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ABSTRACT 

Fire and smoke detection is essential in safety-critical environments, yet traditional systems 

often struggle with maintaining accuracy and reducing false alarms in complex scenarios. Therefore, 

vision-based systems are used for preventing fire tragedies. There are different machines and deep 

learning techniques used to timely and effectively detect the fire/smoke and one of them is “You Only 

Look Once” (Yolo). Yolo is a type of neural network (CNN), which is good at detecting patterns in 

images. Yolov8 is the most widely used object detection model for vision-based systems. However, 

there still exist some challenges, such as high computational complexity and low detection 

performance. This study introduces a novel lightweight and optimal Yolov8 model to over these 

challenges. To enhance performance, Efficient Channel Attention (ECA) is integrated into the 

model’s head to focus on critical features, while the C3Ghost module in the backbone reduces 

computational overhead without sacrificing accuracy. The model is trained and evaluated on two 

datasets: FS and FASDD comprising diverse indoor, outdoor fire and smoke scenarios and has 

achieved a mAP@50 of 89%, precision:88%, recall: 84%, and an F1-score of 86.4% which shows an 

improvement of 4.56% in precision, 2% of recall and 8.10% in mAP@50 in comparison with the 

existing state of the art. Our findings have demonstrated significant improvements in detection 

accuracy and false-positive reduction compared to other computationally intensive models like 

Yolov5, Yolov7 and (vision) Transformers. Our model is lightweight architecture, more accurate in 

fire, and smoke detection, and makes it suitable for embedded device deployment. 

 

Keywords: Deep learning, Efficient Channel Attention (ECA), C3Ghost, Indoor fire, Outdoor Fire, 

Object Detection, Yolov8 
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CHAPTER 1: INTRODUCTION 

The ability to detect fires and smoke is critical for both safety and ecological reasons and 

holds significant significance. Fire detection systems which operate based on sensors have 

dire constraints. For instance, these varieties of devices are best suited for the indoor 

environment and are ineffective in larger or more active environments as they need to be 

stationed far too close to a flame. Moreover, they are incapable of locating the fire, the fire 

location's urgency, or the smoke movement in such detail with such accuracy. Recent 

advances in video-based fire detection systems which employ Convolutional Neural 

Networks (CNNs) or current object detection technology in image understanding such as 

YOLO (You Only Look Once) are a real game changer. These astonishing detectors 

function successfully for precise detection of flames within an extensive range of settings 

extending from confined indoor areas to expansive outdoor premises that require protection 

against wild flames. 

CNNs have been especially useful in image classification and feature extraction, 

enabling powerful approaches to fire detection in diverse situations. The introduction of 

models like YOLO has marked a significant improvement in fast response fire detection 

systems with high precision and minimal delays, making them optimal for use in the most 

critical applications. These advancements help in the fight against fires, since their timely 

detection facilitates quicker response times and prevention of large-scale disasters. This 

thesis details the design and construction of a fire and smoke detection system based on 

YOLO, while maximally improving the detection and minimizing the false alarms with 

sophisticated neural networks. 

Pakistan, like many other countries, faces significant challenges due to fires, 

particularly wildfires. These fires have a multifaceted impact, affecting public health, the 

environment, and the economy. Wildfires in Pakistan contribute to substantial carbon 

emissions, exacerbating climate change, while the smoke from these fires presents serious 

health risks, including respiratory and cardiovascular issues. Additionally, the destruction 

of habitats and ecosystems by wildfires leads to long-term environmental degradation. 
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Effective fire detection and management strategies are crucial for mitigating these adverse 

effects and protecting both human lives and the environment. 

In order to mitigate these risks, this study puts forwards the state-of-the-art fire 

detection system built on YOLO model for monitoring and detecting flames in intricate 

settings. This study focuses on two datasets FASDD and FS which include both indoor and 

outdoor fires for developing fire detection system which offers timely solutions for fire 

detection and control not only in Pakistan but in other susceptible areas as well. 

1.1 Motivation, Scope, and Background 

An increasing rate of destructive wildfires and fires in urban areas points to the need 

for improved fire detection and suppression systems. Problem-oriented development 

usually works with algorithms and methods based on known sensors, but their 

implementation does work in real information diverse and mobile spaces. These issues 

need the evocative implementation of advanced fire technologies which risk civilians, 

structure, and nature. There is an opportunity for much improvement in these matters 

through CNNs and subsequently more advanced models like YOLO, SSD, and RT-DETR. 

The purpose of this research is to improve the ability to detect fires, reduce losses and 

damages, and combat fire threats in areas like Pakistan which are more susceptible to fire 

disasters comparatively. 

The work addresses the goal of creating and deploying deep learning-based smoke 

and fire detectors using the Yolo state-of-the-art model augmented with Efficient Chanel 

Attention and C3Ghost module for speed and energy efficiency. This research includes 

these aspects for self-extinguishing scenarios both in houses and large scale outdoors. The 

objective of this project is to examine how these models can be utilized to enhance 

detection precision while lowering erroneous trigger rates, using real time computational 

video analysis which can seamlessly integrate into existing fire alarm systems. In journal 

articles, fire incidents are analyzed from different perspectives and this problem is tackled 

to achieve low false positive rates. The outcome of the investigation is a multi-faced fire 
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alarm which provides adaptability to numerous conditions of frameworks and types of 

fires. 

Over the years, fire detection technology has evolved significantly, transitioning 

from basic sensor-based systems to sophisticated video analysis techniques. Traditional 

methods, while effective in controlled environments, are often inadequate for early 

detection in complex and dynamic scenarios. The advent of CNNs has revolutionized fire 

detection, allowing for more precise and rapid identification of fire and smoke. Models 

such as YOLO represent the forefront of this technology, offering enhanced object 

detection capabilities that surpass the limitations of traditional systems. 

The newer models of YOLO, particularly YOLOv8, YOLOv9, and YOLOv10, have 

proven to improve accuracy while also being faster, which is important for real-life 

applications. At the same time, some models like RT-DETR, SSD and Faster RCNN 

employ different methods of object detection and improve the ability to detect smoke and 

fire more effectively across different environments. These models can address the 

challenges created by the limitations in traditional detection technologies and present 

strong options for effective fire control management through early detection and 

intervention. 

This aims to add value to the existing literature about fire detection and prevention 

of fire in a manner which is actionable and practical agitated places like Pakistan. This 

thesis intends to not only build practical and technical skill, but also to understand the 

extent to which neural network based enhanced detection systems can help mitigate 

damage caused by excessive fire and smoke, set a standard for the public health, 

environment, and safety. 

1.2 Problem Complexity  

 Fire and smoke are intrinsically linked phenomena, often occurring concurrently. 

While smoke may, under specific conditions, ignite its source and escalate into flames, fire 

invariably produces smoke as a byproduct. Conversely, while smoke may not necessarily 

precede fire, fire is always accompanied by smoke. Despite their inseparable nature, fire 
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and smoke possess distinct characteristics. A complete understanding of these elements is 

a must for developing effective detection technologies and systems. 

1.2.1 Attributes of Fire 

A flame is predominantly a combination of several gases which are produced when 

combustible matter, an oxidizer and heat are employed. The composition of combustion 

material together with several intermediate reactions determines the emitted frequency 

spectrum and light that is visible, infrared, and on some rare conditions, ultraviolet. 

1.2.1.1   Shape 

Normally, a flame's shape forms a triangle. It is always broad at the lower end and 

gets narrower at the top. Such is the case due to the angle and speed of the wind as well as 

the amount of combustion agents the fire has. A flame’s shape is altered depending of the 

shape and the surface area of the source, the combustion’s point of origin. The size, area, 

form and quantity of fire regions in an image vary from one frame to another. 

1.2.1.2  Color 

The multi-colored tendency of fire and the soot that can sometimes be produced does 

at times emit a light that seems to be dimming. The particles that flame emit are captured 

by the burning source and thus are turned into black bodies which releases a dark orange 

hue. Blue completely burned gas fire emits single wavelength radiation and gives off the 

infrared and recommend radiation. The color is found out by the chemical composition for 

emission spectra and the temperature for black body radiation. A flame’s dominant color 

is altered by temperature. The blue base of the fires is the hottest color achievable for 

organic material. Above that, other colors like yellow orange and red are achieved. The 

latter set of colors may or may not match the colors emittance source composition set. 

However, wildfires rarely consist of barium nitrate which is why the fire from barium 

nitrate is bright green. 
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1.2.2 Features of smoke 

Smoke consists of aerosol airborne particulates and gases emitted during the 

combustion or pyrolysis of a material, combined with the amount of air mixed into the 

mass. The nature of the smoke formed is dependent upon the kind of fuel being burnt and 

the combustion conditions. The burning source tends to combust more completely in the 

presence of fire and oxygen, thus producing less smoke. 

1.2.2.1 Shape 

At the origin, the shape of smoke is denser, and it gets diluted as it ascends into the 

ambient surroundings. Smoke plumes usually have vertical or almost vertical axis that are 

overcome by the wind and buoyancy, so it expands in a circular region, which increases its 

size perpendicular to its axis. Smoke’s movement pattern is not stable, which results in the 

changing sculpture. 

1.2.2.2 Color 

To assess the scenario involving a fire, smoke is also considered by firefighters. 

The color of the smoke is very crucial to the prediction of fire behavior. It reveals the type 

of fuels and their intensity which gives clues to the possible actions of the fire. White smoke 

indicates that the material is releasing moisture and water vapor and is therefore undergoing 

a fire start. White smoke can also suggest flashy fuels such as grass or twigs. Heavy 

unconsumed thick fuels burn on, and black smoke is a thick by-product. And sometimes, 

black smoke serves as a by-product of burning tires, cars, or buildings. The blacker smoke 

is emitted, the more aggressive the fire is. Silvery smoked suggests that the fire is in its 

final stages of existence. 
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Figure 1.1: Features of fire and smoke [1] 

 

1.3 Fire and Smoke Categories 

A clear understanding of the types of fires and smoke they emit is required for 

effective fire and smoke detection. These may be classified in a general way with regards 

to their environment and the type of fire. Each category poses specific issues which require 

specially designed detection systems.  

1.3.1 Indoor Fire 

Fires that are classified as indoor fires occur within buildings or enclosed spaces in 

which the fire was started deliberately or accidentally in a process termed as “ignition.” 

The causes can be electrical failures, neglected cooking, heating devices failing or some 

other accidental igniting sources. Early warning of such fires is very significant because 

Indoor fires produce dense smoke which can spread at an alarming rate. These systems 

should always be on guard and accurate even in low visibility conditions because of the 

smoke and fire. The main aim here is to shift the focus towards the safekeeping of 

individuals inside and damage control to the building. Minimal harm to the occupants and 

structural damage to be avoided. 
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Figure 1.1: Sample images of Indoor fires [1] 

1.3.2 Outdoor Fire 

Outdoor fires appear in open areas such as fields, forests, and urban environments. 

