

FORENSIC ANALYSIS OF RESILIENT FILE

SYSTEM IN WINDOWS SERVER 2012

By

Aemun Iqbal

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Rawalpindi in partial fulfillment

of the requirements for the degree of MS in Information Security

AUGUST 2016

SUPERVISOR CERTIFICATE

It is to certify that the final copy of MS thesis has been evaluated by me,

found as per the specified format and error free.

Dated: ________________ ______________________

Thesis Supervisor

(Col Dr Imran Rashid)

I

ABSTRACT

File system by-large stores a wealth of information. It possesses numerous areas where

sensitive information can be hidden or encrypted by criminals related to their crime so that

when they are caught there is no information that can be used against them. There are many

areas in a file system where information can be hidden. In order to find these hidden areas,

one must know the working and layout of the file system. This working and layout can be

known by conducting forensic analysis of the file system under consideration. Forensic

analysis offers the potential for a more comprehensive assessment of file system. This

thesis provides an in-depth analysis of the newly proposed Resilient File system. Resilient

file system has not been analyzed forensically for its available artifacts and other

modifications in its build up. Therefore it will be analyzed forensically and the gathered

artifacts will provide sound knowledge of all the new things resilient file system is offering

and the major changes that have been done in it.

II

DECLARATION

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

III

DEDICATION

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my loving parents, sweet husband and teachers who supported and

encouraged me at each step throughout my struggle.

IV

ACKNOWLEDGMENT

I am highly thankful to Allah for giving me the strength, guidance and blessing in

completing this thesis. I am highly indebted to my parents who constantly pushed and

encouraged me to achieve what I have always aspired. Their continuous guidance and

prayers helped me climb these steep steps and have made me what I am today. I am also

thankful to my husband who always found solutions to my problems and never discouraged

or stopped me from accomplishing what I have always dreamed to accomplish and making

it easy for me every time. He has supported me throughout this endeavor. I would like to

convey my gratitude to my supervisor, Dr. Imran Rashid, for his supervision and support. I

am thankful to Asst Prof Mian Muhammad Waseem Iqbal. His invaluable help in the form

of constructive comments, guidance and suggestions throughout the thesis work kept me

motivated and helped me great deal in completing this research.

V

TABLE OF CONTENTS

1 INTRODUCTION

 Overview .. 1 1.1

 Motivation and Problem Statement ... 2 1.2

 Objectives ... 2 1.3

 Thesis Organization ... 2 1.4

2 LITERATURE REVIEW

 Introduction .. 4 2.1

 Level of research already carried out on the proposed topic 4 2.2

 Summary .. 7 2.3

3 RESILIENT FILE SYSTEM

 Introduction .. 8 3.1

 Getting file system info using „fsutil‟ command ... 8 3.2

 Master Boot Record (MBR) .. 10 3.3

 Volume boot record (VBR) ... 12 3.4

3.4.1 NTFS VBR .. 13

3.4.2 ReFS VBR .. 14

3.4.2.1 File System Recognition Structure FSRS ... 15

 Master File Table ... 17 3.5

3.5.1 ReFS Master File Table ... 17

3.5.2 NTFS Master File Table .. 17

 Attributes .. 18 3.6

3.6.1 ReFS attributes ... 18

3.6.1.1 File System Metadata .. 18

3.6.1.2 Security Descriptor Stream ... 19

3.6.1.3 Volume Direct IO File ... 20

3.6.1.4 $I30 Index Attribute .. 21

VI

3.6.1.5 Upcase Table ... 21

3.6.2 NTFS Attributes ... 22

 Security identifier ... 23 3.7

3.7.1 Security Identifier in ReFS .. 23

3.7.2 Security Identifier in NTFS ... 24

4 TEST CASE SCENARIOS FOR ARTIFACTS GATHERING

 Introduction .. 25 4.1

 .txt Scenarios .. 25 4.2

4.2.1 File creation .. 25

4.2.2 Permissions changed .. 27

4.2.3 Modifying content .. 28

4.2.4 Renaming txt file .. 31

4.2.5 Copying txt file .. 32

4.2.6 Deleting txt file .. 34

4.2.7 SHIFT + Delete txt file (permanent delete) .. 36

4.2.8 Scenario analysis for .txt file ... 39

 Alternate data stream ... 40 4.3

4.3.1 ADS in the form of text ... 41

4.3.1.1 Scenario analysis for ADS in the form of text .. 46

4.3.2 ADS in the form of executable .. 46

4.3.3 ADS in the form of image file ... 47

 .JPG scenarios .. 48 4.4

4.4.1 Copying jpg file ... 48

4.4.2 Renaming image file .. 50

4.4.3 Permissions changed .. 51

4.4.4 Deleting jpg file ... 52

4.4.5 SHIFT + Delete jpg file (permanent delete) ... 53

VII

4.4.6 Scenario analysis for jpg file ... 54

 Folder scenarios ... 55 4.5

4.5.1 Folder creation ... 55

4.5.2 Renaming folder ... 57

4.5.3 Permissions changed .. 59

4.5.4 Adding content ... 61

4.5.5 Compressing folder .. 65

4.5.6 Deleting folder ... 67

4.5.7 Shift+ Deleting a folder ... 69

 Exploring deletion in ReFS in detail ... 71 4.6

4.6.1 Deletion in image file... 71

4.6.2 Deletion in txt file .. 73

4.6.3 Deletion in doc file ... 74

 Exploring the trimming of filename after simple deletion.................................... 76 4.7

 1GB FILE ... 78 4.8

4.9 Comparison of ReFS artifacts with NTFS artifacts………………...…………..81

5 CONCLUSION AND FUTURE WORK

 Overview .. 83 5.1

 Overview of Research .. 83 5.2

 Findings .. 83 5.3

 Future Work ... 84 5.4

 Conclusion .. 84 5.5

BIBLIOGRAPHY……………………………………………………..…………….86

VIII

LIST OF TABLES

Table 3-1 : File system info using fsutil commands .. 9

Table 3-2: FSRS parts in Microsoft documentation ... 16

Table 4-1: Scenario analysis for .txt file .. 40

Table 4-2: Scenario analysis for ADS in the form of text ... 46

Table 4-3: Scenario analysis for jpg file .. 55

Table 4-4: Metadata offsets for folders .. 56

Table 4-5: Metadata changes for folders after renaming ... 58

Table 4-6: Metadata changes for folders after permission change .. 60

Table 4-7:Metadata changes after content addition in folder .. 62

Table 4-8: Metadata changes after image deletion .. 72

Table 4-9: Metadata changes after txt file deletion ... 73

Table 4-10: Metadata changes after doc file deletion .. 75

Table 4-11: Filename trimming after simple deletion ... 76

1

Introduction

 Overview 1.1

A file system is the fundamental structure used by a computer for consolidating data on a

hard disk. Before the installation of different programs and important data storage on the

new hard disk, user has to first partition and format the disk using a file system. File system

tells the storage area how the information will be stored and retrieved. Information would

be large chunk of disorganized data without file system as there would be no system to tell

where one piece of information ends and where the new one starts. Therefore file systems

hold prime importance in computer forensics perspective as it stores all the information and

the ways through which information can be addressed.

Windows provides three file system options, namely: NTFS, FAT32, and the older and

rarely-used FAT (also known as FAT16). To date, NTFS is the most advanced feature-rich

and widely used file system. With the advent of Windows 8, Microsoft engineered a new

file system ReFS (Resilient File System), codenamed "Protogon", which makes use of

NTFS as a base but at the same time, is built for new generation of storage technologies

and circumstances. This new file system facilitates cloud storage the most as it ensures data

and scales efficiently to handle data sets far larger than NTFS. The platform server used by

resilient file system is Windows Server 2012. Windows Server 2012, codenamed

"Windows Server 8", is the sixth release of Windows Server. It is the server version of

Windows 8 and succeeds Windows Server 2008 R2. [1]

With the growing trends in technology, this new file system will soon be implemented in

cloud environments as it is specifically intended for managing extremely large data

volumes and its main focus is on data integrity. Therefore it is of fundamental importance

to analyze it forensically so that storage areas can be identified, deleted files recovered and

images carved.

Chapter 1

2

This research will make an endeavor to conduct detailed forensic analysis of resilient file

system designed for Windows 8 and released in Windows Server 2012. The important

artifacts and useful findings gathered during study of this new generation file system will

further help in malware detection and presentation of digital evidence in court of law

during forensic investigations.

 Motivation and Problem Statement 1.2

Very less information is available presently related to the newly proposed resilient file

system. This information lists only certain features that the file system is offering that do

not include in-depth analysis of the structure and working of file system. The

manufacturers of this file system have only underlined major changes which this file

system encompasses. Moreover resilient file system has not been analyzed forensically for

its available artifacts and other modifications in its build up. Forensic analysis offers the

potential for a more comprehensive assessment of file system. Therefore resilient file

system will be analyzed forensically and the gathered artifacts will be compared to new

technology file system to have sound knowledge of all the new things resilient file system

is offering and the major changes that have been done in it.

 Objectives 1.3

The main objectives of thesis are:

 Analysis of Resilient file system – its working and structure

 Forensically available artifacts in Resilient file system

 Comparison of forensically available artifacts of resilient file system with those of

NTFS

 Thesis Organization 1.4

The purpose of this research is to elaborate the working and structure of resilient file

system. Information gathered during this research will be used by forensic investigators for

collection of digital evidence.

3

Chapter 2 will discuss the literature review. This chapter carries the information that helps

in understanding the underlying features this file system contains.

Chapter 3 contains the structure of resilient file system. What makes the file system base

and attributes that are included in this file system.

Chapter 4 discusses all the scenarios through which working of resilient file system was

uncovered. Various operations, such as copy, rename, modify, etc are applied to different

files to know the way resilient file system works with files.

Chapter 5 concludes this research thesis with the recommendations for future work.

