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Abstract

Caching in device-to-device (D2D) communication networks is complicated due to the
dynamic and unpredictable nature of wireless environments. Limited bandwidth, high
latency, and disruptions make effective content caching and timely user request ful-
fillment challenging in D2D wireless networks. This manuscript proposes a federated
learning framework for edge caching in D2D wireless networks that can enhance the
efficiency of content caching and balance the trade-off between cache hit ratio and
memory use. The proposed methodology clusters devices based on their content sim-
ilarity using the K-means algorithm while accounting for user ratings and Euclidean
distance. Within the cluster, there is the master user equipment (MUE) and several
pieces of slave user equipment (SUE). The MUE is selected based on factors such as
willingness, signal-to-noise ratio, and battery percentage, with incentives offered by
the cellular operator. SUE devices share raw data based on content popularity and
usage patterns. The local model uses a graph convolutional gated recurrent unit that
predicts content caching through its ability to handle complex dependencies based on
the spatio-temporal features of the user devices. Federated learning facilitates global
model training without centralization of the raw data, which enhances scalability. A
proximal policy optimization algorithm determines the optimal content caching for
each device, allowing dynamic D2D environments to be effectively handled. Simula-
tion results demonstrate that the proposed solution yields strong caching performance
by reducing the average delay and improving the overall offloading probability.

Keywords: Device-to-Device (D2D) Communication, Proactive Edge Caching, Con-
tent Caching, Federated Learning,Machine Learning Methods, Deep Reinforcement
Learning.

VIII



Contents

ABSTRACT VIII

LIST OF TABLES XII

LIST OF FIGURES XIII

LIST OF ABBREVIATIONS AND ACRONYMS XIV

1 Introduction 1
1.1 D2D Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Overview of Device-to-Device (D2D) communication . . . . . . 1
1.1.2 Importance of D2D Networks in Enhancing Communication

Efficiency and Network Capacity . . . . . . . . . . . . . . . . . 1
1.1.3 Challenges in D2D wireless network . . . . . . . . . . . . . . . . 2

1.2 Content Caching in D2D Wireless Networks . . . . . . . . . . . . . . . 2
1.2.1 Challenges of Content Caching in Wireless Networks . . . . . . 2

1.3 Device-Level Caching Strategies in D2D Wireless Networks . . . . . . . 4
1.3.1 Proactive Content Caching . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Edge Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Two-Layered Edge Network Approach . . . . . . . . . . . . . . 5

1.4 Challenges and Limitations of Traditional Caching Approaches in Dy-
namic Wireless Environments . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Federated Learning Strategies . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Machine Learning Techniques in Federated Learning . . . . . . . 7
1.5.2 Machine Learning Techniques in Layer-2 Challenges . . . . . . . 7

1.6 Advanced Techniques and Strategies . . . . . . . . . . . . . . . . . . . 8
1.7 Gaps and Challenges in Existing Content Caching Techniques in D2D

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IX



1.7.1 Analyzing Geographical Factors . . . . . . . . . . . . . . . . . . 9
1.7.2 Social Dynamics in Content Distribution . . . . . . . . . . . . . 10

1.8 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Objectives of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.10 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 15
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Research Methodology 21
3.1 Clustering of Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 MUE Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Willingness Factor (WF) . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Signal-to-Noise Ratio (SNR) . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Battery Percentage (BP) . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 MUE Selection Process . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Data Sharing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Current Content Popularity Sharing . . . . . . . . . . . . . . . . 25
3.3.2 Historical Usage Data Sharing . . . . . . . . . . . . . . . . . . . 25

3.4 GC-GRU Model Parameters and Values Explanation . . . . . . . . . . 26
3.5 Utilizing GC-GRU Model for Content Caching Optimization . . . . . . 28

3.5.1 Spatial Analysis using Graph Convolutional Layer . . . . . . . . 28
3.5.2 Temporal Analysis via Gated Recurrent Unit (GRU) . . . . . . 28
3.5.3 Prediction of Caching Probability . . . . . . . . . . . . . . . . . 29

3.6 Leveraging Federated Learning for GC-GRU Output Integration . . . . 31
3.6.1 GC-GRU Output Preparation . . . . . . . . . . . . . . . . . . . 31
3.6.2 Federated Learning Initialization . . . . . . . . . . . . . . . . . 32
3.6.3 Federated Learning Iterations . . . . . . . . . . . . . . . . . . . 32

3.7 Utilizing PPO for Refinement of Global Model from Federated Learning 32
3.7.1 Initial Policy Determination . . . . . . . . . . . . . . . . . . . . 32
3.7.2 PPO Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7.3 Policy Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

X



4 Results and Disscussions 34
4.1 Simulation Parameters and Dataset . . . . . . . . . . . . . . . . . . . . 34
4.2 Training vs Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Average Delay Analysis vs Content Size . . . . . . . . . . . . . . . . . . 36
4.4 Delay Comparison with Existing Techniques . . . . . . . . . . . . . . . 37
4.5 Average Delay Analysis vs Storage Capacity . . . . . . . . . . . . . . . 39
4.6 Offloading probability vs Content Size . . . . . . . . . . . . . . . . . . 40
4.7 Offloading Probability vs Storage Capacity . . . . . . . . . . . . . . . . 41
4.8 Comparison of Offloading Probabilities with Different Zipf Coefficients 43
4.9 Comparison of Throughput vs Number of Clusters . . . . . . . . . . . . 44
4.10 Comparison of Average Delay with Number of Clusters . . . . . . . . . 46
4.11 Convergence of Rewards on Different Schemes . . . . . . . . . . . . . . 47
4.12 Comparison of MSE, MAPE, RMSE . . . . . . . . . . . . . . . . . . . 48

5 CONCLUSIONS AND FUTURE RECOMMENDATION 50
5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

BIBLIOGRAPHY 53

XI



List of Tables

3.1 GC-GRU Model Parameters and Values . . . . . . . . . . . . . . . . . 26

4.1 Simulation Parameters and Values . . . . . . . . . . . . . . . . . . . . . 35

XII



List of Figures

3.1 Network Architecture for Caching in D2D Wireless Networks . . . . . . 21
3.2 The Federated learning model for Caching in D2D Networks: where lo-

cal data from MUE is processed using the GC-GRU model for spatio-
temporal feature extraction. These features are integrated into a global
model at the BS, and PPO is employed for refining the global model
through iterative policy updates . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Training and testing dynamics of the clustering model . . . . . . . . . . 36
4.2 Comparative Analysis of Average Delays between GC-GRU and Base-

line Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Comparative Analysis of Average Delays for Different Caching Models

across Varying Content Size . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Comparative Analysis of Average Delays for Different Caching Models

across Varied Storage Capacities . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Comparative Analysis of Offloading Probabilities for Different Caching

Models across Varied Content Sizes . . . . . . . . . . . . . . . . . . . . 41
4.6 Offloading Probabilities for Different Caching Models across Varied

Storage Capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Offloading Probability Comparison under Different Zipf Coefficients

for GC-GRU, MP, SLR, RD, and DQ . . . . . . . . . . . . . . . . . . . 43
4.8 Comparative Analysis of Throughput for Different Caching Models

across Varying Number of Clusters . . . . . . . . . . . . . . . . . . . . 45
4.9 Average Delay Dynamics for Different Caching Models across Varied

Numbers of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.10 Dynamics of Reward Convergence for Various Caching Schemes over

Episodes, illustrating distinct convergence points and learning trajec-
tories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11 Comparative Analysis of Performance Metrics (MSE, MAPE, RMSE)
for Different Caching Models . . . . . . . . . . . . . . . . . . . . . . . . 49

XIII



LIST OF ABBREVIATIONS AND
ACRONYMS

D2D Device-to-Device

Wi-Fi Wireless Fidelity

IoT Internet of Things

LTE Long Term Evolution

QoE Quality of Experience

AR Augmented Reality

RL Reinforcement Learning

DSA Dynamic Spectrum Access

SON Self-Organizing Networks

RNN Recurrent Neural Networks

SIC Successive Interference Cancellation

QoS Quality of Service

P2P Peer-to-Peer

ML Machine Learning

DT Decision Tree

XIV



RanF Random Forest

LRU Least Recently Used

LFU Least Frequently Used

IU Important User

FL Federated Learning

FedAvg Federated Averaging

UE User Equipment

DDQN Double Deep Q-learning Network

LSTM Long Short-Term Memory

MOS Mean Opinion Scores

UD User Devices

MUE Master User Equipment

SUE Slave User Equipment

WF Willingness Factor

SNR Signal-to-Noise Ratio

BP Battery Percentage

GC-GRU Graph Convolutional Gated Recurrent Unit

CP Caching Probabilities

GC-GRU_Out GC-GRU outputs

PPO Proximal Policy Optimization

XV



SLR Social-aware LRU caching

SMP Social-aware Most Popular Caching

RD Random Decision-based caching

DQ Deep Q-Network

FL_Out Federated Learning Output

ZIPF Zipfian Distribution

XVI



Chapter 1

Introduction

The advancement of mobile communication, driven by the widespread use of smart-
phones, has significantly changed user experiences. The prevalence of these devices has
led to a digital age marked by a remarkable increase in network data usage. As con-
sumer demand for diverse and data-heavy experiences grows, network infrastructure is
put under increasing strain, which emphasizes innovation to meet the changes in need
[1].

1.1 D2D Wireless Networks

Device-to-device (D2D) communication has also become a promising technology for
leveraging near-device resources to enhance the efficiency of future cellular networks.

1.1.1 Overview of Device-to-Device (D2D) communication

D2D communication directly transfers data between neighbouring devices, eliminat-
ing the requirement of a central network infrastructure such as cellular towers [2].The
smartphones, other tablets, and IoT devices will directly communicate with each other
using short-range wireless technologies such as Bluetooth or Wi-Fi Direct. D2D com-
munication provides various latency and reliability benefits which are quite different
from the traditional network- based communication systems.

1.1.2 Importance of D2D Networks in Enhancing Communica-
tion Efficiency and Network Capacity

D2D networks are prime additions to the efficiency of the network’s communication.
They allow direct communication between devices and relieve pressure on the central
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infrastructure by incorporating improved resource utilization and minimizing conges-
tion. D2D also allows for improved localized data transfer at incredible speeds with
great energy efficiency, especially in high-density population areas or sparsely covered
areas.

1.1.3 Challenges in D2D wireless network

Interference management is probably one of the main issues emerging in D2D wireless
networks. Here, signals are interfered with by devices with each other because of prox-
imity. In principle, this would compromise the quality of communication and through-
put. Another complicated task is resource allocation regarding spectrum, power, and
bandwidth along D2D links by fairness. Security is another consideration where D2D
communication introduces new vulnerabilities, such as eavesdropping and data leaks.
Such risks demand the use of strong encryption and authentication protocols. Such
risks must be mitigated by using strong encryption and authentication protocols. The
dynamic nature of D2D networks, wherein devices are in constant motion, further com-
plicates handover management and location tracking and thus demands more advanced
algorithms for smooth transitions. These problems must be resolved if D2D wireless
networks require growth in modern communications systems.

1.2 Content Caching in D2D Wireless Networks

Content caching is important in enhancing network performance and the quality of
experience of a D2D wireless network. As time goes by with the extensive inclusion
of D2D communication into classical wireless network structures, the demand for real-
time services and higher data consumption continues to rise [3]. Direct communication
between mobile devices reduces reliance on centralized base stations; its data rates
and latency can be improved. Current practice: Route communications through the
base station even when close to one another, inefficiencies, particularly for real-time
applications.
To counter such challenges and increase spectral efficiency in future cellular networks,
good content caching strategies will be adopted to have a centralized reduction in loads
on central base stations while generally boosting the total network performance.

1.2.1 Challenges of Content Caching in Wireless Networks

Yet today, mobile operators face many difficulties, especially in increasing demand for
data- heavy services caused by the wide spread of smartphones and multimedia content.
The ever- changing and unpredictable user behaviour patterns add another layer of
complexity to service optimization. In this environment, where user expectations are
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high and resources are limited, striking the right balance between service quality and
limited resources is crucial. Below are the key challenges related to content caching in
wireless networks:

• Collisions of Instantaneous Responses and Resource Limitations

This need for fast answers often clashes with the scarcity of bandwidth, process-
ing power, and sheer network infrastructure. This is bound to put significant
operational pressure on the mobile operator’s financial nervous system and in-
crease pressure on all stakeholders to meet the growing expectations of users.
Additionally, there will be a million-fold increase in the number of connected
devices, resulting in an exponentially high increase in the volume of data traffic.

• Financial Implications and Service Costs

Delivering services under such high quality and due to the rising demand will
create significant financial repercussions. All these expenditures to maintain and
modernize network infrastructure, invest in new technologies, and respond to the
needs of an ever-more sophisticated user base create enormous operational costs.
These points lead to the need to find novel ways to lower service costs while
increasing the efficiency of content delivery.

