
i 

AUTOMATED MALWARE ANALYSIS 

TO IDENTIFY DATA ESPIONAGE AND 

BACKDOOR CREATION 

 

 

 

 

by 

Azhar Javed 

 

 

 

A thesis submitted to the faculty of Information Security Department Military College of 

Signals, National University of Sciences and Technology, Rawalpindi in partial 

fulfillment of the requirements for the degree of MS in Information Security 

November 2014 



ii 

ABSTRACT 

In the recent past, malwares have become a serious cyber security threat which has 

not only targeted individuals and organizations but has also threatened the cyber space of 

countries around the world. Amongst malware variants, Trojans designed for data 

espionage and backdoor creation dominates the threat landscape. This necessitate in depth 

study of these malwares with the scope of extracting static features like APIs, strings, IP 

Addresses, URLs, email addresses etc. by and large found in such mal codes.  

In this dissertation, an endeavored has been made to firstly establish a set of 

patterns, tagged as APIs and Strings persistently existent in these malwares by articulating 

an analysis framework. Presence of features in malware and benign dataset was checked 

and after assigning the weight to each feature, score is calculated. Later on using the 

percentile approach, threshold value for both (API and Mal String) feature set is 

determined. Secondly, keeping the feature set and threshold value as parameters, a 

methodology is proposed to automatically analyse the malwares designed for data 

espionage and backdoor creation. 

The proposed methodology was tested by using a separate dataset of malware and 

benign application and based on common performance attributes; it was compared with 

previous work in the relevant field. 

 

   



iii 

ACKNOWLEDGEMENTS 

 

All praises to Allah Almighty, the most gracious and the most merciful, who blessed 

me with the opportunity, courage and determination to accomplish this humble contribution 

towards knowledge. 

My  sincere and heartfelt thanks to Lt Col Dr. Baber Aslam, Head of Information  

Security Department, for helping me in every aspect to undertake this research. My special 

thanks to Lt Col Dr. Monis Akhlaq, whom guidance and assistance made it possible for me 

to accomplish this desertion. I am also grateful to my respected committee members Lt Col 

Dr. Imran Rashid and Lecturer Waleed Bin Shahid for their unconditional support and 

directions. 

  



iv 

TABLE OF CONTENTS 

INTRODUCTION .................................................................................................................... 1 

1.1 Chapter Overview ................................................................................................ 1 

1.2 Background .......................................................................................................... 1 

1.3 Malware Taxonomy ............................................................................................. 2 

1.3.1 Virus ..................................................................................................................... 2 

1.3.2 Worm .................................................................................................................... 2 

1.3.3 Trojans .................................................................................................................. 2 

1.3.3.1 Backdoors ............................................................................................................. 3 

1.3.3.2 Data Espionage .................................................................................................... 3 

1.3.3.3 Botnet ................................................................................................................... 3 

1.3.3.4 Launcher ............................................................................................................... 4 

1.3.3.5 Downloader .......................................................................................................... 4 

1.3.3.6 Rootkit .................................................................................................................. 4 

1.4 Malware - A Cyber Threat ................................................................................... 4 

1.5 Why Malware Analysis? ..................................................................................... 5 

1.6 Malware Analysis Techniques ............................................................................ 6 

1.6.1 Dynamic Analysis ................................................................................................ 6 

1.6.2 Static Analysis ...................................................................................................... 6 

1.7 Malware Analysis Tools ...................................................................................... 6 

1.7.1 Virus Total ........................................................................................................... 7 

1.7.2 Strings ................................................................................................................... 7 

1.7.3 BenText ................................................................................................................ 7 



v 

1.7.4 MD5SUM ............................................................................................................. 7 

1.7.5 PE Explorer .......................................................................................................... 7 

1.7.6 PEiD ..................................................................................................................... 7 

1.7.7 UPX ...................................................................................................................... 7 

1.7.8 XOR Search ......................................................................................................... 7 

1.8 Portable Executable (PE) ..................................................................................... 8 

1.8.1 PE File Header ..................................................................................................... 8 

1.8.2 PE File Sections ................................................................................................... 9 

1.9 Research Investigations ....................................................................................... 9 

1.10 Motivation ............................................................................................................ 9 

1.11 Research Objectives ........................................................................................... 10 

1.12 Author’s Contributions ...................................................................................... 10 

1.13 Thesis Organization ........................................................................................... 11 

LITERATURE REVIEW ....................................................................................................... 12 

2.1 Chapter Overview .............................................................................................. 12 

2.2 Automation for Malware Analysis Architecture ............................................... 12 

2.3 Machine Learning based Malware Analysis ..................................................... 12 

2.4 Timeline Methodology for Reverse Engineering Malwares ............................ 13 

2.5 Dynamic Analysis using TTAnalyze ................................................................ 13 

2.6 Taiwan Malware Analysis Net (TWMAN) ...................................................... 13 

2.7 Cuckoo Sandbox ................................................................................................ 14 

2.8 Malware Detection using API Calls .................................................................. 14 

2.9 Online Malware Analysis Services ................................................................... 14 



vi 

2.10 Chapter Summary .............................................................................................. 15 

DATASETS ............................................................................................................................ 17 

3.1 Chapter Overview .............................................................................................. 17 

3.2 Malware Data Set Sources ................................................................................. 17 

3.2.1 Open Malware .................................................................................................... 17 

3.2.2 Contagio Malware Dump .................................................................................. 17 

3.2.3 Acquisition of Dataset ....................................................................................... 18 

3.2.4 Data Set for Methodology Development .......................................................... 19 

3.2.5 Data Set for Methodology Testing .................................................................... 20 

3.3 Acquisition of Benign Applications .................................................................. 21 

3.4 Chapter Summary .............................................................................................. 21 

PROPOSED METHODOLOGY ........................................................................................... 22 

4.1 Chapter Overview .............................................................................................. 22 

4.2 Static Malware Analysis Framework ................................................................ 22 

4.2.1 Detection of Malware Samples ......................................................................... 23 

4.2.2 Identification of Malware .................................................................................. 23 

4.2.3 De-Obfuscation .................................................................................................. 24 

4.2.4 Extraction of Features ........................................................................................ 25 

4.2.5 Update of Database ............................................................................................ 26 

4.3 Selection of Features in a Malware Designed for Data Espionage and 

Backdoor Creation .................................................................................................................. 27 

4.3.1 Features Presence in Malware Dataset .............................................................. 28 

4.3.2 Features Presence in Benign Dataset................................................................. 28 



vii 

4.3.3 Calculating Difference of Features Presence .................................................... 29 

4.3.4 Feature Set Selection.......................................................................................... 29 

4.4 Score Calculation based on Selected Feature Set ............................................. 29 

4.5 Setting Threshold ............................................................................................... 30 

4.6 Finalization of Proposed Methodology ............................................................. 31 

4.7 Chapter Summary .............................................................................................. 34 

EVALUATION OF PROPOSED METHODOLOGY ......................................................... 35 

5.1 Chapter Overview .............................................................................................. 35 

5.2 Data Set for Testing ........................................................................................... 35 

5.3 Testing Results ................................................................................................... 35 

5.4 Performance Metrics .......................................................................................... 39 

5.4.1 True Positive (TP) .............................................................................................. 39 

5.4.2 False Negative (FN) ........................................................................................... 39 

5.4.3 True Negative (TN) ........................................................................................... 39 

5.4.4 False Positive (FP) ............................................................................................. 39 

5.4.5 Accuracy............................................................................................................. 39 

5.4.6 Precision ............................................................................................................. 39 

5.4.7 Recall (Sensitivity) ............................................................................................. 40 

5.4.8 False Alarm Rate (FAR) .................................................................................... 40 

5.5 Results Validation .............................................................................................. 40 

CONCLUSION AND FUTURE DIRECTIONS .................................................................. 42 

6.1 Chapter Overview .............................................................................................. 42 

6.2 Research Goals Attained .................................................................................... 42 



viii 

6.3 Future Directions ............................................................................................... 43 

PUBLICATIONS ................................................................................................................... 44 

REFERENCES ....................................................................................................................... 45 

Appendix A ............................................................................................................................. 48 

Appendix B ............................................................................................................................. 50 

Appendix C ............................................................................................................................. 52 

Appendix D ............................................................................................................................. 54 

Appendix E ............................................................................................................................. 56 

Appendix F .............................................................................................................................. 58 

Appendix G ............................................................................................................................. 60 

Appendix H ............................................................................................................................. 62 

Appendix I............................................................................................................................... 64 

Appendix J .............................................................................................................................. 66 

Appendix K ............................................................................................................................. 68 

Appendix L ............................................................................................................................. 71 

 

