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ABSTRACT 

Compressive Sensing (CS) is a novel signal processing paradigm which has found great 

interest in many applications including communication theory and wireless 

communications. In wireless communication, CS is particularly suitable for its 

application in the area of spectrum sensing for cognitive radios, where the complete 

spectrum under observation, with many spectral holes, can be modeled as a sparse wide-

band signal in frequency domain. 

In this work, the CS framework is extended for the estimation of wide-band spectrum by 

reconstructing the spectrum using compressive sensing matrix and reduced time samples 

of the wide-band signal.  The proposed algorithm outperforms conventional channel-by-

channel scanning in a sense that sensing time is reduced. The Mean Square Error (MSE) 

estimation of the reconstructed spectrum via MATLAB simulations shows that a better 

approximation of the reconstructed spectrum is obtained even when the number of time 

samples is reduced, such that the vacant channels can be identified. The wide-band signal 

detection is also performed via CS using cognitive Bayesian energy detector, which 

shows that as the number of wide-band filters is increased, probability of detection of CS 

algorithm improves. Bayesian Compressive Sensing (BCS) framework is also modified 

for the recovery of a sparse signal, whose non-zero coefficients follow a Rayleigh 

distribution. It is then demonstrated via simulations that MSE significantly improves, 

when appropriate prior distribution is used for the faded signal coefficients. Different 

parameters for the system model, e.g., sparsity level, number of measurements, etc., are 

then varied to show the consistency of the results for different cases. 
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Chapter 1 

INTRODUCTION 

 

1.1 Overview 

Rapid growth and development in mobile communications, satellite communications and 

other wireless communication systems require advanced spectrum sources. Within the 

current spectrum framework, different spectrum bands are allocated to specific licensed 

users. The licensed users of the spectrum are known as the primary users, who possess 

the legacy right to use the frequency bands allocated to them. The licensing process of the 

spectrum and allocating fixed ranges of spectrum bands to the licensed users results in 

congestion in those bands, while lot of spectrum bands are under-utilized and apparently 

causes spectrum scarcity [1]. The spaces in the spectrum bands which are not being 

actively used by the licensed users are called spectral holes. To efficiently utilize the 

spaces in the spectrum and solve the problem of under-utilization of spectrum, Federal 

Communications Commission (FCC) has allowed unlicensed/secondary users to sense 

the spectral holes and utilize them using Cognitive Radio (CR) technology [2-4]. 

Spectrum utilization can be made efficient, when secondary users sense the spectrum and 

detect the spectral holes accurately and utilize them efficiently without causing any 

interference to the transmission of other users. Thus, secondary users must possess 

cognitive capabilities to sense the spectrum reliably and detect the spectral holes in it. 

The emerging paradigm of Dynamic Spectrum Access (DSA) [5] makes sure that the 

spectrum scarcity problem is solved by allowing secondary/unlicensed users to utilize the 

already allocated spectrum dynamically using spectrum agile wireless networks [6]. The 
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key component to DSA paradigm is CR which senses its environment and performs such 

functions to serve its users, without causing any harmful interference to the neighboring 

authorized users [7]. With the use of CR, secondary users coexist with the licensed users 

without causing any interference in their transmission to increase the efficiency of the 

spectrum. Thus CR provides an opportunistic sharing of the spectrum. Dynamic 

allocation of the spectrum via CR has made advancement in signal processing capabilities 

and wireless technology. To sense the spectrum in minimum possible time at low signal-

to-noise ratio (SNR) is one of the critical issues faced by CR in spectrum sensing. 

1.2 Problem Statement 

In mobile communications, satellite communications and other wireless communication 

systems, when radio waves transmit from the transmitter, they undergo scattering, 

reflection and diffraction, thus creating multi-path effect. In consequence, the received 

signal level undergoes fluctuations and changes in amplitudes and phases of the signal 

occur. This phenomenon is called fading and due to such phenomena, more study of 

practical channels like Rayleigh fading channels, is needed along with that of classical 

Additive White Gaussian Noise (AWGN) channel. The Rayleigh fading channels should 

be considered while sensing and detection of such wide-band signals. A CR promises the 

sensing and detection of such wide-band signals in Rayleigh fading channels. However 

the traditional approach to sense the wide-band spectrum and search for the available 

bandwidth for secondary usage is channel-by-channel sensing techniques like energy 

detector based sensing [8], waveform based sensing [9], cyclo-stationary based sensing 

[10]. This channel-by-channel scanning of wide-band spectrum becomes costly and 

complex because it requires a Radio Frequency (RF) front end with numerous tunable 
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and narrow band-pass filters. Such methods also introduce latency in the sensing of the 

wide-band spectrum. Since the secondary users are allowed to sense the spectrum within 

least/ minimum time possible such that there is no interference caused in the transmission 

of the primary users. Channel-by-channel scan will render more time in sensing; causing 

interference to the transmission of primary users, when they become active. 

1.3 Proposed Solution 

To facilitate wide-band spectrum sensing, Compressive Sensing (CS) [11-12], has 

emerged as a fascinating method of acquisition of wide-band signals at rates that are 

significantly lower than Nyquist rates. Faster methods are being explored to sense the 

spectrum because the occupancy of a frequency band changes rapidly. CS minimizes the 

sampling time by using a smaller number of linear combinations out of the signal. The 

information contained in the few large coefficients can be encoded by few random linear 

projections, while throwing away rest of the coefficients that might be useless in further 

signal processing application. Those encoded random projections can then be used to 

decode the signal [13]. 

The under-utilization of the spectrum creates spectral holes in the assigned frequency 

bands; thus such signals are created that are sparse in nature. CS is such a sampling 

method that samples fewer measurements from the sparse signal. The sparsity feature in 

the wide-band signals motivates to sense such signals compressively, such that the 

frequency representation of sparse signals is reconstructed using lesser number of time 

samples compared to those imposed by Nyquist theorem. When CS is used to sense the 

wide-band spectrum using CR, the whole spectrum is sensed at once; thus delay and 

complexity created by channel-by-channel scan can be avoided using CS technique [14]. 
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The CS method can be further simplified using Bayesian inference, provided the system 

model supports Bayesian approach. Since the Bayesian inference provides solutions that 

are conditional on the observed data, it estimates a full probability model, where 

probability distributions are associated with parameters or hypotheses and decoding the 

signal is considered as Maximum A-Posterior (MAP) estimation problem. Bayesian 

Compressive Sensing (BCS) accomplished with Bayesian inference provides precise 

estimation of signal and reduces the number of measurements for CS decoding [15-16]. 

1.4 Objectives 

The main objective is to propose a solution to high data rates requirement in wide-band 

spectrum sensing. Latency caused due to traditional scanning techniques can cause 

interference to primary transmission. Reducing the delay via CS approach can make the 

wide-band spectrum sensing more efficient. Also the inherent feature of fading in 

wireless communication is usually not considered in sensing techniques. The 

performance of the sensing algorithms varies for faded signals. CS algorithm using 

Bayesian inference approach is proposed for the signal propagation in Raleigh fading 

channels. 

1.5 Contribution 

The CS algorithm has been modified to estimate the wide-band spectrum such that the 

delay as well as complexity in wide-band spectrum sensing is reduced. Also the usage of 

BCS framework for spectrum sensing has been explored in a practical wireless channel 

like Rayleigh fading channel. 

In first approach, CS algorithm is used for estimation of wide-band spectrum to identify 

the vacant channels in the reconstructed spectrum in reduced time. In this approach, 
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lesser number of time samples is taken out of the signal, instead of taking all the samples 

of the signal, and the wide-band spectrum is reconstructed using a compressive sensing 

matrix. The CS matrix reconstructs a better approximation of the wide-band spectrum 

even with reduced number of linear combinations, such that the occupied channels in the 

spectrum can be identified. The wide-band spectrum estimation is performed with 

reduced delay. 

In second approach, the sensing matrix used in CS algorithm is simplified by introducing 

columns of zeros in it such that compressive sampling is performed at sub-Nyquist rate. 

In this case also, a good approximation of reconstructed wide-band spectrum is obtained 

to identify the vacant bands in it. 

To further investigate the performance of the sensing algorithms in practical channels, 

BCS algorithm has been modified according to the signal propagation in Rayleigh faded 

channels. The performance of different algorithms will vary for signal propagation in a 

free space model or AWGN channel and for signal propagation in Rayleigh fading 

channel. The signal undergoes fading in a Rayleigh fading channel due to the multi-path 

effect, and the performance of the signal processing /detection algorithms will be affected 

due to the fading phenomenon. To overcome this problem, the BCS framework has been 

modified according to the Rayleigh fading channels such that appropriate priors are 

chosen for the decoding of the Rayleigh faded signal via Belief Propagation (BP). Our 

results show that when an appropriate prior is used according to the system model, the 

recovery of the signal improves which has been demonstrated via an improvement in 

Mean Square Error (MSE). We demonstrated that varying different parameters like 

sparsity level, number of measurements etc., has an impact on the MSE performance of 
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the algorithm. When prior is chosen wisely according to the system model, then MSE can 

be further reduced by varying these parameters. 

1.6 Organization of Thesis  

This document is divided into six chapters. 

Chapter 1 begins with the introduction/overview, problem statement, proposed solution, 

objectives and contribution. An overview of the proposed algorithm is also given in this 

chapter. 

Chapter 2 provides the literature review, brief description of conventional methods for 

spectrum sensing, problems faced during wide-band spectrum sensing and an overview of 

CS and CS via BP algorithm. Application of CS for efficient wide-band spectrum sensing 

has also been discussed. 

Chapter 3 provides the complete overview of the proposed CS algorithm for 

reconstruction of wide-band spectrum using ℓ1-minimization, to identify the occupied 

bands in the spectrum. The detection of wide-band signal using a compressive Bayesian 

energy detector has also been discussed.  

Chapter 4 covers the Bayesian inference approach for wide-band signal detection using 

CS. BP algorithm to estimate the MAP probability of signal elements, is modified 

according to the signal propagation in Rayleigh fading channels.   

Chapter 5 presents the simulation results of the proposed CS and BCS algorithms in 

different scenarios. MSE estimation suggests improvement in the sensing algorithms by 

varying different parameters. 

Chapter 6 concludes this thesis document. It also highlights the future research 

directions. 
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1.7 Summary 

This chapter covers the background and concepts of wide-band spectrum sensing, CR, 

CS, CS via BP. It also covers the overview, problem statement, objectives and the 

proposed technique. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1  Introduction 

In this chapter, some important concepts related to spectrum sensing using CR are 

discussed. We review some conventional techniques, proposed in literature to sense the 

spectrum using CR. Some insight into the wide-band spectrum sensing techniques has 

also been made. The concepts of CS and BCS and their application in wide-band 

spectrum sensing have also been demonstrated in this chapter.  

2.2 Cognitive Radio (CR) 

A CR is a software defined radio that can change its transceiver parameters based on its 

interaction with the environment in which it operates [7]. A CR incorporates multiple 

sources of information, determines its current operating settings, and collaborates with 

other CRs in a wireless network [2-4]. It efficiently utilizes the wide-band spectrum in an 

intelligent and effective way by coordinating with other CRs in the network regarding the 

usage of spectrum to identify the unused radio spectrum on the basis of its observation. 

This unused spectrum might be owned by some licensed primary user. The CRs make 

spectrum utilization efficient by sharing spectrum for secondary transmission. To prevent 

interference caused in the primary transmission, CRs provide cognition in spectrum 

utilization along with cognition in its numerous applications [4-5]. 

2.2.1 Cognition Cycle of a CR 

The cognition cycle of a CR is “top level control loop for CR” as shown in Figure 2.1 [4].  
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Figure: 2.1: Cognition cycle of CR 

 

In cognition cycle, the CR receives information by directly observing (Sense/Observe) its 

surrounding environment. The information obtained is then analyzed (Analysis) to 

determine the effectiveness of the information. The CR, then, determines its alternatives 

(Plan) based on that evaluation. And then it chooses the alternative (Decision) that would 

improve its valuation. The CR then implements its plan (Act) by adjusting its various 

parameters and other sources and performs according to the adjusted resources 

(Stimulate). The environment is continuously observed by the CR to avoid any possibility 

of interference. It utilizes all its observations and planning according to the changes in the 

environment to improve its performance (Learn) continuously [3]. 
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2.2.2 Applications of CR 

A CR promises to improve the utilization of spectrum resources through reduced 

engineering and planning time, and adaptation to current operating conditions. It finds its 

applications in various areas as shown in Figure 2.2 [17]: 

 

Figure: 2.2: Applications of a CR 

2.2.2.1 Dynamic Spectrum Access (DSA) 

DSA is considered as the prime candidate in terms of practical application of a CR 

technology [18]. DSA is real-time adjustment of utilization of the spectrum according to 

the changes in the circumstances and the environment. Generally, DSA implies that the 

licensed spectrum is made available for the secondary usage, when the primary user is 

not active. Secondary spectrum sharing is possible until and unless there is no significant 

interference caused to the primary transmission. Recently in 2008, the FCC allowed the 
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secondary usage of TV-band spectrum via CR with a condition of minimal impact on the 

original TV signals and wireless microphone signals being broadcasted [19].  

