FORENSIC ANALYSIS OF RESILIENT FILE
SYSTEM IN WINDOWS SERVER 2012

By

Aemun Igbal

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Rawalpindi in partial fulfillment

of the requirements for the degree of MS in Information Security

AUGUST 2016

SUPERVISOR CERTIFICATE

It is to certify that the final copy of MS thesis has been evaluated by me,
found as per the specified format and error free.

Dated:

Thesis Supervisor
(Col Dr Imran Rashid)

ABSTRACT

File system by-large stores a wealth of information. It possesses numerous areas where
sensitive information can be hidden or encrypted by criminals related to their crime so that
when they are caught there is no information that can be used against them. There are many
areas in a file system where information can be hidden. In order to find these hidden areas,
one must know the working and layout of the file system. This working and layout can be
known by conducting forensic analysis of the file system under consideration. Forensic
analysis offers the potential for a more comprehensive assessment of file system. This
thesis provides an in-depth analysis of the newly proposed Resilient File system. Resilient
file system has not been analyzed forensically for its available artifacts and other
modifications in its build up. Therefore it will be analyzed forensically and the gathered
artifacts will provide sound knowledge of all the new things resilient file system is offering

and the major changes that have been done in it.

DECLARATION

| hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

DEDICATION

“In the name of Allah, the most Beneficent, the most Merciful"

| dedicate this thesis to my loving parents, sweet husband and teachers who supported and

encouraged me at each step throughout my struggle.

ACKNOWLEDGMENT

I am highly thankful to Allah for giving me the strength, guidance and blessing in
completing this thesis. I am highly indebted to my parents who constantly pushed and
encouraged me to achieve what | have always aspired. Their continuous guidance and
prayers helped me climb these steep steps and have made me what | am today. | am also
thankful to my husband who always found solutions to my problems and never discouraged
or stopped me from accomplishing what I have always dreamed to accomplish and making
it easy for me every time. He has supported me throughout this endeavor. | would like to
convey my gratitude to my supervisor, Dr. Imran Rashid, for his supervision and support. |
am thankful to Asst Prof Mian Muhammad Waseem Igbal. His invaluable help in the form
of constructive comments, guidance and suggestions throughout the thesis work kept me

motivated and helped me great deal in completing this research.

TABLE OF CONTENTS
1 INTRODUCTION
L1 OVEIVIBW ..ottt ettt ettt 1
1.2 Motivation and Problem Statement..........ccoeirriinneiinneese e 2
1.3 ODJECLIVESccuiieceietei ettt 2
1.4 ThesSiS OrganizatiOnccccoreiririeinirieinisieeses ettt 2
2 LITERATURE REVIEW
2.1 Yoo [0 Tod o] o ST S 4
2.2 Level of research already carried out on the proposed tOpICc.ccccevrrereririenenn. 4
2.3 SUMIMANY .ottt st b st eb et b e e et b e b nn e b e 7
3 RESILIENT FILE SYSTEM
3.1 INEFOTUCTION ...ttt 8
3.2 Getting file system info using ‘fsutil’ command...........c.ccccevvreirineiniennincinens 8
3.3 Master Boot ReCOrd (MBR)cciriiiiininicininicisis s 10
3.4 Volume boot record (WVBR)c.ocoieiiciceceeeet e 12
341 NTFSVBR ..ottt ettt nens 13
4.2 REFS VBR....o et 14
3.4.21 File System Recognition Structure FSRS..........ccoeiiineiinneirece, 15
35 MaSLEr File TADIE ... 17
3.5.1 ReFS Master File Table ... 17
3.5.2 NTFS Master File TabIecccoieiiieesecesees e 17
3.8 AUMDULES ...ttt 18
3.6.1 REFS AITOULES ... 18
3.6.1.1 File System Metadatacccoeveiiiiiiiiicce s 18
3.6.1.2 Security DeSCriptor SrEAMccceririeiriririiesieee e 19
3.6.1.3 Volume DireCt 1O File......ccooeeeeriiieecee e 20

3.6.1.4 BI30 INEX ALITDULE ...t eee e e e e eeaneeeean 21

3.6.15 UPCaSe TabIEccocueeeecee e 21
3.6.2 NTFS ALTOULEScviiiieiiieeeee s 22
3.7 SECUNTEY THEBNTITIEN ... 23
3.7.1 Security Identifier IN REFS ..o 23
3.7.2 Security Identifier INNTFS ... 24

4 TEST CASE SCENARIOS FOR ARTIFACTS GATHERING
4.1 Yoo [0 Tod 1 o] o SRS 25
4.2 AXE SCENAMIOS ...ttt 25
4,21 FlE CrEALION.....eiieiiietee e 25
4.2.2 Permissions CNANQEU..........ccoorueiririeirinieesieiees e 27
4.2.3 MOAITYING CONTENT.......coeiiieiiiieieiieeerie e 28
424 Renaming Xt File......oociiiice e 31
4.25 CopYING XL IR .ovoeicee e 32
4.2.6 Deleting tXE TIlE ..o 34
4.2.7 SHIFT + Delete txt file (permanent delete)ccoeevveiinieincineee 36
4.2.8 Scenario analysis for Xt file ..o 39
4.3 Alternate data StrEAMccoiivieeiiee e 40
4.3.1 ADS INthe fOrm Of teXTccociiieeceeeeees e 41
4.3.1.1 Scenario analysis for ADS in the form of text..........cccevvveivieieiiiieens 46
4.3.2 ADS in the form of eXecutable..........ccoviieeiiiriiee 46
4.3.3 ADS inthe form of image file ... 47
4.4 | ST -1 T S 48
441 CopyiNg JPG TIlE ..o 48
4.4.2 Renaming IMAge fill.......ccoooviiiiiiec e 50
4.4.3 Permissions ChAaNQEA..........ccviiiiiiiiiice e 51
4.4.4 Deleting JPg Tl ..o 52
4.45 SHIFT + Delete jpg file (permanent delete)ccoeerreerrveineiiseee 53

4.4.6 Scenario analysis for Jpg file ... 54
45 FOIJEI SCENANIOScveieiriieieiieie sttt 55
451 FOIAEr CrEALIONcuveveeeieeieieie sttt nee s 55
452 ReNAMING TOIUBEcoiiiiiiiiee e 57
4.5.3 Permissions ChanQed..........cccovieieiieiiieee e 59
454 AAING CONTENT.....ceoviiieieiiice et sesaenenreneas 61
455 Compressing FOIAETc.oiiiiiie e 65
456 Deleting FOIUEN ..o 67
4.5.7 Shift+ Deleting @ fOlder ..o 69
4.6 Exploring deletion in ReFS in detailccooeiveiiciiicececece e 71
4.6.1 Deletion in image file.........coooiiiiii 71
4.6.2 Deletion INTXETIE ...c.oveeeeeee e 73
4.6.3 Deletion iN dOC fIle......coooiiieiee e 74
4.7 Exploring the trimming of filename after simple deletion.............c..cccccovvenneneen. 76
4.8] = N | USSP 78
49 Comparison of ReFS artifacts with NTFS artifacts.................cceeeiiiiiinn 81

5 CONCLUSION AND FUTURE WORK

51 OVEIVIBW ...ttt sttt ettt e st e se st e e se st eneese e esenseneeneneenenseens 83
52 OVEIVIEW OF RESEAICN......c.eiiiieiicieeese et 83
5.3 FINAINGS ..ottt e e 83
5.4 FULUIE WOTK ... 84
ST T O] 3 Tod (11 (o o RSP 84

BIBLIOGRAPHY ueiiiiiiiiiiiiiiiiiieiiiiiiieiiiiicitreeeiecetacneiicaeasesasanns 86

VIl

LIST OF TABLES
Table 3-1 : File system info using fsutil commands.............ccoeoeiiieinicinncecces 9
Table 3-2: FSRS parts in Microsoft documentationcccccoeovverineneiesereeesee e 16
Table 4-1: Scenario analysis for Xt file ..o 40
Table 4-2: Scenario analysis for ADS in the form of teXt..........cccoovvviineininnineceee 46
Table 4-3: Scenario analysis for JPg fIle ... 55
Table 4-4: Metadata OffSets fOr fOIAEIS ..o 56
Table 4-5: Metadata changes for folders after renaming...........cccccooeevveveiiceseisececeseee, 58
Table 4-6: Metadata changes for folders after permission change...........cccoccovreinrciinines 60
Table 4-7:Metadata changes after content addition in folder............ccoovevvieiccncinenceen, 62
Table 4-8: Metadata changes after image deletion ... 72
Table 4-9: Metadata changes after txt file deletionccccooeveiiieiiccccceee e, 73
Table 4-10: Metadata changes after doc file deletion.............cccccovveviivccienccccseee, 75

Table 4-11: Filename trimming after sSimple deletion ... 76

Chapter 1

Introduction

1.1 Overview

A file system is the fundamental structure used by a computer for consolidating data on a
hard disk. Before the installation of different programs and important data storage on the
new hard disk, user has to first partition and format the disk using a file system. File system
tells the storage area how the information will be stored and retrieved. Information would
be large chunk of disorganized data without file system as there would be no system to tell
where one piece of information ends and where the new one starts. Therefore file systems
hold prime importance in computer forensics perspective as it stores all the information and

the ways through which information can be addressed.

Windows provides three file system options, namely: NTFS, FAT32, and the older and
rarely-used FAT (also known as FAT16). To date, NTFS is the most advanced feature-rich
and widely used file system. With the advent of Windows 8, Microsoft engineered a new
file system ReFS (Resilient File System), codenamed "Protogon”, which makes use of
NTFS as a base but at the same time, is built for new generation of storage technologies
and circumstances. This new file system facilitates cloud storage the most as it ensures data
and scales efficiently to handle data sets far larger than NTFS. The platform server used by
resilient file system is Windows Server 2012. Windows Server 2012, codenamed
"Windows Server 8", is the sixth release of Windows Server. It is the server version of
Windows 8 and succeeds Windows Server 2008 R2. [1]

With the growing trends in technology, this new file system will soon be implemented in
cloud environments as it is specifically intended for managing extremely large data
volumes and its main focus is on data integrity. Therefore it is of fundamental importance
to analyze it forensically so that storage areas can be identified, deleted files recovered and

images carved.

This research will make an endeavor to conduct detailed forensic analysis of resilient file
system designed for Windows 8 and released in Windows Server 2012. The important
artifacts and useful findings gathered during study of this new generation file system will
further help in malware detection and presentation of digital evidence in court of law

during forensic investigations.

1.2 Motivation and Problem Statement

Very less information is available presently related to the newly proposed resilient file
system. This information lists only certain features that the file system is offering that do
not include in-depth analysis of the structure and working of file system. The
manufacturers of this file system have only underlined major changes which this file
system encompasses. Moreover resilient file system has not been analyzed forensically for
its available artifacts and other modifications in its build up. Forensic analysis offers the
potential for a more comprehensive assessment of file system. Therefore resilient file
system will be analyzed forensically and the gathered artifacts will be compared to new
technology file system to have sound knowledge of all the new things resilient file system

is offering and the major changes that have been done in it.

1.3 Objectives

The main objectives of thesis are:
e Analysis of Resilient file system — its working and structure
e Forensically available artifacts in Resilient file system

e Comparison of forensically available artifacts of resilient file system with those of
NTFS

1.4 Thesis Organization

The purpose of this research is to elaborate the working and structure of resilient file
system. Information gathered during this research will be used by forensic investigators for

collection of digital evidence.

Chapter 2 will discuss the literature review. This chapter carries the information that helps

in understanding the underlying features this file system contains.

Chapter 3 contains the structure of resilient file system. What makes the file system base
and attributes that are included in this file system.

Chapter 4 discusses all the scenarios through which working of resilient file system was
uncovered. Various operations, such as copy, rename, modify, etc are applied to different

files to know the way resilient file system works with files.

Chapter 5 concludes this research thesis with the recommendations for future work.

Chapter 2

Literature Review

2.1 Introduction

Forensic analysis provides an in-depth view of the system under consideration. This

analysis is very helpful for digital forensic examiners as it helps in extracting information

from computers and compromised systems. This chapter provides information on the level

of research that has already been carried out on the proposed topic.

2.2 Level of research already carried out on the proposed topic

Microsoft’s official site [2] lists Resilient File System under the New Features and
Enhancements section in Windows 8 and Windows Server 2012 cookbook. The key
features mentioned by Microsoft for ReFS are: integrity, availability, scalability,
app compatibility and proactive error identification (data integrity scanner called

scrubber).

Resilient file system has not been developed from scratch, but it has been
reimagined and built on the parts of NTFS. ReFS implements the file system
interface (read, write, open, close, change notification, etc.), maintains in-memory
file and volume state, enforces security, and maintains memory caching and
synchronization for file data like NTFS. This reuse ensures a high degree of
compatibility with the features of NTFS that are being carried forward.
Underneath this reused portion, the NTFS version of the code-base uses a newly
architected engine that implements on-disk structures such as the Master File Table
(MFT) to represent files and directories. ReFS combines this reused code with a
brand-new engine, where a significant portion of the innovation behind ReFsS lies.
[1] Graphically, it looks like this:

NTFS upper layer Upper layer
APl/semantics engine engine inherited from NTFS

NTFS On-disk store engine New on_disk store engine

NTFS.SYS ReFS.SYS

Log structured file system implementation was rejected for ReFS. This approach is
unsuitable for the type of general-purpose file system required by Windows. NTFS
relies on a journal of transactions to ensure consistency on the disk. That approach
updates metadata in-place on the disk and uses a journal on the side to keep track of
changes that can be rolled back on errors and during recovery from a power loss.
The main disadvantages of a journaling system are that writes can get randomized
and, more importantly, the act of updating the disk can corrupt previously written
metadata if power is lost at the time of the write, a problem commonly known as
torn write.

To maximize reliability and eliminate torn writes, an allocate-on-write approach has
been used, that never updates metadata in-place, but rather writes it to a different

location.

Data integrity is provided by creating checksums. All ReFS metadata is check-
summed at the level of a B+ tree page, and the checksum is stored independently
from the page itself. This allows ReFS to detect all forms of disk corruption,
including lost and misdirected.

When the metadata for a ReFS directory is corrupted, subfolders and their
associated files are automatically recovered. ReFS identifies and recovers the files
while ReFS remains online. Unrecoverable corruption of the ReFS directory
metadata affects only those files that are in the directory in which the corruption has

occurred. [3]

Data integrity resembling that of ReFS has been implemented in ZFS, which is a
combined file system and logical volume manager designed by Sun Microsystems
for use in their Solaris operating system. [4] It has been designed to protect the
user’s data on disk against silent data corruption which is achieved by using a
(Fletcher-based) checksum or a (SHA-256) hash throughout the file system tree. [5]
In addition to this ZFS has a repair tool called “scrub”, which is used for file system

validation and file system automatic repairing.

ReFS can use checksums to detect if data has changed since last written and is able
to detect and recover from corruption quickly. In fact, when data is written to disk,
it is written to a new location on disk rather than over the top of existing data. Once
successfully written, the file system can free the space used by the old data stream.
ReFsS is able to recover from corruption within the file system rapidly without
limiting availability of the volume.[6]

Additional protection of data streams can be done by enabling Integrity Streams.
When configured to do so, checksums are used against written data and updates are
done using copy-on-write. You may enable Integrity Streams on particular folders,

volumes, or even granularly on a per-file basis.

ReFS can handle up to 1 Yottabyte (YB).

1GB = 10°

1YB =10**

This is like 1 quadrillion GB. ReFS is built to scale to 262,000 Exabytes per
volume, containing 18 quintillion files per volume. Compare this with NTFS which
is built to handle only 16 Exabytes. [7]

An algorithm of reconstructing directory tree above deleted files was proposed in
this [8] for NTFS. Furthermore, through detailed analysis of the theory of internal
structure of the NTFS file system, the storage principle of Data Runs in attribute 80
of MFT were presented.

Methods of information hiding and detection in FAT and NTFS were explored in
this paper [9]. Information hiding methods included hidden files and folders,

6

deleted files, hidden/ deleted partitions, alternate data streams (in NTFS), hiding
data in areas such as slack space, file slack space, bad clusters and steganography.
Forensic toolkits were referred to as the methods for detecting, recovering and
viewing this hidden information in NTFS.

e Brian Carrier’s book [10] lists EnCase by Guidance Software as the most widely
used computer investigation software. The Forensic Toolkit (FTK) is Windows-
based and can acquire and analyze disk, file system, and application data.
ProDiscover by Technology Pathways, SMART by ASR Data (Linux based) and
The Sleuth Kit (TSK, Unix based) are some of the toolkits that have been used for
analyzing NTFS time and again.

e A carving method for the continuously allocated compressed files was proposed in
this paper [11]. Most of the file carving tools cannot recover NTFS compressed
files because NTFS supports a compression function for internal files. An algorithm
for the implementation of this carving method for compressed files in
corresponding tools was also introduced in this paper.

2.3 Summary

Current research on resilient file system does not provide information regarding the
structure and functioning of the file system. Without knowing the base of file system and
areas where data can be hidden, it is very difficult for a forensic analyst to find hidden
information. Therefore there is a need to conduct forensic analysis of resilient file system

which will be useful for future forensic investigations.

Chapter 3

Resilient File System

3.1 Introduction

This chapter contains information related to resilient file system. Commands that were used
to get information of the file system, master boot record and volume boot record that are

file system specific have been explored in this chapter.

3.2 Getting file system info using ‘fsutil’ command

First of all windows command line command ‘fsutil’ is used to get basic file system

information. Following are the results and snapshots:

Recycle Bin Administrator: Command Prompt
s> sutil fsinfo volumeinfo C:
olume Name : NTF!
olume Serial Number : Bxd4ad8h3@
ax Component Length : 255

File System Mame = MIFS

ReadWrite

Bupports Case—sensitive filenames

[Preserves Case of filenames

[Bupports Unicode in filenames

[Preserves & Enforces ACL's

Bupports file—hased Compression

Disk Quotas

Sparse files

Reparse Points

Object Identifiers
Encrypted File Suystem
Hamed Streams

Transactions

Hard Links

Extended Attributes
lelD

Open By File
USH Journal

:5>fsutil fsinfo volumeinfo R:
olume Mame : ReFS
olume Serial Mumber : Bxl42e@h5a
ax Component Length : 255
[File System Name : ReFS
Iz ReadWrite
Bupports Case—sensitive filenames
Preserves Case of filenames
s Unicode in filenames
es & Enforces ACL's
= Sparse files
Reparze Pointe
Named Streams
Open By FilelD
USN Journal

Windows Server 2012 R2 Standard
Build 9600

G - 412AM
i &3 52 3/21/2016

1]
M
.

Following are the results for fsutil fsinfo sectorinfo and fsutil fsinfo volumeinfo

commands applied to the NTFS and ReFS drives respectively:

Command: fsutil fsinfo sectorinfo NTFS ReFS
LogicalBytesPerSector 512 512
PhysicalBytesPerSectorForAtomicity 512 512
PhysicalBytesPerSectorForPerformance 512 512
FileSystemEffectivePhysicalBytesPerSectorForAtomicity | 512 512

Device Alignment

Aligned<0x000>

Aligned<0x000>

Partition alignment on device

Aligned<0x000>

Aligned<0x000>

Command: fsutil fsinfo volumeinfo

Volume Name NTFS ReFS
VVolume Serial Number 0xd4ad8b30 0x142e0b5a
Max Component Length 255 255
File System Name NTFS ReFS
Is ReadWrite Yes Yes
Supports Case-sensitive filename Yes Yes
Preserves Case of filenames Yes Yes
Supports Unicode in filenames Yes Yes
Preserves & Enforces ACL's Yes Yes
Supports file-based Compression Yes No
Supports Disk Quotas Yes No
Supports Sparse files Yes Yes
Supports Reparse Points Yes Yes
Supports Object Identifiers Yes No
Supports Encrypted File System Yes No
Supports Named Streams Yes Yes
Supports Transactions Yes No
Supports Hard Links Yes No
Supports Extended Attributes Yes No
Supports Open By FilelD Yes Yes
Supports USN Journal Yes Yes

Table 3-1: File system info using fsutil commands

3.3 Master Boot Record (MBR)

Windows Server 2012 R2 contains one disk drive which has been formatted into two
partitions. First partition is formatted using NTFS (primary partition) and second partition
is formatted using ReFS. Starting part of the drive is by default system reserved. From here
the hexadecimal of each partition will be analyzed through WinHex which is a
hexadecimal editor.

Physical disk drive is opened in the hexadecimal editor for looking at the master boot
record.

The MBR is located at the very first, starting sector of a physical disk. A generic MBR has
the following three parts:

1. The Bootstrap Code Area/Bootloader
2. Partition Table
3. Boot Record Signature

The 512 bytes of MBR are distributed as:

512 bytes = 446 bytes (bootstrap code) + 64 bytes (partition table) + 2 bytes (boot

signature). These bytes are shown here:

10

Search

WinHex - [Hard disk 0]

ELLLLEE TR

el
2

Ao

Ao

e (0x000000000-0x0000001BD is the bootstrap code area.
e (0x0000001BE-0x0000001FD is the partition table. And
e (0x0000001FE-0x0000001FF is the boot signature

At 0x0000001BE, the value 80 at the start of partition table signifies that the partition is
bootable; otherwise there is a value of 00 if the partition is not bootable. This bootable
partition is the NTFS partition. The byte at offset 0x0000001C2 represents the partition’s
file system and therefore we can assume that it will be unique for every file system. 07 is

an indication for NTFS. However this byte is the same in the next partition (byte at offset

0000001D2) which shows that ReFsS is built on NTFS.

11

Mavigation View Tools Specialist Options Window Help

OS5 L= @ MaMBiEY | oD o em OB, &

Hard disk D]D.-i.-e C]

Partitioning style: MBR

Marme Ext. Size Created Madified Record changed Attr, st sector &

. _:Start sectors 1.0MB 1]
Offset 0 1 2 3 4 5 € 7T & % B B C D E F

ooooooooo [EE] CO BE DO BC 00 7C 8E CO B8E D8 BE 00 7C BF 00 | BAZD4w |ZAZ@x |:

000000010 |06 B3 00 02 FC F3 A4 50 &8 1C 06 CB FB B9 04 00| * 4émPh Ed:

000000020 |BD BE 07 80 7E 00 00 7C OB OF 85 OE 01 83 C5 10| ¥% €~ | fB

000000030 |E2 F1 CD 18 88 56 00 55 C6 46 11 05 C& 46 10 00| &A1 -V UEF EF

000000040 | B4 41 EB 55 CD 13 50 72 OF &1 FB 55 AR 75 09| "R»*Uf Jr @U=u

000000050 |F7 C1 01 00 74 03 FE 46 10 66 60 80 7E 10 00 74| A t© bF £'€~ ¢

000000060 | 26 66 &8 00 00 00 00 66 FF 76 08 &8 00 00 &8 00| &fh fyv h h

000000070 | 7C €8 01 00 68 10 00 B4 42 B8R 56 00 8B F4 CD 13| |h n ~BEV <&l

000000080 | 9F 83 C4 10 9E EB 14 B8 01 02 BB 00 7C 84 56 00| ¥4 2& |, = |3V

000000090 | 8h 76 01 8A 4E 02 SR 6E 03 CD 13 &6 61 73 1C FE| 5v 5N 3n I fas p

0000000R0 | 4E 11 75 OC 80 7E 00 80 OF 84 8A 00 B2 20 EB 84| N u €~ € .5 =g€&,

0000000B0 |55 32 E4 8A 56 00 CD 13 5D EB 9E 81 3E FE 7D 55| U2a5v I]&z sbiU

0000000CO |BR 75 6E FF 76 00 E& 8D 00 75 17 FA BO D1 E6 64| "un¥v & u 0°Had

0000000D0 |EE 83 00 B0 DF E6 60 EE 7C 00 B0 FF E6 64 E8 75| &f °Rea) ®gadgdy N

0000000ED |00 FB B8 00 BB CD 1A 66 23 CO 75 3B 66 81 FB 54| @, »I f#iu;f aT T BOOtStrap code

0000000F0 | 43 50 41 75 32 81 F9 02 01 72 2C 66 68 07 BB 00| CPRu2 4 r,fh » area

000000100 |00 66 &8 00 02 00 00 66 &8 08 00 00 00 &6 53 &6 fh fn £5F

000000110 |53 66 55 66 68 00 00 00 00 66 &8 00 7C 00 00 &6 | SfUfh fn | £

000000120 |61 €8 00 00 07 CD 1A S5A 32 F6 EA 00 7C 00 00 cD|an 1 zoaa | I

000000130 |18 RO B7 07 EB 08 A0 Bé& 07 EB 03 R0 BS 07 32 E4 & 9& 1 248

000000140 |05 00 07 8B FO AC 3C 00 74 09 EB 07 00 B4 OE CD (B-< T w» i

000000150 |10 EB F2 F4 EB FD 2B C2 E4 64 EB 00 24 02 E0 F2| &odéy+EadE § ao

000000160 |24 02 C3 49 6E 76 61 6C &9 64 20 70 61 72 74 62| § AInvalid parti

000000170 |74 €3 6F GE 20 74 61 €2 &C 65 00 45 72 72 &F 72| tion table Error

000000180 |20 6C 6F 61 64 €% 6E &7 20 6F 70 &5 72 61 74 62| loading operati

000000190 | 6E &7 20 73 79 73 74 65 6D 00 4D 62 73 73 &9 6E | ng system Missin

0000001R0 | 67 20 6F 70 &5 72 61 74 69 6E &7 20 73 79 73 74| g operating syst

000000180 |65 6D 00 00 00 63 7B 9A 6A BC 95 07 00 00|80 20 | em c{3jh- €

0000001CO | 21 00 07 BE 12 2C 00 O 00 00 00 FO OR 00 00 BE| ! X , 8 %

0000001D0 13 2C 07 FE FF FF 00 FE 0OR 00 00 40 28 01 00 FE| , bByv e @(b

0000001EQ0 FF FF 07 FE FF FF 00 38 33 01 00 B8 EC 01 00 00 ¥V B¥v 83 i Boot

0000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AR =]

000000200 | 00 DO 00 00 00 00 00 00 ©O0 00 00 00 00 00 00 0D signature

Q000001R0 |67 20 6F 70 65 72 61 T4 6% 6E &7 20 73 79 73 T4 | g operating syst
0000001B0 &5 6D 00 00 00 &3 7B 5S4 64 BC 55 07 00 00 80 20 | em c{3jh- E
Q000001C0O |21 00 O7 BE 12 2C 00 08 OO0 00 QQ FOQ Qn OO OO0 BE | ! 3= , s *
Q0000010 |13 2C 07 FE FF FF 00 F& 0O& 00 00 40 28 01 00 FE , DVY¥ @ Bl b
0000001ED FF FF 07 FE FF FF 00 38 33 01 00 B8 EC 01 00 00 #¥ b¥y 83 .i
QQ00001F0 (OO OO0 OO OO OO OO OO OO OO OO0 OO0 OO0 OO0 OO 55 AR o=
Q00000200 | Q0 OO0 QO OO OO OO OO OO0 OO OO0 OO0 OO0 OO0 OO 00 00

The partition table has four basic partitions, where the last partition is used as an
extended partition to support further partitioning. We can see in the above partition table
that our last partition is not being used. Size of each partition can be calculated from the

partition table.

00 FO OA 00 (underlined in red) is in Little Endian. Converting it to Big Endian it
becomes 00 OA FO 00 which are 716800 bytes/sectors (starts at sector 2048) when

converted into decimal. Thus the first partition is of 350MB in size.

00 40 28 01 becomes 01 28 40 00 which are 19415040 sectors. Second partition is of
9480MB = 9.25GB

00 B8 EC 01 becomes 01 EC B8 00 which are 32290816 sectors. Third partition is of
15767MB = 15.39GB

Further verifying our results using the windows disk management:

< m >
I

Ll
Disk 0 -t '

Basic System Reserved ||NTFS (C:) ReF5 (R:)
25-':!':' GB 350 MB NTFS .26 GB NTFS 15.40 GB ReFS =
Online Healthy (System, A ||Healthy (Boot, Page File, Crash || Healthy (Primary Partiticn)

3.4 Volume boot record (VBR)

The volume boot record exists in the first sectors of the partition. As we have two
partitions each for NTFS and ReFS we examine and compare their first sectors for the

volume boot record.

