
ON VARIANT OF FLAME MALWARE

By

Seharish Ajmal

A thesis submitted to the Faculty of Information Security Department, Military College of

Signals, National University of Science and Technology, Pakistan in partial fulfillment of

the requirements for the degree of Master of Science in Information Security (MS IS).

JULY 2016

SUPERVISOR CERTIFICATE

It is certified that the final copy of thesis has been evaluated by me, found as per

specified format and error free.

Dr. Mehreen Afzal

ABSTRACT

The collision attack used by Flame Malware was found to be a variant of chosen prefix

collision attack. The chosen prefix collision attack was first presented by Stevens, Lenstra

and De Weger in 2007. Later on creation of two colliding certificates by Stevens et al,

with different distinguished name fields using chosen prefix collision attack was a major

breakthrough in the history of collision attacks against MD5.

As the collision attack that is reported to be used for Flame malware is a modification

of Stevens et al’s original chosen prefix collision attack, using which attackers tried to make

two colliding certificates. Exact algorithm for construction of chosen prefix collision attack

used by Flame is not known. Therefore this thesis is an attempt to explore and implement

the chosen prefix collision attack that was used for Flame malware. Cost and complexity

estimates for the subject attack are also discussed. Furthermore Flame’s collision attack

has been simulated to obtain replacement differential paths which are different from the

differential paths of actual chosen prefix collision attack.

Four starting segments for forward replacement differential paths of Flame’s collision

attack are constructed along with ending segments. Four forward replacement differential

paths are also constructed by utilizing the observed characteristics of Flame’s differential

path from literature.

Modern malware evasion techniques are also explored and counter and preventive

measures are recommended as well, specifically a paradigm for detection of weak cryp-

tographic primitives is proposed.

DEDICATION

All praises are due to Allah Almighty who is the Most Merciful and Most Compas-

sionate, Lord of the worlds.

I am pleased to dedicate my work to my great Father for his support, encouragement

and belief in me throughout my life and for making me who I am today. To my sweet Mother

whose endless love, affection and encouragement made me able to complete my work. To

my Teachers who have been a constant source of knowledge, encouragement and inspiration

for me all through my research.

iv

ACKNOWLEDGMENT

All praises are due to Allah Almighty who has blessed me the strength and ability to under-

stand, learn and complete my work. May the peace and blessings of Allah be upon the Final

Prophet Muhammad, his family and companions.

First and foremost I would like to acknowledge my supervisor Dr. Mehreen

Afzal with my deepest gratitude. Regardless of her busy calender, she always made her-

self available for discussions and queries. Her incessant encouragement, enlightening ideas

and valuable recommendations and suggestions kept me determined throughout the work.

Without her consistent support, instructions and encouragement, my research work could

not have reached its present form.

I am also deeply obliged to my guidance committee members Lt.Col Baber

Aslam, Lecturer Waseem Iqbal and Lecturer Waleed Bin Shahid for their persistent support,

interest and assistance.

I would also like to thank Lt.Col Muhammad Mubashir Quddoos who is the

Head of the Department and his team for administrative help and support.

Lastly I want to give special thanks to my family for their constant encourage-

ment and moral support during my master’s studies.

v

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Overview . 1

1.2 Need for Research . 2

1.3 Problem Statement . 2

1.4 Objectives . 3

1.5 Research Methodology and Achieved Goals 3

1.6 Thesis Organization . 4

1.7 Conclusion . 4

2 LITERATURE REVIEW 5

2.1 Introduction . 5

2.2 Message Digest Algorithm 5 . 5

2.2.1 Overview of MD5 . 5

2.2.2 Compression Function of MD5 . 6

2.3 Generic Collision Attacks . 7

2.3.1 Birthday Search . 8

2.3.2 Pseudo Collision . 8

2.3.3 Semi Free-Start Collision . 8

2.4 Identical-prefix Collision Attacks . 9

2.5 Chosen-prefix Collision Attacks . 10

2.6 Conclusion . 12

3 ATTACKS ON HASH FUNCTION MD5 13

vi

3.1 Introduction . 13

3.2 Identical Prefix Collision Attack . 13

3.2.1 Differential Crytanalysis . 13

3.2.2 Attack Overview . 15

3.2.3 Differential Paths . 16

3.2.4 Bit-conditions . 17

3.3 Chosen Prefix Collision Attack . 19

3.3.1 Attack Overview . 19

3.3.2 Elimination Process . 20

3.3.3 Tunnels . 21

3.3.4 Birthday Bits Search . 21

3.3.5 Differential Path Extension . 22

3.3.6 Forward Extension of Differential Paths . 23

3.3.7 Backward Extension of Differential Paths 23

3.3.8 Connecting Two Partial Differential Paths 24

3.4 Conclusion . 25

4 FLAME’S COLLISION ATTACK AND IT’S COMPLEXITY ANALYSIS 26

4.1 Introduction . 26

4.2 Flame and Collision Attack . 26

4.2.1 Flame Malware . 26

4.2.2 Flame’s Differential Paths . 28

4.2.3 Birthday Search Part . 28

4.2.4 Tunnels . 29

vii

4.2.5 Near Collision Blocks and Elimination Scheme 29

4.3 Analysis of Findings and Reconstruction Attempts 30

4.3.1 Assumptions . 30

4.3.2 Analysis of Differential Paths . 31

4.3.3 Real Time Attack Complexity . 32

4.4 Cost and Complexity Analysis . 35

4.5 A Theoretical Analysis of Flame’s Collision Attack 36

4.6 Conclusion . 36

5 SIMULATION OF FLAME’S DIFFERENTIAL PATHS 38

5.1 Introduction . 38

5.2 Construction of Replacement Differential Paths 38

5.2.1 The Intermediate Hash Values (IHVs) Differences 38

5.2.2 C++ Compiler . 38

5.2.3 Construction of Starting and Ending Segment of Replacement Differential Paths 40

5.2.4 Forward Differential Path Extension . 42

5.3 Conclusion . 48

6 ADVANCE MALWARE EVASION TECHNIQUES AND COUNTERMEA-

SURES 49

6.1 Introduction . 49

6.2 Possible Malware Evasion Techniques . 49

6.2.1 Exploiting Weak Cryptographic Primitives 50

6.2.2 Exploiting Cryptographic Backdoors . 51

viii

6.2.3 Exploiting Software Vulnerabilities . 51

6.3 Countermeasures for Detection Before Infection 52

6.3.1 Collision Detection using Counter-Cryptanalysis 52

6.3.2 Weak Cryptographic Primitive Detection 53

6.4 Countermeasures After Malware Deployment 53

6.4.1 File-based Sandboxing . 53

6.4.2 Malware Detection Using Memory Forensics 54

6.5 Conclusion . 55

7 CONCLUSION AND FUTURE DIRECTION 56

7.1 Introduction . 56

7.2 Conclusion . 56

7.3 Future Directions . 57

A User Manual 58

BIBLIOGRAPHY 60

ix

LIST OF FIGURES

Figures Caption Page No

5.1 Starting Point for Forward Differential Extension of First Differential Path. 40

5.2 End Point for Backward Differential Extension of First Differential Path. . . 41

5.3 Starting Points for Forward Differential Extension Second Differential Path. 42

5.4 End Points for Backward Differential Extension of Second Differential Path. 43

5.5 Starting Point for Forward Differential Extension Third Differential Path. . 43

5.6 End Point for Backward Differential Extension of Third Differential Path. . 44

5.7 Starting Point for Forward Differential Extension Third Differential Path. . 44

5.8 End Point for Backward Differential Extension of Third Differential Path.. . 45

x

LSIT OF TABLES

Tables Caption Page No

3.1 Differential Bit-conditions. 18

3.2 Boolean Function Bit-conditions. 18

3.3 Intermediate Variable Differences. 20

4.1 Analysis of Flame Attack’s Differential Path’s Construction. 33

4.2 Analysis of overall Flame’s Chosen-prefix Collision Attack. 34

5.1 Intermedite Hash Value Differences (IHVs) for Differential Paths 39

5.2 Replacement Differential Path 1 . 46

5.3 Replacement Differential Path 2 . 47

5.4 Replacement Differential Path 3 . 47

5.5 Replacement Differential Path 4 . 48

xi

Chapter 1

INTRODUCTION

1.1 Overview

With increasing threats to information and communication, information security has

gained worldwide importance. It is known that confidentiality, Integrity and availability are

three main traits of Information security. However along with securing, authenticity of in-

formation is important as well.

So the cryptography also includes the study of methods for proving message authen-

ticity. Message Authentication Codes (MAC) and Digital Signatures are the cryptographic

primitives used for authenticating messages and Cryptographic Hash functions provide basis

for building these. These Hash functions have certain characteristics such as pre-image re-

sistance, second pre-image resistance, and collision resistance. And the collision resistance

is typically the first characteristic to be breached for attacks on hash functions.

There are several collisions attacks performed on hash function, In 2007 the chosen-

prefix collision attack was first presented by Stevens, Lenstra and de Weger on MD5[1]. It

was published in EUROCRYPT 2007. Flame a very advanced malware was also found to

use a variant of chosen-prefix collisions attack on hash function MD5 by Stevens et. al (to

abuse the certificate) to deploy itself on systems using windows.

Flame mainly attacked and infected computers working with Microsoft windows oper-

ating system. It spread itself using a Windows Update, masked as a Microsoft security patch.

Windows use signatures to validate the authenticity of Windows Update (to ensure that the

updates are actually from Microsoft). The attackers used chosen-prefix collision cryptan-

1

alytic attack against MD5 to obtain a certificate by forging a Microsoft’s digital signature

that authorised them to be authenticated as a signed update from Microsoft. In chosen-prefix

collision attack two message blocks M and M’ are extended with post-fixes F and F’ in such

a way that both M‖F and M’‖F’ produce the same MD5 hash.

1.2 Need for Research

A lot of detail is available about the Flame Virus and its modules and how they work,

but the collision attack used by the attackers to abuse windows needs to be demonstrated and

researched, so there is a need to implement the supporting collision attack specifically it’s

differential path construction to show how it is used to set up the malware. Although some

research has been carried out to analyze the collision attack behind this malware. But there

is a need to make it more clear to general public. Moreover there is need to theoretically

discuss the techniques that could be exploited by modern malwares like Flame for their

deployment. And is there any solution that despite the exploit of certificate (using modern

hashes), we could prevent the damage caused by such malwares? And it is needed to discuss

the solutions to thwart other malware evasion techniques as well.

1.3 Problem Statement

As malwares like Flame are a great threat to security because they are used for espi-

onage. Although a lot of explanation is available on Flame malware as well but there is a

need to demonstrate the collision attack and specifically the differential path construction

mechanism used in this collision attack. Moreover a theoretical analysis is required to fur-

ther explore that what different exploitation techniques modern malware could use and what

potential preventive measures can be taken to thwart such viruses, before their deployment

and even after they have implemented the collision attacks to exploit the certificates.

2

1.4 Objectives

1. To demonstrate in terms of complexity how collision attack is used to deploy Flame

malware.

