partial derivatives. There’s a highly practical notation for Jacobians that
we’ll employ. Let the Jacobian determinant be represented by what resembles a partial derivative:

∂(u, v, · · · , w)
∂(x, y, · · · , z) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y
· · · ∂u

∂z
∂v

∂x

∂v

∂y
· · · ∂v

∂z
...

...
. . .

...
∂w

∂x

∂w

∂y
· · · ∂w

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Jacobians have the following properties that make them useful in thermodynamic calculations. First,
a single partial derivative can formally be expressed as a Jacobian:

(
∂u

∂x

)
y,··· ,z

= ∂(u, y, · · · , z)
∂(x, y, · · · , z) =

∣∣∣∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y
· · · ∂u

∂z
0 1 · · · 0
...

. . .
...

0 · · · · · · 1

∣∣∣∣∣∣∣∣∣∣∣
(3.52)

(after the first row in Eq. (3.52), there are only ones on the diagonal and zeros everywhere else).
Thus, symbols common to the numerator and denominator in the notation for the Jacobian “cancel.”
Second, there’s a product rule for Jacobians that resembles the ordinary chain rule from calculus,31

∂(u, v, · · · , w)
∂(x, y, · · · , z) = ∂(u, v, · · · , w)

∂(r, s, · · · , t)
∂(r, s, · · · , t)
∂(x, y, · · · , z) . (3.53)

30Systems out of equilibrium are not treated in classic thermodynamics. We consider in Chapter 14 the subject of non-
equilibrium thermodynamics, an extension of thermodynamics to systems slightly out of equilibrium, such that equilibrium
is restored through the flow of matter and energy.

31An explicit demonstration of the chain-rule property of Jacobians is shown in Mazenko.[19, p570] Jacobians are also
discussed by Landau and Lifshitz.[20, p51]
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In fact, Eq. (3.53) is the chain rule, combined with the properties of determinants. Consider that
one has a set of functions {fi} that each depend on a set of variables {xj}, and that the {xj} are
functions of another set of variables {yk}. Using the chain rule,

∂fi
∂xj

=
∑
m

∂fi
∂ym

∂ym
∂xj

.

The chain rule is thus in the form of matrix multiplication of the Jacobian matrices, the determinants
of which are embodied in Eq. (3.53). Equation (3.53) is a result of the property of determinants, that
if matrices (A,B,C) are connected by matrix multiplication,A = BC, the determinant ofA equals
the product of the determinants of B and C, |A| = |B| · |C|. It follows from Eq. (3.53) that

∂(u, v, · · · , w)
∂(x, y, · · · , z) =

[
∂(x, y, · · · , z)
∂(u, v, · · · , w)

]−1
.

Let’s use Jacobians to derive Eq. (3.47). From Eq. (3.52) and Eq. (3.53),

∂(S, V,N)
∂(T, V,N) = ∂(S, V,N)

∂(T, P,N)
∂(T, P,N)
∂(T, V,N)

=

∣∣∣∣∣∣∣∣
(
∂S

∂T

)
P,N

(
∂S

∂P

)
T,N(

∂V

∂T

)
P,N

(
∂V

∂P

)
T,N

∣∣∣∣∣∣∣∣
(
∂P

∂V

)
T,N

=
[(

∂S

∂T

)
P,N

(
∂V

∂P

)
T,N

−
(
∂S

∂P

)
T,N

(
∂V

∂T

)
P,N

](
∂P

∂V

)
T,N

.

Thus, (
∂S

∂T

)
V,N

=
(
∂S

∂T

)
P,N

−
(
∂S

∂P

)
T,N

(
∂V

∂T

)
P,N

(
∂P

∂V

)
T,N

=
(
∂S

∂T

)
P,N

+
(
∂V

∂T

)2

P,N

(
∂P

∂V

)
T,N

,

where we’ve used Eq. (1.18) and a Maxwell relation (Table 4.2). Jacobians almost make the process
mindless.

CHAPTER SUMMARY
This chapter introduced the extensive state variable known as entropy. Most of the theory of ther-
modynamics concerns entropy in some way. Its most important attribute is that it can only increase
in irreversible processes. We touched on its interpretation as a measure of the number of ways a
system can be arranged, what we return to in Chapter 7.

• The Clausius inequality specifies that
∮

d̄Q/T ≤ 0 for any cycle, with equality holding for
reversible cycles. Here T is the absolute temperature at which heat transfer d̄Q occurs. The
integral is non-positive because the more inefficient the cycle, the greater is the heat expelled
at the lower temperature.

• For reversible cycles
∮

(d̄Q)rev /T = 0, implying the existence of a state function S, with
dS = (d̄Q)rev /T . The integrating factor for (d̄Q)rev is T−1. Changes in entropy are given by
∆S =

∫ B
A

d̄Q/T for any reversible path connecting equilibrium states A and B.
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• The Clausius inequality in differential form is dS ≥ d̄Q/T , with equality holding for re-
versible processes. The quantity d̄Q/T (representing heat transfers with the environment)
therefore does not account for all contributions to the entropy change dS, which we can write
as dS = d̄Q/T + d̄Si, where d̄Si ≥ 0 is the entropy change associated with irreversible pro-
cesses. Whereas the entropy supplied to a system in the form of heat transfers can be positive,
negative, or zero, entropy produced by irreversibility is always positive.

• The entropy of isolated systems never decreases, dS ≥ 0. The entropy of equilibrium sys-
tems is a maximum as a function of the state variables, consistent with constraints. Entropy
increases are associated with the removal of constraints. If you’re seeking a one-liner for
the meaning of entropy: Entropy captures the tendency of physical systems to spread out,
to explore all available possibilities. The word entropy was coined by Clausius to mean the
“transformation” of a system; he deliberately chose the word to be similar to the word energy.

• The first law of thermodynamics can be written in terms of exact differentials, dU =
TdS − PdV , which can be integrated to find ∆U for any change of state, no matter how
it’s accomplished. We need only find a reversible path connecting the initial and final equilib-
rium states.

• For open systems the first law is generalized, dU = TdS − PdV + µdN , what’s sometimes
called Gibbs’s equation, where µ ≡ (∂U/∂N)S,V is the chemical potential. Chemical poten-
tial is often a negative quantity. The Gibbs-Duhem equation Ndµ = V dP − SdT is the first
law expressed in terms of differentials of intensive variables.

• Entropy is an extensive quantity, S(λU, λV, λN) = λS(U, V,N). The requirement of ex-
tensivity is a postulate imposed on the theory; it’s not explicitly contained in the Clausius
definition of entropy. Extensivity implies the Euler relation TS = U + PV − µN .

• Equilibrium requires equality of system and environmental intensive variables conjugate to
conserved quantities (µ, T , and P , associated with conservation of N , U , and V ).

• For equilibrium to be stable against fluctuations, the stability conditions must be satisfied,
with CV , β (isothermal compressibility), and ∂µ/∂N positive. Matter flows from regions of
high to low chemical potential; entropy flows from regions of high to low temperature.

• Jacobian determinants systemize the derivation of thermodynamic identities.

EXERCISES

3.1 Derive the Gibbs-Duhem equation, Eq. (3.32).

3.2 Show that ∂2S/∂U2 < 0. Set up the matrix that generates the quadratic form Eq. (3.38).
Show that for Eq. (3.38) to be negative definite implies that the second derivative of S with
respect to U is negative.

3.3 Fill in the steps leading to Eq. (3.49). Take Eq. (3.47) as given.

3.4 In Eq. (1.20) we defined the isothermal compressibility, V βT = − (∂V/∂P )T . We can also
define the isentropic compressibility as V βS ≡ − (∂V/∂P )S . Show that

βT
βS

= CP
CV

.

Hint: Use the cyclic and reciprocity relations from Section 1.10. You could also derive this
relation using the properties of Jacobians.
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3.5 The internal energy function,U = U(S, V,N), has a minimum value in equilibrium for a fixed
value of the entropy (Section 4.1). Repeat the stability analysis for U against fluctuations in
∆S, ∆V , ∆N . Show that the second derivatives USS , UV V , UNN are each positive (and
hence U is a convex function, Section 4.2). Show that stability requires CV > 0, βS > 0, and
(∂µ/∂N)S,V > 0.

3.6 Show that
∂(u, v)
∂(x, y) = −∂(v, u)

∂(x, y) = ∂(v, u)
∂(y, x) . These properties follow by swapping rows and

columns of determinants.

3.7 Show that
∂(P, V )
∂(T, S) = 1. Thus, by the rules of calculus dPdV = dTdS.

Hint: Write
∂(P, V )
∂(T, S) = ∂(P, V )

∂(T, V )
∂(T, V )
∂(T, S)

and make use of a Maxwell relation, Table 4.2. This identity is a one liner with the use of
Jacobians. Without Jacobians, it’s difficult to derive.

3.8 Show that
∂(U, T )
∂(V, P ) =

(
∂U

∂S

)
T

. Hint: Make use of Exercise 3.7.

3.9 Use Eq. (3.27) (our tentative formula for the entropy of the ideal gas) to calculate the change
in entropy for a free expansion where the volume doubles.

3.10 Show that
(
∂U

∂V

)
S

=
(
∂U

∂V

)
T

− T
(
∂S

∂V

)
T

. Hint:
∂(U, S)
∂(V, S) = ∂(U, S)

∂(V, T )
∂(V, T )
∂(V, S) .

Then use a Maxwell relation to conclude that(
∂U

∂V

)
S

=
(
∂U

∂V

)
T

− T
(
∂P

∂T

)
V

.

3.11 Give an argument why
∂

∂V
(1/T ) = ∂

∂U
(P/T )

should hold as a general thermodynamic identity. Hint: dS is exact.

3.12 A metal bar of heat capacity CM at temperature T is suddenly immersed in a mass of water
having heat capacity CW at temperature T0, with T > T0. Calculate the change in entropy.
Hint: First find the temperature at which the metal bar and the water come to equilibrium.
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Thermodynamic potentials
The four ways to say energy

4.1 CRITERIA FOR EQUILIBRIUM

G IBBS formulated two equivalent criteria for characterizing equilibrium, the entropy maximum
principle and the energy minimum principle, that for systems in equilibrium:[3, p56]

I. Entropy is a maximum for fixed energy, there are no fluctuations by which [∆S]U > 0;

II. Energy is a minimum for fixed entropy, there are no fluctuations by which [∆U ]S < 0.

Can the extremal nature of S and U be visualized? Seemingly not: For systems not in equi-
librium state variables are not defined, yet for systems in equilibrium the entropy cannot increase
nor the energy decrease. We can get around this problem using the composite system (Section
3.10), the equilibrium state of which can be represented as a point in a higher-dimensional state
space. Before showing that, let’s introduce some language. For a system with r chemical species
the first law can be written dS = dU/T + PdV/T − T−1∑r

k=1 µkdNk; see Eq. (3.16). The
entropy is thus a function of r + 2 extensive variables, (U, V, {Nk}rk=1), with an equilibrium
state represented as a point in a space spanned by these variables. When we work with S =
S(U, V, {Nk}), the formalism is referred to as the entropy representation. Equivalently, we can write
dU = TdS −PdV +

∑r
k=1 µkdNk. The internal energy is thus a function of S, V , and {Nk}rk=1,

with an equilibrium state represented as a point in a space spanned by these variables. When we take
U = U(S, V, {Nk}), the formalism is referred to as the energy representation. Thermodynamics can
be developed in either representation, whatever is convenient for a particular problem. Let subsys-
tems (1) and (2) be in contact through a boundary through which energy and all chemical species
may pass, but are otherwise isolated (see Fig. 3.6). In the entropy representation, S for the com-
posite system is a function of 2(2 + r) variables (U (1), V (1), {N (1)

k }rk=1, U
(2), V (2), {N (2)

k }rk=1).
Equivalently, we can consider S as a function of the 2 + r fixed quantities V = V (1) + V (2),
U = U (1) +U (2), {Nk = N

(1)
k +N

(2)
k }rk=1, leaving 2 + r extensive variables of one of the subsys-

tems free to vary, which we denote generically as {X(1)
j }

2+r
j=1. The quantitiesX(1)

j are unconstrained
extensive parameters of subsystem 1. The equilibrium state for fixed energy occurs for the values
of X(1)

j for which the entropy is maximized. In the energy representation, the equilibrium state for

fixed entropy occurs for the values of X(1)
j for which the energy is minimized.

The equivalence of the two criteria can be shown using the strategy that the falsity of one implies
the falsity of the other (see Chapter 2). We’re aided in this task by the observation that it’s always
possible to increase (decrease) the energy and entropy of a system together by adding (removing)
heat. By adding heat, ∆U > 0 and ∆S > 0, and by removing heat, ∆U < 0 and ∆S < 0. If

53
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criterion I is violated, there is a fluctuation1 by which ∆S > 0 and ∆U = 0. By removing heat
from this system in its varied state, we can obtain a variation of the original state for which ∆S = 0
and ∆U < 0, in violation of criterion II. Thus, not-I implies not-II, I ⇒ II . If criterion II is
violated, there is a fluctuation by which ∆U < 0 and ∆S = 0. By adding heat to this system in
its varied state, we can obtain a variation of the original state such that ∆U = 0 and ∆S > 0, in
violation of criterion I. Not-II implies not-I, II ⇒ I . Thus, I ⇔ II , and hence I ⇔ II .

The two criteria are thus logically equivalent. We now give an argument for the physical reality
of criterion II. Assume the energy U of a system does not have the smallest possible value consistent
with a fixed value of S. If U > Umin, reduce the energy by letting the system do adiabatic work.
Return the energy in the form of heat, restoring the system to its initial energy state, but increasing
the entropy. We therefore have a process in which the energy stays fixed, but in which ∆S > 0.
As long as the energy is lowerable (U > Umin), the process can be repeated indefinitely, arbitrarily
increasing S for fixed U , which is unphysical. Minimum energy implies fixed entropy.

4.2 LEGENDRE TRANSFORMATION*
A function f(x) is convex if the chord joining f(x1) and f(x2) lies above the function for x1 <
x < x2, and thus f ′′ ≥ 0 in this range (see Fig. 4.1). A function f(x) is strictly convex if f ′′ > 0

Figure 4.1 Convex function (left) and Legendre transform g(m) (right)

everywhere. A strictly convex function has no more than one minimum. The tangent to a convex
function lies below the function. A concave function f(x) is such that−f(x) is convex. The entropy
S(U, V,N) is a concave function of its arguments; the second derivatives of S with respect to these
variables are negative (Section 3.10). The internal energy U(S, V,N) is a convex function of its
arguments (the second derivatives of U with respect to these variables are positive, Exercise 3.5).

The Legendre transformation of a convex function f(x) is a new function, g(m), of a new
variable,2 m. It’s not an integral transform (like the Fourier transform), rather it’s a geometric con-
struction. Pick a number, call it m. Draw line y = mx (see Fig. 4.1). Define D(x,m) ≡ mx−f(x)
as the distance between the line mx and the function f(x). Let x(m) be the point where D(x,m)
is maximized, where f ′ = m. Clearly x(m) is the point where the tangent to the curve is parallel

1We’re using the concept of fluctuation as a virtual variation in the state of the system (see Section 3.10) in which the
condition of thermal isolation is conceptually relaxed. Adding or removing heat to the system in it’s varied state is treated as
occurring instantaneously.

2A nice discussion of the Legendre transformation is given by Arnold.[21, p61] It’s shown that the Legendre transforma-
tion of the Legendre transformation is the original function.
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to the line mx. The Legendre transform is defined as g(m) ≡ D(x(m),m) = mx(m)− f(x(m)).
Geometrically, g(m) is the number such that f(x(m)) = −g(m) + mx. The Legendre transform
provides a duality between points and tangents as equivalent ways of characterizing a function:
Instead of specifying a function pointwise, the same values of f are constructed from the slope of
the function at that point plus the “offset,” the y-intercept, which is the Legendre transform. The
Legendre transform of f at point x is the projection onto the y-axis with the slope f ′ at x. For
f(x) = x2, g(m) = m2/4.

4.3 THE FOUR THERMODYNAMIC POTENTIALS
. . . the whole thermodynamical behavior of a substance is determined by a single char-
acteristic function, a knowledge of which is sufficient once and for all to determine
uniquely the conditions of the physical and chemical states of equilibrium which the
substance may assume. The form of the characteristic function depends, however, on
the choice of independent variables.—Max Planck[11, p272]

Equilibrium is specified by the values of state variables. Whether measured or postulated by the
laws of thermodynamics, state variables are not independent of each other. There is considerable
redundancy in how equilibrium can be described. Depending on the system, there may be variables
that are not readily subject to experimental control and yet others that are. Legendre transforma-
tions provide a way of obtaining equivalent descriptions of the energy (known as thermodynamic
potentials) involving variables that may be easier to control. There are many ways to skin a cat.

Three Legendre transformations of U(S, V ) can be formed from the products of variables with
the dimension of energy: TS and PV (our old friends heat and work).3 They are:

F ≡ U − TS (Helmholtz free energy)
H ≡ U + PV (enthalpy) (4.1)
G ≡ U − TS + PV = F + PV = H − TS . (Gibbs free energy)

The relationships among these functions are shown in Fig. 4.2 The physical interpretation of the

U(S, V )

H(S, P ) F (T, V )

G(T, P )

H=U+PV

G=U−TS+PV

F=U−TS

G=H−TS G=F+PV

Figure 4.2 Legendre transformations of the internal energy function

potentials (and why they’re called potentials) is discussed in the next section. The natural variables
for these functions are found by forming their differentials:

dU =TdS − PdV + µdN
dH =TdS + V dP + µdN
dF =− SdT − PdV + µdN
dG =− SdT + V dP + µdN . (4.2)

3The three Legendre transforms of U(S, V ) bring to mind the three Legendre transforms in classical mechanics of the
generating function of canonical transformations.[22, p373]
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Thus, U = U(S, V,N), H = H(S, P,N), F = F (T, V,N), and G = G(T, P,N). The differen-
tials of U ,H , F , andG each involve a different “mixture” of differentials of extensive and intensive
quantities, multiplied respectively by intensive and extensive quantities. The intensive variables are
obtained from the derivatives of U with respect to the extensive variables S and V , T = ∂U/∂S and
P = −∂U/∂V . The transformation U(S, V,N) → F (T, V,N) (for example) shifts the emphasis
from S as an independent variable to its associated slope T as the independent variable. The duality
between points and slopes achieved by the Legendre transformation is reflected in the formalism of
thermodynamics as a duality between extensive and intensive variables.

4.4 PHYSICAL INTERPRETATION OF THE POTENTIALS
The Clausius inequality, (3.6), TdS ≥ d̄Q helps to provide a physical interpretation for the ther-
modynamic potentials. It’s important to recognize that U , H , F , and G are not “just” Legendre
transforms (possessing certain mathematical properties); they each represent energies stored in the
system under prescribed conditions. They are, as the name suggests, potential energies. Assume in
the following that N is fixed.

Combine the Clausius inequality with the first law, Eq. (1.6):

TdS ≥ d̄Q = dU − d̄W . (4.3)

In what follows it’s useful to distinguish between the work due to changes in volume (d̄W =
−PdV ) and all other forms of work, denoted d̄W ′: d̄W ≡ −PdV + d̄W ′.

Internal energy

Consider a process in which no work is performed on the system. From the inequality (4.3),

TdS ≥ dU . (4.4)

We can interpret the inequality (4.4) in two ways, in either the entropy or the energy representation:

[dS]U,V ≥ 0 or [dU ]S,V ≤ 0 . (4.5)

If U is fixed and no work is done, then d̄Q = 0 from the first law, and thus by the Clausius
inequality (3.6), [dS]U,V ≥ 0; the entropy of an isolated system never decreases. The other part
of (4.5), [dU ]S,V ≤ 0, should be interpreted as [d̄Q]S ≤ 0 because dS − d̄Q/T ≥ 0 (Clausius
inequality), and thus, because [d̄Q]S ≤ 0, [dU ]S,V ≤ 0. An irreversible process at constant S and V
is accompanied by a decrease inU . Heat leaves systems in irreversible processes4 such that dS = 0.
Thus, from the inequalities in (4.5), the system spontaneously evolves either towards a minimum
value of U at constant S or towards the maximum value of S at constant U—the Gibbs criteria for
equilibrium. In reversible processes (the case of equality in (4.3)), [∆U ]S = W (first law), which
shows the sense in which U is a potential energy, the energy of work performed adiabatically.

Enthalpy

From the inequality (4.3) and d̄Q = dH − V dP − d̄W ′ (first law), we have

TdS ≥ d̄Q = dH − d̄W ′ − V dP . (4.6)

For a process at constant pressure and no other forms of work (d̄W ′ = 0),

T [dS]P ≥ [dH]P, . (4.7)

4This statement is consistent with what we developed in Section 3.3. In an irreversible process dSi > 0; to keep dS = 0,
heat must leave the system.
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Like the inequality (4.4), we can interpret (4.7) in the entropy or the energy representation:

[dS]H,P ≥ 0 or [dH]S,P ≤ 0 . (4.8)

For constant H and P (and d̄W ′ = 0), dH = 0 = dU + PdV implies [d̄Q]H,P = 0 (first
law); thus, [dS]H,P ≥ 0 (Clausius inequality) is again the entropy of an isolated system can never
decrease.5 From (4.6), for constant P and d̄W ′ = 0, dH = [d̄Q]P ; enthalpy is the heat added
at constant pressure without other work performed. The word enthalpy is based on the Greek en-
thalpein (ενθαλπειν)—“to put heat into.” Gibbs referred to enthalpy as the heat function.[3, p92]
As for the other part of (4.8), [dH]S,P ≤ 0 is equivalent to [d̄Q]S,P ≤ 0 (inequality (4.6)). Again,
heat leaves systems in irreversible processes at constant S. From (4.8), systems evolve sponta-
neously until equilibrium is achieved with H having a minimum value. For reversible processes,
[∆H]S,P = W ′ad; enthalpy is the energy of “other” adiabatic work performed on the system.

Helmholtz and Gibbs energies

By combining TdS ≥ d̄Q with the definitions of F and G, we infer the inequalities

dF ≤ −SdT − PdV + d̄W ′ dG ≤ −SdT + V dP + d̄W ′ .

The quantities F and G spontaneously decrease in value until a minimum is achieved for the equi-
librium compatible with the constraints on the system (d̄W ′ = 0):

[dF ]T,V ≤ 0 [dG]T,P ≤ 0 .

For reversible processes [∆F ]T,V = W ′ and [∆G]T,P = W ′; F and G are storehouses of the
energy of other work performed under the conditions indicated.

The properties of the potentials are summarized6 in Table 4.1. Additional interpretations of the
Gibbs and Helmholtz energies are discussed in Sections 4.6 and 4.7.

Table 4.1 Thermodynamic potentials (N fixed, W ′ is work other than PdV work)

Potential Stored energy Spontaneous change In equilibrium

Internal energy, U = U(S, V ) [∆U ]S = (W )adiabatic [∆U ]S,V ≤ 0 Minimum
dU = TdS − PdV + d̄W ′

Enthalpy, H = H(S, P ) [∆H]S,P = (W ′)adiabatic [∆H]S,P ≤ 0 Minimum
H = U + PV [∆H]P = Q
dH = TdS + V dP + d̄W ′

Helmholtz energy, F (T, V ) [∆F ]T,V = W ′ [∆F ]T,V ≤ 0 Minimum
F = U − TS [∆F ]T = W
dF = −SdT − PdV + d̄W ′

Gibbs energy, G = G(T, P ) [∆G]T,P = W ′ [∆G]T,P ≤ 0 Minimum
G = U − TS + PV
dG = −SdT + V dP + d̄W ′

5We can treat a system for which H and P are held constant as isolated.
6Other books adopt different sign conventions for heat and work; the inequalities in Table 4.1 may be reversed.
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4.5 MAXWELL RELATIONS
Maxwell relations were invoked without definition in Chapter 3. These are equalities between cer-
tain partial derivatives of state variables that ensue from the exactness of differentials of thermody-
namic potentials. For Φ = Φ(x, y) a thermodynamic potential, dΦ = Adx + Bdy is exact when
Eq. (1.1) is satisfied, ∂A/∂y = ∂B/∂x. The Maxwell relations are none other than the defining
condition for a differential to be exact, applied to each thermodynamic potential. There are three
Maxwell relations7 for each of the differential expressions in Eq. (4.2). They are listed in Table 4.2.

Table 4.2 Maxwell relations

U = U(S, V,N)(
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

(
∂T

∂N

)
S,V

=
(
∂µ

∂S

)
V,N

(
∂µ

∂V

)
S,N

= −
(
∂P

∂N

)
S,V

H = H(S, P,N)(
∂T

∂P

)
S,N

=
(
∂V

∂S

)
P,N

(
∂T

∂N

)
S,P

=
(
∂µ

∂S

)
P,N

(
∂V

∂N

)
S,P

=
(
∂µ

∂P

)
S,N

F = F (T, V,N)(
∂S

∂V

)
T,N

=
(
∂P

∂T

)
V,N

(
∂S

∂N

)
T,V

= −
(
∂µ

∂T

)
V,N

(
∂P

∂N

)
T,V

= −
(
∂µ

∂V

)
T,N

G = G(T, P,N)(
∂S

∂P

)
T,N

= −
(
∂V

∂T

)
P,N

(
∂S

∂N

)
T,P

= −
(
∂µ

∂T

)
P,N

(
∂V

∂N

)
T,P

=
(
∂µ

∂P

)
T,N

4.6 GIBBS ENERGY, CHEMICAL POTENTIAL, AND OTHER WORK
Combining the Euler relation Eq. (3.31) with the definition of Gibbs energy Eq. (4.1),

G = U − TS + PV = Nµ . (4.9)

Thus, we have another interpretation. The chemical potential is the Gibbs energy per particle, µ =
G/N . From Eq. (4.2), [dG]T,P = µ[dN ]T,P ([dµ]T,P = 0, from Eq. (3.32)). The chemical potential
is the energy to add another particle at constant8 T and P . Gibbs energy is also “other work.” From
Eq. (4.2), [dG]T,N = [V ]T,NdP , which can be integrated:

G(T, P,N) = G0(T,N) +
∫ P

P0

[V ]T,NdP ′ , (4.10)

where G0(T,N) = G(T, P0, N) (a function that cannot be determined through the present method
of analysis). For the ideal gas,

G(T, P,N) = G0(T,N) + nRT ln(P/P0) . (4.11)

7A thermodynamic potential with n independent variables implies 1
2n(n− 1) Maxwell relations.

8We found in Section 3.5 that µ is the energy to add another particle at constant S and V .
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The chemical potential of the ideal gas (Gibbs energy per particle) therefore has the form

µ(T, P ) = µ(T, P0) +RT ln(P/P0) . (4.12)

What should be seen from Eq. (4.12) is that µ 6= 0, even though there are no interactions between the
atoms of an ideal gas. Chemical potential is the energy to add another particle at constant entropy,
and entropy is not a microscopic property of matter, it’s a property of the equilibrium state. Even
the ideal gas has to be in thermal equilibrium. An expression for the chemical potential of the ideal
gas involving fundamental constants is given in Chapter 7 (see Exercise 7.9).

4.7 FREE ENERGY AND DISSIPATED ENERGY

Free energy and maximum work

By rewriting (4.3), we have the inequality

−d̄W ≤ TdS − dU . (4.13)

For there to be work done by the system (counted as a negative quantity), we must have dU < TdS,
a generalization of ∆U = Wad: ∆U < 0 if Wad < 0. The maximum value of d̄W (counted
as a negative quantity) is therefore |d̄W |max = TdS − dU . Undoing the minus sign, d̄Wmax =
dU − TdS = [dF ]T . The Helmholtz energy is the maximum obtainable work at constant T :

Wmax = [∆F ]T . (4.14)

Thus, not all of the energy change ∆U is available for work if ∆S > 0, which is the origin
of the term free energy: the amount of energy available for work. For this reason F is called the
work function. While enthalpy is the heat function, [∆H]P = Q, the Helmholtz energy is the work
function, [∆F ]T = W . It’s straightforward to show that [∆H]P + [∆F ]T = ∆U .

The Gibbs energy also specifies a free energy. With d̄W = −PdV + d̄W ′, the inequality (4.13)
implies −d̄W ′ ≤ TdS − (dU + PdV ). To obtain other work from the system, we must have that
TdS > dU + PdV . The maximum value of d̄W ′ (counted as a negative quantity) is therefore
d̄W ′max = dU + PdV − TdS = [dG]T,P . The Gibbs energy is the maximum work obtainable from
the system in a form other than PdV work:

W ′max = [∆G]T,P . (4.15)

Energy dissipation

That not all energy is available for work is called the dissipation (or degradation) of energy. Energy
is not lost (which would be a violation of the first law), it’s diverted into microscopic degrees of
freedom. Consider two reservoirs at temperatures T1 and T2, with T1 > T2 (see Fig. 4.3). If we
spontaneously (irreversibly) transfer heat Q from 1 to 2, there’s a change in entropy:

∆S = Q

(
1
T2
− 1
T1

)
> 0 .

Suppose we use Q (extracted reversibly) to run a Carnot cycle between reservoirs at T1 and T0,
where T1 > T2 > T0. We would obtain work W1 (using the definition of efficiency):

W1 = Q

(
1− T0

T1

)
.
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Figure 4.3 Energy dissipation: W2 = W1 − T0∆S.

Suppose we use Q (extracted reversibly) to run a Carnot cycle between T2 and T0. In that case we
would obtain work W2 :

W2 = Q

(
1− T0

T2

)
< W1 .

Energy has been dissipated (W2 < W1) because we’re able to extract less work from Q when Q
has first been transferred irreversibly from 1 to 2. The energy dissipated (the energy not available
for work) is related to the increase in entropy

(∆U)dis ≡W1 −W2 = T0∆S . (4.16)

4.8 HEAT DEATH OF THE UNIVERSE?
The founders of thermodynamics quickly realized the cosmological implications of the second law.
Assuming that the universe is an isolated system (OK?), and knowing that isolated systems evolve
toward equilibrium characterized by maximum entropy, with all temperatures within the system
equalized, the fate of the universe would be a state with all energy dissipated, an ominous state of
affairs termed the heat death of the universe, a universe in which nothing of human value is likely
to survive. Kelvin wrote in 1862[23, p349]

The second great law of thermodynamics involves a certain principle of irreversible
action in Nature. It is thus shown that, although mechanical energy is indestructible,
there is a universal tendency to its dissipation, which produces gradual augmentation
and diffusion of heat, cessation of motion, and exhaustion of potential energy through
the material universe. The result would inevitably be a state of universal rest and death,
if the universe were finite and left to obey existing laws. But it is impossible to con-
ceive a limit to the extent of matter in the universe; and therefore science points rather
to an endless progress, through an endless space, of action involving the transforma-
tion of potential energy into palpable motion and thence to heat, than to a single finite
mechanism, running down like a clock, and stopping for ever.

Kelvin thus postulated an infinite universe to preclude its heat death.9 The concept of heat death
pertains to the long-term future state of the universe. Curiously, however, it also implies something

9Newton also invoked an infinite universe, to prevent gravitational collapse.
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about its past: If the universe were infinitely old, heat death would already have occurred! Thus we
have an argument from thermodynamics that the universe must have come into existence within the
finite past.10 Clausius was not unaware of the cosmological implications of entropy. He wrote, in
1865[15, p364]:

The second fundamental theorem . . . asserts that all transformations occurring in na-
ture may take place in a certain direction . . . . In fact, if in all the changes of condition
occurring in the universe the transformations in one definite direction exceed in mag-
nitude those in the opposite direction, the entire condition of the universe must always
continue to change in that first direction, and the universe must consequently approach
incessantly a limiting condition. . . . If for the entire universe we conceive the same mag-
nitude to be determined, consistently and with due regard to all circumstances, which
for a single body I have called entropy, and if at the same time we introduce the other
and simpler conception of energy, we may express in the following manner the funda-
mental laws of the universe which correspond to the two fundamental theorems of the
mechanical theory of heat.

1. The energy of the universe is a constant.

2. The entropy of the universe tends to a maximum.

Clausius wrote in 1868 (quoted in Brush[24, p88]):

The more the universe approaches this limiting condition in which the entropy is a
maximum, the more do the occasions of further changes diminish; and supposing this
condition to be at last completely obtained, no further change could evermore take
place, and the universe would be in a state of unchanging death.

The thought that the universe is inevitably winding down as a result of thermodynamics can lead
one to a gloomy place. Bertrand Russell wrote:[25, p107]

All the labors of the ages, all the devotion, all the inspiration, all the noonday brightness
of human genius, are destined to extinction in the vast death of the solar system, and
. . . the whole temple of man’s achievement must inevitably be buried beneath the debris
of a universe in ruins—all these things, if not quite beyond dispute, are yet so nearly
certain that no philosophy which rejects them can hope to stand.

It’s not that bad, however: There are more things in heaven and earth, than are dreamt of in your
philosophy. Heat death will occur if thermodynamic equilibrium can be established over cosmolog-
ical length scales with all inhomogeneities leveled, when matter and energy in all forms are evenly
distributed throughout the universe. The temperatures of stellar photospheres range from 3000 to
50,000 K, and the cosmic microwave background (CMB, Section 5.4) has a temperature of 2.7 K.
A state of extreme disequilibrium therefore exists in the universe with regard to electromagnetic
radiation. A discussion of the evolution of the universe is not appropriate here, but it may be noted
that with the expansion of the universe,11 the CMB will continue to be redshifted into a state of even
lower temperature. Disequilibrium will therefore last at least as long as stars shine, and new stars
are being created all the time. There is more to the universe than stars, however. The lifetime of
black holes of mass M is 2 × 1067(M/M�)3 yr, where M� is the solar mass (see Eq. (P13.1)).
The question of the time frame for heat death thus concerns the ultimate fate of the universe, the

10A bit off topic, but Olbers’s paradox asks why is the night sky dark, why is the sky not uniformly as bright as the sun?
If the universe is infinite in extent and is infinitely old, light from an infinite number of stars would have had time to reach
Earth. One way “out” is to recognize that stars are not old enough.

11Discovered in 1929.
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prediction of which is an uncertain enterprise at best. An expanding universe can never reach ther-
modynamic equilibrium: Inhomogeneities become frozen in place when the expansion rate exceeds
the rate of processes that maintain equilibrium, and the universe is accelerating in its expansion.12

One can question whether entropy of the universe is well defined. Entropy is a property of systems
in equilibrium; ∆S ≥ 0 for closed systems refers to changes in entropy between equilibrium states.
The universe, however, has never been in equilibrium; to what extent can we speak of the entropy
of such a system? The heat death of the universe, once a bugaboo implication of the second law,
shouldn’t be taken seriously as a reason that the universe is trying to kill us.13

4.9 FREE EXPANSION AND THROTTLING

Joule expansion

In a free expansion (or Joule expansion), a gas initially confined to a volume V1 is allowed to escape
into an evacuated chamber of volume V2 (as in Fig. 3.4). The experiment is thermally insulated
so that no heat flows from the environment, Q = 0. Because the gas expands freely, no work is
performed against an external pressure, W = 0. The internal energy of the gas therefore does
not change, ∆U = 0. Entropy, however, increases because the expansion takes place irreversibly,
∆S > 0. During the expansion, we cannot apply the methods of thermodynamics because the
system is not in equilibrium. We can, however, apply thermodynamics to the initial and final states:
∆U and ∆S are process independent.

Does the temperature change in a free expansion? Because dU = 0, we have

dU = 0 =
(
∂U

∂V

)
T

dV +
(
∂U

∂T

)
V

dT .

The Joule coefficient µJ is defined as

µJ ≡
(
∂T

∂V

)
U

= −
(∂U/∂V )T
(∂U/∂T )V

= − 1
CV

[
T

(
∂P

∂T

)
V

− P
]

= − 1
CV

[
T
α

β
− P

]
, (4.17)

where we have used Eqs. (1.19), (1.25), and (1.28). For small changes in volume, the change in
temperature is ∆T = µJ∆V .

Using the ideal gas equation of state, we have from Eq. (4.17) that µJ = 0. For real gases, energy
is transferred in the expansion from kinetic energy to the potential energy of the molecules of the
gas. For attractive intermolecular forces, there’s an increase in the potential energy as the molecules
move further apart (the potential energy becomes less negative with increasing intermolecular sepa-
ration); this is accompanied by a decrease in the kinetic energy of the molecules. Thus we expect the
temperature to decrease as a result of the expansion. The ideal gas ignores inter-particle interactions.

For a van der Waals gas, µJ can be shown to be given by

µJ = − a

CV

( n
V

)2
. (4.18)

Note that µJ is related to the van der Waals parameter a, a measure of inter-particle interactions.
For finite changes in volume we can integrate Eq. (4.18),

∆T =
∫ Vf

Vi

µJdV = an2

CV

(
1
Vf
− 1
Vi

)
, (4.19)

12Discovered in 1998, awarded the 2011 Nobel Prize in Physics.
13Death by thermodynamics should be the least of our worries. Impacts from asteroids and comets could prove cataclysmic

to terrestrial civilization, events far more likely to occur in a human lifespan. Add to that solar flares, supernovae, gamma
ray bursts, black holes, and other potential maladies: We have far more to worry about than entropic dissolution because of
the second law of thermodynamics.
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where we’ve assumed thatCV is constant. Because Vf > Vi, ∆T < 0. Putting in numbers (Exercise
4.13), we conclude that a free expansion is not an effective way to cool a gas.

To calculate the change in entropy, from dU = TdS − PdV , because dU = 0, ∆S =∫ Vf
Vi

(P/T ) dV . For an ideal gas,

∆S = nR ln (Vf/Vi) , (4.20)

in agreement with what we calculated in Section 3.4. Because the system is isolated in a free expan-
sion, the entropy change is due entirely to irreversibility.

Joule-Kelvin effect

Figure 4.4 Throttling (Joule-Kelvin) process. Enthalpy is conserved.

In the Joule-Kelvin (or throttling) process, a steady flow of gas is forced through a porous plug
under conditions of thermal isolation (see Fig. 4.4). In expanding through the plug the pressure
drops from P1 to P2. The net work done on the gas is

W = −
∫ 0

V1

P1dV −
∫ V2

0
P2dV = P1V1 − P2V2 , (4.21)

where the pressure is maintained at a constant value in both chambers. Because Q = 0, ∆U =
U2−U1 = W = P1V1−P2V2. Enthalpy is therefore conserved in the process, H1 = U1 +P1V1 =
U2 + P2V2 = H2. The Joule-Kelvin coefficient is defined as

µJK ≡
(
∂T

∂P

)
H

= 1
CP

[
T

(
∂V

∂T

)
P

− V
]

= V

CP
(αT − 1) , (4.22)

(Exercise 4.8). For small changes in pressure, ∆T ≈ µJK∆P . The Joule-Kelvin coefficient can be
of either sign. Because ∆P < 0 in the process, ∆T < 0 for µJK > 0. For finite pressure changes,
∆T =

∫ P2
P1

µJKdP . For an ideal gas µJK = 0 because α = T−1. For real gases, the Joule-Kelvin
process can result in either a heating or a cooling of the gas. As a gas expands it cools, for the reason
discussed in the case of a free expansion. In throttling, however, work is done on the gas, Eq. (4.21).
From Eq. (4.22), if α > T−1, i.e., if the expansivity exceeds that of the ideal gas, cooling occurs
even though work is performed on the gas. If α < T−1, the gas expands less than the ideal gas and
heating occurs. Where µJK changes sign is called the inversion temperature. From Eq. (4.22), this
occurs where (∂V/∂T )P = V/T . The inversion temperatures (and pressures) of gases are widely
tabulated. To calculate the change in entropy, from dH = TdS + V dP , because dH = 0, we have
∆S = −

∫ P2
P1

(V/T ) dP . For an ideal gas,

∆S = nR ln (P1/P2) . (4.23)

For the ideal gas ∆T = 0, but ∆S 6= 0 (irreversibility).
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CHAPTER SUMMARY
This chapter introduced the thermodynamic potentials (enthalpy, Helmholtz free energy, and Gibbs
free energy), which are the three Legendre transformations of the internal energy function that can
be formed from the products of variables TS and PV . We emphasized their physical interpretations
as energies stored in the system under controlled conditions.

• Equilibrium can be characterized either as maximum entropy for fixed energy, or as minimum
energy for fixed entropy. Internal energy U(S, V,N) is a convex function of S, V , and N .

• Legendre transformations are an equivalent way of characterizing convex functions f(x).
Instead of specifying f(x) pointwise, the quantity g(m) gives the value of f at x in terms of
its tangent at x and the intercept on the ordinate axis, f(x) = mx− g(m), where m = f ′(x).

• Legendre transformations provide representations of the internal energy under conditions that
can be experimentally controlled. The Helmholtz function F (T, V ) is the Legendre transfor-
mation of U(S, V ), F = U − TS; emphasis is shifted from S to the slope of U as a function
of S, T = (∂U/∂S)V . The enthalpy H(S, P ), H = U + PV , shifts emphasis from V to the
slope of U , P = − (∂U/∂V )S . The Gibbs energy G(T, P ) shifts the independent variables
from (S, V ) to (T, P ), G = H − TS = F + PV = U − TS + PV .

• Each of the quantities U , H , F , G represent a potential energy under controlled condi-
tions (summarized in Table 4.1): [∆U ]S = (W )ad, [∆H]S,P = (W ′)ad, [∆F ]T = W , and
[∆G]T,P = W ′, where W ′ is the work done on the system in forms other than PdV work.

• Under the conditions indicated, the second law prescribes the direction of spontaneous
changes, [∆U ]S,V ≤ 0, [∆H]S,P ≤ 0, [∆F ]T,V ≤ 0, and [∆G]T,P ≤ 0, where equal-
ity holds for reversible processes. The quantities U , H , F , and G are each a minimum in
equilibrium.

• Maxwell relations, identities between derivatives of thermodynamic variables, follow from
the exactness of the differentials of thermodynamic potentials. Summarized in Table 4.2.

• The chemical potential is the Gibbs energy per particle, G = Nµ, the energy to add another
particle at constant T and P , [dG]T,P = µ[dN ]T,P .

• Not all of the energy change ∆U in a process can be converted into work if ∆S > 0, an effect
called the dissipation of energy. Energy is transferred to microscopic degrees of freedom,
those associated with an increase in entropy.

• The maximum amount of work that can be obtained from a system, the free energy, is given
by Wmax = [∆F ]T and W ′max = [∆G]T,P .

• In a free expansion a gas expands into an evacuated, thermally isolated chamber. The internal
energy is conserved in such a process, W = 0 and Q = 0. The temperature change of a
non-ideal gas is given by the Joule coefficient, µJ = (∂T/∂V )U . The temperature decrease
in a free expansion is due to the conversion of kinetic energy of the molecules into the work
required to separate molecules against attractive intermolecular forces. For an ideal gas, µJ =
0; the ideal gas ignores intermolecular forces. The entropy change of the ideal gas for a free
expansion is ∆S = nR ln (Vf/Vi) > 0. The increase in entropy is entirely associated with
the irreversibility of the process.

• In throttling a steady flow of gas is forced through a porous plug under thermally isolated
conditions. Enthalpy is conserved in this process. The temperature change is given by the
Joule-Kelvin coefficient, µJK = (∂T/∂P )H . The temperature of the gas can either increase
or decrease in throttling. For the ideal gas the entropy change ∆S = nR ln (Pi/Pf ) > 0 even
though µJK = 0; the entropy change is associated with the irreversibility of the expansion.
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EXERCISES
4.1 Consider a film where volume effects are not negligible. The first law for this system is:

dU = TdS − PdV + σdA ,

where σ is the surface tension and A is the surface area. (a) What is the differential of the
Gibbs function for this system? (b) Derive the three Maxwell relations associated with the
Gibbs function. (c) How can the derivative (∂V/∂A)T,P be interpreted? That is, how can the
volume of the film depend on the surface area? What is the system here?

4.2 Derive the inequalities (4.3), (4.6), (4.9), and (4.10).

4.3 Show that H = Nµ+ TS and F = Nµ− PV . Hint: Euler relation

4.4 Show that [∆H]P + [∆F ]T = ∆U .

4.5 Derive Eq. (4.20).

4.6 Derive the relations: (
∂U

∂V

)
T

= T 2 ∂

∂T

(
P

T

)
V

= T

(
∂P

∂T

)
V

− P .

and (
∂U

∂P

)
T

= −T
(
∂V

∂T

)
P

− P
(
∂V

∂P

)
T

.

One could use Maxwell relations to derive these identities, or, what is effectively the same
thing, one could invoke the integrability condition for S, U , and V , as functions of T and V
or T and P .

4.7 Show that (
∂CV
∂V

)
T

= T

(
∂2P

∂T 2

)
V

(
∂CP
∂P

)
T

= −T
(
∂2V

∂T 2

)
P

.

Use the results of Exercise 4.6 and for the second part, Exercise 1.7.

4.8 Show that dH can be written

dH = CPdT +
[
−T

(
∂V

∂T

)
P

+ V

]
dP .

Conclude that CP = (∂H/∂T )P and hence that in any constant-pressure process [∆H]P =∫ T2
T1
CPdT . Hint: Let S = S(T, P ). Don’t forget about Eq. (3.14) and don’t forget about the

Maxwell relations.

4.9 Show that (
∂T

∂V

)
S

= − T

CV

(
∂P

∂T

)
V

(
∂T

∂P

)
S

= T

CP

(
∂V

∂T

)
P

.

Use the cyclic relation and reach for a Maxwell relation.

4.10 Show that

dS = CV
T

dT + 1
T

[
P +

(
∂U

∂V

)
T

]
dV ,

and hence that in any constant-volume process [∆S]V =
∫ T2
T1

CV
T

dT .
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4.11 Show that, in analogy with Eq. (4.14),

F (V, T0) = F (V0, T0)−
∫ V

V0

[P ]T0
dV .

Because G = G(T, P ) and F = F (T, V ), whatever we can do with G involving P (at
constant T ), we can find an analogous expression for F involving V (at constant T ).

4.12 Derive Eq. (4.22) starting from Eq. (4.21).

4.13 In Eq. (4.19), let Vf → ∞, so that we can consider the maximum cooling available
from a free expansion. What is a typical value of the van der Waals parameter, a? The
Handbook of Chemistry and Physics is a great source of thermodynamic data. For oxy-
gen, a = 0.1382 Pa m6 mol−2. For nitrogen, a = 0.1370 in the same units. Let’s take
a = 0.1 Pa m6 mol−2. Take CV = 3

2nR. Moreover, normalize Eq. (4.19) by the tempera-
ture to get a fractional temperature change,

∆T
T

= − 2an
3RTVi

.

Take n = 1 mole, T = 300 K, and Vi = 10−3 m3. What fractional change in T do you find?

4.14 Instead of using the van der Waals equation of state, suppose we use the virial expansion, Eq.
(1.11). Show that to first order in the virial expansion the Joule coefficient is given by

µJ = − 1
CV

n2RT 2

V 2 B′2(T ) .

Show using Eq. (1.13) that this result reduces to Eq. (4.22).

4.15 The Joule-Kelvin coefficient for the van der Waals gas is a bit of a chore to derive. Using Eq.
(1.12), show that

µJK = n

CP

−b+ 2a
RT

(
1− nb

V

)2

1− 2an
RTV

(
1− nb

V

)2 .

In the low-density limit, n/V � b−1 and n/V � RTa−1, show that

µJK ≈
2

5R

(
−b+ 2a

RT

)
,

where we have used CP = 5
2nR. Show that the inversion temperature for the van der Waals

gas is given by

RT = 2a
b

(
1− nb

V

)2
.

4.16 Show thatCV for the van der Waals gas depends on T but not on V . Use the result of Exercise
4.7. CV for the ideal gas is a constant.

4.17 Show that an alternate way of stating one of the stability conditions (Section 3.10) is(
∂2F

∂V 2

)
T

> 0 . (P4.1)

Modify the argument used in Section 3.10, that because in equilibrium entropy is a maximum,
fluctuations must lead to a momentary decrease in entropy, to the case of the Helmholtz free
energy F which is a minimum in equilibrium. Which of the three stability conditions in Eq.
3.51 does Eq. P4.1 correspond to? Hint: P = − (∂F/∂V )T .
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Thermodynamics of
radiation

I T’S often said that the origins of quantum mechanics can be traced to the year 1900 with Planck’s
theory of black-body radiation. But where did that problem come from, that so ably exposed the

limitations of classical physics? The term black body as a perfect absorber of radiant energy was in-
troduced in 1860 by Gustav Kirchhoff, who applied thermodynamics to electromagnetic radiation,
or heat radiation as it was called then. It’s not obvious that thermodynamics pertains to radiation
because thermodynamics is concerned with the state of equilibrium, and radiating bodies are not
normally in equilibrium with their environment. Kirchhoff examined the singularly important prob-
lem of cavity radiation, in which matter and radiation are in equilibrium. Cavity radiation is elec-
tromagnetic energy contained within a hollow enclosure bounded by thick opaque walls maintained
at a uniform temperature. To observe cavity radiation, a small hole must be made in the walls sur-
rounding the cavity so that some of it can escape.1 As we’ll see, that hole plays a significant role in
the theory, and we’ll refer to it simply as the “hole.” Cavity radiation is closely related to black-body
radiation; see Eq. (5.3). In this chapter we consider cavity radiation as a thermodynamic system. The
purview of thermodynamics is not limited to material systems; it applies to systems in equilibrium.

5.1 KIRCHHOFF LAW OF THERMAL RADIATION
All objects emit radiant energy. The spectral emissive power, E(λ, T )dλ, is the energy emitted by a
body per time at temperature T for wavelengths between λ and λ+dλ, per surface area.2 The spec-
tral absorptivity A(λ, T ) is the fraction of incident energy at wavelength λ absorbed by a body at
temperature T . Surfaces do not emit radiation per se, only atoms do that; it’s convenient, however,
to think of surfaces as emitting and absorbing radiation—radiation must pass through a surface.
Three processes are associated with the interaction of material objects and electromagnetic radia-
tion: reflection, absorption, and emission. Kirchhoff reasoned there must be a connection between
absorption and emission for objects in equilibrium with radiation. Darker objects reflect less energy
than shiny objects, and hence absorb more energy than shiny objects. As a rule, good absorbers
are good emitters, an observation that finds a natural explanation in thermodynamics. The radiant
energy absorbed by an object in thermal equilibrium must be re-emitted. That can be demonstrated
by assuming the opposite and showing it leads to a contradiction. Consider two objects placed in an
enclosed box held at a constant temperature, and suppose one is shiny and the other is dark. Assume
the objects are initially at the same temperature. Suppose, contrary to fact, that the shiny object is
a good emitter, and the dark object is a poor emitter. The dark object absorbs more energy than the

1The hole must be small enough so that it has a negligible effect upon the state of radiation in the cavity.
2The quantity E(λ, T ) therefore has units of W m−3; do you see why?

67
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shiny object, and hence its temperature must rise if it emits less energy than it absorbs. Conversely,
the temperature of the shiny object must fall if it emits more energy than it absorbs. If this were the
case, energy would be passed from cold to hot with no other effect—a violation of the second law.3

To maintain equilibrium in the cavity, the total energy leaving all objects (reflected and emitted)
must be the same whether they’re shiny or dark. Thus, there must be a linkage between absorption
and emission. The same applies to the material of the cavity walls. In equilibrium all objects in the
cavity attain the temperature of the cavity walls.4

Cavity radiation is independent of the specifics of the cavity—the size and shape of the cavity or
the material of the walls—and depends only on the temperature of the walls. Consider two cavities
A and B (constructed of different materials and having different sizes and shapes) connected by a
narrow tube through which radiation may pass. If energy transport fromA toB exceeds that fromB
to A, the temperature of B would rise, in violation of the second law. The energy emitted per time
by both cavities must therefore be the same, regardless of their specifics. Other properties of the
radiation follow by the same method of reasoning. By repeating the argument with color filters or
polarizers placed in the tube, we conclude that cavity radiation is unpolarized, isotropic, and with the
radiation in each cavity having the same spectral distribution. Because the energy radiated by each
cavity per time into the tube is the same (independent of cavity size), the density of electromagnetic
energy must be the same in each cavity. As we’ll show, there is a simple relation between the energy
emitted per time per area into the tube and the energy density in the cavity; see Eq. (5.3).

The processes of emission and absorption are thus linked dynamically: Whatever energy is ab-
sorbed is emitted so as to maintain equilibrium. Emissivity and absorptivity must be proportional,

E(λ, T )
A(λ, T ) = f(λ, T ) . (5.1)

Whatever is the function f(λ, T ), it must be universal, the same for all bodies. While E and A are
separately material-specific, their ratio is a universal quantity, Kirchhoff’s law of thermal radiation.
Kirchhoff thus posited the existence of a universal function describing the spectral distribution of
thermal radiation, but did not give its form, and indeed it’s not possible to do so within the frame-
work of thermodynamics. A full 40 years would pass before this function was known.

Kirchhoff defined an object to be perfectly black if it totally absorbs, i.e., does not reflect, inci-
dent radiation so that A(λ) = 1. A black body by definition reflects nothing. By setting A(λ) = 1
in Eq. (5.1), the emissive power E(λ, T ) of a black body is a universal function. Once the function
f(λ, T ) is known, we infer from E(λ, T ) = A(λ, T )f(λ, T ) that the emissivity of a black body is
larger than that for any other body at the same temperature—good absorbers are good emitters.

The notion of a black body sounds like a typical idealization in physics, yet Kirchhoff gave an
operational definition of one. A black body can be very nearly realized by an enclosed cavity whose
walls are at a uniform temperature, are sufficiently thick that radiation cannot penetrate, and has a
small hole in one of the walls. Given the roughness of cavity surfaces, external radiation incident
on the hole has virtually no chance of being reflected back out through the hole. The hole therefore
is very nearly totally absorbing, with the radiation it emits approximating black-body radiation.5 A
measurement of E(λ, T ) from the hole is thus a measurement of Kirchhoff’s universal function.

An arbitrary state of radiation (not in thermal equilibrium) can be maintained in a cavity if
it 1) encloses vacuum (passes all wavelengths without absorption) and 2) has perfectly reflecting
walls (“white”). Should a small quantity of matter be introduced into such a cavity (the proverbial
speck of dust), the radiation would transform into cavity radiation through the mechanism posited
by Kirchhoff’s law. In this process the total energy of the radiation (integrated over all wavelengths)

3Imagine Maxwell’s demon (see Chapter 12) sitting between the shiny and dark objects, passing energy from cold to hot.
4We’re presuming the heat capacity of the material surrounding the cavity far exceeds the heat capacity of the objects in

the cavity, i.e., the walls of the cavity act as a heat reservoir.
5A cavity connected to a small hole is a “roach motel” for photons: They check in, but they don’t (directly) check out.
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stays essentially constant, ∆U = 0, because the piece of matter can be made as small as we please;
its change in energy is small compared to that of the radiant energy in the cavity.6 Because the
process is irreversible, however, there’s an increase in entropy, ∆S > 0.

5.2 THERMODYNAMICS OF BLACK-BODY RADIATION
At the time of Kirchhoff’s work it was not known that heat radiation is electromagnetic in origin and
travels at the speed of light, c. That fact can be used to derive a simple relation between the emissive
power of a black body (the “hole”) and the energy density of cavity radiation. Let u(λ, T )dλ denote
the energy spectral density of cavity radiation, the energy per volume contained in the wavelength
band (λ, λ+dλ) in equilibrium at temperature T . (Thus, u(λ, T ) has units J m−4.) Let dσ represent
an element of surface area. Because cavity radiation is isotropic, the fraction of radiation emitted
from dσ in the direction of a small cone of solid angle dΩ is dΩ/(4π), where dΩ = sin θdθdφ,
with θ the angle between the normal to dσ and the direction of radiation. A small flux tube oriented
parallel to the direction of radiation that intersects dσ has cross-sectional area dσ cos θ. Let the
length of the tube be cdt. The amount of energy at wavelength λ in this tube flowing in the direction
of dΩ is therefore dΩdσ cos θcdtu(λ, T )dλ/(4π). The energy emitted per time dt per area dσ
integrated over all directions is (note the limits of integration)

E(λ, T )dλ = c

4πu(λ, T )dλ
∫ 2π

0
dφ
∫ π/2

0
sin θ cos θdθ = c

4u(λ, T )dλ . (5.2)

Equation (5.2) can be integrated over all wavelengths:

E(T ) ≡
∫ ∞

0
E(λ, T )dλ = c

4

∫ ∞
0

u(λ, T )dλ ≡ c

4u(T ) . (5.3)

Equation (5.3) provides a connection between the total emissive power (integrated over all wave-
lengths) of a black body and the total energy density of radiation in the cavity.

Photons are non-interacting,7 like the particles of an ideal gas, and thus one might think the
photon gas (cavity radiation) is ideal. The energy of the ideal gas is independent of the volume of
the container (Joule’s law, (∂U/∂V )T = 0), and we might expect the same for cavity radiation.
For cavity radiation, however, the energy density is independent of cavity size and depends only on
temperature (argued in Section 5.1). Thus, we have the analog of Joule’s law for cavity radiation8(

∂u

∂V

)
T

= 0 . (5.4)

Cavity radiation is not an ideal gas, even though both systems are collections of non-interacting
entities. For the ideal gas, ∆U = 0 in an isothermal expansion, Eq. (1.31). For cavity radiation,
the energy density is independent of volume and thus ∆U = u∆V . In the expansion of a gas,
the number of particles is fixed; for cavity radiation the number of photons is variable. Consider a
cavity having perfectly reflecting walls, fitted with a piston, that contains a minute speck of material
maintained at temperature T through contact with an external reservoir. By the argument of Section
5.1, the radiation in the cavity has the spectral distribution of a black body at the temperature T .
If the piston is raised slowly, departures from equilibrium are small. As the piston is raised, the
radiation expands into a larger volume. To maintain the same density of radiant energy, the speck

6Adding matter to an evacuated cavity with perfectly reflecting walls is somewhat analogous to a spark in an air-fuel mix-
ture. The energy of the initiating factor (mass or spark) is small in comparison with the energies undergoing transformation.