12

3.4.1 NTFS VBR

= T @B gdd Dol o e > 2 G ER L
Drive G l[:ri._-e R:]
\
Mamew Ext. Size Created Modified Record changed Attr
APath unknown
Offset o 1 2 3 4 5 & 7 & 9 B B C D E F A ~ OEM ID or

000000000 [3lE] 52 80 4E 54 46 53 20 20 20 20 00 02 02 00 00 [ER NTF§ ——— >
000000010 00 o0 00 g oo EF= a0 o0 SE OO0 FE a0 00 F3 OR 00 3 ? }I.r 3 SyStem
000000020 00 00 OO0 00 BO OO0 80 00 FF 3F 28 01|00 00 00 0O € g7 name
000000030 00 00 OC 00 00 OO0 00 00 ©2 00 0O 00|00 00 OO0 0O

000000040 F6& OO0 00 00 01 00 00 00 30 8B AD D4 |92 AD D4 48 & 0¢-03-CH

000000050 OO0 00 00 00 FA 33 CO 8E DO BC 00 TC|FB &8 CO 07 a3hZEw |Ghk

000000060 1F 1E 68 66 00 CB 88 16 OE 00 &6 81 |3E 03 00 4E nf = £ > N

Q00000070 54 46 53 75 15 B4 41 BB &A 55 CD 13 %% S TS vy _]ump A
000000080 55 AR 75 06 F7 C1 01 00 75 03 E9 DD 00 1E 83 EC USu <A u &Y fi Instruction
000000020 18 68 1R 00 B4 48 B8R 16 OE 00 8B F4 16 1F CD 13 & -HS <& I

0000000R0 9F 83 C4 18 9E 58 1F 72 E1 3B 06 0B 00 75 DE A3 YFL 2X réa: utle

0000000BO OF 00 C1 2E OF 00 04 1E 5& 33 DE B9 00 20 2E CB A. Z30* 4E

0000000C0 66 FF 06 11 00 03 16 OF 00 8E C2 FF 06 16 00 EE £¥ Zhy &

000000000 4B 00 2B C8 77 EF BE 00 BE CD 1A &6 23 CO 75 2D K +Ewi, »I f#iu-

0000000EC 66 81 FB 54 43 50 41 75 24 81 F9 02 01 72 1E 16 £ GTCPAuS a4 ¢

0000000F0 68 07 BB 16 68 52 11 16 &8 09 00 &6 53 66 53 66 h » hR h £SESE

000000100 55 16 16 16 68 B8 01 66 €1 OE 07 CD 1& 33 CO BF U h, fa I 3k;

000000110 OR 13 B2 F6 OC FC F3 RR E9 FE 01 90 90 &6 &0 1E 15 Gasép £°

000000120 06 &6 R1 11 00 66 03 06 1C 00 1E &6 &8 00 00 00 £; £ fh

000000130 00 66 50 06 53 68 01 00 68 10 00 B4 42 8L 16 OE £fP S5h h “BS

000000140 00 16 1F 8B F4 CD 13 66 59 5B SA &6 53 &6 53 1F «dI EY[ZEYEY

000000150 OF 82 16 00 &6 FF 06 11 00 03 16 OF 00 8E C2 FF |, f£¥ Zhy

000000160 OE 16 00 75 BC 07 1F 66 €1 C3 A1 F& 01 E8 09 0O uls fah;d &

000000170 R1 FA 01 ES 03 00 F4 EB FD 8B FO BRC 3C 00 74 0% 0 & &8Wd < t

000000180 B4 OF BE 07 00 CD 10 EB F2 C3 OD OR 41 20 64 &9 » I &2k R di

000000120 73 6B 20 T2 &5 61 &4 20 €5 T2 T2 &F 72 20 6F 63 sk read error oc

0000001R0 63 75 72 72 65 64 00 OD OA 42 4F 4F 54 4D 47 52 curred BOOTMGR

000000180 20 69 73 20 63 6F 6D 70 72 65 T3 73 &5 &4 00 0D is compressed

0000001C0 OR 50 72 65 T3 73 20 43 T4 T2 6C 2B 41 &C 74 2B Press Ctrl+llt+

000000100 44 &5 6C 20 74 6F 20 72 65 73 74 &1 72 74 0D OR Del to restart Signalure
0000001EC 00 OO0 OO0 OO0 00 OO0 00 00 OO0 00 OO0 00 OO0 00 00 00 ID or
0000001F0 00 OO0 OO0 00 00 00 B8R 01 &7 01 BF 01 00 00 55 AR I B LT .
000000200 07 00 42 00 4F 00 4F 00 54 00 4D 00 47 00 52 00| BOOCTMG R Magic
000000210 04 00 24 00 49 00 33 00 30 00 00 D4 00 00 OO0 24 st130 O = number

The first three bytes in the volume boot record are the jump instructions which are used

to jump to the executable assembly code which resides within this block of VBR. The

next eight bytes (0x03 to O0x0A) are the OEM ID or system name. System name is

followed by BPB (BIOS Parameter Block). The last 125 bytes contain error messages and

signature 1D or magic number. [12]

13

Following this above sector is the code for BOOTMGR (shown in the figure below). This
code tells the machine which operating system should be loaded on it. Error message can

be seen in this sector after 0D OA.

v
Cff=et 0 1 2 3 4 5 & 7T 8 58 A B C D E F . |

000000100 44 65 &C 20 74 &F 20 72 65 73 74 €1 72 T4 0D Ok | Del to restart
0000001EO 0O 00 00 00 00 00 00 0O 0O 00 00 00 00 00 00 00
0000001F0 OO 00 OO OO0 OO0 OO 8A 01 AT 01 BF 01 00 00 55 AR 358 ; u=
000000200 07 00 42 00 4F 00 4F 00 54 00 4D 00 47 00 52 00 BOOTHMGRER
000000210 04 00 24 00 4% 00 33 00 30 00 OO D4 OO0 QOO0 00 24 130 O z
og0ooo0220 00 00O OO0 OO OO OO 00 0O OO0 00 OO0 00 00 00 00 00
000000230 00 00 00 00 00 0O 00 0O ©O 00 0O 00 00 QO 00 00
000000240 00 00 OO0 OO OO0 OO 00 0O OO0 00 00 00 00 00 00 00
000000250 00 00 00 00 00 00 ES CO 00 50 05 00 4E 00 54 00 &5 N T
000000260 | 4C 00 44 00 52 00 OT7 00 42 00 4F 00 4F 00 54 00 | L D R BOOCT
000000270 54 00 47 00 54 00 OT7 00 42 00 4F 00 4F 00 54 00 | T G T BOOT
000000280 4E 00 58 00 54 00 00 OO OO0 OO0 OO0 OO0 OO 00 00 00 N X T
0000002%0 |00 00 OO OO0 00 0O 00 0O OO0 OO0 OD 0OA 41 6E 20 6&F An o
0000002R0 |70 65 72 61 74 6% 6E &7 20 73 79 73 74 &5 6D 20 perating system
0000002B0 |77 61 73 6E 27 74 20 66 &F 75 6E 64 2E 20 54 72 wasn't found. Tr
0000002C0 |79 20 &4 €9 73 62 6F 6E 6E 65 €3 74 €9 €E &7 20 vy disconnecting
0000002D0 &1 6E 79 20 64 72 €% 76 65 73 20 74 &8 €1 74 20 any drives that
0000002E0 &4 6F &E 27 74 0D 0A 63 6F 6E 74 &1 &9 6E 20 61 don't contain a
0000002F0 6E 20 &F 70 65 72 €1 74 6% 6E &7 20 73 79 73 74 n operating syst
000000300 | &5 6D 2E 00 00 00 00 0O OO0 OO0 00 00 00 00 00 00 | em.
000000310 ©OO 00 00 00 00 00 00 SA 02 &6 OF BT 06 OB 00 &6 & £ £
000000320 OF B6& 1E OD 00 &6 F7 E3 66 A3 52 02 &6 8B 0OE 40 1 f+EfLR f¢ B
000000330 00 80 F9 00 OF EF QOE 00 Fe& D9 &6 EE& 01 00 00 00 €u auE,
000000340 66 D3 EO EB O8 90 66 A1 52 02 66 F7 E1 &6 A3 86 | £Oa8 £;R f2aft+t
000000350 02 €6 OF B7 1E 0B 00 €6 33 D2 &6 FT F3 &6 A3 b6 £ - E30EAELV
000000360 02 E8 B2 04 66 8B OE 4E 02 66 89 0OE 26 02 66 03 é¢ f« N fr & £
000000370 | OE 86 02 66 8% OE 24 02 66 03 OE 86 02 &6 895 OE Tt £ * £ 1 £f%

3.4.2 ReFS VBR

Looking at the starting sectors of the ReFS partition, it is observed that only 64 bytes are
being used which is very small as compared to that used by the NTFS.

Also ReFS does not have boot code and Bios parameter block BPB, as it is apparent from

the snapshot taken. It might be because ReFsS is not bootable.

OEM ID of four bytes is present on the same location as it was in NTFS, after the first
three jump instructions, but the jump instructions are null in ReFS case. It might be
possible that when Microsoft makes ReFS bootable then the values of these three bytes

will be changed.

There is no signature 1D 55 AA at the end of the sector.

14

&

OD3L SdsE N it s R E | o D - 24
Drive C: Drive R: l
Offsetc a 1 2 3 4 5 B8 T 8 9 A B C o E F A
Q00000000 m 00 00 52 65 46 53 00 o0 00 OO0 OO0 OO0 00 0O 00 . qu >
000000010 ﬂﬁ ﬁﬁ ﬁﬁ ﬁﬁ 00 02 &C D& 00 00 EC 01 00 0O 0O 0O JﬂﬂﬁL 16 i
000000020 00 02 00 00 80 00 0O 0O 01 02 00 00 OR OO0 0O 0O £
000000030 00 00 00 0O 0O 00 00 00 SR 0B ZE 14 2D 2ZE 14 DC Z . -
000000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
Q00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
Q00000060 o0 00 OO0 OO OO OO0 OO0 00 o0 00 OO0 OO0 OO0 00 0O 00
Q00000070 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
000000080 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
000000090 o0 00 0O 0O 0O 00 00 00 o0 00 OO0 0O 0O 00 00 00
Q000000R0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
000000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
Qo000000CO oo 00 OO0 OO OO OO OO 0O o0 00 OO0 OO OO OO0 OO 00
0000000D0 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
0000000ED 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
Q000000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
000000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
000000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
000000120 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
000000130 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
000000140 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
000000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
000000160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
Q00000170 00 00 OO0 0O OO0 00 00 00 00 00 OO0 00 OO0 00 0O 00
000000180 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
0000001590 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
0000001R0 00 00 00 0O 0O 00 00 00 00 00 00 0O 0O 0O 00 00
000000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
Q000001C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0
Q00000100 o0 00 OO0 OO OO OO0 OO0 00 o0 00 OO0 OO0 OO0 00 0O 00
0000001ED 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
Q000001F0O 00 00 00 0O 0O 0O 00 00 00 00 00 0O 0O 00 00 00
000000200 00 00 00 0O 0O 00 00 00 00 00 00 0O 0O 00 00 00
000000210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 a0

3.4.2.1 File System Recognition Structure FSRS

There is text FSRS in place of BPB in ReFS which stands for File System Recognition

Structure. Microsoft’s definition on FSRS reveals that “a file system data structure and

OEM
ID or
System
name

file system recognition APIs that may allow an operating system to identify a partition of

a storage device as having a valid file system, even if the operating system does not know

how to access the file system a priori”. [13]

Its main goal is to give Windows an additional option to identify an otherwise

unrecognized file system.

This is achieved by writing a data structure on the logical disk sector zero which would

then be recognized by the operating system and notify the user that the media contains a

15

valid but unrecognized file system and is not a RAW volume if the drivers for the file

system are not installed. [14]

FILE_ SYSTEM_RECOGNITION_STRUCTURE is the data structure that tells the
operating system to achieve its goals regarding the recognition of an otherwise
unrecognized file system stored in the volume's boot sector (logical disk sector zero).
Checksum validation code is also stored within this data structure. At the application
level, file system recognition is achieved through the use of
FSCTL_QUERY_FILE_SYSTEM_RECOGNITION device I/O control code.

FILE_SYSTEM_RECOGNITION_STRUCTURE has the following parts defined in the
Microsoft documentation:

Type Offset Length Contents Description
Jmp 0x00 3 bytes 00 00 00 Jump instruction
0x03 4 bytes 52 65 46 53 File system name
0x07 9 bytes 00 00 00 00 00 00 00 | Reserved space that
00 00 contains all zeros
0x10 16 bytes 46 53 52 53 00 02 Structure identifier
6C D6 00 00 EC 01 | arranged in Little endian.
00 00 00 00
Length 0x20 2 bytes 00 02 The number of bytes in the
structure
Checksum 0x16 2 bytes Checksum calculated from
FsName to last byte,
excluding Jmp and
Checksum
Table 3-2: FSRS parts in Microsoft documentation
Cffset g 1 2 3 4 5 & 7T & 9% A B C D E F ~
266700000 | [«leaelsuslsl 00 00 00 0O 00 OO OO OO 00 -
266700010 46 53 52 53 00 02 &C D6 00 00 EC 01 00 OO0 00 00 FSRS 18 i
266700020 [pJERco 0o s0 oo oo oo 01 02 0o oo ok oo o0 oo | €
266700030 |00 OO0 OO0 OO0 OO OO OO0 00 54 OB 2E 14 2D 2E 14 DC Z -. 1
266700040 |00 OO0 OO OO OO OO OO OO OO OO0 OO OO OO OO 00 00

16

3.5 Master File Table

This section of the chapter describes and compares the master file table of NTFS as well as

ReFS. Master file table is the main area where all the records of files and folders exist in

NTFS. Let’s look if resilient file system makes use of such structure or has any other thing

in store for us.

3.5.1 ReFS Master File Table

ReFS does not have an MFT and therefore no entries related to the master file table either.

On searching for ‘FILE’ or ‘FILEO’ entries (that signify the start of every MFT entry) in

the file system, the result returned is as follows:

=
% File Edit Search MNavigation View Tools Specialist Options Window Help
CaseData |13 @™ B | e i
File Edit Drive R: WD” <G|
Offset o 1 2 3 4 5 & 7 8 9 A B C D E
000000000 | 00 00 00 52 €5 46 53 00 00 00 00 00 00 00 00
000000010 |46 53 52 53 00 02 6C D 00 00 EC 01 00 00 00
000000020 00 02 00 00 80 00 00 00 ©O1 02 00 00 OA 00 00
000000030 00 00 OO0 00 OO0 00 OO0 OO0 5A OB 2E 14 2D 2E 14
000000040 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 OO
000000050 |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 OO
000000060 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
000000070 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
000000020 00 00 00 00 00 00 00 00 0O 0O 00 00 00 00 0O
000000090 |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 OO
0000000A0 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
0000000BO 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
0000000CO | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
0000000D0 | 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 OO
0000000ED 00 00 00 00 00 00 00 OO0 0O 00 00 00 00 00 00
0000000F0 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
000000100 00 00 00 00 00 00 00 00 0O 0O 00 00 00 00 0O
000000110 |00 0O 00 00 00 00 00 00 00 0O 00 00 00 00 0O
000000120 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
000000130 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
000000140 00 00 00 00 00 00 OO0 OO OO 00 00 00 00 00 0O
000000150 |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00
000000160 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
000000170 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 0O
000000180 00 00 OO0 00 OO0 00 OO0 OO OO 00 00 00 00 00 0O
000000190 |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00
000000120 00 00 00 00 00 00 00 OO0 00O 00 00 00 00 00 0O
0000001BO 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00
0000001CO 00 00 00 00 OO0 00 OO0 OO0 OO 00 00 00 00 00 0O
0000001D0 |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 0O
0000001EQ |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 OO
0000001F0 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00
000000200 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00
000000210 00 00 00 00 00 00 00 00 0O 0O 00 00 00 00 OO
000000220 |00 00 00 00 00 00 00 00 00 0O 00 00 00 00 0O
SectorD of 32,243,712 Offset:

WinHex - [Drive R:]

-+ # -2

Search complete.

"FILE" was not found.

=0 | Block:

G O, @ GEAF &

Data Interpreter E‘

8 Bit (x): 0
16 Bit (): 0
32 Bit (+): 1,375,731,712

n/a | Size:

Drive R 99% free
File system: Refs
Default Edit Mode
State: original
Undo level: 0
Undo reverses: na
Logical sector No: 0
Physical sector Mo:: 20,133,688
Used space: 151 MB
157,876,224 bytes
Free space: 15.2 GB
16,350,904.320 bytes
Total capacity: 154 G8
16,508,780,544 bytes
Bytes per sector: 512
Sector count: 32,243,712
Physical disk: 0
Mode: hexedecimal
Cheracter set: ANSI ASC
Offsets: hexadecimal
Bytes per page: 35:16=560
Window # 2
No. of windows: 2
<
n/a

=@ x

187 SR-2

[unregistered]

3.5.2 NTFS Master File Table

NTFS has a master file table which contains entries of every file on the drive along with

other general information. Each entry starts with FILE or FILEO and is 1024 bytes in size.

NTFS MFT has sixteen reserved MFT entries for file system metadata files. They are:

0. $MFT - Master file table.

1. $MftMirr - Master file table mirror.

2. $LogFile - Log file.

17

3. $Volume - Volume contains information such as the volume label and the
volume version.

4. $AttrDef - Attribute definitions.
5. “Or$ - The root folder

6. $Bitmap - Cluster bitmap which represents the volume by showing free and
unused clusters.

7. $Boot - Boot sector, includes the BIOS Parameter Block used to mount the
volume and additional bootstrap loader code used if the volume is bootable.

8. $BadClus - Bad cluster file, which contains a list of bad clusters for the volume.

9. $Secure - Security file which contains unique security descriptors for all files
within a volume.

10. $Upcase - Upcase table which converts lowercase characters to matching
Unicode uppercase characters.

11. $Extend - NTFS extension file, which is used for future use.

12 — 15 are reserved for future use.

3.6 Attributes

File system views each file (or folder) as a set of file attributes. Elements such as the file's
name, its security information, and even its data, are all file attributes. Each attribute is
identified by an attribute type code and, optionally, an attribute name. in this section ReFS

and NTFS attributes are discussed.

3.6.1 ReFS attributes
ReFS like NTFS, contains some attributes which are not similar to NTFS attributes but

have something in common to them. Following attributes are found on clean ReFS drive:

3.6.1.1 File System Metadata

Metadata is data about data. File system metadata contains internal information (data)

about the data stored on the volume. The elegance of the metadata system is that by storing

18

internal information in files, it is possible to expand on the capabilities of the file system.

On examination of ReFS drive, file system metadata attribute is found as shown below:

B

< File Edit 5earch Mavigation View

Case Data
File Edit

Tools Specialist Options Window Help
D j ’_.n \-"S m 10011 ﬁ“usx :B:‘\Eé
Drive R:][:.-i. e]

Offset o 1 2 3 4 &5 & 7 & 9 L B C D E
0011102D0 (OO OO OO OO0 OO OO 0O OO BO 00 00 00 10 00 OE
0011102E0 (OO OO0 20 OO0 8C OO 00 OO 8C OO0 OO0 OO OO OO0 OO0
0011102F0 (38 00 00 00 00 OO 00 QO OO0 00 00 00 7& 00 00
001110300 |OC 00 01 00 OO O& 00 OO OO0 OO0 00 00 00 00 00
001110310 (00 OO0 OO0 00 14 OO0 00 0O 02 00 &C 00 04 00 0O
001110320 00 OO0 14 OO0 OO0 OO 00 20 01 01 OO0 OO OO0 OO0 OO0
001110330 00 00 O0 00 00 OQ 14 QO OO0 00 00 10 01 01 00
001110340 |00 00 ©O 05 12 00 00 OO OO0 0O 18 00 14 00 0O
001110350 01 02 30 00 02 00 46 00 &5 00 &C 00 65 00 20
001110360 53 00 79 00 73 00 74 00 &5 00 &D 00 20 00 4D
001110370 |65 00 74 00 €1 00 64 00 61 00 74 00 &1 00 0O
001110380 (00 0O OO OO0 OO OO OO OO OO OO OO0 OO0 00 00 00
001110350 00 OO OC OO OO OO OO0 OO OO OO0 OO0 00 00 00 00
001110320 00 0O OO0 00 0O OO Q00 QO OO0 00 00 00 00 00 00
001110380 |00 00 ©O 00 OO OO 00 OO OO0 00 00 00 00 00 00
an1T11n3cn an an an aon an 0N o0 a0 a0 o0 on

F
Lols]
Lili]
00
0o
Lils]
01
00
10
0o
00
0o
Lols]
00
00
0o

- bl

m

WinHex - [Drive R]

[4] F
¥ st
tad

wom

(3=
1)

i

=S E O R

This ‘File System Metadata block appears in the same area where other attributes appear.

This block can be used to contain the file information and data related to it.

3.6.1.2 Security Descriptor Stream

The attribute ‘Security Descriptor Stream’ at offset 0x1110592 in ReFS is analogous to
‘$SECURITY_DESCRIPTOR’ in NTFS. In NTFS security descriptor is a data structure

that controls the access control and security properties of the file. From here, it can be

inferred that the security descriptor stream in ReFS would also be used for access control,

security and ownership related things.

19

4

HEY

HEX
e File Edit Search Mavigation View Tools Specialist Options Window Help
CaseData |03 =gy | B B | o B | S ZsHm PO
File Edit Drive R: |DriveC:|
offset 0 1 2 3 4 5 & 7T & 9 A B C D E F ~

001110560 68 00 00 00 10 00 18 00 00 00 28 00 40 00 00 00 h -]
001110570 20 00 00 80 00 00 00 00 20 05 00 OO0 00 00 00 00 €
001110580 00 02 00 00 00 00 00 00 Q0 00 00 00 00 00 00 00
001110590 0OC 00 34 00 53 00 65 00 &3 00 75 00 72 00 &9 00 4Securi
00111050 74 00 79 00 20 00 44 00 65 00 73 00 63 00 72 00 t vy De s cr
001110580 69 00 70 00 74 00 6F 00 72 00 20 00 53 00 74 00 i ptor S5 t
0011105C0 72 00 &5 00 61 00 6D O0 58 04 00 00 10 0D 38 00 r e am X &8
001110500 08 00 48 00 10 04 00 00 30 00 01 00 53 00 &5 00 H 0 Se
0Q011105E0 63 00 75 00 72 00 69 00 74 00 79 00 20 0D 44 00 cucr ity D
0011105F0 65 00 73 00 63 00 72 00 69 00 70 00 74 00 6F 00 e S er ipt o
001110600 72 00 20 00 53 00 74 00 72 00 65 00 61 0D 6D 00 r S tream
001110610 A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00 ° {
001110620 10 01 00 00 02 OO0 02 00 OO0 00 OO0 OO0 00 OO0 00 00
001110630 00 00 00 00 00 00 00 00 4F C8 2D 2E C7 32 D1 01 CE-.C20
001110640 4F C& 2D 2E C7 32 D1 01 4F C8 2D 2E C7 32 D1 01 CE-.G2H CE-.g2f
001110650 | 4F C8 2D 2E C7 32 D1 01 20 00 00 00 00 OO0 00 00 OE-.G2ff
001110660 20 05 00 00 0O OO0 00 OO0 QO 02 0D OO0 00 OO 00 0O

3.6.1.3 Volume Direct 10 File

% File Edit Search Mavigation VYiew Tools Specialist Options Window Help
CaseData |3 L =@EN | Bt | AR Y | o D Sz Hm P
File Edit Drive Ra |Dri\rec:|
offzet o 1 2 3 4 5 6 7T &8 9 A B C D E F ~
0011109E0 |00 00 OO0 00 00 00 00 GO0 OO 00 00 00 00 00 00 00 [:
0011109F0 (00 00 OO0 00 00 OO0 00 GO0 OO 00 00 00 00 00 00 00
001110200 |00 00 OO0 00 00 OO0 00 GO0 OO 00 00 00 00 00 00 Q0
001110210 |00 00 OO0 00 00 OO0 00 GO OO 00 00 00 00 00 00 00
001110220 |60 00 00 00 10 00 18 00 OO 00 28 00 38 00 00 00 {8
001110830 €
001110R40
001110R50 7 01l ume
001110860
001110870
001110820
001110R90 (v um
001110AA0
001110RB0 Fild
001110ACO - {
001110RD0
001110REQ (OO0 00 OO0 0D 00 00 00 00 4F C8 2D 2E C7 32 D1 01 QE-.C2H
001110RF0 |4F C8 2D 2E C7 32 D1 01 4F C8& 2D 2E C7 32 D1 01 OE-.G2H OE-.G2H
001110800 |4F C8 2D 2E C7 32 D1 01 20 00 00 00 00 00 00 00 | QE-.G2H
001110810 |20 05 00 00 00 OO0 00 OO0 OC 01 OO 00 00 00 00 OO0

‘“Volume Direct IO File’ attribute in ReFS can be compared to ‘$VOLUME_VERSION,
$VOLUME_NAME and $VOLUME_INFORMATION? attributes present in NTFS. These

volume attributes in NTFS are self-explanatory. It can be inferred from here that ReFS

‘Volume Direct 1O File’ attribute will also be used, more or less, for the same purpose.

20

3.6.1.4 $130 Index

HEX

% File

Case Data

Edit Search MNavigation

Lhak'a

Attribute

View Tools Specialist Options
I’

Window Help

ol

v G4 44 B 0F 3

File Edit Drive R:]D.-i. eC

Offset
0011101E0
0011101F0
001110200
001110210
001110220
001110230
001110240
001110250
001110260
001110270
001110280
001110280
001110220

[aTa i i Naked=Tal

= BN
l

0 1 2 3 4 5 & 7
00 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00
E0O 00 00 00 00 02 00 00
78 02 00 00 00 00 00 00
00 00 00 94 00 00 00
30 00 o1e]

00 00 00 80
40 02 00 16
70 00 00 00
0o 00 Q0 00
0o 00 Q0 00
00 00 00 00
00 00 00 00

[alalatasl [aTalNatyl

00
00
00
00
00
00
00

[aTal

o0
o0
o0
00
00
00
00

[alal

o0
o0
o0
00
00
00
00

[alal

01
20
70
co
94

oc
10
ols}
oo
oo
oo}
oo}

[alal

3 4 B C
00 00 00 00
00 00 00 90
02 00 00 02
00 00 00 10
00 00 00 00
00 00
00 30
00 70
00 00
0o 00
0o 00
00 00
00 00

[alalatasl

D E
00 00
01 00
00 00
00 14
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

[alalNatyl

oo
oo
oo
oo
oo
ols}
ols}

[alal

oo
oo
oo
oo
oo
ols}
ols}

[alal

F
00
00
00
[o1e]
[o1e]
[o1e]
00
00
00
00
00
00
00

[aTal

WinHex - [Drive R:]

- 5l 4

e 2 e ER O WP

$130 is defined as “An INDX buffer in the NTFS file system that tracks the contents of a
folder”. [15] It will be used for the same purpose in ReFS too.

3.6.1.5 Upcase Table

ReFS has an Upcase table at offset 0x10D0040 on clean drive, which is similar to the

Upcase table found in NTFS (file system metadata file number 10). It contains each

uppercase character in the Unicode alphabet. Like in NTFS, ReFS also makes use of this

Upcase table to convert lowercase characters to uppercase characters. Structure of the ReFS

Upcase table is the same as in NTFS as both are used for the same purpose and Unicode

alphabets are independent of file systems. Upcase table in ReFS can be seen as follows:

HEX

“# File Edit Search MNavigation View Tools Specialist Options Window Help
=] =] s 10t ar s
CaseData | [0 3 =@ Bl | B
File Edit Diive & DriveF: |
Offset 0o 1 2 3 4 5 & 7 8 9 A B C D E
0010D0030 |18 00 18 00 1A 00 1B 00 1C 00 1D 00 1E 00 1F
0010D0040 ED 00 21 00 22 00 23 00 24 00 25 00 26 0O 27
0010D0050 |28 00 28 00 2A 00 2B 00 2C 00 2D 00 2E 00 2F
001000060 30 00 31 00 32 00 33 00 34 00 35 00 36 00 37
0010D00T0 | 38 00 3% 00 3A 00 3B 00 3C 00 3D 00 3E 00 3F
0010D0O0&0 | 40 00 41 00 42 00 43 00 44 00 45 00 46 00 47
0010D0090 | 48 00 48 00 4A 00 4B 00 4C 00 4D 00 4E 00 4F
0010D0O0OA0 |50 00 51 00 52 00 53 00 54 00 55 00 56 00O 57
0010DO0B0O | 58 00 58 00 5A 00 5B 00 SC 00 5D 00 SE 00 S5F

0010D00OCO | 60 00 41 00
0010D00D0O | 48 00 48 00
0010DOOEQ | 50 00 51 00
0010DOOFO | 58 00 58 00

001000100 |80 00 81 00
0010D0110 | &8 00 8% 00
001000120 | 90 00 91 00
0010D0130 |98 00 88 00
001000140 A0 00 A1 00
0010D0150 A8 00 AS 00
0010D0160 | BO 00 B1 00
0010D0170 B8 00 BS 00
0010D0180 | CO 00 C1 00

s
R
=}
=)
'S
w
=}
=}
'S
'S
=}
=3
s
n

00 46 00 47
00 4B 00 4C 00 4D 00 4E 00 4F
00 53 00 54 00 55 00 56 00 57
00 7B 00 7C 00 7D 00 TE 00 7F
00 83 00 84 00 85 00 86 00 B7

Ebwucuwmmus
LR IO
o
=1

8B 00 8C 00 8D 00 8E 00 BF

00 93 00 94 00 95 00 96 00 97

00 9B 00 8C 00 3D 00 SE 00 SF

00 A3 00 A4 00 A5 00 A& 00 A7

00 AB 00 AC 00 AD 00 AE 00 AF

B2 00 B3 00 B4 00 BS 00 B& 00 B7
BA 00 BB 00 BC 00 BD 00 BE 00 BF
C2 00 C3 00 C4 00 C5 00 C& 00 C7

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

21

WinHex - [Drive R:]

—+ 5| 4= > Z HmE OB
~
LI - -
Cy =+, -./
01234567
g9 <=2>7%
@ABCDETFG
HIJELMNO
PQRSTUVW
XYzZ[rNT "~
"ABCDE G
HIJELMNO
PQRSTUVW
XYZ{]|}~
€ y Ion t#
"wSca £
vrowom e
=3 Y
i ¢cEHRY¥ | S
@ xa-8®
E R I |
BRI

k-

3.6.2 NTFS Attributes

“File system forensic analysis” book by Brian Carrier lists following attributes as standard
attribute types:

$STANDARD_INFORMATION, $SATTRIBUTE_LIST, $FILE_NAME,
$VOLUME_VERSION, $OBJECT _ID, $SECURITY_DESCRIPTOR,
$VOLUME_NAME, $VOLUME_INFORMATION, $DATA, $SINDEX_ROOQT,
$INDEX_ALLOCATION, $BITMAP, $SYMBOLIC_LINK, $REPARSE_POINT,
$EA_INFORMATION, $EA, $SLOGGED_UTILITY_STREAM.

