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ABSTRACT 

 
Microbial Fuel Cells (MFCs) are an innovative technology that stands at the intersection of 

renewable energy production and wastewater treatment. MFCs provide a sustainable 

solution for the production of energy by utilizing the metabolic processes of microbes to 

transform organic substrates into electrical energy. MFCs model must be optimized to 

improve their performance. Due to some problems such as low power density, substrate 

constraints, and inefficiencies in electron transmission, MFC can’t achieve their potential. 

In this study we have adopted a comprehensive mathematical model for MFCs, incorporating 

critical factors like electron transmission, microbial activity and substrate consumption. This 

thesis investigates the application of advanced optimization techniques to improve MFC 

performance metrics, particularly focusing on current output and overall efficiency. To 

replicate MFC operations, a thorough mathematical model is adopted, taking into account 

important variables including anodic and cathodic reactions, microbial activity, and substrate 

concentration. 

In order to optimize MFC parameters, the study uses Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Gradient-Based 

Optimization (GBO). Through comparative evaluations of numerical simulations, the 

effectiveness of various methods is assessed. The outcomes reveal substantial improvements 

in current output, with GWO exhibiting remarkable efficiency in systems with complicated 

dynamics and GA and PSO obtaining greater enhancements in the earlier phases. Despite 

being less computationally demanding, GBO offers a reliable starting point for parameter 

optimization. 

The study's conclusion highlights the necessity of interdisciplinary approaches to fully realize 

the potential of this sustainable technology and offers insights into how optimization 

techniques will be integrated into MFC design in the future. 
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 Chapter 1: Introduction 

1.1 Background: 
As the global demand of energy surges, to address the major concern like environmental 

concerns, resource depletion, and the need for sustainable development the shift from 

conservative fossil fuels to the renewable energy resources have become important. Microbial 

Fuel Cells, are one of the many cutting-edge technologies which provide a unique solution by 

merging wastewater treatment with the production of renewable energy. MFCs provides dual 

benefits of waste remediation and power generation by using the metabolic activity of 

microbes to convert organic matter in wastewater into electrical energy. [1] 

Microbial Fuel Cells (MFCs) have gained significant attention as an eco-friendly solution for 

power generation and wastewater treatment during the past 20 years [1]. MFCs generate energy 

by first breaking down organic compounds in substrates utilising the metabolic processes of 

microorganisms, which releases electrons as a byproduct that may be captured and used to 

generate power [2]. Because MFCs can cleanse wastewater and generate electricity, they are 

at the intersection of biotechnology, environmental engineering, and electrochemistry [3]. 

Researchers are attempting to improve the practical feasibility of MFCs through various 

options like novel materials, reactor designs, and optimization. Optimization improvements 

have increased in the previous few years, particularly since 2020 [4]. The use of optimization, 

from traditional gradient-based approaches to more modern metaheuristics techniques like 

Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer 

(GWO), to optimize power output and to improve substrate utilization, and to reduce operating 

costs, MFCs are one of the most promising developments [5]. 

Although MFCs have a lot of potential but there are still major complications to overcome, 

Scaling up to real-world applications also requires addressing various problems like electrode 

material enhancement, membrane and reactor design complexity, and the variety of organic 

matter in actual wastewater, even though laboratory scale MFCs have  shown that they are 

feasible to convert the chemical energy stored in organic substrates into electrical energy [6]. 

Since MFCs often work with complicated water metrics such as suspended solids, variable 

pH, fluctuating chemical Oxygen Demand (COD), and the presence of inhibitory compounds, 

water optimization is one of the main crucial area among these issues [7]. Pre-treatment water 

parameter optimization can greatly increase MFC performance, lower costs, and improve the 

sustainability of these systems.
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In order to increase MFC efficiency, this study explores the fundamentals of MFCs, the main 

issues that hinder it performance, and the various optimization techniques that have regularly  

being used, ranging from population-based metaheuristics techniques like GA, PSO, and GWO 

to classical approaches such as gradient-based methods.. 

 

1.2 Problem Statement 
MFCs are still very much under-utilized in real-world and it’s applications  are limited despite 

their potential overcome energy crisis in major world countries. Its applications are being 

limited because of it’s inefficiencies that affects their operational performance and hence their 

scalability. 

The main problems consist of: 

 Their limited ability to move electrons from the cathode to anode, which lowers their 

output current. 

 Microorganism inability to perform activity and it’s inability to fully deplete the substrate 

during prolonged operation. 

 Suboptimal parameter configurations, such as electrode characteristics and microbial 

concentration are also a major concern 

In order to overcome these obstacles and systematically enhance MFC performance, 

sophisticated mathematical modelling and optimization approaches must be integrated. 

 

1.3 Objectives: 
This study and thesis objective is to investigate various optimization techniques to enhance the 

performance of the Microbial Fuel Cell: 

 To develop a mathematical model of Microbial Fuel Cell that takes into account the 

important factors like electrode reactions, substrate utilization, and microbial activity 

in order to depict the activities of the Microbial Fuel Cell. 

 The utilization of the cutting-edge optimization techniques to improve performance 

metrics, Optimization techniques like Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Grey Wolf Optimization (GWO), and Gradient-Based 

Optimization (GBO). 

 Comparing various optimization methods in order to determine which one is best for 

increasing system efficiency and current output. 
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1.4 Scope of Study 
The following are included in the study's scope: 

 

 The development of a mathematical model for the operation simulation of MFC. 

 The use of gradient-based optimization methods to adjust parameters. 

 Comparative evaluation of algorithms using data from simulations. 

 Suggestions for incorporating optimal parameters into MFC design for real-world use.
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Chapter 2: Literature Review 

2.1  Overview of Microbial Fuel Cell (MFC) 

Microbial Fuel Cells are one of the cutting-edge technology that can provide solution to two 

major global issues at once: waste-water treatment and the production of renewable energy. The 

microbe’s capability to break down organic materials and release electrons in the process and it 

forms the basis of MFC technology. A sustainable energy source is produced by using these 

electrons, electrical energy is produced.  

Potter initially proposed the idea of harnessing biological processes to generate energy in 1911 

after proving that bacteria could produce current [8]. But MFC research didn't really take off 

until the early 2000s, thanks to developments in environmental engineering, materials science, 

and microbiology. The foundation for contemporary MFC design was established by studies 

by Logan et al. [9] and Rabaey et al. [10], which improved performance by refining reactor 

designs and electrode materials. 

 

 Key Developments in MFC Design 

Research into MFC design has focused on improving power density, enhancing microbial 

electron transfer efficiency, and reducing costs. Significant advancements include: The main 

area of study is electrode material. The development of high-surface-area electrodes, like those 

made of carbon, to promote electron transport and microbial colonisation [11]. Another area of 

key development is membrane technology. Proton exchange membranes (PEMs) and other 

materials are introduced in membrane technology to lower internal resistance and enhance 

ionic conductivity [12]. One area of development is related to microbial selection. 

To optimize current generation, electrochemically active bacteria like Shewanella and 

Geobacter species are isolated and genetically modified [13]. Reactor Configuration is also 

been developed recently. To enable scalable applications, move from basic two-chamber 

configurations to sophisticated single-chamber and stacked systems [14]. 

 

2.1.1 Types of MFC Configurations 

 
Several MFC configurations exist, each tailored to specific substrates, operational conditions, 

or desired outcomes. Common types include: Main Chamber MFC, Dual-Chamber MFC, Air 

Cathode MFC and Stacked MFC. Each one is explained individually 
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 Single-Chamber MFC: The cathode is either submerged in the same chamber as the 

anode or exposed to air in a single compartment. Although this design is simpler, 

oxygen diffusion may limit power output [14]. 

 Dual-Chamber MFC: A membrane divides the anode and cathode chambers. By 

keeping cathodic processes isolated from the surroundings of the anode chamber, this 

design enhances them; nevertheless, it may also result in an increase in internal 

resistance [8]. 

 Air-Cathode MFC: By eliminating the need for a catholyte and external aeration, a 

specialised single-chamber design that exposes the cathode to air on one side can save 

operating expenses [15] 

 Stacked MFC: To attain greater voltages or currents, many MFC units are stacked in 

parallel or series. Although stacking facilitates scaling, it can be difficult to regulate 

each unit's performance [16]. 

 

2.1.2 Applications of MFCs 

 

MFCs have been researched for: 

 Waste water streams from industry, agriculture, and municipalities are being treated. 

[17]. 

 The production of electricity, hydrogen (in microbial electrolysis cells), and other 

products with added value commonly known as Bioenergy Generation. 

 The ability to detect pollutants or biochemical oxygen demand (BOD) in real time 

[18]. 

 The process of recovering metals and nutrients (such as phosphate and nitrogen) from 

waste streams is known as Resource Recovery [19]. 

 The focus on integrated systems, which combine MFCs with other treatment methods 

like anaerobic digestion or built wetlands, has increased since 2020 since they provide 

complementary advantages for resource recovery and energy production [20].
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2.2 Fundamentals of Microbial Fuel Cells (MFCs) 

2.2.1 What are Microbial Fuel Cells (MFCs) 

 

Microbial Fuel Cells (MFCs) are an innovative bioelectrochemical technology that aims to 

solve two major worldwide issues: wastewater treatment and sustainable energy production. 

MFCs generate electricity from organic substrates by utilising the inherent metabolic processes 

of electrochemically active microorganisms. MFCs are positioned as an innovative approach 

for integrated energy and environmental applications because of their dual functionality. 