4

Literature Review

2

 Introduction 2.1

Forensic analysis provides an in-depth view of the system under consideration. This

analysis is very helpful for digital forensic examiners as it helps in extracting information

from computers and compromised systems. This chapter provides information on the level

of research that has already been carried out on the proposed topic.

 Level of research already carried out on the proposed topic 2.2

 Microsoft‟s official site [2] lists Resilient File System under the New Features and

Enhancements section in Windows 8 and Windows Server 2012 cookbook. The key

features mentioned by Microsoft for ReFS are: integrity, availability, scalability,

app compatibility and proactive error identification (data integrity scanner called

scrubber).

 Resilient file system has not been developed from scratch, but it has been

reimagined and built on the parts of NTFS. ReFS implements the file system

interface (read, write, open, close, change notification, etc.), maintains in-memory

file and volume state, enforces security, and maintains memory caching and

synchronization for file data like NTFS. This reuse ensures a high degree of

compatibility with the features of NTFS that are being carried forward.

Underneath this reused portion, the NTFS version of the code-base uses a newly

architected engine that implements on-disk structures such as the Master File Table

(MFT) to represent files and directories. ReFS combines this reused code with a

brand-new engine, where a significant portion of the innovation behind ReFS lies.

[1] Graphically, it looks like this:

Chapter 2

Chapter 2

5

 Log structured file system implementation was rejected for ReFS. This approach is

unsuitable for the type of general-purpose file system required by Windows. NTFS

relies on a journal of transactions to ensure consistency on the disk. That approach

updates metadata in-place on the disk and uses a journal on the side to keep track of

changes that can be rolled back on errors and during recovery from a power loss.

The main disadvantages of a journaling system are that writes can get randomized

and, more importantly, the act of updating the disk can corrupt previously written

metadata if power is lost at the time of the write, a problem commonly known as

torn write.

To maximize reliability and eliminate torn writes, an allocate-on-write approach has

been used, that never updates metadata in-place, but rather writes it to a different

location.

 Data integrity is provided by creating checksums. All ReFS metadata is check-

summed at the level of a B+ tree page, and the checksum is stored independently

from the page itself. This allows ReFS to detect all forms of disk corruption,

including lost and misdirected.

When the metadata for a ReFS directory is corrupted, subfolders and their

associated files are automatically recovered. ReFS identifies and recovers the files

while ReFS remains online. Unrecoverable corruption of the ReFS directory

metadata affects only those files that are in the directory in which the corruption has

occurred. [3]

6

 Data integrity resembling that of ReFS has been implemented in ZFS, which is a

combined file system and logical volume manager designed by Sun Microsystems

for use in their Solaris operating system. [4] It has been designed to protect the

user‟s data on disk against silent data corruption which is achieved by using a

(Fletcher-based) checksum or a (SHA-256) hash throughout the file system tree. [5]

In addition to this ZFS has a repair tool called “scrub”, which is used for file system

validation and file system automatic repairing.

 ReFS can use checksums to detect if data has changed since last written and is able

to detect and recover from corruption quickly. In fact, when data is written to disk,

it is written to a new location on disk rather than over the top of existing data. Once

successfully written, the file system can free the space used by the old data stream.

ReFS is able to recover from corruption within the file system rapidly without

limiting availability of the volume.[6]

Additional protection of data streams can be done by enabling Integrity Streams.

When configured to do so, checksums are used against written data and updates are

done using copy-on-write. You may enable Integrity Streams on particular folders,

volumes, or even granularly on a per-file basis.

 ReFS can handle up to 1 Yottabyte (YB).

1GB = 10
9

1YB =10
24

This is like 1 quadrillion GB. ReFS is built to scale to 262,000 Exabytes per

volume, containing 18 quintillion files per volume. Compare this with NTFS which

is built to handle only 16 Exabytes. [7]

 An algorithm of reconstructing directory tree above deleted files was proposed in

this [8] for NTFS. Furthermore, through detailed analysis of the theory of internal

structure of the NTFS file system, the storage principle of Data Runs in attribute 80

of MFT were presented.

 Methods of information hiding and detection in FAT and NTFS were explored in

this paper [9]. Information hiding methods included hidden files and folders,

7

deleted files, hidden/ deleted partitions, alternate data streams (in NTFS), hiding

data in areas such as slack space, file slack space, bad clusters and steganography.

Forensic toolkits were referred to as the methods for detecting, recovering and

viewing this hidden information in NTFS.

 Brian Carrier‟s book [10] lists EnCase by Guidance Software as the most widely

used computer investigation software. The Forensic Toolkit (FTK) is Windows-

based and can acquire and analyze disk, file system, and application data.

ProDiscover by Technology Pathways, SMART by ASR Data (Linux based) and

The Sleuth Kit (TSK, Unix based) are some of the toolkits that have been used for

analyzing NTFS time and again.

 A carving method for the continuously allocated compressed files was proposed in

this paper [11]. Most of the file carving tools cannot recover NTFS compressed

files because NTFS supports a compression function for internal files. An algorithm

for the implementation of this carving method for compressed files in

corresponding tools was also introduced in this paper.

 Summary 2.3

Current research on resilient file system does not provide information regarding the

structure and functioning of the file system. Without knowing the base of file system and

areas where data can be hidden, it is very difficult for a forensic analyst to find hidden

information. Therefore there is a need to conduct forensic analysis of resilient file system

which will be useful for future forensic investigations.

8

Resilient File System

3

 Introduction 3.1

This chapter contains information related to resilient file system. Commands that were used

to get information of the file system, master boot record and volume boot record that are

file system specific have been explored in this chapter.

 Getting file system info using ‘fsutil’ command 3.2

First of all windows command line command „fsutil‟ is used to get basic file system

information. Following are the results and snapshots:

Chapter 2

Chapter 3

9

Following are the results for fsutil fsinfo sectorinfo and fsutil fsinfo volumeinfo

commands applied to the NTFS and ReFS drives respectively:

 Table 3-1: File system info using fsutil commands

Command: fsutil fsinfo sectorinfo NTFS ReFS

LogicalBytesPerSector 512 512

PhysicalBytesPerSectorForAtomicity 512 512

PhysicalBytesPerSectorForPerformance 512 512

FileSystemEffectivePhysicalBytesPerSectorForAtomicity 512 512

Device Alignment Aligned<0x000> Aligned<0x000>

Partition alignment on device Aligned<0x000> Aligned<0x000>

Command: fsutil fsinfo volumeinfo

Volume Name NTFS ReFS

Volume Serial Number 0xd4ad8b30 0x142e0b5a

Max Component Length 255 255

File System Name NTFS ReFS

Is ReadWrite Yes Yes

Supports Case-sensitive filename Yes Yes

Preserves Case of filenames Yes Yes

Supports Unicode in filenames Yes Yes

Preserves & Enforces ACL's Yes Yes

Supports file-based Compression Yes No

Supports Disk Quotas Yes No

Supports Sparse files Yes Yes

Supports Reparse Points Yes Yes

Supports Object Identifiers Yes No

Supports Encrypted File System Yes No

Supports Named Streams Yes Yes

Supports Transactions Yes No

Supports Hard Links Yes No

Supports Extended Attributes Yes No

Supports Open By FileID Yes Yes

Supports USN Journal Yes Yes

10

 Master Boot Record (MBR) 3.3

Windows Server 2012 R2 contains one disk drive which has been formatted into two

partitions. First partition is formatted using NTFS (primary partition) and second partition

is formatted using ReFS. Starting part of the drive is by default system reserved. From here

the hexadecimal of each partition will be analyzed through WinHex which is a

hexadecimal editor.

Physical disk drive is opened in the hexadecimal editor for looking at the master boot

record.

The MBR is located at the very first, starting sector of a physical disk. A generic MBR has

the following three parts:

1. The Bootstrap Code Area/Bootloader

2. Partition Table

3. Boot Record Signature

The 512 bytes of MBR are distributed as:

512 bytes = 446 bytes (bootstrap code) + 64 bytes (partition table) + 2 bytes (boot

signature). These bytes are shown here:

11

 0x000000000-0x0000001BD is the bootstrap code area.

 0x0000001BE-0x0000001FD is the partition table. And

 0x0000001FE-0x0000001FF is the boot signature

At 0x0000001BE, the value 80 at the start of partition table signifies that the partition is

bootable; otherwise there is a value of 00 if the partition is not bootable. This bootable

partition is the NTFS partition. The byte at offset 0x0000001C2 represents the partition‟s

file system and therefore we can assume that it will be unique for every file system. 07 is

an indication for NTFS. However this byte is the same in the next partition (byte at offset

0000001D2) which shows that ReFS is built on NTFS.

Bootstrap code

area

Boot

signature

12

The partition table has four basic partitions, where the last partition is used as an

extended partition to support further partitioning. We can see in the above partition table

that our last partition is not being used. Size of each partition can be calculated from the

partition table.

00 F0 0A 00 (underlined in red) is in Little Endian. Converting it to Big Endian it

becomes 00 0A F0 00 which are 716800 bytes/sectors (starts at sector 2048) when

converted into decimal. Thus the first partition is of 350MB in size.

00 40 28 01 becomes 01 28 40 00 which are 19415040 sectors. Second partition is of

9480MB = 9.25GB

00 B8 EC 01 becomes 01 EC B8 00 which are 32290816 sectors. Third partition is of

15767MB = 15.39GB

Further verifying our results using the windows disk management:

 Volume boot record (VBR) 3.4

The volume boot record exists in the first sectors of the partition. As we have two

partitions each for NTFS and ReFS we examine and compare their first sectors for the

volume boot record.

13

3.4.1 NTFS VBR

The first three bytes in the volume boot record are the jump instructions which are used

to jump to the executable assembly code which resides within this block of VBR. The

next eight bytes (0x03 to 0x0A) are the OEM ID or system name. System name is

followed by BPB (BIOS Parameter Block). The last 125 bytes contain error messages and

signature ID or magic number. [12]

OEM ID or

System

name

Jump

instruction

Signature

ID or

Magic

number

14

Following this above sector is the code for BOOTMGR (shown in the figure below). This

code tells the machine which operating system should be loaded on it. Error message can

be seen in this sector after 0D 0A.

