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Abstract 

       This research introduces a robust real-time Vehicle Collision Avoidance System (V-CAS) 

aimed at enhancing vehicle safety through environmental perception-based adaptive braking. 

V-CAS utilizes the advanced vision-based transformer model RT-DETR, DeepSORT tracking, 

speed estimation, brake light detection, and an adaptive braking mechanism. It computes a 

composite collision risk score from vehicles’ relative accelerations, distances, and detected 

braking actions, leveraging brake light signals and trajectory data through multiple camera 

streams for improved scene perception. Implemented on the Jetson Orin Nano, V-CAS enables 

real-time collision risk assessment and proactive mitigation via adaptive braking. A 

comprehensive training process was conducted on various datasets for comparative analysis, 

followed by fine-tuning the selected object detection model using transfer learning. The 

system’s effectiveness was rigorously evaluated on the Car Crash Dataset (CCD) from 

YouTube and through real-time experiments, achieving over 98% accuracy with an average 

proactive alert time of 1.13 seconds. Results show significant improvements in object detection 

and tracking, enhancing collision avoidance compared to traditional single-camera methods. 

This research highlights the potential of low cost, multi-camera embedded vision transformer 

systems to advance automotive safety through enhanced environmental perception and 

proactive collision avoidance mechanisms. 

Index Terms—vehicle collision avoidance, Jetson Orin, object detection, multiple camera 

fusion, RT-DETR. 
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Chapter 1 

Introduction  

 Background 

The increase in car ownership, driven by economic growth and the desire for convenience, has 

resulted in a rise in traffic accidents, leading to significant loss of life. Motor vehicle collisions 

continue to be a major public health issue, leading to a high number of causalities around the 

globe. As per WHO (World Health Organization), about 1.35 million people die yearly in 

traffic accidents. Moreover, between 20 to 50 million suffer from non-fatal injuries, causing 

long-term disabilities. The economic impact of these incidents is substantial, with losses 

amounting to 3% of most countries' gross domestic product. Research shows that 

approximately 77% of these accidents are caused by drivers [1]. This statistic shows the urgent 

need for better vehicle safety technologies. To overcome this alarming situation, we really need 

better car safety technology. Therefore, the development and implementation of advanced 

safety warning systems have become a prime focus of academic research and industrial 

practices. This concerning trend underscores the urgent need for intelligent road safety systems 

that can perceive surrounding traffic objects and prevent collisions. These systems utilize 

various data sources, including vehicle speed, accelerometers, and video feeds. Recent 

advancements have seen researchers incorporating Light Detection and Ranging (LiDAR) 

sensor inputs and monocular camera images to enhance the performance of collision avoidance 

systems. 

To help prevent accidents, researchers and car companies are working on new safety warning 

systems. These systems are important because they can spot danger quickly. Studies show that 

if a driver receives just half a second before crash warning, 60% of them could be avoided [2] 

– [4]. Connected vehicles (CVs) are helping with this. They use special technology to talk to 

each other and to things around them. Figure 1.1 shows how this works. This talking between 

cars and road signs or traffic lights is called Vehicle-to-Everything (V2X) communication [5]. 



 

2 

 

It helps drivers know more about what's happening around them. Researchers are looking at 

how these CV systems can make driving safer. The systems use information from sensors and 

V2X to spot dangers on the road. They might warn drivers with sounds or lights. In really 

dangerous situations, they might even brake or steer the car automatically.  

 

Figure 1.1 Schematic diagram of CV environment 

 

Self-driving cars have changed how we think about safety on the road. Researchers are now 

using smart computer programs to make these cars safer. Two types of programs are really 

important: deep learning (DL) and reinforcement learning (RL). DL assist cars see and 

understand what's around them. It's like teaching a computer to recognize things in pictures, 

but for cars. This helps self-driving cars spot other vehicles, people, and signs on the road. RL 

is different. It helps cars figure out the best way to drive. It's like the car practices driving over 

and over, learning from its mistakes. This helps cars make good choices in tricky driving 

situations. When you combine these two, you get deep reinforcement learning (DRL). This 

super-smart system helps cars navigate better. It's like the car has both good eyes and a good 

brain for driving. These new ways of teaching cars to drive themselves are making big 

improvements in how safe they can be on the road. While DRL and sensor fusion techniques 

show their robustness, vision-based approaches offer a promising alternative due to their cost-

effectiveness and ease of integration. Monocular vision proved to be valuable by estimating 

Time-to-Collide (TTC) and addressing the issue of collision rarity. Vehicle Detection achieved 

higher accuracy in classifying and counting vehicles across various highway videos [6].  
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Another important sub field in the integration of intelligent vehicle systems, is multi-sensor 

fusion. These sensors are like different senses for the car. Cameras act like eyes, showing the 

car things like lane lines and traffic lights. LiDAR is like super-accurate 3D vision for the car. 

It can measure exactly how far away things are. There's also radar and GPS. By using all these 

tools together, cars can get a much better picture of what's happening around them. It's like 

how we use our eyes, ears, and sense of touch to understand our surroundings. This helps cars 

spot dangers more accurately and avoid crashes more reliably. This approach makes self-

driving cars much better at staying safe on the road. It helps them see and understand their 

surroundings more like a human would do. In contrast, the Hall effect speedometer sensors as 

the name indicates works on the Hall effect phenomenon. According to this phenomenon, a 

voltage difference in a semiconductor is produced when exposed to a magnetic field. In this 

configuration, a magnet is fastened to the moving part of the vehicle, while a Hall effect sensor 

is positioned in close proximity. Whenever the magnet passes the sensor during rotation, its 

magnetic field is disturbed which results in variation of the voltage in the sensor. The 

fluctuation in the voltage is captured and translated into a digital signal. This signal is 

subsequently utilized to ascertain the speed of the wheel and is finally visualized on the 

speedometer. 

ADAS can be categorized into two main types: (1) Passive Safety focuses on reducing injuries 

during a crash through high production safety standards, while (2) Active Safety systems 

proactively prevent accidents by using sensors such as radar, cameras, and ultrasonic devices 

to detect potential hazards like nearby vehicles or sudden braking. When a threat is identified, 

these systems alert the driver with visual or audio warnings or initiate automatic braking to 

avert collisions. Modern systems often integrate cameras and radars, providing distinct 

advantages. However, the addition of sensors can increase vehicle costs and design complexity. 

To address this, researchers are investigating computer vision insights, particularly in object 

detection (OD) techniques that utilize either depth-based or camera-based sensors. The 

proposed system utilizes spatial feature extraction from RGB feeds captured by three cameras, 

facilitating enhanced scene interpretation and a broader field of view (FOV). It integrates object 

detection and tracking algorithms to predict collision scores based on relative motion, all 

executed efficiently in real-time on edge devices like the Jetson Orin Nano. This method 

promises a more robust and computationally efficient recognition of surrounding traffic 

objects. 
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This study synthesizes the latest research on safety warnings and threat assessment for 

autonomous driving technologies. By focusing on the integration of cutting-edge technologies 

and methodologies using DL and DRL based vision only and multi sensor fusion approaches, 

this paper aims to contribute to the ongoing efforts to improve vehicle safety and reduce the 

global burden of traffic accidents. The conclusion and future development at the end of this 

review highlight the potential areas for further investigation, ensuring to enhance the 

effectiveness and reliability of collision avoidance systems for vehicle safety. 

 Problem Statement 

Traffic accidents are a major concern, with a significant portion caused by driver error. Existing 

collision avoidance systems often rely on single cameras and outdated deep learning 

techniques, limiting their effectiveness. That’s why we tried to propose a method to predict 

collision proactively in real-time and with better accuracy and environmental perception.  

“To develop a robust and efficient real-time collision avoidance system using a multi-camera 

and deep learning approach to improve vehicle safety.” 

 Research Objectives 

The objective of this research undertaking are as follows:  

1. To carryout a comprehensive survey of vehicle collision avoidance techniques and 

further investigate the effectiveness of Deep Learning (DL) techniques for enhancing 

the performance and reliability of collision avoidance systems, especially for vehicles. 

2. Devise a novel real time DL based model using multiple camera streams and 

computational compatibility of low power embedded systems like Jetson Orin Nano for 

autonomously generating various alerts and applying adaptive braking action in case of 

emerging collision threats. 

3. Evaluate the proposed model on publicly available traffic datasets and real-world 

scenes captured from various sources to assess its detection accuracy and robustness. 

4. Compare the performance of proposed model with existing collision avoidance and 

prediction methods to identify strengths, weaknesses, and areas for improvement. 

 Contribution 

Keeping the research objectives in mind, we have made following contributions: 

1. Publication Muhammad Waqas Ashraf, Ali Hassan, Imad Ali Shah. “V-CAS: A 

Realtime Vehicle Anti Collision System Using Vision Transformer on Multi-Camera 
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Streams”, 23rd IEEE International Conference of Machine Learning and Applications 

(ICMLA) https://doi.org/10.48550/arXiv.2411.01963, 2024 IEEE DOI 

10.1109/ICMLA61862.2024.00138 (Published). 

2. Publication Muhammad Waqas Ashraf, Imran Shafi, Ali Hassan, Imad Ali Shah, 

Muhammad Murad Khan “A Survey on Contemporary Collision Avoidance 

Techniques for Ground Vehicles”, ACM Computing Surveys (under review). 

 

 

 Thesis Organization 

Chapter 1 is an introduction that acquaints with the proposed topic and research objective. 

Chapter 2 includes literature review done related to the proposed topic. This literature review 

also incorporated the systematic selection of related articles method and an in-depth discussion 

of related field articles.   Chapter 3 explains the detailed methodology adopted to achieve the 

objective of the research. Chapter 4 includes experimental setup, results and their analysis. 

Chapter 5 includes the conclusion, and future directions. 

  

https://doi.org/10.48550/arXiv.2411.01963
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Chapter 2 

Literature Review 

2.1 Collection of Related Articles 

When conducting a comprehensive review of the Vehicle Collision Avoidance (VCA) field, 

the selection of a suitable database is crucial for ensuring the quality and comprehensiveness 

of the literature analysis. Among the various available options, Web of Science (WoS) stands 

out as the best choice for several reasons. Firstly, WoS is renowned for its rigorous selection 

criteria, ensuring that only high-quality, peer-reviewed publications are included in its database 

[7]. This is particularly important in a rapidly evolving field like VCA, where the quality of 

research is paramount. Secondly, WoS offers extensive coverage across multiple disciplines, 

which is essential given the interdisciplinary nature of collision avoidance technologies, 

spanning areas such as computer science, engineering, and transportation [8]. The database's 

robust citation tracking capabilities enable researchers to identify seminal works and trace the 

evolution of ideas within the field [9]. Additionally, WoS provides comprehensive metadata 

and standardized indexing, facilitating more accurate and consistent bibliometric analyses [10]. 

While other databases like Scopus and IEEE Xplore also offer valuable resources, WoS's 

unique combination of quality control, interdisciplinary coverage, and analytical tools makes 

it particularly well-suited for a thorough review of the VCA literature. Furthermore, WoS's 

integration with other research tools and its ability to export data in formats compatible with 

various bibliometric software enhances the diversity of possible analyses. These factors 

collectively justify the selection of Web of Science as the primary database for this review, 

ensuring a comprehensive and high-quality foundation for the bibliometric analysis of the 

Vehicle Collision Avoidance field.  

The VCA field encompasses various sub-categories based on various road and traffic 

situations, requiring a carefully designed index string to show different analysis accordingly. 

Drawing from the work of [11] and [12], a comprehensive set of keywords was developed to 
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capture the multifaceted nature of VCA research. This index string includes terms related to 

vehicle collision avoidance, vehicle safety, autonomous driving, DAS, Automatic Emergency 

Braking (AEB), Advanced Driver Assistance System (ADAS), and path planning, among 

others. The final search string consists of 14 keywords linked by the logical operator "OR", 

designed to retrieve relevant publications from the Web of Science (WoS) Core Collection 

[13], [14].   The literature search covered the period from January 1, 2000, to June 30, 2024, a 

timespan of over 20 years, which, according to [12] and [15], provides sufficient statistical data 

to summarize the overall landscape of a research field. The search was conducted using the 

Science Citation Index Expanded (SCIE) and Social Sciences Citation Index (SSCI) databases, 

known for their renowned coverage of scientific literature. Initially, 457,407 publication 

records were retrieved, which were then subjected to a rigorous screening process to ensure 

relevance and quality.  

