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Abstract

This study investigates gravitational lensing in modified gravity theories,
focusing on the lensing phenomenon in strong and weak gravitational fields.
We derive the weak bending angle of light using modified gravity spacetimes,
highlighting deviations from standard General Relativity. We analyze image
formation and magnification for strong lensing, incorporating modified grav-
ity effects into the lens equations. We calculate key parameters such as the
angular radius of Einstein rings, the time delays and magnification ratios.
Our findings indicate distinct observational signatures in modified gravity
models, providing valuable insights for distinguishing these theories through
gravitational lensing observations.
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Chapter 1

Introduction

Historical Background

Albert Einstein first introduced the concept of gravitational lensing in
the early 20th century [2], as part of the predictions arising from his 1915
publication on the General Theory of Relativity [3]. He demonstrated that
large celestial bodies could bend the path of light passing near them due
to the curvature of spacetime. This phenomenon was first quantitatively
confirmed by British astronomer Arthur Eddington after his observation of
a solar eclipse in 1919 [4,5]. Subsequently, Russian physicist Orest Chwolson
independently highlighted that a massive object could bend the light from
a more distant object, resulting in the appearance of multiple images of the
latter [6].

In 1937, Fritz Zwicky calculated the transverse mass and discussed the
importance of observation of gravitational lensing [7]. He was the one who
first realized its huge cosmological implications. Resolution techniques in
observational astronomy were nearly nonexistent when Zwicky did his work
[8]. In 1963 Sjur Refsdal documented in great detail the properties of point
mass gravitational lens and proposed that geometrical optics can be applied
for gravitational lensing effects [9].

After that, all of the research on gravitational lensing was theoretical.
However, Weymann verified that the two identical quasar spectra obtained
by Walsh and Carswell were gravitationally lensed pictures of a single quasar,
Q0957 + 561. The field of gravitational lensing took off after this first grav-
itational lens system was discovered in 1979 [10]. Numerous photographs of
a source observed by gravitational lensing carry much information about the
lens and the source [11,12].

Following the initial detection of a double quasar as a gravitational lens in
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1979, gravitational lensing has made remarkable progress [13]. Walsh, Wey-
mann, and Carswell recognized a double quasar shown in figure 1.1 through
the quasar spectra. They found that the twin quasar is a single quasar whose
image is distorted due to the gravitational influence of a foreground galaxy
situated closer to Earth along the same line of sight [14]. In the 1980s;

Figure 1.1: The double quasar, a fascinating astronomical phenomenon, re-
veals two closely aligned images of the same quasar due to gravitational
lensing. Source: ESA/Hubble.

theoretical advances and new lens discoveries helped to lay the groundwork
for future research. The 1990s showed awesome pictures of Einstein’s rings
shown in figure 1.2 and arcs through the Hubble Space Telescope which gave
us a better understanding of how the universe is structured.

In April 2019, researchers announced the discovery of the M87 black hole.
Event Horizon Telescope (EHT) captured this image and revealed that a
bright ring of hot gas encircles the shadow of a black hole. This black hole is
6.5 billion times that of the Sun and its location is about 55 million light-years
away in the galaxy Messier 87. The achievement confirmed the existence
of black holes and transformed black hole research. It was a milestone in
astrophysics. These observations employed a global interferometric array
containing eight telescopes, which operated at a wavelength of 1.3 mm [15].
Since 2019, the EHT has continued to collect data by incorporating more
array elements and doubling its recording bandwidth [16].
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Figure 1.2: The Hubble Space Telescope captured an image of the distant
galaxy 1938+666, which appears as an Einstein ring due to the gravitational
lensing effect of a foreground galaxy. The intervening galaxy is visible as the
bright spot at the center of the ring. This image was taken in the infrared
spectrum, and the colors have been digitally assigned for clarity.

Motivation

In recent days, several challenges have been raised in gravitational lens-
ing. New theories about the cosmic nature of galaxies have been developed.
A modified theory of gravity was proposed to study the dark matter present
in the universe. It aims to explain phenomena such as gravitational lensing.
The theory suggests that some gravity interactions at the cosmic scales do
not follow Einstein’s predictions, lending a new way to explore the universe.
For instance, a Schwarzschild-modified gravity (SMOG) black hole incorpo-
rates modifications due to alternative gravitational theories [17–20]. These
solutions are important in probing the limits of general relativity, exploring
quantum gravity, and understanding cosmological phenomena beyond Ein-
stein’s theory.

In 2015, the derivation of a regular singularity-free modified solution by
using new linear field dynamics for the repulsive gravitational field com-
ponents was done and renewable physical energy-momentum tensors were
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discussed in modified gravity [21]. This approach prevents the formation
of singularities, which are points where physical quantities like density and
curvature become infinite. Later on, theoretical research on the shadow of
rotating and non-rotating modified gravity black holes was conducted and
found that shadow depends on parameters M and angular momentum J. In
this research, different cases of shadow formation are discussed with distinct
values of free parameter α [22].

In 2016, the analysis of thermodynamic properties of black holes in modi-
fied gravity was conducted, and it was proposed that without dark matter the
correct rotation of galaxies and galaxy clusters can be studied through modi-
fied theory. In this research, it was shown that the Hawking temperature and
evaporation profile of SMOG resembled a modified standard Schwarzschild
black hole [23]. In the same year, the nature of gravitational waves is inves-
tigated in generalized gravitation theory known as MOG in literature. The
study of the remarkable merger of two black holes, along with the detection
of gravitational waves from LIGO events GW150914 and GW151226, was
discussed in [24].

In 2018, the gravitational and electromagnetic perturbations of quasinor-
mal modes were calculated in modified gravity also known as STVG space-
time. They have demonstrated the effect of increasing parameter α on the
real and imaginary parts of quasinormal mode and compared the situation
with the standard Schwarzschild case [25]. In 2021, the derivation of a regu-
lar rotating dark compact object was done in modified gravity and referred
to as Schwarzschild modified gravity (SMOG) black hole. A rotating MOG
dark compact object was also obtained in the same research. They form
Schwarzschild black hole and Kerr black hole respectively, when a free pa-
rameter α is zero [26].

New activities for Schwarzschild-modified gravity black holes have pro-
duced interesting research in different fields [27, 28]. It has been shown that
black hole solutions in a rotating universe are dual to the constant curva-
ture f(R) gravity theories and Einstein-Maxwell gravity, thus, revealing the
power of black holes [29].

This thesis investigates the phenomena of strong and weak lensing in
modified gravity spacetime [30]. The primary objective is to study the ob-
servable effects using M87∗ and Sgr A∗ as gravitational lenses within a static
modified spacetime framework. Another concept of logarithmic distortion as
in [31] will be explored in a static modified gravity black hole using the weak
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deflection angle of light. The time delays for twenty-one different galaxies is
also studied in modified gravity.

Now we will briefly explain some basic concepts related to the thesis
topic. Throughout this dissertation, we have taken the value of gravitational
constant G and the speed of light c as 1.

1.1 Metric Tensor

In the framework of GR, gµν is a symmetric and bi-linear form on the
4-dimensional Lorentzian manifold M . It describes the geometric and causal
structures of spacetime. The metric tensor explains the curvature of space-
time caused by Riemannian curvature and determines the gravitational field.
The metric tensor allows us to find the intervals between two events in space-
time. For any infinitesimal displacement, the interval ds2 is defined as

ds2 = gµνdx
µdxν , µ, ν = 0, 1, 2, 3. (1.1)

It is usually non-degenerate g = det(gµν) ̸= 0. The components of the
Einstein tensor such as Ricci scalar (R), and Ricci tensor (Rab) can be defined
through metric tensor. The Einstein tensor Gab is defined as follows as

Gµν = Rµν −
1

2
gµνR.

The Einstein tensor is used in Einstein’s field equations to relate spacetime
curvature to the energy and momentum of matter and radiation. The Ein-
stein field equations are

Gµν = 8πTµν , (1.2)

where Tµν is the energy-momentum tensor. It describes the distribution and
flow of energy and momentum in spacetime. The signature of the metric
tensor describes the geometry of space. For example, in general relativity,
the spacetime metric tensor has the signatures (+,−,−,−) or (−,+,+,+),
which account for one-time and three spatial dimensions.

1.2 Geodesics

Geodesics is the generalization of straight lines to the curved space or
spacetime. They represent the most direct path between two points in curved
space, with a consistent tangent direction along the entire length of the curve.
Let xµ(λ) represent the worldline or trajectory, and dxµ

dλ
denote the tangent
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vector field along xµ(λ). The tangent vector is parallel-transported to the
curve if the following condition is satisfied [32]

d2xµ

dλ2
+ Γµ

νσ

dxν

dλ

dxσ

dλ
= 0. (1.3)

In flat spacetime, there is no curvature and the principles of Euclidean space
are followed. The Minkowski spacetime denoted by ηµν is used in the case of
flat spacetime defined as

ηµν = diag(−1,+1,+1,+1).

The motion of freely falling objects is in a straight line when the spacetime
is flat. The second derivative of xµ is zero in this spacetime because the
Christoffel symbols Γµ

νσ vanish (there is no curvature).

d2xµ

dλ2
= 0. (1.4)

Hence, the motion of the particle can be described through geodesics. The
geodesics in spacetime can be classified into three types based on their prop-
erties and the nature of the paths they represent. Time-like geodesics cor-
respond to the trajectories of particles and objects moving slower than the
speed of light, describing how massive objects travel through spacetime. Null
(light-like) geodesics represent the paths taken by light rays and other mass-
less particles, illustrating the fastest possible travel at the speed of light.
Space-like geodesics are theoretical paths requiring faster-than-light travel,
which is physically impossible for any object or signal.

These distinctions help understand objects’ movement and interaction
within the framework of general relativity. We adopt the metric signatures
(−,+,+,+). Mathematically,

1. Space-like geodesics are characterized by a positive interval (ds2 > 0)
in the spacetime metric.

2. Null geodesics are characterized by a zero interval ( ds2 = 0) in the
spacetime metric.

3. Time-like geodesics are characterized by (ds2 < 0) in spacetime metric.
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1.3 Impact Parameter

An impact parameter is a fundamental concept in gravitational lensing and
relativistic phenomena. It is the shortest distance between the center of a
massive body and the photon’s path as it passes by as shown in figure 1.3.
Due to the gravitational effects, it is considered a straight line. The value of
an impact parameter, typically represented by b is calculated mathematically
by expression [33]

b =
ℓ

E
. (1.5)

Here, E and ℓ are the energy and angular momentum of the upcoming
photon1 respectively. Understanding and accurately calculating the impact
parameter is necessary for observing Einstein Rings, multiple image forma-
tion, and other lensing-related phenomena. A specific value of impact param-
eter called critical impact parameter is the specific value of the impact
parameter for which the gravitational lensing effect causes the light from a
background source to form an Einstein ring around the lensing object. The
critical impact parameter predicts that either light will deflect or be captured
by the black hole. Suppose that light has an impact parameter denoted by b
and the critical impact parameter is represented by bc, then

• If b > bc, the light deflects and an image will form.

• If b < bc, the light will be captured by a black hole and never deflect.

1.4 Effective Potential

In gravitational lensing, an effective potential is used to analyze the bending
of light. It provides insight into the trajectory of light by integrating the
gravitational attraction of the massive body with the centrifugal forces acting
upon it. This concept is beneficial when analyzing the trajectories of light
rays. The effective potential is related to the gravitational attraction and
angular momentum barriers. Effective potentials (Veff) are typically used to
describe photon motion by combining kinetic and potential energy in curved
spacetime. By using the norm of four-velocity uµ as uµuµ = 0, we obtain
from the Lagrangian

ṙ2 = E2 − Veff.

1An ”upcoming photon” refers to a photon that is approaching a given point or observer
in space, typically in the context of light propagation and detection.
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Figure 1.3: A sketch of a gravitational lens system showing the impact pa-
rameter, b, which represents the closest distance between the light ray’s path
and the center of the massive lensing body. The diagram includes the de-
flection angle, α(b), with O as the observer, S as the light source, M as the
mass of the lensing body, and I as the image observed by the receiver.