3.4.2 ReFS VBR

Looking at the starting sectors of the ReFS partition, it is observed that only 64 bytes are

being used which is very small as compared to that used by the NTFS.

Also ReFS does not have boot code and Bios parameter block BPB, as it is apparent from

the snapshot taken. It might be because ReFS is not bootable.

OEM ID of four bytes is present on the same location as it was in NTFS, after the first

three jump instructions, but the jump instructions are null in ReFS case. It might be

possible that when Microsoft makes ReFS bootable then the values of these three bytes

will be changed.

There is no signature ID 55 AA at the end of the sector.

15

3.4.2.1 File System Recognition Structure FSRS

There is text FSRS in place of BPB in ReFS which stands for File System Recognition

Structure. Microsoft‟s definition on FSRS reveals that “a file system data structure and

file system recognition APIs that may allow an operating system to identify a partition of

a storage device as having a valid file system, even if the operating system does not know

how to access the file system a priori". [13]

 Its main goal is to give Windows an additional option to identify an otherwise

unrecognized file system.

This is achieved by writing a data structure on the logical disk sector zero which would

then be recognized by the operating system and notify the user that the media contains a

OEM

ID or

System

name

16

valid but unrecognized file system and is not a RAW volume if the drivers for the file

system are not installed. [14]

FILE_SYSTEM_RECOGNITION_STRUCTURE is the data structure that tells the

operating system to achieve its goals regarding the recognition of an otherwise

unrecognized file system stored in the volume's boot sector (logical disk sector zero).

Checksum validation code is also stored within this data structure. At the application

level, file system recognition is achieved through the use of

FSCTL_QUERY_FILE_SYSTEM_RECOGNITION device I/O control code.

FILE_SYSTEM_RECOGNITION_STRUCTURE has the following parts defined in the

Microsoft documentation:

Type Offset Length Contents Description

Jmp 0x00 3 bytes 00 00 00 Jump instruction

FsName 0x03 4 bytes 52 65 46 53 File system name

MustBeZero 0x07 9 bytes 00 00 00 00 00 00 00

00 00

Reserved space that

contains all zeros

Identifier 0x10 16 bytes 46 53 52 53 00 02

6C D6 00 00 EC 01

00 00 00 00

Structure identifier

arranged in Little endian.

Length 0x20 2 bytes 00 02 The number of bytes in the

structure

Checksum 0x16 2 bytes Checksum calculated from

FsName to last byte,

excluding Jmp and

Checksum

 Table 3-2: FSRS parts in Microsoft documentation

17

 Master File Table 3.5

This section of the chapter describes and compares the master file table of NTFS as well as

ReFS. Master file table is the main area where all the records of files and folders exist in

NTFS. Let‟s look if resilient file system makes use of such structure or has any other thing

in store for us.

3.5.1 ReFS Master File Table

ReFS does not have an MFT and therefore no entries related to the master file table either.

On searching for „FILE‟ or „FILE0‟ entries (that signify the start of every MFT entry) in

the file system, the result returned is as follows:

3.5.2 NTFS Master File Table

NTFS has a master file table which contains entries of every file on the drive along with

other general information. Each entry starts with FILE or FILE0 and is 1024 bytes in size.

NTFS MFT has sixteen reserved MFT entries for file system metadata files. They are:

0. $MFT - Master file table.

1. $MftMirr - Master file table mirror.

2. $LogFile - Log file.

18

3. $Volume - Volume contains information such as the volume label and the

volume version.

4. $AttrDef - Attribute definitions.

5. “.” Or $ - The root folder

6. $Bitmap - Cluster bitmap which represents the volume by showing free and

unused clusters.

7. $Boot - Boot sector, includes the BIOS Parameter Block used to mount the

volume and additional bootstrap loader code used if the volume is bootable.

8. $BadClus - Bad cluster file, which contains a list of bad clusters for the volume.

9. $Secure - Security file which contains unique security descriptors for all files

within a volume.

10. $Upcase - Upcase table which converts lowercase characters to matching

Unicode uppercase characters.

11. $Extend - NTFS extension file, which is used for future use.

12 – 15 are reserved for future use.

 Attributes 3.6

File system views each file (or folder) as a set of file attributes. Elements such as the file's

name, its security information, and even its data, are all file attributes. Each attribute is

identified by an attribute type code and, optionally, an attribute name. in this section ReFS

and NTFS attributes are discussed.

3.6.1 ReFS attributes

ReFS like NTFS, contains some attributes which are not similar to NTFS attributes but

have something in common to them. Following attributes are found on clean ReFS drive:

3.6.1.1 File System Metadata

Metadata is data about data. File system metadata contains internal information (data)

about the data stored on the volume. The elegance of the metadata system is that by storing

19

internal information in files, it is possible to expand on the capabilities of the file system.

On examination of ReFS drive, file system metadata attribute is found as shown below:

This „File System Metadata‟ block appears in the same area where other attributes appear.

This block can be used to contain the file information and data related to it.

3.6.1.2 Security Descriptor Stream

The attribute „Security Descriptor Stream‟ at offset 0x1110592 in ReFS is analogous to

„$SECURITY_DESCRIPTOR‟ in NTFS. In NTFS security descriptor is a data structure

that controls the access control and security properties of the file. From here, it can be

inferred that the security descriptor stream in ReFS would also be used for access control,

security and ownership related things.

20

3.6.1.3 Volume Direct IO File

„Volume Direct IO File‟ attribute in ReFS can be compared to „$VOLUME_VERSION,

$VOLUME_NAME and $VOLUME_INFORMATION‟ attributes present in NTFS. These

volume attributes in NTFS are self-explanatory. It can be inferred from here that ReFS

„Volume Direct IO File‟ attribute will also be used, more or less, for the same purpose.

21

3.6.1.4 $I30 Index Attribute

$I30 is defined as “An INDX buffer in the NTFS file system that tracks the contents of a

folder”. [15] It will be used for the same purpose in ReFS too.

3.6.1.5 Upcase Table

ReFS has an Upcase table at offset 0x10D0040 on clean drive, which is similar to the

Upcase table found in NTFS (file system metadata file number 10). It contains each

uppercase character in the Unicode alphabet. Like in NTFS, ReFS also makes use of this

Upcase table to convert lowercase characters to uppercase characters. Structure of the ReFS

Upcase table is the same as in NTFS as both are used for the same purpose and Unicode

alphabets are independent of file systems. Upcase table in ReFS can be seen as follows:

22

3.6.2 NTFS Attributes

“File system forensic analysis” book by Brian Carrier lists following attributes as standard

attribute types:

$STANDARD_INFORMATION, $ATTRIBUTE_LIST, $FILE_NAME,

$VOLUME_VERSION, $OBJECT_ID, $SECURITY_DESCRIPTOR,

$VOLUME_NAME, $VOLUME_INFORMATION, $DATA, $INDEX_ROOT,

$INDEX_ALLOCATION, $BITMAP, $SYMBOLIC_LINK, $REPARSE_POINT,

$EA_INFORMATION, $EA, $LOGGED_UTILITY_STREAM.

These attributes are data structures that store specific types of data. Each attribute has its

own internal structure and they are self-explanatory. They are found at different offsets

throughout the file system.

23

 Security identifier 3.7

A Security Identifier (commonly abbreviated SID) is a unique, immutable identifier of a

user, user group, or other security principal. [16] The security descriptor is essential to

prevent unauthorized access to files. It stores information about:

 Owner of the file

 Permissions the owner has granted to other users

 What actions should be logged (auditing)

Following section describes NTFS and ReFS security identifiers.

3.7.1 Security Identifier in ReFS

The security identifier string found in ReFS is as follows:

Removing zeroes from the security identifier, we get:

S-1-5-21-748826674-2493555575-875918347-500

The above string is interpreted as follows:

S for security id

1 Revision level

5 Identifier Authority (48 bit) 5 = logon id

21 Sub-authority (21 = NT non unique)

748826674-2493555575-875918347 Domain or local computer identifier

500 user id/Relative ID (RID)

24

3.7.2 Security Identifier in NTFS

The security identifier string in NTFS is S-1-5-21-748826674-2493555575-875918347-

500, which is same as that found in ReFS.

25

Test case scenarios for artifacts gathering
4

 Introduction 4.1

In this chapter, various scenarios such as creation, modification, deletion, etc are taken in

consideration and performed on different files to know the working and structure of files in

resilient file system. Main purpose of the research was to know the working and structure

of this new file system which will provide assistance in criminal investigations.

 .txt Scenarios 4.2

.txt is file extension for a text file. It contains unformatted text. It can be created through

notepad which is included in Microsoft Windows by default. Different scenarios are

applied to .txt file to check how resilient file system works with general files.

4.2.1 File creation

A new txt file is created in ReFS drive with content “I am currently carrying out my

research in Resilient File system which was introduced in 2012.” and saved as

“mythesis.txt”. Its size is 94 bytes (as observed through properties of file).

Chapter 2

Chapter 4

26

Official Microsoft documentation states that ReFS stores metadata in 16KB blocks so that

it can support volume sizes of 2
64

 bytes. [17] ReFS storage engine uses B+ trees

exclusively as the single common on-disk structure to represent all information on the disk.

[18]

Observing the file in WinHex (hexadecimal editor), filename „mythesis.txt‟ is found at

offset 0x114064C (pink). A copy of filename is found at offset 0x1140AAC. MACE times

(orange) are found at offset 0x1140690 which is in Windows 64-bit Little Endian. MACE

times ('Modify', 'Access', 'Create' and 'Entry Modified') are time stamps of files, therefore

they are present immediately after the filename. File permissions are present in green. File

size is present in yellow (5E in hexadecimal and 94 bytes in decimal) and blue highlights

the offset where the content of file is stored. It is file pointer in Little Endian. From this file

pointer we can calculate the offset of the file content area.