 
Figure 2.1 Selection process of related articles 

 

 

After applying evaluation criteria to drop irrelevant records and focusing solely on high-quality 

articles in English language having enriched cited references only, the number of publications 

was reduced to 25,934. Further manual verification of titles and abstracts on macro and micro 

level led to the exclusion of 21,170 articles that primarily not related with vehicle collision, 

ADAS or autonomous driving systems or unrelated to VCA in general. The final dataset for 

bibliometric analysis consisted of 4,764 documents, authored by 15,323 researchers from 3,358 

institutions across 95 countries, published in 247 different journals. This carefully curated 
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dataset forms the basis for a comprehensive analysis of the VCA field, providing insights into 

its development, key contributors, and emerging trends. The relevant publication data was 

exported to plain text files for analysis. Figure 2.1 illustrates a flowchart of the detailed 

screening process. 

2.1.1 Year Wise Publications Analysis 

Research in vehicle safety and collision avoidance has grown significantly over the years. We 

made a chart to show how many papers were published each year, focusing particularly on the 

last five years from 2019 to 2023. This recent data reveals a clear upward trend in publication 

numbers. In the early years of the field, not many papers were published - only a handful per 

year on average. This was probably because the technology and theories weren't advanced 

enough yet. But in recent years, things have really taken off. The growth got even faster after 

2019, showing how important this topic has become. Given the strong upward trend in the last 

five years, we used linear regression to predict how many papers might be published in the 

future. This mathematical approach suggests the number will keep growing steadily from 2025 

to 2030 as shown in Figure 2.2. However, it is highlighted that while we expect continuous 

growth, the actual rate might vary as the field evolves. 

Figure 2.2 Year wise actual and predicted trend for related research 
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This pattern - starting slow, then growing fast - is common in research fields. It usually means 

that as technology advances and more researchers get involved, the number of studies 

increases. Our analysis helps show where this field of vehicle safety and collision avoidance is 

heading and why it's a crucial area to review right now. By focusing on the most recent five 

years and using linear regression for future predictions, we aim to capture the current 

momentum in the field and provide a reasonable estimate of its short-term trajectory. This 

approach allows us to highlight the growing importance of vehicle safety and collision 

avoidance research in recent years and its potential for a growing trend in near future. 

2.1.2 Country Wise Publications Analysis 

The field of vehicular safety and collision avoidance systems has seen contributions from a 

diverse global community, spanning 95 nations. An examination of publication output reveals 

interesting patterns in research productivity and impact across different countries. Table 2.1 

summarizes top 10 countries number of publications wise along with their citations. At the 

forefront of this field, two nations stand out prominently, Peoples Republic of China and USA. 

The country, China, with the highest publication count has produced 2573 articles, followed 

by the second-ranking nation, USA with 879 publications. 

This leading country's strong showing can be attributed in part to governmental initiatives 

promoting vehicle-infrastructure integration, exemplified by projects like TTIC-VG [16] and 

[17]. This project has funded several significant studies, including investigations into 

communication topologies for uniform vehicle groups, control systems for mixed vehicle 

types, and cooperative strategies for cyclical vehicle formations enhancing vehicle safety and 

autonomous driving capabilities. 

Table 2. 1 Most contributing countries in the field of VCA 

 

Rank Country No of 

Publications 

No of 

Citations 

Rank Country No of 

Publications 

No of 

Citations 

1. China 2573 16406 6. England 159 1781 

2. USA 879 6942 7. Germany 139 1022 

3. South 

Korea 

301 1724 8. Italy 117 648 

4. Canada 222 1773 9. Australia 115 1075 

5. India 178 1232 10. Spain 105 751 
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Interestingly, when we analyze qualitatively, it is seen that while the top-producing country 

leads in quantity, the runner-up shows superior impact in terms of citations. The second-ranked 

nation's works have garnered 6942 citations for 879 publications which is almost 8 citations 

per article, outpacing the leader's 16406 citations against 2573 publications making 6.4 

citations per article by a substantial 25 % more citations per document. This disparity suggests 

potential areas for improvement in the quality and influence of research from the leading 

country. The third and fifth positions are held by two Asian nations, South Korea and India, 

contributing 301 and 178 works respectively. Their citation counts are 1,724 and 1,232. It's 

noteworthy that among the top ten contributing countries, only one country India is classified 

as a developing nation, underscoring its significant role in advancing this field of study. 

 

Figure 2.3 Country wise distribution based on density of publications 

 

To visualize the global distribution of research activity, we employed citation analysis tools to 

create a knowledge map (Figure 2.3). This map focuses on 61 countries, excluding those with 

fewer than five publications. The resulting visualization consists of a heatmap, country labels, 

and connecting color blocks. The intensity of red in the heatmap correlates with higher 

publication volumes, while blue indicates lower output. Concentric circles within the heatmap 
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suggest strong collaborative networks. The map clearly identifies the two leading nations as 

research powerhouses in this domain, with one showing a darker red, indicating a higher 

publication count. This visual representation aligns with the numerical data presented earlier.  

Moreover, the map reveals intricate patterns of international collaboration. The background 

color blocks connecting different countries highlight these cooperative relationships. For 

instance, the top two nations show strong collaborative ties. Additionally, some countries, such 

as England, India, South Korea and France, maintain collaborative links with both of the top-

producing nations. This analysis not only highlights the dominant players in the field but also 

illuminates the complex web of international cooperation driving advancements in vehicular 

safety and collision avoidance research. Such collaborations are crucial for enhancing the 

academic value and impact of research in this vital area. 

2.1.3 Journal Wise Publications Analysis 

The Scientific journals play a significant role in sharing research findings. We looked at which 

journals published the most about smart car systems. Table II shows the top 10 Journals in the 

VCA field along with their citations of related articles and impact factor. IEEE Xplore stands 

out, publishing half of these top journals. The rest come from different publishers like MDP, 

Elsevier and Wiley. This shows IEEE Xplore is a leader in this field. 

 

Table 2. 2 Top 10 journals in the field of VCA and vehicle safety related publications 

Rank Journal Name No of 

Publications 

No of 

Citations 

Impact 

Factor 

Publisher 

1. Sensors 655 4014 3.7 MDPI 

2. Transportation Research 

Record (TRR) 

330 1016 1.6 SAGE-

Journals 

3. IEEE Transactions on 

Intelligent 

Transportation Systems 

(T-ITS) 

316 2654 9.5 IEEE Xplore 

4. Electronics 238 1155 2.6 MDPI 

5. IEEE Access 225 802 3.9 IEEE Xplore 
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The star performer is Sensors by MDPI. It has the most 655 articles, gets cited the most 4,014 

times. However, IEEE Xplore published Journals like IEEE T-ITS has a strong impact factor 

of 9.5 and a very good Cite Score. IEEE Xplore is leading publishers with three Journals in top 

10 most related articles Journals with decent citations per article. We also looked at how often 

these journals are cited together, which according to [18] is an effective way to judge a journal's 

impact. We made a network map of these connections using VOSviewer, shown in Figure 2.4. 

It includes 777 journals that have at least 20 articles in this field. 

 

Figure 2.4 Co-citation network of journals in VCA 

 

6. Journal of Advanced 

Transportation (JAT) 

186 867 2.3 Hindawi 

7. Journal of Automobile 

Engineering 

183 574 1.7 SAGE-

Journals 

8. IEEE Robotics and 

Automation Letters 

154 1546 4.6 IEEE Xplore 

9. IET Intelligent 

Transportation System 

(ITS) 

134 621 2.5 Wiley Online 

Library 

10. Traffic Injury Prevention 121 555 2.2 Taylor and 

Francis 
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The connectivity map shows six main groups. IEEE TITS, IEEE CVPR and IEEE Access are 

the big players in three of these groups. Interestingly, there are lots of connections between 

these main journals across different groups. This analysis helps us see which journals are the 

most important for research on smart car collision avoidance systems. It also shows how 

different areas of this research are connected. 

2.1.4 Institutional Analysis 

Quantitative statistics enable comparisons of scientific outputs between institutions to identify 

which are the leading contributors and their quality of work can also be accessed through the 

linkages and citations. We looked at which universities and research centers are doing the most 

work on smart car systems. Table 2.3 shows the top 16 universities in the related field. Six of 

these are in China, with the others in the US, Netherlands, and Singapore. Tsinghua University 

in China is the big leader, with 176 papers that have been cited 4,137 times. Southeast 

University, also in China, comes second with 137 papers. Together, these top 10 places account 

for nearly a third of all the research in this area. This shows that China is really pushing this 

field forward, and that a small number of places are doing a lot of the work. 

Table 2. 3 Top 16 institutions in the field of VCA and vehicle safety related publications 

 

Rank Institution Country Publications Citations 

1. Tsinghua Univ China 179 1440 

2. Tongji Univ China 154 994 

3. Southeast Univ China 121 654 

4. Beijing Inst Tech China 104 797 

5. Jilin Univ China 103 532 

6. Beihang Univ China 84 644 

7. Changan Univ China 78 519 

8. Zhejiang Univ China 78 593 

9. Chinese acad SCI China 76 725 

10. Beijing Jiaotong 

Univ 

China 65 350 

11. Shanghai 

Jiaotong Univ  

China 62 416 

12. Harbin Inst Tech China 62 344 

13. Chongqing Univ China 60 496 

14. Nanyang Tech 

Univ 

Singapore 58 697 

15. Hunan Univ China 58 425 

16. Univ Michigan USA 54 478 
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How these institutions work together was also analyzed using VOSviewer. We focused on 114 

places that have published at least 10 papers. In the map (Figure 2.5), each place is shown as a 

dot, with bigger dots meaning more papers. Lines between dots show teamwork, with thicker 

lines meaning more collaboration.  

 

 The map shows 11 main groups and 1,089 connections. Tsinghua University has the biggest 

dot, showing it's the most active. Southeast University and Beihang University are the next 

biggest. These main players have lots of thick lines connecting them to others, which means 

they're working with lots of different places. This analysis helps us see not just who's doing the 

most work, but how different research centers are working together to advance smart car 

technology.

 

Figure 2.5 Collaborative network between institutions in VCA 

 

2.2 Existing Approaches for Collision Prediction 

Existing approaches for collision prediction and avoidance systems can be broadly categorized 

into three main groups: (1) motion trajectory prediction-based models using Deep 

Reinforcement Learning (DRL), (2) radar-camera sensor fusion techniques, and (3) vision-

based approaches with Deep Learning (DL). 
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2.2.1   Motion Trajectory Prediction using DRL 

An efficient collision detection system relies on confident prediction of vehicle motion and 

trajectory. Lefevre et al. [19] explores various motion prediction approaches, analysing the 

trade-off between model complexity and real-time implementation and categorized motion 

prediction models into three main types: physics-based, maneuver-based and interaction-

aware. DRL, where algorithms learn from trial and error, has shown promise in navigation 

systems. Kahn et al. [20] proposes a collision avoidance mechanism using a standard stereo 

camera with a navigation model outperformed Double Q-learning in achieving fully 

autonomous navigation. Chen et al. [21] shows a decentralized collision avoidance algorithm 

using DRL employing a value network that predicts best paths with minimal collision risk, 

considering the positions and velocities of surrounding vehicles. Kim et al. [22] designed 

intelligent self-driving policies using DRL to reduce intersection collision risk. While DRL 

holds promise for real-time collision avoidance systems, limitations do exist as these 

algorithms require vast amounts of training data and limit real-world generalizability. 

Additionally, their computational demands can lead to delays in critical moments where fast 

reactions are crucial, making them hard to be implemented in real-time for passenger vehicles. 

2.2.2   Radar-Camera Sensor Fusion Approaches 

Several DL architectures have been proposed for radar-camera and LiDAR sensor fusion in 

collision avoidance systems. Radar offers all-weather functionality, detecting objects using 

electromagnetic waves. However, detailed information about object size and shape is absent. 

