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Foreword

Energy policy is today a national priority. Conservation, renewable electricity sources and con-
verting transportation from fossil fuels to electricity are major foci of activity. This is the most
opportune time for someone to provide the definitive exposition of what is meant by “power”
and how its various constituents are calculated and measured. Professor Alex Emanuel has
done just that. This book, by gathering and clearly presenting the evolution of the increasingly
complex interpretation of the V-I product, has done a great service to the engineering profes-
sion. Over time, the increased sophistication of electricity use and the introduction of solid state
converters with their attendant harmonics have required that the definition and measurement
of “power” be subjected to ever greater scrutiny. The resulting proposals, counterproposals
and controversies evolved into a series of IEEE and DIN standards, each responding to the
nascent effects of new technologies or an increased emphasis on economic accuracy. In today’s
restructured electricity industry, with real-time markets, the prospect of price responsive de-
mand, and the introduction of an advanced metering infrastructure, accuracy of measurement
and interpretation of power data is crucial.

Professor Emanuel promises an “in-depth understanding of the very physical mechanism
that governs energy flow,” and he delivers. He starts with the fundamental field description
of power represented by Poynting’s vector, then carefully and logically transitions to lumped
physical systems, adding complexity until we arrive at all the components of “power” that
constitute the V-I products of three phase, four-wire, unbalanced systems with non-sinusoidal
currents and voltages. During the entire journey he builds upon the contributions of Budeanu,
Fryze, Depenbrock and Czarnecki, pioneers in attempting to provide a rational interpretation
of the result of multiplying current by voltage. And the comparisons he draws among the
results of their proposed methods and that of the recent IEEE 1459-2010 standard is most
interesting.

Few engineers are as well qualified as Professor Emanuel to undertake the writing of this
monumental work. He has dedicated his entire professional life to the study of energy related
problems, and has been a leading authority and educator in the field of power systems. It is
clear that writing this book has been a labor of love, and we fellow electrical engineers owe
Professor Emanuel a debt of gratitude for the fruit of this labor.

John G. Kassakian
Professor of Electrical Engineering and Computer Science

Laboratory for Electromagnetic and Electronic Systems
The Massachusetts Institute of Technology, USA
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Preface

These days the implementation of an “Advanced Metering Infrastructure” will be determined
by the technology that enables the manufacturing of “Smart Meters.” The quest for the smart
meter is an integral part of a revolutionary movement, the big impetus for the Smart Grid and
energy management. When the flow and the use of electric energy is monitored by means
of smart meters, the energy provider receives, via real-time data acquisition, information that
enables the remote control of customer loads, the ability to adjust demand response, asset
management, variable pricing programs, and many more capabilities that improve the energy
transmission efficiency by reducing the power losses and by leveling the load curves. Smart
meters also benefit customers by increasing the reliability of supply as well as the ability to
monitor the use and cost of energy. This technology will stimulate much needed behavioral
changes that will lead to a significant decrease in energy use.

The metering instrumentation is designed to conform to the mathematical definition of the
electric quantity monitored; however, the definition on which such smart meters’ design is
based must be true to the law of physics and provide information that enables the accurate
determination of energy flow rate and quality, optimum power dispatching, and efficient
maintenance planning.

The meters in use today, even some of the most modern electronic meters, are designed
and built following a tradition rooted in the 1930s and 1940s. It is well known that meters
that measure energy (kWh) and active power (kW) provide accurate measurements also under
nonsinusoidal or unbalanced conditions; nevertheless, meters dedicated to apparent power
(kVA) and nonactive power (kvar) measurements are prone to significant errors when the
current and voltage waveforms are distorted. The main reason for such uncertainties stems
from the inadequate power definitions that dictate the conceptual design of such instrumen-
tation. Evidently this situation led to the search for a practical solution. The progress toward
universally accepted definitions is slow and hindered by economic factors tied to an existing
infrastructure of large proportions. A lively debate over the apparent power definition and its
resolution started a century ago and has not yet reached a conclusion. I am an active participant
in this ongoing debate and have witnessed how, in the last decades, a vigorous “technological
soul searching” has produced two significant standards:

1. The IEEE Std. 1459–2010, Definitions for the Measurement of Electric Power Quantities
Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions.

2. The DIN 40110-2: 2002–11, Quantities Used in Alternating Current Theory–Part 2: Multi-
conductor circuits (Polyphase Circuits).
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xiv Preface

Both standards provide improved power definitions that have been scrutinized and approved
by large groups of experts and have triggered a multitude of engineering papers. This book
has its main origin with the IEEE Std. 1459–2010. Many users of this document complained
about its “tough reading” and asked for support documentation. Another important motivation
for the production of this book stems from my desire to make a small contribution toward
the acceptance and proliferation of smart meters. The major goals of this book are as
follows:

1. To provide a clear understanding of the physical mechanism that governs the electric energy
flow under different conditions: single- and three-phase, sinusoidal and nonsinusoidal,
balanced, and unbalanced systems,

2. To be able to propose and advocate for recently developed power definitions that are
not mathematical artifacts, but expressions that help correctly describe the actual effects
and interactions between the energy sources, loads, equipment, and environment. Such
definitions must be based on the solid understanding of the physical characteristics of the
different components of energy,

3. To explain, discuss, and recommend power definitions that played a significant historical
role in paving the road for the two standards,

4. To compare the two standards.

This book consists of eight chapters. The first explains electric energy flow. It introduces
the concept of power as the rate of flow of energy and emphasizes the fact that electric
energy is carried by an electromagnetic wave characterized by the power density (W/m2)
that is a function of time and space. Such electromagnetic waves travel (slide) along the
conductors and contain a host of components. The main tool, used through the entire book,
for recognizing the characteristics that help separate the actual elementary components of
energy, is the Poynting vector. It is shown, with the help of a set of solved problems, that
some components are active and carry unidirectional energy from sources to the loads, and
other components oscillate between the loads and the sources and do not contribute to the
net transfer of energy, but cause additional power loss in the conductors that connect loads
and sources. This key chapter concludes that the Poynting vector is an excellent tool for the
visualization of the power flow distribution in space and time; most importantly, it helps to
reveal the correct energy and power components that ultimately are reflected in the ways
the apparent power is resolved, thus leading to power definitions that are true to Nature’s
laws.

The second chapter deals with the single-phase system with sinusoidal waveforms. While
introducing new definitions, such as the intrinsic power, this chapter presents a needed
introduction and review of basic power definitions. Ample space is dedicated to the notion of
apparent power, proving that it is a defined (convention) quantity that governs the equipment
size, equipment losses, and the equipment aging and life-span. The power factor concept
is presented in detail. A major section in this chapter is occupied by the discussions about
the power oscillations between load and source, about the quantification of reactive and
nonactive powers. It is shown that reactive power does not have to be produced by inductive
or capacitive loads, but can also be caused by any energy converter that has the ability to
store and return energy. It is also proved that the Poynting vector provides an excellent
vehicle to help the reader familiarize with the separation and grouping of different active
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Preface xv

and nonactive instantaneous power components, their mathematical symbolism, and physical
interpretation.

Chapter 3 explains the single-phase systems with nonsinusoidal waveforms. It starts by
analyzing linear loads exposed to nonsinusoidal excitation and gradually advances to basic
nonlinear loads, ultimately addressing a general case that provides the foundation needed
to understand and critically compare different methods recommended for the apparent
power resolution. This chapter emphasizes the need for the separation of the fundamental
(50/60 Hz) active and reactive powers from the remaining apparent power components; this
being an important IEEE Std. 1459–2010 contribution. Significant considerations are given to
harmonics generation and injection mechanism, and how this phenomenon affects the power
flow and the power definitions. It is shown how a certain amount of the fundamental power
supplied to a nonlinear load is converted by nonlinear loads in a set of higher frequency
components (harmonics) which, in turn, are injected into the power system. Flow charts that
describe the flow path of different instantaneous power components are explained and used
to demonstrate that the flow of instantaneous powers replicate the flow of Poynting vector
components, thus providing the essential background for a correct decision when one needs
to sort and define the apparent power components.

Chapter 4 is meant to provide the foundation needed for understanding approaches to power
definitions, features, and limitations. The content is focused on apparent power resolutions as
advocated by the researchers who directly, or indirectly, influenced the outcome of the two
standards. They are:

C. I. Budeanu (1927)

S. Fryze (1932)

F. Buchholz (1950)

M. Depenbrock (1960)

L. S. Czarnecki (1984)

The author (1995)

The different methods are evaluated and compared by means of numerical examples. The
transition to three-phase systems starts in Chapter 5. The scope is limited to sinusoidal balanced
and unbalanced conditions. The key concept of Buchholz-Goodhue effective apparent power,
the pivotal quantity of IEEE Std. 1459–2010, is introduced. Plenty of space is dedicated to
the presentation of Fryze-Buchholz-Depenbrock (the FBD) method, which is the backbone of
DIN 40110–2. The issue of power factor is discussed in detail. Ample explanations help prove
the vector apparent power–the most popular apparent power definition–as being deficient. The
mechanism of negative- and zero-sequence power generation is explained. A set of numerical
examples allow the comparison of the definitions promoted by the DIN and the IEEE standard.
It is concluded that for practical conditions, encountered in actual power systems, the two
standards, while having different outcomes as concerns the zero-sequence voltage, yield very
close results.

The sixth chapter deals with the most general case, the three-phase system with nonsi-
nusoidal and unbalanced conditions. The literature abounds with studies of such conditions,
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xvi Preface

promoting definitions that complete or contradict each other. This chapter presents only the
most popular power definitions, i.e., those in use by instrumentation manufacturers in response
to the request of electric utilities, or recommended by the two major standards. A central issue
is debated: the IEEE Std. 1459–2010 considers that, ideally, a well compensated three-phase
load must operate with positive-sequence currents and zero reactive power (unless the load
is used as a power conditioner). DIN 40110–2 is different: it requires for unity power factor
currents with waveforms that are replicas of the line–to an artificial neutral point voltage,
(the actual neutral line is treated as the fourth phase). This means that traces of zero- and
negative-sequence currents remain after the compensation. It is also explained that if all the
loads supplied by a substation are compensated using either one of the two methods described
in the two standards, the final results will be identical: perfect, pristine, positive-sequence
sinusoidal currents with the respective symmetrical sinusoidal voltages.

The seventh chapter presents a newer, nonactive power, the randomness power. In situations
when the monitored load is randomly time varying and power measurements are taken over a
relatively large total observation time, the observation time is divided into small subintervals.
The measurement taken for each subinterval is characterized by its own set of active and
nonactive powers, stored for every subinterval. It is proved that the equivalent values for
active and nonactive powers, measured over the total observation time, are the mean values
of the active powers measured for each subinterval. This feature, however, does not apply to
the measurements of apparent power, and it is necessary to include a randomness power in
the resolution of apparent power, even when we deal with purely resistive loads. This new
quantity gains in significance when the monitored loads are arc furnaces, welders, elevators,
or any type of aleatory loads.

The last chapter includes eight appendices. The presented material is meant to help clarify
heavier mathematical aspects, learn more about the Poynting vector applications, and find
useful information that reveals the beauty of electromagnetic fields theory and the usefulness
of Poynting vector in visualizing the energy flow. The reader interested in more rigorous
mathematical demonstrations finds application of Lagrange multipliers to the computation of
maximum active power. Another appendix deals with the computation of the allocated power
loss to a monitored load connected in a network with a multitude of loads. Such information
is crucial for the apparent power definition. The final appendix lists the readings of varmeters
in the presence of distorted voltages and current waveforms.

I want to express my gratitude to Mrs. Catherine Emmerton, who coached my first steps
in the complex world of LaTeX. Special appreciation goes to Prof. David Cyganski and Mr.
Robert Brown for taking time from their busy schedule and bailing me out every time when
“my PC was getting in trouble.” Their friendship and camaraderie helped me to overcome
some difficult moments during the preparation of the manuscript. It is my pleasant duty to
acknowledge the diligent work of Dr. Grazia Todeschini, who was the first person to read the
completed manuscript, flag typos and technical errors, and suggest improvements. A special
thank you is extended to the team at Wiley including Simone Taylor, Nicky Skinner, Laura
Bell and Clarissa Lim for their support in publishing this book. I would also like to thank Jane
Utting for copyediting the book and also to Shalini Sharma at Aptara for typesetting the book.
I am also indebted to many of my students who studied this material with me and inspired
me by asking tough questions. Finally, my deepest appreciation goes to my beloved WPI, and
to my colleagues who create and maintain an environment conducive to creativity and true
camaraderie.
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Preface xvii

It is my sincere hope that this book will inspire and motivate the engineers and scientists
that will design and build the new generation of smart meters to conform with the recommen-
dations of the IEEE Std. 1459–2010 or the DIN 40110–2, and to continue the quest for more
correct and practical apparent power definitions, symbolic mathematical expressions that
will be embraced by all the electrical engineers living and working on all four corners of our
Earth.

Alexander Eigeles Emanuel
Southborough, Massachusetts

January 2010
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1
Electric Energy Flow:
Physical Mechanisms

Through valuation only is there value; and without valuation the nut of existence would be hollow.
Hear it, ye creating ones!

—Fr. Nietzsche, Thus Spake Zarathustra

There are two schools of thought that help students visualize the flow of electric energy from
source to load and grasp the basic relations among voltage, current, power, and energy. The
first, and seemingly the simplest, explanation relies on the flow of electric charges represented
in Fig. 1.1. We imagine a cylindrical conductor with a cross-sectional area A and length �,
containing uniformly distributed charged particles that carry a total electric charge q. The
volume charge density is

ρv = q

A�
(C/m3) (1.1)

When a voltage v is applied between the ends of the conductive cylinder, a uniform
electric field

E = v

�
(V/m) (1.2)

is created within the conductor. The vector of this field is oriented parallel with the conductor.
The interaction between the charged particles and the field E is causing their motion along the
conductor. The force developed on the charged particles found within a thin slice of thickness
dx , that holds the charge dq = ρv Adx is d F = Edq . The total force applied on the entire
charge held by the cylinder is

F = q E = A�ρv E = Aρvv (N) (1.3)

Once this system reaches steady-state the voltage source will pump continuously a constant
flow of charge in a closed loop. One may picture this flow as the effect of a mechanical pressure

Power Definitions and the Physical Mechanism of Power Flow Alexander Eigeles Emanuel
C© 2010 John Wiley & Sons, Ltd

1
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2 Power Definitions and the Physical Mechanism of Power Flow

 A

x
dx

l
v

E
r

E
r

i
dx

Fd
r

Figure 1.1 Flow of uniformly distributed charges in a homogeneous conductor.

F/A = �ρv E = ρvv. This model leads us straight to the notion of work or energy. To slide
the total charge q a distance dx , consequent to the application of the force F , it is tantamount
with doing the work

dw = Fdx = Aρvvdx (J) (1.4)

It may be assumed that the charged particles move with an average drift velocity u = dx/dt ,
proportional to the magnitude of the electric field, thus

u = K E (m/s) (1.5)

where the constant K is known as the mobility of the particles, (m2/Vs). The elementary work
dw is proportional to the drift velocity u. This fact becomes evident when (1.4) is written in
the form

dw = Aρvv
dx

dt
dt = Aρvvudt (1.6)

The drift velocity u = dx/dt is also hidden in the electric current expression

i = dq

dt
= ρv Adx

dt
= ρv Au (A) (1.7)

Substitution of (1.7) in (1.6) gives

dw = vidt (1.8)

During a time interval t = t2 − t1 the voltage source will generate the total energy

w =
∫ t2

t1

vidt (J or Ws) (1.9)
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Electric Energy Flow: Physical Mechanisms 3

The rate of flow of the electric energy at a particular time is the electric power

p = dw

dt
= vi (W) (1.10)

From (1.7) and (1.5) we also obtain a simple deduction of Ohm’s law. The current

i = ρv AK E = ρv K A

�
E� = v

R
(1.11)

where

R = �

κ A
(1.12)

is the resistance of the conductor of length � and cross-sectional area A, and κ = ρv K is the
specific conductivity of the observed conductive medium, (�m)−1.

Finally, equations (1.10) and (1.11) lead to the well known expressions of electric power

p = Ri2 = v2

R
= vi (1.13)

The above explanation of power and energy flow appears in some introductory textbooks
of physics and is favored by electrical engineers that deal with low frequency equipment. A
major drawback of this rudimentary model becomes apparent when we try to explain situations
where the energy is stored in, or transferred through, dielectrics immersed in alternating
electromagnetic fields, Fig. 1.2.

 

i v

2i
1i

R

φ

(a)

(b)

Figure 1.2 Examples where the Energy is Transferred via Dielectric Material: (a) Capacitor.
(b) Magnetic Coupling.
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4 Power Definitions and the Physical Mechanism of Power Flow

℘
r

r
d

H
r

E
r

ς

Figure 1.3 Poynting vector.

Engineers dealing with antennae, microwaves, and other high frequency applications long
ago embraced a more advanced explanation based on a model loyal to the laws of storage,
transmission, and dissipation of energy in any medium. This theory relies on the representation
of the rate of flow of the energy density at any point in space by means of Poynting vector [1]

�℘ = �E × �H (W/m2) (1.14)

where �E and �H are the electric and magnetic field vectors at the considered point.
One will note that the unit W/m2=Ws/m2s discloses the fact that the Poynting vector

quantifies the flow of electromagnetic energy per unit area per unit time, entering or exiting a
defined point located on a virtual or actual surface, Fig. 1.3. Consequently the instantaneous
power, entering or exiting a given surface ς , can be computed from the flux of the Poynting
vector over the surface ς :

p =
∫

ς

�℘ · d �ς (1.15)

The Poynting vector approach was evaluated and improved by preeminent physicists like
R. Feynman [2] and it is promoted in the best electromagnetic fields texts [3,4,5], being used
as a most effective tool in the analysis and computations of eddy–currents, electromechanical
torques, and electromagnetic energy radiation [6,7,8,9,10].

A few basic examples will help to reinforce the usefulness of this mathematical tool. First
we consider a very long cylindrical conductor with radius a. We focus on a segment with length
�, Fig. 1.4. The voltage drop across the segment � is v. We will use cylindrical coordinates
(x, r, θ) with the versors �1x , �1r , �1θ . At any chosen point (x, a, θ ), on the conductor’s
surface 2πa�, Fig. 1.4a, the electric and magnetic field vectors are as follows:

�E = v

�
�1x (1.16)

and

�H = i

2πa
�1θ (1.17)
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Electric Energy Flow: Physical Mechanisms 5
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(a) (b)

Figure 1.4 Poynting vector at the surface of a cylindrical conductor: (a) Three-dimensional sketch.
(b) Cross-section.

Substitution of (1.16) and (1.17) in (1.14) gives the Poynting vector at the conductor’s
surface

�℘ = �E × �H = − vi

2πa�
�1r (1.18)

This vector is perpendicular to the conductor’s surface and is oriented toward conductor’s
center, Fig. 1.4b. If one reverses the direction of the current, both �E and �H will reverse direction,
but �℘ will keep its orientation unchanged, pointing toward the center of the conductor and
carrying energy into the conductor. The power entering the conductor through the external
surface 2πa� is

p =
∫

ς

�℘ · d �ς = ℘2πa� = vi

2πa�
2πa� = vi = Ri2 (1.19)

This result sustains the concept that the conductor’s Joule loss is provided by the energy
impinged by the electromagnetic wave that enters the conductor’s surface. Inside the conductor
at any point on a cylindrical surface of radius r ≤ a, the electric field vector (1.16) remains
unchanged. The magnetic field vector, however, has an expression different than (1.17). As-
suming uniform current density (a correct assumption only when the skin effect is negligible),
the cylinder of radius r ≤ a encloses the current (r/a)2i , hence the magnetic field is

�H = πr 2

πa2

i

2πr
�1θ = ri

2πa2
�1θ (1.20)

and in this case the Poynting vector inside the conductor

�℘ = �E × �H = − rvi

2πa2�
�1r ; r ≤ a (1.21)
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Figure 1.5 Coaxial cable: (a) Radial cross-section. (b) Axial cross-section.

remains radial and oriented toward the center. As the vector �℘ nears the center, its magnitude
is linearly decreasing, the density of the electromagnetic power is gradually diminished, and
at r = 0 we find ℘ = 0. The power impinged by the electromagnetic wave entering through
the surface 2πr�, of the internal cylinder of radius r , carries the power

pr = 2πr�℘ =
( r

a

)2
vi

that covers exactly the Joule loss within the volume πr2�.
In the next example we consider a coaxial cable with the radii a, b and c, Fig. 1.5. The

electric and magnetic fields within the dielectric are

�E = v

ln(b/a)

1

r
�1r (1.22)

and

�H = i

2πr
�1θ (1.23)

yielding the Poynting vector

�℘ = �E × �H = 1

2π ln(b/a)

vi

r2
�1x (1.24)

parallel with the coaxial cable and oriented toward the load.
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The electromagnetic power carried on the “wings” of the vector �℘, through the cross-section
π (b2 − a2), is

p =
∫ b

r=a
�℘ · �1x 2πrdr = 2πvi

2π ln(b/a)

∫ b

r=a

dr

r
= vi (1.25)

The last result emphasizes the fact that the flow of electric energy toward the load takes
place within the dielectric that surrounds the transmission line conductors. One may figure
the conductors as a wave-guide for the electromagnetic wave. Equation (1.24) shows that the
density of the energy increases as one nears the conductors. In the vicinity of a superconductor
�℘ is perfectly parallel to the conductor; however, in the vicinity of a lossy conductor the
Poynting vector streamlines bend slightly toward the conductor due to a small component
perpendicular to the conductor surface. This transversal component of �℘ transfers to the
conductors the power that sustains the Joule and eddy-current losses dissipated in the conductor.

On the surface of magnetic cores the Poynting vector supplies hysteresis and eddy-current
losses as well as energy stored in, and returned from, the magnetic field. Since part of the
magnetic fields are distributed within conductors and semiconductors, the energy stored in the
magnetic field located in the conductors is also transported by the �℘ component perpendicular
to the conductors’ surface. The same observation holds true for dielectrics; both the flow of
energy that is converted in heat due to dielectric losses and the flow of oscillating energy tied
to the energy stored in the electric field, can be visualized and quantified with the help of �℘
and its components.

The fans of the theory that advocates the concept of energy flow strictly confined to the
conductor material found support in the Slepian vector theory [6,7]. The vector �ζ is a modified
form of the Poynting vector where, besides the easily understood longitudinal flow of energy,
expressed by the vector

p

A
�1x = vi

A
�1x = v �j (W/m2)

also the flow of energy stored in, or delivered by, the electric and magnetic fields are included,
leading to the following expression

�ζ = v �j + v
∂ �D
∂t

+ �H × ∂ �A
∂t

where
�j = i/A is current density vector (A/m2),
�D = ε �E is the electric flux density vector (C/m2) and
�A is the magnetic vector potential (Vs/m).

The Poynting vector approach seems simpler and more pliable than the Slepian vector. The
Poynting vector theory provides an excellent tool that helps to comprehend the details of the
physical mechanism of electric energy flow, the separation of electric power in diverse active
and nonactive components, and, most importantly, it helps to evaluate the merits of definitions
used to quantify the quality of electric energy.

More information on Poynting vector is provided in Chapter 8, Appendices I, II, III and IV.
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Figure 1.6 Rectangular and parallel superconductors connecting a voltage source with a load.

ADDITIONAL EXAMPLES

1. In Fig. 1.6 are sketched two parallel rectangular superconductors—with length � and
width b—separated by a small dielectric gap g << b. The voltage source v supplies to the
load R with the current i . The electric field vector, assumed uniform (fringing effects are
neglected), is

�E = v

g
�1y

and the magnetic field in the dielectric space 0 < x < �, 0 < y < g and 0 < z < b is

�H = i

b
�1z

The Poynting vector is now readily obtained,

�℘ = �E × �H = vi

bg
�1x ; (�1y × �1z = �1x )

As expected we note that �℘ is oriented toward the load and its flux through the cross-section
area bg gives the power

p = ℘bg = vi

Since we assumed superconductors, the electric field within the conductors is nil and no
Poynting vector component in the y-direction exists.
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Figure 1.7 Capacitor with parallel circular electrodes.

2. A capacitor with two circular parallel electrodes of radius a spaced apart at the distance
g, Fig. 1.7, will help us to understand how the Poynting vector is used to analyze systems
where the energy is transferred via a material with dielectric permitivity ε.

The current flowing through the capacitance C is a displacement current

i = C
dv

dt
; C = ε

πa2

g

whose density vector is

�j = i

πa2
�1x = ε

g

dv

dt
�1x (A/m2)

To find the magnetic field �H we will apply Ampère’s law to a circle of radius r < a,
concentric with the electrodes. The Ampère’s law in its integral form is

∮
C

�H · d �� =
∫

s
�j · d�s

meaning that the closed contour line integration of �H along the perimeter of the circle r yields
a value equal to the current flowing through the circle. Since this system is symmetrical the
vector �H is tangent to the circle r , its magnitude along the circle r is constant and its radial
and axial components are nil. The Ampère’s law can now be written as follows:

∫ 2π

θ=0
Hr dθ =

∫ r

r=0
j 2πr dr
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that gives

2πr H = jπr2

and from here follows

�H = r

2
j �1θ for 0 ≤ r ≤ a

We recognize that the electric field vector is controlled by the voltage v and the gap g, hence

�E = v

g
�1x

and the Poynting vector is now easily obtained

�℘ = �E × �H =
(

v

g
�1x

)
×

(
rε

2g

dv

dt
�1θ

)
= −vrε

2g2

dv

dt
�1r

= −rε

2g2

1

2

d

dt
(v2) �1r ; (�1x × �1θ = −�1r )

We learn that the Poynting vector entering or leaving the dielectric has a radial distribution.
As it penetrates the dielectric its intensity linearly decreases and at r = 0 �℘ = 0. The power
that enters or exits the external surface of the dielectric, 2πag is

pr=a =
∫ g

x=0
�℘ · (2πa dx) �1r = − aε

2g2

1

2

d(v2)

dt
2πag = −1

2
ε
πa2

g

d(v2)

dt
= −1

2
C

d(v2)

dt

We found that this power is just the rate of flow of the energy stored in the capacitor,

p = − d

dt

(
1

2
Cv2

)
= −dwe

dt
= −Cv

dv

dt

If we assume a sinusoidal voltage

v =
√

2V sin ωt

we obtain

p = −Cv
dv

dt
= −C[

√
2V sin(ωt)][

√
2ωV cos(ωt)]

= −CωV 2 sin(2ωt)

The power p varies sinusoidally in time with twice the angular frequency ω. The mean value
of the power is nil. Energy enters and exits the dielectric. For a quarter of cycle, T/4 = π/2ω,
the energy exits the dielectric gradually returning to the source, and in the next quarter of cycle
the energy flow reverses and the oscillations continue.
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Figure 1.8 Toroidal inductor: (a) Core, winding, and �E, �H and �℘ vectors. (b) Cross-section XX and
the �E, �H , and �℘ vectors.

3. A toroidal inductor, Fig. 1.8a, has a ferromagnetic core with a mean path length �, circular
cross-sectional area with radius a and permeability µ (H/m) and carries a winding with N
turns uniformly distributed along the core’s surface. The winding resistance is very small when
compared with the reactance and can be ignored. Through the winding flows a current i = i(t)
producing a magnetic field

H ≈ Ni/� (A/m)

The magnetic flux within the core is

φ = πa2µNi/� (Vs)

Along the circular perimeter 2πa, Fig. 1.8b, the induced voltage dφ/dt is sustained by the
electric field

E = dφ/dt

2πa
= µNa

2�

di

dt
(V/m) (1.26)

This electric field is tangential to the core surface. Since the vectors �E and �H are perpen-
dicular, the resulting Poynting vector is perpendicular to the core surface, Fig. 1.8b, and is
uniformly distributed over the entire 2πa� surface. Its magnitude is
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℘ = | �E × �H | = µ
N 2a

2�2
i
di

dt

The total power impinged into the core by �℘ is

p = 2πa� ℘ = µ
πa2 N 2

�
i
di

dt
= Li

di

dt

where

L = µ
πa2 N 2

�
(H)

is the inductance.
Assuming the current i = √

2I sin(ωt) we find the voltage v = Ldi/dt = √
2ωL I cos(ωt)

and the resulting instantaneous power is

p = vi = 2ωL I 2 sin(2ωt)

Returning to the Poynting vector expression for this case we find

℘ = µ
N 2a

2�2
i
di

dt
= µ

N 2a

2�2

√
2I sin(ωt)ω

√
2I cos(ωt) = ωL

πa�
I 2 sin(2ωt) = p

2πa�

thus

p = 2πa�℘ = 2ωL I 2 sin(2ωt)

meaning that the power is transmitted from the winding to the magnetic core through the
dielectric materials that insulates the conductor from the core.

All the above examples show that ℘ is an instantaneous power density, W/m2, that has active
and nonactive components. In the first example there is a unidirectional transport of energy
from the source to the load and the load, a resistance, absorbs and dissipates active power. In
the next two examples the loads did not convert the energy in heat and the energy is oscillating
back and forth between the source and the loads. No net transfer of energy takes place and in
these cases we deal with a nonactive type of power. In all three examples the Poynting vector
℘ helps to obtain the visual picture of the energy flow from the source to the load through
the space surrounding the conductors, giving complete information about the power’s time
variation and space distribution [12].

4. We will look now into a case where both active and nonactive powers exist. We re-
peat the previous example with a toroidal inductor of identical geometry, Fig. 1.9a, but
with the ferromagnetic core made of a material that has an idealized hysteresis loop, Fig.1.9b.
The voltage impressed across this nonlinear inductor is adjusted to maintain the magnetic
induction excursion from −BS to BS , during the positive half-cycle, and back during the
negative half-cycle, Fig. 1.9c. During the positive half-cycle the current increases from i = 0
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Figure 1.9 Toroidal nonlinear inductor: (a) Geometry. (b) Hysteresis loop. (c) Voltage, induction, and
current waveforms.

to i = 2I0 = 2H0�/N , where H0 is the coercive magnetic field. The time variation of the
magnetic induction B is governed by Faraday’s law, and assuming a sinusoidal input voltage
we have

√
2V sin(ωt) = N A

d B

dt
(1.27)

where A = πa2 is the cross-sectional area of the toroid. The integration of (1.27) gives

B = K −
√

2V

N Aω
cos(ωt)

at ωt = 0 the core is in negative saturation, B = −BS , therefore

−BS = K −
√

2V

N A ω

and the integration constant is

K = −BS +
√

2V

N A ω
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hence the induction varies in time according to the expression

B = −BS +
√

2V

N A ω
[1 − cos(ωt)] (1.28)

At ωt = π the core reaches positive saturation, B = BS , thus

BS = −BS +
√

2V

N A ω
[1 − cos(π )]

and from here we find

BS =
√

2V

N A ω

This result enables us to rewrite (1.28) in a more convenient form

B = −BS + BS[1 − cos(ωt)] = −BS cos(ωt) for 0 < ωt < π (1.29)

The magnetic field H , during the positive half-cycle, Fig. 1.9b, has the equation

H = H0 + H0

BS
B (1.30)

Substitution of (1.29) in (1.30) yields

H = H0[1 − cos(ωt)] (1.31)

Since i = H�/N , from (1.30) results

i = I0[1 − cos(ωt)] for 0 < ωt < π with I0 = H0�/N

and in the same way it is found

i = −I0[1 + cos(ωt) − π ] for π < ωt < 2π

This nonsinusoidal current, Fig. 1.9c, has the following Fourier series:

i = 4I0

π
sin(ωt) − I0 cos(ωt) + 4I0

π

[
1

3
sin(3ωt) + 1

5
sin(5ωt) + · · ·

]
(1.32)

The active instantaneous power supplied to the load is given by the product vi p, where

i p = (4I0/π ) sin(ωt)



P1: OTA/XYZ P2: ABC
c01 BLBK294-Emanuel June 22, 2010 7:21 Printer Name: Yet to Come

Electric Energy Flow: Physical Mechanisms 15

is the current component in-phase with the voltage. The active power is the product of the rms
voltage with the rms active current, i.e.

P = 4I0V

π
√

2
= 2

√
2

π
V I0 (W)

Now since the winding resistance was ignored this active power P is due to hysteresis
losses only. This affirmation is proved if we compute the hysteresis losses straightforward
with the formula

PHyst = (HystLoopArea)(CoreVolume) f

where
HystLoopArea = 4BS H0 (Ws/m3)
CoreVolume = A� (m3)
f = ω/2π is the frequency, (1/s),thus

PHyst = (4BS H0)(A�) f = 4

√
2V

ANω

N I0

�

A�ω

2π
= 2

√
2

π
V I0 = P

At this point we shall bring in the picture the Poynting vector �℘. At the surface of the
toroidal core the electric field vector �E is tangential to the surface, flowing along circles of
radius a (tangential to the perimeter of the core cross-section, Fig.1.8b). The field E is given
by (1.26)

E = dφ/dt

2πa
= 1

2πa

d

dt

(
−√

2V

ωN
cos(ωt)

)
=

√
2V

2πaN
sin(ωt)

The magnetic field vector �H is also tangential to the toroidal core surface, but perpendicular
to �E . The vector �H flows along circles with the centers located on the toroid’s axis.

From (1.32) we find the following equation for the magnetic field

H = Ni

�
= 4I0 N

π�

⎡
⎣sin(ωt) − π

4
cos(ωt) +

∑
h=3,5,7,···

1

h
sin(hωt)

⎤
⎦ (1.33)

The Poynting vector is perpendicular to the toroid’s surface and has three distinctive terms
derived from (1.33)

℘ = ℘p + ℘q + ℘H

where

℘p =
[ √

2V

2πaN
sin(ωt)

][
4N I0

π�
sin(ωt)

]
= 2

√
2V I0

π2a�
sin2(ωt)
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is the active component of �℘. The instantaneous power impinged in the core is

pp = 2πa�
2
√

2V I0

π2a�
sin2(ωt)

and its mean value, the active power is

P = 2
√

2V I0

π
= PH yst

The second term

℘q =
[ √

2V

2πaN
sin(ωt)

][
N I0

�
cos(ωt)

]
=

√
2V I0

4πa�
sin(2ωt)

is the reactive component; it oscillates in and out of the core without causing power loss in the
core. It is due to the energy accumulated in the magnetic field and returned back to the source.

The third component

℘H =
[ √

2V

2πaN
sin(ωt)

]
4N I0

π�

∑
h=3,5,7,···

1

h
sin(hωt)

is due to the current harmonics. It is a nonactive component that contains many subcomponents
that also oscillate to and fro, from source to the inductor and back, in and out of the core
with the frequencies (h ± 1)ω, h = 3, 5, · · ·. Both ℘q and ℘H have similar electromagnetic
“signatures” that result from the �E × �H interaction.

1.1 Problems

1.1 Show that the Poynting vector at the surface 2πb�, Fig. 1.5, transports the energy
dissipated in the volume of the external conductor of radii b and c.

1.2 A superconductor with a length � and rectangular cross-section g × b, slides frictionless
in an air-gap g where a uniform magnetic field Ho was established, Fig. 1.10. A current i is
injected through the conductor. A Lorenz force

g

∞=µ

∞=µ

i F
u

b

g

i
HHR 20 −=

g

i
HHR 20 +=

Figure 1.10 Rectangular conductor moving in a perpendicular magnetic field.
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F = µ0 H0�i

is developed and the conductor moves toward the right with a velocity u. A motional voltage,
or back EMF, is induced in the moving bar. Since we assume a superconductor, this back EMF
equals the voltage v impressed across the conductor, i.e.

v = µ0 H0�u

When this electromechanical system reaches steady-state the electric field at the surface of
the conductor is

E = v

�
= µ0 H0u

On the lateral faces of the conductor the magnetic field vector has two vertical components;
first is H0 and the second ±i/2g is the magnetic field produced by the current i .

Using the Poynting vector, compute the electromechanical power supplied to this supercon-
ductor and prove that

p = µ0 H0u�i = vi = Fu

Repeat the same analysis for generator operation. Assume that the motion is maintained
toward the right, but the flow of the current and the direction of �E are reversed on the account
of the motional voltage.

1.3 A cylindrical solenoid, radius a, length g and N turns, is clamped in a concentrical
ferromagnetic frame, Fig. 1.11, with µ → ∞. Assuming g << a, show by means of Poynting
vector that the power entering the envelope 2πag is

p = d

dt

(
Li2

2

)
; L = µ0 N 2πa2

g

1.4 Given a superconductive coaxial cable with radii a < b and length � that carries a
current i , show by means of Poynting vector that the flux of the powers entering the surfaces
2πa� and 2πb� carries a total power

p = d

dt

1

2
Li2 ; L = µ0�

2π
ln

b

a

1.5 A superconductive coaxial cable (length � radii a and b, see Fig. 1.5) has insulation
made of a dielectric with the permittivity ε. One end is supplied with the voltage v = v(t), the
other end of the cable is left open (disconnected).
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Figure 1.11 Cylindrical solenoid mounted in a ferromagnetic frame: Cross-sectional view.

Prove that the Poynting vector entering the area π (b2 − a2) at the supplying end carries
the power

p = d

dt

(
1

2
Cv2

)
where C = 2πε�

ln
(

b
a

)

Also show that as the Poynting vector enters the dielectric, it loses intensity and at the
opposed end, where x = �, P = 0.
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2
Single-Phase Systems With
Sinusoidal Waveforms

Those who can not remember the past are condemned to repeat it.
—George Santayana

This chapter examines the steady-state flow of electric energy into two terminal loads supplied
with sinusoidal voltage. It starts with the basic components, the linear R, L and C . Their study
provides the bricks and mortar needed to build the steps that lead to the understanding of
the controversial polyphase nonsinusoidal systems. The scope of this chapter is to introduce
modeling concepts and symbols used throughout this book. Some of the material is well
covered in many textbooks, however, there are sections that provide new insights and help to
explain the concept of active and nonactive power based on the electromagnetic field theory
and to detail the space and time distribution of the power flow.

2.1 The Resistance

We start with the investigation of the circuit shown in Fig. 2.1a. A sinusoidal voltage source

v = V̂ sin(ωt) (2.1)

is impressed across the resistance R causing the flow of a sinusoidal current in-phase with the
voltage,

i = v

R
= Î sin(ωt) (2.2)

where
V̂ = √

2V is the amplitude and V the rms value of the voltage v,
ω = 2π f is the angular frequency (rad/s), f is the frequency (Hz) and T = 1/ f is the

period (s).
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Figure 2.1 Resistance supplied by a sinusoidal voltage: (a) Circuit. (b) Load voltage and current
waveform. (c) Instantaneous power waveform.

Î = V̂ /R; Î = √
2I is the amplitude and I = V/R is the rms value of the current i .

The instantaneous power pp supplied to the load R is obtained by multiplying the instanta-
neous voltage v and the current i ,

pp = vi = V̂ Î sin2(ωt) = 1 − cos(2ωt)

2
V̂ Î

= V̂ Î

2
− V̂ Î

2
cos(2ωt) = V I − V I cos(2ωt) (2.3)

This power is not constant in time, it is a cosinusoidal oscillation with an amplitude V I and
a frequency twice the voltage source frequency, Fig. 2.1c. It oscillates between 0 and 2V I .
The mean value V I of the instantaneous power over one cycle T = 2π/ω can be easily found
by inspecting (2.3), nevertheless we will refer to the basic definition

P = 1

T

∫ T

0
pp dt = 1

T

∫ T

0
vi dt (2.4)
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Substitution of (2.1) and (2.2) in (2.4) gives

P = 1

T

∫ T

0
V̂ Î sin2(ωt) dt = 1

2π

∫ 2π

0
V̂ Î sin2(ωt) d(ωt) = V̂ Î

2
= V I (2.5)

Equation (2.3) can be also written in the form

pp = P − pi = P − P cos(2ωt) (2.6)

that reveals at a glance the structure of the rate of electric energy flow to a resistance supplied
with sinusoidal voltage.The first term is the average power

P = V I = RI 2 = V 2

R

known as the active power or real power (sometimes also called effective power) and it is
measured in W (Watt). The second term, pi = −P cos(ωt) is the oscillation with amplitude
P , and it is always present when a sinusoidal voltage supplies a resistance. This term is the
instantaneous intrinsic power. Its physical significance becomes clearer if we focus on the
flow of energy into the load R. During a time interval from 0 to t the amount of energy supplied
to this load is

wp =
∫ t

0
pp dt =

∫ t

0
[P − P cos(2ωt)] dt = Pt − P

2ω
sin(2ωt) (2.7)

The first term, Pt , that steadily ramps up in time, Fig. 2.2, quantifies the net flow of energy
delivered to R over an integer number of half-cycles. For example, the energy converted in
heat during N half-cycles is

W = P(N T/2)

 W

tω

)2sin(
2

t
P

ω
ω

Pt

w

Figure 2.2 Time-variation of the energy and its components.
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The second term, [P sin(2ωt)]/2ω, makes no contribution to the net transfer of energy over
the time N T/2; however, this term is always present when active power is delivered in ac
systems. In a dc circuit, under steady-state conditions, the instantaneous power supplied to a
resistor pp = RV 2 = V 2/R is perfectly constant, hence as long as R and V are constant no
intrinsic power is present.

Note: One may find in the engineering literature [1] attempts to attach more significance to
the oscillation P cos(2ωt) and to single it as a consequential power component. Such a step
is not warranted. The reason for opposing such a separation stems from the physical meaning
of the rms value.

Let us assume that a resistance R converts in heat, during a limited time τ , the energy W .
This means that the average power is

P = W

τ
with W =

∫ τ

0
p dt

For the observation time τ , the rms current will be governed by expression

I =
√

P

R
=

√
W

τ R

From here results that when a given amount of energy W is dissipated by a resistance R over a
time τ , there is only one value of rms current that fulfills this condition for the entire duration
τ and this value, I , is independent of the instantaneous power fluctuations. If the resistance R
is supplied by a sinusoidal voltage or by a perfect direct voltage—in which case there is not
intrinsic instantaneous power—the same amount of energy will be delivered during the time
τ as long as the rms currents are the same for both situations. For example, if we assume that
the instantaneous power dissipated by a resistance has the expression

pp = P + Fp(t)

where Fp(t) is the fluctuating component with a nil average value, i.e.

〈Fp(t)〉 = 1

τ

∫ τ

0
Fp(t) dt = 0

then the rms current I = √
P/R is independent of Fp(t) and so is W . This observation is

depicted in Fig. 2.3 where four different graphs representing time-variations w = w(t) are
shown. All four trajectories designate the delivery of the same amount of energy W over the
time τ = N T/2. The straight line A corresponds to a perfect dc condition that is considered
ideal for energy transfer. The undulating graph B is for the sinusoidal case, and the graphs
C and D are for two different hypothetical transient conditions. All four trajectories yield the
same rms current.

In the process of electric energy transfer to a load the amount of energy lost in the transmis-
sion line is of great consequence. The economist wants to know the cost of the lost energy and
the design engineer wants to determine the temperature of the conductors, evaluate the aging
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Figure 2.3 The same amount of energy W is delivered during the time τ . All four trajectories yield the
same average power P = W/τ .

of the cables, compute mechanical stresses and the eventual conductor sag. We find that the
average power loss in the line resistance Rs , Fig. 2.1a, is

�Pp = Rs I 2 = Rs

(
P

V

)2

(2.8)

and in this particular case depends solely on the equivalent line resistance Rs , the active power
P and the load rms voltage V .

2.2 The Inductance

Now the resistance R, of Fig. 2.1a, is replaced by an inductance L , Fig. 2.4a.
The cosinusoidal current

i = − Î cos(ωt) (2.9)

causes a voltage drop

v = L
di

dt
= ωL Î sin(ωt) = V̂ sin(ωt); V̂ = ωL Î ; V = ωL I (2.10)

and the instantaneous power

pq L = vi = −V̂ Î sin(ωt) cos(ωt) = − V̂ Î

2
sin(2ωt) = −V I sin(2ωt) = −QL sin(2ωt)

(2.11)

where the amplitude of the instantaneous power oscillation is

QL = V I = ωL I 2 = V 2

ωL
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Figure 2.4 Inductance supplied by a sinusoidal voltage: (a) Circuit. (b) Inductance voltage and current
waveforms. (c) Instantaneous power waveform. (d) Energy.

Since no electric energy is converted in heat or mechanical energy, there is no active power

P = 1

T

∫ T

0
pq L dt = 1

T

∫ T

0
−Q sin(2ωt) dt = 0 (2.12)

The energy characterized by the rate of flow pq L has the following expression:

wq L =
∫

pq L dt =
∫

−QL sin(2ωt) dt = K + QL

2ω
cos(2ωt) (2.13)

where K is an integration constant. In steady-state at t = 0 the current i = − Î , Fig. 2.4b, and
the energy stored in L is

wq L |t=0 = L Î 2

2
= ωL Î 2

2ω
= V̂ Î

2ω
= QL

ω
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Thus

K =
[
wq L |t=0 − QL

2ω
cos(0)

]
= QL

ω
− QL

2ω
= QL

2ω

and

wq L = QL

2ω
[1 + cos(2ωt)] (2.14)

Typical oscillograms are presented in Figs. 2.4b, c and d. Under steady-state conditions the
energy is continuously oscillating between L and the voltage source vs . At the beginning of
each voltage half-cycle, when the current is reaching peak value, the stored energy reaches
the maximum value, QL/ω. During the next quarter-cycle the energy is gradually returned
to the source vs till the inductance is totally depleted of energy. In the following quarter-cycle
the inductance is again charged to its fullest. This fluctuation of energy between L and vs is
sustained by the current i (with the rms value I = V/ωL = QL/V .) This current is causing
power loss in the line resistance Rs

�PQ = Rs I 2 = Rs

(
QL

V

)2

(2.15)

The amplitude QL of the instantaneous power oscillation is called reactive power and it is
measured in var (volt-ampere-reactive). This reactive power QL belongs to the category of
powers defined as nonactive powers.

These powers quantify the rate of flow of the energy exchanged among loads and sources, or
even among different loads. Such exchanges of energy do not amount to a net transfer of energy
between the source and the load, but are the sources of additional power loss. It is important
to observe that both the intrinsic instantaneous power pi = −P cos(2ωt), (see (2.6)), and
the reactive instantaneous power pq L = −QL sin(2ωt), are similar power oscillations with
identical frequencies having no average value; however, pi is always bound up to an active
power and does not cause power loss, while pq L does cause power loss in the conductors that
supply the load.

2.3 The Capacitance

This case is similar to the previous one. The inductance L in Fig. 2.4 is replaced by the
capacitance C . The cosinusoidal current

i = Î cos(ωt) (2.16)

causes the voltage drop

v = 1

C

∫
i dt = Î

ωC
sin(ωt) = V̂ sin(ωt) V̂ = Î

ωC
; V = I

ωC
(2.17)
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The instantaneous power is an oscillation

pqc = vi = V̂ Î sin(ωt) cos(ωt) = V̂ Î

2
sin(2ωt) = QC sin(2ωt) (2.18)

with the amplitude

QC = V I = I 2

ωC
= ωCV 2

The flow of energy into a capacitance is

wqc =
∫

pqc dt =
∫

QC sin(2ωt) dt = K ′ − QC

2ω
cos(2ωt) (2.19)

where K ′ is the integration constant. If at ωt = 0, v = 0, then

wqc|t=0 = Cv2

2
= 0

and

K ′ = wqc|t=0 + QC

2ω
cos(0) = QC

2ω

thus

wqc = QC

2ω
[1 − cos(2ωt)] (2.20)

We find that the mechanism of energy flow into the capacitance is similar to the flow of
energy into an inductance. Under steady-state conditions, at the beginning of each voltage half-
cycle, the capacitance starts to charge and maximum energy CV 2 is stored when the capacitor
voltage reaches peak value. In the next quarter-cycle the capacitor is gradually discharged and
is completely depleted at the next zero-voltage crossing.

The flow of energy in and out of the capacitance is shifted T/4 s with respect to the flow
of energy in and out of the inductance. This means that when one connects in parallel a
capacitance and an inductance that have equal reactive powers, i.e.

QC = ωCV 2 = QL = V 2

ωL
= Q

the total energy “trapped” in the L–C system

wq = wqc + wq L = Q

2ω
[1 − cos(2ωt) + 1 + cos(2ωt)] = Q

ω

remains constant and dwq/dt = 0. In this case no exchange of energy takes place between
the L–C components and the source. This is exactly the case of parallel resonance, when
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Figure 2.5 R–L–C Impedance supplied by a sinusoidal voltage: (a) Circuit. (b) Inductance voltage
and current waveforms. (c) Instantaneous power waveform. (d) Energy.

ωL = 1/ωC . Once the source delivers to the L–C components the energy Q/ω, the oscillations
of energy remain confined between L and C and, if the inductor and capacitor are lossless,
no additional energy is required to support these oscillations. In this ideal situation the line
current is nil.

2.4 The R – L – C Loads

Next we will study the power and energy flowing into a series R–L–C branch supplied with
the sinusoidal voltage (1), Fig. 2.5a. In this case the instantaneous current is

i = Î sin(ωt − θ ) (2.21)

where

Î = V̂

Z
; Z =

√
R2 + X 2; X = ωL − 1

ωC
; tan θ = X

R

The current i can be separated into two components: the active current i p, in-phase with the
voltage v, and the reactive current iq , in-quadrature with the voltage v:

i = i p + iq

where

i p = Î psin(ωt) = Î cos θ sin(ωt); Î p = Î cos θ (2.22)
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is the active component and

iq = − Îq cos(ωt) = − Î sin θ cos(ωt); Îq = Î sin θ (2.23)

is the reactive component.
The instantaneous power also has two well-defined components

p = vi = v(i p + iq ) = pp + pq (2.24)

where

pp = vi p = P[1 − cos(2ωt)] (2.25)

is the instantaneous active power having an expression identical to (2.6), that consists of active
power and intrinsic power, and

pq = viq = −Q sin(2ωt) (2.26)

is the instantaneous reactive power identical to (2.11).
The expressions of P and Q are

P = V I cos θ and Q = V I sin θ (2.27)

The active power P is the average value of pp and is dissipated by R

P = RI 2 = R
V

Z

V

Z
= V

V

Z

R

Z
= V I cos θ (2.28)

The reactive power

Q = X I 2 = X
V

Z

V

Z
= V

V

Z

X

Z
= V I sin θ (2.29)

is the amplitude of pq . Since pq does not transfer energy that is converted by the load in other
forms of energy, pq can be categorized as a nonactive instantaneous power.

2.5 The Apparent Power

The waveforms of the voltage, current, and instantaneous power for a series R–L–C circuit
are shown in Fig. 2.5b and c. The instantaneous power oscillates between the extremes
pmin = (P − S) ≤ 0 and pmax = (P + S) > 0. The expression of the amplitude S of the
instantaneous power oscillation becomes evident when we substitute (2.25) and (2.26) in
(2.24) and obtain a detailed expression for the instantaneous power:

p = P − P cos(2ωt) − Q sin(2ωt) = P − S cos(2ωt − θ ) (2.30)



P1: OTA/XYZ P2: ABC
c02 BLBK294-Emanuel June 22, 2010 11:12 Printer Name: Yet to Come

Single-Phase Systems With Sinusoidal Waveforms 31

 

INDUCTIVE CAPACITIVE

V
V I

I
QQ

Q

Q

S

S

P
Pθ

θ
PP

Figure 2.6 Power triangles: (a) Inductive load. (b) Capacitive load.

where

S =
√

P2 + Q2 = V I ; tan θ = Q

P
= X

R
(2.31)

The quantity S is called apparent power, has the unit VA (Volt-Ampere) and besides being
equal to the amplitude of the instantaneous power oscillations (that is true only for sinusoidal
conditions) it has a significant property related to the line power loss �P:

�P = Rs I 2 = Rs
(
I 2

p + I 2
q

) = Rs

V 2
(P2 + Q2) = Rs

V 2
S2 (2.32)

meaning that the power loss in the line that supplies a load, or a cluster of loads that use a total
apparent power S, is proportional to S2. This obvious and simple property helps understand
the true meaning of S as being the electrical quantity that relates the size of the load (kVA)
with the size of the equipment needed to supply the required energy to the load. At the same
time (2.32) reveals that both P and Q contribute to the energy lost in the line.

The three powers, P , Q and S, form a right-angle triangle, Fig. 2.6. If the current phasor
lags the voltage (inductive load) Q > 0, (Fig. 2.6a). If the current leads the voltage (capacitive
load) Q < 0, (Fig. 2.6b).

The power triangles representation leads to the concept of complex power1. This is a vectorial
representation of the apparent power in the plane P–Q.

S = P + j Q = S � θ = V I � θ

The phasors voltage, current and conjugate current phasors are

V = V � 0◦, I = I � −θ and I∗ = I � θ

1 The complex power should not be confused with a phasor. A phasor usually represents a current or a voltage that
has a perfectly sinusoidal time variation. The phasor is a segment with a length proportional with the amplitude or the
rms value of the current or voltage. The phasor is like a wheel spoke that rotates with the angular velocity ω = 2π f .
In phasor diagrams the phasors are shown “frozen” at a certain moment in time, usually at t = 0.
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Figure 2.7 Power flow convention [2].

therefore

S = VI∗ = V I � θ and

P = 
e{VI∗}; Q = �m{VI∗} (2.33)

Power-flow or load-flow studies compute at each bus or node of the modeled power system
the complex power S = P + j Q. These values show the direction of electric energy flow. The
signs of P and Q are taken as summarized in Fig. 2.7 [2]. The convention for the direction of
the active power flow is obvious: net energy is transferred in the positive direction of the flow.
Active power exiting from a bus means that electric energy is generated or supplied from the
bus to the network. The nonactive power pq oscillates back and fro, its average value is nil,
and in sinusoidal systems, Q represents the amplitude of the oscillations of pq . Nevertheless,
electrical engineers have attached a sign to Q: when the load is capacitive Q < 0 and when the
load is inductive Q > 0. This convention led to the often mentioned, but physically incorrect,
claim that “capacitors generate and inductors sink reactive power.”

The expressions (2.32) and (2.33) show that if the reactive power Q is decreased while
maintaining a constant active power P supplied to the load, then it is possible to minimize the
supplying line power loss �P . Under such conditions if Q → 0 the line power loss is reduced
by (Rs/V 2)Q2.

On the other hand, if one can keep both the line rms current I and the load rms voltage V
constant and vary the phase angle θ , then the apparent power S = V I remains unchanged.
Under this constraint the power loss remains constant while the vectors P and Q slide along
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Figure 2.8 Active power vs. reactive power for a load with constant apparent power.

a circle P2 + Q2 = S2, Fig. 2.8. If the reactive power is adjusted in the range −S ≤ Q ≤ S,
the active power reaches its maximum at Q = 0 when P = S. All these observations lead to
the following sound definition of S:

For single-phase systems, operating under sinusoidal conditions, the apparent power of
a load or a cluster of loads supplied by a feeder is the maximum active power that can be
transmitted through the feeder, while keeping the receiving end rms voltage and the feeder
variable losses2 constant. This definition can also be extended to a source: The apparent power
of a source is the maximum active power that can be supplied, or generated by, the source,
while keeping its output voltage and the internal variable power losses constant.

The above definition was introduced in a modified form by W. V. Lyon [3] in 1920, promoted
by A. Liénard [4] in 1926, and later advocated by H. L. Curtis and F. B. Silsbee [5,6].

It cannot be emphasized enough that the apparent power is one of the most important
electrical quantities that help the implementation of economic evaluations of transmission and
conversion processes: electric energy billing and contracts are affected by the kVA demand.
The cost of equipment is often expressed in $/kVA. The compactness of a design is estimated
in kVA/kg or kVA/m3. Prototype and field testing, as well as standard compliance, pivot around
the S–measurement.