7Photons cannot couple directly to each other because they don’t carry charge. At very high intensities, photons can
interact by a variety of higher-order processes at the quantum level, e.g., Delbrück scattering.

8While the energy density of cavity radiation is independent of V under isothermal conditions, it’s not independent of V
for isentropic processes; see Eq. (5.32).
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emits more energy than it absorbs until the energy density is consistent with that at temperature
T . If the piston is lowered, the object absorbs more energy than it emits until equilibrium is re-
established. In the isothermal expansion of an ideal gas, heat is absorbed from the reservoir to keep
the temperature of the particles fixed. With cavity radiation, heat is absorbed from the reservoir but
it goes into creating new photons to keep the energy density fixed.

Electromagnetic radiation carries momentum as well as energy. The momentum density g of the
electromagnetic field is, from electromagnetic theory, g = S/c2, where S is the Poynting vector
(energy per time per area). Because photons all travel at the same speed, the magnitude of the
Poynting vector9 S = cu(T ), and thus the momentum density10 g = u/c. For momentum p incident
at a surface at the angle θ relative to the normal, the change in momentum ∆p = 2p cos θ. Using
the flux-tube argument, the contribution to the pressure P from the momentum of the radiation is

dP = dP
dΩ dΩ =

(
dΩ
4π

)
(c∆t)(∆σ cos θ)

∆t∆σ
u(T )
c

2 cos θ = u(T )
2π cos2 θdΩ . (5.5)

Integrating Eq. (5.5) over all directions, we have the total pressure at temperature T

P = u(T )
2π

∫ 2π

0
dφ
∫ π/2

0
sin θ cos2 θdθ = 1

3u(T ) . (5.6)

Contrast Eq. (5.6) with the ideal gas, P = 2
3u(T ) (use Eq. (1.32) and the ideal gas law).

Equation (5.6) is the equation of state for cavity radiation, to which the machinery of thermody-
namics can be applied. Combining Eqs. (5.4) and (5.6) with Eq. (1.28), where U = uV :

u = T

3

(
∂u

∂T

)
V

− u

3 ,

implying that

4u = T
du
dT , (5.7)

where we can replace the partial derivative with the total derivative. The solution of Eq. (5.7) is:

u(T ) = aT 4 , (5.8)

where a is the radiation constant. The value of this constant (a = 7.5657 × 10−16 J m−3 K−4)
cannot be obtained using the methods of thermodynamics. It would be a fundamental constant of
nature (akin to the gas constant R) were it not for the fact that, using the Planck distribution, it can
be evaluated11 in terms of other fundamental constants, a = π2k4

B/(15~3c3). Note that we cannot
take the classical limit of the radiation constant by formally letting12 h → 0. There is no classical
antecedent of cavity radiation; it’s an intrinsically quantum problem from the outset. We have our
first instance where thermodynamics anticipates quantum mechanics. Combining Eq. (5.8) with Eq.
(5.3), we have the Stefan-Boltzmann radiation law for the total emissive power of a black body at
temperature T

E(T ) = ac

4 T
4 ≡ σT 4 , (5.9)

9This result is easily established using a flux-tube argument.
10The result g = u/c is p = E/c (from the theory of relativity) turned into a relation between densities.
11A standard exercise in statistical physics.
12I thank Professor Andrés Larraza for pointing out there is no classical limit of the radiation constant. Note that the

radiation constant does not contain a mass or a charge. Photons carry no charge, and have zero rest mass. The radiation
constant does, however, contain Boltzmann’s constant, which appears in physics through the average kinetic energy per
particle of an ideal gas (particles that have mass) at temperature T . As we discussed earlier, measuring absolute temperature
in degrees Kelvin artificially introduces a conversion factor between energy and Kelvin. Absolute temperature “should” have
the dimension of energy, in which case Boltzmann’s constant would be unnecessary.
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where σ = ac/4 = 5.6704× 10−8 W m−2 K−4, Stefan’s constant.

Example. The luminosity of the sun L = 3.85 × 1026 W, and the solar radius is R = 6.96 × 108

m. Calculate the effective surface temperature of the sun, assuming it to be a black body. From Eq.
(5.9), σT 4 = L/(4πR2). We find T = 5780 K. The sun is of course not a black body, but Stefan’s
law gives us an effective temperature of its photosphere. The center of the sun is thought to have a
temperature ≈ 1.5× 107 K , while the corona has a temperature ≈ 5× 106 K.

Once we know Eq. (5.8), we know a lot. Combining Eq. (5.8) with Eq. (5.6), the pressure of
cavity radiation as a function of absolute temperature T is

P = a

3T
4 . (5.10)

The radiant energy in a cavity of volume V at temperature T is, from Eq. (5.8) and Eq. (5.4)

U = aV T 4 . (5.11)

Contrast Eq. (5.11) with Eq. (1.32): For the ideal gas, the extensible quantity is the number of
moles (amount of matter at temperature T ), whereas for the photon gas the extensible quantity is
the volume of the cavity (bounded by walls at temperature T ).

By combining Eq. (5.11) with Eq. (1.25), we have an expression for the heat capacity:

CV =
(
∂U

∂T

)
V

= 4aV T 3 . (5.12)

Note that CV → 0 as T → 0, as required by the third law of thermodynamics.13 There’s no
reason not to expect that Eq. (5.12) holds for all T : Photons do not undergo phase transitions at low
temperature. In contrast, the heat capacity of monatomic gases, CV = 3

2NkB , a constant, is valid
only for temperatures well above liquefaction temperatures. From Eq. (3.11) and Eq. (5.12),(

∂S

∂T

)
V

= 1
T
CV = 4aV T 2 ,

which can be integrated (at constant V )

S(T ) = S0 +
∫ T

0

CV
T ′

dT ′ = 4
3aV T

3 , (5.13)

where we have set S0 = 0.
With Eqs. (5.10), (5.11), and (5.13) (expressions for P , U , and S), we have the ingredients to

construct the thermodynamic potentials:

U = aV T 4 = 3
4TS = 3PV F = U − TS = −1

3aV T
4

H = U + PV = TS = 4
3aV T

4 G = H − TS = 0 . (5.14)

The Gibbs energy is identically zero. From Eq. (4.9), G = Nµ, and because we have G = 0 for any
N , we infer that µ = 0, even though (as we argue below) the chemical potential isn’t well defined

13The low-temperature heat capacity of many solids vanishes like T 3 as T → 0, formally the same as the photon gas.
Quantized vibrations of a crystal lattice, phonons, behave at low temperature like photons; both are bosons and both are non-
dispersive with ω = ck where in the case of phonons, c is the speed of sound. In many respects, a solid at low temperature
can be considered a box of phonons, together with electrons (fermions). The low-temperature heat capacity of electrons
vanishes linearly with T .
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for cavity radiation. Taking µ = 0 implies that it costs no extra energy to add photons to cavity
radiation but of course it costs energy to make photons; photons are a special case in that creating
them is the same as adding them to the system.14 Now that we’ve brought it up, however, what is
the number of photons in a cavity? Nowhere has N been specified, and indeed such a quantity is
beyond the capabilities of thermodynamics to calculate. Using the Planck distribution, the average
number of photons in a cavity in thermal equilibrium can be calculated (assuming µ = 0):

N = 2ζ(3)k3
B

π2(~c)3 V T
3 ≈ 1

2.7kB
aV T 3 , (5.15)

where ζ(3) ≈ 1.202 is the Riemann zeta function of argument 3. Comparing Eqs. (5.13) and (5.15),
the entropy of cavity radiation is proportional to the average number of photons,

S ≈ 3.6kBN . (5.16)

It’s not possible to change the number of photons keeping entropy fixed, and thus chemical potential
is not defined for cavity radiation (see definition of µ in Section 3.5).

However, Eq. (5.15), which is based on the Planck formula, assumes µ = 0. Is the assignment
µ = 0 for cavity radiation consistent with general thermodynamics? From Table 4.1, [∆F ]T,V =
W ′, the amount of “other” work. From Eq. (5.14), [∆F ]T,V = 0. The maximum work in any form
is given by [∆F ]T = Wmax, Eq. (4.14), and from Eq. (5.14), [∆F ]T = − 1

3aT
4∆V = −P∆V ,

where we’ve used Eq. (5.10). Thus, no forms of work other than PdV work are available to cavity
radiation, which is consistent with µ = 0. As shown in Section 3.10, thermodynamic equilibrium is
achieved when the intensive variables conjugate to conserved quantities (energy, volume, particle
number) equalize between system and surroundings. Photons are not conserved quantities. Photons
are created and destroyed in the exchange of energy between the cavity walls and the radiation in
the cavity. There’s no population of photons external to the cavity for which those in the cavity can
come to equilibrium with. The natural variables to describe the thermodynamics of cavity radiation
are T , V , S, P , or U , but not N . Cavity radiation should not be conceived of as an open system
(Section 3.5); it’s a closed system that exchanges energy with its surroundings. The confusion here
is that photons are particles of energy, a quintessential quantum concept.

Figure 5.1 Carnot cycle using cavity radiation

Cavity radiation can thus be treated as a macroscopic system in equilibrium.15 Let’s calculate
the efficiency of a Carnot cycle with the photon gas as the working substance. (We already know
what the answer is, that for any reversible cycle, Eq. (2.13), but let’s calculate it explicitly.) From
Eq. (5.10), isotherms on a P -V diagram are the locus of constant P (see Fig. 5.1). The change in

14We can’t get into the rest frame of a photon; a photon held in your hand is a destroyed (absorbed) photon.
15This point underscores the universality of thermodynamics. Equilibrium is equilibrium.
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enthalpy at constant P is the heat absorbed, [∆H]P = Q (Table 4.1), and thus, from Eq. (5.14),
Q = 4P∆V = 4

3aT
4∆V . Along adiabats, we have from Eq. (5.13) (constant entropy),

V T 3 = constant . (5.17)

Combining Eq. (5.17) with Eq. (5.10),

PV 4/3 = constant . (adiabatic process) (5.18)

Temperature and pressure of cavity radiation therefore change in adiabatic processes; in particular
∆T < 0 for ∆V > 0. From Eq. (2.1),

η = 1− |Qout|
Qin

= 1− T 4
2 (V3 − V4)
T 4

1 (V2 − V1) = 1− T2

T1
,

where the last equality follows from applying Eq. (5.17) to each adiabat: T 3
2 V3 = T 3

1 V2 and T 3
2 V4 =

T 3
1 V1.

At various points in our discussion we’ve contrasted the thermodynamic properties of the ideal
gas with those of the photon gas; these results are summarized in Table 5.1.

Table 5.1 Thermodynamics of the ideal gas and the photon gas
Ideal gas Photon gas

Internal energy U = 3
2nRT U = aV T 4

Volume dependence of U
(
∂U

∂V

)
T

= 0
(
∂u

∂V

)
T

= 0

Equation of state P = nRT/V = 2
3u P = 1

3aT
4 = 1

3u

Heat capacity CV = 3
2nR CV = 4aV T 3

Adiabatic process TV γ−1 = constant TV 1/3 = constant

Entropy S = NkB

[
5
2 + ln

(
V

Nλ3
T

)]
S = 4

3aV T
3(

λT ≡ h/
√

2πmkBT (Chapter 7)
)

Chemical potential µ = −kBT ln
(

V

Nλ3
T

)
µ = 0

(Chapter 7)

5.3 WIEN’S DISPLACEMENT LAW
The Stefan-Boltzmann law, Eq. (5.9), specifies the total power emitted per unit area of a black body
at absolute temperature T . Useful as that is, it doesn’t bring us any closer to the holy grail of Kirch-
hoff’s universal function, the energy spectral density of cavity radiation, u(λ, T ). An important step
in that direction, and the last to be taken using thermodynamics, is Wien’s displacement law, derived
in 1893. Wilhelm Wien showed that u(λ, T ), presumed a function of two independent variables λ
and T , is actually a function of a single variable, the product λT : u = u(λT ). That’s a nontrivial
accomplishment;16 how did he do it? We derive Wien’s law in this section.

16Wien received the 1911 Nobel Prize in Physics for this work.
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We first give a “thermodynamic” proof of an important result (a result that also follows from
Wien’s law): Cavity radiation retains its spectral distribution in reversible adiabatic processes (even
though the temperature changes). The proof consists of assuming the opposite and showing it leads
to a contradiction. Let there be thermal radiation in an evacuated chamber with perfectly reflecting
walls. Let the volume and entropy of the radiation be V1 and S1. Compress quasistatically and
adiabatically to volume V2 < V1 (∆S = 0 in this process). At this point, either the radiation has
the spectral distribution of a black body, or it doesn’t. Assume not. By introducing a small amount
of matter into the chamber (at volume V2), the radiation would change to cavity radiation (Section
5.1). This step would be accompanied by an increase in entropy (irreversible), but the energy would
be unchanged (Section 5.1). No change in U at constant V implies ∆T = 0: From Eq. (5.11),
[∆U ]V = 4aV T 3∆T . From Eq. (5.13), however, [∆S]V = 4aV T 2∆T . The two are inconsistent:
[∆U ]V = 0 ⇒ ∆T = 0, and [∆S]V > 0 ⇒ ∆T > 0. The premise that ∆S > 0 thus leads to a
contradiction. The spectral distribution is unaffected by a reversible adiabatic process.

Wien’s law follows from a detailed analysis of the means by which u(λ, T ) would change in
a reversible adiabatic process. A simple way to do that is to study the reflection of radiation from
a slowly moving mirror. Let a piston comprised of a perfectly reflecting material move at a small
velocity v in an evacuated cylinder with reflecting walls. We take v as positive when the piston
moves to decrease the volume of the cylinder. Let monochromatic radiation of frequency ν be
directed toward the piston at normal incidence. As a result the reflected radiation has frequency
ν′ given by the Doppler shift formula

ν′ = ν

(
1 + v/c

1− v/c

)
= ν

[
1 + 2v

c
+O

(v
c

)2
]
.

The frequency of reflected radiation is increased for v > 0. Now let radiation be incident at angle θ
with respect to the direction of the piston’s motion. The component of v projected onto the direction
of the radiation is v cos θ, and thus we have a generalization of the Doppler shift formula:

ν′ = ν

[
1 + 2v

c
cos θ +O

(v
c

)2
]
. (5.19)

Sidebar discussion: Deriving Eq. (5.19) using relativity
The following assumes you’re well versed in the ways of relativity. The energy-momentum four-
vector of a mirror, in a reference frame where it has velocity β ≡ v/c (see Fig. 5.2), is Pµ =

Figure 5.2 Reflection from a moving mirror

Mγc (1,β), where M is the mirror mass, µ = (0, 1, 2, 3), with µ = 0 the time index, and the
Lorentz factor γ = (1−β2)−1/2. The four-momentum of the incident photon isQµ = (E/c) (1, n̂),
where E is the photon energy (related to the frequency ν through the Planck relation E = hν), and
the unit vector n̂ points in the direction of photon propagation. After reflecting from the mirror,
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Q′µ = (E′/c) (1, n̂′) and P ′µ = Mγ′c (1,β′). Conservation of energy-momentum is expressed as
the four-vector equation: P ′µ +Q′µ = Pµ +Qµ. Because we’re not interested in P ′µ, eliminate it:
P ′µ = Pµ +Qµ −Q′µ. Now construct the inner product of P ′µ with itself:

P ′µP ′µ = PµPµ + 2PµQµ − 2PµQ′µ − 2QµQ′µ +QµQµ +Q′µQ′µ ,

where the summation convention on repeated indices is employed, the covariant vectors are con-
structed using the Lorentz metric (which we take to be (−1, 1, 1, 1)), and we’ve used for any four-
vectors, AµBµ = AµB

µ. The photon four-momentum is a null vector, QµQµ = Q′µQ′µ = 0, while
that for the mirror is timelike, PµPµ = P ′µP ′µ = −M2c2. Conservation of energy-momentum is
thus equivalent to the expression

Pµ (Q′µ −Qµ) = −QµQ′µ .

With Qµ = (E/c) (−1, n̂) and Pµ = Mγc (−1,β), we find

E′ = E(1− β · n̂)

1− β · n̂′ + E

Mγc2
(1− n̂ · n̂′)

≈ E 1− β · n̂
1− β · n̂′ = E

1 + β cos θ
1− β cos θ′

≈ E
(
1 + β(cos θ + cos θ′) +O(β)2) , (5.20)

where the photon energy relative to the mass energy of the mirror can be ignored, and we’ve used
β � 1 in the final step. Equation (5.20) differs from Eq. (5.19); they agree at lowest order in
β if we take θ′ = θ. The angle θ′ must differ from θ, however: In changing the energy of the
reflected photon, one changes its momentum as well, both in direction and magnitude. By analyzing
four-momentum conservation, to the extent that E/(Mc2) can be ignored, it can be shown that
sin θ′ = sin θ − β sin(θ + θ′). At lowest order in β we can set θ′ = θ in Eq. (5.20).

The amount of radiant energy17 of frequency ν, δE(ν), impinging on a small area dσ of the
piston in the next dt seconds from the direction of dΩ is (using the flux-tube method)

δE(ν) = dΩ
4π · cdt · dσ cos θ · u(ν, T )dν , (5.21)

where u(ν, T ) is the energy spectral density as a function of frequency, defined such that
|u(ν, T )dν| = |u(λ, T )dλ|. The momentum of the energy in the tube (δp ≡ δE/c) exerts an
infinitesimal force dF on dσ: (see Eq. (5.5))

dF = ∆p
dt = 2δp cos θ

dt = 2 cos θ
c

δE(ν)
dt .

The infinitesimal work done in time dt on dσ by the piston in overcoming dF at speed v is then

dW = dFvdt = 2v
c

cos θδE(ν).

By the first law, adiabatic work18 dW must appear in the energy of the reflected radiation δE(ν′),
where ν′ is the Doppler-shifted frequency, Eq. (5.19). Energy conservation requires

δE(ν) + dW =
(

1 + 2v
c

cos θ
)
δE(ν) = δE(ν′) .

What’s the net change in radiant energy at a given frequency? There’s a Doppler shift out of
(ν, ν + dν) upon reflection from the moving piston, implying there are frequencies ν1 < ν Doppler

17The symbol E here denotes energy, not emissivity.
18We’re assuming the compression occurs under adiabatic conditions.
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shifted into (ν, ν + dν) (see Fig. 5.3). The energy lost from (ν, ν + dν) in time dt is found by
integrating δE(ν) over solid angle and the area A of the piston. Using Eq. (5.21):

dUloss(ν) ≡ c

4πAdtu(ν)dν
∫ 2π

0
dφ
∫ π/2

0
sin θ cos θdθ = c

4Au(ν)dνdt . (5.22)

(Equation (5.22) is consistent with Eq. (5.3) if integrated over all frequencies.) Frequencies ν1(θ)

Figure 5.3 Frequencies scattered into and out of (ν, ν + dν)

are Doppler shifted into ν if, from Eq. (5.19),

ν = ν1(θ)
(

1 + 2v
c

cos θ
)
. (5.23)

For v � c, ν1(θ) is restricted to the interval ν (1− 2v cos θ/c) ≤ ν1(θ) ≤ ν. The energy gained in
(ν, ν + dν) in time dt is given by the integral

dUgain(ν) = c

4πAdtdν
∫

cos θu(ν1(θ))dΩ . (5.24)

For small v, 2ν cos θv/c is small so that a first-order Taylor expansion is accurate,

u(ν1(θ)) ≈ u(ν) + (ν1(θ)− ν) ∂u(ν)
∂ν

≈ u(ν)− 2v
c
ν cos θ∂u(ν)

∂ν
, (5.25)

where we’ve used Eq. (5.23). Combining Eq. (5.25) with Eq. (5.24),

dUgain(ν) = c

4πAdtdν
∫ 2π

0
dφ
∫ π/2

0
dθ sin θ cos θ

[
u(ν)− 2v

c
ν cos θ∂u(ν)

∂ν

]
(5.26)

= c

4Adtdν
[
u(ν)− 4

3
v

c
ν
∂u(ν)
∂ν

]
.

Subtracting Eq. (5.22) from Eq. (5.26), the net change in energy in (ν, ν + dν) as a result of an
adiabatic compression is

∆U(ν) ≡ dUgain(ν)− dUloss(ν) = −1
3Avdtν ∂u(ν)

∂ν
dν = 1

3dV ν ∂u(ν)
∂ν

dν , (5.27)

where the change in volume in time dt is dV = −Avdt. Because the sign of dV is linked to the
sign of v, Eq. (5.27) holds for reversible processes.

The energy change ∆U(ν) implies a change in the energy spectral density,

d(u(ν)V )dν = ∆U(ν) = u(ν)dV dν + V du(ν)dν = 1
3dV ν ∂u(ν)

∂ν
dν ,

implying that

V du(ν) = dV
(
ν

3
∂u(ν)
∂ν

− u(ν)
)
. (5.28)
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Equation (5.28) specifies the change in u(ν) with a change in volume under adiabatic conditions;
it’s therefore equivalent to the derivative

V

(
∂u(ν)
∂V

)
S

= ν

3
∂u(ν)
∂ν

− u(ν) . (5.29)

Equation (5.29) is a partial differential equation for u as a function of ν and V ; it’s the central result
in the derivation of Wien’s law.

As can be shown, the solution of Eq. (5.29) can be written in the form19

u(ν) = ν3φ(V ν3) , (5.30)

where φ is any function of a single variable, Wien’s law. The “trouble” with Eq. (5.29) is that, being
based on the Doppler shift and energy conservation, it applies to the spectral distribution of any
system of radiant energy, not just thermal radiation. Equation (5.30), however, places a constraint
on the form that Kirchhoff’s function must have.

What do we know about the derivative on the left side of Eq. (5.29)? From Exercise 3.10, we
have the general thermodynamic identity(

∂U

∂V

)
S

=
(
∂U

∂V

)
T

− T
(
∂P

∂T

)
V

. (5.31)

By writing U = uV , Eq. (5.31) implies the result specific to cavity radiation,(
∂u

∂V

)
S

= −T
V

(
∂P

∂T

)
V

= −4
3
u

V
, (5.32)

where we’ve used Eqs. (5.4), (5.10), and (5.11). Thus, while the energy density of cavity radiation
is independent of volume under isothermal conditions, it’s not for adiabatic processes (temperature
changes in adiabatic processes). By integrating Eq. (5.29) over all frequencies (u =

∫∞
0 u(ν)dν),(

∂u

∂V

)
S

= 1
3V

∫ ∞
0

ν
∂u(ν)
∂ν

dν − u

V
= 1

3V [νu(ν)]
∣∣∣∞
0
− 4

3
u

V
, (5.33)

where we’ve integrated by parts. Consistency between Eqs. (5.32) and (5.33) requires that

lim
ν→∞

νu(ν) = 0 . (5.34)

Note that Eq. (5.34) is a consequence of classical physics.
We can now show directly that cavity radiation retains its spectral distribution under reversible

adiabatic processes. In isentropic processes V T 3 = constant (Eq. (5.13)). Equation (5.30) can
therefore be written in the form for cavity radiation

u(ν, T ) = ν3φ

(
ν3

T 3

)
≡ ν3ψ

( ν
T

)
, (5.35)

where ψ is another function of a single variable. If every dimension of the cavity is expanded uni-
formly, the wavelength of every mode of electromagnetic oscillation would increase in proportion.20

For a lengthL ≡ V 1/3 associated with the cavity, every wavelength λ scales withL, λ ∼ L = V 1/3,
and because TV 1/3 is constant, we have that λT = constant in isentropic processes, or, equivalently

19We stress that Eq. (5.30) applies for isentropic processes.
20That is, there would be a “redshift.”
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ν/T = constant. From Eq. (5.8),
∫∞

0 u(ν, T )dν = aT 4. Assume that in an isentropic expansion the
radiation temperature changes from T1 → T2. Then we have the equality

1
T 4

1

∫ ∞
0

u(ν, T1)dν = 1
T 4

2

∫ ∞
0

u(ν′, T2)dν′ . (5.36)

Under the expansion, for every frequency ν for the system at T1, there’s an associated (“displaced”)
frequency ν′ = (T2/T1)ν for the system at T2 (because ν/T1 = ν′/T2). Hence, dν′ = (T2/T1)dν.
The equality of the integrands in Eq. (5.36) implies

u(ν′, T2) =
(
T2

T1

)3
u(ν, T1) . (5.37)

Now make use of Eq. (5.35) in Eq. (5.37); we find (using ν/T1 = ν′/T2)

ψ

(
ν′

T2

)
= ψ

(
ν

T1

)
. (5.38)

Equation (5.38) shows that the spectral energy density function remains invariant in isentropic pro-
cesses; one has to “displace” the frequencies ν → ν′ = (T2/T1)ν.

It’s convenient to express the spectral energy density in terms of the wavelength. Using
u(λ)dλ = u(ν)dν along with Eq. (5.35) and c = λν,

u(λ, T ) =
∣∣∣∣dνdλ

∣∣∣∣u(ν) = c4

λ5ψ
( c

λT

)
≡ λ−5f(λT ) , (5.39)

where f is yet another unknown (but universal!) function of a single variable. The Planck distribu-
tion has the very form predicted by Wien’s law (λ−5f(λT )):

u(λ, T ) = 8πhc
λ5

(
exp

(
hc

λkBT

)
− 1
)−1

. (5.40)

It’s clear that u(ν)→ 0 as ν → 0 (as ν → 0, λ→∞, and a cavity of finite size cannot support
an infinite-wavelength mode of electromagnetic vibration). From Eq. (5.34), u(ν)→ 0 as ν →∞.
Mathematically, then, the energy density function must have a maximum (Rolle’s theorem). Suppose
the function f(λT ) in Eq. (5.39) has been found. Its maximum with respect to λ is obtained by
satisfying the condition xf ′(x) = 5f(x), where x ≡ λT . The wavelength where maximum energy
density occurs (or maximum emissivity) is

λmax = 1
T

(
5f
f ′

)
max
≡ b

T
. (5.41)

The quantity b is known as Wien’s constant; it has the value b = 2.898× 10−3 m K.

Example. What’s the wavelength of maximum emission associated with the black-body temperature
of the sun, T = 5780 K? Using Eq. (5.41), we find λmax = 500 nm, in the green portion of the
spectrum, near the peak sensitivity of the human eye.
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5.4 COSMIC MICROWAVE BACKGROUND
It’s not out of place to discuss the CMB (mentioned in Section 4.8). In 1964, it was found that the
universe is permeated by electromagnetic radiation that’s not associated with any star or galaxy,
that’s unpolarized and highly isotropic, what we’d expect of cavity radiation.21 Is the universe one
big “cavity”? The measured spectral energy density of the CMB is found to occur as a Planck dis-
tribution associated with absolute temperature T = 2.7260± 0.0013 K. The universe thus contains
a population of photons in thermal equilibrium at T = 2.726 K. Why?

The CMB is taken to be a thermal relic of a universe that was at one time considerably hotter
than T = 2.73 K. By the Big Bang theory, with a universe initially in a hot, dense state, photons
are scattered by charged particles (Thomson scattering), particularly free electrons, providing an
efficient mechanism for establishing thermal equilibrium22 because the expansion rate is less than
the speed of light, Ṙ < c (R is the scale length of the universe). If hotter conditions prevail at
one region of the early universe than in another, photons act to equalize temperatures spatially. In
an adiabatic expansion of a photon gas (the universe is a closed system, right?), V T 3 = constant,
Eq. (5.13), and thus the temperature of the photon population decreases as the universe expands,
T ∝ R−1(t). When the temperature cools to approximately 3000 K, neutral atoms can form and
stay in that state, stable against disruption by photons. At that point, photons are said to decouple
from matter: Neutral species are significantly less effective in scattering photons. By photons having
been in thermal equilibrium at the time of decoupling, they maintain their black-body spectrum as
the universe keeps adiabatically expanding.

CHAPTER SUMMARY
This chapter introduced the application of thermodynamics to electromagnetic radiation that’s in
equilibrium with matter, what’s called cavity radiation or the closely-related black body radiation.

• Cavity radiation is radiant energy in an enclosure bounded by thick opaque walls at a uniform
temperature. Its properties are independent of the specifics of the cavity and depend only on
the temperature of the walls.

• A black body absorbs incident energy without reflection. A black body can very nearly be
realized by a hole connected to a cavity.

• The total emissive power E(T ) (integrated over all wavelengths) of a black body is related to
the energy density u(T ) of cavity radiation by E(T ) = cu(T )/4. The quantity u(T ) = aT 4

where a is the radiation constant andE(T ) = σT 4, where σ = ac/4 is Stefan’s constant. The
pressure P (T ) = 1

3u(T ) for cavity radiation.

• The Gibbs energy for cavity radiation is zero, implying that the chemical potential µ = 0.
Chemical potential is not really defined for photons, because they are not conserved. The
assignment µ = 0 is consistent with the other thermodynamic properties of the photon gas.

• For cavity radiation the energy density is independent of the volume at constant temperature,
(∂u/∂V )T = 0. The total radiant energy is U = aV T 4, where V is the volume of the cavity.

• In reversible adiabatic processes involving cavity radiation, V T 3 is a constant. Cavity ra-
diation retains the spectral distribution of a black body in such processes, even though the
temperature changes.

21The 1978 Nobel Prize in Physics was award to A.A. Penzias and R.W. Wilson for the discovery of the CMB radiation.
22With free charges about, the universe has “opaque walls,” just what we need for cavity radiation!
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• The energy spectral density is a function of a single variable, λT , u(λ, T ) = λ−5f(λT ),
where f is a universal function (Wien’s law). The wavelength where maximum emissivity
occurs, λmax = b/T where b is Wien’s constant.

EXERCISES
5.1 Derive Eq. (5.18). Derive Eq. (5.32).

5.2 Verify that Eq. (5.30) satisfies Eq. (5.29).

5.3 Show that u(ν) = 1
V
φ(V ν3) also satisfies Eq. (5.29).

5.4 What is CP for cavity radiation? Hint: Consider CP = (∂H/∂T )P . Likewise, for cavity
radiation what are the expansivity and isothermal compressibility, Eq. (1.20)? In general,
what is (∂f/∂x)x?

5.5 Assume that the entropy S of cavity radiation is proportional to the average number of pho-
tons in the cavity, N , S = αN , where α is a constant. (The constant α turns out to be
≈ 3.6kB , but that’s not needed here.) Show that

a. In an isothermal expansion of cavity radiation the fractional change in photon number is
equal to the fractional change in volume

∆N
N

= ∆V
V

.

b. In an isothermal expansion the fractional change in entropy is equal to the fractional
change in volume

∆S
S

= ∆V
V

.

5.6 Consider an enclosure (cavity) in which the temperature is uniform throughout. Would an
observer in such an enclosure “see” anything at all, such as objects within the enclosure, even
if the objects have different reflectances and colors? Would one see shadows? Read the first
part of Section 5.1.

5.7 a. Show using the Planck distribution, that Wien’s constant b ∼ hc/kB (see Eq. (5.41)).

b. Show that the energy of the photon associated with the maximum spectral emissivity is
given by the expression

Emax =
(
hc

b

)
T ≈ 4.97kBT .

c. Show that you can estimate the number of photons simply by dividing the total energy
aV T 4 by the energy of a photon which is proportional to kBT . Compare with Eq. (5.15).

d. Define the average distance between photons in cavity radiation as l ≡ (V/N)1/3. Using
Eq. (5.15), show that l = 1.6~c/(kBT ).

5.8 Show that the entropy of cavity radiation when expressed in terms of its natural variables is
S(U, V ) = (4/3)U3/4(aV )1/4.

5.9 A fun exercise (if you think such things are fun) is to calculate the Joule expansion coefficient
for cavity radiation. Show that µJ = −T/(4V ). This is a formula in search of an experiment,
however. There is no vacuum that cavity radiation can expand into that doesn’t already have
cavity radiation.
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Phase and chemical
equilibrium

A phase, as the term is used in thermodynamics, is a spatially homogeneous material body in a
state of equilibrium1 characterized by certain parameters such as T and P . A body of given

chemical composition can exist in a number of possible phases. For example, H2O can exist in the
liquid and vapor phases, as well as several forms of ice having different crystal structures.2 Sub-
stances can undergo phase transitions, abrupt changes in phase that occur upon variations of state
variables. We do not cover phase transitions in this book.3 Different phases of the same substance
can coexist in physical contact under certain conditions. Is there a limit to the number of phases that
can coexist? An elegant answer is provided by the Gibbs phase rule, Eq. (6.20). First, however, time
for a math refresher.

6.1 LAGRANGE MULTIPLIERS*
We’re often presented with the problem of finding the extremum of a multivariable function when
there are relations (constraints) among the variables. There is a well known method for handling
such problems—Lagrange’s method of undetermined multipliers—which we review in this section.

A function of N variables f(x1, · · · , xN ) has an extremum where df = 0, i.e., where

df =
N∑
j=1

∂f

∂xj
dxj = 0 . (6.1)

If the coordinates xj can be varied independently, Eq. (6.1) is satisfied by finding the solutions
of the N equations, ∂f/∂xj = 0, j = 1, · · · , N . If, however, there are n < N equations of
constraint among the coordinates, αi(x1, · · · , xN ) = 0, i = 1, · · · , n, the differentials dxj are not
independent: They’re related through the differentials of the equations of constraint

dαi =
N∑
j=1

∂αi
∂xj

dxj = 0 . i = 1, · · · , n (6.2)

In that case, Eq. (6.1) can’t be satisfied by simply requiring ∂f/∂xj = 0.

1The existence of phases is implied by the existence of equilibrium. Systems maintain states of equilibrium when kept un-
der fixed conditions (Chapter 1). As phase diagrams show, phases are consistent with a range of thermodynamic parameters.
A phase is thus a superset of equilibrium states. States imply phases.

2Note that there is a phase of ice called Ice IX. Ice-nine appeared as a fictional material in Kurt Vonnegut’s novel Cat’s
Cradle that would have the power to destroy all life on Earth.

3The topic of phase transitions can be more thoroughly treated in books on statistical mechanics.
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You wouldn’t mind if we multiplied each of the equations in Eq. (6.2) by a parameter λi, the
Lagrange multiplier, so that

λi

N∑
j=1

∂αi
∂xj

dxj = 0. i = 1, · · · , n (6.3)

Form the sum of the n equations implied by Eq. (6.3) (which is still equal to zero), combine with
Eq. (6.1), and group together terms with common factors of dxj :

N∑
j=1

dxj

[
∂f

∂xj
+

n∑
i=1

λi
∂αi
∂xj

]
= 0 . (6.4)

Can we set the terms in square brackets to zero? While that’s what we’re going to do, we don’t
“know that” yet. There are N variables and n constraints; thus only N −n variables can considered
independent. It’s immaterial which are taken as independent; we can choose any N − n of them as
independent. We can eliminate the differentials of the n dependent variables in Eq. (6.4) by choosing

∂f

∂xj
+

n∑
k=1

λk
∂αk
∂xj

= 0 . j = 1, · · · , n (6.5)

Equation (6.5) gives us n equations in n unknowns; the Lagrange multipliers {λk}nk=1 can therefore
be considered known. The remaining N − n differentials in Eq. (6.4) can then be varied indepen-
dently, implying that the coefficient of each dxj is zero,

∂f

∂xj
+

n∑
k=1

λk
∂αk
∂xj

= 0 . j = n+ 1, · · · , N (6.6)

Equations (6.5) and (6.6) have exactly the same form and can be combined into one equation,
that which would be obtained by setting the terms in square brackets in Eq. (6.4) to zero. The
specification of which variables are independent is moot; all of the coefficients of the dxj in Eq.
(6.4) can be taken as zero. It’s as if we’ve made the replacement f → f+

∑n
i=1 λiαi in the function

we seek the extremum of, with all variables now considered independent.

Example. Find the maximum of f(x, y) = x+ y subject to the constraint x2 + y2 = 1, i.e., x and y
must lie on the unit circle. Form the auxiliary function g(x, y) ≡ x+ y+λ(x2 + y2− 1) where λ is
the Lagrange multiplier. Find the maximum of g(x, y) as if x and y are independent variables. From
∂g/∂x = 1 + 2λx = 0 and ∂g/∂y = 1 + 2λy = 0, the extremum occurs at x = y = −1/(2λ).
What’s the value of λ? Substitute into the equation of constraint: x2 + y2 = 1 ⇒ λ2 = 1/2. The
maximum of f occurs at x = y = 1/

√
2, with fmax =

√
2.

6.2 PHASE COEXISTENCE

Equilibrium conditions

In this section we show that the chemical potential has the same value in each of the phases in which
coexistence can occur—see Eq. (6.19). Consider two phases of a substance, I and II . Because
matter and energy can be exchanged between phases in contact, phase coexistence is achieved when
T and P are the same in both phases, and when the chemical potentials are equal, µI = µII

(Section 3.10). From Eq. (3.32), µ = µ(T, P ). The chemical potential can therefore be visualized
as a surface µ = µ(T, P ) (see Fig. 6.1). Two phases of the same substance therefore coexist when
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Figure 6.1 Coexistence curve defined by intersection of chemical potential functions

µI(T, P ) = µII(T, P ) . (6.7)

The intersection of the two surfaces defines the locus of points P = P (T ) for which Eq. (6.7) is
satisfied, the coexistence curve. Three phases (I, II, III) coexisting in equilibrium would require
the equality of three chemical potential functions,

µI(T, P ) = µII(T, P ) = µIII(T, P ) . (6.8)

In Eq. (6.8) we have two equations in two unknowns; three phases can therefore coexist at a unique
combination of T and P known as a triple point.4 By this reasoning, it would not be possible for
four phases of a single substance to coexist in equilibrium (what would require three equations in
two unknowns). Coexistence of four phases of the same substance is not known to occur in nature.

Multicomponent phases have more than one chemical species.5 To analyze multiphase, multi-
component systems, we adopt the notation where µγj denotes the chemical potential of species j in
the γ phase (we use Roman letters to label species and Greek letters to label phases). Let there be k
chemical species, 1 ≤ j ≤ k, and π phases, 1 ≤ γ ≤ π, where π here is an integer. The first law of
thermodynamics for multiphase, multicomponent open systems is the generalization of Eq. (3.16):

dU = TdS − PdV +
π∑
γ=1

k∑
j=1

µγj dNγ
j . (6.9)

The extensivity of internal energy implies the scaling property U(λS, λV, λNγ
j ) = λU(S, V,Nγ

j ).
By Euler’s theorem, therefore, Eq. (3.19),

U =S
(
∂U

∂S

)
V,Nγ

j

+ V

(
∂U

∂V

)
S,Nγ

j

+
π∑
γ=1

k∑
j=1

Nγ
j

(
∂U

∂Nγ
j

)
S,V

=TS − PV +
π∑
γ=1

k∑
j=1

µγjN
γ
j , (6.10)

4The triple point of H2O is used in the definition of the Kelvin temperature scale, Section 2.4.
5Mentioned briefly in Section 3.5.
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where the derivatives are obtained from Eq. (6.9), with µγj ≡
(
∂U/∂Nγ

j

)
S,V,Nγ

j

. The notation Nγ
j

indicates to hold fixed all particle numbers except Nγ
j . Equation (6.10) is the generalization of the

Euler formula, Eq. (3.31). Applying G = U − TS + PV (Gibbs energy) to Eq. (6.10),

G =
π∑
γ=1

k∑
j=1

µγjN
γ
j , (6.11)

which generalizes Eq. (4.9). Taking the differential of Eq. (6.10) and using Eq. (6.9), we have the
multicomponent, multiphase generalization of the Gibbs-Duhem equation, Eq. (3.32),

π∑
γ=1

k∑
j=1

Nγ
j dµγj = −SdT + V dP . (6.12)

By taking the differential of G in Eq. (6.11), and making use of Eq. (6.12),

dG = −SdT + V dP +
π∑
γ=1

k∑
j=1

µγj dNγ
j , (6.13)

and thus the alternate definition of chemical potential,6

µγj =
(
∂G

∂Nγ
j

)
T,P,Nγ

j

, (6.14)

the energy to add a particle of type j in phase γ holding fixed T , P , and the other particle numbers.
The Gibbs energy is a minimum in equilibrium.7 From Eq. (6.13),

[dG]T,P =
π∑
γ=1

k∑
j=1

µγj
[
dNγ

j

]
T,P

= 0 . (6.15)

If the particle numbers Nγ
j were independent and could be varied freely, one would conclude from

Eq. (6.15) that µγj = 0. But the particle numbers are not independent. The number of particles of
each species spread among the phases is a constant,8

∑
γ N

γ
j = constant, and thus

π∑
γ=1

dNγ
j = 0 . j = 1, · · · , k (6.16)

We can incorporate these constraints by introducing Lagrange multipliers λj , which when multi-
plied by Eq. (6.16) and added to Eq. (6.15) leads to

k∑
j=1

π∑
γ=1

(
µγj + λj

)
dNγ

j = 0 . (6.17)

6See Section 4.6.
7A stability analysis of a multicomponent system (requiring entropy to be a maximum in equilibrium), as in Section 3.10,

would show that CV > 0 and β > 0, just as for a single-component phase. The requirement ∂µ/∂N > 0, Eq. (3.51),
is generalized so that the matrix of derivatives µj,k ≡ ∂µj/∂Nk is positive definite, with

∑
j,k

µj,kδNjδNk > 0. The
matrix is symmetric, µj,k = µk,j , which could be considered a Maxwell relation. From the stability condition on S follows
that H , F , and G are a minimum in equilibrium.

8We’re not allowing chemical reactions to take place.
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We can now treat the particle numbers as unconstrained, so that Eq. (6.17) implies

µγj = −λj . (6.18)

For coexisting phases in equilibrium ([dG]T,P = 0), the chemical potential of each species is
independent of phase. Equation (6.18) is equivalent to

µ1
j = µ2

j = · · · = µπj . j = 1, · · · , k (6.19)

There are k(π − 1) equations of equilibrium for k chemical components in π phases.

Gibbs phase rule

How many independent state variables exist in a multicomponent, multiphase system? In each phase
there areNγ ≡

∑k
j=1N

γ
j particles, and thus there are k−1 independent concentrations9 cγj ≡ N

γ
j /

Nγ , where
∑k
j=1 c

γ
j = 1. Among π phases there are π(k−1) independent concentrations. Including

P and T there are 2 + π(k − 1) independent intensive variables.
There are k(π − 1) equations of equilibrium, Eq. (6.19). The variance of the system, f , is the

difference between the number of independent variables and the number of equations of equilibrium,

f ≡ 2 + π(k − 1)− k(π − 1) = 2 + k − π . (6.20)

Equation (6.20) is the Gibbs phase rule.[3, p96] It specifies the number of intensive variables that
can be independently varied without disturbing the number of coexisting phases in equilibrium
(f ≥ 0).

• k = 1, π = 1 ⇒ f = 2: a single substance in one phase. Two intensive variables can be
independently varied; T and P in a gas.

• k = 2, π = 1 ⇒ f = 3: two substances in a single phase, as in a mixture of gases. We can
independently vary T , P , and one mole fraction.

• k = 1, π = 2 ⇒ f = 1: a single substance in two phases; T or P can be varied along the
coexistence curve.

• k = 1, π = 3 ⇒ f = 0: a single substance in three phases; we cannot vary the conditions
under which three phases coexist in equilibrium. Unique values of T and P define a triple
point.

The reader should appreciate the generality of the Gibbs phase rule, which does not depend on the
type of chemical components, nor on any other physical properties of the system.

Clausius-Clapeyron equation

The latent heat, L, is the heat released or absorbed during a phase change. It’s specified either as
a molar quantity (per mole) or as a specific quantity (per mass). Two common forms of the latent
heat are the latent heat of vaporization (boiling) and the latent heat of fusion (melting), the energy
to transform a given quantity of a substance from one phase to another.10 The heat of vaporization

9Ratios of extensive variables are independent of the size of the system; intensive quantities like concentrations are
referred to as densities; Section 3.8.

10There is a latent heat of sublimation, where the solid phase converts directly to the gaseous phase, without going through
the liquid state.



86 � Thermodynamics

(or fusion) is also called the enthalpy of vaporization (or fusion) because measurements are made
at fixed pressure.11 At a given T ,

L(T ) = hv − hl = T
[
sv(T, P (T ))− sl(T, P (T ))

]
, (6.21)

where v and l refer to vapor and liquid, lower-case quantities such as s ≡ S/n indicate molar
values, and P (T ) is the pressure along the coexistence curve.12 The difference in molar entropy
between phases is denoted ∆s ≡ sv − sl; likewise with ∆h. Equation (6.21) is written compactly
as L = ∆h = T∆s.

Equilibrium between two phases of a single substance requires the equality of chemical po-
tentials, µI(T, P ) = µII(T, P ), Eq. (6.7). As we move along the coexistence curve, T and P
vary in such a way as to maintain this equality. Variations in T and P , however, induce changes
in the chemical potential functions, δµ, and thus along the coexistence curve δµI = δµII . From
the Gibbs-Duhem equation (3.32), dµ = −sdT + vdP . Along the coexistence curve, therefore,
−sIdT + vIdP = −sIIdT + vIIdP , implying that(

dP
dT

)
coexist

= sI − sII

vI − vII
= L

T∆v , (6.22)

where ∆v ≡ vI − vII is the change in molar volume and sI − sII = L/T . Equation (6.22)
is the Clausius-Clapeyron equation; it gives the slope of the coexistence curve. If the changes in
molar entropy and volume between the phases are known, Eq. (6.22) can be integrated to give the
coexistence curve.

Kirchhoff equation

For the case of the vapor phase of a substance in equilibrium with its liquid phase, we can derive a
useful result for the temperature dependence of the latent heat, L(T ). Differentiate Eq. (6.21),

dL
dT = T

d∆s
dT + ∆s = T

d∆s
dT + L

T
. (6.23)

Along the coexistence curve, s = s(T, P (T )); the total derivative of ∆s is therefore

d∆s
dT =

(
∂∆s
∂T

)
P

+
(
∂∆s
∂P

)
T

dP (T )
dT = 1

T
∆cP −

(
∂∆v
∂T

)
P

dP (T )
dT (6.24)

= 1
T

∆cP −∆(αv)dP (T )
dT = 1

T
∆cP −

∆(αv)
∆v

L

T
,

where in the first line we’ve used Eq. (3.13) (with ∆cP ≡ cvP − clP the difference in molar heat
capacities) and a Maxwell relation, and in the second line, Eq. (1.20) and Eq. (6.22). Now,

∆(αv)
∆v ≡ αvvv − αlvl

vv − vl
= αv

(
1− (αl/αv)(vl/vv)

)
1− (vl/vv) ≈ αv = T−1 , (6.25)

where we’ve used the fact that vv � vl (approximately a factor of 103), αl � αv , and αv = T−1

(Exercise 1.6). Combining Eqs. (6.25) and (6.24),

d∆s
dT = 1

T
∆cP −

L

T 2 . (6.26)

Combining Eqs. (6.26) and (6.23), we have Kirchhoff’s equation for the latent heat:

d
dT L(T ) = ∆cP . (6.27)

11Enthalpy is the heat added at constant pressure; Chapter 4.
12Equation (6.21) has been written in terms of the liquid-gas transition, but the form of the equation applies for any

transition in which two phases coexist in equilibrium.
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6.3 THERMODYNAMICS OF MIXTURES: IDEAL SOLUTIONS
Volume is certainly an extensive variable; for a system consisting of a mixture of k chemical species,
V (λN1, · · · , λNk) = λV (N1, · · · , Nk). From Euler’s theorem,

V =
k∑
i=1

Ni

(
∂V

∂Ni

)
T,P,Ni

≡
k∑
i=1

NiV i , (6.28)

where V i is the partial molar volume. Equation (6.28) would seem to indicate that V is obtained by
assembling, for each species, Ni moles of a substance that comes with molar volume V i. There’s
a subtle point here. The quantity V i is the volume per mole of the ith substance in solution. The
molar volume of the pure substance is denoted V 0

i , which is not the same as the molar volume in
solution, V i 6= V 0

i . The difference

∆V ≡ V − V 0 =
k∑
i=1

Ni(V i − V 0
i )

is called the volume of mixing.

Example. When one mole of water is added to a large volume of water at 25 ◦C the volume increases
by 18 cm3. The molar volume of pure water V 0 is thus 18 cm3. When one mole of water is added to a
large volume of ethanol, the volume increases by 14 cm3. The molar volume of water in ethanol V is
14 cm3. The volume occupied by the water molecules in solution depends on what the surrounding
molecules are. Try adding equal volumes of water and your favorite liquor: V + V 6= 2V .

Any extensive property can be expressed in terms of partial molar quantities:

H =
∑
i

NiHi U =
∑
i

NiU i G =
∑
i

NiGi F =
∑
i

NiF i S =
∑
i

NiSi ,

where for X = (H,U,G, F, S), Xi ≡ (∂X/∂Ni)T,P,Ni . The partial molar quantities for the ther-
modynamic potentials obey the same combination rules as do the potentials for the pure substances.
For example,

G−H + TS = 0⇐⇒
k∑
i=1

Ni
(
Gi −Hi + TSi

)
= 0 ,

and hence
Gi = Hi − TSi . (6.29)

The entropy, enthalpy, and free energy of mixing are then defined by

∆S =
∑
i

Ni(Si − S0
i ) ∆H =

∑
i

Ni(Hi −H0
i ) ∆G =

∑
i

Ni(Gi −G0
i ) .

Because of Eq. (6.29), we have the relation among the quantities of mixing,

∆G = ∆H − T∆S . (6.30)

The partial molar Gibbs energy deserves special mention because from Eq. (6.14) it’s the chemical
potential, Gi = µi = (∂G/∂Ni)T,P,Ni .

Consider a system of two compartments separated by a rigid, but permeable barrier (see Fig.
6.2). One compartment contains pure hydrogen gas, H2, and the other contains a mixture of hydro-
gen and nitrogen gas, N2 + H2. Palladium is selectively permeable: It’s permeable to H2 but not to
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Figure 6.2 Selectively permeable membrane, passes H2 but not N2

N2. Because the barrier is permeable to H2, the hydrogen pressures on the two sides equalize13 with
the pressure of the pure hydrogen, PH2(pure) ≡ P0, equal to the partial pressure14 of hydrogen in
the mixture, PH2(mix) ≡ xP , with the total pressure in the right compartment P = PH2(mix) + PN2

and x the hydrogen mole fraction. Thus, P0 = xP . The chemical potentials of hydrogen will
equalize, µH2(pure)(T, P0) = µH2(mix)(T, P ). From Eq. (4.12), the chemical potential of an ideal
gas has the form µ(T, P ) = µ(T, P0) + RT ln (P/P0), where P0 is a reference pressure. Thus,
µH2(pure)(T, P0) = µH2(mix)(T, P ) = µH2(mix)(T, P0) + RT ln(P/P0). With P0 = xP , we have
µH2(mix)(T, P ) = µH2(pure)(T, P ) +RT ln x, where we have erased the subscript on P0. This argu-
ment could be repeated for a mixture of any number of ideal gases separated from the pure species i
by a barrier selectively permeable to substance i. The chemical potential of an ideal gas in a mixture
is therefore

µi = µ0
i (T, P ) +RT ln xi , (6.31)

where µ0
i (T, P ) is the chemical potential of the pure species i. The chemical potential of a gas in a

mixture is less than that of the pure gas for the same total pressure.15

Using Eq. (6.31) we immediately obtain the Gibbs energy of mixing for ideal gases,

∆G =
k∑
i=1

Ni
(
µi − µ0

i

)
= RT

k∑
i=1

Ni ln xi = NRT
k∑
i=1

xi ln xi . (6.32)

The entropy of mixing follows directly from Eq. (6.32). Using S = − (∂G/∂T )P,N , it’s straight-
forward to show, working through the definitions, that

∆S = −
(
∂∆G
∂T

)
P,N

= −NR
k∑
i=1

xi ln xi . (6.33)

Note from Eqs. (6.32) and (6.33) that ∆G = −T∆S, implying from Eq. (6.30) that the enthalpy of
mixing is zero, ∆H = ∆G + T∆S = 0. There is no heat of mixing associated with the formation
of a mixture of ideal gases. We can also infer from Eq. (6.32) that the volume of mixing vanishes,
∆V = (∂∆G/∂P )T,xi = 0. Mixtures of ideal gases are formed without any volume of mixing.16

Thus, for a mixture of ideal gases there is no volume of mixing, no enthalpy of mixing, and the
entropy of mixing is given by Eq. (6.33). An ideal solution is defined as any mixture (solution) of
liquids, gases, or solids that exhibits these properties.

13Subsystems come to equilibrium when their intensive variables can equalize, Section 3.10.
14Partial pressures are discussed in Section 1.6.
15Materials move from high to low values of µ (Section 3.11). Thus Eq. (6.31) makes sense: A system composed entirely

of species i would diffuse into a mixture containing i.
16Ideal gases don’t “know” what’s around them!
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6.4 LAW OF MASS ACTION
Consider a chemical reaction at constant T and P symbolized by the formula

νAA+ νBB → νCC + νDD , (6.34)

where A, · · · , D are the chemical symbols of the substances and νA, · · · , νD are numbers known
as the stoichiometric coefficients. If the Gibbs energy G decreases then the reaction proceeds spon-
taneously in the direction of the arrow, with the reaction proceeding until G reaches a minimum
value. Conversely, if G increases in the direction shown, the reaction proceeds spontaneously in the
opposite direction, again until G reaches a minimum value.

Equation (6.13) implies that, for a single phase,

[dG]T,P = µAdNA + µBdNB + µCdNC + µDdND , (6.35)

where the changes in mole numbers dNA, · · · ,dND are those resulting from the chemical reaction
Eq. (6.34). One unit of reaction is said to have occurred when νA moles of A and νB moles of B
have been consumed to form νC moles of C and νD moles of D. Let the reaction proceed by ξ
reaction units; at this point the amount of the various substances is given by

NA = N0
A − νAξ NB = N0

B − νBξ NC = N0
C + νCξ ND = N0

D + νDξ , (6.36)

where N0
i are the number of moles of each substance before the reaction advances by ξ units. From

Eq. (6.36),

dNA = −νAdξ dNB = −νBdξ dNC = νCdξ dND = νDdξ . (6.37)

The variable ξ is called the extent of reaction or the reaction coordinate. Combining Eq. (6.37) with
Eq. (6.35), [dG]T,P = (−νAµA − νBµB + νCµC + νDµD) dξ, from which(

∂G

∂ξ

)
T,P

= νCµC + νDµD − νAµA − νBµB . (6.38)

If the derivative in Eq. (6.38) is negative, G decreases as the reaction progresses in the direction
shown by the arrow; if the derivative is positive, the progress of the reaction would lead to an
increase in G, and hence the reaction would spontaneously proceed in the other direction. The
reaction is in equilibrium (rates in each direction are balanced) when the derivative vanishes,(

∂G

∂ξ

)
T,P,eq

= 0 . (6.39)

Equation (6.38) can be written more concisely. Instead of Eq. (6.34), write the chemical reaction
as
∑
i νiMi = 0, where Mi is the chemical symbol of the ith species and νi is the stoichiometric

coefficient, counted as positive if species i is produced in the reaction, and negative if it’s consumed.

Example. Carbon monoxide and hydrogen react over a catalyst to produce methanol,

CO + 2H2 � CH3OH .

The stoichiometric coefficients are νCO = −1, νH2 = −2, and νCH3OH = 1.

Equation (6.38) can therefore be written as(
∂G

∂ξ

)
T,P

=
∑
i

νiµi .
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The quantity
∑
i νiµi is called the chemical affinity; it plays the role of a driving force for chemical

reactions. In equilibrium the affinity vanishes (same as Eq. (6.39)). Thus, there is a relation between
the chemical potentials of the constituents in a chemical reaction in equilibrium:∑

i

νiµi = 0 . (6.40)

For an ideal solution we can use Eq. (6.31) to write the affinity∑
i

νiµi =
∑
i

νi
(
µ0
i +RT ln xi

)
=
∑
i

νiµ
0
i +RT

∑
i

ln xνii ≡ ∆G0 +RT ln(
∏
i

xνii ) ,

so that, in equilibrium, (
∑
i νiµi = 0)∏
i

xνii = exp
(
−∆G0/(RT )

)
≡ K∗(T, P ) , (6.41)

where K∗, the equilibrium constant of the reaction, is a dimensionless function of T and P . The
quantity

∑
i νiµ

0
i ≡ ∆G0, termed the free energy of reaction in the standard state, is the change

in Gibbs energy for one unit of reaction (if it could occur) among the constituents of the reaction
in their pure forms. In dilute solutions the mole fractions are proportional to the concentrations, ci,
and Eq. (6.41) can be written ∏

i

cνii = K(T, P ) , (6.42)

where K(T, P ) is another equilibrium “constant” (having dimensions). Equation (6.42) is the usual
form of the law of mass action.

Example. For the reaction of carbon monoxide and hydrogen producing methanol (previous exam-
ple), we have, from Eq. (6.42), that the equilibrium concentrations are related by

cCH3OH

cCO [cH2 ]2
= K(T, P ) .

Example. In semiconductors, free conduction electrons e and holes h (the concentrations of which
are denoted n and p) combine to create photons, e+h→ γ; likewise, electrons and holes are created
in pairs by the absorption of photons, γ → e + h. In equilibrium the rates of the two processes are
the same, which can be modeled as a chemical reaction, e+h� γ. With νe = νh = −1 and νγ = 0
(because µ = 0 for photons we can take νγ = 0), we have from Eq. (6.42) that np = f(T, P ), where
f is an unknown function of T and P . In the intrinsic (undoped) semiconductor, electrons and holes
are produced in pairs so that ni = pi (subscript i for intrinsic). We can evaluate the function in the
intrinsic system with f(T, P ) = n2

i . The law of mass action for electrons and holes is thus np = n2
i ,

a widely-used formula in the theory of semiconductors.

6.5 ELECTROCHEMICAL CELLS
If one knows the temperature dependence of the heat capacity and the latent heat, one can calculate
H and S (see Exercise 6.4), and if H and S are known, so are F and G. Is it possible to measure
∆G or ∆F , without recourse to heat capacity data? One method makes use of electrochemical
cells, which we describe in this section. We can give only a cursory account of electrochemical cells
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here. A knowledge of electrochemical cells (however meager) will help us with the third law of
thermodynamics in Chapter 8.

