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Chapter 1
Introduction

Electricity is all around us. Whether we are at home or in the
workplace, in a busy metropolis or in a remote outpost,
electricity, whether directly or indirectly, enables almost
every-thing we do. Electricity is in many respects an ideal
means of transmitting and delivering energy, being controllable,
safe, economic, efficient and relatively unobtrusive.

Claes Rytoft,
ABB Group Senior Vice President

1.1 Background

The entire electricity system is undergoing a dramatic transformation driven mainly
by challenging environmental and economic targets set out by government policies
worldwide [1–3]. The general consensus about the necessary changes towards clean
energies has fostered growth in renewable generation through different incentives
programs. The restructuring process aims at “decarbonizing” the electricity sector
while increasing requirements in terms of quality of supply and making electricity
more affordable to end customers. In contrast to traditional power systems, in which
a small number of centralized plants connected at the transmission level supplied the
surrounding consumption areas, today we are witnessing a massive proliferation of
renewable generation at the distribution side. Since renewable power plants, such as
solar and wind, are typically distributed over many locations and even integrated in
consumers’ premises, a given node can arbitrarily change from being a passive point
to an active one. In this way, the standard model of one-way (downstream) power
flows, where generators are controlled to follow demand levels, is giving way to mul-
tiple andmore complex interactions resulting in bi-directional (both downstream and
upstream) flows [4, 5]. However, the transition from passive to active networks seems
to follow the “installing” rather than the “integrating” policy. This massive and unco-

© Springer Nature Switzerland AG 2019
D. Zarrilli, Integration of Low Carbon Technologies in Smart Grids,
Springer Theses, https://doi.org/10.1007/978-3-319-98358-5_1
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2 1 Introduction

ordinated penetration of such distributed energy resources is completely changing
the way the electricity grid works and it is bringing serious problem to network oper-
ators. In fact, the intrinsic variability of renewable generation is posing new stress to
system balancing, with the risk of curtailing clean energy at times of system conges-
tions [6, 7]. As a consequence, prices in day-ahead and especially balancing markets
are becoming more volatile, and renewable power producers are being called to take
part in the intrinsic cost of intermittent production. This may hinder the benefits
introduced by renewables, reduce the overall efficiency as well as the expectations
of cheaper electricity prices. It is straightforward that these changes are affecting
the whole electricity system, from the hardware of the network infrastructure to the
way it is operated. In this light, to meet this challenge, a new technical architecture
along with different market mechanisms is required in the future scenario that will
enable smart grids to accommodate the intermittency and the relevant uncertainty of
renewable generation and become the means for cost efficient and sustainable energy
supply systems [8, 9]. For example, the energy network balancing can no longer rely
on supply strictly following demand approach, but must be accomplished by involv-
ing both generation and demand. In recent years, several methodologies that allow
active participation of consumers in power system operation have drawn more and
more attention [10]. However, this requires advanced monitoring, communication
and control systems across the entire power system chain.

1.2 Thesis Contribution and Organization

Power system operators are constantly under pressure to reduce line losses and peak
demand, better support feeder voltage and power flows, and increase efficiency and
power quality to end consumers. Furthermore, the cost of traditional grid reinforce-
ment, as well as environmental considerations, has driven them to findmore effective
ways to meet future network requirements. In this context, the thesis provides differ-
ent opportunities and ideas to help face some of these challenges. In particular the
work is focused on the effective integration of distributed low carbon technologies
in the grid of the future. Planning and operation problems for different clean solu-
tions, such as market bidding strategies for intermittent energy producers, demand
side management algorithms for smart buildings, and electrical storage options for
network operators, have been studied for facilitating the integration of renewable
energy sources (RES) in the power network.

Most relevant decisions to bemade by network agentswithin a fast-moving energy
environment involve copying with large quantities of data and a significant level of
uncertainty. For example, future renewable electricity production is unknown when
producers have to submit their offers to the market. In a similar fashion, at the time of
procuring energy to be supplied, retailers do not know their consumers’ demand. In
this respect, it is fundamental to properly address the uncertainty involved and exploit
all the available information.Additionally, large and complex optimization problems,
which are generally prone to numerical issues or simply take too long to converge, are



1.2 Thesis Contribution and Organization 3

needed to be solved to make informed and economic decisions. In fact, more often
than not, planning and control problems in power systems are formulated as mixed-
integer non-linear programs involving a huge number of optimization variables and
physical constraints. It would be enough to mention the decision-making process
required for the optimal configuration of energy storage devices in the electrical
network. The full detailed formulation is composed of an AC (non-linear) optimal
power flow (OPF) with the addition of integer variables. In such a situation, ad-hoc
simplifications would be necessary when approaching realistic applications, while
maintaining the accuracy of the solution at an acceptable degree.

The interdisciplinary research presented in the next chapters lies at the inter-
section of power systems, optimization techniques and controls. This work further
provides a number of optimization tools employing stochastic models and differ-
ent physical-based heuristics that are amenable to fast and robust computation. To
that effect, appropriate linear or convex formulations are embedded into most of
the proposed models, which involve market/system operators, renewable producers
and consumers. Particular attention is paid to electric power systems at large extent,
including spot electricity markets and smart buildings, with a large integration of
non-dispatchable sources, such as wind and solar power plants, and a strong need
for demand energy management. The thesis is organized as follows.

Chapter 2 addresses the problem of determining the optimal day-ahead bidding
strategy for a wind power producer (WPP) by exploiting wind speed forecasts pro-
vided by a meteorological service. In the considered framework, WPP is called to
take part in the responsibility of system operation by providing day-ahead generation
profiles and undergoing penalties in case of deviations from the schedule. Penalties
are applied only if the delivered hourly energy deviates from the schedulemore than a
given relative tolerance. The optimal solution is obtained analytically by formulating
and solving a stochastic optimization problem aiming at maximizing the expected
profit. The proposed approach consists in exploiting wind speed forecasts to classify
the next day into one of several predetermined classes, and then selecting the optimal
solution derived for each class.

Chapter 3 deals with the problem of optimizing the operation of a building heating
system under the hypothesis that the building is included as an active consumer in
a demand response (DR) program. DR requests to the building operational system
come from an external market player or a grid operator. Requests assume the form
of price-volume signals specifying a maximum volume of energy to be consumed
during a given time slot and a monetary reward assigned to the participant in case
the conditions are fulfilled. A receding horizon control approach is adopted for the
minimization of the energy bill, by exploiting a simplified model of the building.
Since the resulting optimization problem is a mixed integer linear program which
turns out to be manageable only for buildings with very few zones, a heuristic is
devised to make the technique applicable to problems of practical size.

Chapter 4 discusses the role of energy storage system (ESS) in preventing over-
and undervoltages in low voltage (LV) distribution networks. Both the problems of
finding the optimal configuration (number, location and size) and computing the real-
time control policy of such distributed devices, are presented. A heuristic strategy
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based on the network voltage sensitivity analysis is proposed to identify the most
effective buseswhere to install a givennumber ofESSs,while circumventing the com-
binatorial nature of the problem. For fixed storage locations, the multi-period OPF
framework is adopted to formulate the sizing problem, for whose solution convex
relaxations based on semidefinite programming (SDP) are exploited. Uncertainties
in the storage sizing decision problem due to stochastic generation and demand, are
accounted for via a scenario approach which considers different realizations of the
demand and generation profiles. The final choice of the most suitable storage allo-
cation is done by minimizing a total configuration cost, which takes into account
the number of storage devices, their total installed capacity and average network
losses. A voltage control scheme based on a receding horizon approach to optimally
operate the ESSs installed in the network is also developed. The essential feature of
the proposed control approach lies in the very limited information needed to predict
possible voltage problems, and to compute the ESS control policy making it possible
to counteract them in advance.

Chapter 5 draws a summary of the thesis contribution and a presents a brief
discussion of the achieved results and future research directions.
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Chapter 2
Bidding Renewable Energy
in the Electricity Market

In this chapter the problem of designing optimal bidding strategies for renewable
power producers exploiting weather forecasts is addressed. The material of this
chapter is mainly based on [1, 2].

2.1 Introduction

In recent years, the interest in generating power fromRESs has grown rapidly, pushed
by the expected benefits both in environmental and economic terms [3]. On the
other hand, due to their intrinsic intermittency and variability, RES integration in the
grid is causing serious problems to transmission and distribution system operators
[4]. One possible way to mitigate the uncertainty of RES generation is to require
that producers provide day-ahead generation profiles, and to apply penalties if the
delivered energy over a specified time period deviates from the schedule more than a
given relative tolerance. This mechanism involves RES producers in the intrinsic risk
of intermittent production and calls for suitable strategies enabling them tomaximize
their expected profit in front of generation uncertainty. Indeed, depending on the
structure of the penalties, the strategy which maximizes the expected profit for the
producer could not correspond to merely offering the generation forecasts obtained
with the objective to minimize the forecasting errors. In this chapter, the above
problem for the case of WPPs is addressed. It is assumed that a WPP makes bids on
a day-ahead market, and these bids represent a delivery obligation for it. Therefore,
the problem of optimizing the day-ahead generation profiles can be seen as the
problemof optimizing thebidsmadeon themarket. Theproblemof designingoptimal
WPP bidding strategies has been addressed in a considerable amount of papers in
the last decade. Several contributions focus on advanced techniques for obtaining
highly reliable wind point predictions, and relate the reliability of the forecasts to the
regulation cost of imbalances (see, e.g., [5, 6]). Other contributions, such as [7–10],
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6 2 Bidding Renewable Energy in the Electricity Market

embed the bidding strategy within a stochastic framework, where the sources of
randomness, i.e., wind variability and market prices, are blended together. Then, a
stochastic optimization approach is adopted to derive optimal contract volumes for
the WPP. An excellent overview of these different approaches is provided in [8],
including a comparison between techniques using wind point forecasts and those
using the wind power probability density function (pdf ) of the generation plant. In
[9, 10] the stochastic approach is analyzed in the two distinct cases in which the
imbalance price statistics is assumed independent or not of the weather statistics.
Optimal bids are derived in [10] under the assumption of statistical independence,
and the role played by a possibly co-located thermal generator or storage device
is analyzed. In [9] a general approach is taken by explicitly considering statistical
dependence of wind and imbalance prices. Alternative approaches, such as [11–13],
require the knowledge of a large number of possible scenarios related to wind out-
turn uncertainty. In [12, 14], either a risk sensitive term is introduced in the cost
function to model WPP risk-averse preferences (VaR or CVaR), or a utility function
is adopted to suitably shape the cost function. The role of an ESS in increasing
reliability of bids and mitigating the financial risks of the WPP has been investigated
in [15]. Finally, a number of papers deals with other problems relevant to wind power
bidding strategies, such as coordination strategies of wind generation and reserve or
storage (see, e.g., [16] and references therein), cost of wind generation forecast errors
[17] and advanced wind power forecasting [18, 19].

The present contribution can be positioned in the line of research adopting stochas-
tic models for optimizing the bids of wind power in a day-ahead market. In this
context, the work exploits the basic optimal bidding strategy introduced in [8, 10],
with the aim of extending the results in two directions. The first direction is to derive
analytically the optimal bidding strategy for the case with penalties applied only
outside tolerance bands around the nominal bidding profile. The solution is based on
the knowledge of the prior wind energy cumulative distribution function (cdf ) of the
generation plant. The second direction consists in investigating the use of weather
forecasts to further enhance the bidding strategy. The idea is to use wind speed fore-
casts to classify the next day (e.g., windy or windless day), and then to replace the
wind energy unconditional cdf with the “conditional” cdf of the selected class. It is
worthwhile to notice that the introduction of the classifier is in many respects similar
to the adoption of scenarios in the complicated setting where the dependence of wind
and imbalance prices cannot be neglected. In the proposed approach, the problem is
simplified by adopting a family of possible scenarios parameterized according to the
structure of the classifier. In turn, the classifier parameters are inferred from historical
data. As a further contribution of this chapter, a parametric model for the probabil-
ity distribution of the energy generated by a wind power plant is proposed. The
parametric model is obtained by mixing a beta distribution and a truncated gamma
distribution. Bidding strategies for solar photovoltaic (PV) power producers, dealing
with non-stationarity of solar PV energy distribution, are proposed in [20, 21].

The chapter is organized as follows. In Sect. 2.2 the considered bidding problem
is formulated and its optimal solution is derived. Section2.3 proposes a parametric
model for the wind energy distribution. The use of wind speed forecasts to enhance
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the performance of the bidding strategy is investigated in Sect. 2.4. Section2.5 reports
experimental results and, finally, conclusions are drawn in Sect. 2.6.

2.2 Optimal Bidding Strategy

The following market setup, which extends the ones in [8, 10], is considered. A
WPP participates in a spot market (for example, a day-ahead market) where it offers
ex-ante the hourly energy blocks bt [kWh], t = 1, . . . , 24. The WPP is assumed to
have zero marginal cost of production and to be a price taker in the spot market.
This is motivated by the fact that the individual WPP capacity is negligible relative
to the whole market [10]. For the sake of simplicity, it is assumed that the bid bt
is not curtailed at market closure, and represents a delivery obligation for the WPP.
Let et [kWh] be the energy actually generated by the wind power plant during the
hour t of the day. The WPP is subject to ex-post financial penalties for deviations
of et from bt which exceed predefined thresholds. In this section, the problem of
optimizing the bids bt in the above scenario is formulated. The optimal solution is
then derived in terms of the wind energy statistics and the imbalance penalties. Note
that these penalties depend on the considered regulation mechanism. For instance,
they could be a given fraction of the market clearing price, or follow a more complex
function [8]. However, the presented results and analysis do not rely on any specific
assumption about the regulation mechanism.

Assume that λt [e/kWh] is the clearing price in the spot market for the hour
t of the day. Given σ ∈ [0, 1], this price is used to fully reward the portion of et
which does not exceed the upper bound (1 + σ)bt above the nominal contract bt .
The relative tolerance σ is assumed to be fixed by existing regulation. In case et
is smaller than (1 − σ)bt , the undelivered quantity (1 − σ)bt − et is penalized with
price λ−

t [e/kWh]. Vice versa, if et is greater than (1 + σ)bt , the surplus quantity
et − (1 + σ)bt is remunerated with price λt − λ+

t , where λ+
t [e/kWh] is the penalty

applied with respect to the settlement price λt . It follows that the net hourly profit
for the WPP amounts to

�(bt, et) = λtet − λ−
t max{(1 − σ)bt − et, 0}

− λ+
t max{et − (1 + σ)bt, 0}. (2.1)

Remark 1 Though the market mechanism described so far introduces penalties in
case of deviations from the offered contract (λ−

t ≥ 0, λ+
t ≥ 0), the formulation (2.1)

also fits to the case when deviations are actually rewarded. This is obtained by
setting λ−

t < 0 or λ+
t < 0. For instance, a regulatory framework introduced in Italy

at the beginning of 2013 assigned a reward whenever the WPP imbalance was of
the opposite sign with respect to the imbalance at regional level. In this case, even
though the WPP did not comply with its commitment, it was nevertheless rewarded
because it actually helped the system.
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Remark 2 Notice that, if 0 ≤ λ+
t ≤ λt , the surplus quantity et − (1 + σ)bt is still

remunerated with nonnegative price. That is, the WPP still gains from delivering the
surplus energy. On the other hand, if λ+

t > λt , delivery of the energy surplus actually
decreases the net profit for the WPP. In practice, such a scenario could be avoided
provided that the WPP has curtailment capabilities.

Remark 3 The profit in (2.1) can be seen as a generalization of that considered in
[10, 22], which takes the form

˜�(bt, et) = λtbt − qt max{bt − et, 0}
− pt max{et − bt, 0}. (2.2)

Indeed, when σ = 0, i.e., there is no tolerance interval around the nominal bid, the
profits in (2.1) and (2.2) coincide by selecting λ−

t = qt − λt and λ+
t = pt + λt .

The profit in (2.1) is a stochastic quantity due to the uncertainty on the generated
energy et . Therefore, the considered optimal bidding problem consists in determining
the bid b∗

t maximizing the expected profit J (bt) = E[�(bt, et)], i.e.,

b∗
t = arg max

bt∈[0,e]
J (bt), (2.3)

where E[·] denotes expectation with respect to the probability measure of et , and e
[kWh] is the maximum amount of energy that the wind power plant can produce in
one hour.

The solution to the optimization problem (2.3) is derived next. To this aim, let
Ft(ξ) = Pr(et ≤ ξ) be the cdf of the random variable et , and ft(ξ) be the correspond-
ing pdf. In the following, it is assumed that Ft(ξ) is differentiable, so that ft(ξ) exists
for all ξ ∈ (0, e). In order to characterize the optimal bid b∗

t , the following partition
of R2, which is shown in Fig. 2.1, is introduced:

R1 = {

(λ−,λ+) ∈ R
2 : λ+ ≤ 0, μtλ

+ − gt(σ)λ− ≤ 0
}

R2 = {

(λ−,λ+) ∈ R
2 : λ− > 0, λ+ > 0

}

R3 = {

(λ−,λ+) ∈ R
2 : λ− ≤ 0, μtλ

+ − gt(σ)λ− > 0
}

,

(2.4)

where μt = E[et] and

gt(σ) =
∫ (1−σ)e

0
((1 − σ)e − ξ) ft(ξ)dξ. (2.5)

Proposition 1 The solution to (2.3) is

b∗
t =

⎧

⎪

⎨

⎪

⎩

0 if (λ−
t ,λ+

t ) ∈ R1

b̃∗
t if (λ−

t ,λ+
t ) ∈ R2

e if (λ−
t ,λ+

t ) ∈ R3,

(2.6)
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Fig. 2.1 Partition of the
(λ−,λ+)-plane and optimal
solution of problem (2.3) in
each region of the partition

λ+

λ−

R1

R2R3

b∗
t = 0

b∗
t = b̃∗

tb∗
t = e

μtλ
+ − gt(σ)λ− = 0

where R1, R2 and R3 are defined in (2.4)–(2.5) and b̃∗
t satisfies the equation

(1 − ϕt)(1−σ)Ft
(

(1−σ)b̃∗
t

) = ϕt(1+σ)
(

1 − Ft
(

(1+σ)b̃∗
t

)

)

(2.7)

with ϕt given by

ϕt = λ+
t

λ−
t + λ+

t
. (2.8)

Proof from the definition of J (bt) one gets

J (bt) = λtμt − λ−
t

∫ (1−σ)bt

0

(

(1 − σ)bt − ξ
)

ft(ξ)dξ

− λ+
t

∫ e

(1+σ)bt

(

ξ − (1 + σ)bt
)

ft(ξ)dξ.

(2.9)

Under regularity assumptions on the pdf ft(ξ), the application of the Leibniz integral
rule yields

J ′(bt) = − λ−
t (1−σ)Ft ((1−σ)bt)

+ λ+
t (1+σ)

(

1 − Ft ((1+σ)bt)
)

.
(2.10)

SinceFt(·) is differentiable, J ′(·) is a continuous function.Besides, the second deriva-
tive of J (·) takes on the form

J ′′(bt) = − λ−
t (1−σ)2ft

(

(1−σ)b∗
t

)

− λ+
t (1+σ)2ft

(

(1+σ)b∗
t

)

.
(2.11)

In the following, the optimal solution is derived separately for each quadrant of the
(λ−

t ,λ+)-plane.
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• λ−
t > 0, λ+

t > 0.
From (2.10) it follows that J ′(0) ≥ 0 and J ′(e) ≤ 0. Since J ′(·) is continuous,
there exists a stationary point x̄ ∈ [0, e], i.e., J ′(x̄) = 0. Moreover, from (2.11),
J (·) is concave. Therefore, J (·) attains its maximum over [0, e] at x̄, i.e., b∗

t = x̄.
Since J ′(x̄) = 0, condition (2.7) follows easily from (2.10) and λ+

t = ϕt

1−ϕt
λ−
t .

• λ−
t ≤ 0, λ+

t > 0.
From (2.10) it follows that J ′(x) ≥ 0, ∀x ∈ [0, e], and hence b∗

t = e.
• λ−

t ≤ 0, λ+
t ≤ 0.

From (2.11) it follows that J ′′(x) ≥ 0, ∀x ∈ [0, e], and hence J (·) is convex. This
implies that the optimum is attained at one of the extrema of the feasible interval,
i.e.,

b∗
t =

{

0 if J (0) ≥ J (e)

e otherwise.
(2.12)

From (2.9), one gets J (0) = (λt − λ+
t )μt and J (e) = λtμt − gt(σ)λ−

t , and hence

b∗
t =

{

0 if μtλ
+
t − gt(σ)λ−

t ≤ 0,

e otherwise.
(2.13)

Notice that, from (2.5), gt(σ) ≥ 0.
• λ−

t > 0, λ+
t ≤ 0.

In this case, from (2.10) it follows that J ′(x) ≤ 0, ∀x ∈ [0, e], and hence b∗
t = 0.