These attributes are data structures that store specific types of data. Each attribute has its
own internal structure and they are self-explanatory. They are found at different offsets
throughout the file system.

WinHex - [Drive C]
Search Mavigation VYiew Tools Specialist Options Window Help

» DS 2SS | " BIBED RAAGYE | oHes (222
Drive R: Drive C: l
\

MNarme & Exct. Size Created Modified Record ct
|£],Sf'\dl-—l' 78.0MB 11/19/2015 21:26:... 11/19/2015 21:26:48 +0 11/19/201
COffset o 1 2 3 4 5 & 7 & 98 A B C D E F o ”~
092A31060 24 00 53 00 54 00 41 00 4E 0OC 44 00 41 00 52 00 £ STANDLAR
092R31070 44 00 5F 00 49 00 4E 00 46 00 4F 00 52 00 4D 00| D I NFORM

092A31080 41 00 54 00 4% 00 4F 00 4E 00 OO0 OO0 OO0 00 OO0 QO |AT I ON
0%2a310%0 00 00 OO OO OO OO OO0 OO0 OO 00 OO0 00 OO0 00 00 OO0
092A310A0 ©O0 00 OO OO OO OO OO OO 0O OO0 OO0 00 OO0 00 00 OO0 I

092A3108B0 00 00 0O 0O OO0 OO 00 00 OO0 00 00 00 00 00 00 00
092A310C0 00 00 OO OO0 OO0 OO OO0 OO0 OO0 O0 OO0 00 00 00 00 00
052331000 00 00 OO OO OO OO 00 0O OO0 OO0 OO0 00 OO0 00 00 00
092A310EQ |10 00 00 00 00 GO 00 00 00 00 00 00 40 00 00 00 @

092R310F0 | 30 00 0O OO OO0 OO 00 OO0 48 00 00 00 ©O0 00 00 00 O H
092R31100 24 00 41 00 54 00 54 00 52 00 49 00 42 00 55 00| $ A TTRIBU
092A31110 |54 00 45 00 5F OO0 4C 00 49 00 53 00 54 00 00 00| T E LIST

092R31120 |00 00 00 00 Q0 CO QO 00 0O OO OO OC Q0 0O 00 00
092A31130 00 00 0O OO OO0 OO 00 00 OO0 00 00 00 00 00 00 00
092R31140 00 00 0O OO0 OO0 OO 00 00 OO0 OO0 00 00 00 00 00 00
092A31150 00 00 OO0 OO0 OO0 OO 00 00 OO0 00 00 00 00 00 00 00
092A31160 00 00 OO 0O OO OO 0O OO0 OO OO0 OO0 OO0 OO0 00 00 00
09231170 |00 00 00 00 00 CO QO 00 0O OO OO OO Q0 00 00 00

092R31180 20 00 00 00 00 00 00 00 00 OO0 OO0 00 80 00 00 00 €
092R31190 00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF T
D92A311R0 24 00 46 00 49 00 4C 00 45 00 5F 00 4E 00 41 00 § FILE _NZ&

092A3118B0 4D 00 45 00 00 OO 00 OO0 OO OO0 OO0 OO OO0 00 00 0O | M E
092A311C0 |00 00 00 00 00 GO 00 00 0O 00 00 0C 00 00 00 00
092A311D0 00 00 0O OO 00 OO 00 00 OO0 00 00 00 00 00 00 00
092A311E0 00 00 0O OO0 00 OO 00 00 00 00 00 00 00 00 00 00
092A311F0 00 00 OO OO0 OO0 OO 00 OO0 OO 00 OO0 00 00 00 00 00
052a31200 00 00 00 OO OO OO 00 0O OO OO OO0 00 OO0 00 00 00
092A31210 |00 00 00 00 00 GO 00 00 0O 00 OO0 OC 00 00 00 00

092R31220 |30 00 00 OO OO0 OO 00 0OC OO OO OO0 00 42 00 00 00 O B
092R31230 44 00 00 00 00 OO 00 00 42 02 00 00 00 00 00 00| D B
092R31240 |24 00 4F 00 42 00 4A 00 45 00 43 00 54 00 SF 0D | $ OB JECT _

w

Sector 4,805,000 of 19,415,032 Offset: S2A310A0

22

3.7 Security identifier

A Security Identifier (commonly abbreviated SID) is a unique, immutable identifier of a
user, user group, or other security principal. [16] The security descriptor is essential to

prevent unauthorized access to files. It stores information about:
e Owner of the file
e Permissions the owner has granted to other users
e What actions should be logged (auditing)

Following section describes NTFS and ReFS security identifiers.

3.7.1 Security Identifier in ReFS

The security identifier string found in ReFS is as follows:

Offset o 1 2 3 4 5 & 7 & 39 B B C D E F = ~
001130530 00 0O OO QO OO0 OO 0O OO OO 00 00 00 00 OO0 00 00 |:|
001130540 00 00 OO 0O OO0 OO0 0O 00 0O 00 00 00 00 00 00 00
001130550 00 00 OO 0O 00 OO QO 0O QO 00 00 00 00 00 00 00
001130560 E& 00 00 00 10 00 5A 00 00 00 70 00 48 00 00 0O

001130580
001130530
0011305R0
001130580
0011305c0 EHNOONEDN0ONSSN00NS0NEEINEal oo 00 00 00 00 00 00
0011305D0 02 07 00 00 00 00 00 OO0 0O 00 00 OO0 OO0 OO0 00 00
0011305E0 [2 DA 48 6C C8 32 D1 01 DA 05 7& A2 B3 95 D1 01 | FOH1EZH T ze=Hf
0011305F0 DA 05 7R A2 B3 98B D1 01 DA 05 7& B2 B3 98 D1 01 | U z¢*»H U ze>»H
001130600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Removing zeroes from the security identifier, we get:
B¥1-5-21-748826674-2493555575-875918347-500

The above string is interpreted as follows:

B for security id

1 Revision level

5 Identifier Authority (48 bit) 5 = logon id

21 Sub-authority (21 = NT non unique)
748826674-2493555575-875918347 Domain or local computer identifier
BOB user id/Relative ID (RID)

23

3.7.2 Security Identifier in NTFS

Offset 01 2 3 &4 5 6 7 8 39 A B C D E F i | = -
OCO0O0OES90 |00 00 OO0 00 00 00 00 00 06 00 00 10 00 00 00 00

OCO00ESAO | 2B 01 53 00 2D 00 31 00 2D 00 35 00 2D 00 32 00 + 5 -1 -5 = 2
OCO00ESE0 31 00 2D 00 37 00 34 00 38 00 38 00 32 00 36 00 1 - 7T 488 2 6
QCO00ESCO 36 00 37 00 32 00 2D 00 32 00 34 00 39 00 33 00 & 7 42 - 2 4 9 3
QCO00ESDD 35 00 35 00 35 00 35 00 37 00 35 00 2D 00 38 00 5 555 7 5 - 8
QCOOD0ESED 37 00 35 00 39 00 31 00 38 00 33 00 32 00 37 00 7 5 918 3 47
0COOCESFD | [2D00 35 00 30 00 3000 D5 30 01 00 00 00 oC 00 =85 @0 &o

OCOO0OE&00 | 68 00 52 00 00 00 00 00 3% 00 00 00 00 OO0 02 00 h R 9

OCO0O0E&10 |D3 F9 76 4A 01 23 D1 01 EE F8 47 00 8D D1 01 Ouvd #H i:sC
OCO00E&20 |EE B2 F8 47 00 8D D1 01 EE F8 47 00 8D D1 01 i*sG W i*sC
OCOO00E®30 |00 00 00 0O 00 QOO0 00 0D 0O 00 00 OO0 00 00 00 00

The security identifier string in NTFS is S-1-5-21-748826674-2493555575-875918347-

500, which is same as that found in ReFS.

==y

24

Chapter 4

Test case scenarios for artifacts gathering

4.1 Introduction

In this chapter, various scenarios such as creation, modification, deletion, etc are taken in
consideration and performed on different files to know the working and structure of files in
resilient file system. Main purpose of the research was to know the working and structure

of this new file system which will provide assistance in criminal investigations.

4.2 .txt Scenarios

.txt is file extension for a text file. It contains unformatted text. It can be created through
notepad which is included in Microsoft Windows by default. Different scenarios are

applied to .txt file to check how resilient file system works with general files.

4.2.1 File creation

A new txt file is created in ReFS drive with content “I am currently carrying out my
research in Resilient File system which was introduced in 2012.” and saved as
“mythesis.txt”. Its size is 94 bytes (as observed through properties of file).

1] mythesis.txt Properties -
General i i i 1
|Secunty| Details | Previous Versions |
|mythes|s.bct |

Typeoffile: Text Document {ba)

Opens with) Notepad
Location: R4

Size: 54 bytes (54 bytes)

Size on disk: 64.0 KB (65,536 bytes)

Created Monday, April 11, 2016, 6:50:12 FM

Modified Monday, Aprl 11, 2016, €:50:31 PM
Accessed: Monday, April 11, 2016, 6:50:12 PM

Aftributes: [JRead-onty []Hidden Archive

25

Official Microsoft documentation states that ReFS stores metadata in 16KB blocks so that
it can support volume sizes of 2% bytes. [17] ReFS storage engine uses B+ trees
exclusively as the single common on-disk structure to represent all information on the disk.
[18]

Observing the file in WinHex (hexadecimal editor), filename ‘mythesis.txt” is found at
offset 0x114064C (pink). A copy of filename is found at offset 0x1140AAC. MACE times
(orange) are found at offset 0x1140690 which is in Windows 64-bit Little Endian. MACE
times ('Modify', 'Access’, 'Create’ and 'Entry Modified’) are time stamps of files, therefore
they are present immediately after the filename. File permissions are present in green. File
size is present in yellow (5E in hexadecimal and 94 bytes in decimal) and blue highlights
the offset where the content of file is stored. It is file pointer in Little Endian. From this file
pointer we can calculate the offset of the file content area.

1]

WinHex - [Drive R:]
< File Edit Search Navigation View Tools Specialist Options Window Help

CaseData |00 =g B BOW AARGE | o b SZzomPOR, @ | B AP

File Edit Tt Dri\reR:l

Cff=et 0 1 2 3 4 5 & 7 8 9 » B C D E F
001140600 (00 OO0 00 OO0 00 OO0 00 OO0 OC 00 2A 00 4E 00 &5 00
001140610 |77 00 20 00 54 00 65 00 78 00 74 00 20 00 44 00 | w Te
001140620 | 6F 00 63 00 75 00 6D 00 &5 00 6E 00 74 00 2E 00 (o cum
001140630 (74 00 78 00 74 00 00 00 40 04 00 00 10 00 1IC 00 | L x ©
001140640 00 OO0 30 00 10 04 00 OO0 30 00 01 0O |60 OO 79 00 [4]
001140650 T4 00 68 00 65 00 73 00 €9 00 73 00 2E 00 74 00 £t h e =
001140660 |78 OO0 74 00 00 00 00 00 A8 00 00 00 28 00 01 00 | ® € - {

[= s
=]
>

oo o@ m e

001140670 |00 00 00 00 10 01 00 OO 10 01 QO 00 02 00 00 00 Data Interpreter [:]
001140680 00 00 00 00 00 00 00 OO 0O 00 QO 00 00 OO 00 00

oo1140630 [§6 3E E8 11 F3 93 D1 01 CE& 36 E7 1C F9 93 D1 01 E»é o F Zeg u“i 8 Bit (£): 102

0011406R0 C8 36 E7 1C F9 93 D1 01 66 3E E8 11 F9 93 D1 01 Ee¢ u~F fxe& o 16Bit (x): 13,974

001140680 20 00 00 00 00 OO0 00 OO0 QO 06 QO 00 QO 00 Q0 00 32 Bit (+): 300,432,993
0011406C0 |02 00 00 00 00 00 00 OO 88 1F 59 2F 01 00 00 00 7 “LE”ME=WF”52m5
0011406D0 5E 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 ~ 13:50:12

0011406E0 | 00 00 00 00 00 0D 00 0D 00 DO 00 00 00 00 00 00
0011406F0 00 00 00 00 00 0D 00 0D 00 DO 00 00 00 00 00 00

001140700 01 00 00 00 00 0D 00 0D 00 DO 00 00 00 00 00 00

001140710 20 00 00 00 A0 01 00 0D D& DO 00 00 00 02 00 00 6
001140720 74 02 00 00 01 0D 00 0D 78 D2 00 00 00 00 00 00 t x
001140730 80 01 00 00 10 00 OE 0D 08 DO 20 00 €0 01 00 00 €

001140740 60 01 00 00 00 00 0D OO 80 DO 0O 00 0O 00 00 00 ° €
001140750 88 00 00 00 28 00 01 00 01 00 0O 00 20 01 00 00| * |
001140760 20 01 00 00 02 0D 00 0D 00 DO 00 00 00 00 00 00

001140770 00 00 00 00 00 0D 00 0D 01 DO 00 00 00 00 00 00

001140780 00 00 00 00 00 00 01 0D 00 DO 00 00 SE 00 00 00 -
001140790 00 00 00 00 SE OO0 00 0D 00 DO 00 00 00 00 00 00 -
001140720 00 00 00 00 00 0D 00 0D 00 DO 00 00 00 00 00 00

001140780 00 00 00 00 00 0D 00 0D 00 DO 00 00 00 00 00 00

0011407C0 00 00 00 00 00 0D 00 0D 00 DO 00 00 00 00 00 00

001140700 00 00 00 00 00 0D 00 0D 20 DO 00 00 50 00 00 00 P
0011407E0 84 00 00 00 00 02 00 0D D4 DO 00 00 01 00 00 00 . &
0011407F0 D8 00 00 00 00 00 00 00 30 00 00 00 10 00 10 00 & 0
001140800 00 00 10 00 20 00 00 0D 00 DO 00 00 00 00 00 00

001140810 04 00 00 00 00 00 00 o0 [EEMEENco 00 0o 00 0O 0O & |
001140820 00 00 00 O 00 0D 00 0D 00 DO 00 00 00 00 00 00 v

Sector 35,331 of 32,243,712 Offset: 1140690 =102 | Block:

- — | LI =

26

In the metadata block of the file above, file pointer is 40 04 in Little Endian.
e Converting 40 04 to Big Endian, we get 04 40

e 440 hexadecimal is equal to 1088 in decimal

e Multiplying 1088 with 16,384 (because all the metadata is stored in blocks of
16KB), we get 17825792

e Converting 17825792 decimal to hexadecimal, we get 1100000
e 1100000 is the offset of the file content.

Now looking at the file content area at offset 0x1100000(in blue) in the editor:

WinHex - [Drive R]
ile Edit Search Mavigation View Teools Specialist Options Window Help

seData |03 Le=@™ @ e o S — 3| 4= e S e EE OB
Edit Drive C: Drive R: l
Offset a 1 2 3 4 5 & 7 & 9 A B C D E F ~

Q0010FFF70 00 00O 0O 00 00 ©OO OO0 0O 00 00 00 00 00 00 00 00

Q0010FFFE0 (00 00 00 00 00 ©O0 00 00O OO0 00 00 00 00 00 00 00

Q010FFF30 00 00 00 00 00 €00 00 00 OO0 00 00 00 00 00 00 00

QQ10FFFRO Q0 OO OO 00 00 CO 00 0O OO OO0 00 00 00 00 00 00

Q010FFFEO 00 00O 0O 00 00 €00 00 00O 00 00 00 00 00 00 00 00

QQ10FFFCO Q0 00O 0O 00 00 CO 00 0O OO OO0 00 00 00 00 00 00

Q010FFFDO 00 0O OO0 00 00 €00 00 0O OO0 00 00 00 00 00 00 00

QQ10FFFEQ Q0 00 00 00 00 €00 Q00 Q00 ©Q0Q 00 00 00 00 00 00 00

Q010FFFFO (00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001100000 49 20 61 6D 20 €3 75 72 72 65 6E 74 6C 7% 20 €3 I am currently c
001100010 61 72 72 79 65 €6E 67 20 6F 75 74 20 6D 75 20 72 | arrying out my r
001100020 &5 73 65 61 72 €3 68 20 69 6E 20 52 65 73 65 6C esearch in Resil
001100030 69 65 6E 74 20 46 65 6C &5 20 73 79 73 74 65 6D ient File system
001100040 20 77 68 69 63 €8 20 77 61 T3 20 69 6E 74 72 &F which was intro
001100050 64 75 63 65 64 20 65 6E 20 32 30 31 32 2E 00 00 | duced im 2012.
001100060 (Q0Q 00O 0O 00 00 QO Q0 QO ©QOQ OO 00 00 00 00 00 00

001100070 (OO OO 0O 00 OO0 ©OO OO0 OO OO OO0 00 00 00 00 00 00

001100080 OO OO OO OO QO OO OO OO OO OO0 00 00 00 QOO0 00 00

001100080 00 0O 0O 00 OO0 ©OO OO OO OO OO OO0 00 00 00 00 00

0011000R0 OO0 OO OO OO OO0 OO OO 0O OO 00 00 00 00 00 00 00

0011000BO Q0O OO OO OO0 OO0 ©OO OO OO OO OO0 00 00 00 00 00 00

4.2.2 Permissions changed

We observe that when file permissions are changed, the values highlighted green in the
drive change. This shows that these five bytes define file permissions as they change when
file permissions are changed.

Further examining the drive closely, it is observed that the ‘accessed’ part of the MACE
times (eight bytes) found at offset 0x11406A0 has changed (orange). ‘Accessed’ part of the

MACE time refers to the time when the entry was accessed. As we know that after

27

changing permission this entry has been accessed therefore these eight bytes of the MACE
times have been modified only. Modified, entry modified and created times are same. Rest

of the metadata block is same as when the file was created.

Search MNavigation View Tools Specialist Options Window Help

DSl d=gs Bl annE | o be L=HmO®, &% | A
Drive C; Drive R: I

Offset 0 1 2 3 4 5 6 7T B8 9 LB C D E F -
0011405F0 | 00 06 00 00 00 00 00 00 02 00 00 00 00 00 0D 00
001140600 00 00 00 00 00 00 00 00 OC 00 2A 00 4E 00 &5 00 =N e
001140610 |77 00 20 00 54 00 65 00 78 00 74 00 20 00 44 00 w Texct D
001140620 6F 00 63 00 75 00 6D 00 65 00 6E 00 74 00 2E 00 ccumen t
001140630 |74 00 78 00 74 00 00 00 40 04 00 00 10 00 1C 00 t x t @
001140640 00 00 30 00 10 04 00 00 30 00 01 00 [6D G0 75 60 0 o EF
001140650 74 00 €8 00 €5 00 73 00 69 00 73 00 2E 00 74 00 thesis .zt
001140660 7800 74|00 00 00 00 00 A8 00 00 00 28 00 01 00 X € S
001140670 00 00 00 00 10 01 00 00 10 01 00 00 02 OO0 0D 00
001140680 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00
001140690
001120620 [c 99 6A OF 45 96 D1 01 =3 E-§ Data Inter
001140680 20 00 00 00 00 00 00 00 00 06 00 00 00 OO 0D 00 preter E
0011406C0 |02 00 00 00 00 00 o0 oo [ESNSENGDNEDNEMco oo 00 > v 8 Bit (+): 28
001140600 SE 00 00 00 00 00 00 00 00 00 01 00 OO0 00 00 00 ~ 16 Bit (£): -26,340
0011406E0 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 32 Bit (£): 238,644,252
0011406F0 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 0D 0D FILETIME: 04/14/2016
001140700 01 00 00 00 00 00 0C 0O 00 00 00 00 OO0 OO0 0D 00 11:59:12
001140710 |20 00 00 00 A0 0L 00 00 D& 00 00 00 00 02 00 00 6

4.2.3 Modifying content

More content is added to the previous ‘mythesis.txt’ file. File size, as shown in the
properties window is 1.74 KB (1,783 bytes), now. We know that in NTFS, files containing
data more than 512 bytes are non-resident and subsequently stored at different location.

Let’s examine what happens in ReFS:

e mythesis.txt - Notepad Hi-i

File Edit Format View Help

Tam currently carrying out my research in Resilient File system which was introduced in 2012. Very less ~
information is available on it. I am currently carrying out my research in Resilient File system which was
introduced in 2012. Very less information is available on it. I am currently carrying out my research in Resilient
File system which was intreduced in 2012. Very less information is available on it. I am currently carrying out my
research in Resilient File system which was introduced in 2012. Very less information is available on it. I am
currently carrying out my research in Resilient File system which was introduced in zo12. Very less information is
available on it. I am currently carrying out my research in Resilient File system which was introduced in 2012.
Very less information is available on it. I am currently carrying out my research in Resilient File system which
was introduced in 2012. Very less information is available on it.

I am currently carrying out my research in Resilient File system which was introduced in 2012, Very less
information is available on it. I am currently carrying out my research in Resilient File system which was
introduced in 2012. Very less information is available on it. I am currently carrying out my research in Resilient
File system which was introduced in 2012. Very less information is available on it. I am currently carrying out my
research in Resilient File system which was introduced in 2012. Very less information is available on it. I am
currently carrying out my research in Resilient File system which was introduced in zo12. Very less information is
available on it. I am currently carrying out my research in Resilient File system which was introduced in 2012.
Very less information is available on it.

After adding content to the previous file, it is observed that the file metadata is found at

three different offsets. It can be seen here:

28

uvliliguvarcwy
001140600 * N e
001140610 w Text D
001140620 oCcument
001140630 txt @
001140840 o o @
001140650
001140660 x T i
001140670
001140680
001140630
001140640
001140680
0011406CO 4
0011406D0 |
AN ANET A
001144610 |77 00 20 00 54 00 65 00 78 00 74 00 20 00 44 00w T ext D
001144620 6F 00 63 00 75 00 6D 00 65 00 6E 00 74 00 2E 00 o cumen t
001144630 74 00 78 00 74 00 00 00 40 04 00 00 10 00 1C 00 t x t @
001144640 00 00 30 00 10 04 00 00 30 00 01 oo @DNGGF8°@60 o o myl
001144660 7880 7400 00 00 OO0 00 A2 00 00 00 28 00 01 00 X & (
001144670 00 00 00 0O 10 01 00 00 10 01 0O 00 02 00 00 0O
001144680
001144680
0011448C0 ilie
001144600 [|
0011446E0
001148600 |00 00 00 00 OO 00 OO OO0 OC OO 2A OO0 4E 00 &5 00 * N e
001148610 |77 00 20 00 54 00 65 00 78 00 74 00 20 00 44 00 w T ext D
001148620 |6F 00 63 00 75 00 6D 00 65 00 6E 00 74 00 2E 00 o cument
001148630 |74 00 78 00 74 00 OO0 00 40 04 00 00 10 00 1C 00 t x t @
001148640 |00 00 30 00 10 04 00 00 30 00 01 oo EDIBE 79768 o o myl
001148650
001148660 [J8 00 74 00 00 00 OO0 00 A8 00 00 00 28 00 01 00 X8 (
001148670 |00 00 00 00 10 01 OO0 0O 10 Ol 00 OO 02 OO0 00 00
001148680 |00 00 00 00 OO 00 OO OO OC OO 00 OO 00 OO 0O OO0
001142630 66 3E E8 11 F9 93 D1 01 62 AF CD €C 56 96 DL 01 f>& & b fav-ii
0011426K0 62 AF CD BC 56 96 D1 01 66 3E E¢ 11 F3 93 DL 01 b 1Gv-§ 3¢ a°F
001148680 |20 00 00 00 OO0 00 OO OO OO O 00 OO 00 OO 0O OO
0011486C0O |02 00 00 00 00 00 00 00 4D OE 34 12 01 00 00 00 4
0011486D0 | F7 06 00 00 00 00 00 00 00 00 01 00 00 00 00 00 =
0011486E0 |00 00 00 00 OO0 00 OO0 OO OO0 OO 00 OO 00 00 00 00

At offset 0x114064C is the original file metadata. A duplicate of just the file name is found
after 460 bytes at 0xX1140AAC.

At offset 0x114464C is the file metadata with permissions changed (green) as it can be
seen in the center image. The five bytes (green) are reserved for file permissions therefore
they change when file permissions are changed. In addition to this as stated in the above
section, MACE time area (0x1144690) for only the entry modified part has changed. A
duplicate filename of this section is found after 460 bytes at offset 0x1144AAC

In the third image at offset 0x114864C, file altered area and the entry modified area of
MACE times has changed along with the file size because content has been added to the
previous file. F7 06 (yellow) is the modified content file size. Converting F7 06 to Little
Endian, we get 06 F7 which is equal to 1783 bytes in hexadecimal. This is the same as

shown in properties window.

Another thing is observed. These three file metadata of the same file are found after every
4000 successive bytes. For example, the first file metadata is at offset 0x114064C, second
is at 0x114464C and third is at 0x114864C.

Although file metadata is found at three different offsets but all the three different offsets
have the same 40 04 file pointer, which we calculated to be 0x1100000. When this location
is accessed, file content is found here. This file content has overwritten the previous content
and the previous content can’t be found anywhere. ReFS keeps track of every transaction
that is being done by updating the file metadata but it keeps no record of the previous file

content as the new content has overwritten previous content.

= ‘WinHex - [Drive R L= o .
w Fie gt Semch Novgation View Toos Specsist Options Window Help 187582485 |- | 8]
CaseDaa |05 =@ B AW HRALLY | b Szomo. @ EHAY &

Fde Edit

Dive R 9% free
File systern: ReFS

Default Edit Mode

Data Interpreter [
& Bit [k 97
1

fH
FILETIME:

Offset: 1 = 97 Block 1100000 - 11006F | Size: 56

=y | HEX . zasem
= ‘ R R msm!s—|

30

This point to one of the key features of ReFS that Microsoft has stated “Allocate on write
transactional model for robust disk updates (also known as copy on write)”. [4] ReFS
employ’s an allocation-on-write update strategy for metadata, which allocates new chunks
for every update transaction. We have observed this fact above. Through this, built-in

resiliency is obtained.