2.2.2.2 Military Applications 

The military community has recognized the benefits of using CR technology in 

enhancing military/tactical capabilities, particularly in distributed communications, 

integration of joint forces, intelligence and surveillance systems [20]. With frequency 

agility and/or flexibility in the radio systems, the interoperability between them can be 

enhanced. Also the detection of interferers to the communication system via CR 

technology has made it a must-have technology for military applications. CR technology 

offers advantages in defense applications in terms of protecting the communication 

transmissions and recognizing the enemy communications [21]. 

2.2.2.3 Public Safety 

Public safety system is another area in which CR technology can offer great advantages 

[22]. Current public safety systems have limited capabilities, since these are configured 

and predefined into the radio based on the roles and responsibilities assigned to the radio 

user. CR technology offers reprogramming the radio systems with different 

channel/frequency assignments and functions. To enhance frequency utilization and 

interoperability in public safety communication systems, CRs enable such devices as to 

bridge the communication between safety systems that are operating at different 

frequencies. To maintain the call priority and improve the response time for emergency 

systems, CRs effectively utilize the existing spectrum [23]. 
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2.2.2.4 Broader and Commercial Application 

As the wireless technologies and Wireless Local Area Networks (WLAN) like 802.11 are 

proliferating in the ISM band, interference to the neighborhood transmission is becoming 

problematic. This results in the degradation of the performance of the technology. 

Different technologies are currently utilizing some adaptive techniques to identify 

channels, select dynamic frequency and modulation, to obtain higher data throughput, 

they are still required to follow the standards that limit their performance [24]. By using 

the CR in the RF environment like the Industrial, Scientific And Medical (ISM) radio 

band, it provides a platform for us to enhance the performance of the current systems 

especially in terms of interference being caused [25]. 

2.2.2.5 CRs and MIMO 

Multiple Input Multiple Output (MIMO) smart antenna systems are used in 

communications for improved performance (such as enhanced data rate or link reliability) 

and added capability (such as beam forming) [26]. The CR is being used with MIMO to 

adapt the employed MIMO scheme to the needs of the environment and user during use 

to create a more effective relaying scheme. These led to reported improvements in link 

capacity, link reliability, range, network availability and energy usage [27]. 

2.2.2.6 CR Technology in xG Networks 

NeXt Generation (xG) communication networks, also known as DSA networks as well as 

CR networks provide higher data rates to the mobile users by adopting DSA techniques 

[28]. 
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Figure: 2.3: Functions of CR in xG networks 

 

The underutilization of the existing spectrum can be made efficient by allowing 

secondary users to access the spectrum opportunistically without interfering with the 

primary users in the xG networks [29]. 

The main functions of CR in xG networks can be summarized as shown in Figure 2.3 [5]: 

• Spectrum sensing: To detect the vacant channels in the spectrum and share the 

spectrum without causing any harmful interference to other users. 

• Spectrum management: To manage the spectrum utilization according to the user 

communication requirements. 

• Spectrum mobility: To maintain the seamless communication while transiting to other 

frequency band. 

• Spectrum sharing: To provide fair usage of the spectrum by scheduling methods with 

other xG users. 
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2.3 Spectrum Sensing using CR 

The main challenge that a CR faces while sensing the spectrum is to detect the signal in 

least possible time and make a correct decision about the availability of the vacant space 

in the spectrum.  

In general, the binary hypothesis testing theory [30] can be well applied to evelaute the 

performance and capability of any CR system used for spectrum sensing. The two 

hypothesis i.e., 𝐻0  or 𝐻𝑦𝑝𝑜𝑡𝑒𝑠𝑖𝑠 0 and 𝐻1 or 𝐻𝑦𝑝𝑜𝑡𝑒𝑠𝑖𝑠 1 form the basis of  binary 

hypothesis testing. In the context of  CR, the absence of the primary user can be 

represented by 𝐻0, where as the presense of primary user can be represented by 𝐻1. The 

performance of a CR system is evaluated on the basis of its probability of making an 

accurate or false decision. If  𝛾 is defined as the threshold value for each hypothesis, the 

Probability Density Function (PDF) under each hypothesis can be shown in Figure 2.4 

and Figure 2.5. 

The probability that CR declares the primary signal, at hypothesis 𝐻1, when the primary 

user is active is known as probability of detection i.e., 𝑃𝑑 . In this case, the PDF is higher 

than the threshold 𝛾 as shown in Figure 2.4. Similarly the probability that a CR misses 

the primary signal, when the primary user is active is known as probability of missed 

detection i.e., 𝑃𝑚  which is the PDF value lesser than the threshold 𝛾. 

When a CR declares the presence of primary signal, when the primary user is not active 

in actual, the probability of making false decision is known as probability of false alarm 

i.e., 𝑃𝑓𝑎 . In this case the PDF under hypothesis 𝐻0  is higher than threshold 𝛾 as shown in 

Figure 2.5. 
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Figure: 2.4: Probabilities of detection and missed detection 

 

 

Figure: 2.5: Probability of false alarm 

 

In the context of opportunistic DSA of the wide-band spectrum, the  𝑃𝑑  measures the 

protection of primary transmission from interference due to secondary usage. While 𝑃𝑓𝑎  

measures the level of opportunistic use of wide-band spectrum for a CR user. It is 

required that 𝑃𝑑  is kept high and 𝑃𝑓𝑎  is kept low. But it is not possible to minimize both 

probabilities. A good decision criterion would be to minimize 𝑃𝑓𝑎  and 𝑃𝑑  is kept above a 

certain level. 

Both the probabilities depend on the value of threshold 𝛾 and the number of samples of 

the wide-band signal which is being sensed by CR. A trade-off occurs between the two 

probabilities in selection of number of samples and the sensing delay. Enough number of 

samples increase the accuracy of the decision about the spectral utilization at cost of 

sensing delay. 
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An overview of performance of some conventional spectrum sensing techniques using 

CR has been discussed below: 

2.3.1 Matched Filtering 

One of the well-known techniques to identify the signal pattern is matched filter detection 

[31]. In the presence of additive stochastic noise, the matched filter acts as an optimal 

linear filter to maximize the SNR. Figure 2.6 depicts the block diagram of a matched 

filter. The signal 𝒓(𝑡) received by secondary user is fed to the matched filter and is 

expressed mathematically as 

 𝐫 t = 𝐡𝐬 t +  𝐧 t  (2.1) 
 

where 𝐫 t  is the signal received by cognitive user, 𝐬 t  is the transmitted signal 

transmitted, 𝐧(t) represents the AWGN noise, and 𝐡 is the amplitude gain of the 

channel. The primary user is inactive if 𝐬 t  is 0. The matched filter works as if the 

received signal 𝐫 t  is convolved with the time-reversed version of the transmitted signal 

given as 

 𝐫 t ⊗ 𝐬 T − t +  τ  (2.2) 
 

where T is the symbol time duration and τ is the shift in the primary signal. 

The output of the matched filter obtained is compared with a threshold 𝛾 in order detect 

the presence of the primary transmission in the spectrum. 

The matched filter based sensing requires the prior knowledge of the transmitted signal 

such as modulation type, order, the pulse shape, and the packet format. The CRs have to 

store a perform synchronization according to the primary transmission which is the most 

cumbersome part of demodulation. 
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Figure: 2.6: Matched filter based spectrum sensing 

 

The synchronization can be achieved because most primary users have pilots, preambles, 

synchronization words, or spreading codes that determine the coherent detection [32]. 

The probability of detection, 𝑃𝑑 , and false alarm, 𝑃𝑓𝑎 , of a matched filter are given [33] 

as 

 
𝑃𝑑 = 𝒬  

𝛾 − 𝐸

𝜎𝑛 𝐸
  

(2.3) 

 

 
𝑃𝑓𝑎 = 𝒬  

𝛾

𝜎𝑛 𝐸
  

(2.4) 

 

where 𝒬 is the Gaussian complexity distribution function, 𝐸 is the energy of the received 

signal, and 𝜎𝑛
2 is the noise variance. 

2.3.2 Energy Detection 

When enough information about the primary signal is not available then matched filter 

based sensing is not effective. In this case if the secondary user can receives the 

information about the power of the transmitted signal and the power of the random 

Gaussian noise, then energy detection based spectrum sensing is a better choice [32] for 

spectrum sensing. 
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Figure: 2.7: Energy detection based spectrum sensing 

 

Figure 2.7 depicts the block diagram for energy detection. In energy detection based 

spectrum sensing the power of the received signal 𝐫 t  is estimated by squaring and 

integrating the output of a band pass filter of bandwidth 𝑊 over an interval 𝑇. The 

estimated value is compared with a threshold 𝛾 in order to detect the presence of the 

primary signal [34]. 

One of the major drawbacks of energy detection based spectrum sensing is that the 

performance degrades in the presence of high noise power. Since this detection scheme 

cannot differentiate between signal and noise power, probability of false alarm is higher 

at low SNR values [23]. 

The probability of detection, 𝑃𝑑 , and probability of false alarm, 𝑃𝑓𝑎 , of energy detection 

over the AWGN channel are approximated in [32] as 

 𝑃𝑑 = 𝒬𝑚  2𝚼,  𝛾      (2.6) 

 

 

𝑃𝑓𝑎 =
𝛤  𝐵𝐸 ,

𝛾
2 

𝛤 𝐵𝐸 
 

(2.7) 

 

where 𝛤(∙) and 𝛤(∙,∙) are complete and incomplete gamma functions, respectively. 𝒬𝑚(∙,∙

) is the generalized Marcum Q-function, 𝚼 is the instantaneous SNR, 𝐵𝐸 is the time 

bandwidth product, and 𝛾 is the decision threshold of the energy detector. 
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2.3.3 Cyclo-stationary Feature Detection 

Commonly the primary signals can be categorized as periodic waveforms similar to 

cyclo-stationary feature based waveforms like sine wave carriers, pulse trains, repeating 

spreading, hopping sequences, and cyclic prefixes and can be c [32]. This feature is 

advantageous in spectrum sensing, when a secondary user detects the primary modulated 

waveform in the presence of random stochastic noise on the basis of periodic statistics 

like the mean and the autocorrelation of the primary waveform [34], as shown in 

Figure 2.8. 

 

 

Figure: 2.8: Cyclo-stationary based spectrum sensing 

 

The probability of detection, 𝑃𝑑  and probability of false alarm, 𝑃𝑓𝑎  of one-order 

cyclostationary based spectrum sensing in AWGN channel are given by [35] 

 
𝑃𝑑 = 1 −  1 − 𝒬𝑚  

 2𝚼

𝜎𝑛
,
𝛾

𝛿𝐴
  

𝐿

 
(2.8) 

 

 
𝑃𝑓𝑎 = 1 −  1 − 𝑒

−
𝛾2

2𝛿𝐴
2
  

(2.9) 

 

where 𝛿𝐴
2 = 𝜎𝑛

2/(2Ns + 1) in which 𝑁𝑠 is the number of samples for detection and 𝐿 is the 

number of diversity branches. 

Different metrics analyze the performance of the spectrum sensing algorithms.  Some of 

these include bandwidth, resolution and real time sensing capability. Bandwidth includes 
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the range of spectrum that a CR will sense. Resolution is the smallest step out of 

bandwidth of spectrum that is quantized. Real-time sensing capability of a CR is the time 

in which it reliably senses the spectrum and makes adaptive decisions based on that 

observation of its environment and surroundings. In a wireless channels, these are time-

variant characteristics in general. Thus CR must not introduce latency while sensing the 

spectrum, otherwise interference might occur in the transmission of the primary users. In 

a sensing algorithm, a trade-off occurs between the three metrics. A sensing algorithm is 

designed such that there is an optimized trade-off. 

Analyzing the sensing algorithms, based on above mentioned metrics, both energy 

detection and feature based detection consisting of matched filtering and cyclo-stationary 

algorithms have advantages and disadvantages. In general, the feature based detection 

outperforms energy detection in sensing reliability and sensing convergence time. 

However feature based detection requires the information about characteristics of the 

primary users signal. Also the performance of energy detection is poor at low SNR, while 

that of feature based sensing performs well at low SNR. 

2.4 Co-operative Spectrum Sensing 

In wireless communication, the signal undergoes fading and the fluctuations in the 

amplitude of the signal that occur during transmission of the signal, lowers the signal 

strength. Fading can be slow fading or fast fading. When slow fading occurs, it does not 

cause significant fluctuations to the signal strength because it is frequency independent 

fading. Fast fading can cause significant change in the signal strength for small changes 

in location, because of its dependency on the frequency [5-6]. Thus to make spectrum 

sensing more reliable and overcome the fading problem, co-operation among the 
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cognitive users is a proposed solution. Information obtained while sensing the spectrum 

is shared between the cognitive users, to increase the efficiency of spectrum and reduce 

any risk of interference caused to the transmission of primary users. The spectrum is 

sensed collectively rather than individually. Co-operation in spectrum sensing relies on 

the varying signal strength at different locations. Co-operative spectrum sensing can be 

centralized or distributed depending upon the method of sharing spectrum information 

among the cognitive users [5-6] 

2.4.1 Centralized Sensing 

In centralized spectrum sensing, all cognitive nodes sense the spectrum and update the 

information about their individual sensing to the central unit [36]. The central unit 

identifies the available spectrum and then broadcasts the information to the CRs and 

controls he transmission from each CR node. 