The thesis follows from the expression of the partition (2.4). �

Given the monotonicity of the first derivative of J (bt) for (λ−
t ,λ+

t ) ∈ R2, numer-
ical computation of the optimal contract b̃∗

t in (2.7) can be performed very efficiently
through bisection. Note that the optimal bidding strategy (2.6) depends on the knowl-
edge of the pair (λ−

t ,λ+
t ). If λ−

t and λ+
t are stochastic variables independent of et ,

Proposition 1 still holds by replacing λ−
t and λ+

t in (2.6) with the corresponding
expected values. In practice, if λ−

t and λ+
t are not known beforehand, one should

replace them with suitable forecasts.
The following corollary of Proposition 1 establishes the connection between the

presented result for σ = 0 and the analogous result found in [10] (see Remark 3).

Corollary 1 When σ = 0, the optimality condition (2.7) boils down to Ft(b̃∗
t ) = ϕt .

2.3 Parametric Models of Wind Energy Distribution

An important issue arising from Proposition 1 regards the knowledge of the cdf
Ft(·), or the pdf ft(·), of the generated energy et , to be used for the computation of the
optimal bid b∗

t when (λ−
t ,λ+

t ) ∈ R2. In real applications, these functions are typically
estimated from historical data. Computing the empirical cdf s is the simplest choice.
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Fig. 2.2 Empirical cdf
(solid) of the random
variable e20 for a 800 kW
wind turbine and
corresponding BGM model
(dashed) estimated from
data. The two curves are in
practice overlapping
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Nevertheless, a parametric model for the wind energy statistics is more attractive and
desirable for several reasons. The main motivation consists in the compression of
the information in few parameters. Differences in the parameters may enable a better
understanding of the wind energy behavior in different time frames, for instance
by characterizing the statistics in terms of stationarity or cyclostationarity of the
underlying stochastic process. Moreover, analysis of the evolution of the empirical
cdf s with time clearly shows the presence of non-stationary features. In this respect, a
parametric model allows one to exploit any of the large variety of parameter tracking
techniques to follow the process changes.

A common feature emerging from the analysis of generation data sets from dif-
ferent wind plants, is that the cdf of the hourly generated energy et is discontinuous
at ξ = 0 and ξ = e (see Fig. 2.2 for an example of empirical cdf ). Discontinuity at
ξ = 0 is motivated by the fact that wind turbines do not generate usable power below
the cut-in and above the cut-out wind speed, while discontinuity at ξ = e is present
becausewind turbines generate nominal power between rated and cut-out wind speed
(see Fig. 2.3 for a typical energy curve of a wind turbine). In view of this problem,
a statistical model containing both discrete and continuous components turns out to
be appropriate to describe the pdf of the process:

f (ξ) = f D(ξ) + f C(ξ). (2.14)

The discrete component f D(ξ) is the sum of two scaled and shifted Dirac delta
functions at discontinuity points ξ = 0 and ξ = e, i.e.,

f D(ξ) = κ0δ(ξ) + κ1δ(ξ − e), (2.15)
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Fig. 2.3 Hourly generated
energy versus hourly average
wind speed for a 800 kW
wind turbine (red points),
and model (2.21) fitted to the
data (solid blue curve)
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where κ0 and κ1 are probability masses, while f C(ξ) is a continuous nonnegative
functionwith support (0, e) such that

∫ e
0 f C(ξ)dξ = 1 − κ0 − κ1. Given a data set for

the random variable et , parameters κ0 and κ1 can be estimated as relative frequencies
of data at ξ = 0 and ξ = e, respectively, while the continuous part of the pdf is
expressed as

f C(ξ) = κf R(ξ), (2.16)

where κ = 1 − κ0 − κ1 and f R(ξ) is a pdf estimated from the subset of data in
the open interval (0, e). Concerning the choice of the structure for the pdf f R(ξ), a
mixture of a beta pdf and a truncated gamma pdf is introduced next.

2.3.1 Beta-Gamma Mixture

The beta distribution is a family of continuous probability distributions with finite
support, and is therefore suitable to model random variables assuming values in
bounded intervals. In the case of interest, the beta pdf over the interval (0, e) takes
the form

fB(ξ) =
{

κBξα−1(e − ξ)β−1 if 0 < ξ < e
0 otherwise,

(2.17)

with α,β > 0 the parameters that control the shape of the distribution, and κB a
normalizing constant. The gamma distribution is another widely used family of con-
tinuous probability distributions. Since the support of the gamma distribution is on
(0,+∞), a truncated version of the gamma pdf is considered:

fG(ξ) =
{

κGξk−1e−ξ/θ if 0 < ξ < e
0 otherwise,

(2.18)
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with k > 0 a shape parameter, θ > 0 a scale parameter andκG a normalizing constant.
In this chapter, the beta-gamma (BGM) pdf is defined as the mixture of a beta pdf
and a truncated gamma pdf with mixing parameter ζ such that 0 ≤ ζ ≤ 1:

fBGM(ξ) = ζfB(ξ) + (1 − ζ)fG(ξ). (2.19)

Let the BGM model be the cdf obtained by integrating the discrete-continuous pdf
(2.14)–(2.16), where f R(ξ) in (2.16) takes the form of a BGM pdf. Maximum like-
lihood parameter estimation, performed over several data sets of hourly generated
energy et , has shown that the BGM model is able to fit the empirical distributions
of et with higher accuracy than using the unmixed beta and truncated gamma pdf s
in place of f R(ξ). For illustration purposes, Fig. 2.2 shows the very good fit of an
empirical wind energy cdf obtained using the BGMmodel. Complete results for the
800 kW wind turbine of this example are presented in Sect. 2.5.2.

2.4 Exploiting Wind Speed Forecasts

In Sect. 2.2 contracts were determined assuming only the knowledge of the prior
wind energy statistics. In this section, a procedure to exploit day-ahead forecasts
v̂t of hourly average wind speed (e.g., provided by a meteorological service) in
the bidding strategy is investigated. The most intuitive approach would be to offer
the predicted wind energy profile computed using wind speed forecasts. However,
offering wind energy forecasts may lead to unsatisfactory performance for the WPP.
With this motivation, an alternative approach which combines classification methods
based on machine learning techniques and the optimal bidding strategy of Sect. 2.2
is proposed. Wind speed forecasts are exploited to classify the day of the bidding
into one of several predetermined classes. Then, bids are represented by the optimal
contracts computed as in Proposition 1 for the selected class.

2.4.1 Offering Wind Energy Forecasts

Wind energy forecasting is a challenging problem which has recently attracted
increasing attention from researchers. The interested reader is referred to the sur-
vey paper [19] for a review and categorization of different approaches. In many
cases, the focus is on wind speed forecasts, which are then converted to power fore-
casts through the power curve of the wind turbine. This is the approach taken as a
reference for the comparisons of different bidding strategies in Sect. 2.5. By plotting
the hourly energy ξ generated by a wind turbine versus the hourly average wind
speed v, it can be observed that the plotted points can be well approximated by a
sigmoid function saturated below at 0 and above at e. There exist several expressions
for sigmoid functions. The one considered in this chapter has the following form:
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ES(v) = ω2 + (ω1 − ω2)
(

1 + e
v−v0
ω3

)ω4

, (2.20)

where ω1 > 0, ω2 < 0, ω3 < 0, ω4 < 0 and v0 > 0 represent the parameters of the
sigmoid function. By using (2.20), the wind energy model can be expressed as:

E(v) =
{

min(max(0,ES(v)), e) if v ≤ voff
0 otherwise,

(2.21)

where voff is a threshold which takes into account high wind speed shutdown of the
wind turbine. The parameters ω1, ω2, ω3, ω4, v0 and voff are typically estimated from
recorded measurements by solving a nonlinear least squares problem. An example
is reported in Fig. 2.3, which shows the model (2.21) fitted to the data of a 800 kW
wind turbine.

If forecasts of hourly average wind speed v̂t are available, hourly energy bids can
be easily formed by offering the wind energy forecasts computed by substituting v̂t
in (2.21), i.e.,

bt = E(v̂t), t = 1, . . . , 24. (2.22)

2.4.2 Day Classification Based on Wind Speed Forecasts

The bidding strategy based on offering wind energy forecasts has a number of draw-
backs. First, inaccurate wind speed forecasts may cause unacceptable errors when
predicting wind energy through (2.21). Second, andmost importantly, the bids (2.22)
do not take into account the penalties λ−

t and λ+
t . This implies that bidding these

forecasts may not be the best offer one can do [8]. In order to mitigate the effects of
inaccurate wind speed forecasts and, simultaneously, take explicitly into account the
imbalance penalties, in this chapter the idea to combine the optimal bidding strategy
described in Sect. 2.2 with a suitable classification strategy based onwind speed fore-
casts is proposed. Roughly speaking, the proposed approach consists in training a
classifier which maps a day (represented by the corresponding wind speed forecasts)
to one of several classes associated to different levels of daily generated energy.
Then, the bids made for every hour of that day are the optimal contracts computed
as in Proposition 1, but using the conditional wind energy cdf of the corresponding
class.

Group the hours of one day into g sets Di = {ai−1 + 1, . . . , ai}, i = 1, . . . , g,
where the integers ai ∈ N are such that

0 = a0 < a1 < · · · < ag = 24.

To ease the notation, it is assumed that the setsDi have the same cardinality, i.e., they
contain the same number h of hours. Denote by emax = he an upper bound on the
amount of energy that the wind power plant generates during the hours associated to
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any set Di. The energy interval [0, emax) is then partitioned into � contiguous, non
overlapping intervals [Ej−1, Ej), j = 1, . . . , �, such that

0 = E0 < E1 < · · · < E� = emax.

Now, each day can be classified according to the amount of energy generated during
each period Di. For example, consider the energy generated during “morning” and
“evening” hours (g = 2, a1 = 12). If only two levels of generated energy (� = 2)
are considered, e.g., “high” (↑) and “low” (↓) generation, then each day belongs
to one of four possible classes {(↓,↓), (↓,↑), (↑,↓), (↑,↑)} where the pair (X ,Y )

denotes the class of days having a X generation level during the first 12 h and a Y
generation level during the second 12 h. In general, given g sets of hours and � levels
of energy generation, it is possible to define a family of �g classes C = {Cj1,...,jg , ji =
1, . . . , �, i = 1, . . . , g} such that a day d belongs to the class Cj1,...,jg , if

ai
∑

t=ai−1+1

edt ∈ [Eji−1,Eji ), i = 1, . . . , g, (2.23)

where edt denotes the wind energy generated during the hour t of day d .
The energy delivered in each period Di can be computed only a posteriori. Since

the bids must be made in advance, day d is classified a priori on the basis of the
correspondingwind speed forecasts v̂d

t . To this aim, an automatic classifier is adopted,
which takes as inputs the wind speed forecasts and returns the class the next day will
likely belong to. The automatic classifier is trained using a training set created from
past data of generated energy and wind speed forecasts. First, each day d of the
training set is assigned to the corresponding true class Cd ∈ C on the basis of the
actual generated energy. Then, a g-dimensional feature vector representative of the
considered day is built from wind speed forecasts. Features are selected as a function
of the cube of the wind speed forecasts. Specifically, given the wind speed forecasts
v̂d
t for each hour t of day d , the feature vector f d = [f d1 , . . . , f dg ]′ ∈ F ⊆ R

g is
computed, where

f di =
ai

∑

t=ai−1+1

(

v̂d
t

)3
, i = 1, . . . , g. (2.24)

This choice is motivated by the fact that the power that can be extracted from the
wind is proportional to the cube of the wind speed. At this point, the training set

T =
{(

Cd
i1,...,ig , f d

)

, d = 1, . . . ,DT

}

(2.25)

contains the pairs (class, feature) for each day d , where Cd
i1,...,ig denotes the class that

day d belongs to, and DT is the cardinality of the training set. The set T is used to
train a classifier � : F → C which, given a feature f ∈ F , returns a class �(f ) ∈ C.
Several approaches can be adopted to identify the function � [23]. In this work, the
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Fig. 2.4 Block scheme of the proposed bidding procedure. It consists of two main parts: “Initial-
ization” and “Daily operation”. At initialization, the conditional cdf s Ft(·|Cj1...jg ) and the classifier
�(·) are estimated based on historical data. During daily operation, at day d − 1 features f d for
day d are first computed from day-ahead wind speed forecasts v̂dt according to (2.24). Day d is
then associated to the class Cd = �(f d ), and the bids bdt are computed given the penalties λ−,d

t and
λ+,d
t (or available forecasts), and the conditional cdf s Ft(·|Cd ), according to Proposition 1

Multicategory Robust Linear Programming (MRLP) approach described in [24] is
adopted.

Having the classifier � available, the last step is to determine the optimal bidding
strategy for each of the classes Ci1,...,ig ∈ C. This boils down to substituting the cdf
Ft(ξ) in (2.7) with the conditional cdf Ft(ξ | Ci1,...,ig ) = Pr(et ≤ ξ | Ci1,...,ig ) for each
class Ci1,...,ig , where Pr(· | Ci1,...,ig ) means that the statistics is restricted only to those
days belonging to the class Ci1,...,ig .

The block scheme of the proposed bidding procedure exploiting wind speed fore-
casts is reported in Fig. 2.4. Note that, to suitably select the classification parameters
g, �, ai and Ej, one has to take into account the overall performance of the bidding
procedure in terms of the average daily profit. For instance, too many classes may
cause poor estimation of conditional cdf s due to small cardinality of data belong-
ing to each class. On the other hand, too few classes may not lead to significant
improvements as compared to the bidding strategy of Proposition 1 (corresponding
to g = � = 1).

Remark 4 The bidding strategy presented in Sect. 2.2, as well as the classification
method developed in Sect. 2.4 can be extended to different renewable power produc-
ers. In fact, the bidding process for PVpower producers, dealingwith non-stationarity
of solar PV energy distribution, has been addressed in [20, 21].
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2.5 Simulated Results

In this section, the proposed bidding strategies are validated using real data from a
wind turbine installed in Southern Italy. Let OBσ denote the optimal bidding strategy
of Proposition 1, where OB stands for optimization-based and σ refers to the use of
the tolerance threshold. The basic bidding strategy in [10], which is obtained from
Corollary 1, is denoted by OB. The bidding strategy described in Sect. 2.4.1, which
uses wind speed forecasts (WF) along with the plant energy curve (PC), is denoted
by WF+PC. Finally, the bidding strategy proposed in Sect. 2.4.2, which combines
the use of wind speed forecasts for day classification and Proposition 1, is denoted
by WF+OBσ.

2.5.1 Data Set

Awind turbine of 800 kW nominal power is considered. Hence, e = 800 kWh. The
following data are available:

• generated energy et ;
• wind speed vt ;
• day-ahead wind speed forecasts v̂t .

The time interval spanned by the data set of generated energy ranges from March
2010 toApril 2012. Real and forecastwind speeds are available fromSeptember 2011
to April 2012. The data set is split into a training set (from March 2010 to January
2012) and a validation set, containing the remaining data. The energy price λt is the
clearing price of the Italian day-ahead electricity market, whose time series is public
[25]. Penalties λ−

t and λ+
t are randomly simulated under two different scenarios:

• Scenario I: λ−
t /λt ∼ U(0.1, 0.3), λ+

t /λt ∼ U(0.4, 0.6),
• Scenario II: λ−

t /λt ∼ U(0.4, 0.6), λ+
t /λt ∼ U(0.8, 1),

where U(a, b) denotes the uniform distribution over the interval [a, b] and the nota-
tion∼means that a randomvariable follows the specifieddistribution.Note that larger
penalties are applied in Scenario II. Moreover, in both scenarios, (λ−

t ,λ+
t ) ∈ R2, and

therefore the bidding problem consists in the non-trivial case of Proposition 1.

2.5.2 Estimation of the Wind Power Distributions

The distributions Ft(ξ) of the generated energy et are modeled through the BGM
model, whose parameters are estimated using the whole training set as described
in Sect. 2.3. In particular, given generation data in the open interval (0, e) for the
hour t of the day, the parameters α, β, k, θ and ζ of the BGM pdf (2.17)–(2.19)
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Fig. 2.5 KL divergence of
the beta (solid red), truncated
gamma (dash-dotted black)
and BGM (dashed blue)
distributions from the
empirical distribution
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are estimated using maximum likelihood. For comparison purposes, also a beta pdf
(2.17) and a truncated gamma pdf (2.18) are estimated over the same data using
maximum likelihood. Then, the corresponding cdf s are obtained by integrating the
pdf s.

The comparison of the estimated distributions is performed by computing the
Kullback-Leibler (KL) divergence of the BGM, beta and truncated gamma distri-
butions from the empirical distribution for all hours of the day. The KL divergence
is a well-known, non-symmetric measure of the difference between two probability
distributions F and G. For continuous and differentiable distributions, the KL diver-
gence of G from F , where F typically represents the “true” distribution and G is an
approximation of F , is defined as

DKL(F‖G) =
∫ +∞

−∞
f (x) ln

f (x)

g(x)
dx, (2.26)

where f and g denote the pdf s of F andG, respectively. Values of the KL-divergence
from the empirical distribution are plotted in Fig. 2.5. It can be observed that the
KL divergence of the BGM distribution is always significantly below the KL diver-
gence of the other two distributions.

2.5.3 Computation of the Bids

For the bidding strategies OB and OBσ, the whole training set is used to estimate the
distributions Ft(ξ) of the generated energy et . Then, for given penalties (λ−

t ,λ+
t ) ∈

R2 and tolerance σ, the bids bt are computed by solving (2.7). For fixed t, the bid
bt is shown in Fig. 2.6 as a function of σ for different values of ϕt in (2.8). It can be
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Fig. 2.6 Bid bt computed by
solving (2.7) as a function of
the tolerance σ for different
values of ϕt and t = 20
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observed that, for all values ofϕt , bt tends to e/2 as σ tends to 1. Indeed, when σ = 1
and bt = e/2, thewhole hourly energy interval [0, e] is covered by the tolerance band.

Concerning the bidding strategyWF+PC, data points (vt, et) available in the train-
ing set are used to estimate the energy curve (2.21) of the wind turbine by solving a
nonlinear least squares problem. The energy curve fitted to the data for the considered
wind turbine is shown in Fig. 2.3. In the validation phase, the estimated energy curve
and the wind speed forecasts v̂t are used to compute the bids bt through (2.22).

In the case of the bidding strategy WF+OBσ, classification parameters g, �, ai
and Ej are selected so as to maximize the average daily profit over estimation data
(see the end of Sect. 2.4.2). It turns out that a suitable choice is to classify each day
on the basis of the energy generated during the first and the second 12 hours. For
each 12-hour period, two levels of generation are defined, with the threshold set at
27% of the maximum amount of energy that the wind turbine may generate over
the period. According to the notation of Sect. 2.4, this means to set g = 2, a1 = 12,
� = 2, E1 = 0.27emax, where emax = 12e = 9.6 MWh, resulting in a family of four
classes C = {C11, C12, C21, C22}. Given these classes, the conditional distributions
Ft(ξ|Cij) are estimated as described in Sect. 2.3, using only the generated energy et
in days belonging to class Cij, i, j = 1, 2. Then, for given penalties (λ−

t ,λ+
t ) ∈ R2

and tolerance σ, the bids bt are computed for each class solving (2.7), where ϕt

is given by (2.8). Differences between the daily bidding profiles thus obtained for
the four classes can be appreciated in Fig. 2.7. To complete the bidding strategy
WF+OBσ, a classifier � is needed, as described in Sect. 2.4.2. To this purpose, for
each day d in the training set, the feature vector f d = [ f d1 f d2 ]′ is computed as in
(2.24). Pairs (class, feature) are then used to train a MRLP classifier by solving a
linear program to minimize the number of misclassifications [24]. The regions in
the feature space resulting from the training of the MRLP classifier are shown in
Fig. 2.8. It is worth noting that the training only takes few seconds on a standard
desktop PC. Consequently, it can be repeated whenever it is deemed necessary (e.g.,
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Fig. 2.7 Daily bidding
profiles computed using the
bidding strategy WF+OBσ
with fixed ϕt = 0.71 for all t
and σ = 0: classes C11
(dotted black), C12
(dot-dashed blue), C21
(dashed red) and C22 (solid
green)
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Fig. 2.8 Classification of the
feature vectors and regions
resulting from the training of
the MRLP classifier
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for incorporating additional information collected over the days) without introducing
any delay in the bidding process.