An electrochemical cell has two conductive electrodes, an anode and a cathode that are im-
mersed in electrolytic solutions containing ions that can move freely. The anode is by definition the
electrode that loses electrons by chemical reactions (oxidation) and the cathode is the electrode that
gains electrons by chemical reactions (reduction). For the configuration shown in Figure 6.3, the

Figure 6.3 Electrochemical cell

anode is a copper bar and the cathode is a zinc bar. In this example the electrolytes consist of an
aqueous solution of copper sulphate (CuSO4) and an aqueous solution of zinc sulphate (ZnSO4).
The solutions are separated by a semipermeable barrier; for example porous clay allows only SO−−4
ions to pass. The transferred charge causes an electromotive force (emf) E to develop between the
electrodes, what’s called an open cell.17 If a wire is connected between the electrodes, a current will
flow. At the electrodes the following reactions occur:

Cu� 2e− + Cu++

Zn++ + 2e− � Zn . (6.43)

When copper is the anode and zinc the cathode (as shown) we have the half reactions

Cu→ 2e− + Cu++ (oxidation)
Zn++ + 2e− → Zn . (reduction)

Adding the reactions in Eq. (6.43), the electrons “cancel,” leaving the overall reaction involving the
electrodes:

Cu + Zn++ � Zn + Cu++ . (6.44)

As the reaction proceeds, Cu and Zn++ are consumed to produce Zn and Cu++. Of course, the two
electrons are carried internally by the sulphate ion SO−−4

Chemical potential of charged species

How much charge does a mole of electrons represent? The Faraday constant (conventionally taken
as positive), is defined as F ≡ eNA = 96, 485 C mole−1, where e > 0 is the magnitude of the
electron charge. When dN moles undergo the reaction in Eq. (6.44), there is a charge transfer

17Electromotive force is a voltage.
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dq = ζFdN , where ζ denotes the number of valence electrons (ζ = 2 for Zn++). Transporting
charge dq against E requires that work dW = Edq be performed on the system,

dW = Edq = ζFEdN , (6.45)

where, because charge transfer can be done reversibly in electrochemical cells we don’t write d̄W
in Eq. (6.45).

Equation (6.45) represents an additional energy to be accounted for in the first law of thermo-
dynamics,18

dU = TdS − PdV +
∑
i

µidNi +
∑
i

ζiFEdNi = TdS − PdV +
∑
i

(µi + ζiFE) dNi .

Comparing with Eq. (3.16), the chemical potential of a charged species, the electrochemical poten-
tial, acquires a term related to its charge19

µi ≡ µi + ζiFE . (6.46)

The formal definition of µ is the same as for the chemical potential (Section 3.5): the energy required
to add another mole of species i to the system keeping entropy, volume, and the other mole numbers
fixed, µi = (∂U/∂Ni)S,V,Ni , where the internal energyU contains the electrostatic potential energy
of the charges. The Gibbs energy for charged species is therefore described by dG = −SdT +
V dP +

∑
i µidNi and hence µi = (∂G/∂Ni)T,P,Ni , formally the same as Eq. (6.14).

Measuring ∆G and ∆F
The emf can be measured using a simple circuit consisting of a battery, a potentiometer, a resistor,
and a galvanometer,20 G. By adjusting the potentiometer the current through the cell can be brought
to zero (as indicated byG). Under these conditions the emf of the cell is balanced against the voltage
drop across the resistor; in doing so we have measured the emf of an open cell.

Starting with the cell in equilibrium, the potentiometer can be varied causing current to flow in
either direction, constituting a reversible transfer of charge: Small amounts of charge can be made
to flow in both directions of the reaction in Eq. (6.44), with the system restorable to its original
configuration by reversing the current. Under reversible conditions [∆F ]T,V = W ′ and [∆G]T,P =
W ′ (Table 4.1), i.e., work other than PdV work is the change in F for constant (T, V ) and the
change in G for constant (T, P ). From Eq. (6.45), measuring the open-cell emf E under conditions
of constant (T, P ) or constant (T, V ) is a means of measuring the free energy change, ∆G or ∆F .
The work done in dξ units of reaction is dW = ζFEdξ. The change in molar free energy for one
unit of reaction is then

∆G = ζF [E ]T,P or ∆F = ζF [E ]T,V . (6.47)

6.6 GIBBS-HELMHOLTZ EQUATIONS
We now derive a set of relations loosely known as the Gibbs-Helmholtz equations. There are separate
Gibbs-Helmholtz equations for G and F , and we develop them together. Combine G = H − TS
and F = U − TS with S = − (∂G/∂T )P and S = − (∂F/∂T )V to obtain:

G = H + T

(
∂G

∂T

)
P

and F = U + T

(
∂F

∂T

)
V

. (6.48)

18We’re working here with the molar chemical potential; the same ideas apply on a per-particle basis.
19In semiconductor devices, the reference energy under “flat-band” conditions is the chemical potential plus whatever is

the voltage that’s been applied to a given region of the semiconductor—the electrochemical potential.[26, p594]
20A galvanometer detects the flow of charge.
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The equations in (6.48) are sometimes referred to as the Gibbs-Helmholtz equations; the name is
also reserved for Eq. (6.53). The equations in (6.48) are equivalent to:

U = F − T
(
∂F

∂T

)
V

= −T 2 ∂ (F/T )V
∂T

H = G− T
(
∂G

∂T

)
P

= −T 2 ∂ (G/T )P
∂T

. (6.49)

Thus, having F implies U, S, P and µ by differentiation; having G implies H,S, V and µ by differ-
entiation.

The equations in (6.48) and (6.49) hold for chemical reactions in terms of the quantities ∆G
and ∆F (at the same T ),

∆G = ∆H + T

(
∂∆G
∂T

)
P

and ∆F = ∆U + T

(
∂∆F
∂T

)
V

. (6.50)

From ∆G and ∆F , we also have the entropy differences

[∆S]P = −
(
∂∆G
∂T

)
P

and [∆S]V = −
(
∂∆F
∂T

)
V

, (6.51)

in terms of which (6.50) can be written

T [∆S]P = ∆H −∆G and T [∆S]V = ∆U −∆F . (6.52)

The equations in (6.50) are equivalent to(
∂(∆G/T )

∂T

)
P

= −∆H
T 2 and

(
∂(∆F/T )

∂T

)
V

= −∆U
T 2 . (6.53)

The quantities ∆H and ∆U can thus be obtained from the temperature dependence of ∆G and ∆F .
We’ll use these equations in Chapter 8.

CHAPTER SUMMARY
This chapter introduced applications of thermodynamics to chemistry, notably phase and chemical
equilibrium. We covered the Gibbs phase rule, the Clausiu-Clapeyron equation, the thermodynamics
of mixing, the law of mass action, and electrochemical cells.

• A thermodynamic phase is a spatially homogeneous part of a system, with uniform chemical
and physical properties. For phases coexisting in equilibrium the chemical potential of a given
substance is independent of the phase.

• The variance f of a system with k chemical species in π phases is f = 2+k−π (Gibbs phase
rule), the number of intensive variables that can be independently varied without disturbing
the number of phases in equilibrium.

• The Clausius-Clapeyron equation gives the slope of the coexistence curve between two phases
in equilibrium, (

dP
dT

)
coexist

= L

T∆v ,

where L is the latent heat per mole and ∆v is the change in molar volume.
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• The chemical potential of an ideal gas in a mixture is µ = µ0 + RT ln x where x is the
mole fraction of the gas in the mixture and µ0 is the chemical potential of the pure gas. The
chemical potential of an ideal gas in a mixture is less than that of the pure gas.

• An ideal mixture has zero volume of mixing, zero enthalpy of mixing, and an entropy of
mixing

∆S = −NR
k∑
i=1

xi ln xi ,

where N is the total number of particles and the xi are the mole fractions of the species
making up the mixture.

• Under equilibrium conditions the chemical potentials µi of speciesMi undergoing a chemical
reaction

∑
i νiMi = 0 (with νi the stoichiometric coefficients) are related by

∑
i νiµi = 0.

The law of mass action is that the equilibrium concentrations of the reactants ci obey the
relation

∏
i c
νi
i = K(P, T ), where K is the equilibrium constant.

EXERCISES

6.1 What is the maximum number of gaseous chemical species that can coexist in equilibrium?

6.2 Show that
(
∂(G/T )
∂(1/T )

)
P

= H and
(
∂(F/T )
∂(1/T )

)
V

= U . Hint: Use the Gibbs-Helmholtz

equations.

6.3 From Eq. (6.41), ∆G0 = −RT lnK∗. Combine this result with one of the equations in Eq.
(6.53) to show that (

∂ lnK∗

∂T

)
P

= ∆H0

RT 2 ,

where ∆H0 ≡
∑
i νiH

0
i , with H0

i the molar enthalpy of the pure substance. Integrate this
formula (at constant pressure) to conclude that

lnK∗ = lnK∗0 +
∫ T

T0

∆H0

RT 2 dT .

The equilibrium constant K∗(T, P ) at temperature T can therefore be obtained from knowl-
edge of that at one temperature, K∗0 (T0, P ), and the temperature dependence of ∆H0, which
can be obtained from purely thermal measurements.

6.4 Heat capacity and latent heat data can be used to calculate H and S.

a. Using Eq. (3.13), show that the entropy of the liquid phase of a substance at temperature
T can be calculated by heating the solid at a constant pressure P0 starting at T = 0, letting
it melt at T = Tm, and heating the liquid to a temperature T > Tm:

Sl(T ) =
∫ Tm

0

Csolid
P (T )
T

dT + L(Tm)
Tm

+
∫ T

Tm

ClP (T ′)
T ′

dT ′ , (P6.1)

where L(Tm) is the latent heat at T = Tm. The first integral on the right of Eq. (P6.1) is
well defined because, from the third law of thermodynamics, CP → 0 as T → 0.
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b. Show that starting from the enthalpy of a reference state H(T0, P0), H(T > T0, P0) can
be obtained from the temperature dependence of CP (T ):

H(T, P0) = H(T0, P0) +
∫ Tf

T0

CP (T, P0)dT + Lf +
∫ T

Tf

CP (T, P0)dT

where Lf is the latent heat associated with a possible phase transition at T = Tf , with
T > Tf > T0. The result of Exercise 4.8 may be useful.

c. Show that once we know H , the value of U may be found by subtracting P0V . Likewise
if we know H and S, G may be found from G = H − TS, and if U and S are known,
F = U − TS.

6.5 Some physics students go camping in the desert. They happened to have left out, overnight, an
open ice chest containing nothing but a thin layer of water at its bottom. In the morning they
notice that the water has frozen, even though the overnight temperature was always above the
freezing point.

a. Explain this phenomenon. The ice chest is thermally insulated, but it was left open at the
top, so it was exposed to the atmosphere. There was no wind that night. The air was still.
Also, it was a very clear night; there were no clouds in the sky.

b. Assume that there was one liter of water in the ice chest and that the overnight temperature
was 20◦ C. Ignoring evaporative effects, estimate the time it took for the water to freeze
making reasonable assumptions about the experiment.
Facts: Cp = 4.2 J g−1 K−1, latent heat of fusion for water is L = 334 J g−1.

6.6 Winemakers (for reasons best known to winemakers) sometimes want to quickly lower the
temperature of grapes that have just been picked, to slow the fermentation process. Cooling
equipment is expensive. One could surround the grapes with an ice bath, but this is often not
practical. One could add ice cubes to chill the grapes, but then the melted ice adds water to
the would-be wine, an undesirable outcome. One possibility is to add dry ice, the solid form
of carbon dioxide. Dry ice is a substance that sublimates at normal atmospheric pressure: It
goes directly from the solid phase to the gaseous phase without passing through the liquid
phase. Suppose the winemaker has a mass M of grapes, and wants to lower the temperature
by ∆T = 10 ◦C. What mass of dry ice,MD, should the winemaker add? Express your answer
as a fraction of the mass of the grapes, M .

The specific heat of grapes C = 3.43 J/g ◦C, and the latent heat of sublimation of dry ice is
L = 541 J/g.
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Statistical entropy
From micro to macro

E NTROPY as a state variable was introduced in Chapter 3, with its consequences explored in the
ensuing chapters.1 In this chapter, we turn to the microscopic interpretation of entropy, and in

so doing begin to prepare the foundation for statistical mechanics.

7.1 ENTROPY AND PROBABILITY
Several considerations contribute to the view that entropy is related to orderliness. Work is an orga-
nized form of energy, systematic extensions of macroscopic quantities (Section 1.9), and ∆S > 0
reduces the effectiveness of energy to perform work (energy dissipation, Section 4.7). Entropy in-
creases upon the removal of constraints (irreversibility), and less constrained systems are less or-
ganized (Section 3.3). The entropy of isolated systems is a maximum in equilibrium (Sections 3.3,
3.10, and 4.1). The state of equilibrium should be the most likely state, by far: Equilibrium persists
unchanged in time; amongst the myriad dynamical microstates of a system, those consistent with
equilibrium should occur with far greater likelihood. Disorder, maximum entropy, likelihood: we
expect that entropy is related to probability.2 According to Max Planck,[27, p118] “The connection
between entropy and probability should be very close.”

How to find such a connection? To get started, let W denote the probability of a specified
macrostate, where obviously we must define what W represents.3 We seek S = f(W ), where f
is a universal function of a single variable. To determine f we are guided by two requirements.
First, the entropy of a system of two independent subsystems is the sum of the subsystem entropies,
S = S1 + S2, i.e., S is extensive. Second, by the rules of probability, the probability W for the
occurrence of two independent states 1 and 2 is the product of the separate probabilities W1, W2,

1It’s instructive to review Chapters 4, 5, and 6 with an eye towards the concepts enabled by entropy as a state variable.
For example, µ = 0 for photons would not be possible without the concept of free energy.

2We’re going to invoke concepts from the theory of probability without formally reviewing the subject. Tutorial introduc-
tions to probability theory are often given in books on statistical mechanics. In this book, only basic ideas of probability are
used, which students seem comfortable with.

3We follow tradition and use W for Wahrscheinlichkeit, German for probability (W here does not mean work!). Of
course W must be defined as a physical concept; the language we use is immaterial. The quantity W is not a traditional
probability in the sense that it’s a number between zero and one. Planck distinguished thermodynamic probability (W )
from mathematical probability, where the two are proportional but not equal.[27, p120] As we’ll see, W is the number of
microstates per macrostate, an integer. To quote Planck:[28, p226] “Every macroscopic state of a physical system comprises
a perfectly definite number of microscopic states of the system, and the number represents the thermodynamic probability or
the statistical weight W of the macroscopic state.”

97
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i.e., W = W1W2. With S1 = f(W1) and S2 = f(W2), the function f must be such that

f(W1W2) = f(W1) + f(W2) . (7.1)

Equation (7.1) is a functional equation (similar to Eqs. (2.8) and (3.23)). Noting that W1 and W2
occur in Eq. (7.1) symmetrically, first differentiate Eq. (7.1) with respect toW1 and then differentiate
the result with respect to W2. We find

W1W2f
′′(W1W2) + f ′(W1W2) = 0 .

The solution of the differential equation zf ′′(z) + f ′(z) = 0 is f(z) = k ln z + f0, where k and f0
are constants. Taking f0 = 0, we have4

S = k lnW . (7.2)

Equation (7.2) is one of the great achievements of theoretical physics.5 It provides a physical un-
derstanding of entropy beyond qualitative notions of disorder; it’s the bridge between microscopic
and macroscopic, it represents the “missing” degrees of freedom not accounted for in macroscopic
descriptions. We will distinguish the statistical entropy, S = k lnW , from the thermodynamic en-
tropy, ∆S =

∫
(d̄Q)rev /T , Eq. (3.4). Of course, we’d like the two to agree in their predictions.

The scale factor k in Eq. (7.2) (which must be a universal constant) can be established by a
simple argument.6 The change in entropy between equilibrium states is, from Eq. (7.2):

∆S ≡ S2 − S1 = k ln (W2/W1) . (7.3)

Consider the free expansion of an ideal gas with N particles into an evacuated chamber where the
volume doubles in the process (Section 4.9). While we don’t yet know how to calculate W1 and W2
separately, the ratio W2/W1 is readily found in this case. After the system comes to equilibrium,
it’s twice as likely to find a given particle in either volume than it is to find the particle in the
original volume. The particles of an ideal gas are non-interacting, and thus the same is true for
each particle, implying7 W2/W1 = 2N . By Eq. (7.3) therefore, ∆S = Nk ln 2. In Eq. (4.20) we
calculated ∆S = nR ln 2 for this process. Agreement between the two formulae is obtained by
choosing k = kB = R/NA, the Boltzmann constant (Section 1.6).

Equation (7.2) is encouraging, yet at this point it’s on shaky ground: It relates a symbol S to
another symbol W . The only properties used in its derivation are that S is additive over subsystems
(like entropy), S = S1 + S2, and W behaves like a probability with W = W1W2. Despite the best
of intentions, using the symbol S does not make it the entropy. Of course, that begs the question of
what is entropy. We established the scale factor k by making ∆S from Eq. (7.3) agree with ∆S from
thermodynamics for the same process. It’s standard practice in theoretical physics to “nail down”
unknown parameters by seeking agreement with previously established theories in their domains
of validity. Such a practice does not guarantee the validity of Eq. (7.2); it merely asserts it’s not

4The disposition of f0 is actually a pivotal issue. We return to it in Section 7.8 and in Chapter 8.
5Equation (7.2) is widely known as the Boltzmann entropy formula (it’s inscribed on his tomb in Vienna). Despite the

attribution, however, it’s not clear that Boltzmann ever wrote down Eq. (7.2). Equation (7.2) appears to have originated in
the work of Max Planck, in his 1901 article in which the Planck distribution is derived. In 1872 Boltzmann proved his “H-
theorem” (not treated in this book) in which (under reasonable circumstances) the quantityH(t) ≡ −

t
f ln fdvxdvydvz

never decreases in time, emulating entropy, where f = f(vx, vy , vz , t) is the probability distribution of the velocity com-
ponents of the atoms of a gas. By the H-theorem, as equilibrium is achieved f(t) evolves into the Maxwell-Boltzmann
distribution, Eq. (7.26), which involves the internal energy U and absolute temperature T of the gas. Thus, the possibility
of identifying the asymptotic value of H(t) with a thermodynamic parameter (entropy) is not surprising. Planck asserted,
based on Boltzmann’s work, that entropy is proportional to the logarithm of a probability, W , what we have in Eq. (7.2).

6The scale factor is dependent upon the base of the logarithm used in Eq. (7.2). While we’ve chosen to work with the
natural logarithm, lnx = loge x, we could work with logb x = lnx/ ln b. This distinction shows up in information theory,
Chapter 12. The use of the natural logarithm in Eq. (7.2) is standard practice in physics.

7We derive this result in Eq. (7.12).
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obviously wrong in this one application. If Eq. (7.2) proves to be of general validity, then having
determined k in this manner will suffice. Of greater importance, what allows us to call anything
(such as S in Eq. (7.2)) entropy? What we know about entropy comes from thermodynamics:(

∂S

∂U

)
V,N

= 1
T

(
∂S

∂V

)
U,N

= P

T

(
∂S

∂N

)
U,V

= −µ
T
. (3.30)

If we agree to call “entropy” anything satisfying these identities, then Eq. (3.30) must be imposed
as a requirement on Eq. (7.2) before we’re entitled to call S in Eq. (7.2), entropy. That implies W
must be specified as a function of macroscopic variables, W = W (U, V,N), because, from Eq.
(7.2), W = exp (S(U, V,N)/kB).

Probability of, what?

So when gases of different kinds are mixed, if we ask what changes in external bodies
are necessary to bring the system to its original state, we do not mean a state in which
each particle shall occupy more or less exactly the same position as at some previous
epoch, but only a state which shall be undistinguishable from the previous one in its
sensible properties. It is to states of systems thus incompletely defined that the problems
of thermodynamics relate.—J.W. Gibbs, 1876[3, p166]

Equation (7.2) represents a shift in emphasis, away from thermodynamics, which, to paraphrase
Gibbs, can distinguish only the sensible properties of macroscopic systems, with ∆S determined
by processes, to the view that S can be calculated from the microscopic properties of the system.8

The above quote of Gibbs is apt: Thermodynamics deals with states incompletely defined.9 Equilib-
rium states are specified by a handful of state variables, leaving unspecified an enormous number
of microscopic degrees of freedom. Planck defined a useful term, an elemental chaos as “any pro-
cess containing numerous elements not in themselves measurable.”[27, p117] There is what can be
measured, and there is the rest. Thermodynamics deals with the measurable properties of macro-
scopic systems. The quantity W in Eq. (7.2) is a bridge between micro- and macro-descriptions, the
number of microstates per macrostate, in essence the size of Planck’s elemental chaos. The word
probability is perhaps unfortunate; think W for ways, the number of ways a macrostate can be re-
alized from the microstates of a system that are consistent with constraints (such as V or N ). Still,
entropy being a maximum in equilibrium implies that equilibrium is the state having the maximum
number of microscopic possibilities for its realization, i.e., the most probable state. To use Eq. (7.2),
we must learn to calculate W , what we do in the upcoming sections.

The derivation of Eq. (7.2) relies on the idea of mutually independent microstates. In order to
write W = W1W2, it must be the case that every microstate underlying macrostate 1 occurs inde-
pendently of every microstate underlying macrostate 2. This idea must be taken as a foundational
assumption, the principle of equal a priori probabilities, that all microstates associated with a sys-
tem are equally likely to be realized by the system in the course of its dynamical time evolution.
To prove this is the province of ergodic theory, a branch of mathematics concerning the long-time
properties of dynamical systems. Most physicists accept Eq. (7.2) by the success of its predictions.
To quote G.S. Rushbrooke:[29, p14]

Now W , by definition, is the number of a priori equally probable complexions of the
assembly corresponding to given values of U , V , and N . In the absence of any indica-
tion to the contrary we can only assume that all conceivable different micromolecular

8To extend the metaphor of Chapter 3, Boltzmann and Planck opened the black box even more.
9Classical mechanics deals with precisely specified quantities, such as initial conditions, or parameters. Suppose the

spring constant of a harmonic oscillator is only known approximately. How would you handle that? Thermodynamics incor-
porates what is known about a system to make predictions in the face of uncertainty.
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states of the assembly (complexions) corresponding to the same values of U , V , and
N are equally probable. This hypothesis underlies the whole of statistical mechanics
and, like [Eq. (7.2)], must . . . be regarded as justified a posteriori, by the success of the
theory based on it.

Example. A deck of playing cards usually has 52 cards. The probability of drawing any particular
card is the same as that for any other card, namely 1

52 . Because there is nothing we know of that
favors one card over another, the probabilities are a priori equal.

7.2 COMBINATORICS: LEARNING TO COUNT*
Combinatorics is a branch of mathematics devoted to counting the number of elements in various
sets. In this section we introduce some basic combinatorial ideas. Suppose there are N numbered
balls in a bag (and hence which are distinguishable), and you pull them out one at a time. How many
different ways are there of performing that experiment? There are N ways to choose the first ball,
N − 1 ways to choose the second, and so on: There are N ! permutations of N items.

How many ways are there to bring out two balls, where we don’t care about the order in which
they are displayed? That is, pulling out ball 3 and then ball 7 is the same (by assumption) of pulling
out 7 and then 3. There are N ways to pull out the first ball and N − 1 ways to pull out the second.
Once the two balls are out, there are 2! ways of arranging them, both of which we deem to be
equivalent. Thus there are

N(N − 1)
2! = N !

2!(N − 2)!
distinct ways of choosing two balls out of N when order is not important.

Example. Four choose two. There are four items, numbered (1, 2, 3, 4). There are N(N − 1) = 12
ways of pulling two items out of the collection of four: (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 4), (4, 1), (4, 2), and (4, 3). If we don’t care about the order in which the pairs are
displayed, so that, for example, (4, 2) is considered the same as (2, 4), there are six distinct ways of
choosing two items out of the four: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4).

Generalizing to the number of ways of choosing k balls out of N when order is not important,
we define the binomial coefficient (“N choose k”)(

N

k

)
≡ N !
k!(N − k)! . (7.4)

The number of combinations of N items taken k at a time is given by Eq. (7.4); it’s called the
binomial coefficient because the same term shows up in the binomial formula,

(x+ y)N =
N∑
k=0

(
N

k

)
xN−kyk . (7.5)

We note the special result that follows from Eq. (7.5) with x = 1 and y = 1:

2N =
N∑
k=0

(
N

k

)
. (7.6)
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We now ask a different question. How many ways are there to chooseN1 objects fromN (where
order is immaterial), followed by choosing N2 objects from the remainder, where these objects are
kept separate from the first collection of N1 objects? Clearly that number is:

N !
N1!(N −N1)! ×

(N −N1)!
N2!(N −N1 −N2)! = N !

N1!N2!(N −N1 −N2)! .

Generalize to the number of ways of choosing from N objects, N1 kept separate, N2 kept separate,
· · · , Nr kept separate, where

∑r
k=1Nk = N exhausts the N objects. The number of ways of

distributing N objects among r containers, each containing Nk objects with
∑r
k=1Nk = N , is

given by the multinomial coefficient(
N

N1, N2, . . . , Nr

)
≡ N !
N1!N2! . . . Nr!

. (7.7)

Stirling approximation

We will encounter equations that call for factorials of large integers, and it behooves us to have an
approximate formula for the value of a factorial. In its simplest form, Stirling’s approximation is

lnN ! ≈ N lnN −N . (7.8)

By exponentiating Eq. (7.8) we have the approximation

N ! ≈ (N/e)N . (7.9)

Equation (7.8) is surprisingly easy to derive:

lnN ! =
N∑
k=1

ln k ≈
∫ N

1
ln xdx = (x ln x− x)

∣∣N
1 = N lnN −N + 1 ≈ N lnN −N .

Stirling’s approximation is one of those results that should only work forN →∞, but is reasonably
accurate even for small values of N . Asymptotic analysis is a branch of mathematics in which
improvements to approximate formulas such as Eq. (7.9) can be established. It’s found that:10

N ! N→∞∼
√

2πN
(
N

e

)N [
1 + 1

12N + 1
288N2 + · · ·

]
. (7.10)

The terms in square brackets are rarely required in physics applications.11

Distributing particles between compartments

Consider two compartmentsA andB, each the same size, each containing identical, yet distinguish-
able particles that can pass between them. At an instant of time there are NA (NB) particles in A
(B), where NA +NB = N is a fixed quantity.12 The number of ways that compartment A can have
NA particles is, from either Eqs. (7.4) or (7.7),(

N

NA

)
= N !
NA!(N −NA)! = N !

NA!NB ! . (7.11)

10Asymptotic equivalence f ∼ g means that for functions f(x) and g(x), the ratio f(x)/g(x) → 1 as x approaches
some value, usually zero or infinity. Example: sinhx ∼ 1

2 ex as x→∞.
11The factor of

√
2πN is a logarithmically small correction, as can be seen by taking the logarithm of N ! in Eq. (7.10)

and comparing with Eq. (7.8). The terms in square brackets are an even smaller correction for large N .
12In this subsection, NA does not mean Avogadro’s number.



102 � Thermodynamics

The total number of ways W that particles can be situated in the two compartments is found by
summing Eq. (7.11) over all possible values of NA. Using Eq. (7.6),

W =
N∑

NA=0

(
N

NA

)
= 2N . (7.12)

From Eq. (7.2), the “entropy” of this system is:13

lnW = N ln 2 . (7.13)

Which arrangement of particles occurs in the maximum number of ways? Consider, starting from
an initial distribution of N0

A particles in A and N0
B in B (N0

A +N0
B = N ), the effect of transferring

ξ particles between compartments, with NA = N0
A − ξ and NB = N0

B + ξ, −N0
B ≤ ξ ≤ N0

A. The
number of ways to transfer ξ particles is

w(ξ) = N !
(N0

A − ξ)!(N0
B + ξ)! .

The logarithm of this number is (using the Stirling approximation)

lnw(ξ) = lnN !− ln(N0
A − ξ)!− ln(N0

B + ξ)!
≈ N lnN − (N0

A − ξ) ln(N0
A − ξ)− (N0

B + ξ) ln(N0
B + ξ) . (7.14)

As can be shown, the derivative of lnw(ξ) with respect to ξ is14

∂

∂ξ
lnw(ξ) = ln

(
N0
A − ξ

N0
B + ξ

)
. (7.15)

The maximum occurs for ξ = ξ∗ ≡ 1
2
(
N0
A −N0

B

)
. The configuration having maximum entropy is

thus forA andB to each haveN/2 particles. The maximum entropy is found by substituting ξ = ξ∗

into Eq. (7.14):
lnw(ξ∗) = N ln 2 . (7.16)

Equation (7.16), the entropy of the configuration having maximum entropy is, within the accu-
racy of the Stirling approximation, the same as Eq. (7.13), the entropy of the system obtained by
including all possible arrangements of particles.15 Is this an accident? Can the value of the sum in
Eq. (7.12) (for W ) be approximated by just one term in the series, the number of configurations
associated with maximum entropy (what we have called w(ξ∗))? In short, the answer is yes. We
cannot give a general proof, but for N sufficiently large,16 there is almost always a configuration
of the system that occurs in such a predominantly large number of ways, that the sum over system
configurations17 can be replaced with the largest term in the series. This behavior is exemplified
in the formula for lnw(ξ), Eq. (7.14). From Eq. (7.15), the second derivative evaluated at the con-
figuration ξ∗ has the value ∂2 lnw(ξ)/∂ξ2|ξ∗ = −4/N . Thus, for system configurations ξ in the
vicinity of ξ∗, we have the Taylor expansion

lnw(ξ) ≈ N ln 2− 2
N

(ξ − ξ∗)2 + · · · , (7.17)

13Equation (7.13) strictly does not qualify as entropy because it cannot satisfy the requirements given in Eq. (3.30).
14In evaluating the derivative in Eq. (7.15), we’re treating ξ as if it’s a continuous variable, whereas in actuality it’s an

integer. This can be justified when N is sufficiently large.
15The “state” of the system of two compartments with N particles distributed between them has not been specified with

any further refinement; we must include in W all possible configurations consistent with the specification of the system.
16Such as we have for macroscopic systems.
17Configurations compatible with the macroscopic specification of the system.
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or, equivalently,

w(ξ) ≈ 2N exp
(
− 2
N

(ξ − ξ∗)2
)
. (7.18)

For large N , configurations relatively close to ξ∗, those with ξ = ξ∗ ±
√
N , make a negligible con-

tribution to the entropy in comparison to the entropy of the most frequently occurring configuration.

7.3 COARSE-GRAINED DESCRIPTIONS OF A CLASSICAL GAS
To calculate W , the microstates of the system must have a property that’s countable, something
discrete in how we describe states. Ultimately that discreteness will be given to us in the form of
Planck’s constant,18 h. In this section we consider two ways of coarse graining the description of a
classical gas of N atoms so that its microstates are specified in such a way as to be countable.

Space-only description of a gas

We start with an instructive, yet artificial treatment of a gas of N particles. Subdivide the volume
occupied by the gas into Nc identical cells. At an instant of time, the kth cell contains Nk atoms,
with

∑Nc
k=1Nk = N . We don’t ask for the coordinates of each atom or for their velocities, all we ask

is how many atoms are in each cell. The “states” of this system are a specification of the occupation
numbers {Nk}Nck=1, i.e., a list of numbers (N1, · · · , NNc). For example, consider 10 atoms in 7
cells. One particular state has N1 = 1, N2 = 2, N3 = 0, N4 = 0, N5 = 1, N6 = 4, N7 = 2. We
could “go Dirac” and write |1200142〉 to denote this state. The number of ways of distributing N
atoms with Nk in each cell is, using Eq. (7.7),

W [N1, N2, · · · ] = N !∏
kNk! . (7.19)

For the state |1200142〉 of 10 balls in 7 cells,

W|1200142〉 = 10!
1!2!0!0!1!4!2! = 37, 800 .

There are 37, 800 ways to distribute 10 balls among 7 cells with the cell numbers N1 = 1, N2 =
2, N3 = 0, N4 = 0, N5 = 1, N6 = 4, N7 = 2.

Assume that N is large enough so that all cells have an appreciable number of atoms. In that
case we can apply Stirling’s approximation to each of the factorials in Eq. (7.19). We find:

W [{Nk}] =
∏
k

(
N

Nk

)Nk
≡
∏
k

(
1
pk

)Nk
, (7.20)

where the probability pk that an atom selected at random is in the kth cell is pk = Nk/N , with∑
k pk = 1. The formula for the entropy is then, combining Eq. (7.20) with Eq. (7.2),

S[{pk}] = −NkB
∑
k

pk ln pk . (7.21)

Equation (7.21) is a central result in the theory of statistical entropy.19 With it, we have the entropy
of any system for which the probabilities {pk} are known.

18Another instance where the requirements of thermodynamics, in this case the ability to count states, are such as to
anticipate the development of quantum mechanics. It’s actually easier to calculate the entropy of quantum systems than it is
for classical systems, because quantum states naturally have a countable feature, the discreteness of energy eigenvalues.

19Equation (7.21) is the starting point for information theory; see Section 12.4.
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What probability distribution maximizes the entropy (apropos of thermodynamic equilibrium)?
Because of the constraint

∑
k pk = 1, add zero to Eq. (7.21):

S [{pk}] ≡ −NkB
∑
k

pk ln pk + αkB

(∑
k

pk − 1
)
, (7.22)

where α is a Lagrange multiplier, made dimensionless by including the factor of kB . The quan-
tities pk can now be varied as if they’re independent: δS = kB

∑
k δpk [α−N (1 + ln pk)]. An

extremum (δS = 0) is achieved for pk = e(α/N−1). Thus, the distribution of cell probabilities that
maximizes S is for pk to be independent of the cell label k. Maximum entropy is associated with a
uniform distribution of atoms, with each cell occupied with equal likelihood. The quantity α can be
determined from the equation of constraint, 1 =

∑
k pk = e(α/N−1)Nc, implying that

pk = N−1
c . (7.23)

Combining Eqs. (7.23) and (7.21), the maximum value of S for a system specified by particles
in Nc cells is (the generalization of Eq. (7.13))

S = NkB lnNc . (7.24)

The entropy per particle, S/N = kB lnNc, is thus the logarithm of the number of equivalent
“choices” available to a particle, the number of cells Nc. The same result occurs in the theory
of information; see Eq. (12.6). The level of description that leads us to Eq. (7.24) is one where we
have discarded most of the physical features that make a gas a gas; it’s not rich enough to permit
the connection with thermodynamics required by Eq. (3.30). The only constraint we have imposed
is the number of particles,

∑
kNk = N .

Phase-space description: First pass

We now seek to add more realism by including the energy of an ideal gas, and the challenge is to
do so in such a way that the microstates are described in a countable fashion. Such a calculation is
considerably more difficult than that based on the space-only description.20

Phase space is a mathematical space in which the states of particles can be represented, with
each possible state corresponding to a single point in the space.[30] Phase space for a single classical
point particle is a six-dimensional space of all possible positions and momentum values. Let’s try to
calculate the entropy of a gas by emulating the approach of the previous subsection and introduce
cells in phase space.21 Define a phase-space cell volume g:

g =
∫

cell
dxdydzdpxdpydpz ≡

∫
cell

d3rd3p ≡
∫

cell
dσ ,

where dσ denotes an infinitesimal volume element of phase space. We’ll find that in contrast to
Nc in the space-only description, which we’re free to choose, the size of phase-space cells cannot
be chosen arbitrarily, at least if we want the calculated entropy to agree with experimental results.
A technical issue regarding phase space is that whereas the spatial volume V accessible to the
molecules of a gas is bounded, momentum space22 is unbounded because the momentum of particles

20We’ll see that the approach adopted in this subsection can only take us so far. Figuring out why it ultimately doesn’t
work is quite instructive. The right way to do this calculation is presented in Section 7.6.

21The phase space of a single particle is referred to as µ-space, whereas the phase space associated with N particles is
referred to as Γ-space. The deeper reason why the approach attempted in this subsection ultimately doesn’t work is because
it conceives of the gas in terms of N single-particle states in six-dimensional µ-space, rather than (as experience teaches) a
single state in 6N -dimensional Γ-space (see Section 7.6). An important but subtle point!

22Phase space for a point particle has the mathematical structure of R6 = R3 × R3, the direct product of configuration
space and momentum space. Each point of “real space” has associated with it a three-dimensional momentum space.
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can have indefinitely large values.23 We can’t suppose, therefore, that the entropy of the gas will
consist of all cells equally occupied (as in the space-only description) because that would imply an
infinite amount of energy. We have to anticipate that the occupation of cells in momentum space is
nonuniform.

In the space-only description (previous subsection), we could introduce discrete probabilities
pk = Nk/N that cells are occupied because the occupation numbers Nk were taken as speci-
fied.24 We can’t do that in phase space; we can’t specify Nk from a “snapshot” of a six-dimensional
system—the momentum of particles is not a spatial quantity. Instead, we presume an underlying
phase-space probability density function, ρ(r,p), such that ρ(r,p)dσ is the probability of finding
a particle within dσ about the point in phase space having spatial location r and momentum p; it’s
normalized such that

∫
Ω ρ(r,p)dσ = 1, where

∫
Ω indicates an integration over all of phase space.25

With ρ(r,p) presumed known, we can define the probability pk of cell k being occupied
through26 pk ≡

∫
k
ρ(r,p)dσ, where

∫
k

denotes an integral over cell k. The quantities {pk} are
referred to as a coarse-grained probability distribution, normalized such that

∑
k pk = 1. For an

N -particle gas, there are Nk = Npk atoms in cell k. The internal energy U of an ideal gas (of
particles of mass m) is the sum of the kinetic energies of the particles,

U = 1
2m

∑
k

NkP
2
k = N

2m
∑
k

pkP
2
k , (7.25)

where27 P 2
k ≡

(
P 2
x + P 2

y + P 2
z

)
k

is the magnitude squared of the momentum vector of an atom in
cell k; it’s presumed that cells can be chosen small enough that all atoms in a cell ostensibly have
the same momentum.

With these assumptions, add another term to Eq. (7.22) reflecting the constraint of the energy,

S [{pk}] ≡ −NkB
∑
k

pk ln pk +NkBα

(∑
k

pk − 1
)
− βkB

(
N

2m
∑
k

pkP
2
k − U

)
,

where the Lagrange multipliers α and β have been parameterized for convenience. Seek the condi-
tion for the extremum: δS = NkB

∑
k δpk

[
− (1 + ln pk) + α− βP 2

k /(2m)
]

= 0. The probability
distribution that maximizes the entropy is thus

pk = eα−1e−βP
2
k/(2m) . (7.26)

The equilibrium distribution is independent of spatial location and is isotropic in momentum space.
Equation (7.26) is, up to normalization factors, the Maxwell-Boltzmann distribution function.28

The two Lagrange multipliers can be found from the two equations of constraint. From conser-
vation of probability, using Eq. (7.26),

∑
k

pk = 1 =⇒ eα−1
∑
k

e−βP
2
k/(2m) = 1 =⇒ eα−1 =

(∑
k

e−βP
2
k/(2m)

)−1

≡ Z−1 ,

23In Newtonian mechanics the momentum of particles becomes infinite as speeds v → ∞; the momentum of relativistic
particles becomes infinite as v → c.

24A discrete probability distribution specifies the probabilities associated with discrete variables, such as the two outcomes
of tossing a coin—heads or tails. For continuous quantities, such as the speeds of the molecules of a gas, we must work with
probability densities, the probability that a continuous variable occurs within a specified range of values. In quantum me-
chanics |ψ(x)|2 is often said to be a probability, whereas actually |ψ(x)|2 is a probability density function, with |ψ(x)|2 dx
the probability of finding a particle between x and x+ dx.

25One would think that ρ(r,p) for a point particle is a six-dimensional Dirac delta function. Such would be the case if
one knew precisely the initial conditions for the trajectory of the particle. As it is, however, ρ(r,p) is a statistical quantity,
governed by the Boltzmann transport equation (not treated in this book). The phase-space density function is a fundamental
object of study in non-equilibrium statistical mechanics. For our purposes here, consider ρ(r,p) as in-principle known.

26The quantities {pk} are a discrete probability distribution, not a probability density.
27We use the symbol P 2

k for momentum squared to distinguish it from pk for probability.
28There are other ways to derive the Maxwell-Boltzmann distribution from the approach adopted here.
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where
Z(β) =

∑
k

e−βP
2
k/(2m) (7.27)

is known as the partition function. We’ve related one Lagrange multiplier (α) to the other, β. Com-
bining Eqs. (7.27) and (7.26), the most probable distribution function has the form

pk = 1
Z

e−βP
2
k/(2m) . (7.28)

The quantity β can be found from the energy constraint, Eq. (7.25). To do so we rely on an oft-used
trick. Differentiate Eq. (7.27):

∂Z

∂β
= − 1

2m
∑
k

P 2
k e−βP

2
k/(2m) . (7.29)

Equation (7.29) is quite similar to the sum we want in Eq. (7.25), and in fact

U = −N
Z

∂Z

∂β
. (7.30)

If we knew Z = Z(β), we’d know the internal energy.
To evaluate Z using Eq. (7.27), convert the sum to a phase-space integral:

Z =
∑
k

e−βP
2
k/(2m) −→ 1

g

∫
Ω

e−βP
2/(2m)dσ = V

g

∫ ∞
0

4πP 2e−βP
2/(2m)dP

=V

g

(
2mπ
β

)3/2
, (7.31)

where we’ve used isotropy in momentum space to adopt spherical coordinates. It’s straightforward
to show, combining Eq. (7.31) with Eq. (7.30), that β is related to the energy:

U = 3N/(2β) . (7.32)

To calculate the entropy, convert Eq. (7.21) into an integral, as in Eq. (7.31). It can be shown that
(see Exercise 7.6)

S = NkB

(
3
2 + ln

[
V

g

(
2mπ
β

)3/2
])

= NkB

(
3
2 + ln

[
V

g

(
4mπU

3N

)3/2
])

, (7.33)

where we’ve used Eq. (7.32) in the second equality.
With Eq. (7.33) we have an expression for S having the desired property that it involves the

macroscopic variables U , V , and N . But is it right? Ultimately that’s a matter of comparison with
experiment to decide. For the statistical entropy to agree with the thermodynamic entropy, the rela-
tions in Eq. (3.30) must be satisfied. Using Eq. (7.33),

1
T

=
(
∂S

∂U

)
V,N

= 3NkB
2U = βkB ,

where we have used Eq. (7.32). Thus, we have another result for the Lagrange multiplier, β =
(kBT )−1, implying from Eq. (7.32),

U = 3
2NkBT . (7.34)
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The measured value of CV for noble gases is 1.50nR (Section 1.11); Eq. (7.34) is consistent with
that result. Combining Eq. (7.33) with the second equation in Eq. (3.30),

P

T
=
(
∂S

∂V

)
U,N

= NkB
V

, (7.35)

the equation of state of the ideal gas. These two results, Eqs. (7.34) and (7.35) (which are inde-
pendent of g), confirm that Eq. (7.33) is a valid formula as far as its dependence on U and V is
concerned.

What about the third equation in Eq. (3.30),

−µ
T

=
(
∂S

∂N

)
U,V

?

We cannot test this identity (yet) because Eq. (7.33) does not explicitly display all of its dependence
on the variable N . It turns out that the cell size g must be N -dependent, with g ∝ N . To allow for
the possibility that all particles could be concentrated into one cell, it would be “nice” if g ∝ N ,
but there’s no reason from classical physics that the size of a phase-space cell must depend on the
number of particles.29 If g does scale with N , Eq. (7.33) becomes an extensive expression for S,
what’s taken as axiomatic in the postulational approach to thermodynamics (see Section 3.7), and
perhaps that’s reason enough at the macroscopic level. We show in the next section that agreement
with experiment requires g = Nh3, a result that cannot be obtained from thermodynamics. While
coarse-graining phase space seemed like an idea worth trying, it’s led us to a place where thermo-
dynamics has no more cards to play, what we may call Physics Finisterre, the edge of the world of
classical physics. To make progress, we require input from experiment and guidance from the new
world of quantum mechanics.

Let’s accept that g ∝ N , as it suggests that each particle is a cell in phase space; each particle
is associated with an intrinsic phase-space volume. The volume of phase space for point particles
has dimensions of (action)3. Let’s write g = Nξ3, where ξ is a quantity having the dimension of
action; in this way Eq. (7.33) becomes (with β = (kBT )−1)

S = NkB

(
3
2 + ln

[
V

N

(
2mπkBT

ξ2

)3/2
])

. (7.36)

The quantity (ξ2/(2mπkT ))3/2 has the dimension of volume (it must for the argument of the loga-
rithm to be dimensionless), and thus ξ/

√
2πmkT is a length. Define the thermal wavelength

λT ≡
ξ√

2πmkT
, (7.37)

in terms of which Eq. (7.36) can be written:

S = Nk

[
3
2 + ln

(
V/N

λ3
T

)]
. (7.38)

Equation (7.38) makes contact with Eq. (7.24), sort of. Atoms are constrained to “cages” of size
V/N (volume per particle); if particles bring to the party an intrinsic volume λ3

T , the number of
“choices” it has is (V/N)/λ3

T . Equation (7.38) is in the form of Eq. (3.27), the expression for S
derived from thermodynamics.30

29In classical mechanics Liouville’s theorem states that the volume of a region of phase space remains constant under
its dynamical evolution as governed by Hamilton’s equations, what can be seen as a classical antecedent of the Heisenberg
uncertainty principle, and what would lend credence to the idea that g ∝ N once a fundamental volume of phase space per
particle is established in line with the uncertainty principle.

30The factor of 3
2 in Eq. (7.38) can be put inside the logarithm: 3

2 = ln e3/2.



108 � Thermodynamics

The denominator in Eq. (7.37) is closely related to the mean momentum of a particle (Exercise
7.7), and action divided by momentum is a length. The question becomes: Is there an intrinsic
quantity of action associated with material particles? If so, λ3

T is a natural spatial cell size associated
with a gas at temperature T . The cell size would then be specified by the physics of the problem
(and not chosen artificially as in Eq. (7.24)). Is there a way to find ξ3, this “natural” phase-space
volume per particle? The question is extra-thermodynamic, beyond the scope of thermodynamics.
We need a reality check from experiment.31

7.4 SACKUR-TETRODE EQUATION
Can entropy be measured? While one cannot purchase an entropy meter, the entropy of the gas
phase can be measured relative to that of the liquid phase through the latent heat, L = T (sv − sl),
Eq. (6.21). If the entropy of the liquid is known—from heat capacity data, Exercise 6.4—and if the
latent heat is known, the entropy of the vapor is sv = sl + L/T . If thermodynamic measurements
can be made sufficiently accurately (they can), Eq. (7.38) could be tested against Eq. (6.21) in its
predictions for the entropy of the vapor. Such a test was made in 1912, independently by H. Tetrode
and O. Sackur. We outline the Sackur-Tetrode analysis in this section, because, as we’ll see, a
fundamental discovery was made in the process. In comparing the results of Eqs. (6.21) and (7.38),
we’re demanding consistency between the thermodynamic and statistical entropies. A substance for
which comprehensive thermodynamic data exists is mercury; we’ll test Eq. (7.38) using the data for
mercury.

Entropy from thermodynamics

Integrate Kirchhoff’s equation, dL(T )/dT = ∆cP , Eq. (6.27), using cP = 5
2R for the vapor (for

mercury vapor cP = 5
2R to three decimal places),

L(T ) = L(T0) + 5
2R(T − T0)−

∫ T

T0

clP (T ′)dT ′ , (7.39)

where T0 is a reference temperature. Between 273 K and 373 K the heat capacity of liquid mercury
varies by less than 2%.[31, p6-179] In a first approximation we can treat clP as constant. Thus, from
Eq. (7.39), for T > T0

L(T ) = L(T0) +
[ 5

2R− c
l
P

]
(T − T0) . (7.40)

For mercury at T0 = 298.15 K, L(T0) = 61.38 ± 0.04 kJ mol−1[32] and the vapor pressure in
equilibrium with liquid mercury is P (T0) = 0.2613 Pa.[31, p6-181]

We need the entropy of the liquid phase. From Eq. (P6.1),

sl(T ) =
∫ Tm

0

csolid
P (T )
T

dT + L(Tm)
Tm

+
∫ T

Tm

clP (T ′)
T ′

dT ′ , (P6.1)

where Tm is the temperature at which solid mercury melts. These integrals have mostly been done
for us; thermodynamic properties of key chemical substances are tabulated, where, for example, the
molar entropy in the liquid phase is given at a reference temperature T0. Let’s denote the tabulated
value as s0 ≡ sl(T0). In that case we can write Eq. (P6.1) as, for T > T0 > Tm

sl(T ) = s0(T0) +
∫ T

T0

clP (T ′)
T ′

dT ′ . (7.41)

31One should observe from this section that in trying to provide a coarse-grained description of a classical gas, we’ve
been led to the necessity of Planck’s constant. It seems one can’t scratch the surface of thermodynamics very deeply without
finding quantum mechanics lurking beneath.
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For mercury, s0 = 76.90 ± 0.12 J K−1 mol−1 at T0 = 298.15 K.[32] Making the approximation
that clP is constant, we have from Eq. (7.41)

sl(T ) = s0(T0) + clP ln
(
T

T0

)
. (7.42)

By combining Eqs. (7.42) and (7.40) with Eq. (6.21), we have the entropy of the vapor expressed
entirely in terms of measured quantities:

sv(T ) = 1
T

[
L(T0) + ( 5

2R− c
l
P )(T − T0)

]
+ s0(T0) + clP ln (T/T0) . (7.43)

Entropy from the statistical theory

Let’s now calculate the entropy of the vapor using Eq. (7.38). First, however, let’s parameterize that
expression. Denote the factor of 3

2 in Eq. (7.38) as α, and let ξ = zh where z is a number. The molar
entropy from Eq. (7.38) can then be written

sv(T ) = R

[
α+ ln

(
kT

P

(
2πmkT
h2

)3/2 1
z3

)]
,

where we’ve used the ideal gas equation of state. Next, scale the temperature and pressure in terms
of their values at the reference temperature T0 by writing T = tT0 and P = pP (T0). In this way,

sv(T ) = R

[
α− 3 ln z + ln

(
kT0

P (T0)

(
2πmkT0

h2

)3/2
)

+ ln
(
t5/2

p

)]
. (7.44)

Using T0 = 298.15 K and P (T0) = 0.2613 Pa, we have the constant

A ≡ ln
(

kT0

P (T0)

(
2πmkT0

h2

)3/2
)

= 31.3992 , (7.45)

where we’ve used the atomic weight of mercury 200.59.

Concordance?

Equate Eqs. (7.44) and (7.43), the two expressions for the entropy of the vapor. We have:

α− 3 ln z = 1
RT

[
L(T0) + ( 5

2R− c
l
P )(T − T0)

]
+ 1
R

(
s0(T0) + clP ln t

)
−A− ln

(
t5/2/p

)
.

(7.46)
Consistency requires that the right side of Eq. (7.46) be independent of temperature.

First evaluate Eq. (7.46) for t = 1, p = 1. We’ll need

L(T0)
RT0

= 24.762 s0(T0)
R

= 9.129 . (7.47)

Combining Eqs. (7.47), (7.46), and (7.45), we find

α− 3 ln z = 2.492 . (T = 298.15 K) (7.48)

Now evaluate Eq. (7.46) at another temperature; choose T1 ≡ 373.15 K. The value of clP is
almost constant for T0 < T < T1; pick the value of clP as close to the middle of the temperature
range as possible. At T = 333.15 K, clP = 28.688 J K−1 for mercury.[31, p6-179] Using this value
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of clP , from Eq. (7.44) L(T1) = 60.86 kJ mol−1. Note that the heat of vaporization goes down with
an increase in temperature. From Eq. (7.42),

sl(T1) = 76.90 + 28.688 ln
(

373
298

)
= 82.11 J K−1 , (7.49)

i.e., the entropy of the liquid goes up with increased temperature. We then have

L(T1)
RT1

= 19.618 sl(T1)
R

= 9.876 .

To complete the calculation, we need the vapor pressure P (T1) = 38.21 Pa.[31, p6-181] The re-
maining term in Eq. (7.46) has the value −4.398. Assembling the numbers, we find

α− 3 ln z = 2.493 . (T = 373.15 K) (7.50)

The close numerical agreement between Eqs. (7.48) and (7.50) gives us considerable confidence
in the statistical theory of entropy. If we take z = 1 (a physically appealing choice), then we must
accept the value of α ≈ 2.49 as being prescribed by experiment, and not 3

2 as derived in Eq. (7.38).
In Section 7.6 we’ll see how α = 5

2 emerges naturally. The difference between 5
2 and 3

2 would
seem to be small, but actually it’s huge: It implies an increase of W in Eq. (7.2) by a factor of eN .
By accepting z = 1 as consistent with experimental measurements, it would appear to be the first
time in the logical development of physics of associating Planck’s constant with material particles.
Before this point in the history of physics, Planck’s constant was associated only with photons. The
implication of z = 1 is that, from Eq. (7.37), the thermal wavelength is

λT = h√
2πmkT

∼ h

p
, (7.51)

where p is the mean momentum, Exercise 7.7. Equation (7.51) presages the de Broglie wavelength.
It also indicates that h3 is a natural cell size in phase space for a single particle as prescribed by
fundamental physics. In the attempt to calculate the entropy of the ideal gas, we’ve been led to the
picture provided by the Heisenberg uncertainty principle, that we can’t “peer” into a region of phase
space ∆x∆p smaller than Planck’s constant. Just as with black body radiation, thermodynamics has
led us to the frontier separating the classical and quantum descriptions of the physical world.

Example. The thermal wavelength associated with a hydrogen atom at T = 300 K is, from Eq.
(7.51), λT = 0.1 nm.

Sackur-Tetrode equation

If we take z = 1, then α ≈ 2.49, well within 1% of 5
2 , and if we take α = 5

2 , then z ≈ 1.003, well
within 1% of z = 1. Taking α = 5

2 and z = 1 as consistent with experimental measurements, we
have the Sackur-Tetrode formula for the entropy of the ideal gas,

S = Nk

[
5
2 + ln

(
V

N

(
4πmU
3Nh2

)3/2
)]

. (7.52)

All parts of this expression have been tested against experiment: heat capacity consistent with Eq.
(7.34), equation of state, Eq. (7.35), and entropy of the vapor phase, Eq. (7.43). We show in Section
7.6 how to derive Eq. (7.52) starting from first principles.

There are now two independent lengths in the problem (Fig. 7.1): the average distance between
particles, (V/N)1/3, and the thermal wavelength, λT . When (V/N)1/3 � λT , the particles behave
independently (that is, classically); when (V/N)1/3 . λT , the particles are strongly interacting and
their quantum nature (Fermi or Bose statistics) becomes apparent.
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Figure 7.1 Two lengths: Average distance between particles and the thermal wavelength

7.5 VOLUME OF A HYPERSPHERE*
We show that the volume Vn(R) of a hypersphere of radius R in n-dimensional Euclidean space(∑n

k=1 x
2
k = R2) is given by

Vn(R) = πn/2

Γ(n2 + 1)R
n , (7.53)

where Γ(z), the gamma function, is by definition Γ(z) ≡
∫∞

0 e−ttz−1dt. The gamma function
satisfies the recursion relation Γ(z+ 1) = zΓ(z) (integrate by parts). For integers Γ(n) = (n− 1)!.
By direct evaluation, Γ( 1

2 ) =
√
π. From Eq. (7.53), V3(R) = (π3/2/Γ(1 + 3

2 ))R3. Using the
recursion relation, Γ(1 + 3

2 ) = 3
2Γ( 3

2 ) = 3
2Γ(1 + 1

2 ) = 3
4Γ( 1

2 ) = 3
√
π/4. Thus, V3(R) = 4πR3/3.

For n = 2 and n = 1, Eq. (7.53) gives V2(R) = πR2 and V1(R) = 2R.
To derive Eq. (7.53), we first define a function of n variables, f(x1, · · · , xn) ≡

exp
(
− 1

2
∑n
i=1 x

2
i

)
. In Cartesian coordinates, the integral of f over all of Rn is∫

Rn
f(x1, · · · , xn)dV =

n∏
i=1

(∫ ∞
−∞

dxi exp(− 1
2x

2
i )
)

= (2π)n/2 , (7.54)

where dV is the n-dimensional volume element, and we’ve used
∫∞
−∞ e−ax2dx =

√
π/a. Now

recognize that
∑n
i=1 x

2
i ≡ r2 defines the radial coordinate in n dimensions. Let dV = An(r)dr,

where An(r) is the surface area of an n-dimensional sphere. The surface area of an n-sphere can be
written An(r) = An(1)rn−1. The same integral in Eq. (7.54) can then be expressed∫

Rn
fdV =

∫ ∞
0

An(r) exp(− 1
2r

2)dr = An(1)
∫ ∞

0
rn−1 exp(− 1

2r
2)dr (7.55)

= 2(n/2)−1An(1)
∫ ∞

0
t(n/2)−1e−tdt = 2(n/2)−1An(1)Γ(n2 ) ,

where in the second line we have changed variables t = 1
2r

2. Comparing Eqs. (7.55) and (7.54), we
conclude that An(1) = 2πn/2/Γ(n2 ). This gives us the surface area of an n-sphere of radius R:

An(R) = 2πn/2

Γ(n2 ) R
n−1 . (7.56)

From Eq. (7.56), A3(R) = 4πR2, A2(R) = 2πR, and A1(R) = 2. By integrating dV = An(r)dr
from 0 to R, we obtain Eq. (7.53). Note that An(R) = (n/R)Vn(R).

