
Building Energy Demand Uncertainty and Economic Assessment of 

Residential Energy Storage System 

 

 

 

 

By 

Ammar Ali 

(Registration No: 00000401826) 

 

Supervisor: Dr Shahbaz Abbas 

 

Department of Engineering Management 

Collage of Electrical and Mechanical Engineering (CEME) 

National University of Sciences & Technology (NUST) 

Islamabad, Pakistan 

(2025) 

  



 

 

 

  



 
 

 

DEDICATION 

This thesis is dedicated to my parents and aunt, whose steadfast love, support, and 

sacrifices have constituted the foundation of all my accomplishments. 

Specially to my mom, whose strength, kindness, and boundless encouragement have 

been my greatest source of inspiration—I am forever grateful for your belief in me and 

for always being my guiding light. 

 

 

  



 

i 
 

ACKNOWLEDGEMENTS 

I like to convey my profound appreciation to all who aided in the completion of this 

thesis. I am deeply grateful to my supervisor, Dr. Shabaz Abbas, for their essential 

direction, perceptive input, and steadfast support during this trip. Your guidance and 

support have been important in refining my study and facilitating the attainment of my 

objectives. I am also appreciative of the teachers and staff of EME for supplying the 

resources and expertise essential for my work. Gratitude is extended to Dr. Yasir 

Ahmad and Dr. Usama Bin Perwez for their invaluable suggestions and conversations 

that enhanced the quality of this thesis and research. This thesis represents the joint 

efforts of all aforementioned individuals, and I am profoundly appreciative of their 

contributions to my academic and personal development. 



 

ii 
 

ABSTRACT 

 

Building energy management (BEM) with emphasis on Energy storage Systems for the 

household energy management is a conducive approach to navigate the challenges of 

energy demand uncertainty with limited grid energy supply. However, managing the 

efficiency and affordability of ESS for the residential consumers is quite dynamic and 

complex particularly for the third world countries which are struggling with accelerated 

population, declining economy and climate change vulnerabilities. Therefore, 

considering Pakistan as a case study, this study aims to predict demand uncertainty 

using BEM for the green buildings which are dependent upon efficient ESS and 

compares the levelized cost of storage (LCOS) between lithium-ion batteries (LiB) and 

lead acid batteries (LaB). BEM assists in analyzing the impact of weather on the energy 

load profile across various climatic zones in the major cities of Pakistan and aids in 

determining the size of photovoltaic (PV) systems and ESS). In addition, three green 

residential buildings are distributed as small, medium, and large houses, each with three 

occupancy profiles: low, medium, and high energy consumption across three distinct 

locales.  The findings indicate that both ESS are the significant options to manage 

energy requirements of green buildings, irrespective of building size or occupancy 

profile. Moreover, the findings suggest that lithium-ion batteries are relatively better in 

terms of demand variability, as it exhibits greater resilience to fluctuations and continue 

to be appealing in such contexts. The uncertainty analysis reveals that the LCOS value 

is between 0.002¢/kWh and 169¢/kWh for all the selected ESS. More specifically, 

between 0.002¢/kWh and 61.9¢/kWh for LiB, and between 2.1¢/kWh and 169¢/kWh 

for LaB. 

KEYWORDS: 

Building Energy Modelling, Energy Storage System, Demand Uncertainty, Monte 

Carlo Simulation, LCOS 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of the research/Purpose of the study 

Globally, residential buildings account for a significant 20.96% of total energy 

consumption, a figure that alarmingly climbs to 47% in Pakistan (National Electric 

Power Regulatory Authority. (2023)). This stark reality highlights a pressing need for 

change, particularly because over half (61%) of Pakistan's energy stems from thermal 

sources notorious for their CO2 emissions (Pakistan Economic Survey 2021-22). It's 

high time we pivot towards sustainable energy solutions to reduce our fossil fuel 

dependency and curtail CO2 emissions, safeguarding our environment for future 

generations. 

Echoing this urgent call to action, António Guterres, the esteemed Secretary-General 

of the United Nations, has forcefully articulated the critical role urban planning plays 

in this global endeavor. In his captivating address, he underscored the decisive impact 

of how we design our power generation, transport, and buildings — indeed, the very 

layout of our cities — in meeting the objectives set forth in the Paris Agreement on 

climate change and the Sustainable Development Goals (SDGs). It's a powerful 

reminder that our choices in city and building design are not just about aesthetics or 

convenience; they are pivotal in steering us towards a greener, more sustainable future. 

Moreover, the comparison across diverse climates enables a better understanding of 

how environmental conditions impact the performance and reliability of these storage 

technologies. This aligns with SDG 7’s emphasis on reliable energy, as storage 

solutions adapted to specific climate challenges are essential for ensuring consistent 

access to power.  

In this context, the concept of green buildings emerges not merely as an option but as 

a necessity. Aimed at harmonizing environmental friendliness and conservation, green 

buildings represent the epitome of how thoughtful design, construction, and usage can 

come together to create edifices that not only serve our immediate needs but also pay 

homage to the Earth (Hu et al., 2023) (Darko & Chan, 2018) By embracing green 

building practices, we take a significant step towards mitigating the adverse effects of 

climate change, advocating for a healthier planet, and ensuring that our developmental 

goals align with the safeguarding of our natural environment.
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Addressing the world's escalating energy demands is crucial, and the most promising 

solution lies in tapping into sustainable and universally viable renewable energy 

sources, including wind, solar, geothermal, bioenergy, and hydropower. The challenge, 

however, stems from the inherent variability and unpredictability of renewable sources 

like wind and sunlight, which often prevents their standalone operation in power plants 

(Biswas et al., 2017). This obstacle might seem daunting, but it presents an exciting 

opportunity for innovation. Scientists have been diligently exploring possible solutions 

and have made a groundbreaking discovery: the integration of energy storage systems 

(ESSs) with renewable energy sources holds the key (Castillo & Gayme, 2014). By 

harnessing the power of ESSs, we can effectively mitigate the challenges posed by the 

intermittency of renewables, unlocking their full potential to sustainably meet our 

energy needs. Now is the moment to embrace this synergy of technology and nature, 

propelling us towards a greener and more resilient energy future. 

To fully harness the potential of greener living within residential buildings, it's 

imperative to consider the integration of an Energy Storage System (ESS) as a 

cornerstone of sustainable development. However, this decision must not be made 

lightly. A comprehensive techno-economic analysis is indispensable to select the most 

fitting ESS model. The importance of this process cannot be overstated; an unsuitable 

choice might inadvertently inflate production costs(Ismail & Hashim, 

2018)undermining the very essence of efficiency and sustainability we strive for. By 

embracing a meticulously strategic approach in our selection, we not only pave the way 

for enhanced operational efficiency but also ensure our investment is cost-effective in 

the long run. Let's make the choice that aligns with our commitment to sustainability, 

without compromising on performance or financial viability. This is our chance to lead 

by example, demonstrating that economic and environmental objectives can go hand in 

hand. 

Understanding the load demand of residential buildings is essential for the accurate 

sizing of photovoltaic (PV) systems and Energy Storage Systems (ESS). Building 

Energy Models (BEM) are pivotal in this context, acting as a powerful instrument for 

precisely assessing energy consumption (Johari et al., 2020). The literature extensively 

recognizes demand uncertainty as a significant element that must be accounted for to 

minimize the total cost of the system while maximizing profitability and achieving 

other objectives (Kim et al., 2008). The predictions made by Building Energy Models 



 

3 
 

regarding the electrical load demands have shown to be highly effective in analyzing 

and managing the uncertainties associated with these demands (Trairat & 

Banjerdpongchai, 2022). This capability underscores the importance of employing 

accurate and reliable simulations to ensure that both PV systems and ESS are correctly 

sized to meet the energy requirements of residential buildings efficiently. 

The integration of solar systems within our energy frameworks has ushered in a new 

era of challenges, predominantly marked by the introduction of supply-side 

uncertainties. These uncertainties have necessitated the adoption of innovative and 

reliable analytical methods to ensure the feasibility and sustainability of such projects. 

Among the various techniques at our disposal, the Monte Carlo Simulation stands out 

as the most effective tool for this purpose. The choice of the Monte Carlo Simulation 

method is driven by a strategic focus not on the mere optimization of supply-side 

parameters, which, while important, do not encapsulate the full spectrum of variabilities 

we face. Instead, our goal is more nuanced and far-reaching. We aim to achieve a 

comprehensive and accurate assessment of variations in the Levelized Cost of Storage 

(LCOS). This approach acknowledges the complex nature of energy systems and the 

myriad factors that can influence their performance and cost-effectiveness over time. 

Furthermore, it is imperative to highlight the critical role of economic metrics in the 

evaluation of energy projects. Specifically, the levelized cost of energy (LCOE) and the 

levelized cost of storage (LCOS) emerge as pivotal benchmarks in this analysis. These 

metrics provide us with a clear, quantifiable measure of economic feasibility, guiding 

stakeholders in making informed decisions regarding the viability of solar energy 

projects. Thus, employing the Monte Carlo Simulation method is not just a technical 

choice; it is a strategic decision that reflects a deep understanding of the nuanced 

challenges inherent in integrating solar systems into our energy matrix. By focusing on 

accurately assessing fluctuations in LCOS, we can navigate the uncertainties of supply-

side factors with greater confidence, ensuring that the adoption of solar energy is both 

economically feasible and aligned with long-term sustainability goals. This perspective 

is vital for all stakeholders involved in the development, funding, and implementation 

of solar energy projects. (Cremoncini et al., 2024; Xiang et al., 2024). 

1.2 Research Rationale 

The demand for reliable and affordable energy storage solutions is increasingly critical 

as global efforts intensify toward sustainable energy access, particularly in developing 
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countries like Pakistan. Pakistan faces unique challenges in achieving Sustainable 

Development Goal 7 (SDG 7) due to its diverse climates, ranging from arid deserts to 

mountainous regions, which affect both energy demand patterns and the efficiency of 

energy storage technologies. Despite these climatic variations, research on how climate 

impacts the cost and performance of storage technologies—such as Lead Acid and 

Lithium-Ion Batteries—remains limited. 

This thesis addresses this gap by examining the Levelized Cost of Storage (LCOS) for 

Lead Acid and Lithium-Ion Batteries across five Pakistani cities with distinct climatic 

profiles: Islamabad, Karachi, Quetta, Murree, and Sibi. To accurately assess energy 

demand in these regions, Building Energy Modeling (BEM) was utilized, enabling a 

detailed understanding of local demand patterns across different building types and 

climate conditions. This approach ensures that the LCOS calculations are grounded in 

realistic demand scenarios, enhancing the relevance of the findings for diverse energy 

requirements. 

Understanding LCOS across these different environments is essential for developing 

energy storage systems that are both cost-effective and resilient to environmental 

stresses, which is critical for reducing dependency on the grid and promoting energy 

self-sufficiency. Furthermore, the findings of this research provide policymakers and 

stakeholders in the energy sector with data-driven insights on the most viable storage 

options for varying local conditions. Such insights are essential for making informed 

decisions about energy infrastructure investments and for formulating strategies to 

support affordable and reliable energy access. Ultimately, this research aims to 

contribute to the knowledge base necessary for advancing sustainable, climate-adapted 

energy solutions that align with Pakistan’s pathway to achieving SDG 7 

1.3 Research Objective 

➢ To understand what role does UBEM play in optimizing the integration 

of ESS in green residential buildings 

➢ To determine the impact of demand uncertainty in determining the 

economic viability of energy storage systems in green residential 

buildings equipped with PV technology 

➢ To find the cost effective ESS options for green residential buildings in 

the major cities of Pakistan 
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1.4 Problem Statement  

Globally, residential buildings consume a substantial amount of energy, 

primarily derived from fossil fuels, which significantly harms the environment. 

While PV systems offer a promising solution to reduce fossil fuel reliance and 

mitigate environmental impacts, their economic viability is often hindered by 

the inadequate selection of ESS particularly in the developing countries. 

Demand uncertainty arises from factors such as occupant behavior, climate 

conditions and unpredictable load patterns, impacting the sizing and 

performance of PV and ESS systems while introducing financial risks that 

complicate investment decisions. 

1.5 Thesis Structure  

This thesis is structured to provide a comprehensive analysis of the Levelized 

Cost of Storage (LCOS) for energy storage technologies—specifically, Lead 

Acid Batteries and Lithium-Ion Batteries—across five Pakistan cities with 

differing climates: Islamabad, Karachi, Quetta, Murree and Sibi. Following this 

introductory chapter, Chapter 2 presents a thorough review of existing literature 

on energy storage technologies, Building Energy Modeling and the relevance 

of LCOS in sustainable development, highlighting key performance indicators 

like self-sufficiency and on-site energy ratios. Chapter 3 outlines the research 

methodology, detailing the comparative framework for LCOS calculations and 

the selection criteria for building types and occupancy profiles. In Chapter 4, 

the results are presented, analyzing the impact of demand patterns and financial 

uncertainties on LCOS across different locations and building types. Finally, 

Chapter 5 concludes the thesis with a summary of key insights, limitations, and 

recommendations for future research. This structured approach enables a clear 

and systematic exploration of the factors influencing LCOS in diverse contexts, 

contributing valuable insights to the field of sustainable energy systems. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Evaluation of Existing body of Knowledge  

This chapter delves into the intricate studies of Energy Storage Systems (ESS) for 

residential buildings, alongside Building Energy Modeling (BEM) and the concept of 

Green Buildings. The narrative commences with an analytical examination of ESS, 

highlighting its crucial role within the residential sector. It endeavors to provide a 

comparative study of the variety of ESS technologies currently employed in residential 

buildings, examining their efficiency, cost-effectiveness, and environmental impacts. 

This comparative analysis not only elucidates the strengths and weaknesses of each 

system but also explores their scalability and long-term sustainability in the face of 

evolving energy demands. 

 

Subsequently, the focus shifts to Building Energy Modeling (BEM), a pivotal tool in 

the optimization of building energy consumption. This section outlines the fundamental 

principles of BEM, illustrating its significance in the design and operation of energy-

efficient buildings. By integrating BEM with the principles of Green Buildings, the 

discourse emphasizes the synergy between architectural design, material selection, and 

energy management strategies. This holistic approach underscores the importance of 

BEM in achieving substantial energy savings while maximizing occupant comfort and 

minimizing environmental impact. 