2. To simulate the chosen prefix collision attack in the way Flame malware used it.

3. To assess the use of the attack in terms of complexity for real time attack as as mal-

ware’s entry point into the system. And to discuss any potential preventive measures

to prevent malwares, first from infecting the systems and second from the damage in

case if such malwares exploit the certificates and become successful in infection.

1.5 Research Methodology and Achieved Goals

This research has been carried out in three core phases. An in depth study and litera-

ture review in regard to Flame’s collision attack has been performed as the first phase. By

detailed study of literature a sound theoretical knowledge base has been developed about the

functionality and complexity of the attack. The second phase consists of complexity anal-

ysis of the attack. This analysis provides insights into the strengths and weaknesses of the

Flame’s collision attack. In this phase malware evasion techniques are discussed that could

be exploited by modern Flame like malwares. And possible countermeasures to thwart such

techniques are also elaborated. In third phase the implementation of replacement differential

paths for Flame’s collision attack hash been carried out. Open source C++ code for cho-

sen prefix collision attack is used with some modifications for implementation. The starting

segments for partial forward replacement differential paths are created along with particular

ending segments.

The ultimate achieved goal is that the partial forward replacement differential differ-

ential paths of the Flame’s collision attack have been constructed. As the actual algorithm

3

for construction of Flame Attack’s differential paths is unknown so the differential path

construction algorithm for the chosen prefix collision is used. However the attributes such

as the message block differentials δm and δIHV eliminations of Flame collision attack as

observed in literature are used for these replacement differential paths’ construction.

1.6 Thesis Organization

The Thesis document has been structured in to seven chapters. Chapter 2 presents

the concise literature review of all related work regarding this research, found in literature.

Chapter 3 contains all the attacks carried out on MD5 hash algorithm including chosen pre-

fix collision attack and their details. The description of Flame’s collision attack and it’s

complexity analysis is presented in chapter 4. Chapter 5 provides the simulation details for

constructing the replacement differential paths of the Flame attack. Chapter 6 elaborates

the evasion techniques used by modern Flame like advance malwares and their counter/pre-

ventive measures. The thesis is concluded in chapter 7 along with suggestions for future

work.

1.7 Conclusion

This chapter gives an overivew of Flame malware and it’s collision attack. It also

discusses the problem statement and objectives of this research work. Research methodology

which is used to carry out simulation and goals that are accomplished are also elaborated in

this chapter. Lastly it deliberates the thesis report organization.

4

Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter various collision attacks on MD5 are described that are basically derived

from it’s Merkle Damgard construction. How collision attacks on hash function MD5 are

discovered and improved with time has been reviewed. The chapter has been sectioned into

four parts. Section 2.2 gives a description of MD5, in section 2.3 generic collision attacks

on MD5 are described, sections 2.4 elaborates identical-prefix collision attacks and section

2.5 presents chosen-prefix collision attacks carried out on MD5 hash.

2.2 Message Digest Algorithm 5

In 1992, Ronald Rivest proposed the hashing algorithm MD5[2]. It is established

on Merkle Damgard structure [3] and consists of a compression function. There are two

standards to represent 32-bit words big endian and little endian, the former is comparatively

straightforward. MD5 uses little endian while working with bytes.

2.2.1 Overview of MD5

MD5 input consists of a 512-bits message and a 128 bit Intermediate hash value (IHV)

as a result it produces output hash of 128-bits. Its message processing is done as follows:-

1. Initially a ’1’ followed by a number of zeroes to make message size equals to 448

modulo 512 bits is appended to the message. Afterwards original size of message is

appended as 64 bit little-endian integer thus making its length equal to 512.n, for an

integer n.

5

2. Next padded message M is divided into ’n’ 512 bit blocks i.e. M0,M1,M2, ...,Mn−1.

The 128 bit IHV consists of four 32 bit words IHV=(a,b,c,d), the initial value (IV) is

a fixed public value i.e.

IV = IHV0 = (6745230116, efcdab8916, 98badcfe16, 1032547616)

3. A n block message hashing requires MD5 to process through n + 1 states IHV. The

Compression function of MD5 is used to compute IHVj (where j = 1...n) as follows:

IHVj = MD5Compress(IHVj−1,Mj−1)

4. The last IHVn, presented as concatenation of the four words an, bn, cn, dn, is the re-

sulting MD5 hash.

2.2.2 Compression Function of MD5

The inputs to the compression function of MD5 are a message block B of 512 bits and

an initial value IHV of 128 bit, taken as MD5Compress(IHV,B). It is computed in 64

steps enumerated from 0 to 63, these steps are divided in to 4 rounds. The modular addition,

left rotation, a bitwise boolean function fs, an addition constant and a rotation constant are

used at every single step. The addition constants are defined by ACs = 232|sin(s+ 1)|, The

rotation constants are

(RCs, RCs+1, RCs+2, RCs+3) =



(7, 12, 17, 22) for s = 0, 4, 8, 12,

(5, 9, 14, 20) for s = 16, 20, 24, 28,

(4, 11, 16, 23) for s = 32, 36, 40, 44,

(6, 10, 15, 21) for s = 48, 52, 56, 60.

6

and the boolean functions for each round are given by

fs(X, Y, Z) =



F (X, Y, Z) = (X ∧ Y)⊕X ∧ Z) for 0 ≤ s < 16,

G(X, Y, Z) = (Z ∧X)⊕ (Z ∧ Y) for 16 ≤ s < 32,

H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ s < 48,

I(X, Y, Z) = Y ⊕ (X ∨ Z) for 48 ≤ s < 64.

Sixteen 32 bit words of messages blocks can be derived by dividing a 512-bit message and

are expanded into 64 words using following:

Ws =



ms for 0 ≤ s < 16,

m(1+5s) mod 16 for 16 ≤ s < 32,

m(5+3s) mod 16 for 32 ≤ s < 48,

m(7s) mod 16 for 48 ≤ s < 64.

For step s=0..., 63 the compression function MD5Compress maintains four working states

of 32 bit words Qs, Qs−1, Qs−2, Qs−3. These states are set up as Q0 = b,Q−1 = c,Q−2 =

d,Q−3 = a for all 64 steps, and Qs+1 can be calculated as follows:

Fs = (Qs, Qs−1, Qs−2), Ts = Fs +Qs−3 + As +Ws, Rs = RL(Ts, RCs)

Qs+1 = Qs +Rs

After all steps the output hash is calculated as follows

IHVout = MD5Compress(IHVin, B) = (Q61 + a,Q64 + b,Q63 + c,Q62 + d)

2.3 Generic Collision Attacks

In this section comparatively less sophisticated attacks on MD5 are discussed before

discussing the complex ones in next sections as they will give a starting point for compre-

7

hending the sophistication of the later ones.

2.3.1 Birthday Search

In a birthday search attack if n is the output length of a function/hash then it requires

O(n/2) assessments of that function/hash, to find a collision. So modern hash functions are

designed keeping this in mind that complexity of the hash function should be good enough

to make this attack impractical.

MD5 produces a message digest of length 128 so for a birthday search brute force

attack the complexity is 264 which is quite practical.

MD5CRK a distributed computing project was started in March 2004 to perform a

birthday search brute force attack on MD5, nevertheless the project ended in August 2004

without declaring it’s progress at that time.

2.3.2 Pseudo Collision

MD5 was already shown weak by Boer and Bosselaers in 1992 [4] by presenting a

pseudo collision attack on MD5.

This attack used only one message block B and using an IHV along with this message

block found another IHV’ such that MD5(IHV, B) = MD5(IHV’, B). The difference between

two IHV’s was of following form: IHV = (a,b,c,d), IHV’ = (a+231 mod 232, b+231 mod 232,

c+231 mod 232, d+ 231 mod 232)

2.3.3 Semi Free-Start Collision

A semi free start collision attack was announced in 1996 by Dobbertin published in

[5] and [6]. It used two distinct messages and a particularly selected initial value to produce

collision. However this collision attack was not on full MD5 but it shows that the higher

order bit differences diffusion in working states of algorithm is a bit slow. And with this

8

Dobbertin suggested to relinquish the further use of MD5 based digital signature schemes.

2.4 Identical-prefix Collision Attacks

In 2004 a group of Chinese cryptographers Wang et al. presented identical-prefix

collision attack in annual CRYPTO rump session [7], they carried out this identical-prefix

collision attack on MD4, MD5, HAVAL-128 and RIPEMD. It was a two block collision. The

detailed description of the attack is given in section 3.2. The attack has complexity of 239 and

on an IBM P690 it takes 15 minutes to calculate the collision. The details and method used

to find the collision was presented in 2005 [8] by Xiaong Wang and Hangbo Yu. However

before the publication of their explanation Hawkes et al.[9] also tried to reconstruct Wang’s

collision attack and described the necessary bit-conditions to satisfy the differential paths

constructed by Wang et al.

After the publication of Wang’s identical-prefix attack several attempts were made to

apply the attack in real world scenario. The first one was presented by Dan Kaminsky [10]

in which he created two colliding archives using the colliding messages presented by Wang

et al. and extracted two different files with same MD5 hash, all this was done using a special

tool he called Stripwire. This attack was targeted to file-system auditing tool Tripwire, that

uses hashes of the files to detect unauthorized changes to the files.

The unreliability of digital certificate setting was demonstrated by Lenstra, Wang and

de Weger in [11] by creating two X.509 digital certificates consisting of distinct public keys

but same signatures. One of the complex applications of the attack was creating two pro-

grams with same hash but different behavior, Daum and Lucks [12] presented such a demon-

strative application in which they constructed two postscripts files with same MD5 hash but

their content was totally different. Looking into any of these postscript files in text or hex

9

editor the postscript code can be seen and it gives an idea about the mysteriousness of the

files.

Many improvements over the original attack by Wang et al. have been published. An

improvement by Jun Yajima and Takeshi Shimoyama [13] found collision in many hours

on a PC. Vlastimil Klima in [14] presented an alteration of the attack in which he was able

to find collision in eight hours which was many times faster than the original attack, with

complexity of 233 MD5 compression function calls.

Later Kalima presented another attack [15] through which collisions could be found

in a minute on notebook PC. This new technique was called Tunneling. Tunneling made

collision finding faster and showed a new way of hash function cryptanalysis. It is also used

in identical-prefix and chosen-prefix collision later on.

Stevens found new techniques in [16] and made the attack significantly faster by in-

troducing particular control over bit rotations. As it was a two block collision, for the first

block a novel algorithm was used based on Kalima’s approach and used Kalima’s algorithm

for second block.

In [17] Stevens at el. presented an improvement of the attack with complexity of 216

MD5 compression function calls.

2.5 Chosen-prefix Collision Attacks

In 2007 Stevens, Lenstra and De Weger presented the first chosen-prefix collision at-

tack [1] on MD5. It has complexity of 250 MD5 compression function calls. They discussed

several possibilities of abusing their chosen-prefix collision attack, and they also showed that

colliding X.509 digital certificates with distinct public keys and varied distinguished names

can be constructed using their Attack. The collision causing blocks for these certificates

10

were hidden in public key fields. Moreover colliding executables and documents can be cre-

ated using chosen-prefix collisions if in different document layouts collision causing blocks

are appended after the completion of the program or in-between pictures.