7.6 LEARNING TO COUNT WITH PHYSICS
If it disagrees with experiment, it’s wrong. In that simple statement is the key to science.
It doesn’t make any difference how beautiful your guess is, it doesn’t matter how smart
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you are, who made the guess, or what his name is. If it disagrees with experiment, it’s
wrong. That’s all there is to it.—Richard Feynman[33, p150]

Accepting that we’ve been led through agreement with experiment to h3 as the intrinsic volume
of phase space per particle (z = 1 in Section 7.4), can the Sackur-Tetrode formula be directly
derived? We have to learn to correctly count configurations, in a way that leads to predictions in
agreement with experiment. Our method of coarse graining in Section 7.3 led to the factor of 3

2 in
Eq. (7.38), which we now know isn’t right. As with any idea in physics, its veracity is ascertained
by its consequences, with experiment being the arbiter of truth. We therefore abandon the approach
adopted in Section 7.3. Instead, we count the number of configurations of N identical particles of a
gas as follows:

W = 1
h3NN ! × (volume of accessible N -particle phase space) . (7.57)

We’re now talking about a phase space of 6N dimensions, that for N particles taken as a whole.
The factor of h3N “quantizes” phase space for N particles, providing the discreteness we require to
be able to count. The road to Eq. (7.57) was tortuous (Sections 7.3 and 7.4), but once we learn that
physics is telling us that each particle has attached to it an intrinsic volume of phase space h3, then
Eq. (7.57) seems natural. The factor of N ! in Eq. (7.57) recognizes that permutations of identical
particles are not distinct states. Apparently Gibbs was the first to include the factor of N !:

If two phases differ only in that certain entirely similar particles have changed places
with one another, are they to be regarded as identical or different phases? If the particles
are regarded as indistinguishable, it seems in accordance with the spirit of the statistical
method to regard the phases as identical.[34, p187]

By phase here, Gibbs means a point in phase space. By introducing the idea that identical particles
should be treated as indistinguishable, Gibbs made a break with classical physics wherein identical
particles are distinguishable. Entropy is a property of the entire system, with the interchange of
identical particles having no consequence. Without knowing it, Gibbs was straddling classical and
quantum physics; another instance where the requirements of thermodynamics seem to demand the
existence of quantum mechanics. By the volume of phase space accessible to the system in Eq.
(7.57), we mean the volume of phase space subject to constraints on the system, for example, the
constraints of the spatial volume V that the system occupies and its total energy U .

The Sackur-Tetrode formula can quickly be derived starting from Eq. (7.57). Let

W = 1
h3NN !

∫
d3x1

∫
d3p1 · · ·

∫
d3xN

∫
d3pN = V N

h3NN !

∫
d3p1 · · ·

∫
d3pN ,

where the integration over momentum space must be consistent with the total energy, 2mU =∑3N
i=1 p

2
i . The energy constraint specifies a 3N -dimensional hypersphere of radius

√
2mU , the area

of which is given by Eq. (7.56). Thus,

W = V N

h3NN !
2π3N/2

Γ( 3N
2 )

(2mU)(3N−1)/2
. (7.58)

The Sackur-Tetrode formula follows by combining Eq. (7.58) with Eq. (7.2) and approximat-
ing ln (N !Γ(3N/2)) with the Stirling approximation. Use Eq. (7.8) for ln(N !) and approximate
ln (Γ(z)) ∼ z ln(z) − z for large z. In the limit of large N we obtain Eq. (7.52) (ignore the differ-
ence between 3N − 1 and 3N ). Equation (7.58) is a gateway into statistical mechanics.
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7.7 GIBBS’S PARADOX, NOT
If we should bring into contact two masses of the same kind of gas, they would mix,
but there would be no increase in entropy.—J.W. Gibbs, 1876[3, p166]

It has always been believed that Gibbs’s paradox embodied profound thought.
—Erwin Schrödinger, 1952[35, p61]

A paradox is a conflict between reality and your feeling of what reality ought to be.
—Richard Feynman[36, p18-9]

The term Gibbs’s paradox refers to several related issues pertaining to entropy, extensivity, and
the sameness of particles. Extensive quantities are additive over independent subsystems (Sections
1.2 and 3.7). Internal energy is extensive, but it might not be so if there are long-range interactions or
if the system is so small that surface effects dominate. Is entropy extensive? While entropy isn’t tied
to a microscopic property of atoms, it scales with the number of particles. Implicit in the derivation
of S = k lnW is the very condition for extensivity (Section 7.1). Formulas such as Eq. (7.36)
therefore exhibit extensivity. For thermodynamic entropy, however, extensivity must be imposed as
an additional requirement (Section 3.7). Therein lies part of the confusion behind what’s referred to
as Gibbs’s paradox.

A simple test of extensivity is provided by the following thought experiment. Consider the act of
removing a partition that separates two samples of the same ideal gas having the same temperature
and pressure (Fig. 7.2). The system is thermally isolated; no heat can flow from the environment.

Figure 7.2 Remove the partition: Does the entropy change?

Does entropy change when the partition is removed? Using Eq. (3.27) (thermodynamics) or Eq.
(7.52) (Sackur-Tetrode formula), the answer is No:

∆S = 0 . (extensive entropy) (7.59)

No change in entropy ensues upon combining two identical parts of the same system if entropy is
extensive. What if, however, we were to use Eq. (7.33) as an expression for the entropy, which has
the form

S = Nk

[
lnV + 3

2 ln
(
U

N

)
+X

]
, (7.60)

where X is a constant? Equation (7.60) (non-extensive) predicts

∆S = 2Nk ln 2 . (non-extensive entropy) (7.61)
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Entropy of isolated systems increases only through irreversible processes (Section 3.3). Sliding back
in the partition restores the system to its original macroscopic state and is thus a reversible process.
Equation (7.61) cannot be correct. The entropy of an ideal gas must be extensive.32

Where’s the paradox? There isn’t one. Gibbs’s paradox is often “ginned up” by starting with a
non-extensive thermodynamic entropy and arguing that it leads to a violation of the second law, as
in Eq. (7.61). The “resolution” is then presented that one must use the (extensive) Sackur-Tetrode
equation, of which, it’s touted, one needs quantum mechanics to understand. Invoking quantum
mechanics is a red herring: Quantum mechanics does not resolve a paradox because there is no
paradox. It’s true that the standard calculation in thermodynamics leads to a non-extensive entropy
in the form of Eq. (7.60), e.g., Eq. (3.20). Extensivity is not a consequence of the Clausius defini-
tion; it must be imposed as a separate requirement.33 The “constant” X in Eq. (7.60) is actually a
function of N which can be determined by imposing extensivity, Eqs. (3.26) or (3.27). There is no
paradox; the Clausius definition is incomplete (applies to closed systems only). As we’ve shown,
the thermodynamic entropy can be made extensive. All you have to do is ask for it. Paradox lost.

A stronger version of Gibbs’s paradox is as follows: Remove the partition separating dissimilar
ideal gases having the same temperature and pressure34—see Fig. 7.3. Using either Eq. (3.26) or

Figure 7.3 Remove the partition: Does the entropy change?

Eq. (7.52), we find for the process depicted in Fig. 7.3,

∆S = kN1 ln
(
V

V1

)
+N2k ln

(
V

V2

)
= −Nk [x1 ln x1 + x2 ln x2] , (7.62)

where V ≡ V1 + V2, N = N1 +N2, and x1,2 ≡ (N1,2/N) = V1,2/V are the respective mole frac-
tions. Equation (7.62) expresses the entropy of mixing (Section 6.3), although the term is misleading
because it’s not the mixing per se that leads to an increase in entropy, it’s the change in volume for
each gas. When V1 = V2, Eq. (7.62) becomes

∆S = (N1 +N2)k ln 2 . (7.63)

Consider the formal step in Eq. (7.63) of allowing dissimilar atoms to become identical: Let
N1 ≡ N2 = N . We do not recover Eq. (7.59). This point was noted by Gibbs in 1876, and ever
since then, resolving the “paradox” has been a topic of debate. It’s remarkable that Gibbs did not
see a problem with what’s known as Gibbs’s paradox. Let’s let Gibbs speak for himself:

32That doesn’t imply, however, that entropy is extensive for all systems. The possibility and implications of non-extensive
entropies for certain systems has become an active field of research.[37]

33We noted in Section 3.7 that in axiomatic formulations of thermodynamics, extensivity of entropy is taken as a postulate.
34All gases become ideal at sufficiently low pressure, Section 1.6. Thus, there is not simply one idealized gas, we can

meaningfully speak of dissimilar ideal gases.
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It is noticeable that the value of this expression [Eq. (7.63)] does not depend on the
kinds of gas . . . except that the gases which are mixed must be of different kinds. If we
should bring into contact two masses of the same kind of gas, they would also mix,
but there would be no increase of entropy. . . . When we say that when two different
gases mix by diffusion, . . . , the energy of the whole remains constant, and the entropy
receives a certain increase, we mean that the gases could be separated and brought to
the same volume and temperature which they had at first by means of certain changes
in external bodies . . . . But when we say that when two gas-masses of the same kind are
mixed . . . there is no change of energy or entropy, we do not mean that the gases which
have been mixed can be separated without change to external bodies. On the contrary,
the separation of the gas is entirely impossible. We call the energy and entropy of
the gas-masses when mixed the same as when they were unmixed, because we do not
recognize any difference in the substance of the two masses.[3, p166]

Parsing Gibbs, he’s saying that mixing dissimilar gases is irreversible, while mixing identical gases
is not. A mixture of dissimilar gases can be unmixed by means of “certain changes in external
bodies”—through the use of selectively permeable membranes. The gases can be unmixed but the
environment will not have been restored to its original configuration (Section 1.7). On the other
hand, mixing similar gases produces no change in the macroscopic state of the gas. Far from being
a paradox, our confidence in the theory should be bolstered that the same extensive expressions give
no entropy change for mixing similar gases, but a finite value for dissimilar gases.35

7.8 SUBTLETIES OF ENTROPY

Is entropy absolute?

Is there a unique value of S for a given equilibrium state? Consider the analogous question: Is there
a unique value of the electrostatic potential at a given point in space? Charged particles respond
to gradients of the potential (electric field), not its value. Similarly, thermodynamic processes are
associated with entropy differences. A constant S0 added to the entropy of every equilibrium state
has no physical consequence. Intensive quantities such as P, T, and µ occur as derivatives of S.
There is no sense to the notion of absolute entropy.

Yet, the issue is confounded by the two types of entropy: thermodynamic, defined as a differ-
ential, dS = d̄Q/T , and statistical, specified by a formula, S = k lnW . The question becomes is
there a unique value of W for a given equilibrium state? Extending the analogy with electrostatics,
the potential is specified relative to zero, “ground,” which we are free to place wherever we want.
What state of matter should be associated with zero entropy? In Section 7.1 we found a second-
order differential equation for S, the solution of which is S = k lnW + S0. We established the
scale, k = kB , but we took S0 = 0 without fanfare, leaving us with Eq. (7.2). From Eq. (7.3), a
nonzero value of S0 would drop out of an entropy difference, ∆S = k ln(W1/W2). We could have,
however, taken S0 = −k lnW0, so that instead of Eq. (7.2) we would have its generalization

S = k ln(W/W0) . (7.64)

Entropy in the form of Eq. (7.64) also leads to Eq. (7.3).
Thus, we have two ways of writing the statistical entropy [Eqs. (7.2) and (7.64)], both of which

lead to Eq. (7.3). Each indicates that S = 0 is possible: W = 1 in Eq. (7.2) and W = W0 in Eq.
(7.64). It would be natural to associate the special value S = 0 with the state of matter at T = 0,
and it’s commonly held (incorrectly it turns out) that entropy vanishes as T → 0. The third law

35One can almost hear Yogi Berra saying: Dissimilar gases are dissimilar, and as long as they are dissimilar, they are
dissimilar. Don’t expect Eq. (7.63) to reduce to Eq. (7.59) as one cannot smoothly let dissimilar objects become the same;
nature doesn’t let us do that experiment.
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of thermodynamics is concerned with the low-temperature properties of matter, and we discuss in
Chapter 8 systems36 for which S(T = 0) 6= 0. The issue for us here, continuing the question
of whether W is unique: Is phase space unique? Chemical elements exist in the form of different
isotopes, each of which has its own nuclear spin state. Should we, in counting microstates, enlarge
phase space to include nuclear spin or other subatomic variables? Degrees of freedom not subject
to change in experiments, do not contribute to changes in entropy.37 We were careful to note on
page 10 that entropy is a quantitative measure of the number of microstates associated with a given
macrostate, not the absolute number of such states. With each substratum of matter discovered by
physics, there are progressively more microscopic degrees of freedom that could be counted as
contributing to W . Absolute entropy is not well founded: A state that we assign zero entropy can
have a large number W0 of associated configurations of microscopic variables. We revisit this topic
in Section 8.3.

The issue of the degrees of freedom that contribute to the entropy, or not, is in some ways a
tempest in a teapot. Categorize the number of degrees of freedom that are in no way affected by
experimental processes of interest as irrelevant, Wirr, and the number that could possibly become
accessible in experiments as relevant, Wrel. For every irrelevant degree of freedom, there is the
entire range of relevant degrees of freedom.38 The total number of degrees of freedom is thus W =
WrelWirr. With changes in entropy described by Eq. (7.3), irrelevant degrees of freedom drop out.
From S = kB lnW , changes in entropy are, from Eq. (7.3), with W1 = W and W2 = W1 + ∆W :

∆S = kB ln(1 + ∆W/W ) , (7.65)

i.e., changes in entropy are controlled by the relative number of additional microstates that become
accessible in a given process. Entropy represents the potentialities inherent in a system, or as Clau-
sius put it, the transformational content of a system.

Is entropy real?

But what mechanical or electrodynamical quantity represents the entropy?
—Max Planck[27, p117]

Does entropy have objective existence?39 We can measure heat flow and we can measure temper-
ature; thus there’s nothing subjective about entropy as defined by dS = (d̄Q/T )rev, which specifies
the change in entropy between states connected by reversible paths—if entropy exists for one state,
it exists for all states connected to the first by a reversible path.40 From TdS = dU +PdV − µdN
we have that the quantities determining dS are differentials of U , V and N , and no one doubts their
reality.41 For extensive entropy, we have the Euler relation TS = U + PV − Nµ, Eq. (3.31), an

36The entropy of ice at low temperature, for example, is nonzero which reflects the number of ways H atoms can be
arranged in a crystalline network of H2O molecules.

37This point leads some to conclude that entropy is subjective, because it would appear to be a property not of physical
systems, but of the experiments we choose to perform on them. See Chapter 12 for Maxwell’s take on subjectivity associated
with the second law. One can’t help notice similarities between entropy and quantum mechanics. Does the quantum state
vector, |ψ〉, objectively exist in nature? The question should be turned around: What objectively-existing quantity in nature
does |ψ〉 describe? A school of thought is that |ψ〉 is a property not of individual systems, but rather of an ensemble of
systems. Entropy is a property not of individual particles, but of many.

38For this idea to work, there must be a clear separation between the two types of degrees of freedom, such as we have
for molecular degrees of freedom (translational, configurational, rotational, vibrational, and electronic) and sub-atomic, i.e.,
nuclear and sub-nuclear, degrees of freedom.

39Without venturing unduly into philosophy, we use the term objective as it’s used in science, to refer to objects that exist,
or processes that occur, independently of the presence of human beings.

40Can every point in state space be reached by a reversible path? In the Carathéodory formulation of the second law
(Chapter 10), the question is posed differently: Starting from a given point in state space, are there points not reachable by
adiabatic processes, those with d̄Q = 0? It’s shown that entropy exists if there are states inaccessible by adiabatic processes.

41Let’s stipulate the objectivity of U , V , and N . Does the number of particles exist if you’re not there to count them?
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even more direct connection between S and other quantities whose reality is not in question. Ther-
modynamic entropy (with extensivity imposed) and statistical entropy are two different theoretical
approaches to the same thing, which agree once we’ve learned to count states in a way consistent
with quantum mechanics (Section 7.6), underscoring the reality of entropy. We must accord S the
status of physical reality.

Yet, entropy is unlike other physical quantities (such as energy) because it’s not related to a
property of the individual components of the system. Rather, it’s a property of the equilibrium state,
which is characterized by a set of macrovariables {Xi}ni=1. Should we discover a new macrovariable
Xn+1, our specification of the entropy will change. For that reason, it’s said by some that entropy
is subjective because the observer gets to choose the relevant macrovariables, and thus entropy
has no objective meaning, it being a construct of the mind of the experimenter.42 Consider that in
the special theory of relativity, measurable quantities stand in relation to the observer, with length
and time measurements not having independent existence because they depend on the choice of
inertial reference frame. The same is true of the electric and magnetic fields—not independently
existing, but reference-frame dependent. Would one say that space and time and theE andB fields
are subjective? Astronomers measure the distance to stars based on the knowledge they have; no
one would argue that stars don’t have a distance from Earth. When new astronomical facts are
discovered, distances are revised, and no one says that stellar distances are subjective. Incomplete
information is not the same as subjectivity.43

Questions of subjectivity inevitably arise from the tension between phenomenological theories,
categorizations of our experience, what we observe of the world, and microscopic theories that at-
tempt to explain what we observe as a consequence of “impersonal” (read objectively existing)
interactions between the microscopic constituents of matter. Science is always based on limited,
incomplete information, subject to change; scientific theories represent our best effort at under-
standing the physical world, theories that can and do change. Science is a human activity, and is in
that sense, subjective.

CHAPTER SUMMARY
This chapter introduced the microscopic interpretation of entropy, S = kB lnW , what quantifies
the “missing” degrees of freedom not accounted for in macroscopic descriptions. The quantity W
represents the number of microstates consistent with a specified equilibrium state. That number
would be prodigiously large if every presently-known subatomic variable were included. “Frozen”
degrees of freedom, those that don’t change in the course of experiments, do not contribute to
changes in entropy.

• Statistical entropy is motivated by entropy being a maximum in equilibrium and from the
consideration that of the myriad microstates of a system, those compatible with equilibrium
occur most frequently, with high probability W . The statistical entropy follows by requiring
that entropy be additive over independent subsystems (extensive), S = S1 + S2, for which
probability is multiplicative, W = W1W2. These requirements determine S = kB lnW .

• W is the number of microstates compatible with a given state of equilibrium; the greater the
number of microstates, the larger the entropy. We require that S obtained from S = kB lnW
must satisfy thermodynamic identities such as T−1 = (∂S/∂U)V,N , and thus W must be
found as a function of the state variables characterizing equilibrium, W = W (U, V,N).

42Edwin Jaynes wrote:[38] “The entropy of a thermodynamic system is a measure of the degree of ignorance of a person
whose sole knowledge about its microstate consists of the values of the macroscopic quantities Xi which define its thermo-
dynamic state. This is a completely objective quantity, in the sense that it is a function only of the Xi, and does not depend
on anyone’s personality. There is then no reason why it cannot be measured in the laboratory.”

43This point is argued in the book by Denbigh and Denbigh.[39]
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• For N identical items distributed over Nc cells, the statistical entropy is (for N sufficiently
large): S = −NkB

∑
k pk ln pk, with pk the probability that an item selected at random is in

the kth cell. The probability distribution that maximizes S is for each cell equally likely, pk =
N−1
c . The value of the entropy corresponding to the uniform distribution is S = NkB lnNc.

This coarse-grained description is not rich enough to make contact with thermodynamics
through T−1 = ∂S/∂U ; for that purpose we have to include the energy of the system.

• Phase space is a mathematical space in which all states of a system can be represented, with
each possible state corresponding to a single point in the space. Phase space for a point mass
is a six-dimensional space of all possible positions r and momenta p. That forN point masses
is 6N -dimensional.

• The phase-space probability density function that emerges upon maximizing the entropy sub-
ject to the constraints that it be normalized and that the energy U be the sum of the kinetic
energies, is the Maxwell-Boltzmann distribution function

ρ(r,p) = 1
V

(
β

2mπ

)3/2
exp(−βp2/(2m)) ,

where V is the volume of the gas and β = (kBT )−1. The value of the entropy one obtains
from the Maxwell-Boltzmann probability distribution is

S = NkB

(
3
2 + ln

[
V

g

(
4mπU

3N

)3/2
])

,

where g is the unknown cell size in phase space. With this expression, the thermodynamic
identities T−1 = (∂S/∂U)V,N and P/T = (∂S/∂V )U,N reproduce the results for the ideal
gas

U = 3
2NkBT PV = NkBT .

We cannot apply the thermodynamic identity µ/T = − (∂S/∂N)U,V because we do not
know the cell size, g. We argued that g scales with N , g = Nξ3, where ξ has dimension of
action. From thermodynamic measurements it is found that ξ = h, Planck’s constant. This
approach leads to the (incorrect) expression for the entropy of the ideal gas, Eq. (7.33)

S = NkB

(
3
2 + ln

[
V

N

(
4mπU
3Nh2

)3/2
])

. (incorrect)

• It’s found, by comparison with thermodynamic measurements, that Eq. (7.33) is not correct,
but that the Sackur-Tetrode formula, Eq. (7.52), correctly accounts for the entropy of the vapor
phase,

S = NkB

(
5
2 + ln

[
V

N

(
4mπU
3Nh2

)3/2
])

. (correct)

• Writing λT = h/
√

2πmkBT as a length (thermal wavelength), the Sackur-Tetrode equation
is:

S = NkB

[
5
2 + ln

(
V

Nλ3
T

)]
.

When V/N � λ3
T , the atoms act independently and a classical description is apt; the parti-

cles are strongly interacting when V/N � λ3
T and their quantum nature must be taken into
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account. The Sackur-Tetrode formula provides experimental confirmation (from thermody-
namic measurements) of the picture that emerges from quantum mechanics that each particle
carries with it a fundamental volume of phase space h3.

• To derive the Sackur-Tetrode formula, we count microstates as in Eq. (7.57):

W = 1
h3NN ! × (volume of N -particle phase space subject to constraints) ,

where h3N quantizes phase space for N particles and the factor of N ! recognizes that permu-
tations of identical particles are not counted as distinct microstates.

EXERCISES

7.1 Show that for any system, the quantity W in Eq. (7.2) must satisfy the differential equation

lnW = U

(
∂ lnW
∂U

)
V,N

+ V

(
∂ lnW
∂V

)
N,U

+N

(
∂ lnW
∂N

)
U,V

.

Hint: Euler relation.

7.2 a. Plot (N lnN −N) /(lnN !) versusN . For what value ofN are you comfortable replacing
lnN ! with Stirling’s approximation in the form of Eq. (7.8)?

b. Plot (from Eq. (7.10))
(√

2πN(N/e)N
)
/(N !) versus N . To what extent does the extra

factor improve the approximation?

7.3 There is a lottery in the Province of Ontario, Canada known as 649: Pick six numbers out of
49. How many ways are there to do this, when the order in which the numbers are chosen is
immaterial? What are odds of winning?

7.4 Use the Maxwell-Boltzmann distribution function, Eq. (7.28), combined with Eq. (7.31) to
derive the expression for the energy of the ideal gas, Eq. (7.32), starting from Eq. (7.25).

7.5 Fill in the steps leading to Eq. (7.30).

7.6 Use Eq. (7.28) combined with Eq. (7.31) to derive the expression for the entropy, Eq. (7.33),
starting from Eq. (7.21).

7.7 Show that the mean value of p, the magnitude of a particle’s momentum, can be derived from
the momentum distribution function f(p) in Eq. (7.31), with the result p =

√
8mkT/π.

7.8 Derive the Sackur-Tetrode equation Eq. (7.52) by combining Eq. (7.58) with Eq. (7.2) and
invoking the Stirling approximation.

7.9 Derive an expression for the chemical potential of the ideal gas. Use Eq. (7.52) with

−µ
T

=
(
∂S

∂N

)
U,V

. A : µ = −kT ln
[
V

N

(
2πmkT
h2

)3/2
]

= −kT ln
[

V

Nλ3
T

]
Show that this expression for µ can be put into the form of Eq. (4.12). Equation (4.12) is the
Gibbs energy per mole; ignore the difference between R and k.
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7.10 Derive an expression for the chemical potential when the entropy is given by

S = Nk

[
3
2 + ln

(
V

N

(
4πmU
3Nh2

)3/2
)]

,

which is what would be obtained by ignoring the indistinguishability of identical particles
(omit the factor of N ! in Eq. (7.57)). Does your answer agree with that from the previous
problem? Would such an expression for the entropy lead to a correct prediction of the vapor
pressure? (Section 7.4)

7.11 Show how an extensive entropy leads to ∆S = 0 in Eq. (7.59).

7.12 Derive Eq. (7.62). Treat each gas as if it is freely expanding into the newly increased volume.

7.13 Show that the chemical potential of the ideal gas found in Exercise 7.9 is what you would
obtain from Eq. (3.31).

7.14 Derive an expression for the Helmholtz free energy of the ideal gas.

A : F (T, V,N) = −NkT
(
1 + ln

(
V/(Nλ3

T )
))

.

Obtain an expression for the chemical potential from µ = (∂F/∂N)T,V . Is it the same as
that derived in Exercise 7.9? The change in F for a reversible isothermal process is the work
performed, [∆F ]T = W , Table 4.1. Show that this interpretation holds for the ideal gas using
the result of this problem.

7.15 Show, starting from Eq. (7.31), and using the results obtained in this chapter, that we can
write

Z = V

Nλ3
T

.

This result is sometimes written
Z = nQ

n
,

where n ≡ N/V and nQ ≡ λ−3
T is the quantum concentration, one particle in a volume of

λ3
T .

7.16 a. The Sackur-Tetrode formula for the entropy of an ideal gas, Eq. (7.52), has the form
S = NkB

[ 5
2 + ln (·)

]
. Estimate the size of the logarithm term for a typical gas. For

example, consider one mole of hydrogen gas in a volume of one liter at T = 300 K. In
this case, ln

(
V/(Nλ3

T )
)
≈ 7.4. The entropy of this gas would then be S ≈ 10NkB .

b. A crude estimate of the entropy of a system can be had by assuming S ∼ NkB . Using
this rule of thumb, estimate the entropy in a glass of wine. Make reasonable guesses for
whatever it is you need to know. Taking S ∼ N , useful for purposes of guesstimates,
cannot be taken literally. If S varies precisely linearly with N , the chemical potential is
identically zero.

c. Using the S ∼ NkB rule, estimate the entropy of the sun. Clearly we need to know
the total number of particles in the sun. The sun (of mass 2 × 1030 kg) is composed of
approximately 75% H and 25% 4He. Don’t forget electrons in the particle number count!
Because the sun is a plasma (ionized gas), for every proton, there’s an electron (charge
neutrality). Show that N ≈ 1057.
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The third law
You can’t get to T = 0

T HE third law of thermodynamics is concerned with the properties of physical systems in the
limit T → 0. Before taking up the third law proper, we consider how low temperatures are

produced, because the two are related.

8.1 ADIABATIC DEMAGNETIZATION
The simplest means for cooling a system is to place it in contact with (immerse it in, surround it
by) a lower-temperature reservoir. We can see this formally by taking T = T (S, V ), in which case
temperature variations can be expressed

dT =
(
∂T

∂S

)
V

dS +
(
∂T

∂V

)
S

dV = T

CV
dS − αT

βCV
dV , (8.1)

where we’ve used Eq. (3.11) and the result of Exercise 4.9. The coefficient of dS in Eq. (8.1)
is always positive, whereas the coefficient of dV is negative if α > 0. With dV = 0 (constant
volume), entropy is reduced by an outflow of heat (dS < 0), lowering the temperature.

If placing the system in contact with colder objects is not an option, a means of cooling must
be devised that utilizes the thermodynamic properties of the system. Equation (8.1) indicates that
cooling would result from a reversible adiabatic expansion (dS = 0, dV > 0). A cooling pro-
cess (not a cycle) could be devised that combines a series of adiabatic expansions with isothermal
compressions wherein we “suck out the entropy” because, from Eq. (8.1),(

∂S

∂V

)
T

= α

β
=
(
∂P

∂T

)
V

, (8.2)

where we’ve used Eq. (1.21). At constant T , dS < 0 for dV < 0. An isothermal compression
lowers the entropy by reducing the available volume; a subsequent adiabatic expansion lowers the
temperature by converting kinetic energy into potential energy. Both processes (expansion and com-
pression) rely on the expansivity of the material, α. At low temperatures, however, thermal expan-
sivities become vanishingly small.[40] Indeed, as we’ll show, a consequence of the third law is that
the expansivity vanishes as T → 0. Cooling by compression-expansion is therefore not a practical
means of producing low temperatures, but it suggests that alternatives can be found based on the
same principle of reversible adiabatic processes combined with isothermal reductions in entropy.

121
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An effective method of cooling at low temperatures involves the adiabatic demagnetization of
paramagnetic materials,1 a discussion of which requires knowledge of the thermodynamics of mag-
netic substances.2 As always, start with the first law. The work required to change the magnetization
M of a sample in a field H is, from Eq. (1.14), dW = µ0HdM . In what follows, we leave off the
factor of µ0 for simplicity. (It can be restored by letting H → µ0H .) With PdV work not playing a
significant role at low temperatures, we take as the first law

dU = TdS +HdM . (8.3)

Define a magnetic Gibbs energy, G = U − TS −HM , for which

dG = −SdT −MdH . (8.4)

Equation (8.4) implies a Maxwell relation(
∂M

∂T

)
H

=
(
∂S

∂H

)
T

. (8.5)

For relatively small values of M , the equation of state for paramagnets is given by Curie’s law,

M = C
H

T
, (8.6)

where C > 0 is the Curie constant, the value of which is material specific.3 Curie’s law does not
take into account interactions between the dipole moments of paramagnetic atoms (usually ions),
and thus, in analogy with the ideal gas, can be said to describe the ideal paramagnet.

Combining Eq. (8.6) with Eq. (8.5), we have for the ideal paramagnet(
∂M

∂T

)
H

= −C H

T 2 =
(
∂S

∂H

)
T

. (8.7)

Now consider the formal device of

∂S

∂(H2) = ∂S

∂H

∂H

∂(H2) = ∂S

∂H

(
∂(H2)
∂H

)−1

= 1
2H

∂S

∂H
,

implying from Eq. (8.7), (
∂S

∂(H2)

)
T

= − C

2T 2 . (8.8)

An increase in magnetic field decreases the entropy at constant T ; there’s less disorder among the
dipoles of paramagnetic atoms with increasing field strength.

Take the temperature to be a function of S and H , T = T (S,H), and thus

dT =
(
∂T

∂S

)
H

dS +
(
∂T

∂H

)
S

dH . (8.9)

1The 1949 Nobel Prize in Chemistry was awarded to William Giauque for his work on the behavior of substances at low
temperatures, including the development of adiabatic demagnetization.

2The exercises at the end of this chapter provide plenty of practice with the thermodynamics of magnetism.
3The Curie constant does not have a universal value like the gas constant, but is material specific. In thermodynamics M

is an extensive quantity, the net dipole moment of the sample (Section 1.9), yet the right side of Eq. (8.6) involves intensive
quantities. The Curie constant must have the dimension of volume. In electromagnetic theory, magnetization, call it Mem,
is the net dipole moment per volume. Thus, M = MemV . In the SI system, Mem has the same dimension as H (amperes
per meter), and C is a multiple of the quantities µ0µ2

B/kB , where µB ≡ e~/(2m) = 9.27 × 10−24 J · T−1 is the Bohr
magneton (T denotes Tesla). When the smoke clears, C has the base units of K · m3.
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To evaluate the derivatives required in Eq. (8.9), it’s straightforward to show, using Eq. (8.3), that
an expression for the heat capacity at constant magnetic field, CH , is (see Exercise 8.5)

CH =
(
∂U

∂T

)
H

−H
(
∂M

∂T

)
H

= T

(
∂S

∂T

)
H

. (8.10)

The other derivative in Eq. (8.9) can be found using the cyclic relation:(
∂T

∂H

)
S

= −
(
∂S

∂H

)
T

(
∂S

∂T

)−1

H

= − T

CH

(
∂M

∂T

)
H

= C

CH

H

T
, (8.11)

where we’ve used Eq. (8.7) and Curie’s law. Equation (8.9) can therefore be written

dT = T

CH
dS + C

2CHT
d
(
H2) . (8.12)

Equation (8.12) is the analog of Eq. (8.1), and Eq. (8.8) is the analog of Eq. (8.2).
Integrating Eq. (8.12) at constant S (assuming that CH is approximately constant),

∆(T 2) = C

CH
∆(H2) , (8.13)

while integrating Eq. (8.12) at constant T implies

∆S = − C

2T 2 ∆(H2) . (8.14)

Equations (8.13) and (8.14) provide the basis for a cooling process. Turning on the field at constant
temperature (magnetizing the sample, ∆(H2) > 0) decreases the entropy, per Eq. (8.14). At this
point, the sample is shielded and the field is turned off (∆(H2) < 0) under adiabatic conditions,
demagnetizing the sample and decreasing the temperature per Eq. (8.13). The process is shown in
Fig. 8.1 as a function of T , S, and H . The right portion of the figure shows the process projected
onto the S-T plane, assuming that the entropy curves are as shown (see Section 8.5).4

Figure 8.1 Cooling by adiabatic demagnetization. Field turned on isothermally a → b,
lowering entropy; field turned off adiabatically, b→ c, lowering temperature

4Cooling by adiabatic demagnetization of paramagnetic salts can achieve milli-Kelvin temperatures. Cooling by nuclear
demagnetization, removing the entropy of the magnetic dipoles of nuclei, can achieve micro-Kelvin temperatures.
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8.2 NERNST HEAT THEOREM
The equilibrium constant K∗ of a chemical reaction (Section 6.4) can be calculated from thermo-
dynamic data, either from ∆G0 =

∑
i νiµ

0
i , the net change in Gibbs energy of the reactants in their

pure forms, Eq. (6.41), or from the heats of reaction ∆H0 =
∑
i νiH

0
i , Exercise 6.3, where H0

i is
the enthalpy of the ith pure substance. At a given temperature T we have, by definition,

∆G0 = ∆H0 − T∆S0 , (8.15)

where ∆S0 ≡
∑
i νiS

0
i is the net entropy difference of the reactants. Let the entropy of a substance

at temperature T be denoted S0
T , and write

S0
T = S0

0 + S0
0→T , (8.16)

where S0
0 is the entropy at T = 0 and S0

0→T is the entropy of the substance that has been taken from
T = 0 to T > 0, as in Eq. (P6.1). Using Eq. (8.16) we can write for the chemical reaction

∆S0 = ∆S0
0 + ∆S0

0→T , (8.17)

where, in an abuse of notation, ∆S0
0 =

∑
i νiS

0
0,i, with S0

0,i the entropy of the ith substance in pure
form at T = 0. Combining Eq. (8.17) with Eq. (8.15) and using Eq. (6.41),

R lnK∗ = ∆S0
0 + ∆S0

0→T −
∆H0

T
. (8.18)

In Section 7.8 we argued that no meaning can be ascribed to absolute entropy. Yet, in Eq. (8.18)
we have a measurable quantity, K∗, that seems to involve the zero-temperature entropies of the
reactants, constants that are supposedly arbitrary.

To eliminate the possibility that ∆S0
0 could contribute to a measurable quantity, Walther Nernst

postulated in 1906 that ∆S → 0 as T → 0, what’s known as the Nernst heat theorem:

At T = 0, the entropy change accompanying any thermodynamic process vanishes.

The Nernst heat theorem is a version of the third law of thermodynamics, perhaps the best.5 As we’ll
see, the third law has been stated in several forms.6 The Nernst theorem is not based on theoretical
reasoning, however, but on a detailed study of chemical reactions using electrochemical cells. The
open-cell emf under conditions of constant (T, P ) or constant (T, V ) (see Section 6.4) provides a
measurement of the reversible work of the reaction, ∆G or ∆F , Eq. (6.47). From this information,
∆H or ∆U can be calculated using the Gibbs-Helmholtz equations, Eq. (6.53). Nernst found that
at low temperatures, ∆G approaches ∆H , ∆G→ ∆H , and ∆F approaches ∆U , ∆F → ∆U .

Using Eq. (6.52), we conclude from this finding that the entropy differences

T [∆S]P = ∆H −∆G and T [∆S]V = ∆U −∆F ,

tend to zero as T → 0. Given the factor of T in T [∆S]P and T [∆S]V , we should not be surprised
that these difference vanish as T → 0. Nernst found from his data, however, that the slopes vanish
as T → 0,

lim
T→0

(
∂∆G
∂T

)
P

= lim
T→0

(
∂∆H
∂T

)
P

= lim
T→0

(
∂∆F
∂T

)
V

= lim
T→0

(
∂∆U
∂T

)
V

= 0 .

5Nernst was awarded the 1920 Nobel Prize in Chemistry for his work on the third law.
6In contrast to the second law, where the Clausius and Kelvin statements are logically equivalent, no two statements of

the third law are the same. For that reason, it’s maintained by some that the third law of thermodynamics is not a law of
nature but rather a collection of useful ideas.



Third law � 125

Using Eq. (6.51), therefore, the Gibbs-Helmholtz equations, we conclude that

lim
T→0

[∆S]T,P = lim
T→0

[∆S]T,V = 0 . (8.19)

This result provides the experimental foundation for the Nernst heat theorem, and hence the third
law: limT→0 ∆S = 0. One does not have to produce heroically low temperatures to arrive at this
conclusion; Nernst found that the trends are evident beginning at T ≈ 40 K. We can now state the
Nernst law more precisely. Equation (8.19) refers to entropy differences that occur for processes
connecting equilibrium states at the same temperature. A refinement of the Nernst heat theorem is:

The change in entropy associated with isothermal processes between states of equilib-
rium vanishes as T → 0.

This statement can be taken as a secure version of the third law. Its justification (like the second law)
rests on the fact that of all consequences derived from it, none have been found in contradiction with
experimental results.7

8.3 OTHER VERSIONS OF THE THIRD LAW

Planck version

The Nernst heat theorem says that ∆S → 0 as T → 0 for isothermal reactions, yet it tells us nothing
about the entropies of the individual constituents of the reaction. In 1911 Planck offered a seemingly
stronger version of the third law:[11, p274]

As the temperature diminishes indefinitely, the entropy of a chemically homogeneous
body of finite density approaches indefinitely near to the value zero.

In other words, limT→0 S = 0. Basically, Planck would erase the factors of ∆ in the Nernst heat
theorem, that instead of entropy differences vanishing at low temperature, entropy itself vanishes as
T → 0. If correct, it would naturally account for the Nernst heat theorem. The Planck hypothesis,
however, cannot be a fundamental law of physics: 1) It’s not true—there are materials with nonzero
entropies at low temperature, what’s termed the residual entropy; and 2) It can’t be true. Planck was
motivated by the statistical entropy, S = k lnW . If all systems attain a single microstate as T → 0,
W = 1, and entropy would indeed vanish. Here we have another instance of thermodynamics
anticipating quantum mechanics. Planck’s version of the third law is the assertion that the ground
state of every system is nondegenerate. While plausible, it begs the question: Do all systems reach
a unique state at T = 0? No. Consider the solid state of carbon monoxide (CO) at low temperature.
In a perfect crystal all molecules would have the same orientation, of, for example, C atoms “up”
with O atoms “down.” In actuality, which atom is up occurs almost at random. It’s as if solid CO is
a mixture of two kinds of molecules, CO and OC. If the mixing of the two “species” is random,
we would have from Eq. (7.62) an entropy of mixing ∆S = R ln 2 ≈ 0.69R. The measured
residual entropy of solid CO is ≈ 0.55R.[41] Ice is another substance with a nonzero entropy at
low temperature (Section 8.6).

The state to which we ascribe zero entropy has no fundamental significance; it’s a convention,
an agreement (see Section 7.8). Even for systems where molecules achieve an ordered configuration
at low temperature, there are other sources of entropy independent of the state of crystalline order.
The flaw in Planck’s theory is that it assumes there is an absolute sense by which we can say that
W = 1 for the microstate. There are always microscopic degrees of freedom that we decide whether
to take into account. By convention, entropy is taken to be zero when translational, configurational,

7It’s useful to keep in mind that science does not establish true propositions, but disproves false ones. Consider Einstein’s
statement that no amount of experimentation could ever prove him right, but a single experiment could prove him wrong.
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rotational, vibrational, and electronic contributions to the entropy are all zero. Contributions from
nuclear spin and isotopic mixing are ignored. By raising the specter of absolute entropy, Planck’s
version becomes a sideshow of what shall conventionally be considered zero entropy. Nature doesn’t
care about our definitions, however; the third law is about physical processes at low temperatures.

Nevertheless, it’s convenient to conventionally assign zero entropy to substances in well defined
low-temperature states. By an unfortunate choice of terminology, tabulated values of the (conven-
tional) entropy of substances at standard temperatures (such as 25 C) are referred to as absolute
entropies, even though entropy (like energy) cannot be absolute. We made use of the tabulated value
of the entropy of mercury in Eq. (7.41). In our derivation of the Sackur-Tetrode equation, it was the
entropy difference between liquid and vapor that entered the calculation.

Simon version

Is there a version of the third law that recognizes the actual behavior of matter at low temperatures?
Francis Simon (a student of Nernst) formulated two refinements:[42]

The contribution of the entropy due to each factor within the system which is in internal
equilibrium becomes zero as T → 0;

and

At absolute zero the entropy differences vanish between all those states of a system
between which a reversible transition is possible in principle even at the lowest temper-
atures.

Let’s parse these statements, particularly the concept of internal equilibrium.
A system is said to be in internal equilibrium if the state is not necessarily one of absolute

equilibrium but is instead one of local equilibrium where other configurations of the system are
less stable than the state under consideration.8 There may be internal equilibrium with respect to
one factor, but not with respect to another. A solid comprised of different isotopes may be in in-
ternal equilibrium with respect to thermal vibrations, but not with respect to the spatial distribution
of isotopes. The Simon statement applies to processes not involving factors that are not in inter-
nal equilibrium, i.e., the third law applies to processes during which internal constraints remain in
effect. A process between an initial metastable state of constrained equilibrium and a final state of
unconstrained equilibrium (which sets in after the removal of constraints) is not of this kind. If a par-
ticular set of constraints stays in effect during otherwise reversible processes, the third law remains
applicable. One may envision several samples of a substance, each kept at a different temperature
T and each in a state of unconstrained equilibrium characteristic of that temperature. Now cool the
samples rapidly (a quench) to a common low temperature T ′. It may happen that the samples (of the
same substance) develop different internal constraints. The entropy differences between them will
not tend to zero as T ′ → 0. However, a reversible process performed on each sample will produce
no change in entropy as T ′ → 0, provided that its particular constraints remain intact. With these
considerations, Fowler and Guggenheim have stated the third law:[10, p246]

For any isothermal process involving only phases in internal equilibrium or, alterna-
tively, if any phase is in frozen metastable equilibrium, provided that the process does
not disturb this frozen equilibrium, limT→0 ∆S = 0.

Note that such refinements of the Nernst heat theorem refer to processes rather than absolute entropy.

8Systems with many states of local equilibrium became an active field of research known as spin-glass theory starting in
the 1970s which has continued until the present.[43]
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What is a law of nature?

The Simon statement is that the Nernst hypothesis is valid for those degrees of freedom among
which equilibrium has been established. But then we’re faced with the question of how we know a
system is in equilibrium. The Simon version is not in the form of a prediction. The Planck version
would seemingly be a prediction, except that it’s not correct if it’s intended as a prediction of the
actual (rather than the expected) behavior of matter at low temperature. For these reasons, it’s held
by some that what’s known as the third law of thermodynamics is not a law. At the very least, it’s a
different kind of law.

8.4 CONSEQUENCES OF THE THIRD LAW

Vanishing heat capacity

The heat capacity holding quantity X fixed is

CX ≡
(

dQ
dT

)
X

= T

(
∂S

∂T

)
X

. (8.20)

By the third law, therefore, heat capacities vanish as T → 0, because as T → 0, ∆S → 0. In solids
the heat capacity of phonons (quantized lattice vibrations) vanishes as T 3 at low temperature, and
the heat capacity of conduction electrons vanishes linearly with T . The heat capacity of the photon
gas CV ∼ T 3 for all temperatures, Eq. (5.12).

Vanishing slope of coexistence curve

The slope of the coexistence curve (Clausius-Clapeyron equation, Eq. (6.22)) involves the difference
in entropy between the phases, dP/dT = ∆S/∆V . The third law thus predicts that the slope of the
coexistence curve vanishes as T → 0,

lim
T→0

(
dP
dT

)
coexist

= 0 . (8.21)

For most substances there is only one phase at low temperatures. Liquid helium is an exception,
which is a superfluid at low temperatures and pressures up to approximately 2.5 MPa. Studies of the
melting curve of 4He show that for T . 1.4 K, dP/dT ∝ T 8 so that the slope of the coexistence
curve vanishes as T → 0.[44, p29]

Expansivity

By combining Eq. (1.20) with a Maxwell relation, the coefficient of thermal expansivity is related
to a derivative of the entropy

α = − 1
V

(
∂S

∂P

)
T

.

The third law thus predicts that
lim
T→0

α(T ) = 0 . (8.22)

The expansivity of solids vanish as T → 0, which is why we stated in Section 8.1 that PdV work
is not an efficient means of cooling at low temperature.

8.5 UNATTAINABILITY OF ABSOLUTE ZERO TEMPERATURE
The Nernst heat theorem is difficult to apply unless supplemented with microscopic information.
Can the third law be formulated in a way that does not involve non-macroscopic information? The
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laws of thermodynamics are given in the form of impossibility statements, what you can’t do.9 In
1912, Nernst formulated the third law in the form of an impossibility statement:

It is impossible by any procedure to reduce the temperature of a system to absolute zero
in a finite number of operations.

We thus arrive at the beginning of this chapter—how are low temperatures produced? Let S
depend on some thermodynamic property, X , as well as T : S = S(T,X) or equivalently, T =
T (S,X). Figure 8.2 shows two possibilities for how T could depend on S for given values of X .

Figure 8.2 Hypothetical entropy curves

The left diagram in Fig. 8.2 is incompatible with the Nernst heat theorem: ∆S does not tend to zero
as T → 0. The diagram on the right, however, is compatible with the third law: ∆S → 0 as T → 0.
The right figure has been drawn so that S(X)→ 0 as T → 0, but that’s irrelevant; we could just as
well have taken S → S0. Comparing Figs. 8.2 and 8.1, the entropy curves in Fig. 8.1 indicate that
T = 0 would be attainable in a finite number of steps and thus are invalid (incompatible with the
third law).

The principle of unattainability is synonymous with the third law. Consider a reversible adiabatic
process from states A→ B, with A at temperature T ′ and B at T ′′. Assuming that temperatures are
sufficiently low that a phase transition does not occur (so that we can ignore latent heats), we have
for an isentropic process (SA(T ′) = SB(T ′′))

SA(0) +
∫ T ′

0

C

T
dT = SB(0) +

∫ T ′′

0

C

T
dT , (8.23)

where C is the heat capacity. The integrals in Eq. (8.23) exist because the heat capacities vanish as
T → 0. If the system is to be cooled to absolute zero temperature, set T ′′ = 0. From Eq. (8.23),
therefore,

SB(0)− SA(0) =
∫ T ′

0

C

T
dT . (8.24)

By the stability requirement C > 0 (Section 3.10). From Eq. (8.24) therefore

SB(0)− SA(0) > 0 . (8.25)

9Some of the major laws of physics can be given as impossibility statements. Consider: 1) the impossibility of distin-
guishing by means of local experiments an absolute standard of rest (principle of special relativity); 2) the impossibility
of distinguishing by means of local experiments the acceleration of the frame of reference from the local effects of gravity
(equivalence principle, foundation of the general theory of relativity); 3) the impossibility of assigning exact values to certain
pairs of simultaneously measured quantities (Heisenberg uncertainty principle). The first law of thermodynamics can be for-
mulated as an impossibility statement: It’s impossible to construct a device working in a cycle that produces no effect other
than the performance of work, i.e., if ∆U = 0 (cycle), and Q = 0 (“no effect” clause), then it cannot be true that W 6= 0.
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However, if the unattainability postulate is valid such a process cannot occur (T ′′ = 0) and Eq.
(8.25) cannot be true. Thus, if unattainability holds,

SB(0)− SA(0) ≤ 0 . (8.26)

By making the argument in the other order, B → A, where A is to be at absolute zero, we would
conclude

SA(0)− SB(0) ≤ 0 . (8.27)

Consistency between Eq. (8.26) and Eq. (8.27) requires

SA(0) = SB(0) . (8.28)

The entropy difference for a reversible process (A
 B) at T = 0 thus vanishes, in agreement with
Nernst heat theorem. Unattainability implies the third law.

To show the converse, start with the validity of the third law, in which case the left side of Eq.
(8.24) is zero. In that case no T ′ > 0 could be found that satisfies the equation (because C > 0).
Therefore no initial temperature T ′ exists from which the system could be cooled to absolute zero.
The third law implies unattainability.

8.6 RESIDUAL ENTROPY OF ICE
Ice is a substance having a nonzero low-temperature entropy. In the H2O molecule, a pair of H
atoms are covalently bonded to O in which the H-O-H angle is about 104◦ and the O-H distance is
0.096 nm. While the H2O molecule is electrically neutral, the distribution of charge is not uniform.
The O atom exerts a stronger attractive force on electrons than does the H nucleus, creating an elec-
tric dipole with negative charge being more concentrated at the O side of the molecule. In the liquid
phase the partially-positive H atom on one water molecule is attracted to the partially-negative oxy-
gen on a neighboring molecule, creating a hydrogen bond. The solid phase of H2O, as determined
from X-ray scattering, is one in which O atoms are arranged in a tetrahedrally-coordinated structure
with each O atom surrounded by four other O atoms, held together through hydrogen bonds with
the O-O length 0.276 nm, and with the H atoms such that one H atom is placed between each pair of
O atoms (see Fig. 8.3). The H atoms do not have a regular arrangement; the lack of ordering among
H atoms leads to a nonzero entropy at low temperature.

Figure 8.3 Tetrahedral bonding in ice. Oxygen atoms are the solid circles.

We can estimate the residual entropy through an argument due to Linus Pauling.[45] For N
water molecules we have N oxygen atoms. In the tetrahedrally-coordinated solid phase there are
2N O-O bonds (divide 4N by two to avoid overcounting). For each O-O bond the H atom can be
situated at two inequivalent positions between the O atoms—one at a distance of 0.1 nm and the
other at a distance of 0.176 nm. There are thus 22N = 4N “microstates” (arrangements) of the H
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atoms in the network of O-O bonds. There are 16 ways to arrange four H atoms around an O atom
(see Fig. 8.4); of these only six are consistent with the ice condition (the arrangement that occurs
in ice) that each O atom has two H atoms near to it and two that are far from it. The number of

Figure 8.4 16 ways to arrange four H atoms. Only six are consistent with the ice condition.

arrangements of 2N H atoms compatible with the ice condition is thus

W = 4N
(

6
16

)N
=
(

3
2

)N
.

Using Eq. (7.2), we obtain the residual entropy, per mole, S = R ln(1.5) = 0.405R = 0.806 cal
K−1, which is quite close to the measured value S = 0.82± 0.15 cal K−1.[46]

CHAPTER SUMMARY
This chapter introduced the third law of thermodynamics which concerns the properties of systems
near T ≈ 0, and which to a large degree is about the behavior of entropy as T → 0.

• The third law comes in two basic flavors (which are equivalent):

– Absolute zero temperature cannot be reached in a finite number of steps;

– As T → 0, ∆S → 0.

• By the third law, anything related to a derivative of S vanishes as T → 0 :

– Heat capacities vanish;

– The slope of the coexistence curve for superfluid helium vanishes;

– The thermal expansivity α vanishes.

EXERCISES

8.1 The Maxwell relation associated with the magnetic Gibbs energy is given in Eq. (8.5). Derive
the Maxwell relations associated with the first law in the form of Eq. (8.3), the enthalpy, and
the Helmholtz free energy. Show that:(

∂H

∂S

)
M

=
(
∂T

∂M

)
S

(
∂T

∂H

)
S

= −
(
∂M

∂S

)
H

(
∂S

∂M

)
T

= −
(
∂H

∂T

)
M

.

8.2 Show that
∂(H,M)
∂(S, T ) = 1. By the rules of calculus dHdM = dSdT .
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8.3 Take the first law for a magnetic system to be dU = TdS − PdV + HdM . (We ignored
the PdV term in Section 8.1, but let’s keep it now.) Define the Helmholtz energy as usual,
F ≡ U − TS, so that F = F (T, V,M). Derive the three Maxwell relations associated with
F . Show that(
∂H

∂T

)
V,M

= −
(
∂S

∂M

)
T,V

(
∂H

∂V

)
T,M

= −
(
∂P

∂M

)
T,V

(
∂P

∂T

)
V,M

=
(
∂S

∂V

)
T,M

.

8.4 Start with the first law in the form dU = TdS−PdV +HdM . Take U and S to be functions
of T , V , and M , and derive the relation(

∂U

∂M

)
V,T

= H − T
(
∂H

∂T

)
V,M

.

Hint: Use a Maxwell relation derived in the previous exercise. This formula is the magnetic
analog of Eq. (1.28).10

8.5 a. Show, using the first law in the form of Eq. (8.3), that d̄Q can be written in two ways:

d̄Q =
(
∂U

∂T

)
M

dT +
[(

∂U

∂M

)
T

−H
]

dM

and

d̄Q =
[(

∂U

∂T

)
H

−H
(
∂M

∂T

)
M

]
dT +

[(
∂U

∂H

)
T

−H
(
∂M

∂H

)
T

]
dH .

Assume in the first case that U = U(T,M), and in the second, U = U(T,H) and
M = M(T,H). These equations are the magnetic analogs of the results in Exercise 1.8.

b. Show that you now have the expression for the heat capacity at constant H , Eq. (8.10).
Show that the expression for the heat capacity at constant M is given by

CM =
(
∂U

∂T

)
M

.

8.6 a. Show that the internal energy of an ideal paramagnet is independent of M (the analog of
the energy of the ideal gas being independent of V ). Start with the first law in the form

dS = 1
T

dU − H

T
dM .

Assume that U = U(T,M) and S = S(T,M). Invoke the integrability condition on S:[
∂

∂M

(
∂S

∂T

)
M

]
T

=
[
∂

∂T

(
∂S

∂M

)
T

]
M

.

From the integrability condition, show that(
∂U

∂M

)
T

= −T 2 ∂

∂T

(
H

T

)
M

.

Argue, for the equation of state given by Curie’s law, that (∂U/∂M)T = 0.

10Thermodynamic formulas pertaining to magnetic systems can sometimes (but not always) be found from their counter-
parts describing fluids through the substitutions V →M and P → −H; such is true of formulas derived from the first law.
Formulas that make use of the equation of state, however, do not have this property. The equation of state of the ideal gas
is that V ∝ T/P ; the equation of state of the ideal paramagnet is not of this form. Using that M , an extensive quantity,
corresponds to V , and H , an intensive quantity, corresponds to P , Curie’s law effectively has the form V ∝ P/T .
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b. Now repeat, assuming U = U(H,T ), S = S(H,T ), and M = M(H,T ). Show that(
∂U

∂H

)
T

= H

(
∂M

∂H

)
T

+ T

(
∂M

∂T

)
H

.

These formulas are the magnetic analogs of the results derived in Exercise 4.6. Show for
substances obeying Curie’s law that (∂U/∂H)T = 0 (the analog of the internal energy of
the ideal gas being independent of P ). The internal energy of the ideal paramagnet thus
depends only on T , U = U(T ); a magnetic analog of Joule’s law.

c. Show, assuming U = U(T,M) and S = S(T,M), that dU = CMdT . Hint: Start with
dU = TdS+HdM and use a Maxwell relation. We show in another exercise that CM is
independent of M , implying as well that U depends only on T .

8.7 a. Derive the following formulas (the analogs of the results obtained in Exercise 4.7):(
∂CH
∂H

)
T

= T

(
∂2M

∂T 2

)
H

and (
∂CM
∂M

)
T

= − ∂

∂T

(
T 2 ∂

∂T
(H/T )M

)
M

.

Hint: Use the results of Exercise 8.6.

b. For the ideal paramagnet, show that:
i. CM is independent of M .

ii. CH is a function of H , CH = CH=0 + C (H/T )2.

c. Argue, because for a paramagnet CH=0 is the same as CM=0, and CM is independent of
M (ideal paramagnet), that

CH = CM + C

(
H

T

)2
.

Thus, CH > CM . The heat capacity at constant M is measured without work performed
on the system, whereas in measuring CH work would be done, requiring a greater input
of heat for the same temperature change.

d. Alternatively, argue that, because the internal energy for a paramagnet depends only on
T (Exercise 8.6), we can replace (∂U/∂T )H in Eq. (8.10) with CM to reach the same
conclusion:

CH = CM −H
(
∂M

∂T

)
H

= CM + C

(
H

T

)2
.

8.8 a. Show, using the results of Exercise 8.5, that for an adiabatic process

(
dM
dH

)
S

= CM
CH

(
∂U

∂H

)
T

−H
(
∂M

∂H

)
T(

∂U

∂M

)
T

−H
.
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b. This formula simplifies for the ideal paramagnet. Show that:(
dM
dH

)
S

= CM
CH

(
∂M

∂H

)
T

.

c. It turns out that this equation, while derived for the ideal paramagnet, holds generally.
Starting from the result derived in Exercise 8.8a., however, that is most likely not apparent.
Here is a case where Jacobians simplify matters. Show that(

∂M

∂H

)
S

= ∂(M,S)
∂(H,S) = ∂(M,S)

∂(M,T )
∂(M,T )
∂(H,T )

∂(H,T )
∂(H,S) = CM

CH

(
∂M

∂H

)
T

.

d. Thus, we have the general result(
∂M

∂H

)
S

= CM
CH

(
∂M

∂H

)
T

.

Show that we have the analog of the result shown in Exercise 1.9,(
∂H

∂M

)
S

>

(
∂H

∂M

)
T

,

that on an H-M diagram, adiabats have a steeper slope than isotherms.

8.9 a. Sketch the Carnot cycle for a paramagnetic substance on a H-M diagram (let M be the
abscissa and H the ordinate). The isotherms are simple to draw, given the equation of
state, Eq. (8.6). To draw the adiabats, however, we require an equation describing adiabatic
processes. Show that, along an adiabat, H = H(M) satisfies the differential equation

dH
dM =

(
1 + M2

CMC

)
H

M
.