2.2.2 Description of the Microbial Fuel Cell Schematic 

 

 

 
 

Figure 1 - Schematic Diagram of MFC 

 

The figure highlights the function of microbial communities, electron transport, and 

electrochemical reactions taking place in the anode and cathode chambers as it depicts the 

operation of a microbial fuel cell (MFC). 
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 Anodic compartment: 

Anodophilic bacteria are essential for oxidising organic substrates in the anode chamber, 

including acetate (C2H4O2) or other carbon sources, generating carbon dioxide (CO2), protons 

(H+), and electrons (e−). 

Microbial electron mediators switch between their oxidised (Mox) and reduced (Mred) states to 

transfer electrons to the anode during the oxidation processes, which are a redox cycle. 

 Biofilm Formation: 

At anode surface, a biofilm made up of microbes to promotes effective electron transfer and 

substrate breakdown. Electron recovery from organic materials is improved by this biofilm. 

 Methanogenic Archaea: 

In the anode chamber, methanogenic archaea cohabit and transform substrates such as hydrogen 

and CO2 into methane (CH4), a competitive process that lowers the amount of electrons 

available for power generation. To maximise the MFC's performance, this interaction must be 

balanced. 

 Electron Transfer to the Cathode: 

An electrical current is created when the electrons produced in the anode chamber move 

through an external circuit. This flow is in charge of supplying electricity to loads or external 

devices. 

 Proton Exchange: 

To keep the system's charge balanced, protons (H+) diffuse to the cathode chamber via a proton 

exchange membrane (PEM). 

 Cathodic Compartment: 

Water (H2O) is created at the cathode when protons and electrons mix with oxygen (O2). The 

electrochemical process cannot be completed without this oxygen reduction reaction. 

 Energy Output: 

The potential difference between the two electrodes determines the voltage, whilst the flow of 

electrons from the anode to the cathode produces a detectable current. These all work together 

to influence the MFC's power output
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2.2.3 Principle of Operation 

 
The unique abilities of electroactive microorganisms to transform chemical energy that exists 

in organic substrates into electrical energy is the foundation of a Microbial Fuel Cell's (MFC) 

functioning. The oxidation of organic materials, electron transport via a circuit, and reduction 

processes at the cathode are all components of this bioelectrochemical process. As explained 

below, the smooth integration of biological, chemical, and electrochemical processes is 

essential to the system's effectiveness. 

 

 Anode Chamber: 

The anode chamber is a space deprived of oxygen that is host to electroactive microbes. 

Through metabolic activities, these microorganisms decompose organic substrates, such as 

glucose, acetate, or wastewater constituents. While this deterioration is occurring 

 Electron and Proton Release: 

Microbes oxidise organic substrates, which causes protons and electrons to be released. 

 

C6H12O6+6H2O→6CO2+24H++24e-  (1) 

 Electron transport: 

Microbial electrochemical pathways either directly or indirectly transport electrons to the 

anode through conductive electron shuttles (mediators) . 

As the anode itself accepts electrons in this anaerobic environment, metabolic functions 

continue unhindered. 

 Proton Exchange Membrane (PEM) 

The proton exchange membrane (PEM) allows the protons produced in the anode chamber to 

move to the cathode chamber. For the system to remain stable, this selective membrane is 

essential because: 

Keeping oxygen from leaking into the anode chamber and only permitting protons to flow 

through. Maintaining constant electron flow across the external circuit by balancing the ionic 

charges between the two chambers.The MFC's total performance is directly impacted by the 

PEM's efficiency. Although their cost and durability continue to be issues, materials like 

Nafion are frequently utilised for this purpose. 

 Cathode Chamber 

Reduction processes take place in the oxygen-rich cathode chamber. Here, protons from the 

PEM and oxygen from the surroundings interact with the electrons that have passed through 



 

 

9 

 

the external circuit to create water: 

O2+4H++4e−→2H2O (2) 
Since it "closes the loop," completing the electrical circuit and permitting continued electron 

flow, this reaction is crucial. High conductivity and corrosion resistance are requirements for 

the cathode material. Furthermore, the effectiveness of the reduction reactions is directly impacted 

by the availability of oxygen or another terminal electron acceptor. 

 External Circuit: The Pathway for Electrons 

Through an external circuit, the electrons released at the anode are guided to the cathode. An 

electrical current produced by this electron movement can be used for useful purposes. A 

number of variables affect the current's magnitude, including: 

 the anode's microbial activity. 

 he external circuit's resistance. 

 the effectiveness of pathways for electron transport. 

 

 Energy Output and Application 

 

Microbial metabolic activity is the direct cause of the current produced by MFCs. Typically, 

the energy output is stated as follows: 

𝑃 = 𝑉. 𝐼 
 

where V is the external circuit's voltage, P is its power output, and I is its current. Because 

typical MFCs have modest power densities (mW/m2), optimization is essential for real-world 

uses



 

 

10 

 

 

Chapter 3: Mathematical Modelling 

3.1 Mathematical Model 
A microbial fuel cell (MFC) can be mathematically modelled to illustrate the complex 

relationship of chemical, biological, and electrochemical processes. The model enables us to 

forecast important system variables including substrate consumption, microbial growth, 

current generation, mediator concentration, and system resistances across time by modelling 

these phenomena through a system of differential equations. A thorough examination of the 

mathematical formulas governing the MFC and how each affects the system's overall 

performance can be found below. The mathematical model is being adapted from Pinto et al., 

'A two-population bio- electrochemical model of a microbial fuel cell,' 2010 

 

3.1.1 Substrate Consumption and Biomass Growth Equations 

Consumption of substrate is one of a microbial fuel cell's primary roles. The organic substrate 

(such acetic acid) is consumed by anodophilic bacteria, which help produce energy, and 

methanogenic archaea, which produce methane as a byproduct. These processes are captured by 

the following substrate consumption equation: 

 
𝐝𝐒

𝐝𝐭
= −(𝐪

𝐚
⋅ 𝐱𝐚) − (𝐪

𝐦
⋅ 𝐱𝐦) + 𝐃 ⋅ (𝐒𝐨 − 𝐒)      (3) 

Where: 

 

 S = substrate concentration at any given time

 qa = reaction rate of anodophilic bacteria

 qm = reaction rate of methanogenic archaea

 xa = concentration of anodophilic biomass

 xm = concentration of methanogenic biomass

 D = dilution rate

 So = initial substrate concentration



The equation 3 has several impacts on the overall working of the system. The first one being 

the substrate degradation. The equation illustrates how microbial consumption causes a gradual 

drop in substrate concentration. Methanogens use the organic substrate to produce methane, 

whereas anodophilic bacteria oxidise it to release protons and electrons. The second one is 
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competing biomass. The consumption of substrate by both anodophilic (xa) and methanogenic 

(xm) biomasses creates a competitive dynamic that impacts the overall performance of MFCs. 

While methanogenic activity converts energy into methane, decreasing electrical efficiency, 

more anodophilic activity encourages the production of electricity. One of the impact it has is 

on dilution rate. To simulate feed or washout conditions, the term D⋅(So−S) describes how 

substrate flows into or out of the system. 

Similarly equation 3 has several contribution to the system. One of the main is it show how 

much substrate is depleted. As anodophilic bacteria and methanogenic archaea consume the 

organic substrate, the concentration of the substrate decreases, as the equation illustrates. 

Current generation and the rate of microbial development are directly impacted by this 

depletion. The other contribution it shows the competition between the microbes. 

Methanogenic archaea (xm) and anodophilic bacteria (xa) compete for the same substrate, while 

methanogenic activity directs energy towards the generation of methane while anodophilic 

activity contributes to electrical output. 

3.1.2 Current Generation Equation 

 

In a microbial fuel cell, the flow of electrons from the anodic chamber through the external 

circuit generates current. This process is captured in the current equation: 

 

𝑰𝑴𝑭𝑪 =
𝑬𝒐𝒄𝒗

𝑹𝒆𝒙𝒕 + 𝑹𝒊𝒏𝒕

× (
𝑴𝒓𝒆𝒅

𝝐 + 𝑴𝒓𝒆𝒅

)    (𝟒) 

 

Where: 

 

 IMFC = current generated by the MFC

 Eocv = open circuit voltage

 Rext = external resistance

 Rint = internal resistance

 Mred = reduced mediator concentration

 ϵ\epsilonϵ = small constant to prevent division by zero

 

The equation 4 has some impact on overall system. The main thing this equation shows the 

current generated by MFC. The current generated by the MFC is directly defined by this 
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equation. While higher resistances Rext and Rint decrease the current, higher levels of Eocv and 

Mred enhance it. The second thing equation 2 shows the concentration of mediate material. 

Mred is a symbol for the reduced mediator that transfers electrons between the electrode and 

bacteria. The current generated increases with the concentration of Mred. The influence of 

resistance can also be seen through this equation. Internal resistance Rint is dependent on 

microbial activity and the conductivity of the MFC components, whereas external resistance 

Rext is usually determined by the external load. The efficiency of current generation is 

decreased by a higher Rint. Similarly equation 4 has some contribution in the overall system. 

This equation directly tell us the electrical current generation. The open circuit voltage, 

resistances, and mediator concentration all affect the current generated by the MFC, which is 

measured by this equation. Better current generation is facilitated by reduced resistances and 

higher mediator concentrations. Secondly, it shows us interaction between voltage and 

resistance. The equation shows that system resistances (Rext, Rint) and open circuit voltage 

(Eocv) are directly related, with higher resistance reducing current. 

