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Preface

Switched systems are embedded devices widespread in industrial
applications such as power electronics and automotive control. They
consist of continuous-time dynamical subsystems and a rule that
controls the switching between them. Under a suitable control rule, the
system can improve its steady-state performance and meet essential
properties, such as safety and stability, in desirable operating zones.
We show in this book that such controller synthesis problems are
related to the construction of appropriate invariants of the state space,
which approximate the limit sets of the system trajectories. We present
several approaches of invariant construction based on techniques of
state space decomposition and backward/forward fixed-point
computation, and perform them directly on the continuous state space,
or indirectly on discrete abstractions. All these methods are illustrated
in a number of case studies, mainly taken from the field of power
electronics.
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Introduction

In recent years, there has been an increasing interest in applying
renewable energy in electricity generation and transportation. In
particular, much effort has been devoted to the improvement of robust
and flexible control techniques of power converters in order to increase
reliability and safety of operation. Due to their practical feasibility to
achieve a high performance as well as natural digital implementation in
signal processors, switched controllers are the most common type of
controller to have been applied to power converters (see
[CER 09, LIB 03, SUN 05]). Systems equipped with switched
controllers are constituted of two parts: first, a family of continuous
subsystems or modes; second, a switching signal that controls the
selection of these modes. The switching signal can be state dependent
and/or time dependent.

With respect to classical systems, an interest of switching
controllers arises from the existence of systems that cannot be
asymptotically stabilized by a single continuous feedback control law
[BRO 83]. However, with switched systems, the steady-state operating
condition is typically a periodic solution or limit cycle, not an
equilibrium point. The relevant stability notion is asymptotic orbital
stability or practical stability, which studies the conditions under
which the system state evolves within certain subsets of the state space
[LAS 61]. The problem of stabilization of switched dynamical systems
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is thus much more difficult in general than in classical control theory.
In particular, instability phenomena can occur even when all the
modes, taken separately, are stable.

Although the general control theory of switched systems is very
difficult, special cases of these problems arise frequently in restricted
contexts associated with control design, and may be simpler to solve
specifically. It is thus suggested in [LIB 99] to stay in close contact
with particular applications of switched systems. This is indeed what
happens to the authors of this book: as researchers in LSV Computer
Science Laboratory, we have cooperated with researchers of SATIE
Electronics Laboratory in the framework of an interdisciplinary project
relevant to the control of practical examples of switched systems in the
domain of power electronics. We have thus focused on switching
signals that operate with a fixed switched period denoted by τ . These
signals are very common because of their ease of implementation. Also
a fixed-period operation avoids potentially troublesome harmonic
side-effects that may arise with varying frequency operation (see
[GEY 08]). There are two types of periodic switched controllers:
state-independent controllers that cyclically apply the same sequence
of modes that has been computed off-line and state-dependent
controllers that select modes dynamically according to the regions of
the states at the switching instants. Furthermore, the dynamics of each
subsystem obeying Ohm’s electrical laws, are governed by affine
differential equations. These systems can thus be viewed as special
cases of hybrid systems (see [HEN 96]) combining affine continuous
dynamics and discrete transitions taking place at instants that are
integer multiples of τ . Such a subclass has been recently studied by
many researchers such as Antoine Girard, Giordano Pola and Paulo
Tabuada (see, e.g., [TAB 09]). These systems are called
“time-triggered sampled versions of switched systems”. We call them
here simply S2-systems (for sampled switched systems).

In classical control theory, we make use of Lyapunov theory in
order to analyze and stabilize controlled systems. Roughly speaking,
Lyapunov functions are energy functions characterizing the state of the
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system that decrease until they reach a 0 level, which corresponds to a
level where the system is stable. These Lyapunov functions can be
extended in the framework of switched systems under the form of
so-called “multiple Lyapunov functions” or “common Lyapunov
functions”, and plays a central role in, for example, [TAB 09].
However, there is no general method for finding appropriate Lyapunov
functions, and we have preferred in this book to avoid using them.
Instead, the theoretical tool that we have mainly used is based on the
notion of the “(controlled) invariant” [BLA 99]. Note, however, that
the two concepts of invariants and Lyapunov functions are closely
related, and we can show (at least in the classical context) that the level
sets of Lyapunov functions correspond to the boundaries of invariant
sets, and that the converse holds.

This book focuses on the restricted class of sampled switched
systems, and on methods for controlling them using invariants. We will
exploit the construction of invariants in order to synthesize two main
classes of controllers: safety controllers and stability controllers. Safety
controllers aim at protecting the system from undesirable states, while
stability controllers aim at driving the system to a steady-state
operating condition. To synthesize safety controllers, we describe
indirect methods working on an abstract discrete level, and direct
methods working on the continuous state-space level. These methods
adopt a classical backward computation of the reachable states. To
synthesize stability controllers, we describe a method of state-space
decomposition that allows us to construct limit-cyclic trajectories by
iterated forward computation of the reachable states.

The control strategies synthesized by this method have been
numerically simulated, and also successfully experimented on physical
prototypes built by SATIE Electronics Laboratory. The code has been
written in Octave [OCT 13], and is available at the end of this book.
We hope that this book that surveys methods of the literature and
presents some recent enhancements together with the description of the
implementation code will be interesting for students and engineers, and
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will encourage them to use, experiment, adapt and improve these
procedures.

This book is structured as follows. In Chapter 1, we formally define
the model of S2-systems, and explain in Chapter 3, how to synthesize
safety controllers for S2-systems. In Chapter 4, we explain how to
synthesize stability controllers for S2-systems using an original
procedure of state-space decomposition. We show in Chapter 5 how to
apply the procedure for controlling an important application of power
electronics. In Chapter 6, how to extend the procedure in order to
synthesize robust safety controllers and reachability controllers is
explained, and suggestions for how to use it for sensitivity analysis are
given. The main results with some perspectives are reviewed in
Conclusions and Perspectives. Notes citing sources and related works
are given at the end of each chapter.

This book tries as much as possible to avoid too theoretical results,
rather focusing on the practical ideas of control synthesis for sampled
switched systems using invariance analysis. In particular, proofs of the
results are usually omitted. An exception is presented in Chapter 4,
where we do detail an original procedure of state-space decomposition,
motivated by and applied to the analysis of concrete examples of power
electronics.



1

Control Theory: Basic Concepts

This chapter presents basic concepts of control theory, which will be used in
the remaining book.

In section 1.1, we present the general control/plant model. In section 1.2, we
explain why the introduction of digital sensors and actuators in systems has
fundamentally modified the issue of controlled stability. Finally, we introduce
the model of switched systems, and explains their advantages compared with
general systems (section 1.2.3). We then explain in section 1.3 how the notion
of invariant sets can be used for proving safety and stability properties of
controlled systems.

1.1. Model of control systems

A control system is generally divided into a controlled part, called
a plant, and a controller. The plant is generally described as a dynamic
time-invariant, possibly uncertain, system governed by equations of the
form:�

ẋ(t) = f(x(t), u(t), w(t)) [1.1]
y(t) = g(x(t)), [1.2]
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where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input
y(t) ∈ Rp is the output, w(t) ∈ W ⊂ Rq is a disturbance (or external
input) and W is an assigned compact set. We will refer to Rn as the
state space of the system. The general theory of control focuses on
feedback control: the controller is fed with state signal x(t) coming
from the plant, and issues a control input u(t) to the plant. A typical
layout of a feedback control system is shown in Figure 1.1. Under
general conditions (continuity for u and w, and Lipschitz property for
f ), the system admits a unique solution x(t) on R≥0. Equations [1.1]
and [1.2] are often simplified by disregarding w(t), and assuming that
y = x.

Figure 1.1. Control/plant model

An important subclass is the linear time-invariant (LTI) framework,

for which [1.1] and [1.2] become:

�
ẋ(t) = Ax(t) +Bu(t) + Ew(t)

y(t) = Cx(t)
for matrices A, B, C, E of appropriate size with constant coefficients.
A discrete-time LTI system is a system governed by an equation of the
form: x(t+ 1) = Ax(t) +Bu(t) + Ew(t).

When a system is governed by an equation of the form
ẋ(t) = Ax(t), where A is a matrix whose eigenvalues have negative
real parts, the origin is a stable equilibrium point to which the system
converges from any initial point of Rn. Given a plant governed by an
equation of the form ẋ(t) = Ax(t) + Bu(t) with (A,B) ∈
Rn×n × Rn×m, a typical problem of linear control theory is to find a
stabilizing controller governed by an equation of the form
u(t) = Kx(t) with K ∈ Rm×n. This essentially amounts to finding
coefficient values of K that make the real parts of the eigenvalues of
A+BK negative.
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1.2. Digital control systems

1.2.1. Digitization

With the emergence of digital computers, a control system has to
handle data that come from the periodic sampling of signals. In such a
context, a control system is said to be sampled data or digital control
system. There, a system described by differential equations (which
involve continuous-valued variables that depend on continuous time) is
controlled by a discrete-time controller described by difference
equations, which involve continuous-valued variables that depend on
discrete time. As explained in [ANT 02], a digital control system can
be divided into three parts, the plant, the interface, and the controller as
shown in Figure 1.2.

Figure 1.2. Digital control/plant model (from [ANT 02])

The system to be controlled (plant) is modeled as a time-invariant
continuous-time system governed by equations [1.1] and [1.2] where,
for the sake of simplicity, we disregard disturbance and assume that
the output function is the identity map (i.e. we have ẋ = f(x, u) and
y = x).
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The controller is a discrete event system modeled as a deterministic
automaton. The action of the controller can be described by equations
of the form:�

s̃[n] = δ(s̃[n− 1], x̃[n])

ũ[n] = φ(s̃[n]),

where δ is the state transition function of the controller and φ is the
output function of the controller. Tildes are used to indicate that the
particular signal is made up of symbols. The index n is here analogous
to a time index in that it specifies the order of the symbols in the
sequence. An argument in brackets, for example, x̃[n], represents the
nth symbol from a set. The input signal x̃ and the output signal ũ
associated with the controller are a sequence of symbols, rather than
continuous-time signals. Note that there is no delay in the controller:
the state transition, from s̃[n − 1] to s̃[n], and the controller symbol,
ũ[n], occur immediately after the occurrence of plant symbol x̃[n].

The controller and plant cannot communicate directly because each
utilizes different types of signals. Thus, an interface is required that
can convert continuous-time signals to sequences of symbols and vice
versa. The interface consists of a memoryless map γ called actuator,
and a memoryless map α called generator. The actuator converts a
controller symbol ũ[n] to a constant plant input of the form
u(t) = γ(ũ[n]). Since the plant input, u, can only take on certain
constant values, where each value is associated with a particular
controller symbol, the plant input signal u(t) is piecewise constant, and
may change only when a controller symbol occurs. Such a piecewise
continuous command signal issued by the actuator is illustrated in
Figure 1.3. The generator is a function α that maps the real-valued
state vector x(t) of the plant into a plant symbol of the form
x̃[n] = α(x(t)). Note that x̃ does not change continuously, but only
when a plant event occurs. There are two different models of plant
event: in the state-triggered model, a plant event occurs when the plant
state x crosses the boundary of two predefined state regions; in the
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time-triggered model, a plant event occurs periodically when the signal
x̃ issued by the generator corresponds to a periodic sampling of the
plant output x, as illustrated in Figure 1.4.

Figure 1.3. Staircase command signal u(t) issued by the actuator as it
receives controller symbols ũ[1], ũ[2], . . . at time t1, t2, . . . (from [ANT 02])

Figure 1.4. Controller symbols x̃[1], x̃[2], . . . produced by the generator by
sampling of the plant output signal x(t) (time-triggered plant event model)

(from [ANT 02])

Note that, since it is assumed that there is no delay in the controller,
the command signal u(t) issued by the actuator is synchronized with
the signal x(t) issued by the generator. In the time-triggered model, the
command u(t) is therefore itself periodic. (In Figure 1.4, the stair length
is constant and equal to τ .)
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1.2.2. Quantization

Digitization also has an effect sometimes known as quantization
(see, e.g., [PAT 05]). Suppose that the signal u now takes its values on
a finite domain U , instead of a dense (possibly bounded) domain or an
infinite discrete domain. This means that, in Figure 1.3, the plant input
signal u(t) is a staircase signal that can take only a finite number of
values. In such a situation, there are many systems (even LTI systems)
for which there is no control function that ensures stabilization, that is
convergence to a unique equilibrium point (see, e.g., [BRO 00]). The
controller can only achieve practical stability, that is convergence into
a bounded set instead of a single point for general stability The goal is
then to synthesize controllers that are capable of steering the system to
within sufficiently small neighborhoods of the equilibrium. The size of
the final set within which the trajectories are confined is a measure of
performance of the controlled dynamics. Hence, for a quantized
system, the notion of minimal invariant set (once a proper notion of
size has been defined) is useful for describing zones of practical
stability.

1.2.3. Switching

A switched system is a digital quantized control system that consists
of a finite family of continuous subsystems and a rule that controls the
switching between them. More precisely, we have the following
definition:

DEFINITION 1.1.– A switched system is a quadruple
S = (Rn, U,U ,F), where Rn is the state space; U = {1, . . . , N} is
the finite set of modes; U is the set of piecewise constant functions from
R≥0 to U , continuous from the right; and F = {f1, . . . , fN} is a
collection of smooth vector fields indexed by U .

A switching signal of S is a function u ∈ U . A piecewise C1 function
x : R≥0 → Rn is said to be a trajectory of S if it is continuous and there



Control Theory: Basic Concepts 7

exists a switching signal u ∈ U such that, at each t ∈ R≥0 where the
function u is continuous, x is continuously differentiable and satisfies:

ẋ(t) = fu(t)(x(t)).

The times at which the switching signal changes its values are
called the switching instants. The scheme of switched systems is
represented in Figure 1.5. It is easy to see that a quantized
discrete-time LTI system is a particular subclass of switched systems
(for which the function fu(t)(x(t)) is of the form Ax(t) + Bu(t)).
However, the class of switched systems is much more general.

Figure 1.5. Scheme of a switching controller

In recent years, control techniques based on switching between
different controllers, as shown in Figure 1.5, have been used in order to
achieve stability and improve transient response. The importance of
such control methods also arises from the existence of systems that
cannot be stabilized by a single continuous feedback law (see
[BRO 83]). In contrast, even if the different components of a switched
system working in their proper mode have no (common) equilibrium, it
is still possible to control the global system in order to make its
behavior similar to those of conventional stable systems near
equilibrium (see, e.g., [BUI 05]). Switched systems have thus found
numerous applications switching power converters and many other
fields (see [LIB 99]).
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Caveat

Note, however, it is possible for a switched system to be unstable
even when all the subsystems are stable around a common equilibrium
point. This is true even when the subsystems are linear, as illustrated in
the following example (see [ANT 02]). Consider the switched system

ẋ(t) = Aux(t), where x ∈ R2, u ∈ {1, 2}, and A1 =

�−1 100
10 −1

�
,

A2 =

�−1 −10
100 −1

�
, with a (state-triggered) switching signal that

applies A1 (respectively A2) when x is in the second and fourth
(respectively first and third) quadrants. Both A1 and A2 are stable since
their eigenvalues λ1,2 = −1 ± j

√
1,000 have negative real parts.

However, their trajectories are unstable (see Figure 1.6). Such a
phenomenon takes place because the intervals between the switchings
of the dynamics decrease to 0 as time goes to infinity. This can be
avoided by imposing a minimum duration (called dwell time) between
two switching instants. This can be easily enforced for the class of
sampled switched systems that we will study in this book for which
switchings occur with a fixed period τ .

Figure 1.6. Unstable trajectory of switched system consisting of stable
subsystems (from [ANT 02])

1.3. Control of switched systems using invariant sets

We now consider the problem of synthesizing controllers for
switched systems. This results in finding a switching signal that
controls the system in order to satisfy some given properties. We focus
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on the safety and stability properties. We explain that the controller
synthesis problem is related to the construction of controlled invariant
sets.

1.3.1. Controlled invariants

Given a dynamic system, a subset I of the state space is said to be
invariant if it has the following property: if it contains the system state
at some time, then it will contain it also in the future [BLA 99]1. We
have:

x(t) ∈ I ⇒ x(t�) ∈ I, for all t� ≥ t.

The concept of invariance can be easily extended to the case in
which a control input is present. In this case, we say that a set R is
controlled invariant if, for all initial conditions chosen in R, we can
keep the trajectory inside I by means of a proper switching signal. Let
us now explain why controlled invariants are useful for proving safety
and stability properties of a switched system.

1.3.2. Safety control problem

The safety property is typically encoded as a subset S of the
continuous state space, called safe set. In a simple formulation, S is a
box set given by the minimum and maximum values tolerated for each
state variable. The associated safety properties suffice to describe
typical requirements of direct-current to direct-current (DC-DC) power
converters such as voltage regulation, current limitation, maximal
current and voltage ripple.

Safety control problem: given a safe set S, determine whether a
switching signal u exists such that if x(0) ∈ S, then x(t) ∈ S for
t ≥ 0.

1 This property is often called “positively invariant” instead of just “invariant” in the
literature.
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Several approaches [ASA 00, TOM 00] have been proposed to
solve the safety control problem. The idea of these approaches is to
obtain a controlled invariant W that is included into S for an
appropriate switching signal u. If such a set W exists and if the initial
state is in W , then the system is ensured to stay in W , hence in the safe
set S. In [ASA 00], an abstract algorithm is proposed to synthesize
controlled invariants using a backward iterative computation of
reachable states. Furthermore, the set W computed is the maximal
controlled invariant subset of S (it contains all other controlled
invariant included into S). In [TOM 00], the controller synthesis
problem is formulated as a game between controller and disturbance.
We can then find Hamilton–Jacobi equations whose solutions describe
the boundaries of the maximal safe set, and derive an associated
maximally permissive controller. In Chapter 3, we will discuss
methods to synthesize safety controllers that are adapted to the simpler
context of sampled switched systems that we consider here.

1.3.3. Stability control problem

Given a certain region R, many controlled invariants subsets of R
exist. If, instead of looking for maximal invariant subsets, we look for
finding invariants as small a size as possible around a given operating
point, we get a characterization of a controller with the smallest
deviation from the point, and obtain a steady-state behavior with
“minimum ripple” (see [SEN 03]). When periodic solutions of the
system exist, we should be able to synthesize a stability controller that
makes the trajectories converge to such periodic solutions of the
system, also called limit cycles.

Stability control problem: given a region R, determine a switching
signal u that makes the trajectories starting in R converge to a subregion
as small as possible, ideally a limit cycle.

In Chapter 4, we will discuss a method based on a procedure of
state-space decomposition, and iterated computation of forward
reachable states for synthesizing stability controllers.
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1.3.4. Other controllers

We will also give some hints to solve the problem of synthesizing
robust safety controllers that maintain the plant in a safety region in the
presence of disturbance or uncertainty, as well as reachability
controllers, which drive the plant in finite time from an initial
operating region to a desired operating region (see Chapter 6).

1.4. Notes

The common approach for stability analysis of dynamic systems is
based on Lyapunov’s method, which relies on the concept of a
Lyapunov function or generalized energy function. Essentially, a
Lyapunov function for an equilibrium point xe of the system ẋ = f(x)
is a differentiable function V (x) that has a strict minimum as xe, and
so that its derivative V̇ (x) = ∂V (x)

∂x · f(x) along the system trajectories
is negative in some neighborhoods of the equilibrium. Various
converse theorems establish the existence of a Lyapunov function
whenever the equilibrium point is stable (in the appropriate sense).
There are fundamental connections between the notion of Lyapunov
function and that of invariance. Precisely, given a Lyapunov function,
its level sets are the boundaries of invariant sets. In this book, we will
not use Lyapunov functions, but focus on invariant sets.

The context of section 1.2 is mainly taken from [ANT 02].