2.4.2 Distributed Sensing 

In distributed sensing, the CR nodes share the information among each other and there is 

no role of a central unit in sharing the information and controlling the transmission of any 

CR node [36]. 

Distributed sensing is more effective compared to centralized sensing in the sense that it 

does not require a backbone infrastructure; CR nodes make decisions on their own 

observation; so it is less costly. 

2.5 Wide-band Spectrum Sensing using CR 

When spectrum sensing techniques are explored in wide-band regime, one usually infers 

that the propagation of the signal takes place over ideal free space. The free space model 

refers to the region between the transmitting and receiving antennas as being free of all 
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obstacles that might absorb or reflect RF energy. For such ideal propagation model, the 

received signal power is predictable. 

In practical channels like Rayleigh fading channels, signal propagation takes place in the 

atmosphere and near the ground such that the signal follows the phenomenon of multi-

path propagation; it travels from transmitting antenna to receiving antenna over multiple 

reflective paths. Multi-path propagation can affect the power of signal propagated; 

fluctuations occur in the received signal‟s amplitude, phase, and angle of arrival. This 

effect is called multi-path fading. The performance of the system model is affected due to 

multi-path fading in practical channels. So a more comprehensive study of the 

performance of the wide-band spectrum sensing algorithms in practical channels is 

needed. An initiative step has been taken in this regime to introduce a Bayesian inference 

approach in CS algorithm for wide-band signals that follow a Rayleigh distribution.  

As it has been discussed earlier in section 1.2 and section 1.3, the secondary users can 

sense the wide-band spectrum and identify the vacant slots/holes in it for communication 

and signal transmission. The conventional way to detect the spectral holes in the wide-

band spectrum using CR is channel-by-channel scan. An RF front end is implemented 

with a bank of tunable narrow band-pass filters that detects the occupancy of each 

channel by measuring the energy of the signal being transmitted in that channel. 

However for wide-band spectrum sensing, the tuning of numerous RF components makes 

it complex as well as costly. Some alternative techniques have been proposed in the 

literature to facilitate wide-band spectrum sensing. 

In [37], a wide-band spectrum sensing approach has been proposed in which the 

aggregate opportunistic throughput is maximized based on the restrictions applied on the 
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interference caused to the transmission of the primary user. In this approach, energy 

detection is performed at each narrow band channel and compared with a predefined 

threshold. The threshold levels obtained for each channel provide solution to optimization 

problem such that aggregate throughput for CR is maximized. The co-operative approach 

is followed in which CRs share their sensing information in order to make wide-band 

spectrum sensing more reliable and counter any severe effect of fading. 

Another approach of wide-band spectrum sensing based on Maximum Likelihood (ML) 

estimation of the signal and noise power has been proposed in [38] to detect the 

unoccupied channels. In this method, iterative asymptotic ML estimation is simplified 

such that efficient least square is estimated. The performance of the algorithm is 

evaluated for different number of channels and for different SNRs. 

To further investigate faster sensing methods, CS approach has been introduced for wide-

band spectrum sensing and detection [39-40]. 

2.5.1 Compressive Sensing (CS) Theory 

According to Nyquist theorem, a signal can be exactly recovered from a set of uniformly 

spaced samples only if the sampling/Nyquist rate is two times greater than the highest 

frequency present in the signal of interest. 

For a signal 𝐱 𝛜 ℝ𝑵, the Nyquist sampling can be performed using an identity matrix 

𝚽 = 𝐈𝑁×𝑁 to get 𝑁 × 1 measurement vector 𝐲, as shown in Figure 2.9. 
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Figure: 2.9: Nyquist sampling 

 

However, in emerging applications and technologies, the required Nyquist rate is too 

high. This renders the process too complicated and costly; since it becomes physically 

impossible to build up device that are capable of acquiring such higher Nyquist rates. 

To deal with such high-dimensional data, one method is compressive sampling of the 

signal. Compressive sampling of the signal aims to find the most concise representation 

of the signal such that a target level of distortion is acceptable. CS is a sampling method 

in which lesser number of measurements is required to recover the spars signal compared 

to those required in traditional Nyquist sampling method. 

Intensive research is being made in CS, because in real world wireless or mobile 

communication, the signals posses very few non-zero elements. Such signals which 

contain noise more than information in them are known as sparse signals. Wide-band 

signals fall into the category of sparse/compressive signals, since there is more noise 

added to the signal elements compared to those signal elements which contain useful 

information. Sensing of wide-band signals faces technical challenges, when radio front 

end requires a bank of narrow band-pass filters that are tuned to specific frequency range. 

Too large number of RF components and tuning range requirement render it impossible. 
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An alternative way is to adopt a wide-band circuit that utilizes a single RF chain that is 

connected to high speed digital signal processor. Such circuit will search over multiple 

frequency bands at a time, but this requires very high sampling rates that are equal to or 

above the Nyquist rate. Also the requirement of faster sensing process, renders fewer 

measurements to be achieved from the received signal, which may not provide sufficient 

statistics for linear reconstruction of the signal. CS aims at providing faster sampling of 

the wide-band signal at a sampling rate that is far below Nyquist rate. The CS approach 

promises to provide enough statistics from the measurements obtained from the received 

signal, that makes sure an accurate recovery of the signal is possible from them. 

In CS scenario, a wide-band signal 𝐱 𝛜 ℝ𝑵 can be represented in the form of a basis such 

as 

 𝐱 =  𝚿𝐫     (2.11) 
 

where 𝚿 𝛜 ℝ𝐍×𝐍 is an orthonormal basis and 𝐫 𝛜 ℝ𝐍 attributes  the sparsity level of signal 

𝐱 as 

  𝐫 𝟎 = 𝐾 ≪ 𝑁 (2.12) 
 

Sensing/sampling of such wide-band signals would be costly and complex as well, if 

Nyquist sampling method is used. The sparsity feature of the wide-band signal allows 

throwing away less useful information instead of sampling all 𝑁 values of the signal.  
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Figure: 2.10: Compressive sampling 

 

Instead, we can recover the signal 𝐱 from few projections onto incoherent measurement 

vector 𝐲. A sensing matrix 𝚽 𝛜 ℝ𝑴×𝑵 provides us with the measurement vector 𝐲 such 

that 

 𝐲 =  𝚽𝐱 + 𝐧 (2.13) 
 

where the additive noise vector 𝐧 𝛜 ℝ𝑴 drawn from i.i.d. zero-mean Gaussian noise 

distribution 𝒩(0, σn
2𝐈𝑀), where σn

2  represents the variance of noise distribution and  𝐈𝑀   

is identity matrix of order 𝑀 × 𝑀 and the number of measurements 𝑀 ≪ 𝑁 as shown in 

Figure 2.10. 

In conventional Nyquist sampling method, 𝚽 is the 𝑁 × 𝑁 identity matrix; while in CS 

𝚽 is generally 𝑀 × 𝑁 matrix, such that the coherence/correlation between the sensing 

matrix 𝚽  and the basis matrix 𝚿 is very small, given by 

 𝜇 𝚽,𝚿 =  N ∙  max
1≤𝑖 ,𝑗≤𝑁

  𝚽𝒊, 𝚿𝒋   
(2.14) 

 

The largest correlation between the two matrices determines the coherence between the 

two matrices. CS requires both the sparsity feature and minimum coherence factor 

between the sensing matrix and the basis matrix, to recover the signal accurately. 
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The signal 𝐱 is decoded using the measurement vector 𝐲 and the sensing matrix 𝚽. Since 

the decoding process is ill-posed inverse problem where number of measurements are 

lesser than number of unknowns, the sparsity factor of the signal enables us to decode  𝐱  

from 𝑀 ≪ 𝑁 measurements. Decoding 𝐱 relies on optimization technique, where those 

sparsest coefficients of 𝐫 are examined to satisfy with the measurement vector 𝐲 

elements. If there is sufficient number of measurements and 𝐫 is strictly sparse, then 𝐫 is 

the solution to ℓ0-minimization given as 

 𝐫 = arg min
𝐫

 𝐫 0 (2.15) 

 

where 𝐫  is the recovered 𝐫, which comprises to recover 𝐱 provided  𝐱 =  𝚿𝐫. However 

solution to  ℓ0-minimization is NP-hard problem [11-12]. 

So CS theory reveals that ℓ1-minimization yields computationally tractable solution [13-

14], when only ℓ1 sparsest coefficients are needed that satisfy with the measurement 

elements, and is given as 

 𝐫 = arg min
𝐫

 𝐫 1 (2.16) 

   

2.5.2 Bayesian Compressive Sensing (BCS) 

The CS method can be further simplified by using Bayesian inference, provided the 

system model supports Bayesian approach [15-16]. The Bayesian inference provides 

solutions that are conditional on the observed data; it estimates a full probability model, 

where probability distributions are associated with parameters or hypotheses. In this 

approach, the decoding process of the signal is considered as a MAP estimation problem 

given as 

 𝐱 = arg max
𝐱

𝑓𝐗 𝐱 𝐲          𝑠. 𝑡.  𝐄 𝚽𝐱 − 𝐲 ≤ ϵ (2.17) 
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where 𝐱  is the signal recovered via BCS, 𝑓𝐗 𝐱 𝐲  is the conditional PDF of 𝐱, 𝐄 ∙  the 

expectation operator and 𝛜 is a user defined parameter for tolerance in error. 

BCS approach offers solution with low computational cost for the recovery of the signal. 

In BCS approach, the conditional PDF of the signal vector is obtained via BP, in which 

the messages are exchanged between the signal nodes and the measurement vector nodes. 

BP is a sum-product algorithm which estimates the marginal distributions for random 

variables through exchanging messages among the factor graphs [42-43]. 

 

 

Figure: 2.11: Factor graph illustration 

 

A global function 𝐹 𝑥1, 𝑥2 , 𝑥3, ⋯ , 𝑥𝑛   can be factorized as 

 𝐹 𝑥1,𝑥2 , 𝑥3, ⋯ , 𝑥𝑛 =   𝑓𝑖 𝐗𝑖 

𝑖

 (2.18) 

 

where 𝑓𝑖 𝐗𝑖  is a local function, which has 𝐗𝑖 =  𝑥1, 𝑥2, 𝑥3 , ⋯ , 𝑥𝑛  arguments. This 

factorization can be represented as factor graphs as shown in Figure 2.11. Factor graphs 

consist of nodes and edges. Nodes in a factor graph can be variable nodes that represent 

independent variables or factor nodes that represent local functions, while the edges 

connect a factor node 𝑓 to a variable node 𝐱  if and only if  𝑓 is a function of 𝐱. BP 
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algorithm works on the principle of exchanging messages between variable and factor 

nodes in a factor graph. A-priori information from the variable nodes is received by the 

function node that is connected to it through an edge. This information is then used to 

estimate the a-posteriori probabilities for the connected variable nodes and this estimate 

is passed back to the variable nodes. Using the updated information, the variable nodes 

calculate their new a-priori probabilities. The message that is passed along the edge from 

the variable node 𝑥 to factor node 𝑓, is denoted by 𝜇𝑥→𝑓 𝑥 . It is updated by taking the 

product of all the messages received by the variable node 𝑥 from other edges connected 

to it: 

 𝜇𝑥→𝑓 𝑥 =   𝜇𝑢→𝑥   𝑥 

𝑢∈ 𝑛(𝑥)\{𝑓}

 (2.19) 

 

where 𝑛(𝑥)\{𝑓} represents all factor nodes connected to 𝑥 excluding factor node 𝑓. 

While, the message that is passed along the edge from the factor node 𝑓 to variable node 

𝑥, is denoted by 𝜇𝑓→𝑥 𝑥 . It is updated by multiplying the local function 𝑓 with the 

product of all the messages received by the function node 𝑓 from all other edges 

connected to it. The result is then marginalized such that it becomes a function of 𝑥 only: 

 

𝜇𝑓→𝑥 𝑥 =    𝑓 𝐗  𝜇𝑣→𝑓 𝑣 

𝑣∈𝑛(𝑓)\{𝑥}

 

~ 𝑥 

 

(2.20) 

 

where 𝐗 =  𝑛(𝑓)  represents set of all variable nodes connected to  𝑓 and ~ 𝑥  represents 

set of all variables nodes connected to 𝑓 excluding 𝑥. When BP converges, the marginal 

distribution 𝑓(𝑥) for the variable node 𝑥 is computed by taking the product of all the 

messages received by 𝑥 that is 
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 𝑓 𝑥 =   𝜇𝑢→𝑥 𝑥 

𝑢  ∈ 𝑛 𝑥 

 (2.21) 

 

where 𝑛 𝑥  represents all factor nodes connected to 𝑥. 

A BP algorithm can be implemented as tree factor graph or cyclic factor graph. BP 

algorithm implemented as a tree factor graph converges exactly after number of iterations 

that is equal to the depth of the tree, and the marginal distributions are estimated. In 

cyclic factor graph implementation, the cycle/loop ends at the same node from where it 

started. Though the BP algorithm does not possess natural termination, but it needs to be 

stopped after specified number of iterations, when minor improvements occur in 

messages [44-46]. 