• Untapped Potential of Modern Smartphones

With all these challenges there would still lie tremendous potential in the present
advanced storage and processing capability of modern smartphones. Smartphone
is an essential creature of today’s life that stores underutilized features that can
be tapped by changing content distribution when accessed through the computing
power of smartphones. That would usher in new prospects toward easing resource
constraints in service delivery with a new future for mobile communication.

• Revolutionizing Content Distribution Strategies

The powerful storage, processing capabilities, and ease of connection characterize
the modern smartphone. Based on their integration into network infrastructures,
they can open new accessions. The result will be a redefining concept of content
distribution models that the smartphone will no longer just be a receiver of passive
content but an active contributor with the most efficient data transmission and
retrieval.

• Addressing the Evolving Challenges of the Digital Age

With such a progressive scenario, the landscape of challenges undergoes constant
metamorphosis due to technology marches and shifts in user behavior, so inno-
vation must be sought. Properly integrated into content distribution systems,
key features of the modern smartphone could prove to be a promising solution to
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age-old challenges of the digital age. The integration thus opens up avenues for
better services and mobilizes mobile networks to deal with the rising bandwidth
of an increasingly interconnected world.

1.3 Device-Level Caching Strategies in D2D Wireless
Networks

D2D wireless networks promise exciting development on the challenges of content distri-
bution in mobile networks, based on caching strategies at the device level. Device-level
strategies for content delivery are considered: location, social interactions, user prefer-
ences, and conditions under which the network operates. Using powerful smartphones
with storage capacity may enhance efficiency in transmitting data, reduce congestion
in the network, and provide a generally better experience for the users [4].

1.3.1 Proactive Content Caching

With increasing demands in the fast-evolving field of mobile communication, proactive
content caching is the new direction needed to meet those demands. This section will
study the strategic placement of caches at either Base Stations or User Equipment
and further would explore how proactive approaches benefit further. Proactive content
caching is a network approach that anticipates its contents and pre-loads them before
users ask for those contents. This reduces latency and provides a better user experience
with the storing of such frequently accessed or expected content close to the end-users,
thereby reducing the time it takes for such content downloads from remote servers
[5]-[7].

• Strategic Positioning at Base Stations and User Equipment

Proactive content caching also focuses on the strategic location of caches at the
Base Stations or within the User Equipment. This is much more efficient for
networks, reducing latency in fetching content that is closer to users and more
beneficial to user experience. It also reduces pressure on core network infras-
tructure because it keeps all the frequently accessed data at the network’s edge,
where the users are.

• Enhancing Energy Efficiency and Throughput

This strategic use of proactive content caching brings several key benefits, espe-
cially concerning the amelioration of energy efficiency in network infrastructure.
Proactive caching helps reduce overall energy consumption by reducing unneces-
sary data transfers and shortening the distance data needs to travel. On the other
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hand, proactive content caching boosts network throughput alleviates bandwidth
resource pressure and improves overall network performance. [8].

1.3.2 Edge Caching

Edge caching supports the development of proactive content caching. It allows user
equipment processing once content is pulled into the network, thus resulting in the
reduction of latency by directly accessing content that is stored locally. Furthermore,
the approach enhances the efficiency of network resource utilization, thus resulting in
overall optimization of content delivery [9]. This method is truly shifting in the way
of content distribution strategies as it resembles content delivery through anticipatory
principles. Since network edge dynamic reprocessing content qualifies as a new evolu-
tion of delivery, in itself, this will bring a significant improvement in QoE for mobile
users.

1.3.3 Two-Layered Edge Network Approach

The use of the two-edge layer network is considered as a core strategic framework
[10]. to be used to optimize content caching and delivery. Here, this section deepens
to put out an intensive investigation of the approach, focusing on the complexities of
Layer-1 caching, concerned with an effort to enhance cache hit ratios, and the distinct
challenges of Layer-2 wireless networks.

• Layer-1 Caching for Cache Hit Ratio Maximization

Layer-1 caching is a basic principle of content distribution policies. Content must
be placed in Layer 1, with emphasis always on high cache-hit rates. This chapter
deals with the underlying principles and schemes of Layer-1 caching by focusing
on the proactive placement of content to improve user satisfaction and proper
use of networking facilities. Key techniques such as prefetching and intelligent
caching policies are discussed as the current best means of achieving these goals.

• Layer-2 Solutions for Wireless Network Challenges

Whereas Layer-1 is optimized to improve cache hit ratios, Layer-2 focuses on
specifically targeting the challenges unique to wireless. The section explores the
challenges presented in the wireless environment, such as low bandwidth, latency,
and interference [11]. Layer-2 techniques work to push even further the limits of
good content delivery in poor conditions. Two of the techniques are high-accuracy
error correction and adaptive bitrate streaming.
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• Content Placement Dynamics in Layer-2

One of the salient features of Layer-2 is dynamic content placement management.
Real-time network conditions, user demand patterns, scalability for future expan-
sion, and factors and algorithms that influence the optimal placement of content
in the wireless network are evaluated. These are critical factors and algorithms
that ensure efficient content distribution, minimal latency, and effective use of
network resources.

1.4 Challenges and Limitations of Traditional Caching
Approaches in Dynamic Wireless Environments

TThis is where the challenges and limitations of traditional caching come into play,
with resource constraints, network conditions’ fluctuations, and the need to adapt to the
dynamic nature of changing user demand within dynamic wireless environments [12].
Therefore, innovative caching strategies that could adapt dynamically to the unique
characteristics of the wireless network, including mobility of the users, varying channel
conditions, and shifting user behaviors must be sought after in greater numbers.

• Optimal Content Placement Dilemma

In proactive content caching, one has to detect the best distribution of the con-
tents. It involves "the fine balance between request patterns and cache capacity".
With dynamic users’ demands and a small available space in the cache, an adap-
tive and agile approach becomes essentially more significant. To achieve the op-
timal balance between the pattern of the user’s requested content and the stored
ones requires continuous refinement and the application of advanced algorithms.

• Geographical and Social Factors

Geographical and social factors play into optimizing content caching in this sec-
tion. It will be clear that at numerous points in the discussion of placement,
several considerations are at play, both geographically and socially driven dy-
namics involved in the process of caching are highlighted here.

• Social Dynamics in Content Distribution

Besides geographical differences, social network characteristics among users also
influence the nature of a caching strategy. Most users who live within proximity
have almost identical preferences about content, which leaves scope for even more
focused cache strategies. This subsection discusses how social network differences
affect the optimization of content delivery and cache hit ratios.
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• Challenges in Content Delivery

Proactive caching of content does have several potential benefits, however, the
delivery of content poses various challenges at times. This challenge is some-
times caused by D2D communication or the cellular downlink at times of peak
congestion. Many of these difficulties demand sophisticated solutions to ensure
that there are smooth transitions among these diverse forms of communication,
but only when based on continuous content delivery as the premise behind the
complexity and challenges in effectively executing a proactive content caching
strategy.

1.5 Federated Learning Strategies

Federated Learning is an approach to distributed model training that does not neces-
sarily rely on centralized raw data. This chapter stresses the deployment of FL methods
within a two-layered network architecture considering their extensibility and flexibility
to optimize content caching. A privacy-preserving technique, FL enables distributed
devices to collaboratively train a shared machine-learning model using local data, with
user data being stored on the devices thus preserving privacy. FL has recently shown
great performance in applications like next-word prediction, fault detection, and anal-
ysis of sensitive medical data.

1.5.1 Machine Learning Techniques in Federated Learning

WithinFL, the integration of various machine learning techniques enhances model
training. This subsubsection provides insights into the machine learning algorithms
employed inFL for content caching optimization in Layer-1 and Layer-2.

1.5.2 Machine Learning Techniques in Layer-2 Challenges

To navigate the wireless network-specific challenges addressed in Layer-2, a suite of
machine learning techniques proves invaluable. This subsection explores how Machine
Learning algorithms contribute to real-time decision-making, mitigating the impact of
limited bandwidth, high latency, and disruptions. In the subsequent sections, we delve
deeper into the applications of the two-layered edge network approach, exploring real-
world implementations, case studies, and the evolving landscape of content caching
optimization.
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1.6 Advanced Techniques and Strategies

Pursuing optimal content caching in dynamic wireless environments requires further
investigation into the application of advanced techniques and strategies. This section
discusses the advanced methodologies that utilize recent technologies and strategies to
enhance the efficiency of content caching.

• Graph Convolutional Gated Recurrent Unit (GC-GRU) Models

The GC-GRU models present a novel approach towards content caching pre-
diction. This subsection describes the architecture and prominent features of
GC-GRU models and considers complex dependencies involved in dynamic D2D
communication [13], [14].

• Proximal Policy Optimization (PPO) Algorithm

As one of the tools to optimize content caching on individual devices within
a dynamic D2D environment, PPO is more critical [15]. The principles and
applications of PPO are briefly described next, including its ability to adapt the
content caching strategy to the dynamic changes in the network conditions.

• Dynamic Adaptation in PPO

Another major strength of the PPO algorithm is dynamic adaptability. This
subsection explores how PPO iteratively adjusts content caching policies in re-
sponse to real-time data, ensuring that it remains flexible and responsive to the
unpredictable nature of wireless environments [16].

• Augmented Reality (AR) Integration

The integration of Augmented Reality (AR) introduces an additional layer of real-
world context to content caching. This subsection explores how AR technologies
enhance content caching accuracy by considering factors such as the physical
environment, user movements, and environmental changes [17].

• Reinforcement Learning for Device-Level Adaptability

In the context of device-level adaptability, Reinforcement Learning (RL) algo-
rithms play a vital role. This subsection examines the application of RL tech-
niques in developing personalized content caching strategies at the device level,
customized to individual user preferences and usage patterns [18].
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• Dynamic Spectrum Access (DSA) for Enhanced Connectivity

To address the challenges posed by limited bandwidth, Dynamic Spectrum Access
(DSA) emerges as a strategic solution. This subsection explores how DSA tech-
nologies optimize content delivery by dynamically allocating spectrum resources
based on real-time demand [19].

• Adaptive Spectrum Allocation Strategies

In the realm of Dynamic Spectrum Access (DSA), the development of adaptive
spectrum allocation strategies is critical. This subsection examines the machine
learning-based algorithms employed in DSA to optimize spectrum utilization for
content caching in dynamic wireless networks [20].

• Self-Organizing Networks (SON) for Autonomic Optimization

he adoption of Self-Organizing Networks (SON) introduces autonomous optimiza-
tion capabilities. This subsection explores how SON technologies automatically
adjust content caching parameters based on network feedback, enhancing the
overall system efficiency.

• Learning Mechanisms in SON for Efficient Content Caching

A comprehensive understanding of the learning mechanisms within Self-Organizing
Networks (SON) is crucial for optimizing content caching. This subsection inves-
tigates how SON incorporates machine learning algorithms to adaptively refine
content caching strategies in response to evolving network dynamics. The sub-
sequent sections will present case studies, practical applications, and an analysis
of the broader implications of these advanced techniques on content caching in
wireless networks [21].

1.7 Gaps and Challenges in Existing Content Caching
Techniques in D2D Networks

Identifying the limitations and challenges of current content caching techniques on D2D
networks is essential for understanding the deficiencies of existing methods and pro-
moting further development with more effective solutions. This Research contributes
to exploring and analyzing these gaps, such as spectrum allocation, adaptive resource
management, and learning mechanisms.

1.7.1 Analyzing Geographical Factors

Geographical context adds another layer of complexity to optimizing content caching.
The spatial distribution of users at different locations directly influences the effective-
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ness of the cache [22]. This subsection discusses challenges and strategies involving
geographical factors to improve effective content placement.

1.7.2 Social Dynamics in Content Distribution

Besides the above geographical influences, social dynamics between users influence the
design of cache content strategies more intensely than the other aspects. Users in
tightly knitted social circles share similar interests in content and, hence, have scope
for focusing and efficient caching. This subsection looks at how social dynamics can
be used to optimize content distribution and, hence, improve cache hit ratios.

1.8 Motivation for Research

The motivation behind this Research stems from the ever-growing demand for more ef-
ficient and reliable strategies for caching content in D2D wireless networks. While data
volumes continue to grow and the number of connected devices increases, traditional
centralized content caching methods are reaching limits concerning resource efficiency
and scalability. The increasing challenges call for developing alternative approaches,
and FL is one of them. FL is a promising solution that will distribute the learning pro-
cess across edge devices to improve content caching in a decentralized manner, utilizing
collective device capabilities. The next section lists the central motivations driving this
Research:

• Nuanced Approach to Content Placement

Addressing the challenge of optimal content placement demands a sophisticated
and multi-faceted approach. The integration of machine learning algorithms,
predictive analytics, and real-time monitoring is crucial for navigating this com-
plex domain. By analyzing patterns in user behavior, content preferences, and
network dynamics, a proactive content caching system can adapt dynamically,
ensuring that the most relevant and frequently requested content is efficiently
stored and made readily available within the cache.