3.1.3 Oxidized Mediator Concentration Equation 

 
The concentration of the oxidized mediator (Mox ) changes dynamically as a result of 

microbial activity and the current produced by the MFC. This is described by the following 

equation: 

𝐝𝐌𝐨𝐱

𝒅𝒕
=(- 𝐘 × 𝐪𝐚 × 𝐱𝐚 )+( 𝛄 ×(

𝐈𝐌𝐅𝐂

𝐦⋅𝐅
) × (

𝟏

𝐕⋅𝐱𝐚
))   (5) 

Where: 

 Mox = concentration of the oxidized mediator

 Y = yield coefficient of the reaction

 qa = anodophilic reaction rate

 xa = concentration of anodophilic biomass

 IMFC = current generated by the MFC

 m = number of electrons transferred

 F= Faraday’s constant

 γ\gamma = step rate

 V= volume of the microbial fuel cell
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The equation 5 has some impact on overall system. The main being it showed the balance 

between the mediator. The equilibrium between the rate at which anodophilic bacteria oxidise 

the mediator and the rate at which the current generated reduces it is modelled by this equation. 

The concentration of the oxidised mediator decreases with increasing Y⋅qa⋅xa, which impacts 

electron transport. The second thing it impact is electron transport. The current generation and 

mediator concentration are connected by the term (IMFC). More oxidized mediator is decreased 

as IMFC rises, generating a feedback loop that can either limit or accelerate the present 

generation. One of the impact of equation 5 is on biomass concentration. The mediator 

concentration is also influenced by the amount of anodophilic biomass, or xa. Generally 

speaking, higher biomass results in higher mediator turnover, which affects the electrical 

output of the entire system. Similarly equation 3 has some contribution to the overall system. 

This equation contribute how mediator dynamics effects current. The above equation simulates 

how microbial activity and current generation affect the concentration of oxidised mediators 

over time. A dynamic balance in mediator concentration results from the reduction of more 

oxidised mediator as current generation rises. This equation also contribute towards efficiency 

of electrons transfer. A significant factor in electron transfer efficiency is mediator 

concentration; higher mediator turnover results in more effective electron transport and 

increased current generation. 

3.1.4 Internal Resistance Equation 

 
Internal resistance (Rint) is influenced by several factors, including the concentration of 

anodophilic biomass. The relationship between Rint and xa is described by: 

𝐑𝐢𝐧𝐭 = 𝐑𝐦𝐢𝐧 + (𝐑𝒎𝒂𝒙 − 𝐑𝐦𝐢𝐧) ⋅ 𝐞−𝐊𝐬⋅𝐱𝐚 (6) 
Where: 

 

 Rint = internal resistance 

 Rmin = minimum internal resistance 

 Rmax = maximum internal resistance 

 Ks = rate constant related to biomass concentration 

 xa = concentration of anodophilic biomass 
 

The equation 6 has some impact on overall system. It show the dependency of resistance over 

biomass concentration. Rint declines exponentially when the anodophilic biomass (xa) 

concentration rises. Better conductivity and fewer internal energy losses result from this. The 

equation has some impact on current. A lower internal resistance leads to a higher production 

of current since Rint is present in the denominator of the current equation. Therefore, electrical 
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performance is increased is directly related with the increase of biomass growth. The equation 

(4) also work as the limiting factor. For current generation, high Rint values serve as a limiting 

factor because of low biomass concentration. The equation (4) aids in estimate how the overall 

performance and resistivity of the system is being affected by the variations in microbial 

activity affect Equation 4 contributes in some way to the system as a whole. It demonstrates 

the connection between biomass concentration and resistance. As the anodophilic biomass (xa) 

concentration increases, internal resistance decreases exponentially. This boosts electron 

transport efficiency and generates more current. It demonstrates the clear connection between 

resistance and biomass. Microbial growth and internal resistance are directly correlated, as 

evidenced by the fact that increased microbial activity reduces resistance and improves system 

performance. 

. 3.1.5 Open Circuit Voltage Equation 

 
The open circuit voltage (Eocv) is an important parameter that governs the potential difference 

between the anode and cathode. It is modeled as an exponential function of the anodophilic 

biomass concentration: 

𝐄𝐨𝐜𝐯 = 𝐄𝐦𝐢𝐧 + (𝐄𝐦𝐚𝐱 − 𝐄𝐦𝐢𝐧) ⋅ 𝐞
−

𝟏

𝐊𝐬⋅𝐱𝐚   (7) 

Where: 

 

 Eocv = open circuit voltage 

 Emin= minimum open circuit voltage 

 Emax= maximum open circuit voltage 

 Ks= rate constant related to biomass concentration 

 xa= concentration of anodophilic biomass 

 

The equation 7 has some impact on overall system. The biomass concentration has some 

impact on voltage. The open circuit voltage approaches Emax as the anodophilic biomass (xa) 

concentration rises. This increases the MFC's capacity to produce electricity. This equation 

also influence the current generation. Larger open circuit voltages result in larger current 

generation since Eocv is present in the current equation's numerator. The above equation 

connects the MFC's total electrical output to microbial growth. In short the system efficiency 

is directly been influenced by this. The MFC's operating limits are determined by the 

difference between Emin and Emax. System performance is maximised when the voltage is 

pushed closer to Emax by effective microbial growth. 
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The equation 7 has some contribution to the overall system. This equation show us the voltage 

control. The open circuit voltage gets closer to Emax as anodophilic biomass increases, which 

raises the potential difference between the anode and cathode. The current generation is better 

as a result. It shows relation relationship between biomass contribution and voltage generation. 

The relationship between biomass and voltage highlights how microbial growth directly 

impacts the voltage potential; larger biomass concentrations lead to higher voltages and 

improved system performance. 

3.1.6 Overall System Dynamics 

 
The microbial fuel cell's overall behaviour is described by the equations for substrate 

consumption, biomass growth, current production, mediator dynamics, internal resistance, and 

open circuit voltage. Changes in one of these interrelated equations have an impact on the 

others: The first being the biomass growth. Higher anodophilic bacterial concentrations result 

in higher current generation, less internal resistance, and enhanced electron transfer. The 

second being the substrate availability. Microbial activity slows down with decreasing 

substrate concentration over time, which lowers current generation and raises internal 

resistance. The third being mediator concentration. The ratio of reduced to oxidised mediators 

influences electron transfer rates, which in turn affects current generation and system 

performance as a whole. The fourth being resistance. Lower resistances allow for more 

effective energy conversion, and both internal and external resistances are essential in 

restricting current generation. 

In conclusion, an MFC's mathematical model provides a thorough framework for 

comprehending the ways in which different chemical, biological, and electrochemical 

processes interact to convert organic substrates into electrical energy. In order to optimize and 

analyse MFC performance under various operating settings, each equation helps predict 

important system variables. 
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3.2. Mathematical Model Visualization: 

 
OUTPUT GRAPHS: 

 

The graphs shown below are the output visualizations of the mathematical model that we have 

adapted and being implemented in this work. This mathematical model has been coded using python 

language; due to its strong optimization and flexibility in creating customized scripts. 

 

 

 The Figure 2 shows the microbial fuel cell's current (IMFC) output with time. Since 

the electrochemical and microbiological processes are still in their infancy, the current 

is first very low, almost nothing. 

 A rapid increase in current output occurs after a lag of roughly 4 seconds, indicating 

the start of effective microbial metabolism and substrate breakdown. This sharp rise 

marks the MFC's entry into the active phase of electron transfer and production. 

 This plateau denotes the point at which substrate availability and microbial activity 

balance out, preventing additional current increases without optimization. 

 Despite the system's steady-state behaviour, performance needs to be improved 

because the peak current is below ideal for the majority of energy applications. 

Figure 2 - Current graph before Optimization 
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 The Figure 3 shows how the open-circuit voltage (EOCV) changes over time. Since the 

cell has not yet reached steady state and the early electrochemical processes are slow, 

the voltage starts out low. 

 The voltage gradually increases over time before stabilising at about 0.6 V. Based on the 

anode and cathode processes, this figure represents the thermodynamic limit of the 

MFC's energy conversion capacity. 

 The efficiency of the system is limited by overpotentials, internal resistance, and 

electrode restrictions, even though the voltage level seems enough.

Figure 3 - Voltage graph before Optimization 
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3.3  Importance of Current Enhancement Over Voltage 

Enhancement 

3.3.1 Direct Impact on Power Output: 

 

A microbial fuel cell's power output (P = V×I) is exactly proportional to the product of voltage 

and current. Increasing the current is a more effective and realistic way to increase power 

output because MFC voltage is naturally constrained by thermodynamics. 

Although the voltage in the unoptimized MFC is comparatively constant, the total power 

generation is severely constrained by the low current output. As a result, increasing the current 

becomes crucial to obtaining significant energy outputs. 

 

3.3.2 Influence on Electrode Efficiency: 

The efficiency of electron transfer from the anode to the cathode, which is influenced by the 

kinetics of the electron mediator, substrate availability, and microbial community activity, is 

linked to current generation. Current can be significantly increased by optimising these 

parameters. 

However, intrinsic losses such concentration polarisation, ohmic resistance, and activation 

overpotentials at the electrodes limit voltage enhancement. Redesigning the cell structure is 

frequently necessary to address these losses, which is less practical than optimising parameters 

to increase current. 

3.3.3 Scalability and Real-World Applications: 

Higher current levels are needed to meet load needs in the majority of real-world energy 

applications, such as charging batteries or powering small devices. To make the MFC more 

useful, system optimizations might increase the current even at low voltages. 

External electronic circuits, like as DC-DC converters, can be used to increase voltage, but the 

MFC's biological and electrochemical processes must be improved internally in order to 

increase current. 