Camera-based sensors provide rich visual data like lane markings, traffic signals, and object 

shapes. LiDAR (Light Detection and Ranging) creates a 3D point cloud representation of the 

environment, offering precise distance and shape information but is costly. Sensor fusion by 

Kim et al. [23] combines the strengths of all the sensors, leading to more robust and reliable 

perception for collision avoidance systems. Some of the approaches are: Early Fusion which 

merges raw radar data and camera images at the beginning of the network and processed by a 

single DL model for such as proposed by Xu et al. [24]. This approach is computationally 

efficient but requires careful pre-processing. Late Fusion separates DL models process for radar 

and camera data independently, extracting features which are then fused at a later stage for 

final decision-making. Kim et al. [25] proposed late fusion of camera with LiDAR data for 

pedestrian detection. This approach allows for independent optimization of each sensor model 

but might lose some information. Feature Level Fusion involves processing both sensors 

through individual feature extraction layers which are then concatenated before feeding them 
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into a final classification layer. Zhu et al. [26] introduced multi-sensor-based feature level 

fusion. This approach leverages the strengths of both sensors while maintaining some level of 

independence in the feature extraction process. Attention-based Fusion focuses on the most 

relevant features, dynamically allocating weights for improved robustness but is 

computationally expensive as seen in the proposed method by Huang et al. [27] for vehicle 

detection. 

2.2.3   Vision-based Approaches with Deep Learning (DL) 

While DRL and sensor fusion techniques show their robustness, vision-based approaches offer 

a promising alternative due to their cost-effectiveness and ease of integration. Direct perception 

focuses solely on steering angle prediction as done by Chen et al. [28] and lack real-world 

testing under complex situations. Monocular vision proved to be valuable by estimating Time-

to-Collide (TTC) and addresses the issue of collision rarity. Existing methods such as by Shi 

et al. [29] for TTC estimation include feature tracking, motion divergence analysis, and optical 

flow techniques. These approaches have limitations like lack of hardware efficiency, 

robustness, and reliance on additional data like lane markings. Azimjonov’s method leverages 

YOLO, a DL model, for vehicle recognition and tracking in traffic videos as proposed by 

Datondji et al. [30]. Vehicle Detection achieved higher accuracy in classifying and counting 

vehicles across various highway videos [31]. Redmon et al. [32], proposed YOLO which 

revolutionized object detection with a real-time, single pass approach by using regression for 

both bounding box coordinates and object probabilities. Chen et al. [33] proposed YOLO v3-

live, a modification of YOLO v3-tiny designed for real-time vehicle detection on embedded 

devices. It prioritizes faster processing by minimizing down-sampling feature maps, resulting 

a slight decrease in accuracy but maintaining acceptable detection speed. However, further 

research is needed to improve accuracy without sacrificing speed. Keeping in view the cost 

effectiveness, ease of integration, and optimal performance for real-time predictions, our focus 

is towards vision-based methods acquiring input data from multiple camera streams. The scope 

of achieving improving the accuracy of object detection over multiple cameras by gathering a 

more comprehensive view of the scene was already discussed as future works by Sharma [34]. 

Researchers are using extensively YOLO with DeepSORT, including Ngeni et al. [35] and 

Lin et al. [36], for real-time traffic occlusion and tracking related models. Similarly, various 

models of SSD models like MobileNets v1 to v3 [37, 38, 39] were also used for real time object 

detection specially for low power embedded devices, however, their detection performance in 

terms of precision and accuracy was not very promising specially to be used in real world traffic 
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safety scenarios where accuracy is the most vital metrics. Transformers, on the other hand 

showed very promising results in terms of contextual relationship and accuracy for NLP but 

for a considerable period from their first model in 2018 till late 2023, due to their lack of real-

time ability, were not being used in vision related tasks. RT-DETR [40] proposed by Zhao et 

al in CVPR 2024 and proved their vision-based transformer model as the new contender to 

become SOTA real-time object detector where it has beaten YOLOs in performance and speed. 

Many leading autonomous car manufacturers like Tesla and Kia have also shifted towards 

totally vision based object detection systems. Tesla's Full Self-Driving (FSD) software [41] 

relies solely on cameras, abjuring radar and lidar. This approach leverages vast amounts of 

video data from Tesla's fleet to improve its AI systems for depth estimation and object 

detection. The company believes that the cost-effectiveness and scalability of cameras will 

accelerate their path to full autonomy, despite the lack of redundancy that comes with using 

multiple sensor types. 

2.3 An Overview of DL Based Methods for VCA 

Deep learning is a sophisticated computational paradigm that enables feature extraction and 

representation learning across multiple levels of abstraction [42]. As a branch of machine 

learning, it autonomously identifies patterns and features from raw data, making predictions or 

taking actions based on predefined reward functions [44]. This field encompasses various 

techniques, including neural networks, hierarchical probabilistic methods, supervised and 

unsupervised learning models, and deep reinforcement learning (DRL).   

Autonomous vehicles have attracted substantial interest and investment, largely due to 

breakthroughs in deep learning, convolutional neural networks (CNN), and deep neural 

networks (DNN) [45]. Unsupervised learning in autonomous driving aims to interpret the 

driving environment with minimal human input [46]. Unlike support vector machines (SVM), 

deep learning can tackle complex, non-linear problems without resorting to higher-dimensional 

projections [43]. It uses many hyper-parameters and layers to solve intricate problems. To 

achieve human-like driving capabilities from a computer vision perspective, autonomous 

vehicles must recognize their environment, interpret 3D representations, discern object and 

pedestrian movements, and navigate human emotions [47]. While deep learning algorithms 

excel in perception-control learning from data, the high costs associated with LiDAR 

technology and manual map annotation pose challenges to widespread adoption in autonomous 

driving [48]. Therefore, the techniques of computer vision only using camera sensors are 

widely adopted by many car making giants as a cheaper and realistic alternative. Manufacturers 
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have introduced features such as collision warning systems, blind spot monitors, lane departure 

alerts, rear-view cameras, and autonomous braking mechanisms [49] using deep learning 

techniques. For road infrastructure design, simulation-based tools like Site3D, RoadEng [50], 

and OpenRoads Designer [51] have become increasingly prevalent. Intelligent traffic 

management has seen the rise of GPS-enabled navigation systems, including sophisticated 

software capable of interpreting road user behavior to optimize route decisions [52].  

Numerous automotive companies have embraced AI-driven safety innovations. Prominent 

manufacturers like Tesla, Audi, and BMW have pioneered sensor and vision-based perception 

systems, enabling drivers to assess road conditions more accurately and utilize partial 

autonomy features [53, 54]. The rapid advancement of deep learning techniques in video 

processing, coupled with the availability of cost-effective, high-performance computational 

platforms such as GPUs and TPUs, has accelerated the development of AI-based functionalities 

at both vehicle and infrastructure levels [55].  

Table 2. 4 A comparison between DL architectures used for vehicle safety 

Architecture MLP CNN RNN / LSTM Transformers 

Pros • Straightforward 
design 

• Easy to 
implement on 
low power 
hardware 

• Appropriate 
for high 
dimensional 
data 

• Learns 
features with 
locality shift-
invariance 

• Powerful for 
CV tasks 

• Appropriate 
for limited 
level 
sequential 
data 

• Can learn 
previous mid-
term 
dependencies 

 

• Good for 
really long-
term 
sequences 

• Process 
sequences in 
parallel 

• Enables self-
attention 

• Very good for 
NLP and CV 
(but not in 
real time) 

Cons • Cannot handle 
complex 
situations 
having large 
real-world 
parameters 

• Weak on 
long 
sequence 
data 

• Vanishing 
Gradients 
(solved by a 
complex 
architecture 
ResNet) 

• Unable to 
perform on 
large long-
term 
dependencies 

• Hard to train 
the gradients 
issue 

• Handles on 
serially fed 
data 

• Very long 
and extensive 
resource 
required 
training 

• Over 
complicated 
for short 
sequences 

• Poor in real-
time tasks 
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At the core of vision-based driving safety analysis lies the application of deep learning methods 

for image and video processing. It's worth noting that recent progress in DL has been largely 

propelled by advancements in computer vision and natural language processing, which 

represent key areas of visual and sequential data analysis. State-of-the-art DL platforms 

typically leverage architectures such as multilayer perceptron, convolutional neural networks, 

recurrent neural networks, and transformers as fundamental components. Table 2.4 offers a 

concise yet informative comparison of these methodologies. CNNs, due to their real-time 

performance, are the best choice for on road vehicle safety and collision avoidance tasks 

whereas, Transformers, being the new player, are good for contextual and long-term analysis 

where the time constraints are not too much strict. Few important DL techniques being used in 

our area of interest are being discussed briefly. 

2.3.1   Convolutional Neural Networks (CNN) 

Convolutional neural networks (CNN) have emerged as a powerful tool in image classification 

and computer vision, achieving remarkable success with perfect classification rates on datasets 

like ImageNet [56]. The CNN architecture is characterized by its ability to learn progressively 

complex features through successive neural layers in a supervised manner, utilizing back-

propagation of classification errors to refine its performance [57]. A key distinction of CNN is 

their integrated approach to feature extraction and classification. Unlike traditional methods, 

CNN do not rely on separate modules for these tasks, nor do they require unsupervised pre-

training. Instead, they learn input representations implicitly through supervised training, 

eliminating the need for manual feature description and extraction [58]. This allows CNNs to 

derive features directly from raw pixel data, culminating in final object categories.  

In the context of autonomous vehicles, CNN exhibit remarkable versatility in input processing, 

capable of handling various data types such as images, video, text, and audio. These inputs can 

have one-to-one, one-to-many, or many-to-many relationships with output classes. The depth 

of a CNN, determined by its number of layers, is analogous to its feature-learning capacity. 

Through backpropagation, the network optimizes its feature extraction across filters of various 

sizes [59]. Recent advancements in CNN architecture design leverage transfer learning, where 

pre-defined convolutional layers are combined with fully connected layers, obviating the need 

to train networks from scratch [60]. In a typical CNN pipeline for autonomous driving, input 

images undergo convolution with activating functions to generate feature maps, which can be 

further refined to identify salient patterns. CNN exhibit robustness to translational and 

rotational variances due to their convolutional nature, applying consistent weights across the 
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input. Each successive layer in the network identifies increasingly complex features, starting 

from simple elements in the initial layer and progressing to more intricate patterns in deeper 

layers. The final stage of processing typically involves fully connected neural networks 

(FCNN) that operate on the extracted feature maps.  

The ultimate goal of CNN application in autonomous vehicles extends beyond current semi-

autonomous models with ADAS. It aims to dramatically reduce driver responsibilities and 

engagement, potentially eliminating the need for active human involvement in the driving 

process. This vision represents a significant leap forward in automotive technology and has 

far-reaching implications for transportation and society at large. 

2.3.2   Recurrent Neural Networks (RNN) 

Recurrent neural networks (RNN) are specialized architectures designed to recognize 

sequences and patterns in data through recurrent computations, enabling sequential processing 

of input information [61]. This design allows RNN to maintain an internal state that can capture 

temporal dependencies in the data. Long short-term memory (LSTM) networks, a specific type 

of RNN, have gained prominence due to their ability to handle long-range dependencies more 

effectively. LSTMs utilize a sophisticated gating mechanism, incorporating input, output, and 

forget gates to control the flow of information through the network [62]. This structure enables 

LSTMs to selectively remember or forget information from previous time steps, making 

decisions based on both current inputs and relevant historical context [63]. The defining feature 

of RNN is their cyclic connection structure, where outputs from one-time step serve as inputs 

for the next. This creates a directed cycle within the network, allowing information to persist 

and influence future computations [64]. This recursive nature makes RNN particularly well-

suited for tasks involving sequential or time-series data.  

In the context of autonomous vehicles, RNN have demonstrated their utility in visual tracking 

tasks, especially under constrained scenarios [65]. Their ability to maintain temporal context 

allows for more robust and accurate tracking of objects across video frames. The temporal 

correlation capabilities of RNN enable predictive modelling for object tracking. By using the 

region of interest (ROI) from one frame to predict an object's position in the subsequent frame, 

RNN can create a continuous tracking model [66]. This approach mimics a prediction-

correction cycle, where each new frame's input is informed by the predictions made from 

previous frames.  
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This predictive capacity of RNN is particularly valuable in autonomous driving scenarios, 

where anticipating the movement of other vehicles, pedestrians, and objects is crucial for safe 

navigation. By leveraging historical information and current inputs, RNN-based systems can 

make more informed decisions about likely future states, potentially improving the overall 

safety and efficiency of autonomous vehicles. The application of RNN and LSTMs in 

autonomous driving extends beyond mere object tracking. These architectures can also be 

employed in trajectory prediction, behavior modelling of other road users, and even in the 

decision-making processes of the autonomous system itself. Their ability to handle sequential 

data makes them powerful tools for understanding and predicting the dynamic environment in 

which autonomous vehicles operate. 