2.5.4 Comparison of the Bidding Strategies

In this section, the considered bidding strategies are compared under the assumption
that the penalties λ−

t and λ+
t are known beforehand, so that their true values can

be used to compute the bids according to OB, OBσ and WF+OBσ. This is done in
order to highlight the potential benefits of using wind speed forecasts in conjunction
with the optimal bidding strategy (2.6). Performance degradation due to forecasting
errors on λ−

t and λ+
t is analyzed in the next subsection. For all bidding strategies,
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Table 2.1 Average daily profit (e) in Scenario I with known penalties

Strategy\σ 0 0.05 0.1 0.15 0.2

OB 365 372 380 387 395

OBσ 365 376 389 402 415

WF+PC 375 379 384 387 391

WF+OBσ 432 440 447 454 460

Table 2.2 Average daily profit (e) in Scenario II with known penalties

Strategy\σ 0 0.05 0.1 0.15 0.2

OB 172 183 194 204 215

OBσ 172 191 211 232 254

WF+PC 239 248 256 263 269

WF+OBσ 313 329 343 356 368

given the bids bt , the generated energy et , the energy prices λt and the penalties λ−
t

and λ+
t , the net hourly profits (2.1) are evaluated, aggregated at daily level and then

averaged over all days in the validation data set. Average daily profits for different
values of the tolerance σ are reported in Table2.1 for Scenario I and Table2.2 for
Scenario II.

As expected, in both of the considered scenarios, OBσ performs better than OB
whenσ > 0 (forσ = 0 the two bidding strategies coincide). This confirms the impor-
tance of adapting the bidding strategy to the tolerance σ. The advantage of using
OBσ is stronger in Scenario II, where penalties are higher. Indeed, for σ = 0.2, OBσ
improves 5.06% with respect to OB in Scenario I and 18.14% in Scenario II.

Comparison of the performance of OBσ and WF+OBσ, which are both tailored
to the tolerance σ, shows that WF+OBσ outperforms OBσ in both scenarios and for
all considered values of σ. The improvement of WF+OBσ over OBσ ranges from
10.84% for σ = 0.2 to 18.36% for σ = 0 in Scenario I, and from 44.89% for σ = 0.2
to 82.00% for σ = 0 in Scenario II. Note that the advantage of using WF+OBσ is
stronger in Scenario II, where penalties are higher. Moreover, in both scenarios,
the improvement of WF+OBσ over OBσ is bigger as the threshold σ is decreased.
The presented results are obtained with a percentage of correct classification around
70% provided by the MRLP classifier. If one could apply an ideal classifier with
100% correct classification, the improvement of WF+OBσ over OBσ would range
from 19.28% for σ = 0.2 to 28.49% for σ = 0 in Scenario I, and from 72.44% for
σ = 0.2 to 123.26% for σ = 0 in Scenario II. This shows the potential of using
wind speed forecasts for increasing the WPP expected profit, still leaving room for
improvements with respect to the presented results. For instance, one might consider
classifiers with nonlinear separating hypersurfaces which could guarantee a higher
percentage of correct classification than the considered MRLP classifier.
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Fig. 2.9 Histograms of the daily profits of the bidding strategies OBσ (top), WF+PC (middle) and
WF+OBσ (bottom) for Scenario I and threshold σ = 0.1

ThoughWF+PC andWF+OBσ exploit the samewind speed forecasts to shape the
energy bids,WF+PCperforms poorlywith respect toWF+OBσ in both scenarios and
for all considered values of σ. The improvement of WF+OBσ over WF+PC ranges
from 15.20% for σ = 0 to 17.65% for σ = 0.2 in Scenario I, and from 30.96%
for σ = 0 to 36.80% for σ = 0.2 in Scenario II. These results are obtained by using
commercialwind speed forecasts (rather coarse and inaccurate) averaged at a regional
level. These inaccurate forecasts penalize directlyWF+PC,which requires to evaluate
the plant energy curve at each given wind speed. On the other hand, the classification
strategy proposed in Sect. 2.4.2 is less sensitive to forecast uncertainties. Indeed, both
the “integration” over time made when computing the features (2.24) and the fact
that the classifier extracts discretized information from the feature vectors, contribute
to filter out the uncertainty and “robustify” the technique.

For comparison purposes, the average daily profit of the ideal strategy denoted
by R, consisting in an oracle which offers the exact amount of energy generated the
next day, is also considered. Since bt = et , the producer never incurs penalties, and
therefore, being (λ−

t ,λ+
t ) ∈ R2, the profit is maximal. In this way, the performance

of the compared bidding strategies can be evaluated with respect to the maximum
achievable. With the bidding strategy R, the average daily profit would be 542 e.
This implies that applying WF+OBσ allows one to fill between 35.43 and 40.00%
of the gap between OBσ and R in both scenarios and for all considered values of σ.

An example of the distributions of the daily profit, whosemean values are reported
in Tables2.1 and 2.2, is presented in Fig. 2.9 for the bidding strategies OBσ, WF+PC
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Fig. 2.10 Bar plots of the
daily profits of the bidding
strategies WF+PC and
WF+OBσ for Scenario I and
threshold σ = 0.1. The
maximum daily profit
obtained by applying the
ideal bidding strategy R is
also reported (dashed)

1 6 11 16 21 26 31
0

500

1000

1500

2000

da
ily

 p
ro

fit
 [E

ur
o]

days

WF+OBσ
WF+PC
R

andWF+OBσ under Scenario I and thresholdσ = 0.1. The histogram ofOBσ ranges
from −135 to 1257 e, with mean value 389 e. OBσ provides a negative daily
profit in 15% of the days in the validation period. The histogram of WF+PC ranges
from around 0 to 1388 e, with mean value 384 e. Though OBσ and WF+PC have
comparable average performance,WF+PCwould be preferable in this case because it
never provides a negative daily profit. Finally, the histogramofWF+OBσ ranges from
−36 to 1860e, with mean value 447e. WF+OBσ provides a negative daily profit in
9%of the days. However, the difference betweenWF+PC andWF+OBσ is negligible
in all these days, being always less than 40e. In 15% of the days,WF+OBσ provides
a positive daily profit which is still below the daily profit provided by WF+PC. The
difference between WF+PC and WF+OBσ never exceeds 61 e in these cases. In
all the remaining 76% of the days, WF+OBσ performs better than WF+PC with an
average improvement of 90e per day. Direct comparison of the daily profits provided
by WF+PC and WF+OBσ over the first 31 days of the validation period is done in
Fig. 2.10, which also shows the daily profits provided by the ideal strategy R. It can
be noticed that WF+OBσ is in many days very close to the maximum daily profit
achievable.

2.5.5 Sensitivity Analysis Under Unknown Penalties

In this section, the sensitivity of the bidding strategies OB, OBσ and WF+OBσ to
uncertain penaltiesλ−

t andλ+
t is evaluated. The penalties of Scenario I andScenario II

are considered as the true penalties (known only a posteriori), and used to evaluate
the hourly profit (2.1). On the other hand, the bids are computed according to OB,
OBσ andWF+OBσ by replacing the true penalties with their expected values. Given
the distributions of λ−

t /λt and λ+
t /λt assumed in Sect. 2.5.1, this results into constant

values ϕt = 0.71 in Scenario I and ϕt = 0.64 in Scenario II, for all t. It is stressed
that this choice may lead to bids that are very different from those computed using
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Table 2.3 Average daily profit (e) in Scenario I with unknown penalties

Strategy\σ 0 0.05 0.1 0.15 0.2

OB 364 371 379 386 393

OBσ 364 376 388 400 414

WF+OBσ 428 436 443 450 457

Table 2.4 Average daily profit(e) in Scenario II with unknown penalties

Strategy\σ 0 0.05 0.1 0.15 0.2

OB 171 182 193 203 213

OBσ 171 190 210 231 254

WF+OBσ 311 328 342 355 367

the true penalties (e.g., ϕt ranges from 0.57 to 0.86 in Scenario I, if the true penalties
are used).

Average daily profits for different values of the toleranceσ are reported inTable2.3
for Scenario I and Table2.4 for Scenario II in the case of unknown penalties when the
bids are computed. Bidding strategy WF+PC does not appear in the two tables since
it is independent of the values of the penalties. Comparing Table2.1 with Table2.3
and Table2.2 with Table2.4, it can be seen that the average daily profits obtained in
the cases of known and unknown penalties differ by a small amount (less than 4 e)
for all considered bidding strategies and values of σ. This indicates a low sensitivity
of OB, OBσ and WF+OBσ to uncertain penalties.

2.6 Conclusions

In this chapter, the problem of computing the optimal day-ahead bidding profile
for a WPP is addressed in a framework where penalties are applied only outside
tolerance bands around the nominal contracts. The optimization of the day-ahead
bidding profile is embedded in a day classification approach which exploits wind
speed forecasts provided by a meteorological service to classify the next day. In
this way, a suitable bidding profile can be offered according to the predicted class.
A numerical comparison of different bidding strategies is performed on real data
from an Italian wind plant, showing that exploiting wind speed forecasts through
classification allows one to improve consistently the profit of the WPP, with respect
both to the case where no classification is adopted and to the case in which the day-
ahead bidding profile is computed according to the wind speed forecasts and the
plant energy curve.
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Chapter 3
Demand Response Management in Smart
Buildings

In this chapter an optimization approach based on Model Predictive Control (MPC)
for allowing the temperature control system of large buildings to participate in a DR
program is proposed. The material of this chapter is mainly based on [1, 2].

3.1 Introduction

Building energy consumption, both commercial and residential, represents almost
40% of the global energy produced worldwide. About 50% of this huge amount of
energy is consumed for heating, ventilation and air conditioning (HVAC). HVAC
plants, especially the oldest ones, are operated through simple rule-based strategies,
which actuate the system in feedforward at a centralized level, while local thermal
control is made through standard thermostatic devices. The need to improve these
out-of-date techniques has stimulated research for several years, with the aim of
reducing consumption and improving comfort through the design ofmore appropriate
and sophisticated feedback control laws exploiting real-time information from the
several components of the buildings. Most of the proposed approaches are based
on MPC, because of its attractive features, ranging from the possibility of handling
constraints on numerous variables involved to optimizing economical objectives in
a time-varying context (see e.g., [3–7] and references therein). The recent paper [8]
provides a comprehensive framework based on MPC and co-simulation for real time
control of the energy management system of a building.

An important issue which is gaining much attention in the recent literature on
electricity systems and building thermal control concerns DR. The primary aim of
DR is to overcome the “traditional” inflexibility of electrical demand and, among
other benefits, to maximize deployment of RES. A comprehensive view on techni-
cal methodologies and architectures, commercial arrangements, and socio-economic
factors that could facilitate the uptake ofDRhas been addressed in [9]. In this context,
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building operators can be considered as excellent candidates for demand flexibility,
as they might find it convenient to schedule certain tasks in order to obtain a reward.
In particular, the possibility of shifting HVAC electric loads according to a smart
strategy is crucial to participation in DR services. In [10], the impact of buildings
in DR programs on the electricity market is modeled through an agent-based sim-
ulation platform, and it is shown how different levels of DR penetration affect the
market prices. An approach for allocating the requested energy among heteroge-
neous devices in buildings depending of DR requests and electricity price has been
reported in [11].

In the present chapter, an optimization approach based on MPC for allowing
the temperature control system of large buildings to participate in a DR program
is proposed. The idea of exploiting MPC for supervisory control of building energy
management systems traces back to the late eighties [12], even if the intrinsic compu-
tational burden of the approach prevented realistic applications until a few years ago.
Participation of buildings in DR programs has been recently addressed in [13], where
a pricing policy has been proposed for offering real time regulation services, and in
[14], where an optimization framework based on genetic algorithms is provided for
dealing with a DR case study for the heating of an office building in Canada. In order
to rapidly reply to DR requests, a fast chiller power demand response control strategy
for commercial buildings is introduced in [15], with the aim of maintaining internal
thermal comfort by regulating the chilled water flow distribution under the condition
of insufficient cooling supply. A controller for HVAC systems able to curtail peak
load while maintaining reasonable thermal comfort has been introduced in [16, 17],
where the set-point temperature of a building is changed whenever the retail price is
higher than customers preset price.

The novelty introduced in this chapter with respect to the work mentioned above
is the integration of price-volume signals provided by an aggregator into the tem-
perature regulation system, and the development of a cost-optimal control strategy
involving low computational complexity for DR-enabled large-scale buildings. On
the basis of external price-volume signals, the optimizer analyses whether it is con-
venient for the building to honour the corresponding DR requests. The objective is
the minimization of the energy bill. Since the complexity of the overall optimization
problem is intractable even for buildings of modest dimension, a suitable heuristic
search strategy based on problem decoupling is devised in order to make the com-
putational burden acceptable without significant loss of accuracy. The approach is
independent of the particular heating technology adopted and it can be easily gener-
alized to cooling management as well.

The proposed technique is validated using EnergyPlus [18] as a realistic physical
modeling simulator. The MPC optimal control problem is solved on the basis of
an identified linear model of the building. The control law is tested on the linear
model and on the physical model simulator for comparison purposes. In this sense,
the present contribution is in the spirit of [19–21], where a different objective is
considered. It is shown that a decoupling approach which decomposes regulation of
the different zones of the building into independent problems provides reliable results
in the absence of DR participation. Since the presence of price-volume signals makes



3.1 Introduction 29

the computational burden of the optimization grow exponentially with the number
of zones, a decoupled heuristic relaxation of the problem is devised. The obtained
results are compared to the optimal solution on a three-zone building equipped with
underfloor electric heaters. A test case involving a large-scale building equipped with
a heat pump heating system is also worked out.

The chapter is organized as follows. In Sects. 3.2 and 3.3 the building system
model and theDRmodel, are respectively presented. In Sect. 3.4 the heating operation
problem is formulated and the proposed control algorithm is described. Section3.5
reports the experimental results obtained on a small-scale and a large-scale test case,
together with a discussion of the results obtained. Finally, conclusions are drawn in
Sect. 3.6.

3.2 Building System Model

Consider a building with a centralized heating system (e.g., a government build-
ing) composed of z zones Z1, . . . ,Zz equipped with electrical heating devices, e.g.,
electrical radiant floors or heat pumps. Assume that each zone is equipped with a
temperature sensor connected to the centralized controller and that each heater can
be independently switched on or off by the control unit. Assume that the control
system operates in discrete-time with sampling period�t . Let T = {0, 1, . . .} be the
set of discrete time indices and t ∈ T the generic time index. Moreover, define:

• ui (t) ∈ B: heater status {0 = inactive, 1 = active} at time t for Zi ,
• wi : heater energy consumption [kWh per sampling period] for Zi ,
• T in

i (t): indoor temperature [◦C] at time t , measured by the sensor for Zi ,
• ς i (t) = [T i (t), T i (t)]: thermal comfort range for Zi at time t ,
• u(t) = [u1(t) . . . uz(t)]′ ∈ B

z,

• Tin(t) = [T in
1 (t) . . . T in

z (t)]′ ∈ R
z,

• λ(t): electricity price at time t , or forecast thereof.

Other than on the heater statuses u(t), indoor temperatures Tin(t) may depend on
exogenous variables like outdoor temperature, solar radiation, indoor lights and appli-
ances, human occupancy, etc. For a given building, available measurements or fore-
casts of someor all of these variables are collected in a vectorε(t) = [ε1(t) . . . εz(t)]′.
Hence, the temperature dynamics can be modeled in regression form as

Tin(t + 1) = F(�(t)), (3.1)

where the regression matrix �(t) is given by

�(t) = [Tin(t) . . . Tin(t − nTin ) u(t) . . . u(t − nu) ε(t) . . . ε(t − nε)]′, (3.2)

being nTin , nu, nε suitable nonnegative integers that define the model orders, and
beingF(·) some (possibly nonlinear and time-varying) function.Given the definitions
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above, thermal comfort at time t is guaranteed whenever Tin(t) ∈ ς(t) where

ς(t) = {
Tin(t) : T in

i (t) ∈ ς i (t) ∀i = 1, . . . , z
}
, (3.3)

while the overall building consumption within time step t can be computed as

r(t) =
z∑

i=1

wi ui (t). (3.4)

Consider a generic time horizon I(t, H) = [t, t + H) ⊆ T , and let R(t, H) denote
the total consumption within I(t, H), i.e.,

R(t, H) =
t+H−1∑

τ=t

r(τ ). (3.5)

The total expected cost of energy in the interval I(t, H) is therefore given by

C(t, H) =
t+H−1∑

τ=t

λ(τ )r(τ ). (3.6)

3.3 DR Model

The concept of DR has been introduced several years ago in the literature on smart
energy grids [22–24].Recently, a complete commercial and technical architecture has
been developed in theEuropean projectADDRESS [25–27]. Computationalmethods
for technical validation of demand response products have been proposed in [28].
The relevance of this concept to the design of efficient energymanagement systems is
testified by several recent papers, like e.g, [29, 30]. The key idea is that the end users
play an active role in the electricity system by adjusting their consumption patterns
according to dynamic energy pricing policies enforced by the players involved in
energymarkets. DRparticipation does not take place on an individual basis, but rather
via the aggregation of a community of individual consumers, possibly represented by
an intermediary subject, the aggregator. The aggregator’smain objective is to provide
value by employing the flexibility of the consumption profile of individual consumers.
Its basic role is to collect certain amounts of energy over specified time intervals, e.g.,
the energy saved by consumers accepting the aggregator’s offers. This energy can be
used for several purposes. For instance, the distribution system operator (DSO) may
ask an aggregator to enforce energy reduction in a given load area over a given time
interval if an overload is foreseen in that area, in order to counteract possible network
unbalancing. Efficient grid management, in turn, contributes to overall reduction of
carbon dioxide production [31]. A further reason for the aggregator to collect energy
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is that options related to reprofiling of the load curve in specific load areas of the
distribution system, can be sold on themarket.An aggregator has a pool of subscribers
(end users), and is able to send them price-volume signals in order to affect their
consumption pattern. These signals are typically sent once or twice a day and specify
a monetary reward (price) if power consumption, during certain hours of the day, is
below or above specified thresholds (volume) [27].

For the purpose of this work, a standard model of DR program is employed. A DR
program is a sequence of DR requestsR j , each involving a time horizon I(μ j , h j ),
a total energy bound r j , and a monetary reward π j . A single request R j is said to
be fulfilled if the total building consumption within I(μ j , h j ), i.e., R(μ j , h j ), is no
higher/lower than the prescribed threshold r j , and in this case a monetary reward
π j is granted to the building operator. In the following, only the case in which the
aggregator coordinates the consumers’ demand profile by exploiting theirwillingness
to reduce the consumption is addressed. This is due to the nature of the considered
problem, where it seems less likely that heating thermal loads are controlled with
the aim of increase electricity consumption.

Definition 1 ADRprogramP is a sequence ofDR requestsR j , j = 1, 2, . . ., where
R j is the set

R j = {
I(μ j , h j ), r j ,π j

}
, (3.7)

being

I(μ j , h j ) ⊆ T , I(μ j1 , h j1) ∩ I(μ j2 , h j2) = ∅, ∀ j1 	= j2. (3.8)

The request R j is fulfilled if and only if

R(μ j , h j ) ≤ r j . (3.9)

It is worth stressing that the same concepts and algorithms developed hereafter can
be extended to the situation opposite to (3.9), i.e., R(μ j , h j ) ≥ r j . However, further
research would have to be carried out for the case in which DR requests of both types
are included in the same horizon.
For any given time horizon I(t, H), let

P(t, H) = {
R j : I(μ j , h j ) ⊆ I(t, H)

}
, (3.10)

be the set of DR requests that occur within the time horizon. Moreover, it is assumed
that the length H is dynamically adapted in a way such that an integer number of
DR requests falls inside I(t, H). Let J (t, H) be the set of indices identifying such
DR requests, i.e.,

J (t, H) = {
j : R j ∈ P(t, H)

}
. (3.11)
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For each request R j , introduce a binary variable uDR
j ∈ B defined as

uDR
j =

{
1 if R j is fulfilled
0 otherwise.

(3.12)

The overall expected cost of operation of the building heating system within the time
horizon I(t, H) under the DR program P , is therefore given by

CP(t, H) = C(t, H) −
∑

j∈J (t,H)

uDR
j π j , (3.13)

i.e., the expected cost of energy minus the total reward for the fulfilled DR requests.

3.4 Optimal Heating Operation Problem

The goal of this section is to devise a control algorithm for the thermal heating system
of each zone in order to minimize the building electricity bill under a DR program
P , while preserving comfort constraints.

Consider a time horizon I(t, H) and collect heater activation status variables for
all zones within I(t, H) in the following H × z binary matrix:

U(t, H) =
⎡

⎢
⎣

u(t)′
...

u(t + H − 1)′

⎤

⎥
⎦ ∈ B

H×z . (3.14)

Assuming ε(t) (or a forecast thereof) is available, the above problem can be formu-
lated as a mixed-integer program as follows.