In 2009 Stevens at el. presented an improvement of the attack in [18] with complexity

of 239. Using this attack they settled a certification authority. They created a cosmetic CA

certificate colliding with a conventional website certificate obtained from a trusted CA. The

certification authority that they settled was non-hazardous as the certificate’s expiration date

was intentionally scheduled in the past.

In 2012 a spy-ware with the name of Flame [19] was exposed, researchers found that

this spy-ware spread itself using windows update. For this attackers had to obtain a certificate

from Microsoft terminal services licensing server with code signing rights. In [20] Marc

Stevens done a preliminary analysis of ,Flame and claimed that to deploy itself this malware

used a variant of already known chosen-prefix collision attack. As using this chosen-prefix

attack, attackers created two colliding certificates one the innocuous legitimate one singed

by Microsoft and the other crafted by the attackers for causing collision.

In 2013 Fillinger Maximilian Johannes and Marc Stevens tried to reconstruct the de-

tails of the Flame attack [21] and they give estimates of the complexity of the different steps

(i.e. the complexity of the birthday search part and near collision extension construction) of

the attack. They claimed that the expected complexity of the Flame’s collision attack was

246.6 MD5 compression function calls. Their estimates and findings are discussed later in

chapter 4 in analysis of Flame attack’s reconstruction attempts.

11

2.6 Conclusion

Flame’s cryptanalytic attack is a modified version of chosen prefix collision attack on

message digest algorithm 5. This chapter presents a brief history of generic collision attacks

and identical prefix collision attacks carried out on MD5 hashing algorithm moreover phases

of improvements of chosen prefix collision attack are also discussed.

12

Chapter 3

ATTACKS ON HASH FUNCTION MD5

3.1 Introduction

A collision finding algorithm of a cryptographic hash algorithm gives the same hash

values for two distinct messages. However some of such attacks provide more control to

attacker over the resulting collisions.

In this chapter we describe two of important collision attacks. In section 3.2 the tech-

nical details of identical prefix collision attack are discussed. Section 3.3 elaborates the

technicalities of chosen prefix collision attack.

3.2 Identical Prefix Collision Attack

3.2.1 Differential Crytanalysis

The differential cryptanalysis [22] is a set of equations involving the intermediate hash

values (IHVs) and other intermediate variables (e.g. Qs, Fs, Ts and Rs) used in MD5 cal-

culation. It shows how the differences in message blocks (B,B′) and IHVs propagate.

These differences are usually presented using XOR differentials ∆Q, arithmetic differen-

tials δQ = Q′ −Q arithmetic modulo 232 and binary signed digit representation BSDR.

BSDR is more effective as it is useful for tracking bit-wise differentials (∆Q[k])k=0,...,31

whereas ∆Q[k] = Q′[k] − Q[k]ε[1, 0,−1]. In addition, BSDR encodes both XOR differ-

entials and arithmetic differentials. Arithmetic difference can be easily obtained from a

BSDR: δQ =
∑

k ∆Q[k].2k mod 232. A non-adjacent form (NAF) is a useful form and has

minimal weight among the BSDRs of a word where no two non-zero bits are adjacent. Due

to working with modulo 232 NAF of a word is not unique but uniqueness is enforced by

13

using Q[31]ε[0,+1]. NAF weight is defined as w(δQ) i.e. all the non-zero bits in δQ.

Attacks on MD5 based on differential crypanalysis are carried out as follows. Let M

and M ′ be two messages of length 512.n and Mi and M ′
i be the ith blocks of these two

messages where IHV0 = IHV ′0 . For i = 0..., k the IHV differential is as follows

IHV1 = MD5(IHV0,M0), ..., IHVk = MD5(IHVk−1,Mk − 1)

IHV ′1 = MD5(IHV ′0 ,M
′0), ..., IHV ′k = MD5(IHV ′k−1,M

′k − 1)

δIHVk = (δa, δb, δc, δd) = IHV ′k − IHVk = (a′ − a, b′ − b, c′ − c, d′ − d)

512.n bits message blocks Mk and M ′
k are constructed to obtain a specific δIHVk+1 and

calculating such intermediate value is part of collision attack. The message blocks are

found using differential paths. Wherever for working states and other intermediate hash

values, a group of differential equations during the computation of MD5 compression func-

tion MD5Compress is defined as a differential path. Message blocks satisfies a differential

path if the differences in the computation of MD5Compress with these message blocks as

inputs e.g MD5Compress(IHVi,Mi),MD5Compress(IHV ′i ,M
′i) are same as the dif-

ferentials in the differential path.

In identical-prefix attack by Wang et al. [8] initially M = M ′ because of identical-

prefix constraint and δIHVk = 0. The first differential path was designed by Wang in such

a way that it gives δIHVk+1 = (231, 231 + 225, 231 + 225, 231 + 225) from δIHVk = 0.

And the second differential path was designed such that it gives again δIHVk+2 = 0) from

IHVk+1 = (231, 231 + 225, 231 + 225, 231 + 225). This identical-prefix collision attack uses

their first differential path to find out message blocks Mk and M ′
k such that IHVk+1 and

IHV ′k+1 cause the differential δIHVk+1.

A difference is introduced between two message blocks by appending Mk and M ′
k to

14

M and M ′. As this attack is based on two message blocks so in order to complete the attack

a second differential path is created and used to find message blocks Mk+1 and M ′
k+1 such

that δIHVk+2 is again zero, when these message blocks are added to M and M ′ we get the

same resultant hash value, that is an md5 collision has been achieved.

The differential path solving algorithm works as follows: given both intermedi-

ate hash values i.e. IHVk and IHV ′k and a differential path, the values of working

states Q1, Q2, Q3..., Q16 and Q′1, Q
′
2, Q

′
3, ..., Q

′
16 are selected corresponding to the dif-

ferential path. And message blocks Mk and M ′
k are selected using these states, then

MD5Compress(IHVk,Mk) and MD5Compress(IHV ′k ,M
′k) is calculated if these in-

puts satisfy the differential path a message block is found if not then different values for the

pair of working states are tried.

3.2.2 Attack Overview

The identical-prefix collision attack was a two message block collision using differ-

ential cryptanalysis presented by Wang et al.[7]. The attack takes M and M ′ two mes-

sages of size 512.n and M = M ′, thus after the computation of MD5 they result in

identical IHV . 512 bit message blocks B0 and B1 are appended to M and different

blocks B′0 and B′1 are appended to M ′ by identical-prefix collision algorithm such that

MD5(M ‖B0 ‖B1) = MD5(M ′ ‖B′0 ‖B′1).

This attack constructs two hand crafted differential paths for two succeeding message

blocks and uses both modular and XOR differentials for these differential path construction.

The first differential path starts from IHVk = IHV ′k such that δIHV = IHV ′k − IHVk =

(0, 0, 0, 0) and ends with

δIHVk+1 = (231, 231 + 225, 231 + 225, 231 + 225)

15

The first differential path is established with following message block differentials in δB0

δm4 = 231, δm11 = 215, δm14 = 231 and δmi = 0 for all other mis

The second differential path starts with above mentioned δIHVk+1 and is produced with

message block differentials having opposite signs

δm4 = 231, δm11 = −215, δm14 = 231 and δmi = 0 for all other mis

So second differential path cancels out the differences produced in first differential path thus

making δIHVk+2 = (0, 0, 0, 0).

Further these differential paths are solved with the help of an algorithm to find the

input that satisfy them and produce blocks B0 and B′0, B1 and B′1 that cause the collision.

For speeding up the algorithm two techniques are used. The first technique is message

modification in which having a differential path solution upto a particular step a number of

solutions are generated. The other one is Tunnels which is more efficient and if a solution

does not satisfy a condition on differential path it causes early abort and tries a different

solution.

3.2.3 Differential Paths

A differential equations’ group established with working states and associated mid-

point variables is called a differential path. It shows how differences propagate in two

associated MD5 calculations. If two inputs are given to MD5 compression function i.e.

(IHV,m0‖, ...‖m15) and (IHV ′,m′0‖, ...‖m′15) the terminologies for working states and

midpoint variables for the input number one will beQs, Fs, Ws, Ts and for input number two

they are Qs, F ′s, W
′
s, T

′
s. The arithmetic differential for these intermediate variables is com-

puted as δQs = Q′s−Qs and the BSDR differential is represented as ∆Qs[i] = Q′s[i]−Qs[i].

Mainly a differential path for step s = s0, ..., sn consists of following information:-

16

• ∆Qs for s0 − 2, ..., sn, δQs0−3, ..., δQsn+1

• ∆Fs for s0, ..., sn

• δm0, ..., δm15 from these δW0, ..., δW63 are derived for s=0,...,63.

• δTs, δRs for s0 − 2, ..., sn,

From step s = s′0, ..., s
′
n a differential path is said to be solved by a set of inputs to

the compression function of MD5Compress (IHV,C) and (IHV ′, C ′). If the difference

C ′−C = δm0, ..., δm15 , and the working states and midpoint variables that results from the

computation of MD5Compress(IHV,C) and MD5Compress(IHV ′, C ′) for steps s =

s′0, ..., s
′
n solves the differentials given by path, and in addition the working state differentials.

For steps s = s0, ..., sn if a pair of input solves a partial differential path, then it

is considered as valid. While if s0 is zero and sn = 63 then it is considered a full valid

differential path.

3.2.4 Bit-conditions

Sufficient conditions also called bit-conditions were introduced by Wang et al. He

defined them on given differential path bits to find the messages that solves the path. An

entire differential path can be described using bit-conditions. There are two types of bit-

conditions, differential bit-conditions, boolean function bit-conditions, the former is used to

find out values of ∆Qs and the latter is used to determine ∆Fs. For steps s = 0, 1, 2, ..., 63

differential bit-conditions are presented in Table 3.1 and boolean function bit-conditions are

presented in Table 3.2 below.

17

Symbol Condition ∆Qs[k]

. Qs[k] = Q′s[k] 0

+ Qs[k] = 0 ∧Q′s[k] = 1 +1

- Qs[k] = 1 ∧Q′s[k] = 0 -1

Table 3.1: Differential Bit-conditions.

Symbol Condition Type Direction

. Qs[k] = Q′s[k] direct

0 Qs[k] = Q′s[k] = 0 direct

1 Qs[k] = Q′s[k] = 1 direct

ˆ Qs[k] = Q′s[k] = Qs[k − 1] indirect backward

∨ Qs[k] = Q′s[k] = Qs[k + 1] indirect forward

! Qs[k] = Q′s[k] = Qs[k − 1] indirect backward

y Qs[k] = Q′s[k] = Qs[k + 1] indirect forward

m Qs[k] = Q′s[k] = Qs[k − 2] indirect backward

w Qs[k] = Q′s[k] = Qs[k + 2] indirect forward

Qs[k] = Q′s[k] = Qs[k − 2] indirect backward

h Qs[k] = Q′s[k] = Qs[k + 2] indirect forward

? Qs[k] = Q′s[k] ∧ (Qs[k] = 1 ∨Qs[k − 2] = 0) indirect backward

q Qs[k] = Q′s[k] ∧ (Qs[k] = 1 ∨Qs[k + 2] = 0) indirect forward

Table 3.2: Boolean Function Bit-conditions.