2.3.3   Transformers 

The evolution of DL methods for vision-based traffic video analysis has been marked by 

significant milestones in network architectures. These developments have primarily centred 

around fully connected (FC) layers, convolutional neural networks (CNNs), and recurrent 

neural networks (RNN). Parallel to computer vision advancements, deep learning methods for 

sequential learning, particularly in natural language processing (NLP), have seen remarkable 

progress. Long-standing dominance of gated recurrent units (GRU) [67] and long short-term 

memory networks (LSTM) [68] in sequential learning has been challenged by the introduction 

of the transformer architecture [69].  

Transformers, introduced by Google researchers, feature an encoder-decoder structure utilizing 

multi-head self-attention modules. This design allows for capturing longer internal 

dependencies in addition to input-output relationships in sequential data. Position embedding 

enables parallel training and the ability to capture dependencies beyond sequential relations 

[69, 70]. The success of transformers in both NLP and computer vision tasks has been 

noteworthy. In NLP, Google's implementation [71] outperformed competitors across 11 tasks, 

marking a potential end to the LSTM era in this field. Whereas, in computer vision, 

transformers are challenging CNN dominance. Google's implementation [72] achieved an 

unprecedented 88.55% accuracy on ImageNet through transfer learning, while another study 

[73] attained 83.3% top-1 accuracy, surpassing ResNet50 with comparable parameters.  

Transformers have demonstrated versatility in downstream tasks such as detection and 

semantic segmentation. Their potential extends beyond traditional CV tasks to processing 

sequential data, including trajectory extraction, tracing, and modelling individual and 
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collective behaviors of pedestrians and autonomous vehicles. The field anticipates increased 

adoption of transformer-based safety analysis frameworks in the coming years, not only for 

computer vision tasks but also for a wide range of sequential data processing applications in 

the autonomous driving domain. This shift represents a significant evolution in the approach 

to complex data analysis and prediction tasks in vehicular safety and collision avoidance 

systems.  

2.3.4   DL Based Object Detection (OD) Techniques for Vehicle Safety Applications 

Object detection (OD) is a crucial component in DL based techniques for driving safety 

analysis. This process involves locating and identifying various objects within images or video 

frames, often in complex environments, by drawing bounding boxes around objects of interest. 

Object detection can be integrated with or exist alongside object classification and labelling 

tasks. In driving safety analysis, object detection is applied to identify key elements such 

vehicles, pedestrians, road traffic signs and potential obstacles. The applications of object 

detection extend to more complex tasks like: -  

1. Traffic distribution and composition analysis  

2. Detecting improper lane crossing events  

3. Trajectory extraction  

4. Speed estimation  

5. Moving object tracking  

6. Path planning  

7. Identifying vehicles on road shoulders  

An additional application of object detection involves privacy protection, such as masking 

personally identifiable information like human faces and license plate numbers before 

publishing traffic video footage. While there are existing datasets for traffic analysis from 

roadside cameras [74, 75], there remains a critical need for more comprehensive datasets 

covering diverse scenarios comprising urban, suburban, rural settings and various 

environmental conditions. Compared to conventional object detection algorithms like the 

Viola-Jones detector [76], histogram of oriented gradients (HOG detector) [77], and 

deformable part-based models (DPM) [78], CNN-based methods have significantly improved 

recognition success rates. From an implementation perspective, DL based object detection 
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algorithms can be categorized into two main approaches: Single-stage methods and Two-stage 

methods. Here is a brief detail about both these methods: -  

2.3.4.1   Two-Stage OD Method 

The evolution of two-stage object detection, also known as the region-based approach, has 

significantly affected vehicle detection and classification in recent years. This method, 

characterized by high localization accuracy but slower processing speed, involves generating 

candidate frames from a scene and then classifying and refining these proposals to enhance 

detection precision. Its basic architecture starts with R-CNN, proposed by Girshick et al. 

[79,80], which utilizes AlexNet as its backbone and employed selective search [81] for region 

proposals. R-CNN marked a substantial improvement over traditional object detection 

algorithms like HOG , Haar [84], and LBP [85]. However, its computational intensity during 

training prompted further refinements.  

Fast R-CNN, introduced by Girshick [82], addressed some of these limitations by processing 

the entire image to generate convolutional feature maps and introducing Region of Interest 

(ROI) pooling layers. This approach streamlined the training process and increased efficiency, 

though it still relied on selective search for region proposals. [83] took the next step with Faster 

R-CNN, replacing selective search with a Region Proposal Network (RPN). This innovation, 

along with the use of anchor boxes at various scales and aspect ratios, significantly improved 

both detection speed and accuracy. The R-FCN architecture, proposed by Dai et al. [86], further 

refined the concept by addressing position sensitivity and variance issues. It introduced 

"position-sensitive score maps" and increased the sharing of convolutional parameters, leading 

to enhanced performance.  

 Comparative studies have shown the progressive improvements of these models. Wang et al. 

[89] showed that Faster R-CNN improved detection accuracy by 3.2% over Fast R-CNN on 

the COCO dataset [87]. Furthermore, R-FCN outperformed Faster R-CNN in both accuracy 

and processing speed on multiple datasets, including PASCAL VOC 07 [88]. These 

advancements in two-step object detection have played a crucial role in enhancing vehicle 

detection and classification capabilities. As autonomous driving technologies continue to 

evolve, these algorithms form the backbone of many advanced driving safety systems, pushing 

the boundaries of what's possible in computer vision for automotive applications.  
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2.3.4.2   Single-Stage OD Method 

The evolution of single-stage OD algorithms has revolutionized real-time vehicle detection and 

recognition. These methods, unlike their two-stage counterparts, drop the region proposal 

phase, directly obtaining prediction results from the input image. This approach has led to 

significant improvements in both speed and accuracy, crucial for autonomous driving 

applications.  

Both Single Shot Multibox detector (SSD) and YOLO (You Only Look Once) are the major 

families of single stage OD techniques. SSD have gained significant traction in vehicle 

collision avoidance applications due to their real-time processing capabilities and efficient 

detection performance. Unlike two-stage detectors that first propose regions and then classify 

objects, single-stage detectors streamline the process by directly predicting bounding boxes 

and class probabilities in a single network pass. SSD stands out in this domain because of its 

balance between speed and accuracy, making it particularly suitable for time-sensitive 

applications like collision avoidance. It utilizes a series of convolutional layers to predict a 

fixed number of bounding boxes and their associated scores for multiple object categories, 

enabling the rapid detection of vehicles, pedestrians, and other obstacles. This efficiency is 

crucial for automotive systems, where timely detection and response can significantly reduce 

the likelihood of accidents. Additionally, SSD's ability to detect objects at different scales 

through its multi-scale feature maps enhances its robustness in varying traffic scenarios. As 

autonomous driving technology advances, the integration of SSD into vehicle systems 

exemplifies how modern deep learning techniques can contribute to safer roadways by enabling 

quicker and more accurate obstacle detection. 

The YOLO family of detectors has been at the forefront of this evolution. YOLOv2 addressed 

limitations of its predecessor by introducing batch normalization, high-resolution classifiers, 

and multi-scale training. It employs a high-resolution classifier backbone, maximizing input 

resolution to 448x448, and uses convolution anchor boxes to improve region proposals. The 

introduction of K-means clustering for anchor box sizing and multi-scale training further 

enhanced its performance across various object sizes.  

YOLOv3 built upon these improvements, utilizing the DarkNet53 model for feature extraction 

and employing multi-label classification with overlapping patterns. It's particularly notable for 

object detection in complex scenes, using three feature maps of multiple sizes for bounding 

box prediction. YOLOv4 represents a significant leap forward, combining the strengths of its 
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predecessors to achieve an optimal balance of accuracy and speed. It introduces a three-part 

structure: "Neck," "Backbone," and "Prediction." The neck, composed of SPPNet and PANet, 

enhances feature fusion and compression. The CSPDarkNet53 backbone extracts features, 

which are then processed through the prediction scheme and filtered using Non-maximal 

Suppression (NMS). YOLOv5, further refines this approach. It uses CSPDarkNet as its 

backbone, offering improved small object detection, higher accuracy, and faster processing. 

The model employs Bottleneck CSP instead of residual shortcut links to enhance image feature 

description. Its neck system produces feature pyramids, enabling the network to detect objects 

of various sizes more effectively.  

 YOLOv6 [185] offers a good balance between speed (frames per second) and accuracy (mAP) 

compared to previous versions. This makes it ideal for real-time applications. It introduces new 

features like Bi-directional Concatenation (BiC) module. YOLOv6 adopted an anchor-free 

detector that enhances performance without sacrificing speed significantly. YOLOv8 was 

released in January 2023 by Ultralytics, the company that developed YOLOv5. YOLOv8 is 

anchor-free architecture, reducing the number of box predictions and speeding up the Non-

maximum impression (NMS). In addition, YOLOv8 uses mosaic augmentation during training. 

Evaluated on MS COCO dataset test-dev 2017, YOLOv8x achieved an AP of 53.9% with an 

image size of 640 pixels (compared to 50.7% of YOLOv5 on the same input size) with a speed 

of 280 FPS on an NVIDIA A100 and TensorRT.   

These advancements have led to wide-ranging applications of CNN-based object detectors, 

from face mask recognition to vehicle classification, pedestrian detection, and even medical 

image classification. Recent studies have demonstrated the effectiveness of both single and 

two-step detectors in vehicle detection and classification tasks. However, it's crucial to 

understand the strengths and limitations of these algorithms. Detection and classification 

performance can be affected by various factors, and ongoing research aims to minimize errors 

in object class prediction and improve overall algorithm performance. As the field continues 

to evolve, we can expect further refinements and innovations in single-step object detection, 

pushing the boundaries of what's possible in computer vision for automotive applications and 

beyond. 

2.4 Embedded System for Autonomous Vehicles 

The evolution of embedded systems in autonomous vehicles represents a pivotal advancement 

in automotive technology, marking a transition from basic engine control to sophisticated, AI-
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driven decision-making systems. This progression has been instrumental in shaping the 

landscape of modern autonomous driving. The journey began with the introduction of Engine 

Control Units (ECUs), which revolutionized the automotive industry by providing basic control 

over engine, transmission, and other critical systems. As technology advanced, the integration 

of microcontrollers and sensors led to more sophisticated functionalities, enhancing vehicle 

performance and safety.  

Today's embedded systems in autonomous vehicles serve as the technological nerve centre, 

enabling perception, decision-making, and control. These systems comprise both hardware and 

software components working in harmony. Sensors like LiDAR, radar, and cameras capture 

real-time environmental data, while actuators translate decisions into actions. The software 

interprets sensor data, processes it, and generates control commands, often utilizing AI and 

machine learning algorithms for complex decision-making in real-time. The efficacy of these 

systems lies in their ability to process information in real-time, requiring a symbiotic 

relationship between high-performance hardware and efficient software. This constant 

exchange of information between hardware and software components ensures a continuous 

feedback loop for autonomous decision-making.  

Recent technological advancements have further propelled the field. The migration from single 

core to multi-core architectures in engine ECU software has necessitated new methodologies. 

Multi-core processors now enable high computing performance with low thermal dissipation, 

optimizing task-intensive real-time applications. Open-source-based peripherals for 

automotive ECUs have also emerged as educational platforms. Safety and security have 

become paramount concerns, leading to the implementation of systematic methodologies for 

functional testing of automotive embedded software. Simulation-based testing and inspection 

of engine control units during manufacturing have contributed to improved quality and 

reliability.  

However, the increasing connectivity of vehicles has raised new security concerns. As the 

industry continues to evolve, addressing these challenges while integrating new technologies 

remains a priority. This progression has significantly enhanced vehicle functionalities, 

performance, and safety, paving the way for the future of autonomous driving. As technology 

continues to advance, further refinements in these foundational concepts will play a crucial role 

in shaping the automotive landscape, fostering safety, efficiency, and transformative user 

experiences 
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2.4.1   Types of Embedded Systems used in Vehicles 

The Embedded systems in automotive vehicles have become integral to enhancing 

performance, safety, and user experience. These systems can be broadly categorized into three 

main types: engine and transmission control systems, in-car entertainment and infotainment 

systems, and ADAS.  

Engine and transmission control systems play a crucial role in optimizing fuel efficiency and 

overall vehicle performance. These sophisticated systems are designed to fine-tune engine 

speed, manage transmission gears, and balance workload across various driving conditions. 

The automotive industry has recognized the importance of safety in these systems, leading to 

the integration of safety analysis tools into the model-based development toolchain for 

embedded systems.  