Problem 1 Optimal heating control under DR program P .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U∗(t, H) = arg min
U(t, H)

uDR
j : j ∈ J (t, H)

C(t, H) −
∑

j∈J (t,H)

uDR
j π j

s.t.:

R(μ j , h j ) ≤ uDR
j r j + (1 − uDR

j )h j
∑z

i=1 wi , ∀ j ∈ J (t, H) (a)
uDR
j ∈ B, ∀ j ∈ J (t, H) (b)

Tin(τ + 1) = F(�(τ )) (c)
Tin(τ ) ∈ ς(τ ), ∀τ ∈ I(t, H) (d)
U(t, H) ∈ B

H×z (e)

(3.15)
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In Problems 1, (3.15a) and (3.15b) represent the DR constraints, i.e., R(μ j , h j ) ≤ r j

for each fulfilled R j . In particular, when uDR
j = 0, the building consumption

R(μ j , h j ) is unconstrained since the term h j
∑z

i=1 wi represents the maximum elec-
tricity consumption over h j . In the opposite situation, inwhichuDR

j = 1, the left-hand
side of (3.15a) disappears and the overall consumption is forced to be less than r j .
Constraints (3.15c) represent the temperature dynamics, (3.15d) are the comfort con-
straints, while (3.15e) forces the on/off heater behavior. Note that if the map F(·) is
linear, then Problem 1 is a mixed-integer linear program (MILP).

3.4.1 Sub-optimal Control Algorithm

It is known that temperature dynamics in a given zone depends on heater status,
outdoor temperature, solar radiation, internal lights and appliances, occupancy, and
temperature of neighboring zones. A complex model which takes into account all the
above mentioned aspects is not conceivable for Problem 1 due to the unacceptable
computational burden. In particular, if the temperature variables T in

i (t) and the binary
decision variables ui (t) and uDR

j are fully coupled via the constraints in (3.15), then
the computational complexity scales exponentially with z, thus making the approach
totally unfeasible except for very small-scale problems. In order to overcome this
limitation, sub-optimal solutions will be derived by suitably decoupling Problem 1
into z smaller problems. To this purpose, the first step is to obtain a decoupled linear
regression building model. Therefore, the following assumption, which boils down
to neglecting thermal flow between zones, is enforced.

Assumption 1 The temperature dynamics of each zone Zi is given by

T in
i (t + 1) = �′

i (t)�i , i = 1, . . . , z, (3.16)

where �i , i = 1, . . . , z are parameter vectors of suitable dimension, and �i (t) is the
i-th column of the regressor matrix �(t).

The above assumption is supported by the following arguments:

• if the zones are homogeneous and/or insulation is properly designed, as it happens
in office or government buildings, the heat transfer between neighboring zones is
really small;

• numerical simulations show good performance of a decoupled identified model of
a well-established test case (see Sect. 3.5);

• possible discrepancies between themodel and the real building canbe compensated
at each iteration by using sensor information and a receding horizon optimization
approach.
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The need for a receding horizon strategy is further supported by the observation
that optimizing over a long time horizon, i.e., one or more days, is quite unreliable.
Indeed, satisfying the comfort constraints requires accurate prediction of the indoor
temperature of each zone. Such predictions degrade with time due to a number of
reasons, like model inaccuracies and lack of reliable weather forecasts. Moreover,
long-term energy price forecasts may not be available.

It is worth noticing that if the control signals ui (t) were continuous rather than
binary, then (3.15) would still be a MILP due to the presence of binary DR decision
variables uDR

j . However, the computational complexity would be drastically reduced
since the number of DR events in each instance of the problem is typically small.

Problem decoupling

In view of Assumption 1, let Ui (t, H) be the i-th column of U(t, H), and define the
following quantities

ri (t) = wi ui (t), (3.17)

i.e., the energy consumption of zone Zi in the time slot t , and

Ri (t, H) =
t+H−1∑

τ=t

ri (τ ), Ci (t, H) =
t+H−1∑

τ=t

λ(τ )ri (τ ), (3.18)

which amount to total consumption and total cost for Zi in I(t, H), respectively.
Even when using a decoupled building model, it is apparent that Problem 1 cannot
be split into z independent MILPs, one for each zone Zi , with overall cost function
equal to the sum of z marginal costs. Indeed, the decision variables of all zones are
coupled through constraint (3.15a) in Problem 1, and the DR component in the cost
function itself is a coupling term. In order to overcome this limitation, in the sequel
a decoupled optimization problem leading to sub-optimal solutions to Problem 1 is
introduced. To this purpose, for each time step t , and for each R j ∈ P(t, H), the
following matrices of real parameters are defined

R = {
r j,i : i = 1, . . . , z, j ∈ J (t, H)

}
, (3.19)

� = {
π j,i : i = 1, . . . , z, j ∈ J (t, H)

}
, (3.20)

where {r j,i } and {π j,i } are partitions of r j and π j , respectively, i.e., r j,i > 0, π j,i >

0, and r j = ∑z
i=1 r j,i and π j = ∑z

i=1 π j,i . Moreover, the following zone cost is
defined:

CP
i (t, H) = Ci (t, H) −

∑

j∈J (t,H)

uDR
j,i π j,i . (3.21)



3.4 Optimal Heating Operation Problem 35

where the new binary variable uDR
j,i ∈ B takes a different meaning:

uDR
j,i =

{
1 if zone i contributes to the R j fulfillment
0 otherwise.

(3.22)

For each i = 1, . . . z, consider the following decoupled MILP:

Problem 2 Optimal zone heating control under DR program P .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U∗
i (t, H) = arg min

Ui (t, H)

uDR
j,i : j ∈ J (t, H)

Ci (t, H) −
∑

j∈J (t,H)

uDR
j,i π j,i

s.t.:

Ri (μ j , h j ) ≤ uDR
j,i r j,i + (1 − uDR

j,i )h jwi , ∀ j ∈ J (t, H)

uDR
j,i ∈ B, ∀ j ∈ J (t, H)

T in
i (τ + 1) = �′

i (τ )�i

T in
i (τ ) ∈ ς i (τ ), ∀τ ∈ I(t, H)

Ui (t, H) ∈ B
H×1

. (3.23)

which depends on the particular choice of R and �. Let C∗,P
i (t, H) be the optimal

solution of Problem 2. It is not difficult to see that for any choice of the set of
parameters R and �, the function

C
P

(t, H) =
z∑

i=1

C∗,P
i (t, H) (3.24)

is an upper bound for the optimal cost C∗,P(t, H) of Problem 1. Therefore, it makes
sense to look for the values of R and � yielding a solution of the z problems (3.23)
corresponding to the tightest upper bound, i.e., to find

⎧
⎪⎨

⎪⎩

min
R,�

C
P

(t, H)

s.t.:
r j = ∑z

i=1 r j,i , π j = ∑z
i=1 π j,i ∀ j ∈ J (t, H)

. (3.25)

This can be achieved by applying a local constrained minimization algorithm, which
involves the solution of zMILPs of the form (3.23) at each step, or via someheuristics.
A possible heuristic approach is presented in the following subsection.
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Heuristic approach to Problem 2

The heuristics proposed here to assign the parameters r j,i and π j,i for each zone
Zi and for each DR request R j ∈ P(t, H) in Problem 2, can be summarized in the
following stages:

1. Set the energy price λ(t) equal to some big value M for all t ∈ I(μ j , h j ) ∀ j ∈
J (t, H), and moreover set uDR

j,i = 0 ∀ j ∈ J (t, H), ∀i = 1, . . . , z. Then solve
Problem 2 for each zone Zi and compute

α j,i =
∑

t∈I(μ j ,h j )

ui (t) ∀ j ∈ J (t, H), ∀i = 1, . . . , z. (3.26)

This step boils down to evaluating the minimum possibile heater activation time
α j,i for each zone Zi within the DR request intervals I(μ j , h j ) in order to satisfy
the comfort constraints. The corresponding total energy needed by all zones
during I(μ j , h j ) is given by

e =
z∑

i=1

α j,iwi . (3.27)

2. If for some j , the quantity e exceeds r j , then there is no feasible solution to Prob-
lem 2 such that the DR request R j is satisfied, i.e., under no circumstances the
requestR j can be met without violating comfort constraints. Therefore, for all j
such that e > r j , the requestR j will be discarded, i.e.,J (t, H) ← J (t, H)\{ j}.
Otherwise, r j,i = α j,iwi ∀i = 1, . . . , z. Moreover, the quantity r j − e, i.e., the
estimated amount of excess energy still allowed by R j with respect to the min-
imum possible consumption, is split among all zones according to weights pro-
portional to the corresponding heater power ratings, i.e., r j,i is further set to

r j,i ← r j,i + (r j − e)wi/

z∑

l=1

wl . (3.28)

3. The parameters π j,i are simply assigned by splitting π j according to weights
proportional to the power ratings, i.e.,

π j,i = π jwi/

z∑

l=1

wl . (3.29)

4. Problem 2 is solved with the newly assigned r j,i , π j,i and J (t, H).

This heuristics can be performed at each step of a receding horizon implementation,
as shown below.
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Fig. 3.1 Time evolution of the system variables in standard MPC approach

Receding horizon implementation

Problem1, aswell as the decoupled version inProblem2combinedwith the heuristics
just presented, does not lend itself to the standardMPC implementation (see Fig. 3.1),
that is,

(i) acquire measurements and/or forecasts of relevant variables,
(ii) optimize the cost over I(t, H) for fixed H , and
(iii) apply the optimal control action u∗(t).

Indeed, this basic implementation does not take into account DR requests that par-
tially overlap in time with the moving interval I(t, H). This issue can be overcome
by performing the following further actions right before running the optimization (ii):

(i’) adapt the horizon length H dynamically in a way such that an integer number of
DR requests falls inside I(t, H), keeping H greater or equal to a fixedminimum
horizon length Hmin (see Fig. 3.2),

(i”) as long as there exists a DR request R j such that μ j = t − 1, set μ j = t and
reduce h j by one, subtracting the consumption r(t − 1) [resp. wi ui (t − 1)]
from r j [resp. r j,i ].
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(a)

(b)

(c)

Fig. 3.2 Effect of DR request on the horizon length of the MPC scheme. a Standard condition: no
DR request within the horizon (H = Hmin). b Prediction horizon adaptation: the prediction horizon
H is extended to fully cover the incoming DR request (H > Hmin). c Standard condition: DR fully
contained in the prediction horizon
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Exogenous variables

Z

Fig. 3.3 Control system architecture

Algorithm 1 Control Algorithm
for each time step t = 0, 1, . . . , do
for each zone i = 1, . . . , z, do
if t + Hmin falls inside the interval I(μ j , h j ) of the DR request R j then
adapt the horizon length H as in step i’);

end if
if μ j = t − 1 for some j then
modify the parameters of the DR request R j as in step i”);

end if
acquire regressor data T in

i (t) and εi (τ ), τ = t, . . . , t + H − 1;
solve Problem 2 for the optimal command sequence U∗

i (t, H);
actuate the optimal command action u∗

i (t);
end for

end for

A schematic of the control architecture is depicted in Fig. 3.3 and the overall proce-
dure is synthesized in Algorithm 1.

3.5 Test Cases

In order to validate the proposed approach, both a small-scale and a large-scale test
case involving different heating technologies are developed in this section.

3.5.1 Three-Zone Case

Consider an office building located inMilan (Italy) composed of three zones equipped
with radiant floor heating systems. The building characteristics have been taken from
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an example provided in EnergyPlus and are reported in Tables3.1 and 3.2. Hereafter,
the EnergyPlus model is assumed to be the true (real) building, and the sampling
time is set to �t = 10 min.

Modeling and identification

As stated in Sect. 3.4.1, the proposed control technique is based on decoupled linear
time invariant models of the building zones. The autoregressive exogenous (ARX)
family is chosen to model the thermal behavior of zones. For a given zone, the input
signals are assumed to be heater command, outdoor temperature, solar irradiance
and internal heat gain (lights, appliances, human occupancy), while the output is the
indoor air temperature. The following model for zone Zi is proposed:

T in
i (t + 1) = �′

i (t)�i , (3.30)

Table 3.1 Three-zone case—building features

Building component Value

Weather and location Milan

Floor area [m2] 130.1

Floors [#] 1

Zones [#] 3

Window to wall ratio [%] 0.07

Solar transmittance 0.9

Solar reflectance 0.031

Internal loads Occupants [#] 10

Lighting [W/m2] 1.7

Equipment [W/m2] 12.46

Heating: electric low Power range [kW] [8;12]

Temperature radiant system Throttling range [�◦C] 2

Table 3.2 Three-zone case—building construction materials (name/thickness [mm])

External Walls Internal Walls Windows
Outside Layer Cement plaster/25 Gypsum board/10 Generic Clear/3

Layer 2 Concrete block/100 Clay tile/20
Layer 3 Gypsum board/10 Gypsum board/10

Floor Roof
Outside Layer Dried sand and gravel/100 Slag or stone/10

Layer 2 Expanded polystyrene/50 Felt and membrane/10
Layer 3 Gypsum concrete/12 Dense insulation/25
Layer 4 Radiant panels/10 HW concrete/50
Layer 4 Gypsum concrete/19
Layer 5 Tile/2
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being �i = [
θi,1 . . . θi,12

]′
, and

�i (t) = [
T in
i (t) T in

i (t − 1) ui (t) ui (t − 1) ui (t − 2)

G(t) G(t − 1) G(t − 2) T̂ (t + 1|t) T (t)

Î (t + 1|t) I (t)
]′

,

(3.31)

in which T (t) is the outdoor (environment) temperature, I (t) is the external illu-
minance and G(t) denotes the internal heat gain. T̂ (t + 1|t) and Î (t + 1|t) denote
forecasts of T (t) and I (t) available at time t , respectively.

An identification experiment is conducted to find suitable values for the parameter
vectors �i . The identification is performed over two weeks, while validation is done
over three different days. The tool used to estimate the parameters of the model from
the experiment data is the System Identification Toolbox [32] of Matlab.

For the identification phase, the input signals are chosen as follows:

• the heater command ui (t) is a pseudo-random binary sequence (PRBS),
• outdoor temperature T (t) and illuminance I (t) are the temperature and illumi-
nance in Milan in January taken from historic time series,

• the internal gain G(t) is a binary signal equal to 1 during the working hours
(8:00–18:00) and 0 elsewhere.

Choosing the input as a PRBS in the identification phase is nonetheless standard
practice [33] as it allows for persistent excitation of the plant at least in a sufficiently
wide frequency range, thus improving the accuracyof the identifiedmodel. InFig. 3.4,
a comparison between the real indoor temperature (computed by EnergyPlus) and
the 24-step ahead prediction of model (3.30) in the validation days for zone Z1 is
reported. The performance of the estimated model is evaluated by using the Best
Fit index (FIT) according to the definition in [33, 34]. Roughly speaking, the FIT
measures the percentage of signal energy explained by the model. The FIT for all
zones turns out to be above 83%. The values of the identified model parameters are
reported in Table3.3.

Experiment setup and discussion

The proposed optimization method is validated on a three-day experiment. In such
days, a DR program consisting of 5 DR requests is assumed, as reported in Table3.4.

Heater power ratings for the three zones are set to 12, 8, and 8 kW, respectively.
For all zones, the upper comfort bound is set to T i = 22◦C throughout the day, while
the lower bound is set to T i = 20◦C from 8:00 to 18:00 and T i = 16◦C elsewhen.
The energy cost profile has been taken from the Italian Electricity Market.

Measured indoor temperature and heater command computed by the proposed
method applied to the EnergyPlus physical model are depicted in Fig. 3.5 for zone
1. The overall cost at the computed solution for the three zones is 26.17 e. Not
surprisingly, looking at Fig. 3.5 (top), one may observe how the controller tries to
preheat a zone before each DR request in order to reduce the power consumption
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Fig. 3.4 Three-zone case: model validation on 24-step ahead prediction. Comparison between real
and predicted output for three validation days (January, 18–20)

Table 3.3 Three-zone case—identified model parameters

Z1 Z2 Z3

θi,1 1.307 1.264 1.279

θi,2 −0.3134 −0.2723 −0.2867

θi,3 0.7528 0.7575 0.7728

θi,4 −0.2219 −0.2056 −0.1899

θi,5 −0.1362 −0.1325 −0.1417

θi,6 1.06 1.241 1.067

θi,7 −1.15 −1.283 −1.107

θi,8 0.1265 0.08702 0.07887

θi,9 −0.05124 −0.07911 −0.07638

θi,10 0.0562 0.08536 0.08228

θi,11 –2.654e-06 –8.778e-06 –3.274e-06

θi,12 5.263e-06 1.074e-05 4.649e-06

Table 3.4 Three-zone case—DR program

μ j h j r j [kWh] π j [e]

R1 67 5 3.9 0.60

R2 101 3 3.4 0.45

R3 179 6 4.3 0.75

R4 325 6 4.2 0.20

R5 365 6 4.4 0.85
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Fig. 3.5 Three-zone case: results obtained through the proposed optimization heuristics on the real
scenario (EnergyPlus model). Top: temperature of zone 1 (blue), comfort constraints (black), DR
program (green). Bottom: Heater command (blue), energy price (red), DR program (green)

during such a period still maintaining control comfort. To reduce energy cost, the
controller also preheats a given zone just before an energy price peak. This fact is
easily observable in Fig. 3.5 (bottom), where it is shown that the heater is mainly
switched off during on-peak periods. The other two zones exhibit similar behaviors.

In Fig. 3.6, the internal temperature of zone 1 computed on the identified model is
reported for both the solutions achieved through the heuristics and the exact optimal
algorithm. The zone temperature obtained by both algorithms is quite similar in gen-
eral. The main differences are due to the different problem solved: while the optimal
algorithm computes the solution of a coupled problem (i.e., a problem involving all
the building zones), the proposed heuristics works on the decoupled building, i.e.,
solves one (small) optimization problem for each zone. Although in some places
the zone temperature obtained by the two control strategies is different (see, e.g.,
around hour 62 in the reported simulation), being the building composed of three
rooms, temperature differences among zones may compensate giving rise to similar
total energy costs. Table3.5 summarizes the results obtained by running the proposed
heuristics and the optimal algorithm on both the real system (EnergyPlus) and the
identified model.

By comparing the overall cost obtained by the optimal and the proposed sub-
optimal control laws, both implemented on the identified model (see Table3.5), it
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Fig. 3.6 Three-zone case: simulation results obtained on the identified model. Temperature of
zone 1 obtained by using the proposed heuristics (blue) and the optimal algorithm (red). Green
bands denote DR requests

can be observed that the cost provided by the heuristic suboptimal control is 0.4%
higher than that of the optimal control. Unfortunately, it is not possible to obtain an
expression for the optimality gap in the general case. The computation time for the
suboptimal control law is approximately 2–3 orders of magnitude smaller than that
needed for the optimal solution. Actually, as expected, the computational burden of
the optimal algorithm, which grows exponentially with the number of zones, leads
to intractable problems even when just a few zones, e.g., 4 or 5, are involved. In
fact, the computational burden scales in a linear fashion for the heuristic subopti-
mal algorithm, thus allowing for an efficient solution of large-scale problems, even
with hundreds of zones. In addition, it is worthwhile to notice from Fig. 3.6, that
the behavior of the controlled variable is very similar for the two alternative control
laws.

Concerning the performance obtained in this scenario, it turns out that the pro-
posed suboptimal control lawbehaves evenbetter than the optimal one (seeTable3.5).
Such a behavior is essentially due to noise and modeling errors, and of course this is
neither true nor predictable in general. However, by performing further simulations
on different data and identified models, the overall costs of both control laws still
remain very close. One additional observation concerns the quality of the adopted
simplified model. Several identification trials performed on data generated in differ-
ent conditions by EnergyPlus simulations, invariably show that the decoupled model
performs very satisfactorily on validation data. This fact is confirmed quite neatly by
the cost achieved by the control law designed on the identified model and applied to
the EnergyPlus simulator. The data reported in Table3.5 show that the degradation
of performance is acceptable, being about 3% for the optimal control law and less
than 1% for the proposed heuristics.
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Table 3.5 Three-zone case - results

Real [EP] Simulated [Model]

Heur. Opt. Heur. Opt.

Overall cost [e] 26.17 26.86 26.13 26.03

Fulfilled DR reqs 4 4 5 5

DR reward [e] 2.65 2.25 2.85 2.85

Fig. 3.7 Large-scale case. Map of the first floor and building rendering

3.5.2 Large-Scale Case

To evaluate the behavior of the proposed approach on a more realistic scenario, a 5-
floor building composed of 20 zones for eachfloor ismodeled throughDesignBuilder,
a software tool for developing building models to be used in EnergyPlus simulations.
The map of the first floor and a rendered image of the whole building are reported
in Fig. 3.7. The building is equipped with heat pump heating systems and its main
characteristics are reported in Tables3.6 and 3.7. The building is still assumed to be
located in Milan and the sampling time for simulation is set to 10min.

Modeling and identification

To apply the proposed heuristics for energy cost reduction, an ARX model for each
zone is modeled in a similar way to that used in the three-zone example. A PRBS
signal is used as input for estimating the ARX parameters; three days are used for
estimation and three for validation. In Fig. 3.8, a comparison between the real output
and the 24-step ahead prediction for a given zone is reported. The average FIT for
all zones is over 70%.