4.2.4 Renaming txt file

The same file ‘mythesis.txt’ is now renamed to be’resilientfilesystem.txt’. Checking out the

metadata changes as follows:

WinHex - [Drive R:]
Search Mavigation View Tools Specialist Options Window Help

DAl SeEs | “RBrBrS | RAASYE | »He LzepmO®. @ | E)
Dirive C: DriveR:}
Offset 0 1 2 3 4 5 & 7 & 8 A B C D E F -
001140B20 |00 00 00 00 00 00 00 00 OC 00 18 00
001140E80
001140RC0 00 00 00 00 0O 58 04 00 DO 10 00 32 00 X 2
001140AD0 |00 00 48 00 10 04 00 00 30 00 01 00 200006508 = o e
001140EE0 73 00 69 00 6C 00 63 00 65 00 6E 00 72 00 66 00 s i 14 en t £
001140BF0 69 00 6C 00 65 00 73 00 79 00 73 00 74 00 65 00 1 lesyste
001140800 |[6D 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00 m . & % &
001140810 (A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00 ~ {
001140820 |10 01 00 00 02 00 00 00 0O 00 00 DO 00 G0 00 00
001140830 |00 00 00 00 00 00 00 00
WIREL-ELEM > AF CD aC 56 96 DL 01 41 38 CE 7B 1C 87 D1 oijflb iGV-N #siz W | Data Interpreter [
001140850 |[AIECIEEEIEE 20 00 00 00 00 00 00 00 2 Bit [+): 65
001140860 |00 06 DO 00 00 00 00 00 02 00 00 DO OO0 OO0 00 00 16 Bit (+): 14,401
001140870 |AD/0E 341201 00 00 00 E7 06 00 00 00 00 00 o0 |4 2 32 Bit (+): 2,060,335,169
001140880 00 00 01 00 00 00 00 0O QO 00 00 00 OO 00 00 00 FILETIME: 04/15/2016
001140880 |00 00 00 00 00 00 00 00 QO 00 00 00 OO0 00 00 00 13:41:14
001140BA0 |00 00 00 00 00 00 00 00 ©O1 00 00 DO OO0 G0 00 00
001140880 |00 00 00 00 00 00 00 00 20 00 00 00 A0 01 00 00
001140BCO (D4 00 00 00 00 02 00 00 74 02 00 00 01 00 00 00 O T
001140BD0 |78 02 00 00 00 00 00 00 80 01 00 00 10 00 OE 00 x €
001140BE0 |08 00 20 00 &0 01 00 00 €0 01 00 DO 00 GO0 00 00 s
001140BF0 |80 00 00 00 00 00 00 00 88 D0 00 00 28 Q0 01 00 € -
001140C00 |01 00 00 00 20 01 00 00 20 01 00 DO 02 00 00 00
001140C10 |00 00 00 00 00 00 00 00 0O 00 00 0O 00 GO0 00 00
001140C20 |01 00 00 00 00 00 00 00 00 00 00 DO 00 Q0 01 00
001140C30 |00 00 00 00 F7 06 00 00 00 00 00 DO F7 06 00 00 = =
001140C40 |00 00 00 00 00 00 00 00 0O 00 00 DO OO0 GO0 00 00
001140C50 |00 00 00 00 00 00 00 00 00 00 00 DO 00 Q0 00 00
001140C60 |00 00 00 00 00 00 00 00 0O 00 00 DO 00 GO0 00 00
001140C70 |00 00 00 00 00 00 00 00 00 00 00 DO 00 00 00 00
001140C80 |20 00 00 00 50 00 00 00 €4 00 00 DO 00 02 00 00 P
001140C%0 D4 00 00 00 01 00 00 00 D8 00 00 00 00 00 00 00 ©]
001140CA0 |30 00 00 00 10 00 10 00 00 D0 10 DO 20 00 00 00 O
001140CB0 |00 00 00 00 00 00 00 00 04 00 00 0O 00 GO0 00 00
oo114occo | [EEENoo oo 00 00 00 DO Q0 00 00 08 00 go oo oo [v

Sector 35,333 of 32,243,712 Offset: 1140843 =65 | Block:
T T

The file metadata is now found at offset 0x1140AA0 with the original file name (gray) and
the renamed filename (pink). Because of the addition of the modified filename, all the file

metadata can be seen to be pushed down. Entry modified time in MACE times has been

31

modified whereas all other times are same. Below this block, a duplicate filename entry can

be found as shown below:

001140F40 ©2Z2 OO0 OO0 OO0 OO0 OO 00 00 OO OO0 00 00 OO0 00 00 OO0
001140F50 OC 00 2ZE 00 72 00 &5 00 73 00 &5 00 &C 00 &5 0O resili
001140Fe0 &5 00 6E 00 74 00 66 00 65 00 €C 00 63 00 73 00 en t £1i 1 e =
001140F70 (79 00 73 00 74 00 63 00 €D 00 2E OO0 74 00 78 00 vy s t em . £t X
001140F80 (74 00 OO0 OO0 OO0 OO 00 OO0 OO OO0 OO0 OO OO0 00 00 00 «©

4.2.5 Copying txt file

In this scenario, a copy of ‘resilientfilesystem.txt’ is made and pasted in the drive. Its name

is ‘resilientfilesystem — Copy.txt’.
T |ca » ThisPCT » ReFS(R:)

- Mame Date modified Type Size

ap | resilientfilesystem.bd 411472016 7:04 PM Text Document 2 KB
loads | resilientfilesystern - Copy.te 41472016 7:04 PM Text Document 2 KB

+ mlarar

The copied file ‘resilientfilesystem — Copy.txt’ is found at four different offsets. These

offsets are:

e First offset: 0x1144FBC

e Second offset: 0x1148FBC

e Third offset: 0x114CFBC

e Fourth offset: 0x1170FBC

Checking the metadata changes in each one of them:
First instance of the copied file is found at offset 0x1144FBC.

32

Offset 0 1 2 3 4 5 & T g 89 A B C D E F £y : ~

001144F30 (20 00 00 80 OO0 00 00 00 OO O& 00 OO CO 00 00 00 €
001144F40 02 00 00 00 OO OO OO0 OO OO0 OO0 OO OO OO 00 OO0 00

001144F50 | 0C 00 2E 00

001144F&0

001144F70

001144F80 00 00 00 OO OO OO0 OO 70 OO0 00 00 10 00 18 00 B
001144F%0 00 00 28 00 48 00 00 0O 20 00 0O 80 00 00 0O QO (H €

001144FR0 0O O€ 00 00 OO0 00 00 00 O3 00 00 OO0 QOO 00 00 00

001144FBO | 00 00 00 00 00 00 00 00 OC 00 3C oo 72 00 &5 00 < g e
001144FCO 73 00 69 00 6C 00 69 00 65 00 6E 00 74 00 66 00 s i 1 ient £

001144FD0 &9 00 &C 00 65 00 73 00 79 00 73 00 74 00 65 00 i le sy =t e

001144FEQ 6D 00 20 00 2D 00 20 00 43 00 6F 00 70 00 79 00 m - Cop ¥ Data Interpreter [:]
001144FF0 |[2E 00 74 00 78 00 74 00 &0 04 00 00 10 00 40 @0 txct @ 8 Bit (+): 120

001145000 |08 00 50 00 10 04 00 00 30 00 01 00 72 00 65 00 = o re 16 Bit (£): 632

001145010 73 00 69 00 6C 00 69 00 65 00 6E 00 74 00 66 00 s i 1 ient £ 32 Bit (+): 132,317,816
001145020 69 00 6C 00 65 00 73 00 79 00 73 00 74 00 65 00 i le sy s t e FILETIME: 04/16/2016
001145030 6D 00 20 00 2D 00 20 00 43 00 6F 00 70 00 79 00 m - Cop ¥ 12:10:56
001145040 |[2E 00 74 00 78 00 74 00 R8 00 00 00 28 00 01 00 LB = E {

001145050 00 00 00 00 10 01 00 00 10 01 00 00 02 00 00 40

001145060 00 00 00 00 OO0 0O 00 0O OO0 00 00 OO0 00 00 00 Q0

001145070

001145080

001145090 |20 00 00 00 OO0 0O 00 OO OO0 06 00 OO0 00 00 00 OO

001145020 03 00 00 00 00 00 00 00 |88 1F 59 2F 01 00 00 40 7

001145080 F7 06 00 00 OO 0O OO OO OO0 00 01 OO0 OO OO0 0O Q0 =
0011450C0 |00 00 00 00 00 00 00 0O 00 00 0O 0O 00 00 00 Q0

It is observed from the metadata blocks that ‘resilientfilesystem — Copy.txt’ exists with an
entry of the original filename (grey) from which the file was copied
‘resilientfilesystem.txt’. Just above the copied filename, a duplicate of copied filename

entry exists, 21 bytes after the first instance of ‘resilientfilesystem — Copy.txt’ is found.

File metadata at first offset 0x1144FBC is different only in terms of MACE times whereas
the metadata at the other three offsets (0x1148FBC, 0x114CFBC and 0x1170FBC) is
identical. Metadata at first offset is of the file that has been copied whereas other three
offsets have the metadata of the original file when it was created.

Comparing metadata of first offset with that of the three offsets, it is observed that file
metadata at first offset differs in MACE time values for ‘file altered’ (0x08) and ‘entry
modified’ (0x10) time. It contains the time when the copied file was created.

File size, permissions and file pointer for the file metadata at all four offsets is same. File

pointer is ’58 04’ as shown below (blue):

33

0011451CO 84 00 OO 00 00 02 00 00 D4 OO OO0 00 01 00 00 00 | . &

00114510 D8 OO OO OO OO OO0 OO0 OO 30 OO0 00 00 10 00 10 00 @ 0
0011451E0 (OO0 0O 10 OO 20 OO OO0 OO OO OO0 OO OO0 00 OO0 00 00
001145%1F0 04 OO0 OO0 00 00 00 00 OO0 |EEghEw0o0 00 00 00 00 00 EI

001145200 00 OO OO 08 00 00 OO0 OO OO OO0 OO 0O OO0 00 00 0O
001145210 00 OO OO 0O 00 00 OO0 OO OO0 00 00 00 00 00 00 0O

Calculating the file content offset from file pointer 58 04 which is in Little Endian.

e Converting 58 04 to Big Endian, we get 04 58

e 458 hexadecimal is equal to 1112 in decimal

e Multiplying 1112 with 16,384, we get 18219008

e Converting 18219008 decimal to hexadecimal, we get 1160000

e 1160000 is the offset where file content for the copied file is found.

File content for original file is at the same offset where it was prior to the copying of file
i.e. 0x1100000.

4.2.6 Deleting txt file

In this scenario, file ‘resilientfilesystem — Copy.txt’ is simply deleted from ReFS drive. It
still exists in recycle bin. Now when the file is searched, it is found at seven different
offsets, four of them being exactly the same offsets as discussed in copied file section
(0x1144FBC, 0x1148FBC, 0x114CFBC and 0x1170FBC), whereas remaining three offsets
which have been added after the file has been deleted are:

e (0x114001E
e 0x117500C

e (0X117900C

The first most interesting offset where ‘resilientfilesystem — Copy.txt’ is found is

0x114001E, as shown below:

34

Offset 01 2 3 4 5 & 7 &8 8 A B C D E F . ~
00113FF50 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §99yyvvvvvvvvvey []
00113FF60 | 9F FF FF FF FF FF FF 22 2F FF 99 99 9F FF FF FF | ¥99yyvyn/yoo¥yyy
00113FF70 FF FF F2 FF F9 99 FF FF F9 FF FF FF FF FF 2F FF | ¥9oyu™yyayveve/v
00113FF80 | 9F 2F FF FF F9 FF FF FF FF F2 FF F9 FF F2 FF FF
00113FFS0 |2F 9F FF FF FF 2F FF F9 FF FF 2F FF F2 9F FF FF | /¥¢yy/yuve/do¥ay
00113FFA0 |22 FF FF 9F FF FF F2 FF FF F9 22 22 FF FF F9 FF "$¥igyayiarriyay
00113FFBO | FF FF FF 22 FF FF 9F FF FF FF 9F FF FF FF FF FF | §99"yy¥yyv¥yvvey
00113FFCO | FF FF F9 9F FF 99 FF FF FF FF FF FF FF FF FF F9 ¥yui¥y™yyyvvvvvi
00113FFDO |85 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | ™§yyivvivvvuvvey
00113FFE0 FF FF FF FF OB 40 00 01 00 00 00 FF FF FF FF 01 ¥%%y @ aTaia
00113FFF0 |00 00 00 00 00 00 00 OC 02 00 00 00 51 53 79 73 Q5vs

001140000 |01 00 00 00 00 00 00 00 |[SIAMO0 00 00 00 00 00

- | Data Interpreter |Z|
001140010 52 00 3 00 5C 00 pPOLMN - R : \ F

001140020 |65 00 73 00 €9 00 6C 00 69 00 65 00 6E 00 74 00 e s i lient 8 Bit (+): -97
001140030 66 00 &9 0D 6C OO0 65 00 73 00 79 00 73 00 74 00 f£i lesvyst 16 Bit (£): -57
001140040 65 00 €D 00 20 00 2D 00 20 00 43 00 6F 00 70 00 | em - Cop 32 Bit (=]: -57
001140050 |79 00 2E 00 74 00 78 00 74 00 00 00 00 00 00 00 ¥ . € X t FILETIME: 1;‘:;‘3592

001140060 00 00 OO 0O OO0 00 OO OO 0O OO OO0 00 QO OO0 00 00

A R T T T Y R e T T Y

The file size of the deleted file has been highlighted in purple, starting eight bytes (red)
show the time when file was deleted. The next six bytes (green) show the path of file,

where it was residing and remaining bytes show the filename (yellow).

At offset 0x117500C, ‘resilientfilesystem — Copy.txt’ exists along with other data attached

to It:
DﬁveR:I
Cff=set O 1 2 3 4 &5 & 7 g8 9 A B C D E F ~
001174EF0 |00 OO0 OO OO0 00 0O OO OO0 OO OO0 00 00 00 00 00 00 []

001174F00 (00 00 OO0 0O 00 OO OO OO OO 00 00 00 00 00 00 00
001174F10 (00 00O 00 0O 0O 0O 0O OO OO0 00 00 00 00 00 00 00
001174F20 &8 00 00 00 10 00 18 00O 0O 00 28 00 40 00 00 0O
001174F30 20 00 OO0 &0 00 0O 0O OO OO O6 00 00 0O 00 00 00 €
001174F40 (02 00 00 00 00 OO OO OO OO 00 OO0 00 0O 00 00 00
001174F50 | OC 00 ZE 00

001174F60
001174F70
001174F80
001174F390
001174FR0
001174FBO
001174FCO
001174FDO
0011T74FEOD
0011T4FFO
001175000
001175010
001175020
001175030
001175040
001175050
001175060
001175070 |78 02 E3 07 DS 97 D1 01 &2 AF CD 8C 56 96 D1 01 =
001175080 (41 38 CE 74 1C 97 D1 01 78 02 E3 07 D% 97 D1 01 A8
001175090 (20 00 OO0 0O OO0 OO OO OO OO O6 00 00 00 00 00 00
001175040 |03 00 00 00 0O 00 00 00O @8 1E 58 2F 01 00 00 00 74
001175080 (F7 06 00 00 00 00 OO0 OO 0O OO0 01 00 00 00 00 00 =

0011750C0 |00 00O OO0 0O OO0 OO OO0 OO OO0 00 00 00 00 00 00 00

001175000 |00 0O OO0 0O OO0 OO OO0 OO OO0 00 00 00 00 00 00 00

0011750E0 |01 00 00 0O 0O 00 00 QO 0O OO0 00 00 0O 00 00 00

=3
()

s e

0011750F0 (20 00 00 0O AOQ 01 00 OO D4 00 00 00 00 02 00 00 [}
001175100 (74 02 00 00 01 0O OO0 OO 78 02 00 00 00 OO0 OO0 OO0 <t x
001175110 80 01 00 00 10 00 OE OO0 08 00 20 00 &0 01 00 00 € - ~

Above 0x117500C where ‘resilientfilesystem — Copy.txt’ is found, at 0x1174F54 original
filename of the file exists (before the file was copied) ‘resilientfilesystem.txt’ (grey).
Twenty one bytes above 0x117500C, part of file name has been cut out ‘entfilesystem —
Copy.txt’. MACE times (yellow), file permissions (orange) and file size (green) are found

after the deleted full filename entry.

At offset 0x117900C (4000 bytes after 0x117500C), an exact duplicate of 0x117500C
metadata block, is found.

All the three metadata block offsets, possess the same file pointer ‘58 04’ which was above
calculated to be offset ‘0x1160000°. Looking at ‘0x1160000° offset, it is observed that even
after file deletion, content still exists at the same location where it was originally when the

file had been copied.

4.2.7 SHIFT + Delete txt file (permanent delete)

In this scenario, a new file is created ‘forensic_investigations.txt’ and content is placed in
it. It is found at three offsets. First offset has no file pointer and zero size because when the
file was created at the beginning, no content was placed in it. Therefore it has no pointer to

content as well as zero file size, as shown here:

Offset 0 1 2 3 4 5 6 7 8 9 A B C DE F [~
0011A1450 OC 00 2& 00 4E 00 65 00 77 00 20 00 54 00 65 00, * N e T e
D011A1460 78 00 74 00 20 00 44 00 6F 00 63 00 75 00 6D 00 xt Do cum
D011A1470 65 00 6E 00 74 00 2E 00 74 00 78 00 74 00 42 42 en <t . t x © BB
0011A1480 &0 00 00 00 10 00 18 00 04 00 28 00 38 00 00 00 ° &
0011A1490 20 00 00 80 00 00 00 00 OO0 06 00 00 00 00 00 00 €
D011A14A0 06 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
D011A1450 OC 00 2& 00 4E 00 &5 00 77 00 20 00 54 00 65 00, * N e T e
D011A14CO 78 00 74 00 20 00 44 00 6F 00 63 00 75 00 6D 00 xt Do cum
DO011A14D0 65 00 6E 00 74 00 2E 00 74 00 78 00 74 00 FF FF en t . t x t ¥¥
D011A14E0 60 04 00 00 10 00 3A 00 OO0 00 50 00 10 04 00 00 ° -
0011A14F0 30 00 01 oo [EENOOVEE G0N 72160 €5 60 eE00F306 o EeTEns
0011R1500 69 00 63 00 S5F 00 69 00 6E 00 76 00 65 00 73 00 ic _inves
0011R1510 74 00 €9 00 €7 00 61 0O 74 00 €9 00 6F 00 6E 00 t igation
pol1alszo | [7300002E 607400 78 06 74co oo oo 00 00 00 00 EEEE
D011A1530 A8 00 00 00 28 00 01 00 OO0 00 00 00 10 01 00 0O = (
0011A1540 10 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
0011A1550 |00 00 OO 0O 00 00 00 00
GWLEEVSES VM Fs 35 S1 AF Ce 98 D1 01 71 65 9C C3 C6 9B D1 01
001121570 | ENEEIEESEEEE R0 00 00 00 00 00 00 00
0011A1580 00 06 00 00 00 00 00 00 06 00 00 OO0 00 00 00 00
0011A1590 |88 1F 59 2F 01 00 00 00 0O 00 00 00 00 00 00 00 [¥/

D011A1520 |00 00 00 00 00 00 00 00 OC OO0 00 OO 00 0O 00 00

36

A duplicate of only the filename is found 480 bytes from where the first instance of

‘forensic_investigations.txt’ exists.

At the second offset both file size and file pointer are present because the content had been
added in it after file creation but the MACE time values for file altered and entry modified

timestamps are different then the first offset as shown:

Offset 0 1 2 3 45 67 &8 5 A B CODTEF [= ~
0D11R5450 OC 00 2A 00 4E 00 €5 00 77 00 20 00 54 00 65 00| * N B Te | |
0D11R5460 78 00 74 00 20 00 44 00 6F 00 63 00 75 00 6D 00 x t Docum
0011R5470 65 00 6E 00 74 00 2E 00 74 00 78 00 74 00 42 42 (e n t . t X © BB
0011R5480 60 00 00 00 10 00 18 00 04 00 28 00 38 00 00 00| ° {8
001125490 20 00 00 €0 00 0O OO0 00 00 06 00D OO 00 00 0O OO £
00D11R54A0 06 00 00D 00 00 00 00 00 00 00 0D OO 00 00 0D OO
0011R5480 OC 00 2R 00 4E 00 65 00 77 00 20 00 54 00 65 00| *New Te
0011R54C0 |78 00 74 00 20 00 44 00 6F 00 63 00 75 00 6D 00 x t Do cum
0D11R54D0 65 00 6E 00 74 00 2E 00 74 00 78 00 74 00 FF FF e n t . t X © ¥V
0D11R54E0 |60 04 00 00 10 00 3 00 00 00 50 OO 10 04 00 0O : P
0011R54F0 |30 00 01 00 [66/000 6E 001 720065 00 6E 00 7300 0 Eeozen
0011R5500 69 00 63 00 SF 00 69 00 6E 00 76 00 65 00 73 00 i ¢ _inwves
0011R5510 74 00 69 00 &7 00 61 00 74 00 69 00 6F 00 6E 00 t igatiaon
001125520 [73 00 2E 00 74 00 78 00 72|00 00 00 00 00 0O 00 |2 . € X% &
0011R5530 A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00| =
0011R5540 10 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
001145550 |00 00 00 00 00 00 00 00 |[EREEREAEVR IRl
LWOERN ALY OD 71 07 CF C6 9B DL 01 0D 71 07 CF C6 95 D1 0L
001125570 | EENEEIERESEEEE 20 o0 oo oo 00 00 0O QO
0011R5580 00 06 00 00 00 00 00 00 06 00 00 00 00 00 00 00
001125590 |88 AF 59 2F 04 00 00 00 20 03 00 00 00 00 00 00 | 3%/
00D11R5SA0 |00 00 01 00 00 00 00 00 00 00 0D OO 00 00 00 00

File metadata at third offset (0x11A94F4) is identical to the metadata found at second
offset.

The file ‘forensic_investigations.txt’ is then shift deleted (deleted permanently) from ReFS

drive, as shown below:

This PC » ReFS (R v & | Search R
a
Mame Date modified Type
|| forensic_investigations.bed 4/21/2016 5:10PM Text Document
|| resilientfilesystem. bt 4/14/2016 T:04 PM Text Document

Delete File -

Are you sure you want to permanently delete this file?

?<_ brees forensic_investigations.bd
E Type: Text Document
Size: 800 bytes
Date modified: 4/21/2016 5:10 PM

e 1

37

After permanent deletion ‘forensic_investigations.txt’ is found at the same three offsets
which have been discussed above. MACE time values are identical across the three offsets.
The only difference in the metadata of the first offset is file size and file pointer, which

were originally not present when the file was created, but are now present after deletion, as

shown:

Offset 0 1 2 3 4 5 6 7 B8 9 A B C D E F A
D011R1450 OC 00 24 00 4E 00 65 00 77 00 20 00 54 00 65 00 * N e Te [
D011R1460 78 00 74 00 20 00 44 00 6F 00 63 00 75 00 6D 00 xt Docum
0011A1470 65 00 6E 00 74 00 2E 00 74 00 78 00 74 00 42 42 en t . t x t BB
0011R1480 60 00 00 00 10 00 18 OO0 04 00 28 00 38 00 00 00 ° &
0011A1480 20 00 00 80 00 00 00 OO 0O 06 00 OC 00 00 00 00 £
D011R14R0 06 00 00 00 00 00 00 OO OO 00 00 OO OO 00 00 00
D011R14B0 OC 00 24 00 4E 00 65 00 77 00 20 00 54 00 65 00 *New T e
DO11A14CO 78 00D 74 00 20 00 44 00 6F 00 63 00 75 00 6D 00 xt Do cum
0011A14D0 65 00 6E 00 74 00 2E 00 74 00 78 00 74 00 FF FF ent . t X t ¥¥
0011R14E0 60 04 00 00 10 00 3R 00 04 00 50 00 10 04 00 00 : P
D011R14F0 30 00 01 oo [6660VEE 007210016560 6E00 7308 o Eazen's
0011R1500 &9 00 63 00 SF 00 69 00 6E 00 76 00 65 00 73 00 i c _inve s
0011%1510 74 00 69 00 67 00 61 00 74 00 69 00 6F 00 6E 00 tigation
oo11a1520 [F30003E00 7460778 c0 72 00 00 00 00 00 00 oo EUNNENR t
0011R1530 A8 00 00 00 28 00 01 OO 0C 00 00 00 10 01 00 00 ~
0011A1540 10 01 00 00 02 00 00 OO 0O 00 00 OC 00 00 00 00
D011A1550 00 00 00 00 00 00 00 00
oo11z1570 | EENEENERENEEEEE R 20 o0 00 00 00 00 00 0O
0011A1580 00 06 00 00 00 00 00 OO 06 00 00 OO 00 00 00 00
0011A1590 88 1F 59 2F 01 00 00 00 20 03 00 0O 00 00 00 00 [* ¥/

D011R15A0 00 00 01 00 00 00 00 OO OO 00 00 OO OO0 00 00 00

(PPN R TR B L R FL P R P) T N " B ST AR VIR FL PR P w

0011nle6Dp0 OO0 QO OO OO OO OO 00 OO 04 0O 00 QO 00 00 00 00
001181 6E0 | [QembEWO0 00 00 OO0 00 OO OO0 OO0 00 OB OO0 00 OO0 00
0011al16F0 OO0 0O OO OO OO OO OO OO OO OO0 00 OO 00 00 00 00

Another feature that comes into play after permanent deletion is that file header, MACE
times and file permissions of ‘forensic investigations.txt’ file is found at offset
0x11ADA454, but it is important to note here that they are without filename entry. File size
and file pointer are missing in this entry. It can be deduced here that this might be the entry
which existed at first offset when the file was originally created (before deletion) because

that entry also didn’t have file size and file pointer.

38

Cffset o 1 2 3 4 5 & 7 &8 8 A B C D E F N ~

0011naD430 |20 00 OO0 80 OO OO OO OO OO O6 OO0 OO0 OO0 OO OO0 00 €
00114D440 |05 00 00 0O OO OO0 QO QO OO0 00 QOO0 00 00 Q0O 00 00

0011nD450 | OC 00 24 00 *
0011aD460

0011nD470

0011nxD480 |60 OO0 OO0 OO0 10 OO 18 OO OO OO0 28 00 38 00 00 0O {8
0011nD490 |20 00 00 &0 OO 00 OO QO OO 06 00 OO0 00 QO 00 00 €
0011npD4n0 |06 OO OO0 OO OO OO OO OO OO0 OO0 OO0 OO0 00 OO OO0 00

0011aD4B0O | OC 00 24 00 =
0011naD4C0

0011aD4D0

0011nD4EQ |50 04 00 00 10 00 2E Q00 08 00 40 00 10 04 Q0 00 PB . @
0011naD4F0 |30 00 01 00 4E 0 N
0011aD500

0011aD510 00 00 00

D011AD520 (A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00 ~
0O011ADS30 |10 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00

DO11AD540 |00 00 00 00 00 00 00 00 [ESNSSNEINEENCENSEIDINGL B5Q E>f
0011ADS50 FS5 35 51 AF C6 9B D1 01 F5 35 51 AF C6 9B D1 01 B85Q E>F 85Q E»ff
0011AD560 | [FS 85 51 AF €6 98 D1 61 20 00 00 00 00 00 00 00 [ESQEN

DO11ADS70 |00 06 00 00 00 00 00 00 06 00 00 00 00 00 00 00

0011aD580 |88 1F 59 2F 01 00 oo oo [EJEERoo oo oo oo co 00 = ¥/ |
0011AD530 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

DOL1ADSAC |00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00

DO11ADSB0 |00 0O 00 00 00 00 00 00 01 00 00 00 00 00 00 00 v

As shown above, at 0x11AD454 and 0x11AD4B4, identical file headers which were
present before file deletion exist here with same MACE times (orange) and file permissions
(green) that the file originally had before deletion. But file size (red) and file pointer are not

present.

Despite ‘forensic_investigations.txt’ file’s permanent deletion from the ReFS drive it is
observed that the file and file content still exist at their positions although at front end they
have been deleted, but in the hexadecimal they are easily visible.

Forensic investigators while manually traversing the drive can easily file deleted as well as
permanently deleted data as they are only deleted from front end but are present at the

hexadecimal level.

4.2.8 Scenario analysis for .txt file

In this section of the chapter, all scenarios applied on the text file are analyzed and data is

presented in tabular format:

39

Operation Filename Artifacts Gathered
(pink) Metadata | MACE | permission | Filesize | R
Offset times (green) (yellow) pointer
(orange) (blue)
Creation mythesis.txt 0x114064C v v 5E 40 04
Entry Changed
issi ifi values as
Permission | ihesistxt | Ox114464c | mMedified 5E 4004
changed part compared
changes to above
Modifying | = ihesisxt | 0x114864C v v F706 | 4004
content
Entry
Renaming | resilientfilesyste modified v
file mixt 0x1140ADC part F7 06 40 04
changes
Copying | resilientfilesyste Ox1144EBC v v £7 06 58 04
file m - Copy.txt
resilientfilesyste Contains file size, time of deletion, path of file
m - Copy.txt 0x114001E and name of the deleted file
resilientfilesyste
Simple m.txt
delete entfilesystem - 0x117900C v v £7 06 58 04
Copy.txt
resilientfilesyste
m - Copy.txt
resilientfilesyste 0x1144FBC
Shift delete M - Copv.txt 0x1148FBC 4 v v v
Py 0x114CFBC

Table 4-1: Scenario analysis for .txt file

4.3 Alternate data stream

ADS is the ability to fork file data into existing files without affecting their functionality,
size, or display to traditional file browsing utilities like Windows Explorer. [19] NTFS
supports ADS in the form of text, file, image and executable files. Microsoft’s official
documentation states that resilient file system does not support alternate data stream. Let’s

check if it supports or not.

40

4.3.1 ADS in the form of text
A file named ‘ads.txt’ is created in R:\ drive for this scenario. File size is 1427 bytes. Itis

opened from command prompt:

Administrator: Command Prompt

R:S\>dir
Uolume in drive R is ReFS
Volume Serial Number is 142E-@B5A

Directory of Rin

A4-22/2016 12:25 FH
A4-14-2016 07:24 PH

Fileds)> 3,218 byte
B Dircsd> 16,350,773.248 hytes free

ads.txt - Notepad
File Edit Format View Help
W relatively unknown compatibility feature, Alternate Data Streams (ADS) provides hackers with a method of
hiding root kits or hacker tools on a breached system and allows them to be executed without being detected
by the systems administrator.
When dealing with network security, administrators often times don't truly appreciate the lengths that a
sophisticated hacker would go through to hide his tracks. Simple defacements and script kiddies aside, a
sophisticated hacker with more focused goals looks to a perimeter system breach as an opportunity to
progress further inside a network or to establish a new anonymous base from which other targets can be
attacked.
In order to achieve this task, a sophisticated hacker would need time and resources to install what is known as
a root kit or hacker tools with which he can execute further attacks. With this, comes the need to hide the tools
of his trade, and prevent detection by the systems administrator of the various hacking applications that he
might be executing on the breached system.
In order to achieve this task, a sophisticated hacker would need time and resources to install what is known as
a root kit or hacker tools with which he can execute further attacks. With this, comes the need to hide the tools
of his trade, and prevent detection by the systems administrator of the various hacking applications that he
might be executing on the breached system.

mlg VVINAOWS SETVET £U 1L KL

Windows Server 2012 R2 Standard
Build 9600

Alternate Data Stream is then created, and data is attached to it. The data 1s ‘This is hidden
data not visible when the file is opened.” The name of the hidden alternate stream is

‘hiddendata.txt’.