 

As the chapter progresses, it ventures into the complex dynamics of Demand 

Uncertainty and Supply-Side Uncertainty, offering a nuanced understanding of these 

phenomena. It critically examines the challenges associated with forecasting energy 

demand and supply, highlighting the implications for residential building energy 

management. Through a methodical analysis, it explores strategies to mitigate these 

uncertainties, focusing on the integration of renewable energy sources, demand 

response technologies, and advanced predictive models. The chapter concludes by 

reflecting on the critical role of innovation and adaptive strategies in navigating the 

uncertainties of energy demand and supply, advocating for a proactive and informed 

approach to residential building energy management. 
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This comprehensive exploration not only enhances the reader's understanding of 

contemporary issues in residential energy systems but also encourages a critical 

examination of the methodologies and technologies at the forefront of sustainable 

building practices 

2.1.1 ESS 

A battery plays a crucial role in bridging the gap between chemical and electrical energy 

within a PV system by storing surplus energy for periods of non-production. This 

technological approach underpins a more seamless infusion of renewable energy 

sources into the power grid. However, the variability in PV production, largely due to 

fluctuating weather conditions—a common challenge for many renewable sources—

poses a significant reliability concern. This unpredictability exerts undue pressure on 

the grid infrastructure, highlighting a critical area of vulnerability in the broader 

adoption of renewable energy technologies. 

Battery storage emerges as a strategic countermeasure, functioning as an intermediary 

buffer that mitigates the disparity between energy generation and consumption demand. 

It promises to alleviate grid stress through services such as peak shaving and load 

leveling, alongside contributing to the grid’s frequency and voltage regulation—critical 

for maintaining grid stability. Despite these advantages, the discussion on battery 

storage is incomplete without a thorough examination of battery characteristics, the 

technological differences that distinguish various batteries, and the performance 

metrics that quantify their effectiveness in a PV system. 

While the deployment of battery storage presents an operative solution to the grid's 

adaptability challenges in accommodating renewable energy sources, it also warrants a 

critical analytical lens. This encompasses investigating the efficiency, cost-

effectiveness, lifecycle, and environmental impact of different battery technologies. 

Such an analysis is paramount in deciphering the trade-offs involved and in guiding the 

strategic integration of battery storage within PV systems to bolster a resilient, 

sustainable, and economically viable energy grid. 

Energy Storage Systems (ESS) are classified into five principal categories: chemical 

(such as hydrogen fuel cells), electrochemical (notably rechargeable batteries like 

lithium-ion), electrical (including supercapacitors), mechanical (such as compressed 
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air energy storage), and thermal (e.g., molten salts). Each type of system demonstrates 

distinct characteristics in terms of power rating, lifetime, efficiency, and response time, 

necessitating a comparative analysis based on these parameters (Chadly et al., 2023). 

Within the scope of this research, a critical examination is focused on two specific 

types of electrochemical energy storage: Lithium-ion batteries (LIB) and Lead-acid 

batteries (LAB). This analysis aims to elucidate the relative advantages and limitations 

of these technologies, underpinned by an analytical exploration of their performance 

metrics (Storage, 2017). This comparison is essential for identifying the most effective 

energy storage solutions, considering the complex matrix of characteristics that define 

the suitability of different ESS technologies. 

2.1.1.1 Lithium-ion batteries (LIBs) 

Lithium-ion batteries (LIBs) have emerged as a pivotal technology in the realm of 

energy storage, particularly due to their high charge and discharge efficiency, rapid 

energy transfer capabilities, and significant energy density. The advancements in LIB 

technology have been driven by ongoing research into materials and battery 

management systems, which have collectively enhanced their performance and 

applicability in various sectors, including electric vehicles (EVs) and grid storage 

systems. 

High Charge and Discharge Efficiency  

The charge and discharge efficiency of LIBs is a critical parameter that influences their 

performance in practical applications. Recent studies indicate that LIBs can achieve 

efficiencies exceeding 90%, which is attributed to their electrochemical properties and 

the design of their electrode materials (Stroe et al., 2016). The efficiency is further 

enhanced by the implementation of advanced battery management systems (BMS) that 

monitor and optimize the charging cycles, thereby prolonging the battery's lifespan and 

maintaining its performance (Hemavathi, 2020a). The ability to rapidly charge and 

discharge makes LIBs particularly suitable for applications requiring quick energy 

delivery, such as in grid storage systems where energy must be stored and released in 

response to fluctuating demand (T. Chen et al., 2020) 

Rapid Energy Transfer in Grid Storage Systems  

The integration of LIBs into grid storage systems has been a focal point of research due 

to their ability to facilitate rapid energy transfer. The high power density of LIBs allows 
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for quick response times, which is essential for balancing supply and demand in 

electrical (T. Chen et al., 2020). As renewable energy sources, such as solar and wind, 

become more prevalent, the need for efficient energy storage solutions that can handle 

intermittent generation is paramount. LIBs have shown promise in this regard, 

providing a reliable means to store excess energy generated during peak production 

times and release it during periods of high demand (Porzio et al., 2023). The economic 

feasibility of LIBs for grid applications is also improving, with projections indicating a 

significant reduction in costs, potentially making them a competitive option for large-

scale energy storage (Projecting the Price of Lithium-Ion NMC Battery Packs Using a 

Multifactor Learning Curve Model, 2020). 

High Specific Capacity and Long Service Life 

One of the standout features of LIBs is their high specific capacity, which is a measure 

of the amount of charge a battery can store relative to its mass. Current generation LIBs 

exhibit specific capacities around 250 Wh/kg, with ongoing research aiming to push 

this figure closer to 400-500 Wh/kg through innovations in anode materials, such as 

lithium metal anodes (Bills et al., 2020; D. Lin et al., 2017). This increase in specific 

capacity is crucial for applications in electric vehicles, where weight and space are at a 

premium. Additionally, the long service life of LIBs, often exceeding 2000 cycles, is a 

significant advantage, reducing the frequency of replacements and associated costs 

(Hemavathi, 2020b). The longevity of LIBs is enhanced by advancements in materials 

science, particularly in the development of more stable and durable electrode materials 

that can withstand the rigors of repeated cycling (Molaiyan et al., 2023) 

Energy Density and Its Implications  

The energy density of LIBs is significantly higher than that of many alternative battery 

technologies, making them the preferred choice for a variety of applications. The 

theoretical energy density of LIBs is approximately 420 Wh/kg, which is nearing its 

practical limits (Y. Wang et al., 2018). This high energy density is essential for 

applications where space and weight are critical factors, such as in portable electronics 

and electric vehicles. Furthermore, the high energy density of LIBs contributes to their 

effectiveness in grid-scale applications, where large amounts of energy need to be 

stored without requiring excessive physical space (Fan et al., 2020). The ongoing 

research into solid-state batteries and novel materials aims to further enhance the energy 
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density of LIBs, potentially unlocking new applications and improving their 

competitiveness against emerging technologies (R. Chen et al., 2019). 

2.1.1.2 Lead Acid Batteries (LABs) 

Lead-acid batteries (LABs) have been a cornerstone of energy storage technology for 

over a century, primarily due to their affordability, reliability, and established 

manufacturing processes. This literature review synthesizes recent findings on the 

economic aspects, recycling potential, and operational characteristics of lead-acid 

batteries, highlighting their continued relevance in various applications. 

Affordability and Manufacturing Costs 

One of the most significant advantages of lead-acid batteries is their low manufacturing 

cost, which makes them an attractive option for a wide range of applications, from 

automotive to stationary energy storage systems. The cost-effectiveness of LABs is 

primarily attributed to the abundance of lead and sulfuric acid, which are relatively 

inexpensive compared to the materials used in other battery technologies, such as 

lithium-ion batteries (K. Liu et al., 2018). Recent studies indicate that LABs account 

for approximately 82% of global lead consumption, underscoring their widespread use 

and economic viability (K. Liu et al., 2018)(Tian et al., 2014). Furthermore, the 

manufacturing processes for lead-acid batteries are well-established and scalable, 

contributing to their affordability (Tian et al., 2014). 

Reliability and Performance 

Lead-acid batteries are known for their reliability and robustness, characteristics that 

have made them the preferred choice for numerous applications, including backup 

power supplies and automotive starting systems. Their ability to deliver high surge 

currents makes them particularly suitable for starting internal combustion engines 

(Okano et al., 2021) However, one of the challenges associated with lead-acid batteries 

is their sensitivity to over-discharge, which can significantly reduce their lifespan and 

performance Innovations in battery design, such as the use of graphite-based materials 

as cathode current collectors, have been explored to enhance the resistance of LABs to 

over-discharge conditions (Okano et al., 2021).  
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Recharge and Reuse 

The rechargeability of lead-acid batteries is a critical aspect of their lifecycle. LABs 

typically require 8 to 10 hours for a full recharge after a significant discharge, which is 

essential for maintaining their operational efficiency (Sen et al., 2021)The ability to 

recharge and reuse lead-acid batteries is a significant factor in their economic appeal, 

as it allows for extended use and reduces the frequency of replacements. Moreover, the 

recycling of lead-acid batteries is highly efficient, with a recycling rate that can exceed 

95% in some regions (Zan & Zhang, 2022). This high recycling rate not only mitigates 

environmental concerns associated with lead pollution but also contributes to the 

sustainability of lead-acid battery production by recovering valuable materials (Zan & 

Zhang, 2022).  

Environmental Considerations 

Despite their advantages, lead-acid batteries pose environmental challenges, 

particularly concerning lead pollution. Studies have shown that communities near lead-

acid battery manufacturing facilities are at a higher risk of lead exposure, which can 

have detrimental health effects, especially in children (K. Chen et al., 2014). However, 

advancements in pollution control and recycling technologies are helping to mitigate 

these risks (K. Liu et al., 2018). The implementation of extended producer 

responsibility (EPR) systems has also been suggested as a means to improve recycling 

practices and reduce the environmental impact of lead-acid batteries (Zan & Zhang, 

2022). 

2.1.2 BUILDING ENERGY MODELLING 

Building energy modeling (BEM) has emerged as a critical area of research and 

practice, driven by the need to enhance energy efficiency in the built environment. This 

literature review synthesizes various studies that explore methodologies, predictive 

models, and strategies for optimizing energy consumption in buildings. The integration 

of advanced computational techniques, such as artificial intelligence and machine 

learning, alongside traditional modeling approaches, has significantly advanced the 

field. 

One of the foundational studies in this domain is by, which presents prediction 

equations for energy consumption in apartment buildings based on survey data. Their 

findings indicate that room heating constitutes the largest component of energy 
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consumption, followed by electricity, hot water supply, and gas (Ju et al., 2014). This 

highlights the importance of understanding the specific energy demands of different 

building types, which is essential for developing targeted energy-saving strategies. 

Similarly, emphasize the role of regression analysis and artificial neural networks in 

modeling building energy consumption, showcasing how data classification can 

enhance the accuracy of energy predictions (Ridwana et al., 2020). This dual approach 

not only improves the reliability of energy consumption forecasts but also facilitates 

the identification of key factors influencing energy use. 

Energy retrofitting is another critical aspect of building energy modeling. conducted a 

comprehensive study on energy consumption and indoor climate in residential 

buildings before and after retrofitting, demonstrating significant reductions in energy 

use post-retrofitting (Thomsen et al., 2016). This underscores the potential for existing 

buildings to achieve substantial energy savings through targeted interventions. 

Furthermore, propose a partition-based method for energy analysis that leverages 

Building Information Modeling (BIM) technology to optimize energy conservation 

measures (Z. Lin & Zhong, 2015). Their approach addresses common challenges in 

energy consumption analysis, such as low accuracy and poor sustainability, thereby 

enhancing the effectiveness of energy-saving designs. 

The role of building envelopes in energy efficiency is also critical. explore the impact 

of green envelopes on energy consumption in library buildings, revealing that different 

envelope designs can lead to significant variations in energy use (Ariff et al., 2019). 

Their findings suggest that optimizing building orientation, wall insulation, and façade 

treatments can substantially reduce energy consumption. This is further supported by , 

who analyze energy consumption demand models for residential buildings, 

emphasizing the importance of considering energy structure adjustments and policy 

regulations in energy modeling (Yu et al., 2011). These studies collectively highlight 

the multifaceted nature of energy consumption in buildings and the need for 

comprehensive modeling approaches that account for various design and operational 

factors. 

Energy audits play a pivotal role in identifying energy-saving potentials within 

buildings. 's work on energy audits at Xi'an Jiaotong-Liverpool University illustrates 

how systematic inspections can reveal energy consumption characteristics and inform 
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strategies for reducing energy use (Jing & Nayel, 2013). This aligns with the findings 

of , who propose intelligent data analysis methods for modeling and predicting 

electricity consumption in buildings, enabling the identification of abnormal energy use 

patterns (Massaguer et al., 2014). Such methodologies are essential for developing 

effective energy management systems that can adapt to changing consumption patterns. 

The integration of advanced computational techniques in energy modeling is further 

exemplified by the work of , who utilize kernel principal component analysis and 

support vector machines to analyze energy consumption in prefabricated buildings (Lv 

et al., 2022). Their approach highlights the potential of machine learning algorithms to 

enhance the predictive capabilities of energy models, particularly in complex building 

systems. Similarly, 's research on public buildings employs a particle swarm 

optimization-based radial basis function neural network to predict energy consumption, 

demonstrating the effectiveness of hybrid modeling techniques (Cao & Huang, 2017). 

These advancements in computational modeling are crucial for addressing the 

increasing complexity of energy systems in modern buildings. 

Moreover, the impact of building design parameters on energy consumption has been 

extensively studied. investigate the quantitative relationships between design 

parameters and energy savings in cold regions, revealing how factors such as building 

dimensions and solar radiation influence energy use (J. Wang & Kang, 2017). This 

research underscores the importance of integrating design considerations into energy 

modeling to achieve optimal energy performance. Additionally, 's exploration of 

building physics forms further emphasizes the need for accurate simulations of energy 

consumption in representative buildings, utilizing software such as OpenStudio to 

model operational energy use (Y. Yang & Wang, 2022). 

 

In the context of historical buildings, address the challenges of improving energy 

efficiency in protected structures, suggesting that careful measurements and 

assessments can reveal potential energy-saving measures without compromising 

architectural integrity (Blumberga et al., 2013). This highlights the need for adaptive 

strategies that respect cultural heritage while promoting energy efficiency. 