From the beginnings of transformer and rotating machinery construction, the designers were
aware of the significance of S and the importance of its accurate measurement. Arnold and
later Richter [7] have developed key equations crucial for the process of shaping and seizing
electrical equipment. Two famous design formulae come to mind:

For transformers;

Acol = CT

√
S

f
(2.34)

where
Acol is the cross-sectional area of the transformer column (m2),

f is the power system frequency (Hz),

2 Feeder power loss includes the no-load losses, i.e. the iron-core losses of transformers and eventual dielectric
losses. These losses are a function of V 2, hence independent of S. The variable losses are the losses proportional
with I 2.
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and for motors;

CM D2 Li n = S (2.35)

where
D is the diameter of the rotor (m),
Li is the equivalent length of the rotor (m),
n is the rotor speed (rev/min) and

CT , CM are transformer and motor design constants, respectively. They are strongly
affected by the heat transfer conditions and the physical properties of the materials involved in
the construction of such equipment. Thus the efficiency, geometry, quality, and the amount of
active materials and dielectrics, and ultimately the cost of electrical equipment, are functions
of S and not of P .

A cardinal property of the apparent power that stems from (2.32) is the fact that for a
constant load voltage the total power loss in a feeder is a nearly linear function of S2,
Fig. 2.9;

�PT ≈ a + bS2 (2.36)

where a and b are constants, (a represents the fixed losses). This simple approximation
holds true for any types of power systems, any conditions, and any waveforms [8], and it
should serve as a “go no-go gauge” for a simple, correct, and practical definition of S (see
problem 2.15).

2.6 The Concept of Power Factor and Power Factor Correction

Electric utilities’ goal is to deliver electric energy to their customers. When a transmission or
a distribution line is built, capital is invested, and the investor, be it private or public, expects
the investment to bear fruit. The energy lost in the conductors of feeders and transformers
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Figure 2.9 Total power loss in a feeder’s conductors and transformers is nearly proportional to the
apparent power squared.
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translate in lost income; moreover, all these losses are converted into heat that, when excessive,
causes premature aging of cable and winding insulation, or the annealing of the conductors;
thus reducing the mechanical strength that is so critical for overhead applications. In overhead
lines, increased conductors’ temperature causes increased sags that may reduce the clearances
to unacceptable levels. In cables, higher temperature means a more vulnerable dielectric to
voltage surges and over voltages. Supplying lines are built to operate with a rated current-
carrying capacity known as ampacity. When the end-users have loads characterized by large
values of Q, the supplying line is not utilized correctly; the line may operate with a current
near its rated ampacity without transferring much energy (kWh) to the end-users. From the
economist’s viewpoint this is a bad situation.

The figure of merit that can help to evaluate at a glance the utilization of a simple feeder or
a transmission line is the ratio

Wp

Ws
=

1

τ

∫ τ

0
P dt

1

τ

∫ τ

0
S dt

= 〈P〉
〈S〉 ≤ 1.0 Wp ≤ Ws (2.37)

Here Wp is the actual energy delivered to the observed load during the time τ and Ws is
the hypothetical maximum possible energy that could be delivered through the line to its
receiving-end during the same time τ , while keeping the energy lost in the supplying line
unchanged and the receiving-end voltage unchanged. If the load voltage remains the same it
means that the energy conversion process implemented by the load remains unchanged.

From (2.37) results the well known power factor definition:

PF = P

S

however, it should be understood that P and S rarely remain constant in time. These quantities
fluctuate due to voltage and load variation, so for a specified period of time, the more correct
expression of the power factor should use the mean value 〈P〉 and the equivalent value of S
(see Chapter 7, Section 1.2, the Randomness Power).

An ac load supplied with the rms voltage V and characterized by the apparent power S and
power factor PF can be represented by means of an equivalent resistance R in parallel with
an equivalent reactance X L = ωL , Fig. 2.10a. Since

P = S(PF) = V 2

R
and Q = S

√
1 − (PF)2 = V 2

X L

results

R = V 2

P
= V 2

S(PF)
and X L = V 2

Q
= V 2

S
√

1 − (PF)2

From the phasor diagram shown in Fig. 2.10b we see that the power factor

PF = P

S
= V IR

V I
= IR

I
= cos θ (2.38)
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R
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Figure 2.10 Equivalent R–L parallel load: (a) Circuit. (b) Phasor diagram for (a). (c) Power factor
corrected load (compensated load). (d) Phasor diagram for (c).

This result is true only for circuits with sinusoidal waveforms.
Now let us assume that an amount of energy W is delivered to the load during the time

τ = W/P . Under this condition the line current is

I = S

V
=

√
P2 + Q2

V
=

√(
V

R

)2

+
(

V

X L

)2

If a capacitance is connected in parallel with the load, Fig. 2.10c, and the capacitance is
adjusted at resonance value XC = 1/ωC = X L = ωL , then the instantaneous currents iC and
iL , that are 180◦ out of phase, cancel each other and the line current is minimized. The new
rms line current is I ′ = IR = V/R < I , Fig. 2.10d. This situation allows for the flow of more
active power, i.e. another resistance, representing an additional load with unity power factor,
can be connected in parallel such that the new total active power delivered to the receiving end
of the line is increased from P to P ′ = S. During the time τ , the amount of energy supplied
is W ′ = P ′τ = Sτ , and the energy W will be delivered in a shorter time τ ′ = (W/W ′)τ , Fig.
2.11a. It is easily observed that the power factor of the original (uncompensated load) is

PF = W

W ′ = τ ′

τ
= P

P ′ = cos θ (2.39)

Another simple, but meaningful, interpretation of the power factor, is to imagine the entire
cross-sectional area AS of the conductor proportional to the apparent power squared S2, and
the area AP < AS proportional to the active power squared P2 < S2, Fig. 2.11b. One may
assume all the active current crowded within the shaded sector AP , i.e. only this portion of
the cross-sectional area is utilized to transport energy. Evidently PF = √

AP/AS . The entire
cross-section of the conductor is utilized if the reactive power is eliminated and P = S.
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(a) (b)

)( 22 PSkAA PS −=−

2kPAP =

2kSAS =

w
W ′

W

0
τ ′ τ t

Figure 2.11 Geometrical interpretations of power factor: (a) Energy vs. time. (b) Conductor cross-
section with area AS . Shaded area AP carries the active current. Blank area carries the nonactive current.
The power factor PF = √

AP/AS .

This geometrical interpretation leads to a simple PF mathematical expression: starting with
the definition

PF = P

S
= V I cos(θ )

V I
=

√
Rs[I cos(θ )]2

Rs I 2
=

√
�Pc

�P

or

�Pc

�P
= P2

S2
= PF2

where
�Pc is the power loss after compensation,
�P is the power loss before compensation.

Example 2.1 A single-phase source supplies 600 V, 60 Hz to a 200 kVA load with a
power factor PF = cos θ = 0.71 lagging (i.e. inductive load). Determine the size of the
capacitor connected in parallel with the load, that helps to raise the load power factor to
PF ′ = cos θ ′ = 0.90.

The capacitor’s reactive power QC is the amplitude of power oscillations 180◦ out of phase
with the power oscillations Q of the load. From the phasor diagram and the triangles of powers,
Fig. 2.12a, we find that

tan θ = Q

S
and tan θ ′ = Q − QC

S

and from here results

Qc = (tan θ − tan θ ′)S
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Figure 2.12 Power triangles: (a) Inductive load without compensation. (b) Inductive load with partial
compensation. (c) Over compensated system.

For the given load we find

tan θ = tan(cos 0.71)−1 = 0.992; tan θ ′ = tan(cos 0.9)−1 = 0.484

QC = (0.992 − 0.484)200 = 101.6 kvar

The value of this capacitance is

C = QC

ωV 2
= 101.6 × 103

376.99 × 6002
= 748.6 µF

Unity power factor is obtained if QC = Q = 198.4 kvar. If QC > Q the load will be over
compensated, Fig. 2.12c and PF < 1, but leading.

2.7 Comments on Power Factor

Let us assume the general case where a linear load is supplied by a feeder with the impedance
Rs + j Xs , Fig. 2.13a. We take as phase reference the load voltage phasor V = V � 0◦ leading
the line current phasor I = I � − θ . The sending-end voltage phasor Vs, Fig. 2.13b, is controlled
by the electric utility and has the expression

Vs = V + (Rs + j Xs)(cos θ − j sin θ )I (2.40)

If a capacitance C = I sin θ/ωV = 1/(ω2 L) is connected in parallel with the load, Fig.
2.13c, the line current will be reduced and brought in-phase with the load voltage, Fig. 2.13d,
and the load will operate at unity power factor. This improved condition makes “room”
for an additional load: the new load, if also compensated to unity power factor, may be
represented by a resistance R′, Fig. 2.13c, that can be adjusted to yield a line current phasor
I = I ′ cos θ + IR′ = I , i.e. identical in magnitude to the initial line current, but in-phase
with the load voltage. This means I = V ′/RT where RT = R R′/(R + R′). However, if the
magnitude of the substation voltage phasor Vs remains unchanged, the new line current phasor
I = I will modify the load voltage phasor to a new value:

V ′ =
√

V 2
s − (Xs I )2 − Rs I



P1: OTA/XYZ P2: ABC
c02 BLBK294-Emanuel June 22, 2010 11:12 Printer Name: Yet to Come

Single-Phase Systems With Sinusoidal Waveforms 39

(a) (b) 

(c) (d)

I

I

ISR

SR SL

SL

R

R

L

L

V

V

SV

SV

C

SV ′

SV ′ V ′

V ′

R′

I ′

I ′ CI

CI

RI ′RI ′

θcosI ′

II =′

δV ′

δV

θ

γ
φ

φγ

IRS

IRS

IjX S

IjX S

Figure 2.13 Equivalent R–L parallel load supplied by a line: (a) Circuit. (b) Phasor diagram. (c)
Compensated circuit with additional load R ′. (d) Phasor diagram for the compensated circuit.

If θ < 0 then V ′ > V and the load voltage remains unchanged only if the substation voltage
is modified to a new value V ′′

s :

V ′′
s =

√
(V + Rs I )2 + (Xs I )2 (2.41)

This means that the correct value of the additional load R′ is found from the condition
R′

T = V/I with R′
T = R R′/(R + R′).

It is concluded from this analysis that in many practical situations the process of power
factor correction is a two-step operation that requires the cooperation of both interested
parties, consumer, and utility:

1. A capacitor or an active compensator device is installed in parallel with the load whose
power factor must be corrected. This procedure—usually the end-user’s responsibility—
reduces the amplitude of the line current bringing its phasor in-phase with the load voltage
phasor and at the same time causes the load voltage to increase by a certain increment.

2. The load voltage deviation from its initial value may be unacceptable to some consumers.
The party responsible for the quality of the electric energy delivered has to maintain the
customer’s rms voltage within a permissible tolerance range (if the voltage is nonsinusoidal
more constrains may apply). By means of substation transformer tap changers or voltage
regulators, the voltage at the distribution system buses is maintained within a range that
results in satisfactory operation of customer’s loads and utilization equipment.

This conclusion sheds more light on the concept of the apparent power S, indicating that
the apparent power is equal to an active power supplied to a load or a group of loads under
ideal conditions (such loads may be considered fictive):
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A. The load(s) power factor is compensated at PF = 1.
B. The rms line current must remain unchanged, hence the line power loss is kept unchanged.

This condition implies that additional loads are connected in parallel with the observed
load. The existing load compensated at PF = 1 takes a rms current smaller than the
uncompensated load and to maintain the same line losses requires a load increase.

C. The load voltage is maintained unchanged. This requirement means that the supply voltage
at the customer’s mains has to be readjusted to a value that ensures equipment performance
(electric energy conversion or generation) no different than the conversion prior to the
power factor compensation.

One must be aware of the fact that the apparent power is not an actual physical quantity.
In spite of its clear interpretation as a useful quantifier of conductor utilization, equipment
sizing, geometry, and thermal stresses, and in spite of its impact on engineering economics, S
is a mathematical definition, an expression that conveniently defines optimum conditions for
the electric energy flow, or the evaluation of thermal stress in rotating machines, cables, and
transformers. Modern instrumentation can measure any defined expression that is a function
of actual electrical quantities, however, it is the responsibility of the engineering community
to define and promote expressions that help provide an accurate overview of energy con-
sumption, help increase energy savings, increase reliability of supply, enable improved energy
management, and assist in the detection of fraud.

It is important to remember that historically, due to incandescent lamp dominance among
loads, the constraint “load voltage unchanged” considered the rms voltage value, i.e. the
thermoelectric effect. However, motors and rectifiers respond differently to voltage variations,
distortions, and unbalance than a filament lamp resistance. The constraint “rms voltage to
be constant” may be challenged and replaced with “load output unchanged,” meaning that a
motor will deliver, after the PF-compensation, the same torque and velocity, and a rectifier
will deliver the same dc voltage. Probably the rigorous approach is to consider a voltage which
facilitates the same active power conversion, i.e. the energy conversion process at the load
remains unchanged. The output power is the same before and after the power factor correction.

Example 2.2 A single-phase load under normal operation is supplied with V = 440� 0◦ V,
60 Hz. The apparent power and the power factor of this load are S = 44.0 kVA and PF = 0.707
lagging (P = 31.11 kW and Q = 31.11 kvar). This load is connected to the substation via a
dedicated line with an impedance 0.07 + j0.337 �.

The load can be modeled by means of a resistance R = V 2/P = 4402/31110 = 6.223 �

in parallel with an inductance L = V 2/ωQ = 4402/377 × 31110 = 16.509 mH. The line
current is 100� − 45◦ A. The substation voltage (2.40) is

Vs = 440 + (0.07 + j0.377)100 � 45◦ = 472.107� 2.635◦ V

If a capacitance C = 1/ω2L = 426 µF is connected in parallel with the load then unity
power factor is obtained. In this case the line current is reduced to

I′ = Vs/(0.07 + j0.377 + 6.223) = 74.886� 0.793◦ A
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The 25.1% current reduction means 43.9% line power loss reduction. However, the load
voltage increases to V ′ = 6.223I ′ = 466.015 V. This 5.91% load voltage jump is not neces-
sarily “good news.” Depending on the load type it may causes a 12.19% increase of the active
power to 34.90 kW. Good engineering practice requires to restore the voltage magnitude within
an acceptable range, closer to the rated value of 440 V, in which case the substation voltage
has to be reduced to V ′

s = 445.95 V. If a new load of 44.0 − 31.11 = 12.89 kW, (R′ = 15 �)
is connected to help restore the current to its initial 100 A value, the substation voltage must
be reduced to 448.27 V.

2.8 Other Means of Reactive Power Control and Compensation

In the past, synchronous machines were used to adjust the flow of the reactive energy wq

(2.14). The principle of operation can be explained with the help of Fig. 2.14 where an ideal
synchronous motor—winding, core, and mechanical losses are negligible—is modeled using a
synchronous EMF phasor E = E � − δ in series with a synchronous reactance Xs . The motor
is supplied with the voltage phasor Vs = Vs � 0◦. The current phasor is

I = Vs − E � − δ

j Xs
= E

Xs
sin δ − j

(
Vs − E cos δ

Xs

)

where δ is the torque angle (Fig. 2.14).
The mechanical power developed by this ideal motor equals the active power

P = 
e
[
VsI∗] = Vs E

X S
sin δ = Vs I cos θ (2.42)

The instantaneous reactive power has the amplitude

Q = �m
[
VsI∗] = V 2

s − Vs E cos δ

X S
= Vs I sin θ (2.43)

I

I

SV

SV
E E

SX
IjX S

P = Constant Power Lines  

θ

δ

(a) (b)

Synchronous
Motor

Figure 2.14 Ideal synchronous motor: (a) Per phase equivalent circuit. (b) Phasor diagram (line-to-
neutral voltages).



P1: OTA/XYZ P2: ABC
c02 BLBK294-Emanuel June 22, 2010 11:12 Printer Name: Yet to Come

42 Power Definitions and the Physical Mechanism of Power Flow

The torque angle δ is a function both of E and the mechanical power P . If the motor is not
loaded, δ = 0, θ = ±90◦, P = 0 and

Q = Vs
Vs − E

Xs

When the motor is overexcited, i.e. E > V , the reactive power Q < 0. In this case the
synchronous motor operation is equivalent to a capacitance. The opposite is true for the
underexcited case E < V , when Q > 0 and the motor operates like an inductance. The
synchronous EMF E can be continuously adjusted by varying the field current. This important
feature ensures continuous adjustment of Q. The main drawbacks of these “synchronous
condensers” are the slow response time, bulkiness (low kg/kvar, low m3/kvar), and high
annual investment cost ($/kvar).

Modern static compensators using solid state switching devices have replaced the “syn-
chronous condensers.” Their basic concept of reactive power flow control remains unchanged:
the new technique is based on the fact that an adjustable alternating voltage synchronized to
the network frequency can help to control the flow of the reactive instantaneous power. The
controlled voltage is implemented using a power factor compensator that consists of a pulse-
width-modulated solid state inverter or converter designed to control the rate of energy flow
in or out of an energy storage component. The energy can be stored in a battery, a capacitor, a
superconductive inductor, or a rotating mass. The system performs as an adjustable capacitor
or inductor [9–13], the rate and direction of energy flow is controlled by adjusting the ampli-
tude, and the phase of the voltage at the terminals of the power factor compensator. One of the
major advantages of such a device is its fast response time. The major limitation is caused by
the switching power loss in the solid-state devices (transistors or gate-turn-off thyristors).

The most general case is shown in Fig. 2.15. The uncompensated load ZL = Z L � θ is
supplied via a line with impedance Zs = Rs + jωLs = Zs � φ by the voltage source Vs. The
phasor diagram, Fig. 2.15b, uses the load voltage phasor V = V � 0◦ as reference. The load
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Figure 2.15 Reactive power compensated by means of static compensator with zero active power:
(a) Uncompensated circuit. (b) Phasor diagram. (c) Circuit with compensator. (d) Phasor diagram for a
perfectly compensated circuit.
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voltage magnitude is a function of supply voltage phasor, line impedance, and the equivalent
load impedance

V = ZL � θ

Z L � θ + Zs � φ
Vs

The rms load voltage can be written in the form

V = Vs/F(Zs, ZL )

where

F(Zs, Z L ) =
√

1 +
(

Zs

Z L

)2

+ 2Zs

Z L
cos(φ − θ )

The active and reactive load powers are

P = V Is cos θ =
(

Vs

F(Zs, Z L )

)2 cos θ

ZL

Q = V Is sin θ =
(

Vs

F(Zs, Z L )

)2 sin θ

ZL

(2.44)

In the next step a static compensator with a variable voltage phasor Vc = Vc � − δ and a
series equivalent reactance XcM is connected in parallel with the load ZL , Fig. 2.15c. The
phasor Vc is brought in-phase with the load voltage phasor V′ (i.e. δ = 0) and adjusted to
inject the current

IC = (Vc − V ′)/XcM = I ′ sin θ

The resulting line current is reduced to

I ′
s = I ′ cos θ with I ′ = V ′/ZL

In this manner the unity power factor is obtained, but the voltage phasors (Fig. 2.15d)
conform now to equation

V 2
s = (V ′ + Zs I ′

s cos φ)2 + (Zs I ′
s sin φ)2

that leads to the new load voltage

V ′ = Vs/F ′(Zs, ZL )

where

F ′(Zs, Z L ) =
√

1 +
(

Zs

Z L
cos θ

)2

+ 2Zs

ZL
cos θ cos φ
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Figure 2.16 Power conditioner (converter able to compensate nonactive power and to deliver active
power): Phasor diagram.

Since F(Zs, Z L ) > F ′(Zs, ZL ) results that V ′ > V and

P ′ =
(

Vs

F ′(Zs, Z L )

)2 cos θ

ZL
> P

and the supplied reactive power Q ′ = 0.
Note: Some power electronics devices have the capability to vary the phase angle δ and the

amplitude of the phasor Vc, Fig. 2.16. Such modern converters and power conditioners [12]
are designed to control both active and nonactive power flow. Photovoltaic generators, fuel
cells, and certain converters used for adjustable speed drives have the ability to generate or to
convert electric energy while providing the desired nonactive power needed to maintain the
required voltage profile along a feeder, to maintain voltage stability, or to correct the PF at
the “Point of Common Coupling.”

The phasor diagram for such systems is shown in Fig. 2.16. The converter operates with
the voltage Vc = Vc � − δ, δ �= 0 and injects the current I c = (V′ − Vc)/j XC M . By sliding
the phasor Vc along the power line �C the converter’s active power is kept constant and the
reactive component of the current, Icq = Ic sin(θc) = I ′ sin(θ ), in which case the total current
I ′
s is in-phase with the load voltage V ′.

2.9 Series Compensation

Power factor compensation by means of a series connected capacitor is possible in situations
where the load voltage is allowed to vary in function of current. If the equivalent load is
reduced to a series R–L–C circuit supplied by the rms voltage Vs , the needed series capacitance
produces series resonance and has the value Cσ = 1/ω2 L . The rms current is I = Vs/R and
the capacitance and inductance voltage are VC = VL = (ωL/R)Vs . Some power electronics
circuits use this connection. The major drawback is observed when ωL � R and this approach
may not be feasible since VC � Vs .
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If the equivalent load is a parallel R–L circuit (some induction furnaces designs fit well this
case) the load impedance is

Z = ω2 L2 R + jωL R2

R2 + (ωL)2

and the required capacitance is

Cρ = R2 + (ωL)2

ω2 L R2

The input current phasor is in-phase with the voltage and its rms magnitude is

I = [1 + (R/ωL)2]Vs/R

causing the capacitance and load voltages

VC = R

ωL
Vs ; VL =

√
1 + (R/ωL)2Vs

More can be learned about different methods of reactive power control from references
[10–14].

2.10 Reactive Power Caused by Mechanical Components
that Store Energy

Let us assume the hypothetical electromechanical system sketched in Fig. 2.17a where the
frequency of the sinusoidal voltage v is low enough to allow the rotor of a dc motor to rotate
back and fro. This circuit is governed by two equations: First, Kirchhoff’s voltage law for the
electric circuit

v = V̂ sin(ωt) = Ri + e = Ri + K IF� (2.45)

and the second is the torques balance

ϒ = K IFi = J
d�

dt
(2.46)

where
e is the motor’s back EMF,

K is the motor constant (Vs/A rad) or (Nm/A2),
IF is the field current (A),
� is the angular velocity of the motor (rad/s),
ϒ is the torque developed by the motor, (Nm), and
J is the momentum of inertia (kgm2).
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Figure 2.17 Electromechanical loads and their equivalent circuit: (a) Flywheel—equivalent capaci-
tance. (b) Torsion bar—equivalent inductance. (c) Flywheel and torsion bar—equivalent parallel Le–Ce.
Source: A. E. Emanuel, “Powers in Nonsinusoidal Situations: A Review of Definitions and Physical
Meaning,” IEEE Trans. On Power Delivery, Vol.5, No.3, July 1990. Copyright 1990, IEEE.

From (2.46) results that the angular velocity � and the current i are correlated,

� = K IF

J

∫
i dt (2.47)

Substitution of (2.47) in (2.45) gives

V̂ sin(ωt) = Ri + (K IF )2

J

∫
i dt = Ri + 1

Ce

∫
i dt (2.48)

We observe that such an electromechanical system is equivalent to a capacitor with a
capacitance

Ce = J

(K IF )2
(F)

The instantaneous current equation is

i = V̂

Z
sin(ωt + θ ); Z =

√
R2 + (1/ωCe)2; tan θ = RCeω

and the instantaneous reactive power (see (2.26) and (2.27)) is

pq = (V I sin θ ) sin(2ωt) = Q sin(2ωt) (2.49)
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where

Q = V 2

Z 2

1

Ceω
= (V K IF )2

JωZ2

The mechanical torque (2.46)

ϒ = K IFi = K IF
V̂

Z
sin(ωt + θ ) = J

d�

dt

yields

� = K IF
V̂

Z

∫
sin(ωt + θ ) = −K IF V̂

Z Jω
cos(ωt + θ )

and the instantaneous mechanical power produced by the motor is

pm = ϒ� = −(K IF V )2

JωZ 2
sin(2ωt + 2θ ) = −Q sin(2ωt) (2.50)

Comparing the power pm with the instantaneous reactive power pq we observe that, while
180◦ out of phase, the rate of flow of the observed energies has identical amplitudes Q.(See
problem 2.7).

If the flywheel is replaced with a torsion bar with the spring constant k (Nm/rad), Fig. 2.17b,
the torque equation (2.46) becomes

ϒ = K IFi = k
∫

� dt

hence

� = 1

k

dϒ

dt
= K IF

k

di

dt

Kirchhoff’s voltage law gives

V̂ sin(ωt) = Ri + K IF� = Ri + (K IF )2

k

di

dt

We observe that this time the electromechanical system can be represented by an equivalent
inductance with an inductance,

Le = (K IF )2

k
(H )

Next let us couple the motor shaft with a flywheel and a torsion bar, Fig. 2.17c. The new
torque equation is

ϒ = J
d�

dt
+ k

∫
� dt (2.51)
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This time we will make use of Laplace transform. Equation (2.51) becomes

ϒ(s) = K IF I (s) = J�(s)s + k

s
�(s)

or

�(s) = K IF I (s)

Js + k

s

that substituted in (2.45) gives

V (s) = RI (s) + (K IF )2 I (s)

Js + k

s

The second term

(K IF )2 I (s)

Js + k

s

=
(K IF )2

k
s

(K IF )2

Js
(K IF )2

k
s + (K IF )2

Js

I (s) =
Les

1

Ces

Les + 1

Ces

I (s)

proves that the dc motor–torsion bar–flywheel can be correctly modeled with an equivalent
inductance in parallel with an equivalent capacitance. The resonance angular frequency is

ω0 = 1√
LeCe

=
√

k

J

and equals the mechanical resonance frequency.
The results obtained in this section can be extended to other similar situations; whenever the

electric energy flow reverses direction every quarter-cycle, i.e when the electric energy is stored
via reversible conditions in any form of energy (electromagnetic, kinetic, potential, thermal,
etc.), such oscillations of energy are always supported by instantaneous reactive power.

2.11 Physical Interpretation of Instantaneous Powers by Means
of Poynting Vector

It was explained in Chapter 1 that the electric energy is transmitted through the dielectric that
separates and surrounds the conductors (air, polymers, ceramics, mineral oil, etc.). The flux of
electromagnetic energy propagates along the conductors and the density of its rate of flow (i.e.
the power density) at any given point in space is quantified by a vector �℘ = �E × �H measured
in W/m2. The conductors’ role is to produce the electric and magnetic fields, E and H . In a
simplistic manner one may consider the conductors as a “rail-road” or a wave-guide meant to
facilitate the propagation of energy from source to load.
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Figure 2.18 Coaxial cable supplying an ac load: (a) Three-dimensional view. (b) Poynting vectors
inside the cable’s dielectric.

In single-phase circuits with sinusoidal waveforms the power flow is characterized by the
quantities P , Q and S. In this section we will try to determine the correlation between the
electromagnetic energy wave—characterized by the Poynting vector distribution—and
the powers P , Q and S.

We return now to the coaxial cable, Fig. 2.18a, that connects an impedance ZL � θ with a
sinusoidal voltage source vs = V̂ sin(ωt) providing the line current

i = Î sin(ωt − θ ); Î = V̂ /ZL (2.52)

If the coaxial cable length � is significantly shorter than the wavelength λ ≈ 1/( f
√

µε),
(where f = ω/2π Hz and µ and ε are the magnetic permeability and the dielectric permi-
tivity of the insulating material that separates the conductors), and if the cable’s resistance,
inductance, and capacitance can be neglected, then the electric and magnetic field distributions
along the cable are functions of voltage v, current i , and radius r :

�E = K E

r
vs�1r ; KE = 1

ln(b/a)
(2.53)

and

�H = KH

r
i�1ϕ ; KH = 1

2π
(2.54)

Since �E and �H are perpendicular, the Pointing vector within the dielectric can be readily
obtained

�℘ = �E × �H = K E KH

r2
vsi�1x = K E KH

r2
V̂ Î sin(ωt) sin(ωt − θ )�1x

= KE KH

r2
[P − P cos(2ωt) − Q sin(2ωt)]�1x (2.55)

with P and Q defined in (2.27). From (2.55) is learned that at any point in the dielectric volume
π (b2 − a2)�, the Poynting vector is oriented parallel to the conductors and its magnitude is
inversely proportional to the radius squared, Fig. 2.18b; moreover, we recognize that �℘ has
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an active and a reactive component proportional to the instantaneous powers pp and pq ,
respectively.

�℘p = KE KH

r2
pp �1x = KE K H

r2
P[1 − cos(2ωt)] �1x (2.56)

and

�℘q = KE KH

r2
pq �1x = −KE KH

r2
Q sin(2ωt) �1x (2.57)

The flux of the Poynting vector through the cross-sectional area π (b2 − a2) provides the
total instantaneous active power p supplied to the load

−
∫ b

a
�℘( 2πr dr )(−�1x ) = 2π KE KHvs i

∫ b

a

r dr

r2
= 2πVsi

2π ln(b/a)
ln(b/a) = vs i = p

If one calculates the flux carried by the active component, �℘p will find, as expected, that
the active component �℘p “impinges” the active power to the load,

−
∫ b

a
�℘p( 2πr dr )(−�1x ) = P[1 − cos(2ωt)]

and the time average of the Poynting vector is proportional to the active power P ,

〈 �℘〉 = 〈 �℘p〉 = K E KH

r2
P�1x

The active Poynting vector (2.56) pulsates with a double frequency 2ω and its electromag-
netic wave always moves unidirectionally toward the load, i.e. �℘p ≥ 0. A three-dimensional
representation of the propagation of �℘p in time is shown in Fig. 2.19a.

In the same manner we determine the flux carried by the reactive component, �℘q

−
∫ b

a
�℘q ( 2πr dr )(−�1x ) = −Q sin(2ωt)

This reactive component of the electromagnetic wave pulsates also at double frequency, but
moves back and forth between the load and the source—a quarter of cycle from the load and
the next quarter of cycle toward the load, Fig. 2.19b. This exchange or oscillations of energy
between source and load take place on the account of the energy stored in and returned from
inertive components such as L , C or electromechanical equipment. Over each half-cycle the
net energy transferred by the reactive Poynting vector �℘q is nil.

The electromagnetic wave inside the cable propagates with an astounding velocity

u ≈ 1√
µε

= c√
µrεr
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Figure 2.19 Time-variation of the field vectors �E , and �H : (a) Load with PF = 1. (b) Load with
PF = 0.

where c ≈ 3 × 108 m/s is the velocity of light, µr = µ/µ0, εr = ε/ε0 and µ0 = 4π10−7 H/m,
ε0 = 8.85 × 10−12 F/m. For example, if µr = 1 and εr = 2 we obtain u ≈ 2.1 × 108 m/s.

Now we shall consider the more realistic case when the cable’s impedance Zs = Rs + j Xs =
Zs � φ, tan φ = Xs/Rs is included in our model. This means that the load voltage is affected
by the voltage drop vδ across the cable; moreover, the voltage amplitude along the cable is not
constant. At a point located x meters from the sending end of the cable the phasor voltage Vx

(see Figs. 2.20 and 2.13) is

Vx = Vs − x

�
Vδ where Vδ = ZsI; (2.58)

SV
δVx

l

δV

xV

V

θ

φγ
I

Figure 2.20 Phasor diagram for an inductive load supplied with voltage and current phasors V and I
from a voltage source phasor VS via a line with length � and impedance ZS = RS + j X S . The phasor
voltage at a distance x from the sending end is Vx .
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and the instantaneous voltage values are

vδ = Zs Î sin(ωt − θ + φ) (2.59)

vx = V̂s sin(ωt + γ ) − x

�
vδ (2.60)

The electric field within the dielectric of this lossy cable is now dependent on the voltage
vx , radius r and distance x . With the assumption that the cable impedance Zs is equally shared
by the inner and the outer conductor, one finds two components for the electric field [15,16]
(see Appendix I)

�E = �Er �1r + �Ex �1x

where

Er = K E

r
vx and Ex = F(r ) vδ

are the radial and the axial component, respectively and

KE = 1

ln(b/a)
; F(r ) = ln(ab/r2)

2� ln(b/a)

is a function of the radius r for a ≤ r ≤ b.
The magnetic field distribution is given by (2.54). The two components of �E lead to two

components for the Poynting vector

�℘ = �E × �H = �Er × �H + �Ex × �H = �℘x + �℘r

an axial component

�℘x = �Er × �H = KE K H

r2
vx i �1x �1r × �1ϕ = �1x (2.61)

and a radial component

�℘r = �Ex × �H = −K H

2� ln(b/a)

1

r
ln

(
ab

r2

)
vδi �1r �1x × �1ϕ = −�1r (2.62)

Since vx varies along the cable so does ℘x . When we deal with a lossy feeder supplying an
inductive load, we find that the intensity of the Poynting vector is slightly diminishing as it
advances along the cable from x = 0 to x = �. The rate of the drop in intensity follows exactly
the rate of the voltage drop along the cable.

The radial component ℘r , is not a function of x , nevertheless it plays a very important role:
it transfers energy to conductors and covers the line losses �P . We observe from (2.62) that on
the cylindrical surface with r0 = √

ab (where ln(ab/r2
0 ) = 0) the radial component ℘r = 0.

The PV flux lines on the surface of this cylindrical envelope with radius r0 are perfectly parallel
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Figure 2.21 Poynting vector stream lines for two flat parallel conductors [16]. vδ/vs = 0.25 and the
space between the conductors is 0.20�. Source: A. E. Emanuel, “Poynting Vector and the Physical
Meaning of Nonactive Powers,” IEEE Trans. On Instrumentation and Measurement, Vol. 54, No.4,
August 2005, pp. 1457–62. Copyright 2005, IEEE.

to the conductors. However, for r <
√

ab the radial Poynting vector is oriented toward the
inner conductor, ℘r < 0, and for r >

√
ab the radial Poynting vector is oriented toward the

outer conductor, ℘r > 0. This observation gives a clear picture: energy flux lines inrush from
the source-end through the dielectric of the cable and are slightly bending toward the inner
and the outer conductors. The flux lines that end touching the conductors transfer inside the
conductors the energy that covers Joule and eddy-current losses, as well as the energy stored
in and returned from the electromagnetic field located within the conductors (Fig. 2.21).

Substitution of (2.52) and (2.59) in (2.62) gives the following expression for the radial
component:

℘r = −K H F(r )

r
vδi = −K H F(r )

r
Zs Î 2 sin(ωt − θ ) sin(ωt − θ + φ)

= −K H F(r )

r
Zs I 2[cos φ − cos(2ωt − 2θ + φ)]

and since Zs cos φ = Rs and Zs sin φ = Xs results

℘r = −KH F(r )

r

{
[Rs I 2 − Zs I 2[cos φ cos(2ωt − 2θ ) − sin φ sin(2ωt − 2θ )]

}
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substituting I 2 = (P2 + Q2)/V 2 yields

℘r = −KH F(r )

r

{
[Rs

P2 + Q2

V 2
[1 − cos(2ωt − 2θ )] + Xs

P2 + Q2

V 2
sin(2ωt − 2θ )

}
(2.63)

The last equation is a significant result for our analysis. It shows that the radial Poynting
vector has two major components. The first carries the line power losses Rs I 2 = Rs S2/V 2 and
the intrinsic power tied to it. The second component has no mean value, it does not contribute
to the cable power loss, and consists of the power oscillations due to the line inductance
Ls = Xs/ω.

It can be easily proved that the radial component covers the power loss RS I 2. The flux of
the Poynting vector impinging on the inner conductor surface 2π�a is:

�pa = − �℘r |r=a 2π�a �1r = 2π�a ln(ab/a2)

2π2�a ln(b/a)
F(S, V, θ, ωt) = 1

2
F(S, V, θ, ωt) (2.64)

where

F(S, V, θ, ωt) = {[Rs[1 − cos(2ωt − 2θ )] + Xs sin(2ωt − 2θ )} S2

V 2

and the flux of the Poynting vector impinging on the outer conductor surface 2π�b is:

�pb = − �℘r |r=b 2π�b(− �1r ) = −2π�b ln(ab/b2)

2π2�b ln(b/a)
F(S, V, θ, ωt) = 1

2
F(S, V, θ, ωt)

(2.65)

The total instantaneous power impinged on the two conductors is

�p = �pa + �pb = F(S, V, θ, ωt)

with the mean value �P = Rs S2/V 2.
From (2.63) we also learn that ℘r can be separated into two components, one connected

with the active power P and the other connected with the reactive power Q,

℘r = ℘r P + ℘r Q

The first radial component has the expression

℘r P = −KH F(r )

r

{
[Rs

P2

V 2
[1 − cos(2ωt − 2θ )] + Xs

P2

V 2
sin(2ωt − 2θ )

}

and is the result of the interaction between the axial electric field Ex and the magnetic field
produced by the active component of the current, i.e. it is a function of P .
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The second radial component

℘r Q = −KH F(r )

r

{
[Rs

Q2

V 2
[1 − cos(2ωt − 2θ )] + Xs

Q2

V 2
sin(2ωt − 2θ )

}

is the result of the interaction between the axial electric field and the magnetic field produced
by the reactive component of the current, hence a function of Q.

We notice that both radial components supply the line conductors with active and reactive
power. This observation has its physical interpretation: if we assume a pure inductive load,
P = 0, 2θ = 180◦ results that ℘r P = 0, however, the component ℘r Q covers the line power
loss �P = (Q2/V 2)Rs as well as the oscillations of energy between the source and the
inductance Ls .

In Fig. 2.22 the paths of instantaneous powers carried by the electromagnetic waves flowing
through the dielectric that surrounds the line conductors are sketched for the general case of
R – L load. The solid lines mark the unidirectional flow of the waves that carry net energy
from the source to the load and conductors. The dashed lines report on power that oscillates to
and fro between load inductance L and source or line inductance Xs/ω and source. The line
resistance Rs receives energy from the radial components ℘rp and ℘rq . The same holds true
for the reactive power exchanged with Xs/ω.

In Fig. 2.23 the flow of energy in a line supplying a compensated load is sketched, where
℘q = 0. The load reactive power component is confined to the space surrounding the load and
the power factor compensation device. The reactive instantaneous power exchanged with the
line inductance Xs/ω is tied with the axial component of the Poynting vector.

Finally Fig. 2.24 shows a series capacitance compensated load at PF = 1. The load reactive
power is confined to the space near the load and capacitor.
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Figure 2.22 Electromagnetic energy flow (Poynting vector flow). Solid line: Unidirectional flow (active
power). Dashed line: Oscillations (nonactive power). General case: uncompensated parallel R–L load.
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Figure 2.23 Electromagnetic energy flow (Poynting vector flow). Compensated load at PF = 1.

To understand the next chapters, which discuss power components and their meaning, it is
important to realize that for single-phase sinusoidal conditions both components, P and Q,
quantify not only the longitudinal flow of W/m2, but also the transversal flow (in and out the
line conductors). Since the Poynting vector describes electromagnetic radiation—the density
of the rate of flow of electromagnetic energy—and since this vector has a definite physical
meaning, so do all the components of this vector.

One last comment: The PV theory should not be viewed as the necessary, or the recom-
mended, concept on which electric instruments designs are based (though some noninvasive
measurement methods do rely on PV measurements). The spatial distribution of PV and its
time variation have been explained in this section with one thought in mind: the in-depth un-
derstanding of the very physical mechanism that governs the energy flow, this helping further
to discern among the different components of power.

The following comparison is made to emphasize the significance of Poynting vector: Assume
a resistor with a certain three-dimensional geometry. The resistor has a resistance R and is
supplied with the voltage V , in which case the current is I = V/R. This result is correct,
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Figure 2.24 Electromagnetic energy flow (Poynting vector flow). Series capacitance compensated load
at PF = 1.
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but gives information limited to the macroscopic performance of the observed system. If one
wants to determine spots of high current density, or to map the detailed streamlines flow of
current, it will be necessary to remember the basic expression of the current density vector:
�j = �E/ρ.

The Poynting vector �℘ = �E × �H is to “Power Theory,” P = RI 2 = V I = V 2/R what
Maxwell’s equations are to Ohm, Kirchhoff, and Faraday’ laws.

2.12 Problems

2.1 Compute the equivalent R–L parallel circuit of a single-phase load, 240 V, 60 Hz,
5 kW, PF = 0.60, and determine the value of the parallel connected capacitance that will help
increase the power factor to PF = 1.0 and PF = 0.9.

2.2 A load Z = (1 + j ) � is supplied by a 240 V, 60 Hz voltage source. The connecting
line’s impedance is Zs = (0.01 + j0.06) �. Compute line current Is , load voltage V , the load
powers S, P, Q and the PF as well as the line power loss, �P . Use a capacitor to correct the
power factor to PF ′ = 1.0. Repeat the computations. Compare the two sets of results. Next
connect an additional resistance in parallel such that the rms line current equals the initial rms
current. Repeat computations.

2.3 A single-phase motor operates at 120 V, 60 Hz, with 70% efficiency and power factor
PF = cos θ = 0.75 lagging. The power delivered to mechanical load is 0.40 HP.

� Sketch the oscillograms v = v(t) and i = i(t). Compute and sketch the time-variations of
the instantaneous powers pp, pq and p.

� Compute the value of the capacitance C that improves the power factor to PF ′ = cos θ ′ =
0.95.

� Compute and sketch the new instantaneous powers p′
p, p′

q and p′.

2.4 A nine-mile long, 7.9 kV single-phase feeder supplies a large number of customers
assumed to be uniformly distributed along the feeder. The specific load is S = (80 + j60)
kVA/mi. Determine the best location (measured in mi from the substation) and the best size
of the capacitance that will help minimize the power loss in the feeder.

2.5 A small industrial facility operates with P = 60 to 140 kW and Q = 70 to 90 kvar. A
photovoltaic generator which also has the capability to produce reactive power will be installed
to reduce the input active power and to improve the PF . The photovoltaic generator operates
in the second and third quadrant, Fig. 2.7, with P = 0 to 50 kW and Q = 0 to ±50 kvar.
Determine the possible range of PF values.

2.6 Write the general expression for the instantaneous power p = vi delivered to a series
R–C circuit. Next compute the instantaneous power pR = vRi and pC = vCi . You will notice
that pR and pp have equal average values and equal amplitudes, but they are not in-phase.
Similar observations are made for pq and pC . Prove that

p = vi = pp + pq = vRi + vCi = P − S cos(2ωt + θ )
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2.7 A typical shaking table is an electromechanical system that consists of a cylindrical
coil and a concentrical cylindrical permanent magnet mechanically connected with the table.
The magnet and the table have a total mass m (kg). The motion of the permanent magnet is
opposed by a linear spring with a spring constant k (N/m). When the solenoid is energized the
permanent magnet is attracted or repelled by the solenoid. The force on the magnet, F ≈ K i ,
is oriented along the axis of symmetry. The coil has a resistance R and an inductance L . In
a first approximation the inductance may be considered independent of the magnet’s motion.
The coil is supplied with a sinusoidal voltage with angular frequency ω. Find the expressions
of active, reactive, and apparent powers as well as the PF of this system. Assume also some
viscous damping that opposes the motion with a force proportional to the velocity of the mass.

2.8 A sinusoidal voltage Vc = 600 � δ V (phase angle δ can be adjusted in the range 0 < δ <

360◦), is connected to an infinite bus V = 600 � 0◦ via a pure reactance ωL = 10 �. Sketch
the phasor diagram and determine the geometric locus of the phasor I = (600 − 600 � δ)/j10

Replace the reactance with a resistance R = 10 �. Repeat the computations.

2.9 A load ZL = 10 � 45◦ pu (per unit) is supplied by a voltage source Vs = 100� 0◦ pu via a
line with the impedance Zs = 0.15 + j0.9 pu. A static compensator with XcM = 0.94 pu and
adjustable voltage Vc � − δ is used to control the reactive power flow. Your task is to observe the
effect of the phase angle δ when adjusted in the range 0◦ ≤ δ ≤ 20 at four levels of normalized
controlled voltage, Vc/Vs = 1.00, 1.05, 1.07 and 1.10. Graph the normalized load voltage
V ′/V versus δ using the base voltage V = 92.91 pu (this is the uncompensated load voltage.)
These curves will prove the usefulness of such compensators not only as adjustable reactances
but also as voltage regulators. Plot also the normalized compensator’s active power Pc/PL

(the base power is the uncompensated load active power (2.44), PL = 616.63 pu.) You will
find that as the angle δ increases so does the converter’s active power. Next focus on the
compensator’s reactive power, plot the normalized reactive power Qc/QL (QL = 616.63 pu
is the uncompensated load reactive power.) Lastly calculate and plot the overall power factor
of the load and compensator.

2.10 Two parallel and identical lossless cylindrical conductors with a diameter 2a =
4 × 10−3 m, are spaced d = 0.1 m apart. These conductors are located in the x − z plane and
supply with sinusoidal voltage v = √

2V sin(ωt) a load that is either a perfect resistance or a
perfect inductance.

The magnetic field vector, perpendicular on the conductors’ plane, at a point x m far from
the center of the left conductor, is

�H =
[

i

2πx
+ i

2π (d − x)

]
(−�1y) = d

2π (d − x)x
i (−�1y)

The electric field vector in the conductor’s plan is perpendicular on the conductors and has the
expression3

�E = b

2 ln[(b + d + 2a)/(b − d + 2a)]

1

(d − x)x − a2
v �1x

3 Kuffel E., Zaengl W. S.: “High Voltage Engineering,” Pergamon Press, 1984, p.231.
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where

b =
√

d2 − 4a2

Your task is to graph the Pointing vector distribution in the plane of the conductors. Plot the
graphs ℘(x) = | �E × �H | for ωt = 0◦, 30◦, 45◦, 60◦, 90◦, 95◦, 120◦ and 135◦ and compare
the energy flow patterns for the two types of load.

2.11 Study the transient that takes place when a circuit that consists of a resistance
R = 100 � in series with an inductance L = 265.258 mH is energized. The supply voltage is
v = 100 sin(2π60t) V. Use any software package you are familiar with. Show that in steady-
state the energy supplied to inductance is w = Wmax [1 + cos(2ωt)], where Wmax = L I 2,
I = V/

√
R2 + ω2L2. Display the waveforms v(t), i(t), vL (t), v(t)i(t) and the energies∫ t

0 vL (t)i(t) dt ,
∫ t

0 Ri(t)2 dt ,
∫ t

0 v(t)i(t) dt . Explain your results.

2.12 Add a capacitance C = 26.526 µF in parallel with the inductance L in the above
problem. This will cause parallel resonance. Repeat the study. Focus on the flow of energy
into L , C and LC as a whole. Compare with the above problem and explain the differences.

2.13 A single-phase two-poles alternator (rarely seen today) supplies a resistance R. We
assume this alternator as an ideal machine, linear, and lossless. The field winding carries the
direct current IF . The mutual inductance between the armature winding (stator) and field is
M = Mm cos θ where the angle θ = ωt , (note that for this two-poles machine ω = 2π f =
2π60 = 376.9 rad/s). The armature winding flux linkage is λ = M IF cos(ωt) and the induced
voltage is

v = −dλ/dt = ωM IF sin(ωt)

If the leakage inductance is ignored we may approximate the supplied current as i = v/R.
The prime mover provides a torque

T = Te + J
dω

dt

where J is the total momentum of inertia (alternator rotor plus prime mover), and Te =
IF i d M/dθ is the electromagnetic torque.

The prime mover delivers a perfectly constant torque, T = P/ωs , to this lossless alternator.
The alternator delivers the instantaneous power p = P + pi , where P = RI 2 = V 2/R and
pi = −P cos(2ωt) is the intrinsic power. In steady-state this intrinsic power cannot be supplied
by the prime mover, it is supported by the kinetic energy Jω2/2 stored in the rotating masses.
This means that the rotor will turn with a velocity that is not constant and will have the
expression

ω = ωs + �ω(t); where ωs = 376.9 rad/s

Your task now is to determine the expression of �ωs(t) for a 5 HP, 120 V, 60 Hz unit, that
supplies rated power. The total momentum of inertia is J = 0.5 kgm2.
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2.14 A coaxial cable is designed to operate with a current density j A/m2 and a maximum
electric field E = √

2V/[a ln(b/a)] V/m, where V is the rms voltage (assumed sinusoidal),
a is the inner conductor external radius and b is the inner radius of the outer conductor. Find
the mathematical expression that connects the radius b (hence, the size of the cable) with the
apparent power S = V I , I = πa2 j .

2.15 A single-phase load consists of a resistance R that varies from 25 � to 2500 � and
it is supplied with a constant voltage V = 105 V, 60 Hz. The resistance is supplied from
105 V, 60 Hz via a feeder with the impedance ZS = 2 + j0.093 � and a transformer with a
magnetizing branch modeled by a shunt resistance Rm = 3000 � in parallel with a reactance
Xm = 12, 000 �. The equivalent short-circuit impedances are ZSp = ZSs = 0.1 + j0.5 �.
(ZSp, ZSs are the primary and the secondary impedances). Plot the normalized power loss
�P/�P0 versus (S/S0)2 when R is varied from 25 to 2500 �. The base values �P0 and S0

are the total losses and the apparent power at R = 50 �. Compare the obtained graph with the
one based on the approximation (2.36). In this case a = 1052/Rm .

Note: The load voltage is kept constant V = 105 V rms, this means the load current
I = 105/R. The source voltage is VS = V + ZTI, where ZT is the Thévenin impedance
measured from the load’s terminals. As R is reduced S increases and the voltage across the
magnetizing branch increases causing the core losses to increase. This effect is causing a slight
deviation from (2.36).

2.16 An uncompensated load with the voltage V , current I and power factor PF causes
the line power losses �P = RS I 2. When the power factor is compensated to PF ′ = 1.0 the
losses are reduced to �P ′. Prove that

PF =
√

�P ′

�P

Note: This is an important expression, it defines the PF in a different manner. This expression
should hold for any conditions, sinusoidal or nonsinusoidal, balanced or unbalanced, and
demonstrates that the actual line utilization is not P/S, but (P/S)2.
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3
Single-Phase Systems with
Nonsinusoidal Waveforms

Joy in looking and comprehending is nature’s most beautiful gift.
—Albert Einstein, Aphorisms for Leo Baeck

This chapter addresses the periodic and nonsinusoidal conditions characterized by distorted
voltage and current waveforms. In such cases the electric and magnetic fields surrounding
the conductors are also nonsinusoidal. Since the waveforms are periodic the time variation of
each wave can be expressed by means of a Fourier series. The harmonic voltages and currents
are producing a multitude of Poynting vector components; some components are due to the
interaction of a harmonic electric field Em with a harmonic magnetic field Hn of the same
order, m = n = h, and other are due to interactions among harmonics of different orders,
m �= n. The main goal of the following sections is to chart the flow of instantaneous powers
and to understand their physical characteristics, peculiar to the nonsinusoidal regime.

A thorough knowledge of the nature of instantaneous powers, a clear view of their flow paths
among sources and loads, or load to load, may come very handy when one tries to understand
the impact a certain type of nonlinear load may have on a given power network, when the
effectiveness of a filter has to be evaluated or when a set of power quality measurements, or
recorded events, are to be analyzed.

This chapter starts with basic linear loads supplied with nonsinusoidal voltage and gradually
progresses toward simple nonlinear loads – the actual sources of harmonics and the cause of
voltage and current distortion – and finally analyzes a general case that provides the background
needed for a critical evaluation of the different theories and approaches to the resolution of
apparent power.

3.1 The Linear Resistance

A simple example will help us get acquainted with the components of instantaneous active
power peculiar to nonsinusoidal conditions. We will assume an ideal resistor with resistance

Power Definitions and the Physical Mechanism of Power Flow Alexander Eigeles Emanuel
C© 2010 John Wiley & Sons, Ltd
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R void of parasitic capacitance and inductance (this condition also implies no skin effect),
supplied with a nonsinusoidal voltage1.

v = v1 + v3 + v5 = V̂1 sin(ωt + α1) − V̂3 sin(3ωt + α3) + V̂5 sin(5ωt + α5) (3.1)

This voltage source can be viewed as an array of three voltage sources connected in
series. This system being linear, the instantaneous current is found by using the superposition
principle, thus

i = i1 + i3 + i5 = Î1 sin(ωt + α1) − Î3 sin(3ωt + α3) + Î5 sin(5ωt + α5)

with i1 = v1/R, i3 = v3/R, i5 = v5/R, Î1 = V̂1/R, Î3 = V̂3/R and Î5 = V̂5/R.

The instantaneous power delivered to R is

pp = vi = (v1 + v3 + v5)(i1 + i3 + i5) = R(i1 + i3 + i5)2

= Ri2
1 + R(i2

3 + i2
5 ) + 2R(i1i3 + i1i5 + i3i5)

= pp1 + ppH

where

pp1 = v1i1 = Ri2
1 = R Î 2

1 sin2(ωt + α1) = RI 2
1 [1 − cos(2ωt + 2α1)] = P1 + pi1

We recognize that P1 = RI 2
1 is the active power due to the interaction between the fun-

damental voltage and fundamental current, and pi1 = −P1 cos(2ωt) is the intrinsic power
associated with the active power P1.

The second term of pp is due to harmonic currents i3 and i5 and has three subcomponents

ppH = R(i2
3 + i2

5 ) + 2R(i1i3 + i1i5 + i3i5) = PH + pi H + pii H

The first two components of ppH are

PH + pi H = RI 2
3 + RI 2

5 − RI 2
3 cos(6ωt + 2α3) − RI 2

5 cos(10ωt + 2α5)

The constant terms are active powers

RI 2
3 + RI 2

5 = P3 + P5 = PH

and the oscillating terms

−RI 2
3 cos(6ωt + 2α3) − RI 2

5 cos(10ωt + 2α5) = pi3 + pi5 = pi H

are the intrinsic harmonic powers bound to the active powers P3 and P5.

1 Everywhere in this book V̂ and Î represent voltage and current amplitudes or peak values, plain V and I are the
respective rms values, and v and i are the instantaneous values.
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The total power converted in heat by R is

P = P1 + P3 + P5 = P1 + PH

The third and the last component in the expression of ppH is

pii H = 2R(i1i3 + i1i5 + i3i5)

= 4R[−I1 I3 sin(ωt + α1) sin(3ωt + α3) + I1 I5 sin(ωt + α1) sin(5ωt + α5)

− I3 I5 sin(3ωt + α3) sin(5ωt + α5)]

This last term also has zero average value and is therefore a nonactive power. Moreover,
it can be proved that just like the intrinsic powers pi1 and pi H , the component pii H is not
affecting the value of the rms current and is not causing power loss in the conductors that
supply our load. If the supplying line has the resistance Rs , the power loss is

�P = Rs I 2 = Rs
V 2

R2
= Rs

R
P = Rs

R
(P1 + PH )

If we compute �P using equation (2.32) we find the same result,

�P = Rs

V 2
V 2 I 2 = Rs

V 2
P2 = Rs

R
(P1 + PH )2

confirming that pii H has no contribution to �P .
A fitting name for pii H may be intrinsic power of the second-order.

In the general case the nonsinusoidal voltage2 impressed at the resistance’s terminals is

v =
∑

h

vh =
∑

h

V̂h sin(hωt + αh) = v1 + vH (3.2)

2 In practical circuits not all of the harmonic frequencies are integer multiples of the power frequency, i.e. the
harmonic of order h is not necessarily equal to 2, 3, 4, 5, . . . , but in many situations the distorted waveforms contain
frequency components called subharmonics (0 ≤ h < 1), and interharmonics (when h > 1, and h is not an integer
number). The h = 0 component is the mean value and may be considered as a subharmonic with frequency fh = 0.
Modern documents recommend to avoid the name subharmonics and instead to use sub-synchronous frequency
components or sub-synchronous interharmonics.

