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Abstract

This thesis is a detailed study of convex functions, focusing on bh-convex, p-
convex, and strongly reciprocally (p,h)-convex functions of higher order cases. The
main objective of this research is to enhance both the understanding and analysis of
these generalized convex functions, with a focus on their connections to established
mathematical inequalities, such as the Hermite-Hadamard inequality, Fejér inequality,
and fractional integral inequalities. The foundational concept of convexity, its basic
properties, and applications are reexamined. The utility of convex functions in
numerous areas ranging from theoretical research to practical applications of pure
and applied sciences including, economic models, mathematical analysis, and opti-
mization problems is highlighted. The role of inequality theory is also pointed out
for convex functions. The classical convexity is extended to strongly reciprocally
(p, h)-convex functions of higher order instances, enabling a deeper insight into how
convex functions can be applied to mathematical inequalities, such as the Hermite-
Hadamard inequality, the Fejér inequality, and fractional integral inequalities are
explored. A novel mapping Mg () for h-convex functions is explored along a series
of useful results. These results are formulated through lemmas and propositions,
which are then utilized to derive some generalized Fejér-type inequalities and an

improved variant of Hermite-Hadamard inequalities. A second mapping, H (z) for



h-convex function is introduced, with the further contribution of some results that
leads to the derivation of a significant theorem. These findings contribute new tools
for mathematical analysis and significantly broaden the scope of known results to

generalize convex functions and inequalities.



Chapter 1

Introduction

Convexity plays a key role in mathematical analysis, due to its natural and robust
problem-solving approach in different areas of science such as optimization, economics,
physics, and engineering. Its simple yet rich properties make it an essential component
of study across the broad spectrum of scientific fields.

Before delving into my research work, this chapter includes a general background
of convexity and convex functions, providing readers with a glimpse into modern
approaches to convex analysis, advancement, extensions, and generalizations, illus-
trating how these concepts are applied across different fields. Finally, we discuss some
well-known inequalities for convex functions, such as Hermite-Hadamard inequality
and Fejér-type inequality.

History contains many concepts that have been essential in the development of mathematics.
Of these, convexity stands out as one of the exceptional concepts, serving as the
foundation of numerous theories and scientific developments. Its origins can be traced
back to ancient Archimedes and Greece, where Euclidean geometry examined convex

figures and their properties, see [1| and [2] for details. The significance of these



was recognized by many famous mathematicians, leading to further exploration and
development. The subsequent mathematicians contributed innumerable extensions
and generalizations of the initially developed concepts, which became solutions to
many problems across multiple science disciplines. The systematic study of convexity
began at the end of the nineteenth century, with contributions from O. Holder (1889)
[3], O. Stolz (1893) [4], Ch. Hermite (1883) [5] and J. Hadamard (1893) [6]. J.L.W.V.
Jensen (1905, 1906) |7, 8] was among the first to recognize its value and he made a
structured analysis of convexity and provided its modern definition.

Convexity constitutes two fundamental concepts: convex sets, and convex functions.

Below, I have defined these concepts with some properties.

1.1 Convex Set

Definition 1.1.1. /9] For a non-empty set T C R to be convez, consider any two dis-

tinct points ay, s € Z and ¢ in [0, 1] we have

Oélc—i‘(l—g)OéQ el (11)

i+ (1 -0 el i+ (1 —-Qa &1

Convex Set Non-Convex Set

Figure 1.1: Convex set vs Non-convex set



In Figure 1.1 we can see the key differences between a convex set and a non-convex
set. It can be viewed geometrically, every point on the line between any two dis-
tinct points in the set Z is also contained in the set, i.e. Vay,ay € Z and ¢ € [0, 1], all
the points on the line between «; and s can be written as 3 = a1(+(1—()as € Z, hence
we can say that Z contains no indentation or holes. Every real interval can be expressed
as a convex combination of any two distinct points within its interval, that is each real
interval is a convex set. The result of the intersection between any collection of con-
vex sets is again a convex set. Similarly, convexity is preserved between the addition
of two convex sets, and the scalar multiplication of a convex set is just like a vector

space.

1.2 Convex Function

Let’s come to the main idea of a classical convex function over a real interval.

Definition 1.2.1. /9] Consider a function § : T = [a1,as] — R, where domain
of the convex function § is a convex set ) # T C R. The function § is termed as a

convex function if it satisfies the inequality

F(Ca+ (1—-¢)b) < ¢B(a)+ (1 —Q)F(b), V¢ elo,1], (1.2)

where a, b€ [ay, as] and a # b.

If inequality (1.2) is reversed (i.e. < is changed with >), then it leads to the
function being concave. Likewise, if inequality (1.2) < is modified with <, then §
becomes strictly convex function.

For a particular case, we obtain a midpoint convex function for value { = % which is a

5



well-known midpoint convex function as follows:

TEOPEUE U

F(Ca+(1-0Q)b)
(@5@) CS_(a) + (1= C)3(b)

a; a Cat(1-Qb b @

Figure 1.2: Convex function

The geometric interpretation of the equation in (1.2) is straightforward. We can
see in Figure 1.2 the line segment joined by two distinct points (a, F(a)) and (b, F(b))

always lies either on or above the curve of the function § within the interval from a to b.
Example 1.2.1. Below are a few examples of convex function §: R — R

e Linear Function: §(z) = az + b.

e Quadratic functions: §(z) = az® + bz + ¢, where a > 0.

e Power function: §(z) = 2", Vn > 1.

e Absolute value function: §(z) = |z|.



e Exponential function: §(x) = ", where b is a constant.

Definition 1.2.2 (Epigraph of a function). [9]/ An epigraph is a set of points positioned

either on or above the graph of the function §:Z C R — R defined as:

epi§ = {(a,t) eI xR :t>F(a)}.

In the following graph, we can visualize the epigraph as a collection of all those

points that belong to the colored region above the graph of the function §.

Figure 1.3: Epigraph of the function §

1.2.1 Properties of Convex Function

e If the second derivative of the function § is non-negative for every point

in domain Z then it is a convex function.



e Due to the nature of the convex function, every local minimum within its domain

is guaranteed to be a global minimum.

e A function § is known as convex if and only if the epigraph of § is a convex set.

1.3 Continuity and Differentiability of Convex func-
tions

Continuity and differentiability are essential in the mathematical analysis of con-

vex function to understand its behavior and practical use.

1.3.1 Boundedness

Considering a finite convex function § on Z = |[a,b] is bounded above by M =
max (F(a),F(b)), any point 3 € Z can be written as 3 = Ca + (1 — ()b ,we obtain the

following relation:
F(G) < ¢F(a) + (1= OF(b) <M+ (1 —¢M =M.

Moreover, it has a lower bound that is determined by expressing any point in

the form: %ﬁ’ +t. then

a+b 1_,a+b 1_,a+b
or
a+b a+b a+b
() <230 w5 (T -0,



As M is the upper bound, we have — S’[@ —t] > —-M, so

a+b
2

a+b
2

5( +1) <2§(——) -M=m.

Therefore, convex functions are continuous on the interior of their domain, but conti-
nuity at the boundary points is not guaranteed, as the function might display upward

jumps.

1.3.2 Continuity and differentiability

The definition of convex functions ensures its smoothness and continuity. Moreover, it
is evident, from the geometrical interpretation and its property of having a non-negative
second derivative. The following proposition highlights the geometric significance of the

convex function:

Proposition 1. [10] Consider § be a convex function on (a,b). Ifa < c <u<d <
b, and the corresponding points C' = (¢, §(c)), U = (u,F(u)), D = (d,F(d)), we have
the following relation between the slopes:

S(U) — 3(C) < slopeCD = M < slopeDU = i

u—=c¢C —C —u

slopeCU =

Theorem 1.3.1. (see [11]) Consider an open set T # 0 in R that is a convez set. Any

convex function § : L — R must be continuous throughout the domain I.

Theorem 1.3.2. Every convex function § : Z — R is continuous on an open set L, if

F.(a) <F_(b), a<b, (1.3)



where, the limit

Fo(a) = lim S =8@) g

ap—at a—da,
exist, we say it right deriwative of § at a, similarly if limit

3 (6) = lim S0 = S(bo)

, bel,
bo—b— b—b,

exist, we say it left derivative of § at b.

Below is an example of a discontinuous convex function at a specific point but con-

tinuous otherwise.

Example 1.3.1. Consider a convex function defined as

0 ifu<O,
§(u) =
u? ifu>0.

Another approach to check the continuity of a convex function is the Lipschitz con-

dition [10, 12].

Theorem 1.3.3. Consider a convex function § : T — R where L is a non-empty set,
§ is considered to be Lipschitz continuous with any real number 1 > 0 if it satisfies the

following condition:
1F(a) —F(0)| <1ja—b|| VabelZ

The differentiability properties of convex functions depend on the nature of the
function, some convex functions are differentiable but some are not. Examine deriva-

tives for the best possible results regarding left and right derivatives. Considering a

10



convex function § : Z — R has left and right derivatives at any point a € Z as under

by S(a) — F(ao)

§-(e) = aolgrul— a—a, (1.4)
by S(a) — F(ao)

§(a) = S == ao- (1.5)

Theorem 1.3.4. Let § : Z — R be a convex function where I is an open set, then §

is increasing if and only if §'_(a) and §'_(a) exist.

Theorem 1.3.5. [1] Consider a convex function § : Z — R. Then § is continuous on

an open set T and it has left and right derivatives on every point of Z. Additionally, for

any two points a,b € T we have following relation

where a < b. In particular, both §_ and §', are increasing on I.

Here are a few examples of differentiable and non-differentiable convex functions.

Example 1.3.2. let § be a convex function

e J(n) =n? is differentiable on whole domain.

e J(n) = e" is differentiable on whole domain.

$(n) = |n| is not differentiable at n = 0.

e §(n) = max(0,n) is not differentiable at n = 0.



The function § is not differentiable at n = 0.

Theorem 1.3.6. [10] Let § : T — R be a twice differentiable function. The function
§ is convex if and only if Ya € Z, §"(a) > 0.

1.3.3 Convex functions: Applications, Extensions, and Gener-

alizations

In the above sections, we have explored a detailed analysis of the convex function,
highlighting its fundamental properties, continuity, and differentiability details. Due
to these attributes, the convex function became pivotal across various applications (see
[1]). Such as in optimization it ensures the local minima as global minima so that it can
be used to model real-world optimization problems, in economics it is used to model
utility and production functions for better efficiency and resource allocation. It aids in
control systems and signal processing in engineering, while in machine learning it helps
to support vector machines, constructing effective loss functions and neural networks.
Most importantly, it has many applications within mathematics such as in calculus
of variations, where it helps to formulate and solve complicated problems that are
required to minimize or maximize specified functionals, it has multiple applications in
geometry and functional analysis, and it contributes in development and refinement of
various mathematical concepts and theorems. Indeed, it contributes useful insights in
many scientific studies due to its adaptability through extensions and generalizations
further enhances its utility across diverse research areas. Some notable generalizations
are p—convex functions [13|, strongly convex functions [14|, h—convex functions
[15], s—convex functions [16], m—convex functions [17]|, log—convex functions [18§],

n—convex functions [19]|, ¢—convex functions [20], k—convex functions [21], many

12



other generalizations have been explored (see [22|), and further developments and

extensions are still underway.

1.4 Some remarkable Inequalities

All the time, inequalities have played a remarkable role in many scientific studies. Very
famous triangular inequality and isoperimetric inequality were discovered by the an-
cient Greeks. In the eighteenth century, eminent scientists such as Gauss, Cauchy,
and Chebyshev provided modern mathematical inequalities formalization and appli-
cations. Over the last few years, inequalities have become powerful problem-solving
tools, widely applied across various fields, including mathematical analysis, physics,
optimization, statistics, and other scientific studies (see [22]). Notable inequalities like
Holder’s inequality, the power mean inequality, and Jensen’s inequality are among the
most common and significant in the study of convex functions, which are established
within the subset of real numbers. Several integral inequalities, including the Hermite-
Hadamard inequality, Fejér-type inequality, Ostrowski inequality, and Gauss inequality,

are formulated for certain functions within convex analysis.

Some fundamental inequalities related to the theory of convex functions are subjected

below.

1.4.1 Jensen’s inequality

Jensen’s inequality is among the most significant inequalities in mathematical analyses

for convex functions. This was first proved in 1906 by Johan Ludwig Jensen |23, §].

13



Consider a convex function § : Z C R — R, Jensen’s inequality states that:

s(i pa )< gpm), (16)

where a; € Z, p; > 0 with Y % p; = L and ¢ = 1,...,m. This inequality shows the
behavior of the convex function, the function evaluates at the weighted average is al-
ways less or equal to the weighted average of the function value on every point of the
interval.