27

In the metadata block of the file above, file pointer is 40 04 in Little Endian.

 Converting 40 04 to Big Endian, we get 04 40

 440 hexadecimal is equal to 1088 in decimal

 Multiplying 1088 with 16,384 (because all the metadata is stored in blocks of

16KB), we get 17825792

 Converting 17825792 decimal to hexadecimal, we get 1100000

 1100000 is the offset of the file content.

Now looking at the file content area at offset 0x1100000(in blue) in the editor:

4.2.2 Permissions changed

We observe that when file permissions are changed, the values highlighted green in the

drive change. This shows that these five bytes define file permissions as they change when

file permissions are changed.

Further examining the drive closely, it is observed that the „accessed‟ part of the MACE

times (eight bytes) found at offset 0x11406A0 has changed (orange). „Accessed‟ part of the

MACE time refers to the time when the entry was accessed. As we know that after

28

changing permission this entry has been accessed therefore these eight bytes of the MACE

times have been modified only. Modified, entry modified and created times are same. Rest

of the metadata block is same as when the file was created.

4.2.3 Modifying content

More content is added to the previous „mythesis.txt’ file. File size, as shown in the

properties window is 1.74 KB (1,783 bytes), now. We know that in NTFS, files containing

data more than 512 bytes are non-resident and subsequently stored at different location.

Let‟s examine what happens in ReFS:

After adding content to the previous file, it is observed that the file metadata is found at

three different offsets. It can be seen here:

29

At offset 0x114064C is the original file metadata. A duplicate of just the file name is found

after 460 bytes at 0x1140AAC.

30

At offset 0x114464C is the file metadata with permissions changed (green) as it can be

seen in the center image. The five bytes (green) are reserved for file permissions therefore

they change when file permissions are changed. In addition to this as stated in the above

section, MACE time area (0x1144690) for only the entry modified part has changed. A

duplicate filename of this section is found after 460 bytes at offset 0x1144AAC

In the third image at offset 0x114864C, file altered area and the entry modified area of

MACE times has changed along with the file size because content has been added to the

previous file. F7 06 (yellow) is the modified content file size. Converting F7 06 to Little

Endian, we get 06 F7 which is equal to 1783 bytes in hexadecimal. This is the same as

shown in properties window.

Another thing is observed. These three file metadata of the same file are found after every

4000 successive bytes. For example, the first file metadata is at offset 0x114064C, second

is at 0x114464C and third is at 0x114864C.

Although file metadata is found at three different offsets but all the three different offsets

have the same 40 04 file pointer, which we calculated to be 0x1100000. When this location

is accessed, file content is found here. This file content has overwritten the previous content

and the previous content can‟t be found anywhere. ReFS keeps track of every transaction

that is being done by updating the file metadata but it keeps no record of the previous file

content as the new content has overwritten previous content.

31

This point to one of the key features of ReFS that Microsoft has stated “Allocate on write

transactional model for robust disk updates (also known as copy on write)”. [4] ReFS

employ‟s an allocation-on-write update strategy for metadata, which allocates new chunks

for every update transaction. We have observed this fact above. Through this, built-in

resiliency is obtained.

4.2.4 Renaming txt file

The same file „mythesis.txt‟ is now renamed to be‟resilientfilesystem.txt‟. Checking out the

metadata changes as follows:

The file metadata is now found at offset 0x1140AA0 with the original file name (gray) and

the renamed filename (pink). Because of the addition of the modified filename, all the file

metadata can be seen to be pushed down. Entry modified time in MACE times has been

32

modified whereas all other times are same. Below this block, a duplicate filename entry can

be found as shown below:

4.2.5 Copying txt file

In this scenario, a copy of „resilientfilesystem.txt‟ is made and pasted in the drive. Its name

is „resilientfilesystem – Copy.txt‟.

The copied file „resilientfilesystem – Copy.txt‟ is found at four different offsets. These

offsets are:

 First offset: 0x1144FBC

 Second offset: 0x1148FBC

 Third offset: 0x114CFBC

 Fourth offset: 0x1170FBC

Checking the metadata changes in each one of them:

First instance of the copied file is found at offset 0x1144FBC.

33

It is observed from the metadata blocks that „resilientfilesystem – Copy.txt‟ exists with an

entry of the original filename (grey) from which the file was copied

„resilientfilesystem.txt‟. Just above the copied filename, a duplicate of copied filename

entry exists, 21 bytes after the first instance of „resilientfilesystem – Copy.txt‟ is found.

File metadata at first offset 0x1144FBC is different only in terms of MACE times whereas

the metadata at the other three offsets (0x1148FBC, 0x114CFBC and 0x1170FBC) is

identical. Metadata at first offset is of the file that has been copied whereas other three

offsets have the metadata of the original file when it was created.

Comparing metadata of first offset with that of the three offsets, it is observed that file

metadata at first offset differs in MACE time values for „file altered‟ (0x08) and „entry

modified‟ (0x10) time. It contains the time when the copied file was created.

File size, permissions and file pointer for the file metadata at all four offsets is same. File

pointer is ‟58 04‟ as shown below (blue):

34

Calculating the file content offset from file pointer 58 04 which is in Little Endian.

 Converting 58 04 to Big Endian, we get 04 58

 458 hexadecimal is equal to 1112 in decimal

 Multiplying 1112 with 16,384, we get 18219008

 Converting 18219008 decimal to hexadecimal, we get 1160000

 1160000 is the offset where file content for the copied file is found.

File content for original file is at the same offset where it was prior to the copying of file

i.e. 0x1100000.

4.2.6 Deleting txt file

In this scenario, file „resilientfilesystem – Copy.txt‟ is simply deleted from ReFS drive. It

still exists in recycle bin. Now when the file is searched, it is found at seven different

offsets, four of them being exactly the same offsets as discussed in copied file section

(0x1144FBC, 0x1148FBC, 0x114CFBC and 0x1170FBC), whereas remaining three offsets

which have been added after the file has been deleted are:

 0x114001E

 0x117500C

 0X117900C

The first most interesting offset where „resilientfilesystem – Copy.txt‟ is found is

0x114001E, as shown below:

35

The file size of the deleted file has been highlighted in purple, starting eight bytes (red)

show the time when file was deleted. The next six bytes (green) show the path of file,

where it was residing and remaining bytes show the filename (yellow).

At offset 0x117500C, „resilientfilesystem – Copy.txt‟ exists along with other data attached

to it:

36

Above 0x117500C where „resilientfilesystem – Copy.txt‟ is found, at 0x1174F54 original

filename of the file exists (before the file was copied) „resilientfilesystem.txt‟ (grey).

Twenty one bytes above 0x117500C, part of file name has been cut out „entfilesystem –

Copy.txt‟. MACE times (yellow), file permissions (orange) and file size (green) are found

after the deleted full filename entry.

At offset 0x117900C (4000 bytes after 0x117500C), an exact duplicate of 0x117500C

metadata block, is found.

All the three metadata block offsets, possess the same file pointer „58 04‟ which was above

calculated to be offset „0x1160000‟. Looking at „0x1160000‟ offset, it is observed that even

after file deletion, content still exists at the same location where it was originally when the

file had been copied.

4.2.7 SHIFT + Delete txt file (permanent delete)

In this scenario, a new file is created „forensic_investigations.txt‟ and content is placed in

it. It is found at three offsets. First offset has no file pointer and zero size because when the

file was created at the beginning, no content was placed in it. Therefore it has no pointer to

content as well as zero file size, as shown here:

37

A duplicate of only the filename is found 480 bytes from where the first instance of

„forensic_investigations.txt‟ exists.

At the second offset both file size and file pointer are present because the content had been

added in it after file creation but the MACE time values for file altered and entry modified

timestamps are different then the first offset as shown:

File metadata at third offset (0x11A94F4) is identical to the metadata found at second

offset.

The file „forensic_investigations.txt‟ is then shift deleted (deleted permanently) from ReFS

drive, as shown below:

38

After permanent deletion „forensic_investigations.txt‟ is found at the same three offsets

which have been discussed above. MACE time values are identical across the three offsets.

The only difference in the metadata of the first offset is file size and file pointer, which

were originally not present when the file was created, but are now present after deletion, as

shown:

Another feature that comes into play after permanent deletion is that file header, MACE

times and file permissions of „forensic_investigations.txt‟ file is found at offset

0x11AD454, but it is important to note here that they are without filename entry. File size

and file pointer are missing in this entry. It can be deduced here that this might be the entry

which existed at first offset when the file was originally created (before deletion) because

that entry also didn‟t have file size and file pointer.

39

As shown above, at 0x11AD454 and 0x11AD4B4, identical file headers which were

present before file deletion exist here with same MACE times (orange) and file permissions

(green) that the file originally had before deletion. But file size (red) and file pointer are not

present.

Despite „forensic_investigations.txt‟ file‟s permanent deletion from the ReFS drive it is

observed that the file and file content still exist at their positions although at front end they

have been deleted, but in the hexadecimal they are easily visible.

Forensic investigators while manually traversing the drive can easily file deleted as well as

permanently deleted data as they are only deleted from front end but are present at the

hexadecimal level.

4.2.8 Scenario analysis for .txt file

In this section of the chapter, all scenarios applied on the text file are analyzed and data is

presented in tabular format:

40

Table 4-1: Scenario analysis for .txt file

 Alternate data stream 4.3

ADS is the ability to fork file data into existing files without affecting their functionality,

size, or display to traditional file browsing utilities like Windows Explorer. [19] NTFS

supports ADS in the form of text, file, image and executable files. Microsoft‟s official

documentation states that resilient file system does not support alternate data stream. Let‟s

check if it supports or not.