To indicate that all ν components that are detected in the voltage and current spectra are included in a summation,
many authors use the symbol h ∈ ν; thus equation (3.2) may be written in a more rigorous mathematical form:

v =
∑
h∈ν

vh =
∑
h∈ν

V̂h sin(hωt + αh ) = v1 + vH

For the sake of clarity and avoidance of unnecessary heavy expressions the notation h ∈ ν will usually be avoided,
nevertheless interharmonics and subharmonics are treated exactly like harmonics and, unless specified, such as
h = 1, 3, 5 . . . , h includes all the measurable ν components of the spectrum.
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where

v1 = V̂1 sin(ωt + α1) (3.3)

is the fundamental instantaneous voltage and

vH =
∑
h �=1

V̂h sin(hωt + αh) (3.4)

is the total instantaneous harmonic voltage. The load current is

i = v

R
=
∑

h

ih = i1 + iH (3.5)

with

i1 = Î1 sin(ωt + α1) and iH =
∑
h �=1

ih =
∑
h �=1

Îh sin(hωt + αh) (3.6)

(where Î1 = V̂1/R and Îh = V̂h/R), yielding the instantaneous power

pp = vi = (v1 + vH )(i1 + iH ) = v1i1 + vH iH + v1iH + vH i1 (3.7)

The first term in (3.7)

pp1 = v1i1 = v2
1

R
= P1 + pi1 (3.8)

is the instantaneous fundamental power (maybe it is more correct to name it 60 Hz or
50 Hz instantaneous power, when the power system’s frequency is 60 or 50 Hz ) with the
subcomponents

P1 = V 2
1 /R (3.9)

the fundamental active power and

pi1 = −P1 cos(2ωt + 2α1) (3.10)

the fundamental instantaneous intrinsic power, described in section 2.1.

The second term in (3.7) is due to harmonics and has the following structure

vH iH =
∑
h �=1

vhih +
∑
m �=n

m,n �=1

vmin = ppH +
∑
m �=n

m,n �=1

vmin (3.11)
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where

ppH = PH + pi H + pii H (3.12)

The constant term PH , in (3.12), is the total harmonic active power

PH =
∑
h �=1

Ph ; Ph = Vh Ih = V 2
h /R = RI 2

h (3.13)

and the subcomponent Ph , in (3.13), is the active power of the h-order harmonic.

Always associated with PH is the instantaneous intrinsic harmonic power

pi H = −
∑
h �=1

Ph cos(2hωt + 2αh) =
∑
h �=1

pih (3.14)

where

pih = −Ph cos(2hωt + 2αh) (3.15)

is the instantaneous intrinsic harmonic power of order h.
The following complete array of instantaneous power terms are obtained after substituting

(3.8) and (3.11) into (3.7):

pp = vi = P1 + pi1 + PH + pi H + pii (3.16)

where

pii = v1iH + vH i1 +
∑
m �=n

m,n �=1

vmin = v1

∑
h �=1

ih + i1

∑
h �=1

vh +
∑
m �=n

m,n �=1

vmin

= v1

R

∑
h �=1

vh + v1

R

∑
h �=1

vh + 1

R

∑
m �=n

m,n �=1

vmvn = 1

R

∑
m,n=1
m �=n

vmvn

= 2

R

∑
m,n=1
m �=n

Vm Vn sin(mωt + αm) sin(nωt + αn) (3.17)

is the total instantaneous intrinsic power of second-order.
Equation (3.2) indicates the possibility of using an equivalent circuit with two series con-

nected voltage sources, Fig. 3.1. The superposition principle and the Kirchhoff’s voltage
law give:

v1 = Ri1 and vH = RiH
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Figure 3.1 Linear resistance supplied with nonsinusoidal voltage: Power flow.

The fundamental voltage source v1 supplies the instantaneous power

v1(i1 + iH ) = Ri2
1 + Ri1iH = P1 + pi1 + v1iH

and the harmonic voltage vH supplies

vH (i1 + iH ) = vH i1 + PH + pi H +
∑
m �=n

m,n �=1

vmin

We see that vH supplies the harmonic active power PH , the harmonic intrinsic power pi H

and two of the three terms of the second-order intrinsic instantaneous power pii (3.17).
The fundamental voltage v1 supplies the fundamental active power, fundamental instanta-

neous intrinsic power plus the third term of pii .
The flow of all the instantaneous powers is shown in Fig. 3.1; solid unidirectional arrows

indicate the flow of active powers P1 and PH . The bidirectional dashed lines show the intrinsic
power flow. The intrinsic powers are inherently attached to the active powers, nevertheless,
having no contribution to power loss in the line or to the power dissipated in the load, the
intrinsic powers could be ignored or eliminated from Fig. 3.1 without losing consequen-
tial information.

3.2 The Linear Inductance

Let us look at an example similar to the one presented in the previous section. Now the load
is a lossless inductance L supplied with the nonsinusoidal voltage v expressed in (3.1) (note
the alternating signs). The steady-state current is

i = i1 + i3 + i5 = − Î1 cos(ωt + α1) + Î3 cos(3ωt + α3) − Î5 cos(ωt + α5)

with Î1 = V̂1/X , Î3 = V̂3/(3X ) and Î5 = V̂5/(5X ), X = ωL .
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This time the current waveform is not a replica of the voltage waveform and for this particular
example its peak value is Î = Î1 + Î3 + Î5. During each half-cycle the maximum value of the
stored energy is

L Î 2

2
= L

2
[ Î1 + Î3 + Î5]2 = L(I 2

1 + I 2
3 + I 2

5 ) + 2L(I1 I3 + I1 I5 + I3 I5)

This expression shows that the cross products Im In with m �= n also cause energy oscillations
between L and v.

This phenomenon can be better understood if we express the voltage

v = L
di

dt
= L

(
di1

dt
+ di3

dt
+ di5

dt

)

yielding the instantaneous power

pq = vi = Li
di

dt
= L

(
i1

di1

dt
+ i3

di3

dt
+ i5

di5

dt

)

+ L

[
i1

(
di3

dt
+ di5

dt

)
+ i3

(
di1

dt
+ di5

dt

)
+ i5

(
di1

dt
+ di3

dt

)]
(3.18)

When we compute the amount of energy stored in L , the reality of power oscillations of the
type Limdin/dt , that carry energy in and out of L , becomes more transparent:

wL =
∫ t+τ

t
pqdt = L

∫ t+τ

t
[i1di1 + i3di3 + i5di5 + i1(di3 + di5) + i3(di1 + di5)

+ i5(di1 + di3)]

= L

⎡
⎢⎣∑

h

∫ t+τ

t
ihdih +

∑
m �=n

m,n �=1

∫ t+τ

t
imdin

⎤
⎥⎦

The instantaneous power in our particular example is

pq = vi = (v1 + v3 + v5)(i1 + i3 + i5) = v1i1 + v3i3 + v5i5 + v1i3 + v1i5 + v3i1

+ v3i5 + v5i1 + v5i3

= X [−I 2
1 sin(2ωt + 2α1) − 3I 2

3 sin(6ωt + 2α3) − 5I 2
5 sin(10ωt + 2α5)

+ 2I1 I3 sin(ωt + α1) cos(3ωt + α3) − 2I1 I5 sin(ωt + α1) cos(5ωt + α5)

+ 6I1 I3 sin(3ωt + α3) cos(ωt + α1) + 6I3 I5 sin(3ωt + α3) cos(5ωt + α5)

− 10I1 I5 sin(5ωt + α5) cos(ωt + α1) + 10I3 I5 sin(5ωt + α5) cos(3ωt + α3)]

As expected this instantaneous power has zero average value and all the components are
nonactive; moreover, comparing now the terms in the instantaneous power pq expression, with
the terms in the maximum energy expression,L Î 2/2, we notice that the amplitude of every pq

term contributes to the instantaneous energy stored in L .
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In the general case a nonsinusoidal current

i =
∑

h

Îh sin(hωt + βh) (3.19)

that flows through an inductance L will cause the voltage drop

v = L
di

dt
=
∑

h

V̂h cos(hωt + βh); V̂h = h X Îh; X = ωL (3.20)

and the instantaneous power supplied to L has the expressions

pq = vi = Li
di

dt
= ωL

{∑
h

h I 2
h sin(2hωt + 2βh)

+
∑
m �=n

n Im In sin(mωt + βm) cos(nωt + βn)

⎫⎬
⎭ (3.21)

One may feel prompted to consider the second term in (3.21) as another intrinsic power
component inherent to Li di/dt in nonsinusoidal conditions. This idea may be reinforced
by the fact that the rms current squared is I 2 =∑ I 2

h and no Im In terms are found in the
rms expression; however, when the active power loss in the supplying line resistance Rs is
computed we find

�P = Rs I 2 = Rs

V 2
I 2V 2 = Rs

V 2

∑
h

I 2
h

∑
h

V 2
h = Rs

V 2

⎡
⎣∑

h

(h X I 2
h )2 +

∑
m �=n

(nX Im In)2

⎤
⎦

(3.22)

proving that the currents cross products Im In contribute to power line losses.
The format used in (3.22) shows that the losses �P can be written as a function of all the

amplitudes that define the power oscillations components present in pq .
Using the same approach as in section 3.1 and starting with the voltage equations

v1 = L
di1

dt
and vH = L

diH

dt

we find the instantaneous power supplied by the fundamental voltage source v1 to be

v1(i1 + iH ) = Li1
di1

dt
+ LiH

di1

dt

and the instantaneous power supplied by the voltage source vH to be

vH (i1 + iH ) = Li1
diH

dt
+ LiH

diH

dt
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Figure 3.2 Linear inductance supplied with nonsinusoidal voltage: Instantaneous power flow.

These power-balance equations help to visualize the exchange of powers between the voltage
source v = v1 + vH and L as shown in Fig. 3.2.

3.3 The Linear Capacitance

The capacitance supplied by a nonsinusoidal voltage presents a situation similar to the condi-
tions surrounding the inductance. The voltage

v =
∑

h

V̂h cos(hωt + βh) (3.23)

applied to the terminals of an ideal linear capacitance C will supply the current

i = C
dv

dt
= −

∑
h

Îh sin(hωt + βh); Îh = ChωV̂h (3.24)

The instantaneous power supplied by the source v is

pq = vi = −
∑

h

Vh Ih sin(2hωt + 2βh) + 2
∑
m �=n

Vm In cos(mωt + βm) sin(nωt + βn) (3.25)

Evidently these power oscillations are nonactive. Energy is carried in and out of C by both
terms in (3.25). The currents associated with these instantaneous powers cause line power loss
as explained in the section 3.2, equation (3.22).

3.4 The Linear Series R − L − C Circuit

We consider a nonsinusoidal voltage

v =
∑

vh =
∑

h

V̂h sin(hωt + αh) (3.26)
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supplying a series R − L − C circuit. In this case the current is

i =
∑

h

ih =
∑

h

Îh sin(hωt + αh − θh); Îh = V̂h

Zh
(3.27)

where

Zh =
√

R2 + X2
h ; Xh = hωL − 1

hωC
; tan θh = Xh

R

The details of the power flow mechanism become more evident if we separate the voltage
v in two components

v = vp + vq =
∑

h

vph +
∑

h

vqh (3.28)

The first component includes every harmonic voltage vph in-phase with the harmonic current
ih . The second component, vq , includes every harmonic voltage vqh in-quadrature with the
corresponding harmonic current ih . For convenience we lump all the harmonic voltages in two
groups: vpH and vq H , the total in-phase and in-quadrature harmonic voltages, i.e.

vpH =
∑
h �=1

vph vq H =
∑
h �=1

vqh

The fundamental instantaneous current i1 and the total harmonic current iH =∑h �=1 ih

have been introduced in (3.6) and can be used to express the load voltage (3.28) by means of
four terms:

v = vp1 + vpH + vq1 + vq H

that lead to a linear equivalent circuit, originated from the superposition principle and sketched
in Fig. 3.3. Each one of the four voltages provides a key equation:

vp1 = Ri1 and vq1 = L
di1

dt
+ 1

C

∫
i1 dt (3.29)

for the fundamental voltages and current and

vpH = R
∑
h �=1

ih and vq H = L
∑
h �=1

dih

dt
+ 1

C

∑
h �=1

∫
ih dt (3.30)

for the balance of harmonic voltages.

The instantaneous power

p = vi = (vp1 + vpH + vq1 + vq H )(i1 + iH )

= (vp1i1) + (vpH i1 + vp1iH + vpH iH ) + (vq1i1) + (vq1iH + vq H i1 + vq H iH ) (3.31)

is separated in four components consequential to the grouping given in (3.29) and (3.30):
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Figure 3.3 Linear R–L–C load supplied with nonsinusoidal voltage: The flow of instantaneous powers.
(Intrinsic powers not shown).

The first component is

pp1 = vp1i1 = Ri2
1 = RI 2

1 [1 − cos(2ωt + 2α1 − 2θ1)] = P1 + pi1 (3.32)

is the fundamental instantaneous power (active power and fundamental intrinsic power).
In the second group are included all the remaining components sustained by vp:

vpH i1 = RiH i1 = R
∑
h �=1

ihi1

vp1iH = Ri1iH = R
∑
h �=1

i1ih

vpH iH = R
∑
h �=1

i2
h + R

∑
m �=n

m,n �=1

imin

= R
∑
h �=1

I 2
h [1 − cos(2hωt + 2αh − 2θh)] + R

∑
m �=n

m,n �=1

imin = PH + pi H + R
∑
m �=n

m,n �=1

imin

The sum of these three components gives for the second term of p in (3.31):

ppH = vpH i1 + vp1iH + vpH iH = PH + pi H + pii H (3.33)

where pii H = R
∑

m �=n imin is the second-order instantaneous intrinsic power.
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The third term of p reveals the fundamental reactive power

pq1 = vq1i1 = Li1
di1

dt
+ 1

C
i1
∫

i1 dt = Vq1 I1 sin(2ωt + 2α1 − 2θ1) = Q1 sin(2ωt + 2α1 − 2θ1)

(3.34)
where Q1 = V1 I1 sin θ1.

The fourth term of p in (3.31) contains the remaining nonactive instantaneous power
oscillating between the nonsinusoidal source and L–C . Three terms make this last component:

vq1iH = LiH
di1

dt
+ iH

C

∫
i1 dt = 2

∑
h �=1

Vq1 Ih cos(ωt + α1 − θ1) sin(hωt + αh − θh)

vq H i1 = Li1
diH

dt
+ i1

C

∫
iH dt = 2

∑
h �=1

Vqh I1 cos(hωt + αh − θh) sin(ωt + α1 − θ1) (3.35)

and

vq H iH = LiH
diH

dt
+ iH

C

∫
iH dt =

∑
h �=1

Vqh Ih sin(2hωt + 2α1 − 2θ1)

+ 2
∑
m �=n

m,n �=1

Vqm In cos(mωt + αm − θm) sin(nωt + αn − θn) (3.36)

This nonactive instantaneous power pq H is the summation of the last three terms in (3.31):

pq H = vq1iH + vq H i1 + vq H iH =
∑
h �=1

Qh sin(2hωt + 2αh − 2θh)

+ 2
∑
m �=n

Vqm In cos(mωt + αm − θm) sin(nωt + αn − θn) (3.37)

where Qh = Vqh Ih = Vh Ih sin θh is the amplitude of the oscillation with the frequency 2hω,
and Vqm In = Vm In sin θm is the amplitude of a pair of oscillations with the frequencies (m ±
n)ω. All the oscillations of the components included in pq H are due to the charge-discharge
of the L and C . Their nature is not different from the nature of the pq1 oscillation.

The instantaneous power flow paths are presented in Fig. 3.3.
In past literature [1] the terms Qh were viewed as the components of a total reactive

power Q =∑h Qh , however, more recent documents [2] recognize Q1 as a separate major
component that gives significant information about the load performance.

3.5 The Nonlinear Resistance

Unlike the linear loads that cause the flow of a nonsinusoidal current only when supplied with
nonsinusoidal voltage, the nonlinear loads will distort the current even when their input voltage
is nearly sinusoidal. This means that nonlinear loads generate electric energy propagated by
an electromagnetic field with frequencies different than the voltage source frequency.
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Figure 3.4 Nonlinear resistance: (a) Circuit. (b) v/ i characteristic. (c) Equivalent circuit.

The study of the simplest of all the nonlinear loads, the nonlinear resistance, will help
unravel the secret mechanism of harmonic power generation and gain a solid understanding
of the types of instantaneous power sources peculiar to such circuits. The studied circuit
shown in Fig. 3.4a has a nonlinear resistance that consists of a linear resistance R in series
with an ideal diode D. The v/ i characteristic is shown in Fig. 3.4b. The supply voltage
is sinusoidal,

vs =
√

2Vs sin(ωt) (3.38)

nevertheless, the current i is distorted and has three components:

i = i1 + Idc + iH (3.39)

where

i1 = Vs√
2RT

sin(ωt); RT = Rs + R (3.40)

is the fundamental current,

Idc =
√

2Vs

π RT
(3.41)
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is the direct current and

iH = −2
√

2

π

Vs

RT

∑
h=2,4,6..

cos(hωt)

h2 − 1
(3.42)

is the total harmonic current (all the harmonics, except the fundamental, are lumped together).
The distorted current causes a nonsinusoidal voltage drop across Rs , this causing in turn

a nonsinusoidal voltage across the nonlinear load. Evidently in this case the spectrum of the
nonlinear load voltage v has exactly the same harmonic orders as the current, therefore the
nonlinear load’s voltage has three components similar to (3.39):

v = v1 + Vdc + vh (3.43)

This observation leads to an interesting idea: Let us replace the nonlinear load with a
fictitious voltage v that has exactly the same spectrum as the actual voltage. In Fig. 3.4c we see
the equivalent circuit that is used for this study. Based on Kirchhoff’s law the three voltages
are:

v1 = vs − Rsi1 = Vs√
2

(
2 − Rs

RT

)
sin(ωt) (3.44)

Vdc = −Rs Idc = −√
2Rs

π RT
Vs (3.45)

and

vH = −RsiH = −2
√

2

π

Rs

RT
Vs

∑
h=2,4,6..

cos(hωt)

h2 − 1
(3.46)

The active power supplied by the source vs is

Ps = 1

T

∫ T

o
vsi1 dt = Vs

Vs

2RT
= V 2

s

2RT
(3.47)

The fundamental current i1 is causing the power loss

�P1 = Rs I 2
1 = Rs

(
Vs

2RT

)2

= Rs

4R2
T

V 2
s (3.48)

The fictitious fundamental voltage v1 is absorbing the power

P1 = 1

T

∫ T

o
v1i1 dt = Vs

2

(
2 − Rs

RT

)
Vs

2RT
= V 2

s

2RT

(
1 − Rs

RT

)
(3.49)
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The direct voltage Vdc generates the power

Pdc = Vdc Idc =
√

2

π

Rs

RT
Vs

2
√

2Vs

π RT
= 2Rs

π2 R2
T

V 2
s (3.50)

The harmonic voltage source vH generates energy that is dissipated in Rs . The active power
supplied by vH is

PH = 1

T

∫ T

0
vH iH dt = 2

√
2

π

Rs

RT

Vs√
2

2
√

2

π RT

Vs√
2

∑
h=2,4,..

1

(h2 − 1)2

= 4Rs

π2 R2
T

V 2
s

∑
h=2,4,..

1

(h2 − 1)2
= 4Rs

π2 R2
T

V 2
s

(
π2

16
− 1

2

)
=
(

1

4
− 2

π2

)
Rs

R2
T

V 2
s (3.51)

Now we should sort the above results on the base of the following three equations that apply
to the circuit shown in Fig. 3.4c:

vs = Rsi1 + v1 (3.52)

Vdc = −Rs Idc (3.53)

and

vH = −RsiH (3.54)

Next we write the instantaneous powers supplied by each voltage

vsi1 = Rsi2
1 + v1i1 (3.55)

Vdc Idc = −Rs I 2
dc (3.56)

and

vH iH = −Rsi2
H (3.57)

These three equations shed light on the following situation: The pure sinusoidal source vs

supplies power that covers a part of the losses dissipated by Rs and what remains enters v1.
The energy generated by Vdc and vH is delivered entirely to Rs . This last observation leads
the inquisitive reader to ask: “If the main source is sinusoidal and the generated energy is
carried by an electromagnetic field with a frequency f = 50 or 60 Hz, how come there are
present in this system electromagnetic waves with frequencies different than 50 or 60 Hz? In
simpler terms, from where do these harmonic currents come? How are harmonics produced?
The answer is found in the power conservation law. To facilitate the computation of the power
terms involved in the power conservation equation, we need the squared rms current:

I 2 = 1

2π

∫ π

0
i2 d(ωt) =

(
Vs√
2RT

)2

(3.58)
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Next we can find the total power dissipated in Rs ;

�P = Rs I 2 = Rs

2R2
T

V 2
s (3.59)

and compare it with the sum of three powers: the power delivered by Vdc (3.50), by vH (3.51),
and the power supplied to Rs by vs (3.48), i.e.

Pdc + PH + �P1 = 2Rs

π2 R2
T

V 2
s +

(
1

4
− 2

π2

)
Rs

R2
T

V 2
s + Rs

4R2
T

V 2
s = Rs

2R2
T

V 2
s = �P (3.60)

We found that all the energy generated by the nonfundamenal frequency sources is dissipated
in Rs .

The nonlinear load converts energy into heat at the rate

Pout = RI 2 = (RT − Rs)I 2 = RT − Rs

2R2
T

V 2
s =

(
1 − Rs

RT

)
V 2

s

2RT
(3.61)

This is exactly the power that will be measured by an ideal wattmeter connected at the
nonlinear load’s terminals.

Power enters the nonlinear load through v1 and a part of it, Pout , is converted into heat and
delivered to the surrounding media; the rest is delivered to Vdc and vH .

Mathematically this explanation is easily proved by subtracting from the active power P1,
that enters the nonlinear load, the powers PH and Pdc, delivered to the resistance Rs . Our
explanation is correct, since the result of this subtraction equals the output power:

P1 − PH − Pdc = V 2
s

2RT

(
1 − Rs

2RT

)
−
(

1

4
− 2

π2

)
Rs

R2
T

Vs − 2Rs

π2 R2
T

Vs

= V 2
s

2RT
− Rs

4R2
T

V 2
s − Rs

4R2
T

V 2
s =

(
1 − Rs

RT

)
V 2

s

2RT
= Pout (3.62)

Equation (3.62) represents the conservation of active powers and is crucial information
needed for the mapping of the active power flow sketched in Fig. 3.5. Probably the most
exciting aspect of this display is the fact that according to (3.62) a portion of the power P1 is
converted in Pdc and PH , i.e. P1 = Pout + Pdc + PH .

Besides instantaneous active and intrinsic powers there are also nonactive powers that
oscillate between vs and the nonlinear load in spite of the total absence of inertial components3

from this circuit. These nonactive powers are recognized in the expression of the instantaneous
power supplied by the source vs :

ps = vs i = vs i1 + vs Idc + vsiH (3.63)

3 The inertial components are inductors, capacitors, and masses in motion belonging to electromechanical equip-
ment.
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Figure 3.5 Active power flow in a noninductive circuit with a nonlinear resistance (replaced by three
voltage sources v1, Vdc, and vH ). (Intrinsic powers are not shown.)

The first term vsi1 is explained by (3.55): it is an instantaneous active power with its
inherent instantaneous intrinsic powers (the phasors Vs, V1 and I1 are in-phase.) Part of this
active power is supplied to Rs and the remainder to the nonlinear resistance.

The remaining terms in (3.63) are nonactive, they are power oscillations with zero-mean
values. The term vs Idc can be deciphered starting from (3.52)

vs Idc = Rsi1 Idc + v1 Idc (3.64)

From equation (3.53) we found

−Rsi1 Idc = Vdci1 (3.65)

that substituted in (3.64) gives

vs Idc = −Vdci1 + v1 Idc (3.66)

This result shows that the nonactive power oscillation vs Idc is in balance with the nonactive
power oscillations Vdci1 and v1 Idc. In the same way we deal with the instantaneous power
vs iH . From (3.52) we find

vs iH = RsiH i1 + v1iH (3.67)
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sv
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dcV

Hv

dcsIv dcIv1

Hsiv Hiv1

1iVdc

1ivH

dcHHdc IviV =

Figure 3.6 Nonactive power flow in a noninductive circuit with a nonlinear resistance. Power oscilla-
tions between the sinusoidal source and the nonlinear resistance (replaced by three voltage sources v1,
Vdc, and vH ).

and from (3.54) results

vH i1 = −RsiH i1

that substituted in (3.67) gives

vs iH = −vH i1 + v1iH

This group of oscillations takes place between vs at one end of the connecting line and v1

and vH at the other end. These power oscillations also have zero mean values, none of them
sustaining unidirectional flow of energy.

The last, but quite intriguing, category of oscillations takes place between the fictitious
sources Vdc and vH . From (3.53) and (3.54) results that

VdciH = vH Idc = −Rs IdciH

Thus, these oscillations are confined to the “space” found in the volume of the nonlinear load’s
mass, where the conversion from 60 or 50 Hz to dc and harmonic frequencies takes place.
These particular oscillations are a link in the intricate chain that insures the conservation of
instantaneous powers, Fig. 3.6.

3.6 The Nonlinear Inductance

In Fig. 3.7a is sketched the diagram of a simple circuit where a sinusoidal voltage vs =
V̂s cos(ωt) supplies a nonlinear inductance L N connected in series with a linear inductance L .
The nonlinear inductance has the flux linkage/current characteristic ψ = ψ(i) shown in Fig.
3.7b; the permeability of the magnetic core material, µ → ∞ if −ψs ≤ ψ ≤ ψs otherwise
µ ≈ 0.
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Figure 3.7 Lossless nonlinear inductance: (a) Circuit. (b) Flux linkage/current characteristic. (c) Wave-
forms. (d) Linear equivalent circuit.

The oscillograms of the voltage source vs , flux linkage ψ , current i , and nonlinear inductance
voltage vN are presented in Fig. 3.7c.

During the interval 0 < ωt < ξ the flux linkage ψ < ψs , the magnetizing current i = 0
and the nonlinear inductance voltage vN = vs . Also during this time the flux linkage has
the expression

ψ =
∫ t

0
vs dt = V̂s

ω
sin(ωt)

At ωt = ξ the flux linkage reaches saturation, ψ = ψs , hence

ψs = V̂s

ω
sin(ξ ) or ξ = sin−1

(
ωψs

V̂s

)
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For the next interval ξ ≤ ωt ≤ (π − ξ ) the flux remains constant, ψ = ψs , vN = dψ/dt = 0
and the current flow is governed by

vs = L
di

dt
or i = 1

L

∫
i dt = V̂s

ωL
sin(ωt) + K

The integration constant is determined from the initial condition i = 0 at ωt = ξ , thus K =
(V̂s/ωL) sin(ξ ) and the current has the expression

i = V̂s

ωL
[sin(ωt) − sin(ξ )]; ξ ≤ ωt ≤ (π − ξ )

Evidently this current is nonsinusoidal and has the following components

i = i1 + iH i1 = Î1 sin(ωt) iH =
∑
h �=1

Îh sin(hωt)

The voltage across L N has similar components, but leading the corresponding harmonic
currents by 90◦;

vN = v1 − vH v1 = V̂1 cos(ωt) vH = −
∑
h �=1

V̂h cos(hωt)

The equivalent linear circuit is shown in Fig. 3.7d, (note the reverse polarities of v1 and vH ).
The Kirchhoff’s voltage law applied to this circuit gives

vs = L
di1

dt
+ v1 vH = L

diH

dt

yielding the four instantaneous powers supplied by vs and vH :

vs i1 = Li1
di1

dt
+ v1i1 vs iH = LiH

di1

dt
+ v1iH

vH iH = LiH
diH

dt
vH i1 = Li1

diH

dt

Just like in the previous examples, an issue key to the understanding of iH injection stems
from the fact that the nonlinear inductance, assumed in this example, has no hysteresis and is
lossless. Mathematically this translates in

vN i = (v1 − vH )(i1 + iH ) = 0 or v1(i1 + iH ) = vH (i1 + iH )

The last equation4 gives the following message: The instantaneous power absorbed by the
fictitious fundamental voltage v1 is converted in the instantaneous power generated by the

4 One should not draw from this equation the conclusion that v1 = vH . The physical mechanism is more involving,
the voltage v1 is a fundamental, with a frequency of 50 or 60 Hz, and vH contains all the higher harmonics.
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Figure 3.8 Instantaneous power flow in a circuit with a nonlinear lossless inductance. (See Fig. 3.7).

fictitious total harmonic voltage vH . The instantaneous power flow pattern for the lossless
nonlinear inductance is shown in Fig. 3.8.

A multitude of nonlinear circuits can be studied following the method described in sections
3.5 and 3.6. Among the problems listed at the end of this chapter the reader will find the lossy
nonlinear inductance to be more challenging (see problem 3.8).

The most complete case is covered in the next section.

3.7 Nonlinear Load: The General Case

Many engineers list under the name of nonlinear loads all the categories of harmonic gen-
erating equipment, placing together actual nonlinear loads such as magnetic core devices
(inductors, transformers and motors) and arcing devices (arc welders, arc furnaces, arc dis-
charge lighting) with all sorts of loads such as converters (dc and ac adjustable speed drives,
battery chargers, or any combination of the above.) The truth is that phase controlled loads,
controlled or uncontrolled rectifiers, as well as cycloconverters, perform like a set of switches
that periodically and sequentially connect and disconnect one or more linear, or nearly linear,
loads to the supplying line. The correct name of such a load is parametric. For the purpose of
this study, however, all harmonic generating loads are considered under one generic name of
nonlinear loads.

In Fig. 3.9a is sketched a circuit where a nonlinear load N L is supplied from a network that
has a Thévenin equivalent circuit that consists of a sinusoidal voltage

vs = V̂s sin(ωt)

in series with a resistance Rs and inductance Ls .
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Figure 3.9 Nonlinear load; the general case: (a) Basic circuit. (b) Equivalent linear circuit.

The current is separated in fundamental and the total harmonic current:

i = i1 + iH where i1 = Î1 sin(ωt − θ1) and iH =
∑
h �=1

Îh sin(hωt + αh) (3.68)

The nonlinear load’s voltage v can be represented by two equivalent voltages with opposite
polarities, (Fig. 3.9b):

v = v1 − vH where v1 = V̂1 sin(ωt) and vH =
∑
h �=1

V̂h sin(hωt + αh + θh) (3.69)

where the fundamental voltage phasor is taken as phase reference. Next, the current i1 is
divided into two components; an active current

i p1 = Î1 cos θ1 sin(ωt) (3.70)

in-phase with the voltage v1, and a reactive component

iq1 = − Î1 sin θ1 cos(ωt) (3.71)

in-quadrature with v1.
The reason for this separation of currents stems from the need to single out the fundamental

instantaneous active power measured at the NL terminals.
The Kirchhoff’s voltage law for the fundamental frequency is

vs = Rsi1 + Ls
di1

dt
+ v1 (3.72)

therefore the fundamental instantaneous power supplied by vs is

vsi1 = vs(i p1 + iq1) = Rsi1(i p1 + iq1) + Ls(i p1 + iq1)
di1

dt
+ v1i p1 + v1iq1 (3.73)
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The nonactive component resulting from the interaction of vs with iH is

vs iH = Rsi1iH + LsiH
di1

dt
+ v1iH (3.74)

The fundamental instantaneous active power is

pp1 = v1i p1 = V̂1 sin(ωt)[ Î1 cos θ1 sin(ωt)] (3.75)

Similarly one finds the fundamental instantaneous reactive power

pq1 = v1iq1 = V̂1 sin(ωt)[− Î1 sin θ1 cos(ωt)] (3.76)

From (3.72) we find that

vsi p1 = Rsi1i p1 + Lsi p1
di1

dt
+ pp1 (3.77)

and

vs iq1 = Rsi1iq1 + Lsiq1
di1

dt
+ pq1 (3.78)

The Kirchhoff’s voltage law written for the harmonic voltages is

vH =
∑
h �=1

vh = Rs

∑
h �=1

ih + Ls

∑
h �=1

dih

dt
= RsiH + Ls

diH

dt
(3.79)

this giving the instantaneous power due to i1

vH i1 = RsiH i1 + Lsi1
diH

dt
(3.80)

and the instantaneous power due to iH

vH iH =
∑
h �=1

vh

∑
h �=1

ih =
∑
h �=1

vhih +
∑
m �=n

m,n �=1

vmin

= Rs

∑
h �=1

i2
h + Rs

∑
m �=n

m,n �=1

imin + Ls

⎡
⎢⎣∑

h �=1

ih
dih

dt
+
∑
m �=n

m,n �=1

im
din

dt

⎤
⎥⎦ (3.81)

The first term in (3.81) is a part of the power supplied to Rs , including the total harmonic
active power PH and its instantaneous intrinsic power of the first-order. We recognize the
second term in (3.81) as a part of the instantaneous intrinsic power of mn-order. The last term
represents power oscillations between vH and Ls .
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Figure 3.10 Flow of instantaneous powers that replicate the flow of Poynting vector components.
(Intrinsic power flow is not included).

Next we check on the instantaneous power vs iH . From (3.72) results

vs iH = Rsi1iH + LsiH
di1

dt
+ v1iH (3.82)

Both first terms in (3.80) and (3.82) are part of the intrinsic instantaneous powers pii H and
are left out of the instantaneous power flow map presented in Fig. 3.10.

The set of equations (3.74) to (3.82) helped to determine the chart of instantaneous power
flow as depicted in Fig. 3.10. As in the previous examples we found that part of the active
power supplied by vs goes to Rs and the rest to v1. Some active power is also supplied by vH

to Rs .
The voltage drop across the linear inductance Ls is

vLs = Ls
di

dt
= Ls

(
di1

dt
+ diH

dt

)

and the instantaneous power supplied to Ls is

pLs = vLs(i1 +
∑
h �=1

ih) = Ls

⎛
⎜⎝i1

di1

dt
+ i1

diH

dt
+ iH

di1

dt
+
∑
h �=1

ih
dih

dt
+
∑
m �=n

m,n �=1

im
din

dt

⎞
⎟⎠
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The sinusoidal voltage source vs provides three instantaneous powers: vsi p1 (3.77), vs iq1

(3.78) and vsiH (3.82). The nonlinear load NL receives instantaneous active power via v1i p1

(3.75) and delivers instantaneous active power via the active components of vH iH (3.81).
This nonlinear load is interacting with the energy supplied by five distinct instantaneous

powers: The power v1i p1 a unidirectional instantaneous power. The component v1iq1 an
oscillation with a nil mean value involving Ls , NL and vs . In the same category are the powers
v1iH and vH i1. Lastly the instantaneous powers vH iH that contain unidirectional components
flowing from NL toward Rs and instantaneous powers oscillating between NL and Ls .

Assuming that the nonlinear load delivers the instantaneous power pout , the energy conser-
vation law requires that

(v1 − vH )(i1 + iH ) = pout

or v1i1 + v1iH = pout + vH i1 + vH iH (3.83)

The puzzle is completed using (3.83) that points to the mechanism of harmonics generation:

∫ T

0
(v1i1 + v1iH ) dt =

∫ T

0
pout dt +

∫ T

0
(vH i1 + vH iH ) dt

This equation reads: “The electric energy supplied to a nonlinear load equals the energy
converted by the load in heat, or in other forms of energy, plus energy that is converted in
energy at higher harmonics frequencies and returned to the network.”

The beauty of the instantaneous power flow map, shown in Fig. 3.10, is its very agreement
with the flow of energy as described by means of Poynting vector. Each instantaneous power
shown in Fig. 3.10 is mirrored in one of the components of the electromagnetic wave with the
energy density flow rate 
℘ = 
E × 
H . This claim is based on the fact that the Poynting vector
is proportional to the instantaneous power, ℘ = (KE KH/r2)vi , (2.55).

According to Fig. 3.10 a specially designed power quality instrument or power meter,
connected at the nonlinear load terminals, will detect the following above mentioned five
instantaneous powers:

From (3.75) results

pp1 = v1i p1 = V1 I1 cos θ1[1 − cos(2ωt)] = P1 + pi1; P1 = V1 I1 cos θ1 (3.84)

and from (3.76)

pq1 = −Q1 sin(2ωt); Q1 = V1 I1 sin θ1 (3.85)

Sustained by vs iH in (3.74) is “hidden” the instantaneous current distortion power:

pDI = v1iH = 2V1

∑
h �=1

Ih sin(ωt) sin(hωt + αh)

= V1

∑
h �=1

Ih {cos[(h − 1)ωt + αh] − cos[(h + 1)ωt + αh − θh]} (3.86)
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From equation (3.80) one finds the instantaneous voltage distortion power produced by
vH i1, that covers the oscillations Lsi1 diH/dt . The detailed expression of these oscillations is

pDV = vH i1 = 2I1

∑
h �=1

Vh sin(ωt − θ1) sin(hωt + αh + θh)

= I1

∑
h �=1

Vh {cos[(h − 1)ωt + αh + θ1 + θh] − cos[(h + 1)ωt + αh − θh − θ1]} (3.87)

Lastly, from (3.81) we obtain the instantaneous harmonic power:

pH = vH iH = Rs

∑
h �=1

[ Îh sin(hωt + αh + θh)]2 + Rs

∑
m �=n

m,n �=1

imin

+ Lsω
∑
h �=1

h Î 2
h sin(hωt + αh) cos(hωt + αh)

+ Lsω
∑
m �=n

m,n �=1

n Îm În sin(mωt + αm) cos(nωt + αn)

=
∑
h �=1

(Ph + pih) + Rs

∑
m �=n

m,n �=1

imin +
∑
h �=1

Qh sin(2hωt + 2αh)

+ 2Lsω
∑
m �=n

m,n �=1

nIn Im {sin[(m − n)ωt + αm − αn]

− sin[(m + n)ωt + αm + αn]} (3.88)

supplied by the harmonic voltage vH . These terms cover the total harmonic power PH =∑
h �=1 Ph , the instantaneous intrinsic power pi H =∑h �=1 pih , a part of the intrinsic power of

second-order, and the power oscillations between Ls and vH .
Only the instantaneous powers pp1 and pH have average values and provide the active

powers P1 and PH , respectively. All the remaining instantaneous powers are nonactive.
From Fig. 3.10 results that the instantaneous power line loss is

�p = Rs

⎛
⎝i1i p1 + i1iq1 +

∑
h �=1

i2
h

⎞
⎠ (3.89)

Substitution of i1 = i p1 + iq1 and ih = i ph + iqh in (3.89) yields

�p = Rs

⎡
⎣i2

p1 + i2
q1 + 2i p1iq1 +

∑
h �=1

(i2
ph + i2

qh + 2i phiqh)

⎤
⎦
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therefore the active power lost in the line that supplies the nonlinear load is

�P = Rs

⎡
⎣I 2

p1 + I 2
q1 +

∑
h �=1

(I 2
ph + I 2

qh)

⎤
⎦

= Rs

⎧⎨
⎩
(

P1

V1

)2

+
(

Q1

V1

)2

+
∑
h �=1

[(
Ph

Vh

)2

+
(

Qh

Vh

)2
]⎫⎬
⎭ (3.90)

This result is important since it proves that the power loss in the supplying line that carries
nonsinusoidal currents is a function of the active powers squared (P2

1 ,
∑

h �=1 P2
h ), reactive

powers squared, (Q2
1 ,
∑

Q2
h) and the voltages V 2

1 and V 2
h .

The expression (2.32), advocated in Chapter 2 for the sinusoidal situations, can be applied
as well to single-phase nonsinusoidal conditions:

�P = Rs I 2 = Rs

V 2
V 2 I 2 = Rs

V 2

⎡
⎣V 2

1 +
∑
h �=1

V 2
h

⎤
⎦
⎡
⎣I 2

p1 + I 2
q1 +

∑
h �=1

(I 2
ph + I 2

qh)

⎤
⎦

= Rs

V 2

⎡
⎣P2

1 + Q2
1 + V 2

1

∑
h �=1

I 2
h + I 2

1

∑
h �=1

V 2
h +

∑
h �=1

V 2
h

∑
h �=1

I 2
h

⎤
⎦ (3.91)

This last expression is significant since it shows that all five forms of instantaneous powers
pp1, pq1, pDI , pDV , and pH , ((3.84) to (3.87)), affect the power lost in the supplying line.

If we consider the ac motors and review the theory of rotating field, we realize that each
harmonic voltage produces a rotating magnetic flux. However, it is only the fundamental
voltage that supports a useful rotating magnetic field; the remaining harmonic rotating fields
are detrimental, causing parasitic torques and additional losses. Keeping in mind that ac
motors make the majority of loads (true for three-phase systems), it is justified to view the
harmonic power, active and nonactive, as a by-product of the conversion of 60/50 Hz energy
into harmonic frequency energy and to consider harmonic energy generated by the nonlinear
loads as electromagnetic pollution.

The harmonic active power PH =∑h �=1 Ph =∑h �=1 Vh Ih cos θh is considered by many
engineers as a reasonable indicator of harmonic pollution. In the vast majority of practical
situations PH � P1. The minute value of each Ph is due to the fact that the phase angle
|θh | ≈ 90◦ (tan θh = hωLs/Rs and usually hωLs � Rs). If the load is linear PH > 0, if the
load is nonlinear and generates harmonic energy, then PH < 0. This is true only if the nonlinear
load is large enough or decoupled from other nonlinear loads. There are many situations when
a nonlinear load absorbs energy at certain harmonic frequencies and delivers energy at other
frequencies [3,4]. This happens when the observed nonlinear load is dominated by other
nonlinear loads supplied by the same feeder and the observed nonlinear load acts as a sink (an
active filter). This means that one or more harmonic current phasors injected by the observed
load are out of phase with the larger phasors injected by the larger loads. (See problems 3.14
and 3.15.)
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The analyses, results, and observations presented in this chapter may seem detached from the
actual engineering design of a metering instrument, the selection of switchgear, or planning an
optimal mitigation strategy for power factor improvement. Nevertheless, this material provides
a solid background conducive to an objective evaluation of different apparent power resolutions
and helps to establish the merits and the shortcomings of different schools of thought.

3.8 Problems

3.1 A single-phase line consists of two resistances connected in series. From left to right
R1 = 10 � and R2 = 90 �. The left-end of this line is supplied with a voltage vs1 = 400 sin(ωt)
and the right-end with a voltage vs5 = 800 sin(5ωt + 60◦). The resistances are connected at
the node A. The return line has zero-resistance and is considered node B. Compute and sketch
the flow of instantaneous powers. Compute the instantaneous and the active power supplied
through the terminals A B.

3.2 Repeat problem 3.1 when R1 = 20 � and R2 = 80 �. Explain the differences between
the two results.

3.3 A linear resistance R = 1 � is supplied with a voltage

v =
√

2[5 sin ωt + 4 sin(3ωt) + 3 sin(5ωt + π/6)]

Compute the fundamental active power P1, the total harmonic active power PH , and the
apparent power S = V I = P1 +∑h �=1 Ph . Check the equality

⎡
⎣P1 +

∑
h �=1

Ph

⎤
⎦

2

= P2
1 +

∑
h �=1

P2
h + P2

D

where P2
D =∑m �=n(Pm Pn)2; m, n = 1, 3, 5.

3.4 An inductance L = 10 H is supplied with v = √
2[sin(ωt) + sin(3ωt + θ3)], ω = 2π

rad/s, f = 1 Hz. Using your preferred software package compute and plot the maximum
energy stored in L , Wmax = Wmax (θ3) for 0 ≤ θ3 ≤ 360◦. Display the waveforms v = v(t),
i = i(t), p(t) = v(t)i(t) and

∫
p(t)dt for θ3 = 135◦.

3.5 Prove that for an ideal linear resistor (not affected by skin effect and free from parasitic
components) supplied with a nonsinusoidal voltage with a total harmonic distortion T H DV ,
the ratio P1/S = 1/[1 + T H D2

V ].
Note: The total harmonic distortion T H DV = T H DI = √∑h(Vh �=1/V1)2 and S = V I .

3.6 Compute the harmonic currents and voltages for the lossless nonlinear inductance
described in section 3.6. Assume

v =
√

2 120 sin(376.99t) V and ξ = 30◦
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The line reactance is ωL = 376.99 L = 10 �. Complete the instantaneous power flow map.
(You may use Matlab, PSpice, or any adequate software to solve this problem.)

3.7 Repeat problem 3.6 with the line inductance replaced by a 10 � resistance.

3.8 Repeat problem 3.6 if the lossless inductance is replaced with a lossy inductance.
Assume the ψ/ i characteristic to have a rectangular hysteresis loop, such that when ψ < |ψs |
i = |I0|. If dψ/dt > 0 then i = I0. If dψ/dt < 0, i = −I0. When ψ = ψs , − I0 < i < ∞.
When ψ = −ψs − ∞ < i < I0. The hysteresis power loss is �Physt = 4ψs I0 f , f = 60 Hz.
Assume I0 = 2 A.

3.9 A direct voltage source, Vs = 100 V, supplies a mechanical switch via a 10 � resistance.
The mechanical switch, considered a time-varying load, is turned on/off with a 50% duty cycle,
(i.e., 1 ms is closed and 1 ms is kept open.) You can easily determine the Fourier series for the
current through and the voltage across the switch and figure the linear equivalent circuit. In
reference [5] it is claimed that no energy flows and no energy oscillations take place between
the switch and the source. Using the method studied in this chapter, determine the flow of all
the instantaneous powers characteristic to this circuit. Make a rough sketch of the Poynting
vector flux lines patterns for f = 0 and f = 1.0 kHz.

3.10 Repeat problem 3.9 if 8 � of the 10 � resistance are included in the load, (this leaves
2 � in the supplying line.)

3.11 A sinusoidal voltage vs = V̂s sin(ωt) supplies a rectifier bridge via a resistance Rs .
The four diodes are considered ideal (zero voltage drop during conduction, infinite resistance
when reverse biased.) The dc load is represented by a current source I0. Due to resistance Rs

there is a commutation time when all four diodes conduct, (as long as |i | ≤ I0, the bridge acts
like a short-circuit and the line current i = vs/Rs).

During the intervals k(π ± ξ ) < ωt < (k + 1)(π ± ξ ), k = 1, 2, 3 . . . , the line current |i | =
I0. When ωt = ξ i = I0 = (V̂s/Rs) sin(ξ ).

Your task is to determine the components of the instantaneous power that supplies the
rectifier bridge. Find the expressions of v1, vH , i1 and iH and work your way to a complete
map of instantaneous powers. Prove that P0 = Vdc I0 = P1 − PH .

3.12 Sketch the instantaneous power, flow map for a linear R–L–C load supplied by a
nonsinusoidal voltage. Base your model on fundamental and harmonic current components
in-phase and in-quadrature with the fundamental and harmonic voltages supplying the load.

3.13 Obtain the power flow map for the general case of a nonlinear load. Take the funda-
mental active current i1 = Î1 sin(ωt) as reference. Separate the nonlinear load voltage in an
active component vp1 = V̂1 cos θ1 sin(ωt) and a reactive component vp1 = V̂1 sin θ1 sin(ωt). It
may be necessary to separate also the supply voltage vs in active and reactive components vsp

and vsq . Compare your map with Fig. 3.10. You will observe that the new approach is useful
when the recording instrument is connected at the terminals of vs .

3.14 A current harmonic source ih = sin(hωt) is connected at the terminals A and C into a
circuit that has RAB = 8 � connected node A to node B and RBC = 2 � connected node B to
node C. The current flows from C to A.

Compute the harmonic voltage vh = vAC and the instantaneous and the active power sup-
plied by the current source ih . Next a larger current source, i ′

h = 10 sin(h�t) (� �= ω), is
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connected at the terminals BC (the current flows from B to C). Repeat the calculations and
comment on the obtained results.

3.15 Two controlled rectifiers, A and B, are connected in parallel at the same bus. Both
rectifiers supply zero-ripple dc current to their respective dc loads. We label these dc currents
IA and IB . If the commutation phenomenon is ignored then the ac line currents are perfect
square waves with the expressions

i A = 4IA

π

∑
h=1,3,5,..

sin(hωt − hαA)

h
and iB = 4IB

π

∑
h=1,3,5,..

sin(hωt − hαB)

h

Compute and plot PBh/PAh versus αB for 0 < αB < 90◦. Take the ratio 0.1 < IB/IA < 0.9 as
parameter. Assume αA = 0. Complete your study for h = 3 and h = 5. Ignore supplying line
inductance. Consider line resistance Rs . Assume a sinusoidal voltage source, V̂ sin(ωt) and
Rs IA = 0.05V̂ .
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4
Apparent Power Resolution for
Nonsinusoidal Single-Phase
Systems

There is nothing so powerful as truth; and often nothing so strange.
—Daniel Webster, April 1830

Let us consider a modern spectrum, or wave-analyser, connected at the terminals of a load,
linear or nonlinear, that accurately measures the ν harmonic voltage phasors and the ν har-
monic current phasors that define the respective voltage and current waves. The interaction
among these harmonic voltages and currents of the same frequency yields ν instantaneous
active powers and ν instantaneous nonactive powers. Moreover, the cross products of voltage
and current harmonics of different frequencies yield ν(ν − 1) more instantaneous nonactive
powers. With so many elementary powers, (a total of ν2 + ν) it is easy to imagine a multitude
of possible resolutions of the apparent power S in seemingly useful components separation.
No wonder that the engineering literature in the last eight decades abounds with papers, each
one describing an improved, or a novel resolution of S, claiming to be more practical than the
last due to regrouping of the powers according to a clearer physical meaning or a more refined
economical analysis.

The resolution of apparent power for nonsinusoidal conditions was from the beginning a
controversial topic that caused, and is still causing today, passionate discussions. In 1933
A. E. Knowlton chaired the famous AIEE Schenectady meeting that turned into one of the
most heated debates in the history of electrical engineering [1]. The discussions were fueled
by a set of papers presented by the AIEE elite: C. L. Fortescue, V. G. Smith, W. V. Lyon and
W. H. Pratt. There are 21 recorded discussions. A noteworthy comment was then made by
V. Karapetoff:

“Any definition of power factor that can not be realized with fairly simple practical mea-
suring instruments will remain a dead letter; on the other hand, a definition that may not be
quite rigorous theoretically may prove to be of great practical usefulness if the corresponding
measurements are simple and can readily be understood by the average operating engineer.”

Power Definitions and the Physical Mechanism of Power Flow Alexander Eigeles Emanuel
C© 2010 John Wiley & Sons, Ltd
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Today’s engineers experience better conditions than Karapetoff’s generation: available are
accurate and versatile instruments capable of measuring any conventional electric quantity
defined by the most involving mathematical expressions. The theory of electric circuits, the
mechanisms of energy conversion, and the phenomena that govern the flow of electric energy
are better understood. The practical experience gained during a century of designing, prototyp-
ing, maintaining, and improving the infrastructure needed to sustain the continuous supply of
electric energy has created a generation of “average practicing engineers” more competent and
better documented than ever before. The need for more efficient equipment, the proliferation
of distributed generators, and the deregulation of the electric energy industry, are all forces
that drive the quest for a resolution of S that, hopefully, will soon be universally accepted.

Many modern researchers like to emphasize that the apparent power is larger than, or equal
to, the active power S ≥ P , by invoking Schwartz’s inequality [2]:

[∫ b

a
f (x)g(x) dx

]2

≤
∫ b

a
[ f (x)]2 dx

∫ b

a
[g(x)]2 dx

This inequality can be readily applied to instantaneous electrical quantities

[∫ T

0
v(t)i(t) dt

]2

≤
∫ T

0
[v(t)]2 dt

∫ T

0
[i(t)]2 dt

and keeping in mind that the active power squared is

P2 =
[

1

T

∫ T

0
v(t)i(t) dt

]2

and the squared rms voltage and current are

V 2 = 1

T

∫ T

0
[v(t)]2 dt and I 2 = 1

T

∫ T

0
[i(t)]2 dt

results that P ≤ S or S2 = P2 + N 2, where N is a total nonactive power that together with P
contributes to line power loss. While the active power P consists of well agreed upon terms P1

and PH = ∑
h �=1 Ph , the term N ≥ 0 is formed by a set of subcomponents. This power appears

in literature under different names: nonactive, fictitious, and sometimes is still called reactive
power. The main goal of this chapter is to present and discuss the best known resolutions of N
and its separation in subcomponents. The selection of the presented theories, or models, was
influenced by two reasons:

� The proposed approach or method is a recognized milestone theory having a significant
historical role that led to better concepts and developments.

� The proposed method is already accepted by a segment of the engineering community, some
implementation was started, and the method is documented in approved standards.
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4.1 Constantin I. Budeanu’s Method

Budeanu was the first scientist to understand the fact that the apparent power in nonsinusoidal
systems has more than two components and can be represented in a three-dimensional system.
His theory was detailed in his famous 1927 book, Reactive and Fictive Powers [3]. His theory
can be explained as follows:

The squared rms harmonic currents can be parted in two orthogonal terms:

I 2
h = (Ih cos θh)2 + (Ih sin θh)2 (4.1)

where θh is the phase angle between the harmonic voltage phasor Vh and the harmonic current
phasor Ih.

From equation (4.1) results the expression of the apparent power squared:

S2 = V 2 I 2 =
ν∑

h=1

V 2
h

[
ν∑

h=1

(Ih cos θh)2

]
+

ν∑
h=1

V 2
h

[
ν∑

h=1

(Ih sin θh)2

]
(4.2)

Next step is to apply Lagrange’s identity [4]:

ν∑
h=1

A2
h

ν∑
h=1

B2
h =

(
ν∑

h=1

Ah Bh

)2

+
ν−1∑
m=1

ν∑
n=m+1

(Am Bn − An Bm)2 (4.3)

to (4.2), thus

S2 =
(

ν∑
h=1

Vh Ih cos θh

)2

+
(

ν∑
h=1

Vh Ih sin θh

)2

+
ν−1∑
m=1

ν∑
n=m+1

(Vm In cos θn − Vn Im cos θm)2 +
ν−1∑
m=1

ν∑
n=m+1

(Vm In sin θn − Vn Im sin θm)2

=
(

ν∑
h=1

Vh Ih cos θh

)2

+
(

ν∑
h=1

Vh Ih sin θh

)2

+
ν−1∑
m=1

ν∑
n=m+1

[
(Vm In)2 + (Vn Im)2 − 2Vm Vn Im In cos(θm − θn)

]
(4.4)

The apparent power is separated into three terms that define a right angle parallelepiped,
Fig. 4.1, such that its diagonal is

S2 = P2 + Q2
B + D2

B (4.5)
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Figure 4.1 Budeanu’s apparent power resolution: (a) Three-dimensional representation. (b) Power
components.

The first term

P =
ν∑

h=1

Vh Ih cos θh (4.6)

is the total active power. The second term

QB =
ν∑

h=1

Vh Ih sin θh (4.7)

Budeanu called reactive power1, and the third term

DB =
√√√√ν−1∑

m=1

ν∑
n=m+1

[
(Vm In)2 + (Vn Im)2 − 2Vm Vn Im In cos(θm − θn)

]
(4.8)

is the distortion power.
For years the limits of summations on DB were wrongly written [5], instead of∑ν−1
m=1

∑ν
n=m+1 one finds in textbooks, research articles, and reports

∑
m

∑
n ,

∑
m,n=1
m �=n

or simple∑
m,n . The probable reason for this misleading oversight is the fact that not many people

compute DB using equation (4.8). The usual road to the computation of distortion power is

through DB =
√

S2 − P2 − Q2
B .

From (4.8) we find that the distortion power DB is nil if

θm = θn and Vm In = Vn Im

1 The subscript B is used to emphasize that this is Budeanu’s definition and to avoid confusion with expressions
given in the following sections. The above expressions apply also for situations where interharmonics, subharmonics,
and direct current are present. In his original work Budeanu did not specify the limits of the summations.
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This means

Vm

Im
= Vn

In
= · · · Vh

Ih
= · · · = Re and θm = θn = · · · = θh = · · ·

We learn from here that only a linear resistance Re when supplied with nonsinusoidal
voltage will operate with DB = 0, Q B = 0, and S = P . If the resistance is nonlinear or if it is
a function of the frequency (see section 4.8) then DB > 0.

So far Budeanu’s model has weathered more than eight decades. Its main significance rests
in the fact that by recognizing a nonactive power different than the reactive power he took a first
step toward a better understanding of energy flow in circuits with nonlinear loads. Budeanu’s
powers started to gain AIEE acceptance in the 1930s and were included in the American
Standard Definitions of Electrical Terms [6] in 1941. Even today, as this book was written,
the expressions (4.5), (4.6), and (4.7), and other definitions that resulted directly from (4.4),
are still occupying a significant number of pages on The IEEE Standard Dictionary [7]. Its
past acceptance and popularity among engineers and top scientists is hard to dispute. Modern
textbooks authored by highly respected researchers are presenting Budeanu’s resolution of
apparent power [8,9,10,11] as the right canonical expression.