 

3.3.4 System Constraints and Optimization Focus: 

The characteristics of the electrode material and the thermodynamics of chemical reactions 

have the biggest effects on the relatively constant voltage in an MFC. Consequently, without 

major structural alterations, increasing voltage is naturally constrained. 
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On the other hand, current is dynamic and closely related to operational elements including 

electrode surface area, substrate concentration, and microbial activity. Significant gains in 

current can be achieved by fine-tuning these parameters, which will raise the total power 

output. The pre-optimization performance patterns show the unoptimized microbial fuel cell's 

limitations in terms of both current and voltage outputs. Achieving realistic power production 

levels requires giving priority to current enhancement using optimization approaches as 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimization 

(GWO), and Gradient-Based Optimization (GBO). In addition to optimising power, current 

augmentation meets practical needs for scalable and effective energy systems, guaranteeing 

MFC technology's wider acceptance. 
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Chapter 4: Optimization 

4.1 : Challenges in Microbial Fuel Cell 

4.1.1 Power Density Limitation 

 

MFCs frequently generate lower power densities than traditional fuel cells, despite much study 

[32]. Limited power outputs are caused by a number of factors, including internal resistance, 

electron transfer bottlenecks, and poor microbial activity. Optimising system components 

becomes crucial when researchers go towards real-world applications in order to close the gap 

between laboratory performance and real-world needs [33]. 

4.1.2 Internal Resistance and Energy Loss 

 

Resistance of electrodes and electrolytes, charge transfer resistance at the electrode interface, 

and mass transfer limits are some of the causes of internal resistance in MFCs [34]. Cell voltage 

is lowered and total energy efficiency is decreased by high internal resistance. 

Researchers can determine the ideal ratio of electrode spacing, membrane characteristics, and 

substrate flow rates to reduce these losses by using computer models and optimization 

techniques [35]. 

4.1.3 Scalability Issues 

 

It is still difficult to scale MFCs from lab-scale (millilitres or litres) to larger pilot- or industrial-

scale systems [36]. Issues including unequal substrate distribution, trouble sustaining anaerobic 

conditions, and a higher risk of biofilm detachment are brought about by larger systems. Scale-

up issues may be resolved by combining strong optimization strategies with the application of 

sophisticated monitoring and control algorithms [37]. 

 

4.1.4 Complex Water Matrices in Real-World Wastewater 

 

Complex matrices with differing quantities of heavy metals, organic and inorganic 

contaminants, and inhibitory substances (such as sulphides and ammonia) are present in actual 

wastewater streams [17]. Such intricacy may harm electrode materials or reduce microbial 

activity. These problems can be lessened by water optimization techniques, which 



 

 

21 

 

range from pre-treatment to adaptive control of operating parameters. Computational and 

optimization tools are needed to determine the ideal operating parameters (pH, flow rate, and 

external resistance) under dynamic water matrix conditions [38]. 

 

4.2 Necessity of Optimization in Microbial Fuel Cells 

The potential of Microbial Fuel Cells (MFCs) as a sustainable solution for wastewater 

treatment and energy generation is enormous. However, inefficiencies and restrictions 

including poor power density, inefficient substrate utilisation, and cost limits make it difficult 

to put them into practice. In order to overcome these obstacles and enhance MFC performance 

generally, optimization is essential. 

4.2.1 Enhancing Power Output 

 
Power density maximisation is one of the main objectives of MFC optimization. Internal 

resistance, electrode material characteristics, and microbial activity are some of the variables 

that affect an MFC's output. Suboptimal energy production could result from these 

characteristics operating below their potential if they are not optimized. It has been 

demonstrated that methods including adjusting microbial growth conditions, refining electrode 

design, and choosing the best substrates can greatly increase power output. 

4.2.2 Improving Substrate Utilization 

 
The concentration of substrates has a direct effect on MFC performance; efficient substrate use 

ensures that the most organic matter is transformed into electrical energy; optimization 

techniques assist in determining the optimal microbial communities and substrate 

concentration, minimising waste and increasing efficiency. 

4.2.3 Addressing Material and Design Constraints 

 
Performance is significantly impacted by the materials used for MFC components, such as 

electrodes and membranes. Conventional trial-and-error methods of choosing materials are 

costly and time-consuming. Optimization techniques, including computer simulations, make 

it possible to find affordable materials with improved performance attributes. 
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4.2.4 Reducing Operational Cost 

By increasing system efficiency, optimization also seeks to lower operating expenses. MFCs 

can become more economically feasible by reducing energy losses, improving reactor designs, 

and strengthening material durability. 

 

4.2.5 Utilizing Advanced Computational Techniques 

 
Advanced computer techniques including Genetic Algorithms (GA), Particle Swarm 

Optimisation (PSO), Grey Wolf Optimisation (GWO), and Gradient-Based Optimisation (GBO) 

provide reliable solutions for improving MFC parameters. These techniques enable effective 

exploration of vast parameter spaces and the identification of optimal combinations for specific 

applications. 

Future developments as well as existing MFC designs depend on optimisation. As novel 

microbial strains and materials are created, optimisation will be essential to incorporating these 

developments into useful systems. Furthermore, there is potential for real-time MFC operations 

optimisation through the application of AI and machine learning. Optimisation guarantees that 

this technology may be used successfully for environmentally friendly energy production and 

management by tackling the complex issues related to MFCs. 

 

4.2.6 Optimization Objectives 

In general, MFC research aims to optimize: 

 

 The main objective of this optimization is to maximise power output. 

 Making certain that organic matter breaks down more completely. Thus, increasing the 

use of the substrate.  

 Maintaining good conductivity and prolonging the life of materials. Consequently, 

improving the performance of the membrane and electrode  

 The ability to continue operating even when the pH, temperature, or wastewater content 

varies is referred to as "stable operation." Consequently, stability is maintained. 
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4.3 Overview of Optimization Methods 

 
Optimization techniques have revolutionised scientific and technical applications by increasing 

the reliability and efficiency of systems. Optimization is essential in Microbial Fuel Cells (MFCs) 

due to the complicated interactions between biological, chemical, and electrochemical processes. 

Protons, electrons, and ultimately electrical energy are produced by the breakdown of organic 

substrates by microbial biofilms in MFCs. MFC efficiency is often limited by problems such as 

low substrate conversion rates, inadequate microbial activity, and inefficient electron transport. 

Optimization can solve these challenges by fine-tuning important parameters like substrate 

concentration, microbial community structure, and electrode material. 

 

There are two main categories into which MFC optimization strategies can be divided: 

 

 

4.3.1 Conventional optimization Algorithms: 

 

Heuristic and gradient-based techniques are examples of conventional optimization 

techniques. Although gradient-based approaches are computationally effective and 

appropriate for problems involving continuous, differentiable objective functions, they 

frequently encounter difficulties when dealing with the non-linear, multi-modal issues that are 

common in MFC systems. 

 

4.3.2 Nature-Inspired Optimization Algorithms: 

 

These algorithms are very good at solving high-dimensional, complicated, non-linear 

problems since they are modelled after biological and natural processes. Gradient-Based 

Optimization (GBO), Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), 

and Genetic Algorithm (GA) are a few examples. 

Since each of these approaches has particular advantages and disadvantages, they can be 

applied to various MFC optimization scenarios
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4.4 Gradient-Based Optimization 

 

4.4.1 Fundamentals of Gradient-Based Methods 

 
The computation of derivatives (gradients) of an objective function with respect to decision 

variables (such as electrode spacing, flow rate, and pH) is the foundation of gradient-based 

optimization techniques. Common gradient-based algorithms include conjugate gradient, 

steepest descent, and quasi-Newton methods, and they are most appropriate for problems in 

which the objective function is smooth and differentiable [44]. 

A traditional optimization method called gradient-based optimization (GBO) uses an objective 

function's gradient in relation to its variables to identify the best solutions. By directly utilising 

the mathematical structure of the problem, GBO places an emphasis on accuracy and efficiency 

in contrast to metaheuristic techniques, which prioritise exploration and unpredictability. It is 

particularly useful for convex optimization problems where the goal function is smooth and 

differentiable [39]. 

 

4.4.2 Gradient-Based Optimization (GBO) with Limited-Memory Broyden-

Fletcher- Goldfarb-Shanno (L-BFGS-B) 

 

 

For large-scale optimization problems with bound constraints, the Limited-Memory Broyden- 

Fletcher-Goldfarb-Shanno with Box Constraints (L-BFGS-B) approach is a sophisticated 

gradient-based optimization methodology. L-BFGS-B is computationally efficient for high- 

dimensional problems because it approximates the inverse Hessian matrix using a limited- 

memory technique, in contrast to conventional gradient methods. Box constraints are also 

included, which are essential for guaranteeing that variables stay within predetermined bounds 

throughout optimization [43]. 

L-BFGS-B is especially helpful in the context of Microbial Fuel Cells (MFCs) for optimising 

operational parameters like substrate concentration and microbial activity while making sure 

these parameters stay within reasonable physical bounds.
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4.4.3 Recent Studies on Gradient-Based Optimization 

 

 

Gradient-based techniques for MFC optimization have been effectively applied in a number 

of post-2020 studies, mostly under carefully monitored laboratory settings: 

A 2021 study used a gradient-based technique to optimize substrate flow rate and HRT in a 

single-chamber MFC, resulting in a 25% increase in power density while preserving stable 

COD removal [47]. Another recent research in 2022 used gradient-based algorithms to fine- 

tune pH setpoints and external resistor values in real time, demonstrating a 15% power gain 

compared to fixed-parameter operation [48]. 

 

4.4.4 Mathematical Formulation 

 

 Objective Function: 

 

The optimization problem is expressed as: 
 

 

 

subject to l⃗≤x⃗≤u⃗, 
 

where x⃗ is the vector of decision variables, f(x⃗) is the objective function, and l⃗ and u⃗ are 

the lower and upper bounds, respectively. 