It has become an inspiration for many mathematicians and scientists. They ex-
tended this inequality in the form of different generalizations and inequalities i.e. re-
verse Jensen’s inequality, Jensen’s inequality for Expectation with Convex functions,
Holder’s inequality, and Minkowski’s inequality. It has many applications in numerous

fields such as statistics, mathematics, physics, optimization, and economics.

1.4.2 Hermite-Hadamard inequality

The classical Hermite-Hadamard inequality was established by Hermite in 1881 [5],
and Later, in 1893 |6] Hadamard explored the same inequality, yet; he was not familiar
with Hermite’s result. Let §: Z C R — R, Z # () be a convex function, for a,b € Z,

the inequality holds

$<a;b> S/ubg(x)dxéw. (1.7)

Hermite-Hadamard inequality estimates, the integral average over a compact interval
of a convex function and establishes upper and lower bounds for the function’s value

at the midpoint and endpoint of the interval. Due to these valuable properties, many

14



researchers have made significant results and generalizations in different domains of
mathematics. These generalizations helped to investigate many problems developed in
applied mathematics, analyses, optimization, and economics. Given below is a weighted

version of Hermite-Hadamard inequality.

1.4.3 Fejér-type inequality

In 1906, Lipot Fejér introduced a generalized version of Hermite-Hadamard inequality
while studying trigonometric polynomials. This famous integral inequality is known as
Fejér’s inequalities [24], where a convex function along the concept of non-negative sym-
metric weights is involved. Consider a convex function § : [ay, 0] =Z C R — R and

weight w : [aq, ae] — R, Fejér’s inequality states that:

3<a+b>/ dx</ F(x dx<w/abm(x)dx, (1.8)

where, to is non-negative, integrable weight such that fab (z)dr > 0, also it is sym-
metric with respect to £ implies that, tv satisfies 0(z) = w(a +b—z) Vz € [ay, as).
For w(z) =1 it becomes Hermite-Hadamard inequality in equation (1.7).

This contribution had a lasting impact on mathematical analysis. It has numerous
applications and generalizations in many fields i.e. numerical methods, approximation
theory, statistics, discrete mathematics, and beyond, see [25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35| for more detail.
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Chapter 2

Strongly Reciprocally (p,h)-Convex

Function

2.1 Preliminaries

Over the past century, the concept of convex function has been extended in various
dimensions, either by modifying the originally established inequalities or generaliz-
ing them to abstract spaces. To establish a strong foundation for the later chapters,
this section introduces fundamental definitions and preliminary concepts related to

strongly reciprocally (p, h)-convex functions.

Definition 2.1.1 (p-convex set [13]). A set Z = [ay, 1] € R\ {0} is a p-convex set if
(Ca" + (1 — Q)b%)* € Z, (2.1)

foralla,b € T and ( € [0,1], wherep =2u+1orp=9d=2v+1, c=2w+1,

and u,v,w € N.

16



Definition 2.1.2 (p-convex function [13]). LetZ = [aq,01] € R\ {0} be a

p-convex set. A function § : T = [aq, f1] C R is p-convez if

o =

F((Ca" + (1= Q)bP)?) < (Fla) + (1 - O)F(b), (2.2)

for alla,b €T and ¢ € [0,1].

Definition 2.1.3 (Harmonic convex set [36]). A set Z = [ay, f1] € R\{0} is harmonic

convez if

ab

m c I, (23)

forall a,b € T and ¢ € [0, 1].

Definition 2.1.4 (Harmonic convex function [36]). Let Z = [ay, 8] € R\ {0} be a

harmonic convez set. A function § : Z = [aq, 1] € R is harmonic convez if

ab

=g =1 O8@+ 30, (2.4)

3(

foralla,b €T and ¢ € [0,1].

Definition 2.1.5 (Strongly convex function [37]). A function § : Z = [y, 1] C R is

a strongly convex function with modulus x > 0 on I if

F(Ca+ (1= 0)b) < ¢F(a) + (1 = OF(b) — x¢(1 = )b —a)?, (2.5)

forall a,b € T and ¢ € [0, 1].

Definition 2.1.6 (Strongly p-convex function [38]). A function § : Z = [aq, /1] C R is

17



strongly p-convez if

h-2

§((Ca" + (1= 0)p")") < (Fla) + (1= OF(6) = x((L =" —a")? (26)

foralla,b €T and ¢ € [0,1].

Definition 2.1.7 (p-Harmonic convex set [39]). A set T = [aq, 1] € R\ {0} is

a p-harmonic convex set if

aPbP ;
(Cap o c>bv> <t 27

for all a,b € T and ¢ € [0, 1].

Definition 2.1.8 (p-Harmonic convex function [39]). Let Z = [aq, 51] € R\ {0} be
a p-harmonic convex set. A function § : Z = [aq, £1] € R is p-harmonic convex if
p

3((@*’ +a(p1[]p— C)bp)) < (1= ¢)S(a) +¢3(b), (2.8)

for all a,b € T and ¢ € [0, 1].

Definition 2.1.9 (Strongly reciprocally convex function [40]). Let Z be an interval,
and let x € (0,00). A function § : T = [ay, p1] € R is strongly reciprocally convex with

modulus x on I if

ab

1 1
S(<a+ 1- 0

) <a-0s@ e xca-o(i-1), @9

a

for all a,b € T and ¢ € [0, 1].

Definition 2.1.10 (Strongly reciprocally p-convex function [41]). Let Z be a p-

convez set, and let x € (0,00). A function §:Z = [ay, £1] C R is strongly reciprocally

18



p-convex function with modulus x on L if

3(<Cap +le,3_ C)bp> *13) < (1= OF(a) + §(b) — x¢(1 ) (% _ é)Z (2.10)

foralla,b € Z and ¢ € [0, 1].

Definition 2.1.11 (h-convex function [15]). LetZ,b : = [y, 1] — R be non-negative

functions. Then § is h-convex if

§(Ca+ (1 =¢)b) <b(Q)F(a) +h(1 - )F(b), (2.11)

foralla,b € T and ¢ € [0, 1].

Definition 2.1.12 ((p, h)-convex function [42]). Let Z = [y, 5] € R\ {0} be a p-
convex set. A function§ 1 T = [ag, 5] € R is (p,h)-convex function if § is non-

negative and

o=

F((CoP + (1= Q)b)*) < ()T (a) + h(L — )F(b), (2.12)
for all a,b € T and ¢ € [0, 1].

Definition 2.1.13 (higher-order Strongly convex [43|). Let Z be an interval, and let
X € (0,00). A function § : I = [aq, f1] C R is higher-order strongly convex with mod-

ulus x on L if

F(Ca+ (1 =) < (F(a) + (1= O)F(b) — x¢1(¢)]la —b]l, (2.13)

foralla,b € Z and ¢ € [0,1] and [ > 1, where ¢1(¢) = (1 — ().

Definition 2.1.14 (Strongly reciprocally (p,h)-convex function [44]). Let Z be

an interval, and let x € (0,00). A function § : Z = [ay, £1] € R is strongly reciprocally

19



(p, b )-convex with modulus x on L if

(i) ;) <h(1 - 5@ + 0050 11 -0 (5 - &)
(2.14)

forall a,b € Z and ¢ € [0, 1].

Definition 2.1.15  (Strongly reciprocally  (p, h)-convex function of higher-order
[44]). Let Z be an interval, and let x € (0,00). A function § : T = [aq, 1] C R is

strongly reciprocally (p,h)-convex of higher-order with modulus x on T if

1 1

S (2.15)

Y

aPbP ;
((stieam) ) <0036 +HOFE) - x6i(

foralla,b € Z, ¢ €0,1], and I > 1, where ¢1(¢) = ¢(1 — ().

Remark 1. Inserting [ = 2 into Definition 2.1.15 with ¢;(() as above, we obtain Def-
inition 2.1.14. Similarly, inserting [ = 2 and h(¢) = ¢ into Definition 2.1.15,we obtain
Definition 2.1.10, and [ = 2, h(¢) = ¢ and p = 1, Definition 2.1.15, reduces to Definition
2.1.9.

As we know, R is a normed space with the standard modulus norm applied. Thus for
any a € R,

la]l = la]. (2.16)
Using (2.16), inequality 2.1.15 can be expressed as

1 1|

S (2.17)

aPbP v
((ri=as) ) <0050 + 036 - x6:(0

forall a,b € Z, ( € [0,1], and [ > 1, where ¢,(¢) = ((1 — ().
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2.2 Fundamental Results

Onward in this section, we explore an interesting domain called strongly reciprocally
(p, h)-convex functions of higher order, which is named as SR(ph) for the rest of
this thesis. We obtained some useful results by performing simple algebraic opera-
tions on SR(ph).

The addition of two functions from SR(ph) is obtained in the following proposition.

Proposition 2. [44] Consider two function from SR(ph), §F,G : Z — R with modulus

x on Z. Then §,G : Z — R is also in SR(ph) with modulus x* on Z, where x* = 2x .

Proof. We begin by the definition provided:

{“G(<®h&Tiow)U:*%Kaﬂ;ﬁ{¢w01>+G<<®hﬁTiow)U

< B(O)F(@) + b(1 — OF(6) — x61 ()|~ — -

o

ar by
11

ab  bP

[

+5(Q)G(a) + b1 = Q)G (b) — x1(C)

)

(2.18)

which is further simplified as

1 1]

a b
11

ab  bP

 B(OE+G)@) + b1 — OF + G)(b) — 2x¢1<<>]

[

=H(Q)EF +G)(a) +b(1 = O(F + G)(b) — x"01(C)

Y

where x* = 2y, x > 0 and ¢1(¢) = ((1 — (). Hence the proof is established. O

The result for scalar multiplication in SR(pbh) is achieved in following proposition.
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Proposition 3. [44]| Considering a function in SR(ph) § : Z — R with modulus x >
0. Thenforany A > 0, A\§ : Z — Risalsoin SR(ph) with modulus * on Z,
where ¢ = Ay.

Proof. Consider A\ > 0. Therefore, by given definition of § we have

AS((@P i <>bp);) - A<5<<<ap i w)é))

<) [h@mu) B = O)F(6) — wl(o'

1 1

b ap
11
b ar
11

bP  ab

‘1

[

— HOA(a) + b1 — ONG(b) — qubl(C)‘

[

)

BN () + b1 — ONG(b) — w*qsl(o'

where ¥* = Ax, x > 0, and ¢1(¢) = {(1 — ¢). Hence the proof is established. ]

Proposition 4. [44] Considering § : Z — R, 1 < i < n, bein SR(ph)
with modulus y. Then for \; > 0, 1 < i < n, the function § : Z — R, where § =

Yoy NS, is also in SR(ph) with modulus v > 0, where v = Y"1 | Aix.

Proof. Let Z be a p-harmonic convex set. Then for all a,b € Z ans ¢ € [0, 1], we have

S( (cap i obp) ;) - Z Ai&((cwﬂ i obp) ;)

< Z Ai [f)(()&(a) +b(1 = Q)Fi(b) — x¢1(¢)

11
[T

|

=h(¢) Z AiSi(a) +h(1 =) Z AiSi(b) — Z Ai {X%(C)' blp
i=1 i=1 i=1
[
= H(E)S(6) + b1~ O5(6) — 70105 —
where v = > | Aix. Hence this is the required result. O
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Proposition 5. [44]| Considering §; : Z — R, 1 < i <n bein SR(ph) with modulus y.

Then § = max{F;,i =1,2,...,n} is also in SR(ph) with modulus .

Proof. Let Z be a p-harmonic convex set. Then for all a,b € Z and ¢ € [0, 1], we have

aPbP v
3((aw+<r—ow) )
aPbP 7\
() )]

()

gh«mx@+ha—<mxw—x@@ﬂl !

br ap
[
= h(¢) max{Fi(a)} + h(1 — ¢) max{Fi(b)} — X¢1(C)‘ % — %
[
= b(Q)F(a) +b(1 —¢)3(b) — qul(g)‘ % - %
Hence the proof is established. 0

2.3 Hermite-Hadamard type inequality

In this section, we have proved a generalized form of the Hermite-Hadamard type for the

function SR(ph).