2

Sampled Switched Systems

We have seen in Chapter 1, that there are two models of plant event: the state-
triggered model where a plant event occurs when the plant state crosses the
boundary of two regions and the time-triggered model when a fixed time-out has
been reached. In the rest of this book, we will focus on the time-triggered model.
Furthermore, we will suppose that the switching instants occur periodically. We
say that such switched systems are sampled, and refer to them as S2-systems
(for “sampled switched” systems).

In this chapter, we give the formal model (section 2.1) of S2-systems together
with illustrative examples (section 2.2). We also explain how to represent
efficiently sets of states using the notion of “zonotope” (section 2.3).

2.1. Model

We are now considering a subclass of switched systems (see
definition 1.1) for which the switching signal changes its values
periodically, with a fixed period denoted by τ . The parameter τ is
called the sampling period. We call such switched systems sampled
switched systems, and refer to them as S2-systems. For an S2-system
of sampling period τ , the control synthesis problem then amounts to
finding the value of the switching signal at times τ , 2τ , . . . . In
addition, we make assumptions that are commonly met in practice in
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embedded control applications of power electronics and the automotive
industry. They are as follows:

– (A1) We focus on affine dynamics: the function fu(x) is of the
form Aux+ bu.

– (A2) We consider that the solution of the differential equation is
continuous: there is no “jump” of the trajectory at the switching instants.

– (A3) We only consider the properties of the system at switching
instants τ , 2τ , . . . , and ignore possible state-constraint violations of the
system in between.

These assumptions are classically done in power electronic systems.
In power electronics, a typical circuit is a network of electrical
components selected from the following three groups: ideal voltage or
current sources, linear elements (e.g. resistors, capacitors, inductors
and transformers) and nonlinear elements acting as switches (see
[SEN 03]). At this level of abstraction, the behavior of a switch is
idealized as having two discrete states: an open circuit and a short
circuit. In a circuit with K switches, there are 2K possible modes. In
practice, however, not all these modes are admissible. Some of them
are not feasible because of the physical characteristics of the switches,
while others are banned by the designer because of safety
considerations. Because of the restricted choice of circuit elements, the
resulting systems have the desirable property that the continuous
dynamics of each mode are linear or affine, which justifies (A1). The
absence of “jump” assumed in (A2) is met in practice because of the
continuity of the laws of physics. Finally, from this continuity, it
follows that the constraint violations between switching instants are
limited and become negligible for sufficiently small sampling periods.

Formally, we have the following definition (see [TAB 09, GIR 10a]):

DEFINITION 2.1.– An S2-system Σ of sampling period τ ≥ 0 is a
switched system Σ = (Rn, U,U ,F), where

– the switching instants of u ∈ U occur periodically at times
τ , 2τ , . . .
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– F is a set of functions {fu}u∈U with, for any u ∈ U and x ∈ Rn,
fu(x) = Aux+ bu with Au ∈ Rn×n and bu ∈ Rn.

In the following, it is convenient to assume that the matrix Au

governing the dynamics of mode u is invertible. This assumption is
met in realistic models of physical systems1.

Given an initial condition x0 ∈ Rn (such that x(0) = x0), the
trajectory is fully determined by the values u1, u2, . . . , of u at
switching instants τ, 2τ, . . . . These values define a switching signal
u(t), which is constant on each interval [kτ, (k + 1)τ), for all k ∈ N.
Between two switching instants, the system is governed by a
differential equation of the form: ẋ(t) = Aux(t) + bu with u ∈ U . We
will use x(t, x, u) to denote the point reached by Σ at time t (since last
switching) under mode u from the initial condition x. This gives a
transition relation →τ

u defined, for all x and x� in Rn, by:

x →τ
u x� iff x(τ, x, u) = x�.

For a given S2-system Σ, the transition relation
�

u∈U →τ
u will be

denoted by →τ . (In other words: x →τ x� means x →τ
u x� for some

u ∈ U .)

DEFINITION 2.2.– Given an S2-system Σ, a set X ⊂ Rn is controlled
invariant if:

∀x ∈ X ∃u ∈ U ∃x� ∈ X x →τ
u x�.

The set of successors of X via mode u, denoted by Postu,τ (X), or
more simply by Postu(X), is:

{x� | x →τ
u x� for some x ∈ X}.

1 For example, if the matrix associated with a model of electrical circuit is non-
invertible, it is often because some resistances have been neglected and idealized to 0.
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The set of predecessors of X via mode u, denoted by Preu,τ (X), or
more simply by Preu(X), is:

{x� | x� →τ
u x for some x ∈ X}.

Given a set R ⊂ Rn, a subset X of R is R-invariant via mode u if:
Postu(X) ⊂ R.

PROPOSITION 2.1.– The mappings Postu : 2R
n → 2R

n
and Preu :

2R
n → 2R

n
, with u ∈ U , are affine transformations.

PROOF–. Given a mode u ∈ U , we have ẋ(t) = Aux(t) + bu with
u ∈ U and (Au, bu) ∈ Rn×n × Rn×1. Therefore, we have x(τ, x, u) =
eAuτx +

� τ
0 eAu(τ−t)budt = Cux + du with Cu = eAuτ and du =� τ

0 eAu(τ−t)budt = (eAuτ − In)A−1
u bu, where In denotes the identity

matrix. Hence, Postu is an affine transformation. The proof is similar
for Preu.

As stated in assumption (A3), we will focus on the states reached by
the continuous-time trajectories at switching instants 0, τ ,2τ, . . . , and
disregard the continuous portions of trajectories between two switching
instants. This is depicted in Figure 2.1: we focus only on the segment
F = [x1(0), x2(0)] and its exact segment successor [x1(τ), x2(τ)] at
time τ , which corresponds to an affine image of the form Cu(F ) + du,
and do not construct a polyhedral over-approximation of the continuous
trajectories starting from F (see steps (b) and (c)) as in [ASA 00]. Such
a restriction allows us to simplify many works in the literature. The
price to be paid is that, between two switching instants, the system may
violate temporarily a desired property.

An S2-system can thus be seen a discrete-time system governed by
an affine equation of the form: x(t + τ) = Cux(t) + du with
Cu ∈ Rn × Rn and du ∈ Rn. Given an S2-system Σ and an initial
point, the set of points {x0, x1, x2, . . . } corresponding to the states of
the system at instants 0, τ ,2τ, . . . , will be referred to as the discrete
trajectory of Σ starting at x0. In the figures, for facilitating
visualization, consecutive points of discrete trajectories will be linked
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together by straight lines (unlike the real continuous-time trajectory
portion which is exponential).

Figure 2.1. a) A segment F = [x1(0), x2(0)] and its exact segment successor
[x1(τ), x2(τ)] at time τ ; b) approximating the set of continuous trajectories

starting from F during τ time by convex hull; c) bloating the convex
polyhedron to obtain a polyhedral over-approximation (from [ASA 00])

Unless otherwise stated, the notation � · � will denote the Euclidean
norm: for any x ∈ Rn, �x� is defined by �x� = (x21 + · · · + x2n)

1/2,
where xi is the ith component of the vector x. The exponential of any
matrix A ∈ Rn×n is denoted by eA and is the analytic function�∞

i=0
1
i!A

i. The ball of radius ε ∈ R≥0 centered at x ∈ Rn is denoted
by B(x,ε ) and is defined as the set of all the points x� ∈ R≥0 satisfying
�x− x�� ≤ ε. Similarly, B(X,ε ) =

�
x∈X B(x,ε ) for all X ⊂ Rn.

DEFINITION 2.3.– We say that a mode u ∈ U is contractive if there
exists 0 ≤ βu < 1 such that, for all x, y ∈ Rn:

�x(τ, x, u)− x(τ, y, u)� ≤ βu�x− y�.

Given a subset R ⊂ Rn, We say that a mode u ∈ U is locally
contractive in R if there exists 0 ≤ βu < 1 such that, for all x, y ∈ R:
�x(τ, x, u)− x(τ, y, u)� ≤ βu�x− y�.

It is easy to see that a mode u is contractive iff �eAuτ� = βu for some
0 ≤ βu < 1. This is equivalent to saying that all the eigenvalues of Auτ
have negative real parts. Similarly, a mode u is locally contractive in R
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if there exists 0 ≤ βu < 1 such that, for all x ∈ R, �eAuτx� ≤ βu�x�2.
To show that a mode u is locally contractive in R, it suffices to show
that there exists a right cone C that contains R such that ∃0 ≤ βu <
1, ∀x ∈ S(0Rn , 1) ∩ C, �eAuτx� ≤ βu, where S(0Rn , 1) is the unity
sphere (i.e. S(0Rn , 1) = {x ∈ Rn, �x� = 1}).

A pattern of the form (u1 · u2 · · ·um) is a finite sequence of modes
u1, u2, . . . , um of U . A k-pattern is a pattern of length at most k. In
this book, patterns will be often associated with finite paths in oriented
graphs whose edges are labeled by modes. We will use the expression
πi for denoting the concatenation of i patterns equal to π, and π∗ for the
concatenation of π an arbitrary number of times.

The definition of successors via modes (definition 2.2) extends
naturally for patterns. Formally, for X ⊂ Rn and a pattern π of the
form (u1 · u2 · · ·um), we have: Postπ(X) =
Postum(· · · (Postu1(X)) · · · ). We write sometimes x →π x� to mean
x →τ

u1
x1 →τ

u2
· · ·xm−1 →τ

um
x� for some x1, . . . , xm−1 ∈ Rn.

Similarly, definitions of predecessors, R-invariance and (local)
contractivity for modes extend naturally to those for patterns. From
proposition 2.1, it follows:

PROPOSITION 2.2.– Let π be a pattern. Then the mappings
Postπ: 2

Rn → 2R
n

and Preπ: 2
Rn → 2R

n
are affine transformations.

The image of a convex set X by Postπ (respectively, Preπ) is
therefore a convex set. Given a convex set R ⊂ Rn and a pattern π, in
order to show that a convex subset X is R-invariant via π, it suffices to
show that every vertex of X is mapped via Postπ onto a point of R.

2.2. Illustrative examples

EXAMPLE 2.1.– (BOOST DC–DC CONVERTER).– This example is
taken from [BEC 05] (see also, e.g., [GIR 10b, BUI 05, SEN 03]). This

2 Note that this requires that at least one eigenvalue of Auτ has a negative real part.
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is a Boost DC–DC converter with one switching cell (see Figure 2.2).
The state of the system is x(t) = [il(t) vc(t)]

T , where il(t) is the
inductor current and vc(t) the capacitor voltage. There are two
operation modes depending on the position of the switching cell. When
the switch is closed (mode 2), the inductor current il increases and
energy is stored to the inductance. When the switch is open (mode 1),
the energy accumulated in the inductance is transferred to the
capacitor. The dynamics associated with mode u is of the form
ẋ(t) = Aux(t) + bu (u = 1, 2) with:

A1 =

�− rl
xl

0

0 − 1
xc

1
r0+rc

�
b1 =

�vs
xl

0

�
,

A2 =

�− 1
xl
(rl +

r0rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

�
b2 =

�vs
xl

0

�
.

Figure 2.2. a) Scheme of the Boost DC–DC converter;
b) cell switching for pattern (2 · 1 · 1 · 1)

We will use the numerical values of [BEC 05], expressed in the per-
unit system: xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1 and
vs = 1. The sampling period is τ = 0.5.
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A general goal of the control is to stabilize the output voltage v0
around a desired value ve. The range of variations of the output voltage
and inductor current should be limited in order to avoid phenomena of
inductor saturation and blocking voltage stress of the switch. This
corresponds to the specification of a safety area S. The safety control
problem is to find a strategy for deciding which sequence of patterns to
apply in order to keep the state within S. An example of pattern of
length 4 is illustrated in Figure 2.2: it corresponds to the application of
mode 2 on (0, τ ] and mode 1 on (τ, 4τ ]. The control can be
state-independent, consisting of the repeated application of the same
sequence of patterns (computed off-line), or state-dependent, with the
application of a pattern depending on the current value of the electrical
state.

EXAMPLE 2.2.– (TWO-ROOM BUILDING HEATER).– This example
is taken from [GIR 12]. It is a simple heating model of a two-room
building. One of the rooms can be heated via a heating device. The two
rooms communicate such that heat from one room can diffuse to the
other. Moreover, the rooms are surrounded by an environment that has
a fixed temperature. By controlling when to turn the heating device on
and off, we are interested in maintaining the two rooms at a comfortable
temperature. Let T = [T1 T2]

T be the state variable, where Ti is the
temperature of room i (i = 1, 2). The dynamics of the system are given
by the following equation:

Ṫ =

�−α21 − αe1 − αfu α21

α12 −α12 − αe2

�
T +

�
αe1Te + αfTfu

αe2Te

�
,

where u is a mode of value 0 or 1, and the heat transfer coefficients
and external temperatures are given by the values: α12 = 5 × 10−2,
α21 = 5×10−2, αe1 = 5×10−3, αe2 = 3.3×10−3, αf = 8.3×10−3,
Te = 10 and Tf = 50. The sampling period is τ = 5.

EXAMPLE 2.3.– (HELICOPTER MOTION).– This example is taken
from [DIN 11]. The problem is to control a quadrotor helicopter
toward a particular position on top of a stationary ground vehicle,
while satisfying constraints on the relative velocity. By controlling the
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pitch and roll angles, we can modify the speed and the position of the
helicopter. A typical problem is to find a switching rule, depending on
the position and velocity of the helicopter, in order to keep the system
state within a safe area, avoiding excessive speed or distance in relation
to the ground vehicle. Let g be the gravitational constant, x
(respectively y) the position according to x-axis (respectively y-axis),
ẋ (respectively ẏ) the velocity according to x-axis (respectively
y-axis), φ the pitch command and ψ the roll command. The possible
commands for the pitch and the roll are the following:
φ,ψ ∈{− 10, 0, 10}. Since each mode corresponds to a pair (φ,ψ ),
there are nine modes. The dynamics of the system are given by the
equation:

Ẋ =

��
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



X +

��
0

g sin(−φ)
0

g sin(ψ)



 ,

where X is [x ẋ y ẏ]T . The sampling period is τ = 0.1. Since the
variables x and y are decoupled in the equations and follow the same
equations (up to the sign of the command), it suffices to study the control
for x. (The control for y is opposite.)

2.3. Zonotopes

The construction of invariant sets under the form of (union of)
polyhedral sets is natural because polyhedra correspond to sets of
linear constraints of the state space. Furthermore, they are well suited
to the approximation of reachability sets and domains of attractions of
dynamic systems. Zonotopes are a data structure which is very useful
for representing and manipulating efficiently convex polytopes (see,
e.g., [ALT 08, GIR 05a, KÜH 98]). They can be seen as symmetric
polyhedra where a facet must be parallel to an opposing facet. The
class of zonotopes is closed under linear transformation and
Minkowski sum3. Furthermore, using zonotopes, it is easy to introduce

3 The Minkowski of two sets A,B is defined by A+B = {a+ b | a ∈ A, b ∈ B}.
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uncertainty or disturbance in the dynamics of the models. A zonotope
is defined by a center c to which linear segments li = β(i) · g(i),
−1 ≤ β(i) ≤ 1 are added via Minkowski sum.

DEFINITION 2.4.– A zonotope is a set:

Z = {x ∈ Rn : x = c+Σp
i=1β

(i) · g(i), −1 ≤ β(i) ≤ 1}

with c, g(1), . . . , g(p) ∈ Rn.

The vectors g(1), . . . , g(p) are referred to as the generators and c as
the center of the zonotope. It is convenient to represent the set of
generators as an n × p matrix G of columns g(1), . . . , g(p). The
notation is < c,G >.

A box (or rectangle) is a Cartesian product of n closed intervals. It
can be seen as a zonotope of the form < c,D >, where c is the center
of the box and D is an n × n diagonal matrix whose (i, i)th element is
equal to half the size of the ith interval, for 1 ≤ i ≤ n. Boxes play an
important role in invariance theory (see, e.g., [PIC 08, ABA 09]).

The smallest box containing a zonotope Z =< c,G > is called the
bounding box of Z, and denoted by �(Z). We have: �(Z) =< c,D >,
where D is an n× n diagonal matrix whose (i, i)th element is equal to
Σp
 =1|Gi, |, for 1 ≤ i ≤ n.

Given a zonotope Z =< c,G >, the transformation of Z via an
affine function x �→ Cx + d is a zonotope of the form
< Cc + d,CG >. The successor set Postu(Z) of Z via a mode u can
thus be simply computed using zonotopes, using matrix multiplication
whose complexity is (at most) cubic.

Zonotopes allow us to compute easily over-approximations of the
successor sets in order to take into account small perturbations (or
uncertainties) of the system dynamics. All the dynamics of the system
are now of the form ẋ(t) = Aux(t) + bu + ε(t), where ε(t) represents
disturbance under the form of a vector belonging to a given box
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Λ = [−ε1,+ε1] × · · · × [−εn,+εn] of Rn, with εi ≥ 0 for
i = 1, . . . , n. We will use x(t, x, u,ε ) to denote the point reached by
the system at time t under mode u with disturbance ε, from the initial
condition x. This entails a transition relation →u,ε

τ defined, for all
x, x� ∈ Rn, ε ∈ Rn

≥0 and u ∈ U , by:

x →u,ε
τ x� iff x(τ, x, u,ε) = x�.

Given a box Λ = [−ε1,+ε1] × · · · × [−εn,+εn] of Rn, we define
Postu(X,Λ) = {x� | ∃ε ∈ Λ, x → u,ε

τ x�}. This definition of Postu
with perturbation naturally extends to Postπ where π is a pattern. If X
is given under the form of a zonotope < c,G >, then it is easy to
compute an overapproximation of Postu(X,Λ). Suppose that the
successor set without perturbation Postu(X), is an affine
transformation of the form CX + d, we have:

LEMMA 2.1.– Consider a zonotope X =< c,G >, a box
Λ = [−ε1,+ε1]× · · · [−εn,+εn] of Rn. We have:

Postu(X,Λ) ⊂ < Cc+ d, CG+ τDΛ >,

with: DΛ =

���
ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . .

...
0 0 . . . εn




.

The process can be iterated to compute a zonotopic
over-approximation of Postπ(X,Λ), for any pattern π. This technique
will be used in Chapter 6 in order to handle the problem of robust
safety control and the problem of nonlinear dynamics.

2.4. Notes

The class of S2-systems is a subclass of affine hybrid systems
[HEN 96] where the discrete transitions only happen at instants that are
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integer multiples of τ . Alternatively, we can consider S2-systems as
models capturing only continuous transitions of duration τ .

The semantics of sampled switched systems given here originate
from the work of Antoine Girard, Giordano Pola and Paulo Tabuada
(see, e.g., [TAB 09]). We have simplified their formalism here by
removing the notion of output and observation sets. What has been
called sampled switched system here, denoted by Σ, corresponds
actually in [TAB 09, Chapter 11] to the notion of a symbolic system
associated with a switched affine system Σ, denoted by Sτ (Σ).

The idea of approximating the state trajectories of dynamic systems
using zonotopes comes from [KÜH 98]. Using zonotopes for enclosing
the uncertainty, we can avoid the wrapping effect, which leads to
exponential fast-growing enclosures when using an iteratively naive
approximation (such as the bounding box). Zonotopes have recently
received many applications in the domain of hybrid systems with
uncertainty, such as reachability analysis [ALT 07].



3

Safety Controllers

In this chapter, we are interested in finding controllers of an S2-system which
make the variables of the system stay within the limits of a given area S. The
problem amounts to finding a switching rule that selects a mode ensuring that
the system will still be in S at the next sampling time, and so on iteratively. If
we consider S as a predefined safe region for the operating states of the
system, then such a switching rule can be seen as a safety controller. The
problem is closely related to the problem of finding a controlled invariant
subset of S. It is interesting to design a controller that is as permissive as
possible because this allows us to formulate secondary control objectives in
order to satisfy various performance criteria inside the safe set. This amounts
to synthesizing a controlled invariant subset of S which is as large as possible,
ideally maximal.