The truth is that as early as 1935 the physical meaning of the distortion power was questioned
by Waldo V. Lyon. He wrote that in his opinion there is a “vital defect” in the way distortion
powers add [12]. He supports his claim with the following example: A nonsinusoidal voltage

v = sin(ωt) + sin(3ωt) pu

supplies a branch Ra + j Xa = 1 + j pu, in parallel with a second branch Rb − j Xb = 1 − j

pu, as shown in Fig. 4.2. The impedances are in per-unit at fundamental frequency.
For each branch Lyon lists Budeanu’s powers as follows:

Pa = 0.6 pu Pb = 1.4 pu

Qa = −0.8 pu Qb = 0.8 pu

Da =
√

0.2 pu Db =
√

0.2 pu

He writes the following comments: “These parallel branches are equivalent to a nonreactive
resistance at all frequencies. Thus Qa + Qb = 0. This being true the resulting distortion power

v

aR

ajX

bR

bjX−

Figure 4.2 W. Lyon’s example.
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v

puR 0.1=

puXL 5.0=

puXC 5.1=

Figure 4.3 Circuit meant to put in evidence the deficiency of Budeanu’s method.

calculated at the terminals is zero, whereas the sum of the distortion powers in the two branches
is 2

√
0.2 unit. Of what significance then is the sum of the distortion powers in the two branches

of a single phase or polyphase network?”
In 1987 L. S. Czarnecki brought to the attention of the engineering community the fact

that Q B and DB definitions “do not possess the attributes which can be related to the power
phenomena in circuits with nonsinusoidal waveforms” [13]. The circuit sketched in Fig. 4.3
helps to explain this fact:

A load with the impedance 1 + 0.5j − 1.5j pu (measured at fundamental frequency) is
supplied with a nonsinusoidal voltage

v =
√

2[sin(ωt) + sin(3ωt)] pu

The impedances of this load are Z1 = √
2 � − 45◦ pu for the fundamental frequency and

Z3 = √
2 � 45◦ pu at three times fundamental frequency. The instantaneous current is

i = sin(ωt + π/4) + sin(3ωt − π/4) pu

The squared rms voltage and current are V 2 = 2.0 pu2 and I 2 = 1.0 pu2, yielding the powers

S =
√

2 pu P = 1.0 pu QB = 0 and DB =
√

S2 − P2 − Q2
B = 1.0 pu

The result QB = 0 is not meaningful, it is artificial and it defies the reality of Poynting
vector. The instantaneous reactive current is

iq = 1√
2

[cos(ωt) − cos(3ωt) pu]

yielding the instantaneous reactive power

pq = 0.5[sin(2ωt) − sin(6ωt)] pu

These two oscillations of power are not fictitious, they are supported by appertaining
electromagnetic waves and they coexist, having different frequencies that make their mutual
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cancellation imposible. Moreover, each one of these power oscillations is sustained by an
electromagnetic wave with power densities quantified by means of Poynting vectors.

It may be of historical interest to mention that at a CIGRE meeting in 1928, A. Iliovici,
one of the leaders of the French delegation, claimed that “the quantity [distortion power]
defined by Mr. Budeanu, probably will never be directly measured. . . ” In spite of its obvious
deficiencies and of more objections raised in the recent decades by qualified engineers [14,15],
the Budeanu method remained quite popular and 60 years later instrumentation manufacturers
proved Iliovici wrong [16]. It is regrettable that such an elegant mathematical approach does
not have a perfect physical model.

4.2 Stanislaw Fryze’s Method

In 1932 Fryze proposed a simple model [17] that had a strong impact on the apparent power
concepts developed in the second half of the last century [18,19,20].

Based on the fact that for sinusoidal conditions where the voltage and the current are

v = V̂ sin(ωt) and i = Î sin(ωt − θ )

we separate the current in an active component

ia = Î cos θ sin(ωt) = Îa sin(ωt) ; Ia = I cos θ = G V

and a nonactive component, a reactive one

ib = − Î sin θ cos(ωt) = − Îb sin(ωt) ; Ib = I sin θ = B V

with G a conductance

G = I cos θ

V
= V I cos θ

V 2
= P

V 2

and B a susceptance

B = I sin θ

V
= V I sin θ

V 2
= Q

V 2

The above concept leads to the well known power triangle, S, P, Q; with P = V Ia ,

Q = V Ib and S = V
√

I 2
a + I 2

b .
Fryze expanded this approach from sinusoidal to nonsinusoidal situations. The original idea

was to consider an instantaneous current component that mimics the voltage waveform, i.e.
that is a replica of the voltage waveform. This current ia , called instantaneous active current,
is scaled to yield the active power supported by the voltage v and the actual instantaneous
current i . Thus the active current is

ia = Gv = G
∑

h

V̂h sin(hωt + αh) =
∑

h

Îah sin(hωt + αh) =
∑

h

iah (4.9)
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and the active power is

P = G
∑

h

V 2
h = GV 2 (4.10)

The scaling coefficient G has exactly the same meaning as it had in the sinusoidal case. It is a
conductance with the following mathematical properties

G = 1

R
= ia1

v1
= · · · = iah

vh
= · · · = P

V 2
= Ia

V
(4.11)

and

G2 = I 2
a

V 2
=

∑
h

i2
ah

∑
h

v2
h

=

∑
h

I 2
ah

∑
h

V 2
h

(4.12)

The remaining component of the current

ib = i − ia (4.13)

was called by Fryze wattless current (in German Blindstrom). From the definition of ia results

P = 1

T

∫ T

0
vi dt = 1

T

∫ T

0
via dt

hence the average power of vib is nil

1

T

∫ T

0
vib dt = 1

T

∫ T

0
v(i − ia) dt = 0

From this analysis Fryze concluded that the load supplied by the nonsinusoidal voltage
can be modeled with the help of a linear conductance G in parallel with a time varying
conductance G ′(t) = ib(t)/v(t) = 1/R′(t) or, as interpreted by later generations of engineers,
a current source equal to ib, Fig. 4.4.

It is easy to prove that the three rms currents I , Ia , and Ib form a right-angle triangle; we
have

I 2 = 1

T

∫ T

0
(ia + ib)2 dt = 1

T

∫ T

0
(i2

a + i2
b + 2iaib) dt (4.14)

however

1

T

∫ T

0
iaib dt = G

1

T

∫ T

0
vib dt = 0 (4.15)
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G
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bii

v 22 PSQF −=

P
S

(a) (b)

Figure 4.4 Fryze’s resolution: (a) Equivalent circuit. (b) Components.

thus

I 2 = 1

T

∫ T

0
(i2

a + i2
b ) dt = I 2

a + I 2
b (4.16)

yielding a result similar to the sinusoidal situation:

S2 = P2 + Q2
F where S = V I ; P = V Ia ; Q F = V Ib (4.17)

with a power factor

PF = P

S
= Ia

I
(4.18)

Fryze also introduced the concept of wattless power factor:

PFb = Q F

S
= Ib

I

with the property PF =
√

1 − (PFb)2.
Fryze’s model is mathematically correct, and a direct consequence of the approach used for

systems with sinusoidal waveforms, nevertheless, it is only a simplified model, not revealing
all the details of the instantaneous power and not representing the true mechanism of energy
transfer to the load.

If the actual current has the expression

i =
∑

h

Îh sin(hωt + αh − θh) (4.19)

the active powers truthful to the Poynting vector reality are

P1 = V1 I1 cos θ1 and the components Ph = Vh Ih cos θh

The actual active powers P1 and Ph , carried by the Poynting vector, are not represented in
Fryze’s model. Fryze’s approach leads to a set of very different active powers:

Pa1 = GV 2
1 �= V1 I1 cos θ1 = P1 ; Pah = GV 2

h �= Vh Ih cos θh = Ph



P1: OTA/XYZ P2: ABC
c04 BLBK294-Emanuel June 22, 2010 19:4 Printer Name: Yet to Come

102 Power Definitions and the Physical Mechanism of Power Flow

It is absolutely correct that
∑

h Ph = ∑
h Pah = P , nevertheless P1 = V1 I1 cos θ1 �= Pa1

and Ph �= Pah . Moreover, Fryze’s model falls short of providing information on the actual 50
or 60 Hz active and reactive power components, P1 and Q1, which are the most important
power quantities to be measured.

4.3 Manfred Depenbrock’s Method

In the 1960s Depenbrock improved on Fryze’s method, creating a more detailed model [18,19].
In this case the nonsinusoidal current and voltage components are separated in the fundamental
and the total harmonic (section 3.7):

i = i1 + iH

where

i1 = Î1 sin(ωt + α1 − θ1) and iH =
∑
h �=1

Îh sin(hωt + αh − θh) (4.20)

and

v = v1 + vH

where

v1 = V̂1 sin(ωt + α1) and vH =
∑
h �=1

V̂h sin(hωt + αh) (4.21)

Next, the fundamental current i1 is separated into two components: i p1, the in-phase, and
iq1 the in-quadrature component:

i = i p1 + iq1

where

i p1 = Î1 cos(θ1) sin(ωt + α1) and iq1 = − Î1 sin(θ1) cos(ωt + α1) (4.22)

Depenbrock introduced the concept of conversion current iv1, defined as the difference
between the in-phase current and the fundamental active current, i.e.

iv1 = i p1 − ia1 = i p1 − Gv1

The rms value of i p1, the in-phase current, is

Ip1 = P1

V1
= V1 I1 cos θ1

V1
= G1V1; G1 = I1 cos θ1

V1
= P1

V 2
1

(4.23)

Note that G1 �= G = P/V 2.
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111 VGI p =

1bI
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1α
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1qI
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111 VGIV ∆=

11 VGIa =

Figure 4.5 Depenbrock’s separation of currents: Phasor diagram for the fundamental voltage and
currents.

In Fig. 4.5 are shown phasor diagrams of the fundamental voltage and currents. The input
data consists of three phasors: V1 = V1 � α1, I1 = I1 � (α1 − θ1) and Ia1 = GV1 � α1. The
fundamental fictitious (or wattless) current phasor is Ib1 = I1 − GV1 and has two components:
The fundamental conversion phasor

Iv1 = Ip1 − GV1 = (G1 − G)V1 = �G1V1 (4.24)

where Ip1 = I1 cos(θ1) and the fundamental rms reactive current Iq1 = I1 sin(θ1).
A set of instantaneous currents correspond to the phasors shown in Fig. 4.5: The fundamental

instantaneous current,

i1 = ia1 + ib1

the fundamental instantaneous conversion current,

iv1 = �G1v1 (4.25)

and the fundamental instantaneous wattless current

ib1 = iv1 + iq1 (4.26)

Depenbrock, rightfully, emphasizes the significance of iq1 He writes: “In practice it is often
of interest to know the fundamental portion of the non-active current ib [in original iF ] which is
lagging the fundamental of voltage v1 [in original vg] by 90◦. . . . This current iq1 [in original iQ]
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can be found in the same way as the active current ia [in original i p] if the reactive power Q1

is defined to be the average value of the power which comes from the [expression]2:”

Q1 = 1

T

∫ T

0
v1

(
t − T

4

)
i1 dt

The harmonic active power PH = ∑
h �=1 Vh Ih cos θh is viewed as being caused by the

contribution of a collective active harmonic current G HvH where G H = PH/V 2
H .

Similarly to the way we separated the fundamental conversion current we find the instanta-
neous harmonic conversion current

ivH = G HvH − GvH = (G H − G)vH = �G HvH (4.27)

with an rms value IvH = |�G H |VH .

The total conversion current is iv = iv1 + ivH with the rms value IV =
√

I 2
v1 + I 2

vH .
Depenbrock went one step further to extract a distortion current iD = ib − iq1 =i − ia −

iq1, this is a current associated with a nonactive power that was separated from the reactive
current. The distortion current consists of the total conversion current iv and what is left
from the harmonic current after subtracting the collective active harmonic current G HvH , i.e.
iD = iv + iH − G HvH .

In Fig. 4.6 is sketched Depenbrock’s chart of instantaneous current flow: The line current
is divided according to Fryze

i = ia + ib = G(v1 + vH ) + ib (4.28)

also from the right end of the flow chart we find

i = i1 + iH = i p1 + iq1 + iH (4.29)

The wattless current ib can be expressed in a few ways:

ib = i − ia = (i p1 + iq1 + iH ) − (Gv1 + GvH ) = iv1 + iq1 + iH − GvH (4.30)

A residual instantaneous current iN = iH − G HvH helps to complete the flow chart

ib = iv1 + iq1 + ivH + iN (4.31)

This is exactly Kirchhoff’s current law at the cross-section X–X in Fig. 4.6. The distortion
current

iD = ib − iq1 = iv1 + ivH + iN = iv + iN (4.32)

enters the cross-section XX–XX.

2 This is the fictitious average power produced by the voltage v1 shifted 90◦ and the current i1 (see Appendix VIII).
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Figure 4.6 Depenbrock’s approach: Current separation in elementary components for a single-phase
system. Source: M. Depenbrock, “The FBD-Method, A Generally Applicable tool for Analyzing Power
Relations,” IEEE Trans. On Power Systems, Vol.8, No.2, May 1993, pp.381–87

An equivalent susceptance B ties the rms fundamental voltage to the fundamental reactive
power, |Q1| = V1 Iq1, hence B = Q1/V 2

1 . Depenbrock defines two reactive powers; one is the
fundamental reactive power Q1, the second is a complimentary reactive power Qc = VH Iq1.
This grouping can be traced to the definition

Q2 = (V Iq1)2 = (V 2
1 + V 2

H )I 2
q1 = Q2

1 + Q2
c

All six instantaneous currents ia1, iaH , iq1, iv1 , ivH and iN are mutually orthogonal
(demonstrated in the same way as for (4.16)). Based on this property Depenbrock presented
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the following apparent power resolution:

S = V I = V
√

I 2
a1 + I 2

aH + I 2
q1 + I 2

v1 + I 2
vH + I 2

N

S2 = P2 + Q2
F ; P = V Ia = V

√
I 2
a1 + I 2

aH ; Q F = V Ib

Q2
F = D2

D + Q2 ; DD = V ID

D2
D = D2

C + D2
R ; DC = V IV = V

√
I 2
v1 + I 2

vH ; DR = V IN

Q2 = Q2
1 + Q2

c ; Q = V Iq1 =
√

V 2
1 + V 2

H Iq1

S =
√

P2 + D2
C + D2

R + Q2
1 + Q2

c (4.33)

The complete equivalent circuit for Depenbrock’s method is given in Fig. 4.7. The circuit
consists of a set of conductances G, �G1, �G H and a susceptance B, each in series with a
voltage v1 or vH . The purpose of the series voltage source is to provide the needed voltage
across the respective admittance. The upper rail, that carries current i , has the potential v1 + vH

with respect to the reference point. If, for example, the fundamental active power branch carries
the current

ia1 = Gv1 = G(v − vH )

it is necessary to insert in series with G the voltage source–vH in order to obtain the desired
current:

ia1 = G(v1 + vH − vH ) = Gv1

This very involving model covers a set of essential components of S, and when it was first
presented it meant a significant step forward. It does not provide only components separation
in active and nonactive powers, it also reveals the nature of nonactive components, thus
suggesting that adequate compensation systems, such as active, passive, and hybrid filters can
be designed and controlled to cancel partially, or totally, the nonactive currents.

The major drawback of this approach stems from the fact that, just like Fryze’s method,
it pivots around the active power Pa1 = GV 2

1 = V Ia1 instead of P1 = V1 I1 cos θ1, the true
fundamental active power. Moreover, the complementary reactive power Qc seems to be only
a mathematical artifice without a solid physical base. Depenbrock’s apparent power symbolic
resolution is presented in Fig. 4.8

As it will be shown in Chapter 6, Depenbrock’s method has had a major influence on the
way polyphase systems are analyzed by many researchers.

4.4 Leszek Czarnecki’s Method

This approach, presented in 1984 [20], was meant to improve on the limitations of Fryze’s
model, namely to provide more information on the nature of the load and the type of com-
pensator needed to ameliorate the load’s power factor. Czarnecki’s equivalent circuit is shown
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Figure 4.7 Depenbrock’s method: Equivalent circuit. Source: M. Depenbrock, “The FBD-Method, A
Generally Applicable tool for Analyzing Power Relations,” IEEE Trans. On Power Systems, Vol.8, No.2,
May 1993, pp.381–87

in Fig. 4.9a. The current source ib in Fig. 4.4, was replaced with two current sources: ir , the
instantaneous reactive current, and is , the instantaneous scattered current.

The conductance Ge = P/V 2 and the current have exactly the same meaning as in Fryze’s
and Depenbrock’s approaches (4.11, 4.23); thus if the input voltage is

v =
∑
h∈M

V̂h cos(hωt + αh) (4.34)
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Figure 4.8 Depenbrock’s method: Power components.

the instantaneous active current ia has a waveform that replicates the voltage waveform

ia = Gev = Ge

∑
h∈M

V̂h cos(hωt + αh) (4.35)

where M represents the complete set of harmonics and interharmonics that constitute the
instantaneous voltage v.

The nature of the currents is and ir is explained with the help of the phasor diagram given
in Fig. 4.9b.

The phasor Iah = GeVh is the active harmonic current of order h, it is in-phase with the
phasor Vh and is not necessarily equal to Iph = GhVh = Ih cos θh .

v
ai

eG ri Si

S

P

SD

rQ

hI
hhrh VjBI −=

hθ

hVheah VGI = ShI

hhph VGI = shah II +=

(a)

(b)

(c)

Figure 4.9 Czarnecki’s method: (a) Equivalent circuit. (b) Phasor diagram for the h–order harmonics.
(c) Components.
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Similar to Depenbrock’s conversion currents, (4.24) and (4.27), a scattered current harmonic
phasor of order h in-phase with the harmonic voltage vh is defined:

Ish = Iph − Iah = (Gh − Ge)Vh = �Geh Vh (4.36)

The remaining component of Ih is the in-quadrature phasor

Irh = −j BhVh (4.37)

where Bh is a susceptance. The instantaneous value of irh is

irh = 	m
{−Bh V̂h exp[j (hωt + αh)]

} = 
e
{
j Bh V̂h exp[j (hωt + αh)]

}
= Bh V̂h sin(hωt + αh) (4.38)

In the same way we can express ish

ish = 
e
{
(Gh − Ge)V̂h exp[j (hωt + αh)]

} = (Gh − Ge)V̂h cos(hωt + αh) (4.39)

The instantaneous value of the total scattered current has the expression

is = 
e

{∑
h∈M

(Gh − Ge)V̂h exp[j (hωt + αh)]

}
(4.40)

and the instantaneous value of the total reactive current is

ir = 
e

{∑
h∈M

j Bh V̂h exp[j (hωt + αh)]

}
(4.41)

The three currents ia , is and ir are mutually orthogonal, hence

I 2 = I 2
a + I 2

s + I 2
r (4.42)

where

Ia = P

V
= GeV = Ge

√∑
h∈M

V 2
h (4.43)

Is =
√∑

h∈M

(Gh − Ge)2V 2
h (4.44)

and

Ir =
√∑

h∈M

(Bh Vh)2 (4.45)
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Equation (4.42) leads to apparent power resolution in three components, Fig. 4.9c:

S =
√

P2 + D2
s + Q2

r (4.46)

where

P = V Ia = GeV 2 (4.47)

is the active power,

Ds = V Is = V

√∑
h∈M

(Gh − Ge)2V 2
h (4.48)

was named by Czarnecki scattered power and the last term

Qr = V Ir = V

√∑
h∈M

(Bh Vh)2 (4.49)

is the [collective] reactive power3.
We see here a model definitely superior to Fryze’s, a model that, unlike Budeanu’s, has a

collective reactive power with subcomponents that cannot cancel one another out, (Bh Vh)2 > 0,
and are mathematical truthfully to the actual oscillations of energy.

The scattered power Ds has no precedent in engineering literature. Its instantaneous corre-
spondent vis is composed of active instantaneous powers, each of a different frequency, each
elementary component having an average value, but the overall sum of the average powers is
nil. This scattered power is definitely an ingenious mathematical definition, nevertheless the
electromagnetic field theory does not provide evidence or support for such components.

The major drawback of this method, and of all the methods that focus on the active current
ia as the key component, is that the most important power, the fundamental active power, P1,
is not a salient, easily identified component of S. As a matter of fact all models based on
Fryze’s approach do not use or advocate the need to measure the actual fundamental active
power P1 = V1 I1 cos θ1.

4.5 The Author’s Method

The power frequency (60/50 Hz or fundamental) apparent, active, and reactive powers are the
essential components among all the components of the apparent power. The electric energy
is generated with nearly pure sinusoidal voltage and currents and the end-users, who buy the
electric energy, expect a high quality product, i.e. the provider of electric energy is expected
to deliver reasonable sinusoidal voltage waveforms that support the useful energy P1t . The
harmonic powers Ph are often considered electromagnetic pollution—a by-product of the
energy conversion process that takes place within the nonlinear loads.

A distribution system cannot perform without reactive power. The useful, fundamental
magnetizing flux in transformers and ac motors is supported by the fundamental reactive

3 The IEEE Std. 1459–2010 recommends the term “Reactive Power” to be reserved for the fundamental reactive
power only.
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current. The voltage profile along a distribution feeder is tied to the fundamental reactive
power, and the power loss in the feeder is also dependent on the amount of reactive power
flowing through the feeder.

Thus, it makes good sense to separate P1 and Q1 from the rest of the powers [21]. This can
be easily obtained by starting from the separation of rms currents and voltages according to
the conventional grouping used in (3.68) and (3.69) where

V 2 = V 2
1 + V 2

H ; V 2
H =

∑
h �=1

V 2
h (4.50)

and

I 2 = I 2
1 + I 2

H ; I 2
H =

∑
h �=1

I 2
h (4.51)

From (4.50) and (4.51) the result is that the apparent power squared has four terms [21]

S2 = V 2 I 2 = (
V 2

1 + V 2
H

)(
I 2
1 + I 2

H

)
= (V1 I1)2 + (V1 IH )2 + (VH I1)2 + (VH IH )2 = S2

1 + D2
I + D2

V + S2
H (4.52)

The first term is the fundamental or 60/50 Hz apparent power

S1 = (V1 I1) =
√

P2
1 + Q2

1 (VA) (4.53)

The remaining three terms make the nonfundamental (non-60/50 Hz) apparent power

SN =
√

D2
I + D2

V + S2
H (VA) (4.54)

where

DI = V1 IH = V1

√∑
h �=1

I 2
h (var) (4.55)

is the current distortion power. This nonactive power gives useful information on the amount
of VA tied to the current distortion and usually it is the dominant term of SN , (4.54).

DV = VH I1 = I1

√∑
h �=1

V 2
h (var) (4.56)

is the voltage distortion power, and is proportional to the fundamental component of the
current, I1 and the total harmonic voltage VH . It reveals the amount of volt–amper–reactives
caused by voltage distortion.
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The last term is the harmonic apparent power

SH = VH IH =
√∑

h �=1

V 2
h

∑
h �=1

I 2
h (VA) (4.57)

Being significantly smaller than the other components SH makes the least contribution to
SN . As determined in section 3.7, SH contains the active harmonic power PH ,

SH =
√

P2
H + D2

H (4.58)

where

PH =
∑
h �=1

Ph =
∑
h �=1

Vh Ih cos θh

and

DH =

√√√√√
⎛
⎝ ν∑

h �=1

Vh Ih sin θh

⎞
⎠

2

+
ν−1∑
m=1

ν∑
n=m+1

[(Vm In)2 + (Vn Im)2 − 2Vm Vn Im In cos(θm − θn)]

(4.59)
is the harmonic distortion power.

Keeping in mind that S1 is the key component—a power that plays the major role in power
flow studies, the term that covers the fundamental active and reactive powers P1 and Q1—it
makes good sense to normalize the other powers using S1 as base power. Starting from the
definitions of the total harmonic voltage and current distortions

THDI = IH

I1
=

√√√√∑
h �=1

I 2
h

I 2
1

=
√(

I

I1

)2

− 1

and

THDV = VH

V1
=

√√√√∑
h �=1

V 2
h

V 2
1

=
√(

V

V1

)2

− 1

we find

DI = V1 IH = S1
V1 IH

V1 I1
= S1(THDI ) (4.60)

DV = VH I1 = S1
VH I1

V1 I1
= S1(THDV ) (4.61)

SH = VH IH = S1
VH IH

V1 I1
= S1(THDV )(THDI ) (4.62)
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hence

SN = S1

√
THD2

I + THD2
V + [(THDV )(THDI )]2 (4.63)

and

S2 = S2
1{1 + THD2

I + THD2
V + [(THDV )(THDI )]2} (4.64)

The last three expressions reflect the impact of current and voltage distortions on the total
apparent power S. Since typically 0.01 < THDV < 0.07 and 0.05 < THDI < 1.2 the voltage
distortion power DV is less significant than DI . In Fig. 4.10 are shown the graphs SN /S1 in
function of THDI (in %) when THDV is parameter. We observe that for THDI > 20% and
THDV < 5% the trend is

SN ≈ S1(THDI ) (4.65)

The error for this approximation is graphed in Fig. 4.11a. A significantly better approxima-
tion that leads to acceptable errors is

SN ≈ S1

√
THD2

I + THD2
V (4.66)

For THDV ≤ 6%, the error ε caused by (4.66), Fig. 4.11b, is less than 0.20% for any value
of THDI .

The resolution of S is sketched in Fig. 4.12. If we return to Fig. 3.9c we observe that all five
instantaneous powers, v1i p1, v1iq1, v1iH , vH i1 and vH iH , are materialized in the resolution of
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Figure 4.12 Apparent power resolution according to IEEE Std. 1459–2010. [21,14,22].

S through P1, Q1, DI , DV and SH , respectively. The amplitudes that quantify the flow of these
powers are found to be well correlated with the five basic components of S as revealed by the
Poynting vector studies.

This method was adopted in the IEEE Std. 1459–2010, Definitions for the Measurement of
Electric Power Quantities [22]. This standard reserves the reactive power name only for Q1

and for Qh = Vh Ih sin(θh). The reactive power belongs to the group of nonactive powers that
includes DI , DV , and DH . Today’s varmeters, when connected in circuits with nonsinusoidal
waveforms, yield readings that are not equal to any of the four nonactive powers (see
Appendix VIII).

4.6 Comparison Among the Methods

A fair way to compare the merits and shortcomings of the models previously presented is
by using a numerical example; we start from a set of voltage and current measurements
implemented at the terminals of a single-phase load with the following instantaneous voltage
and current:

v =
√

2[100 sin(ωt) + 15 sin(3ωt + 10◦) + 20 sin(7ωt + 110◦)]

i =
√

2[60 sin(ωt − 30◦) + 60 sin(3ωt + 105◦) + 20 sin(7ωt + 204◦)

The rms values of the voltage and current harmonics are:

V1 = 100 V ; V3 = 15 V ; V5 = 20 V

I1 = 60 A ; I3 = 60 A ; I5 = 30 A

with the current/voltage phase angles:

θ1 = 30◦ ; θ3 = −95◦ ; θ5 = −94◦

The rms values of the voltage and current are

V =
√

V 2
1 + V 2

3 + V 2
5 = 103.08 V and I =

√
I 2
1 + I 2

3 + I 2
5 = 90.0 A
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yielding the apparent power

S = V I = 9277 VA

the fundamental active power

P1 = V1 I1 cos(θ1) = 5196 W

the harmonic active power

PH = V3 I3 cos(θ3) + V5 I5 cos(θ5) = −120.29 W

the fundamental reactive power

Q1 = V1 I1 sin(θ1) = 3000 var

and the harmonic reactive powers

Q3 = V3 I3 sin(θ3) = −896.57 var and Q5 = V5 I5 sin(θ5) = −598.54 var

a) Budeanu’s model gives:

Table 4.1 Powers Resulting
from Budeanu’s Model

S (VA) 9277
P (W) 5076
Q B (var) 1505
DB (var) 7618

One immediately observes that the total reactive power QB = Q1 + Q3 + Q5 = 1505 var
< Q1 = 3000 var. This result points to a significant deficiency of the model.

Since DB is calculated from the values of S, P , and Q B , it results that also DB is a
misleading result.

b) Fryze’s model yields a simpler set of results:

Table 4.2 Powers Resulting
from Fryze’s Model

S (VA) 9277
P (W) 5076
Q F (var) 7765
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This table hides some revealing data; the conductance G = P/V 2 = 0.478 S. The rms total
active current Ia = P/V = 49.24 A, the components of the active current are

Ia1 = 47.77 A ; Ia3 = 7.17 A ; Ia5 = 9.55 A

leading to the corresponding active powers

Pa1 = 4777 W ; Pa3 = 107.49 W ; Pa5 = 191.09 W

The wattless current is

Ib =
√

I 2 − I 2
a = 75.33 A

Except that
∑

h Pah = ∑
h Ph , the individual active powers Pa1, Pa3, and Pa5 lack any

correlation to the true active powers, P1 = 5196 W, P3 and P5, (P3 + P5 = −120.29 W).
Since the studied load is a polluter, the harmonic active powers P3 and P5 are negative. This
very important fact is hidden by Fryze’s result and by other methods based on Fryze’s model.

c) Depenbrock’s concept is a more complete and comprehensive approach. The instanta-
neous power flow studies presented in Chapter 3 are quite similar to Depenbrock’s approach.
The main difference is the fact that in Chapter 3 the powers are separated according to their
strict electromagnetic nature and the power P1 = V1 I1 cos θ1 is singled as a main component
that should be separated from PH . In Depenbrock’s model, as in Fryze’s, the instantaneous
current i is divided in active ia and fictitious (wattless) ib, the rms fundamental active current
being GV1 with the fundamental active power GV 2

1 instead of P1.
The distortion current is

ID =
√

I 2
b − I 2

q1 = 69.10 A

To determine the conversion currents we first need the conductances

G1 = P1/V 2 = 0.489 S and G H = PH/V 2
H = −0.192 S

and

�G1 = G1 − G = 0.011 S and �G H = G H − G = −0.67 S

this leading to the conversion current components

Iv1 = |�G1|V1 = 1.132 A and IvH = |�G H |VH = 16.75 A

and

Iv =
√

I 2
v1 + I 2

vH = 16.79 A
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enabling the computation of the residual current

IN =
√

I 2
D + I 2

v = 67.03 A

The reactive powers are

Q = V Iq1 = 3092 var and Q1 = V1 Iq1 = 3000 var

thus

Qc =
√

Q2 − Q2
1 = 750 var

The corresponding powers are summarized in the following table:

Table 4.3 Powers Resulting
from Depenbrock’s Model

S (VA) 9277
P (W) 5076
Pa1 (W) 4777
PaH (W) 299
DC (var) 1731
DR (var) 6909
Q1 (var) 3000
Qc (var) 750

The separation of Q1 is a definite asset of this method, however the quantity Qc has an
artificial role and so are the quantities Pa1 and PaH . Both the nonactive powers Dr and DC

provide good information since both can be compensated by means of hybrid and active filters.

d) Czarnecki’s model stems straight from Fryze’s without having the complexity of De-
penbrock’s or his strict adherence to the circuit theory. The main innovation is the scattered
current. In this example the rms components of the scattered current are

Is1 = I1 cos(θ1) − Ia1 = 4.19 A ; Is3 = I3 cos(θ3) − Ia3 = −12.395 A

Is5 = I5 cos(θ5) − Ia5 = −11.65 A

giving a total rms scattered current

Is =
√

I 2
s1 + I 2

s3 + I 2
s5 = 17.52 A

The reactive current has the components

Iq1 = Q1/V1 = 30.0 A ; Iq3 = Q3/V3 = −59.77 A ; Iq5 = Q5/V5 = −29.93 A
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giving a total reactive current

Iq =
√

I 2
q1 + I 2

q3 + I 2
q5 = 73.27 A

The results are summarized in the following table:

Table 4.4 Powers Resulting
from Czarnecki’s Model

S (VA) 9277
P (W) 5076
Ds (var) 1806
Qr (var) 7552

The reactive power Qr helps size the bulk of the power that oscillates between the source
and the load. Its main component Q1 provides information on the size of a static compensator
dedicated to minimizing the fundamental rms current. The usefulness of Ds , however, is harder
to fathom; the elementary scattered powers are4:

Ps1 = V1 Is1 = 418.87 W ; Ps3 = V3 Is3 = −185.93 W ; Ps5 = V5 Is5 = −232.94 W

The summation Ps1 + Ps3 + Ps5 = 0. These scattered powers cannot be compensated by
means of tuned filters, and require active devices able to inject an instantaneous compensation
current icomp = −is .

In practice dynamic and hybrid compensators are designed to compensate a part of iq1 and
as much of iH . In section 3.7 it was emphasized that the physical nature of the nonactive
powers with single oscillations such as pq1, pqh , with Q1 and Qh amplitudes, respectively,
is not at all different from the physical nature of the powers with double oscillations,
such as pDI , pDV , and pm,n , with amplitudes Vm In . This observation leads to the conclu-
sion that nonactive powers with single or double oscillations are compensated in the same way.

e) Emanuel’s method uses the total harmonic distortions to compute the nonactive powers.
In this case

THDV =
√(

V 2
3 + V 2

5

)
/V 2

1 = 0.25 THDI =
√(

I 2
3 + I 2

5

)
/I 2

1 = 1.118

The fundamental apparent power is

S1 = V1 I1 = 6000 VA

4 The scattered power Ds is measured in (var) since it is a nonactive power, but each elementary component has an
average power measured in Watt.
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and the nonfundamental apparent power

SN =
√

S2 − S2
1 = 7075 VA

The SN components are computed from (4.60), (4.61), and (4.62). All the powers are listed
in the following table:

Table 4.5 Powers Resulting
from Emanuel’s Model

S (VA) 9277
SN (VA) 7075
S1 (VA) 6000
SH (VA) 1677
P1 (W) 5196
PH (W) −120.29
Q1 (var) 3000
DI (var) 6708
DV (var) 1500
DH (var) 1677

The useful power is the fundamental active power P1. The fundamental apparent power S1

and the active power P1 yield the displacement power factor, or fundamental power factor
PF1 = P1/S1 = 0.866. The nonfundamental apparent power SN is a fair estimate of the size
of the harmonics compensator, while the fundamental reactive power Q1 shades light on the
amount of kvar needed to improve PF1.

The measurement of the harmonic active power PH = −120.29 W is a rough indicator
revealing that the load is polluting. However, it is the current distortion power DI that quantifies
the amount of harmonic pollution caused by the load, or to the load. The voltage distortion
power DV is due to voltage distortion that may be caused by more than one consumer. It is
the responsibility of the electric energy provider to oversee the voltage quality and reduce the
THDV within the limits recommended by standards or agreed with the consumers.

4.7 Power Factor Compensation

In circuits with nonsinusoidal waveforms, the load power factor PF has exactly the same
definition and meaning as for sinusoidal conditions: it is the ratio between the actual active
power supplied to the load and the maximum power that could be supplied to the receiving
end of the line, pending two conditions:

� The line power loss remains unchanged. If the skin effect is negligible this condition is
equivalent to keeping the rms current unchanged.

� The load voltage is maintained with the same rms value and waveform.

The second requirement has started to be debatable and may need some reconsideration
[23]. If the purpose of the considered load is to convert electric energy into heat, then the
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NONLINEAR LOADCOMPENSATOR

COMPi i

Si

Figure 4.13 Power factor compensation: Concept.

constant rms voltage criterion is perfectly valid. If the energy is converted by the load in
mechanical energy, then it is important to maintain the same mechanical output, i.e. torque
or force and velocity. If a battery is charged or a dc motor driven, then the direct voltage
applied to the dc load is the quantity that should be maintained unchanged. Depending on the
type of rectifier and the way the dc is filtered, the direct voltage value may be dependent on
the peak input voltage or the mean of the absolute voltage. Thus the definition of S may be
more complicated5 than what is conventionally accepted, especially since in practice there are
always many types of loads monitored by one meter.

Due to a lack of further information on this topic, the following explanations will adhere to
the traditional approach and assume the rms voltage invariance as a satisfactory condition for
single-phase systems.

Under nonsinusoidal conditions it is possible to express the power factor in the following
way:

PF = P

S
= P1 + PH√

S2
1 + S2

N

=
1 + PH

P1√
1 + THD2

I + THD2
V + (THDI THDV )2

PF1 (4.67)

where

PF1 = cos θ1 = P1

S1

is the fundamental power factor, or the 60/50 Hz power factor, also known as the displacement
power factor.

The concept of power factor improvement for nonsinusoidal conditions is sketched in
Fig. 4.13 [24]. The compensator current icomp cancels partially, or totally, the nonactive
components of the load current i and the active components of the harmonic currents. By
compensation it is meant that the compensator acts like a “sink” for the undesired harmonic
current components as well as for the fundamental reactive current.

5 This topic is treated in more detail in Chapter 6.
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Harmonic, or tuned, filters are a prevalent technique of power factor compensation [10].
The tuned R–L–C branches series resonate at the harmonic of order m , mωL = 1/mωC
providing a low impedance path, Z Fm = R at the frequency mω. At the same time such a
branch provides a compensating reactive power at the fundamental frequency6

QF1 ≈ CωV 2
1

m2

m2 − 1

A few researchers [25,26] have proposed resolutions of S based on the simplest possible
power factor compensator, a linear capacitance connected in parallel with the nonlinear load.
Such a capacitance is expected to minimize the rms value of the line current is . If the load
is supplied with the voltage v = ∑

V̂h sin(hωt + αh), the load current is separated in the
in-phase components

i p =
∑

h

Îh cos θh sin(hωt + αh) (4.68)

and the in-quadrature components

iq = −
∑

h

Îh sin θh cos(hωt + αh) (4.69)

A capacitor C connected at the load bus will cause the flow of the current

icomp =
∑

h

V̂hhωC cos(hωt + αh) (4.70)

Comparing (4.69) with (4.70) we find that some terms of iq may be reduced by icomp . The total
reactive current is

isq = iq + icomp =
∑

h

(V̂hhωC − Îh sin θh) cos(hωt + αh) (4.71)

6 The filter’s branch impedance at fundamental frequency is

ZF1 = R − j X F1

where the equivalent reactance is X F1 = (1/ωC) − ωL .
The key design expression is L = 1/m2ω2C , (meaning that the filter’s branch resonates at mω rad/s). Substitution

of L into the expression of X F1 gives

X F1 = 1

ωC
− 1

m2ωC
= 1

ωC

(
1 − 1

m2

)

The fundamental reactive power provided by this tuned branch is

Q F1 = V 2
1

R2 + X2
F1

X F1

Usually 20 < X F1/R < 150, and QF1 ≈ V 2
1 /X F1.
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The squared rms line reactive current is

I 2
sq =

∑
h

(VhhωC − Ih sin θh)2 =
∑

h

[
(VhhωC)2 + (Ih sin θh)2 − 2Vh IhhωC sin θh

]

(4.72)
The best capacitance, Copt is found from the condition

∂

∂C
(I 2

sq ) =
∑

h

[
2(Vhhω)2C − 2Vh Ihhω sin θh

] = 0

that yields

ωCopt =
∑

h hVh Ih sin θh∑
h(hVh)2

(4.73)

The same computation can be carried for a tuned filter meant to provide a low impedance
path for a dominant harmonic and at the same time reduce the line reactive current (see problem
4.10.)

This type of power factor compensation has a major drawback, namely there is the possibility
of resonances at one or more harmonic frequencies with the equivalent components of the
Thévenin’s circuit supplying the nonlinear load.

A simple numerical example will help to illustrate such a situation. In Fig. 4.14a is shown
a nonlinear load represented by a resistance R = 1414.2 
 in parallel with an inductance
L = 3.75 H and two current sources

i5 = 2 sin(5ωt) A ; i7 = 2 sin(7ωt) A

The load is supplied from a voltage source with four harmonics:

vs = 14100 sin(ωt) + 50 sin(3ωt) + 150 sin(5ωt) + 100 sin(7ωt) ; ω = 376.99 rad/s

via a feeder with the resistance Rs = 3.0 
 and inductance Ls = 67 mH. The load rms
harmonic voltages and line currents listed in the Table 4.6 were determined using a simula-
tion package.

The effect of a capacitor C , connected in parallel with the load, was observed by “measuring”
the line rms current and the total harmonic distortion of the current, THDI , in function of C , Fig.
4.14b. The graphs obtained demonstrate the ineffectiveness of the method based on the use of
a single shunt capacitance. The uncompensated system (C = 0) has a line current Is = 10.96
A. The minimum line current is 9.94 A at C = 1.0 µF. At C = 2.1 µF parallel resonance
conditions are created. The optimum capacitance, estimated from (4.73), is Copt = 1.85 µF.
This result is far from the best possible value. The effect of harmonic current amplification
is reflected in the curve THDI versus C ; as C is increasing the current distortion is also
increasing toward unacceptable levels. It can be shown that a single L–C tuned branch yields
the best results at m = 5.36 with C = 1.75 µF and L = 0.14 H. In this case the line current
drops to Is = 7.22 A and the current and voltage distortion become THDI = 22.6 % and
THDV = 2.16 %, respectively.
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Figure 4.14 Nonlinear load compensated by a linear shunt capacitance: (a) Circuit. (b) RMS line
current and THDV vs. capacitance C .

An additional improvement is obtained if two tuned branches are used: For example if
C5 = 1.0 µF with L5 = 0.281 H for m = 5 and C7 = 1.0 µF with L7 = 0.143 H for m = 7.
Now the rms line current Is = 7.13 A, THDI = 6.09 % and THDV = 0.964 %. These results
are quite close to the best possible compensation.

The static compensators, while relatively inexpensive, do not offer the best practical solution.
If the Thévenin’s impedance of the system is changing, and if the background harmonic
voltages are changing, such filters may become a liability and can be damaging or damaged
by sinking harmonic currents injected by nonlinear loads supplied by the same feeder.

The purpose of this section is to discuss the basic concept of power factor compensation
for nonsinusoidal situations. Modern power electronics enabled the development of dynamic
compensators, known as active filters. The dominant school of thought uses the following
approach: from Fryze’s model we learn that the load current i = ia + ib, where ia is the active,
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Table 4.6 Simulation Results

h 1 3 5 7 THD (%)

Vh (V) 9765� − 0.85◦ 344.8 � − 5.3◦ 201.2 � − 66.0◦ 407.6 � − 88.8◦ 5.84
Ih (A) 9.76� − 45.87◦ 0.02� − 19◦ 1.43 � − 5.6◦ 2.23� − 7.30◦ 27.1

useful component and ib is the parasitic, wattless one. If the compensator is made to operate
like a current source that injects the current icomp = −ib, the line current is = i + icomp = ia

and the equivalent impedance of the load-compensator system becomes a simple resistance
R = 1/G = V 2/P . The rms line current is minimized to Is = Ia and the current distortion
equals the voltage distortion, THDI = THDV . This method can be called Ib-compensation.

Two phenomena happen when such a compensator is energized (the same thing happens with
the well designed static compensators too): First, since the voltage drop across the supplying
line decreases, the rms voltage at the load bus increases. Thus the utility may have to adjust
the supply voltage. The second fact is that the load voltage spectrum is changing, usually is
improved, and the load performance is affected for the better, unless the load is a plain heating
element, or we deal with old-fashioned incandescent lamps.

Another power factor compensation strategy is to operate the compensator in such a manner
that the line current is sinusoidal, is = Îs sin(ωt + γ ), the phase angle γ and the amplitude
Îs are adjusted to control the fundamental reactive and active powers Q1 = V1 Is sin γ and
P = P1 = V1 Is cos γ . This method can be called IH -compensation.

This approach has the advantage not only that the power line loss is reduced, but that the
electromagnetic interference caused by the supplying line may be significantly reduced.

Assuming a complete compensation with IH = 0, Q1 = 0 and Is = I1 results from
(4.52) that

S2 = (
V 2

1 + V 2
H

)
I 2
s = P2 + D2

V = P2

(
1 + V 2

H I 2
S

V 2
1 I 2

S

)
= P2(1 + THD2

V )

and

PF ≈ 1√
1 + THD2

V

if THDV ≤ 0.05 results PF ≥ 0.9987, which satisfies the most exigent expectations.
If PH < 0.02P1, T DHV ≤ 0.05 and THDI ≥ 0.40, then (4.67) yields the approximation

PF ≈ 1√
1 + THD2

I

PF1 (4.74)

The following numerical example will help us to better understand the power factor com-
pensation theory for nonsinusoidal conditions. The studied system is sketched in Fig. 4.15a.

The voltage source

vs = 330 sin(ωt) + 18 sin(5ωt) ; ω = 314.1 rad/s
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Figure 4.15 Example: (a) Circuit diagram. (b) Uncompensated circuit oscillograms. (c) Compensated
circuit oscillograms for IH -compensation. (d)Ib-compensation.
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supplies a load that consists of a rectifier in parallel with a R – L branch, (L = 20 mH and
a resistance R = 2.0 
). The rectifier is a single-phase uncontrolled bridge supplying a filter
capacitance C = 1000 µF and the dc load Rdc = 25 
. The load is connected to the source by
a line with an equivalent resistance Rs = 0.1 
 and inductance Ls = 2.2 mH. In Fig. 4.15b
are shown the oscillograms of the voltage source, load voltage, and line current.

The results obtained from the simulation of this system are given in the Table 4.7:

Table 4.7 Simulation Results

V I S P PF �P T H DV T H DI

(V) (A) (VA) (W) (W) (%) (%)

Uncompensated 210.15 42.84 9003.0 5068.8 0.563 183.53 13.93 30.74
Ib–Compensated 230.38 25.87 5960.0 5960.0 1.00 66.92 5.1 5.1
IH –Compensated 231.75 26.83 6218.0 6189.7 0.995 71.98 5.49 0

The uncompensated load operates with 14% voltage distortion and the current distortion is
near 31%.

Unity power factor is obtained when the load is Ib-compensated. In this case the com-
pensated load (compensator and load) is equivalent to G = P/V 2 = 5960/230.382 = 112.29
mS, the rms line current decreases from 42.84 A to 25.87 A, and the line losses �P are
drastically reduced. An impressive reduction of the current distortion is achieved. The rms
voltage increases 9.6 %, from 210.15 V to 230.38 V. This may be a welcome change if the
uncompensated system was operating at the lower limit of acceptable voltage, or it may be a
problem that requires the utility intervention by readjusting the rms value of the voltage vs .

The waveforms for IH -compensation are shown in Fig. 4.15c. For the uncompensated system
the dc load voltage is Vdc = 275.94 V and the power is Pdc = 3045.7 W. After compensation
the dc output increases7 to 294.38 V and 3466.38 W.

The 6.7% increase in the direct voltage and 13.8% increase in the output power may be
inconsequential or may hinder the dc system operation if it was already operating at the upper
limit of the admissible voltage.

The IH -compensation yields very close results to Ib-compensation. The oscillograms in
Figs. 4.15c and d are almost identical. For IH compensation the line current becomes perfectly
sinusoidal, THDI = 0, and the load voltage distortion is only slightly higher than for Ib-
compensation. In the general case without a thorough simulation and analysis of the local
distribution system it is hard to decide what method will be more advantageous for the
network when resonance, or near resonance, conditions exist. Resonances are caused by the
interaction of shunt capacitors with line inductance or leakage inductance of transformers or
voltage regulators. When implementing the Ib-compensation the equivalent conductance G
tends to “compress” the resonance bell, hence attenuating the resonance effects. In situations
where the line current spectrum must be maintained clear of harmonics the IH -compensation
may be preferred. Simulated oscillograms for Ib-compensation, Fig. 4.15d, are almost identical
with the ones shown in Fig. 4.15c, for IH -compensation. If the line rms current must be kept

7 The dc load voltage is a function of the rectifier’s topology, its type of filter and the dc load time constant. In this
example the direct voltage is mainly affected by the peak voltage. This explains why the incremental changes of Vdc

do not follow the changes of the rms voltage V .
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constant an ideal resistor Radd ≈ 13 
, that simulates an additional unity power factor load,
has to be connected at the main bus.

One learns from these observations that the concept of S implies a hypothetical ideal
situation–not always possible to materialize–and in spite of the fact that S can be measured,
S is only an indicator of what can be achieved under ideal conditions. Such an observation
leads to an other important conclusion: The ideal conditions that define S should cover not
only the optimum energy transfer to a single, isolated load, but should be extended to all the
loads supplied by the same feeder.

4.8 Comments on Skin Effect, Apparent Power, and Power Factor

In all the above discussions the resistances were assumed constant and not affected by fre-
quency. In practice the ac resistance is larger than the dc resistance, Rac > Rdc, Rac = Ks Rdc,
where Ks > 1 is a coefficient accounting for the skin and proximity effects. In Fig. 4.16 are
presented two curves that give the diameter of two solid cylindrical conductors with Ks = 1.10,
as function of power source frequency. One conductor is made out of copper and the other of
aluminum. The larger the diameter the lower is the frequency that will cause Ks ≥ 1.1.

If we consider a resistance supplied with the nonsinusoidal voltage

v =
∑

h

V̂h sin(hωt + αh) (4.75)
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Figure 4.16 The diameter of a solid cylindrical conductor with skin effect coefficient Ks = 1.10 versus
frequency.
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the current will be

i =
∑

h

V̂h

Rh
sin(hωt + αh) (4.76)

where Rh = Ksh Rdc, Ksh is the skin and proximity effect coefficient at the harmonic of order
h. The apparent power squared can be derived from (4.3);

S2 =
ν∑

h=1

V 2
h

ν∑
h=1

(
Vh

Rh

)2

=
(

ν∑
h=1

V 2
h

Rh

)2

+
ν−1∑
m=1

ν∑
n=m+1

(
Vm Vn

Rn
− Vn Vm

Rm

)2

(4.77)

Since Rm �= Rn the second term is not nil. The first term is the total active power

P =
ν∑

h=1

V 2
h

Rh
= P1 + PH (4.78)

squared, and the second term is Budeanu’s distortion power

D =
√√√√ν−1∑

m=1

ν∑
n=m+1

(
Vm Vn

Rn
− Vn Vm

Rm

)2

(4.79)

squared. One could also develop (4.77) according to (4.52)

S2 = V 2
1

(
V1

R1

)2

+ V 2
1

∑
h �=1

(
Vh

Rh

)2

+
(

V1

R1

)2 ∑
h �=1

V 2
h +

∑
h �=1

(
V 2

h

Rh

)2

+
∑
m �=n

m,n=1

(
Vm Vn

Rn

)2

= P2
1 + D2

I + D2
V + P2

H + D2
H (4.80)

Evidently in this case the reactive power is nil, Q1 = 0, and the harmonic distortion power
SH , (4.59), lacks the terms Vh Ih sin θh , but all other types of nonactive powers are present.

Such resistances will rarely be encountered as particular stand alone loads, but can be
frequently found in high current transformer windings, inductors and induction motor rotors,
steel reinforced aluminum conductors and cables and conductors with large diameters.

The skin effect affects also inductances and mutual inductances value, but in a reversed way:
as the frequency increases, the inductance decreases. The impact of frequency on inductance
is less pronounced than the effect it has on resistance, (see problem 4.12).

An aspect that deserves special consideration stems from the fact that in practice there are
many situations where conductors’ resistance is strongly dependent on frequency. The skin
effect should not be ignored when the penetration depth is less than the conductor radius,
or half of the thickness of the conductor region that is exposed to perpendicular magnetic
streamlines. Such systems deserve a thorough documentation based on the measurements
carried by the manufacturer, or in-depth analysis meant to determine if the skin effect can be
ignored or not.
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Let us assume an IH -compensated load supplied by a line with a heavier conductor, recog-
nized to be affected by skin effect. The load is characterized by the apparent and active powers
S and P and the power factor PF = P/S. The power loss in the supplying line is

�PN S = Rsdc

∑
h

Ksh I 2
h (4.81)

Assuming next that the load is IH -compensated and the line current Is is sinusoidal with its
rms value equal to the rms value of the nonsinusoidal current

I 2
s =

∑
h

I 2
h

The line power loss caused by Is is in this case smaller than the power loss caused by the
nonsinusoidal current with the same rms, thus

�Ps = Ks1 Rsdc I 2
s = Ks1 Rsdc

∑
h

I 2
h < �PN S (4.82)

This result has an interesting interpretation: If the utility can provide a sinusoidal voltage
and the consumers IH -compensate the nonlinear loads, then the sinusoidal current Is can have
an rms value larger than the nonsinusoidal rms current value while the line power loss remains
unchanged.

This conclusion leads to a skin effect corrected power factor. The equality of the power loss,
�PN S = �Ps , yields the value of a sinusoidal current that causes the same power loss as the
nonsinusoidal current. From (4.81) and (4.82) it is obtained:

Is = I1

√√√√∑
h

Ksh

Ks1

(
Ih

I1

)2

(4.83)

The apparent power, i.e. the maximum active power that can be supplied to the receiving
end of the line, is Ss = V Is > V I = S, hence the power factor may be defined as

PFs = P

Ss
= S

Ss

P

S
=

√√√√∑
h

(
Ih

I1

)2

√√√√∑
h

Ksh

Ks1

(
Ih

I1

)2
PF (4.84)

A numerical example puts in perspective the above observation. We will consider a tubular
copper conductor with a diameter D = 5.64 cm, a thickness t = 0.2D = 1.13 cm, carrying a
current with the fundamental frequency of 60 Hz and the components:

I1 = 2400 A ; I3 = 200 A ; I5 = 900 A and I7 = 350 A

resulting in T DHI = 41%.
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The rms current is I = 2594.7 A with a current density j = 2594.7/16 = 162 A/cm2 ≈ 1.0
kA/in2. Assuming a specific resistance of 1.72 µ
cm, the skin effect coefficients [27] are:

Ks1 = 1.21 ; Ks3 = 2.09 ; Ks5 = 2.86 and Ks7 = 3.18

From (4.84) results that the power factor has to be corrected with the coefficient

I√∑
h

Ksh

Ks1
I 2
h

= 2594.7

2839.99
= 0.914

If we assume the same rms current with less distortion

I1 = 2591.6 A ; I3 = 20 A ; I5 = 120 A and I7 = 35 A

the current distortion drops to T DHI = 5.2% and the power factor correction coefficient is
an insignificant 0.998.

Of course if such a power factor study has to be done, one must weigh the skin effect
affected power loss, in the involved conductors or windings, versus the entire feeder power
loss. In situations where the conductor’s resistance affects resonances and the degree of wave
distortions, it is important to simulate correctly the inductors and resistors and not to ignore
the skin and the proximity effects.