In-car entertainment and infotainment systems have evolved significantly, focusing on 

connectivity features and multimedia integration. Modern vehicles now incorporate phone-car 

connected systems and In-Vehicle Infotainment (IVI) systems, which have been shown to 

positively influence user adoption through improved facilitating conditions and 

technographics. However, the increasing complexity of these systems, particularly Android-

based infotainment apps, has raised concerns about security vulnerabilities that need to be 

addressed.  

Advanced Driver Assistance Systems (ADAS) represent a significant leap in automotive 

technology, evolving from basic safety features to autonomous driving capabilities. ADAS has 

played a crucial role in enhancing vehicle safety, as evidenced by the development of integrated 

engine-hydro-mechanical transmission control algorithms for tractors. These algorithms utilize 

artificial intelligence to adapt engine speed and improve overall performance. To ensure the 

reliability and safety of ADAS and other embedded systems, researchers have developed 

integrated virtual execution platforms for large-scale distributed embedded systems, 

facilitating thorough validation processes. 

2.4.2   Latest Trends and Role of Embedded Systems for VCA 

The field of embedded systems in autonomous vehicles is rapidly evolving, driven by three key 

trends: the increasing integration of artificial intelligence (AI) and machine learning, the 

advancement of connectivity and edge computing, and the development of adaptive and 

learning capabilities. AI and machine learning are revolutionizing embedded systems in 

autonomous vehicles. These technologies enable sophisticated sensor fusion, combining data 
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from LiDAR, radar, and cameras to create a comprehensive understanding of the vehicle's 

surroundings. Machine learning models are enhancing path planning and decision-making, 

allowing vehicles to navigate complex environments more efficiently. Deep learning 

techniques, particularly CNN, are improving object recognition, enabling vehicles to 

accurately identify and classify objects in their vicinity. Additionally, predictive analytics 

powered by machine learning are helping vehicles anticipate the behavior of other road users, 

enhancing safety and efficiency.   

Controllers are the brain of collision avoidance systems, executing the necessary computations 

to process sensor data and make real-time decisions. The most common controllers used in 

these systems are microcontrollers (MCUs) and digital signal processors (DSPs). MCUs, such 

as those from the STM32 family by STMicroelectronics, are popular due to their low power 

consumption, affordability, and adequate processing power for handling basic collision 

avoidance tasks. These controllers are often integrated with various peripherals and 

communication interfaces, making them suitable for automotive applications. On the other 

hand, DSPs are designed for high-performance real-time processing, making them ideal for 

more complex tasks such as image and signal processing required in advanced collision 

avoidance systems. The TMS320C6000 series by Texas Instruments is a notable example, 

providing robust performance and flexibility. These controllers can efficiently handle tasks 

such as object detection and classification, lane departure warning, and adaptive cruise control 

by processing data from cameras, radar, and LiDAR sensors.  

GPUs have become indispensable in the development of sophisticated collision avoidance 

systems. Their parallel processing capabilities allow them to handle the immense 

computational load required for tasks such as image recognition, sensor fusion, and path 

planning. Nvidia GPUs, in particular, are widely used in automotive applications due to their 

superior performance and support for AI frameworks. The Nvidia Jetson platform has 

revolutionized embedded systems in automotive applications, particularly in collision 

avoidance systems. The Jetson platform, including models like Jetson Nano, Jetson TX2, 

Jetson Xavier and Jetso Orin nano provides unparalleled computational power for DL and AI 

applications in a compact form factor. These platforms leverage Nvidia's GPU technology, 

enabling the deployment of complex neural networks for real-time object detection, tracking, 

and decision-making. The Jetson TX2, for instance, is equipped with a 256-core Pascal GPU 

and a powerful ARM Cortex-A57 CPU, providing the necessary horsepower to process high-

resolution images and perform deep learning inference at the edge. This capability is crucial 
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for collision avoidance systems that require quick and accurate responses to dynamic driving 

environments. Jetson Xavier, with its Volta GPU architecture and integrated tensor cores, takes 

it a step further by supporting more advanced AI models and providing higher throughput and 

efficiency. Nvidia’s software stack, including the Jetpack SDK and TensorRT, further 

enhances the capabilities of the Jetson platform. These tools simplify the development and 

deployment of AI models, ensuring that developers can optimize their applications for real-

time performance and low latency, which are critical for collision avoidance systems. The 

Jetson platform’s versatility and scalability make it a preferred choice for automotive 

manufacturers aiming to integrate cutting-edge AI capabilities into their vehicles.  

The role of GPUs extends beyond mere computation. They also facilitate the development and 

training of AI models. With platforms like Nvidia’s CUDA and cuDNN, developers can 

leverage GPU acceleration to train complex models faster, reducing the time to market for 

advanced collision avoidance systems. Moreover, the flexibility of GPUs allows for the 

integration of new AI models and algorithms, ensuring that the collision avoidance system can 

evolve and improve over time.  

FPGAs are increasingly being used in collision avoidance systems due to their flexibility, low 

latency, and ability to handle parallel processing tasks efficiently. Unlike fixed-function 

ASICs, FPGAs can be reprogrammed to adapt to new requirements and algorithms, making 

them ideal for rapidly evolving fields like autonomous driving and collision avoidance. One of 

the key advantages of FPGAs is their ability to process data in real-time with minimal latency. 

This is crucial for collision avoidance systems that need to react instantly to dynamic driving 

conditions. FPGAs can be programmed to perform specific tasks such as sensor fusion, object 

detection, and path planning with high efficiency. For example, the Xilinx Zynq Ultra Scale + 

MPSoC combines programmable logic with ARM Cortex-A53 processors, providing a 

powerful platform for developing collision avoidance systems. They can handle tasks such as 

image processing, radar signal processing, and data aggregation simultaneously, ensuring that 

the collision avoidance system has a comprehensive understanding of the vehicle’s 

surroundings. Moreover, the reconfigurability of FPGAs allows for continuous optimization 

and integration of new features, ensuring that the system remains up-to-date with the latest 

advancements in AI and sensor technology. 
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2.5 Threat Assessment Approaches 

2.5.1 Logic Based Approaches 

Logic-based methods are being used to make sure self-driving car systems are safe. Instead of 

writing complicated rules, they turn safety requirements into logical statements that computers 

can check. One team created a system for safe highway driving where cars use adaptive cruise 

control. They proved it was safe using special mathematical models. Their proof was cleverly 

broken into parts, making it easier to check each piece separately. Other researchers used 

something called Multi-Lane Spatial Logic to prove safety on different types of roads. This 

method separates thinking about space from thinking about how cars move. It's like making 

sure certain spots on the road are always empty to avoid crashes. Logic-based threat assessment 

often uses Boolean algebra and operators like AND (∧), OR (∨) etc.  

Another study looked at how cars can work together safely. They used math to check if cars 

could complete driving tasks without crashing. Some researchers [20] are even using advanced 

logic to turn traffic rules into a language computer can understand and follow. All these 

approaches are different ways of using math and logic to make sure self-driving cars will be 

safe on the road. 

2.5.2 Set Based Approaches 

In contrast Set-based approaches focus on specifying acceptable or unacceptable behaviors or 

system configurations. One group created a system for intersections where a central computer 

assigns time slots to cars. The cars then figure out if they can safely cross in that time. Another 

team predicts all the places a car and other vehicles might be, accounting for things like 

inaccurate sensors. They tested this on real self-driving cars. Some researchers developed a 

method to check for potential collisions on various road types. They look at where the main 

car and other objects might be, and if these areas overlap, it could mean a crash. A tool called 

SPOT was created to predict where other cars might go. It considers all possible moves, 

physical limits, and traffic rules to help plan safe routes. Recently, researchers came up with a 

way to calculate how much time a car has to react in different traffic situations. 

All these methods aim to make self-driving cars safer by predicting and avoiding potential 

dangers on the road. Using similar concepts, tackled the tricky problem of what happens when 

other drivers do unexpected things. They came up with a clever system that splits a car's path 

into safe zones and risky areas. They called the last safe point the "Point of No Return" and the 
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first completely safe point the "Point of Guaranteed Arrival." This helps the car figure out 

which parts of its journey might be dangerous. They also created a way to give each possible 

path a safety score. By using this score in their calculations, the car can choose the safest route 

possible, even thinking far ahead into the future. They tested this idea using SPOT, checking 

how well it worked when a self-driving car tries to pass another vehicle on a two-way road. Set 

theory can be used to model threat landscapes. Basic operations include Union (∪),  

Intersection (∩) and Complement ('). If R, T and V are risk, threat and vulnerability set 

respectively, we can define the risk as the intersection of threats and vulnerabilities. 

2.5.3 Probability Based Approaches 

Probabilistic threat-assessment (TA) methods use system uncertainties to make decisions with 

confidence. These methods assign probabilities to events, like the likelihood of a collision 

given certain uncertainties. Probabilistic TA assigns "how likely" answers to events, like an 

autonomous car potentially colliding soon. Uncertainties like imperfect vehicle models, sensor 

noise, and driver intent make this crucial in self-driving cars.  

Drivers have countless options on the road, making their actions difficult to predict. However, 

these actions can often be categorized into a finite set of common maneuvers, like lane changes 

or overtaking. They have reduced computational complexity by linking driver actions to high-

level maneuvers and using Monte Carlo simulations to compute collision probabilities. This 

method was improved by considering the driver's awareness of other objects and further refined 

in with a better vehicle model. It was introduced a curved coordinate system to simplify 

modelling on curved roads, while assessed risk using probabilistic Time-to-Collision (TTC) 

levels. A probabilistic approach using a Markov chain abstraction was proposed for predicting 

traffic participant occupancy, extended in by comparing Markov chains and Monte Carlo 

simulations. An algorithm combining an Unscented Kalman Filter with reachability analysis 

for emergency interventions was presented. Bayesian approaches, like those in [50] and [51], 

used Dynamic Bayesian Networks (DBNs) to compute collision risks, further developed in 

with a Partially Observable Markov Decision Process (POMDP) to model driver behavior 

combined network-level and vehicle-level collision predictions using a DBN, while used 

Bayesian Occupancy Filtering to estimate future occupancy, addressing occluded objects with 

prior map knowledge. Computational efficiency was addressed in by mixing set theoretical and 

probabilistic methods, dividing the threat-assessment problem into preliminary and specialized 

parts. 
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For probabilistic decision-making, some have use hypothesis testing to derive decision rules 

for automated braking, generalized in for any stochastic TA algorithm. A two-level threat-

assessment approach was discussed in and, focusing on physical system threats and driver 

perception. Finally, it was focused on behavior generation for automated vehicles using a 

POMDP algorithm to handle uncertainties at intersections. 
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Chapter 3 

Methodology 

3.1 Introduction 

The Conventional vision-based vehicle collision prediction and avoidance systems typically 

rely on a single monocular camera paired with a deep learning (DL)-based object detection 

(OD) model. However, such systems often fall short in either accuracy or real-time 

performance, limiting their effectiveness in dynamic and fast-paced driving environments. 

Most of these systems operate by generating passive alerts based solely on the detected object's 

displacement within the spatio-temporal domain, which involves tracking the object's position 

and movement over time.   

This approach, while functional, fails to account for multiple other contributing factors that 

influence collision prediction. For instance, it does not consider environmental complexities, 

varying lighting conditions, or the interplay between multiple objects in the scene, which are 

critical for robust and reliable decision-making. As a result, the system’s predictive capabilities 

are restricted, often leading to delays or inaccuracies in generating alerts or initiating preventive 

actions.   

Moreover, the use of a single camera limits the field of view (FOV), potentially causing blind 

spots that reduce the system's ability to detect and respond to threats in time. Such limitations 

make traditional systems less suited for real-world applications where split-second decisions 

are crucial for ensuring vehicle safety and collision avoidance. 
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3.2 Working Principle 

The proposed Vehicle Collision Avoidance System (V-CAS) integrates multiple advanced 

components to achieve robust, real-time performance for vehicle safety. An overview of this 

system, along with its key building blocks and their integration, is provided here. The block 

diagram of the V-CAS architecture is illustrated in Figure 3.1, showcasing how various 

modules are combined into a cohesive system.   