Operation Filename

(pink)

Artifacts Gathered

Metadata

Offset

MACE

times

(orange)

Permission

(green)

File size

(yellow)

File

pointer

(blue)

Creation mythesis.txt 0x114064C 5E 40 04

Permission

changed
mythesis.txt 0x114464C

Entry

modified

part

changes

Changed

values as

compared

to above

5E 40 04

Modifying

content
mythesis.txt 0x114864C F7 06 40 04

Renaming

file

resilientfilesyste

m.txt
0x1140ADC

Entry

modified

part

changes

 F7 06 40 04

Copying

file

resilientfilesyste

m - Copy.txt
0x1144FBC F7 06 58 04

Simple

delete

resilientfilesyste

m - Copy.txt
0x114001E

Contains file size, time of deletion, path of file

and name of the deleted file

resilientfilesyste

m.txt

entfilesystem -

Copy.txt

resilientfilesyste

m - Copy.txt

0x117900C F7 06 58 04

Shift delete
resilientfilesyste

m - Copy.txt

0x1144FBC

0x1148FBC

0x114CFBC

41

4.3.1 ADS in the form of text

A file named „ads.txt‟ is created in R:\ drive for this scenario. File size is 1427 bytes. It is

opened from command prompt:

Alternate Data Stream is then created, and data is attached to it. The data is „This is hidden

data not visible when the file is opened.‟ The name of the hidden alternate stream is

„hiddendata.txt‟.

42

Another alternate stream is attached to the file. Its name is „secretdata.txt‟ and the data

contents are long.

Looking at „ads.txt‟ at hexadecimal level in WinHex, it is found at five different offsets:

 0x1161554

 0x1165554

 0x1169554

 0x116D554

 0x11AD554

First four offsets appear after every 4000 bytes successively whereas last offset appears

after 40,000 bytes.

File metadata at the first four offsets contains „ads.txt‟ MACE times, file size, file

permissions and pointer to file content. Last offset does not contain file size and file pointer

to „ads.txt‟ with it. It can be deduced that the metadata at the last offset was in fact written

the very first time when the file „ads.txt‟ was initially created because only then the file was

empty and hence possesses zero file size and zero file pointer. Immediately after the

creation of ads.txt data was added to it and therefore that data is present in the first four

offsets.

43

Moreover all the five offsets differ in „file altered‟ and „entry modified‟ timestamps of

MACE time. All have same „file creation‟ and „file read‟ timestamps.

In the following three „ads.txt‟ file metadata offsets: 0x1161554, 0x1169554 and

0x116D554, the hidden file named „hiddendata.txt‟, its size and its content is present along

with „ads.txt‟ metadata.

Looking at the file metadata above, of the first offset 0x1161554 (pink), file size is „93 05‟

(yellow) which is 1427 bytes, file permissions are present at 0x11615C8 (green), MACE

times are present at 0x1161590 (orange) and „50 04‟ (blue) is the file pointer which points

to offset „0x114000‟ where „ads.txt‟ file‟s content is present as shown below:

44

Scrolling down from the offset 0x1161554 (pink), „hiddendata.txt‟ its content and file size

are found.

Highlighted in red is „5D 04‟ which points to „secretdata.txt‟ file metadata. It is file pointer

to the second hidden stream. „5D 04‟ is 0x1174000 offset. Navigating to offset 0x1174000,

it is observed that „5D 04‟ is also present there.

45

Scrolling a little down it is observed that „hiddendata.txt‟, its content and file size is present

along with „secretdata.txt‟, its content and file size. „3B‟ is the size of „hiddendata.txt‟

which is 59 bytes. „5B 05‟ is the file size of „secretdata.txt‟ which is 1371 bytes. It is

important to note here that the actual size of hiddendata.txt is 56 bytes and secretdata.txt is

1368 bytes respectively. It is because three identical bytes „20 0D 0A‟ (yellow) are present

at the end of both hidden streams content. It can be deduced here that these three bytes

show that they belong to alternate data stream.

46

4.3.1.1 Scenario analysis for ADS in the form of text

Table 4-2: Scenario analysis for ADS in the form of text

4.3.2 ADS in the form of executable

„hello.txt‟ file is created for this purpose. Calculator executable is tried to attach with it but

the following error occurs when the command is executed: „The requested operation could

not be completed due to a file system limitation’.

File

name

(pink)

Alternate

stream

name

Artifacts Gathered

Metadata

Offset

MACE

times

(orange)

Permissi

on

(green)

File size

(yellow)

File

pointe

r

(blue)

Hidden data

(purple)

ads.txt

hiddendat

a.txt

secretdata.

txt

0x1161554
 93 05 50 04

Content and

size of

hiddendata.txt

present with

file pointer to

secretdata.txt

0x1165554

Entry

modified and

file altered

time changes

 93 05 BC 04

0x1169554

Entry

modified and

file altered

time changes

 93 05 BC 04

Content and

size of

hiddendata.txt

present

0x116D554

Entry

modified and

file altered

time changes

 93 05

Content and

size of

hiddendata.txt

present

0x11AD554

Entry

modified and

file altered

time changes

 X X

47

Thus attaching an exe file as alternate data stream in ReFS is not possible.

4.3.3 ADS in the form of image file

A jpg image named “cherry.jpg” is attached to “hello.txt” file as alternate data stream in

ReFS drive. It is then opened and displayed in command prompt.

Thus attaching an image file as alternate data stream in ReFS is possible.

48

 .JPG scenarios 4.4

In this scenario, jpg image file is taken and various operations are performed on it.

4.4.1 Copying jpg file

For this scenario, a jpg file named „verse.jpg‟ is copied and pasted in ReFS drive. The

image file metadata as seen in WinHex is as follows:

Filename is found at 0x1262354 (pink) and its duplicate is found after 16 bytes. In text file

a duplicate of just the file name was found farther down the metadata of the file (after the

file pointer). MACE timestamps possess same timestamps when the file was created and

49

read, whereas entry modified and file altered timestamps are same. File created and file

read timestamps possess the latest time when the file was copied whereas entry modified

and file altered timestamps possess past values (year 2014 in this case).

Image file properties (green) are present at offset 0x12623F0. File size „E1 7B 01‟ (yellow)

which when converted to big Endian becomes ‟01 7B E1‟. Converting it in decimal, we get

the value 97,249 bytes which is exactly the value shown in file properties window.

Moving down we see file pointer (blue) „BC 04‟ which is in Little Endian.

 Converting BC 04 to Big Endian, we get 04 BC

 4BC hexadecimal is equal to 1212 in decimal

 Multiplying 1212 with 16,384 (because all the metadata is stored in blocks of

16KB), we get 19857408

 Converting 19857408 decimal to hexadecimal, we get 12F0000

 12F0000 is the offset of the image file coding area.

Now looking at the image file coding area at offset 0x12F0000 (in blue) in the editor:

50

Image file content pointer is present after „08‟ (red) attribute whereas in text file, file

pointer was present after „04‟ attribute. So file pointer attribute values are different for text

file and image files.

4.4.2 Renaming image file

The same image file „verse.jpg‟ is now renamed to be „new_verse.jpg‟. Observing the

metadata changes:

Image file metadata of the renamed file is found at offset 0x126637C (pink) different from

where the original image file metadata existed. Original name of the image file „verse.jpg‟

is also present 16 bytes above new name of the image. MACE timestamp values are exact

51

duplicate of the original image file. Image size, permissions and file pointer are also exactly

identical to the original file.

A duplicate of the renamed filename „new_verse.jpg‟ is found after 460 bytes

(0x12667DC) from the first offset (0x126637C).

4.4.3 Permissions changed

Opening the properties window of the image file and changing the permissions in the

security tab is what is done in this scenario. The metadata of „new_verse.jpg‟ as seen

through WinHex is as follows:

„new_verse.jpg‟ is now found at two different offset. One offset is of the file which was

renamed 0x126637C (as discussed in the renaming image file section above) whereas the

other offset is new where the metadata of the changed permission of image file resides.

52

The metadata at this offset 0x126237C differs from renamed metadata in file permissions

(green) and „entry modified‟ (light orange) MACE timestamp (orange) only. Apart from

these all other metadata is same. There is a duplicate filename after 460 bytes at

0x12627DC just like the renamed metadata had.

4.4.4 Deleting jpg file

In this scenario, file „new_verse.jpg‟ is simply deleted from ReFS drive. It still exists in

recycle bin.

The first offset where the image metadata is found after deletion is 0x116001E, shown

below:

File size of the deleted file has been highlighted in purple, starting eight bytes (red) show

the time when file was deleted. The next six bytes (green) show the path of file, where it

was residing and remaining bytes show the filename (yellow). This metadata after image

deletion is identical to the text file metadata after deletion.

Image is also found at offset: 0x126237C, 0x126637C and at 0x126A37C. At offset

0x126237C metadata of image file is present when its permissions were changed and there

is no change in it. At offset 0x126637C metadata of image is present when it was renamed.

Metadata is same except that the „entry modified‟ part of MACE time has now changed to

be the same as that of when the file permissions were changed. Initially when file was

renamed and MACE times were observed, it was the same as that of the original file, but

now it has changed. Another fact is that the filename duplicate of this offset (0x126637C)

which was „new_verse.jpg‟ and existed after 460 bytes, at offset 0x12667DC, now exists

after 472 bytes at 0x12667E8. It has now been cut short after file deletion. It is now

„rse.jpg‟ (brown).

53

Metadata at 0x126A37C offset has only been added now when the file has been deleted

and sent to recycle bin. It is identical to the metadata of the above offset and contains the

cut out filename „rse.jpg‟, exactly 472 bytes after the 0x126A37C offset.

Another thing is observed where a section of filename has been cut out. 14 bytes above the

cut out filename are two identical bytes ‟02 07‟ which are found only where the section of

cut out filename is found. It can be deduced here that they show that the file has been

deleted.