The effective potential allows for the analysis of stable and unstable cir-
cular orbits. Mass M , energy E, and angular momentum ℓ help to define
the effective potential. Circular orbits exist at turning point rt, where ṙ = 0
and corresponds to the equation

dVeff(r)

dr

∣∣∣∣
r=rt

= 0.

To determine whether circular orbits are stable or unstable, at the turning
point rt, find the second derivative of Veff which corresponds to the radius of
the circular orbits.

d2Veff

dr2

∣∣∣∣
r=rt

.

The following cases will arise

• If d2Veff

dr2

∣∣∣∣
r=rt

> 0, the orbit is stable which means that a small pertur-

bation will tend the particle to move in original circular orbit. In this
case, the effective potential near rt has a local minimum.
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Figure 1.4: The phenomenon of weak lensing (left) and strong lensing (right)
is shown here. Source: astrobites.org.

• If d2Veff

dr2

∣∣∣∣
r=rt

< 0, the orbit is unstable which means that a small per-

turbation will tend the particle to move away from its original circular
orbit. In this case, the effective potential near rt has a local maximum.

1.5 Gravitational Lensing

Gravitational lensing is the phenomenon where light from a distant object,
like a star or galaxy, bends around a massive object between the observer and
the light source. This bending creates images of the distant object, which
can be magnified or distorted depending on how close the light path comes
to the massive object. This effect is explained by general relativity, which
says that light travels along paths known as geodesics in spacetime. There
are different types of gravitational lensing, which are described below.
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1.5.1 Strong Gravitational Lensing

This occurs when the lensing object is large, resulting in notable light deflec-
tion. This can produce several images, arcs, or even whole rings (Einstein
rings) of the background source 1.4. Strong lensing provides significant mag-
nification and can be used to study the lensing mass and the background
source in great detail.

1.5.2 Weak Gravitational Lensing

In weak lensing, the smaller deflection of light causes slight distortions in
the shapes of background galaxies [33] as shown in figure 1.4. By statis-
tically analyzing these small distortions across many galaxies, astronomers
can investigate the distribution of dark matter throughout the cosmos. This
method is one of the most successful approaches for mapping with dark mat-
ter which remains undetectable by conventional telescopes because it does
not emit light. Astronomers can produce detailed maps of dark matter in
galaxy clusters and large-scale structures by analyzing the lensing effects on
background galaxies.

1.5.3 Microlensing

Microlensing happens when a small object, like a star or planet, passes before
a larger star. The gravitational field of the foreground object behaves like
a lens by bending and focusing the light coming from a background star as
in figure 1.5. Unlike strong lensing, microlensing does not create numerous
pictures but rather creates a brief rise in the brightness of the background
star. Microlensing events are used to detect dark objects in the Milky Way,
including exoplanets and black holes as well as to explore the distribution of
invisible matter.

1.6 Gauss-Bonnet Theorem

The topology of any freely adjustable surface is explained through the Gauss-
Bonnet theorem. It establishes a link between the overall Gaussian curvature
of a surface and its Euler characteristic. While the theorem is commonly
stated for compact, directed surfaces without boundaries, other versions exist
for surfaces with boundaries [34].

Statement: A freely orientable surface described as a two-dimensional
curved surface has Gaussian curvature K and a small area element ds. The
surface is accompanied by various boundaries which are differentiable curves,
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Figure 1.5: The phenomenon of microlensing is shown in the above figure.
Source: European Space Agency.

denoted by ∂Ci, with geodesic curvature kg. The angles along the vertices
are taken as θi called jump angles shown in figure 1.6. Then the general form
of Gauss-Bonnet theorem is [35–38]∫∫

D

KdS +
N∑
i=1

∫
∂Ci

kgdl +
N∑
i=1

θi = 2π.

Here, the notation K is used for the Gaussian curvature of the surface and
dS is the area element. Geodesic curvature is denoted by the term kg which
indicates how far the deviation of Ci occurs from the geodesics. If Ci is the
geodesics then kg = 0.

The Gaussian curvature K indicates the way a surface is curved. Its value
can be calculated by following a mathematical formula [39]

K = − 1√
grr gϕϕ

[
∂

∂r

(
1√
grr

∂
√
grr

∂r

)
+

∂

∂ϕ

(
1√
gϕϕ

∂
√
grr

∂ϕ

)]
.

The value of kg along the geodesics Ci is calculated through the following

11



Figure 1.6: The schematic diagram of a surface having differentiable curves
along with jump angles is represented here.

formula [40]

kg =
1

2
√

grr gϕϕ

(
∂gϕϕ
∂r

dϕ

dt̃
− ∂grr

∂ϕ

dr

dt̃

)
+

dΦ

dt̃
.

where Φ is the angle between the tangent vector of the curve and the radial
unit vector.

1.7 Magnification, Lens Equation, and Ein-

stein Rings

The ideas of magnification and lens equations get more difficult in general
relativity due to spacetime curvature. The Lens equation in gravitational
lensing relates the source position, the lens position, and the image position.
Bozza analyzed various lens equations in [41]. At first, the lens equation in
its most general form is [41]

δ = ϑ− Dls

Ds

α̂(ϑ). (1.6)

Dls is the lens-source distance and Ds is the observer-source distance. δ and
ϑ are the angular positions of the source and image, respectively shown in
figure 1.7. Later on, Virbhadra and Ellis proposed a lens equation [42] which

12



Figure 1.7: The gravitational lensing phenomenon is portrayed in which light
comes from the source and is deflected by the lensing body.

is

tan δ = tanϑ− Dls

Ds

[tanϑ+ tan(α− ϑ)],

here, α is the angle of deflection of light. The traditional lens equation given
earlier was suitable for the scenario of weak gravitational lensing. In contrast,
the equation designed by Virbhadra and Ellis is useful for studying strong
gravitational lensing effects.

Magnification in gravitational lensing is defined as the ratio of the image’s
solid angle to that of the source. The increase or decrease in size of an image
as compared to the original form after lensing is seen through magnification.
Its value is calculated from the Jacobian determinant [43]

µ =

∣∣∣∣det∂δ∂ϑ
∣∣∣∣−1

.

The partial derivative of (1.6) gives

∂δ

∂ϑ
= 1− Ds

Dls

(
∂α̂

∂ϑ

)
.
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Figure 1.8: A newly discovered Einstein ring is shown here.

Substitution of above expression in µ, we get

µ =
1∣∣∣∣1− Ds

Dls

dϑ
dα

∣∣∣∣ . (1.7)

but in the study of gravitational lensing, it is calculated by using the formula
[44]

µ = µtµr

where

µt =

(
sin δ

sinϑ

)−1

, and µr =

(
dδ

dϑ

)−1

.

There are two types of magnification: Radial magnification µr and Tangential
magnification µt. Radial magnification occurs along the direction of the line
connecting the lens and the source. It describes how the image is stretched or
compressed radially towards or away from the lens. Tangential magnification
occurs along the direction perpendicular to the line connecting the lens and
the source. It describes how the image is stretched tangentially around the
lens.
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An Einstein ring occurs when the light from a distant background source,
such as a galaxy or quasar, is deflected by a massive body like a galaxy or a
galaxy cluster shown in figure 1.8. The foreground object’s gravitational field
functions as a lens, bending the light from the background source into a ring
shape around the lensing object. The backdrop source, lensing object, and
observer must all be aligned along the same line of sight to form an Einstein
ring. For an Einstein ring to be visible, an observer, lens, and source must
be aligned. The angular radius of the Einstein ring θE is provided by [45]:

θE =

√
4GM

c2
Dls

DolDs

, (1.8)

where M is the mass of the massive body, and c is the speed of light. These
principles are essential for a thorough understanding of gravitational lensing.
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Chapter 2

Review: Analyzing
Gravitational Lensing Patterns
Around Strongly Null Naked
Singularities

This chapter presents a comprehensive review of the article mentioned above
[46]. The main purpose of this chapter is to analyze and study the gravi-
tational lensing method in strong gravity. The article covers the expression
of deflection angle and then a few observations. The mathematical expres-
sions and observations are then compared to the Schwarzschild spacetime to
investigate the difference between a black hole and a naked singularity.

An event horizon(boundary beyond which nothing can escape even light)
is absent in naked Singularity spacetime. This singularity can be seen through
the naked eye. According to cosmic censorship conjecture, there is no naked
singularity [47]. It was proposed by Penrose in 1965. In a strongly null naked
singularity there is no photon sphere and the event horizon [46].

Joshi and collaborators proposed this strongly null naked singularity in
[48] and also studied the shadow of this spacetime. In [46], Suvankar Paul
calculated the deflection angle of naked singularity in strong gravity.

We have structured this chapter in the following way. In Section 2.1, we
have provided a brief overview of light trajectories and effective potential.
This section serves as a foundation for the next discussions. Section 2.2 is
about calculating the deflection angle and includes a few observations about
the images formed after deflection. In addition, we include plots to under-
stand the behavior and characteristics of light around a naked singularity in
detail. Section 2.3 discusses a few situations involving the bending angle of
distinct spacetimes to build a thorough knowledge of the concept.

16



The line element of naked singularity which is static (non-rotating) and
spherically symmetric is given as [46]

ds2 = − dt2(
1 + M

r

)2 +

(
1 +

M

r

)2

dr2 + r2dΩ2. (2.1)

Here, dΩ2 = dr2 + sin2 θdϕ2. In the limit, r → ∞, this line element given in
(2.1) reduces to Minkowski spacetime which is flat. This suggests that (2.1)
is asymptotically flat. Expansion of grr is

grr =

(
1 +

M

r

)2

=
1(

1 + M
r

)−2 =
1[

1− 2M
r

+ 3M
r2

− · · ·
] . (2.2)

There is no event horizon in this spacetime which can be seen through the
expansion of grr having a positive and finite solution for r > 0. Hence, a glob-
ally naked singularity exists in the given spacetime. This naked singularity
will resemble a Schwarzschild black hole for large values of r. The reason for
the similarity is the radius of the Einstein ring which is almost sane for both
spacetimes.

2.1 Characteristics of Null Geodesics

The Lagrangian for the given spacetime is

L =
m

2
gabẋ

aẋb =
m

2

[
− 1(

1 + M
r

)2 ṫ2 + ṙ2
(
1 +

M

r

)2

+ r2ϑ̇2 + r2 sin2 ϑϕ̇2

]
.

(2.3)
In this dissertation, the˙symbolizes the derivative with respect to the geodetic
parameter λ. We will consider the nature of null geodesics (ds2 = 0). We
can take ϑ = π

2
without losing generality because spacetime is spherically

symmetric. The Lagrangian reduces to

L =
m

2

[(
1 +

M

r

)2

ṙ2 − ṫ2(
1 + M

r

)2 + r2ϕ̇2

]
. (2.4)

Further, this spacetime is static and spherically symmetric so E and angular
momentum ℓ will be conserved. The corresponding value of ṫ and ϕ̇ will be
calculated by using the Euler Lagrange equation defined as

d

dλ

(
∂L
∂ẋν

)
=

(
∂L
∂xν

)
. (2.5)
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When ν = 0, (2.3) and (2.5) give

ṫ = E

(
1 +

M

r

)2

. (2.6)

Similarly, when ν = 3 in (2.5), we obtain

ϕ̇ =
ℓ

r2
. (2.7)

Using null geodesics condition (ds2 = 0), we obtain(
1 +

M

r

)2

ṙ2 − ṫ2(
1 + M

r

)2 + r2ϕ̇2 = 0.