  



ix 

LIST OF FIGURES 

Figure 1: By Type New Malware Strains in 1
st
 Quarter 2014 5 

Figure 2: By Type Malware Infections in 1
st
 Quarter 2014 5 

Figure 3: Static Malware Analysis Framework 23 

Figure 4: Malware Detection Phase 23 

Figure 5: TrID Usage in Identification Phase 24 

Figure 6: Packet Identification using PEiD 24 

Figure 7: Unpacking of Packed Malware Sample using UPX 25 

Figure 8: Feature Extraction Phase 26 

Figure 9: Database Updation Phase 27 

Figure 10: Checking Presence of Features in Malware Sample 28 

Figure 11: Graph showing Threshold for APIs using percentile value of 5 30 

Figure 12: Graph showing Threshold for Mal Strings using percentile value of 5 31 

Figure 13: Proposed Algorithm for Automated Malware Analysis 33 

 

  



x 

LIST OF TABLES 

Table 1: PE File Format ............................................................................................................ 8 

Table 2: PE Header Information .............................................................................................. 9 

Table 3: Sections of a PE File .................................................................................................. 9 

Table 4: Summary of Few Online Malware Analysis Services ............................................ 15 

Table 5: List of Trojan Variants along with the Number of Samples Used as Dataset ........ 19 

Table 6: Trojan Variants used for Methodology Development ............................................ 20 

Table 7:Trojan Variants used for Methodology Testing ....................................................... 21 

Table 8: Testing Results of Malware Samples ...................................................................... 37 

Table 9:Testing Results of Benign Samples .......................................................................... 39 

Table 10: Summary of Performance Metrics ......................................................................... 40 

Table 11 : Comparison of Results with Existing Methods .................................................... 41 

 

  



xi 

LIST OF ABBREVIATIONS 

 

API Application Programming Interface 

ASCII American Standard Code for Information 

Interchange 

CLI Command Line Interface 

CVE Common Vulnerabilities Exposures 

DDoS Distributed Denial of Service 

DLL Dynamic Link Library 

DNS Domain Name Service 

DoS Denial of Service 

FN False Negative 

FP False Positive 

GUI Graphical User Interface 

IAT Import Address Table 

Mal Malicious 

OEP Original Entry Point 

OS Operating System 

PE Portable Executable 

ROL Rotate Left 

ROT Rotate 

TN True Negative 

TP True Positive 

UPX Ultimate Packer for Executables 

URL Universal Resource Locator 

XOR Exclusive OR 

 



1 

C h a p t e r  1  

INTRODUCTION 

1.1 Chapter Overview 

This introductory chapter unfolds the most researched domain of malware analysis, starting 

from malware taxonomy to their analysis technologies. It will also explore various tools 

used in malware analysis. In the later portion of this introductory chapter, statement of 

research problem, research fundamental objectives and author’s contribution are endorsed. 

How this dissertation is being organized is reflected as last part of this chapter. 

1.2 Background 

The rapid advancements in the field of information technology has revolutionized our day 

to day life and now it has become a vital component of every organization, ranging from 

public to private, small to large and profit to non-profit organizations. Most of the 

perceptible and challenging threats ever faced by these organizations are caused by 

malware (a mal intended piece of software code) characterized by numerous facets of 

threats like DOS, key logging, backdoors, botnets, phishing and pharming attacks. These 

malwares are not only limited to business organization but has also emerged as a cyber-

threat for countries around the world.  

 The massive threat caused by these malware necessitates a concrete counter measure. 

For this purpose we need to analyze the capabilities of the understudy malware by 

employing a thorough malware analysis. By and large malware analysis involves a two-

step approach, namely behavior analysis and code analysis (reverse engineering). Lot of 

commercial and open source tools are available for analyzing malware in an arbitrary 

manner each working independently and some are even having common elements of 

functionality as well. While processing through these tools analyzing a piece of mal 

intended code is often difficult and time-consuming as it involves recording the behavioral 

aspects as well as it implicates sifting through assembly code to search for valuable strings 

and / or understanding the code to uncover the complete picture of mal-intends.  



2 

This research will make an endeavor to conduct reverse engineering of malware designed  

for data espionage and backdoor creation purpose. Based on the important artifacts / 

patterns established during detailed study of such types of malwares a framework will be 

proposed which will not only be time efficient but will also be consistent in terms of 

extraction of artifacts in the shape of report it generates. 

1.3 Malware Taxonomy 

Malware “a mal intended piece of software code” or malicious software is a collective term 

used for all kinds of threats including viruses worms and trojans. Out of these, trojans 

dominates the threat backdrop. There is a general mis-conception about malwares and often 

it is considered that Trojans, worms and viruses are interchangeable terms but in fact, each 

one refers to a separate class of malware[1].  

1.3.1 Virus 

is a buzz word, known to all since the inception of computers in our lives. They are 

transmitted from files to files and needs human intervention for their propagation. It hides 

itself within a code and runs as and when the actual file is executed. Viruses are delivered 

in a variety of ways for example via email attachment or thumb drive etc. 

1.3.2 Worm 

Internet Worms are a kind of malware that copies itself and relies on a network 

infrastructure for its further transmission and delivery. Few worms like zombie create a 

backdoor for the attacker. Email attachments and free download sites are considered as the 

best sources of infection for this malware variant. 

1.3.3 Trojans 

Trojans are a kind of malwares which always presents itself as benign software, most 

essentially required by the intended victim. But in fact they have hidden objectives to 

achieve in the garb of this apparent useful functionality. They are often circulated with 

cracked software utilities either downloaded by victim intentionally or unintentionally 



3 

through drive-by download. Often Trojan payload is equipped with backdoor creation, data 

espionage, key logging and data stealing mal intended functionalities. Common types are 

discussed is the succeeding paragraphs. 

1.3.3.1 Backdoors 

Backdoor permits an unauthorized entity to take full control of a victim’s system without 

his/her consent. Backdoor Trojan always presents itself as a legitimate software tool very 

essentially required by the user. Other delivery option includes hitting a malicious website 

or clicking a link in spam email. Upon execution, it adds itself into a startup routine of 

system and looks for an internet connection. Once system goes online it connects the 

system with its author who then takes over the system to perform different task includes but 

not limited to download / upload of files, key logging, sending spam emails or stealing 

passwords etc. 

1.3.3.2 Data Espionage 

It involves a deliberate collection of data from a computer without the permission of the 

owner of the information. Trojans are often used to access the system in order to undertake 

data espionage. They come as a payload of Trojans in shape of sniffers, password hash 

grabbers and key loggers to perform data espionage operations. 

1.3.3.3 Botnet 

Botnet is set of infected systems which are under control of a remote hacker over the 

internet. The individual systems within the botnet are termed as zombies. All zombies 

within the same botnet receive the same instructions from a single command-and-control 

server. Attacks like DDoS, Backdoor creation, sending bulk spam emails etc are usually 

launched using Botnet.  



4 

1.3.3.4 Launcher 

Malicious program employed as pad to launch other malicious codes. Normally, they use 

unconventional techniques for launching other malicious programs in order to ensure 

covertness. They aim at getting greater access to the system. 

1.3.3.5 Downloader 

Downloaders are fabricated for the sole purpose to download other malicious codes. 

Whenever an attacker gains access to the system for the first time, he/she installs the 

downloader just to maintain access for longer duration. 

1.3.3.6 Rootkit 

It is a malicious piece of software code which is designed to conceal the existence of 

programs and processes on a particular system. They are used by malwares to hide their 

malicious activity so that they remain undetected. In this way the attacker gains access of 

the computer without knowledge of its owner and keeps on launching other attacks in a 

stealth mode.  

1.4 Malware - A Cyber Threat 

Massive threats posed by malwares are not only confined to private institutions but has also 

evolved as a major security concern in the survival of cyber space for many countries 

around the world. Over a period of time, Trojan has emerged as the most favorite choice in 

this regard by acquiring a share of 71.85% amongst all newly developed malicious codes 

[2] as shown in Figure 1 . 



5 

 

Figure 1: By Type New Malware Strains in 1st Quarter 2014 

While analyzing the share of infections type wise, trojan dominated the threat landscape as 

per Panda Security Labs Quarterly Report for the 1
st
 Quarter 2014 [2] which is shown in 

Figure 2. 

 

Figure 2: By Type Malware Infections in 1st Quarter 2014 

1.5 Why Malware Analysis? 

The massive threat caused by malware necessitates a concrete counter measure, but prior to 

that we need to analyze the capabilities of the understudy malware. Following are the key 

benefits or outcomes which are normally aimed at are as follows[3]:- 

1. In depth malware analysis is often required by incident response team in any 

organization to investigate the incident in terms of its intended goals, nature of 

severity and its implications on business continuity plan. By analyzing a malware, 

actual intends of the malware author could be revealed. 

2. What if the forensic expert is encountered with evidence that contains lot of 

valuable information in shape of malicious softwares, which is quite common in 



6 

such cases? Sound and accurate malware analysis is the only path that leads to a 

correct finding. 

3. Malware analysis also helps in extracting a wide variety of vital pieces of 

information that reveals the attacker intentions and overall design of security 

breach. 