Furthermore, the concept of generalized building energy efficiency, as proposed by , 

advocates for a holistic approach to energy-saving design that encompasses all aspects 
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of building performance, from construction to operation (L. Yang & Sun, 2019). This 

comprehensive perspective is essential for achieving sustainable energy outcomes in 

the built environment. 

The literature also emphasizes the importance of government policies and regulations 

in shaping energy efficiency practices. discuss the role of comprehensive quality 

supervision in energy efficiency projects, advocating for rigorous oversight to ensure 

the successful implementation of energy-saving measures in civil buildings (H. Guo et 

al., 2013). This regulatory framework is vital for fostering a culture of energy efficiency 

and ensuring that building practices align with sustainability goals. 

In conclusion, building energy modeling is a dynamic and multifaceted field that 

encompasses a wide range of methodologies, technologies, and strategies aimed at 

optimizing energy consumption in buildings. The integration of traditional modeling 

techniques with advanced computational methods, alongside a focus on design 

parameters and regulatory frameworks, is essential for achieving significant energy 

savings. As the building sector continues to evolve, ongoing research and innovation 

will be critical in addressing the challenges of energy efficiency and sustainability in 

the built environment. 

2.1.3 GREEN BUILDING  

The concept of green buildings has gained significant traction globally, particularly in 

relation to energy efficiency and the integration of renewable energy sources. Green 

buildings are defined as structures that are designed, constructed, and operated to 

minimize their environmental impact while maximizing resource efficiency, 

particularly concerning energy, water, and materials (Sutikno, 2022). This approach not 

only addresses the pressing issues of climate change and resource depletion but also 

aligns with the growing demand for sustainable living environments among users 

worldwide (Sutikno, 2022) 

One of the primary advantages of green buildings is their potential for energy 

conservation. Research indicates that these structures can significantly reduce energy 

consumption through various design strategies, such as optimizing natural lighting, 

improving insulation, and utilizing energy-efficient appliances (Kurniawan et al., 2021) 

(Alshorman & Alshorman, 2017). For instance, the implementation of green roofs and 

walls has been shown to enhance thermal performance, thereby reducing the energy 
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required for heating and cooling (Azis et al., 2019). Furthermore, the integration of 

smart technologies, such as IoT systems, allows for real-time monitoring and 

management of energy use, leading to further reductions in consumption (Abriaa & 

Vimbia, 2020). 

In addition to energy efficiency, the incorporation of renewable energy sources is a 

critical component of green building practices. The use of solar panels, wind turbines, 

and geothermal systems can significantly decrease reliance on fossil fuels, thereby 

reducing greenhouse gas emissions (Harmathy, 2021)(Nur, 2023). For example, the 

Leadership in Energy and Environmental Design (LEED) certification emphasizes the 

importance of renewable energy in its evaluation criteria, encouraging buildings to 

utilize sustainable energy sources as part of their operational framework (Najed, 2023). 

This shift not only contributes to environmental sustainability but also offers economic 

benefits through lower operational costs and potential incentives for building owners 

(Plebankiewicz et al., 2019) (Basten et al., 2019) 

Moreover, the global movement towards green buildings is supported by various 

regulatory frameworks and certification programs that promote energy efficiency and 

the use of renewable resources. Countries around the world have begun to adopt 

standards that require new constructions to meet specific energy performance criteria, 

thereby fostering a culture of sustainability within the building sector ((Sutikno, 2022); 

(A. Guo & Liu, 2020). For instance, the Green Mark Scheme in Singapore sets stringent 

requirements for energy efficiency and environmental protection, which have become 

benchmarks for green building practices internationally (Aryaningrum et al., 2018). 

Despite the numerous benefits associated with green buildings, challenges remain, 

particularly in achieving consistent energy performance across different regions and 

building types. Studies have highlighted discrepancies between predicted and actual 

energy consumption in green buildings, often attributed to occupant behavior and 

operational practices (Ohueri et al., 2018). Addressing these gaps is essential for 

maximizing the energy-saving potential of green buildings and ensuring that they fulfill 

their intended environmental benefits (Ohueri et al., 2018); (Basten et al., 2019). 

In conclusion, green buildings represent a vital strategy in the global effort to enhance 

energy efficiency and promote the use of renewable energy sources. By integrating 

sustainable design principles and technologies, these structures not only contribute to 
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environmental conservation but also offer economic advantages and improved quality 

of life for occupants. As the demand for sustainable solutions continues to grow, the 

role of green buildings in shaping a more energy-efficient future will undoubtedly 

become increasingly significant. 

The development of green residential buildings has emerged as a crucial strategy in 

addressing environmental concerns, particularly in relation to energy efficiency and 

sustainability. Green residential buildings are designed to minimize their ecological 

footprint while maximizing the use of renewable resources and energy-efficient 

technologies. This literature review synthesizes various studies that highlight the 

significance of green residential buildings in promoting energy conservation and 

sustainable living. One of the primary motivations for adopting green residential 

building practices is the urgent need to mitigate climate change. Residential buildings 

significantly contribute to global warming and environmental pollution, accounting for 

a substantial portion of energy consumption and carbon emissions (Elias & Lin, 

2015)(Ramadhan et al., 2019). By implementing green building concepts, such as 

energy-efficient designs and renewable energy systems, the negative impacts of 

residential buildings on the environment can be significantly reduced (Ramadhan et al., 

2019); (Gao, 2011). For instance, the integration of solar energy systems and water-

saving fittings has been identified as a common practice in sustainable residential 

construction, which not only conserves resources but also enhances the quality of life 

for occupants (Mazli & Fauzi, 2022). The use of innovative building materials is 

another critical aspect of green residential buildings. Research indicates that selecting 

sustainable materials can lead to improved energy efficiency and reduced 

environmental impact (Y. Liu, 2013). For example, the application of new insulation 

materials and waterproofing technologies can enhance thermal performance, thereby 

reducing the energy required for heating and cooling (Y. Liu, 2013). Furthermore, the 

incorporation of green roofs and walls has been shown to provide additional insulation 

and reduce energy consumption, while also contributing to urban biodiversity (Azis et 

al., 2019);(Djordjevic et al., 2018). These features not only improve the energy 

performance of residential buildings but also offer aesthetic and ecological benefits. 

Community perspectives play a vital role in the successful implementation of green 

residential buildings. Engaging with potential homeowners and understanding their 

preferences can lead to more effective designs that meet user needs while promoting 



 

17 
 

sustainability (Ramadhan et al., 2019); (K. S. Liu et al., 2017). Studies have shown that 

awareness of green building elements among potential homebuyers influences their 

purchasing decisions, highlighting the importance of education and outreach in 

fostering a culture of sustainability (Mazli & Fauzi, 2022) (Tan & Goh, 2018). 

Additionally, the psychological factors that drive consumer behavior towards green 

residential buildings, such as perceived value and environmental concern, are crucial 

for encouraging adoption (Tan & Goh, 2018). Despite the numerous benefits associated 

with green residential buildings, challenges remain in their widespread implementation. 

The initial costs associated with green building technologies can deter potential 

homeowners, as studies indicate that green building systems may increase construction 

costs by approximately 10% compared to traditional methods (C. Sun et al., 2019). 

However, the long-term savings on energy bills and the potential for government 

incentives often outweigh these initial investments (Said, 2019); (Badawy et al., 2021). 

Moreover, ongoing research into energy consumption patterns in residential buildings 

is essential for optimizing design strategies and ensuring that green buildings achieve 

their intended energy-saving goals (Zhang et al., 2021)In conclusion, green residential 

buildings represent a vital component of sustainable development, offering significant 

benefits in terms of energy efficiency and environmental conservation. By integrating 

renewable energy sources, utilizing innovative materials, and engaging with 

communities, the potential for reducing the ecological footprint of residential buildings 

can be greatly enhanced. As the demand for sustainable living continues to grow, the 

role of green residential buildings in shaping a more energy-efficient future will become 

increasingly important. 

2.1.4 Demand Uncertainty 

The literature surrounding electrical demand uncertainty is extensive, reflecting the 

complexities and challenges faced by utilities in forecasting load demand. This review 

synthesizes various methodologies and approaches that have been developed to address 

the inherent uncertainties in electrical demand forecasting. One of the primary 

challenges in forecasting electrical demand is its stochastic nature, which complicates 

the prediction of future load levels. Khuntia et al. highlight that traditional forecasting 

methods often struggle to accommodate the variability inherent in demand patterns, 

particularly over mid- and long-term horizons (Khuntia et al., 2016). This variability 

necessitates the development of more sophisticated forecasting techniques that can 
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incorporate a range of influencing factors, including economic conditions, 

technological advancements, and changes in consumer behavior (Sowiński, 2019). For 

instance, Sowiński emphasizes the importance of end-use models in forecasting, which 

can provide insights into how structural changes in the electricity market affect demand 

uncertainty (Sowiński, 2019). To further enhance forecasting accuracy, various models 

have been proposed that integrate different data sources and methodologies. Nugraha 

et al. discuss the implementation of a forecasting module within Building Energy 

Management Systems (BEMS), which utilizes historical load data, weather forecasts, 

and occupant behavior to predict electricity demand (Nugraha et al., 2018). This 

approach underscores the necessity of incorporating diverse data inputs to mitigate 

forecasting uncertainty. Similarly, Zhou et al. present a fuzzy probability-based Markov 

chain model that accounts for uncertainties by allowing for fuzzy parameters in the 

forecasting process, thereby improving the robustness of long-term demand predictions 

(Zhou et al., 2013). In the context of long-term forecasting, Hyndman and Fan advocate 

for density forecasting, which provides a probabilistic view of potential peak demand 

levels rather than relying solely on point estimates. This method is crucial for utilities 

to evaluate and hedge against financial risks associated with demand variability 

(Hyndman & Fan, 2010). The integration of probabilistic approaches is echoed in the 

work of Jiang et al., who emphasize the importance of probabilistic load forecasting 

methods in reflecting uncertainties through prediction intervals, thus aiding decision-

making in system operations (Jiang et al., 2021). Short-term load forecasting also 

presents unique challenges due to the rapid fluctuations in demand. Zou's research 

highlights the effectiveness of hybrid models that combine variational mode 

decomposition with advanced neural networks to address the non-linearity and 

uncertainty of load data (S. Li, 2023). This aligns with findings from Li, who notes that 

short-term forecasting models must adapt to the stochastic characteristics of electricity 

load data to enhance accuracy (S. Li, 2023). Additionally, the work of Stoutenburg et 

al. indicates that the variability of load forecasts can significantly impact operational 

strategies, particularly in systems with high penetration of renewable energy sources 

(Stoutenburg et al., 2013) Moreover, the integration of advanced machine learning 

techniques has gained traction in addressing demand uncertainty. For instance, the 

application of Bayesian deep learning, as discussed by Sun et al., allows for capturing 

uncertainty in residential net load forecasting, which is critical for smart grid 

management (M. Sun et al., 2020). This approach highlights the growing trend of 
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utilizing artificial intelligence to improve forecasting accuracy and manage the 

complexities of modern electricity markets. In conclusion, the literature on electrical 

demand uncertainty reveals a multifaceted landscape of forecasting methodologies that 

are continuously evolving. The integration of probabilistic models, advanced data 

analytics, and machine learning techniques is essential for enhancing the accuracy of 

load forecasts and effectively managing the uncertainties inherent in electrical demand. 

2.1.4 LCOS  

The economic analysis of energy storage systems, particularly through the lens of 

Levelized Cost of Storage (LCOS), has gained significant attention in recent years. 

LCOS serves as a critical metric for evaluating the cost-effectiveness of various energy 

storage technologies, allowing for a comparative assessment against the Levelized Cost 

of Energy (LCOE) of generation technologies. Mostafa et al. emphasize that LCOS 

quantifies the discounted cost per unit of discharged electricity, incorporating all 

relevant technical and economic parameters, which makes it a vital tool for stakeholders 

in the energy sector (Mostafa et al., 2020) This metric is particularly useful in the 

context of renewable energy integration, where the intermittency of sources like solar 

and wind necessitates reliable storage solutions (Schmidt et al., 2019)). Recent studies 

have highlighted the diverse range of energy storage technologies available, including 

batteries, pumped hydro, and emerging options like hydrogen-bromine flow batteries. 

For instance, the hydrogen-bromine flow battery is noted for its high power density and 

potential for large-scale applications, which could significantly enhance the economic 

viability of renewable energy systems (Hugo et al., 2020) Furthermore, Zhang et al. 

present a novel gravity-enhanced compressed air energy storage system, which 

eliminates reliance on fossil fuels and offers a promising alternative for long-duration 

energy storage, thereby contributing to the economic analysis of energy storage systems 

(Zhang et al., 2022). The economic feasibility of energy storage systems is also 

influenced by external factors such as market dynamics and policy frameworks. For 

example, Zhao discusses the impact of subsidy policies on the economic analysis of 

photovoltaic energy storage integration in China, illustrating how financial incentives 

can alter the cost-benefit landscape for energy storage projects (Zhao et al., 

2024)Similarly, the work of Li et al. highlights the importance of considering 

externalities in the economic evaluation of battery systems, suggesting that 
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incorporating such factors can significantly enhance their perceived economic value 

(X. Li et al., 2018)  

Similarly, study conducted by (Chadly et al., 2023) calculated LCOS for Green office 

building in USA leaving a gap for residential building   

2.2 Research GAP 

In a study conducted by (Chadly et al., 2023), the researchers used Monte Carlo 

simulation to conduct an uncertainty analysis on the Levelized Cost of Storage 

(LCOS) for various ESS in commercial building.  

2.3 Research Question 

➢ What role does (UBEM) play in optimizing the integration of ESS in green 

residential buildings? 

➢ What is the impact of demand uncertainty in determining the economic viability 

of energy storage systems in green residential buildings equipped with 

photovoltaic (PV) technology? 

➢ What is the cost-effective energy storage systems (ESS) for green residential 

buildings in the major cities of Pakistan? 
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CHAPTER 3: METHODOOGY 
 

The primary objective of this research is to examine how different energy storage 

systems (ESS) respond to diverse load profiles and supply side parameters. Figure 1 

offers a detailed description of the methodology. 