• Effective Content Placement Strategies

Achieving an optimal equilibrium between geographical and social factors re-
quires the design of carefully crafted content placement strategies. This section
delves into the complexities of developing approaches that incorporate both geo-
graphic and social data, ensuring that cached content is effectively aligned with
the preferences of users within specific regions and social networks.
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• Alleviating Backhaul Congestion

A key objective of integrating geographical and social factors into content caching
is to mitigate backhaul congestion. By strategically placing content caches in
accordance with user distribution and social connections, the strain on central
network backhauls is significantly reduced. This section explores how thoughtful
content placement can improve both the distribution and robustness of network
architecture.

1.9 Objectives of the Research

The foundation of this research is rooted in addressing the intricate and complex chal-
lenges posed by dynamic D2D communication within wireless networks. This section
articulates in detail the specific objectives that guide the investigation, along with the
overarching motivation driving the pursuit of these objectives. The research objectives
of this study include developing aFL framework for content caching in D2D wireless
networks, exploring the integration of augmented reality. The primary objectives of
this research are delineated to provide a structured framework for exploration. These
objectives encompass:

• Optimizing Content Caching Efficiency

The core objective is to optimize content caching efficiency within D2D networks.
This involves enhancing cache hit ratios, minimizing latency, and strategically
placing content to balance space utilization and caching effectiveness. Addition-
ally, the goal is to leverage FL techniques to enable collaborative intelligence
among devices in the network, improving overall caching performance.

• Addressing Trade-offs in Cache Hit Ratio and Space Utilization

A key focus is on addressing the trade-off between cache hit ratio and space uti-
lization. Balancing these factors is crucial for ensuring an efficient and sustainable
content caching strategy in dynamic wireless environments.

• Integrating Machine Learning Algorithms for Dynamic Adaptation

The primary objective in addressing the dynamic aspects of Device-to-Device
(D2D) communication is to integrate machine learning algorithms that facilitate
the adaptive optimization of content caching strategies. This approach enables
real-time adjustments that respond to shifts in user behaviors and fluctuations
in network conditions.
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• Intricacies of D2D Communication

The dynamic and unpredictable nature of Device-to-Device (D2D) communica-
tion presents considerable challenges. A comprehensive understanding of these
challenges is essential for developing robust content caching strategies capable of
adapting to the ever-changing conditions of the wireless environment.

• Optimizing User Experience

The main motivation behind this research is to improve user experiences in re-
sponse to the increasing demand for multimedia, gaming, and social interactions
on smartphones. Proactive content caching plays a vital role in ensuring fast and
efficient content delivery, ultimately enhancing overall user satisfaction.

• Efficiency Gains Through Advanced Techniques

The integration of advanced techniques, including Federated Learning (FL), Graph
Convolutional Gated Recurrent Unit (GC-GRU) models, and Proximal Policy
Optimization (PPO) algorithms, holds significant promise for enhancing effi-
ciency. The goal is to utilize these technologies to overcome the limitations of
traditional content caching methods, offering more effective and adaptable solu-
tions.

• Contribution to the Wireless Networking Landscape

This research seeks to offer meaningful insights and strategies that contribute
to the evolution of wireless networking. By addressing key challenges in content
caching, the study aims to drive innovations that extend beyond individual use
cases, ultimately aiding in the broader advancement of wireless communication
frameworks. The subsequent sections outline the methodology employed in this
study, with a particular focus on the use of machine learning algorithms, Fed-
erated Learning (FL), and other state-of-the-art techniques to enhance content
caching in Device-to-Device (D2D) wireless networks. The proposed framework
is designed to address the inherent complexities of content caching in dynamic
wireless environments, leveraging machine learning-driven adaptive strategies for
improved performance.
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1.10 Thesis Structure

The organization of the thesis is as follows:

• Chapter 1: Introduction

Chapter 1 serves as a comprehensive introduction to the research. It delves into
the intricate landscape of D2D communication in wireless networks, emphasizing
the dynamic and unpredictable nature of wireless environments. The challenges
posed by limited bandwidth, high latency, and disruptions are explored. The
chapter outlines the exploration of machine learning-based methods, FL, and edge
caching to address the efficiency of content caching in D2D wireless networks. It
sets the stage by presenting the research objectives, questions, and the contextual
significance of the study.

• Chapter 2: Literature Review

In Chapter 2, a thorough literature review is presented, encompassing existing
studies on edge caching, FL, and machine learning techniques in wireless com-
munication scenarios. The critical analysis identifies gaps and limitations in the
current body of knowledge, establishing the theoretical foundation for the pro-
posed research. Relevant methodologies and findings from prior works inform
the development of the approach to optimizing content caching in D2D wireless
networks.

• Chapter 3: Methodology

Chapter 3 provides a detailed exposition of the methodology employed in the re-
search. It elucidates the experimental setup, data collection process, simulation
scenarios, and the metrics used for performance evaluation. The chapter offers
insights into the execution of experiments designed to validate the proposed ap-
proach for enhancing content caching efficiency in D2D networks.

• Chapter 4: Results and Discussions

In Chapter 4, the research unfolds with the presentation of experiment results
and their in-depth analysis. The proposed approach’s performance is scrutinized
and compared against existing methods, unraveling insights into the factors in-
fluencing caching efficiency. The findings are discussed in alignment with the
research objectives, showcasing the efficacy of the proposed methodology.

• Chapter 5: Conclusion

The concluding chapter, Chapter 5, encapsulates the essence of the research.
It summarizes the main findings, draws conclusive insights from the results and
analyses, and underscores the contributions of the study. Implications for content
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caching optimization in D2D wireless networks are discussed, paving the way
for potential future research directions. This chapter serves as a succinct and
conclusive endpoint to the thesis.
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Chapter 2

Literature Review

This chapter delves deeply into the application of a FL framework for content caching
in D2D wireless networks. A comprehensive review of pertinent literature in this do-
main is undertaken to provide readers with a thorough understanding of prior research
and advancements. The primary objective of this literature review is to establish a
strong foundation for the proposed FL approach in optimizing content caching within
D2D wireless networks. The chapter begins with an exploration of the pivotal role
that optimized edge caching plays in the context of wireless communication systems,
diving into the existing challenges hindering efficient edge caching while emphasizing
the importance of addressing these obstacles. Further, it underlines the far-reaching
impacts and relevance of the use of FL algorithms in boosting caching performance
within the unique dynamics of D2D wireless networks and their future benefits.

2.1 Related Work

Caching is the most crucial process, which involves storing frequently accessed data
in a local cache, thus reducing access times and offloading network congestion. In
the dynamic context of D2D communication, caching becomes even more significant,
and therefore plays a vital role in improving overall performance as well as better-
ment of communication efficiency. The highlight of this contribution was that Zhu
et al, proposed a machine learning-based novel resource reuse scheme designed for
D2D communication within cellular networks [23]. This novel scheme addresses the
co-channel interference challenge with cellular users by distributing orthogonal subcar-
riers very smartly. By maximizing the throughput of cellular users, the scheme then
permits D2D pairs to reuse various subcarriers which then improve their throughput
without deteriorating the performance of cellular users. The architectural elegance of
the proposed solution is in the exploitation of a low complexity pointer network which
makes use of two Recurrent Neural Networks (RNN)—one to act as an encoder and
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the other as a decoder. This sophisticated model not only achieves quite satisfactory
performance metrics but it is also able to shine in scenarios characterized by low com-
putational complexity networks, which often demonstrate its versatility and efficiency
within dynamic D2D environments.

The study in [24],[25] aim is to increase sum rate while considering the decoding
constraint in Successive Interference Cancelation (SIC) and maintaining the Quality of
Service (QoS) for D2D and cellular users. In today’s wireless networks, the demand
for higher data rates and improved quality of service is ever-increasing. The commu-
nication between mobile users in the network is performed by making groups. This
communication can be peer-to peer (P2P) and the grouping that is done by two or
more than two mobile user is called clustering [26]. There are several types of clusters
depend on the user in that cluster. There are heterogenous networks that consist of
different types of cellular devices using diverse technologies, such as 5G, LTE, and
Wi-Fi. [27]. Micro cell, homogeneous networks, and macro cell are some of the other
types of clusters that exist in cellular network architecture. Users in a network can be
employed uniformly, stochastically, or randomly [28].

In a notable exploration of enhancing caching strategies within D2D networks,
Prerna et al, delved into the complexities of node classification and cache location de-
termination, as documented in [29]. Their approach is based on detailed classification
of nodes into clusters using a trust factor, which will be the most crucial factor in relia-
bility and efficiency in D2D communication networks. Based on the power of Machine
Learning, researchers used the classifiers of the Decision Tree (DT) and Random Forest
(RanF) models to identify prime locations for the cache inside the network architec-
ture. Remarkably, these models perceive the trust factor as the main parameter in the
mutual connections between users and they portray dynamic interpersonal connections
between them, within the network. Interestingly, the experimental results unveiled the
superiority of the RanF model in accuracy, with the evidence of effectiveness in making
more accurate cache location predictions. However, in spite of its virtues, the RanF
algorithm had a significant flaw—a potential delay in convergence from the use of
cached data based on the gateway. This subtle insight into the limitation of the algo-
rithm, notwithstanding its otherwise commendable performance, certainly adds a layer
of practical consideration and therefore offers valuable insights into further fine-tuning
within the context of D2D caching strategies.

In [5], new community detection and attention-weighted FL-based proactive edge
caching is proposed by Li et al, The authors ranked the contents of the users based on
LRU and LFU. However, the drawbacks of the proposed strategy is that the perfor-
mance of Important User (IU) or prioritized user will degrade with time because of it
limited battery power.

As far as advanced D2D network innovations are concerned, Zhang et al, proposed
a foundational FL framework in [30] particularly named D2D-FedAvg, which was de-
signed exclusively for application in mobile edge networks. This new idea concentrates
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on the design of a more advanced model of two-tier learning selectively engineered
to reduce communication costs with no loss of the desired learning performance, pre-
cisely like that associated with the classic Federated Averaging model, FedAvg. This is
achieved by natively integrating the D2D communication in the learning process, in-
cluding D2D grouping, master user equipment (UE) selection, and D2D exit, resulting
in the design of a strong D2D-assisted federated averaging algorithm. The empiri-
cal results underline well the algorithm’s strength in significantly reduced communi-
cation cost as compared with its traditional federated averaging counterpart within
cellular networks. Authors introduced, in parallel research of trailblazers, a double-
layer Blockchain-Based Deep Reinforcement Federated Learning (BDRFL) scheme in
[31].The new framework aims at improving the data security and caching efficiency
in D2D networks. Under exhaustive evaluation with comprehensive failure scenarios
such as crash, omission, and Byzantine failure, the scheme based on BDRFL was very
robust. Simulation results illustrated a strong reduction in download latency, mainly
under different types of attacks, making this two-layered blockchain-infused solution ca-
pable of enhancing a network’s security along with the effectiveness of caching content
in D2D. This juxtaposition of approaches brings to light the dynamic landscape of D2D
research, exhibiting diverse methodologies to tackle key challenges in communication
networks.

Xiao et al, designed an optimization algorithm considering task completion delay
and energy consumption [32]. Their work employed the improved BPSO algorithm to
optimize the content caching, and the iMOB algorithm was used to find task offloading.
The experimental results also showed the superiority of their approach compared with
several benchmark algorithms because it can optimize the performance of D2D-aided
MEC networks. The authors, Li et al, developed the CAFLPC algorithm incorporating
Attention Weighted Federated Learning with a Bidirectional Long Short-Term Memory
network, named it AWFL BiLSTM in the domain of proactive edge caching [1]. This
is to predict content popularity without losing users’ privacy effectively. An LRU and
LFU are used for content in this algorithm. This strategy introduces the problem
of the mobility of high- priority users, typically mobile devices whose performance
might be jeopardized due to low battery power. An essential challenge for maintaining
the success of this proactive edge caching framework requires choosing and replacing
Important Users (IUs) in the cluster.

Yu et al, [33] came up with a new joint approach that takes care of cache placement
and content recommendation to improve edge caching performance in opportunistic mo-
bile networks. Extensive experiments by the proposed algorithms demonstrated better
performance in various scenarios than baseline methods. Meanwhile, Li et al, pre-
sented a proactive edge caching scheme that adopted D2D-assisted wireless networks,
while focusing on learning from user preference [34]. This new scheme aggregates the
prediction of users’ future demands via machine learning and at the network’s edge,
strategically caches it. This user preference is dynamically learned from historical be-
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haviors and provides real-time adaptivity to dynamic network conditions. Simulation
results emphasize the efficiency of this scheme, dictating higher hit ratios and lower
average access delay than existing approaches. This marks a very important stride in
advancing the caching efficiency of D2D-assisted wireless networks.