We first present a direct approach working on the original continuous state
space, which makes use of a general procedure of backward fixed point
computation (section 3.1). We then present an indirect approach working on
an abstract discrete state space, which makes use of the notion of
approximate bisimilarity (section 3.2). The two methods are finally applied to
the three-cell converter application of power electronics (section 3.3).
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3.1. Backward fixed point computation (direct approach)

Suppose we are given an S2-system Σ and a set S of safe states. Let
us consider a very general approach for synthesizing a (maximal) subset
S∗ of S which is a controlled invariant (i.e., such that: ∀x ∈ S∗ ∃u ∈
U = {1 . . . N} ∃x� ∈ S∗ x →τ

u x�). Given a set S, it is easy to show that
the union of two controlled invariant subsets of S is itself a controlled
invariant subset of S. Accordingly, the notion of a maximal controlled
invariant subset of S is well-defined and corresponds to the union of all
the controlled invariant subsets of S.

Consider the operator FS : 2R
n → 2R

n
defined by:

FS(X) =
�

u=1...N

Preu(X) ∩ S.

The set FS(X) contains all the states x ∈ X ∩ S for which the
successors via u of x are in X . The next result states that a maximal
fixed point of FS exists.

PROPOSITION 3.1.– The operator FS : 2R
n → 2R

n
the following

points:

1) The sequence {F i
S(Rn)}i≥0 is nested and decreasing.

2) The maximal fixed point S∗ of FS satisfies:

S∗ = lim
i→∞

F i
S(Rn) =

�
i≥0

F i
S(Rn);

3) The maximal fixed point S∗ of FS is the maximal controlled
invariant subset of S.

See [TAB 09], Chapter 5 for a proof. The maximal fixed point S∗ of
FS (i.e. the maximal solution of equation X =

�
u=1...N Preu(X)∩S)

can be computed by iteration of FS until a fixed point S∗ is obtained.
The general algorithm is of the form:
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Algorithm 3.1: Synthesis of maximal controlled invariant subset
Input: A set S ⊂ Rn

Output: A maximal invariant subset S∗ of S
1 X0 := S
2 repeat
3 Xk+1 := Xk ∩�

u=1...N Preu(X
k)

4 until Xk+1 = Xk

5 S∗ = Xk

The correctness of algorithm 3.1 relies on the fact that, at step k ≥
0, the set Xk is the set of starting points of trajectories of length k
contained in S. Formally: Xk = {x ∈ S | x →τ x1 →τ · · ·→ τ

xk for some x1, . . . , xk ∈ S}. It follows that S∗ is the set of starting
points of infinite trajectories contained in S, that means that S∗ is the
maximal invariant subset of S.

Henceforth, we suppose that the input S is given under a polyhedral
form. Every set Xk can be put under the form of a finite union of
polyhedral components: each polyhedral component P of Xk is
obtained as Preu(Q) ∩ R, where u is in U , and Q and R are
themselves two polyhedral components of Xk−1. (Recall that the
operator Preu is an affine transformation that maps a polyhedron into
another polyhedron; see Chapter 2). The test Xk+1 = Xk is performed
by testing if the vertices of the components of Xk belong to
(components of) Xk+1, and vice versa. If the test succeeds,
algorithm 3.1 terminates, and outputs a set S∗ which is a union of
polyhedral components.

Let us now explain how we can derive a state-dependent control
strategy that allows us to always maintain the system in S∗, using a
simple additional information storage in algorithm 3.1. We modify the
algorithm as follows: for each polyhedron component P produced at
step k (of the form Preu(Q) ∩ R, with Q,R ⊂ Xk−1), we store the
mode u with which it has been produced. If algorithm 3.1 terminates,
the output S∗ is given under the form of a finite set of polyhedral
components together with their associated modes. The control is now
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as follows: when at a switching time, the system state lies in a
component P of S∗, we apply the associated mode u of P ; at the next
switching time, the system lies in a component P � of S∗, and we apply
the associated mode u�, and so on iteratively. Such a control that allows
us to stay in the maximal invariant S∗ subset of S is said to be
maximally safe (or maximally permissive). In a further step, we can
refine the maximally permissive controller in order to satisfy various
performance criteria inside the safe set.

EXAMPLE 3.1.– To illustrate this approach, we synthesize a control
for the Boost DC–DC converter with one cell (see example 2.1 for a
description of the system). We have S = [3.0, 3.4] × [1.5, 1.8] in the
(il, vc) plane and τ = 0.5. Algorithm 3.1 terminates in two steps:

– At step 1, it produces two polyhedral components P1 = Pre1(S)∩
S and P2 = Pre2(S) ∩ S, with X1 = P1 ∪ P2.

– At step 2, the set X2 produced is the union of eight polyhedral
components Prei(Pj)∩Pk with i, j, k ∈ {1, 2}, and it can be seen that
X2 = X1.

This means that S∗ = X1 = P1 ∪ P2. In Figure 3.1, the
uncontrollable part S \ S∗ corresponds to the “horizontal” polyhedra
colored in black in the lower left and upper right parts of S. The
controlled subset P1 corresponds to the “vertical” left polyhedron and
P1 to the right polyhedron. If the system state is in P1 (respectively P2)
at a switching time, then mode 1 (respectively 2) should be applied.
Mode 1 or 2 can be arbitrarily applied when the system lies in P1 ∩ P2.
A controlled trajectory starting at point x0 = (3.01, 1.79) ∈ S∗ is
depicted in Figures 3.1 and 3.2. We can see that the trajectory stays
within S∗ ⊂ S. Algorithm 3.1 involves the computation of the
predecessor operator, intersection and test of point containment for
polyhedra. However, the number of polyhedral components increases
exponentially at each step. A realistic implementation of algorithm 3.1
requires merging different polyhedral components into an
under-approximated polyhedral form. This can be done using, for
example, the notion of griddy polyhedra (see [ASA 00], i.e. sets that
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can be written as unions of closed unit hypercubes with integer
vertices). The under-approximation process also helps the algorithm to
terminate. The output S∗ of the algorithm is then an invariant subset of
S, but is no longer maximal.

Figure 3.1. Maximal controlled invariant subset of S = [3.0, 3.4]× [1.5, 1.8],
composed of two polyhedra P1 (mode 1) and P2 (mode 2), with a controlled

trajectory starting at x0 = (3.01, 1.79). For a color version of this figure, see
www.iste.co.uk/fribourg/switchingsystems.zip

3.2. Approximate bisimulation (indirect approach)

The direct application of algorithm 3.1 at the continuous state level
works well on simple examples, as explained in section 3.1. However,
there is no guarantee of termination of the procedure because the state
space is infinite. An interesting alternative approach is the “indirect
approach”: it consists of making an abstraction of the system into a
finite discrete system. Algorithm 3.1 then always terminates, and
allows us to synthesize a maximally safe abstract controller, from
which a controller can be derived at the real level, at the price of a
certain approximation. We now explain such a method using the notion
of approximate bisimulation.
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Figure 3.2. Discrete-time trajectory starting from point
x0 = (3.01, 1.79), using the control found by the direct method.

a): evolution of vc in time; b): evolution of il

[GIR 10b] propose a method for abstracting a switched system
under the form of a discrete model, that is equivalent to the original
model, under certain Lyapunov-based stability conditions. They use a
Euclidean norm �.�, and define the approximation of the set of states
Rn as follows:

[Rn]η = {x ∈ Rn | xi = ki
2η√
n
, ki ∈ Z, i = 1, . . . , n},

where η ∈ R+ is a state-space discretization parameter. It is then easy to
see that: ∀x ∈ Rn ∃q ∈ [Rn]η : �x−q� < η. The transition relation →u

τ

of Σ is then approximated as follows: let q ∈ [Rn]η and qe = x(τ, q, u)
such that q →u

τ qe in the real system, let q� ∈ [Rn]η with �qe − q�� <
η. Then, we have q →u

τ,η q� for the approximated transition relation.
Formally, the transition relation of the abstract system Ση is defined as
follows.
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DEFINITION 3.1.– Given a switched system Σ: (τ, U,F) and its
trajectory x:R+ → Rn, the system Ση is the transition system
(Q,→u

τ,η) defined by:

– the set of states Q = [Rn]η.

– the transition relation given by:

q →u
τ,η q

� iff �x(τ, q, u)− q�� ≤ η.

This relation is depicted in Figure 3.3 (see [GIR 10a]). The notion
of “approximate bisimilarity” between systems Σ and Ση is defined as
follows.

Figure 3.3. Abstract transition relation (from [GIR 10a])

DEFINITION 3.2.– Systems Σ and Ση are ε-bisimilar (or bisimilar with
precision ε) if:

1) for all x ∈ Rn and q, q� ∈ [Rn]η: (�x− q� ≤ ε ∧ q →u
τ,η q

�) ⇒
�x� − q�� ≤ ε for some x� = x(τ, x, u) (i.e. for some x� : x →u

τ x�);

2) for all x, x� ∈ Rn and q ∈ [Rn]η: (�x− q� ≤ ε ∧ x →u
τ x�) ⇒

�x� − q�� ≤ ε for some q� ∈ [Rn]η with �x(τ, q, u) − q�� ≤ η (i.e. for
some q� : q →u

τ,η q
�).

Consider a switched system Σ = (τ, U, F ), a desired precision ε and
a time sampling value τ . Under certain Lyapunov-based stabilization
conditions, it is shown in [GIR 10b] that there exists a space sampling
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value η such that the transition systems of Σ and Ση are approximately
bisimilar with precision ε. In the context of S2-systems, the conditions
of Lyapunov-based stabilization can be simplified as follows.

THEOREM 3.1.– Consider a switched system Σ = (τ, U, F ), a desired
precision ε and a time sampling value τ . If all the modes of U are
contractive, there exists a space sampling value η such that the
transition systems of Σ and Ση are approximately bisimilar with
precision ε.

PROOF.– Because of the contractivity of the modes of Σ, we have, for
all u ∈ U , �x(τ, x, u) − x(τ, y, u)� ≤ β�x− y� for some 0 ≤ β < 1.
The proof of ε-bisimularity is based on the fact that we can choose η
so that βε + η ≤ ε is true (which is possible because β < 1). We have
indeed:

1) (�x − q� ≤ ε ∧ q →u
τ,η q�) ⇒ �x� − q�� = �x(τ, x, u) − q�� ≤

�x(τ, x, u)− x(τ, q, u)�+ �x(τ, q, u)− q�� ≤ βε+ η ≤ ε, with x� =
x(τ, x, u) (i.e., x� : x →u

τ x� for some u ∈ U );

2) (�x − q� ≤ ε ∧ x →u
τ x�) ⇒ �x� − q�� = �x(τ, x, u) − q�� ≤

�x(τ, x, u)−x(τ, q, u)�+�x(τ, q, u)−q��,≤ β�x−q�+η ≤ βε+η ≤ ε
with q� such that q →u

τ,η q
�.

Note that theorem 3.1 for any norm � · �. For implementing the
method, it may be convenient to use the infinity norm (defined by
�x� = maxi=1,··· ,n |xi|, for all points x = (x1, . . . , xn) ∈ Rn) rather
than the Euclidean norm in order to reduce the overlapping of two
adjacent bowls of radius η and the non-determinism of relation →u

τ,η.
Accordingly, the definition of [Rn]η should be:

[Rn]η = {x ∈ Rn | xi = 2kiη for some ki ∈ Z and i = 1, 2, . . . , n}.

Let us now explain how to apply theorem 3.1 in order to synthesize
a safety controller. Consider a bounded subset S of Rn. The set Sη =
[Rn]η ∩ S is finite. So, if algorithm 3.1 runs with X0 = Sη as an input,
it terminates and outputs a maximal controlled invariant subset, say S∗

η ,
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of Sη. For each point q ∈ S∗
η , there exists a point q� ∈ S∗

η such that
q →u

τ,η q� for some u ∈ U . Using the relation
�

u∈U →u
τ,η restricted to

S∗
η , we can define a finite state automaton Aη on S∗

η . This automaton Aη

can be seen as a maximally safe controller of Sη. From such a controller,
it is then possible, using the bisimilarity stated in theorem 3.1, to derive
a controller for the real model Σ, which keeps the switched system Σ in
B(S∗, ε) (see [TAB 08]).

An alternative approach consists of observing that, for all points q of
S∗
η , there exists a quasi-cyclic sequence of transitions of Aη starting at

q of the form π ·σ∗, where π and σ are finite sequences of modes. (This
is because an infinite path in a finite graph should go through the same
vertex twice.) For all q ∈ S∗

η , we can compute statically such a quasi-
cyclic sequence starting at q. Let us denote it by ϕ(q). This induces a
safety controller for the real system Σ as follows: given a state x ∈ S∗,
find a state q ∈ S∗

η such that �x− q� ≤ η, then apply the sequence ϕ(q)
to x. It follows from theorem 3.1 that, under such a control, the state of
Σ always stays in B(S∗, ε).

Note that the correctness of the synthesis of a safety controller for S
at the continuous state level relies on theorem 3.1. Actually, we can relax
the assumption of contractivity of the modes of Σ made in this theorem,
and just assume the local contractivity of modes in S. We illustrate the
method on the Boost DC–DC converter.

EXAMPLE 3.2.– The method is applied to the Boost converter with the
same safe set as in example 3.1: S = [3, 3.4]×[1.5, 1.8] in plane (il, vc),
for the desired precision, we take ε = 3.0. It can be seen that the system
is locally contractive in S with a contraction factor β = 0.99202. For
the discretization parameter, we take η = 1/40 (which satisfies η <
ε(1 − β)). See Figure 3.4 for one of the connected components of the
graph of the automaton Aη. Each cycle in the subgraph corresponds to
a periodic switching rule of the converter which ensures that the electric
variables lie inside the predefined S up to ε. For example, we consider
the cycle passing through vertices numbered: 159, 243, 173, 257, 187,
271, 201, 285, 215, 299, 229, 159. This corresponds to the application
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of the cyclic sequence of modes: (1·2·1·2·1·2·1·2·1·2·2)∗. A controlled
trajectory starting at point x0 = (3.0, 1.79) is given in Figure 3.5. The
box S is delimited by the dashed line. We can see that the system largely
exceeds the limits of S (but stays inside the ε-approximation B(S,ε )).

Figure 3.4. Graph of an abstract safety controller of the Boost DC–DC
converter, with η = 1

40
and S = [3, 3.4]× [1.5, 1.8]. For a color version of

this figure, see www.iste.co.uk/fribourg/switchingsystems.zip
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Figure 3.5. Trajectory in plane (il, vc) starting at x0 = (3.0, 1.79) controlled
by switching rule (1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 2)∗ found by the indirect method
(precision ε = 3); the dashed box corresponds to S = [3, 3.4]× [1.5, 1.8]. For
a color version of this figure, see www.iste.co.uk/fribourg/switchingsystems.zip

3.3. Application to a three-cell Boost DC–DC converter

We now apply the direct and indirect methods for synthesizing
safety controllers for a bigger example: a Boost DC–DC converter with
three cells. This is a real-life prototype built by the SATIE Electronics
Laboratory (ENS Cachan) for the automotive industry. See Figure 3.6
for a picture of the system.

Figure 3.6. Three-cell converter built by SATIE Electronics Laboratory
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3.3.1. Model

The Boost DC–DC converter with three cells relies on the same
principle as the converter with one cell. An advantage of this system is
its robustness: even if one switching cell is damaged, the system is still
controllable with the restricted set of modes that remain available. This
system is naturally more complex: there are four continuous variables
of interest (instead of two), and 23 = 8 modes (instead of two). Each
mode is a triple (σ1σ2σ3), where σi indicates whether cell i is open
(σi = 0) or closed (σi = 1). The electrical scheme is presented in
Figure 3.7. An example of pattern is presented in Figure 3.8. The
pattern is of the form ((100) · (000) · (010) · (000) · (001) · (000)) (or
(2 · 1 · 3 · 1 · 5 · 1) under a decimal-like form), and corresponds to
(1 · 0 · 0 · 0 · 0 · 0) for σ1, (0 · 0 · 1 · 0 · 0 · 0) for σ2 and
(0 · 0 · 0 · 0 · 1 · 0) for σ3,

Figure 3.7. Electrical scheme of the DC–DC converter with three cells

Figure 3.8. Switching rule for the three-cell Boost DC–DC converter on one
period of length 6τ , σ1 = (1 · 05), σ2 = (02 · 1 · 03) and σ3 = (04 · 1 · 0), and
the corresponding control pattern is (2 · 1 · 3 · 1 · 5 · 1)). For a color version of

this figure, see www.iste.co.uk/fribourg/switchingsystems.zip
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The system satisfies the following equations:

U

�σ1
σ2
σ3
0


+

�−2r 0 0 −1
0 −2r 0 −1
0 0 −2r −1
1 1 1 −1/R



�x1
x2
x3
x4


 =

� 2L −M −M 0
−M 2L −M 0
−M −M 2L 0
0 0 0 C



�ẋ1
ẋ2
ẋ3
ẋ4


 .

This can be rewritten to fit our framework as:

ẋ = M−1
LC MSx+ bσ

with

MLC =

��
2L −M −M 0
−M 2L −M 0
−M −M 2L 0
0 0 0 C



, MS =

��
−2r 0 0 −1
0 −2r 0 −1
0 0 −2r −1
1 1 1 −1/R



,

bσ = UM−1
LC

��
σ1
σ2
σ3
0



,

where U is the input voltage. We take in the following values per unit
system: U = 100, L = 10× 10−3, M = 9.9× 10−3, r = 100× 10−3,
R = 1, C = 300× 10−6 and τ = 1/60, 000.

3.3.2. Direct method

For S = [4, 7] × [4, 7] × [4, 7] × [15, 17] and τ = 1/60,000, we
can synthesize the maximal controlled invariant subset S� ⊂ S, using
algorithm 3.1. A trajectory of the system starting at x0 = (5, 5, 5, 16) ∈
S� is presented in Figure 3.9. The figure shows that all the trajectories
lie inside S.

3.3.3. Indirect method

For a safety region, we consider S = [5.3, 5.9] × [5.3, 5.9]×
[5.3, 5.9] × [15.5, 16.5]. It can be seen that the system is locally
contractive in S with a contraction factor β = 0.99202. For the
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state-space discretization, we take η = 1/5. This corresponds to a
precision ε = η/(1 − β) ≈ 21.6. The abstract safety controller Aη

associated with box Sη corresponds to a graph with several hundreds
of vertices. A small part of the graph is given in Figure 3.10. For
example, there is a cycle passing through vertices numbered: 290, 311,
332, 353, 332, 311, 290. This corresponds to the application of the
cyclic sequence of modes: (4 · 4 · 4 · 1 · 2 · 1)∗. For this control, the
trajectory starting at point x0 = (5.4, 5.4, 5.4, 16) is given in
Figure 3.11. We can see that the system does not stay inside the initial
box S. However, we can check that the system stays within the
ε-over-approximation B(S,ε ) of S with ε = 21.6. The value of ε is too
gross to give an interesting guarantee of safety. A finer precision ε
would require a much smaller η and accordingly Aη with an
overwhelming number of vertices. This tends to indicate that the
indirect method (at least applied without further refinement) leads to
prohibitively expensive computations for this example.

Figure 3.9. Discrete-time trajectory of three-cell converter starting at
x0 = (5, 5, 5, 16) in S = [4, 7]× [4, 7]× [4, 7]× [15, 17] using the direct

control method (from a)–d): x1, x2, x3, x4 as a function of time).
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Figure 3.10. Partial graph of an abstract safety controller
of the three-cell Boost converter, with η = 1

5
. For a color version of this figure,

see www.iste.co.uk/fribourg/switchingsystems.zip

Figure 3.11. Trajectory of the three-cell converter starting at
x0 = (5.4, 5.4, 5.4, 16) with switching rule (4 · 4 · 4 · 1 · 21)∗

found by the indirect method (precision ε = 21.6)
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3.4. Notes

As explained above, the computation of maximal controlled
invariant sets, found in the literature, relies essentially on a backward
approach, computing iteratively the predecessor’s reachable sets. This
is in keeping with the seminal work of [RAM 89] for finite discrete
systems. Unfortunately, as pointed out in [MIT 07], backward
reachability constructs are more likely to suffer from numerical
stability problems in systems displaying significant contraction, while
contraction is generally a desirable and rewarding property of dynamic
systems. In Chapter 4, we propose a forward-oriented approach that
avoids these problems.