To enhance the interpretation of real-world objects, an array of three cameras was employed, 

providing a wide field of view (FOV). This setup enables the system to capture a more 

comprehensive scene, critical for detecting potential hazards. At the core of the detection 

pipeline is the state-of-the-art (SOTA) real-time object detector RT-DETR, capable of 

identifying moving or potentially moving objects such as vehicles, pedestrians, and other 

relevant entities. For tracking, the system employs DeepSORT, a robust tracking algorithm that 

combines the predictive capabilities of the Kalman filter with the strengths of deep learning. 

This hybrid approach ensures reliable tracking of objects even in dynamic environments.   

By analyzing the tracked objects' positions, speeds, and rates of acceleration, the system 

calculates a collision score for each detected entity. These computations are performed on the 

NVIDIA Jetson Orin Nano, a compact yet powerful embedded platform optimized for edge AI 

applications. When the predicted collision score of any object surpasses a predefined threshold, 

a braking signal is generated. This signal is transmitted through the Jetson device’s 40-pin 

expansion header to the vehicle’s adaptive braking mechanism, enabling timely and 

proportional application of brakes based on the collision risk. 

To further enhance collision prediction capabilities, a supplementary method was integrated 

into V-CAS. This method focuses on detecting the brake lights of frontal vehicles, providing 

an additional layer of safety. The system interprets the activation of brake lights as an indication 

that the vehicle ahead is decelerating or coming to a halt, which could lead to a collision if not 

addressed. This brake light detection mechanism proves especially valuable at night, where 

visibility is reduced, and conventional object detection may falter. Even if a vehicle remains 

undetected by the primary object detector, its brake lights are likely to be identified, triggering 

a cautionary response.   

Moreover, if the detected brake lights are in close proximity to the host vehicle, the system 

bypasses the standard speed estimation process and directly initiates emergency braking. This 

dual-layer approach ensures that the system remains effective in a wide range of conditions, 
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from daylight to challenging nighttime scenarios, thereby significantly improving vehicle 

safety and collision avoidance. 

. 

 

 

Figure 3.1 Basic architecture of VCAS 

 

 

3.2.1   Object Detection – RT-DETR 

Object detectors are broadly classified into two major categories, each with distinct approaches 

and characteristics: 1) Two-Stage Object Detectors. These detectors operate by first 

generating candidate regions for potential objects through a region proposal network (RPN). 

Each of these regions is then individually classified to achieve precise object detection. While 

this approach results in higher accuracy, it comes at the cost of slower processing speeds, 

making it less suitable for real-time applications. Common examples of two-stage algorithms 

include Faster R-CNN and R-FCN, both of which are widely recognized for their precision in 

complex object detection tasks. 2) One-Stage Object Detectors. In contrast, one-stage 

detectors directly predict bounding boxes and class probabilities in a single step, bypassing the 

region proposal process. This design prioritizes speed over accuracy, enabling faster processing 

but with a trade-off in detection precision. These models are often preferred in scenarios where 

real-time performance is critical, such as autonomous systems and video surveillance. 
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The backbone of our Vehicle Collision Avoidance System (V-CAS) integrates the strengths of 

modern object detection advancements by utilizing a vision-based transformer model, 

specifically RT-DETR (Real-Time Detection Transformer). This model, a competitor to 

traditional single-stage object detection methods, has been pre-trained on the COCO dataset. 

Through transfer learning, the architecture is tailored to include only the necessary parameters 

and layers for classifying desired classes, effectively optimizing the model for our use case.   

The main architecture of RT-DETR is shown in figure 3.2. It is designed to balance speed and 

accuracy for real-time object detection tasks. At its core, the model integrates a transformer-

based backbone with a lightweight encoder-decoder structure. The backbone extracts essential 

features from input images, efficiently processing visual data using multi-scale feature maps. 

These features are then fed into a transformer encoder that enhances contextual understanding 

by modeling long-range dependencies across spatial and channel dimensions. The decoder, 

equipped with query embeddings, refines these features to generate precise object predictions, 

including bounding box coordinates and class labels. RT-DETR also incorporates a one-to-

many assignment strategy, which links ground truth objects to multiple predictions, ensuring 

more robust training and reducing false negatives. Unlike traditional object detection models, 

which often rely on region proposals or anchor-based methods, RT-DETR eliminates these 

components for a streamlined approach, improving processing speed without compromising 

detection quality. Its architecture is further optimized by leveraging parallel computing and 

dynamic attention mechanisms, enabling efficient inference on both high-performance GPUs 

and resource-constrained embedded platforms. These design choices make RT-DETR a 

suitable choice for deployment in scenarios requiring rapid and accurate detection, such as 

autonomous driving and real-time surveillance systems. 

 

Figure 3.3 Architecture of RT-DETR, cited from [40] 
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This approach offers a balanced trade-off between speed and accuracy, making it highly 

suitable for deployment in V-CAS. By leveraging RT-DETR's capabilities, the system achieves 

real-time performance without significant compromises on precision, ensuring reliable object 

detection and collision prediction in dynamic driving environments. 

3.2.2   Object Tracking – DeepSORT 

We incorporated DeepSORT, one of the most effective real-time multi-object tracking 

algorithms, into our system. DeepSORT leverages the strengths of deep learning for feature 

extraction and combines them with the predictive power of a classic Kalman filter for robust 

data association. This hybrid approach ensures precise and efficient tracking of multiple 

objects, even in challenging scenarios involving occlusions or missed detections. DeepSORT 

operates through two primary modules: 

Deep Appearance Descriptor:  This module utilizes a pre-trained deep convolutional neural 

network (CNN) to extract high-level features from cropped object images in each video frame. 

These features represent the unique characteristics of objects, enabling the system to 

differentiate between them, even when they appear similar or move across frames. 

Kalman Filter and Hungarian Algorithm:  The Kalman filter is employed to predict the state 

of each detected object across consecutive frames, providing estimates for object locations and 

velocities. This predictive capability is crucial for maintaining object tracks during occlusions 

or temporary missed detections. The Hungarian algorithm, on the other hand, is used to 

associate detections in the current frame with existing tracks or initiate new tracks. This 

association is performed based on the similarity between the predicted states (from the Kalman 

filter) and the current detections, often measured using the Mahalanobis distance. 

This robust combination allows DeepSORT to maintain high accuracy and reliability in multi-

object tracking. Figure 3.3 illustrates the fundamental architecture of DeepSORT, highlighting 

the interaction between the CNN-based feature extraction, the Kalman filter, and the data 

association mechanisms. 

By integrating DeepSORT into our system, we ensured seamless and precise tracking of 

multiple objects, a critical requirement for real-time vehicle collision avoidance and monitoring 

in dynamic driving environments. This methodology enhances the system’s ability to predict 

and respond to potential collisions effectively. 
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Figure 3.3 Architecture of DeepSORT, cited from [94] 

3.2.3   Integrating DeepSORT with RT-DETR and PyTorch 

DeepSORT integration with RT-DETR needs some output conversions because RT-DETR 

delivers output values as top left and right bottom coordinate values of the bounding box while 

DeepSORT expects inputs in the form of center coordinates (Cx, Cy), width and height of the 

bounding box as shown in Figure 3.4. A separate function was defined to convert the bounding 

box output values coming from RT-DETR into the desired input format of DeepSORT. 

 

 
 

Figure 3.4 Input and output matching of DeepSORT with RT-DETR 
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The original Deep SORT implementation was based on TensorFlow [94]. But we have more 

interest in PyTorch due to its fast iterations speed, flexibility and more pythonic approach. So, 

we have to find a version of DeepSORT that supports implementation with PyTorch. 

3.2.4   Speed Estimation 

To estimate the speed of detected and tracked objects, the system calculates the Euclidean 

distance between the object's positions in consecutive frames using the distance formula in 

two-dimensional space (Equation 1). Traveling distance of the vehicle between these two 

frames called pixel displacement (Δd) is represented by:  

∆𝑑 =  √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2                      () 

 

where (xi, yi) and (xi+1, yi+1) are the horizontal and vertical pixel position of the target vehicle 

on frame i and i + 1 respectively. Pixel displacement is then converted to real-world meters 

using pre-calibrated pixel-per-meter (ppm), which was 20 in our case. Finally, the function 

calculates the speed (Equation 2) by dividing (Δd) with ppm and multiplying it by the time 

constant (1/FPS) and 3.6 (total seconds in an hour / 1000) to get our speed v in km/h which is 

represented mathematically as: 

𝑣 =  
∆𝑑

𝑝𝑝𝑚
 × 𝑡𝑖𝑚𝑒_𝑐𝑜𝑛𝑠𝑡 × 3.6            () 

 

Figure 3.5 Simulated view of velocity from car dash camera view 
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Figure 3.5 shows a simulated view of how the change in positioning of an object (vehicle) in 

consecutive frames helps in finding the velocity / speed estimation of the target object and how 

it looks like from drivers dash mounted camera point of view. 

3.2.5   Calculating Relative Rate of Acceleration 

The relative rate of acceleration (Equation 3) for each tracked object which crosses the invisible 

grid around the subject vehicle is calculated to assess collision risk. A queue of 20 speed values 

is maintained for each object, divided into initial and final buffers of 10 values each. The 

relative acceleration is then divided by a variable β which was 0.0625 in our case (1/16fps), 

shown mathematically as: 

 

𝑎 =
1

10
∑ 𝑓𝑖𝑛𝑎𝑙_𝑠𝑝𝑒𝑒𝑑𝑖

10
𝑖=1 −

1

10
∑ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑝𝑒𝑒𝑑𝑗

10
𝑗=1

20 × 𝛽
        ()  

 

 

Figure 3.6 Schematic view of relative acceleration of vehicles 

 

Figure 3.6 shows how the increase and decrease of velocities of two vehicles in same trajectory 

impacts their relative rate of acceleration and deceleration. If the frontal vehicle is also going 

in same or more speed then the host vehicle, their will be 0 or negative relative acceleration. 

However, if the frontal vehicle is slowing down, the host vehicle’s relative acceleration will 

increase showing a chance of collision. 
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3.2.6   Brake Light Detection 

The prediction of potential collisions through speed estimation is a relatively straightforward 

approach but presents several critical limitations that can impact its reliability in real-world 

scenarios: 

Limitations in Pixel-Based Collision Prediction The approach relies heavily on the 

calculation of collision prediction based on the relative displacement of a single pixel. While 

this method simplifies the computation process, it lacks robustness in certain situations. Small 

inaccuracies or noise in pixel displacement measurements can lead to erroneous predictions, 

reducing the reliability of the system. Furthermore, environmental factors such as motion blur, 

lens distortion, or sensor noise can exacerbate the problem, making the approach insufficient 

in handling complex real-world scenarios. 

Challenges in Low-Light Conditions. The system's reliance on object detection poses a 

significant issue, particularly in low-light or nighttime conditions. Failure to detect the objects 

of interest—such as vehicles or pedestrians—can result in the complete absence of collision 

predictions. This limitation underscores the need for a more reliable mechanism that can 

complement or replace speed estimation-based predictions under such adverse conditions. 

To address these challenges, another widely adopted method was integrated into the Vehicle 

Collision Avoidance System (V-CAS): predicting collisions by detecting the brake lights of 

the frontal vehicle. This additional mechanism provides an enhanced layer of safety and 

addresses several shortcomings of speed estimation. 

Brake Light Detection for Enhanced Collision Prediction. The detection of brake lights 

allows the system to anticipate a potential collision more effectively, even in scenarios where 

object detection may fail. For instance, at night, when vehicles might remain undetected due to 

poor lighting conditions or occlusion, brake lights can still be reliably identified. This approach 

leverages the higher visibility and distinctiveness of brake lights in low-light environments, 

providing an additional safety net for the system. 

Emergency Braking in Close Proximity. Moreover, the integration of brake light detection 

bypasses the dependence on speed estimation calculations in critical situations. If the detected 

brake light is in close proximity to the host vehicle, the system immediately issues a warning 

and applies emergency brakes, preventing potential collisions. This proactive measure ensures 

that the system remains responsive and effective, even when traditional speed estimation 

calculations might not suffice. 
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By incorporating brake light detection into the collision prediction mechanism, V-CAS 

achieves a more robust and comprehensive approach to collision avoidance. This dual-layered 

strategy ensures that the system remains effective across a wide range of scenarios, enhancing 

safety for both the driver and other road users. 

 

Figure 3.7 Brake light ON / OFF detection 

 

Figure 3.7 is a depiction of real-world scenario in which vehicles brake lights are being detected 

as ON or OFF and bounding boxes with different colors are drawn respectively. 