4.4.5 SHIFT + Delete jpg file (permanent delete)

Following metadata changes are observed when the image is permanently deleted:

54

New offset (0x126E37C) has been added now, where the deleted file data identical to other

offsets resides (as shown above). 0x116001E, 0x126237C, 0x126637C, 0x126A37C which

have already been discussed in the above sections, possess metadata even after deletion.

The only difference in these offsets is they no longer contain the section of cut out filename

(at duplicate filename area) that they possessed when the file was deleted and sent to

recycle bin. After permanent deletion full name of the file exists.

It might be noted here that even after permanent deletion, image file still exists in metadata.

This is of great help to forensic examiners while searching for data in drives.

4.4.6 Scenario analysis for jpg file

All scenarios applied on the jpg file are analyzed and data is presented in tabular format:

55

Table 4-3: Scenario analysis for jpg file

 Folder scenarios 4.5

Folders have different format than files. In this section of the chapter, different operations

are performed on folder to see the changes resilient file system undergoes when these

operations are performed on folder.

4.5.1 Folder creation

In this scenario a new folder named “forensics” is created in ReFS drive. Another subfolder

named “filesystem_forensics” is created inside forensics folder immediately after its

creation. Looking at the metadata changes of ReFS drive, it is observed that folders are

found at many different offsets with $I30 attribute. We know that $I30 is index attribute for

directories and lists directory contents. “NTFS maintains an index of all files/directories

that belong to a directory called the $I30 attribute. Every directory in the file system

contains an $I30 attribute that must be maintained whenever there are changes to the

directory's contents. When files or folders are removed from the directory, the $I30 index

records are re-arranged accordingly.” [20]

Therefore it is present with folder offset.

Operation Filename

(pink)

Artifacts Gathered

Metadata

Offset

MACE

times

(orange)

Permission

(green)

File size

(yellow)

File

pointer

(blue)

Copying verse.jpg 0x1262354 E1 7B 01 BC 04

Renaming new_verse.jpg 0x126637C E1 7B 01 BC 04

Permissions

changed
new_verse.jpg 0x126237C

Entry

modified

part

changes

changed E1 7B 01 BC 04

Simple

delete

new_verse.jpg 0x116001E
Contains file size, time of deletion, path of file

and name of the deleted file

new_verse.jpg

rse.jpg
0x126637C

Entry

modified

part

changes

 E1 7B 01 BC 04

new_verse.jpg

rse.jpg
0x126A37C E1 7B 01 BC 04

Shift delete new_verse.jpg 0x126E37C

56

Metadata

Block Offset

Folder name Starting

Bytes

Eighth

Byte

$I30

0x1160356 New folder 58 04 B4

0x1164356 forensics 59 04 B5

0x1168356 forensics 5A 04 B6

0x1168574 New folder 5A 04 B6

0x116C356 forensics 5B 04 B7

0x116C574 filesystem_forensics 68 04 B6

0x11A0356 New folder 68 04 B6

0x11A4356 filesystem_forensics 69 04 B7

0x12627BC forensics

0x12667BC New folder

0x126A7BC forensics

0x126E7BC forensics

Table 4-4: Metadata offsets for folders

$I30 is present exactly 122 bytes before folder offset. The above table does not include

MACE times which were almost same (with some second‟s difference, if any).

57

Folder name length is present ten bytes before every folder name. For „New folder‟ it is

„0A‟. For „forensics‟ it is „09‟.

4.5.2 Renaming folder

For this scenario, main folder named “forensics” is now renamed to be “research”.

Following are metadata changes in tabular form:

58

Table 4-5: Metadata changes for folders after renaming

Only the eighth byte of first offset where „research‟ is found is different. All others are

same. Only one new offset containing „filesystem_forensics‟ is present after renaming (row

highlighted in yellow). Two of the „New folder‟ entries have been changed to „research‟

whereas all others are almost same. MACE times have no difference after renaming folder.

Metadata

Block

Offset

Folder name

(before

renaming)

Starting

Bytes

Eight

h Byte

$I30 Folder name

(after

renaming)

Eighth

Byte

Identical

0x1160356 New folder 58 04 B4 research BF

0x1160574

filesystem_foren

sics

0x1164356 forensics 59 04 B5 forensics B5

0x1168356 forensics 5A 04 B6 forensics B6

0x1168574 New folder 5A 04 B6

New folder

0x116C356 forensics 5B 04 B7 forensics B7

0x116C574
filesystem_fore

nsics
68 04

B6

filesystem_foren

sics

0x11A0356 New folder 68 04 B6 New folder B6

0x11A4356
filesystem_fore

nsics
69 04

 B7

filesystem_foren

sics

B7

0x12627B

C
forensics

forensics

0x12667B

C
New folder

research

0x126A7B

C
forensics

forensics

0x126E7B

C
forensics

forensics

59

4.5.3 Permissions changed

„Research‟ folder permissions are changed as shown below:

Following are metadata changes after main folder permissions have been changed:

60

Table 4-6: Metadata changes for folders after permission change

One new offset containing (0x1164574) „filesystem_forensics‟ folder name (highlighted in

yellow in the above table) has been added when the permissions have been changed for

main folder. Moreover it is observed that all the „New folder‟ entries have been replaced

with the subfolder name. MACE times are exactly the same.

One of the main differences is as follows:

Metadata

Block Offset

Folder name

Starting

Bytes

Eighth

Byte
Eighth

Byte (after

permission

change)

before

renaming

after

renaming

after

permission

change

0x1160356 New folder research research 58 04 BF C9

0x1160574
filesystem_

forensics

filesystem_for

ensics

0x1164356 forensics forensics research 59 04 B5 C3

0x1164574
filesystem_for

ensics

0x1168356 forensics forensics research 5A 04 B6 C5

0x1168574 New folder New folder
filesystem_for

ensics
5A 04

0x116C356 forensics forensics forensics 5B 04 B7 B7

0x116C574
filesystem_f

orensics

filesystem_

forensics

filesystem_for

ensics
68 04

0x11A0356 New folder New folder
filesystem_for

ensics
68 04 B6 C3

0x11A4356
filesystem_f

orensics

filesystem_

forensics

filesystem_for

ensics
69 04 B7 C5

0x12627BC forensics forensics research

0x12667BC New folder research research

0x126A7BC forensics forensics forensics

0x126E7BC forensics forensics forensics

61

The bytes „AE A2 E1 AE 01‟ have been changed to „05 73 8B 20 01‟ where ever the main

folder name „research‟ appears. At offset 0x116C356, where „research‟ folder‟s original

name „forensics‟ is appearing the permissions are „AE A2 E1 AE 01‟.

4.5.4 Adding content

For this scenario three files, one image file „open.jpg‟, a word document „word.doc‟ and a

text file „cool.txt‟ is added to the „filesytem_forensics‟ subfolder to check their behavior

inside folders created on ReFS drive.

62

Table 4-7:Metadata changes after content addition in folder

It is observed that files added to the sub folder are located in the same order in the metadata in which they were added. „open.jpg‟ was

added before „word.doc‟ therefore it is present before „word .doc‟ as it is apparent from their offsets. „cool.txt‟ was added to the folder in

the last and it is apparent from its offset where „cool.txt‟ is found.

There is one extra metadata entry for „doc‟ and „jpg‟ file. The shaded row in the above table is shown in the below images as seen

through the editor.

Metadata

Offset

Folder

name
Offset Sub folder name

Starting

Bytes

Eighth

byte
cool.txt word.doc open.jpg

0x1160356 research 0x1160574 filesystem_forensics 58 04 D8

0x1164356 research 0x1164574 filesystem_forensics 59 04 D0

0x1168356 research 0x1168574 filesystem_forensics 5A 04 D2

0x116C356 research 0x116C574 filesystem_forensics 5B 04 D5

0x11A4356 filesystem_forensics 69 04 D0

0x11A8356 filesystem_forensics 6A 04 D1

0x11AC356 filesystem_forensics 6B 04 D1

 0x11F0356 filesystem_forensics 7C 04 D8
0x11F1C0

4
0x11F1784 0x11F1304

 0x11F4356 filesystem_forensics 7D 04 D5 0x11F5784 0x11F5304

 0x11F8356 filesystem_forensics 7E 04 D9
0x11F9C

04
0x11F9784

0x11F9304

63

72

64

65

4.5.5 Compressing folder

In this scenario a folder named „current‟ is made inside the ReFS drive that contains two files

„new.txt‟ and „open.jpg‟. This folder is then compressed and named

„current_compressed.zip‟. The metadata of the compressed folder is as follows:

The grey highlighted part of the screenshot shows the name of the original folder (current),

its MACE times and „current.zip‟ is when the folder was compressed. This current.zip was

renamed to „current_compressed.zip‟ immediately after its compression hence both

current.zip and current_compressed.zip are found side by side and have the same MACE

times. File permissions are highlighted in green whereas file size „EA 33 01‟ (highlighted in

yellow) converts to ‟01 33 EA‟ in big Endian and we get the value 78,826 in decimal. This is

exactly the same file size as shown in file properties window. Below image shows file

pointer ‟94 04‟ which converts to „1250000‟.

66

Looking at the file content pointer offset „1250000‟:

Zipped folder contents are shown in the above image. It can be noted here that filename and

their paths are present. Rest of the content is of the files that are present inside the current

folder. „PK‟ (highlighted red) is the format in which the folder has been zipped.

67

4.5.6 Deleting folder

For this scenario, a folder „experiment‟ is created and an image file „lamp.jpg‟ is placed

inside it. This folder is then simply deleted (it is highlighted and deleted). By simple delete

this folder goes to the recycle bin. Checking out the metadata changes:

All the metadata of the „experiment‟ folder is similar to the metadata as discussed in the

„folder creation‟ section. The new entry of „experiment‟ folder that appears after the folder

has been deleted is present at offset 0x12F001E.