4.9 The Additiveness Problem

Let us assume N nonlinear loads connected at a point of common coupling and supplied with
the nonsinusoidal voltage

v =
∑
h∈ν

V̂h sin(hωt + αh)

The instantaneous current supplied to a single load k ∈ N is

ik =
∑
h∈ν

ikh =
∑
h∈ν

Îkh sin(hωt + αkh − θkh) ; k ∈ N

Kirchhoff’s current law applied to the point of common coupling leads to the total instan-
taneous current supplied to this cluster of loads:

i =
N∑

k=1

ik =
N∑

k=1

∑
h∈ν

ikh
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If we separate each harmonic current in the two basic components, the in-phase and the
in-quadrature with the respective voltage harmonic, we have

ikh = iC
kh + i S

kh

where8

iC
kh = Îkh cos(θkh) sin(hωt + αkh)

and

i S
kh = − Îkh sin(θkh) cos(hωt + αkh)

thus the total harmonic current of order h is:

ih =
N∑

k=1

(iC
kh + i S

kh) = iC
h + i S

h

with

iC
h = Îh cos(θh) sin(hωt + αh) =

N∑
k=1

Îkh cos(θkh) sin(hωt + αkh)

and

i S
h = − Îh sin(θh) cos(hωt + αh) =

N∑
k=1

− Îkh sin(θkh) cos(hωt + αkh)

The total active rms harmonic current of order h supplied to all the N loads is

Ih cos(θh) =
N∑

k=1

Ikh cos(θkh) (4.85)

and the reactive rms harmonic current of order h is

Ih sin(θh) =
N∑

k=1

Ikh sin θkh (4.86)

8 The superscripts C for cos(θkh) term and S for sin(θkh ) term, are used to simplify the notations.
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The total fundamental active power is

P1 =
N∑

k=1

V1 Ik1 cos(θk1) =
N∑

k=1

Pk1 (4.87)

The total active harmonic power of order h is

Ph =
N∑

k=1

Vh Ikh cos(θkh) =
N∑

k=1

Pkh (4.88)

and the total active harmonic power is

PH =
∑
h∈ν

Ph (4.89)

In the same way one finds the total fundamental reactive power

Q1 =
N∑

k=1

V1 Ik1 sin(θk1) =
N∑

k=1

Qk1 (4.90)

and the total reactive power of the h-order harmonic

Qh =
N∑

k=1

Vh Ikh sin(θkh) =
N∑

k=1

Qkh (4.91)

All these friendly expressions prove the property of additiveness for the active and the
reactive powers. They are the direct consequence of the power conservation law

vi =
N∑

k=1

vik

and for sinusoidal conditions they are most useful when the total apparent power required by
N loads is computed:

S =

√√√√
(

N∑
k=1

Pk

)2

+
(

N∑
k=1

Qk

)2

Under nonsinusoidal conditions this additiveness property applies to the active powers and
the elementary reactive powers. (When Budeanu’s method was discussed it was explained that
it is wrong to use QB = ∑N

k=1 Qkh .)
Unfortunately, when it comes to the remaining nonactive components, the magic of addi-

tiveness demonstrated in (4.87) to (4.91) is lost. As a matter of fact this was exactly W. Lyon’s
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objection, (see section 4.1). However, Budeanu in a posthumously published work [28] proved
that his distortion power, DB can be separated in elementary distortion powers, each of them
having the additiveness property and all of them being mutually orthogonal. He concluded that
the total distortion power “obeys a property of vectorial conservation in a multidimensional
space,” this leading to the vectorial conservation of S.

This is a property of any nonactive power and can be easily demonstrated. We will focus on
the current distortion power DI (4.60):

D2
I = V 2

1

∑
h∈ν

h �=1

I 2
h (4.92)

and by separating the total rms harmonic current in its orthogonal terms

I 2
h = [Ih cos(θh)]2 + [Ih sin(θh)]2

=
N∑

k=1

{
[Ikh cos(θkh)]2 + [Ikh sin(θkh)]2

}

=
N∑

k=1

[(I C
kh)2 + (I S

kh)2] (4.93)

we obtain for the total rms harmonic current squared:

∑
h∈ν

h �=1

I 2
h =

N∑
k=1

∑
h∈ν

h �=1

[(I C
kh)2 + (I S

kh)2] (4.94)

The current distortion squared of one load is:

D2
I k = V 2

1

∑
h∈ν

h �=1

[(I C
kh)2 + (I S

kh)2] =
∑

h∈ν

h �=1

[(DC
I kh)2 + (DS

I kh)2] (4.95)

followed by the total current distortion squared:

D2
I =

N∑
k=1

∑
h∈ν

h �=1

[(DC
I kh)2 + (DS

I kh)2] = (DC
I )2 + (DS

I )2 (4.96)

where

(DC
I )2 =

N∑
k=1

∑
h∈ν

h �=1

(DC
I kh)2 and (DS

I )2 =
N∑

k=1

∑
h∈ν

h �=1

(DS
I kh)2 (4.97)
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Thus, a vectorial additiveness holds true at the level of elementary powers. On a second
thought we realize that DV and DI have 2(ν − 1) elementary components each. PH and Q H

have (ν − 1) components each and DH has 2(ν − 1)(ν − 2). Counting two more components
for P1 and Q1 we have a grand total of 2ν2 components that do not make the concept of
vectorial conservation very attractive.

The correct procedure for the computation of the total apparent power and its components
should be based on the knowledge of the total current and bus voltage harmonic phasors at
the point of common coupling. A numerical example will help explain this issue: Two loads
connected in parallel are supplied with a nonsinusoidal voltage with the components:

V1 = 100 V ; V3 = 15 V ; V5 = 20 V

Load a with the harmonic current phasors Ih � θh:

Ia1 = 60 � − 30◦ A ; Ia3 = 60 � − 95◦ A ; Ia5 = 30 � − 94◦ A

and load b with

Ib1 = 80 � − 45◦ A ; Ib3 = 30 � 85◦ A ; Ia5 = 30 � 88◦ A

The following total powers are obtained: P = Pa + Pb = 10.79 kW, PH = PaH + PbH =
−120.29 + 53.18 = −67.11 W, Q1 = Qa1 + Qb1 = 8.657 kvar, DI = 3.163 kvar, DV =
3.457 kvar, DH = 0.998 kvar and S = 14.68 kVA. It is left to the reader, as a learning
experience, to check the computations and to confirm that for all the discussed resolutions
of S the additiveness of nonactive powers does not work; for example Fryze’s method gives
QaF = 7.765 kvar, QbF = 7.015 kvar while the total reactive power is QF = 9.953 kvar �=
QaF + QbF = 14.780 kvar.

4.10 Problems

4.1 A load consists of a capacitor with the susceptance Bc = 105 S connected in parallel
with an inductance with susceptance BL = 225 S. Both susceptances measured at ω rad/s. The
load is supplied with a nonsinusoidal voltage

v = 141[sin(ωt) + 0.5 sin(5ωt)] V

Compute the instantaneous current and the instantaneous power. Compute S, P, Q B , and
DB (according to Budeanu). You will find Q B = 0 while there are present energy oscillations
between the load and the source. Next, repeat the computations according to Czarnecki’s
model followed by Emanuel’s.

4.2 A sinusoidal voltage v = V̂ sin(ωt) supplies a time-varying conductance g = G0[1 +
a cos(2ωt + α)] , 0 < a < 1. Determine Fryze’s equivalent circuit and the expressions of ia ,
ib, P , QF , S, and PF . Repeat the procedure for different methods of S separation.



P1: OTA/XYZ P2: ABC
c04 BLBK294-Emanuel June 22, 2010 19:4 Printer Name: Yet to Come

136 Power Definitions and the Physical Mechanism of Power Flow

4.3 An inductance L = 1 H is supplied with v = V̂ [sin(ωt) + sin(3ωt)]. Find the optimum
value of the capacitance C that will minimize the line current. Find percent prospective
reduction in line losses.

4.4 Return to problem 3.3 (Chapter 3). Compute S and its components according to
Budeanu’s, Czarnecki’s, and Emanuel’s methods. Find the PF .

4.5 Return to problem 3.9. Compute S and its components according to Budeanu’s, Czar-
necki’s, and Emanuel’s methods. Find the PF .

4.6 Return to problem 3.10. Compute S and its components according to Budeanu’s,
Czarnecki’s, and Emanuel’s methods. Find the PF .

4.7 Return to problem 3.11. Compute S and its components according to Budeanu’s,
Czarnecki’s, and Emanuel’s methods. Find the PF . Compare the results obtained for different
methods.

4.8 A nonsinusoidal voltage V has the following rms harmonic current phasors V1 = 40 � 0◦

V, V3 = 20 � 80◦ V and V5 = 10 � 200◦ V. The voltage V supplies two loads, A and B,
connected in parallel. The rms harmonic current phasors are: Load A : IA1 = 10 � 45◦ A ; IA3 =
2 � 50◦ A ; IA5 = 5� 215◦ A Load B : IB1 = 5� 45◦ A ; IB3 = 5� 50◦ A ; IB5 = 2� 215◦ A

Compute SA, SB and the total S, as well as their components according to different resolu-
tions. Compare the results obtained for different methods.

4.9 A nonsinusoidal voltage v = √
2[sin(ωt) + sin(3ωt) + sin(5ωt)] supplies two branches

in parallel; branch a has the impedance 1 + 0.5j at ω and branch b the impedance 1 − 0.25j

at ω. Find ia , ib and i = ia + ib, the values and the components of S, Sa , and Sb.

4.10 Prove that the optimum capacitance of a series tuned filter (mωL = 1/mωC), meant
to minimize the rms current in a line supplying a nonlinear load with the voltage

v =
∑

h

V̂h sin(hωt + αh)

is

Copt =

∑
h �=m

hm2Vh Ih sin θh

m2 − h2

∑
h �=m

(
hm2

m2 − h2
Vh

)2

Ih is the h-order harmonic current in quadrature (lagging 90◦) with the h-order harmonic
voltage.

Note: This result is correct only when the line impedance is negligible.

4.11 A resistance is supplied with a nonsinusoidal voltage

v =
√

2[240 sin(ωt) + 30 sin(3ωt) + 10 sin(5ωt)] ; ω = 377 rad/s
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The dc resistance is Rdc = 0.2 
 with the skin effect coefficients Ks1 = 1.09, Ks3 = 2.3 and
Ks5 = 3.1 Compute the apparent power, its components, and the power factor.

4.12 Repeat 4.11 assuming that the above resistance is distributed along the windings of
an inductance Ldc = 1.2 mH.

At harmonic order h the inductance is Lh = KLh Ldc. The skin effect coefficients for the
inductance are KL1 = 0.97, KL3 = 0.92 and KL5 = 0.90.
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5
Three-Phase Systems with
Sinusoidal Waveforms

Whoever undertakes to set himself up as a judge in the field of Truth
and Knowledge is ship wrecked by the laughter of gods.

—Albert Einstein Aphorisms for Leo Baeck

Three-phase alternators provide nearly perfect symmetrical sinusoidal voltages. Transmission
and distribution lines have almost identical impedances on all three phases. Three-phase
equipment, motors, rectifiers, filters, and transformers are balanced systems designed to operate
with 120◦ shifted, but identical voltages, on all three phases. Smaller loads like lamps, office
equipment, and small motors are single-phase loads; nevertheless, when large clusters of
single-phase loads are supplied by three-phase circuits, the engineers group the loads in such
a manner as to ensure minimum neutral current. Balanced loads help to reduce line power
loss, minimizing the negative- and the zero-sequence voltages, thus leading to better motor
efficiency, longer life span, and minimization of atypical harmonics’ injection. Of course
there are large single-phase loads that, when integrated in the three-phase system, cause
significant imbalance: trains driven by single-phase motors or welding machines are typical
examples. Only in computer simulations and well equipped laboratories does one encounter
absolutely perfect balanced three-phase systems. In practice traces of negative- and zero-
sequence voltages and relatively larger amounts of negative- and zero-sequence currents are
always present.

While the definition of apparent power and its components in balanced three-phase systems
with sinusoidal waveforms is uncontested, the definitions for unbalanced conditions are still
a source of heated debate. At the 36th Annual Convention of AIEE in 1920 a special Joint
Committee [1,2,3] reported the following:

“The subject of power factor in polyphase circuits has been the center of increasing dis-
cussions in recent years. No agreement has yet been reached upon a definition . . . Until
recent years, most polyphase loads were approximately balanced, while the differences be-
tween various possible definitions of power factor become of importance only in unbalanced
loads. . .

Power Definitions and the Physical Mechanism of Power Flow Alexander Eigeles Emanuel
C© 2010 John Wiley & Sons, Ltd
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The increasing commercial importance of this character of load and the growing tendency
toward such refinements in power contracts and rates as will reflect accurately the various
elements entering into the cost of service, have combined to render this power factor problem
a matter of immediate and urgent practical importance.”

The polyphase systems are today more balanced and predictable than 90 years ago; at the
same time power engineers expect higher efficiencies, better power factors, and reliability of
service. Numerous conventions followed the 1920 event, and every decade was marked by
some progress on understanding the physics of energy flow and on the capability to build
more accurate and versatile metering instrumentation. One thing did not change: the fact that
the debate for a universally accepted definition of apparent power and power factor for the
unbalanced systems still continues today. The observation highlighted in the AIEE report is
as true today as it was in 1920.

This chapter deals with three-phase balanced and unbalanced linear systems with sinusoidal
voltage and current waveforms. The flow of energy under sinusoidal conditions will be analyzed
and different apparent power definitions compared.

5.1 Background: The Balanced and Symmetrical System

We start assuming a balanced three-phase load supplied with the instantaneous line-to-neutral
voltages and line currents

va = V̂ sin(ωt + α) ia = Î sin(ωt + α − θ )

vb = V̂ sin(ωt − 120◦ + α) ib = Î sin(ωt − 1200 + α − θ )

vc = V̂ sin(ωt + 120◦ + α) ic = Î sin(ωt + 1200 + α − θ ) (5.1)

The instantaneous power

p = vaia + vbib + vcic = pp + pq

has an active component

pp = V I cos(θ )[1 − cos(2ωt + 2α)] + V I cos(θ )[1 − cos(2ωt − 240◦ + 2α)]

+V I cos(θ )[1 − cos(2ωt + 2400 + 2α)] = 3V I cos(θ ) = P (5.2)

and a reactive component

pq = −V I sin(θ ) sin(2ωt + 2α) − V I sin(θ ) sin(2ωt − 240◦ + 2α)

−V I sin(θ ) sin(2ωt + 2400 + 2α) = 0 (5.3)

We obtained two remarkable results: First, equation (5.2) indicates that the intrinsic powers
cancel each other, i.e. a three-phase alternator under steady-state conditions delivers a perfect
constant power and the prime mover driving the alternator delivers a constant torque void of
oscillations. Similarly, an ideal induction or synchronous motor supplied with symmetrical
voltages produces a constant torque. The energy supplied by a symmetrical three-phase voltage
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to a balanced system is W = Pt . No oscillating term is to be found in this expression. However,
this is only the “macroscopic” view, just a mathematical conclusion resulting from (5.2).

The second result is even more puzzling; according to (5.3) there is a perfect cancellation
among the reactive instantaneous powers. Does this means there is no reactive power Q? Does
this means that there are no oscillations between the inductive or capacitive loads and the
three-phase sources, as claimed by some researchers [4]?

From (5.2) and (5.3) it is also clear that each phase contributes with its own active power

Pa = Pb = Pc = V I cos(θ )

reactive power

Qa = Qb = Qc = V I sin(θ )

and apparent power

Sa = Sb = Sc = V I* = Pa + j Qa with |Sa| = |Sb| = |Sc| = V I

where the current phasor I* = I � θ is the conjugate of the line current phasor I = I � − θ .
Assuming identical lines’ resistances Rs , the total power loss in the three supplying lines is:

�P = �Pa + �Pb + �Pc = 3Rs I 2 = 3Rs

V 2
(P2

a + Q2
a) = 3Rs

V 2
S2

a (5.4)

Equation (5.4) proves the existence of a total reactive power Q = 3Qa manifested through the
power loss 3Rs Q2/V 2.

The total apparent power of the balanced load is

S = 3V I =
√

3VL L I =
√

P2 + Q2 ; VL L =
√

3 V

or in a complex form

S = 3V I* = 3V � α I � (θ − α) = 3V I [cos(θ ) + j sin(θ )] = P + j Q (5.5)

where

P = 3Pa = �e{VI*} = S cos(θ ) = 3V I cos(θ ) (5.6)

is the total active power and

Q = 3Qa = �m{VI*} = S sin(θ ) = 3V I sin(θ ) (5.7)

is the total reactive power.
The oscillations of instantaneous active and reactive powers of the phases a, b, and c are not

illusions, as claimed in [4], they do exist. Equation (5.3) presents the overall result, it hides
the physical details of the electromagnetic field, it does not model the distribution of power
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density in the space that surrounds the conductors. If the reactive powers Qa , Qb, and Qc

cause Joule and eddy-current losses in the conductors, then a reciprocating electromagnetic
wave must run along each conductor between the source and the L or C of the load. A small
component of these electromagnetic waves impinges into conductors’ surface and carry the
energy dissipated by the conductors in heat. The existence and nature of power oscillations
in three-phase systems is discussed and proved with the help of Poynting vector theory in
Appendix IV.

5.2 The Three-Phase Unbalanced System

When the power system is not balanced the general expressions of the instantaneous line
currents and line-to-line voltages are as follows:

ia = Îa sin(ωt + αa − θa) (5.8)

ib = Îb sin(ωt − 1200 + αb − θb) (5.9)

ic = Îc sin(ωt + 1200 + αc − θc) ; θa �= θb �= θc ; αa �= αb �= αc (5.10)

va = V̂a sin(ωt + αa) (5.11)

vb = V̂b sin(ωt − 120◦ + αb) (5.12)

vc = V̂c sin(ωt + 120◦ + αc) (5.13)

The total instantaneous power is

p = vaia + vbib + vcic = pa + pb + pc

pa = Va Ia cos θa[1 − cos(2ωt + 2αa)] − Va Ia sin θa sin(2ωt + 2αa)

pb = Vb Ib cos θb[1 − cos(2ωt + 2αb − 240◦)] − Vb Ib sin θb sin(2ωt + 2αb − 240◦)

pc = Vc Ib cos θc[1 − cos(2ωt + 2αc + 240◦)] − Vc Ic sin θc sin(2ωt + 2αc + 240◦)

Each phase carries an active power

Pa = Va Ia cos(θa) Pb = Vb Ib cos(θb) Pc = Vc Ic cos(θc)

We also observe the existence of intrinsic power appertaining to each of the active powers.
This time the instantaneous intrinsic powers do not completely cancel each other, nevertheless
the residual intrinsic power does not cause any additional power loss in the line.

The reactive components of the current cause oscillations with the amplitudes Qa , Qb, and
Qc that define the per phase reactive powers

Qa = Va Ia sin(θa) Qb = Vb Ib sin(θb) Qc = Vc Ic sin(θc)

For each one of the three phases, a, b, and c, we can define a power triangle Sa Pa Qa ,
Sb Pb Qb, and Sc Pc Qc, respectively, where Sa = Va Ia , Sb = Vb Ib and Sc = Vc Ic, Fig. 5.1.

This geometrical representation leads to two apparent power definitions:
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Figure 5.1 Vector apparent power SV and arithmetic apparent power SA: Geometrical interpretation
by means of power triangles, (sinusoidal conditions).

1. The Arithmetic Apparent Power:

SA = Sa + Sb + Sc (5.14)

yielding an arithmetic power factor

PFA = P

SA
where P = Pa + Pb + Pc

2. The Vector Apparent Power:

SV = VaI∗
a + VbI∗

b + VcI∗
c = Pa + Pb + Pc + j (Qa + Qb + Qc) = P + j Q (5.15)

SV =
√

P2 + Q2

leading to the vector power factor

PFV = P

SV
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When the monitored three-phase system is balanced both definitions give identical results.
However, for unbalanced conditions the results differ: SA ≥ SV , PFA ≤ PFV and the truth is
that both definitions, SA and SV , do not fulfill the cardinal requirement of “line power loss
proportionality to S2” (see (2.32)), and both definitions give incorrect apparent power and
power factor values.

A better definition was proposed by F. Buchholz [5] and explained in 1933 by W. M.
Goodhue [6,7]. Buchholz introduced the notion of system rms or effective voltage:

√
3Ve =

√
V 2

ab + V 2
bc + V 2

ca

3
(5.16)

and system rms or effective current:

Ie =
√

I 2
a + I 2

b + I 2
c

3
(5.17)

Leading to the effective apparent power

Se = 3Ve Ie (5.18)

Goodhue pointed to the fact that (5.16) and (5.17) are easily derived from the condition of
equivalence of the actual power loss with the hypothetical equivalent system power loss. The
current dependent losses are

�PI = Rs(I 2
a + I 2

b + I 2
c ) = 3Rs I 2

e (5.19)

A more complete definition discussed in [8] takes into account the fact that the neutral
current path also contributes to the total power loss and the possibility that the four conductors
may have different resistances. In this case the equivalence is

�PI = Ra I 2
a + Rb I 2

b + Rc I 2
c + Rn I 2

n

= Re(I 2
a + I 2

b + I 2
c + I 2

n ) = 3Re I 2
e (5.20)

and

Ie =
√

I 2
a + I 2

b + I 2
c + I 2

n

3
(5.21)

The equivalent resistance Re is a function of the actual resistances Ra , Rb, Rc, and Rn and
the four currents (see Appendix VII). From (5.20) results:

Re = Ra I 2
a + Rb I 2

b + Rc I 2
c + Rn I 2

n

I 2
a + I 2

b + I 2
c + I 2

n
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A common case is when Ra = Rb = Rc = Rs and Rn = ρRs , then (5.21) becomes

Ie =
√

I 2
a + I 2

b + I 2
c + ρ I 2

n

3
(5.22)

The equivalent or effective voltage can be found by considering the voltage dependent
losses (core-losses and dielectric) and assuming an equivalent shunt resistance Rs . These
voltage dependent losses are

�PV = V 2
ab + V 2

bc + V 2
ca

Rs
= 9V 2

e

Rs
(5.23)

yielding

Ve =
√

V 2
ab + V 2

bc + V 2
ca

9
(5.24)

There are load topologies where (5.24) gives small errors. A detailed discussion of (5.24) is
found in section 5.5.4. The IEEE Std. 1459–2010 approach to Ve takes into consideration the
conservation of the active power supplied to the load instead of the conservation of voltage
dependent losses (see section 5.5.4).

5.3 The Power Factor Dilemma

Polyphase systems are designed in mind as one entity, one “pipeline” meant to transmit
electric energy from the generators to substations and consumers. The energy supplier expects
and plans for energy transfer conditions that are conducive to reduced invested capital and
operating cost, conditions that are not causing equipment damage or early aging, conditions
that ensure proper voltage regulation and minimum interference with other utilities that share
the same right of way (communication, gas, and water). This means two major requirements:

� Maximum utilization of conductor cross-sectional area without causing insulation or me-
chanical damage.

� Minimum neutral (residual) current that may stray through low impedance paths and cause
raised potential of improperly grounded items and equipment as well as instrumentation
disturbances due to common mode electromagnetic interference.

The simplified concept of a three-phase line utilization is depicted in Fig. 5.2. The four
conductors are represented by the four circles. The cross-sectional area is shown proportional
to the I 2

a,b,c,n . The cross-sections are divided according to the active and reactive current
squared. One may replace the sectors dedicated to active and reactive currents with P2 and Q2

respectively. In an unbalanced system (Fig. 5.2a), the apparent and active power distribution
among the conductors is not even. The balanced systems with PF < 1.0 have perfect symmetry,
Fig. 5.2b, but the conductor’s utilization is not complete. Only when PF = 1.0 is the entire
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Figure 5.2 The utilization of a three-phase, four-wire feeder: (a) Unbalanced conditions. Total con-
ductors’ cross-sectional area is proportional to the total apparent power squared. The darker sectors are
proportional to the nonactive power squared. (b) Balanced system with PF < 1.0. (c) Balanced System
with PF = 1.0.

cross-sectional area of each phase is fully utilized by carrying only active power. Each phase
carries the same amount of power, Fig. 5.2c.

The neutral wire is an auxiliary conductor, its main role is to reduce transient voltages and to
carry three times zero-sequence current during unsymmetrical faults. In three-phase four-wire
unbalanced systems the neutral conductor carries the zero-sequence current, but a negligible
amount of power. Continuous current flow through the neutral conductor opens the door to a
multitude of consumer and energy supplier annoyances. An ideal polyphase system with unity
power factor must operate with zero neutral current [9].

The first to address effectively the definition of power factor in three-phase systems was
W. V. Lyon [1]. In 1920 he had extended the single-phase approach to polyphase systems;
his recommendation was “to imagine that the actual load is replaced by an arrangement of
‘standard’ circuits, i.e., constant non reactive resistances - so adjusted that the root-mean-
square line currents they take are equal to these taken by the actual load. [and] The rms line
voltages are the same in each case [for the original and for the ‘imagined circuit].”

In the 1920s and 1930s the pillars of the electrical engineering community, charmed by
the elegance of Fortescue’s symmetrical components theory, which fitted hand-in-glove with
the vector apparent power definition, dismissed Lyon’s recommendation. Symmetrical com-
ponents help to gain insight into the structure of the effective current and voltage and play a
significant role when different apparent power definitions are evaluated, one against the other.
However, symmetrical components alone, without a correct interpretation of the physical
mechanisms of energy transmission and conversion, cannot lead to a correct apparent power
definition. (Section 5.4 is completely dedicated to symmetrical components.) Meanwhile a
few numerical examples will shed light on the power factor problem.

Example 5.1 A three-phase bus a, b, c, n is supplied by a four-wire system. The line-to-
neutral bus voltages are Va = V� 0◦, Vb = V � − 120◦, and Vc = V� 120◦. A resistance R is
connected between the terminal a and the neutral n.

We deal with an unbalanced load where only phase a supplies the active power

P = Pa = Sa = V 2

R
= V I ; I = V

R
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and the other two phases remain disconnected

Pb = Pc = 0 Sb = Sc = 0

In this case we obtain the total apparent powers SA = SV = Sa = P and the power factors
PFA = PFV = P/S = 1.0. Nevertheless, the power factor cannot be unity if only 33% of the
active material is used.

Now, let us consider the apparent power definition (5.18), given by Buchholz and Goodhue;
the effective voltage and current are

Ve = V and Ie =
√

I 2 + I 2

3
=

√
2

3
I

hence

Se = 3

√
2

3
V I and PFe = P

Se
= 1√

6
= 0.408

The power factor indicates how well the conductors are utilized. In single-phase systems
P/S means that (P/S)2 of the conductor cross-section is used to carry active power. This is
tantamount with the definition PF = √

�Pc/�P , where �P are the actual losses and �Pc

are the losses with the load compensated to unity power factor. Assuming the same resistance
Rs for each one of the lines as well as for the neutral path, results

�P = 2Rs I 2

For the compensated feeder the currents are symmetrical, I
′
a = I

′
b = I

′
c = I/3, delivering the

same power P = V I
′ = 3V I/3. From here one finds the power loss in the compensated feeder:

�Pc = 3Rs(I/3)2 = Rs I 2/3

and the power factor PF = √
�Pc/�P = √

1/6.

Example 5.2 We connect now the resistance R line-to-line between the terminals a and b.
This unbalanced load takes the active power

P = 3V 2

R
=

√
3V I ; I =

√
3V

R

with the line current phasors (Fig. 5.3a) Ia = I � 30◦ and Ib = I � − 150◦. Thus

Pa = Pb = V I cos(30◦)

Qa = V I sin(−30◦) and Qb = V I sin(30◦)

Sa = V I � − 30◦ = V I cos(30◦) − jV I sin(30◦)

Sb = (V � − 120◦)(I � 150◦) = V I cos(30◦) + jV I sin(30◦)
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aV

bV

cV

abV
030

030
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n

          

(a)
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aQ

bP

bQ
bS

(b)

Figure 5.3 Example 2: (a) Phasor diagram. (b) Power triangles.

We have Pa = Pb = 0.866V I , Pc = 0, Qb = −Qa = 0.5V I , Qc = 0, Sa = Sb = V I
and Sc = 0. The power triangles, Fig. 5.3b, yield

SV = Pa + Pb = P = √
3V I and PFV = P

SV
= 1.0

SA = Sa + Sb = 2V I and PFA = P

SA
=

√
3V I

2V I
= 0.866

Since the load is purely resistive and only two-thirds of the active material is used and
neither one of the computed power factors is correct.

The Buchholz-Goodhue method based on Ve = V and Ie = √
2/3I yields

Se =
√

6 V I and PFe = P

Se
=

√
3 V I√
6 V I

= 1√
2

= 0.707

Again if we go to the very meaningful definition PF = √
�Pc/�P , and we use the com-

pensated feeder line current

I
′ = P/3V =

√
3V I/3V = I/

√
3

to find the compensated line losses, �Pc = 3Rs I 2/3. The actual losses are �P = 2Rs I 2

yielding the same power factor expression, PF =
√

Rs I 2/(2Rs I 2) = 0.707.

Example 5.3 We will assume a more involving load: The resistance R connected a to n, an
inductance with the reactance j R connected b to n and a capacitance with the reactance −j R
connected c to n, Fig. 5.4a. The line current phasors are

Ia = V

R
= I Ib = V � − 120◦

j R
= I � − 210◦ Ic = V � 120◦

−j R
= I � 210◦

The phasor diagram is shown in Fig. 5.4b. The power triangles are reduced to three segments,
Fig. 5.4c, Pa = Sa = V I , Qa = 0, Pb = Pc = 0, Qb = Sb = V I and Qc = Sc = V I . From
here results P = Pa = V I and for the vector apparent power approach:
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a
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cV
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bI
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nI o30

bb SQ =

cc SQ =
aa SP =

(a) (b) (c)

Figure 5.4 Example 3: (a) Connections. (b) Phasor diagram. (c) Power vectors.

SV = Sa = V I PFV = P

SV
= 1.0

For the arithmetic apparent power approach:

SA = Sa + Sb + Sc = 3V I PFA = P

SA
= 1

3

In this case only one third of the active material is utilized, two conductors are “misused,”
and a unity power factor is not possible.

If the neutral current is ignored, or if ρ → 0, then Ie =
√

(I 2 + I 2 + I 2)/3 = I leading to

Se = 3V I and PFe = P

Se
= V I

3V I
= 0.333

If the neutral current In = (
√

3 − 1)I � 180◦ is not ignored and ρ = 1, then Ie =√
1 + 0.178I = 1.086 I and Se = 3.257 V I yielding PFe = 0.307.

It is left to the reader to check this result using the PF = √
�Pc/�P approach.

5.4 Powers and Symmetrical Components

5.4.1 How Symmetrical Components are Generated

For all practical purposes the voltages and currents at the generator’s bus, under normal
operation, are clean positive-sequence voltages and currents. It is appropriate to ask the
following question: how the negative- and zero-sequence components are generated if all the
energy sources belonging to this system do not generate this type of energy? The answer is:
unbalanced loads convert positive-sequence energy into negative- and zero-sequence energy,
just like a nonlinear load converts some input energy at the power system frequency in energy
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Figure 5.5 Active power flow: Three-phase, three-wire system with unbalanced load.

at higher harmonics frequencies. A simple example will help to explain the basic energy flow
mechanism particular to such a situation. In Fig. 5.5 a three-phase symmetrical voltage V � 0◦,
V � − 120◦ and V � 120◦ supplies an unbalanced load via a three-wire line with three equal
resistances Rs . The load is equivalent to three positive-sequence voltages each in series with
a negative-sequence voltage.

The source produces the following instantaneous power

pGen = vAi+
a + vBi+

b + vCi+
c = Rs[(ia+)2 + (ib+)2 + (ic+)2] + p Suppl

Load
(5.25)

where vA,B,C are the line-to-neutral instantaneous voltage of the source, i+
a,b,c are the load’s

positive-sequence instantaneous current, and p Suppl
Load

is positive-sequence power supplied to

the load by the generator. The instantaneous power measured at the load terminals a, b, and
c is

pout = v+
a i+

a + v+
b i+

b + v+
c i+

c + v−
a i−

a + v−
b i−

b + v−
c i−

c (5.26)

where v+
a,b,c are the load’s positive-sequence instantaneous voltage and v−

a,b,c, are the load’s
negative-sequence instantaneous voltage.
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Kirchhoff’s voltage law written for any of the three phases positive- and negative-sequence
component is

vK = v+
k + Rsi

+
k and v−

k + Rsi
−
k = 0 ; K = A, B, C ; k = a, b, c

Substitution of these two equations in (5.26) gives

pout = (vA − Rsi
+
a )i+

a + (vB − Rsi+
b )i+

b + (vC − Rsi+
c )i+

c

+(−Rs)[(i−
a )i−

a + (i−
b )i−

b + (i−
c )i−

c ]

= vAi+
a + vBi+

b + vCi+
c

−Rs[(i+
a )2 + (i+

b )2 + (i+
c )2] − Rs[(i−

a )2 + (i−
b )2 + (i−

c )2] (5.27)

Comparing (5.27) with (5.25) we note that p Suppl
Load

> pout and the difference

p Suppl
Load

− pout = Rs[(i−
a )2 + (i−

b )2 + (i−
c )2] = −(v−

a i−
a + v−

b i−
b + v−

c i−
c ) (5.28)

is returned to the power network, in other words the power loss

Rs[(i−
a )2 + (i−

b )2 + (i−
c )2]

is supplied by the unbalanced load which receives the positive-sequence power

vAi+
a + vBi+

b + vCi+
c − Rs[(i+

a )2 + (i+
b )2 + (i+

c )2]

and outputs the power

vAi+
a + vBi+

b + vCi+
c − Rs[(i+

a )2 + (i+
b )2 + (i+

c )2] − Rs[(i−
a )2 + (i−

b )2 + (i−
c )2

The active power flow sketched in Fig. 5.5 shows that the negative-sequence power does
not contribute at all to the output power. This negative-sequence power is part of an energy
conversion chain in which a small amount of positive-sequence power is converted into
negative-sequence power that is supplied (returned) to the network.

If the main energy source is asymmetrical then some negative-sequence power supplied by
the source is converted into output power.

A numerical example addressing a more general case that involves zero-sequence as well
as inductive and capacitive impedances helps reinforce the understanding of the above phe-
nomenon. The supply voltage (line-to-neutral) is

|vs | =
√

2 260

∣∣∣∣∣∣
sin(ωt)
sin(ωt − 120◦)
sin(ωt + 120◦)

∣∣∣∣∣∣ ω = 376.9 rad/s = 21, 600 deg/s

An unbalanced load is supplied with the above voltage via a four-wire line, all conductors
with Rs = 0.1 � and Ls = 2.65 mH (ωLs = 1.0 �). The resulting measurements at the load
terminals are as follows:
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|V| =
∣∣∣∣∣∣
Va

Vb

Vc

∣∣∣∣∣∣ =
∣∣∣∣∣∣
251� − 8◦

242� − 131◦

255� 122◦

∣∣∣∣∣∣ V |I| =

∣∣∣∣∣∣∣∣

Ia

Ib

Ic

In

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

34.46� 5.54◦

46.08� − 152.2◦

10.55� 41.58◦

11.29� − 82.62◦

∣∣∣∣∣∣∣∣
A

The computed symmetrical components are

V+ = 246.98 − j24.07 V I+ = 25.14 − j10.52 A

V− = 16.68 − j10.42 I− = 8.69 − j17.57

V0 = −15.11 − j0.44 I0 = 0.48 − j3.72

The power generated is

PGen = 3 × 260 × �e{I+∗} = 19607 W

The power delivered by the load is

Pout = 3�e{V+I+∗ + V−I−∗ + V0I0∗} = 19253 W

The positive-sequence power supplied by the generator to the load is

P Suppl
Load

= PGen − 3Rs(I +)2 = 19385 W

Comparing the last two results we find that

P Suppl
Load

− Pout = 19385 − 19253 = 132 W

of positive-sequence power will not leave the electrical system, but will be converted into
losses supplied by the negative- and the zero-sequence components.

Now the total power loss is

�P = Rs(I 2
a + I 2

b + I 2
c + I 2

n ) = 354.96 W

Each symmetrical component of the current contributes to the total power loss, i.e.

�P = 3Rs[(I +)2 + (I −)2 + (I 0)2] + Rs(3I 0)2 = 3Rs[(I +)2 + (I −)2 + 4(I 0)2] = 354.96 W

The positive-sequence current causes the power loss

�P+ = 3Rs(I +)2 = 223.0 W

The negative- and zero-sequence currents cause the power loss

�P− + �P0 = 3Rs[(I +)2 + 4(I 0)2] = 131.26 W
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It is learned from here that the unbalanced load generates the energy that supports �P− +
�P0, indeed

P− = 3�e{V−I−∗} = −114.55 W

P0 = 3�e{V0I0∗} = −16.69 W

and

|P− + P0| = �P− + �P0 = 131.24 W

The same analysis is applied to reactive powers. The positive-sequence reactive power
generated is

QGen = 3 × 260 × �m{I+∗} = 8207 var

out of which

Q Suppl
Load

= QGen − 3ωLs(I +)2 = 5979.3 var

is supplied to the load.
However, the reactive power measured at the load terminals is

Q = 3�m{V+I+∗ + V−I−∗ + V0I0∗} = 4660 var

We find that the difference between supplied and what can be called the actual reactive
power of the load (the measured quantity) is Q Suppl

Load
− Q = 1319.3 var. The negative- and the

zero-sequence reactive powers are

Q− = 3�m{V−I−∗} = −1151 var

Q0 = 3�m{V0I0∗} = −169 var

and

Q− + Q0 = −1320 var

leading to the following conclusion: Part of Q+ is converted in Q− and Q0, and their instanta-
neous powers oscillate between the load and the line inductances. The Q+ related oscillations
take place between the main source and the line inductances as well as the load.

If the network has multiple loads a fraction of the P− and P0 flows also into some loads,
where it is dissipated (motors) or converted (incandescent lamps and certain rectifiers). One
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may observe dominant unbalanced loads that generate non positive-sequence energy and
smaller loads, balanced or not, that absorb such energy.

5.4.2 Expressing the Powers by Means of Symmetrical Components

In Fig. 5.6 is sketched the equivalent circuit of a three-phase, four-wire system where the
asymmetrical line-to-neutral voltages are replaced with their symmetrical components, i.e.

va = v+
a + v−

a + v0
a and ia = i+

a + i−
a + i0

a

vb = v+
b + v−

b + v0
b and ib = i+

b + i−
b + i0

b

vc = v+
c + v−

c + v0
c and ic = i+

c + i−
c + i0

c (5.29)

The instantaneous positive-sequence voltages and currents are:

v+
a = V̂ + sin(ωt + α+) and i+

a = Î + sin(ωt + α+ − θ+)

v+
b = V̂ + sin(ωt + α+ − 120◦) and i+

b = Î + sin(ωt + α+ − θ+ − 120◦)

v+
c = V̂ + sin(ωt + α+ + 120◦) and i+

c = Î + sin(ωt + α+ − θ+ + 120◦) (5.30)

The instantaneous negative-sequence voltages and currents are:

v−
a = V̂ − sin(ωt + α−) and i−

a = Î − sin(ωt + α− − θ−)

v−
b = V̂ − sin(ωt + α− + 120◦) and i−

b = Î − sin(ωt + α− − θ− + 120◦)

v−
c = V̂ − sin(ωt + α−120◦) and i−

c = Î − sin(ωt + α− − θ−120◦) (5.31)

  
LOAD 

0v

−
av

−
bv

−
cv

+
av

+
bv

+
cv

ni

ai

ci

bi

bv

av

cv

Figure 5.6 Equivalent three-phase, four-wire system with symmetrical components.
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and the zero-sequence voltages and currents are:

v0
a = v0

b = v0
c = V̂ 0 sin(ωt + α0) and i0

a = i0
b = i0

c = Î 0 sin(ωt + α0 − θ0) (5.32)

The instantaneous power has nine terms [10]

p = vaia + vbib + vcic = p+ + p− + p0 + p+− + p+0 + p−+ + p−0 + p0+ + p0−

(5.33)
The positive-sequence instantaneous power

p+ = v+
a i+

a + v+
b i+

b + v+
c i+

c = p+
p + p+

q (5.34)

is composed of two terms: the instantaneous positive-sequence active power

p+
p = V + I + cos θ+{3 − [cos(2ωt + 2α+) + cos(2ωt + 2α+ − 240◦)

+ cos(2ωt + 2α+ + 240◦)]} = 3V + I + cos(θ+) (5.35)

has an expression that shows the intrinsic powers cancellation. The second term is the instan-
taneous positive-sequence reactive power

p+
q = −V + I + sin(θ+)[sin(2ωt + 2α+) +

+ sin(2ωt + 2α+ − 240◦) + sin(2ωt + 2α+ + 240◦)] = 0 (5.36)

Here we are met by the same question we were faced with when evaluating (5.3), if p+
q = 0,

is there reactive power? And the answer is the same: there is a total positive-sequence reactive
power Q+ = 3V + I + sin(θ+) and each phase carries its own oscillations with the amplitude
Q+/3 supported by the Poynting vectors surrounding each conductor. This means that the
total Poynting vector flux caused by the interaction between the positive-sequence electric
field with the positive-sequence magnetic field caused by the reactive currents, through a close
surface that envelopes the three-phase load, is nil, (see section 5.6).

For the negative- and the zero-sequence instantaneous powers we find similar expressions:
the negative-sequence instantaneous power

p− = v−
a i−

a + v−
b i−

b + v−
c i−

c = p−
p + p−

q (5.37)

with the instantaneous negative-sequence active power

p−
p = V − I − cos(θ−){3 − [cos(2ωt + 2α−) + cos(2ωt + 2α− + 240◦)

+ cos(2ωt + 2α− − 240◦)]} = 3V − I − cos(θ−) (5.38)

and the instantaneous negative-sequence reactive power

p−
q = −V − I − sin(θ−)[sin(2ωt + 2α−)

+ sin(2ωt + 2α− + 240◦) + sin(2ωt + 2α− − 240◦)] = 0 (5.39)
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that characterizes the negative-sequence active and reactive powers, P− = 3V − I − cos(θ−)
and Q = 3V − I − sin(θ−), respectively.

The zero-sequence power has simpler expressions:

p0 = v0
ai0

a + v0
bi0

b + v0
c i0

c = p0
p + p0

q (5.40)

where

p0
p = 3V 0 I 0 cos(θ0)[1 − (cos(2ωt + 2α0)] (5.41)

p0
q = −3V 0 I 0 sin(θ0) sin(2ωt + 2α0) (5.42)

We observe that

p+
p + p−

p + p0
p = 3V + I + cos(θ+) + 3V − I − cos(θ−) + 3V 0 I 0 cos(θ0) = P++P−+P0 = P

(5.43)

The remaining six instantaneous elementary powers of (5.33) are nonactive, for example
the positive-negative instantaneous power is

p+− = v+
a i−

a + v+
b i−

b + v+
c i−

c

= V + I −[cos(α+ − α− + θ−) + cos(α+ − α− + θ− − 240◦)

+ cos(α+ − α− + θ− + 240◦) − 3 cos(2ωt + α+ + α− − θ−)] (5.44)

At any moment the mean value of p+− is zero, however, this instantaneous power has some
remarkable peculiarity; each phase has an average power that flows unidirectionally. On phase
a we have P+−

a = V + I − cos(γ ) , on phase b there is P+−
b = V + I − cos(γ − 240◦), and on

phase c we find P+−
c = V + I − cos(γ + 240◦), where γ = α+ − α− + θ−.

The total Poynting vector flux caused by the interaction between the positive-sequence
electric field with the negative-sequence magnetic field through a close surface that envelopes
the three-phase load is nil. The peculiarity of this nonactive energy flow is that along one of
the conductors the Poynting vector is “pumping” energy toward the load and along the other
two conductors this very energy is returned.

The same observations apply to the remaining instantaneous powers; in steady-state each
of the powers p+0, p−+, p−0, p0+, and p0− has zero average power and each one of these
powers has a component flowing continuously to or from the load on one phase and returning
via the other two phases. This is in agreement with the fact that unbalanced conditions lead to
different power loss values among the phases.

Now let us return to the four-conductors line with Ra = Rb = Rc = Rs and Rn �= Rs . From
(5.22) results that the effective current squared is

I 2
e = (I 2

a + I 2
b + I 2

c + ρ I 2
n )/3 ; ρ = Rn/Rs (5.45)

Each one of the rms currents squared of (5.45) can be expressed in function of symmetrical
components:
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I 2
a = IaI∗

a = (I+ + I− + I0)(I+∗ + I−∗ + I0∗)

= (I +)2 + (I −)2 + (I 0)2 + I+I−∗ + I+I0∗ + I−I+∗ + I−I0∗ + I0I+∗ + I0I−∗

I 2
b = IbI∗

b = (I+ + a2I− + aI0)(I+∗ + aI−∗ + a2I0∗) a = 1� 120◦

= (I +)2 + (I −)2 + (I 0)2 + aI+I−∗ + a2I+I0∗ + a2I−I+∗ + aI−I0∗ + aI0I+∗ + a2I0I−∗

I 2
c = IcI∗

c = (I+ + aI− + a2I0)(I+∗ + a2I−∗ + aI0∗)

= (I +)2 + (I −)2 + (I 0)2 + a2I+I−∗ + aI+I0∗ + aI−I+∗ + a2I−I0∗ + a2I0I+∗ + aI0I−∗

I 2
n = InI∗

n = 3I03I0∗ = 9(I 0)2 (5.46)

Substitution of (5.46) in (5.45) gives

I 2
e = (I +)2 + (I −)2 + (1 + 3ρ)(I 0)2 (5.47)

In a similar way is obtained the effective voltage squared

V 2
e = (V 2

ab + V 2
bc + V 2

ca)

9

= (Va − Vb)(V∗
a − V∗

b) + (Vb − Vc)(V∗
b − V∗

c ) + (Vc − Va)(V∗
c − V∗

a)

9
= (V +)2 + (V −)2 (5.48)

Since the line-to-line voltages are used to define Ve, no zero-sequence voltage appears in
(5.48). If the load is not �-connected the expression (5.48) is only an approximation. A
detailed analysis of Ve is given in section 5.5.4.

The line power loss is

�P = Rs(I 2
a + I 2

b + I 2
c ) + Rn I 2

n = 3Rs I 2
e = Rs

3V 2
e

(3Ve Ie)2 = Rs

3V 2
e

S2
e (5.49)

Equation (5.49) proves that the Buchholz-Goodhue apparent power definition fulfills the much
desired linear correlation between �P and the apparent power squared, S2

e .
The �P expression written as a function of symmetrical components of the current is

�P = 3Rs[(I +)2 + (I −)2 + (1 + 3ρ)(I 0)2] (5.50)

The vector and the arithmetic apparent powers have the expressions

SV = Sa + Sb + Sc = VaI∗
a + VbI∗

b + VcI∗
c

= 3(V+I+∗ + V−I−∗ + V0I0∗) (5.51)

and

SA = Sa + Sb + Sc = |VaI∗
a| + |VbI∗

b| + |VcI∗
c | (5.52)
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When the graphs �P versus S2
e , S2

V , and S2
e are plotted for an unbalanced load situation

it is found that only the graph �P versus S2
e is linear, (see problem 5.3).

The apparent power definition, Se = 3Ve Ie, is the only known apparent power expression that
fulfills the requirement �P = (RS/3V 2

e )S2
e and leads to a meaningful power factor. However,

the effective apparent power as presented in the last two sections is based on the electrothermal
effect and does not consider the nature of the load-motor, rectifier, arcing device, etc. More
accurate definitions based on the actual energy conversion physical mechanism are needed.

In the following section are presented effective apparent power resolutions that have started
to gain acceptance among researchers as well as engineers.

5.5 Effective Apparent Power Resolutions

5.5.1 FBD-Method

A few engineers understood the significant advantages of Buchholz’s expression and advocated
the separation of Se in orthogonal components useful in the evaluation of the energy flow and
operation of power systems [11,12,13]. Among all these methods the most salient place is
given to the FBD-method, the Fryze-Buchholz-Depenbrock approach [14].

We consider a three-phase unbalanced load supplied with an asymmetrical three-phase
voltage, Fig. 5.7a. The four currents obey the relation

i A + iB + iC + iN = 0 (5.53)

The following analysis is based on an equivalent three-phase system where an artificial
neutral point O is used as a reference point, Fig. 5.7.b. The artificial neutral point has the
following essential properties:

1. The line to neutral voltages vAN , vB N , vC N remain unchanged (same in Figs. 5.7a and
5.7.b).
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Figure 5.7 The FBD-method: (a) Actual circuit. (b) Equivalent circuit with neutral point O .
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2. The node N is considered the terminal of a fourth phase.

3. The four line-to-the artificial neutral voltages obey the relation

vAO + vBO + vC O + vN O = 0 (5.54)

One may rewrite (5.54) using the notation vO N = vO :

vAN − vO + vB N − vO + vC N − vO − vO = 0 (5.55)

Equation (5.55) gives the potential at the neutral point with respect to the node O:

vN O = −vO = −1

4
(vAN + vB N + vC N ) (5.56)

and the voltages line-to-the artificial neutral:

vAO = vA − vO = vAN − 1

4
(vAN + vB N + vC N )

vBO = vB − vO = vB N − 1

4
(vAN + vB N + vC N )

vC O = vC − vO = vC N − 1

4
(vAN + vB N + vC N ) (5.57)

It also can be proved that the line-to-line load voltages remain unchanged, for example:

vAB = vAO − vBO = (vA − vO ) − (vB − vO) = vA − vB (5.58)

and this means that the line currents iA, iB, iC , and iN remain unchanged too. Moreover, the
value of the instantaneous power p is not affected by vO ,

p = vAOi A + vBOiB + vC OiC − vOiN

= vAi A + vBiB + vCiC − vO (iA + iB + iC + iN )

= vAi A + vBiB + vCiC (5.59)

Depenbrock analyzes the equivalent circuit shown in Fig. 5.7b as follows: each one of the
four branch impedances is supplied with the apparent power,

Sk = VkI∗
k = Pk + j Qk ; k = A, B, C, N

The branch current ik (the line current) is separated into two components: an in-phase
component i‖ , (Depenbrock calls it proportional current) and an in-quadrature current i⊥
(Depenbrock calls it orthogonal current). Below are the expressions of these currents:

ik‖ = GkvkO with Gk = Pk

V 2
k

(5.60)
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and

ik⊥ = BkvkO with Bk = −Qk

V 2
k

(5.61)

This current division leads to a first representation of the branch shown in Fig. 5.8a where
Gk and Bk are the branch k conductance and susceptance, respectively. Pivotal to this approach
is a voltage v

	
, that was introduced by Buchholz [5, 15]. Buchhollz called v

	
and i

	
collective

quantities, collective (instantaneous) voltage and current. Their expressions are as follows:

v2
	

= v2
AO + v2

BO + v2
C O + v2

O (5.62)

i2
	

= i2
A + i2

B + i2
C + i2

N (5.63)

Thus leading straight to the collective rms voltage and current

V 2
	

= V 2
AO + V 2

BO + V 2
C O + V 2

O (5.64)

I 2
	

= I 2
A + I 2

B + I 2
C + I 2

N (5.65)

The system’s apparent power is defined

S
	

= V
	

I
	

(5.66)

and it will be proved later that this is the maximum active power that can be transmitted to
the unbalanced load by the asymmetrical voltages, under the condition that the rms collective
voltage and current remain unchanged. This condition fulfills also Lyon’s recommendation,
(see section 5.3 and Appendix VI).

On the next step a balanced conductance or active equivalent conductance is defined using
the collective active power and rms voltage:

G = P
	

V 2
	

; P
	

=
∑

Pk ; k = A, B, C, N (5.67)

In the same way the balanced equivalent susceptance is defined

B = −Q
	

V 2
	

; Q
	

=
∑

Qk ; k = A, B, C, N (5.68)

The equivalent conductance G and susceptance B correspond to a balanced load. To separate
the unbalanced components the unbalanced branch conductances �Gk and susceptances �Bk

are defined:

�Gk = Gk − G and �Bk = Bk − B (5.69)

The values of �Gk and �Bk may vary in magnitude from branch to branch.
An improved representation of the branch can be achieved by involving four currents, Fig.

5.8b: a balanced current ikb = ik‖b + ik⊥b and an unbalanced current iku = ik‖u + ik⊥u . The
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Figure 5.8 Equivalent branch circuits using the FBD-method: (a) Basic approach; proportional and
orthogonal currents. (b) Use of balanced and unbalanced currents. (c) Use of active, nonactive, and
proportional unbalanced current. Source: M. Depenbrock, “The FBD-Method, A Generally Applicable
tool for Analyzing Power Relations,” IEEE Trans. On Power Systems, Vol.8, No.2, May 1993, pp.381–87.

rms values and names of these four currents are as follows:

Ik‖b = G VOk (5.70)

is the proportional branch current,

Ik⊥b = |B| VOk (5.71)

is the orthogonal branch current,

Ik‖u = |�Gk | VOk (5.72)

is the proportional unbalance branch current,

Ik⊥u = |�Bk | VOk (5.73)



P1: OTA/XYZ P2: ABC
c05 BLBK294-Emanuel June 22, 2010 11:26 Printer Name: Yet to Come

162 Power Definitions and the Physical Mechanism of Power Flow

is the orthogonal unbalance branch current. These four currents are mutually orthogonal and
lead to the following total collective rms current expression

I 2
	

= 1

T

∫ T

0
(i2

A + i2
B + i2

C + i2
N ) dt = 1

T

∫ T

0
(i2

	‖b + i2
	⊥b + i2

	‖u + i2
	⊥u) dt

= I 2
	‖b + I 2

	⊥b + I 2
	‖u + I 2

	⊥u (5.74)

Multiplying (5.74) with V 2
	

, each set of collective currents leads to a component of the
system apparent power

S2
	

= V 2
	

I 2
	

= P2
	

+ F2
	

= P2
	

+ Q2
	

+ F2
	‖u

= P2
	

+ Q2
	

+ F2
	‖u + F2

	⊥u (5.75)

where

P
	

= V
	

I
	‖b

is the active power, and

F
	

=
√

Q2
	

+ F2
	u

is the total nonactive power, that can be separated into reactive power:

Q
	

= V
	

I
	⊥b

and the unbalanced nonactive power:

F
	u =

√
F2

	‖u + F2
	⊥u

where

F
	‖u = V

	
I 	‖u

is the proportional unbalance nonactive power, and

F
	⊥u = V 	 I

	⊥u

is the orthogonal nonactive power.
The nature of each one of these three nonactive powers differs: The reactive power Q

	
is

due to energy that oscillates between source and energy storage components, while the powers
F

	‖u and F
	⊥u are due only to load unbalance.
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There are many ways in which the branch equivalent circuit can be further solved. A simple
approach, close to Fryze’s concept and adopted by the German standard [16] DIN 40110 is
sketched in Fig. 5.8c where all the orthogonal components and the reactive power are lumped
together and modeled by the current source ik⊥. Depenbrock resolves this model using only
three components:

S2
	

= P2
	

+ Q2
tot	‖ + Q2

tot	⊥ (5.76)

where

Qtot	‖ = V
	

I
	‖u and Qtot	⊥ = V

	
I

	⊥ ; I
	⊥ =

√
I 2

	⊥b + I 2
	⊥u

The complete three-phase, four-wire equivalent circuit derived from [16, 25] is given in
Fig. 5.9.

A more complex, but most interesting, model that makes use of symmetrical components
v+, v−, and v0, is shown in Fig. 5.10. Based on (5.57) the branch voltages are separated into
symmetrical components as follows:
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uAi || uBi || uCi || uNi || Ai Bi Ci Ni

Figure 5.9 Three-phase, four-wire load: Depenbrock’s equivalent circuit [16, 25].
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Figure 5.10 Depenbrock’s equivalent branch circuit using symmetrical components.

vA0 = vA − v0 = v+
A + v−

A + v0
A − 1

4
(vA + vB + vC ) = v+

A + v−
A + 1

4
v0

vB0 = v+
B + v−

B + 1

4
v0

vC0 = v+
C + v−

C + 1

4
v0

vN0 = −3

4
v0 v0

A = v0
B = v0

C = v0 (5.77)

The symmetrical components of the current, I +
A , I −

A , and I 0 are handled as follows: Positive-,
negative- and zero-sequence currents flow in each branch; in turn each one of the four branches
is subdivided into three parallel subbranches such that each one of them is dedicated to one of
the sequence currents. The subbranches have the admittances

Y + = I +
A

V +
A

= I +
B

V +
B

= I +
C

V +
C

Y − = I −
A

V −
A

= I −
B

V −
B

= I −
C

V −
C

and

Y 0 = I 0

4V 0

Each admittance is connected in series with a complementary voltage

Y + with v•+
k = v−

k + v0

Y − with v•−
k = v+

k + v0

and

Y 0 with v•0
k = v+

k + v−
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The complementary voltage is needed to ensure that the voltage impressed across the
admittance Y + is v+, across Y − is v−, and across Y 0 is v0.