Theorem 2.3.1. [44] LetZ C R\ {0} be an interval. If § : T — R be in SR(ph)

with modulus x > 0 and § € £z, y], then for h(35) # 0, we have
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Y — 2

anl(555) )5 5]

pefy?) [V 5(a)
yP—af J, atte da (2.20)

< / [6(1 - O)(x) + BOF(W)] dC — x

;L'Pyp

IA

Proof. Substituting ( = 5 in the Definition 2.1.15. We have

5((25%) ;> <n(3)50@ 40 (5)50 - v 5)

xPyP

CaP+(1-C)y?
0, 1], we have

() (3 )s((m=) ) - (o5 )
o(5) 5
[3(5) = () ((ma) )«
+/01b(%)3((¢yv+azp1yp—c> )p)dc

—xar(3)| 5 / 11— 2¢'d,

2Py \ 1\ p(aPyP) s<> 1
S() = (5)5 s [ 58 da_m@

and

(2.21)

Let a = [( )%] and b = [(%)%] Integrating 2.21 with respect to ¢ over

yP+(1—¢

‘1 - 24’[7

yP — af

[

_ijyp
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T

[

[

1
22PyP \» 1
() o)

< %(1) pa) [73la)

2 yP—aP /. aql+p

1 22PyP \ b 1
20(1) [S(mw) +X¢1<5)
p(zfy?) (Y (a)
yP — b J, altp da,

-

xhyP

IN

the required left side of inequality (2.20) is established.
Furthermore, in the right side of inequality (2.20), settinga = xzand b =

y in Definition 2.1.15 gives

[

xPyP » 1 1
(s ) ) <00 - 086 +5(050) - xan0) 5 - 5. (222
Integrating (2.22) with respect to ¢ over |0,1], we get
1 2Py v 1
S Py
g — P |
X T | s ¢1(C)dC
and
L p_ p|l pl
PO [" 5 < [ o0 - s + 005w dc || [

the required right side of inequality (2.20) is established here. Thus, the proof is now

complete. O

Remark 2. 1. Setting [ = 2, h(¢) = ¢, andp = 1, with ¢1(¢) = {(1 — ()

into Theorem 2.3.1, We get the Hermite-Hadamard inequality for Strongly reciprocally
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convex function; (see [40], Theorem 3.1)

2. Setting [ = 2, h(¢) = ¢, p = 1, and x = 0 with ¢1({) = {(1 — {) into Theorem
2.3.1 we obtain the Hermite-Hadamard inequality for harmonic convex functions;

(see [40], Theorem 2.4).

2.4 Fejér-type inequality

Now, for the functions belonging to SR(ph) we will develop Fejér-type inequality.

Theorem 2.4.1. [}4] Considering T C R\ {0} be an interval. If § : T — R is in
SR(ph) with modulus x > 0, then for b(%) # 0, we have

D [S(ﬂy;) [
* g ( )/ = rf:\[;ﬁwm(a) d“}
S/x Sal—ﬂjda (2.23)
< [3(2) + 5(v)] /yh<xp(yp - “p)) @)

o =) )t
Loy PP — P
x a to(a
x aP (yp - xP) alty
forx,y € T with x <y and § € £[x,y|, where o : T — R is a non-negative integrable

1 1
PP\ P xPyP »
ol PPN Wl V]
ab xp—|-yp—ap

Proof. Substituting ¢ = % into Definition 2.1.15 yields

(22 < (L)oo +o(L)s v (1)
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yP — af

xPyP

function satisfying

1 1

S (2.24)




Let a = [(wf;%)yp)%] and b = [(M%)%] Integrating (2.24) with respect to

over [0, 1], we have

2Py? \ ¥ 1 2PyP v 1 2PyP 5
s(=75) =G ((e7aa)) (0 Gias) )
1\|¢P + (1=Qy* ¢+ (1= ()a*|
_X¢1 5 (L’pyp N xpyp '
Since tv is a non-negative symmetric and integrable function, we have
2PyP \ b 2PyP 5
3<xp +y") m((CfCP +01- C)y"> )
1 q;pyp % xPyP %
<o(3)5((@v0-a9) )"((@+0-0w))
1 aPyP » ZPyP 0
()i (raas) ) (eraar))
N[+ (1= P+ -Qa Py O\
‘Wl(ﬁ) ) m((wm—ow) )

:L‘Pyp l‘PyP
(2.25)
Integrating inequality (2.25) with respect to ¢ over [0, 1], we have

/olg(xﬁy;) ;m((éxp +x(p1yp— oyi) ;) “ ;
O (o) )
v h(%)g((cm o cm) p)"’«w e oyp) ) “

1\ Y+ (1=Qy? P+ (1= Q| PP ’
‘Wl(é)/o - m((cww(l—c)yp) )dc’

P yp P yp
and
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S22 5 [V 1o(a) o Y207y — (2 + y")o|o()
P 4 yP L, altp |aP|tal+®

|2:E”y’° (2 +°)aP|'ro(a) da
| p p|[ ap|lu1+1ﬂ

S(a
S/x Wda?

this is the required left side if inequality (2.23).

Further, for the right side of inequality (2.23), let a = x in Definition 2.1.15 we get

1 1]

P yp )

8((@f:gigw0;><hﬂ—§ﬁ@%+ﬂ0ﬂ@—x%@)

Since tv is a non negative symmetric and integrable function, we have

%(<<x" +fv<*’1y"_ C)y’“>;)m<(él’” +$(p1yp1€“)y");) )
<va-0som( (i) ) +omon((i o) )

ol ()
o+ (-aw) )

= x(Q)] 5 — "
Integrating inequality (2.26) with respect to ¢ over [0, 1], we obtain

/o1 S((Cxp +x(p1yp— C)y”> ;>w<(CxP +x(plyp—1 C)y"> ;> “
Lo onom (520 )

28

(2.26)




1

cson((cr ) )

! 1 1] PP »

— — ——|| 1 ¢,

X/o ¢1(O‘ ab oy ((prﬂl—{)y”) ) ‘
" s ' (PP~ )\ ml
a)to(a 2P(yP —a?)\ o(a

/x S da < (@) +S(y))/x b(ap@p — xp)> 5y da

g — ||y 2P (yP — aP) \ ro(a)

N X’ TPy /x 2 ab(yP — 2P) ) al*P da,
this is the required right side of inequality (2.23). This completes the proof. O

Remark 3. (i) Setting [ = 2, h({) = ¢, andp = 1with ¢1(¢{) = ((1 — ()
into Theorem 2.4.1, we get Fejér-type inequality for Strongly reciprocally

convex functions; (see [40], Theorem 3.7).

(ii) In the same fashion the insertion of [ = 2 and h(¢) = ¢ with ¢1(¢) = ¢(1 —
() into Theorem 2.4.1 produces Fejér-type inequality for Strongly reciprocally p-

convex functions; (see [41], Theorem 3.5).

2.5 Fractional integral inequalities

In the past years, Fractional integral inequalities have gained significant popularity
and importance in many fields of science and engineering, to study see [29, 45, 46, 47].
Now we establish some fractional integral inequalities for functions with derivatives
in SR(ph). To obtain results of our desired type, we need the following lemma, which

can be found in [48] Lemma 2.1.

Lemma 2.5.1. [/8] Let § : T = [, 1] C R be a differentiable function on the interior
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Z° of T. If §' € Llx,y] and X € [0, 1], then

(1- A)SK;"‘?;) ;} +A (W ;S(y)) - ZE”{@ : E(fz da

= (Qf(;p;:)) Vj(% — ) (va +w(*’1y"_ C)y”>1+;gl KC%’“ +$(”1?Jp_ C)ly”) ;] h

' /;1<2< 20 (G pr)”ig, (evti=aw) ]«

Theorem 2.5.2. [/4] Let T = [aq, 1] € R\{0} be a p-harmonic convex set, and let

(2.27)

§ I — R be adifferentiable function on the interior I° of Z. If §' € Llz,y] and
|§|9 is a Strongly reciprocally (p,h)-convex function of higher order on Z, q > 1, and

A € [0,1], then

‘ 1 WK 200y H .\ A(s(ac) +s<y>) paty) [ 3 () da‘

xrP 4+ yp 2 yp — b :c altp
P—af L / /
< ;@;(yp; [Calp., )" [Calp 2. p)[F (@) + Co(p. 2. 9)[§ (0)]] (228)
+C7(p7x7y) :|% +C2(p Y,z ) [06 Py, |$ ’ _'_04 P Yy, r ‘S" |
+08(p7y7x)X:|%:|7
where
3 PP I+
i) = [N ) (220
1 PoP 3
Calp. ) = [ |2§—2+A|(w =t pr) d, (2:30)
3 PP I+
Calp.) = | h(l—C)I2C—M< i C)y,,) a (23
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PP 14
Cu(p,y,x / b(¢ |2§—2+/\|(< pfﬂy_ pr) d, (2.32)

o(b ) / 012 - <>yp>l+;dg’ (2:33)
Co(p,y, x / h(1— C)[2¢ — 2+>\|< o f(plyp_ pr)w dc, (2.34)
Cr(p,,y) = — 0; H1(O)]2¢ — A (w +f”(p1yp_ pr>1+é S )
b= | o020 (s oyp)% M e

Proof. Applying Lemma 2.5.1, we have

'(1 B /\)3[( 2P yP )i] +)\(S(:v) +S(y)) @) 730

P+ yP 2 yP —aP /., al+p

<l (et Tl |
p d{] .

*[ (2 - “”(w o <>yp)l+é S’KM o c)w) ]

2
Now applying power mean inequality,

(zf@p;; K/ ¢ =01 g)w)lﬂdc)l; ;
) ( 02 (CIP +x(1y— C)y”> | Sl[(w +-’13(’°1?J"_ C)yp)p]

1 2Py 145 -3
+</‘2< 2+ ) (wﬂl—oyp) d<>

: (/ (20=2+4 (C '“rx( 2 — QyP >1+; Sl[(@" +93(’°1y"_ C)yp);]

dg

¢ N\
dC)

¢ N\
dg)].
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Since |§'(a)|? is in SR(ph), now we've

g‘f;y: [(/ 26— (w+< ﬁ)m)lﬂdg)l;
(Pl ag) - oo
- 214) (o) o)
(/\24 24 0| (e Oy,,>1+”[b(l—<>|s’<x>\“+h<<>\5’<bl>\“

s—5l]%)]
(y" —2P)

= [Cl(pwr’y)li% [03(p’x7y)‘g/(z)|q + 05(p’x7y)‘$/(y)‘q

— x91(¢)

yP P
2p(aPyP)

+ Cr(p, 2, y)X]

Q=

+ 02(p7y7 ) [06 Py, x ‘% |q + 04(pay7x)’3,(y>‘q

],

Q|-

+ C8<p7 Y, l‘)X}
hence, this is required result. O

Remark 4. In Theorem 2.5.2, inserting h(¢) = (,x = 0, and [ = 2 with ¢;(¢) =

¢(1 = (), we obtain Theorem 2.2 in reference [48].

Now substituting q = 1, Theorem 2.5.2 reduces to the following result.

Corollary 2.5.3. [/4] Let T = [y, B1] € R\{0} be a p-harmonic convex set, and let
§:Z = [a,0] € R\{0} — R be a differentiable function on the interior Z° of T.
If§ € L[z, y], |F'|? is in SR(ph) on I, and X\ € [0, 1], then
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o =

1
2 yP—xP w.’L'er

-5 |(350)

( P — xp) / .
< m[(@w,y) + Co(p,y, 1)) [§ ()| (2.37)

+ (C’5(]J,y,$) + 04(p7w7y))|8/(y)| + (07(p,l',y) + CS(p7y7$))X}7

| 2(BL2 30 _ar) 5t dx‘

where Cs, Cy, Cs, Cg, C7 and Cy are given by (2.31)-(2.36).

Remark 5. In Corollary 2.5.3 inserting h(¢) = (,x = 0, and [ = 2 with ¢;(¢) =

¢(1 — (), we obtain Corollary 2.3 in reference [48].