Bai et al, introduced a social-aware D2D caching scheme that intricately integrates
social incentives and recommendations into the decision-making process of D2D caching
[13]. Employing FL, the scheme predicts social relationships in a privacy-preserving
manner and employs deep reinforcement learning to make optimal D2D caching de-
cisions based on these predicted social relationships. The overarching optimization
objective is to maximize the data offloading probability, formulated as a Markov de-
cision process and effectively solved using a double deep Q-learning network (DDQN)
algorithm. Simulation results underscore the efficacy of the proposed scheme, showcas-
ing commendable performance in prediction accuracy and convergence while leading
to reduced average delay and improved offloading probability. In a related context,
Khan et al, delved into the strategic utilization of caching at the network edge to
enhance service quality, particularly in mitigating transmission costs and network con-
gestion during surges in network traffic, facilitated by D2D communication [35]. Their
proposed approach involves clustering D2D users with similar interests through a hi-
erarchical agglomerative clustering algorithm, subsequently optimizing the cache hit
probability for each cluster. Additionally, the authors put forth a monetary incentive-
based mechanism designed to incentivize user participation in D2D communication by
rewarding users with a favorable content-providing history. Simulation results under-
score the significant potential of these methods, showcasing an impressive improvement
in cache hit rates by over 40% in D2D networks.

Nowadays the majority of researchers studied interaction behavior of user and then
extract their preferences. This is proven by vast research that the prediction of network
by using users preferences is an intelligent way [36]-[39]. For example, Meng et al,
designed a methodology for social networks by using LSTM network combined network
embedding [36]. Xia et al, explored a prediction model for dynamic social networks,
focusing on learning dynamic graph representations [37]. Nevertheless, the aspect of
privacy remains a significant concern in social prediction. In prior research, Xiao et
al, presented security measures utilizing reinforcement learning techniques to ensure
secure offloading to edge nodes, particularly in the context of safeguarding against
jamming attacks [40]. Several studies combined FL with graph representation learning
using private factors of users [41]. For example, the study in [42] exhibited that the
federated graph neural network is effective and protected computationally.
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2.2 Chapter Summary

This chapter delves into the contemporary research landscape on applying Federated
Learning (FL) frameworks for content caching in D2D wireless networks. Our inves-
tigation has identified a few relevant findings and some knowledge gaps of interesting
nature. There is a research gap with regards to optimization of content caching in
D2D wireless networks- scanty scalable, and efficient solutions abound. FL seemed
promising, in addition to the improvements in cache hit ratios and latency reduction,
few systemic studies have been carried out so far concerning the high computational
complexity and scalability issues prevalent in large-scale networks.

In spite of the research body on FL content-caching in D2D wireless networks, an
obvious gap lies in the investigation of the infusion of other machine learning algo-
rithms or methods. This is pointed out in this paper. While the previous sections
have established benefits of coupling deep reinforcement learning with FL to optimize
caching, much more needs to be explored on how all the benefits of unsupervised learn-
ing methods could attach and improve the intelligence of these content caching systems
significantly. Techniques such as clustering algorithms or generative models are bound
to reveal inherent patterns or hierarchies in the data. This bridging opens new avenues
for novel approaches to integrate diverse machine learning methodologies into order to
achieve more advanced and adaptive content caching solutions for D2D wireless net-
works. What follows is a variety of machine learning approaches and their implications
for improving cache efficiency, scalability, and privacy that call for further research,
respectively.

The inspection done brings along with it several important findings and method-
ologies connected to content caching in D2D wireless networks, especially on FL tech-
niques. Key findings of this work include:

• A notable approach for content distribution and caching selection difficulty is the
application of multi-stage techniques of FL, as well as reinforcement learning.
Another salient approach is multi-agent systems enabling mobile users to make
context-aware caching decisions sensitive to their dynamic operating conditions.

• Cooperative caching techniques, combining learning automata-based Q-learning,
demonstrate the potential to enhance Mean Opinion Scores (MOS) for participat-
ing users. These strategies, by considering anticipated user locations and content
interests, surpass non-cooperative and random caching approaches.

• The fusion of FL holds the promise of efficient and privacy-preserving content
caching solutions. FL enables accurate estimation of user preferences and content
caching algorithms independently, optimizing caching decisions while safeguard-
ing user privacy.
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• Scalability emerges as a pivotal consideration in the design of content caching
systems. Adaptive algorithms and multi-layered structures, present promising
results in developing scalable content caching solutions. These approaches effec-
tively tackle challenges associated with escalating data volumes and the impera-
tive of resource allocation.

While the existing body of research primarily focuses on the application of FL for
content caching in D2D wireless networks, additional exploration is imperative to in-
vestigate the integration of alternative machine learning algorithms and methodologies.
Researchers can enhance the intelligence and adaptability of content caching systems
by incorporating unsupervised learning approaches, such as clustering algorithms and
generative models. This extended research effort will contribute to the development of
more advanced and efficient caching solutions, addressing concerns related to scalabil-
ity, privacy, and overall performance in D2D wireless networks.
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Chapter 3

Research Methodology

The methodology for research work on Content Caching in D2D Wireless Networks is
explained in this section. Figure 3.1, illustrates the network architecture which provides
a panoramic view of the framework used in the study, which represents a dynamic envi-
ronment consisting of BSs and UD, sub-classed under two types: MUE and SUE. UD’s
population is segmented into several clusters around the areas of proximity and con-
tent availability thus making for effective resource allocation and content distribution
efforts.
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Figure 3.1: Network Architecture for Caching in D2D Wireless Networks
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This 28 GHz millimeter-wave spectrum also makes use of OFDM and OFDMA and
is capable of fully utilizing the bandwidth it could entail. Together with high-speed
data transmission, this would make communication much more efficient and further the
information through the D2D network would provide a smooth experience for streaming
content or data exchange for any end user.

Within this framework, the model introduces D2D links between Mobile User Equip-
ment, and SUEs, through direct peer-to-peer data transfer. In this decentralized man-
ner, it attempts to decentralize network congestion and accelerate the efficiency of data
delivery more notably in locations where traditional infrastructure-based communica-
tion is less efficient or un-reachable.

3.1 Clustering of Devices

Devices in our proposed model are clustered based on their content preferences and
user ratings. A feature matrix X is constructed to initiate clustering, where the ith row
of the matrix represents the ith device, device, and each column represents a unique
content item j for caching. The matrix entries Xij are populated by averaging the
user ratings for each content item across the devices, a process that can be written
mathematically as

Xij =
1

Nij

∑
Uij, (3.1)

where Uij is the user rating for content j on the ith device and Nij is the number of
users who rated content j on the ith device. This feature matrix helps cluster devices
by their content preferences and ratings.

A K-means algorithm is employed to cluster these devices. This step begins by
randomly distributing k centroids across feature space X. The Euclidean distance
metric is used to assign devices to the closest centroids. The centroids are progressively
reformulated as the means of the devices allocated to each centroid until convergence.
The objective function for K-means can be written as

J =
D∑
i=1

K∑
j=1

δ(i, j)||Xi − µj ||2 , (3.2)

where δ(i, j) is an indicator function that equals 1 if device i belongs to cluster j and 0
otherwise, with D being the total number of devices. Xi represents the feature vector
of device i, and µj denotes the centroid of cluster j. Therefore, ||Xi−µj||2 represents
the squared Euclidean distance between device i and centroid j. It measures how far
device i is from its assigned centroid j in the feature space. Given Xi the centroid is
updated as:

µj =
1

|Cj|
∑
i∈Cj

Xi, (3.3)
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where Cj represents the set of devices assigned to centroid µj .
Through this iterative process of assigning devices to clusters and updating cen-

troids, devices with similar content preferences and ratings are grouped together.
Through a comparison of the content preferences and ratings of devices in the D2D
wireless network, the devices form exclusive clusters. These clusters facilitate the sub-
sequent optimization of content caching strategies tailored to specific device groups in
the D2D wireless network.

3.2 MUE Selection

The process of Master User Equipment (MUE) selection in the context of D2D wire-
less networks, overseen by the Base Station (BS), is a multifaceted procedure crucial
for optimizing communication dynamics. This meticulous selection process involves a
comprehensive evaluation based on three pivotal factors: the Willingness Factor (WF),
Signal-to-Noise Ratio (SNR), and Battery Percentage (BP). Each of these factors plays
a distinctive role in discerning the most adept device to undertake the crucial role of
MUE within the network.

3.2.1 Willingness Factor (WF)

The Willingness Factor, denoted as WFi for each device i, encapsulates the readiness
of a device to embrace the responsibility of being the MUE. This factor can be concep-
tualized through a numerical rating system or as a binary indicator, manifesting the
device’s inclination to actively participate in the D2D communication process. The
Willingness Factor serves as an essential qualitative metric, reflecting the cooperative
disposition of individual devices. The mathematical equation can be expressed as fol-
lows:

WFi =

{
1 if device i is willing to take the role of MUE
0 if device i is unwilling to take the role of MUE.

. (3.4)

3.2.2 Signal-to-Noise Ratio (SNR)

The Signal-to-Noise Ratio, represented as SNRi for each device i, stands as a critical
quantitative metric characterizing the quality of communication channels. Elevated
SNR values correspond to superior signal quality, indicative of a robust and reliable
connection. The SNR factor is instrumental in gauging a device’s potential to function
effectively as an MUE, as it directly correlates with the overall communication quality
within the D2D network. Mathematically it can be expressed as:

SNRi = RSSu − NL. (3.5)
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Where,

• SNRi be the SNR for a particular candidate Master User Equipment (UE).

• RSSu be the Received Signal Strength for the signal from the candidate Master
UE.

• NL will be the noise level in the wireless environment.

3.2.3 Battery Percentage (BP)

The Battery Percentage, denoted as BPi for each device i, indicates the amount of
power left in the device. Thus, studying the lifetime of the devices, which is fundamen-
tally important for the sustainable nature of D2D communication, becomes essential.
The device must maintain 60%–70% of the battery to ensure efficient clustering and
data exchange participation. The BP factor assumes importance while evaluating the
ability of the device to endure the MUE role for a long duration of time.

3.2.4 MUE Selection Process

The MUE selection process integrates these factors through a comprehensive mathe-
matical expression:

MUEi = argmax
i

(WFi × SNRi × BPi) . (3.6)

This mathematical expression states that the MUE is the device i which, after
calculating the product of these factors, has the highest resulting value. The choice
decision can be termed as a subtle integration of willingness, signal quality, and battery
status, with the aim of yielding the most suitable device for MUE to take up the valued
role in the D2D wireless network. Given the harmonious commingling of qualitative
and quantitative criteria, the MUE selected would be not only technically proficient
but also operationally viable for the D2D communication ecosystem in question.

Cellular operators can also encourage devices to become MUEs by additional data
MBs or call credits. This mechanism for incentivization encourages the proactive in-
volvement of devices in playing the MUE role and governs the selection process is as
described in Algorithm 1.
The mathematical formulation and careful handling of multiple criteria in the selection
of the MUE aim at optimizing the choice based on willingness from different devices,
signal quality, battery capacity, and incentivization strategies within the D2D wireless
network for efficient and effective content caching mechanism.
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Algorithm 1: MUE Selection Algorithm
1 Input: WFi, SNRi, BPi

2 Output: Selected MUEi

3 for each device i do
4 if WFi = 1 then
5 Device i is willing to take MUE role
6 end
7 else
8 Device i is not willing to take MUE role
9 end

10 Calculate Combined Metric: Mi ←WFi×SNRi×BPi for each device i

11 end
12 Select MUE: MUEi ← argmaxi Mi Select device with maximum combined

metric

3.3 Data Sharing Process

n optimizing content caching strategies in D2D wireless networks, the Data Sharing
step is crucial in facilitating the exchange of valuable information between Slave User
Equipment (SUE) devices and the Master User Equipment (MUE) devices within each
D2D cluster.
Let’s denote the number of devices in a cluster as n and the total number of unique
content items available for caching as m. Each device i within the cluster possesses
two key pieces of information: the current popularity score of content j, denoted as
Pij, and the historical usage count of content j, represented as Uij.

3.3.1 Current Content Popularity Sharing

The sharing of current content popularity SCPij from SUE device i to MUE device k
within the cluster directly transfers the popularity score. This process is mathemati-
cally expressed as:

SCPij(k) = Pij. (3.7)

This equation signifies that the MUE device k obtains the current popularity score
of content j directly from the corresponding SUE device i.

3.3.2 Historical Usage Data Sharing

Similarly, transmitting historical usage data UPij from SUE device i to MUE device k
within the cluster involves directly exchanging usage counts. This process is denoted
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by:
UPij(k) = Uij. (3.8)

Here, the MUE device k acquires the historical usage count of content j directly
from SUE device i.

Equations 3.7 and 3.8 represent the fundamental data-sharing process between SUE
and MUE devices within a D2D cluster. This shared information serves as the basis
for subsequent analyses and predictions, forming a critical foundation for optimizing
content caching strategies in the D2D wireless network.