Make use of the results derived in Exercises 8.7 and 8.8.

b. Show that the solution of this differential equation is in the form (assuming CM to be
constant)

H = AM exp(M2/(2CMC)) ,
where A is an integration constant.

c. An alternate way of describing adiabatic processes is to start with the first law. Show that,
for the ideal paramagnet:

CMdT = HdM = MT

C
dM ,

the solution of which is (assuming CM constant)

lnT = 1
2CCM

M2 + constant .

Thus, for two points on the same adiabat,

ln (T1/T2) = 1
2CCM

(
M2

1 −M2
2
)
.
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d. Derive an expression for the efficiency of this Carnot cycle. You already know what the
answer is, but show it.

8.10 The magnetic susceptibility (a response function) is defined as χ ≡ (∂M/∂H)T . Show that
the third law predicts

lim
T→0

(
∂χ

∂T

)
H

= 0 ,

that is, χ becomes independent of temperature as T → 0. Hint: Use a Maxwell relation.

8.11 The isothermal bulk modulusB, the inverse of the isothermal compressibility (see Eq. (1.20)),
is defined as B ≡ −V (∂P/∂V )T . Using the third law show that

lim
T→0

(
∂B

∂T

)
V

= 0 ,

i.e., B becomes independent of temperature as T → 0. Hint: Reach for a Maxwell relation.

8.12 Suppose that the structure of ice was such that the hydrogen atoms were exactly half way
between oxygen atoms. What would the residual entropy be then?
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To this point

M ACROSCOPIC phenomena are subject to the laws of thermodynamics; an education in the
physical sciences must therefore include a serious drubbing in the subject. Part I of this

book is intended as a précis that emphasizes the structure of the theory, in preparation for a study
of statistical mechanics. Before moving on to additional, specialized topics (Part II), let’s recap the
theory of thermodynamics, now that we’ve laid the groundwork.

Variables of thermodynamics: Intensive and extensive

A highly useful distinction is between extensive and intensive variables (Section 1.2). Understanding
just this concept nearly comprises the entire subject!

• Extensive quantities scale with the size of the system, such as U , V , and N ; they’re additive
over subsystems of a composite system. Internal energy scales with the amount of matter. The
extensivity of S, however, is not as obvious because it’s not tied to a microscopic property of
matter (like mass or energy); it’s a property of the equilibrium state. In axiomatic formulations
of thermodynamics the extensivity of S is taken as a postulate. The first law can be written in
the form

dS = 1
T

dU + P

T
dV − µ

T
dN . (3.15)

Infinitesimal changes in S are thus related to differentials of extensive quantities.

The emphasis on extensive variables arises from the division of energy into work and heat,
with work being related to changes in macroscopically observable (extensible) quantities
(Section 1.9). Heat (energy transfers to microscopic degrees of freedom) can also be given
as a change in an extensive quantity, the entropy, with dQ = TdS.

• Intensive variables have the same value throughout a system, such as T , P , and µ; they occur
in the theory as partial derivatives between extensive variables. From Eq. (3.30),

T =
(
∂U

∂S

)
V,N

P = −
(
∂U

∂V

)
S,N

µ =
(
∂U

∂N

)
S,V

. (3.30)

The occurrence of T in thermodynamic formulas almost always refers to the absolute temper-
ature (defined in Section 2.4). T and S are both consequences of Carnot’s theorem (Section
2.3). Absolute temperature provides meaning to the notion of zero temperature. There are
exceptional systems characterized by negative absolute temperature (see Chapter 11).

While T and P are familiar quantities, the chemical potential µ is not. The quantity µ is the
energy required to add a particle to the system at fixed S and V , Section 3.5 (equivalently
at fixed T and P , Section 4.6). The chemical potential is not simply, as one might expect, a
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measure of the interactions between particles. The ideal gas ignores inter-particle interactions,
yet its chemical potential is nonzero and involves fundamental constants. For the ideal gas,

µ = −kBT ln
(

V

Nλ3
T

)
, (Exercise 7.9)

where λT = h/
√

2πmkBT is the thermal wavelength, Eq. (7.51) (ostensibly the de Broglie
wavelength). The chemical potential is generally a negative quantity, although there are ex-
ceptions (Section 3.5). That µ is nonzero for the ideal gas underscores that it involves entropy,
a characteristic of the equilibrium state; even for the simplest macroscopic system (ideal gas),
entropy is nontrivial and involves Planck’s constant, Eq. (7.52). For cavity radiation, however
(photons in equilibrium with matter), µ = 0; for this system entropy scales linearly with
average photon number (Section 5.2)—it’s not possible to change N keeping S fixed.

Convex functions (Section 4.2) can be characterized in two equivalent ways: by their point-
wise values or in terms of their tangents at a point through the Legendre transformation.
The duality between points and tangents of convex functions is reflected in thermodynam-
ics as a duality between extensive and intensive variables. The internal energy function
U = U(S, V,N) is convex (Exercise 3.5.) Intensive variables, which occur as the derivatives
(slopes) of extensive quantities (as in Eq. (3.15)), can be used as independent state variables
whenever experimental or theoretical considerations warrant. The thermodynamic potentials
H = U + PV , F = U − TS, and G = U − TS + PV are the three Legendre transfor-
mations of U (known as thermodynamic potentials) that can be formed from the products
(having the dimension of energy) TS and PV ; Section 4.3. Instead of U = U(S, V ), char-
acterized by the two extensive quantities S and V , the Legendre transforms involve intensive
quantities, H = H(S, P ) (enthalpy), F = F (T, V ) (Helmholtz free energy), G = G(T, P )
(Gibbs free energy). The thermodynamic potentials are not simply functions having conve-
nient mathematical properties (through which Maxwell relations are established, Table 4.2),
but represent potential energies stored in the system under controlled conditions, Table 4.1.

The first law expressed in terms of intensive variables is the Gibbs-Duhem equation

Ndµ = −SdT + V dP . (3.32)

The “bridge” between intensive and extensive quantities is provided by Eq. (3.31), the Euler
relation U = TS − PV + µN , which relies on the extensivity of S.

Equilibrium, the timeless state that thermodynamics describes

• Thermodynamic equilibrium is the macroscopically quiescent state where “nothing is hap-
pening.” Taken literally, this definition is empty. All systems change in time, it being a matter
of time scales, and time scales appreciably larger than that required to complete experiments
render definitions of equilibrium problematic. All we can say is that a system that appears to
be in equilibrium, is in equilibrium.

• A state of equilibrium is specified by the values of a finite set of quantities (state variables,
what we can measure). State space is a mathematical space of the values of state variables;
each point of the space represents a possible state of equilibrium. State variables are time
independent and do not depend on the history of the system. The number of possible histories
between equilibrium states is unlimited, but the number of state variables is quite limited.
History-dependent substances are beyond the scope of thermodynamics. Because state vari-
ables are history independent, changes in state variables must be described in a way that’s
independent of the manner by which change is brought about. That’s ensured by requiring
differentials of state variables to be exact (Section 1.3).
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• Equilibrium is transitive (zeroth law of thermodynamics), which implies 1) the existence of
temperature as a state variable and 2) the existence of equations of state, functional relations
among the values of state variables (Section 1.5).

• There are two equivalent criteria for stable equilibrium in isolated systems: (Section 4.1)

– For systems of fixed energy, entropy is a maximum

– For systems of fixed entropy, energy is a minimum

• Treating a system and its environment as a composite closed system, the equilibrium state
characterized by ∆S = 0 implies the equality of intensive variables between system and
environment, T , P , and µ (Section 3.10). The values of intensive variables are “set” by the
environment. Equality between system and environmental intensive variables holds for those
conjugate to conserved quantities: U , V , and N . Photons are not conserved, and the theory
requires µ = 0 for cavity radiation (Section 5.2).

• The equilibrium state (characterized by maximum entropy) must be such that S as a function
of state variables has negative curvature, ∆2S < 0 (the stability condition). There are no
macroscopic physical processes that drive ∆S < 0 for isolated systems in equilibrium, yet
we require mathematically that fluctuations about equilibrium lead to ∆S < 0. Fluctuations
in the theory of thermodynamics (a theory of equilibrium) are treated as virtual variations
in the state of the system in which the condition of isolation is conceptually relaxed, akin
to virtual displacements in analytical mechanics, which are conceived to occur at a fixed
time.1 The stability condition puts restrictions on the sign of response functions: CV > 0
(heat capacity), β > 0 (isothermal compressibility), and ∂µ/∂N > 0 (Section 3.10). From
the stability requirements, matter flows from regions of high to low chemical potential and
entropy flows from high to low temperature (Section 3.11).

Internal energy: work, heat, and boundaries (first law of thermodynamics)

• The behavior of thermodynamic systems is determined by the nature of their boundaries.
Three types of boundaries are distinguished: adiabatic, diathermic, and permeable (Table 1.1).
Adiabatically isolated systems (enclosed by adiabatic boundaries) can interact with the envi-
ronment through mechanical means only (no heat flow, no flow of particles); closed systems
(enclosed by diathermic boundaries) restrict the flow of particles; open systems (enclosed by
permeable boundaries) allow the flow of matter and energy. An additional type of system is
distinguished, that of an isolated system with no interactions with the environment.

• Work Wad performed on adiabatically isolated systems (adiabatic work) has the property that
the transition it produces, i → f (between reproducible equilibrium states i and f ), depends
only on the pair (i, f) and not on the details of how Wad is performed. From this discovery
(path independence for the absorption of adiabatic work) we infer the existence of a state
variable that couples to adiabatic work, the internal energyU such that ∆U = Uf−Ui = Wad.
The energy of adiabatic work can be retrieved by letting the system perform adiabatic work
on the environment, and thus is conserved.

• For workW performed under less restrictive, nonadiabatic conditions, it’s found, for the same
change of state i → f produced by Wad, that W 6= ∆U . The energy of mechanical work is
thus not conserved in systems with diathermic boundaries; it’s not all stored in the internal

1In statistical mechanics, fluctuations are treated as dynamical processes producing correlations between fluctuations at
points separated in space and time.
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energy of the system. Energy conservation is restored by recognizing new forms of energy—
heat. The heat transferred to the system is the difference in work done on the system with the
two types of boundaries that effect the same change in state, Q ≡ ∆U −W . Internal energy
is accounted for by the statement ∆U = W +Q, the first law of thermodynamics. Work and
heat are interconvertible forms of energy. Note the sign convention employed in this book.

• For small energy transfers the first law is written dU = d̄Q+ d̄W . The notation dU indicates
that the differential of U is exact (implied by the path independence of ∆U = Wad), but that
the infinitesimal energy transfers d̄Q and d̄W are inexact. The number of possible combina-
tions of d̄Q and d̄W that effect the same change dU is unlimited. While dU represents a small
change in a physical quantity U , there do not exist substancesQ andW of which d̄Q and d̄W
represent small changes; d̄Q and d̄W are process-dependent modes of energy transfer.

• Infinitesimal, reversible heat transfers (d̄Q)rev comprise an exact differential when divided
by the absolute temperature T at which the heat transfer takes place, dS = (d̄Q)rev /T . The
first law is then written completely in terms of exact differentials, dU = TdS −PdV . While
such an expression was derived from considerations of reversible processes, as it entails state
variables it can be applied to any process so long as a reversible path can be found connecting
the end states of the process.

Irreversibility, time’s implicit appearance in the theory

Irreversibility is the central message of thermodynamics; the sooner that recognition is made, the
better. Several definitions underlie the concept of irreversibility.

• Quasistatic processes are: 1) performed sufficiently slowly that the system doesn’t apprecia-
bly deviate from equilibrium, with state variables having values given by the equation of state,
such that 2) work done on the system is only from forces holding the system in equilibrium,
i.e., forces of friction have been eliminated.

• Reversible processes can be exactly reversed by making infinitesimal changes in the envi-
ronment: System and environment are restored to their original conditions in a reversible
process. Reversible processes are quasistatic, but not all quasistatic processes are reversible
(Section 1.7). The concept of reversibility is problematic because it conceives of the rever-
sal of processes in time. Strictly speaking, reversible processes are idealizations that do not
exist: Equilibrium states do not involve change (time), yet reversible processes are taken to
proceed through a sequence of equilibrium states. Any real change in thermodynamic state
must occur at a finite rate, so the intermediate states cannot strictly be equilibrium states.
Practically speaking, there will be some small yet finite rate at which processes occur such
that disequilibrium has no observable consequences. Reversible processes can be plotted in
state space.

• Not-reversible processes are termed irreversible. That “un-reversible” (irreversible) processes
exist is central to thermodynamics. The second law of thermodynamics recognizes the exis-
tence of irreversibility and codifies our experience of it. Processes not reversible in time of ne-
cessity imply a direction in time for the occurrence of states linked by irreversible processes.
Irreversibility simply is; we don’t have to account for it.2 Instead of worrying why macro-
scopic laws are time irreversible, the converse should be pondered why microscopic laws

2Recognizing the primary existence of irreversibility (without having to explain it) can be compared to the recognition
that the property of matter known as inertia exists, without having to explain it. That inertial motion (free particles move
without acceleration) simply is, is a foundation of the theory of relativity.
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are time-reversal invariant.3 We tend to think microscopic laws are more “real” than macro-
scopic; we’re accustomed to breaking things apart in the attempt to say that the whole can be
explained by the sum of the parts. The laws of thermodynamics codify our experience of the
macroscopic world—surely a working concept of “reality.” Sometimes macro-descriptions
follow as a result of micro-descriptions, but not always. Temperature and entropy are quanti-
ties characteristic of the equilibrium state that do not derive from the microscopic properties
of matter. The holy grail of physics is to succeed in ever-unifying the laws of physics. Until
that happens, laws have their domains of validity. The second law is not a consequence of
microscopic laws of motion; it’s a separate principle.

• Irreversibility reveals the existence of states inaccessible from each other (see Chapter 10). As
discussed in Section 1.7, take a gas enclosed by adiabatic boundaries at pressure and volume
(P0, V ), and perform work on it in the form of stirring, holding V fixed. As a result, the
pressure increases to a value P1 > P0. This process cannot be reversed (with P1 → P0) by
means of adiabatic work. Stirring the “other way” only increases the pressure further. With
V fixed, there is no way to lower the pressure of an adiabatically isolated system by means
of adiabatic work; the process is irreversible. In this example, the state K0 characterized by
the values of its state variables (P0, V ) cannot be attained from any of its states K (P >
P0, V ) by means of adiabatic work. Such states are not equivalently related. All states K are
accessible from K0, K0 → K, but K0 is not accessible from any state K, K 6→ K0. For
a state K0 inaccessible from K, if the system is in K0 at time t, and K at another time t′,
then t′ > t. States time ordered by irreversible processes could be labeled with the times at
which such states occur, but they can also be labeled by the values of the entropy function,
which stand in correspondence with the time order established by irreversibility; the entropy
of isolated systems only increases, never decreases, Eq. (3.9).

Second law of thermodynamics

There have been nearly as many formulations of the second law as there have been
discussions of it.—P.W. Bridgman, 1941[47, p116]

The mere phrase “second law of thermodynamics” is often enough to produce in students (and
others) a certain state of unease. The second law has diverse, interrelated implications, yet there’s
seemingly no one, all-encompassing way of stating it.4 Can one ever be sure that one has grasped
its essence? Students (and others) often leap to “entropy” as the second law. While not incorrect, it
misses the mark (in my opinion). I think it best to keep “intellectual distance” between entropy as
a consequence of the second law, and the second law itself as the recognition of irreversibility. It’s
remarkable how much physics follows from the observation that heat does not spontaneously flow
from cold to hot. Among the nexus of concepts linked by the second law, we have:

• Clausius form of second law: Heat cannot of itself flow from cold to hot. Note that merely
having the word “flow” in this statement implies a direction in time.

• Kelvin form of second law: Heat can’t be converted entirely into work at a single temperature.
Waste heat must be involved; the efficiency of heat engines cannot be 100%. The Kelvin and
Clausius statements are equivalent (Section 2.2).

3At the really microscopic level, time-reversal symmetry is broken. By the CPT -theorem of quantum field theory, any
Lorentz-invariant local theory (commutation relations obey the spin-statistics connection) is invariant under the combined
operations of C (charge conjugation, interchange particles for their antiparticles), P (parity, inversion of space axes through
the origin), and T (invert time, t→ −t). The discovery in 1964 ofCP violations in weak decays implies (ifCPT invariance
is sacred) that time-reversal symmetry is broken at the sub-nuclear level for processes involving the weak interaction. At the
super macroscopic level, we have an expanding universe, which provides a sense for the direction of time.

4We could say then that the second law itself is entropic, because it has so many equivalent ways of understanding it.
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• Carathéodory principle: Wait, there’s more! The Carathéodory formulation of the second law,
fully equivalent to the Kelvin form, is covered in Chapter 10.

• Carnot’s theorem: The efficiency of a heat engine cannot exceed that of a reversible engine
operating between the same reservoirs. Carnot’s theorem is the source of the inequalities as-
sociated with the second law. The three statements—Clausius, Kelvin, Carnot—are impossi-
bility statements. Many of the major laws of physics can be formulated as negative statements,
what you can’t do (Section 8.5).

• Absolute temperature: The universality of Carnot’s theorem implies that temperature can be
formulated universally, independent of the thermometric properties of substances. The ratio
of absolute temperatures is defined as the ratio of the absolute values of the heats reversibly
exchanged with reservoirs, Eq. (2.11). Absolute temperature T is measured on the Kelvin
scale, specified by Eq. (2.14).

• Clausius inequality: Carnot’s theorem implies, for a heat engine operating between reservoirs
at absolute temperatures Th and Tc with Th > Tc, the inequality |Qc| ≥ Qh (Tc/Th), where
Qc is the heat expelled to the reservoir at Tc, and Qh is the heat absorbed from the reservoir
at Th, with equality holding for reversible engines. The greater the inefficiency, the greater is
the heat expelled at the lower temperature. This basic inequality generalizes to an arbitrary
cycle as an inequality on the integral

∮
d̄Q/T ≤ 0, where d̄Q is the infinitesimal heat transfer

(positive or negative) at the absolute temperature T . Overall the integral is non-positive be-
cause expelled heat is treated as negative, and the magnitude of the heat expelled at the lower
temperature is never less than the heat absorbed at a higher temperature.

• Entropy: For reversible cycles
∮

(d̄Q)rev /T = 0, implying dS ≡ (d̄Q)rev /T is an exact
differential. The Clausius definition tells us what the differential of S is; it doesn’t directly
define entropy. The Boltzmann-Planck formula does that with S = kB lnW , where W is the
number of microstates compatible with a given state of equilibrium (subject to constraints).
The Clausius definition applies to closed systems (fixed amount of matter). The extension of
entropy to open systems requires that it be extensive, a feature built into the statistical entropy.
(The non-extensive entropy obtained from the Clausius definition is the root of the confusion
in the so-called Gibbs’s paradox.) Entropy and absolute temperature are both consequences
of Carnot’s theorem, fraternal twins born from the same mother.

• Entropy creation: The Clausius inequality in differential form is dS ≥ d̄Q/T , where equality
holds for reversible heat transfers. Thus, d̄Q/T does not account for all contributions to dS.
The entropy change associated with irreversibility, d̄Si ≡ dS−d̄Q/T , closes the gap between
d̄Q/T and dS, where, by the Clausius inequality, d̄Si ≥ 0. Introducing d̄Si exemplifies the
same logic as the first law, in that whereas heat transferred to the system is the difference
between the change in internal energy and the work done,Q = ∆U−W , irreversible entropy
production is the difference between the total entropy change and that due to heat transfers,
∆Si = ∆S−

∫
d̄Q/T . Heat transfers with the environment, d̄Q/T , can be positive, negative,

or zero. Only when heat is added reversibly to a system is the entropy change given solely in
terms of heat transfers. Otherwise, ∆Si > 0 is entropy created by irreversibility and is always
positive. We show in Chapter 14 that the rate of entropy production due to irreversibility is
non-negative, Eq. (14.47).

• Entropy only increases in isolated systems: For adiabatically isolated systems dS ≥ 0. The
entropy of isolated systems can only increase, never decrease, perhaps the most far-reaching
result of thermodynamics. In approaching equilibrium, the entropy of an isolated system
achieves a maximum value subject to constraints on the system. The mere fact that there
are processes, such as the free expansion, where neither energy nor matter is transferred to
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the system, yet there is a change between equilibrium states implies there must be another
state variable characterizing the system. Entropy is that new state variable.

• Energy dissipation and free energy: Not all of the energy change ∆U in thermodynamic pro-
cesses can be converted into work when ∆S > 0, a phenomenon known as energy dissipation.
Energy is not lost, its ability to produce work is diminished through the increase in entropy.
Free energy is the energy available for work. The Helmholtz free energy F ≡ U − TS pro-
vides the maximum obtainable work at constant T : [∆F ]T = ∆U − T∆S = Wmax. The
Gibbs free energy is the maximum available “other work” W ′ (work other than PdV work)
for processes at constant T and P : [∆G]T,P = ∆U − T∆S + P∆V = W ′max. The energy
dissipated in a process (energy not available for work) is T0∆S, where T0 is the coldest
temperature obtained in the process.

Thermodynamic potentials

• From the first law dU = TdS − PdV , and thus we infer that U is naturally a function of
S and V , U = U(S, V ). Hence, [∆U ]S = W . Internal energy is the storehouse of adiabatic
work. (Reversible processes with dQ = 0⇒ dS = 0.)

• Entropy is not accessible to experimental control (can you buy an entropy meter?), other than
isolating the system adiabatically so that dS = 0. Because U(S, V ) is a convex function of
its arguments (Exercise 3.5), we can use Legendre transformations to develop equivalent state
variables (having the dimension of energy) that are functions of quantities more amenable to
experimental control. Absolute temperature is the value of the tangent to the energy surface
associated with changes in S, T = (∂U/∂S)V,N and −P is the tangent to the energy surface
associated with changes in V . Legendre transformations ofU are F = U−TS,H = U+PV ,
and G = U − TS + PV . From the differentials of these functions, Eq. (4.2), we have that
F = F (T, V ), H = H(S, P ) and G = G(T, P ).

• One theoretical advantage of introducing Legendre transformations of U(S, V ) is that they
provide a rich source of relations among certain partial derivatives of state variables that are
not otherwise apparent. The differentials of each of the functions U , F , H , G are exact,
and the integrability condition Eq. (1.1) implies a set of thermodynamic identifies known as
Maxwell relations, Table 4.2.

• The quantities U,F,H,G each represent a type of potential energy stored in the system under
experimentally controlled conditions: [∆U ]S = Wad, [∆H]S,P = W ′ad, [∆F ]T,V = W ′,
[∆G]T,P = W ′, where W ′ is “other” work (see Table 4.1). Furthermore, [∆F ]T = W and
[∆H]P = Q. Just as a knowledge of the types of potential energy helps one solve problems
in mechanics, knowing the interpretations of the potentials can prove highly advantageous
in efficiently working problems in thermodynamics. Under the conditions indicated, we have
[∆U ]S,V ≤ 0, [∆H]S,P ≤ 0, [∆F ]T,V ≤ 0, and [∆G]T,P ≤ 0, where equality holds for
reversible processes. The quantities U , H , F , and G are each a minimum in equilibrium. A
further result is that the chemical potential is the Gibbs energy per particle, G = Nµ.

Chemical thermodynamics

Every equation of thermodynamics applies to a well-defined chemical substance; the connection
between chemistry and thermodynamics is strong. Much as physicists might want to minimize it,
applications of thermodynamics require at least a limited knowledge of chemical concepts.

• For a substance distributed among several phases coexisting in equilibrium, its chemical po-
tential is independent of phase, µI = µII = µIII = · · · , Eq. (6.19).
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• For a system having k chemical species in π phases, the Gibbs phase rule f ≡ 2+k−π is the
number of intensive variables that can be varied without disturbing the number of phases in
equilibrium, Eq. (6.20). A result of this generality should be appreciated by physics students;
it follows directly from the condition that in equilibrium the Gibbs energy is a minimum.

• Between two phases involving a single substance (f = 1), only one intensive variable can
be varied along the coexistence curve. The slope of the coexistence curve is given by the
Clausius-Clapeyron equation, Eq. (6.22). For a single substance in three phases (f = 0), no
variations are possible: The triple point occurs at a unique combination of T and P .

• The law of mass action, Eq. (6.42), derived from the theory of chemical equilibrium should be
known to physicists as it plays a major role in the theory of carrier densities in semiconductors.

• Electrochemical cells are used to measure changes in free energy (either F or G) which play
a pivotal role in formulating the third law of thermodynamics. If you want to understand the
third law, you need to understand how the experiments are conducted, and thus at least a
cursory understanding of electrochemical cells.

Sackur-Tetrode equation: It’s a good thing

The Sackur-Tetrode formula for the entropy of the ideal gas (Section 7.4),

S = NkB

[
5
2 + ln

(
V

Nλ3
T

)]
, (9.1)

is a significant achievement. Let us count the ways.

• All parts of it have been tested against experiment. It’s consistent with the heat capacity
(CV = T (∂S/∂T )V,N = 3NkB/2) and the equation of state (P = T (∂S/∂V )T,N =
NkBT/V ); these “tests” however would be met by an expression of the form S =
NkB ln(T 3/2V ), what was derived in Eq. (3.21) before imposing extensivity. The strongest
test of Eq. (9.1) is that all terms appearing in it are required to reproduce the entropy of a
gas in contact with its liquid phase (Section 7.4), which does not involve taking logarithmic
derivatives; constants matter!

• Equation (9.1) embodies extensivity (N scales with V for fixed density). While that shouldn’t
come as a surprise (extensivity is built into the statistical entropy), having an experimentally-
tested, extensive expression for S is worthy. That alone should lay to rest Gibbs’s paradox
(Section 7.7). As discussed in Section 3.7, extensivity must be imposed on the thermody-
namic entropy as an additional requirement; the Clausius definition is incomplete and does
not pertain to open systems.

• It involves Planck’s constant, perhaps the first association of h with material particles. The
statistical entropy, S = kB lnW , is a connection between microscopic and macroscopic, with
W being the number of microstates per macrostate. The Sackur-Tetrode formula provides ex-
perimental confirmation—from thermodynamic measurements—of the quantum-mechanical
picture that each particle carries with it a fundamental volume of phase space, h3. There is a
granularity of phase space (in units of h3) that provides a natural means by which to count
microstates. Equation (9.1) can be derived when W is given as in Eq. (7.57).

• We better be able to calculate the entropy of the ideal gas, the simplest macroscopic system.
In doing so, however, we arrive at the end of thermodynamics and the beginning of statistical
physics—we can’t calculate S for the ideal gas without Planck’s constant. Equation (3.27) is
as far we can get with thermodynamics alone (even after making it extensive); we noted there
the need for a characteristic quantity having the dimension of action.
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Ideal gas vs. photon gas

We let pass without further comment the remark in Chapter 1 that Eq. (1.28) is one of the most
important equations in thermodynamics,(

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P . (1.28)

Equation (1.28) follows from Eq. (3.12) and a Maxwell relation (Exercise 4.6), but the larger point
is that it cannot be derived unless we have entropy as a state variable. Equation (1.28) also occurs
in the Carathéodory formulation (Section 10.1) as related to the integrating factor for d̄Q and the
absolute temperature, which is an alternative path to the existence of entropy as a state variable.
Dimensionally, Eq. (1.28) relates energy density to pressure, itself an energy density.5 It’s of interest
to compare the ideal gas (noninteracting particles in thermal equilibrium) with a system of photons
in thermal equilibrium (cavity radiation).

• Using the ideal gas equation of state, we find from Eq. (1.28)(
∂U

∂V

)
T

= 0 . (ideal gas)

By ignoring inter-particle interactions, the internal energy of the gas is independent of volume
and is a function of temperature only, U(T, V ) = U(T ).

• For the photon gas, the energy density u = U/V is independent of volume under isothermal
conditions, Eq. (5.4), (

∂u

∂V

)
T

= 0 . (photon gas)

Equation (5.4) does not follow from Eq. (1.28), it follows from the second law (cavity radi-
ation is isotropic and independent of the size and shape of the cavity, and the emissivity of
a black body depends only on the energy density). Thus, U(T, V ) = V u(T ). Equation (5.4)
applies only for isothermal conditions; the energy density is not independent of volume for
adiabatic processes, V (∂u/∂V )S = −4u/3, Eq. (5.32). The temperature of the photon gas
changes in adiabatic processes, such as in the Cosmic Microwave Background. The pressure
of cavity radiation can be calculated using classical methods, with the result P = 1

3u, Eq.
(5.6). (Compare with P = 2

3u for the ideal gas.) By combining the equation of state Eq. (5.6)
with Eq. (1.28), we obtain the energy density u(T ) = aT 4, Eq. (5.8), where a is the radiation
constant. The entropy of the photon gas then follows from thermodynamics, S = 4

3aV T
3,

Eq. (5.13). In comparison with the complexity of the Sackur-Tetrode formula, Eq. (9.1), the
entropy of cavity radiation is quite simply related to the energy, S = 4

3U/T .

• In the isothermal expansion of an ideal gas ∆U = 0 because the energy is a function of
T only. To maintain the gas at constant temperature, heat is absorbed from a reservoir and
is converted entirely into work (not a violation of the second law—there’s no cycle). The
entropy change ∆S = NkB ln(Vf/Vi). No chemical work is performed because dN = 0,
even though µ 6= 0.

• In the isothermal expansion of a photon gas, there’s no chemical work because µ = 0, even
though dN 6= 0 (because ∆S 6= 0). The work done at constant T is, from the Helmholtz
free energy, W = ∆U − T∆S = − 1

3aT
4∆V = −P∆V . The heat absorbed, T∆S =

4
3aT

4∆V = 4
3∆U , exceeds the change in energy by 1

3∆U ; heat is not all converted into work.

5Pressure has the dimension of energy density. Note from the ideal gas law, PV = NkBT , that energy equals energy.
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The heat absorbed comes from the energy of added photons. From Section 5.2, S = 3.6kBN ,
and thus ∆S = 3.6kB∆N . The entropy change of the photon gas in an isothermal expansion
can be written ∆S = 3.6kBN (∆V/V ), where N is the initial number of photons (Exercise
5.5). The entropy change of the ideal gas for the same process is ∆S = NkB (∆V/V ). The
change in entropy of the photon gas is thus considerably larger than that of an ideal gas with
the same number of particles.

• For the photon gas, the isothermal change in S is due to the change in the number of photons,
photons that are created at all frequencies in proportion to the Planck distribution at absolute
temperature T . The number of photons between frequency ν and ν+dν in a cavity of volume
V is (β ≡ (kBT )−1)

N(ν)dν = 8πV
c3

ν2

eβhν − 1dν ,

where N =
∫∞

0 N(ν)dν. Clearly ∆N(ν) ∝ ∆V at a fixed temperature. Without the photon
picture, the increase in S is difficult to understand.

• In adiabatic processes for the photon gas V T 3 = constant. For V ∝ R3, where R is a
characteristic length, T ∝ R−1. Even though the temperature changes in such a process,
U/T is a constant. In reversible adiabatic processes, cavity radiation retains its black-body
spectral distribution (Section 5.3).

Entropy, the constant stranger

. . . it is to be feared that we shall have to be taught thermodynamics for several genera-
tions before we can expect beginners to receive as axiomatic the theory of entropy.
—J. C. Maxwell, 1878[2, p668]

Humans have known about entropy for 150 years, with its meaning having perplexed physicists
such as Gibbs, Maxwell, Boltzmann, Planck, and Schrödinger. To what extent can we say that we
understand it? Were Maxwell to wake up today would he think our attempts at entropy education a
success, or would he say that we still have several generations to go? Chapter 1 introduced the zeroth
and first laws of thermodynamics, the concepts of temperature and conservation of energy. If that’s
all there was to the subject, this might be a relatively thin book. As it is, however, thermodynamics
simply is about entropy: Practically everything from Chapter 2 on has been about entropy in some
way. Entropy, like quantum mechanics and relativity, is outside our everyday experience of the
physical world, and must be learned through concerted reflection.6 Offered, for your consideration,
some musings on entropy.

• Entropy and absolute temperature are two sides of the same coin. Both arise as consequences
of the Carnot theorem. The product TS has the dimension of energy. Because we have
artificially given absolute temperature the unit Kelvin, entropy is forced to have the units
Joule/Kelvin. Absolute temperature more naturally should have the dimension of energy and
entropy should be dimensionless (Sections 2.4, 3.2). Entropy as a dimensionless quantity
lends credence to the statistical picture that entropy is related to a number, S/kB = lnW .
We’ll see in Chapter 12 that entropy can be considered a special (but important!) case of a
more general quantity, information, which is dimensionless.

• How did its inventor Rudolf Clausius view entropy? He wrote in 1865:[15, p327]

The whole mechanical theory of heat rests on two fundamental theorems: that of
the equivalence of heat and work, and that of the equivalence of transformations.

6Einstein’s words are apt here: “Common sense is the collection of prejudices acquired by age eighteen.”
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Clausius called the second law the Law of the Equivalence of Transformations. Before coin-
ing the term entropy, he referred to Q/T as the equivalence value of a transformation. A
transformation for Clausius is a conversion of heat into work or work into heat, or a trans-
fer of heat between bodies at one temperature to another temperature. He wanted to assign
a mathematical magnitude to transformations, and found that Q/T served that purpose. The
equivalence value for a given transformation can be positive or negative. He discovered that∮

(d̄Q)rev /T = 0 for reversible cycles, and thus all reversible cycles have the same equiva-
lence value, but more importantly that the positive and negative values of the transformations
comprising a reversible cycle cancel. For non-reversible cyclical processes, the positive and
negative transformations are not equal and they can differ only in such a way that the negative
transformations predominate,

∮
d̄Q/T ≤ 0, Eq. (3.2). Clausius considered S the transforma-

tional content of a body, which is the genesis of the word entropy, adapted from the Greek
τρoπὴ (“in transformation”).

• Clausius would separately write the first and second laws as

dQ = dU − dW dQ = TdS .

To quote Clausius:[15, p366]

But in order to be able to bring the equations into conjunction, we will suppose
that they relate to one and the same reversible change of a body. In this case the
thermal element dQ is the same in both equations, hence we can eliminate it from
the equations, . . .

TdS = dU − dW . (9.2)

Gibbs would take Eq. (9.2) as the starting point for his mathematical characterization of the
equilibrium state of a fixed mass of material.

• Walther Nernst referred to the second law as the Law of the Transmutability of Energy, which
he summarized as follows:[48, p2]

According to the second principle there is, for isothermal variations of a system,
a function F which has, for such variations, the same properties as U ; F2 − F1
expresses the maximal external work which can be obtained in the change con-
sidered, and this quantity is likewise independent of the nature of the method by
which the maximum work considered is obtained.

Nernst viewed the second law not in terms of entropy, but in terms of free energies. It appears
that he avoided the concept of entropy altogether; one can formally eliminate S in favor of
thermodynamic potentials: −TS = F − U = G −H . In his work on the third law (Section
8.2) Nernst measured the differences ∆G − ∆H and ∆U − ∆F which are related to ∆S
through the Gibbs-Helmholtz equations, Eq. (6.52).

• Ilya Prigogine, winner of the 1977 Nobel Prize in Chemistry, referred to the second law as the
Principle of the Creation of Entropy to emphasize the role played by irreversibility; entropy
is created in irreversible changes in state.[49, p32]

• Maxwell wrote that “The second law of thermodynamics has the same degree of truth as
the statement that if you throw a tumblerful of water into the sea, you cannot get the same
tumblerful of water out again.” Quoted in [50]. The second law captures the propensity of
macroscopic systems to spread out—if there are more ways to be over there than over here,
then over there is where you’ll find the system, most of the time.
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So, what is thermodynamics?

In reading (and writing) about thermodynamics, the wordiness of the subject is always apparent.
Compared with other branches of physics, thermodynamics seems to be alone in the amount of
verbosity required to impart its ideas. In preparing this book, I’ve continually kept in mind the fol-
lowing question: What is the essence of the subject and why is it so difficult to convey succinctly?
Why thermodynamics requires so much exposition is perhaps due to the simultaneous lack of pre-
cision of its concepts (and hence their astonishing generality) and yet their great utility, seemingly
in spite of it all. Einstein wrote, concerning thermodynamics:

A theory is the more impressive the greater the simplicity of its premises is, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression which classical thermodynamics made upon me. It is the
only physical theory of universal content concerning which I am convinced that, within
the framework of the applicability of its basic concepts, it will never be overthrown
. . . .[51, p33]

With that said, having now delved into the subject with considerable depth, can we say what
thermodynamics is, standing on one foot? If you had to come up with a “tagline” for thermodynam-
ics, what would it be? A theme set forth in Chapter 1 is that thermodynamics concerns equilibrium,
internal energy, and irreversibility, concepts that line up with the three main laws of thermodynam-
ics, the zeroth, first, and second. Yet, as we’ve emphasized, irreversibility is the chief feature of
thermodynamics, that constraints once removed cannot be re-established without performing work
on the system. A definition of thermodynamics might be:7

Thermodynamics is the study of the equilibrium properties of macroscopic systems for
which the release of constraints cannot be undone without the expenditure of work.

7Consider the definition of thermodynamics offered by H.B. Callen, which is a nod to the more microscopic interpretation
of thermodynamics: “Thermodynamics is the study of the macroscopic consequences of myriads of atomic coordinates,
which, by virtue of the statistical averaging, do not appear explicitly in a macroscopic description of a system.”[1, p7]
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Carathéodory formulation

E NTROPY was discovered by a somewhat circuitous path through the efficiency of heat engines,1

a finding that in hindsight could appear serendipitous. Were we just lucky to have discovered
something so fundamental in this way? Can it be seen directly that entropy as a state variable is
contained in the structure of thermodynamics, without the baggage of heat engines? It can, as shown
by Constantin Carathéodory in 1909. That Carathéodory’s work is not more widely known is due
to the unfamiliarity of the mathematics—the existence of integrating factors, a topic we develop in
this chapter. For Carathéodory’s treatment to be without reference to heat engines it must necessarily
be more abstract than the traditional approach. We start by examining, in detail, the condition for
integrability introduced in Section 1.3.

10.1 INTEGRABILITY CONDITIONS AND THERMODYNAMICS

Scalar and vector fields

A scalar field is a function that assigns a number to every point of its domain. The temperature
distribution in physical space, for example, T = T (x, y, z), is a scalar field. State variables can be
considered scalar fields in state space. For example, the equation of state T = T (P, V ) is a scalar
field in the space spanned by P and V . The same is true of any state function in the appropriate
space of variables, e.g., U = U(S, V,N). In the following, we denote a generic state function Φ as
a scalar field in a space of n state variables, Φ = Φ(x1, · · · , xn).

The change in Φ between nearby points in its domain is, from calculus,

dΦ =
n∑
i=1

∂Φ
∂xi

dxi ≡
n∑
i=1

Fi(x1, · · · , xn)dxi ≡ F · dr , (10.1)

where we treat the derivatives ∂Φ/∂xi as components of a vector field.2 Linear differential expres-
sions

∑n
i=1 Fidxi are known as Pfaffian differential forms in n variables.3 Thus, there’s a connec-

tion between vector fields and Pfaffians.
Scalar fields Φ gives rise to vector fields through their gradients, ∇Φ. Vector fields feature

prominently in physics.4 It’s not clear, however, that they should find any use in thermodynamics.
As we’ll see, treating thermodynamic quantities as components of vector fields leads to an increased
understanding of the mathematical foundation of the second law. A central question we must address

1Entropy emerges as a special case of the Clausius inequality, which is a consequence of Carnot’s theorem.
2A vector field is an assignment of a vector to every point of the appropriate space.
3A Pfaffian differential form is, in modern language, called a 1-form. That begs the question: Are there 2-forms, 3-forms?

Yes, but those are concepts not needed in this book. When a Pfaffian form is equated with zero,
∑

i
Fidxi = 0, it’s referred

to as a Pfaffian differential equation.
4For example, in electromagnetism, fluid mechanics, and general relativity.
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is that whereas a vector field can always be obtained from a scalar field, to what extent is the converse
true: Does a given vector field F imply the existence of a scalar field? That is, while Φ⇒∇Φ, does
F ⇒ Φ? The prototypical example is the relationship between the electric field and the electrostatic
potential function, E = −∇V , with V derived from E, V (r) = −

∫
E · dr. We posed a similar

question in Section 1.3, that while the differential of a function generates a linear differential form,
does an arbitrary Pfaffian represent the differential of an integrable function?

Changes in state variables Φ are independent of the means by which change is effected (Section
1.2). Thus,

∫ 2
1 dΦ = Φ(2) − Φ(1) is independent of the integration path between the endpoints

(1, 2). Under what conditions is the integral
∫
C
F · dr independent of the curve C joining the

endpoints such that5 ∫
C

F · dr = Φ(2)− Φ(1) ? (10.2)

A necessary and sufficient condition for Eq. (10.2) to hold is the equality of the derivatives,[9, p357]

∂Fj
∂xi

= ∂Fi
∂xj

. (i, j = 1 · · ·n) (10.3)

There are 1
2n(n − 1) independent relations implied by Eq. (10.3), the integrability conditions, the

same conditions for the n-variable Pfaffian
∑n
i=1 Fidxi to be an exact differential.6

Rotational and irrotational vector fields

It’s convenient to adopt a special notation for the integrability conditions. Let7

Tij ≡
∂Fj
∂xi
− ∂Fi
∂xj

. (i, j = 1 · · ·n) (10.4)

If Eq. (10.3) is satisfied, then Tij = 0. Thus, we have a way of classifying vector fields: either all the
terms Tij are zero, or not. In the special case of n = 3, the terms in Eq. (10.4) are the components
of the curl C ≡ ∇ × F , with Ci =

∑
jk εijk∂jFk, where εijk is the Levi-Civita symbol for a

three-dimensional space,8 with C1 = T23, C2 = T31, and C3 = T12. A three-dimensional vector
field F is therefore integrable when it has zero curl,∇× F = 0. Because F = ∇Φ satisfies Eq.
(10.2), {Tij = 0} implies (for n = 3) the result from vector calculus,∇×∇Φ = 0.

Integrable vector fields are thus curl free, right? Basically, but not quite; it’s a question of termi-
nology. The curl exists only in three dimensions. The vector cross product is not defined in spaces
of dimension n ≥ 4. The “trick” of associating the components of a vector Ci with the integrability
conditions Tjk only works when n = 3, which is the non-trivial solution of n = 1

2n(n − 1). The
quantities {Tij} are the generalization of the curl in higher-dimensional spaces, and {Tij = 0}
is the generalization of9 the classic result from vector analysis, curl(grad) = 0. Vector fields F
satisfying Eq. (10.3) (in any dimension) are said to be irrotational. Vector fields not satisfying Eq.
(10.3) are called rotational and the associated Pfaffian is inexact. These definitions are summarized
in Table 10.1.

5To be clear, dr does not denote an infinitesimal vector in real space, but in state space; just consider that F · dr is
shorthand for

∑
i
Fidxi.

6Equation (10.3) generalizes Eq. (1.1) to n variables; we also recognize Eq. (10.3) as that from which the Maxwell
relations are generated, Section 4.5.

7The quantities Tij in Eq. (10.4) are the elements of an antisymmetric, second rank tensor, Tij = −Tji.
8Learned comment: The isomorphism between the elements of an antisymmetric tensor Tij and the components of a

vector Ci is an instance of Hodge duality. Only in three dimensions is the dual of a second-rank antisymmetric tensor a
vector. In four dimensions, for example, the dual of a vector is a third-rank antisymmetric tensor.

9In electromagnetism expressed in four-dimensional spacetime, the two relationsB = ∇×A andE = −∇φ−∂A/∂t
are “packaged” into the four-dimensional generalization of the curl (antisymmetric tensor) Fµν ≡ ∂µAν − ∂νAµ, where
the potential four-vector Aµ ≡ (−φ/c,A), µ = 0, 1, 2, 3, with 0 the time index, ∂µ ≡ (∂0,∇), and x0 ≡ ct.
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Table 10.1 Rotational character of vector fields and exactness of associated Pfaffian

Integrability condition Vector field, F Pfaffian,
∑
i Fidxi

all Tij = 0 Irrotational Exact

some Tij 6= 0 Rotational Inexact

Rotational vector fields and integrating factors

Differentials of state functions Φ are exact and hence integrable: The integral
∫
C

dΦ establishes a
unique value of Φ at any point up to a constant. Associated with Φ is an irrotational vector field,∇Φ.
Surfaces of constant Φ are referred to as equipotential surfaces;10 they’re defined by displacements
dr such that∇Φ ·dr = 0. Said differently,∇Φ is everywhere orthogonal to equipotential surfaces.
Irrotational vector fields imply scalar fields, and vice versa.

Rotational vector fields, however, do not imply the existence of scalar fields—unique numbers
cannot be assigned to points because

∫
C
F · dr in general depends on the integration path C. Nev-

ertheless, there may be a way in which rotational vector fields can be associated with equipotential
surfaces, if special curves C̃ can be found that are everywhere orthogonal to F , so that∫

C̃

F · dr = 0 . (F rotational, special curve C̃, independent of endpoints)

If the integrand vanishes at all points along C̃, the integral is obviously independent of its endpoints.
Contrast with the line integral of an irrotational vector field,∫

C

F · dr = ∆Φ . (F irrotational, arbitrary curves C, depends on endpoints)

Curves C̃ orthogonal to F do not necessarily exist. When such curves exist, they mesh together to
form an equipotential surface if it turns out they’re also orthogonal to an irrotational vector field
(call it G) that’s locally colinear with F . In that case F can be scaled so that λ(x, y)F is locally
coincident with G, i.e., G = λ(x, y)F . The scaling factor λ is called the integrating factor. The
idea is schematically illustrated in Figure 10.1. Rotational vector fields can thus be divided into two
classes: those that do and do not possess integrating factors.

Figure 10.1 Left: Equipotential surface is orthogonal to an irrotational vector field. Mid-
dle: Path C̃ is orthogonal to a rotational vector field, F . Right: λ(x, y)F = G is locally
coincident with an irrotational vector field.

10The locus of points in state space of constant temperature is referred to as an isotherm; the locus of points of constant
entropy, an isentrope; constant pressure, an isobar; and constant volume, an isochore. For want of a better word, we’ll refer
to the locus of points with constant values of the generic state function Φ as an equipotential surface. In mathematics, the set
of points where a function f(x1, · · · , xn) = constant is referred to as its level set.
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In what follows we consider the conditions under which vector fields possess integrating factors.
It turns out that Pfaffians in two variables are fundamentally different from those with three or more
variables; we treat separately the cases of n = 2 and n ≥ 3.

Integrating factors for Pfaffians in two variables always exist

For two independent variables, F · dr = 0 is equivalent to

d̄Q ≡M(x, y)dx+N(x, y)dy = 0 . (10.5)

We’re changing notation here to make the presentation more concrete: (x1, x2) ≡ (x, y) and
(F1, F2) ≡ (M,N). (We’re also giving the Pfaffian a suggestive name, d̄Q.) Equation (10.5) im-
plies the first-order ordinary differential equation

dy
dx = −M(x, y)

N(x, y) ≡ f(x, y) . (10.6)

Solutions to Eq. (10.6) exist under very general conditions, regardless of whether the Pfaffian d̄Q is
exact or not.11 The solutions to Eq. (10.6) are a one-parameter family of non-intersecting curves

ψ(x, y) = k , (10.7)

where k is a constant. Through every regular point12 in the plane there passes exactly one curve
that’s a solution to Eq. (10.6).[14, p22]

By differentiating Eq. (10.7), we have

dψ = ∂ψ

∂x
dx+ ∂ψ

∂y
dy = 0 . (10.8)

Because Eq. (10.8) describes the same curves as do the solutions of Eq. (10.5),

dy
dx = −M(x, y)

N(x, y) = −∂ψ/∂x
∂ψ/∂y

=⇒ 1
M

∂ψ

∂x
= 1
N

∂ψ

∂y
. (10.9)

Equation (10.9) implies the existence of a function, call it λ(x, y). Thus,

∂ψ

∂x
= λ(x, y)M(x, y) ∂ψ

∂y
= λ(x, y)N(x, y) . (10.10)

The rabbit is in the hat. Combining Eqs. (10.10) and (10.8), and using Eq. (10.5),

dψ = λ(x, y) (M(x, y)dx+N(x, y)dy) = λ(x, y)d̄Q .

Curves for which d̄Q = 0 are therefore the same as dψ = 0 (“equipotential”), implying the exis-
tence of an integrating factor.13 A Pfaffian differential equation in two variables always possesses
an integrating factor.

What have we accomplished geometrically? We have a vector field F that does not satisfy the
integrability condition, Eq. (10.3), and we have constructed a “stretched” vector fieldG ≡ λ(x, y)F
that does, where the scaling factor λ(x, y) is different at every point in the plane (see Fig. 10.2).G is
everywhere colinear with F , and both are orthogonal to the curves ψ(x, y) = k. Along curves such
that d̄Q = 0, ψ(x, y) has a constant value so that dψ = 0. Note that in this case F · ∇ × F = 0,
even though∇×F 6= 0, because∇×F is orthogonal to the plane. We also haveG ·∇×G = 0
because∇×G = 0. The significance of F · ∇× F = 0 is discussed in Eq. (10.12).

11That’s why Pfaffian differential equations in two variables always possess an integrating factor.
12At a regular point, M(x, y) 6= 0 and N(x, y) 6= 0.
13Equipotential curves were obtained for the ideal gas in the form of TV 3/2 = k = constant, Exercise 1.13.
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Figure 10.2 Stretched vector field produced by the integrating factor, λ(x, y). F is rota-
tional; G = λF is irrotational. The line such that F · dr = 0 is embedded in the equipo-
tential surface dψ = 0 whereG =∇ψ.

Integrating factor for Pfaffians in n ≥ 3 variables

Consider a three-dimensional vector field such that ∇× F 6= 0 (rotational). We seek a function
λ(x1, x2, x3) that “stretches” F into an irrotational field, so that∇× (λF ) = 0, or

λ∇× F +∇λ× F = 0 . (10.11)

Take the inner product of Eq. (10.11) with F : λF · ∇×F +F · (∇λ× F ) = λF · ∇×F = 0.
A necessary condition for the existence of an integrating factor is thus

F · ∇× F = 0 . (n = 3) (10.12)

Equation (10.12) is necessary because it presumes that λ exists; Eq. (10.12) must be satisfied irre-
spective of the form of λ. Three-dimensional vector fields, however, are not necessarily orthogonal
to their curl (as is the case for n = 2). Integrating factors don’t have to exist for n = 3. Ditto for
n ≥ 4.

Example. Does the Pfaffian x2dx1 +dx2 +dx3 possess an integrating factor? In this case, F ·∇×
F = −1; it does not have an integrating factor.

For there to be an integrating factor, the irrotational vector G has n components λFi, where
λ = λ(x1, · · · , xn), for which the integrability conditions apply,

∂(λFj)
∂xi

− ∂(λFi)
∂xj

= 0 . (10.13)

As with Eq. (10.3), there are n(n − 1)/2 independent conditions implied by Eq. (10.13). Equation
(10.13) implies the set of equations

ωij ≡ λ
(
∂Fj
∂xi
− ∂Fi
∂xj

)
+
[
Fj

∂λ

∂xi
− Fi

∂λ

∂xj

]
= 0 . (10.14)

Equation (10.14) is the analog of Eq. (10.11) for n ≥ 3. To find the conditions analogous to Eq.
(10.12), proceed as follows. For (i, j) in Eq. (10.14), pick k 6= i or j. Multiply Eq. (10.14) by
Fk (k 6= i, j). Cyclically permute k, i, j and add the equations. For example, for (i, j, k) = (1, 2, 3),
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F3ω12 +F1ω23 +F2ω31 = 0. When this is done, the terms in square brackets in Eq. (10.14) cancel,
leaving us with the condition that

λF · ∇× F = 0 , (in xi, xj , xk space)

where the curl is taken in the three-dimensional space spanned by xi, xj , xk. There are “n choose
3” ways of choosing three-dimensional subspaces from an n-dimensional space (see Eq. (7.4))(

n

3

)
= 1

6n(n− 1)(n− 2) , (n ≥ 3) (10.15)

and each provides a necessary condition for F to have an integrating factor. For n = 2, no special
conditions need be placed on the vector field; integrating factors always exist in that case. The higher
the dimension of the space (for n ≥ 3), the more the number of conditions that must be satisfied by
the components of F for an integrating factor to exist.

Sufficient condition for integrability

Equation (10.12) is also a sufficient condition. To show this, we must demonstrate the existence
of an integrating factor as a consequence of Eq. (10.12). Suppose momentarily that one of the
coordinates in the differential equation F · dr =

∑3
i=1 Fi(x1, x2, x3)dxi = 0 is held fixed, say x3.

The expression
∑2
i=1 Fi(x1, x2, x3)dxi = 0 would then involve two independent variables and we

can invoke the result that there’s a scalar function U(x1, x2) such that Fi = λ∂U/∂xi for i = 1, 2.
However, because the Fi are functions of all three coordinates, we have that U = U(x1, x2, x3).
Substituting into the original Pfaffian we have the intermediate result that

F · dr = λ
∂U

∂x1
dx1 + λ

∂U

∂x2
dx2 + F3dx3 = 0 . (10.16)

Equation (10.16) is equivalent to F · dr =
∑3
i=1

∂U

∂xi
dxi +

[
1
λ
F3 −

∂U

∂x3

]
dx3 = 0, or

F · dr =∇U · dr +K · dr = 0 , (10.17)

whereK ≡ (0, 0,K) with K ≡ λ−1F3−∂U/∂x3. From Eq. (10.17) we infer that F =∇U +K.
Clearly,∇× F =∇×K 6= 0, because F is rotational by assumption. Evaluating F · ∇× F ,

F · ∇× F = ∂U

∂x1

∂K

∂x2
− ∂U

∂x2

∂K

∂x1
≡ ∂(U,K)
∂(x1, x2) = 0 , (10.18)

where we assume from Eq. (10.12) that F ·∇×F = 0. The vanishing Jacobian in Eq. (10.18) im-
plies that a relation exists between U and K not explicitly involving x1 or x2 (Exercise 10.1). Thus,
K = K(U, x3). Equation (10.17) is then equivalent to dU + K(U, x3)dx3 = 0, a Pfaffian in two
variables. Hence there’s a family of scalar functions, Φ(U, x3) = k. Because U = U(x1, x2, x3),
we infer the existence of scalar functions ψ(x1, x2, x3) = k. There is therefore an equipotential
surface associated with the original Pfaffian, which must possess an integrating factor.

Integrating factors are unique up to a multiplicative constant

Let
∑n
i=1 Fidxi = 0 possess an integrating factor λ(x1, · · · , xn) so that

λFi = ∂φ

∂xi
, (i = 1, · · · , n) (10.19)
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i.e., for each i, λFi is the ith-component of the gradient of a function φ. Equation (10.19) implies
that 0 =

∑
i λFidxi =

∑
i(∂φ/∂xi)dxi = dφ. If λ exists, the solution curve of F · dr = 0 lies in

the surface φ = c where c is a constant. Consider an arbitrary function of φ, V (φ). Then, using Eq.
(10.19),

dV = dV
dφ dφ = dV

dφ
∑
i

∂φ

∂xi
dxi = λ

dV
dφ
∑
i

Fidxi = 0 .

If λ is an integrating factor, so is λ(dV/dφ); λ is unique up to a multiplicative constant.

Application to thermodynamics

Two degrees of freedom

The first law for a simple fluid is d̄Q = dU + PdV . Taking U = U(P, V ),

d̄Q =
(
∂U

∂P

)
V

dP +
[
P +

(
∂U

∂V

)
P

]
dV .

Is d̄Q exact? Is the integrability condition, Eq. (10.3), satisfied? No (check it!). Is there an integrating
factor, λ? We’ve just shown that one is guaranteed to exist—but can we find it? Form the Pfaffian,

λ

(
∂U

∂P

)
V

dP + λ

[
P +

(
∂U

∂V

)
P

]
dV ,

where λ = λ(P, V ). We require that the integrability condition be satisfied:

∂

∂V

[
λ

(
∂U

∂P

)
V

]
P

= ∂

∂P

(
λ

[
P +

(
∂U

∂V

)
P

])
V

.

Take the derivatives indicated; λ must be such that(
∂U

∂P

)
V

(
∂λ

∂V

)
P

= λ+
(
∂λ

∂P

)
V

[
P +

(
∂U

∂V

)
P

]
.

This equation can be simplified. Divide through by (∂λ/∂P )V and rearrange:(
∂U

∂P

)
V

(
∂λ

∂V

)
P

(
∂P

∂λ

)
V

−
(
∂U

∂V

)
P

= λ

(
∂P

∂λ

)
V

+ P . (10.20)

Use the cyclic relation to equate(
∂λ

∂V

)
P

(
∂P

∂λ

)
V

= −
(
∂P

∂V

)
λ

. (10.21)

Combine Eqs. (10.21) and (10.20):

−
[(

∂U

∂P

)
V

(
∂P

∂V

)
λ

+
(
∂U

∂V

)
P

]
= λ

(
∂P

∂λ

)
V

+ P . (10.22)

Use Eq. (3.48) to equate the terms in square brackets in Eq. (10.22) with the derivative(
∂U

∂V

)
λ

=
(
∂U

∂V

)
P

+
(
∂U

∂P

)
V

(
∂P

∂V

)
λ

.

Thus we arrive at the starting line of what we require of λ:(
∂U

∂V

)
λ

+ P = −λ
(
∂P

∂λ

)
V

≡ λ−1
(
∂P

∂λ−1

)
V

, (10.23)
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where we’ve written λ(∂/∂λ) = −λ−1(∂/∂λ−1) to put Eq. (10.23) into a suggestive form, namely
that of Eq. (1.28). Equation (10.23) is a challenging differential equation to solve for λ. However,
it becomes identical to Eq. (1.28) (a valid equation of thermodynamics) if we choose λ = T−1, the
integrating factor for d̄Q obtained through the second law.