Administrator: Command Prompt

Uolume in drive R iz ReFS
Uolume Serial Number is 142E-BB5A

Directory of R:ow

4222016 12:25 FM 1,427 ads.txt

A4-14-2016 @7:84 PH 1.783 resilientfilesystem.txt
2 File{s)» 3,218 hytes
B Dird(s> 16.350,.773.248 hytes free

[H:“>ads . txt

[R:~>echo This is hidden data not visibhle when the file is opened. » ads.txt:hidd|

41

Another alternate stream is attached to the file. Its name is ‘secretdata.txt’ and the data

contents are long.

Administrator: Command Prompt

R:“>moredads.txthiddendata.txt
his is hidden data not visihle when the file iz opened.

nOmoredads . txt isecretdata.txt
Lorem ipszum dolor =it amet,. consectetuer adipiszcing elit. Aenean commodo ligula
eget dolor. Aenean massza. Cum sociis natogue penatibus et magnis dis parturient

ontes,. nascetur ridiculus mus. Donec guam felis. uwltricies nec,. pellentesgue eu
. pretium guis,. sem. Nulla consegquat massa guis enim. Donec pede justo, fringill

vel, aligquet nec. vulputate eget. arcu. In enim Jjusto. rhoncus ut,. imperdiet a
. venenatis vitae,. justo. Hullam dictum felis eu pede mollis pretium. Integer ti
cidunt. Cras dapibus. Uivamusz elementum semper nisi. Aenean vulputate eleifend

ellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Ali
wam lorem ante, dapibus in, viverra guis,. fewugiat a, tellus. Phasellus viverra

ulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam wltricies
nisi vel augue. Curabitur wullamcorper ultricies nisi. Mam eget dui. Etiam rhonc
15. Maecenas tempus, tellus eget condimentum rhoncus,. sem guam semper libero, si

amet adipiscing sem neque sed ipsum. Mam guam nunc,. bhlandit vel, luctus pulvin
¥, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae
sapien ut libero wvenenatis faucibus. Nullam guis ante. Etiam sit amet orci eget
eros faucibuz tincidunt. Duiz leo. Sed fringilla mauriz zit amet nibh. Donec so
ales zagittisz magna. Sed consequat. leo eget hibendum sodales. augue velit curs
S nunc.

Rz

Looking at ‘ads.txt’ at hexadecimal level in WinHex, it is found at five different offsets:

o 0x1161554
o (0x1165554
e 0x1169554
e 0x116D554
e 0Ox11AD554

First four offsets appear after every 4000 bytes successively whereas last offset appears
after 40,000 bytes.

File metadata at the first four offsets contains ‘ads.txt” MACE times, file size, file
permissions and pointer to file content. Last offset does not contain file size and file pointer
to ‘ads.txt’ with it. It can be deduced that the metadata at the last offset was in fact written
the very first time when the file ‘ads.txt’ was initially created because only then the file was
empty and hence possesses zero file size and zero file pointer. Immediately after the
creation of ads.txt data was added to it and therefore that data is present in the first four

offsets.

42

Moreover all the five offsets differ in ‘file altered’ and ‘entry modified’ timestamps of

MACE time. All have same ‘file creation’ and ‘file read’ timestamps.

In the following three ‘ads.txt’ file metadata offsets: 0x1161554, 0x1169554 and
0x116D554, the hidden file named ‘hiddendata.txt’, its size and its content is present along

with ‘ads.txt’ metadata.

Drrive R |

Offset 01 2 3 4 5 6§ 7 8 % BB CDE F A
001161510 OC 00 2A 00 4E 00 65 00 77 0O 20 00 54 00 €5 00 *New Te ||
001161520 78 00 74 00 20 00 44 00 &F 00 63 00 75 00 6D 00 xt Docum
001161530 &5 00 6E OO0 74 00 2E 00 74 00 78 00 74 00 33 41 ent . t x t 34
001161540 38 04 00 00 10 00 12 00 0O 0O 28 00 10 04 00 00 8 (
001161550 30 00 01 oo [6ENGENEE00 731002800 746078000 0 EEE T
001161560 [@4o0 00 00 00 00 00 00 A8 00 00 00 28 00 01 00 B T
001161570 00 00 00 00 10 01 00 00 10 01 00 00 02 0O 00 00

001161580 01 00 00 00 0O 00 00 00 O3 00 00 00 00 00 00 00

WLESYSEL-LIMNE E7 FO 11 68 SC D1 01 3C C5 D5 40 70 SC D1 01
LWORREEY-LISC C5 D5 40 70 SC D1 01 AB E7 FO 11 68 SC D1 01
001161580 20 00 00 00 0O 00 00 OO0 OO 06 0O 0O OO 0O 00 00

0011615C0 07 00 00 00 0O 00 00 00 @8 1F §9 2F 01 00 00 00 <X/
0011615D0 93 05 00 00 00 00 00 00 OO 00 01 00 OO0 00 00 00
0011615E0 0C 00 00 00 00 00 00 00 OO QO 00 00 00 00 00 00
D011615F0 00 00 00 00 0O 00 00 00 0O 0O 00 00 OO0 0O 00 00
001161600 01 00 00 00 00 00 00 00 OO 00 00 00 OO0 00 00 00
001161610 20 00 00 00 48 00 00 00 2C 02 00 00 01 03 00 00 H ,

H

001161620 74 02 00 00 01 00 00 00 78 02 00 00 00 00 00 00 ¢ x
001161630 28 00 00 00 10 00 00 00 02 00 10 00 18 00 00 00 (

oo1161640 ElJE oo oo oo oo 0o 00 oo 00 02 o2 o8 oo 00 00

001161650 4A 8C 01 9C 10 EQ A7 94 01 00 00 00 20 01 00 00 JE = &§"

001161660 20 01 0o oo 2 0o 0o 00 0O 0O 00 DO 0O OO 00 0O

001161670 00 00 00 0O 00 OO 0O 00 Ol 00 00 0O 00 OO 00 00

001161680 00 00 OO0 00 00 00 01 0O 00 00 00 0O 93 05 00 00 -
001161630 00 00 00 00 93 05 00 00 00 00 00 0O 00 00 00 00 -

001161640 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

001161680 00 00 OO0 00 00 00 0O 0O 00 00 00 0O 00 00 00 00

D011616CO 00 00 OO0 0O 00 OO 0O 00 ©O 00 00 0O OO OO 00 00

001161600 00 00 00 00 00 00 00 00 20 00 00 00 50 00 00 00 2
D011616E0 24 00 00 00 00 02 0O 00 D4 00 00 0O O1 00 00 00 | . o
D011616F0 D& 00 00 0O 00 OO 0O 00 30 00 00 0O 10 0C 10 00 @ o
001161700 00 00 10 00 20 00 00 00 00 00 00 0O 00 00 00 00

001161710 04 00 00 00 00 00 00 0o [ERJEEYoo oo oo oo 00 00
001161720 00 00 00 08 00 00 00 00 00 00 00 0O 00 00 00 00

001161730 00 00 OO0 00 00 00 0O OO 00 00 00 0O OO 00 00 00 v

Looking at the file metadata above, of the first offset 0x1161554 (pink), file size is ‘93 05’
(yellow) which is 1427 bytes, file permissions are present at 0x11615C8 (green), MACE
times are present at 0x1161590 (orange) and ‘50 04’ (blue) is the file pointer which points

to offset ‘0x114000° where ‘ads.txt’ file’s content is present as shown below:

43

Dirive R:

Offset o 1 2 3 4 5 & 7 g8 9 A B C D E F

001140000 |41 20 72 65 6C 61 74 689 76 &5 6C 79 20 75 6E 6B A relatively unk
001140010 6E &F 77 6E 20 &3 6F 6D 70 61 74 €9 b2 &9 6C 69 nown compatibili
001140020 |74 79 20 66 65 &1 74 75 T2 &5 2C 20 41 &C T4 6% ty feature, Alte
001140030 |72 6E b1 T4 b5 20 44 61 T4 61 20 33 T4 72 65 61 rnate Data S5trea
001140040 6D T3 20 28 41 44 53 285 20 70 72 6F 76 &5 64 62 ms (ADS5) provide
001140050 (73 20 68 61 63 6B 65 72 T3 20 77 €69 T4 &8 20 61 = hackers with a
001140060 20 6D 65 74 68 6F 64 20 &F 66 20 68 €% 64 &5 6E method of hidin
001140070 67 20 72 6F 6F 74 20 6B 69 74 73 20 6F 72 20 68 g root kits or h
001140080 61 &3 6B 65 72 20 74 6F &F &C 73 20 6F 6E 20 61 acker tools on a
001140090 20 &2 72 65 61 63 68 65 €4 20 73 78 73 74 &% 6D breached system
001140040 20 &1 BE 64 20 61 &6C 6C &F 77 73 20 T4 68 &5 6D and allows them
001140080 20 74 6F 20 62 65 20 65 7T& 65 63 75 T4 65 &4 20 to be executed

0011400C0 |77 &9 74 68 6F 75 74 20 62 &5 69 6E &7 20 64 65 without being de
0011400D0 |74 &5 63 T4 65 64 20 62 T8 20 T4 68 65 20 T3 79 tected bv the 3v

Scrolling down from the offset 0x1161554 (pink), ‘hiddendata.txt’ its content and file size

are found.

DHveR:l

offset 0 1 2 3 4 5 6 7 & 9 AR B C D E F
001161710 04 00 00 00 00 00 00 o0 ENJEERco oo
001161720 00 00 00 08 00 00 00 00 0O 00 00 00
001161730 00 00 00 00 0O 00 00 00 0O 00 00 00
001161740 00 00 00 00 00 00 00 00 0O 00 00 0O
001161750 00 00 00 00 00 00 00 00 0C 00 00 00
001161760 00 00 00 00 OO0 00 00 00 0O 00 00 00
001161770 00 00 00 00 00 00 00 00 00 00 00 0O
001161780 00 00 00 00 00 00 00 00 0O 00 00 00
001161780 00 00 00 00 OO0 00 00 00 0O 00 00 00
001161740 00 00 00 00 00 00 00 00 00 00 00 0O
001161780 BO 00 00 00 10 00 28 00 00 00 38 00
0011617C0 BO 00 00 00
001161700
0011617EQ
0011617F0
001161800
001161810
001161820
001161830
001161840
001161850
001161860

Highlighted in red is ‘5D 04’ which points to ‘secretdata.txt’ file metadata. It is file pointer
to the second hidden stream. ‘5D 04’ is 0x1174000 offset. Navigating to offset 0x 1174000,

it is observed that ‘5D 04’ is also present there.

44

001173FE0D
001173FF0
001174000
001174010
001174020

o0 00 00
o0 00 00
5D 02 BE
o0 00 00
01 00 00

00
00
00
00
o]

00
20
o]0]
oo
o]0]

[414]
o0
0]4]
[414]
[0]4]

00
00
00
00
o]

00
0o
oo
oo
oo

00
20
26
oo
00

oo
01
oo
06
oo

00
00
00
00
o]

00
00
o]0]
oo
o]0]

[414]
a0
0]4]
[414]
[0]4]

00
0z
00
00
o]

00
0o
oo
oo
oo

00
00 2
oo | [l -

00

00

Scrolling a little down it is observed that ‘hiddendata.txt’, its content and file size is present

along with ‘secretdata.txt’, its content and file size. ‘3B’ is the size of ‘hiddendata.txt’

which is 59 bytes. ‘5B 05’ is the file size of ‘secretdata.txt’ which is 1371 bytes. It is

important to note here that the actual size of hiddendata.txt is 56 bytes and secretdata.txt is

1368 bytes respectively. It is because three identical bytes ‘20 0D 0A’ (yellow) are present

at the end of both hidden streams content. It can be deduced here that these three bytes

show that they belong to alternate data stream.

DﬂveR:l

Offzet
0011741ED
0011741F0
001174200
001174210
001174220
001174230
001174240
001174250
001174260
001174270
001174280
001174290
001174280
0011742E0
0011742C0
0011742D0
0011742E0D
0011742F0
001174300
001174310
001174320
001174330

AT TazTan

Drive R:

Off=ec
0011747EQ
0011747F0
001174800
001174810
001174820
001174830
001174840
001174850
001174860

00 00 00 00 00

Ll
uris =it amet ni []
bh. Donec sodale

2 sagittis magna
. Sed consequat

um sodales, augua
e welit cursus

A =rns c,

leo eget bibend
00 =r

it cursus o

4.3.1.1 Scenario analysis for ADS in the form of text

Artifacts Gathered
File Alternate MACE Permissi | F_|Ie _
name stream Metadata . File size | pointe | Hidden data
(pink) name Offset times on (yellow) r (purple)
(orange) (green) (blue)
Content and
size of
0x1161554 v v 93 05 50 04 hlddendata_.txt
present with
file pointer to
secretdata.txt
Entry
0x1165554 m(_)dlfled and v 93 05 BC 04
file altered
hiddendat time changes
ads. txt a.txt Entry Content and
' secretdata. | gx1169554 | modified and v size of
txt file altered 9305 BC 04 hiddendata.txt
time changes present
Entry Content and
0x116D554 modified and v v size of
file altered 9305 hiddendata.txt
time changes present
Entry
0Ox11AD554 m(?dlfled and v X X
file altered
time changes

Table 4-2: Scenario analysis for ADS in the form of text

4.3.2 ADS in the form of executable

‘hello.txt’ file is created for this purpose. Calculator executable is tried to attach with it but

the following error occurs when the command is executed: ‘The requested operation could

not be completed due to a file system limitation’.

46

- ThisPC » ReFS (R

MName Date modified Type Size

| adstut 4/22/2016 1:23 PN Text Document 2KE

| resilientfilesystem. bt 4114 Text Document 2KB

| hello.txt 412372016 12:1 Text Document 1 KB
=X Administrator: Command Prompt

Uolume in drive R is ReFS
Uolume Serial Mumber iz 142E-BBSA

Directory of R:\

A4-22,2016 @1:23 PM 1,427 ads.txt

4142816 @7:84 PH 1,783 resilientfilesystem.txt
2 File<s> 3.218 hytes

55 A Dirds) 16.358.787.712 hytes free

—= [R:“2>start cIwindows“system3d2hcalc.exe

[R:~>type c:iwindowsssystemd2ncalc.exe > hello.txt:ah.exe
he requested operation could not be completed due to a file system limitation

A

Thus attaching an exe file as alternate data stream in ReFS is not possible.

4.3.3 ADS in the form of image file
A jpg image named “cherry.jpg” is attached to “hello.txt” file as alternate data stream in

ReFS drive. It is then opened and displayed in command prompt.

b 5 cherry,jpg - Paint
Bl o e
j 7 > A i VOOOL&A — ‘. EEEN .!..[l
‘ ool DlResize Y N e el| ® ;
Paste Select y # Brushes| G Tad i Size Color | Color Edit
= g \ Rotate v A = WO Z 1 2 e
c) Administrator: Command Prompt ILIi“

[R:\>start mspaint hello.txt:pic.jpg

Thus attaching an image file as alternate data stream in ReFS is possible.

47

4.4 .JPG scenarios
In this scenario, jpg image file is taken and various operations are performed on it.
4.4.1 Copying jpg file

For this scenario, a jpg file named ‘verse.jpg’ is copied and pasted in ReFS drive. The

image file metadata as seen in WinHex is as follows:

Drive R: |
Cffset o 1 2 3 4 5 & 7 &8 898 L B C D E F -~
001262340 OAR OO OO OO OO OO OO OO OO OO OO OO OO OO OO0 00 I:‘
001262350 OC 00 12 00 e 00 &5 00 72 00 73 00 &5 00 ZE 00 ¥ e r s e .
001262360 &A 0O 70 00 &7 00 OO0 OO 38 04 00 00 10 00 16 00 |3 P g 8
001262370 OB 00 28 00 10 04 00 00 30 00 01 00 & 0O &5 00 { 0 v e
= J P g

oo1262380 [H2NGONTSN0ENEEN00NZENGEN RGN ToNGaNeT BaNco oo | B
001262390 A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00 °
001262340 10 01 00 0O 02 00 00 00 00 00 00 OO 00 0O 00 00
001262380 |00 00 00 00 oo oo oo o0 [ENENIERIEEEEIEREEE
OhRELFRio 1] 22 33 0C 88 4B CF 01 03 49 33 oc 88 4B cF o1 13 “BEf 13 -KI |
001262300 | EENIEEIEEEEIE S z0 00 00 00 00 00 0O 00
0012623E0 00 06 00 00 00 00 00 00 OR OO0 00 00 00 0O 00 00

0012623F0 | [88/1F 58 2F 0100 o0 00 E1 7B 01 00 00 00 00 00 FUEF &q
001262400 00 00 02 00 00 00 00 00 00 OO0 00 00 00 0O 00 00

001262410 00 00 00 DO 00 00 00 00 0O 00 00 OO 0O 0O 00 00

001262420 00 00 00 0O 00 00 00 00 ©O1 OO0 00 OO 00 0O 00 00

001262430 00 00 00 0O OC 00 00 OO 20 00 00 OO0 AO 01 00 00

001262440 D4 00 00 0O 00 02 00 00 74 02 00 00 01 0O 00 00 & t
001262450 78 02 00 00 00 00 00 00 80 Ol 00 00 10 00 OE 00 x £
001262460 08 00 20 DO 60 01 00 00 60 Ol 00 OO 0O 0O 00 00

001262470 80 00 00 0O 00 00 00 00 &8 OO0 00 OO0 28 00 01 00 € s
001262480 01 00 00 DO 20 01 00 00 20 Ol 00 0O 02 0O 00 00

001262430 00 00 00 0O 00 00 00 00 00 OO0 00 OO 00 0O 00 00

001262420 01 00 00 00 00 00 00 00 00 OO0 00 00 00 0O 02 00

001262480 00 00 00 0O E1 78 01 00 00 00 00 00 E1 78 01 00 a{ a{
0012624C0 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00

001262400 00 00 00 DO OO 00 00 00 0O 00 00 OO 00 00 00 00

0012624E0 00 00 00 0O 00 00 00 00 00 OO0 00 OO0 00 0O 00 00

0012624F0 00 00 00 0O 00 00 00 OO 0O OO 00 OO 00 0O 00 00

001262500 20 00 00 0O 50 00 00 00 &4 OO0 00 OO0 00 02 00 00 P
001262510 D4 00 00 00 01 00 00 00 D& 00 00 00 00 0O 00 00
001262520 30 00 00 0O 10 00 10 00 00 00 10 OO 20 00 00 00 O

001262530 00 00 00 00 00 00 00 oo [Efoo 0o oo 00 oo 00 0O |
oo1262540 ERJEERco 0o 00 00 00 00 00 00 00 O8 00 0O 00 00

001262550 00 00 00 0O 00 00 00 00 0O OO0 00 OO0 00 0O 00 00

001262560 00 00 00 0O 0O 00 00 OO 0O OO 00 OO 00 0O 00 00 v

s
=

Filename is found at 0x1262354 (pink) and its duplicate is found after 16 bytes. In text file
a duplicate of just the file name was found farther down the metadata of the file (after the
file pointer). MACE timestamps possess same timestamps when the file was created and

48

read, whereas entry modified and file altered timestamps are same. File created and file
read timestamps possess the latest time when the file was copied whereas entry modified

and file altered timestamps possess past values (year 2014 in this case).

Image file properties (green) are present at offset 0x12623FO0. File size ‘E1 7B 01’ (yellow)
which when converted to big Endian becomes 01 7B E1°. Converting it in decimal, we get

the value 97,249 bytes which is exactly the value shown in file properties window.
Moving down we see file pointer (blue) ‘BC 04’ which is in Little Endian.

e Converting BC 04 to Big Endian, we get 04 BC

e 4BC hexadecimal is equal to 1212 in decimal

e Multiplying 1212 with 16,384 (because all the metadata is stored in blocks of
16KB), we get 19857408

e Converting 19857408 decimal to hexadecimal, we get 12F0000

e 12F0000 is the offset of the image file coding area.

Now looking at the image file coding area at offset 0x12F0000 (in blue) in the editor:

mwem]

Offset o 1 2 3 4 5 & 7 g8 @ A B C D E F -~
O012EFFFO |00 00 00 00 00 00 0O OO ©O0 OO0 OO0 OO0 OO0 OO0 00 00
0012F0000 FF D8 FF E2 02 1C 49 43 43 SF 50 52 4F 46 49 4C y@ya ICC PROFIL

0012F0010 |45 00 01 01 00 00 02 OC 6C 63 6D 73 02 10 00 00 | E lcms
0012F0020 6D 6E 74 72 52 47 42 20 58 59 54 20 07 DC 00 01 mntrRGE XYZ U
0012F0030 00 15 00 03 00 29 00 3% 61 63 73 70 41 50 50 4C } 9acspAFPL
0012F0040 |00 00 00 00 OO 00 00 OO 00 00 00 OO0 00 00 00 QO

0012F0050 |00 00 OO OO0 OO 00 00 OO 00 00 F& D& 00 01 00 0O ad

0012F00€0 |00 00 D3 2D &C &3 6D 73 00 00 00 00 00 OO0 00 0O 6-lcms
Q012F0070 |00 OO0 OO0 00 00 OO0 OO OO0 00 OO OO0 OO0 00 OO0 00 00
0012FQO080 |00 00 00 00 OO 00 00 OO 00 00 00 OO0 00 00 00 QO

0012F00%0 |00 00 OO0 OO0 OO0 00 0O OA 64 65 73 62 00 00 00 FC desc a
0012F0O0A0 |00 00 0D SE &3 70 72 74 00 00 01 5C 00 00 00 OB “cprt X
Q012F00BO |77 74 70 74 00 00 01 €8 00 OO0 00 14 &2 6B 70 T4 wtpt h bkpt
0012F00CO |00 00 01 7C 00 00 00 14 72 58 55 SA 00 00 01 20 I TXYZ
0012F00D0 |00 00 OO0 14 &7 58 59 SA 00 00 01 A4 00 00 00 14 gXYZ =
0012FO0ED (62 58 59 SA 00 00 01 BE 00 00 00 14 72 54 52 43 | bXYZ B rTRC
Q012F00F0 |00 00 O1 CC 00 00 00 40 &7 54 52 43 00 00 01 CC i @gTRC i
0012F0100 |00 00 00 40 62 54 52 43 00 00 01 CC 00 00 00 40 EbTRC i @
0012F0110 &4 65 73 &3 00 00 00 OO0 00 00 00 02 &3 32 00 00 | desc c2

0012F0120 OO0 00 OO 00 OO OO OO OO 00 OO0 OO0 OO 0O OO0 0O OO
Q0012F0130 (00 OO0 OO0 00 00 OO OO OO OO0 OO OO0 OO0 00 0O 00 00
0012F0140 |00 00 00 00 OO 00 00 OO 00 00 00 OO 0O 00 00 0O
0012F0150 |00 00 OO OO OO 00 00O OO ©O0 OO OO OO OO OO 00 QO
0012F0160 00 00 OO 00 OO OO OO OO 00 OO0 OO0 OO 00 OO0 0O OO

Q012F0170 |74 &5 78 74 00 00 00 00 46 42 00 00 58 59 5A 20 text FB X¥Z
0012F0180 |00 00 00 00 00 00 F6 D6 00 01 00 00 00 0O D3 2D alo] 6
0012F0190 |58 59 S5A 20 00 00 00 00O 00 00 03 16 00 00 03 33 | X¥Z 3
0012F01A0 00 00 02 A4 58 59 5A 20 00 00 00 OO 00 OO &F A2 EXYZ o
0012F01B0 |00 OO0 38 F5 00 00 03 S0 58 59 54 20 00 00 00 0O 8a X¥Z
0012F01C0 |00 00 62 95 00 00 BY 85 00 00 18 DA 58 59 S5A 20 b= - oxyz
0012F01D0 |00 00 OO OO0 OO0 00 24 AO 00 00 OF 84 00 00 B6 CF [o SHt
0012F01EQ0 &3 75 72 76 00 00 00 00 00 00 00 1A 00 00 00 CB | curw E

Q0012F01F0 |01 CS 03 63 05 92 08 6B OB F6 10 3F 15 51 1B 34 Ec' kd?2Q4
0012F0200 |21 F1 29 90 32 18 3B 92 46 05 51 77 5D ED 6B 70 | !f) 2 ;'F Qulikp
0012F0210 |7A 05 89 B1 SA 7C AC €9 BF 7D D3 C3 ES 30 FF EE z wi3|-ig}ORE0vy v

49

Image file content pointer is present after ‘08 (red) attribute whereas in text file, file

pointer was present after ‘04’ attribute. So file pointer attribute values are different for text

file and image files.

4.4.2 Renaming image file

The same image file ‘verse.jpg’ is now renamed to be ‘new_verse.jpg’. Observing the

metadata changes:

Drive R: |

Offset 0 1 2 3 4 5 6 7 88 9 B B CDE F
001266330 |20 00 00 80 00 00 00 00 0O 06 00 OO OO 00 0O 0O €
001266340 |OA 00 00 00 00 00 00 00 0O 00 00 OO OO 00 00 0O
001266350 |OC 00 12 00
001266360 00 00 00 40 04 00 00 10 00 1E 00 e
001266370 00 00 30 00 10 04 00 00 30 00 01 o0 EEVOOES@@ o o @e
001266320 77 00 SF 00 76 00 €5 00 72 00 73 00 65 00 2E 00 w _verse .
001266390 |[6A00 70 0067 00 0o 00 As 00 00 00 28 00 01 oo Fipg (
0012663A0 |00 00 00 00 10 01 00 00 10 01 00 0O 02 00 00 00
001266380 |00 00 00 00 00 00 00 00 00 00 00 OO0 0O 00 00 0O
GLREITEToIll 7o D7 B7 CC 55 SD D1 01 03 43 33 OC 88 4B CF 01
GWLERLTELWIM 15 01 88 DO 79 9D D1 01 79 D7 B7 cC 59 9D D1 o1l By H y=-I¥ §
0012663EQ0 |20 00 00 00 00 00 00 00 0O 06 0O OO OO 00 00 0O
0012663F0 | OA 00 00 00 00 00 00 00 [88 1F 59 2F 01 00 00 00 7
001266400 E1 78 01 00 00 00 00 00 00 00 02 00 00 00 00 00 &{
001266410 |00 00 00 00 00 00 00 00 0O 00 00 OO0 OO 00 0O 0O
001266420 |00 00 00 00 00 00 00 00 0O 00 00 0O OO0 00 00 00
001266430 |01 00 00 00 00 00 00 00 0O 00 00 0O OO 00 0O 0O
001266440 |20 00 00 00 &0 01 00 00 D4 00 00 0O OO 02 00 0O 6
001266450 74 02 00 00 01 00 00 00 78 02 00 00 00 00 00 00 t x
001266460 80 01 00 00 10 00 OE 00 08 00 20 00 60 01 00 00 €
001266470 |60 01 00 00 00 00 00 00 80 00 00 0O OO 00 0O 0O €
001266480 88 00 00 00 28 00 01 00 01 00 00 00 20 01 00 00 *
001266490 |20 01 00 00 02 00 00 00 0O 00 00 0O OO 00 0O 0O
0012664X0 |00 00 00 00 00 00 00 00 01 00 00 OO OO0 00 00 00
001266480 |00 00 00 00 00 00 02 00 00 00 00 00 E1 78 01 00 a{
0012664C0 |00 00 00 00 E1 78 01 00 00 00 00 0O 0O 00 00 0O a{
0012664D0 |00 00 00 00 00 00 00 00 0O 00 00 OO0 OO 00 00 0O
0012664EQ0 |00 00 00 00 00 00 00 00 0O 00 00 0O 0O 00 00 00
0012664F0 |00 00 00 00 00 00 00 00 0O 00 00 OO0 OO 00 00 0O
001266500 |00 00 00 00 00 00 00 00 20 00 00 OO0 50 00 00 00 P
001266510 84 00 00 00 00 02 00 00 D4 00 00 00 01 00 00 0O o
001266520 D& 00 00 00 00 00 00 00 30 00 00 00 10 00 10 00 & 0
001266530 |00 00 10 00 20 00 00 00 00 00 00 0O OO0 00 0O 0O
001266540 |08 00 00 00 00 00 00 00 ElJEEYoo0 00 00 00 00 0O =3
001266550 |00 00 00 08 00 00 00 00 0O 00 00 OO0 OO0 00 00 0O

Image file metadata of the renamed file is found at offset 0x126637C (pink) different from

where the original image file metadata existed. Original name of the image file ‘verse.jpg’

is also present 16 bytes above new name of the image. MACE timestamp values are exact

50

duplicate of the original image file. Image size, permissions and file pointer are also exactly

identical to the original file.

A duplicate of the renamed filename ‘new_verse.jpg’ is found after 460 bytes

(0x12667DC) from the first offset (0x126637C).