4. Extracting features commonly found in a particular type of malware can serve as a 

hint or trace to detect such kinds of unknown malware in future. 

1.6 Malware Analysis Techniques 

Dynamic and static analysis are the two major categories which are not only interrelated 

but are often considered as a two-way approach, in which one supplements the other [4]. 

1.6.1 Dynamic Analysis 

In this approach the malware sample is always observed while it is made to run in a 

controlled environment. Behavioral aspects like file system changes, windows registry 

modifications and network related activities are carefully recorded and then co-related to 

build a malicious code hypothesis. 

1.6.2 Static Analysis 

As the name dictates, static analysis is limited to code analysis in a static manner i.e 

without actually executing the malicious code, which is often performed by disassemblers 

and debuggers. Going through important portions of code line by line is a laborious and 

time taking activity but it often gives a complete picture of the malicious code in terms of 

its intentions, likely targets and estimated effects upon execution. For in-depth 

investigations malware analysts always consider static analysis as the appropriate option. 

1.7 Malware Analysis Tools 

There is a wide variety of tools available to malware analysts [4], [5]. Choice of correct and 

appropriate tool is the foremost step before undertaking a malware analysis effort. 

Confining to the scope of this research thesis, only tools most commonly used in static 

malware analysis are manifested in the succeeding paragraphs. 



7 

1.7.1 Virus Total 

An anti-virus search engine used for the purpose of malware detection based on the 

signatures [6].  

1.7.2 Strings 

A wonderful utility developed by SysInternals to extract ASCII strings embedded in the 

code [7].  

1.7.3 BenText 

It is similar to ‘Strings’ in terms of functionality. A GUI based utility to search and extract 

embedded strings [8].  

1.7.4 MD5SUM 

A CLI utility to calculate MD5 hash in order to record sample fingerprints [9]. 

1.7.5 PE Explorer 

 It is a free GUI based tool which scans the portable executable (PE) file and explore the 

resource tree. Import and export tables can be viewed in detailed using this utility[10].  

1.7.6 PEiD 

GUI based light weight tool used to scan a PE file. It determines the original entry point 

(OEP) and packer identification (if any) by making use of entropy [11].  

1.7.7 UPX 

It stands for ‘Ultimate Packer for eXecutables’. By using switch ‘–d’ it can unpack the 

executables packed with UPX and its variants [12].  

1.7.8 XOR Search 

A CLI based utility which attempts to search for a specified string encoded with XOR, 

ROT and ROL [13].  



8 

1.8 Portable Executable (PE) 

All windows based executable follow a standard file format known as PE file format. For 

example .exe, .dll (dynamically link libraries) and object codes [14]. As reflected in yearly 

Internet Security Threat Report 2014 [15] published by Symantec Corporation, alone in 

year 2013, 50% or more email had attachments in .exe format which were used for 

launching phishing attacks. In most of the cases the windows executable designed for 

malicious purpose are kept as light as possible. Therefore, they are designed to call for API 

functions at run time instead of including the .dll files itself at compile time. Information on 

functions to be loaded or called at run time is statically available in import table. Layout of 

PE file is like a data structure as shown in Table 1. 

 

 

DOS (MZ) Header 

DOS Stub 

PE Header 

Section 1 

Section 2 

……. 

Section n 

Table 1: PE File Format 

1.8.1 PE File Header 

PE file header contains meta data about executable file, information about the code, 

application type, library functions needed during execution and memory requirements [14]. 

These vital informations are very essential for a malware analyst as shown in Table 2 . 

Field Details of Information 

Imports Library functions to be used by the malware 

Exports Local Functions to be called by other libraries or programs 

Time Date 

Stamp 

Time and Date when compiled 

Sections Section names and sizes 



9 

Subsystem Depicts about GUI or Command-line application type 

Resources Strings (ASCII), program icon, menus etc. 

Table 2: PE Header Information 

1.8.2 PE File Sections 

PE header is followed by sections like .text, .rdata, .data and .rsrc etc, which also contains 

various information as illustrated in Table 3. 

Section Details of Information 

.text Executable Code 

.rdata Global data (Read Only),to be accessed within a program 

.data Global data universally accessible anywhere in the program 

.idata Import Functions (Optional Section) 

.edata Export Functions (Optional Section) 

.rsrc Resource needed 

Table 3: Sections of a PE File 

1.9 Research Investigations 

Research investigations shall cover followings:- 

1. Conducting reverse engineering of malware designed for data espionage and 

backdoor creation. 

2. Identification of the important artifacts / patterns commonly found in such type of 

malwares. 

3. Defining mechanism to automate the static analysis process based on established 

artifacts. 

1.10 Motivation 

Statically analyzing a program or software code affords an opportunity to carry out an in-

depth assessment by establishing a correlation between code and data it contains. By 

prudently inspecting the series of system calls, APIs and valuable strings it is likely to 

deduce logical code bombs and time or event based triggers[16]. 



10 

Features such as the presence of network communication logic, registry, object creations 

and operating system manipulations can be detected, irrespective of execution on runtime 

or else. Static analysis, when performed on a de-obfuscated code can match and even 

inform dynamic program analysis with a more comprehensive insight of the program logic 

[16]. This approach is also free of run time overheads [17]. 

Manually analyzing the binary code is time consuming and prone to inconsistencies and 

inaccuracies due to human errors. In today’s era, majority of the malwares are designed to 

achieve specific goals and targeted at vital organizations. In order to safeguard from this 

cyber threat, there is dire need to evolve a framework which uses the advantages of static 

analysis in order to perform automatic malware analysis of executable designed for 

backdoor creation / data espionage. 

1.11 Research Objectives 

The main objectives of thesis are:- 

1. Malware analysis / identifying specific features of known malwares in PE format 

designed for data espionage / backdoor creation encompassing signatures / 

fingerprints, correct file type identifications, extraction of mal-intended code (PE) 

from benign file, embedded strings and API Calls. 

2. Propose a framework to analyze malware encompassing malware identification, 

packer’s identification, unpacking, extraction of embedded API calls and strings. 

Based on features decision is made to declare any piece of software code as 

malware or benign. Vital artifacts like URL, IP Address, email etc. are also shown 

in analysis report. 

1.12 Author’s Contributions 

1. Proposed a framework for undertaking static malware analysis in a systematic and 

logical order. 

2. Feature set (patterns) for API calls and Mal Strings commonly found has been 

established by analyzing 200 malware samples of known backdoor / data 

espionage. 



11 

3. Proposed a logical flow which is capable of extracting artifacts and features from a 

suspicious .exe file. Based on the occurrence of features it can decide whether or 

not the sample is a malware (backdoor / data espionage) or benign. 

4. As a proof of concept a prototype tool / utility is developed in python which takes 

an .exe file as input and after processing generates a report stating whether or not 

the sample is a malware along with other individual artifacts. 

5. The developed utility has been tested on random samples and the results are quite 

encouraging. 

1.13 Thesis Organization 

Thesis has been organized in chapters, in which Chapter 2 illustrates a concise and quick 

literature review of existing solutions in the domain of automated malware analysis along 

with their advantages and disadvantages. Chapter 3 is all about the malware and benign 

datasets, details on their acquisition, family it belongs to and further usage in methodology 

development and testing phase. Proposed solution / framework for automated malware 

analysis to identify data espionage and backdoor creation are expounded in Chapter 4. 

Testing of proposed solution and their results along with performance metrics are endorsed 

in Chapter 5. Chapter 6 is presented as a concluding chapter for this research along with 

limitations and opportunities for future work explorations. 



12 

C h a p t e r  2  

LITERATURE REVIEW 

2.1 Chapter Overview 

Literature review chapter exhibits synopsis of research work already conducted in the 

relevant field. While elucidating their ideas, methodology and results an in-depth analysis 

on their performance along with pros and cons is also discussed in the subsequent sections 

of this chapter. 

2.2 Automation for Malware Analysis Architecture 

It presents an infrastructure for malware analysis which works on network segmentation of 

traffic, processing of malware samples either on multiple virtual machines or on physical 

machines as per requirement. Major components of this setup are scheduler, dissector, 

packet sniffer, virtual machine and a pool of physical machines. Scheduler deals with the 

availability, reversion and allocation of machines. Capturing of network traffic while 

sample is made to run is performed by packet sniffer. These packets are fed to dissection 

for analysis. Dynamic analysis is performed in virtual environment by taking memory 

dump. Based on the sequence of library calls malware samples are grouped. Although it 

implements a fast analysis, performs antivirus engines comparisons but all is done by 

executing the sample and observing its behavior. Approach has limitation of analyzing the 

malware with “Timeout” and “Event Based” triggers [18].   