Three degrees of freedom

Consider fluids A and B in thermal contact. By the zeroth law there’s a connection between
the variables PA, VA, PB , VB provided by the empirical temperature functions φA(PA, VA) =
φB(PB , VB) ≡ T . Take as the three independent variables VA, VB , and T , with U = U(V, T ). The
first law can then be written

d̄Q =dUA + PAdVA + dUB + PBdVB

=
(
PA + ∂UA

∂VA

)
dVA +

(
PB + ∂UB

∂VB

)
dVB +

(
∂UA
∂T

+ ∂UB
∂T

)
dT

≡ F1dx1 + F2dx2 + F3dx3 .

Is d̄Q exact? Answer: Evaluate the integrability conditions Tij from Eq. (10.3),

T12 = 0 T13 = −∂PA
∂T

T23 = −∂PB
∂T

. (10.24)

The vector field F is rotational because some Tij 6= 0. Does it possess an integrating factor?
Equation (10.12), F · ∇×F = 0 (the one condition for F to have an integrating factor for n = 3)
implies that

F · ∇× F = F1T23 + F2T31 + F3T12 = 0 . (10.25)

Because T12 = 0, we require from Eq. (10.25)
T13

F1
= T23

F2
, or[

(∂P/∂T )V
P + (∂U/∂V )T

]
B

=
[

(∂P/∂T )V
P + (∂U/∂V )T

]
A

. (10.26)

The term on the left is independent of A, while that on the right is independent of B. Because they
are equal, however, neither depends on A or B! Thus,

(∂P/∂T )V
P + (∂U/∂V )T

≡ f(T ) , (10.27)

is a universal function. Even though each quantity [(∂P/∂T )V , (∂U/∂V )T ] depends separately on
the physical system, Eq. (10.26) asserts that the combination does not. The terms in Eq. (10.27)
define an absolute measure of temperature in that its numerical value is system independent. An
integrating factor for d̄Q implies the existence of an absolute temperature. Using Eq. (1.28) in
Eq. (10.27), we find that f(T ) = T−1. Because Eq. (1.28) ultimately relies on entropy as a state
variable, the “T ” in f(T ) = T−1 is the absolute temperature implied by Carnot’s theorem.

What’s the integrating factor? From Eq. (10.14) we require

Fi
∂ lnλ
∂xj

− Fj
∂ lnλ
∂xi

= ∂Fj
∂xi
− ∂Fi
∂xj
≡ Tij , (10.28)

a set of n(n − 1)/2 partial differential equations for lnλ(x1, · · · , xn). For n = 3, Eq. (10.28)
implies the three equations

F1
∂ lnλ
∂x2

−F2
∂ lnλ
∂x1

= T12 F1
∂ lnλ
∂x3

−F3
∂ lnλ
∂x1

= T13 F2
∂ lnλ
∂x3

−F3
∂ lnλ
∂x2

= T23 . (10.29)
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From Eq. (10.24), T12 = 0, so the first equation in Eq. (10.29) can be satisfied by taking λ to be
independent of x1 and x2. The other two equations then reduce to

∂ lnλ
∂x3

= T13

F1
= T23

F2
= −f(T ) , (10.30)

with f(T ) given by Eq. (10.27). Equation (10.30) implies that

λ = C exp
(
−
∫
f(T )dT

)
, (10.31)

where C is a constant. From Eq. (1.28), f(T ) = T−1, and Eq. (10.31) gives λ = CT−1.

10.2 CARATHÉODORY THEOREM
A Pfaffian in two variables always possesses an integrating factor. The situation is not as clear for
three or more variables. When an integrating factor exists, the solution curves to d̄Q = 0 (adiabats)
are unique: through any point in state space there is only one adiabat. More than one adiabat through
a point entails a violation of the second law (Section 2.3). The second law requires uniqueness of
adiabats. Points on the same adiabat are said to be accessible by an adiabatic process; points on
different adiabats are inaccessible (by adiabatic processes). Points 1 and 2 in Fig. 10.3 are con-
nected by an adiabat (accessible). Point 3 cannot be reached from 1 or 2 by adiabatic processes; it’s
inaccessible.

Figure 10.3 Point 2 is accessible from point 1; point 3 is inaccessible from point 1

Carathéodory’s theorem consists of the equivalence of two statements, A ⇔ B. The proof
consists of showing the implications A⇒ B and B ⇒ A. The statements are:

A: The vector field F associated with Pfaffian d̄Q = F · dr is integrable.

B: In the neighborhood, however small, of a point P in the vector field, there are points
P ′ inaccessible from P by adiabatic paths, the solution curves of the Pfaffian differen-
tial equation d̄Q = 0.

A⇒ B

If F is integrable, there exist nonintersecting surfaces ψ(x1, · · · , xn) = k, each with the property
that it contains curves such that d̄Q = F · dr = 0. Because the surfaces are nonintersecting, there
are points in the space (even infinitesimally nearby) inaccessible by adiabatic paths. Thus, A⇒ B.
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B ⇒ A

We follow a proof for n = 3 devised by Max Born.[52, p145] Proofs for arbitrary n are
available.[53] In the neighborhood of any point P there is (by assumption) an inaccessible point
M (see Fig. 10.4). Construct through P a line L which is not a solution of d̄Q = 0. Pass a plane

Figure 10.4 The solution curve C must be closed

through M and L. On this plane there will be a curve passing through M that satisfies d̄Q = 0. Let
the curve intersect L at M ′. M ′ is inaccessible to P , but can be made to lie as close to P as we
want by choosing M sufficiently close to P . Suppose that L is moved parallel to itself to generate
a closed cylnder, σ; the precise shape of σ is unimportant. On σ draw a curve C passing through P
that’s a solution to d̄Q = 0. Let C intersect L at pointN . It follows thatN and P must coincide. By
continuously deforming the cylinder σ we can make N move along a segment of L surrounding P .
In this way we would develop a band of accessible points in the vicinity of P . But this is contrary to
the assumption that arbitrarily close to P there exist points on L (such as M ′) that are inaccessible
from P . Thus, N must coincide with P .

There is thus a closed curve C everywhere orthogonal to F ,
∮
C
F · dr = 0 (the Pfaffian d̄Q ≡

F · dr = 0). By Stokes’s theorem,
∮
C
F · dr =

∫
S(C)∇× F · dS, where S(C) is the surface

bounded by C. In the limit of C an infinitesimal closed curve, we can replace the integral with
n̂·(∇× F ) ∆S = 0, where n̂ is the direction normal to S(C) and parallel toF . Thus,F ·∇×F =
0, a necessary and sufficient condition for F to be integrable. B ⇒ A.

We then have Carathéodory’s theorem:

The existence of points in every arbitrarily small neighborhood of a given point in a
vector field inaccessible by paths that are the solution to the Pfaffian differential equa-
tion d̄Q = 0, is necessary and sufficient for the existence of an integrating factor of the
associated Pfaffian d̄Q = F · dr.

The theorem can be summarized schematically:

Points inaccessible by d̄Q = 0⇐⇒ Integrating factor for d̄Q.

10.3 CARATHÉODORY’S PRINCIPLE AND THE SECOND LAW
A Pfaffian in two variables is guaranteed to have an integrating factor. For a fluid described by P
and V , we found T−1 to be the integrating factor for d̄Q because in that case Eq. (10.23) reduces to
Eq. (1.28),

(∂P/∂T )V
(∂U/∂V )T + P

= 1
T
.



Carathéodory formulation � 159

But where did Eq. (1.28) come from? It was derived after entropy had been established as a state
variable (Exercise 4.6), i.e., after T−1 as an integrating factor for d̄Q had been discovered through
the second law. What then has been “gained” by this foray into the mathematics of integrating
factors? Perhaps nothing in this case. Yet we have learned that for systems described by two ther-
modynamic variables, the existence of entropy may be inferred independently of the second law.

For a system with three degrees of freedom (two fluids in thermal contact), for d̄Q to have an
integrating factor we found in Eq. (10.27) that the identical group of terms

f ≡
(∂P/∂T )V

(∂U/∂V )T + P

must be a universal quantity akin to the absolute temperature. (A magnetic system with three degrees
of freedom is analyzed in Exercise 10.2, where again Eq. (1.28) plays a role.) Recall that heats Q1,
Q2 exchanged reversibly with reservoirs have the property Q1/Q2 = φ(θ1)/φ(θ2), where φ is a
universal function, Eq. (2.10). Absolute temperature is defined as φ, T ≡ φ(θ). With T so defined,
the machinery of thermodynamics gives f = T−1; f itself, however, could serve as an absolute
temperature, what systems in equilibrium have in common.14 The second law, absolute temperature,
and integrating factors are interrelated, as illustrated in Fig. 10.5. The existence of an integrating

Integrating factor
for d̄Q Absolute T

Entropy as a state variable
dS = d̄Q/T Second law of thermodynamics

Figure 10.5 Integrating factor for d̄Q implies entropy as well as absolute temperature

factor for d̄Q not only allows a new state variable to be defined, it implies the existence of absolute
temperature. The second law accomplishes the same tasks: Entropy and absolute temperature are
consequences of the second law. Seen this way, the existence of integrating factors is on the same
footing as the second law.

Yet integrating factors do not necessarily exist for Pfaffians in n ≥ 3 variables. Moreover, the
number of conditions placed on a Pfaffian for it to possess an integrating factor increases dramati-
cally with n, Eq. (10.15). Thus, we can’t simply require d̄Q to have an integrating factor. In contrast,
the second law leads to the integrating factor T−1 for any physical system, regardless of the number
of state variables n.

Carathéodory was therefore led to postulate the existence of inaccessible states. The
Carathéodory principle is an alternate way of formulating the second law:

In the neighborhood of any point in state space there are points inaccessible by adiabatic
processes.

In that way, all thermodynamic systems possess an integrating factor for d̄Q (by the Carathéodory
theorem), and hence entropy as a state variable, as summarized in Fig. 10.6.

14It might be thought that Eq. (10.26) only confirms the zeroth law, that the quantity in Eq. (10.27) defines an empirical, not
absolute temperature. The terms in Eq. (10.26), however, have the same functional form for each material. Even though the
individual terms in Eq. (10.27) are separately material specific, the combination is material-independent. We’re faced with
a similar situation in Eq. (2.10), what defines the absolute temperature, that the ratio of heats Q1/Q2 reversibly expelled to
and absorbed from reservoirs equals the ratio of a universal function of the empirical temperatures φ(θ1)/φ(θ2), no matter
what empirical temperature is used for each reservoir.
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Existence of states
inaccessible by

adiabatic processes

Existence of entropy
as a state variable

Figure 10.6 Equivalence between entropy and states inaccessible by adiabatic paths

Is the Carathéodory principle equivalent to the Kelvin and Clausius statements of the second
law, or is it implied by them? It’s in the form of an impossibility statement;15 that much it shares
with the other laws of thermodynamics. One can show that the negation of the Carathéodory prin-
ciple implies the negation of the Kelvin form of the second law, and thus the Kelvin statement
implies Carathéodory’s principle.[54] It can also be shown that the inference goes the other way,
Carathéodory’s principle implies the Kelvin statement.[55] Thus, Carathéodory’s principle is an
equivalent statement of the second law.

CHAPTER SUMMARY
In this chapter we introduced the Carathéodory formulation of the second law, which is that entropy
exists as a state variable if there are states inaccessible from a given state by adiabatic paths. The
Carathéodory formulation is equivalent to the Kelvin statement of the second law.

• The first law of thermodynamics is in the form of a Pfaffian differential form, d̄Q =∑
i Fi(xj)dxi, where we can consider the thermodynamic variables Fi as comprising the

components of a vector field F in the space of state variables x1, · · · , xn. With the coordinate
differentials packaged into an infinitesimal displacement vector dr we can write d̄Q = F ·dr.

• When the Pfaffian is exact (inexact), F is termed an irrotational (rotational) vector field. For
n = 3 the distinction between rotational and irrotational is whether∇×F 6= 0 or∇×F = 0.
For n > 3 the distinction is whether Tij 6= 0 or not, where Tij is defined in Eq. (10.4).

• Irrotational vector fields give rise to a scalar field Φ because Tij = 0 is necessary and suffi-
cient for

∫
C
F · dr = ∆Φ to be independent of the path C. Irrotational vector fields are the

gradients of a scalar field, F =∇Φ, which are orthogonal to the equipotential surfaces of Φ.

• Rotational vector fields may possess special curves C̃ for which
∫
C̃
F · dr = 0, the solution

curves of the differential equation d̄Q = 0. Along such paths it may be possible to scale F
so that F is colinear with an irrotational vector field G, λ(xj)F ≡ G. The quantity λ (when
it exists) is an integrating factor. In such cases the solution curve d̄Q = 0 is embedded in an
equipotential surface of the scalar field associated withG. For n = 3,∇× (λF ) = 0.

• A Pfaffian in two variables always possesses an integrating factor. Integrating factors do not
necessarily exist for Pfaffians in three or more variables (n ≥ 3).

• Inaccessible points are points P ′ in the neighborhood of a given point P that cannot be
reached along the solution curves to d̄Q = 0. Carathéodory’s theorem is that the existence of
inaccessible points is necessary and sufficient for the existence of an integrating factor.

• Carathéodory’s principle is that in the neighborhood of any equilibrium state there are points
in state space inaccessible by adiabatic processes. In that case, by Carathéodory’s theo-
rem an integrating factor for d̄Q exists, implying the existence of a state variable, entropy.
Carathéodory’s principle is equivalent to the Kelvin statement of the second law.

15It is impossible to reach nearby points in state space by adiabatic processes.
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EXERCISES
10.1 Given functions u(x, y) and v(x, y), show that for a relation F (u, v) = 0 to exist between u

and v not explicitly involving x and y, the Jacobian between (u, v) and (x, y) must identically
vanish,

∂(u, v)
∂(x, y) = 0 .

Hint: Differentiate F with respect to x and then differentiate F with respect to y. The vanish-
ing Jacobian is a necessary condition for there to be a relation between u and v not involving
x or y. It’s sufficient as well.

10.2 Consider a magnetic system with the first law given by

d̄Q = dU + PdV −HdM .

Take U , P , H to be functions of the independent variables T , V , M , so that

d̄Q =
(
∂U

∂T

)
V,M

dT +
[
P +

(
∂U

∂V

)
T,M

]
dV +

[(
∂U

∂M

)
T,V

−H

]
dM .

a. Is d̄Q integrable? Evaluate the integrability conditions Eq. (10.4). Show that

T12 =
(
∂P

∂T

)
V,M

T23 = 0 T31 =
(
∂H

∂T

)
V,M

.

T23 = 0 follows from a Maxwell relation, Exercise 8.3.

b. For an integrating factor to exist, Eq. (10.12) must hold. Show that Eq. (10.12) requires
the equality

−T31

F3
=
− (∂H/∂T )V,M

(∂U/∂M)T,V −H
= 1
T

=
(∂P/∂T )V,M

(∂U/∂V )T,M + P
= T12

F2
.

Both sides are equal to T−1, as can be seen from Eq. (1.28) and the result of Exercise
8.4. Of course, we can only make such conclusions when we know that dS = d̄Q/T .
Note that the equality holds under the substitutions P ↔ −H and V ↔ M one obtains
in comparing −PdV ↔ HdM .

c. Show from an application of Eq. (10.28) that we can take λ as independent of V and M ,
and that the differential equation for λ is

∂ lnλ
∂T

= −T12

F2
= T31

F3
= − 1

T
,

the same equality obtained above. Thus, λ = C/T .

10.3 Show that Eq. (10.23) can be written
(
∂U

∂V

)
λ

= −
(
∂(λP )
∂λ

)
V

. Use the cyclic relation to

show that Eq. (10.23) is equivalent to:(
∂(λP )
∂U

)
V

=
(
∂λ

∂V

)
U

.

This equation is what one obtains in seeking an integrating factor for the first law written
as d̄Q = dU + PdV . Comparing with the result of Exercise 3.11 (which presumes that
dS = d̄Q/T is an exact differential), we find once again that λ = C/T .
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Negative absolute
temperature

C AN absolute temperature be negative? Several considerations would indicate, not. Yet, starting
in the 1950s,[56] and continuing to the present,[57] experiments have been reported that are

consistent with the finding of negative absolute temperature. In this chapter we discuss the condi-
tions under which absolute temperature can be a negative quantity.

11.1 IS NEGATIVE ABSOLUTE TEMPERATURE POSSIBLE?

Negative absolute temperature does not mean colder than absolute zero

The universality of Carnot’s theorem implies that absolute temperature can be formulated indepen-
dently of the thermometric properties of materials (see Section 2.4). The ratio of absolute tempera-
tures T and T0 equals the ratio of the absolute value of heats Q and Q0 reversibly exchanged with
reservoirs at those temperatures, Eq. (2.11):

T

T0
= Q

Q0
. (11.1)

If we take T0 = 273.16 and Q0 to be the heat exchanged with a reservoir at the triple point of
H2O, we have the Kelvin scale. We’re free, however, to take T0 to be any number we want, positive
or negative. For T0 negative, all absolute temperatures would be negative. Yet regardless of the
sign of T0, the smallest value Q can have is zero: Zero is the least amount of heat that can be
transferred. The smallest-magnitude absolute temperature is therefore zero, whether approached
through a series of positive or negative temperatures (if T0 < 0). Whatever is the sense that negative
absolute temperature has meaning, it does not mean temperature colder than absolute zero.

Absolute temperature—the distribution of states available to a system

What aspect of physical systems does absolute temperature characterize?1 It’s certainly related to the
motion of atoms2—the internal energy of the ideal gas, which ignores inter-particle interactions, is
U = 3

2NkBT . Negative temperature would then be paradoxical if absolute temperature represented
just kinetic energy.3 Absolute temperature also represents potential energy, the energy stored in

1We’ve posed that question about entropy several times in this book; now we ask the same about temperature.
2Yet what kind of motion? Does the temperature of a can of gas increase if it’s placed on a moving train car?
3To be clear, we’re talking about absolute temperature—positive or negative—not empirical temperature. Nothing rules

out negative empirical temperature. When we refer to negative temperature, negative absolute temperature is implied.
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the internal degrees of freedom of the molecules of a gas. The equipartition theorem (not shown
in this book) states that 1

2kBT is the average energy4 associated with each quadratic degree of
freedom, those for which energy depends on the square of some quantity.5 Absolute temperature thus
characterizes the total energy of a system.6 We can’t rely, however, too heavily on the equipartition
theorem, as it breaks down at low temperature,7 and moreover not all types of energy are associated
with quadratic degrees of freedom as provided by the classical picture. The energy of the photon gas
is given by U = aV T 4, Eq. (5.11), and (as it turns out) the energy of a collection of independent
electrons varies as T 2 at low temperature. While the total energy of a system depends on absolute
temperature, the form of the relationship is system dependent, and not always linear in T .

We can’t therefore simply relate absolute temperature to internal energy (rather energy is re-
lated to temperature). Temperature is defined as that which systems in equilibrium have in common
(Section 1.5). The meaning of temperature should emerge from an understanding of the basis for
equilibrium. A body in equilibrium has the maximum entropy possible, subject to constraints. Re-
peating a familiar argument (Section 3.10), for two systemsA andB separated by a rigid, diathermic
boundary (and otherwise isolated), the entropy of the combined system is a maximum in equilib-
rium, δ(SA + SB) = 0, and its internal energy is conserved, δ(UA + UB) = 0. Equilibrium is
therefore characterized by the equality

δSA
δUA

= δSB
δUB

.

The ratio δS/δU is something that systems in equilibrium have in common, and serves as a proxy
for temperature. From Eq. (3.30), absolute temperature is related to δS/δU by

1
T

=
(
∂S

∂U

)
V,N

. (11.2)

Equation (11.2) is a more abstract characterization of absolute temperature than the attempt to relate
it to the energy of specific systems: The variation of entropy with energy is the inverse absolute
temperature.8 Reaching for Eq. (7.2), we have9

1
kBT

= 1
W

(
∂W

∂U

)
V,N

. (11.3)

The inverse absolute temperature probes the fractional change in W (number of microstates per
macrostate) with changes in internal energy U . Temperature therefore characterizes the system,
through the dependence of W on U , and is not a microscopic property of matter.10 Equation (11.2)
is sufficiently general that it can accommodate negative temperature.

4Energy averages are calculated from the probability distribution function of energy states (which depends on the absolute
temperature), such as the Maxwell-Boltzmann distribution, Eq. (7.28).

5The Hamiltonian of a classical harmonic oscillator is H = p2/(2m) + 1
2mω

2x2; the kinetic and potential energy
terms are quadratic degrees of freedom.

6One should see that absolute temperature characterizes a system as a whole. It embodies the average properties of a
system, averages that are constructed from the probability of occurrence of all states available to a system. In saying that
the average kinetic energy of the molecules of a gas is 〈 1

2mv
2〉 = 3

2kBT , it implies there are atoms moving faster than the
average and those that are moving slower than the average, all in the same system at absolute temperature T .

7At sufficiently low temperatures it’s no longer true that the average energy associated with degrees of freedom is propor-
tional to T . The law of Dulong and Petit, for example (the heat capacity of solids is 3nR, page 21), which can be accounted
for using the equipartition theorem, breaks down at low temperatures, as required by the third law of thermodynamics, and
requires the machinery of quantum mechanics to understand.

8There’s a change of emphasis here, away from ∂S/∂U = T−1, the variation of S with respect to U is controlled
by T−1 to T−1 = ∂S/∂U ; T−1 is ∂S/∂U . Consider from electrostatics ∇ · E = ρ/ε0. We normally read this as the
divergence of the E-field is controlled by the charge density. Turn it around, ρ = ε0∇ ·E; charge density is the divergence
of the field.

9Note that Eq. (11.2) is a result of thermodynamics, whereas Eq. (11.3) is from the statistical theory of entropy.
10Can we speak of the temperature of a single particle?
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T < 0⇐⇒Well-isolated subsystems

Intensive thermodynamic quantities have the same value at all spatial locations of the system, and
for a system truly in equilibrium we can speak of the temperature. Systems, however, can consist of
subsystems internally in equilibrium (Section 8.3), but not mutually in equilibrium.11 The Purcell-
Pound experiment of 1951 made use of the nuclear spin of 7Li in a LiF crystal.[56] Spins, situated
at lattice sites of the crystal, form a subsystem magnetically interacting among themselves, and only
weakly interacting with the lattice. The spin-lattice relaxation time12 can range from minutes[58]
to hours.[59] For times shorter than the spin-lattice relaxation time, a system of spins can be treated
as an essentially isolated system having its own spin temperature which can differ from that of the
lattice.[60]

Most systems cannot have a negative temperature because increasing the energy of the system
increases the entropy (as depicted in the left portion of Fig. 11.1), and by Eq. (11.2), T > 0. For
most systems, S is a strictly increasing function of internal energyU . There are exceptional systems,
however, where S = S(U) is not a monotonically increasing function, such as shown in the right
portion of Fig. 11.1. Spin systems are of this type. The energy of a system of spins saturates: Spins,

Figure 11.1 Left: S = S(U) is an increasing function for systems with an unbounded
energy spectrum, what’s usually the case. Right: For systems with a bounded spectrum,
S = S(U) is not monotonic, allowing for the possibility of negative temperature.

tiny magnets, can only all line up with an imposed magnetic field. Energy maximizes in such a
system, which is associated with an ordered, i.e., low-entropy state.13

Consider a system of N spin- 1
2 particles14 in an applied magnetic field H . Each particle can

have two energy values corresponding to the spin either aligned or anti-aligned with the field; there
are thus 2N spin configurations. The energies of the spins can range from U = −NµH , where µ
is the magnetic moment of one spin, with all spins aligned with the field, to U = NµH , with all
spins anti-aligned with the field. A configuration of n “down” spins (anti-aligned with the field) has
energy U(n) = −(N − 2n)µH , n = 0, · · · , N . For a given energy state (labeled by n), there are(

N

n

)
= N !
n!(N − n)!

11In plasmas, for example (ionized gases), electrons and ions can have different temperatures. Because of the disparity in
their masses, electrons come to equilibrium amongst themselves faster than they come to equilibrium with ions or neutral
atoms. In a given plasma, electrons can have temperatures as high as several tens of thousand Kelvin, whereas the ion
temperature might be in the range 500–1000 K.

12The time over which the spin system comes to equilibrium with the lattice (spin-lattice relaxation time), and the time
over which spins come to equilibrium amongst themselves (spin-spin relaxation time) can be measured with nuclear magnetic
resonance (NMR).

13Negative temperatures are not possible without quantum effects, e.g., the discreteness of spin angular momentum.
14The 7Li nucleus has spin 3

2 , which complicates the argument, but does not qualitatively change the conclusion.
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ways of arranging the n down spins. The maximum number of ways of distributing down spins is
for n = N/2 (show this). Let n = N/2 + m, where m = −N/2, · · · , N/2. The energies can thus
be written U(m) = 2mµH . By the same analysis leading to Eq. (7.17), the entropy of the spin
system has the form depicted in the right portion of Fig. 11.1:

S/kB = ln
[

N !
(N/2 +m)!(N/2−m)!

]
= N ln 2− 2

N
m2 + · · · . (11.4)

Systems possessing a subsystem with an entropy function as in Eq. (11.4) can be prepared in a
negative temperature state by quickly reversing the magnetic field,15 as indicated schematically in
Fig. 11.1 with the transition A→ B. We can see this by combining Eq. (11.4) with U = 2mµH:

S(U,H) = kB ln

 N !(
N

2 + U

2µH

)
!
(
N

2 −
U

2µH

)
!

 . (11.5)

The entropy therefore has the symmetry S(U,H) = S(−U,−H), implying from Eq. (11.2) that for
such a system, T (H) = −T (−H).

11.2 NEGATIVE ABSOLUTE IS HOTTER THAN POSITIVE ABSOLUTE
We derived in Eq. (7.28) the probability P (Ej) that a system in equilibrium at absolute temperature
T has energy Ej occupied, with

P (Ej) = Z−1e−Ej/kBT , (11.6)

where Z is the normalization factor on the probability distribution.16 Equation (11.6) implies that
the number of particles Nj having energy Ej , relative to the number N0 in the ground state E0, is

Nj
N0

= exp (−(Ej − E0)/kBT ) . (11.7)

As T is increased (through positive values), the population of higher-energy states increases, but
in such a way that Nj < N0, for j = 1, 2, 3, · · · . If we could let T →∞, we would have from Eq.
(11.7) that all states would be equally populated, withNj = N0 for all j ≥ 1. Such a situation would
require an infinite amount of energy if the energy spectrum is unbounded.17 By letting T become
negative in Eq. (11.7), we would have Nj > N0 for all j ≥ 1, where higher-energy states are
more populated than lower-energy states—a population inversion.18 To have a population inversion
with every state Ej more populated than Ej−1 would require “more” than an infinite amount of
energy, a nonsensical result. A system with an unbounded energy spectrum cannot attain negative
temperatures.

Such a conclusion does not apply to systems having a bounded energy spectrum, such as a finite
system of spins in a magnetic field. The entropy function for such a system achieves a maximum

15The proviso of changing the field rapidly (faster than the spin-spin relaxation time) is so that the spins do not have time
to follow the change in the direction of the field.

16The energy appearing in Eq. (7.28) refers to the kinetic energy of a gas particle (a continuous quantity), which has been
made discrete through our approximation of coarse-graining phase space. The energy Ej appearing in Eq. (11.6) is taken to
be discrete, in accord with the spin system under consideration here. The form of Eq. (7.28), the “Boltzmann factor,” is more
general than the result obtained through the specific derivation given in Section 7.3.

17For example, a quantum harmonic oscillator of angular frequency ω has an unbounded energy spectrum described by
En =

(
n+ 1

2

)
~ω, for n = 0, 1, 2, · · · .

18Lasers operate in a medium that can achieve population inversion among a few energy levels, not all energy levels
required for negative temperature. A laser is not in thermal equilibrium, but is maintained in a non-equilibrium state.
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value, as seen in Eq. (11.4), and indicated in the right portion of Fig. 11.1. Note that the top of the
entropy curve, where ∂S/∂U = 0, is consistent with either T = ∞ or T = −∞. We have the
surprising result, for a system with a bounded energy spectrum, that a state of T =∞ is the same as
one for which T = −∞. If temperature is conceived as a measure of hotness, we must conclude that
negative temperatures are hotter than positive temperatures, in particular that negative temperatures
are hotter than infinite temperature. To avoid such a non-intuitive conclusion would require us to
come up with a replacement for the Kelvin temperature scale. If we were to replace T → −1/T ,
we would have a linear progression from cold to hot, as shown in Fig. 11.2.

Figure 11.2 With (−T )−1 as temperature there is a linear progression from cold to hot

Measuring negative temperature

Our interpretation of negative temperature is that of a population inversion. How to detect a pop-
ulation inversion? A beam of electromagnetic energy (of suitably chosen frequency), when passed
through a system with a normally populated set of energy levels, will absorb energy—more lower-
energy states are populated than higher-energy states; there are more absorbers than emitters and
the beam is attenuated. Conversely, a beam of electromagnetic energy passed though a system in
which higher-energy states are more populated than lower-energy states, will increase the intensity
of the beam through stimulated emission, the process that underlies the operation of lasers.

11.3 NEGATIVE-TEMPERATURE THERMODYNAMICS
The hottest negative temperature an object can have (as measured on the Kelvin scale) is −0, while
the coldest negative temperature an object can have is −∞ (see Fig. 11.2). Of two objects A and
B, each at negative temperature, object A is hotter than B if |TA| < |TB |. Consider passing heat Q
from A→ B. The change in entropy would be given by

∆S = −Q
− |TA|

+ Q

− |TB |
= Q

(
1
|TA|

− 1
|TB |

)
> 0 . (11.8)

Thus, heat flows spontaneously from hot to cold, as required by the second law of thermodynamics.
The same conclusion holds if object B has a positive temperature. In that case passing heat Q from
A→ B entails the entropy change ∆S = Q (1/ |TA|+ 1/TB) > 0.

We can pretty much do thermodynamics with objects characterized by negative temperature as
for objects at positive temperature. The only exception would appear to be the process indicated
in Fig. 11.3. A nominal “refrigerator” operating between reservoirs at negative temperature would
require that work be done on the environment. Such a process violates the second law, however. See
Exercise 11.2.

CHAPTER SUMMARY
In this chapter we considered exceptional systems that can temporarily exist in states of negative
absolute temperature. Ordinarily, absolute temperature is positive.
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Figure 11.3 Process conserves energy, but violates the second law

• To produce negative absolute temperatures, a system must contain a subsystem that: 1) Attains
equilibrium with the rest of the system relatively slowly; 2) Comes to internal equilibrium
relatively quickly; and 3) Is finite in extent such that its energy spectrum is bounded.

• Negative absolute temperatures are hotter than positive temperatures. In particular, negative
temperatures are hotter than infinite positive temperature.

• Systems with negative temperature are characterized by a population inversion: Higher-lying
energy states are more populated than lower-energy states.

Figure 11.4 Left: Positive-temperature reservoirs. Right: Negative-temperature reservoirs

EXERCISES
11.1 a. The left portion of Fig. 11.4 depicts the operation of a reversible heat engine with positive-

temperature reservoirs. Show using Eq. (11.1) that Q2 = 1
2Q1, and thus, to conserve

energy, there must be work done on the environment. What is the magnitude of W ? Note
that in Eq. (11.1), it’s the absolute values of the heats that are involved.
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b. The right portion of Fig. 11.4 depicts a “heat engine” operating between hot and cold
reservoirs having negative temperatures. Show that Q2 = 2Q1, and therefore work must
be done on the device to make it function as depicted. What is the magnitude of W ?
Note that we are using the work to “amplify” the amount of heat delivered to a lower
temperature. Heat spontaneously flows from hot to cold without the expenditure of work,
see Eq. (11.8).

11.2 Show that the cycle in Fig. 11.3 is not possible, even though it conserves energy. Hint: Allow
heat Q1 to flow back to the cold reservoir by a direct conduction path. Show that you have a
compound engine violating the Kelvin form of the second law.
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C H A P T E R 12

Thermodynamics of
information

It is to states of systems . . . incompletely defined that the problems of thermodynamics
relate.—J.W. Gibbs[3, p166]

12.1 ENTROPY AS MISSING INFORMATION

T HERMODYNAMICS pertains to systems incompletely specified. The quantities we can con-
trol experimentally are limited to those that affect changes in internal energy through work

as the mode of energy transfer. Macroscopic systems are comprised of enormous numbers of mi-
croscopic components whose coordinates are not known—hence the term incompletely specified.
Energy transfers to microscopic degrees of freedom are known as heat; heat couples to the large
number of degrees of freedom not explicitly accessible to macroscopic observation. Heat is an ex-
tensive quantity—heat capacities scale with the size of the system—yet we know it’s meaningless
to speak of the heat contained in a system because heat transfers are process-dependent; heat is
not a state variable. Entropy, however, is a state variable, closely related to heat transfers, that’s
defined by the state of the system. Entropy is a measure of the microstates that are consistent with
the macrostate specified by the other state variables (Chapter 7).

Entropy can therefore be said to represent the missing information about a system that can’t be
accounted for in macroscopic descriptions—what we don’t know; the larger the entropy, the more
the missing information.1 The concept that entropy—which represents degrees of freedom not sub-
ject to our control—also represents “missing information,” what could potentially be known about a
system, is an appealing idea, but can it be made precise? As the term is customarily used, informa-
tion connotes subjective aspects of facts learned in everyday life, yet we’re suggesting a connection
between something nominally qualitative (information) with something physical (entropy). Can in-
formation be quantified in a way suitable for use in physical theories? Is information physical? The
connection between entropy and information is a significant development in our understanding of
the second law, the gift that seems to keep on giving.

The link between entropy and information has a curious origin in Maxwell’s demon, a thought
experiment to beat the second law of thermodynamics.2 The second law codifies our experience that
heat spontaneously flows from hot to cold, and that the reverse is never observed. If we were to
discover exceptional circumstances in which the second law fails, it would be a different kind of

1Equivalently, the less information (more missing information) we have about a system, the greater is the entropy.
2There is a long history of thought experiments in physics, from Galileo to Einstein to Schrödinger.
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physical law from those that hold without exception.3 As early as 1867, Maxwell argued that the
second law could be beaten by a hypothetical being with the ability to discern the quickly-moving
atoms of a gas from the slowly-moving, and to separate them without performing work, thereby
transferring heat from cold to hot with no other effect. The hypothetical being became known as
Maxwell’s demon. “The demon,” once having been born on the stage of physics, took on a life of
its own through attempts to explain how it does or does not violate the second law, and has led to
advances in understanding the connections between thermodynamics, information, and computing.
This chapter is an introduction to the rich web of concepts spawned by Maxwell’s demon,4 from a
hypothetical way of beating the second law, to the physical foundations of information processing.

12.2 MAXWELL’S DEMON: A WAY TO BEAT THE SECOND LAW?
In Chapter 7 we discussed some of the subtleties associated with entropy, including the possibility
of its subjectivity. Maxwell weighed in on the topic, using energy dissipation as an entrée:

It follows . . . that the idea of dissipation of energy depends on the extent of our knowl-
edge. Available energy is the energy which we can direct into any desired channel. Dis-
sipated energy is energy which we cannot lay hold of and direct at our pleasure, such
as the energy of the confused agitation of molecules which we call heat. Now, confu-
sion, like the correlative term order, is not a property of material things themselves, but
only in relation to the mind which perceives them. . . . the notion of dissipated energy
would not occur to a being who could not turn any of the energies of nature to his own
account, or to one who could trace the motion of every molecule and seize it at the right
moment. It is only to a being in the intermediate stage, who can lay hold of some forms
of energy while others elude his grasp, that energy appears to be passing inevitably
from the available to the dissipated state.[2, p646]

That passage refers to what would become known as the demon. Maxwell elaborated in his Theory
of Heat, and it’s useful to quote at length from that work:

One of the best established facts in thermodynamics is that it is impossible in a system
enclosed in an envelope which permits neither change of volume nor passage of heat,
and in which both the temperature and the pressure are everywhere the same, to produce
any inequality of temperature or of pressure without the expenditure of work. This is
the second law of thermodynamics, and it is undoubtedly true as long as we can deal
with bodies only in mass, and have no power of perceiving or handling the separate
molecules. But if we conceive of a being whose faculties are so sharpened that he can
follow every molecule in its course, such a being, whose attributes are as essentially
finite as our own, would be able to do what is impossible to us. For we have seen that
molecules in a vessel full of air at uniform temperature are moving with velocities by
no means uniform, though the mean velocity of any great number of them, arbitrarily
selected, is almost exactly uniform. Now let us suppose that such a vessel is divided
into two portions, A and B, by a division in which there is a small hole, and that a
being, who can see the individual molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from A to B, and only the slower molecules to pass
from B to A. He will thus, without expenditure of work,5 raise the temperature of B
and lower that of A, in contradiction to the second law of thermodynamics.[62, p328]

3There are certainly exceptions to Newtonian dynamics—the fast and the small—yet within its domain of validity, New-
ton’s laws always apply. The classical statements of the second law of thermodynamics contain words such as “never” and
“impossible,” yet Maxwell provided a hypothetical scenario by which it could possibly fail.

4We can only scratch the surface. The book by Leff and Rex is a valuable resource on Maxwell’s demon.[61]
5Note the “sole result” clause implicitly being invoked here; see Chapter 2.
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Maxwell did not call the mythical doorkeeper a demon (typically depicted as in Fig. 12.1)—that
would come from Kelvin, who referred to “Maxwell’s intelligent demons,” and the name has stuck.
Conceived 150 years ago and pronounced dead several times in the intervening years, the de-
mon continues to thrive as a conceptual framework for the connection between information and
thermodynamics.[63]

Figure 12.1 The demon separates cold atoms from hot so as to violate the second law

When Maxwell introduced the demon, the distribution of speeds of the atoms of a gas at a fixed
temperature had only recently been established (the Maxwell-Boltzmann distribution, Eq. (7.26)).6

Maxwell asked the natural question: Is it possible to separate the atoms of a gas (“lay hold of”) into
two populations, fast and slow, without the expenditure of work? His purpose in hypothesizing a
creature to beat the second law was to illustrate that the second law has a statistical character and
cannot be reduced to dynamics. He continues (in his Theory of Heat):

This is only one of the instances in which conclusions which we have drawn from our
experience of bodies consisting of an immense number of molecules may be found
not to be applicable to the more delicate observations and experiments which we may
suppose made by one who can perceive and handle the individual molecules which we
deal with only in masses.

In dealing with masses of matter, while we do not perceive the individual molecules, we
are compelled to adopt what I have described as the statistical method of calculation,
and to abandon the strict dynamical method, in which we follow every motion by the
calculus.

6The absolute temperature T is related to the average kinetic energy of the particles of a gas, 〈mv2/2〉 = 3kBT/2; see
Chapter 11. It’s meaningful therefore to speak of hotter and cooler, more and less energetic (than the average), atoms in the
same gas at temperature T .
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It would be interesting to enquire how far those ideas about the nature and methods
of science which have been derived from examples of scientific investigation in which
the dynamical method is followed are applicable to our actual knowledge of concrete
things, which, as we have seen, is of an essentially statistical nature, because no one has
yet discovered any practical method of tracing the path of a molecule, or of identifying
it at different times.

Indeed, it would be of interest to inquire how far we can take mechanics to describe all the atoms in
macroscopic systems! Despite Maxwell’s admonition that we are compelled to abandon the meth-
ods of analytic mechanics, it didn’t stop others from making the attempt. The subject of statistical
mechanics begins with the work of Maxwell and Boltzmann.

12.3 DEMISE OF THE DEMON: FLUCTUATIONS AND INFORMATION
Maxwell’s intent in introducing the demon was not to challenge the second law, but rather to em-
phasize that without the ability to follow the course of individual atoms, our knowledge of col-
lections of atoms is limited to their statistical properties.7 Maxwell apparently was not concerned
with whether the demon could actually exist, even in principle; merely conceiving it was sufficient
for his purposes. It begs the question, however—can Maxwell’s demon exist? The demon has been
hypothesized to have certain abilities, but are those abilities within the realm of physical possibility?

Death by thermodynamics

The demon is tasked with violating the second law by transferring heat from cold to hot with no
other effect. To that end, the system must be mechanically isolated: The demon can’t have help
from sources of work outside the system. The system must also be thermally isolated; lowering the
entropy of the gas cannot come about because of heat transfers with the environment.8 As we now
discuss, thermodynamic isolation prevents the demon from doing its job, if it’s subject to the laws
of physics.9

7Reminiscent of quantum mechanics? Leon Rosenfeld described the two modes of description—dynamical and
statistical—as complementary in the sense of the principle of complementarity in quantum mechanics:[64, p812] “Above
all, it [the analysis of the two modes of description] is characterized by the mutual exclusiveness of the two descriptions:
conditions allowing of a complete mechanical (and electrodynamical) description exclude the possibility of applying to the
system any of the typical thermodynamical concepts; and conversely, the definition of the latter requires conditions of ob-
servation under which the mechanical parameters essentially escape our control.” The subtlety of this statement can best be
appreciated after we have some familiarity with statistical mechanics. To assign a definite temperature to a system, it must
be able to exchange energy with its environment, Section 3.10, implying the impossibility of assigning a definite value to
the energy. To have the energy well defined, one must isolate the system, implying the impossibility of assigning a definite
value of the temperature. It can be shown that the product of the root mean squares of the fluctuations in internal energy and

temperature are related by
√
〈(∆U)2〉

√
〈(∆T )2〉 = kBT

2—the same form as the Heisenberg uncertainty principle.
8The demon must therefore be inside the system, not as depicted in Fig. 12.1.
9We can’t very well explain one miracle by invoking another—where does that stop? To keep the discussion within the

realm of physical possibilities, the activities of the demon should be subject to the laws of physics, including the second
law of thermodynamics. Should the demon succeed in violating the second law, one would conclude that the second law
contains the seeds of its own limitations. It’s not uncommon for laws of physics to indicate their domains of validity. The
Newtonian theory of gravitation, for example, has no natural length scale associated with it—it’s meant to apply over any
distance. The general theory of relativity, which supersedes Newtonian gravity, features an intrinsic length associated with a
mass M , the Schwarzschild radius rS ∝ GM/c2. Quantum mechanics predicts another fundamental length, the Compton
wavelength λC = h/(Mc). The two lengths become equal at the Planck length, LP ≡

√
hG/c3. We would not expect

general relativity (a classical theory), or the Standard Model of particle physics (which excludes gravity), to apply at the
Planck length. Incidentally, Planck defined what are known as the Planck units in his Theory of Heat Radiation.[27, p173]



Information � 175

The demon heats up so much it can’t function

The entropy of isolated systems never decreases, ∆S ≥ 0. To whatever extent the demon can lower
the entropy of the gas, its entropy must increase even more in the process. Unless its heat capacity
C is infinite, the temperature of the demon will rise with increasing entropy, dT = (T/C) dS.
In 1912, the physicist Marian Smoluchowski noted that fluctuations known as Brownian motion10

would become increasingly amplified with rising temperature11 to the point where the demon would
be unable to function. A demon that sets out to violate the second law is rendered ineffective by the
second law! To quote Richard Feynman: “It [the demon] has but a finite number of internal gears
and wheels, so it cannot get rid of the extra heat that it gets from observing the molecules. Soon
it is shaking from Brownian motion so much that it cannot tell whether it is coming or going,
much less whether the molecules are coming or going, so it does not work.”[36, p46-5] A computer
simulation reported in 1992 found that, indeed, a finite demon becomes sufficiently thermalized
that it can’t operate as intended.[65] It’s ironic that Brownian motion, a topic outside the purview of
thermodynamics,12 comes to the rescue of the second law.

How does the demon see?

The demon operates in an enclosed, isolated system in thermal equilibrium. In order to sort the
molecules, the demon must see them. Yet, located within such a system, the demon is immersed
in cavity radiation where it’s impossible to see anything; Exercise 5.6. That point seems to have
gone unnoticed in the physics literature until the 1940s. Leon Brillouin wrote in 1951: “The demon
cannot see the molecules, hence, he cannot operate the trap door and is unable to violate the second
principle.”[66]

In order to see the molecules, the demon must be equipped with a light source having a tempera-
ture greater than that of the gas (noted by Brillouin[66] and independently by Dennis Gabor13[67]).
Let Tl denote the temperature of the light source, where Tl > T , the temperature of the gas, and
of the demon. If the source emits energy E which is absorbed by the gas, there is an increase in
entropy associated with the energy transfer, ∆SE = E

(
T−1 − T−1

l

)
> 0. The demon must detect

at least one scattered photon of frequency ν, where hν > kBT . The entropy change of the demon
in absorbing the photon is ∆Sd = (hν/T ) > 0. If the demon lets a molecule through the trap door,
the number of microstates of the gas is diminished, so that its entropy decreases by an amount (see
Eq. (7.65)) ∆Sg = kB ln(1 − |∆W | /W ) ≈ −kB |∆W | /W , where |∆W | /W � 1. The change
in entropy of just the demon in detecting light scattered from the gas, and of the gas in its atoms
being let through the trap door is therefore

∆Sd + ∆Sg = kB

[
hν

kBT
− |∆W |

W

]
> 0 , (12.1)

because hν/(kBT ) > 1 and |∆W | /W � 1. The entropy increase of the demon exceeds the
entropy decrease of the gas. Thus, while an experimental apparatus (“demon”) might sort molecules,

10References to Smoluchowski’s work are given in [61]. Brownian motion is a stochastic process in which a large particle
is subject to random impacts from smaller particles. In this case the demon is the Brownian “particle” that’s being bombarded
by the molecules of the gas.

11The average size of fluctuations increase with temperature. For example, 〈(∆T )2〉 = kBT
2/CV .

12Fluctuations strictly speaking cannot be incorporated within the framework of thermodynamics. Thermodynamics is
concerned with equilibrium, the quiescent state where state variables have fixed values. We introduced fluctuations in Section
3.10 through the device of virtual variations of the system in which the constraint of thermal isolation is conceptually
relaxed. That’s basically what’s done in statistical mechanics through the theory of ensembles, a conceived large collection
of identical copies of a system, each prepared consistent with known information about the system. Fluctuations could be
motivated phenomenologically by relaxing the concept (see Section 1.2) that thermodynamic measurements are the values
of state variables, and instead represent the average result of many measurements on a system.

13Gabor was awarded the 1971 Nobel Prize in Physics for the invention of holography.
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there’s no violation of the second law.14 Note that implicit in Eq. (12.1) is the quantum nature of
electromagnetic radiation—one cannot absorb a fraction of a photon. If light behaved as described
by the classical theory, where the energy of light rays can be made arbitrarily small, there could be
a violation of the second law. Another instance where the consistency of thermodynamics relies on
the underlying quantum nature of the physical world.15

Does measurement affect entropy?

The demon must, because it operates in isolation, increase its entropy, causing its own demise.
Brillouin and Gabor showed that observing the gas with light is one way by which the entropy of
the demon increases. Other means by which the demon can detect the gas, not involving light, have
been proposed,[61, p8] prompting the question: Does measurement always entail an increase in
entropy? Does the demon’s act of sorting, which requires it to discern fast from slow molecules, and
hence which involves an interaction between demon and molecules—an act of measurement—does
that always result in ∆S > 0? Is measurement inherently a source of irreversibility? The answer,
which emerged only in the second half of the 20th century, is not necessarily (see Section 12.5).

Szilard’s engine: Role of information

If a mechanical demon can’t beat the second law, could a demon function if it possessed intelligence,
as Maxwell originally suggested? Maxwell apparently assumed that intelligence can function with-
out energy cost. He wrote:

Then the number of molecules from A to B are the same as at first, but the energy in
A is increased and that in B diminished, that is, the hot system has got hotter and the
cold colder and yet no work has been done, only the intelligence of a very observant
and neat-fingered being has been employed.[61, p5]

The physicist Leo Szilard undertook a careful examination of the role played by the involvement of
an observer. In his 1929 article,16 “On the Decrease of Entropy in a Thermodynamic System by the
Intervention of Intelligent Beings,” he devised an idealized process—another thought experiment,
now known as Szilard’s engine—that’s mostly mechanical, but which requires the participation of
an intelligent being, and which shows that a violation of the second law is prevented if entropy is
associated with measurement. The minimal “intelligence” we require of a demon is the ability to
store information, if only briefly, i.e., it must have memory. An act of measurement is not complete
until the result is recorded somehow.17

The Szilard engine consists of a closed volume V , maintained at a constant temperature T
through contact with a heat reservoir, that contains a single particle in random thermal motion (see
Fig. 12.2). A partition is introduced in the middle of the system (without work being performed),
dividing it into two equally-sized chambers. At this point, the particle is either on one side of the

14In 2009, the operation of a Maxwell demon was reported that used a pair of laser beams tuned to atomic transitions and
configured in such a way to create a potential barrier that atoms could cross in one direction, but not in the other, effecting
a separation of cold and hot atoms.[68] The entropy increase of the “demon” (experimental arrangement that separates the
atoms) exceeded the entropy decrease of the atoms. In 2016, a photonic Maxwell’s demon was reported.[69]

15In 1941, P.W. Bridgman (who was awarded the 1946 Nobel Prize in Physics for work on high-pressure physics)
wrote:[47, p156] “If the Maxwell demon had been invented yesterday instead of in the last century I believe he would not
have caused as much consternation.” While game seemingly over for the demon, it still had lessons to teach us concerning
the role of information in the performance of its job.

16An English translation is reprinted in Leff and Rex.[61, p124] Szilard’s article is also reprinted in Wheeler and Zurek.[70,
p539] Measurement, which Szilard identified as key to understanding the demon, is fundamental to the theory of quantum
mechanics. The title of Szilard’s article is misleading, which seems to imply that an intelligent demon could violate the
second law, yet the article argues the opposite, that no being, intelligent or otherwise, can do so.

17The demon could therefore be a computer connected to suitable detectors for discerning the molecules of the gas. The
demon need not possess human intelligence.
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Figure 12.2 Szilard engine violates the second law unless entropy is associated with the
observer

partition or the other, with equal probability. Whichever side it’s on, an intelligent observer (the
demon) introduces a “load” connected to the partition—which is free to slide without friction—
against which the particle does work in its random collisions with the partition. The numerous
collisions with the partition produce an average pressure, and we may consider the movement of the
partition against the load a reversible, quasistatic process. The partition is removed when it reaches
the end of the chamber, restoring the system to its original configuration.18 In the process work
|W | has been done on the environment at the expense of the heat absorbed from the reservoir, with
Q = |W |. The first law of thermodynamics is satisfied.

The second law, however, is violated: Heat has been completely converted into work—an engine
with 100% efficiency.19 As a result, the entropy of the reservoir decreases.20 Assuming we can use
the ideal gas law (with N = 1(!)), work |W | = kBT ln 2 has been expended. The entropy change
of the reservoir is ∆S = −Q/T = − |W | /T = −kB ln 2. The entropy change of the mechanical
system, however, which has been returned to its original state, is zero.21 Is there a way to save the
second law here? Yes, if we enlarge our concept of what the system is. Szilard argued that the system
obeys the second law if the entropy of the observer increases as a result of the measurement it made

18Better descriptions of Szilard’s engine are given in Leff and Rex,[61] in Brillouin,[71] and in the article by Charles
Bennett.[72] Bennett describes detectors of his own invention for determining which side of the partition the particle is on.

19The disorganized energy of heat has been entirely converted into the “organized” energy of work, seemingly with no
other effect—what’s prohibited by the second law.

20For engines operating between two reservoirs, the decrease in entropy of the hot reservoir is compensated by the entropy
increase of the colder reservoir. With the Szilard engine, there’s no “waste heat” (until we bring the observer into account),
leading to an entropy decrease in the one and only one reservoir.

21The movement of the partition is presumed to have been done reversibly. Szilard’s engine is thus (before we invoke the
observer) a reversible cyclic process for which ∆S < 0.
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in determining which side of the partition the particle was on. Szilard’s engine, by design, consists
of a mechanical system plus an observer that must make a measurement. He wrote:

One may reasonably assume that a measurement procedure is fundamentally associated
with a certain definite average entropy production, and that this restores concordance
with the second law. The amount of entropy generated by the measurement may, of
course, always be greater than this fundamental amount, but not smaller.[61, p127]

The “fundamental” entropy increase is kB ln 2.
Szilard thus made a generic connection between entropy and measurement, or more generally in-

formation. Without knowing it, he discovered the “bit” of information22 associated with two equally
likely outcomes: Before we detect the particle, it can be on either side of the partition with equal
probability. The fundamental role of measurement in quantum mechanics had been recognized at the
time of Szilard’s work, but the significance of information in physics had yet to be appreciated. Szi-
lard did not specify how detecting the particle brings about an entropy increase; he “merely” noted
the necessity of recognizing the role played by information in interpreting the second law. Thus, he
did not prove that ∆S > 0 because of measurement (as is sometimes stated), but his tremendous in-
sight argued for such a connection. Szilard recognized what would only later emerge as the essential
aspects we require of an intelligent demon: measurement, information, and especially memory.

It’s not important that Szilard’s engine operates with only one molecule and appears hopelessly
contrived and impractical. What you should ask is: Is it impossible? In 2010, a group reported an
experimental realization of a Szilard engine involving a colloidal particle in a fluid bath at uniform
temperature.[73] By acting on information about fluctuations in the location of the particle (as ob-
served using a CCD camera) they could demonstrate conversion of information about the particle
to extract work against the forces acting on the particle. In 2014, a group reported the experimental
realization of a Szilard engine that uses a single electron.[74]

12.4 IS ENTROPY INFORMATION?
In 1948 the mathematician Claude Shannon published a landmark paper, “A Mathematical The-
ory of Communication,”[75] which was soon thereafter reprinted in book form.[76] Shannon is
considered the founder of information theory, what has wide-ranging applications in mathematics,
statistics, computer science, physics, electrical engineering, economics, and the biological sciences.
Shannon’s innovation—what led to its use in so many disciplines—is a way to quantify informa-
tion. As we’ll see, his measure of information, Eq. (12.5), bears resemblance to entropy, with their
commonality being that entropy represents “missing information,” what’s required to specify the
microstates of a system given only the specification of the macrostate.23

Shannon defined information in a specific way, that at times can appear paradoxical, which
takes into account the surprise element one experiences in learning of events whose occurrence was
not previously certain. Consider the following two statements: 1) The sun rose this morning; 2)
The sun exploded this morning. Which conveys more “news”? If we were repeatedly told the first
statement, we’d quickly tune it out: No news there. The second statement, however, is real news:
It’s unexpected. The more likely an event, the less is the information conveyed in learning of its
occurrence, and conversely. Information, as the term is used in information theory, is a measure
of the uncertainty inherent in a system, what could be learned about a system, but which is not
currently known.24 Information, like entropy, represents the potentialities inherent in a system.

22The term bit wasn’t coined until the 1940s. Beware of potential confusion: A bit as a binary digit (0 or 1) is not the same
as a bit of information, what’s defined in Section 12.4. Binary digits and bits of information are different.

23Information is thus missing information. Got it?
24Again, “information” is missing information. If you get confused, think uncertainty. That way, the parallel between

information and entropy is more readily apparent—uncertainty of information associates with physical disorder. We note
here that E.T. Jaynes used information theory as a way to formulate statistical mechanics.[77]
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Invoking likelihood paves the way for bringing probability into information theory.25 If for an
event x having probability px for its occurrence, let Ix denote the information conveyed upon learn-
ing that x has happened. A fundamental tenet of information theory is that Ix can be obtained from
a function of px, Ix = I(px). One way to capture the “surprise” aspect of information would be to
guess that Ix is simply 1/px. That turns out not to be correct, but it’s close.

The form of the information function I(p) will be inferred from a set of axioms (see below).
One simple requirement is that I(p) be a non-negative function of p for26 0 < p ≤ 1. Denote by
px the probability that x does not occur. Clearly,27 px + px = 1. For the non-occurrence of x,
let Ix be the information conveyed that x did not happen, where it’s assumed that Ix is obtained
from the same information function, Ix = I(px). The average information in a system for which
x can occur as the outcome of an experiment is given by the expression28 pxI(px) + pxI(px). It
might seem strange that we’ve included the probability of what doesn’t happen. Consider tossing a
coin, and let x denote the occurrence of “heads.” Unless we have a one-sided coin (whatever that
is), or a coin in which heads always occurs, we have to consider the other possibility, of not-heads,
or tails. There would be no information conveyed in tossing a coin that always lands with heads
showing—no news. For a system to have non-zero information, there must be at least two outcomes
for experiments performed on it. For p the probability of heads showing, the average information is
thus pI(p)+(1−p)I(1−p). If p→ 1, to have zero information conveyed, we require I(1) = 0 and
moreover that limx→0 xI(x) = 0. Note the symmetry in this expression between I(p) and I(1−p).

Requirements on the information function

We can now generalize to the case of mutually exclusive events (x1, · · · , xn) that occur with prob-
abilities pi such that

∑n
i=1 pi = 1. Following tradition, we use the symbol29 H to denote the

information of a system characterized by a set of probabilities {pi}:

H(p1, · · · , pn) =
n∑
i=1

piI(pi) . (12.2)

The form of Eq. (12.2) emphasizes that information, what we’re calling H , is a function of the
probabilities {pi}, which are presumed known. The function I(p) is unknown at this point. Equa-
tion (12.2) serves as a “bootstrap”: It motivates the concept that information is associated with the
probabilities pi of the outcomes of experiments. The actual form of H(p1, · · · , pn) is determined
by the following set of requirements, which imply that H occurs in the form of Eq. (12.2).

We impose four requirements on H(p1, · · · , pn):

1. H(p1, · · · , pn) is a continuous function in each of its arguments, a reasonable request;

2. H(p1, · · · , pn) is a symmetric function of its arguments. The information associated with a
sequence of outcomes is independent of the order in which the outcomes occur;

25As noted on page 97, a certain level of familiarity with the theory of probability is assumed.
26The case of p = 0 requires special handling; it can be incorporated into information theory, but not directly in the

function I(p).
27Behind this simple result lies several ideas from the rules of probability. Two events are said to be mutually exclusive if

they both cannot occur at the same time. For x and y mutually exclusive events, the probability of both occurring is clearly
zero. This is stated in the form that p(x and y) = 0. If one asks for the probability that x or y occurs, the rule is that
p(x or y) = p(x) + p(y). The event x and the event x (the non-occurrence of x) cannot both occur at the same time, and
are mutually exclusive. The probability that x happened or not, is clearly unity.