18

3.3 Chosen Prefix Collision Attack

3.3.1 Attack Overview

Chosen prefix collision attack work with two arbitrary message blocks A and A′ and

suffixes F and F ′ such that MD5(A ‖ F)= MD5(A′ ‖ F ′). Suffixes F and F ′ are divided

into two main parts birthday bits Fb and F ′b and near collision extensions Fc and F ′c.

The first step is birthday bits (Fb and F ′b) search, in which these birthday bits are

appended to prefixes A ‖ Fb, A′ ‖ F ′b and an MD5 calculation is performed on them i.e.

MD5(A ‖ Fb) and MD5(A ‖ F ′b). That results in intermediate hash values (IHVs), IHVn

and IHV ′n, causing differentials of specific form δIHVn = IHV ′n−IHVn = (δa, δb, δc, δd),

these differentials are then eliminated in next stage with the help of near collision extensions.

The next stage is the search for a sequence of near collision extensions (Fc and F ′c).

When these extensions are appended with the birthday bits, they reduce the NAF weight of

the IHV differences δIHVn = (δa, δb, δc, δd) step by step, until the difference between them

becomes zero. A differential path is constructed per near collision extension such that NAF

weight of each difference δIHVn+1 is less than the NAF weight of the previous difference

δIHVn till after a certain number k of near collision extensions this NAF weight reduces to

zero δIHVn+k = (0, 0, 0, 0). Near collision extensions are constructed as follows:-

• First two partial differential paths (an upper path and a lower path) are constructed

and then they are connected to construct a full differential path. An upper differential

path starts with a particular intermediate hash value, whereas lower differential path

cause a specific form of intermediate value differentials. Again this differential path

construction is done in three different steps using three different algorithms. In first

step upper path is extended forward, in second step lower path is extended backward

19

and in third step both these partial differential paths are connected thus making a full

differential path.

• Next step is finding message blocks that solves the differential paths and through

which target IHV value is acquired.

3.3.2 Elimination Process

For this phase the aim is to find birthday bits Fb and F ′b of length 64+k such that

when appended to prefix A and A′ and calculating the MD5, i.e. MD5Compress(A ‖

Fb) and MD5Compress (A′ ‖ F ′b) the resulting intermediate hash values (IHV) difference

δIHVn = IHV ′n − IHVn = (δa, δb, δc, δd) is of a particular structure. In which δa is zero

and there is some δb and δc = δd. These differences are gradually reduced to zero using a

number of near collision extensions. Near collision extensions are constructed based on the

differential paths’ end segments. The message blocks differences for these differential paths

are δm11 = 2r where 0 6 r 6 31 and δmi = 0 for i 6= 11. Table below shows the differences

between different intermediate differential variables.

s δQs δFs δWs δTs RCs δRs

61 0 0 ±2k−10 mod 32 ±2k−10 mod 32 10 ±2k

62 ±2k 0 0 0 15 0

63 ±2k
∑w′

λ=0 sλ.2
k+λ 0 δFi 21

∑w′

λ=0 sλ.2
k+21λ mod 32

64 ±2k + δR63

Table 3.3: Intermediate Variable Differences.

The difference values are calculated in following manner: With δQs, 61 is the last

trivial step in the order of trivial steps. δF61 is 0 because three of the previous Q′ts are zero.

And δT61 = δW61 = δm11 = 2k−10 mod 32. The rotation constant for step 61 (RC61) is 10.

In the case of right rotation δR61 = δQ62 will be ±2k.

20

If both Q60[k] and Q′60[k] are equally zero then δF62 = 0. Subsequently δQ63 = δQ62.

Then there is a possibility of getting non zero values for ∆Q63[k]... ∆Q63[k + w′] and then

it may allow ∆F63 = [k + w′] = sλ. And using rotation RC63 = 21 the possible value for

δQ64 is as given in table above.

To be more specific, after birthday search the resultant intermediate hash value differ-

ence is δIHV = (0, δb, δc, δc). Take a parameter w < 32. Let denote (ai)
31
i=0 as NAF weight

of δb− δc and (bi)
31
i=0 as NAF weight of δc = δd. The first target for elimination is to reduce

δc to zero. After reducing δc to zero the intermediate hash value difference will be written

as δIHV = (0, δb, 0, 0). Next phase is reducing the NAF weight of δb to zero. Let (ci)
31
i=0

denote the NAF weight of δb. Other values of IHV will remain zero as differences added

in first and second block will eliminate each other. The collision search is done when the

difference δb becomes zero.

3.3.3 Tunnels

Tunneling [15] is a message modification approach used to accelerate collision at-

tacks significantly. Stevens use tunneling technique to accelerate his chosen prefix collision

cryptanalytic attack on MD5. Using a Tunnel certain change in a particular working state bit

Qs[k] and it’s related message block bits can be introduced. Without upsetting other working

states.

3.3.4 Birthday Bits Search

For efficient and storage saving birthday search a specific framework [23] is adopted.

In this framework a function f , having search space S is taken. And this function f is applied

on different values belonging to this search space S to find a collision f(a) = f(b) where

a 6= b. Another assumption about f is that it is pseudo-random, so are the compression

21

functions of the cryptographic hash functions.

Hence pseudo-random walks are computed and only the starting values, ending values

and lengths of these walks are saved instead of saving the whole trails. The end points of

the walks are called distinguished points. Collision generating walks have the same distin-

guished points. A collision occurs when two walks intersect each other. Then using their

stored information the colliding trails are recomputed. Multiple processors can be used to

calculate these pseudo-random walks. After a processor finishes computing a trail, it’s start-

ing values, ending values and lengths are saved in a list for future reference. And another

random ai is chosen to calculate another random walk.

In the case of chosen prefix collision attack’s birthday bits search, in order to produce a

specific intermediate hash value differences the search space is taken as S = Z32×Z32×Z32.

If for P and P ′ we take C and C ′ as the ending 512− 64− l bits where k = 0, ..., 32. Then

the function f would be defined as

f(u, v, w) = (a, (c− d), (b− c) mod 2k)

where as

(a, b, c, d) =


MD5Compress(IHV,C ‖ u ‖ v ‖ w), if u ≡ 0 mod 2

MD5Compress(IHV ′, C ′ ‖ u′ ‖ v′ ‖ w′), if u ≡ 1 mod 2

(3.1)

Nevertheless, all collisions might not be beneficial. Two series of birthday bits are

required here one for appending after P and other for P ′. Also a particular difference in δb

and δc is required that can be removed with a certain number of near collision blocks.

3.3.5 Differential Path Extension

Differential path construction initiates from message block difference, δm1, ..., δm15,

(from these, word differences δW0, ..., δW63 are fixed) and IHVs. From intermediate hash

22

values we initialize the working states, Q−3,..., Q0 and Q′−3,..., Q
′
0. Hence the differences

∆Q−3,..., ∆Q0 and related bit-conditions q−3,..., q0 already exist.

3.3.6 Forward Extension of Differential Paths

Forward extension of a differential path follows following method. Let for a step s the

information we have is δQs and δQs−3 and some bit-conditions qs−2 and qs−1.

• First we have to determine bit-condition on Qs according to δQs. It is better to con-

struct differential paths with a small number of bit-conditions. However randomizing

the process is also a requirement, a NAF or any other low weight BSDR of δQs is used

and according to this BSDR, bit-conditions are selected.

• Next the differential ∆Fs is selected and for j = 0, 1, 2, 3...31 it is supposed that

(a, b, c) = (qs[j], qs[j−1], qs[j−2]). we further assume that among these bit-conditions

if qs[j − 2] is indirect, then it involves Qs[j − 1]. If Vs,abc is one then the differential

∆Fs is completely determined by (a, b, c). Else some random gj is selected from Vs,abc

and the bit-conditions (a, b, c) are replaced by other bit-conditions (a′, b′, c′) to resolve

the ambiguity.

• Next δT is computed using δQs−3 + δFs + δWs and δQs+1 is computed using high

probability rotation of δT .

3.3.7 Backward Extension of Differential Paths

Lets assume that the information given for a partial differential differential path is

qs, qs−1, δQs+1 and δQs−2. In order to extended this path backward for a step s and ob-

taining modular difference δQs−3 we have to give bit-conditions qs−2 and change the [.]

bit-conditions in qs and qs−1 with suitable boolean function bit-conditions.

23

The processing of algorithm with backward extension is similar to forward extension

algorithm. A BSDR having low weight usually a non adjacent form (NAF) of δQs−2 is

chosen, thus on this BSDR bit-conditions qs − 2 are given. ∆Fs differential is acquired by

letting for j = 0, 1, 2, 3...31 bit-conditions (a, b, c) = (qs[j], qs[j − 1], qs[j − 2]).

In these bit-conditions it is assumed that only q−s[j] is indirect and involves δQs−1[j].

If Vs,abc is one then there is no ambiguity but if it’s greater than one then (a, b, c) is replaced

by BC(s ,Vs,abc, gj).

And to rotate δRs = δQs+1 − δQs on 32− RCs bit positions, a high probability δT ε

dRL (δRs, 32 − RCs) is chosen. Using this we can calculate δQs − 3 = δT + δFs + δWs

and one step of backward extension finishes with this calculation.

3.3.8 Connecting Two Partial Differential Paths

Connection of two upper and lower paths is carried out as follows. For δQ−3, δQs+1

and bit-conditions q−2, q−1, ..., qs the upper path is computed upto some step s. And for

δQs+2, δQ64 and bit-conditions qs+3, ..., q62, q63 a lower path is constructed backwards till

step s+5. For constructing a valid differential path the next target is to find the bit-conditions

that are compatible with initial sufficient conditions and which determine δQs+1, δQs+2,

δFs+1, δFs+2, δFs+3, δFs+4.

As all lower and upper paths are not useful so a lot many differential paths are created

using different variations of ∆Qs and ∆Fs while extending these differential paths forwards

and backwards. For connection algorithm certain calculations are needed to be performed.

For steps j equals to s + 1, s + 2, s + 3 and s + 4 first δRj = δQs+1 + δQj is calculated.

After that for 32−RCj bit positions, a high probability rotation differential δT is computed

using dRL(δRj, 32−RCs).

24

3.4 Conclusion

This chapter explains the technical details of two collision attacks i.e. identical prefix

collision attack and chosen prefix collision attack. It is important to understand the details

of these attacks to better comprehend the collision attack used by Flame malware.

25

Chapter 4

FLAME’S COLLISION ATTACK AND IT’S COMPLEXITY

ANALYSIS

4.1 Introduction

This chapter elaborates the details and analysis about the collision attack used by

Flame to deploy itself on the target systems. Flame malware exploited a modified version of

original chosen-prefix collision cryptanalytic attack on hashing algorithm MD5 [20] in order

to deploy itself on the target systems.

Section 4.2 discusses the technical details of the Flame’s collision attack. Sections 4.3

provides an analysis of the reconstruction attempts performed for Flame’s collision attack.