 

Figure 1.Methodology Framework 

The research methodology employed in this study is meticulously organized and 

executed to ensure a comprehensive examination of energy systems within the realm of 

green residential buildings. This investigation deeply considers both the demand for 

energy within such structures and the diverse array of sources available to satisfy this 

need. The initial phase of the methodology involves an exhaustive evaluation of several 

critical factors, including the Urban Building Energy Model (UBEM), prevailing 

climate conditions, the architectural types of houses in question, and the levels of 

occupancy they experience. This phase is designed to cultivate a profound 

understanding of how energy demand is influenced and shaped within the context of 

green residential environments. 
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Following the detailed assessment of energy demand factors, the methodology 

advances to incorporate these variables into a dynamic building simulation process. 

This simulation is engineered to accurately replicate the patterns and behaviors of 

energy consumption within the buildings under study. It's a key analytical tool that 

allows researchers to visualize and quantify energy usage and demand with high 

precision. 

On the supply side of the equation, the research delves into the precise sizing of 

photovoltaic (PV) systems and energy storage systems (ESS) that are optimal for 

meeting the calculated energy demands of the buildings. This involves a careful 

consideration of the capacity and efficiency of these systems to ensure that they can 

provide a reliable and sustainable energy supply. 

To complement the technical analysis of energy demand and supply, the methodology 

incorporates a techno-economic analysis segment. This part of the research is crucial 

for calculating the Levelized Cost of Energy (LCOE) and the Levelized Cost of Storage 

(LCOS). These metrics are instrumental in assessing the economic feasibility and 

performance efficiency of the implemented energy systems. By evaluating the costs 

associated with energy production and storage over their operational lifetimes, the study 

aims to draw meaningful conclusions about their value proposition and sustainability. 

Furthermore, to assess the Green Building status of the residential building, a key 

performance indicator (KPI) was developed, and all the buildings were evaluated based 

on it. 

Finally, acknowledging the inherent uncertainties that can affect energy systems, the 

methodology includes an uncertainty analysis conducted through Monte Carlo 

simulations. This analysis is designed to test the reliability of the research results under 

a wide range of varying conditions. It's a pivotal aspect of the study, offering valuable 

insights into the resilience and viability of employing energy storage solutions in green 

residential buildings. Through this comprehensive research methodology, the study 

aspires to contribute significantly to the body of knowledge on sustainable energy 

solutions for residential living spaces, thereby promoting environmental stewardship 

and energy efficiency. 

Throughout this research, a multitude of sophisticated software tools are leveraged to 

undertake various stages of the analysis. This meticulous approach ensures a 
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comprehensive and in-depth evaluation of energy systems tailored to meet the specific 

requirements of green residential buildings. Figure 2 shows the details of the software 

being used. 

Table 1. Methodology Tools 

 

Revit: 

To develop the 2D and 3D models for our research, we relied on Revit, a Building 

Information Modeling (BIM) software. It allowed for the precise development of 

detailed architectural plans and comprehensive 3D models (Kumar et al., 2022)  In 

order to communicate building information from design software to energy analysis 

tools, Energy analysis and simulation depend on the gbXML format .(Rostamiasl & 

Jrade, 2024) 

Design Builder 

In my Building Energy Modeling process, I rely on DesignBuilder software, an 

advanced tool that integrates with EnergyPlus, the industry standard for building energy 

simulation. DesignBuilder provides a comprehensive suite for modeling various aspects 

of building performance and has been widely used in academic research studies, 

including those by (Johari et al., 2020; Malhotra et al., 2022) 
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3.1 Demand side Setting 
In our research efforts focusing on the demand-side setting, we employed the Urban 

Building Energy Model (UBEM) as a sophisticated tool to meticulously ascertain the 

hourly load profiles across a diverse array of residential architectures. This 

comprehensive analysis spanned across three distinct categories based on house sizes, 

thereby ensuring a broad spectrum of data representation. Furthermore, the study was 

geographically expansive, incorporating five different cities to account for variable 

climatic and socio-economic factors influencing energy consumption patterns. 

Additionally, variability in household occupancy was meticulously accounted for, with 

three different occupancy levels being investigated. This multi-dimensional approach 

facilitated a more nuanced understanding of energy demands, contributing significantly 

to the body of knowledge in energy management and sustainable urban planning. 

3.1.1 Floor Plan and Covered Area 

The foundational data for plot and building dimensions utilized in the research were 

derived from the "Islamabad Capital Residential Sector Zoning and Building Control 

Regulations," as issued by the Capital Development Authority in 1993. This critical 

documentation afforded a meticulous and precise framework of sizing pertinent to the 

construction of realistic urban area building models within the context of Pakistan. The 

dimensions extracted from these regulations were methodically incorporated into the 

architectural Revit software models, thereby assuring that the models accurately 

mirrored the architectural norms and specifications prevalent in Islamabad.  

For the purpose of the research, three distinct models of houses were developed. The 

classification of these models is based on their covered area, represented in square feet 

(sq ft). The smallest model, designated as the "Small House," encompasses a total 

covered area of 2,090 sq ft. Progressing in size, the "Medium House" model exhibits a 

significantly larger footprint, with a covered area of 3,507 sq ft. The largest of the 

models, aptly referred to as the "Large House," spans an extensive area of 5,743 sq ft. 

This delineation of house models by size facilitates a structured approach to analyzing 

the varying impacts of architectural dimensions on the study's outcomes. 

Upon the successful incorporation and validation of these dimensions, the model 

established for Islamabad served as a blueprint. This blueprint was subsequently 

adapted and applied with consistency across all the additional cities encompassed by 

the study. This methodical approach not only ensured a standardized protocol in the 
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analytical phase but also facilitated a robust comparative analysis. Such an analysis was 

instrumental in assessing variations in energy performance, taking into consideration 

the diverse geographical and climatological conditions encountered across the different 

urban locales under investigation. This approach underscored the study's commitment 

to generating findings that are both comprehensive and universally applicable within 

the studied regions, thereby contributing valuable insights into the field of urban 

planning and sustainable building practices. 

3.1.2 2d and 3d model: 

To develop the 2D and 3D models for our research, we relied on Autodesk Revit's 

robust capabilities. This software proved to be invaluable for creating precise 

architectural models and detailed designs. Our process commenced by drawing 

inspiration from the floor plans of two previous studies (Malik & Hassan, 2019)(Anwar 

et al., 2021), which provided a solid foundation for constructing accurate models. 

Once the 2D models had been established, our next crucial step involved transitioning 

these designs into 3D models. Leveraging Revit's advanced modeling features, we were 

able to create comprehensive 3D representations of the buildings. These 3D models 

were not only instrumental in visualizing the architectural design but also played a key 

role in conducting further simulations related to energy consumption and system 

integration within the building. The synergy between precise 2D and 3D models 

enabled us to conduct thorough analysis and make informed decisions throughout the 

research process. 

Figure 2(Small House), figure 3(Medium House) and Figure 4(Large House) shows the 

floor plans each house. While figure 5, figure6 and figure 7 shows the 3d model of all 

3 houses. 
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Figure 2.Small House Floor Plan 

 

Figure 3.Medium House Floor Plan 

 

 

 

 

 

 

 

 

 
Figure 4.Large House Floor Plan 
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Figure 5.Small House 3d Model 

 

Figure 6..Medium House 3d Model 

 

Figure 7.Large House 3d Model 

 

3.1.3 Exporting GBXML file from Revit to BEM software 

In the research process, after developing 2D and 3D models of residential buildings in 

Autodesk Revit, the next step was to export these models for use in Building Energy 

Modeling (BEM). Revit allows for the export of models in the Green Building XML 

(gbXML) format, which is widely accepted for transferring building information from 

design software to energy analysis tools. This export-import process is crucial as it 

ensures that the complex geometry and detailed information from the Revit model are 

accurately transferred to the BEM software. This integration is essential for performing 

reliable and detailed energy simulations, which are crucial for evaluating the energy 

efficiency of the building design and optimizing energy usage strategies. 
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3.1.4 Selecting cities based on HDD and CDD days 

This study's formulation employed a meticulous method for selecting cities, 

predominantly based on Heating Degree Days (HDD) and Cooling Degree Days (CDD) 

metrics. These metrics are indispensable in comprehending a building's climatic-related 

energy requirements. They deftly quantify the extent of heating or cooling required to 

sustain optimal indoor temperature levels. The cities under consideration were 

systematically categorized into four discrete groups, contingent upon their HDD and 

CDD ranges as delineated in the study.(Amber et al., 2018)  

Subsequently, from each of these quartiles, a quintet of cities was judiciously chosen to 

encapsulate the diverse climatic conditions prevalent across the nation. This curated 

selection aimed to enfold a broad spectrum of thermal requisites, ranging from zones 

necessitating heightened heating to locales demanding considerable cooling. The 

carefully chosen cities from the groups include Islamabad, Quetta, Murree, and Sibi. 

In addition to these selections, Karachi was included as an exceptional case owing to 

its distinctive geographical position near the coast. Coastal cities, by virtue of their 

location, often exhibit climatic characteristics distinct from those of inland areas, 

thereby justifying Karachi's inclusion for a nuanced assessment of how coastal 

proximity impacts energy consumption patterns and system performance within 

buildings. 

This scrupulously strategic selection of cities furnishes a holistic foundation for the 

evaluation of the techno-economic performance of varied energy systems across 

distinct climatic zones. It guarantees that the outcomes of the study are not only 

extensively applicable but also accurately reflective of the wide-ranging conditions 

dispersed across the country, thereby enhancing the generalizability and reliability of 

the study's findings. 

3.1.5 Selecting Weather Files 

To accurately analyze the energy performance of buildings based on their Cooling 

Degree Days (CDD) and Heating Degree Days (HDD), the research began by selecting 

cities. The next crucial step was to obtain precise weather data for these locations. 

Weather files are essential for Building Energy Modeling (BEM) as they provide 

critical climatic conditions such as temperature, humidity, solar radiation, and wind 

speed. 
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To acquire these weather files, the Ladybug Tools online platform was used. Ladybug 

Tools is a suite of free and open-source applications that support environmental design 

and analysis, including the generation and processing of weather data for energy 

modeling. 

Here are the steps followed for selecting weather files: 

1. Accessing Ladybug Tools: The Ladybug Tools online platform was accessed to 

search for and download the appropriate weather files for each selected city. This tool 

is widely recognized for its extensive database of weather files derived from reliable 

sources such as EnergyPlus Weather (EPW) files. 

2. City-Specific Weather Data: For each city selected based on CDD and HDD 

categorization, the corresponding EPW file was located using Ladybug Tools. These 

files contain detailed hourly weather data, crucial for accurate simulation in BEM. The 

weather data was chosen to match the location and climatic conditions of each city, 

ensuring that the energy modeling reflected real-world conditions. 

3. Consistency and Accuracy: Ladybug Tools was chosen for its ability to provide 

consistent and accurate weather data, validated in previous studies. Studies (Kamel, 

2021)and (H. Lin et al., 2023) also relied on Ladybug Tools for weather files, 

highlighting its reliability and widespread acceptance in the field of building energy 

simulation. 

4. Integration with BEM Software: After downloading the necessary weather files, they 

were integrated into the BEM software used for this research, such as DesignBuilder or 

EnergyPlus. This integration allowed for accurate reflection of the climate-specific 

energy demands of each city, crucial for assessing the performance of energy systems 

under different environmental conditions. 

Utilizing Ladybug Tools to select and download weather files ensured accurate and 

representative climatic inputs for the BEM. This step was fundamental to conducting 

precise energy simulations, providing valuable insights into how different energy-

saving strategies would perform in various climatic zones. 
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3.1.6 Defining 3 Types of Occupancy 

In the context of the present study, a comprehensive categorization of occupancy types 

has been developed to elucidate the variance in energy consumption behaviors observed 

within residential buildings. This typology serves as a foundational element in 

understanding the intricate ways through which diverse household habits exert 

influence on the global energy footprint. This is particularly pertinent within the scope 

of energy-efficient architectural design and the implementation of advanced building 

management systems. 

Category I: Low Consumption  

The first category, referred to as Low Occupants, encapsulates individuals who exhibit 

a high degree of proactivity towards energy conservation. Characterized by their 

mindful approach to reducing energy intake, this demographic adopts a series of 

deliberate and uniform energy-saving measures. Notable practices include the 

integration of advanced, energy-efficient technologies—ranging from appliances to 

lighting solutions—and a rigorous commitment to minimizing wasteful habits. This 

includes actions such as consistently turning off non-essential devices and optimizing 

heating and cooling systems to achieve minimal energy expenditure without 

compromising on comfort. 

Category II: Medium Consumption Occupants 

Occupants falling within the medium category represent the quintessential household 

from an energy usage standpoint. Exhibiting a moderate engagement in energy 

conservation practices, these individuals navigate the delicate balance between 

achieving domestic comfort and maintaining an energy-efficient lifestyle. While certain 

energy-saving measures are employed, their application is often inconsistent, swayed 

by a preference for convenience or immediate comfort over long-term efficiency. 

Category III: Wasteful Consumption Occupants 

The third category, termed Wasteful Occupants, is characterized by a marked 

indifference towards energy conservation. Such occupants engage in energy 

consumption without restraint, showing little to no inclination towards adopting 

measures that could curtail energy use. Their lifestyle is marked by the indiscriminate 

use of high-energy appliances and technological solutions, with scant regard for energy 

efficiency ratings. This group's apparent disregard for energy conservation practices 
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culminates in significantly elevated levels of energy consumption when compared to 

their more conservative counterparts. 

The delineation of these categories affords the study a nuanced framework to model 

and scrutinize energy consumption patterns across varied household demographics. 

Insights derived from this analysis offer valuable perspectives on the potential impact 

of distinct behavioral patterns on the overarching energy demand and efficiency of 

residential buildings. 

In order to better understand the differences between these types of occupants. The table 

provides a detailed explanation of specific behavior patterns and energy usage norms 

that set each type of occupant apart, offering a detailed comparison of their interactions 

with the residential building's energy systems. Such a detailed analysis is crucial for 

accurately modeling and predicting energy consumption trends. It allows for the 

simulation of various occupant behavior scenarios, which enhances the overall 

assessment of potential energy efficiency strategies. 