Theorem 2.5.4. [}4] LetZ = [aq, 1] € R\{0} be a p-harmonic convex set, and let
§:Z = [ag, B1] € R\{0} — R be a differentiable function on the interior Z° of T. If
§ € Llx,y] is Strongly reciprocally (p,b)-convex function of higher order on Z, v,q >

1, %—i—%:l, and X € [0,1], then

\(1 - m( [2?;] ¢> N A(sm Zm)) B ng_*’y;g / 3 da‘

(yp - xp) ()\t—"_1 + (1 - )\)H—l) v [(Og(q,p,x,y)‘gl<x)}q

— 2p(abyP) 2(v+1)
q . (2.38)
+ Cuila,p;2,9) |3 W)]" + Cus(a, 05 2, 9)x) °
+ <012<q7pay7x>‘gl(x)|q + 010<qap7y7x){3/,(y)‘q
+Cl4(q7p;yvm)X)%}v
where
Co(q, p: 2, y) = : 1 2y’ q+%d 2.39
apiz) = [(o0-0( i) (239
' e 2PyP ity
Cula.pir) = | h(C)(le_ pr) @, (2.40)

2
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3 Py 0ty
Chi(a,p; 2, y) = /h<<>< e ) dc,

a?+ (1= QP
2PyP i+
Cra(q, p;y, @ / h(1 (pr-i— 1—C>yp> dg,

Py 31
Cis(q,p;2,y) = _/0 $1(C) (Cxp +95(1?J_ Qyp>

Yo ar

i PP T+
Cu(a,p;y,2) = —[ ¢1(<)’2<_2+’\’<ng +ZL"(1?J_ C)yp)

Proof. Using Lemma 2.5.1, we have

1 [

dg,

q
1

! 5(a)

' - w([ 200y D 0 (m) +s(y)> _ )

x"—l—y” 2

(yP — 2P)
= 2p(xPyP) {

2= (w o <>yp) "

yp — P . a1+p

[l

y”_

P

dC

ZPyP 5
(24_2“)(@’ T cm)

Using Holder’s integral inequality, we get

b _
< G (] 1o wr )

1
),

2

P / xpyp
s chp TA-Op

(L
+ (/;\(2§—2+>\)\td§)1

PP I+ ) ZPyP
(ri-ar) ez

</
-t ([ e d<>

2Py +5 ) 2Py
(cxv+<1—<>yp> SKcma—c)yv

1

g (/0 | (cxp +x<p1yi <>yp> p

34

¥ KC%‘” +x("19"_ C)yp)

) |
)]

|

1
y”)

ac|

0N\
dg)
q
dg)
T\
d<>

|

=

(2.41)

(2.42)

(2.43)

(2.44)




1

]

" ( ;1|(2C o A)Mg)i : (/: (C:v*’ +$(’°13/’“_ C)y'°)q+g ¥ KC:E*’ +w(’°13/’“_ C)yp) ;]

Since |§'(a)|? is in SR(ph), we have

- g(;";p K/é ¢~ A)rdc) % </oé (C:UP +a:('°1yp_ C)yp)q+g

[ 1
< [pa- o+l w - x| 5 - )
1 s 2Py q+1
+(/|2C_2“‘d<) (/ (Cw*’+(1—4‘)yp)
x[ (1= OfF @' + 5Ol = xéx(0)| =~ 5 ]dc)}

2y;;p; K/ (2~ ”dg)

x (Cola, p; 2, )| (@)|" + Cuala, p; 2, 9)[§' W)|" + Cus(a, p; z,y)x)

+(/2\(2C—2+)\)]tdc>t
x (Cra(a, 939, 2)|[§' (@)|" + Cro(a, b3y, 2)[§ () \+Cl4(qm;y,x)x)%

<@“””xcw;ﬁﬂyw>TQMmawW@W+GMmme@W

E-S

=

1
+ Ci3(9, 932, 9)x) " + (Cra(a, b3y, 2)[F ()] + Crola, p;y, 2)|F ()| + Crala, ps v, 2)x) 7],
hence we get the required result. O

Remark 6. In Theorem 2.5.4 inserting h(¢) = ¢, x = 0, and [ = 2 with ¢;(¢) = {(1—(),

we obtain Theorem 2.5 in reference [48].

For A = 0, Theorem 2.5.4 reduces to the following result.
Corollary 2.5.5. [44] Let T = [aq, 51] C R\{0} be a p-harmonic convex set, and let
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§:Z = [y, B1] € R\{0} — R be a differentiable function on the interior Z° of .
If§ € Llz,y] is in SR(ph) onZ, v,q>1, L + % =1, and X € [0, 1], then

H( 2aPyP H ey 3

P 4+ yP yr—af J, aqltp

(y° — ") 1 : .
< :
= 2p(zPyP) X 21 1) [(Co(q, p;2,9)|F (2)]

: . (2.45)
+ Cra(a, 52, 9) [ ()" + Cuala, p; 2, 9)x) 0

+ (Cr2(a, 93y, 2)|F ()" + Cro(a, 03y, 2)|F ()|

1

+ Cuala, 059, 2)x) "],
where Cy, Cyg, C11, Ca, Crq and Chy are given by (2.59)-(2.44).

Remark 7. In Corollary 2.5.5 inserting h(¢) = ¢,x = 0, and [ = 2 with ¢;(¢) =

¢(1 — (), we obtain Corollary 3.6 in reference [48].

Theorem 2.5.4 reduces to the following result by putting A = 1.

Corollary 2.5.6. [44] Let T = [, 1] C R\{0} be a p-harmonic convex set, and let
§:Z = [y, B1) € R\{0} — R be a differentiable function on the interior Z° of I. If
§ € Llx,yl], |F|* is a Strongly reciprocally (p,h)-convex function of higher order on I,
t,q>1, %—Fé: 1, and X\ € [0,1], then

S@) +3) _ pl?y’) [Y3(a) o
2 yp — b . a1+p

1

(y" — %) L\ : ()]
= 2p(xPyP) x <2(t+ 1)) [(Co(a, 5, 9)[3(2)

+ Cu(a,p;2,9) |3 W)|" + Cuala, p;z,9)x)

|-

+ (Cra2(a, 939, 2)|F ()| + Cro(a, 93y, 2)|F W)|" + Crala, p;y, 2)X)

],
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where Cy, Cyg, C11, Ca, C13 and Cyy are given by (2.39)-(2.44).

Remark 8. In Corollary 2.5.6 inserting h(¢) = ¢,x = 0, and [ = 2 with ¢,(¢) =

¢(1 — (), we obtain Corollary 3.6 in reference [48].

For \ = %, Theorem 2.5.4 reduces to the following result.

Corollary 2.5.7. [44] LetT = [on, (1] C R\{0} be a p-harmonic convex set, and
letF : T = [ag, 0] € R\{0} — R be a differentiable function on the interior
Z° of . If §' € Lx,yl, |§|? is a Strongly reciprocally (p,b)-convex function of higher
order on L, v,q>1, & + % =1, and X € [0,1], then

b {225 ] s0] 3222 204

yp — P . alt+p

yP — xP) ( 1+ 27+t

6. 3‘7( 1)) v [(Og(CI»p,ﬂ?,y)‘%"(x)P + Oll(q’p?f’%y)lg'(y)‘q

a |-

+ Cuala, P2, y)X) " + (Cra(a 03 2)| 8 (@)]* + Croa 939, 2)|F )] + Crala 939, 2)) 7]
where Cy, Cig, C11, Cia, Ci13 and Ciy are given by (2-39)‘(2-44)-

Remark 9. In Corollary 2.5.7 inserting h({) = (,x = 0, and [ = 2 with ¢;(¢) =

¢(1 = ¢), we obtain Corollary 3.7 in reference [48].

For A\ = %, Theorem 2.5.4 reduces to the following result.

Corollary 2.5.8. [44] Let T = [ay, 51] € R\{0} be a p-harmonic convez set, and let
§:Z = [ag, 1] € R\{0} — R be a differentiable function on the interior Z° of T.
If§' € Llx,y], |§% is a Strongly reciprocally (p,h)-convex function of higher order

onZ, v,q>1, %—{—%: 1, and X € [0, 1], then
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e[ (25) ) 0] 520 [ 30

P+ yr yP — P [ alte

(y" —27) 2
2p(eryp) (4'2t(t+ 1)

+ Chila,p;2,9) |8 W)]" + Crala, ps 2, y)x)

IN

)t [(Co(a,p; 2, 9)|F ()|

o=

]

+ (Cra(a,p; 9, 2)[§' ()] + Crola. b3y, 2) |8 ()" + Cuala, b3y, 2)X)

where Cy, Cyg, C11, Cia, C13 and Chy are given by (2.39)-(2.44).

Remark 10. In Corollary 2.5.8, inserting h(¢) = ¢, x = 0, and [ = 2 with ¢({) =

¢(1 = ¢), we obtain Corollary 3.8 in reference [48].
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Chapter 3

Main Results

This chapter began with defining h-convex function, Godunova—-Levin function, s-
convex function in the second sense, and p-convex function. In Section 3.2 we discussed
a newly defined mapping MY (x) for h-convex function, see [32], a couple of basic re-
sults in the form of lemma and proposition are made. In Section 3.2.1 we utilize these
results to establish a new generalized Fejér-type inequality. Afterward, with some mod-
ifications, we construct a generalized form of Hermite-Hadamard inequality in Section
3.2.2. In the end, we talked about the most recent mapping that has been defined as

H (x) for h-convex function.

3.1 Introduction

As, h-convex function is also known as SX(h, Z), the classes such as Godunova—Levin functions
known as Q(Z) [49], s-convex functions in the second sense known as K? [50], and
p-convex functions known as P(Z) [51]. Here we have some basic definitions of the

Godunova—Levin function and s-convex function.
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Definition 3.1.1 (Godunova Levin function). Consider a non-negative con-
vex function §: Z C R — R and for all a,b € Z and ¢ € (0,1), we have the following
mequality:

§(a)  3(b)

F(Ca+(1-0Qp) < —+q.

Definition 3.1.2 (s-convex function). Consider a non-negative convex function § :
Z CR — Rand forall a,b € Z,s5 € (0,1], and ¢ € [0,1], we have the follow-
g inequality:

F(Ca+ (1 =¢)b) < Fla) + (1 —¢)°F(b).

From the Definition (2.1.11), we consider h(¢) = ¢, then all non-negative convex
functions belong to SX(h,Z). If the above inequality isreversed §F issaid to be
h-concave or § €SV(h,Z). Moreover, all non-negative concave functions belongs
to SV(h,Z) for h({) = ¢. We can included Q(Z), K2, and P(Z) in the class of
h-convex functions. If h(¢) = %, h(¢) = 1, and h(¢) = (%, where s € (0,1), then
Q(Z)=SX(h,7), P(Z) C SX(h,Z),and K2 C SX(h,T), respectively.

Onward in this thesis, the function b is considered integrable on [0, 1].

3.2 The mapping MY (z)

Consider two real numbers k1 < kg, consider integrable functions § : [k1, k] = Z —

R and w : [k, kp] = T — RT U{0}. Define the mapping Mg (z) : [0,1] = R as

Cy (p,v) K2
M (2) / S(a)ro(a) da + / $(a)(a) da,

K1 DI(Mv’/)

where
Co(p,v) = min{p(x), v(z)},  Dalp,v) = max{pu(z),v(z)},
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for z € [0, 1] we define u : [0, 1] — [k1, ko] and v(z) : [0, 1] — [K1, ko] as
p(x) = xko + (1 — )k, v(z) =xkr + (1 — x)ke

Note that, for to = 1 in MY (z) we have

Ca () K2
Mé(:v)—/ 5(a) da+/ S(a)da,

K1 Dy (p,v)
The following lemma will be useful to us often.

Lemma 3.2.1. [32] Consider two functions § : [k1, ke] = R and w : [k1, ko] = RT U
{0}. Also, for any s € [0,1], define the ¢s : [K1, ko] X [K1, ko] = [K1, k2] as ¢s(a,b) =

sa+ (1 —8)b for a,b € [ky, ka]. Then for all x € [0,1],

(1)
Co(p, v) + Do, v) = p(x) + v(x) = K1 + k.
(i)
Dy(p,v) = Colp,v) = |p(z) —v(@)| = |1 = 2z[(k2 — K1)
(iii)
§(Ca(p,v)) + 8 (Da(p,v)) = [§ o pl(x) + [Fov)(z).
(i)

¢5<C$(M7 V)? Dl(ﬂ? V)) + ¢5(DSE(:U’7 V)v O:C(:“’v V)) = K1 + Ka.

If v is symmetric on [ky, ko] with respect to 552 - then.:

(v) It is symmetric on the interval [Cy(p,v), Dy(p, v)] with respect to H552

)
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(vi) We have the following identities:

[t 0 &) (Co (11, ), Dy (g1, v)) = [10 0 @] (Do (11, ), Corp, v))
= [0 0 ¢g](u(x), v(x)) = [w o @] (v(z), u(x)),

(vii) We have the following integral inequalities:
K1trg Da(pv)

CI(N‘:”) K2 P}
/ o(a) da — / to(a) da, / o (a) da — / to(a) da.
Da(p.v) Ca () b

K1 z(M,V 2

Proof. The proofs of (i), (iii), and (iv) are straight-forward, and for (ii), we can uti-

lize the following identities

min{a, b} — a+b—|b—a|’
2
and
max{a,b} = a—l—b—|—2]b—a|‘

For (v),suppose k1 < Co(p,v) < 232 < Dy(p,v) < kg and sofor a €

[Co(p, v), Dy, v)], from (i) we have

w (Colp, v) + Dy(p,v) — a) = 10(ky + ke — a) = (a),

since, to is symmetric with respect to % For (vi), we must consider the following equalities:

[t o ¢] (y(x),,u(x)) m(E(JIRQ +(1- SL’)Iﬁ) + (1 —s) (xm +(1- :U)@))

m(l‘(ﬁlig + (1 —5)/11) +(1—2) (5“01 + (1 _5)@))
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w((1—z)(sk2 + (1 —8)k1) + z(sK1 + (1 — 8)K2))

w(s(zry + (1 — x)ka) + (1 —8) (zr2 + (1 — x)k1))
= [0 0 ¢] (u(m), u(x))

Finally, it is sufficient to use (i) and the change of variable u = k1 + kg — a for (vii). O
By Lemma 3.2.1 we have some basic properties for the mapping Mg (x) below.