In section 4.4 the cost and complexity estimates of the attack are elaborated. A theoretical

analysis of collision attack used by Flame is presented in section 4.5.

4.2 Flame and Collision Attack

In May 2012, Flame a super advanced malware was found by MAHER an Iranian

computer emergency response team (CERT) [24]. This malware used collision attack to

exploit Windows security update, although the collision attack was not it’s part.

4.2.1 Flame Malware

In a technical report [25] by CrySyS Lab and in a blogpost [26] by Kaspersky Labs, the

details about the Flame malware were uncovered. It was discovered by Kaspersky that this

extremely complex malware was present on the attacked systems since 2010. They stated

that this malware consists of multiple modules, these modules could be downloaded later,

26

after the initial deployment. Flame used all key likelihoods for gathering information con-

taining keyboard data, screen captures, microphone and camera content, data from storage

devices, Bluetooth input and network traffic. After full deployment its size is above 20 MB.

The reading of reports both by CrySys Lab [25] and Kaspersky Lab [26] is recommended in

order to better comprehend the functionality, objective and source of the malware.

This malware reportedly attacked computers with Microsoft Windows. Microsoft used

to issue certificates through its terminal services licensing server to users for remote logging

with code signing rights. These certificates were issued using the weak MD5.

Flame exploited this use of weak MD5 by Microsoft to launch itself. Being linked

to Microsoft core certification authority these certificates could also be used to digitally

sign any software/program on the behalf of Microsoft. Flame disguised itself as a windows

security update in order to locally deploy itself. A certificate linked to the certificate of the

core Microsoft certification authority is usually used to acquire a legitimate digital signature

on Microsoft Windows update. This digital signature ensures that they are valid updates

originated from Microsoft.

To evade this security barrier and to obtain a digital signature on their fake Microsoft

Windows security patch. A chosen prefix collision attack was used by Flame developers,

on hash function MD5 to obtain two colliding certificates. For this, they crafted the to-be-

signed portions of the two digital certificates, such that both to-be-signed parts had identical

MD5 hash value.

The real certificate, obtained using above-mentioned terminal services licensing server

from Microsoft came with code signing rights. As both of these certificates (real and forged)

had identical hash values so digital signature of the former was acceptable for the latter.

Since the real certificate came with code signing rights, therefore Flame authors were able

27

to sign the fake windows security patch using this certificate.

4.2.2 Flame’s Differential Paths

While analyzing the Flame malware researchers discovered a rogue certificate. Marc

Stevens used his newly found technique called counter-cryptanalysis [20] to verify that this

certificate was constructed using a variant of his chosen prefix collision attack. He reverse-

engineered through this method and extracted four near collision blocks and tried recon-

structing of differential paths for all of these near collision blocks.

It was observed that the extracted differential paths were not like any of the collision

attack from literature. However for the near collision blocks, the differences of the message

blocks were similar to those used in Wang’s [8] differential paths. 1st and 3rd block of Flame

used the difference of the first differential path of Wang’s attack, while the 2nd and 4th block

used the difference of second differential path (negated differences) i.e.

δm4 = δm14 = +231 and δm11 = +215

δm4 = δm14 = +231 and δm11 = −215

(4.1)

Furthermore in differential paths used by Flame the initial eight steps carry larger number of

bit-conditions than succeeding differential steps.

4.2.3 Birthday Search Part

For this part it was observed birthday search produced an δIHV with a lot of bit

differences and four near collision blocks are used to decrease these differences down to

zero. According to Fillinger et al’s [27] analysis after birthday search fixed differences are

required in δa and δd of resultant intermediate hash value. Birthday search part of Flame’s

collision attack aims for the following function to collide.

28

f(y) = (a, b′10, b
′
11, ...b

′
13, b

′
21, b

′
22, ...b

′
26, c0, c1, ...c7, c15, c16, ...c19, c31, d) (4.2)

whereas (a, b, c, d) =


MD5Compress(IHV,C||u) + (−25, 0,−25, 29 − 25) u is 0

MD5Compress(IHV ′, C ′||u) u is 1

(4.3)

whereas b’=b-c

4.2.4 Tunnels

Tunnels are important to get the accurate complexity estimates of the attack. It was

observed that the tunnels T4, T5 and T8 were important for this attack. The use of tunnel T8

is confirmed however how this tunnel used, is unclear. The observed strengths for tunnels

T4 and T5 are less than average still it can not be concluded that they are not used at all. It is

therefore assumed that average tunnel strength was used for all of the three tunnels.

4.2.5 Near Collision Blocks and Elimination Scheme

As mentioned before only four near collision blocks are used in attack. This could

be justified by observing the space where only four differential paths could accommodate.

According to observation prior to the search of first near collision extension the IHV differ-

entials are

δIHV = (δa, δb, δc, δd)

= (−25,+230 − 221 − 219 − 217 + 212 − 22,−227 − 220 + 214 + 212 − 25,+29 − 25)

(4.4)

29

The first near collision block causes following IHV differential.

δIHV = (δa, δb, δc, δd)

= (231 − 25,−230 + 225 − 222 + 220 + 217 + 29 − 22,+231 − 227 + 225 − 220 + 29 − 25,

231 + 225 + 29 − 25) (4.5)

the second causes

δIHV = (δa, δb, δc, δd) = (0,−230 − 224 − 220 + 217 − 214 + 25,+20) (4.6)

The third causes

δIHV = (δa, δb, δc, δd) = (231, 225 + 214 + 29 + 25 − 23 + 20, 231 + 225, 231) (4.7)

The forth near collision blocks makes all the differences zero. i.e. δIHV = (δa, δb, δc, δd) =

0. After the first two near collision blocks the δa and δd becomes zero. The difference δc is

left with only a constant term and has NAF weight one. While δb’s NAf weight has increased

from six to seven. Thus one can infer that first two blocks targeted δc hence reducing it’s

NAF weight to one and adding random differences to δb that causes the increase in it’s NAF

weight. While the second two near collision blocks reduce δb to zero along-with eliminating

the constant term from δc.

4.3 Analysis of Findings and Reconstruction Attempts

4.3.1 Assumptions

• Flame’s collision attack used four differential paths. This assumption is justified from

a previous research in which limited space was observed where only few differential

paths could be placed.

• The forward and backward differential paths meet at steps 5,6,7 and 8.

30

• It is assumed that an average tunnel strength is used for all three tunnels T4, T5 and T8.

• The δa and δd differences in the birthday search part were the target differences i.e.

the attackers wanted to obtain these from birthday search part of the attack.

4.3.2 Analysis of Differential Paths

Differential path construction for MD5 can be done using two methods. One method

is by Stevens et al. [1] meet in the middle approach and the second by Mendel et al.[28].

According to Stevens [20] first few steps of observed differential paths carry large amount of

differences and conditions which indicates that a meet in the middle procedure is used. In a

meet in the middle approach two partial differential paths are constructed and later they are

connected into one full differential path. Furthermore all non-zero bit differences of ∆Q6 in

differential paths shows an unknown method was used in full differential path construction

instead of Steven’s Method.

Flame probably used steps 5, 6, 7 and 8 for connecting two partial differential paths.

After completion of step 5 exhaustive search is used for steps 6, 7 and 8. If this is the

approach used for connecting two partial differential paths by Flame, exhaustive search can

be done using Stevens’s method or using brute force. Stevens tried to reconstruct differential

paths using their own open source hashing tool [29] with 229 complexity approx.

Later Max Filliner and Marc Stevens in their reconstruction attempt of chosen prefix

collision attack specifically differential path construction, also gave an analysis of differen-

tial paths. They analyzed that Random IHV differences can occur in first two differential

block pair, which can be eliminated in last pair in Flames attack. Because this attack doesn’t

use static differential paths. Each block’s differential path contains a main carry chain start-

ing either from position 5 or 25 in ∆Q62 or ∆Q63. These chains are used by Fillinger for

31

their reconstruction attempt and they parametrized the allowed carries. Hence according to

them using other carry chains was not useful and their usage could make attack methodology

more complex. He also stated that differential path construction technique is sub-optimal.

Finally it is analyzed by looking at both previous observations that It seems a some-

what combination or an unknown approach is used for constructing Flame’s differential

paths.

Stevens’s open source toolkit hashclah can be used to develop differential paths, with

more efficiency and less complexity. As as shown by Stevens [20] himself. Because his

technique is more efficient than Flame’s differential path construction method.

4.3.3 Real Time Attack Complexity

As actual method or algorithm for construction of chosen prefix collision attack used

by Flame is not known therefore reconstruction of the attack can be done based on observed

findings. However not with exactly same complexity and parameters as used by Flame

authors. The original cost of the attack might be higher than the reconstruction attempts. The

reason for probable higher cost of original attack is that the observed differential paths carry

parameters have minimum values than the parameters used by Fillinger et al. for complexity

lower bound Cmin : 246.6. Hence using Flame’s differential paths parameters (wi; vi; ui)

leads to more birthday factors thus increasing the birthday search cost. And in this way, the

overall complexity would be more than Cmin. Nonetheless the attack can be reconstructed

completely and efficiently if simulated on mutually parallel architecture (GPUs) and utilizing

the above mentioned assumptions. Although improved assumptions/techniques for tunneling

could be used in order to improve overall speed of the attack.

32

Table 4.1: Analysis of Flame Attack’s Differential Path’s Construction.

Marc Stevens

• First few steps of observed differential paths carry large amount

of differences and conditions which indicates that a meet in the

middle procedure is used.

• All non-zero bit differences of ∆Q6 in differential paths shows

an unknown method was used in full differential path construction

instead of Steven’s Method[1].

• Flame probably used steps 5, 6, 7 and 8 for connecting two

partial differential paths. After completion of step 5 exhaustive

search is used for steps 6, 7 and 8.

• Using above approach exhaustive search can be done using

Stevens’s method or using brute force.

• Stevens tried to reconstruct differential paths using their own

open source hashing tool [29] with 229 complexity approx.

Marc Stevens and

Max Fillinger

• Random IHV differences can occur in first two block pair, which

can be eliminated in last pair in Flames attack.

• Because it does not used static differential paths.

• Differential path construction technique is sub-optimal.

Our Observations

and Suggestions

• It seems that somewhat a combination or an unknown approach

is used for constructing Flame’s differential paths.

• Stevens’s open source toolkit hashclah [29] can be used with few

modifications in the code to develop all four differential paths, with

more efficiency less complexity and less bit-conditions. Because

his technique is more efficient than Flames differential path

construction method.

Note: Differential path construction for MD5 can be done using two methods. One method is by Stevens et al. [1] meet in the middle

approach and the second by Mendel et al.[28].

33

Table 4.2: Analysis of overall Flame’s Chosen-prefix Collision Attack.

Marc Stevens

• Gave good lower bounds of 236, 244, 230.8 and 230.5 for 1st, 2nd,

3rd and 4th block construction receptively.

• Gave weak lower bounds of 242 for birthday search cost with

possibility of increase in complexity due to less systematic

differential path system.