They can be ignited by natural causes such as lightning strikes, or human activities, such 

as discarded cigarettes, campfires, or industrial accidents. Unlike indoor fires, outdoor fires 

are often fueled by wind and dry vegetation, which can cause them to spread rapidly and 

uncontrollably. Detection systems for outdoor fires must be resilient to environmental 

factors such as strong winds, rain, and varying light conditions. These systems must ensure 

reliable performance in dynamic, large-scale settings, where fire behavior can change 

rapidly. 

 

Figure 1.2: Samples of outdoor fires  
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1.3.3 Wild fire 

Wildfires are a specific type of outdoor fire that can spread quickly across vast areas, 

particularly in forests and grasslands. Driven by dry vegetation, strong winds, and drought 

conditions, wildfires can produce vast amounts of smoke, which may travel great distances 

and significantly degrade air quality. Detecting wildfires at an early stage is crucial for 

containment efforts, especially in remote areas. Detection systems for wildfires must cover 

large geographical areas, often incorporating satellite or drone-based monitoring, and 

should be able to identify fire outbreaks at the earliest signs, enabling rapid response and 

resource deployment. 

 

Figure 1.3: Sample images of wildfires  

1.3.4 Smoke Emissions 

The composition of smoke is highly influenced by the materials that are burning. As 

such, understanding the characteristics of different types of smoke is essential for 

optimizing detection systems. The three primary categories of smoke emissions are: 

1.3.4.1 White Smoke  
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Generally created from the burning of organic matter like plants. White smoke is 

very thin and gets dispersed very fast which makes it harder to see from far away. While a 

fire is in its early stages, the detecting systems should be fine-tuned and be able to see the 

dim traces of smoke during the initial phases of the fire. 

1.3.4.2 Black Smoke 

Generated from the burning of synthetic materials, such as plastics or hydrocarbons, 

black smoke is dense, thick, and highly visible. It often indicates a high-intensity fire, 

making it easier to detect. However, dense black smoke can obscure other critical fire 

indicators, such as flame intensity or the spread of fire. 

1.3.4.3 Gray Smoke  

A mixture of different materials burning gray smoke is characterized by a blend of 

the features of both white and black smoke. Its varying density and color make it more 

challenging to detect accurately. 

Each smoke type presents unique detection challenges. For instance, dense smoke 

from black fires can obscure visual cues, while the rapid dispersion of white smoke can 

make it difficult to track the fire’s progress. Effective fire and smoke detection systems 

must be designed to adapt to these differences and respond accordingly. 

1.4 Types of Various Detection Approaches 

Through the various technological approaches, fire and smoke detection systems has 

achieved its significant improvement. These can be classified into the types of traditional, 

sensor-based, and sophisticated computer vision systems. Each exhibits remarkable 

strengths and weaknesses, and an appreciation of these approaches is required for the 

design of effective detection systems. 
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. 

1.4.1 Traditional Approaches 

1.4.1.1 Conventional Smoke Detectors 

The most common fire detectors are traditional smoke detectors. These devices 

depend on two methods: photoelectricity and ionization. In a photoelectric detector, a light 

source and a photosensitive sensor are present; their combined functions cause an alarm to 

go off when a smoke particle enters the detection chamber and scatters the light. In contrast, 

Ionization detectors contain a small quantity of radioactive material for air ionization. 

When smoke interferes with it, the alarm is triggered. However, these types of detectors 

are highly effective for indoor use. There are, however, shortcomings for use in larger and 

more open spaces as they may not detect smoke or fire timely. 

1.4.1.2 Heat Detectors 

Heat detectors are designed to activate when a predetermined temperature threshold 

is exceeded. These detectors are particularly useful in environments prone to false alarms 

from smoke detectors, such as kitchens or garages. While they are reliable in detecting 

slow-burning fires, they may not respond quickly enough to rapidly spreading flames, 

which poses a limitation in situations where early detection is crucial. 

1.4.2   Sensor-based Approaches 

1.4.2.1 Infrared (IR) Sensors 

Infrared sensors detect the infrared radiation produced by flames. These sensors are 

particularly effective in detecting fires that produce significant heat, making them ideal for 

industrial and outdoor applications where flames are more likely than smoke. However, 

they may struggle with detecting smoke, which can be a limitation in certain fire scenarios. 
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1.4.2.2 Ultraviolet (UV) Sensors 

UV sensors detect ultraviolet light emitted by flames and are known for their fast 

response times. These sensors can identify fires within milliseconds, making them well-

suited for high-risk environments where quick detection is essential. However, UV sensors 

are sensitive to false alarms caused by lightning, sunlight, or industrial activities like arc 

welding.  

1.4.2.3 Gas Sensors 

Gas sensors detect burning gases, such as carbon monoxide (CO) and carbon dioxide 

(CO2), which are released during the combustion process. These sensors are particularly 

useful for detecting smoldering fires that may not produce visible flames or substantial 

heat. While effective in certain fire scenarios, they may not provide early warnings for 

rapidly spreading or large fires. 

1.4.3 Vision-based Approaches 

1.4.3.1 Video-Based Detection System 

Video-based detection systems use cameras and image processing algorithms to 

analyze video feeds for signs of fire and smoke. These systems offer real-time monitoring 

and can cover large areas, making them versatile for both indoor and outdoor applications. 

When integrated with Convolutional Neural Networks (CNNs), video-based systems have 

seen significant improvements in accuracy and speed, enabling more reliable detection in 

complex environments.  

1.4.3.2 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) have revolutionized fire and smoke 

detection by providing advanced capabilities for feature extraction and object detection. 
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CNN-based models, such as YOLOv8, YOLOv9, YOLOv10, and RT-DETR, excel in 

detecting fire and smoke with high precision, even in challenging environments with 

varying lighting conditions and complex backgrounds. By analyzing complex visual 

patterns, these models offer robust solutions for fire detection in a variety of settings, from 

indoor spaces to large-scale wildfires. 

1.4.3.3 Hybrid Systems 

Hybrid systems combine multiple sensor types and computer vision techniques to 

create a comprehensive fire detection solution. For instance, integrating infrared sensors 

with video analysis can enhance the reliability of fire detection by cross-verifying signals 

from different sources. These hybrid systems aim to provide the benefits of both sensor-

based and vision-based approaches, offering a more accurate and adaptive detection system 

for diverse fire scenarios. 

1.5 Challenges in Fire Detection System 

Fire and smoke detection systems face significant challenges in achieving high 

accuracy, adaptability, and efficiency, particularly in diverse and dynamic environments. 

Traditional sensor-based systems, though effective in controlled indoor settings, often 

exhibit limitations in large-scale or outdoor scenarios. These systems typically require 

closeness to the fire source and fail to offer detailed evidence on the fire’s location, 

intensity, and progression, making them unsuitable for comprehensive monitoring. 

Furthermore, they are prone to false alarms, reducing their reliability and usability in 

critical applications. Environmental complexities further complicate fire detection. Indoor 

fires often involve dense smoke and low-visibility conditions, necessitating systems 

capable of functioning in constrained environments. Conversely, outdoor fires, including 

wildfires, must contend with rapidly changing environmental conditions such as strong 

winds, varying lighting, and expansive coverage areas. The detection of wildfires demands 

robust systems that can handle large geographical regions, often requiring satellite or 
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drone-based monitoring for effective early warning. These scenarios underscore the need 

for advanced, adaptable fire detection technologies. 

Another challenge lies in addressing the diverse nature of fire and smoke emissions. 

For instance, detecting faint white smoke from organic materials differs significantly from 

identifying dense black smoke produced by synthetic combustibles. Moreover, traditional 

models often lack generalization capabilities, struggling to perform consistently across 

different fire and smoke categories. Resource constraints, such as the need for 

computational efficiency in real-time systems, add an additional layer of complexity, 

especially in regions where advanced infrastructure is unavailable. Addressing these 

challenges is crucial for improving the performance of vision-based fire detection systems. 

For further insights into these challenges, we recommend referring to the literature review 

section which offers comprehensive discussions on the challenges in fire and smoke 

detection. 

1.6 Research Objectives 

To address the aforementioned problems, this thesis aims to employ modern deep 

learning technologies and computer vision techniques. The objectives of this study are 

formulated as follows: 

▪ To recognize fire and smoke in diverse environments (Indoor and Outdoor scenes). 

▪ To train the model on large scale datasets including FASDD and FS to solve the 

generalizability problem. 

▪ To optimize the model for resource constrained real time embedded systems. 

▪ To compare the suggested model with modern existing models. 

In summary, this thesis bridges the gap between theoretical advancements in fire 

detection technologies and their practical application, delivering a versatile, efficient, and 

reliable solution for fire and smoke detection in diverse settings.  
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CHAPTER 2: LITERATURE REVIEW 

Fire is one of the most hazardous and destructive forces, posing significant risks to 

human lives, property, and the environment. Effective handling of fire incidents 

necessitates robust detection systems to mitigate risks promptly. Fires exhibit distinct 

characteristics such as variations in flame color, heat intensity, spread rate, and burning 

patterns. For instance, flames may appear in different colors, including red, orange, and 

yellow, depending on the temperature range [2]. Fires are typically classified based on their 

environmental settings, with indoor and outdoor fires presenting unique challenges. 

Outdoor fires, particularly wildfires, have increased in severity due to climate change and 

human activity, resulting in catastrophic environmental damage and public health crises. 

Prominent wildfire events in the United States [3], Turkey [4], and Australia [5] have 

underscored the environmental toll, as wildfires account for almost 84% of CO2 emissions 

in tropical and subtropical regions, significantly degrading air quality [6]. Meanwhile, 

indoor fires, often triggered by industrial accidents in urban areas, remain a critical yet 

overlooked hazard [7]. Fires in factories, chemical plants, and fuel storage sites place 

nearby schools, hospitals, and residential areas at substantial risk [8], [9]. Beyond physical 

damage, fire catastrophes evoke strong emotional responses and alter risk perceptions 

among those who experience them [10]. These realities emphasize the urgent need for 

effective, real-time fire detection systems to minimize fire-related losses and hazards. 

In this chapter, a review of the major issues that deal with fire and smoke detection 

nowadays, as well as relevant research directed at formulating working detection solutions 

using the newest technologies, is provided. 

2.1 Traditional Fire and Smoke Detectors 

Traditional fire detection systems, such as smoke, heat, and flame detectors, are 

commonly used but suffer from significant limitations in detecting fires across diverse 

environmental conditions. For example, heat detectors are notably slow, requiring up to 

eight additional minutes to detect fire compared to smoke detectors [11]. While smoke 
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detectors are faster and more reliable, their performance is heavily influenced by modern 

building ventilation systems, which can delay detection by 58 to 67 seconds depending on 

air velocity [12], [13]. Flame detectors, which operate by identifying ultraviolet or infrared 

flames, are prone to false positives caused by reflective surfaces or floating objects [14], 

[15]. Although flame detectors report minimal delays, the frequent occurrence of false 

alarms reduces their reliability and delays human responses during emergencies [9]. Multi-

sensor systems that combine smoke, flame, and heat detection can address some of these 

issues but remain prohibitively expensive [16]. These limitations underscore the necessity 

for advanced, efficient, and reliable fire detection systems that can overcome the 

shortcomings of traditional approaches.  