001266780 |00 00 28 00 28 00 00 00 20 00 00 80 00 OO0 00 QO [£
0012667C0 |00 06 00 00 00 00 OO0 00 OA 00 00 00 00 00 00 QO
00126&7D0 00 00 00 00 0O 00 OO0 OO0 OC 00 14 00 GE OO0 &5 00 ne

0012667E0 77 00 SF 00 76 00 65 00 72 00 73 00 65 00 2E 00 w verse.
0012667F0 | BN OONTFONQONSF 00 00 00 00 00 00 OO0 00 00 00 00 |3
001266800 |00 00 00 00 00 00 OO OO OO 00 00 0O 00 0O 00 QO

4.4.3 Permissions changed
Opening the properties window of the image file and changing the permissions in the
security tab is what is done in this scenario. The metadata of ‘new_verse.jpg’ as seen

through WinHex is as follows:

Drive R:
Offset g 1 2 3 4 5 &6 7 g8 9 A B C D E F ~
001262330 |20 00 00 €0 00 0O 00 00 0O 06 OO0 OO Q0 QO 00 00 €

001262340 OA 00 00 00 0O 00 00 OO0 OO0 00 00 00 0O 00 00 00
001262350 OC 00 12 00

001262360 00 00 00 40 04 00 00 10 QO 1E 00 @
001262370 00 00 30 00 10 04 00 00 30 00 01 00 |GE 00 &5 00 0 0 ne
001262320 T7 00 5F 00 76 00 &5 00 72 00 73 00 65 00 2E 00 W _V e T 3 &
001262390 6A 00 70 00 67 00 00 OO0 AB 00 00 00 28 00 01 00 |3 p @ - (

001262320 00 00 00 00 10 01 00 00 10 01 00 00 02 00 00 00

001262380 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

LLRRXFE 7o D7 B7 CC S8 9D D1 01 03 49 33 OC 88 4B CF 01
001262300 |9C 00 ED 64 8F 9D D1 1 e id NIl
0012623E0 20 00 00 00 00 00 00 00 00 06 00 00 00 0O 00 0D

0012623F0 OA 00 00 00 00 00 00 00 25 88 A0 FC 01 00 00 00 % @
001262400 E1 78 01 00 00 00 00 00 00 00 02 00 00 00 00 00 | &f

001262410 00 00 00 00 00 00 00 00 00 OO0 OO0 00 00 0O 00 0D

001262420 00 00 00 00 00 00 00 00 00 00 OO0 00 00 0O 00 00

001262430 01 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 0O

001262440 (20 00 00 00 AO 01 00 00 D4 00 00 00 OO 02 00 OO &
001262450 (74 02 00 00 01 00 0O 00 78 02 00 00 OO0 OO0 00 00 t© x
001262460 80 01 00 00 10 00 OE 00 OB 00 20 00 60 01 00 00 £

001262470 &0 01 00 00 OO 00 00 OO0 80 00 00 00 OO 00 00 00 ° £

001262480 &8 00 OO 00 28 00 01 OO0 O1 00 OO 00 20 01 0O OO ~ {
001262490 (20 01 00 00 02 00 Q00 00 00 00 00 00 QO OO0 0O 00

001262420 (00 00 00 00 OO 00 00 OO0 01 00 00 00 OO 00 00 00

001262480 00 00 00 00 OO 00 02 00 00 00 00 00 E1 7B 01 00 ES
0012624C0 (00 00 00 00 E1 7B 01 00 00 00 00 00 QO 00 0O 00 L2
001262400 00 00 OO 00 OO OO Q0O OO0 OO0 00 0O OO0 OO OO0 0O 00

0012&624ED (00 00 00 00 0O 00 Q00 ©0 00 00 00 00 OO OO0 0O 00

0012624F0 (00 00 00 00 OO OO0 00 OO0 OO0 00 00 00 0O 00 00 00

001262500 |00 00 00 00 00 00 00 OO0 20 00 00 00 50 0O 00 00 P
001262510 (&4 00 00 00 00 02 00 00 D4 00 00 00 Ol 00 00 00 .)
001262520 D8 00 00 00 00 00 00 00 30 00 00 00 10 DO 10 00 0
001262530 |00 00 10 00 20 00 00 00 00 00 00 00 00 DO 00 00

001262540 08 00 00 00 00 00 00 o0 ESIGERo0 00 00 00 00 0Q
001262550 |00 00 00 08 00 00 00 060 00 00 00 00 00 DO 00 00 v

‘new_verse.jpg’ is now found at two different offset. One offset is of the file which was
renamed 0x126637C (as discussed in the renaming image file section above) whereas the
other offset is new where the metadata of the changed permission of image file resides.

51

The metadata at this offset 0x126237C differs from renamed metadata in file permissions
(green) and ‘entry modified’ (light orange) MACE timestamp (orange) only. Apart from
these all other metadata is same. There is a duplicate filename after 460 bytes at
0x12627DC just like the renamed metadata had.

4.4.4 Deleting jpg file
In this scenario, file ‘new_verse.jpg’ is simply deleted from ReFS drive. It still exists in

recycle bin.
The first offset where the image metadata is found after deletion is 0x116001E, shown

below:

COffset g 1 2 3 4 5 & 7 8 5 »n B C D E F £y
001160000 |01 OO0 OO0 OO OO0 OO0 00 00 |peRESEENNO0 00 00 00 00

00

001160010
001160020
001160030
001160040
001160050

52 00 3A 00 5C 00 3y

65 00
2E 00
00 00
00 00

77 00
6L 00
00 00
00 00

SF 00 76 00
70 00 &7 00
00 00 00 00
00 00 00 00

65 00 72 00 73 00
00 00 00 QO 0O 00
00 00 00 QO 00 00
00 00 00 Q0 00 00

63
o8]
00
o]

00
00
0o
00

File size of the deleted file has been highlighted in purple, starting eight bytes (red) show
the time when file was deleted. The next six bytes (green) show the path of file, where it
was residing and remaining bytes show the filename (yellow). This metadata after image

deletion is identical to the text file metadata after deletion.

Image is also found at offset: 0x126237C, 0x126637C and at 0x126A37C. At offset
0x126237C metadata of image file is present when its permissions were changed and there
is no change in it. At offset 0x126637C metadata of image is present when it was renamed.
Metadata is same except that the ‘entry modified’ part of MACE time has now changed to
be the same as that of when the file permissions were changed. Initially when file was
renamed and MACE times were observed, it was the same as that of the original file, but
now it has changed. Another fact is that the filename duplicate of this offset (0x126637C)
which was ‘new_verse.jpg’ and existed after 460 bytes, at offset 0x12667DC, now exists
after 472 bytes at 0x12667ES8. It has now been cut short after file deletion. It is now

‘rse.jpg’ (brown).

52

001266780
0012667C0
001266700
0012667TED
0012667TF0
001266800

Metadata at 0xX126 A37C offset has only been added now when the file has been deleted
and sent to recycle bin. It is identical to the metadata of the above offset and contains the

cut out filename ‘rse.jpg’, exactly 472 bytes after the 0x126A37C offset.

Cffset o 1 2 3% 4 5 & 7 g8 8 AR B C D E F &
00l126R2F0 | OO OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO0 OO0
00126R300 |00 OO OO OO OO OO0 OO OO OO OO0 OO OO OO OO0 OO OO0
001264310 |00 OO QOO OO OO0 00 OO OO0 OO 00 0O Q0O 00 00 00 00
00126A320 |48 00 QO OO 10 00 18 00 04 00 28 00 20 00 QO OO0 H (
00126R330 |20 00 OO 80 00 00 00 00 00 06 0O Q0 QOO0 0OC 0O 00 €
00126R340 |OQA OO0 QOO OO OO0 00 OO0 00 0O 00 0O Q0O 00 00 00 00
00126A350 |0OC 00 12 00

00l126A360 00 00 00 40 04 00 00 10 00 1E 00 @
00126A370 |04 00 30 00 10 O4 00 00 30 00 01 OO0 &E 00 &5 00 a 0
Q0126A380 7T 00 SF 00 76 00 65 00 72 00 73 00 65 00 2E 00 w e r 3

v
00126A390 |BA 00O YO OO0 &7 00 00 00 48 00 00 Q0 28 00 01 00 |3 P g
00126A3A0 |00 OO0 OO OO 10 01 OO0 OO 10 O1 OO OO O2 00 OO OO0
00126A360 |00 OO0 OO OO OO OO OO OO OO OO OO0 OO OO0 00 00 00
Ll %les@ll 7o D7 B7 CC 59 9D D1 01 03 49 33 OC 88 4B CF oijfv=-iv & 13 -

00126A3EDQ |20 00 OO OO OO0 OO0 OO0 OO0 OO 06 OO OO0 OO OO OO OO

00126A3F0 |OA OO0 OO OO OO0 00 OO0 00 25 8B A0 FC 01 00 0O 0O Ty 0
001262400 E1 7B 01 00 OO0 00 OO0 OO0 OO0 00 02 OO0 00 00 00 00 | af

001262410 | OO OO OO OO OO OO OO OO OO OO0 OO OO OO OO OO OO0

Offset 0 1 2 3 4 5 6 7 & 8 A B CDE F FE
00126A780 20 00 00 80 00 00 00 00 (£
00126A7CO 02 00 00 00 00 00 00 00
00126A7D0 [|
00126A7ED r =
00126ATFO 00 00 00 00 00 00 00 0O
00126A800 00 00 00 00 00 00 00 00

Another thing is observed where a section of filename has been cut out. 14 bytes above the
cut out filename are two identical bytes *02 07 which are found only where the section of
cut out filename is found. It can be deduced here that they show that the file has been
deleted.

4.45 SHIFT + Delete jpg file (permanent delete)

Following metadata changes are observed when the image is permanently deleted:

53

LI SC 00 ED 64 8F SD D1 01 7% D7 BT CC 59 SD D1 01 |w id W y=-Iy

Drive R:

Offset a 1 2 3 4 5 & 7 & 8 o B C D E F ~
00126E350 OC 00 12 00
00126E360 00 00 00 40 04 00 00 10 00 1E 00 @
00126E370 04 00 30 00 10 04 00 00 30 00 01 00 GE 0O &5 00 1] 1] ne
00126E380 77 00 5F 00 76 00 65 00 72 00 73 00 65 00 2ZE 00 w v e r s e .
00126E3590 A 0O 70 00 &7 00 00 00 A8 00 00 00 28 00 01 00 |3 P Q - (

00126E3R0 |00 00 00 00 10 01 00 00 10 O1 00 00 02 00 00 00
00126E380 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

[LkETa 6Tl 70 D7 B7 CC 59 9D D1 01 03 45 33 OC 88 4B CF 01
[LkETa:63 Il oC 00 ED 64 8F 9D D1 01 9 D7 B7 cC 59 9D D1 O1ffle id W y=-Iy W |
00126E3E0 |20 00 00 00 00 00 00 0D 00 06 00 00 00 00 00 00

D0126E3F0 | OR 00 00 00 00 00 00 00 25 98 A0 FC 01 00 00 00 %> 0
00126E400 E1 78 01 00 00 00 00 00 00 00 02 00 00 00 00 00 &{

00126E410 |00 00 00 00 00 00 00 OO 00 0D 00 00 00 00 00 00

00126E420 |00 00 00 00 00 00 00 OO0 0O 0D 00 00 OO0 00 00 00

00126E430 |01 00 00 00 00 00 00 OO0 00 0D 00 00 00 00 00 00

00126E440 20 00 00 00 AOD 01 00 00 D4 00 00 00 00 02 0O 00 [}
00126E450 74 02 00 00 01 00 OO0 OO 78 02 00 00 00 OO0 OO0 0O |t x
00126E460 80 01 00 00 10 00 OE OO OB 00 20 00 &0 01 00 0O | €

00126E470 &0 01 00 00 OO0 OO 0O OO 80 0O OO0 00 00 00 0O 00 ° £

00126E480 &8 00 00 00 28 00 01 0O 01 00 OO OO0 20 01 0O 0O | * (
00126E45%0 20 01 00 00 02 00 0O OO0 OO OO OO0 00 00 00 OO0 00

00126E4A0 00 00 OO0 00 OO0 OO OO OO0 ©O1 OO OO0 00 00 00 00 00

00126E4B0 00 00 00 00 00 OO0 02 00 OO0 OO 00 00 E1 7B 01 00 af
00126E4C0O 00 00 00 00 E1 7B 01 00 0O 0O 00 00 00 0O OO 00 af
00126E4D0 00 00 OO0 OO0 OO0 OO OO OO OO OO OO0 00 00 00 00 00

00126E4ED0 00 00 00 00 OO0 OO0 0O OO0 OO OO OO0 00 00 00 00 00

00126E4F0 00 00 OO0 00 OO0 OO0 0O OO OO OO 00 00 00 00 00 00

00126E500 00 00 OO0 00 OO0 OO 0O OO0 20 00 00 00 50 00 00 00 E
00126E510 &84 00 00 00 00 02 00 OO D4 00 OO OO0 01 OO0 OO0 0O | , [}
00126E520 D& 00 00 00 OO0 OO0 0O OO 30 00 OO0 OO0 10 OO0 10 00 | @ 1]
00126E530 00 00 10 00 20 00 00 OO0 OO OO OO0 00 OO0 OO0 OO 00

00126E540 08 00 00 00 00 00 00 00 |ES&EENO0 00 00 00 00 00 EI

00126E550 |00 00 OO0 OB 00 OO0 0O OO OO OO OO0 00 00 00 OO0 00

New offset (0x126E37C) has been added now, where the deleted file data identical to other
offsets resides (as shown above). 0x116001E, 0x126237C, 0x126637C, 0x126A37C which
have already been discussed in the above sections, possess metadata even after deletion.
The only difference in these offsets is they no longer contain the section of cut out filename
(at duplicate filename area) that they possessed when the file was deleted and sent to

recycle bin. After permanent deletion full name of the file exists.

It might be noted here that even after permanent deletion, image file still exists in metadata.

This is of great help to forensic examiners while searching for data in drives.

4.4.6 Scenario analysis for jpg file

All scenarios applied on the jpg file are analyzed and data is presented in tabular format:

54

Operation Filename Artifacts Gathered
(pink) Metadata | ACE | permission | Filesize | 1€
Offset times (green) (yellow) pointer
(orange) (blue)
Copying Verse.jpg 0x1262354 v v E17B01 | BC04
Renaming | new_verse.jpg | 0x126637C 4 v E17B01 | BC04
Entry
PErmISSIONs | oy versejpg | Ox126237c | MOdifitd | hanged | EL7B 0L | BC 04
changed part
changes
. Contains file size, time of deletion, path of file
new_verseJpg | Ox116001E and name of the deleted file
Entry
Simple NeW_VErsejpg | . 126637C modified v E17B 0L | BC 04
delete rse.jpg part
changes
NEW_VEISEIPY | gx106A37C v v E17B0Ll | BC 04
rse.jpg
Shift delete | new_verse.jpg | Ox126E37C 4 v v v

Table 4-3: Scenario analysis for jpg file

45 Folder scenarios

Folders have different format than files. In this section of the chapter, different operations

are performed on folder to see the changes resilient file system undergoes when these

operations are performed on folder.

45.1 Folder creation

In this scenario a new folder named “forensics” is created in ReFS drive. Another subfolder

named “filesystem_forensics” is created inside forensics folder immediately after its

creation. Looking at the metadata changes of ReFS drive, it is observed that folders are
found at many different offsets with $130 attribute. We know that $130 is index attribute for

directories and lists directory contents. “NTFS maintains an index of all files/directories

that belong to a directory called the $130 attribute. Every directory in the file system

contains an $130 attribute that must be maintained whenever there are changes to the

directory's contents. When files or folders are removed from the directory, the $130 index

records are re-arranged accordingly.” [20] Therefore it is present with folder offset.

55

Metadata Folder name Starting | Eighth $130
Block Offset Bytes Byte
0x1160356 New folder 58 04 B4 v
0x1164356 forensics 59 04 B5 v
0x1168356 forensics 5A 04 B6 v
0x1168574 New folder 5A 04 B6
0x116C356 forensics 5B 04 B7 v
0x116C574 filesystem_forensics 68 04 B6
0x11A0356 New folder 68 04 B6 v
0x11A4356 filesystem_forensics 69 04 B7 v
0x12627BC forensics
0x12667BC New folder
0x126A7BC forensics
0x126E7BC forensics

Table 4-4: Metadata offsets for folders

$130 is present exactly 122 bytes before folder offset. The above table does not include

MACE times which were almost same (with some second’s difference, if any).

Drive R: |
Offset 0 1 2 3 4 5 8 7 8 9 A B C D E F
001160000 |58 04 00 00 00 OO OO 00 B4 00 00 00 OO0 OO 00 00 [X]
001160010 |00 00 00 00 00 OO0 OO 00 03 07 00 00 00 00 OO 00
001160020 |01 00 00 00 00 OO0 OO 00 0O OO 00 00 00 OO0 OO 00
001160030 E& 00 00 00 28 00 01 00 0O 00 00 00 30 O1 00 0O [& { 0
001160040 |30 01 00 00 02 OO0 OO 00 OO 00 00 00 OO0 OO 00 00 [0
001160050 |01 00 00 00 00 OO0 OO 00 0O 00 00 00 00 OO0 OO 00
001160160 |10 01 00 00 02 00 00 00 OO0 OO0 OO 00 00 OO0 OO 00
001160170 |00 00 00 00 00 OO0 0O 0O
001160180
oo1160190 |ERNEENFEEECIEIECE Sl co oo off 10 oo oo oo oo
001160140 |03 07 00 00 00 OO 00 00 OO0 OO0 OO 00 00 OO0 OO 00
001160180 |AE A2 E1 AE 01 00 00 00 OO 00 OO 00 00 00 OO0 00 |[@¢as
A1 1T /AT 0 an oo an o0 an oo a0 on an a0 an o0 an oo a0 on

56

Drive Rs

Qffset a1 2 3 4 5 & 7 8 8 A B C D E F A
0011601ED
0011601F0
001160200
001160210
001160220
001160230
001160240
001160250
001160260
001160270
001160280
001160250
001160200
001160280
0011602C0
001160200
0011602ED
0011602F0
001160300
001160310
001160320 7 2 7 2
001160330 | ENiiSEN 00 00 00 00 00 00 00 00 00 00 00 00
001160340 OO0 OO0 OO0 OO OO0 OO OO0 10 OO0 OO0 OO OO0 O& 00 00 00 |

|

001160370 (00 00 00 00 00 OO OO0 OO0 OO 0O OO 00 00 00 00 00

Folder name length is present ten bytes before every folder name. For ‘New folder’ it is

‘OA’. For ‘forensics’ it is ‘09°.

Offset o 1 2 3 4 5 & 7 8 58 » B C D E F rzg
0011e6C530 | 00 OO OO0 OO0 OO OO 0O 00 00 00 O! 00 00 00 00 0O []
0011e6C540 |00 OO OO OO OO GO OO OO OO OO0 00 0O OO 00 00 00
0011eC550 |00 OO OO OO OO OO OO OO0 OO0 OO0 00 0O OO 00 00 00
0011eC560 |88 OO OO OO 10 0O 2C 00 OO OO0 40 00 48 00 00 0O

0011eC5a0 |04 O7 OO0 OO OO OO OO OO OO OO0 00 OO OO 00 00 00
PINRRIeC IR FE YE EF F7 SD SE D1 01 BE 7B EF F7 5D SE D1 01
PLNRRICTeIIRFE 7B EF F7 5D SE D1 01 BE 7B EF F7 5D SE D1 01
0011eCsDd | OO OO OO0 OO QO QO 00 00 OO0 00 00 00 OO0 00 00 00

4.5.2 Renaming folder
For this scenario, main folder named “forensics” is now renamed to be “research”.

Following are metadata changes in tabular form:

Metadata | Folder name Starting Eight | $130 Folder name Eighth [ldentical
Block (before Bytes h Byte (after Byte
Offset renaming) renaming)
0x1160356 New folder 58 04 B4 v research BF
0x1160574 v fllesys;?(r;r;_foren
0x1164356 forensics 59 04 B5 v forensics B5 v
0x1168356 forensics 5A 04 B6 v forensics B6 v
0x1168574 New folder 5A 04 B6 New folder
0x116C356 forensics 5B 04 B7 v forensics B7 v
0x116C574 fllesystgm_fore 68 04 B6 fllesystgm_foren
nsics Sics
0x11A0356 | New folder 68 04 B6 v New folder B6 v
. e "
Ox11A4356 fllesystgm_fore 69 04 B7 v fllesyst(?m_foren B7
nsics Sics
0x12627B : forensics v
c forensics
OleéSB?B New folder research
0x126A7B : forensics v
c forensics
0x126E7B : forensics v
forensics
C
Table 4-5: Metadata changes for folders after renaming
Drive R:

Offset o 1 2 3 4 5 & 7 &8 5 » B C D E F ~
001160000 |58 04 00 QO OO OO OO OO BF 00 OO 00 0O OO0 QO OO i
001160010 | 0O OO 0O QO OO OO OO OO O3 O7 OO0 00 00 OO0 QO OO0
001160020 |01 OO 0O QO OO OO OO OO OO OO0 OO 00 00 OO0 QO OO0
001160030 |E& OO0 00 0O 28 00 01 OO0 OO QO OO0 OO0 30 01 0O 0O [1]
001160040 |30 O1 OO OO 02 OO OO OO OO OO OO0 OO0 OO 00 00 00
001160050 |02 00 0O QO OO OO OO OO OO OO0 OO 00 00 OO0 QO 00

Only the eighth byte of first offset where ‘research’ is found is different. All others are

same. Only one new offset containing ‘filesystem_forensics’ is present after renaming (row

highlighted in yellow). Two of the ‘New folder’ entries have been changed to ‘research’

whereas all others are almost same. MACE times have no difference after renaming folder.

58

Drive R: |

Cffset 2 1 2 3 4 5 & 7 8 9 B B C D E F ~
001160160 |10 ©01 OO 00 02 00 00 OO OO OO OO OO OO OO0 OO 0O
001160170 |00 00 OO0 00 00 00 00 00 |[ERNFEERSFENN- RS- 8 s BN b
DIRRETRR VS0 DS FA FD SD SE D1 01 80 DS FA FD SD SE D1 01
001160190 | ElESEES-SNIVEIVER- RN EEREN 10 00 00 00 00 00 00 00
001160120 03 ©07 OO0 00 OO 0O OO0 OO OO OO OO OO OO OO0 OO 0O
0011601B0 |AE A2 E1 AE 01 00 00 00 OO0 00 00 00 00 00 00 00 ®¢ag
0011601C0O (00 OO OO OO0 OO 0O OO0 OO OO OO OO OO OO OO0 OO0 00
001160100 OO0 OO OO 0O OO 0O OO0 OO OO OO OO OO OO OO0 OO0 00
0011601E0 01 ©O0 OO OO0 OO 0O 00 OO ©O1 OO OO OO OO OO0 OO0 00

0011601F0 |00 OO0 OO0 OO0 OO OO0 OO0 OO0 20 00 00 OO0 78 01 00 00 x
001160200 |F8 00 00 00 00 02 00 00 70 02 00 00 ©O2 00 00 00 | & 2]
001160210 |78 02 00 00 0O OO0 OO0 0O CO OO0 00 00 10 00 14 00 x A
001160220 |00 00 28 00 94 00 00 00 9S4 00 00 OO ©O 00 OO 0O [-
001160230 | 90 00 00

001160240 |00 00 OO0 OO0 80 00 00 OO OC OO0 00 OO 30 00 0O 00 £ 1]
001160250 |40 02 01 00 16 00 00 00 10 0O 00 OO0 70 00 00 00 @

001160260 |70 00 OO0 00 OO OO OO0 OO OO OO0 OO0 OO0 OO0 00 00 00 | p

001160270 |00 OO0 OO0 OO0 OO OO OO0 OO OO OO0 00 OO0 Q0 00 00 00

001160280 |00 OO OO OO0 OO OO OO0 OO OO OO0 00 OO0 Q0 00 00 00

0011602590 |00 00 00 0O 00 00 OO OO OO0 OO OO0 00 0O 00 00 00

001160240 |00 OO OO0 OO0 OO OO OO0 OO OO OO0 00 00 OO0 00 00 00

001160280 |00 OO0 OO0 OO0 OO OO OO OO OO OO0 00 OO0 OO0 00 00 00

0011602C0 |00 00 00 00 00 00 00 00 0O 00 00 00 OO 00 00 00

0011602D0 |00 OO OO0 OO0 OO OO OO0 OO0 S8 00 00 00 10 00 OE 00 -
0011602E0 |00 OO0 20 00 74 00 00 00 74 00 00 0O OO0 00 0O 0O T T
0011602F0 |38 00 00 00 OO OO0 OO0 OO OO OO0 OO0 OO0 &2 00 OO0 00 & b

001160300 OC 00 01 00 00 06 00 00 00 00 00 00 D0 00 00 0O
ERELES L DI lo7 25 12 DE SD SE D1 01 80 D5 EA ED)
LSESELEELM <D oE DI 01 80 D5 FA FD 5D SE D1 01 80 D5 FA ED)
001160330 [N FNENo0 00 00 00 00 00 00 00 00 00 00 00
001160340 00 00 00 00 10 00 00 10 00 00 00 oo [ENoo oo oo
001160350 73 00 30 00 02 00 72

001160360 [f2 00 63 00 68 00 00 00 00 00 00 00 00 00 00 00
001160370 00 00 00 00 00 00 00 00 00 00 00 00 D0 00 00 0O

4.5.3 Permissions changed

‘Research’ folder permissions are changed as shown below:

General | Sharing | Securty | Previous Versions | Customize |

Object name: Rivesearch

Group or user names

2 CREATOR OWNER

82 SYSTEM

< [

To change pemissions, click Edit.

Pemissions for Everyone Alow Dery
Full cortrol A
Modfy
Resd & erectte v
List folder corterts v
Read v
Wirte v v

Forspeca pemmissionsor achanced seings. | Advanced |
dlick Advanced,

Following are metadata changes after main folder permissions have been changed:

59

Folder name Eégr;;h Eighth
Metadata after Starting y Byte (after
Block Offset before after .. Bytes permission
.) permission
renaming | renaming change)
change
0x1160356 New folder research research 58 04 BF C9
0x1160574 fllesystgm_ fllesystgm_for
forensics ensics
0x1164356 forensics forensics research 59 04 B5 C3
0x1164574 fllesystgm_for
ensics
0x1168356 forensics forensics research 5A 04 B6 C5
0x1168574 | New folder | New folder f"esé’ﬁg?g—for 5A 04
0x116C356 forensics forensics forensics 5B 04 B7 B7
0x116C574 fllesystgm_f fllesystgm_ fllesyst(?m_for 68 04
orensics forensics ensics
O0x11A0356 | New folder | New folder f"esé’;;?g—for 6304 | B6 c3
Ox11A4356 fllesystgm_f fllesystgm_ fllesyst(?m_for 69 04 B7 c5
orensics forensics ensics
0x12627BC forensics forensics research
0x12667BC New folder research research
0x126A7BC forensics forensics forensics
0x126E7BC forensics forensics forensics

Table 4-6: Metadata changes for folders after permission change

One new offset containing (0x1164574) ‘filesystem_forensics’ folder name (highlighted in

yellow in the above table) has been added when the permissions have been changed for

main folder. Moreover it is observed that all the ‘New folder’ entries have been replaced

with the subfolder name. MACE times are exactly the same.

One of the main differences is as follows:

mme&|
Gffseat

001160160

001160170

0011601A0
001160180
0011601C0

WAL

00 00
00 00

o Qo Q
o R o I

(=]
[
L]
[= QT
=]
(=]
=
[I

-]

00
00 O
00 00 00
o0 0

[I I o |
[=J ==y =)
= I = I = -]
L= = =

60

[=]
L=l
[=]
L= o

a0
Q0
00 00

00 |

0o

BCAE

Offset 0 1 2 3 4 5 6 7 &8 9 B B CDEF [=
001160160 10 01 00 00 02 00 00 00 0O 00 OO0 OO OO OO 00 00
001160170 00 OO0 OO0 00 00 00 00 0O
WOERRLEE:LIM 0 DS FA FD SD 9E D1 01 80 D5 FA FD sD SE D1 o1jleduy]zi e6uy]zi
oo1160190 ERIEENENSIEIECESYEE 10 oo o0 o0 00 00 00 00 | ERESER
0011601A0 03 07 00 00 00 00 00 00 OO 00 OO0 OO OO0 OO 00 00
001160180 [ENEENEEIELEEEMco oo oo oo oo oo oo oo oo oo oo [ERSE
0011601C0 00D OC 00 OO0 00 00 00 00 00 00 OO0 OO OO0 0O 00 00

The bytes ‘AE A2 E1 AE 01 have been changed to ‘05 73 8B 20 01° where ever the main
folder name ‘research’ appears. At offset 0x116C356, where ‘research’ folder’s original

name ‘forensics’ is appearing the permissions are ‘AE A2 E1 AE 01°.

4.5.4 Adding content
For this scenario three files, one image file ‘open.jpg’, a word document ‘word.doc’ and a
text file ‘cool.txt’ is added to the ‘filesytem forensics’ subfolder to check their behavior

inside folders created on ReFS drive.