 

3.2.7   Fusion of Multiple Camera Sensors 

There are few known video pipelines and SDK like Nvidia DeepStream [91] and GStreamer 

[92] for real-time multiple video / camera stream fusion, however, they are very difficult to 

integrate and not flexible enough to be used / modified for custom application easily. Therefore, 

a more simplistic and flexible approach was adopted using OpenCV, Numpy and multi-

threading. The ‘vSstream’ class is designed to handle individual video streams, continuously 
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capturing frames from different sources in separate threads for efficient processing. These 

frames are resized to a uniform dimension and stored in a thread-safe manner. Then frames 

from all camera sources are read simultaneously, and if available, they are combined into a 

single frame using horizontal stacking provided by NumPy. This combined frame is then 

passed to an OD model, which identifies objects and returns their bounding boxes, confidence 

scores, and class IDs. The detections are subsequently processed by single tracker to maintain 

consistent identities of objects across frames. Finally, bounding boxes and labels are drawn on 

the combined frame to indicate tracked objects, and the frame is displayed using OpenCV. This 

approach enables real-time fusion and processing of multiple video streams in an efficient and 

simple way, facilitating tasks such as object detection and tracking across a unified video feed. 

 

 

Figure 3.8 Workflow of multi-camera stream fusion 

 

Figure 3.8 shows a workflow diagram of steps involved in fusion of multiple cameras streams 

so that a single OD and tracker can be applied on the combined window of concatenated 

window of all cameras. It is also pertinent to mention that, to keep the integrity of original 

camera streams, an identifier is being assigned to each camera stream depending upon the 

spatial coordinated of the combined window. In this case, any object detected is identifiable to 

which camera stream it belongs to. 
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Another main pre-processing step is to resize the input camera streams so that its individual 

camera resolution is resized in a way that total resolution / number of pixels of a single camera 

stream remains unchanged after concatenation of three camera inputs. While re-sizing of each 

input resolution, it is paramount to keep the aspect ration either unchanged or preserve 

according to actual resolution of our dataset resolution on which our OD model was initially 

trained. We have, resized each stream to 640 x 640 size and stacked them horizontally, making 

a combined resolution of (640 x 3) x 640 = 12,28,800 pixels. Each camera individual stream 

was 960P (1280 x 960) = 12,28,800 pixels. This overall pixel resolution matches our collision 

performance dataset each video resolution (1280x960). In this way we have obtained same 

number of frames per second (FPS) on combined window of real-world cameras input as of 

individual video of dataset. Reason is that our OD model and tracker has topo process same 

number of overall pixels in both cases. This can be illustrated in figure 3.9. One of the function 

code blocks of our vStream class snippet is also given below. 

 

 

Code Snippet 

class vStream: 

    def __init__(self, src, width, height, identifier): 

        self.width = width 

        self.height = height 

        self.capture = cv2.VideoCapture(src) 

        self.frame = None 

        self.identifier = identifier 

        self.lock = Lock() 

        self.stopped = False 

        self.thread = Thread(target=self.update, args=()) 

        self.thread.daemon = True 

        self.thread.start() 



 

45 

 

 

Figure 3.9 Horizontal stacking and resize of input streams 

 

3.2.8   Calculating Collision Prediction Score 

The relative rate of acceleration of the same object against its earlier values plays a pivotal role 

in our collision avoidance system. If it is increasing for detected object in the same trajectory 

as of our host vehicle, then it shows that our vehicle and the other object are closing with each 

other and vice versa. Depending upon these values, a confidence score was assigned. If it 

crosses a threshold (>60%), then an electric signal is generated from 40 pin Expansion Header 

of Jetson Orin Nano to the braking mechanism as pulse width modulation (pwm) signal. Where 

width of the pulse is proportional to the confidence score of collision prediction. Finally, it 

displays collision warnings on the monitor screen to the driver. Additionally, the custom trained 

Brake Light detection model also keeps on detecting the vehicles in the scene with brakes “ON” 

status. If any such vehicle comes into very near proximity of the host vehicle in the same line 

of trajectory or cross-sectional trajectory, it generates an emergency braking signal from our 

embedded device to the vehicle brake application system. 
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Chapter 4 

Experimental Results 

4.1   Datasets  

4.1.1 For Object Detection 

Two public datasets from Roboflow were utilized to fine-tune the pre-trained RT-DETR-L 

object detection model. These datasets were specifically chosen to cater to the diverse 

requirements of the target application and to ensure robust performance across various 

scenarios: 

4.1.1.1  Vehicle i2 Dataset 

This dataset comprises a total of 7,458 high-quality images, each with dimensions of 640 x 640 

pixels. The dataset covers 25 distinct classes, representing an extensive range of vehicle types, 

including ambulances, buses, rickshaws, bicycles, and motorcycles. Additionally, the dataset 

encompasses other potential collision objects such as pedestrians, thereby making it highly 

versatile for real-world applications involving traffic and collision avoidance. As part of the 

preprocessing pipeline, auto-orientation of pixel data was performed with EXIF-orientation 

stripping, ensuring uniformity and consistency in the input data. This step was crucial for 

eliminating variations caused by camera orientation during image capture. The diverse set of 

classes and comprehensive coverage of vehicles make this dataset an invaluable resource for 

developing models capable of detecting a wide variety of traffic-related entities. 
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4.1.1.2 Brake Light Detection Dataset 

This dataset contains an impressive 22,525 images, all uniformly resized to 640 x 640 pixels. 

It focuses on a binary classification task, distinguishing between "Brake Off" and "Brake On" 

states, making it highly relevant for applications in automotive safety and advanced driver-

assistance systems (ADAS). The preprocessing pipeline included auto-orientation of pixel data 

with EXIF-orientation stripping to maintain data consistency. To further enhance model 

robustness, a series of data augmentation techniques were applied. These included: 

1. A 50% probability of horizontal flipping to address variations in vehicle orientation. 

2. Random cropping of between 0% and 20% of the image, introducing spatial variability. 

3. Adjustments to brightness levels ranging from -25% to +25%, simulating different lighting 

conditions. 

4. Application of Gaussian blur with a range of 0 to 1.5 pixels, mimicking potential lens 

distortions. 

5. Addition of salt-and-pepper noise to 5% of the image pixels, creating resilience to sensor 

noise. 

These augmentations not only increased the diversity of the training data but also prepared the 

model to handle real-world complexities effectively. The substantial size and targeted scope of 

this dataset make it highly suitable for fine-tuning models aimed at brake light detection, a 

critical feature in modern traffic safety systems. 

4.1.2 For Collision Avoidance Evaluation 

To date, as far as we know, no publicly available video dataset exists that provides multiple 

camera streams specifically for traffic data analysis and collision prediction. To address this 

gap, we utilized a combination of hybrid datasets to support our research. The first dataset is 

our own, recorded using three dash-mounted cameras installed in the same vehicle. This dataset 

spans over 10 hours of footage captured on highways and within city areas under a variety of 

conditions, including normal and rash driving scenarios during the day, cloudy weather, dusk, 

and night. The recordings cover vehicle speeds ranging from 10 to 120 km/hr, offering a diverse 

set of driving environments and behaviors.   

The second dataset is the publicly available Car Crash Dataset (CCD) [93], specifically 

designed for traffic accident analysis. The CCD comprises real-world traffic accident videos 

sourced from YouTube channels. These videos have been carefully processed and split into 

1,500 trimmed clips, with each video containing 50 frames recorded at 10 frames per second. 
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Additionally, 3,000 normal driving videos were included as a reference set, randomly sampled 

from the BDD100K dataset, which provides a wide range of non-accident driving scenarios.   

By leveraging this combination of datasets, our approach ensures a comprehensive evaluation 

of traffic behavior and collision prediction under both controlled and real-world conditions. 

The inclusion of multi-camera recordings from our custom dataset and the diverse accident 

scenarios from CCD provides a unique dataset blend, enabling a more robust and realistic 

analysis of collision prediction and traffic data across varying contexts and driving situations.

  

4.2   System Resources and Training Setup 

The training process for the Vehicle Collision Avoidance System (V-CAS) was executed on a 

high-performance PC powered by Nvidia RTX 4090 GPU, while inference tasks were carried 

out on the NVIDIA Jetson Orin Nano, an advanced embedded platform, using Ezviz H1C 

cameras. Python 3.10 was utilized as the core programming language for the implementation, 

with PyTorch serving as the deep learning framework due to its flexibility and efficiency in 

handling complex neural network operations.   

The embedded system's specifications, as outlined in Table 4.1, emphasize the Jetson Orin 

Nano's critical role as the primary computational and monitoring resource. This embedded 

device is central to real-time operations within the V-CAS, enabling seamless processing and 

decision-making inside a moving vehicle. Numpy, a powerful numerical computing library, 

was employed for tasks such as horizontal stacking of multiple video streams, providing an 

efficient mechanism to manage and process video data.   

In addition to hardware and programming specifics, Table 4.2 presents a detailed summary of 

the training hyperparameters and configurations tailored to the datasets used for fine-tuning the 

model. These datasets required precise tuning of parameters such as the optimizer, learning 

rate, momentum, and decay. The selection and adjustment of these parameters were carefully 

conducted to ensure they aligned with the dataset characteristics, including size and class 

distribution. This meticulous tuning was instrumental in achieving optimal model performance, 

allowing the system to handle the complexities of object detection and collision prediction 

effectively in diverse real-world scenarios. Through this integrated approach, the training and 

inference pipeline was optimized to support robust, real-time functionality for V-CAS. 
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Figure 4.1 Experimental Setup 

 

Figure 4.1 shows the experimental setup of multi camera dataset being inferred using Jetson 

Orin Nano in real-time. 

 

 

Table 4. 1 System resources for training and inference 

 

Training (Nvidia GeForce RTX 4090) Inference (Jetson Orin Nano) 

Type Object Specifications Type Object Specifications 

 

 

 

 

Hardware 

CPU 

Intel core i11 

Hardware 

CPU 
6-core Arm® Cortex®-

A78AE v8.2 64-bit 

 

GPU 

Nvidia Geforce RTX 4090 

with 24564MiB GPU 

1024-core NVIDIA Ampere 

architecture GPU with 32 

Tensor Cores 

RAM 64 GB RAM 8GB 128-bit LPDDR5 

Power 450 W Power 15 W 

 

 

Software 

OS Windows 11 Professional 

64 bit 

Software 

OS 
Jetpack 6.0 Developer, 

Ubuntu 22.04 

Frame

work & 

PyTorch 2.3.1, CUDA 

12.1, cuDNN 9.2.1, 

Anaconda, PyCharm IDE 

Framew

ork & 

PyTorch v2.2.0, CUDA 

12.2.12, cuDNN 8.9.4,  

TensorRT 8.6.2 

https://docs.nvidia.com/deeplearning/tensorrt/release-notes/#rel-8-6-2
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Training (Nvidia GeForce RTX 4090) Inference (Jetson Orin Nano) 

Type Object Specifications Type Object Specifications 

other 

tools 

Other 

tools 

 

 

Table 4. 2 Training parameters for both OD datasets 

 
 

 

Dataset 

Training 

Images 

Validation 

Images 

 

 

No of 

Classes 

 Training Hyperparameters 

No of 

Epochs 

Batch 

Size 

Image 

Size 

Optimizer Learnin

g Rate 

Momen

tum 

Decay 

Vehicle 

i2 

6,638 820 25 100 32 / 

16 

640 AdamW 0.0003 0.9 0.0005 

Brake 

Light 

Detecti

on 

18,939 3,586 2 100 32 

/16 

640 SGD 0.01 0.5 0.005 

 

4.3   Evaluation Metrices  

Spatial evaluation of our object detection system is centered on the mean average precision 

(mAP), a widely recognized and extensively utilized metric in object detection tasks. Among 

its variants, mAP50 (mean Average Precision at an Intersection over Union [IoU] threshold of 

0.5) serves as a straightforward benchmark. It evaluates the precision of the model by 

calculating how accurately it can identify objects when the overlap between the predicted 

bounding box and the ground truth bounding box meets or exceeds 50%. This metric offers a 

single, concise value that reflects the model’s competency in correctly identifying objects with 

a reasonable level of overlap, making it a popular choice for initial evaluations due to its 

simplicity and directness. 