Substituting ṫ and ϕ̇ in above equation yields

ṙ2 = E2 − ℓ2

r2(1 + M
r
)2
, (2.8)

where Veff = ℓ2

r2(1+M
r
)2

is the effective potential of the particle. The effective

potential has no extremum as shown in figure 2.1, so it does not possess a
photon sphere. At the turning point of the light rt, we have ṙ = 0 which
gives

Veff =
ℓ2

(rt +M)2
. (2.9)

The impact parameter is the shortest distance measured perpendicularly
from the source to the lensing body. The smaller impact parameter results
in a greater bending of the light. Mathematically, the impact parameter at
the turning point is defined as

b(rt) =
ℓ

E
= rt +M. (2.10)

2.2 Bending of light in the SDL

The deflection of light forming an angle will be studied in this section. Now, a
spacetime having a photon sphere has a unique property. The angle diverges
due to the presence of a photon sphere. The reason is the rotation of light
rays around the lensing body before moving back toward the observer. The
formation of shadow in the given spacetime does not depend on the photon
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Figure 2.1: The Veff is plotted against r/M in the left figure. The corre-
sponding light trajectories are shown in the right figure. The black circle
represents the shadow edge of naked singularity spacetime.

The pink and blue lines are the light trajectories having b < bc and b >
bc respectively. On the right side, the corresponding light trajectories are
plotted in which a pink light ray is captured into a massive body, and a red
one is deflected back. The big circle shows the Schwarzschild shadow region
and the smaller one is for naked singularity.

sphere. It will be interesting to figure out the cause which forms a shadow
here. Rearrangement of (2.8) gives us

ṙ = ±

√
E2 − ℓ2

r2(1 + M
r2
)2
. (2.11)

To calculate the angle of bending of light, we will find the expression of dϕ
dr

by combining the above expression with (2.7),

dϕ

dr
=

ϕ̇

ṙ
,

= ± ℓ

r2
√
E2 − ℓ2

(r+M)2

,

dϕ

dr
= ± b

r2
√
1− b2

(r+M)2

.

(2.12)

By using b(rt) = rt +M , above equation can be rewritten as

dϕ

dr
= ± (rt +M)(r +M)

r2
√
r2 + 2(r − rt)M − r2t

. (2.13)
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Figure 2.2: Bending angle α is plotted for different values of b.

Integration of the above expression will give us

ϕ(r) = ϕ(∞)±
∫ ∞

r

(rt +M)(r +M)

r2
√
r2 + 2(r − rt)M − r2t

dr. (2.14)

The initial azimuthal angle is given by ϕ∞, generated by the light ray from the
source in the asymptotic area. As a result, the gravitational field generated
by the naked singularity bends light with an expression

α(rt) = 2|ϕ(rt)− ϕ∞| − π,

α(rt) =

∫ ∞

rt

(rt +M)(r +M)

r2
√

r2 + 2(r − rt)M − r2t
dr − π.

(2.15)

The analytic expression of α is obtained through some simplification steps

α(rt) =
2M(rt +M)

rt(rt + 2M)
+

4(rt +M)3

r
3/2
t (rt + 2M)3/2

arctan

√
rt

rt + 2M
− π.

Using the property arctan( 1
a
) = π

2
− arctan a, in the above expression results

in

α(rt) =
2M(rt +M)

rt(rt + 2M)
+

4(rt +M)3

r
3/2
t (rt + 2M)3/2

arctan

√
1 +

2M

rt
− π. (2.16)

By using the value of the impact parameter, the above expression reduces
to the form

α(b) =
2Mb

b2 −M2
+

4b3

(b2 −M2)3/2
arctan

√
b+M

b−M
− π. (2.17)
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From (2.16) and (2.17), one can easily see that the divergence of deflection
angle occurs when the impact parameter reaches the critical impact param-
eter b → bc = M or equivalently, rt → 0. Expansion of α in the limit x > 1
is as

α(rt) =
2π(rt +M)3

r
3/2
t (rt + 2M)3/2

− 2(rt +M)(2rt + 3M)

(rt + 2M)2
+

4(rt +M)3

3(rt + 2M)3

− 4rt(rt +M)3

5(rt +M)4
+ · · · − π,

and

α(b) =
2π(b/M)3

b2

M2 − 1
−
2(b/M)( 2b

M
+ 1)

( b
M

+ 1)2
+

4(b/M)3

3(b/M + 1)3
−
4(b/M)3( b2

M2 − 1)

( b
M

+ 1)5
+· · ·−π.

(2.18)
Hence, after divergence of α(rt) in the limit rt → 0 and b → bc = M (2.18)
takes the form

lim
b→bc

α(b) =

 2π(b/M)3/2(
b2

b2c
− 1
)3/2

23/2
−

2(bc/M)(2bc
M

+ 1)(
bc
M

+ 1
)2 + · · ·

− π,

=

 2π(b/M)3/2(
b2

b2c
− 1
)3/2

23/2
− 6

4
+

1

6
− 0 + · · ·

− π.

If we simplify and ignore higher-order terms then it will yield

lim
rt→0

α(rt) =
π√
2

(
M

rt

)3/2

− 4

3
− π +O(rt),

lim
b→0

α(b) =
π/

√
2(

b
bc
− 1
)3/2 (M

rt

)3/2

− 4

3
− π +O

(
b

bc
− 1

)
.

(2.19)

The formula above is classified as a non-logarithmic polynomial diver-
gence as b → bc and rt → 0. This behavior is a distinctive characteristic of a
naked singularity.

2.3 Methods to Calculate Bending Angle

We will discuss different cases to understand the procedure to find the bend-
ing angle in two distinct spacetimes.
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2.3.1 Strong deflection angle of spacetime having a
photon sphere only

Now we will only study the deflection angle of a spacetime with a photon
sphere. For this spacetime, the bending angle diverges in the limit b → bc and
rt → 0 as light approaches from the b > bc side. Logarithmic divergence exists
for this spacetime. Bozza [49] initially researched this, then Tsukumoto [50]
refined it. Suppose a static, spherically symmetric, and asymptotically flat
spacetime to study the strong deflection angle. The metric tensor for the
following spacetime is given as

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2), (2.20)

where A(r), B(r) and C(r) satisfies

lim
r→∞

A(r) = 1,

lim
r→∞

B(r) = 1,

lim
r→∞

C(r)

r2
= 1,

(2.21)

which is the condition for asymptotic flatness. The static and spherically
symmetric nature of the spacetime leads to conserved quantities namely en-
ergy and angular momentum. Also, we will find out a positive solution by
putting D(r) = 0 and D(r) is defined as

D(r) =
C

′

C
− A

′

A
. (2.22)

The prime (′) represents the differentiation of the radial coordinate r. D(r) =
0 yields the photon sphere radius, rph. The path of light is represented by
gabk

akb, where ka = ẋa represents the number of light waves. The dot (̇) rep-
resents differentiation concerning the affine parameter, which parameterizes
the light’s trajectory. The conserved quantities include energy and angular
momentum defined as

E = A(r)ṫ,

ℓ = C(r)ϕ̇.
(2.23)

The value of E and L are non-vanishing at the same time, so the impact
parameter is defined as

b =
ℓ

E
=

C(r)ϕ̇

A(r)ṫ
; E ̸= 0. (2.24)
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We will take θ = π
2
without any loss of generality because the spacetime is

static and spherically symmetric. The path of light coming from the source
can be explained by an equation of trajectory given as

−A(r)ṫ2 +B(r)ṙ2 + C(r)ϕ̇2 = 0. (2.25)

After a few simplifications, we obtain

ṙ2 = V (r),

where

V (r) ≡ L2R(r)

B(r)C(r)
,

and

R(r) =
C(r)

A(r)b2
− 1.

Photon will orbit around the lensing body when V (r) ≥ 0. This is because
when the effective potential is negative and zero, the photon will not have
enough energy to form a stable orbit. So, it will escape to infinity or fall
into the central object. When we use the condition described in (2.21) for
asymptotic flatness, we get limr→∞ V (r) = E2 > 0, so the presence of photon
at infinity can be expected. We assume that R(r) = 0 has one positive
solution. Suppose the light ray coming nearer from infinity towards the
lensing object will scatter at the closest distance r = rt and then go to infinity.
There are some observations related to the nearest approach distance rt:

• For the scattering case, rph < rt is satisfied, light does not reach the
photon sphere. If rph > rt, the photon will be captured by the lensing
body’s gravitational field, either orbiting around the photon sphere or
falling into the massive object.

• r = rt is the largest solution of R(r) = 0. This is because the photon
comes from infinity, and reaches rt, and then moves away again.

• B(r) and C(r) do not diverge for r ≥ rt. Hence, V (r) vanishes at
r = rt.

Since, ṙ = 0 at rt, so (2.25) changes as

Atṫ
2
t = Ctϕ̇

2
t . (2.26)

Throughout the discussion, subscript t denotes the quantities at r = rt. By
using (2.26), the impact parameter is defined as

b(rt) =
ℓ

E
=

√
Ct

At

. (2.27)
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Using (2.27), we will rewrite R(r) as

R(r) =
AtC

ACt

− 1.

The critical impact parameter is defined as [51]

bc ≡ lim
rt→rph

√
Ct

At

,

and rt → rph and bt → bph is referred as strong deflection limit. The trajec-
tory of a light ray is rewritten as(

dr

dϕ

)2

=
R(r)C(r)

B(r)
, (2.28)

and the deflection angle of light α(rt) is obtained as

α(rt) = I(rt)− π, (2.29)

where I(rt) is defined as

I(rt) ≡
∫ ∞

rt

dr√
R(r)C(r)

B(r)

. (2.30)

For simplification, introducing a new variable

z = 1− rt
r
, (2.31)

The term I(rt) is defined by

I(rt) =

∫ 1

0

S(z, rt)dz, (2.32)

where S(z, rt) is defined as

S(z, rt) ≡
2rt√
F (z, rt)

,

F (z, rt) =
RC

B
(1− z)4.

(2.33)

Using the Taylor series expansion of S(z, rt) in powers of z as

S = St + S
′

trtz +

(
1

2
St

′′r2t + S ′
trt

)
z2 +O(z3). (2.34)
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here, ′ denotes derivative with respect to r. The first and second derivative
of R(r) is

R′(r) =
AtC

′

ACt

− ACA′

A2Ct

,

R′′(r) =
C ′′

t

Ct

− A′′
t

A
− 2

C ′
tA

′
t

AtCt

− 2A′2

A2
t

,

By using (2.34), R(r) can be expanded in the powers of z as

R(r) = Dtrtz +
rt
2

[(
C

′′
t

Ct

− A
′′
t

At

)
+

(
1− A

′
trt
At

)
Dt

]
rtz

2 +O(z3). (2.35)

Now, we will expand F (z, rt) in power of z as follows

F ′
t(z, rt) = (1− 4z + 6z2)

(
DtCt

Bt

)
+O(z3),

Ft
′′(z, rt) = (1− 4z)

(
R′′

tCt

Bt

+
C ′

tR
′
t

Bt

− B′
tR

′
tCt

B2
t

+
CtR

′
t

Bt

− R′
tCtB

′
t

B2
t

)
.

Using the above values and (2.34), we get

F (z, rt) =
RC

B
(1− 4z + 6z2) + (1− 4z)

(
DtCt

Bt

)
rtz

+

[
1

2

(
R′′

tCt

Bt

+
C ′

tR
′
t

Bt

− B′
tR

′
tCt

B2
t

+
CtR

′
t

Bt

− R′
tCtB

′
t

B2
t

)
r2t +

(
DtCt

Bt

)
rt

]
z2

+O(z3).