3.1.7 Building Material 

In order to accurately represent the thermal performance and energy efficiency of 

residential buildings in Pakistan in our Building Energy Modeling (BEM) research, it 

was crucial to carefully select building material properties. To achieve this, we utilized 

values from a study referred to as (Khan et al., 2022), which specifically examined 

houses in Pakistan. The study (Khan et al., 2022) provided a detailed analysis of the 

thermal and energy performance characteristics of common building materials used in 

Pakistani residential construction. It focused on materials such as bricks, concrete, 

insulation types, windows, and roofing materials, considering local construction 

practices and climatic conditions in the region. 

3.1.8 Urban Building Energy Modeling (UBEM)  

Urban Building Energy Modeling (UBEM) represents a critical analytical method for 

designing and implementing policy measures aimed at optimizing energy consumption 

within building stocks. This rigorous simulation technique elucidates the physical 

interactions and processes at the granular level of buildings or energy end-uses, 

engaging in what is known as the Q4 (Bottom-up/Whitebox) approach. This 

methodology embarks with the assimilation of model inputs, encompassing climate 

data, geometric information (for instance, GIS City Models), alongside non-geometric 

data (such as building archetypes and characteristics). These inputs are then processed 
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through a simulation engine, deploying physics-based algorithms to project building 

energy utilization. To ensure reliability and real-world applicability, the simulated 

results are corroborated with empirical data. Upon validation, these model outcomes 

are visualized and scrutinized to assess energy performance across an urban canvas, 

thereby facilitating informed energy planning and enhancement initiatives. 

In a particular strand of research, the commencement phase entailed the selection of 

cities and the procurement of essential weather files, followed by the initiation of the 

UBEM procedure via DesignBuilder—a comprehensive BEM software. This process 

entailed the modelling of diverse scenarios to simulate and analyze the energy 

performance of residential buildings under varying climatic conditions, dwelling sizes, 

and occupancy typologies. 

The configuration of the UBEM in DesignBuilder was delineated through several steps: 

Input Parameters: 

 Selection of five cities was based on their Cooling Degree Days (CDD) and Heating 

Degree Days (HDD), aiming for a broad representation of climatic zones. 

Definition of three house sizes to mirror the spectrum of residential building types 

(small, medium, and large homes). 

 Establishment of three unique occupancy types (Low, Medium, and Wasteful), each 

characterized by distinct energy consumption patterns. 

Modeling 45 Scenarios: 

 A synthesis of the five cities, three house sizes, and three occupancy types culminated 

in the modeling of 45 unique scenarios within DesignBuilder. This facilitated a 

comprehensive exploration of how varying conditions impact energy consumption. 

Data Collection: 

 The temporal scope of data collection extended over four years, from 2019 to 2023, 

capturing fluctuations in weather patterns and other external variables influencing 

energy use. 
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To mitigate the influence of anomalies—arising from atypical weather events or 

irregularities—energy consumption data across these years were averaged, providing a 

solid analytical foundation. 

Key Data Points: 

The analysis encapsulated critical metrics of energy consumption within the buildings, 

notably peak and average values for Receptacle Loads, Lighting, and Cooling. 

Analysis: 

A thorough examination of data from the 45 scenarios unveiled trends and patterns in 

energy consumption, yielding insights into the dynamics of energy systems, the 

efficacy of conservation strategies, and furnishing recommendations for the 

optimization of energy usage in residential buildings. 

In essence, the application of UBEM via DesignBuilder afforded an intricate 

examination of residential energy consumption across multifarious scenarios, 

empowering a holistic assessment of the diverse factors that modulate energy use. 

3.1.9 Urban Building Energy Modeling (UBEM) Result Verification  

Upon completion of the Urban Building Energy Modeling (UBEM) process, the 

subsequent essential step involved validating the accuracy of the simulation results. The 

city of Islamabad was chosen as the reference location for this validation. This process 

entailed comparing the modeled energy consumption data with actual electricity 

consumption data obtained from households in Islamabad. 

Verification Process: 

1. Household Selection: 

For each of the three house types—small, medium, and large—20 households were 

meticulously selected, resulting in a comprehensive dataset of 60 data points. The 

selection process aimed to capture the typical energy consumption patterns across 

various house sizes in Islamabad. 

2. Electricity Consumption Data: 

The authentic electricity consumption data for these households was obtained from 

IESCO (Islamabad Electric Supply Company) bills, covering monthly usage. This data 

served as a dependable reference for comparison with the UBEM simulation results. 
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The dataset encompassed diverse months and seasons to account for varying weather 

conditions and their influence on energy consumption. 

3. Comparative Analysis and Verification: 

The electricity consumption data from IESCO bills was thoroughly juxtaposed with the 

corresponding modeled data generated from the UBEM simulations for small, medium, 

and large house types. This comparison was pivotal in evaluating the UBEM model's 

accuracy in forecasting real-world energy utilization. The scrutiny aimed to pinpoint 

any disparities between the modeled and actual data, indicating areas warranting 

potential model adjustments or refinements. 

The process of result verification, utilizing actual electricity consumption data from 

IESCO bills, played a pivotal role in validating the UBEM model. By scrutinizing the 

modeled data against real-world consumption across 60 households in Islamabad, the 

study reaffirmed the reliability and accuracy of the simulation results. This validation 

process not only bolstered the credibility of the research findings but also instilled 

confidence in the model's relevance to other cities and scenarios examined in the study. 

3.2 Supply side Setting 

The supply-side settings in this research play a crucial role in determining the overall 

energy performance and economic viability of green residential buildings. The focus 

on solar photovoltaic (PV) system sizing and energy storage system (ESS) sizing is 

essential for understanding how these technologies can be optimized to meet the energy 

demands of different household scenarios modeled in the UBEM process. 

3.2.1 PV System Sizing 

The research emphasized the importance of properly sizing PV systems to meet the 

energy needs of residential buildings and to charge Energy Storage Systems (ESS) for 

nighttime use. The sizing was informed by insights from Study A and Study B, focusing 

on optimal PV system design for residential buildings. 
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PV System Sizing Methodology: 

1. Selection of PV System Sizes: 

Three types of PV system sizes were chosen to match the energy demands of small, 

medium, and large houses: 

Small House PV System: Designed for small households, this system meets daily 

energy needs, charges the ESS for nighttime use, and powers daytime consumption. 

Medium House PV System: Sized for medium-sized houses with moderate energy 

demands, this system balances energy generation and storage to power the household 

day and night. 

Large House PV System: Selected for houses with higher energy consumption, this 

system generates ample power for daytime usage and fully charges a larger ESS for 

nighttime independence. 

Meeting Daily and Nighttime Demand: 

The primary criterion was for each PV system to cover the total daily demand, including 

daytime and nighttime usage, by calculating average and peak energy consumption for 

each house size, and determining the appropriate PV system capacity. Moreover, excess 

energy generated during the day is stored in the ESS for nighttime use, reducing or 

eliminating the need for grid power after sunset. 

 Integration with ESS: 

The integration of the PV system with the ESS was crucial, ensuring that the PV 

systems met immediate and charging needs of the household. By fully charging the ESS 

by the end of the day, a consistent and reliable energy supply was maintained 

throughout the day and night. Details are given in the table 
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Table 2. Design parameters of PV System 

 

 

ESS Type: 

In this thesis, two widely used types of batteries are analyzed for Energy Storage 

Systems (ESS): Lithium-ion (Li-ion) batteries and Lead-acid flooded batteries. These 

two battery technologies are commonly chosen for residential energy storage systems 

due to their distinct advantages and suitability for different residential applications. 

Lithium-Ion (Li-ion) Batteries 

 Lithium-ion batteries are the leading choice for residential energy storage due to their 

high energy density, long cycle life, and efficiency. They are well-suited for 

applications where space is limited and high performance is required. 

 Key Features: 

Li-ion batteries have higher energy density and cycle life compared to lead-acid 

batteries, making them ideal for residential use. They also offer higher efficiency and 

are low-maintenance, making them user-friendly for residential applications. 

Residential Applications: 
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Li-ion batteries are commonly used in residential settings for maximizing energy 

independence and efficiency, particularly in pairing with solar PV systems. Their 

compact size and higher energy density make them ideal for modern, space-conscious 

residential designs, especially in urban settings. 

Lead-Acid Flooded Batteries 

Overview: 

Lead-acid flooded batteries are one of the oldest and most widely used types of 

rechargeable batteries known for their reliability, durability, and relatively low cost, 

making them a staple in residential energy storage. 

Key Features: 

Lead-acid batteries offer a cost-effective and proven technology for homeowners on a 

budget, with a long track record of reliable energy storage. However, they have a lower 

energy density than Li-ion batteries, meaning they need more space to store the same 

amount of energy. Additionally, they have a shorter cycle life and lower efficiency, 

requiring regular maintenance such as topping up with distilled water, which could be 

cumbersome for those looking for low-maintenance solutions. 

Residential Applications: 

 Lead-acid flooded batteries are often used in off-grid or backup power applications in 

residential buildings, particularly in rural or less space-constrained environments where 

the cost advantage outweighs space considerations. 

3.2.2 ESS System Sizing 

This research endeavors to delineate the procedural methodology for sizing Energy 

Storage Systems (ESS) within residential buildings, ensuring a continuous and 

dependable energy provision during periods of diminished solar generation and grid 

disruptions. The sizing methodology employed herein is predicated upon the principles 

outlined in (Masters, 2013), which furnishes a comprehensive guideline for determining 

the requisite capacity of ESS for residential environments. This methodology is 

specifically tailored to fulfill not only the conventional nocturnal energy requirements 

but also to supply auxiliary power during prolonged instances of reduced solar output, 

such as during inclement weather or grid malfunctions. 



 

38 
 

ESS System Sizing Methodology 

1. Guidance from (Masters, 2013): 

Study K proposes an exhaustive framework for the sizing of ESS systems, taking into 

account the energy consumption patterns of residential edifices. This study accentuates 

the significance of configuring ESS systems capable of accommodating both routine 

daily cycles and exigent scenarios, such as extended periods of cloudy weather or grid 

failures. 

2. ESS Sizing for Diverse Residential Typologies: 

Small House ESS: Dimensioned to reliably cater to nocturnal energy demands and 

provisioned with sufficient reserve capacity to sustain household operations for up to 

three days during grid outages or continuous cloudy conditions, thereby ensuring 

operational continuity absent grid reliance. 

Medium House ESS: Configured with an augmented capacity commensurate with the 

elevated energy consumption of a medium-sized household, this system similarly 

assures three days of standby power, thereby guaranteeing uninterrupted energy usage 

amidst adverse meteorological conditions or grid failures. 

Large House ESS: For residences with substantial energy requisites, the ESS is 

dimensioned to provision a significant energy cache, designed not just to fulfill regular 

night-time energy needs but also to support household operations for up to three days 

during scenarios of inadequate solar generation or grid disruptions. 

Considerations for Nighttime and Emergency Power: 

The quintessential role of the ESS entails the storage of surplus energy harnessed by 

the photovoltaic (PV) system during daylight hours, subsequently availed during 

nocturnal periods when solar power is unattainable. This cyclical charging and 

discharging process is pivotal in minimizing grid dependency and optimizing the 

utilization of renewable energy resources. Additionally, the ESS was designed with 

enough capacity to handle emergency situations. By ensuring that the ESS could power 

the household for up to three days without any input from the solar PV system, the 

research aimed to create a robust energy solution that could withstand unpredictable 

weather patterns and potential grid failures. 
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Design specification for ESS system is given in the table 

 

3.3 Economic Analysis  

In this research, the economic analysis played a crucial role in evaluating the financial 

feasibility of the proposed energy systems for residential buildings. The analysis 

focused on calculating two important metrics: the Levelized Cost of Energy (LCOE) 

and the Levelized Cost of Storage (LCOS). These metrics provide a comprehensive 

understanding of the long-term cost-effectiveness of the solar photovoltaic (PV) 

systems and the Energy Storage Systems (ESS), respectively. The calculations were 

based on data from the System Advisor Model (SAM), a sophisticated tool widely used 

for analyzing renewable energy projects. 

Economic Analysis Overview: 

System Advisor Model (SAM) as the Analytical Tool: 

SAM was used for the economic analysis due to its robust capabilities in modeling the 

financial performance of renewable energy systems. SAM allows for the detailed 

simulation of both the technical performance and the economic implications of energy 

projects, making it an ideal tool for this research. 

The input data for SAM included the specifications of the PV systems and ESS that 

were sized for small, medium, and large houses, as well as financial parameters such as 

capital costs, operation and maintenance costs, discount rates, and project lifetimes. 

Table 3. Design parameters for Energy 
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Calculation of Levelized Cost of Energy (LCOE): 

Definition: LCOE represents the average cost per unit of electricity generated by the 

PV system over its lifetime. It is a critical metric for comparing the cost-effectiveness 

of different energy generation options. 

Data Inputs: The LCOE calculation in SAM used inputs such as the total installed cost 

of the PV system, annual energy production, operation and maintenance costs, and the 

expected system lifetime. SAM also factored in the degradation of the PV system’s 

efficiency over time. 

Calculation Process: Using the data, SAM calculated the LCOE by dividing the total 

lifecycle costs of the PV system by the total energy generated over its lifetime. This 

provided a single value that represents the cost of generating each kilowatt-hour (kWh) 

of electricity, making it easier to compare with other energy sources or scenarios. 

Analysis: The LCOE results were analyzed to assess the cost-effectiveness of the PV 

systems across the different house sizes. This analysis helped determine whether the 

investment in solar energy would be economically viable under various scenarios, 

including different geographic locations and energy consumption patterns. 

Calculation of Levelized Cost of Storage (LCOS): 

Definition: LCOS measures the cost per unit of electricity that is stored and later 

discharged by the ESS over its operational lifetime. It is crucial for evaluating the 

financial feasibility of energy storage solutions. 

Data Inputs: The LCOS calculation incorporated data such as the initial cost of the ESS, 

battery replacement costs (if applicable), operation and maintenance expenses, and the 

total energy throughput (the total amount of energy stored and later used) over the 

system’s lifetime. 

Calculation Process: SAM calculated the LCOS by dividing the total lifecycle costs 

associated with the ESS by the total energy discharged by the system over its lifetime. 

This provided a clear indication of the cost-effectiveness of storing energy for later use, 

which is particularly important in scenarios where energy storage is critical for ensuring 

a reliable power supply. 
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Analysis: The LCOS was analyzed to understand the financial implications of using 

ESS in conjunction with PV systems. The results were compared across the different 

house sizes and scenarios to identify the most cost-effective storage solutions. 