 

 Gradient and Approximation: 

The gradient of f(x⃗), ∇f(x⃗), is used to iteratively update the variables: 
 

 

 

Here, αk is a step size determined through line search. L-BFGS-B approximates the inverse 

Hessian matrix using limited-memory techniques to reduce computational overhead. 

(8) 

(9) 
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 Handling Box Constraints: 

 

At each iteration, variables are projected back into the feasible region defined by l⃗ and u⃗: 

 

 

 Stopping Criteria: 

 

 

The process continues until the gradient magnitude becomes sufficiently small (∥∇f(x⃗)∥<ϵ\|) or 

the maximum number of iterations is reached. 

Some of the advantages of GBO are as follow. One being it’s effectiveness in large scale 

problems. The limited-memory method is appropriate for high-dimensional MFC models 

since it lessens the computational load. The other being it’s boundary restriction. Increases the 

dependability of findings by making sure that variables stay within reasonable bounds. Third 

it’s ability to rapid convergence.Offers quick convergence rates along with the accuracy of 

gradient-based techniques. 

 

Although it has several advantages but it do have some limitation. One it get stuck in local 

optima. In complicated, non-linear MFC systems, these techniques are particularly prone to 

becoming trapped in local optima. Secondly it dependency on the differentiability.Calculating 

gradients is made more difficult by the fact that many MFC performance functions entail discrete 

changes (such as biofilm separation). Third it computational cost. Numerical computation of 

gradients can be computationally demanding for large parameter spaces [49]. 

 

4.5 Genetic Algorithm (GA) Optimization 

 

4.5.1 GA Foundations and Mechanisms 

 
The Genetic Algorithm (GA) is an optimization method inspired by nature and founded on the 

ideas of evolution and natural selection. In order to solve complicated optimization problems 

that are otherwise challenging to handle with traditional methods, John Holland created it in 

the 1970s. GA works by using the processes of crossover, mutation, and selection to evolve a 

population of viable solutions over many generations. These evolutionary processes examine 

(10) 
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the search space for the best answers by simulating biological reproduction and mutation. 

Natural selection and genetics serve as the inspiration for Genetic Algorithms (GAs), 

population-based, metaheuristic optimization techniques [51]. A population of possible 

solutions, or individuals, encoded as chromosomes, is the starting point for a GA. The 

population changes as a result of repetitive processes of crossover, mutation, and selection; 

ideally, this convergence leads to optimal solutions. 

In GA, a fitness function that measures the quality of each solution is used to assess the initial 

population of candidate solutions, known as chromosomes. The best solutions are chosen to 

procreate, bringing diversity (through mutation) and merging their traits (via crossover) to create 

the following generation. Until a stopping criterion—such as a maximum number of generations 

or convergence to an ideal solution—is satisfied, this iterative process keeps going. 

4.5.2 Key steps in a GA: 
 Initialisation: 

Create a starting population that is either randomly selected or somewhat heuristic. 

 Evaluation: 

Determine each person's fitness, such as power density in an MFC setting. 

 Selection: 

Pick parents who are more suited to procreate. 

 Crossover: 

When parents exchange genetic material, kids are created. 

 Mutation: 

To preserve genetic variation, randomly change a few offspring genes. 

 Replacement: 

Create the following generation and carry on until the stopping or convergence requirements 

are satisfied. 

4.5.3 Recent Advances in GA Optimization: 

After 2020, GA research has investigated hybrid models and enhanced operators. The main 

research on Multi-objective GAs (MOGA). Power output is balanced with other goals, such as 

cost or effluent quality[55]. The second main advance is on adaptive mutation. In order to 

prevent premature convergence, adaptive mutation refers to mutation rates that vary 

dynamically depending on population variety [56]. The other main research being on parallel 

GAs. Making use of parallel computing to expedite assessments in large-scale MFC systems, 

particularly in the context of computational fluid dynamics (CFD) models [57]. The other main 

research being carried on Hybrid GA. In order to fine-tune solutions, hybrid GA combines GA 
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with local search techniques such as gradient-based refinements [58]. 

 

4.5.4 GA Applications in Parameter Tuning for MFCs 

 

GAs have been used in MFC optimization to determine the ideal external resistance, substrate 

feeding rate, and electrode spacing, among other characteristics. The fitness function gauges 

the overall performance of the MFC (e.g., maximum power density or COD removal 

efficiency), and researchers frequently store these characteristics in a structure resembling a 

chromosome [52]. In 2020, for instance GAs were used to optimize the carbon-to-nitrogen ratio 

in synthetic wastewater that was fed into an MFC. Membrane fouling was decreased and power 

density increased by 30% as a result of the optimized ratio [53]. Another study conducted in 

2021 combined real-time sensor data (temperature, pH, and COD levels) with a GA-based 

controller that was able to dynamically modify operational settings and maintain a steady 

power output for 20 days [54]. Since GA can navigate complex, non-linear parameter spaces, 

its use in MFC optimization has grown significantly. A number of interrelated factors, including 

electrode spacing, biofilm characteristics, and substrate concentration, affect MFC 

performance. Researchers can find ideal combinations that optimize substrate conversion 

efficiency, power density, and current output by utilising GA. 

The Genetic Algorithm has several advantage. One being it’s robustness. GA is quite good at 

addressing non-linear and multi-modal issues. The other being it flexibility. It is appropriate 

for optimising a variety of MFC parameters because it can handle both continuous and discrete 

variables. One it’s main capability to search globally. For complicated systems like MFCs, 

GA's ability to avoid becoming stuck in local optima is especially beneficial. 

Although Genetic Algorithm have many advantages yet it has some limitation. One being it’s 

computational intensity. Due to its iterative nature, GA can be computationally costly, 

especially when dealing with high-dimensional issues and huge populations. One of it’s 

limitation being it’s sensitivity to parameters settings. The effectiveness of GA is dependent 

on a number of parameters, including crossover probability, mutation rate, and population size, 

all of which must be carefully adjusted. 
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4.6 Particle Swarm Optimization (PSO) in MFCs 

 

4.6.1 Fundamentals of PSO 

 
Another population-based metaheuristic that draws inspiration from fish schools and bird 

social behaviour is Particle Swarm Optimization (PSO) [61]. Every potential solution is a 

"particle" that moves around the search space based on its own and its neighbours' experiences. 

Based on the individual (pbest) and global (gbest) best solutions discovered thus far, the 

algorithm modifies particle locations and velocities. 

A bio-inspired optimization system called Particle Swarm Optimization (PSO) imitates the 

social behaviour of fish schools or flocks of birds. PSO was created by Kennedy and Eberhart 

in 1995, and because of its ease of use, adaptability, and effectiveness in resolving complicated 

and non-linear optimization issues, it has grown to be one of the most widely used heuristic 

optimization techniques [62]. PSO is perfect for solving multi-dimensional and 

non-differentiable objective functions since it does not rely on gradient information like 

conventional optimization methods do. 

In PSO, a swarm of particles, representing alternative solutions, traverses the search space to 

reduce or maximize an objective function. Each particle has a position and velocity, which are 

iteratively updated based on its own experience and the experience of the entire swarm. Until 

a predetermined termination criterion—such as a maximum number of iterations or 

convergence to a particular solution—is satisfied, the process keeps going. 

 

4.6.2 Key parameters in PSO: 

 

 Inertia Weight (ω\omega): 

Determines how much of the prior velocity is maintained 

 Acceleration Coefficients (c1,c2): 

Weights that balance the influence of personal and global best;  

 Population Size: 

The total number of particles in the swarm. 
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𝑖 

𝑖 

4.6.3 Mathematical Representation of PSO 

 
The PSO algorithm is mathematically governed by two key equations: 

 

4.6.3.1 Velocity Update Equation: 

 

v𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔
𝑘 − 𝑥𝑖

𝑘)      (11) 

Here: 

 

 vi
k: Velocity of particle iii at iteration k.

 w: Inertia weight, which balances exploration and exploitation.

 𝑐1𝑐2: Cognitive and social coefficients that influence the particle’s self-confidence 

and cooperation with neighbors.

 𝑟1𝑟2: Random numbers uniformly distributed between 0 and 1.

 𝑝𝑘: Best position found by particle iii (personal best).

 𝑔𝑘: Global best position identified by the entire swarm.

 𝑥𝑘: Current position of particle i.

 

4.6.3.2 Position Update Equation: 

𝒙𝒊
𝒌+𝟏 = 𝒙𝒊

𝒌 + 𝒗𝒊
𝒌+𝟏      (𝟏𝟐) 

This equation updates the position of each particle based on its current velocity. 
 

4.6.4 Recent Research 

 
PSO's capacity to identify near-optimal solutions with fewer function evaluations is 

highlighted in a number of post-2020 comparative studies with other metaheuristics [65]. 

However, if particle swarm diversity is not preserved, PSO might occasionally converge too 

soon. To address this problem, hybridisation strategies have been put forth, such as combining 

PSO with mutation operators or random re-initialization [66]. 

For some types of continuous optimization problems, especially those with smoother objective 

functions or fewer constraints, PSO can be more computationally efficient than GAs [67]. 

However, PSO may need other techniques like inertia weight scheduling or multi- swarm 

approaches for extremely non-linear or multi-modal challenges in MFC design. 
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4.6.5 Implementing PSO for MFC Performance Enhancement 

 

Similar to GAs, PSO has been used more and more for parameter tuning in MFC systems 

because it may converge rapidly and frequently requires less parameter sets [62]. In a 2020 

study, for instance, PSO was used to optimize the geometry of a dual-chamber MFC, including 

the electrode arrangement and shape, which resulted in a 20% increase in power density over 

a baseline design [63]. Another study from 2022 showed that PSO could respond to changes in 

influent COD and temperature by efficiently controlling external resistance and pH setpoints 

in real-time [64]. 