Proposition 6. [32] Consider two functions § : [k1, ko] — R and 1 : [ky, ko] = RT U

{0}. Then:
()
MZ (z) = M3 (1 —2)  Vae[0,1],
which shows that MY (z) is symmetric on [k, 2] with respect to 3.

ii) For symmetric to on [k, ko] with respect to #2152 and p,q > 1with 2 + 1 =
y 2 p q
1, we have

(M5 (@)] < IS llp 1]l
Also, if C,(p,v) = p(z), then

ez o) < (3) " otea = ) ol 5

and if C,(u,v) = v(x), then

ME(@)] < (%) (= 2) (52 = 52)] P 013 e

(iii) Let, the function (Fto)(a) = F(a)to(a)is convexon [ky,ko|. If Cup(p,v) =
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Proof.

(i)

v(x) for some x € [0,1), then the function Mfgf(;) is convex. Also, if C,(u,v) =

w(zx) for some x € (0, 1], then the function MEE@) is convex.

Considering § and tv are two continuous functions on [ky,ke]. If § is
non-negative (non-positive) on [k1,Kp], then the function MY(x) is increas-
ing (decreasing) on [0, 3) and is decreasing (increasing) on (3,0]. Also, M ()
has a relative extreme point atx = % If o # 0,then corresponding to

any a € [kq, ko] \ {552} satisfying
S(a) —|—3’(F61 + Ko — a) = 0,

there exists a critical point for Mg ().
(i) This follows from the facts u(1 —z) = v(x) and v(1 — z) = p(x).

Since Cy(u,v) < 832 < D, (u,v), using the statements (iii) and (vii) in Lemma

3.2.1 and Holder’s inequality, we have the following inequalities:
M ()]
Co () 5/ [Cal(uv) 3
([ o) ([ o)
K1 . .
+ (/ ]pda) ( (a)|qda)
z(kv) Da(p,v)
Cy(p,v) Cyr(p,v) 1 K2 %
([t ([~ mors) ([ jora)]
K1 DI(N‘:”)
1 Cy (1, 1/) % Cz(p % K2 %
([ wora ([ mor ) ([ )]
2 Dy (u,v)

Thus (ii) is proved.

IN
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(iii) We prove the first part. Considering the changes of variable a = zk; + (1 —

x)u and a = xK2 + (1 — z)u in two integrals of H(x) = %, we obtain that

K2

H(x) = /m(Sm)(ml + (1 —z)a)da +/ (Fw) (zr2 + (1 — x)a) da.

K1 K1

Now for x1, 25 € [0,1) and non-negative r, s with r + s = 1, we have

H(rzy + sza) = /I’€2 (§r0) ((ra1 + swa)k1 + (1 — (roq + sx2))a) da

K1

+ /K2 (Sm)((’r’xl + s19)Ke + (1 — (ray + 51U2)>a) da

K1

— /m(gm)(r(xml + (1 —21)a)) da + /RQ(Sm)(s(xgm + (1 —a5)a))da

K1 K1
K2

. /nz (Fr0) (r(z1k2 + (1 — z1)a)) da + / (§10) (s(z2k2 + (1 — 22)a)) da

<r {ZjQ(Sm)(mm + (1 —z1)a) da + /:{;m)(xmg + (1 —21)a) da]
+s [/:Q(S'm)(:@m + (1 — z2)a) da + /1:2(31‘0)(33252 + (1 — 29)a) da]

= ’I"H(Qfl) + SH($2).

iv) Using the fact that tv is symmetric on [k, k2| with respect to %2 and the Leib-
g y p 2

niz integral rule, we obtain the following result:

1 dMY [wopl(@){[§opl(z) +[Fovi(x)}, =zel03),

x) =

Ko — K1 dx

—[wovj(@{[Fop(z) + [Fov()}, =e€(31)

Proposition 7. Let§ : [k1,k2] = R, G : [k1,k2] — R, andw : [k, K] —

R* U {0} be integrable functions. The mappings M (z) and Mg (z) for two real
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numbers 1 < Ky. Define the mapping Mg (z) : [0,1] — R as:

Ca(p,v) K2
M () :/ S(a)ro(a) da+/ S(a)ro(a)da,

K1 Dl‘(iu'vu)

and M (z) : [0,1] — R as

Colp) Ko
M () :/ g(a)ro(a) da+/ g(a)ro(a)da.

K1 Da(p,v)
Then § + ¢ : [k1, k2] — R is also integrable function.

Proof.

K2

Co(p,v)
ME, () = / (3 + 9)(a)ro(a) da + /D G o)@mid

DE (M?V)
K2

Ca(p,v)
- / [§(@)r(a) + g(a)ro(a)] da + / B(@)o(a) + g(a)w(a)] da

Dy (p,v)

Hence proved.

Cx(p,v)
- / [(F(a) + g(a)]ro(a) da + / [(F(a) + g(a)]to(a) da

]

Proposition 8. Let § : [k1,k2] — R,and w : [k, k] — RT U {0} betwo inte-

grable functions. Then for any A > 0, A§ : [k1, ko] — R, is also integrable function.
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Define the mapping MY (z) : [0,1] — R as:

Cx(p,v) K2
M () :/ S(a)ro(a) da+/ S(a)ro(a) da.

K1 Dl‘(iu'vu)

Proof. Let X > 0,

Considering the mapping MYz (z)

K2

Co(p,v)
M, () = / (A (@)ro(a) da + / (A& (@))w(a) da

K1 Dy (;L,V)

Cx(p,v) k2
— / A (o) (a) da + / AS(a)ro(a) da

K1 DI(Mvu)

= )\/Cw(W) S(a)w(a) da + )\/H2 S(a)w(a)da

K1 Dz (p,v)

_ )\{ / S s (@(a) da + / " Sl da] — AMZ(2).

K1 DI(:“’?”)

Hence proved. O

Proposition 9. The mapping M (z) for two real numbers x; < ky integrable functions
Si ¢ [k1, k2] = R, and w : [ky, ko] = RTU{0}, 1 <i<n.For) >0, 1<i<nthe

function § : [0,1] — R where § = Y | A\;§; is also integrable function.

Proof. Considering the mapping MY ()

Colp) o
M () :/ F(a)ro(a) du+/ S(a)ro(a) da

K1 Dy (,v)
Cr(pu,y) M Ko n

_ / S A (@) (a) da + / S A (@) (a) da
K1 i=1 Da(pv) =1

_ /CE(W) [AiF1(a) + AaFa(a) + - - + AFn(a)|w(a) da

K1

+ /H2 [Algl(a) + AoFa(a) + - + )‘ngn(a)}m(a) da

Dy (p,v)
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_ / o [MF1(a)ro(a) + AoFa(a)ro(a) + - + X, Fo(a)10(a)] da

K1

+ /H2 [AiS1(a)w(a) + AaFo(a)w(a) + - + A Fn(a)to(a)] da

Dy (u,v)
Ca(p,v) Ca () Co(p,v)
:/ A1 (a)wo(a) da+/ Ao (a)o(a) da+---+/ AnSn(a)o(a) da
K1 K1 K1
K2 K2 K2
+/ A1 (a)w(a) da~|—/ Ao (a)o(a) da+---+/ AnSn(a)ro(a) da
Dy (p,v) Dy (p,v) Dy (p,v)
Ca(p,v) Ca(p,v) Ca(p,v)
_ /\1/ S (a)ro(a) da + >\2/ Sa(@)r(a)da + - + An/ Sn(a)o(a) da

K2 K2

So(@)o(a) dz + - + A, / 3. (@)o(a) da

Daz(p,v)

+ M\ /K2 S1(a)ro(a) da+>\2/

Daz(p,v) Daz(p,v)

_ [ / e F1(a)ro(a) da + / Y S(@w(a) da]

K1 DI(Nv”)

o [ / S (@o(a) da - / " Sa(a)w(a) d;z:}

K1 Dx([l/,V)

TR Ucm(ﬂ’y) o(a)ro(a) da+/m () (a) da]

K1 Dz (p,v)

Hence proved. O

Proposition 10. Let §; : [k1,k2] =& R, 1 <i < nandw : [k, ke] = RT U {0} be

integrable functions. Then § = maxg§;,7 =1,2,...,n is also integrable function.

Proof.

Ca(p,v) K2
M (2) = / max §:(a)r(a) da + / max §:(a)r(a) da

K1 Dﬂc(l’wy)
Cx(p,v) K2
= / Se(a)o(a) da + / Se(a)w(a)da = MY ().
K1 D (p,v)
Hence proved. O
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3.2.1 A New Generalized form of Fejér’s inequality

Here is a new and improved generalization of Fejér’s inequality, extending its applica-
bility to the newly defined mapping MY (z) for h-convex functions. This will broaden
the scope and provide a more flexible tool for analysis. This is also known as Hermite-
Hadamard-Fejér’s inequality for an h-convex function. Once the derivation is done, we
developed several results in the form of corollaries and remarks, for deeper insights into

the inequality’s structure.

Theorem 3.2.2. Considering h-convex function § : [k1,k2] = Z — R andto
(K1, k2] — RT U {0} such thatw is symmetric with respect to 552, For allx €

[0, 1], we have the following inequality:

1 K1 + Ko Da(pv)
2 3( 2 >/c o(a) da

1‘(“7”)

/ §(a)ro(a) da — M2 (z)

(3.1)
— p@)F o pl(e) + o rl@) [P [ a—ula)

< (u(e) - v(@)) / b(y(w) u<x>>“’(“>da

) slE o) + o) [ [ o ua)

- CORD) / “(u(w) u(sc))“’(u)d“'

Proof. For any p € [C.(u,v), Dy(p,v)] exists k € (0,1) such that p = kCy,(u,v) +

k1D.(p,v), ki =1 — k. From the definition of an h-convex function, we have

S(kC (11, ) + by Do (g1, ) 0 (kCh 11, v) + kDo (11, 1)

= (k) (Co(p, V)0 (kC (11, v) + k1 Da (11, 1)) + b(k1)F (Do (1, v) )0 (kCo (1, v) + k1 Do (1

(3.2)
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and

F(k1Colp, v) + kDy(p, v))w0 (k1 Co (i, v) + kD (1, v))
< (B(k)F(Culpt ) + BRIF (Dalts )0 Colt, ) + KD, (1)
) F(Colyt )10 Cos ) + KD, (1) + BR)F (D, )10k Cos ) + KD

/8(%} V) + k1D (p, v)) 10 (kCy (1, v) + k1 Dy(p,v)) dk
+/013 V) 4+ kDy(p, v)) 1o (ki Cop, v) + kDy(p,v)) dk
<[ [h(k)S(C (1,00 (KC., ) + a1, )

003 (D2 )0 (KC. ) + Do) | d
[ [0St ot + 5D.00)

+ B )F (Da (1)) 10 (k1 Cop1, ) + KD (1, u>)} k.

Considering left hand side of the inequality and substituting a = kC,(u,v) +

k1D, (p,v), a = kiCy(p,v) + kD,(p, v) in the first and second integral respectively, we

get
: / Y Sl : Y Sam(e)
S(a)o(a) da + / F(a)w(a)da
CI(:Ua V) - DI(N» l/) Dy (p,v) Dz(,ua V) - Cx(ﬂa ’/) Cy(p,v)
Dy (p,v)

S(a)ro(a)da,

~cn )
Da:(,uu V) - C:B(:uu V) Cz(p,v)
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solving the right-hand side of the inequality

/ 3(Co(1t,1)) [0 (k)0 (KCo (11, ) + by D)) + bk )0 (1 G (11, v) + kDo (1 )] d

N /0 3D, 00 (Ko (41, 7) + k1 D)) + (k)10 (s Gy, ) + Do)
—23(Cal,) / b + (1= 8)Du(p.v)) ds
+23(Dalpsv) / b(s)w (1 — 8)Co (s, ) + sDs (11, ))

2§ (Cul.)) + F(Dal,1)) /Ob (1,v) + (1 = 8) D, () d

=2[F(Co(p,v)) + F(Dalp, v))] / h(s) [0 0 @] (Culs, v), De(pr, 1)) ds,
0
(3.5)
here we use the symmetry of the weight tv. Now combining and simplifying the results

obtained in equation (3.4) and (3.5)

Dy (p,v)

i )
Dx([/b, V) - CJ:(,“’? V) Cr(p,v)

< [3(Culyv) + F(Dalpts))] / (5)[10 © 6] (Cu (1, ), D1, )) s,

S(a)to(a) da
(3.6)

Let § be an h-convex function

§(ju+ (1= 5)v)) < b(5)F(u) +b(1 = j)F(v).