On the other hand, mAP50-95 (mean Average Precision across IoU thresholds from 0.5 to 0.95) 

provides a much more thorough assessment of the model's performance. It measures average 

precision over a range of IoU thresholds (0.5, 0.55, 0.6, ..., 0.95) in increments of 0.05, 

effectively requiring the model to demonstrate accuracy across varying levels of overlap. This 
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metric is significantly more rigorous, as it tests the robustness and consistency of the detection 

system under stricter conditions. By incorporating this range of thresholds, mAP50-95 delivers 

a nuanced picture of the model’s ability to generalize across diverse scenarios, making it an 

essential metric for advanced evaluations. 

In addition to mAP metrics, we adopted a confusion matrix for a detailed evaluation of object 

detection and collision prediction performance, particularly when applied to the Vehicle i2, 

Brake Light Detection, and CCD datasets. The confusion matrix offers a comprehensive 

framework to assess the Degree of Completeness (Recall) and the Degree of Correctness 

(Precision). This analysis is based on four pivotal parameters: true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN), each representing a specific classification 

outcome for detected and actual samples. 

Accuracy, calculated using Equation 4, reflects the proportion of all correctly classified 

samples among the total number of samples, providing an overall measure of the system’s 

effectiveness. Precision, expressed through Equation 5, focuses specifically on the model’s 

ability to correctly identify positive samples, quantifying the ratio of true positives to all 

detected positives. Meanwhile, Recall, derived from Equation 6, measures the extent to which 

the detection system identifies all potential objects of interest. As Recall evaluates the quantum 

of objects covered by the object detection and collision prediction system, it holds the highest 

weight among our evaluation metrics, given the critical nature of ensuring comprehensive 

detection coverage in our use case. 

This multi-faceted evaluation strategy combines the strengths of mAP metrics and confusion 

matrix-derived parameters, delivering a robust and detailed understanding of the detection 

system’s performance across diverse datasets and challenging conditions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           () 

 

          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           () 

 

          𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  () 
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4.4   Results  

 

Tables 4.3 and 4.4 present a detailed comparison of the most recent real-time object detection 

(OD) models applied to our training datasets for vehicle and brake light detection, respectively. 

For this analysis, we focused exclusively on real-time OD models released after 2022, 

prioritizing those that combine high accuracy with real-time performance. Models such as the 

vision-based end-to-end object detection transformer (DETR) or Dino-DETR, despite their 

impressive accuracy, were excluded due to their lack of real-time processing capabilities, 

which are crucial for our application. This selection criterion ensures that the evaluated models 

align with the performance demands of the Vehicle Collision Avoidance System (V-CAS), 

where real-time processing is paramount. 

Figure 4.2 visually compares the precision and recall metrics of all trained models, evaluated 

on both the Vehicle i2 dataset and the Brake ON class of the Brake Light Detection dataset. 

The comparison highlights that RT-DETR consistently outperforms other models, particularly 

in terms of Recall, which measures the system's ability to detect and cover all relevant objects. 

Additionally, RT-DETR shows a strong performance in Precision across most cases, indicating 

its capability to minimize false positives while accurately identifying true positives. 

This superior performance of RT-DETR in both metrics underscores its robustness and 

suitability for our use case. As a result, it has been selected as the backbone OD model for V-

CAS, ensuring optimal detection accuracy and real-time responsiveness, which are critical for 

the effective implementation of our collision avoidance system. By choosing RT-DETR, we 

ensure that the system is equipped with a state-of-the-art detection framework capable of 

meeting the challenges of real-world scenarios. 
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Table 4. 3 Comparison of different real-time object detectors on vehicle i2 public dataset 

 

 

 

Model 

Size 

(MB) 

Parameters 

(Mn) 

Inference 

Time per 

Image 

(ms) 

Evaluation Metrices 

Precision Recall mAP50 mAP5

0-95 

YOLOv8s 21.4 11.13 0.7 0.844 0.747 0.83 0.706 

YOLOv8m 49.6 25.85 1.8 0.767 0.77 0.816 0.697 

YOLOv8l 83.5 43.62 2.7 0.771 0.785 0.803 0.688 

YOLOv9s 14.5 7.29 0.9 0.864 0.731 0.842 0.706 

YOLOv9c 49.2 25.34 2.6 0.705 0.838 0.842 0.714 

YOLOv9e 111 57.39 5.9 0.828 0.723 0.782 0.664 

YOLOv10s 15.7 8.05 1 0.85 0.736 0.861 0.73 

YOLOv10m 31.9 16.47 1.9 0.856 0.706 0.801 0.676 

YOLOv10b 39.5 20.45 2.5 0.75 0.721 0.79 0.654 

RT-DETR L 63.1 32.03 2.6 0.857 0.845 0.853 0.724 

 

 

 

 

 

Table 4. 4 Comparison of different real-time object detectors on brake light detection dataset 

 

Model Size 

(MB) 

GFLOP

S 

 Brake OFF Class (-ve class) Brake ON Class (+ve class) 

TP FP FN Precision Recall TP FP FN Precision Recall 

YOLOv8s 21.4 28.5 1479 1308 640 0.530 0.697 1278 1026 586 0.554 0.685 

YOLOv8m 49.6 78.8 1560 1238 559 0.557 0.736 1350 1007 514 0.572 0.724 

YOLOv8l 83.5 164.9 1572 1245 547 0.558 0.741 1328 996 536 0.571 0.712 

YOLOv9s 14.5 26.7 1575 1282 544 0.551 0.743 1325 1028 539 0.563 0.710 

YOLOv9c 49.2 102.4 1597 1240 522 0.562 0.753 1337 962 527 0.581 0.717 

YOLOv9e 111 189.2 1596 1249 523 0.560 0.753 1361 961 503 0.586 0.730 

YOLOv10s 15.7 24.5 1528 1163 591 0.567 0.721 1307 867 557 0.601 0.701 

YOLOv10m 31.9 63.6 1474 1321 645 0.527 0.696 1366 989 498 0.580 0.732 

YOLOv10b 39.5 98.1 1391 1357 728 0.506 0.656 1362 1020 502 0.572 0.730 

RT-DETR L 63.1 103.4 1629 850 490 0.657 0.769 1373 631 491 0.685 0.736 
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Figure 4.2 Precision and recall comparison on vehicle i2 and brake light detection datasets 

 

Figure 4.2 illustrates real-time parallel object detection on three vehicle mounted dash cam 

streams having 1920 x1080 resolution in both day and night. The advantage of having multiple 

camera streams to get a better understanding of scene is clearly visible. Few objects which are 

missed with middle camera (monocular approach) are detected with either left or right side 

camera’s view. We have evaluated our own created dataset to see the performance of object 

detector-tracker results as well as rate of acceleration calculation. However, for collision 

prediction analysis, we have used the available CCD dataset having actual collision incidents 

since it was not possible to create actual collision scenario on ground. 

 

 

          

Figure 4.3 Multi-Camera Fused Object Detection using Custom Trained RT-DETR  
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Figure 4.3 is a depiction of collision prediction of V-CAS on CCD Crash-1500 subset in both 

day and night conditions from the actual crash incident. From left to right we can see how the 

object was detected first, then its relative rate of acceleration and trajectory continuously being 

measured and basing upon that a collision warning was generated on screen proactively along 

with adaptive barking signal generated from 40 pin expansion header of our Jetson device. 

 

 

   

   

 

Figure 4.4 Day and Night Collision Prediction using VCAS on Car Crash Dataset  

 

 

 

 

Table 4. 5 V-CAS overall performance evaluation on Car Crash dataset 

 

Cat

ego

ry 

Total 

Ground 

Truth 

(TP+FN) 

V-CAS without Brake 

Detection 

V-CAS with Brake 

Detection 

FPS on 

Nvidia 

GeFor

ce 

RTX 

4090  

FPS 

on 

Jetso

n 

Orin 

Nano  

Predict

ed 

(TP+F

P) 

Precisi

on 

Accura

cy 

Predict

ed 

(TP+F

P) 

Precisi

on 

Accura

cy 

Day 1062 764 759 98.68% 97.64% 760 98.94% 98.12% 62 15.6 

Nig

ht 
438 

376 304 89.47% 68.95% 352 97.72% 90.87% 61.8 15.1 

 

Table 4.5 highlights the performance of the Vehicle Collision Avoidance System (V-CAS) 

when evaluated on the Crash-1500 subset of the CCD dataset. This subset consists of 1500 

crash videos, out of which 1140 depict actual crash incidents involving collisions with host 

vehicles. The dataset includes 764 daytime and 376 nighttime crash scenarios, providing a 

comprehensive evaluation under varying visibility conditions. 
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The results for daytime crashes are highly promising, demonstrating precision levels exceeding 

98% and an almost equivalent accuracy, reflecting the robustness of the system during optimal 

visibility conditions. However, the performance during nighttime crashes reveals challenges, 

primarily due to poor visibility and the impact of high-beam lights, which degrade detection 

and tracking capabilities. Without incorporating the brake detection module, the accuracy 

during nighttime scenarios drops noticeably due to an increased number of false negatives, 

where collisions fail to be identified effectively. 

When the brake detection module is integrated, the system's nighttime performance improves 

significantly, achieving an accuracy above 90%. This enhancement is attributed to the module's 

ability to detect brake lights, even in challenging lighting conditions, thereby reducing the false 

negatives and bolstering the system’s reliability. 

The embedded implementation of V-CAS maintains near-real-time performance, achieving 

frame rates of over 15 fps by leveraging detection on alternate frames. While there is a slight 

reduction in fps during nighttime scenarios, caused by difficulties in object tracking and 

intermittent detection losses due to challenging lighting conditions, the system still performs 

effectively. 

In summary, V-CAS achieves a final accuracy of 98.12% for daytime crash videos and 90.87% 

for nighttime crash videos, demonstrating its capability to handle a wide range of real-world 

conditions with a balance of precision, reliability, and real-time performance. This evaluation 

underscores the system’s adaptability and robustness, particularly with the inclusion of the 

brake detection module, making it a viable solution for real-time collision avoidance 

applications. 
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Chapter 5 

Conclusion and Future Work 

5.1   Conclusion 

 

In this research, we have examined the latest techniques and technologies utilized in vehicle 

collision avoidance systems, focusing on threat assessment, deep learning and embedded 

systems. We have performed a comprehensive literature review for the vehicle collision 

avoidance techniques and proposed a real-time, multicamera, collision avoidance system V-

CAS using custom trained vision-based transformer RT-DETR and DeepSORT. They were 

being compared for their performance and precision along with the integration technique for 

multicamera streams for a single object detector-tracker solution. RT-DETR is a balanced 

choice between inference speed and precision whereas DeepSORT is best for real-time multi-

object tracking in diverse scenarios. Our proposed system showed promising results on the Car 

Crash Dataset in daytime scenarios with above 98% and 90% accurate results in daytime and 

nighttime scenarios. A combination of Brake light detection was used to further enhanced night 

time performance and robustness of our model. Our proposed system is quite precise, 

computationally efficient, and low-cost real-time solution systems that can be implemented on 

low-power-embedded platforms for vehicles in everyday life. As these technologies evolve, 

their integration into ADAS and autonomous vehicles is expected to revolutionize road safety 

and driving efficiency. The advancements in sensor technologies, computational power, and 

machine learning algorithms have collectively enhanced the accuracy and reliability of 

collision avoidance systems. 
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5.2   Future Work 

 

Looking ahead, several key areas require further research and development to enhance the 

effectiveness and adoption of collision avoidance systems in autonomous vehicles and ADAS 

applications. Future work should focus on developing more sophisticated sensor fusion 

algorithms. They can have the capability to dynamically adjust to changing environmental and 

lightning conditions, improving the accuracy of sensor data fusion under bad weather 

conditions. The integration of additional sensors, such as thermal cameras, could provide 

valuable information in scenarios where traditional sensors may struggle. The computational 

demands of real-time processing and decision-making continue to be a significant challenge; 

thus, research should explore more efficient algorithms using the field of tinyML and hardware 

accelerators to reduce latency and improve the responsiveness of collision avoidance systems. 

The future of collision avoidance systems will depend on the public acceptability to integration 

of vehicle-to-everything (V2X) communication or using stand-alone emended systems to 

perform all tasks independently on vehicles without any foreign intervention. Ensuring the 

cybersecurity and reliability of these systems is paramount as vehicles become increasingly 

connected. Moreover, understanding how drivers respond to system alerts and interventions is 

essential for designing intuitive and effective interfaces. Policymakers must develop dynamic 

regulations that keep pace with technological advancements while ensuring safety and public 

acceptance. Collaborative initiatives between industry, academia, and government agencies 

will be crucial for addressing these challenges and fostering innovation. 
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