 

4.6.6 Application in MFC Optimization 

 

PSO's capacity to effectively manage complex, non-linear optimization issues makes it 

especially well-suited for parameter optimization in microbial fuel cells (MFCs). 

Performance in MFCs is greatly impacted by crucial parameters such external resistance, 

microbial activity, and substrate concentration. The non-linearity of the underlying equations 

makes it difficult for traditional approaches to optimize various parameters concurrently. By 

using a population-based strategy to thoroughly explore the solution space, PSO gets over 

these restrictions. 

 

4.6.7 PSO Workflow 

 

The following steps are how the PSO algorithm works: 

 

 Initialisation: 

The positions and velocities of a swarm of particles are set at random. Each particle's objective 

function is assessed in order to ascertain the global best (g) and initial personal best (pi). 

 Velocity Update: 

The velocity update equation is used to update each particle's velocity. 

 Position Update: 

The position update equation is used to update each particle's position. 

 Evaluation: 

Every particle undergoes a new evaluation of the objective function. If a better solution is 

discovered, the best positions on a personal and global level are updated. 
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 Termination: 

Until a termination requirement is satisfied, the procedure is repeated. 

 

 
The Particle Swarm Optimization has several advantage. One being it’s scalability. PSO is 

appropriate for a variety of MFC configurations since it excels at solving optimization 

problems of all sizes. The other it’s capability to search globally. To prevent premature 

convergence to local optima, the algorithm effectively searches the whole search space. One 

of the main advantage of PSO is being it’s simplicity. PSO is a desirable option for real-time 

optimization jobs due to its simple implementation. 

 

Although PSO has many benefits, PSO has many drawbacks. One being it’s premature 

convergence. If swarm variety is not preserved, particles may converge too soon, especially 

on high-dimensional problems. Other being it’s sensitivity to parameters. PSO performance is 

extremely sensitive to the selection of parameters, including learning factors (c1, c2) and inertia 

weight (w). The main drawback is it’s computational overhead. PSO can become less effective 

in problems involving extremely complicated objective functions, despite being less 

computationally demanding than some optimization techniques. 

4.7 Grey Wolf Optimizer (GWO) 

 

4.7.3 Conceptual Introduction to GWO 

 
A more recent metaheuristic, the Grey Wolf Optimizer (GWO), was motivated by the hunting 

habits and social structure of grey wolves [71]. GWO imitates a wolf leadership structure: 

 

Alpha (𝛼): The best solution found thus far.  

Beta (𝛽):The second-best option is beta (𝛽β). 

Delta (𝛿): The third-best answer. 

Omega (𝜔): The remaining population solutions. 

 

𝛼, 𝛽, and 𝛿 direct the search process, and the wolves adjust their placements in response to 

these top positions, convergently approaching the optimal solution. 

The social structure and hunting habits of grey wolves in the wild served as the inspiration for 

the metaheuristic optimization technique known as "Grey Wolf Optimization" (GWO). GWO, 

which was proposed by Mirjalili et al. in 2014, solves complicated optimization issues by 
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imitating the cooperative tactics and leadership hierarchy found in wolf packs [72]. GWO's 

simplicity, adaptability, and efficiency in exploring and utilising the search space have led to its 

widespread use in a variety of fields. The population of GWO is separated into four groups, each 

of which represents a distinct role in the hierarchical structure of a wolf pack: alpha (𝛼), beta 

(𝛽), delta (𝛿), and omega (𝜔). While the 𝛽 and 𝛿 wolves help lead the pack, the 𝛼 wolves direct 

the search by preserving the best solutions. To ensure variation, the wolf packs follow and 

explore the search area. 

 

4.7.4 Mathematical Representation of GWO 

 
The GWO algorithm is based on three primary phases of wolf hunting behavior: encircling 

prey, hunting, and attacking prey. These behaviors are mathematically represented as follows: 

 Encircling Prey: 

 

�⃗⃗� =∣ 𝐂 ⋅ 𝑿𝒑
⃗⃗⃗⃗  ⃗ − �⃗⃗� ∣     (𝟏𝟑) 

 �⃗⃗�   (𝒕 + 𝟏) = 𝑿�⃗⃗� − �⃗⃗� ⋅ �⃗⃗�     (𝟏𝟒) 

 
Here: 

 

 X⃗: Current position of the wolf.

 X⃗p : Position of the prey.

 A⃗,C⃗: Coefficients controlling exploration and exploitation.

 

 Hunting: 

The positions of the three best wolves (α, β, and δ) guide the search: 

 

�⃗⃗� (𝒕 + 𝟏) =
𝑿𝟏⃗⃗⃗⃗  ⃗+𝑿𝟐⃗⃗⃗⃗  ⃗ +𝑿𝟑⃗⃗⃗⃗  ⃗

𝟑
    (𝟏𝟓) 

 
where X1⃗ , X2⃗ , and X3⃗are updated positions based on α, β, and δ. 

 

 Attacking Prey: 

When ∣A⃗∣<1 wolves converge on the prey, transitioning from exploration to 

exploitation. 
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4.7.3 Application in MFC Optimization 

 

GWO is especially useful for optimising microbial fuel cell (MFC) parameters because of its 

capacity to achieve a balance between exploration and exploitation. GWO was used in this 

work to optimize substrate concentration (S), microbial activity (Xa), and other crucial factors 

in order to maximise the current output (IMFC). 

 

Due to its ease of use and strong worldwide search capabilities, GWO has started to be used 

in MFC research around 2020. For instance, in a 2021 study, a pilot-scale MFC treating 

industrial wastewater employed GWO to optimize a range of parameters, including 

temperature, external resistance, and substrate concentration, to maximise power density and 

substrate removal efficiency at the same time [72]. The findings demonstrated that GWO 

performed better than GA and PSO in achieving a better balance between COD removal rates 

and power production. In order to optimize the geometry of air-cathode MFCs, a hybrid GWO 

(with random restart) was used in another 2023 study. The results showed a 28% increase in 

power production over baseline designs [73]. 

 

 

4.7.4 GWO Workflow 
 Initialisation: 

Set the wolves' locations in the search space at random. 

 Fitness Assessment: 

Determine each wolf's level of fitness and update their 𝛼α, 𝛽β, and 𝛿δ places. 

 Position Update: 

Utilising the hunting and surrounding formulae, update the wolves' locations. 

 Termination: 

Continue until the specified condition is satisfied, such as the maximum number of iterations 

or the convergence of the solution. 

The Grey Wolf Optimization has several advantage. One being it’s fast convergence speed. 

Due to its balanced exploration and exploitation, GWO frequently converges swiftly in its early 

stages [74]. Other being it’s fewer parameters. Compared to GA or PSO, GWO is easier to 

operate because it requires fewer algorithmic parameters to be adjusted. One of it’s main 

advantage is it’s robust exploration. One of the issue being resolved by GWO is premature 

convergence. Premature convergence is less likely thanks to GWO's hunting and encircling 

strategies, which preserve diversity in the search space [75]. Also main advantage of GWO is 
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it’s ability to adapt. Depending on the complexity of the challenge, GWO can modify its search 

behaviour thanks to the dynamic coefficient. 

 

4.8 Implementation of Optimization Techniques in MFC 
Systems 

 
A crucial first step in raising the effectiveness and performance of Microbial Fuel Cell (MFC) 

systems is the application of ptimization techniques. This section describes how the MFC 

system model incorporates several ptimization techniques, including Grey Wolf 

Optimization (GWO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and 

Gradient-Based Optimization (GBO). Enhancing MFCs’ existing production and operational 

efficiency while resolving system limitations and difficulties is the main objective. 

 

4.8.1 Numerical Simulation Framework 

 

The numerical simulations were conducted using a mathematical model of MFCs, 

incorporating key dynamics such as substrate consumption, microbial growth, and electron 

transfer. This model served as the objective function for optimization. The parameters 

considered for improvement included: 

 

 Substrate concentration (S)

 Active microbial population (Xa)

 Maximum microbial activity (Xm)

 Oxygen availability (M_ox)

 Current output (I_MFC)

 

The goal of the optimization was to preserve practical operating conditions while 

increasing the current output. 

 

4.8.2 Objective Function and Limitations 

 

A multi-variable objective function obtained from the MFC system's mathematical model 

served as the basis for the optimization algorithms: 



 

 

36 

 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐼𝑀𝐹𝐶(𝑡) = 𝑓(𝑆, 𝑋𝑎, 𝑋𝑚, 𝑀𝑜𝑥) 

 
Subject to constraints: 

 

 Substrate concentration S:Smin ≤S≤Smax

 Microbial population Xa: Xa min ≤ Xa ≤ Xa max

 Oxygen concentration Mox: Mox min ≤ Mox ≤ Mox max

 

These constraints ensured that the optimization stayed within the practical limits of 

MFC operation. 

 

4.8.3 Optimization Techniques 

 

 Gradient-Based Optimization (GBO) 

To compute gradients, GBO was used in conjunction with numerical differentiation. In order 

to maximise the objective function, the algorithm iteratively changed the parameters. 

The two most important key parameters are convergence tolerance (ϵ) and step size (α). 

The implementation of GBO required cautious initialisation to prevent local optima because 

it had trouble with non-linear, non-differentiable regions. 

 Genetic Algorithm (GA) 

GA started with a population of solutions and developed by crossover, mutation, and 

selection. The fitness function that was assessed IMFC.The important key parameter for GA are 

The size of the population, the rate of mutation, and the likelihood of crossover are important 

parameters. It advantage over other techniques being Global optimization efficiency was 

improved by GA's resilience in navigating intricate, multi-modal search landscapes. 