Now substituting j = 3, u = kCy(p,v) + (1 — k)D,(p,v) and v = (1 — k)Cy(p, v) +

kD,(u,v), simplifying the equation

S(@(u, v);Dm,u))

< () (Bl ) + (L= K)Dulj0v) + §((1 = K)Calpov) + KD )]
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Now, multiply w(kCy(pt,v) + (1 — k)Dy(p,v)) = 1o ((1 — k)Cy(p, v) + kD, (p, v)) and

integrate with respect to k over [0, 1]

S<C”“'(“’ V) + Dy

2 W/))/O w (kC, (1, v) + (1 — k) Dy (1, v)) dk

1

- /0 F((1 = k)t v) + kDo (1, )10 (1 = k) Copt, v) + kDo (11, v)) dle |,

after some suitable substitutions, we obtain

O, ) +Dx<u,u>> 1 /Dzw
d
S( 2 D) — ol ) Sy "

Qb(%) Da(pv)
d
= D,(u,v) — Co(p,v) /CI(W) §(a)w(a) da,

or

1 Co(p,v) + Dy(p,v) D (pv) Dq(n,v)
2[](%)3< 9 )/CI(W) m(a)dag/ S(a)ro(a) da. (3.7)

Now combine equation (3.6) and (3.7), we obtain

1 Co(pt,v) + Dy(p, V)) D) d
2h(%)3< 2 /m,y) ro(a) da

Dx(/h’/)
< / S(a)w(a)da
Ca(p,v) (38)

< [Dalp,v) = Colp, V)] [§(Colie, v)) + (D, v))]

< [ B0 0 8)(C ). D) .
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By the definition of mapping MY for all x € [0, 1] we get the following identity

D (p,v)
/ 3(a)w(a) da — / 3(a)ro(a) da = M (z). (3.9)

Co(p,v)

Now using equation (3.9) and (ii), (iii), (v), and (vi) statements of Lemma 3.2.1 we get

the following result

1 K1 + Ko
0 S( : >

/ §(a)ro(a) da — M2 (x)

Dy (p,v)
/ w(a) da

Cﬂl‘ (M,V)

(3.10)
< |v(@) — p@)|([§ o pl(2) + [Fov)(z /h [0 © @] (pu(x), v(x)) ds

= v(a) — u(@)| (3 o l(z) + [F o v](a /h 10 0 4] (v(2), 1(z)) ds.

Applying the change of variable b = ¢, (u(z),v(z)) or b = ¢s(v(z), p(z)) in the last

two integrals in (3.10) and consider that

L My amvle) 1 au)
7 Ly )" = s L, m))(m(a; da.
3.11

Finally, by using equations (3.10) and (3.11) we get the desired result. O

The above theorem is valid in general. Furthermore, the following corollary holds

for more specific values.

Corollary 3.2.3. Considering integrable functions defined as b : [0,max 1, ke — K1),
St [k1, k2] = R and o : [k, ko] = RTU{0}, ro > 0, where b is multiplicative or super

multiplicative, § is non-negative h-convex function, andvo is symmetric with respect
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K1tk De(p,v)
to BEE2 and me(;fu) w(z)dz > 0. Then

S(F” ;r @) < B/: 3(a)w(a) da, (3.12)

. 2h(: OMEM u)t u—&-icz(”’V)JrDz(‘u’V) du
where B = mln{fDW,U();)(a) o Cm{p,,u)-}—Dx(u,u) - (h(y)) ( . ) } and
Cz (,v) Ca () 2 fc,;”<:’y)+Dz(u’y) h(v—u)r(v)w(u) dvdu
Cz(."'a”)‘gDz(l’uV) Dm(/ﬁﬂ/) ’
fcx(u,y) O ()4 D () (v — u)w(v)w(u) dvdu # 0, h(u) # 0 for u # 0.

Proof. Let b be super-multiplicative h(u) # 0 for u # 0. Then h(u) > 0 foru > 0
we have u, v € [k1, ko] such that k1 < Cp(p,v) <u < w <v < Dy(p,v) <

ko we have

Co(p,v = (1Y Co () +Dg (v

2 N 2 ) )

_ Ca )+ D (p,v) Ca (V) + Dy (pv)
2 2

Denote § = 2

v—Uu

du + v, and S(W) = §(0u + yv) < h(6)F(u) + h(v)F(v). Since b is super

v—u

v— Cz (p,v)+Da (p,v) b(v— Cx (p,v)+Dax (p,v) L.
multiplicative, we have h(d) = b —= < b(v_i) similarly
h(cz(#,l’)ﬂLDz(HvV) 7u)
h(y) < TeEm) . So, when § > 0 we have
S(Cx(u, v) + Da(p, V)) _ hl— w)s(u) N f(Cels) D) _ u>g(v)
2 - b(v—u) b(v—u) ’
multiplying by h(v — u) on both sides
Co(p,v) + Dy(p, v
(o — u)g( (1, ) ' (u ))
(3.13)

< b(v ~ Ca(p,v) + Da(p, ”))g(u) N b(Cz(u, v)+ Da(p,v) U)f(v)-



This inequality continues to hold when b is multiplicative, regardless the sign of §F.

Multiplying equation (3.13) with to(u) and integrating over the interval
[Co(p,v), w] with respect to du, and we then multiply with to(v) and inte-

grate over interval [w, D, (1, v)] with respect to dv we get

Cz (p,v)+Da (p,v)
2

Dy (p,v) —
5 Celnv) + Dafr,v) / : / (v — u)(u) du |0 (v) dv
2 Calp)+Da ) \ J o ()

Ca (1,v)+ Dy (p,v)
2

. /D;c(ml/) f)(v ~ Culp,v) + Dy(p, I/))m(v> o /CI(WI) S (u) du

Ca (1,0)+ D (1,v) 2
2

Cx (p,v)+Dx (p,v)
2

D2 () Calur)t Dalier) D
+ / F(v)ro(v) dv/ f)(Cx('M’ V) + Dalitsv) _ u>m(u) du.
C’z(HvV)erDz(HvV) Ca(p,v) 2

On the right hand side we apply the substitution v — w = t in the first

x M,I/)‘f‘Dz(N/,V)
2

integral and Ca — u =t in the second integral of the sum, we get

Cx (1,v)+Da (1,v)
2

g(Cx(H, v) + Dy(p, 1/)) /Dx(w) /CI(W) b0 — wm(w)o (o) duds

2 Ca (13v)+ Dy (1,0)
2
< /
0
D:c(#a’/)—cac(ﬂyl’)

- =z Delper)
+/ b(t)m(ox(% Zhaz bl —t> dt/ u §(v)wo(v) dv
0

2 Ca (11,0)+ D (s1,v)
2
/o

C:E -DCE , DI(:“?’/)
bt (t+ (1 ”); (e ”)) dt. / S(w)ro(u) du,
where, in the first we apply the symmetry property of the function tv over the

Cu (u,v)+Dg (p,v)
2

Co(p,v) + Do(p, )
(1) (t + ) dy /C » 3(w)ro(u) du

2

Dg (p,v) = Cx (p,v)
2

Cw(p,,u)

interval [Cy(u,v), Dy(p,v)], ie. m(w —t) = w(w + t) for
telo, M] Now applying Lemma 3.2.1 and substituting « = a on the right

side of the inequality respectively, we get the desired result
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D (p,v)=Cax (p,v)

K1+ K T p(t)w (¢ Gl D)y gy Da(p)
L e . i
c:(u,u’);Dz(u,y) Co () ? h(U - u)m(u)m(v) dudv Ca(pv)
or we can write
Dy (1) —C () Ca ()4 D (1) b
K1+ K 2 hu)w (u + =B dy =(nv)
3( 1 2 2> = D,.({Oy) czw,u)wz(E,u) : ) X / §(a)ro(a) da
S CouirsDatua) [0, () (v — w)ro(u)w(v) dudy 7 Calir)
Dy (p,v)
_B / 3(a)w(a) da.
CQ(HHV)
[
Remark 11. (i) Inequality (3.1) is reversed if § is h-concave function in the theorem
(3.2.2).
.. . RT . Dz (p,v) 7CI(H’U);DI(H’V)
(i) If b is sub multiplicative, fcxw,y);Dw(Hyy) Ca () h(v—u)ro(u)ro(v) dudv # 0,

h > 0, and if § is h-concave function then the inequality (3.12) is reversed, where

constant B changes from min — max.
Here is another way of presenting the above generalization of Fejér’s inequality.

Corollary 3.2.4. Suppose that § : [k1,k2] — R is non-negative integrable b-
convez function and w : [k1,ke] — RY U {0} is also integrable function and

symmetric with respect to % For all x € ]0,1], we have the following inequality:

1 K1 + Ko Da(pv)
d
2h<§>3< 2 >/ o(a) da

Co(p,v)
/ 3(a)r(a) da — M2(x)

K1

[§ o pl(x) + [Fov(x) [P Dy(p,v) —a
= 2 /Cz(,u,l/) H(Dx(luv V) - Cx(:uv V))m(a) da

[§ o pl(x) + [Fov)(z) [ a— Calp,v)
2 /Dgc(u,y) H(Dl“(:u’u V) _Cx<:u7y>

IN

(3.14)

>m(a) da.
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Proof. Consider § and h-convex function and some statements in Lemma 3.2.1

g(/@1+/{2>_ (qbs( (1, ),Dx(M,V));rcbs(Dx(u,V),Cgc(u,V)))

F 0 b5 (Colp, v), Dy, ) + F 0 ¢ (Dy(p, v), Co(pr,v))]

| N

2
1
2
1

H(s)([§ o pl(z) + [§ o v](2)),

<o(3)!
( )H Colp1.v) + F(Dalp )]
-(3)

2

where H(s) = h(s) + h(1 — s), s € [0,1]. Using the symmetric property of the h-

convex function, we have

Do) Dy(u,v) —a ) Delpr) Dy(u,v) —a
H Sl mada:2/ f)( Sl )mada.
/CI(,u,z/) (Dﬂc(:u’ V) - Cx(:ua V) ( ) Cq(p,v) Dﬂc(:ua V) - Cx(:uv V) ( )

Multiplying by [t 0] (C’x(u, v), D.(, 1/)) for all s,z € [0, 1] and then integrating with

respect to s € [0, 1] we get required generalization of Fejér’s inequality given in Equa-

tion (3.14). O

Remark 12. Thus, it is clear that (3.1) and (3.14) are equivalent, and the only change
is in the manner of presentation and the resulting consequences. These generalizations
of Fejér’s inequality for h-convex function provided in these inequalities are valuable

contributions to the literature.

Remark 13. Substituting h(s) =7 (n € (0,1]), b(s) = £ (s € (0,1)), b(s) = 1,
and h(s) =s in (3.1) and (3.14), we obtain generalizations of Fejér’s inequality
for s-convex functions in the second sense, Godunova-Levin functions, p-convex func-
tions, and convex functions, respectively.

Now, taking particular value h(s) = sin (3.1) and (3.14), we have the inequalities as
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below, respectively

K1+ Ko
o(*5")

/mmwmQMag " 3(a)r(a) da — M2(a)

Cz(ﬂvy) K1

§op@) +Forl) "
= v(z) — p(z)] /H(x) (a — p(x))w(a) da
_Bod@) +Eorfw) 1
(@) = v(2)] /V(x) (@ — v(x))w(a) da,
(3.15)
and
K1+ K2 Da(p,v) K2 i
[T ou(z)+ [Fov)(x) [P :
= 9 /Cm(#,y) w(a) da.

A new form of generalized Fejér-type inequality is introduced in inequality (3.15),
whereas inequality (3.16) is a straightforward generalization of the classical Fejér

inequality for convex functions.