The indirect approach of controller synthesis, based on finite-state
approximate models, originates from [RAI 98]. In the indirect approach,
the switching rule can be computed off-line, while the switching rule
has to be computed online in the direct approach. The compared merits
of the direct versus indirect approaches for the synthesis of switching
controllers for linear systems are more generally discussed in [ASA 00].

The notion of approximate bisimulation originates from [GIR 05b].
See also [TAB 05] and [TAB 09] for an exposition of several classes of
hybrid systems admitting abstract models, along with the relationships
between them.
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Stability Controllers

In this chapter, we are interested in the problem of practical stabilization: given
a region R, find a switching rule that makes the system converge to a region
located inside R. Such a switching rule corresponds to a stability controller. It
is interesting to confine the trajectories in a region that is as small as possible.
The problem is closely related to the problem of finding a controlled invariant
subset of R that is as small as possible, ideally minimal. We present a direct
forward-oriented method that decomposes a given state region R, and induces
a state-dependent control that makes the trajectories of the system converge
to finite sets of points that, under certain conditions, correspond to limit cycles.
The method can also be used for synthesizing safety controllers in order to
prove safety properties.

After explaining our aim (section 4.1), we first give some formal preliminaries
(section 4.2). We then present the decomposition method (section 4.3): the
basic procedure is discussed in section 4.3.1 and its enhancement for proving
safety properties is discussed in section 4.3.2. We then apply the method to
the synthesis of finite controlled invariants and limit cycles that attract the
trajectories of the controlled system (section 4.4). Some information on the
implementation of the decomposition procedure is discussed in section 4.5.
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4.1. Motivation

Let us consider Figure 3.1. The set S = [3.0, 3.4] × [1.5, 1.8] is
divided into a maximal controlled subset S∗ = P1 ∪ P2, made of up
two polyhedra P1 and P2, and an “uncontrollable” part colored in
black made of up two parts: a lower left part, say Q1, and an upper
right part, say Q2, of S. Each polyhedron P1, P2, Q1 and Q2 contains
one (and only one) corner of S. The corner of S belonging to P1

(respectively, P2) is controllable: if we apply mode 1 (respectively 2)
to this corner, we find a point belonging to P1 ∪ P2 ⊂ S. In contrast,
the corners of S belonging to Q1 and Q2 are not controllable: the
application of either mode 1 or mode 2 maps these corners in points
located outside S. Now, let us ask the question: does there exist a
k-pattern, that is a sequence of modes of length (at most) k, mapping
the corners to points located inside S? If such patterns exist, we can
say that the corners are “k-controllable”. In this example, we can see
that it is the case for k = 5. Besides, if we divide S into four sub-boxes
of equal size, say V1, . . . , V4, each containing a corner, say C1, . . . , C4,
of S, we can see that the pattern, say πi, that maps Ci inside S also
maps the whole sub-box Vi inside S (1 ≤ i ≤ 4). This suggests a
procedure of decomposition that splits S by bisection into sub-boxes,
and looks for patterns that map the sub-boxes inside S. If this
succeeds, we say that S is “k-controllable” or is a “controlled
k-invariant set”. The decomposition induces a state-dependent control
strategy that makes any point of S return to S after at most k steps. In
the following, we formalize these ideas.

4.2. Preliminaries

DEFINITION 4.1.– Given a set R ⊂ Rn and a set {(Vi, πi)}i∈I , where
I is a finite set of indices, Vi is a subset of Rn (for all i ∈ I) and πi is a
k-pattern (for all i ∈ I), we say that Δ = {(Vi, πi)}i∈I is a k-invariant
decomposition of R if:

– R =
�

i∈I Vi;

– Vi is R-invariant via πi (i.e. Postπi(Vi) ⊂ R), for all i ∈ I .
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In the remaining chapter, we will suppose that R is a box (i.e. a
rectangular region of Rn). Such a set R will be referred to as a global
(control) box. The subsets Vis (with i ∈ I) will be boxes that are
included into R. They will be referred to as local (control) boxes.

Given a box R ⊂ Rn and a set Δ of the form {(Vi, πi)}i∈I with�
i∈I Vi = R, we define PostΔ as follows:

PostΔ(X) =
�
i∈I

Postπi(X ∩ Vi), for all X ⊂ R.

It is easy to show:

PROPOSITION 4.1.– Given a box R ⊂ Rn and a set Δ : {(Vi, πi)}i∈I
where the πis (i ∈ I) are k-patterns, and with

�
i∈I Vi = R, we have:

– Δ is a k-invariant decomposition of R iff PostΔ(R) ⊂ R.

– The image of a (compact) convex set by PostΔ is a finite set of
(compact) convex sets.

NOTE.– For the sake of simplicity, we will use PostΔ(x) instead of
PostΔ({x}), when x is a point of Rn.

EXAMPLE 4.1.– (BOOST DC–DC CONVERTER).– Let us consider
example 2.1 (see Chapter 2). In the case of the Boost DC–DC
converter, we can show that, for R = [1.55, 2.15]× [1.0, 1.4], there is a
decomposition Δ = {(Vi, πi)}i=1,...,4 with V1 = [1.55, 1.85]×
[1.0, 1.2], V2 = [1.85, 2.15] × [1.0, 1.2], V3 = [1.85, 2.15] × [1.2, 1.4],
V4 = [1.55, 1.85] × [1.2, 1.4] and π1 = (1 · 1 · 2 · 2 · 2), π2 = (2),
π3 = (2 · 1 · 2), π4 = (1). We can check indeed that, for all 1 ≤ i ≤ 4,
Postπi(Vi) ⊂ R. This is shown in Figure 4.1. In section 4.3, we will
explain how to generate such a decomposition.

DEFINITION 4.2.– Given a pattern π of the form (u1 · · ·um), and a set
X; the unfolding of X via π, denoted by Unf π(X), is the set

�m
i=0Xi

with:

– X0 = X ,

– Xi+1 = Postui+1(Xi), for all 0 ≤ i ≤ m− 1.
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Figure 4.1. Decomposition Δ of R = [1.55, 2.15]× [1.0, 1.4]
for the Boost DC–DC converter example a), and visualization of

PostΔ(Vi) ⊂ R, i = 1, . . . , 4 b)

DEFINITION 4.3.– Consider a k-invariant box R of decomposition
Δ = {(Vi, πi)}i∈I . The Δ-unfolding of R, denoted by Unf Δ(R), is the
set: �

i∈I
Unf πi

(Vi).

EXAMPLE 4.2.– Figure 4.2 shows the unfolding of R for the
decomposition Δ of example 4.1, where dark gray (respectively, light
gray) indicates that mode 1 (respectively 2) applies.

PROPOSITION 4.2.– Suppose that a box R has a k-invariant
decomposition Δ. Then, the Δ-unfolding of R is controlled invariant.

PROOF.– Let us explain how such a control can be refined in order to
make R�, the Δ-unfolding of R, controlled invariant. We extend
Δ: {(Vi, πi)}i∈I as follows. Each element of Δ is of the form (V,π )
where π is of the form (u1u2 · · ·um). Such an element is replaced by
m couples (V 1, u1), (V 2, u2), . . . , (V m, um) with V 1 = V ,
V 2 = Postu1(V 1),. . . , V m = Postum−1(V m−1). The decomposition
Δ becomes a decomposition Δ� of the form {(V j

i , u
j
i )}i,j with�

i,j V
j
i = R� and Post

uj
i
(V j

i ) ⊂ R� for all i, j. Hence, for each
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x ∈ R�, x belongs to some V j
i and Post

uj
i
(x) ⊂ R�. This shows that

R� is controlled invariant.

Figure 4.2. Δ-unfolding of R = [1.55, 2.15]× [1.0, 1.4] in the Boost DC–DC
converter example where dark gray (respectively, light gray) indicates that

mode 1 (respectively, 2) applies

4.2.1. Control induced by the decomposition

The decomposition Δ induces a state-dependent control that makes
any trajectory starting from R go back to R within at most k steps: given
a starting state x0 in R, we know that x0 ∈ Vi for some i ∈ I (since
R =

�
i∈I Vi); thus, we apply πi to x0, which gives a new state x1 that

belongs to R (since Vi is R-invariant via πi); the process is repeated
on x1, and so on iteratively. Given a point x ∈ R, we will denote by
succΔ(x) the point of R obtained by applying πi to x when x is in Vi.
Note that a non-deterministic choice has to be made when a point x
belongs to more than one local box Vi. We will suppose that we have
an implicit selection function that operates a non-deterministic choice
in such a case (e.g. we can select the set Vi of least index containing x).
When x belongs to a single local box Vi, then succΔ(x) = PostΔ(x).
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A sequence of points {xi}i≥0, with xi+1 = succΔ(xi) for all i ≥ 0,
is called a discrete trajectory induced by Δ, or more simply, a
Δ-trajectory1.

We will also consider the unfolding of a Δ-trajectory, which
corresponds to consider not only the successors of points via patterns,
but also all the intermediate points generated by intermediate
application of the modes forming the patterns. In Figures 4.3 and 4.9,
for the sake of clarity, the points of Δ-trajectories will be linked
together using straight lines, and similarly for their unfoldings.

EXAMPLE 4.3.– A Δ-trajectory starting from the left upper corner of
R = [1.55, 2.15] × [1.0, 1.4] for the Boost example is shown in
Figure 4.3 together with its unfolding.

Using proposition 4.2, we can prove safety properties of the
controlled system, by showing UnfΔ(R) ⊂ S, where S is known to be
a set of safe positions (see section 4.3.2).

4.3. Decomposition function

4.3.1. Basic procedure

We suppose that we are given a global box R ⊂ Rn. We now give a
decomposition procedure that generates a k-invariant decomposition of
R as follows.

It first calls sub-function Find_Pattern in order to get a k-pattern
such that R is R-invariant. If Find_Pattern succeeds, then we are done.
Otherwise, it divides R into 2n sub-boxes V1, . . . , V2n of equal size.
If, for each Vi, Find_Pattern gets a k-pattern making it R-invariant, it is
done. If, for some Vj , no such pattern exists, the procedure is recursively
applied to Vj . It ends with success when a k-invariant decomposition of
R is found, or failure when the maximal degree d of decomposition is
reached.

1 We will sometimes denote such a trajectory under the form: x0 →πi1
x1 →πi2

· · ·
with i1, i2, · · · ∈ I .
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Figure 4.3. Δ-trajectory for the a) Boost example and its b) unfolding

REMARK 4.1.– Since the local boxes Vis are Cartesian products of
closed intervals, two adjacent boxes Vi and Vj share a common facet.

The algorithmic form of the procedure is given in algorithms 4.1
and 4.2. (For the sake of simplicity, we consider the case of dimension
n = 2, but the extension to n > 2 is straightforward.) The main
function Decomposition (W ,R,D,K) is called with R as input value
for W , d for input value for D and k as input value for K; it returns
either 	{(Vi, πi)}i, T rue
 with

�
i Vi = W and

�
i Postπi(Vi) ⊂ R or

	_, False
. Function Find_Pattern(W ,R,K) looks for a K-pattern for
which W is R-invariant (i.e. Postπ(W ) ⊂ R): it selects all the
K-patterns by non-decreasing length order until either it finds such a
pattern π (output: 	π, True
) or none exists (output: 	_, False
).
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REMARK 4.2.– Since R is a box, the inclusion test Postπ(W ) ⊂ R
in function Find_Pattern(W ,R,K) is implemented under the equivalent
form �(Postπ(W )) ⊂ R, which can be done in quadratic time (see
section 2.3 and Appendix 5)).

The correctness of the procedure is stated as follows.

THEOREM 4.1.– If Decomposition(R,R,d,k) returns 	Δ, T rue
, then
Δ is a k-invariant decomposition of R. (Hence, Unf Δ(R) is controlled
invariant.)

As a whole, the complexity of function Find_Pattern is O(n3Nk)
since there are Nk patterns of length k, and the complexity of
computation of successor states and inclusion test using zonotopes can
be done in O(kn3). This procedure is called function Decomposition at
most 2n·d times that corresponds to the number of sub-boxes in the
case of a maximal decomposition of length d. The worst complexity of
the procedure is thus in O(2n·dNk). Unsurprisingly, it suffers from the
curse of dimensionality regarding not only the state dimension n, but
also the depth of decomposition d and the length of patterns k.

The examples treated with a simple implementation of the procedure
scales up to seven continuous variables (see section 4.5).

Note that there are boxes R so that Decomposition(R,R,d,k) does
not succeed for any k and d. More generally, there are boxes R that
are never k-invariant, for any k. In Appendix 1, we give a sufficient
condition on the position of R for ensuring its k-invariance for some
integer k.

4.3.2. Enhancement for safety

Let us now explain how to extend the decomposition procedure in
order to show additionally that we have Unf Δ(R) ⊂ S, where S is a
given safety set containing R. This is done by adding an extra input
argument to Decomposition and Find_Pattern procedures
corresponding to S. We then replace line 1 of Decomposition
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(W ,R,D,K,S) by Find_Pattern(W ,R,K,S), and line 6 of function
Find_Pattern by:

If Postπ(W ) ⊂ R And Unf π(W ) ⊂ S then

Algorithm 4.1: Decomposition(W ,R,D,K)
Input: A box W , a box R, a degree D of decomposition and a

length K of pattern
Output: 	{(Vi, πi)}i, T rue
 with

�
i Vi = W and�

i Postπi(Vi) ⊂ R, or 	_, False

1 (π, b) := Find_Pattern(W,R,K)
2 if b = True then
3 return 	{(W,π )}, T rue

4 else
5 if D = 0 then
6 return 	_, False

7 else
8 Divide equally W into (W1,W2,W3,W4) /* (case

n = 2) */
9 (Δ1, b1) := Decomposition(W1,R,D − 1,K)

10 (Δ2, b2) := Decomposition(W2,R,D − 1,K)
11 (Δ3, b3) := Decomposition(W3,R,D − 1,K)
12 (Δ4, b4) := Decomposition(W4,R,D − 1,K)
13 return (Δ1 ∩Δ2 ∩Δ3 ∩Δ4, b1 ∧ b2 ∧ b3 ∧ b4)

In other words, if π is a pattern of the form (u1 · · ·um) with
u1, ..., um ∈ U , we check additionally Wi ⊂ S for all 1 ≤ i ≤ m,
where the Wis are the intermediate sets defined by W1 = Postu1(W ),
. . . , Wm = Postum(Wm−1). We have:

THEOREM 4.2.– If the function Decomposition(R,R,d,k,S) returns
	Δ, T rue
, then Unf Δ(R) is controlled invariant. Furthermore, we
have Unf Δ(R) ⊂ S.
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Algorithm 4.2: Find_Pattern(W ,R,K)
Input: A box W , a box R and a length K of pattern
Output: 	π, True
 with Postπ(W ) ⊂ R, or 	_, False
 when no

pattern maps W into R
1 for i = 1 . . .K do
2 Π := set of patterns of length i
3 while Π is non-empty do
4 Select π in Π
5 Π := Π \ {π}
6 if Postπ(W ) ⊂ R then
7 return 	π, True


8 return 	_, False


Hence, the system under the control inferred by the procedure (when
it succeeds) is guaranteed to be safe.

The enhanced procedure has been implemented (see section 4.5 for
details). We illustrate its application on the Boost DC–DC converter of
example 2.1. Other examples are given in Appendix 2.

EXAMPLE 4.4.– For R, we now consider the box
[1.75, 1.95] × [1.14, 1.26], which corresponds to a medium value 1.85
for il with ±0.1 for variability and medium value 1.20 for vc with
±0.06 for variability. For the safety region, we take
S = [1.7, 2.0] × [1.10, 1.30], which corresponds to an additional
variability of ±0.05 for il and ±0.04 for vc. The application of
algorithm 4.1 to R and S, with k = 10 and d = 4 succeeds, yields a
k-invariant decomposition Δ of the form {(Vj , πj)}j=1,...,16 of R2

satisfying Unf Δ(R) ⊂ S. The k-invariant decomposition Δ of R is

2 The associated patterns are: π1 = (1122122122), π2 = (12121222), π3 =
(12122122), π4 = (122), π5 = (2), π6 = (12), π7 = (12), π8 = (1), π9 = (1),
π10 = (1), π11 = (12), π12 = (12), π13 = (2), π14 = (2), π15 = (12) and
π16 = (221).
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shown in Figure 4.4, and the Δ-unfolding is shown in Figure 5.4(b):
dark gray (respectively light gray) indicates that mode 1
(respectively 2) should be applied. The unfolded Δ-trajectory of the
system starting at point (1.75, 1.26) is shown in Figure 4.5.

Figure 4.4. a) Decomposition Δ for Boost converter of
R = [1.75, 1.95]× [1.14, 1.26]; b) Δ-unfolding where dark gray
(respectively, light gray) indicates mode 1 (respectively, 2), with

enclosing box S = [1.7, 2.0]× [1.1, 1.3]

Figure 4.5. Unfolded Δ-trajectory of the Boost converter
starting at (1.75, 1.26) (inner box R = [1.75, 1.95]× [1.14, 1.26]

and outer box S = [1.7, 2.0]× [1.1, 1.3])
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4.4. Limit cycles

In Figure 4.3, we see that the (unfolding of the) Δ-trajectory seems
to converge to a cycle. We now formally state that under certain
assumptions, this is actually the case. We suppose that we are given a
global box R and a decomposition Δ = {(Vi, πi)}i∈I produced by the
decomposition algorithm of section 4.3. We denote the union of the set
of borders of Vi (i ∈ I) by ∂Δ. (Recall that two adjacent boxes Vi and
Vj share a common border; see remark 4.1.)

We show how to produce attractors of R, using an iteration of
PostΔ. Furthermore, under certain assumptions that are often
encountered in practice, these attractors are made up of finite subsets of
points corresponding to limit cycles that attract all the Δ-trajectories
starting in R.

The idea is the following: since PostΔ(R) ⊂ R, we have
Posti+1

Δ (R) ⊂ PostiΔ(R) for all i ≥ 0, and the limit set
R∗

Δ =
�

i≥0 PostiΔ(R) is well defined and non-empty.

LEMMA 4.1.– Consider a k-invariant decomposition Δ =
{(Vi, πi)}i∈I of R. The sequence {Rj

Δ}j≥0 defined by:

– R0
Δ = R;

– Rj+1
Δ = PostΔ(R

j
Δ)

is a decreasing nested sequence and the set R∗
Δ =

�
j≥0R

j
Δ is well

defined. Furthermore, R∗
Δ is an attractor set of R, that is:

1) PostΔ(R
∗
Δ) = R∗

Δ (invariance property);

2) ∀x ∈ R, d(PostjΔ(x), R
∗
Δ) → 0 as j tends to ∞3 (attraction

property).

3 d(y, Z) denotes the smallest distance between a point y ∈ Rn and any point of
Z ⊂ Rn.
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We now make the following assumptions:

H1): All the modes are locally contractive in R.

H2): There exists N ∈ N such that PostNΔ(R) ∩ ∂Δ = ∅.

These assumptions will be discussed in section 4.4.1. We show that
under these assumptions, R∗

Δ is a finite set of points composed of
disjoint “cycles”. Furthermore, each Δ-trajectory starting from a point
of R converges to one of these cycles. This is formally stated as
follows.

DEFINITION 4.4.– A cycle is a finite set of points of R of the form
{y0, y1, . . . , ym−1} with y0 →πi1

y1 →πi2
· · ·→πim

ym = y0 for some
patterns πi1 , . . . , πim of Δ.