 Particle Swarm Optimization (PSO) 

 

PSO used global and personal best positions to change each particle's position and velocity in 

the search space. The important key parameters of PSO are The inertia weight (w), cognitive 

coefficient (c1), and social coefficient (c2) are the three main parameters. It’s advantages over 

techniques being it fast convergence in the early phases cut down on computing time, which 

was a unique feature. 
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 Grey Wolf Optimization (GWO) 

 

To balance exploration and exploitation, GWO modelled a hierarchy of wolves (alpha, beta, 

delta, and omega). The important key parameters of GWO are it’s Pack hierarchy, search agent 

count. It’s advantage over other technique being It was appropriate for dynamic MFC systems 

because to its adaptability and capacity to manage non-linear limitations. 

4.8.4 Computational Experiments 

 

To guarantee a fair comparison, each algorithm was evaluated using the same MFC model 

and the same initial conditions. Over a predetermined period of time, the simulations were 

run, and the outcomes were noted for the following metrics: 

 Maximum output of current (I MFC max) 

 The overall increase in current output 

 Time convergence stability between iterations 

 Stability 
 

 

Table 1 - Computational Experiments 

Algorithm Peak Current 

(mA) 

Improvement 

(%) 

Convergence 

Time (s) 

Stability 

GBO 54.71 27.55 0.34 Moderate 

GA 59.31 38.30 2.15 Moderate 

PSO 59.32 38.30 1.89 Moderate 

GWO 64.40 50.14 2.67 High 

 

4.8.5 Algorithmic Insights 

 

 Intialization Sensitivity 

While deterministic initialisation in GBO needed fine-tuning, random initialisation in GA and 

PSO offered more expansive search possibilities. 

a. Computational Costs: 

GA and GWO performed exceptionally well in managing complicated dynamics, although 

GBO was computationally efficient for smaller systems. 

b. Stability: 

Because to its balanced exploration-exploitation strategy, GWO showed the highest stabilit
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Chapter 5 RESULTS 
 

This chapter main focus is on result being obtained from the optimization techniques being 

applied on MFC. These optimization techniques are being applied on MFCs separately. The 

results being obtained from each of the optimization technique are being showed separately 

with the discussion on each of these graphs. Then a thorough comparative analysis of these 

optimization techniques are being done in order to get a clear picture of these techniques 

have affected the output performance of MFCs also the performance metrics of these 

techniques are being compared and being evaluated to see which technique suited best and 

what effect of these techniques will have on MFCs performance. Also due to the unique 

characteristics of each optimization technique we compare which optimization technique 

suited in what circumstances. We will start by the result obtained by each optimization 

technique separately then we will move to comparative analysis.   

5.1 Gradient Based Optimization Technique: 

 

Graph: 
 

The Figure. 4 shows the current graph after the Gradient Based Optimization.  

 

 

Figure 4 - Graph of GBO Optimization Figure 4 - Graph of GBO Optimization 
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 In comparison to the initial current (blue dotted line), the optimized current, shown by 

the red curve, rises quickly and smoothly. 

 GBO reduces the delay seen in the unoptimized system by achieving a faster 

commencement of current rise. 

 The optimized current of GBO approaches saturation more quickly, suggesting that 

the parameters have been tuned well to maximise MFC performance in the shortest 

amount of time. 

 The GBO graph demonstrates its effectiveness in early-stage optimization by 

displaying a sharp rise in current during the first phase. 

 The inaccuracy is greatly decreased as the optimized curve rapidly gets closer to the 

optimal trajectory. 

 Following optimization, the points grow steadily and smoothly, demonstrating 

excellent precision and little variance. 

 The significant improvement between 3.0 and 5.0 time units shows that GBO 

converges more quickly than other methods. 

 The resulting current demonstrates GBO's superior performance in steady-state 

optimization by closely matching the theoretical maximum. 

 

5.2 Genetic Algorithm Optimization: 
Graph 
 

The Figure. 5 shows the current graph after the Genetic Algorithm Optimization.  

 

Figure 5 - Graph of GA Optimization Figure 5 - Graph of GA Optimization 
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 Although the growth initially seems to be a little slower than GBO, the GA-optimized 

current (red curve) likewise shows a sharp increase in comparison to the original (blue 

dotted line). 

 The technique's capacity to pinpoint and fine-tune important system characteristics is 

demonstrated by the evenly spaced red squares (optimized points) in the GA graph. 

 GA optimizes the system for steady-state performance by ensuring a seamless 

transition to the saturation region. 

 The resilience of GA in reaching convergence is demonstrated by the near overlap of 

the optimized curve with ideal current dynamics. 

 Throughout all time intervals, the GA graph shows a consistent and slow increase in 

current. 

 Although it moves a little more slowly than GBO in the first phase, the optimized 

curve shows a smooth transition. 

 Although the trajectory is less aggressive, GA reaches final current levels that are 

comparable to those of GBO. 

 This graph demonstrates GA's strong optimization capabilities, which make it 

dependable for applications that need incremental enhancements. 

5.2.1 Particle Swarm Optimization 

Graph: 

 

The Figure. 6 shows the current graph after the Particle Swarm Optimization.  

 

 
Figure 6 - PSO Optimization Graph
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 The PSO-optimized current (red curve) shows a noticeable improvement over the 

original (blue dashed line). 

 PSO's ability to make large adjustments during this phase is demonstrated by the red 

squares, or optimized points, which exhibit notable departures from the original 

locations during the mid-range. 

 PSO quickly reaches greater current values, but when it gets closer to the steady-state 

zone, it exhibits a tapering effect. 

 The red curve's smoothness illustrates how PSO balances stability and convergence 

speed during optimization. 

 Although PSO does well in the intermediate phases, it is marginally less accurate than 

GBO and GA in terms of final alignment with ideal current values. 

 During the middle time intervals (3.0–5.0 time units), PSO displays a noticeable 

improvement in current. 

 When compared to the initial points, the optimized points in this phase show the most 

difference. 

 In the mid-range, the curve shows a sharp increase, but as it gets closer to steady- 

state, it tapers off. 

 In terms of steady-state accuracy, PSO trails GBO and GA by a small margin, even 

though the final optimized current is sufficient. 

 The graph demonstrates PSO's ability to swiftly produce significant mid-range 

enhancements. 
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5.2.2 Grey Wolf Optimization 

Graph 

 

The Figure. 7 shows the current graph after the Grey Wolf Optimization.  
 

 

 The initial curve (blue dashed line) in the early phases is closely mirrored by the 

GWO-optimized current (red curve), which rises steadily and gradually. 

 GWO's emphasis on accuracy over quick changes is demonstrated by the red squares, 

or optimized points, which show gradual gains over all time periods. 

 After 6.0 time units, the optimized curve nearly resembles the ideal dynamics, 

demonstrating that GWO achieves minimum error in the steady-state area. 

 The red curve's steady rise demonstrates how well GWO ensures accuracy and 

stability throughout optimization. 

 For long-term optimization objectives, GWO is very effective because to its greater 

final precision, even though its initial progress is slower than that of GBO and PSO. 

 The current increases gradually and steadily throughout all time intervals as a result of 

GWO optimization. 

Figure 7 - GWO Optimization Graph Figure 7 - GWO Optimization Graph 
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 A slower optimization procedure is reflected in the smaller discrepancies between 

optimized and original points as compared to other techniques. 

 With optimized points that closely match the theoretical maximum, GWO delivers 

low error at the steady-state. 

 The graph demonstrates GWO's accuracy later on, especially after 6.0 time units. 

 Applications that value steady-state accuracy over quick early-stage advancements are 

best suited for this method. 

 

5.3 Comparative Analysis of Optimization Techniques for 
MFCs 

 
In order to overcome the difficulties that Microbial Fuel Cells (MFCs) present, like low power 

density, inefficient electron transmission, and limitations in substrate utilisation, optimization 

techniques are essential. By adjusting operating parameters, these methods seek to increase 

electrical production and boost system efficiency as a whole. The wide variety of optimization 

techniques includes deterministic techniques like Gradient-Based Optimization (GBO), which 

includes Limited-Memory Broyden-Fletcher-Goldfarb-Shanno with Box Constraints (L-

BFGS-B), and metaheuristic algorithms like Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Grey Wolf Optimization (GWO). This section offers a thorough 

comparison of various methods, emphasising their computational effectiveness, performance 

measures, and applicability to MFC optimization. 

 

Optimization methods are essential for improving microbial fuel cell (MFC) performance. 

These techniques tackle issues such as the non-linear relationships among internal resistance, 

biomass growth, and substrate utilisation. This study examines the efficacy of four optimization 

methods in MFC optimization: Grey Wolf Optimization (GWO), Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), and Gradient-Based Optimization (GBO). 

 

5.3.1 Performance Trends 

 

 Gradient-Based Optimization (GBO): 

GBO is a traditional optimization technique that iteratively improves the objective function 

by relying on gradient information. It strength being laid in it’s 
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 Computationally effective for differentiable, small-scale systems. 

 Implementation is simple. 

It’s weakness being 

 Restricted to functions that are smooth and differentiable. 

 Challenges with multi-modal, non-convex problems, which are prevalent in MFCs. 

 High probability of becoming stuck in local optima. 

Performance Observations: 

 Gradual yet steady increases in current output. 

 Reaches its maximum at 54.71 mA, representing a 27.55% improvement overall. 

 The absence of global search capabilities causes the optimization to stall later on. 

 

 

 Genetic Algorithm (GA): 

GA uses crossover and mutation mechanisms to evolve solutions while working on 

populations, drawing inspiration from natural selection. It strength being laid in it’s 

 Strong performance for multi-modal, non-linear issues. 

 Useful for investigating global optima. 

 Able to manage multi-objective problems and limitations. 