Metadata | Folder Starting | Eighth

Offset name Offset Sub folder name Bytes byte cool.txt word.doc open.jpg
0x1160356 | research | 0x1160574 | filesystem_forensics | 58 04 D8
0x1164356 | research | 0x1164574 | filesystem forensics | 59 04 DO

0x1168356 | research | 0x1168574 | filesystem forensics | 5A 04 D2
0x116C356 | research | 0x116C574 | filesystem forensics | 5B 04 D5

0x11A4356 | filesystem forensics | 69 04 DO

0x11A8356 | filesystem forensics | 6A 04 D1

0x11AC356 | filesystem forensics | 6B 04 D1
. . 0x11F1CO

Ox11F0356 | filesystem_forensics | 7C 04 D8 4 Ox11F1784 | 0x11F1304

Ox11F4356 | filesystem forensics | 7D 04 D5 O0x11F5784 | Ox11F5304
: : 0x11F9C

0x11F8356 | filesystem forensics | 7E 04 D9 04 0x11F9784 Ox11F9304

Table 4-7:Metadata changes after content addition in folder

It is observed that files added to the sub folder are located in the same order in the metadata in which they were added. ‘open.jpg’ was
added before ‘word.doc’ therefore it is present before ‘word .doc’ as it is apparent from their offsets. ‘cool.txt’ was added to the folder in

the last and it is apparent from its offset where ‘cool.txt” is found.

There is one extra metadata entry for ‘doc’ and ‘jpg’ file. The shaded row in the above table is shown in the below images as seen

through the editor.

62

63

Cffset o 1 2 3 4 5 & 7 g 98 A B C D E F FE;
O011EFFCO OO OO OO0 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00 00 OO0
O011EFFDO OO OO OO0 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00 00 OO0
0011EFFEOQ OO OO OO0 OO OO0 OO 00 00 OO0 00 00 00 00 00 00 00
O0011EFFFO OO OO OO0 OO OO0 OO0 00 00 OO0 00 00 00 00 00 00 OO0

0011F0000 7C O4 00 OO OO0 OO0 OO0 OO0 D& 00 OO0 OO0 00 00 00 00 | 2
0011F0O010 OO OO OO0 OO0 00 OO0 00 00 ©O4 O7 00 OO OO0 OO0 00 OO0

0011F0020 ©O1 OO OO0 OO0 OO0 OO0 00 00 OO0 00 00 OO0 00 OO0 00 OO0

0011F0030 ES8 00 00 OO0 28 00 01 0O OO OO OO0 OO 30 01 00 OO | & [0
0011F0040 (30 01 OO0 OO0 O2 00 00 OO0 OO OO0 00 OO0 OO0 OO0 00 00 | 0

Offset o 1 2 3
0011F01CO (00 OO0 OO0 00
0011F01D0 OO0 OO0 OO 00

C D E F [=
00 00 00 00
00 00 00 00

Q0011F0I1EQ | O7 00 00 00 00 00 00 00
0011F01FD (OO0 OO0 OO 00 90 01 00 00
0011F0200 EO OO0 OO 00 02 00 00 0O & 2]
0011F0210 |78 02 00 00 10 00 14 00 | = A
0011F0220 (00 OO0 28 00 00 00 00 00 [-

0011F0230 (50 OO0 OO 00 : 00 00 00 00
0011F0240 OO0 OO OO 0O 80 00 OO0 OO OC 00 00 00 30 00 00 OO
0011F0250 |40 02 01 00 16 OO0 00O OO 10 OO0 OO OO 70 OO0 OO0 OO | @ B
0011F0260 (70 OO OO OO OO OO0 OO0 OO OO OO0 00 00 00 00 00 00 p

0011F0270 OO0 OO OO 00 00 00 00 OO OO0 00 00 00 00 00 00 0O

0011F0280 OO0 OO OO 0O 00 00 OO0 OO OO0 00 00 00 00 00 00 0O

0011F0250 OO0 OO OO 00 00 00 00 OO OO0 00 00 00 00 00 00 0O

0011F0220 OO0 OO OO 0O 00 00 00 OO OO0 00 00 00 00 00 00 0O

0011F028B0 OO0 OO OO 0O 00 00 00 OO OO0 00 00 00 00 00 00 0O

0011F02C0 OO0 OO OO 00 00 00 00 OO OO0 00 00 00 00 00 00 0O

0011F0Z2D0 (OO0 OO OO 00 00 00 00 OO BO 00 00 00 10 OO0 OE OO °
0011F0Z2EQ OO0 OO 20 00 8C 00 OO0 OO &C 00 00 00 00 00 00 0O E E
0011F02F0 (38 OO0 OO 0O OO 00 00 OO0 OO0 OO0 00 00 74 00 OO0 00 8 Z

0011F0300 ©OC 00 01 00 03 07 00 00 00 00 00 00 00 00 00 00
0011F0310 |00 00 00 00 EEEEIE AR e EETRS
WOERAEEDIMISD SE D1 01 BE 78 EF F7 5D SE D1 01 BE 78 EF F7M 20 %{i=] 20 x{i:]
0011F0330 ENJECIEIEEYco oo oo oo 00 00 00 00 00 00 00 00 | FEEN

0011F0340 00 00 00 00 00 00 00 10 00 00 00 00 14 00 00 00

0011F0380 OO0 OO OO 0O 00 00 OO0 OO OO0 00 00 00 00 00 00 0O

72

Offset 0 1 2 3 4 56 7 & 9 A B CDE F
0011F12D0 48 00 00 00 10 00 18 00 00 00 28 00 20 00 00 00
0011F12E0 20 00 00 80 00 00 00 00 04 07 00 00 00 0O 00 00
0011F12F0 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
001171300 | 0C 00 10 00 EENGONTONOONIESHOONGENOONZENCONEANGD
0011F1310 [J008 6700 FE 7F 00 00 38 04 00 00 10 00 14 00
0011F1320 08 00 28 00 10 04 00 00 30 00 01 o0 6F @0 70 00
001171330 GENOONGENOONZENOONGANO0NITONO0NETN00] 00 00 00 00
0011F1340 A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00
0011F1350 10 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
0011F1360 00 00 00 00 00
0011F1370
0011F1380 C B 00 00 00
0011F1390 04 07 00 00 00 00 00 00 04 00 00 00 00 OO 00 00
0011F13A0 56 95 C& BO 01 00 00 00 7B 33 01 00 00 0O 00 00
0011F1380 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00

Offset 0 1 2 3 4 5 6 7 &8 3 A B CDE F
0011F1760 20 00 00 &0 00 00 00 00 04 07 00 00 00 00 00 00
0011F1770 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
001171780 | 0C 00 10 00 FANOONGENOONITZN00NGAN0ONZENCONGANOD
0011F1790 [6E 006388 c0 co FF FF 38 04 00 00 10 00 14 00
0011F17A0 08 00 28 00 10 04 00 00 30 00 01 o0 [F7 00 6E 60
001171780 | [ZNO0NGANOONZENGONGANOONIGENOONESN00] 00 00 00 00
0011F17CO &8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00
0011F17D0 10 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
0011F17E0 00 00 00 00 (ORI Qsc B4 EA BE 1A Al D1 01
0011F17F0
0011F1800 00 00 00 00 00 00
0011F1810 04 07 00 00 00 00 05 00 00 00 00 00 00
0011F1820 56 95 C& BO 01 00 00 00 00 8C 00 00 00 00 00
0011F1830 00 00 Ol 00 00 00 00 00 00 00 00 00 00 00 00

Offset 0 1 2 3 4 5 6 7 & 3 AR B CDEF
0011F1BFO 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0011F1C00 | 0C 00 10 00 [631106/6EI006E 00 6C 00/ 2E 10074100
op11Ficio [F87807F4788 37 53 00 00 38 04 00 00 10 00 14 0O
0011F1C20 08 00 28 00 10 04 00 00 30 00 01 o0 (63700 6F 00
0011F1C30 | [GENO0IEC 00 2E100174100/781001 74700100 00 00 00
0011F1C40 A8 00 00 00 28 00 01 00 00 00 00 00 10 01 00 00
0011F1C50 10 01 00 00 02 00 00 00 00 00 00 00 00 00 00 00
0011F1c60 |00 00 00 oo 0o oo oo oo ERNENIEENEEEECEESER
(LkbbsleyiMllc2 01 CE DC 7B AB D1 01 92
(LEbble: MMl =2 20 72 FE 7B AB D1 01 P
0011F1C30 04 07 00 00 00 00 00 00 06 00 00 00 00 00 00 00
0011F1CA0 [56 95 C& BO 01 00 00 00 €3 08 00 0O 00 00 00 00
0011F1CBO 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00

64

&=
H [
£
open.j
BEe :
(o [aiel
en.jpg
- [
) q"ﬁ -4 q"ﬁ
VeE® {3
[&h=
£
elel Ayys

4.5.5 Compressing folder
In this scenario a folder named ‘current’ is made inside the ReFS drive that contains two files
‘new.txt” and ‘open.jpg’. This folder is then compressed and named

‘current_compressed.zip’. The metadata of the compressed folder is as follows:

Drive R: |

Offset 0 1 2 3 4 5 6 7 & 9 BB C D E F ~
001262800 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 0O]
001262810 10 00 00 10 00 00 00 00 70 00 00 00 10 00 12 00 p
001262820 00 00 28 00 48 00 00 00 30 00 02 (B 0
001262830 74 00 00 00 00 00 00 0O T
001262840 05 07 00 00 00 00 00 00 0O 00 00 00 0O 00 0O OO
001262850
001262860
001262870 00 00 00 00 00 00 00 00 OO0 0O 00 OO 0O 00 00 00
001262880 00 00 00 10 00 00 00 00 50 00 00 00 10 00 18 0O P
001262890 04 00 28 00 28 00 00 00 20 00 00 80 00 00 0O OO [t €
001262840 00 06 00 00 00 00 00 00 OB 00 00 00 0O 00 0O OO
001262880 00 00 00 00 00 00 00 00 OC 00 16 0O
0012628C0
001262800 00 E7 01 00 CO FF FF 50 04 00 00 10 00 30 00 || ¢ A§¥F 0
0012628E0 00 00 40 00 10 04 00 00 30 00 01 o0 G300 75708 @ o (B
0012628F0 72 00 72 00 €5 00 6E 00 74 00 5F 00 63 00 6F 00 T T ent _co
001262900 €D 00 70 00 72 00 €5 00 73 00 73 00 65 00 64 00 mpr e s s e d
001262910 [2EN00)TAN00€S1000 7076628 0o 00 00 28 00 01 oo [NEENEl
001262920 00 00 00 00 10 01 00 00 10 01 00 00 02 00 00 OO
001262930 00 00 00 00 00 00 00 00 0O 00 00 00 0O 0O 0O OO
OO FEEG 00 22 E6 B2 BF BA D1 01 Bl E7 28 B2 BF BA D1 01
OWOAELFELW <7 29 CE CO BF EA D1 01 00 22 E6 B2 EF BA DL 01
001262960 20 00 00 00 00 00 00 00 0O 06 00 00 00 00 00 0O
001262970 OB 00 00 00 00 00 00 00 88 1F 58 2F 01 00 00 00 © Y/
001262980 EA 33 01 00 00 00 00 00 00 00 02 00 00 00 00 00 &3

The grey highlighted part of the screenshot shows the name of the original folder (current),
its MACE times and ‘current.zip’ is when the folder was compressed. This current.zip was
renamed to ‘current compressed.zip’ immediately after its compression hence both
current.zip and current_compressed.zip are found side by side and have the same MACE
times. File permissions are highlighted in green whereas file size ‘EA 33 01 (highlighted in
yellow) converts to ’01 33 EA’ in big Endian and we get the value 78,826 in decimal. This is
exactly the same file size as shown in file properties window. Below image shows file
pointer *94 04> which converts to “1250000°.

65

001262290 | 50 OO OO0 OO0 OO 02 OO0 OO DO OO OO OO0 02 0O OO0 OO0 | P B

001262220 DB OO OO OO0 OO OO OO OO 30 OO0 OO0 OO0 10 OO0 10 00 | & 0
001262280 |00 0O 10 00 20 00 OO OO0 OO0 OO OO OO0 00 OO0 0O OO0

0012e22C0 |04 0O OO 00 00 OO QO OO DD 00 00 00 00 00 -
0012e2aD0 | OO0 OO OO O8 OO0 OO OO OO 30 OO0 OO OO0 10 OO0 10 OO 0

Looking at the file content pointer offset ‘1250000’:

DﬁveR:l

Offset 0 1 2 3 4 5 6 T 8 8 AR B C D E F ~
oo1250000 EJBY o3 04 14 00 00 00 02 00 CD A9 9B 48 A0 94 [iesm ~ ||
001250010 |26 O3 44 00 00 OO 4A 00 00 OO OF 00 00 OO - &D J leu
01250020 (ZNTEVESNEENTANZENEE SIS TANTENTI o0 C2 o ESeumuiE
001250030 80 30 OC 04 CO g5 08 2E DO €0 AUB D;. .B

001250040 A8 OF 31 81 A4 S5A DC SE 8F 5B 44 DS D1 3D B4 0E |~ 1 mzil~ [DER=-
001250050 58 4F 26 FE 21 49 A5 58 C3 4E 15 E4 95 4D 2E C4 | XO&p!I¥XAN &M.A
001250060 6D 46 35 40 C3 46 AS DE 13 29 F1 48 AD 4C 73 19 mF:@AF«P)AH L=

oo1250070 3F EJEEERos 04 14 00 00 00 OB 00 CA A0 89 48 F5 | &/ E %H&
001250080 C7 E2 BA 32 01 0o oo [6§ agacz 3

001250090 _94 urrent/open.3jpg”
001250020 65 8B 3B 5C 83 | {eT MBap® o« \UF

0012500B0 EB 6B 70 77 77 77 09 41 83 BE 3B 17 77 87 EO OFE | »kpwww Bfws; wii
0012500C0 | 0% 0% EE 1E 3C C1 35 04 OB C1 CZ F2 EE FOr Fa C7 i <As ﬁﬂéijﬁq
001250000 EE BF AD 9E E3 73 BA 6B A6 BT Bh TA EA A9 AR 39 i;-Z&s°k|§°=z&E"D
0012500E0 3D 2F DF 5F T7E 00 10 05 59 79 59 00 OE OE 00 EOQ | =/B_~ Yyy¥ a
0012500F0 | SE OB FO B2 OE 48 01 €0 78 F& FF OE 30 3C 18 01 | ™~ &8 H "xey 0«
001250100 | OC 46 40 44 75 83 F8 44 ES8 CB8 28 48 28 398 E8 10 F@Eyfﬁdéﬁtﬂt"é

001250110 08 26 3A 26 06 16 COE 21 2E 16 36 01 36 06 26 1E &l& '. &8 6 &
001250120 | 2% 1E 01 11 11 0% 05 0% 04 97 BC 82 BC 98 82 850) —-E,E",
001250130 98 84 F8 BF 41 EO CO 08 02 88 02 88 €8 6F DE A0 . wzRak * “hob
001250140 |11 63 61 62 11 FF 7F D3 CB 20 80 85 04 BT OB 5& cab v GE €. - Z
001250150 82 87 C3 02 40 58 70 FO 58 70 2F DF 00 B2 57 39 3L @XpsXp/s <W9
001250160 |11 EO EO FE 93 F7 7F 08 OE 00 BD CA 8% FB8 06 08 aap™= Eta

001250170 F9 95 4D FA S5F EBE FF 62 03 70 FF C3 7E 59 03 DO | G-Ma &vb pvh~¥ B
001250180 EOQO 5F D5 10 78 C8 6B EF SF 9% onn 80 24 24 DE E3S é_ﬁ xEki¥*2E+8B4
001250180 60 3A 38 C4 D7 42 59 4C 59 8C BS 11 35 34 46 A4 " :8E=BYLYE, 54Fn
0012501R0 eC 9C 14 7F 10 E D5 30 Cl1 63 BO 5C 32 67 E® 80 Ilc ~Unhc\ " gég

AmA A AN TA ™R rA Th AT T R AR AA A R Am AT an am Fe AR ZmriTira. e o1w TT

Zipped folder contents are shown in the above image. It can be noted here that filename and
their paths are present. Rest of the content is of the files that are present inside the current
folder. ‘PK’ (highlighted red) is the format in which the folder has been zipped.

66

4.5.6 Deleting folder
For this scenario, a folder ‘experiment’ is created and an image file ‘lamp.jpg’ is placed
inside it. This folder is then simply deleted (it is highlighted and deleted). By simple delete

this folder goes to the recycle bin. Checking out the metadata changes:

-::f:-_') - 1~| . v ThisPC » ReFS(R:) » experiment
‘¢ Favorites MName Date modified Type Size
B Desktop = lamp.jpg 6/30/2016 7:04 PM JPEG image T3 KB
= Neavnlasd-

All the metadata of the ‘experiment’ folder is similar to the metadata as discussed in the
‘folder creation’ section. The new entry of ‘experiment’ folder that appears after the folder

has been deleted is present at offset 0x12F001E.

offset o1 2 5 4 5 &€ 7T & & L B C D E F P ~
0O012EFFCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0012EFFDO | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0012EFFEC 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00
0O012EFFFO0 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
0012F0000 01 00 00 00 00 00 oo oo [4d [oo oo oo 0o 00
0012F0010 65 00 [EEEI I =
0012F0020 78 00 70 00 &5 00 72 00 &9 00 6D 00 65 00 6E 00 X pe r ime n
0012F0030 74 00 00 00 00 00 00 00 OO0 00 00 00 00 00 Q00 00 ©
0012F0040 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00

Folder size of the deleted folder has been highlighted in purple (above), starting eight bytes
(red) show the time when folder was deleted. The next six bytes (green) show the path of file,
where it was residing and remaining bytes show the folder name (yellow).

At offset Ox 12B8356, ‘$130” attribute exists which is created every time any changes occur
to folder (as discussed above). This time the change is deletion of folder hence the index

attribute comes into play.

67

Offsetc o 1
0012B81ED |02 00
0012B81F0 |00 00
0012B8200 | F8 00
001288210 |78 02
001288220 |00 00
0012B8230
0012B8240 |00 00
001288250 |40 02
0012B28260 |70 00
001288270 00 00
0012B28280 00 00
001288290 00 00
0012B82a0 00 00
0012B82E0 00 00
0012B82C0 00 0O
0012B82D0 00 0O
0012B82ED 00 00
0012B82F0 |38 00
0012B8300 | OC 00
0012B8310 |00 00
0012B8320
0012B8330

56 D4 D1 01

Q0 00 00 00 00 00 01 Q00 00
00 00 00 00 00 00 20 00 00
00 00 00 D02 00 00 7O 02 00
00 00 00 00 00 00 CO 00 00

=)
A
28 00 94 00 00 00 94 00 00 -

00 00 80 00 00 OO0 OC 00 00
01 00 16 00 00 OO0 10 0O 0O
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 98 00 00
20 00 74 00 00 00 74 00 0O
0o 00 00 00 00 Q00 00 00 00
01 00 00 06 00 Q00 00 Q00 00 00 00 00 00 00

3 12 15|

00 00 [lgii IE 56 D4 D1 01 08 E

00 00 00 Q00 00 00 00 00 00 00 00 00

001288340 00 00 0C 00 00 00 00 10 00 00 00 ©O OA DO 0D 0O
001288350 |73 00 30 00 02 00 ESNODNITENCONTONOONGSIGANTZN0N - o ENENENENEN
001288360 00 oo oo 00 o0 oo oo | ENEIElAE
001288370 |00 00 0C 00 00 00 0O 00 00 0O 00 €O 00 DO 00 0O v

Another important fact is the addition of deleted folder ‘experiment’ in the vicinity of recycle

bin. This deleted folder name appears after 2826 bytes of Recycle bin entry successively. It is

shown:

Cff=et
001268550
001268560
001268570
001268580
001268590
001268500
0012685E0
0012685C0
0012685D0
0012685EQ
0012685F0

Off=et
00126RD30
00126RADRO
00126RDEO
00126RDCO
00126RDDO
00126ADED

00126ADF0
An12ARFNAN

4 B B C D E F

92 DR 48 6C C8 32 D1 01 52 DR 48 &C C8 32 D1 01
92 DR 48 6C C8&8 32 D1 01 52 DR 48 6C C8 32 D1 01
00 00 OO0 OO0 00O Q0O QO OO0 OO QO QO 00 00 00 00 00
06 00 OO 10 OO OO OO OO0 &0 OO OO OO 10 OO0 18 OO
04 00 28 00 38 00 QO 00 20 Q0O OO 80O 00 00 00O 0O
00 Oe 00 00 0O Q0O QO 00 02 Q0 0O 00 00 00 00

00

o 1 2 3 4 5 & 7 g8 8 B B C D E F

04 00 FEIEENcc co oo 30 00 02 oo 65 00 78 00

T
< 0

06

a7 oo 00 00 00 OO0 00 00 00 00 00

68

rJH1E2H
rJH1EZ2H

rJH1EZH
rJH1EZR

The recycle bin entry appears at 0x1268576 whereas the deleted folder entry appears at
0x126AD9C.

4.5.7 Shift+ Deleting a folder

For this scenario, same folder that was used for delete folder scenario is renamed as
‘shift_experiment’ is copied to the ReFS drive and same image file ‘shift lamp.jpg’ is placed
inside it. This folder is then shift deleted (permanent delete). By shift delete this folder does

not goes to the recycle bin. It is permanently deleted. Checking out the metadata changes:

- folder - oS INVErT selectior
(-' - T r ThisPC » ReF5(R:) » shift_experiment

'~ Eavorites Marme Date modified Type Size

B Desktop = shift_lamp.jpg 6/30/2016 7:04 PM JPEG image 113 KB

B MNrwnlnade

$130 attribute is present at offset 0x1300234 (highlighted in purple) along with the
permanently deleted folder name (highlighted in pink) and MACE times (highlighted in
orange), as shown below:

69

Offset 0 1 2 3 ¢4 5 6 7 &8 8 A B CDE F [
0013001F0 00 00 00 00
001300200 E8 00 00 00
001300210 78 02 00 00
001300220 00 00 28 00
001300230 90 00 00 0O
001300240 00 00 00 00
001300250 40 02 01 00
001300260 70 00 00 0O
001300270 00 00 00 0O
001300280 00 00 00 0O
001300290 00 00 00 00
0013002A0 00 00 00 00
001300280 00 00 00 0O
0013002C0 00 00 00 0O
0013002D0 00 00 00 0O
0013002E0 00 00 20 00
0013002F0 38 00 00 00
001300300 OC 00 01 00
WLEELLEELEMID: DS D1 01 39 17 CL 96 D6 DS DL 01 33 17 CL 96
001300330 DEEEREEEEYoo oo 00 00 00 0O 00 00 00 00 0O 00
001300340 00 00 00 00 00 00 0O 10 00 00 00 00 10 00 00 00
001300350 73 00 30 00 02 00 73 00 &8 00 63 00 &6 00 74 00
001300360 SF 00 65 00 78 00 70 00 &5 00 72 00 &9 00 €D 00
001300370 65 00 6E 00 74 00 00 00 0O 0O OO0 00 0O 00 00 OQ
001300380 00 00 00 00 OO0 OO 0O 00 00 00 OO0 00 00 00 00 00

Even after permanent deletion, the folder ‘shift_experiment’ appears in recycle bin entry’s

vicinity after 2826 bytes like it appeared in simple deletion scenario. It can be observed

below:
COff=zetc '_{bg A

001260550
001260560 X o0 H
001260570 LWE-NE FE C ¥ C
001260580
001260590
001260500 rOH1E2H rOH1IEZR
001260580 rJH1E2F rUHLEZR
0012605C0

70

Cffset o 1 2 3 4 5 & 7 &8 38 B B C I E F 1)
001262030 | 04 00 EEgblEEl@o0 C0 00 30 00 02 00 73 00 &8 00 0 2 h
00126ZDRO &9 00 &6 00 74 00 5F 00 &5 00 78 00 70 00 65 00 i £t e xp e
001262DB0 |72 00 &5 00 &0 00 65 00 6E 00 74 00 OO 00 00 00 T i me n €
001262DC0O | O7 OT7 00 OO 0O OO CO OO OO 00 QOO OO0 OO0 00 OO0 OO0
001262DD0
001262DEO
001262DF0 (OO0 OO 00 OO0 0O OO0 CO OO OO0 00 QOO0 00 OO0 00 00 OO0
OD126ZF00 100 00 00 10 00 00 a0 0o 00 00 00 00 an 0o 0o an

Another important change in simple deletion and permanent deletion is the presence of ‘38
00 48’ before permanently deleted folder name appears, while in simple deletion scenario
these bytes take the form 28 00 48’ (highlighted above in red for both scenarios). These
bytes point out the difference in simple deletion and permanent deletion.

In permanent deletion, there is no such block that shows the path of folder, time of deletion
of folder, folder size and name of folder that is deleted as in simple deletion scenario. From

this we can distinguish whether a folder has been deleted simply or permanently.

We see that even after permanent deletion folder name exist at backend which is of great
importance for forensic examiners because this can be used for gathering facts about deleted

folders.

4.6 Exploring deletion in ReFS in detail

In this scenario, file deletion is explored in detail and explained in tabular form. For this
scenario, different files are placed in ReFS drive to check their behavior. These files are first

simply deleted and then permanently deleted. The differences are as follows:

4.6.1 Deletion in image file
First file is a jpg image file named as ‘hello.jpg’. Following things were observed in the

hexadecimal of ReFS drive:

71

Metadata Filename
Block Offset [pefore deletion after simple deletion after permanent deletion
0x157709C hello.jpg hello.jpg 00 hello.jpg 00
0x157B09C hello.jpg hello.jpg 00 hello.jpg 00
0x157F0C4 ipg 00 ipg 00
0x15730C4 ipg 04
Ox 159001E File path after simple deletion

0x1580000 File contents

Table 4-8: Metadata changes after image deletion

Initially when the image is placed in drive, image metadata is found at first two offsets.

When it is simply deleted and sent to recycle bin third and fifth offsets are added. At third

offset cut out filename appears. Immediately above cut out filename ‘02 07’ bytes appear. At

fifth offset file path after deletion appears.

Finally when the image is deleted from recycle bin, fourth offset comes into play where cut

out filename appears. Before the file is permanently deleted, 56 bytes above the cut out

filename ‘04’ appears which was previously ‘00’ when the file was copied and even after

simple deletion.

File contents remain intact even after permanent deletion of file.

Off=set
Q001573050
Q01573060
001573070
Q01573080
Q01573080
Q015730R0
Q01573080
QQ015730C0
Q015730D0
Q015730EQ
Q0Q015730F0
Q001573100
001573110
001573120
Q01573130
Q01573140
Q001573150
Q01573160

0 1 2 3 & 5
01 00 00 00 00 00
00 00 00 00 0D 00
EEYoo 28 oo 18 oo
00 06 00 00 0D 0O
01 00 00 00 0D 00
00 00 00 00 00 00
38 04 00 00 10 0O
30 00 01 00 [6E 00
64 00 70 00 &7 00
00 00 00 00 10 01
00 00 00 00 00 00

20 00 00 0O 0O 0O
13 00 00 00 0O 00
Ch &7 00 00 00 0O
00 00 00 00 00 00
00 00 00 00 0O 00

&
00
oo
00
oo
oo
00
la
65
00
oo
00

00
oo
oo
00
oo

i
00
o0
00
oo
o0
00
oo
00
00
oo
00

8 h B C D E F

00 00 06 00 00 00 00 00 0O
00 @88 1F 55 2F 01 00 00 00
00 00 00 01 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 OO0 00 00 00 00

Eg

It might be noted here that even after permanent deletion file contents and deletion path still

remain at the same offsets and are not overwritten even when new files are placed in the

drive. File metadata at offset other than that which had been added when the file was

72

permanently deleted (0x15730C4), are overwritten when any other file is placed in drive. The

only trace of permanently deleted file exists at offset 0x15730C4 and deletion path at offset

0x159001E.

4.6.2 Deletion in txt file

Second file is a ‘txt’ file named as ‘index.txt’. Following things were observed in the

hexadecimal of ReFS drive:

Metadata Filename
Block Offset "hefore deletion | after simple deletion after permanent deletion
0x157709C index.txt index.txt 00 txt 04
0x157B09C index.txt index.txt 00 index.txt 00
0x157F09C index.txt index.txt 00 index.txt 00
0x15730C4 txt 00 txt 00
0x15B001E File path after simple deletion
0x15A0000 File contents

Table 4-9: Metadata changes after txt file deletion

The same offset (0x15730C4) where permanently deleted metadata of ‘hello.jpg’ existed has

now been overwritten and allocated to ‘index.txt” when index.txt has been simply deleted.