2.3 Machine Learning based Malware Analysis 

A machine learning based framework for automatic malware behavior analysis. It 

processes large data sets of malware samples and observes their running behavior within a 

sandbox environment. Behavior analysis report is then incorporated in a vector space. Each 

segment in vector space is associated with pattern (behavioral aspect). Methods of 

clustering and classification are applied on this dataset to determine known and new 



13 

malware categories [19]. Short fall of this methodology are that firstly it requires a large 

data set and secondly it ignored the potentials of static. 

2.4 Timeline Methodology for Reverse Engineering Malwares 

Another attempt to formalize a structured method for malware analysis reverse engineering 

has been proposed by a team of malware analysts at Purdue Malware Laboratory. As 

compared with the attempt to undertake malware analysis using a technique at random, by 

adopting this logical flow time efficient, accurate and consistent results can be achieved 

[20]. This methodology can only serve as a generalized guideline for a malware analyst in 

order to undertake malware analysis in an organized way with tools information like 

availability and precedence order in which they are to be applied.  

2.5 Dynamic Analysis using TTAnalyze 

To dynamically analyze a malicious executable a tool named “TTAnalyze” was developed 

as an emulated environment to test binaries. Upon execution binaries actions are monitored 

in the shape of API calls and functions it invokes. Due to emulated environment, 

methodology remains invisible to the malware code [21]. It generates a comprehensive and 

concise report. Tool delivers a quick analysis of an unknown malware but can only work 

on a single execution path. 

2.6 Taiwan Malware Analysis Net (TWMAN) 

A client-server architecture based tool TWMAN was proposed to undertake malware 

behavioral analysis. It works on real machines with the belief that malware are always 

designed to run and infect real system and unlikely to reveal its full functionality on virtual 

environment. After creating a clean restore image of client, it retrieves malware sample 

from the repository (server) and runs on client. Vital information related to network 

activity, files / registers changes is collected and saved in server for formulating an analysis 

report. Client is then restored back to clean state. This technique performs behavioral 

analysis and involves huge computing resources [22].  



14 

2.7 Cuckoo Sandbox 

Cuckoo sandbox is a python based open source malware sandbox application. It is able to 

automate the whole analysis process with high influx of malware samples. Actual code is 

open to all and can be customized as per needs and requirement. Concurrent analysis can 

be run with effective trace of processes in a recursive manner. Behavioral signature along 

with report is produced as an outcome of this framework. However the full capability of the 

malware might remain hidden due to the fact that in sandbox environment some portion of 

code is never triggered, firstly due to absence of a specific event and secondly due to 

detection of environment by code itself [23]. 

2.8 Malware Detection using API Calls 

Data mining methodologies are being employed to build a framework for analysis of PE 

files. The fundamental concept behind this structure is that it is possible to determine the 

behavioral aspect of any malware if its API calls are taken into account during analysis. 

There are three core components namely an analyzer, feature generator and selector and a 

classifier. Analyzer simply reads the PE header and extracts all imported API calls. While 

selecting the feature two aspects are considered; first one is the expected behavior of the 

sample and the second one is dependent on its distinctive behavior. Expected behavior is 

based on a combination of feature set, whereas distinctive behavior relied on a single 

instance of a particular feature. Last component, the classifier performs classification of 

samples based on selected features. When this methodology is applied on a dataset, it is 

able to categories samples as positive (malware) or negative (benign) based on features of 

individual PE sample. The discussed setup has a fairly high accuracy (98.31%) and 

considerably low false alarm rate (1.51%) when seen in comparison with previous effort in 

this domain [24]. 

2.9 Online Malware Analysis Services 

Several free online malware analysis services are publically available as listed in Table 4. 

Malware analyst can make use of these services in order to save time and efforts as 

compared to manual analysis. But there is a downside about these solutions i.e. Malware 



15 

sample is required to be shared with them which is serious security concern for any 

organization [4]. So, before uploading the targeted sample, the analyst must consider 

following:- 

1. Organizational policy on usage of such online malware analysis service. 

2. Sharing the samples tend amounts disclosing the detection of targeted attack to 

malware writer (attacker). 

 

Service Brief Description 

Eureka It implements a binary unpacking strategy and incorporates API de-

obfuscation capabilities to enable the structural analysis of the 

malware logic. Users can upload their suspicious binaries along 

with details of the IP Address from where this binary came from. It 

produces a call graph, summary of found strings and a list of 

embedded DNS entries [16]. 

Malwr Backend functionality is built on the top of Cuckoo Sandbox.  It 

also incorporates other open source services like Virus Total etc. A 

non-profit service whose services are based on open source and 

non-commercial technologies. Upon submitting the sample it 

responds with a complete analysis report [25]. 

Anubis Malware analysis service where windows executables, Android Mal 

Apps and suspicious URL can be submitted for analysis report[26]. 

Threat Expert Fully automated advanced threat analysis solution which produces a 

technically sound analysis report [27]. 

Table 4: Summary of Few Online Malware Analysis Services 

2.10 Chapter Summary 

Previous research efforts in the field of automated malware analysis were discussed in this 

chapter. Out of these Cuckoo sandbox and Detection using API calls stands out as best 

solutions in the domain of dynamic and static malware analysis techniques respectively. 



16 

Both frameworks provide a sound baseline for further exploration and future research 

efforts. 



17 

C h a p t e r  3  

DATASETS 

 

3.1 Chapter Overview 

The chapter gives an insight of malware samples acquired for the purpose of static analysis. 

During analysis of individual malware sample, the peculiar features and patterns were 

recorded for each malware. These samples are used both for the experimentation and later 

on for the validation of proposed methodology in order to detect such features. Collected 

samples belong to different malware families of known backdoors / data espionage and 

more so they are not only collected from a single source in order to avoid monotony of 

peculiar repetitions of features / patterns. 

3.2 Malware Data Set Sources 

Malware dataset was mainly acquired from two web resources i.e. Open Malware Project 

operated by Georgia Tech Information Security Center and Contagio Malware Dump. 

3.2.1 Open Malware 

Open Malware which was formerly known as “Offensive Computing” is a repository of 

known malware samples free for analysis purpose to the computer security community 

[28]. The main purpose of these resources was to provide a platform for the malware 

analyst in order to improve their skill in protecting their organization information asset and 

network infrastructures. To accomplish this task malware samples as well as their analysis 

were made available to public for research purpose. It is the largest malware repository 

which is available to the public free of cost which is being hosted by Georgia Tech 

Information Security Center. 

3.2.2 Contagio Malware Dump 

Contagio is also another repository of latest malware samples, emerging malware threats, 

comments and analysis by malware analysts all over the world [29]. Malware samples are 



18 

available in zip files which is password protected in order to avoid accidental self- 

infection. Password scheme is communicated via email upon request. Contagio claims that 

anyone who downloads the samples implicitly agrees to wave off their claim for any 

damage caused by these malwares. 

3.2.3 Acquisition of Dataset 

The dataset from “Open Malware” was acquired by authenticating through a valid google 

email account. Thereafter required samples were downloaded in zip format, protected with 

a common password “infected”. Similarly the dataset from “Contagio Malware Dump” was 

downloaded but their password scheme was acquired by contacting them via email. 

Samples downloaded from this repository are named in CVE format. A total of 260 known 

backdoor / data espionage malware samples belonging to 50 variants were analyzed during 

methodology development and validation phase.  Details of known backdoor / data 

espionage samples along with variant names and no of samples used in each of these 

categories are appended in Table 5. 

Trojan Name No of Samples 

Afcore 11 

BackOrifice 5 

Beta 1 

Bifrose 4 

DeepThroat 2 

Delf 4 

DonaldDick 13 

Gift 2 

Girlfriend 18 

Hupigon 1 

InCommander 7 

IRCBot 6 

Netbus 10 

Netdevil 13 

Optix 7 

OptixPro 10 

Server 6 

Sub7 8 

Subseven 9 



19 

Agent 2 

APT 1 

CoreFlood 3 

Danton 13 

Doly 3 

ECC 1 

Graybird 4 

Kel 1 

Krippled 1 

Nerte 5 

Netcontrol 3 

Prorat 3 

Ptakks 6 

Remote Control 2 

Servu 6 

Tofsee 3 

Turkojan 1 

Win32 4 

Bebloh 3 

Stuxnet 5 

CyberSpy 8 

Disttrack_shamoon 1 

Espionage 2 

Flamer 9 

Gauss 4 

Hydraq 7 

Shamoon 2 

SpyEye 4 

Thief 6 

TrojanSpy 8 

Zeus 2 
Table 5: List of Trojan Variants along with the Number of Samples Used as Dataset 

 

3.2.4 Data Set for Methodology Development 

Out of the 260 acquired malware samples dataset, 200 samples were analyzed / used during 

the process of methodology development. The details of samples used in this process along 

with variant names are appended in Table 6. 