THEOREM 4.3.– Under assumptions H1 and H2, we have:

1) R∗
Δ is a finite union of (disjoint) cycles.

2) The Δ-unfolding of each cycle of R∗
Δ is a controlled invariant

finite set.

3) Each Δ-trajectory {x0, x1, . . . } converges to a cycle of the form
{y0, y1, . . . , ym−1} in the following sense:

∃M ∈ N ∀1 = 0, . . . ,m− 1 lim
i→∞

xM+i·m+ = y .

The proof of theorem 4.3 is given in Appendix 3.

Note that, although the Δ-unfolding of each cycle is finite, it is not
ensured to be a minimal controlled invariant: it is a priori possible that
a strict subset of the Δ-unfolding be itself controlled invariant.

4.4.1. Discussion of the assumptions H1 and H2

Under assumptions H1 and H2, we have stated that each trajectory
converges to a finite cyclic set of points.

The first assumption is classical in order to ensure convergence
results, and was also used in Chapter 3. Actually, even if some of the
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modes are not contractive, we may observe the convergence to finite
cyclic sets of points because of the contractivity of the patterns
involved by the control. This is the case in the helicopter motion
example (see Figure 7.5). However, if none of the modes are (locally)
contractive, then there is no limit cycle and R∗

Δ is infinite (e.g. see
Appendix 4).

Assumption H2 is justified as follows. When PostΔ is applied to R
for the first time, the local boxes are transformed into |I| convex sets. If
such a set, say W , crosses a border of ∂Δ and partly belongs to, say,
two local boxes V1 and V2, it will be split into two sets
Postπ1(W ∩ V1) and Postπ2(W ∩ V2) at the next application of
PostΔ. The number of convex sets generated at each application of
PostΔ thus increases repeatedly until no image crosses a border,
which happens at step N by assumption H2. The images generated by
further application of PostΔ will then never cross ∂Δ: these images
will either disappear or shrink toward single points by assumption H1.
In the absence of assumption (H2), the number of connected sets of
PostkΔ(R) can increase indefinitely. Thus, assumption H2 seems to be
a necessary condition for the finiteness of R∗

Δ.

4.4.2. Illustrative examples

We now illustrate the convergence of PostkΔ to a cyclic set of points
as k tends to infinity, on the Boost and two-tank example.

EXAMPLE 4.5.– (BOOST DC–DC CONVERTER).– We have already
seen that the modes of the Boost converter are locally contractive (see
example 3.2), hence H1 is satisfied. Likewise, H2 is satisfied: for
N = 100, PostNΔ(R) is entirely contained into the local box V1 of the
decomposition Δ (see Figure 4.6 showing the iterated images PostkΔ
for k = 0, 20, 40, 60, 80, 100). The limit set R∗

Δ is here composed of a
unique limit cycle that is made of a single point y0 ∈ V1. We have
y0 →π1 y1 = y0, with π1 = (1 · 1 · 2 · 2 · 2). The Δ-unfolding of this
limit cycle is thus made up of 5 points corresponding to the composing
modes of π1 (see Figure 4.7).
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Figure 4.6. Visualization of PostkΔ for k = 0, 20, 40, 60, 80, 100

Figure 4.7. Δ-unfolding of the limit cycle {y0} for the Boost example

EXAMPLE 4.6.– (TWO-TANK SYSTEM).– The two-tank system
example is taken from [HIS 01]. The system consists of two tanks and
two valves. The first valve adds to the inflow of tanks 1 and the second
valve is a drain valve for tank 2. There is also a constant outflow from
tank 2 caused by a pump. The system is linearized at a desired
operating point. The objective is to keep the water level in both tanks
within limits using a discrete open/close switching strategy for the
valves. Let the water level of tanks 1 and 2 be given by x1 and x2,
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respectively. The behavior of x1 is given by ẋ1 = −x1 − 2 when the
tank 1 valve is closed, and ẋ1 = −x1 + 3 when it is closed. Likewise,
x2 is driven by ẋ2 = x1 when the tank 2 valve is closed and
ẋ2 = x1 − x2 − 5 when it is closed. Using R = [−1.5, 2.5]×
[−0.5, 1.5] as a control box, we obtain the decomposition shown in
Figure 4.8. With V1 = [−1.5, 0.5]× [−0.5, 0.5] associated with pattern
π1 = (2 · 3 · 3), V2 = [0.5, 2.5] × [−0.5, 0.5] to π2 = (2), V3 =
[0.5, 2.5]× [0.5, 1.5] to π3 = (1 · 4) and V4 = [−1.5, 0.5]× [0.5, 1.5] to
π4 = 3. Figure 4.9 shows a discrete trajectory of the two-tank system
and its Δ-unfolding.

Figure 4.8. Decomposition for the two-tank problem

Figure 4.9. Δ-trajectory starting from the bottom
left corner of R a), and its Δ-unfolding b)

We can check that all the modes of the two-tank system are
contractive (the eigenvalues of all the associated matrix have a negative
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real part). Hence, assumption H1 is satisfied. Likewise, H2 is satisfied:
for N = 10, PostNΔ(R) does not intersect the borders of Δ (see Figure
4.10 showing the iterated images PostkΔ(R), for
k = 0, 5, 10, 15, 20, 25).

Figure 4.10. Visualization of PostkΔ for k = 0, 5, 10, 15, 20, 25

Here, the limit set R∗
Δ is composed of a unique limit cycle of the

form {y0, y1, y2, y3} with y0 →π2 y1 →π2 y2 →π1 y3 →π3 y4 = y0
(with π2 = (1), π1 = (2·2·3), π3 = (1·4)). This limit cycle is shown in
Figure 4.11, and its Δ-unfolding (corresponding to 7 points generated
by the composing modes of π2π2π1π3) is shown in Figure 4.11b).

Figure 4.11. Limit cycle for the a) two-tank example and its b) Δ-unfolding
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4.5. Implementation

The implementation of the method is made up of two basic
procedures: a function Decomposition described in section 4.3.1,
written in Octave [OCT 13], that outputs Δ, and a procedure called
Iteration that constructs Ri

Δ for i ≥ 0, written in Ocaml [OCA 13].
The function Decomposition is implemented using zonotopes. The
code is given in Appendix 8.

We cannot implement the procedure Iteration using zonotopes
because it involves the intersection operator that does not preserve the
structure of zonotopes. It is thus implemented using the more general
structure of polyhedra using the PPL library [PPL 13]. The Iteration
procedure receives Δ from module Decomposition and outputs the
successive iterations of PostΔ. The sequence of post sets can also be
visualized as an animation (see Figure 4.6).

The examples of decomposition given in this book have been
performed using the code in Octave given in Appendix 5, except the
multilevel examples (see Chapter 5). The multilevel examples have
been performed using a code written in PLECS [PLE 13], which is
better-suited for these examples, because in PLECS we can enter the
electrical circuits under a schematic form and obtain automatically the
associated systems of differential equations. The examples have run on
a machine equipped with an Intel Core2 CPU X6800 at 2.93 GHz with
2 GB of RAM memory. Some of the experiments are listed in the
following table.

Example Running time No. of patterns N k d n Contrac. Cycle
Boost (exercise 4.4) 150 s 12,113 2 10 4 2 Loc. Yes

Helicopter (exercise A2.1) ≈ 2 h ≈ 1.5 million 9 6 4 2 No Yes
Heating (exercise A2.2) 1 s 134 2 2 4 2 Glob. Yes
Two-tank (exercise 4.6) 4 s 1,423 4 3 1 2 Glob. Yes
5-level (section 5.2.1) 3 min - 16 8 1 3 Yes Yes
7-level (section 5.2.2) 35 min - 64 32 1 5 Yes Yes
9-level (section 5.2.2) ≈ 5 h - 256 128 1 7 Yes Yes

The first column indicates the name of the example together with its
reference in the book. The second column indicates the running time to
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obtain a decomposition, and the third column indicates the numbers of
patterns generated to obtain this decomposition4. The subsequent
columns labeled by N , k, d and n indicate the number of modes, the
input parameter of maximal pattern length, the input parameter of
decomposition depth and the space dimension, respectively. Finally,
the column “contrac.” indicates if the example is locally contractive
(loc.), globally contractive (“glob”) or not contractive, and the column
“cycle” indicates if the procedure Iteration generates a limit cycle.

4.6. Notes

The method of proving controlled invariance presented here, based
on a decomposition of the state space, is original. This method presents
some similarities to the box invariance method of Abate et al.
[ABA 09] that exhibit rectangular invariant subregion of affine hybrid
systems containing an equilibrium point. The process of state
decomposition by dichotomy (or “bisection”) has been used in
[JAU 01] for the purpose of set inversion and applied to a robust
control and stability analysis.

As pointed out above, the limit cycle generated is not necessarily a
minimal invariant. Actually, it is difficult to define an appropriate notion
of size for a minimal invariant set. In the framework of discrete linear
time-invariant (LTI) with quantized input, Picasso and Bicchi [PIC 08]
have used hypercubes in order to provide a lower bound for the minimal
feasible size of an invariant set.

The presence of limit cycles in switched systems has often been
observed in the context of power electronics (see [PAT 09] for
example). Various methods are generally used for proving their
existence and stability: Lyapunov techniques (see [RUB 00] [BUI 05]
for example); Poincaré map technique (see [GON 03, HIS 01] for
example); sensibility functions [FLI 06] or describing functions
[SAN 93].

4 This figure is not available for the multilevel converters because they have been
implemented using PLECS, rather than our standard code in Octave.





5

Application to Multilevel Converters

Power converters play an important role in the field of renewable energy: they
are used to connect renewable sources to power grids, and optimize the
efficiency of solar panels and wind generators. Switched control has gained
much attention recently in the field of high-order converters, due to its property
of being easily implemented. In some topologies, there is, however, a dramatic
increase in the number of switches, which entails an increasing number of
degrees of freedom, and complicates the controller design (see [CER 09]).
There is therefore a wide variety of applications for formal methods in order to
produce correct-by-design control methods.

In this chapter, we consider the design of control policies for power converters
with five and seven levels. The objective is to design a switching signal forcing
the output voltage to be a “quantized” sinusoidal signal while ensuring that the
voltages across the capacitors in the power converter remain within predefined
safety ranges. The staircase waveform is achieved by controlling four
(respectively, six) switches, which are used to divide the incoming voltage into
two paths and produce different levels of incoming voltage with the help of
three (respectively, five capacitors). We adapt the decomposition procedure
explained in Chapter 4, in order to synthesize a controller that guarantees that
the electrical state parameters will always stay within a predefined safe zone of
variations. The synthesized controllers have been validated on real hardware
on prototypes built by the SATIE Electronics Laboratory.
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In section 5.1, we explain the principle and architecture of multilevel converters.
In section 5.2, we apply the decomposition method to the control of five-level
and seven-level converters, and give numerical simulations. In section 5.3, we
present physical experimentations done with a prototype built by the SATIE
Laboratory.

5.1. Multilevel converters

The general function of a multilevel power converter is to
synthesize a desired voltage from several levels of DC voltage. For this
reason, multilevel power converters can easily provide the high power
required by large electric drive systems. Schematically, a multilevel
converter is made up of capacitors and switching cells (as well as
opposite switching cells that are in complementary positions).
According to the positions of the cells (the high-side switch conducting
position is indicated by 1 and the low-side switch conducting position
by 0), we are able to fraction the load voltage. By controlling the
global position of the switches during a simple fixed time-stepping
procedure, it is then possible to generate a staircase voltage with levels
that approximate a triangular or sinusoidal waveform (see Figure 5.1
for 1 = 5). The problem that arises is to select the appropriate
switching control strategy among a number of combinations of switch
positions, which increase exponentially with the number of levels (and
pairs of switches). A crucial additional difficulty comes from the fact
that, in order to be admissible, the control of the switching cells must
guarantee that the voltages across the cell-capacitors are constrained
within a certain range defined by the device blocking voltage rating.
The control must then guarantee a safety property, called “capacitor
voltage balancing”: the voltage of each individual capacitor should stay
inside a limited predefined interval.

5.2. Application of the decomposition procedure

We apply a simplified version of the decomposition procedure given
in section 4.3.1 in the context of this case study. The procedure can be
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simplified here because, as explained in the following only a restricted
number of patterns allow us to produce a staircase output signal of 1
levels. These admissible patterns correspond to paths in a predefined
graph. They have all the same length k = 2(1 − 1). Besides, the
procedure succeeds by simple bisection of the input control box R into
2 −1 sub-boxes (which corresponds to value D = 2 for input depth
parameter of algorithm 4.1).

Figure 5.1. Staircase output voltage waveform for a five-level converter

5.2.1. Five-level converter

There are different possible topologies for multilevel power
converters: neutral-point clamped, cascaded H-bridge, flying capacitor,
etc. We focus here on the flying capacitor topology [MEY 92]. The
electrical scheme of a five-level converter is given in Figure 5.2. There
are four pairs of switching cells S1, . . . , S4 and three capacitors
C1, . . . , C3. The state of the system is x(t) = [v1(t) v2(t) v3(t) i(t)]

T

where vi(t) is the voltage across Ci (1 ≤ i ≤ 3) and i(t) is the current
flowing in the circuit. The duration of a cycle is T = 8τ . The mode of
the system is characterized by the value (0 or 1) of the switching cells,
that is by the value of vector S = [S1 S2 S3 S4]

T 1. There are thus
24 = 16 modes. A mode S induces an output voltage of value
−vlow + ( Σ4i=1Si)vhigh/2, where vlow and vhigh are the input voltages
of low level and high level, respectively. The system thus outputs five
different levels of voltage, which go from −vlow up to +vhigh with

1 Besides, we have: S5 = ¬S1, S6 = ¬S2, S7 = ¬S3 and S8 = ¬S4.
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steps at −1,−1
2 , 0,

1
2 , 1. The ideal value v∗i of the voltage across

capacitor Ci (1 ≤ i ≤ 3) depends on the values of vlow and vhigh.
Here, we use: vlow = vhigh = 100V, and v∗1 = 150V, v∗2 = 100V,
v∗3 = 50V. The five-level converter can be seen as a switched system.
Given a mode S, the associated dynamics is of the form
ẋ(t) = ASx(t) + bS with:

AS =

���
− 1

R1C1
0 0 S1−S2

C1

0 − 1
R2C2

0 S2−S3
C2

0 0 − 1
R3C3

S3−S4
C3

S2−S1
LLoad

S3−S2
LLoad

S4−S3
LLoad

−RLoad
LLoad




 and bS =

��
0
0
0

S1
vhigh+vlow

LLoad



 .

Figure 5.2. Electrical scheme of a five-level converter

By controlling the modes at each sampling time, we can synthesize
a five-level staircase function. Not all the transitions between modes
are admissible: we are allowed to switch only one (pair of) cell(s) at a
time. The graph of admissible transitions during a cycle is shown in
Figure 5.3. The nodes of the graph are labeled by the modes. Each path
represents a possible sequence of control for one cycle, leading from
voltage −vlow (state 0000) to voltage +vhigh (state 1111) through
voltages −1

2 .vlow, 0, 1
2 .vhigh then back to voltage −vlow (state 0000)

through voltages 1
2 .vhigh, 0, 1

2 .vlow. There are thus 576 possible
sequences of control for generating a five-level staircase signal on one
cycle. These sequences of control correspond to patterns of length 8,
denoted by π1, . . . , π576. The control problem is now to find a strategy
for deciding, at each beginning of cycle, which πi (1 ≤ i ≤ 576) to
apply in order to maintain all the capacitor voltages within a predefined
limited zone.
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Figure 5.3. Transition graph corresponding to a cycle
of five-level staircase signal

We will use the numerical values: RLoad = 50Ω , C1 = C2 =
C3 = 0.0012 F, LLoad = 0.2 H, R1 = R2 = R3 = 20,000Ω ,
T = 8τ = 0.02 s (which correspond to a frequency of 50 Hz).
The five-level inverter outputs ideally a staircase waveform with an
amplitude of 200 V, centered around 0 V. We consider that a variation
of ±5 V is admissible as it represents a variation of 10% on the least
charged capacitor C3. It is interesting to note that the beginning of each
cycle the value of i is null. This suggests to look for a state-dependent
control that depends only on the capacitor voltages v1, v2, v2, and not
on the value of i. We will thus focus on the voltage dimensions of the
control box R and disregard its intensity dimension. For R, we take
R = [145, 155] × [95, 105] × [45, 55], which corresponds to a product
of intervals centered around the ideal values with a variation of ±5 V
(i.e. 10% of the least charged capacitor C3). For S, we take R + ε with
ε = 1V, which means that we have an additional tolerance of ±1V
for the fluctuations occurring between two beginnings of cycle. The
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decomposition procedure is thus adapted as follows. We decompose R
into eight subsets Vi of equal size:

– V1 = [145, 150]× [95, 100]× [45, 50];

– V2 = [145, 150]× [95, 100]× [50, 55];

– V3 = [145, 150]× [100, 105]× [45, 50];

– V4 = [145, 150]× [100, 105]× [50, 55];

– V5 = [150, 155]× [95, 100]× [45, 50];

– V6 = [150, 155]× [95, 100]× [50, 55];

– V7 = [150, 155]× [100, 105]× [45, 50];

– V8 = [150, 155]× [100, 105]× [50, 55].

Using a standard random generate-and-test program, we find
patterns πj (1 ≤ j ≤ 8), which, applied to points of Vj , generate points
that are all contained in S. The patterns πjs correspond to the
following paths of the transition graph:

– π1: (0000 → 0001 → 0101 → 1101 → 1111 → 1101 → 0101 →
0001 → 0000) ;

– π2: (0000 → 0100 → 0101 → 1101 → 1111 → 1101 → 0101 →
0100 → 0000) ;

– π3: (0000 → 0001 → 0011 → 1011 → 1111 → 1011 → 0011 →
0001 → 0000) ;

– π4: (0000 → 0010 → 0011 → 1011 → 1111 → 1011 → 0011 →
0010 → 0000) ;

– π5: (0000 → 1000 → 1010 → 1110 → 1111 → 1110 → 1010 →
1000 → 0000) ;

– π6: (0000 → 1000 → 1100 → 1101 → 1111 → 1101 → 1100 →
1000 → 0000) ;
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– π7: (0000 → 0100 → 0110 → 0111 → 1111 → 0111 → 0110 →
0100 → 0000) ;

– π8: (0000 → 1000 → 1010 → 1011 → 1111 → 1011 → 1010 →
1000 → 0000).

We present in Figures 5.4 and 5.5 a numerical simulation of this
controller on the system starting from the point
v1(0) = 150V, v2(0) = 100V, v3(0) = 50V and i(0) = −3A. This
simulation has been performed using tool PLECS [PLE 13]. We can
see on the simulation that the system state always stays inside S.