2.2 Computer Vision-Based Detection Techniques 

 Research and development work was carried out on the design of computer vision 

techniques for automatic fire or smoke detection in tunnels, aircraft hangars, ships and 

other small complex environments. Considerable efforts have also been made towards the 

development of robust video fire detection systems for big or open spaces. Numerous 

vision-based fire detection systems function by detecting color and motion which are two 

salient features. 

2.2.1 Colour and Motion Detection 

2.2.1.1 Color-based Detection 

It is still common today that color detection was the first used method in automated 

video fire detection systems. Strategies for video fire detection that employ color uses the 

RGB color model, and sometimes the HSI or HVS color space systems are used as well 

[17], [18], [19], [20]. The RGB format is largely used in visible camera sensors, as it is 

fitted for video-based fire detection because it is suitable for the spectrum content of this 

color space. Thus, Phillips [21] introduced the Gaussian-smoothed color histogram of ‘fire 

color’ pixels in RGB color space with temporal changes and smoothed color histogram and 

then used the pixels’ temporal changes to determine the fire rate. A flame detection rate of 
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93.5% has been achieved with this method. Subsequently, Liu et al. [22] applied HSV 

Color space with Gaussian distributions to represent fire colors and used Fast Fourier 

Transformations fire contours for detection. The rates achieved were impeccable and set at 

0.999. Toreyin et al. [23]used hidden Markov model with wavelets to study periodic 

movements of the smoke edge. They regarded the changes in chrominance components U 

and V in YUV color space and noted that these components tend to lower in grayish scenes 

which has smoke. Towards the smoke flicker modeling, these authors focused on active 

edges of the smoke and applied 97 frames delay to the 25m flame detection algorithm. 

Çelik et al. [24] developed fuzzy models of statistical analysis of video sequences still 

images and developed fuzzy color models in the YCbCr and RGB spaces. In an effort to 

detect destruction via flames and smoke within a scene, they developed a technique that 

fused spectral analysis with the features of a fire flicker. Their model performs with an 

accuracy of 99% when identifying a fire from lookalike objects. Qi et al. n.d. [25], invented 

a cumulative fire matrix that joins RGB color with HSV saturation. The developer logic 

suggests that the green portion of the fire pixel experiences greater fluctuation compared 

to the red and blue parts. This method separates uncontrolled fires from other moving 

objects by analyzing the spatial color transformation of pixel values. The system succeeds 

in the detection of 60 different classes of fire videos. Table 2.1 provides a brief comparison 

of the methods. 

Table 2. 1: Color-based detection models (literature survey) 

References Flame 

Detection 

Smoke 

Detection 

Color 

Detection 

Remarks Results 

Phillips, Shah, and Da 

Vitoria Lobo (2002) 

 [21] 

✓  RGB Used temporal 

variation 

Flame detection rate is 

93.5% 

Liu and Ahuja (2004) 

 [22] 

✓  HSV Used FFT Flame detection rate is 

99.9% 

Toreyin, Dedeoglu, and 

Cetin (2006) 

[23] 

✓  YUV Used a hidden Markov 

model and wavelets 

Delay in detection: 97 

frames with a distance of 

25m 
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Çelik, Özkaramanl, and 

Demirel (2007) 

 [24] 

✓ ✓ YCbCr, 

RGB 

Fuzzy color models Detection rate is 99% 

Qi and Ebert (2009) 

[25] 

✓  RGB/HSV Cumulative fire color 

matrix 

The system correctly 

detects 60 types of fire 

videos 

 

2.2.1.2 Motion-based Detection 

Since there is smoke and fire in the image, using video content for detecting the 

moving objects is suitable. However, to prevent misanalysis of the fire movement as an 

ordinary moving object, the video footage containing the fire region always requires further 

examination. These algorithms determine the motion of the region by means of 

Background Subtraction (Chen et al. 2010) [17], analysis of motion employing optical flow 

(Kolesov et al. 2010) [26], by temporal differencing Lee et al. 2007 [27]. These algorithms 

can be easily adapted to the automated detection of fires in videos systems.  

Foggia et al. 2015 [28], proposed a blended approach for candidate region selection 

which incorporates a balanced voting algorithm with YUV and morphological changes to 

enhance motion change detection. The approach enabled greater accuracy of 93,55%, and 

further adding features such as optical flow reduced the number of false detections. 

However, they had insufficient focus on shape and texture considerations. A year later, 

Han et al. 2017 [29], introduced a hybrid model which incorporated YUV and RGB spaces 

together with multicolor Gaussian mixture models to enhance motion detection. The model 

was effective with a remarkable detection rate of 96% within the confines of a laboratory, 

but it was unable to transduce to practical use in the field. Similarly, Gong et al. 2019 [30],  

introduced a new novel approach to fire detection analysis based on the analysis of fire 

characteristics. Detecting changes of color in sequential frames enabled the suspected fire 

regions to be identified. Tracking the center of mass of fire across frames and observing 

variations in shape, distribution in space, and area greatly increased identification accuracy. 

This method was shown to have a lower false positive rate in experiments but is not widely 
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used in practice. Gagliardi et al. 2020 [31], a multi-step smoke detection framework was 

designed which comprised a Kalman filter used for motion tracking, color segmentation, 

blob analysis and labeling, and an overlapping bounding box alert system. An alert was 

raised when seven or more overlapping bounding boxes were identified. This method 

performed very well for all the datasets and was found to outperform all other methods in 

terms of effectiveness. The method also achieved an unprecedented recall rate of 100%. In 

another study Gagliardi et al. 2021 [32], a proprietary method was introduced which 

combined image processing and deep learning. His method had more advanced smoke 

detection capabilities as a Kalman filter was used for motion tracking, color was 

segmented, and bounding boxes were placed around the moving gray objects. Moving gray 

objects were fed into a Convolutional Neural Network (CNN) for predictions which were 

accurate 90.49% of the time. Khalil et al. 2021 [33], a multi-space color model was utilized 

together with motion detection for the classification of fire objects. This was aimed at 

reducing parameters. They worked with RGB and LAB color space to differentiate fire 

from fire-like objects. Motioning objects were discovered using Gaussian Mixture Models 

or GMMs and the fire-like regions were masked to lower interference. Although they 

achieved high detection accuracy, the model suffered an alarming 88.81% case of false 

alarms. Wahyono et al. 2022 [34],  included the fire color characteristics by employing 

probabilistic Gaussian mixture models and utilized motion-based moment invariant 

analysis for dynamic fire movements modeling. Through this technique, a True Positive 

Rate of 89.92% was realized. Nevertheless, significant barriers to implementation, such as 

the positioning of the camera, still pose substantial practical difficulties. Table 2.2 presents 

a brief comparison of the methods. 

Table 2. 2: Motion-based detection models (literature survey) 

References 
Flame 

Detection 
Color Detection Motion Detection Remarks Results 

Foggia, Saggese, 

and Vento (2015) 

[28] 

✓ YUV 
Optical Flow 

(Real-Time) 

Enables real-time 

detection 

Achieved an 

accuracy of 93.55% 
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2.3 Deep Learning Based Detection Techniques 

 The ability of deep learning has grown tremendously in the various fields of 

machine learning. Deep learning algorithms have been successfully applied to activities 

like image object/caption detection and classification, speech to text and text to speech, 

and language translation. Studies on deep learning techniques for detecting fire and smoke 

have focused on improving detection performance and operational efficiency. An overview 

of some of the work done in this area is given below. 

 With the aid of a Deep Neural Network, Zhang et al. 2016 [35], conducted fire 

detection using deep learning methods on forests in 2016 [{34}]. Two classifiers and the 

Global Convolutional Neural Network Deep CNN designed for image processing were 

used. Initially, the global image-level classifier processes the image. If any fire is detected, 

the fine-grained patch classifier is used next in a cascaded form. In this research, two 

methods of fire patch detection were presented. The first method was to classify the image 

containing a fire patch using a linear SVM classifier as a binary classifier, and taking the 

patches tagged with fire into the non-linear Convolutional Neural Network trained on 

CIFAR 10. The second method proposes the use of a cascade of CNN fire classifiers. The 

base CNN, a deep CNN, was trained on the ImageNet dataset using the AlexNet model 

X. F. Han et al. 

(2017) 

[29] 

✓ RGB/HSI/YUV 
Gaussian Mixture 

Models 

Effective in motion 

detection 

Average detection 

rate of 96% 

Gong et al. (2019) 

[30] 
✓ RGB/HIS 

Frame Differences 

(Real-Time) 

Reduces false 

positives 

High accuracy with 

minimized false 

positives 

Gagliardi and 

Saponara (2020) 

[31] 

✓ HSV 

Kalman Estimator 

+ Geometric 

Analysis 

Analyzes geometric 

features 

Achieved 100% 

recall compared to 

other methods 

Gagliardi, de 

Gioia, and 

Saponara (2021) 

[32] 

✓ HSV 
Kalman Filter + 

CNN Classifier 

Combines motion 

tracking and 

classification 

Achieved a hit rate of 

90.49% 

(Khalil et al. 2021) 

[33] 
✓ RGB/LAB 

Gaussian Mixture 

Models 

Tracks fire growth 

and static objects 

High performance 

relative to other 

models 

(Wahyono et al. 

2022) 

[34] 

✓ 
RGB/HSV/ 

YCbCr 

Moment Invariants 

(Real-Time) 

Analyzes dynamic 

characteristics 

True positive rate of 

89.92% 
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[36] and the upper layers were connected to the fined-grained patch classifier which was 

trained on the up sampled Pool features. This method was only deployed in a few videos, 

but in roughly 90% of the tested 59 images, fire patches were detected. 

S. Frizzi et al. (2016) [37], proposed a small convolutional neural network for 

detecting fire and smoke in the videos. The classifier is a nine-layer CNN model with two 

fully connected layers. In this work, Leaky ReLu activation was used with a 0.5 drop out 

rate on fully connected layers. The achieved classification accuracy was 97.9 % on 

previously unseen data using 5584 images as test set. Fire and smoke features from videos 

were detected for fast classification by sliding windows of size 12 x 12. These windows 

are the inputs to be classified by the convolutional neural network and fully connected 

neural networks. The window position must change to analyze an entire video frame so the 

window can go through the convolutional neural network again. Here, only the last feature 

map of the convolutional neural networks is used with sliding windows and GPU. 

Luo et al. 2018 [38], implemented a surveillance system that detects smoke using the 

motion characteristics of smoke visualized using CNN techniques. Initially, a smoke region 

examiner is proposed where a moving object observation algorithm is assisted by a 

background dynamic update and dark channel prior. Afterward, the required features from 

the suspected region of the video are fetched using custom CNNs, followed by smoke 

needlepoint identification. Applying the techniques improved the accuracy of detection by 

99% in videos post-testing. The challenge of monitoring small-sized regions was addressed 

adequately in the proposed techniques, which altered the regions suspected to be smoke. 