This time each branch has six distinctive powers that lead to the S
	

resolution with
six components:

S2
	

= (S+
	

)2 + (F•+
	

)2 + (S−
	

)2 + (F•−
	

)2 + (S0
	

)2 + (F•0
	

)2 (5.78)

where S+
	

= 3V + I +, S−
	

= 3V − I −, and S0
	

= 3V 0 I 0 are the classical symmetrical compo-
nents powers and F•+

	
= 3V •+

	
I +, F•−

	
= 3V •−

	
I − and F•0

	
= 3V •0

	
I 0 are complementary

powers, all three nonactive powers caused by the fact that the system is not balanced.
The admittances Y +, Y −, and Y 0 can in turn be described by more complex subcircuits. If

one chooses the Fig. 5.10 approach then, similarly to (5.75), we can write:

(S+
	

)2 = (P+
	

)2 + (Q+
	

)2 + (F+
	u)2 + (F+

	⊥u)2

(S−
	

)2 = (P−
	

)2 + (Q−
	

)2 + (F−
	u)2 + (F−

	⊥u)2

(S0
	

)2 = (P0
	

)2 + (Q0
	

)2 + (F0
	u)2 + (F0

	⊥u)2 (5.79)

5.5.2 L. S. Czarnecki’s Method

A simplified approach based on Buchholz’s and Fryze’s theories and similar to Depenbrock’s
was introduced in 1988 [17]. The active and reactive powers of the load are obtained from the
basic expressions

P = �e{VaI∗
a + VbI∗

b + VcI∗
c}

Q = �m{VaI∗
a + VbI∗

b + VcI∗
c}

An equivalent conductance Ge = P/V 2
	

and an equivalent susceptance Be = −Q/V 2
	

(V
	

is
Buchholz’s collective rms voltage), help define the active currents

i Aa = Ge vA

iBa = Ge vB

iCa = Ge vC (5.80)

and the reactive currents

iAr = Be
d

d(ωt)
vA =

√
2�e{j BeVAεjωt}

iBr = Be
d

d(ωt)
vB =

√
2�e{j BeVBεjωt}

iCr = Be
d

d(ωt)
vC =

√
2�e{j BeVCεjωt} (5.81)
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The line currents consist of three terms

iA = iAa + iAr + i Au

iB = iBa + iBr + iBu

iC = iCa + iCr + iCu (5.82)

where the currents iAu , iBu and iCu are due to load unbalance.
Czarnecki proved that the three collective currents ia	

, ir	
, and iu	

are mutually orthogonal.
He used the following elegant demonstration based on the mathematical identity:

1

T

∫ T

0
fi (t) f j (t) dt = �e{Fi F∗

j }

where fi (t) and f j (t) are sinusoidal functions with identical frequencies and Fi and Fi are
their respective rms phasors.

The total collective rms current squared is

I 2
	

= 1

T

∫ T

0
(i2

A + i2
B + i2

C ) dt

= 1

T

∫ T

0
[(i Aa + iAr + iAu)2 + (iBa + iBr + iBu)2 + (iCa + iCr + iCu)2] dt

= 1

T

∫ T

0
[i2

a	
+ i2

r	
+ i2

u	
] dt + 2[�(ar ) + �(ur ) + �(ua))] (5.83)

where

�(ar ) = 1

T

∫ T

0
(i AaiAr + iBaiBr + iCaiCr ) dt

= �e{j BeVAGeV∗
A + j BeVB GeV∗

B + j BeVC GeV∗
C }

= �e{j BeGe(V 2
A + V 2

B + V 2
C )} = 0 (5.84)

�(ur ) = 1

T

∫ T

0
(i Aui Ar + iBuiBr + iCuiCr ) dt

= 1

T

∫ T

0
[(i A − iAa − iAr )i Ar + (iB − iBa − iBr )iBr + (iC − iCa − iCr )iCr ] dt

= 1

T

T

0

∫ T

0
[(i Ar iA − i AaiAr − i2

Ar ) + (iBr iB − iBaiBr − i2
Br )

+(iCr iC − iCaiCr − i2
Cr )] dt

= �e{j BeVAI∗
A + j BeVBI∗

B + j BeVCI∗
C} − B2

e V 2
	

= Be �e{j (P + j Q)} + Be Q = −Be Q + Be Q = 0 (5.85)
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�(ua) = 1

T

∫ T

0
(iAui Aa + iBuiBa + iCuiCa) dt = 1

T

∫ T

0
[(i A − iAa − iAr )iAra

+(iB − iBa − iBr )iBa + (iC − iCa − iCr )iCa] dt

= 1

T

∫ T

0
[(i AaiA − i AaiAr − i2

Aa) + (iBaiB − iBaiBr − i2
Ba)

+(iCaiC − iCaiCr − i2
Ca)] dt

= 1

T
[Ge(vAi A + vBiB + vCiC ) − G2

e(v2
A + v2

B + v2
C )

−IAai Ar − IBaiBr − ICaiCr ] dt

= Ge P − G2
e V 2

	
= Ge(P − P) = 0 (5.86)

thus from (5.83) results

I 2
	

= I 2
a	

+ I 2
r	

+ I 2
u	

(5.87)

and

S
	

= V
	

I
	

=
√

P2 + Q2 + D2
u (5.88)

We recognize that (5.88) is identical to (5.75) where D2
u = F2

	u = F2
	‖u + F2

	⊥u . Moreover,
this model works well only for three-phase three-wire systems.

5.5.3 IEEE Std. 1459–2010 Method

This method adheres to Lyon’s concept of apparent power with an additional requirement: for
the ideal condition used to supply the maximum power (5.18), represented by the apparent
power Se = 3Ve Ie, the hypothetical three-phase compensated system supplies a perfectly
balanced and purely resistive load with perfectly symmetrical line currents.

This method is the only one known to rely on an apparent power definition that satisfies the
key condition

�P = Rs

V 2
L L

S2
e

The effective current Ie, is the positive-sequence current conceived by Buchholz, Lyon and
Goodhue. Its mathematical expression (5.22) considers the actual differences between the
neutral wire (or the neutral current return path) resistance Rn and the line resistance Rs (or
resistances Ra, Rb, Rc, that are not necessarily equal (5.20))

Ie =
√

I 2
a + I 2

b + I 2
c + ρ I 2

n

3
=

√
(I +)2 + (I −)2 + (1 + 3ρ)(I 0)2
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where the ratio ρ = Rn/Rs . If the value of ρ is not known the IEEE Std. 1459–2010 recom-
mends using ρ = 1.0. The FBD-method does not use the ratio ρ, nevertheless checking the
definition of I

	
(5.65) one can recognize that implicitly it corresponds to ρ = 1 in which case√

3 Ie = I
	

.
The ratio ρ affects significantly the values of Ie and Se. If one uses ρ = 1.0 for the actual

measurement, when the true ρ > 1.0, the expression

100

[
Se(ρ �=1)−Se(ρ=1)

Se(ρ �=1)

]
=100

[
Ie(ρ �=1)− Ie(ρ=1)

Ie(ρ �=1)

]
=100

⎡
⎣1−

√
(I −/I +)2+4(I 0/I +)2 + 1

(I −/I +)2+(3 + ρ)(I 0/I +)2+1

⎤
⎦

helps compute the relative difference between the two measurements. The graphs for the most
unfavorable case, when I −/I + = 0, are summarized in Fig. 5.11 for I 0/I + parameter. One
learns that for ρ < 1.0 the measured apparent power with ρ = 1 is larger than the actual, and
the trend reverses for ρ > 1.0. In actual distribution systems ρ > 1 and assuming ρ = 1 will
favor the consumers [23] (see Appendix VII).

For a three-wire system I 0 = 0 and

Ie =
√

I 2
a + I 2

b + I 2
c

3
=

√
(I +)2 + (I −)2
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Figure 5.11 Percent apparent power difference versus ρ. 100(Se(ρ �=1) − Se(ρ=1))/Se(ρ �=1) for I −/I + = 0
[23]. Source: S. Pajic, A. E. Emanuel, “Effect of Neutral Path Power losses on the Apparent Power
Definition: a Preliminary Study,” IEEE Trans. On Power Delivery, Vol.24, No.2, April 2009, pp.517–
523.
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The expression of the effective voltage Ve is discussed in detail in the next section (5.109).
The effective apparent power Se can be conveniently separated on its main component

S+, the positive-sequence apparent power and the remaining term Su , the unbalance appar-
ent power:

S2
u = S2

e − (S+)2 (5.89)

with

(S+)2 = (P+)2 + (Q+)2 (5.90)

This approach emphasizes the positive-sequence components as the most significant powers
and considers also a positive-sequence power factor,

PF+ = P+

S+ (5.91)

Under sinusoidal conditions, the resolution of the apparent power with lumped active and
reactive powers (P = P+ + P− + P0 and Q = Q+ + Q− + Q0) is another possibility that
leads to an expression similar to (5.75)

S2
e = (3Ve Ie)2 = P2 + Q2 + N 2

u Nu ≈ F2
	u (5.92)

More details on the IEEE Std. 1459–2010 are presented in the next section.

5.5.4 Comparison Between The Two Major Engineering Schools
of Thought

The FBD-method was embraced by many scholars as the theory that leads to the ultimate
definition of apparent power that equals the maximum active power that can be transmitted
under given constraints [18, 19, 20].

Following is the basic explanation that presents the concept of unity power factor according
to the FBD-method:

The unbalanced load shown in Fig. 5.12a is compensated as illustrated in Fig. 5.12b. The
equivalent circuit of the load plus compensator corresponds to a set of four equal resistances
R

	
connected to a virtual neutral point O , Fig. 5.12c.

The resistance R
	

has the value

R
	

= VAO

IAO
= VBO

IBO
= VC O

IAO
= VN O

IAO
(5.93)

and combined with the constraint

I 2
A + I 2

B + I 2
C + I 2

N = I 2
AO + I 2

BO + I 2
C O + I 2

N O (5.94)
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Figure 5.12 Three-phase load power factor compensation: (a) Actual unbalanced three-phase system.
(b) Compensated system with line power loss unchanged (additional unity power factor load not shown).
(c) Equivalent compensated load, FBD-method. (d) Equivalent compensated load, IEEE Std. 1459–2010.
(Positive-sequence currents in-phase with fundamental).
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results in

R2
	

= V 2
	

I 2
	

(5.95)

where

V 2
	

= V 2
AO + V 2

AO + V 2
AO + V 2

AO (5.96)

and

I 2
	

= I 2
AO + I 2

BO + I 2
C O + I 2

N O = I 2
A + I 2

B + I 2
C + I 2

N (5.97)

are Buchholz’s collective rms voltage and current squared, the key electrical values to the S
	

definition.
Equation (5.94) implies that the four conductors have equal resistances and the compensated

system has the same line power loss as the original system, i.e., the neutral current path
resistance RN equals the line resistance Rs . Obviously this condition is not always realistic.

The power delivered to the hypothetical system equivalent to four resistances R
	

is

Pmax = S
	

= VAO IAO + VBO IBO + VC O IC O + VN O IN O = R
	

I 2
	

= V 2
	

R
	

= V
	

I
	

(5.98)

It can be shown (see Appendix V) that

V 2
	

= 1

4
(V 2

AN + V 2
B N + V 2

C N + V 2
AB + V 2

BC + V 2
C A) (5.99)

thus if we rewrite (5.66) in a conventional way

S
	

= 3V
′

e I
′
e = 3

V
	√
3

I
	√
3

= V
	

I
	

(5.100)

and the effective voltage and current are

V
′

e =
√

1

12
(V 2

AN + V 2
B N + V 2

C N + V 2
AB + V 2

BC + V 2
C A) (5.101)

I
′
e =

√
1

3
(I 2

A + I 2
B + I 2

C + I 2
N ) (5.102)

Both V
′

e and I
′
e can be expressed in function of symmetrical components

V
′

e =
√

(V +)2 + (V −)2 + (V 0)2

4
(5.103)
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and

I
′
e =

√
(I +)2 + (I −)2 + 4(I 0)2 (5.104)

A thorough mathematical demonstration [20, 24] for the maximum active power is found
in Appendix VI where the effective voltage (7.36) is

V
′′

e =
√

1

9ρ + 3
[V 2

A + V 2
B + V 2

C + ρ(V 2
AB + V 2

BC + V 2
C A)]

=
√

(V +)2 + (V −)2 + 1

3ρ + 1
(V 0)2 (5.105)

This expression is dependent on the ratio ρ and V
′

e = V
′′

e only for ρ = 1.0.
The method used in IEEE Std. 1459–2010 differs from the FBD-method mainly due to the

fact that the compensated system, the one that transfers maximum active power, is perfectly
symmetrical, void of any negative- or zero-sequence powers, Fig. 5.12d.

Assuming that the electrothermal effect is the deciding factor in determining the effective
voltage Ve the following approach was proposed by the author [21]: the active power dissipated
by the load under unity power factor conditions is assumed equal to the actual active power
when the load is not compensated, (subunit power factor). If the metered consumer has some
loads �-connected or floating neutral Y -connected, with a total power P� and the remaining
loads are Y -connected with four-wire system with a total power PY , then the total active power
of the load can be expressed in the following manner

P = PY + P� = V 2
A + V 2

B + V 2
C

RY
+ V 2

AB + V 2
BC + V 2

C A

R�

(5.106)

where RY and R� are equivalent resistances.
When the voltages VA, VB , and VC are replaced with the symmetrical equivalent voltage

source Ve, the active power supplied to the receiving end of the line must remain unchanged;
in mathematical terms this means

P = PY + P� = 3V 2
e

RY
+ 9V 2

e

R�

(5.107)

Defining the ratio

P�

PY
= 9V 2

e

R�

RY

3V 2
e

= 3
RY

R�

= ξ (5.108)

Both equations (5.106) and (5.107) give the total active power of the three-phase load.
Substituting R� = 3RY /ξ in (5.106) and (5.107) leads to the intermediary expression

V 2
A + V 2

B + V 2
C

RY
+ V 2

AB + V 2
BC + V 2

C A

3RY
ξ = 3V 2

e

RY
+ 9V 2

e

3RY
ξ = 3V 2

e (1 + ξ )

RY
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that helps to find the general expression of the effective voltage

Ve =
√

3(V 2
A + V 2

B + V 2
C ) + ξ (V 2

AB + V 2
BC + V 2

C A)

9(1 + ξ )
=

√
(V +)2 + (V −)2 + (V 0)2

1 + ξ
(5.109)

Equation (5.109) (IEEE Std. 1459–2010) has to be discussed and compared with (5.101)
(the FBD-method). Four cases of interest, each characterized by a different value of the ratio
ξ , have been identified:

Case I: The four-wire system. No �-connected loads, no floating Y -connected loads,
P� = 0, R� → ∞ and ξ = 0.

Ve =
√

V 2
A + V 2

B + V 2
C

3
=

√
(V +)2 + (V −)2 + (V 0)2 (5.110)

Case II: The three-wire system. PY = 0, RY → ∞, ξ → ∞

Ve =
√

(V 2
AB + V 2

BC + V 2
C A)

9
=

√
(V +)2 + (V −)2 (5.111)

This is equation (5.24). Expressions (5.110) and (5.111) define the highest and the lowest
limits of Ve. Comparison with (5.101) and (5.103) shows that the zero-sequence voltage is for
different equivalent load topologies.

Case III: Even load distribution, P� = PY , R� = 3RY and ξ = 1.

Ve =
√

3(V 2
A + V 2

B + V 2
C ) + (V 2

AB + V 2
BC + V 2

C A)

18
=

√
(V +)2 + (V −)2 + (V 0)2

2
(5.112)

Case IV: The particular case when R� = RY , P� = 3PY , ξ = 3.

Ve = V
′

e =
√

V 2
A + V 2

B + V 2
C + V 2

AB + V 2
BC + V 2

C A

12
=

√
(V +)2 + (V −)2 + (V 0)2

4
(5.113)

This expression is identical to (5.101) and (5.103).
In practical situations it is extremely difficult to determine the value of the ratio ξ . The loads

are changing in time and the power network topology is quite involving. The initial issue of
IEEE Std. 1459 assumed ξ = 1.0 and it is highly probable that this value will be kept unity
for a long time. Fortunately, ξ affects only the contribution of the zero-sequence voltage V 0,
and in practical power networks there are only traces of zero-sequence voltage. A large scale
survey dedicated to power quality issues was conducted in the USA by EPRI and Electrotek
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Concepts [22]. The data collected revealed that in medium and low voltage systems the ratio
100V 0/V + will remain for 95% of the time smaller than 1.2%.

To estimate the difference between the values obtained from the FBD-method (5.101) and
the IEEE Std. 1459–2010 (5.109), we may assume that the expression of Ve

′
(5.103) is the

correct value and evaluate the normalized difference

%δ = 100
Ve

′ − Ve

Ve
(5.114)

To simplify the computations the following notations are used:

ϒ− = V −

V + ϒ0 = V 0

V +

From (5.103) and (5.109) we have

V
′

e

V + =
√

1 + (ϒ−)2 + (ϒ0)2

4
(5.115)

and

Ve

V + =
√

1 + (ϒ−)2 + (ϒ0)2

1 + ξ
(5.116)

The largest difference occurs when ϒ− = 0. In this case the percent difference is

%δ = 100

⎡
⎢⎢⎢⎣

√√√√√√√
1 + (ϒ0)2

1 + ξ

1 + (ϒ0)2

4

− 1

⎤
⎥⎥⎥⎦ (5.117)

The results are plotted in Fig. 5.13. The solid curve corresponds to V 0 = 0.04V +, a case
that will not be encountered in power networks under normal operation and the dashed curve
for V 0 = 0.02V +, which is on the upper borderline of the actual zero-sequence voltage values.
The maximum difference for V 0/V + = 0.02 is %δ = 0.015%, i.e. 150 ppm. This value is
found to be in the same range with some of the finest metering equipment errors.

In conclusion taking ξ = 1 or ξ = 3 will not cause major metering problems or dis-
crepancies between the methods. The real difficulty is determining the value of ρ. This ratio
can cause significant errors if it is ignored or incorrectly estimated [23]. More details on ρ

estimation are given in Appendix VII.
A numerical example will help realize how close the two methods are. The circuit is

presented in Fig. 5.14, the 60 Hz three-phase voltage supplying this system is not symmetrical
and has the following symmetrical components:

V+
A = 100 � 0◦ V V−

A = 2.5 � 0◦ V V0
A = 1.2� − 90◦ V
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Figure 5.13 Percent difference between Ve and V
′

e , (IEEE Std. 1459–2010, (1.109) and DIN
40110,(1.101)) in function of the ratio ξ .

The three line conductors have identical components, Rs = 1.0 � and Ls = 7.6 mH. The
neutral path has the resistance RN = 2.40� and the inductance L N = 7.6 mH. Part of the load
is unbalanced, RA = 100 �, RB = 500 � and RC = 1000 �. The remaining load consists
of three �-connected equal impedances, ZL = 70 + j70.48 �. On the load side the neutral
conductor has a resistance RN L = 0.04 �.
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Figure 5.14 Example.
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The currents and voltages measured at the load terminals are:

IA = 3.561 � − 38.283◦ A VA = 91.354 � − 5.231◦ V VAB = 159.995 � − 25.822◦ V
IB = 2.954 � − 164.690◦ A VB = 94.345 � − 124.211◦ V VBC = 155.222� − 92.376◦ V
IC = 2.819 � − 74.763◦ A VC = 90.066� −121.164◦ V VC A =161.931 � −148.172◦ V
IN = 0.736 � − 158.790◦ A

The symmetrical components at the load terminals A, B, C, and N are

V + = 91.710 V I + = 3.106 A

V − = 5.259 V I − = 0.274 A

V 0 = 3.797 V I 0 = 0.245 A

To facilitate the comparison among different methods the negative- and the zero-sequence
components are normalized in percent of the positive-sequence:

100
V −

V + = 4.140% ; 100
V 0

V + = 5.734%

100
I −

I + = 8.812% ; 100
I 0

I + = 7.900%

One will observe that in this example the zero-sequence voltage has a value that exceeds
the level usually encountered in actual systems. The active power is

P = �e{VAI∗
A + VBI∗

B + VCI∗
C } = 623.979 W

I. The FBD-method leads to the following results:

I
	

=
√

I 2
A + I 2

B + I 2
C + I 2

N = 5.468 A

V
	

=
√

1

4
(V 2

A + V 2
B + V 2

C + V 2
AB + V 2

BC + V 2
C A) = 159.141 V

and V
′

e = V
	
/
√

3 = 91.880 V. The apparent power and the power factor are

S
	

= V
	

I
	

= 870.133 VA PF
	

= P

S
	

= 0.717

The branches’ apparent powers are:

SA = VAI∗
A SB = VBI∗

B SC = VCI∗
C SN = VN I∗

N

leading to the total active power

P = �e{SA + SB + SC + SN } = 623.979 W
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and reactive power

Q = �m{SA + SB + SC + SN } = 589.932 var

The unbalance nonactive power is

F
	u =

√
S2

	
− P2 − Q2 = 140.572 var

The balance conductance and susceptance are

G = P

V 2
	

= 0.0246379 S B = −Q

V 2
	

= −0.0232935 S

For the compensated system the hypothetical load plus compensator has an equivalent
circuit that consists of four equal resistances R

	
= 1/G = 40.588 � connected between the

terminals A, B, C , and a common neutral point.
The new currents and voltages measured at the load terminals are:

IA = 2.4592 � − 4.109◦ A VA = 99.799 � − 4.109◦ V VAB = 170.787 � − 24.833◦ V

IB = 2.376 � − 125.108◦ A VB = 96.420� − 125.108◦ V VBC = 164.424� − 93.942◦ V

IC = 2.364 � − 117.405◦ A VC = 95.921 � − 117.405◦ V VC A = 170.787 � −147.283◦ V

IN = 0.0216 � − 86.059◦ A

The symmetrical components at the load terminals are

V + = 97.364 V I + = 2.399 A

V − = 2.434 V I − = 0.021 A

V 0 = 0.292 V I 0 = 0.007 A

Normalizing one finds

100
V −

V + = 2.50% ; 100
V 0

V + = 0.30%

100
I −

I + = 2.50% ; 100
I 0

I + = 0.30%

The apparent power equals the active power and the power factor becomes unity:

S
	

= P = 701.240 W thus PF = 1.0
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II. The IEEE Std. 1459–2010 leads to the following results:

When we use ρ = 1.0 the effective current is Ie = I
	
/
√

3 = 3.157 A. The effective voltage
is

Ve =
√

3(V 2
A + V 2

B + V 2
C ) + V 2

AB + V 2
BC + V 2

C A

18
= 91.890 V

yielding the effective apparent power

Se = 3Ve Ie = 870.228 VA

and the power factor

PFe = P

Se
= 0.717

The active power is P = 623.979 W. The positive-sequence apparent power is

S+ = 3V + I + = 854.646 VA

From (5.89) and (5.92) results

Su =
√

S2
e − S2

u = 166.375 VA

and

Nu =
√

S2
e − P2 − Q2 = 145.438 var ≈ F

	u = 140.572 var

In the IEEE approach the load is compensated in such a manner that the line currents are
sinusoidal, with equal amplitudes and 120◦ out of phase. However, since the supplied voltages
are not symmetrical, the compensated line currents can not be exactly in-phase with the line-
to-neutral voltages. A sound approach is to design a compensator that brings the line currents
in-phase with the respective positive-sequence voltage. The line current amplitude has to be
adjusted to a level that ensures minimum active power flow into the compensator.

If ρ ratio is correctly considered, ρ = RN /Rs = 2.40/1.0 = 2.40, the effective current value
increases to Ie = 3.197 A, causing the apparent power to increase 1.26% over the apparent
power that corresponds to ρ = 1.0. Consequently the power factor decreases to 0.707. For
the system compensated according to IEEE the currents and voltages measured at the load
terminals are:

IA = 2.257� − 4.499◦ A VA = 100.020 � − 4.280◦ V VAB = 171.218� 25.105◦ V

IB = 2.257� − 124.500◦ A VB = 97.347� − 124.610◦ V VBC = 164.458� − 93.786◦ V

IC = 2.257� 115.50◦ A VC = 95.018� 117.880◦ V VC A = 170.742� 147.613◦ V

IN = 0 A

(5.118)
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The symmetrical components at the load terminals are

V + = 97.250 V I + = 2.257 A

V − = 5.568 V I − = 0 A

V 0 = 3.778 V I 0 = 0 A

The currents are practically pure positive-sequence; the voltages, however, remain asym-
metrical with the normalized values

100
V −

V + = 5.725% ; 100
V 0

V + = 3.88%

Since in this case the zero-sequence current is nil, the value of ρ is inconsequential.
The effective voltage and current are

Ve = 97.483 V Ie = 2.257 A

yielding

Se = 660.093 VA ; P = 657.140 W and PF = 0.995

Table 5.1 enables the comparison of the methods:

Table 5.1 Comparison among different methods

VECTOR DIN IEEE (ρ = 1.0) IEEE (ρ = 2.40)

Ve, V
′

e (V) — 91.8803 91.8904 91.8844
Ie (A) — 3.1567 3.1567 3.1966
SV , S

	
, Se (VA) 857.194 870.1326 870.228 881.144

PF 0.727 0.716 0.716 0.706
I −/I +

Compensated
(%) — 2.50 0 0

I 0/I +

Compensated
(%) — 0.30 0 0

V −/V +

Compensated
(%) — 2.50 5.725 5.725

V 0/V +

Compensated
(%) — 0.30 3.88 3.88

It is learned from this example that if it is assumed that ρ = 1.0 both methods, DIN and IEEE,
give practically the same results as concerns Ie, Ve, Se, and the PF . The post-compensation
results are different: The IEEE approach yields a perfect sinusoidal, positive-sequence currents;
the DIN currents are tainted by residual symmetrical components. The IEEE method does not
help reduce significantly the zero- and negative-sequence voltages (V −/V + from 5.73% to
5.72% and V 0/V + from 5.73% to 3.88%). The DIN seems more effective causing for V 0/V +
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a reduction from 5.73% to 0.3% and for V −/V + from 4.14% to 2.50%. High negative-
sequence voltage is damaging motors, but high zero-sequence currents cause a host of unwanted
problems (stray voltage, electromagnetic interference, relay malfunction, etc.).

If the supplier of energy is involved in the process of system balancing and imposes on all the
large and medium consumers to improve the loads balance and to aim for unity power factor,
then both methods converge toward the same excellent symmetry of currents and voltages and
the disappearance of the residual currents.

To further emphasize the difference between the methods, the function

�P = Rs(I 2
A + I 2

B + I 2
C + ρ I 2

N ) = F(S2)

is observed for the three-phase circuit shown in Fig. 5.15a. The load resistance R varies in
the range 1 ≤ R ≤ 1000 �. The normalized apparent powers squared, (SV /S0)2, (S

	
/S0)2,

(Se/S0)2 for ρ = 1 and (Se/S0)2 for the correct ρ = 3 are plotted in function of the normalized
power loss �P/�P0, where S0 = Se for R = 40 �.

The results shown in Fig. 15b prove the total lack of linearity of the vector apparent power
and the reasonable linearity of S2

e for ρ = 3 followed by S2
e with ρ = 1 and the S2

	
.

An alert reader will ask the following question: “What happens with (5.109) when we deal
with a consumer with severely unbalanced loads, such as a V-connected transformer or a single
line-to-neutral connected load?”

Evidently the consumer is supplied with a three-phase, three-wire system. The V-connected
load has the active power PV . The next step is to replace the V-connection with a �-connection
that consists of three resistances R�. The equivalence of active power between the V and the
� connection gives

PV = V 2
AB + V 2

BC + V 2
C A

R�

Finally, the equivalence with the hypothetical symmetrical three-phase line supplied with
the line-to-neutral voltage Ve leads to

PV = 9V 2
e /R�

hence

Ve =
√

R� PV

9
=

√
R�(V 2

AB + V 2
BC + V 2

C A)

9PV R�

PV =
√

V 2
AB + V 2

BC + V 2
C A

9

an expression identical to (5.111).
In a similar way one may approach the case of a single-phase load connected line-to-neutral.

In this case the active power is

PR = V 2
A

RR
= V 2

A + V 2
B + V 2

C

RY
= 3V 2

e

RY
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Figure 5.15 Comparison among different definitions: (a) Circuit used to compute the apparent powers
measured at the terminals A, B, C, N . (b) (SV /S0)2, (S

	
/S0)2, (Se/S0)2 for ρ = 1 and (SV /S0)2 for

ρ = 3 vs. �P/�P0.

where RR is the actual equivalent resistance, connected A to neutral and RY is one of the three
equal resistances that make the equivalent Y-connected load supplied with symmetrical Ve,
line-to-neutral voltages.

From the last equations we find

Ve =
√

V 2
A + V 2

B + V 2
C

3
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In the case of more involving, unbalanced three-phase loads, the expressions for Ve, (5.110)
and (5.111), give satisfactory results. For three-wire systems use (5.110) and for four-wire
systems use (5.111). The expression (5.109) can be used if the load topology is well known
and the voltages and the active powers supplied to the loads are correctly measured. The main
issue is the load separation in �- and Y-connected equivalent loads, that dissipate the same
active power as the original load, i.e.

R� = V 2
AB + V 2

BC + V 2
C A

P�

and RY = V 2
A + V 2

B + V 2
C

PY

The following example helps to clarify such a situation: A three-phase load consists of
three equal resistances R = 20�, �-connected and one resistance RR , connected phase A-
to-neutral, that takes two values, RR = 10� and RR = 1�. The measured rms voltages are:
Line-to-neutral: VA = 350.00 � 0◦ V, VB = 365.00� − 116◦ V, VC = 372.00� 124◦ V, Line-
to-line: VAB = 606.30 V, VBC = 638.26 V, VC A = 637.57 V.

For RR = 10�, computations yield: R� = 20�, RY = 32.17� and ξ = 3RY /R� = 4.826.
For RR = 1� results RY = 3.217� and ξ = 0.483. The values of Ve for expression (5.109)
and the four cases presented in section 5.54, see (5.110), (5.111), (5.112) and (5.113) are listed
in the following table:

Table 5.2 Computed Values of Ve Using the Expressions Recommended
by IEEE Std. 1459–2010 and DIN 40110

Equation number (5.109) (5.110) (5.111) (5.112) (5.113)

RR = 10 � 362.341 362.450 362.318 362.384 362.384
RR = 1 � 362.407 362.450 362.450 362.384 362.351

IEEE Case I Case II Case III DIN

The results are very close, the difference between the extremes being less than 0.04%.

5.6 Problems

5.1 The active and reactive powers of a three-phase unbalanced load are as follows:

Pa = Pb = 2.0 kW Qa = Qb = 1.0 kvar

Pc = 3.0 kW Qc = −2.0 kvar

Compute the arithmetic and vector apparent powers and the respective power factors.

5.2 Assuming that the four conductors that supply the load from the previous problem have
equal resistances, compute the Buchholz-Goodhue effective apparent power Se = 3Ve Ie and
the power factor. The rms line-to-neutral voltages are Va = Vb = 120 V and Vc = 110 V.

5.3 A three-phase load consists of three Y-connected resistances, R, R, and ηR supplied by
a four-wire system. At the load terminals the line-to-neutral voltages are V � 0◦, V � − 120◦

and V � 120◦. The coefficient η controls the load unbalance. Assuming that all four conductors
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have equal resistances Rs , plot the graphs describing the normalized power loss �P/�P0

versus (Se/S0)2, (SV /S0)2 and (SA/S0)2 when 0.1 < η < 50. The base values �P0 and S0

are the values obtained when η = 1.0.

5.4 Repeat problem 5.3 for the case when the neutral conductor has a resistance Rn = 2.3Rs .
Explain your results.

5.5 Following are the voltage and current phasors measured at the terminals of a three-phase
load:

Va = 650 � 0◦ Vb = 670 � − 128◦ Vc = 659 � 127◦

Ia = 150 � − 25◦ Ib = 100 � − 151◦ Ic = 659 � 92◦

Determine the power triangles Pk Qk Sk k = a, b, c and compute the arithmetic and the
vector apparent powers. Find the neutral current In , the effective current, and voltage Ie and
Ve. Compute the apparent power Se. Assume Rn = Rs , i.e. ρ = 1.0.

Compute the symmetrical components of the voltage and current. Prove numerically that
P = P+ + P− + P0, Q = Q+ + Q− + Q0 and SV = |S+ + S− + S0|.

5.6 Use Lagrange multipliers to find the maximum active power that can be transmitted to
a three-phase load via a three-wire system. The line-to-line voltage phasors are given and so
are the three line rms currents.

5.7 An ideal three-phase three-wire cable supplies a load that consists of two identical
heaters (each having the resistance R) connected line-to-line (A to B and B to C). The
load voltages (

√
3V rms line-to-line) are perfectly symmetrical. Sketch the phasors diagram,

compute Ie, P , Se, N , and the PF . Compare with the SV and PFV . Assuming the cable coaxial,
with the radii a, b, and c, determine the actual flow of power from source to load. Assuming
that this cable has very small, but equal resistances Rs � R, on each line. Check if the line
power loss �P = S2/(3Rs V 2) for Se and for SV .

5.8 An unbalanced load is supplied by a three-phase four-wire cable. The neutral wire
impedance is negligible. The three lines have equal resistances r . The line reactances can be
also neglected. The line currents are:

IA = β I � − θ ; IB = I � − 120◦ − θ ; IC = I � − 120◦ − θ

with the coefficient β �= 1.0. Show that P+ − Pout = −(P− + P0). Where P+, P−, P0 are
the symmetrical components active powers measured at the load’s terminals and Pout is the
power delivered by the load, in this case converted in heat.

5.9 Compute Ve and Ie for a three-phase supplied with the voltages VA = 100 V, VB = 80 V,
VC = 80 V, VAB = 160.64 V, VBC = 129.44 V and VC A = 160.64 V. The load consists of heat-
ing elements; three equal resistances R� = 9� connected in � and one resistance RR = 5�

connected line-to-neutral, phase A to neutral. Hint: Assume equivalent Y-connected resistances
that represent RR , i.e.

(V 2
A + V 2

B + V 2
C )/RY = V 2

A/RR
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6
Three-Phase Nonsinusoidal and
Unbalanced Conditions

your old men will dream dreams,
your young men will see visions.

—Joel 2:28

This chapter deals with the most complex case, poly-phase circuits with distorted waveforms,
unbalanced loads, and asymmetrical voltages. The literature abounds with studies of such con-
ditions [1–12] presenting approaches that complete or contradict each other. Unfortunately no
universal agreement has been achieved. The theoreticians are way ahead of the instrumentation
manufacturers [13] who, for economical reasons, continue to uphold the Silsbee and Curtis
approach [14]. The definitions of powers officially adopted for the first time in 1941 [15] were
promoted for a long time in the IEEE Standard 100 [16]. This chapter details only the most
popular definitions, either in use by the electric utilities, or recommended by major standards.

6.1 The Vector Apparent Power Approach

In 1935 Silsbee and Curtis [14] expanded Budeanu’s single-phase approach to three-phase
systems. Their method can be easily understood from the three-dimensional representation
shown in Fig. 6.1 The vector apparent power SV is the diagonal of the box with the sides
P, QB , and DB , i.e.

SV =
√

P2 + Q2
B + D2

B (6.1)

where

P = PA + PB + PC =
∑

k=A,B,C

Pk (6.2)
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BD
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BBD

CBD

Figure 6.1 Vector apparent power resolution.

is the total three-phase’s load active power, and

Pk =
∑

h

Vkh Ikh cos(θh) (6.3)

is the total active power of phase k, θh is the phase shift between the harmonic current and
harmonic voltage phasors of order h

QB = Q B A + QB B + QBC =
∑

k=A,B,C

Q Bk (6.4)

is the total three-phase’s load reactive power according to Budeanu, and

Q Bk =
∑

h

Vkh Ikh sin(θh) (6.5)

is the total Budeanu’s reactive power of phase k.
The distortion power of phase k is computed from the expression

Dk =
√

S2
k − P2

k − Q2
k (6.6)

where

Sk = Vk Ik =
√∑

h

V 2
kh

∑
h

I 2
kh (6.7)

is the apparent power of phase k.
Instruments based on the vector apparent power were implemented in the last two decades.

Such meters are based on Budeanu reactive power, hence using a definition that is rejected by
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many modern engineers. Moreover, an incorrect value of Q B also leads to an incorrect value
of DB .

6.2 The IEEE Std. 1459–2010’s Approach

The actual three-phase supplying line carries the current harmonics Iah, Ibh , and Ich . In the
case of a four-wire system, there is also a residual or neutral current harmonic Inh . The
actual line and load are replaced with a hypothetical, perfectly compensated system that draws
perfectly sinusoidal positive-sequence currents, Ie and a nil neutral current. The line power
loss in the hypothetical system equals the actual power loss causing the same thermal stress.
Mathematically this translates in the equality

�P = 3re I 2
e = rdc

∑
h

Ksh
(
I 2
ah + I 2

bh + I 2
ch

) + rndc

∑
h

Ksnh I 2
nh (6.8)

where
Ksh and Ksnh are the h-harmonic order combined skin and proximity effect coefficients for

the line conductors and the neutral current path, respectively,
rdc and rndc are the line and neutral current path dc resistances,
re = Ks1rdc is the equivalent resistance labeled Rs in the previous chapters. Ks1 is the

combined skin and proximity effect at the power frequency (60 or 50 Hz).

The effective current is obtained from (6.8):

Ie =
√√√√1

3

{∑
h

[
Ksh

Ks1

(
I 2
ah + I 2

bh + I 2
ch

) + Ksnh

Ks1

rndc

rdc
I 2
nh

]}
(6.9)

The effective current has two orthogonal components:

Ie =
√

I 2
e1 + I 2

eH (6.10)

where

Ie1 =
√

1

3

[(
I 2
a1 + I 2

b1 + I 2
c1

) + ρ1 I 2
n1

]
; ρ1 = Ksn1

Ks1

rndc

rdc
(6.11)

is the fundamental currents contribution and

IeH =

√√√√√1

3

⎧⎨
⎩

∑
h �=1

[
Kh

(
I 2
ah + I 2

bh + I 2
ch

) + ρh I 2
nh

]
⎫⎬
⎭ ; Kh = Ksh

Ks1
ρh = Ksnh

Ks1

rndc

rdc
(6.12)

is the current harmonics contribution.
In practice the ratios ρ1, ρh and Kh are not well known. Network topology changes, tem-

perature changes, and seasonal changes in soil humidity and temperature make the estimation
of these ratios a very difficult task. The IEEE Std. 1459–2010 recommends using the values



P1: OTA/XYZ P2: ABC
c06 BLBK294-Emanuel June 22, 2010 17:58 Printer Name: Yet to Come

188 Power Definitions and the Physical Mechanism of Power Flow

ρ1 = ρh = Kh = 1.0. This simplification does not penalize the consumer and leads to the
following expressions:

Ie =
√

1

3

(
I 2
a + I 2

b + I 2
c + I 2

n

)
(6.13)

Ie1 =
√

1

3

(
I 2
a1 + I 2

b1 + I 2
c1 + I 2

n1

)
(6.14)

IeH =
√

1

3

(
I 2
aH + I 2

bH + I 2
cH + I 2

nH

) =
√

I 2
e − I 2

e1 (6.15)

where

I 2
κ H =

∑
h �=1

I 2
κh ; κ = a, b, c, n (6.16)

For a three-wire system In1 = Inh = 0 and the above expressions become

Ie =
√

1

3

(
I 2
a + I 2

b + I 2
c

)
(6.17)

Ie1 =
√

1

3

(
I 2
a1 + I 2

b1 + I 2
c1

)
(6.18)

IeH =
√

1

3

(
I 2
aH + I 2

bH + I 2
cH

) =
√

I 2
e − I 2

e1 (6.19)

A similar procedure is used to define the equivalent voltage Ve: the compensated hypothetical
load has a unity, or close to unity, power factor. This means that only active power is supplied
to the line end. The load is separated in �-connected loads that are supplied with the active
power P� (this includes also the floating neutral Y-connected loads) and the Y-connected loads
with the active power PY (this includes all the loads connected to neutral). The �-connected
loads are balanced and characterized by equivalent line-to-line resistances R�. Similarly the
Y-connected loads are represented by means of a balanced load with three line-to-neutral
resistances RY . The equivalence of active power between the actual and the hypothetical
system is

3V 2
e

RY
+ 9V 2

e

R�

=

∑
h

(
V 2

ah + V 2
bh + V 2

ch

)

RY
+

∑
h

(
V 2

abh + V 2
bch + V 2

cah

)

R�

(6.20)

The notation

ξ = P�

PY
= 9V 2

e

R�

RY

3V 2
e

= 3RY

R�
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helps rewrite (6.20) as follows:

3(1 + ξ )

RY
V 2

e = 1

RY

⎧⎪⎪⎨
⎪⎪⎩

∑
h

(
V 2

ah + V 2
bh + V 2

ch

)

1
+

∑
h

(
V 2

abh + V 2
bch + V 2

cah

)

3/ξ

⎫⎪⎪⎬
⎪⎪⎭

(6.21)

From here we find the effective voltage

Ve =

√√√√√3
∑

h

(
V 2

ah + V 2
bh + V 2

ch

) + ξ
∑

h

(
V 2

abh + V 2
bch + V 2

cah

)

9(1 + ξ )
(6.22)

The separation of fundamental components from the harmonics and interharmonics using
V 2

e = V 2
e1 + V 2

eH leads to the fundamental effective voltage

Ve1 =
√

3
(
V 2

a1 + V 2
b1 + V 2

c1

) + ξ
(
V 2

ab1 + V 2
bc1 + V 2

ca1

)
9(1 + ξ )

=
√

(
V +

1

)2 + (
V −

1

)2 +
(
V 0

1

)2

1 + ξ
(6.23)

an expression identical to (5.109) for which the IEEE Std. 1459–2010 recommends ξ = 1.
The second term is the harmonic effective voltage

VeH =

√√√√√3
∑
h �=1

(
V 2

ah + V 2
bh + V 2

ch

) + ξh

∑
h �=1

(
V 2

abh + V 2
bch + V 2

cah

)

9(1 + ξh)

=
√√√√∑

h �=1

[(
V +

h

)2 + (
V −

h

)2 +
(
V 0

h

)2

1 + ξh

]
=

√
V 2

e − V 2
e1 (6.24)

Again we are faced with the difficulty of ξh determination. Typically for h = 3n ± 1,
n = 0, 1, 2, 3,. . ., V 0

h � V +
h and ξ = 1 is a satisfactory compromise. However, for h = 3n,

V 0
h � V +

h and an error may take place if one assumes ξ = 1.
The theoretically correct approach is to define for each harmonic an effective current and

voltage, Ieh and Veh , with a ρh and a ξh . Fortunately (6.24) offers a shortcut, VeH =
√

V 2
e − V 2

e1.
The resolution of Se = 3Ve Ie is done in the same way as it was in section 4.5: the effective

power is separated into two major terms

S2
e = S2

e1 + S2
eN

where

Se1 = 3Ve1 Ie1
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is the fundamental, or 60/50 Hz, effective apparent power and the term SeN is the nonfunda-
mental effective apparent power. In turn SeN has three components

S2
eN = S2

e − S2
e1 = D2

eI + D2
eV + S2

eH (6.25)

where

DeI = 3Ve1 IeH (6.26)

is the current distortion power, usually the largest component of SeN ,

DeV = 3VeH Ie1 (6.27)

is the voltage distortion power and

SeH = 3VeH IeH (6.28)

is the effective harmonic apparent power. Two components characterize SeH ,

S2
eH = P2

H + D2
eH (6.29)

Here

PH =
∑
h �=1

{Vah Iah cos(θah) + Vbh Ibh cos(θbh) + Vch Ich cos(θch)} (6.30)

is the total harmonic active power and

DeH =
√

S2
eH − P2

H (6.31)

is the harmonic distortion power.
The components of SeN can be expressed in function of the equivalent total harmonic

distortions

T H DeV = VeH

Ve1
for voltage and T H DeI = IeH

Ie1
for current (6.32)

From (6.25) results

S2
eN =

[
D2

eI

S2
e1

+ D2
eV

S2
e1

+ S2
eH

S2
e1

]
S2

e1 =
[

(Ve1 IeH )2

(V e1Ie1)2
+ (VeH Ie1)2

(V e1Ie1)2
+ (VeH IeH )2

(V e1Ie1)2

]
S2

e1 (6.33)

and substitution of (6.32) in (6.33) gives a practical expression

SeN = Se1

√
T H D2

eI + T H D2
eV + T H D2

eI T H D2
eV (6.34)
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which helps to evaluate separately the contributions of the three terms of SeN to the harmonic
pollution; DeI = (T H DeI )Se1, DeV = (T H DeV )Se1 and SeH = (T H DeI )(T H DeV )Se1.

The most important powers are the fundamental (60/50 Hz) positive-sequence active and
reactive powers P+

1 and Q+
1 , respectively. They are tied to the fundamental positive-sequence

apparent power

(
S+

1

)2 = (
P+

1

)2 + (
Q+

1

)2

with the fundamental or the 60/50 Hz positive-sequence power factor

PF+
1 = P+

1

S+
1

The power factor follows its classical definition

PF = P

Se
= P1 + PH

Se

In some situations there may be interest in evaluating symmetrical components such as
fundamental zero- and negative-sequence currents, voltages, and powers. The same may apply
for the harmonic current and voltage imbalance and separation by symmetrical components.
The components and the subcomponents discussed in this section are summarized in Fig. 6.2.
The unbalance fundamental power

SU1 =
√

S2
e1 − (

S+
1

)2

is introduced to allow the positive-sequence powers P+
1 and Q+

1 separation from Se1. SU1

includes the contributions of the 50/60 Hz negative- and positive–sequence powers and gives
a crude indication about the degree of load imbalance.

eS 1eS

eNS

+
1S

1US

+
1P

+
1Q

eID

eVD

eHS
HP

HD

Figure 6.2 The powers’ tree (IEEE Std. 1459–2010).
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6.3 The DIN 40110’s Approach

The definitions used in this standard are based on a simple concept: the compensated load
plus compensator of a four-wire system are electrically equivalent to four linear and equal
resistances R� connected to a common virtual point O (see Fig. 5.12c). A three-wire system
needs three resistances. Evidently such a virtual load has a unity power factor under any
circumstances, but when the voltage is distorted or asymmetrical so will the currents. Since the
voltages are usually only lightly unbalanced and distorted, the results of such compensations
are satisfactory.

The procedure described in the German Standard DIN 40110 is based on the FBD-method
[18]. It follows the same ideas presented in sections 5.5.1 and 5.5.4. The standard pivots around
the expression

S2
� = P2

� + Q2
tot� (6.35)

where the subscript � denotes collective value; S� is the collective apparent power, P� is
the collective active power, and Q� is the collective nonactive power. The theory behind
these expressions [17,18] is explained as follows: Each phase current ik , k = A, B, C, N , is
separated into two orthogonal components with reference to the voltage vkO , see Fig. 5.7b,
(the neutral path is considered a fourth phase if four-wire systems are involved),

ik = ik‖ + ik⊥

where ik‖ = GkvkO is the proportional component and the equivalent conductance

Gk = Pk/V 2
kO

with Pk the total active power of phase k, carried by the voltage VkO . The remaining current
component is

ik⊥ = ik − ik‖

called the orthogonal current.
The total active power P� absorbed by the load yields also a mean value active equivalent

conductance

G = P�/V 2
�

When the observed load is perfectly compensated to PF = 1, the load and compensator are
equivalent to k resistances, R� = 1/G, connected to the common node O, (see Fig. 5.12c).

Usually the proportional component of current ik‖ differs from phase to phase. The next
step is to separate ik‖ in an active current called symmetric proportional current,

ikp = GvkO
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and an asymmetric proportional current

ik‖u = (Gk − G)vkO

Since the total active power P� = ∑
k GV 2

kO , results that
∑

k Gk V 2
kO = 0, thus the asymmetric

proportional currents ik‖u carry no active power. The nonactive components ik⊥ and ik‖u lead
to a nonactive current

ikq = ik⊥ + ik‖u

It can be proved that these currents are orthogonal, thus

I 2
kq = I 2

k⊥ + I 2
k‖u (6.36)

and after multiplying (6.36) with V 2
kO one obtains the nonactive powers of phase k.

Q2
tot k = Q2

tot k⊥ + Q2
tot k‖u (6.37)

For each one of the four phases we have

ik = ikp + ikq = ikp + ik⊥ + ik‖u

which leads to the key expression, the basic relation between the rms current components of
phase k

I 2
k = I 2

kp + I 2
kq = I 2

kp + I 2
k⊥ + I 2

k‖u (6.38)

that can be extended to the collective value

I 2
� = I 2

�p + I 2
�q = I 2

�p + I 2
�⊥ + I 2

�‖u (6.39)

Multiplying (6.39) with V 2
� yields the DIN 40110 powers squared

S2
� = (V� I�)2 = (V� I�p)2 + (V� I�q )2 = (V� I�p)2 + (V� I�⊥)2 + (V� I�‖u)2

leading to the final expressions

S2
� = P2

� + Q2
tot �p = P2

� + Q2
tot �⊥ + Q2

tot �‖u (6.40)

We find a lot in common between this approach and the FBD-method, presented in section
5.5, however, one will notice that the use of balanced and unbalanced susceptance is avoided
in the DIN 40110. The nonactive currents Ik⊥b (5.71) and Ik⊥u (5.73) are included in Ikq . It is
also important to realize that this standard does not allocate separate powers caused by voltage
and current components with frequencies different than 60/50 Hz.
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Figure 6.3 Example: The studied system.

EXAMPLE

In Fig. 6.3 is sketched the studied circuit; a three-phase symmetrical voltage 226.7 V rms,
60 Hz, supplies a four-wire soft line with the equivalent components RS = 0.1 �, RN = 0.4 �,
L S = 1.2 mH, L N = 2.0 mH. The load is unbalanced and consists of three resistances
RAB = 60 �, RBC = 20 � and RC A = 30 �, �-connected, as well as three full wave rectifiers,
connected line-to-neutral. The dc load supplied by the three rectifiers are: R1 = 5 � on Phase
A, R2 = 10 � on Phase B, and R3 = 7 � on Phase C. The filter capacitor C = 2.0 mF for all
three units. This is a case where the voltage at the loads’ terminals is excessively distorted. It
was so chosen to help give a “magnified view” of the differences between the power definitions
promoted by the two approaches.

The measured voltages and currents (obtained from numerical simulation) are listed in
Tables 6.1, 6.2, and 6.3.

The measured active powers are separated in three categories:

1. The �-connected resistances dissipate a 60 Hz active power P�1 = 1399.16 W and a
non-60 Hz active power P�H = 89.36 W. Resulting in a total P� = 14081 W.

2. The rectifiers absorb a 60 Hz active power PY 1 = 27378 W and generate harmonic active
power PY H = −460 W, out of which 89 W flow to the �-connected resistances and the
remaining 371 W are dissipated in the line resistances RS and neutral RN .

Table 6.1 Measured line-to-neutral voltage phasors (in V rms)

h AN BN CN

1 202.23� − 10.11◦ 229.74 � − 126.60◦ 210.72 � 114.90◦

3 65.08� − 7.85◦ 57.95 � − 5.63◦ 55.26 � 5.82◦

5 25.48� − 7.00◦ 15.31 � 136.80◦ 18.09� − 106.40◦

7 9.86 � 21.15◦ 9.92 � − 23.41◦ 6.24� − 149.6◦

9 9.04 � 58.80◦ 10.42 � 111.20◦ 8.07� − 132.80◦

rms 215.17 237.96 219.95
%T H DV 36.07 27.30 28.38
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Table 6.2 Measured line-to-line voltage phasors (in V rms)

h AB BC CA

1 377.55� 23.92◦ 379.01� − 97.23◦ 366.92 � 141.0◦

3 7.52 � − 25.29◦ 11.60 � − 76.56◦ 17.33 � 123.20◦

5 38.91 � − 20.40◦ 28.48 � 102.3◦ 3.57� − 154.90◦

7 7.50� 89.24◦ 14.52 � − 3.09◦ 16.06 � − 155.30◦

9 8.68 � − 13.19◦ 4.16� 65.71◦ 10.32 � − 169.90◦

rms 370.49 380.41 369.77
%T H DV 12.73 10.22 12.59

3. The total input active power, measured at the terminals A, B, C, and N, is P = 40999
W with the 60 Hz active power P1 = 41369 W and the harmonic active power PH =
−371 W.

6.3.1 The IEEE Std. 1459–2010 Approach

For comparison purpose the effective voltages were computed using different expressions.
The results are tabulated (see Table 6.4) in the following order: First for expression (5.109)
with ξ = P�/PY = 0.523; next for ξ = 1.0, (5.112), Case III section 5.5.4; followed by Case
I, ξ = 0, (5.110) and last Case II, ξ → ∞, (5.111).

Taking as a “yardstick” the effective voltage (5.112), with ξ = 1.0, recommended by the
IEEE Std. 1459–2010, one finds that other expressions yield differences that affect the value
of the effective apparent power.

The computed effective current with the ratio ρ = RN /RS = 4.0 is Ieρ=4 = 67.68 A and
with ρ = 1.0 is Ieρ=1 = 68.62 A. Taking ξ = 0.523 the two corresponding effective apparent
powers and power factors are

Seρ=1ξ=0.523 = 45610 VA yielding a power factor PFeρ=1 = P/Seρ=1 = 0.899

Seρ=4ξ=0.523 = 48560 VA yielding a power factor PFeρ=4 = P/Seρ=4 = 0.844

As explained in section 5.5.3, taking ρ = 1 leads to a better power factor. The 60 Hz or
the fundamental effective current is Ie1 = 66.42 A and the voltage Ve1 = 214.42 V, leading to
fundamental effective apparent power Se1 = 3Ve1 Ie1 = 42725.84 VA.

Table 6.3 Measured line current phasors (in A rms)

h A B C N

1 73.04� 23.92◦ 53.80 � − 97.23◦ 69.54 � 141.0◦ 12.97 � − 157.79◦

3 11.86� − 25.29◦ 6.40� − 76.56◦ 7.78� 123.20◦ 21.51 � 96.11◦

5 10.08� − 20.40◦ 8.42 � 102.3◦ 7.27� − 154.90◦ 0.99� 47.41◦

7 2.29� 89.24◦ 1.97� − 3.09◦ 2.91� − 155.30◦ 0.70� 178.22◦

9 1.48� − 13.19◦ 1.00 � 65.71◦ 1.04� − 169.90◦ 0.97� − 166.50◦

rms 74.61 54.61 70.35 25.18
%T H DI 21.82 20.45 16.10 166.37
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Table 6.4 Computed Effective Voltages (in V rms)

Expression (5.109) or (6.2) (5.112) (5.110) (5.111)

221.56 220.18 224.57 215.69
% diference 0.63 0.0 1.99 -2.04

The non 60 Hz apparent power is conveniently derived

SeN =
√

S2
eρ=1,ξ=1

− S2
e1 = 15128.38 VA

The values of harmonic effective current (6.19) and harmonic effective voltage (6.24),
IeH = 17.24 A and VeH = 49.00 V, respectively, help compute the equivalent total harmonic
distortions

T H DeI = IeH

Ie1
= 0.259 and T H DeV = VeH

Ve1
= 0.233

The remaining components of Se can now be found

DeI = (T H DeI )Se1 = 3925.88 var

DeV = (T H DeV )Se1 = 3527.51 var

SeH = (T H DeI )Se1 = 915.40 VA

DeH =
√

S2
eH − P2

H = 790.96 var

The 60 Hz positive-sequence components are found using the positive-sequence voltage
and current phasors, V +

1 = 212.40 − j26.88 V and I +
1 = 63.04 − j16.25 A, that give P+

1 =
38857.10 W, Q+

1 = −15434.90 var, S+
1 = 41810.40 VA and PF+

1 = P+
1 /S+

1 = 0.929 The
fundamental unbalanced power is

SU1 =
√

S2
e1 − (S+

1 )2 = 8797.0 VA

The ratio SU1/Se1 = 0.206 is a preliminary evaluation of the degree of imbalance.