5.2.2. Seven-level converter

The flying capacitor architecture is generic. We now consider the
case of an 1-level converter with 1 = 7. There are now six pairs of
switching cells S1, . . . , S6 and five capacitors C1, . . . , C5. The state of
the system is x(t) = [v1(t) v2(t) v3(t) v4(t) v5(t) i(t)]

T where vi(t) is
the voltage across Ci (1 ≤ i ≤ 5) and i(t) is the current flowing in the
circuit. The generated waveform now goes from −vlow up to +vhigh
with steps at −vlow + ivhigh/3 for i = 0, . . . , 6, and the duration of a
cycle is T = 12τ . There are now 518, 400 possible sequences of
control (patterns) for generating an 1-level staircase signal on one
cycle. We used the following values for the system constants: output at
50Hz2, capacitances of 0.1F, resistor values 50Ω , inductor values
0.137H, vlow = vhigh = 300V. Ideally, the output is thus a staircase
waveform with an amplitude of 600 V, centered around 0 V, and the
ideal values v∗i of the capacitor voltages of the capacitor Ci are given
by: v∗1 = 500V, v∗2 = 400V, v∗3 = 300V, v∗4 = 200V, v∗5 = 100V.
For R, we take R = [495, 505]× [395, 405]× [295, 305]× [195, 205]×
[95, 105], which corresponds to a product of intervals centered around
the ideal values with a variation of ±5V (i.e. 5% of the least charged
capacitor C5). For S, we take R + ε with ε = 1V, which means that
we have an additional tolerance of ±1V for the fluctuations occurring

2 Corresponds to T = 12τ = 0.02 s
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between two beginnings of cycle. The decomposition of R into
subzones {Vi}i∈I and the corresponding set of patterns {πi}i∈I are
given in [FEL 12b]. We present in Figures 5.6 and 5.7 a numerical
simulation of the controlled system starting from the point
v1(0) = 500V, v2(0) = 400V, v3(0) = 300V, v4(0) = 200V,
v5(0) = 100V and i(0) = −2.5A. We can check on the simulation
that the system state always stays inside S.

a) Voltage v1 = f(t) b) Voltage v2 = f(t)

c) Voltage v3 = f(t) d) Plane v2 = f(v1)

e) Plane v3 = f(v1) f) Plane v3 = f(v2)

Figure 5.4. Capacitor voltages ‘
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a) Current i b) Output voltage vo

Figure 5.5. Current and output voltage

Figure 5.6. Capacitor voltages

We have also performed experiments with an 1-level converter for
1 = 9. We have been able to obtain a decomposition after 5 h of running
time, but we are clearly at the limit of the existing implementation.
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a) Current i b) Current vo

Figure 5.7. Current and output voltage

5.3. Physical experimentations

A prototype of the five-level flying capacitor has been built by the
SATIE Laboratory in order to test our control strategy on an actual
system; see Figure 5.8 for an image of the system. Our control strategy
was applied to the system via Simulink and a dSpace R� interface.
The results are shown in Figure 5.9 for the output voltage and the
capacitor charges. In Figure 5.10, we show the same results but with
a larger scale on the capacitor voltage to see the fluctuations around the
reference values. As we can see, the experimental results are very close
to those obtained by simulation with PLECS [PLE 13]. In Figure 5.11,
we show the output voltage together with the current (after appropriate
resizing) flowing through the load. During the experimentations, we
have successfully tested the robustness of the controller in presence of
the following perturbations:

1) The ideal voltage source as input is no longer ideal but its values
fluctuate around the reference value.

2) The system does not start from the reference valuations for the
capacitor voltages and the input voltage, but the input voltage increases
gradually until reaching the desired value while the capacitor is initially
discharged.
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3) We apply the same pattern during two consecutive cycles (instead
of updating the pattern at the end of the first cycle).

4) We use a time-varying period T of cycle (instead of a constant
period), and check the preservation of the capacitor voltages balance.
The result of this experiment is shown in Figure 5.12.

Figure 5.8. Prototype built by SATIE (for a color version of this figure, see
www.iste.co.uk/fribourg/switchingsystems.zip)

Figure 5.9. Output voltage (above) and capacitor voltages
(1 unit for 50 V) (below) (for a color version of this figure, see

www.iste.co.uk/fribourg/switchingsystems.zip)
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Figure 5.10. Zoom of output voltage (above) and capacitors voltages
(1 unit for 5 V) (below) (for a color version of this figure, see

www.iste.co.uk/fribourg/switchingsystems.zip)

Figure 5.11. Output voltage and current (after appropriate resizing) in the
circuit (for a color version of this figure, see

www.iste.co.uk/fribourg/switchingsystems.zip)

Although these preliminary tests of robustness are promising, they
need to be further validated, in particular in the presence of significant
variations of resistor loads. Besides, although the principle of the
method is general, it also suffers from an exponential increase of
complexity when the level 1 grows: the method reaches the limit for
1 = 9, which corresponds to a dimension n = 7 of the state space.
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Figure 5.12. Output voltage (above) and capacitor voltages (below) in the
presence of time-varying period T (for a color version of this figure, see

www.iste.co.uk/fribourg/switchingsystems.zip)

5.4. Notes

We have synthesized a state-dependent control that involves only
the subset of the state vector related to the voltage information, but
ignores the intensity component. This is interesting because for
practical applications, a current sensor is not always desired (see
[DU 09]). More generally, control should use, as far as possible, only a
subset of the state vector because measuring all signals in high-order
converters becomes prohibitively expensive.

The method can be easily refined in order to generate sinusoidal-
like output signals rather than the triangular-like output signals, as done
here: it suffices to adjust the switching instants within the period T of
the cycle, instead of using uniformly τ .





6

Other Issues: Reachability, Sensitivity,
Robustness and Nonlinearity

In this chapter, we indicate several ways of using different facets of the
procedure of invariant generation by decomposition explained in Chapter 4.

We show how an iteration of the decomposition procedure can be used to
synthesize reachability controllers (section 6.1). We suggest to use the
sensitivity of the limit cycles in order to infer the values of physical parameters
of the system using an inverse approach (section 6.2). We explain how to
extend the decomposition procedure in order to synthesize robust safety
controllers in the presence of disturbance (section 6.3). We indicate how to
extend the method for nonlinear systems in section 6.4.

6.1. Reachability control

The reachability control problem consists of steering the system
from an initial region, say R, to a target region typically containing a
reference point, say O. We have seen in Chapter 4 how the iteration of
the decomposition procedure may drive the trajectories to a stability
subregion of R. If such a region contains O, then the goal is achieved.
Actually, if we start from a vast region of attraction R, it is possible to
interleave the process of generating the successor sets with a process of
updating the decompositions. We first apply the decomposition
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procedure to R: if the procedure is successful, we get a decomposition
Δ with PostΔ(R) ⊂ R. If PostΔ(R) still contains the reference point
0, we reapply the decomposition procedure to the bounding box
R� = �(PostΔ(R)), of PostΔ(R). If the procedure succeeds,
yielding a new decomposition Δ�, we can compute the successor set
PostΔ�(R�) ⊂ R�. Now, if PostΔ�(R�) still contains O, we can
reiterate the process to R�� = �(PostΔ�(R�)), and so on iteratively.
Thus, we produce nested boxes R,R�, R��, . . . and associated
decompositions Δ,Δ�,Δ��, . . . . The procedure terminates either when
the sequence stabilizes (Ri+1 ≈ Ri), or when the decomposition
procedure fails, or when Ri+1 does not contain O. The control induced
by the decompositions Δ,Δ�, . . . can be used to construct a
reachability controller that steers the system from R to a region Ri

containing O. This is illustrated in example 6.1.

EXAMPLE 6.1.– We first illustrate the process of iterative
decomposition on the Boost converter example (see example 2.1). We
start from a “large” region R = [0, 10]× [0, 4]. We take O = (1.8, 1.2)
as a reference point. The iteration finds eight nested decompositions
(see Figure 6.1). A trajectory controlled by such nested decompositions
is given in Figure 6.2. The process is also illustrated in the helicopter
motion example (see example 2.3), starting from
R = [−10, 10] × [−10, 10], with the origin (0, 0) as a reference point.
The iteration finds nine nested decompositions (see Figure 6.3). A
controlled trajectory is given in Figure 6.4.

Actually, since the procedure constructs the successive
decompositions in a “blind” manner, without a priori consideration for
the position of O, it is unable to drive the system to a close
neighborhood of O. This shortcoming seems unavoidable when using a
forward approach. More precise reachability controllers should
implement a backward approach, starting from O and using dynamic
programming techniques as done for example in [BER 00] and
[LYG 99], but this may require an expensive gridding of the state
space.
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Figure 6.1. Nested decompositions for Boost DC–DC converter found by
starting from R = [0, 10]× [0, 4]

Figure 6.2. Nested decompositions for helicopter motion found by starting
from R = [−10, 10]× [−10, 10]

Figure 6.3. Controlled trajectory of Boost DC–DC converter
starting from (0, 0.01)
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Figure 6.4. Controlled trajectory of helicopter starting from (−10, 0)

6.2. Sensitivity

We have shown in Chapter 4 that, under the control induced by
decomposition of a given region R, trajectories converge to stable limit
cycles inside R. In the following example, we point out here the
sensitivity of limit cycles to parameter variations by showing the
evolution of limit cycles in the presence of small perturbations of
system parameters. As indicated, for example, in [HIS 01], this
suggests that limit cycles are good candidates for reliable estimation of
physical parameters of the system, using an appropriate inverse
approach (see [TAR 05]).

EXAMPLE 6.2.– We take the Boost DC–DC example with the same
region R = [1.55, 2.15] × [1.0, 1.4] as considered in example 4.1. The
application of algorithm 4.1 with k = 5 and d = 1 yields a
decomposition Δ of R (see Figure 4.1 of Chapter 4). As shown in
Figure 6.5, the trajectories starting from the four corners of R, under
the control strategy induced by Δ, converge to the same limit cycle. A
remarkable feature is that, even in the presence of (small) variations of
parameters of the system, the same decomposition Δ ensures the
k-invariance of R. In our example, the decomposition Δ, originally
found for r0 = 1, is still k-invariant when r0 varies from 0.965 to
1.005. It follows that the state-dependent control found for r0 = 1 still
ensures the convergence to limit cycles in R, for slight variations of r0.
Nevertheless, as shown in Figure 6.6, the form, length and position of
the limit cycles are very sensitive to the actual value of r0: for
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r0 = 0.965, the limit cycle corresponds to the pattern
(π3π

3
1π3π

2
1π3π

3
1π3π

3
1π3π

3
1) (with π1 = (1 · 1 · 2 · 2 · 2),

π3 = (2 · 1 · 2)); for r0 = 0.975, the pattern is (π3π5
1), while for r0 = 1

and r0 = 1.005, it is just (π1).

Figure 6.5. Runs starting from the four corners of R, following the control
strategy induced by the decomposition, and converging to the same limit cycle

6.3. Robust safety control

As explained in section 2.3, zonotopes allow us to extend the
computation of successor sets in order to account for small
perturbations of the system dynamics. The dynamics of the system are
now of the form ẋ = Aux + bu + ε where ε represents a disturbance
vector belonging to a given box Λ centered at the origin, and relations
Postu and Postπ are extended, as explained in section 2.3. The
decomposition procedure and its enhancement for safety (section
4.3.2) are then simply adapted by replacing the inclusion test
Postπ(W ) ⊂ R by Postπ(W,Λ) ⊂ R. We now give two examples of
application of the decomposition procedure (enhanced for safety) in
the presence of disturbance.
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Figure 6.6. Limit cycles for r0 = 0.965 (pattern (π3π
3
1π3π

2
1π3π

3
1π3π

3
1π3π

3
1))

on the upper left, for r0 = 0.975 (pattern (π3π
5
1)) on the upper right, for

r0 = 1 (pattern π1) on the lower left, and for r0 = 1.005 (pattern π1)
on the lower right

EXAMPLE 6.3.– (BOOST CONVERTER).– We consider the dynamics
of the Boost DC–DC converter (see examples 4.1 and 4.4) in the
presence of disturbances ε belonging to Λ = [0, 0] × [−0.064

xl
, 0.064xl

].
These disturbances correspond to noise on the input voltage, and
represent up to 8% of the value of the input voltage. With such
disturbances, we are not able to find a control preserving the safety
zone of example 4.4 (viz. [1.7, 2.0] × [1.10, 1.30]). We thus consider a
larger (i.e. more tolerant) safety zone defined by
S� = [1.65, 2.05] × [1.10, 1.30]. The extended decomposition
procedure then succeeds for k = 13 and d = 5: it generates a
k-invariant decomposition Δ� of R satisfying Unf Δ�(R) ⊂ S�. The
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decomposition Δ� is shown in Figure 6.71. A trajectory starting at
(1.75, 1.26), submitted to perturbation, is shown in Figure 6.8.

Figure 6.7. k-invariant decomposition for Boost converter with disturbances

Figure 6.8. Unfolded Δ-trajectory of the Boost converter with
disturbances in plane (il, vc), starting at (1.75, 1.26) (inner box:

R = [1.75, 1.95]× [1.14, 1.26], outer box: S� = [1.65, 2.05]× [1.1, 1.3])

1 The corresponding patterns are: π1 = (1122121222), π2 = (1122122121222),
π3 = (21121222), π4 = (12121222), π5 = (122), π6 = (2), π7 = (12), π8 = (12),
π9 = (12), π10 = (12), π11 = (1), π12 = (1), π13 = (1), π14 = (12), π15 = (12)
and π16 = (21221).



82 Control of Switching Systems by Invariance Analysis

EXAMPLE 6.4.– (HELICOPTER MOTION).– As done in [DIN 11], we
will now solve the control problem with bounded disturbances to take
into account a potential real-life environment. We consider the same
regions R = [−0.3, 0.3] × [−0.5, 0.5] and S = [−0.4, 0.4]×
[−0.7, 0.7] as in example A2.1, and add the disturbance
ε ∈ Λ = [−0.02, 0.02] × [−0.1, 0.1]. The extended decomposition
procedure succeeds, and generates a k-invariant decomposition Δ�

with Unf Δ�(R) ⊂ S. The decomposition Δ� is shown in Figure 6.9. A
trajectory starting at point (−0.3, 0.5), submitted to disturbance, is
shown in Figure 6.10.

Figure 6.9. k-invariant decomposition for helicopter motion with disturbance

6.4. Nonlinearity

The basic decomposition procedure, explained in section 4.3.1, is
quite general, and does not suppose that the successor operator Postπ
is linear or affine. However, in the case where Postπ is an affine
function, the computation can be done in an exact manner. We now
discuss how to modify the decomposition procedure in case of
non-affine dynamics. The process is inspired by what has been done
for the handling disturbance (section 6.3). Following [ALT 08], we
compute (an overapproximation of) the successor sets using local
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linearizations of the system, and enlargement of the linear images by
addition of error intervals. We will consider here a system governed by
a unique equation of the form x(t + τ) = f(x(t)) where f is a
polynomial. The set U is thus reduced to a single element (U = {1}).
A pattern π associated with a subregion V is now just an integer
indicating the number of times f should be applied when the state is in
V . We put f(x) under the form f(x) = flin(x) +Q(x), where flin(x)
is a polynomial of order 1, and Q is a sum of monomials of order
greater than or equal to 2. As in section 2.3, we can compute a local
overapproximation of f by considering the polynomial subpart Q(x)
as a perturbation. We have:

Figure 6.10. Unfolded Δ-trajectory of helicopter motion with disturbance in
plane (x, ẋ), starting at (−0.3, 0.5) (inner box: R, outer box: S)

LEMMA 6.1.– Consider a function f defined by: f(x) = flin(x) +
Q(x), where flin(x) is the first-order polynomial of the form d + Cx,
and Q(x) is the sum of polynomials of order greater than or equal to 2.
Given a zonotope Z :< c,G >, we have:

f(Z) ⊂ flin(Z) + ZΛ

with:

– flin(Z) =< f(c), CG >
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– ZΛ =< 0,

���
ε1(Z) 0 . . . 0
0 ε2(Z) . . . 0
...

...
. . .

...
0 0 . . . εn(Z)




 >

with (1 ≤ i ≤ n): εi(Z) = maxx∈Z(|Qi(x)−Qi(c)|).

Using a repeated application of the lemma, we can compute an
overapproximation of fπ(Z) of the form fπ

lin(Z) + Zπ
Λ. This lemma

allows to modify the decomposition procedure as follows: the
inclusion test Postπ(W ) ⊂ R, which corresponds here to a test of the
form fπ(W ) ⊂ R, is replaced by test fπ

lin(W ) + W π
Λ ⊂ R. What

remains to do is to find an upper bound of εi(W ), that is an upper
bound of (|Qi(x) − Qi(c)|) over W , for each 1 ≤ i ≤ n. We now
explain two standard examples (taken from [AMI 12]) to compute such
upper bounds. The decomposition procedure is then iterated in order to
construct an attractor, which is an overapproximation of R∗

Δ.

EXAMPLE 6.5.– (VAN DER POL OSCILLATOR).–The dynamics of the
Van der Pol oscillator are the following:

x(t+ τ) =

�
1 τ
−τ 1 + τ

�
x(t) +

�
0

x1(t)
2x2(t)τ

�
.

When linearized to a point c ∈ R2, this gives:

x(τ) =

�
1 τ
−τ 1 + τ

�
x(t) +

�
0

−c21c2τ

�
.

Thus, we have flin(Z) =

�
1 τ
−τ 1 + τ

�
Z +

�
0

−c21c2τ

�
=�

1 τ
−τ 1 + τ(1− c21)

�
x(t). It is easy to see that for a box V ⊂ R2, we

are making an error of at most 0 on the x-axis and
|(c21 − (c1 + G1,2 + G2,2)

2|τ on the y-axis. Thus, we need to enlarge
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any image of a zonotope Z =< c,G > by 0 on the x-axis and
τ |(C2

1 − (C1 +G1,2 +G2,2)
2| on the y-axis, that is:

ZΛ =< 0,

�
0 0
0 |(C2

1 − (C1 +G1,2 +G2,2)
2|τ

�
> .

The decomposition procedure is applied to R = [−3, 3]×[−3, 3] and
τ = 0.01 (with parameters k = 30, d = 7). At boxes located around the
center of R, the length of patterns is 1 while in the lower left and upper
right edges, the length is up to 30. The result of the decomposition is
shown in the left part of Figure 6.11 and (an overapproximation of) the
attractor set R∗

Δ in the right part.

Figure 6.11. Decomposition for the Van der Pol oscillator (left); Rj
Δ for

j = 30 (right) (for a color version of this figure, see
www.iste.co.uk/fribourg/switchingsystems.zip)

EXAMPLE 6.6.– (FITZHUGH–NAGUMO NEURON).–The dynamics of
the FitzHugh–Nagumo neuron are the following:

x(τ) =

�
1 + τ −τ
0.08τ −0.0064τ + 1

�
x(t) +

�−x1(t)
3τ/3 + 0.875τ
0.056τ

�
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When linearized to a point c ∈ R2, this gives:

x(τ) =

�
1 + τ −τ
0.08τ −0.0064τ + 1

�
x(t) +

�−c31τ/3 + 0.875τ
0.056τ

�
.

It is easy to see that for a box V ⊂ R2, we are making an error of
at most maxx∈V (

|x3
1−c31|
3 )τ on the x-axis and 0 on the y-axis. Thus, we

need to enlarge any image of a zonotope Z by maxx∈Z(
|x3

1−c31|
3 )τ on

the x-axis and 0 on the y-axis, that is:

ZΛ =< 0,

�
maxx∈Z(

|x3
1−c31|
3 )τ 0

0 0



> .

The decomposition procedure is applied to R = [−2.5, 2.5]×
[−0.5, 2.5] and τ = 0.1 (with parameters k = 30, d = 7). For boxes
located around the center of R, the length of patterns is 1 while in the
lower left and upper right corners, the length is up to 22. The result of
the decomposition is shown in the left part of Figure 6.12 and (an
overapproximation of) the attractor set R∗

Δ in the right part.

Figure 6.12. Decomposition for the FitzHugh–Nagumo neuron (left); Rj
Δ for

j = 30 (right) (for a color version of this figure, see
www.iste.co.uk/fribourg/switchingsystems.zip)
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We have thus discussed how to construct attractors of polynomial
dynamic systems by overapproximating the subpolynomial subpart of
order greater than 1. So far, the overapproximation is done in an ad
hoc fashion for each specific example. It would be interesting to use a
general method of overapproximation based, for example, on the notion
of Lagrange remainder (see [ALT 08]).

6.5. Notes

The reachability approach, discussed in section 6.1, does not take
into account the question of time optimality. The time-optimal control
problem consists of steering, in minimal time, the state of the system to
a desired target while keeping the system safe along the way. It is
classically solved using dynamic programming and a backward
procedure (see [BER 00]). A solution for S2-systems, based on
approximate bisimulation, is given in [GIR 10a].

The idea of using trajectory sensitivities in order to solve inverse
problems, discussed in section 6.2, comes from [HIS 01], where it is
explained how to use the measurements of disturbance effects to
improve the estimates of parameters of power systems.