Remark 14. Substituting z = 0,1 in (M§(0) = Mg (1) = 0), then we get the following

Fejér-type inequality for h-convex function obtained in equation (3.10):

g (57) [ somrs

< (2 — k2)[B (k1) + B (s2)] / b(s)ro(sr1 + (1 — 8)ry) ds,
(3.17)

similarly, with this assumption in equation (3.14), we get anew h-convex version

of Fejér inequality:
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2bté>3(m : @) / wla)da < | §(a)w(a) da
< M/H( R2_“)m(a) da  (3.18)

- 2 Ko — K1
:g(lﬁ)—f—S("Q) /@H(a_,ﬁ)m(a)da.
2 - K2 — K1

Now, we discuss different inequalities related to generalized Fejér-type inequality
for h-convex function. For different h(s), to, and for any n € N, n > 3. Inequalities of

this nature can be found in [52, 53, 54| along with the references.

Remark 15. Now consider the following for n € A',n > 3,

K1+ (n—1)k ko +(n— 1)k K1+ (n—1)k n—2
1+ ( )1§2( )1§1( )2+ (/ﬁ—/iz)

n n n n
K1+ (n— 1)Ky

n

R1 =

S K2,

and

-1 —1
m(/ﬁ + (n— 1)Ko N Ko+ (n— 1)Ky

- - —a) =to(k1 + ko — a) = to(a).

[/{2+(n—1)51 + K1+ (n—1)ka ]

This shows that tvo is symmetric on
n n

with respect to %2

so, in case T = % in equation (3.1), and (3.14), we obtain the following inequalities
respectively:

r1+(n—1)ko

1 K1+ Ko n
2b(i)3'< 2 )/ﬁz-%(?:l—l)m m<a>da

K1+ (n—1)ko
n

< /+<> S(a)w(a) da
Jn=2 _m)[gcﬁ (7;— 1)m) +3(’“ . 1)@”

n n

></Olb(s)[m0¢5]</€2+(n_1)m,/ﬁ—i_(n_l)@)ds,

(3.19)

n n
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and

r1+(n—1)rg

1 K1+ Ko - a0
2b<§)3( > )/H r(a) da

K1+(n—1)ko
< §(a)ro(a) da

T Jret(n=1)ky
n

r1t+(n—1)rg

K2+(n—1)K1 k1+(n—1)Ko mirinzl)rg
R i) 4§ (e " - 1
S s () / H o 8 2 to(a) da.
2 Kat(n—1)x] n—2 Ko —Ki 1

(3.20)

IA

Inequalities obtained in (3.19) and (3.20) deal with many Hermite-Hadamard and Fejér’-
type inequalities of this kind for all n > 3.
Example 3.2.1. Let n = 3,4 and h(s) = s in (3.20) to get Fejér’-type inequalities:

K1+2kK9 K1+2K9

K1 + Ko
8’( 2 ) /€2+2'€1 /€2+2~1 )da

e mw@)}
.

o, w(a) da,
3
and
+ K1+3K9o K1+3K9
K1 ) 4 4
S( 5 ) . (a)da < o, S(a)ro(a) da
hgtdny fotim
K2+3K1 K1+3k2 R
n2Toh] + D1TOR2 1
S 3( 4 )23( 4 )/€2+3K1 m(a)da.

3.2.2 A New Generalized form of Hermite-Hadamard inequality

Here is the new and improved generalization of the celebrated Hermite-Hadamard inequality

related to h-convex functions and their sub-classes as well (see also |55, 56, 57, 58]).
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Now we consider the case v = 1 in equation (3.1) and (3.14) to get our desired result:

1 K1+ Ka 1 Da(uv)
= d
26(%)3< 2 ) - (/@2—/{1)|1_2$|/C §(a) da

= (1)

< (5o l(a) + [Fov)(a)) [ bls)da (3.21)
o ua) +[§ o)) / H(s) da.

Now with the same assumption in equation (3.17) and(3.18), we obtain the Hermite-

Hadamard inequality related to h-convex functions

1 K1+ Ko 1 K2 1
Qh(%)3< 5 )S o / §(a) da < [3(m)+8(n2)]/0 his)ds.  (3.22)

Remark 16. Thus, we conclude that the equations (3.21) and (3.22) are equivalent,
and the only change isin the manner of presentation and consequences. These gen-
eralizations of Hermite-Hadamard inequality for h-convex function provide valuable
contributions to the literature.

Further, considering the equations (3.21) and (3.22), taking bh(s) =s" (n €
(0,1]),b(s) = £ (s € (0,1)),b(s) = 1,and h(s)=s , we obtain generalized
Hermite-Hadamard inequality for s-convex functions in the second sense, Godunova-
Levin functions, p-convex functions, and convex functions, respectively.

For particular case, if we consider h(s) = s, and = € [0,1]\{3}, in equation (3.21) we

found the following inequality:

K1+ Ko 1 Do () 1
S( 2 )S (k2 — m)[1 = 22 Jer, gy WW&S5([Sou]<x)+[%ov]<w><>?: .

which is dependent on variable x. That is another updated version of Hermite-
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Hadamard inequality:.
For another particular case, when x = 0,1 we retrieve the classical form of Hermite-

Hadamard inequality.

New generalizations of Hermite-Hadamard inequalities for h-convex function are

formed, for different h(s), and any n € N, n > 3, we have:

Remark 17. Considering a particular case to = 1 and h(s) = s in equation (3.19), we

obtain
K1+(n—1)ko
n

3(;) S P /> §la)dn
1 {g(/sfr(?;— 1)51) +S(n1+(r;— 1)52)}

=2

which is a particular case for Hermite-Hadamard inequality depending on n.

Remark 18. For fixed € [0, 1] and a € [k,, k], the weight function to can be written

as

w(a) = (De(p,v) — a)(a = Calp, v)),

. By using Lemma

where, 1o is symmetric on [Cy(p, v), Dy(p, v)] with respect to #3552

3.2.1, we obtain the following results

Da(p,v) - , - \
[ 00 - ) - € ) = L2 =)
Co(u,v) 6

and

/0 h(s)[ro o &) (u(z),v(x)) ds = |1 — 2z|* (ks — /{1)2/0 h(s)s(1 —s) ds.

By using Equation (3.10), we obtained the following Hermite-Hadamard inequality
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for h-convex functions:

1 K1+ Ko

a3

= : o D, — Cy(p,v)) da
‘1—2I| (FLQ—/{ZO /Cz(ul/ 31( )( (H’ ) Cl)(Cl =\,

S([&'ou]( + [Fov(z /f) s5(1—s)

In the particular values for x = 0,1 and h(s) = s, we get

K1+ Ko 6 K2 3’(,{1) n 3'(%2)
S( 2 ) gm/ﬂ §la)(rz — a)(a — sp) da < S

which was obtained from equation (3.17) .

3.3 The mapping HZ(z):

Consider two real numbers k; < kg, consider integrable functions § : [k1, k] = Z C

R — R and 1o : [k1, ko] = Z — R* U {0}. Define the mapping Hf (z) : [0,1] = R as

w(pv) v v
H (x) :/C S(anr (1- x)(Cx(M’ )+ Dalp )))m(a) da

2

Da () 2

where

Colpv) = minfpu(e),v(@)},  Dulu,v) = max{pu(z), v(x)},

for x € [0,1] we define p(z) : [0, 1] — [k1, ko] and v(x) : [0,1] — [K1, ko] as:

p(z) = xko + (1 — 2)ky, v(z) =k + (1 — 2)ko.
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Note that, for to = 1 in H (x) we have

Hy(z) = / Mg(x“ (1) (D2 ) g

+/R2 S(xa—i-(1—x)(0x(”’y)+Dx(#’y))> da.

Da () 2

Remark 19. The Mapping HY () yields similar results to those established for the

mapping M (7) in Lemma 3.2.1
We obtain some basic properties for the mapping Hf (z) in the following proposition.

Proposition 11. Consider two integrable functions § : [k1,k2] — R andw

[/{1, /432] — RTU {O} Then
(i)
HY () =HZ(1—-2)  Vael0,1],
which shows that HE () is symmetric on [k1, k2] with respect to .

(ii) For symmetric to on [k1, ko] with respect to ©32 and p, ¢ > 1 with 1—1)4—% =1, we
have

[HE ()] < [13lplvoll,.

Also, if C,(u,v) = u(zx), then

B2 (2)| < G) [ — )]

3 =

[10]] 18l

and if C,(u,v) = v(z), then

[HE(2)| < (%) ’ [(1— 2) (ks — 1)]

D=

[[10[[[loc-
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(iii) Let, the function (Fw)(a) = F(a)ro(a) is convex on [ky, ko|. If Cp (1, v) = p(x) for

some x € (0, 1], then the function w

. HY(x) .
some z € [0,1), then the function —1“_(—? is convex.

is convex. Also, if C,(u,v) = v(z) for

(iv) Considering § and tvare two continuous functions on [ky, ke]. If §Fis non-

negative  (non-positive) on [k1,Kp], then the function HY(z)is increas-

1

ing (decreasing) on [0, 3) and is decreasing (increasing) on (3, 0]. Also, H¥ () has

a relative extreme point at © = % If o # 0, then corresponding to any a €

K1, ko] \ {552} satisfying

S(Cl) +S(/€1 + Ko — Cl) = O,

there exists a critical point for H ().

Proof. The mapping HF () exhibits similar symmetry, convexity, and monotonicity

Properties to those of the mapping M (z) derived in proposition 6. O

Theorem 3.3.1. Considering an h-convez function § : [k1,k2) € R — R andw :
(K1, ko] = RT U{0}. The mapping HY : [0,1] — R defined as above satisfies the fol-

lowing

(i) The mapping HY is convez on [0,1].

(i)

inf H®(z) — HR(0) :%(Cw(u,v)Jer(u,v)) UOZ(W)m(a) da+/@ o) da}

:CE[O,l] 2 K1 D:c(,uyy)

(ii)
Cz(u,v) Ko
sup HY(z) = HE(1) = / 3@y (a) da + / 3(a)r(a) da.

z€]0,1] K1 Dy (p,v)
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Proof. (i) Let r;s > 0 withr + s =1 and x,22 € [0, 1]. then

HZ (rzy + sz2)

Ca(myv) u (v
— / 5((7%1 + sza)a+ (1 — (rag + sa2)) (Cx(ﬂ’ ) —gD (p >)>m(a) da

: Colpt, v) + Dy(p, v)
+ /DI(W/) 3((7%1 + sxo)a + (1 — (rz; + sm))( ))m(a) da

2
Ca(p,v)
:/ " S(r(mla—i— (1 T )Cx(uay)—gD:B(M7V>)>m(a) dCl
Cx(lh”)
+/ S((xcwr “”+D“V))
+/N2 3’<(xa+( ,uu—i-D ,uy to(a
Dy (u,v)

+/N2 S( (xa—i_( ,u]/ +D ,uV )m
Da(p,v)

gr{/:x(“’y)g(xla+(1 x)c(‘”)“)(“ )m()du

2
ISR N
+ [/:“”("’”) S(“T” (1 =y V) ; B V))m(a) da

o (e e SR o)t 3+ ),

(ii) At 2 =0 we have

Ca(p,v) v v
mxo = [ 5(0a+ -0 EELL ) ) da

+/:‘(H,V)S<<O)a+ a _0)(Cz(u, u);Dz(u, ”))>m(a) da

B /ch(u,v)3<0x(u, v) —|2— D, (s, U))m(a) da
(e

Cx Dar; Cl(#v’/) k2
:g( (1, ) + <W/)> U m(a)da+/ wo(a) da} = inf H(z).
9 . Da (i) =€)
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Now at x = 1 we have

Ca(p,v) v v
HE (1) :/ 3((1)a+ (1- 1)(0*’”(“’ );D”ﬁw’ )))m(a) da

+ /HZW)S((l)aJr (1— 1)(09”(“’ V) ; Da(p, V)))m(a) da

Dz (

K2

Ca(p,v)
_ / S(a)ro(a) da + / S(a)m(a)da = sup HE(a).

Dy (p,v) xz€[0,1]

Hence proved.

67



Chapter 4

CONCLUSIONS AND FUTURE
RECOMMENDATION

This thesis has contributed to the understanding and analysis of convex functions par-
ticularly focusing on p-convex functions, h-convex functions, and strongly reciprocally (p, b)-
convex functions for higher-order cases. These generalizations are essential tools
in various disciplines of pure and applied sciences. This study aims to examine these
generalized convex functions in connection with well-known inequalities, as a result,
we can deeply understand the behavior, properties, and practical significance.