Numerical results for cyclic factor graph BP algorithm implementation show that it 

achieves near-optimal results even without convergence. 

2.5.3 Prior Models for Belief Propagation 

The success of BP propagation algorithm depends upon the appropriate choice of the 

system model and the prior model that matches with the system model. Depending upon 

the signal model and the channel existing, some prior models have been discussed below. 

2.5.3.1 Two State Gaussian Mixture 

The two-state Gaussian mixture distribution [41] has been introduced in [15-16] to model 

the prior for a sparse signal element in an AWGN channel. Let 𝐱 be a sparse signal of 

dimension 1 × 𝑁. It contains 𝐾 ≪ 𝑁 signal elements with more information compared to 

rest of the signal elements which contain lesser information or simply the Gaussian noise 

that is added to it. Each signal element can be associated with a state variable from a state 
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vector 𝐯 =  v1, v2, v3 , ⋯ , vn ,  where vi ∈  0, 1 , for i = 1, 2, 3, ⋯ , N. The large signal 

element which contains more information is associated with a „high‟ state variable i.e. 1, 

while a small signal element that contains less information is associated with a „low‟ state 

variable i.e., 0. Each state variable is then associated with a probability function 𝑝 xi  for 

each element, where i = 1, 2, 3, ⋯ , N. So the ‟high‟ state variable for each large signal 

element is associated with a high variance zero mean Gaussian distribution given by 

 𝑓𝐗 𝐱 𝐯 = 1  ~ 𝒩 0, 𝜎𝐱1
2   (2.22) 

 

where 𝒩 0, 𝜎𝐱1
2   represents Gaussian distribution with mean 0 and variance 𝜎𝐱1

2 . The 

‟low‟ state variable for small signal element is associated with a low variance zero mean 

Gaussian distribution given by 

 𝑓𝐗 𝐱 𝐯 = 0  ~ 𝒩 0, 𝜎𝐱0
2   (2.23) 

 

where 𝜎𝐱1
2 > 𝜎𝐱0

2 . 

The complete prior model for the sparse signal in AWGN channel is stated as 

 
𝑓𝐗 𝐱 =   𝑞𝒩 0, 𝜎𝐱𝑖

2  +   1 − 𝑞 𝒩 0, 𝜎𝐱𝑖

2  

N

i=1

 
(2.24) 

 

where  𝑞 =
𝐾

𝑁
, 𝑞 ∈  0,  1   is the sparsity rate to represent the probability of 𝐾 ≪ 𝑁 large 

signal coefficients. The messages passed in BP are fully parameterized via 𝜎𝐱1
2 , 𝜎𝐱0

2 and 𝑞. 

2.5.3.2 Gaussian-Spike Prior Model 

Recently in [47-49], BP algorithm has been devised for such signal models as sparse 

vectors which are deterministic realization of Gaussian signals. For such signal models 

and strictly sparse signals, the spike distribution has been introduced as a prior 



32 

 

distribution for the small signal coefficients. The sparsifying Gaussian-Spike prior model 

for such signal model is also known as spike-and-slab prior model and it is given as 

 𝑓𝐗 𝐱 = 𝑞𝒩 0, 𝜎𝐱
2 +  1 − 𝑞 𝛿 𝐱  (2.25) 

 

Where 𝛿 𝐱  is Dirac distribution, such that there is a non-zero value between 𝐱 ∈

[0−, 0+] such that  𝛿 (𝐱)𝑑𝑥 =  1. 

2.5.3.3 Rayleigh-Spike Prior Model 

Above Gaussian prior models represent the signal models that are propagated in free 

space propagation models or AWGN channels. Such channels refer to the signal 

propagation in a region between the transmitting and receiving antennas that is free of all 

obstacles that might absorb or reflect RF energy. In such ideal propagation model, the 

received signal power is predictable. 

However in wireless communication and realistic scenarios, the signals are not 

propagated in free-space model as discussed in section 2.5. Fading is an inherent feature 

of real-time propagation models. The signals that are propagated in practical channels 

like Rayleigh channels undergo reflection, refraction and diffraction, and the signal‟s 

amplitude is varied due to multipath effect. The multipath effect affects the signal power. 

The signal processing techniques perform differently for the Rayleigh faded signals 

propagated in Rayleigh channels compared to those propagated in AWGN channels. Thus 

it is inadequate to describe a practical channel like Rayleigh fading channel using a free-

space propagation model.  

When BCS algorithm is being used for detection of wide-band signal that is propagated 

in Rayleigh fading channel, the decoding of the Rayleigh faded signal via BP algorithm is 
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different from the signal propagated in AWGN channel. It is appropriate to choose such 

prior model that best matches with the properties of the signal model. For Rayleigh faded 

signal models, we have introduced Rayleigh distribution as the prior distribution for large 

signal elements with variance 𝜎𝐱𝟏
2  that is given by 

 
𝑓𝐗 xi vi = 1 =   

𝐱

𝜎𝐱𝟏
2
  𝑒

 
−𝑥2

2 𝜎𝐱𝟏
2  

 
(2.26) 

 

The small signal elements can be described by Spike distribution as in Gaussian-Spike 

prior model. Thus the Rayleigh-Spike prior model can be given as 

 
𝑓𝐗 𝐱 = 𝑞  

𝐱

𝜎𝐱𝟏
2
 𝑒

 
−𝑥2

2 𝜎𝐱𝟏
2  

 +  1 − 𝑞 𝛿 𝐱  
(2.27) 

 

Such types of priors have been used for strictly sparse signal models [50-51], since the 

prior easily characterizes the signals by 𝜎𝐱𝟏
2  and 𝑞 factors. Since the elements in 𝐱 are 

assumed to be 𝑖. 𝑖. 𝑑. Rayleigh distributed, the prior density represents each 𝑖𝑡  signal 

coefficient independently. 

2.6 Summary 

In this chapter, different concepts related to wideband spectrum sensing and CR, have 

been discussed. Different conventional techniques used to sense the spectrum have been 

studied. The disadvantages in using conventional methods for wideband spectrum 

sensing have also been discussed. The fading phenomenon in wide-band signals has been 

overviewed to improve the performance of signal processing in real-time scenarios. CS 

and BCS via BP algorithms have been explored for wideband spectrum sensing. 
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Chapter 3 

COMPRESSIVE SENSING AND DETECTION OF WIDEBAND SPECTRUM 

USING CR 

 

3.1  Introduction 

In this chapter, CS techniques for wideband spectrum sensing using CR are proposed. A 

CS technique is proposed that estimates the wideband spectrum such that time delay and 

sampling rate is decreased. In this technique specific portions of the time samples of the 

signal are ignored while the signal is being sensed compressively. The sampling rate can 

be decreased by choosing elements of sensing matrix randomly for CS. Compressive 

detection is also performed to detect the vacant channels in the spectrum. In this 

approach, wideband signal is fed into wideband band-pass filters such that energy of each 

channel in the wideband signal is estimated at the each filter output compressively using 

𝑙1-minimization.  Then energy detection is performed over the energy vector obtained and 

the occupancy of the channel is decided by comparing it to already defined energy 

threshold level. 

3.2 Problem Statement 

Consider a wideband spectrum of 𝑊Hz such that it has 𝑁 number of channels, where 

each channel has a bandwidth 𝐵Hz.  To sense this wideband spectrum, a wideband 

antenna connected to the CR node, receives the time-domain signal 𝐱 𝑡 , such that for a 𝑇 

time interval, the signal is sampled at a sampling period of 𝑇0 

 𝐱𝒕 =  𝐱 t    t=𝑛𝑇0
,            𝑛 = 1, 2, 3, ⋯ , 𝑁 (3.1) 
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where 𝑁 =  𝑇/𝑇0 represents the number of samples of 𝐱𝒕 for the time interval  0, 𝑇 . The 

time domain signal 𝐱𝒕 is represented in frequency domain as 𝐱𝒇 =  ℱ{𝐱𝒕} . It is given by 

 𝐱𝒇 =  𝐅𝑁𝐱𝒕 (3.2) 
 

where  

 
 𝐅𝑁 𝑖,𝑘 =  

1

 𝑁
𝑒
𝑗2𝜋 𝑖−1  𝑘−1 

𝑁−1 ,   𝑖, 𝑘 = 1, 2, 3, ⋯ , 𝑁 
(3.3) 

 

The wideband spectrum has holes or vacant spaces in it, where no transmission is taking 

place. The problem is to identify those spectral holes in the received signal. 

3.3 Wideband Spectrum Reconstruction via CS with Reduced Delay and 

Complexity 

 In this section, we propose CS algorithm for estimation of wideband spectrum such that 

the delay in sensing time is reduced by using fewer samples of time domain wide-band 

signal. We consider that a wideband time domain signal 𝐱(𝑡) is sampled at Nyquist rate 

such that the frequency domain signal 𝐱𝒇 is a sparse signal; only 𝐾 ≪ 𝑀 signal 

coefficients posses most of the data i.e., large signal coefficients. The rest of the signal 

coefficients 𝑀 − 𝐾 are small signal coefficients in a sense that they posses only noise 

elements or smaller data compared to 𝐾 large signal coefficients. Thus 𝐾 denotes the 

sparsity level of the wideband signal. 

 The measurements of the signal are obtained via 𝑀 × 𝑁 sensing matrix 𝚽 to form a 

𝑀 × 1 measurement vector 𝐲 given by 

 𝐲 =  𝚽𝐱𝐭 (3.4) 
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Since the number of measurements 𝑀 is quite less than the number of samples 𝑁  of the 

signal. The frequency samples of the signal are recovered using ℓ1-norm minimization 

given by 

 𝐱 𝑓 = arg min
𝐱𝑓

 𝐱𝑓 1
,     subject to  𝐲 =  𝚽𝐅𝑁

−𝟏𝐱𝑓  (3.5) 
 

The complexity of conventional algorithms for sensing of wideband signal can be 

reduced via CS, in which fewer linear combinations or measurements are used to recover 

the signal.  

In [39] a full random sensing matrix 𝚽, is chosen such that all 𝑁 = 𝑇/𝑇0 samples of the 

signal are collected for a total time interval 𝑇. The sensing delay can be further reduced 

by selecting the matrix elements freely such that only a fraction of time interval 𝑇 i.e., 𝑇𝑠 

seconds are used to collect the samples. The sensing time is decreased such that 𝑆 =

𝑇𝑠

𝑇0
, 𝑆 < 𝑁 samples of time domain signal 𝐱𝑡  are collected to generate the measurement 

vector 𝐲. Initial 𝑆 samples are gathered such that first 𝑆 columns of sensing matrix 𝚽 are 

randomly chosen from a Gaussian distribution. The rest of 𝑁 − 𝑆 columns are all set to 

zero, given as 

 𝐲 =  𝚽𝐱𝑡 =  𝐒 𝟎𝑀× 𝑁−𝑆  𝐱𝑡 = 𝐒𝐱𝑡
𝑆 (3.6) 

 

where 𝐒 is a 𝑀 × 𝑆 random matrix and 𝐱𝑡
𝑆 consists of initial 𝑆 time samples of 𝐱𝑡 . This 

leads to faster sensing. Within  𝑇𝑠 = 𝑆𝑇0 seconds, the cognitive system starts to recover 

𝐱𝑓  and consequently the spectral holes can be identified as shown in figure 3.1. 

Another approach to reduce the time aperture using 𝑆 columns can be considered by  

padding 𝑁 − 𝑆 zero columns within the sensing matrix 𝚽 such that reduced number of 

samples e.g., 
𝑆

𝑁
=

2

3
 or 

4

5
 etc are collected when one out of three or one out of four 
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columns are chosen to be zero respectively. Thus sampling rate is reduced further up to 
2

3
 

or 
4

5
 of Nyquist rate. Better performance of CS algorithm can be achieved in terms of 

reducing the processing delay in wideband sensing for practical channels as shown in 

figure 3.2. 

 

Figure: 3.2: Compressive sampling by inserting columns of zeros in sensing matrix 

 

 

Figure: 3.3: Compressive sampling by distributing columns of zeros in sensing matrix 

 

A CR functions to estimate the vacant spaces in a wideband spectrum which can be 

utilized for secondary usage. For this purpose, it has to estimate the energy level in each 
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channel of the spectrum. As long as the adequate detection of vacant channels is 

achievable, accurate recovery of the spectrum is tolerable. 

To estimate the spectrum of the wideband signal accurately, the number of 

measurements 𝑀 must satisfy the following inequality [52] 

 𝑀 ≥ 𝑐𝐾 log(𝑁/𝐾) (3.7) 
 

where 𝐾 is the sparsity level of the signal. Based on this inequality, we can reconstruct 

the spectrum using smaller number of time samples with 𝑀 even lower than threshold 

needed for 𝑆 = 𝑁. However number of time samples cannot be lowered further than 𝑆, 

since then the reconstruction would not be possible with such less information of the 

signal input. 