20 

 

 

Backdoor /  

Data Espionage  

Trojan Variants 

(Methodology 

Development) 

Afcore Kel 

Beta Krippled 

Bifrose Nerte 

Delf Netcontrol 

Gift Prorat 

Girlfriend Remote Control 

Hupigon Servu 

InCommander Tofsee 

IRCBot Turkojan 

Netbus Bebloh 

Netdevil Stuxnet 

OptixPro CyberSpy 

Sub7 Disttrack_shamoon 

Subseven Espionage 

Agent Flamer 

APT Hydraq 

CoreFlood Shamoon 

Danton TrojanSpy 

ECC Zeus 

Graybird  

Table 6: Trojan Variants used for Methodology Development 

 

3.2.5 Data Set for Methodology Testing 

In order to validate / test the purposed methodology, malware samples belonging to 

families other then used in development phase were used. A total of 60 backdoor / data 

espionage malware samples were used during testing phase. The details are mentioned in 

Table 7. 

 



21 

 

Backdoor /  

Data Espionage  

Trojan Variants 

(Methodology Testing) 

BackOrifice Ptakks 

DeepThroat Win32 

DonaldDick Gauss 

Optix SpyEye 

Server Thief 

Doly  

Table 7:Trojan Variants used for Methodology Testing 

3.3 Acquisition of Benign Applications 

200 Benign applications were obtained from “Contagio Malware Dump”. The developed 

methodology was made to run on these benign applications in order to determine the 

unique features present in backdoor and/or data espionage samples. 200 benign 

applications were used during methodology development while rest of the 60 applications 

were used during testing / validation phase. 

3.4 Chapter Summary 

Chapter on datasets gave an insight of malware (backdoor and /or data espionage) and 

benign samples. How they were acquired from different resources and later on how they 

were used during methodology development and testing phase. A total of 260 malware 

samples from 50 variants of Trojans were acquired from “Open Malware” and “Contagio 

Malware Dump”, while 260 benign samples were obtained from “Contagio Malware 

Dump” as per procedure stated in the chapter. 



22 

C h a p t e r  4  

PROPOSED METHODOLOGY 

4.1 Chapter Overview 

This chapter elaborates a systematic approach which leads to a proposed methodology to 

identify malware designed for data espionage and backdoor creation. At first, it deliberates 

at a framework to extract features such as API calls and strings, followed by occurrence of 

malicious features and strings commonly found in known backdoors and data espionage 

malwares. Using the acceptance rule based on weightage of features in contrast with benign 

executables, features are selected or rejected. Finalized feature set and their respective 

weightages are then used to calculate scores of individual malware and benign samples. 

Percentile approach is then used to set the threshold score for deciding whether the 

executable sample is a malware or benign. At the end, using the artifacts extraction 

techniques integrated with feature set and threshold value, a methodology is proposed to 

meet the objectives set by this research effort. 

4.2 Static Malware Analysis Framework 

Malware analysis of 200 known backdoors and data espionage samples was conducted to 

determine a set of features and patterns commonly found in such kind of mal codes. The 

whole process was split in five distinct phases as depicted in Figure 3. In order to remain 

focused on the research objectives following research parameters were set right from 

outset:- 

1. Malware samples were limited to PE file formats only. 

2. De-Obfuscation was confined to deal with malwares packed with UPX [12] only. 

3. Scope of analysis was restricted to extraction of API Calls using IAT, strings and 

network related strings while dissecting a PE file structure. 

4. API Calls and Strings (Mal code) are considered as a candidate for common feature 

set. 



23 

5. Unique patterns like URLs, emails, Registry entries, IP Address and passwords etc. 

are taken as individual artifacts for each sample. 

 

Figure 3: Static Malware Analysis Framework 

4.2.1 Detection of Malware Samples 

Acquired samples of known backdoors and data espionage were put at trial across several 

online malware detection engines to validate their tagged identification. The entire process 

is depicted in Figure 4. In that hash of a single malware sample is searched at each malware 

detection facility and return results are compared to confirm their correct identification. The 

same process is repeated for entire dataset. 

 

Figure 4: Malware Detection Phase 

4.2.2 Identification of Malware 

Sample is analyzed for correct file type using TrID utility [30]. Usage of this command line 

utility is shown in Figure 5.  



24 

 

Figure 5: TrID Usage in Identification Phase 

After having confirmed the sample as .exe file, in order to determine whether or not the 

malware code is packed and if packed what is the packer identification. A GUI based utility 

named PEiD [11] is used for this purpose as illustrated in Figure 6. 

 

Figure 6: Packet Identification using PEiD 

4.2.3 De-Obfuscation 

An attempt is made to unpack the sample using UPX with switch “-d”. If the sample was 

packed with UPX and its variants it will be unpacked successfully as shown in Figure 7. It 

is to be noted that the unpacked file differs in hash as well as in size from the original file. 



25 

 

Figure 7: Unpacking of Packed Malware Sample using UPX 

4.2.4 Extraction of Features 

Each PE file contains an import tables which carries very useful information such as DLLs 

and API function calls. On dissecting the PE using PE explorer, API Calls can be extracted 

without actually executing the code. Lot of useful and important strings are embedded in 

the code at compile time. ‘Strings’ developed by Windows SysInternals is a wonderful 

utility for extracting these ASCII strings from the malicious code [7].The whole extraction 

process is depicted in Figure 8. 



26 

 

Figure 8: Feature Extraction Phase 

4.2.5 Update of Database 

Extracted artifacts are then compared with the existing data base, in case of new artifacts 

found in the known sample of Trojan Backdoor and /or Data Espionage, data base files are 

updated by adding new features and this process is repeated till complete analysis of all 

malware samples. API calls and meaningful strings are manually searched in raw artifacts 

file. In addition to common artifacts (API and strings), unique patterns in the shape of 

network related strings like URLs, emails,  IP Address etc. , registry entries and passwords 

etc. are also looked for and recorded as individual artifacts for each sample and stored in 

sample artifacts found file. Updation phase is illustrated in Figure 9. 



27 

 

Figure 9: Database Updation Phase 

On termination of update phase, a feature set for both API and Mal Strings is stored as 

database which will act as a baseline for checking / searching for the presence of such 

patterns in a malware sample. Feature set for API and Mal strings so obtained is placed at 

Appendix A and B.  

4.3 Selection of Features in a Malware Designed for Data Espionage and Backdoor 

Creation 

200 malware samples of known backdoor / data espionage and 200 benign applications 

were checked / searched for the presence of feature set as per flow diagram shown in 

Figure 10. 



28 

 

Figure 10: Checking Presence of Features in Malware Sample 

4.3.1 Features Presence in Malware Dataset 

Using the flow chart depicted in Figure 10, all malware samples are put at trial for the 

presence of features. If a particular feature is present in a sample it is recorded as ‘1’ 

against that feature else ‘0’ is recorded. The occurrences of feature sets in malware dataset 

are shown in Appendix C and D. 

4.3.2 Features Presence in Benign Dataset 

Using the flow chart depicted in Figure 10, all benign samples are put at trial for the 

presence of features. If a particular feature is present in a sample it is recorded as ‘1’ 



29 

against that feature else ‘0’ is recorded. The occurrences of feature sets in benign dataset 

are shown in Appendix E and F. 

4.3.3 Calculating Difference of Features Presence 

Alone presence of a particular feature at a high occurrence in malware dataset does warrant 

it to be an indicative of a malware, because the same feature may also be present at a 

comparable  ratio in benign dataset as well. So, taking the arithmetic difference of a feature 

occurrence in malware and benign data will indicate true malignant as shown in Appendix 

G and H. 

4.3.4 Feature Set Selection 

After sorting the features in ascending order as per their arithmetic difference as depicted in 

Appendix G and H. Based on difference in feature occurrence, weightage is assigned to 

each feature entry. Feature “Selection” or “Rejection” is governed by the rule that if 

weightage is greater than zero, the feature is “Selected” else “Rejected”. Finally, feature set 

for both API and Mal Strings is defined along with their respective score as shown in 

Appendix I and J. 

4.4 Score Calculation based on Selected Feature Set 

Based on presence of a particular feature individual scores are added up to calculate the 

overall score of a particular sample. Let Fi is a feature which is present in a particular 

sample which is assigned a value‘1’ if present else ‘0’and Wi be its respective weightage, 

then the total malicious score is defined as: 

Total Score = ∑(Fi*Wi)                        (4.1) 

 Where, i ranges from 1 to n, and n is the total no of features in a feature set. Following 

equation 4.1, score is calculated for both feature sets and for malware and benign datasets 

are illustrated in Appendix K and L. 



30 

4.5 Setting Threshold 

After calculating score for malware and benign dataset, there is need to establish a 

threshold value such that if total score of any sample is greater  than the set threshold value, 

it is declared as malware else benign. In order to set the threshold for both the feature sets, 

percentile approach is adopted [31]. For setting the threshold, malware samples dataset 

score is sorted in ascending order. Keeping the strict criteria, percentile value of 5 is 

selected. For 200 malware samples, percentile value is calculated as under:- 

P05=
 

   
. (200+1)       (4.2) 

P05  =10  

It implies that 10
th  

value  has percentile value of 5. So, referencing Appendix K, 10
th

 value 

has a score of 1983 in case of API and 240 in case of Mal Strings. These values depicts that 

5% values of score in malware sample dataset are less than these as shown in Figure 11 and 

Figure 12 and established as threshold for respective feature set. 