In the introductory chapter, we gave a detailed review of the convex function
that covers the historical background, its applications in both pure and applied
sciences, and interpret its various properties, which set a strong base for further
study. Moreover, we discussed some well-known inequalities in connection with
convexity, as these are pivotal for scientific study. Further in Chapter 2, we fo-
cus on strongly reciprocally (p, h)-convex functions for higher-order, a new version

of convex function. We investigate some basic properties that enable us to explore
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Hermite-Hadamard inequality, Fejér inequality, and fractional integral inequalities
within this context. An important contribution of this thesis is the introduction of
new mappings discussed in Chapter 3. We began with introducing a novel mapping
Mg for h-convex functions where its dynamic properties led to the composition
of anew generalized Fejér-type inequality and Hermite-Hadamard inequality with
a deeper understanding. A second mapping HY, along with several associated results
offers additional tools for further analysis of h-convex function. Through the dynamic
properties of these mappings, we can extend the current literature to new research

avenues, particularly in the study of inequality theory.

69



Bibliography

1]

2]

13l

7]

C. Niculescu and L.-E. Persson, Convex functions and their applications, vol. 23.

Springer, 2006.

J. E. N. Valdés, F. Rabossi, and A. D. Samaniego, “Convex functions: Ariadne’s
thread or Charlotte’s spiderweb?,” Advanced Mathematical Models € Applications,

vol. 5, no. 2, 2020.

O. Holder, “Uber einen mittelwertssatz,” Nachr. Akad. Wiss. Gottingen Math.-

Phys. Kl., 1889.
O. Stolz, Grundziige der Differential-und Integralrechnung. BG Teubner, 1893.

C. Hermite et al., “Sur deux limites d’une intégrale définie,” Mathesis, vol. 3,

no. 82, p. 1, 1883.

J. Hadamard, “Essai sur 1’étude des fonctions données par leur développement
de taylor; étude sur les propriétés des fonctions entiéres et en particulier d’une

fonction considérée par riemann...,” (No Title), 1893.

J. L. W. V. Jensen, “Om konvekse funktioner og uligheder imellem middelvaerdier,”

Nyt tidsskrift for matematik, vol. 16, pp. 49-68, 1905.

70



8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs

moyennes,” Acta mathematica, vol. 30, no. 1, pp. 175-193, 1906.

C.-H. Tan, “Convex sets and convex functions,” Journal of Convex Analysis,

vol. 26, no. 3, pp. 837-856, 2019.

B. Lafferriere, G. Lafferriere, and M. N. Nguyen, Introduction to Mathematical

Analysis I. Portland State University Library, 2022.

J. Nachbar, “Concave and convex functions,” Lecture Notes for Economics,

vol. 4111, 2018.

B. T. Nguyen and P. D. Khanh, “Lipschitz continuity of convex functions,” Applied

Mathematics € Optimization, vol. 84, no. 2, pp. 1623-1640, 2021.

K. Zhang and J. Wan, “p-convex functions and their properties,” Pure Appl. Math,
vol. 23, no. 1, pp. 130-133, 2007.

I. Iscan, “Hermite-Hadamard type inequalities for harmonically convex functions,”

Hacettepe Journal of Mathematics and statistics, vol. 43, no. 6, pp. 935-942, 2014.

S. VarosSanec, “On h-convexity,” Journal of Mathematical Analysis and Applica-

tions, vol. 326, no. 1, pp. 303-311, 2007.

U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir, and J. Pe¢ari¢, “Hadamard-type in-
equalities for s-convex functions,” Applied Mathematics and Computation, vol. 193,

no. 1, pp. 26-35, 2007.

K. Murota and A. Tamura, “New characterizations of m-convex functions and
their applications to economic equilibrium models with indivisibilities,” Discrete

Applied Mathematics, vol. 131, no. 2, pp. 495-512, 2003.

71



18]

[19]

20]

[21]

22]

23]

[24]

[25]

R. D. Nussbaum, “Convexity and log convexity for the spectral radius,” Linear

Algebra and its Applications, vol. 73, pp. 59-122, 1986.

M. Eshaghi, S. S. Dragomir, and M. Rostamian Delavar, “An inequality related to
n -convex functions (ii),” International Journal of Nonlinear Analysis and Appli-

cations, vol. 6, no. 2, pp. 27-33, 2015.

A. A. Shaikh, A. Igbal, and C. K. Mondal, “Some results on ¢-convex functions

and geodesic ¢-convex functions,” arXiv preprint arXiv:1706.05841, 2017.

B. Micherda and T. Rajba, “On some hermite-hadamard-fejér inequalities for (k,

h)-convex functions,” Math. Inequal. Appl, vol. 15, no. 4, pp. 931-940, 2012.

J. E. N. Valdés, F. Rabossi, and A. D. Samaniego, “Convex functions: Ariadne’s
thread or charlotte’s spiderweb?,” Advanced Mathematical Models €& Applications,
vol. 5, no. 2, 2020.

L. Azocar, M. Bracamonte, and J. Medina, “Some inequalities of jensen type
and lazhar type for the class of harmonically and strongly reciprocally convex

functions,” Applied Mathematics, vol. 11, no. 4, pp. 1075-1080, 2017.

L. Fejér, “Uber die fourierreihen, ii,” Math. Naturwiss. Anz Ungar. Akad. Wiss,
vol. 24, no. 369.390, 1906.

H. Chen and U. N. Katugampola, “Hermite-hadamard and hermite-hadamard—
fejér type inequalities for generalized fractional integrals,” Journal of Mathematical

Analysis and Applications, vol. 446, no. 2, pp. 1274-1291, 2017.

72



26]

27]

28]

[29]

[30]

32|

[33]

M. R. Delavar and S. S. Dragomir, “Weighted trapezoidal inequalities related to
the area balance of a function with applications,” Applied Mathematics and Com-

putation, vol. 340, pp. 5-14, 2019.

M. R. Delavar and S. Dragomir, “Two mappings in connection to fejér inequality

with applications,” Math. Inequal. Appl., vol. 21, no. 4, pp. 1111-1123, 2018.

G. Farid and A. U. Rehman, “Generalization of the fejer-hadamard’s inequality
for convex function on coordinates,” Communications of the Korean Mathematical

Society, vol. 31, no. 1, pp. 53-64, 2016.

I. Iscan, “Hermite-hadamard-fejér type inequalities for convex functions via frac-

tional integrals,” arXiv preprint arXiw:1404.7722, 2014.

D. Kotrys, “Remarks on jensen, hermite-hadamard and fejer inequalities for
strongly convex stochastic processes,” Mathematica Aeterna, vol. 5, no. 1, p. 104,

2015.

M. Rostamian Delavar, S. Mohammadi Aslani, and M. De La Sen, “Hermite-
hadamard-fejér inequality related to generalized convex functions via fractional

integrals,” Journal of Mathematics, vol. 2018, no. 1, p. 5864091, 2018.

M. Rostamian Delavar, “On fejér’s inequality: generalizations and applications,”

Journal of Inequalities and Applications, vol. 2023, no. 1, p. 42, 2023.

M. Z. Sarikaya and H. Budak, “On fejér type inequalities via local fractional inte-
grals,” Journal of Fractional Calculus and Applications, vol. 8 no. 1, pp. 59-77,
2017.

73



[34]

[36]

137]

[38]

[39]

|40]

[41]

E. Set, I. Iscan, M. Z. Sarikaya, and M. E. Ozdemir, “On new inequalities of
hermite-hadamard—fejér type for convex functions via fractional integrals,” Ap-

plied Mathematics and Computation, vol. 259, pp. 875-881, 2015.

K.-L. Tseng, G.-S. Yang, and K.-C. Hsu, “Some inequalities for differentiable map-
pings and applications to fejér inequality and weighted trapezoidal formula,” Tai-

wanese journal of Mathematics, vol. 15, no. 4, pp. 1737-1747, 2011.

H.-N. Shi and J. Zhang, “Some new judgement theorems of schur geometric and
schur harmonic convexities for a class of symmetric functions,” Journal of Inequal-

ities and Applications, vol. 2013, pp. 1-9, 2013.

B. T. Polyak, “Existence theorems and convergence of minimizing sequences for
extremal problems with constraints,” in Doklady Akademii Nauk, vol. 166, pp. 287—

290, Russian Academy of Sciences, 1966.

S. Maden, S. Turhan, and Iscan, “Hermite-hadamard inequality for strongly p-

convex functions,” June 2018. ResearchGate preprint.

M. A. Noor, K. I. Noor, and S. Iftikhar, “Hermite-hadamard inequalities for har-

monic nonconvex functions,” MAGNT Res. Rep, vol. 4, no. 1, pp. 24-40, 2016.

M. Bracamonte, J. Medina, and M. Vivas, “On some inequalities for strongly
reciprocally convex functions,” Eztracta Mathematicae, vol. 33, no. 1, pp. 109—

122, 2018.

H. Li, M. S. Saleem, I. Hussain, and M. Imran, “Strongly reciprocally p-convex
functions and some inequalities,” Journal of Mathematics, vol. 2020, no. 1,

p. 4957141, 2020.

74



42]

[43]

|44]

[45]

|46]

47]

Z. B. Fang and R. Shi, “On the (p, h)-convex function and some integral inequal-

ities,” Journal of Inequalities and Applications, vol. 2014, pp. 1-16, 2014.

G.-H. Lin and M. Fukushima, “Some exact penalty results for nonlinear programs
and mathematical programs with equilibrium constraints,” Journal of Optimiza-

tion Theory and Applications, vol. 118, pp. 67-80, 2003.

H. Li, M. S. Saleem, I. Ahmed, and K. N. Aslam, “Hermite-Hadamard and Fejer-
type inequalities for strongly reciprocally (p, h)-convex functions of higher order,”

Journal of Inequalities and Applications, vol. 2023, no. 1, p. 57, 2023.

G. Farid and B. Tariq, “Some integral inequalities for m-convex functions via
fractional integrals,” Journal of Inequalities and Special Functions, vol. 8, no. 1,

pp- 170-185, 2017.

G. Farid and G. Abbas, “Generalizations of some hermite-hadamard—fejér type
inequalities for p-convex functions via generalized fractional integrals,” Journal of

Fractional Calculus and Applications, vol. 9, no. 2, pp. 5676, 2018.

B.-Y. Xi and F. Qi, “Some integral inequalities of hermite-hadamard type for
convex functions with applications to means,” Journal of function spaces, vol. 2012,

no. 1, p. 980438, 2012.

M. A. Noor, K. I. Noor, and S. Iftikhar, “Integral inequalities for differentiable

p-harmonic convex functions,” Filomat, vol. 31, no. 20, pp. 65756584, 2017.

E. Godunova and V. Levin, “Neravenstva dlja funkcii sirokogo klassa, soderza-
scego vypuklye, monotonnye i nekotorye drugie vidy funkii. vycislitel. mat. i,”

Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva, vol. 9, pp. 138-142, 1985.

75



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

W. W. Breckner, “Stetigkeitsaussagen fiir eine klasse verallgemeinerter konvexer
funktionen in topologischen linearen rdumen,” Publications de [’Institut Mathéma-

tique (Beograd) (NS), vol. 23, no. 37, pp. 13-20, 1978.

S. S. Dragomir, J. Pecaric, and L.-E. Persson, “Some inequalities of hadamard

type,” Soochow journal of mathematics, vol. 21, no. 3, pp. 335-341, 1995.

S. S. Dragomir, D. M. Milosevi¢, and J. Sandor, “On some refinements of
hadamard’s inequalities and applications,” Publikacije Elektrotehnickog Fakulteta.

Serija Matematika, pp. 3-10, 1993.

K.-L. Tseng, S.-R. Hwang, and S. S. Dragomir, “Fejér-type inequalities (i),” Jour-

nal of Inequalities and Applications, vol. 2010, pp. 1-7, 2010.

K.-L. Tseng, S.-R. Hwang, and S. S. Dragomir, “Fejér-type inequalities (ii),” Math-

ematica Slovaca, vol. 67, no. 1, pp. 109-120, 2017.

U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir, and J. Pe¢ari¢, “Hadamard-type in-
equalities for s-convex functions,” Applied Mathematics and Computation, vol. 193,

no. 1, pp. 26-35, 2007.

C. E. Pearce and A. Rubinov, “P-functions, quasi-convex functions, and hadamard-
type inequalities,” Journal of Mathematical Analysis and Applications, vol. 240,
no. 1, pp. 92-104, 1999.

M. Z. Sarikaya, A. Saglam, and H. Yildirim, “On some hadamard-type inequal-
ities for h-convex functions,” Journal of Mathematical Inequalities, vol. 2, no. 3,

pp. 335-341, 2008.

76



[58] M. Z. Sarikaya, E. Set, and M. E. Ozdemir, “On some new inequalities of hadamard
type involving h-convex functions,” Acta Mathematica Universitatis Comenianae

(NS), vol. 79, no. 2, pp. 265-272, 2010.

7



	Farah - TH-4.pdf
	20250116161310_00001
	20250116161310_00002