3.4 Wideband Signal Detection via CS Using Cognitive Bayesian Energy 

Detector 

In this section, the CR is used to detect the occupied/unoccupied slots in the wide-band 

signal using CS approach. The CR can adopt a Bayesian energy detector to decide about 

the occupancy of the channel using a threshold energy level. It utilizes the information of 

the estimated spectrum via CS, sums up the components of the estimated signal in each 

frequency band and calculates the energy residing in each frequency band i.e. 𝑒𝑖 . For set 

of all frequencies sampled in 𝑖th channel i.e., Ω𝑖 , the energy residing in each frequency 

band is given by  

 𝑒𝑖 =    𝐱𝑓 ,𝑗  
2

𝑗 ∈Ω 𝑖

,    𝑖 = 1, 2, 3, ⋯𝑁 (3.8) 

 

Thus the energy vector of the received signal can be defined as 

 𝐞 =  𝑒1, 𝑒2, 𝑒3, ⋯ , 𝑒𝑁  (3.9) 
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Since most of the frequency bands are unoccupied in a wide-band spectrum, the energy 

vector is a sparse vector. 

In a CR energy detector, 𝑀 wide-band filters are connected to each node such that the 

transfer function for 𝑚𝑡  channel is given by: 

 𝑚  𝑓𝑖 =  𝚽 𝑚 ,𝑖 , 𝑚 = 1, 2, 3, ⋯ , 𝑀,   𝑖 = 1, 2, 3, ⋯ , 𝑁 (3.10) 
 

where 𝚽 is 𝑀 × 𝑁 matrix assigned to each CR node. The signal is fed to the 𝑀 wide-

band filters such that the output obtained at the 𝑚𝑡  filter is given by 

 𝐳𝐦 = conv 𝐱𝐭, 𝐡𝐦  (3.11) 
 

where conv(∙,∙) denotes the convolution operation and 𝐡𝐦 denotes the impulse response 

sequence of the 𝑚𝑡  filter. The energy of the output signal obtained at 𝑚𝑡  filter node is 

estimated as 

 𝑦𝑚 = 𝐳𝐦
𝐻𝐳𝐦,    𝑚 = 1, 2, 3, ⋯ , 𝑀 (3.12) 

 

where  ∙ 𝐻 is conjugate transpose of a matrix. 

The energy vector 𝐲 is measured as 

 𝐲 =  𝑦1, y2, 𝑦3, ⋯ , 𝑦𝑀 𝑇  (3.13) 
 

where  ∙ 𝑇 is transpose of a matrix. 

For a constant frequency response throughout each channel, the energy at the output of 

𝑚𝑡  filter is given by 

 
𝑦𝑚 =   𝑚  𝑓𝑖  

2𝑒𝑖

𝑁

𝑖=1

,    𝑚 = 1, 2, 3, ⋯ , 𝑀 
(3.14) 
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For a random matrix 𝚽,  the square absolute values of the elements can be obtained from 

equation (3.15) to form a matrix 𝐇 such that 

 

𝐇 =  

 
 
 
 

|1 𝑓1   
2 |1 𝑓2   

2 ⋯ |1 𝑓𝑁   2

|2 𝑓1   
2 |2 𝑓2   

2 ⋯ |2 𝑓𝑁   2

⋮ ⋮ ⋱ ⋮
|𝑀 𝑓1   

2 |𝑀 𝑓2   
2 ⋯ |𝑀 𝑓𝑁   2 

 
 
 
 

(3.15) 

 

Thus 𝑀 × 1 measurement energy vector 𝐲 can be estimated as 

 𝐲 = 𝐇𝐞 (3.16) 
 

The main goal is to estimate the length 𝑁 energy vector 𝐞 using 𝑀 measurement vectors. 

Since, in a wide-band spectrum, most of the channels are unoccupied, the channel energy 

vector 𝐞 is sparse. So compressive detection process can be established by 

correspondence between the filter based CR nodes design and CS theory. By proper 

selection of number of filters 𝑀 for a CR node, the channel enrgy vector eastimation is 

possible from the measurement energy vector, i.e., 

 𝐞 = arg min
𝐞

∥ 𝐞 ∥𝟏     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐲 =   𝐇𝐞  (3.17) 

 

Thus each CR node reconstructs the channel energy vector 𝐞 from measurement vector 𝐲, 

and the energy vector coefficients are compared to a threshold to decide about the 

occupancy of each channel. 

The threshold chosen for detection process depends upon the maximum interference level 

allowed by the primary user. For a distance 𝐷 between the primary transmitter and 

primary receiver and Signal-to-Interference Ratio (SIR) 𝛾𝑖 , the interference range for the 

primary receiver at distance 𝑅 is given by 

 (𝑃𝑝 ∙ 𝐿𝐷) / (𝑃𝑠 ∙ 𝐿𝑅) + 𝐼𝑏 =    𝛾
𝑖
 (3.18) 
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where 𝑃𝑝  is primary transmitter‟s power, 𝑃𝑠 is secondary CR‟s transmitiing power, 𝐼𝑏 is 

the background interference at the primary receiver and 𝐿𝐷  is path loss at distance 𝐷, 𝐿𝑅  

is path loss at the primary receiver side. 

The CR node should be capable of sensing all the signals coming from a distance 𝐷 + 𝑅 

and the signals with transmit power 𝑃𝑚𝑖𝑛 ≥ (𝑃𝑝 ∙ 𝐿𝐷+𝑅). Thus for a channel with 

bandwidth 𝐵 and 𝑃𝑚𝑖𝑛 > 𝐵𝑁𝑜 , where 𝑁𝑜  is the spectral density for noise, the threshold 

should be set below 𝑃𝑚𝑖𝑛  and above the level noise. In this approach, the CR node will 

never be in the interference range for primary receiver and it can transmit as a secondary 

unit in the underlying channel. The information about the primary parameters  

𝐼𝑏 , 𝛾 and 𝐷 should be provided by the regulating authorities or primary systems 

correspondents [53]. 

3.5 Summary 

In this chapter, wide-band spectrum sensing and detection of vacant channels is 

performed via CS. The basis pursuit approach for CS reduces the time-aperture for 

spectrum sensing. This provides a solution to the latency caused due to channel-by-

channel scanning of a wide-band spectrum.    
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Chapter 4 

CS FRAMEWORK FOR RAYLEIGH FADING CHANNELS USING BAYESIAN 

INFERENCE APPROACH 

 

4.1  Introduction 

In this chapter, the CS via BP algorithm has been modified to represent the signal 

propagation in practical channels. As we have discussed earlier in chapter 1 and chapter 

2, the radio waves that are transmitted in mobile communications, satellite 

communications and other wireless communication systems undergo the phenomenon of 

fading. The transmitter transmits the signal in a region which contains obstacles to 

absorb/reflect the RF wave. The transmitted signal travels over multiple reflective paths 

and degradation in its energy/power is observed. This is caused due to the multipath 

effect which results in scattering, reflection and diffraction of the transmitted signal. Such 

phenomenon of fading suggest more study of signal propagation in practical channels like 

Rayleigh fading channels along with signal propagation in classical AWGN channel. 

As we have discussed earlier, CS facilitates the acquisition and sensing of wide-band 

signals at rates that are significantly lower than Nyquist rates. The CS method can be 

further simplified using Bayesian inference approach for the sensing and detection of 

wide-band signals that follow Rayleigh distribution due to Rayleigh fading channels. The 

system model for Rayleigh fading channel supports Bayesian approach, since the 

Bayesian inference provides solutions that are conditional on the observed data. The 

Bayesian inference approach estimates a full probability model, where probability 
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distributions are associated with parameters or hypotheses, such that decoding process of 

the Rayleigh faded signal is considered as MAP estimation problem. 

The Bayesian approach for sparse signal reconstruction using Low-Density-Parity-Check 

(LDPC) codes [54] in channel coding motivates the use of sparse matrices for simple and 

fast CS signal recovery for real world applications. Iterative message passing via BP 

further reduced the complexity of CS algorithm [55-56]. 

In previous BP algorithms for CS signal reconstruction, the BP messages are treated as 

Gaussian probability density functions, however messages should be in accordance to the 

signal model. 

We have proposed the usage of BCS framework for spectrum sensing in a practical 

wireless channel like Rayleigh fading channel. In such channels, the signal undergoes 

fading due to the multi-path effect. The free space propagation model assumes the signal 

propagation in AWGN channel, thus it is inadequate to describe a practical channel like 

Rayleigh fading channel using a free space model. Also the performance of the system 

would be different for the classic AWGN channel and the practical Rayleigh channel. In 

this paper, we have modified the BCS framework with appropriate priors for the 

decoding of the Rayleigh faded signal via BP. Our results show that when an appropriate 

prior is used according to the system model, the recovery of the signal improves. Also an 

improvement in MSE can be achieved. 

4.2 Problem Formulation 

In practical scenario, the wide-band signal from the transmitter travels over multiple 

reflective paths to the receiver. Due to multi-path fading, the envelope of the signal is 
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statistically described by the Rayleigh PDF. Thus practical Rayleigh fading channel will 

describe such system models. 

In this paper, we have explored the implementation of BCS framework in Rayleigh 

fading channels, where the desired unknown signal follows the Rayleigh distribution. 

To sense the wideband signal in Rayleigh fading channel, consider a wide-band signal  

𝐤(𝑡), such that for a time interval 𝑇, the signal is sampled at a sampling period of 𝑇0. 

 𝐤𝐭 =  𝐤 𝑡    𝑡=𝑛𝑇0
,       𝑛 =  1, 2, 3, ⋯ , 𝑁 (4.1) 

 

Each signal sample in 𝐤𝐭, i.e., 𝐤𝐭(n) undergoes a Rayleigh flat fading channel with 𝐡 

vector consisting of 𝑖. 𝑖. 𝑑., channel coefficients given by 

 𝐡 =  𝐡𝑖 ,    𝑖 =  1, 2, 3, ⋯ , 𝑁  (4.2) 
 

A Rayleigh faded signal vector 𝐱𝐭 ∈  ℝ𝑵 is obtained 

 𝐱𝐭 = 𝐡𝑖.𝐤𝐭 n ,       𝑛 =  1, 2, 3,⋯ , 𝑁,   𝑖 =  1, 2, 3, ⋯ , 𝑁       (4.3) 
 

The wide-band spectrum of the signal is sparse given by, 

 𝐱 = ℱ 𝐱𝐭 = 𝐇𝐤𝒇      (4.4) 

 

where 𝐇 represent the frequency domain samples Rayleigh fading channel and 𝐤𝒇  is the 

sparse wide-band spectrum of the signal 𝐤𝐭 that undergoes Rayleigh fading such that 

there are only 𝐾 ≪ 𝑁 non-zero coefficients.  Thus the sparsity of the signal 𝐱 is given by 

by some vector 𝐫 i.e.,  

  𝐫 0 = 𝐾 ≪ 𝑁       (4.5) 
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where  𝐫 0 represents number of non-zero coefficients in 𝐱. Thus the sparse Rayleigh 

faded signal 𝐱 contains only 𝐾 non-zero coefficients out of 𝑁 samples. 

The sensing/sampling of such wide-band signals would be costly and complex as well, if 

Nyquist sampling method is used. However the sparse nature of this Rayleigh faded 

signal allows us to recover the signal via CS with lesser number of measurements. A 

sensing matrix 𝚽 ∈ ℝ𝑴×𝑵 provides us with the measurement vector 𝐲 such that 

 𝐲 =  𝚽𝐱 (4.6) 
 

such that the number of measurements 𝑀 ≪ 𝑁. 

Our goal is to recover the sparse Rayleigh distributed signal 𝐱. 

Since the number of measurements 𝑀 is lesser than the number of unknown signal 

elements 𝑁, we suggest BCS solution for the recovery of the signal. We assume that 

𝑖. 𝑖. 𝑑. signal  elements of sparse Rayleigh distributed signal 𝐱 can be independently 

related to the support set 𝑠𝑢𝑝𝑝(𝐱) with sparsity rate 𝑞 ∈  [0, 1), such that state vector 𝐬 

can be associated with each element based upon its association with 𝑠𝑢𝑝𝑝(𝐱) as 

 𝑠𝑖 =  
1               𝑖𝑓 𝑖 ∈ 𝑠𝑢𝑝𝑝(𝐱)
0                       𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

       𝑓𝑜𝑟 𝑖 ∈  1, 2, 3, ⋯ , 𝑁  (4.7) 

 

In the following sections, we proposed our system model for BCS framework and then 

we discussed the solution approach for the recovery of the Rayleigh faded signal 𝐱 via 

BCS. 

4.3 Proposed System Model 

In this section we discuss the graphical representation of the sensing matrix 𝚽 and the 

prior model to be used in the BCS framework for Rayleigh fading channels. 
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4.3.1 Sparse Sensing Matrix 

To encode the signal 𝐱 we consider a sparse-binary sensing matrix 𝚽 ∈  0,1 𝑀×𝑁 such 

that 𝑀 ≪ 𝑁. The sparsity of the sensing matrix is kept low and it is classified as fixed 

row weight 𝑅 matrix, where each row of 𝚽 contains exactly 𝑅 non-zero entries. This 

allows sensing of maximum number of signal coefficients to obtain measurement 

vector 𝐲. 