 

Figure 11: Graph showing Threshold for APIs using percentile value of 5 



31 

 

Figure 12: Graph showing Threshold for Mal Strings using percentile value of 5 

4.6 Finalization of Proposed Methodology 

After incorporating the feature sets and threshold value, the proposed automated malware 

analysis framework is refined as a proposed methodology for automated malware analysis 

to identify malware designed for data espionage and backdoor creation. Any suspicious 

executable sample is given as an input for quick static analysis. The automated analysis 

process as elucidated in Figure 13 is completed in following eight strides:- 

1. PE file is checked for its detection (if any) using anti-malware detection engines. 

2. Sample is then scanned for its correct file type identification. 

3. Packer identification and unpacking attempt. 

4. Raw artifacts (APIs, Strings and Network related Strings) extracted from unpacked 

PE file. 

5. Feature Set presence is checked in raw artifacts file. 

6. Separate score in both feature set (API and Mal Strings) is calculated. 



32 

7. Both scores are compared with its respective threshold values. If any value is above 

the threshold it is marked as “Malware” else “Benign”. 

8. Final Report along with individual artifacts is compiled for further deep analysis. 

 



33 

 

 

Figure 13: Proposed Methodology for Automated Malware Analysis 



34 

4.7 Chapter Summary 

In this chapter the proposed methodology was discoursed adopting a systematic and an 

elaborative approach. At first, a framework for malware analysis was developed and based 

on that malware analysis of 200 each of backdoor / data espionage and benign samples 

were undertaken. Based on the artifacts / patterns found, feature set for API calls and Mal 

Strings were established. Using the percentile methodology, threshold for the feature set is 

determined.  Lastly, a proposed methodology for automated malware analysis to identify 

data espionage and backdoor creation was developed and conferred. 

 

 

 

 

 

  



35 

C h a p t e r  5  

EVALUATION OF PROPOSED METHODOLOGY 

5.1 Chapter Overview 

This chapter encompasses discussion on testing and validation of proposed methodology. 

Random samples of known backdoor / data espionage and benign softwares are at trial 

during this phase. After determining the TN and FP, performance metrics like accuracy, 

precision, sensitivity and false alarm rate are calculated. 

5.2 Data Set for Testing 

Data set for testing comprises of 60 malwares (backdoor/data espionage) and 60 benign 

softwares which were acquired from Open Malware [28] and Contagio Malware Dump 

[29] respectively. Malware and benign samples were used at random to test the 

performance of proposed methodology. 

5.3 Testing Results 

The methodology calculates API and Mal String score for each specimen and then decides 

whether or not the specimen is malware or benign. The decision is based on the comparison 

of score value with the threshold value. Testing results for malware and benign applications 

are shown in Table 8 and Table 9  respectively. 

Malware 

Sample 

Score Decision 

Result 
API (A) Mal String (M) 

If (A>σ1 ‘OR’ M> σ2) “Malware” 

Else “Benign” 

1 20196 2774 Malware TP 

2 9986 1663 Malware TP 

3 20196 2939 Malware TP 

4 5797 1491 Malware TP 

5 7480 1535 Malware TP 

6 4031 499 Malware TP 

7 22164 3714 Malware TP 

8 19216 3317 Malware TP 



36 

9 7481 917 Malware TP 

10 19179 2939 Malware TP 

11 6672 1117 Malware TP 

12 15227 781 Malware TP 

13 14442 1138 Malware TP 

14 19235 3104 Malware TP 

15 6672 1117 Malware TP 

16 6026 1374 Malware TP 

17 19216 3084 Malware TP 

18 8132 917 Malware TP 

19 19179 3023 Malware TP 

20 14456 1244 Malware TP 

21 6443 963 Malware TP 

22 5972 547 Malware TP 

23 11887 1392 Malware TP 

24 22449 1921 Malware TP 

25 23336 4772 Malware TP 

26 22678 3526 Malware TP 

27 25260 4602 Malware TP 

28 7461 1535 Malware TP 

29 22327 2801 Malware TP 

30 22101 2796 Malware TP 

31 6642 1162 Malware TP 

32 25486 4441 Malware TP 

33 22908 4345 Malware TP 

34 6256 1218 Malware TP 

35 6256 1437 Malware TP 

36 2889 60 Malware TP 

37 13380 265 Malware TP 

38 13169 526 Malware TP 

39 14850 905 Malware TP 

40 13711 615 Malware TP 

41 13681 840 Malware TP 

42 13299 615 Malware TP 

43 21416 3145 Malware TP 

44 17260 2243 Malware TP 



37 

45 25080 3548 Malware TP 

46 22508 2915 Malware TP 

47 1790 274 Malware TP 

48 4152 263 Malware TP 

49 4157 263 Malware TP 

50 4152 263 Malware TP 

51 3891 242 Malware TP 

52 3859 776 Malware TP 

53 6542 493 Malware TP 

54 5927 1041 Malware TP 

55 23851 5332 Malware TP 

56 25436 4994 Malware TP 

57 25436 4994 Malware TP 

58 23851 5332 Malware TP 

59 20921 2998 Malware TP 

60 25436 4994 Malware TP 

Table 8: Testing Results of Malware Samples 

Benign 

Sample 

Score Decision 

Result 
API (A) Mal String (M) 

If (A>σ1 ‘OR’ M> σ2) “Malware” 

Else “Benign” 

1 297 102 Benign TN 

2 22 89 Benign TN 

3 22 56 Benign TN 

4 632 74 Benign TN 

5 250 56 Benign TN 

6 146 208 Benign TN 

7 30 113 Benign TN 

8 22 35 Benign TN 

9 1427 108 Benign TN 

10 431 82 Benign TN 

11 122 49 Benign TN 

12 140 66 Benign TN 

13 22 35 Benign TN 

14 1427 59 Benign TN 

15 1427 108 Benign TN 

16 1427 108 Benign TN 



38 

17 22 35 Benign TN 

18 1427 59 Benign TN 

19 154 157 Benign TN 

20 22 35 Benign TN 

21 34 100 Benign TN 

22 431 77 Benign TN 

23 363 56 Benign TN 

24 294 145 Benign TN 

25 1427 59 Benign TN 

26 1427 113 Benign TN 

27 755 129 Benign TN 

28 1427 108 Benign TN 

29 1427 108 Benign TN 

30 1427 59 Benign TN 

31 364 110 Benign TN 

32 867 89 Benign TN 

33 387 526 Malware FP 

34 34 157 Benign TN 

35 756 213 Benign TN 

36 133 135 Benign TN 

37 1427 113 Benign TN 

38 774 76 Benign TN 

39 1442 232 Benign TN 

40 73 89 Benign TN 

41 238 35 Benign TN 

42 210 238 Benign TN 

43 1427 108 Benign TN 

44 610 201 Benign TN 

45 54 135 Benign TN 

46 1002 54 Benign TN 

47 79 77 Benign TN 

48 22 35 Benign TN 

49 22 136 Benign TN 

50 1960 59 Benign TN 

51 84 0 Benign TN 

52 79 213 Benign TN 



39 

53 599 226 Benign TN 

54 188 82 Benign TN 

55 1861 59 Benign TN 

56 44 95 Benign TN 

57 30 113 Benign TN 

58 1160 167 Benign TN 

59 22 89 Benign TN 

60 169 63 Benign TN 

Table 9:Testing Results of Benign Samples 

5.4 Performance Metrics 

Performance of proposed methodology is measured in terms of accuracy, precision and 

false alarm rate[32]. The summary of performance metrics on results is illustrated in Table 

10. 

5.4.1 True Positive (TP) 

Methodology correctly identifies given sample as “Malware”. 

5.4.2 False Negative (FN) 

Methodology wrongly identifies given sample as “Benign”. 

5.4.3 True Negative (TN) 

Methodology correctly identifies given sample as “Benign”. 

5.4.4 False Positive (FP) 

Methodology wrongly identifies given sample as “Malware”. 

5.4.5 Accuracy 

Portion of all correct decision are measured in terms of Accuracy and are calculated as: 

         
       

             
 

5.4.6 Precision 

Portion of predicted positive cases that were correctly identified as positive is known as 

precision. 



40 

          
  

       
 

5.4.7 Recall (Sensitivity) 

Portion of correct categories that were assigned by the methodology is defined as “Recall” 

or “Sensitivity”. It is phenomenon to measure the sensitivity of the methodology. 