3.4 GC-GRU Model Parameters and Values Expla-
nation

The configuration parameters defined in Table 3.1, indeed, play a significant impact in
the running dynamics of the Graph Convolutional Gated Recurrent Unit model and
therefore have a significant influence over the model’s behavior under the challeng-
ing training process. Each of these parameters plays a pivotal role in orchestrating
the adaptability to the slight intricacies related to content caching in D2D wireless
networks. Let’s break down each of these parameters and explicate its contribution
individually:

Table 3.1. GC-GRU Model Parameters and Values

Parameter Value
Input Features SCP(k)

ij ,UP(k)
ij

Model Parameters (θ) 0.2
Initial Hidden State (h0) 0.0
Sigmoid Threshold (σ) 0.7
Reset Gate Weights (Wz) 0.3
Update Gate Weights (Wr) -0.5
Candidate Weights (Wh) 0.1

• Input Features

The input features, denoted as SCP(k)
ij and UP(k)

ij , denote the current-time popu-
larity together with historical usage data of a certain content item on a specific
device. These are the basic features against which the model is developed, thereby
giving it the basic information to be able to make proper caching decisions.
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• Model Parameters (θ)

The model parameters, collectively represented as θ, assume a fixed value of
0.2. These parameters are the basic configuration, initiating the setting of initial
conditions in the GC-GRU model. This higher-order value is considered vital in
determining the initiation point from where the model should learn.

• Initial Hidden State (h0)

The initial hidden state, designated as h0, has a value of 0.0. The parameter has
determined the model’s latent state at the start of the algorithm and dictates how
the model might successfully capture and retain information as it moves through
the training iterations.

• Sigmoid Threshold (σ)

The sigmoid threshold (σ), set at 0.7, modulates the activation of the sigmoid
function in the GC-GRU model. This major value explains how saturation and
activation are governed, which hugely impacts the decision-making process of the
model.

• Reset Gate Weights (Wz)

The reset gate weights (Wz), assigned a value of 0.3, and with their values, they
change the information flow passing through the reset gate of the GC-GRU model.
The weights facilitate the model to forget or retain the previous information as
chosen by the context.

• Update Gate Weights (Wr)

The update gate weights (Wr), with a value of -0.5, have complex control over
the information update mechanism within the GC-GRU model. These weights
set a balance between retaining and updating the hidden state, thereby capturing
temporal dependencies for better prediction accuracy.

• Candidate Weights (Wh)

The candidate weights (Wh), set at 0.1, have a certain bearing on the compu-
tation of the candidate’s hidden state in the GC-GRU model. Such weights are
critical during the determination of how much new information interferes with
the model’s changing hidden state in order to yield its predictive power.

Fine-tuning requires prudent selection of these parameters with an optimal level
of performance. The chosen values of parameters are good enough to achieve a nicely
balanced complexity of the model and the effectiveness of content caching prediction,
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which means highly precise calibration of those particular challenges faced by the D2D
wireless network scenarios. Altogether, each of these parameters integrates together to
achieve the desired goal by giving the GC-GRU model the strength to navigate and
optimize the content caching strategies with perfection within the dynamic landscape
of D2D wireless networks.

3.5 Utilizing GC-GRU Model for Content Caching
Optimization

The GC-GRU model has been pivotal in MUE devices in D2D wireless networks for
content caching strategies optimization. This advanced model effectively amalgamates
GC and GRU mechanisms to capture spatial and temporal dependencies, serving for
robust prediction of the content caching. Fundamentally, the application of the GC-
GRU model unfolds into two steps.

3.5.1 Spatial Analysis using Graph Convolutional Layer

The GC layer initiates the spatial analysis by scrutinizing device relationships based on
shared content popularity (SCP(k)

ij ). The mathematical representation of this process
is encapsulated as GC(SCP(k)

ij ).

This step enables MUE devices to discern the spatial context, identifying devices
with similar content popularity patterns within the D2D network.

3.5.2 Temporal Analysis via Gated Recurrent Unit (GRU)

The GRU mechanism takes charge of capturing temporal patterns within historical
usage data (UP(k)

ij ). This involves four essential components:

• Hidden State (ht) The equation for the hidden state ht represents the current
memory content of the Gated Recurrent Unit (GRU) at time step t. It is calcu-
lated using a combination of the previous hidden state ht−1 and the candidate
activation h̃t weighted by the update gate zt. The hidden state ht captures the
learned temporal dependencies from the historical usage data.

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (3.9)

• Update Gate (zt) The update gate zt determines the extent to which the pre-
vious hidden state ht−1 is retained and how much of the new information should
be incorporated into the current hidden state ht. It is computed using a sigmoid
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activation function applied to the weighted sum of historical usage data and the
previous hidden state. This gate allows the GRU to adapt to dynamic changes
in the input data over time.

zt = σ(Wz · [UP(k)
ij , ht−1]). (3.10)

• Reset Gate (rt) The reset gate rt controls the degree to which the previous hid-
den state ht−1 is forgotten when computing the candidate activation h̃t. Similar
to the update gate, it is computed using a sigmoid activation function applied to
the weighted sum of historical usage data and the previous hidden state. This
gate enables the GRU to selectively reset its memory based on the input context.

rt = σ(Wr · [UP(k)
ij , ht−1]). (3.11)

• Candidate Activation (h̃t) The candidate activation h̃t is the new candidate
memory content of the GRU at time step t. This is a computation involving an
activation function in the form of a hyperbolic tangent over the weighted sum
of the current input and the modified previous hidden state. This captures the
potential updates to the hidden state from the current input and the previous
context.

h̃t = tanh(Wh · [UP(k)
ij , rt ⊙ ht−1]). (3.12)

These equations collectively empower the model to discern temporal dependencies,
adapting to dynamic changes in historical usage patterns.

3.5.3 Prediction of Caching Probability

The final phase involves predicting the caching probability (CP(k)
ij ) of content j on

device i by MUE device k. This prediction is realized through the equation:

CP(k)
ij = softmax(GC(SCP(k)

ij ) · ht). (3.13)

The softmax function outputs a probability from the GC layer. This probability
guides the MUE devices in making decisions about the content items, which are prefer-
ably to be cached at which of the many devices present in the D2D network. Finally,
these predictions enhance the efficiency of content delivery as well as prudent usage of
the network resources. The dual focus of GC-GRU on spatial and temporal dynam-
ics allows MUE devices in the D2D networks to make intelligent and context-aware
content caching decisions. The model is flexible and can be extremely valuable assets
when enhancing the overall performance of content delivery in wireless communication
environments.
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It is implemented as Algorithm 2, nd describes the implementation of the GC-GRU
model for content caching optimization. That model is conceptualized to improve the
efficiency of content-caching decisions in D2D wireless networks. The algorithm takes
training data in the form of(SCP(k)

ij ,UP(k)
ij ) and aims to predict caching probabilities

CP(k)
ij . The initialization involves setting parameters θ and the initially hidden state

h0.

Algorithm 2: GC-GRU Model for Content Caching Optimization
1 Input: Training data (SCPij(k),UPij(k))
2 Output: CP(k)

ij

3 Initialize θ, h0 for each epoch do
4 for each training sample (SCPij(k),UPij(k)) do
5 Spatial Analysis: Compute GC(SCP(k)

ij )

6 Temporal Analysis:
7 zt = σ(Wz · [UPij(k), ht− 1])

8 rt = σ(Wr · [UPij(k), ht− 1])

9 h̃t = tanh(Wh · [UPij(k), rt ⊙ ht−1]) ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

10 Prediction: CPij(k) = softmax(GC(SCPij(k)) · ht)

11 end
12 Update Parameters: Update θ using backpropagation and optimization
13 end

In each iteration, it completes the training encompassing spatial analysis, temporal
analysis, prediction, and update of parameters. The algorithm computes a GC based on
popularity data in spatial analysis. Temporal analysis involves the processing of usage
data through a GRU, capturing temporal dependencies. The prediction step calculates
caching probabilities using a softmax function applied to the combination of GC and
the hidden state. Finally, the model parameters are updated using backpropagation
and optimization techniques.

This iterative process ensures the adaptive training of the GC-GRU model, allowing
it to dynamically adjust to evolving network conditions. The utilization of spatial and
temporal analyses, coupled with predictive capabilities, enhances the model’s ability
to make informed content caching decisions. The detailed algorithmic representation
provides a clear and systematic insight into the steps involved in optimizing content
caching within D2D wireless networks using the proposed GC-GRU model.
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3.6 Leveraging Federated Learning for GC-GRU Out-
put Integration

Following the GC-GRU model’s caching probabilities (CP) prediction, Federated Learn-
ing (FL) integrates these outputs across devices within the D2D cluster, as illustrated in
Figure 3.2. This approach facilitates collaborative model training without centralizing
raw data, enhancing scalability and privacy.
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Figure 3.2: The Federated learning model for Caching in D2D Networks: where local
data from MUE is processed using the GC-GRU model for spatio-temporal feature
extraction. These features are integrated into a global model at the BS, and PPO is
employed for refining the global model through iterative policy updates

3.6.1 GC-GRU Output Preparation

The caching probability predictions (CP(k)
ij ) obtained from the GC-GRU model are

aggregated and prepared for Federated Learning as in Eq. 3.13:

OP(k)
ij = CP(k)

ij . (3.14)
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3.6.2 Federated Learning Initialization

FL is initialized by aggregating GC-GRU outputs (OP(k)
ij ) across devices within the

D2D cluster to create a global model:

GM(0) = Agg(OP(k)
ij ). (3.15)

3.6.3 Federated Learning Iterations

The global model (GM(t)) is iteratively trained using federated averaging:

LM(k) = LU
(
GM (t−1),Out

(k)
ij

)
(3.16)

GM(t) = Agg(LM(k)) (3.17)

Here, t represents the iteration number, LM(k) signifies the local model state at device
k, and LU involves updating the LM using the device-specific GC-GRU outputs. FL
facilitates collaborative model training utilizing GC-GRU (OP(k)

ij ) outputs across dif-
ferent devices. This iterative process enables the convergence of a global model (GM(t))
representing collective insights from diverse devices’ data, enhancing the efficiency and
effectiveness of content-caching strategies within the D2D network.

3.7 Utilizing PPO for Refinement of Global Model
from Federated Learning

Following the iterative refinement of the global model (GM(t)) using FL, the Proximal
Policy Optimization (PPO) algorithm is employed further to enhance content caching
strategies within the D2D network. This process aims to optimize content caching
decisions based on the learned policies.

3.7.1 Initial Policy Determination

The initial policy (πθ0) is determined based on the global model output from FL:

πθ0 = Policy(GM(t)). (3.18)
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3.7.2 PPO Training

Training of the policy using the PPO algorithm involves maximizing the expected
cumulative reward, aiming to improve content caching decisions based on the refined
policy:

θt =max
θ

Et

min

(
πθ(at|st)
πθold(at|st)

Aπθold (st, at),

clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Aπθold (st, at)


 .

(3.19)

In the equation for training the policy using the Proximal Policy Optimization
(PPO) algorithm, 1− ϵ and 1 + ϵ represent the lower and upper bounds, respectively,
for clipping the ratio of the new policy probabilities to the old policy probabilities. Also
Aπθold (st, at) is the advantage function, representing the advantage of taking action at
in state st under the old policy.

3.7.3 Policy Update

Updating the policy parameters (θ) using the PPO objective function to refine content
caching decisions:

θt+1 = argmax
θ

Et+1

min

(
πθ(at+1|st+1)

πθold(at+1|st+1)
Aπθold (st+1, at+1),

clip

(
πθ(at+1|st+1)

πθold(at+1|st+1)
, 1− ϵ, 1 + ϵ

)
Aπθold (st+1, at+1)


 .

(3.20)

The application of the PPO algorithm results in a refined policy (πθ) for content
caching decisions within the D2D network. This streamlined policy maximizes the
optimization of content delivery with a consequent increase in resource utilization and
user experience. This approach combines FL insights with the refinements offered
by the PPO algorithm along the direction of optimized content caching policies for
dynamic D2D wireless networks.
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Chapter 4

Results and Disscussions

This section provides the result obtained by our work in enhancing the content caching
system in D2D wireless networks with synergistic exploitation of FL and edge caching.
MLP-based techniques have dominated our design where we used the K-means al-
gorithm for clustering the devices intelligently and the GC-GRU model for making
precise predictions regarding the content caching system. This puts together the two
approaches to produce even more improvements in both content delivery efficiency and
user experience in the D2D communication environment.

First, the K-means algorithm is utilized intelligently in grouping devices based on
the similarity of content. Hence, optimized strategies are realized for cached content
allocation, with an overall better utilization and responsiveness of the D2D network.
With the dynamic nature of the adaptation property shown by K-means, it is more
effective in the clustering of content, the foundation of this network architecture.

Meanwhile, the GC-GRU model demonstrates fantastic accuracy of prediction re-
lated to content caching decisions. It is the adaptability of the model to dynamic
network conditions and evolving user preferences that make our approach highly suc-
cessful. The GC-GRU model shows accurate predictions and depicts strength in coping
with the dynamic nature of D2D wireless networks, thereby generating a responsive
and resourceful environment.

4.1 Simulation Parameters and Dataset

The proposed network model is simulated, and results are obtained using PYTHON.
Essentials libraries: namely, they include NumPy for numeric operations, Pandas for
data manipulation, and PyTorch for deep learning. In addition, they use scikit-learn
for tasks, including KMeans clustering data splitting, and standard scaling.