Conclusion: 

The economic analysis conducted using SAM provided critical insights into the 

financial viability of integrating solar PV and ESS systems in residential buildings. By 

calculating the LCOE and LCOS, the research was able to quantify the long-term cost-

effectiveness of these energy systems, taking into account both the generation and 

storage of electricity. The analysis not only demonstrated the potential economic 

benefits of renewable energy adoption but also highlighted the importance of 

optimizing system design to achieve cost-effective solutions. The findings from this 

analysis are essential for guiding policy decisions, investment strategies, and future 

research in the field of residential energy systems. 

3.4 Uncertainty Analysis 

In this research, we used a Monte Carlo simulation to conduct a detailed uncertainty 

analysis, specifically focusing on how variations in supply-side parameters could 

influence the Levelized Cost of Storage (LCOS). Why Monte Carlo Simulation? 

High Accuracy through Large-Scale Simulations  

Monte Carlo simulation is known for its ability to perform large-scale simulations that 

incorporate thousands or even millions of iterations. This capability allows for a 

comprehensive exploration of how different variables and their uncertainties can impact 

the final outcomes. In this research, the simulation was used to model the potential 

fluctuations in key supply-side parameters and assess their combined effects on LCOS. 

Real-World Application and Acceptance  

Monte Carlo simulation is widely accepted and used in various fields, including energy 

economics, finance, and risk management, due to its robustness and versatility. Its real-

world applicability makes it an ideal choice for analyzing the economic performance of 

energy storage systems in residential buildings, where multiple uncertainties can 

significantly influence costs. 
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Parameters Considered in the Simulation 

The Monte Carlo simulation focused on several key supply-side parameters critical to 

the calculation of LCOS. These parameters were chosen because of their potential 

variability and significant impact on the overall cost-effectiveness of the ESS: 

1. Battery Cost: 

The simulation modeled variations in the cost of batteries, including potential increases 

or decreases in the rate at which battery prices change over time. This factor is crucial 

as battery costs are a major component of the total cost of energy storage systems. 

2. Operation and Maintenance (O&M) Costs: 

The simulation accounted for potential fluctuations in O&M costs, which can vary due 

to factors such as inflation, technological advancements, or unexpected maintenance 

needs. Changes in these costs directly affect the long-term financial sustainability of 

the ESS. 

3. Grid Electricity Purchase Cost: 

The simulation also considered the cost of purchasing electricity from the grid, 

including both increases and decreases in unit rates. Since the ESS may be used to store 

grid electricity during off-peak times, changes in grid electricity prices can significantly 

impact the economic performance of the ESS. 

4. End-of-Life/Battery Replacement Costs: 

The simulation also considered the costs associated with battery replacement at the end 

of their operational life. This factor is critical for long-term economic analysis, as 

replacement costs can vary based on market conditions and advancements in battery 

technology. 
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Table 4. Parameter Details 

 

 

 

Approach to Monte Carlo Simulation 

The Monte Carlo simulation used a normal distribution to model the variations in each 

of the above parameters. This approach provided a statistical framework to understand 

how fluctuations in these parameters could influence the LCOS. 

In addition to the normal distribution, other types of Monte Carlo simulations were 

considered, including: Beta Distribution: Useful for modeling variables that have a 

natural minimum and maximum, such as efficiency rates or cost percentages. 

Triangular Distribution: Often used when only limited data is available, representing 

the minimum, most likely, and maximum values. Lognormal Distribution: Applied to 

variables that are positively skewed, such as financial costs, which cannot fall below 

zero but can rise significantly. These alternative distributions provided additional 

insights into how different forms of uncertainty might affect the economic analysis. 

Other Uncertainty Techniques 
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In addition to Monte Carlo simulation, other uncertainty approaches were explored to 

provide a comprehensive analysis: 

1. Aleatory (Stochastic) Uncertainty Approaches: 

These approaches focus on inherent randomness in the system, modeling uncertainties 

that arise from natural variability, such as weather conditions affecting solar generation. 

2. Epistemic (Systematic) Uncertainty Approaches: 

Epistemic uncertainty deals with uncertainties due to a lack of knowledge or data. This 

approach was considered to address uncertainties related to technological 

advancements or future market conditions that are not yet well understood. 

3. Scenario-Based Approaches: 

This approach involves creating different scenarios based on varying assumptions about 

future conditions (e.g., best-case, worst-case, and most likely scenarios). Scenario-

based analysis provided additional context for the Monte Carlo results by exploring 

how different future states could impact the LCOS.  

The Monte Carlo simulation provided a thorough analysis of how uncertainties in 

supply-side parameters affect the LCOS in residential energy storage systems. By 

factoring in variations in key cost parameters using different types of distributions, the 

study accurately modeled the potential range of outcomes. The findings from this 

analysis are important for understanding the economic risks and opportunities linked to 

the deployment of energy storage systems. Ultimately, this contributes to more 

informed decision-making in the design and implementation of residential energy 

solutions. 

3.5 Green Building Assessment  

By emphasizing how much of a building's energy demand is met by on-site renewable 

sources, SS reflects a building’s ability to operate with minimal reliance on external 

power sources. This is crucial for sustainable development, as it aligns with reducing 

environmental impact, enhancing energy security, and achieving cost savings over 

time. 

Detailed Aspects of Self-Sufficiency in Green Buildings 

Understanding the SS Metric: 
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Definition: Self-Sufficiency (SS) is the ratio of energy demand met by on-site 

renewable sources, such as PV panels and battery storage, in relation to the total 

electricity demand of the building. 

Calculation Formula:  

Equation 1 shows the equation used to calculate the Self Sufficiency of the system. 

Equation 1.Self Sufficiency 

 
(Kumar et al., 2022) 

 

Interpretation: A higher SS percentage indicates greater independence from the grid. 

For instance, an SS of 80% means that 80% of the building’s total energy demand is 

supplied through on-site renewable energy, while only 20% is imported from external 

sources. 

Components Influencing Self-Sufficiency: 

Photovoltaic (PV) Generation: The primary source of renewable energy in many 

green buildings, PV panels convert solar energy into electricity. The size, efficiency, 

and orientation of PV installations significantly impact the SS rate. 

Battery Storage: Energy storage is crucial to ensure self-sufficiency, especially in 

areas where solar energy may not be consistently available throughout the day. Batteries 

store surplus energy produced during peak solar hours, enabling the building to use this 

stored power when demand is high or solar generation is low. 

Demand Management: Efficient energy use through demand-side management 

strategies, such as load shifting and peak shaving, can help increase SS by aligning 

energy use with the availability of renewable energy. This is especially relevant in 

buildings with fluctuating energy needs. 
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CHAPTER 4: RESULTS AND ANALYSIS 
 

This section of the findings explores the demand for green buildings, the supply of 

green buildings, and the verification processes associated with green buildings. I 

examine the technological and economic feasibility of green buildings, along with the 

uncertainties that this study presents. This section initiates with an overview of the 

Demand Side Analysis, subsequently leading to the introduction of composite data that 

integrates key performance metrics to emphasize demand trends. The hourly results 

reveal load swings and patterns that are crucial for accurately characterizing demand. 

Findings derived from the Building Energy Model (BEM) Verification is a key factor 

that enhances the trustworthiness of conclusions, ensuring that the model accurately 

represents real-world scenarios. The Supply Side Analysis provides a concise overview 

of the inputs and outputs related to energy sources and efficiency. This is achieved by 

employing composite data. The Levelized Cost of Energy (LCOE) is a calculation 

conducted through Techno-Economic Evaluation to determine the cost-effectiveness of 

energy generation. Furthermore, the Levelized Cost of Storage (LCOS) is calculated to 

determine the financial implications that energy storage has on supply and demand 

during the evaluation process using this approach. Additionally, the Uncertainty 

Analysis serves to reduce the effects of substantial parameter fluctuations, thereby 

enhancing the results of the study. In summary, this represents an important 

advancement. This structured approach aims to deliver a comprehensive insight into 

energy dynamics and the feasibility of systems. The approach focuses specifically on 

sustainable energy solutions that align with Sustainable Development Goal 7. The 

utilization of the SS KPI has been demonstrated as a means to validate green building 

practices. 

4.1 Demand Side 

A simulation-based assessment of the residential space energy consumption in five 

different cities in Pakistan, namely Islamabad, Karachi, Quetta, Murree, and Sibi, was 

conducted over the course of one year. The results gained from this assessment were 

presented. There are nine different scenarios that are used to measure the energy usage. 

These scenarios combine three different sizes of houses with three different forms of 

occupancy. A summary of the annual energy usage in five different cities is presented 

in Figure.8. In this case, each column shows the combined amount of energy that the 
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medium archetype house consumes (with blue representing HVAC load, yellow 

representing lighting load, and red representing equipment load). The dot in green 

symbolizes the amount of energy that is consumed by the large archetype, while the dot 

in black shows the amount of energy that is consumed by the small archetype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

HVAC Systems:  

The energy consumption patterns in Karachi, Quetta, Murree, Sibi, and Islamabad 

exhibit unique characteristics shaped by the specific climatic conditions and lifestyle 

choices prevalent in each location. A significant share of energy consumption across 

various urban areas can be linked to HVAC systems, particularly in cities with warmer 

climates. The data indicates that Karachi and Sibi experience elevated temperatures 

compared to other cities, leading to a significantly higher energy consumption by the 

HVAC systems in residences, as illustrated in figure 8.  

Figure 8. Annual Electricity Demand  

Table 5. Annual Energy Consumption by each Archetype  
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An analysis of the LARGE archetype and wasteful occupancy across all five cities 

reveals that Karachi and Sibi exhibit the highest energy consumption, primarily 

attributed to the energy utilized by HVAC systems. In contrast, the city of Islamabad 

experiences a moderate temperature, which contributes to its moderate energy 

consumption. Upon further examination of Table 5 and Figure 1, it is evident that the 

cities of Quetta and Murree experience lower temperatures, resulting in significantly 

reduced energy consumption in these areas. 

Lighting and Equipment: While essential, these two categories (represented in gray 

and blue) are relatively stable across the cities and categories, showing less variability 

compared to HVAC. 

4.1.1 City Wise Breakdown of Energy Consumption 

For more clearly understand how each city is different in term of energy consumption 

we will disc each city. 

Islamabad Figure 9 and Table 6  

 

Figure 9. Annual Electric Demand in city of Islamabad  

 

Table 6. Annual Electric Demand in city of Islamabad  
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Figure 9 shows details about the energy demand for the city of Islamabad and table 4 

shows the energy consumption breakdown of each type of load for the Medium 

Archetype. 

HVAC demand increases steadily from Low to Wasteful, though not as extreme as in other 

cities. Equipment and lighting usage remain stable but increase slightly in the Wasteful 

category. Improving HVAC and equipment efficiency, especially in Wasteful archetypes, could 

lead to significant energy savings. 

Karachi 

 

 

 

Figure 10 shows details about the energy demand for the city of Karachi and table 7 

shows the energy consumption breakdown of each type of load for the Medium 

Archetype. 

Figure 10 Annual Electric Demand in city of  Karachi  

Table 7. Annual Electric Demand in city of Karachi  
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Karachi’s warm climate drives significant cooling demand, especially in inefficient 

buildings. HVAC accounts for a substantial portion of energy consumption, with a 

sharp rise from Low to Wasteful categories. Reducing HVAC energy use through more 

efficient cooling systems would have a major impact. Equipment and lighting also 

increase but are secondary to HVAC concerns. 

Quetta 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows details about the energy demand for the city of Quetta and table 8 

shows the energy consumption breakdown of each type of load for the Medium 

Archetype. 

HVAC demand is steady across all categories and HVAC demand is less extreme compared to 

Karachi or Sibi. Equipment and lighting demand remain relatively low but rise incrementally 

as building size increase and occupancy level changes from low to wasteful. 

Figure 11.Annual Electric Demand in city of Quetta  

Table 8Annual Electric Demand in city of Quetta  



 

51 
 

Murree 

 

 

 

Figure 12 shows details about the energy demand for the city of Murree and table 9 

shows the energy consumption breakdown of each type of load for the Medium 

Archetype. 

Due to its cooler climate, HVAC demand in Murree is lower compared to warmer cities. 

However, Wasteful buildings still show an increase in energy consumption, largely due 

to inefficient heating systems. Equipment and lighting consumption are stable and less 

impactful. Targeted improvements in HVAC efficiency could yield benefits. 

Table 9.Annual Electric Demand in city of Murree  

Figure 12.Annual Electric Demand in city of Murree  
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SIBI 

 

 

 

 

 

 

Figure 13 shows details about the energy demand for the city of Sibi and table 10 shows 

the energy consumption breakdown of each type of load for the Medium Archetype. 

Sibi's hot and dry climate leads to very high cooling demand, especially in the Wasteful 

category. HVAC is the dominant energy consumer, and large-scale inefficiency in 

cooling systems represents a major opportunity for energy savings. Equipment and 

lighting consumption also increase from Low to Wasteful, but HVAC remains the key 

area of concern. 

4.1.2 Hourly Load Profiles  

An hourly load graph for electrical data represents the demand for electricity or power 

usage at each hour over a day. This graph is useful for analyzing consumption patterns, 

identifying peak demand hours, and understanding load fluctuations, which is essential 

in planning for energy supply and optimizing energy use. For better comparison and 

Figure 13. Annual Electric Demand in city of Sibi  

Table 10.Annual Electric Demand in city of Sibi  
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understanding we will review the hourly load demand of each archetype of home 

separately. 

Small Archetype Load Profile 

 

 

 

 

 

 

 

 

Figure 14 shows the hourly load profile for small archetype of house. 

Low Occupancy: 

The load profile in the Low occupancy category shows a steady, low baseline demand 

throughout the day for most cities, with a notable increase in demand during the 

evening hours (18:00 to 21:00). This is likely due to lighting and appliance use as 

residents return home, followed by a reduction in demand post-evening. Sibi exhibits 

the highest peaks, especially in the late evening, reflecting higher cooling needs due to 

the warmer climate. Murree, with a cooler climate, has consistently lower demands. 

Islamabad, Karachi, and Quetta have similar profiles with moderate peaks, indicative 

of typical residential usage in regions with mixed climate demands. 