Conclusions and Perspectives

Switched systems are now commonly used in industrial domains
such as power electronics or the automotive industry. These systems
are easily programmable and allow for flexible design of the controlled
components. However, with the growing number of switches, the task
of control synthesis becomes challenging. Traditional methods based
on extensive testing face difficulties to prove correctness of the control
designed at hand. This opens the path to the synthesis of
correct-by-design control software using formal methods.. We have
focused in this book mainly on two issues of correctness for
controllers: safety and stability. We have seen that the safety problem is
closely related to the synthesis of a maximal controlled invariant,
while the stability problem is related to the synthesis of a minimal
controlled invariant.

The synthesis of a maximal controlled invariant is classically done
by a fixed point iteration that is applied to a backward manner for
computing successively the predecessor reachable sets. The procedure
terminates when the state space is finite. Thus, the most common
approach to provide correct-by-design synthesis techniques is indirect:
it first converts the infinite state model into a finite state abstraction,
then the controller synthesized at the abstract level is carried through
the original infinite state model at the price of a certain approximation.
However, in order to keep an acceptable precision, the method imposes
a gridding of the state space that entails an explosion of the number of
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states at the abstract level. An other approach is to work directly at the
infinite state level. As already mentioned, the backward iteration
procedure is thus not guaranteed to terminate, and we have to
under-approximate the symbolic reachable states generated in order to
overcome this problem. However, here again, if we want to keep an
acceptable precision, the number of states generated often becomes
intractable, especially in the case of higher dimensional systems.

We have therefore proposed an alternative approach which is
forward oriented and works directly on the infinite state level. In order
to make the approach tractable, we have made a certain number of
realistic assumptions: we have considered that the mode dynamics
were affine, that the switching frequency was constant, and have
ignored possible violations of the safety requirements between two
switching instants. These assumptions are realistic in the context of
power electronics. The method interleaves the decomposition of the
operating space into subregions with the computation of patterns
mapping these subregions inside the operating space. The method can
be used for synthesizing safety controllers, as exemplified in the case
studies of multilevel converters. Under further assumptions
(essentially, local stability), this method is able to stabilize the system
around identified limit cycles. We have finally sketched out some
possible extensions of the decomposition procedure in order to address
issues such as reachability control, robust control and nonlinear
dynamics.

An important topic of current research is to synthesize controllers
that satisfy multiple objectives simultaneously. When safety is among
the objectives, a typical method is to construct the maximally
permissive safety controller, then to refine it in order to complete
secondary objectives. As usual, in practice, things are often more
difficult, and techniques of synthesis and verification may have to be
combined in an ad hoc manner. For example, in the oil pump system
studied in [CAS 09], the problem is to design an operating cycle that
meets safety requirements (for maintaining the oil level in a given
interval), robustness (for taking into account imprecisions on measures
of volume or time) and performance (for minimizing the oil
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accumulated during each cycle). Such a goal is achieved using a clever
combination of analysis tools (UPPAAL-TIGA [BEH 07] for synthesis,
PHAVER [FRE 08] for verification and SIMULINK [TEA 08] for
simulation). In the domain of hybrid systems, many tools of control
synthesis indeed share many common features with tools of
verification: they rely on the same techniques of compact
representation of states, and efficient construction of reachable sets.
The tool d/dt [ASA 02] can thus be used to solve safety verification
problems as well as safety switching controller synthesis. Other tools
such as SPACEEX [FRE 11] and IMITATOR [AND 13] can be similarly
used both for verification and synthesis problems of hybrid systems.

The methods and associated tools described in this book have now
reached a level of maturity that allows them to tackle control problems
with state space of dimensions up to 7 and reachable state sets made
up of millions of elementary structures (typically, boxes or zonotopes,
polyhedra). A major challenge is of course to design methods that scale
with higher dimensional systems and to face the well-known curse of
dimensionality (see [RUN 13] for example). This problem is currently
addressed via the design of new structures for representing the union
of convex sets, such as “support functions” [LEG 09] or “Brunowsky
normal forms” [RUN 13].

In addition, as pointed out in the introduction, practical
considerations specific to each case study often allow us to make
realistic assumptions that considerably simplify the treatment of the
problem. This was illustrated in the book by the multilevel converter
case study where, due to physical considerations, the number of
admissible sequences of modes during an electrical cycle was only a
small fraction of the total number of possible combinations. The code
given in Appendix 1 should allow the interested reader to reproduce
himself/herself other examples of control synthesis given in the book
and get initiated to the programming of switching systems. Hopefully,
this will help the student to better grasp the interest and richness of
formal methods and encourage the engineer to produce
correct-by-design control software for interesting industrial
applications.





Appendix 1

Sufficient Condition of Decomposition

Given a zone R, an invariant decomposition does not always exist.
We give hereafter some geometrical conditions on the position of R
that guarantee the decomposability of R when the system is
contractive. For the sake of simplicity, we suppose that the switched
system has only |U | = 2 modes, and the state-space dimension is
n = 2, but the reasoning extends to larger values of |U | and n. We
assume that matrix Au associated with mode u (u = 1, 2) is invertible
and its eigenvalues have negative real parts. This implies that both
modes are contractive. Let eu = −A−1

u bu be the unique attractive
equilibrium point associated with mode u (u = 1, 2). Let us define the
“pure” switching rule Su (u = 1, 2) that applies repeatedly mode u to
any point x ∈ R2. Let C1 (respectively, C2) be the τ -sampled trajectory
issued from e1 (respectively, e2) under S2 (respectively, S1) (i.e.
C1 = Post∗2(e1) and C2 = Post∗1(e2)). Since each mode is contractive,
and eu is the unique equilibrium point associated with mode u, any
trajectory under control Su ends at the equilibrium point eu (u = 1, 2),
whatever the starting point of R2. In particular, C1 ends at e2 and C2 at
e1, as shown in Figure A1.1 for the Boost converter (see examples 2.1
and 4.1).
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Figure A1.1. Trajectories C1, and C2 and zone R = [1.7, 2]× [1.1, 1.2] for
the DC-DC converter example

THEOREM A1.1.– Let Σ be a sampled switched affine system as
defined above. Suppose that the reference point O is in C1 ∪ C2. If
R ⊂ R2 is a box whose interior contains O, then there exists a positive
integer k such that R is k-invariant.

PROOF.– Suppose O ∈ C2. (The case O ∈ C1 is symmetrical.) Consider
a box R of interior Ṙ with O ∈ Ṙ. There exists ΔO > 0 such that
B(O,ΔO) ⊂ R. Since O ∈ C2, we have:

a) e2 →π1 O for some pattern π1 ∈ (1)∗.

Furthermore, for all x ∈ R, we have:

b) x →π2 x1 for some x1 ∈ B(e2,ΔO) and some pattern π2 ∈ (2)∗,
because e2 is an attractive equilibrium point;

c) x1 →π1 x2 for some x2 ∈ B(O,ΔO), because of (a) and because
mode 1 is contractive. This is shown in Figure A1.2. It follows from
(b) and (c) that, for all x ∈ R: x →πx x2 for some x2 ∈ B(O,ΔO) and
some pattern πx ∈ (2∗1∗). Hence, we have B(x2,Δx) ⊂ R for some
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Δx > 0. Since, for any πx, Postπx is continuous, Preπx(B(x2,Δx))
is an open subset of R2 containing x. Since R is a compact of R2, from
the set C = {Preπx(B(Postπx(x),Δx))}x∈R, we can extract a subset
C � = {Preπxi

(B(Postπxi
(xi),Δxi))}i∈I by Heine–Borel’s theorem,

for some finite set of indices I , such that C � covers R and B(xi,Δxi) is
R-invariant via πi. This means that C � ∩ R is a k-invariant
decomposition of R of the form {(Vi, πi)}i=1,...,m, where m is the
cardinal of I , k the maximum length of π1, . . . , πm and
Vi = B(xi,Δxi) ∩ R is such that

�m
i=1 Vi = R and Vi is R-invariant

via πi (1 ≤ i ≤ m).

R

x

e2
x1

O

C2 x2 π2
π1

Figure A1.2. Illustration of the proof

The theorem gives an interesting locality condition on O (location
on one of the “pure” trajectories linking the equilibrium points), for
ensuring the existence of k-invariant boxes R. This justifies a posteriori
the existence of a decomposition for the zone R of the DC–DC converter
example 4.1 since it overlaps trajectory C1. Note also that R can be
arbitrarily small as far as it intersects C1 (or C2).





Appendix 2

Applications of the Enhanced
Decomposition Procedure

We now apply the decomposition procedure (enhanced for safety
properties) for several examples. For each example, we are given a
global control box R and a safety set S that contains it. We generate a
k-invariant decomposition Δ of R satisfying Unf Δ(R) ⊂ S, thus
proving that Unf Δ(R) is a controlled invariant, and that the system is
safe.

EXAMPLE A2.1.– Let us consider the helicopter motion example 2.3
of Chapter 2. We take R = [−0.3, 0.3] × [−0.5, 0.5] in plane (x1, x2).
This corresponds to an equilibrium zone centered at the state (0, 0) of
the ground vehicle, and a variability of ±0.3 for position and ±0.5 for
velocity. We take S = [−0.4, 0.4] × [−0.7, 0.7] for the safety region,
which corresponds to an additional variability of ±0.1 for position and
velocity. (This is the same safety zone S as in [DIN 11].)

The application of algorithm 4.1 to R and S with k = 6 and d = 4
is successful, yielding a k-invariant decomposition Δ of R of the form
{(Vi, πi)}i=1,...,10

1 satisfying Unf Δ(R) ⊂ S. The decomposition Δ is

1 The associated patterns are: π1 = (−10 ·−10 ·−10 ·−10 ·−10 ·0 ·10), π2 = (−10),
π3 = (0), π4 = (−10 · −10 · −10 · 10), π5 = (−10), π6 = (0), π7 = (−10),
π8 = (10 · 10 · 0 · 0), π9 = (0) and π10 = (10 · 10 · 10 · 10 · 0 · 10 · −10).
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shown in Figure A2.1. The unfolding of R is shown in Figure A2.2. The
unfolding is divided into regions of three different colors corresponding
to the different control modes: dark-gray color (respectively, medium
gray and light gray) indicates that mode 10 (respectively. −10 and 0)
should be applied. The surrounding box is S = [−0.4, 0.4]×[−0.6, 0.6].

Figure A2.1. k-invariant decomposition for helicopter motion

Figure A2.2. Δ-unfolding for helicopter motion where dark gray
(respectively, medium gray and light gray) indicates mode 10

(respectively, −10 and 0). (The enclosing box is S)



Appendix 2 99

The unfolded Δ-trajectory, in plane (x, ẋ), of the system starting at
point (−0.3, 0.5), is shown in Figure A2.3.

Figure A2.3. Unfolded Δ-trajectory of helicopter motion in plane (x, ẋ)
starting at (−0.3, 0.5) (inner box: R, outer box: S)

EXAMPLE A2.2.– (TWO-ROOM BUILDING HEATING).– Let us
consider the example of the two-room building heating problem (see
example 2.2 of Chapter 2). For the safety zone, we take
S = [20, 22]× [20, 22], as in [GIR 12].

The application of algorithm 4.1 to R and S with k = 4 and d = 2
succeeds, yielding a k-invariant decomposition Δ of the form
{(Vj , πj)}j=1,...,10 of R2 satisfying Unf Δ(R) ⊂ S. The
decomposition Δ is shown in Figure A2.4. The unfolding of R is
shown in Figure A2.5. The unfolding is divided into regions of two
colors corresponding to the different control modes: the dark-gray
color (respectively, light gray) indicates that control 0 (respectively, 1)
should be applied. The outer box is the safety zone S.

2 The associated patterns are: π1 = (1010), π2 = (1), π3 = (10), π4 = (0), π5 = (0),
π6 = (1), π7 = (0), π8 = (0), π9 = (0) and π10 = (10).
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Figure A2.4. k-invariant decomposition for heating system

Figure A2.5. Δ-unfolding for heating system where dark gray
(respectively, light gray) indicates mode 0 (respectively, 1).

(Outer box: S = [20, 22]× [20, 22])
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Figure A2.6. Unfolded Δ-trajectory of heating system in plane (T1, T2),
starting at (20.25, 21.75) (inner box R = [20.25, 21.75]× [20.25, 21.75],

outer box S = [20, 22]× [20, 22])

The controlled system has been simulated using Octave [OCT 13].
A simulation is shown in Figure A2.6 for starting temperature point
(20.25, 21.75).





Appendix 3

Proof of Theorem 4.3

Consider a k-invariant decomposition Δ = {(Vi, πi)}i∈I of R, and
the sequence {Rj

Δ}j≥0 and its limit R∗
Δ defined in Chapter 4.

Let us consider the (compact) convex sets W k
σ where k ∈ N and

σ ∈ Ik, defined as follows:

– W 0
� = R where $ denotes the empty sequence.

– W k+1
(i·σ) = Postπi(W

k
σ ∩ Vi) with i ∈ I and σ ∈ Ik.

It is easy to show that, for all k ∈ N and all σ ∈ Ik, W k
σ is a compact

convex set such that:

1) PostkΔ(R) =
�

σ∈Ik W
k
σ .

It follows from assumption (H2) that, for all sequence σ ∈ IN ,
WN

σ ∩ ∂Δ = ∅, therefore WN
σ ⊂ V̊i for some i ∈ I , and

PostΔ(W
N
σ ) = Postπi(W

N
σ ). Since PostN+1

Δ (R) ⊂ PostNΔ(R),
PostΔ(W

N
σ ) = Postπi(W

N
σ ) is a compact convex set included into

PostNΔ(R), and is therefore included in one of the convex components
of PostNΔ(R). We have:

2) PostΔ(W
N
σ ) ⊂ WN

σ� for some σ� ∈ IN .
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Now, for all Δ-trajectory {x0, x1, . . . }, we have:

3) ∀k ≥ N ∃σ ∈ IN : xk ∈ WN
σ because, for all k ≥ N , xk ∈

PostkΔ(R) ⊂ PostNΔ(R) =
�

σ∈IN WN
σ . By rewriting the elements

of {WN
σ }σ∈IN under the form {W1, . . . ,WM}, and denoting the set

{1, . . . ,M} by J , we recapitulate these results as follows.

PROPOSITION A3.1.– There exist M compact convex sets
W1, . . . ,WM with

�M
j=1Wj ∩ ∂Δ = ∅, such that:

1�) PostNΔ(R) =
�M

j=1Wj .

2�) ∀j ∈ J ∃j� ∈ J : PostΔ(Wj) ⊂ Wj� .

3�) for all Δ-trajectory {x0, x1, . . . }, ∀i ≥ N ∃j ∈ J : xi ∈ Wj .

The element j� associated with j in (2�) will be denoted by s(j). (If
there is more than one such j�, an arbitrary one is selected.)

Using part (2�) of proposition A3.1, we can define a directed graph
where J is the set of vertices, and there is an oriented edge from j ∈ J to
j� ∈ J iff j� = s(j) (i.e. PostΔ(Wj) ⊂ Wj�). The strongly connected
components of this graph are cyclic (because each vertex of the graph
has a unique outgoing edge).

In the following, we will denote a cyclic subgraph by
C = (j0, . . . , jm−1) with j +1 = s(j ) for 0 ≤ 1 ≤ m − 1, using the
convention: jm = j0. For every element j of C, we have sm(j) = j,
that is PostmΔ(Wj) ⊂ Wj . More generally,
Post

(i+1)·m
Δ (Wj) ⊂ Posti·mΔ (Wj). We can define a decreasing

sequence of non-empty compact convex sets Posti·mΔ Wj for all i ≥ 0.
The limit set

�
i≥0 Posti·mΔ (Wj) is a non-empty compact set.

Furthermore, since by (H1) all the modes are contractive, it is easy to
see that this limit set is reduced to a point that will be denoted by zj .
Every cycle of indices C = (j0, . . . , jm−1) thus corresponds to a cycle
of points ZC = (zj0 , . . . , zjm−1). Furthermore, it is easy to show that,
for all 0 ≤ 1 ≤ m − 1, we have succΔ(zj�) = zj�+1

. Let us denote the
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set of vertices of all the cyclic subgraphs by J �. An illustration of the
form of such a graph is given in Figure A3.1.

Figure A3.1. Illustration of the graph of Wjs with
J = {1, 2, 3, 4, 5, 6} and J � = {1, 2, 4, 5}

These results are recapitulated in the following.

PROPOSITION A3.2.– For all cycle C = (j0, . . . , jm−1) of J �, we have:
∀j ∈ C : PostmΔ(Wj) ⊂ Wj .

Furthermore, for all j ∈ C, the set
�

i≥0 Posti·mΔ (Wj) is well defined
and equal to a point denoted by zj . We have, for all 1 = 0, . . . ,m − 1:
succΔ(zj�) = zj�+1

.

Consider now the vertices of the graph that are J \ J �. Each of them
is the destination of a finite number of acyclic paths. This means that
after a finite number of iterations of PostΔ, no point will belong to Wj

for j ∈ J \ J �1. Formally: ∃M ≥ N ∀j ∈ J \ J � PostMΔ (R)∩Wj = ∅.
Furthermore, ∀k ≥ M PostkΔ(R) ⊂ �

j∈J � Wj . It follows that, for all
Δ-trajectory {x0, x1, . . . }, xM belongs to Wj for some j ∈ J �. Let
C = (j0, . . . , jm−1) be the cycle that contains j. Modulo a circular
permutation of C, we can suppose j = j0. Then, for all 0 ≤ 1 ≤ m− 1,

1 More formally, no point will belong to a Wj for j ∈ J \ J � if it does not belong to a
Wj� for j� ∈ J �
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xM+ belongs to Wj� . More generally, xM+i·m+ ∈ Posti·m(Wj�). It
follows: limi→∞ xM+i·m+ =

�
i≥0 Posti·mΔ (Wj�) = zj� . We have:

THEOREM A3.1.– Every Δ-trajectory {x0, x1, . . . } converges to a
limit cycle in the following sense: for all initial points x0 ∈ R,
there exists a cycle C = (j0, . . . , jm−1) of J �, a cycle of points
ZC = (zj0 , . . . , zjm−1) and an integer M ∈ N such that, for all
1 = 0, . . . ,m− 1:

– ∀i ≥ 0 : xM+i·m+ ∈ Posti·mΔ (Wj�) ⊂ Wj� .

– limi→∞ xM+i·m+ = zj� .

The expression PostmΔ(zj�) = zj� of theorem 4.3 gives a practical
method to compute zj� (1 = 0, . . . ,m − 1). Indeed, we have that
zj� ∈ Vi for some i ∈ I . Let us denote such an i by φ(j ), and let
π = (πφ(j0) · · ·πφ(jm−1)). Since PostmΔ(zj0) = Postπ(zj0) =
Cπ · zj0 + dπ for some matrix Cπ and vector dπ, we can compute zj0
as a solution of the equation zj0 = Cπ · zj0 + dπ. Similar equations
hold for zj� with 1 = 1, . . . ,m− 1. Furthermore, we have:

PROPOSITION A3.3.– R∗
Δ = {zj | j ∈ J �}.

PROOF.– We know that there exists K > 0 such that, for all k ≥ K,
PostkΔ(R) =

�
j∈J � PostkΔ(Wj). We also know

�
k≥0 PostkΔ(Wj) =

{zj}. It follows R∗
Δ =

�
k≥0 PostkΔ(R) =

�
j∈J �

�
k≥0 PostkΔ(Wj) =

{zj | j ∈ J �}.

The elements of {zj | j ∈ J �} are grouped together into cyclic sets
of points. For all cyclic set of points ZC , we have PostΔ(ZC) = ZC . It
follows:

PROPOSITION A3.4.– For all cyclic set of points ZC , the Δ-unfolding
of ZC is a controlled invariant set.