Implicit enlarging of the areas also improved the speed of detection. Moreover, an 

algorithm that tuned the network’s training parameters using a limited dataset achieved 

remarkable results. The approaches garnered showed exemplary versatility when tested 

within different video scenarios. 

J. Sharma et al. 2017 [39] proposed deeper Convolutional Neural Networks for better 

fire detection in images, which was further improved by fine tuning with a fully connected 

layer Within this strategy, two pretrained Deep CNNs VGG16 and Resnet50 which are at 
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the topmost stage of fire detection model development were exploited. The Deep CNNs 

are tested using an unbalanced dataset designed to replicate real world conditions. 

Following this methodology, Resnet50 performs better than VGG16 on the unbalanced 

dataset. The performance of the deep models is commendable; more than 90% accuracy 

has been achieved in testing the performance of the Deep CNNs. However, the modified 

VGG16 and Resnet50 deep models with other additional fully connected layers tend to do 

marginally better than the base models, but at the price of having to endure longer training 

periods. 

Muhammad et al. 2018 [40], developed a CNN model for fire detection in video 

surveillance which is cost-effective by which they refer to ‘low cost.’ The model is based 

on GoogleNet [41] architecture and altered to suit the problem of classification. The 

GoogleNet model uses transfer learning techniques. To increase accuracy without afflicting 

the other, the model has been optimized to address target issue and fire data. The final 

model achieved accuracy of 94.43 % on the test set of the frames from videos. 

Aslan et al. 2019 [42], presented a video-based technique for flame detection through 

Deep Convolutional Generative Adversarial Neural Networks (DCGANs). This method 

relies on video frame clustering to achieve image temporal slices and the latter being 

processed through a DCGANs structure. They proposed an initial out-of-the-box training 

model for a DCGAN which greatly increased the ability of the deep learning model's 

discriminator. The first stage was trained identifying the differences between normal 

sequences and flame sequences. After the deep learning model obtained a powerful 

discriminator, the discriminator was finally trained without the generator. The non-flame 

images that were utilized constituted the “generated” training data while all other images 

remained unchanged. This technique reached an impressively increased false-positive rate 

of 3.91% corresponding to a hit-rate of 92.19%. 

Kim et al. 2019 [43], proposed an approach for detecting fires in video sequences 

based on deep learning techniques. The approach proposed employs a Faster R-CNN 

spatial classification model to identify supplementary regions of interest (SRoFs) along 
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with ordinary background images. Summary classifying features of the bounding boxes 

created in consecutive frames are extracted by LSTM networks and used to detect the 

presence of fire for a limited duration of time. The short-term decisions made consecutively 

are also passed through the majority voting mechanism for final decision making and 

detection during the longer period. The final fire decision is made after the estimation of 

the flame and smoke area is done, and the fire's behavior is analyzed with its spatial and 

temporal changes. This method was successful in achieving the highest reported accuracy 

of 97.92 percent in fire detection. 

 Li et al. (2019) [44], conducted a comparative study of different deep learning 

networks for smoke detection from video footage in real time. Their work consists of the 

smoke identification using MobileNet networks models, followed by Transfer Learning 

methods to create contrasts with other networks such as AlexNet, VGG16, GoogLeNet, 

and ResNet50. The main contribution of this research is to define how the training time 

and model update expense can be improved with the use of lightweight MobileNet [45] 

This basic proof allows the model to be applied to devices with limited computational 

resources. As stated, the pre-trained MobileNet achieved an accuracy of 98.78% over 

training done for 200 epochs. 

2.4 State of the Art Methods 

Recent research has been focusing on computer vision (CV) and deep learning (DL) 

methods for fire and smoke detection, utilizing advanced image and video analysis 

techniques to address the limitations of conventional systems. Deep learning-based 

systems typically focus on three key tasks: classification, which determines whether an 

image contains fire or smoke [46]; detection, which identifies the location of fire and smoke 

within an image; and segmentation, which annotates the shape and extent of fire and smoke 

regions [47]. Lin et al. [48] developed a joint detection framework that combines Faster R-

CNN and 3D-CNN, enabling smoke localization by leveraging both spatial and temporal 

information. Li et al. [49] explored multiple architectures, including Faster R-CNN [50], 

R-FCN [51], SSD [52], and YOLOv3 [53], concluding that convolutional neural networks 
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(CNN) provide a favorable contrast between detection speed and accuracy. Saponara et 

al.[54] achieved real-time fire and smoke detection on embedded devices by deploying a 

lightweight YOLOv2 model, reducing computational costs while maintaining 

performance. 

Several studies have explored the advancements in YOLO-based architectures to 

enhance fire detection. In Avazov et al. [55], YOLOv4 was implemented on a three-layer 

Banana Pi M3 board, effectively triggering alarms within eight seconds of fire outbreaks. 

Xue et al. [56] modified the YOLOv5 backbone by incorporating an SPPFP layer, which 

improved global feature extraction, particularly for small fire targets. Hu et al. [57] 

introduced a value-transformed attention mechanism that used color and texture features 

of smoke images to enhance feature weight distribution. They employed a Mixed-NMS 

technique to improve localization accuracy. Khudayberdiev et al. [58] developed Light-

FileNet, a lightweight fire detection model inspired by H-swish convolution mechanisms, 

which demonstrated efficiency and reliability in detecting fire. More recent efforts have 

focused on real-time deployment in complex environments. For instance, Saydirasulovich 

et al. [59] tailored YOLOv8 for wildfire detection using UAV imagery, integrating Wise-

IoU (WIoU) v3 to enhance bounding box regression. Ma et al. [60] modified YOLOv5s by 

integrating ODConvBS blocks for improved feature extraction, while He et al. [61] 

incorporated Dual Channel Group Convolution (DCGC) and Effective Squeeze Extraction 

(eSE) mechanisms into YOLOv5, enhancing the model’s receptive field and its ability to 

focus on relevant features. 

2.5 Available Datasets for Fire and Smoke Detection 

 The datasets play an essential role in the success of deep learning applications, 

particularly in fire detection research. To significantly improve detection accuracy, it's 

crucial to have a large, well-curated dataset that includes high-dimensional images and 

video sequences, allowing the model to learn a wide range of features. Fire images often 

display a variety of flame colors, ranging from blue to red, influenced by factors like the 

burning material and flame temperature. Smoke, a key element in fire detection, usually 



24 

 

appears in shades of gray, white, or black in videos. To ensure comprehensive coverage, 

datasets should include samples from diverse sectors, such as industry, agriculture, 

infrastructure, households, and forests. This variety is necessary to effectively distribute 

image features across various application domains. 

Some commonly used and publicly available fire and smoke detection datasets are 

mentioned in Table 2.3. 

Table 2.3: Fire and smoke datasets 

Dataset Name Description Use Case Environment Availability 

VisiFire Dataset 

Public video format with four categories: 

flame, smoke, other, and forest smoke. 

Includes 57 videos, with a subset 

annotated for frame-by-frame 

segmentation. 

Fire and smoke 

detection in videos. 
Both 

Publicly 

available 

BoWFire Dataset 

Contains 226 images depicting fires and 

non-fire scenes, encompassing building 

fires, industrial fires, and fire-like objects. 

Training and 

validating fire 

detection models. 

Both 
Publicly 

available 

Corsican Fire Database 

A comprehensive collection of multi-

modal wildfire images and videos, 

annotated for fire-related features such as 

flame color and smoke obscuration. 

Fire segmentation 

and detection in 

wildfire scenarios. 

Outdoor 
Available 

upon request 

FESB MLID Dataset 

Includes 400 Mediterranean landscape 

images categorized into 12 categories, 

with challenging samples of small-scale 

or distant smoke-like features. 

Smoke detection in 

natural landscapes. 
Outdoor 

Available 

upon request 

Smoke100k 

Large-scale artificial smoke image dataset 

with three subsets, simulating various 

smoke densities and backgrounds for 

training smoke-detection models. 

Training smoke-

detection models 

with synthetic data. 

Both 
Publicly 

available 

Video Smoke Detection 

Dataset (VSD) 

Comprises smoke and non-smoke videos 

and image datasets, annotated with 

similarities in color, shape, and texture to 

non-smoke objects. 

Reducing false 

positives in smoke 

detection. 

Both 
Publicly 

available 

FLAME Dataset 

Aerial images and videos from Northern 

Arizona forests captured by UAVs, 

featuring pixel-level annotations for 

wildfire recognition and segmentation 

tasks. 

Wildfire recognition 

and fire 

segmentation. 

Outdoor 
Publicly 

available 

D-Fire Dataset 

Diverse fire and smoke images, including 

synthetic samples, designed for 

developing object-detection methods. 

Object detection in 

fire and smoke 

scenarios. 

Both 
Publicly 

available 
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DSDF (Dataset for 

Smoke Detection in 

Foggy Environments) 

Real-world images for smoke detection in 

foggy environments, with annotations for 

smoke variations and background 

information. 

Enhancing model 

generalization in 

foggy conditions. 

Outdoor 
Publicly 

available 

DFS (Dataset for Fire 

and Smoke Detection) 

9462 fire images categorized by flame 

size, including a category for non-fire 

objects such as vehicle lights and 

streetlights to reduce false positives. 

Fire and smoke 

detection with false 

positive reduction. 

Both 
Publicly 

available 

Flame and Smoke 

Detection Dataset 

(FASDD) 

Large-scale dataset of 100,000-level 

flame and smoke images from various 

sources, including challenges for small 

object detection, is a large-scale dataset. 

Training and 

validating small 

object detection 

models. 

Both 
Publicly 

available 

 

As part of our investigation this study is to detect fire and smoke in both (Indoor and 

Outdoor scenes), so we are considering FASDD and FS for our research. A brief discussion 

of the datasets is given in the Methods and Materials section (Chapter 3). 

2.6 Research Gap Analysis and Contributions of the Proposed Methodology 

From the literature review, it is evident that current state of the art models has made 

significant progress. However, despite these advancements, existing methods for fire 

detection continue to face significant challenges. A major limitation is the lack of 

generalizability, as most models are optimized for either indoor or outdoor fire detection, 

with limited capability to handle both environments effectively. Additionally, most of the 

models are typically costly, making them unsuitable for real-time deployment on 

embedded devices. These challenges highlight the need for a lightweight, computationally 

efficient model that maintains high detection accuracy and generalizability across diverse 

environments. 

To address these challenges, this study proposes a new fire and smoke detection 

framework based on the YOLOv8 architecture with the following main contributions. 

▪ The Efficient channel attention (ECA) mechanism is proposed in the neck 

and head network of Yolov8. Therefore, the model’s accuracy is improved, 

and the cost of computation is reduced. 
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▪ The lightweight C3Ghost module is incorporated into the backbone network 

to compress the model size further while maintaining accuracy and speed of 

detection. 

▪ The model is trained and evaluated on a large variety of indoor and outdoor 

images to validate its generalizability in different environment settings. 