Folder size of the deleted folder has been highlighted in purple (above), starting eight bytes

(red) show the time when folder was deleted. The next six bytes (green) show the path of file,

where it was residing and remaining bytes show the folder name (yellow).

At offset 0x 12B8356, „$I30‟ attribute exists which is created every time any changes occur

to folder (as discussed above). This time the change is deletion of folder hence the index

attribute comes into play.

68

Another important fact is the addition of deleted folder „experiment‟ in the vicinity of recycle

bin. This deleted folder name appears after 2826 bytes of Recycle bin entry successively. It is

shown:

69

The recycle bin entry appears at 0x1268576 whereas the deleted folder entry appears at

0x126AD9C.

4.5.7 Shift+ Deleting a folder

For this scenario, same folder that was used for delete folder scenario is renamed as

„shift_experiment‟ is copied to the ReFS drive and same image file „shift_lamp.jpg‟ is placed

inside it. This folder is then shift deleted (permanent delete). By shift delete this folder does

not goes to the recycle bin. It is permanently deleted. Checking out the metadata changes:

$I30 attribute is present at offset 0x1300234 (highlighted in purple) along with the

permanently deleted folder name (highlighted in pink) and MACE times (highlighted in

orange), as shown below:

70

Even after permanent deletion, the folder „shift_experiment‟ appears in recycle bin entry‟s

vicinity after 2826 bytes like it appeared in simple deletion scenario. It can be observed

below:

71

Another important change in simple deletion and permanent deletion is the presence of „38

00 48‟ before permanently deleted folder name appears, while in simple deletion scenario

these bytes take the form „28 00 48‟ (highlighted above in red for both scenarios). These

bytes point out the difference in simple deletion and permanent deletion.

In permanent deletion, there is no such block that shows the path of folder, time of deletion

of folder, folder size and name of folder that is deleted as in simple deletion scenario. From

this we can distinguish whether a folder has been deleted simply or permanently.

We see that even after permanent deletion folder name exist at backend which is of great

importance for forensic examiners because this can be used for gathering facts about deleted

folders.

 Exploring deletion in ReFS in detail 4.6

In this scenario, file deletion is explored in detail and explained in tabular form. For this

scenario, different files are placed in ReFS drive to check their behavior. These files are first

simply deleted and then permanently deleted. The differences are as follows:

4.6.1 Deletion in image file

First file is a jpg image file named as „hello.jpg‟. Following things were observed in the

hexadecimal of ReFS drive:

72

Metadata

Block Offset

Filename

before deletion after simple deletion after permanent deletion

0x157709C hello.jpg hello.jpg 00 hello.jpg 00

0x157B09C hello.jpg hello.jpg 00 hello.jpg 00

0x157F0C4 jpg 00 jpg 00

0x15730C4 jpg 04

0x 159001E File path after simple deletion

0x1580000 File contents

Table 4-8: Metadata changes after image deletion

Initially when the image is placed in drive, image metadata is found at first two offsets.

When it is simply deleted and sent to recycle bin third and fifth offsets are added. At third

offset cut out filename appears. Immediately above cut out filename „02 07‟ bytes appear. At

fifth offset file path after deletion appears.

Finally when the image is deleted from recycle bin, fourth offset comes into play where cut

out filename appears. Before the file is permanently deleted, 56 bytes above the cut out

filename „04‟ appears which was previously „00‟ when the file was copied and even after

simple deletion.

File contents remain intact even after permanent deletion of file.

It might be noted here that even after permanent deletion file contents and deletion path still

remain at the same offsets and are not overwritten even when new files are placed in the

drive. File metadata at offset other than that which had been added when the file was

73

permanently deleted (0x15730C4), are overwritten when any other file is placed in drive. The

only trace of permanently deleted file exists at offset 0x15730C4 and deletion path at offset

0x159001E.

4.6.2 Deletion in txt file

Second file is a „txt‟ file named as „index.txt‟. Following things were observed in the

hexadecimal of ReFS drive:

Metadata

Block Offset

Filename

before deletion after simple deletion after permanent deletion

0x157709C index.txt index.txt 00 txt 04

0x157B09C index.txt index.txt 00 index.txt 00

0x157F09C index.txt index.txt 00 index.txt 00

0x15730C4 txt 00 txt 00

0x15B001E File path after simple deletion

0x15A0000 File contents

Table 4-9: Metadata changes after txt file deletion

The same offset (0x15730C4) where permanently deleted metadata of „hello.jpg‟ existed has

now been overwritten and allocated to „index.txt‟ when index.txt has been simply deleted.

74

After permanent deletion, metadata at first offset is modified. A section of filename is cut

out. Moreover the bytes „04‟ appear at the same position as they appeared in „hello.jpg‟

scenario. This signifies that these bytes change from „00‟ to „04‟ only when permanent

deletion occurs. Another important change is found where cut out filename appears bytes

„48‟ change to „40‟.

4.6.3 Deletion in doc file

Third file is a „doc‟ file named as „assignment.doc‟. Following things were observed in the

drive:

75

Table 4-10: Metadata changes after doc file deletion

It was observed that the first two offsets are the same that appeared in „index.txt‟ scenario,

which means that after permanent deletion of „index.txt‟ that space is unallocated and is

overwritten when new files are placed in the drive.

At third and fourth offset that are added when file is simply deleted, cut out filename appears.

Above cut out filename ‟02 07‟ appear. Also the byte „50‟ is changed to „40‟ after simple

deletion where cut out filename is found.

Metadata

Block Offset

Filename

before

deletion

after simple deletion after permanent deletion

0x157B09C assignment.doc assignment.doc 00 ment.doc 04

0x157F09C assignment.doc assignment.doc 00 assignment.doc 00

0x15730A8 ment.doc 00 ment.doc 00

0x15770A8 ment.doc 00 ment.doc 00

0x130001E File path after simple deletion

0x1330000 File contents

76

We can conclude based on the above scenarios that simple deletion cut shorts the file name in

resilient file system. File contents remain intact. After permanent deletion, one byte changes

to 04 and other changes to 40. Permanent deletion hides the file from file explorer and

recycle bin but the metadata of the file still exists at hexadecimal level. This is very helpful

for forensic examiners as deleted files can be easily recovered which would then help in

further examinations.

 Exploring the trimming of filename after simple deletion 4.7

For this scenario a txt file‟s name „beautiful.txt‟ is repeatedly changed to check the cutting of

filename when simple deletion occurs and it is placed in ReFS drive. The data collected is

presented in tabular form as follows:

Filename Filename after simple deletion

b.txt Cut out filename does not exists

be.txt Cut out filename does not exists

bea.txt t

beau.txt xt

beaut.txt txt

beauti.txt .txt

beautif.txt f.txt

beautiful.txt ful.txt

beautifullest.txt fullest.txt

Table 4-11: Filename trimming after simple deletion

When file with filename „beautiful.txt‟ is placed in ReFS drive and simply deleted which

sends it to the recycle bin, the filename after deletion is cut short and appears as „ful.txt‟.

More tests are performed by changing the number of alphabets in filename to check when the

filename is cut.

It is noted that when the file name comprises of one alphabet only „b.txt‟, the cut out

filename does not come into play. In ReFS, when a file is placed in drive, the filename

appears in the metadata along with its duplicate, as discussed in the „.txt experiments‟

section. It is this place where the cut out filename appears when file is deleted. In filename

77

that comprise one (b.txt) or two (be.txt) alphabets this duplicate name does not exists. Only

the filename appears.

When the number of alphabets is increased to three, it is noted that the cut out name starts to

appear. It must be noted here that this cut out name starts to appear from backwards (in the

descending order of the filename).

For „bea.txt‟ after deletion „t‟ appears above filename. This „t‟ is from the txt present at the

end of filename.

For „beau.txt‟ after deletion „xt‟ appears. For „beautif.txt‟ after deletion „f.txt‟ appears.

Increasing alphabets in the filename and then deleting the file cut shorts the filename and

increases the alphabets in the cut out filename. For „beautifullest.txt‟ after deletion

„fullest.txt‟ appears.

Above screenshot is when „b.txt‟ is placed in ReFS drive.

Above screenshot is when „b.txt‟ is deleted from ReFS drive. It exists in recycle bin.

78

 1GB FILE 4.8

Until now files with small sizes have been explored. In this section we look at how resilient

file system deals with large files and what is its format of storing large files.

NTFS master file table stores data of small files and directories typically 512 bytes or

smaller, within the master file table record and labels them as resident data. Files larger than

this size are non-resident and possess data run(s) in them. In this scenario we check whether

ReFS has data runs or not or resident and non-resident attributes.

An mp4 file „zootopia.mp4‟ of size 1.65GB is placed in the drive. The metadata as seen

through WinHex is as follows:

79

The file „zootopia.mp4‟ is found in the same format as other files (small size files) were

found. Filename and its duplicate are found at offset 0x168738C. MACE times are

highlighted in orange whereas file permissions are highlighted in green. „D7 53 CA 69‟ is

actual file size in Little Endian. We can calculate actual file size in bytes by converting „D7

53 CA 69‟ to Big Endian „69 CA 53 D7‟ and finally converting it in decimal, we get

„1774867415‟ bytes. „1774867415‟ bytes are equal to 1.65GB.

Further searching for the file content pointer, we also find file size on disk. Highlighted in

yellow „2C A7 01‟ is the file size on disk. Calculating file size on disk is different than actual

file size because it is multiplied by 16,384. 16,384 is multiplied because all the metadata is

stored in blocks of 16KB.

In the metadata block of the file, file size on disk is 2C A7 01 in Little Endian.

 Converting 2C A7 01 to Big Endian, we get 01 A7 2C

 1A72C hexadecimal is equal to 108332 in decimal

 Multiplying 108332 with 16,384 (because all the metadata is stored in blocks of

16KB), we get 1,774,911,488.

1,774,911,488 bytes is the file size on disk. This also makes 1.65GB.