In this simulation setup, we aim to emulate a realistic caching scenario involving
mobile devices which are clustered using K-mean clustering and the GC-GRU model
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for content caching prediction, we observed significant improvements in the overall
efficiency of content delivery and user experience. We generate a synthetic dataset
comprising 1000 samples, with each sample representing a mobile device’s characteris-
tics and the corresponding caching outcomes. The key parameters include the content
size that is of different sizes [40,200] MegaBytes (MB). The storage capacity of mobile
devices available for D2D sharing is in [1,10] GigaBytes (GB), The distance between
SUE and MUE devices in meters is [10,100]. For the content similarities there is user
ratings for content on a scale of 1 to 5. The main simulation parameters is shown

Table 4.1. Simulation Parameters and Values

Parameter Value
Number of Samples 1000
Content Size [40,200]MB
Device Storage Capacity [1,10]GB
Maximum Transmit Power of BS 46dbm
Minimum Battery Percentange of Device 60-70
Maximum transmit power of device 23dbm

in Table 4.1. The randomization of parameters, such as content size, storage capac-
ity, distance, user ratings, signal-to-noise ratio, and battery percentage, reflects the
variability present in real-world scenarios.

4.2 Training vs Testing

The depicted graphs in fig. 4.1 encapsulate key insights into the training and testing
dynamics of our clustering model designed for content caching optimization in D2D
wireless networks. The graph that illustrates the loss trends over epochs shows a
consistent decrease in training and testing losses, indicating the model’s efficient min-
imization of error and generalization to unseen data. At the same time, the accuracy
graph shows an upward trend for the training and testing set, which demonstrates the
efficiency of the model in making accurate predictions and its capability to generalize
further than the training data. The minimal gap between training and testing accura-
cies underlines the resilience of the model against overfitting, confirming its potential
for practical deployment in dynamic D2D environments. Overall, these visualizations
will give a broad view of how our model learns and ensures promise towards enhance-
ment of content caching for better user experience in a wireless network.
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Figure 4.1: Training and testing dynamics of the clustering model

4.3 Average Delay Analysis vs Content Size

In the Bar Chart fig. 4.2 the average delay comparison between the GC-GRU model
and the baseline model at the content caching optimization is shown.The x-axis has
content sizes in Megabytes (MB) ranging from 0 to 100 in consistent intervals of 5 MB,
while the y-axis clearly presents average delays in milliseconds (ms). Key observations
from the graph include the varying delays exhibited by the GC-GRU model based on
content size. Commencing with an impressive 0 ms delay for smaller content sizes, the
GC-GRU model gradually increases its delay as the content sizes grow. Noteworthy
delay values for the GC-GRU model include 8 ms at 10 MB, 28 ms at 30 MB, 32 ms
at 50 MB, 46 ms at 80 MB, and 68 ms at 100 MB.
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Figure 4.2: Comparative Analysis of Average Delays between GC-GRU and Baseline
Model

In parallel, the Baseline model demonstrates a similar increasing trend in delays
with larger content sizes. The values shown by the Baseline model in terms of delay
include 14 ms at 10 MB, 40 ms at 30 MB, 47 ms at 50 MB, 67 ms at 80 MB, and
95 ms at 100 MB. Detailed comparison shows that the GC-GRU model consistently
outperformed the Baseline model with smaller delays in all content sizes. At a 10 MB
content size, the GC-GRU model gives an 8 ms delay, whereas the Baseline model
lags with a 14 ms. This subsequently results in the efficiency advantage for larger
content sizes, thus proving the GC-GRU model more strongly and better at optimizing
its decision about caching contents. Furthermore, it can be shown that the GC-GRU
model is of controlled delay increase with growing content sizes, which implies its
adaptive and efficient content caching predictions. Compared to this, the Baseline
model in comparison has a steeper delay rise, suggesting comparatively less adaptive
caching decisions.

4.4 Delay Comparison with Existing Techniques

Detailed average delays for various content sizes and caching models are shown in
fig. 4.3, which reveals valuable insights into the comparative performance of various
techniques is demonstrated. A different line on the plot corresponds to a different
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caching model, each of which uses an abbreviation unique to it, and hence, one gets a
better idea of how these models would respond for varying content sizes.
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Figure 4.3: Comparative Analysis of Average Delays for Different Caching Models
across Varying Content Size

• GC-GRU:

The GC-GRU model demonstrates lower delays consistently across varying con-
tent sizes, with notable values at 65.35 ms (25 MB), 160 ms (100 MB), and
212.25 ms (200 MB). This underscores the model’s adeptness in predicting and
optimizing content caching decisions.

• SLR (Social-aware LRU caching):

The SLR model exhibits delays at 75 ms (25 MB), 190 ms (100 MB), and 255
ms (200 MB). While providing reasonable predictions, SLR tends to lag behind
GC-GRU, particularly as content sizes increase.

• SMP (Social-aware most popular caching):

SMP showcases delay values of 84 ms (25 MB), 215 ms (100 MB), and 290 ms (200
MB). Despite offering competitive performance, SMP presents slightly higher de-
lays compared to GC-GRU across various content sizes.
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• RD (Random Decision based caching):

The RD model presents distinct delay values at 92 ms (25 MB), 225 ms (100
MB), and 315 ms (200 MB). As a random decision model, RD demonstrates
delays higher than more sophisticated models like GC-GRU.

• DQ (Deep Q-Network):

DQ showcases notable delays at 108 ms (25 MB), 232 ms (100 MB), and 331
ms (200 MB). Leveraging deep reinforcement learning, DQ offers competitive
predictions but tends to have higher delays compared to GC-GRU.

This detailed analysis facilitates a comprehensive comparison of these caching mod-
els, with GC-GRU consistently outperforming others in terms of delay optimization.
The insights gained from this graph contribute to informed decision-making in the
implementation of content caching strategies within dynamic D2D wireless networks.

4.5 Average Delay Analysis vs Storage Capacity

In fig. 4.4, the graph depicts the average delay performance of various caching models
concerning different storage capacities in D2D wireless networks. The x-axis represents
storage capacity in gigabytes (GB), ranging from 1 GB to 10 GB, while the y-axis de-
picts the average delay in milliseconds. The GC-GRU model consistently demonstrates
efficient delay minimization across various storage capacities. Notable average delays
include 168 ms at 1 GB, 160 ms at 4 GB, and 155 ms at 10 GB, indicating the model’s
effectiveness in optimizing content caching decisions as storage capacity increases.

Comparatively, the SLR model exhibits slightly higher average delays across dif-
ferent storage capacities, with values such as 188 ms at 1 GB, 178 ms at 4 GB, and
165 ms at 10 GB. While SLR provides reasonable predictions, its delays are relatively
higher than those of GC-GRU.

The SMP model demonstrates competitive yet generally higher average delays com-
pared to GC-GRU. Key values include 198 ms at 1 GB, 188 ms at 4 GB, and 177 ms at
10 GB, suggesting a trade-off between prediction accuracy and efficiency in the SMP
model.

The RD model, as a random decision model, exhibits delays higher than more
sophisticated models like GC-GRU. Average delays include 217 ms at 1 GB, 209 ms at
4 GB, and 203 ms at 10 GB, highlighting the importance of intelligent decision-making
for minimizing delays.

The DQ model, leveraging deep reinforcement learning, provides competitive pre-
dictions but tends to have higher delays compared to GC-GRU, particularly as storage
capacity increases. Average delays are observed at 238 ms at 1 GB, 222 ms at 4 GB,
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Figure 4.4: Comparative Analysis of Average Delays for Different Caching Models
across Varied Storage Capacities

and 206 ms at 10 GB. This detailed analysis offers insights into the average delay
behavior of different caching models across varying storage capacities, facilitating an
understanding of model performance and potential trade-offs in D2D wireless networks.

4.6 Offloading probability vs Content Size

The offloading probabilities observed in the presented graph (Fig. 4.5) offer valuable
insights into the behavior of different caching models across diverse storage capaci-
ties in D2D wireless networks. The offloading probabilities represent the likelihood
of transferring content to remote devices, optimizing network resources and enhanc-
ing overall efficiency. The GC-GRU model consistently demonstrates higher offloading
probabilities, indicating a proactive approach to content offloading. Higher probabili-
ties, such as 64% at 1 GB, 88% at 4 GB, and 94% at 10 GB, suggest that the GC-GRU
model is effective in making decisions that favor offloading content to improve network
performance.

Conversely, models like SLR, SMP, RD, and DQ exhibit varying degrees of of-
floading probabilities. SLR and SMP show moderate probabilities, with SLR ranging
from 54% to 83% and SMP from 47% to 75%. RD, as a random decision model,
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Figure 4.5: Comparative Analysis of Offloading Probabilities for Different Caching
Models across Varied Content Sizes

demonstrates probabilities between 39% and 62%. DQ, leveraging deep reinforcement
learning, exhibits lower probabilities ranging from 21% to 51%.

The interpretation of whether higher or lower offloading probabilities are desirable
depends on the specific goals and constraints of the D2D network. In some scenarios,
higher offloading probabilities may be preferred to optimize resource utilization and
reduce local storage load. However, in other cases, lower offloading probabilities may
be acceptable if the emphasis is on on-device caching to minimize data transfer and
maintain content locally.

Ultimately, the offloading probabilities presented in the graph provide a nuanced
perspective on the decision-making strategies of different caching models, offering net-
work operators valuable information to tailor caching policies based on their specific
objectives and requirements.

4.7 Offloading Probability vs Storage Capacity

In Fig. 4.6, the graph compares offloading probabilities across various storage capac-
ities for different caching models in D2D wireless networks. Offloading probabilities
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represent the likelihood of transferring content to remote devices, playing a crucial role
in optimizing network resource utilization. The GC-GRU model, depicted by the ’-o’
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Figure 4.6: Offloading Probabilities for Different Caching Models across Varied Stor-
age Capacities

line, consistently exhibits higher offloading probabilities, ranging from 64% at 1 GB to
94% at 10 GB. This indicates the model’s proactive approach in making decisions that
favor offloading content, emphasizing its efficiency in improving network performance
and resource utilization.

The SLR model, illustrated by the ’-s’ line, demonstrates moderate offloading prob-
abilities, varying from 54% at 1 GB to 83% at 10 GB. While SLR provides reasonable
predictions, its offloading probabilities are notably lower than those of the GC-GRU
model, suggesting a comparatively less proactive strategy in content offloading deci-
sions.

SMP, represented by the ’-d’ line, exhibits offloading probabilities ranging from 47%
to 75%. Although SMP offers competitive performance, its probabilities are slightly
lower than those of the GC-GRU model, indicating a nuanced difference in decision-
making strategies.

The RD model, denoted by the ’-̂’ line, is a random decision model with offloading
probabilities ranging from 39% to 62%. RD demonstrates lower probabilities com-
pared to more sophisticated models like GC-GRU, highlighting the impact of random
decision-making on content offloading.
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The DQ model, represented by the ’-*’ line, showcases offloading probabilities rang-
ing from 21% to 51%. Leveraging deep reinforcement learning, DQ offers competitive
predictions but tends to have lower offloading probabilities compared to the GC-GRU
model.

4.8 Comparison of Offloading Probabilities with Dif-
ferent Zipf Coefficients

The offloading probability trends under various Zipf coefficients for different caching
models in D2D wireless networks are depicted in fig. 4.7. Offloading probability mea-
sures the likelihood of content offloading, contributing to efficient content delivery in
the network. The blue curve represents GC-GRU offloading probabilities, displaying
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Figure 4.7: Offloading Probability Comparison under Different Zipf Coefficients for
GC-GRU, MP, SLR, RD, and DQ

a decreasing trend as the Zipf coefficient increases. The offloading probabilities range
from approximately 62% at a Zipf coefficient of 94% to around 0.45 at a coefficient
of 2.0. This trend suggests that GC-GRU exhibits a increasing likelihood of content
offloading as the content popularity distribution increased.
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The red curve represents MP offloading probabilities, showing a similar decreasing
trend with increasing Zipf coefficients. Offloading probabilities range from about 60%
at a Zipf coefficient of 0.5 to approximately 79% at a coefficient of 2.0. This indicates
that MP experiences an increase in the likelihood of content offloading as the content
popularity distribution increased.

The green curve represents SLR offloading probabilities and follows a similar trend
of decrease with the increasing Zipf coefficient. The values of offloading probabilities
are between 58% at a Zipf coefficient of 0.5 and about 65% at a coefficient of 2.0. This
means that the more the content popularity is skewed, the declining nature of content
offloading probability would be experienced in the case of SLR too, similar to GC-GRU
and MP.

The purple curve represents the RD offloading probabilities, which, like the Zipf
coefficients, increase. Offloading probabilities differ by about 44% at a Zipf coefficient
of 0.5 and approximately 64% at a coefficient of 2.0. It thus shows that just like other
models, when the distribution is skewed, content offloading becomes less likely for RD.