Experiment setup and discussion

A simulation of three days is performed to evaluate the proposed heuristics. Five DR
requests are scheduled in that period as reported in Table3.8. Comfort profiles and
energy cost are set as in Sect. 3.5.1. The application of the proposed method yields an
objective value of 235.51 e, including a DR reward of 26.50 e. Figure3.9 displays
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Table 3.6 Large-scale case—building features

Building component Value

Weather and location Milan

Floor area [m2] 1530

Floors [#] 5

Zones [#] 100

Window to wall ratio [%] 30

Solar transmittance 0.84

Solar reflectance 0.075

Internal loads Occupants [#] 100

Lighting [W/m2] 2.36

Equipment [W/m2] 1.39

Heating: fan coil unit Power range [kW] [3;9]

Supply humidity ratio
[kgWater/kgDryAir ]

0.0156

Supply air temperature [◦C] 35

Table 3.7 Large-scale case—building construction materials (name/thickness [mm])

External Walls Internal Walls
Outside Layer Brickwork/100 Gypsum board/25

Layer 2 Extruded polystyrene/80 Air/10
Layer 3 Concrete block/100 Gypsum board/25
Layer 4 Gypsum plaster/13

Floor Roof Windows
Outside Layer Cast concrete/100 Asphalt/10 Generic Clear/3

Layer 2 Tile/2 Glass wool/140 Air/13
Layer 3 Air/200 Generic Clear/3
Layer 4 Gypsum board/13

the heater command and the temperature for one zone. The average time needed to
compute heater commands for all zones at a given step is less than 20 s.1 It is worth
remarking that one of the novelties of this contribution is the formulation of a relaxed
optimization problem based on a decoupled linear regression model of the building.
In fact, thanks to decoupling, the computational burden of the proposed algorithm
is proportional to the number of zones, thus allowing feasible computations even
for large buildings. Moreover, such computations can be easily parallelized with a
great reduction of computation time. Like in the previously reported example, the
decoupled identified model still shows good performance as depicted in Fig. 3.8.

1Computations have been performed using CPLEX [35] to solve the LPs, on an Intel Core i5 M520
at 2.40GHz with 4 GB of RAM.
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Fig. 3.8 Large-scale case: model validation on 24-step ahead prediction. Comparison between real
and predicted output for three validation days (January 25–27)

Table 3.8 Large-scale case—DR program

h j μ j r j [kWh] π j [e]

R1 67 5 32 6.00

R2 101 3 29 4.50

R3 179 6 41 7.50

R4 325 6 30 2.00

R5 365 6 37 8.50

This is an essential prerequisite for the use of MPC techniques. Regarding internal
temperature reported in Fig. 3.9, one may notice similarities w.r.t. to the three-zone
test case. In particular, preheating before a DR request as well as reduction of power
consumption during on-peak times are again observed. In addition, one may notice
a fast rising edge of zone temperature before 8 a.m. of each day (i.e., before hour
8, 32 and 56 in the simulation) due to the change in the lower comfort bound. By
looking at the DR requests, it becomes apparent how the proposed technique tries
to honour such requests by reducing the power consumption in the respective time
intervals. However, it is worthwhile to note that in general not all DR requests will
be satisfied, but only those that are economically convenient and feasible from the
comfort point of view.

As opposed to the three-zone case, it is not possible to compare the suboptimal
strategy with the optimal one, due to the numerical intractability of the optimalMILP
problem. In order to arrange an experiment to evaluate the quality of the proposed
method, the binary commands of the heaters are relaxed to be continuous, i.e., it
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Fig. 3.9 Large-scale case: simulation results obtained through the proposed optimization heuristics
on the identifiedmodel. Top: temperature of zone 20 (blue), comfort constraints (black),DRprogram
(green). Bottom: Heater command (blue), energy price (red), DR program (green)

is assumed that heaters may change continuously their power from zero to their
maximum. Although the considered scenario may not seem feasible from a realistic
point of view, it turns out to be convenient for estimating the quality of performance
of the proposed approach. In fact, the obtained results provide a lower bound to the
optimal cost. The total costs and the DR rewards for both optimizations are reported
in Table3.9. Notice that the cost obtained by the proposed method turns out to be
about 4% greater w.r.t. the relaxed optimal one. It is reasonable to expect that the
devised heuristics will behave similarly in the original (non relaxed) problem, too.
In Fig. 3.10, the behavior of the internal temperature of zone 20 for both strategies
is reported. Notice that the temperature profiles are almost indistinguishable except
in the proximity of the first and the fourth DR requests. As reported in Table3.9, the
proposed heuristics is able to fulfill 3 DR requests out of 5, contrary to the optimal
algorithm which is able to honor all the DR requests. In any case, as previously
stated, the gap of the proposed heuristics is just 4% greater w.r.t. the optimal one,
showing good performance of the method.
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Table 3.9 Large-scale case—Overall simulation results obtained by assuming continuous regula-
tion of heaters’ power (relaxed model)

Relaxed model—simulated

Heuristic Optimal

Overall cost [e] 200.39 192.47

Fulfilled DR reqs 3 5

DR reward [e] 20.50 28.50
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Fig. 3.10 Large-scale case: simulation results obtained by assuming continuous regulation of
heaters power (relaxed model). Temperature of zone 20 obtained by using the proposed heuris-
tics (blue) and the optimal algorithm (red). Green bands denote DR requests

3.6 Conclusion

In this chapter the problem of optimizing the operation of a building heating system
under the hypothesis of participation in a DR program has been addressed. The DR
setup is based on price-volume signals sent by an aggregator to the building energy
management system. The optimizer exploits a receding horizon control technique
for minimizing the energy bill. Since the complexity of the overall optimization is
intractable even for buildings of modest dimension, a heuristic search strategy based
on problem decomposition has been devised to make the computational burden rea-
sonable. Numerical results show that the heuristic strategy involves almost negligible
loss of accuracy with respect to the exact optimal solution. The overall optimization
procedure has been tested both on the simplified identifiedmodel used for design, and
on a realistic building model computed using EnergyPlus. The results show excellent
performance in terms of robustness of the control law to model uncertainties.
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Chapter 4
Configuration and Control of Storages
in Distribution Networks

In this chapter, the potential of applying ESS for facilitating the integration of renew-
ables into electric power systems is presented. In particular, the possibility of using
ESSs for mitigating over- and undervoltages in LV networks is investigated. More-
over, different algorithms for both planning and operation of such innovative devices
are proposed. The material of this chapter is mainly based on [1–4].

4.1 Introduction

The growing penetration of low carbon technologies, such as distributed generation
(DG), electric vehicles and heat pumps, is determining significant modifications of
typical power flows in electrical grids. One example is the switching of distribution
networks from “passive” to “active” and vice versa (power flow inversion), which
causes serious problems at the interface with the transmission network. Another
related issue is represented by voltage problems. Since peaks of load demand and
DG are typically not aligned in time, over- and undervoltage conditions may reg-
ularly show up in LV networks with higher frequency. This implies a progressive
degradation of the quality of service provided to consumers. Therefore, maintaining
voltage between specified limits, as required by typical quality of supply standards,
has become one of the main issues currently faced by DSO. Traditional grid rein-
forcement, which consists of replacing existing cables and/or transformers with new
equipments, is a possible solution to mitigate these problems. However, in view of
a dynamic scenario, in which new loads and/or generators might be continuously
connected to or disconnected from the distribution network, more flexible and/or
cheaper solutions could be considered among those presented in the literature [5].
Initial investigations on the use of on-load tap changers (OLTC) at secondary substa-
tions are available, see, e.g., [6] and references therein. In [7], different voltage control
schemes involving active and reactive power control of DG inverters are compared.
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However, these solutions cannot be always put into practice. In fact, depending
on both technical and regulatory issues, the DSO might not have control over dis-
tributed generators to directly operate adjustable inverters. On the other hand, since
secondary substations are generally not automated, OLTC control becomes imprac-
ticable. Moreover, should voltage rise and drop occur simultaneously at different
buses of the network, voltage control at the secondary substation level is ineffective.
For the case when feeders show contrasting voltage issues, in [8] the authors inves-
tigate how distributed capacitor banks can help provide additional flexibility to the
OLTC solution. In addition, this type of control might have the serious drawback to
transmit large disturbances to the medium voltage (MV) network.

An alternative to the aforementioned solutions, which has recently received
increasing attention, is represented by ESSs, see, e.g., [9–11] and references therein.
The idea is that an energy storage should play the role of a load in case of overvolt-
age and that of a generator in case of undervoltage. Pros of the use of ESSs are that
voltage problems are solved locally, thus limiting the impact on the MV network,
and curtailment of renewable generation is minimized. These advantages add to the
other benefits that the use of ESS brings to the different power system stakeholders
(see, e.g., [12–15] for a general survey).

ESS deployment in power networks involves problems at both the planning and
operation levels. In the planning stage, the number of ESSs to be installed, their
locations and sizes must be decided. Optimal ESS siting and sizing procedures have
been proposed in the literature for both transmission and distribution networks, and
from the point of view of different power system stakeholders (see, e.g., [16–19] and
references therein). A quite general approach is to formulate the problem in an OPF
framework. Storage locations and sizes are considered as optimization variables, and
a cost function (including, e.g., generation costs, storage installation costs, network
losses, etc.) is minimized, subject to power flow constraints and storage dynamics.
Since integer variables used to decidewhereESSs should be installed and non-convex
power flow constraints make the resulting optimization problems NP-hard, different
approaches have been devised to approximate the exact problems and alleviate the
computational burden. Linearization via DC approximation is adopted when dealing
with transmission networks, where the assumptions underlyingDCOPF are typically
valid [20–23]. When the full AC OPF is considered, as is common for distribution
networks, appropriate convex relaxations are often exploited. The second-order cone
programming OPF approach of [24] is considered in [25], while convex relaxations
based on SDP are used in [26–28]. Alternating direction method of multipliers is
proposed in [11] to break down the original problem into a distributed parallel con-
vex optimization. In [25, 28] convex relaxations are embedded in a mixed integer
formulation of the siting problem. In [16], the computationally demanding unit com-
mitment (UC) problem over one year to determine optimal storage locations and
parameters, is tackled by solving a UC problem for each day of the year separately.

Conversely, operation is concernedwith the use of the installed ESSs, and requires
the design of a control policy according to which the ESSs are operated to guarantee
the satisfaction of the required specifications. The definition of effective ESS con-
trol policies for voltage control in LV networks struggles with the poor availability
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of measurements, which makes reconstruction and forecasting of the state of the
network a challenging problem. For this reason, several approaches proposed in the
literature address voltage control under different partial information setups. In [9], a
coordinated control scheme is proposed where a centralized controller decides which
ESSs are to be activated upon the occurrence of a voltage problem, while dedicated
decentralized controllers operate each ESS having visibility only of local voltage
measurements. In [29], the performance of an OLTC control logic is assessed under
three different remote monitoring schemes, namely measurements taken at the mid-
dle, end, or middle and end of each feeder. Though these approaches are appealing
because computationally cheap, one limitation is their lack of predictive capability,
which may turn out into sending the control signal to ESSs with delay, and without
the guarantee that ESSs are ready for the required actions. In [9], where the ESSs are
used to solve daytime overvoltages due to PV generation, this problem is tackled by
discharging the ESSs overnight. Apparently, this solution is not viable if over- and
undervoltages occur irregularly.

In this chapter, the whole process of integrating ESSs in a distribution network for
voltage control purposes, from the deployment to their optimal control, is analyzed.
In the considered framework, the stakeholder is assumed to be the DSO, which
faces regularly over- and/or undervoltages in a LV distribution network, and looks
for solutions to this issue in order to avoid penalties imposed by the regulatory
framework. Consequently, ESSs are assumed to be installed and operated by the
DSO, i.e., they are not integrated in households or DG plants out of the control of the
DSO. As far as the configuration stage is concerned, a voltage sensitivity analysis
has been proposed to circumvent the combinatorial nature of the siting problem and
a multi-period OPF has been adopted to determine the size of each storage unit.
Moreover, a control algorithm based on the receding horizon control framework
has been devised to optimal operate ESSs and anticipate possible voltage problems.
Applications presented in the last part of the chapter (a real Italian LV network, a
modified version of the IEEE 34-bus test feeder, and 200 randomly generated radial
networks) provide encouraging results when the ESS allocation strategy is compared
with exhaustive search. They bring interesting insights in how the network topology,
and historical load demand and DG profiles, can be exploited to identify the most
suitable candidate buses for ESS siting. Furthermore, simulations show how the
proposed ESS control policy could greatly enhance the voltage quality at customers’
premises.

The chapter is organized as follows. Section4.2 presents the network model.
Section4.3 introduces the OPF problem and its convex relaxation. Both the sizing
and the siting problem are addressed in Sect. 4.4, whereas the proposed algorithm
for real-time ESS control is described in Sect. 4.5. Experimental results are reported
and discussed in Sect. 4.6. Finally, conclusions are drawn in Sect. 4.7.
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4.2 Network Model

Consider a radial LV distribution network. The network is described by a graph
(N , E), whereN = {1, 2, . . . , n} is the set of nodes (buses) and E is the set of edges
(lines). Bus 1 is assumed to be the slack bus, representing the interconnection with
the MV network, while the set N L = {2, . . . , n} includes all the remaining buses.
Moreover, the set of buses having generation is denoted byG ⊆ N L . The admittance-
to-ground at bus i is denoted by yii , while the line admittance between nodes i and
j is denoted by yi j . Obviously, yi j = y ji . If (i, j) /∈ E , i.e., buses i and j are not
connected by a line, yi j = 0. The network admittance matrix Y = [Yi j ] ∈ C

n×n is a
symmetric matrix defined as

Yi j =
{
yii + ∑

h �=i yih if i = j

−yi j otherwise.
(4.1)

Consider discrete time steps denoted by t = 1, 2, . . . . The complex voltage at bus
k and time t is denoted by Vk(t). The slack bus is characterized by fixed voltage
magnitude and phase. Voltage magnitude and phase at all other buses in the set N L

are determined by the network operating conditions. For k ∈ N L , voltage quality
requirements impose the voltage magnitude to remain within specified limits, i.e.,

v2
k ≤ |Vk(t)|2 ≤ v2

k, (4.2)

where vk ≤ vk are given bounds. Moreover, real power flow from bus i to bus j is
bounded according to the physical properties of the lines. This implies the constraint

pi j (t) ≤ pi j , (4.3)

where pi j (t) = Re
(
Vi (t)

[
Vi (t) − Vj (t)

]∗
y∗
i j

)
is the real power transferred from bus

i to bus j at time t , and pi j = p ji is a given upper bound depending only on the
physical properties of the line [30]. Denoting the active and reactive power injections
at bus k by pk and qk , respectively, the power balance equations at bus k and time t
read as

pk(t) = Re
(
Vk(t)

∑
j∈N

V ∗
j (t)Y

∗
k j

)
(4.4a)

qk(t) = Im
(
Vk(t)

∑
j∈N

V ∗
j (t)Y

∗
k j

)
. (4.4b)

In turn, for a bus k having loads and generators connected to it, pk and qk can be
decomposed as

pk(t) = presk (t) − ploadk (t) (4.5a)

qk(t) = qresk (t) − qloadk (t), (4.5b)
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where the superscript res refers to generation and the superscript load refers to demand.
By putting together (4.4) and (4.5), it follows

Re
(
Vk(t)

∑
j∈N

V ∗
j (t)Y

∗
k j

)
= presk (t)− ploadk (t) (4.6a)

Im
(
Vk(t)

∑
j∈N

V ∗
j (t)Y

∗
k j

)
=qresk (t)−qloadk (t). (4.6b)

Active power p1(t) and reactive power q1(t) injected at the slack bus are determined
by the power flow. For all other buses in the set N L , Vk(t) are free variables of the
power flow problem, while the quantities ploadk (t), qloadk (t), presk (t) and qresk (t) are
considered as known inputs in (4.6). In case no load or generator is connected to bus
k, the corresponding demand or generation are assumed to be zero, i.e., presk (t) =
qresk (t) = 0, ∀k ∈ N L\G.

4.3 OPF and SDP Relaxation

In a typical OPF problem, cost function includes the cost of generating real power or
line losses over the network. Note that all these costs can be expressed as functions
of V (t) = [ V1(t) . . . Vn(t) ]′. Let the cost function be C

(
V (t)

)
. Then the OPF of

interest can be formulated as

Problem 3 Standard OPF problem.

⎧⎪⎨
⎪⎩
min
V (t)

C
(
V (t)

)
s.t.:
(4.2) − (4.6), k ∈ N L , (i, j) ∈ E

. (4.7)

Unfortunately, Problem 3 is non-convex (due to the nonconvexity of the constraint
(4.2) and the bilinearity in the equality constraint in (4.6)), and NP-hard to solve in
general. A common approach to reduce the computational burden is to compute an
approximated solution by resorting to SDP convex relaxations [31]. This approach
suggests using a new variable W(t) = U(t)U(t)′ as the main voltage information,
where U(t) = [

Re
(
V (t)

)′
Im

(
V (t)

)′ ]′
is the decomposed voltage vector. Let εk be

the k-th standard basis vector of Rn , and let

Yk = εkε
′
kY (4.8)

Y i j = yi jεi (εi − ε j )
′ (4.9)

Y p
k = 1

2

[
Re

(Yk + Y ′
k

)
Im

(Y ′
k − Yk

)
Im

(Yk − Y ′
k

)
Re

(Yk + Y ′
k

)] (4.10)
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Y q
k = −1

2

[
Im

(Yk + Y ′
k

)
Re

(Yk − Y ′
k

)
Re

(Y ′
k − Yk

)
Im

(Yk + Y ′
k

)] (4.11)

Y p
i j = 1

2

[
Re

(Y i j + Y ′
i j

)
Im

(Y ′
i j − Y i j

)
Im

(Y i j − Y ′
i j

)
Re

(Y i j + Y ′
i j

)] (4.12)

Mk =
[
εkε

′
k 0

0 εkε
′
k

]
. (4.13)

It can be easily verified that with the previous definition

|Vk(t)|2 = Tr
(
MkW(t)

)
(4.14a)

pi j (t) = Tr
(
Y p

i jW(t)
)

(4.14b)

pk(t) = Tr
(
Y p

k W(t)
)

(4.14c)

qk(t) = Tr
(
Y q

kW(t)
)
. (4.14d)

The interested reader is referred to [30] for a detailed derivation of (4.14). Adding
all together, one can show that Problem 3 is equivalent to the following formulation.

Problem 4 SDP OPF problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
W(t)

C
(
W(t)

)
s.t.:

Tr
(
Y p

k W(t)
) = presk (t) − ploadk (t)

Tr
(
Y q

kW(t)
) = qresk (t) − qloadk (t)

v2
k ≤ Tr

(
MkW(t)

) ≤ v2
k

Tr
(
Y p

i jW(t)
) ≤ pi j

rank
(
W(t)

) = 1
W(t) 	 0
k ∈ N , (i, j) ∈ E

. (4.15)

The equivalence between (4.7) and (4.15) follows from the fact that the symmetric
matrix W(t) ∈ R

n×n is positive semidefinite and of rank-1 if and only if there exists
U(t) ∈ R

n such that W(t) = U(t)U(t)′. Assume that the cost function is convex,
as it is frequent in OPF formulations, and move our attention to the feasibility set
only. Unlike (4.7) which is quadratic in V (t), this problem is convex in W(t) except
the nonconvex rank-1 constraint. Removing the rank-1 constraint yields the standard
SDP relaxation. In general, the relaxation provides a lower bound to the optimal cost
of the OPF problem (4.7), but it is shown empirically in [32] that it works particularly
well for radial distribution networks. Sufficient conditions underwhich the relaxation
is exact, are provided in [33].
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4.4 ESS Configuration

In this section, the problem of finding the optimal number, location and size of ESSs
with the aim of preventing over- and undervoltages in a radial LV network is con-
sidered. The combinatorial nature of the siting problem is coped with by devising
a heuristic strategy based on voltage sensitivity analysis. The heuristic determines
the location of a given number of ESSs in the network that are expected to be most
effective for voltage support. Then, for fixed storage locations, ESS sizes are deter-
mined by formulating a multi-period OPF problem [27, 34], which is then tackled by
resorting to SDP convex relaxations [31]. The final choice of the best ESS allocation
is done by minimizing a total cost, which takes into account the number of storage
devices, their total installed capacity, and the average network losses. Following the
taxonomy in [17], the contribution of the ESS configuration step can be positioned as
a mix of heuristic and mathematical programming methods. Its unique feature in the
framework of the related literature is the siting procedure, which exploits network
topology and line parameters. Advantages of the proposed placement procedure are
twofold. First, it is computationally cheap and avoids resorting to a combinatorial
formulation involving integer variables. Second, it is specifically designed in order
to ease the solution of the subsequent sizing problem by selecting locations with
highest sensitivity to solve over- and undervoltages. Similarly to [16], uncertainties
in the storage sizing decision problem, mainly arising from stochastic generation
and demand, are taken into account by carrying out the optimal sizing over different
realizations of the demand and generation profiles. For each installed storage, the
largest size over the considered time horizon is finally selected. Roughly speaking,
this “worst-case” approach is motivated by the attempt to “robustify” the decision
by maximizing the probability of feasible storage operation under all possible real-
izations of demand and generation. Overall, the goal of the proposed procedure is to
find a cost-effective storage installation strategy providing voltage support to the LV
network, while keeping the computational burden affordable.