▪ The proposed model experimental results are compared with related studies 

to validate our findings.  

 

This work tries to overcome the gap between computational efficiency and real-time 

fire detection capabilities, resulting in advancements in fire safety technologies. The other 

key contents of this research are as follows: The third section containing Methods and 

Materials introduces algorithm, its improved framework and experiments with the 

algorithm model before and after improvements. The fourth chapter containing Results and 

Discussion concludes the experimental results and compares the proposed model results 

with existing state of the models for validations and analysis. The fifth section summarizes 

the work.  
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CHAPTER 3: METHODS AND MATERIALS 

This chapter highlights proposed model framework before and after improvements, 

key changes made to architecture followed by brief discussion on Efficient Chanel 

Attention (ECA) and C3Ghost convolution module, description of datasets (FASDD and 

FS) and preprocessing steps performed, performance metrics to validate study 

experimentation results. The workflow diagram is illustrated in Figure 3.1. 

 

Figure 3.1:  Proposed methodology flowchart showing steps from input to output stages 

3.1 YOLOv8 Architecture 

YOLOv8 is divided into four sections Backbone, Neck, Head and Loss Function. 

The primary division is augmented by CSPNet whose role it is to ease computational 

burden while enhancing the learning capability of a CNN [62]. When comparing both,It 

can be seen from Figure 3.2 that the developers of YOLOv8 turned to the implementation 

of the C2f block. This block can be seen as a combination of the C3 block with the E-

ELAN [63] framework pioneered in YOLOv7 [64]. More specifically, the C3 block is 

comprised of 3 convolutional blocks in parallel with a multitude of bottleneck connections 

while the C2f block is constructed using 2 convolutional blocks in series with 3 or more 
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bottleneck connections in between. The structure of the convolution module is as follows; 

Convolution-Batch Normalizer-SiLU (CBS). 

Furthermore, Lin et al. [65], YOLOv5 utilizes the Feature Pyramid Network (FPN) 

topology for performing top-down sampling, which enables information richer in features 

to be integrated into the lower feature map. In the same way, Liu et al. [66], a path 

aggregation network (PAN) was utilized for bottom-up sampling, which enables to 

improve the top feature map by utilizing the location information of the features more 

accurately. Their combination generates the accurate estimation of the image possible over 

various dimensions. The authors retained the FPN and PAN concepts, however, due to the 

non-reinforced convolution operation, the up-sampling aspect becomes altered as seen in 

Figure 3.2. 

Unlike YOLOv5 that relies on a single coupled head, YOLOv8 has a decoupled head 

which separates the classification and detection processes. Interestingly, YOLOv8 omits 

the objectness branch and focuses only on the classification and regression branches. In 

this manner, it also favors the target center predictor strategy over the anchor-based method 

which sets an anchor and uses the distance from the anchor to the target center edge as the 

predictor. 

For classification in Yolov8,the loss function using the (BCE) loss, as given by the 

Equation (3.1) follows:  

Loss𝐵𝐶𝐸 = −𝑤[𝑦𝑛 log 𝑥𝑛 + (1 − 𝑦𝑛) log(1 − 𝑥𝑛)]  3.1 

Where w is the weight; yn is the labeled value; and xn is the predicted value generated 

by the model. 
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In the regression branch, YOLOv8 has integrated Distribute Focal Loss (DFL) and 

Complete Intersection over Union (CIoU) Loss. DFL's objective is to emphasize the 

growth of probability margins surrounding object 'y'. Its Equation (3.2) is displayed as 

follows: 

 

Loss𝐷𝐹 = −[(𝑦𝑛+1 − 𝑦)log
𝑦𝑛+1−𝑦𝑛

𝑦𝑛+1−𝑦𝑛
+ (𝑦 − 𝑦𝑛)log

𝑦−𝑦𝑛

𝑦𝑛+1−𝑦𝑛
]  3.2 

 

The CIoU Loss is the first to apply an influence factor to the DIoU Loss with the aim of 

incorporating an object’s aspect ratio into distance bounding box evaluation. The 

corresponding Equation (3.3) is as follows: 

𝐿𝑜𝑠𝑠𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝑑2

𝑐2
+

𝑣2

(1−𝐼𝑜𝑈)+𝑣
   3.3 

 

whereas the IoU is a measure of the overlap between the bounding box predicted and 

the ground truth bounding box; d is the Euclidean distance between the center points of the 

predictive and the ground truth bounding boxes and c is the diagonal distance of the 

minimum bounding box which fully encapsules the predicted and ground truth bounding 

boxes. In addition, v is the parameter measuring the constancy of the aspect ratio of the 

object which is formulated with the next Equation (3.4): 

Furthermore, v stands for the parameter describing the consistency of the aspect ratio 

of the object which is described through the subsequent Equation (3.4): 

 

𝑣 =
4

𝜋2
(arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
− arctan

𝑤𝑝

ℎ𝑝
)
2

   3.4 

 

 

Where w indicates the weight of the bounding box; h indicates the height of the 

bounding box; gt indicates the ground truth; and p indicates the prediction. 
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Figure 3.2: YOLOv8 architecture visualization 

 

3.2 Improved YOLOv8 Architecture 

This study proposes an efficient and lightweight deep learning model based on 

YOLOv8 architecture to make the model run fast on resource constrained devices 

(embedded devices) and improve speed and efficiency for detecting fire and smoke. Figure 

3.3 is the illustration of an improved yolov8 structure. This paper uses the ECA attention 

module in the Neck component of the YOLOv8 model to improve computational power 

while maintaining its efficiency and accuracy. Attention modules, namely, CBAM [67], 

ECA [68], and SA [69] are distinctly used after each of the four C2f modules. An in depth 

introduction of the ECA attention module and Ghost convolution is presented in Sec (C, 

D). 
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Figure 3. 3: The structure of improved yolov8 model proposed in this study (Added 

C3Ghost (1), and ECA (2) module to the original model) 

 

3.3 Integrating Attention Mechanisms 

In recent years, attention mechanisms have improved the performance of object 

detection models by enhancing the model's ability to focus on relevant features while 

reducing unnecessary information. In this study, three attention mechanisms Shuffle 

Attention (SA), Residual Convolution Block Attention Module (Res-CBAM), and 

Efficient Channel Attention (ECA) are integrated one by one into the YOLOv8 framework 

to assess their impact on fire and smoke detection. A detailed comparison of these attention 

mechanisms is presented in Sec (III). 

3.3.1 The Efficient Channel Attention mechanism (ECA) 

The Efficient Channel Attention mechanism in Figure 3.4 enhances feature 

extraction by enabling local cross-channel interaction. The input feature map Finput ∈ 

RC×H×W is processed using Global Average Pooling (GAP) and cross-channel interaction 

to produce the aggregated feature map 𝐹𝑎 given by Equation (3.5). In this way, the 



32 

 

interaction between the features of each channel and their neighboring channels is 

observed, avoiding 1D convolution for dimensionality reduction. 

𝐹𝑎 = 𝐶 (𝐺𝐴𝑃(𝐹𝑖𝑛𝑝𝑢𝑡)) 𝟑. 𝟓 

 The weight w of each feature F is computed using the sigmoid function σ, as 

described in Equation (3.6): 

𝜔𝑖 = 𝜎 (∑𝑊𝑗𝐹𝑎𝑖
𝑗

𝑘

𝑗=1

) , 𝐹𝑎𝑖
𝑗
∈ Ω𝑖

𝑘, 𝟑. 𝟔 

 Where 𝛀𝒊
𝒌 indicates the set of k neighboring channels of Fai, and 𝑾𝒋 signifies the 

learned weights for each channel. The adaptive convolution kernel size k is related to the 

channel dimension C using the nonlinear representation shown in Equation (3.7): 

𝐶 = ∅(𝑘) = 2𝛾∗𝑘−𝑏 𝟑. 𝟕 

 Lastly, the kernel size k can be adaptively determined based on the channel 

dimension, as explained by Equation (3.8): 

𝑘 = 𝜓(𝐶) =  |
𝑙𝑜𝑔2 𝐶

𝛾
+
𝑏

𝛾
|
odd

𝟑. 𝟖 

 Where t is closest to |t|odd, based on tentative results [68], where γ and Ƅ are set to 

2 and 1, respectively. 
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Figure 3.4: Workflow diagram of Efficient channel attention (ECA) mechanism 

  

3.4 Integrating C3Ghost Convolution in the Backbone of YOLOv8 

To lower model size and FLOPs, the standard convolutions are restored with Ghost 

convolutions [70]. It is inserted in the C3 module to form the C3Ghost module. This 

alteration enables the backbone to extract features efficiently while preserving a high level 

of feature expression, even with limited computations. In a typical convolutional layer, 

each filter employs a full convolution to create a feature map. C3Ghost convolution, 

however, introduces a two-step process where the feature maps are split into primary 

features, produced via standard convolution, and ghost features, which are computed 

through lightweight linear operations, as described in Equation (3.9): 

𝐹𝑔ℎ𝑜𝑠𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑂𝑝(𝐹𝑝𝑟𝑖𝑚𝑎𝑟𝑦), 𝟑. 𝟗 
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Here, 𝐹𝑝𝑟𝑖𝑚𝑎𝑟𝑦 represents the primary feature map obtained through regular 

convolution, and 𝐹𝑔ℎ𝑜𝑠𝑡 denotes the additional features created using linear 

transformations, such as depth wise convolution or linear projections. This methodology 

notably reduces the number of required calculations while retaining the expressive power 

of the convolutional layer. 

 

 

 

Figure 3.5: Workflow of C3Ghost Convolution 
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Figure 3.6: Traditional Convolution and C3Ghost Convolution modules 

The C3Ghost convolution is particularly beneficial when handling large datasets and 

complex scenes, as it reduces computational demand without sacrificing detection 

accuracy. The operation of C3Ghost convolution in YOLOv8 is defined as follows in 

Equation (3.10): 

𝑌 = 𝐺ℎ𝑜𝑠𝑡𝐶𝑜𝑛𝑣(𝑋) = 𝐶𝑜𝑛𝑣(𝑋) + 𝐺ℎ𝑜𝑠𝑡𝑂𝑝(𝑋) 𝟑. 𝟏𝟎 

Where 𝑿  represents the input feature map, 𝒀 is the output feature map, and 

𝑮𝒉𝒐𝒔𝒕𝑶𝒑(𝑿) refers to the ghost feature generation operation. In Figure 3.6, the structure 

depicted in Figure 3.6 displays the intact C3 module structure, and various Bottleneck can 

form different C3 configurations. When the Bottleneck is replaced with Ghost Bottleneck, 

the structure is referred to as C3Ghost; while other ordinary convolutions are replaced by 

the Ghost module in the network, then we can achieve not only compressing the size of the 

model but also diminishing the amount of computation. 
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3.5 Data Acquisition  

This section describes the characteristics and characteristics of image datasets 

utilized for training and testing. In recent fire detection studies, the models were trained on 

both indoor and outdoor fires. However, certain studies only determined fire detection, not 

smoke. In this study, a model based on fire and smoke was developed to detect them both. 