In the metadata block above, file content pointer is 00 D0 03 in Little Endian.

 Converting 00 D0 03 to Big Endian, we get 03 D0 00

 3D000 hexadecimal is equal to 249856 in decimal

 Multiplying 249856 with 16,384 (because all the metadata is stored in blocks of

16KB), we get 4093640704

80

 Converting 4093640704 decimal to hexadecimal, we get F4000000

 F4000000 is the offset of the file content.

Now looking at the file content area at offset 0xF4000000 in the editor:

The first 12 bytes at 0xF4000000 show „...ftypisom‟ which is file signature and describes that

it is an ISO Base Media file (MPEG-4) v1. ISO base media file defines a general structure for

time-based multimedia files such as video and audio. [21]

81

While looking at file metadata, we observe that there is no data run or resident and non-

resident attribute type notion in ReFS. All file data is located at file content pointer location.

The end of „zootopia.mp4‟ is found at 0x15DCA5398. Subtracting 15DCA53D7 from

F4000000, we get 69CA53D7 which when converted to decimal becomes 1,774,867,415

bytes. This is equal to 1.65GB. From here it is proved that in resilient file system all file

content is located at one location and it is not scattered. This avoids overhead which is

created while looking for file data in NTFS when data is non-resident.

 Comparison of ReFS artifacts with NTFS artifacts 4.9

The following table provides a comprehensive comparison of the artifacts of resilient file

system that have been observed in this research with those of the artifacts of new technology

file system that have been discussed time and again.

82

Sr. No. ReFS Artifacts NTFS Artifacts

1 NO MFT. ReFS has its own

mechanism of storing file

metadata. Master file table

like structure is not present in

refs.

Master file table is the chief

structure that stores file metadata

2 All file attributes not present

in ReFS that are present in

NTFS. Five attributes have

been observed during this

research.

A set of seventeen well defined and

well researched attributes exist in

NTFS.

3 ReFS is not bootable. NTFS is bootable

4 Log structured file system

was rejected in ReFS case.

ReFS uses an allocate on

write strategy that never

updates metadata in-place but

writes it to a new location.

Log structure is implemented that

updates metadata in-place and

keeps a journal or log of

transactions that notes every change

that takes place in the metadata.

Main disadvantage of journaling is

that writes can get randomized and

torn write can occur.

5 Check disk is not present in

ReFS because repair (if

needed) occurs on-the-fly.

Check disk is used to fix disk

corruptions.

6 Designed to handle very

large volumes upto 1

yottabyte and accommodate

cloud storage

Not specifically designed for cloud

storage but is or can be used for it

7 File system recognition

structure is present whose

main goal is to identify

unrecognized file system

No such structure is present

8 No data run or non- resident

data in ReFS. Large file‟s

content is present at the same

location. This avoids

overhead which occurs in

non-resident case.

Large files (more than 512 bytes)

are non-resident and contain data

runs in them that point to clusters

where the remaining file data is

present

9 Simple deletion trims the

filename. File is fully

recoverable

Simple deletion updates the flag in

metadata of file. File is fully

recoverable

83

Conclusion And Future Work
5

 Overview 5.1

Forensic analysis has been performed in this thesis which is a branch of digital forensics that

examines digital information found in computers and digital storage media. The aim of

forensic analysis is to identify, preserve, recover, analyze and present facts and opinions

about the digital information in a forensically sound manner without destroying evidence.

Present day involves a variety of computer crimes which are investigated by taking into

consideration forensic analysis of that specific system.

 Overview of Research 5.2

This research is about forensic analysis of a file system that is relatively new in the file

system arena. Forensic facts related to it have not been discovered yet therefore there is a

need to conduct analysis on it so that it‟s working and structure is identified. This new file

system called Resilient file system abbreviated as ReFS has been built on NTFS. In other

words it uses NTFS as a base. This gives us some help during its analysis.

 Findings 5.3

The research carried out on resilient file system in Windows Server 2012 R2 gives us a basic

view of the file system‟s underlying features. Moreover the scenarios that have been taken

into consideration during the research give us the working of resilient file system when

different operations are performed on file. Deleted files can be easily recovered, even when

they are permanently deleted in resilient file system as they exist at hexadecimal level.

Chapter 2

Chapter 5

84

 Future Work 5.4

This thesis focuses on the underlying structure and working of resilient file system. Behavior

of applications on resilient file system has not been analyzed in it. Applications such as the

working of antivirus should be explored in resilient file system and its results should be

compared with NTFS.

 Conclusion 5.5

Forensic examiners have to be aware of every possible area where crucial information can be

hidden in order to recover and investigate digital evidence to be used in court. The scope of a

forensic analysis can vary from simple information retrieval to reconstructing a series of

events. And for all these investigation and further examinations, forensic investigators should

know the working and structure of the file system in the computer or digital media that is

under consideration.

85

Bibliography

[1] Steven Sinofsky, “Building the next generation file system for Windows: ReFS”, 17

January 2012, http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-

file-system-for-windows-refs.aspx

[2] “Resilient file system” http://msdn.microsoft.com/en-

us/library/windows/desktop/dn323741%28v=vs.85%29.aspx

[3] “Resilient File System Overview”, 1 November 2013, http://technet.microsoft.com/en-

us/library/hh831724.aspx

[4] http://en.wikipedia.org/wiki/ZFS#cite_note-endtoend-18

[5] Bonwick, “ZFS End-to-End Data Integrity”, 08 Dec 2005,

https://blogs.oracle.com/bonwick/entry/zfs_end_to_end_data

[6] Martin Lucas, “Windows Server 2012: Does ReFS replace NTFS? When should I use

it?”, 1 Jan 2013, http://blogs.technet.com/b/askpfeplat/archive/2013/01/02/windows-server-

2012-does-refs-replace-ntfs-when-should-i-use-it.aspx

[7] Ken Mizota, “Windows Resilient File System Forensics”, 22 August 2013, http://encase-

forensic-blog.guidancesoftware.com/2013/08/windows-resilient-file-system-forensics.html

[8] Liu Naiqi, Wang Zhongshan, HaoYujie, QinKe, “Computer Forensics Research and

Implementation Based on NTFS File System”,ISECS International Colloquium on

Computing, Communication, Control, and Management, 2008

http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-file-system-for-windows-refs.aspx
http://blogs.msdn.com/b/b8/archive/2012/01/16/building-the-next-generation-file-system-for-windows-refs.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn323741%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dn323741%28v=vs.85%29.aspx
http://technet.microsoft.com/en-us/library/hh831724.aspx
http://technet.microsoft.com/en-us/library/hh831724.aspx
http://en.wikipedia.org/wiki/ZFS#cite_note-endtoend-18
https://blogs.oracle.com/bonwick/entry/zfs_end_to_end_data
http://blogs.technet.com/b/askpfeplat/archive/2013/01/02/windows-server-2012-does-refs-replace-ntfs-when-should-i-use-it.aspx
http://blogs.technet.com/b/askpfeplat/archive/2013/01/02/windows-server-2012-does-refs-replace-ntfs-when-should-i-use-it.aspx
http://encase-forensic-blog.guidancesoftware.com/2013/08/windows-resilient-file-system-forensics.html
http://encase-forensic-blog.guidancesoftware.com/2013/08/windows-resilient-file-system-forensics.html

86

[9] Jeremy Davis, Joe MacLean, David Dampier, “Methods of Information Hiding and

Detection in File Systems”, Fifth International Workshop on Systematic Approaches to

Digital Forensic Engineering, pp. 1–4, 2010

[10] Brian Carrier, “Digital investigation foundations”, in Filesystem forensic analysis, One

Lake Street, Upper Saddle River, NJ, 2005, Chapter 1, Part I:Foundations, pp. 19-20

[11] Byeongyeong Yoo, Jungheum Park,JewanBang, Sangjin Lee, “A Study on a Carving

Method for Deleted NTFSCompressed Files”, IEEE, 2010

[12] http://thestarman.pcministry.com/asm/mbr/NTFSbrHexEd.htm

[13] https://www.google.com/patents/US8200895

[14] https://msdn.microsoft.com/en-

gb/library/windows/desktop/dd442652%28v=vs.85%29.aspx

[15] https://www.fireeye.com/blog/threat-research/2012/09/striking-gold-incident-response-

ntfs-indx-buffers-part-1.html

[16] “Security Identifier”, https://en.wikipedia.org/wiki/Security_Identifier

[17] https://technet.microsoft.com/en-us/library/hh831724.aspx

[18] https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-

system-for-windows-refs/

[19] Ray Zadjmool, “Hidden Threat: Alternate Data Streams”, 24 March 2004,

http://www.windowsecurity.com/articles-

tutorials/windows_os_security/Alternate_Data_Streams.html

[20] http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-

files.html

[21] https://en.wikipedia.org/wiki/ISO_base_media_file_format

http://thestarman.pcministry.com/asm/mbr/NTFSbrHexEd.htm
https://www.google.com/patents/US8200895
https://msdn.microsoft.com/en-gb/library/windows/desktop/dd442652%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-gb/library/windows/desktop/dd442652%28v=vs.85%29.aspx
https://www.fireeye.com/blog/threat-research/2012/09/striking-gold-incident-response-ntfs-indx-buffers-part-1.html
https://www.fireeye.com/blog/threat-research/2012/09/striking-gold-incident-response-ntfs-indx-buffers-part-1.html
https://en.wikipedia.org/wiki/Security_Identifier
https://technet.microsoft.com/en-us/library/hh831724.aspx
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
http://www.windowsecurity.com/articles-tutorials/windows_os_security/Alternate_Data_Streams.html
http://www.windowsecurity.com/articles-tutorials/windows_os_security/Alternate_Data_Streams.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
http://www.osforensics.com/faqs-and-tutorials/how-to-scan-ntfs-i30-entries-deleted-files.html
https://en.wikipedia.org/wiki/ISO_base_media_file_format