It’s weakness being 

 Iterative population upgrades make it computationally costly. 

 Later optimization phases show slower convergence. 

Performance Observations 

 It produces considerable gains, reaching a peak of 59.31 mA with an overall improvement 

of 38.3%. 

 Steady performance over time, with a slight slowdown in the last phases. 

 

 Particle Swarm Optimization (PSO): 

PSO finds optima by simulating the social behaviour of particles travelling through a search 

space. It strength being laid in it’s 

 Rapid convergence at first. 

 Strong capacity for exploration. 

 Computationally effective in contrast to GA. 

It’s weakness being 

 Prone to early convergence, particularly when dealing with multi-modal issues. 

 Sensitive to changes in the parameters. 
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Performance Observations: 

 Performance was comparable to GA, reaching a peak of 59.32 mA with a 38.3% overall 

improvement. 

 Indicates sensitivity to tuning settings by displaying minor variations in optimization 

trends. 

 Grey Wolf Optimization (GWO): 

By striking a balance between exploration and exploitation, GWO imitates the social structure 

and hunting tactics of grey wolves. It strength being laid in it’s 

 Outstanding harmony between local refining (exploitation) and worldwide search 

(exploration). 

 Strong management of dynamic systems and constraints. 

 Computationally effective for dealing with big issues. 

It’s weakness being 

Computational cost that is marginally greater than those of GBO and PSO. 

Performance Observations: 

Surpasses all methods with a 50.14% overall improvement and a peak current of 64.40 mA. 

Demonstrates remarkable early development (15,805% improvement) and sustains steady 

performance over time. 

5.3.2 Performance Metrics Comparison 

 
The following table summarizes key performance metrics for each optimization technique, 

including peak current, overall improvement, stability, and computational efficiency: 

 

Table 2 - Performance Metrics Comparsion 

Metric GBO GA PSO GWO 

Peak Current 

(mA) 

54.71 59.31 59.32 64.40 

Overall 

Improvement 

(%) 

27.55 38.30 38.30 50.14 

Initial Growth 

(%) 

58.45 154.85 154.85 15805.21 

Stability Moderate Moderate Moderate High 
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Optimization 

Speed 

Slow Moderate High Very High 

Observations: 

 
 GWO achieves the highest peak current and overall improvement percentages, 

showing robust performance. 

 GA and PSO deliver comparable results, with significant improvements but slightly 

lower consistency. 

 GBO lags behind in both peak performance and overall improvement, making it less 

competitive for MFC optimization. 

 

5.3.3 Improvement Trends Over Time 

 

Table 3 - Improvement Trends 

Time (Steps) GBO (%) GA (%) PSO (%) GWO (%) 

Initial Phase Moderate High High Very High 

Mid Phase Steady Steady Slightly 

Fluctuating 

Consistent 

Late Phase Tapers Off Stable Stable Sustained 

Growth 

 
 GWO exhibits exceptional initial growth due to its effective global exploration and 

fast convergence. 

 GA and PSO show strong early growth but plateau in the later phase. 

 GBO maintains slow, steady improvements but lacks impactful growth at any stage. 

 

5.3.4 Adaptability and Scalability 

 

 

Table 4 - Adaptability and Scalability 

Criteria GBO GA PSO GWO 

Adaptability Limited High High Very High 
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Scalability Moderate High High Very High 

Computational 

Cost 

Low High Moderate Moderate 

Observations: 

 
 GWO successfully manages the complexity of MFC systems thanks to its remarkable 

flexibility and scalability. 

 Although GA and PSO outperform GWO in many criteria, they require more 

computing power. 

 Since GBO relies on smooth, differentiable objective functions, it is the least flexible. 

 

5.3.5 Convergence Speed 

 

GBO: With a sharp increase in current production in the early phases (up to 5.0 time units), 

GBO exhibits the fastest convergence. GBO is very effective for speedy optimization since 

the optimized curve moves swiftly to the saturation area. 

GA: In contrast to GBO, GA exhibits a little slower convergence but keeps rising steadily. It     

maintains stability throughout the process by striking a balance between quick advancements 

and seamless transitions 

PSO:In the mid-range (3.0–5.0 time units), PSO rises more quickly than GWO, but its initial 

adjustments are less forceful than those of GBO and GA. PSO works best in situations where 

a moderate rate of convergence is acceptable. 

GWO: Although it has the slowest initial convergence, GWO is better suited for applications 

that need long-term stability since it prioritises accuracy through tiny, gradual increases. 

 

5.3.6 Steady-State Performance 

GBO: After optimization, it achieves outstanding steady-state performance and closely 

resembles the ideal curve. The small variations between the optimized and original numbers 

in the subsequent phases make this clear. 

GA: it has smooth transitions and less oscillations, performing well in the steady-state zone. 

It offers a solid solution with steady-state behaviour that closely resembles GBO. 

PSO: Although PSO greatly increases mid-range current production, its final steady-state 

performance shows minor departures from optimal values. This implies that its later-stage 
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optimization could be improved. 

GWO: Performs exceptionally well in steady-state accuracy, with very little error in the last 

phases. Superior alignment with the optimal current output is achieved through GWO's 

gradual but accurate changes. 

 

5.3.7 Strengths and Weaknesses Comparison 

 

Table 5 - Strength and Weakness 

Technique Strengths Weaknesses 

GBO Simple to implement, 

computationally efficient. 

Struggles with non-linear 

systems, prone to local 

optima, limited global 

exploration. 

GA Effective global search, 

handles multi-modal 

problems well. 

Slower late-stage 

convergence, 

computationally expensive. 

PSO Fast initial convergence, 

strong exploration. 

Prone to premature 

convergence, sensitive to 

parameter tuning. 

GWO Balanced exploration and 

exploitation, robust 

performance, excellent 

scalability. 

Slightly higher 

computational cost 

compared to GBO and 

PSO. 
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Conclusions 
The use of optimization approaches, such as Gradient-Based Optimization (GBO), Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO), 

to enhance the performance metrics of Microbial Fuel Cells (MFCs) was thoroughly 

examined in this study. The results highlight how important optimization is for improving 

important metrics including current output, substrate utilisation, electron transfer efficiency, 

and system stability as a whole. For optimization performance GWO show overall 

improvement of 50.14% and a peak current of 64.40 mA, GWO proved to be the most 

successful strategy. For the intricate, non-linear dynamics seen in MFC systems, its capacity 

to strike a balance between local refinement and global exploration makes it extremely 

effective. While GA and PSO with peak currents of 59.31 mA and 59.32 mA, respectively, 

and an overall improvement of 38.30%, both GA and PSO demonstrated strong 

performances. These techniques showed steady performance trends and robust initial 

growth, but their subsequent tapering improvements highlighted their vulnerability to 

premature convergence, GBO despite being simple to use and computationally efficient, 

GBO's application to non- linear, multi-modal issues that are typical of MFC systems was 

limited by its reliance on gradient information. With a total improvement of 27.55%, it 

produced the least amount of improvement in current output, peaking at 54.71 mA. 

Throughout all optimization phases, GWO showed the best stability, avoiding premature 

convergence and preserving steady trends. Due to their susceptibility to parameter 

adjustment, GA and PSO showed moderate stability but also slight variations during mid-

phase optimization. GBO is less successful for larger, more complicated systems because 

of its low scalability and adaptability, which were demonstrated by its inability to maintain 

improvements past the initial phases. The study emphasises how optimization methods 

tackle basic issues with MFC functioning, including poor power density, substrate 

constraints, and inefficient electron transmission. To optimize system performance, 

advanced optimization techniques—especially those with strong global search 

capabilities—should be incorporated into MFC design and operating plans. The study's 

findings confirm the revolutionary potential of innovative optimization methods in raising 

MFC systems' performance. This study advances the development of effective, scalable, 

and sustainable energy solutions by tackling fundamental issues and outlining potential 

development paths. The incorporation of state-of-the-art optimization techniques into MFC 
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systems will be essential to achieving global energy and environmental goals as the need for 

clean and renewable energy increases. In order to fully utilise MFC technology, this work is 

a fundamental first step. To overcome present obstacles and open the door for sustainable 

energy innovation, future developments will necessitate interdisciplinary cooperation, 

combining concepts from biology, computer science, engineering, and environmental 

science. 
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Future Work 

Although this study offers important insight, it also opens up a number of directions for further 

investigation to improve the effectiveness and suitability of optimization methods in MFCs: 

 Integration of Machine Learning 

The accuracy and adaptability of optimization may be increased by utilising machine learning 

techniques like deep learning, reinforcement learning, or hybrid models. 

Real-time system behaviour predictions and dynamic optimization parameter adjustments are 

made possible by these techniques. 

 Optimization with Multiple Objectives 

Multi-objective optimization should be the main focus of future research in order to improve 

several performance measures at once, including operational cost, environmental effect, and 

energy efficiency. Methods such as Pareto-based optimization may offer a fair way to satisfy a 

range of system needs. 

 Hybrid Optimization Algorithms 

Better performance may be attained by creating hybrid algorithms that combine the advantages 

of several approaches, such as GWO with GA or PSO. These hybrids provide efficiency and 

robustness by utilising the local refinement strengths of one approach and the global search 

capabilities of another. 

 Analysis of the Economy and Environment 

The effects of optimized MFC systems on the economy and environment should be taken into 

account in future research. Research evaluating sustainability, scalability, and cost-

effectiveness will offer a more thorough grasp of these systems' viability for broad use. 

Dynamic Systems Optimization 

The adaptability of MFC technologies will be further increased by looking at the use of 

optimization approaches in dynamic and unpredictable environments, such as changing 

substrate concentrations or fluctuating energy need
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