• Gave a weak lower bound of 244.3 for overall attack. [20]

Max Fillinger and

Marc Stevens

• Gave estimated complexity assessments with varying values of

parameters w1, v1, w2, v2, w3 and w4, u4* for near collision block

construction [21]

• Gave Birthday search complexity of 244.8 with maximum values

of parameters (for minimizing differential path cost i.e. Flame’s

approach).

• Cmsg : 255.8, Cflame : 249.3, Csearch : 248.4, Cmin (overall

minimum cost): 246.6

Our Observations

and Suggestions

• The cost of 4 near collision blocks could be reduced using some

more proficient techniques from literature.

• Running birthday search on massively parallel architecture

(GPUs) and looking for birthday bits side by side (parallel) would

be faster and better. Rather than using maximum parameters for

birthday search, above average parameters could be tried.

• In this way both above ideas could possibly reduce the total

attack cost.

*Note: wi, vi and ui are differential path parameters. wi denotes the carry chain bits length and indicate number of bits on which

differences can be controlled in differential paths. ui is another carry chain used in block 4. vi denotes bits where random changes are

allowed. Cmsg : is the cost when decrease in the cost of near collision search is tried. Cflame : Decrease in cost of near collision search

is tried and consistency with observed differential parameters is maintained. Csearch : likely cost, when decrease in birthday search cost

is tried.

34

4.4 Cost and Complexity Analysis

Cost and complexity estimates given by Stevens [20] include good lower bounds of

236, 244, 230.8 and 230.5 for 1st, 2nd, 3rd and 4th near collision extensions construction re-

spectively.

He gave weak lower bounds of 242 for birthday search cost with possibility of increase

in complexity due to less systematic differential path system. And also Gave a weak lower

bound of 244.3 for overall attack.

While Filliner et al. gave estimated complexity assessments with varying values of

parameters w1; v1, w2; v2, w3 and w4; u4 for near collision block construction. He estimated

birthday search complexity of 244.8 with maximum values of parameters (for minimizing

differential path cost i.e. Flame’s approach).

For overall cost he gave Cmsg : 255.8 i.e. the cost when decrease in the cost of near

collision search is tried. Cflame : 249.3 i.e. the cost when decrease in cost of near collision

search is tried and consistency with observed differential parameters is maintained. Csearch :

248.4 i.e. likely cost, when decrease in birthday search cost is tried. Cmin : 246.6 is the overall

minimum cost.

The second and fourth near collision block has the highest complexity in all four blocks

reconstructed by Fillinger. Therefore in order to reduce the cost of message block search,

the cost of the carry chain parameters of block 2 and 4 should be reduced [21].

The cost of 4 near collision blocks could be reduced using some more proficient tech-

niques from literature. Running birthday search on massively parallel architecture (GPUs)

and looking for birthday bits side by side (parallel) would be faster and better. Rather than

using maximum parameters for birthday search, above average parameters could be tried. In

this way both above ideas could possibly reduce the total attack cost.

35

4.5 A Theoretical Analysis of Flame’s Collision Attack

According to our analysis of the chosen-prefix attack used by Flame malware, this

attack is not very efficient as more advanced techniques could have been used from the

literature. The attack developers were not focused on optimizing the attack with advanced

techniques. Rather they aimed at a successful attack having time efficiency. E.g. the tunnels

strengths in observed differential paths are lower than their maximal attainable strengths.

On the whole the complexity, differential paths construction technique and near colli-

sion search are sub-optimal. And could be improved using more sophisticated approaches.

More advanced and proficient techniques from literature could be used for achieving lower

theoretical complexity of four near collision blocks constructions and the birthday search

part. Better parameter choices as well as utilization of the full capabilities of already used

techniques could lead to better results (e.g. in Tunneling (technique for speeding up near

collision) maximum attainable tunnel strengths could be used).

Although a lower bound of the overall cost of Flame’s collision Attack is given by

Fillinger et al. i.e. 246.6, however the closest complexity could be 249.3. As the observed dif-

ferential paths’ parameters have minimum values. This could be achieved using massively

parallel architectures (GPUs) easily by putting more load on birthday search part while re-

ducing the complexity of near collision part. Birthday search part would give feasible results

if done massively parallel architecture. While Near collision search could also be done on a

normal CPU as done by Stevens.

4.6 Conclusion

This chapter first describes the technical details of collision attack used by Flame mal-

ware. It also provides an analysis of research done on this attack and analysis of reconstruc-

36

tion attempts. It gives an analysis of cost and complexity estimates. Lastly a theoretical

analysis of attack has been presented.

37

Chapter 5

SIMULATION OF FLAME’S DIFFERENTIAL PATHS

5.1 Introduction

In this chapter the replacement differential paths’ construction of of Flame’s collision

attack is described. This construction is performed by making crucial changes in the open

source code by Stevens [29]. The substantial algorithm for construction of Flame Attack’s

differential paths is unknown therefore the differential path construction algorithm for the

chosen prefix collision is utilized. However the attributes such as the message block dif-

ferentials δm and δIHV eliminations of Flame collision attack as observed in literature are

used for these replacement differential paths construction.

In this chapter section 5.2 presents the details, figures and tables demonstrating the

construction of replacements differential paths.

5.2 Construction of Replacement Differential Paths

In this section the implementation and reconstruction details of differential Flame at-

tack’s differential paths are elaborated.

5.2.1 The Intermediate Hash Values (IHVs) Differences

The intermediate hash value differences used for first, second, third and fourth differ-

ential paths are shown in table 5.1.

5.2.2 C++ Compiler

The code of HashClash toolkit by Marc Stevens [29] is in C++. As this code and

mainly its libhashutil5 c++ library is used in the construction of the Flame’s replacement

38

IHVs For The First Differential Path

IHV1
Hex a262d013 6907c960 bb84d9d7 3b74732e

Dec 332423842 1623787369 3621356731 779318331

IHV2
Hex 8262d013 65179fa0 9bd4c9cf 1b76732e

Dec 332423810 2694780773 3486110875 779318811

IHVs For The Second Differential Path

IHV1
Hex 63fc3d45 3bdacbc8 826faa39 cc7df2cc

Dec 1161690211 3368802875 967470978 3438443980

IHV2
Hex 43fc3dc5 395c9d8a 62719ab3 ac7ff24e

Dec 3309173827 2325568569 3013243234 1324515244

IHVs For The Third Differential Path

IHV1
Hex 7aeea241 ddd49e30 b9ce4dab 4b8e0ff4

Dec 1101196922 815715549 2874003129 4094660171

IHV2
Hex 8262d013 65179fa0 9bd4c9cf 1b76732e

Dec 332423810 2694780773 3486110875 779318811

IHVs For The Fourth Differential Path

IHV1
Hex ac3aa31b d79e7f3a 9b34ec0a 850e3940

Dec 463682220 981442263 183252123 1077481093

IHV2
Hex ac3aa39b ee607f3c 9bf6eb8c 851039c2

Dec 162740908 1014980846 2364274331 3258519685

Table 5.1: Intermedite Hash Value Differences (IHVs) for Differential Paths

39

Figure 5.1: Starting Point for Forward Differential Extension of First Differential Path.

differential paths. Hence Simulation is done using Microsoft 2010 Professional.

5.2.3 Construction of Starting and Ending Segment of Replacement Differential

Paths

Construction of lower differential path starts with creating the starting segments of the

forward differential step. Which is achieved by first determining the bit-conditions q−3, q−2,

q−1 and q0 against the corresponding IHV and IHV’, and extending it one step further. Thus

constructing a starting segments of partial lower path. And the construction of upper path

starts with constructing the desired end segments of a partial upper differential path keeping

it compatible with given message differences δm.

Figure 5.1 shows the construction of starting segments of first differential path. Here

first bit-conditions against the IHVs are determined and differential step is calculated for

t = 1. The message block differentials used for first differential path are δm4 = 15, δm11 =

δm14 = 31 as can be seen in figure.

A specified end of the first differential path is shown in figure 5.2.

Similarly Starting Segments of the Second Replacement Differential Path is shown in figure

40

Figure 5.2: End Point for Backward Differential Extension of First Differential Path.

41

Figure 5.3: Starting Points for Forward Differential Extension Second Differential Path.

5.3. The message differences used for this differential path are δm4 = −15, δm11 = δm14 =

31

Figure 5.4 displays the end points of second replacement differential path. In addition the

third and fourth differential paths’ starting and ending points are displayed by figures 5.5,

5.6, 5.7 and 5.8 respectively. The message block differentials used in the construction of

third differential path are same as used for constructing the first differential path. Whereas

differentials used for the construction of fourth differential path are same as used in second

differential path construction.

5.2.4 Forward Differential Path Extension

For constructing partial lower replacement differential path, first message block dif-

ferences δm0, δm1, δm2,..., δm14, δm15 are determined. In the case of Flame for the first

differential path construction message block differences m4 = m14 = 31 and m11 = 15 are

used. And the IHV differentials used are given in table 5.1. The main function for forward

differential path construction takes name of working directory workdir, name of the input

42

Figure 5.4: End Points for Backward Differential Extension of Second Differential Path.

Figure 5.5: Starting Point for Forward Differential Extension Third Differential Path.

43

Figure 5.6: End Point for Backward Differential Extension of Third Differential Path.

Figure 5.7: Starting Point for Forward Differential Extension Third Differential Path.

44

Figure 5.8: End Point for Backward Differential Extension of Third Differential Path.

45

file inputfile (i.e. lowerpath.txt.gz which is generated as a result of running the previous code

of constructing the start and end segments of differential paths), step t/tstep from where to

start constructing the forward differential path, upto trange of additional steps input, using

maxconditions number of bit-conditions, starting step condtbegin from where maxconditions

will apply, number autobalance of forward differential paths to be created.

When required parameters are given for all four replacement differential path the re-

sults are four partial forward replacement differential path shown in table 5.1, 5.2, 5.3 and

5.4 respectively. 1000000 lower differential paths are generated as not all paths are useful so

it is always beneficial to create this many paths.

Step t Bit-conditions Probabilities

-3 00010011 11010000 01100010 10-00010

-2 00101110 01110011 011101+0 00-11011

-1 110-+111 110-1001 1+0+0100 10-11011

0 +-100000 1-0+1++1 000+0111 0110-+01 0.487305

1 1+.1-..- .-.+.++. 11.-.1.. 0V+.1-.. 0.698242

2 -1.++..0 .0.-.+.. -..-.+.. +0+.++.. 0.189453

3 –.0-..1 .-.-.+0. 0....+.. 0+..-0.. 0.749023

4 .+.10... .-...+.. 1..1.-.. –1.-1.. 0.744141

Table 5.2: Replacement Differential Path 1

46

Step t Bit-conditions Probabilities

-3 +1000101 00111101 11111100 01-00011

-2 -10011+0 11110010 011111+1 1-+01100

-1 +011-0+1 10-+1010 011+—1 -++00010

0 1-0010+0 1-0+1+-1 -1011+-0 001110-1 1

1 11-.01+. .-1+.+10 -.-111.+ 11+.-.++ 1

2 .01..-0.+1- ..-.-11- 1.-.-.00 0.636719

3 .-1..00. .1.0...- 1...+..- -.-.0.0+ 0.492188

4 .+...1-.1.. ..1.1... -...-..- 0.548828

5 ..+.+..- .+.-.+..-.+ ..+.+...