ESS model

Assume that distributed energy storage can be installed in the network, and let S ⊆
N L be the set of buses equipped with ESS. For s ∈ S, es(t) denotes the storage
energy level at bus s and time t . The dynamics of es(t) is modeled to follow the
first-order difference equation

es(t) = es(t − 1) + pesss (t − 1)�t, (4.16)

where pesss (t − 1) is the average active power pumped into (pesss > 0) or drawn
from (pesss < 0) the storage between t − 1 and t , and �t is the time step. The initial
condition for the storage level is assumed to be known

es(1) = estarts . (4.17)
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Moreover, both pesss (t − 1) and es(t) are bounded as follows

pess
s

≤ pesss (t − 1) ≤ pesss (4.18)

0 ≤ es(t) ≤ es, (4.19)

where pess
s

< 0 and pesss > 0 are the ramp rate limits, and es is the storage capac-
ity installed at bus s. Similarly to (4.18), the average reactive power qess

s (t − 1)
exchanged by the compensation device between t − 1 and t can be constrained by
imposing

qess
s

≤ qess
s (t − 1) ≤ qess

s , (4.20)

for fixed bounds qess
s

< qess
s .

Problem formulation

The configuration cost of distributed storage systems in the grid depends both on
the number of devices (e.g., costs incurred for installation and maintenance) and the
total amount of energy storage capacity installed. Moreover, the effectiveness of a
given ESS in providing voltage regulation services can vary significantly, depending
on the bus to which it is connected. Hence, the following problem need be tackled
at the planning stage.

Problem 5 Optimal ESS configuration problem: Find the minimum-cost ESS num-
ber, location and size for preventing over- and undervoltages in the considered LV
network.

Solving Problem 5 is a formidable task, since it requires to solve a multi-period OPF,
with mixed binary and continuous optimization variables. In order to circumvent
the combinatorial nature of the problem, and reduce its computational complexity,
a two-step, iterative procedure is hereafter proposed. For a given number of ESSs,
a heuristic based on voltage sensitivity analysis, which explicitly takes into account
the network topology, is devised to select the most effective ESS location for voltage
support. Then, the size of each storage unit is determined by solving a multi-period
OPF problem. These steps are iterated for different numbers of ESSs, in order to
minimize the overall configuration costs. Each step is illustrated separately in the
following sections.

4.4.1 ESS Sizing

Assume that the setS is given, i.e., the ESS number and locations in the network have
been decided. The considered storage sizing problem aims at finding the minimum
total storage capacity making it possible to satisfy the voltage constraints (4.2) over a
discrete time horizon T . Typically, T spans one day or one week, in order to account
for the periodicity of demand and generation profiles. Optimization variables in the
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sizing problem are the storage size es and the real and reactive power pesss (t − 1)
and qess

s (t − 1) exchanged by each storage unit, in addition to the typical OPF opti-
mization variables. Conversely, demand and generation profiles are given, e.g., they
are extracted from a historical data set. To define the cost function to be optimized,
it is worth recalling that the major amount of losses in a power system (estimated
around 70% of the total) is in distribution lines. This suggests that minimizing line
losses should be a primary objective in the operation of distribution networks. More-
over, the battery size is another parameter to take into account while planning ESS
investments. In view of these considerations, the following cost is introduced

J (Closs,Ccap) = Closs + γcapC
cap, (4.21)

where Ccap = ∑
s∈S es [kWh] is the total installed storage capacity, Closs = 1

|T |∑
t∈T

∑
k∈N pk(t)�t [kWh] represents the average total line losses per sampling

time, |T | denotes the cardinality of the set T , and γcap ≥ 0 is a weighting factor.
Hence, the convex version of the AC OPF problem with storage dynamics can be
cast as

Problem 6 Optimal ESS sizing problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J ∗ = min
W(t),pesss (t−1),qess

s (t−1),es
J (Closs,Ccap)

s.t.:

Tr
(
Y p

k W(t)
) = presk (t) − ploadk (t) − pessk (t − 1) (a)

Tr
(
Y q

kW(t)
) = qresk (t) − qloadk (t) − qess

k (t − 1) (b)
v2
k ≤ Tr

(
MkW(t)

) ≤ v2
k (c)

Tr
(
Y p

i jW(t)
) ≤ pi j (d)

es(1) = estarts (e)
es(t + 1) = es(t) + pesss (t − 1)�t (f)
0 ≤ es(t) ≤ es (g)
pess
s

≤ pesss (t − 1) ≤ pesss (h)
qess
s

≤ qess
s (t − 1) ≤ qess

s (i)

W(t) 	 0 (l)
k ∈ N L , (i, j) ∈ E, s ∈ S, t ∈ T

. (4.22)

In Problem 6, constraints (4.22a) and (4.22b) express the power balance equation
(4.6) with the inclusion of ESS variables.1 Clearly, pessk (t − 1) = qess

k (t − 1) = 0
for k ∈ N L\S. Constraints (4.22c) and (4.22d) impose voltage and line capacity

1In power systems, measurements of average power are typically labeled a posteriori, i.e., the power
ascribed at time t actually represents the average power between t − 1 and t . On the other hand,
the ESS control inputs holding between t − 1 and t are denoted by pesss (t − 1) and qesss (t − 1),
consistently with the fact that they are decided at time t − 1.
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limits (4.2) and (4.3), respectively, and constraints (4.22e)–(4.22i) model the storage
dynamics (4.16)–(4.20). Notice that the conventional OPF problem (4.7) is a static
optimization problem solved independently at each time step. Here, the addition
of a storage charge/discharge dynamics allows optimization across time and gives
way to a multi-period OPF. Moreover, (4.22) can be lifted to the original full non-
linear multi-period OPF by simply adding the additional non-convex constraint rank(
W(t)

) = 1 (see, e.g., [30, 31]).

Remark 5 Although Problem 6 is formulated in a deterministic framework, in a real
context all variables are affected by uncertainty. These can bemodeled by considering
the data as realizations of suitable stochastic processes. This can be modeled by
considering the data in each time horizon T as a sample of the cyclostationary
stochastic process involving both renewables and loads. In this respect, the optimal
cost J ∗, as well as the optimal ESS sizes e∗, are stochastic quantities, since the
cost function (4.21) depends on the particular realization of demand and generation
profiles over the considered time horizon. Data in each time frame T is considered
as a sample of the cyclostationary process involving both renewable generation and
loads. In order to guarantee feasibility of Problem 6, the size of the s-th device must
be selected as the largest e∗, taken with respect to all possible realizations of demand
and generation profiles. When historical data are available, a viable approach is to
solve Problem 6 separately for each sample in the data set, and then size each ESS
according to the largest capacity found. Formally, let e∗,d

s denote the optimal size of
storage unit s for the demand and generation profiles of sample d = 1, . . . , D. Then,
the final size E∗

s of the s-th ESS is selected as

E∗
s = max

d=1,...,D
e∗,d
s . (4.23)

In this study, the time span of a sample will be assumed to be one day. In order to link
coherently consecutive days, the additional constraint stating that the storage level
at the beginning of a day equals that at the end of the day, namely

∑
t∈T

pesss (t − 1) = 0, ∀s ∈ S, (4.24)

is added in (4.22).

Remark 6 If needed, the ramp rate limits pess
s

and pesss can be made dependent on
the ESS size es by replacing (4.18) and (4.22h) with

− ρ
k
es ≤ pesss (t − 1) ≤ ρkes, (4.25)

for fixed positive constants ρ
k
and ρk . Since (4.25) is convex, this extension does not

change the computational complexity of the optimization problem (4.22).
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4.4.2 ESS Siting

In this section, a procedure for finding a suitable placement of a given number of
ESSs in a radial distribution network, based on Clustering and Sensitivity Analysis
(CSA), is presented. The underlying idea consists in partitioning the network into
nc disjoint subnetworks, and then selecting the most appropriate bus within each
subnetwork where to deploy an ESS. The CSA algorithm is presented below.

CSA algorithm

(i) Network clustering. First, the node setN L is partitioned into nc disjoint subsets.
To this aim, a clustering algorithm is run on an auxiliaryweighted graph, consist-
ing of a complete graph built overN L . The weight associated to the edge (h, k)
is equal to the (h, k)-entry of the voltage sensitivity matrix � ∈ R

(n−1)×(n−1)

(see, e.g., [35]):
�hk = ∂|Vk |/∂ ph, h, k ∈ N L . (4.26)

The value �hk is a measure of how much the voltage at bus k is sensitive
to active power injection at bus h. The effect of reactive power injection qh
on bus voltages is neglected since ∂|Vk |/∂qh � ∂|Vk |/∂ ph in LV networks.
Among several methods for graph clustering available in the literature (see,
e.g., [36]), the algorithm adopted in this procedure is based on [37]. It searches
for nc subgraphs which form a partition of the original graph, while minimizing
the sum of the weights associated to the removed edges. In other words, this
amounts to constructing the partition of the auxiliary graph in order to minimize
the sum of the sensitivity values associated to the removed connections. This
means that a pair of buses with high mutual sensitivity values are likely to end
up in the same subset. The outcome of the clustering algorithm is a partition
Ni , i = 1, . . . , nc, of the node setN L , from which subnetworks ϒi = (Ni , Ei )
are reconstructed by defining Ei = {(hi , ki ) ∈ E : hi ∈ Ni , ki ∈ Ni }.

(ii) Candidate nodes. For each subnetwork ϒi , i = 1, . . . , nc, the critical nodes
are identified as the nodes with generation and the nodes that are leaves of the
original network. Then, the set �i of candidate nodes is formed with all the
nodes along the paths connecting any pair of critical nodes of ϒi .

(iii) Bus selection. The criterion according to which the best node among all candi-
date nodes is selected exploits the voltage sensitivity (4.26) again. The ESS for
subnetwork i is placed at the node

k∗
i = arg max

ki∈�i

min
hi∈Ni\{ki }

�hi ki . (4.27)

This choice aims at maximizing the controllability of the voltage in the subnet-
work.

The rationale behind the CSA algorithm is to exploit the voltage sensitivity matrix in
order to determine the best ESS locations. Indeed, the voltage sensitivitymatrix helps
identify the most effective connections among nodes with the aim of maximizing the
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effect of power injection on voltage variation. Clearly, if a subnetwork ϒi resulting
from step (i) does not contain any node affected by voltage problems, ϒi can be
safely left without ESS, thus skipping steps (ii) and (iii) of the procedure for that
subnetwork.

4.4.3 ESS Cardinality Selection

The parameter nc, which is an upper bound to the final number of ESSs to be installed,
is an input to the CSA algorithm, and must be selected by trading-off fixed and
variable costs of storage configuration. A small number of ESSs results in smaller
installation and maintenance costs, but typically requires a larger total capacity to
be installed in order to face all possible network operating conditions with fewer
ESSs. In this respect, a possible selection strategy for the number of subnetworks is
to repeat the CSA algorithm for increasing values of nc, find the optimal size of each
device by solving Problem 6, and then evaluate the corresponding total configuration
cost as

Ccon f (nc) = c f ns + cvE[J ∗], (4.28)

where ns is the number of ESSs resulting from running the CSA algorithm with
nc clusters, J ∗ is the optimal cost of Problem 6, c f [ke] accounts for the fixed
costs related to a single device and cv [e/kWh] is the unitary cost associated with
J ∗. Expectation E[·] is taken with respect to demand and generation probability
distributions. In fact, J ∗ is a random variable as explained in Remark 5. In practice,
the expected value E[J ∗] is replaced by the sample mean J̄ ∗ computed over the
available data set. Formally, let J ∗,d be the optimal cost of (4.22) for the demand and
generation profiles of sample d = 1, . . . , D, then

J̄ ∗ = 1

D

D∑
d=1

J ∗,d . (4.29)

Remark 7 Since the voltage sensitivity matrix � cannot be computed analytically,
it is estimated numerically. This is done by evaluating the voltage variation at node
k after a unit power injection at node h, which amounts to solving a load flow
problem. While it is true that the entries of (4.26) do depend on the particular load
and generation profiles, it turns out that their variation is negligible even when very
different profiles are considered. This confirms that � is determined mostly by the
network topology and admittances of the lines, as already observed in previous
works [9, 35]. By virtue of this observation, matrix � is computed only once, by
considering the average load and generation profiles. The same matrix is then used
for solving points (i) and (iii) of the CSA procedure, irrespective of the number of
clusters selected.
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The overall ESS allocation procedure is summarized in Algorithm 2. The CSA algo-
rithm forESS siting is quite inexpensive. In fact, the hardest task of theCSAalgorithm
is the network clustering (step CSA.1), which is however carried out in few seconds
for networks including up to a hundred buses (on a 2.4GHz single-core CPU). The
overall computational burden of the procedure is dictated by the solution of the siz-
ing problem. Due to the time correlation introduced by the presence of ESSs, it is
necessary to solve a multi-period OPF. Moreover, the full AC OPF need be solved
since LV networks are considered. In this respect, the adopted SDP approximation
yields a significant complexity reduction. Nevertheless, since the solution of the
multi-period OPF is repeated for all the days in the historical data set, this task is
by far the most time consuming one. Parallel implementation of this step could be
effective in reducing the overall computation time.

Algorithm 2 Summary of the ESS allocation procedure
for i = 1 to n − 1 do
S(i) ← run the CSA algorithm with nc = i ;
for d = 1 to D do

(e∗,d
s , J ∗,d ) ← solve Problem 6 with S = S(i);

end for
E∗
s (i) ← evaluate (4.23), s ∈ S(i);

Ccon f (i) ← evaluate (4.28);
end for
i∗ = argmin

i
Ccon f (i);

place ESSs at S(i∗), with sizes E∗
s (i

∗).

4.5 ESS Operation

In this section, a control scheme based on a receding horizon approach for optimal
operation of ESSs connected to the network is proposed. The idea is to use forecasts
of demand and generation to “anticipate” possible voltage problems, and counteract
them in advance. These forecasts are computed via simple statistical models requir-
ing a limited set of real-time measurements, namely the power exchanged with the
MV network, and meteorological variables (e.g., outdoor temperature and solar irra-
diance) provided by a local weather station. A simple procedure is presented to infer
demand and generation at each bus of the network from aggregate forecasts at the
secondary substation. Forecasts of demand and generation are used in a multi-period
OPF, which provides the set points of active and reactive power to be exchanged by
the installed ESSs. The objective function of the formulated optimization problem
takes into account both the cost of storage use and line losses. The model predictive
control paradigm is applied to voltage control also in [38, 39] for grid-connected
microgrids, but without a proper representation of power flows and voltages, and in
[40, 41], but for MV networks not equipped with ESS.



66 4 Configuration and Control of Storages in Distribution Networks

In the problem formulation, it is provisionally assumed that future demand and
generation, i.e., the quantities ploadk (t), qloadk (t), presk (t) and qresk (t) at buses k ∈
N L , are known. This assumption will be removed in the next section. At time t ,
the amount of active and reactive power exchanged by each ESS is computed by
solving a suitable optimal control problemover the timehorizonT = {t + 1, . . . , t +
H}. The parameter H > 0 represents the number of time periods included in the
control horizon. The battery degradation, depending on both usage and energy level,
is the main issue to take into account while operating an ESS. In view of these
considerations, the following cost is introduced

Coper (t) = Closs(t) + γessC
ess(t), (4.30)

where Closs(t) = ∑
k∈N pk(t)�t represents the total real losses in the network

between t − 1 and t , Cess(t) = ∑
s∈S

∣∣pesss (t − 1)
∣∣�t is a measure of the battery

usage over the same time interval, and the term γess ≥ 0 is a suitable weight. At time
t , the objective is to find an ESS control policy such that the sum of the costs (4.30)
over the considered horizon T is minimized, while satisfying the voltage quality and
line constraints. This translates into the followingmulti-period convexOPF problem.

Problem 7 Optimal ESS control problem.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
W(τ ),pesss (τ−1),qess

s (τ−1)

t+H∑
τ=t+1

Coper (τ ) + γsocC
soc,end(t + H)

s.t.:

Tr
(
Y p

k W(τ )
) = presk (τ ) − ploadk (τ ) − pessk (τ − 1) (a)

Tr
(
Y q

kW(τ )
) = qresk (τ ) − qloadk (τ ) − qess

k (τ − 1) (b)
v2
k ≤ Tr

(
MkW(τ )

) ≤ v2
k (c)

Tr
(
Y p

i jW(τ )
) ≤ pi j (d)

es(τ ) = es(τ − 1) + pesss (τ − 1)�t (e)
0 ≤ es(τ ) ≤ es (f)
pess
s

≤ pesss (τ − 1) ≤ pesss (g)
qess
s

≤ qess
s (τ − 1) ≤ qess

s (h)

W(t) 	 0 (i)
k ∈ N L , s ∈ S, (i, j) ∈ E, τ ∈ T

(4.31)

In Problem 7, the cost function includes an additional term Csoc,end(t + H) which
depends on the value of the storage level at the end of the control horizon. Parameter
γsoc ≥ 0 is a suitable weight. The cost on the terminal energy storage state is defined
as

Csoc,end(t) =
∑
s∈S

∣∣es(t) − δes
∣∣, (4.32)
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where δ ∈ [0, 1] represents the desired state of charge for each single ESS. The
purpose ofCsoc,end is to drive the ESS state of charge at the end of the control horizon
towards the target δ, compatibly with the voltage and power flow constraints. In the
following, the values of the optimal control variables pesss (t) and qess

s (t), solution of
Problem 7, will be denoted by p∗,ess

s (t) and q∗,ess
s (t).

4.5.1 Receding Horizon Implementation

The implementation of Problem 7 in a real setting has to deal with the fact that
future demand and generation are unknown at time t . For this reason, the values
ploadk (t + h), qloadk (t + h), presk (t + h) and qresk (t + h), are replaced in practice with
theirh-step ahead forecasts computed at time t , namely p̂loadk (t + h|t), q̂loadk (t + h|t),
p̂resk (t + h|t) and q̂resk (t + h|t), h = 1, . . . , H .

When tackling ESS operation via Problem 7, one would like to have the control
horizon H as large as possible, because the larger H , the more efficient the ESS
operating policy in terms of line losses and storage costs. On the other hand, the use
of load and generation forecasts implies that the ESS operating policy obtained by
solving Problem 7 will likely not be optimal under the true realization of demand
and generation. More importantly, it could also fail in satisfying the voltage quality
and real power flow constraints. These issues become more and more prominent as
the control horizon H is increased, because prediction accuracy typically gets worse
for large lead times. Therefore, a suitable trade-off should be found when selecting
the control horizon in real applications. Values ranging from two to three hours are
deemed to be a realistic compromise for LV networks under consideration.

One way to mitigate the effects of uncertainties such as inaccurate forecasts, is to
apply the receding horizon approachwhich is typical ofmodel predictive control [42].
Roughly speaking, at time t Problem 7 is solved based on the load and generation
forecasts available at that time. Then, only the values p∗,ess

s (t) and q∗,ess
s (t) are

applied. The same steps are repeated at the next time instants by exploiting the
updated load and generation forecasts that become available. The complete receding
horizon procedure is reported in Algorithm 3. The second step of Algorithm 3,
requiring to compute demand and generation forecasts for each bus of the network,
is described in detail in Sect. 4.5.2.

Algorithm 3 Receding horizon procedure for ESS operation
for t = 0, 1, . . . do
Acquire the current battery state es(t)
For each k ∈ N L , compute forecasts p̂loadk (t + h|t), q̂loadk (t + h|t), p̂resk (t + h|t) and
q̂resk (t + h|t), h = 1, . . . , H
Solve Problem 7
Apply control values p∗,ess

s (t) and q∗,ess
s (t)

end for
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4.5.2 Load and Generation Forecasting

The performance of the receding horizon approach for ESS operation described in
Sect. 4.5.1 obviously depends on the accuracy of load and generation forecasts. In
order to reliably predict load and generation at each bus of the network,measurements
of these quantities would be needed in real-time, but unfortunately they are typically
not available in LVnetworks due to the high cost ofmeasurement and communication
infrastructures. Many countries worldwide already adopt smart meters, but recorded
measurements are typically transferred to data collectors in a batchway, e.g.,monthly.
Therefore, these measurements can be used for estimating the models of load and
generation, but cannot be assumed to be available for the real-time network operation.

In this thesis, a measurement setting which is deemed to be as realistic as possible
has been considered. Assume that a historical data set of load and generation profiles
at all the buses of the LV network is available (e.g., from smart meters). This data set
is used to estimate (and update, as soon as new data become available) the models of
demand and generation in the network. To the purpose of ESS operation, and assum-
ing that PV generation only is present, the requirement for real-time measurements
is limited to:

• active power p1 injected at the slack bus;
• solar irradiance I ;
• outdoor temperature T .