Using the value of R
′
(rt), R

′′
(rt) in the above expression, we obtain

F (z, rt) =

(
Dtrtz +

rt
2

[(
C

′′
t

Ct
− A

′′
t

At

)
+
(
1− A

′
trt
At

)
Dt

]
rtz

2
)
C

B
(1− 4z + 6z2)

+ (1− 4z)

(
DtCt

Bt

)
rtz

+

1
2

Ct

(
C′′

t

Ct
− A′′

t

At
− 2

C′
tA

′
t

AtCt
− 2A′2

A2
t

)
Bt

+

(
AtC

′

ACt

− ACA′

A2Ct

)(
C ′

t

Bt

− B′
tCt

B2
t

+
Ct

Bt

− CtB
′
t

B2
t

)
) r2t +

(
DtCt

Bt

)
rt

]
z2

+O(z3).
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After a few simplifications and rearrangements, we can write F (z, rt) in the
following form

F (z, rt) =
∞∑
n=1

cn(rt)z
n, (2.36)

where c1(rt) and c2(rt) are given by

c1(rt) =
CtDtrt
Bt

, (2.37)

and,

c2(rt) =
Ctrt
Bt

[
Dt

((
Dt −

B
′
t

Bt

)
rt − 3

)
+

rt
2

(
C

′′
t

Ct

− A
′′
t

At

)]
, (2.38)

respectively. From the strong deflection limit rt → rph, the value of Dph = 0
and

c1(rph) = 0, (2.39)

and

c2(rph) =
Cphr

2
ph

2Bph

D
′

ph, (2.40)

where

D
′

ph =
C

′′

ph

Cph

−
A

′′

ph

Aph

. (2.41)

Now, the value of F (z, rph) reduces to

F (z, rph) = c2(rph)z
2 +O(z3). (2.42)

The divergence of F (z, rph) exhibits a logarithmic nature in the strong deflec-
tion limit as rt approaches rph. The leading term in the divergence behaves
as z−1. We express the integral I(rt) as the sum of a divergent part, ID(rt),
and a regular part, IR(rt). The divergent part ID(rt) is defined as

ID(rt) ≡
∫ 1

0

SD(z, rt)dz, (2.43)

and,

SD(z, rt) ≡
2rt√

c1(rt)z + c2(rt)z2
.

Evaluation of ID(rt) will give

ID(rt) =
4rt√
c2(rt)

log

√
c2(rt) +

√
c1(rt) + c2(rt)√

c1(rt)
. (2.44)
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To obtain the required expression of the deflection angle in strong gravity,
we expand c1(rt) and b(rt) in the powers of rt − rph as follows

c1(rt) =
CphrphD

′

ph

Bph

(rt − rph) +O(rt − rph)
2,

b(rt) = bc(rph) +
1

4

√
Cph

Aph

D
′

ph(rt − rph)
2 +O(rt − rph)

3,

(2.45)

respectively. Further

b(rt)− b(rph) =
1

4

√
Cph

Aph

D′
ph(rt − rph)

2,

(rt − rph) = 2

√
1

D′
ph

(
b

bc
− 1

)1/2

.

Using the expression of rt − rph obtained from b(rt) in c1(rt) we obtain

lim
rt→rph

c1(rt) = lim
b→bc

2Cphrph

√
D

′
ph

Bph

(
b

bc
− 1

)1/2

. (2.46)

Hence, the expression of ID(rt) in the strong deflection limit is

ID(rt) = − rph√
c2(rph)

log

(
b

bc
− 1

)
+

rph√
c2(rph)

log r2phD
′

ph

+O((b− bc) log(b− bc)).

(2.47)

The regular part IR is defined as

IR(rt) ≡
∫ 1

0

SR(z, rt)dz, (2.48)

where S(z, rt) is defined as

SR(z, rt) = S(z, rt)− SD(z, rt).

To evaluate IR in the strong deflection limit as rt approaches rph or b ap-
proaches bc, we expand I(rt) in powers of rt − rph and focus on the leading
term IR(rph). We then integrate the regular part both numerically and ana-
lytically.

IR(rt) =

∫ 1

0

SR(z, rph)dz +O((rt − rph) log(rt − rph)),

IR(b) =

∫ 1

0

SR(z, bc)dz +O((b− bc) log(b− bc)).

(2.49)
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In the strong zone of gravity, the deflection angle is defined as

α = −a log

(
b

bc
− 1

)
+ b+O((b− bc) log(b− bc)), (2.50)

where a and b is given as

a =

√
2BphAph

C
′′
phAph − A

′′
phCph

,

b = a log

[
r2ph(

C
′′

ph

Cph

−
A

′′

ph

Aph

)

]
+ IR(rph)− π,

(2.51)

respectively. The above analysis can assist in finding the deflection angles of
spacetime that are static, spherically symmetric, and asymptotically flat.

2.3.2 Bending angle from ultra-compact objects

According to the analysis by Bozza and Tsukamoto, light bends outside
the photon sphere, meaning its turning point forms at that location. The
SDL is calculated as the turning point approaches the radius of the photon
sphere. However, this calculation is not suitable for examining photons that
are reflected within the photon sphere. In such cases, it is necessary to con-
sider the turning point of a photon to determine the positions of relativistic
images. In [52], the author presents an analytical method to calculate the
deflection angle of photons that are deflected inside the photon sphere. The
region inside the photon sphere, where light is deflected, is referred to as the
“antiphoton sphere,” as illustrated in figure 2.3. Its radius is determined by
finding the minimum point of the effective potential.

Consider a static, spherically symmetric spacetime having the line element

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2), (2.52)

where A(r), B(r), and C(r) satisfy the asymptotic flatness condition de-
scribed in (2.21). Here, θ = π/2 is assumed for simplicity. The Lagrangian
for this spacetime is expressed as

2L = −A(r)ṫ2 +B(r)ṙ2 + C(r)ϕ̇2. (2.53)

where an over-dot represents the derivative concerning the affine parameter.
Since the spacetime is static and spherically symmetric, it admits two con-
stants of motion: energy and angular momentum. By using Euler Lagrange
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Figure 2.3: The effective potential of this spacetime is plotted. Here, rc has
the same radius as the turning point rt.

equation, we obtain

ρt =
∂L
∂ṫ

= −A(r)ṫ = −E, ρϕ =
∂L
∂ϕ̇

= C(r)ϕ̇ = ℓ. (2.54)

Using the null geodesics condition gabẋ
aẋb = 0, we find

ABṙ2 + Veff = E2, Veff = ℓ2
A(r)

C(r)
, (2.55)

where Veff is the effective potential. A photon coming from the source will
turn at some radius rt before reaching a faraway observer. At rt, the condition
ṙ = 0 holds. The impact parameter, calculated using this condition, is given
by

b2 =
C(rt)

A(rt)
. (2.56)

The light is deflected by a massive body toward the faraway observer, re-
sulting in a deflection angle

α(rt) = I(rt)− π, (2.57)
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where

I(rt) = 2

∫ ∞

rt

dr√
R(r)C(r)

B(r)

, R(r) =

(
AtC

CtA
− 1

)
. (2.58)

The locations of stable and unstable circular orbits are identified by photon
and antiphoton spheres, respectively. They satisfy the condition

C ′

C
− A′

A
= 0. (2.59)

In a gravitational field, photons (light particles) are influenced by spacetime
curvature, creating regions known as the photon and antiphoton spheres.
These spheres represent specific distances from a massive object where light
can orbit due to the gravitational potential.

• Photon Sphere: The photon sphere corresponds to the location where
the effective potential reaches a maximum. Photons here experience a
balance between gravitational pull and outward movement, allowing
them to follow a (usually unstable) circular orbit. Mathematically, this
is the radius rph where the second derivative of the effective potential,
d2Veff

dr2
, is positive, indicating a peak in the potential.

• Antiphoton Sphere: Conversely, the antiphoton sphere is region
where the effective potential reaches a minimum, allowing for stable
orbits. Here, d2Veff

dr2
is negative, showing a valley in the potential, which

stabilizes the orbit.

The position of the photon sphere, denoted as rph, can be determined by
solving a specific condition, as shown in (2.59). The photon and antiphoton
spheres are essential for understanding gravitational lensing and light paths
around dense objects like black holes.

Strong deflection due to photon Sphere

The bending angle will have the same expression as in (2.50) discussed in [50].
The expressions of a and b are same as described in (2.51). The subscript ph
in the mentioned expression depicts the quantities at rph which is the radius
of the photon sphere.

Strong deflection due to antiphoton Sphere

This behavior is observed in gravitational lensing caused by ultra-compact
objects, where the effective potential for photons shows a distinct profile. As
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photons approach the massive object, the effective potential first reaches a
maximum at the photon sphere. Moving further, the potential decreases to
a minimum at the antiphoton sphere, then increases below that radius.

When a photon has an impact parameter b less than the critical value
bph, it crosses into the photon sphere. It continues and passes through the
antiphoton sphere, where it turns within this region of minimum potential.
Afterward, the photon exits the photon sphere and escapes, reaching a distant
observer.

As the impact parameter b of a photon nears the critical value bph, the
photon experiences significant gravitational deflection. To derive the strong
deflection formula, we define a new variable z as follows:

z = 1− rph
rt

. (2.60)

Substituting the above value of z in I(rt), we obtain

I(rt) =

∫ 1

z

f(z, rt, rph)dz, (2.61)

where

f(z, rt, rph) =
2rph√

X(z, rt, rph)
, X(z, rt, rph) = R

C

B
(1− z4). (2.62)

By using (2.34), the expansion of R(r) in the powers of z is as follows

R(r) =

(
AtCph

AphCt

− 1

)
+

r2ph
2

AtCph

AphCt

(
C ′′

ph

Cph

−
A′′

ph

Aph

)
z2 +O(z3). (2.63)

Similar expansion will be done to obtain X(z, rt, rph) in the powers of z as

X(z, rt, rph) = A+ Bz + Cz2 +O(z3), (2.64)

where

A =
Cph

Bph

(
AtCph

AphCt

− 1

)
, (2.65)

B =
Cph

Bph

(
AtCph

AphCt

− 1

)[
−4 + rph

(
C ′

ph

Cph

−
B′

ph

Bph

)]
, (2.66)

and

C =
Cph

Bph

(
AtCph

CtAph

− 1

)[
6− rph

(
3 +

B′
phrph

Bph

)(
C ′

ph

Cph

−
B′

ph

Bph

)
+

r2ph
2

(
C ′′

ph

Cph

−
A′′

ph

Aph

)]
+

r2ph
2

Cph

Bph

AtCph

AphCt

(
C ′′

ph

Cph

−
A′′

ph

Aph

)
.

(2.67)
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When the critical impact parameter becomes close to the impact parameter
from b < bph side, a new radius rc will be equal to the turning point rt. Hence,

in the limit rt → rc,
(

AtCph

AphCt
− 1
)
→ 0. We obtain the following results by

using the limit rc

Aph = A|rt=rc = 0 = Bph = B|rt=rc , (2.68)

and

Cph = C|rt=rc =
r2ph
2

Cph

Bph

(
C ′′

ph

Cph

−
A′′

ph

Aph

)
. (2.69)

Finally, we obtain
Xph(z) = Cphz2 +O(z3).

The nature of divergence is logarithmic in the strong deflection limit rt → rc.
To eliminate divergence, we will split the expression I(rt) to the divergent
ID(rt) and regular part IR(rt). The divergent part is defined as

ID(rt) =

∫ 1

1−
rph
rt

fD(z, rt, rph)dz, fD(z, rt, rph) =
2rph√

A+ Bz + Cz2
. (2.70)

IR(rt) is defined as

IR(rt)

∫ 1

1−
rph
rt

fR(z, rt, rph), fR(z, rt, rph) = f(z, rt, rph)− fD(z, rt, rph).

(2.71)
The integration of ID(rt) will give

ID(rt) =
2rph√
Bph

log
A+ 2B + 2

√
B
√
A+ B + C

A+ 2B
(
1− rph

rt

)
+ 2

√
B
√

C +A
(
1− rph

rt

)
+ B(1− rph

rt
)2
.

(2.72)
In the strong deflection limit rt → rc and taking C and A as small values,

the above expression reduces to

ID(rt) =
2rph√
Bph

log

 4Bph(
rPh

rt
− 1

Cph

Bph

(
AtCph

CtAph
− 1
)
+O

[(
AtCph

CtAph

− 1

)
log

(
AtCph

CtAph

− 1

)]
.