28The expectation value of a quantity x that could take on a range of values (x1, · · · , xn), each occurring with probability
pi, is given by

∑n

i=1 xipi where the probability distribution is normalized,
∑n

i=1 pi = 1. Consider calculating the average
height of a group of people; you’d see this formula in action.

29Shannon[76, p51] chose H because it resembles the “H” in Boltzmann’s H-theorem (mentioned on page 98).
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3. If all probabilities pi are equal, with pi = 1/n, H(1/n, · · · , 1/n) is a monotonically increas-
ing function of n. As n is increased, i.e., as more arguments are added to H(p1, · · · , pn),
more outcomes become available to the system, which if all are equally likely, should imply
more uncertainty, more information in the information-theoretic sense;

4. If some of the outcomes of a given experiment can be realized as the outcomes of “sub-
experiments” (what we’ll explain shortly), the value of H for the original experiment can be
expressed as the weighted sum of the values of H for the sub-experiments.

To understand what’s meant by requirement four—which is actually quite strong, it determines
the form of H(p1, · · · , pn) without appealing to Eq. (12.2)—consider Fig. 12.3. Suppose there are

Figure 12.3 Information associated with experimentA is the same as that for the compound
experiment BC

three outcomes of an experiment having probabilities p1 = 1
2 , p2 = 1

3 , and p3 = 1
6 ; call this experi-

ment A. The information associated with A would be indicated H
( 1

2 ,
1
3 ,

1
6
)
. Suppose the outcomes

of A can be realized by the outcomes of two successive experiments, call them B and C, where in
experiment B two outcomes occur with equal probabilities 1

2 , followed by subsidiary experiment
C, performed on one of the outcomes of B, that itself has two outcomes with probabilities 2

3 and 1
3 .

We require that the two experiments—A, and B followed by C—yield the same information:

H

(
1
2 ,

1
3 ,

1
6

)
= H

(
1
2 ,

1
2

)
+ 1

2H
(

2
3 ,

1
3

)
, (12.3)

where the coefficient of 1
2 is the weighting factor because experiment C occurs only half the time.

Requirement four can then be restated:

4. If pn = q1 + q2 > 0, we require that

H (p1, · · · , pn−1, q1, q2) = H(p1, · · · , pn) + pnH

(
q1

pn
,
q2

pn

)
. (12.4)

Requirement four generalizes. It can be shown by induction that

H(p1, · · · , pn−1, q1, · · · , qm) = H(p1, · · · , pn) + pnH

(
q1

pn
, · · · , qm

pn

)
,

where pn = q1 + · · · + qm > 0. If every probability pi can be expressed as a sum of “sub-
probabilities,” pi =

∑mi
j=1 qi,j , i = 1, · · · , n, then it can be shown that requirement four implies

H(q1,1, · · · , q1,m1 ; · · · ; qn,1, · · · , qn,mn) = H(p1, · · · , pn) +
n∑
i=1

piH

(
qi,1
pi
, · · · , qi,mi

pi

)
.
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Shannon measure of information

Shannon showed that the only function meeting these requirements has the form[76, p116]

H (p1, · · · , pn) = −K
n∑
i=1

pi ln pi , (12.5)

what’s known as the information entropy, or the Shannon entropy, or, better, Shannon’s measure of
information,30 where K > 0 is an arbitrary positive constant that sets the scale of information.31

That K must be positive is so that requirement three is met. For pi = 1/n, i = 1, · · · , n, Eq. (12.5)
implies that

H

(
1
n
, · · · , 1

n

)
= K lnn . (12.6)

The constantK must be positive so thatK lnn is a monotonically increasing function of n. Starting
from Eq. (12.5), it can be shown that H( 1

n , · · · ,
1
n ) is the maximum value of H(p1, · · · , pn); see

Exercise 12.6. Maximum information—maximum uncertainty—is for all outcomes equally likely.
The imposition of constraints, therefore, can only serve to decrease the information. If a constraint
is imposed, we have more knowledge about the system, and less uncertainty.

The choice of K is partially dictated by the base of the logarithm. In Eq. (12.5) we’ve used the
natural logarithm, ln x ≡ loge x. In general loga x = loga b logb x; thus, logb x = ln x/ ln b. By
changing the base of the logarithm, one affects the value ofK. If one works with base-2 logarithms,
then with K = 1, information is measured in bits. The basic information function I(p) (comparing
Eq. (12.5) with Eq. (12.2)) is therefore I(p) = −K ln p = K ln(1/p), which captures the “surprise”
aspect of information—the smaller the probability of an event occurring, the greater the information
conveyed when it occurs.32 Note that I(1) = 0 and limx→0 xI(x) = 0 as we noted previously was
required of the function33 I(x).

Example. A string of letters from the English alphabet, together with blank spaces, would, from
Eq. (12.6), have an information of H = log2 27 ≈ 4.75 bits per character if they all occurred with
equal frequency. If one uses the known probabilities with which these symbols occur in the English
language, the information (obtained from Eq. (12.5)) is H ≈ 4.03 bits per character.[71, p8] Note
that H goes down when we impose the constraint of using the actual probabilities in which letters
occur, versus assuming they all occur randomly. If one takes into account correlations between
letters, such as the letter u almost always follows the letter q, H goes down even more, close to two
bits per character.

Is information entropy?

Except for a scale factor, Eq. (12.5) is identical to Eq. (7.21), what was obtained from the Boltz-
mann entropy. One might wonder if information is the same as entropy, especially when Eq. (12.5)
is referred to as the information entropy. Equation (7.21) does not represent the entropy of a physi-
cal system because it can’t be connected to the parameters characterizing equilibrium, T , P , and µ,
as required by thermodynamics. Despite the similarity of the formulas, information and entropy are
logically distinct. Entropy is a property of systems in thermodynamic equilibrium. Information is

30Calling Eq. (12.5) an entropy causes confusion. Best to call it simply the measure of information.
31More thorough proofs that Eq. (12.5) is the only function satisfying the requirements on H are given in Khinchin.[78]
32In fact, the function I(p) = −K ln p is known as the surprisal associated with the event for which the probability of

occurring is p. The information H is thus the average surprisal associated with the system!
33To show that limx→0 x lnx = 0, start with limx→0 lnx/(1/x) and apply l’Hôpital’s rule.
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associated with any system for which we know the probability distribution of its experimental out-
comes. Seen this way, entropy is a special case of information. Information applies to any system
for which its probability distribution is known; entropy applies to systems for which the probabil-
ity distribution characterizes the state of thermodynamic equilibrium. Entropy can be said to be
information, but information does not necessarily imply entropy.34

Example. To illustrate that entropy is information, we can use Eq. (12.6) (the maximum informa-
tion) to determine the entropy of the ideal gas (which, being in thermodynamic equilibrium, must
be a maximum), H = kB lnW , where W is the number of distinct phase-space configurations
(which we’ve assumed occur with equal a priori probabilities, what’s required in the derivation of
Eq. (12.6)) as given by Eq. (7.58) and we have set K = kB . This expression leads to the Sackur-
Tetrode formula when Stirling’s approximation is used; see Exercise 7.8.

It’s not surprising that information and entropy are similar in their mathematical features: They
both spring from the use of probability. The major requirement imposed on H , Eq. (12.4), pro-
vides for how information combines for compound systems. Referring to Fig. 12.3, experiment A is
equivalent to the compound experiment BC, where H(BC) = H(B) +HB(C), where HB(C) is
the information in experiment C, given that B has already occurred. These are very nearly the same
requirements imposed on the Boltzmann entropy , S(W1W2) = S(W1) + S(W2); see Section 7.1.

Does information help us understand Maxwell’s demon?

After the partition is introduced in Szilard’s engine, there is one bit of information associated with
the two equally-likely possibilities: H( 1

2 ,
1
2 ) = 1 (Exercise 12.5). After the demon determines the

location of the particle, there is zero information, H(1, 0) = 0 (Exercise 12.3). Information has
decreased (in the sense of Shannon information); we know more about the system, namely which
side of the partition the particle is on. How does a loss of information about the gas translate into
an increase in the entropy of the demon? Szilard did not say. Brillouin, who had already shown how
the demon’s entropy increases—based on detecting the gas by means of light signals—postulated
a general connection between information and entropy based on this one example.[66][71] Bril-
louin distinguished two kinds of information—bound and free. Free information is associated with
knowledge, which has no physical significance, until it is transmitted by some physical means,
when it becomes bound information. Bound information is that conveyed by physical means, in-
formation that can be related to the physical states of systems. Thus, Brillouin introduced the im-
portant concept that information is physical. He also defined a rather confusing concept, that of
negentropy—negative entropy—as related to information. Brillouin proposed a generalization of
the second law:35 ∆(S −H) ≥ 0, or as he stated it, ∆(−S + H) ≤ 0. We won’t elaborate on ne-
gentropy, because the emphasis on information acquisition proved to be something of a distraction:
It diverted attention from the other aspect of an intelligent demon as identified by Szilard: memory.
Szilard foresaw that memory was part of the mix in understanding the demon:

When such beings make measurements, they make the system behave in a manner dis-
tinctly different from the way a mechanical system behaves when left to itself. We show
that it is a sort of memory faculty, manifested by a system where measurements occur,
that might cause a permanent decrease of entropy and thus a violation of the second

34There is the issue of the dimensionless scale factor of information, K, which is arbitrary except for being positive.
Entropy conventionally has as a scale kB , yet as we’ve argued (Section 3.2) entropy should naturally be considered a
dimensionless quantity—the only reason that we have kB as a scale for entropy is because we measure absolute temperature
in an artificial way, in units of degrees Kelvin.

35Linking information with entropy requires that we identify the arbitrary constantK in the definition of information with
Boltzmann’s constant: K = kB . If information is measured in bits, we should identify K = kB ln 2.
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law of thermodynamics, were it not for the fact that the measurements themselves are
necessarily accompanied by a production of entropy.[61, p124]

12.5 INFORMATION IS PHYSICAL
Information is inevitably inscribed in a physical medium. It is not an abstract entity. It
can be denoted by a hole in a punched card, by the orientation of a nuclear spin, or by
the pulses transmitted by a neuron. The quaint notion that information has an existence
independent of its physical manifestation is still seriously advocated. This concept, very
likely, has its roots in the fact that we were aware of mental information long before we
realized that it, too, utilized real physical degrees of freedom.
—Rolf Landauer, 1999[79]

In Szilard’s engine, the demon must record which side of the partition the particle is on before
it can act: The demon can’t make a decision on how to proceed unless the particle’s location is
registered, if only briefly. A measurement is not a measurement until the result of measurement has
been recorded. At the end of the cycle, to restore Szilard’s engine to its original state, the contents of
the demon’s memory must be erased. Erasing memory increases information (in the sense of infor-
mation theory)—the number of possibilities available to memory registers increases upon erasure.
More uncertainty, more entropy? Perhaps it’s the erasure of information, not its acquisition, which
causes the entropy of the demon to increase.

In 1961, the physicist Rolf Landauer published a seminal article,[80] “Irreversibility and Heat
Generation in the Computing Process,” proposing a link between information and the thermody-
namics of its manifestation in physical systems, an article that engenders discussion to this day.
Landauer’s thesis, in brief, is that information is physical, that information is stored in physical
media, is manipulated by physical means, and is a quantity subject to the laws of physics.

Logical irreversibility

Landauer introduced the concept of logical irreversibility, which pertains to information-processing
operations for which the outputs do not stand in one-to-one correspondence with the inputs. For
example, of the three elementary logic gates AND, OR, and NOT, only NOT entails a unique re-
lationship between output and input. Inputs to the NOT gate having truth values (0, 1) correspond
to the output values (1, 0). For the AND gate, however, only the input truth values (1, 1) corre-
spond to the output value 1. The other three combinations of input truth values (0, 0), (0, 1), and
(1, 0) each correspond to the output value 0. There is not therefore a unique relationship between
output and input; one can’t recover the input data from the output data, and is in that sense, irre-
versible. Likewise, for the OR gate, only the input truth values (0, 0) correspond to the output value
0; the other three cases of input values each correspond to the output value 1. For the AND and OR
gates, if each of the four types of inputs occurred randomly, there would be 2 bits of information
on the input (Eq. (12.6), log2 4 = 2, where K = 1), yet only 1 bit of information on the output
(log2 2 = 1). Logically-irreversible gates therefore destroy information. The NOT gate conserves
information, in the sense that 1 bit in, 1 bit out.36 We can say that information-destroying operations
“compress” logical possibilities, much as we speak of compressing a gas. Memory registers entail
an even greater compression of information. Suppose an n-bit memory register—which represents
2n possible states—is reset; after the operation the register, which had 2n possibilities, is now in a
definite state. The reset operation compresses many logical states into one; n bits of information are
destroyed in the resetting process.

36Shannon information is not related to the truth value, or meaning of a statement.
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Landauer’s principle

Landauer’s premise is that to each logical state of a computer there corresponds a physical state
of the computer. Landauer proposed that for information destroyed in logically-irreversible oper-
ations, there is a corresponding reduction in the entropy of the physical degrees of freedom that
carry the information—what are termed the information-bearing degrees of freedom. Basically, as-
sociated with the compression of the phase space spanned by the logical states of the system, is a
compression of the phase space of the physical, information-bearing degrees of freedom. By the
second law of thermodynamics, associated with a decrease in entropy of the information-bearing
degrees of freedom, is a concomitant increase in entropy of the non-information bearing degrees
of freedom of the computer’s hardware.37 This idea has come to be known as Landauer’s princi-
ple. As a consequence, erasing information (clearing a memory register), a logically irreversible
operation, results in entropy being created in the environment. In particular, Landauer argued that
there is a minimal heat kBT ln 2 generated by irreversible single-bit operations—the same number
noted by Szilard as required to save the second law in the operation of the Szilard engine. Given the
smallness of this energy (3× 10−21 J at room temperature), it would be difficult to put this predic-
tion to an experimental test. Quite recently, however, several groups have announced experimental
verification of the Landauer lower bound on the energy dissipated by the erasure of a single bit of
information.[81][82][83]

Whither the demon?

Landauer’s principle is not independent of the second law of thermodynamics, and thus it alone can-
not be used to save the second law from the demon.38 Coupled with another development, however,
the demon can be decisively vanquished. Starting in 1973, Charles Bennett (and others) showed it’s
possible in principle to build computers that operate without energy losses.[84] The “trick” to mak-
ing computation thermodynamically reversible is not to discard information! Unwanted by-products
of the computation process can be eliminated by reversing the program, restoring the machine to its
original state.39

The significance of reversible computing40 is that the demon can acquire information about the
gas, record that information, and sort the molecules in a way that does not dissipate energy. That
alone invalidates Brillouin’s assertion, who, based on one example—information acquisition by
light, concluded that measurements are necessarily dissipative processes. In 1982, Bennett noted41

that the demon cannot violate the second law because it must erase information previously obtained
about the gas.[85] The demon dies an entropic death because it must discard information previously
collected. A way “out” of that conclusion would be to postulate that the demon has an infinite
amount of memory—no need to ever erase. As noted in Section 12.3, we could get out of the
conclusion that fluctuations cause the demon’s demise by letting it have an infinite heat capacity. Is
an infinite amount of memory tantamount to infinite heat capacity? Nothing in this world is infinite,
but it suggests a connection between information storage (or erasure) and the ability to absorb heat.

37Do you see the demon rearing its head? The entropy of information-bearing degrees of freedom is reduced at the expense
of the increase of entropy of the non-information-bearing degrees of freedom.

38We cannot use the second law to prove the second law.
39Bennett’s work spawned a field of research known as reversible computation. The subject is reviewed in Bennett[85], in

Feynman[86], and in Nielsen and Chuang.[87] The history of reversible computation has been recounted by Bennett.[88]
40In addition to its role in vanquishing the demon, the concept of reversible computing using classical degrees of

freedom—a heretofore unstated assumption—paved the way for the concept of a quantum computer.[86][87]
41This point was made earlier by Oliver Penrose (1970), which apparently went unnoticed.[89, p225–226]
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CHAPTER SUMMARY
This chapter introduced the thermodynamics of information, a concept that finds wide use in physics
and astrophysics, as we’ll see in the next chapter. The link between physics and information began
in 1867, with Maxwell’s thought experiment of a creature capable of beating the second law of
thermodynamics. That it took 100 years to finally understand why the demon could not operate as
intended, strengthens our understanding of the second law. And it’s not just an academic exercise.
Thermodynamics, once considered an ancient subject with little to add to modern physics, is quite
viable as a tool in determining the fundamental limits of computing technology and in shaping our
ideas of the universe (Chapter 13).

• Maxwell hypothesized the demon as a way of illustrating the nature of the second law of ther-
modynamics. His point was not to challenge the second law, but to note that because we can’t
follow around the molecules of a gas, our knowledge is limited to its statistical properties.
Maxwell, it seems, was not concerned with whether the demon could actually exist, even in
principle. That didn’t stop others, however, from investigating whether the demon is possible
within the confines of the laws of physics.

• The demon must operate in an isolated system; it must operate inside the system it’s tasked
with lowering the entropy of. The entropy of isolated systems can only increase. If the demon
is to lower the entropy of the gas, its entropy must rise in the process. Smoluchowski, in
1912, noted that if in the operation of the demon its entropy increases, thermal fluctuations
would render it incapable of operating. Computer simulations reported in 1992 confirm that
picture.[65]

• In 1929, Szilard introduced a thought experiment, now known as Szilard’s engine. Szilard’s
engine is designed to convert heat absorbed from a single reservoir entirely into work, what
would be a violation of the second law, if not for the intervention of an observer, whose
entropy must increase as the result of a measurement it makes to effect the operation of the
engine. Because the volume of the engine doubles in the process, it performs work on the
environment, |W | = kBT ln 2. Szilard concluded that the entropy of the observer would
have to increase by at least kB ln 2 to preserve the second law, the same result predicted by
Landauer (1961), and what has recently been measured experimentally. Szilard’s engine is
what Landauer would characterize as logically irreversible, involving the destruction of a bit
of information, an act that must be associated with an increase in entropy.

• The notion of bits of information—a phrase we use routinely today—emerged only after
Shannon’s development of information theory in 1948. Information is a generalization of
entropy. Both represent the potentialities inherent in a system—what we don’t know about a
system, but could.

• In the 1950s, Brillouin, and independently Gabor, noted that the demon, being in an isolated
system, is enveloped by cavity radiation, implying it would be unable to see the molecules of
the gas, and hence would be unable to effect a violation of the second law. In order for the
demon to see the gas, it must be equipped with a light source having a temperature greater
than that of the gas. They showed that under these circumstances, the entropy increase of the
demon exceeds the entropy decrease of the gas. Based on this one example (detecting the
gas with light signals), it was concluded (erroneously) that all acts of measurement increase
the entropy of the demon in a way that prevents it from violating the second law. This work
proved to be something of a red herring. It was shown by Bennett and others starting in the
1970s that it’s possible to build computers that operate reversibly, i.e., without dissipation.
Thus, it’s not true that measurement necessarily entails an entropy increase.
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• Measurement implies memory. A measurement is not a measurement until the result of mea-
surement is recorded. To bring Szilard’s engine back to its starting condition, the memory of
the demon, which had to record which side of a partition the molecule is on, must be erased.
The demon, if it has a finite amount of memory, will suffer an entropic demise because it must
erase its memory registers.

EXERCISES

12.1 The information associated with a coin-tossing experiment is given by the expression

H(p) = pI(p) + (1− p)I(1− p) ,

where p is the probability of a coin showing “heads” and I(p) is the basic information func-
tion. Show that H(p) is maximized for p = 1

2 , irrespective of the specific form of I(p).

12.2 Verify Eq. (12.3) using Eq. (12.5).

12.3 a. Show that in general H(1, 0) = 0 (no information is associated with a certain event) is
contained in the axioms satisfied by H; don’t use Eq. (12.5). Hint: Use Eq. (12.4) with
p1 = 1

2 and p2 = 1
2 = 1

2 +0, i.e., q1 = 1
2 and q2 = 0. Then use the symmetry requirement

that H( 1
2 ,

1
2 , 0) = H(0, 1

2 ,
1
2 ). Also, H(0, 1) = H(1, 0).

b. Show that in general H(p1, · · · , pn, 0) = H(p1, · · · , pn), i.e., including an impossible
event in the list of outcomes does not alter the information contained among a set of
possible events. Hint: Use Eq. (12.4) with pn = q1 > 0, i.e., q2 = 0, and what you’ve just
shown, H(1, 0) = 0.

12.4 Show that Eq. (12.5) implies Eq. (12.6).

12.5 Show for K = 1, and working with base-2 logarithms, that Eq. (12.5) implies H( 1
2 ,

1
2 ) = 1.

Flipping a fair coin therefore conveys 1 bit of information. Argue that flipping N coins (or
one coin N times) implies N bits of information.

12.6 Show that the maximum value of H(p1, · · · , pn), as specified by Eq. (12.5), is given by Eq.
(12.6), i.e., the maximum uncertainty is for all outcomes to be equally likely. Hint: Follow
the derivation in Section 7.3; introduce a Lagrange multiplier to enforce the normalization on
the probability distribution.
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Black hole thermodynamics

I T was discovered in the 1970s that the equations describing black holes can be placed in cor-
respondence with the laws of thermodynamics. At first considered a formality, the connection

between black holes and thermodynamics has proven to be of deep significance, contributing to our
ideas of the universe, and offering insights into a possible quantum theory of gravity—the frontier
of theoretical physics. A modern presentation of thermodynamics should at least touch on this im-
portant development. To start from first principles, however, would require a background in general
relativity and quantum field theory, topics outside the scope of this book. In this chapter we present
the basics of black hole thermodynamics.

13.1 BLACK HOLES AND THERMODYNAMICS
A black hole is a region of spacetime having a gravitational field sufficiently strong that nothing can
escape from it.1 The proper description of such fields requires Einstein’s general theory of relativity,
the theory of gravitation that superseded the Newtonian theory. We can use the Newtonian theory,
however, to quickly obtain the size of a black hole. To escape from the surface of a spherical mass
M of radius R requires a launch speed vesc ≡

√
2GM/R. By setting vesc = c, one has, within the

confines of classical physics, the size of an object R = 2GM/c2 from which not even light can
escape. Remarkably, the same result emerges from general relativity. The solution to Einstein’s field
equation2 exterior to a spherical mass M is the Schwarzschild spacetime separation3

(ds)2 = −
(

1− rS
r

)
(cdt)2 +

(
1− rS

r

)−1
(dr)2 + r2 [(dθ)2 + sin2 θ(dφ)2] , (13.1)

where t is the time, r, θ, φ are spherical coordinates, and the Schwarzschild radius rS ≡ 2GM/c2.

1A basic idea of the theory of relativity is that space and time do not exist independently of each other, but rather are
aspects of a single entity, spacetime. Spacetime as a fixed backdrop for the events of physics is the province of the special
theory of relativity. The general theory of relativity describes how spacetime is affected by the presence of matter-energy-
momentum in that spacetime, and how spacetime affects the motion of particles.

2The Einstein field equationGµν =
(
8πG/c4

)
Tµν is a relation between second-rank tensor fields in four-dimensional

spacetime, where µ, ν = 0, 1, 2, 3, with the value 0 reserved for the time coordinate. Gµν is the spacetime curvature tensor
and Tµν is the energy-momentum tensor that describes the density and flux of energy-momentum in spacetime. The field
equation says that the local curvature of spacetime is determined by the local density of energy-momentum in that spacetime.
Exterior to a well-localized mass, such as a star, the density of matter is presumed sufficiently small that we can approximate
Tµν = 0, leaving us with the vacuum equation Gµν = 0. The curvature tensor is a complicated expression involving
derivatives of the spacetime metric tensor field, gµν , where (ds)2 =

∑3
µ=0

∑3
ν=0 gµνdxµdxν , with x0 ≡ ct. Equation

(13.1) is one of the few exact solutions of the Einstein vacuum equation.
3Equation (13.1) specifies the spacetime separation ds, the “distance” between neighboring points in spacetime. Seman-

tically, what would you call a distance between points in spacetime, when it’s not necessarily spatial, nor is it necessarily a
time interval, it’s both—the word separation is apt. Note from Eq. (13.1) that (ds)2 can be either positive, negative, or zero.
The geometry of spacetime is not Euclidean.

187
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Example. The Schwarzschild radius associated with the mass of the earth is rS ≈ 1 cm, while that
associated with the sun’s mass is ≈ 3 km. A black hole has its mass entirely contained within rS .

We see in Eq. (13.1) that (ds)2 is singular at r = rS (and at r = 0), and thus we expect some-
thing significant is associated with the Schwarzschild radius. The singularity at r = rS is a coordi-
nate singularity: The coordinate system (t, r, θ, φ) breaks down at r = rS , i.e., it fails to provide a
unique coordinate for every point in spacetime. Other coordinate systems have been discovered (e.g,
Kruskal-Szekeres coordinates) such that the expression for (ds)2 is free of a singularity at r = rS .
Even in these coordinate systems, however, the Schwarzschild radius has a physical significance.
For r < rS , the spacetime trajectories (worldlines) of particles and photons all connect with r = 0,
which is a true singularity of the geometry; a particle interior to rS can only fall into r = 0. For that
reason, the surface r = rS is called the event horizon—signals (information) emitted in the interior
of rS cannot reach points exterior to rS . Black holes can be characterized as objects possessing an
event horizon. Particles and radiation can cross the event horizon from the outside, but they can’t
get back out.4 At r = 0, general relativity breaks down; it’s hoped that a quantum theory of gravity
would ameliorate that conclusion.

Are black holes amenable to a thermodynamic description?

Is it obvious that black holes should be subject to thermodynamic descriptions? Thermodynamics
pertains to macroscopic systems in equilibrium. Thus, are black holes macroscopic objects, and are
they in equilibrium, knowing that equilibrium implies equilibrium with an environment?

Are black holes macroscopic objects?

The Schwarzschild solution pertains to a non-rotating mass M . Other solutions of the vacuum
equation are known for objects having angular momentum J and chargeQ. After particles fall into a
black hole, nothing is known about them; their identity is lost. Regardless of how a black hole forms,
such as in the collapse of a star, any details of the collapsing structure are lost; the only quantities
describing black holes5 are M , J , and Q, a result summarized by saying that black holes “have
no hair”—no details, all we can know about a black hole are (M,J,Q). Black holes are thus the
ultimate macroscopic object! It begs the question, however, from the perspective of thermodynamics
of what are the microscopic degrees of freedom of a black hole that are unaccounted for in the
macroscopic description provided by M , J , and Q?

Are black holes in equilibrium?

Are black holes in states of thermodynamic equilibrium?6 That begs the question of how a black
hole interacts with its environment. The classic picture is there is “nothing” exterior to black holes—
anything exterior to the horizon falls in, never to return. Black holes thus resemble black bodies
which absorb radiation without reflection. Black bodies, however, emit photons with a spectral dis-
tribution characteristic of its temperature7 (Planck function). Could the same be true of black holes?
In 1974, Stephen Hawking announced the remarkable discovery that black holes emit particles,8 and

4The event horizon thus “sorts” particles, and in that sense resembles a Maxwell demon.
5The size of a black hole isn’t included in this list, which is determined by M , J , and Q.
6Is a star in equilibrium? Chapter 14 presents non-equilibrium thermodynamics, an extension of thermodynamics to

systems not globally in equilibrium, but, like a star, are such that each small volume of the system can be treated as effectively
homogeneous.

7The temperature of a black body is a given; we didn’t ask in Chapter 5 where its temperature comes from.
8Particles don’t flow black out through the event horizon; rather, at the horizon virtual particle pairs are disrupted, giving

the appearance to an outside observer that particles flow away from the black hole.
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moreover that the spectral distribution of emitted bosons is thermal—that of the Planck function—
characterized by a well defined temperature.[90] Black holes are thus black bodies. Black body
radiation is a quantum phenomenon (Section 5.2); black hole radiation is quantum in origin as well.

Are black holes demons?

Consider lowering a box of atoms into a black hole, past the event horizon. If, per the no-hair
theorem nothing is known to an exterior observer about those atoms, other than they contribute to
M , J , and Q, what becomes of their entropy? Unless black holes can be said to have entropy, the
entropy of the universe visible to an observer would decrease. Is a black hole a Maxwell demon,
with the event horizon being the trap door?9 We’ll see that black holes do indeed have entropy.

13.2 HAWKING RADIATION
Hawking showed that the environment of a black hole (in the sense we use the word in thermody-
namics) is the quantum vacuum in the vicinity of the event horizon. The “vacuum” of quantum field
theory is anything but quiescent. Virtual particle-antiparticle pairs are incessantly being created,
only to annihilate. By the energy-time uncertainty relation of quantum mechanics, ∆E∆t & ~,
energy ∆E = 2mc2 can be “borrowed” to create virtual particles, if in time ∆t ∼ ~/∆E they
annihilate, returning the energy. This picture of vacuum fluctuations is supported experimentally by
the Lamb shift—energy differences between the states of the hydrogen atom that are not accounted
for by the Dirac equation.10 The vacuum, nominally conceived of as nothingness, is crackling with
energy. How to incorporate quantum effects within general relativity is an active field of research.

Example. An electron-positron pair created in a vacuum fluctuation can exist for a time

∆t ∼ ~
2mec2

= 6× 10−22 s ,

where me is the electron mass. In that time, it can travel a distance ≈ 2 × 10−13 m, less than the
Compton wavelength of an electron.

What Hawking showed is that, of the virtual particle pairs created in the vicinity of the event
horizon, one of them can cross the horizon, leaving the other to propagate away from the black hole,
what’s termed Hawking radiation. He found that the spectral distribution of the radiated energy
(from a non-rotating mass M ) is characterized by the temperature

TH ≡
~c3

8πGMkB
= 6× 10−8

(
M�
M

)
K , (13.2)

where M� denotes the solar mass. If a star can be considered an energy conversion device, con-
verting gravitational energy into light at the expense of the nuclear binding energy in the star, a
black hole converts vacuum fluctuations into radiation, at the expense of the mass energy of the
black hole. Antiparticles that cross the event horizon (which are in negative energy states) decrease
the energy (and hence the mass) of the black hole—black holes evaporate (see below), just as stars
eventually consume themselves. Note that we can let ~ → 0 in Eq. (13.2); classically, black holes
have zero temperature. The Hawking temperature is too small to have astrophysical relevance; it’s

9The early history of black hole thermodynamics is recounted in Bekenstein,[91] where he describes throwing entropy
into black holes as “Wheeler’s demon.”

10The Dirac equation governs the relativistic quantum mechanics of spin-1/2 particles; it accounts for the spin of the
electron and the existence of antimatter. Vacuum fluctuations are explained by quantum electrodynamics.
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mere existence however is regarded as the first step in combining general relativity with quantum
effects.

There is no simple way to account for Hawking’s result, which requires dexterity in the methods
of quantum field theory (in curved space no less). However, now that we know black holes radiate
thermally, we can estimate the temperature. The energy of photons emitted from black bodies are
proportional to11 kBTH . Then,

Ephoton ∝ kBTH = hc

λ
∼ hc

rS
=⇒ TH ∼

hc3

GMkB
, (13.3)

where we’ve taken λ = rS because the Schwarzschild radius is the only length in the problem.
Equation (13.3) cannot be expected to agree numerically with Eq. (13.2) (which emerged from a
detailed calculation) because of the assumptions we’ve made, but it gets rights the dependence on
the relevant variables of the problem.

Black hole evaporation

If black holes radiate like black bodies, and because E = Mc2, we can derive the lifetime of black
holes subject to radiative losses. Using Eq. (5.9),

d(Mc2)
dt = −σ

(
4πr2

S

)
T 4
H = − ~c6

15360πG2
1
M2 . (13.4)

Equation (13.4) can be integrated to determine the lifetime τ of a black hole:

τ = 5120π G

~c4
M3

0 , (13.5)

where M0 is the initial mass. If the mass of the black hole is larger than roughly that of the moon,
however, it can’t evaporate because it receives more energy from the cosmic microwave background
than it loses through Hawking radiation (see Exercise 13.4).

13.3 ENTROPY AND MISSING INFORMATION
Absolute temperature and entropy go together—fraternal twins from the same mother: Carnot’s the-
orem.12 Now that we have the temperature TH of a black hole, it’s natural to ask about its entropy.
We could estimate the entropy of a black hole if we knew the number of “things” inside it (see
Exercise 7.16), yet that’s precisely what we don’t know (no-hair theorem). Let’s estimate the num-
ber of “energy units” by dividing the mass energy Mc2 by the approximate energy per degree of
freedom13 kBTH (whatever those degrees of freedom might be):

N ≡ Mc2

kBTH
=⇒ N = 8πGM2

~c
= 2× 1077

(
M

M�

)2
. (13.6)

Accepting this number, a black hole of solar mass would have an entropy Sbh ∼ 1077kB , far larger
than what one would estimate for the sun, S� ∼ 1057kB (Exercise 7.16). The far-larger entropy of
a black hole compared to an ordinary star (of the same mass) is in accord with the no-hair theorem:
We know nothing about a non-rotating black hole other than its mass. There is far more missing

11See Exercise 5.7. The energy of the photon associated with maximum emissivity is E = 4.97kBT ; the average photon
energy (found by dividing the total energy aV T 4 by the average number of photons, Eq. (5.15)) is E = 2.7kBT .

12Absolute temperature is a consequence of Carnot’s theorem—Section 2.4—and entropy emerges from the Clausius
inequality—Section 3.1—itself a consequence of Carnot’s theorem.

13We’re implicitly invoking the equipartition theorem, what’s not been shown in this book.
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information to a black hole, compared to a star, information that’s lost in the formation of a black
hole, which by Landauer’s principle, is associated with an increase in entropy (see Chapter 12).

Because N in Eq. (13.6) scales with M2, it scales with r2
S , and thus N scales with the surface

area of the event horizon. For A ≡ 4πr2
S , N = c3A/(2G~). One would then have that the entropy

of a black hole scales with area,

S ∼ c3kB
G~

A . (13.7)

Equation (13.7) is just a guess, however. It can be made precise using a result established in the
theory of black holes:[92]

d
(
Mc2

)
= κc2

8πGdA+ ΩdJ + ΦdQ , (13.8)

where κ ≡ GM/r2
S is the surface gravity (see Exercise 13.1), Ω is the angular frequency of the event

horizon, and Φ is the electrostatic potential. Equation (13.8) is a statement of energy balance—the
first law of thermodynamics applied to black holes. One can increase the energy of the black hole,
i.e., its mass, by increasing the surface area, by increasing the angular momentum, or by increasing
its charge. As particles fall into the black hole, its mass increases, increasing its area, and lowering
its temperature. The heat capacity of a black hole is therefore negative—the hallmark of an unstable
system (see Exercise 13.5).

From the form of Eq. (13.8), ΩdJ and ΦdQ represent work terms—deformations of the extensi-
ble quantities associated with the system (see Chapter 1) implied by the no-hair theorem (M,J,Q).
That suggests the area term in Eq. (13.8) is the analog of “heat” (d(heat) = dU − dW ), what we
see by rewriting Eq. (13.8) :

κc2

8πGdA = d
(
Mc2

)
− ΩdJ − ΦdQ . (13.9)

Equation (13.9) suggests therefore the correspondence

κc2

8πGdA←→ THdS = ~κ
2πkBc

dS ,

and thus dS =
[
kBc

3/(4~G)
]

dA, which can be integrated

S = kBc
3

4~G A . (13.10)

If we did not know of the existence of TH , we would not have been able to arrive at Eq. (13.10).
Equation (13.10) differs from Eq. (13.7) by a factor of four, lending credence to the approach taken
in motivating Eq. (13.6).

Note that S scales with A, and not with volume as we would expect. In fact, S scales with the
square of the total mass M , and not simply the mass. Equation (13.10) is equivalent to

S

kB
= 4πG

~c
M2 = 1.05× 1077

(
M

M�

)2
. (13.11)

Black holes therefore behave differently in their scaling properties from ordinary thermodynamic
systems. Entropy, in standard formulations of thermodynamics, is an extensive quantity (see Eq.
(3.28)), where S scales with the size of the system. The “size” of a black hole is thus its area, not its
volume, as one might expect if the black hole is the event horizon. That observation gives a big hint
of where the microscopic degrees of freedom of a black hole are located. Our interpretation of heat
is energy transferred to microscopic degrees of freedom, and we’ve associated the increase of area in
Eq. (13.8) with heat transfers. Are the degrees of freedom associated with a black hole located on its
surface? That possibility has led researchers to propose the universe is holographic, that information
seemingly lost in black holes is encoded in their surfaces, just as a three-dimensional image can be
constructed from information in a two-dimensional piece of film (the hologram).[93]
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Statistical mechanics of black holes?

That there is such a good “fit” between black hole physics and thermodynamics is perhaps sur-
prising, yet it shows—through the existence of the Hawking temperature—that quantum mechanics
is required to understand black holes. As we’ve noted elsewhere in this book, the consistency of
thermodynamics relies on the underlying quantum nature of the physical world. And surely black
holes have more to teach us about quantum mechanics. A step in that direction would be to take the
connection with entropy to the next level: Given that entropy is the bridge between microscopic and
macroscopic, what are the degrees of freedom of a black hole that the entropy is a measure of?14

That is, if S = kB lnW , what degrees of freedom can we “count” as comprising W ? In Chapter 7
we found that Planck’s constant allowed the states of a gas to be countable. Is there a new “Planck’s
constant” waiting to be discovered? Perhaps 4~G/c3 ∼ 10−69 m2 is a fundamental unit of area?
We learned in Chapter 12 that maximum information is proportional to the logarithm of the number
N of possibilities available to a system. Consistency would require that N ∼ exp(c3A/4~G).

13.4 LAWS OF BLACK HOLE THERMODYNAMICS

Area theorem

If entropy as given by Eq. (13.10) is to be interpreted as the physical entropy of a black hole, it
should behave as we expect from the second law of thermodynamics. In 1971, Hawking proved an
important result, known as the area theorem, which states that the area A of a classical black hole
can never decrease in any process:[95]

∆A ≥ 0 . (13.12)

As noted by Jacob Bekenstein,[96] the area theorem of black holes is closely analogous to the
behavior of entropy, that both tend to increase irreversibly:

∆S ≥ 0 . (13.13)

The connection suggested by the similarity between Eqs. (13.13) and (13.12) cannot be substanti-
ated unless we know of the Hawking temperature. Black hole evaporation is not in conflict with the
area theorem—a proviso of the theorem is that it holds for positive energies; antimatter—the driver
of Hawking radiation—is in a negative energy state.

Laws of black holes

Two of the four laws of thermodynamics are reflected in the laws of black hole physics, Eqs. (13.8)
and (13.12). What about the others? The zeroth law of black hole thermodynamics (proven in [92])
is that surface gravity is a constant at all points of the event horizon (TH ∝ κ, Exercise 13.1).
That’s in accord with the zeroth law of thermodynamics (Section 1.5) that what systems in mutual
equilibrium have in common is temperature. For a black hole all points of the event horizon have the
same temperature (surface gravity). Can we interpret (based on the zeroth law of thermodynamics)
that the surface of a black hole is a network of “systems” each occupying a certain area of the
surface? The third law of black hole thermodynamics is that it is impossible by any process to
reduce κ to zero.15 These relations are summarized in Table 13.1.

14Considerable effort has been devoted to that question. See Susskind for a popular discussion.[94]
15The third law of black hole thermodynamics has a different status from the other three; see Wald.[97] The third law of

thermodynamics similarly has a different status from the others—see Chapter 8.
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Table 13.1 Laws of black holes and thermodynamics
Law Black holes Thermodynamics

Zeroth Surface gravity κ is constant and Temperature characterizes systems
Hawking temperature TH ∝ κ in equilibrium

First d(Mc2) = πc2

8πGdA + “work terms” dU = TdS + “work terms”

Second dA ≥ 0 dS ≥ 0 for an isolated system
and S ∝ A

Third κ = 0 cannot be reached T = 0 cannot be reached

13.5 IS GRAVITY THERMODYNAMICS?
Black holes are a prediction of general relativity, a discipline seemingly far removed from thermo-
dynamics. In 1995, Ted Jacobson asked:[98] “How did classical general relativity know that the
horizon area would turn out to be a form of entropy, and that surface gravity is a temperature?”
His answer is surprising. He proved that Einstein’s field equation can be derived from thermody-
namics, taking the primacy of dQ = TdS and the proportionality between entropy and the horizon
area as fundamental.[98] The field equation can then be seen as an equation of state for spacetime.
Space does not permit us to explore this intriguing idea, which requires a deep knowledge of gen-
eral relativity. Gravity has long been recognized as unlike the other forces of nature—gravity is a
property of spacetime. Whereas the fundamental fields of physics are defined on spacetime, gravity
is spacetime. Jacobson showed that gravity as a manifestation of curved spacetime is required by
thermodynamics. In his work, dQ is the flux of an energy quantity across a horizon.16 He assumed a
proportionality between entropy and horizon area not because it holds for black holes according to
Bekenstein and Hawking, but because the entanglement of quantum fluctuations across the horizon
should lead to an entropy proportional to area. Such an entropy is dominated by the shortest wave-
length modes of fluctuations. Without a way to cut off short-wavelength degrees of freedom, the
entropy would be infinite. The assumption that microphysics regulates this divergence and makes
entropy finite is what requires gravity. Gravity is a manifestation of the thermodynamics of the
vacuum.

Such considerations prompt the question: Is spacetime itself a manifestation of thermody-
namics? In 2011, Erik Verlinde put forward the idea that spacetime is an emergent phenomenon,
which arises from entropic tendencies of truly microscopic degrees of freedom, such as exhibited
in string theories.[99] Verlinde’s proposal is speculative, but potentially has far-reaching conse-
quences. Whether Verlinde’s idea linking gravity to an entropic force acting on microscopic degrees
of freedom will pan out ultimately is a matter of experiment to decide.

CHAPTER SUMMARY
This chapter provided a brief overview of the relationship between black holes and thermodynamics
discovered in the 1970s, and which has continued as an active field of research ever since.

• Black holes are macroscopic objects described by mass, angular momentum, and charge. The
connection with thermodynamics is made possible by: 1) the area theorem, Eq. (13.12), that
the area of a black hole cannot decrease in any process, suggesting an analogy with entropy;
and 2) the existence of the Hawking temperature TH , Eq. (13.2), that black holes radiate like

16The boost Killing energy.
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a black body at temperature TH . The entropy of a black hole is simply related to its surface
area, Eq. (13.10); S is proportional to A.

• Black hole entropies are far larger than the entropy of stars of the same mass. Black holes
exemplify the missing information paradigm developed in Chapter 12; what we know about
structures that form black holes is lost in the process, and loss of information is associated
with increases in entropy.

EXERCISES
13.1 a. Show that the Hawking temperature can be written

TH = ~c
4πkBrS

.

b. A useful concept is the surface gravity, denoted κ, the acceleration at the event horizon,

κ ≡ GM

r2
S

= c4

4GM = c2

2rS
.

Show that the Hawking temperature is proportional to the surface gravity

TH = ~
2πkBc

κ .

Thus, large black holes emit less radiation than small black holes.

13.2 a. Fill in the details leading to Eq. (13.4), and then derive Eq. (13.5). Show that the lifetime
can be written

τ = 2× 1067
(
M0

M�

)3
yr . (P13.1)

The Hawking temperature is so small: Loss of mass-energy by black body radiation can
take a long time. The lifetime of a solar-mass black hole would exceed the age of the
universe.

b. What is the initial mass of a black hole, assumed to have been formed at the time of the
big bang (14 billion years ago), that would just be finished with evaporation today? The
mass of a mountain here on Earth, perhaps?

13.3 Put in the numbers in Eq. (13.6) to verify the relation shown.

13.4 a. Show that

rS = 2.95
(
M

M�

)
km .

b. What is the size (mass and radius) of a black hole with Hawking temperature equal to
the temperature of the cosmic microwave background, 2.7 K? Compare the mass you
calculate with the mass of the moon. Black holes larger than this size receive more energy
from the microwave background than they lose through Hawking radiation.

13.5 a. Show from Eq. (13.9) that the entropy of the black hole can be written

S = ~c5

16πGkB
1
T 2
H

.

b. Show that S ∝ T−2 implies a negative heat capacity. Black holes are not in stable equi-
librium.

13.6 Show that the wavelength of a photon associated with energy kBTH is λ = 8π2rS .
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Non-equilibrium
thermodynamics

N ON-EQUILIBRIUM thermodynamics is an extension of thermodynamics whereby state vari-
ables become field quantities, functions of spatial coordinates and the time. In classical ther-

modynamics, equilibrium is independent of time and space, with variables like temperature having
the same value throughout a system.1 Homogeneous, time-invariant states are possible only when
the system is sufficiently isolated from the environment. We now relax these assumptions and allow
T and other variables to vary smoothly in space and time, T (r, t). Non-equilibrium thermodynamics
describes systems not strictly in equilibrium, but slightly out of equilibrium such that temperature
and other variables are locally well defined, yet vary spatially and temporally. Such variations occur
in systems that permit flows of heat, electricity, or particles across its boundaries. If flows occur at a
steady rate, the system at any point will reach a steady condition—a time-invariant, inhomogeneous
system. Non-equilibrium thermodynamics is more comprehensive than thermodynamics; equilib-
rium is a limiting case of a stationary state where fluxes from the environment approach zero.2 This
chapter is a brief introduction to non-equilibrium thermodynamics.

To set up the theory, its basic equations should be local, i.e., refer only to the values of quan-
tities at a single point in space and time, such as we find in Maxwell’s equations or the equations
of hydrodynamics.3 That implies establishing partial differential equations for the space and time
variations of its variables. We’ll be guided by the use of balance equations, integral equations which
account for the change, in time, in the amount of a quantity in a region of space. The equations of
hydrodynamics follow from balance equations for mass, energy, and momentum, as we’ll show.
We’ll establish a balance equation for entropy, where changes in entropy are controlled by the flow
of mass, energy and momentum, and by the generation of entropy by irreversible processes. One
of the goals of non-equilibrium thermodynamics is to identify the role of inhomogeneities in con-
tributing to entropy creation.

1From the zeroth law, the temperature of an equilibrium system must be spatially uniform; we can conceive a system to
be composed of subsystems such as depicted in Fig. 3.5, which all must have the same temperature.

2Contrast this characterization of equilibrium with the statement in Chapter 1 that equilibrium is the state where “nothing
is happening” macroscopically.

3One could have non-local equations, where the local response is due to forces imposed at distant locations, such as
in time-domain electrodynamics where the most general, linear response of the current density J(r, t) to the electric field
E(r′, t′) is given by J(r, t) =

∫
d3r′

∫
dt′σ(r, r′, t, t′)E(r′, t′). One could also envision non-linear extensions of

thermodynamics, such as in the field of non-linear optics.
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14.1 NON-EQUILIBRIUM PROCESSES
Basic flow processes are described by phenomenological equations expressing a proportionality
between fluxes and gradients. Familiar examples are Fourier’s law, a proportionality between heat
flux JQ (units of W m−2) and a temperature gradient, JQ = −κ∇T , where κ is the thermal
conductivity (W K−1 m−1); Fick’s law, between a particle flux Jn (m−2 s−1) and a concentration
gradient, Jn = −D∇n, where D is the diffusion coefficient (m2 s−1), and n is the particle density,
number of particles per volume; Ohm’s law, between the electric current density Jq (A m−2) and
the gradient of the electrostatic potential, φ, Jq = −σ∇φ, where σ is the electrical conductivity
(S m−1); and Newton’s law of viscosity, that the shear stress Txy (Pa) between adjacent layers in a
fluid is proportional to a gradient of the velocity field, Txy = −ν∂vx/∂y, where ν is the viscosity
(Pa s). These relations are summarized in Table 14.1.

Table 14.1 Gradient-driven fluxes
Flux Gradient Phenomonelogical relation Name

Heat, JQ ∇T JQ = −κ∇T Fourier’s law

Particle, Jn ∇n Jn = −D∇n Fick’s law

Charge, Jq ∇φ Jq = −σ∇φ Ohm’s law

(Momentum)x through y
∂px
∂y

Txy = −ν ∂vx
∂y

Newton’s law

More complex phenomena arise when two or more of these basic effects are present simul-
taneously. In thermoelectricity, electrical conduction and heat conduction occur together. When a
temperature gradient is set up, not only does heat flow but an electric field is created. The strength
of the field is proportional to the temperature gradient, E = P∇T , where P (V K−1) is called
the thermoelectric power or simply the thermopower of the material.4 Charges flow from hotter to
colder regions of a material, i.e., against ∇T . Because the system is electrically neutral, a region
depleted of carriers sets up an electric field to oppose the motion of charge. For negative charge
carriers,E is directed against∇T , and P < 0. The voltage difference ∆V between two points held
at a temperature difference ∆T is ∆V =

∫ T2
T1
P (T )dT . This relation is called the Seebeck effect,

and is written ∆V = P∆T for small temperature differences. In this form, P = ∆V/∆T is called
the Seebeck coefficient. The thermopower of a single material is difficult to measure. However, the
difference in thermopower of two materials is easy to measure. The voltage difference generated
by junctions of materials (A,B), held at a temperature difference ∆T , is written ∆V = PAB∆T .
Charges carry energy as well as current in response to temperature differences. Charges arriving
from a region of higher temperature carry with them “excess” energy relative to the environment
at the colder location. The rate of energy deposition, Q̇ = ΠI , is proportional to the current I for
small currents (the Peltier effect), where Π is the Peltier coefficient (V). The Peltier effect is said
to be conjugate to the Seebeck effect in a way we’ll describe shortly. For a junction, Q̇ = ΠABI .
The two effects (Seebeck and Peltier) describe the same process: In the Seebeck effect, charges in
motion (because of ∆T ) create a voltage difference ∆V ; in the Peltier effect, charges in motion
(because of ∆V ) create heat generation. From the Peltier equation, ∆Q = ΠABI∆t = ΠAB∆q,
where ∆q is the charge delivered by the current in time ∆t. But from the heat capacity of the junc-
tion, ∆Q = C∆T . The temperature change is then given by ∆T = ΠAB∆q/C. From the Seebeck

4The thermopower and the Seebeck coefficient are often denoted with the symbol S. To avoid confusion with entropy,
we’ve used the symbol P .
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effect, ∆T = ∆V/PAB . Equating the two expressions for ∆T ,

ΠAB∆q
C

= ∆V
PAB

.

Now, ∆q and ∆V are related by the capacitance of the junction, ∆q = CAB∆V . The Peltier and
Seebeck coefficients are thus not independent and are related by

ΠABPAB = C

CAB
. (14.1)

It is in this sense that the Peltier and Seebeck effects are referred to as conjugate; they’re different
descriptions of the same physics. Another example of a conjugate pair of non-equilibrium effects
is the coupling of diffusion and heat conduction. In the Soret effect a concentration gradient is
established as a result of a temperature gradient. In the conjugate effect, known as the Dufour effect,
a temperature difference arises from a concentration gradient.

14.2 ONSAGER THEORY
Gradients in temperature, concentration, electric potential, etc., are generically referred to as ther-
modynamic forces and are traditionally denoted5 Xi, i = 1, · · · , n. Such “forces” have nothing
to do with Newtonian forces; in this context forces are the phenomenological causes behind non-
equilibrium effects. Relations between fluxes and forces (such as in Table 14.1) are phenomeno-
logical in the sense of being verified by experiment, but are not part of a comprehensive theory of
irreversible processes.

Lars Onsager developed, in 1931,[100][101] a method for treating non-equilibrium processes
based on the rate of entropy production.6 Onsager assumed generally that any flux can result from
any force, and he took as a starting point the assumption that

Ji =
n∑
k=1

LikXk , (14.2)

where the quantities Lik are phenomenological coefficients. The diagonal terms Lii are related to
the basic transport coefficients (thermal conductivity, diffusion coefficient, etc.). The off-diagonal
terms Lik, k 6= i, are connected to the “interference” phenomena discussed above between, for
example, heat conduction and electrical conduction. Onsager proved, provided a proper choice is
made for the forces and fluxes, that the “cross terms” have a fundamental symmetry

Lik = Lki . (14.3)

These identities are known as the reciprocal relations. We explain below what’s meant by a “proper
choice” of forces and fluxes. A proof of Eq. (14.3) requires the methods of statistical mechanics.
At the level of macroscopic theory, the reciprocal relations can be seen as another law of thermody-
namics, whose justification is the same as the second law of thermodynamics: through experience.
The consequences of the reciprocal relations have been experimentally verified.[102] What the re-
ciprocal relations indicate is a kind of Newton’s third law, that if flow Ji is influenced by forceXk,
then flow Jk is influenced by forceXi with the same coefficients Lik = Lki.

Let state variables be denoted7 xi, so that S = S(x1, · · · , xn), with the equilibrium values
denoted x0

i . Define the fluctuation in each variable8 by ∆xi ≡ xi − x0
i . Because entropy is a

5In Section 1.9, Xi was used to denote extensive quantities, with dXi called generalized displacements and intensive
quantities Yi generalized forces, such that YidXi has the dimension of energy. You can handle the change in notation.

6Onsager received the 1968 Nobel Prize in Chemistry for this work.
7Change of notation again—you can handle it. Denote thermodynamic variables as xi, fluxes as Xi. S is entropy here.
8The notational scheme implies that the theory applies to systems slightly out of equilibrium; we speak of the non-

equilibrium values of variables which strictly are defined only in equilibrium.
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maximum in equilibrium, fluctuations in S are such that (see Section 3.10)

∆S = −1
2
∑
jk

gjk∆xj∆xk , (14.4)

where ∆S ≡ S − S0, and the “metric” gjk is symmetric and positive definite,

gjk ≡
(

∂2S

∂xj∂xk

)0

.

In Onsager’s theory, fluxes are provisionally defined as the time rate of change of fluctuations,

Ji ≡
d
dt (∆xi) , (14.5)

and we’ll explain what’s meant by provisional, and forces are defined provisionally as

Xi ≡
∂ (∆S)
∂ (∆xi)

= −
∑
j

gij∆xj . (14.6)

Together, these definitions imply a time rate of change9 of S,∑
k

JkXk ⇒
dS
dt ≡

∫
V

σdV , (14.7)

where σ is a local rate of entropy production per volume. There’s a bit of legerdemain here.10 Fluxes
as defined by Eq. (14.5) are not in the form one expects—local rates of flow per area (the kind of
quantities listed in Table 14.1), and forces as defined by Eq. (14.6) are not in the form of spatial
gradients. Instead, Eqs. (14.5) and (14.6) refer to thermodynamic fluctuations, which in this theory
are independent of position. The “bridge” between global thermodynamic quantities and a local
property of the system occurs on the right side of Eq. (14.7) with the introduction of the quantity
σ, the local rate of entropy production per volume. If one considers a vector of flux quantities
J = (J1, J2, · · · ) and a vector of forces X = (X1, X2, · · · ), the left side of Eq. (14.7) is in the
form of an inner product, J ·X , and inner products are invariant under suitable transformations.
That permits latitude in defining forces and fluxes as long as J · X is maintained.11 For fluxes
conventionally defined as the rate at which a quantity ψ flows per surface area, and forces as related
to spatial gradients, we have through dimensional analysis (square brackets denote dimension, T
denotes time and L length)

[Jψ ×Xψ] =
[
ψ

TL2 ×∇
(
∂S

∂ψ

)]
=
[
S

TL3

]
,

the same dimension as σ. For Onsager’s theory to work, an expression for σ must be found that
occurs in the form σ =

∑
i Ji ·Xi where the product Ji ·Xi is a density (per volume quantity).

Finding σ requires a detour through fluid mechanics, as shown in the next section. The reader
uninterested in the details should skip to Eq. (14.45).

9Equation (14.7) does not emerge from an underlying dynamical theory; it’s a way of specifying the rate at which entropy
is produced by irreversible processes. Equation (14.7) follows by differentiating Eq. (14.4) with respect to time, using Eqs.
(14.5) and (14.6) and the symmetry of gjk .

10As there must be in going from a global theory (thermodynamics) to a local theory (non-equilibrium thermodynamics).
11In analytic mechanics one has the flexibility to choose generalized coordinates qi and momenta pi in such a way that

[pi]× [qi] = [energy].
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14.3 ENTROPY BALANCE EQUATION
The goal of this section is to derive the balance equation for entropy—a lengthy calculation—
which provides for the rate of entropy production per volume, σS . To start, express thermodynamic
variables as specific, per mass, quantities. Write S = sM , U = uM , V = vM , where M is the
total mass of all the chemical components of the system; s, u, v are the entropy, internal energy, and
volume per mass. For multicomponent systems, we need to specify particle numbers on a per-mass
basis. The total mass of chemical species k, Mk, has Nk = Mk/mk particles, where mk is the
molecular mass of species k. We can then write µkdNk = (µk/mk) dMk ≡ µ̃kdMk, where µ̃k
is the chemical potential per molecular mass. The first law of thermodynamics can then be written
(divide Eq. (3.16) by M )

du = Tds− Pdv +
n∑
k=1

µ̃kdck , (14.8)

where there are n chemical species, each with a mass fraction ck = Mk/M (
∑n
k=1 ck = 1). From

Eq. (14.8), we have an “equation of motion” for entropy: (divide Eq. (14.8) by dt)

T
ds
dt ≡

du
dt + P

dv
dt −

n∑
k=1

µ̃k
dck
dt . (14.9)

Thus, we’re defining the time variation of entropy to be that effected by the time variations of energy,
volume, and mass fractions, connected through the first law of thermodynamics. In the rest of this
section, we’ll find equations of motion for u, v, and ck (based on their balance equations), which
will then be combined in Eq. (14.9).