From theorem A3.1 and propositions A3.3 and A3.4 follows theorem
4.3 of Chapter 4.
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Example with |R∗
Δ| = ∞

For this example, we use modes associated with repulsive
homothetic transformation. There are four modes such that, close to
each corner of the global box R = [−1, 1] × [−1, 1], there exists a
fixed point for one of the mode. We take for the dynamics of the

modes: A1 = A2 = A3 = A4 =

�
1.5 0
0 1.5

�
, b1 =

�
0.6
0.6

�
,

b2 =

�−0.6
0.6

�
, b3 =

�−0.6
−0.6

�
and b4 =

�
0.6
−0.6

�
. The

Δ-decomposition is shown in Figure A4.1. We have
V1 = [−1, 0] × [−1, 0] associated with pattern π1 = (1),
V2 = [0, 1] × [−1, 0] associated with pattern π2 = (2),
V3 = [0, 1] × [0, 1] associated with pattern π3 = (3) and
V4 = [−1, 0] × [0, 1] associated with pattern π4 = (4). A Δ-trajectory
is shown in Figure A4.2. We can see a chaotic behavior and an absence
of convergence toward a limit cycle.
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Figure A4.1. Decomposition Δ of R for the non-contractive example

Figure A4.2. Δ-trajectory for the non-contractive example
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Code

All the codes are written in Octave [OCT 13].

We first recall some basic facts about the construction of the
bounding box of a zonotope and the test of inclusion of a zonotope into
a box (see section 2.3).

Let Z =< c,G > be a zonotope where G is an n× p matrix. A box
is a zonotope Z =< c,D > where D is an n× n diagonal matrix. The
bounding box of a zonotope < c,G > is a zonotope, denoted by �(Z),
of the form < c,G� > where G� is an n×n diagonal matrix of the form:��

�p
i=1 |G1,i| 0 ... 0

0
�p

i=1 |G2,i| ... 0
. . . .
0 0 ...

�p
i=1 |Gn,i|



 .

The inclusion test of a zonotope Z into a box Z � is equivalent to the
inclusion test �(Z) ⊂ Z �. Given an n× n matrix G, and an n-vector g,
let: diag(G) = [G1,1 G2,2 · · · Gn,n]

T and abs(g) = [g1 g2 · · · gn]T .

PROPOSITION A5.1.– Let Z =< c,D > and Z � =< c�, D� > be two
boxes.

Z ⊂ Z � ⇐⇒ ∀i ∈ {1, . . . , n} abs(c− c�)i

+abs(diag(D))i <= abs(diag(D�))i.
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A5.1. Functions on zonotopes

The function in Figure A5.1 decomposes a zonotope into its center
C and its generators G (under the form of a matrix).

f u n c t i o n C ,G =zonotope_decompo ( z o n o t o p e )
% C i s t h e c e n t e r
C = z o n o t o p e ( : , 1 ) ;
% G i s t h e g e n e r a t o r m a t r i x
G = z o n o t o p e ( : , 2 : l e n g t h ( z o n o t o p e ( 1 , : ) ) ) ;

endfunc t ion

Figure A5.1. Function that decomposes a zonotope into its center
and its generators

The function in Figure A5.2 computes the bounding box of a given
zonotope. The smallest bounding box �(Z) of a zonotope
Z =< c,G > is:

< c,

�����

�m
i=1 |G1,i| 0 0 . . . 0

0
�m

i=1 |G2,i| 0 . . . 0
...

. . .
...

0 . . . 0
�m

i=1 |Gn−1,i| 0
0 0 . . . 0

�m
i=1 |Gn,i|






 > .

f u n c t i o n s q u a r e d _ z o n o t o p e = s q u a r e _ z o n o t o p e ( z o n o t o p e )
[C ,G] = zonotope_decompo ( z o n o t o p e ) ;
n= l e n g t h (G ( : , 1 ) ) ;
m = l e n g t h (G ( 1 , : ) ) ;
G_squared = z e r o s ( n , n ) ;
f o r i =1 : n

f o r j =1 :m
G_squared ( i , i )= G_squared ( i , i ) + abs (G( i , j ) ) ;

endfor
endfor
s q u a r e d _ z o n o t o p e =[C , G_squared ] ;

endfunc t ion

Figure A5.2. Function that computes the bounding box of a zonotope

The function in Figure A5.3 tests the inclusion of a zonotope into a
box. It is easy to see that testing the inclusion of a zonotope Z into a box
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B is equivalent to testing the inclusion of �(Z) into B. This operation
can then be done easily by computing the minimum and maximum of
�(Z) on each dimension and comparing it with B.

f u n c t i o n i n c l u s i o n = i n c l u s i o n _ z o n o t o p e ( zonotope_1 , zono tope_2 )
%Zonotope 2 i s a box
%We t e s t t h e i n c l u s i o n o f zo n o t o p e _ 1 i n t o z o n t o p e _ 2
%The t e s t o f i n c l u s i o n o f zo n o t o p e _ 1 i n t o z o n o t o p e _ 2
%i s e q u i v a l e n t t o t h e t e s t o f i n c l u s i o n o f
%s q u a r e _ z o n o t o p e ( zo n o t o p e_ 1 ) i n t o z o n o t o p e _ 2
zono tope_1 = s q u a r e _ z o n o t o p e ( zono tope_1 ) ;
[ C1 ,G]= zonotope_decompo ( zono tope_1 ) ;
[ C2 ,D]= zonotope_decompo ( zono tope_2 ) ;

vec_G = d i a g o n a l e _ m a t r i x (G ) ;
vec_D = d i a g o n a l e _ m a t r i x (D ) ;

i f ( abs ( C1−C2)+ abs ( vec_G ) <= abs ( vec_D ) )
i n c l u s i o n = 1 ;

e l s e i n c l u s i o n = 0 ;
e n d i f

en df un c t io n

Figure A5.3. Function that tests the inclusion of a zonotope into a box

The function diagonale_matrix(M) returns the diagonal of a
matrix M .

The function in Figure A5.4 returns a subset of a zonotope. More
precisely, given a zonotope Z, it will return one of the quadrant of Z.

f u n c t i o n morceau = s p l i t _ z o n o t o p e ( zonotope , i n d e x )
[C ,G]= zonotope_decompo ( z o n o t o p e ) ;
morceau = [C + 1/2∗G∗ i n t 2 b i n ( index , l e n g t h (C ) ) , 1 / 2∗G ] ;

en df un c t io n

Figure A5.4. Function that returns a subset of a zonotope

In Figure A5.4, int2bin(n, p) is a function that converts a number
n into its binary form with p digits. For example, int2bin(2, 5) returns
00010.

The function in Figure A5.5 returns the image of a zonotope by an
affine application of the form f : X �→ αcX + βc.
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f u n c t i o n zono tope_ image = a f f i n e _ t r a n s f o ( zonotope , a lpha_c , b e t a _ c )
[C ,G]= zonotope_decompo ( z o n o t o p e ) ;
zono tope_ image = [ a l p h a _ c ∗C + be ta_c , a l p h a _ c ∗G ] ;

endfunc t i on

Figure A5.5. Function that computes the image of a zonotope
by an affine application

The function in Figure A5.6 returns the image of a zonotope by a
pattern corresponding to a sequence of affine transformations.

f u n c t i o n zono tope_ image = p a t t e r n _ i m a g e ( zonotope , p a t t e r n )
[C ,G]= zonotope_decompo ( z o n o t o p e ) ;
zono tope_ image = z o n o t o p e ;
f o r i =1 : l e n g t h ( p a t t e r n )

zono tope_ image = a f f i n e _ t r a n s f o ( ( zono tope_ image ) ,
a l p h a _ c ( p a t t e r n ( i ) ) , b e t a _ c ( p a t t e r n ( i ) ) ) ;

endfor
endfunc t ion

Figure A5.6. Function that computes the image of a zonotope by a pattern

The function in Figure A5.7 tests whether or not a point belongs in
a zonotope. This is simply done by considering a point as a zonotope
with generator G = 0.

f u n c t i o n answer = i s _ i n _ z o n o t o p e ( p o i n t , z o n o t o p e )
z o n o t o p e _ p o i n t = [ p o i n t , z e r o s ( l e n g t h ( p o i n t ) , l e n g t h ( p o i n t ) ) ] ;
answer = i n c l u s i o n _ z o n o t o p e ( z o n o t o p e _ p o i n t , z o n o t o p e ) ;

endfunc t ion

Figure A5.7. Function that tests whether or not a point belongs in a zonotope

A5.2. Function on patterns

The function in Figure A5.8 returns a pattern. Given a pattern, it will
output the next pattern in the lexicographical order of the same length.
If none exists, it will return the first pattern with a greater length.
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A5.3. Functions on control

Given a zonotope that needs to be controlled, a zonotope target and
a pattern, the function in Figure A5.9 returns True if the image of
zonotope_control by pattern is included into zonotope_target,
otherwise false.

f u n c t i o n n e x t _ p a t t e r n = n e x t _ p a t t e r n ( p a t t e r n )
g l o b a l number_modes ;
n e x t _ p a t t e r n = p a t t e r n ;
n= l e n g t h ( p a t t e r n ) ;
i = n ;
whi le ( i > 0 && n e x t _ p a t t e r n ( i ) == number_modes )

n e x t _ p a t t e r n ( i ) = 1 ;
i = i −1;

endwhile
i f ( i == 0)
n e x t _ p a t t e r n = [ 1 , n e x t _ p a t t e r n ] ;
e l s e n e x t _ p a t t e r n ( i )= n e x t _ p a t t e r n ( i ) + 1 ;
e n d i f
re turn

endfunc t ion

Figure A5.8. Function that computes the next pattern to test

f u n c t i o n f l a g = i s _ z o n o t o p e _ i n v a r i a n t ( z o n _ c o n t r o l , z o n _ t a r g e t , p a t t e r n )
[C ,G] = zonotope_decompo ( z o n _ t a r g e t ) ;
f l a g = i n c l u s i o n _ z o n o t o p e ( p a t t e r n _ i m a g e ( z o n _ c o n t r o l , p a t t e r n ) ,

z o n _ t a r g e t ) ;
endfunc t ion

Figure A5.9. Function that tests whether the image of zonotope_control by
pattern is included into zonotope_target

The function in Figure A5.10 returns True if there exists a pattern
up to length pattern_max_length that makes the image of
zonotope_control in zonotope_target.

The function in Figure A5.12 computes the decomposition of
zonotope_control in order to make it invariant into zonotope_target.
In practice, we first call it zonotope_control = zonotope_target.
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f u n c t i o n i s _ c o n t r = F i n d _ P a t t e r n ( z o n _ c o n t r o l , z o n _ t a r g e t , t i l e _ n u m )
g l o b a l p a t t e r n _ m a x _ l e n g t h ;
p a t t e r n = [ 1 ] ;
a d m i s s i b l e _ p a t t e r n _ f o u n d = 0 ;
i s _ c o n t r = 0 ;
whi le ( ( l e n g t h ( p a t t e r n ) < p a t t e r n _ m a x _ l e n g t h )

&& ( a d m i s s i b l e _ p a t t e r n _ f o u n d == 0 ) )
i f ( i s _ z o n o t o p e _ i n v a r i a n t ( z o n _ c o n t r o l , z o n _ t a r g e t , p a t t e r n )

== 1)
a d m i s s i b l e _ p a t t e r n _ f o u n d = 1 ;
i s _ c o n t r = l e n g t h ( p a t t e r n ) ;

e n d i f
p a t t e r n = n e x t _ p a t t e r n ( p a t t e r n ) ;

endwhi le
end fu nc t i on

Figure A5.10. Function Find_Pattern

f u n c t i o n Decompos i t ion ( z o n _ c o n t r o l , z o n _ t a r g e t , d )
g l o b a l max_depth ;
g l o b a l p a t t e r n _ m a x _ l e n g t h ;
i s _ c o n t r = F i n d _ P a t t e r n ( z o n _ c o n t r o l , z o n _ t a r g e t ) ;
d i m e n s i o n s = l e n g t h ( z o n _ c o n t r o l ( : , 1 ) ) ;
i f ( i s _ c o n t r == 0)

i f ( d < max_depth )
f o r i =0 :2^ d imens ions −1

sub_zon = s p l i t _ z o n o t o p e ( z o n _ c o n t r o l , i ) ;
Decompos i t i on ( sub_zon , z o n _ t a r g e t , d + 1 ) ;

endfor
e n d i f

e l s e Graph ic Outpu t o r c o n t r o l l e r
e n d i f

endfunc t ion

Figure A5.11. Decomposition procedure

A5.4. Other Useful Functions

The function int2bin(n, p) in Figure A5.4 is a function that
converts a number n into its binary form with p digits. For example,
int2bin(2, 5) returns 00010.
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f u n c t i o n v e c _ b i n a i r e = i n t 2 b i n ( k ,m)
v e c _ b i n a i r e = z e r o s (m, 1 ) ;
f o r i =1 :m

v e c _ b i n a i r e ( i , 1 ) = 0 ;
endfor
i =m;
whi le ( k ~=0)

i f ( mod ( k , 2 ) = = 1 )
v e c _ b i n a i r e ( i , 1 ) = 1 ;
k =( k −1 ) / 2 ;

e l s e k=k / 2 ;
e n d i f
i −−;

endwhile

endfunc t ion

Figure A5.12. Decomposition procedure

A5.5. Building and running an example

In this section, we discuss how to build and execute an example. We
use the Boost DC–DC converter to illustrate the process.

First, we need to build a .m file that describes the dynamics of the
system. A skeleton is shown in Figure A5.13 and the Boost converter
file is shown in Figure A5.14. We recall that we only consider dynamics
under the form ẋ = Aux+bu, where Au is an n×n matrix and bu is an n
array for all modes u. Moreover, we only consider τ - sampled system.
Therefore, we can define a successor function Postu(x0) = Cux + du
by solving the differential equation of the dynamics for a time elapse of
τ time units. This .m file simply describes how to compute Cu and du
for all modes u.

Once this .m file is built, we need to build a shell script file that will
contain the constants for the analysis used by Octave (i.e. R,
MaxDepth and MaxLength).
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## ###########################
# CONSTANTS OF THE ANALYSIS #
## ###########################

g l o b a l max_depth ;
g l o b a l f i l e _ t o _ c a r t o ;
g l o b a l p a t t e r n _ m a x _ l e n g t h ;
g l o b a l t o t a l _ p a t t e r n _ t r i e d = 0 ;

## ######################
# EXAMPLE CONSTANTS #
## ######################
g l o b a l example_name = " example_name " ;
g l o b a l numberModes = n ;

g l o b a l A_1 = ;
. . .
g l o b a l A_n = ;

g l o b a l B_1 = ;
. . .
g l o b a l B_n = ;

f u n c t i o n C = a l p h a _ c ( mode )
g l o b a l A_1 ;
. . .
g l o b a l A_n ;

g l o b a l B_1 ;
. . .
g l o b a l B_n ;

g l o b a l t a u ;

i f ( mode == 1)
C = ;

. . .
e l s e i f ( mode == n )

C = ;
e n d i f

endfunc t ion

f u n c t i o n D = b e t a _ c ( mode )
g l o b a l A_1 ;
. . .
g l o b a l A_n ;

g l o b a l B_1 ;
. . .
g l o b a l B_n ;

g l o b a l t a u ;

i f ( mode == 1)
D = ;

. . .
e l s e i f ( mode == n )

D = ;
e n d i f

endfunc t ion

# S t a r t c o n t r o l s y n t h e s i s
i s _ c o n t r = m a i n _ c o n t r o l ( )

i f ( i s _ c o n t r == 0)
e x i t ( 1 )
e l s e
e x i t ( 0 )
e n d i f

Figure A5.13. Skeleton of the .m file
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## ###########################
# CONSTANTS OF THE ANALYSIS #
## ###########################

g l o b a l max_depth ;
g l o b a l f i l e _ t o _ c a r t o ;
g l o b a l p a t t e r n _ m a x _ l e n g t h ;
g l o b a l t o t a l _ p a t t e r n _ t r i e d = 0 ;

## ######################
# BOOST CONSTANTS #
## ######################
g l o b a l example_name = " b o o s t " ;
g l o b a l numberModes = 2 ;

g l o b a l x_c = 7 0 ;
g l o b a l x _ l = 3 ;
g l o b a l r _ c = 0 . 0 0 5 ;
g l o b a l r _ l = 0 . 0 5 ;
g l o b a l r_0 = 1 ;
g l o b a l v_s = 0 . 8 ;
g l o b a l A_1 = [− r _ l / x _ l , 0

0 , −1/( x_c∗( r_0 + r _ c ) ) ] ;
g l o b a l A_2 = [−( r _ l + r_0∗ r _ c / ( r_0 + r _ c ) ) / x _ l ,

−1/ x _ l ∗ ( r_0 / ( r_0 + r _ c ) ) ;
1 / x_c ∗ ( r_0 / ( r_0 + r _ c ) ) ,

−1/x_c ∗ ( 1 / ( r_0 + r _ c ) ) ] ;
g l o b a l B = [ v_s / x _ l ; 0 ] ;

f u n c t i o n C = a l p h a _ c ( mode )
g l o b a l A_1 ;
g l o b a l A_2 ;
g l o b a l B ;
g l o b a l t a u ;

i f ( mode == 1)
C = expm ( A_1∗ t a u ) ;

e l s e i f ( mode == 2)
C = expm ( A_2∗ t a u ) ;

e n d i f
endfunc t ion

f u n c t i o n D = b e t a _ c ( mode )
g l o b a l A_1 ;
g l o b a l A_2 ;
g l o b a l B ;
g l o b a l t a u ;

i f ( mode == 1)
D = ( expm ( A_1∗ t a u )−eye ( 2 ) )∗ inv ( A_1)∗B ;

e l s e i f ( mode == 2)
D = ( expm ( A_2∗ t a u )−eye ( 2 ) )∗ inv ( A_2)∗B ;

e n d i f
endfunc t ion

# S t a r t c o n t r o l s y n t h e s i s
i s _ c o n t r = m a i n _ c o n t r o l ( )

i f ( i s _ c o n t r == 0)
e x i t ( 1 )

e l s e
e x i t ( 0 )

e n d i f

Figure A5.14. Boost converter: .m file
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A skeleton of such a file is shown in Figure A5.15, and the file for
Boost is shown in Figure A5.16. “BENCH” is filled with the example
name, MAXLENGTH with the maximal length admissible for
patterns, MAXDEPTH with the maximal depth of decomposition, R
with the box R that we wish to control, TAU with τ the time step and
POST with the depth at which we want to perform the computation of
PostΔ. HULL and BBOX are parameters to ease the computation of
PostΔ. Every Hull number of steps in the computation, the convex
hull of all the polyhedra included in each part of the decomposition
will be computed to reduce the number of polyhedra. Similarly, every
Bbox number of steps, the bounding box of those polyhedra will be
computed. This greatly reduces the computation time at the cost of an
overapproximation. They can be set to −1 if we want to compute the
exact PostΔ.

# ! / b i n / sh

e x p o r t BENCH=" example_name "

e x p o r t MAXLENGTH= l
e x p o r t MAXDEPTH= d
e x p o r t R= " [ l_1 , u_1 ]∗ [ l_2 , u_2 ] ∗ . . . ∗ [ l_n , u_n ] "
e x p o r t TAU= t a u

e x p o r t POST= P o s t
e x p o r t HULL= Hul l
e x p o r t BBOX= Bbox

. / run . sh

Figure A5.15. Skeleton of the script shell file

Now, to run the tool on your example, simply execute the script shell
file for your example.
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# ! / b i n / sh

e x p o r t BENCH=" b o o s t "

e x p o r t MAXLENGTH=5
e x p o r t MAXDEPTH=4
e x p o r t R=" [ 1 . 5 5 , 2 . 1 5 ] ∗ [ 1 . 0 , 1 . 4 ] "
e x p o r t TAU=0.1

e x p o r t POST=10
e x p o r t HULL=2
e x p o r t BBOX=−1

. / run . sh

Figure A5.16. Script shell file of the Boost example

For more details about the tool and how to use it, see the tool’s
webpage [MIN 13].
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