Table 5.3: Replacement Differential Path 2

Step t Bit-conditions Probabilities

-3 01000001 10100010 11101110 0–1-+10

-2 11110100 00001111 10001110 01001011

-1 1010101- 01001101 11001110 10111001

0 ++1-++++ 1001—0 –010100 11+1110- 1

1 ++.11111 .-.+101+ 01+...-. ..0.+.+0 0.548828

2 ...+1-10 .0.-001+ 1+-...+. V.1.0.-0 1

3 01.+.-.. .1.-...- -+-...+.+.0. 0.724609

4 ...+.+.. .+.....- -.-...-. +...-.1. 0.694336

5 ...+.+.+ ..-...-. +.-..+.. -.+...-.

Table 5.4: Replacement Differential Path 3

47

Step t Bit-conditions Probabilities

-3 000-10-1 101+0011 00111010 10101100

-2 +10000+0 00111001 000+—0 10000101

-1 +0001+-0 11101-++ ++1101+0 10011011

0 00111+-0 01111111 -++—-0 11+-+11- 0.441406

1 0V..+.+. .-.-.1-1 1-1110-. +.–1..0 0.914063

2 ..V.+1-. .+.+..-. 1+0111-. +.+-0..- 0.376953

3 .-..+.-. .+.0..-. –....+. 1.0-...- 0.904297

4 .0-..... .-.1.... 0-....-. -.-....- 0.473633

5 ..-.-.-. -.+....- ...-.-.. +.+.+..-

Table 5.5: Replacement Differential Path 4

5.3 Conclusion

This chapter describes the details of the construction of forward replacement differen-

tial paths. In the initial phase starting segments for forward replacement differential paths

are constructed based on observed characteristics of Flame’s differential paths along with

possible ending segments. Then four forward replacement differential paths are presented in

the form of bit-conditions.

48

Chapter 6

ADVANCE MALWARE EVASION TECHNIQUES AND

COUNTERMEASURES

6.1 Introduction

Like Stuxnet, Duqu and Gauss, Flame is also a member of the weaponized group of

malwares. They are also called Advance Persistent Threats (APTs) because of their highly

sophisticated, covert and targeted behavior. Each of these malwares use a new technique or

exploit a vulnerability to deploy themselves.

In this chapter few possible ways that could be used by advanced malwares to launch

themselves are discussed. Counter-measures are also deliberated that could be used both for

detection prior to infection and for prevention from damage after infection by malwares like

Flame.

In section 6.2 possible malware evasion techniques are explored that are used by mal-

wares to deploy themselves. Section 6.3 provides countermeasure techniques for malware

detection before infection. While countermeasures for detecting malwares after deployment

are elaborated in section 6.4.

6.2 Possible Malware Evasion Techniques

Malwares usually exploit previously unknown or known yet overlooked vulnerabilities

to infect their targets. Attackers employ a system of specially programmed bots that automat-

ically scrutinize the internet and report about susceptible/weak systems, servers, certification

authorities (CAs) and websites.

49

6.2.1 Exploiting Weak Cryptographic Primitives

Weak cryptographic primitives that are already proven to be broken but still in use are

a great threat to the security of the systems they protect. Whereas due to various reasons

such as compatibility issues, cost/risk concerns, sometimes implausible weaknesses/abuse

scenarios and also remissness, weak primitives are continued to be used even after their

expiry dates and warnings against their usage.

Constructing digital signature schemes is a main application of hash function crypto-

graphic primitives. Weak digital signature systems suffer from the problem of accepting old

digital signatures even if these signatures are based on weak primitives. As the signer of the

digital certificates has no control over them because of their number so replacement of all

the old and weak signatures with new secure ones is impractical. As a result, it is evident

that the signature verifiers will keep on accepting the old/weak and perhaps rogue digital

signatures.

The cryptographic attack behind Flame is an example of exploiting weak digital signa-

tures, since it is already mentioned before how Flame authors fooled Microsoft and obtained

a certificate with code signing rights using MD5 based digital signature scheme. Although

Microsoft was doing serious effort since 2008 to shift to a secure hash algorithm for new

signatures but they keep on accepting old/weak MD5 based digital signatures. Furthermore,

they totally overlooked the use of digital signatures based on MD5 for licensing users by

their terminal services licensing server. However despite the security update by Microsoft,

there might be old certificates that are not expired yet e.g. they will still accept binary files

that were signed using insecure MD5 based certificates before 2009.

Nevertheless, in spite of warnings and real world attacks any entity that still signs

certificates using digital signature schemes based on MD5 could be attacked using chosen

50

prefix collision attack used by Flame malware. Also anyone can be targeted using the con-

sequential digital signature abuse, because MD5 based signatures are supported by everyone

nearly ubiquitously. [20]

6.2.2 Exploiting Cryptographic Backdoors

Cryptographic or encryption backdoors are inserted in cryptographic algorithms usu-

ally by government intelligence agencies [30][31]. Reportedly using these backdoor an in-

truder may get authorization for accessing encrypted information in the absence of valid

credentials. An intruder can either deduce the access key using the message context or will

present a master/golden key that always allows the access. Even if the attacker does not suc-

ceed in the total break of the cipher, some vulnerability leading to any cryptanalytic attack

might be introduced using the backdoor.

Knowledge of any such backdoor becomes an open invitation for an attacker to launch

a sophisticated attack.

6.2.3 Exploiting Software Vulnerabilities

A software vulnerability is defined as a weakness in security and/or design of a soft-

ware or an operating system that makes them prone to serious security issues. Apparently

a harmless looking glitch can become a serious security concern when attackers discover it

and exploit it to launch their malwares or execute their malicious plots. Sometimes even

implementation pitfalls, i.e. wrong implementation of cryptographic primitives makes them

vulnerable.

6.2.3.1 zero-day vulnerabilities

In this category of attacks, attackers aim at exploiting unpatched software glitches

that are either unknown yet or overlooked by software vendors. Zero-day vulnerabilities

51

remained a favorite target for the authors of many advance malwares.

Stuxnet an advanced malware discovered in 2010 [32] also used four zero-day vulner-

abilities in Microsoft Windows to spread itself. This was the first time a malware exploited

so many unknown and unfixed glitches.

Likewise, DuQu a successor of Stuxnet used a DOC file that exploited a zero-day

vulnerability in Microsoft Windows kernel when opened. [33]

6.3 Countermeasures for Detection Before Infection

6.3.1 Collision Detection using Counter-Cryptanalysis

In [17] Marc Stevens presented the concept of counter-cryptanalysis. This new cri-

terion could be used for supporting weak cryptographic primitives against cryptanalytic at-

tempts. Suspicious attempts can be detected through this method even before malwares

could be deployed. This paradigm facilitates detection of cryptanalytic attacks by exploit-

ing slight unavoidable anomalies. These anomalies are introduced by active cryptanalytic

attacks that give specially crafted inputs to weak cryptographic primitives.

Strengthening the design of weak cryptographic primitive by replacing it, in order

to make it resistant against cryptanalytic attempts, introduce the backward compatibility

problems. While counter-cryptanalysis maintains backward compatibility and is applied

on cryptographic primitive. Thus changing maneuver of this cryptographic primitive, with

detecting and blocking cryptanalytic attacks. The techniques introduced in this paradigm

can solve the problems of signature verifiers, as they can now determine whether a signature

is a part of cryptanalytic collision attack or not. And thus, it supports continued safe use

of vulnerable cryptographic primitive with complete backward compatibility. Suspicious

attempts can be detected through this method even before malwares installation.

52

6.3.2 Weak Cryptographic Primitive Detection

Another approach for countering cryptographic attacks could be weak cryptographic

primitive detection. This paradigm could have the capability of detecting and indicating

that an entity (e.g. a website, a certification authority (CA)) is using weak a cryptographic

primitive. And proceeding to the use of such entity could lead to serious security risks.

Consequently, a user who is unaware of the technicalities of digital certificates and digital

signatures could prevent him/herself from malwares, who target weak primitives for deploy-

ing themselves.

6.4 Countermeasures After Malware Deployment

6.4.1 File-based Sandboxing

File-based sand boxing assesses the maliciousness of an unknown file by analyzing its

execution behavior. This technique provides a better chance of detection of unknown mal-

wares by basing the decision on file’s action (behavior) rather than file’s content (signature).

There are two main types of file analysis [34], dynamic (behavioral) analysis and

static (code) analysis. File-based sandboxes facilitate dynamic analysis along with few static

analysis abilities and decides about the legitimacy or maliciousness of a file sample. File-

based sandboxes are further classified into two types, virtualization-based sandboxes and

emulation-based sandboxes.

Malware authors use various techniques to obstruct these analysis techniques and by-

pass detection. These evasion techniques may include human interaction evasion, environ-

ment specific evasion and configuration specific evasion. Among configuration specific eva-

sion techniques, sleep calls are most important. As sandboxes analyzes files for a specified

period of time, hence malware authors try to delay the execution of the malware (send sleep

53

calls) long enough that the sandbox gets timeout. Also to execute the malware in a specific

period of time, time triggers are used by malware authors.

A better way to detect evasive behavior with a high level of confidence is to analyze the

execution of the malware both in sandbox and on client side. Because malware is designed

to run on target machine rather than sandbox so difference in execution pattern will clearly

indicate the maliciousness of the file.[35]

6.4.2 Malware Detection Using Memory Forensics

Memory forensics is very useful and novel concept for malware detection. Because

everything running in the operating system whether they are processes, malwares (rootkits),

threads, open files, network sockets, IP addresses, encryption keys, registry keys, events logs

and hardware/software configuration resides in memory.

This method is advantageous if the attackers have succeeded in infecting the target

system. The memory data of the target system is collected and an analysis is performed for

significant elements and finally evidence is recovered about the malware. Physical memory

data (from RAM) and page file data are taken in an ideal analysis[36].

In [37] a new method of memory forensics is introduced. In this approach, a com-

parison of data of various structures of memory management is used simultaneously for

malware detection. This data is specifically picked up from kernel and user space of mem-

ory management. Malware information concerning changes in registry, library files calls

and operating system function are gathered and evaluated. Among this information samples

are ranked based upon certain chosen characteristics. This technique’s best results included

98% detection rate and 16% false positives rate.

54

6.5 Conclusion

In this chapter various techniques that advance malwares authors can use to inject/de-

ploy their malwares on target systems are highlighted. Furthermore, countermeasures for

detecting such malwares even before getting successful in evasion and detection after their

evasion are also discussed.

55

Chapter 7

CONCLUSION AND FUTURE DIRECTION

7.1 Introduction

This chapter concludes the thesis. Some thoughts on possible improvements of the

work have been presented in section 7.3.

7.2 Conclusion

The Flame’s Collision Attack is yet ambiguous with repsect to it’s algorithms and

actual techniques. As it was a variant of Chosen prefix Collision Attack of literature.

Four partial replacement differential paths bearing the attributes of Flame’s differential

paths have been constructed using Stevens’s open source code by making few modifications

in the code.