This study utilizes two datasets, Fire and Smoke Detection Dataset (FASDD) [71] and the 

FS dataset [72]. 

This study utilizes two datasets for training and evaluation of the proposed model to 

address the generalizability issue. The description of both the datasets is given below. 

3.5.1 The Fire and Smoke Detection dataset (FASDD)   

The FASDD (Flame and Smoke Detection Dataset) is a comprehensive dataset 

designed to enhance fire and smoke detection algorithms, particularly in remote sensing 

applications. It includes over 122,624 flame and smoke images from a variety of sources, 

including surveillance cameras, drones, multi-source remote sensing satellites, and 

computer-generated graphics. The dataset involves diverse scenes such as urban areas, 

forests, industrial sites, and remote wilderness, ensuring comprehensive coverage for 

training deep learning models according to the authors of  [71]. It is noteworthy that it 

includes small-scale flame and smoke objects, posing challenges for small object detection 

in deep learning models. Additionally, the dataset provides annotation files in three 

different formats like JSON format designed in the Microsoft Common Objects in Context 

(COCO) dataset, XML format used in Pascal Visual Objects Classes (VOC) dataset, and 

TXT format compatible with YOLO series models. This public-available dataset is a 

valuable tool for developing robust fire and smoke detection models that can be utilized in 

a wide range of applications. The dataset has three variants FASDD_CV, FASDD_UAV, 
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and FASDD_RS. We are using FASDD_CV in this study. Figure 3.7 shows sample images 

from the dataset. 

    

Figure 3.7: Fasdd dataset samples showing (a) Indoor, (b) Outdoor, (c) Day fire, (d) 

Night fire and smoke images 

3.5.2 The FS (Fire and Smoke) Dataset 

The FS dataset is composed of 11,667 images obtained from different sources, as 

described in the article [72]. The dataset includes various lighting conditions daytime, dusk, 

and night-time providing a rich source of data for training models under various 

environmental conditions. Both datasets used the (.txt) annotation format for consistency 

in training. Figure 3.8 presents sample images from the dataset. 

    

Figure 3.8: Sample images from FS datasets of various scenes like only fire, smoke, and 

both 
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3.6 Preprocessing 

Data pre-processing is a method of converting raw data into clean data. As the data 

gathered is from different sources, it needs to be standardized and cleaned up before 

feeding it to machine learning algorithms. Pre-processing is a necessary step to reduce 

complexity and improve the accuracy of the algorithm. None of the color-changing or 

intensity changing operations are applied to this data as these properties impact the learning 

model in real-time. Changing color and luminous intensity will alter the color of _re and 

smoke, which must be avoided since the algorithm must learn them as primary features. 

Data cleaning was performed to remove the unnecessary images that contain either too 

much detail or too little detail. After cleaning, the data is classified into three categories: 

Fire, Smoke, Non-fire and Non-smoke (NFS). 

This research is limited to fire and smoke picture only. The pictures are resized to 

600 * 600 \pixel and I annotate the two datasets using txt format to ensure that both datasets 

are trained effectively by the proposed model. The datasets are divided into training, 

validation, and testing (Subsets of original dataset used To assess how well machine 

learning models are able to identify unseen data. He or she is used to unbiased data which 

In this instance consists of data not used in model training, regardless of its division) 

segments. The validation (A validation dataset is one which is designed and constructed to 

identify how well the models work on the specified data. It is utilized to set and calibrate 

the parameters of the model (Neural network) The model does not get trained on the 

validation dataset but instead employed to set parameters for improved generalization) set 

is used to check how effective the model captures the given data and employing it will 

modify the set parameters so that the model's generalization is enhanced. Usually, this data 

is never seen by the network) Table 3.1 illustrates the information about data splitting. 
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Table 3.1: Statistics of Preprocessed data 

SR. NO. 

 

 

DATASE

T 

CLASSES  

TOTAL 

IMAGES 

 

TOTAL 

SMOKE 

INSTANC

ES 

TOTAL 

FIRE 

INSTANC

ES 

 

TRAININ

G 

SAMPLE

S 

 

VALIDAT

ION 

SAMPLE

S 

 

TESTING 

SAMPLE

S 

1 FASDD_C

V 

Smoke, 

Fire 

69,226 53080 73297 48,458 10,384 10,384 

2 FS Smoke, 

Fire 

11,667 8693 16232 8494 2114 1059 

 

3.7 Transfer Learning Technique 

An effective technique that is extensively used in today’s world is transfer learning. 

This is where pre-trained models are utilized to improve the performance of learning 

algorithms on different yet related problems, thereby enhancing the already learned 

knowledge. In case of transfer learning, it is way more effortless and quicker to adjust an 

already existing framework rather than going for fresh training. The primary layers within 

the structures of CNNs tend to hold broad features which can be utilized for various tasks. 

However, the final layers focus more on specific details for individual applications. Using 

this property, the initial layers are kept intact, and the final ones are modified in order to 

train on the new data set [73]. 

 The FASDD and FS datasets are critical to this study in developing a highly 

effective and versatile fire detection model suitable for safety-critical applications. The 

design begins with a primary training phase using the FASDD dataset to acquire basic skills 

in identifying fire and smoke. In the second phase, generalization is enhanced by 

performing transfer learning on the FS dataset. This is accomplished by adjusting the 

FASDD-trained model's parameters prior to training on the FS dataset. The model becomes 

proficient in performing a wide gamut of tasks, leading to enhanced adaptability. Transfer 
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learning also goes a step further by improving the model's accuracy while maintaining 

tolerance to changes in anthropometric factors including lighting, camera position, or fire 

and smoke volume. Transfer learning's practicality, scalability, and efficiency in solving 

these issues demonstrates that it is a superior and dependable method in developing fire 

and smoke detection systems. 

3.8 Performance Evaluation Metrices  

The activity of describing how a trained model performs in new situations is called 

performance evaluation. Defining the recognition problem and selecting the model leads 

to a variety of techniques and measures that enable us to quantify the effectiveness and the 

generalization capability of the model. When defining classification performance metrics, 

it’s vital to know what a Confusion Matrix is. A confusion matrix or Error Matrix is a table 

that is used to describe the behavior of a classification model. A general binary 

classification confusion matrix is shown in Figure 3.9 which is a 2x2 matrix to understand 

the terminologies which is useful when finding the performance metrics. A confusion 

matrix is a nxn matrix where n represents the number of labels in the data. It is an organized 

and complete representation of the prediction results of a model and its comparison to the 

real values for the performed analyses and a table version of it. The general 2x2 matrix is 

composed of four different combinations of predicted and actual classes. 

3.8.1 True Positives (TP)  

Instances where the model correctly predicts the positive class. It means that the true 

class label case as in ground truth has correctly predicted by the model as true.    

3.8.2 True Negatives (TN)  

Instances where the model correctly predicts the negative class. It means that the 

negative class label case as in ground truth has correctly predicted by the model as negative.  
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3.8.3 False Positives (FP)  

Instances where the model predicts the positive class incorrectly. It’s a 

misclassification case where a true class label as in ground truth is predicted as negative 

class label by the model.  

3.8.4 False Negatives (FN)  

Instances where the model predicts the negative class incorrectly. It’s a 

misclassification case where a negative class label as in ground truth is predicted as positive 

class label by the model.  

A confusion matrix is a useful tool to locate classification performance metrics that 

include overall accuracy, precision, recall/sensitivity, and F1-Score.The details of each 

performance metric are explained in Table 3.2. 

    

Figure 3.9: A general 2x2 confusion matrix. 
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Table 3.2: Classification performance metrics  

Performance Metric Definition Purpose Formula 

Overall Accuracy The proportion of 

correct predictions to 

the total number of 

predictions. 

Offers a comprehensive 

assessment of the 

model's accuracy across 

all predictions. 

 

TP + TN 

 
TP + TN + FP + FN 

Precision The proportion of true 

positive predictions out 

of the total predicted 

negative instances. 

Evaluate the model's 

accuracy in predicting 

positive events, 

minimizing false 

positives. 

 

TP 

 
TP + FP 

Recall/Sensitivity The ratio of true 

positives to false 

negatives and false 

negatives is the same. 

Evaluate the model's 

ability to identify actual 

positive events, 

minimizing false 

positives. 

 

TP 

 
TP + FN 

F1-Score The harmonic means of 

precision and recall, 

providing a balanced 

measure between the 

two metrics. 

Balances precision and 

recall, resulting in a 

single metric that 

identifies both false 

positives and false 

negative. 

Precision x Recall 

2 x 

 

 
Precision + Recall 

 

Generalization refers to the skill of a model to cope with new, previously unseen data 

without any difficulty. The two principal kinds of generalization challenges such as 

underfitting and overfitting are unwanted when it comes to evaluating a model's 

effectiveness on unexplored data.   

An underfitted model is unable to learn because the patterns provided to it are very 

simplistic. It is not able to grasp the underlying intricacies and hence performs in a subpar 

manner during both training and even within the unseen dataset. This could result from a 

variety of things such as not using suitable algorithms, failure to comprehend the concealed 

information within the dataset, as well as insufficient training. Underfitting models show 

high errors rates and low accuracy in comparison to both the training and test datasets. Any 

combination of attempting to use intelligent algorithms, adding more factors, increasing 

model strength, or extending training can help deal with underfitting.  
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Overfitting is usually reflected in models which are too sophisticated and complex 

to grasp the underlying data patterns. This tends to capture noise or other random 

fluctuations present within the training dataset. An overfit model would perform 

exceedingly well on the training whereas totally deficient data. 

Encountering noise instead of genuine trends is a possibility with overfitting that 

occurs during extended training or using overly sophisticated models. Overfitting can also 

occur at the same time as working with small datasets or training a model that is too 

specific. A gap in performance between high results of the training phase and remarkably 

low results while testing or validating the model typically suggests that overfitting has 

taken place. The smart algorithm should learn the patterns but the model simply retains the 

details of datasets used for training. In case of overfitting, the model needs to be reworked 

or rather, there are a range of options such as imposing limits on the model's complexity or 

using dropout, increasing the records that are present in the dataset, or using cross 

validation to lessen the chances of overfitting.  

Furthermore, the number of computational resources is crucial when executing and 

deploying the model. To quantify the model's complexity, parameters, flops, fps, inference 

time, or other relevant parameters are used, as these data aid in preparing the suitable 

resources for model training and implementing it in real time scenarios. These performance 

metrics, when combined with computational complexity aid in model efficiency. These 

metrics are explained as follows: 

 

3.9 Model Parameters  

All the fixed parameters that are also known as non-trainable parameters and the 

updatable parameters (weights and biases) that the model learns during training are divided 

into a single scale called the model parameters. A model structure where the number of 
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parameters increases creates complexity to the model. Such complex model helps in 

capturing all complex patterns of the data and increases the accuracy however it increases 

the computational complexity that results in high utilizing of the hardware resources and 

that model might not be suitable to deploy for real-time applications. On the other hand, 

the smaller number of parameters makes the model less computationally expensive, it 

utilizes less hardware resources. However, in such a model, the accuracy of the model may 

be limited, but it is suitable for deployment in real-time applications. 