The main feature of the sensing matrix for Bayesian framework is that it can be 

represented as bipartite graph. We assume that a bipartite graph Ⅎ = (𝒰, 𝒱, ℰ) represents 

the neighboring relations in 𝐲 =  𝚽𝐱 , such that 𝒰 =  1,2,3, ⋯ , 𝑁  represents the set of 

indices corresponding to each element in 𝐱, 𝒱 =  1,2,3, ⋯ , 𝑀  represents the set of 

indices corresponding to each element of measurement vector 𝐲 and the set of edges 

connecting 𝒰 and 𝒱 can be defined as ℰ =   𝑗, 𝑖 ∈  𝒰 × 𝒱  𝜑𝑗𝑖 = 1}, where 𝜑𝑗𝑖  

represents the 𝑗𝑖th element in 𝚽. The neighbor set of 𝒰 will be 𝒯𝒰 𝑖 = {𝑗 ∈ 𝒱| 𝑗, 𝑖 ∈ ℰ} 

and the neighbor set of 𝒱 will be 𝒯𝒱 𝑗 = {𝑖 ∈ 𝒰| 𝑗, 𝑖 ∈ ℰ}. 

4.3.2 Prior Model 

In Bayesian framework, the selection of prior distribution plays a key role in the 

estimation of the sparsest solution out of infinite solutions for an under-determined 

system. Here we have considered two types of system models i.e., 

(1) Noiseless system model, 

(2) Noisy system model. 

In noiseless system model, the Rayleigh faded signal 𝐱 is encoded without considering 

the noise factor i.e., 𝐲 =  𝚽𝐱, while in noisy system model, AWGN also accounts for 

computation of measurement vector i.e., 𝐲 =  𝚽𝐱 + 𝐧, where the additive noise vector 
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𝐧 =  ℝ𝑴 is drawn from 𝑖. 𝑖. 𝑑., zero-mean Gaussian noise distribution 𝒩(0, 𝜎𝑛
2𝐈𝑴), where 

𝜎𝑛
2 represents the variance of noise distribution and 𝐈𝑴 is identity matrix of order 𝑀 ×  𝑀. 

We have shown that different features of each system model determine the need of a 

different prior model, for its optimal employment in BP for CS decoding algorithm. 

4.3.2.1 Prior Model for Noiseless System Model 

If 𝐬 represents the state vector for 𝐱 elements, then each signal coefficient  xi , 𝑖 ∈ 𝒰 can 

be associated either with high state i.e., 𝑠 𝑖 = 1, or it can be associated with low state 

i.e. 𝑠 𝑖 = 0,where 𝑠 𝑖 ∈ 𝐬. 

For Rayleigh faded signal 𝐱, the high state element is related to Rayleigh distribution as 

 
𝑓𝐗 𝐱 𝐬 = 𝟏 =  

𝐱

σ1
2 e

−
𝐱𝟐

𝟐𝛔𝟏
𝟐
 

(4.8) 

 

where σ1
2 represents the variance of Rayleigh distribution for signal coefficients 

associated with high state. 

Similarly, the low state element in 𝐱 can be related to a Spike distribution model as 

 𝑓𝐗 𝐱 𝐬 = 𝟎 =  δ 𝐱  (4.9) 
 

where δ 𝐱  represents a Dirac distribution having a non-zero value in the range 𝐱 ∈

(0−, 0+), such that  δ 𝐱 𝑑𝑥 = 1
∞

𝟎
. 

The Rayleigh-Spike prior density associated with noiseless system model is given by 

 
𝑓𝐗 𝐱 =  q  

𝐱

σ1
2 e

−
𝐱𝟐

𝟐𝛔𝟏
𝟐

+   1 − q δ 𝐱  
(4.10) 
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Such type of priors have been used for strictly sparse signal models [47-50], since the 

prior easily characterizes the signals by 𝜎1 and 𝑞 factors. 

Since the elements in 𝐱 are assumed to be 𝑖. 𝑖. 𝑑. Rayleigh distributed, the prior density 

represents each 𝑖th signal coefficient independently. 

4.3.3.2 Prior Model for Noisy System Model 

For the noisy system model 𝐲 =  𝚽𝐱 + 𝐧, the prior model should account for the 

Gaussian distribution associated with additive noise vector 𝐧 along with Rayleigh and 

Dirac distribution. 

For high state signal elements, when 𝑖. 𝑖. 𝑑.  Rayleigh distributed coefficient 𝐱 adds up 

with 𝑖. 𝑖. 𝑑. Gaussian noise coefficients 𝐧, then the resultant vector 𝐳 =  𝐱 + 𝐧 would 

follow the probability distribution that is obtained after the convolution of probability 

distribution of 𝐱 i.e. 

 
𝑓𝐗 𝐱|𝐬 = 𝟏 =   

𝐱

σ1
2 𝑒

−
𝐱𝟐

𝟐𝛔𝟏
𝟐
 

(4.11) 

  

and the probability distribution of noise coefficient 𝐧 i.e., 

 
𝑓𝐍 𝐧 =  

1

 2πσn
2
 𝑒

−
𝐧𝟐

𝟐𝛔𝐧
𝟐
 

(4.12) 

 

The probability distribution for 𝐳 is given by 

 
𝑓𝐙 𝐳 𝐬 = 𝟏 =   𝑓𝐗(𝐱)𝑓𝐗(𝐳 − 𝐱)𝑑𝑥

∞

𝟎

 
(4.13) 

 

where 𝐧 =  𝐳 − 𝐱, 
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𝑓𝐙 𝐳 𝐬 = 𝟏 =   

1

 2π𝜎𝑛𝜎1
2
  𝐱𝑒

−
𝐱𝟐

𝟐𝛔𝟏
𝟐
𝑒
−

(𝐳−𝐱)𝟐

𝟐𝛔𝐧
𝟐

∞

𝟎

𝑑𝑥 
(4.14) 

 

Evaluating this integral via integration by parts yields 

 
𝑓𝐙 𝐳 𝐬 = 𝟏 =

𝜎1𝐳

 𝜎1
2 +  𝜎𝑛

2 
3
2

∅ 
𝜎1

𝜎𝑛
 

𝐳

 𝜎1
2 + 𝜎𝑛

2
 +  

𝜎𝑛

 2𝜋𝜎1
2 +  𝜎𝑛

2
 𝑒

−
 𝐳 𝟐

𝟐𝛔𝐧
𝟐

 
(4.15) 

 

where ∅ 
𝜎1

𝜎𝑛
 

𝐳

 𝜎1
2+ 𝜎𝑛

2
  is the cumulative distribution function (CDF) of standard normal 

random variable. 

The low state signal coefficient in noisy system model is represented by Dirac 

distribution, as it is special form of the Gaussian density when 𝜎0  → 0 [60] 

The prior density for noisy system model would be 

𝑓𝐗 𝐱 = q  
𝜎1𝐳

 𝜎1
2 + 𝜎𝑛

2 
3
2

∅ 
𝜎1

𝜎𝑛
 

𝐳

 𝜎1
2 +  𝜎𝑛

2
 +  

𝜎𝑛

 2𝜋𝜎1
2 +  𝜎𝑛

2
 𝑒

−
 𝐳 𝟐

𝟐𝛔𝐧
𝟐
  

 

+ 1 −  q 𝛿 𝐱  

 
 

(4.16) 

 

In the following section, BCS approach to recover the signal has been discussed. The 

prior density models discussed in this section have been used to estimate the MAP 

distribution for the unknown signal elements for the noiseless and noisy measurement 

cases. 

4.4 CS Decoding via BP 

To recover the Rayleigh distributed signal 𝐱 out of system models discussed above i.e. 

the noiseless system model and the noisy system model, we propose a Bayesian 

approach. The signal is recovered via BP as a MAP estimation problem. The sparsifying 



50 

 

prior density of 𝐱 promotes the estimation of the sparsest solution that best matches with 

the linear projections 𝐲 of sparse signal 𝐱. The signal recovery can be represented as 

 𝐱 𝑀𝐴𝑃 = arg max 𝑓𝐗(𝐱|𝐘 = 𝐲) (4.17) 
 

where 𝐱 𝑀𝐴𝑃  represents the recovered sparse signal 𝐱 via 𝑀𝐴𝑃 estimation 

According to Bayesian theorem, 

 
𝑓𝐗 𝐱 𝐘 = 𝐲 =

𝑓𝐘 𝐲 𝐗 = 𝐱 𝑓𝐗(𝐱)

𝑓𝐘(𝐲)
 

(4.18) 

 

where 𝑓𝐗 𝐱 𝐘 = 𝐲  is the posterior distribution for 𝐱, 𝑓𝐘 𝐲 𝐗 = 𝐱  is the likelihood of the 

estimate and 𝑓𝐘(𝐲) is the marginal distribution. In Bayesian inference, marginal 

distribution plays no significant role in estimating posterior distribution. It only 

marginalizes the posterior distribution. Thus MAP estimation becomes 

 𝐱 𝑀𝐴𝑃 = arg max 𝑓𝐘 𝐲 𝐗 = 𝐱 𝑓𝐗(𝐱) (4.19) 
 

It is obvious from above equation (4.15) that an accurate MAP estimation for 𝐱 is 

possible when the sparsifying prior 𝑓𝐗(𝐱) is selected according to the system model. 

The BP provides the posterior density for MAP estimation in each iteration. The prior 

density initializes the BP process. Afterwards the posterior density of each signal element 

𝐱𝒊 is obtained and updated, while messages are being passed between the edges in factor 

graphs. Here sampled messages are considered to implement BP, where each message 

consists of the samples of the samples of the PDF [46]. Sampled message approach is 

adaptive in sense that various system models could be retrieved using it. When sampling 

step size is sufficient enough to store the PDF of the message under consideration, it also 

ensures faster convergence compared to parametric-message approach [57-59]. 
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In CS decoding via BP we follow Bayesian rule, where the posterior density of each 

signal element 𝐱𝒊 is represented in form of 

 
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  𝑝𝑟𝑖𝑜𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ×

𝑙𝑖𝑘𝑒𝑙𝑖𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

(4.20) 

 

The marginal posterior density 𝑓𝐗 𝐱 𝐘 = 𝐲  is given by 

 
𝑓𝐗 𝐱 𝐘 = 𝐲 =  𝑓𝐗 𝐱 ×

𝑓𝐘 𝐲 𝐗𝒊 = 𝐱𝒊 

𝑓𝐘 𝐲 
 

(4.21) 

 

where 𝑓𝐘 𝐲 𝐗𝒊 = 𝐱𝒊  is the likelihood, 𝑓𝐗 𝐱  is the prior density for signal 𝐱 and the 

evidence 𝑓𝐘 𝐲  only marginalizes the posterior density and does not enter into 

determining the relative properties. Since the measurements associated with 𝐗𝒊 according 

to tree like property of 𝚽 i.e.,  𝐘𝑘 ∶ 𝑘 ∈ 𝒯𝒰 𝑖  , are statistically independent given that  

𝐗𝒊 = 𝐱𝒊. The equation (4.17) can be re-written as 

 𝑓𝐗 𝐱 𝐘 = 𝐲  ∝  𝑓𝐗 𝐱 ×  𝑓𝐘𝑗
 𝐲 𝐗𝒊 = 𝐱𝒊 

𝑗∈𝒯𝒰 𝑖 

 (4.22) 

 

Here each decomposition of likelihood 𝑓𝐘𝑗
 𝐲 𝐗𝒊 = 𝐱𝒊  is the measurement density which 

is associated with the signal elements distributions and also the noise distribution for the 

noisy case. For noiseless case, the measurement density is given by 

 

𝑓𝐘𝑗
 𝐲 𝐗𝒊 = 𝐱𝒊 =  𝛿𝐘𝑗

⊗   𝑓𝐗𝑘
 𝐱 

𝑘∈𝒯𝑣 𝑗  ∖ 𝑖 

  

(4.23) 

 

where 𝛿𝐘𝑗
 is the probability density associated with each measurement vector element 
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𝐲𝑗  and 𝑘 ∈ 𝒯𝑣 𝑗 ∖  𝑖  𝑓𝐗𝑘
 𝐱  represents all the neighboring signal elements of 𝐲𝑗  

excluding 𝐱𝑖 . The ⊗ represents the operations of linear convolution, while   𝑓𝐗 𝐱   

represents the linear convolution of sequence of functions. 

For the noisy case, the noise distribution 𝑓𝐍𝑗
(𝐧) also accounts for the measurement 

density i.e. 

 

𝑓𝐘𝑗
 𝐲 𝐗𝒊 = 𝐱𝒊 =  𝛿𝐘𝑗

⊗ 𝑓𝐍𝑗
 𝐧 ⊗    𝑓𝐗𝑘

 𝐱 

𝑘∈𝒯𝑣 𝑗  ∖ 𝑖 

  

(4.24) 

 

BP involves the process of exchanging and updating the probability density messages 

among the signal and the measurement coefficients, which relate to each other according 

to the edges in the bipartite graphs. It is mainly accomplished in two steps known as 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛. The marginal posterior for each 𝐱𝒊 is updated at every 

iteration. 

The message passed from the 𝑖th signal coefficient to the 𝑗th measurement  vector 

coefficient is called the 𝑠𝑖𝑔𝑛𝑎𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, and denoted as 𝐦𝑖  → 𝑗 , and  similarly the 

message passed from the 𝑗th measurement vector coefficient to the 𝑖th signal coefficient 

is called the 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒, denoted as 𝐦𝑗  → 𝑖 . The passing of the messages 

between the signal nodes and the measurement nodes can be well understood by Figure 

The signal message is the approximated density message  of each signal element 𝐱𝒊, i.e. 