Standard Occupancy: 

For the Standard occupancy, the daily profile resembles the Low occupancy pattern but 

with higher energy consumption across all cities, reflecting increased activity within 

the household. There is a slight increase in daytime demand, possibly due to additional 

appliances and moderate occupancy throughout the day. Evening peaks remain 

prominent across all cities, with Karachi and Sibi showing the highest consumption 

levels. The elevated evening demand suggests a higher reliance on cooling systems and 

Figure 14. Small Archetype Hourly Load Profile 
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domestic appliances during peak hours. The differences between cities are more evident 

in this category, with Sibi consistently leading in demand due to climate-induced 

cooling loads, while Murree maintains a relatively flat and lower profile, consistent 

with reduced heating or cooling requirements. 

Wasteful Occupancy: 

The Wasteful occupancy profile displays substantially higher overall consumption, 

especially during evening hours. This suggests less efficient usage patterns, with more 

energy-intensive appliances or behaviors contributing to an increased load. Sibi and 

Karachi show significantly higher peaks in the evening, driven by elevated cooling 

needs, while Murree remains comparatively low. This contrast reflects the impact of 

climate, where warmer cities require more energy for cooling, particularly in 

households with less controlled or efficient energy usage. Interestingly, Quetta and 

Islamabad follow a similar trend but with slightly lower peaks compared to Sibi and 

Karachi, suggesting that even within wasteful households, the impact of climate 

variations is pronounced. 

Medium Archetype Load Profile 

 

 

 

 

 

 

 

 

Figure 15 shows the hourly load profile for medium archetype of house. Low 

Occupancy:  

Daytime Stability, Evening Peak: Across all cities, the load profile in the Low 

occupancy category maintains a steady demand during the day, followed by a 

pronounced peak in the evening (18:00 to 21:00). This trend is typical for homes with 

Figure 15.Medium Archetype Hourly Load Profile 
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minimal daytime activities, where energy demand surges when occupants return in the 

evening. Sibi's Higher Demand: Similar to the small archetype, Sibi shows the 

highest evening peak due to its warmer climate, driving greater cooling requirements. 

The other cities have lower evening peaks, with Murree exhibiting the least demand, 

reflecting reduced cooling and heating needs. Midday : A noticeable dip in demand 

occurs around midday, particularly in Karachi and Quetta, indicating minimal daytime 

energy usage, likely due to unoccupied homes during work hours. 

Standard Occupancy: 

Increased Baseline Demand with Evening Peak: Compared to Low occupancy, the 

Standard occupancy profile shows a higher baseline consumption throughout the day, 

reflecting moderate daytime activities in medium-sized homes. The evening peak 

remains prominent, though it’s more spread out, suggesting a mix of evening appliance 

use. Regional Climate Impact: Sibi and Karachi continue to show the highest peaks, 

reinforcing the impact of climate-induced energy needs. These cities have higher 

cooling requirements in the evening, pushing up demand. Less Pronounced Midday 

Drop: Unlike the Low occupancy profile, there is less of a midday dip in the Standard 

category, particularly in Islamabad and Murree, indicating a more consistent use of 

energy throughout the day in these areas. 

Wasteful Occupancy: 

Higher Overall Consumption and Steeper Peaks: The Wasteful category exhibits 

the highest demand across all hours, with a sharp evening peak. This category likely 

represents inefficient energy use, with more appliances running in the evening. 

Significant Variation Among Cities: Sibi shows the steepest peak, followed by 

Karachi and Quetta, illustrating a heavy dependency on cooling systems and higher 

usage of energy-intensive devices. Murree, as expected, shows the lowest overall 

demand, consistent with its cooler climate. Flatter Midday Demand: The midday 

demand remains relatively consistent across all cities in this category, suggesting 

ongoing energy usage throughout the day, regardless of occupancy. 
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Large Archetype Load Profile 

 

 

 

 

 

 

 

 

 

Figure 16 shows the hourly load profile for large archetype of house.  

1. Low Occupancy: 

Steady Daytime Demand, Strong Evening Peak: Across all cities, the Low 

occupancy category shows steady, relatively low demand during the day, with a 

notable evening peak from 18:00 to 21:00. This is likely due to increased household 

activity in the evening, particularly in large homes where even minimal occupancy can 

lead to higher base demand.  

Pronounced Climate Influence - Sibi and Karachi: As expected, Sibi and Karachi 

exhibit the highest peaks, driven by cooling needs in the evening. The higher baseline 

throughout the day in these cities reflects ongoing demand for temperature control. 

Minimal Midday Demand Fluctuation: There is a slight dip in demand around 

midday, especially in Islamabad and Murree, indicating reduced energy usage when 

occupants may be away from home or when cooling is less needed. 

Standard Occupancy: 

Higher Baseline and Expanded Evening Peak: The Standard occupancy profile 

shows increased energy consumption throughout the day compared to Low 

Figure 16.Large Archetype Hourly Load Profile 
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occupancy, reflecting moderate usage patterns that are more consistent. The evening 

peak is higher and extends into late evening hours. 

City-Specific Peaks - Sibi and Karachi Leading in Demand: As with the Low 

occupancy category, Sibi and Karachi show the highest evening peaks, underscoring 

the role of climate. Higher cooling demands in large homes drive up evening 

consumption significantly. 

Reduced Midday Consumption Dip: The midday drop in demand is less pronounced 

in the Standard category, indicating more continuous use of household appliances or 

temperature control, especially in cities like Quetta and Islamabad. 

Wasteful Occupancy: 

Elevated Consumption Across All Hours: The Wasteful occupancy category displays 

high demand throughout the day with significant evening peaks. This pattern 

suggests inefficient energy usage, with more appliances and systems running 

continuously in large homes. 

Steep Evening Peaks in Warmer Cities: Sibi, Karachi, and Quetta demonstrate sharp 

evening peaks, with Sibi reaching the highest levels. This is consistent with excessive 

cooling loads and inefficient energy behaviors in wasteful households. 

Consistent Midday Demand Across Cities: Unlike the Low and Standard categories, 

the Wasteful occupancy maintains consistent energy demand throughout the day, with 

only a minor midday dip, indicating continuous energy use irrespective of time or 

external conditions. 
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4.2 BEM RESULTS VERIFICATION 

 

Figure 17. Meterd data vs Simulated Data 

This graph presents the verification of Building Energy Model (BEM) simulation 

results by comparing metered data (actual measured values) against simulation data for 

different house sizes: Small, Medium, and Large. Each bar represents the average 

yearly energy consumption in kilowatt-hours (kWh) for each house size, with metered 

data in orange and simulation data in blue. 

The error bars show the range between maximum and minimum values recorded in 

each category, capturing the variability in energy consumption. This range can be due 

to factors such as seasonal fluctuations, occupant behavior, and environmental 

conditions. 

Analysis by House Size: 

Small House: 

The average energy consumption for both metered and simulation data is close, with 

only a slight difference, suggesting that the BEM simulation accurately models the 

energy use of small homes. 

The error bars for metered data are relatively larger, indicating greater variability in 

actual measured values. 
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Medium House: 

For medium-sized homes, the average values for metered and simulation data remain 

similar, with a small discrepancy. This suggests a strong correlation between the model 

and real-world data for medium homes as well. 

The error bars for metered data are wider than those for the simulation data, reflecting 

larger deviations in measured energy use. This could be due to more varied occupancy 

patterns or differences in appliance use intensity in medium homes. 

Large House: 

In large homes, the average energy consumption from simulation data is slightly higher 

than the metered data. The model tends to overestimate consumption for larger homes, 

which might suggest that the BEM could be refined to more accurately represent large 

spaces in future studies. 

The error range is the widest for large houses, especially in the metered data, indicating 

significant variability in actual energy use. This variability may stem from diverse 

occupancy levels, different appliance usage patterns, or variations in HVAC needs in 

large spaces. 

From BEM results and verification, we can conclude the following: 

Impact of House Size on Energy Consumption: There is a clear trend across all cities: 

energy consumption increases with house size. For instance, in Islamabad, small 

houses under the Low category consume 2,741 kWh/year, while large houses in the 

same category consume 12,648 kWh/year. This trend suggests that larger houses have 

more significant energy demands, likely due to increased space and the need for more 

extensive HVAC systems, lighting, and appliances. In accordance with the findings in 

(Bawaneh et al., 2024)(Milner et al., 2023), the simulation results show that the impact 

of larger homes consuming more electricity.  

Influence of Consumption Category (Low, Standard, Wasteful): Across all cities 

and archetypes, moving from Low to Standard to Wasteful categories results in a 

marked increase in energy consumption. For example, in Karachi, the energy 

consumption for small houses rises from 2,876 kWh in the Low category to 3,930 kWh 

in the Wasteful category. This indicates that consumption efficiency plays a crucial role 
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in energy demand. Homes classified as "Wasteful" are likely less efficient, with more 

energy-intensive behaviors or systems, contributing significantly to higher energy use. 

The results of this model were validated using a similar analysis presented by (Boukarta 

& Berezowska‐Azzag, 2018) 

City-Specific Variations: Karachi and Sibi exhibits the highest energy consumption 

across all archetypes and categories, especially in the Wasteful category for large 

homes, which reaches 21,000 kWh/year. This high energy demand is likely due to 

extreme warm climate, which requires more energy for cooling. The validation of the 

BEM results can be achieved through the findings of (Daioglou et al., 2022) and 

(Bezerra et al., 2021), which indicate that warmer temperature zones exhibit higher 

energy consumption. Murree consistently shows the lowest energy consumption 

among the cities, even in larger archetypes. For example, large wasteful homes in 

Murree consume 13,705 kWh/year, significantly lower than in other cities. This lower 

demand can be attributed to Murree's cooler climate, reducing the need for extensive 

HVAC use. Islamabad and Quetta exhibit moderate energy demands, with Islamabad 

showing slightly higher values, likely due to its warmer climate and increased cooling 

requirements. 

4.3 Supply Side : 

The three figures fig18,fig19,fig20  depict the yearly load distribution and self-

sufficiency (SS) for large, medium, and small residential Each graph illustrates the 

contributions from various sources: Battery (Yellow), Grid (Orange) and PV System 

(Green). 

 Small Archetype shown in figure 18. 

• Battery as Primary Supply Source: Across all cities and occupancy levels, 

the battery plays a significant role in meeting annual energy needs. Its 

dominance indicates a strong capacity to store and discharge energy effectively, 

covering much of the load, especially during periods without direct solar input. 

• PV System Contribution: The PV system also provides a substantial portion, 

but it largely functions in tandem with the battery. The battery’s role as a buffer 

allows for more consistent energy availability even when solar production 

varies. 
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• Minimal Grid Dependence: Grid reliance is minimal across all occupancy 

levels, suggesting that the combination of battery and PV systems sufficiently 

meets the demand for small buildings. 

 

Figure 18. Annual Supply compostion for Small Archetypes 

 

Medium Archetype shown in figure 19 

• Dominant Role of Battery: In medium buildings, the battery remains the 

primary supply source across occupancy levels. Its consistent contribution 

highlights its importance in supporting the load effectively as energy demand 

grows. 

• Supporting Role of PV System: While the PV system contributes 

significantly, it largely serves to recharge the battery rather than directly 

meeting the load. This reinforces the battery’s position as the main energy 

source in this setup. 

• Slight Increase in Grid Usage in Wasteful Occupancy: Although grid 

dependence is still low, it does increase slightly in the Wasteful occupancy 

level, indicating that higher demand in medium buildings may exceed what the 

PV and battery system can consistently cover. 
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Figure 19.Annual Supply compostion for Medium Archetypes 

Large Archetype shown in figure 20 

Battery as the Primary Source, Even in Large Buildings: For large buildings, the 

battery continues to be the main contributor to energy supply, even as occupancy levels 

and demand increase. This highlights the battery's capacity and storage adequacy in 

managing larger loads. 

PV System as a Secondary Contributor: The PV system maintains a strong presence 

but primarily supports the battery by charging it, rather than directly addressing the 

load. 

Increased Grid Dependency in Higher Demands: In Wasteful occupancy levels, grid 

reliance is more visible, suggesting that as energy demands rise, the combined PV and 

battery systems approach their limits, necessitating supplementary support from the 

grid. 

 

 

Figure 20.Annual Supply compostion for Large Archetypes 



 

63 
 

4.4 TECHNOECONOMICAL 

4.4.1 LCOE 

After running the model is SAM, we collected the Levelized Cost of Energy (LOCE). 

As per results the LCOE are 0.054$/kWh in Quetta, 0.060 $/kWh in Sibi, 0.061$/kWh 

in Karachi and 0.065$/kWh for Islamabad and Karachi. 

The difference in the locations and the weather zones is highly noticeable in the LCOE. 

Therefore, we can say that regions with higher GHI, like Quetta, can get more irradiance, thus 

lowering the cost of the generated electricity.  

The high value in Quetta indicates a high competitiveness of PV in that geographical 

location. On the other hand, Islamabad and Murree have low-capacity factors, and that 

indicates that power generation from the solar PVs is less efficient for the area.  Figure 

21 shows in details the link between LCOE and the GHI of the city. Same trend is 

followed by study done by. (Chadly et al., 2023) 

 

 

 

 

 

The observed Levelized Cost of Energy (LCOE) values in our study range from 0.054 

to 0.065 PKR/kWh. To ensure the accuracy and reliability of these findings, we can 

compare our results with those reported in the literature.  For instance research 

conducted by (Aziz et al., 2024) determined the LCOE value of 0.057 PKR/kWh and 

research conducted by (Xu et al., 2019) shows that the value of LCOE is 0.073 

PKR/kWh. Both of these studies were specifically focused on the energy market in 

Pakistan 

 

Figure 21. LCOE vs GHI 
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4.4.2 LCOS 

The yearly energy generation of the photovoltaic system in a small house is 14,214 

kWh for Islamabad, 15,072 kWh for Karachi, 16,894 kWh for Quetta, 14,137 kWh for 

Murree, and 15,093 kWh for Sibi, according to SAM calculation. For a medium-sized 

house, photovoltaic (PV) systems generate 32,087 kWh in Islamabad, 33,828 kWh in 

Karachi, 37,950 kWh in Quetta, 31,922 kWh in Murree, and 34,529 kWh in Sibi. The 

photovoltaic system placed in a large house generates 48,096 kWh in Islamabad, 50,717 

kWh in Karachi, 56,894 kWh in Quetta, 47,853 kWh in Murree, and 51,740 kWh in 

Sibi.  