3.9.1 Floating-point Operations (Flops)  

When a model is trained and tested, the arithmetic operations he performs are 

calculated in floating point operations per second "flops". As the number of flops increases, 

the complexity of the model also increases, and this is also true in reverse. Higher flop 

count models tend to consume more hardware resources and time during execution 

compared to lower flop count models 

3.9.2 Frames Per Seconds (FPS)  

Frames per second refers to the rates at which an image is sent to a model within a 

given template. This parameter is extensively utilized in real-time systems to evaluate a 

model's feasibility for implementation. A higher metric value implies a greater speed, 

which is essential for models in this domain that require quick processing. However, a 

sophisticated model usually requires greater computational power, which is required to 

assist with greater fps per second and the opposite is true. 

3.9.3 Inference Time  

Inference time while making new predictions using a trained model is typically the 

time taken for the predictions. An effective model should have a low inference time to 

permit usage in real-time applications.    
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Case Description 

In this study, the models are trained using two different datasets namely FASDD and 

FS. The case study is divided into two categories given below: 

In case 1, the improved yolov8 model is trained on FASDD data using the 

hyperparameters listed in Table 4.3. The results of model are compared with related study 

[71].  

In case 2, the proposed model is fine-tuned and trained on FS data using the pre 

trained weight of case (1) through transfer learning to enhance the performance of the 

model and make the model more generalizable. The hyperparameter settings used for this 

case study are included in Table 4.5. The experimentational results are then compared to 

other studies to validate the performance of the model. 

4.2 Experimental Setup  

The proposed models are equipped with a Tesla T4 GPU (16 GB memory) and an 

AMD EPYC 7452 32-Core CPU. The operating system used was Linux CentOS. The study 

utilized PyTorch version 2.0.1, CUDA version 11.7, and Python version 3.9.7 to implement 

and train the deep learning models. This hardware-software combination ensured efficient 

training and testing of the improved model.  

4.3 Assessing Yolo Models 

We examined different YOLO models, including YOLOv8, YOLOv9, and 

YOLOv10, in their nano, small, and medium configurations. The model’s performance was 
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assessed using precision, recall, mAP@50, mAP@50-95, inference speed and process 

speed. For selecting an optimal base model, the detailed model’s comparisons using the 

above performance metrics, is given in Table 4.1. 

Table 4.1: Model comparison for optimal model selection 

Sr. No. Model Precision Recall mAP50 mAP50-

95 

Inference 

speed 

Process 

speed 

1 YOLOv8n 0.633 0.486 0.525 0.282 2.1ms 4.8ms 

2 YOLOv8s 0.816 0.754 0.828 0.587 3.4ms 1.2ms 

3 YOLOv9 

Custom 

0.810 0.728 0.825 0.538 49.0ms 0.9ms 

4 YOLOv9 

Gelan 

0.828 0.732 0.829 0.580 -- -- 

5 YOLOv10 

Medium 

0.796 0.711 0.805 0.552 -- -- 

6 YOLOv8m 0.828 0.740 0.83 0.578 7.0ms 0.7ms 

As illustrated in Table 4.1, YOLOv8 Medium (YOLOv8m) achieves the best balance 

between detection accuracy and processing speed. With a precision of 0.828, recall of 

0.740, and mAP@50 of 0.830, YOLOv8m surpasses the other models in terms of overall 

performance. Moreover, its inference speed of 7.0ms ensures suitability for real-time 

applications. YOLOv8 Small (YOLOv8s) closely follows, delivering faster processing at 

1.2ms, with a minor compromise in accuracy, making it ideal for time-sensitive 

applications. YOLOv8 Nano, while the fastest at 2.1ms, exhibits a significant reduction in 

mAP@50-95 (0.282), indicating a notable trade-off in detection accuracy. On the other 

hand, YOLOv9 Custom and YOLOv10 Medium, although reasonably accurate, lag in both 

inference and processing speed—especially YOLOv9 Custom with an inference time of 

49.0ms—rendering them less suitable for real-time scenarios. The YOLOv8 models, 

particularly YOLOv8 Medium, emerge as the most efficient choice for fire and smoke 

detection tasks due to their balance of high precision and speed.  



47 

 

YOLOv8’s streamlined architecture and reduced computational overhead make it 

highly efficient for real-time fire and smoke detection tasks. With faster inference times 

and comparable accuracy to more advanced models such as YOLOv9 and YOLOv10, 

YOLOv8 is suitable for scenarios where rapid detection is critical. Additionally, its 

lightweight design allows for deployment on embedded systems, which are commonly 

used in fire detection setups. Thus, YOLOv8 is the most advantageous balance between 

accuracy, speed, and resource efficiency, making it the most suitable choice for this study. 

4.4 Performance Comparison of Attention Modules 

Attention mechanisms are essential in enhancing deep learning architectures by 

enabling models to prioritize essential features while minimizing distractions from 

irrelevant information. This study focuses on three distinct mechanisms, Efficient Channel 

Attention (ECA), Shuffle Attention (SA), and Residual Convolutional Block Attention 

Module (Res-CBAM) to optimize the YOLOv8 model for fire and smoke detection. 

Each mechanism was integrated into the model's design and evaluated under 

identical training conditions. ECA focuses on local cross-channel interactions, improving 

feature extraction with minimal computational overhead. In contrast, SA combines spatial 

and channel attention to enhance the model’s adaptability to complex visual patterns. Res-

CBAM incorporates both residual learning and attention, balancing feature refinement with 

computational cost. 

These mechanisms were assessed using identical hardware and software 

configurations and trained for two hundred epochs with a batch size of 16. The optimizer 

and learning rate schedules were fine-tuned to ensure consistent evaluation. This 

systematic approach enables a clear comparison of their performance on fire and smoke 

detection tasks. 
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Table 4.2: Comparison of different attention mechanisms 

Model Images Model 

GFLOPS 

Precision Recall mAP50 mAP50-

95 

YOLOv8m-

SA 

2114 78.7 0.77 0.72 0.75 0.45 

YOLOv8m-

RES_CBAM 

2114 97.8 0.88 0.82 0.88 0.62 

YOLOv8m-

ECA 

2114 78.7 0.88 0.83 0.89 0.61 

Table 4.2 highlights the performance comparison of three attention mechanisms 

integrated into the YOLOv8m model. The results demonstrate that the Efficient Channel 

Attention (ECA) mechanism achieves the most balanced trade-off between accuracy and 

computational efficiency. With a precision of 0.88, recall of 0.83, and mAP@50 of 0.89, 

ECA outperforms the Shuffle Attention (SA) mechanism while maintaining a significantly 

lower computational cost than Res-CBAM. 

Res-CBAM delivers the highest mAP@50 (0.88) and mAP@50-95 (0.62), but its 

higher computational demand (97.8 GFLOPS) limits its applicability in real-time or 

resource-constrained settings. In contrast, SA, though computationally lightweight, records 

lower precision (0.77) and recall (0.72), making it less suitable for complex detection tasks. 

Overall, YOLOv8m-ECA emerges as the optimal choice for fire and smoke detection 

applications, striking a critical balance between detection accuracy and efficiency. This 

advantage makes it particularly effective for deployment in embedded systems where 

resource constraints are a significant consideration. 

To evaluate the effectiveness of the modifications discussed, including the 

integration of attention mechanisms and C3Ghost convolution, we conducted extensive 
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experiments using two datasets (FASDD and FS). The results presented in this section 

compare the performance of the YOLOv8 variants in terms of detection accuracy, 

computational efficiency, and inference speed. The following subsections detail the 

quantitative evaluation and comparison with existing state-of-the-art models. 

 4.5 Experimentation of Proposed Model in FASDD (Case-1) 

To evaluate our proposed YOLOv8m-ECA model, we compared its performance on 

the FASDD dataset against several state-of-the-art architectures. The FASDD dataset, 

introduced in Section 3.1, includes a variety of fire and smoke images from both indoor 

and outdoor environments, split into training, validation, and testing subsets as detailed in 

Table 3.1. For consistency with prior work [71], we maintained the same hyperparameter 

settings, which are summarized in Table 4.3.  

Table 4.3: Hyperparameters settings for (Case-1) 

Hyperparameters Values 

Epochs 36 

Batch size 8 

Optimizer SGD with Momentum: 0.85 

Learning rate Initial: 0.005, final: 0.01 

Image- Size 640*640 

Following the completion of training, the YOLOv8m-ECA model was rigorously 

evaluated to determine its performance across key metrics, including mean Average 

Precision (mAP@50), precision, recall, and F1-score. These metrics provide a 

comprehensive assessment of the model's ability to accurately detect and classify fire and 

smoke in various scenarios, particularly in complex indoor and outdoor environments. 
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On the FASDD dataset, the model demonstrated robust performance, achieving an 

overall mAP@50 score of 0.799, with a fire detection mAP of 0.75 and a smoke detection 

mAP of 0.84. Furthermore, it recorded precision, recall, and F1-scores of 0.816, 0.715, and 

0.76, respectively, reflecting a robust balance between detection accuracy and consistency. 

The precision, recall, and F1-score curves, illustrated in Figure 4.1, visually capture the 

model's progression and performance trends throughout the training process. 

 

(a)   

 

 

(b)  

 

(c)  

 

(d)  

Figure 4.1: Confidence curves (a) mAP:50 score, (b) Precision curve, (c) Recall, (d) F1-

score 
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To further validate the model, we tested it on unseen data for fire and smoke detection 

across different challenging environments. Figure 4.2 illustrates sample detection results, 

highlighting the robustness of YOLOv8m-ECA in various scenes, including day and night 

views, urban settings, and aerial perspectives. For instance, in a daytime city scene, the 

model accurately detected fire and smoke with confidence scores of 0.76 and 0.87, 

respectively Figure 4.2(a). In a more complex night scene, the model achieved fire and 

smoke detection with confidence scores of 0.70 and 0.59, respectively Figure 4.2(b), 

demonstrating strong adaptability in low-light conditions. Additional examples in Figure 

4.2(c, d) demonstrate smoke detection in challenging night and aerial views, with 

confidence scores of 0.58 and 0.26, further enhancing the model’s generalizability across 

different scenarios. 

 

 

(a) Fire and smoke detected in Daytime 

 

(b) Fire and smoke in Night-time 
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(c) Smoke detected in Night-time 

 

(d) Smoke detected in Aerial view 

Figure 4.2: Fire and smoke detected by proposed YOLOv8m-ECA model 

 

4.5.1 Comparative Analysis of Proposed Model with Related Studies 

To analyze the results of our proposed model, a detailed comparison is made with 

related studies illustrated in Table. 4.4 against other prominent models used for fire and 

smoke detection on the FASDD dataset, specifically comparing average precision (AP) for 

fire and smoke, recall, and mAP@50. Our proposed YOLOv8m-ECA model achieved a 

mAP@50 score of 79.9, surpassing YOLOv5x (75.5), Intern-Image (78.1), DETR (74.5), 

and Swin Transformer (78.1), representing a 5.83% improvement over YOLOv5x, 2.3% 

over Intern-Image and Swin Transformer, and 7.25% over DETR. Notably, YOLOv8m-

ECA achieved the highest AP for smoke detection (87.5) and competitive AP for fire 

detection (75.8), outperforming other models in smoke detection accuracy. 