𝐦𝑖  → 𝑗  ≈  𝑓𝐗𝑖
 𝐱 𝐲   and it is obtained from equation (4.22) by the multiplication of all the 

density messages associated with the neighboring measurement vector coefficients that 

are updated in previous iteration i.e., 
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𝐦𝑖  → 𝑗
𝑙 =  𝜂  𝑓𝐗 𝐱 ×  𝐦𝑘  → 𝑖

𝑙−1

𝑘∈𝒯𝒰 𝑖 ∖ 𝑗  

  

(4.25) 

 

where 𝐦𝑖  → 𝑗
𝑙  denotes the signal message at 𝑙th iteration, 𝜂[∙] is normalizing function such 

that  𝐦𝑖  → 𝑗
𝑙  𝑑x = 1, and 𝐦𝑘  → 𝑖

𝑙−1  denotes the neighboring measurement message updated 

in previous iteration excluding that of 𝐲𝑗 . 

4.1. 

 

Figure: 4.1: Message passing between signal nodes and measurement nodes 

 

In the same context, the measurement message is the approximated density message of 

each measurement vector coefficient 𝐲𝑗 , i.e. 𝐦𝑗  → 𝑖  ≈ 𝑓𝐘𝑗
 𝐲 𝐱 . The measurement 

message is updated using equation (4.24), by the convolution of all the updated 

neighboring signal messages obtained i.e., 
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𝐦𝑗  → 𝑖
𝑙 = 𝛿𝐘𝑗

⊗ 𝑓𝐍𝑗
 𝐧 ⊗    𝐦𝑘  → 𝑗

𝑙

𝑘∈𝒯𝑣 𝑗  ∖ 𝑖 

  

(4.26) 

 

where 𝐦𝑗  → 𝑖
𝑙  is measurement message at 𝑙th iteration,and 𝐦𝑘  → 𝑗

𝑙  denote the neighboring 

signal messages updated excluding that of 𝐱𝑖  in previous iteration. 

For more efficient computation, the convolution operation in above equation (4.26) can 

be replaced multiplication operation via the use of Fast Fourier Transform (FFT), such 

that 

 

𝐦𝑗  → 𝑖
𝑙 =  𝓕−𝟏  𝓕𝛿𝐘𝑗

× 𝓕𝑓𝐍𝑗
 𝐧 ×  𝓕𝐦𝑘  → 𝑗

𝑙

𝑘∈𝒯𝑣 𝑗  ∖ 𝑖 

  

(4.27) 

 

where 𝓕 ∈ ℂ𝐷×𝐷is a Fourier matrix of size 𝐷. To evaluate the measurement density 

message efficiently via FFT, the sampling step for the sampled message in BP should be 

chosen appropriately such that number of samples is power of two. 

In BP, while the signal and measurement messages are being exchanged and updated, the 

posterior density for each signal element 𝐱𝑖   is being computed at every iteration as 

 

           𝑓𝐗𝑖
𝑙 𝐱 𝐲 = 𝜂  𝑓𝐗 𝐱 ×  𝐦𝑗  → 𝑖

𝑙

𝑗 ∈𝒯𝒰 𝑖 

  

(4.28) 

 

where 𝑓𝐗𝑖
𝑙 𝐱 𝐲  is the posterior density for 𝐱𝑖  computed at 𝑙th iteration. 

The maximum value of the density estimated for each signal element 𝐱𝑖after 𝑇 number of 

iterations determine the recovered value of each signal element i.e., 𝐱 𝑖  
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4.5 Advantages over previous algorithms 

The main advantage of the current algorithm over the previous algorithms suggested in 

literature is that it has been developed for practical channels like Rayleigh fading 

channels. Previously the CS algorithms were developed, considering AWGN channel 

where free space signal propagation takes place. Practically, the wideband signals 

undergo fading and their response to CS algorithms varies in Rayleigh fading channels 

compared to that in AWGN channels. 

4.6 Summary 

In this chapter, a BCS framework for Rayleigh faded channels is proposed, where a 

Rayleigh faded signal is recovered via BP. It is shown that decoding via BP is improved 

when the prior used in BP is according to the system model. The Rayleigh faded signal is 

recovered accurately, when Rayleigh-Spike prior is used for noiseless case. In noisy case, 

when AWGN noise is added to the system, prior is modified using convolution of 

Rayleigh-Gaussian-Spike model to improve the decoding process via BP. The MSE 

performance comparison for 𝑇 number of iterations further assists that accuracy in the 

recovery of the Rayleigh faded signal is achieved when proper choice of prior is made. 

  



56 

 

Chapter 5 

SIMULATIONS AND REULTS 

 

5.1 Introduction 

In this chapter, the performance of the CS algorithms for spectrum reconstruction and 

signal detection proposed in Chapter 3 and BCS algorithm for signal propagation in 

Rayleigh faded channels proposed in Chapter 4 has been evaluated via MATLAB 

simulations. 

At first, the CS via basis pursuit approach proposed in Section 3.3 has been evaluated. A 

wide-band spectrum is reconstructed via CS using different number of linear 

combinations and different number of time samples. The estimated MSE gives an insight 

into the performance of the algorithm for different parameters.  

In the next section the CS signal detection algorithm proposed in section 3.4 has been 

investigated and 𝑃𝑑  and 𝑃𝑓𝑎  curves have been plotted for cognitive Bayesian energy 

detector. 

In later section, the BCS algorithm for signal propagation in Rayleigh fading channels 

discussed in chapter 4, has also been investigated and compared with the performance of 

BCS algorithm for signal propagation in classic AWGN channel. 

5.2 Wide-Band Spectrum Reconstruction via CS with Reduced Delay and 

Complexity 

In this section, we evaluate the performance of the CS algorithm for wide-band spectrum 

reconstruction using basis pursuit approach, such that the sensing time aperture is 
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reduced along with the reduction in sampling rate. This approach consequently reduces 

the delay in spectrum sensing as well as complexity in wide-band spectrum sensing. 

In this approach 𝑆 < 𝑁 time samples of the wide-band spectrum are collected and the 

signal is reconstructed via CS using reduced number of linear combinations 𝑀 ≪ 𝑁. 

Thus, two parameters i.e., 𝑆 and 𝑀 affect the spectrum estimation via CS. 

When the spectrum is reconstructed using reduced number of time samples 𝑆, it actually 

reduces the delay or latency caused in wide-band spectrum sensing. This makes the 

process more effective in terms of lesser chances of interference caused to primary 

transmission. Reduced number of linear combinations or measurements 𝑀, reduces the 

sampling rate; consequently the complexity of the spectrum sensing algorithm is reduced. 

We further evaluated the performance of the algorithm by estimating the MSE using 

equation 𝑀𝑆𝐸 =   𝐱𝑓 −  𝐱 𝑓 .  

We consider a wide-band spectrum with total bandwidth of 100 𝑀𝐻𝑧. The Nyquist 

sampling rate for this wide-band signal is 200 × 106 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
. We assume that there are 

10 channels in the wide-band spectrum each of 10 𝑀𝐻𝑧, such that maximum 5 channels 

are active at a time to show the sparsity in the spectrum. We reconstruct the spectrum 

using different number of time samples 𝑆 and linear combinations 𝑀. The numerical 

results of the reconstructed spectrum evaluated using 𝑙1-minimization show that 

compression ratio must be at least 
𝑀

𝑁
= 45%, for 5 active channels. The compression ratio 

can be further reduced when the spectrum is more sparse i.e., 2 or 3 channels out of 10 

channels are active. 
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In Figure 5.1, the frequency representation of the wide-band spectrum has been presented 

for 𝑆𝑁𝑅 = 10 𝑑𝐵 without compression. The spectrum shows 5 active channels out of 10 

channels. 

 

Figure: 5. 1: Wide-band spectrum, 5 out of 10 active channels, SNR = 10 dB 

 

This spectrum is reconstructed via CS with compression ratio of 
𝑀

𝑁
= 50%, using 

𝑆

𝑁
= 50% of time samples as shown in Figure 5.2. Though only half of the samples have 

been collected out of 𝑁 total samples of the signal, but the figure shows that 

reconstructed frequency response of the signal is still a better approximation of the wide-

band signal. 
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Figure: 5. 2: Reconstructed spectrum, M = N/2, S = N/2 

 

 

Figure: 5. 3: Reconstructed Spectrum, M = N/2, S = N/4 
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Figure: 5. 4: Reconstructed spectrum, M = N/2, sub-Nyquist sampling rate = 2/3 

 

This scenario is of much importance in context of DSA using CR. A cognitive user only 

needs to detect the active primary transmission so that the secondary transmission causes 

no interference to it. As soon as the CR is able to reconstruct the spectrum using CS 

approach, it can identify the spectral holes and make the spectrum usage more effective. 

This approach has been further investigated by reducing the number of samples up to 

𝑆

𝑁
= 25%. Still the reconstructed spectrum in Figure 5.3 shows that the active channels 

can be identified. Though the reconstructed spectrum is not as accurate as in previous 

case, but the energy accumulated in the channels is enough for energy detector to detect 

the active channels.  

In section 3.3, we discussed that the complexity of the CS algorithm can be further 

reduced by distributing columns of zeros within the sensing matrix 𝚽. In this approach, 

the sampling is performed at a sub-Nyquist sampling rate. In Figure 5.4, the 100 𝑀𝐻𝑧 
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wide-band spectrum has been reconstructed by taking samples at a sub-Nyquist sampling 

rate of 2/3, such that a zero column is inserted after every 2 columns of the sensing 

matrix. In this approach the reconstructed spectrum is again not a good approximation but 

energy detection can be performed on the spectrum to detect the occupancy pattern and 

identify the active channels in it. 

In the following figures, MSE has been estimated for the spectrum reconstructed using 

different compression ratio 𝑀/𝑁 and sampling ratio 𝑆/𝑁, to show the consistency of the 

results and compare the accuracy of the reconstructed spectrum.  

Figure 5.5 shows that by reducing the number of samples taken out of the time signal, a 

better MSE performance can still be achieved. In the figure, we can see that when half of 

samples are taken i.e., the sampling ratio is 
𝑆

𝑁
= 50%, for compression ratio of 

𝑀

𝑁
= 50%, 

the performance of the algorithm improves compared to case when sampling ratio 

is 
𝑆

𝑁
= 100%, i.e., all time samples are taken. This can be justified by observing the lower 

limit of the number of measurements 𝑀 required for spectrum reconstruction given by 

𝑀 ≥ 𝑐𝐾 log(𝑁/𝐾). 

When the number of time samples taken out of the wide-band signal is reduced such 

that 𝑆 < 𝑁, then the signal length under consideration is reduced to 𝑆. The required 

number of measurements 𝑀 can be further reduced according to the equation 𝑀 ≥

𝑐𝐾 log(𝑆/𝐾). Thus the threshold for reconstruction is consequently reduced and the MSE 

performance of the algorithm is improved. 
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Same situation is observed when compression ratio is reduced up to 
𝑀

𝑁
= 25%, along 

with the reduction in signal length for up to 
𝑆

𝑁
= 25%. A better MSE performance is 

observed compared to the case of 
𝑀

𝑁
= 50%,

𝑆

𝑁
= 25%.  

 

Figure: 5. 5: MSE estimated for reconstructed spectrum using different number of linear 

combinations and time samples 

  

However in these two cases, the sampling ratio has been reduced beyond half, i.e., signal 

length is reduced much, which results in degradation in MSE performance compared to 

the case of 
𝑀

𝑁
= 50%,

𝑆

𝑁
= 50%. This shows that we cannot reduce the sampling ratio 

beyond a certain limit. We require enough number of time samples of the signal for better 

reconstruction of the spectrum. 
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This concept of reducing the number of time samples of the signal can be efficient such 

that the decision about the spectrum occupancy pattern can be made faster as soon as the 

information about the reconstructed spectrum is available. 

Another solution to reduce the sensing delay and complexity of the wide-band spectrum 

reconstruction using CS, is to distribute zero columns in the sensing matrix 𝚽 i.e., 

compressive sampling is performed at a sub-Nyquist rate as discussed in section 3.3.  

 

Figure: 5. 6: MSE estimated for reconstructed spectrum at sub-Nyquist sampling rates 

 

The Figure 5.6 shows that a better MSE performance can be observed when the wide-

band spectrum is reconstructed at a sub-Nyquist sampling rate by distributing columns of 

zeros within the compressive sensing matrix 𝚽. Though the MSE performance is not 

better compared to the previous cases where number of time samples 𝑆 is reduced, but 

introducing zeros columns within the sensing matrix reduces the complexity of the CS 

algorithm.  
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To further emphasize on the results of a CS algorithm for wide-band spectrum 

reconstruction, we performed the algorithm by varying the number of active channels in 

the wide-band spectrum. Following figures show that when less number of channels is 

active in a wide-band spectrum, the spectrum is sparser, and the MSE performance of the 

CS algorithm improves. 