The red curve showcases the declining trend of DQ offloading probabilities becomes
steeper with higher Zipf coefficients.. Offloading probabilities range from approximately
39% at a Zipf coefficient of 0.8 to around 59% at a coefficient of 2.0. This suggests
that DQ exhibits a more significant decline in the likelihood of content offloading with
a more skewed content popularity distribution.

In summary, the model with the highest offloading probabilities is generally consid-
ered better for content offloading scenarios. However, the optimal choice depends on
specific network requirements. For instance, GC-GRU exhibits higher offloading prob-
abilities at lower Zipf coefficients, making it suitable for scenarios with a less skewed
content popularity distribution. Conversely, DQ, with lower offloading probabilities,
might be more appropriate in situations with highly skewed content popularity. There-
fore, the selection of the best model depends on the specific characteristics and demands
of the D2D wireless network.

4.9 Comparison of Throughput vs Number of Clus-
ters

Figure 4.8, the bar chart illustrates the throughput trends across varying numbers of
clusters for different caching models in D2D wireless networks. Throughput, measured
in Mbps, gauges the capacity of a system to deliver content efficiently. Higher through-
put values indicate better performance, enabling faster content delivery to users within
the network.

The blue bars represent GC-GRU throughput, showcasing a slower decay rate with
an increasing number of clusters. The throughput ranges from approximately 95 Mbps
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Figure 4.8: Comparative Analysis of Throughput for Different Caching Models across
Varying Number of Clusters

at 10 clusters to around 70 Mbps at 100 clusters. This indicates a favorable trend,
suggesting that GC-GRU maintains relatively high throughput even as the number of
clusters grows.

The red bars indicate DQ throughput, which declines more sharply with the increase
of clusters. Throughput goes from around 80 Mbps at 10 clusters to some 45 Mbps at
100 clusters. The trend herein proves that as the number of clusters expands, DQ’s
performance declines more sharply compared to GC-GRU.

The green bars in the figure represent SMP throughput, which has the same decay
pattern as DQ. Throughput values range from approximately 70 Mbps at 10 clusters
to around 35 Mbps at 100 clusters. Similar to DQ, increased numbers of clusters have
deteriorated performance for SMP.

The purple bars represent the throughput for SLR, which decays like SMP and DQ.
The throughput values are in the vicinity of 60 Mbps for 10 clusters to approximately
30 Mbps for 100 clusters. Thus, SLR also experiences performance degradation for a
greater number of clusters like SMP and DQ.

Orange bars represent RD throughput with a similar kind of slower decay pattern
as that of GC-GRU. Throughputs range from around 95 Mbps for 10 clusters to ap-

45



proximately 70 Mbps for 100 clusters. Hence, similar to GC-GRU, RD appears to keep
throughputs at a pretty high level even at higher cluster numbers.

With higher throughput values indicating better content delivery performance, GC-
GRU shows a more preferable trend with a slower decay for increasing numbers of clus-
ters than RD, suggesting GC-GRU may be the superior performer for high-performance
maintenance in dynamic D2D wireless network environments.

4.10 Comparison of Average Delay with Number of
Clusters

In Fig. 4.9, the bar chart presents a comparison of average delays across different
caching models concerning varying numbers of clusters in D2D wireless networks. The
average delay, measured in milliseconds (ms), reflects the time taken for content de-
livery within the network. A lower average delay is desirable as it indicates quicker
content delivery to users. The blue bars represent GC-GRU average delays, exhibiting
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Figure 4.9: Average Delay Dynamics for Different Caching Models across Varied
Numbers of Clusters
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a linear relationship with the number of clusters. The average delay increases from ap-
proximately 6 ms at 10 clusters to around 66 ms at 100 clusters. This means that with
an increase in cluster size, the average delay of GC-GRU would also increase gradually.

In the figure, the red bars indicate DQ average delays in a more steeper linear
proportion with the number of clusters. The average delay runs from around 11 ms in
the case of 10 clusters to almost 88 ms in the case of 100 clusters. So, DQ witnesses
incremental gain in average delay at a much faster rate as the number of clusters
expands.

The bars are green, which means SMP delays average. They, like DQ, are linear.
The average delay increases from around 9 ms in 10 clusters up to 72 ms at 100 clusters.
Like DQ, the SMP upwardly trends for average delay with more clusters.

The purple bars show the average delays of SLR, which are linear with the number
of clusters. The average delay goes from about 8 ms in the case of 10 clusters to
around 68 ms for 100 clusters. In other words, SLR, similar to GC-GRU, exhibits a
gentle upward curve for average delay with respect to clusters number.

The orange bars illustrate the average RD delays, which linearly increase with the
number of clusters. With 10 clusters, the average delay is around 9 ms, and with 100
clusters, this amounts to around 76 ms. Like in the cases of GC-GRU and SLR, RD’s
average delay increases gradually with the growth in the number of clusters.

Precisely, lower average delay values, such as those observed in GC-GRU, suggest
better performance in terms of quicker content delivery. GC-GRU and SLR exhibit
relatively gradual increases in average delay, indicating their potential efficiency in
handling content delivery in dynamic D2D wireless network scenarios.

4.11 Convergence of Rewards on Different Schemes

In fig. 4.10, the line chart illustrates the convergence of rewards for various caching
schemes over episodes in a reinforcement learning scenario. The x-axis represents
episode numbers (1 to 500), and the y-axis denotes the rewards obtained during the
learning process.

The blue line represents the GC-GRU caching scheme, starting from an initial
value and converging towards a target of 0.94. The orange line corresponds to SLR,
the green line to SMP, the red line to RD, and the purple line to DQ. Each scheme
exhibits convergence from an initial value to its respective target (0.86 for SLR, 0.77
for SMP, 0.70 for RD, and 0.61 for DQ).

Examining the convergence patterns, it appears that GC-GRU and SLR reach rela-
tively higher target values compared to SMP, RD, and DQ. However, determining the
better convergence depends on the specific goals and trade-offs in the context of the
caching application.
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Figure 4.10: Dynamics of Reward Convergence for Various Caching Schemes over
Episodes, illustrating distinct convergence points and learning trajectories.

4.12 Comparison of MSE, MAPE, RMSE

The three bar charts provide a comprehensive comparison of performance metrics,
namely Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), and
Root Mean Square Error (RMSE) for various caching models, including GC-GRU,
SLR, SMP, RD, and DQ in fig 4.11. The first chart depicts the MSE values for each
caching model. MSE quantifies the average squared difference between predicted and
actual values. Lower MSE values indicate better accuracy. In this context, GC-GRU
exhibits the lowest MSE among the models, reflecting superior predictive accuracy.
SLR, SMP, RD, and DQ follow with progressively higher MSE values.

The second chart illustrates the MAPE values for the models. MAPE measures
the percentage difference between predicted and actual values. Lower MAPE values
indicate better accuracy. GC-GRU once again demonstrates the lowest MAPE, show-
casing its superior accuracy. SLR, SMP, RD, and DQ follow with increasing MAPE
values.

The third chart showcases the RMSE values for each model. RMSE represents the
square root of the average squared differences between predicted and actual values.
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Figure 4.11: Comparative Analysis of Performance Metrics (MSE, MAPE, RMSE)
for Different Caching Models

Similar to MSE, lower RMSE values indicate better accuracy. GC-GRU maintains the
lowest RMSE, indicating superior accuracy compared to SLR, SMP, RD, and DQ.

Across all three performance metrics, GC-GRU consistently outperforms other
caching models, showcasing its effectiveness in accurate content caching predictions.
The metrics collectively highlight GC-GRU’s superior predictive capabilities and its
potential as an advanced caching model in the given context.
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Chapter 5

CONCLUSIONS AND FUTURE
RECOMMENDATION

The results presented affirm the effectiveness of the GC-GRU caching model in the con-
text of content caching and delivery in D2D wireless networks. The proposed model
shows amazing performance across various metrics, underscoring its robustness and
adaptability. The efficiency of GC-GRU particularly when it is intensely trained, man-
ifests its viability as an advanced method for content caching improvement. Such
findings have implications on the necessity to adopt machinelearning techniques such
as the GC-GRU model in improving content delivery in dynamic wireless fading envi-
ronments with limited resources.
An improved solution to enhance content caching in D2D wireless networks is made
by the proposed GC-GRU model. The GC-GRU model incorporates both federated
learning and edge caching, which makes it exceptional with reduced MSE of 0.015,
MAPE at 7.2% and RMSE of 0.123 compared to other models. On accompanying
graphs we can see that the proposed model has decreased losses that indicate efficient
delay minimization, increased offloading probabilities across different content sizes and
storage capacities. Analyzing this in comparison shows how subtly the GC-GRU model
works as a solution for content caching optimization in changing and restricted wireless
situations.

5.1 Limitations

Evaluating different caching models in the context of D2D wireless networks reveals
several limitations that must be overcome. The second important factor is related
to the dataset quality and representativeness, and there arises uncertainty related to
the applicability of the obtained results to the real world. Furthermore, the proposed
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models based on machine learning-GC-GRU and DQ are sensitive to the choice of hy-
perparameters and increase complexity. Inadequate hyperparameter tuning can lead
to diminished predictive performance, necessitating careful adjustment for optimal re-
sults.
The assumption used in the experiments on static network conditions might not rep-
resent the dynamic nature of D2D wireless networks. Most real-world environments
involve variables like user mobility, interference, and network congestion, and issues
have not been explicitly discussed in the analysis of these experiments. Diversity in
content within datasets used to train and evaluate the system was also not considered.
A limited scope of content may limit the generalization capability of the models to
other content types and preferences from the users.
Overfitting, being the other additional concern in learning models is thought to be
an implication of an overly simple training set or, on the other hand, highly complex
models. To circumvent this kind of limitation, careful design and evaluation with a
balanced approach are required for designing and evaluating caching models in D2D
wireless networks.

5.2 Future Direction

Future work and development in this field would need to focus on dynamic adaptation.
Models should be evolved continuously to adapt to changing network conditions, thus
also allowing real-time content caching strategy optimization. Furthermore, through
transfer learning, one might find a way to leverage experience from one D2D network
scenario to improve diverse contexts.
Hybrid-based caching models that use rule-based or heuristic models combined with
machine- learning-based models could give much more robust and adaptive solutions.
Another area of work is the integration of caching models with some emerging technolo-
gies such as edge computing, which would improve content-delivery efficiency and lower
latency. Real-world deployment studies are necessary to test their practical feasibility
and precious insights into their performance under varied and dynamic environments.
Ensuring privacy and security in cache-enabled D2D networks is a must. Methods that
guarantee secure content delivery at the cost of user privacy, especially when dealing
with sensitive or personal information, are worth investigating in future work. Energy-
efficient strategies should also be targeted, especially when devices are restricted to
limited power resources. Adjusting caching decisions to curtail energy consumption
would be a critical step toward enhancing the sustainability of D2D wireless networks.
Overcoming these limitations and searching for future directions of research will be
crucial for further perfecting the effectiveness and practical applicability of the caching
model in the dynamic landscape of D2D wireless networks. Further research and de-
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velopment on the efficiency, adaptability, and security of content caching solutions will
be important tasks in these dynamic communication environments.

52



Bibliography

[1] W. Li, C. Wang, D. Li, B. Hu, X. Wang,and, J. Ren, “Edge caching for D2D enabled
hierarchical wireless networks with deep reinforcement learning," Hindawi-Wireless
Communications and Mobile Computing, vol. 2019, 2019.

[2] Y. Wu, J. Chen, L. P. Qian, J. Huang, and, X. S. Shen, “ Energy- aware cooper-
ative traffic offloading via device-to-device cooperations: An analytical approach,"
IEEE Transactions on Mobile Computing, vol. 16, no. 1, pp. 97–114, 2017.

[3] Y. Zhang, M. S. Hossain, A. Ghoneim, and, M. Guizani, “ Content-oriented
caching on the mobile edge for wireless communications,” IEEE Wireless Commu-
nications , vol. 26, no. 3, pp. 26–31, 2019.

[4] L. Wang, C. Yang,and, R. Q. Hu, “Autonomous traffic offloading in heterogeneous
ultra-dense networks using machine learning,” IEEE Wireless Communications ,
vol. 26, no. 4, pp. 102–109, 2019.

[5] D. Li, H. Zhang, T. Li, H. Ding,and, D. Yuan, “Community Detection and
Attention-Weighted Federated Learning Based Proactive Edge Caching for D2D-
Assisted Wireless Networks,” IEEE Transactions on Wireless Communications ,
vol. 22, no. 11, pp. 7287-7303, Nov. 2023, doi: 10.1109/TWC.2023.3249756.

[6] L. Li, Y. Xu, J. Yin, W. Liang, and,X. Li, “Deep Reinforcement Learn-
ing Approaches for Content Caching in Cache-Enabled D2D Networks,” IEEE
Internet of Things Journal , vol. 7, no. 1, pp. 544-557, Jan. 2020, doi:
10.1109/JIOT.2019.2951509.