(2.73)

Using the expansion mentioned in (2.34)

At = Ac + A′
c(rt − rc) +O(rt − rc)

2,
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and
Ct = Cc + C ′

c(rt − rc) +O(rt − rc)
2,

we obtain

AtCph

CtAph

=
Cph

Aph

[
Ac + A′

c(rt − rc) +O(rt − rc)
2

Cc + C ′
c(rt − rc) +O(rt − rc)2

]
,

where the subscript “c” represents quantities at r = rc, and a condition
AcCph

AphCc
= 1 will be used in the expansion.

AtCph

CtAph

=
Ct

At

[
Ac

Cc + C ′
c(rt − rc)

+
A′

c(rt − rc)

Cc + C ′
c(rt − rc)

+O(rt − rc)
2

]
,

=
CtAc

CcAt

[
1

1 + C′
c

Cc
(rt − rc)

+
A′

c/Ac(rt − rc)

1 + C′
c

Cc
(rt − rc)

]
+O(rt − rc)

2.

Using the condition
AcCph

AphCc
= 1, we get

AtCph

CtAph

=

(
1 +

A′
c

Ac

(rt − rc)

)(
1 +

C ′
c

Cc

(rt − rc)

)−1

+O(rt − rc)
2,

here, we use the binomial theorem and after a few simplifications

AtCph

CtAph

= 1 +

(
A′

c

Ac

− C ′
c

Cc

)
(rt − rc) +O(rt − rc)

2. (2.74)

Using (2.73) and (2.74), we will get a new form of ID(rt)

ID(rt) = − 2rph√
Bph

log(rc − rt) +
2rph√
Bph

log

[
4
Bph

Cph

(
rph
rc

− 1

)
Bph

(
C ′

c

Cc

− A′
c

Ac

)−1
]
+O((rt − rc) log(rt − rc)).

(2.75)

Writing ID in terms of impact parameter b will be more convenient. First of
all, we will consider some values related to the impact parameter b(rt) =

C(rt)
A(rt)

and b(rph) =
Cph

Aph
and then from (2.74),

AtCph

CtAph

− 1 =

(
A′

c

Ac

− C ′
c

Cc

)
(rt − rc),

(rt − rc) =
−AtCph

CtAph
+ 1(

A′
c

Ac
− C′

c

Cc

) .
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By using the above two expressions, we get

rt = rc −
(
C ′

c

Cc

− A′
c

Ac

)−1(b2ph
b2

− 1

)
. (2.76)

Now, the value of ID in strong field limits b → bph is calculated through
(2.76)

ID(b) = − 2rph√
Bph

log

(
b2ph
b2

− 1

)
+

2rph√
Bph

log

[
4
Bph

Cph

(
rph
rc

− 1

)
Bph

]
+O((b2ph − b2) log(b2ph − b2)).

(2.77)

In the strong field limits, we will expand the regular part in the powers
of rc − rt and truncate the expression up to the leading order from which
analytical and numerical values will be approximated. We find that

IR(rt) =

∫ 1

1−
rph
rc

fR(z, rc, rph)dz +O((rc − rt) log(rt − rc)). (2.78)

It can be expressed in terms of impact parameter as

IR(b) =

∫ 1

1−
rph
rc

fR(z, bph)dz +O((b2ph − b2) log(b2ph − b2)). (2.79)

Finally, the deflection angle is written as

α(b) = −ã log

(
b2ph
b2

− 1

)
+ b̃+O((b2ph − b2) log(b2ph − b2)), (2.80)

where,

ã = 2

√
2BphAph

C ′′
phAph − A′′

phCph

, (2.81)

and

b̃ = a log

[
2r2ph

(
C ′′

ph

Cph

−
A′′

ph

Aph

)]
. (2.82)

The photon sphere formed by the equations above will be different from that
formed in [50]. If we analyze both cases, the value of a is double in the
case of the antiphoton sphere. The b also contain an extra term which is(

rph
rc

− 1
)
. Due to the presence of these terms, unlike the outer relativistic

images, the bending angle for inner relativistic pictures begins to diverge
before the critical impact parameter is attained. As a result, the angular
distance between the inner images is significantly larger than the outside
images.
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2.4 Summary

This chapter explores the strong gravitational bending associated with a
naked singularity, detailing its unique characteristics and behavior. The
analysis extends to two other cases: one involving a spacetime that con-
tains only a photon sphere, and another focusing on the gravitational lensing
produced by ultracompact objects. We delve into the mechanisms of gravita-
tional lensing and the resulting formation of relativistic images around these
horizon-less ultracompact objects, drawing comparisons to similar phenom-
ena around black holes.

For black holes, relativistic images form exclusively outside their photon
spheres, but in contrast, horizon-less ultracompact objects have the potential
to produce additional relativistic images within the radius of their photon
spheres. This research introduces an analytical approach to understanding
the pronounced gravitational lensing effects of ultracompact objects, present-
ing a novel perspective distinct from the methods typically applied to black
holes, such as those in Bozza’s work [53].
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Chapter 3

Gravitational Lensing by a
Dark Compact Object in
Modified Gravity

Modified gravity theories emerged in the early twentieth century to address
the limitations of Einstein’s general theory of relativity (GR). While GR, in-
troduced in 1915, effectively describes gravity as the curvature of spacetime
induced by mass and energy, it struggles to account for significant astronom-
ical phenomena, such as the rotation curves of galaxies, without invoking
dark matter. Dark matter was proposed to explain the stable motion ob-
served in galaxies and clusters of galaxies. However, GR cannot fully explain
current astrophysical and cosmological observations without the inclusion of
dark matter, which has yet to be detected in laboratory experiments [17].

Two alternative theories of gravity have been proposed to explain the
rotational velocity curves of galaxies and clusters without resorting to dark
matter: non-symmetric gravity theory (NGT) [17] and metric–skew–tensor
gravity (MSTG) [18]. The final phase of a body’s collapse can be attributed
to an enhanced gravitational constant G and a gravitational repulsive force
characterized by the charge Q =

√
αGNM , where α is a parameter defined as

G = GN(1 + α), GN represents Newton’s constant, and M is the total mass
of the black hole [22]. Various solutions to Einstein’s equations in modified
gravity spacetimes are examined in [21–24]. A particular static, spherically
symmetric solution in modified gravity, which features two event horizons,
is discussed in [30]. In addition, the Kerr-MOG spacetime solution, which
includes two event horizons and an ergosphere, is also explored. This solution
is distinguished from the Schwarzschild solution by its line element, which
incorporates a free parameter α.
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3.1 Gravitational Lensing of Spacetime in Mod-

ified Gravity

3.1.1 Line Element of Spacetime in MOG

The line element of static, spherically symmetric spacetime in MOG is defined
as [30]

ds2 = fs(r)dt
2 − 1

fs(r)
dr2 − r2dΩ2.

The line element describes the generally static, spherically symmetric, and
asymptotically flat spacetime:

ds2 = A(r)dt2 −B(r)dr2 − r2dΩ2.

Here,

A(r) = fs(r), B(r) =
1

fs(r)
, C(r) = r2. (3.1)

where dΩ2 = dθ2+sin2 θ dϕ2. The exact function fs(r) for the given spacetime
in Modified Gravity (MOG) is [54]:

fs(r) = 1− 2(1 + α)Mr2

(r2 + α(1 + α)M2)
3
2

+
α(1 + α)M2r2

(r2 + α(1 + α)M2)2
.

A static, spherically symmetric solution in Modified Gravity (MOG) that
remains regular at r = 0 is obtained. This solution features two horizons
when α < αcrit = 0.673. As r approaches 0, the metric effectively describes
a De Sitter (or anti-De Sitter) spacetime. The asymptotic behavior of fs(r)
for large r is:

fs(r) = 1− 2(1 + α)M

r
+

α(1 + α)M2

r2
+O(M3). (3.2)

Here, α is a dimensionless parameter. Setting α = 0 recovers the Schwarzschild
coordinates from the given line element of a dark compact object in modified
gravity. We will use fs(r), as defined in (3.2), throughout the process of
finding the deflection angle.
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3.1.2 Characteristics of Null Geodesics in Modified Grav-
ity Spacetime

The properties of null geodesics in this spacetime will be investigated here.
We can set θ = π/2 without losing generality because it does not affect the
spacetime symmetry due to the spherically symmetric property of spacetime.
Furthermore, as a static, spherically symmetric spacetime, it admits two
constants of motion: energy (E) and the z-component of angular momentum
(ℓ). The geodesic equations for photon motion are as follows:

ṫ =

(
1− 2(1 + α)M

r
+

α(1 + α)M2

r2

)
E, and ϕ̇ =

ℓ

r2
,

The overdot represents a derivative of the affine parameter along a null
geodesic concerning the radial coordinate. The normalization criterion for
photon four-velocity (uµuµ = 0) yields:

ṙ2 +
ℓ2

r2

(
1− 2(1 + α)M

r
+

α(1 + α)M2

r2

)
= E2,

or

ṙ2 + Veff(r) = E2,

where

Veff(r) =
ℓ2

r2

(
1− 2(1 + α)M

r
+

α(1 + α)M2

r2

)
,

is the effective potential for photon motion. At the turning point (rt), we
have ṙ = 0, which gives:

Veff(rt) =
ℓ2

r2t

(
1− 2(1 + α)M

rt
+

α(1 + α)M2

r2t

)
= E2,

and
ℓ

E
= b(rt) =

√
(rt +M)2 = (rt +M),

where b = ℓ/E represents the impact parameter of a light ray, which is a
constant of motion for that ray. The effective potential is plotted against
r in 3.1. the effective potential analysis reveals how varying the parameter
α influences the existence and characteristics of photon spheres and affects
gravitational lensing dynamics. This study is crucial for understanding the
behavior of light around compact objects and provides insights into the grav-
itational influence of such celestial bodies.
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Figure 3.1: Effective potential is plotted against b for different values of α.
The blue curve represents the Schwarzschild case when α = 0. Other curves
are drawn for mentioned values of α.

3.1.3 Weak Deflection Angle of Spacetime in MOG

To calculate the weak deflection angle of static spherically symmetric space-
time in MOG, the Gibbons and Werner method will be used [55]. According
to their approach, for asymptotically flat spacetime, the following formula is
applicable to find the weak deflection angle:

α = −
∫ ∫

ph

K dσ. (3.3)

Here, dσ =
√

grr gϕϕ dr dϕ is an areal element and K is the Gaussian cur-

vature of spacetime. The value of
∫
kgdl = 0, because the spacetime is

asymptotically flat. Hence, the geodesics curvature will be zero [56]. The
optical metric for the given spacetime can be derived by considering the null
geodesics condition, which is defined as ds2 = 0:

fs(r) dt
2 − 1

fs(r)
dr2 − r2 dΩ2 = 0.

Then, the optical metric has an expression:

dt2 =
1

(fs(r))2
dr2 +

r2

fs(r)
dϕ2, (3.4)

and

dt2 = grr dr
2 + gϕϕ dϕ

2.
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After finding the optical metric, one has to determine the Gaussian curvature
K of the given spacetime. Gaussian Curvature tells us that the surface is
curved. We will find the expression of Gaussian curvature using the optical
metric gij instead of the given gij. By using the formula of Gaussian Cur-
vature as described in [39], the value of K for the compact object in MOG
is:

K = − 1√
grr gϕϕ

∂

∂r

r2 − 3Mr − 3Mrα+ 2M2α(1 + α)

r2
√

r2−2Mr−2Mrα+M2α(1+α)
r2

 ,

=
M(1 + α) (2r3 + 6M2rα(1 + α)− 2M3α2(1 + α)− 3Mr2(1 + 2α))

r5
(

r2−2Mr(1+α)+M2α(1+α)
r2

)3/2 .