In case generation from RES other than PV is present, measurements of additional
meteorological variables could become necessary. To reduce the requirements for
the communication infrastructure, solar irradiance and outdoor temperature are mea-
sured at the MV/LV substation, where the control logic is installed. This assumption
is also practically motivated by the fact that LV networks typically do not cover large
areas, and are therefore characterized by a limited variability of weather conditions.

The average active power p1 injected at the slack bus between t − 1 and t can be
decomposed in the form

p1(t) = pload(t) − pres(t) + pess(t), (4.33)

where pres(t) = ∑
k∈G presk (t) is the aggregate generation of the network, pess(t) =∑

s∈S pesss (t − 1) is the total active power exchanged by the ESSs, and pload(t) =∑
k∈N L ploadk (t) + ploss(t) is the aggregate demand of the network, including the

losses ploss as a fictitious load. In the following the adopted methodologies to predict
pload and pres , and infer from these predictions the forecasts of ploadk and presk , for
all k ∈ N L , will be presented.

PV generation forecasting

For the sake of simplicity, it is assumed that generation in the LV network is only of
PV type, as is often the case. Therefore, pres in (4.33) can be seen as the aggregate
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PV generation in the network and, following [43], it can be described as a function
of the solar irradiance I and the outdoor temperature T via the PVUSA model

pres(t) = I (t)
[
a + b I (t) + c T (t)

]
, (4.34)

where a > 0, b < 0 and c < 0 are the model parameters. The most attractive feature
of the PVUSA model is that it is linear-in-the-parameters, and therefore parameter
estimation can be performed very efficiently via least squares [44]. Here it is assumed
that a, b and c were estimated from the available historical data set of generation,
solar irradiance and outdoor temperature.

A strategy for predicting the aggregate generation pres consists in substituting I
and T in (4.34) with their forecasts:

p̂res(t + h|t) = Î (t + h|t)[a + b Î (t + h|t) + c T̂ (t + h|t)]. (4.35)

Forecasting models of solar irradiance, mainly based on time series analysis and
artificial neural networks, can be found in the literature, see, e.g., [45, 46]. A crucial
point for solar irradiance forecasting is cloud covering, which represents the main
source of reduction of solar radiation. Unfortunately, this phenomenon is character-
ized by a high variability in time and space, and is consequently very hard to predict.
Currently, the cloud cover prediction is still a critical aspect of the meteorological
science and only relatively few contribution can be fund in the literature (see, e.g.,
[47]). Modeling and prediction of outdoor temperature can be addressed through the
combined use of exponential smoothing (ES) and autoregressive moving average
(ARMA) models (e.g., see [48]). In the following, the h-step ahead predictor of I
and T are denoted by f Ih and f Th , respectively.

Finally, PV generation at each bus k ∈ N L can be inferred from the predicted
aggregate generation p̂res as

p̂resk (t + h|t) = presk∑
g∈G presg

p̂res(t + h|t), (4.36)

where presk denotes the installed PV power at bus k.

Load forecasting

Load demand exhibits strong seasonal behavior on different time scales. In particular,
this applies to the aggregate demand pload in (4.33), and therefore modeling and
prediction of such a quantity can be addressed through ES-ARMA models (e.g.,
see [48]). With this in mind, the aggregate demand can be seen as a superposition
of a seasonal/periodic pattern and a stochastic component. Therefore, pload can be
decomposed as

pload(t) = ploadb (t) + ploadr (t), (4.37)

where ploadb is the seasonal component and ploadr is the residual due to stochastic
fluctuations. Based on (4.37), the problem of modeling pload is split into the separate
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problems of modeling ploadb and ploadr . One way to obtain ploadb is to apply an ES to
pload according to the smoothing equation

ploadb (t) = α pload(t − �) + (1 − α) ploadb (t − �), (4.38)

where the delay � depends on the periodicity of the time series, and α ∈ [0, 1] is
the smoothing parameter. Values of α close to one give greater weight to recent
observations, while small values of α determine a stronger smoothing of the stochas-
tic fluctuations. The term ploadr in (4.37) can be in principle modeled by resorting
to different (possibly nonlinear) black-box model structures, but in many practical
cases a simple ARMA model is sufficient. This corresponds to assume that ploadr is
generated by a mechanism of the type

ploadr (t) = C(q)

A(q)
ε(t), (4.39)

where ε(t) is a zero-mean i.i.d. stochastic process, and A(q) and C(q) are polyno-
mials in the backward shift operator q−1:

A(q) = 1 + a1 q
−1 + . . . + ana q

−na (4.40a)

C(q) = 1 + c1 q
−1 + . . . + cnc q

−nc . (4.40b)

The model combining (4.38) and (4.39) is referred to as ES-ARMA model. For
fixed model orders na and nc, the parameters of the ES-ARMA model (including
the smoothing parameter α) are typically estimated by minimizing the mean square
error (MSE) over estimation data. Order selection is performed by estimating optimal
ES-ARMA models with different values of na and nc, and then selecting the model
with smallest MSE over validation data. When the ES-ARMA model is used for
prediction, forecasts p̂load(t + h|t) are computed according to the equation

p̂load(t + h|t) = ploadb (t + h) + p̂loadr (t + h|t), (4.41)

where p̂loadr (t + h|t) is obtained by applying the linear minimum variance h-step
ahead predictor derived from (4.39) [49]. To ease the notation, in the following the
h-step ahead predictor of pload is denote by f loadh .

One practical issue to be considered when constructing the predictors f loadh ,
is that measurements of pload are not available in real-time, and hence pseudo-
measurements p̃load should be used in place of pload . These can be defined from
(4.33) as

p̃load(t) = p1(t) + p̃res(t) − pess(t), (4.42)

where p̃res is the pseudo-measurement of pres computed by substituting themeasured
values of I and T into (4.34). Note that, in (4.42), both p1 and pess are known: the
former is measured, while the latter is decided by the ESS control policy at time
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Algorithm 4 Computation of demand and generation forecasts
Require: Measurements of p1(t), pess(t), I (t) and T (t)

Compute p̃res(t) from (4.34)
Compute p̃load (t) from (4.42)
for h = 1, . . . , H do
Compute Î (t + h|t) = f Ih (I (t), I (t − 1), . . .)

Compute T̂ (t + h|t) = f Th (T (t), T (t − 1), . . .)
Compute p̂res(t + h|t) from (4.35)
Compute p̂load (t + h|t) = f loadh ( p̃load (t), p̃load (t − 1), . . .)
for k ∈ N L do
Compute p̂resk (t + h|t) from (4.36)
Compute p̂loadk (t + h|t) from (4.44)

end for
end for

t − 1 (see Sect. 4.5.1). Once a forecast of the aggregate demand pload is available,
the problem is how to use this value to infer the demand at each bus k ∈ N L . To this
aim, the average fraction of the aggregate demand at bus k and time τ of the day,
τ = 0, 1, . . . , Nd − 1, where Nd is the number of samples per day, is introduced and
denoted by ωk(τ ). The value of ωk(τ ) is estimated from a historical data set as

ωk(τ ) = 1

D

D−1∑
d=0

ploadk (τ + d Nd)

pload(τ + d Nd)
, (4.43)

where D is the number of days in the data set. Given the predicted aggregate demand
p̂load(t + h|t), the forecast p̂loadk (t + h|t) of the demand at bus k ∈ N L is obtained
as

p̂loadk (t + h|t) = ωk
(
(t + h) mod Nd

)
p̂load(t + h|t), (4.44)

where mod is the modulo operation. It is worth pointing out that this is, for instance,
the method actually used by the main Italian DSO for monitoring LV networks. In
practice, it is also possible to make the fraction ωk(τ ) depend on the day of the week
in order to take into account different patterns of the demand, e.g., in weekdays and
weekends. Notice that

∑
k∈N L ωk(τ ) < 1, in general, 1 − ∑

k∈N L ωk(τ ) being the
average fraction of the active power dissipated in the lines.

The proposed procedure for predicting demand and generation at each bus of the
network is summarized in Algorithm 4. Notice that the algorithm only refers to active
power forecasts. Once forecasts of ploadk and presk are available for each bus k ∈ N L ,
reactive power qloadk and qresk can be predicted by applying a fixed power factor,
which can be estimated from data, and is typically between 0.9 and 1 for loads, and
almost 1 for PV generators connected to the network through grid-tie inverters. The
block scheme of the overall procedure for ESS operation, consisting of the two main
steps of prediction and receding horizon control, is shown in Fig. 4.1.
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Fig. 4.1 Scheme of the proposed procedure for ESS operation. It consists of twomain steps, namely
prediction and control. At every sampling time, forecasts of both demand and generation are first
computed for each bus of the network according to Algorithm 4. Then, according to Algorithm 3,
the receding horizon control problem is solved, and the computed control inputs are applied to the
ESSs

4.6 Experimental Results

Algorithms for the optimal ESS configuration and operation described so far are
tested through several experiments. A real Italian LV networks, a modified version
of the IEEE 34-bus test feeder, and 200 randomly generated radial networks are used
for the validation of the CSA procedure. Then, the receding horizon algorithm for
the optimal control of the installed ESSs is applied to real data from the Italian LV
network.

Simulation setup

A portion of a real LV network, provided by the main Italian DSO (see Fig. 4.2)
and denoted by IT-LV in the following, represents the main data set used for both
planning and operation tests. The network consists of 17 buses, hosting 26 loads and
4 PV units. A total of 9 leaf and generation buses are present. Among them, only 8
critical nodes are retained since leaf node 3 does not experience any voltage problem.
For all loads and generators, four months of active and reactive power profiles are
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Fig. 4.2 IT-LV network

available with time step �t = 15 min. These profiles are perturbed to originate both
over- and undervoltages. This means that, in the absence of storage units installed
in the network, voltage magnitudes violate the voltage quality constraints (4.2) at
certain buses and time steps.

For all buses k ∈ N L , in accordance with the European Norm 50160, a 10%
tolerance around the nominal voltage value is allowed in both directions, i.e., vk =
0.9 pu and vk = 1.1 pu in (4.2). The bounds pi j in (4.3) are all set to 35 kW. The
ESS technology adopted for the simulations features the followingparameters.Active
ramp limits in (4.18) are chosen such that pesss = −pess

s
= 25 kW, and the bounds

qess
s

and qess
s in (4.20) are set to keep the angle shift between −10 and +10 deg.

All the results presented hereafter are obtained by using the CVXmodelling toolbox
[50] and the SeDuMi solver [51].
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4.6.1 ESS Configuration

The strategy for ESS siting and sizing described in Sect. 4.4, is demonstrated on
several experiments. The first experiment considers the IT-LV network described in
the simulation setup. The second case study refers to a modified version of the IEEE
34-bus test feeder [52]. Two PV units are installed at buses 7 and 19, resulting in a
total of 11 critical buses. Four daily demand and generation profiles, representative
of four different operating conditions, are simulated with time step �t = 15 min. In
the third experiment, the CSA algorithm is tested on 200 randomly generated radial
networks. The objective of the experiment is to evaluate the optimality gap of the
solutions provided by the CSA algorithm. For this reason, the test is carried out for
problem sizes making it possible to determine the optimal ESS siting via exhaustive
search.

ESS siting

For the IT-LV network the voltage sensitivity matrix� defined in (4.26) is computed
numerically as described in Remark 7. A pseudocolor plot of � is shown in Fig. 4.3.
This kind of representation is useful to visualize the effect that a power injection at
a given bus has on the voltage at the other buses. Cells with warmer colors denote
strongly connected pairs of buses, whereas cells filled with colder colors correspond
to weakly coupled buses.

For a given number of clusters nc, the CSA algorithm returns a suitable number
ns of ESSs to be installed, as well as their locations in the network. The results
obtained for the case nc = 6 are shown in Fig. 4.4. The procedure terminates with
ns = 2 storage units, allocated at buses 7 and 11.

The CSA procedure is repeated for all possible values of nc, ranging from 1 to 16
(see Table4.1). Each column shows how nodes are grouped in clusters (labeled with

Fig. 4.3 Graphical
representation of the voltage
sensitivity matrix � for the
IT-LV network
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Fig. 4.4 Output of the CSA algorithm for nc = 6. Two clusters (highlighted in green and yellow)
contain a nonempty set of candidate nodes (red buses). The remaining four clusters are singletons,
none of which is a candidate node

capital letters). Candidate buses are marked with a single vertical bar, while double
vertical bars identify the nodes selected for hosting the ESSs according to (4.27). In
the leftmost column, critical nodes are marked with an asterisk. By looking at the
table, one can notice that irrespective of the chosen number of clusters, storage units
are always allocated to a bus which is a critical node according to the definition given
in Sect. 4.4.2. The number ns of ESSs to be deployed as a function of the number
of clusters nc is shown in Fig. 4.5. It can be observed that ns is typically strictly
less than nc. In the limit case in which each node makes up a different cluster (i.e.,
nc = 16), the CSA algorithm returns ns = 8, corresponding to the 8 critical buses
present in the network. This confirms that such buses represent preferred locations
in which to deploy ESSs, thus supporting the intuition which is at the basis of the
CSA algorithm.

In order to assess the effectiveness of the siting procedure, the CSA algorithm is
tested under four typical operating conditions of the original LV network (without
ESSs):
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Table 4.1 Output of the CSA algorithm for different number of clusters nc = 1, . . . , 16
bus\nc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 A A A A A A A A A A A A A A A A

3 A B B B B B B B B B B B B B B B

4 A B C C C C C C C C C C C C C C

5 A| B| C | D| D D D D D D D D D D D D

6∗ A| B| C | D| E | F | F | H || H || H || H || H || H || H || H || H ||
7∗ A| B| C | D| E || E || G|| G|| G|| G|| G|| G|| G|| G|| G|| G||
8 A|| B|| C || D|| E E E E I I I I I I I I

9 A| B| C | D| E E E E E L L L L L L L

10∗ A| B| C | D| E | E | E || E || E || E || E || E || E || E || E || E ||
11∗ A| B| C | D| E | F || F || F || F || F || F || F || O|| O|| O|| O||
12∗ A| B| C | D| E | F | F | F | F | F | M|| M|| M|| M|| M|| M||
13 A| B| C | D| E | F | F | F | F | F | F | N N P P P

14∗ A| B| C | D| E | F | F | F | F | F | F | N || N || N || N || N ||
15∗ A| B| C | D| E | F | F | F | F | F | F | F | F || F || Q|| Q||
16 A| B| C | D| E | F | F | F | F | F | F | F | F | F | F R

17∗ A| B| C | D| E | F | F | F | F | F | F | F | F | F | F || F ||
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Fig. 4.5 Number of ESSs ns returned by the CSA algorithm as a function of the number of clusters
nc for the IT-LV network

NV—neither over- nor undervoltage at any node;
OV—only overvoltage at some nodes;
UV—only undervoltage at some nodes;
UOV—both over- and undervoltage at some nodes.

For each of the previous scenarios, a representative day is extracted from the data set,
and the corresponding load and generation profiles are considered. The CSA algo-
rithm is run with nc = 6, 7, 8, resulting in ns = 2, 3, 4 storage units, respectively
(see Fig. 4.5). Then, Problem 6 is solved by assuming ESS installed at the buses
returned by the siting procedure. Denote by J ∗,csa the corresponding optimal cost in
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(4.22). Such a quantity is then compared with the optimal cost J ∗,opt , computed over
all possible placements of ns ESSs in the network (e.g., for ns = 2, 120 different
ESS placements have to be considered). The ratio J ∗,csa/J ∗,opt is a measure of the
performance degradation which is incurred when using the CSA algorithm for ESS
siting (see Table4.2). The increase in the cost ranges from zero (UOV scenario) to
5.7% (UV scenario and ns = 2). This means that for the day when both over- and
undervoltages are experienced, the storage locations returned by the CSA procedure
are optimal. Conversely, for the day featuring only undervoltages, the CSA alloca-
tion of the two ESSs implies a cost J ∗,csa which is 5.7% higher than the optimal
one J ∗,opt . Notice, however, that the optimal ESS placement (i.e., the one yielding
the optimal cost J ∗,opt ), being in general different from day to day, is not physically
realizable. This means that, for fixed ns , there does not exist any placement of ns
ESSs yielding the optimal cost J ∗,opt for all the four days. In this respect, the solu-
tion provided by the CSA algorithm turns out to be a good trade-off among different
operating conditions and performs quite well in all scenarios. Moreover, the com-
putation of the optimal placement requires an exhaustive search among all possible
allocations of ns storage units. This is a very time-consuming task which becomes
rapidly intractable as ns grows. On a 2.4GHz single-core CPU, it takes about 16 h
to compute the first row of Table4.2, while it takes more than 10 days to compute
the third one. A more extensive experimental validation of the CSA algorithm is
carried out for the case ns = 2. The same quantity reported in Table4.2 is computed
for all the 120 days available in the data set. The results, shown in Fig. 4.6a, confirm
the good performance of the algorithm under every operating condition. Indeed, the
few days for which the cost increase is above 10%, correspond to days experiencing
undervoltages and for which ad hoc storage allocations result in a low optimal cost
J ∗,opt . However, the satisfactory behavior of the CSA algorithm on average can be
appreciated by comparing the samplemeans J̄ ∗,opt and J̄ ∗,csa , computed by averaging
over the 120 days. Specifically, it is obtained J̄ ∗,opt = 151 kWh, J̄ ∗,csa = 156 kWh,
resulting in an average performance degradation of 3.5%. Fig. 4.6b shows the daily
cost increase (i.e., J̄ ∗,� − J̄ ∗,opt ), averaged over the whole data set, for all possible
allocations indexed by � = 1, . . . , 120 of two ESSs in the network. It turns out that
the solution provided by the CSA algorithm ranks #11, with an average cost very
close to the best possible ESS allocation (namely, buses 10 and 11, for this network
and data set).

Table 4.2 Performance evaluation of the CSA algorithm on the IT-LV network (J ∗,csa/J ∗,opt )

ns NV OV UV UOV

2 1.008 1.022 1.057 1.000

3 1.001 1.038 1.000 1.000

4 1.006 1.000 1.008 1.000
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Fig. 4.6 Validation of the CSA algorithm for ns = 2 for the IT-LV network. a Ratio J ∗,csa/J ∗,opt

for all the four months in the data set. b Average optimality gap J̄ ∗,� − J̄ ∗,opt for all 120 possible
placement of two ESSs in the network (sorted in increasing order). The ESS placement provided
by the CSA algorithm ranks #11 (red dot)

ESS sizing

Once theCSAalgorithmhas returned the number and location of ESSs to be installed,
the size of each storage unit is determined by solving Problem 6 for each day in the
data set and then applying (4.23). An empty initial storage level (4.17) is assumed for
all ESSs, i.e., estarts = 0 kWh. Theweighting parameter in (4.21) is set to γcap = 2.5 ·
10−3, whereas c f = 10 ke and cv = 575e/kWh are chosen in the total configuration
cost (4.28).

An aspect to be considered is the quality of the solution found by solving the sizing
problem. In fact, recall that (4.22) is a convex relaxation of the original non-convex
problem, obtained by neglecting the rank-1 constraint. Feasibility and optimality of
the solution of the relaxed problem for the original non-convex one are guaranteed if
rank

(
W (t)

) = 1 for all t ∈ T . For the IT-LV network and the corresponding data set,
the rank-1 constraint is never satisfied. Nevertheless, by solving a load flow problem
with the ESS power exchange profiles pesss (t) and qess

s (t) resulting from (4.22) with
γcap = 2.5 · 10−3, the solution of the relaxed problem turns out to be always feasible
for the original one, i.e., no violations of the constraints occur. Indeed, the ratio of
the second to the first singular value of matrix W , namely σ2(W)/σ1(W), is of the
order of 10−11 with the choice γcap = 2.5 · 10−3, i.e., matrix W is almost a rank-1
matrix.

The parameter γcap in (4.21) represents theweight assigned to the storage capacity
term Ccap with respect to the line loss term Closs in the cost function J . In order to
tune it properly, several tests have been performed by considering load and generation
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Fig. 4.7 CostsCcap andCloss at the optimumof Problem 6 as a function of theweighting parameter
γcap for the IT-LV network. The set S is formed by ESSs placed at buses 7 and 11. Problem 6 is
solved over one challenging day of the data set, i.e., a day featuring both over- and undervoltages
in the absence of ESSs

profiles over a challenging day present in the data set, i.e., a day featuring both over-
and undervoltages in the absence of ESSs. In Fig. 4.7, the optimal values of Ccap

and Closs as a function of γcap are shown. As expected, higher values of γcap yield
solutions with smaller total installed ESS capacity, whereas smaller values of γcap
result in smaller line losses. Moreover, it can be observed that as the weight γcap
increases, Ccap cannot decrease below a lower bound in order to ensure feasibility of
the voltage constraints in the optimization problem.Consequently, asCcap tends to its
lower bound,Closs approaches a constant value as well. The choice γcap = 2.5 · 10−3

guarantees a total capacity Ccap as small as possible. Notice that γcap also affects the
quality of the solution of the relaxed problem. For large values of γcap, it turns out that
the solution of (4.22) is no longer feasible for the original non-convex problem. The
reason for this can be understood by looking at the ratio σ2(W)/σ1(W) in Fig. 4.8,
which becomes non-negligible for γcap > 9 · 10−3.