 

Figure: 5. 7: MSE performance of CS algorithm for wide-band spectrum reconstruction 

when number of active channels are varied to vary the sparsity level of the spectrum (M = 

N/2, S = N/2) 

 

In Figure 5.7, the CS algorithm has been performed when reduced number of time 

samples is collected as discussed in section 3.3. It shows that the MSE performance of 

the algorithm improves when 2 out of 10 channels are active. In this case the sparsity 

level of the wide-band spectrum is higher compared to the cases in which 3 or 5 channels 

are active. 
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Similarly in Figure 5.8, the CS algorithm has been performed when columns of zeros are 

distributed in the sensing matrix 𝚽, to perform compressive sampling at a sub-Nyquist 

rate as discussed in section 3.3. It again shows consistency in results when MSE for 2 out 

of 10 active channels. 

 

Figure: 5. 8: MSE performance of CS algorithm for wide-band spectrum reconstruction 

when number of active channels are varied to vary the sparsity level of the spectrum (M = 

N/2, Sampling rate = 2/3 of Nyquist rate) 

 

5.2 Detection of Wide-band Signal via CS using CR Bayesian Energy Detector 

In this section the performance of the CS algorithm for detection of wide-band signal has 

been investigated via MATLAB simulations. In section 3.4 a cognitive Bayesian energy 

detector has been proposed that estimates the energy occupied in each channel of the 

wide-band signal.  The input wide-band signal is fed into 𝑀 number of wide-band filters 

to estimate the energy in each channel, such that the energy vector 𝐞 is reconstructed 

using CS via 𝑙1-minimization approach. 
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As discussed in previous section, a wide-band signal is considered to be fed to CR 

Bayesian energy detector. It is assumed the wide-band signal is sparse such that there are 

5 channels active at a time out of 20 channels in the wide-band. This wide-band signal is 

fed to different number of filters 𝑀, and the energy vector is estimated via CS. The 

estimated energy vector is compared with a threshold level to find the probability of 

detection 𝑃𝑑  and probability of false alarm 𝑃𝑓𝑎  of the proposed algorithm.  

 

Figure: 5. 9: Probability of detection curve for detection of wide-band signal via CS 

 

Figure 5.9 shows the probability of 𝑃𝑑  curve obtained for the suggested algorithm and it 

shows that as the number of filters increases according to the number of channels in the 

wide-band spectrum, the 𝑃𝑑  improves. For a wide-band spectrum containing 20 channels, 

at least there should be half of the number of filters in the CR energy detector for a 

better 𝑃𝑑 . 
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Figure 5.10 shows the corresponding probability of false alarm 𝑃𝑓𝑎  for the wide-band 

signal detection algorithm. 

 

Figure: 5. 10: Probability of false alarm curve for detection of wide-band signal via CS 

 

5.3 Bayesian Compressive Sensing Framework for Rayleigh Fading Channels 

In this section, the performance of BCS algorithm, proposed in chapter 4, has been 

evaluated for Rayleigh fading channels using MATLAB simulation results. For a simple 

case, a wideband sparse signal 𝐱 of length 𝑁 is generated, such that the samples of the 

signal follow Rayleigh distribution. A compressive sensing matrix 𝚽 is used to sense this 

sparse signal and 𝑀 number of measurements is obtained for further recovery of the 

signal. To recover the Rayleigh faded signal via BP for noiseless case, we considered the 

Rayleigh-Spike prior given in equation (2.27). The sparse nature of the signal and the 

absence of noise results in almost accurate recovery of the signal.  
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However, in noisy case, when AWGN noise adds up in the measurement vector, the BCS 

recovery is not accurate using Rayleigh-Spike prior due to the noise distribution. The 

noise distribution affects the MAP estimation for BCS recovery of the Rayleigh faded 

signal. 

To overcome this problem, the Rayleigh-Spike prior modified to match with the 

distribution of signal that is composed of Rayleigh coefficients and noise coefficients. 

The modified prior is composed of convolution of Rayleigh-Gaussian distribution for 

non-zero coefficients and Spike distribution for zero coefficients as shown in equation 

(4.16). 

The BCS recovery of Rayleigh faded signal is performed for noisy case using the 

modified prior model and varied different parameters of the system model like sparsity 

level 𝐾, number of measurements 𝑀, number of samples in the prior distribution 𝑝 etc., 

to see the performance of the algorithm. 

According to the condition 𝑀 ≥  𝑐 𝐾 log(𝑁/𝐾) required for BCS approach, enough 

number of measurements is required for better BCS recovery of the signal. If the number 

of measurements is quite less, then the BCS recovery process does not perform well. In 

Figure 5.11, MSE has been plotted as a function of number of measurements 𝑀 by 

varying row weight 𝑅 for sensing matrix 𝚽. 

When BP converges in 𝑡 =  5 iterations and signal is recovered, MSE is calculated using 

the equation 𝑀𝑆𝐸 =  𝚽𝐱  −  𝐲 , where 𝐱  is the reconstructed signal. MSE performance of 

the algorithm observed after 𝑇 =  10 number of iterations using the modified prior, 

suggest that as 𝑀 increases for signal length of 𝑁 =  1000, the MSE error is reduced. 
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When row weight is small, i.e., 𝑅 =  10, it misses some coefficients and results in poor 

recovery.  

 

Figure: 5. 11: MSE as a function of M using different matrix row weights R for BCS 

recovery of Rayleigh faded signal using prior composed of convolution of Rayleigh-

Gaussian distribution and Spike distribution, (N = 1000, K = 20, M = N/2) 

 

MSE performance is improved when 𝑅 is large and there are enough measurements 𝑀 

according to the signal length. MSE performance for 𝑅 =  30 is better compared to that 

for R = 20, especially when 𝑀 ≥  400 for 𝑁 =  1000. 

The above condition for enough number of measurements also shows that the length of 

signal 𝑁 and the sparsity level 𝐾 of the signal affect the performance of BCS recovery of 

the signal as well. In Figure 5.12, MSE has been plotted as a function of different values 

of 𝐾 for a given 𝑁 using the modified prior for BCS recovery of Rayleigh faded signal. 

When the signal is more sparse, MSE is negligible. As the sparsity level 𝐾 increases for 

given 𝑁, MSE becomes significant as shown in figure. 
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Figure: 5. 12: MSE as a function of sparsity level K for BCS recovery of sparse Rayleigh 

faded signal using prior composed of convolution of Rayleigh- Gaussian distribution and 

Spike distribution, (N = 200, 500, 1000, M = N/2) 

 

For 𝑁 =  200, MSE performance degrades when 𝐾 ≥  20. Similarly for 𝑁 =  500, 

MSE is significant when 𝐾 ≥  30. However, for 𝑁 =  1000 the algorithm performs 

better even for 𝐾 =  50, which shows that performance of BCS algorithm improves 

when then the signal is more sparse. 

As the sampled message approach has been used for the BCS recovery of Rayleigh faded 

signal, the sampling of the prior distribution also affects the outcome of BP. The 

convolution operation in BP to evaluate the density message, can be efficiently computed 

by using FFT as discussed in section 4.4. For efficient use of FFT, the sampling step 

should be chosen appropriately such that number of samples 𝑝 is power of two.  

In Figure 5.13, the MSE performance has been investigated for different number of 

samples of prior distribution. As the number of samples 𝑝 increases, the MSE 

performance of the algorithm improves. When the number of measurements is lower, 

then the MSE performance of the algorithm is poor for all three cases.  
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Figure: 5. 13: MSE as a function of number of measurements M using different number 

of samples for prior distribution p for BCS recovery of Rayleigh faded signal using prior 

composed of convolution of Rayleigh-Gaussian distribution and Spike distribution, (N 

=1000, K= 20, M = N/2) 

 

The BCS recovery of the Rayleigh faded signal is performed for noisy case using 

different priors in Figure 5.14, and MSE is plotted as a function of different values of 

variance of noise 𝜎𝑛
2. 

The figure 5.14 shows that MSE is reduced, when decoding is performed for noisy 

system model using the modified prior that is composed of convolution of Rayleigh-

Gaussian distribution for non-zero coefficients and Spike distribution for zero 

coefficients. However, when Gaussian prior is used for BCS recovery of the Rayleigh 

faded signal, MSE is significant. 

When the level of noise that is added to the measurement vector increases, MSE further 

increases in case of Gaussian-Spike prior compared to the increase in MSE for modified 

prior composed of convolution of Rayleigh-Gaussian distribution and Spike distribution. 
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Figure: 5. 14: MSE as a function of noise variance 𝛔𝐧
𝟐  where BCS recovery of sparse 

Rayleigh faded signal is done for noisy model using two types of priors, i.e., (1) Prior 

composed of convolution of Rayleigh-Gaussian distribution and Spike distribution 

(Rayleigh- Gaussian-Spike) (2) Gaussian-Spike prior (Gaussian-Spike) (N = 1000, K = 

20, M = N/2) 

 

 

This shows that appropriate prior should be used according to the signal model for BCS 

recovery process. The performance of the algorithm degrades, when properties of the 

prior are not according to the signal model. 

To further emphasize on the appropriate choice of prior according to the system model, 

we varied the parameters for the system model and recovered the signal using the two 

above mentioned priors. In Figure 5.15, a sparse Rayleigh faded signal of length 𝑁 =

 500 is decoded using our modified prior composed of convolution of Rayleigh-Gaussian 

distribution and Spike distribution as well as the classical Gaussian-Spike prior.  
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Figure: 5. 15: MSE as a function of number of measurements M where BCS recovery of 

sparse Rayleigh faded signal is done for noisy model using two types of priors, i.e., (1) 

Prior composed of convolution of Rayleigh-Gaussian distribution and Spike distribution 

(2) Gaussian-Spike prior 

  

The MSE is plotted as function of number of measurements 𝑀, which shows that as 𝑀 

increases, MSE is reduced for our modified prior, while it is significant for Gaussian-

Spike prior. 

Similarly in Figure 5.16, MSE is plotted as function of sparsity level 𝐾 for the two priors 

for a signal length of 𝑁 =  500. It shows that when 𝐾 increases; MSE is significant for 

Gaussian-Spike prior compared to our modified prior. These results show that when the 

prior model is in accordance with the system model, BP algorithm performs well, and 

MSE is reduced. The wide-band spectrum sensing via BCS can become more efficient 

when practical channels like Rayleigh fading channels are considered in the algorithm. 

The selection of the prior model according to the system model under consideration, 

improves the spectrum sensing process. 
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Figure: 5. 16: MSE as a function of sparsity level K where BCS recovery of sparse 

Rayleigh faded signal is done for noisy model using two types of priors, i.e., (1) Prior 

composed of convolution of Rayleigh-Gaussian distribution and Spike distribution, (2) 

Gaussian- Spike prior (N = 500, M = N/2, noise variance = 1) 

 

 

  



75 

 

Chapter 6 

CONCLUSION AND FUTURE PERSPECTIVE 

 

6.1 Conclusion 

In this thesis, chapter 2 contains a detailed literature review of the field of CS and CR. 

Since DSA is one of the major application of CR, the major requirements and purpose of 

spectrum sensing is discussed. Different spectrum sensing techniques are discussed in 

terms of their hardware, performance and computational complexity. The issue of fading 

in wireless communication has also been highlighted which is not usually considered in 

spectrum sensing related literature. The basics of CS via basis pursuit approach as well as 

Bayesian inference approach, has been discussed. The prior distribution models 

conventionally used in BCS has been discussed in context of the requirement of 

appropriate model for the spectrum. 

In chapter 3, solution to high data rates requirement for wide-band spectrum sensing has 

been proposed. A CS algorithm using basis pursuit approach can make wide-band 

spectrum sensing more efficient compared to conventional channel-by-channel scanning. 

The delay in detection of primary transmission can raise the risk of interference caused to 

the licensed users of the spectrum. This delay is reduced by reducing the size of the 

sensing matrix by using the feature of random coefficients selection of sensing matrix. 

Zero columns distributed in the sensing matrix consequently reduce the sensing time 

aperture as well as the complexity of the CS algorithm. 

In chapter 4, the application of CS for spectrum sensing extends to a more practical 

scenario: i.e., where the signal of interest has undergone fading. By appropriately 



76 

 

modeling the prior distribution according to the fading distribution, an improvement in 

the MSE can be sought. Appropriate prior for Rayleigh faded sparse signal was derived 

and then used in the Bayesian Compressive Sensing framework. Simulation results show 

that the usage of appropriate prior distribution for faded sparse signal can result in an 

improvement in MSE. 

6.2 Future Work 

The CS algorithm suggested in chapter 3, to identify the occupied channels in the wide-

band spectrum with reduced delay, can be further investigated to numerically analyze the 

threshold level up to which number of time samples can be reduced.  

The BCS algorithm proposed in chapter 4, has been modified in terms of prior model 

selection for signal propagation in Rayleigh fading channels. This approach can be 

further extended to other practical channels like Rician fading channels, Dispersive 

fading channels etc. 

Moreover, the determination of the sparsity level of the wide-band spectrum is another 

area which can be investigated to improve the efficiency of the CS algorithm. 

In this study, the CR application for wide-band spectrum sensing and detection via CS 

has been considered. However this work can be applied to other applications as well.  
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