Using the series expansion, we truncate it up to O(M3):

K = −2M(1 + α)

r3
+

3M2(1 + α)(1 + 2α)

r4
+O(M3). (3.5)

The integration of Gaussian curvature over an infinite region will give the
value of a weak deflection angle here. According to Gibbons and Werner’s
approach, the weak deflection angle of spacetime which is asymptotically flat
can be calculated using the formula as in [55]:

α = −
∫ π

0

∫ ∞

1
rγ

K dσ. (3.6)

We want to find the expression of the bending angle up to the second order
because higher order terms do not affect the overall weak deflection angle,
we will find the expression of 1

rγ
accordingly. The light ray trajectory has an

equation which is given up to O(M2), as seen in Equation (7) in [34]. The
same approach will be used here. By considering the null geodesic condition
ds2 = 0 and using (2.54), we get

ṙ2 = E2 − fs(r)L
2

r2
,

and dividing it by ϕ̇2 results in:(
dr

dϕ

)2

=
r4

b2
− r2fs(r).

We will substitute u = 1
r
, and the above equation reduces to:
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(
du

dϕ

)2

=
1

b2
− u2 + 2(1 + α)Mu3.

To obtain the trajectory of light up to O(M2), we will suppose a solution of
the above equation as:

u =
1

b
(sinϕ+ u1M + u2M

2),

where u1 and u2 are corrections to the zeroth-order solution, representing
the straight line u0 =

1
b
sinϕ. When we substitute the above expression into(

du
dϕ

)2
, two differential equations are obtained:

du1

dϕ
= − sinϕ

cosϕ
u1 +

1

2b

sin3 ϕ(1 + α)

cosϕ
,

and

du2

dϕ
= − sinϕ

cosϕ
u2 −

1

2 cosϕ

[(
du1

dϕ

)2

− u2
1 −

3

b
u1 sin

2 ϕ(1 + α)

]
.

The integration constants are chosen according to the condition about max-
imizing u for θ = π

2
. The final equation of trajectory up to the second order

is:

1

rγ
=

sinϕ

b
+

M(1 + α)

2b2
(3 + cos(2ϕ))

+M2

(
3 (5π − 2 (5 + 11α)ϕ) cosϕ+ (17 + 39α− (3 + 5α) cos(2ϕ)) sinϕ

8b3

)
(3.7)

Using (3.5) and (3.7) in (3.6), we obtain:

α̂ = −M (5Mπα2 + 768b3(1 + α) + 144b2Mπ(1 + α)(5 + 4α))

192b4
.

The expansion of the above expression to the second order of alpha results
in

α̂ =
4M

b
+

15πM2

4b2
+

(
4M

b
+

27πM2

4b2

)
α +

3πM2α2

b2
+ · · · (3.8)

When we substitute α = 0 in (3.8), the weak deflection angle for the Schwarzschild
black hole will be obtained.
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Figure 3.2: Weak deflection angle is plotted against different values of impact
parameter b and α.

3.1.4 Strong Deflection Angle of Spacetime in MOG

The improved approach of Naoki Tsukamoto [50] will be used here to ob-
tain the strong deflection angle of dark compact objects in MOG. The given
spacetime has the following characteristics that are static, spherically sym-
metric, and asymptotically flat as it satisfies an asymptotic flatness. Using
(3.1), we obtain

lim
r→∞

A(r) = 1, (3.9)

lim
r→∞

B(r) = 1, (3.10)

lim
r→∞

C(r) = r2. (3.11)

The radius of the photon sphere, impact parameter, and critical impact pa-
rameter are calculated by following the expressions given in the equations
(2.8), (2.15), and (2.20) in [50], respectively. First of all, The radius of the
photon sphere rph can be obtained by assuming that there exists at least one
positive solution of D(r) = 0, where

D(r) =
C ′

C
− A′

A
. (3.12)

By using the required values in (3.12)

2r

r2
−

2M(1+α)
r2

− 2M2α(1+α)
r3

1− 2(1+α)M
r

+ α(1+α)M2

r2

= 0,
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which yields

rph =
1

2
(3M + 3Mα +

√
9M2 + 10M2α +M2α2). (3.13)

(3.13) shows the radius of the photon sphere. Secondly, the impact parameter
is defined as

b =

√
Ct

At

.

The subscript t denotes the quantities at r = rt throughout the dissertation
which is the closest approached distance of the light ray near the lens. Critical
impact parameter has the following mathematical form

bc = lim
rt→ rph

√
Ct

At

,

= lim
rt→ rph

√√√√ r2t

1− 2M(1+α)
rt

+ α(1+α)

r2t

,

bc =

√
2(3M + 3Mα +M2(9 + 10α + α2))2

4((1 + α)M(3M +Mα +
√
M2(9 + 10α + α2))

.

After a few simplifications, we obtain

bc = 3
√
3M +

5

2

√
3Mα− 7

24
√
3
Mα2 +O(M3). (3.14)

Deflection angle in [50] is given by the expression

α̂ = a log

(
b

bc
− 1

)
+ b+O((b− bc) log(b− bc)), (3.15)

where a and b are defined as

a =

√
2BphAph

C ′′
phAph − A′′

phCph

, (3.16)

and

b = a log

[
r2ph

(
C ′′

ph

Cph

A′′
ph

Aph

)]
+ IR(rph)− π. (3.17)

Substituting the values of A(r), B(r), and C(r) from (3.1) into (3.16), we
get
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Figure 3.3: The lensing coefficients a and b are plotted against the impact
parameter b. The magenta line represents the Schwarzschild case in both
plots.
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a =

√
M(9 + 5α + 3

√
9 + 10α + α2)

√
2
√

M(81 + 72α + 7α2 + 9(3 + α)
√
9 + 10α + α2)

.

After applying the series expansion on the above expression, a more simplified
version is

a = 1 +
α

9
− 7α2

162
+O(α3). (3.18)

Using equation (3.17), the value of b is as follows

b =
1

9
α(−1+log[6])+log[6]− 1

162
α2(−5+log[279936])+IR(rph)−π. (3.19)

IR(rph) is obtained by using (2.48) in [50]. It has the following value

IR(rph) =
2

9
α(−6 + 6

√
3 + log(3−

√
3)) + 2 log[6(−

√
3 + 2)]

− α2

81
(−146 + 74

√
3 + log[279936]− 7 log(3 +

√
3)).

(3.20)

Using (3.16), (3.17), and (3.20) in (3.15), we can obtain the strong deflection
angle of light rays of dark compact objects in modified gravity as

α̂ = log(6)− π −
(
1− b

bc

)
+ 2 log[−6(−2 +

√
3)]

+ α

[
−1

9

(
b

bc
− 1

)
+

1

9
(−1 + log[6])

+
2

9

(
−6 + 6

√
3 + log[3−

√
3]
)]

+ α2

[
7

162

(
b

bc
− 1

)
− 1

162
(−5 + log[279936])

− 1

81

(
−146 + 74

√
3 + log[279936]− 7 log[3 +

√
3]
)]

.

(3.21)

When we substitute α = 0 in (3.21), the strong deflection angle of Schwarzschild
spacetime will be obtained [57]. The graph of lensing coefficients a and b are
plotted against different values of impact parameter b shown in figure 3.3.

The purple line in the above graph represents the Schwarzschild case for
the lensing coefficient a. But in MOG, the linear term in a (3.18) dominates
for small values of α, and the function will initially increase as α increases.
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Figure 3.4: The strong deflection angle is plotted against different values of
b.

For larger values of α, the quadratic term becomes more dominant, causing
the function to bend downwards due to the negative coefficient of α2.

The blue line in the graph below in figure 3.3 represents the lensing co-
efficient b in Schwarzschild spacetime. For small values of α, the linear term
1
9
α (−1 + log[6]) dominates, causing the function b to increase approximately

linearly with α. For larger values of α, the quadratic term becomes more
significant and begins to overpower the linear term. Because this term is
negative, it will cause the graph to bend downwards after a certain value of
α, resulting in a concave down curve. The graph of strong deflection angle
against different values of b is plotted in Figure 3.4. As α increases, the
strong deflection angle also increases.

3.2 Observable in Strong Gravity

The strong field limit approximation can be used to calculate the de-
flection angle of light which involves logarithmic and constant terms. The
main observable in the strong field limit is obtained just by substituting the
specific values of given spacetime in the equation as described in [49]:
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α̂ = −α log

(
1− ϑDol

uph

)
+ b. (3.22)

The lens equation defined in [53] is:

β = ϑ− Dls

Dos

∆α, (3.23)

where Dls denotes the distance between the lens and the source, β and ϑ
represent the angular distances from the optical axis to the source and image,
respectively, and ∆α̂n = α̂ − 2nπ signifies the adjustment of the deflection
angle after accounting for n loops of photons around the lens.

To transition from the deflection angle α̂ to the offset ∆α̂, it is neces-
sary to determine the value of ϑ0

n that satisfies the equation α̂(ϑ0
n) = 2nπ.

This condition implies that the deflection angle at ϑ0
n corresponds to an inte-

gral multiple of 2π, accounting for the number of loops n that photons make
around the lens. By solving the equation α̂(ϑ0

n) = 2nπ (which refers to a pre-
viously defined equation, labeled as (3.22)), we can derive the corresponding
offset ∆α̂.

ϑn
0 =

uph

Dol

(1 + en) , (3.24)

where

en = e
b−2nπ

a .

∆α̂n can be determined by expanding α(ϑ) in power of ϑ0
n. By putting

ϑ− ϑ0
n = ∆ϑn, the following expression obtained in [49]:

∆αn = − aDol

uphen
∆ϑn. (3.25)

Using (3.24) and (3.25) in (3.22) yields:

β = (ϑ0
n +∆ϑn) +

(
− aDol

uphen

Dls

Dos

)
∆ϑn. (3.26)

Further, the approximation uph = tanϑDol ≈ ϑDol will be used along
with (3.25) to obtain the nth position of relativistic images as:

ϑn = ϑ0
n +

uphen(β − ϑ0
n)Dos

aDlsDos

. (3.27)

When n → ∞ in (3.27), en → 0 such that uph = ϑ∞Dol. When β = 0, that
is the lens, source, and object are perfectly aligned, we obtain the position
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of n relativistic Einstein rings as:

ϑE
n =

uph

Dol

(1 + en) ,

ϑE
n =

3
√
3

2
+ 5

√
3α
4

− 7α2

48
√
3

Dol

(
1 + e

b−π
a

)
.

(3.28)

Note that n = 1 corresponds to the outermost relativistic ring. The Einstein
rings for the two black holes are plotted against different values of α shown
in figures 3.7 and 3.5. We plotted four Einstein rings for M87∗ black hole
acting as a lens in modified gravity.

The magnification of the images can be calculated as in [49]:

µn =
1

β

[
uph

Dol

(1 + en)

(
Dos

Dls

uphen
aDol

)]
. (3.29)

It is clear from (3.29) that if β → 0, then the magnification µn → ∞, which
shows that magnification is maximum in the case of perfect alignment of
lens, source, and object. (3.29) relates the magnification with the image and
source positions. The magnification of Einstein rings is plotted on figures 3.6
and 3.8.

In our analysis, we designate ϑ1 as the angle corresponding to the out-
ermost image produced by gravitational lensing. The remaining observed
images are collectively represented by the angle ϑ∞, which typically corre-
sponds to the limiting case where the images converge. To characterize the
lensing effect quantitatively, we will define three lensing coefficients based
on the framework established in the work by Bozza [49]. These coefficients
provide insight into the nature and strength of the lensing phenomenon.

uph =
ϑ∞

Dol

, (3.30)

s = ϑ1 − ϑ∞ ≈ ϑ∞(en), (3.31)

rmg = exp

(
2π

a

)
. (3.32)

In this context, s represents the separation between the outermost and inner-
most images, marking the boundary of the shadow region, while rmg denotes
the ratio of the magnification of the first image compared to the higher-order
images.
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3.2.1 Analysis of Einstein Ring Radius for M87* in
Modified Gravity

The Einstein ring radius represents the apparent size of the ring-like im-
age formed by light bending around the supermassive black hole M87* in
gravitational lensing. In the context of modified gravity, the relationship be-
tween the Einstein ring radius and the parameter α (which reflects deviations
from general relativity) offers important insights into how gravity behaves in
extreme environments.

M87*

α
-0.31
-0.12
0.000
0.122
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Figure 3.5: The Einstein ring is plotted for the different values of α. The
blue circle represents Einstein’s ring in the Schwarzschild case. For this ring,
we substitute α = 0 in the expression of ϑE in modified gravity.