ESS cardinality selection

The total configuration cost (4.28) as a function of the number of ESSs is shown
in Fig. 4.9a. All the 120 days of the available data set are considered at this stage.
For some ESS placements, there may exist days in the data set for which the sizing
problem (4.22) does not admit a solution. For instance, this occurs when too few
ESSs are deployed, or when ESSs are placed in nodes of the network providing little
voltage support, no matter how big the storage size is. If this is the case, the day for
which Problem 6 does not have a solution is termed infeasible. In practice, infeasible
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configuration cost Ccon f in (4.28), where the expected value E[J ∗] is replaced with the average
cost J̄ ∗ in (4.29). b Percentage of infeasible days. c Average cost J̄ ∗ (blue solid line) and lower
bound provided by the distributed allocation strategy (red dashed line)

days are neglected when the average cost (4.29) and the final ESS sizes (4.23) are
computed. However, the number of infeasible days provides useful information to
make the final decision on the ESS allocation. The percentage of infeasible days as
a function of ns is shown in Fig. 4.9b. It is apparent that a suitable choice is ns = 2,
corresponding to the minimum total configuration cost Ccon f = 110 ke, while the
number of infeasible days is only 2 out 120 (less than 2%). Notice in Fig. 4.9a and b
that increasing the number of ESSs from one to two leads to a consistent reduction of
both the total configuration cost and the infeasible days. On the other hand, further
increasing ns would zero out the infeasible days, but at the price of a significant cost
increase. The average cost J̄ ∗, used in place of the expected value E[J ∗] in (4.28), is
shown in Fig. 4.9c. In particular, for ns = 2, J̄ ∗ = 156 kWh (this is the value J̄ ∗,csa
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already reported in the previous analysis). Notice that J̄ ∗ tends to a constant value
as ns increases. Recalling (4.28), this explains why Ccon f in Fig. 4.9a grows linearly
with ns for ns ≥ 4.

Comparisons with alternative heuristics

In this section, the CSA algorithm is compared to other ESS allocation strategies.
The Distributed Strategy (DS) consists in solving Problem 6 for all the days in

the data set with the assumption that a storage unit is available at each bus, i.e.,
S = N L . Then, (4.23) is applied to determine the final ESS sizes. Since the optimal
solution computed by DS is typically not sparse, i.e., E∗

s �= 0 for most s ∈ S, the
number of allocated ESSs is high and hence the total costCcon f is usually prohibitive
(e.g., Ccon f = 243 ke for the IT-LV network under consideration). Nonetheless,
considering DS is useful, since it provides a tight lower bound to (4.29), as can be
observed in Fig. 4.9c. The same figure shows that increasing ns from one to two
allows one to fill about 85% of the gap between the value of J̄ ∗ provided by the
CSA algorithm for ns = 1 and the lower bound provided by DS. Moreover, the
choice ns = 2 results in a total ESS size Ccap = 64 kWh which is slightly smaller
than that provided by DS, namely 65 kWh (see Fig. 4.10, showing the sizes of the
ESSs allocated at each bus by DS and by the CSA algorithm for ns = 2).

The First Best Strategy (FBS) is based on DS. For a given number ns of ESSs to
be deployed, FBS builds the set SFBS of buses with ESS by taking the ns buses with
the largest sizes E∗

s in the solution provided by DS. Then, the optimal size of each
device is computed by solving Problem 6 with S = SFBS for all the days in the data
set, and finally applying (4.23).

Forns = 2, buses 6 and15 are selected byFBS to host theESSs (seeFig. 4.10). The
total configuration cost is Ccon f = 111 ke, with an average cost J̄ ∗ = 157 kWh. As
can be observed, strategies FBS and theCSA algorithm achieve comparable results in
termsof J̄ ∗ andCcon f forns = 2.This occurs also for different values of the parameter

Fig. 4.10 Sizes E∗
s of the

ESSs allocated by the
distributed strategy (red) and
by the CSA algorithm for
ns = 2 (blue) in the case of
IT-LV network
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Table 4.3 Performance evaluation of the CSA algorithm on the IEEE 34-bus test feeder
(J ∗,csa/J ∗,opt )

ns NV OV UV UOV

1 1.008 1.039 1.012 1.014

2 1.012 1.038 1.000 1.009

3 1.004 1.031 1.011 1.005

γcap in (4.21). However, FBS results in 11% of infeasible days for all ns ≤ 6. The
reason for this lies in the fact that, as opposed to the CSA algoritm, FBS neglects the
network topology, leaving the right-hand side of the network (see Fig. 4.2) without
ESS support for ns ≤ 6. Under the considered demand and generation data set, the
feeder composed of the buses {8, 9, 10} is likely to suffer from undervoltages. This
cannot be solved with the solution provided by FBS until one chooses ns > 6, thus
introducing bus 10 in the set SFBS .

IEEE 34-bus case study

The ESS configuration procedure is validated on the IEEE 34-bus test feeder, by
simulating demand and generation profiles of four days representative of the classes
NV,OV,UV, andUOV, definedpreviously.As for the IT-LVnetwork, the performance
of the CSA algorithm is compared with the optimal solution, for different numbers
of ESSs to be deployed. The results for the four classes are summarized in Table4.3.
The results confirm the effectiveness of the algorithm, with a maximum performance
degradation smaller than 4%. With regard to computational aspects, for ns = 3, the
proposed procedure solves the siting and sizing problem for one day in approximately
18min, almost totally required to solve Problem6.As expected, the computation time
taken by the CSA algorithm is of the order of seconds irrespective of the number of
nodes, confirming that the siting procedure scales well with the network dimension.
By contrast, the exhaustive search needed to compute the optimal ESS placement
would require to solve 5456 problems of the form (4.22), implying an unacceptable
computation time. For this reason, the exhaustive search needed for computing J ∗,opt

is restricted to the set of the critical nodes, which are the favorite ones for the ESS
allocation.

By performing the same analysis illustrated for the IT-LV network, the total cost
Ccon f is computed for different values of nc, and using the four-day data set. In
this case, the optimal number of ESSs to deploy into the IEEE 34-bus system turns
out to be ns = 1, corresponding to a total cost Ccon f = 52.8 ke. According to the
CSA algorithm, the location where to deploy the storage unit is bus 33, with an
ESS size Ccap = 20.9 kWh, and an average cost function J̄ ∗ = 74.1 kWh. The FBS
strategy forns = 1 selects bus 19 asESS location, achieving comparable performance
(Ccon f = 52.1 ke, Ccap = 21.3 and J̄ ∗ = 72.9 kWh). However, the computation
time of the FBS strategy, requiring the solution of an optimization problem assuming
that a storage unit is available at each bus, is remarkably larger.
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Test on random networks

To further assess the effectiveness of the allocation procedure, the CSA algorithm is
run on 200 randomly generated radial networks, and results are compared with the
optimal ones obtained via exhaustive search. All networks are characterized by the
same node setN as the IT-LV network (bus 1 being always the slack bus), but differ
in the edge set E and the admittance matrix Y . The generation mechanism of the tree
structure is recursive, starting from the slack bus as the root. Given a root node r and
a setL of descendant nodes,m children ci of r are randomly drawn fromL, wherem
ranges from 1 to 4 with equal probability. Then, the set of the remaining descendant
nodes is randomly partitioned into m subsets Li . The same procedure is recursively
repeated for each setLi with root ci , until the leaf nodes are reached. The depth of the
200 generated trees ranges from 3 to 7. Given the edge set E , the admittance matrix
Y is defined by generating randomly the distances between the nodes connected by
an edge, and then multiplying the distances by a fixed admittance per unit length.
On the other hand, demand and generation profiles are assumed to be a property of
the buses (i.e., they are the same for all networks). The time step is 15 min, and the
time horizon is one day, during which all the simulated networks feature over- or
undervoltages at some buses.

For each network, the CSA algorithm is run with increasing values of nc until
it results in ns = 2 deployed ESSs. Then, Problem 6 is solved by assuming the
corresponding ESS placement. Let J ∗,csa be the optimal cost returned by (4.22) for
that placement. Such a quantity is compared with the optimal cost J ∗,opt , computed
over all possible placements of two ESSs in the network. The empirical distribution
of the ratio J ∗,csa/J ∗,opt over the 200 networks is shown in Fig. 4.11a. It can be
noticed that the solution provided by the CSA procedure is optimal in 45% of the
cases, while only 9% of the cases reveal a degradation of the solution worse than
5%. Performance is even better when three ESSs are deployed, see Fig. 4.11b: the
solution provided by the CSA procedure is optimal in 57% of the cases, while a
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Fig. 4.11 Empirical distribution of the ratio J ∗,csa/J ∗,opt over 200 random networks equipped
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degradation of the solution worse than 5% occurs only in 5% of the cases, with a
maximum degradation of 8%.

The results, obtained by applying the ESS allocation procedure to random topolo-
gies, confirm the soundness of the intuition underlying the CSA algorithm.

4.6.2 ESS Operation

The proposed ESS control algorithm is tested on the same data set described in the
simulation setup. Since �t = 15 min, the number of samples per day has been set
accordingly, i.e., Nd = 96. Measurements of solar irradiance and outdoor temper-
ature are also available with the same resolution. The historical data sets of demand
and generation are used to estimate the load fractions ωk(τ ) in (4.44) and the param-
eters of the PVUSA model (4.34), as well as of the ES-ARMA models of aggregate
load, solar irradiance and outdoor temperature. The presence of two ESSs installed
in the network is simulated. Location and size of ESSs are decided according to the
CSA procedure. In particular, ESSs are deployed at buses 7 and 11, with capaci-
ties equal to e7 = 10 kWh and e11 = 54 kWh, respectively (see Fig. 4.10). For both
ESSs, the desired state of charge at the end of a control horizon is set to 50%, i.e.,
δ = 0.5 in (4.32). This is done in order to ensure a suitable margin of operation in
both directions (charge and discharge). Moreover, this choice aims to limit the depth
of discharge, thus contributing to prolong battery life. Finally, the weights γess in
(4.30) and γsoc in (4.31) are set to 0.015 and 96.5, respectively (different choices are
discussed at the end of this section). Considering a control horizon of two hours, and
therefore H = 8 in (4.31), Problem 7 is solved in few seconds for the 17-bus test
network on a 3 GHz PC with 8 GB RAM. A check is made a posteriori to verify
whether the optimal solution of the SDP problem is feasible for the original full
non-linear OPF problem. In all the instances solved, the check provides a positive
answer, thus certifying the optimality of the solution also for (4.31).

Remark 8 The fact that, in this application, the time step is 15 min (corresponding
to the sampling time of the available data), while the computation of the control law
requires few seconds, implies that the proposed approach is viable even for time steps
closer to real-time. For instance, if data were available with sampling time of 5 min,
the 2-h control horizon would include H = 24 time periods. In this situation, the
control law could still be computed within a time step for the 17-bus test network,
the computation time being less than 1 min on the 3 GHz PC.

Performance of ESS control

The control algorithm described in Sect. 4.5.1 is tested on a challenging week fea-
turing both over- and undervoltages in the absence of ESSs. At each time step
t = 0, 1, 2, . . . , Nw − 1, where Nw = 7Nd is the number of samples per week,
demand and generation in the network are predicted for lead times h ranging from
one sample (15 min ahead) to eight samples (2 h ahead). Then, the optimization



4.6 Experimental Results 85

problem (4.31) is solved with predicted demand and generation. The actual effect of
the control inputs p∗,ess

s (t) and q∗,ess
s (t) is simulated by solving a load flow problem

at time t + 1 with true demand and generation.
In order to evaluate the benefits of using ESS control to tackle voltage problems,

the average voltage violation at bus k over the considered time horizon is introduced
as

νk = 1

Nw

Nw−1∑
t=0

[vk − |Vk(t)|]+ + [|Vk(t)| − vk]+, (4.45)

where [x]+ = max(x, 0). Let νnc
k be (4.45) evaluated in the absence of ESSs, and

νess
k in the case with ESSs. Then, the following performance index is defined

η =
(
1 −

∑
k∈N L νess

k∑
k∈N L νnc

k

)
· 100%. (4.46)

Assuming that the denominator of (4.46) is greater than zero (i.e., at least oneviolation
of the voltage bounds occurs anywhere in the network over the considered week in
the absence of ESSs), η quantifies how much the ESS control succeeds in preventing
voltage problems. It turns out that η = 99.2%, i.e., voltage violations are almost
completely avoided or attenuated thanks to ESS control. More in detail, if one counts
the number of time stepswhen the voltage violations occurring in the absence of ESSs
are fully prevented by ESS control, the proposed algorithm reaches a performance
of 96.6%. This means that only in 3.4% of the times a voltage violation is only
partially mitigated. This can be observed in Fig. 4.12 (top), showing the plots of
voltage magnitudes at all the buses of the network in the cases with and without
ESSs. When ESS control is applied, only bus 6 still experiences light overvoltages in
days 1, 3, 4 and 7, whereas all undervoltages are completely avoided over the whole
week. From Fig. 4.12 (bottom), it can be also observed that ESS control reduces the
total line losses, which stick to 65% of their nominal value (i.e., the value assumed in
the case without ESSs). In particular, most of the reduction is achieved during peak
hours of PV generation.

Figure4.13 shows the plots of the storage levels es(t) and the active power controls
pesss (t) for both installed ESSs over the whole week. As expected, when no voltage
violations are forecast, the state of charge of the ESSs is driven towards the desired
value δ = 0.5.

Finally, the effect of theweightsγess in (4.30) andγsoc in (4.31) on the performance
of the proposed receding horizonESS control strategy is evaluated. Figure4.14 shows
the storage levels es(t) over the whole week when the ESS controls are computed by
solving Problem 7 with both weights doubled (top) and halved (bottom) with respect
to the initial choice. In the first scenario, greater penalty is given to the use of storage,
and consequently the available ESS capacity is only partially utilized with respect
to the case of Fig. 4.13 (top). Moreover, the total line losses increase to 73% of their
nominal value. In the second scenario, line losses receive greater penalty, and actually
they further decrease to 60% of their nominal value. This is obtained at the expense
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of a greater use of storage, as can be noticed by comparing Fig. 4.14 (bottom) with
Fig. 4.13 (top). However, even though the ESSs are operated in such different ways,
performance in terms of voltage support is comparable. It turns out that η = 97.3%
and η = 99.5% for the first and second scenario, respectively.



4.7 Conclusions 87

Time [h]

0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168

S
to

ra
ge

 le
ve

l [
p.

u.
]

0

0.2

0.4

0.6

0.8

1

Time [h]

0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168

S
to

ra
ge

 le
ve

l [
p.

u.
]

0

0.2

0.4

0.6

0.8

1

Fig. 4.14 Comparison of the storage levels es(t) for different weights in the cost function of (4.31).
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4.7 Conclusions

In this chapter, a new method for designing the number, location and size of ESSs in
LV networks, is proposed. In order to reduce the computational burden required by
the solution of the resulting optimization problem, a heuristic procedure is devised.
A voltage sensitivity analysis has been proposed to circumvent the combinatorial
nature of the siting problem and a multi-period OPF has been adopted to determine
the size of each storage unit. In addition, the problem of controlling distributed
storage devices has been addressed. The proposed algorithm, which is inspired by
the classical receding horizon control approach, aims at minimizing line losses and
the storage usage, while maintaining the voltages within the specified limits. Only
the power exchanged at the slack bus and meteorological variables at the secondary
substation are monitored in order to predict the future state of the network and
any potential voltage rise/drop. The simulations show interesting results in terms of
computational time and solution optimality.
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Chapter 5
Conclusions and Future Research

This final chapter contains a summary of the thesis contributions and a brief discus-
sion of the achieved results and future research directions.

5.1 Summary of Contributions

The contributions of this thesis can be divided into three categories: bidding strate-
gies for WPPs, DR integration in smart buildings, and ESS applications for voltage
support in distribution networks.

5.1.1 Bidding Strategy for WPPs

The problem of offering renewable power in the electricity market featuring soft
penalties, i.e. penalties that are applied only when the delivered power deviates
from the nominal bid more than a given relative tolerance, has been addressed for
WPPs. The optimal bidding strategy, based on the knowledge of the prior wind
power statistics, has been derived analytically by maximizing the expected profit
of the producer. Moreover, the use of additional knowledge, represented by wind
speed forecasts provided by a meteorological service, to make more reliable bids,
has been embedded in the bidding process by means of machine learning-based
classification approaches. The performance of the optimal bidding strategy, both
with and without classification, has been demonstrated on experimental data from a
real Italian wind farm, and compared with that of the naive bidding strategy based on
offering wind power forecasts computed by plugging the wind speed forecasts into
the wind plant power curve. It has been proved that exploiting wind speed forecasts
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through classification approaches allows one to improve consistently the profit of
renewable power producers.

5.1.2 DR Integration in Smart Buildings

An innovative home heatingmanagement system under the hypothesis that the build-
ing participates in DR programs, has been proposed. A receding horizon control
approach has been adopted for minimization of the energy bill, by exploiting a sim-
plified version of the building model, while maintaining the thermal comfort of the
occupants. Since the resulting optimization problem is a mixed integer linear pro-
gramming problem which turns out to be manageable only for buildings with very
few zones, a heuristic has been devised to make the algorithm applicable to realistic
size cases. The derived control law has been tested on the close-to-reality simulator
EnergyPlus to evaluate pros and cons of the presented algorithm. Numerical results
show that the developed control approach involves almost negligible loss of accuracy
with respect to the exact optimal solution.

5.1.3 ESS Applications for Voltage Support in Distribution
Networks

The optimal configuration and operation of distributed ESSs for providing voltage
support in low voltage networks has been investigated. In the planning stage the
objective is to find the allocation which minimizes the total cost of storage devices,
which depends both on the number of ESSs and on their size. Since the exact problem
turns out to be intractable in realistic applications, a heuristics based on the voltage
sensitivity analysis has been devised for circumventing the combinatorial nature of
the siting problem. A real time control scheme based on a receding horizon approach
to optimally operate ESSs installed in the network has been also devised. For the
operation stage, the objective translates to minimizing both ESS use and line losses.
The essential feature of the control approach lies in the very limited information
needed to predict possible voltage problems, and to compute the ESS policy making
it possible to counteract them in advance. The overall procedure has been tested on
real data from an Italian LV network. Moreover, a modified version of the IEEE
34-bus test feeder and 200 randomly generated radial networks have been used for a
further validation of the planning step. Simulations show that the overall procedure is
amenable to fast and robust computation, while greatly enhancing the voltage quality
at customers’ premises.
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5.2 Future Research Directions

Modern electricity power networks are undergoing dramatic changes, both at trans-
mission and distribution level. They have to cope with increasing penetration of
distributed and renewable energy sources, large data flows from intelligent power
equipments and smart meters, and market pressure to run efficiently. This results
in heavier work and stress for network/market operators. The market and energy
management tools presented in this thesis provide effective answers to some of the
aforementioned new challenges. However, the results obtained are by no means
exhaustive and there are many aspects of the considered problems that still remain to
be investigated.

Strategies for renewable power producers selling wind power in the electricity
spot market have been developed in Chap.2. Although the potential of the proposed
bidding mechanism has been proved for the day-ahead market structure, it does
not apply directly to different model setups, such as intraday or future markets.
Moreover, it has been assumed that the electricity prices are known and given in
advance. A suitable way to incorporate physical transmission capacity constraints
and their effects on market price/penalties in the bidding process would be a valuable
add-on to the market model presented in this thesis.

An appropriate heuristic based on the MPC approach has been devised in Chap.3
for smart buildings participating in DR programs. An underlying assumption in the
model is that the home energy management system only works for heating purposes.
From both the theoretical and practical viewpoint, it would be interesting to see how
the developed control algorithm can be extended to a more complex setup where the
building is considered as a microgrid, including the entire HVAC plant providing
heating and cooling services, different renewable generation sources, electric and
thermal storage devices, electric appliances and other kinds of electric loads, such
as electric vehicles.

Integration of ESSs in the power system is a key component of future smart grids.
In Chap.4 a novel approach was proposed to optimally deploy and operate such
devices in radial distribution networks. An important aspect for future investigation is
the possibility to extend the siting heuristic developed in the configuration step,which
is strictly based on the physical properties of lines and on the topology of the network,
to meshed grids. A further research direction could also investigate the case in which
ESSs are considered a common property of the network, owned and managed by
the whole community. Since economics is key to ESS applications, the possibility
to fully exploit the ESS potential for providing multiple services (not only voltage
support, but also frequency control, peak shaving, spinning reserves, etc.) could play
a significant role for the successful advancement and use of this technology. In this
respect, developing innovative ESS business models aiming at handling different
networks issues is expected to be a very fruitful line of investigation.
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