Four specified starting and ending segments of partial backward replacement differen-

tial paths are also constructed. Each of these segments are constructed using the message

block differentials and intermediate hash value differences (IHVs) observed in Flame’s dif-

ferential paths found in literature.

A complexity analysis of Flame’s chosen prefix collision attack is performed and sug-

gestions are given for possible improvement of the attack. In order to thwart malwares like

Flame which exploited a weak cryptographic primitive (MD5 Hashing Algorithm) a new

preventive measure Weak Cryptographic Primitive Detection is proposed along with other

counter-measures.

56

7.3 Future Directions

The proposed paradigm for detection of cryptographic could be realized and imple-

mented in future in order to prevent the abuse of cryptographic primitives. Partial upper

replacement differential paths may also be constructed. The bit-conditions in replacement

differential paths may be reduced thus making them more feasible than Flame’s actual dif-

ferential paths. Proper tunnels with maximum achievable strengths may be used in partial

forward differential paths, hence making more efficient paths.

57

Appendix A

USER MANUAL

1. The Boost C++ libraries are needed to be build in order to run the framework (version

1.52.0 can be downloaded and build)

2. As the source code uses program options from Boost C++ libraries so in order to set

options it is better to run, compile and build the programs from command prompt in

administrative mode.

3. The command ”msbuild hasclash.sln /p:configuration=debug has to be used to build

the project.

4. After successful build of the differential path construction programs, directory must

be changed to ”Debug” where exe files are placed and then md5diffpathhelper.exe has

to be run.

5. The input that must be given to md5diffpathhelper.exe includes, the name of the work-

ing directory (where constructed initial upper and lower paths file would be stored),

and message differences diffm4, diffm11 and diffm14.

6. The IHV input should be in decimal form while message differences should be in

BSDR form (0-32).

7. After the construction of the initial lower and upper differential paths (starting and

ending segments) two file lowerpath.txt.gz and upperpath.txt.gz will be stored in the

given working directory.

8. Next md5diffpathforward.exe hash to be run.

58

9. The input for md5diffpathforward.exe file includes the name of working directory

(workdir), the input file name (here for forward differentiate paths it would be low-

erpath.txt.gz), tstep = (first step to start), trange = (range of more steps to be per-

formed), condtbegin = (from where to start defining the differentials in terms of bit-

conditions), maxweight = (By default maximum SDRs weight limit is 14) maxsdrs =

(By default maximum SDRs limit is 160, could be decided how many SDRs should

be used, autobalance = (Number of differential paths to be generated, maximum limit

is 1000000. Generating large number of differential paths is essential but it requires

more memory.), threads = (Number of worker threads to be assigned to a program.

The differential paths construction program are multi-threaded.)

10. The ”Include Directories” and ”Library Directories” must include the directories

having Boost C++ libraries and headers. They can be linked from Visual Studio 2010

Professional as well as from command prompt.

59

BIBLIOGRAPHY

[1] M. Stevens, A. Lenstra, and B. De Weger, “Chosen-prefix collisions for md5 and collid-

ing x. 509 certificates for different identities,” in Advances in Cryptology-EUROCRYPT

2007, pp. 1–22, Springer, 2007.

[2] R. Rivest, “The md5 message-digest algorithm,” 1992.

[3] I. B. Damgård, “A design principle for hash functions,” in Advances in Cryptolo gy-

CRYPTO89 Proceedings, pp. 416–427, Springer, 1990.

[4] B. den Boer and A. Bosselaers, “Collisions for the compression function of md5,” in

Advances in CryptologyEUROCRYPT93, pp. 293–304, Springer, 1994.

[5] H. Dobbertin, “Cryptanalysis of md5 compress, 1996,” Rump Session of EuroCrypt,

vol. 96, 1996.

[6] H. Dobbertin, “The status of md5 after a recent attack,” CryptoBytes, vol. 2, no. 2,

1996.

[7] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4, md5, haval-

128 and ripemd.,” IACR Cryptology ePrint Archive, vol. 2004, p. 199, 2004.

[8] X. Wang and H. Yu, “How to break md5 and other hash functions,” in Advances in

Cryptology–EUROCRYPT 2005, pp. 19–35, Springer, 2005.

[9] P. Hawkes, M. Paddon, and G. G. Rose, “Musings on the wang et al. md5 collision.,”

IACR Cryptology ePrint Archive, vol. 2004, p. 264, 2004.

[10] D. Kaminsky et al., “Md5 to be considered harmful someday.,” IACR Cryptology ePrint

Archive, vol. 2004, p. 357, 2004.

60

[11] A. K. Lenstra, X. Wang, and B. de Weger, “Colliding x. 509 certificates.,” IACR Cryp-

tology ePrint Archive, vol. 2005, p. 67, 2005.

[12] M. Daum and S. Lucks, “Attacking hash functions by poisoned messages, the story of

alice and her boss, june 2005.”

[13] J. Yajima and T. Shimoyama, “Wang’s sufficient conditions of md5 are not sufficient.,”

IACR Cryptology ePrint Archive, vol. 2005, p. 263, 2005.

[14] V. Klima, “Finding md5 collisions on a notebook pc using multi-message modifica-

tions.,” IACR Cryptology ePrint Archive, vol. 2005, p. 102, 2005.

[15] V. Klima, “Tunnels in hash functions: Md5 collisions within a minute.,” IACR Cryp-

tology ePrint Archive, vol. 2006, p. 105, 2006.

[16] M. Stevens, A. K. Lenstra, and B. de Weger, “Target collisions for md5 and colliding

x. 509 certificates for different identities.,” IACR Cryptology ePrint Archive, vol. 2006,

p. 360, 2006.

[17] M. M. J. Stevens et al., Attacks on hash functions and applications. Mathematical

Institute, Faculty of Science, Leiden University, 2012.

[18] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and

B. De Weger, “Short chosen-prefix collisions for md5 and the creation of a rogue ca

certificate,” in Advances in Cryptology-CRYPTO 2009, pp. 55–69, Springer, 2009.

[19] S. A. TEAM et al., “skywiper: A complex malware for targeted attacks,” 2012.

[20] M. Stevens, “Counter-cryptanalysis,” in Advances in Cryptology–CRYPTO 2013,

pp. 129–146, Springer, 2013.

61

[21] M. J. Fillinger, Reconstructing the Cryptanalytic Attack Behind the Flame Malware.

PhD thesis, Universiteit van Amsterdam, 2013.

[22] E. Biham and A. Shamir, Differential cryptanalysis of the data encryption standard.

Springer Science & Business Media, 2012.

[23] P. C. Van Oorschot and M. J. Wiener, “Parallel collision search with cryptanalytic ap-

plications,” Journal of cryptology, vol. 12, no. 1, pp. 1–28, 1999.

[24] Maher, “Identification of a new targeted cyber-attack,” tech. rep., May 2012.

[25] S. A. TEAM et al., “skywiper: A complex malware for targeted attacks,” tech. rep.,

Technical Report, 2012.

[26] K. A. TEAM et al., “Kaspersky lab. the flame: Questions and answers, may 2012.

securelist blog,” tech. rep., Technical Report, 2012.

[27] M. Fillinger and M. Stevens, “Reverse-engineering of the cryptanalytic attack used in

the flame super-malware,” in Advances in Cryptology–ASIACRYPT 2015, pp. 586–611,

Springer, 2014.

[28] F. Mendel, C. Rechberger, and M. Schläffer, “Md5 is weaker than weak: Attacks on

concatenated combiners,” in Advances in Cryptology–ASIACRYPT 2009, pp. 144–161,

Springer, 2009.

[29] “Hashclash webpage:.” https://marc-stevens.nl/p/hashclash/.

[30] J. MENN, “Exclusive: Secret contract tied nsa and security industry pioneer,” tech.

rep., Reuters, 2013.

62

https://marc-stevens.nl/p/hashclash/

[31] R. Gallagher and G. Greenwald, “Nsa helped british spies find security holes in juniper

firewalls,” tech. rep., The Intercept, 2015.

[32] D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 50, no. 3, pp. 48–53,

2013.

[33] J. Tang, “Analysis of cve-2015-2360? duqu 2.0 zero day vulnerability,”

[34] L. Zelster, “Introduction to malware analysis,” pp. 01–36.

[35] H. Mourad, “Sleeping your way out of the sandbox,” pp. 01–23.

[36] H. Pomeranzs, “Detecting malware with memory forensics,” pp. 01–27.

[37] M. Aghaeikheirabady, S. M. R. Farshchi, and H. Shirazi, “A new approach to malware

detection by comparative analysis of data structures in a memory image,” in Tech-

nology, Communication and Knowledge (ICTCK), 2014 International Congress on,

pp. 1–4, IEEE, 2014.

63

	Introduction
	Overview
	Need for Research
	Problem Statement
	Objectives
	Research Methodology and Achieved Goals
	Thesis Organization
	Conclusion

	Literature Review
	Introduction
	Message Digest Algorithm 5
	Overview of MD5
	Compression Function of MD5

	Generic Collision Attacks
	Birthday Search
	Pseudo Collision
	Semi Free-Start Collision

	Identical-prefix Collision Attacks
	Chosen-prefix Collision Attacks
	Conclusion

	Attacks on Hash Function MD5
	Introduction
	Identical Prefix Collision Attack
	Differential Crytanalysis
	Attack Overview
	Differential Paths
	Bit-conditions

	Chosen Prefix Collision Attack
	Attack Overview
	Elimination Process
	Tunnels
	Birthday Bits Search
	Differential Path Extension
	Forward Extension of Differential Paths
	Backward Extension of Differential Paths
	Connecting Two Partial Differential Paths

	Conclusion

	Flame's Collision Attack and It's Complexity Analysis
	Introduction
	Flame and Collision Attack
	Flame Malware
	Flame's Differential Paths
	Birthday Search Part
	Tunnels
	Near Collision Blocks and Elimination Scheme

	Analysis of Findings and Reconstruction Attempts
	Assumptions
	Analysis of Differential Paths
	Real Time Attack Complexity

	Cost and Complexity Analysis
	A Theoretical Analysis of Flame's Collision Attack
	Conclusion

	Simulation of Flame's Differential Paths
	Introduction
	Construction of Replacement Differential Paths
	The Intermediate Hash Values (IHVs) Differences
	C++ Compiler
	Construction of Starting and Ending Segment of Replacement Differential Paths
	Forward Differential Path Extension

	Conclusion

	Advance Malware Evasion Techniques and Countermeasures
	Introduction
	Possible Malware Evasion Techniques
	Exploiting Weak Cryptographic Primitives
	Exploiting Cryptographic Backdoors
	Exploiting Software Vulnerabilities

	Countermeasures for Detection Before Infection
	Collision Detection using Counter-Cryptanalysis
	Weak Cryptographic Primitive Detection

	Countermeasures After Malware Deployment
	File-based Sandboxing
	Malware Detection Using Memory Forensics

	Conclusion

	Conclusion and Future Direction
	Introduction
	Conclusion
	Future Directions

	User Manual
	BIBLIOGRAPHY