As the value of α increases from zero, which implies standard general rela-
tivity, the Einstein ring radius grows, showing that modified gravity enhances
the bending of light. The following values are observed:

• When α = 0, the Einstein ring radius is 19.8411.

• When α = 0.1, the Einstein ring radius increases to 21.497.

• When α = 0.673, the Einstein ring radius jumps to 30.8878.

• When α = 0.9, the Einstein ring radius reaches 34.6736.
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Figure 3.6: The magnification of the Einstein ring is plotted against different
values of β. Here, the graph is drawn for the case when M87∗ acts as a lens
in the modified gravity.

This trend demonstrates that even small changes in α lead to significant
increases in the Einstein ring radius, indicating a stronger lensing effect in
the presence of modified gravity. For instance, the radius grows from 19.8411
at α = 0 (consistent with general relativity) to 34.6736 at α = 0.9.

The graph of this relationship reveals a non-linear increase in the Einstein
ring radius as α increases, showing how modifications to gravity can dramati-
cally influence the curvature of spacetime around black holes like M87*. This
suggests that further exploration of modified gravity models could provide
new insights into the behavior of black holes and the nature of gravitational
interactions in extreme conditions.

The lensing coefficients given in (3.30) and (3.31), are calculated along
with other parameters in Table 3.1. The table highlights key changes in
gravitational lensing and strong field properties of the black hole M87∗ under
modified gravity compared to a Schwarzschild black hole. As the parameter
representing modifications to gravity increases, the size of the Einstein ring
and the separation between light rays grow, indicating stronger lensing ef-
fects. The photon sphere also expands, reflecting a larger region where light
cannot escape the black hole’s gravity. Additionally, the coefficients that de-
scribe how light is bent show a gradual shift, depicting how modified gravity
alters the behavior of light around M87*, diverging from general relativity
predictions.
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Schwarzschild BH M87∗ in Modified Gravity
α 0 0.2 0.4 0.6 0.8

ϑ∞(µas) 19.82 23.09 26.32 29.49 32.62
s(µas) 0.0248 0.0510 0.1013 0.1961 0.3742

uph

rs
2.6 2.81 3.45 3.68 4.28

a 1 1.01 1.02 1.03 1.037

b -0.4002 -0.18 0.04 0.28 0.514

Table 3.1: This table estimates the primary observable and the strong field
limit coefficients for the black hole M87∗ in the galaxy’s center, considering
various values of α for spacetime in modified gravity. M = 6.5 × 109 and
Dol = 16.8 Mpc are used here. The terms ϑ∞ and s are defined in the text.
The value rph is represented as r in the magnitude form. a and b are the
strong field limit coefficients and rs is the Schwarzschild radius.

3.2.2 Analysis of Einstein Ring Radius for Sgr A* in
Modified Gravity

The Einstein ring radius is a key feature in gravitational lensing, depicting
the apparent size of the light ring formed around a massive object like the
black hole Sgr A∗. When considering modified gravity, the behavior of the
Einstein ring radius changes as a function of the parameter α, which indicates
deviations from general relativity.

For Sgr A∗, as α increases from zero, the Einstein ring radius also grows,
reflecting enhanced light bending in the modified gravity framework. The
observed values are as follows:

• When α = 0, the Einstein ring radius is 25.6406.

• When α = 0.1, the radius increases to 27.7805.

• When α = 0.673, the radius rises significantly to 39.9161.

• When α = 0.9, the radius reaches 44.8086.

This progression highlights that even slight increases in α lead to a no-
ticeable enlargement of the Einstein ring radius. For example, when α = 0,
consistent with general relativity, the radius is 25.6406. However, at α = 0.9,
the radius grows to 44.8086, showing a significant difference due to modified
gravity effects.

51



SgrA*

α
-0.31
-0.12
0.000
0.122
0.262

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

X

Y

Figure 3.7: The Einstein ring is plotted for the different values of α. The
blue circle represents Einstein’s ring in the Schwarzschild case. For this ring,
we substitute α = 0 in the expression of ϑE in modified gravity.

The graph reveals that the radius of Einstein rings increases rapidly, es-
pecially as α approaches higher values, showing that deviations from general
relativity affect the curvature of space around Sgr A∗. This provides impor-
tant clues about how gravity might behave in extreme environments like the
vicinity of black holes. Investigating such modifications to gravity could offer
new insights into the nature of spacetime around Sgr A∗ and other massive
objects.

The table 3.2 compares the gravitational lensing properties of the black
hole Sgr A∗ in modified gravity with a Schwarzschild black hole. As the
parameter for modified gravity increases, the size of the Einstein ring around
Sgr A∗ becomes larger, indicating stronger light bending. The separation
between light rays also grows, suggesting more dominant lensing effects. The
coefficients that describe how light bends change gradually, showing that the
behavior of light around Sgr A∗ differs significantly from predictions based
on general relativity, as the modifications to gravity become more prominent.
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Schwarzschild BH Sgr A∗ in Modified Gravity
α 0 0.2 0.4 0.6 0.8

θ∞(µas) 25.61 29.84 34.01 38.11 42.15
s(µas) 0.0248 0.0510 0.1013 0.1961 0.3742

uph

rs
2.6 2.81 3.45 3.68 4.28

a 1 1.01 1.02 1.03 1.037

b -0.4002 -0.18 0.04 0.28 0.514

Table 3.2: M = 4 × 106 and Dol = 0.008Mpc is used here. a and b are the
strong field limit coefficients and rs is the Schwarzschild radius.
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Figure 3.8: The magnification of the Einstein ring is plotted against the
different values of β. Here, the graph is drawn for the case when Sgr A∗ acts
as a lens in the modified gravity.
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3.3 Lens Equation, Magnification and Dis-

tortion Parameter for Spacetime in Mod-

ified Gravity

To explore the phenomenon of gravitational lensing in both weak and
strong gravitational fields, a lens equation was proposed in [42] as

tan β = tanϑ− α, (3.33)

where

α = DLS

DOS
tan(α̂− ϑ).

The angular position of the image and the angular position of the source
are denoted by symbols ϑ and β respectively. DOS is the observer-source
distance and DLS is the distance between the lensing object and the source.
α̂ is the Einstein bending angle of the light ray. The angular position of the
Einstein ring can be calculated by taking β = 0 in Equation (3.33). The
impact parameter can be written in the form of ϑ as

b = Dol sinϑ. (3.34)

Dol is the observer-lens distance. The radial magnification µr, the tangential
magnification µt, and total magnification µ of the image can be expressed as

µr =

(
dβ

dϑ

)−1

, µt =

(
sin β

sinϑ

)−1

, µ = µtµr. (3.35)

The Distortion Parameter is defined in [31] as

∆ =
µt

µr

. (3.36)

Also, a logarithmic distortion parameter of the image is defined in [31] as

δ = log10

∣∣∣∣µt

µr

∣∣∣∣ . (3.37)

We will consider the simplest gravitational lensing i.e., the weak field
lensing in modified gravity. (3.33) reduces to the well-known form [8]

β = ϑ− α̂D, (3.38)
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where the bending angle is α̂ = 4M
b

+ 4M
b
α. Solving equation (3.35) gives us

the angular position of primary and secondary images as

ϑp =
1

2
(β +

√
β2 + 4ϑ2

E),

ϑs =
1

2
(β −

√
β2 + 4ϑ2

E),
(3.39)

where the angular radius of Einstein ring ϑE =
√

4DM
Dol

(1 + α). Using (3.34)

and (3.33) in (3.35), the distortion of the primary and secondary images will
be obtained

∆p = −∆s =

√
β2 + 16DM

D

β
. (3.40)

The subscripts p and s are used for the primary and secondary relativistic
images, respectively. The primary image ϑp is typically the first and brightest
image formed by the lensing effect, on the other hand, the secondary image ϑs

appears at a different angular position and is often fainter due to gravitational
time delays, and the lensing geometry. These images arise from the bending
of light around massive objects and are crucial for understanding the lensing
properties and mass distribution of the lensing body.

3.4 Observable in the Weak Field Limit

To better understand the shapes of images in spacetime in modified grav-
ity, we examine the variations in tangential and radial magnifications, as
well as the total magnifications of the primary, secondary, and first- and
second-order relativistic images (on both sides of the optic axis) against β,
D, and M

Dol
. While these investigations are now purely theoretical, they may

someday yield useful insights into the properties of both the lenses and the
sources [31].

We begin by modeling M87∗ (mass M = 6.5 × 109M⊙ and distance
Dol = 16.8Mpc) as a Schwarzschild lens to examine lens-source gravitational
lensing. A small value of D = 0.005 is utilized for our computations on rel-
ativistic images. For the M87∗ lens under modified gravity with D = 0.005,
M/Dol is around 3.68052 × 10−9. The lens equation is valid because we are
studying the weak field.

The graphs of tangential magnification for primary and secondary images
are drawn in Figures 3.9-3.14. The tangential magnification for the primary
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image (µpt) and secondary image (µst) is plotted against D, which represents
the ratio of observer-lens distance to lens-source distance. In the context
of modified gravity spacetime, α is a free parameter with various assigned
values. When α = 0, the scenario corresponds to the Schwarzschild case. As
the value of α increases, both µpt and µst increase. Similarly, when plotted
against β, representing the angular separation of the source, both µpt and
µst also increase with increasing α.

Furthermore, plotting µpt and µst against M/Dol, representing the ratio
of the massive body to observer-lens distance, shows that both µpt and µst

increase as M/Dol increases. The radial magnification of the primary (µpr)
and secondary (µsr) images is plotted against D, β, and M/Dol. In all cases,
the value of µpr decreases with an increase in the respective parameters and
α, while µsr also decreases under the same conditions. Finally, the total
magnification of the primary and secondary images is plotted againstD. This
total magnification increases as D and α increase, a trend that is consistent
across different plotting variables, including β and M/Dol.

3.5 Time Delay in SDL

Time delay in gravitational physics describes the phenomenon in which
light or other signals take more time to traverse curved spacetime near a
massive object than they would in flat spacetime. This effect is especially
relevant in the framework of general relativity, where the presence of mass
and energy alters the curvature of spacetime.

Using the approach outlined by [58], the time delay between the relativis-
tic images is calculated. This delay occurs because photons follow distinct
winding paths around the black hole, leading to a time difference between
images formed on opposite sides of the lens. Given that the images are highly
de-magnified and separated by only a few microarcseconds (µas), it is crucial
to distinguish the outermost image from the others. For spherically symmet-
ric black holes, when both images are on the same side of the source, the
time delay between the first and second relativistic images is given by [58]
as:

∆T s
2,1 = 2πbc = 2πDOLθ∞. (3.41)

The time delay for twenty-one different galaxies is calculated in Table 3.3.
For M87∗, the time delay will reach ∼9.804 min and ∼11.587 min for α =
−0.1 and α = 0.1 in modified gravity, respectively. It can be observed that
the positive values of α cause photons to experience greater gravitational
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Galaxy M(M⊙) DOL (Mpc) α = −0.1 α = 0 α = 0.1
Milky Way 4.0× 106 0.008 9.804 10.699 11.587
M87 6.5× 109 16.8 15931.23 17385.67 18828.84
NGC 4472 2.54× 109 16.72 6225.34 6793.78 7357.73
NGC 1332 1.47× 109 22.66 3602.908 3931.84 4258.11
NGC 4374 9.25× 108 18.51 2267.14 2474.11 2679.49
NGC 1399 8.81× 108 20.85 2159.294 2356.43 2552.03
NGC 3379 4.16× 108 10.70 1019.60 1112.68 1205.04
NGC 4486B 6× 108 16.26 1470.58 1604.83 1738.05
NGC 1374 5.90× 108 19.57 1446.07 1709.08 1578.08
NGC 4649 4.72× 109 16.46 11568.52 12624.671 13672.64
NGC 3608 4.65× 108 22.75 1139.70 1243.74 1346.99
NGC 3377 1.78× 108 10.99 436.27 476.099 515.62
NGC 4697 2.02× 108 12.54 495.09 540.29 585.14
NGC 5128 5.69× 107 3.62 139.46 152.19 168.82
NGC 1316 1.69× 108 20.95 414.21 452.03 489.55
NGC 3607 1.37× 108 22.65 335.78 366.44 396.85
NGC 4473 0.90× 108 15.25 220.59 240.72 260.71
NGC 4459 6.96× 107 16.01 170.59 186.16 201.61
M32 2.45× 106 0.8057 6.01 6.55 7.10
NGC 4486A 1.44× 107 18.36 35.29 38.52 41.70
NGC 4382 1.30× 107 17.88 31.86 34.77 37.66

Table 3.3: Estimation of time delay between the first and second relativistic
image for supermassive black holes at the center of nearby galaxies. Mass (M)
and distance (DOL) are given in units of solar mass and Mpc, respectively [1].
Time delays are measured in minutes.

influence, thereby increasing the delay between different relativistic images
in MOG while the reverse for negative values of α. Time delay for Sgr A∗ is
not greater in MOG but for other galaxies, it is significant and can studied
easily.