The provided graphs fig22,23,24 show the Levelized Cost of Storage (LCOS) in dollars 

per kWh for Lithium-ion (Li-ion) and Lead-acid batteries across various archetypes 

(small, medium, and large) in five cities: Islamabad, Karachi, Quetta, Murree, and Sibi. 

The LCOS indicates the total cost of using energy storage systems over their lifetime, 

including capital, operational, and replacement costs. It helps in comparing the 

economic feasibility of different storage technologies across different consumption 

categories (Low, Standard, and Wasteful). 

Small Archetype LCOS Observation is shown in figure 22.  

LIB shows lower LCOS compared to LAB in all cities and categories, suggesting that 

it is more cost effective for smaller homes. LIB LOCS for Small archetype ranges from 

17.46 ¢/kWh to 28.73 ¢/kWh and LAB LCOS ranges from 59.79 ¢/kWh to 82.43 

¢/kWh.  For all cities LCOS value is higher for LOW occupancy type and the value of 

LCOS is lower for wasteful occupancy type. Islamabad and Karachi has moderate 

LCOS for both type of batteries where LIB ranges between 20.84 ¢/kWh and 28.73 

¢/kWh while for LAB LCOS ranges between 59.79 ¢/kWh and 72.26 ¢/kWh. Overall 

city of Islamabad has higher LCOS when compared to Karachi. Cities of Murree and 

Quetta shows highest LCOS values for both type of batteries. Where city of Murree has 

highest LCOS for both LIB 29.64 ¢/kWh and for LAB 82.43. City of Sibi shows the 

minimum values of LCOS value 17.46 ¢/kWh for LIB and 68.43 ¢/kWh for LAB. 
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Medium Archetype LCOS Observation is shown in figure 23.  

Similar to smaller archetype LCOS value for LIB is lower for all cities and occupancy 

level for medium archetypes. Where the value of LOCS for LIB range between 

19.5¢/kWh and 42.10 ¢/kWh and for LAB the LCOS value ranges between 63.79 

¢/kWh and 109.03¢/kWh. Similarly, if occupancy is compared it can be observed that 

the wasteful occupancy has lower LCOS value. It can be observed from the figure that 

the city of Murree and Quetta has highest LCOS values for both type of batteries. 

Whereas city of Islamabad, Karachi and Sibi shows lower LCOS values for both types 

of batteries. 

 

 

 

 

 

 

 

 

Figure 22. LCOS for Small Archetype 

Figure 23.LCOS for Medium Archetype 
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Large Archetype LCOS Observation is shown in figure 24.  

For large archetype similar trend is followed where LIB has lower values of LCOS 

when compared to LAB. The value of LIB ranges from 13.41¢/kWh to 26.42¢/kWh 

and for LAB the LCOS value is between 51.51¢/kWh and 78.58¢/kWh. 

As it was observed in previous archetype same trend is observed in the large archetype. 

Where it shows that the city of Murree has the highest LCOS values for LIB and for 

LaB . It is also observed that the city of Sibi has the lowest LCOS values for both type 

of batteries. 

 

 

 

 

 

 

Following conclusion could be drawn from the figures  

1-LIB exhibits lower LCOS values, reflecting its higher efficiency, longer lifespan, and 

better performance under various temperature conditions. Whereas LAB is marked in 

blue and shows higher LCOS values in most cases, which can be attributed to its shorter 

lifespan 

2-Across all cities, LCOS values generally decrease as consumption profiles move from 

Low to Wasteful. This trend may indicate economies of scale, where higher energy 

demands make storage solutions more cost-effective. As though low energy 

Figure 24. LCOS for Large Archetype 

 



 

67 
 

consumption is meant for energy savings, it eventually results in higher LCOS values 

for all building sizes and all ESSs.  

4.5 Uncertainty Results Analysis  

The results of the Monte Carlo simulation demonstrate the variations in the LCOS while 

accounting for uncertain demand. To enhance comprehension of the potential range of 

LCOS under uncertain conditions, box and whisker plots were created. Figures 18, 17, 

and 19, as well as Tables 7, 8, and 9, illustrate the minimum and maximum values, 

along with quartiles, for each building type, occupancy profile, and energy storage 

system in Islamabad, Karachi, Quetta, Murree, and Sibi. 

Small Archetypes: 

With the help of figure 25 and table11, we are able to do an analysis of the LCOS value 

for the small archetype. In general, the LCOS values fall somewhere in the range of 

0.03¢/kWh to 120¢/kWh , with the Lead Acid batteries more frequently indicating 

higher pricing in comparison to the Li-ion batteries. The "low" archetypes have a 

tendency to exhibit the highest LCOS values across the board in every city. This 

behavior is consistent across the board. It is more noticeable that the LCOS fluctuates 

in places like Quetta and Murree, which are located in areas that experience more severe 

weather conditions. It is possible to notice this by observing the longer range of error 

bars, which may suggest that there is a greater degree of uncertainty in energy 

requirements as a result of the effects of climate change. On the basis of this 

information, it would appear that Li-ion batteries have the potential to offer a solution 

that is more economically viable for small-scale installations, particularly for "Low" 

and "Standard" usage profiles. 

 

Figure 25.Distribution of Simulation Outcome from Monte Carlo Simulation for Small Archetype 
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Medium Archetypes: 

An analysis of the box plot and the value for LCOS can be conducted by referencing 

figure 19 and table 12. In specific cases, the LCOS range for medium archetypes can 

extend notably higher, approaching 169¢/kWh. This observation holds especially true 

in Murree. Li-ion batteries consistently exhibit lower LCOS values compared to lead 

acid batteries, aligning with the established model that indicates these trends are 

coherent. The archetype referred to as "Standard" typically exhibits a moderate range 

of LCOS, achieving a balance between affordability and reasonable energy 

requirements. The LCOS is markedly reduced in locations like Islamabad and Karachi, 

likely due to the more stable meteorological conditions present there. Conversely, the 

levels of uncertainty and expenses tend to increase in colder or more extreme 

environments, like Quetta and Murree. 

 

Figure 26.Distribution of Simulation Outcome from Montecarlo Simulation for Medium Archetype 

Table 11.Distribution of Simulation Outcome from MOntecarlo Simulation for Small Archetype 
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Large Archetypes: 

A Monte Carlo simulation was conducted on the large archetype, with the findings 

illustrated in Figure 27 and Table 13. At its peak, the LCOS attains its highest values, 

which can exceed 169¢/kWh in specific cases, especially in Quetta and Murree. It is 

evident that larger installations exhibit a broader spectrum of potential outcomes, likely 

due to heightened energy unpredictability and greater capacity demands, resulting in a 

noticeable increase in the variability of the LCOS distribution. This represents a notable 

escalation. Lead acid batteries persist in demonstrating elevated LCOS values, 

especially within "Wasteful" archetypes. This underscores the importance of choosing 

the right battery technology for large-scale installations, which is particularly crucial. 

This graph highlights the potential advantages of Li-ion batteries in lowering costs, 

particularly in challenging environments. This also underscores the financial limitations 

linked to sustaining minimal storage expenses for extensive, high-demand systems. 

Table 12.Distribution of Simulation Outcome from Montecarlo Simulation for Medium Archetype 

 

Figure 27.Distribution of Simulation Outcome from Montecarlo Simulation for Large Archetype 
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Summary Insights: These graphs collectively suggest that battery choice and energy 

usage archetype significantly impact storage costs across different city climates. Li-ion 

batteries consistently perform better in terms of cost-effectiveness across all archetypes 

and cities. However, the cost implications increase with scale and usage, especially in 

cities with more variable or extreme climates like Murree and Quetta. These findings 

support the strategic selection of battery types based on the specific archetype and 

geographic location to optimize LCOS. 

4.6 Green Building  

The chart you provided illustrates the Self-Sufficiency (SS) metric across five distinct 

cities: Islamabad, Karachi, Quetta, Murree, and Sibi. The classification of these cities 

falls into three distinct categories: Low, Standard, and Wasteful. The values of the SS 

are analyzed across three distinct archetypes: small, medium, and large. These 

archetypes could indicate distinct building sizes or differing degrees of energy 

efficiency compared to each other. 

City Comparison: Climate and the energy demand profiles of buildings are likely the 

factors contributing to the slightly varying SS levels observed in each city across the 

three archetypes and categories. For example, cities like Quetta and Murree exhibit 

significantly low SS scores specially for low and standard, with many low as 95%, 

especially in the Standard and Wasteful categories. 

Category Analysis: 

Table 13.Distribution of Simulation Outcome from Montecarlo Simulation for Large Archetype 
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Low: Across all cities, the Low category generally shows slightly lower SS values 

compared to the Standard and Wasteful categories. Standard and Wasteful: These 

categories typically have higher SS values, with some reaching or nearing 99%. This 

suggests that buildings in these categories have configurations or energy use patterns 

that promote a higher self-sufficiency rate. 

Archetype Analysis: 

Small Archetype: The SS values for small buildings tend to vary more and are slightly 

lower than those for medium and large buildings, particularly in Quetta and Murree. 

This may be due to differences in energy demand and PV generation capabilities for 

smaller structures. Medium and Large Archetypes: These often show closer values, 

with large buildings frequently reaching the highest SS rates. This may indicate that 

larger buildings have a configuration or capacity that optimally utilizes PV and storage 

to meet demand. 

Implications for Green Building Verification: 

High SS rates across cities and archetypes suggest these buildings are meeting a 

significant portion of their energy demand through renewable sources, aligning well 

with green building principles. Consistently high SS values, especially for Standard and 

Wasteful categories, indicate that even in potentially higher consumption scenarios 

(Wasteful), the buildings can achieve self-sufficiency, underscoring the potential 

robustness of green design strategies. 

 

Figure 28.Self Sufficincy  
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CHAPTER 5: CONCLUSION & FUTURE RESEARCH 
 

This study demonstrates that high levels of self-sufficiency and sustainability in 

residential buildings can be attained through a combination of BEM, and calculation of 

feasible ESS system. Moreover, it has illustrated the significance of undertaking such 

actions. Utilizing Building Energy Modeling, we obtained insights into the distinct 

energy demands that fluctuate across various climates and occupancy categories. These 

insights were subsequently employed to inform our research of the Levelized Cost of 

Energy (LCOE) and Levelized Cost of Storage (LCOS) for various storage solutions. 

The impact of demand and the volatility of financial conditions highlighted the 

necessity for adaptable and scalable systems capable of withstanding variations in 

energy demand and economic conditions. 

The research conducted with Building Energy Modeling (BEM) was significant in 

identifying energy demand trends for residential buildings of diverse sizes and occupant 

numbers across various climates and occupancy levels. In each analyzed city, the BEM 

results revealed significant disparities in energy usage, determined by climatic and 

architectural factors. The need for cooling was markedly elevated in hotter locales like 

Karachi and Sibi, resulting in a rise in the total energy consumption across the region. 

Conversely, the cooling and equipment load were more significant factors in temperate 

regions such as Murree. Among these towns is Murree. In contrast to Murree, which 

has a lower average temperature, the energy demand for a large residence in Sibi and 

Karachi might attain up to 21,000 kWh annually. In Murree, the load required for the 

same sort of property might attain 13,900 kWh. The importance of localized energy 

modeling is emphasized due to these variances. Buildings in varying climates encounter 

distinct issues regarding energy efficiency and sustainability development.  

The BEM results identified opportunities for energy conservation by examining low, 

standard, and high occupancy levels across various occupancy patterns. Low-archetype 

occupancy frequently signifies reduced energy use universally across all locales. For 

instance, we can conserve around 5,000 kWh per year for a comparable house in the 

same city by utilizing a residence with a reduced occupancy rate and diminished energy 

consumption.  

By employing BEM, we established a framework to assess the performance of various 

energy storage and generation systems. The demand profile of each kind directly 
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influences the necessary energy mix to meet these requirements. The justification for 

employing energy-efficient architectural and engineering methods was reinforced by 

the findings of the Building Energy Model (BEM), which underscored the significant 

impact of design improvements on energy consumption.  

Utilizing the responses derived from the BEM technique, we ascertained the optimal 

dimensions of photovoltaic (PV) systems for each city. The BEM results provide 

precise sizing of the energy storage system, which possesses a backup capacity of three 

days should the photovoltaic system in our sustainable residential building fail to 

generate electricity.  

The data obtained from the SAM were evaluated and employed to facilitate the 

calculation of LCOS and LCOE for each battery. The data indicate that lithium-ion 

batteries are superior options due to their consistently reduced LCOS values across all 

scenarios. Lithium-Ion (Li-Ion) batteries surpass Lead Acid batteries in all categories, 

as indicated by the Levelized Cost of Storage (LCOS) analysis. Li-Ion batteries have 

superior efficiency, elevated energy density, and extended longevity compared to Lead 

Acid batteries. Karachi and Sibi possess a more favorable climate, leading to reduced 

localized cost of living (LCOS) levels. Conversely, areas like Murree incur higher costs 

due to environmental constraints.  

The Monte Carlo simulation reveals that the Levelized Cost of Storage (LCOS) for both 

lead-acid and lithium-ion batteries can vary significantly across numerous small 

archetypes and weather conditions. The uncertainty analysis corroborates the prior 

findings, indicating that the LIB is more advantageous than the LAB, irrespective of 

tenant behavior, house size, or city. The distribution ranges indicate that Li-Ion batteries 

constantly exhibit lower median costs with reduced fluctuation, demonstrating their 

reliability amid uncertain demand and financial circumstances. Lead acid batteries, 

conversely, demonstrate a broader pricing spectrum, signifying their greater 

vulnerability to elevated levels of uncertainty. The findings of this study underscore the 

resilience of Li-Ion technology across diverse environments, further affirming its 

appropriateness for energy storage systems that are both efficient and environmentally 

sustainable.  
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Future Research: 

This thesis aims to establish a basis for future research examining the integration of 

emerging storage technologies, including flow batteries and solid-state batteries, into 

energy systems to assess their levelized cost of storage (LCOS) across diverse climatic 

conditions and occupancy patterns. The integration of real-time data and machine 

learning models to optimize battery performance and cost forecasts could enhance the 

precision of analyses. The examination of hybrid storage systems, integrating 

technologies such as lithium-ion with hydrogen-based solutions, may yield insights into 

achieving enhanced sustainability and self-sufficiency for green buildings. To get 

comprehensive energy planning, it is essential to perform longitudinal research on the 

impacts of policies and the dynamics of grids. 
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