While the YOLOv8m-ECA model shows slightly lower recall scores compared to 

models like InternImage and Swin Transformer, it achieves a favorable trade-off between 

precision and recall, optimized for real-time applications. This performance balance, 
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coupled with its lightweight architecture, makes YOLOv8m-ECA particularly suitable for 

embedded systems requiring both high accuracy and computational efficiency, such as fire 

and smoke detection in smart building environments. 

 

Table 4.4: Comparison of proposed model with state of the art 

Dataset Batch-

size 

Epochs Models AP 

(fire) 

AP 

(smoke

) 

Recall 

(fire) 

Recall 

(smoke

) 

mAP@

50 

FASDD 8 36 Yolov5

x 

73.8 77.2 75.0 61.0 75.5 

InternI

mage 

74.0 82.2 90.7 90.8 78.1 

DETR 68.8 80.3 89.9 96.2 74.5 

Swin 

Transfo

rmer 

72.8 83.4 91.5 92.8 78.1 

Propose

d Model 

(Yolov8

m-

ECA) 

75.8 87.5 68.3 74.7 79.9 

 

4.6 Experimentation of Proposed Model on FS Dataset (Case-2) 

To further fine tune and optimize the proposed models, YOLOv8m-ECA-C3Ghost: 

model with medium configuration and YOLOv8n-ECA-C3Ghost: model with nano 

configuration is further trained on FS dataset using transfer learning. For transfer learning, 
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the weights of the pre trained model on FASDD data are used with the hyperparameters 

settings as shown in Table 4.5 The dataset is split into training, validation, and testing 

subsets, as shown in Table 3.1.  

Table 4.5: Hyperparameter Settings for (Case-2) 

Hyperparameters Values 

Epochs 300 

Batch size 32 

Optimizer SGD with Momentum: 0.85 

Learning rate Initial: 0.005, final: 0.01 

Image size 640*640 

After training, YOLOv8m-ECA-C3Ghost achieved excellent performance, with an overall 

mAP@50 of 0.889 (0.866 for fire and 0.912 for smoke), precision of 0.892, recall of 0.831, 

and F1-score of 0.86 on the FS dataset. The YOLOv8n-ECA-C3Ghost model achieved a 

slightly lower overall mAP@50 of 0.853, with precision at 0.854, recall at 0.805, and F1-

score of 0.83. The precision, recall, mAP@50, and F1-score curves are shown in Figure 

4.4, illustrating the models’ performance over the training epochs. 

Yolov8m – ECA – C3Ghost Yolov8n – ECA – C3Ghost 

 

(a) Precision 

 

(b) Precision 
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(c) Recall 

 

(d) Recall 

 

(e) Precision-Recall 

 

(f) Precision-Recall 

 

(g) F1- score 

 

(h) F1- score 

Figure 4.4: Performance metrics of proposed YOLOv8-ECA-C3Ghost models. 
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4.6.1 Inference on Diverse Test Scenarios 

To evaluate the real-world applicability of our models, we tested YOLOv8m-ECA-

C3Ghost and YOLOv8n-ECA-C3Ghost on previously unseen data across a range of 

challenging scenarios. These scenarios included diverse settings such as indoor and 

outdoor daytime environments, industrial facilities, and aerial views of wildfires. Figure 

4.5 presents representative detections: in an indoor daytime setting, the models achieved 

confidence scores of 91% for fire and 92% for smoke, highlighting their accuracy under 

well-lit conditions. In outdoor scenes, the models maintained high detection accuracy, and 

in industrial settings, they effectively identified fire and smoke, adapting to complex 

backgrounds and potential visual noise. Additionally, aerial views of wildfires were 

detected accurately, as were long-distance and close-range scenes, demonstrating the 

models' adaptability across varying spatial and lighting conditions. These examples 

underscore the robustness and generalizability of our models, as they consistently 

performed well across diverse environments. The results confirm that YOLOv8m-ECA-

C3Ghost and YOLOv8n-ECA-C3Ghost can maintain high detection accuracy and 

reliability in real-world applications, where environmental factors may vary significantly. 

 

 

(a) Fire and smoke detected in Daytime 

(Indoor) 

 

(b) Fire and smoke in Daytime (Outdoor) 
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(c) Fire and smoke detected in Industry 

 

(d) Fire and Smoke detected in wild 

(Aerial view) 

 

(e) Fire and smoke in Far away scene 

 

(f) Fire detection in near scene 

Figure 4.5: Inference of fire and smoke detection in mixed scenes. 

4.6.2 Comparative Analysis with Related Studies (Case-2) 

Table 4.6. provides a comparative analysis of advanced fire and smoke detection 

models, highlighting that our YOLOv8m-ECA-C3Ghost and YOLOv8n-ECA-C3Ghost 

models achieve an exceptional balance of accuracy, speed, and computational efficiency, 

making them ideal for real-time detection in resource-constrained environments. While 

models like Zhao et al. 2022 and Chetoui et al. 2024 show strong precision and recall, but 

due to a lack of data on FPS and Flops, which are critical for real-time applications. For 

instance, Chetoui et al. 2024 achieves the highest recall (0.952) and F1-Score (0.89), but 

such high recall can sometimes result in false positives, reducing reliability in real-world 

scenarios where balanced precision and recall are needed. Additionally, Ma et al. 2023 
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and Yang et al. 2023 demonstrate improvements in both precision and recall but still fall 

short in real-time efficiency and computational cost. 

In contrast, our YOLOv8m-ECA-C3Ghost offers superior mAP50 (0.891), the 

highest in Table 4.6, indicating better detection accuracy across varying IoU thresholds, 

while maintaining an excellent FPS of 113 and Flops of 78.7G making it a versatile, high-

performing model for complex detection tasks. Similarly, YOLOv8n-ECA-C3Ghost 

balances performance with computational efficiency, achieving 277 FPS and only 6.6G 

Flops, outperforming other models in real-world scenarios where speed and resource 

efficiency are critical. Although some models might slightly outperform ours in isolated 

metrics like precision or recall, the overall superiority of YOLOv8m-ECA-C3Ghost and 

YOLOv8n-ECA-C3Ghost lies in their ability to provide high accuracy, exceptional 

speed, and low computational overhead, ensuring generalizability and robustness for real-

ire and smoke detection applications. 

Table 4.6: Performance comparison of our models with recent state of the art models for 

fire and smoke detection. 

Model No. of 

Images 

F1-

Score 

Precision Recall mAP50 mAP50-

95 

FPS FLOPs(G) 

Zhao et al. 

2022 

19819 0.73 0.915 0.596 0.802 --- ----- ----- 

Ma et al. 

2023 

4998 0.83 0.83 0.83 0.87 0.57 33 14.8 

Yang et al. 

2023 

11667 0.85 0.892 0.827 0.873 0.566 ---- ---- 

Xu et al. 

2024 

2058 0.83 0.861 0.818 0.883 ------ ---- --- 

YOLOv8m-

ECA-

C3Ghost 

11667 0.86 0.892 0.83 0.889 0.67 97 53 
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YOLOv8n-

ECA-

C3Ghost 

11667 0.83 0.854 0.805 0.853 0.597 277 6.6 

 

4.7 Discussion 

Traditional image processing techniques and early deep learning models for fire and 

smoke detection often struggle with generalization, especially when applied to diverse, 

unseen scenarios. They also present challenges in real-time applications due to high 

computational demands, making them impractical for deployment on resource-constrained 

devices. This study addresses these issues by introducing a lightweight YOLOv8-based 

model incorporating Efficient Channel Attention (ECA) and C3Ghost convolution. The 

proposed model demonstrates high detection accuracy across both indoor and outdoor 

environments, achieving a competitive mAP@50 of 89% on the FS dataset while 

maintaining a significantly lower computational cost compared to state-of-the-art models. 

This balance of accuracy and efficiency underscores the model's adaptability to real-world 

scenarios, including resource-constrained platforms like Raspberry Pi and Jetson Nano. 

The ability to achieve high frames per second (FPS) rates further validates its potential for 

real-time deployment. Notably, the inclusion of ECA enables the model to focus on critical 

features without adding significant computational overhead, while the C3Ghost module 

ensures efficient feature extraction. Compared to similar studies, such as the integration of 

Res-CBAM, our model provides a more resource-efficient alternative with comparable 

accuracy, bridging the gap between performance and practicality. 

However, some limitations persist. The model's lightweight nature, while 

advantageous for embedded devices, has limited its ability to capture intricate details in 

overly complex fire and smoke patterns. Future research should explore more advanced 

attention mechanisms or hybrid architectures to further enhance detection capabilities 

without sacrificing computational efficiency. Additionally, testing under dynamic real-

world conditions, such as varying weather or lighting, is necessary to validate its robustness 

comprehensively 
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CHAPTER 5: CONCLUSIONS 

This study introduces a lightweight YOLOv8-based deep learning model, enhanced 

with Efficient Channel Attention (ECA) and C3Ghost convolution, tailored for real-time 

fire and smoke detection. The model addresses critical challenges associated with related 

methods, including high computational demands and limited generalizability. By 

leveraging two diverse datasets, FASDD and FS, the proposed model achieves a 

competitive mAP@50 of 89% and demonstrates robust performance across varied indoor 

and outdoor scenarios. Its computational efficiency and adaptability make it particularly 

suited for deployment on embedded systems, enabling practical applications in resource-

constrained and safety-critical environments. The integration of ECA and C3Ghost 

modules significantly improves the model's ability to focus on relevant features while 

maintaining low computational overhead, ensuring high detection accuracy without 

compromising speed. This advancement bridges the gap between accuracy and efficiency, 

paving the way for more effective real-time fire and smoke detection systems in smart 

buildings, industrial facilities, and remote wildfire monitoring setups.  

Despite these advancements, the lightweight nature of the model presents limitations 

in detecting highly intricate fire and smoke patterns in complex scenarios. Future research 

will focus on incorporating advanced attention mechanisms and hybrid architectures to 

enhance feature extraction capabilities. Additionally, extending the scope of testing to 

include real-world conditions, such as varying weather, dynamic lighting, and diverse 

environmental challenges, will further validate the model's robustness and reliability. 

Expanding the datasets with more diverse fire and smoke scenarios will also improve 

generalizability, ensuring the model's adaptability to unforeseen situations. Overall, this 

study underscores the importance of balancing computational efficiency and detection 

accuracy, offering a practical, scalable solution for real-time fire and smoke detection in 

embedded environments. Its potential to enhance safety systems in a variety of settings 

marks a significant step forward in fire hazard mitigation technologies. 
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