       
  

       
 

 

5.4.8 False Alarm Rate (FAR) 

Number of misclassification on a given set of samples is termed as false alarm rate. It is 

calculated as: 

    
       

             
 

 

Total No of Malware Samples  M 60 

True Positive TP 60 

False Negative FN - 

Total No of Benign Samples N 60 

True Negative TN 59 

False Positive FP 1 

Accuracy ACC 99.17% 

Precision P 98.3% 

Recall (Sensitivity) R 100% 

False Alarm Rate FAR 0.83% 

Table 10: Summary of Performance Metrics 

5.5 Results Validation 

If we compare our results with “Detection of Malware Based on Mining API” formulated 

by Sami et al. [24] and “Intelligence Malware Detection System (IMDS)” proposed  by 

Yangfang Ye et al. [33] which are shown in Table 11, we see that our results are quite 

promising. 



41 

Performance Metric IMDS Malware Detection 

using API Mining 

Our Proposed 

Method 

Accuracy 93.07% 98.31% 99.17% 

Precision 80.13% 98.5% 98.3% 

Recall (Sensitivity) 97.19% 99.7% 100% 

False Alarm Rate 19.86% 1.51% 0.83% 

Table 11 : Comparison of Results with Existing Methods 

 



42 

C h a p t e r  6  

CONCLUSION AND FUTURE DIRECTIONS 

6.1 Chapter Overview 

The chapter concludes this dissertation by summing up the research objectives 

accomplished and also provides candid directions for future work in the field of automated 

malware analysis. 

6.2 Research Goals Attained 

During the process of this research starting from the literature review and ending at the 

validation and testing of proposed methodology, following objectives have been attained:- 

1. Review of malware categories / types, malware analysis techniques including tools 

and architectures. 

2. In-depth analysis of existing solutions on the subject. 

3. Developed a framework for static analysis of malware. Employing this framework 

for analysis of known backdoor / data espionage malwares in order to build a 

feature set (APIs and Mal strings) commonly found in such type of mal codes. 

4. Finalization of these features / patterns in contrast with benign application to refine 

the feature set that warrants an application to be categorized as malware or 

otherwise. 

5. Computing malware score for each sample based on weightage of their found 

artifacts amongst both feature set separately and setting their respective threshold 

for acceptance and rejection of a candidate application as malware. 

6. Keeping proposed framework for static malware analysis as baseline and taking 

feature sets / patterns and threshold score as parameters developed a methodology 

to automatically analyze malware designed for data espionage and backdoor 

creation. 

7. As a proof of concept, a python script has been implemented to verify the utility of 

proposed methodology. 



43 

8. Validation of proposed methodology by putting a reasonable number of malware 

and benign samples at trial in random sequence. In that, one by one test samples are 

given as input to the python script and their results along with report on artifacts 

found are recorded. 

9. Finally with the help of performance metrics, results are compared with previous 

work in the relevant field. 

6.3 Future Directions 

1. Research was confined to either un-obfuscated malwares or packed with UPX and 

its variants. Modern / sophisticated cyber-attacks relies on malware that are 

designed by employing a number of other obfuscation techniques which are hard to 

crack. Countering these methods is a challenging avenue in this field. 

2. This dissertation focused on malwares of PE format designed for data espionage 

and malware creations only. Expanding the scope vertically towards exploring the 

rootkits and horizontally towards other file types like .pdf, .doc, .xls and web 

formats would be a remarkable effort in the field of automated malware analysis. 

3. If this utility is incorporated with existing anti-malware techniques, it could pay 

dividends in combating against new attacks in a more befitting manner.  

 

  



44 

 

PUBLICATIONS 

 

1. “On the Approach of Static Feature Extraction in Trojans to Combat against Zero-

day Threats”, IEEE International Conference on IT Convergence and Security 2014 

(ICITCS-2014), 28-30 October 2014. 

2. “Patterns in Malware Designed for Data Espionage and Backdoor Creation”, IEEE 

International Bhurban Conference on Applied Sciences and Technology 2015 

(IBCAST-2015), 13-17 January 2015.  



45 

REFERENCES 

[1] Sophos, “Thesaurus: The A-Z of computer and data security threats.” . 

[2] Panda Security, “PandaLabs Quarterly Report January-March 2014,” 2014. 

[3] L. Zeltser, “Introduction to Malware Analysis,” CS2107-Semester IV, 2012-2013. 

SANS Institute, pp. 1–36. 

[4] L. Zeltser, “Analyzing Malicious Software,” pp. 59–83, 2010. 

[5] A. Verma, W. Jeberson, and V. Singh, “A LITERATURE REVIEW ON 

MALWARE AND ITS ANALYSIS,” 2013, vol. 05, no. 16, pp. 71–82. 

[6] “Virus Total.” [Online]. Available: https://www.virustotal.com/. 

[7] Windows Sysinternals, “Strings Utility.” [Online]. Available: 

http://technet.microsoft.com/en-us/sysinternals/bb897439. 

[8] “Ben Text.” [Online]. Available: http://www.mcafee.com/us/downloads/free-

tools/bintext.aspx. 

[9] “MD5sums for Windows.” [Online]. Available: http://www.pc-

tools.net/win32/md5sums/. 

[10] Heaven Tools, “PE Explorer.” [Online]. Available: 

http://www.heaventools.com/overview.htm. 

[11] “PEiD Description.” [Online]. Available: 

http://www.aldeid.com/wiki/PEiD#PEiD. 

[12] “UPX - Ultimate Packers for Executables.” [Online]. Available: 

http://upx.sourceforge.net/. 

[13] Didier Stevens, “XORsearch.” [Online]. Available: 

http://blog.didierstevens.com/programs/xorsearch/. 

[14] M. Sikorski, A. Honig, and S. Lawler, Practical Malware Analysis: The Hands-On 

Guide to Dissecting Malicious Software. 2012. 

[15] Symantec Corporation, “Internet Security Threat Report 2014,” 2014. 

[16] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka : A 

Framework for Enabling Static Malware Analysis,” pp. 481–500, 2008. 



46 

[17] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, N. Tawbi, J. 

Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi, 

“Static Detection of Malicious Code in Executable Programs ∗.” 

[18] R. R. Branco and U. Shamir, “Architecture for automation of malware analysis,” 

Malicious Unwanted Softw. (MALWARE), 2010 5th Int. Conf., 2010. 

[19] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware 

behavior using machine learning,” J. Comput. Secur., vol. 19, pp. 639–668, 2011. 

[20] C. Q. Nguyen, N. G. Street, and J. E. Goldman, “Malware analysis reverse 

engineering (MARE) methodology & malware defense (MD) timeline,” 2010 Inf. 

Secur. Curric. …, 2010. 

[21] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze : A Tool for Analyzing 

Malware.” 

[22] H.-D. Huang, C.-S. Lee, H.-Y. Kao, Y.-L. Tsai, and J.-G. Chang, “Malware 

behavioral analysis system: TWMAN,” 2011 IEEE Symp. Intell. Agent, pp. 1–8, 

2011. 

[23] Cuckoo Sandbox, “Automated Malware Analysis.” [Online]. Available: 

http://www.cuckoosandbox.org/about.html#about. 

[24] A. Sami, B. Yadegari, and H. Rahimi, “Malware detection based on mining API 

calls,” Proc. …, pp. 1020–1025, 2010. 

[25] Cuckoo Sandbox, “Malwr - Malware Analysis.” [Online]. Available: 

https://malwr.com/. 

[26] International Secure Systems Lab, “Anubis - Malware Analysis for Unknown 

Binaries.” [Online]. Available: http://anubis.iseclab.org/. 

[27] “Threat Expert.” [Online]. Available: http://www.threatexpert.com/submit.aspx. 

[28] Georgia Tech Information Security Center, “Open Malware.” [Online]. Available: 

http://oc.gtisc.gatech.edu:8080/. 

[29] Milaparkour, “Contagio Malware Dump.” [Online]. Available: 

http://contagiodump.blogspot.com/. 

[30] Marco Pontello, “TrID - File Identifier.” [Online]. Available: http://mark0.net/soft-

trid-e.html. 



47 

[31] NIST, Engineering Statistics Handbook. 

http://www.itl.nist.gov/div898/handbook/prc/section2/prc262.htm. 

[32] R. Tian, L. Batten, R. Islam, and S. Versteeg, “An automated classification system 

based on the strings of trojan and virus families,” 2009 4th Int. Conf. Malicious 

Unwanted Softw., pp. 23–30, Oct. 2009. 

[33] D. Wang and T. Li, “IMDS : Intelligent Malware Detection System,” 2007.  