6.3.2 The DIN 40110 Approach

We start by determining, based on simulation, the rms voltages line-to-virtual neutral point O,

VA0 = 210.901V VB0 = 221.638V VC0 = 216.476V VN0 = 46.403V

The collective voltage is

V� =
√

V 2
AO + V 2

BO + V 2
C O + V 2

N O = 374.68 V
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The measured phase active powers are

PA = 14478 W PB = 12314 W PC = 14210 W PN = 0 W

with the collective active power P� = 41002 W.
The knowledge of these values enable the computation of the equivalent conductances:

G A = PA/V 2
AO = 0.326 G B = PB/V 2

BO = 0.251 GC = PC/V 2
C O = 0.303 G N = 0

and the mean value active equivalent conductance G = P�/V 2
� .

The asymmetrical proportional currents are

IA‖u = |G A − G|VAO = 3.36 A IB‖u = |G B − G|VBO = 8.20 A

IC‖u = |GC − G|VC O = 8.01 A IN‖u = |G N − G|VN O = 13.35 A

yielding the collective asymmetrical proportional current:

I�‖u =
√

I 2
A‖u + I 2

B‖u + I 2
C‖u + I 2

N‖u = 17.92 A

The nonactive component of powers are as follows: the proportional asymmetric nonactive
power

Qtot �u = V� I�‖u = 6764.19 var

The total nonactive power

Qtot � =
√

S2
� − P2

� = 18221.44 var

and the orthogonal nonactive power

Qtot �⊥ =
√

Q2
tot � − Qtot �u = 16919.41 var

The resulting power factor is PF� = P�/S� = 0.9138.
In spite of the extreme case used in this example (large voltage distortion) and the quite

different conceptual approaches, the results are quite close PF� ≈ PFeρ=1 . However, the IEEE
method emphasizes the importance of the positive-sequence fundamental powers and provides
quantitative information about the nonactive powers due to current distortion separated from
voltage distortion. The DIN approach avoids the separation of fundamental components from
the total apparent power. If power factor compensation is used to bring PF ≈ 1.0, then for
this particular example, where only one linear load exists, both methods will give identical
and perfect results.
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6.4 Observations and Suggestions

It is clear that the complete characterization and quantification of the power flow in polyphase
systems involves more terms than a hands-on engineer would love to have. Moreover, the
present power definitions are still evolving and related concepts did not receive universal
approval. Following is presented a discussion meant to stimulate readers and students
interested in energy generation, flow, and monitoring, to join the ongoing efforts and think of
improvements to the present power definitions.

The present standards, DIN 40110 and IEEE Std. 1459–2010 recommend the same expres-
sion for the effective currents I�/

√
3 and Ie. Nevertheless, one may address the following

practical aspect: The rms currents Ia ,Ib,Ic, and In cause the conductors’ heating. In overhead
lines the heat transfer conditions for one conductor are not affected by the currents flowing in
the other lines, hence it does not seem correct to transfer the neutral path losses to the three
phases. This observation leads to power loss equivalence that involves only the three phases:

�P = 3RS I 2
e = RS(I 2

a + I 2
b + I 2

c )

giving the four-wire system the same effective current as for the three-wire system:

Ie =
√

I 2
a + I 2

b + I 2
c

3

For a three-phase cable, or for bundles or trays with cables, the neutral current power
losses affect the heat transfer conditions of the entire cable and the term ρ I 2

n , that weighs the
neutral current caused power loss, cannot be ignored when the effects of thermal stress are
accounted for.

The true “soul searching” issue remains the definition of the three-phase voltages that yield
V e or V� . The IEEE Std. 1459–2010 advocates a positive-sequence voltage Ve. DIN 40110
assumes no voltage changes at the terminals of the observed load. True, the consumers have
very limited control over the quality of the supplied voltage, (unless a voltage regulator is
installed and operated by the consumer). The original voltages are characterized, before the
compensation, by certain spectra, unbalance, and harmonic phasors. After the compensation to
unity power factor these characteristics change. The distortion and the asymmetry are reduced
and the fundamental load voltages increase. It is not practical to assume that voltages remain
unchanged after the total or partial power factor compensation.

The apparent power is measured or calculated in order to evaluate or predict insulation ther-
mal stress, equipment aging, determine loading of equipment, establish penalties or bonuses,
and compare performances among different converters or rotating machines. However, these
are not activities that necessarily end with the actual implementation of the load compensa-
tion to unity power factor. The apparent power is a defined, convention type, quantity, that
represents an ideal objective, a condition that is of advantage, economical and technical, for
all end-users supplied by a power grid as well as for the owners and operators of the grid.
In real life such an ideal situation cannot be obtained unless both the user and the providers
of electric energy cooperate to reduce voltage and current waveforms distortion and help to
clean the electromagnetic pollution, installing harmonic filters and power conditioners. The
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ultimate goal is to create an ideal power grid with positive-sequence voltages and currents
only. This is the approach advocated by the IEEE Std. 1459–2010. The question that remains
to be addressed is what is the right value of Ve?

We start by assuming a three-phase induction motor supplied with nonsinusoidal and un-
balanced voltages [19]. Ignoring the skin effect the mechanical torque delivered by the motor
during steady-state conditions is

T = T +
1 + T −

1 + T +
H + T −

H − �T

where

T +
1 = 3(V +

1 )2 R
′
2/s

ωS[(R1 + R
′
2/s)2 + X 2]

is the fundamental, positive-sequence torque, the main and only useful torque. The remaining
torques are detrimental to the process of electromechanical energy conversion.

T −
1 = −3(V +

1 )2 R
′
2/(2 − s)

ωS{[R1 + R
′
2/(2 − s)]2 + X 2}

is the fundamental, negative sequence torque, T −
1 < 0. It is a braking torque and the negative-

sequence current causes significant additional losses.

T +
H =

∑
h+

R
′
2/(sh+)

ωS{[R1 + R
′
2/(sh+ )]2 + X 2}

is the sum of the positive-sequence harmonic torques, and

T −
H =

∑
h−

R
′
2/(sh−)

ωS{[R1 + R
′
2/(sh− )]2 + X 2}

is the sum of the negative-sequence harmonic torques, where the slip s = 1 − ωm/ωS and ωm

is the rotor mechanical angular velocity, rad/s and ωs is the synchronous angular velocity of
the fundamental rotating field).

V +
1 and V −

1 are the fundamental positive- and negative-sequence voltages, respectively, V +
h

and V −
h are the positive- and negative-sequence harmonic voltages, respectively, h+ and h−

are the harmonic orders for the the positive- and negative-sequence harmonics.
The slips that correspond to the rotating fields of harmonics are sh+ = 1 − (1 − s)/h+ ≈

1.0 for the positive-sequence harmonics and sh− = 1 + (1 − s)/h− ≈ 1.0 for the negative-
sequence harmonics.

One shall keep in mind that the interaction among the rotating fields of harmonic and the
rotor harmonic currents, causes parasitic torques and vibrations,

R1, R
′
2, and X are per phase values of stator resistance, rotor resistance (reflected to the

stator) and the total leakage reactance.
�T represents the torque that covers the mechanical losses (windage and bearings).
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If we supply this induction motor with a positive-sequence voltage Ve, that will cause the
same output power such voltage as to satisfy the equation

T = 3(Ve)2 R
′
2/s

ωS[(R1 + R
′
2/s)2 + X2]

+ �T

thus

Ve =
√

1

3R ′
/s

ωS[(R1 + R
′
2/s)2 + X2](T − �T )

will ensure the same mechanical output, torque, and velocity, as in the original situation. It
makes good sense to use in this case the voltage Ve as the correct voltage for computation of
Se = 3Ve Ie. The voltage Ve < V +

1 .
Next we shall discuss a three-phase rectifier. We consider a three-pulse midpoint connection

rectifier (simpler to analyze than a six-pulse rectifier). We assume the following unbalanced
voltages:

va = V̂ sin(ωt)

vb = bV̂ sin(ωt − β)

vc = cV̂ sin(ωt − γ )

The conditions va = vb, vb = vc and vc = va provide the characteristic points of the envelope
of direct voltage vdc. These intersection points are found at the angles

αab = tan−1

[ − sin(β)

1 − b cos(β)

]
; β < αab < π

αbc = tan−1

[
b sin(β) − c sin(γ )

b cos(β) − cos(γ )

]
; γ < αbc < β + π

αca = tan−1

[ −c sin(γ )

1 − c cos(γ )

]
; 2π < αca < γ + π

thus the equivalence of direct voltage will be written as

Vdc = V̂

2π

[∫ αbc

αab

b sin(ωt − β)d(ωt) +
∫ αca

αbc

c sin(ωt − γ )d(ωt) +
∫ αab+π

αca

sin(ωt)d(ωt)

]

= 3
√

3

π
√

2
Ve = 1.17Ve

In this case the value of the equivalent Ve depends on the rectifier type, effect of commutation,
filtering system, and the coefficients b and c, as well as the deviation from 120◦ (i.e. 120◦ − β

and 120◦ + γ ). Rectifiers sensitive to peak voltage inject noncharacteristic harmonics and
their performance is strongly affected by the quality of voltage [20].
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While it is possible for individual loads to determine (measure) an equivalent positive-
sequence voltage, this task becomes impossible for loads that are mixed. We need a voltage
that fits all. The answer is not obvious, and compromises are needed, but the agreement rules
for such decisions are not yet available. One may consider using the fundamental positive–
sequence voltage measured at the point of common coupling, or even to agree on a voltage that
is the arithmetic or geometric mean of the weighed rated voltages of all the loads (according
to the VA of each load).

Until new advances on the definitions and resolution of powers are recognized, the author
will favor the IEEE approach where the voltage Ve determination is based on the evaluation
of the active power supplied to the load.

6.5 Problems

6.1 A three-phase, four-wire customer is supplied with the following line-to-neutral har-
monic voltage phasors (in V rms):

Table 6.5 Line-to-neutral voltage phasors

h AN BN CN

1 220.0 � 0.0◦ 210.0 � − 126.0◦ 225.0 � 114.0◦

3 10.0 � − 5.0◦ 7.0 � − 8.0◦ 8.0� 6.0◦

5 5.0 � − 17.0◦ 4.0 � 130.0◦ 4.0 � − 106.0◦

7 4.0 � 30.0◦ 2.0� − 76.0◦ 3.0 � 150.0◦

9 3.0 � 60.0◦ 2.0� 84.0◦ 3.0� 90.0◦

Table 6.6 Line current phasors (A rms)

h A B C

1 100.0� − 30.0◦ 105.0 � − 126.0◦ 95.0� 114.0◦

3 16.0 � − 88◦ 14.0� − 93.0◦ 12.0� − 87.0◦

5 9.0� − 105.0◦ 13.0� 39.0◦ 15.0� − 193.0◦

7 1.0� − 58.0◦ 1.0 � − 76.0◦ 3.0� 150.0◦

9 1.0� − 28.0◦ 2.0� − 5.0◦ 3.0� 1.0◦

Your task is to compute the powers defined by the three methods explained in this chapter
and to compare the results. Assume ρ = 1.0 and ξ = 1.0. The line-to-line voltages can be de-
termined from the line-to-neutral voltages and the neutral current from iN = −(i A + iB + iC ).

6.2 Work the example given in this chapter (Fig. 6.3). Include more information such as
vector apparent power.

6.3 A three-phase, three-wire line supplies a customer with perfectly symmetrical line-to-
line 660 V rms, 60 Hz. The load consists of two resistances, RAB = 6 � and RBC = 36 �,
connected line-to-line, A–B and B–C, respectively. There is also a large single-phase rectifier
connected A–to–C. The equivalent load of this rectifier is a current source Idc = 100 A. Your
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task is to test different power definitions applied to this circuit. An interesting aspect to be
discussed is the fact that this is a three-wire system and many people, incorrectly, expect no
third harmonic to be present in the supplying line. When you compute the current harmonics
you will find that triplen harmonics do flow. Explain the reason.

6.4 Repeat problem 6.3 if the line-to-line source voltage is increased to 710 V and the feeder,
assumed well balanced, has an equivalent per phase resistance RS = 0.05 � and inductance
L S = 1.5 mH.

6.5 Two industrial customers are supplied with a three-phase, four wire system, 14 kV,
60 Hz, by a feeder with RS = 0.2 � and L S = 4.0 mH (about 5kA symmetrical short-circuit
current). The neutral path, from substation to customers’ transformers, has the equivalent
components RN = 0.3 � and L N = 5.0 mH. The first customer is an uncontrolled six-pulse
rectifier supplying a dc load that can be simulated by a current source Idc = 150 A. The
rectifier is connected to the A, B, and C lines via three equivalent inductances L1 = 0.5 mH.
The second customer has two loads: one is an identical rectifier as the one described and
the second load is a Y-connected unbalanced load. The unbalanced load can be described as
follows: RAN = 300 �, RB N = 600 �, RC N = 100 �, L AN = 400 mH, L B N = 990 mH and
LC N = 300 mH. The second customer is connected to the A, B, and C lines via three equivalent
inductances L2 = 0.5 mH. The Y-connected load has a neutral path with RN N = 5 m� and
L N N = 0.03 mH.

Your task is to compare the IEEE and DIN approaches when the second customer corrects
the PF such that it becomes ≈ 1.0. You should focus on current and voltage distortion and
symmetrical components (see section 5.5.4 for a numerical example).
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7
Power Definitions for
Time-Varying Loads

An idea starts by being a paradox. Continues by becoming a banality, and ends by being a
prejudice.

—Grigore C. Moisil, Mathematician

The loads supplied by an electric power system are varying continuously in time. Some time
variations are gradual, presenting a slow, continuous trend characterized by a nearly constant
rate of change of powers. Such a situation is typical for large clusters of loads. Other time-
variations of power are more abrupt: lights are turned on and off, motors driving machine tools
start and stop, welders and compressors sometimes operate repetitively, sometimes randomly.
Elevators and electric cranes have a definite probabilistic behavior. Arc furnaces in the initial
stage, when the charge is a conglomerate of metallic masses (scrap), present a time-varying
load supplied with a distorted current whose waveform is not repetitive even from one cycle
to the next; quite incorrectly, some people consider that such nonrepetitive currents shall be
represented by equivalent time-varying harmonics.

When power measurements are taken over a time duration τ (seconds, minutes, hours,
or days), the observation time τ is divided in ν equal subintervals �τ , where τ = ν�τ .
Instruments that implement the real time data acquisition for each time interval 1 ≤ i ≤ ν, are
usually measuring the following quantities:

� harmonic voltage phasors: Vhi � αhi , h=1, 2, 3. . .;
� harmonic current phasors: Ihi � βhi ;
� interharmonic voltage and current phasors, (h is a noninteger number);
� total harmonic distortion of voltage and current;
� rms voltage and currents: Vi , Ii ;
� Voltage and current symmetrical components: Positive-sequence: V +

1i
� α+

1i and I +
1i

� β+
1i .

Negative-sequence: V −
1i

� α−
1i and I −

1i
� α−

1i . Zero-sequence: V 0
1i

� α0
1i and I 0

1i
� β0

1i .

Based on this data, the apparent power Si , active power Pi , and the nonactive powers
Ni , Qi , DI i , DV i , and the harmonic apparent power SHi , may be computed and recorded for

Power Definitions and the Physical Mechanism of Power Flow Alexander Eigeles Emanuel
C© 2010 John Wiley & Sons, Ltd
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206 Power Definitions and the Physical Mechanism of Power Flow

each time interval �τ 1. It is recommended to design power and energy meters with �τ =
200 ms (ten cycles for 50 Hz power systems and twelve cycles for 60 Hz)[1]. The 200 ms
values2 are aggregated over additional intervals such as 3s, 10 min, or 2.0 h. The “aggregations
are performed using the square root of the arithmetic mean of the squared input values” [1]. In
some applications the mean values for each �τ are recorded. For example, the Demand Meters
measure the maximum mean power (kW, kVA, or kvar) over a time interval τ = 15, 30, or
60 min and typically record only the maximum mean value for an observed month [2]. The
goal of this chapter is to provide additional information on the best interpretation of the
collected data.

The real life probabilistic nature of voltages, currents, and powers, is proved by actual
measurements taken at a 15 kV substation that supplies a mixture of industrial and residential
customers [3, 4], (Figs. 7.1 to 7.3). The mean values were recorded over an observation
time τ = 168 h = 7 day with �τ = 10 min. The rms voltage (Fig. 7.1a), has the probability
distribution shown in (Fig. 7.1b), and resembles a Gaussian distribution. The weekly variations
do not follow a specific visible pattern; this is due to voltage regulation by means of the tap
changer at the substation transformer. The supplied current (Fig. 7.2 a), follows a daily pattern
with a trough during the low demand hours and lower weekend values. The probability
distribution of the current (Fig. 7.2a), has a visible multi modal distribution. The measured
active power (Fig. 7.3a), follows a time-variation pattern similar to the current. The reactive
power (Fig. 7.3b), is strongly affected by switched capacitors that are energized during the
high demand times and cause power factor overcompensation.

7.1 Background: Basic Example

Let us assume an industrial oven with adjustable heating elements, which is supplied by a soft
line. The measured rms voltage and current and the computed active power are summarized
in Table 7.1. Five equal time intervals are observed. The rms voltage for the entire time
τ = 5�τ is

V =
√√√√1

5

5∑
i=1

V 2
i =

√
1

5
(2202 + 2252 + 2152 + 2102 + 2302) = 220.11 V

Similarly we obtain the rms current

I =
√√√√1

5

5∑
i=1

I 2
i =

√
1

5
(1002 + 602 + 1202 + 1502 + 302) = 101.39 A

1 The measurements during the subinterval �τ are based on the assumption that the waveforms in the interval i are
repeated during the next intervals i + 1, i + 2, . . .

2 When this book was prepared, instrumentation experts were debating if �τ = 320 ms for 50 Hz and �τ = 267
ms for 60 Hz should not replace the �τ = 200 ms.
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Figure 7.1 Line-to-neutral voltage: (a) Seven days time variations. (b) Relative frequency distribution.
Source: A. E. Emanuel, J. A. Orr, D. Cyganski, E. M. Gulachenski, “A Survey of Harmonic Voltages
and Currents at Distribution Substations,” IEEE Trans. On Power delivery, Vol.6, No.4, Oct. 1991,
pp.1883–1890.



P1: OTA/XYZ P2: ABC
c07 BLBK294-Emanuel June 19, 2010 13:22 Printer Name: Yet to Come

208 Power Definitions and the Physical Mechanism of Power Flow

80

0

6

12

18

24

0 50 150 250 350

0 20 60 100 140
TIME (h)

(a)

(b)

160

240

LI
N

E
 C

U
R

R
E

N
T

 (
A

)
O

C
C

U
R

E
N

C
E

S

LINE CURRENT (A)

320

400

x103

Figure 7.2 Line current: (a) Seven days time variations. (b) Relative frequency distribution. Source:
A. E. Emanuel, J. A. Orr, D. Cyganski, E. M. Gulachenski, “A Survey of Harmonic Voltages and Currents
at Distribution Substations,” IEEE Trans. On Power delivery, Vol.6, No.4, Oct. 1991, pp.1883–1890.

Lastly is computed the power that will carry the same amount of energy, the active power:

P = 1

τ

∫ τ

0
V I dt = 1

5

5∑
i=1

Vi Ii = 1

5
(22.00 + 13.50 + 25.80 + 31.50 + 6.60) = 19.88 kW

and the apparent power

S = V I = 22.32 kVA
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Figure 7.3 Powers: (a) Seven days active power recording. (b) Reactive power. Source: A. E. Emanuel,
J. A. Orr, D. Cyganski, E. M. Gulachenski, “A Survey of Harmonic Voltages and Currents at Distribution
Substations,” IEEE Trans. On Power delivery, Vol.6, No.4, Oct. 1991, pp.1883–1890.

One realizes that P < S in spite of the purely resistive nature of the load and the total lack of
inductive or capacitive components. The straight explanation is that such a load behaves over
the observation time τ like a nonlinear resistance, more correctly a time-varying resistance.
Based on this observation it is possible to promote a new concept, a paradox, the existence of
a nonactive power, the Randomness Power:

DR =
√

S2 − P2 = 10.14 kvar
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Table 7.1 Single-phase load with unity PF and randomly varying voltage and
current (Basic Example)

i 1 2 3 4 5

Vi (V) 220 225 215 210 230
Ii (A) 100 60 120 150 30
Pi (kW) 22.00 13.50 25.80 31.50 6.60

responsible for a sub unity power factor

PF = P/S = 0.891

7.2 Single-Phase Sinusoidal Case

In this section the results observed in the previous basic example are generalized. We start
from the active and reactive powers expressions measured during the i-interval:

Pi = Vi Ii cos(θi ) ; θi = αi − βi (7.1)

Qi = Vi Ii sin(θi ) (7.2)

The rms values of voltage and current for the entire observation time τ are

V =
√√√√ 1

τ

ν∑
i=1

V 2
i I =

√√√√1

τ

ν∑
i=1

I 2
i (7.3)

leading to the apparent power expression:

S = V I =
√√√√ 1

ν2

ν∑
i=1

V 2
i

ν∑
i=1

I 2
i (7.4)

The active power for the duration τ is

P = 1

τ

ν∑
i=1

Pi = 1

ν

ν∑
i=1

Vi Ii cos(θi ) = P̄ (7.5)

and it is equal to the mean power P̄ . Comparing (7.4) with (7.5) one concludes that S ≥ P̄ .
Conventional var meters are designed to operate with a 90o delaying of the voltage waveform

with respect to the current waveform [5]. This concept is upheld in the IEEE Std. 1459–2010
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[6] where for sinusoidal conditions the reactive power can be accurately measured using
instruments based on the equation

Q = ω

τ

∫ τ

0
i

[∫
v dt

]
dt (7.6)

where τ is an integer number of cycles and ω = 2π f is the angular frequency.
Substitution of

ii =
√

2Ii sin(ωt + β) and vi =
√

2Vi sin(ωt + α)

in (7.6) leads to the value of reactive power for the time τ :

Q = 1

ν

ν∑
i=1

Vi Ii sin(θi ) = Q̄ ; θi = αi − βi (7.7)

The above result shows that the reactive power for the observation time τ is the mean value
of the reactive powers measured for each subinterval �τ . The same conclusion is reached for
a few other types of varmeters, except for the ones based on the expression

Q =
√

S2 − P2

In the previous chapters it was emphasized that the reactive power Q causes power losses in
the conductors that supply the observed load, (2.32); This observation leads to a more rigorous
definition of Q, a definition that ties the reactive power to �W , the energy lost in the supplying
line. A practical approach proposed in [5] is based on the minimization of the energy lost on
the account of Qi :

�W = r
ν∑

i=1

P2
i + Q2

i

V 2
i

�τ (7.8)

where r is the equivalent resistance of the supplying line.
A linear capacitance connected in parallel to the load will help to minimize the energy lost.

Such a capacitance will deliver the same optimum reactive power Qc during each subinterval.
Evidently, Qc is a fictitious quantity that helps to understand the reactive power concept under
time-varying conditions. The objective function to be minimized is

F(Qc) =
ν∑

i=1

(Qi − Qc)2

V 2
i

(7.9)

Since (Qi − Qc)2 ≥ 0 there is not a value of Qc that yields F(Qc) = 0. Only when
Qi = Q and Vi = V are constant for the entire observation time, the obvious best value is
Qc = Qi = Q. For the general case Qc is found by solving the equation
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d F(Qc)

d Qc
= −

ν∑
i=1

2(Qi − Qc)

V 2
i

= −2
ν∑

i=1

Qi

V 2
i

+ 2Qc

ν∑
i=1

1

V 2
i

= 0

that yields the quantity that fulfills the true physical meaning of reactive power:

Qc =

ν∑
i=1

Qi

V 2
i

ν∑
i=1

1

V 2
i

(7.10)

This Qc can be considered as the equivalent reactive power for the time τ . One can observe that

Qc �= Q̄ = 1

ν

ν∑
i=1

Qi (7.11)

From (7.11) results that

Qc = Q̄ + �Q

and one learns that the randomness affects also the overall reactive power value: the difference

�Q = Qc − Q̄ =

ν∑
i=1

Qi

V 2
i

ν∑
i=1

1

V 2
i

− 1

ν

ν∑
i=1

Qi

is a randomness component of the reactive power, and only when Vi ≈ V then �Q ≈ 0.
The following second example helps to clarify the above proposal. This time we consider

an inductive load. In Table 7.2 are given the voltages Vi , currents Ii , their active and reactive
current components, Ipi , Iqi , while the corresponding powers and power factor are provided
for five equal time intervals.

The rms voltage and current are V = 220.11 V and I = 101.39 A, therefore the correct
apparent power value is S = V I = 22.32 kVA. The mean value of the apparent power is
S̄ = 19.94 kVA, about 10% less than the correct value (22.32 kVA).

The reactive power computations give Q̄ = 12.77 kvar and Qc = 13.02 kvar. We find that in
spite of relatively large excursions of the voltage Vi , the randomness component �Q = 0.25
kvar is a relatively small quantity (1.9%).

It is also learned that the correct power factor PF = P/S = 0.667 and the mean power factor

P̄F = 1

ν

ν∑
i=1

Pi

Si
= 0.669
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Table 7.2 Single-phase inductive load with randomly varying voltage
and current

i 1 2 3 4 5 MEAN VALUE

Vi (V) 220 225 215 210 230 220
Ii (A) 100 60 120 150 30 92
Ipi (A) 80 35 100 120 10 69
Iqi (A) 60 48.73 66.33 90.00 28.28 58.67
Pi (kW) 17.60 7.87 21.50 25.20 17.60 14.90
Qi (kvar) 13.20 10.97 14.26 18.90 6.50 12.77
Si (kVA) 22.00 13.50 22.00 31.50 6.90 19.94
PFi 0.800 0.583 0.833 0.800 0.333 0.670

are almost equal. When the mean apparent power is used, the power factor PF ′ = P/S̄ = 0.747
gives the wrong information about the line utilization.

Finally we find the randomness power

DR =
√

S2 − (P2 + Q2
c) = 10.32 kvar

If DR is calculated using the mean value Q̄ results

DR =
√

S2 − [P2 + (Q̄)2] = 10.63 kvar

with a 3% difference caused by the randomness nature of �Q.

7.2.1 Analytical Expressions of Powers: Single-Phase Sinusoidal

For the observation time τ , the apparent power squared has the expression

S2 = V 2 I 2 = 1

ν2

ν∑
i=1

V 2
i

ν∑
i=1

I 2
i

= 1

ν2

ν∑
i=1

V 2
i

ν∑
i=1

[Ii cos(θi )]
2 + 1

ν2

ν∑
i=1

V 2
i

ν∑
i=1

[Ii sin(θi )]
2

The apparent power resolution is obtained by using Lagrange’s identity:

ν∑
i=1

a2
i

ν∑
i=1

b2
i =

(
ν∑

i=1

ai bi

)2

+
ν∑

1≤n<m≤ν

(ambn − anbm)2
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hence

S2 = 1

ν2

(
ν∑

i=1

V 2
i Ii cos(θi )

)2

+ 1

ν2

ν∑
1≤n<m≤ν

[Vm In cos(θn) − Vn Im cos(θm)]2

+ 1

ν2

(
ν∑

i=1

V 2
i Ii sin(θi )

)2

+ 1

ν2

ν∑
1≤n<m≤ν

[Vm In sin(θn) − Vn Im sin(θm)]2

= (P̄)2 + (Q̄)2 + D2
R

where the distortion power squared is

D2
R = 1

ν2

ν∑
1≤n<m≤ν

{
[Vm In cos(θn) − Vn Im cos(θm)]2 + [Vm In sin(θn) − Vn Im sin(θm)]2

}

= 1

ν2

ν∑
1≤n<m≤ν

[(Vm In)2 + (Vn Im)2 − 2Vm Vn Im In cos(θm − θn)] (7.12)

The practical way to compute the randomness power is

DR =
√

S2 − (P̄)2 − (Q̄)2 (7.13)

Using Q̄ instead of Qc means that the component �Q is accounted for. This fact becomes
clear if one substitutes Q̄ = Qc − �Q in (7.13), resulting in

DR =
√

S2 − P2 − (Q̄)2 =
√

S2 − (P̄)2 − Q2
c

(
1 − �Q

Qc

)2

(7.14)

7.3 Single-Phase Nonsinusoidal Case

Every subinterval i is characterized by its rms voltage and current Vi , Ii , respectively. The two
major components of Vi and Ii are the fundamental rms voltage and current, V1i , I1i , and the
total rms harmonic voltage and current, VHi , IHi , i.e.,:

V 2
i = V 2

1i + V 2
Hi and I 2

i = I 2
1i + I 2

Hi

The rms values of these components for the entire interval τ are

V1 =
√√√√1

ν

ν∑
i=1

V 2
1i ; I1 =

√√√√1

ν

ν∑
i=1

I 2
1i

VH =
√√√√1

ν

ν∑
i=1

V 2
Hi ; IH =

√√√√1

ν

ν∑
i=1

I 2
Hi
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hence the apparent power squared has the following expressions

S2 = (V 2
1 + V 2

H )(I 2
1 + I 2

H ) = 1

ν2

(
ν∑

i=1

V 2
1i +

ν∑
i=1

V 2
Hi

)(
ν∑

i=1

I 2
1i +

ν∑
i=1

I 2
Hi

)

= 1

ν2

ν∑
i=1

V 2
1i

ν∑
i=1

I 2
1i + 1

ν2

ν∑
i=1

V 2
1i

ν∑
i=1

I 2
Hi + 1

ν2

ν∑
i=1

V 2
Hi

ν∑
i=1

I 2
1i + 1

ν2

ν∑
i=1

V 2
Hi

ν∑
i=1

I 2
Hi

= S2
1 + D2

I + D2
V + S2

H (7.15)

with four distinct terms:

1. The first term is the fundamental apparent power squared

S2
1 = 1

ν2

(
ν∑

i=1

V 2
1i I1i cos(θ1i )

)2

+ 1

ν2

ν∑
1≤n<m≤ν

[V1m I1n cos(θ1n) − V1n I1m cos(θ1m)]2

+ 1

ν2

(
ν∑

i=1

V 2
1i I1i sin(θ1i )

)2

+ 1

ν2

ν∑
1≤n<m≤ν

[V1m I1n sin(θ1n) − V1n I1m sin(θ1m)]2

= (P̄1)2 + (Q̄1)2 + (D1R)2 (7.16)

where

(D1R)2 = 1

ν2

ν∑
1≤n<m≤ν

[(V1m I1n)2 + (V1n I1m)2 − 2V1m V1n I1m I1n cos(θ1m − θ1n)]

is the Fundamental Randomness Power. This result is identical to (7.12)
2. The second term is the current distortion power squared

D2
I = 1

ν2

ν∑
i=1

V 2
1i

ν∑
i=1

I 2
Hi = 1

ν2

(
ν∑

i=1

V1i IHi

)2

+ 1

ν2

ν∑
1≤n<m≤ν

(V1m I1n − V1n I1m)2

= (D̄I )2 + (DI R)2 (7.17)

where

DI R =
√

D2
I − (D̄I )2 =

√√√√ 1

ν2

ν∑
1≤n<m≤ν

(V1m I1n − V1n I1m)2 (7.18)

is the Current Distortion Randomness Power.
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3. The third term is the voltage distortion power squared

D2
V = 1

ν2

ν∑
i=1

V 2
Hi

ν∑
i=1

I 2
1i = 1

ν2

(
ν∑

i=1

VHi I1i

)2

+ 1

ν2

ν∑
1≤n<m≤ν

(VHm I1n − VHn I1m)2

= (D̄V )2 + (DV R)2 (7.19)

where

DV R =
√

D2
V − (D̄V )2 =

√√√√ 1

ν2

ν∑
1≤n<m≤ν

(VHm I1n − VHn I1m)2 (7.20)

is the Voltage Distortion Randomness Power.
4. The last term is the harmonic apparent power squared

S2
H = 1

ν2

ν∑
i=1

V 2
Hi

ν∑
i=1

I 2
Hi = 1

ν2

(
ν∑

i=1

VHi IHi

)2

+ 1

ν2

ν∑
1≤n<m≤ν

(VHm IHn − VHn IHm)2

= (S̄H )2 + (SH R)2 (7.21)

where

SH R =
√

S2
H − (S̄H )2 =

√√√√ 1

ν2

ν∑
1≤n<m≤ν

(VHm IHn − VHn IHm)2 (7.22)

is the Harmonic Apparent Randomness Power.

The resolution of the apparent power is found in the following expression:

S2 = (P̄1)2 + (Q̄1)2 + (D̄I )2 + (D̄V )2 + (S̄H )2 + D2
R (7.23)

where

DR =
√

(D1R)2 + (DI R)2 + (DV R)2 + (SH R)2

is the total Randomness Power.

7.4 Three-Phase Sinusoidal and Unbalanced Condition

Three-phase systems require the measurement of the effective voltage Ve and current Ie. From
(5.103) and (5.104) it is found

V 2
e = (V +)2 + V 2

u and I 2
e = (I +)2 + I 2

u
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where

V 2
u = (V −)2 + (V 0)2

4
and I 2

u = (I −)2 + 4(I 0)2

are components caused by the system unbalance; the voltages V +, V −, and V 0 are the
positive-, negative-, and zero-sequence line-to-line voltages, and the currents I+, I −, and
I 0 are the positive-, negative-, and zero-sequence line currents. The effective apparent power
squared measured for a subinterval �τ is

S2
ei = (3Vei Iei )

2 = (S+
i )2 + (Sui )

2 (7.24)

where

S+
i = 3V +

i I +
i =

√
(P+

i )2 + (Q+
i )2

is the positive-sequence apparent power and

P+
i = 3V +

i I +
i cos(θ+

i ) ; Q+
i = 3V +

i I +
i sin(θ+

i )

are the positive-sequence active and reactive powers. These three powers, S+
i , P+

i , and Q+
i ,

are major components that dominate the flow of electric energy.
The unbalanced apparent power, Sui in (7.24), has three terms

(Sui )
2 = 9[(Vui Iui )

2 + (V + Iui )
2 + (Vui I +

i )2] (7.25)

The first term includes active and nonactive powers associated with the negative- and the
zero-sequence currents and voltages:

(Vui Iui )
2 = 9

[
(V −

i I −
i )2 + (V 0

i I 0
i )2 + (4V −

i I 0
i )2 + (V 0

i I −
i )2

4

]

The remaining two terms contain only nonactive powers

(V +
i Iui )

2 = 9
[
(V +

i I −
i )2 + 4(V +

i I 0
i )2

]
and (Vui I +

i )2 = 9

[
(V −

i I +
i )2 + (V 0

i I +
i )2

4

]

The rms values of the effective voltage and current for the entire duration τ are

Ve =
√√√√1

ν

ν∑
i=1

[(V +
i )2 + (Vui )2] and Ie =

√√√√1

ν

ν∑
i=1

[(I +
i )2 + (Iui )2]
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and the effective apparent power squared, calculated for the total observation time τ , has four
terms:

S2
e = (3Ve Ie)2 = 9

ν2

[
ν∑

i=1

(V +
i )2

ν∑
i=1

(I +
i )2 +

ν∑
i=1

(V +
i )2

ν∑
i=1

(Iui )
2

+
ν∑

i=1

(Vui )
2

ν∑
i=1

(I +
i )2 +

ν∑
i=1

(Vui )
2

ν∑
i=1

(Iui )
2

]

= (S+)2 + (N
′
u)2 + (N

′′
u )2 + (S

′
u)2 = (S+)2 + S2

u (7.26)

where

Su =
√

(N ′
u)2 + (N ′′

u )2 + (S ′
u)2

The IEEE Std. 1459–2010 [6] calls Su unbalance power.

1. The first term in (7.26) is the positive-sequence apparent power squared:

(S+)2 = 9

ν2

ν∑
i=1

(V +
i )2

ν∑
i=1

(I +
i )2 = 9

ν2

⎡
⎣

(
ν∑

i=1

V +
i I +

i

)2

+
ν∑

1≤n<m≤ν

(V +
m I +

n − V +
n I +

m )2

⎤
⎦

= (S̄+)2 + (D+
R )2 = (P̄+)2 + (Q̄+)2 + (D+

R )2 (7.27)

where

S̄+ = 1

ν

ν∑
i=1

S+
i ; S+

i = 3V +
i I +

i

is the mean positive-sequence apparent power for the duration τ ,

P̄+ = 1

ν

ν∑
i=1

P+
i ; P+

i = 3V +
i I +

i cos(θ+
i )

is the mean positive-sequence active power for the duration τ ,

Q̄+ = 1

ν

ν∑
i=1

Q+
i ; Q+

i = 3V +
i I +

i sin(θ+
i )

is the mean positive-sequence reactive power for the duration τ , and

D+
R =

√√√√ 9

ν2

[
ν∑

1≤n<m≤ν

(V +
m I +

n − V +
n I +

m )2

]
(7.28)

is the Positive-Sequence Randomness Power.
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2. The second term is a nonactive power

(N
′
u)2 = 9

ν2

ν∑
i=1

(V +
i )2

ν∑
i=1

(Iui )
2 = (N̄ ′

u)2 + (DuI R)2

where

N̄ ′
u = 3

ν

ν∑
i=1

(V +
i )Iui

is a mean nonactive power due to current unbalance, and

DuI R =
√√√√ 9

ν2

ν∑
1≤n<m≤ν

(V +
m Iun − V +

n Ium)2 (7.29)

is the Randomness Power due to Current Unbalance.
3. The third term

(N
′′
u )2 = 9

ν2

ν∑
i=1

(V +
ui )2

ν∑
i=1

(I +
i )2 = (N̄ ′′

u )2 + (DuV R)2

is the squared nonactive power due to voltage unbalance, where

N̄ ′′
u = 3

ν

ν∑
i=1

(Vui )Ii

is the mean nonactive power due to voltage unbalance, and

DuV R =
√√√√ 9

ν2

ν∑
1≤n<m≤ν

(Vum I +
n − Vun I +

m )2 (7.30)

is the Randomness Power due to Voltage Unbalance.
4. The last term

(S
′
u)2 = 9

ν2

ν∑
i=1

(Vui )
2

ν∑
i=1

(Iui )
2 = (S̄ ′

u)2 + (DuV I R)2

is the unbalance power squared due to voltage unbalance and current unbalance.

(S̄ ′
u)2 = 9

ν2

ν∑
i=1

(Vui )
2(Iui )

2 = (P̄u)2 + (N̄ ′′′
u )2
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is the mean unbalance apparent power squared, due to unbalance voltage and unbalance
current, where

P̄u = 3

ν

ν∑
i=1

[V −
i I −

i cos(θ−
i ) + V 0

i I 0
i cos(θ0

i )]

is the mean value of the unbalance active power, the sum of negative- and zero-sequence
active power

N̄ ′′′
u =

√√√√ 9

ν2

{
ν∑

i=1

[(V −
i I −

i sin(θ−
i ))2 + (V 0

i I 0
i sin(θ 0

i ))2 + 4(V −
i I 0

i )2 + (V 0
i I −

i )2

4
]

}

is the mean nonactive power due to voltage and current unbalance. The remaining term

DuV I R =
√√√√ 9

ν2

ν∑
1≤n<m≤ν

(Vum Iun − Vun Ium)2 (7.31)

is the Randomness Power due to Voltage and Current Unbalance.

Thus, the resolution of the effective apparent power in the case of a sinusoidal, but asym-
metrical, system with randomly varying voltages and currents is described by the following
expression:

S2
e = (S̄e)2 + (DR)2 = (P̄+)2 + (Q̄+)2 + (N̄u)2 + (P̄u)2 + (DR)2 (7.32)

where

N̄u =
√

(N̄ ′
u)2 + (N̄ ′′

u )2 + (N̄ ′′′
u )2 (7.33)

is the total nonactive power due to the system unbalance and

DR =
√

(D+
R )2 + (DuI R)2 + (DuV R)2 + (DuV I R)2 (7.34)

is the total Randomness Power.

7.5 Three-Phase Systems with Nonsinusoidal and
Unbalanced Condition

In this case for every subinterval i the effective voltage and current, Vei and Iei , are separated
into two components: the effective fundamental and the effective total harmonic:

V 2
ei = V 2

e1i + V 2
eHi and I 2

ei = I 2
e1i + I 2

eHi
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The effective total harmonics of the current and voltage for the subinterval i are

VeHi =
√√√√ ∞∑

h �=1

V 2
ehi and IeHi =

√√√√ ∞∑
h �=1

I 2
ehi

where Vehi and Iehi are the rms voltage and current harmonics of h-order. The total effective
apparent power squared can be resolved in four terms:

S2
e = 9(Ve Ie)2 = 9

ν2

ν∑
i=1

(Vei)2
ν∑

i=1

(Iei)2

= 9

ν2

ν∑
i=1

(V 2
e1i + V 2

eHi )
ν∑

i=1

(I 2
e1i + I 2

eHi )

= (Se1)2 + (DeI )2 + (DeV )2 + (SeH )2 (7.35)

1. The first term is the fundamental effective power squared:

(Se1)2 = 9

ν2

ν∑
i=1

(Ve1i )
2

ν∑
i=1

(Ie1i )
2 = (P̄+

1 )2 + (Q̄+
1 )2 + (N̄u1)2 + (De1R)2 (7.36)

Since the fundamental voltages and currents (50 or 60 Hz) are sinusoidal, but not necessar-
ily symmetrical, the observed expressions are identical with (7.34), and the fundamental
randomness power is:

(De1R)2 = (D+
1 )2 + (D1uI R)2 + (D1uV R)2 + (D1uV I R)2

2. The second term is the current distortion power squared

(DeI )2 = 9

ν2

ν∑
i+1

(Ve1i )
2

ν∑
i+1

(IeHi )
2 = (D̄eI )2 + (DeI R)2 (7.37)

where

D̄eI =
√

9

ν2
(Ve1i IeHi )2

is the mean value of the current distortion power for the time τ and

DeI R =
√

(DeI )2 − (D̄eI )2 =
√√√√ 9

ν2

ν∑
1≤n<m≤ν

(Ve1m IeHn − Ve1n IeHm)2

is the Current Distortion Randomness Power.
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3. The third term is the voltage distortion power squared

(DeV )2 = 9

ν2

ν∑
i+1

(VeHi )
2

ν∑
i+1

(Ie1i )
2 = ( ¯DeV )2 + (DeV R)2 (7.38)

where

¯DeV =
√

(DeV )2 − (DeV R)2 =
√

9

ν2
(VeHi Ie1i )2

is the mean value of the voltage distortion power for the time τ and

DeV R =
√√√√ 9

ν2

ν∑
1≤n<m≤ν

(VeHm Ie1n − VeHn Ie1m)2

is the Voltage Distortion Randomness Power.
4. The fourth term is the harmonic apparent power squared

(SeH )2 = 9

ν2

ν∑
i+1

(VeHi )
2

ν∑
i+1

(IeHi )
2 = ( ¯SeH )2 + (DeH R)2 (7.39)

where

( ¯SeH )2 = ( ¯DeH )2 + (P̄H )2 = 9

ν2
(VeHi IeHi )

2

is the mean value of the harmonic apparent power for the time τ where

DeH R =
√

(SeH )2 − ( ¯SeH )2 =
√√√√ 9

ν2

ν∑
1≤n<m≤ν

(VeHm IeHn − VeHn IeHm)2

is the Harmonic Distortion Randomness Power
The harmonic active power P̄H = PH , is a component of the mean harmonic apparent

power ¯SeH .
In conclusion, for the most general case the effective apparent power is

Se =
√

(P̄+
1 )2+(Q̄+

1 )2+(N̄u1)2+(P̄u)2+(P̄H )2+(D̄eI )2+( ¯DeV )2+( ¯DeH )2+(DeR)2

(7.40)

where

Nu1 =
√

(N
′
u1)2 + (N

′′
u1)2 + (N

′′′
u1)2
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Figure 7.4 Apparent power resolution for time-varying conditions.

and

DeR =
√

(De1R)2 + (DeI R)2 + (DeV R)2 + (DeH R)2 (7.41)

is the total Randomness Power

The apparent power resolution for the time-varying conditions is shown in Fig. 7.4. The
priority powers’ symbols were enclosed in circles. One counts three active powers: the sig-
nificant fundamental active power P1, and the undesirable harmonic and unbalanced active
powers PH and Pu . There are seven nonactive powers: Q1, N

′
u1, N

′′
u1, N̄

′′′
u1, DeI , DeV , and

DeH . There are also 7 randomness powers that result in the total quantity DeR .
The reader may feel overwhelmed by so many components, but in practice one needs only

a few power components to obtain a good picture of the line utilization, harmonic pollution,
and the size of filters needed for current distortion correction. Usually Se, SN , P1, Q1, and
DR , and the total harmonic distortions, are sufficient for a preliminary evaluation of a load or
cluster of loads.

In this chapter it is shown that the equivalent values for active and nonactive powers,
measured over large time intervals divided into subintervals, are always the mean value of
the quantities measured for each subinterval. This feature, however, does not apply to the
measurements of apparent power, and it is necessary to include a randomness power in the
resolution of apparent power, even when we deal with purely resistive loads.

A simple explanation for these observations can be given by assuming a time-varying
resistance supplied with a sinusoidal voltage with constant rms value and a sinusoidal current
with randomly varying amplitude. Such a current can be separated into a constant amplitude
current and a randomly varying current with zero average value calculated for the total
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observation time. This random current component causes no net transfer of energy; during
some subintervals it helps to transmit energy to the load and during the remaining intervals the
load generates an equal amount of energy that is returned to the electric grid. This observation
is accurately describing the instantaneous randomness power, it is a shear nonactive power,
but a power that causes additional losses in the supplying line conductors and transformer
windings.

The random component of current is rich in subsynchronous frequency components. If the
measuring instrument, that monitors the load, has the capability to compute the powers for
the entire duration τ in a deterministic way, i.e. the subsynchronous components are correctly
included in the measurement, then the randomness powers are found to be nil.

It is hard to predict if the randomness power will gain acceptability, nevertheless this new
quantity deserves consideration when one deals with arc furnaces, spot welders, and kVA
Demand meters.

EXAMPLE: PROBABILISTIC APPROACH

A sinusoidal, 1000V, single-phase voltage, supplies a time-varying load via a feeder with
0.5 + j2 
 equivalent impedance. The load consists of an impedance R(t) + j50 
. The
resistance R(t) varies randomly between the values 50 to 200 
 according to a normal
distribution:

p(R, σ ) = 1√
2πσ

exp

[
− (R − 100)2

2σ 2

]

where the mean value < R >= 100 
 and the standard deviation is 0 ≤ σ ≤ 60 
.
For a given integer value of R the probability function p(R, σ ) provides the number of

occurrences when the load resistance takes the value R [7]. Thus the rms load voltage and
current are as follows

V =
√∫ 200

50

(R2 + 502)106

(R + 0.5)2 + 522
p(R, σ ) d R

I =
√∫ 200

50

106

(R + 0.5)2 + 522
p(R, σ ) d R

In the same manner one finds the active and reactive powers:

P =
∫ 200

50

106

(R + 0.5)2 + 522
R p(R, σ ) d R

Q =
∫ 200

50

106

(R + 0.5)2 + 522
50 p(R, σ ) d R
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Figure 7.5 Example: Power factor and normalized randomness power versus the standard deviation.

The apparent power is S = V I and the randomness power and the power factor follow:

DR =
√

S2 − P2 − Q2 and PF = P

S

In Fig. 7.5 the power factor and the normalized randomness power as a function of the
standard deviation are presented.

These results should be evaluated keeping in mind that the power factor of the mean
value impedance 100 + j50 is < PF >= 0.894. This is the value obtained for σ = 0. As
the standard deviation increases the power factor decreases and the randomness power is a
significant DR = 0.30S at σ = 55 
.

7.6 Problems

7.1 A purely resistive load is supplied with a sinusoidal voltage that has a perfectly constant
rms value V . A measurement carried over the duration τ = 2�τ provided the following
information: the rms current I = I1 for 0 ≤ t ≤ �τ and I = I2 for �τ ≤ t ≤ 2�τ . Show that
the randomness power is DR = V |I1 − I2|/2.

7.2 Show that if Vi = RIi and R = constant, then S̄ = S = P and DR = 0.

7.3 Extend the above problem to the general case when the load Z = Z � θ is constant and
the voltage varies in time. Assume ν equal time intervals �τ , each characterized by a constant
rms voltage Vi with i = 1, 2, 3, . . . ν. Compute S, P, Q, DR, Qc, and PF.

7.4 An inductive load is monitored over five equal time intervals. The measured quantities
are given in Table 7.3. Compute P, Q̄, Qc, S, S̄, and DR .

7.5 A three-phase, Y-connected load with grounded neutral is supplied from a substation
via a four-wire system feeder with line resistance RS = 0.1 
 per phase and line reactance



P1: OTA/XYZ P2: ABC
c07 BLBK294-Emanuel June 19, 2010 13:22 Printer Name: Yet to Come

226 Power Definitions and the Physical Mechanism of Power Flow

Table 7.3 Summary of the Measured Quantities (Problem 7.4)

i 1 2 3 4 5

Ri (
) 1.0 0.8 0.5 1.0 2.0
ωL (
) 1.0 0.6 0.6 0.8 3.5
Vi (V) 240 235 234 238 242

ωL S = 0.5 
 per phase. The neutral path impedance ZN = RN + j X N varies in time. The
load impedances are also time variant. They are labeled as follows:

Phase A: ZA = RA + j X A Phase B: ZB = RB + j X B Phase C: ZC = RC + j XC

The line-to-neutral rms voltage phasors at the substation are kept constant and symmetrical.
Their rms phasors are:

VA = 440� 0o V; VB = 440 � − 120o V; and VC = 440 � 120o V.
The values of the randomly varying resistances and reactances are summarized in Table 7.4

Table 7.4 Resistance and Reactance Values (Problem 7.5)

i 1 2 3 4 5

RA (
) 2.0 4.0 2.0 3.0 3.0
RB (
) 2.0 5.0 4.0 2.0 4.0
RC (
) 3.0 6.0 4.0 3.0 2.0
RN (
) 4.0 8.0 4.0 6.0 5.0
X A (
) 1.0 0.8 1.0 1.0 1.0
X B (
) 1.0 0.6 0.8 1.5 0.8
XC (
) 1.0 0.4 0.8 1.0 1.0
X N (
) 7.0 6.0 6.6 6.0 6.0

Compute S, P, Q, and DR .

7.6 The measured voltage and current phasors at the input terminals of a load are given
in Table 7.5. V1 and V5 are the fundamental and the 5th harmonic voltage. I1 and I5 are the
fundamental and the 5th harmonic current. Compute S, S1, P, Q, DI , DV , SH , and DR .

Table 7.5 Summary of the Measured Quantities (Problem 7.6)

i 1 2 3 4 5

V1 (pu) 100 � 0◦ 105 � 0◦ 102 � 0◦ 90 � 0◦ 97 � 0◦

V5 (pu) 10 � 40◦ 100� 70◦ 100� 60◦ 100 � 45◦ 100 � 88◦

I1 (pu) 100� 0◦ 20� 0◦ 60� 0◦ 120� 0◦ 130� 0◦

I5 (pu) 20 � 0◦ 35� 0◦ 25� 0◦ 12 � 0◦ 4� 0◦

7.7 A three-phase load that consists of three equal impedances Z = 1 + j1 pu, �–
connected, is supplied with square wave voltages that vary randomly, (see Table 7.6).

Compute S̄e1, D̄eI , ¯DeV , ¯SeH , and DeR .
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Table 7.6 Summary of the Measured Quantities: Line-to-Line
Voltages. Square Waves Amplitudes, (Problem 7.7)

i 1 2 3 4 5

VAB (pu) 10 12 9 10 11
VBC (pu) 10 10 11 9 9
VC A (pu) 9 9 10 11 12

Note:

v-square wave = 4

π
V

[
sin(ωt) + 1

3
sin(3ωt) + 1

5
sin(5ωt) + · · ·

]

7.8 A randomly varying load consists of a resistance that follows a uniform distribution
in the range 2 ≤ R ≤ 198 
 with a mean value < R >= 100
 and a standard deviation
σ = 56.58
. The supply line has an equivalent impedance Z = 0.1 + j0.5 
. Compute
S, P, Q, and DR .

7.9 A three-phase, three-wire line supples a V-connected load with sinusoidal and constant
voltage: VAB = 220 � 0◦ V and VBC = 220 � − 120◦ V. The two loads, connected line-to-line,
have identical impedances, Z = R + j X 
, that vary randomly in time following a Gaussian
distribution with < R >= 100 
 mean value. The ratio X/R = 1.2 remains constant in time.
Study the performance of this system in function of the standard deviation 0 ≤ σ ≤ 80 
.
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8
Appendices

It is not so difficult a task to plant new truths as to root out old errors, for there is this paradox in
men: they run after that which is new, but are prejudiced in favor of that which is old.

—Arthur Schopenhauer

8.1 Appendix I: The Electrostatic Field Distribution in a Coaxial Cable

The coaxial cable shown in Fig. 8.1a has an inner conductor with radius a and an outer
conductor with an internal radius b. The voltage vδ drops uniformly along the cable and it
is assumed to be equally divided between the outer and the inner conductors. The voltage vδ

supports two electric fields: a radial field caused by the potential difference between the inner
and outer conductor and an axial electrostatic field. The total electric field is the result of a
superposition represented by Figs. 8.1b and c: In Fig. 8.1b we account for a radial field only,
no voltage drop takes place; the same voltage vs − vδ is impressed at both ends of the cable,
hence no axial field exists. In Fig. 8.1c only the effect of voltage vδ is considered and both
axial and radial fields are present.

The system being linear, the superposition principle is valid. The computation of the field
for Fig. 8.1b is known (1.22), nevertheless finding the field distribution in Fig.8.1c requires a
bit of work and to do so we will use the Laplace equation written in cylindrical coordinates
[1]. The actual variables are r , the radius, and z, the axial location of the observed point. The
potential distribution between the concentrical conductors has the general solution

� = Az ln r + Bz + C ln r + D (8.1)

where A, B, C , and D are constants determined from three boundary conditions (see Fig.
8.1c):

1. For z = 0 and a ≤ r ≤ b

� = vδ/2 = C ln r + D (8.2)

This means that C = 0 and D = vδ/2

Power Definitions and the Physical Mechanism of Power Flow Alexander Eigeles Emanuel
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r
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(b) (c)

i

l

Figure 8.1 Coaxial cable: (a) Actual geometry and voltages. (b) Equivalent system with no-voltage
drop. (c) Equivalent sytem accounting for the voltage drop vδ .

2. For z = � and r = b

� = 0 = A� ln b + B� + vδ/2 (8.3)

3. For z = � and r = a

� = vδ = A� ln a + B� + vδ/2 (8.4)

The substitution of (8.3) in (8.4) gives

vδ = A�(ln a − ln b) hence A = vδ

� ln(a/b)

Substituting the expression of A in (8.3) gives

B� = −vδ

2
− vδ

� ln(a/b)
� ln b hence B = −vδ

�

(
1

2
+ ln b

ln(a/b)

)

Substitution of A, B, C , and D in (8.1) gives 1

� = vδ

�

1

ln(a/b)
z ln r − vδ

�

(
1

2
+ ln b

ln(a/b)

)
z + vδ

2

1 This result must be checked:
At x = � � = vδ/2. At x = 0 and r = a we find � = vδ , and at x = 0 and r = b � = 0.



P1: OTA/XYZ P2: ABC
c08 BLBK294-Emanuel June 19, 2010 13:22 Printer Name: Yet to Come

Appendices 231

= vδ

2

(
1 + z

�

ln(ab/r2)

ln(b/a)

)
= vδ

2

(
1 + � − x

�

ln(ab/r 2)

ln(b/a)

)
(8.5)

The potential � is a function of x and r and due to axial symmetry is independent of the
angle φ. This observation leads to the conclusion that the electric field has two components:

An axial component

�E ′
x = −∂�

∂x
= ln(ab/r 2)

2� ln(b/a)
vδ

�1x (8.6)

and a radial component

�E ′
r = −∂�

∂r
= −vδ

2

� − x

�

(−2/r )

ln(b/a)
�1r = 1

ln(b/a)

� − x

�
vδ

1

r
�1r (8.7)

The electric field impressed by the voltages shown in Fig. 8.1b is not a function of x . This
is the case of the ideal cylindrical concentric electrodes where the voltage vs − vδ is constant
along the cable and the electric field is

�E"
r = 1

ln(b/a)

vs − vδ

r
�1r (8.8)

The total radial field is

�Er = �E ′
r + �E"

r = 1

ln(b/a)

[
� − x

�
vδ + vs − vδ

] �1r

r
= 1

ln(b/a)

vx

ln(b/a)

�1r

r
(8.9)

where vx = vs − x
�
vδ is the cable’s voltage at the point x , Fig. 7.1a.