Balance equations

Balance equations (for any quantity ψ) have the form

d
dt

∫
V

ρψdV = −
∮
S

Jψ · dS +
∫
V

σψdV . (14.10)

Here V is a volume bounded by surface S having outward-pointing surface element dS, ρψ is the
density of ψ ([ψ] m−3), Jψ is the flux of ψ through S ([ψ] m−2 s−1), and σψ is a source term
representing the rate per volume at which ψ is created or destroyed in V , ([ψ] m−3 s−1). Equation
(14.10) specifies that the rate of change of the amount of ψ in V is accounted for by flows through S,
and by the net rate of creation of ψ in V by means other than flow; there are no other possibilities.12

Note that balance equations do not presume the system to be in thermal equilibrium. When the
transport of ψ is carried by a fluid, Jψ = ρψv, where v is the fluid velocity.13 By applying the
divergence theorem to Eq. (14.10), we arrive at the local form of a balance equation,

∂ρψ
∂t

+∇ · Jψ = σψ . (14.11)

If σψ = 0, ψ is conserved; in that case the only way ψ in V can change is to flow through S.

12An example of a source term occurs in semiconductor physics, where additional charge carriers are generated by the
interaction of electromagnetic radiation with the semiconductor.

13For example, the magnitude of the Poynting vector S, the flux of electromagnetic energy, is given by S = uc with u is
the density of electromagnetic energy and c the speed of light (see Section 5.2).
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Mass balance

The balance equation for the mass of chemical species k in volume V is

d
dt

∫
V

ρkdV = −
∮
S

ρkvk · dS +
r∑
j=1

∫
V

νkjJjdV , (14.12)

where ρk = Mk/V is the mass density of species k, vk is its velocity, and νkjJj is a source term,
the rate at which the mass of species k is produced per volume from the jth chemical reaction. The
quantity νkj (which can be positive or negative) is the density-weighted stoichiometric coefficient,
not what we introduced in Section 6.4: νkj/ρk = ν0

kj , the usual stoichiometric coefficient with
which k appears in chemical reaction j. The quantity Jj is the rate at which reaction j occurs.
Because mass is conserved in each reaction,14

n∑
k=1

νkj = 0 . (j = 1, · · · , r) (14.13)

We thus have, for each species, the local mass balance equation

∂ρk
∂t

+∇ · ρkvk =
r∑
j=1

νkjJj . (k = 1, · · · , n) (14.14)

Summing Eq. (14.14) over k and making use of Eq. (14.13), we have the continuity equation, which
expresses total mass conservation:

∂ρ

∂t
+∇ · ρv = 0 , (14.15)

where ρ ≡
∑
k ρk is the total density, and v ≡

∑
k ρkvk/ρ is the velocity of the center of mass.

The formulas of fluid mechanics often simplify if we write the total time-derivative operator
(nominally d/dt), as the convective derivative:15

Dw

Dt ≡
∂

∂t
+w · ∇ . (14.16)

In the “lab frame,” a vector field A(r, t) changes in time and space. For small dt and dr, A(r +
dr, t+ dt) ≈ A(r, t) + dt (∂A/∂t) + (dr · ∇)A; dividing by dt and taking the limit dt→ 0, we
have the total time derivative DwA/Dt = ∂A/∂t+ (w · ∇)A, where w ≡ dr/dt. In a reference
frame in which the fluid is at rest, D/Dt → ∂/∂t; the convective derivative measures the time rate
of change of quantities that are convected by the fluid.16 In terms of the convective derivative, the
continuity equation is expressed (from Eq. (14.15))

Dv

Dt ρ = −ρ∇ · v . (14.17)

If the density changes in time, the fluid is being compressed or expanded as it flows. If the fluid is
incompressible, Dvρ/Dt = 0, implying∇ · v = 0.

The diffusion flow of species k is defined as the mass flux relative to the center of mass velocity,

Jd
k ≡ ρk (vk − v) . (14.18)

14Changes in mass due to energies released in chemical reactions (E = mc2) are negligibly small.
15The convective derivative has many other names, e.g., the material derivative or the substantial derivative.
16In the lab frame, the convective derivative Dw is the directional derivative in the direction of w.
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Note that
∑
k J

d
k = 0, the total mass flux in the center of mass frame is zero. It can be shown that

Dv

Dt ρk = −∇ · Jd
k − ρk∇ · v +

r∑
j=1

νkjJj , (k = 1, · · · , n) (14.19)

Summing Eq. (14.19) over k results in Eq. (14.17). Equation (14.19) simplifies if we use the mass
fraction ρk = ρck:

ρ
Dv

Dt ck = −∇ · Jd
k +

r∑
j=1

νkjJj . (k = 1, · · · , n) (14.20)

Equation (14.20) is one of the terms we require in Eq. (14.9).
The volume term in Eq. (14.9) is easy. Because ρ = M/V , v = V/M = 1/ρ. Hence,

Dv

Dt

(
1
ρ

)
= − 1

ρ2
Dvρ

Dt = 1
ρ
∇ · v , (14.21)

where we’ve used Eq. (14.17). We now have two of the components of Eq. (14.9).

Momentum balance

To obtain an energy balance equation (required in Eq. (14.9)), we must start with an accounting of
momentum: The time rate of change of momentum is a force, and from a force we can obtain the
mechanical energy by the work done by forces.

The balance equation for the total momentum in volume V is∫
V

∂ρv

∂t
dV = −

∮
S

ρvv · dS +
∮
S

T · dS +
n∑
k=1

∫
V

ρkFkdV . (14.22)

The first integral on the right of Eq. (14.22) represents the net flux of momentum through the surface.
The second involves the stress tensor T, which keeps track of the short-range internal forces per area
acting on the surface. In the third integral, Fk is an external force (per mass) that couples to species
k, a source term for creating momentum (Newton’s second law). Equation (14.22) written in terms
of vector components is:∫

V

∂ρvi
∂t

dV = −
∮
S

ρviv · dS +
3∑
j=1

∮
S

TijdSj +
n∑
k=1

∫
V

ρkFk,idV .

The first integral on the right gives the transport of the ith component of the momentum density, ρvi,
through S. The tensor element Tij is the ith component of the force acting on the jth component
of the surface area, Tij = Fi/(∆Sj). The form of the stress tensor is determined by the nature of
the short-range forces acting at the surface.17 The normal component of the surface force per area is
provided by the pressure, P . The components of the stress tensor associated with normal forces are
simple: Tij = −Pδij . This type of stress tensor ignores internal friction due to viscosity. To include
viscous effects, the elements of the stress tensor are modified, with Tij = −Pδij + Πij , where Πij

is an element of the viscous stress tensor,18 Π.
We then have the local equation of momentum balance from Eq. (14.22)

∂

∂t
(ρv) +∇ · (ρvv) =

n∑
k=1

ρkFk +∇ ·T , (14.23)

17The stress tensor is symmetric in its indices, Tij = Tji, to conserve angular momentum.
18Explicit expressions for the components of the viscous stress tensor are given in books on fluid mechanics, e.g., Landau

and Lifshitz.[103] The momentum convection term ρvv is often included in the definition of the stress tensor.
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where the divergence of a second-rank tensor is a vector,

[∇ · T]i ≡
∑
j

∂

∂xj
Tij ,

and where we are using dyadic notation with (vv)ij ≡ vivj . The ρvv term in Eq. (14.23) represents
the convection of momentum out of the volume due to the macroscopic motion of the fluid. The term
∇ · T represents the creation of momentum density through internal forces (the divergence of the
stress tensor is a force density). It can be shown that Eq. (14.23) is equivalent to:

ρ
Dv

Dt v =
n∑
k=1

ρkFk +∇ ·T . (14.24)

Equation (14.24) is the force equation, Newton’s second law for fluids. If we ignore viscous forces
(Π= 0), Eq. (14.24) becomes the Euler equation. If we retain viscous forces, and treat the fluid as
incompressible (∇ · v = 0), Eq. (14.24) would become the Navier-Stokes equation.

Energy balance

To derive the local balance equation for energy, we develop separately balance equations for kinetic
and potential energies.

Kinetic energy

First we make use of the result, readily shown, that

ρ
Dv

Dt v
2 = ∂

∂t
(ρv2) +∇ ·

(
ρv2v

)
. (14.25)

Using the fact that Dvv
2/Dt = 2v · Dvv/Dt, we find, by taking the inner product of v with Eq.

(14.24), and comparing with Eq. (14.25):

1
2
∂

∂t

(
ρv2)+ 1

2∇ ·
(
ρv2v

)
=

n∑
k=1

ρkFk · v + v · [∇ ·T] . (14.26)

Here

v · [∇ ·T] ≡
3∑

ij=1
vi
∂Tij
∂xj

=
3∑

ij=1

∂

∂xj
(viTij)−

3∑
ij=1

Tij
∂vi
∂xj
≡∇ · [v ·T]−T :∇v .

Both of these terms are scalars. Combining with Eq. (14.26), we have the work-energy theorem for
fluids:

∂

∂t

( 1
2ρv

2) = −∇ ·
( 1

2ρv
2v − v ·T

)
+

n∑
k=1

ρkFk · v −T :∇v . (14.27)

The 1
2ρv

2v term represents the convection of kinetic energy; the v ·T term represents a conduction
of kinetic energy, a transfer of kinetic energy through internal forces. The sources of kinetic energy
involve power, the work done per unit time by the external forces (

∑
k ρkFk ·v) and by the internal

forces through the compression represented by T :∇v.
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Potential energy

Assume that Fk is derivable from a potential function, ψk, with Fk = −∇ψk, so that ρkψk is an
energy density. Assume further that the ψk are time-independent, ∂ψk/∂t = 0. The total potential
energy density ρψ is given by

ρψ ≡
n∑
k=1

ρkψk . (14.28)

Thus,

∂

∂t
(ρψ) =

n∑
k=1

ψk
∂ρk
∂t

=
n∑
k=1

ψk

−∇ · (ρkvk) +
r∑
j=1

νkjJj

 , (14.29)

where we’ve used Eq. (14.14). If potential energy is conserved in chemical reactions, then∑n
k=1 ψkνkj = 0, j = 1, · · · , r. The last term in Eq. (14.29) is zero for most systems. Noting

that∇ · (ψkρkvk) = ψk∇ · (ρkvk) + ρkvk · ∇ψk, and Fk = −∇ψk, Eq. (14.29) can be written

∂

∂t
(ρψ) = −∇ ·

(
n∑
k=1

ψkρkvk

)
−

n∑
k=1

Jd
k · Fk − v ·

n∑
k=1

ρkFk . (14.30)

Potential energy is lost by the work done per unit time by the diffusive term,
∑
k J

d
k · Fk, which is

transferred into the internal energy of the system. The other term represents a conversion of potential
into kinetic energy—there’s an analogous term in Eq. (14.27) that it will cancel.

Total energy

Adding Eqs. (14.27) and (14.30), we have a local equation for the mechanical energy

∂

∂t

( 1
2ρv

2 + ρψ
)

=−∇ ·
[

1
2ρv

2v +
n∑
k=1

ψkρkvk − v ·T
]
−

n∑
k=1

Jd
k · Fk −T :∇v

≡−∇ · Jmech + σmech , (14.31)

where the flux of mechanical energy and the source term are given by

Jmech = 1
2ρv

2v +
n∑
k=1

ψkρkvk − v ·T

σmech = −
n∑
k=1

Jd
k · Fk −T :∇v . (14.32)

Mechanical energy 1
2ρv

2 + ρψ is not conserved because σmech 6= 0. To achieve energy conser-
vation, we must include the “other” potential energy, the internal energy of thermodynamics,19 ρu
(an energy density). To that end, define the total energy density ρe as the sum of the mechanical and
internal energy densities,

ρe ≡ ρ
( 1

2v
2 + ψ + u

)
. (14.33)

We “want” the total energy to be conserved, i.e., ρe should satisfy a continuity equation

∂ρe

∂t
+∇ · JE = 0 , (14.34)

19See discussion on page 9 where we noted that the internal energy pertains to mechanically non-conservative systems.
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where JE is the total energy flux vector, to be determined. Because mechanical energy is not con-
served, neither is the internal energy, but in such a way that the sum of mechanical and internal
energy is conserved. Thus there will be a balance equation for internal energy:

∂ρu

∂t
+∇ · JU = σU , (14.35)

where JU is the internal energy flux vector and σU is the source term. Combining these definitions:

∂ρe

∂t
+∇ · JE =∂ρu

∂t
+ ∂

∂t
ρ
( 1

2v
2 + ψ

)
+∇ · JE

=σU −∇ · JU −∇ · Jmech + σmech +∇ · JE
= (σU + σmech) +∇ · (JE − Jmech − JU ) . (14.36)

We’ve introduced three symbols, JE , JU , and σU , which at this point are unknown. We can
guarantee that Eq. (14.34) is satisfied by choosing:

σU =− σmech

JE =Jmech + JU . (14.37)

That leaves JU undetermined. There should be a convection term in JU . Thus, we take

JU ≡ ρuv + JQ , (14.38)

which passes the buck to JQ, the unknown heat flux vector.20 Combining Eqs. (14.38), (14.34),
(14.37), and (14.32)

∂(ρu)
∂t

+∇ · (ρuv + JQ) =
n∑
k=1

Jd
k · Fk + T :∇v . (14.39)

Equation (14.39) defines JQ. It can be shown that Eq. (14.39) simplifies:

ρ
Dv

Dt u+∇ · JQ =
n∑
k=1

Jd
k · Fk + T :∇v . (14.40)

At this point, we use the stress tensor in the form T = −P I + Π in Eq. (14.40), where I is the unit
tensor (see discussion on page 201). We have that21

ρ
Dv

Dt u+∇ · JQ =
n∑
k=1

Jd
k · Fk − P∇ · v + Π :∇v . (14.41)

Entropy balance—putting it all together

We can now assemble the pieces in Eq. (14.9). Using Eqs. (14.41), (14.21), and (14.20), we find

Tρ
Dv

Dt s = −∇ · JQ +
n∑
k=1

µ̃k∇ · Jd
k +

n∑
k=1

Jd
k · Fk −

r∑
j=1

AjJj + Π :∇v , (14.42)

20The logic of the approach here should be appreciated. The first law of thermodynamics, Eq. (14.9), is already “taken”—
we’re using it to define the time variation of the entropy; we can’t go back to that well. We’ve defined a local balance equation
for internal energy so that the total energy is conserved, Eq. (14.34). After pushing around so many symbols, it’s perhaps not
surprising that we have no independent way of defining a heat flux vector JQ, which must be inferred from Eq. (14.39), or
simply stipulated on phenomenological grounds. Heat is the transfer of energy to microscopic degrees of freedom, which we
have no analytic way of characterizing other than giving it a name.

21I :∇v = ∇ · v.
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where Aj , the chemical affinity,22 drives chemical reactions (see Section 6.4)

Aj ≡
n∑
k=1

µ̃kνkj . (j = 1, · · · , r) .

Note that the pressure P has dropped out of Eq. (14.42)—only viscous stresses contribute to entropy
production.

The physical content of Eq. (14.42) can be brought out if we rewrite it as a balance equation.
Using ρDvs/Dt = ∂(ρs)/∂t+∇ · (ρsv), and the identities

∇ ·
(
JQ
T

)
= 1
T
∇ · JQ + JQ · ∇

(
1
T

)
∇ ·

(
µ̃k
Jd
k

T

)
= µ̃k
T
∇ · Jd

k + Jd
k · ∇

(
µ̃k
T

)
,

Eq. (14.42) can be written
∂ (ρs)
∂t

+∇ · JS = σS , (14.43)

where the entropy flux JS and entropy source σS are given by

JS ≡ ρsv + 1
T

(
JQ −

n∑
k=1

µ̃kJ
d
k

)
(14.44)

σS ≡ JQ · ∇
(

1
T

)
+

n∑
k=1

Jd
k ·
(
Fk
T
−∇

(
µ̃k
T

))
− 1
T

r∑
j=1

AjJj + 1
T

Π :∇v . (14.45)

Equations (14.43)–(14.45) are the main results of this section. Equation (14.45) is in precisely the
form needed by Onsager’s theory. Note, for heat flows obeying Fourier’s law, with JQ = −κ∇T ,
that JQ · ∇(1/T ) = κ(∇T )2/T 2 ≥ 0.

14.4 ENTROPY FLOW AND ENTROPY CREATION
The entropy balance equation is consistent with the classification of entropy into two types, dS =
dSe+dSi (see Eq. (3.7)), where dSe, the external contribution to the entropy change of a system, is
what results from the transport of entropy across a boundary, and dSi, the internal entropy change,
what’s associated with irreversible processes (see Fig. 3.4). The integral form of Eq. (14.43) is:

d
dt

∫
V

ρsdV = −
∮
S

JS · dS +
∫
V

σSdV . (14.46)

The identifications

S =
∫
V

ρsdV dSe
dt ≡ −

∮
S

JS · dS
dSi
dt ≡

∫
V

σSdV

provide a natural way of placing Eq. (14.46) into agreement with Eq. (3.7). Equation (3.8), dSi ≥ 0,
implies that σS is non-negative,

σS ≥ 0 . (14.47)

Thus, through Eq. (14.45) we have related irreversibility to non-equilibrium phenomena. We have,
from Eqs. (14.46) and (14.47),

dS
dt = −

∮
S

JS · dS +
∫
V

σSdV ≥ −
∮
S

JS · dS , (14.48)

22Actually, an affinity density.
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with equality holding in equilibrium. Equation (14.48) is a generalization of the Clausius inequality
to open systems to allow for entropy flow.

The entropy flux, JS (Eq. (14.44)), consists of entropy convection, ρsv, in addition to a contri-
bution from the heat flux, T−1JQ, as one would expect. There is also, however, a contribution to
entropy flux that’s associated with the flow of particles in open systems: −T−1∑

k µ̃kJ
d
k . For Eq.

(14.48) to be consistent with the Clausius inequality, Eq. (3.6), which we can write as

dS
dt ≥ −

∮
S

JQ
T
· dS ,

we require that on the boundary of closed systems v = 0 and Jd
k = 0.

14.5 THERMOELECTRICITY
As an illustration of the Onsager theory, we consider the thermoelectric effect. A temperature dif-
ference ∆T across a thermocouple produces not only a heat current, but an electric current as well,
which in turn establishes a potential difference ∆V across the thermocouple.

From Eq. (14.45), we can write σS as

σS = JQ · ∇
(

1
T

)
+ JE ·

(
F

T
−∇

(
µ̃

T

))
≡ JQ ·XQ + JE ·XE , (14.49)

where JE is a “provisional” electric current density. We need to be mindful of units here. The
units of JQ are W m−2. However, the units of what we’ve called the “electric” current, JE , are
those of mass flux, kg m−2 s−1. The units of XE in Eq. (14.49) are force per mass per Kelvin,
N kg−1 K−1 (F is the Coulomb force per mass). Thus, JE ·XE has units of entropy per volume
per time, what we want. To remove confusion over units, however, redefine JE and XE such that
JE ·XE = J̃E · X̃E , where we multiply and divide by the unit of charge so that J̃E has the usual
units of A m−2 and

X̃E = E

T
− 1
e
∇
(µ
T

)
≡ 1
T
E (14.50)

has units of V m−1 K−1, where E is the electric field, e is the magnitude of the electron charge,
and µ is the usual chemical potential in Joules. The quantity E in Eq. (14.50) is an effective electric
field vector.

Following the Onsager theory we write, as in Eq. (14.2) (noting that∇T−1 = −T−2∇T )

J̃E =L11X̃E + L12XQ = L11

T
E − L12

T 2 ∇T (14.51)

JQ =L21X̃E + L22XQ = L21

T
E − L22

T 2 ∇T , (14.52)

where the phenomenological coefficients are such that L12 = L21 (Eq. (14.3)). The quantity L11
has units of S K m−1, L12 and L21 have units of A K m−1, and L22 has units of W K m−1.

For∇T = 0 in Eq. (14.51), we identify L11 in terms of the conductivity L11 = Tσ. Also for
∇T = 0, we have the ratio of the magnitudes of the currents,

JQ

J̃E
= L21

L11
= Π , (14.53)

where Q̇ = ΠI is the basic Pelter effect, with Π the Peltier coefficient.
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For a temperature difference across the thermocouple, no current flows in the open circuit. Set-
ting J̃E = 0 in Eq. (14.51), we have E = (L12/ (TL11))∇T . Substituting this result in Eq. (14.52),

JQ = − 1
T 2

[
L22 −

L21L12

L11

]
∇T ≡ −κ∇T .

Thus, we have another connection between the Onsager coefficients and a transport coefficient,

κ = 1
T 2

[
L22 −

L21L12

L11

]
.

Hence we have three transport coefficients (Π, σ, κ) involving the three independent Onsager coef-
ficients. The voltage ∆V across the junction is obtained by integrating E around the circuit, with
the result that

∆V =
∫ 2

1
E · dr = L12

TL11

∫ 2

1
∇T · dr = L12

TL11
∆T .

The linear relation between ∆V and ∆T is the Seebeck effect. Thus, we have

P = 1
T

L12

L11
= 1
T

Π , (14.54)

where we have used Eq. (14.53). Equation (14.54) is a testable prediction of the theory. We have used
the Onsager phenomenological coefficients as a “bootstrap” to make a prediction that’s independent
of the Lij .

SUMMARY
• The rate of entropy production can be given as a sum of the products of fluxes Ji and ther-

modynamic forces, Xi, Ṡ =
∑
i JiXi, where there is a linear connection between forces and

fluxes, Ji =
∑
j LijXj , where the Lij are phenomenological coefficients. Onsager’s theorem

is that Lij = Lji, the Onsager reciprocity relations.

• Equation (14.45) connects irreversible entropy production with non-equilibrium processes in
a fluid.

• As an illustration we showed that a simple relation between the Seebeck coefficient and the
Peltier coefficient is predicted by the Onsager theory, P = Π/T .

EXERCISES
14.1 Verify that Eq. (14.1) is dimensionally correct. C is the heat capacity; CAB is the electrical

capacitance of the junction.

14.2 a. Show for scalar quantitiesA andB that the convective derivative satisfies the product rule
of calculus

D
Dt (AB) = A

DB
Dt +B

DA
Dt .

b. Show that, for any scalar function φ,

ρ
Dv

Dt φ = ∂

∂t
(ρφ) +∇ · (φρv) .

Use the continuity equation. The quantity φ could be a scalar, or the component of a vector
or a tensor.
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14.3 Derive Eq. (14.19).

14.4 Show that [∇ · (ρvv)]i = ρ(v · ∇)vi + vi∇ · ρv. See page 202 for the meaning of dyadic
notation and the divergence of a second-rank tensor.

14.5 Show that
∂ (ρvi)
∂t

+ [∇ · (ρvv)]i = ρ
Dv

Dt vi .

Use the continuity equation.

14.6 Show that if viscous forces are ignored, Eq. (14.24) becomes the Euler equation of fluid
mechanics—the ideal classical fluid,

ρ
Dv

Dt v = −∇P +
∑
k

ρkFk .

Hint: Show that∇ · [P I] =∇P , where I is the unit tensor.

14.7 Isentropic flow is one for which entropy is conserved, i.e., from Eq. (14.43), σS = 0.

a. Using Eq. (14.45), argue that isentropic flow implies no heat flow, and hence no temper-
ature gradients, no diffusive flows, no chemical reactions, and neglect of viscous forces.
There is only convection of entropy, as per Eq. (14.44).

b. Show that for isentropic flow
Dv

Dt ρs = −ρs∇ · v .

Argue that isentropic flow (the entropy of a small volume of fluid doesn’t change as it
flows) is also incompressible flow.

c. Enthalpy was defined in Chapter 4, H = U + PV , the heat added at constant pressure.
Define a local enthalpy, per mass, h ≡ H/M , so that h = u+ P/ρ.

i. Show that the first law of thermodynamics can be written dh = Tds+ (1/ρ)dP . For
isentropic flow,∇h =∇(P/ρ).

ii. For isentropic flows, show that the Euler equation can be written (assuming Fk =
−∇ψk)

Dv

Dt v = −∇
(
h+ (1/ρ)

∑
k

ρkψk

)
. (P14.1)

d. Derive, or otherwise verify, the vector identity

v×∇× v = 1
2∇v

2 − (v · ∇)v .

e. Show in this special case (isentropic flow) that

∂v

∂t
= −∇

(
h+ (1/ρ)

∑
k

ρkψk + 1
2v

2

)
+ v×∇× v . (P14.2)

f. Finally, from Eq. (P14.2), show that

∂

∂t
(∇× v) =∇× [v× (∇× v)] .

Thus, if∇× v = 0 at an instant of time, the velocity field remains curl-free for all times.
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Superconductors and
superfluids

I N this the last chapter, we briefly introduce superconductivity and superfluidity, phenomena
which are macroscopic and hence amenable to thermodynamics, yet which are quantum in

nature—macroscopic quantum phenomena.1 Superconductors—materials that are conductors (el-
ements, alloys, and ceramics) and hence which possess electrical resistivity—suddenly lose their
resistivity at low temperatures, the critical temperature Tc, which is different for each supercon-
ductor. Superfluids have the ability to flow without resistance. The primary example, the first to be
discovered, is 4He which remains in the gaseous state until temperature T = 4.2 K, at which point
it liquefies and is known as He I. At Tλ ≡ 2.17 K (the λ-point), its properties change suddenly to
that of a superfluid, what’s known as He II.

15.1 LONDON THEORY

Meissner effect

The essential feature of superconductors, first observed in 1911, is that there is a precipitous loss
of electrical resistance at T = Tc. The resistance of superconductors isn’t just small for T < Tc,
it’s zero. It was initially thought that zero resistivity is achieved by the conductivity σ becoming
infinite. Such a theory, however, leads to predictions not in accord with experimental facts. From
Ohm’s law, J = σE, we have the simple result E = J/σ. Letting σ → ∞ implies that E → 0
even though J 6= 0, what’s known as a persistent current, which do occur in superconductors. So
far, so good. Consider Faraday’s law with E = J/σ:

∇×
(
J

σ

)
= −∂B

∂t
.

Let σ →∞: We would have that Faraday’s law for superconductors is Ḃ = 0. If σ →∞ captured
the correct physics, it would lead to a curious state of affairs. Start with B = 0, T > Tc and cool
to a temperature T < Tc. Now turn on a magnetic field, so that B 6= 0. To maintain Ḃ = 0
in the superconductor, the magnetic field would be excluded from the superconductor. Repeat this
experiment in a different order. Start with T > Tc, B 6= 0 and cool to T < Tc. In this case to
preserve Ḃ = 0 we would haveB 6= 0 in the superconductor. Thus, two experiments that “arrive” at

1Within recent memory (that of the author), the Nobel Prize in Physics has been awarded for macroscopic quantum
phenomena in 1985, 1987, 1996, 1998, 2001, and 2003. As examples we mention the Josephson effect (1973 Nobel Prize in
Physics), superfluid 3He, and the quantum Hall effect. While there are many device applications involving superconductivity,
there are fewer applications of superfluidity, yet the field is advancing.[104]

209



210 � Thermodynamics

the same set of environmental variables,2 B 6= 0 and T < Tc have different states for theB-field in
the superconductor. If σ →∞ describes the physics, it would imply that the superconducting state is
not one of thermodynamic equilibrium, because equilibrium depends only on the state of the system
and not on how it’s produced (see Chapter 1). It was shown in 1933 that in the second experiment
(cool below Tc withB 6= 0), theB-field is expelled from a superconductor, a phenomenon known as
the Meissner effect (see Fig. 15.1). The Meissner effect shows that superconductors are described not
by Ḃ = 0 but rather by B = 0, and hence that the superconducting state is one of thermodynamic
equilibrium. Thus, a macroscopic description of superconductors should be possible.

Figure 15.1 Cool a superconductor in a B-field (vertical lines) from T > Tc to T < Tc:
The superconductor expels theB-field (Meissner effect)

London equations

A successful microscopic theory of superconductivity emerged in the 1950s that makes extensive
use of quantum field theory[105]—outside the scope of this book.3 In 1935 a macroscopic theory
was developed by Fritz and Heinz London that accounts for the Meissner effect[106] and which
introduces many of the concepts that must be explained by the microscopic theory.

The London theory starts from the phenomenological assumption that superconductors have
two kinds of electrons—normal and super electrons—with the total current density J the sum of the
supercurrent Js and the normal current, Jn: J = Js +Jn. The normal current obeys Ohm’s law as
usual, Jn = σE, but the super current Js is determined by a proposed new relation with the E and
B fields. The London equations are

Λ∇× Js =−B (15.1)

Λ∂Js
∂t

=E , (15.2)

where Λ is a constant characteristic of the superconductor. The dimension of Λ is [L2µ0]. The
combination λL ≡

√
Λ/µ0 is called the London penetration depth for reasons that we’ll see. Typical

values of λL range from 50 to 500 nm.
The London equations have an internal consistency: Equating the time derivative of Eq. (15.1)

and the curl of Eq. (15.2) implies Faraday’s law of induction. By introducing Js, the London equa-
tions seem to be a way of “peeling apart” Faraday’s law. We see from Eq. (15.2) that a steady
supercurrent (∂Js/∂t = 0) implies E = 0. (Equation (15.2) is a kind of Newton’s first law of

2Recall that the values of intensive variables are “set” by the values of such variables in the environment, Section 3.10.
3The 1972 Nobel Prize in Physics was awarded for the theory developed in [105].
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superconductivity—no E, no change in the current.) Thus, we can have J 6= 0 for E = 0 (persis-
tent currents) without the need for infinite conductivity. The London theory is phenomenological;
Eqs. (15.1) and (15.2) are assumptions. Their validity derives from the experimental confirmation
of the consequences they predict. We can write the supercurrent density as Js = −nse∗vs, where
vs is the velocity field of the supercurrent, ns is the density of super electrons, and e∗ is the mag-
nitude of the charge of a super electron. Normal electrons develop a drift velocity when exposed
to an electric field, vn = −µE, where µ is the electron mobility; by Eq. (15.2), however, super
electrons accelerate in an electric field. We would expect that m∗dvs/dt = −e∗E, where m∗ is the
super-electron mass. Equation (15.2) thus implies that Λ = m∗/((e∗)2ns). In the quantum theory
of superconductivity, it’s found that4 m∗ = 2m, e∗ = 2e, and ns = n/2.

Using Faraday’s law and Ohm’s law for Jn, we find from Eqs. (15.1) and (15.2) the generaliza-
tion of the London equations for the total current J :

∇× J =− BΛ − σ
∂B

∂t
(15.3)

∂J

∂t
=EΛ + σ

∂E

∂t
. (15.4)

Written this way we see that Ohm’s law (J = σE) is recovered in the limit Λ→∞.
By differentiating the continuity equation for charge (∂ρ/∂t+∇ · J = 0) with respect to time,

using Eq. (15.4), and making use of Gauss’s law (∇·E = ρ/ε0) we have a second-order differential
equation for the time dependence of ρ:

∂2ρ

∂t2
+ σ

ε0

∂ρ

∂t
+ 1

Λε0
ρ = 0 . (15.5)

Try as a solution to Eq. (15.5), ρ(t) = A+ exp(−γ+t) +A− exp(−γ−t). We find

γ± = σ

2ε0

(
1±

√
1− 4ε0

Λσ2

)
are the roots of γ2−γσ/ε0+1/(Λε0) = 0. For Λ� 4ε0/σ2, or equivalently when λL =

√
Λ/µ0 �

2/(cµ0σ) ≈ (60πσ)−1, γ+ ≈ σ/ε0 and γ− ≈ 1/(Λσ). For good conductors σ ≈ 107 S/m, and
the inequality λL � (60πσ)−1 ≈ 0.5 nm is easily satisfied. The quantity γ+ is the usual rate
for charge to be expelled from the interior of a conductor. Putting in numbers we find γ+ ≈ 1018

s−1 and γ− ≈ 1013 s−1. The relaxation of charge from a superconductor is thus controlled by the
smaller rate, (Λσ)−1. For frequencies f � (Λσ)−1 ≈ 1013 Hz we conclude that ρ = 0 and hence
that∇ · J = 0.

Using Eqs. (15.3) and (15.4) together with Maxwell’s equations, it’s straightforward to show
that in this theoryB, E and J each satisfy the same type of damped wave equation:

−∇×∇×

 B
E
J

 = µ0

Λ

 B
E
J

+ µ0σ
∂

∂t

 B
E
J

+ 1
c2
∂2

∂t2

 B
E
J

 . (15.6)

The three terms on the right of Eq. (15.6) represent the contributions of the supercurrent Js, the
normal current Jn, and the displacement current. From Eq. (15.6) we conclude that if the inequal-
ities f � (Λσ)−1 � σ/ε0 are satisfied (the quasistationary condition), the normal current and
the displacement current are negligible in comparison with the supercurrent. For f � 1013 Hz, we
have the equations for the electromagnetics of a superconductor

−∇×∇×

 B
E
J

 = µ0

Λ

 B
E
J

 . (15.7)

4The factor of two is because it’s Cooper pairs of electrons that are the effective super electrons of the London theory.
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From Eq. (15.7), we have for the B field in particular ∇×∇×B = −B/λ2
L. The London

theory explains the Meissner effect in that B is excluded from the bulk of the superconductor;
however,B is nonzero within a distance λL of the surface. Thus,B does not vanish abruptly at the
surface of a superconductor; rather it decays exponentially over the characteristic length scale λL.
Moreover, Js is confined to within a short distance of the surface, over the same length scale λL
(from Eq. (15.1), the curl of Js is largest where B is largest). Just as normal conductors screen out
E-fields by moving charges to the surface, superconductors set up surface currents that screen the
interior fromB-fields.

Spherical superconductor

As an illustration, consider a spherical superconductor of radius R in a uniform external magnetic
field, B = B0ẑ. In spherical coordinates ẑ = cos θr̂ − sin θθ̂. For r > R, ∇ · B = 0 and
∇×B = 0. These equations can be solved by takingB =∇Φm, where Φm satisfies the Laplace
equation, ∇2Φm = 0. We can therefore add to the applied field the gradient of any solution of the
Laplace equation, which in spherical coordinates is given as an expansion in Legendre polynomials.
We need include only the l = 1 term; this will be matched up with B for r < R through the
boundary conditions at r = R. For r > R, the components ofB are

Br =
(
B0 + 2µ0M

r3

)
cos θ Bθ =

(
−B0 + µ0M

r3

)
sin θ Bφ = 0 , (15.8)

where M is the induced magnetic moment of the sphere, and µ0 is thrown in to get the units right.
For r < R, we first solve for the supercurrent using Eq. (15.7), and then use Eq. (15.1) to get
B. If we want the curl of Js to have only r̂, θ̂ components, it suffices to take Js = Jφ(r, θ)φ̂.
From Eq. (15.7), we require that −∇×∇× Js = Js/λ

2. An analysis of this equation shows that
Jφ(r, θ) = f(r) sin θ is a solution, where f satisfies the differential equation

f ′′ + 2
r
f ′ −

(
2
r2 + 1

λ2

)
f = 0 . (15.9)

The solution of Eq. (15.9) finite at r = 0 is

f(r) = C

[
1
r2 sinh(r/λ)− 1

λr
cosh(r/λ)

]
, (15.10)

where C is a constant. Taking the curl of Js, we find from Eq. (15.1) (using Λ = µ0λ
2), that for

r < R,

Br = −2µ0λ
2 cos θ

r
f(r) Bθ = µ0λ

2 sin θ
r

∂

∂r
[rf(r)] . (15.11)

The two constants C and M are obtained by imposing the boundary condition that Br and Bθ are
continuous at r = R. We find that C = 3B0R/(2µ0 sinh(R/λ)) and

M = −B0R
3

2µ0

[
1− 3 λ

R
coth(R/λ) + 3 λ

2

R2

]
. (15.12)

For R� λ, M ≈ −B0R
3/(2µ0).

15.2 ROTATING SUPERCONDUCTOR, LONDON MOMENT
What would a rotating superconductor do in the absence of an applied field? As we have just seen,
a stationary superconductor in an external field develops a circulating supercurrent that expels the
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field from the interior of the superconductor. Would the rotation of super electrons produce a field?
This is indeed what happens.

Consider a spherical superconductor of radius R rotating with constant angular velocity ω =
ωẑ. Is the velocity field vs equal to the local velocity of the superconductor at r, v0 ≡ ω×r? If so,
the current density of the super electrons is equal and opposite to that of the positive charge of the
lattice and normal electrons. If not, there is a net current density J = nse

∗(v0 − vs). As we show,
the quantity v0 − vs decays to zero over the distance λL. This implies that near the surface, where
vs 6= v0, there is a net current that gives rise to a magnetic moment known as the London moment.

In the quasistatic approximation, Ampere’s law is

∇×B = µ0nse
∗ (v0 − vs) . (15.13)

Equation (15.1) can then be written, adding∇× v0 = 2ω to both sides,

∇× (v0 − vs) = − B

nse∗Λ
+ 2ω . (15.14)

By taking the curl of Eq. (15.14), using Eq. (15.13) and∇× ω = 0, we have

∇×∇× (v0 − vs) = − 1
λ2
L

(v0 − vs) . (15.15)

The difference in velocities v0−vs therefore decays exponentially over a distance λL. The magnetic
field is obtained from Eq. (15.14),

B = m∗

e∗
[2ω −∇× (v0 − vs)] . (15.16)

For a rotating superconductor there is then a finite magnetic field at the center of the sphere, B ≈
2m∗ω/e∗. This is a kind of “inverse Meissner effect.”

The solution to Eq. (15.15) is v0 − vs = f(r) sin θφ̂, where f(r) is given by Eq. (15.10). We
find from Eq. (15.16) that for r < R,

Br = m∗

e∗

[
2ω − 2f(r)

r

]
cos θ Bθ = m∗

e∗

[
−2ω + 1

r

∂

∂r
(rf(r))

]
sin θ . (15.17)

We impose continuity at r = R between Eq. (15.17) and the form of the magnetic field for r > R,
which is given by Eq. (15.8) with B0 = 0. This gives us two conditions for the constants C and M .
We find C = −3ωRλ2/ sinh(R/λ) and

µ0M = ωR3m
∗

e∗

[
1− 3 λ

R
coth(R/λ) + 3 λ

2

R2

]
. (15.18)

For R � λ, the London moment µ0M ≈ m∗R3ω/e∗. The London moment has been measured
experimentally, confirming the theoretical prediction.[107][108][109] The Gravity Probe B experi-
ment, which tested predictions of the general theory of relativity, made use of the London moment
in gyroscopes made of superconducting materials.

15.3 TWO-FLUID MODEL
A macroscopic theory of superfluidity was developed by Lev Landau in 1941, the two-fluid
model.5[103, p507] Like the London theory, the basic idea is that He II behaves as if it were a

5Landau was awarded the 1962 Nobel Prize in Physics for this work.
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mixture of two liquids, a superfluid of density ρs, which moves without viscosity, and a normal
fluid of density ρn, which exhibits normal flow behavior. The two fluids are assumed to move with-
out friction between them in their relative motion, i.e., no momentum is transferred from one to the
other.6 As noted by Landau and Lifshitz, “. . . regarding the liquid as a mixture of normal and super-
fluid parts is no more than a convenient description of the phenomena which occur in a fluid where
quantum effects are important. Like any description of quantum phenomena in classical terms, it
falls short of adequacy.”[103, p507] Many properties of He II can be accounted for by the two-fluid
model, without having to delve into a fully quantum-based theory.

While the model refers to a superfluid component, and a normal component, it should not be
construed that He II can be separated into normal and superfluids. The model asserts that He II
can execute two motions at once, one having a mass density ρs, moving with velocity vs, and the
other having mass density ρn moving with velocity vn. At each point in the fluid, there are two
independent velocity fields,7 vs and vn. The total mass density ρ is the sum of the two densities:

ρ = ρs + ρn . (15.19)

The fraction ρn/ρ has been measured as a function of temperature,8 and the data fit the empirical
relation[110, p66]

ρn
ρ

=
{

(T/Tλ)5.6
T < Tλ

1 T > Tλ .

The ratio ρs/ρ = 1− ρn/ρ decreases from unity9 at T = 0, to zero at Tλ.
The total mass flux is the sum of the fluxes of the normal and superfluid components,

J = ρv = ρsvs + ρnvn . (15.20)

Total mass is conserved (see Eq. (14.15)):

∂ρ

∂t
+∇ · ρv = 0 .

A key idea of the two-fluid model is that entropy of He II is carried by the normal component only.
Entropy is taken to be conserved, in the sense of no dissipation, i.e., the flow of the superfluid (taken
as a whole) is reversible. This idea is expressed in a continuity equation for entropy (see Eq. (14.43))

∂ρs

∂t
+∇ · ρsvn = 0 , (15.21)

where s is the entropy per mass (see Section 14.3). Overall momentum balance is the same as
described by Eq. (14.23), except that we must include the convection of momenta for the super and
normal components:

∂ρv

∂t
+∇ · (ρsvsvs + ρnvnvn) = −∇P , (15.22)

where we ignore viscous forces, we ignore body forces, e.g., the force of gravity, and ρv is given
in Eq. (15.20). The two-fluid model is thus comprised of eight scalar quantities ρs, ρn, vs, and vn
described by (so far) five equations: the mass continuity equation, Eq. (14.15), the entropy continu-
ity equation, Eq. (15.21), and the force equation, Eq. (15.22). We need another equation of motion.

6Dissipative effects occur in superfluids and superconductors when flow rates exceed a critical value.
7Just as at any point in space there can be an E-field and aB-field.
8The Andronikashvili, or rotating disk, experiment is the most direct method of measuring ρn.
9The same idea occurs in the theory of Bose-Einstein condensation (which requires the machinery of statistical mechan-

ics), of two kinds of particles, those in the ground state and those in excited states.
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Landau argued that the force driving the superfluid component is the gradient of the chemical po-
tential:

Dvs

Dt vs = −∇µ̃ = s∇T − 1
ρ
∇P , (15.23)

where µ̃ is the chemical potential of He II per molecular mass (Section 14.3) and we’ve used Eq.
(3.32). We now have eight equations in eight unknowns. Note that as a consequence of Eq. (15.23),

Dvs

Dt (∇× vs) = 0 .

If the superfluid velocity field is initially curl-free, it remains that way. Landau argued that vs must
be curl-free on general grounds.

15.4 FOUNTAIN EFFECT
The equations just presented constitute the two-fluid model. It successfully accounts for many prop-
erties of He II, what would be outside the scope of this book for us to explore.10 The fountain effect11

is an experiment that demonstrates Eq. (15.23), what’s schematically illustrated in Fig. 15.2. An in-

Figure 15.2 Fountain effect

ner vessel, A, is immersed in vessel B that’s filled with He II at T < Tλ. Connected to A is a
superleak, a narrow capillary packed with fine powder sufficiently dense that no normal fluid can
flow through it. The heat caused by a current passed through a resistor raises the temperature of
the He II in A to T + ∆T . As a result of the temperature rise, some of the superfluid component
is converted to normal fluid, lowering the concentration of superfluid in A relative to that in B at
temperature T , and increasing the concentration of normal fluid. Superfluid flows from B to A to
equalize the concentrations of superfluids, causing the level of the He II in A to rise. Only the su-
perfluid component can flow through the capillary, however, which has zero viscosity; the normal
fluid cannot flow through the capillary in an attempt to equalize the concentrations of normal fluid
between A and B. The capillary therefore acts as a semi-permeable membrane. After a steady state
is reached (when the heating rate to the resistor is balanced by heat losses to the walls of the vessel),
the left side of Eq. (15.23) is zero, predicting a pressure difference ∆P associated with ∆T :

∆P = ρs∆T . (15.24)

Equation (15.24) has been well tested experimentally. If the level of He II increases by ∆z, then
∆P = ρg∆z, where g is the gravitational acceleration, implying that g∆z = s∆T . The effect is
quite large—see Exercise 15.3.

10The books by Wilks[44] and Putterman[111] contain many applications of the two-fluid model.
11The 1978 Nobel Prize in Physics was award to Pyotr Kaptisa for the fountain effect.
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Heat flows from hot to cold, as does entropy (Section 3.11). In the fountain effect, however, the
superfluid passing through the capillary moves in the direction of the temperature gradient, from
cold to hot. There’s no violation of the second law if the superfluid carries no entropy. Under this
assumption, the specific entropy in B goes up (same entropy distributed over less mass), while that
in A goes down (same entropy, more mass). Through the motion of the superfluid, entropy has
effectively been transferred from high temperature to low. As the level of the He II rises, its rate of
rise can be measured, and, knowing the cross-sectional area of the vessel, the rate of volume flow V̇
through the superleak can be inferred. It’s found experimentally that the heating rate (Joule heating
from the resistor) is far higher than that required to raise by ∆T the temperature of the He II already
in A, plus the heat losses to the walls. The excess heat can only go to heating up the incoming fluid.
From dQ = TdS = TsρdV , Q̇ = TsρV̇ , and thus

Q̇

ρT V̇
= s . (15.25)

We can calculate Q̇ (excess heating rate after accounting for heat required to warm the He II by
∆T and the losses to the walls), we can measure ρ, we can calculate V̇ , and we can measure T . All
quantities on the left of Eq. (15.25) are known. When such measurements are made, it’s found that
s = sA, the specific entropy of the fluid12 already inA! The arriving superfluid through the capillary
carries no entropy, providing experimental confirmation of the assumptions of the two-fluid model.

We don’t have to rely on Eq. (15.23) to arrive at Eq. (15.24). In steady state we can consider
that the He II in the two vessels have reached equilibrium, implying equality of their chemical
potentials,13 µ(PA, TA) = µ(PB , TB). A simple Taylor expansion

µ(PA, TA) ≈ µ(PB , TB) +
(
∂µ

∂P

)
∆P +

(
∂µ

∂T

)
∆T ,

implies that in steady state

∆P = − (∂µ/∂T )
(∂µ/∂P )∆T = S

V
∆T = ρs∆T ,

the same as Eq. (15.24), where we’ve used Eq. (3.33).

EXERCISES

15.1 Derive Eq. (15.6).

15.2 Show for the spherical superconductor of radius R in an external magnetic field of strength
B0, that at the center of the sphere,

lim
r→0

√
B2
r +B2

θ = B0
R/λ

sinh(R/λ) .

For R� λ, the field strength is exponentially small at the center of the sphere.

15.3 The specific entropy of He II (inferred from heat capacity measurements) at T = 2 K is 0.94
J g−1 K−1.[44, p666]. What change in height ∆z is predicted to occur in the fountain effect
produced by ∆T = 10−3 K? A: 9.6 cm.

12Entropy is calculated from heat capacity measurements.
13We know from Eq. (3.32) that chemical potential is a function of T and P .



Epilogue: Where to now?

W E’VE cut a wide swath through thermodynamics. The basics were presented in the first eight
chapters, with the last six devoted to modern developments. What didn’t we cover, and what

are directions for further study?

Omissions

• An obvious omission is phase transitions. There is much that thermodynamics has to say
about the subject. But there is even more to be said using statistical mechanics, and it seems
appropriate to defer a treatment of phase transitions until statistical mechanics is developed.
One of the most significant achievements in statistical mechanics in modern times was the
development in the 1970s of the renormalization group method, in its ability to handle critical
fluctuations associated with second-order phase transitions.1

• A topic in macroscopic physics not included in this book, but we would have wanted to
include, is the theory of elasticity, where thermodynamic considerations play a vital role.
Length restrictions precluded a treatment of elasticity in this book.

Limitations

• A limitation of thermodynamics is fluctuations, which do not naturally fit into its framework.
Thermodynamics is concerned with the state of equilibrium, where its state variables have
fixed values. Statistical physics is naturally able to treat fluctuations through its stronger re-
liance on probability methods than are used in thermodynamics.

• The state of thermodynamic equilibrium is time invariant. We did in Chapter 14 intro-
duce non-equilibrium thermodynamics, an extension of classical thermodynamics to systems
slightly out of equilibrium, where the traditional variables of thermodynamics are taken to be
well defined locally, yet varying in space and time. Kinetic theory is a branch of statistical
mechanics that can treat systems strongly out of equilibrium.

• Thermodynamics cannot incorporate interactions between atoms, except phenomenologically
through equations of state such as the virial expansion. Thermodynamics is best suited for
systems having independent constituents (ideal gas, ideal paramagnet, photon gas). Statistical
mechanics naturally incorporates interactions between atoms, either in the guise of classical
or quantum mechanics.

=⇒ Fluctuations, time dependence, and interactions: Time to proceed on to statistical mechanics.

1The 1982 Nobel Prize in Physics was awarded to Kenneth Wilson for his work on the renormalization group.
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chemical potential, 39

charged species, 92
Gibbs energy, 58
ideal gas, 119
matter flows in response to, 49
photons, 72

chemical work, 9, 39
Clausius

entropy, 34
inequality

differential form, 35
integral form, 33, 208

statement of second law, 26
Clausius-Clapeyron equation, 86
closed system, 9
coarse-grained probability, 105
coefficient of performance, 32
coexistence curve, 83
combinatorics, 100
composite system, 43, 53
compressibility

isentropic, 51
isothermal, 19

compressibility factor, 13
Compton wavelength, 174
concave, convex, definition, 54
configuration space, 104
conservative forces, 10
conserved quantity, 201
constant-volume gas thermometer, 13
constraints, 16
continuity equation, 202
convective derivative, 202
conversion of heat into work, 25
Cooper pairs, 213
coordinate singularity, 188
cosmic microwave background (CMB), 61, 79,

143
critical temperature, 211
Curie’s law, 122
cyclic process, 25

infinitesimal, 33

225
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cyclic relation, 18

Dalton’s law, 13
deformation coordinates, 12, 17
Delbrück scattering, 69
densities, 43
diathermic boundary, 8
differentiate, then integrate, 19
diffusion flow, 202
dissipation of energy, 59
dry ice, 95
Dufour effect, 199
dyadic notation, 204

efficiency
heat engine, 25
refrigerator, 32

electrochemical
cell, 90
potential, 92

elemental chaos, 99
empirical temperature, 12
energy

minimum principle, 53
convex function, 54
dissipation, 59, 141
internal, 8
mechanical, 10
representation, 53

energy spectral density, 69
ensembles, 175
enthalpy, 57
entropy

absolute, 115, 124
as a state variable, 34
as accounting for microstates, 98, 171
as missing information, 171, 178, 191
associated with measurement, 176
black hole, 190
Clausius definition, 34
concave function, 54
extensivity property, 40
flow, 49
ideal gas, 40, 110
information, 181
maximum principle, 53
non-decrease in isolated systems, 36
of mixing, 88, 114
one-liner, 51
produciton, 36
representation, 53

residual, 125
should be dimensionless, 35
statistical interpretation, 98
subjectivity, 117, 172

environment, 7
equal a priori probabilities, 99
equation of state, 12
equilibrium

conditions, 44
constant, chemical reaction, 90
constrained, 16
defined, 4, 136, 197
energy minimum, 53
entropy maximum, 37, 44
internal, 126, 165
most probable state, 99
stability, 45

equipartition theorem, 21, 164
ergodic theory, 99
Euler relation, 42
Euler’s theorem, 40
event horizon, 188
exact differential

defined, 6
necessity of, 6

excluded volume, 14
expansivity, 19
expectation value, 179
extensible quantity, 17
extensive variable, 5
extremum principle, 43, 53

Faraday constant, 91
Fermi energy, 39
Finisterre, 107
first law of thermodynamics, 9, 38

as impossibility statement, 128
differential form, 10
magnetic system, 122
open system, 39

fluctuation, 5, 43, 45, 137, 174, 175, 199
flux tube, first use of, 69
fountain effect, 217
Fourier’s law, 198
free energy, defined, 59
free expansion, 15, 36, 62

gas constant R, 13
generalized force, displacement, 10
generalized work, 17
Gibbs
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phase rule, 85
criteria for equilibrium, 53
equation, 39
free energy, 57
paradox, 113

Gibbs-Duhem equation, 43, 84
Gibbs-Helmholtz equations, 92
Gibbsian thermodynamics, 38

Hawking radiation, 189
heat, 8

capacity, defined, 19
as energy transfer to microscopic degrees

of freedom, 10, 135, 171, 191, 206
engine, 25
expelled, absorbed, 25
flux vector, 206
latent, 85
of mixing, 87
pump, 25
reservoir, 26
waste, 25

heat death of universe, 60
heat engine diagram, 26
Helmholtz free energy, 57
Hodge duality, 150
holographic universe, 192
homogeneous function, 39
hydrogen bond, 129
hypersphere, 111
hypersurface defined, 12

ice-nine, 81
ideal gas

adiabatic process, 24
chemical potential, 59, 119
entropy, 40, 110
equation of state, 13
Joule’s law, 21

ideal paramagnet, 122
ideal solution, 88
impossibility statement

Carathéodory principle, 160
first law, 128
other laws of physics, 128
second law, 140
third law, 128

inaccessible points, 157
inaccessible states, 16, 139
incompressible fluid, 202
inexact differential, 7

information entropy, 181
information theory, 98, 103, 178
integrability condition, 6, 150
integrating factor, 7, 34, 151
intensive variable, 5

conjugate to conserved quantities, 45
internal energy

convexity of, 52
discovery of, 8

internal equilibrium, 126, 165
inverse process, 45
inversion temperature, 63
irreversible process, 14, 138
irrotational vector field, 150
isentrope, 28
isentropic flow, 210
isobar, 72
isochore, 32
isolated system, 8, 36
isotherm defined, 12

Jacobian determinant, 49
Joule

expansion, coefficient, 62
ideal gas law, 21
Joule-Kelvin process, 63
Joule-Meyer experiment, 8

Kelvin
scale for absolute temperature, 31
statement of second law, 26

kinetic theory, 219
Kirchhoff

equation for latent heat, 86
law of thermal radiation, 68

Lagrange multiplier, 82
Lamb shift, 189
Landauer’s principle, 184
latent heat, 85
law of Dulong-Petit, 21
law of mass action, 90
laws of thermodynamics, summarized, 11
Legendre transform, 54
level set, 151
Liouville’s theorem, 107
logical irreversibility, 183
London theory of superconductivity, 212

macroscopic quantum phenomena, 211
macroscopic, microscopic, 3
magnetic work, 18
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mass fraction, 201
maximum entropy in equilibrium, 37
Maxwell relations

defined, 58
used in calculations, 20, 40, 47, 48, 50, 52,

65, 84, 86, 122, 127, 131, 134, 150,
161

Maxwell’s demon, 68, 171, 189
Maxwell-Boltzmann distribution, 105, 166
measurement

not complete until recorded, 176, 183
mechanical energy, 10
mechanical equivalent of heat, 10
Meissner effect, 212
microstate, defined, 10
mole fraction, 13
mole, definition, 4
molecular mass, 201
momentum space, 104
multicomponent phase, 39, 83
multinomial coefficient, 101
mutually exclusive, 179

negative absolute temperature, 163
negative statements

laws of physics as, 128, 140
negentropy, 182
Nernst heat theorem, 124
Newton’s law of viscosity, 198
no-hair theorem, 188
non-deformation coordinate, 12, 17
non-static process, 15
nuclear magnetic resonance (NMR), 165

occupation numbers, 103
Ohm’s law, 198
Olbers’s paradox, 61
Onsager reciprocal relations, 199
open system, 9, 39
other work, 56

paramagnetism, 122
partial molar volume, 87
partial pressure, 13
partition function, 106
Pauli exclusion principle, 39
Peltier effect, 198
permeable boundary, 9
permutations, 100
persistent current, 211
Pfaffian

differential equation, 149
differential form, 6, 149

phase space, 104
probability density, 105

phase, thermodynamic
defined, 81
multicomponent, 83

Planck length, 174
population inversion, 166
positive definite, 43
postulational approach, 41
probability

density function, 105
thermodynamic, 97

quadratic degree of freedom, 164
quadratic form, 43
quantum computer, 184
quantum concentration, 120
quantum entanglement, 4, 193
quasistatic process, 14, 138

radiation constant, 70
ratio of heat capacities, γ, 24
reaction coordinate, 89
reciprocity relation, 18
refrigerator, 25
regular point, 152
renormalization group, 219
residual entropy, 125

of ice, 129
response functions, 19
reversible computation, 184
reversible process, 14, 138
rotational vector field, 150

Sackur-Tetrode formula, 110
scalar field, defined, 149
Schwarzschild radius, 174, 187
second law of thermodynamics, 25
Seebeck effect, 198
Shannon information, 179
sign convention, 9
simple fluid, 12
sole-result clause, 26
Soret effect, 199
spacetime, 187
specific heat, defined, 19
spectral

absorptivity, 67
emissive power, 67
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energy density, 69
spin temperature, 165
spin-lattice relaxation time, 165
stability

condition, 45, 46
requirements, 48

state of equilibrium, 4, 136
state space, 5
state variables, 4, 136
Stefan-Boltzmann radiation law, 70
stimulated emission, 167
Stirling approximation, 101
Stirling cycle, 32
stochastic process, 175
stoichiometric coefficients, 89, 202
stress tensor, 203
sublimation, 85, 95
superleak, 217
surprisal, 181
surroundings, 7
susceptibility, 134
Sylvester’s criterion, 43
system, defined, 7
Szilard’s engine, 176

temperature
absolute, 31
critical, 211
empirical, 12
negative absolute, 163

thermal contact, defined, 8
thermal coordinate, 12, 17
thermal wavelength, 107
thermodynamic

cycles, 25
equilibrium, 4
fluctuation, 45
phase, 81
potentials, 55
probability, 97
stability, 45, 48
state space, 5
system, 7

thermodynamics
anticipates quantum physics, 70, 103, 107,

110, 112, 125, 144, 176, 192
as impossibility statements, 128, 140, 160
definition, at long last, 146
non-equilibrium, 197
of black holes, 187
of information, 171

of mixing, 87
of negative temperature, 167
pertains to states incompletely defined, 99,

171
thermoelectricity, 198
thermometric property, 12
throttling process, 63
time asymmetry, 37, 139
transitions between equilibrium states, 5
triple point, 31, 83
two-fluid model of superfluidity, 215

uncompensated transformation, 35
unit of reaction, 89

vacuum equation, 187
vacuum fluctuations, 189
van der Waals equation of state, 14
vector fields in thermodynamics, 149
virial expansion, 13
virtual variation, 43, 45, 175
volume of mixing, 87

walls, 8
waste heat, 25
Wien’s law, 77
work

“other”, 56
adiabatic, 8
mechanical, 9

work-energy theorem, 10
working substance, 29

zeroth law of thermodynamics, 11
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