 

  



48 

Appendix A 

Initial API Calls Feature Set 

 



49  



50 

Appendix B 

Initial Mal Strings Feature Set

 



51  



52 

Appendix C 

Presence ofAPIin Malware Dataset 

 



53 

 



54 

Appendix D 

Presence of Mal Strings in Malware Dataset 

 



55 

 



56 

Appendix E 

Presence ofAPIin Benign Dataset 

 



57 

 



58 

Appendix F 

Presence of Mal Strings in Benign Dataset

 



59 

 



60 

Appendix G 

Difference Between Presence of API in Malware & Benign Dataset 

 



61 

 



62 

Appendix H 

Difference Between Presence of Mal Strings in Malware & Benign Dataset 

 



63 

 

 



64 

Appendix I 

Selection of Features in API Feature Set 

 



65 

 

 



66 

Appendix J 

Selection of Features in Mal Strings Feature Set 

 



67 

 

 



68 

Appendix K 

Malware Data Set Score for API and Mal Strings (Ascending Order) 

Malware 

Sample 

API Score Mal String 

Score 

 Malware 

Sample 

API Score Mal String 

Score 

1 336 49  35 3773 456 

2 1024 55  36 3893 484 

3 1499 106  37 3956 506 

4 1535 124  38 4023 507 

5 1538 141  39 4050 510 

6 1538 153  40 4103 541 

7 1586 214  41 4103 564 

8 1836 227  42 4283 569 

9 1960 239  43 4310 619 

10 1983 240  44 4348 636 

11 1998 240  45 4348 637 

12 2110 247  46 4403 656 

13 2150 251  47 4574 661 

14 2169 251  48 4705 664 

15 2270 262  49 4729 677 

16 2304 289  50 4777 691 

17 2308 312  51 4888 727 

18 2356 322  52 4901 727 

19 2390 345  53 4969 739 

20 2499 345  54 5085 789 

21 2542 348  55 5085 844 

22 2703 361  56 5128 844 

23 2803 362  57 5128 869 

24 2809 375  58 5151 1016 

25 2869 376  59 5354 1085 

26 2972 388  60 5412 1085 

27 3059 388  61 5924 1210 

28 3076 407  62 5947 1252 

29 3276 408  63 6014 1308 

30 3276 426  64 6030 1342 

31 3385 443  65 6065 1342 

32 3447 451  66 6073 1374 

33 3453 455  67 6099 1413 

34 3569 456  68 6101 1455 



69 

  

Malware 

Sample 

API Score Mal String 

Score 

 Malware 

Sample 

API Score Mal String 

Score 

69 6213 1460  103 20178 2356 

70 6348 1461  104 20678 2500 

71 6744 1465  105 20816 2541 

72 6772 1476  106 21084 2559 

73 6804 1490  107 21362 2625 

74 6859 1490  108 21458 2643 

75 6859 1495  109 21482 2651 

76 6942 1500  110 21532 2725 

77 7010 1525  111 21544 2731 

78 7358 1540  112 21600 2757 

79 7358 1552  113 21858 2840 

80 7358 1656  114 21878 2876 

81 7689 1660  115 21933 2981 

82 7728 1729  116 21944 2984 

83 7788 1743  117 21944 3034 

84 7788 1790  118 21946 3045 

85 7833 1795  119 21972 3045 

86 7838 1799  120 21981 3045 

87 8103 1845  121 21989 3046 

88 8229 1926  122 22033 3092 

89 8248 1931  123 22101 3110 

90 8321 1963  124 22101 3136 

91 8495 1970  125 22101 3138 

92 9163 1970  126 22101 3139 

93 11069 2010  127 22117 3198 

94 13037 2053  128 22238 3230 

95 17017 2090  129 22370 3270 

96 17298 2113  130 22370 3283 

97 17420 2152  131 22440 3310 

98 17663 2168  132 22485 3314 

99 18577 2168  133 22494 3317 

100 19080 2168  134 22528 3324 

101 19863 2191  135 22528 3342 

102 19908 2317  136 22535 3374 



70 

 

  

Malware 

Sample 

API Score Mal String 

Score 

 Malware 

Sample 

API Score Mal String 

Score 

137 22566 3415  171 24806 4576 

138 22576 3417  172 24868 4643 

139 22576 3483  173 25023 4643 

140 22576 3485  174 25065 4841 

141 22606 3526  175 25065 4868 

142 22678 3554  176 25065 4870 

143 22838 3626  177 25065 4930 

144 22876 3626  178 25065 4941 

145 22913 3668  179 25065 4946 

146 23002 3701  180 25065 4955 

147 23005 3701  181 25065 4955 

148 23104 3747  182 25122 4970 

149 23111 3756  183 25234 4970 

150 23241 3773  184 25234 4970 

151 23359 3791  185 25234 4970 

152 23579 3791  186 25257 4970 

153 23659 3804  187 25486 4983 

154 23796 3820  188 25580 4983 

155 23806 3841  189 25615 5006 

156 23806 3842  190 25615 5021 

157 23806 3894  191 25615 5041 

158 23823 3960  192 25615 5041 

159 23872 3960  193 25615 5046 

160 24087 4038  194 25615 5078 

161 24202 4076  195 25650 5280 

162 24223 4094  196 25821 5280 

163 24363 4094  197 25826 5354 

164 24388 4100  198 25826 5354 

165 24463 4136  199 25850 5354 

166 24571 4285  200 25935 5354 

167 24651 4441     

168 24730 4488 
 Total 

Score 2906159 484255 

169 24730 4489  Average 14531 2421 

170 24754 4563     



71 

Appendix L 

Benign Data Set Score for API and Mal Strings (Descending Order) 

Benign 

Sample 

API Score Mal String 

Score 

 Benign 

Sample 

API Score Mal String 

Score 

1 5415 698  35 1427 270 

2 5415 689  36 1427 269 

3 5415 643  37 1427 268 

4 3416 620  38 1427 268 

5 3394 572  39 1427 268 

6 2822 571  40 1427 268 

7 2627 478  41 1427 268 

8 2580 423  42 1427 268 

9 2178 404  43 1427 268 

10 2140 384  44 1394 268 

11 2060 377  45 1394 262 

12 1806 367  46 1272 257 

13 1760 352  47 1207 248 

14 1677 344  48 1181 245 

15 1627 333  49 1160 241 

16 1597 325  50 1143 235 

17 1594 316  51 1102 233 

18 1548 315  52 1093 226 

19 1548 310  53 1009 219 

20 1497 305  54 1009 218 

21 1446 304  55 1009 217 

22 1427 304  56 1009 216 

23 1427 300  57 1009 213 

24 1427 300  58 1009 213 

25 1427 293  59 1009 211 

26 1427 293  60 1009 203 

27 1427 293  61 999 203 

28 1427 287  62 980 199 

29 1427 285  63 977 198 

30 1427 281  64 974 195 

31 1427 281  65 893 195 

32 1427 281  66 870 195 

33 1427 277  67 869 194 

34 1427 274  68 862 192 



72 

  

Benign 

Sample 

API Score Mal String 

Score 

 Benign 

Sample 

API Score Mal String 

Score 

69 858 187  103 347 113 

70 858 175  104 347 113 

71 854 174  105 315 113 

72 813 166  106 312 113 

73 774 163  107 307 113 

74 756 160  108 294 113 

75 755 158  109 266 113 

76 755 157  110 260 112 

77 751 157  111 252 112 

78 744 157  112 244 110 

79 724 157  113 238 108 

80 701 157  114 205 108 

81 699 155  115 201 108 

82 697 155  116 192 108 

83 691 155  117 166 108 

84 691 155  118 154 108 

85 689 155  119 154 108 

86 689 153  120 154 103 

87 667 153  121 150 100 

88 639 150  122 150 99 

89 632 147  123 149 99 

90 599 145  124 146 98 

91 487 135  125 140 95 

92 472 135  126 133 91 

93 443 135  127 133 91 

94 443 131  128 129 91 

95 433 130  129 129 89 

96 431 129  130 129 89 

97 431 129  131 125 89 

98 428 123  132 125 89 

99 390 120  133 125 89 

100 363 116  134 122 89 

101 363 113  135 118 89 

102 359 113  136 103 89 



73 

 

 

Benign 

Sample 

API Score Mal String 

Score 

 Benign 

Sample 

API Score Mal String 

Score 

137 93 89  171 22 39 

138 91 89  172 22 39 

139 90 89  173 22 35 

140 88 88  174 22 35 

141 88 82  175 22 35 

142 79 82  176 22 35 

143 79 82  177 22 35 

144 77 80  178 22 35 

145 73 72  179 22 35 

146 73 66  180 22 35 

147 73 66  181 22 35 

148 72 63  182 22 35 

149 72 63  183 22 24 

150 71 63  184 22 23 

151 62 63  185 22 12 

152 57 59  186 22 0 

153 57 59  187 22 0 

154 54 59  188 22 0 

155 49 59  189 22 0 

156 47 59  190 22 0 

157 47 59  191 22 0 

158 47 59  192 22 0 

159 44 59  193 22 0 

160 35 59  194 22 0 

161 34 56  195 22 0 

162 34 54  196 22 0 

163 34 54  197 22 0 

164 34 49  198 5 0 

165 34 49  199 2 0 

166 34 49  200 0 0 

167 34 47     

168 24 47 
 Total 

Score 141520 31888 

169 24 39  Average 708 159 

170 24 39     