8.2 Appendix II: Poynting Vector due to Displacement Current

Where there is a capacitance C and the capacitance voltage v varies in time there is a
displacement current, iD = Cdv/dt , that flows through the dielectric. The coaxial’s cable
(Fig. 8.1a) capacitance is

C = ε�

ln(b/a)

Ignoring the fringing effect at the ends of the cable and assuming vδ � vs the displacement
current decreases linearly along the cable from C dvs/dt to 0 and produces a magnetic field

�HD ≈
(

1 − x

�

) C dvs/dt

2πr
�1φ
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The voltage vs supports the electric field

�E ≈ vs

ln(b/a)

1

r
�1r

which interacts with the magnetic field HD yielding the Poynting vector

�℘D = �E × �HD ≈ 1 − x/�

ln(b/a)

1

2πr2
Cvs

dvs

dt
�1x

The power flow carried by the ℘D is nonactive (has zero mean value). This power flows
in and out in the axial direction between the conductors. At x = 0, the entry point, the total
power is given by the flux carried by ℘D

∫ b

a
�℘D2πr dr �1x = Cvs

dvs

dt
= vsiD

where iD is the displacement current.
In situations where the displacement current cannot be ignored the magnetic field in the

cable is computed considering both the components, i.e.

�H = �H ′ + �HD = 1

2π

[
i

r
+ C(1 − x/�)

r

dvs

dt

]
�1φ

8.3 Appendix III: Electric Field Caused by a Time-Varying
Magnetic Field

Where there is a magnetic field that varies in time there is always an electric field curling around
the magnetic field stream lines. Faraday’s law was mathematically expressed by Maxwell and
Heaviside as

� × �EH = −µ0
∂ �H
∂t

= −µ0

2πr

di

dt
�1φ for a ≤ r ≤ b

The above equation is true for a coaxial cable (Fig. 8.1) where

�H = i

2πr
�1φ

and translated into cylindrical coordinates (r, φ, x) has the matrix form

� × �EH = 1

r

∣∣∣∣∣∣
�1r r �1φ

�1x
∂
∂r

∂
∂φ

∂
∂x

EHr r EHφ EH x

∣∣∣∣∣∣ = −µ0

2πr

di

dt
�1φ
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(a)

(b)

  
(c)

HB 0µ=

0

0

a

a

21 AA =

m b

m b r

r
Ψ

=Ψmb

amΨ

amΨ

amΨ

Figure 8.2 Coaxial cable: (a) Geometry. (b) Magnetic flux density distributon. (c) Magnetic flux
distribution within the dielectric. The location of the “midway” point m.

Inside a coaxial cable the electric field streamlines, caused by the magnetic field, are parallel
to the conductors, the components EHr and EHφ are nil, therefore

1

r

∂ EH x

∂r
r �1φ = −µ0

2πr

di

dt
�1φ (8.10)

Integration of (8.10) gives

EH x = −µ0

2π
ln

r

K

di

dt

The integration constant is found from the condition EH x = 0 at r = m = K . The radius
m fulfills the condition that the flux 	am entering the area (m − a)� is equal to the flux 	mb

through the remaining area, (b − m)�, Fig. 8.2c. This constrain is written as follows:
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2	am = 	ab or 2
∫ m

r=a
µ0 H (r ) � dr =

∫ b

r=a
µ0 H (r ) � dr

thus

2
∫ m

a

dr

r
=

∫ b

a

dr

r

therefore 2 ln(m/a) = ln(b/a) and m = √
ab. The axial electric field vector induced by the

magnetic field is

�EH x = −µ0

2π
ln

r√
ab

di

dt
�1x for a ≤ r ≤ b

The total axial component of the electric field is

�Ex = �E ′
x + �EH x =

[
F(r )vδ + G(r )

di

dt

]
�1x (8.11)

where

F(r ) = ln(ab/r2)

2� ln(b/a)
and G(r ) = −µ0

2π
ln

r√
ab

We find that at r = m = √
ab the functions F(m) = G(m) = 0 yielding Ex = 0. The cylin-

drical surface 2πm� separates two regions; a < r < m and m < r < b. The directions of flow
of the electric field vector �EH in one region is opposed to the direction of flow in the other
region. The interaction of the axial electric field with the magnetic field produces a transversal
(radial) Poynting vector

�℘r = �E × �H = �℘ ′
r + �℘“

r =
[

ln(ab/r2)

2� ln(a/b)
vδ

i

2πr
�1r − µ0

2π
ln

r√
ab

i

2πr

di

dt

]
�1r (8.12)

The first component �℘ ′
r carries the active and reactive powers impinged into the conductors,

namely the conductors’ power loss and the energy stored in the magnetic field located within the
conductors. The second term vec℘“

r carries only the reactive power caused by the oscillations
of energy stored in and out the dielectric, i.e., the region a < r < b.

The total power carried by �℘“
r is

p“
r = −µ0

4π2
ln

a√
ab

i
di

dt
2πa� + µ0

4π2
ln

b√
ab

i
di

dt
2πb�

= µ0�

2π

(
ln

√
b

a
− ln

√
a

b

)
i
di

dt
= µ0�

2π
ln

(
b

a

)
i
di

dt
(8.13)
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The total magnetic flux in the volume π (b2 − a2)� is

	 =
∫ b

a
B� dr = µ0�

2π
i
∫ b

a

dr

r
= µ0�

2π
ln

(
b

a

)
i = L H i

and this result is in perfect harmony with (8.13) indicating that p“
r = L H i di/dt ; where L H is

the inductance that is linked with the flux 	.

8.4 Appendix IV: The Electromagnetic Wave Along the
Three-Phase Line

We will start by assuming a three-phase, perfectly balanced system with the following voltages
and currents:

va = V̂ sin(ωt) ia = Î sin(ωt − θ )

vb = V̂ sin(ωt − 2π/3) ib = Î sin(ωt − 2π/3 − θ )

vc = V̂ sin(ωt + 2π/3) ic = Î sin(ωt + 2π/3 − θ )

The instantaneous power is

p = vaia + vbib + vcic = pa + pq

where the active instantaneous power is

pa = P

3
[1 − cos(2ωt) + 1 − cos(2ωt − 4π/3) + 1 − cos(2ωt + 4π/3)] = P

and has a constant value equal to the active power P = 3V I cos(θ ). The instantaneous reactive
power

pq = − Q

3
[sin(2ωt) + sin(2ωt − 4π/3) + sin(2ωt + 4π/3)] = 0

is nil and seems to have no oscillation in spite of the fact that the reactive power Q = 3V I sin(θ )
contributes to the line power loss:

�P = 3Rs I 2 = Rs

3V 2
(P2 + Q2)

This observation has puzzled engineers for a long time. The correct answer becomes evident
if one uses the Poynting vector to understand the distribution of power flow—in time and
space—around a polyphase line or cable, Fig. 8.3. The conductors are assumed to be thin,
superconductive cylinders with the outer radius a. The conductors A, B, C . . . k are assumed
to be surrounded by a hypothetical grounded cylinder with a large inner radius b 	 a. At a
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a2

B

A

C
k

ρ

kρ

kr

Ar

Br Cr

δ ψ

ϕ

AH

BH
CH

AEBE
CE

℘

o

Figure 8.3 Poynting vector �℘ near a polyphase line.

point M(ρ, φ), a � ρ � b, the electric field caused by the conductor k (see 2.53) is

�Ek = λk

2πε0rk
= KE

vk

rk

�1rk ; k = A, B, C, . . .

where λk is the line charge, C/m, vk is the potential of the conductor with respect to ground,
ε0 is the permitivity of air (or of the insulating material that surrounds the conductors). The
constant KE = 1/ ln(b/a) and the radius �rk = �ρ − �ρk , see Fig. 8.3.

The magnetic field caused by the conductor k at M(ρ,ψ) is

�Hk = ik

2πrk

�1ψk

The Poynting vector at a point M(ρ,ψ) is �℘ = �E × �H where

�E = kE

∑
k

vk

rk

�1rk ; �H = 1

2π

∑
k

ik

rk

�1ψk

The total instantaneous power transmitted by this symmetrical polyphase system is

p =
∫ b

ρ=0

∫ 2π

ψ=0
℘ρ dρdψ = P

and is constant in time, but the space and time distribution of �℘ is more revealing: if we freeze
the Poynting vector distribution produced by a three-phase equilateral conductors geometry
supplying a unity power factor load at ωt = 45◦, Fig. 8.4a, we notice that the Poynting vector is
concentrated around the conductors (the Poynting vector is inverse proportionally to the square
of the radius measured from the center of the conductor). Also we witness the unidirectional
nature of the distribution, typical for PF = 1, when the power flows along the conductors,
always from the source to the load.
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c
cb

b

a a

(a) (b)

Figure 8.4 Poynting vector envelopes at ωt = π/4, near a three-phase line with equilateral conductors
placement. The energy flows from bottom of page up toward the load located at the top: (a) Unity power
factor load. (b) Pure inductive load, PF = 0.

In Fig. 8.4b is shown the Poynting vector distribution at ωt = 45◦, for a load with PF = 0,
(perfectly inductive). This time the flow of power is bidirectional and the total flux of power
entering an infinite plane perpendicular on the conductors is nil, i.e.

∫ b

ρ=0

∫ 2π

ψ=0
℘ρdρdψ = 0

In Fig. 8.5 is shown the Poynting vector distribution at ωt = 0◦, 15◦, 30◦, 45◦, and 60◦

(ω = 21, 600 deg/s). The distribution pattern repeats every half-cycle and every sixth of a
cycle the pattern rotates 120◦.

These three-dimensional plots prove the existence of oscillations of energy associated
with both the active and the reactive power. Moreover, considering the fact that when the
conductors’ impedance is accounted, a transversal Poynting vector component is slightly
curving the streamlines toward the conductors’ surface and a small amount of Poynting vector
flux impinging into conductors is carrying the line power loss as well as the energy stored in
the magnetic field distributed within the conductors.

To fathom more in-depth the aspects of the energy flow in three-phase systems we will
consider the hypothetical coaxial three-phase cable sketched in Fig. 8.6. The three cylinders
(assumed to be very thin and superconductive) have the radii a, b, and c. In the channel CB,
c ≤ r ≤ b the electric and magnetic fields and the Poynting vector instantaneous values are
as follows:

EC B = KEC B

r
vC B ; HC B = 1

2πr
iC ; ℘C B = KEC B

2πr 2
vC BiC

and for the channel BA, b ≤ r ≤ a, we find:

EB A = KEB A

r
vB A ; HB A = 1

2πr
(iB + iC ) ; ℘B A = K EB A

2πr2
vB A(iB + iC )
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c

c

(b)

ωt = 0°

ωt = 15°

ωt = 30°

ωt = 45°

ωt = 60°

(a)

b
b

a
a

Figure 8.5 Poynting vector envelopes at ωt = 0, π/12, π/6, π/4, π/3: (a) PF = 1.0. (b) PF = 0
lagging. Source: Z. Cakareski, A. E. Emanuel, “On the Physical Meaning of Nonactive Powers in
Three-phase Systems,” IEEE power Engineering Review, July 1999, pp. 46–47.
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Figure 8.6 Three-phase coaxial cable.

The total instantaneous power transmitted through this cable, computed by means of Poynting
vector2, is:

p =
∫ b

r=c
℘C B2πrdr +

∫ a

r=b
℘B A2πrdr = vC BiC + vB A(iB + iC )

= (vC − vB)iC + (vB − vA)(iB + iC )

= −vA(iB + ic) + vB(iB + iC − iC ) + vCiC = vAiA + vBiB + vCiC (8.14)

To observe the actual flow of electromagnetic power through the cable we must substitute
the following3 expressions in (8.14):

vB A = −
√

3V̂ sin(ωt + 30◦) ; iR A = ÎR sin(ωt) ; iL A = ÎL sin(ωt − 90◦)

vC B = −
√

3V̂ sin(ωt + 90◦) ; iR B = ÎR sin(ωt − 120◦) ; iL B = ÎL sin(ωt + 150◦)

iRC = ÎR sin(ωt + 120◦) ; iLC = ÎL sin(ωt + 30◦) (8.15)

Thus the active terms are:

pB AR = vB A(iRB + iRC ) =
√

3V IR[cos(30◦) − cos(2ωt + 30◦)]

pC BR = vC BiRC =
√

3V IR[cos(30◦) + cos(2ωt + 30◦)]

2 One should not forget that i A + iB + iC = 0, iAR + iB R + iC R = 0 and iAL + iBL + iC L = 0.
3 For the sake of clarity the phase shifting was given in degrees instead of radians. Units-wise this is not correct.
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Figure 8.7 Electromagnetic power flow: (a) Toward a balanced unity power factor load. Active power
represented by black unidirectional arrows. Intrinsic power by gray bidirectional arrows. (b) Toward an
ideal inductive load with PF = 0. Reactive power represented by gray bidirectional arrows.

and the reactive

pB AL = vB A(iL B + iLC ) =
√

3V IL [cos(120◦) − cos(2ωt − 60◦)]

pC BL = vC BiLC =
√

3V IL [− cos(120◦) + cos(2ωt − 60◦)]

The correctness of these computations is supported by the results pB AR + pC BR = 3V IR

and pB AL + pC BL = 0, however, the detailed picture is presented in Fig. 8.7, where the
actual flow of powers is detailed. The flow of active and intrinsic powers is sketched in
Fig. 8.7a and in Fig. 8.7b are presented the nonactive powers. Fig. 8.7b reveals the re-
markable fact that the component (

√
3/2)V IL “swirls around,” in and out of channels AB

and BC.
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Figure 8.8 Coaxial three-phase cable supplying an unbalanced load.

Next we shall analyze a coaxial three-phase cable that supplies an unbalanced load, Fig. 8.8.
The load consists of a resistance R connected between phase A and the neutral N . The supply
voltages are symmetrical with the amplitude V̂ . The cylinders are assumed to be infinitely thin
with the radii a, b, c, and d and made out of superconductive material.

Since the most inner conductor, the neutral, carries current, all the space included in the
region d ≤ r ≤ a carries a magnetic field as well as an electric field. The instantaneous
powers supplied by vB and vC are nil, nevertheless in the channels b ≤ r ≤ c and c ≤ r ≤ d
the interaction between the magnetic and electric fields produces a Poynting vector that carries
electric power. These instantaneous powers have the following expressions:

pAB = 3

2
V I −

√
3V I cos(2ωt + π/6) ; b ≤ r ≤ a

pBC = −
√

3V I cos(2ωt − π/2) ; c ≤ r ≤ b

pC N = −1

2
V I − V I cos(2ωt + 2π/3) ; d ≤ r ≤ c

An exciting picture is revealed if the first two expressions of the instantaneous powers are
rearranged by separating the active and the intrinsic powers as follows:

pAB = V I − V I cos(2ωt) + 1

2
V I + V I cos(2ωt − 2π/3)

pBC = −V I cos(2ωt − 2π/3) + V I cos(2ωt + 2π/3)

The power flow, according to the first results, is shown in Fig. 8.9a. The rearranged power
flow, after the power separations, is presented in Fig. 8.9b. It is quite unexpected to find that
the flux of electromagnetic energy involves loops with no energy transfer. In the channel BC
there is a cancellation of Poynting vectors, however, in the channel AB there is an active power
component V I/2, that flows toward the load and returns via the channel CN. This type of flow
of power was pointed to in section 5.4.2, (5.44). This particular example shows the usefulness
and the beauty of Poynting vector as a tool that helps to understand the details of the physical
mechanisms that govern the flow of electric energy [2].
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Figure 8.9 Electromagnetic power flow within the cable sketched in Fig. 7.8: (a) First results. (b) After
separating the intrinsic and the nonactive powers from the active power.

8.5 Appendix V: Equation (5.99)

The neutral point’s potential (Fig. 5.7b) is given in (5.56):

vO = (vAN + vB N + vC N )/4 ; vN0 = −vO (8.16)

The collective instantaneous voltage squared (5.62) has the following expression:

v2
�

= v2
AO + v2

BO + v2
C O + v2

N O = (vAN − vO)2 + (vB N − vO )2 + (vC N − vO )2 + (vN −vO )2

= v2
AN + v2

B N + v2
C N + v2

N + 4v2
O − 2vO (vAN + vB N + vC N + vN ) (8.17)

Substitution of (8.16) in (8.17) gives

v2
�

= v2
AN + v2

B N + v2
C N + 4

16
(vAN + vB N + vC N )2 − 2

4
(vAN + vB N + vC N )2
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= 1

4
[3(v2

AN + v2
B N + v2

C N ) − 2(vAN vB N + vB N vC N + vC N vAN )]

= 1

4
[v2

AN + v2
B N + v2

C N + (vAN − vB N )2 + (vB N − vC N )2 + (vC N − vAN )2]

= 1

4
[v2

AN + v2
B N + v2

C N + v2
AB + v2

BC + v2
C A] (8.18)

with the rms value

V 2
�

= 1

T

∫ T

0
v2

�
dt = 1

4
[V 2

A + V 2
B + V 2

C + V 2
AB + V 2

BC + V 2
C A]

8.6 Appendix VI: Maximum Active Power (Three-Phase,
Four-Wire System)

The computation of maximum active power by means of Lagrange multipliers can be found
in Chapter 5, references [11,12,20,24]. The method described below makes use of conjugate
phasors. This approach eliminates tedious computations that involve the phase angles.

Given the line to neutral voltage phasors VA, VB , and VC , and assuming the line power
loss for the case ρ = 1, the following constraint expressions are involved in this optimization:

L : = �P

Rs
− (I 2

A+ I 2
B + I 2

C + I 2
N ) = �P

Rs
− (IAI∗

A+IBI∗
B +ICI∗

C +IN I∗
N) = 0 (8.19)

and the obvious Kirchhoff’s current law

M : = IA + IB + IC + IN = 0 (8.20)

N : = I∗
A + I∗

B + I∗
C + I∗

N = 0 (8.21)

The load’s active power, that has to be maximized, is

P = 1

2
�e{VAI∗

A + VBI∗
B + VCI∗

C + VN I∗
N + V∗

AIA + V∗
BIB + V∗

CIC + V∗
N IN }

(8.22)
The objective function is

P + λ

2
L − µ

2
M − ν

2
N = 0 (8.23)

where λ/2, µ/2 and ν/2 are the respective Lagrange multipliers.
Mathematically P maximization means satisfying the condition

∂ P

∂Ix
− λ

2

∂L
∂Ix

− µ

2

∂M
∂Ix

− ν

2

∂N
∂Ix

= 0
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for Ix = IA, IB , IC , IN , I∗
A, I∗

B , I∗
C , and I∗

N . This condition yields eight equations for
the eight currents. Here are the intermediary computations:

∂

∂IA
→ V∗

A − λI∗
A − µ = 0

∂

∂I∗
A

→ VA − λIA − ν = 0

∂

∂IB
→ V∗

B − λI∗
B − µ = 0

∂

∂I∗
B

→ VB − λIB − ν = 0

∂

∂IA
→ V∗

C − λI∗
C − µ = 0

∂

∂I∗
C

→ VC − λIC − ν = 0

∂

∂IN
→ V∗

N − λI∗
N − µ = 0

∂

∂I∗
N

→ VN − λIN − ν = 0 (8.24)

Using (8.20) and (8.21), the sum of each set of four equations from (8.24) gives

V∗
A + V∗

B + V∗
C + V∗

N − 4µ = 0 VA + VB + VC + VN − 4ν = 0

or

VA + VB + VC + VN = 4µ∗ and VA + VB + VC + VN = 4ν

with

ν = 1

4
(VA + VB + VC + VN ) (8.25)

and

ν = µ∗ (8.26)

We learned that the multipliers ν and µ are voltage phasors where ν = VO , the common
mode voltage that defines the reference point O.

The currents that will yield maximum power can now be obtained from (8.24):

Ik = Vk − ν

λ
; k = A, B, C, N (8.27)

The multiplier λ is a real number, (as a matter of fact it is the resistance λ = R
�

) and is
found from (8.19)

�P

Rs
= (I 2

A + I 2
B + I 2

C + I 2
N )

= (VA − ν)(VA − ν)∗ + (VB − ν)(VB − ν)∗

λ2

+ (VC − ν)(VC − ν)∗ + (VN − ν)(VN − ν)∗

λ2
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From here we find

λ =
√∑

k |Vk − ν|2∑
k I 2

k

k = A, B, C, N (8.28)

Now the maximum power can be calculated:

Pmax = �e{VAI∗
A + VBI∗

B + VCI∗
C + VN I∗

N }
= �e{VAOI∗

A + VBOI∗
B + VC O I∗

C + VN OI∗
N }

= (VA − ν)
(VA − ν)∗

λ
+ (VB − ν)

(VB − ν)∗

λ

+ (VC − ν)
(VC − ν)∗

λ
+ (VN − ν)

(VN − ν)∗

λ

=
∑

k |Vk − ν|2√∑
k |Vk − ν|2∑

k I 2
k

=
√∑

k

|Vk − ν|2
√∑

k

I 2
k ; k = A, B, C, N

= V
�

I
�

(8.29)

with

V
�

=
√∑

k

|Vk − ν|2 and I
�

=
√∑

k

I 2
k

When ρ �= 1.0 the constraint L (8.19) is modified to

L = �P

Rs
− (I 2

A + I 2
B + I 2

C + ρ I 2
N ) = �P

Rs
− (IAI∗

A + IBI∗
B + ICI∗

C + ρIN I∗
N ) = 0

(8.30)

and the eight basic equations (8.24) have the terms generated by ∂/∂IN and ∂/∂I∗
N modified.

∂

∂IA
→ V∗

A − λI∗
A − µ = 0

∂

∂I∗
A

→ VA − λIA − ν = 0

∂

∂IB
→ V∗

B − λI∗
B − µ = 0

∂

∂I∗
B

→ VB − λIB − ν = 0

∂

∂IC
→ V∗

C − λI∗
C − µ = 0

∂

∂I∗
C

→ VC − λIC − ν = 0

∂

∂IN
→ V∗

N − ρλI∗
N − µ = 0

∂

∂I∗
N

→ VN − ρλIN − ν = 0

The sum of the four equations located in the right column gives

VA + VB + VC + VN

ρ
− λ(IA + IB + IC + IN ) = 3ν + ν

ρ
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Since IA + IB + IC + IN = 0 result

ν = 1

3 + 1

ρ

(
VA + VB + VC + VN

ρ

)
(8.31)

The currents are

Ik = Vk − ν

λ
, k = A, B, C (8.32)

and

In = VN − ν

ρλ
(8.33)

From the line power loss constrain we have

Rs(I 2
A + I 2

B + I 2
C + ρ I 2

N ) =
∑

k=A,B,C |Vk − ν|2 + 1
ρ
|VN − ν|2

λ2

that yields

λ =

√√√√
∑

k=A,B,C |Vk − ν|2 + 1
ρ
|VN − ν|2

I 2
A + I 2

B + I 2
C + ρ I 2

N

(8.34)

In this case the maximum power is calculated in the same way

Pmax = S
�

= �e{VAOI∗
A + VBOI∗

B + VC O I∗
C + VN OI∗

N }
= (VA − ν)

(VA − ν)∗

λ
+ (VB − ν)

(VB − ν)∗

λ

+ (VC − ν)
(VC − ν)∗

λ
+ (VN − ν)

(VN − ν)∗

ρλ

=
∑

k=A,B,C |Vk − ν|2 + 1
ρ
|VN − ν|2√∑

k |Vk − ν|2∑
k I 2

k

=
√ ∑

k=A,B,C

|Vk − ν|2 + 1

ρ
|VN − ν|2

√ ∑
k=A,B,C

I 2
k + ρ I 2

N = V
�

I
�

(8.35)

where

V
�

=
√ ∑

k=A,B,C

|Vk − ν|2 + 1

ρ
|VN − ν|2 =

√
3V

′′
e (8.36)

I
�

=
√ ∑

k=A,B,C

I 2
k + ρ I 2

N =
√

3Ie (8.37)
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8.7 Appendix VII: About the Ratio ρ = Rs/Rn

If the skin effect is ignored, a perfectly transposed three-phase line with a phase resistance RS

and neutral path resistance RN = ρRS has the power loss

�Plines = RS(I 2
A + I 2

B + I 2
C )

= 3RS[(I +)2 + (I −)2 + (I 0)2] (8.38)

and the neutral path has the power loss

�PN = RN I 2
N = ρRS I 2

N = 9ρRS(I 0)2 (8.39)

From (8.38) and (8.39) we find

ρ = RN

RS
= �PN

I 2
N

I 2
A + I 2

B + I 2
C

�Plines

= (I +)2 + (I −)2 + (I 0)2

3(I 0)2

�PN

�Plines
(8.40)

This expression proves that the ratio ρ is a function of line and neutral path losses; however,
these losses are not caused solely by the currents of the monitored load, the currents due to
other energized loads affect �Plines and �PN as well.

A simple example [5], summarized in Fig. 8.10 helps shed light on this nonlinear behavior:
A four-wire, three-phase system supplies two separated loads. The current phasors are the
following:

L
O

A
D

 2

LOAD 1

AV

BV

CV

1R

1R

1R

2R

2R

2R

1L 2L

1L

1L

2L

2L

1NL

2NL
1NR

2NR
2NI

1NI

2CI1CI

1BI

1AI 2AI

2BI

Figure 8.10 Four-wire, three-phase system with two loads.
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IA1 = IA1 � θA1 ; IB1 = IB1 � θB1 ; IC1 = IC1 � θC1 ; IN1 = IN1 � θN1

IA2 = IA2 � θA2 ; IB2 = IB2 � θB2 ; IC2 = IC2 � θC2 ; IN2 = IN2 � θN2

The total power lost in the lines is

�Plines = R1
[|IA1 + IA2|2 + |IB1 + IB2|2 + |IC1 + IC2|2

] + R2(I 2
A2 + I 2

B2 + I 2
C2)

= �PA + �PB + �PC (8.41)

where

�PA = R1 I 2
A1 + (R1 + R2)I 2

A2 + 2R1 IA1 IA2 cos(θA1 − θA2) (8.42)

Similar expressions are found for �PB and �PC . The power lost has three terms: the first is
due to IA1, the second is due to IA2, and the third is caused by both IA1 and IA2. Based on the
fact that the power losses are functions of the rms current squared, it is possible to separate the
third term into two portions, each one proportional to the I 2

A1 and I 2
A2, respectively [3,4,5], i.e.

2R1 IA1 IA2 cos(θA1 − θA2) = K A
(
I 2

A1 + I 2
A2

)
R1

where the separation constant is

K A = 2IA1 IA2

I 2
A1 + I 2

A2

cos(θA1 − θA2)

From (8.42) results that

�PA = �PIA1 + �PIA2

where

�PIA1 = (R1 + K A R1)I 2
A1 and �PIA2 = (R1 + R2 + K A R1)I 2

A2

Similar expressions are obtained for phase B and C. For the neutral path

�PN = �PIN1 + �PIN2

with

�PIN1 = (RN1 + KN RN1)I 2
N1 and �PIN2 = (RN1 + RN2 + KN RN1)I 2

N2

where

KN = 2IN1 IN2

I 2
N1 + I 2

N2

cos(θN1 − θN2)
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Each load has a theoretical ρ based on (8.40)

ρ1 = I 2
A1 + I 2

B1 + I 2
C1

I 2
N1

�PN1

�PA1 + �PB1 + �PC1
(8.43)

ρ2 = I 2
A2 + I 2

B2 + I 2
C2

I 2
N2

�PN2

�PA2 + �PB2 + �PC2
(8.44)

Practical computations, measurements, or even good estimations of ρ’s are not trivial.
Random load fluctuations, temperature variations, seasonal changes with humidity and tem-
perature of neutral current paths make the determination of ρ a challenging task for future
investigation and research.

In practice ρ > 1, and taking ρ = 1 does not disadvantage the consumer. In special situations
the value of ρ used in Se and PF measurement can be a matter of agreement between the
consumer and utility that supplies electric energy.

A preliminary study [5] indicates that ρ depends mainly on the ratio RN2/R2. If R2/R1 > 10,
then ρ ≈ RN2/R2.

8.8 Appendix VIII: The Use of Varmeters in the Presence of
Nonsinusoidal and Asymmetrical Voltages and Currents

Varmeters meant to measure reactive power in systems with sinusoidal waveforms are not the
right choice when the current and voltage waveforms are nonsinusoidal [6,7,8,9]. Three-phase
dedicated varmeters, which are meant to operate with symmetrical voltages and currents, will
err when negative- and zero-sequence voltage and current components are present. Neverthe-
less, unaware technical personnel may use such meters in the wrong circumstances and reach
wrong conclusions. This appendix is meant to shed light on this issue.

There are a multitude of varmeter conceptual designs and each responds differently to
nonsinusoidal or asymmetrical conditions. Only the performance of the most common designs
is discussed in the following sections.

1. The 90◦ shift method

We start by assuming clean sinusoidal voltage and current:

v(t) = V̂ cos(ωt + α); v(t) = Î cos(ωt + β)

The integral of the voltage

v′(t) =
∫

V̂ cos(ωt + α) dt = V̂

ω
sin(ωt + α)



P1: OTA/XYZ P2: ABC
c08 BLBK294-Emanuel June 19, 2010 13:22 Printer Name: Yet to Come

250 Power Definitions and the Physical Mechanism of Power Flow

is lagging by 90◦ the voltage v, and a wattmeter supplied with the voltage v′ and current i will
measure

P = 1

kT

∫ kT

0
v′(t)i(t) dt = V̂ Î

kT ω

∫ kT

0
sin(ωt + α) cos(ωt + β) dt

= V I kT

kT ω
sin(α − β) = Qint

ω

thus

Qint = ω

kT

∫ kT

0
i(t)

[∫
v dt

]
dt = Q = V I sin(θ ), θ = α − β (8.45)

Using the same approach one may build a varmeter using the derivative of voltage that will
produce a signal

v′′(t) = dv(t)

dt
= −ωV̂ sin(ωt + α)

that is leading by 90◦ the voltage v. In this case the varmeter will be based on the expression:

Qdi f = −1

ωkT

∫ kT

0
i(t)

[
dv(t)

dt

]
dt = Q = V I sin(θ ) (8.46)

Next we consider nonsinusoidal voltage and current waveforms:

v(t) = V0 + V̂1 cos(ωt + α1) + · · · + V̂h cos(ωt + αh) (8.47)

i(t) = V0 + Î1 cos(ωt + β1) + · · · + Îh cos(ωt + βh) (8.48)

Substitution of (8.47) and (8.48) in (8.45) gives

Qint = ω

[
V0 I0

kT

2
+ V1 I1

ω
sin(α1 − β1) + · · · + Vh Ih

hω
sin(αh − βh)

]

= Q1 + �Qint (8.49)

where using the notations P0 = V0 I0 and ωT = 2π , results

�Qint = kπ P0 +
∑
h �=1

Qh

h

and Qh = Vh Ih sin(αh − βh); h = 1, 2, 3, . . .

Substitution of (8.47) and (8.48) in (8.46) gives

Qdi f = V1 I1 sin(α1 − β1) + · · · + hVh Ih sin(αh − βh)

= Q1 + �Qdi f (8.50)
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where

�di f =
∑
h �=1

hQh

When dc traces are present the term kπ P0 may increase �Qint significantly if the
integration time kT is large. When the current transducer is a current transformer or a
Rogowski coil the dc component I0 is not transferred and the term P0 is harmless. If Hall
effect transducers are used then dc traces may increase �Qint, �Qqcv and �Qqci (see (8.49),
(8.52) and (8.53)).

2. The quarter-cycle delay method

This method follows the same concept as the 90◦ shift but the implementation is by digital
means. The governing equation for voltage shift is

Qqcv = 1

kT

∫
i(t)v(t − T/4) dt (8.51)

The shifted voltage signal has the expression

v(t − T/4) = V0 + V̂1 cos

(
ωt − ωT

4
+ α1

)
+ · · · + V̂h cos

(
hωt − hωT

4
+ αh

)

= V0 + V̂1 cos
(
ωt − π

2
+ α1

)
+ V̂2 cos(2ωt − π + α2)

+ V̂3 cos

(
3ωt − 3π

2
+ α3

)
+ V̂4 cos(4ωt + α4) + · · ·

and the voltage-current product

v(t − T/4) i(t) = V0 I0 + V1 I1 cos
(
α1 − β1 − π

2

)
+ V2 I2 cos(α2 − β2 − π )

+ V3 I3 cos

(
α3 − β3 − 3π

2

)
+ V4 I4 cos(α4 − β4) + · · ·

leads to expression:

Qqcv = Q1 + �Qqcv (8.52)

where the difference

�Qqcv = Po − P2 − Q3 + P4 + Q5 − P6 − · · ·

A quarter-cycle current delay will enable the design of a varmeter based on the expression

Qqci = −1

kT

∫ kT

0
v(t)i(t − T/4) dt
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with

i(t − T/4) = I0 + Î1 cos
(
ωt − π

2
+ β1

)
+ Î2 cos(2ωt − π + β2)

+ Î3 cos

(
3ωt − 3π

2
+ β3

)
+ Î4 cos(4ωt + β4) + · · ·

resulting in

Qqci = Q1 + �Qqci (8.53)

with

�Qqci = −P0 + P2 − Q3 − P4 + Q5 + P6 − · · ·

3. Budeanu’s method

The harmonic voltage and current phasors are obtained by means of FFT thus enabling the
computation of fundamental and harmonic reactive powers.

QB =
∑

h

Vh Ih sin(θh) = Q1 + �Q B (8.54)

where

�Q B =
∑
h �=1

Qh

4. Vector reactive power

Using the vector apparent power definition one may define a reactive power

QV =
√

S2
V − P2 (8.55)

When the apparent power squared is correctly defined, as in (4.52):

S2
V = V 2 I 2 = P2

1 + Q2
1 + D2

I + D2
V + P2

H + D2
H

The substitution of the total active power squared

P2 = P2
1 + P2

H + 2P1 PH

in (8.55) gives

QV =
√

Q2
1 + 2P1 PH + D2

I + D2
V + D2

H (8.56)
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This result shows that both quantities Q1 and QV are lacking a physical foundation and
practical use.

5. Numerical examples

We will assume a load supplied with the following voltage and current harmonic phasors
(in per unit):

V1 = 1.0� 0◦; V3 = 0.03� 0◦; V5 = 0.03� 0◦; V7 = 0.03� 0◦; V9 = 0.03� 0◦

and

I1 = 1� 90◦; I3 = 1� 90◦

3a
; I5 = 1� 90◦

5a
; I7 = 1� 90◦

7a
; I9 = 1 � 90◦

9a

The chosen spectra crudely simulate the fact that many Thévenin impedances, that consist of
a simple series R − L circuit, are characterized by hωL 	 R, hence the harmonic active power
is considerably smaller than the harmonic reactive power, i.e. Ph = RI 2

h � Qh = hωL I 2
h . In

a first approximation it is possible to neglect the active currents. Moreover, the even order
active power components, P2, P4, P6 . . . are usually one or two orders of magnitude smaller
than the reactive powers. In this example the percent total harmonic distortion of the voltage
is %T H DV = 6.0%. The percent total harmonic distortion of the current is

%T H DI =
√(

1

3

)2a

+
(

1

5

)2a

+
(

1

7

)2a

+
(

1

9

)2a

The exponent a helps adjust the total harmonic distortion of the current. The normalized
differences �Q/Q1 are summarized in Table 8.1.

From the obtained results it can be concluded that, with certain indulgence, the varmeters
included in this brief survey may be considered to measure the fundamental reactive power.
This is especially true for the quarter-cycle delay methods.

In case of near resonance conditions one harmonic becomes dominant. For example
let us assume the fifth harmonic large enough, such that all other harmonics can be ne-
glected; V5 = 0.05� 0◦ per unit and I5 = 0.60� 270◦ per unit, thus Q5 = 0.05 × 0.60 = 0.03.

Table 8.1 Calculated percent differences �Q, for different types of varmeters.

a 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
%T H DI 76.2 56.8 42.9 32.7 25.2 19.6 15.3 12.0
%�QB 4.4 3.2 2.4 1.7 1.3 1.0 0.7 0.6
%�Qint 1.0 0.7 0.6 0.4 0.3 0.2 0.2 0.1
%�Qdi f 24.1 17.0 12.0 8.5 6.1 4.4 3.2 2.4
%�Qqcv 0.04 −0.3 −0.5 −0.6 −0.6 −0.6 −0.6 −0.6
%�Qqci 0.04 −0.3 −0.6 −0.6 −0.6 −0.6 −0.6 −0.6
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Assuming Q1 = 1.0, the different varmeters will yield the following normalized differences:

100
�Q B

Q1
= 3.0%, 100

�Qint

Q1
= 1.0%, 100

�Qdi f

Q1
= 15.0%

100
�Qqcv

Q1
= 100

�Qqci

Q1
= 3.0%

In this situation even the quarter-cycle delay varmeters yield readings that are not accu-
rate enough.

From a practical point of view, considering the technology available today, such varmeters
are obsolete. The fundamental reactive power can be readily obtained using digital signal
processors which perform Fourier analysis (FFT methods). Implementation of such algorithms
enables the measurement of voltage and current harmonic and interharmonic phasors, up to
a high harmonic order; moreover, also the remaining nonactive powers DI , DV and DH ,
components that are incorporated in the basic expressions (4.52)–(4.58),

S =
√

S2
1 + S2

N =
√

P2
1 + Q2

1 + S2
N =

√
P2

1 + Q2
1 + D2

I + D2
V + S2

H

can be conveniently measured.
The old methods, described in the above subsections, fail to give any information on SN or

its components. This condition can be easily detected in the above numerical example, where
for a = 0.60, the rms voltage and current (in per unit) are

V = 1.002, I = 1.257

The apparent power is S = V I = 1.26. The active powers P1 = PH = 0 and the nonactive
powers are as follows: Q1 = 1.0, DI = 0.58, DV = 0.0036 and SH = 0.021. The described
methods lead to reactive power measurements (depending on the method) in the range
0.995 < Q < 1.241 while S = 1.26 and P = 0 remain unchanged. The Pythagorean rule
of the right-angle triangle, S, P, Q, is infringed. Instruments based on this method give
insufficient and erroneous information. Only for conditions where the voltage and the current
waveforms are mildly distorted (T H DI < 0.1 and T H DV < 0.03) does the expression
S2 = P2 + Q2 holds true and some of the old methods remain valid. Methods based on the
derivative of voltage or current must be totally avoided.

6. Three-phase varmeters

Some three-phase reactive power meters measurements use varmeters, others are based
on the time averaging the product between voltage and current when one of the 90◦ voltage
shifted phasors is readily available in the existing system. Traditionally varmeter designers took
advantage of the fact that a symmetrical three-phase voltage source has the line-to-line voltage
phasor VAB perpendicular to the line-to-neutral phasor VCN, VBC ⊥ VAN and VCA ⊥ VBN.
This fact enabled the use of wattmeters with the voltage terminals connected to a line-to-line
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(a)            
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(b)        
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C
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BCP

CAP

ABP

Figure 8.11 Traditional (old) methods for the reactive power measurement: (a) Using three varmeters.
(b)) Using three wattmeters (recommended for systems with symmetrical voltages).

voltage 90◦ out of phase with the line-to-neutral voltage of the line where the current terminals
are connected.

There are quite a few designs favored by the industry. In Fig. 8.11 are described the
basic concepts of two commonly used methods. The three varmeters method is presented in
Fig. 8.11a. The reading is

Q = Q A + Q B + QC = Q1 + �Q

where

Q1 = Q A1 + Q B1 + QC1

and

�Q = �Q A + �Q B + �QC

The discussions and the conclusions presented in sections 1 to 5 applies unmodified
to this method, however, the reactive power Q1 �= Q+

1 , and the value of the fundamental
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positive-sequence reactive power Q+
1 , makes an essential data for the evaluation of power

flow conditions.
In Fig. 8.11b is sketched the conceptual design of the three wattmeters method, which

is meant to be used for systems with perfectly symmetrical voltages. The accuracy of the
three wattmeters method is affected by both voltage unbalance and waveform distortion. The
errors’ origin can be detected if one separates the line currents into fundamental positive- and
negative-sequence, and the harmonic currents, i.e.

i A = i+
A + i−

A + iAH ; iB = i+
B + i−

B + iB H ; iC = i+
C + i−

C + iC H

The same grouping is done for the line-to-line voltages

vBC = v+
BC + v−

BC + vBC H , vC A = v+
C A + v−

C A + vC AH , vAB = v+
AB + v−

AB + vAB H

where

v+
AB = V̂ + cos(ωt + 30◦); i+

A = Î + cos(ωt − θ+)

v+
BC = V̂ + cos(ωt − 90◦); i+

B = Î + cos(ωt − 120◦ − θ+)

v+
C A = V̂ + cos(ωt + 150◦); i+

C = Î + cos(ωt + 120◦ − θ+)

v−
AB = V̂ − cos(ωt − 30◦ + γ ); i−

A = Î − cos(ωt − θ− + γ )

v−
BC = V̂ − cos(ωt + 90◦ + γ ); i−

B = Î − cos(ωt + 120◦ − θ− + γ )

v−
C A = V̂ − cos(ωt − 150◦ + γ ); i−

C = Î − cos(ωt − 120◦ − θ− + γ )

vBC H = ∑
h �=1 V̂BCh cos(hωt + αBCh); i AH = ∑

h �=1 ÎAh cos(hωt + βAh)

vC AH = ∑
h �=1 V̂C Ah cos(hωt + αC Ah); iB H = ∑

h �=1 ÎBh cos(hωt + βBh)

vAB H = ∑
h �=1 V̂ABh cos(hωt + αABh); iC H = ∑

h �=1 ÎCh cos(hωt + βCh)

The angle γ equals the rotation of the negative-sequence phasor diagram with respect to
the positive-sequence diagram. The positive-sequence phase A, line-to-neutral voltage, is the
chosen reference.

This instrument measures the average power

P = 1

kT

∫ kT

0
(pBC + pC A + pAB ) dt (8.57)

where

pBC = v+
BCi+

A + v−
BCi−

A + v+
BCi−

A + v−
BCi+

A + vBC H iAH

pC A = v+
C Ai+

B + v−
C Ai−

B + v+
C Ai−

B + v−
C Ai+

B + vC AH iB H

pAB = v+
ABi+

C + v−
ABi−

C + v+
ABi−

C + v−
ABi+

C + vAB H iC H
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The cross product terms due to positive-sequence voltage and negative-sequence current, or
vice versa, yield nil powers [10].

Computations of the three terms of (8.57) give

1

kT

∫ kT

0
pBC dt =

√
3 (Q+

BC + Q−
BC ) + PBC H

1

kT

∫ kT

0
pC A dt =

√
3 (Q+

C A + Q−
C A) + PC AH

1

kT

∫ kT

0
pAB dt =

√
3 (Q+

AB + Q−
AB) + PAB H

where

Q+
BC = Q+

C A = Q+
AB = V + I + sin(θ+)

Q−
BC = Q−

C A = Q−
AB = V − I − sin(θ−)

are the positive- and the negative-sequence fundamental reactive powers, respectively, and

PBC H =
∑
h �=1

VBCh IAh cos(αBCh − βAh)

PC AH =
∑
h �=1

VC Ah IBh cos(αC Ah − βBh)

PAB H =
∑
h �=1

VABh ICh cos(αABh − βCh)

are harmonic powers that contribute to the corruption of the measurement.
The final expression for the the three wattmeters method under unbalanced and nonsinu-

soidal conditions is

Q = 1√
3

(PBC + PC A + PAB ) = Q+ + Q− + PH

where

Q+ = 3V + I + sin(θ+); Q− = 3V − I − sin(θ−)

and

PH = PBC H + PC AH + PAB H

may be a main source of errors in spite of positive and negative values that lead to the partial
cancellations of components.
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Index

Additiveness, 131–3
property, 133

Artificial neutral point, 158
Author’s method, 110–12

current distortion power, 111
fundamental apparent power, 111
harmonic apparent power, 112
harmonic distortion power, 112
nonfundamental apparent power, 111
voltage distortion power, 111

Balanced and symmetrical three-phase
sinusoidal, 140–1

active component, 140
active, reactive and apparent powers, 140
complex power, 141
instantaneous power, 140
reactive component, 140

Buchholz’s collective rms voltage and
current, 171

Budeanu, 95–6, 98, 186
distortion power, 96, 186
method, 95
method’s deficiency, 98
reactive power, 96, 186

Capacitance, 27, 71
linear under nonsinusoidal conditions, 71
sinusoidal conditions, 27

Comparison among different methods, 115

Comparison between IEEE Std. 1459 and
DIN 40110, three-phase sinusoidal,
169, 171–4

discrepancies, 174
effective voltage, 172–3
effective voltage and current, 171

Current, 21, 29, 99–100, 102–4, 107–9, 167,
231

active, 29
collective active harmonic, 103
conversion, 102
conversion, total, 103
displacement, 231
distortion, 104
effective, 167
harmonic, 109
harmonic active, 108
in-phase and in-quadrature, 102
instantaneous active, 99
reactive, 29, 103, 107
residual, 104
scattered, 107
sinusoidal, 21
wattless, 100

Czarnecki, 106–10
active harmonic current, 108
active power, 110
collective reactive power, 110
limitations, 110
method, 107
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Czarnecki (Cont.)
reactive current, 109
scattered current, 108
scattered power, 110

Depenbrock, 102–3, 105–6, 242
apparent power resolution, 106
collective active harmonic current, 103
collective voltage, 242
complimentary reactive power, 105
conversion current, 102
distortion current, 103
fundamental conversion current, 102
fundamental instantaneous current, 102
fundamental instantaneous wattless

current, 102
fundamental reactive power, 105
instantaneous harmonic conversion

current, 103
method’s limitation, 106
total conversion current, 103

Drift velocity, 2

Effective apparent power resolutions, 158
Electromagnetic pollution, 90
Energy, 2–3, 7, 23, 53

flow, 3, 7, 23, 53
oscillations, 27
rate of flow, 2

FBD-method, 158–62, 164, 169
active power, 162
balanced (active equivalent)

conductance, 160
balanced current, 160
balanced equivalent susceptance, 160
branch current, 159
collective instantaneous voltage and

current, 160
orthogonal current, 159
orthogonal nonactive power, 162
orthogonal unbalance branch current, 162
positive-, negative- and zero-sequence

currents, 164
proportional current, 159

proportional unbalance branch
current, 161

proportional unbalance nonactive
power, 162

total nonactive power, 162
unbalanced branch conductance, 160
unbalanced branch susceptance, 160
unbalanced current, 160
unbalance nonactive power, 162

Field, 1, 52, 229, 231–2, 234
electric, 1
electric, axial component, 231
electric, coaxial cable, 52, 229
electric, due to time-varying magnetic

field, 232
electric, radial component, 231
magnetic, 4
magnetic, coaxial cable, 52
magnetic,coaxial cable, 234

Fryze, 99, 101
method, 99
method’s limitation, 101

Harmonics, 75
generation, 75

Hysteresis, 12, 14–15
idealized loop, 14
losses, 15

Inductance, 25, 68, 70, 80–2
linear, nonsinusoidal, power flow, 70
linear under nonsinusoidal conditions, 68
nonlinear, equivalent circuit, 81
nonlinear, power flow, 82
nonlinear under nonsinusoidal

conditions, 80
sinusoidal conditions, 25

Inductor toroidal, 11

Lagrange multipliers, 243
Lagrange’s identity, 95
Lorenz force, 16

Maximum active power, 243
Motional voltage, 17
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Nonlinear load, 83, 85
equivalent linear circuit, 85

Normal distribution, 224

Parametric load, 83
Particles mobility, 2
Power, 3, 12, 22–3, 30–4, 46, 64–7, 79, 85,

88, 90, 111–12, 150, 155–6, 162, 169,
183, 185–6, 190–2, 197, 209,
240

50/60 Hz instantaneous, 66
active, 12, 23, 64, 162
apparent, 33
apparent power resolution, 191
arithmetic apparent, 183
collective active, 192
collective apparent, 192
collective nonactive, 192
current distortion, 190
distortion, 186
effective, 23
effective harmonic, 190
flow direction, 32, 240
fundamental effective apparent, 190
fundamental positive-sequence

apparent, 191
harmonic active, 90
harmonic active, total, 190
harmonic apparent, 112
harmonic distortion, 190
instantaneous, 22
instantaneous active, 30
instantaneous current distortion, 88
instantaneous fundamental, 66
instantaneous fundamental intrinsic, 66
instantaneous harmonic, 88
instantaneous intrinsic, 88
instantaneous intrinsic harmonic, 67
instantaneous intrinsic harmonic of

order h, 67
instantaneous intrinsic of m,n-order, 85
instantaneous intrinsic of

second-order, 67
instantaneous negative-sequence

active, 155

instantaneous negative-sequence
reactive, 155

instantaneous nonactive elementary, 156
instantaneous positive-negative

elementary, 156
instantaneous positive-sequence

active, 155
instantaneous positive-sequence

reactive, 155
instantaneous reactive, 30
instantaneous voltage distortion, 88
instantaneous zero-sequence active, 156
instantaneous zero-sequence

reactive, 156
intrinsic, 23, 64
intrinsic harmonic, 65
intrinsic of second-order, 65
losses, 34
nonactive, 12, 162
nonactive power oscilations, 79
nonfundamental effective apparent, 190
P–Q–S triangle, 31
positive- negative- and

zero-sequence, 150
power density, 12
proportional asymmetric nonactive, 197
proportional unbalance nonactive, 162
randomness, 209
reactive, 27
reactive instantaneous, 27
reactive, caused by electromechanical

loads, 46
real, 23
total harmonic, 88
total harmonic active, 67
total nonactive, 162
unbalance apparent, 169
unbalance nonactive, 162
vector apparent, 183, 185
voltage distortion, 111, 190

Power conditioner, 44
Power factor, 35, 36, 38–9, 41, 44, 120–1,

124–5, 127, 212
IH -compensation, 125, 127
Ib-compensation, 124, 127
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Power factor (Cont.)
compensation, 124
compensation concepts, nonsinusoidal

situations, 121
compensation methods, 41
correction (compensation), 39
geometrical interpretation, 36
line utilization, 35
mean value, 212
series compensation, 44

Power factor compensation, 120
nonsinusoidal conditions, 120

Power loss, 6, 15
hysteresis, 15
Joule, 6

Power, orthogonal nonactive power, 162
Poynting vector, 4–5, 8–9, 15–16, 49, 52, 54,

231, 234–5, 237
active component, 15
axial component, 52
capacitor, 9
coaxial cable, 49
displacement current, 231
envelopes, 237
flow, 54
flux, 4
inductor, 11
inside the conductor, 5
longitudinal flow, 54
on cylindrical conductor surface, 5
on the surface of a toroidal core, 15
parallel flat conductors, 8
physical interpretation of instantaneous

powers, 49
radial component, 52, 234
radial flow, 54
reactive component, 16
three-phase line, 235

R–L–C Loads, 29, 71, 74
flow of instantaneous powers, 74
linear under nonsinusoidal

conditions, 71
sinusoidal conditions, 29

Randomness power, 213
Ratio ρ, 247

Resistance, 21, 63–4, 74, 78–9
linear under nonsinusoidal conditions, 64
nonlinear, 74
nonlinear, active power flow, 78
nonlinear, nonactive power flow, 79
nonsinusoidal conditions, 63
sinusoidal conditions, 21

Saturation, magnetic, 14
Skin effect, 128–9

skin and proximity effect coefficient, 129
Slepian vector, 7
Standard deviation, 224
Static compensators, 42
Superconductor, 8, 16–17
Symmetrical components, 149–50,

154–157
generation, 149
instantaneous negative-sequence active

power, 155
instantaneous negative-sequence reactive

power, 155
instantaneous negative-sequence voltages

and currents, 154
instantaneous nonactive elementary

powers, 156
instantaneous positive-negative

elementary power, 156
instantaneous positive-sequence active

power, 155
instantaneous positive-sequence reactive

power, 155
instantaneous positive-sequence voltages

and currents, 154
instantaneous zero-sequence active

power, 156
instantaneous zero-sequence reactive

power, 156
instantaneous zero-sequence voltages and

currents, 154
line power loss versus apparent power

squared, 157
positive- negative- and zero-sequence

powers, 150
Synchronous motor, 41

torque angle, 41
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Three-phase coaxial cable, 237, 241
Three-phase nonsinusoidal, 185, 187,

189–93, 197
active equivalent conductance, 192
apparent power resolution, 191
asymmetric proportional current, 193
collective active power, 192
collective apparent power, 192
collective nonactive power, 192
current distortion power, 190
DIN 40110 approach, 192
effective current, 187
effective harmonic apparent power, 190
effective voltage, 189
equivalent conductance, 192
fundamental effective current, 187
fundamental effective voltage, 189
fundamental positive-sequence active and

reactive powers power, 191
fundamental, or 50/60 Hz, effective

apparent power, 190
harmonic distortion power, 190
harmonic effective current, 187
harmonic effective voltage, 189
IEEE Std. 1459 approach, 187
nonactive current, 193
nonactive power, 197
nonactive powers, 193
nonfundamental effective apparent

power, 190
orthogonal current, 192
orthogonal nonactive power, 197
positive-sequence power factor, 191
proportional asymmetric nonactive

power, 197
proportional current, 192
symmetric proportional current, 192
total harmonic active power, 190
vector apparent power, 185
voltage distortion power, 190

Three-phase, sinusoidal, Czarnecki, 165–6
active current, 165
collective currents, 166
load unbalance, 166
reactive current, 165
total collective rms current, 166

Three-phase, sinusoidal, IEEE Std. 1459,
167–9

effective apparent power, 169
effective current, 167
ratio ρ, 168
unbalance apparent power, 169

Time-varying loads, 205, 209–12, 214–16,
218–22

active power, 210
apparent power, mean value, 212
distortion power, 215
equivalent reactive power, 212
fundamental effective power, 221
power factor, mean value, 212
randomness power, 209
randomness power, current distortion,

215, 221
randomness power, fundamental, 215
randomness power, harmonic

apparent, 216
randomness power, harmonic

distortion, 222
randomness power, positive

sequence, 218
randomness power, total, 216
randomness power, voltage and current

unbalance, 220
randomness power, voltage

distortion, 216, 222
randomness power, current

unbalance, 219
randomness power, total, 220
reactive power, 211
single-phase, nonsinusoidal, 214
single-phase, sinusoidal, 210
three-phase nonsinusoidal and

unbalanced, 220
three-phase sinusoidal and

unbalanced, 216
Total harmonic distortion of voltage or

current, 112, 190
equivalent total harmonic distortion, 190

Unbalanced three-phase sinusoidal
system, 142–6

arithmetic apparent power, 143
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Unbalanced (Cont.)
Buchholz-Goodhue definition, 144
effective voltage and current, 144
equivalent current, 144
equivalent resistance, 144
geometrical interpretation of powers, 144
line utilization, 146
neutral wire, 146
power factor, 145
vector apparent power, 143

V-connected load, 180
varmeter performance, 249, 251–2, 254

Budeanu’s method, 252
the 90◦ shift method, 249

the quarter-cycle delay method, 251
three-phase units, 254
vector reactive power, 252

Voltage, 21, 66, 111, 144, 150, 160, 164,
186, 188–9, 191

collective rms, 160
complementary, 164
effective, 144, 189
equivalent, 188
harmonic, 186
harmonic, total, 111
imbalance, 191
instantaneous harmonic, 66
sinusoidal, 21
symmetrical components, 150
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