Offset
001573050
001573060
001573070
001573080
0015730890
001573020
00157T30B0
Q015730C0
001573000
0015730EQ
0015730F0
001573100
001573110
001573120
001573130
001573140
001573150
001573160

4]
01
00

00 |
00

01
00
38
30
74
00
00

20
14
DC
oo
[o]4}

1
00
00
00
08
00
00
04
00
00
00
00

00
oo
01
oo
[o]4}

2
00
00
28
00
00
00
00
o1
78
00
00

00
a4}
a4}
a4}
[o]4}

3
00
00
00
00
00
00
00
00
00
00
00

00
a4}
a4}
a4}
[o]4}

4
00
00
18
00
00
00
10
69
74
10
00

00
00
00
of

[814]

5
00
00
00
00
00
00
00
00
00
ol
00

00
00
00

[o14]

]
00
00
00
00
00
00
18
6E
00
00
00

00
00
00
00
00

7
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00

als}
a8
a0
a0
s}

9

08
iF
a0
a0
s}

L

Pals]
53
01
Qo
oo

73

=

Pals]
2F
Qo
Qo
oo

o

oo}
01
oo
oo
ols}

D E

oo}
oo
oo
oo
ols}

ols}
oo
oo
oo
oo

F

ols}
oo
oo
oo
oo

-/

After permanent deletion, metadata at first offset is modified. A section of filename is cut
out. Moreover the bytes ‘04’ appear at the same position as they appeared in ‘hello.jpg’
scenario. This signifies that these bytes change from ‘00’ to ‘04’ only when permanent
deletion occurs. Another important change is found where cut out filename appears bytes
‘48’ change to ‘40°’.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F e ~
001577050 |01 0O 00 00 00 00 00 0O 02 07 00 00 OO0 00 00 QO
001577060 |00 00 00 00 00 00 00 oo [@@foo oo 00 10 0O 18 0O E
oo1s577070 |[ffJoo 28 oo 18 oo oo oo 20 oo oo 20 oo oo oo co | ¢ €
001577080 |00 06 00 00 00 00 00 00 00
001577080 |01 00 00 00 00 00 00 00 00
0015770R0 |00 00 00 00 00 00 00 00 00
0015770B0 |38 04 00 00 10 00 16 00 00 | B {
0015770C0 |30 00 01 00 |69/ 00 6E 00 00 0 index
001577000 | [F4NG0NFENGEN T4 00|00 00 oo ElxE (
0015770E0 |00 00 00 00 10 01 00 00 00

Offset 0 1 2 3 4 5 € 7 8 9 BB C D E F & ~
001578010 01 00 00 00 00 00 00 00 02 07 00 00 00 00 00 00
001578020 00 00 00 00 00 00 00 00 40 00 00 00 10 00 18 00 e
001578030 [Elloo 28 0o 18 00 00 0o 20 00 0o 80 00 0o oo oo ¢ €
001578040 00 06 00 00 00 00 00 00 12 00 00 00 00 00 00 00
001578050 |01 00 00 00 00 00 00 00 02 07 00 00 00 00 00 00
001578060 00 00 00 00 00 00 00 oo [EEoo 0o 0o 10 00 18 00 E
001578070 00 00 28 00 20 00 00 00 20 00 00 80 00 00 00 00 (€
001578080 00 06 00 00 00 00 00 00 14 00 00 00 00 00 00 00
001578080 00 00 00 00 00 00 00 00 OC 00 12 00 [GSNGENEENGE in
oo1578040 | [640001E5160) 78001 2EN60) 7410078100/ 74 00 o0 oo ElEEIEET
00157B0B0 38 04 00 00 10 00 16 00 08 00 28 00 10 04 00 00 & {
0015780C0 |30 00 01 oo [68NOGNEENGDNE4006500 TEN002ENGE o0 ERldlEx
001578000 | [F4NGENTENGENTE 08 00 00 28 00 00 00 28 00 01 00 ENENE {
00157B0ED |00 00 00 00 10 01 00 00 10 01 00 00 02 00 00 00

4.6.3 Deletion in doc file

Third file is a ‘doc’ file named as ‘assignment.doc’. Following things were observed in the

drive:

74

Metadata Filename
Block Offset before after simple deletion after permanent deletion
deletion

0x157B09C | assignment.doc | assignment.doc 00 ment.doc 04
0x157F09C | assignhment.doc | assignment.doc 00 assignment.doc 00
0x15730A8 ment.doc 00 ment.doc 00
0x15770A8 ment.doc 00 ment.doc 00
0x130001E File path after simple deletion

0x1330000 File contents

Table 4-10: Metadata changes after doc file deletion

It was observed that the first two offsets are the same that appeared in ‘index.txt’ scenario,
which means that after permanent deletion of ‘index.txt’ that space is unallocated and is

overwritten when new files are placed in the drive.

At third and fourth offset that are added when file is simply deleted, cut out filename appears.
Above cut out filename *02 07’ appear. Also the byte ‘50’ is changed to ‘40’ after simple

deletion where cut out filename is found.

QOffset o 1 2 3 4 5 & 7
00157B0OS0
00157B060
00157BOTO
00157B0O8BO
00157B080
00157BOAO
00157BOBO
00157BOCO
00157B0ODO
00157BOEQ
00157BOFO

3 2 B C D E F e ~

CEffset o 1 2 3 4 5 & 7 g8 %8 A B C D E F £y = -
00157F050 |01 00 0O QO OO OO 0O Q0 02 O7 OO0 00 00 00 00 00
00157F060 | OO0 OO0 0O 0O OO0 00 00 00 |S@N00 00 00 10 00 18 00 E
00157F070 MOO 28 00 28 00 00 00 20 00 OO 80 OO OO0 0O 00 I [€
00157F080 |00 Oe 00 0O OO OO 0O 0O 15 00 OO0 00 00 00 00 00
00157F0S0 |00 OO0 0O 00 OO0 OO0 00 00 OC 00 1C 00 61 00 73 00 a s
Q0157FORD 73 00 €9 00 &7 00 €E 00 &D 00 &5 00 6E 00 74 00 s 1
00157F0BO | 2E 00 €4 00 6F 00 &3 00O 40 04 CO0 OO0 10 00 20 00 | . d
00157F0CO |08 00 30 00 10 04 00 00 30 00 01 00 ©1 00 73 0O 0
Q0157F0ODO 73 00 €9 00 &7 00 6E 00 &D 00 &5 00 ©E 00 74 00 s 1
00157FOED | 2E 00 &4 00 eF 00 &3 00 A8 00 00 00 28 00 01 00 d
Q00157F0OF0O OO0 OO0 0O 0O 10 01 0O 00 10 01 OO0 00 02 00 00 00

75

We can conclude based on the above scenarios that simple deletion cut shorts the file name in
resilient file system. File contents remain intact. After permanent deletion, one byte changes
to 04 and other changes to 40. Permanent deletion hides the file from file explorer and
recycle bin but the metadata of the file still exists at hexadecimal level. This is very helpful
for forensic examiners as deleted files can be easily recovered which would then help in

further examinations.

4.7 Exploring the trimming of filename after simple deletion

For this scenario a txt file’s name ‘beautiful.txt’ is repeatedly changed to check the cutting of
filename when simple deletion occurs and it is placed in ReFS drive. The data collected is

presented in tabular form as follows:

Filename Filename after simple deletion
b.txt Cut out filename does not exists
be.txt Cut out filename does not exists

bea.txt t
beau.txt xt

beaut.txt txt

beauti.txt xt

beautif.txt f.txt

beautiful.txt ful.txt
beautifullest.txt fullest.txt

Table 4-11: Filename trimming after simple deletion

When file with filename ‘beautiful .txt’ is placed in ReFS drive and simply deleted which
sends it to the recycle bin, the filename after deletion is cut short and appears as ‘ful.txt’.
More tests are performed by changing the number of alphabets in filename to check when the

filename is cut.

It is noted that when the file name comprises of one alphabet only ‘b.txt’, the cut out
filename does not come into play. In ReFS, when a file is placed in drive, the filename
appears in the metadata along with its duplicate, as discussed in the ‘.txt experiments’

section. It is this place where the cut out filename appears when file is deleted. In filename
76

that comprise one (b.txt) or two (be.txt) alphabets this duplicate name does not exists. Only
the filename appears.

When the number of alphabets is increased to three, it is noted that the cut out name starts to
appear. It must be noted here that this cut out name starts to appear from backwards (in the
descending order of the filename).

For ‘bea.txt’ after deletion ‘t” appears above filename. This ‘t’ is from the txt present at the
end of filename.

For ‘beau.txt’ after deletion ‘xt’ appears. For ‘beautif.txt’ after deletion ‘f.txt’ appears.

Increasing alphabets in the filename and then deleting the file cut shorts the filename and
increases the alphabets in the cut out filename. For ‘beautifullest.txt’ after deletion

“fullest.txt’ appears.

Cffset o 1 2 3 4 5 & T g 8 A B C D E F £% =
001eB871F0 1E 00 00 OO OO0 OO OO0 OO OO0 00 0O 00 OO0 00 00 00
001687200 OC 00 0& OO0 @2 00 2ZE OO0 74 00 T8 00 T4 00 00 OO0 b.T=xTCTC

001687210 (30 04 00 OO 10 OO0 OE OO0 ©O8 00 20 00 10 04 00 0O O

001687220 (30 00 01 00 @2 00 2E 00 T4 00 78 00 74 Q0 00 00 O b.T=xET
001687230 48 00 00 OO 28 00 O1 00 OO OO OO OO0 10 01 OO0 OO ~ [
001657240 10 01 00 OO 02 OO OO0 OO OO 00 0O OO0 OO 00 OO0 OO0

Above screenshot is when ‘b.txt’ is placed in ReFS drive.

Cffset o 1 2 3 F £
00161B1F0 1E 00 OO0 0O 00
00161B200 (02 07 00 00 [«laEil o0 _

001616210 |30 O4 00 OO0 10 OO0 OE 00 oOC 00 20 00 10 04 00 00 O

00161B220 |30 00 01 OO EE 00 2E 00 T4 00 T8 00 T4 00 OO CO O . £tx Tt
001616230 |A8 OO 00 OO0 28 00 01 00 OO OO OO0 OO0 10 01 OO0 00 | ~ [
001616240 |10 O1 00 OO0 ©2 00 OO0 OO0 OO OO OO0 OO OO0 OO0 00 00

Above screenshot is when ‘b.txt’ is deleted from ReFS drive. It exists in recycle bin.

77

Offset 0 1 2 3 4 5 6 7 & 9 A B C D E F [h=
001527180 01 00 00 00 00 00 OO 00

001527140 |00 OO0 OO0 OO0 00 OO0 OO0 00 i L Xt
001527180 & 04 00 00 10 OO0 16 00 OC OO0 28 0O 10 04 00 OO0 | 8 [
0015271C0 30 00 01 00 @2 00 65 00 &1 00O T3 00 74 00 2ZE 00 O beant.
001527100 [f4 OO T8 00 74 00 00 00 g 00 00 00 28 00 01 00 E© X € [

Q0015271EQ |00 OO0 OO OO 10 ©O1 OO 00 10 01 OO0 OO0 02 00 OO0 00
Q015271F0 (00 OO0 OO0 OO0 OO0 OO0 OO0 00 OO0 00 00 00 00 00 00 00

Cff=et
00168B240
00168B250
00168B260
00168B270

4.8 1GB FILE

Until now files with small sizes have been explored. In this section we look at how resilient
file system deals with large files and what is its format of storing large files.

NTFS master file table stores data of small files and directories typically 512 bytes or
smaller, within the master file table record and labels them as resident data. Files larger than
this size are non-resident and possess data run(s) in them. In this scenario we check whether

ReFS has data runs or not or resident and non-resident attributes.

An mp4 file ‘zootopia.mp4’ of size 1.65GB is placed in the drive. The metadata as seen

through WinHex is as follows:

Offset 0D 1 2 3 4 5 6 7 & 3 BB CODE F ~
001687380 |00 00 00 00 00 00 00 00 OC 00 18 00 [7A 00 &F 00 z o
001627350 6F 0O 74 00 6F 00 70 00 69 00 61 00 2E 00 6D 00 ot opdia .m
001687320 |[70 00 34 00 00 E0 FF FF 40 04 00 00 10 00 1C 00 | p & ayyé
001687380 |08 00 30 00 10 04 00 00 30 00 01 00 FA 00 6F 08 o o 2%
0016875C0 6F DO 74 00 6F 00 70 00 69 00 61 00 2E 00 6D 00 ot opia .m
001687300 |70 00 34 00 00 00 00 00 AS 00 00 00 28 00 01 00 P 4 |
D016873E0 |00 00 00 00 10 01 00 00 10 01 00 00 02 00 00 00
D016873F0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
(LECERZOLM: 23 C5 FF 45 E2 D1 01 53 23 CB FF 45 E2 D1 01
LWUARSPESMss 23 CE FF 45 E2 D1 01 53 23 CB FF 45 E2 D1 01
001687420 |21 00 00 00 00 00 00 00 00 06 00 OO 00 00 00 0O | !

001687430 |20 00 00 00 00 00 00 00 |88 1F 59 2F 01 00 00 00 s ¥/
001687440 D7 53 CA &3 00 00 00 00 00 00 CE &3 00 00 00 00 =sEi Ei
001687450 |00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00
001687460 |00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00

78

The file ‘zootopia.mp4’ is found in the same format as other files (small size files) were
found. Filename and its duplicate are found at offset 0x168738C. MACE times are
highlighted in orange whereas file permissions are highlighted in green. ‘D7 53 CA 69’ is
actual file size in Little Endian. We can calculate actual file size in bytes by converting ‘D7
53 CA 69’ to Big Endian ‘69 CA 53 D7’ and finally converting it in decimal, we get
‘1774867415 bytes. ‘1774867415’ bytes are equal to 1.65GB.

Further searching for the file content pointer, we also find file size on disk. Highlighted in
yellow 2C A7 01’ is the file size on disk. Calculating file size on disk is different than actual
file size because it is multiplied by 16,384. 16,384 is multiplied because all the metadata is
stored in blocks of 16KB.

In the metadata block of the file, file size on disk is 2C A7 01 in Little Endian.

e Converting 2C A7 01 to Big Endian, we get 01 A7 2C

e 1A72C hexadecimal is equal to 108332 in decimal

e Multiplying 108332 with 16,384 (because all the metadata is stored in blocks of
16KB), we get 1,774,911,488.

1,774,911,488 bytes is the file size on disk. This also makes 1.65GB.

Offset o 1 2 3 4 5 & 7 § 3 B B C D E F ~
0016875C0O 00 0O QO OB OO OO0 QO OO0 30 00 OO0 OO 10 00 10 00 0
001687500 OO OO0 10 OO0 20 00 QOO OO OO OO OO0 OO 00 0O 00 00
0016873EQ 2C A7 01 00 OO OO QOO OO OO DO O3 OO OO0 OO OO0 OO0 ,§ B
0016875F0 00 OO OO O8 OO OO0 QOO OO OO OO OO0 OO 00 00 00 00
001687600 OO0 OO OO OO OO OO0 €GO OO OO OO OO0 OO0 00 00 00 00
001687610 (00 OO OO OO 20 00 €O OO 20 0O OO0 OO 80 0O 0O 0O €

In the metadata block above, file content pointer is 00 DO 03 in Little Endian.

e Converting 00 DO 03 to Big Endian, we get 03 DO 00

e 3D000 hexadecimal is equal to 249856 in decimal

e Multiplying 249856 with 16,384 (because all the metadata is stored in blocks of
16KB), we get 4093640704

79

Converting 4093640704 decimal to hexadecimal, we get F4000000
F4000000 is the offset of the file content.

Now looking at the file content area at offset 0xF4000000 in the editor:

Offset
OF3FFFFEQ
OF3FFFFFOQ
0F4000000
0F2000010
0F4000020
0F4000030
0F2000040
0F4000050
0F4000060
0F2000070
0F4000080
0F4000090
0F20000A0
0F4000080
0F40000C0
0F20000D0
0F40000EQ
0F40000F0
0F4000100
0F2000110
0F4000120
0F4000130
0F4000140
0F4000150
0F40001860
0F2000170
0F4000180
0F4000190
0F20001A0
0F40001B0
0F40001C0
0F20001D0
0F40001E0
0F40001F0

The first 12 bytes at 0xF4000000 show °...ftypisom’ which is file signature and describes that
it is an 1ISO Base Media file (MPEG-4) v1. ISO base media file defines a general structure for

00
Q0

&9
a0
oo
00
a0
Q0
00
a0
Q0
74
00
Q0
00
00
a7
oo
00
&D
oo
55
Q0
oo
00
64
24
00
01
€4
31
a0
Q0

00
Q0

73
56
oo
€3
a0
[s]s]
00
a0
[s]s]
&8
00
[s]s]
00
00
a0
oo
63
&4
oo
ca
Qo
oo
00
a0
&4
00
a0
[s]s]
00
a0
oo

00
00
o0
6F
BF
o0
SF
00
00
00
00
00
&8
00
00
00
00
00
o0
S5F
&3
o0
00
00
o0
25
00
63
00
25
00
00
00
48

00
00
&9
61
0o
oo
01
0o
0o
00
0o
74
00
00
0o
00
00
0o
oo
00
&D
oo
68
[sls}
&F
68
0o
ic
oc
6C
01
01
0o
0o

0o
00
73
78
ao
[sli}
00
ao
oo
0o
ao
72
oo
63
oo
oo
oo
oo
[sli}
o1
64
[sli}
64
oo
48
00
ao
64
75
ao
oo
oo
aT
oo

c
00
o0
oo
6D
6D
oo
00
oo
oo
00
oo
oo
00
00
oo
00
40
65
oo
00
oo
05
00
oo
64
14
oo
66
20
a7
87
00
20
oo

D E
00
00
0z
34
63
03
00
0o
0o
00
0o
0o
00
00
0o
00
00
74
oo
EE]
[sls}
0z
00
[sls}
€5
€D
0o
0o
00
74
76
00
48
0o

ftypisonm
iscmisoZavcimpdl
Vinmoov lmvhd

e

elst
oz
mdia mdhd
LE]
-hdlr
vide
VideoHandler
£ Twinf vmh

Ui

d

&dinf dref
url
£“ssthl —sts
*avc

€ H

time-based multimedia files such as video and audio. [21]

Offset a 1 2 3 4 5 & 7 & 9 A B C D E F
15DCA5260 03 00 00 03 00 OO0 03 00 00 03 00 00 03 00 00 03
15DCA5270 00 00 03 00 00 O3 00 OO0 O3 00 00 03 02 OE 21 11 g
15DCAS280 45 00 14 S0 01 47 21 11 45 00 14 50 01 47 00 00 E P G!' E P G
15DCA5290 00 32 01 9F F6 74 43 Fé6 FF 00 00 03 00 00 03 00 2 Y6tCoy
15DCAS2R0 00 03 00 00 03 00 OO O3 Q0 00 03 00 00 O3 00 00
15DCA52B0 03 00 00 03 00 00 03 00 00 03 00 00 03 00 00 03
15DCAS52C0O 00 00 04 SC 21 11 45 00 14 50 01 47 21 11 45 00 ! E P G!' E
15DCA52D0 14 50 01 47 00 00 00 32 01 SF FE &A 43 F& FF 00 EG 2 ¥ejcay
150DCR5ZEC0 00 03 00 00 ©3 00 00 O3 00 00 03 00 00 03 00 00
150DCR52F0 03 00 00 03 00 00 03 00 OO0 03 00 00 03 00 00 03
150CR5300 OO0 00 03 00 00 03 00 OO0 O4 SD 21 11 45 00 14 50 INENE
15DCAS5310 01 47 21 11 45 00 14 50 01 47 00 00 00 3B 41 9B G!' E P G Phoy
15DCAS5320 FB 35 08 2D 93 29 82 89 87 ED FF FE AS 96 00 00 @5 -"),%#iyb®-
15DCAS5330 03 00 00 03 00 OO0 03 OO0 OO0 03 00 00 03 00 00 03
15DCA5340 00 00 03 00 OO0 O3 00 OO0 O3 00 00 03 00 00 O3 00
15DCAS5350 00 03 00 00 O3 00 OO0 OD ©08 21 11 45 00 14 50 01 g =
15DCAS5360 47 21 11 45 00 14 50 01 47 00 00 00 32 01 SE 1A G! E P G 2z
15DCA5370 6A 43 F6 FF 00 00 03 00 00 03 00 00 03 00 00 03 JC&¥
150DCA5380 00 00 03 00 00 03 00 OO0 O3 00 00 03 00 00 03 00
150CR5390 00 03 00 00 03 00 00 O3 OO0 00 03 00 00 04 9C 21 ®!
15DCR53AR0 11 45 00 14 50 01 47 21 11 45 00 14 S0 01 47 21 E PG'E P G!
15DCAS3B0 11 45 00 14 50 01 47 21 11 45 00 14 50 01 47 21 E BEG! E F G!
15DCAS3CO 11 45 00 14 50 01 47 21 11 45 00 14 50 01 47 21 E PG'E P G!
15DCAS3D0 |11 45 00 14 50 01 47 Ofg 00 00 00 00 00 00 OO0 00 E PG
15DCAS3EQ |00 00 00 00 OO0 OO0 OO0 OO0 OO0 00 00 00 00 OO0 00 00
15DCAS3FO |00 00 00 00 OO OO0 00 OO0 ©QO0 00 00 00 00 OO0 00 00
15DCAS400 |00 00 00 00 OO OO OO0 OO0 ©QO0 00 00 00 00 OO0 00 00

While looking at file metadata, we observe that there is no data run or resident and non-
resident attribute type notion in ReFS. All file data is located at file content pointer location.
The end of ‘zootopia.mp4’ is found at 0x15SDCAS5398. Subtracting 15DCA53D7 from
F4000000, we get 69CA53D7 which when converted to decimal becomes 1,774,867,415
bytes. This is equal to 1.65GB. From here it is proved that in resilient file system all file
content is located at one location and it is not scattered. This avoids overhead which is

created while looking for file data in NTFS when data is non-resident.

4.9 Comparison of ReFS artifacts with NTFS artifacts

The following table provides a comprehensive comparison of the artifacts of resilient file
system that have been observed in this research with those of the artifacts of new technology

file system that have been discussed time and again.

81

Sr. No.

ReFS Artifacts

NTFS Artifacts

NO MFT. ReFS has its own
mechanism of storing file
metadata. Master file table
like structure is not present in
refs.

Master file table is the chief
structure that stores file metadata

2 All file attributes not present | A set of seventeen well defined and
in ReFS that are present in well researched attributes exist in
NTFS. Five attributes have NTFS.
been observed during this
research.

3 ReFsS is not bootable. NTFS is bootable

4 Log structured file system Log structure is implemented that
was rejected in ReFS case. updates metadata in-place and
ReFS uses an allocate on keeps a journal or log of
write strategy that never transactions that notes every change
updates metadata in-place but | that takes place in the metadata.
writes it to a new location. Main disadvantage of journaling is

that writes can get randomized and
torn write can occur.

5 Check disk is not present in | Check disk is used to fix disk
ReFS because repair (if corruptions.
needed) occurs on-the-fly.

6 Designed to handle very Not specifically designed for cloud
large volumes upto 1 storage but is or can be used for it
yottabyte and accommodate
cloud storage

7 File system recognition No such structure is present
structure is present whose
main goal is to identify
unrecognized file system

8 No data run or non- resident | Large files (more than 512 bytes)
data in ReFS. Large file’s are non-resident and contain data
content is present at the same | runs in them that point to clusters
location. This avoids where the remaining file data is
overhead which occurs in present
non-resident case.

9 Simple deletion trims the Simple deletion updates the flag in

filename. File is fully
recoverable

metadata of file. File is fully
recoverable

82

Chapter 5

Conclusion And Future Work

5.1 Overview

Forensic analysis has been performed in this thesis which is a branch of digital forensics that
examines digital information found in computers and digital storage media. The aim of
forensic analysis is to identify, preserve, recover, analyze and present facts and opinions
about the digital information in a forensically sound manner without destroying evidence.

Present day involves a variety of computer crimes which are investigated by taking into

consideration forensic analysis of that specific system.

5.2 Overview of Research

This research is about forensic analysis of a file system that is relatively new in the file
system arena. Forensic facts related to it have not been discovered yet therefore there is a
need to conduct analysis on it so that it’s working and structure is identified. This new file
system called Resilient file system abbreviated as ReFS has been built on NTFS. In other

words it uses NTFS as a base. This gives us some help during its analysis.

5.3 Findings

The research carried out on resilient file system in Windows Server 2012 R2 gives us a basic
view of the file system’s underlying features. Moreover the scenarios that have been taken
into consideration during the research give us the working of resilient file system when
different operations are performed on file. Deleted files can be easily recovered, even when

they are permanently deleted in resilient file system as they exist at hexadecimal level.

83

5.4 Future Work

This thesis focuses on the underlying structure and working of resilient file system. Behavior
of applications on resilient file system has not been analyzed in it. Applications such as the
working of antivirus should be explored in resilient file system and its results should be
compared with NTFS.

5.5 Conclusion

Forensic examiners have to be aware of every possible area where crucial information can be
hidden in order to recover and investigate digital evidence to be used in court. The scope of a
forensic analysis can vary from simple information retrieval to reconstructing a series of
events. And for all these investigation and further examinations, forensic investigators should
know the working and structure of the file system in the computer or digital media that is

under consideration.

84

Bibliography

[1] Steven Sinofsky, “Building the next generation file system for Windows: ReFS”, 17
January 2012, http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-

file-system-for-windows-refs.aspx

[2] “Resilient file system™ http://msdn.microsoft.com/en-
us/library/windows/desktop/dn323741%28v=vs.85%?29.aspx

[3] “Resilient File System Overview”, 1 November 2013, http://technet.microsoft.com/en-
us/library/hh831724.aspx

[4] http://en.wikipedia.org/wiki/ZFS#cite_note-endtoend-18

[5] Bonwick, “ZFS End-to-End Data Integrity”, 08 Dec 2005,

https://blogs.oracle.com/bonwick/entry/zfs_end _to_end_data

[6] Martin Lucas, “Windows Server 2012: Does ReFS replace NTFS? When should T use
it?”, 1 Jan 2013, http://blogs.technet.com/b/askpfeplat/archive/2013/01/02/windows-server-
2012-does-refs-replace-ntfs-when-should-i-use-it.aspx

[7] Ken Mizota, “Windows Resilient File System Forensics”, 22 August 2013, http://encase-
forensic-blog.guidancesoftware.com/2013/08/windows-resilient-file-system-forensics.html

[8] Liu Naiqi, Wang Zhongshan, HaoYujie, QinKe, “Computer Forensics Research and

Implementation Based on NTFS File System”,ISECS International Colloquium on
Computing, Communication, Control, and Management, 2008

85

http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-file-system-for-windows-refs.aspx
http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-file-system-for-windows-refs.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn323741%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn323741%28v=vs.85%29.aspx
http://technet.microsoft.com/en-us/library/hh831724.aspx
http://technet.microsoft.com/en-us/library/hh831724.aspx
http://en.wikipedia.org/wiki/ZFS#cite_note-endtoend-18
https://blogs.oracle.com/bonwick/entry/zfs_end_to_end_data
http://blogs.technet.com/b/askpfeplat/archive/2013/01/02/windows-server-2012-does-refs-replace-ntfs-when-should-i-use-it.aspx
http://blogs.technet.com/b/askpfeplat/archive/2013/01/02/windows-server-2012-does-refs-replace-ntfs-when-should-i-use-it.aspx
http://encase-forensic-blog.guidancesoftware.com/2013/08/windows-resilient-file-system-forensics.html
http://encase-forensic-blog.guidancesoftware.com/2013/08/windows-resilient-file-system-forensics.html

[9] Jeremy Davis, Joe MacLean, David Dampier, “Methods of Information Hiding and
Detection in File Systems”, Fifth International Workshop on Systematic Approaches to

Digital Forensic Engineering, pp. 1-4, 2010

[10] Brian Carrier, “Digital investigation foundations”, in Filesystem forensic analysis, One
Lake Street, Upper Saddle River, NJ, 2005, Chapter 1, Part I:Foundations, pp. 19-20

[11] Byeongyeong Yoo, Jungheum Park,JewanBang, Sangjin Lee, “A Study on a Carving
Method for Deleted NTFSCompressed Files”, IEEE, 2010

[12] http://thestarman.pcministry.com/asm/mbr/NTFSbrHexEd.htm

[13] https://www.google.com/patents/US8200895

[14] https://msdn.microsoft.com/en-
gb/library/windows/desktop/dd442652%28v=vs.85%29.aspx

[15] https://www.fireeye.com/blog/threat-research/2012/09/striking-gold-incident-response-
ntfs-indx-buffers-part-1.html

[16] “Security Identifier”, https://en.wikipedia.org/wiki/Security_Identifier
[17] https://technet.microsoft.com/en-us/library/hh831724.aspx

[18] https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-
system-for-windows-refs/

[19] Ray Zadjmool, “Hidden Threat: Alternate Data Streams”, 24 March 2004,
http://www.windowsecurity.com/articles-

tutorials/windows_os_security/Alternate_Data_Streams.html

[20] http://www.osforensics.com/fags-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-
files.html

[21] https://en.wikipedia.org/wiki/ISO_base_media_file_format
86

http://thestarman.pcministry.com/asm/mbr/NTFSbrHexEd.htm
https://www.google.com/patents/US8200895
https://msdn.microsoft.com/en-gb/library/windows/desktop/dd442652%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-gb/library/windows/desktop/dd442652%28v=vs.85%29.aspx
https://www.fireeye.com/blog/threat-research/2012/09/striking-gold-incident-response-ntfs-indx-buffers-part-1.html
https://www.fireeye.com/blog/threat-research/2012/09/striking-gold-incident-response-ntfs-indx-buffers-part-1.html
https://en.wikipedia.org/wiki/Security_Identifier
https://technet.microsoft.com/en-us/library/hh831724.aspx
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
http://www.windowsecurity.com/articles-tutorials/windows_os_security/Alternate_Data_Streams.html
http://www.windowsecurity.com/articles-tutorials/windows_os_security/Alternate_Data_Streams.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
https://en.wikipedia.org/wiki/ISO_base_media_file_format