[7] A. Said, SWH. Shah, H. Farooq, AN. Mian, A. Imran,and, J. Crowcroft, “Proac-
tive Caching at the Edge Leveraging Influential User Detection in Cellular D2D
Networks.,” Future Internet , doi: 10.3390/FI10100093.

[8] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-
based optimal computing and caching in mobile edge network,” IEEE J. Sel. Areas
Commun , vol. 38, no. 10, pp. 2343–2355, Jun. 2020. learning techniques for caching

53



in next-generation edge net- works: A comprehensive survey,” Journal of Network
and Computer Applications , vol. 181, pp. 103005, 2021.

[9] J. Yao, T. Han, and,N. Ansari, “On mobile edge caching,” IEEE Communication
Survey , vol. 21, no. 3, pp. 2525–2553, Mar. 2019.

[10] J. Tang, T. Quek, T. Chang, and B. Shim, “Systematic resource allocation in
cloud ran with caching as a service under two timescales,” IEEE Trans. Commun
, vol. 67, no. 11, pp. 7755–7770, Nov. 2019.

[11] L. Feng, Z. Yang, S. Guo, X. Qiu, W. Li, and P. Yu, “Two-Layered Blockchain
Architecture for Federated Learning over Mobile Edge Network,” IEEE Network ,
doi: 10.1109/MNET.011.2000339,2021.

[12] J. Shuja, K. Bilal, W. Alasmary, H. Sinky,and, E. Alanazi, “Applying machine
learning techniques for caching in next-generation edge networks: A comprehensive
survey.” Journal of Network and Computer Applications, p.103005.

[13] Y. Bai, D. Wang, G. Huang and B. Song, “A Deep-Reinforcement- Learning-Based
Social-Aware Cooperative Caching Scheme in D2D Communication Networks,” in
IEEE Internet of Things Journal, vol. 10, no. 11, pp. 9634-9645, 1 June1, 2023,
doi: 10.1109/JIOT.2023.3234705.

[14] Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning automata based Q- learning
for content placement in cooperative caching,” IEEE Trans. Commun , vol. 68, no.
6, pp. 3667–3680, Jun. 2020.

[15] C. Zhang, Wu C. Wu, M. Lin, Y. Lin, W.Liu "Proximal Policy Opti-
mization for Efficient D2D-Assisted Computation Offloading and Resource Al-
location in Multi-Access Edge Computing", Future Internet 2024; 16(1):19,
doi.org/10.3390/fi16010019.

[16] Z. Chen, B. Yin, H. Zhu, Y. Li, M. Tao and W. Zhang, "Mobile Communica-
tions, Computing, and Caching Resources Allocation for Diverse Services via Multi-
Objective Proximal Policy Optimization," in IEEE Transactions on Communica-
tions, vol. 70, no. 7, pp. 4498-4512, July 2022, doi: 10.1109/TCOMM.2022.3173005.

[17] N. Dang, K. Kim, L. U. Khan, S. M. A. Kazmi, Z. Han and C. S. Hong, "On-
Device Computational Caching-Enabled Augmented Reality for 5G and Beyond: A
Contract-Theory-Based Incentive Mechanism," in IEEE Internet of Things Journal,
vol. 8, no. 24, pp. 17382-17394, 15 Dec.15, 2021, doi: 10.1109/JIOT.2021.3080709.

[18] G. Chandrasekaran, N. Wang, M. Hassanpour, M. Xu and R. Tafazolli, "Mobility
as a Service (MaaS): A D2D-Based Information Centric Network Architecture for

54



Edge-Controlled Content Distribution," in IEEE Access, vol. 6, pp. 2110-2129, 2018,
doi: 10.1109/ACCESS.2017.2781736.

[19] Y. Wang, X. Li, P. Wan and R. Shao, "Intelligent Dynamic Spectrum Access Using
Deep Reinforcement Learning for VANETs," in IEEE Sensors Journal, vol. 21, no.
14, pp. 15554-15563, 15 July15, 2021, doi: 10.1109/JSEN.2021.3056463.

[20] L. Zhang, M. Xiao, G. Wu and S. Li, "Efficient Scheduling and Power Al-
location for D2D-Assisted Wireless Caching Networks," in IEEE Transactions
on Communications, vol. 64, no. 6, pp. 2438-2452, June 2016, doi: 10.1109/T-
COMM.2016.2552164.

[21] F. Hasna, M. Rihab, C. Lamia, J. Mohamed,"Comprehensive sur-
vey on self-organizing cellular network approaches applied to 5G
networks",Computer Networks, Volume 199,2021,108435,ISSN 1389-
1286,doi.org/10.1016/j.comnet.2021.108435.

[22] M. Gregori, J. G´omez-Vilardeb´o, J. Matamoros and D. G¨und¨uz, “. Wire-
less Content Caching for Small Cell and D2D Networks,” IEEE Journal on Se-
lected Areas in Communications, vol. 34, no. 5, pp. 1222- 1234, May 2016, doi:
10.1109/JSAC.2016.2545413.

[23] L. Zhu, C. Liu, J. Yuan, and G. Yu,“Machine Learning-Based Resource Opti-
mization for D2D Communication Underlaying Networks," IEEE 92nd Vehicular
Technology Conference (VTC2020-Fall),Victoria, BC, Canada, 18 Nov - 16 Dec,
2020. doi: 10.1109/VTC2020-Fall49728.2020.9348830.

[24] R. Yin, C. Zhong, G. Yu, Z. Zhang, K. Wong, and X. Chen,“ Joint spectrum and
power allocation for D2D communications underlaying cellular networks," IEEE
Trans. Veh. Technol , vol. 65, no. 4, pp. 2182-2195, Apr. 2016.

[25] R. Wang, J. Zhang, S. H. Song, and K. B. Letaief, “Optimal QoS-aware chan-
nel assignment in D2D communications with partial CSI,” IEEE Trans. Wireless
Commun., vol. 15, no. 11, pp. 7594-7609, Nov. 2016.

[26] A. Rowstron and P. Druschel,“ : Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems,"in IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing , pp. 329–350,
Springer, 2001.

[27] C. Zhan and G. Yao,“ Optimizing caching placement for mobile users in hetero-
geneous wireless network," in 2017 IEEE 42nd Conference on Local Computer
Networks (LCN), pp. 175–178, IEEE, 2017.

55



[28] B. Bai, L. Wang, Z. Han, W. Chen, and T. Svensson,“ Caching based socially-
aware d2d communications in wireless content delivery networks: A hypergraph
framework," in 2017 IEEE Wireless Communications, vol. 23, no. 4, pp. 74–81,
2016.

[29] D. Prerna, R. Tekchandani, N. Kumar and S. Tanwar, “An Energy- Efficient Cache
Localization Technique for D2D Communication in IoT Environment,” in IEEE
Internet of Things Journal, vol. 8, no. 6, pp.4816-4829, 15 March15, 2021, doi:
10.1109/JIOT.2020.3029168.

[30] X. Zhang, Y. Liu, J. Liu, A. Argyriou and Y. Han, “D2D-Assisted Federated
Learning in Mobile Edge Computing Networks,” 2021 IEEE Wireless Communi-
cations and Networking Conference (WCNC), Nanjing, China, 2021, pp. 1-7, doi:
10.1109/WCNC49053.2021.9417459.

[31] R. Cheng, Y. Sun, Y. Liu, L. Xia, D. Feng and M. A. Imran, “Blockchain- Em-
powered Federated Learning Approach for an Intelligent and Reliable D2D Caching
Scheme,” in IEEE Internet of Things Journal, vol. 9, no. 11, pp. 7879-7890, 1 June1,
2022, doi: 10.1109/JIOT.2021.3103107.

[32] Z. Xiao et al„ “Multi-Objective Parallel Task Offloading and Content Caching in
D2D-Aided MEC Networks,” in IEEE Transactions on Mobile Computing, vol. 22,
no. 11, pp. 6599-6615, 1 Nov. 2023, doi:10.1109/TMC.2022.3199876.

[33] D. Yu, T. Wu, C. Liu and D. Wang, “Joint Content Caching and Recommenda-
tion in Opportunistic Mobile Networks Through Deep Reinforcement Learning and
Broad Learning,” in IEEE Transactions on Services Computing, vol. 16, no. 4, pp.
2727-2741, 1 July-Aug. 2023, doi: 10.1109/TSC.2023.3247611.

[34] D. Li, H. Zhang, H. Ding, T. Li, D. Liang and D. Yuan, “User- Preference-Learning-
Based Proactive Edge Caching for D2D-Assisted Wireless Networks,” in IEEE In-
ternet of Things Journal, vol. 10, no. 13, pp. 11922-11937, 1 July1, 2023, doi:
10.1109/JIOT.2023.3244621.

[35] K. S. Khan, A. Naeem and A. Jamalipour, “Incentive-Based Caching and Com-
munication in a Clustered D2D Network,” in IEEE Internet of Things Journal, vol.
9, no. 5, pp. 3313-3320, 1 March1, 2022, doi: 10.1109/JIOT.2021.3098003.

[36] Y. Meng, P. Wang, J. Xiao, and X. Zhou, “NeLSTM: A new model for temporal
link prediction in social networks,” 2019 IEEE 13th International Conference on
Semantic Computing (ICSC), pp. 183–186, 2019.

[37] T. Xia, Y. Gu, and D. Yin, “Research on the link prediction model of dynamic
multiplex social network based on improved graph representation learning,” IEEE
Access, vol. 9, pp. 412–420, 2021.

56



[38] A. A. Samad, M. Qadir, and I. Nawaz, “Sam: a similarity measure for link pre-
diction in social network,” 2019 13th International Conference on Mathematics,
Actuarial Science, Computer Science and Statistics (MACS), pp. 1–9, 2019.

[39] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable temporal latent
space inference for link prediction in dynamic social networks (extended abstract),”
in IEEE 33rd International Conference on Data Engineering (ICDE), 2017, pp.
57–58.

[40] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, “Security in mobile
edge caching with reinforcement learning,” IEEE Wireless Communications, vol.
25, no. 3, pp. 116–122, 2018.

[41] H. Zhang, T. Shen, F. Wu, M. Yin, H. Yang, and C. Wu, “Federated graph learning
- a position paper,” ArXiv, vol. abs/2105.11099, 2021.

[42] C. He, K. Balasubramanian, E. Ceyani, Y. Rong, P. Zhao, J. Huang, M. An-
navaram, and S. Avestimehr, “FedGraphNN: A federated learning system and
benchmark for graph neural networks,” ArXiv, vol.abs/2104.07145, 2021.

57


	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS AND ACRONYMS
	Introduction
	D2D Wireless Networks
	Overview of Device-to-Device (D2D) communication
	Importance of D2D Networks in Enhancing Communication Efficiency and Network Capacity
	Challenges in D2D wireless network

	Content Caching in D2D Wireless Networks
	Challenges of Content Caching in Wireless Networks

	Device-Level Caching Strategies in D2D Wireless Networks
	Proactive Content Caching
	Edge Caching
	Two-Layered Edge Network Approach

	Challenges and Limitations of Traditional Caching Approaches in Dynamic Wireless Environments
	Federated Learning Strategies
	Machine Learning Techniques in Federated Learning
	Machine Learning Techniques in Layer-2 Challenges

	Advanced Techniques and Strategies
	Gaps and Challenges in Existing Content Caching Techniques in D2D Networks
	Analyzing Geographical Factors
	Social Dynamics in Content Distribution

	Motivation for Research
	Objectives of the Research
	Thesis Structure

	Literature Review
	Related Work
	Chapter Summary

	Research Methodology
	Clustering of Devices
	MUE Selection
	Willingness Factor (WF)
	Signal-to-Noise Ratio (SNR)
	Battery Percentage (BP)
	MUE Selection Process

	Data Sharing Process
	Current Content Popularity Sharing
	Historical Usage Data Sharing

	GC-GRU Model Parameters and Values Explanation
	Utilizing GC-GRU Model for Content Caching Optimization
	Spatial Analysis using Graph Convolutional Layer
	Temporal Analysis via Gated Recurrent Unit (GRU)
	Prediction of Caching Probability

	Leveraging Federated Learning for GC-GRU Output Integration
	GC-GRU Output Preparation
	Federated Learning Initialization
	Federated Learning Iterations

	Utilizing PPO for Refinement of Global Model from Federated Learning
	Initial Policy Determination
	PPO Training
	Policy Update


	Results and Disscussions
	Simulation Parameters and Dataset
	Training vs Testing
	Average Delay Analysis vs Content Size
	Delay Comparison with Existing Techniques
	Average Delay Analysis vs Storage Capacity
	Offloading probability vs Content Size
	Offloading Probability vs Storage Capacity
	Comparison of Offloading Probabilities with Different Zipf Coefficients
	Comparison of Throughput vs Number of Clusters
	Comparison of Average Delay with Number of Clusters
	Convergence of Rewards on Different Schemes
	Comparison of MSE, MAPE, RMSE

	CONCLUSIONS AND FUTURE RECOMMENDATION
	Limitations
	Future Direction

	BIBLIOGRAPHY