3.6 Summary

In this chapter, we explore several critical aspects of spacetime within
the framework of Modified Gravity (MOG). We begin with the line element
of spacetime in MOG, which provides the foundation for understanding how
spacetime is structured under this theory. Following this, we delve into the
weak deflection angle of spacetime in MOG, analyzing how light bends in the

57



presence of weak gravitational fields. This leads us to the study of the strong
deflection angle, where we consider the behavior of light in strong gravi-
tational fields, a crucial aspect for understanding phenomena near massive
objects like black holes.

We then examine observable in strong gravity, identifying measurable
quantities that can provide insights into the nature of gravity under strong
field conditions. We also discuss the magnification and distortion parameters
for spacetime in modified gravity, which are essential for understanding how
images of distant objects are altered due to gravitational lensing. The chapter
concludes with an analysis of observable in the weak field limit, detailing how
gravitational effects can be measured and observed when the gravitational
fields are relatively weak.
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Figure 3.9: The tangential magnification variations for the distinct values
of α and D are plotted here. 1st Row: The tangential magnification for
the primary image (µpt) is plotted against D which represents the ratio of
observer-lens distance to lens-source distance. In the context of modified
gravity spacetime, α is a free parameter to whom we assign various values.
When α = 0, the scenario corresponds to the Schwarzschild case. As the value
of α increases, µpt increase. The tangential magnification of the secondary
image (µsr) is plotted againstD. The values of µsr decreases when we increase
the value of α. Second Row: The total magnification of the primary images
is plotted against D. This total magnification increases as both D and α
increase.
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Figure 3.10: First Row: The tangential magnification for the secondary im-
age (µst) is plotted against D which represents the ratio of observer-lens dis-
tance to lens-source distance. When α = 0, the scenario corresponds to the
Schwarzschild case. As the value of α increases, µst increase. Second Row:
The radial magnification of the secondary image (µsr) is plotted against D.
The µsr decreases when α and D increases. Third Row: The total magni-
fication of secondary images is plotted against D. This total magnification
increases as both D and α increase.
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Figure 3.11: 1st Row: The tangential magnification for the primary image
(µpt) is plotted against β which represents the angular separation of the
source. As the value of α increases, µst increases. Second Row: The radial
magnification of the primary (µpr) image is plotted against β. The value of
µpr decreases with an increase in β and α. Third Row: The total magnifi-
cation of the primary images is plotted against β. This total magnification
increases as both β and α increase.
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Figure 3.12: 1st Row: The tangential magnification for the secondary image
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source. As the value of α increases, µst increases. Second Row: The radial
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Figure 3.13: The ratio M/Dol has given different values to predict the na-
ture of tangential and radial magnification in modified gravity and plots are
given here. 1st row: The tangential magnification for the secondary image
(µst) is plotted against M/Dol which represents a ratio of massive body and
observer-lens distance. As the value of M/Dol increases, µst increases. Sec-
ond Row: The radial magnification of the secondary image (µsr) is plotted
against M/Dol. The µsr value decreases under the when M/Dol and α in-
creases. Third Row: The total magnification of secondary images is plotted
against M/Dol. This total magnification increases as both D and α increase.
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Figure 3.14: The ratio M/Dol has given different values to predict the nature
of tangential and radial magnification in modified gravity and plots are given
here. 1st row: The tangential magnification for the primary image (µpt) is
plotted againstM/Dol which represents a ratio of massive body and observer-
lens distance. As the value of M/Dol increases, µpt increases. Second Row:
The radial magnification of the secondary image (µpr) is plotted against
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Figure 3.15: Logarithmic distortion versus D, β and M/Dol for images is
plotted here for different values of α. 1st row: Logarithmic distortion is plot-
ted against the mentioned parameters. Distortion increases with an increase
in all parameters. Second Row: The plots of δ against the above parameters
are given for secondary images. They are also representing an increase in
distortion.
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Chapter 4

Weak Deflection Angle of
Strongly Null Naked
Singularity

The weak deflection angle is important in gravitational lensing theory be-
cause it helps explain how light bends around enormous objects that lack a
typical event horizon, such as strongly null naked singularities. While black
holes and compact objects with well-defined horizons have traditionally re-
ceived a lot of attention. Recent theoretical developments have highlighted
the importance of studying singularities that lack event horizon, and exhibit
extreme gravitational effects on light passing by. Strongly null naked sin-
gularities are rare instances in which spacetime curvature is strong enough
to alter photon trajectories but lacks the enclosing border as in black holes.
This chapter explores the weak deflection angle of a strongly null naked sin-
gularity. We use Gibbons and Werner’s approach to find weak deflection
angles as done in chapter 3. The line element introduced by Joshi for a
strongly null naked singularity1 will be used in this analysis.

The line element of naked singularity is

ds2 = − dt2(
1 + M

r

)2 +

(
1 +

M

r

)2

dr2 + r2dΩ2 (4.1)

Here, the angular part of the metric is:

dΩ2 = dθ2 + sin2 θ dϕ2.

11A strongly null naked singularity is characterized by the absence of both a photon
sphere and an event horizon [46].
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Without losing any generality, we set θ = π
2
, which simplifies the angular

part to:
dΩ2 = dϕ2.

Now, using the null geodesic condition (ds2 = 0), we can write the optical
metric as:

ds2 = − dt2(
1 + M

r

)2 +

(
1 +

M

r

)2

dr2 + r2dϕ2.

Setting ds2 = 0 for null geodesics gives:

− dt2(
1 + M

r

)2 +

(
1 +

M

r

)2

dr2 + r2dϕ2 = 0.

Rearranging, we obtain:

dt2 =

(
1 +

M

r

)4

dr2 + r2
(
1 +

M

r

)2

dϕ2. (4.2)

(4.2) is an optical metric and we can express it generally as

dt2 = grrdr
2 + gϕϕdϕ

2, (4.3)

here

grr =

(
1 +

M

r

)4

, gϕϕ = r2
(
1 +

M

r

)2

.

(4.1) ) is asymptotically flat as it satisfies the condition defined in (2.20). So,
we will apply the Gauss-Bonnet theorem to find the weak deflection angle of
naked singularity spacetime. For any asymptotically flat spacetime [55]

α̂ = −
∫ π

0

∫ ∞

rγ

KdS. (4.4)

Here, K is the Gaussian curvature of the surface and dS is the areal element
defined as dS =

√
grrgϕϕdrdϕ. The value of Gaussian curvature is calculated

by using (1.6)

K = − 1√
r2
(
1 + M

r

)4
 ∂

∂r

 1√(
1 + M

r

)4
 ,

= − 2M

r3
(
1 + M

r2

)6 .
(4.5)
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The expression for the areal element

dS = r

(
1 +

M

r

)3

drdϕ. (4.6)

So, the weak deflection angle is calculated by using (4.5), (4.6) into (4.4), we
get

α̂ =

∫ π

0

∫ ∞

b
sinϕ

2M

r2
(
1 + M

r2

)3drdϕ. (4.7)

The evaluation of the first integral gives

α̂ =

∫ π

0

M2 sin2 ϕ

b2
(
M sinϕ

b
+ 1
)2dϕ+

∫ π

0

M2 sinϕ

b
(
M sinϕ

b
+ 1
)2dϕ. (4.8)

By using Mathematica, the final expression of the weak deflection angle is

α̂ =
2bM

b2 −M2
− M2π

b2 −M2
+

b2π

b2 −M2
− b3π

(b2 −M2)3/2

+
2b3

(b2 −M2)3/2
arctan

(√
M

b2 −M2

)
+O(M3).

(4.9)

Using the identity arctan
(
1
x

)
= π

2
− arctan(x), we get

α̂ =
2bM

b2 −M2
− π − 2b3

(b2 −M2)3/2
arctan

(√
b2

M2
− 1

)
+O(M3). (4.10)

The weak deflection angle of a strongly null naked singularity is the same
as its strong deflection angle [46]. This is a significant characteristic of this
specific naked singularity. This might suggest that the spacetime curvature
around the lensing object does not change significantly across different impact
parameters and portrays a unique behavior of the gravitational field in that
spacetime, where light deflection remains relatively stable regardless of the
impact parameter.
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Chapter 5

Summary and Conclusion

In this thesis, we have explored various aspects of gravitational lens-
ing, focusing on strong and weak gravitational fields and comparing different
astrophysical objects’ effects on light deflection. The introductory chapter
provides a comprehensive overview of gravitational lensing, its significance in
astrophysics, and the historical development of the field. The phenomenon’s
basic principles and the equations governing light deflection in gravitational
fields are discussed, setting the stage for detailed analyses in subsequent
chapters.

Chapter 2 delves into the strong bending angle of naked singularities and
their unique characteristics. It examines the strong deflection angle in space-
times with a photon sphere and ultracompact objects. The study highlights
the differences between black holes and horizon-less ultracompact objects in
producing relativistic images. Black holes generate relativistic images only
outside their photon circles, whereas horizon-less ultracompact objects can
produce additional relativistic images within their photon sphere radius. This
chapter presents an analytical technique for significant gravitational lensing
from ultra-compact objects, contrasting it with the black hole scenarios re-
ported by Bozza [53].

Chapter 3 investigates several critical aspects of spacetime within the
framework of Modified Gravity (MOG). It begins with the line element of
spacetime in MOG, laying the foundation for understanding spacetime struc-
ture under this theory. The chapter then analyzes the weak deflection angle,
exploring light bending in weak gravitational fields, followed by the study
of the strong deflection angle in strong gravitational fields near massive ob-
jects like black holes. The analysis includes identifying observable quantities
in strong gravity, magnification and distortion parameters, and measurable
effects in the weak field limit.

This thesis presents a thorough investigation of gravitational lensing phe-
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nomena in various astrophysical contexts, including naked singularities, ul-
tracompact objects, and scenarios within Modified Gravity (MOG). The an-
alytical techniques developed for studying significant gravitational lensing
in ultracompact objects provide new insights, expanding our understanding
beyond traditional black hole models. The comparative analysis of black
holes and horizon-less ultracompact objects enhances our comprehension of
relativistic image formation and the unique characteristics of different grav-
itational lenses.

The exploration of Modified Gravity (MOG) offers a fresh perspective
on spacetime structure and light deflection in both weak and strong grav-
itational fields. The findings contribute to the broader understanding of
gravitational lensing, emphasizing the importance of considering alternative
theories of gravity. By identifying observable parameters and analyzing their
implications, this research provides valuable tools for future observational
studies and theoretical developments in the field of gravitational lensing.

Overall, this thesis emphasizes the complexity and variety of gravitational
lensing processes, emphasizing the necessity for further investigation of var-
ious gravitational models and astrophysical objects. The findings of this
study set the path for future advances in understanding the interaction of
gravity and light, leading to the discovery of new astrophysical phenomena
and the refinement of existing theories.
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